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In this thesis, I prove incidence estimates for slabs which are formed by intersecting small
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Chapter 1

Introduction and Preliminaries

In this thesis, we consider a fixed subdivision of the unit box [0, 1]𝑑 ⊂ R𝑑 into grid boxes

of side length 𝛿 < 1, and we consider incidences between a set of these grid boxes and a

set of 𝛿-slabs. Here, a 𝛿-slab refers to a(n) (approximate) box 𝑆 ⊂ R𝑑 with dimensions

∼ 1 × · · · × 1 × 𝛿. When we say a length is ∼ 𝑥, we mean that it is at least 𝑐𝑑 𝑥 and at

most 𝐶𝑑 𝑥 for some fixed dimensional constants 𝑐𝑑 < 1 and 𝐶𝑑 > 1. When we say 𝑆 is an

‘approximate box,’ we are referring to the fact that 𝑆 contains a dilate by 𝑐𝑑 of a 1×· · ·×1×𝛿

box and is contained in a dilate by 𝐶𝑑 of 1× · · · × 1× 𝛿 box, but 𝑆 may not itself be a box.

If a 𝛿-box intersects a 𝛿-slab in a set of volume at least 𝛿𝑑/10, we say that the box is

essentially contained in the slab. (The requirement that the intersection has volume at least

𝛿𝑑/10 means that the intersection must account for at least one tenth of the volume of the

𝛿-box.) If Γ is a collection of 𝛿-slabs and 𝑞 is a grid box that is essentially contained in 𝑟

different slabs, we say that 𝑞 is 𝑟-rich for Γ. We let 𝑃𝑟(Γ) denote the set of 𝑟-rich 𝛿-boxes

for Γ.

The question of what if means for two slabs to be ‘different’ from each other is an

important question that motivates us to restrict our attention to collections of slabs that

satisfy certain strong spacing conditions. First of all, we require that any two 𝛿-slabs with

a substantial intersection must have normal vectors that are separated by an angle ≳ 𝛿 (cf.

Corollary 1.1.4). It turns out that this requirement alone is not enough to prove strong

bounds for the size of 𝑃𝑟(Γ). We consider two other options for a further constraint on the

collection Γ. Each of these constraints has to do with the distribution of the 𝛿-slabs within

larger slabs of dimensions ∼ 1× · · · × 1×𝑊−1 for a parameter 𝑊 with 1 ≤𝑊 ≤ 𝛿−1.

13



Under our first spacing condition, we allow for thick slabs of thickness ∼ 𝑊−1 whose

normal directions are 𝛿-separated. We also allow a 𝑊−1-slab 𝑅 to contain more than one

slab of Γ but require that the number of 𝛿-slabs inside 𝑅 that share a normal direction

with 𝑅 is (approximately) the same for each 𝑅. (See Definition 1.4.1.) The second spac-

ing condition requires the thick slabs under consideration to have normal directions that

are 𝑊−1-separated and requires that each thick slab contain at most one 𝛿-slab from our

collection Γ.

Under the first spacing condition, we prove a bound for |𝑃𝑟(Γ)| that depends on the

parameter 𝑊 . Specifically, we show that if Γ satisfies the first spacing condition and 𝑟 is

sufficiently large (see Theorem 1.4.2), then

|𝑃𝑟(Γ)| ≲𝜀 𝛿
−𝜀|Γ|𝑑𝑟−𝑑𝑊−(𝑑−1). (1.1)

That is, for every 𝜀 > 0, there is a constant 𝐶𝜀 so that if Γ is a collection of 𝛿-slabs in [0, 1]𝑑

that satisfies our yet-to-be stated condition and 𝑟 is sufficiently large, then

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝛿
−𝜀|Γ|𝑑𝑟−𝑑𝑊−(𝑑−1).

Under the second spacing condition, we consider circumstances under which we can prove

an estimate of the form

|𝑃𝑟(Γ)| ≲𝜀 𝛿
−𝜀 |Γ|𝑑

𝑟𝑑+1
. (1.2)

My Theorem 1.4.2 is an analogue of Theorem 1.2 from [10], which discusses how to

estimate the number of 𝑟-rich 𝛿-boxes for a set of well-spaced tubes. My work uses methods

developed by Guth, Solomon, and Wang in [10], appropriately adapted for slabs. A bound of

the form (1.2) would be an analogue of a result of Elekes and Tóth [5], who estimate point-

hyperplane incidences in R𝑑. In the rest of this chapter, we give a survey of the results in

[10] and [5], and we discuss some properties of 𝛿-slabs. Finally, we give precise formulations

of the spacing conditions in order to state a theorem about incidences under the first spacing

conditions and a conjecture about incidences under the second.
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1.1 Definitions, Notation, and Conventions

1.1.1 Notation in Inequalities and Chains of Inequalities, Part I

Given two positive real-valued functions 𝑓 and 𝑔, we write

𝑓 ≲ 𝑔

to refer to the statement “𝑓 ≤ 𝐶𝑔 for some positive constant 𝐶.”

If we add a subscript to the ≲ symbol, this indicates that the implicit constant 𝐶

depends on the parameter in the subscript. If the implicit constant depends only 𝑑, the

ambient dimension, we will often omit the 𝑑 subscript, as we did in (1.1) above.

Throughout this thesis, if 𝑓 and 𝑔 are two positive real-valued functions on (0, 1), then

an inequality of the form

𝑓(𝛿) ⪅log 𝑔(𝛿)

will be shorthand for the statement, “There is a positive constant 𝐶 so that

𝑓(𝛿) ≲ (log(𝛿−1))𝐶𝑔(𝛿) (1.3)

for all 𝛿 in
(︀
0, 1𝑒
)︀
.

This is to be contrasted with the usage of the symbol ⪅, which indicates a relationship

of the form

𝑓(𝛿) ≤ 𝛿−𝜀𝑔(𝛿). (1.4)

or

𝑓(𝛿) ≤ 𝐶𝜀𝛿
−𝜀𝑔(𝛿). (1.5)

One should note that if 𝑓 and 𝑔 satisfy (1.3) then they satisfy (1.4) for all 𝛿 sufficiently

small; specifically if (1.3) holds for all 𝛿 ∈ (0, 1𝑒 ), then we can find 𝑐𝜀 < 1 so that (1.4)

holds for all 𝛿 ≤ 𝑐𝜀. Then, provided that 𝑓 and 𝑔 have sufficient regularity, we can choose a

constant 𝐶𝜀 to ensure that (1.5) holds for all 𝛿 ∈ (0, 1).

In [10] the ⪅ symbol is occasionally used when a stronger statement with ⪅log actually

holds, but then the stronger meaning is used later in the paper. Any results I state in this

15



thesis that were originally proved in other sources, will always be stated in the form that I

use them.

1.1.2 Notation in Inequalities and Chains of Inequalities, Part II

Each of the inequality symbols above has a counterpart. We write

𝑓 ≳ 𝑔

to refer to a relationship of the form 𝑔 ≲ 𝑓 . If both 𝑓 ≲ 𝑔 and 𝑔 ≲ 𝑓 hold, we write 𝑔 ∼ 𝑓 .

If 𝑓, 𝑔 are positive real-valued functions on (0, 1), then the inequality 𝑓 ⪆log 𝑔 refers to

a relationship of the form 𝑔 ⪅log 𝑓 . That is, we write 𝑓 ⪆log 𝑔 to indicate that there is some

positive constant 𝐶 so that for all 𝛿 ∈
(︀
0, 1𝑒
)︀
, we have that

𝑔(𝛿) ≲ (log(𝛿−1))𝐶𝑓(𝛿),

or equivalently, that

𝑓(𝛿) ≳ (log(𝛿−1))−𝐶𝑔(𝛿).

Consequently, if 𝑓 ⪅log 𝑔, we have that 1
𝑓 ⪆log

1
𝑔 , as one might expect. This fact is frequently

used throughout our work with no justification inline.

Finally, we comment on transitivity: if 𝑓 ⪅log 𝑔 and 𝑔 ⪅log ℎ, then 𝑓 ⪅log ℎ. If we have

functions 𝑓1, . . . , 𝑓𝑚 on (0, 1) with 𝑓1 ⪅log 𝑓2, 𝑓2 ⪅log 𝑓3, and so on, then we can conclude

that 𝑓1 ⪅log 𝑓𝑚, provided that the value of 𝑚 did not depend on 𝛿.

1.1.3 Other Notational Conventions

Throughout this thesis, we use vertical bars to denote the cardinality of a finite set or the

𝑑-dimensional Lebesgue measure of an infinite set. For 𝑘 ≤ 𝑑, we will let Vol𝑘(·) denote

𝑘-dimensional volume of a set in R𝑑. If the superscript 𝑘 is omitted, it is to be assumed

that 𝑘 = 𝑑. (Thus, if 𝐴 ⊂ R𝑑 is infinite, then |𝐴| and Vol(𝐴) are used interchangeably.)

If 𝐴 ⊂ R𝑑 is a convex symmetric region with center 𝑐𝐴 and 𝑏 > 0, we let 𝑏𝐴 denote the

dilation of 𝐴 by a factor of 𝑏 about the same center. That is, 𝑏𝐴 = {𝑏(𝑥−𝑐𝐴)+𝑐𝐴 : 𝑥 ∈ 𝐴}.
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1.1.4 Geometric Facts, Essential Distinctness, and Essential Containment

We can associate to any 𝛿-slab 𝑆 a normal vector 𝑛. If 𝑆 is a true rectangular box, then

we can view 𝑆 as a neighborhood of width ∼ 𝛿 of a rectangle 𝑅 which is the image of the

(𝑑 − 1)-dimensional unit box [0, 1]𝑑−1 × {0} under an affine transformation 𝐴 : R𝑑 → R𝑑.

If we write 𝐴(𝑥) = 𝑇𝑥 + 𝑏 for some matrix 𝑇 ∈ 𝐺𝐿(𝑑,R), we must have | det(𝑇 )| ∼ 1.

Although the determinant of 𝑇 may not be precisely 1, we will always assume that the last

column is of length 1 so that it lies on the surface of the unit sphere S𝑑−1.

Strictly speaking, the normal vector of a slab is not uniquely defined, as a single slab

could be contained within a small neighborhood of two different image sets 𝐴1([0, 1]
𝑑−1× 0)

and 𝐴2([0, 1]
𝑑−1 × 0). However, all of the candidate normal vectors for a 𝛿-slab lie within a

cap of radius ≲ 𝛿, where a cap is defined as the intersection of the sphere S𝑑−1 with a ball

around a point 𝑥 on the sphere, or more generally, as a subset of S𝑑−1 which contains and

is contained in such an intersection. More precisely, given 0 < 𝜌≪ 1, we call a set 𝜃 ⊂ S𝑑−1

a 𝜌-cap if there is some 𝑥 ∈ S𝑑−1 so that

𝐵(𝑥, 1
10𝜌) ∩ S𝑑−1 ⊂ 𝜃 ⊂ 𝐵(𝑥, 10𝜌) ∩ S𝑑−1.

We will also speak of subdividing the unit sphere into caps, by which we mean writing

it as a union

S𝑑−1 =
⋃︁
𝜃,

where the sets 𝜃 are disjoint or they are finitely overlapping with 𝑂(1)-many sets intersecting

any point on the sphere.

We are often concerned with the volume of the intersection of a pair of slabs or of the

𝑑-fold intersection of slabs 𝑆1, . . . , 𝑆𝑑. We can express both of these quantities in terms of

(multilinear expressions of) the normal vectors of the slabs. Our intersection formulae are

not exact equalities but allow for multiplication by a constant factor which accounts for the

non-uniqueness of the normal vector of a slab.

Lemma 1.1.1. Suppose that 𝑆1, 𝑆2 ⊂ R𝑑 are 𝛿-slabs with respective normal vectors 𝑛1 and

𝑛2. If the angle between 𝑛1 and 𝑛2 is at least 𝛼 then the volume of the intersection 𝑆1 ∩𝑆2
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satisfies

|𝑆1 ∩ 𝑆2| ≲
𝛿2

𝛼
.

Moreover, if 𝑆1 and 𝑆2 were formed by taking the 𝛿-neighborhoods of rectangles centered at

a common point (e.g. 0), then

|𝑆1 ∩ 𝑆2| ∼
𝛿2

𝛼
.

Lemma 1.1.2. Suppose that 𝑆1, . . . , 𝑆𝑑 ⊂ R𝑑 are 𝛿-slabs with respective normal vectors

𝑛1, . . . ,𝑛𝑑, Then the volume of their 𝑑-fold intersection satisfies

|𝑆1 ∩ · · · ∩ 𝑆𝑑| ≲ min

{︂
𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|
, 𝛿

}︂
,

where 𝑛1 ∧ · · · ∧ 𝑛𝑑 denotes the determinant of the 𝑑 × 𝑑 matrix that has 𝑛1, . . . ,𝑛𝑑 as

its rows. Moreover, if 𝑆1, . . . , 𝑆𝑑 were formed by taking the 𝛿-neighborhoods of rectangles

centered at a common point (e.g. 0) and 𝛿𝑑

|𝑛1∧···∧𝑛𝑑| ≤ 𝛿, then

|𝑆1 ∩ · · · ∩ 𝑆𝑑| ∼
𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|
.

We defer the proofs of Lemmas 1.1.1 and 1.1.2 to an appendix. Meanwhile, from Lemma

1.1.1 we can deduce the following corollary.

Corollary 1.1.3. If 𝑆1, 𝑆2 are essentially distinct 𝛿-slabs through 0 with respective normal

vectors 𝑛1 and 𝑛2, then the angle between 𝑛1 and 𝑛2 is ≳ 𝛿.

If Γ is a set of essentially distinct slabs through a common point, then their normal

vectors must form a 𝛿-separated set on S𝑑−1, i.e. it must be the case that the distance

between any two of the normal vectors must be ≳ 𝛿. As a result, we can deduce an upper

bound on the size of Γ.

Corollary 1.1.4. Let Γ0 be a set of essentially distinct 𝛿-slabs in R𝑑, which are all centered

at the origin. Then

|Γ0| ≲ 𝛿−(𝑑−1).
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Proof. We consider the normal vectors of the slabs in Γ0. Corollary 1.1.3 implies that if we

subdivide the unit sphere S𝑑−1 into caps of radius ∼ 𝛿, then at most one of these normal

vectors lies in each cap. The maximum number of 𝛿-caps in such a subdivision is bounded

by the quotient
Vol𝑑−1(S𝑑−1)

Vol𝑑−1(𝛿-cap)
,

which is ∼ 𝛿−(𝑑−1).

Finally, we record for reference our definitions of essential intersection and essential

containment, and we introduce the symbols we use to denote these relationships.

Definition 1.1.5. (Essential intersection) Given two sets 𝐴1, 𝐴2 ⊂ R𝑑, we say that 𝐴1

essentially intersects 𝐴2, denoted 𝐴1 ∩ess 𝐴2 if the volume of 𝐴1 ∩ 𝐴2 is at least half as big

as the maximum intersection of rigid transformations of 𝐴1 and 𝐴2. That is, 𝐴1 ∩ess 𝐴2 if

|𝐴1 ∩𝐴2| ≥
1

2
max

𝜎1,𝜎2∈𝑆𝐿𝑑(R𝑑)
(|𝜎1(𝐴1) ∩ 𝜎2(𝐴2)|) .

Definition 1.1.6. (Essential containment) Suppose that 𝐴1, 𝐴2 ⊂ R𝑑 with |𝐴2| ≥ |𝐴1|. We

say that 𝐴1 is essentially contained in 𝐴2, denoted 𝐴1
⊂
∼𝐴2 if

|𝐴1 ∩𝐴2| ≥
1

10
|𝐴1|.

1.1.5 Incidences and Richness

If 𝑃 is a set of points in R𝑑 and 𝒜 is a collection of measurable sets in R𝑑, we let 𝐼(𝑃,𝒜)

denote the set of incidences between 𝑃 and 𝒜, defined by

𝐼(𝑃,𝒜) := {(𝑝,𝐴) : 𝑝 ∈ 𝐴}.

If we instead let 𝑃 denote a set of 𝛿-boxes in R𝑑 and 𝒜 is a collection of measurable sets

of positive volume, we define the set of incidences between 𝑃 and 𝒜 in terms of essential
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intersection:

𝐼(𝑃,𝒜) := {(𝑝,𝐴) : 𝑝 ∩ess 𝐴}. (1.6)

If ℒ is a collection of lines in R𝑑 and 𝑟 is a positive integer, we say that a point 𝑝 ∈ R𝑑 is

𝑟-rich for a collection of lines if it lies on at least 𝑟 of the lines. We denote the collection of

such points by 𝑃𝑟(ℒ). Similarly, if 𝒜 is a collection of subsets of R𝑑, each of volume ≳ 𝛿𝑑,

we say that a 𝛿-ball 𝑝 ⊂ R𝑑 is 𝑟-rich for 𝒜 if it is essentially contained in at least 𝑟 of the

sets of 𝒜. Given a fixed subdivision of [0, 1]𝑑 into 𝛿-cubes and a collection 𝒜 of subsets

of [0, 1]𝑑, we let 𝑃𝑟(𝒜) denote the set of these 𝛿-cubes which lie in at least 𝑟-many sets of

𝒜. It is important to note that 𝑃𝑟(𝒜) does not just include 𝛿-boxes which are essentially

contained in exactly 𝑟-many sets 𝐴 ∈ 𝒜, but also includes those 𝛿-boxes of 𝑃 that have

richness strictly greater than 𝑟.

1.2 Discrete Incidence Theorems

The fundamental result in Incidence Geometry is the Szeméredi-Trotter theorem, originally

proved in [12], which concerns incidences of points and lines in R2. The theorem has two

variants, which are equivalent to each other.

Theorem 1.2.1. If 𝑃 ⊂ R2 is a set of 𝑛 points in the plane, and ℒ is a set of 𝑚 lines in

the plane, the the number of incidences between 𝑃 and ℒ satisfies

|𝐼(𝑃,ℒ)| ≲ 𝑛2/3𝑚2/3 + 𝑛+𝑚.

Theorem 1.2.2. Let ℒ be a set of lines in the plane with |ℒ| = 𝑚. For any 𝑟 ∈ N, the

number of 𝑟-rich points for ℒ satisfies

|𝑃𝑟(ℒ)| ≲
𝑚2

𝑟3
+
𝑚

𝑟
.

For a discussion of why each variant implies the other, see, e.g. Adam Sheffer’s excellent

blog post [11].

If 𝑑 > 2, the Szeméredi-Trotter theorem - either variant - holds for collections of points
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and lines in R𝑑 but stronger conclusions are possible if one assumes more hypotheses to rule

out situations in which many of the lines are concentrated in a hyperplane.

In [5], Elekes and Tóth consider incidences of points and hyperplanes in R𝑑 under similar

non-degeneracy hypotheses. Given 𝛼 ∈ (0, 1) and a set of points 𝑃 ⊂ R𝑑, 𝑑 ≥ 3, they say

that a hyperplane 𝐻 is 𝛼-degenerate (for P) if 𝐻 ∩𝑃 is non-empty and at most 𝛼|𝐻 ∩𝑃 |

points of 𝐻 ∩ 𝑃 lie in any (𝑑 − 2)-flat within 𝐻. Under this definition, if 𝛼1 < 𝛼2 and 𝐻

is 𝛼1-degenerate for 𝑃 , then it is 𝛼2-degenerate for 𝑃 . Thus, if we say a hyperplane 𝐻 is

𝛼-degenerate for 𝑃 , this means that 𝐻 is at worst 𝛼-degenerate.

Under this non-degeneracy condition, Elekes and Tóth prove the following theorem.

Theorem 1.2.3. (Elekes-Tóth, [5]) For every 𝑑 ≥ 3, there is a constant 𝛼𝑑 ∈ (0, 1) such if

𝑃 is a set of 𝑛 points in R𝑑 and Γ is a set of 𝑚 𝛼-degenerate hyperplanes, 𝛼 < 𝛼𝑑, then

|𝐼(𝑃,Γ)| ≲ 𝑛
𝑑

𝑑+1𝑚
𝑑

𝑑+1 + 𝑛𝑚
𝑑−2
𝑑−1 +𝑚. (1.7)

1.3 Continuous Incidence Theorems for Tubes

In [10], Guth, Solomon and Wang proved an analogue of the Szeméredi-Trotter theorem for

𝛿-tubes that obey certain strong conditions.

Theorem 1.3.1. ([10], Theorem 1.1)

Suppose that 1 ≤ 𝑊 ≤ 𝛿−1. Suppose that T is a set of ∼ 𝑊 2 𝛿-tubes in [0, 1]2 with at most

one 𝛿-tube of T in each 𝑊−1 × 1 rectangle.

If 𝑟 > max(𝛿1−𝜀|T|, 1),

then |𝑃𝑟(T)| ≤ 𝐶(𝜀)𝛿−𝜀𝑟−3|T|2

for all 𝜀 > 0. Here, 𝐶(𝜀) is a constant only depending on 𝜀, in particular, independent of

𝑊 .

We note that the exponents from Theorem 1.3.1 match the exponents in the first term

of the bound in Theorem 1.2.2.

Guth, Solomon, and Wang proved an analogous bound for tubes in R3, which they then

applied to solve a variant of Falconer’s distance problem using the Elekes-Sharir framework

introduced in [4].
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Theorem 1.3.2. ([10], Theorem 1.3)

Suppose that 1 ≤ 𝑊 ≤ 𝛿−1. Suppose that T is a set of ∼ 𝑊 4 𝛿-tubes in [0, 1]3 with at most

one 𝛿-tube of T in any tube of radius 𝑊−1 and length 1.

If 𝑟 > max(𝛿2−𝜀|T|, 1),

then |𝑃𝑟(T)| ≤ 𝐶(𝜀)𝛿−𝜀𝑟−2|T|3/2

for all 𝜀 > 0. Here, 𝐶(𝜀) is a constant only depending on 𝜀, in particular, independent of

𝑊 .

The theorems for 𝑑 = 2 and 𝑑 = 3 can be combined into a more general theorem that

the authors stated for tubes in R𝑑, with a bound that depends on 𝑑. They prove that the

bound holds for 𝑑 = 2 and 𝑑 = 3, but it is conjectured that the bound holds for larger values

of 𝑑 as well.

Theorem 1.3.3. ([10], Theorem 4.1)

Let 1 ≤ 𝑊 ≤ 𝛿−1. Let T be a collection of distinct 𝛿-tubes in 𝐵𝑑(0, 2), for 𝑑 = 2 or 𝑑 = 3.

If T is a set of ∼ 𝑊 2(𝑑−1) 𝛿-tubes with at most one tube of T in each 1
𝑊 -tube, then for

𝑟 > max (𝛿𝑑−1−𝜀/4|T|, 1), the number of 𝑟-rich 𝛿-balls is bounded by

|𝑃𝑟(T)| ≲𝜀 𝛿
−𝜀 |T|

𝑑
𝑑−1

𝑟
𝑑+1
𝑑−1

.

All of the theorems from [10] that we have stated so far satisfy a spacing condition

involving an auxiliary collection of essentially distinct 𝑊−1-tubes, where 0 < 𝛿 ≤ 𝑊−1.

Guth, Solomon and Wang require T to have ∼ 𝑊 𝑑 tubes, with at most one tube in each

𝑊−1-tube from this auxiliary collection. Any two wide tubes in the auxiliary collection that

have a substantial intersection must have long axes separated by an angle ≳ 𝑊 because of

our assumption that they are pairwise essentially distinct.

In another theorem from the same paper, the authors consider𝑊−1-tubes in [0, 1]2 whose

axis directions come from a set which is 𝛿-separated but not necessarily 𝑊−1-separated. The

𝑊−1 tubes with a common direction are distinct from one another. We can think of the

set of directions as a collection of arcs on the circle S1. The theorem estimates the number

of 𝑟-rich points for a collection T of 𝛿-tubes that is distributed so that any two 𝑊−1-tubes

whose axis directions are in the same arc 𝜃 must contain about the same number of tubes
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in T𝜃, where T𝜃 consists of those tubes of T with axis direction in the arc 𝜃; moreover, this

common count must be the same size for each 𝜃.

Theorem 1.3.4. ([10], Theorem 1.2)

Let 1 ≤ 𝑊 ≤ 𝛿−1, and 1 ≤ 𝑁1 ≤ (𝑊𝛿)−1. Divide the circle into arcs 𝜃 of length 𝛿. For

each 𝜃 and each 1 ≤ 𝑗 ≤ 𝑊 , let 𝑇𝜃,𝑗 ⊂ [0, 1]2 be a 𝛿-tube. Suppose that for each 𝜃 and each

𝑊−1-rectangle in direction 𝜃, there are uniformly ∼ 𝑁1 tubes 𝑇𝜃,𝑗 in the rectangle. Let T be

the set of all the tubes 𝑇𝜃,𝑗. Then for any 𝜀 > 0,

if 𝑟 ≥ 𝐶1(𝜀)𝛿
1−𝜀|T|,

then |𝑃𝑟(T)| ≤ 𝐶2(𝜀)𝛿
−𝜀𝑊−1𝑟−2|T|2,

where 𝐶1(𝜀) and 𝐶2(𝜀) are two constants only depending on 𝜀, in particular, independent of

𝑊 and 𝑁1.

It is this theorem that I generalize in my Theorem 1.4.2, stated below. Before stating

my theorem, I introduce spacing conditions for slabs which I have formulated by analogy

with the hypotheses of the theorems of [10].

1.4 My Work

I consider collections of slabs 𝛿-slabs under two spacing conditions, each of which concerns

the 𝛿-slabs contained inside a larger slab of thickness ∼ 𝑊−1 with 1 ≤ 𝑊 ≤ 𝛿−1. Under

one spacing condition, we are only concerned with the number of 𝛿-slabs inside a 𝑊−1-slab

that have the same normal direction as the 𝑊−1-slab. Other the other spacing condition,

we count all of the 𝛿-slabs inside a 𝑊−1-slab. It turns out, though, that saying we count the

slabs, plural, is a bit misleading as the second spacing condition amounts to the requirement

that this count is at most 1 for any 𝑊−1-slab.

Definition 1.4.1. (Spacing Conditions)

Fix 𝛿,𝑊 with 0 < 𝛿 ≤𝑊−1 ≤ 1. Let Γ be a collection of 𝛿-slabs. Let Θ𝛿 be a subdivision of

S𝑑−1 into 𝛿-caps, and let Θ𝑊−1 be a subdivision of S𝑑−1 into 𝑊−1-caps.

We say that Γ satisfies the first spacing condition with parameter 𝑊 if there

exists 𝑁 ≤ (𝑊𝛿)−1 so that for any 𝜃 ∈ Θ𝛿 and any 𝑊−1-slab 𝑅 with 𝑛 ∈ 𝜃, we have

23



#

⎧⎨⎩𝑆 ∈ Γ :
𝑛(𝑆) ∈ 𝜃

𝑆 ⊂
∼𝑅

⎫⎬⎭ ∼ 𝑁. (WS-1)

That is, any 𝑊−1-slab 𝑅 (essentially) contains ∼ 𝑁 -many 𝛿-slabs with normal direction

in the same 𝛿-cap as 𝑛(𝑆).

