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Motion planning is a computationally intensive and well-studied problem in autonomous robots. However, motion planning

hardware accelerators (MPA) must be soft-error resilient for deployment in safety-critical applications, and blanket application

of traditional mitigation techniques is ill-suited due to cost, power, and performance overheads. We propose Collision Exposure

Factor (CEF), a novel metric to assess the failure vulnerability of circuits processing spatial relationships, including motion

planning. CEF is based on the insight that the safety violation probability increases with the surface area of the physical space

exposed by a bit-flip. We evaluate CEF on four MPAs. We demonstrate empirically that CEF is correlated with safety violation

probability, and that CEF-aware selective error mitigation provides 12.3×, 9.6×, and 4.2× lower dangerous Failures-In-Time

rate on average for the same amount of protected memory compared to uniform, bit-position, and access-frequency-aware

selection of critical data. Furthermore, we show how to employ CEF to enable fault characterization using 23,000× fewer fault

injection (FI) experiments than exhaustive FI, and evaluate our FI approach on different robots and MPAs. We demonstrate that

CEF-aware FI can provide insights on vulnerable bits in an MPA while taking the same amount of time as uniform statistical FI.

Finally, we use the CEF to formulate guidelines for designing soft-error resilient MPAs.

CCS Concepts: • Computer systems organization → Reliability; Robotics.

Additional Key Words and Phrases: Reliability, Autonomous robots, Motion planning, Collision detection.

1 INTRODUCTION

Autonomous robots are increasingly used for real-time and safety-critical tasks, including medical care [26, 42],

autonomous driving [122, 126], and home assistance [67, 136]. The size of autonomous robots market is expected

to grow by 4× from 2022 to 2030 [14, 58]. As autonomous robots are becoming an integral part of our lives, it is

crucial to ensure that an autonomous robot does not collide with other objects, and thereby harm the safety of its

surroundings.

Motion planning allows an autonomous robot to navigate and reach its end goal safely without collisions.

Therefore, motion planning is key to the many tasks performed by autonomous robots, including navigation, object

manipulation, footstep planning, and full-body movement. It has been an area of study since the 1970s [66, 71],
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Fig. 1. The efect of sot errors on safety in autonomous robots.

and is today one of the key research topics in robotics. For example, motion planning constitutes about ∼10% of

the total publications in top robotics conferences [2, 3] (ICRA-2022 had 931 papers, 115 of which were in motion

planning). Motion planning has also received significant attention from industry, with an increasing number of

patents. For example, the number of patents granted every year by the United States Patent Office (USPTO) on

collision detection and motion planning has increased by 8× from 2015 to 2022 [39, 127].

The computational and real-time demands of motion planning exceed those provided by typical CPUs. Recently,

several approaches have been proposed to accelerate motion planning on different hardware platforms, including

GPUs [12, 35], FPGAs [7, 90, 113], and ASICs [10, 77, 89, 112, 114, 139]. Motion Planning Accelerators (MPAs)

have achieved impressive performance gains and are being adopted in industry [28, 102, 106]. However, the use

of MPAs in robotics applications has significant safety implications. For example, the IEC 61508 [57] provides

functional safety standards for electronic systems used in applications such as robotics in terms of allowable

dangerous failure rate per hour (Section 2.3). In modern systems, errors induced by particle strikes and radiation, or

soft errors, make up the majority of SRAM and register-level faults [84, 115]. Hence, soft errors are a major threat

to safety standards compliance in MPAs used in robotics. Furthermore, due to their transient nature, soft errors

cannot be eliminated during the design and test phases of a chip, and hence need runtime mitigation.

There have been many studies on the effects of soft errors on CPUs, GPUs, and FPGAs [31, 32, 38, 47, 49, 64,

75, 76, 88, 94, 96–98, 110, 123, 124, 128, 131], deep learning accelerators [53, 54, 74, 78, 101, 108, 125, 134],

and autonomous vehicle systems [11, 56, 61–63, 135]. However, their impact on accelerators for robotics has not

been studied. Application-agnostic blanket error mitigation techniques such as error-correcting codes (ECC) and

dual/triple modular redundancy (DMR/TMR) can increase the area, cost, and power by 12%-125% (Table 5), and

degrade the performance of these hardware accelerators. With consumer applications driving growth of robotics,

the electronics controlling these systems will become increasingly cost-sensitive [23, 37, 93]. Furthermore, any

increase in the MPA’s power consumption significantly reduces a mobile robot’s operation time as MPAs suitable

for real-time motion planning can contribute to 15%-50% of its total power consumption [69, 79, 90]. While there

has been work on sensor and actuator faults in robotics [22], there has been no study of the reliability of MPAs in

the presence of soft errors. To the best of our knowledge, we are the first paper on characterizing and improving the

reliability of MPAs.

In this paper, we study soft errors in the collision detection module (CDM), which is the largest, most energy-

consuming, and safety-critical component in MPAs [7, 77, 89, 114]. We find that CDMs in these accelerators

consist of on-chip storage elements to store the information about space that the robot passes through for possible

motions. These storage elements account for more than 97% of the sequential elements (based on our RTL synthesis

experiments), and so we focus on it in this paper. Figure 1 shows the effect of soft errors in the CDM. In the

error-free scenario (Figure 1a), the robot navigates safely to the end goal. However, in Figure 1b, a soft error causes

the MPA to misidentify a path taken by the robot as safe, thereby resulting in a collision. This mis-identification is

due to an error modifying the geometric representation of the space that the robot passes through.

ACM Trans. Cyber-Phys. Syst.
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Prior work has explored memory and register file designs that allow flexible partition into protected and non-

protected regions for incorporating selective error mitigation in systems using CPUs and GPUs [16, 86, 133, 140,

141]. These techniques protect only the most vulnerable data and do so by placing it in protected memory. A

challenge with applying such an approach to error mitigation is that it requires accurate and fast identification of

the most critical data. One approach is to use exhaustive fault injection (FI) to identify storage bits that exhibit the

highest resilience improvement when protected from soft errors. Unfortunately, exhaustive FI can take up to 24,000

CPU hours for a typical MPA (Section 6.1.1). Such high FI time overhead for error mitigation each time the MPA is

reconfigured for a different task or robot introduces practical deployment challenges. For fully autonomous robots,

the MPA’s storage data can be generated or modified at runtime [34, 52, 60], requiring runtime characterization of

vulnerable data for selective error mitigation. Also, as noted in earlier work [88] exhaustive FI is an inefficient way

to gain insight during architecture design.

Prior work on FI techniques for CPUs and GPUs [31, 32, 49, 76, 92, 124, 131] has obtained significant reductions

in the FI time. These FI tools and techniques are targeted towards specific languages, Instruction Set Architectures

(ISA), or CPU/GPU system simulators and often exploit the microarchitecture or ISA to reduce the FI time

and estimate the failure probability (Section 8). However, these techniques cannot be directly applied to robotic

accelerators that use specialized microarchitectures and instruction sets. Thus, there is a need for techniques that

efficiently characterize the effect of soft errors in robotics applications. Architectural Vulnerability Factor (AVF)

has been widely used to define the vulnerability of a structure and can be measured using an analytical method such

as Architecturally Correct Execution (ACE) analysis [88] or FI [73]. Directly applying AVF methodology such as

ACE analysis to MPAs requires considering the positions of obstacles in the environment, thus leading to the need

to run a large number of simulations to accurately estimate the fraction of time a hardware storage element contains

an ACE bit.

To overcome these challenges, we introduce a novel heuristic, Collision Exposure Factor (CEF) that depends

only upon the accelerator and robot, not on the environment. Other heuristics, such as bit position [74] and access-

frequency [68, 83] have been proposed to find critical bits for deep learning accelerators and embedded applications,

respectively. However, our analysis shows that considerable variation exists in the failure probabilities of bits

with the same access-frequency or bit position in MPAs. In contrast, our approach provides a higher reduction

in the overall failure probability as our proposed heuristic is more accurate at finding critical bits in the MPAs

(Section 6.2).

The CEF estimates the vulnerability factor of memory bits storing spatial information. The 3D model data of the

swept spaces of a robot’s possible motions play a key role in real-time collision detection and motion planning, and

is stored in the on-chip memory. Each bit in the on-chip storage helps specify the bounds of some motion’s swept

space. We define a bit’s critical space as the region excluded from the swept space if that bit changes value due to a

fault. A bit-error can lead to erroneous collision detection and safety violations if an obstacle overlaps with this

bit’s critical space. To account for this violation, CEF of a bit is defined as the surface area of that bit’s critical

space exposed to obstacles due to a soft error. The CEF is defined for a memory bit, and the probability of a fault in

a bit resulting in a safety violation monotonically increases with its CEF value. Thus CEF values of memory bits

can be used to estimate their relative vulnerability factors. In contrast, AVF estimates the failure probability due to

soft error for a structure, and not in individual bits.

The probability of a fault in a bit resulting in a safety violation depends upon the environmental characteristics

(e.g., average size and number of obstacles). By considering the entire swept space of the robot’s motion, the

CEF decouples the effects of the robot model and the environment on safety violations, and the safety violation

probability of a bit monotonically increases with its CEF value. CEF can be calculated once for a given MPA and

robot without needing to consider obstacles in the environment (which might be highly dynamic). The underlying

reason this separation is possible is that, in the most widely used approaches for real-time motion planning, a robot

has a fixed set of possible short motions that are precomputed independently of obstacle positions [72]. During

ACM Trans. Cyber-Phys. Syst.
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operation a subset of these motions is selected to navigate to a given goal depending upon obstacle positions.

For purposes of fault analysis we decouple these steps by assuming a conservative distribution (e.g., uniform) on

where objects will appear. We show empirically that the CEF computed this way independent of the environment is

positively correlated with the average failure probability.

