
Controlling Image Synthesis
with Emergent and Designed Priors

by

Lucy Chai
B.S.E., University of Pennsylvania (2017)
M.Phil., University of Cambridge (2018)

Submitted to the Department of Electrical Engineering and Computer Science in
Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Lucy Chai. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce,
preserve, distribute and publicly display copies of the thesis, or release the thesis

under an open-access license.

Authored By: Lucy Chai
Department of Electrical Engineering and Computer Science
August 31, 2023

Certified By: Phillip Isola
Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted By: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee for Graduate Students

2

Controlling Image Synthesis

with Emergent and Designed Priors

by

Lucy Chai

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Image synthesis has developed at an unprecedented pace over the past few years, giving
us new abilities to create synthetic yet photorealistic content. Typically, unconditional
synthesis takes in a tensor of random numbers as input and produces a randomly
generated image that mimics real-world content, with little to no way of controlling
the result. The work contained in this thesis explores two avenues of obtaining
controllable content from image generative models using emergent and designed priors.
Emergent priors leverage the capabilities of a pre-trained generator to infer how
the world operates, simply by training on large quantities of data. On the other
hand, designed priors use built-in constraints to enforce desired properties about
the world. Using emergent priors, we can control content by discovering factors of
variation and compositional properties in the latent space of synthesis models. We
further add coordinate information and camera inputs as designed controls to generate
continuous-resolution and 3D-consistent imagery.

3

4

Acknowledgments

First and foremost, I’d like to thank my PhD advisor, Phillip Isola, for his constant

support and guidance throughout this journey. I am forever grateful for his willingness

to take me on as an inexperienced junior student transitioning into a new field. My

early experiences working with Phil, helping me define a project and staying in the

office helping me write until 3AM the night of my first deadline, were invaluable

towards developing me as a researcher. Phil also helped to connect me with the

broader computer vision community, paving the way for fruitful collaborations that

I’ve had later on. I will always admire his excitement and optimism for research.

I would also like to thank my internship mentors, Richard Zhang and Noah Snavely,

my collaborators at Adobe – Michaël Gharbi, Jun-Yan Zhu, and Eli Shechtman –

and my collaborators at Google – Richard Tucker and Zhengqi Li. Under Richard’s

guidance I gained more experience in synthesis techniques, and I learned a lot about

paper writing and presentation skills from him. Working with Noah’s team helped to

grow my experience in 3D vision, and I am thankful for their helpful insights in this

area and their patient guidance throughout the project. I am so grateful to have the

opportunity to work with both teams, and much of the work presented in this thesis

would not have happened without these collaborators.

My first officemates and early collaborators David Bau and Jonas Wulff were

instrumental in my development as a researcher. I am thankful for their guidance in

finding my footing as a junior student, answering basic questions, sharing their tricks

for experiment infrastructures, and of course their help as coauthors in my projects.

My other committee members Antonio Torralba and Fredo Durand are both my

role models as successful senior researchers in the field, as well as instructors for some

of my favorite lectures at MIT. I am honored to have them as part of my committee

and grateful for their time and feedback on my thesis work.

I would like to acknowledge my other co-authors on various projects, including

Jingwei Ma, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Ali Jahanian, Stephanie

Fu, Netanel Tamir, Shobhita Sundaram, and Tali Dekel. I have learned something new

5

from working with each of them and glad we had the opportunity to work together.

Thanks to my labmates – Yonglong Tian, Yen-Chen Lin, Tongzhou Wang, Caroline

Chan, Minyoung Huh, Joseph Suarez, Hyojin Bahng, Shobhita Sundaram, Akarsh

Kumar, Swami Sankaranarayanan, Stephanie Fu, and Kevin Frans – for always

fostering a supportive and friendly community. I am lucky that my labmates are

also some of my closest friends, and I am grateful for the time we spent together

both inside and outside of the lab on retreats, skiing, and unofficial social events. I

also owe thanks to my friends from the MIT community and beyond – Irene Kuang,

Monica Agrawal, Camille Biscarrat, Luke Anderson, Prafull Sharma, Wei-Chiu Ma,

Ching-Yao Chuang, Shuang Li, Xavi Puig, Manel Baradad, Joanna Materzynska,

Dave Epstein, Andrew Liu, Ben Kompa, Seth Musser, Anthony Tabet, Jesse Mu, and

Daniel Rothchild – for their companionship and encouragement while sharing the

various ups and downs of the PhD experience with me.

My family has been a constant source of support during this time and all the

years beforehand. I am grateful to them for always investing in my education and

encouraging me to pursue my goals. These opportunities would not be possible without

the environment they provided for me. I would also like to thank my partner, Patrick,

for always believing in me and encouraging me throughout this journey.

Finally, I’d like to acknowledge my funding sources that made these projects

possible: the National Science Foundation Graduate Research Fellowship, Adobe

Research Fellowship, and Meta PhD Fellowship.

6

Contents

1 Introduction 19

1.1 Variations of the Synthesis Problem 20

1.2 Making Synthesis Controllable . 21

1.2.1 Emergent Control . 22

1.2.2 Designed Control . 23

1.3 Outline . 23

I Emergent Control in Image Synthesis 26

2 Natural Image Variations from Latent Space Manipulations 27

2.1 Introduction . 27

2.2 Related Work . 29

2.3 Method . 31

2.3.1 Objective . 31

2.3.2 Quantifying steerability . 33

2.3.3 Reducing transformation limits 34

2.4 Experiments . 34

2.4.1 What transformations can we achieve in latent space? 35

2.4.2 How does the data affect the transformations? 38

2.4.3 Alternative architectures and walks 40

2.4.4 Towards steerable GANs . 42

2.5 Conclusion . 43

7

3 Exemplar-based Control via Compositionality in Latent Space 45

3.1 Introduction . 45

3.2 Related Work . 48

3.3 Method . 50

3.3.1 Latent code recovery in GANs 50

3.3.2 Learning with missing data 51

3.3.3 Image composition using latent regression 53

3.4 Experiments . 54

3.4.1 Image composition from approximate collages 54

3.4.2 Compositional properties across architectures 55

3.4.3 How does composition differ from interpolation? 58

3.4.4 Investigating independence of image components 59

3.5 Conclusion . 61

II Image Synthesis with Designed Control 62

4 Variable Resolution Synthesis with Continuous Coordinate Control 63

4.1 Introduction . 64

4.2 Related Work . 66

4.3 Methods . 67

4.3.1 Multi-resolution GAN . 68

4.3.2 Two-phase training . 70

4.3.3 Implementation details . 72

4.4 Experiments . 72

4.4.1 Continuous multi-scale image synthesis 73

4.4.2 Model variations . 77

4.4.3 Properties of multi-scale generation 79

4.5 Conclusion . 80

5 Unbounded Persistent Landscapes with 3D Camera Control 83

5.1 Introduction . 84

8

5.2 Related Work . 86

5.3 Method . 88

5.3.1 Scene layout generation and rendering 88

5.3.2 Layout extension . 90

5.3.3 Image refinement . 91

5.3.4 Skydome . 92

5.3.5 Training . 93

5.4 Experiments . 94

5.4.1 Persistent, unbounded scene synthesis 94

5.4.2 Comparing scene representations 95

5.4.3 Model variations . 97

5.5 Discussion and conclusion . 99

6 Epilogue 101

A Supplementary: GAN Steering 105

A.1 Additional Methodological Details . 105

A.1.1 Optimization for the linear walk 105

A.1.2 Implementation details for linear walk 105

A.1.3 Linear NN(𝑧) walk . 106

A.1.4 Optimization for the non-linear walk 107

A.2 Additional Experiments . 108

A.2.1 Model and data distributions 108

A.2.2 Quantifying transformation limits 108

A.2.3 Detected bounding boxes . 109

A.2.4 Alternative walks in BigGAN 109

A.2.5 Walks in StyleGAN . 110

A.2.6 Walks in Progressive GAN . 111

A.2.7 Qualitative examples for additional transformations 111

A.2.8 Additional results for improving model steerability 111

9

B Supplementary: Latent Composition 131

B.1 Supplementary Methods . 131

B.1.1 Additional training details . 131

B.1.2 Additional details on composition 132

B.2 Supplementary Results . 133

B.2.1 Additional applications . 133

B.2.2 Comparing composition with latent space interpolation 136

B.2.3 Loss ablations . 139

B.2.4 Additional composition results 139

B.2.5 Additional part variation results 153

C Supplementary: Anyres-GAN 157

C.1 Panorama Generation Extension . 157

C.2 Experiments . 160

C.2.1 Dataset collection . 160

C.2.2 Patch-FID . 161

C.2.3 Additional quantitative results 162

C.2.4 Comparison to powers-of-two synthesis 163

C.2.5 Comparison to oracle generator 164

C.2.6 Additional model variations 166

C.2.7 Detectability . 171

C.3 Additional Implementation Details 171

C.3.1 Patch-based training . 172

C.3.2 Scale-conditioning branch . 173

C.3.3 Training procedure . 173

D Supplementary: Persistent Nature 175

D.1 Extended Triplane Variation . 175

D.2 Additional Methodological Details . 178

D.2.1 Preprocessing . 178

D.2.2 Training and implementation 180

10

D.2.3 Extendable triplane implementation 184

D.3 Additional Experiments . 185

D.3.1 Training without a separate skydome 185

D.3.2 Changing the number of sampled cameras 186

D.4 Discussion . 186

11

12

List of Figures

1-1 Variations of image synthesis. 20

1-2 Controlling image synthesis. 22

2-1 Examples of learned latent space trajectories. 28

2-2 Learning latent space manipulations. 32

2-3 Visualizing transformation limits. 35

2-4 Per-class variation on image transformations. 36

2-5 Quantifying the extent of transformations. 38

2-6 Understanding per-class biases. 40

2-7 Comparison of linear and nonlinear walks. 40

2-8 Transformations in an alternative model and latent space. 41

2-9 Reducing the effect of transformation limits. 43

3-1 Exemplar-based image editing with latent regression. 46

3-2 Image completions using the latent space regressor. 52

3-3 Latent regression network training. 54

3-4 Tradeoffs in realism and reconstruction. 54

3-5 Image collaging under a generative prior. 56

3-6 Realism/reconstruction tradeoff for method variations. 57

3-7 Comparing composition and interpolation. 59

3-8 Image variation when replacing single parts. 60

4-1 Continuous resolution patch synthesis. 64

4-2 Any-resolution data pipeline. 68

13

4-3 Anyres-GAN overview. 69

4-4 Training set size distributions. 74

4-5 Qualitative any-resolution generations. 76

4-6 Extrapolation limits. 76

4-7 Super-resolution comparisons. 77

4-8 Model properties and failure cases. 80

5-1 Persistent, unbounded synthesis. 84

5-2 Overview of scene layout decoding. 87

5-3 Layout extension procedure. 91

5-4 Skydome generator. 92

5-5 Visualization of nearby and extrapolated camera motion. 95

5-6 Comparison to auto-regressive and bounded-volume 3D generative models. 98

5-7 Qualitative comparison of model variations. 98

A-1 Comparing model versus dataset distribution. 112

A-2 Perceptual distances along the transformation path. 112

A-3 Visualization of object boxes. 113

A-4 Object boxes for generated images. 113

A-5 Linear walks using perceptual losses. 114

A-6 Nonlinear walks in BigGAN . 114

A-7 Quantitative experiments for nonlinear walks in BigGAN. 115

A-8 Samples with L2 loss. 116

A-9 Samples with perceptual loss. 117

A-10 Samples with nonlinear trajectory. 118

A-11 Samples using StyleGAN car generator. 119

A-12 StyleGAN car model transformation metrics. 120

A-13 Samples using StyleGAN cat generator. 121

A-14 StyleGAN cat model transformation metrics. 122

A-15 Samples using StyleGAN face generator. 123

A-16 StyleGAN face model transformation metrics. 124

14

A-17 Samples using ProGAN face generator. 125

A-18 ProGAN face model transformation metrics. 126

A-19 StyleGAN latent space comparisons. 127

A-20 Latent walk variations. 127

A-21 Combination of walk vectors. 127

A-22 DCGAN zoom visualization. 128

A-23 DCGAN shift visualization. 128

A-24 DCGAN rotate visualization. 129

B-1 Image completion from masked inputs. 134

B-2 Latent regression for multimodal editing. 135

B-3 Transferring manipulations to unseen images. 136

B-4 Dataset rebalancing using latent space regression. 137

B-5 Quantifying reconstruction fidelity: adding trees. 138

B-6 Quantifying reconstruction fidelity: changing sky. 138

B-7 Quantifying reconstruction fidelity: add smile. 138

B-8 Visualization of encoder variations. 140

B-9 Qualitative examples of automatic image composition. 141

B-10 Comparing across encoder-decoder or generator-only setups. 147

B-11 Face composites across GAN-based generators. 148

B-12 Automatic composition using saliency. 149

B-13 Collages from user inputs. 149

B-14 Non-local editing effects. 150

B-15 Finetuned encoder for collaging on real faces. 150

B-16 Additional collages: ProGAN. 151

B-17 Additional collages: StyleGAN. 152

B-18 Part variation visualization: faces. 154

B-19 Part variation visualization: cars. 155

C-1 Panorama generation from patches. 159

C-2 Infinite image generation. 160

15

C-3 Preprocessing for FID and patch-FID (pFID). 161

C-4 pFID vs FID@1024. 162

C-5 Comparison to Anycost-GAN. 164

C-6 Comparison of frequency distribution. 166

C-7 Qualitative examples of model variations. 167

C-8 Number of training images. 168

C-9 Impact of sampling resolutions. 169

C-10 Detection score. 171

D-1 Diagram of extended triplane representation. 176

D-2 Extendable triplane visualization. 177

D-3 Result of dataset filtering. 178

D-4 Illustration of camera distributions. 179

D-5 Layout extension. 182

D-6 Training without a separate skydome. 185

D-7 Adjusting the set of training cameras. 187

16

List of Tables

2.1 Per-class correlation between data and model variability. 41

3.1 Quantifying independence of image parts. 60

4.1 Any-resolution datasets and generator settings. 74

4.2 Varied-size training and inference. 75

4.3 Comparison to super-resolution using patch-FID (pFID). 75

4.4 Multisize training. 78

4.5 Number of HR images. 78

5.1 Comparison with InfiniteNature-Zero. 96

5.2 Quantitative comparison to unconditional GANs. 96

5.3 Variations on layout generation. 99

5.4 Variations on the refinement network. 99

B.1 Encoder network ablations. 139

B.2 Quantitative comparison of automated collaging. 142

B.3 Quantifying reconstruction/realism tradeoff on churches. 144

B.4 Quantifying reconstruction/realism tradeoff on faces. 145

C.1 Dataset sources. 160

C.2 Alternative FID evaluation metrics. 163

C.3 Oracle comparisons. 165

C.4 Precision and recall. 167

C.5 Variations of teacher regularizer on FFHQ6k. 167

17

C.6 Teacher regularization. 168

C.7 Patch sampling. 168

C.8 Discriminator variations. 170

D.1 Extended Layout vs. Extended Triplane. 177

D.2 Effect of 3D Projected Noise. 177

18

Chapter 1

Introduction

Images are the predominant data format that we use to capture and represent our

observations of the world. With modern cameras, pictures are effortless and instan-

taneous to take, allowing us to easily collect them in large quantities. In addition,

further technological improvements in data storage and file sharing have led us to

create and share these images as large datasets, consisting of thousands, millions, or

even billions of observations ranging from images of a single domain to uncurated

images scraped from the internet with various levels of annotation.

The image synthesis task aims to regenerate the world via the image datasets that

we use for training. Each image from the dataset represents a sampled point from the

entire world, and synthesis models aim to recreate the world from these discrete data

samples. Notably, this involves generating images that look similar to, but are not

exactly alike any given image in the training dataset, thus filling out the manifold of

possible realistic images that we can observe in the world.

To generate new image samples, the basic mechanism in synthesis models is to learn

a mapping from randomly sampled noise vectors to a structured image representation.

Because the distribution of possible real images is difficult to sample from directly,

the generation process initiates from a distribution that is easy to sample from, for

instance a multivariate Gaussian with predefined dimensionality. This random input

noise is what gives the generator the ability to produce diverse samples, such that

different samples from the noise distribution result in different output images.

19

Unconditional

G
latent code

Description Conditional

“golden retriever”
+

GE

Image Conditional

0.1 0.3 0.40.9 G0.1 0.3 0.40.9

Figure 1-1: Variations of image synthesis. (Left) Unconditional synthesis relies entirely
on the latent code, a randomly sampled noise vector, to generate the resulting image. This
form of synthesis often works best when training on single-domain datasets. (Center)
Additional conditioning information can be provided to the generator using descriptive
embedding vectors representing class category or text descriptions. This additional annotated
input helps expand the possible range of images that the generator can produce. (Right)
Providing images as input to the generator conveys additional structural priors about the
resulting output. Images are samples from [109, 19, 96].

1.1 Variations of the Synthesis Problem

While the key idea in synthesis is to map noise samples to images, there are several

ways in which this goal can be realized via various training techniques. The basis for

the works presented in this thesis rely on the Generative Adversarial Network (GAN)

framework. First introduced by Goodfellow et al . [69], the GAN objective trains two

competing networks – a generator and discriminator. These two networks are trained

in a alternating fashion in which the generator network attempts to synthesize images

and the discriminator network aims to distinguish the generator samples from real

dataset images.

As the generator and discriminator networks must maintain a delicate balance

for successful training, subsequent works have further developed the GAN training

framework with techniques to improve synthesis quality [106, 107], increase scale [19,

200, 201, 104], stabilize training [153, 108], and evaluate the realism of the generated

results [82, 196, 15].

The most basic variation of the synthesis task is unconditional synthesis, in which

the only input to the generator network is the random noise latent vector (Fig. 1-1-left).

Because the latent code distribution must be able to represent the entire range of

possible training images, typically unconditional GANs have been most successful in

domain-specific settings in which the training dataset consists of images from a single

20

category such as aligned faces [144, 107] or specific type of scene [271]. Consequently

the generator only produces images within the narrow range of the particular training

domain.

For datasets with corresponding annotations, it is also possible to provide these

labels as input into the generator as an embedding vector which provides coarse

descriptive information about the resulting image (Fig. 1-1-center). Conditioning on

class category information has helped scale up GAN training to the thousand categories

of ImageNet [194, 19], and the rise of recent large-scale image and text paired datasets

with developments in language modelling enable the usage of text descriptions as

conditioning input [104, 201]. Compared to unconditional generation, additional forms

of descriptive conditioning enable a single generator model to synthesize a broader

range of possible images.

Rather than inputting descriptive conditioning as embedding vectors, an alternative

form of the synthesis task takes images as input for the image-to-image translation

task [96, 293, 171, 38] (Fig. 1-1-right). In these cases, the GAN objective is typically

used as objective function to improve image quality, while the input image provides

the local structure information that the desired output should contain.

In recent years, diffusion models based on iterative denoising operations have surged

in popularity as an alternative to the GAN training framework [85, 86, 225, 226].

However, these same basic variations of image synthesis – unconditional, description-

conditional, and image-conditional – are still relevant within the diffusion pipeline for

various downstream applications.

1.2 Making Synthesis Controllable

Drawing samples from the latent code distribution allows us to create infinitely many

random images, but it lacks any form of control over the generated content. However,

oftentimes we have specific preferences about the content we want to create. In that

case, how can we incorporate our desired criteria into the synthesis process, so that

we can modify the generated images in predictable ways?

21

Emergent Control Designed Control

G G

learned intervention

control inputs

0.1 0.3 0.40.9
latent code

....
0.1 0.3 0.40.9

latent code

....

Figure 1-2: Controlling image synthesis. Random samples from the latent space
offers limited control over the resulting generated image, while conditioning on descriptive
embeddings offers a coarse level of control over the output. In this thesis, we explore
additional strategies for controlling the synthesized content. (Left) Emergent control takes
advantages of the image prior that a pretrained generator learns from vast amounts of data,
and adjusts the latent code to achieve desired image variations. (Right) Designed control
trains a model to obey additional conditioning input to the generator. While conditioning
on descriptive embeddings is one form of designed control, here we design models that are
incorporate spatial transformations for fine-grained positional control.

The works in this thesis present methods for adding control to the synthesis process.

Rather than using generative models to create individual samples of static images, we

expand the capabilities of image generation, allowing for targeted modifications and

adjustments according to user criteria or desired outcomes. Controllable synthesis

can be categorized under two general strategies: emergent control leverages learned

properties from a pre-trained model, while designed control builds in desired constraints

into the model training procedure.

1.2.1 Emergent Control

By training on large collections of images, synthesis models learn to infer certain

characteristics about the world based on patterns in the training data. With emergent

control, we start with a generator trained purely for the synthesis task, and use this

pretrained generator as an image prior with baked-in knowledge about properties of

realistic images. Then, we keep the synthesis model fixed and enable additional editing

capabilities by learning interventions on the input latent codes to satisfy the desired

criteria on the corresponding outputs. One advantage of this setup is that we can

use approximate objective functions to adjust the generated content – the resulting

22

output will balance between satisfying the learning objective while still producing a

realistic image due to the priors from the frozen generator.

1.2.2 Designed Control

The limitation of emergent control is that it is constrained by what a generator is

capable of creating and the rules of the world that the generator infers by training on

large amounts of data. Rather than relying on the generator to infer these properties

indirectly from data, we can provide our desired controls as input and encourage the

model to obey these additional controls via auxiliary constraints while also training

for the synthesis task. Class category, text description, and image conditioning are all

forms of designed controls, in which the provided input tells us properties of how the

desired output should look.