We say that Γ satisfies the second spacing condition with parameter 𝑊 if, for

any 𝜃 ∈ Θ𝑊−1 and any 𝑊−1-slab 𝑅 with 𝑛(𝑅) ∈ 𝜃,

#

⎧⎨⎩𝑆 ∈ Γ :
𝑛(𝑆) ∈ 𝜃

𝑆 ⊂
∼𝑅

⎫⎬⎭ ≤ 1. (WS-2)

That is, for any 𝑊−1-slab 𝑅, there is at most one 𝛿-slab 𝑆 ∈ Γ with 𝑆 ⊂
∼𝑅.

Under the first spacing condition I can prove the following estimate for 𝑃𝑟(Γ).

Theorem 1.4.2. For any 𝜀 > 0 sufficiently small (relative to 𝑑), there exists a constant

𝐶𝜀 = 𝐶(𝜀, 𝑑) > 1 so that if 𝛿 ∈ (0, 1) and 1 ≤𝑊 ≤ 𝛿−1, then

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝛿
−𝜀𝑊−(𝑑−1)𝑟−𝑑|Γ|𝑑 (1.8)

for any collection Γ of 𝛿-slabs that satisfies the first spacing condition for the parameter 𝑊

and any 𝑟 with

𝑟 ≥ 𝛿−𝜀/4𝛿|Γ|. (1.9)

Most of my thesis is devoted to the proof of this theorem, which is sharp up to 𝜀-loss, as

demonstrated in Example 4.2.2. I also discuss work toward proving an estimate of the form

|𝑃𝑟(Γ)| ≲𝜀 𝛿
−𝜀 |Γ|𝑑

𝑟𝑑+1
. (1.10)

for any collection Γ of size ∼𝑊 𝑑 that satisfies the second spacing condition with parameter

𝑊 and any 𝑟 sufficiently large.

The bound (1.10) corresponds to Theorem 1.2.3 in the same way that Theorem 1.3.1
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corresponds to Theorem 1.2.1. To make this more precise, note that if we start with a set

Γ consisting of 𝑚 hyperplanes, and let 𝑃 ⊂ 𝑃𝑟(Γ), then Theorem 1.2.3 implies that

𝑟|𝑃 | ≲ |𝐼(𝑃,Γ)| ≲ |𝑃 |
𝑑

𝑑+1𝑚
𝑑

𝑑+1 + |𝑃 |𝑚
𝑑−2
𝑑−1 +𝑚.

If we assume that the first term on the right-hand side dominates (i.e. that it exceeds the

other two), then we will have

𝑟|𝑃 | ≲ |𝐼(𝑃,Γ)| ≲ |𝑃 |
𝑑

𝑑+1𝑚
𝑑

𝑑+1 .

We can rearrange to give

|𝑃 | ≲ 𝑚𝑑

𝑟𝑑+1
,

which matches our conjectured bound.

For the conjectured bound (1.10) to hold under the spacing condition (WS-2), it is

necessary to impose some additional hypotheses. As in Theorem 1.4.2, we will want a lower

bound on 𝑟, but it turns out that this alone is not enough. My current conjecture involves a

property that I call broadness, which I introduce in Chapter 2 after presenting an example

which motivates the definition. Chapters 3 and 4 contain more example configurations,

including an example that is sharp for (1.10) and one that is sharp for Theorem 1.4.2.

The remaining chapters contain ingredients of the proof of Theorem 1.4.2, culminating

in an inductive proof of Theorem 1.4.2 in Chapter 9, which I reinterpret as an iterative

procedure in Chapter 10. One particularly important element of the proof is Proposition

6.1.1, which is used to set up an induction on scales argument. I prove Proposition 6.1.1

using the high-low method.

Proposition 6.1.1 sets up a dichotomy to characterize a set 𝑃 consisting of unit balls that

all have approximately the same richness for a set of slabs of dimensions 𝐷 × · · · × 𝐷 × 1

with 𝐷 > 1 very large. (We will later apply a rescaled version of this proposition.) We

show that the set 𝑃 must either consist (mostly) of balls grouped into clusters, or 𝑃 must

be ‘small’ in the sense that we can obtain a bound for |𝑃 | in terms of the intended cluster

size. In Chapters 7-8, I explain in detail how the bound for |𝑃 | that results in this case can

used to show the bound of Theorem (1.4.2) directly for 𝛿 sufficiently small. Meanwhile, in

the thick case, we use an inductive argument to count the number of clusters.
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Chapter 2

An Enemy Example and Notions of

Broadness

In this chapter we present an example which illustrates the difficulties that arise in proving

estimates for |𝑃𝑟(Γ)| under the second spacing condition and discuss candidate hypotheses to

rule this example out. When formulating conjectures under the second spacing condition, I

was already planning to include assumptions that |Γ| ∼𝑊 𝑑 and that 𝑟 ≥ max{𝛿−𝜀/4𝛿|Γ|, 𝑑}

(cf Theorem 1.3.3), but these assumptions alone are insufficient to rule out the following

example.

Example 2.0.1. Let 𝑛1, . . . ,𝑛𝑑 be unit vectors which are all contained in the subspace

𝑒⊥𝑑 . Suppose that for 𝑖 = 1, . . . , 𝑑, the slab 𝑆𝑖 is a 1 × · · · × 1 × 𝛿 box centered at 0 with

normal vector 𝑛𝑖. Then each slab 𝑆𝑖 contains the 𝛿-neighborhood of the line segment from

−(0, . . . , 0,−1
2) to (0, . . . , 0, 12). The 𝛿-neighborhood of this line segment can be subdivided

into ∼ 𝛿−1-many distinct 𝛿-boxes, so if we let Γ = {𝑆1, . . . , 𝑆𝑑}, then we have

|𝑃𝑑(Γ)| ∼ 𝛿−1.

Meanwhile, for |Γ| = 𝑑 and 𝑟 = 𝑑, the right-hand side of our conjectured bound ( 1.10)

becomes

𝛿−𝜀𝑑−1,
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which is much smaller than 𝛿−1.

This example is not an issue when it comes to proving estimates under the first spacing

condition, because it does not satisfy the first spacing condition, which mandates that each

distinct 𝑊−1-slab for each normal direction in Θ𝛿 must contain ∼ 𝑁 -many 𝛿-slabs of Γ with

that same normal direction. However, merely imposing a lower bound on Γ in terms of 𝑊

(cf. Theorem 1.3.3) does not rule out Example 2.0.1 if 𝑊 is small.

The main issue at play in Example 2.0.1 is that the normal vectors of the slabs of Γ all

lie in a hyperplane. This suggests that we might want to impose a requirement that each

𝑑-rich 𝛿-box for Γ has slabs through it whose normal vectors are transverse. (The reason

we single out 𝑑-rich boxes here is that 𝑑 is the smallest possible richness that could give

rise to a collection of transverse normal vectors.) For instance, we could require that for

any 𝑞 ∈ 𝑃𝑑(Γ) there are slabs 𝑆1, . . . 𝑆𝑑 ∈ Γ with 𝑞 ⊂
∼ 𝑆1, . . . , 𝑆𝑑 whose normal vectors are

𝜈-transverse, where 𝜈 was a parameter which we allowed to depend on 𝛿 or possibly on 𝑊 .

As in [2], when we say that 𝑛1, . . . ,𝑛𝑑 are 𝜈-transverse, we mean that

|𝑛1 ∧ · · · ∧ 𝑛𝑑| ≥ 𝜈.

One issue with this proposed hypothesis is that it depends on our choice of normal

vectors. We could modify our proposed hypothesis to say something like, “for any 𝑞 ∈ 𝑃𝑟(Γ)

there are slabs 𝑆1, . . . 𝑆𝑑 ∈ Γ, each essentially containing 𝑞, along with a choice of normal

vectors 𝑛1, . . . ,𝑛𝑑 which satisfy

|𝑛1 ∧ · · · ∧ 𝑛𝑑| ≥ 𝜈.”

However, I want to focus instead focus on the ratio between |𝑆1 ∩ · · · ∩ 𝑆𝑑| and 𝛿𝑑. This

ratio represents the approximate number of 𝛿-boxes contained in the 𝑑-fold intersection

𝑆1 ∩ · · · ∩ 𝑆𝑑.

Definition 2.0.2. Let 0 < 𝜅 < 1, and let Γ be a collection of 𝛿-slabs in [0, 1]𝑑. We say

that Γ is 𝜅-broad, if, for each 𝛿-ball 𝑞 ∈ 𝑃𝑑(Γ), there exist distinct slabs 𝑆1, . . . , 𝑆𝑑, each
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essentially containing 𝑞, so that

|𝑆1 ∩ · · · ∩ 𝑆𝑑|
𝛿𝑑

≤ 𝜅−1.

We say that such a 𝑑-tuple of slabs witnesses 𝜅-broadness for 𝑞.

With this definition, we are ready to state our conjecture for slabs under the second

spacing condition.

Conjecture 2.0.3. For any 𝜀 > 0 sufficiently small relative to 𝑑, there exists a constant

𝐶 ′
𝜀 > 1 along with an increasing function 𝜅𝜀 : (0, 1) → (0,∞) so that if Γ is a collection of

𝛿 slabs that satisfies (WS-2) with parameter 𝑊 , Γ is 𝜅𝜀(𝑊−1)-broad, and |Γ| ∼𝑊 𝑑,

then

|𝑃𝑟(Γ)| ≤ 𝐶 ′
𝜀𝛿

−𝜀𝑟−(𝑑+1)|Γ|𝑑

for any 𝑟 with

𝑟 ≥ max{𝑑, 𝛿−𝜀/4𝛿|Γ|}.

I have no immediate reason to believe this conjecture is false, but it seems that it would

be hard to prove by induction. This is because the inductive arguments used in the rest

of this paper, like those in [10], often rely on estimating incidences of just those slabs in

a particular subset of Γ, possibly after rescaling those slabs. It may be the case that Γ as

a whole is 𝜅-broad but a subset of interest is not. In particular, given a large parameter

𝐷 > 1, we may wish to consider only those slabs of Γ which lie in a thick slab of dimensions

∼ 1 × · · · × 1 × 𝐷−1. This suggests that in order to facilitate a proof of our conjectured

bound, we may wish to add yet another hypothesis which requires that the subcollection

Γ ∩ □ is broad for any 𝐷−1-slab □. Perhaps we cannot expect the collection Γ ∩ □ to be

𝜅-broad, but we could ask that it is 𝜅′-broad for some 𝜅′ < 𝜅. How big should this 𝜅′ be

though? Should it depend on 𝐷? And how big or small should we let 𝐷 be?

29



30



Chapter 3

Examples Based on Farey Fractions

In this chapter, we describe sharp examples for Theorem 1.2.2 and Theorem 1.2.3. For

certain values of 𝑟 and 𝑊 the hyperplanes of Example 3.0.2 can be thickened to give an

example that is sharp, up to 𝜀-loss, for the bound in Conjecture 2.0.3. The constructions

rely on some auxiliary lemmas, which we state and prove at the end of the chapter.

Example 3.0.1. (Slope Example/Uniformly Rich Example in R2) Let 𝑁,𝑄 ∈ N with

𝑁 ≥ 100𝑄, and let 𝑃 ⊂ Z2 be an 𝑁 × 𝑁 grid. Let 𝑆𝑄 = {𝑠1, . . . , 𝑠𝑟} ⊂ Q be the set of

rational numbers of the form 𝑝
𝑞 with 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑄 and gcd(𝑝, 𝑞) = 1. For example, if

𝑄 = 4, then 𝑆𝑄 = {1, 12 ,
1
3 ,

2
3 ,

1
4 ,

3
4}. The members of 𝑆𝑄 comprise the Farey sequence of

order 𝑄. We will think of the members of 𝑆𝑄 as potential slopes for lines. The index 𝑟

represents the number of potential slopes. By our forthcoming Lemma 3.1.1, 𝑟 ∼ 𝑄2.

Let ℒ be a set of lines so that for each 𝑝 ∈ 𝑃 and each 𝑠 ∈ 𝑆𝑄, there is a line of slope 𝑠

through 𝑝. This means that each point of 𝑃 is 𝑟-rich, i.e. 𝑃 ⊆ 𝑃𝑟(ℒ). In fact, each point of

𝑃 is exactly 𝑟-rich.

There may be pairs (𝑝, 𝑠) and (𝑝′, 𝑠′) so that the line of slope 𝑠 through 𝑝 and the line

of slope 𝑠′ through 𝑝′ coincide. A line that is produced by multiple pairs is counted in |ℒ|

only once. To estimate |ℒ| we use double counting: we have that

|𝑃 |𝑟 ∼ 𝐼(𝑃,ℒ) =
∑︁
ℓ∈ℒ

#{𝑃 ∩ ℓ}. (3.1)
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By Lemma 3.1.3, #{𝑃 ∩ ℓ} ∼ 𝑁
𝑄 for each ℓ ∈ ℒ. Thus, resuming from (3.1), we obtain that

|𝑃 |𝑟 ≳ |ℒ|
(︂
𝑁

𝑄

)︂
∼ |ℒ|𝑁

𝑟1/2
∼ |ℒ||𝑃 |1/2

𝑟1/2

which implies that

|𝑃 | ≳ |ℒ|2

𝑟3
.

That is, this construction is sharp for the Szemerédi-Trotter bound.

To generalize Example 3.0.1, we need a substitute for the set of slopes we used in our

construction. A line in R2 is uniquely determined by the slope of the line and a choice of a

point on the line. Similarly, a hyperplane in R𝑑 is uniquely determined by a normal vector

and a choice of a point on the hyperplane.

We will again begin with a large integer grid 𝑃 = {1, . . . , 𝑁}𝑑. Through each of these

points, we will place hyperplanes with normal vectors drawn from the set 𝑆𝑄 defined by

𝑆𝑄 =

{︂(︂
𝑝1
𝑞
, . . . ,

𝑝𝑑−1

𝑞
, 1

)︂
: 1 ≤ 𝑝𝑗 < 𝑞 ≤ 𝑄 and gcd(𝑝𝑗 , 𝑞) = 1

}︂
. (3.2)

In words, 𝑆𝑄 is the set of vectors
(︁
𝑝1
𝑞 , . . . ,

𝑝𝑑−1

𝑞 , 1
)︁

so that each fraction 𝑝𝑗
𝑞 is a fraction in

lowest terms between 0 and 1 with denominator ≤ 𝑄.

Example 3.0.2. (Normal Example/Uniformly Rich Example in R𝑑) Let 𝑃 ⊂ Z𝑑 be an

𝑁×· · ·×𝑁 grid. Let 𝑆𝑄 be as in (3.2), let 𝑟 = |𝑆𝑄|, and let Γ be a set of hyperplanes so that

for each point x ∈ 𝑃 and each v ∈ 𝑆𝑄, there is a hyperplane of Γ with with normal vector

v that passes through x. To estimate 𝑟, note that for each 𝑞 ≤ 𝑄, the number of choices for

a (𝑑− 1)-tuple (𝑝1, . . . , 𝑝𝑑−1) is (𝜙(𝑞))𝑑−1, where 𝜙 denotes Euler’s totient function. Thus,

by Lemma 3.1.2, 𝑟 ∼ 𝑄𝑑.

By design, each point of 𝑃 is 𝑟-rich for Γ. By Lemma 3.1.4 below, we have that

𝑟|𝑃 | ∼ |𝐼(𝑃,Γ)| =
∑︁
𝛾∈Γ

#{𝑃 ∩ 𝛾} ≳ |Γ|
(︂
𝑁𝑑−1

𝑄

)︂
∼ |Γ|

(︃
|𝑃 |(𝑑−1)/𝑑

𝑟1/𝑑

)︃
.
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We rearrange to give

|𝑃 | ≳ |Γ|𝑑

𝑟𝑑+1
,

which means that this construction is sharp for Theorem 1.2.3.

3.1 Auxiliary Lemmas

Here, we provide lemmas that fill in details of the constructions we have already presented.

I first learned of the result of Lemma 3.1.1 from [7] in the proof of Proposition 5.2 of that

paper. However, the result is standard, and the implicit constant can be made explicit.

(See, e.g. Theorem 3.7 of [1].) When combined with Hölder, Lemma 3.1.1 can be used to

estimate other moments of Euler’s totient function.

3.1.1 Moments of Euler’s Totient Function

Lemma 3.1.1. We have that ∑︁
𝑞≤𝑄

𝜙(𝑞) ≳ 𝑄2.

Lemma 3.1.2. We have that ∑︁
𝑞≤𝑄

𝜙(𝑞)𝑘 ≳ 𝑄𝑘+1.

Proof. Beginning with inequality (3.1.1) we apply Hölder’s inequality for the exponents 𝑘

and 𝑘′ = 𝑘/(𝑘 − 1) to give

𝑄2 ≤
∑︁

1≤𝑞≤𝑁

1 · 𝜙(𝑞) ≤

⎛⎝ ∑︁
1≤𝑞≤𝑄

𝜙(𝑞)𝑘

⎞⎠1/𝑘⎛⎝ ∑︁
1≤𝑞≤𝑄

1𝑘
′

⎞⎠1/𝑘′

= 𝑄
𝑘−1
𝑘

⎛⎝ ∑︁
1≤𝑞≤𝑄

𝜙(𝑞)𝑘

⎞⎠1/𝑘

and then rearrange to give

∑︁
1≤𝑞≤𝑄

𝜙(𝑞)𝑘 ≳
(︁
𝑄− 𝑘−1

𝑘 ·𝑄2
)︁𝑘

= 𝑄2𝑘−(𝑘−1) = 𝑄𝑘+1.
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3.1.2 Counting integer points on zero sets of linear equations

Lemma 3.1.3. Fix 𝑁,𝑄 ∈ N with 𝑁 ≥ 100𝑄. Let 𝑝, 𝑞 ∈ Z with 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑄 . Let ℓ be

the line with equation of the form

𝑦 =
𝑝

𝑞
𝑥+

𝛽

𝑞
(3.3)

with 𝛽 ∈ Z. Then the number of points (𝑥, 𝑦) ∈ 𝑃 = {1, . . . , 𝑁}2 that lie on the line ℓ

satisfies

#{𝑃 ∩ ℓ} ≳ 𝑁
𝑞 ≳ 𝑁

𝑄 .

Proof. We can estimate the number of points in 𝑃 on ℓ𝑎,𝑏 by considering the number of 𝑥

for which the value of 𝑝
𝑞𝑥+ 𝛽

𝑞 lies in the set {1, . . . , 𝑁}. We write

#(ℓ ∩ 𝑃 ) = #

{︂
(𝑥, 𝑦) ∈ {1, . . . , 𝑁}2 : 𝑦 =

𝑝

𝑞
𝑥+

𝛽

𝑞

}︂
= #

{︂
𝑥 ∈ {1, . . . , 𝑁} :

𝑝

𝑞
𝑥+

𝛽

𝑞
∈ {1, . . . , 𝑁

}︂
.

We observe that any two members of the set {𝑥 ∈ {1, . . . , 𝑁} : 𝑝
𝑞𝑥 + 𝛽

𝑞 ∈ {1, . . . , 𝑁} must

differ by a multiple of 𝑞. (To see why this is, note that if 𝑥 ̸= 𝑥′ ∈ Z are chosen so that

both 𝑝
𝑞𝑥+

𝛽
𝑞 and 𝑝

𝑞𝑥
′ + 𝛽

𝑞 are integers, then it must be the case that 𝑏 divides the difference(︁
𝑝
𝑞𝑥+ 𝛽

𝑞

)︁
−
(︁
𝑝
𝑞𝑥

′ + 𝛽
𝑞

)︁
= 𝑝

𝑞 (𝑥− 𝑥′). Since gcd(𝑝, 𝑞) = 1, this implies that 𝑞 divides 𝑥− 𝑥′.)

Since any two values of 𝑥 in the set {𝑥 ∈ {1, . . . , 𝑁} : 𝑝
𝑞𝑥 + 𝛽

𝑞 ∈ {1, . . . , 𝑁} must differ

by a multiple of 𝑞 and must both be contained in {1, . . . , 𝑁}, it follows that the size of this

set is ∼ 𝑁
𝑞 .

Lemma 3.1.4. Fix 𝑁,𝑄 ∈ N with 𝑁 ≥ 100𝑄. Let 𝑑 ≥ 3, and let 𝑃 = {1, . . . , 𝑁}𝑑. Let 𝛾

denote the plane with equation

𝑥𝑑 =
𝑝1
𝑞
𝑥1 + · · ·+ 𝑝𝑑−1

𝑞
𝑥𝑑−1 +

𝑝

𝑞
:= 𝑓(𝑥1, . . . , 𝑥𝑑−1). (3.4)
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Then

#(𝛾 ∩ 𝑃 ) ≳ 𝑁𝑑−1

𝑞
≳
𝑁𝑑−1

𝑄
.

Proof. By analogy with the proof of Lemma 3.1.3 we will count the number of (𝑑−1)-tuples

𝑥⃗ = (𝑥1, . . . , 𝑥𝑑) ∈ {1, . . . , 𝑁}𝑑−1 such that 𝑓(𝑥1, . . . , 𝑥𝑑) is an integer in {1, . . . , 𝑁}. In the

case that 𝑓(𝑥1, . . . , 𝑥𝑑) is is an integer in this range, we can set 𝑥𝑑 = 𝑓(𝑥1, . . . , 𝑥𝑑) to give a

point x = (𝑥1, . . . , 𝑥𝑑) in 𝑃 ∩ 𝛾.

If we fix 𝑥1, . . . , 𝑥𝑑−2 in {1, . . . , 𝑁}, then the number of ways to choose 𝑥𝑑−1 with 1
𝑞 (𝑝1𝑥1+

· · · + 𝑝𝑑−1𝑥𝑑−1 + 𝑝) ∈ {1, . . . , 𝑁} is ∼ 𝑁
𝑞 . This is by a similar argument to the proof of

Lemma 3.1.3 which we nevertheless record here for the sake of completeness: if we choose

𝑥𝑑−1 and 𝑥′𝑑−1 so that both 1
𝑞 (𝑝1𝑥1 + · · ·+ 𝑝𝑑−1𝑥𝑑−1 + 𝑝) and 1

𝑞 (𝑝1𝑥1 + · · ·+ 𝑝𝑑−1𝑥
′
𝑑−1 + 𝑝)

are integers in {1, . . . , 𝑁}, then q must divide the difference (𝑝1𝑥1 + · · ·+ 𝑝𝑑−1𝑥𝑑−1 + 𝑝)−

(𝑝1𝑥1 + · · ·+ 𝑝𝑑−1𝑥
′
𝑑−1 + 𝑝) = 𝑝𝑑−1(𝑥𝑑−1 − 𝑥′𝑑−1), which implies that 𝑞 divides 𝑥𝑑−1 − 𝑥′𝑑−1.

The above work was for a fixed (𝑑− 2)-tuple (𝑥1, . . . , 𝑥𝑑−2) ∈ {1, . . . , 𝑁}𝑑−2. There are

𝑁−2 such (𝑑 − 2)-tuples and ∼ 𝑁
𝑞 ways to complete each to a 𝑑 − 1-tuple (𝑥1, . . . , 𝑥𝑑−1) ∈

{1, . . . , 𝑁}𝑑−1 with 𝑓(𝑥1, . . . , 𝑥𝑑) = 1. Hence,

|𝑃 ∩ 𝛾| ∼ 𝑁𝑑−1

𝑞
≳
𝑁

𝑄
.
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Chapter 4

Star Example and Cousins

4.1 Preliminaries

Let Λ be a maximal 𝛿-separated set on S𝑑−1. Then |Λ| ∼ 𝛿−(𝑑−1). This set can be thought of

a set of candidate normal directions for slabs. We first consider a set of slabs Γ0 containing

one slab with each normal direction in Λ so that each slab in Γ0 is centered at 0. The

following lemma gives an estimate for the number of these slabs that pass through a typical

point on a sphere of radius 𝜎 with 0 < 𝜎 < 1.

Lemma 4.1.1. Let Λ be a maximal 𝛿-separated set on S𝑑−1, and let Γ0 be a set of 𝛿-slabs

centered at 0 so that each slab of Γ0 is contained in the 𝛿-neighborhood of the hyperplane 𝑣⊥

for some 𝑣 ∈ Λ. If 𝜔 ∈ R𝑑 is a point at distance 𝜎 from 0 with 𝛿 < 𝜎 < 1, then the number

of slabs that pass through 𝜔 satisfies

#{𝑆 ∈ Γ : 𝜔 ∈ 𝑆} ∼ 𝛿−(𝑑−2)

𝜎
.

Proof. We consider 𝜎S𝑑−1, the sphere of radius 𝜎 centered at 0. Each slab of Γ0 intersects

this sphere in a band with surface area ∼ 𝛿𝜎𝑑−2. (Here, when we say ‘surface area,’ we are

referring to (𝑑 − 1)-dimensional volume.) Since Λ was maximal, the normal directions of

the slabs are approximately equidistributed on the surface of the sphere. Thus, the number

of bands passing through each 𝜔 ∈ 𝜎S𝑑−1 is approximately the total surface area of all the
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bands over the surface area of 𝜎S𝑑−1. That is, for each 𝜔 ∈ 𝜎S𝑑−1, we have

#{𝑆 ∈ Γ : 𝜔 ∈ 𝑆} ∼
∑︀

𝑆∈Γ0
Vol𝑑−1(Γ ∩ 𝜎S𝑑−1)

Vol𝑑−1(S𝑑−1)
∼ |Γ0|𝛿𝜎𝑑−2

𝜎𝑑−1
∼ 𝛿−(𝑑−2)

𝜎
.

4.2 Examples

Example 4.2.1. Let Γ0 be a set of slabs centered at 0 so that each slab of Γ0 is contained

in the 𝛿-neighborhood of the hyperplane 𝑣⊥ for some 𝑣 ∈ Λ. We note that |Λ| ∼ 𝛿−(𝑑−1),

so 0 is ∼ 𝛿−(𝑑−1)-rich for Γ0. Meanwhile, for 𝑟 < 𝛿−(𝑑−1), we can have many 𝑟-rich 𝛿-balls

in an 𝐴𝛿-ball around 0 for an appropriately chosen 𝐴 > 1.

By Lemma 4.1.1, a typical point 𝜔 ∈ 𝜎S𝑑−1 is 𝑟-rich if 𝜎 ≲ 𝛿−(𝑑−2)𝑟−1. Motivated

by this lemma, we take 𝐴 ∼ 𝛿−(𝑑−1)𝑟−1 so that 𝐴𝛿 ∼ 𝛿−(𝑑−2)𝑟−1. All of the 𝛿 grid boxes

in an 𝐴𝛿-ball centered at 0 are 𝑟-rich. The 𝐴𝛿-ball centered at 0 can be subdivided into

∼ 𝐴𝑑-many 𝛿-boxes, so

|𝑃𝑟(Γ0)| ≳ 𝐴𝑑 ∼ 𝛿−𝑑(𝑑−1)𝑟−𝑑.

Example 4.2.2. (Stacked Star Fragments) We can build a sharp example for Theorem

9.0.1 by joining together many star fragments consisting of many copies of a subset Γ′
0 ⊂ Γ0,

where Γ′
0 is formed by removing any slabs of Γ0 with normal directions too close to a ‘bad’

direction. (What constitutes a ‘bad’ direction is to be made precise momentarily.)