Further, we propose a CEF-aware error mitigation technique to selectively protect values with higher CEF in an

MPA’s on-chip storage. Finally, we propose a two-phase FI methodology: Phase 1 FI to find the CEF of all the bits

(for a given robot and MPA), and Phase 2 FI to find the relation between the CEF and failure probability with fault

site pruning. Uniform statistical FI-based characterization of the CDM provides similar speedup over exhaustive FI

as CEF-aware FI (Section 6.1.1). However, it does not find the safety-violation probability of an individual bit nor

does it find relative vulnerability of different bits, which is needed for error mitigation. In CEF-aware FI, on the

other hand, decoupling the two FI phases allows efficient calculation of the safety-violation probability for every

bit in the CDM. In summary, we make the following contributions in this paper:

• Establish the necessary conditions for safety violations (i.e., collisions), and propose Collision Exposure

Factor (CEF), a reliability metric for CDM storage elements.

• Propose an efficient CEF-aware error mitigation technique that selectively protects values with higher CEF,

and compare it to uniform, exhaustive FI, bit position-aware, and access-frequency-aware application of

DMR, TMR, and ECC techniques for four CDM designs.

• Propose a two-phase FI methodology using the CEF of storage elements for fault site pruning to reduce FI

time by orders of magnitude.

Our results show that CEF-aware selective error mitigation results in 12.3×, 9.6×, and 4.2× lower failure rate

for the same amount of protected memory compared to uniform, bit position, and access-frequency-aware selection

of critical data. Further, CEF-aware FI reduces the FI time by 23,000× with minimal loss of accuracy, and finds

the failure rate of the MPA and individual bits. Finally, we study the impact of architectural design parameters on

resilience and error mitigation overheads, and demonstrate the potential for designing resilient MPAs architectures

using the CEF.

2 BACKGROUND AND MOTIVATION

This section briefly summarizes relevant background information on motion planning, general CDM architecture,

and safety in robotics. Then, we summarize the limitations of current FI methodologies, and discuss the need for

application-specific reliability metric and FI methodology for MPAs.

2.1 Motion Planning

The objective of motion planning is to compute a collision-free path for a robot. Motion planning is performed

in the robot’s configuration space (C-space), which has the same number of dimensions as the robot’s degrees of

freedom (DOFs). Figure 2a shows a planar robot with three DOFs, while Figure 2b represents its C-space. Each

dimension of the C-space represents the range of angles of a joint of the robot. The point c1 with coordinates (x1,

y1, z1) in the C-space corresponds to the pose c1 in Figure 2a. Similarly, edge e12 represents the robot’s motion

from c1 to c2. The complexity of motion planning increases exponentially with the robot’s DOFs [109]. Thus,

approximate methods such as probabilistic roadmaps [65] are widely used [70, 109] over the last 20 years. Many

hardware accelerators [7, 77, 89, 91, 113, 139] have been proposed for these algorithms.

2.1.1 Probabilistic roadmaps. Probabilistic motion planning consists of two phases. In the preprocessing stage, a

graph, called a motion set, is constructed in the robot’s C-space. Figure 2c and Figure 2d give examples of motion

sets for a robot with three and two DOFs, respectively. The nodes in the graph correspond to the robot’s spatial

poses, and an edge between close-by nodes represent motion generated by a local planner (e.g., linear interpolation

between two poses) from one pose to another. Motion set consists of collision-free poses and motions of the robot

ACM Trans. Cyber-Phys. Syst.
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Fig. 2. (a) shows the spatial poses and motion of a 2D robot with three degrees of freedom (x, y, z) (figure reproduced

from [112]), (b) represents these poses and motion in the robot’s C-space, and (c) shows a motion set in the C-space. (d)

shows a motion set for a robot with two DOFs. The figure highlights a path between c1 and c2 in the presence of an obstacle

in c-space (let) and physical space (right).

(a) (b) (c)

Fig. 3. (a) shows the swept space of a robot motion, (b) represents the voxelization of the swept space (explained in Section 2.2),

and (c) shows an obstacle that overlaps with the swept space of this motion.

for given environment. In the query phase, a path search algorithm (e.g., Dijkstra’s algorithm) is used to find a path

between given start and end poses using the precomputed motion set. A path consists of one or more motions from

the motion set. The probabilistic roadmap is a multi-query method, i.e., the same motion set is used to perform

motion planning for multiple start and goal poses.

Leven and Hutchinson [72] proposed a real-time motion planning approach based on probabilistic roadmaps

for a dynamic environment and is also used by MPAs [46, 77, 89, 91, 113, 139]. In this approach, the motion set

is generated for an obstacle-free environment. At runtime, collision detection is performed to find collision-free

motions in this set for a given placement of obstacles. The path search module considers collision-free motions to

find a feasible path between the start and end pose in the resulting collision-free motion set graph. For example, in

Figure 2d, an obstacle in the robot’s environment makes some of the motions in the motion set flagged as “colliding

motion”, which are avoided by the path search module to find a path between c1 and c2.

The information about the swept space of each motion in the motion set is stored in the memory to facilitate

real-time collision detection. Swept space of a motion is the space occupied by a robot as the given motion is

followed. For example, as shown in Figure 3a and Figure 3b, a motion’s swept space is discretized, and its 3D

model is stored. As shown in Figure 3c, the motion’s swept space is checked for overlap with obstacles for collision

detection at runtime. Several motion planning approaches propose to modify this motion set at runtime [34, 52, 60].

For these approaches, the swept spaces of new motions are generated at runtime outside of the critical path.

2.2 Collision Detection Module (CDM)

The collision detection step is the most time- and energy-consuming in motion planning and takes up to 99%

of the total runtime on a CPU [12]. As collision detection must be performed in real-time with low latency

to ensure safety in an environment with dynamic obstacles, MPAs typically dedicate more than 85% of their

total area to accelerate collision detection [77, 89, 91], making the CDM the most vulnerable component in an

MPA. An erroneous collision detection can potentially lead to a collision between the robot and an obstacle in

its surroundings, making collision detection safety-critical. Many approaches have been proposed to accelerate

ACM Trans. Cyber-Phys. Syst.
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Fig. 4. Architecture of a Collision Detection Module (CDM).

collision detection on different hardware platforms. The architecture proposed by Murray et al. [90] uses specialized

combinational circuits for a given motion set, but it is not reconfigurable to different motion sets at runtime. In

contrast, GPU-based collision detection acceleration [12, 35] provides high flexibility, but it is not energy-efficient.

Configurable collision detection hardware accelerators [7, 10, 77, 89, 91, 113, 139] provide a balance between

flexibility and performance/energy-efficiency. We focus on the fault characterization of such reconfigurable CDMs

of four MPAs, which we refer to as A1 [90], A2 [89], A3 [77], and A4 [139] (Section 5.2) throughout this paper.

Figure 4 illustrates the architecture of a generic configurable CDM. The CDM consists of multiple collision

detection circuits (CDCs) to check multiple motions for collision in parallel. Each CDC consists of on-chip

memory/registers to store a motion’s swept space, and exploits inter- and intra-query data reuse. The on-chip

storage can be configured for different motions at runtime. Based on our synthesis experiments, the on-chip

memory to store swept spaces constitutes more than 97% of the sequential elements and ∼ 50% of the total area

in CDMs. Earlier work on FPGA-based accelerators [89] uses combinational logic to encode swept-space data.

However, most programmable CDMs have a high fraction of sequential elements dedicated to on-chip storage for

spatial data [77, 89, 91, 139]. We also verify this using RTL synthesis of these programmable CDMs (architecture

explained in Section 5.2). Therefore, we focus on the on-chip memory for fault characterization, and do not consider

the effect of soft errors in combinational logic in this work.

The key design consideration of CDMs is the geometric representation used to store swept spaces in the memory.

Several representations for storing the 3D model have been proposed for motion planning, including polygonal

meshes [5], bounding box hierarchies [40, 130], voxels [114], and octrees [59]. These approaches differ in storage

requirements, representation accuracy, and computational complexity. All CDM hardware accelerators studied in

this work use either grid-based or octree-based representations (explained in Section 3.1) as these representations

are less compute- and memory-intensive. For both representations, the swept space of a motion is discretized into

fixed-size cubes known as voxels. Voxelized swept space is then stored using a set of structures specific to the

representation used. At runtime, a perception sensor module senses obstacle occupancy information, converts it to

voxels, and sends it to the CDCs. The CDCs perform collision detection for stored motions and send the output to

the path search module. Note that the proposed metric CEF is applicable regardless of the geometric representation

used.

2.3 Functional Safety in Robotics

Safety is a crucial consideration in robotics. Hence, the failure rate of circuits used in robotics applications,

including MPAs, is an important factor. The FIT rate of a circuit (where 1 FIT is one failure/billion hours) consisting

of multiple components can be computed using Equation (1) [74, 88].

FIT =

i∈components
Si ×SDCi ×FITRaw (1)

ACM Trans. Cyber-Phys. Syst.
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Table 1. Comparison of complete and selective ECC. The die cost calculation is based on the equation provided in [55]

(Chapter 1.6). The wafer cost, yield, and impurity factors are for 16nm technology node [18, 25, 119].

No ECC Full ECC Selective ECC (SIL 2) Selective ECC (SIL 3)

Total area (mm2) 450 502.5 454.5 469.8

Cost/die ($) 59.9 70.0 60.8 63.6

FITRaw is the raw FIT rate defined in FIT/Mb and depends upon multiple factors including technology node,

ambient conditions, and elevation [105]. Si is the number (in Mb) of sequential elements/latches in component i.

SDCi is the probability of a fault in component i affecting the application output.