In contrast, the designed controls presented in this thesis will incorporate spatial

awareness into the model by conditioning on coordinates. This form of control does

not tell the model what content it should produce, but gives it knowledge about

the location within a larger context where the generation process is occurring. As a

result, we can break the synthesis procedure into spatial pieces, and navigate through

continuous 2D space and 3D volumes by applying transformations on these input

coordinates.

One point to note is that emergent control and designed control are not necessarily

mutually exclusive. We can take models trained with designed controls, such as

class-conditional generators, and discover elements of emergent control after model

training. Alternatively, we can also leverage the emergent properties of large models

as a prior and combine them with additional designed objectives to finetune them

towards additional editing behaviors.

1.3 Outline

This works covered in this thesis explore methods for obtaining controllable content

from synthesis models via emergent and designed techniques. Part I focuses on

23

emergent control, in which we can generate image variations using the trained model

as an image prior combined with subsequent learned adaptations to the latent code

input. More specifically:

– Chapter 2 explores creating image variations via latent-space perturbations and

self-supervised objectives. In particular, we study the abilities of a generative

model to fit simple transformations such as camera movements and color changes.

We find that the models reflect the biases of the datasets on which they are trained

(e.g., centered objects), but also exhibit some capacity for generalization, and

we further conduct experiments to quantify the limits of these transformations

and introduce techniques to mitigate these limits.

– Chapter 3 investigates compositional properties in generated imagery, allowing

us to interchange parts of different images using approximate image templates.

We find that combining a trained regressor network and a pretrained generator

provides a strong image prior, allowing us to create composite images from

a collage of disjoint image parts while maintaining global consistency. Our

regression approach enables more localized editing compared to direct editing in

the latent space and also readily extends to a number of related applications,

such as image inpainting or example-based image editing.

In Part II, we design our model to be aware of spatial layout using coordinate

conditioning and geometric transformations during the training process.

– In Chapter 4, we describe continuous-scale training, a process that samples

patches at random scales to train a new generator with variable output resolutions.

This avoids the fixed reoslution training assumption of typical image synthesis,

which resizes training images to a common size while discarding high resolution

information. Conditioning the generator on a target scale allows us to generate

higher resolution images than previously possible, without adding additional

layers to the model. On various natural image domains, we demonstrate arbitrary

scale synthesis with both coherent global layouts and realistic local details.

24

– Chapter 5 builds a model to synthesize unbounded nature scenery while enabling

arbitrarily large camera motion and maintaining a persistent 3D world model.

Our scene representation consists of an extendable, planar scene layout grid,

which can be rendered from arbitrary camera poses via a 3D decoder and volume

rendering, and a panoramic skydome. Based on this representation, we learn

a generative world model solely from single-view internet photos. Our method

enables simulating long flights through 3D landscapes, while maintaining global

scene consistency—for instance, returning to a previously visited camera position

yields the same view of the scene. Our approach enables scene extrapolation

beyond the limited camera ranges of current 3D generative models, while also

supporting a persistent, camera-independent world representation that stands

in contrast to auto-regressive 3D prediction methods.

25

Part I

Emergent Control in Image Synthesis

26

Chapter 2

Natural Image Variations from Latent

Space Manipulations

With minor modifications from:

On the “Steerability" of Generative Adversarial Networks

Ali Jahanian∗, Lucy Chai*, Phillip Isola; ICLR 2020.

Using a pretrained image generator as an image prior, we start by exploring the possible

image variations that the model can create. We define self-supervised objectives using

simple image transformations, and optimize latent vectors to match these targets.

The result is a balance between satisfying the given objective function, while still

maintaining image realism. We quantify the model’s ability to achieve these target

transformations, dependent on the per-class variability present in the training dataset.

2.1 Introduction

Science fiction has long dreamed of virtual realities filled of synthetic content as

rich as, or richer, than the real world (e.g., The Matrix, Ready Player One). While

traditional computer graphics can render photorealistic 3D scenes, they lack the

ability to automatically synthesize detailed content. Generative models like GANs,

∗Equal Contribution

27

- Brightness +

- Rotate2D +

- Rotate3D +

- Zoom +

- Shift Y +

- Shift X +

Figure 2-1: Examples of learned latent space trajectories. These learned manipulation
vectors correspond to visual transformations like camera shift and zoom.

in contrast, can create content from scratch, but we do not currently have tools for

navigating the generated scenes in the same kind of way as you can walk through and

interact with a 3D game engine.

This chapter explores the degree to which you can navigate the visual world of a

GAN. Figure 2-1 illustrates the kinds of transformations we explore. Consider the dog

at the top-left. By moving in some direction of GAN latent space, can we hallucinate

walking toward this dog? As the figure indicates, and as we will show, the answer is

yes. However, as we continue to zoom in, we quickly reach limits. Once the dog face

fills the full frame, continuing to walk in this direction fails to increase the zoom. A

similar effect occurs in the daisy example (row 2 of Fig. 2-1), where a direction in

latent space moves the daisy up and down, but cannot move it out of frame.

We hypothesize that these limits are due to biases in the distribution of images on

which the GAN is trained. For example, if the training dataset consists of centered

dogs and daises, the same may be the case in GAN-generated images. Nonetheless, we

find that some degree of transformation is possible. When and why can we achieve

certain transformations but not others?

In this chapter, we quantify the degree to which we can achieve basic visual

transformations by navigating in GAN latent space. In other words, are GANs

“steerable" in latent space?∗ We analyze the relationship between the data distribution

on which the model is trained and the success in achieving these transformations. From

∗We use the term “steerable" in analogy to the classic steerable filters of Freeman and Adelson
[60].

28

our experiments, it is possible to shift the distribution of generated images to some

degree, but we cannot extrapolate entirely out of the dataset’s support. In particular,

attributes can be shifted in proportion to the variability of that attribute in the

training data. We further demonstrate an approach to increase model steerability by

jointly optimizing the generator and latent direction, together with data augmentation

on training images. One of the current criticisms of generative models is that they

simply interpolate between datapoints, and fail to generate anything truly new, but

our results add nuance to this story. It is possible to achieve distributional shift, but

the ability to create realistic images from a modified distributions relies on sufficient

diversity in the dataset along the dimension that we vary. Our main findings are:

• A simple walk in GAN latent space achieves camera motion and color transfor-

mations in the output image space. These walks are learned in self-supervised

manner without labeled attributes or distinct source and target images.

• The linear walk is as effective as more complex non-linear walks, suggesting that

the models learn to roughly linearize these operations without explicit training.

• We quantify a relationship between dataset variability and how much we can

shift the model distribution.

• The transformations are a general-purpose framework that work with different

model architectures, e.g. BigGAN, StyleGAN, and DCGAN, and illustrate

different disentanglement properties in their respective latent spaces.

• Data augmentation and jointly training the walk trajectory and the generator

weights allows us to achieve larger transformation effects.

2.2 Related Work

Interpolations in latent space. Traditional approaches to image editing with

GAN latent spaces find linear directions that correspond to changes in labeled at-

tributes, such as smile-vectors and gender-vectors for faces [182, 107]. However these

29

manipulations are not exclusive to GANs; in flow-based generative models, linearly

interpolating between two encoded images allow one to edit a source image toward

attributes of the target [116]. Möllenhoff and Cremers [158] proposes a modified GAN

formulation by treating data as directional 𝑘-currents, where moving along tangent

planes naturally corresponds to interpretable manipulations. Upchurch et al. [243]

removes the generative model entirely and instead interpolates in the intermediate

feature space of a pretrained classifier, again using feature mappings of source and

target sets to determine an edit direction. Unlike these approaches, we learn our

latent-space trajectories in a self-supervised manner without labeled attributes or

distinct source and target images. Instead, we learn to approximate editing operations

on individual source images. We find that linear trajectories in latent space can

capture simple image manipulations, e.g., zoom-vectors and shift-vectors, although we

also obtain similar results using nonlinear trajectories.

Dataset bias. Biases from training data and network architecture both impact

generalization capacity in learned models [237, 66, 4]. Dataset biases partly comes

from human preferences in taking photos: we tend to take pictures in “canonical” views

that are not fully representative of the entire visual world [154, 97]. Consequently,

models inherit these biases. This may result in models that misrepresent the given task

– such as tendencies towards texture bias rather than shape bias on ImageNet classifiers

[66] – and in turn limits their generalization performance on similar objectives [7].

Our latent space trajectories transform the output corresponding to various image

editing operations, but ultimately we are constrained by biases in the data and cannot

extrapolate arbitrarily far beyond the data’s support.

Generative models for content creation. The recent progress in generative models

has opened interesting avenues for content creation [19, 107], including applications

that enable users to fine-tune the generated output [217, 292, 10]. A by-product the

current work is enable users to modify image properties by turning a single knob –

the magnitude of the learned transformation in latent space. We further demonstrate

that these image manipulations are not just a simple creativity tool; they also provide

30

us with a window into biases and generalization capacity of these models.

Applications of latent space editing. Image manipulations using generative models

suggest several interesting downstream applications. For example, Denton et al. [46]

learns linear walks corresponding to various facial characteristics – they use these to

measure biases in facial attribute detectors, whereas we study biases in the generative

model that originate from training data. Shen et al. [210] also assumes linear latent

space trajectories and learns paths for face attribute editing according to semantic

concepts such as age and expression, thus demonstrating disentanglement of the

latent space. White [259] suggests approaches to improve the learned manipulations,

such as using spherical linear interpolations, resampling images to remove biases in

attribute vectors, and using data augmentation as a synthetic attribute for variational

autoencoders. Goetschalckx et al. [68] applies a linear walk to achieve transformations

corresponding to cognitive properties of an image. Unlike these works, we do not

require an attribute detector or assessor function to learn the latent space trajectory,

and therefore our loss function is based on image similarity between source and target

images. In addition to linear walks, we explore using non-linear walks parametrized

by neural networks for editing operations.

2.3 Method

Generative models such as GANs [69] learn a mapping function 𝐺 such that 𝐺 : 𝑧 → 𝑥.

Here, 𝑧 is the latent code drawn from a Gaussian density and 𝑥 is an output, e.g., an

image. Our goal is to achieve transformations in the output space by moving in latent

space, as shown in Fig. 2-2. In general, this goal also captures the idea in equivariance,

in which transformations in the input space result in equivalent transformations in

the output space (c.f. Hinton et al. [83], Cohen et al. [41], Lenc and Vedaldi [126]).

2.3.1 Objective

We want to learn an 𝑁 -dimensional vector representing the optimal path in latent

space for a given transformation. The vector is multiplied with continuous parameter

31

Latent Space Image Space

z

αw z + αw
OR

z
f(z)

f(f(f(f(z))))

G(z)
edit(G(z), α)G(z + αw)

Ledit

Linear Nonlinear

Figure 2-2: Learning latent space manipulations. We aim to find a path in 𝑧 space
to transform the generated image 𝐺(𝑧) to its edited version edit(𝐺(𝑧, 𝛼)), e.g., an 𝛼×
zoom. This walk results in the generated image 𝐺(𝑧 + 𝛼𝑤) when we choose a linear walk, or
𝐺(𝑓(𝑓(...(𝑧))) when we choose a non-linear walk.

𝛼 which signifies the step size: large 𝛼 values correspond to a greater degree of

transformation, while small 𝛼 values correspond to a lesser degree. Formally, we learn

the walk 𝑤 by minimizing the objective function:

𝑤* = argmin
𝑤

E𝑧,𝛼[ℒ(𝐺(𝑧+𝛼𝑤), edit(𝐺(𝑧), 𝛼))]. (2.1)

Here, ℒ measures the distance between the generated image after taking an 𝛼-step

in the latent direction 𝐺(𝑧+𝛼𝑤) and the target edit(𝐺(𝑧), 𝛼) derived from the source

image 𝐺(𝑧). We use 𝐿2 loss as our objective ℒ, however we also obtain similar results

when using the LPIPS perceptual image similarity metric [280] (see Appendix A.2.4).

Note that we can learn this walk in a fully self-supervised manner – we perform the

edit(·) operation on an arbitrary generated image and subsequently the vector to

minimize the objective. Let model(𝛼) denote the optimized transformation vector 𝑤*

with the step size 𝛼, defined as model(𝛼) = 𝐺(𝑧 + 𝛼𝑤*).

The previous setup assumes linear latent space walks, but we can also learn non-

linear trajectories in which the walk direction depends on the current latent space

position. For the non-linear walk, we learn a function, 𝑓 *(𝑧), which corresponds to

a small 𝜖-step transformation edit(𝐺(𝑧), 𝜖). To achieve bigger transformations, we

apply 𝑓 recursively, mimicking discrete Euler ODE approximations. Formally, for a

fixed 𝜖, we minimize

ℒ = E𝑧,𝑛[||𝐺(𝑓𝑛(𝑧))− edit(𝐺(𝑧), 𝑛𝜖))||], (2.2)

32

where 𝑓𝑛(·) is an 𝑛th-order function composition 𝑓(𝑓(𝑓(...))), and 𝑓(𝑧) is parametrized

with a neural network. We discuss further implementation details in Appendix A.1.4.

We use this function composition approach rather than the simpler setup of 𝐺(𝑧 +

𝛼NN(𝑧)) because the latter learns to ignore the input 𝑧 when 𝛼 takes on continuous

values, and is thus equivalent to the previous linear trajectory (see Appendix A.1.3

for further details).

2.3.2 Quantifying steerability

We further seek to quantify how well we can achieve desired image manipulations

under each transformation. We compare the distribution of a given attribute, e.g.,

“luminance", in the dataset versus in images generated after walking in latent space.

For color transformations, we consider the effect of increasing or decreasing the 𝛼

coefficient corresponding to each color channel. To estimate the color distribution of

generated images, we randomly sample 𝑁 = 100 pixels per image before and after

taking a step in latent space. Then, we compute the pixel value for each channel, or

the mean RGB value for luminance, and normalize the range between 0 and 1.

For zoom and shift, we rely on an object detector to capture the central object

in the image class. We use a MobileNet-SSD v1 [142] detector to estimate object

bounding boxes, and average over image classes recognizable by the detector. For each

successful detection, we take the highest probability bounding box corresponding to

the desired class and use that to quantify the amount of transformation. For the zoom

operation, we use the area of the bounding box normalized by the area of the total

image. For shift in the X and Y directions, we take the center X and Y coordinates of

the bounding box, and normalize by image width or height.

Truncation parameters (as used in Brock et al. [19], Karras et al. [107]) trade off

between image diversity and sample quality. When comparing generated images to the

dataset distribution, we use the largest possible truncation for the model and perform

similar cropping and resizing of the dataset as done during model training (see Brock

et al. [19]). When comparing the attributes of generated distributions under different

𝛼 magnitudes to each other but not to the dataset, we reduce truncation to 0.5 to

33

ensure better performance of the object detector.

2.3.3 Reducing transformation limits

Equations 2.1 and 2.2 learn a latent space walk assuming a pre-trained generative

model, thus keeping the model weights fixed. The previous approach allows us to

understand the latent space organization and limitations in the model’s transformation

capacity. To overcome these limits, we explore adding data augmentation by editing

the training images with each corresponding transformation, and train the generative

model with this augmented dataset. We also introduce a modified objective function

that jointly optimizes the generator weights and a linear walk vector:

𝐺*, 𝑤* = argmin
𝐺,𝑤

(ℒ𝑒𝑑𝑖𝑡 + ℒ𝐺𝐴𝑁) , (2.3)

where the edit loss encourages low 𝐿2 error between learned transformation and target

image:

ℒ𝑒𝑑𝑖𝑡 = 𝐿2 (𝐺(𝑧+𝛼𝑤)− edit(𝐺(𝑧), 𝛼)) . (2.4)

The GAN loss optimizes for discriminator error:

ℒ𝐺𝐴𝑁 = max
𝐷

(E𝑧,𝛼[𝐷(𝐺(𝑧+𝛼𝑤))]− E𝑥,𝛼[𝐷(edit(𝑥, 𝛼))]) , (2.5)

where we draw images 𝑥 from the training dataset and perform data augmentation

by applying the edit operation on them. This optimization approach encourages the

generator to organize its latent space so that the transformations lie along linear paths,

and when combined with data augmentation, results in larger transformation ranges

which we demonstrate in Sec. 2.4.4

2.4 Experiments

We demonstrate our approach using BigGAN [19], a class-conditional GAN trained on

1000 ImageNet categories. We learn a shared latent space walk by averaging across

34

the image categories, and further quantify how this walk affects each class differently.

We focus on linear walks in latent space for the main text, and show additional results

on nonlinear walks in Sec. 2.4.3 and Appendix A.2.4. We also conduct experiments

on StyleGAN [107], which uses an unconditional style-based generator architecture in

Sec. 2.4.3 and Appendix A.2.5.

2.4.1 What transformations can we achieve in latent space?

- Rotate 2D +
0.09 0.050.05

- Shift Y +
0.58 0.130.21

0.32 0.030.01

- Zoom +

Figure 2-3: Visualizing transformation limits. As we increase the magnitude of 𝑤*, the
operation either does not transform the image any further, or the image becomes unrealisitic.
Below each figure we also indicate the average LPIPS perceptual distance between 200
sampled image pairs of that category. Perceptual distance decreases as we move farther from
the source (center image), which indicates that the images are converging.

We show qualitative results of the learned transformations in Fig. 2-1. By steering

in the generator latent space, we learn a variety of transformations on a given source

image (shown in the center panel of each transformation). Interestingly, several priors

come into play when learning these image transformations. When we shift a daisy

downwards in the Y direction, the model hallucinates that the sky exists on the top of

the image. However, when we shift the daisy up, the model inpaints the remainder of

the image with grass. When we alter the brightness of a image, the model transitions

between nighttime and daytime. This suggests that the model can extrapolate from

the original source image, and still remain consistent with the image context.

However, increasing the step size of 𝛼 reveals that the degree to which we can

achieve each transformation is limited. In Fig. 2-3 we observe two potential failure

35

jellyfish goldfinch
0.0

0.5

1.0

P
er

ce
p
tu

al
D

is
ta

n
ce **

sports car fire engine
0.0

0.2

0.4

P
er

ce
p
tu

al
D

is
ta

n
ce **

volcano alp
0.0

0.5

P
er

ce
p
tu

al
D

is
ta

n
ce **

- Redness +

- Brightness +

- Blueness +

Perceptual
Change

Figure 2-4: Per-class variation on image transformations. Each row shows how a
single latent direction 𝑤* affects two different ImageNet classes. We observe that changes are
consistent with semantic priors (e.g., “Volcanoes" explode, “Alps" do not). Boxplots show
the LPIPS perceptual distance before and after transformation for 200 samples per class.

cases: one in which the the image becomes unrealistic, and the other in which the

image fails to transform any further. When we try to zoom in on a Persian cat,

we observe that the cat no longer increases in size beyond some point, and in fact

consistently undershoots the target zoom. On the other hand, when we try to zoom

out on the cat, we observe that it begins to fall off the image manifold, and does not

become any smaller after some point. Indeed, the perceptual distance (using LPIPS)

between images decreases as we push 𝛼 towards the transformation limits. Similar

trends hold with other transformations: we are able to shift a lorikeet up and down to

some degree until the transformation yields unrealistic output, and despite adjusting

𝛼 on the rotation vector, we are unable to rotate a pizza. Are the limitations to these

transformations governed by the training dataset? We seek to investigate and quantify

these biases in the next sections.

An intriguing characteristic of the learned trajectory is that the amount it affects

the output depends on the image class. In Fig. 2-4, we investigate the impact of the

walk for different image categories under color transformations. By moving in the

direction of a redness vector, we are able to successfully recolor a jellyfish, but we are

unable to change the color of a goldfinch, which remains yellow which slight changes in

36

background textures. Likewise, increasing brightness changes an erupting volcano to a

dormant one, but does not have much effect on Alps, which only transitions between

night and day. In the third example, we use our latent walk to turn red sports cars to

blue, but it cannot recolor firetrucks. Again, perceptual distance over image samples

confirms these qualitative observations: a 2-sample 𝑡-test yields 𝑡 = 20.77, 𝑝 < 0.001

for jellyfish/goldfinch, 𝑡 = 8.14, 𝑝 < 0.001 for volcano/alp, and 𝑡 = 6.84, 𝑝 < 0.001

for sports car/fire engine. We hypothesize that the different impact of the shared

transformation on separate image classes relates to the variability in the underlying

dataset. The overwhelming majority of firetrucks are red, but sports cars appear in a

variety of colors. Therefore, our color transformation is constrained by the dataset

biases of individual classes.

With shifting, we can move the distribution of the center object by varying 𝛼.

In the underlying model, the center coordinate of the object is most concentrated

at half of the image width and height, but after applying the shift in X and shift in

Y transformation, the mode of the transformed distribution varies between 0.3 and

0.7 of the image width/height. To quantify the distribution changes, we compute

the area of intersection between the original model distribution and the distribution

after applying each transformation and observe that the intersection decreases as we

increase or decrease the magnitude of 𝛼. However, our transformations are limited

to a certain extent – if we increase 𝛼 beyond 150 pixels for vertical shifts, we start

to generate unrealistic images, as evidenced by a sharp rise in FID and converging

modes in the transformed distributions (Fig. 2-5 columns 2 & 3).