We place star fragment centers along a line segment with direction vector 𝑒𝑑 through the

center of the unit box. We take the star centers to be a maximal collection of 𝑊−1-spaced

points on this line segment. Through each of these points, we place one slab of each normal

direction in Λ′ = Λ0∖𝐵𝑤, where 𝐵𝑤 is a band of width 𝑤 < 1 (to be determined) around

the equator 𝑒⊥𝑑 ∩ S𝑑−1. The number of points of Λ within this band satisfies

#{𝑣 ∈ Λ : 𝑣 ∈ 𝐵𝑤} ∼ Vol𝑑−1(Band)
Vol𝑑−1(𝛿-cap)

∼ 𝑤𝛿−(𝑑−2).
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The reason we construct star fragments without the directions near the equator is that

if 𝑣 is too close to 𝑒⊥𝑑 then slabs with normal vector 𝑣 through different star centers will

coincide with each other. To determine how we should choose 𝑤, suppose that 𝑥1 and 𝑥2 are

two different star fragment centers with dist(𝑥1,𝑥2) =𝑊−1, suppose that angle(𝑣, 𝑒⊥𝑑 ) = 𝛼,

and suppose that 𝑆1 and 𝑆2 are slabs of dimensions 1× · · · × 1× 𝛿 with normal direction 𝑣,

centered at 𝑥1 and 𝑥2, respectively. A computation shows that

dist(𝑆1, 𝑆2) ≳𝑊−1 sin(𝛼) ≥ 𝛿 sin𝛼. (4.1)

We choose 𝑤 to ensure that any vector 𝑣 ∈ 𝐵𝑤 makes a sufficiently small angle to 𝑒𝑑
⊥

that the sine of the angle compensates for the implied constant in (4.1). We’ll have that

|Λ′| ≥ |Λ| − |Λ∖𝐵𝑤|. So long as 𝑤 is sufficiently small (relative to the implied constant in

the bound |Λ| ≳ 𝛿−(𝑑−1)), we’ll have |Λ′| ≥ 1
2 |Λ|. Say for concreteness that 𝑤 = 1

1000 is small

enough for this to work and for (4.1) to ensure essential distinctness of our slabs.

After forming a set of slabs Γ′
0 by taking one slab through 0 for each normal vector in Λ′,

we let Γ1 be the union of all of the slabs from the star fragments centered at our designated

points. Then we have that |Γ1| ∼𝑊 |Λ′|. We note that Γ1 does not yet satisfy the spacing

condition of Theorem 9.0.1. This is because if 𝜃 is within 1
1000 of the subspace 𝑒⊥𝑑 , then

there are no 𝛿-slabs with normal direction 𝜃 inside any 𝑊−1-slab with normal direction 𝜃.

To remedy this, we add more slabs to Γ1. Specifically, for each 𝑣 ∈ Λ∖Λ′, we subdivide

[0, 1]𝑑 into thick slabs of dimensions ∼ 1 × · · · × 1 ×𝑊−1. In each of these thick slabs we

insert one 𝛿−1-slab with normal vector 𝑣. We denote by Γ the resulting set of slabs (i.e. the

union of the original Γ1 with these new slabs). We note that |Γ∖Γ1| ∼ 𝑊 |Λ∖Λ′| and

|Γ| ∼ |Γ1| ∼𝑊 |Λ1| ∼𝑊𝛿−(𝑑−1). (4.2)

By our work in Example 4.2.1, each star fragment contributes ∼ 𝛿−𝑑(𝑑−1)𝑟−𝑑-many boxes

to 𝑃𝑟(Γ1). Provided that 𝑟 is sufficiently large (see Remark 4.2.3), the clusters of 𝑟-rich
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𝛿-boxes do not intersect, so we have by (4.2) that

|𝑃𝑟(Γ)| ≥ |𝑃𝑟(Γ1)| ≳𝑊
(︁
𝛿−(𝑑−1)𝑟−1

)︁𝑑
∼𝑊

(︀
|Γ|𝑊−1

)︀𝑑
𝑟−𝑑

= |Γ|𝑑 𝑟−𝑑𝑊−(𝑑−1)

Remark 4.2.3. As an addendum to Example 4.2.2, we note that the reason that the clusters

of 𝑟-rich 𝑑𝑒𝑙𝑡𝑎-balls do not collide is our hypothesis that 𝑟 ≥ 𝛿−𝜀/4𝛿|Γ|.

To prevent the clusters from colliding, we need to ensure that

𝑊−1 ≳ 𝐴𝛿 ∼ 𝛿

(︃
𝛿−(𝑑−1)

𝑟

)︃
=
𝛿−𝑑𝛿2

𝑟
.

This occurs if and only if

𝑟 ≳ 𝛿−𝑑𝛿2𝑊. (4.3)

Under the hypotheses of Theorem 1.4.2, we have that

𝑟 ≥ 𝛿−𝜀/4𝛿|Γ|

and

|Γ| ∼ 𝛿−(𝑑−1)𝑊𝑁

for some 𝑁 ≥ 1. (In Example 4.2.2, we have 𝑁 = 1.) Combining these inequalities gives

𝑟 ≳ 𝛿−𝜀/4𝛿
(︁
𝛿−(𝑑−1)𝑊

)︁
= 𝛿−𝜀/4𝛿−(𝑑−2)𝑊 > 𝛿−(𝑑−2)𝑊.
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Chapter 5

The Spacing Conditions and Base

Cases for Induction

In this chapter, we further discuss the spacing conditions that we introduced at the end of

Chapter 1. We explain base cases for induction under each spacing condition. We explain

the structure of our inductive proof of Theorem 1.4.2 and comment on modifications we

would need to make to this structure to prove Conjecture 2.0.3.

One particularly important result in this chapter is Lemma 5.1.3, which demonstrates

that if we are given a threshold 𝑐𝜀 < 1, then there exists 𝐶𝜀 so that the goal bound 1.8 holds

for all 𝛿 ≥ 𝑐𝜀. Thus, after we have proved Lemma 5.1.3, the proof of Theorem 1.4.2 reduces

to showing that the goal bound holds with this same constant 𝐶𝜀 for all 𝛿 < 𝑐𝜀. For this,

we use induction on scales, as described in Section 5.2.

5.1 Lemmas for Base Cases

If Γ satisfies (WS-1), then any two slabs with the same center - or, more generally, any two

slabs with a substantial intersection - must have normal vectors separated by an angle ≳ 𝛿.

A maximal set of 𝛿-separated points on S𝑑−1 has size ∼ 𝛿−(𝑑−1), which limits the values of

𝑟 for which 𝑃𝑟(Γ) is nonempty. Specifically, we have the following, lemma, which we use in

one of the base cases in our inductive proof of Theorem 1.4.2.

Lemma 5.1.1. There exists a dimensional constant 𝛼𝑑 > 0 so that if Γ is a collection of
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𝛿-slabs satisfying (WS-1) with parameter 𝑊 and 𝑟 ≥ 𝛼𝑑𝛿
−(𝑑−1), then 𝑃𝑟(Γ) = ∅.

Under (WS-2), there is an even stronger angle separation condition: if Γ satisfies (WS-2),

then any two slabs with the same center - or, more generally, any two slabs with a substantial

intersection - must have normal vectors separated by an angle ≳ 𝑊−1. Thus, we have the

following lemma, which we intend to use as a base case in an inductive proof of Conjecture

2.0.3.

Lemma 5.1.2. There exists a dimensional constant 𝛼′
𝑑 > 0 so that if Γ is 𝛿-slabs satisfying

(WS-1) with parameter 𝑊 and 𝑟 ≥ 𝛼′
𝑑𝑊

𝑑−1, then 𝑃𝑟(Γ) = ∅.

Lemmas 5.1.1 and 5.1.2 will be used for base cases corresponding to an assumption that

𝑟 is large. We will also have base cases corresponding to an assumption that 𝛿 is large.

Under the first spacing condition, there are a couple potential thresholds for largeness

that interest us. If 𝛿 is ‘too large’ relative to 𝑊 , then 𝑃𝑟(Γ) must be empty. We make this

observation precise in Lemma 5.1.4. Meanwhile, if 𝛿 is large in an absolute sense, then we

can choose 𝐶𝜀 so that the bound of Theorem 1.4.2 follows from the ‘trivial bound’

|𝑃𝑟(Γ)| ≲ 𝛿−𝑑, (5.1)

which comes from the fact that any subdivision of [0, 1]𝑑 into 𝛿-boxes contains ≲ 𝛿−𝑑-many

boxes. Specifically, we have the following lemma.

Lemma 5.1.3. For any 𝜀 > 0 and any threshold 𝑐𝜀 ∈ (0, 1), there exists a constant 𝐶𝜀 =

𝐶(𝜀, 𝑑) so that if 1 > 𝛿 ≥ 𝑐𝜀 > 0 and Γ is a collection of 𝛿-slabs which satisfies the first

spacing condition with parameter 𝑊 , then

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝛿
−𝜀𝑟−𝑑𝑊−(𝑑−1)|Γ|𝑑. (5.2)

Before proving this lemma, we return to the issue of what happens when 𝛿 is ‘too large’

relative to 𝑊 .

Lemma 5.1.4. There exists a dimensional constant 𝛽𝑑 > 0 so that if Γ is a collection of
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𝛿-slabs satisfying (WS-1) with parameter 𝑊 ≥ 𝛽𝑑 𝛿
−1+ 𝜀

10𝑑 then then

𝑃𝑟(Γ) = ∅.

for any 𝑟 with

𝑟 ≥ 𝛿−
𝜀
4 𝛿|Γ|. (5.3)

Moreover, there exists a constant 𝑐𝜀 so that if 𝛿 ≤ 𝑐𝜀 and Γ is a collection of 𝛿-slabs satisfying

(WS-1) with parameter 𝑊 ≥ 𝛿−1+ 𝜀
10𝑑 , then

𝑃𝑟(Γ) = ∅

for any 𝑟 satisfying ( 5.3).

Proof. Since Γ satisfies (WS-1) with parameter 𝑊 ≥ 𝛽𝑑𝛿
−1+ 𝜀

10𝑑 we have that

|Γ| ∼ 𝛿−(𝑑−1)𝑊𝑁 ≥ 𝛿−(𝑑−1)𝑊 ≥ 𝛽𝑑𝛿
−1+ 𝜀

10𝑑 𝛿−(𝑑−1).

Combining this with 5.3, the bound for 𝑟 from Theorem 1.4.2, gives

𝑟 ≥ 𝛿−
𝜀
4 𝛿|Γ|

≳ 𝛿−
𝜀
4 𝛿
(︁
𝛽𝑑𝛿

−1+ 𝜀
10𝑑 𝛿−(𝑑−1)

)︁
= 𝛽𝑑𝛿

−(𝑑−1)𝛿−
𝜀
4
+ 𝜀

10𝑑 .

We note that − 𝜀
4 + 𝜀

10𝑑 > 0, so, 𝛽𝑑𝛿−(𝑑−1)𝛿−
𝜀
4
+ 𝜀

10𝑑 > 𝛽𝑑𝛿
−(𝑑−1). By Lemma 5.1.1, we

conclude that if 𝛽𝑑 was sufficiently large, then 𝑃𝑟(Γ) is empty.

Alternatively, if we do not use the inequality 𝛿−(𝑑−1)𝛿−
𝜀
4
+ 𝜀

10𝑑 > 𝛿−(𝑑−1), we can conclude

that if 𝛿 is sufficiently small, then 𝛿−(𝑑−1)𝛿−
𝜀
4
+ 𝜀

10𝑑 ≥ 𝛼𝛿−(𝑑−1), where 𝛼 is the dimensional

constant from Lemma 5.1.1.

Having proved Lemma 5.1.4, we return to the issue of proving Lemma 5.1.3.
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Proof. (Proof of Lemma 5.1.3) By Lemma 5.1.1, we may assume that 𝑟 ≲ 𝛿−(𝑑−1), because

if 𝑟 exceeded the threshold of Lemma 5.1.1, then we’d have 𝑃𝑟(Γ) = ∅ (in which case 5.2

would clearly hold).

Assuming that 𝑟 ≲ 𝛿−(𝑑−1), it suffices by (5.1) to show that there exists 𝐶𝜀 so that if

𝛿 ≤ 𝑐𝜀, then

𝛿−𝑑 ≲ 𝐶𝜀𝛿
−𝜀𝑟−𝑑𝑊−(𝑑−1)|Γ|𝑑. (5.4)

In turn, (5.4) holds for any 𝛿 ≤ 𝑐𝜀 if

𝑐−𝑑
𝜀 ≲ 𝐶𝜀𝑟

−𝑑𝑊−(𝑑−1)|Γ|𝑑. (5.5)

We now analyze the right-hand side of (5.5) in hopes of finding a lower bound for it.

Since Γ satisfies (WS-1) with parameter 𝑊 , we have that

|Γ| ∼ 𝛿−(𝑑−1)𝑊𝑁 ≥ 𝛿−(𝑑−1)𝑊

from which it follows that

𝑊−(𝑑−1)|Γ|𝑑 ≳𝑊−(𝑑−1)𝛿−𝑑(𝑑−1)𝑊 𝑑 = 𝛿−𝑑(𝑑−1)𝑊.

We use this result along with our assumption that 𝑟 ≲ 𝛿−(𝑑−1) to give

𝐶𝜀𝑟
−𝑑𝑊−(𝑑−1)|Γ|𝑑 ≳ 𝐶𝜀𝛿

−𝜀𝛿𝑑(𝑑−1)
(︁
𝛿−𝑑(𝑑−1)𝑊

)︁
= 𝐶𝜀𝑊 ≥ 𝐶𝜀.

It follows that (5.5) holds so long as

𝐶𝜀 ≥ 𝐶𝑑 𝑐
−𝑑
𝜀

for a sufficiently large dimensional constant 𝐶𝑑.

Though the statement of Lemma 5.1.4 gives a lower bound for 𝑊 sufficient to guarantee
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that 𝑃𝑟(Γ) is empty, this lower bound for 𝑊 can be rearranged to give a lower bound for 𝛿.

Specifically, we have

𝑊 ≥ 𝛽𝑑 𝛿
−1+ 𝜀

10𝑑

if and only if

𝛿 ≥
(︀
𝛽𝑑𝑊

−1
)︀ 10𝑑−𝜀

10𝑑 . (5.6)

Depending on the values of 𝑊 and 𝜀, it might be the case that the threshold from 5.6 is

larger than our eventual choice of 𝑐𝜀, or it might be the case that our chosen 𝑐𝜀 exceeds the

right-hand side of 5.6. This is why we will use both Lemma 5.1.4 and Lemma 5.1.3 as base

cases for our induction.

Both Lemma 5.1.3 and Lemma 5.1.4 have analogous formulations for the second spacing

condition, with proofs basically the same as the ones we gave above. Thus, proving our

conjecture under the second spacing condition would also reduce to showing the statement

holds for all 𝛿 sufficiently small.

5.2 Our Inductive Arguments

To prove Theorem 1.4.2, we use induction on scales. Our work towards proving Conjecture

2.0.3 also involves induction on scales. Here, we discuss at a very high level how we set up

inductive arguments for each spacing condition.

5.2.1 Induction Under the First Spacing Condition

Let 𝑊 and 𝜀 be fixed, and let 𝑋𝜀,𝑊 (𝑟, 𝛿; Γ) denote the statement,

“The set Γ is a collection of 𝛿-slabs satisfying (WS-1) with parameter 𝑊 , and 𝑟 ≥ 𝛿−𝜀/4𝛿|Γ|.”

We let 𝑌𝜀,𝑊 (𝑟, 𝛿; Γ) denote the statement,

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝑟
−𝑑𝑊−(𝑑−1)|Γ|𝑑. (5.7)

Given 𝑟 and 𝛿 with 0 < 𝛿 ≤𝑊−1, we wish to prove that if Γ is a collection of 𝛿-slabs satisfying

(WS-1) and 𝑟 ≥ 𝛿−
𝜀
4 𝛿|Γ|, then (5.7) holds. That is, we wish to prove the implication

𝑋𝜀,𝑊 (𝑟, 𝛿; Γ) =⇒ 𝑌𝜀,𝑊 (𝑟, 𝛿; Γ). (5.8)
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For this, we assume as an inductive hypothesis that for any pair
(︁
𝑟, 𝛿
)︁

with 𝑟 > 𝑟 or 𝛿 > 𝛿,

we have the implication

𝑋𝜀,𝑊

(︁
𝑟, 𝛿; Γ̃

)︁
=⇒ 𝑌𝜀,𝑊

(︁
𝑟, 𝛿; Γ̃

)︁
.

The idea is then to construct from Γ a collection of 𝛿-slabs Γ̃ by taking subsets of Γ and

applying appropriate transformations to the slabs of each subset. The precise definition of

Γ̃ will be different for different values of the parameters 𝑟 and 𝛿. Specifically, we’ll first take

cases on whether

𝛿 ≥ 𝑐𝜀 (5.9)

with 𝑐𝜀 to be defined later. If 𝛿 < 𝑐𝜀, then we’ll take cases on whether

|𝑃𝑟(Γ)∖𝑃2𝑟(Γ)| ≥
1

10
|𝑃𝑟(Γ)|, (5.10)

and finally, if (5.10) holds, we’ll define an integral that approximates |𝐼(𝑃,Γ)|, apply Plancherel’s

theorem, and then take cases according to whether high frequencies or low frequencies make

a bigger contribution to this integral. These two outcomes correspond to the thin case and

the thick case of Proposition 6.1.1.

In order to apply the inductive hypothesis, we’ll want to show that 𝑋𝜀,𝑊 (𝑟, 𝛿; Γ) implies

𝑋𝜀,𝑊

(︁
𝑟, 𝛿; Γ̃

)︁
and that 𝑌𝜀,𝑊 (𝑟, 𝛿; Γ) implies 𝑌𝜀,𝑊

(︁
𝑟, 𝛿; Γ̃

)︁
. This plan corresponds to proving

a ‘trapezoid of implications.’

𝑋𝜀,𝑊 (𝑟, 𝛿; Γ) 𝑌𝜀,𝑊 (𝑟, 𝛿; Γ)
=⇒
𝑎

=⇒
𝑐

𝑋𝜀,𝑊 (𝑟, 𝛿; Γ̃) =⇒
𝑏

𝑌𝜀,𝑊 (𝑟, 𝛿; Γ̃)

Here, implication 𝑏 is assumed as an inductive hypothesis, whereas implications 𝑎 and

𝑐 are to be proved.

In each case, we only prove implications 𝑎 and 𝑐 for 𝛿 ≤ 𝑐𝜀, where 𝑐𝜀 satisfies some

conditions that we will describe momentarily. As we showed in Lemma (5.1.3), there is a

choice of 𝐶𝜀 so that (5.8) holds for any 𝛿 ≥ 𝑐𝜀. We consider the case that 𝛿 ≥ 𝑐𝜀 to be a
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base case of our induction.

We can also prove implication (5.8) directly in the thin case (i.e. the case that (5.10)

holds and we have high-frequency dominance), so long as 𝛿 is ‘sufficiently small’ relative to

𝜀. The precise meaning of ‘sufficiently small’ here is one of the factors that contributes to

our choice of 𝑐𝜀 (and, thus, to the value of the constant 𝐶𝜀 in our bound).

5.2.2 Intended Inductive Argument Under the Second Spacing Condition

Unlike in the proof of Theorem 1.4.2, we do not consider a fixed 𝑊 but instead allow 𝑊 to

vary from scale to scale. We let 𝑌 ′
𝜀 (𝑟, 𝛿,𝑊

−1; Γ) denote the statement,

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝑟
−(𝑑+1)|Γ|𝑑. (5.11)

We let 𝑋 ′
𝜀(𝑟, 𝛿,𝑊

−1; Γ) denote the statement, “The set Γ is a collection of 𝛿-slabs sat-

isfying (WS-1) with parameter 𝑊 so that |Γ| ∼ 𝑊 𝑑, Γ is 𝜈𝜀(𝑊
−1) broad, and 𝑟 ≥

max{𝛿−𝜀/4𝛿|Γ|, 𝑑}.” We now assume as an inductive hypothesis that for any triple
(︁
𝑟, 𝛿, 𝑊̃−1

)︁
with 𝑟 > 𝑟, 𝛿 > 𝛿, or 𝑊̃−1 > 𝑊−1, we have the implication

𝑋 ′
𝜀,𝑊

(︁
𝑟, 𝛿, 𝑊̃−1; Γ̃

)︁
=⇒ 𝑌 ′

𝜀,𝑊

(︁
𝑟, 𝛿, 𝑊̃−1; Γ̃

)︁
.

For any 𝑐𝜀, there exists a constant 𝐶𝜀 so that we can can deduce the implication

𝑋 ′
𝜀,𝑊

(︀
𝑟, 𝛿,𝑊−1; Γ

)︀
=⇒ 𝑌 ′

𝜀,𝑊

(︁
𝑟, 𝛿, 𝑊̃−1; Γ̃

)︁
directly for 𝛿 ≥ 𝑐𝜀(𝜀).

For an appropriately chosen 𝑐𝜀, we will consider 𝛿 ≥ 𝑐𝜀 to be one of our base cases. We

will also have more base cases corresponding to the events that 𝑊 is large relative to the

dimension 𝑑, that 𝛿 is large relative to 𝑊 , or that 𝑟 is large relative to 𝑊 . For triples not

falling into one of these base cases, we will (try to) prove every implication in the following

trapezoid.

𝑋 ′
𝜀(𝑟, 𝛿,𝑊 ; Γ) 𝑌 ′

𝜀 (𝑟, 𝛿,𝑊 ; Γ)
=⇒

𝑎 ′
=⇒

𝑐 ′

𝑋 ′
𝜀(𝑟, 𝛿, 𝑊̃

−1; Γ̃) =⇒
𝑏 ′

𝑌 ′
𝜀,𝑊 (𝑟, 𝛿, 𝑊̃−1; Γ̃)
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One major difference between this intended proof and the proof of Theorem 9.0.1 is that we

cannot deduce the implication

𝑋 ′
𝜀(𝑟, 𝛿,𝑊 ; Γ) =⇒ 𝑌 ′

𝜀 (𝑟, 𝛿,𝑊 ; Γ) (5.12)

directly in the case that we call the ‘thin case’ for the spacing condition (WS-2); instead

we must use the inductive hypothesis in the thin case as well. This introduces additional

difficulties, because implication 𝑎 ′ is not true in the ‘thin case’ for (WS-2) unless 𝑟 is

sufficiently large relative to 𝛿. This necessitates the introduction of a different argument for

small 𝑟. I am still trying to figure out how to find an argument that works for all 𝑟 too small

for the thin case induction to close. There are many choices prior to this step that may

affect its success: choosing a different broadness will result in a different sub-cube size in the

thin case partitioning argument, and thus, a different dividing point for the 𝑟 we consider

‘too small.’ Trying to determine the ‘right’ broadness (if there is indeed a broadness that

works) is a project for the future.
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Chapter 6

The High-Low Method and a Lemma

for Finding Clusters of Rich Boxes

The high-low method refers to the idea of estimating the integral of a square or a product on

R𝑑 by applying Plancherel’s identity and then estimating separately the integrals of the high

frequency part and the low frequency part of the transformed function. For concreteness, if

𝑓, 𝑔 are in the Schwartz class 𝒮(R𝑑), then, given 𝜌 > 0, we may write

∫︁
R𝑑

𝑓(𝑥)𝑔(𝑥), 𝑑𝑥 =

∫︁
R𝑑

𝑓(𝜉)𝑔(𝜉) 𝑑𝜉 =

∫︁
|𝜉|≤𝜌

𝑓(𝜉)𝑔(𝜉) 𝑑𝜉 +

∫︁
|𝜉|>𝜌

𝑓(𝜉)𝑔(𝜉) 𝑑𝜉. (6.1)

In practice, we may want to introduce a smoothed out version of the characteristic function

1𝐵(0,𝜌). If 𝜂𝜌 is identically 1 on 𝐵(0, 𝜌) and has support in 𝐵(0, 2𝜌), then we can replace

(6.1) with

∫︁
R𝑑

𝑓(𝑥)𝑔(𝑥), 𝑑𝑥 =

∫︁
R𝑑

𝑓(𝜉)𝑔(𝜉) 𝑑𝜉 =

∫︁
R𝑑

𝜂𝜌(𝜉)𝑓(𝜉)𝑔(𝜉) 𝑑𝜉+

∫︁
R𝑑

(1−𝜂𝜌(𝜉))𝑓(𝜉)𝑔(𝜉) 𝑑𝜉. (6.2)

The parameter 𝜌 may be chosen to optimize the resulting estimates.

There is also an analogous formulation of (6.1) for sums, which, to my knowledge, pre-

dates the integral version in the literature. In particular, Vinh used a version for sums in

[15] which inspired a lot of later work, including the incidence estimates of Guth, Solomon,

and Wang, which my work closely follows. The high-low method was also used in [8] to
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prove decoupling results for the moment curve.

In the ensuing work, we use a decomposition as in (6.2) to estimate an integral which

counts incidences. In turn, we estimate this integral to prove a lemma concerning a collection

of unit balls of uniform richness, which shows that such a collection must either satisfy a size

bound a priori, or it must have rich unit balls that are grouped into clusters. Though we

state and prove the lemma for a collection of unit balls, we will later use rescaled versions

at multiple scales.

We state the lemma for slabs of dimensions ∼ 𝐷 × · · · ×𝐷 × 1. We will eventually take

𝐷 to be a power of 𝛿−1. In the statement and proof of the lemma, we use ⪅log to indicate

multiplication by an omitted power of log𝐷, which will become a power of log(1𝛿 ) when we

apply the lemma later.

6.1 Heavy Ball Finding Lemma for Slabs

Proposition 6.1.1. Suppose that 𝑃 is a set of unit balls in [0, 𝐷]𝑑 and Γ is a set of essen-

tially distinct slabs of dimensions 𝐷×· · ·×𝐷×1 in [0, 𝐷]𝑑. Suppose that each ball of 𝑃 lies

in ∼ 𝐸 slabs of Γ; specifically, suppose that each ball of 𝑃 lies in at least 𝐸-many slabs, but

less than 2𝐸-many. Let 1 ≪ 𝜌−1 ≪ 𝜆 ≪ 𝐷 - say that 𝜆 = 𝐷𝜀/(10𝑑) for a small positive 𝜀

and 𝜌 = 𝐷𝜀3𝜆−1. For 𝐷 sufficiently large (relative to 𝜀), at least one of the following occurs:

(1). Thin case: |𝑃 | ⪅log 𝜆
𝑑−1𝐸−2|Γ|𝐷𝑑−1 or

(2). Thick case: There is a set of finitely overlapping 𝜆-boxes 𝑄𝑗 (‘heavy boxes’) such that

(i) ∪𝑗𝑄𝑗 contains a fraction ⪆log 1 of the balls of 𝑃 , and

(ii) Each 𝑄𝑗 intersects ≳ 𝜌−1𝐸-many slabs of Γ.

Remark 6.1.2. Here 𝜆 replaces the parameter 𝑆 from the analogous proposition in [10].