IEC 61508 [57] defines an international safety standard for safety-critical electronic systems. This standard is

based on the risks of failure and defines four Safety Integrity Levels (SIL). Each SIL expresses the upper bound on

the average frequency of dangerous failures per hour (PFH) [82]. SIL 1 is the least stringent, while SIL 4 is the

most stringent. The maximum allowable PFH rate decreases by three orders of magnitude from SIL 1 (10−5) to

SIL 4 (10−8). Note that the IEC 61508 standard considers the entire electronic system, not only the MPA.

One approach to make circuits soft error-resilient for certifiable safety is to use hardware error mitigation

techniques on storage, which incurs high cost/power/performance overheads. Autonomous vehicles and robotics

industries typically have shallow profit margins. For example, the profit margin per unit is under $1000 for several

automobile industries [137]. Electronic systems contribute up to 40% to the total cost of a car [24, 100] (at the time

of writing). Hence cost-effective solutions to make MPAs more reliable are imperative [23]. The overheads for

complete protection of storage structures increase with their size. In such a case, the protection may be sacrificed

entirely if the area/power overheads are over budget. In comparison, selective protection is flexible and provides

safety with less overhead than complete protection of storage structures by protecting only the most vulnerable

data. Table 1 compares the die area and cost for complete and selective ECC for the A3 [77]. As shown in Table 1,

selective ECC can reduce the cost by 10% for SIL 3 (∼ 1% increase in the profit margin). While the table compares

only the die cost, an increase in the die area has a cumulative effect on the total cost of an electronic system,

amplifying the need for selective error mitigation.

2.4 Fault Injection (FI)

In a circuit, a soft error can occur at any location and time. Assuming a single-bit error model, where only one bit is

affected by a soft error in the component, exhaustive fault characterization typically requires A × B FI runs. In this

equation, A is the number of fault sites in space, and B is the number of fault sites in time. A is determined by the

number of bits, and B is determined by the application’s total execution cycles and the number of possible inputs

to the application. Unfortunately, this requires very high numbers of FI runs. In MPAs, different combinations of

obstacle positions (input to collision detection) add to the number of FI runs, making the space even larger.

Accelerators’ fault characterization is typically carried out by statistical FI experiments [19, 33, 48, 49, 73, 74].

Statistical FI performs random sampling in the fault space and allows to tune the number of FI experiments as

per the required confidence of the estimated failure rate for a system [73]. Often, statistical FI is performed per

component to find the safety-critical components in a circuit. However, the CDM component occupies more than

85% of the area in an MPA and mainly consists of sizable on-chip storage structures to store swept spaces. Hence,

selective error mitigation of CDM requires a strategic approach to determine the safety-critical data in the on-chip

storage. Further, the number of FI runs needed for statistical FI increases with a decrease in the probability of a bit

error resulting in an output error, i.e., the failure probability of a component [73]. Typical CDMs have a low overall

failure probability (∼ 0.3%) which increases the number of FI runs required when using uniform random statistical

FI (Section 6.1.1). Therefore, it would be beneficial to develop an application-aware FI strategy in which the sites

for FI are strategically selected.

ACM Trans. Cyber-Phys. Syst.
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Table 2. Summary of frequently used acronyms

CEF Collision Exposure Factor

MPA Motion Planning Accelerator

CDM Collision Detection Module

CDC Collision Detection Circuits- A CDM consists of multiple CDCs

SIL Safety Integrity Level (Section 2.3)

SDC-C Silent Data Corruption leading to False-negative collision detection (Section 3)

CDF Collision Detection Failure rate per billion hours (Section 4.3)

A1-A4 CDMs studied in this work

3 RELIABILITY METRIC FOR MOTION PLANNING

In this section we explain how erroneous collision-detection outcomes can lead to safety-critical events, then

describe Collision Exposure Factor (CEF) in detail, and finally discuss how to apply CEF to building resilient

MPAs. Table 2 summarizes the frequently used acronyms in this work.

Specialized accelerators, such as a CDM, obtain efficiency by replacing long sequences of software instructions

with specialized hardware. Such accelerators may perform computations under the supervision of a command

processor via an ISA interface (e.g., Google’s TPU [29]), and/or may start computation triggered by an event such

as the arrival of a new frame of data in a buffer [21]. While an error originating in the accelerator could potentially

propagate to the command processor and thereby result in erroneous operation (e.g., hang or system software crash)

this paper focuses on Silent Data Corruption (SDC) within the CDM that can result in the robot colliding with an

object.

Given a motion set and the current positions of obstacles, collision detection finds motions that may lead to

collisions. A bit-flip can lead to erroneous collision detection. A false-positive outcome can lead to a poor (longer)

path or the motion planner’s inability to find a path, in which case the robot may get stuck. We perform fault

injection experiments to measure the probability of a soft error resulting in a false-positive outcome; this gives

an upper bound on the probability of the motion planner’s inability to find a path due to soft errors. We find that

the motion planning failure rate increases by up to 0.001% for 1 second/motion planning query [99] and 45nm

technology node due to soft error induced false positive outcomes, which is significantly lower than the failure rate

of probabilistic motion planning algorithms (5−10% [99]). Further, a simple mechanism such as using a watchdog

timer to refresh the corrupted on-chip data can be employed to avoid such cases. We do not focus on false-positive

outcomes in this work, as their impact on the motion planning failure rate is very low, and safety standards do not

consider false-positives but only safety violations.

We define an SDC-C as an event involving a false-negative result when performing collision detection for a

proposed motion and an object (i.e., a colliding motion is misidentified to be collision-free even though sensors

detected an object the proposed motion would collide with if chosen during path search). Similar to AVF, SDC-C

probability gives a probability of raw error in a memory bit becoming an error in motion planning (i.e., false-

negative collision detection). Since, in general, an obstacle might appear anywhere in the environment, a naive (but

expensive) approach to estimate SDC-C probability is to simulate many sample environments, each with randomly

placed obstacles. Below we consider a more efficient approach suitable, for example, during CDM architecture

design.

3.1 Collision Exposure Factor (CEF)

To analyze the errors that can occur in a CDM circuit and their effect on SDC-C probability, we focus on bit

changes that can lead to false-negative collision detection. Specifically, we consider the impact of a change in a

single bit used to represent a portion of a motion’s swept space. As mentioned in Section 2.2, swept spaces of the

motions are stored in CDM memory or registers and used to find possible collisions with the obstacles. Each bit in

the on-chip storage helps specify the bounds of some motion’s swept space. We define the critical space of a bit

ACM Trans. Cyber-Phys. Syst.
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Fig. 5. Analyzing impact of bit flips in a CDM. (a) represents the swept space of a motion stored in CDM, (b)-(d) represent

box-based CDM (A2), and (e)-(g) represent octree-based CDM (A3). CEF values are normalized to the surface area of one face

of a voxel.

as the region excluded from the swept space if that bit changes value due to a fault. This region represents a part

of the swept space that can potentially lead to false-negative collision detection if an obstacle overlaps with the

critical space and does not overlap with the remaining swept space. We then define the collision exposure factor

(CEF) of a bit as the surface area of that bit’s critical space exposed to obstacles. If the geometric representation

uses voxelized space, the CEF can be normalized to the surface area of one face of a voxel. In our evaluation

(Section 6.1), reported CEF values are unitless. The CEF values for different accelerators (A1-A4) are on the same

scale as the same normalization factor is used.

Figure 5 illustrates the critical space of specific bits due to single-bit errors for different geometric representations.

Figure 5a represents the swept space of a motion. Geometric representation methods convert the swept space to a

set of structures, such as voxels (used in A1 described in Section 5.2), boxes (used in A2), or octree nodes (used

in A3 and A4). Each of these structures is encoded into bits and stored in the on-chip storage of the CDM. For

example, a voxel structure is stored using its coordinates, a box structure is stored using the coordinates of the

diagonal voxels, and an octree node structure is stored using a custom data structure described below. A bit flip

caused by a soft error would modify the space represented by the structure in different ways depending on the

location of the bit in the structure and the geometric representation.

Figure 5b shows a box-based representation of the swept space, where four boxes are required to cover the swept

space. Since space is divided into four voxels in x, y, and z directions, a total of six (log24×3) bits are used to store

a coordinate. The highlighted box is represented with coordinates x1,y1,z1 and x2,y2,z2 of the diagonal voxels,

before any error is introduced. In Figure 5c, flipping a specific bit causes the value of y1 to increase by one voxel.

As the voxel highlighted in red is now excluded from the box, and no other box covers the voxel, it becomes part of

the bit’s critical space. A soft error in this bit results in the exclusion of the critical space from swept space; hence

the collision detection circuit fails to detect a collision if an obstacle occupies this critical space, leading to an
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SDC-C. In contrast, in Figure 5d, a bit flip causes y2 to decrease, but this bit flip is masked and does not impact the

CDM’s output as other boxes cover the voxels exposed.

Figure 5e shows the octree representation of the same swept space. In this representation, the root node and all

partially occupied nodes are stored in memory using a tree data structure. Each node in the tree contains two fields:

“status” and “next_addr”. The status field contains an entry for each octant within the node indicating whether

that octant is empty, partially or fully occupied. Only partially occupied octants are further divided. The next_addr

field contains the start address of an array holding the resulting children nodes. For example, in Figure 5e, the node

stored in memory at address 0 contains only one partially occupied octant, and the node containing information

about it is stored at address 1. In Figure 5f, a bit flip in the node at address 0 modifies the status of a particular

octant to be “fully empty”, thereby adding all the voxels in that octant to the critical space. In Figure 5g, a bit flip

in the node at address 1 modifies the status of an octant to “fully occupied”, resulting in a false-positive rather

than a false-negative. In this case, motions that would not lead to a collision may be disallowed. However, this

false-positive outcome does not result in potential for a collision (an SDC-C). Therefore, this voxel (highlighted in

green) is not a part of the critical space.