We perform a similar procedure for zoom, by measuring the area of the bounding

box for the detected object under different magnitudes of 𝛼. Like shift, we observe that

subsequent increases in 𝛼 magnitude start to have smaller and smaller effects on the

mode of the resulting distribution (Fig. 2-5 last column). Past an 8x zoom in or out,

we observe an increase in the FID signifying decreasing image quality. Interestingly

for zoom, the FID under zooming in and zooming out is anti-symmetric, indicating

that how well we can zoom-in and retain realisitic images differs from that of zooming

out. These trends are consistent with the plateau in transformation behavior that we

37

−1 0 1
α

0.0

0.5

1.0

In
te

rs
ec

ti
on

−200 0 200
α

0.0

0.5

1.0
In

te
rs

ec
ti

on

−200 0 200
α

0.0

0.5

1.0

In
te

rs
ec

ti
on

−2.5 0.0 2.5
log(α)

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.0 0.5 1.0
Pixel Intensity

0.0

0.5

1.0

P
D

F

×10−2

0.0 0.5 1.0
Center X

0

1

2

P
D

F

×10−2

0.0 0.5 1.0
Center Y

0

1

2

3

4

P
D

F

×10−2

0.0 0.5 1.0
Area

0

1

2

3

P
D

F

×10−5

−1 0 1
α

20

40

F
ID

−200 0 200
α

20

40

F
ID

−200 0 200
α

20

40

F
ID

−2.5 0.0 2.5
log(α)

20

40

F
ID

model

α=-1.0

α=-0.75

α=-0.5

α=-0.25

α=0.25

α=0.5

α=0.75

α=1.0

model

α=-200

α=-150

α=-100

α=-50

α=50

α=100

α=150

α=200

model

α=-200

α=-150

α=-100

α=-50

α=50

α=100

α=150

α=200

model

α=0.0625

α=0.125

α=0.25

α=0.5

α=2.0

α=4.0

α=8.0

α=16.0

Luminance Shift X Shift Y Zoom

Figure 2-5: Quantifying the extent of transformations. We compare the attributes of
generated images under the raw model output 𝐺(𝑧), compared to the distribution under a
learned transformation model(𝛼). We measure the intersection between 𝐺(𝑧) and model(𝛼),
and also compute the FID on the transformed image to limit our transformations to the
natural image manifold.

qualitatively observe in Fig. 2-3. Although we can arbitrarily increase the 𝛼 step size,

after some point we are unable to achieve further transformation and risk deviating

from the natural image manifold.

2.4.2 How does the data affect the transformations?

Is the extent to which we can transform each class, as we observed in Fig. 2-4, due to

limited variability in the underlying dataset for each class? One way of quantifying this

is to measure the difference in transformed model means, model(+𝛼) and model(-𝛼),

and compare it to the spread of the dataset distribution. For each class, we compute

standard deviation of the dataset with respect to our statistic of interest (pixel

RGB value for color, and bounding box area and center value for zoom and shift

transformations respectively). We hypothesize that if the amount of transformation

38

is biased depending on the image class, we will observe a correlation between the

distance of the mean shifts and the standard deviation of the data distribution.

Concretely, we define the change in model means under a given transformation as:

Δ𝜇𝑘 = 𝜇𝑘,model(+𝛼*) − 𝜇𝑘,model(-𝛼*) (2.6)

for a given class 𝑘 and we set 𝛼* to be largest and smallest 𝛼 values used in training.

The degree to which we achieve each transformation is a function of 𝛼, so we use

the same 𝛼 value for all classes – one that is large enough to separate the means of

𝜇𝑘,model(𝛼*) and 𝜇𝑘,model(-𝛼*) under transformation, but also for which the FID of the

generated distribution remains below a threshold 𝑇 of generating reasonably realistic

images (for our experiments we use 𝑇 = 22).

In Fig. 2-6 we plot the standard deviation 𝜎 of the dataset on the x-axis, and the

model Δ𝜇 under a +𝛼* and −𝛼* transformation on the y-axis, as defined in Eq. 2.6.

We sample randomly from 100 classes for the color, zoom and shift transformations,

and generate 200 samples of each class under the positive and negative transformations.

We use the same setup of drawing samples from the model and dataset and computing

the statistics for each transformation as described in Sec. 2.4.1.

Indeed, we find that the width of the dataset distribution, captured by the standard

deviation of random samples drawn from the dataset for each class, relates to how much

we can transform. There is a positive correlation between the spread of the dataset and

the magnitude of Δ𝜇 observed in the transformed model distributions, and the slope

of all observed trends differs significantly from zero (𝑝 < 0.001 for all transformations).

For the zoom transformation, we show examples of two extremes along the trend. For

the “robin” class the spread 𝜎 in the dataset is low, and subsequently, the separation

Δ𝜇 that we are able to achieve by applying +𝛼* and −𝛼* transformations is limited.

On the other hand, for “laptops”, the dataset spread is broad, and we are able to

attain wider shifts in the model distribution.

From these results, we conclude that the amount of transformation we can achieve

relates to the dataset variability. Consistent with our qualitative observations in

39

- Zoom +

ZoomShift YShift XLuminance

R
o

b
in

L
a

p
to

p

0.0 0.5 1.0
Area

0.0

2.5

P
(A

)

×10−5

0.0 0.5 1.0
Area

0.0

2.5

P
(A

)

×10−5

0.2 0.3
Data σ

0.0

0.1

0.2

0.3

M
od

el
∆

µ

r = 0.37
p < 0.001

0.05 0.10 0.15
Data σ

0.1

0.2

0.3

M
od

el
∆

µ

r = 0.39
p < 0.001

0.1 0.2
Data σ

0.0

0.1

0.2

0.3

M
od

el
∆

µ

r = 0.28
p < 0.001

0.20 0.25 0.30
Data σ

0.1

0.2

M
od

el
∆

µ

r = 0.59
p < 0.001

Figure 2-6: Understanding per-class biases. We observe a correlation between the
variability in the training data for ImageNet classes, and our ability to shift the distribution
under latent space transformations. Classes with low variability (e.g., robin) limit our ability
to achieve desired transformations, in comparison to classes with a broad dataset distribution
(e.g., laptop). To the right, we show the distribution of the zoom attribute in the dataset
(black) and under +𝛼 (red) and −𝛼 (green) transformations for these two examples.

Fig. 2-4, we find that if the images for a particular class have adequate coverage over

the entire range of a given transformation, then we are better able to move the model

distribution to both extremes. On the other hand, if the images for a given class are

less diverse, the transformation is limited by this dataset bias.

2.4.3 Alternative architectures and walks

- Zoom + - Zoom +
2x 4x

Linear Lpips

8x1x0.5x0.25x0.125x 2x 4x 8x1x0.5x0.25x0.125x

Linear L2 Non-linear L2

Non-linear Lpips

Figure 2-7: Comparison of linear and nonlinear walks. For the zoom operation, the
linear walk undershoots the targeted level of transformation, but maintains more realistic
output.

40

We ran an identical set of experiments using the nonlinear walk in the BigGAN

latent space (Eq 2.2) and obtained similar quantitative results. To summarize, the

Pearson’s correlation coefficient between dataset 𝜎 and model Δ𝜇 for linear walks and

nonlinear walks is shown in Table 2.1, and full results in Appendix A.2.4. Qualita-

tively, we observe that while the linear trajectory undershoots the targeted level of

transformation, it is able to preserve more realistic-looking results (Fig. 2-7). The

transformations involve a trade-off between minimizing the loss and maintaining

realistic output, and we hypothesize that the linear walk functions as an implicit

regularizer that corresponds well with the inherent organization of the latent space.

Luminance Shift X Shift Y Zoom
Linear 0.59 0.28 0.39 0.37

Non-linear 0.49 0.49 0.55 0.60

Table 2.1: Per-class correlation between data and model variability. Pearson’s
correlation coefficient between dataset 𝜎 and model Δ𝜇 for measured attributes. p-value for
slope < 0.001 for all transformations.

- Luminance +

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

×10−2

model

α=-1.0

α=-0.75

α=-0.5

α=-0.25

α=0.25

α=0.5

α=0.75

α=1.0

- Redness +

- Blueness +

- Greenness +

Figure 2-8: Transformations in an alternative model and latent space. Distribution
for luminance transformation learned from the StyleGAN cars generator, and qualitative
examples of color transformations on various datasets using StyleGAN.

To test the generality of our findings across model architecture, we ran similar

experiments on StyleGAN, in which the latent space is divided into two spaces, 𝑧 and

𝑊 . As Karras et al. [107] notes that the 𝑊 space is less entangled than 𝑧, we apply

the linear walk to 𝑊 and show results in Fig. 2-8 and Appendix A.2.5. One interesting

aspect of StyleGAN is that we can change color while leaving other structure in

the image unchanged. In other words, while green faces do not naturally exist in

the dataset, the StyleGAN model is still able to generate them. This differs from

the behavior of BigGAN, where changing color results in different semantics in the

41

image, e.g., turning a dormant volcano to an active one. StyleGAN, however, does

not preserve the exact geometry of objects under other transformations, e.g., zoom

and shift (see Appendix A.2.5).

2.4.4 Towards steerable GANs

So far, we have frozen the parameters of the generative model when learning a latent

space walk for image editing, and observe that the transformations are limited by

dataset bias. Here we investigate approaches to overcome these limitations and increase

model steerability. For these experiments, we use a class-conditional DCGAN model

[182] trained on MNIST digits [124].

To study the effect of dataset biases, we train (1) a vanilla DCGAN and (2) a

DCGAN with data augmentation, and then learn the optimal walk in Eq. 2.1 after

the model has been trained – we refer to these two approaches in Fig. 2-9 as argmin

W and argmin W + aug, respectively. We observe that adding data augmentation

yields transformations that better approximate the target image and attain lower 𝐿2

error than the vanilla DCGAN (blue and orange curves in Fig. 2-9). Qualitatively, we

observe that transformations using the vanilla GAN (argmin W) become patchy and

unrealistic as we increase the magnitude of 𝛼, but when the model is trained with

data augmentation (argmin W + aug), the digits retain their structural integrity.

Rather than learning the walk vector 𝑤 assuming a frozen generator, we may also

jointly optimize the model and linear walk parameter together, as we formalized in

Eq. 2.3. This allows the model to learn an equivariance between linear directions

in the latent space and the corresponding image transformations. We refer to this

model as argmin G,W in Fig. 2-9. Compared to the frozen generator (in argmin W

and argmin W + aug), the joint objective further decreases 𝐿2 error (green curve in

Fig. 2-9). We show additional qualitative examples in Appendix A.2.8. The steerable

range of the generator increases with joint optimization and data augmentation, which

provides additional evidence that training data bias impacts the models’ steerability

and generalization capacity. We tried DCGAN on CIFAR10 as a more complicated

dataset, however were unable to get steering to be effective – all three methods failed

42

to produce realistic transformations and joint training in fact performed the worst.

Finding the right steering implementation per GAN and dataset, especially for joint

training, may be a difficult problem and an interesting direction for future work.

�20 0 20
↵

0.0

0.1

0.2

0.3

L
2

E
rr

or argmin�W
argmin�W�+�aug�

argmin�G,W�

Rotate 2D

�0.5 0.0 0.5
log(↵)

0.0

0.1

0.2

0.3

L
2

E
rr

or

Zoom

�5 0 5
↵

0.0

0.1

0.2

0.3

L
2

E
rr

or

Shift X

argmin W
argmin W + aug

argmin G,W

20 0 20
↵

0.0

0.1

0.2

0.3

L
2

E
rr

or argmin�W
argmin�W�+�aug�

argmin�G,W�

Figure 2-9: Reducing the effect of transformation limits. Using DCGAN trained on
MNIST digits, we compare the 𝐿2 reconstruction errors on latent space walks for models
trained with vanilla GANs without (argmin W) and with data augmentation (argmin W +
aug). We also compare to jointly optimizing the generator and the walk parameters with
data augmentation (argmin G,W), which achieves the lowest 𝐿2 error.

2.5 Conclusion

GANs are powerful generative models, but are they simply replicating the existing

training datapoints, or can they to generalize beyond the training distribution? We

investigate this question by exploring walks in the latent space of GANs. We optimize

trajectories in latent space to reflect simple image transformations in the generated

output, learned in a self-supervised manner. We find that the model is able to

exhibit characteristics of extrapolation – we are able to “steer" the generated output

to simulate camera zoom, horizontal and vertical movement, camera rotations, and

recolorization. However, our ability to naively move the distribution is finite: we

can transform images to some degree but cannot extrapolate entirely outside the

support of the training data. To increase model steerability, we add data augmentation

during training and jointly optimize the model and walk trajectory. Our experiments

illustrate the connection between training data bias and the resulting distribution of

generated images, and suggest methods for extending the range of images that the

models are able to create.

43

44

Chapter 3

Exemplar-based Control via

Compositionality in Latent Space

With minor modifications from:

Using latent space regression

to analyze and leverage compositionality in GANs.

Lucy Chai, Jonas Wulff, Phillip Isola; ICLR 2021.

Learned vectors in latent space can transform generated content according to natural

image variations, but each transformation requires a separate objective function and

training process. In this chapter, we unify various image transformations under a

single framework. Our method takes as input an approximate template of our desired

result, and uses the priors of a pretrained generator to rectify this template into a

realistic outcome. Unlike applying vectors in latent space, which can only change the

magnitude of the target transformation, this method allows us to achieve diverse and

multimodal editing behaviors using just a single trained model and image exemplars.

3.1 Introduction

Natural scenes are comprised of disparate parts and objects that humans can easily

segment and interchange [14]. Recently, unconditional generative adversarial networks

45

Compose

⊗

Image Composition Attribute Editing

Multimodal EditingImage Completion
⊗

⊗ ⊗

⊗

Compose⊗

Figure 3-1: Exemplar-based image editing with latent regression. Simple latent
regression on a fixed, pretrained generator can perform a number of image manipulation
tasks based on single examples without requiring labelled concepts during training. We use
this to probe the ability of GANs to compose scenes from image parts, suggesting that a
compositional representation of objects and their properties exists already at the level of the
latent code ∗.

[106, 109, 107, 182] have become capable of mimicking the complexity of natural

images by learning a mapping from a latent space noise distribution to the image

manifold. But how does this seemingly unstructured latent space produce a strikingly

realistic and structured scene? Here, we use a latent regressor to probe the latent

space of a pretrained GAN, allowing us to uncover and manipulate the concepts that

GANs learn about the world in an unsupervised manner.

For example, given a church image, is it possible to swap one foreground tree for

another one? Given only parts of the building, can the missing portion be realistically

filled? To achieve these modifications, the generator must be compositional, i.e.,

understanding discrete and separate representations of objects. We show that the

pretrained generator – without any additional interventions – already represents these

compositional properties in its latent code. Furthermore, these properties can be

manipulated using a regression network that predicts the latent code of a given image.

The pixels of this image then provide us with an intuitive interface to control and

modify the latent code. Given the modified latent code, the network then applies

image priors learned from the dataset, ensuring that the output is always a coherent

scene regardless of inconsistencies in the input (Fig. 3-1).

Our approach is simple – using a fixed pretrained generator, we train a regressor

network to predict the latent code from an input image, while adding a masking

46

modification to learn to handle missing pixels. To investigate the GAN’s ability

to produce a globally coherent version of a scene, we hand the regressor a rough,

incoherent template of the scene we desire, and use the two networks to convert it

into a realistic image. Even though our regressor is never trained on these unrealistic

templates, it projects the given image into a reasonable part of the latent space, which

the generator maps onto the image manifold. This approach requires no labels or

clustering of attributes; all we need is a single example of approximately how we

want the generated image to look. It only requires a forward pass of the regressor

and generator, so there is low latency in obtaining the output image, unlike iterative

optimization approaches that can require upwards of a minute to reconstruct an image.

We use the regressor to investigate the compositional capabilities of pretrained

GANs across different datasets. Using input images composed of different image parts

(“collages”), we leverage the generator to recombine this unrealistic content into a

coherent image. This requires solving three tasks simultaneously – blending, alignment,

and inpainting. We then investigate the GAN’s ability to independently vary localized

portions of a given image. In summary, our contributions are:

• We propose a latent regression model that learns to perform image reconstruction

even in the case of incomplete images and missing pixels and show that the

combination of regressor and generator forms a strong image prior.

• Using the learned regressor, we show that the representation of the generator is

already compositional in the latent code, without having to resort to intermediate

layer activations.

• There is no use of labelled attributes nor test-time optimization, so we can edit

images based on a single example of the desired modification and reconstruct in

real-time.

• We use the regressor to probe what parts of a scene can vary independently,

and investigate the difference between image mixing using the encoder and

interpolation in latent space.

47

• The same regressor setup can be used for a variety of other image editing appli-

cations, such as multimodal editing, scene completion, or dataset rebalancing.

3.2 Related Work

Image inversion. Given a target image, the GAN inversion problem aims to recover

a latent code which best generates the target. Image inversion comes with a number

of challenges, including 1) a complex optimization landscape and 2) the generator’s

inability to reconstruct out-of-domain images. To relax the domain limitations of the

generator, one possibility is to invert to a more flexible intermediate latent space [1], but

this may allow the generator to become overly flexible and requires regularization so the

recovered latent code does not deviate too far from the latent manifold [179, 291, 262].

An alternative to increasing the generator’s flexibility is to learn an ensemble of latent

codes that approximate a target image when combined [72]. Due to challenging

optimization, the quality of inversion depends on good initialization. A number of

approaches use a hybrid of a latent regression network to provide an initial guess of the

latent code with subsequent optimization of the latent code [11, 74] or the generator

weights [292, 12, 170], while Huh et al. [92] investigates gradient-free approaches for

optimization. Besides inverting whole images, a different use case of image inversion

through a generator is to complete partial scenes. When using optimization, this is

achieved by only measuring the reconstruction loss on the known pixels [17, 72, 2],

whereas in feed-forward methods, the missing region must be provided explicitly to

the model. Rather than inverting to the latent code of a pretrained generator, one

can train the generator and encoder jointly, based on modifications to the Variational

Autoencoder [115]. Donahue et al. [50], Donahue and Simonyan [49], Dumoulin et al.

[51] use this setup to investigate the properties of latent representations learned during

training, while Pidhorskyi et al. [178] and Heljakka et al. [80] demonstrate a joint

learning method that can achieve comparable image quality to recent GANs. In our

work, we investigate the emergent priors of a pretrained GAN using a masked latent

regression network as an approximate image inverter. While such a regressor has lower

48

reconstruction accuracy than optimization-based techniques, its lower latency allows

us to investigate the learned priors in a computationally efficient way and edit images

in real-time using such priors.

Composition in image domains. To join segments of disparate image sources

into one cohesive output, early works use hand-designed features, such as Laplacian

pyramids for seamless blending [22]. Hays and Efros [78] and Isola and Liu [95] employ

nearest-neighbor approaches for scene composition and completion. More recently, a

number of deep network architectures have been developed for compositional tasks.

For discriminative tasks, Tabernik et al. [230] and Kortylewski et al. [119] train CNNs

with modified compositional architectures to understand model interpretability and

reason about object occlusion in classification. For image synthesis, Mokady et al.

[157] and Press et al. [181] use an autoencoder to encode, disentangle, and swap

properties between two sets of images, while Shocher et al. [215] mixes images in deep

feature space while training the generator. Rather than creating models specifically

for image composition or scene completion objectives, we investigate the ability of a

pre-trained GAN to mix-and-match parts of its generated images. Related to our work,

Besserve et al. [13] estimates the modular structure of GANs by learning a causal

model of latent representations, whereas we investigate the GAN’s compositional

properties using image inversion. Due to the imprecise nature of image collages,

compositing image parts also involves inpainting misaligned regions. However, in

contrast to inpainting, in which regions have to be filled in otherwise globally consistent

images [176, 93, 272, 276], the composition problem involves correcting inconsistencies

as well as filling in missing pixels.

Image editing. A recent topic of interest is editing images using generative models.

A number of works propose linear attribute vector editing directions to perform image

manipulation operations [68, 98, 210, 116, 107, 182]. It is also possible to identify

concepts learned in the generator’s intermediate layers by clustering intermediate

representations, either using segmentation labels [10] or unsupervised clustering [42],

49

and change these representations to edit the desired concepts in the output image.

Suzuki et al. [229] use a spatial feature blending approach which mixes properties of

target images in the intermediate feature space of a generator. On faces, editing can

be achieved using a 3D parametric model to supervise the modification [233, 234]. In

our work, we do not require clusters or concepts in intermediate layers to be defined a

priori, nor do we need distinct input and output domains for approximate collages

and real images, as in image translation tasks [293, 3]. Unlike image manipulation

using semantic maps [172, 73], our approach respects the style of the manipulation

(e.g. the specific color of the sky), which is lost in the semantic map representation.

Our method shares commonalities with Richardson et al. [188], although we focus on

investigating compositional properties rather than image-to-image translation. In our

approach, we only require a single example of the approximate target property we

want to modify and use regression into the latent space as a fast image prior to create

a coherent output. This allows us to create edits that are not contingent on labelled

concepts, and we do not need to modify or train the generator.

3.3 Method

3.3.1 Latent code recovery in GANs

GANs provide a mapping from a predetermined input distribution to a complex output

distribution, e.g. from a standard normal 𝒵 to the image manifold 𝒳 , but they are not

easily invertible. In other words, given an image sample from the output distribution,

it is not trivial to recover the sample from the input distribution that generated it.