Since 𝜌 = 𝐷𝜀3𝜆−1, the the second conclusion of the thick case can alternatively be stated as

#{𝑆 ∈ Γ : 𝑆 ∩𝑄𝑗 ̸= ∅} ≳ 𝐷−𝜀3𝜆𝐸. (6.3)

One might wonder about the motivation for our particular choice of 𝜆, 𝜆 = 𝐷𝜀/(10𝑑). Exam-
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ining the argument in Chapter 8 shows that for the thin bound |𝑃 | ⪅log 𝜆
𝑑−1𝐸−2|Γ|𝐷𝑑−1 to

imply the bound of Theorem 1.4.2, we want to have 𝜆 strictly less than 𝐷𝜀/(𝑑−1). (At the

very least, this is necessary to bring the ‘naive’ approach of Chapter 7 to completion.) On

the other hand, we want 𝜆 to be large so that the thickening we perform in the thick case

represents a bigger step towards our base cases. (Equivalently, choosing a larger value of 𝜆

corresponds to iterating the procedure described in Chapter 10 a smaller number of times.)

Proof. We will approximate 𝐼(𝑃,Γ) by an integral
∫︀
R𝑑
𝑓𝑔, where 𝑓 is a sum of smoothed

characteristic functions of unit boxes and 𝑔 is a sum of smoothed characteristic functions

of slabs. One slightly technical point is that the sum defining 𝑓 will not be a sum over all

the boxes in 𝑃 , but rather over a large subcollection 𝑃 ′ ⊂ 𝑃 with the property that each

𝑞 ∈ 𝑃 ′ has approximately the same number of slabs incident to its 𝜆-neighborhood 𝑁𝜆(𝑞).

We accomplish this by dyadic pigeonholing. Specifically, we will use dyadic pigeonholing to

find a popular value for the dyadic size of the set {𝑆 ∈ Γ : 𝑆 ∩𝑁𝜆(𝑞) ̸= ∅} as 𝑞 ranges over

the balls of 𝑃 .

For each 𝑞 ∈ 𝑃 , we let 𝑊𝜆(𝑞) denote the cardinality of the set {𝑆 ∈ Γ : 𝑆 ∩𝑁𝜆(𝑞) ̸= ∅}.

For each 𝑞 ∈ 𝑃 , the set𝑁𝜆(𝑞) consists of ∼ 𝜆𝑑-many essentially distinct unit boxes. Although

𝑞 is ∼ 𝐸-rich, these unit boxes may not be. However, we can still find an upper bound for

the richness of these neighbor boxes using our assumption that the slabs of Γ are essentially

distinct, which implies that the normal directions of the slabs through any particular unit

box must be ≳ 1
𝐷 -separated. Thus, if 𝑞′ is a neighbor of 𝑞, then

#{𝑆 ∈ Γ : 𝑞′ ∩ 𝑆 ̸= ∅} ≲
1

(1/𝐷)𝑑−1
= 𝐷𝑑−1. (6.4)

Multiplying this by the (approximate) number of neighbors of 𝑞 gives

𝑊𝜆(𝑞) ≲ 𝜆𝑑𝐷𝑑−1. (6.5)

When we multiply the bound from (6.4) by the approximate number of neighbors, we obtain

51



an estimate for 𝑊𝜆(𝑞) in a (possibly non-feasible) worst-case scenario in which each neighbor

𝑞′ contributes as many new slabs as possible to the count #{𝑆 ∈ Γ : 𝑆 ∩ 𝑁𝜆(𝑞) ̸= ∅}. In

reality, we probably double counted some slabs that pass through multiple neighbors of 𝑞,

which means that our upper bound for 𝑊𝜆(𝑞) in (6.5) is probably not sharp. However, the

upper bound is still good enough for pigeonholing purposes.

Our upper bound for 𝑊𝜆(𝑞) implies that there are only ∼ log(𝐷𝑑−1) potential dyadic

sizes for #{𝑆 ∈ Γ : 𝑁𝜆(𝑞) ∩ 𝑆 ̸= ∅}. It follows that we can choose some 𝑘 ≲ log(𝐷𝑑−1) so

that if

𝑃 ′ = {𝑞 ∈ 𝑃 : 2𝑘 ≤𝑊𝜆(𝑞) < 2𝑘+1},

then

|𝑃 ′| ≥
(︁
log(𝐷𝑑−1)

)︁−1
|𝑃 | = 1

𝑑− 1

(︂
1

log𝐷
|𝑃 |
)︂
.

In particular, |𝑃 ′| ⪆log |𝑃 |. For the rest of the proof we will work with 𝑃 ′ instead of 𝑃 . We

will let 𝑊𝑘 denote the common dyadic size of the count 𝑊𝜆(𝑞) for the cubes in 𝑃 ′. (The

subscript 𝑘 is to remind of the fact that 𝑊𝑘 = 2𝑘 and to differentiate this value from the

parameter 𝑊 that appears in the spacing conditions.) Since each unit box of 𝑃 is ∼ 𝐸 rich,

we have that |𝐼(𝑃,Γ)| ∼ |𝑃 |𝐸 and |𝐼(𝑃 ′,Γ)| ∼ |𝑃 ′|𝐸 ⪆log |𝐼(𝑃,Γ)|.

For each 𝑞 ∈ 𝑃 ′, we define a smooth bump function 𝜓𝑞 so that 𝜓𝑞 = 1 on 𝑞 and 𝜓𝑞 decays

rapidly outside 𝑞 with 𝜓𝑞 = 0 outside 2𝑞. Similarly, for each slab 𝑆 ∈ Γ, we define a smooth

bump function 𝜓𝑆 which is 1 on 𝑆 and decays rapidly outside 𝑆 with 𝜓𝑆 = 0 outside 2𝑆.

We let

𝑓 =
∑︁
𝑞∈𝑃 ′

𝜓𝑞

and

𝑔 =
∑︁
𝑆∈Γ

𝜓𝑆 .
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Since the balls of 𝑃 ′ are unit balls, we have that

|𝐼(𝑃 ′,Γ)| ∼
∫︁
R𝑑

𝑓𝑔.

(If the balls were not unit balls, we would have to renormalize to account for the volume of

the balls.)

Let 𝜂0 be a bump function so that 𝜂0 ≡ 1 on 𝐵(0, 1), 𝜂0 is rapidly decaying outside

𝐵(0, 1) and 𝜂0 ≡ 0 outside 𝐵(0, 2). Define 𝜂 by

𝜂(𝜔) = 𝜂(𝜌−1𝜔)

so that 𝜂 ≡ 1 on 𝐵(0, 𝜌), 𝜂 is rapidly decaying outside 𝐵(0, 𝜌) and 𝜂 ≡ 0 outside 𝐵(0, 2𝜌).

By Plancherel, we have that

𝐸|𝑃 ′| ∼ |𝐼(𝑃 ′,Γ)| ∼
∫︁
R𝑑

𝑓𝑔 =

∫︁
R𝑑

𝑓 𝑔 =

∫︁
R𝑑

𝜂𝑓 𝑔 +

∫︁
R𝑑

(1− 𝜂)𝑓 𝑔 =: 𝐼1 + 𝐼2. (6.6)

We take cases on whether 𝐼1 or 𝐼2 is larger.

Low Frequency Case

First, suppose that |𝐼1| ≥ |𝐼2|. In this case, we will show that there is a set of finitely

overlapping 𝜆-balls 𝑄𝑗 such that:

(i) their union contains a ⪆log 1 fraction of the balls of 𝑃 ;

(ii) each 𝑄𝑗 intersects ⪆log 𝜌
−1𝐸-many slabs of Γ.

Each 𝑄𝑗 will be realized as the 𝜆-neighborhood of a cube 𝑞 ∈ 𝑃 ′. This representation

is not necessarily unique. For instance if 𝑄𝑗 = 𝑁𝜆(𝑞), there may be a 𝑞′ ∈ 𝑃 ′ close to 𝑞 so

that the neighborhoods 𝑁𝜆(𝑞) and 𝑁𝜆(𝑞
′) are not essentially distinct from each other. If we

consider the collection {𝑁𝜆(𝑞) : 𝑞 ∈ 𝑃 ′} and eliminate redundancies, then the resulting sets

𝑄𝑗 contain a ≳ 1 fraction of the balls of 𝑃 ′, which accounts for a ≳ (log𝐷)−1 fraction of
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the balls of 𝑃 . It remains to show that each 𝑄𝑗 intersects ⪆log 𝜆𝐸-many slabs of Γ.

We already know that each 𝑄𝑗 intersects ∼𝑊𝑘-many slabs for a dyadic number 𝑊𝑘 = 2𝑘

that was a popular value of 𝑊𝜆(𝑞). The pigeonhole process itself tells us nothing about the

size of this popular count, but we can obtain a bound for 𝑊𝑘 by using our assumption that

|𝐼1| ≥ |𝐼2|, which gives

𝐸|𝑃 ′| ∼
∫︁
R𝑑

𝑓𝑔 =

∫︁
R𝑑

𝑓 𝑔 ≲
∫︁
R𝑑

𝜂𝑓 𝑔

=

∫︁
R𝑑

𝑓 (𝑔 * 𝜂) =
∑︁
𝑞∈𝑃 ′

∑︁
𝑆∈Γ

∫︁
R𝑑

𝜓𝑞 (𝜓𝑆 * 𝜂)
(6.7)

For each slab 𝑆, the convolution 𝜓𝑆 * 𝜂 decays rapidly off the 𝜌−1-neighborhood of 𝑆.

Meanwhile, for 𝑥 ∈ 𝑁𝜌−1(𝑆), we have

|𝜓𝑆 * 𝜂(𝑥)| ≲ 𝜌. (6.8)

To see this, we write out the convolution and use the triangle inequality to give

|𝜓𝑆 * 𝜂(𝑥)| =
⃒⃒⃒⃒∫︁

R𝑑

𝜓𝑆(𝑥− 𝑦)𝜂(𝑦) 𝑑𝑦

⃒⃒⃒⃒
≤
∫︁
R𝑑

|𝜓𝑆(𝑥− 𝑦)| |𝜂(𝑦)| 𝑑𝑦.

A change of variables argument shows that

|𝜂(𝑦)| ∼ 𝜌𝑑 (6.9)

for 𝑦 ∈ 𝐵(0, 𝜌−1). (Here, the implicit constant depends on our initial choice of bump function

𝜂0 for B(0,1).) Meanwhile, 𝜂 decays rapidly off of 𝐵(0, 𝜌−1). Since 𝜓𝑆 is a bump function

approximating 1𝑆 , we have that

|𝜓𝑆 * 𝜂(𝑥)| ≲ 𝜌𝑑 Vol((−𝑆 + 𝑥) ∩𝐵(0, 𝜌−1),

where −𝑆 is the slab obtained by sending every point in 𝑆 to its antipode. A 𝐷×· · ·×𝐷×1
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slab intersects 𝐵(0, 𝜌−1) in a set of volume ≲ 𝜌−(𝑑−1). Combining this fact with (6.9) yields

(6.8).

Even though (6.8) holds for all 𝑥 in the 𝜌−1-neighborhood of 𝑆, only a small subset of

those 𝑥 make a contribution to the integral

∫︁
R𝑑

𝜓𝑞(𝑥) (𝜓𝑆 * 𝜂)(𝑥) 𝑑𝑥,

because 𝜓𝑞 is identically 1 on 𝑞 but vanishes outside 2𝑞.

Recall that we chose 𝑃 ′ so that the set {𝑆 ∈ Γ : 𝑆 ∩ 𝑁𝜆(𝑞) ̸= 0} had the same dyadic

size, namely 𝑊𝑘, for each 𝑞 ∈ 𝑃 ′. We note that 𝑆 intersects the 𝜆-neighborhood of 𝑞 if and

only if 𝑞 intersects the 𝜆-neighborhood of 𝑆. Since 𝜆 = 𝐷𝜀3𝜌−1, the 𝜆-neighborhood of 𝑆

contains the 𝜌−1-neighborhood of 𝑆, outside of which 𝜓𝑆 * 𝜂 decays rapidly.

Thus, for each 𝑞 ∈ 𝑃 ′,

∑︁
𝑆∈Γ

∫︁
R𝑑

𝜓𝑞(𝑠) (𝜓𝑆 * 𝜂) (𝑥) 𝑑𝑥 ≲ 𝜌𝑊𝜆(𝑞) ∼ 𝜌𝑊𝑘.

Substituting this into (6.7) gives

𝐸|𝑃 ′| ≲ |𝑃 ′|𝜌𝑊𝑘,

so

𝑊𝑘 ≳ 𝜌−1𝐸 = 𝐷−𝜀3𝜆𝐸.

High Frequency Case

If |𝐼2| ≥ |𝐼1| (which corresponds to the high frequency part of 𝑓𝑔 being larger), then we use

Cauchy-Schwarz to write

|𝐼(𝑃 ′,Γ)| ≲
⃒⃒⃒⃒∫︁

R𝑑

(1− 𝜂)𝑓 𝑔

⃒⃒⃒⃒
≤
(︂∫︁

R𝑑

(1− 𝜂)
⃒⃒⃒
𝑓
⃒⃒⃒2)︂1/2 (︂∫︁

R𝑑

(1− 𝜂)|𝑔|2
)︂1/2

≤ ‖𝑓‖2
(︂∫︁

R𝑑

(1− 𝜂)|𝑔|2
)︂1/2

∼ |𝑃 |1/2
(︂∫︁

R𝑑

(1− 𝜂)|𝑔|2
)︂1/2

.

(6.10)
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We claim that the integral on the far right-hand side satisfies

∫︁
R𝑑

(1− 𝜂)|𝑔|2 ≲ 𝜆𝑑−1𝐷𝑑−1|Γ|. (6.11)

To prove this estimate, we group the slabs by normal direction. We partition the unit

sphere S𝑑−1 into almost-caps of radius ∼ 𝐷−1. We let Θ be the collection of almost-caps.

For each 𝜃 ∈ Θ, let Γ𝜃 be the set of slabs in Γ with normal vector in 𝜃. We define functions

𝑔𝜃 by

𝑔𝜃 =
∑︁
𝑆∈Γ𝜃

𝜓𝑆 .

Then

𝑔 =
∑︁
𝜃∈Θ

𝑔𝜃. (6.12)

Using (6.12), we can rewrite (6.10) as

|𝐼(𝑃 ′,Γ)| ≲ |𝑃 ′|1/2
⎛⎝∫︁

R𝑑

(1− 𝜂)

⃒⃒⃒⃒
⃒∑︁
𝜃∈Θ

̂︀𝑔𝜃
⃒⃒⃒⃒
⃒
2
⎞⎠1/2

= |𝑃 ′|1/2
⎛⎝∫︁

R𝑑

(1− 𝜂)

⃒⃒⃒⃒
⃒⃒∑︁
𝜃∈Θ

∑︁
𝑆∈Γ𝜃

̂︁𝜓𝑆

⃒⃒⃒⃒
⃒⃒
2⎞⎠1/2

.

For each 𝜃 ∈ Θ, let 𝑇𝜃 be a 𝐷−1-tube of length 1 centered at 0 with direction in 𝜃. That

is, 𝑇𝜃 is a tube of length 1 and radius 1
𝐷 whose axis passes through the center of 𝜃 and has

midpoint 0. For any slab 𝑆 with 𝑛(𝑆) in 𝜃, the function ̂︁𝜓𝑆 approximates a multiple of the

characteristic function of 𝑇𝜃, which has the dual dimensions of 𝑆. In particular, we have

that ⃒⃒⃒̂︁𝜓𝑆(𝜔)
⃒⃒⃒
∼ |𝑆| ∼ 𝐷

for 𝜔 ∈ 𝑇𝜃. Meanwhile, ̂︁𝜓𝑆 has rapid decay off of 𝑇𝜃.

Motivated by this, we want to focus on just those directions that make a significant

contribution to the sum in the integrand. For each 𝜔, let Θ𝜔 be the collection of caps 𝜃 so
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that 𝜔 is contained in the 𝐷𝜀3 dilate of 𝑇𝜃. We can write

∫︁
R𝑑

(1− 𝜂(𝜔))

⃒⃒⃒⃒
⃒∑︁
𝑆∈Γ

𝜓𝑆(𝜔)

⃒⃒⃒⃒
⃒
2

𝑑𝜔 =

∫︁
R𝑑

(1− 𝜂(𝜔))

⃒⃒⃒⃒
⃒∑︁

𝜃

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒
2

𝑑𝜔

=

∫︁
R𝑑

(1− 𝜂(𝜔))

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃∈Θ𝜔

̂︀𝑔𝜃(𝜔) + ∑︁
𝜃/∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2

𝑑𝜔

∼
∫︁
R𝑑

(1− 𝜂(𝜔))

⎛⎝⃒⃒⃒⃒⃒⃒ ∑︁
𝜃∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2

+

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃/∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2⎞⎠ 𝑑𝜔

=

∫︁
R𝑑

(1− 𝜂(𝜔))

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2

𝑑𝜔

+

∫︁
R𝑑

(1− 𝜂(𝜔))

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃/∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2

𝑑𝜔

(6.13)

Each function ̂︀𝑔𝜃 decays rapidly away from 𝑇𝜃; in particular for any 𝑁 , there is a constant

𝐶𝑁 so that for any 𝜔 /∈ 𝑇𝜃, we have

| ̂︀𝑔𝜃(𝜔)| ≤ 𝐶𝑁 (dist(𝜔, 𝑇𝜃))−𝑁 . (6.14)

We will use this decay to show that the second integral on the far right-hand side of (6.13)

is much smaller than our claimed bound in (6.11). If you are already convinced that this

second integral can be ignored, you should skip to the paragraph after equation (6.16).

However, I wanted to highlight that I am not making the argument that the second integral

can always be dominated by the first one; I am merely arguing that the decay guarantees

that the second integral satisfies our claimed upper bound (6.11).

To see that the second integral satisfies the upper bound from (6.11), we note that for

For any 𝜔, we have that

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃/∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2

≤ |Θ∖Θ𝜔|
∑︁
𝜃/∈Θ𝜔

| ̂︀𝑔𝜃(𝜔)|2 ≲ 𝐷𝑑−1
∑︁
𝜃/∈Θ𝜔

| ̂︀𝑔𝜃(𝜔)|2. (6.15)
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For each cap 𝜃 /∈ Θ𝜔, we have

dist(𝜔, 𝑇𝜃) ≥ 𝐷𝜀3 .

Substituting this into (6.14) gives

| ̂︀𝑔𝜃(𝜔)| ≤ 𝐶𝑁𝐷
−𝜀3𝑁 .

If we take 𝑁 sufficiently large (e.g. 𝑁 ≳ 𝜀−4) and take 𝐷 large enough for our negative

powers of 𝐷 to compensate for the constant 𝐶𝑁 , then we can conclude that the right-hand

side of (6.15) is much less than our claimed bound in (6.11).

Thus, to prove (6.11), it remains to show that

∫︁
R𝑑

(1− 𝜂(𝜔))

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2

𝑑𝜔 ≲ 𝜆𝑑−1𝐷𝑑−1|Γ|. (6.16)

By our forthcoming Lemma 6.1.3, |Θ𝜔| ≲ (𝐷𝜀3𝜌−1)𝑑−1 for any 𝜔 with 𝜂(𝜔) ̸= 0. Thus,

by Cauchy-Schwarz, we have that

∫︁
R𝑑

(1− 𝜂(𝜔))

⃒⃒⃒⃒
⃒⃒ ∑︁
𝜃∈Θ𝜔

̂︀𝑔𝜃(𝜔)
⃒⃒⃒⃒
⃒⃒
2

𝑑𝜔 ≲
∫︁
R𝑑

(1− 𝜂(𝜔)) |Θ𝜔|

⎛⎝∑︁
𝜃∈Θ𝜔

| ̂︀𝑔𝜃(𝜔)|2
⎞⎠ 𝑑𝜔

≲ (𝐷𝜀3𝜌−1)𝑑−1

∫︁
R𝑑

(1− 𝜂(𝜔))

⎛⎝∑︁
𝜃∈Θ𝜔

| ̂︀𝑔𝜃(𝜔)|2
⎞⎠ 𝑑𝜔

≤ (𝐷𝜀3𝜌−1)𝑑−1

∫︁
R𝑑

∑︁
𝜃

| ̂︀𝑔𝜃(𝜔)|2 𝑑𝜔
= (𝐷𝜀3𝜌−1)𝑑−1

∫︁
R𝑑

∑︁
𝜃

|𝑔𝜃(𝑥)|2 𝑑𝑥

In the two last lines, the sum is over all 𝜃, not just the caps 𝜃 in the significant set Θ𝜔.

(We temporarily ignored the 𝜃 not in Θ𝜔 in order to have a smaller number of terms for

Cauchy-Schwarz, then put them back after the Cauchy-Schwarz was complete.) For each 𝜃,
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the slabs of Γ𝜃 have bounded overlap, so

(𝐷𝜀3𝜌−1)𝑑−1

∫︁
R𝑑

∑︁
𝜃

|𝑔𝜃(𝑥)|2 𝑑𝑥 ≲ (𝐷𝜀3𝜌−1)𝑑−1
∑︁
𝑆∈Γ

∫︁
R𝑑

|𝜓𝑆(𝑥)|2 𝑑𝑥 ∼ (𝐷𝜀3𝜌−1)𝑑−1|Γ|𝐷𝑑−1.

We recall that we had defined 𝜌 by 𝜌 = 𝐷𝜀3𝜆−1. Thus,

(𝐷𝜀3𝜌−1)𝑑−1 = 𝜆𝑑−1,

which establishes (6.11).

Combining this with the estimate |𝑃 | ⪅log |𝑃 ′| and with (6.6), we conclude that

𝐸|𝑃 |1/2 ⪅log

(︁
𝜆𝑑−1𝐷𝑑−1|Γ|

)︁1/2

which we rearrange to give

|𝑃 | ⪅log 𝐸
−2𝜆𝑑−1|Γ|𝐷𝑑−1.

Thus, the case that |𝐼2| ≥ |𝐼1| corresponds to outcome (1) in the statement of the proposition.

Lemma 6.1.3. Let 𝐷 > 1, and let Θ be a partition of the unit sphere S𝑑−1 into almost-caps

𝜃 of radius 1
𝐷 . Let T be a collection of essentially distinct tubes through 0 with radius 𝐷−1

and length 1 so that for each 𝜃, T contains one tube 𝑇𝜃 with direction in the cap 𝜃. Let

0 < 𝜌 ≤ 1, and let 1 < 𝜎 < 𝜌 be a parameter which may depend on 𝐷. If ‖𝜔‖ ≥ 𝜌, then the

number of caps 𝜃 so that 𝜔 is in 𝜎𝑇𝜃, the dilate of 𝑇𝜃 by a factor of 𝜎, satisfies

# {𝜃 ∈ Θ : 𝜔 ∈ 𝜎𝑇𝜃} ≲

(︂
𝜎

𝜌

)︂𝑑−1

.

Proof. The direction vectors of the tubes in T form a maximal 1
𝐷 -separated set, so each

point on the sphere 𝜌S𝑑−1 lies in approximately the same number of dilated tubes, namely
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the number given by the quotient

∑︀
𝜃∈Θ Vol𝑑−1(𝜎𝑇𝜃 ∩ 𝜌S𝑑−1)

Vol𝑑−1(𝜌S𝑑−1)
.

For each 𝜃, the enlarged tube 𝜎𝑇𝜃 intersects the sphere 𝜌S𝑑−1 ⊂ R𝑑 in a cap of radius

∼ 𝜎/𝐷, which has (𝑑− 1)-dimensional volume ∼ ( 𝜎
𝐷 )𝑑−1.

Thus, we have that

# {𝜃 ∈ Θ : 𝜔 ∈ 𝜎𝑇𝜃} ≲

∑︀
𝜃∈Θ Vol𝑑−1(𝜎𝑇𝜃 ∩ 𝜌S𝑑−1)

Vol𝑑−1(𝜌S𝑑−1)
∼
∑︀

𝜃∈Θ(𝜎𝐷
−1)𝑑−1

𝜌𝑑−1

=
|Θ| (𝜎𝐷−1)𝑑−1

𝜌𝑑−1
∼ 𝐷𝑑−1(𝜎𝐷−1)𝑑−1

𝜌𝑑−1
=

(︂
𝜎

𝜌

)︂𝑑−1

.
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Chapter 7

The Thin Bound and Our Goal

Bounds

In this chapter we will describe a ‘naive’ or ‘obvious’ approach to proving bounds for 𝑃𝑟(Γ)

from the thin bound of Proposition 6.1.1. This approach works under the first spacing

condition for all values of 𝑊 but does not work under the second spacing condition unless

𝑊 is very large. This is why we introduce partitioning when working with the second spacing

condition.

If we substitute 𝐸 = 𝑟 and 𝐷 = 𝛿−1 into the our bound from the thin case in Proposition

6.1.1, we get the bound

|𝑃 | ⪅log 𝜆
𝑑−1𝑟−2|Γ|𝛿−(𝑑−1), (7.1)

where 𝜆 = 𝛿−
𝜀

10𝑑 . In the ensuing discussion, we will replace (7.1) with the shorthand

|𝑃 | ⪅ 𝑟−2|Γ|𝛿−(𝑑−1), (7.2)

as we are mainly concerned with achieving upper bounds for |𝑃 | that have the ‘right’ expo-

nents for each of 𝑟 and |Γ|.
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7.1 An Analogy and a Plan of Attack

In various stages of writing up my work, I have found the following analogy helpful in

organizing my thoughts. I am sharing it in hopes that it will also be helpful to you, the

reader. However, if you think it is silly, or if this doesn’t feel like a good time for big picture

thinking, feel free to skip ahead to the subsection ‘A Plan of Attack’ or even to Section 7.2.

The Illustration

Imagine that you are given a collection of blocks of various sizes and you want to put them

into a box and ship them to a friend. You have a box at home, and you aren’t sure whether

it will be big enough. Maybe you start putting blocks into your box anyway. If you weren’t

very sensible, you might spend a lot of time arranging the small blocks in neat rows, only

to later discover that the biggest block didn’t fit in the box.

Maybe the specific way you packed the small blocks prevented you from being able to

fit the big block, but maybe the big block would have never fit in the box, even if the box

had been otherwise empty. In this case, you would have wasted a lot of time packing the

small blocks into the box. You now wish that you had first determined whether the biggest

block would fit. But you didn’t do it, and now it’s too late!

This is a bit of a silly illustration because, barring a very tight fit, it is perhaps not so

hard to tell if a block will fit in a box. However, the reality it is illustrating is not so obvious.

The Illustrated

What I intend to illustrate with the blocks and the boxes is the following situation: we want

to know whether the product of many terms - each of which depends on multiple parameters

- obeys a certain upper bound or not. Perhaps we have a general idea of which terms are

the biggest. Say, for concreteness, that 𝐴 ≳ 𝐵 ≳ 𝐶 ≥ 1 and we want to know whether

𝐴𝐵𝐶 ≤ 𝑈. (7.3)

I want to emphasize that the 𝐴, 𝐵 and 𝐶 here are functions of multiple parameters, even

though 𝐴, 𝐵, and 𝐶 denote constants in other chapters.

Maybe we are sort of suspicious of this purported bound. If we were wanting to disprove
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it, then our best bet would be to try to prove that 𝐴 > 𝑈 . If it turns out, though, that

𝐴 ≤ 𝑈 , then maybe we should be a little bit less suspicious and should be more willing to

try to prove (7.3), even if the proof is complicated.

Determining whether term 𝐴 exceeds 𝑈 is analogous to determining whether the biggest

block fits in the box. If we have managed to fit the biggest block into the box, it is worth

trying to fit the other blocks in around it. On the other hand, if the biggest block didn’t

fit, it is time to go shopping for another box. That is, if 𝐴 > 𝑈 , it is time to make a new

conjecture.