For a given erroneous bit, it is more likely that an obstacle occupies its critical space and results in an SDC-C as

the exposed surface area of this critical space increases. Hence, intuitively, the SDC-C probability of a bit increases

with its CEF value (Section 6.1.2). Note that the CEF of a bit is independent of the position of the obstacles in the

environment. The CEF captures the probability of obstacles appearing in critical space and decouples the effect of

a soft-error and exact position of obstacles on SDC-C probability. While the CEF definition assumes a uniform

distribution of obstacles, it can also be extended to nonuniform distributions. For example, the CEF value can

be scaled by the estimated probability of obstacles occupying the critical space for a nonuniform distribution of

obstacles in the environment.

One approach is to use the volume of the critical space (CS_volume) as a reliability metric. However, the

exposed surface area gives a measure of the area of critical space through which obstacles can overlap only with

the critical space and not the rest of the swept space, leading to an SDC-C. In contrast, CS_volume does not

differentiate between the surface area exposed to obstacles and the surface area touching the remaining swept

space. Hence CEF performs better than CS_volume as a reliability metric (Section 6.2). For a given motion set

Algorithm 1 CEF measurement (Phase 1 FI)
Input: Motion_set, Swept_data, Swept_voxels, CDM;
Output: bit_info = {bitID: (CEF, Critical_space)};

1: for Motion ∈ Motion_set do

2: bits = Swept_data(Motion)
3: voxels = Swept_voxels(Motion)
4: for b ∈ bits do

5: Critical_space =
6: Collision_vector = FI(CDM, bits, voxels, b)
7: for (v, collision) ∈ (voxels, Collision_vector) do

8: if ¬ collision then

9: Critical_space = Critical_space ∪ v
10: end if

11: end for

12: CEF = CalculateCEF (Critical_space, voxels)
13: bit_info[b]= (CEF, Critical_space)
14: end for

15: end for

of the robot and accelerator, the CEF of all the bits can be calculated using Algorithm 1. The algorithm works

by considering each possible motion in turn (Line 1). For a given motion, Swept_data returns the storage bits

used to represent its swept space (Line 2), and Swept_voxel returns the voxels in the swept space of that motion

(Line 3). The loop between Line 4 and 14 considers each bit in the Swept_data. The CDM takes precomputed
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swept space (i.e., bits) and obstacle occupancy voxels as inputs and performs collision detection (Figure 4).

The storage elements of the CDM are initialized with bits. To find the critical space an FI run is performed

setting voxels as the obstacle occupancy voxels input to the CDM (Line 6). Specifically, a fault is injected into a

low-level (e.g., RTL model or microarchitectural simulator) model of the CDM at bit b (Line 6). The CDM outputs

a Collision_vector containing collision detection output for each voxel in voxels. To find the critical space,

each bit of the Collision_vector is checked (Lines 7-11). For an error-free run, the CDM detects collision for all

the voxels in the swept space (i.e., voxels). However, for an FI run, a voxel v is added to the Critical_space

if the CDM does not detect a collision (Line 8 and 9). CEF is then calculated by measuring the exposed surface

area of the Critical_space (Line 12). Note that the CEF is obtained without the need to consider a potentially

unbounded set object placements. Thus the number of FI runs to measure CEF using Algorithm 1 is orders of

magnitude lower than exhaustive FI in which for each bit, multiple FI runs need to be performed with a large

number of environment scenarios.

As presented above, Algorithm 1 assumes an RTL or architecture model for the CDM. We note that the resulting

reliance upon fault injection to determine CEF could be avoided provided an analytical model is available to

compute the critical space on Lines 5 to 12. Such a model could be used to analyze CEF without performing FI prior

to the development of RTL model or architecture simulators. However, we use FI to measure CEF, so the proposed

Algorithm 1 can be used across different accelerators. Algorithm 1 is proposed for CDMs that use a voxelized

representation of spatial data and output collision decisions (A1-A4). The majority of the collision detection

acceleration approaches for robotics use voxelized representation as it consumes less memory and computational

resources compared to polygonal mesh-based representation [27]. However, the concept behind CEF is applicable

regardless of the underlying design parameters, and Algorithm 1 to measure the CEF needs can be modified for a

different CDM. For example, for a triangle meshes-based representation of swept space, Line 5-12 can be replaced

by a geometry-based calculation of the exposed surface.

MPA is a part of complex systems such as autonomous vehicles. Fault Tree Analysis (FTA) is often used

to analyze the failure probability of the overall system by constructing a logic tree of the failure events of

subsystems [107]. The proposed metric CEF, being close to the application domain, can easily be integrated

with the FTA of the overall system. CEF is useful for CDMs that dedicate a significant area to storage structures

for spatial data. Earlier work on FPGA-based accelerators [89] uses combinational logic to encode spatial data.

Combinational logic is known to be less prone to soft errors compared to sequential elements [36]. However, the

definition of CEF applies to erroneous combinational logic gates if needed.

3.2 CEF-aware Error Mitigation

For a fixed budget of area/power overhead, selective protection of the most vulnerable bits provides the optimal

reduction in the failure rate. Selective error mitigation in storage structures can be implemented by reliability-aware

data placement to partially protected memory. However, this requires efficient ways to identify vulnerable data as

the data can be generated/modified at runtime. We find that the CEF of a bit gives a measure of its impact on the

SDC-C probability of the CDM (Section 6.1.2). Therefore, we can use information about the CEF of each bit in an

input design to selectively apply error mitigation techniques such as ECC, DMR/TMR, and strike suppression. This

reduces the cost of providing resilience compared to blanket protection of all the bits.

Different structures such as voxel (A1), box (A2), and octree node (A3 and A4) are stored in the on-chip storage

of the CDM depending upon the geometric representation method used. CEF-aware error mitigation is performed

by placing structures with higher CEF in the protected storage regions. In our evaluation, the sum of CEFs over all

the bits in a structure is used as its CEF. Because CEF of a bit gives a measure of its SDC-C probability, CEF-aware

data placement results in a higher reduction of the overall failure rate for a given fraction of protected storage
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Fig. 6. CEF-aware FI

compared to other heuristics (Section 6.2). The CEF measurement is done offline or outside of the critical path

using Algorithm 1 after motion set generation.

Selective error mitigation can also be used to guide the accelerator design process. At the accelerator design

stage, the designer can perform CEF-aware FI (Section 4.2) for a set of target robots, motion sets, and the expected

number of obstacles in the environment to find the distribution of CEF, SDC-C probability of bits, and the failure

rate of the system without any error mitigation. Based on this information, a designer can determine the required

fraction of protected memory for a given failure rate requirement or achievable failure rate for a given area/power

budget for error mitigation.

4 CEF-AWARE RELIABILITY CHARACTERIZATION

SDC-C probability and the failure rate measurements are important to find the error mitigation requirements for

certifiable safety. Exhaustive FI to find the SDC-C probability of all the bits takes a long time (Section 2.4). In this

section, we first explain the fault model and demonstrate how to use the CEF to enable a hierarchical fault analysis

methodology that reduces the number of FI runs.

4.1 Fault Model

In the CDMs studied in this work, on-chip SRAM/latches that store the swept space of motions account for 97%

of the on-chip sequential elements (based on our synthesis results). Our fault model assumes transient single-bit

faults in this SRAM/latches. The faults are uniformly distributed in time and space. Only 3% of on-chip sequential

elements are used for meta-data (e.g., counters, address register, and finite state machine). These microarchitecture-

specific registers are not subjected to CEF in our experiments as they can be characterized and protected with low

overheads using latch hardening techniques such as strike suppression or redundant node [111].

4.2 CEF-aware FI

We propose a two-phase CEF-aware FI (shown in Figure 6), a technique to speed up FI for MPAs.

Phase 1: CEF measurement (Environment independent). For a given motion set 1 and fault model 2 , Phase 1

performs microarchitecture- or RTL-level FI 3 to find the CEF and critical space of each bit in the swept space

data. Algorithm 1 is used for this phase. The number of FI runs for this phase is limited to the number of bits in

swept space data of all the motions in the robot’s motion set. The CEF and critical space of all bits are stored to be

used in the next phase 4 . Note that environmental information, such as the position of obstacles or the robot, is

not needed for this phase, as CEF does not depend upon the environment.

Phase 2: SDC-C probability measurement. A bit flip might lead to an SDC-C depending upon the position of

obstacles as shown in Section 3. Since for a dynamic environment, obstacles can appear anywhere in the space, a

large number of FI runs with random environmental scenarios are required to measure the SDC-C probability of a

bit with statistical significance. In our experiments, the representative environment scenarios are generated using

apriori information about the environment, such as the distribution and average number/size of the obstacles. In

Phase 2, we use the CEF information gathered in Phase 1 to speed up the fault analysis. As mentioned, there is
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a strong (positive) correlation between the CEF and SDC-C probability (Section 6.1.2). Thus, we can speed up

the FI experiments many-fold by performing FI for only a subset of bits with a given CEF value to measure the

approximate SDC-C probability for all bits with the same CEF. The CEF information gathered in Phase 1 is used to

group bits with equal CEF values together 5 . Then, for each CEF value, M bits are selected at random 6 . Finally,

using multiple sample environment scenarios 7 and FI simulations 8 , the SDC-C probability for each CEF value

is measured 9 . Note that M is a tunable parameter in the above heuristic. We use the analytical model in Leveugle

et al. [73] to determine the value of M to measure SDC-C probability with the required confidence level and error

margin. The CEF-aware sampling, while being faster than exhaustive FI, may introduce inaccuracies due to the

approximations it makes. However, the accuracy can be increased by increasing the value of M - we evaluate this

trade-off in Section 6.1.1.