The image inversion objective aims to find the latent code 𝑧 of GAN 𝐺 that best

recovers the desired target image 𝑥:

𝑧* = argmin
𝑧
(dist(𝐺(𝑧), 𝑥)), (3.1)

using some metric of image distance dist, such as pixel-wise 𝐿1 error or a metric based

on deep features. This objective can be solved iteratively, using L-BFGS [138] or

50

other optimizers. However, iterative optimization is slow – it takes a large number

of iterations to converge, is prone to local minima, and must be performed for each

target image 𝑥 independently.

An alternative way of recovering the latent code 𝑧 is to train a neural network

to directly predict it from a given image 𝑥. In this case, the recovered latent code is

simply the result of a feed-forward pass through a trained regressor network, 𝑧* = 𝐸(𝑥),

where 𝐸 can be used for any 𝑥 ∈ 𝒳 . To train the regressor (or encoder) network 𝐸,

we use the latent encoder loss

ℒ = E𝑧∼𝑁(0,1), 𝑥=𝐺(𝑧)

[︀
||𝑥−𝐺(𝐸(𝑥))||22 + ℒ𝑝(𝑥,𝐺(𝐸(𝑥))) + ℒ𝑧(𝑧, 𝐸(𝑥))

]︀
. (3.2)

We sample 𝑧 randomly from the latent distribution, and pass it through a pretrained

generator 𝐺 to obtain the target image 𝑥 = 𝐺(𝑧). Between the target image 𝑥 and

the recovered image 𝐺(𝐸(𝑥)), we use a mean square error loss to guide reconstruction

and a perceptual loss ℒ𝑝 [281] to recover details. Between the original latent code 𝑧

and the recovered latent code 𝐸(𝑥), we use a latent recovery loss ℒ𝑧. We use mean

square error or a variant of cosine similarity for latent recovery, depending on the

GAN’s input normalization. Additional details can be found in Supp. Sec. B.1.1.

Throughout this paper the generators are frozen, and we only optimize the weights

of the encoder 𝐸. When using ProGAN [106], we train the encoder network to directly

invert to the latent code 𝑧. For StyleGAN [109], we encode to an expanded 𝒲+ latent

space [1]. Once trained, the output of the latent regressor yields a latent code such

that the reconstructed image looks perceptually similar to the target image.

3.3.2 Learning with missing data

When investigating the effect of localized parts of the input images, we might want

to treat some image regions explicitly as “unknown”, either to create buffer zones to

avoid seams between different pasted parts or to explicitly let the image prior fill in

unknown regions. In optimization approaches using Eqn. 3.1, this can be handled by

optimizing only over the known pixels. However, a regressor network cannot handle

51

Masked Inverted Masked Inverted
ProGAN Living Room

Masked Inverted Masked Inverted
StyleGAN Car

Figure 3-2: Image completions using the latent space regressor. Given a partial
image, a masked regressor realistically reconstructs the scene in a way that is consistent with
the given context. The completions (“Inverted”) can vary depending on the exposed context
region of the same input.

this naively – it cannot distinguish between unknown pixels and known pixels, and

will try to fit the values of the unknown pixels. This can be mitigated with a small

modification to the regression network, by indicating which pixels are known versus

unknown as input (Fig. 3-3):

ℒ = E𝑧∼𝑁(0,1), 𝑥=𝐺(𝑧)||𝑥−𝐺(𝐸(𝑥𝑚,𝑚))||22 + ℒ𝑝(𝑥,𝐺(𝐸(𝑥𝑚,𝑚))) + ℒ𝑧(𝑧, 𝐸(𝑥𝑚,𝑚)) (3.3)

Instead of taking an image 𝑥 as input, the encoder takes a masked image 𝑥𝑚 and a

mask 𝑚, where 𝑥𝑚 = 𝑥 ⊗ 𝑚, and 𝑚 is an additional channel of input. Intuitively,

this masking operation is analogous to “dropout” [227] on pixels – it encourages the

encoder to learn a flexible way of recovering a latent code that still allows the generator

to reconstruct the image. Thus, given only partial images as input, the encoder is

encouraged to map from the known pixels to a latent code that is semantically

consistent with the rest of the image. This allows the generator to reproduce an image

that is both likely under its prior and consistent with the observed region.

To obtain the masked image during training we take a small patch of random

uniform noise 𝑢, upsample this noise to the full resolution using bilinear interpolation,

and mask out all pixels where the upsampled noise is smaller than a sampled threshold

𝑡 ∼ 𝒰(0, 1) to simulate arbitrarily shaped mask boundaries. However, at test time,

the exact form of the mask does not matter – the mask simply indicates where the

generator should try to reconstruct or inpaint, and does not distinguish between the

different image parts of the input (additional details in Supp. Sec. B.1.1 and B.2.3).

The regressor and generator pair enforces global coherence: when we obscure or

52

modify parts of the input, the generator will create an output that is still overall

consistent. By masking out arbitrary parts of the image (Eqn. 3.3), we allow the

GAN to imagine a realistic completion of the missing pixels, which can vary based

on the given context (Fig. 3-2). This suggests that the regressor inherently learns an

unsupervised object representation, allowing it to complete objects from only partial

hints even though the generator and regressor are never provided with structured

concept labels during training.

3.3.3 Image composition using latent regression

The regressor 𝐸 and generator 𝐺 form an image prior to project any input image

𝑥input onto the manifold of generated images 𝒳 , even if 𝑥input /∈ 𝒳 . We leverage this to

investigate the compositional properties of the latent code. We extract parts of images

(either generated by 𝐺 or from real images), and combine them to form a collaged

image 𝑥clg. This extraction process does not need to be precise and can have obvious

seams and missing pixels. At the same time, while 𝑥clg is often not realistic, our

encoder is aware of these missing pixels and can properly process them, as described

in Sec. 3.3.2. We can therefore use the 𝐸 and 𝐺 to blend the seams and produce a

realistic composite output. To create 𝑥clg, we sample base images 𝑥𝑖 and masks mask𝑖,

and combine them via union; once we have formed the collage 𝑥clg, we reproject via

the regressor and generator to obtain the composite 𝑥𝑟𝑒𝑐:

𝑥clg =
⋃︁
𝑖

mask𝑖 ⊗ 𝑥𝑖;

𝑥rec = 𝐺(𝐸(𝑥clg,∪𝑖mask𝑖)).

(3.4)

Note that each mask𝑖 used to extract individual image parts in Eqn. 3.4 is not available

to the encoder, only the union is provided in the form of a binary mask. Also, the

regressor is trained solely for the latent recovery objective (Eqn. 3.3) and has never

seen collaged images during training. To automate the process of extracting masked

images, we use a pretrained segmentation network [265] and sample from the output

classes (see Supp. Sec. B.1.2). However, the masked regressor is agnostic to how image

53

̂zx

loss function

E G

m

⊗
̂x

Figure 3-3: Latent regression network
training. The latent space regressor 𝐸 to
predict the latent code 𝑧 that, when passed
through a fixed generator, reconstructs input
𝑥. At training and test time, we can also
modify the encoder input with additional
binary mask 𝑚 (Eqn. 3.3). Inference requires
only a forward pass and the input 𝑥 can
be unrealistic, as the encoder and generator
serve as a prior to map the image back to
the image manifold.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
 FID (Realism)

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

M
as

ke
d

L1
 (R

ec
on

st
ru

ct
io

n)

ProGAN Church

ProGAN Living Room

ProGAN CelebA-HQ

StyleGAN Church

StyleGAN Car

StyleGAN FFHQ

Ideal
Composition

Figure 3-4: Tradeoffs in realism and re-
construction. Composition of unrealistic
input collages is a balance of two factors:
we want to reconstruct the input (low 𝐿1),
but still retain realistic images (low FID).
Using automatic collages of synthesized im-
age parts, we plot this tradeoff of masked
𝐿1 error between the input collages and out-
put composites, and FID change between the
output composites and re-encoded images on
different image domains.

parts are extracted; we also experiment with a saliency network [140], approximate

rectangles, and user-defined masks in Supp. Sec. B.2.1 and B.2.4.

3.4 Experiments

Using pre-trained Progressive GAN [106] and StyleGAN2 [109] generators, we conduct

experiments on CelebA-HQ and FFHQ faces and LSUN cars, churches, living rooms,

and horses to investigate the compositional properties that GANs learn from data.

3.4.1 Image composition from approximate collages

The masked regressor and the pretrained GAN form an image prior which converts

unrealistic input images into realistic scenes while maintaining properties of the input

image. We use this property to investigate the ability of GANs to recombine synthesized

collages; i.e., to join parts of different input images into a coherent composite output

image. The goal of a truly “compositional” GAN would be to both preserve the input

parts and unify them realistically in the output. As we do not have ground-truth

54

composite images, we create them automatically using randomly extracted image

parts. The regressor and generator must then simultaneously 1) blend inconsistencies

between disparate image parts 2) correct misalignments between the parts and 3)

inpaint missing regions, balancing global coherence of the output image with its

similarity to the input collage.

Using extracted and combined image parts (Eqn. 3.4), we show qualitative examples

of these input collages and the corresponding generated composite across a variety

of domains (Fig. 3-5); note that the inputs are not realistic, often with imperfect

detections and misalignments. However, the learned image prior from the generator

and encoder fixes these inconsistencies to create realistic outputs.

To measure the tradeoff between the networks’ ability to preserve the input and

the realism of the composite image, we compute masked 𝐿1 distance as a metric of

reconstruction (lower is better)

avg(𝑚⊗ |𝑥−𝐺(𝐸(𝑥,𝑚))|) (3.5)

and FID score [82] over 50k samples as a metric of image quality (lower is better).

To isolate the realism of the composite image from the regressor network’s native

reconstruction capability (i.e. the ability to recreate a single image generated by G), we

compare the difference in FID between the reconstructed composites (𝑥𝑟𝑒𝑐 in Eqn. 3.4),

and re-encoded images 𝐺(𝐸(𝐺(𝑧)). In Fig. 3-4, we plot these two metrics for both

ProGAN and StyleGAN across various dataset domains. Here, an ideal composition

would attain zero 𝐿1 error (perfect reconstruction of the input) and zero FID increase

(preserves realism), but this is impossible, hence the generators demonstrate a balance

of these two ideals along a Pareto front. Full results on FID, density & coverage [161],

and 𝐿1 reconstruction error and more random samples are in Supp. Sec. B.2.4.

3.4.2 Compositional properties across architectures

Given approximate and unrealistic input collages, the combination of regressor and

generator imposes a strong image prior, thereby correcting the output so that it

55

Input Composite Input Composite
ProGAN Church

Input Composite Input Composite
StyleGAN Car

Input Composite Input Composite
ProGAN Living Room

Input Composite Input Composite
StyleGAN FFHQ

Figure 3-5: Image collaging under a generative prior. Trained only on a masked
reconstruction objective, a regressor into the latent space of a pretrained GAN allows the
generator to recombine components of its generated images, despite strong misalignments
and missing regions in the input. Here, we show automatically generated collaged inputs
from extracted image parts and the corresponding outputs of the generators.

becomes realistic. How much does the pretrained GAN and the regression network

each contribute to this outcome? Here, we investigate a number of different image

reconstruction methods spanning three major categories: autoencoder architectures

without a pretrained GAN, optimization-based methods of recovering a GAN latent

code without an encoder, and encoder-based methods paired with a pretrained GAN.

For comparison, we use the same set of collages to compare the methods, generated

from parts of random real images of the church and face domains. As some methods

take several minutes to reconstruct a single image, we use 200 collages for each domain.

Due to the smaller sample size, we use density here as a measure of realism (higher is

better), which measures proximity to the real-image manifold [161] and compare to

𝐿1 reconstruction (Eqn. 3.5); a perfect composite has high density and low 𝐿1. We

report additional metrics in Tab. B.3-B.4.

For the church domain, we first compare to autoencoding methods that train the

generator and encoder portions jointly: DIP [242], Inpainting [272], CycleGAN [293],

and SPADE [172]. For iterative optimization methods using only the pretrained

generator, we compare direct LBFGS optimization of the latent code [138], Multi-

Code Prior [72], and StyleGAN projection [107]. Third, we use our regressor network to

directly predict the latent code in a feed-forward pass (Encode), and additionally further

optimize the predicted latent to decrease reconstruction error (Enc+LBFGS). We

56

0.0 0.5 1.0 1.5 2.0
Density (Realism)

0.00

0.10

0.20

0.30

0.40

0.50

M
as

ke
d

L1
 (R

ec
on

st
ru

ct
io

n)

Inputs

DIP

CycleGAN

SPADE

Ours: ProGAN
Encode

ProGAN
Enc+LBFGS

ProGAN
LBFGS

Ours: StyleGAN
Encode

StyleGAN
Enc+LBFGS

StyleGAN
LBFGS

Multi
Code
Prior

StyleGAN
Projection

Inpaint Ideal
Composition

Churches

Input
Autoencoder
GAN
GAN+Encoder
GAN+Enc+Opt

0.0 0.5 1.0 1.5 2.0
Density (Realism)

0.00

0.10

0.20

0.30

0.40

0.50

M
as

ke
d

L1
 (R

ec
on

st
ru

ct
io

n)

Inputs

Im2Style
GAN

ALAE
Ours: ProGAN
Encode

Ours: StyleGAN
EncodeMasked PSP

In-domain
Encoder

In-domain
Diffusion

Inpaint Ideal
Composition

Faces

Input
Autoencoder
GAN
GAN+Encoder
GAN+Enc+Opt

Figure 3-6: Realism/reconstruction tradeoff for method variations. Comparing
reconstruction of image collages (masked 𝐿1) to realism of the generated outputs on random
church collages (left) and face collages (right) across different image reconstruction methods,
broadly characterized as autoencoders, GAN-based optimization, GANs with an encoder to
perform latent regression, and a combination of GAN, regression, and optimization. An ideal
composition has low 𝐿1 and high density (close to real image manifold), and each method
exhibits different tradeoffs in reconstruction and realism.

provide additional details on each method in Supplementary Sec. B.2.4. Qualitatively,

the different methods have varying degrees of realism when trying to reconstruct

unrealistic input collages (we show examples in Supp. Fig. B-10); optimization-based

methods such as Deep Image Prior, Multi-Code Prior, and StyleGAN projection

tend to overfit and lead to unrealistic reconstructions with low density, whereas

segmentation-based methods such as SPADE are not trained to reconstruct the input,

leading to high 𝐿1. Our StyleGAN encoder yields the most realistic composites with

highest density, at the cost of distorting the unrealistic inputs. Fig 3-6-(left) illustrates

this compositional tradeoff, where the encoder based methods perform slightly worse

in 𝐿1 reconstruction compared to optimization approaches, but maintain more realistic

output and can reconstruct with lower computational time.

On the face domain, we compare the realism/reconstruction tradeoff of compos-

ite outputs of optimization-based Im2StyleGAN [1], Inpainting [272], autoencoder

ALAE [178], and different regression networks including In-Domain Inversion [291],

Pixel2Style2Pixel [188], and our regressor networks. We show qualitative examples

in Supplementary Fig. B-11 and a comparison of reconstruction 𝐿1 and density in

Fig. 3-6-(right): our ProGAN and StyleGAN masked encoders can maintain closer

proximity to the real image manifold (higher density) compared to the alternative

methods, with much faster inference time compared to optimization-based methods

57

such as Im2StyleGAN. On these same inputs, ALAE exhibits interesting compositional

properties and is qualitatively able to correct misalignments in face patches, but the

density of generated images is lower than that of the pretrained GANs. Again, no

method can achieve both reconstruction and realism perfectly due to the imprecise

nature of the input, and each method balances these factors differently.

3.4.3 How does composition differ from interpolation?

Combining images in pixel space and using the encoder bottleneck to rectify the

input is only one way that a generator can mix different images. Another common

method is a linear interpolation between two latent codes to obtain an output that has

properties of both input images. Here, we investigate how these two approaches differ.

When composing parts of two images, we desire that part of a context image stays

the same while the remaining portion changes to match a chosen target : to achieve

this composition, we select the desired pixels from our context image and the target

modification, and pass the result through the encoder to obtain the blended image.

𝐺(𝐸(𝑚1 ⊗ 𝑥1 +𝑚2 ⊗ 𝑥2)) ▷ composition (3.6)

How does this compare to directly interpolating in latent space? We compute the

latent 𝛼-blend by performing a weighted average of the context and target latents:

𝐺(𝛼 * 𝐸(𝑥1) + (1− 𝛼) * 𝐸(𝑥2)) ▷ latent 𝛼-blend (3.7)

and the pixel 𝛼-blend by blending inputs in pixel space and using the encoder bottleneck

to make the output more realistic:

𝐺(𝐸(𝛼 * 𝑥1 + (1− 𝛼) * 𝑥2)). ▷ pixel 𝛼-blend (3.8)

We select the weight 𝛼 to be proportional to the area of the target modification.

Qualitatively, the composition method is better able to change the target region while

keeping the context region fixed, e.g., add white windows while reducing changes in

58

Target Context Collage Composition
Latent
-Blend

Pixel
-Blend

Add Window

Context Target Collage
Distance From

0.0

0.2

0.4

0.6

0.8

1.0

M
as

ke
d

L1
 D

is
ta

nc
e Composition

Latent -Blend
Pixel -Blend

Figure 3-7: Comparing composition and interpolation. We aim to apply the same
target modification (white windows; Target), to two context sources (Context), where the
collage of the two images is shown in the third column (Collage). Compared to Latent and
Pixel 𝛼-blending, inverting the collages into the latent space via the encoder (Composition)
better matches the context and target regions, while at the same time ensuring global
coherence between the target and context images.

the fireplace or couch in Fig. 3-7, whereas the other two 𝛼-blending methods are less

faithful in preserving image content. To quantify this effect, we compute the masked

𝐿1 distance (Eqn. 3.5) of the interpolated images to (1) the original masked context

region, (2) to the original masked target region, and (3) to the input collage over 500

random samples. The composition method obtains lower distance from the target

and context, and is also closer to the desired collage. Unlike interpolations using

attribute vectors, composition manipulations do not need to be learned from data -

they are based on a single context and target image, and also allow multiple possible

directions of manipulation. We show additional interpolations and comparison to

learned attribute vectors in Supp. Sec. B.2.2, and additional applications such as

dataset rebalancing and one-shot image editing in Supp. Sec. B.2.1.

3.4.4 Investigating independence of image components

Given these unsupervised objected representations, we seek to investigate the inde-

pendence of individual components by minimizing “leakage” of the desired edits. For

example, if we change a facial expression from a frown to a smile, the hair style should

not change. We quantify the independence of parts under the global coherence con-

straint imposed by the regressor and generator pair by first parsing a given face image 𝑥

into separate semantic components (such as eyes, nose, etc.) represented as masks 𝑚𝑐.

For each component, we generate 𝑁 new faces 𝑥𝑛, and replace the component region

59

(a) Face variation, ProGAN (b) Face variation, StyleGAN (c) Part discovery for cars

Figure 3-8: Image variation when replacing single parts. In ProGAN (a), replacing
single parts leads to change beyond the part that is being changed. Changes in StyleGAN
(b) are visually more localized. This method can be used to find correlated regions even
without semantic labels, shown for cars (c).

𝑚𝑐 in 𝑥 by the corresponding region in 𝑥𝑛, yielding (after regression and generation) for

each component 𝑐 a set of 𝑁 images 𝑥𝑐,𝑛 = 𝐺(𝐸(𝑚𝑐⊗𝑥𝑛+(1−𝑚𝑐)⊗𝑥)). We can now

measure how much changing component 𝑐 changes each pixel location by computing

the normalized pixel-wise standard deviation of 𝑥𝑐,𝑛 across the 𝑛 different replacements

as 𝑣𝑐 = 𝜎𝑐/
∑︀

𝑐 𝜎𝑐, where 𝜎𝑐 =
√︀

E𝑛[(𝑥𝑛,𝑐 − E𝑛[𝑥𝑛,𝑐])2]. For a given component 𝑐, we

measure independence as the average variation outside of 𝑐 that results from modifying

𝑐 as 𝑠𝑐 = E[(1 −𝑚𝑐) ⊗ 𝑣𝑐] (a lower 𝑠𝑐 means higher independence). We repeat this

experiment 100 times and use 𝑁 = 20 samples.

Table 3.1: Quantifying independence of image parts. Face part independence across
models (lower means more independent), measured as the variation outside of the replaced
part, computed over difference replacements.

Background Skin Eyes Ears Nose Mouth Hair Average

ProGAN 0.167 0.177 0.043 0.024 0.030 0.038 0.170 0.093
StyleGAN 0.148 0.248 0.062 0.024 0.065 0.045 0.140 0.105

Table 3.1 shows the variations of ProGAN and StyleGAN. StyleGAN better

separates the background from the face and reduces leakage when changing the hair;

for the face parts, leakage is small for both networks. A notable exception is the

“skin” area, which for StyleGAN is more globally entangled. This might be because

StyleGAN is generally better able to reason about global effects such as illumination,

60

which are strongly reflected in the appearance of the skin, yet have a global impact

on the image. Figure 3-8(a) and (b) qualitatively show examples for the variation

maps 𝑣𝑐 for different parts for ProGAN (a) and StyleGAN (b); the replaced part is

marked in red. Lastly, this method can be utilized for unsupervised part discovery, as

shown in Fig. 3-8(c). Here, changing the color of the rear door (top left) changes the

appearance of the whole car body; a change of the tire (top right) is very localized, and

the foreground (bottom left) and background (bottom right) are large parts varying

together, but distinct from the car. More examples of part variations are shown

in Supp. Sec. B.2.5.