As one final note, I should mention that when I am thinking of estimates in this frame-

work, it is always the case that the product 𝐴𝐵𝐶 that I am estimating is itself an upper

bound for |𝑃𝑟(Γ)| and may not be an optimal one. If the inequality 𝐴𝐵𝐶 ≤ 𝑈 is false, this

doesn’t necessarily mean that the inequality |𝑃𝑟(Γ)| ≤ 𝑈 is false. Instead, it might be the

case that the product 𝐴𝐵𝐶 was not a good guess for how big 𝑃𝑟(Γ) was. In this case, we

may be able to refine our guess - say, by replacing 𝐴 with a function 𝐴′ ≤ 𝐴. (We may

also replace 𝐵 and 𝐶 with better guesses, but if the inequality 𝐴 ≤ 𝑈 is false, then 𝐴 is the

obvious culprit that needs to be replaced.)

This idea of rejecting a ‘bad’ guess in favor of a better one is precisely what we do when

trying to estimate |𝑃𝑟(Γ)| under the second spacing condition in Section 7.3. The ‘bad’ guess

we reject is one that results from trying to follow our work under the first spacing condition

as closely as possible. The better guess is one we arrive at using partitioning. The argument

also requires us to assume an inductive hypothesis. And even after that assumption, all that

Section 7.3 does in the metaphorical scheme of things is to prove that we can fit the biggest

block into the box.

In some other settings (i.e. when Γ is not in the thin case of Proposition 6.1.1), our first

guess upper bound for 𝑃𝑟(Γ) may include a block of intermediate size between 𝛿−
𝜀

10𝑑 and

log(𝛿−1). For instance, our work in Chapter 10 includes a block of size about 𝛿−𝜀3 .

7.1.1 A Plan of Attack

Under the first spacing condition, we want to prove a bound of the form

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝛿
−𝜀|Γ|𝑑𝑟−𝑑𝑊−(𝑑−1).
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If |𝑃𝑟(Γ)∖𝑃2𝑟(Γ)| accounts for most of |𝑃𝑟(Γ)| and Γ is in the thin case of Proposition 6.1.1,

then we know that

|𝑃𝑟(Γ)| ≤ 𝐶 log(𝛿−1)𝑂(1) 𝜆𝑑−1𝑟−2|Γ|𝛿−(𝑑−1).

for some dimensional constant 𝐶. We want to know: For 𝛿 sufficiently small, do we have

𝐶 log(𝛿−1)𝑂(1) 𝜆𝑑−1𝑟−2|Γ|𝛿−(𝑑−1) ≤ 𝐶𝜀 𝛿
−𝜀|Γ|𝑑𝑟−𝑑𝑊−(𝑑−1) (7.4)

for the specific exponent implied by the 𝑂(1)? Or will we have to combine the thin case

estimate with some other argument?

In determining whether (7.4) holds for sufficiently small 𝛿, we begin by estimating the

product 𝑟−2|Γ|𝛿−(𝑑−1) which comprises the right-hand side of (7.2).

What we show in section 7.2 is that

𝑟−2|Γ|𝛿−(𝑑−1) ≲ |Γ|𝑑𝑟−𝑑𝑊−(𝑑−1).

In order to prove (7.4), we will still have to estimate the product

log(𝛿−1)𝑂(1) 𝜆𝑑−1.

We have a 𝛿−𝜀-worth of room in which to fit this product.

To relate this to the framework I described under the subheading ‘The Illustrated,’ we

can set

𝐴 = 𝑟−2|Γ|𝛿−(𝑑−1).

The expression 𝑟−2|Γ|𝛿−(𝑑−1), when multiplied by the product log(𝛿−1)𝑂(1) 𝜆𝑑−1, gives an

upper bound for 𝑃𝑟(Γ). We can set

𝐵 = 𝜆𝑑−1 = 𝛿−
(𝑑−1)𝜀
10𝑑

Then the block 𝐶 will be a constant multiple of the log(𝛿−1)𝑂(1) term. However, we are

getting a bit ahead of ourselves, as in this chapter, we are just concerned with the biggest

block, metaphorically speaking.
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7.2 Thin Bound vs Goal Bound under the First Spacing Con-

dition

We will apply Proposition 5.1 to the set

𝑃 := 𝑃𝑟(Γ)∖𝑃2𝑟(Γ),

provided that

|𝑃 | ≥ 1

10
|𝑃𝑟|. (7.5)

(If this condition is not met, we will induct on 𝑟; see Chapter 9.)

The 𝑟−2 in the thin bound (7.2) came from the fact that when the high frequency case

was dominant in our incidence-counting integral, the characteristic functions for our slab

duals were essentially orthogonal. We want to upgrade to a more negative power of 𝑟. This

comes at the expense of having a larger positive power of |Γ| in our estimate.

By our assumption that the slabs of Γ are essentially distinct, we can assume that

𝑟 ≲ 𝛿−(𝑑−1), which means that 𝑟−(𝑑−2) ≳ 𝛿−(𝑑−1)(𝑑−2) Thus, we have that

𝑟−2𝛿−(𝑑−1)|Γ| = 𝑟−2𝛿(𝑑−1)(𝑑−2)
(︁
𝛿−(𝑑−1)(𝑑−2)𝛿−(𝑑−1)

)︁
|Γ|

≲ 𝑟−(𝑑+1)𝛿−(𝑑−1)(𝑑−1)|Γ|.

Meanwhile, under spacing condition (WS-1) with parameter𝑊 , we have that |Γ| ∼ 𝑁𝛿−(𝑑−1)𝑊 ,

which implies that

𝛿−(𝑑−1) ∼ 𝑁−1𝑊−1|Γ| ≤𝑊−1|Γ| (7.6)

We take both sides of (7.6) to the power 𝑑− 1 and substitute the result into (9.8) to give

|𝑃 | ⪅ 𝑟−(𝑑+1)𝑊−(𝑑−1)|Γ|𝑑.

The fact that the exponents for 𝑟, Γ and 𝑊 resulting from this work coincided with

the exponents in the bound from the stacked stars example is what led me to conjecture

that Theorem 1.4.2 held. Of course, this work alone does not constitute a proof of 1.4.2.

For one thing, we must show that the 𝜀-loss suppressed by the ⪅ symbol is acceptable; we
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accomplish this in Chapter 8. However, we must also address what happens if our collection

of slabs was in the thick case of Proposition 6.1.1 or if we could not apply this proposition in

the first place. Each of these cases requires an inductive argument, as outlined in Chapter

5. The details are in Chapter 9.

7.3 Thin Bound vs Goal Bound Under the Second Spacing

Condition

Again, let

𝑃 := 𝑃𝑟(Γ)∖𝑃2𝑟(Γ).

Assuming that

|𝑃 | ≥ 1

10
|𝑃𝑟|, (7.7)

we will (try to) apply Proposition 6.1.1 to 𝑃 with 𝐸 ∼ 𝑟 and 𝐷 ∼ 𝛿−1.

Starting from the thin bound, we have

|𝑃 | ⪅ 𝑟−2|Γ|𝛿−(𝑑−1)

=
(︁
𝑟−2𝑟−(𝑑−1)

)︁
𝑟𝑑−1

(︁
|Γ||Γ|𝑑−1

)︁
Γ−(𝑑−1)𝛿−(𝑑−1)

= 𝑟−(𝑑+1)|Γ|𝑑
(︁
𝑟𝑑−1|Γ|−(𝑑−1)𝛿−(𝑑−1)

)︁
.

We note that

𝑟𝑑−1|Γ|−(𝑑−1)𝛿−(𝑑−1) ∼ 𝑟𝑑−1𝑊−𝑑(𝑑−1)𝛿−(𝑑−1).

From the second spacing condition we also have the inequality 𝑟 ≲𝑊 𝑑−1. This gives

𝑟𝑑−1|Γ|−(𝑑−1)𝛿−(𝑑−1) ≲ (𝑊 𝑑−1)𝑑−1𝑊−𝑑(𝑑−1)𝛿−(𝑑−1) =𝑊−(𝑑−1)𝛿−(𝑑−1).

We note that 𝑊−(𝑑−1)𝛿−(𝑑−1) ⪅ 1 only if 𝑊 ⪆ 𝛿−1. Thus the ‘naive’ approach (namely,

applying the thin bound for 𝐷 = 𝛿−1 and using the bound for 𝑟 from the spacing condition)

would work only for a very small range of 𝑊 consisting of only those 𝑊 which are almost

as big as possible.

To remedy this, I intend to use partitioning, as described below. The partitioning ar-

66



gument below recovers the right exponents for |Γ| and 𝑟 under the assumption that we can

apply the conjectured bound at another scale. However, checking the hypotheses at a new

scale presents additional challenges.

7.3.1 The Idea of Partitioning

Instead of applying Proposition 6.1.1 directly to 𝑃 , we will now subdivide [0, 1]𝑑 into many

sub-cubes and (attempt to) use Proposition 6.1.1 to characterize the 𝛿-balls of 𝑃 that lie

within each sub-cube. Specifically, for a parameter 𝐷 to be determined, we subdivide [0, 1]𝑑

into sub-cubes of side length ∼ 𝐷𝛿.

For a fixed 𝐷𝛿-cube 𝑄, let

Γ ∩𝑄 = {𝑆 ∩𝑄 : 𝑆 ∈ Γ, 𝑆 ∩𝑄 ̸= ∅}.

The intersection 𝑆∩𝑄 is approximately a rectangular prism of dimensions ∼ 𝐷𝛿×· · ·×𝐷𝛿×𝛿

in the sense that it contains a dilate (by a small 𝑐 < 1) of a 𝐷𝛿 × · · · ×𝐷𝛿 × 𝛿 prism and is

contained in a dilate (by a large number 𝐶 > 1) of a 𝐷𝛿 × · · · ×𝐷𝛿 × 𝛿 prism. We call the

intersection 𝑆 ∩𝑄 a slab segment.

We note that the slab segments in Γ ∩ 𝑄 may not be essentially distinct; for instance,

there may be 𝑆1, 𝑆2 ∈ Γ so that 𝑆1 ∩ 𝑄 and 𝑆2 ∩ 𝑄 essentially contain each other. To

eliminate redundancies, let Γ𝑄 be a maximal essentially distinct subset of the collection

Γ ∩𝑄 above.

We further prune Γ𝑄 by pigeonholing on the (dyadic) number of slabs ‘represented’ by

each slab segment of Γ ∩ 𝑄. For each dyadic M, let Γ𝑄,𝑀 denote the collection of slab

segments in Γ ∩𝑄 which are each equivalent to the segment 𝑆 ∩𝑄 for ∼𝑀 many different

𝑆. We can choose 𝑀0 to preserve a ⪆log 1 fraction of the incidences between 𝑃 and Γ, i.e.

we choose 𝑀0 so that

∑︁
𝑄

𝑀0|𝐼(𝑃 ∩𝑄,Γ𝑄,𝑀0)| ≳𝑑 (log(𝛿−1))−1|𝐼(𝑃, 𝑇 )|. (7.8)

(Here, the set 𝐼(𝑃 ∩𝑄,Γ𝑄,𝑀0) is defined in terms of essential intersection, as in Definition

1.1.6 and Equation (1.6).)
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We similarly prune 𝑃 . For each sub-cube 𝑄 and each dyadic 𝐸, we let

𝑃𝑄,𝐸 :=
{︀
𝑞 ∈ 𝑃𝑄 : 𝑞 ⊂

∼ 𝑆𝑄 for ∼ 𝐸-many 𝑆𝑄 in Γ𝑄,𝑀0

}︀
,

where

𝑃𝑄 := 𝑃 ∩𝑄 = {𝑞 ∈ 𝑃 : 𝑞 ⊂
∼𝑄}.

Then we can find a dyadic 𝐸0 so that

∑︁
𝑄

𝑀0𝐸0 |𝑃𝑄,𝐸0 | ≳
(︀
log
(︀
𝛿−1
)︀)︀2 |𝐼(𝑃,Γ)|. (7.9)

Because of the angle separation in (WS-2), we must have 𝐸0 ≲ 𝐷𝑑−1. Our procedure for

choosing 𝑀0 and 𝐸0 to satisfy (7.8) and (7.9) will also ensure that

𝑀0𝐸0 ≳ (log(𝛿−1))2𝑟. (7.10)

However, we omit the details from this discussion.

We will apply Proposition 6.1.1 to each set 𝑃𝑄,𝐸0 . If we let 𝜆 = 𝐷𝜀/(10𝑑), this gives the

following two possibilities:

1. |𝑃𝑄,𝐸0 | ⪅log 𝜆
𝑑−1𝐸−2

0 𝐷𝑛−1|Γ𝑄,𝑀0 |; or

2. There is a collection of 2𝛿𝜆-balls whose union contains a ⪆log 1 fraction of 𝑃𝑄,𝐸0 so

that each of these 2𝛿𝜆-balls intersects ⪆𝑑 𝜆𝐸0-many slab segments in Γ𝑄,𝑀0 .

If a 𝐷𝛿-cube 𝑄 satisfies the first possibility, we say it is thin. Otherwise, we say it is

thick. We can write

|𝑃 | ≲ log𝐷
∑︁
𝑄

|𝑃𝑄,𝐸0 | = log𝐷

⎛⎝ ∑︁
𝑄 thin

|𝑃𝑄,𝐸0 |+
∑︁

𝑄 thick

|𝑃𝑄,𝐸0 |

⎞⎠ . (7.11)

We take cases on whether the sum over thin cubes or the sum over thick cubes is larger. If

the sum over thin cubes is larger, we say we are in the thin case.

For the rest of this section, we will discuss only the case that the sum over thin cubes is
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larger. In this case, we have that

|𝑃 | ⪅log

∑︁
𝑄 thin

|𝑃𝑄,𝐸0 | ⪅log 𝜆
𝑑−1𝐸−2

0 𝐷𝑑−1
∑︁

𝑄 thin

|Γ𝑄,𝑀0 |.

We now want to estimate
∑︀

𝑄 thin |Γ𝑄,𝑀0 |. For this, note that if we stretched the thin

direction of a slab segment, then it would become a box that was ∼ 𝑀0-rich for dilates of

our original slabs, and we could (try to) estimate the number of rescaled slab segments using

induction. However, different slab segments need to be stretched in different directions to

make them into 𝑀0-rich boxes. To sort the slab segments by the direction that needs to be

stretched, we cover the sphere S𝑑−1 by caps 𝜏 of radius 1/𝐷. For each cap 𝜏 , we subdivide

the unit ball into cells □𝜏,𝑗 , where each cell □𝜏,𝑗 is a slab of dimensions ∼ 1× · · · × 1× 1
𝐷 ,

with normal direction defined by 𝜏 . Here, 𝑗 will range from 1 to 𝐽𝜏 with 𝐽𝜏 ∼ 𝐷, because

the number of 𝐷−1-slabs with normal direction in 𝜏 is ∼ Vol(𝐵(0,1))
Vol(𝐷−1-slab) ∼

1
1/𝐷 = 𝐷. Summing

over all 𝜏 , we conclude that the total number of cells is ∼ 𝐷𝑑.

For each cell □𝜏,𝑗 , let Γ𝜏,𝑗 denote the set of slabs 𝑆 ∈ Γ that are essentially contained in

□𝜏,𝑗 . After fixing a cell □𝜏,𝑗 , we rescale □𝜏,𝑗 to occupy the entire unit ball. (This corresponds

to a dilation by a factor of 𝐷 in one direction.) In the process, Γ𝜏,𝑗 is rescaled to a collection

of thicker slabs with thickness ∼ 𝐷𝛿. We denote the rescaled collection by ̃︂Γ𝜏,𝑗 . If we let

𝑟 = 𝑀0 and 𝛿 = 𝐷𝛿, then rescaling a cell transforms each slab segment of Γ𝑄,𝑀0 that was

essentially contained in the cell into a(n) (approximate) 𝑟-rich 𝛿-box for the collection ̃︂Γ𝜏,𝑗 .

Assuming that the premises of the inductive hypothesis are met, the number of 𝑀0-rich

𝛿-boxes satisfies ⃒⃒⃒
𝑃𝑀0

(︁̃︂Γ𝜏,𝑗

)︁⃒⃒⃒
≤ 𝛿−𝜀𝑀−(𝑑+1)|Γ̃|𝑑. (7.12)

Summing this bound over all cells □𝜏,𝑗 gives

∑︁
𝑄 thin

|Γ𝑄,𝑀0 | ≲ (# of cells )

(︂
max
□𝜏,𝑗

⃒⃒⃒
𝑃𝑀0

(︁̃︂Γ𝜏,𝑗

)︁⃒⃒⃒)︂
∼ 𝐷𝑑

(︂
max
□𝜏

⃒⃒⃒
𝑃𝑀0

(︁̃︂Γ𝜏,𝑗

)︁⃒⃒⃒)︂
≲ 𝐷𝑑

(︁
𝛿−𝜀𝑀

−(𝑑+1)
0 |Γ̃|𝑑

)︁
∼ 𝐷𝑑

(︁
(𝐷𝛿)−𝜀𝑀

−(𝑑+1)
0 (|Γ|𝐷−𝑑)𝑑

)︁
.
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Combining this with the thin case estimate, we get

|𝑃𝑟(Γ)| ⪅log 𝜆
𝑑−1𝐸−2

0 𝐷𝑑−1

⎛⎝ ∑︁
𝑄 thin

|Γ𝑄,𝑀0 |

⎞⎠
≲ 𝜆𝑑−1𝐸−2𝐷𝑑−1

(︁
𝐷𝑑𝐷−𝜀𝛿−𝜀𝑀

−(𝑑+1)
0 |Γ|𝑑𝐷−𝑑2

)︁
∼ (𝐷𝜀′𝐷−𝜀)𝛿−𝜀|Γ|𝑑

(︁
𝐸−2

0 𝑀
−(𝑑+1)
0 𝐷2𝑑−1−𝑑2

)︁
= (𝐷𝜀′𝐷−𝜀)𝛿−𝜀|Γ|𝑑

(︂
𝐸−2

0 𝑀
−(𝑑+1)
0

(︁
𝐷−(𝑑−1)

)︁𝑑−1
)︂

≤ (𝐷𝜀′𝐷−𝜀)𝛿−𝜀|Γ|𝑑
(︁
𝐸−2

0 𝑀
−(𝑑+1)
0 𝐸𝑑−1

)︁
= (𝐷𝜀′𝐷−𝜀)𝛿−𝜀|Γ|𝑑

(︁
𝑀

−(𝑑+1)
0 𝐸

−(𝑑+1)
0

)︁
≈log |Γ|𝑑𝑟−(𝑑+1).

(7.13)

Through this argument, we have achieved the ‘right’ exponents for 𝑟 and for |Γ|. However,

the argument relied on an assumption that for each 𝜏 and each 𝑗 ≤ 𝐽𝜏 , the collection ̃︂Γ𝜏,𝑗

satisfied the premises of the inductive hypothesis. To be justified in applying the inductive

hypothesis, we’d have to first check that each collection of thick slabs satisfied (WS-2)

with parameter 𝑊̃ := 𝑊
𝐷 , that it satisfied broadness assumption of our conjecture and that

𝑟 :=𝑀0 satisfied the lower bound

𝑟 ≥ max
{︁
𝛿−𝜀/4𝛿|Γ̃|, 𝑑

}︁
.

One complication is that we’ll have 𝑟 ≥ 𝑑 only if our original 𝑟 was ⪆ 𝐷𝑑−1. This will

necessitate a separate argument for small 𝑟, as in Section 4 of [10]. However, the narrow case

in subsection 4.1 does not have an analogue for slabs. This failure of the narrow case, along

with Example 2.0.1, was why we introduced broadness to the hypotheses of our conjecture

under the second spacing condition.
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Chapter 8

The Thin Bound and Our Goal

Bounds, Part II

In the previous chapter, we showed that in the thin case under the first spacing condition,

we have an estimate of the form

|𝑃𝑟(Γ)| ⪅log 𝜆
𝑑−1𝑟−𝑑|Γ|𝑑𝑊−(𝑑−1). (8.1)

In this chapter, we will demonstrate how to show that (8.1) implies the bound of Theorem

1.4.2.

We can rewrite (8.1) as

|𝑃𝑟(Γ)| ≤ 𝐴
(︀
log(𝛿−1)

)︀𝐵
(𝛿−

𝜀
10𝑑 )𝑑−1𝑟−𝑑|Γ|𝑑𝑊−(𝑑−1)

≤ 𝐴
(︀
log(𝛿−1)

)︀𝐵
𝛿𝜀(1−

𝑑−1
10𝑑

) 𝛿−𝜀𝑟−𝑑|Γ|𝑑𝑊−(𝑑−1)

for some constants 𝐴 and 𝐵.

Meanwhile, Theorem 1.4.2 asserts that

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝑟
−𝑑|Γ|𝑑𝑊−(𝑑−1).

The bound of Theorem 1.4.2 was stated with a constant depending on 𝜀, but the presence

of the constant was to ensure that the bound holds for large values of 𝛿, as discussed in
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Chapter 5. What we’ll show in this chapter is that we can choose 𝑐𝜀 > 0, along with a

constant 𝐶 which depends only on 𝑑, so that for any 𝛿 ∈ (0, 𝑐𝜀) and any collection of 𝛿-slabs

satisfying (WS-1) we have

𝐴
(︀
log(𝛿−1)

)︀𝐵
𝛿𝜀(1−

𝑑−1
10𝑑

) 𝛿−𝜀𝑟−𝑑|Γ|𝑑𝑊−(𝑑−1) ≤ 𝐶𝑟−𝑑|Γ|𝑑𝑊−(𝑑−1). (8.2)

Thus, for 𝛿 ∈ (0, 𝑐𝜀) we can conclude that any set of 𝛿-slabs in the thin case of Proposition

6.1.1) must obey the theorem bound, provided that the constant 𝐶𝜀 of Chapter 5 was chosen

to exceed the constant 𝐶 above.

To prove that (8.2) holds for all 𝛿 sufficiently small, we must prove that, for an appro-

priate choice of 𝐶, we have (︀
log(𝛿−1)

)︀𝐵
𝛿𝜀(1−

𝑑−1
10𝑑

) ≤ 𝐶

𝐴
.

Taking logs, we see that this is equivalent to the inequality

𝐵 log log(𝛿−1) ≤ log

(︂
𝐶

𝐴

)︂
+ 𝜀

(︂
1− (𝑑− 1)

10𝑑

)︂
log(𝛿−1). (8.3)

If 𝐶 > 𝐴, then each of the inequalities

𝐵 log log(𝛿−1) ≤ 𝜀

(︂
1− (𝑑− 1)

10𝑑

)︂
log(𝛿−1) (8.4)

and

𝐵 log log(𝛿−1) ≤ log

(︂
𝐶

𝐴

)︂
. (8.5)

is a sufficient condition for (8.3). The first of these, inequality (8.4), is equivalent to

log log(𝛿−1)

log(𝛿−1)
≤
𝜀
(︁
1− (𝑑−1)

10𝑑

)︁
𝐵

(8.6)

Since log log(𝛿−1)
log(𝛿−1)

approaches 0 as 𝛿 → 0, there is a constnat 𝑐𝜀 so that 8.6 holds for all 𝛿 ≤ 𝑐𝜀,

which means that (8.2) also holds for all 𝛿 ≤ 𝑐𝜀, provided that we chose 𝐶 > 𝐴.
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Chapter 9

Proof of Theorem 1.4.2

This chapter is devoted to proving Theorem 1.4.2, which we restate below for convenience.

Theorem 9.0.1. (Theorem 1.4.2, revisited) For any 𝜀 > 0 sufficiently small (relative to 𝑑),

there exists a constant 𝐶𝜀 = 𝐶(𝜀, 𝑑) > 1 so that if 𝛿 ∈ (0, 1) and 1 ≤𝑊 ≤ 𝛿−1, then

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝛿
−𝜀𝑊−(𝑑−1)𝑟−𝑑|Γ|𝑑 (9.1)

for any collection Γ of 𝛿-slabs that satisfies the first spacing condition for the parameter 𝑊

and any 𝑟 with

𝑟 ≥ 𝛿−
𝜀
4 𝛿|Γ|.

The proof is by downward induction on 𝛿 and/or 𝑟. Our inductive hypothesis is that for

any pair
(︁
𝛿, 𝑟
)︁

with 𝑊 > 𝛿 ≥ 𝛿1−
𝜀

10𝑑 or 𝑟 ≥ 2𝑟, we have

⃒⃒⃒
𝑃𝑟(Γ̃)

⃒⃒⃒
≤ 𝐶2(𝜀)𝛿

−𝜀 |Γ̃|𝑑

𝑟𝑑𝑊 𝑑−1
(9.2)

for any collection of 𝛿-slabs that satisfies the first spacing condition for the parameter 𝑊

and any 𝑟 with 𝑟 ≥ (𝛿)−
𝜀
4 |Γ|.

It is important to note that at the inductive step, we will use the bound (9.2) for the

same value of 𝜀 for which we are trying to prove (9.1). (If we wanted to use the inductive

hypothesis for 𝜀′ ̸= 𝜀, this would introduce a factor of 𝐶𝜀′ to the resulting bound for |𝑃𝑟(Γ)|.
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Perhaps this is something we could deal with, but it would require us to track much more

carefully how 𝐶𝜀 varies with 𝜀.)

The argument relies on Proposition 6.1.1 to pass between scales. We will apply this

proposition for 𝐷 = 𝛿−1 and 𝑃 = 𝑃𝑟(Γ)∖𝑃2𝑟(Γ), provided that

|𝑃𝑟(Γ)∖𝑃2𝑟(Γ)| ≥
1

10
|𝑃𝑟(Γ)|. (9.3)

Passing to a subset 𝑃 ⊂ 𝑃𝑟(Γ) is necessary to ensure that the hypotheses of the proposition

are met. We are also implicitly assuming that 𝐷 = 𝛿−1 is large enough for the conclusion

of the proposition to hold. We can accomplish this by adjusting the constant 𝑐𝜀 of the first

base case if needed.

If we are in the thin case from Proposition 6.1.1, then we can prove the bound (1.8)

directly, as explained in Chapters 7-8. We have included a shorter version of the argument

in subsection 9.3.1.

If we are in the thick case, this means that a large fraction of the 𝛿-balls in 𝑃𝑟(Γ) occur

in clusters. Each cluster consists of many 𝛿-boxes which are all (essentially) contained inside

a larger box of side length 𝜆𝛿 for 𝜆 = (𝛿−1)
𝜀

10𝑑 . We use our inductive hypothesis to estimate

the number of clusters.

The thin/thick dichotomy described above only works if (9.3) holds. The possibility that

this condition does not hold is why we must allow in our inductive hypothesis for the case

that 𝑟 > 𝑟 but 𝛿 does not exceed 𝛿. If (9.3) does not hold, then we apply the inductive

hypothesis with 𝑟 = 2𝑟 and 𝛿 = 𝛿, and, in the course of proving that (1.8) holds, we prove

the intermediate result

|𝑃𝑟(Γ)| ≤
10

9
|𝑃2𝑟(Γ)|.