To speed up the FI simulation, we further exploit the fault propagation in the studied CDMs. All the accelerators

studied in this work use a geometric representation that divides the space into voxels. For a given motion and

environment scenario, a non-empty subset of swept space and obstacle occupancy voxels signify potential collision.

Thus the effect of a bit flip can be captured by storing the erroneous swept space voxels of the corresponding

motion, instead of performing slow microarchitectural and RTL simulations for multiple environmental scenarios.

Simple set operations can be used to find the SDC-C probability. For a given bit flip, an FI simulation is used to

find the erroneous swept space (i.e., set of voxels) using Algorithm 1. Line 3 of the Algorithm 1 is modified to

use the set of all environment voxels as voxels. Similarly, Lines 8 and 9 are modified to measure the erroneous

swept space (i.e., colliding voxels). For each environment scenario, the subsets of obstacle occupancy voxels and

erroneous and error-free swept space are measured. If the erroneous subset is empty, but the error-free subset is

non-empty, the bit flip will result in an SDC-C. The same strategy is used for exhaustive, statistical, and CEF-aware

FI. While we focus on FI to measure CEF and SDC-C probability, we believe that an analytical model can be used

to replace the multiple runs and find the relation between critical space and SDC-C probability. We defer this to

future work.

Equation 2 is used to calculate the SDC-C probability of a CDM. Here bitsCDM is the set of all bits stored in the

CDM’s on-chip memory. CEF(x) is the CEF value of bit x, and P(SDC-CCEFx is the SDC-C probability for the CEF

value CEFx.

PSDC-CCDM ≈
1

|bitsCDM|
×

[

x∈bitsCDM

PSDC-CCEFx

]

(2)

Table 3 compares the different phases of CEF-aware FI with exhaustive and uniform random statistical FI

approaches for CDM fault characterization and error mitigation. We also use CEF and CEF-aware FI to analyze

and compare the effects of microarchitectural design parameters of the CDM, and to derive the principles of

resilience-aware MPA design (Section 7).

4.3 Collision Detection Failure (CDF) Rate Calculation

As mentioned in Section 2.3, safety standards provide an upper bound on the frequency of dangerous failures

(e.g., collision in motion planning). We combine Equation (1) and Equation (2) to measure the Collision Detection

Failure rate per billion hours (CDF) for CDMs as below:

CDFCDM = |bitsCDM|×PSDC-CCDM ×FITRaw ×α (3)

Here, the parameter α is set to N2 for CDMs with inter-query data reuse, else it is set to 1, as explained below. In

the MPAs we study, the on-chip data is typically reused across multiple executions of the same application [45, 89,

114, 139] to reduce the DRAM-bandwidth requirement and data movement. In such a case, a bit-flip due to a soft

error will persist in the buffer and affect multiple executions, until the buffers are reloaded, and the overall CDF

rate of the system increases due to data reuse. This is similar to bit-flips in configuration memory of FPGA [94],
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Table 3. Comparison of diferent fault injection (FI) approaches.

Exhaustive FI
Uniform random CEF-aware FI

statistical FI
Phase 1

(CEF measurement)
Phase 1 + Phase 2 (SDC-C

measurement)

Description

Performs FI on all
combinations of bits

and environment
scenarios

Samples a few
combinations of bits

and environment
scenarios to perform FI

Performs
environment-agnostic FI
to measure CEF of all the

bits (Algorithm 1)

Samples a few
combinations of

environmental scenarios
and bits for each CEF
group and performs FI

Number of FI runs 1010 7×106 106 7×106

FI time 24,000 hours 2-4 hours 1-2 hours 2-4 hours

Measures overall failure rate Y Y N Y( 2.5% error)

Finds vulnerable bits for
selective error mitigation

Y N Y(Approx.) Y(Approx.)

Measures SDC probability of
different bits

Y N N Y(Approx.)

where a bit-flip due to single-event upset persists and affects the application output until the configuration memory

is refreshed. A1, A2, A3scaled, and A4 accelerators reuse on-chip data across N (where N >> 1) collision detection

queries. A soft error can occur in any cycle during a collision detection query; however, the bit will remain erroneous

from the start (i.e., cycle 0) for subsequent collision detection queries until the on-chip data is refreshed. Thus

the average value of the number of collision detection queries for which a bit will be erroneous from starting is

approximately N2, assuming all collision queries take the same time. Hence, to measure the CDF rate for such

CDMs, faults are injected at cycle 0 in Phase 2, and the measured failure rate is scaled by α = N2 to account for

data reuse. Whereas in A3, the on-chip data is refreshed for every collision detection query. For CDMs without

inter-query data reuse, α is set to 1, and the fault sites are uniformly distributed in time in Phase 2.

5 EXPERIMENTAL METHODOLOGY

5.1 Experimental Setup

Table 4 summarizes the robots used in our experiments. These robotic arms are representative of widely used

industrial robots [87, 104], and are also included in larger humanoid robots [4]. Because we did not have access to

the real robots, we use the Klampt [51] software simulator to simulate the robot’s movements and the environment-

this has also been used in prior work [50, 90, 114].

The environment size for a robot is determined by its reach, and the environment is discretized into a grid of

32×32×32 voxels. For each robot, we generate a motion set with 16,384 poses and 32,768 motions, using Leven

and Hutchinson’s strategy [72], similar to prior work [90]. We use uniform motion sets in all our experiments, i.e.,

poses are distributed uniformly in the C-space. The uniform distribution of poses is assumed in the absence of any

prior information about the robot’s task and fixed obstacles in the environment. However, this information can be

used to build a motion set with a nonuniform distribution of poses, where more poses are concentrated in the region

of interest [129]. We also evaluate CEF on a nonuniform motion set in Section 6.1.2.

To measure the SDC-C probability, we perform FI with a set of 10,000 random environment scenarios. Each

sample environment contains 3−12 cuboid-shaped randomly placed obstacles, and the length/height/width of each

obstacle is 5− 20cm, which is consistent with other work on motion planning and collision detection [77, 90].

We generate four sets of environments to study the effect of the number of obstacles on the SDC-C probability

Table 4. Robots used for fault characterization.

Robot
Degrees of

freedom
Reach in one direction

Mechanical power
(W)

Kinova Jaco2 [69] 7 90 cm 25

Programmable Universal Machine for Assembly (PUMA) 761 [138] 6 150 cm 30

AL5D [79] 4 27 cm 12
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Table 5. Accelerators studied. We list power and area for each accelerator from the paper and report suitable error mitigation

and accelerator area overhead to protect on-chip memory. We use information gathered from our synthesis of RTL models

about the fraction of CDM area and power consumed by the on-chip memory to calculate the overall CDM area and power

overheads. ECC overheads do not include the area /power of decoder and encoder circuits.

Accelerator Representation
Data
reuse #CDCs

Power
(W)

Area
(mm2)

Storage elements
ECC area/power

overhead
TMR area/power

overhead

A1 [89, 114] Voxel Yes 32,768 N/A N/A Registers 20/16% 125/100%

A2 [89, 114] Box Yes 32,768 35 400 Registers 20/16% 125/100%

A3 [77] Octree No 128 0.47 1.7 SRAM 12/9% 100/75%

A3scaled [77] Octree Yes 32,768 121 450 SRAM 12/9% 100/75%

A4 [139] Flattened Octree Yes 32,768 20 - SRAM/DRAM 12/12% 200/200%

(Section 6.1.2). We use the label Dx (x ∈ 1,2,3,4) to represent a set of 10,000 environment scenarios, where

obstacles occupy an average x% volume of the environment. The average number of obstacles increases with the

value x.

5.2 Collision Detection Modules (CDM)

Table 5 summarizes the four accelerators studied in this work and overall CDM area/power overheads for complete

protection of on-chip storage using ECC and TMR error mitigation techniques. These constitute the only published

work on ASIC-based programmable, real-time accelerators for probabilistic roadmaps-based motion planning and

collision detection, to the best of our knowledge.

We built microarchitectural simulators and RTL models of these CDMs ourselves as there was no existing

simulator. We use Verilog to build the RTL models and implement the combinational logic, control logic, and

on-chip memory as described in the prior work on the accelerators we studied in this work [77, 89, 114, 139].

CDMs studied in this work consist of multiple (128-32768) CDUs. Hence, though the overall area of a CDM is

high, the design of the basic building block, CDU, is simple and can be implemented accurately (100−200 lines of

Verilog code). Each CDU consists of storage elements for the swept space data and a collision detection circuit

(CDC). Figure 7 represents the architecture of CDCs for different accelerators studied in this work. Further, we

implement testbenches to verify the functionality and timing of the RTL models. We use a sample motion set, and

perform collision detection for 10,000 environmental scenarios for functional verification. We further measure the

timing of collision detection operation in terms of the number of cycles and validate with the reported data in the

prior work [77, 89, 114, 139].

We synthesized our RTL models using the Synopsys Design Compiler [1] and the OpenRAM Memory Com-

piler [44] to estimate the area and power of storage elements in CDMs at 45nm technology (FreePDK45 design

library [118]). Because we are interested in the relative area and power consumption of different storage elements

and combinational circuits, the technology node’s choice should not significantly impact the results. We build the

microarchitectural simulators with Python. We model all sequential elements accurately in our microarchitectural

model, and verify the collision detection output of these models for 10,000 environmental scenarios.