3.5 Conclusion

Using a simple latent space regression model, we investigate the compositional proper-

ties of pretrained GAN generators. We train a regressor model to predict the latent

code given an input image with the additional objective of learning to complete a scene

with missing pixels. With this regressor, we can probe various properties and biases

that the GAN learns from data. We find that, in creating scenes, the GAN allows

for local degrees of freedom but maintains an overall degree of global consistency; in

particular, this compositional representation of local structures is already present at

the level of the latent code. This allows us to input approximate templates to the

regressor model, such as partially occluded scenes or collages extracted from parts of

images, and use the regressor and generator as image prior to regenerate a realistic

output. The latent regression approach allows us to investigate how the GAN enforces

independence of image parts, while being trained without knowledge of objects or

explicit attribute labels. It only requires a single forward pass on the models, which

enables real time image editing based on single image examples.

61

Part II

Image Synthesis with Designed

Control

62

Chapter 4

Variable Resolution Synthesis with

Continuous Coordinate Control

With minor modifications from:

Any-resolution Training

for High-resolution Image Synthesis

Lucy Chai, Michaël Gharbi, Eli Shechtman, Phillip Isola, Richard Zhang;

ECCV 2022.

We now turn to designed control mechanisms for synthesis. Unlike emergent control,

which relies on the model’s ability to infer patterns about the world from its training

data, designed control explicitly builds in properties about the world via the provided

control inputs. In this chapter, we develop a generator with controllable sampling

rate and positional awareness, allowing us to train on and synthesize varied-resolution

images by conditioning on spatial coordinates. This is in contrast to standard synthesis

pipelines, which resize and downsample the training images to a fixed common size as

the first preprocessing step. With our approach, we can leverage additional information

in the high-resolution pixels that standard synthesis methods discard. By training in

a patch-wise fashion, our methodology allows us to synthesize ultra-high-resolution

outputs without requiring a larger model architecture or additional computational

memory requirements compared to prior fixed-resolution models.

63

1.0x (256)

2.8x (728)

6.4x (1638)

3.2x (819) 4.4x (1126)

Figure 4-1: Continuous resolution patch synthesis. Trained on a dataset of varied-size
images, our unconditional generator learns to synthesize patches at continuous scales to
match the distribution of real patches. Here, we render crops of the image at different
resolutions, indicating the target resolution for each. We indicate the region of each crop in
the top-left panel, which is the image directly sampled without scale input.

4.1 Introduction

The first step of typical generative modeling pipelines is to build a dataset with a fixed,

target resolution. Images above the target resolution are downsampled, removing high-

frequency details, and data of insufficient resolution is omitted, discarding structural

information about low frequencies. Our insight is that this process wastes potentially

learnable information. We propose to embrace the natural diversity of image sizes,

processing them at their native resolution.

Relaxing the fixed-dataset assumption offers new, previously unexplored opportu-

nities. One can potentially simultaneously learn global structure – for which large sets

of readily-available low-resolution images suffice – and fine-scale details – where even

a handful of high-resolution images may be adequate, especially given their internal

recurrence [213]. This enables generating images at higher resolutions than previously

possible, by adding in higher-resolution images to existing fixed-size datasets.

This problem setting offers unique challenges, both in regards to modeling and

scaling. First, one must generate images across multiple scales in order to compare with

64

the target distribution. Naïvely downsampling the full-resolution image is suboptimal,

as dataset images can have even 8× difference in scale. Secondly, generating and

processing high-resolution images offers scaling challenges. Training at 1024 resolution

already pushes current hardware to the limits in memory and training time, and are

unable to fully make use of images above that resolution.

To bypass these issues, we design a generator to synthesize image crops at arbitrary

scales, hence, performing any-resolution training. We modify the state-of-the-art

StyleGAN3 [111] architecture to take a grid of continuous coordinates, defined on a

bounded domain, as well as a target scale, inspired by recent work in coordinate-based

conditioning [156, 8, 134, 33]. By keeping the latent code constant and varying the crop

coordinates and scale, our generator can output patches of the same image [133, 204],

but at various scales. This allows us to (1) efficiently generate at arbitrary scale, so that

a discriminator can compare generations to a multi-resolution dataset, and (2) decouple

high-resolution synthesis from increasing model size and memory requirements.

We first experiment with downsampled FFHQ images [106] as a controlled setting

and find minimal degradation (FIDs varying by 0.3), even at highly skewed distributions

with 98% low-resolution images and just 2% at higher, mixed resolution. Practically,

this means we can leverage large-scale (>100k) lower-resolution datasets, such as LSUN

Churches [271], Flickr Mountains [173], and Flickr Birds collected by us, and add a

relatively small amount of high-resolution images (∼ 6000), for continuous resolution

synthesis beyond the 1024 resolution limit of current generators. To summarize, we:

• propose to train on mixed-resolution datasets from images in-the-wild.

• modify the generator to be amenable to such data, sampling patches at arbitrary

scales during our any-resolution training procedure.

• demonstrate successful generations beyond 1024× 1024, with fine details and

coherent global structure, without a larger and more expensive generator.

• introduce a variant of the FID metric that captures image statistics at multiple

scales, thus accounting for the details of high resolutions.

65

4.2 Related Work

Unconditional image synthesis. Recent generative models including GANs [70,

107, 111, 19], Variational Autoencoders [115], diffusion models [163, 85, 224, 226, 48],

and autoregressive models [123, 245, 244] such as transformers [246, 31, 55] are

rapidly improving in quality. Of these, we focus on GANs, which offer state-of-the-art

performance along with efficient inference and effective editing properties. A key

innovation in GANs has been multi-resolution supervision during training. Works

such as LapGAN [45], the Progressive/StyleGAN family [106, 107, 109, 111], MSG-

GAN [105], and AnyCost-GAN [136] have demonstrated stable training by growing

the generator with additional layers that increase resolution by factors of two. Such a

strategy even works for single-image GANs [204, 214], based on the observation that

images share statistics across scales. While several works [108, 287, 284] show that

data augmentations, such as small jitters in scale, can help stabilize training, they are

processing the same, underlying fixed-resolution dataset. We draw upon the insights

in these works for stable training, and seek to unlock training on an any-resolution

dataset. Importantly, our generator does not use additional layers and can synthesize

images at continuous scales, not only powers of two.

Coordinate-based functions. Coordinate-based encodings enable spatial condi-

tioning and provide an inductive bias towards natural images [231]. Recent methods

use point-based neural mappings to transform 2D or 3D coordinates to a color value

for the purposes of unconditional generation [133, 37, 111, 220, 134, 5], conditional

generation [205], 3D view synthesis [156, 203, 26], or fitting arbitrary signals [33, 151].

By oversampling the coordinate grid, one can generate a larger image at inference

time. However, because these models keep the same fixed-scale dataset assumption

during training, the outputs struggle to offer additional high-frequency details without

a high-frequency training signal. We draw upon the innovations in coordinate-based

functions to sample patches at different scales and locations, enabling us to efficiently

train on multiple scales. MS-PIE [266] and MS-PE [37] add positional encodings for

multi-scale synthesis, but retain a global image discriminator at smaller resolution.

66

Concurrently, ScaleParty [167] also samples patches, but their goal is to generate with

cross-scale consistency while we focus on training with arbitrary size real images.

Extrapolation. One method of generating “infinite” resolution is extrapolating

an image. Early texture synthesis works [53, 52, 258] focus on stationary textures.

Recent advances [290] explore non-stationary textures, with large-scale structures and

inhomogeneous patterns. Similar approaches operate by outpainting images, extending

images beyond their boundaries in a conditional setting [232, 268, 148, 290]. Recent

generative models synthesize large scenes [134, 35], typically casting synthesis as an

outpainting problem [268, 148]. These methods are most effective for signals with a

strong stationary component, such as landscapes, although extrapolation of structured

scenes can be achieved in some domains [255]. Unlike textures, the images we wish to

synthesize typically have a strong global structure. In a sense, we seek to extrapolate

by “zooming in” or out, rather than “panning” beyond an image’s boundaries.

Super-resolution. An alternative approach to generating high-resolution imagery

would be to start with an off-the-shelf generative model and feed its outputs to

a super-resolution method [89, 33, 252, 254], possibly exploiting the self-similarity

properties of images [207, 67, 90, 213]. Applying super-resolution models is challenging,

in part because of the specific blur kernels super-resolution models are trained on [277].

Furthermore, though generations continue to improve, there remains a persistent

domain shift between synthesized and real images [251, 23]. Finally, super-resolution

is a local, conditional problem where the global structure is dictated by the low-

resolution input, and optionally an additional high-resolution reference image [288,

267, 146, 102, 263]. We synthesize plausible images unconditionally, leveraging a set

of high-resolution images to produce both realistic global structure and fine details.

4.3 Methods

In standard GAN training, all training images share a common fixed resolution, which

matches the generator’s output size. We seek to exploit the variety of image resolutions

available in the wild, learning from pixels that are usually discarded, to enable high-

67

Any-resolution
(Ours)

All

G D

s

z

c̄

Sampling
parameters

Any-res data

v, s

Standard

Any-resolution training and generation

In-the-wild Images

low-res images
+ high-freq details

≥1024

Figure 4-2: Any-resolution data pipeline. In-
the-wild images and images collected from the inter-
net are naturally captured at variable resolutions.
Traditional dataset construction filters out low-
resolution images and downsamples high-resolution
images to a fixed, training resolution. We aim to
keep images at their original resolution and train
on these variable resolution images. This allows
us to learn from the additional pixels present in
high-resolution images.

and continuously-variable resolution synthesis. We achieve this by switching from the

common fixed-resolution thinking, to a novel ‘any-resolution’ approach, where the

original size of each training image is preserved (Fig 4-2). We introduce a new class of

GAN generators that learn from this multi-resolution signal to synthesize images at

any resolution (§ 4.3.1), and show how to train them by sampling patches at multiple

scales to jointly supervise the global-structure and fine image details (§ 4.3.2).

4.3.1 Multi-resolution GAN

We design our approach to leverage state-of-the-art GANs. We keep the architecture

of the discriminator unchanged. Since the discriminator operates at fixed resolution,

we modify the generator to synthesize images at any resolution and receive the discrim-

inator’s fixed-resolution supervision. Our implementation builds on the StyleGAN3

framework [111], which is conditioned on a fixed coordinate grid. We modify this grid

for any-resolution and patch-based synthesis.

Continuous-resolution generator. We treat each image as a continuous function

defined on a bounded normalized coordinate domain [0, 1]× [0, 1]. The generator 𝐺

always generates patches at a fixed pixel resolution 𝑝× 𝑝, but each patch implicitly

corresponds to a square sub-region, centered at v ∈ [0, 1]2, of the larger image.

Denoting the resolution of the larger image as 𝑠× 𝑠, we have that the patch size is 𝑝/𝑠

in normalized coordinates (see Figure 4-3, left). During training, we sample patches

from images at multiple scales 𝑠, either from the generator or from the multi-resolution

68

Any-res data variable-scale
fixed-resolution crops

generated
patches

latent code

image scale

normalized pixel
coordinates

sample patches

sampling parameters

Patch sampling from

a continuous image domain Any-resolution training and generation

sampled patch
at

Figure 4-3: Anyres-GAN overview. (Left) We parameterize images (real or synthetic) as
continuous functions over a normalized domain and extract random patches at various scales
𝑠, but constant resolution 𝑝. (Right) To train, we sample crops at random scales and offsets
v from full-size real images. The same crops are sampled from the generator, by passing it a
grid of the desired coordinates 𝑐v,𝑠, and injecting the image scale 𝑠 through modulation, in
addition to a global latent code 𝑧.

dataset, before passing them to the fixed-resolution discriminator 𝐷. Formally, our

generator takes three inputs: a regular grid of normalized continuous pixel coordinates

𝑐v,𝑠 ∈ R𝑝×𝑝×2, the resolution 𝑠 ∈ N of the (implicit) larger image the patch is extracted

from, and 𝑧, the latent code representing this larger image. It synthesizes the patch’s

pixel values at the sampled coordinates as:

𝐺(𝑧, 𝑐v,𝑠, 𝑠) = 𝐺(𝐹 (𝑐v,𝑠);𝑀(𝑧, 𝑠)), (4.1)

where 𝐹 is a Fourier embedding of the continuous coordinates [111], and 𝑀 is an

auxiliary function that maps the latent code and sampling resolution into a set of

modulation parameters for the StyleGAN3 generator (see § 4.3.3 for details). Our

method therefore modifies two components from StyleGAN3. First, we replace the

fixed coordinate grid with patch-dependent coordinates to train on variable-resolution

images; these coordinates are adjusted to account for upsampling in StyleGAN3.

Second, the added branch 𝑀 injects scale information throughout the generator.

At test time, we can generate images at arbitrarily high resolutions by sampling

the full continuous domain [0, 1]× [0, 1] at the desired sampling rate. Theoretically,

69

the maximum resolution is infinite, but in practice the amount of detail that the

model can generate is determined by generator resolution 𝑝 and the resolutions of the

training images.

4.3.2 Two-phase training

We train our generator in two phases. In the first, we want the generator to learn to

generate globally-coherent images. For this, we disable the patch sampling mechanism

and pretrain the generator at a fixed scale, corresponding to the full continuous image

domain. That is, we fix 𝑠 = 𝑝, and v = (0.5, 0.5), which is equivalent to standard fixed-

resolution GAN training. Both the coordinate tensor 𝑐v,𝑠 and the scale conditioning

variable 𝑠 are constant in this phase, so we simply refer to the image generated as

𝐺fixed(𝑧) and follow the training procedure of StyleGAN3. In the second phase, we

enable patch sampling for both the real and synthetic images and continue training

the generator using variable-scale patches, so it learns to synthesize fine details at any

resolution. We found that using a copy of the pretrained fixed-scale generator 𝐺fixed

as a teacher model helps stabilize training in this phase.

Global fixed-resolution pretraining. During pretraining, we effectively resample

all the training images to a fixed resolution 𝑝× 𝑝, as in standard GAN training. Let

𝑥 ∼ 𝒟fixed denote an image sampled from this fixed size dataset. We optimize a

standard GAN objective with non-saturating logistic loss and 𝑅1 regularization on

the discriminator:

𝑉 (𝐷,𝐺(𝑧), 𝑥) = 𝐷(𝑥)−𝐷(𝐺(𝑧)), 𝑅1(𝐷, 𝑥) = ||∇𝐷(𝑥)||2,

𝐺fixed = argmin
𝐺

max
𝐷

E𝑧,𝑥∼𝒟fixed 𝑉 (𝐷,𝐺(𝑧), 𝑥)− 𝜆𝑅1

2
𝑅1(𝐷, 𝑥).

(4.2)

We use the recommended values for 𝜆𝑅1 , depending on generator resolution 𝑝 [111].

Mixed-resolution patch-based training. In the second phase, we enable multi-

resolution sampling, alternating between extracting random crops from our any-

resolution dataset and generating them with our continuous generator.

For synthetic patches, we sample a patch location v uniformly in the continuous

70

domain [0, 1]× [0, 1]; and an arbitrary image resolution 𝑠 ≥ 𝑝, corresponding to the

implicit full image around the square patch. From those, we derive the sampling

coordinate grid 𝑐v,𝑠, and synthesize the patch image 𝐺(𝑧, 𝑐v,𝑠, 𝑠), as described earlier.

For ‘real’ patches, we sample an image from our dataset. Because this image can

have any resolution 𝑠im ≥ 𝑝, we crop it to a random square matching its smallest

dimension, then Lanczos downsample this square to a random resolution 𝑠× 𝑠 with

𝑠im ≥ 𝑠 ≥ 𝑝. Finally, we extract a random 𝑝× 𝑝 crop from the downsampled image,

recording its center v. To preserve the generator’s global coherence and continuous

generation ability, we sample at global scale 𝑠 = 𝑝 and v = (0.5, 0.5) (similar to

the pretraining step) with probability 50%. We found that image quality at global

resolution 𝑠 = 𝑝 degrades otherwise, and we refer to these generated full images of size

𝑝 × 𝑝 as “base images.” Our any-resolution GAN optimizes the following objective

during this phase:

𝐺* = argmin
𝐺

min
𝐷

E𝑧,{𝑥,𝑠,v}∼𝒟 𝑉 (𝐷,𝐺(𝑧, 𝑐v,𝑠, 𝑠), 𝑥)

+𝜆teacherℒteacher(𝐺,𝐺fixed, 𝑧)−
𝜆𝑅1

2
𝑅1(𝐷, 𝑥).

(4.3)

We use 𝜆teacher = 5; other values offer slight tradeoffs between similarity to the base

teacher model 𝐺fixed, and FID score (see supplemental). ℒteacher is an auxiliary loss

to encourage faithfulness to the pretrained fixed-resolution generator 𝐺fixed. The

architecture of 𝐷 remains the same as in the pretraining step; we found that modifying

the discriminator setup did not further improve results (see supplemental).

Teacher model. For the second training phase above, we initialize 𝐺 with the

pretrained weights of 𝐺fixed. Weights for discriminator 𝐷 are also kept for fine-tuning.

We keep a separate copy of 𝐺fixed with frozen weights, the teacher, for additional

supervision. We design a loss function that encourages the generated patch (at any

resolution), to match the teacher’s fixed-resolution output in the corresponding region,

after downsampling and proper alignment [94]. Formally, this loss is given by:

ℒteacher(𝐺,𝐺fixed, 𝑧) = 𝑑 (𝑚⊙ 𝑤v,𝑠(𝐺(𝑧, 𝑐v,𝑠, 𝑠)), 𝑚⊙𝐺fixed(𝑧)) , (4.4)

71

where 𝑑 is the sum of a pixel-wise ℓ1 loss, and the LPIPS perceptual distance [92, 281].

The warp function 𝑤v,𝑠 transforms and resamples the generated high-resolution patch

using a band-limited Lanczos kernel, to project it in the coordinate frames of the

low-resolution, global image 𝐺fixed(𝑧). Because the warped patch does not cover the

entire image domain, we multiply it with a binary mask 𝑚 to indicate the valid pixels,

prior to computing loss 𝑑.

4.3.3 Implementation details

Scale-conditioning. In addition to the pixel location 𝑐v,𝑠, we also pass the global

resolution information 𝑠 to the generator. Knowledge of the global image scale is

important to enable continuous scale variations and proper anti-aliasing [33, 8]. We

found it beneficial to explicitly inject this information into all intermediate layers of

the generator. To achieve this, we use a dual modulation approach [285], embedding

the latent code 𝑧 and scale 𝑠 separately using two independent sub-networks (we use

the same mapping network architecture for each). The two outputs are summed to

obtain a set of modulation parameters 𝑀(𝑧, 𝑠), used to modulate the main generator

features. Architectural details of the generator 𝐺 and mapping network 𝑀 , can be

found in the supplemental.

Synthesizing large images. Our fully-convolutional generator can render image at

arbitrary resolutions. But images larger than 1024 × 1024 require significant GPU

memory. Equivalently, we can render non-overlapping tiles that we assemble into a

larger image. Our patch-based multi-resolution training and the Fourier encoding of

the spatial coordinates make the tile junctions seamless.

4.4 Experiments

We introduce a modified image quality metric that computes FID over multi-scale

image patches without downsampling, which is largely correlated to the standard

FID metric when ground truth high-resolution images are available (FFHQ), yet

72

more sensitive to the quality of larger resolutions. We then compare our model

to alternative approaches for variable scale synthesis and super-resolution on other

natural image domains (§ 4.4.1). Finally, we investigate variations of our model and

training procedure to validate our design decisions (§ 4.4.2).

Data. Our method is general and can work on collections of any-resolution data. As

such, when targeting high-resolution generation, rather than starting over, we can

add additional high-resolution (HR) images to existing, fixed-size, low-resolution (LR)

datasets. Our datasets and their statistics are listed in Tab. 4.1. Figure 4-4 shows the

resolution distrbution in each dataset.

We begin initial experiments with a controlled setting of FFHQ, which contains

70K images at 1024 resolution. From these, we construct a varied-size dataset by (1)

using 256 resolution for all images (2) downsampling a 5K subset between 512-1024

(uniformly distributed) and (3) add 1k subset at full 1024. The last step enables us

to judiciously compare to methods that are limited to synthesizing images at strict

powers of 2. We refer to this mixture as FFHQ6k. We use the full 1024 dataset as

ground-truth for evaluation metrics.

In the remaining domains, we push current generation results to higher resolution

by scraping HR images from Flickr. In cases where a standard fixed-size dataset

is available (LSUN Churches [271] and Mountains [173]), we select the additional

HR images to approximately match the LR domain. Our final generators synthesize

realistic details despite the majority of the training set being LR. For Birds and

Churches, > 92% of the training set is at 256 resolution but our model maintains

quality beyond 1024; for Mountains > 98% of training set at 1024 but our model can

generate beyond 2048. These categories cover a range between objects (but without

the strong alignment of FFHQ) and outdoor scenes.

4.4.1 Continuous multi-scale image synthesis

Qualitative examples. We show qualitative examples in Fig. 4-5. Our generated

images preserve the fine details of HR structures, such as bricks, rocky slopes, feathers,

73

Table 4.1: Any-resolution datasets and generator settings. We build upon low-
resolution (LR) datasets, and use it for fixed-size dataset pre-training. We add additional
high-resolution (HR) images, of mixed resolutions. Note that the number of HR images is
small (∼2-8% of LR size). Patches of size 𝑝 are sampled from both subsets during training,
with average sampled scale E[𝑠].