9.1 Base Cases

9.1.1 Base Case 1

As a first base case assume that 𝛿 ≥ 𝑐𝜀, where 𝑐𝜀 is chosen to satisfy the requirements of

Chapter 8. Our work in Chapter 5 shows that, so long as we chose 𝐶𝜀 well, we have

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝛿
−𝜀𝑟−(𝑑+1)|Γ|𝑑
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for all 𝛿 ≥ 𝑐𝜀.

9.1.2 Base Case 2

By Lemma 5.1.1, there is a dimensional constant 𝛼𝑑 so that if

𝑟 ≥ 𝛼𝑑𝛿
−(𝑑−1)

then 𝑃𝑟(Γ) = ∅. This is because a set of essentially distinct 𝛿-slabs all incident to a common

𝛿-box cannot have have a size exceeding the size of a maximal 𝛿-separated set on S𝑑−1.

In Section 9.2, we show that if (9.3) fails, then

|𝑃𝑟(Γ)| ≤
10

9
|𝑃2𝑟(Γ)|. (9.4)

We note that if 2𝑟 exceeds the number of directions in a maximal 𝛿-separated set on S𝑑−1

but 𝑟 does not, then (9.4) cannot hold. What this means is that, in fact, 𝑃𝑟(Γ)∖𝑃2𝑟(Γ) must

have accounted for most of 𝑃𝑟(Γ), which means that we can apply Proposition 6.1.1.

9.1.3 Base Case 3

Base Case 3a

By Lemma 5.1.4, there is a dimensional constant 𝛽𝑑 so that if

𝑊 ≥ 𝛽𝑑 𝛿
−1+ 𝜀

10𝑑 , (9.5)

then 𝑃𝑟(Γ) = ∅.

Base Case 3b

If 𝛿 is sufficiently small relative to 𝜀, then the dimensional constant 𝛽𝑑 is unnecessary; that

is, for 𝛿 ≲𝜀 1, we have 𝑃𝑟(Γ) = ∅ for any Γ that satisfies (WS-2) for

𝑊 ≥ 𝛽𝑑 𝛿
−1+ 𝜀

10𝑑 (9.6)
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and any 𝑟 ≥ 𝛿−𝜀4𝛿|Γ|.

We note each of (9.5) and (9.6) is equivalent to a lower bound for 𝛿 in terms of 𝑊 Since

the inductive procedure of section 9.3 increases 𝛿 but keeps 𝑊 fixed, we can arrive in these

base cases by repeatedly carrying out the inductive procedure of the thick case.

We have included Base Case 3a in addition to Base Case 1, because for some values of

𝑊 and 𝜀 we will have 𝑐𝜀(𝜀) ≥ (𝛽−1
𝑑 𝑊−1)

10𝑑
10𝑑−𝜀 , but for others we may not. Meanwhile, Base

Case 3b is used in Section 9.3.3 in verifying that the conditions of the theorem are still met

when we pass to another scale.

As with Base Case 2, we do not literally iterate our inductive argument of the thick case

until 𝛿 is big enough for (9.5) or (9.6) to hold. Instead, we can conclude that before we

performed the inductive step ‘too many times,’ we would have produced a collection of slabs

for which the conclusion of the thin case held.

9.2 Increasing r

Recall that 𝑃𝑟(Γ) is defined to be the set of 𝛿-balls that are at least 𝑟-rich for Γ. We define

𝑃 ′
𝑟(Γ) ⊂ 𝑃𝑟(Γ) by

𝑃 ′
𝑟(Γ) = {𝑞 ∈ 𝑃𝑟(Γ) : 𝑞 is at least 𝑟-rich but is not 2𝑟-rich}.

Our ability to (essentially) reverse the inequality |𝑃2𝑟(Γ)| ≤ |𝑃𝑟(Γ)| will depend on

whether or not 𝑃 ′
𝑟(Γ) accounts for a large proportion of 𝑃𝑟(Γ). Specifically, we will take

cases on whether

|𝑃 ′
𝑟(Γ)| ≥

1

10
|𝑃𝑟(Γ)| (9.7)

If inequality (9.7) holds, then we prove the goal bound (9.1) by induction on 𝛿, as

explained in Section 9.3. If (9.7) does not hold, then we apply the inductive hypothesis for

𝛿 = 𝛿 and 𝑟 = 2𝑟. This gives

|𝑃𝑟(Γ)| ≤
10

9
|𝑃2𝑟(Γ)| ≲𝜀 𝛿

𝜀 |Γ|𝑑

(2𝑟)𝑑+1
≤ 𝛿𝜀

|Γ|𝑑

𝑟𝑑+1
.

If we wanted to think of our argument in terms of iteration rather than induction, we
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could iterate the inequality

|𝑃𝑟(Γ)| ≤
10

9
|𝑃2𝑟(Γ)|

many times to give

|𝑃𝑟(Γ)| ≤
10

9
|𝑃2𝑟(Γ)| ≤

(︂
10

9

)︂2

|𝑃4𝑟(Γ)| ≤
(︂
10

9

)︂3

|𝑃8𝑟(Γ)| ≤ · · · ≤
(︂
10

9

)︂𝑚

|𝑃2𝑚𝑟(Γ)|

for an appropriate 𝑚.

9.3 The Thin-Thick Dichotomy

We let 𝑃 be the set of 𝛿-balls in [0, 1]𝑑 that have richness at least 𝑟, but less than 2𝑟. By

the inductive argument in Section 9.2, we may assume that |𝑃 | ≥ 1
10 |𝑃𝑟(Γ)|. We apply

Proposition 6.1.1 with 𝐸 ∼ 𝑟 and 𝐷 = 𝛿−1, and 𝜆 ∼ 𝐷
𝜀
10 ∼ 𝛿−

𝜀
10 Accordingly, we will have

that

𝜌 ∼ 𝐷𝜀3𝜆−1 ∼ 𝛿−𝜀3𝜆−1.

This gives the following two possibilities:

1. |𝑃 | ≲ 𝜆𝑑−1𝑟−2|Γ|𝛿−(𝑑−1) or

2. There is a collection of 𝜆𝛿-balls whose union contains a ⪆log 1 fraction of 𝑃 so that

each of these 𝛿𝜆-balls intersects ⪆log 𝛿
−𝜀3𝜆𝑟-many slabs of Γ.

If the first of these possibilities holds, we say we are in the thin case. Otherwise, we say

we are in the thick case.

9.3.1 Thin Case

If we are in the thin case, then we have that

|𝑃 | ⪅log 𝜆
𝑑−1𝑟−2𝛿−(𝑑−1)|Γ|. (9.8)

By Base Case 2, we can assume that 𝑟 ≲ 𝛿−(𝑑−1), which means that 𝑟−(𝑑−2) ≳ 𝛿−(𝑑−1)(𝑑−2)
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Thus, we have that

𝑟−2𝛿−(𝑑−1)|Γ| = 𝑟−2𝛿(𝑑−1)(𝑑−2)
(︁
𝛿−(𝑑−1)(𝑑−2)𝛿−(𝑑−1)

)︁
|Γ|

≲ 𝑟−(𝑑+1)𝛿−(𝑑−1)(𝑑−1)|Γ|.

Meanwhile, the spacing condition of Theorem 9.0.1 implies that |Γ| ∼ 𝑁𝛿−(𝑑−1)𝑊 , which is

equivalent to the inequality

𝛿−(𝑑−1) ∼ 𝑁−1𝑊−1|Γ|. (9.9)

We take both sides of (9.9) to the power 𝑑− 2 and substitute the result into (9.8) to give

|𝑃 | ⪅log 𝜆
𝑑−1𝑟−(𝑑+1)𝑁−(𝑑−1)𝑊−(𝑑−1)|Γ|𝑑

≤ 𝜆𝑑−1𝑟−(𝑑+1)𝑊−(𝑑−1)|Γ|𝑑

∼
(︁
𝛿−

𝜀
10𝑑

)︁𝑑−1
𝑟−(𝑑+1)𝑊−(𝑑−1)|Γ|𝑑

=
(︀
𝛿−1
)︀ (𝑑−1)𝜀

10𝑑 𝑟−(𝑑+1)𝑊−(𝑑−1)|Γ|𝑑

The exponent for 𝛿−1 on the far right-hand side is strictly less than 𝜀. The discrepancy

between this exponent (𝑑−1)𝜀
10𝑑 and our goal exponent 𝜀 compensates for all of the suppressed

log losses implied by the symbol ⪅log, provided that 𝛿 is sufficiently small (cf. Chapter 8).

Thus, we have that

|𝑃 | ≤ 𝐶𝜀 𝛿
−𝜀 𝑟−(𝑑+1)𝑊−(𝑑−1)|Γ|𝑑.

9.3.2 Thick Case

If we are in the thick case, then most of the incidences between the slabs of Γ and the 𝑟-rich

𝛿-boxes occur inside the cubes 𝑄𝑗 of side length ∼ 𝜆𝛿. Each 𝑄𝑗 contains ≲ 𝜆𝑑-many 𝛿-boxes

of 𝑃𝑟(Γ), so we have that

|𝑃𝑟(Γ)| ⪅log #
{︀
𝑝 ∈ 𝑃 : 𝑝 ⊂

∼𝑄𝑗 for some 𝑗
}︀
≲ 𝜆𝑑#{𝑄𝑗}. (9.10)

To estimate the number of cubes𝑄𝑗 we will apply the inductive hypothesis for a collection

of thick slabs. If we thicken each 𝛿-slab of Γ to a 𝜆𝛿-slab, then some of the thicker slabs that

result may not be essentially distinct from each other, so we will need to do a pigeonholing
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step before applying the inductive hypothesis.

For each dyadic 𝑀 ≥ 1, let Γ𝑀 be the collection of slabs 𝑆 ∈ Γ so that the thickened

version of 𝑆 contains ∼𝑀 -many slabs of Γ. If a 𝛿-slab is essentially contained in 𝜆𝑆∩ [0, 1]𝑑,

then its normal direction must be in a cap of radius ∼ 𝜆𝛿 centered at 𝑛(𝑆). We can

decompose this 𝜆𝛿-cap into a union of ∼ 𝜆𝑑−1-many 𝛿-caps of bounded overlap. We let

𝜃 be a fixed 𝛿-cap in this decomposition, and we consider the 𝛿-slabs within 𝜆𝑆 ∩ [0, 1]𝑑

whose normal directions are in this particular 𝜃. It follows by comparing volumes that there

are ≲ 𝜆-many 𝛿-slabs for with directions in this particular cap. Since our decomposition

contained ∼ 𝜆𝑑−1-many caps, we conclude that there are ≲ 𝜆𝑑-many 𝛿-slabs total, i.e. we

must have 𝑀 ≲ 𝜆𝑑 for Γ𝑀 to be nonempty. In particular, the number of candidate dyadic

sizes is ≲ log(𝛿−1). It follows that we can choose a particular 𝑀 so that Γ𝑀 accounts for

a ⪆log 1 fraction of the incidences between {𝑄𝑗} and Γ. The reason we can choose such an

𝑀 is as follows: recalling that the expression 𝑆 ∩𝑒𝑠𝑠 𝑄𝑗 should be read as, “𝑆 essentially

intersects 𝑄𝑗 ,” we write

𝐼({𝑄𝑗},Γ) =
∑︁
𝑆∈Γ

#{𝑗 : 𝑆 ∩ess 𝑄𝑗} =
∑︁

𝑀 dyadic

(︃∑︁
𝑆∈Γ

#{𝑗 : 𝑆 ∩ess 𝑄𝑗}

)︃
.

Then we can simply select the 𝑀 for which the inner sum on the right is largest.

Throughout the rest of the this section, we will consider a fixed 𝑀 for which the con-

tribution of 𝑀 is maximal. For this 𝑀 , we let Γ̃ be the set of 𝜆-dilates of the slabs of Γ𝑀 ,

i.e. ⃒⃒⃒
Γ̃
⃒⃒⃒
= {𝜆𝑆 ∩ [0, 1]𝑑}.

Each slab of Γ̃ represents ∼𝑀 -many slabs of Γ, so we have that

|Γ̃| ∼ |Γ|
𝑀
.

The number of 𝛿-slabs passing through each 𝑄𝑗 is ⪆log 𝜆𝑟, so that number of slabs in |Γ̃|

that pass through 𝑄𝑗 is ⪆log 𝑀
−1𝜆𝑟. Thus, resuming from 9.10, we have that

|𝑃𝑟(Γ)| ⪅log #{𝑝 ∈ 𝑃 : 𝑝 ⊂
∼𝑄𝑗 for some 𝑗} ≤ 𝜆𝑑#{𝑄𝑗} ≤ 𝜆𝑑

⃒⃒⃒
𝑃𝑟(Γ̃)

⃒⃒⃒
.
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As we verify in Subsection 9.3.3, the slabs of Γ̃ meet the premises of the inductive

hypothesis with 𝛿 = 𝜆𝛿 and 𝑟 ⪆log 𝛿
𝜀3𝜆𝑀−1𝑟.

Since 𝑟 ⪆log 𝛿𝜀
3
𝜆𝑀−1𝑟, the 𝜆−𝑑 factor from the inductive hypothesis cancels the 𝜆𝑑

factor from the trivial bound. Thus, we have that

|𝑃𝑟(Γ)| ⪅log 𝜆
𝑑

(︂
𝐶𝜀

(︁
𝛿
)︁−𝜀

(𝑟)−𝑑𝑊−(𝑑−1)|Γ̃|𝑑
)︂

⪅log 𝐶𝜀(𝜆𝛿)
−𝜀𝜆𝑑

(︁
𝑀−1𝛿𝜀

3
𝜆𝑟
)︁−𝑑

𝑊−(𝑑−1)|Γ̃|𝑑

∼ 𝐶𝜀(𝜆𝛿)
−𝜀𝛿−𝑑𝜀3𝑟−𝑑𝑊−(𝑑−1)𝑀𝑑(𝑀−1|Γ|)𝑑

∼ 𝐶𝜀 𝛿
−𝜀
(︁
𝜆−𝜀𝛿𝑑𝜀

3
)︁
𝑟−𝑑𝑊−(𝑑−1)|Γ|𝑑

(9.11)

Recalling that 𝜆 = 𝛿−
𝜀

10𝑑 , we write

𝜆−𝜀𝛿𝑑𝜀
3
= 𝛿𝜀

2( 1
10𝑑

−𝑑𝜀).

Provided that 𝜀 is sufficiently small, the quantity in parentheses is positive. If we set

𝜀′ = 𝜀2
(︂

1

10𝑑
− 𝑑𝜀

)︂
,

then (9.11) says that

𝑃𝑟(Γ)| ⪅log 𝛿
−𝜀𝛿𝜀

′
𝑟−𝑑𝑊−(𝑑−1)|Γ|𝑑. (9.12)

For 𝛿 sufficiently small relative to 𝜀, the gain from multiplying by 𝛿𝜀
′ compensates for all

of the suppressed log losses. (This can be proved by an argument similar to the analysis in

Chapter 8.)

9.3.3 Checking Hypotheses for the Thick Case

In order to use the estimate

|𝑃𝑟(Γ̃) ≤ 𝐶𝜀𝛿
−𝜀|Γ̃|𝑑𝑟−(𝑑+1)

in (9.11) above, we were assuming that the slabs of Γ̃ met the premises of the inductive

hypothesis with 𝛿 = 𝜆𝛿 and 𝑟 ⪆log 𝛿𝜀
3
𝜆𝑀−1𝑟. Here, we verify this assertion. (In the
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language of Chapter 5, we are verifying that implication 𝑎 holds.)

Verifying that the first spacing condition holds

We must check that the new slabs satisfy the first spacing condition with the same parameter

𝑊 that the old slabs did. First off, note that by Base Case 3b, we may assume that

𝜆𝛿 ≤ 𝑊−1, which means that 𝑊−1 ≤ 𝛿−1. We will show that there is some 𝑁̃ so that if

we subdivide S𝑑−1 into 𝜆𝜃-caps then, any 𝑊−1-slab with normal direction in a 𝜆𝜃-cap 𝜃

(essentially) contains ∼ 𝑁̃ -many slabs of Γ̃ whose normal directions are in 𝜃. We claim that

if 𝑁 > 𝑀 , then we can satisfy this requirement by setting

𝑁̃ ∼ 𝜆𝑑−1𝑁

𝑀
.

To check that this choice of 𝑁̃ works for 𝑁 > 𝑀 , we begin by writing 𝜃 as a union

𝜃1 ∪ · · · ∪ 𝜃ℓ, where each 𝜃𝑖 is a 𝛿-cap, and 𝑂(1)-many 𝛿-caps intersect at any point on S.

We must have ℓ ∼ 𝜆𝑑−1, because for each 𝑖,

Vol𝑑−1(𝜃)

Vol𝑑−1(𝜃𝑖)
∼ 𝜆𝑑−1.

Now, let 𝑅 be a 𝑊−1-slab with normal direction in 𝜃. We will momentarily want to

estimate the number of 𝛿-slabs of Γ̃ that are essentially contained in 𝑅 and have normal

direction in 𝜃, but first we consider the number of 𝛿-slabs of Γ that are essentially contained

in 𝑅 and have normal direction in 𝜃. For this, we note that the number of slabs of Γ that are

essentially contained in 𝑅 and have normal direction in 𝜃𝑖 is ∼ 𝑁 for each 𝑖. This is because

our assumption that 𝜆𝛿 ≤𝑊−1 implies that if 𝑅𝑖 is a 𝑊−1-slab with the same center as 𝑅

that has normal vector in 𝜃𝑖, then 𝑅𝑖 us essentially equivalent to 𝑅, i.e. 𝑅 and 𝑅𝑖 are not

essentially distinct from each other.

Summing over 𝑖 gives

#

{︃
𝑆 ∈ Γ :

𝑛(𝑆) ∈ 𝜃

𝑆 ⊂
∼𝑅

}︃
∼

ℓ∑︁
𝑖=1

#

{︃
𝑆 ∈ Γ :

𝑛(𝑆) ∈ 𝜃𝑖

𝑆 ⊂
∼𝑅

}︃
∼

ℓ∑︁
𝑖=1

𝑁 ∼ 𝜆𝑑−1𝑁.

In the process of going from Γ to Γ̃ we chose thick slabs with represented a ⪆log 1 fraction
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of Γ. (Recall that we say thick slab represents a thin slab, if the thin slab is essentially

contained in the thick slab.) The thick slabs we chose as our representatives each contained

∼𝑀 of the thick slabs, where 𝑀 was found by pigeonholing.

If we did not have 𝑁
𝑀 > 1 we take 𝑁̃ ∼ 𝜆𝑑−1. In this case, we may need to add more

slabs to Γ̃ to ensure that 𝜆𝑑−1 is a lower bound for the number of 𝛿-slabs in each 𝑊−1-slab

as well as an upper bound.

Verifying that 𝑟 is sufficiently large

In addition to demonstrating that we can choose 𝑁̃ for the second spacing condition, we

must also check that the inequality

𝑟 ≥ (𝛿)−
𝜀
4 𝛿|Γ̃| (9.13)

is satisfied for our collection of thick slabs, provided that we had

𝑟 ≥ 𝛿−
𝜀
4 𝛿|Γ| (9.14)

for our original 𝛿-slabs.

We will assume that 𝜀 is sufficiently small that 1
40𝑑 − 𝜀 > 0. Specifically assume, that

𝜀 ≥ 𝜀0 > 0 with 1
40𝑑 − 𝜀0 > 0. We will show that for such an 𝜀, there is a 𝑐𝜀 > 0 so that for

any 𝛿 ≤ 𝜀, we have the implication

𝑟 ≥ 𝛿−
𝜀
4 𝛿|Γ| =⇒ 𝑟 ≥ 𝛿−

𝜀
4 𝛿|Γ̃| (9.15)

Recall that we had chosen 𝑟 with

𝑟 ⪆log 𝛿
𝜀3𝜆𝑟𝑀−1, (9.16)

where 𝑀 was a dyadic number chosen by pigeonholing.

We can rewrite this as

𝑟 ≥ 𝐴−1
(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
𝜆𝑟𝑀−1 (9.17)
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for some absolute constants 𝐴 and 𝐵 (which may depend on 𝑑 but not on any other param-

eters).

We will use this to show that (9.15) holds for any 𝛿 sufficiently small with respect to 𝜀.

Combining (9.17) with (9.14) to give

𝑟 ≥ 𝐴−1
(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
𝜆𝑟𝑀−1

≥ 𝐴−1
(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
𝜆
(︁
𝛿−

𝜀
4 𝛿|Γ|

)︁
𝑀−1

= 𝐴−1
(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
𝛿−

𝜀
4 (𝜆𝛿)

(︀
|Γ|𝑀−1

)︀
∼ 𝐴−1

(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
𝛿−

𝜀
10𝑑 𝛿−

𝜀
4 𝛿|Γ̃|

= 𝐴−1
(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
(︁
𝛿−

𝜀
10𝑑

)︁ 𝜀
4
(︁
𝛿
)︁− 𝜀

4
𝛿|Γ|.

(9.18)

To account for the one ∼ that appeared in the above chain of inequalities, we define a new

constant 𝐴′′ so that

𝑟 ≥ (𝐴′′)−1
(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
(︁
𝛿−

𝜀
10𝑑

)︁ 𝜀
4
(︁
𝛿
)︁− 𝜀

4
𝛿|Γ|.

To show that (9.13) holds, it suffices to show that

(𝐴′′)−1
(︀
log(𝛿−1)

)︀−𝐵
𝛿𝜀

3
𝛿−

𝜀2

40𝑑 ≥ 1,

or, equivalently that

𝐴′′ (︀log(𝛿−1)
)︀𝐵 ≤ (𝛿−1)𝜀

2( 1
40𝑑

−𝜀). (9.19)

Taking logs, we see that (9.19) is equivalent to the inequality

log(𝐴′′) +𝐵 log log(𝛿−1) ≤ 𝜀2
(︂

1

40𝑑
− 𝜀

)︂
log(𝛿−1). (9.20)

To prove (9.20) for a particular 𝛿, it is sufficient to show that the following two inequalities

hold:

log(𝐴′′) ≤ 1

2
𝜀2
(︂

1

40𝑑
− 𝜀0

)︂
log(𝛿−1); (9.21)

and

𝐵 log log(𝛿−1) ≤ 1

2
𝜀2
(︂

1

40𝑑
− 𝜀0

)︂
log(𝛿−1). (9.22)
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(Here, we are using 𝜀0 in the sense specified directly below inequality (9.14).)

We note that (9.21) is equivalent to the inequality

log(𝛿−1) ≥ 2 log(𝐴′′)𝜀−2

(︂
1

40𝑑
− 𝜀0

)︂−1

(9.23)

and that (9.22) is equivalent to the inequality

log log(𝛿−1)

log(𝛿−1)
≤
𝜀2
(︀

1
40𝑑 − 𝜀0

)︀
2𝐵

. (9.24)

As 𝛿 → 0+, we have that log(𝛿−1) → ∞ and log log(𝛿−1)
log(𝛿−1)

→ 0. Thus, there is a 𝑐𝜀 = 𝑐𝜀(𝜀)

so that both (9.23) and (9.24) hold for all 𝛿 ≤ 𝑐𝜀(𝜀). This means that we have the implication

(9.15) for all 𝛿 ≤ 𝑐𝜀(𝜀).

Remark 9.3.1. The reason we do not have a constant 𝐶1(𝜀) in our lower bound for 𝑟 in

the statement of Theorem 1.4.2 is that we are only checking that 𝑟 satisfies the lower bound

of the theorem in the case that 𝛿 ≤ 𝑐𝜀. The implication (9.14) =⇒ (9.13) may fail for large

𝛿. Allowing for a ‘fudge factor’ 𝐶1(𝜀) in the bound of the theorem statement would allow us

to deduce directly for large 𝛿 that the lower bound held. However, since we are accounting

for 𝛿 ≤ 𝑐𝜀 as a base case, this ‘fudge factor’ is unnecessary.
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Chapter 10

An Iterative Interpretation of the

Inductive Argument

Our specific choice of 𝛿 in the thick case sets us up well to reinterpret our induction proof as

an iterative argument in which we repeatedly increase 𝛿, the slab thickness. I was inspired to

search for an iterative procedure for estimating |𝑃𝑟(Γ)| after studying other iterative proofs

like the density increment argument in Szemeredi’s proof of Roth’s theorem.

We will ultimately build up to an another proof of Theorem 1.4.2, which we restate

(again) for convenience.

Theorem 10.0.1. (Theorem 1.4.2, re-revisited)

For any 𝜀 > 0 sufficiently small (relative to 𝑑), there exists a constant 𝐶𝜀 = 𝐶(𝜀, 𝑑) > 1 so

that if 𝛿 ∈ (0, 1) and 1 ≤𝑊 ≤ 𝛿−1, then

|𝑃𝑟(Γ)| ≤ 𝐶𝜀𝛿
−𝜀𝑊−(𝑑−1)𝑟−𝑑|Γ|𝑑 (10.1)

for any collection Γ of 𝛿-slabs that satisfies the first spacing condition for the parameter 𝑊

and any 𝑟 with

𝑟 ≥ 𝛿−
𝜀
4 𝛿|Γ|. (10.2)

To make a certain part of the argument work, we’ll need to assume that 𝜀 is sufficiently
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small that 1− 10𝑑2𝜀 > 0; in particular, we’ll assume that

1− 10𝑑2𝜀 ≥ 1

2
. (10.3)

Recall that in the thick case of our induction proof we had set

𝛿 = 𝜆𝛿 = 𝛿−
𝜀

10𝑑 𝛿 = 𝛿(1−
𝜀

10𝑑
).

Let’s momentarily forget about checking all of the hypotheses that must line up for us to

be able to thicken our slabs again and just think about what happens to 𝛿 as we repeatedly

thicken. We define a sequence of thicknesses {𝛿𝑗}𝑗 with

𝛿0 = 𝛿,

𝛿1 = 𝛿(1−
𝜀

10𝑑
),

𝛿2 = 𝛿(1−
𝜀

10𝑑
)2 ,

and so on. In general, we’ll have

𝛿𝑗 = 𝛿(1−
𝜀

10𝑑
)𝑗 .

If 𝑗 is sufficiently large then 𝛿𝑗 = 𝛿(1−
𝜀

10𝑑
)𝑗 must exceed exceed 1

3 . We can arrange by

choosing 𝐶𝜀 well that (10.1) holds for all 𝛿 ≥ 1
3 , so if we can thicken enough times to achieve

𝛿(1−
𝜀

10𝑑
)𝑗 ≥ 1

3 , then showing (10.1) for 𝑟0 and 𝛿0, our initial values of 𝑟 and 𝛿 becomes a

matter of comparing |𝑃𝑟0(𝛿0)| to |𝑃𝑟𝑗 (𝛿𝑗)| for an appropriately chosen 𝑟𝑗 . 1

Meanwhile, if we could not thicken enough times to achieve 𝛿(1−
𝜀

10𝑑
)𝑗 ≥ 1

3 then we

must have encountered some collection of slabs Γ𝑘 and some candidate richness 𝑟𝑘 so that

|𝑃𝑟𝑘(Γ𝑘)∖𝑃2𝑟𝑘(Γ𝑘)| ≥ 1
10 |𝑃𝑟𝑘(Γ𝑘)| and Γ𝑘 was in the thin case of Proposition 6.1.1. For such

a pair (Γ𝑘, 𝑟𝑘), we would have

|𝑃𝑟𝑘(Γ𝑘)| ≤ 𝐶𝜀 𝛿
−𝜀
𝑘 |Γ𝑘|𝑑𝑟−𝑑

𝑘 𝑊−(𝑑−1). (10.4)

In Section 10.1, we find an upper bound for the smallest 𝑚 with

𝛿
1− 𝜀

10𝑑
𝑚 ≥ 1

3
.