A1 (Base accelerator): This architecture was proposed by Murray et al. [89], and is based on the earlier proposed

accelerator for FPGAs [90]. A motion’s swept space is stored in registers using the 3D Cartesian coordinates of

each voxel in the swept space. Figure 8a and 8b show how a swept space is converted to voxels. The collision

detection circuit compares the obstacle occupancy voxels with each voxel in the swept space to find if the motion is

in collision with obstacles (Figure 7a).

A2 (Spatial locality-aware accelerator): This architecture, proposed by Murray et al. [89] and Sorin et al. [114],

is an optimization of A1. There is a significant degree of spatial locality in the voxels in a swept space; hence,

contiguous voxels are merged into a larger box. A box can be represented by the coordinates of two diagonal
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(a) A1 (b) A2 (c) A3/A4

Fig. 7. CDU architecture block diagram for diferent CDMs.
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Fig. 8. Voxelization and voxel/box based representation example in 2D. (a) Represents a robot and its motion in 2D. Shaded

voxels represent the voxelized swept space. (b) Swept space is stored using coordinates (x,y) of individual voxels. (c) Contiguous

voxels are combined into boxes and stored using diagonal voxels’ coordinates (striped voxels). L and U represent lower and

upper diagonal voxels; darker regions represent overlapping of multiple boxes.

voxels. Figure 8c gives an example. The CDC checks if an obstacle occupancy voxel is inside any of these boxes

for collision detection (Figure 7b).

In A1 and A2, all on-chip registers are read in parallel by the collision detection logic instead of using a memory

array with limited read ports. This design choice provides significant speedup. Thus all storage elements in A1 and

A2 are treated as individual registers that can be protected using a latch protection technique (e.g., DMR or TMR).

A3 (Octree-based accelerator): This architecture was proposed by Lian et al. (2018) [77], and uses the octree

structure to store the motion’s swept space (shown in Figure 9 and explained in Section 3). Collision detection

is performed by traversing the tree to find if obstacle occupancy voxels overlap with the swept space. Figure 7c

represents the architecture of CDC for A3.

The proposed design of A3 uses 128 CDCs, where motions in the motion set are processed for collision detection

in batches. Hence, there is no inter-query on-chip data reuse, which results in significant DRAM bandwidth

requirement [139]. For comparison, we also study a scaled-up version of A3, called A3scaled, where the number

of CDCs is equal to A1 and A2 (32,768), and on-chip data is reused across multiple collision queries, reducing

DRAM memory traffic. While the SDC-C probabilities for both A3 and A3scaled are equal, their failure rates (CDF)

are different due to differences in the sizes of their components and the value of N (Equation 3).

A4 (Flattened octree-based accelerator): This architecture was proposed by Yang et al. [139], and proposes

processing-in-memory for collision detection with a flattened octree-based representation of the swept space. In the

flattened octree-based representation, multiple levels of the trees can be flattened in a single level. For example, if

all the levels of a 5-level tree are flattened, the resultant tree consists of a single root node with 32,768 children

nodes, where each child node is 1 or 0 specifying occupancy of a single node. Such representation consumes more

storage but facilitates efficient processing-in-memory, reducing data-movement overhead significantly.

5.3 Fault Injection (FI)
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Fig. 9. Octree representation (figure reproduced from [77]). (a) represents the spatial division of the swept space, and (b)

represents the corresponding Octree structure (A3).

We use microarchitectural simulators for FI, as RTL-level FI was very slow. We use Dell EMC R440 CPU nodes.

However, to validate the FI accuracy of our microarchitectural simulators, we perform 10,000 FI runs (uniformly

distributed in space and time) on the microarchitectural and RTL models. For RTL-level FI, we use Cadence

Incisive Functional Safety Simulator [15]. For microarchitectural FI, a fault is injected, and collision detection is

performed. Figure 10 shows that the CEF values measured with microarchitectural FI and RTL-level FI have a

100% correlation accelerators A1-A4.
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Fig. 10. CEF values measured by mi-

croarchitectural FI and Verilog RTL-

level FI for diferent CDMs.

For CEF-aware FI, we determine the value of M (number of samples) per

CEF group required to measure the SDC-C probability with 95% confidence

level and 2.5% error margin [73]. The SDC-C probability and population

size of the highest CEF group are used to determine the value of M, as these

bits contribute the most to the overall SDC-C probability. In our experiments,

the value of M is 2× 106, 2× 105, 15× 103, and 2× 106 for A1, A2, A3

and A4 respectively. We represent soft errors as single-bit flips in hardware

registers, which is consistent with most other papers studying the effects of

soft errors [8, 20, 32, 132]. While we focus on single-bit flips, Equation (2)

can be extended to accommodate a multi-bit fault model. We defer this to

future work.

5.4 CDF Rate Calculation

To calculate the CDF rate of the accelerators, we use Equation (3), where N is the expected number of executions of

the application before the bits are reloaded in on-chip storage, and its value depends on the accelerator’s architecture

and deployment. Reloading of data can be overlapped with collision detection to hide the DRAM accesses latency.

We set the value of N = 3600 for the accelerators with inter-query data reuse (A1, A2, A3scaled, and A4), as the

power overhead of DRAM accesses for refreshing data after 3600 collision detection queries is within 1%. We use

FITRaw = 177 FIT/Mb (for 45nm CMOS [6]) in Equation (3). Note that while the choice of N and FITRaw affect

the absolute values of the CDF rate, they affect neither our fault characterization nor CEF-aware error mitigation.

6 EVALUATION

In this section we present our results for fault characterization (Section 6.1) and error mitigation (Section 6.2) using

CEF.

6.1 Fault Characterization

6.1.1 CEF-aware FI. In Section 4, we propose two-phase CEF-aware FI to reduce the number of FI runs. In

CEF-aware FI, instead of performing FI for all the bits for multiple environment scenarios, we sample a subset

from a group of bits with the same CEF value. This sampling introduces inaccuracies in the measured SDC-C

probability and CDF rates compared to exhaustive FI. Figure 11 shows the speedup versus error of the calculated

CDF rate for CEF-aware FI and uniform statistical FI. The speedup is the ratio of the number of exhaustive FI runs

to that of CEF-aware FI or uniform FI.
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Fig. 11. Error versus speedup for diferent FI approaches.

As can be seen from the figure, on average, CEF-aware FI achieves 23,000× speedup over exhaustive FI

(geometric mean) with 2.5% error margin. The vertical line represents the speedup for error less than 2.5%. The

error margin can be reduced further at the cost of more FI trials (Section 4). Uniform statistical FI exhibits a similar

speedup as CEF-aware FI over exhaustive FI. Note however that uniform statistical FI cannot be used to find

vulnerable bits for selective error mitigation (Table 3). The speedup of CEF-aware FI over exhaustive FI is due to

two reasons: (1) a significant fraction of bits have CEF equal to 0, and hence have very low or 0 SDC-C probability.

CEF-aware FI ignores these bits for FI, (2) Only a few bits have high CEF and SDC-C probability, and hence

contribute the most to overall SDC-C probability. CEF-aware FI segregates such bits and requires fewer samples to

measure SDC-C. Phase 1 of CEF-aware FI consumes 1, 1, 2, and 1 CPU hours for A1, A2, A3, and A4, respectively.

Phase 2 of CEF-aware FI consumes less than 2 CPU hours for all accelerators. In contrast, as per our experiments,

exhaustive FI takes 24,000, 18,000, 22,000, and 20,000 CPU hours for A1, A2, A3, and A4, respectively.

6.1.2 Evaluation of reliability metric. As discussed in Section 4, we propose the CEF as a reliability metric for the

MPA’s bits. We study the relationship between the CEF and the SDC-C probability of different bits to demonstrate

the validity of CEF metric. The SDC-C probability of entire CDM is calculated using SDC-C probability of

different CEF groups in Equation (2). We use the benchmarks [D1-D4] (Section 5.1). Figure 12 shows the SDC-C

probability of bits with different CEF values for different accelerators, robots, and benchmarks. The CEF values

are on the same scale for different accelerators for a given robot. A3 has a higher range of CEF values than other

accelerators, which is also reflected in higher SDC-C values. Note that for A3, there is dispersion in SDC-C

probability for bits with high CEF values. This occurs as a fault in a bit in the next_addr field adds a large number

of voxels in the represented swept space (green voxels in Figure 5g), which leads to positive collision detection

between obstacles and erroneous expanded swept space, and reduces SDC-C probability for some bits with high

CEF value. For all the benchmarks, the SDC-C probability of a bit increases as its CEF increases, except for a few

bits in A3. Note that as the obstacle occupancy density increases, the SDC-C probability also increases, as there

are higher chances that the soft error in a CDM will result in a collision. Thus, even though the relation between

SDC-C probability and CEF is not linear, a monotonically non-decreasing relation demonstrates the validity of the

CEF as a reliability factor. The SDC-C probability of bits is thus strongly positively correlated with their CEF

values across benchmarks, which signifies that the CEF can be used as a reliability metric for MPAs.

Nonuniform motion set. We also validate the use of CEF as a reliability metric for a nonuniform motion set. In

such a motion set, the motions are nonuniformly sampled in space. Figure 13 shows SDC-C probability versus

CEF of bits for nonuniform motion sets. As shown in the figure, there is strong correlation between the SDC-C

probability and CEF of bits, showing the validity of CEF for nonuniform motion sets.

6.1.3 Characterization of CEF. To further understand the contribution of individual bits to the overall SDC-C

probability, we group the bits according to their CEFs, and plot the cumulative distribution of bits in the CDM.

Figure 14 shows that for all four CDMs, there is a high degree of asymmetry in the distribution of bits according to
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Fig. 12. SDC-C probability versus CEF of accelerator A1-A4 for Jaco2, AL5D, and Puma761 robot on benchmarks D1-D4.