Domain
Dataset Generator

Source
Imgs Resolutions Config Resolutions

LR HR LR HRmin HRmed HRmax 𝑝 E[𝑠]

Faces FFHQ 70,000 6000 256 512 819 1024 R 256 458
Churches LSUN & Flickr 126,227 6253 256 1024 2836 18,000 T 256 1061
Birds Flickr 112,266 7625 256 512 1365 2048 T 256 585
Mountains Flickr 507,495 9361 1024 2049 3168 12,431 T 1024 1823

500 600 700 800 900 1000
Resolution

101

103

105

N
um

 Im
ag

es

FFHQ-6K

2000 4000 6000 8000 10000
Resolution

101

103

105

Church

500 750 1000 1250 1500 1750 2000
Resolution

101

103

105

Birds

2000 4000 6000 8000 10000 12000
Resolution

101

103

105

Mountains

92% 95% 94% 98%

Figure 4-4: Training set size distributions. Histogram shows the size distribution of the
HR images (y-axis in log scale); pie chart indicates the proportion of LR to HR images.

or hair. Pushing the inference resolution towards and beyond the higher resolutions of

training images, we find that textured surfaces typically deteriorate first before edge

boundaries deteriorate eventually (Fig. 4-6).

Patch-FID metric. Standard FID evaluates global structure by first downsampling

all images to a common size of 299. By design, this ignores high-resolution details

(and itself can cause artifacts [174]). Therefore, we propose a modification, which we

dub ‘patch-FID’, to specifically evaluate texture synthesized at higher resolutions. Our

patch-FID randomly resizes and crops patches from the HR dataset, and computes

FID on real and generated patches, sampled at corresponding scales and locations. We

use 50k patches, matching standard FID. By avoiding downsampling, our patch-FID

is more sensitive to blurriness or artifacts at higher resolutions, resulting in larger

absolute difference compared to standard FID at 1024 resolution. As a sanity check,

when a full HR ground-truth is available, we find it is largely correlated to standard

FID (see Table 4.2).

To summarize, to evaluate structure, we compute standard FID on images generated

74

Table 4.2: Varied-size training and in-
ference. Random-resize MS-PE [37] per-
forms varied-size synthesis, but assumes
a fixed-size dataset. AnyCost-GAN han-
dles varied training at powers of 2. Our
method directly utilizes training images at
any size, achieving better results by FID.
(† = copied from paper)

FFHQ6K FID pFID

256 512 1024 random

MS-PE [37]† 6.75 30.41 – –
Anycost [136] 4.24 5.94 6.47 18.39
Ours 3.34 3.71 4.06 2.96

Table 4.3: Comparison to super-resolution
using patch-FID (pFID). For each domain,
we compare our model to continuous-scale
(LIIF) and fixed-scale super-resolution (Real-
ESRGAN) models. Lower pFID suggests that
our model can generate realistic details at high
resolutions, not achievable with super-resolution
alone.

pFID (random)

FFHQ6K Church Bird Mountain

LIIF [33] 22.93 83.88 30.19 23.10
Real-ESRGAN [254] 16.92 23.04 16.10 19.05
Ours 2.96 9.89 6.52 7.99

at specified resolutions, e.g., FID (256). To evaluate texture, we sample patches at

random scales and locations and measure our patch-FID, which we denote as pFID

(random). Lower numbers are better in both cases.

Alternative methods of multi-size training and generation. Our generator

is encouraged to synthesize realistic high-resolution textures at training, even when

the discriminator does not get to see the full image. While MS-PE [37] also enables

continuous resolution synthesis, the discriminator learns only at a single resolution

and the generator is not trained patch-wise. We find that this downsampling for the

discriminator is detrimental to image quality at higher resolutions. Anycost-GAN[136]

performs image synthesis at powers-of-two resolutions by adding additional synthesis

blocks. For comparison, we modify it to handle a multi-size dataset by downsampling

images to the nearest power of two and training each layer only on the valid image

subset. Compared to Anycost-GAN, our model is more data-efficient, due to weight

sharing for generation at multiple scales. Anycost-GAN learns a separate module for

each increase in resolution, creating artifacts at higher resolutions when fewer HR

training images are available and higher FID scores (Tab. 4.2). Additionally, Anycost-

GAN increases the generator and discriminator size for synthesis at higher resolutions,

whereas our model incurs a constant training cost, regardless of the inference scale.

Comparison to super-resolution. Most super-resolution methods require LR/HR

image pairs, whereas there is no ground-truth HR counterpart to a LR image syn-

thesized by our fixed-scale generator 𝐺fixed. The teacher regularization encourages

75

5.9x (1500)

3.9x (1000)

2.4x (2500)

3.9x (1000)

4.7x (1200)

2.9x (3000)

Figure 4-5: Qualitative any-resolution generations. The inset shows the entire
generated, high-resolution images (between 1000-3000 resolution), with enlarged regions
of interest outlined in the white box. Note that our model can render the image (or any
sub-region) at any resolution.

1x (256) 16x (4096)8x (2048)4x (1024)2x (512)

Figure 4-6: Extrapolation limits. We test the extrapolation capabilities of our model by
specifying the inference scale 𝑠. Typically, textures such as bricks and feathers deteriorate
first before edges degrade. The dotted line indicates when generation starts to exceed the
average scale sampled in training E[𝑠] (which is 585 for birds and 1061 for churches).

76

4.7x (1200)

3.2x (3300)

Base Image OursReal ESRGANLIIFUpsample

M
o

u
n

ta
in

s
C

h
u

rc
h

es

\ 4.7x (1200)

3.2x (3300)

Figure 4-7: Super-resolution comparisons. Qualitative comparisons of Lanczos upsam-
pling a patch from the base image (upsample), continuous (LIIF [33]) and fixed-factor (Real
ESRGAN [254]) super-resolution models, and our trained model. LIIF tends to amplify arti-
facts from the base image (e.g. the JPEG artifacts around the church). While Real-ESRGAN
is better at suppressing artifacts, it tends to overly smooth surfaces or synthesize grid-like
textures (mountain). Our model is not a super-resolution model; it can add additional details
to the low-resolution image but tolerates slight distortions in structure which are regularized
with the teacher weight.

similarity between 𝐺fixed and 𝐺’s outputs, but unlike super-resolution, this supervision

occurs at low-resolution, allowing variations in fine details. Figure 4-7 compares our

model to super-resolution methods applied to the output of 𝐺fixed. Our method pro-

duces much sharper details than LIIF [33], a recent continuous-scale super-resolution

technique, and cleaner images than the state-of-the-art Real-ESRGAN [254]. The

latter is a fixed-resolution model, so we run it iteratively until exceeding a target

resolution, and then Lanczos downsample the result to the target size. Real-ESRGAN’s

outputs are either overly smooth, or exhibit grid-like artifacts. Our method generates

realistic textures based on the low-resolution output of 𝐺fixed and reaches a lower

pFID (Tab. 4.3).

4.4.2 Model variations

Using the full high-resolution FFHQ dataset as a benchmark, we investigate individual

components of our architecture and training process. We train each model variation

for 5M images and record metrics from the best FID@1024 checkpoint. We only

77

Table 4.4: Multisize training. Downsam-
pling or upsampling all images to a common
size, or using only the subset of the largest
images, worsens FID compared to our train-
ing strategy. (*) indicates our default setting.

FID pFID

256 512 1024 random

Resize down to 512 3.31 4.11 19.18 26.83
Resize up to 1024 3.46 13.43 4.86 6.65
Train 1024 subset 3.46 12.41 4.67 5.43
Multisize training (*) 3.37 4.41 4.47 4.28

Table 4.5: Number of HR images. Our
method is robust to a wide range of HR
images, even when only 1K images at HR
are available (<2% of the full ground-truth
dataset).

FID pFID

256 512 1024 random

1k (1.4%) 3.43 5.13 4.38 3.73
5k (7.1%) (*) 3.36 4.97 4.54 3.48
10k (14.2%) 3.46 4.96 4.65 3.54
70k (100%) 3.42 4.88 4.52 3.42

report quantitative metrics in the main paper and refer to the supplemental for further

evaluations and visual comparisons.

Impact of teacher regularization. Our full model uses an “inverse” teacher

regularizer to encourages a downsampled HR patch to match the low-resolution

teacher as described in 4.3.2. We also explored a variant with a “forward” teacher

loss, in which the generated patch is encouraged to match the upsampled teacher

output. This variation is qualitatively inferior and blurs details; it has worse FID at

higher resolutions (see supplemental for details and visuals). Removing the teacher

altogether improves pFID but degrades FID. Qualitatively, the generated patches

diverge significantly from the fixed-size global image. We hypothesize that the global

change in structure negatively impacts overall image quality, causing global FID

metrics to increase, but this cannot be captured from evaluating patches alone. We

found 𝜆teacher = 5 to provide the best balance between global and local image quality,

but we observe minimal differences in FID and pFID for other values, evidence that

the model can tolerate a range of values for this parameter. See supplemental for a

parameter sweep with full scores.

Removing scale conditioning degrades quality. We inject the scale information to

intermediate layers of the generator through scale-conditioning. Adding this improves

FID@1024 from 4.88 to 4.47, and pFID from 4.67 to 4.28.

Multi-size training improves fidelity at all scales. Our multi-size data pipeline

lets our model learn to synthesize at continuous scales, which is a strictly more

challenging than learning at a fixed scale. In Table 4.4, we investigate to what extent

78

learning from images of varied sizes offers benefits over fixed-scale training on a smaller

dataset. Visual comparisons can be found in supplemental. In a first alternative, using

the same FFHQ-6K dataset, we resize all images down to 512 and train the model to

generate patches at 512× 512. In this case, the model performs well up to 512 scale,

but does not generalize beyond (e.g., 1024) since it cannot exploit the information

lost in downsampling. In two other variants, we train models for 1024 resolution in

the first case by upsampling all images up to 1024, in the second by keeping only the

1K subset of images at 1024 resolution. Both variants are trained to output images

specifically at 1024 resolution. The former approach (upsampling) increases blurriness.

In the latter, FID@1024 remains worse than that of our multi-size training, which can

take advantage of more data despite most of it being smaller than 1024.

Impact of number of HR images Due to the patch-based training procedure, we

find that our model can be trained with a small fraction of HR images, compared to

the 70k LR images in the dataset. In Table 4.5, we use progressively larger subsets of

HR images: 1k, 5k, 10k. We found that the FID scores are largely similar (within 0.3)

to using the entire 70k HR images. However, training with 1k or fewer HR images

shows evidence of divergence during training (see supplemental), but stabilizes by

5k HR images, For the remaining domains, we collect roughly 5K-10K images to

construct the HR dataset.

4.4.3 Properties of multi-scale generation

Correcting artifacts from low resolution. Because our model is not directly

trained with corresponding LR and HR image pairs, we find that there can be small

distortions between the upsampled base image and the HR generation from the same

latent code. In some cases, this can be a desirable property (Fig. 4-8). For instance,

the base generator on the birds dataset can struggle in synthesizing the eye of the

bird, which is less apparent at low resolutions, but more salient at high resolution.

Consequently, our HR generation will add the missing eye, and also synthesizes

additional feather and beak details. In the churches domain, because the LR and HR

79

OursUpsample Upsample Ours

Base Image Upsample λ = 5 λ = 10

Failure Cases
Upsample Ours

3.3x (840)3.8x (966)

3.0x (771)

3.4x (867)

3.2x (824)

Figure 4-8: Model properties and failure cases. As fine details can be more difficult
to learn at low resolution, our model is capable of adding corrections when generating at
higher resolutions. In the case of inconsistencies between the LR and HR data sources,
the model deletes patterns that are not present in the HR dataset (e.g . watermarks and
compression artifacts), influenced by the teacher regularization weight. Failure cases include
biases towards circular or ring-like structures.

datasets are collected separately, we find that the synthesized watermarks and JPEG

artifacts at the base resolution disappear at higher resolution, because the HR dataset

we used is of higher quality and does not have any watermark. The similarity between

the LR and HR generations can be tuned using 𝜆teacher during training.

Failure Cases. Our model tends to inherit the artifacts from StyleGAN3, such as a

centered front tooth in FFHQ. In instances in which the base resolution image contains

uneven surfaces, the model may fail to fully mitigate them at higher resolutions. These

artifacts are often subtle at the low resolution, but become more apparent when

upsampling the base image or generating at a larger target scale. In some cases, our

model also has a tendency to generate “watery” circular or ring-like artifacts (Fig. 4-8).

4.5 Conclusion

We propose an image synthesis approach that can train on images of varied resolution

and perform inference at continuous resolutions. This lifts the fixed-resolution require-

ment of prior generative models, which discard higher-resolution details. To do this,

we train a generator jointly on a low-resolution dataset to learn global structure, and

on patches from the varied-size dataset to learn details. At inference time, we can

80

synthesize an image at any resolution by supplying the appropriate coordinate grid and

scale factor to the generator. By using training images at their native resolutions and

a single model for continuous-resolution synthesis, our method can efficiently leverage

information present in only a handful of high-resolution images to complement a large

set of low-resolution images. This approach enables high-resolution synthesis without

a larger generator or large dataset of fixed-size, high-resolution images.

81

82

Chapter 5

Unbounded Persistent Landscapes

with 3D Camera Control

With minor modifications from:

Persistent Nature:

A Generative Model of Unbounded 3D Worlds

Lucy Chai, Richard Tucker, Zhengqi Li, Phillip Isola, Noah Snavely;

CVPR 2023.

The method presented in this chapter again builds coordinate transformations into

our synthesis model, but now focuses on 3D spatial transformations that allow us

to navigate within a 3D world representation, rather than the 2D transformations

used in any-resolution image synthesis. We design a generator that creates unbounded

landscape scenery, where the generated images are projections of the 3D world

according to the camera’s position and orientation. A key feature of our architecture

is the concept of “persistence,” which means that the underlying scene does not change

or morph as the camera moves, which is a common challenge in video generation

techniques. Trained on 2.5D supervision from single-view landscape datasets without

any 3D ground truth, the resulting model enables arbitrary camera motion through

large-scale natural scenery with circular flight patterns, combining the strengths of

recent models for unbounded auto–regressive prediction and persistent 3D generation.

83

camera trajectory

persistent terrain representation

w/o persistence
Li et al. [43]1.

2.

3.

4.

5.
6.

1. 2. 3.

4.5.6.

Figure 5-1: Persistent, unbounded synthesis. Our approach enables unconditional
synthesis of unbounded 3D nature scenes with a persistent scene representation (left), using
a scene layout grid representing a large-scale terrain model (depicted above as the checkered
ground plane). This representation enables us to generate arbitrary camera trajectories,
such as the six numbered views shown along a cyclic camera path (center). The persistence
inherent to our representation stands in contrast to prior auto-regressive methods [131] that
do not preserve consistency under circular camera trajectories (right); while the two images
shown on the right are at the start and end of a cyclic path, the terrain depicted is completely
different. Our method is trained solely from unposed, single-view landscape photos.

5.1 Introduction

Generative image and video models have achieved remarkable levels of realism, but

are still far from presenting a convincing, explorable world. Moving a virtual camera

through these models—either in their latent space [77, 98, 209, 20] or via explicit

conditioning [112]—is not like walking about in the real world. Movement is either

very limited (for example, in object-centric models [27]), or else camera motion is

unlimited but quickly reveals the lack of a persistent world model. Auto-regressive

3D synthesis methods exemplify this lack of persistence [137, 131]; parts of the scene

may change unexpectedly as the camera moves, and you may find that the scene

is entirely different when returning to previous positions. The lack of spatial and

temporal consistency can give the output of these models a strange, dream-like quality.

In contrast, machines that can generate unbounded, persistent 3D worlds could be

used to develop agents that plan within a world model [75], or to build virtual reality

experiences that feel closer to the natural world, rather than appearing as ephemeral

hallucinations [131].

We therefore aim to develop a unconditional generative model capable of generating

84

unbounded 3D scenes with a persistent underlying world representation. We want

synthesized content to move in a way that is consistent with camera motion, yet we

should also be able to move arbitrarily far and still generate the same scene upon

returning to a previous camera location, regardless of the camera trajectory.

To achieve this goal, we model a 3D world as a terrain plus a skydome. The terrain

is represented by a scene layout grid—an extendable 2D array of feature vectors

that acts as a map of the landscape. We ‘lift’ these features into 3D and decode

them with an MLP into a radiance field for volume rendering. The rendered terrain

images are super-resolved and composited with renderings from the skydome model

to synthesize final images. We train using a layout grid of limited size, but can extend

the scene layout grid by any desired amount during inference, enabling unbounded

camera trajectories. Since our underlying representation is persistent over space and

time, we can fly around 3D landscapes in a consistent manner. Our method does not

require multiview data; each part of our system is trained from an unposed collection

of single-view images using GAN objectives.

Our work builds upon two prior threads of research that tackle generating immersive

worlds: 1) generative models of 3D data, and 2) generative models of infinite videos.

Along the first direction are generators of meshes, volumes, radiance fields, etc (e.g.,

[162, 27, 180]). These models represent a consistent 3D world by construction, and

excel at rendering isolated objects and bounded indoor scenes. Our work, in contrast,

tackles the challenging problem of generating large-scale unbounded nature scenes.

Along the second direction are methods like InfiniteNature [137, 131], which can indeed

simulate visual worlds of infinite extent. These methods enable unbounded scene

synthesis by predicting new viewpoints auto-regressively from a starting view. However,

they lack a persistent world representation; content may change when revisited.

Our method aims to combine the best of both worlds, generating boundless scenes

(unlike prior 3D generators) while still representing a persistent 3D world (unlike prior

video generative models). In summary:

• We present an unconditional 3D generative model for unbounded nature scenes

with a persistent world representation, consisting of a terrain map and skydome.

85

• We augment our generative pipeline to support camera extrapolation beyond

the training camera distribution by extending the terrain features.

• Our model is learned entirely from single-view landscape photos with unknown

camera poses.

5.2 Related Work

Image and view extrapolation. Pioneering work by Kaneva et al . [103] proposed

the task of infinite image extrapolation by using a large image database to perform

classical 2D image retrieval, stitching, and rendering. More recently, various learning-

based 2D image inpainting [78, 272, 273, 139, 286, 228, 130, 195] and outpainting [255,

268, 232, 18, 134, 35] methods have been developed. These methods fill in missing

image regions or expand the field of view by synthesizing realistic image content that is

coherent with the partial input image. Beyond 2D, prior work has explored single-view

3D view extrapolation, often by applying 2D image synthesis techniques within a 3D

representation [260, 212, 190, 88, 191, 128, 100]. However, these methods can only

extrapolate content within a very limited range of viewpoints.

Video generation. Video generation aims to synthesize realistic videos from different

types of input. Unconditional video generation produces long videos often from noise

input [240, 160, 59, 222, 143, 20, 65], while conditional video generation generates

sequences by conditioning on one or a few images [249, 248, 256, 247, 87, 125, 249,

57, 44, 269, 275, 117], or a text prompt [86, 219]. However, applying these ideas in

3D requires supervision from multi-view training data, and cannot achieve persistent

3D scene content at runtime, since there is no explicit 3D representation. Some recent

work preserves global scene consistency via extra 3D geometry inputs such as point

clouds [149] or voxel grids [76]. In contrast, our method synthesizes both the geometry

and appearance of an entire world from scratch using a global feature representation

to achieve consistent generated content.

Generative view synthesis. Novel view synthesis aims to produce new views of

a scene from single [32, 239, 166, 238, 211, 260, 101, 212, 118, 191, 270] or multiple

86

Gup

Ebg Gbg

Gland

x
y

z
y

fland fcolor

σ

layout decoding

ray distance

σ
volume rendering

fland

z

IHR mHR

dHR

ILR

ndLR

fimmLR

initial terrain
(32x32)

refined terrain (256x256)

Figure 5-2: Overview of scene layout decoding. The layout generator 𝐺land samples
a random latent code to produce a 2D scene layout grid 𝑓land representing the shape and
appearance of a terrain map, and which can be spatially extended using a grid of latent
codes (see § 5.3.2). To render an image from a given camera, sampled points along camera
rays passing over the feature plane are decoded via an MLP into a color feature 𝑓color and
density 𝜎, which are then volume rendered. This produces a low-resolution image, mask,
depth, image features, and a projected noise pattern, which are provided to a refinement
network 𝐺up to produce final image, mask, and depth outputs.

image observations [127, 289, 155, 58, 36, 145, 189, 156, 250, 159, 9, 197, 208] by

constructing a local or global 3D scene representation. However, most prior methods

can only interpolate or extrapolate a limited distance from the input views, and do

not possess a generative ability.

On the other hand, a number of generative view synthesis methods have been

recently proposed utilizing neural volumetric representations [162, 203, 165, 47, 164,

71, 27, 186, 223]. These methods can learn to generate 3D representations from 2D

supervision, and have demonstrated impressive results on generating novel objects [180],

faces [71, 169, 27, 43], or indoor environments [187, 47]. However, none of these

methods can generate unbounded outdoor scenes due to lack of multi-view data for

supervision, and due to the larger and more complex scene geometry and appearance

that is difficult to model with prior representations. In contrast, our approach

can generate globally consistent, large-scale nature scenes by training solely from

unstructured 2D photo collections.