1Our choice of threshold 1
3

is not particularly important. We could replace 1
3

by any constant in (0, 1)
whose reciprocal exceeded 𝑒 and still have the argument of section 10.1 work just as well.
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The upper bound will be on the order of log log(𝛿−1)
𝜀/(10𝑑) . We can conclude that 10.4 holds for

some 𝑘 not exceeding this upper bound. We then relate |𝑃𝑟𝑘(Γ𝑘)| to |𝑃𝑟0(Γ0)| - the quantity

we were originally trying to estimate. We first show how to relate |𝑃𝑟𝑘(Γ𝑘)| to |𝑃𝑟0(Γ0)| in a

special case (Section 10.3) and then in full generality (Section 10.4). We assume throughout

our work that 𝑘 > 0; otherwise we would already know that (10.3) held for our original r.

Although there is loss involved in comparing |𝑃𝑟0(Γ0)| to |𝑃𝑟𝑘(Γ𝑘)|, the fact that 𝛿−𝜀
𝑘 <

𝛿−𝜀
0 compensates for this loss, provided that our initial 𝛿0 was sufficiently small. Specifically,

we need 𝛿0 ≤ 𝑐𝜀 for a small constant 𝑐𝜀 satisfying properties described in Section 10.5. If

our initial 𝛿 did not exceed this threshold, then our goal bound holds by the ‘trivial’ bound

|𝑃𝑟(Γ)| ≲ 𝛿−𝑑.

In showing that the strict inequality 𝛿−𝜀
𝑘 < 𝛿−𝜀

0 compensates for all of the losses involved

in passing from |𝑃𝑟0(Γ0)| to |𝑃𝑟𝑘(Γ𝑘)|, we first show that it compensates for 𝜀3-losses (Sub-

section 10.5.1) and then show that it compensates for log losses (Subsection 10.5.2). To

reprise our ‘blocks in a box’ analogy, we first show that we can largest blocks into the space

afforded by the strict inequality 𝛿−𝜀
𝑘 < 𝛿−𝜀

0 . Then we show that we can fit the rest of the

blocks into the remaining space.

10.1 Getting to the Threshold Thickness

We let 𝑚0 be the minimal 𝑚 with

1

3
≤ 𝛿

1− 𝜀
10𝑑

𝑚 = 𝛿(1−
𝜀

10𝑑
)𝑚+1

.

or equivalently, the minimal 𝑚 with

3 ≥ 𝛿−(1− 𝜀
10𝑑

)𝑚+1
.

Then we must have

𝑚0 <
log log(𝛿−1)

log
(︁

1
1− 𝜀

10𝑑

)︁ . (10.5)
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To see this, we use the minimality of 𝑚0 to give

3 ≤ 𝛿−(1− 𝜀
10𝑑

)𝑚0
.

We take logs two times and use the fact that log log 3 > 0 to give

0 < log log 3 ≤ 𝑚0 log
(︁
1− 𝜀

10𝑑

)︁
+ log log(𝛿−1),

which we can rearrange to give (10.5). We note that

log

(︂
1

1− 𝜀
10𝑑

)︂
∼ 𝜀

10𝑑

We can see this by using a Taylor expansion:

log

(︂
1

1− 𝜀
10𝑑

)︂
=

𝜀

10𝑑
+

( 𝜀
10𝑑)

2

2
+

( 𝜀
10𝑑)

3

3
+

( 𝜀
10𝑑)

4

4
+ ... (10.6)

This series converges because 𝜀
10𝑑 < 1. Since all of the terms are positive, we have that

log

(︂
1

1− 𝜀
10𝑑

)︂
≥ 𝜀

10𝑑
.

We also have that

log

(︂
1

1− 𝜀
10𝑑

)︂
=

𝜀

10𝑑

(︂
1 +

𝜀
10𝑑

2
+

( 𝜀
10𝑑)

2

3
+

( 𝜀
10𝑑)

3

4
+ . . .

)︂
≤ 𝜀

10𝑑

(︁
1 +

𝜀

10𝑑
+ (

𝜀

10𝑑
)2 + (

𝜀

10𝑑
)3 + . . .

)︁
=

𝜀

10𝑑

(︂
1

1− 𝜀
10𝑑

)︂
.

Assuming that 𝜀
10𝑑 ≤ 1

2 , we then have that

(︂
1

1− 𝜀
10𝑑

)︂
≤ 2,

so

log

(︂
1

1− 𝜀
10𝑑

)︂
≤ 2

(︁ 𝜀

10𝑑

)︁
,
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which means we can rewrite (10.5) as

𝑚0 <
log log(𝛿−1)

𝜀
10𝑑

. (10.7)

10.2 Setting up the Iteration

In our work in the thick case argument of Chapter 9, we proved the following proposition

as an intermediate result.

Proposition 10.2.1. Let 𝜀, 𝑊 , 𝑟, and 𝛿 be fixed. Suppose that Γ is a collection of 𝛿-slabs

that satisfies (WS-1) with parameter 𝑊 and that 𝑟 ≥ 𝛿−𝜀/4𝛿|Γ|. Suppose further that

|𝑃𝑟(Γ)∖𝑃2𝑟(Γ)| ≥
1

10
|𝑃𝑟(Γ)|.

If Γ is in the thick case of proposition 6.1.1 then there exist a dyadic 𝑀 , a candidate richness

𝑟 ⪆log 𝛿
𝜀3𝜆𝑀−1𝑟, and a collection Γ̃ of 𝜆𝛿-slabs so that the following hold:

(1) Γ satisfies (WS-1) with parameter 𝑊 ;

(2) |Γ̃| ⪅log 𝑀
−1|Γ|;

(3) |𝑃𝑟(Γ)| ⪅log 𝜆
𝑑|𝑃𝑟(Γ̃)|.

We can rewrite the bound from (3) as

|𝑃𝑟(Γ)| ≤ 𝐴
(︀
log(𝛿−1)

)︀𝐵
𝜆𝑑|𝑃𝑟(Γ̃)| (10.8)

for some constants 𝐴 and 𝐵.

If we let 𝑃 ′
𝑟 = 𝑃𝑟(Γ̃)∖𝑃2𝑟, it may or may not be the case that

⃒⃒⃒
𝑃 ′
𝑟(Γ̃)

⃒⃒⃒
≥ 1

10

⃒⃒⃒
𝑃𝑟(Γ̃)

⃒⃒⃒
. (10.9)

If (10.9) does hold, then we can apply Proposition 6.1.1 for 𝑃 = 𝑃 ′
𝑟, 𝐸 = 𝑟 and 𝐷 = 𝛿−1. If

we are in the thin case, then algebraic manipulation will allow us to conclude that

|𝑃 | ⪅log 𝜆̃
𝑑−1𝑟−𝑑|Γ̃|𝑑𝑊−(𝑑−1).
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If we are in the thick case, then we can pass to yet another scale and consider slabs of

thickness ∼ 𝜆̃𝛿.

Passing to a collection of slabs of thickness ∼ 𝜆̃𝛿 involved a lot of ‘ifs’; we could only

do this if (10.9) held and if we were not in the thin case. This second ‘if’ is not a problem

for rewriting our induction as an iterative argument; if we arrive in the thin case, we can

terminate our iteration, which is actually exactly what we want. However, the question of

whether (10.9) holds creates a complication in rewriting our induction proof. It turns out

that every single time we increase 𝛿 to 𝜆𝛿 we may have to repeatedly double 𝑟 in search of

some ℓ so that ⃒⃒⃒
𝑃 ′
2ℓ𝑟(Γ̃)

⃒⃒⃒
≥ 1

10

⃒⃒⃒
𝑃2ℓ𝑟(Γ̃)

⃒⃒⃒
.

We will always be able to find such an ℓ, but the repeated doubling complicates the iterative

procedure.

We will initially consider a simpler procedure which works for the very special case in

which (10.9) immediately holds every time we are in the thick case of Proposition 6.1.1. We

treat this special case in subsection 10.3 and then treat the general case in subsection 10.4,

in which we develop a more complicated procedure that allows for a repeated doubling step

after each thickening step.

10.3 White Lie Iterative Argument - Iterating Just the Thick

Case

To prove the goal bound

|𝑃𝑟(Γ)| ≤ 𝐶𝜀 𝛿
−𝜀 |Γ|𝑑

𝑟𝑑𝑊 𝑑−1
(10.10)

for a fixed collection of slabs and a fixed 𝑟, we define

𝑟0 = 𝑟;

𝛿0 = 𝛿;

Γ0 = Γ.

We let 𝜆0 = 𝛿
− 𝜀

10𝑑
0 , and we apply Proposition 10.2.1 to find a dyadic 𝑀1 and a collection Γ1
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of thickened slabs so that

|𝑃𝑟0(Γ1)| ≤ 𝐴 log
(︀
𝛿−1
0

)︀𝐵
𝜆𝑑|𝑃𝑟1(Γ1)|.

for some 𝑟1 ⪆log 𝛿
𝜀3
0 𝜆0𝑀

−1
0 𝑟0.

Likewise, we can find a dyadic 𝑀1 and a collection Γ1 of thickened slabs so that

|𝑃𝑟1(Γ1)| ≤ 𝐴 log
(︀
𝛿−1
1

)︀𝐵
𝜆𝑑|𝑃𝑟2(Γ2)|

for some 𝑟2 ⪆log 𝛿
𝜀3
1 𝜆1𝑀

−1
1 𝑟0. Thus,

|𝑃𝑟0(Γ1)| ≤ 𝐴2 log(𝛿−1
0 𝛿−1

1 )𝐵𝜆𝑑|𝑃𝑟2(Γ̃2)|

If we apply Proposition 10.2.1 yet again, then we will have

|𝑃𝑟0(Γ1)| ≤ 𝐴3 log(𝛿−1
0 𝛿−1

1 𝛿−1
2 )𝐵𝜆𝑑|𝑃𝑟3(Γ3)|

Let 𝑘 be a large positive integer so that each of Γ1, . . . ,Γ𝑘−1 was in the thick case. After

applying Proposition 10.2.1 𝑘 times we will have

|𝑃𝑟0(Γ0)| ≤ 𝐴𝑘

⎛⎝𝑘−1∏︁
𝑗=0

log(𝛿−1
𝑗 )

⎞⎠𝐵⎛⎝𝑘−1∏︁
𝑗=0

𝜆𝑗

⎞⎠𝑑

|𝑃𝑟𝑘(Γ𝑘)|. (10.11)

We will abbreviate this inequality to

|𝑃𝑟0(Γ0)| ⪅log⊗𝑘 (𝜆0 . . . 𝜆𝑘−1)
𝑑 |𝑃𝑟𝑘(Γ𝑘)|. (10.12)

We are using the tensor product to reflect the fact that we have 𝑘-many log losses, each

of which involves multiplication by 𝐴
(︁
log
(︁
𝛿−1
𝑗

)︁)︁𝐵
for a different value of 𝑗. (Hence, the

implied multiplication is by a function with 𝑘 inputs, namely all of the intermediate values

of 𝛿.)

One reason to temporarily suppress log losses is that they are very small compared to
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the product (𝜆0 . . . 𝜆𝑘−1)
𝑑, so long as 𝛿 is small compared to 𝜀. If 𝑘 is sufficiently large, then

|𝑃𝑟𝑘(Γ𝑘)| ≤ 𝐶𝜀𝛿
−𝜀
𝑘 𝑟−𝑑

𝑘 |Γ𝑘|𝑑𝑊−(𝑑−1). (10.13)

Specifically, by our work in Section 10.1, inequality (10.13) must hold for some 𝑘 with

𝑘 ≲
log log(𝛿−1)

𝜀
10𝑑

.

However, we don’t need the value of 𝑘 quite yet, as we will first rewrite the expression

(𝜆0 . . . 𝜆𝑘−1)
𝑑 |𝑃𝑟𝑘(Γ𝑘)|.

Combining inequalities (10.12) and (10.13) gives

|𝑃𝑟0(Γ0)| ⪅log⊗𝑘 (𝜆0 . . . 𝜆𝑘−1)
𝑑
(︁
𝐶𝜀𝛿

−𝜀
𝑘 𝑟−𝑑

𝑘 |Γ𝑘|𝑑𝑊−(𝑑−1)
)︁
.

For each 𝑗, the contribution of 𝜆𝑑𝑗 will be canceled when we replace 𝑟−1
𝑗+1 by 𝛿−𝜀3𝜆−1

𝑗 𝑀1
𝑗 𝑟

−1
𝑗 .

Each replacement introduces a new factor of 𝑀𝑗 , which will in turn, be canceled when we re-

place |Γ𝑗+1| by 𝑀−1
𝑗 |Γ𝑗 |. Each of the replacements referenced will involve a log loss. That is,

each of the replacements referenced will involve multiplication by a factor of 𝐴
(︁
log
(︁
𝛿−1
𝑗

)︁)︁𝐵
for some constants 𝐴 and 𝐵 for some constants 𝐴 and 𝐵.

Compounding these individual log losses gives a relationship

|𝑃𝑟0(Γ)| ⪅log⊗𝑘 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ0|𝑑𝑊−(𝑑−1). (10.14)
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Here are the details:

(𝜆0 . . . 𝜆𝑘−1)
𝑑 |𝑃𝑟𝑘(Γ𝑘)| ≤ (𝜆0 . . . 𝜆𝑘−1)

𝑑𝐶𝜀 𝛿
−𝜀
𝑘 𝑟−𝑑

𝑘 |Γ𝑘|𝑑𝑊−(𝑑−1)

⪅log⊗𝑘 (𝜆0 . . . 𝜆𝑘−1)
𝑑𝐶𝜀𝛿

−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑

(𝜆0 . . . 𝜆𝑘−1)
−𝑑

⎛⎝𝑘−1∏︁
𝑗=0

𝑀−1
𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ𝑘|𝑑𝑊−(𝑑−1)

= 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑⎛⎝𝑘−1∏︁
𝑗=0

𝑀−1
𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ𝑘|𝑑𝑊−(𝑑−1)

⪅log⊗𝑘 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑⎛⎝𝑘−1∏︁
𝑗=0

𝑀−1
𝑗

⎞⎠−𝑑

𝑟−𝑑
0

⎛⎝𝑘−1∏︁
𝑗=0

𝑀−1
𝑗

⎞⎠𝑑

|Γ0|𝑑𝑊−(𝑑−1)

= 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ0|𝑑𝑊−(𝑑−1)

10.4 Full Iterative Argument

If we did not have the simplifying assumption that (10.9) immediately holds every time

we are in the thick case of Proposition 6.1.1, then we would still work with a sequence

Γ0, . . . ,Γ𝑚 like in the white lie version of the argument. We would just have to do more

work to go from Γ𝑗 to Γ𝑗+1 for each 𝑗. Specifically, before applying Proposition 6.1.1 to Γ𝑗 ,

we would need to repeatedly double 𝑟𝑗 until we found some index ℓ𝑗 for which we had

|𝑃
2ℓ𝑗 𝑟𝑗

(Γ𝑗)∖𝑃2ℓ𝑗+1𝑟𝑗
(Γ𝑗)| ≥

1

10
|𝑃

2ℓ𝑗 𝑟𝑗
(Γ𝑗)|.

We iterate the procedure from Section 9.2 ℓ𝑗-many times to give

|𝑃𝑟𝑗 (Γ𝑗)| ≤
10

9
|𝑃2𝑟𝑗 (Γ𝑗)| ≤

(︂
10

9

)︂2

|𝑃4𝑟𝑗 (Γ𝑗)| ≤ · · · ≤
(︂
10

9

)︂ℓ𝑗

|𝑃
2ℓ𝑗 𝑟𝑗

(Γ𝑗)|. (10.15)

We can now apply Proposition 6.1.1 to Γ𝑗 for 𝐸 = 2ℓ𝑗𝑟𝑗 and 𝐷 = 𝛿−1
𝑗 . So long as we are
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not in the thin case of Proposition 6.1.1, we will obtain a new dyadic 𝑀𝑗 , a new set of slabs

Γ𝑗+1, and a new richness 𝑟𝑗+1 with

|Γ𝑗+1| ∼
|Γ𝑗 |
𝑀𝑗

, (10.16)

and

𝑟𝑗+1 ⪆log 𝛿
𝜀3

𝑗 𝜆𝑗 (2
ℓ𝑗 𝑟𝑗)𝑀

−1
𝑗 ,

so that ⃒⃒⃒
𝑃
2ℓ𝑗 𝑟𝑗

(Γ𝑗)
⃒⃒⃒
⪅log 𝜆

𝑑
𝑗

⃒⃒
𝑃𝑟𝑗+1(Γ𝑗+1)

⃒⃒
.

Combining this with (10.15) gives

|𝑃𝑟𝑗 (Γ𝑗)| ≤
(︂
10

9

)︂ℓ𝑗

|𝑃2ℓ𝑗𝑟𝑗
(Γ𝑗)| ⪅log

(︂
10

9

)︂ℓ𝑗

𝜆𝑑𝑗
⃒⃒
𝑃𝑟𝑗+1(Γ𝑗+1)

⃒⃒
(10.17)

Iterating inequality (10.17) represents iterating the two step process in which we first

double 𝑟𝑗 as needed and then thicken and pigeonhole, as prescribed in the thick case. The

first three repetitions - if we need that many - will give

|𝑃𝑟(Γ)| = |𝑃𝑟0(Γ0)|

≤ 𝐴
(︀
log(𝛿−1

0 )
)︀𝐵 (︂10

9

)︂ℓ0

𝜆𝑑0 |𝑃𝑟1(Γ1)|

≤ 𝐴2
(︀
log(𝛿−1

0 ) log(𝛿−1
1 )
)︀𝐵 (︂10

9

)︂ℓ0+ℓ1

(𝜆0𝜆1)
𝑑 |𝑃𝑟2(Γ2)|

≤ 𝐴3
(︀
log(𝛿−1

0 ) log(𝛿−1
1 ) log(𝛿−1

2 )
)︀𝐵 (︂10

9

)︂ℓ0+ℓ1+ℓ2

(𝜆0𝜆1𝜆2)
𝑑 |𝑃𝑟3(Γ3)| .

For a general 𝑘, we will have after 𝑘 iterations - if this many are needed - that

|𝑃𝑟0(Γ0)| ≤ 𝐴𝑘

⎛⎝𝑘−1∏︁
𝑗=0

log(𝛿−1
𝑗 )

⎞⎠𝐵 (︂
10

9

)︂ℓ1+···+ℓ𝑘−1

(𝜆0 . . . 𝜆𝑘−1)
𝑑 |𝑃𝑘(Γ𝑘)|.

As we did in the white lie version, we will temporarily suppress our log losses with the

shorthand

|𝑃𝑟0(Γ0)| ⪅log⊗𝑘

(︂
10

9

)︂ℓ0+···+ℓ𝑘−1

(𝜆0 . . . 𝜆𝑘−1)
𝑑 |𝑃𝑟𝑘(Γ𝑘)|. (10.18)
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If 𝑘 is sufficiently large, then we will have that

|𝑃𝑟𝑘(Γ𝑘)| ≤ 𝐶𝜀 𝛿
−𝜀
𝑘 𝑟−𝑑

𝑘 |Γ𝑘|𝑑𝑊−(𝑑−1).

For 𝑗 = 0, . . . , 𝑘 − 1, we can relate 𝑟𝑗+1 to 𝑟𝑗 by

𝑟𝑗+1 ≳ log(𝛿−1
𝑗 )𝑂(1)𝛿𝜀

3

𝑗 𝜆𝑗(2
ℓ𝑗𝑟𝑗)𝑀

−1
𝑗 .

Thus, we have that

𝑟𝑘 ⪅log⊗𝑘 2ℓ0+···+ℓ𝑘−1

⎛⎝𝑘−1∏︁
𝑗=0

𝛿𝜀
3

𝑗 𝜆𝑗𝑀
−1
𝑗

⎞⎠ 𝑟0,

or, equivalently, that

𝑟−𝑑
𝑘 ⪅log⊗𝑘 2−𝑑(ℓ0+···+ℓ𝑘−1)

⎛⎝𝑘−1∏︁
𝑗=0

𝛿𝜀
3

𝑗 𝜆𝑗𝑀
−1
𝑗

⎞⎠−𝑑

𝑟−𝑑
0 (10.19)

When we combine (10.19) and (10.18), the product
∏︀

𝑗 𝜆
−𝑑
𝑗 on the right-hand side of (10.19)

cancels the corresponding product on the right-hand side of (10.18). Meanwhile, the ex-

pression 2−𝑑(ℓ0+···+ℓ𝑘−1) more than compensates for the product
∏︀

𝑗

(︀
10
9

)︀ℓ𝑗 . Thus, we have

that

|𝑃𝑟0(Γ0)| ⪅log⊗𝑘

(︂
10

9

)︂ℓ0+···+ℓ𝑘−1

(𝜆0 . . . 𝜆𝑘−1)
𝑑
(︁
𝐶𝜀 𝛿

−𝜀
𝑘 𝑟−𝑑

𝑘 |Γ𝑘|𝑑𝑊−(𝑑−1)
)︁

⪅log⊗𝑘

(︂
10

9

)︂ℓ(0)+···+ℓ(𝑘−1)

(𝜆0 . . . 𝜆𝑘−1)
𝑑𝐶𝜀 𝛿

−𝜀
𝑘

(︂
1

2

)︂𝑑(ℓ0+···+ℓ𝑘−1)

(𝜆0 . . . 𝜆𝑘−1)
−𝑑

⎛⎝𝑘−1∏︁
𝑗=0

𝛿𝜀
3

𝑗 𝑀
−1
𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ𝑘|𝑑𝑊−(𝑑−1)

≤ 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=0

𝛿𝜀
3

𝑗 𝑀
−1
𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ𝑘|𝑑𝑊−(𝑑−1)

= 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=0

𝛿𝜀
3

𝑗

⎞⎠−𝑑⎛⎝𝑘−1∏︁
𝑗=0

𝑀𝑗

⎞⎠𝑑

𝑟−𝑑
0 |Γ𝑘|𝑑𝑊−(𝑑−1).

(10.20)
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Meanwhile, for each 𝑗, we have that

|Γ𝑗+1| ∼ |Γ𝑗 |𝑀−1
𝑗

so

|Γ𝑘|𝑑 = 𝑂𝑘(1) |Γ0|𝑑
⎛⎝∏︁

𝑗=1

𝑀−1
𝑗

⎞⎠𝑑

. (10.21)

We substitute this into (10.20) to give

|𝑃𝑟0(Γ0)| ⪅log⊗𝑘 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=0

𝛿𝜀
3

𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ0|𝑑𝑊−(𝑑−1).

(Here, the 𝑂𝑘(1) factor from 10.21 is absorbed into the implied constant of the ⪅log⊗𝑘

symbol.)

So far, we have proved that

|𝑃𝑟0(Γ0)| ⪅log⊗𝑘 𝐶𝜀 𝛿
−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=0

𝛿𝜀
3

𝑗

⎞⎠−𝑑

𝑟−𝑑
0 |Γ0|𝑑𝑊−(𝑑−1). (10.22)

10.5 Concluding Estimates

10.5.1 Managing 𝜀3-losses

We now wish to estimate the product

𝛿−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑

.

For this, we recall that

𝛿𝑗 = 𝛿
(1− 𝜀

10𝑑
)𝑗

0 .
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Thus, we have that

𝛿−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑

=
(︁
𝛿(1−

𝜀
10𝑑

)𝑘
)︁−𝜀

⎛⎝𝑘−1∏︁
𝑗=0

𝛿(1−
𝜀

10𝑑
)𝑗

⎞⎠−𝑑𝜀3

=
(︁
𝛿(1−

𝜀
10𝑑

)𝑘
)︁−𝜀 (︀

𝛿Σ𝑘
)︀−𝑑𝜀3

,

where

Σ𝑘 :=
𝑘−1∑︁
𝑗=0

(1− 𝜀

10𝑑
)𝑗 =

1− (1− 𝜀
10𝑑)

𝑘

1− (1− 𝜀
10𝑑)

=
(︁
1− (1− 𝜀

10𝑑
)𝑘
)︁
· 10𝑑
𝜀
.

That is,

𝛿−𝜀
𝑘

⎛⎝𝑘−1∏︁
𝑗=1

𝛿𝜀
3

𝑗

⎞⎠−𝑑

=
(︁
𝛿(1−

𝜀
10𝑑

)𝑘
)︁−𝜀 (︁

𝛿1−(1− 𝜀
10𝑑

)𝑘
)︁−𝑑𝜀3· 10𝑑

𝜀

= 𝛿−𝜀𝛿𝜀
(︁
𝛿(1−

𝜀
10𝑑

)𝑘
)︁−𝜀 (︁

𝛿1−(1− 𝜀
10𝑑

)𝑘
)︁−10𝑑2𝜀2

= 𝛿−𝜀
(︁
𝛿1−(1− 𝜀

10𝑑
)𝑘
)︁𝜀 (︁

𝛿1−(1− 𝜀
10𝑑

)𝑘
)︁−10𝑑2𝜀2

= 𝛿−𝜀
(︁
𝛿1−(1− 𝜀

10𝑑
)𝑘
)︁𝜀(1−10𝑑2𝜀)

= 𝛿−𝜀
(︁
𝛿1−(1− 𝜀

10𝑑
)𝑘
)︁𝜀(1−10𝑑2𝜀)

We note that 1 − (1 − 𝜀
10𝑑)

𝑘 > 0. In fact, this quantity is bounded away from 0, which

will be important later. By our assumption (10.3), we have that 1−10𝑑2𝜀 > 1
2 , which means

that (︁
𝛿1−(1− 𝜀

10𝑑
)𝑘
)︁𝜀(1−10𝑑2𝜀)

< 𝛿
𝜀
2
(1−(1− 𝜀

10𝑑
)𝑘)

Returning to (10.22), we see that we can now update our bound to

|𝑃𝑟0(Γ0)| ⪅log⊗𝑘 𝐶𝜀 𝛿
−𝜀
0 𝛿

𝜀
2
(1−(1− 𝜀

10𝑑
)𝑘)

0 𝑟−𝑑
0 |Γ0|𝑑𝑊−(𝑑−1). (10.23)

10.5.2 Managing log losses

We claim that if 𝛿 is sufficiently small (relative to 𝜀), then the 𝛿
𝜀
2
(1−(1− 𝜀

10𝑑
)𝑘) factor compen-

sates for all of the the log losses that we have been suppressing with our ⪅log⊗𝑘 notation.
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To see this, we rewrite (10.23) as

|𝑃𝑟0(Γ0)| ≤ 𝐴𝑘

⎛⎝𝑘−1∏︁
𝑗=0

log

(︂
1

𝛿𝑗

)︂⎞⎠𝐵

𝐶𝜀 𝛿
−𝜀 𝛿

𝜀
2
(1−(1− 𝜀

10𝑑
)𝑘) |Γ|𝑑

𝑟𝑑𝑊 𝑑−1
(10.24)

for some constants 𝐴 and 𝐵.