Note that diferent plots have significantly varying ranges for the vertical axes.
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Fig. 13. SDC-C probability versus CEF of accelerator A1, A2, A3, and A4 for Jaco2 for a nonuniform motion set. Note that

diferent plots have significantly difering ranges for the vertical axes.

the CEF. For A1 and A4, 20% and 99% of the total bits have CEF equal to 0, respectively, and do not need to be

protected. On the other hand, for A2, only 20% of the total bits have CEF greater than 6 and significantly contribute

to the overall SDC-C probability. Thus, protecting only 20% bits can reduce the CDF rate by 60%, as we show in

Section 6.2. Similarly, in A3, only 15% of the total bits have a CEF greater than 10. We further examine the CEF

distribution asymmetry for each accelerator.

A1: In A1, each structure/variable stores a voxel using its coordinates to represent a part of the swept space. A

soft error in any bit of the coordinate will result in misrepresentation of that voxel, and so bit position does not

affect CEF range (Figure 15a).

A2: The effect of faults in different bits of coordinates is shown in Figure 15b. The CEF range of bits decreases

from the most significant bit (MSB) to the least significant bit (LSB), as a fault in the MSB is likely to result in

a higher change in the box size represented by a pair of coordinates than LSB. Thus, the number of bits with
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Fig. 14. Cumulative distribution of CEF of all bits. The vertical axis starts from 0.99 for A4 as more than 99% of the bits have

CEF equal to 0.
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Fig. 15. CEF characterization of bit position/SRAM address.

high CEF values increases from LSB to MSB. For example, the ratio between the number of MSBs (bit4) and the

number of LSBs (bit0) with CEF = 20 is 1000.

A3: We calculate the range of CEF for bits for different SRAM addresses, as shown in Figure 15c. All nodes in

the octree for a motion’s swept space are stored in the contiguous address space of the SRAM; the nodes closer to

the octree’s root node that divide the 3D space at a coarser granularity are stored in the lower address range of

SRAM. As can be seen, the CEFs of bits with lower SRAM addresses are much higher than those with higher

SRAM addresses. For example, the average CEF of bits in SRAM address 0 is 9× that of the average CEF of bits

in SRAM address 20.

A4: A flattened-octree consists of a node for each voxel in the environment. The swept space of a motion in the

motion set is a small fraction of the entire environment. Thus, most of the nodes in the flattened octree are empty,

and only a small fraction of nodes are occupied. An error in an empty node representation results in false-positive

and hence has CEF equal to zero. Due to this, more than 99% of the bits have CEF equal to 0 for A4.

In summary, for all four accelerators, the distribution of the bits as per CEF is highly asymmetric. Hence, the

CEF metric facilitates finding the most SDC-C-prone bits in the circuit.

6.2 Error Mitigation Techniques

As described in Section 3.2, we propose a CEF-aware selective error mitigation technique. We first evaluate the

CEF-aware selection of structures for reliability-aware data placement at deployment time. We further evaluate

the area savings achieved by the proposed techniques for accelerators A1, A2, A3scaled, and A4 for different SIL

targets at design time. Note that A3’s CDF rate (0.1) is well below the highest SIL requirement, and hence it does

not need error mitigation.

6.2.1 CEF-aware selective error mitigation. Figure 16 compares the CDF rate reduction achieved by different

selection criteria for the same fraction of protected memory. We assume that protecting a bit reduces its SDC-C
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Fig. 16. Comparison of diferent selection criteria for selective error mitigation in A1, A2, A3scaled, and A4. (a)-(d) compare the

fraction of protected bits versus CDF rate reduction for diferent CDMs. Overall, CEF-aware selection results in the highest

CDF rate reduction for the same amount of protected bits. There is a significant overlap between Bit position, Uniform,

and CS_Volume for A1. There is a significant overlap between Bit position and Uniform, and CS_Volume and CEF for A4.

probability to 0 as our aim is to compare different heuristics for selecting the bits to be protected, which is

independent of the underlying error mitigation technique. We also compare with another intuitive approach to

define the reliability metric that uses the volume of the critical space (CS_volume) instead of the exposed surface

area. We further discuss the results for A1, A2, A3scaled, and A4.

A1: We compare our approach with ideal, uniform, bit position, and CS_volume-aware error mitigation. Bit

position does not require FI and can be used as a proxy for the vulnerability factor, where the vulnerability of the

bits decreases from the MSB to the LSB. Bit position has been previously proposed for selective error mitigation in

DNN accelerators [74]. Figure 16a shows the fraction of protected bits versus the CDF rate reduction curve for

CEF-aware selection and the other heuristics for A1. The CEF-aware selection of bits results in 52.35× reduction in

the CDF rate on average (geometric mean) for the same amount of protected bits compared to CS_volume-aware,

bit position-aware, and uniform selection. The CDF rate reduction for CEF-aware error mitigation is only 1.60×
lower than the ideal CDF rate reduction that can be achieved by exhaustive FI.

A2: We compare CEF with ideal, uniform, CS_volume, bit position, and box-volume. For A2, a structure

represents a box; the volume of the box can be used as the vulnerability factor of the structure. Box-volume is an

application-specific heuristic that does not require fault characterization. Figure 16b shows the fraction of protected

bits versus the CDF rate reduction for different selection heuristics. The CEF-aware selection of bits results in

average 1.25×, 1.76×, 2.10×, and 2.46× lower CDF rate than CS_volume, bit position, box volume, and uniform

selection for the same amount of protected bits. The CDF rate reduction for CEF-aware error mitigation is only

1.66× lower than the ideal CDF rate reduction achieved by exhaustive FI.

Intuitively, one may expect bit position to provide higher benefits than CEF, as typically MSBs are more critical.

However, we find that CEF provides a higher reduction in the CDF rate than the bit position, due to two reasons.

First, though the bit position captures the failure probability of bits within a structure, it does not capture the relative

failure probabilities across different structures. For example, in A2, different boxes cover different numbers of

voxels x in the swept space that is not covered by other boxes; these voxels contribute to the critical space. The CEF

increases as the x value increases, and so structures with higher x have higher failure probabilities, which is not

captured by bit position. Second, the bit position does not consider whether the error will lead to a false-negative or

a false-positive. Similarly, box-volume does not necessarily capture the number of critical voxels x. In contrast, the

CEF captures the relative failure impact of all the structures, and hence provides a higher CDF rate reduction.

A3scaled: Figure 16c shows the fraction of protected bits versus the CDF rate reduction for different selection

criteria in A3scaled. We compare CEF with two heuristics: uniform and access-frequency-based selection. Access-

frequency-based selection has been proposed for embedded applications [68, 83]. We find that the CEF-aware

selection of bits results in an average 1.07× and 1.90× lower CDF rate for the same amount of protected bits

compared to CS_volume and access-frequency. This is because the access-frequency-based heuristic captures the
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Fig. 17. Area overhead versus CDF rate reduction for selective error mitigation in A1, A2, A3scaled, and A4. (a)-(d) compare the

area overhead for diferent CDF reduction values for all CDMs. Table 7 summarizes the area/power overhead for CEF-aware

error mitigation for diferent safety levels and blanket protection of the entire on-chip memory.

failure probability of structures within a single motion, but not the relative failure probabilities across different

motions. Further, CEF-aware selection achieves 18.89× and 0.79× reduction in CDF rate than uniform and ideal

error mitigation, respectively.

A4: Figure 16d compares different selection criteria for A4. We find that the CEF-aware selection of bits results

in an average 1.02× reduction in CDF rate for the same amount of protected bits compared to CS_volume. In the

proposed accelerator, the access-frequency for all the bits of a flattened octree is the same, and hence uniform and

access-frequency-based selection given the same reduction in the CDF rate. Further, CEF-aware selection achieves

9.41× and 0.83× reduction in CDF rate than uniform/access-frequency and ideal error mitigation respectively.

6.2.2 Area savings using CEF-aware error mitigation. Further, we measure the area/power overheads to achieve

different SILs using the CEF-aware error mitigation approach. In A1 and A2, on-chip storage elements consist

of 15-bit registers that are accessed independently. We assume the use of latch hardening technique summarized

in Table 6 in Sullivan et al. [120] to measure the overheads for A1 and A2. . Latch hardening is more suitable

than ECC for error mitigation in registers that are accessed in parallel. In contrast, we use ECC (SEC-DED code)

for A3scaled and A4 as these accelerators use SRAM for on-chip storage or DRAM (Table 5). For A3scaled, each

entry in SRAM consists of 24 bits. We assume an overhead of 7 bits (30%) to store the ECC bits. For A4, each

entry in DRAM consists of 64 bits, with 8 bits overhead for ECC bits. We ignore the area overhead of the error

detection/correction circuits themselves. Note that other approaches for ECC [41] can also be combined with

CEF-aware selection. Figure 17 shows the storage area overhead versus CDF rate reduction for CEF-aware error

mitigation for A1, A2, A3scaled, and A4. SIL 1-SIL 4 markers are shown for CDF rate achievement for the Jaco2

robot and different safety standard levels. Table 7 compares the area/power overheads for different safety levels for

all accelerators with the blanket protection of CDMs. CEF-aware selection results in significantly lower overhead

for all levels.

6.2.3 CEF-aware error mitigation implementation. As mentioned in Section 3.2, CEF-aware selective error mitiga-

tion can be implemented by reliability-aware data placement in partially protected memory. We discuss possible

implementations of selective error mitigation for CDMs studied in this work.

For A1 and A2, all on-chip registers in a CDC are accessed in parallel, and there are no address registers. In

this case, each CDC contains a fixed number of protected registers. Selective error mitigation can be achieved

by CEF-aware placement of data in CDC’s protected and unprotected registers. For A3, each CDC consists of

Table 6. Area overhead and CDF rate reduction for diferent latch hardening techniques.