Our work is particularly inspired by recent perpetual view generation methods,

including InfiniteNature [137] and InfiniteNature-Zero [131], which can generate un-

bounded fly-through videos of natural scenes, and are trained on nature videos or photo

collections. However, these methods generate video sequences in an auto-regressive

manner, and therefore cannot achieve globally consistent 3D scene content. Our

87

approach instead adopts a global scene representation that can be trained to gener-

ate consistent-by-construction and realistic novel views spanning large-scale scenes.

Concurrent works for scene synthesis InfiniCity [135] and SceneDreamer[34] leverage

birds-eye-view representations, while SceneScape [61] builds a mesh representation

from text.

5.3 Method

Our scene representation for unbounded landscapes consists of two components, a scene

layout grid and a skydome. The scene layout grid models the landscape terrain, and is

a 2D grid of features defined on a “ground plane.” These 2D features are intended

to describe both the height and appearance content of the terrain, representing the

full 3D scene — in fact, we decode these features to a 3D radiance field, which can

then be rendered to an image (§5.3.1). To enable camera motion beyond the training

volume, we spatially extend the 2D feature grid to arbitrary sizes (§5.3.2). Because

it is computationally expensive to generate and volume render highly detailed 3D

content at the scale we aim for, we use an image-space refinement network that adds

additional texture detail to rendered images (§5.3.3).

The second scene component is a skydome (§5.3.4), which is a spherical (panoramic)

image intended to model very remote content, such as the sun and sky, as well as

distant mountains. The skydome is generated to harmonize with the terrain content

described by the scene layout grid.

All the stages of our approach are trained with GAN losses (§5.3.5). In what

follows, we use the 3D coordinate convention that the ground plane is the xz-plane,

and the 𝑦-axis represents height above or below this plane. Generally, the camera

used to view the scene will be positioned some height above the ground.

5.3.1 Scene layout generation and rendering

To represent a distribution over landscapes, we take a generative approach following

the layout representation of GSN [47]. First, a 2D scene layout grid is synthesized

88

from a sampled random noise code 𝑧 passed to a StyleGAN2 [110] generator 𝐺land.

This creates a 2D feature grid 𝑓land, which we bilinearly interpolate to obtain a 2D

function over spatial coordinates 𝑥 and 𝑧:

𝑓land(𝑥, 𝑧) = Interpolate(𝐺land(𝑧), (𝑥, 𝑧)) (5.1)

To define a full 3D scene, we need a way to compute the content at any 3D location

(𝑥, 𝑦, 𝑧). We define a multi-layer perceptron 𝑀 that takes a scene grid feature, as well

as the height 𝑦 of the point at which we want to evaluate the scene content. The

outputs of 𝑀 are the 2D-to-3D lifted feature 𝑓color and the density 𝜎 at point (𝑥, 𝑦, 𝑧):

𝑓color, 𝜎 = 𝑀(𝑓land(𝑥, 𝑧), 𝑦). (5.2)

In this way, the 2D scene layout grid determines a radiance field over all 3D points

within the bounds of the grid[270, 47, 206]. That is, feature vectors in the grid encode

not just appearance information, but also the height (or possibly multiple heights) of

the terrain at their ground location.

To render an image from a desired camera pose, we cast rays r from the camera

origin through 3D space, sample points (𝑥, 𝑦, 𝑧) along them, and compute 𝑓color and 𝜎

at each point. We then use volume rendering to composite 𝑓color along each ray into

projected 2D image features 𝑓im, a disparity image 𝑑LR, and a sky segmentation mask

𝑚LR. We form an initial RGB image of the terrain, 𝐼LR, via a learned linear projection

𝑃 of these image features. This process is depicted in the left half of Fig. 5-2, and is

defined as:

𝑓im(r) =
𝑁∑︁
𝑖=1

𝑤𝑖𝑓color,𝑖, 𝑑LR(r) =
𝑁∑︁
𝑖=1

𝑤𝑖𝑑𝑖,

𝑚LR(r) =
𝑁∑︁
𝑖=1

𝑤𝑖, 𝐼LR = 𝑃𝑓im,

(5.3)

where 𝑖 ∈ {1..𝑁} refers to the index of each sampled point along ray r in order of

increasing distance from the camera, 𝑑𝑖 is the inverse-depth (disparity) of point 𝑖, and

89

weights 𝑤𝑖 are determined from the volume rendering equations used in NeRF [156]

(see supplemental).

We intend the mask 𝑚LR to distinguish sky regions (which will be empty and

filled later using the skydome) from non-sky regions, and achieve this by training

using segmented real images in which color and disparity for sky pixels are replaced

with zero. Since to achieve zero disparity all weights along a ray must be zero (which

also results in a zero-valued color feature), this approach encourages the generator to

omit sky content. However, while we find that the model indeed learns to generate

transparent sky regions, land geometry can also become partially transparent. To

counter this, we penalize visible decreases in opacity along viewing rays using finite

differences of opacity 𝛼:

ℒtransparent(r) =
𝑁∑︁
𝑖=2

𝑤𝑖
max(𝛼𝑖−1 − 𝛼𝑖, 0)

𝛿𝑖
. (5.4)

5.3.2 Layout extension

While 𝐺land creates a fixed-size feature grid, our objective is to generate geometry of

arbitrary size, enabling long-distance camera motion at inference time. Hence, we

devise a way to extend the feature grid in the 𝑥 and 𝑧 dimensions. We illustrate

this process in Fig. 5-3, where we first sample noise codes 𝑧 in a grid arrangement,

where each 𝑧 generates a 2D layout feature grid of size 𝐻 ×𝑊 . To obtain a smooth

transition between these independently sampled layout features, we generalize the

image interpolation approach from SOAT (StyleGAN of all Trades) [40] to two

dimensions. We operate on 2× 2 sub-grids and blend intermediate features from each

layer of the generator as follows:

𝑓𝑘,𝑙+1 = 𝐺𝑙(𝑓𝑙, 𝑧𝑘); 𝑘 = {00, 01, 10, 11}

𝑓𝑙+1 =
∑︁

𝑘={00,01,10,11}

𝛽𝑘(𝑥, 𝑧)𝑓𝑘,𝑙+1.
(5.5)

For each of the four corner anchors 𝑘, we construct the modulated feature 𝑓𝑘,𝑙+1

by applying 𝐺𝑙 (the 𝑙-th layer of 𝐺land) in a fully convolutional manner over the

90

Latent Grid

flandz00 z01 z02

z12z10 z11

z22z20 z21

W

H

G + 2D SOAT Blended Feature

z00

β00

2H

2W

Figure 5-3: Layout extension procedure. To extend the layout at inference time, we
sample noise codes 𝑧 in a grid arrangement. To smoothly transition between adjacent feature
grids, we use the SOAT (StyleGAN of All Trades) procedure [40] in 2D. Operating on a 2× 2
sub-grid, we apply each generator layer four times in fully convolutional manner over the
entire sub-grid, each time conditioned on a different corner latent code 𝑧, before multiplying
by bilinear blending weights. This process is repeated for each layer of the generator and each
sub-grid. Each 2× 2 sub-grid produces a 2𝐻 × 2𝑊 feature grid, and sub-grids are blended
together in an overlapping fashion to obtain an extended feature grid 𝑓land of arbitrary spatial
size.

entire sub-grid. We then interpolate between the four feature grids using bilinear

interpolation weights 𝛽𝑘(𝑥, 𝑧). By stitching these 2× 2 sub-grids in an overlapping

manner, we can obtain a scene layout feature grid of arbitrary size to use as 𝑓land.

Additional details are provided in the supplemental.

5.3.3 Image refinement

Due to the computational cost of volume rendering, training the layout generator

at higher resolutions becomes impractical. We therefore use a refinement network

𝐺up to upsample the initial generated image 𝐼LR to a higher-resolution result 𝐼HR,

while adding textural details (Fig. 5-2-right). We use a StyleGAN2 backbone for 𝐺up,

replacing the earlier feature layers with feature output 𝑓im and the RGB residual layers

with a concatenation of 𝐼LR, 𝑑LR, and 𝑚LR. To encourage the refined terrain image

𝐼HR to be consistent with the sky mask, the network also predicts a refined disparity

map and sky mask for compositing with the skydome (see §5.3.4):

𝐼HR, 𝑑HR,𝑚HR = 𝐺up(𝑓im, 𝐼LR, 𝑑LR,𝑚LR). (5.6)

91

Eclip Gsky

skydome result

terrain image xHR sky output xsky composite Figure 5-4: Skydome generator.
Conditioned on the terrain image,
the skydome generator 𝐺sky synthe-
sizes distant content (e.g., sky pix-
els and remote mountains) that is
consistent with the generated ter-
rain using encoder 𝐸clip. 𝐺sky uses
cylindrical coordinates to produce
a panoramic image.

We compute a reconstruction loss between the initial and refined disparity and mask

outputs, and penalize 𝐺up for producing gray sky pixels in 𝐼HR outside the predicted

mask 𝑚HR. Please see the supplemental for more details.

For fine texture details, StyleGAN2 also uses layer-wise spatial noise in intermediate

generator layers (in addition to the global latent 𝑧). Using a fixed 2D noise pattern

results in texture ‘sticking’ as we move the camera [111], but resampling it every frame

reduces spatial coherence and removing it entirely results in gridding artifacts. To

avoid these issues and improve spatial consistency, we replace the 2D image-space noise

with projected 3D world-space noise, where the noise input to 𝐺up is the projection of

samples from a grid of noise, 𝑛. This noise pattern is drawn from a standard Gaussian

distribution defined on the ground plane at the same resolution of the layout features,

which is then lifted into 3D and volume rendered along each ray r:

𝑛(r) =
𝑁∑︁
𝑖=1

𝑤𝑖𝑛(𝑥, 𝑧). (5.7)

5.3.4 Skydome

We model remote content (sky and distant mountains) separately with a skydome

generator 𝐺sky (Fig.5-4). This generator follows the StyleGAN3 architecture [111], with

a mapping network and synthesis network conditioned on cylindrical coordinates [25].

We adapt it by conditioning on the terrain output: we encode terrain images 𝐼HR using

the pretrained CLIP image encoder 𝐸clip [183], and concatenate this to the style-code

92

output of the mapping network as input into 𝐺sky:

𝐼sky = 𝐺sky(concat(𝐸clip(𝐼HR),mapping(𝑧))). (5.8)

Conditioning on the foreground terrain image encourages the skydome generator to

generate a sky that is consistent with the terrain content. This model trains on

single-view landscape images but can produce a full panorama at inference-time by

passing in coordinates that correspond to a 360∘ cylinder. The skydome is rendered

to an individual camera viewpoint using camera ray directions, giving the skydome

image 𝐼dome which is then composited with the terrain image using the sky mask:

𝐼full = 𝐼HR ⊙𝑚HR + 𝐼dome ⊙ (1−𝑚HR). (5.9)

5.3.5 Training

We train the layout generator (rendering at 32x32), refinement network (upsampling

to 256x256), and skydome generator separately. To train the refinement network,

we operate on outputs of the layout generator, freezing the weights of that model.

For the skydome generator, we train using real landscape images, and apply it

only to the outputs of the refinement network at inference time. We follow the

StyleGAN2 objective [110], with additional losses for each training stage, architecture,

and hyperparameters provided in the supplemental.

Dataset and camera poses. We train on LHQ [221], a dataset of of 90K unposed,

single-view images of natural landscapes. A number of LHQ images contain geometry

that is not amenable to “flying”, such as a landscape pictured through a window, or a

closeup of trees. Therefore, we perform a filtering process on LHQ prior to training

(see supplemental). We also obtain auxiliary outputs – disparity and sky segmentation

– using the pretrained DPT [184] model. Disparity and sky segmentation are used to

construct the real image distribution in the GAN training phases.

After filtering, we use 56,982 images for training, and augment with horizontal

flipping. During training we also need to sample camera poses. Prior 3D generators[47,

93

26, 27, 203, 169, 71] either use ground-truth poses from a simulator, or assume an

object-centric camera distribution in which the camera looks at a fixed origin from

some radius. Because our dataset lacks ground truth poses, we first sample a bank

of training poses uniformly across the layout feature grid with random small height

offsets, and rotate such that the near half of the camera view frustum falls entirely

within the layout grid. Since the aerial layout should not be specific to any given

camera pose, we generate 𝑓land without any camera pose information, and then adopt

the sampling scheme from GSN[47] which samples a camera pose from the initial

training pose bank proportional to the inverse terrain density at each camera position,

to avoid placing the camera within occluding geometry.

5.4 Experiments

Given its persistent scene representation and the extensibility of the its layout grid,

our model enables arbitrary motion through a synthesized landscape, including long

camera trajectories. We show sample outputs from our model under a variety of camera

movements (§ 5.4.1); present qualitative and quantitative comparisons with alternate

scene representations, including auto-regressive prediction models and unconditional

generators defined for bounded or object-centric scenes (§ 5.4.2); and investigate

variations of our model to evaluate design decisions (§ 5.4.3).

5.4.1 Persistent, unbounded scene synthesis

Figure 5-5 shows example landscapes generated by our model with various camera

motions. As the camera moves (by rotating and/or translating) the generated imagery

changes in a way that is consistent with the underlying geometry, e.g . hills move across

the image or become closer. Extending the generated aerial feature grid allows us to

place the camera outside the distribution of training camera poses, while maintaining

both geometric and stylistic consistency. As illustrated in Figure 5-1 and our project

page, the persistent and extendable layout features enables synthetic ‘flights’ over

large distances that can also return to a consistent starting point.

94

ViewpointsCamera Positions

Ro
ta

tio
n

Tr
an

sl
at

io
n

Ex
tr

ap
ol

at
io

n
Ex

tr
ap

ol
at

io
n

Figure 5-5: Visualization of nearby and extrapolated camera motion. Each row
shows a set of sampled viewpoints, shown in an overhead view in the first column, and the
corresponding rendered images in the other columns. Our model enables 3D-consistent view
synthesis, visible under rotating or translating camera trajectories. We can also extrapolate
the layout features at inference time, enabling camera motions outside of the training camera
distribution (shown as a black square in the last two rows) with a consistent scene style.

5.4.2 Comparing scene representations

We compare our model with three state-of-the-art methods. InfiniteNature-Zero is

an auto-regressive method that, given an initial frame, generates successive frames

sequentially by warping each image to the next based on depth [131]. It allows for

unbounded camera trajectories, but has no persistent world model. GSN [47] and

EG3D [27] are unconditional generative models: GSN uses a layout feature grid which

is also the basis of our model, but focuses on bounded indoor scenes with ground-truth

camera pose trajectories, while EG3D uses a tri-plane representation and primarily

focuses on objects and portraits. These methods have persistent world models (feature

grid and tri-plane representation) but do not allow for unbounded trajectories.

Quantitative comparisons. We evaluate image quality using FID [82], and multi-

95

Model Persistent Unbounded FID Consistency

𝐶forward 1-step cycle

Inf Nat Zero [131] ✗ ✓ 28.15 1.84 3.94
Ours (128px) ✓ ✓ 26.09 2.12 0.00

Table 5.1: Comparison with InfiniteNature-Zero. Using camera motions from
InfiniteNature-Zero, we evaluate image quality as FID on 5K images after moving 100
steps forward (𝐶forward), one-step consistency as the L1 error when backwards warping one
camera step, and cycle consistency as the L1 error between the original frame and the result
after a pair of forward/backward steps. InfiniteNature-Zero is more consistent for a single
step, but it has non-zero cyclic consistency error, and image quality degrades after repeated
model applications. L1 values are multiplied by 100 throughout.

Model Persistent Unbounded FID Consistency
𝐶train 𝐶forward 𝐶random

GSN [47] ✓ ✗ 29.95 50.22 45.48 12.80
EG3D [27] ✓ ✗ 9.85 30.17 32.08 3.01
Ours ✓ ✓ 21.42 26.67 23.39 3.56

Table 5.2: Quantitative comparison to unconditional GANs. We evaluate image
quality as FID on 5K images on (a) training camera poses 𝐶train, (b) forward motion 𝐶forward
(See Table 5.1), (c) random camera poses 𝐶random. One-step consistency error is measured as
the L1 error when backwards warping the result after one camera step to the initial frame,
multiplied by 100. Once outside the training pose distribution our model generates better
images than other methods, with consistency close to that of EG3D.

view consistency using photometric error. To compare with InfiniteNature-Zero

(Table 5.1), we initialize with an image and depth map from our model, move the

camera forwards using a forward motion trajectory from InfiniteNature-Zero, and

evaluate image quality at a distance of 100 forward steps. Our model attains better FID,

showing that it does not suffer from image degradation due to successive applications

of an auto-regressive model. To compute one-step consistency error, we generate a

new frame at a position equivalent to one forward step of InfiniteNature-Zero, warp

it back to the original camera position using depth, and compute L1 error with the

original frame in the overlapping region. Because InfiniteNature-Zero uses explicit

warping as part of its model, it can achieve better one-step consistency, whereas

our 2D upsampling operation is more susceptible to geometric inconsistency. We

measure cyclic consistency error as the L1 error between the initial frame to the result

after a step forward and back. Because InfiniteNature-Zero lacks a persistent global

96

representation, it has non-zero cyclic consistency error, whereas our model is fully

consistent with zero cyclic consistency error.

To compare with the unconditional generative models GSN and EG3D, we compute

FID on sets of output images corresponding to different distributions of camera

positions: camera poses used in training which are intended to overlap with the layout,

camera poses 100 steps forward from these mimicking InfiniteNature-Zero trajectories,

and a uniform distribution of randomly oriented cameras over the layout grid. As

seen in Table 5.2, GSN is the least successful method when applied to this domain.

EG3D generates high-quality images at training camera poses, but tends to represent

the scene as floating nearby clouds with planar mountains at the edges of the volume

(incorrect geometry). Our method generalizes better to new camera positions. GSN

has the highest one-step consistency error, while the consistency error of our model is

close to that of EG3D (which relies less on 2D upsampling). In the supplemental, we

experiment with an alternative architecture that builds on extendable triplane units

with lower consistency error and faster rendering speed.

Qualitative comparisons. In Fig. 5-6 we show example outputs of each model

over forward-moving and rotating trajectories. Due to its auto-regressive nature, the

quality of InfiniteNature-Zero’s output degrades somewhat as the camera trajectory

becomes longer. A more serious limitation is that, trained only on forward movement,

it is unable to synthesize plausible views under camera rotation. GSN and EG3D also

struggle with long camera trajectories, producing unrealistic outputs as the cameras

approach the spatial limits of the training camera distribution. In the case of GSN

applied to our setting, the results contain flickering and grid-like artifacts, which our

projected noise (§ 5.3.3) mitigates.

5.4.3 Model variations

To investigate individual components of our model, we separately evaluate variations

of the layout generator and refinement network.

Layout generator. The resolution of the scene layout grid and the number of

97

Disparity
G

SN
EG

3D
O

ur
s

In
f N

at
 Z

er
o

Initial
Camera

Moving
Forward

Rotating
Camera

Disparity
Initial

Camera
Moving
Forward

Rotating
Camera

Figure 5-6: Comparison to auto-regressive and bounded-volume 3D generative
models. Each row shows results for a given method on two generated scenes under different
camera motion, along with a disparity map. Compared to InfiniteNature-Zero, our model
enables long-range view synthesis by rendering a global scene description from different
viewpoints, rather than auto-regressively predicting successive frames. 3D generative models
like EG3D and GSN do not support view extrapolation on unbounded scenes. See our
webpage for animated results.

Geometry Mask Terrain Composite Geometry Mask Terrain Composite

w
/o

 g
eo

. r
eg

.
RG

B
 u

ps
am

pl
er

w
ith

 g
eo

. r
eg

.
RG

B
 u

ps
am

pl
er

w
ith

 g
eo

. r
eg

.
jo

in
t u

ps
am

pl
er

Figure 5-7: Qualitative comparison of model variations. Each row shows a model
variant, visualizing generated geometry (as a rendered scene filled with a checkerboard
pattern), sky mask, rendered terrain, and final image composite. (Top) Without geometry
regularization, the model produces semi-transparent terrain. (Middle) Adding geometry
regularization (Eqn. 5.4) makes the terrain more solid, but there are inconsistencies between
the terrain and mask prediction. (Bottom) Our full model uses geometry regularization and
also adds a upsampler that operates on inverse-depth and sky mask inputs in addition to
RGB (Eqn. 5.6) to discourage boundary effects between the terrain and sky.

98

Model
Samples
Per Ray

Layout
Resolution

FID
(𝐼LR)

Low 64 32 33.66
Medium 128 32 32.02
High 128 64 22.62
Full 128 256 16.06

Table 5.3: Variations on layout gen-
eration. Higher feature grid resolution
and more samples per ray yield the best
results, bounded by computational lim-
its. For speed, FID is computed on 5K
samples rendered at 32×32.

Refinement
Output

Projected
Noise

FID (𝐼HR) Consistency
𝐶train 𝐶random

𝐼HR ✗ 26.30 27.08 5.08
𝐼HR, 𝑑HR,𝑚HR ✗ 23.75 27.25 5.81
𝐼HR, 𝑑HR,𝑚HR ✓ 21.42 23.39 3.91

Table 5.4: Variations on the refinement net-
work. We find refining not only the low-resolution
image but also the depth and sky-mask improves
image quality, but can lead to jittery results. The
addition of projected noise into the upsampler re-
sults in smoother frames with lower consistency
error.

samples per ray affect the quality of the volume-rendered output 𝐼LR. As shown in

Table 5.3, higher resolution and more samples lead to the best image quality (FID

computed on 32×32 pixel images for speed, compared to segmented real images with

gray sky pixels). To maximize the capacity of layout generation and rendering within

computational limits we opt for a 256×256 feature grid with 128 samples per ray.