To show that our goal bound (10.10) holds, it is sufficient to prove that the specific 𝐴

and 𝐵 of inequality (10.24) satisfy

𝐴𝑘 ≤
(︂
1

𝛿

)︂ 𝜀
4
(1−(1− 𝜀

10𝑑
)𝑘)

(10.25)

and ⎛⎝𝑘−1∏︁
𝑗=0

log

(︂
1

𝛿𝑗

)︂⎞⎠𝐵

≤
(︂
1

𝛿

)︂ 𝜀
4
(1−(1− 𝜀

10𝑑
)𝑘)

(10.26)

respectively. In turn, finding a lower bound for 1− (1− 𝜀
10𝑑)

𝑘 will allow us to further reduce

to proving inequalities that are sufficient for each of (10.25) and (10.26).

I must warn you (if you have made it this far) that the particular lower bound I use for

1− (1− 𝜀
10𝑑)

𝑘 is potentially very lossy. In particular, I use the fact that for 𝑘 ≥ 1, we have

1−
(︁
1− 𝜀

10𝑑

)︁𝑘
≥ 1−

(︁
1− 𝜀

10𝑑

)︁
=

𝜀

10𝑑
. (10.27)

Thus, to prove inequality (10.25), it is sufficent to prove that

𝐴𝑘 ≤
(︂
1

𝛿

)︂ 𝜀
4(

𝜀
10𝑑)

, (10.28)

and to prove (10.26) it is sufficient to prove that

⎛⎝𝑘−1∏︁
𝑗=0

log

(︂
1

𝛿𝑗

)︂⎞⎠𝐵

≤
(︂
1

𝛿

)︂ 𝜀
4(

𝜀
10𝑑)

. (10.29)

Since

𝑘 ≲
log log(𝛿′)

𝜀/(10𝑑)
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we can write

𝐴𝑘 ≤ (𝐴′)
log log(𝛿−1)

𝜀/(10𝑑)

for some 𝐴′. By taking logs, we see that it is sufficient for (10.28) to show that

log log(𝛿−1)

𝜀/(10𝑑)
log(𝐴′) ≤ 𝜀

4

(︁ 𝜀

10𝑑

)︁
log(𝛿−1), (10.30)

which we rearrange to read
log log(𝛿−1)

log(𝛿−1)
≤

𝜀
4

(︀
𝜀

10𝑑

)︀2
log(𝐴′)

(10.31)

Since log log(𝛿−1)
log(𝛿−1)

approaches 0 as 𝛿 approaches 0, it follows that inequality (10.31) holds for

all values of 𝛿 that are sufficiently small relative to 𝜀.

Finally, we turn to proving inequality (10.29). Beginning with the left-hand side of

(10.29), we have that

⎛⎝𝑘−1∏︁
𝑗=0

log(𝛿−1
𝑗 )

⎞⎠𝐵

=

⎛⎝𝑘−1∏︁
𝑗=0

log(𝛿−(1− 𝜀
10𝑑

)𝑗 )

⎞⎠𝐵

=

⎛⎝𝑘−1∏︁
𝑗=0

(︁
1− 𝜀

10𝑑

)︁𝑗
log(𝛿−1)

⎞⎠𝐵

=

(︃(︁
1− 𝜀

10𝑑

)︁ 𝑘(𝑘−1)
2

log(𝛿−1)𝑘

)︃𝐵

=

(︂(︁
1− 𝜀

10𝑑

)︁ 𝑘−1
2

log(𝛿−1)

)︂𝑘𝐵

Thus, to prove (10.26), we want to show that

(︂(︁
1− 𝜀

10𝑑

)︁ 𝑘−1
2

log(𝛿−1)

)︂𝑘𝐵

≤
(︂
1

𝛿

)︂ 𝜀
4(

𝜀
10𝑑)

.

Taking logs, we see that this is equivalent to showing that

𝐵𝑘 log

(︂(︁
1− 𝜀

10𝑑

)︁ 𝑘−1
2

log(𝛿−1)

)︂
≤ 𝜀

4

(︁ 𝜀

10𝑑

)︁
log(𝛿−1). (10.32)

We note that (︁
1− 𝜀

10𝑑

)︁ 𝑘−1
2

log(𝛿−1) ≤ log(𝛿−1). (10.33)
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Thus, to prove (10.32) it suffices to prove that

𝐵𝑘 log
(︀
log(𝛿−1)

)︀
≤ 𝜀

4

(︁ 𝜀

10𝑑

)︁
log(𝛿−1) (10.34)

Since

𝑘 ≲
log log(𝛿−1)

𝜀/(10𝑑)

we can find a constant 𝐵′ (not depending on 𝜀) so that

𝐵𝑘 log
(︀
log(𝛿−1)

)︀
≤ 𝐵′

(︂
log log(𝛿−1)

𝜀/(10𝑑)

)︂
log
(︀
log(𝛿−1)

)︀
Thus, to prove (10.34), it suffices to prove that

𝐵′

(︃(︀
log log(𝛿−1)

)︀2
𝜀/(10𝑑)

)︃
≤ 𝜀

4

(︁ 𝜀

10𝑑

)︁
log(𝛿−1), (10.35)

which we rearrange to read (︀
log log(𝛿−1)

)︀2
log(𝛿−1)

≤
𝜀
4

(︀
𝜀

10𝑑

)︀2
𝐵′ . (10.36)

Since (log log(𝛿−1))2

log(𝛿−1)
approaches 0 as 𝛿 approaches 0, it follows that inequality (10.31) holds for

all values of 𝛿 that are sufficiently small relative to 𝜀. We will not work out a precise upper

bound for 𝛿 here, but we will comment that whatever bound we would get could probably

be improved if we had not used (10.33) and could be improved even more if we had used a

sharper inequality than (10.27) in our earlier reductions.

Nevertheless, we have shown that for 𝛿 sufficiently small relative to 𝜀- say, 𝛿 ≤ 𝑐𝜀 for

concreteness - then

𝐴𝑘

⎛⎝𝑘−1∏︁
𝑗=0

log

(︂
1

𝛿𝑗

)︂⎞⎠𝐵

𝛿
𝜀
2
(1−(1− 𝜀

10𝑑
)𝑘) ≤ 1

which means that inequality (10.24) implies the theorem bound for 𝛿 ≤ 𝑐𝜀.

Meanwhile, so long as 𝐶𝜀 is chosen to be sufficiently large relative to 𝑐𝜀, we can prove

the theorem bound for 𝛿 > 𝑐𝜀 by the ‘trivial’ bound

|𝑃𝑟(Γ)| ≲ 𝛿−𝑑.
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Appendix A

Proofs of Geometric Lemmas

A.1 Lemmas for Intersection Formulas

As a precursor to proving Lemma 1.1.1 from Chapter 1, we consider special cases in R2 and

R3. We begin by estimating the area of the intersection of two rectangles in R2 of dimensions

precisely 1× 𝛿.

Lemma A.1.1. If 𝑅1, 𝑅2 are two 𝛿 × 1 rectangles whose long sides form angle 𝛼 to each

other, then

Area(𝑅1 ∩𝑅2) ≤
𝛿2

sin𝛼
. (A.1)

Moreover, if 𝑅1 and 𝑅2 have the same center point, then equality holds in (A.1)

Proof. It suffices to treat the case that 𝑅1 and 𝑅2 have the same center. In this case, the

intersection 𝑅1 and 𝑅2 is a rhombus with two angles of measure 𝛼 and two of measure 𝜋−𝛼.

The altitude of the rhombus is 𝛿 from which it follows that each side has length 𝛿/(sin𝛼),

so

Area(𝑅1 ∩𝑅2) ≤
𝛿2

sin𝛼
.

More generally, if we allow 𝑅1 and 𝑅2 to belong to a broader class of rectangles with

one side of length 𝑐𝛿 ≤ 𝑥 ≤ 𝐶𝛿 and one side of length 𝑐 ≤ 𝑦 ≤ 𝐶 and their long sides make
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angle 𝛼 > 0 to each other, then we have that

Area(𝑅1 ∩𝑅2) ≲
𝛿2

sin𝛼
∼ 𝛿2

𝛼
(A.2)

If we stipulate that 𝑅1 and 𝑅2 have the same center, then we have that

Area(𝑅1 ∩𝑅2) ∼
𝛿2

𝛼
.

We can use our estimates for rectangles in R2 to estimate the volume of the intersection

of two slabs in R3.

Lemma A.1.2. Let 𝑆1, 𝑆2 be two 𝛿-slabs in R3 with normal vectors 𝑛1 and 𝑛2 which make

an angle 𝛼 > 0 to each other. Then

|𝑆1 ∩ 𝑆2| ≲
𝛿2

sin𝛼
. (A.3)

Moreover, if 𝑆1 and 𝑆2 were formed by taking the 𝛿-neighborhoods of rectangles centered at

a common point (e.g. 0), then

|𝑆1 ∩ 𝑆2| ∼
𝛿

sin𝛼
.

Proof. We first treat the special case that

1. 𝑆1 and 𝑆2 are rectangular boxes of dimensions precisely 1× 1× 𝛿;

2. 𝑆1 and 𝑆2 have a common long direction 𝑣, i.e. there is a unit vector 𝑣 so that each

of 𝑆1 and 𝑆2 have a side of length 1 that is parallel to 𝑣.

In this special case, we will show that we have

|𝑆1 ∩ 𝑆2| ≤
𝛿2

sin𝛼
,

with equality if 𝑆1 and 𝑆2 have the same geometric center. To accomplish this, we let
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Π = Π0 be the orthogonal complement of 𝑣 and consider slices of 𝑆1 and 𝑆2 by planes Π𝑥

parallel to Π with Π𝑥 = Π+ 𝑥𝑣.

Let 𝑤1 be a unit vector parallel to the other long side of 𝑆1, and let 𝑤2 be a unit vector

parallel to the other long side of 𝑆1. If the cross-section 𝑆1 ∩ Π𝑥 is non-empty, then it is a

rectangle of dimensions precisely 1×𝛿 with long side parallel to 𝑤1 and short side parallel to

𝑛1. Similarly, if the cross-section 𝑆2 ∩Π𝑥 is non-empty, then it is a rectangle of dimensions

precisely 1 × 𝛿 with long side parallel to 𝑤2 and short side parallel to 𝑛2. Let 𝐼 = [𝑥0, 𝑥1]

be the interval consisting of the values of the 𝑥 for which 𝑆1 ∩ Π𝑥 and 𝑆1 ∩ Π𝑥 are both

non-empty. Then |𝐼| ≤ 1, and for any 𝑥 ∈ 𝐼, we have

|(𝑆1 ∩Π𝑥) ∩ (𝑆2 ∩Π𝑥)| ≤
𝛿2

sin𝛼
. (A.4)

We integrate over 𝐼 to give

|𝑆1 ∩ 𝑆2| =
∫︁
𝐼
|(𝑆1 ∩Π𝑥) ∩ (𝑆2 ∩Π𝑥)| 𝑑𝑥 ≤

∫︁
𝐼

(︂
𝛿2

sin𝛼

)︂
𝑑𝑥 ≤ 𝛿2

sin𝛼
. (A.5)

If 𝑆1 and 𝑆2 have the same center, then equality holds in (A.4) for every 𝑥 ∈ 𝐼 and 𝐼 is of

length precisely 1, so equality holds in (A.5).

Having completed our work in the case that 𝑆1 and 𝑆2 satisfy requirements (1)-(2) above,

we now consider the general case. Suppose now that 𝑆1 and 𝑆2 are slabs of dimensions

∼ 1× 1× 𝛿 whose normal vectors 𝑛1 and 𝑛2 make angle 𝛼 to each other.

The slabs 𝑆1 and 𝑆2 may not share a common long direction, but we will replace them

by larger slabs 𝑆′
1 ⊃ 𝑆1 and 𝑆′

2 ⊃ 𝑆2 so that the following conditions hold:

(i) each 𝑆′
𝑖 is a prism with two sides of the same length;

(ii) 𝑆′
𝑖 has normal vector 𝑛𝑖;

(iii) 𝑆′
2 is an isometric copy of 𝑆′

1 with a long side parallel to one of the long sides of 𝑆′
1.

We can find replacement slabs 𝑆′
𝑖 by considering the projections 𝜋𝑖(𝑆𝑖), where 𝜋𝑖 denotes

orthogonal projection onto the subspace 𝑛⊥
𝑖 . If the original slabs 𝑆1 and 𝑆2 belonged to a
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class of slabs each containing a prism of dimensions precisely 𝑐 × 𝑐 × 𝑐𝛿 and contained in

a prism of dimensions precisely 𝐶 × 𝐶 × 𝐶𝛿, then for each slab 𝑆𝑖, we can choose a 1 × 1

rectangle 𝑅𝑖 ⊂ 𝑛⊥
𝑖 so that 𝑐𝑅𝑖 ⊂ 𝜋𝑖(𝑆𝑖) ⊂ 𝐶𝑅𝑖. We replace 𝑅𝑖 be a square 𝑅′

𝑖 so that

𝐶𝑅𝑖 ⊂ 𝑅′
𝑖 and one side of 𝑅′

𝑖 is parallel to 𝑛1 × 𝑛1. We note that we can arrange that the

side length of 𝑅′
𝑖 is at most 𝐶

√
2, because

√
2 is the length of the diagonal of 𝑅𝑖. We take

𝑆′
𝑖 to be a translation of the 𝐶𝛿-neighborhood of 𝑅′

𝑖.

Our choice of 𝑆′
1 and 𝑆′

2 ensures that they satisfy conditions (1)-(2) of the special case,

modified so that each length 1 is replaced by a length ℓ ∼ 1. Specifically, we must have

ℓ ≤ 𝐶
√
2.

Since 𝑆1 and 𝑆2 each have two long sides of length ℓ ∼ 1 and have a shared long

direction 𝑣, it follows that each nonempty slice of 𝑆′
𝑖 ∩ 𝑆′

2 by a plane Π𝑥 parallel to 𝑣⊥ has

area satisfying

|(𝑆′
1 ∩Π𝑥) ∩ (𝑆′

1 ∩Π𝑥)| ≲
𝛿2

sin𝛼
. (A.6)

Let 𝐼 be the interval of 𝑥 ∈ R for which |(𝑆′
1 ∩ Π𝑥) ∩ (𝑆′

1 ∩ Π𝑥)| is nonempty. Then 𝐼 has

length ∼ 1. Since 𝑆1 ⊂ 𝑆′
1 and 𝑆2 ⊂ 𝑆′

2, we have that

|𝑆1 ∩ 𝑆2| ≤ |𝑆′
1 ∩ 𝑆′

2| ≲
𝛿2

sin𝛼
. (A.7)

Moreover, our work in bounding ℓ shows that, in fact |𝑆1 ∩ 𝑆2| ∼ |𝑆′
1 ∩ 𝑆′

2|. If 𝑆1 and 𝑆2

were formed by taking 𝛿-neighborhoods of rectangles with have the same center, then the ≲

in (A.6) may be replaced by ∼ for each 𝑥 ∈ 𝐼, and, consequently, (A.7) becomes

|𝑆1 ∩ 𝑆2| ∼
𝛿2

sin𝛼

The proposition we have just proved is the 𝑑 = 3 version of Lemma 1.1.1, which we will

now prove in full. First we recall the statement.
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Lemma A.1.3. (Lemma 1.1.1, revisited)

Suppose that 𝑆1, 𝑆2 ⊂ R𝑑 are 𝛿-slabs with respective normal vectors 𝑛1 and 𝑛2. If the angle

between 𝑛1 and 𝑛2 is at least 𝛼 then the volume of the intersection 𝑆1 ∩ 𝑆2 satisfies

|𝑆1 ∩ 𝑆2| ≲
𝛿

sin𝛼
∼ 𝛿

𝛼
.

Moreover, if 𝑆1 and 𝑆2 were formed by taking the 𝛿-neighborhoods of rectangles centered at

a common point (e.g. 0), then

|𝑆1 ∩ 𝑆2| ∼
𝛿

sin𝛼
.

Proof. We closely follow the proof of Lemma A.1.2, above. We first treat the special case

that

1. 𝑆1 and 𝑆2 are of dimensions precisely 1× · · · × 1× 𝛿;

2. 𝑆1 and 𝑆2 have 𝑑− 2-many long directions in common.

If assumptions (1) and (2) hold, we let 𝑣1, . . . ,𝑣𝑑−2 be unit vectors so that each of 𝑆1

and 𝑆2 has a long side parallel to each of 𝑣1, . . . ,𝑣𝑑−2.

For 𝑗 = 1, . . . , 𝑑−2, let 𝐵𝑗 denote projection onto 𝑉𝑗 , the 1-dimensional subspace spanned

by 𝑣𝑗 . Let 𝐼𝑗 = 𝐵𝑗(𝑆1∩𝑆2) be the projection of 𝑆1∩𝑆2 onto 𝑉𝑗 . Each interval 𝐼𝑗 has length

≤ 1. If 𝑆1 and 𝑆2 have the same center, then each interval 𝐼𝑗 has length exactly 1.

We will express |𝑆1 ∩𝑆2| as an integral over 𝐼1× · · ·× 𝐼𝑑−2, just as we wrote |𝑆1 ∩𝑆2| as

an integral over the interval 𝐼 in (A.5) from the 𝑑 = 3 case. For this, let Π = Span(𝑛1,𝑛1).

Then each of 𝑉1, . . . , 𝑉𝑑−2 is contained in the orthogonal complement of Π.

We will slice each of 𝑆1 and 𝑆2 by planes parallel to Π. For each (𝑑 − 2)-tuple 𝑥⃗ =

(𝑥1, . . . , 𝑥𝑑−2) ∈ 𝑉1 × · · · × 𝑉𝑑−2, we let Π𝑥⃗ = Π + 𝑥⃗ be the translation of Π by 𝑥⃗. Each

nonempty slice 𝑆1 ∩ Π𝑥⃗ is a rectangle of dimensions precisely 1× 𝛿 with short side parallel

to 𝑛1, and each nonempty slice 𝑆2 ∩ Π𝑥⃗ is a rectangle of dimensions precisely 1 × 𝛿 with
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short side parallel to 𝑛2. The long sides of these rectangles make angle 𝛼 to each other. By

Lemma A.1.1, if both slices 𝑆1 ∩Π𝑥⃗ 𝑆2 ∩Π𝑥⃗ are nonempty, we have that

|(𝑆1 ∩Π𝑥⃗) ∩ (𝑆2 ∩Π𝑥⃗)| ≤
𝛿2

sin𝛼
(A.8)

with equality if (𝑆1 ∩Π𝑥⃗)∩ (𝑆2 ∩Π𝑥⃗) have the same center. We note that if 𝑆1 and 𝑆2 have

the same center, then so do any slices 𝑆1 ∩Π𝑥⃗ and 𝑆2 ∩Π𝑥⃗.

Integrating over 𝐼1 × · · · × 𝐼𝑑, we see that

|𝑆1 ∩𝑆2| =
∫︁
𝐼1×···×𝐼𝑑−2

|(𝑆1 ∩Π𝑥⃗)∩ (𝑆2 ∩Π𝑥⃗)| 𝑑𝑥⃗ ≤
∫︁
𝐼1×···×𝐼𝑑−2

(︂
𝛿2

sin𝛼

)︂
𝑑𝑥⃗ ≤ 𝛿2

sin𝛼
. (A.9)

If 𝑆1 and 𝑆2 have the same center, then equality holds in (A.8) for each 𝑥⃗ ∈ 𝐼1 × · · · × 𝐼𝑑−2,

and each interval 𝐼𝑗 is of length precisely 1, so equality holds in (A.9) as well. This completes

our proof under hypotheses (1)-(2).

For the general case, we suppose that 𝑆1 and 𝑆2 are slabs of dimensions ∼ 1×· · ·×1× 𝛿

whose normal vectors 𝑛1 and 𝑛2 make angle 𝛼 to each other. We note that 𝑛⊥
1 ∩𝑛⊥

2 contains

a subspace 𝑉 of dimension (d-2). We note that 𝑉 is the orthogonal complement of the plane

Π = Span{𝑛1,𝑛2}. We let {𝑣1, . . . ,𝑣𝑑−2} be an orthonormal basis for 𝑉 . Finally, we let

𝑤1 and 𝑤2 be unit vectors so that 𝑤1 ∈ 𝑉 ⊥ ∩ 𝑛⊥
1 and 𝑤2 ∈ 𝑉 ⊥ ∩ 𝑛⊥

2

We will again find slabs 𝑆′
1 and 𝑆′

2 containing 𝑆1 and 𝑆2 so that the slabs 𝑆′
1 and 𝑆′

2 have

(𝑑− 2)-many common long directions. We will take 𝑆′
1 and 𝑆′

2 to be prisms with respective

normal vectors 𝑛1 and 𝑛2. Moreover, we will arrange so that 𝑆𝑖 occupies a large proportion

of the volume of 𝑆′
𝑖. We can accomplish this by considering the projections 𝜋(𝑆𝑖), where 𝜋𝑖

denotes orthogonal projection onto 𝑛⊥
𝑖 .

If 𝑆1 and 𝑆2 belonged to a class of slabs which each contained a prism of dimensions

precisely 𝑐× · · · × 𝑐× 𝑐𝛿 and was contained in a prism of dimensions 𝐶 × · · · × 𝐶 × 𝐶𝛿 for

some 0 < 𝑐 ≤ 1 ≤ 𝐶, then for each 𝑆𝑖, we can choose a 1 × · · · × 1 cube 𝑅𝑖 ⊂ 𝑛⊥
𝑖 so that

𝑐𝑅𝑖 ⊂ 𝜋𝑖(𝑆𝑖) ⊂ 𝐶𝑅𝑖. We replace 𝑅𝑖 by a cube 𝑅′
𝑖 with sides parallel to 𝑣1, . . .𝑣𝑑−2,𝑤𝑖. We
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choose 𝑅′
𝑖 so that 𝑅′

𝑖 has the same center as 𝑅𝑖 and contains 𝐶𝑅𝑖. We can also arrange

that the side length of 𝑅′
𝑖 is at most 𝐶

√
𝑑− 1. We can accomplish this by taking the

inscribed sphere of 𝑅′
𝑖 to be the circumscribed sphere of 𝐶𝑅𝑖, which has diameter 𝐶

√
𝑑− 1.

Having chosen 𝑅′
𝑖 in this way, we then take 𝑆′

𝑖 to be an appropriate translation of the

𝐶𝛿-neighborhood of 𝑅′
𝑖.

Our chosen 𝑆′
1 and 𝑆′

2 are prisms of dimensions precisely ℓ × · · · × ℓ × 𝐶𝛿 with ℓ ≤

𝐶
√
𝑑− 1. If 𝑥⃗ ∈ 𝑉 and Π𝑥⃗ := Π0+ 𝑥⃗ has nonempty intersection with 𝑆′

1 ∩𝑆′
2, then the slice

|(𝑆′
1∩Π𝑥⃗)∩ (𝑆′

2∩Π𝑥⃗)| is a rhombus of area ∼ 𝛿2

sin𝛼 . The set of 𝑥⃗ ∈ 𝑉 for which Π𝑥⃗ := Π0+ 𝑥⃗

has nonempty intersection with 𝑆′
1 ∩ 𝑆′

2 is a rectangle 𝐼1 × · · · × 𝐼𝑑−2 with sides parallel to

𝑣1, . . .𝑣1 so that each side has length ≤ 𝐶
√
𝑑− 1. We integrate over this rectangle to give

|𝑆1 ∩ 𝑆2| ≤ |𝑆′
1 ∩ 𝑆′

2| =
∫︁
𝐼1×···×𝐼𝑑−2

|(𝑆′
1 ∩Π𝑥⃗) ∩ (𝑆′

2 ∩Π𝑥⃗)| 𝑑𝑥⃗

≲
∫︁
𝐼1×···×𝐼𝑑−2

𝛿2

sin𝛼
𝑑𝑥⃗ ∼ 𝛿2

sin𝛼
.

If 𝑆1 and 𝑆2 had been the respective 𝛿-neighborhoods (or 𝐶𝛿-neighborhoods) of rectangles

centered at a common point, then the ≲ in the above chain of inequalities could be replaced

by a ∼ to give

|𝑆1 ∩ 𝑆2| ∼
𝛿2

sin𝛼
.

Lemma A.1.4. (Lemma 1.1.2, revisited)

Suppose that 𝑆1, . . . , 𝑆𝑑 ⊂ R𝑑 are 𝛿-slabs with respective normal vectors 𝑛1, . . . ,𝑛𝑑, Then

the volume of their 𝑑-fold intersection satisfies

|𝑆1 ∩ · · · ∩ 𝑆𝑑| ≲ min

{︂
𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|
, 𝛿

}︂
, (A.10)

where 𝑛1 ∧ · · · ∧ 𝑛𝑑 denotes the determinant of the 𝑑 × 𝑑 matrix that has 𝑛1, . . . ,𝑛𝑑 as

its rows. Moreover, if 𝑆1, . . . , 𝑆𝑑 were formed by taking the 𝛿-neighborhoods of rectangles
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centered at a common point (e.g. 0) and 𝛿𝑑

|𝑛1∧···∧𝑛𝑑| ≤ 𝛿, then

|𝑆1 ∩ · · · ∩ 𝑆𝑑| ∼
𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|
. (A.11)

Proof. If

𝛿 ≤ 𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|
,

then (A.10) is a consequence of the following chain of inequalities:

|𝑆1 ∩ · · · ∩ 𝑆𝑑| ≤ |𝑆1| ≲ 𝛿.

Henceforth, we assume that
𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|
≤ 𝛿.

If 𝑆1, . . . , 𝑆𝑑 are not centered at a common point, we let be 𝑆′
1, . . . , 𝑆

′
𝑑 be translations

𝑆1, . . . , 𝑆𝑑 which are centered at a common point. Then we will have

|𝑆1 ∩ · · · ∩ 𝑆𝑑| ≤ |𝑆′
1 ∩ · · · ∩ 𝑆′

𝑑| ∼
𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|

Hence, it suffices to consider the case that 𝑆1, . . . , 𝑆𝑑 were formed by taking the 𝛿-neighborhoods

of rectangles centered at a common point and to show that (A.11) holds in this case. We

assume for convenience that the common point is 0 so that the slab 𝑆𝑖 is contained in the

𝛿-neighborhood of the subspace {𝑛𝑖}⊥.

Let 𝑁 be the matrix with rows 𝑛1, . . . ,𝑛𝑑. A vector 𝑥 is in slab 𝑆𝑖 if and only if

|𝑥 · 𝑛𝑖| ≤ 𝛿, so the image of 𝑆1 ∩ · · · ∩ 𝑆𝑑 under multiplication by 𝑁 is the box [−𝛿, 𝛿]𝑑, i.e.

we have that

𝑁(𝑆1 ∩ . . . 𝑆𝑑) = [−𝛿, 𝛿]𝑑.

Therefore,

|det𝑁 ||𝑆1 ∩ · · · ∩ 𝑆𝑑| =
⃒⃒⃒
[−𝛿, 𝛿]𝑑

⃒⃒⃒
,
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from which it follows that

|𝑆1 ∩ · · · ∩ 𝑆𝑑| ∼
𝛿𝑑

|det𝑁 |
=

𝛿𝑑

|𝑛1 ∧ · · · ∧ 𝑛𝑑|
.
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