Latch type Area Overhead failure rate reduction

Strike Suppression (RCC [111]) 1.15x 6.3x

Redundant Node (SEUT [111]) 2x 37x

Triple Module Redundancy (TMR [80]) 3.5x 1,000,000x
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Table 7. Area/Power overhead for blanket and CEF-aware error mitigation for diferent SILs. In A1, A2, A3scaled, and A4,

on-chip storage elements consume ∼ 50%∼ 30%, ∼ 50%∼ 30%, ∼ 40%∼ 30%, and ∼ 98%∼ 98% of the total area/power

of the CDM, respectively.

Accel.
Blanket Error
Mitigation

CEF-aware Error Mitigation

SIL1 SIL2 SIL3 SIL4

A1 125%/75% - 1.2%/0.7% 18.8%/11.3% 68.9%/41.4%

A2 125%/75% - 5.1%/3.1% 55.7%/33.4% 101.9%/61.1%

A3scaled 12%/9% 0.4%/0.3% 3.1%/2.3% 8.8%/6.6% 11.4%/8.5%

A4 12%/12% - - 0.3%/0.3 0.7%/0.7%
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Fig. 18. Comparison of diferent CDM architectures geometric representations. (a) compares the CDF rate for diferent Raw

FIT values and technology nodes, (b) compares the CDM area versus CDF rate, (c) compares the CEF distribution, and (d)

compares the fraction of protected bits versus CDF rate for diferent accelerators.

an SRAM. Instead of a single SRAM, protected and unprotected SRAMs with a fixed address range can be used

in this case. Thus, selective error mitigation can be achieved by CEF-aware address assignment and placement,

with minimal performance/energy overheads [85]. A4 uses a DRAM to store the data. In this case, ECC bits can

be embedded into each data row with low overhead, as shown in [17]. Several papers have focused on a flexible

partition of the register file and DRAM with low overheads incorporating selective error mitigation in systems

using CPUs and GPUs [17, 86, 133, 140, 141]. The implementation and overheads of selective error-mitigation

depend upon the accelerator’s microarchitecture, with scope for co-designing microarchitecture and selective

error-mitigation implementation.

7 ARCHITECTURAL IMPLICATIONS

In this section, we compare the reliabilities of the four CDMs to draw lessons for resilience-aware CDM design.

Error mitigation can incur significant performance, area, and energy overheads (e.g., 3.5× area and energy for

TMR), depending upon the CDM architecture. Hence, we need to consider the overheads of error mitigation for

making architectural decisions.

Figure 18a compares the CDF rates of accelerators A1, A2, A3, A3scaled, and A4. Figure 18b compares the error

mitigation overhead for these accelerators for different CDF rates. Even though A3scaled has the highest CDF rate

(Figure 18a), ECC can be used for low overhead error mitigation in A3scaled as it uses SRAM.

Geometric representation of swept space: Figure 18c compares the CEF distribution of different geometric

representations used in the CDMs studied for a motion set of the Jaco2 robot. We find that two aspects of the

geometric representation mainly affect the CEF distribution and range: (1) redundancy, and the (2) volume covered

by a structure. In the box-based representation, to take advantage of spatial locality, the optimization process

converts the swept space into a set of boxes. Each box covers the maximum possible number of voxels in the swept

space. This adds redundancy as some voxels are covered by multiple boxes, and are hence not included in critical

space. In the octree-based representation, nodes near the root node divide the space at a coarser level and represent

a much larger volume. Also, there is no redundancy in the representation. These factors result in an overall higher

CEF for octree. Conversely, in voxel- and flattened-octree-based representation, each structure/bit represents a
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single voxel, and so their CEF is less than 6 (maximum 6 surfaces of a voxel). Further, geometric representation

determines the suitable storage structures and the error mitigation approach. For example, using SRAM/DRAM

with ECC results in lower costs of error mitigation for stringent CDF rate requirements as shown in Figure 18d

(A3scaled and A4).

Data reuse: Many accelerators use on-chip buffers to store frequently used data, and exploit data reuse to reduce

memory accesses. As a result, a soft error-induced bit flip persists until it is overwritten by reloading the swept

space data as explained in Section 4.3. Therefore, if the erroneous data is used for N collision queries, the CDF rate

increases by N2 times (Equation 3). However, frequent reloading of on-chip data increases DRAM accesses and

incurs performance and energy overheads. Thus there is a trade-off between the overhead of error mitigation and

DRAM accesses.

8 RELATED WORK

Fault Characterization: Several FI tools focus on CPUs and GPUs [31, 32, 49, 75, 76, 92, 110, 123, 124, 131].

TRIDENT [76] uses compiler information to estimate SDC probability without performing FI for CPU. gem5-

Approxilyzer [131] uses gem5 simulator [13] for FI, and proposes a methodology for fault site pruning. GPU-

Qin [31] proposed an FI methodology that balances representativeness and efficiency and performs FI on real GPU

hardware. GPU FI tools [32, 92] use GPGPU-Sim [9] for FI, and propose fault site pruning for the GPU SIMT

execution model. gpuFI-4 [110] proposes a detailed microarchitecture-level FI tool to characterize the cross-layer

vulnerability for single and multiple-bit faults. SASSIFI [49] and NVBitFI [123] propose instrumentation-based FI

tools for NVIDIA GPUs. These tools are useful for fault characterization of general purpose applications, but they

cannot be easily applied to robotics accelerators that use specialized microarchitectures and instruction sets. More

recent papers have studied the resilience of DNN accelerators [53, 54, 74, 78, 101, 108, 125, 134], and autonomous

vehicle systems [11, 56, 61–63, 135]. We focus, instead, on robotics accelerators processing spatial information.

Due to the differences between the datapath and information processed by the DNN accelerators and motion

planning accelerators, the fault propagation to the output is significantly different between them. Another body of

work has proposed metrics to characterize the vulnerability of structures to faults [30, 88, 116, 117]. Mukherjee et al.

[88] defined the Architectural Vulnerability Factor (AVF), and proposed Architectural Correct Execution analysis

(ACE-analysis) to approximate AVF for microprocessor structures [88]. Sridharan et al. [116] proposed the Program

Vulnerability Factor (PVF) to decouple the program’s fault-masking effect from that of the microarchitecture, and

quantify the vulnerability of a program. Fang et al. extended this work in ePVF [30] to consider only SDC-causing

bits. Although useful for CPUs and GPUs, architectural or microarchitectural ACE-analysis is challenging to apply

to accelerators due to differences in the ISA and workload. For MPAs in particular, whether a bit is ACE heavily

depends upon the position of obstacles, and requires multiple simulations to estimate. The CEF gives a measure of

the fraction of runtime for which a bit is ACE without such simulations.

Error Mitigation Techniques: There has been significant work on selective error mitigation techniques for

CPUs [103], GPUs [81, 85, 95], and FPGAs [78, 98]. Mittal et al. [85] proposed compressing similar values in

GPUs. Palframan et al. [95] analyzed GPGPU applications and proposed architectural modifications to reduce the

magnitude of errors. Unfortunately, these methods are difficult to apply to MPAs due to differences in the ISA

and microarchitecture. Reis et al. [103] and Mahmoud et al. [81] proposed software-level instruction replication

to improve the resilience of CPUs and GPUs respectively. However, accelerators typically use complex custom

instructions and perform more computations per instruction [21, 77, 90], and hence software-level duplication

would result in significant overheads. Li et al. [76] examined the resilience properties of DNN accelerators and

proposed a method to protect vulnerable bits. Guan et al. [43] proposed leveraging application-specific data

properties in CNNs to minimize the error correction overhead. In contrast, we focus on accelerators processing

spatial information.
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Motion Planning: Many techniques have been proposed to accelerate motion planning on CPUs and GPUs [7,

12, 35, 113]. However, these do not meet the energy and performance requirements of autonomous robots [77, 91].

ASIC-based and FPGA-based MPAs [10, 77, 91, 114, 139] focus on performance and energy optimizations, rather

than resilience. Other work [22, 121] has studied resilient motion planning under sensor and communication faults,

but not soft errors. Note that many of these techniques use the term roadmap instead of motion set to denote the

same idea.

9 CONCLUSIONS AND FUTURE WORK

Motion planning is a critical task in autonomous robots, and motion planning accelerators (MPAs) have been

proposed to speed it up significantly. Collision detection is the most resource-consuming and safety-critical module

in MPAs. In this work, we propose a spatially-aware reliability metric (CEF) for MPAs, based on the exposed

surface area of critical space. We propose a CEF-aware mitigation strategy and Fault Injection (FI) method based

on this metric. We also find that CEF-aware error mitigation achieves significant collision detection failure rate

reduction, even while incurring low area and energy overheads. We find that CEF-aware FI results in ∼ 23,000×
speedup over exhaustive FI to identify the critical bits. Finally, we identify the architectural design parameters

affecting the resilience and error mitigation overheads in MPAs. The FI tool and simulator implementation is

available at https://github.com/ubc-aamodt-group/MPA_resilience.

There are several possible directions for future work. First, while we focus on single bit flips, both the reliability

metric CEF, and the proposed error mitigation and FI methods can be extended to a multi-bit fault model. In

particular, Phase 1 of FI, CEF measurement needs to be modified to include a multi-bit fault model, where CEF of a

bit can be calculated as an average of CEF for different multi-bit fault combinations. Second, while we focused on

probabilistic roadmap-based MPAs, the underlying ideas can be applied to other robotics accelerators that process

spatial information. Finally, our observations on the effect of the different design parameters on the resilience and

error mitigation overhead open up the direction of “resilience-aware” algorithm-hardware co-design.
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