Refinement network. Next, we investigate the refinement stage, which upsamples

and refines the layout generator output. In our full model, the refinement network

operates not only on RGB images but also on inverse-depth and sky mask (Eqn. 5.6),

and uses projected noise for spatial consistency of texture detail (Eqn. 5.7). As shown

in Table 5.4, both help to improve our model’s FID and consistency error.

As shown in Fig. 5-7 (second row), upsampling only the RGB image 𝐼LR can lead

to output that is inconsistent with the generated sky mask, leading to temporally

unstable gaps in the final composited image. This figure also shows the effect of our

geometric regularization (Eqn. 5.4) in reducing unwanted transparency, especially in

distant terrain.

5.5 Discussion and conclusion

Limitations. A few drawbacks of our model include costly volume rendering limiting

the resolution of 𝐼LR, imperfect 3D consistency due to image-space refinement, and

imperfect or repeating geometry decoded from the scene layout features. We elaborate

in the supplemental.

99

Conclusion. We present an unconditional world generator for unbounded synthesis

of persistent 3D nature scenes. We build persistent world representation by modeling

scene content with a spatially extendable layout feature grid which can be decoded

via volume rendering to form a terrain image. This rendered terrain is combined with

a separate skydome, representing infinitely far content, to synthesize novel viewpoints

supporting nearby and distant camera motions. Altogether, our model enables 3D

consistent image generation and view synthesis of unbounded scenes learned from

single-view, unposed landscape photos.

100

Chapter 6

Epilogue

Driven by the collection of these large datasets and improvements in training techniques,

our ability to synthesize photorealistic images as improved rapidly over the past several

years. However, the practical use case of creating fully random imagery is limited,

thus we turn to methods that impart some manner of controlling the output during

the synthesis process. With these forms of control, we can better specify the content

we want the the image generator to produce.

In this dissertation, we explore two paths towards controllable content creation.

Using the emergent priors from pre-trained synthesis models, we are able to adjust

generated content according to learned perturbations to the latent codes or image

exemplars which are encoded into latent space. The key idea of emergent control is

that a model trained solely for the synthesis task functions as an effective image prior,

and we add control capabilities by holding the model fixed while manipulating its

inputs. The frozen generator allows us to maintain realistic outputs while adjusting

the latent code, so that we can achieve semantically meaningful changes that are

consistent with variations that we might observe in real images. On the other hand,

designed control trains the model jointly to synthesize images while obeying additional

control inputs via adjusted model architectures and training objectives. Here, we focus

on designing spatial constraints, which use coordinate conditioning and geometric

transformations within the model, allowing us to demonstrate variable-rate synthesis

and synthesis of unbounded 3D landscapes with camera control.

101

Synthesis for visual analysis. The ability to create and edit synthetic images

not only allows us to give users creative control over generated content, but also

opens the possibility of using them for downstream visual analysis applications. Using

synthesis models as infinite data generators has been explored in the context of

learning image representations for classification tasks [185, 24, 99, 150, 199, 283],

with recent improvements driven by the development of text-to-image synthesis

models [236, 6, 198]. Additionally, these synthetic outputs can serve as stimuli for

human perceptual experiments [68, 62]. With the rise of synthetic content creation, it

is also important to develop mechanisms for detecting such material, using learned

detection models [251, 274, 23, 282, 294] for entirely synthesized content, or consistency

methods when parts of the input have been manipulated [91, 147].

Recent advances in text-to-image synthesis. The image synthesis pipeline

has undergone dramatic improvements within the past year (2022-2023) with the

rise of massive text-to-image datasets [202] and the development of diffusion and

transformer-based synthesis methods [29, 55, 48, 224, 226, 84] leading to massive

foundation models that generate high quality images by combining stochastic noise

sampling with text inputs [192, 30]. In contrast to adversarial objectives in which

two competing models must be carefully balanced, these alternatives offer more stable

training trajectories via an iterative synthesis procedure with ground truth targets, in

which the task is to gradually recover the training image starting from a randomly

sampled latent in multiple iterative steps. While GAN models have largely focused

on single domains or curated datasets like ImageNet, recent work has also developed

techniques for scaling up GAN frameworks to handle text-to-image synthesis on

arbitrary domains [201, 104].

However, even within the scope of these newly developed models, similar editing

goals remain – with just a text caption it is impossible to provide a precise description

of everything one might want to see in an image, so we often require additional

techniques to gain increased control over resulting output. Using these recent text-to-

image models as general-purpose image priors and adjusting the inputs and inference

102

procedure allows for properties of emergent control over image editing [122, 241, 81,

54, 152, 63]. One particular application also enables 3D camera control from pretrained

2D diffusion models by optimizing a neural field or mesh using a text-to-image model

as a prior [180, 132, 61]. Alternatively, 3D controls can be incorporated into directly

into diffusion models with aspects of designed control, by reformulating the 3D domain

into 2.5D, 2D, or latent feature representations during model training [129, 216, 28,

264, 257]. As large vision models become increasingly difficult to train from scratch,

an increasingly common approach is a hybrid setup which leverages the emergent

priors of a pretrained model and further finetunes the model with additional designed

objectives for downstream editing [193, 121, 21, 278, 120, 64, 141].

Future directions of image synthesis. Image synthesis as a field is rapidly

progressing, scaling up with larger models and increased diversity of the context we

can create. However, synthesis today is not fully capable of representing everything

that we might observe in the world. Models today tend to be better at producing

object-centric results, but large-scale scenes and complex, detailed layouts remain

difficult to capture in a fully realistic manner. In addition, there are several ways that

we might imagine interacting with our synthesized content.

One possibility is framing synthesis as an iterative procedure, in which the model

can incrementally adjust its outputs based on intermediate user feedback. These

feedback systems have been deployed in text generation domains [56, 168], but image

synthesis today tends to be a single-shot process, in which the user provides some input

and the model produces an output, rather than an interactive, cyclical process. Doing

so brings about additional challenges, such as balancing between preserving content

from previous editing operations while making the adequate changes at subsequent

iterations.

The world itself is also does not exist in a static state; things can move and

change over time. While representing a moving camera within a generated scene is

one way of creating dynamic content, it does not address how the scene itself can

change. Currently, representing dynamic scenes has been handled via video generation

103

techniques [222, 20, 219, 16], but these do not address the topic of interactive generation.

For example, we might imagine that if we interactively reconfigure objects in the scene,

the output might change as the result of the sequence of individual actions taken.

Representing dynamic, interactive content creation will require us to reevaluate how

we represent scenes, objects, and motion within our synthesis pipelines.

As our techniques for creating synthetic imagery improve, the fundamental problem

of how we can control aspects of the synthesized content continues to reappear.

Improved control can allow us to efficiently convert anything we imagine in our minds

directly into images, without needing to manually draw the individual pixel values.

Through methods of emergent control added to pretrained models or designed control

built into the model training process, we can develop techniques that allow image

generators to serve as even better creative assistants and increasingly realistic world

models, allowing synthesis to be a more useful tool in our everyday lives.

104

Appendix A

Supplementary: GAN Steering

A.1 Additional Methodological Details

A.1.1 Optimization for the linear walk

We learn the walk vector using mini-batch stochastic gradient descent with the Adam

optimizer [114] in tensorflow, trained on 20000 unique samples from the latent space

𝑧. We share the vector 𝑤 across all ImageNet categories for the BigGAN model.

A.1.2 Implementation details for linear walk

We experiment with a number of different transformations learned in the latent space,

each corresponding to a different walk vector. Each of these transformations can

be learned without any direct supervision, simply by applying our desired edit to

the source image. Furthermore, the parameter 𝛼 allows us to vary the extent of the

transformation. We found that a slight modification to each transformation improved

the degree to which we were able to steer the output space: we scale 𝛼 differently for

the learned transformation 𝐺(𝑧 + 𝛼𝑔𝑤), and the target edit edit(𝐺(𝑧), 𝛼𝑡). We detail

each transformation below:

Shift. We learn transformations corresponding to shifting an image in the horizontal

X direction and the vertical Y direction. We train on source images that are shifted

105

−𝛼𝑡 pixels to the left and 𝛼𝑡 pixels to the right, where we set 𝛼𝑡 to be between zero

and one-half of the source image width or height 𝐷. When training the walk, we

enforce that the 𝛼𝑔 parameter ranges between -1 and 1; thus for a random shift by 𝑡

pixels, we use the value 𝛼𝑔 = 𝛼𝑡/𝐷. We apply a mask to the shifted image, so that

we only apply the loss function on the visible portion of the source image. This forces

the generator to extrapolate on the obscured region of the target image.

Zoom. We learn a walk which is optimized to zoom in and out up to four times the

original image. For zooming in, we crop the central portion of the source image by

some 𝛼𝑡 amount, where 0.25 < 𝛼𝑡 < 1 and resize it back to its original size. To zoom

out, we downsample the image by 𝛼𝑡 where 1 < 𝛼𝑡 < 4. To allow for both a positive

and negative walk direction, we set 𝛼𝑔 = log(𝛼𝑡). Similar to shift, a mask applied

during training allows the generator to inpaint the background scene.

Color. We implement color as a continuous RGB slider, e.g., a 3-tuple 𝛼𝑡 = (𝛼𝑅, 𝛼𝐺,

𝛼𝐵), where each 𝛼𝑅, 𝛼𝐺, 𝛼𝐵 can take values between [−0.5, 0.5] in training. To edit the

source image, we simply add the corresponding 𝛼𝑡 values to each of the image channels.

Our latent space walk is parameterized as 𝑧+𝛼𝑔𝑤 = 𝑧+𝛼𝑅𝑤𝑅+𝛼𝐺𝑤𝐺+𝛼𝐵𝑤𝐵 where

we jointly learn the three walk directions 𝑤𝑅, 𝑤𝐺, and 𝑤𝐵.

Rotate in 2D. Rotation in 2D is trained in a similar manner as the shift operations,

where we train with −45 ≤ 𝛼𝑡 ≤ 45 degree rotation. Using 𝑅 = 45, scale 𝛼𝑔 = 𝛼𝑡/𝑅.

We use a mask to enforce the loss only on visible regions of the target.

Rotate in 3D. We simulate a 3D rotation using a perspective transformation along

the Z-axis, essentially treating the image as a rotating billboard. Similar to the 2D

rotation, we train with −45 ≤ 𝛼𝑡 ≤ 45 degree rotation, we scale 𝛼𝑔 = 𝛼𝑡/𝑅 where

𝑅 = 45, and apply a mask during training.

A.1.3 Linear NN(𝑧) walk

Rather than defining 𝑤 as a vector in 𝑧 space (Eq. 2.1), one could define it as a function

that takes a 𝑧 as input and maps it to the desired 𝑧′ after taking a variable-sized step

𝛼 in latent space. In this case, we may parametrize the walk with a neural network

106

𝑤 = NN(𝑧), and transform the image using 𝐺(𝑧 + 𝛼NN(𝑧)). However, as we show in

the following proof, this idea will not learn to let 𝑤 be a function of 𝑧.

Proof. For simplicity, let 𝑤 = 𝐹 (𝑧). We optimize for 𝐽(𝑤, 𝛼) = E𝑧 [ℒ(𝐺(𝑧 + 𝛼𝑤), edit(𝐺(𝑧), 𝛼))]

where 𝛼 is an arbitrary scalar value. Note that for the target image, two equal edit

operations is equivalent to performing a single edit of twice the size (e.g., shifting by

10px the same as shifting by 5px twice; zooming by 4x is the same as zooming by 2x

twice). That is,

edit(𝐺(𝑧), 2𝛼) = edit(edit(𝐺(𝑧), 𝛼), 𝛼).

To achieve this target, starting from an initial 𝑧, we can take two steps of size 𝛼 in

latent space as follows:

𝑧1 = 𝑧 + 𝛼𝐹 (𝑧)

𝑧2 = 𝑧1 + 𝛼𝐹 (𝑧1)

However, because we let 𝛼 take on any scalar value during optimization, our objective

function enforces that starting from 𝑧 and taking a step of size 2𝛼 equals taking two

steps of size 𝛼:

𝑧 + 2𝛼𝐹 (𝑧) = 𝑧1 + 𝛼𝐹 (𝑧1) (A.1)

Therefore:

𝑧 + 2𝛼𝐹 (𝑧) = 𝑧 + 𝛼𝐹 (𝑧) + 𝛼𝐹 (𝑧1) ⇒

𝛼𝐹 (𝑧) = 𝛼𝐹 (𝑧1) ⇒

𝐹 (𝑧) = 𝐹 (𝑧1).

Thus 𝐹 (·) simply becomes a linear trajectory that is independent of the input 𝑧.

A.1.4 Optimization for the non-linear walk

Given the limitations of the previous walk, we define our nonlinear walk 𝐹 (𝑧) using

discrete step sizes 𝜖. We define 𝐹 (𝑧) as 𝑧+NN(𝑧), where the neural network NN learns

107

a fixed 𝜖 step transformation, rather than a variable 𝛼 step. We then renormalize

the magnitude 𝑧. This approach mimics the Euler method for solving ODEs with a

discrete step size, where we assume that the gradient of the transformation in latent

space is of the form 𝜖𝑑𝑧
𝑑𝑡

= NN(𝑧) and we approximate 𝑧𝑖+1 = 𝑧𝑖 + 𝜖𝑑𝑧
𝑑𝑡
|𝑧𝑖 . The key

difference from A.1.3 is the fixed step size, which avoids optimizing for the equality in

(A.1).

We use a two-layer neural network to parametrize the walk, and optimize over 20000

samples using the Adam optimizer as before. Positive and negative transformation

directions are handled with two neural networks having identical architecture but

independent weights. We set 𝜖 to achieve the same transformation ranges as the linear

trajectory within 4-5 steps.

A.2 Additional Experiments

A.2.1 Model and data distributions

How well does the model distribution of each property match the dataset distribution?

If the generated images do not form a good approximation of the dataset variability,

we expect that this would also impact our ability to transform generated images. In

Fig. A-1 we show the attribute distributions of the BigGAN model 𝐺(𝑧) compared to

samples from the ImageNet dataset. We show corresponding results for StyleGAN

and its respective datasets in Appendix A.2.5. While there is some bias in how well

model-generated images approximate the dataset distribution, we hypothesize that

additional biases in our transformations come from variability in the training data.

A.2.2 Quantifying transformation limits

We observe that when we increase the transformation magnitude 𝛼 in latent space,

the generated images become unrealistic and the transformation ceases to have further

effect. We show this qualitatively in Fig. 2-3. To quantitatively verify this trends, we

can compute the LPIPS perceptual distance of images generated using consecutive

108

pairs of 𝛼𝑖 and 𝛼𝑖+1. For shift and zoom transformations, perceptual distance is larger

when 𝛼 (or log(𝛼) for zoom) is near zero, and decreases as the the magnitude of 𝛼

increases, which indicates that large 𝛼 magnitudes have a smaller transformation

effect, and the transformed images appear more similar. On the other hand, color and

rotate in 2D/3D exhibit a steady transformation rate as the magnitude of 𝛼 increases.

Note that this analysis does not tell us how well we achieve the specific transforma-

tion, nor whether the latent trajectory deviates from natural-looking images. Rather,

it tells us how much we manage to change the image, regardless of the transformation

target. To quantify how well each transformation is achieved, we rely on attribute

detectors such as object bounding boxes (see A.2.3).

A.2.3 Detected bounding boxes

To quantify the degree to which we are able to achieve the zoom and shift transforma-

tions, we rely on a pre-trained MobileNet-SSD v1 ∗ object detection model. In Fig. A-3

and A-4 we show the results of applying the object detection model to images from

the dataset, and images generated by the model under the zoom, horizontal shift, and

vertical shift transformations for randomly selected values of 𝛼, to qualitatively verify

that the object detection boundaries are reasonable. Not all ImageNet images contain

recognizable objects, so we only use ImageNet classes containing objects recognizable

by the detector for this analysis.

A.2.4 Alternative walks in BigGAN

LPIPS objective

In the main text, we learn the latent space walk 𝑤 by minimizing the objective

function:

𝐽(𝑤, 𝛼) = E𝑧 [ℒ(𝐺(𝑧 + 𝛼𝑤), edit(𝐺(𝑧), 𝛼))] . (A.2)

∗https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API

109

using a Euclidean loss for ℒ. In Fig. A-5 we show qualitative results using the LPIPS

perceptual similarity metric [280] instead of Euclidean loss. Walks were trained using

the same parameters as those in the linear-L2 walk shown in the main text: we use

20k samples for training, with Adam optimizer and learning rate 0.001 for zoom and

color, 0.0001 for the remaining edit operations (due to scaling of 𝛼).

Non-linear Walks

Following A.2.4, we modify our objective to use discrete step sizes 𝜖 rather than

continuous steps. We learn a function 𝐹 (𝑧) to perform this 𝜖-step transformation on

given latent code 𝑧, where 𝐹 (𝑧) is parametrized with a neural network. We show

qualitative results in Fig. A-6. We perform the same set of experiments shown in

the main text using this nonlinear walk in Fig. A-7. These experiments exhibit

similar trends as we observed in the main text – we are able to modify the generated

distribution of images using latent space walks, and the amount to which we can

transform is related to the variability in the dataset. However, there are greater

increases in FID when we apply the non-linear transformation, suggesting that these

generated images deviate more from natural images and look less realistic.

Additional Qualitative Examples

We show qualitative examples for randomly generated categories for BigGAN linear-L2,

linear LPIPS, and nonlinear trajectories in Figs. A-8, A-9, A-10 respectively.

A.2.5 Walks in StyleGAN

We perform similar experiments for linear latent space walks using StyleGAN models

trained on the LSUN cat, LSUN car, and FFHQ face datasets. As suggested by Karras

et al. [107], we learn the walk vector in the intermediate 𝑊 latent space due to

improved attribute disentanglement in 𝑊 . We show qualitative results for color, shift,

and zoom transformations in Figs. A-11, A-13, A-15 and corresponding quantitative

analyses in Figs. A-12, A-14, A-16. We show qualitative examples for the comparison

110

of optimizing in the 𝑊 and 𝑧 latent spaces in Stylegan in A-19.

A.2.6 Walks in Progressive GAN

We also experiment with the linear walk objective in the latent space of Progressive

GAN [106]. One interesting property of the Progressive GAN interpolations is that

they take much longer to train to have a visual effect – for example for color, we

could obtain drastic color changes in Stylegan W latent space using as few as 2k

samples, but with progressive gan, we used 60k samples and still did not obtain as

strong of an effect. This points to the Stylegan w latent space being more “flexible”

and generalizable for transformation, compared to the latent space of progressive

GAN. Moreover, we qualitatively observe some entanglement in the progressive gan

transformations – for example, changing the level of zoom also changes the lighting.

We did not observe big effects in the horizontal and vertical shift transformations.

Qualitative examples and quantitative results are shown in Figs. A-17, A-18.

A.2.7 Qualitative examples for additional transformations

Since the color transformation operates on individual pixels, we can optimize the walk

using a segmented target – for example when learning a walk for cars, we only modify

pixels in segmented car region when generating edit(𝐺(𝑧), 𝛼). StyleGAN is able to

roughly localize the color transformation to this region, suggesting disentanglement of

different objects within the 𝑊 latent space (Fig. A-20 left) as also noted in Karras et al.

[107], Shen et al. [210]. We also show qualitative results for adjust image contrast

(Fig. A-20 right), and for combining zoom, shift X, and shift Y transformations

(Fig. A-21).

A.2.8 Additional results for improving model steerability

We further test the hypothesis that dataset variability impacts the amount we are

able to transform by comparing DCGAN models trained with and without data

augmentation. Namely, with data augmentation, the discriminator is able to see

111

edited versions of the real images. We also jointly train the model and the walk

trajectory which encourages the model to learn linear walks. For zoom, horizontal

shift, and 2D rotate transformations, additional samples for three training approaches

– without data augmentation, with data augmentation, and joint optimization – appear

in Fig. A-22-A-24. Qualitatively, transformations using the model trained without

data augmentation degrade the digit structure as 𝛼 magnitude increases, and may even

change one digit to another. Training with data augmentation and joint optimization

better preserves digit structure and identity.

0.0 0.2 0.4 0.6 0.8 1.0
Area

0.5

1.0

1.5

2.0

P
D

F

⇥10�5

data

model

0.0 0.2 0.4 0.6 0.8 1.0
Center Y

0

1

2

P
D

F

⇥10�2

data

model

0.0 0.2 0.4 0.6 0.8 1.0
Center X

0.0

0.5

1.0

1.5

2.0

P
D

F

⇥10�2

data

model

0.0 0.2 0.4 0.6 0.8 1.0
Pixel Intensity

2

3

4

5

P
D

F

⇥10�3

data

model

ZoomShift YShift XLuminance

Figure A-1: Comparing model versus dataset distribution. We plot statistics of the
generated under the color (luminance), zoom (object bounding box size), and shift operations
(bounding box center), and compare them to the statistics of images in the training dataset.

Luminance

Rotate 2D

Shift X Shift Y

Zoom

�1.0 �0.5 0.0 0.5 1.0
↵

0.0

0.2

0.4

0.6

0.8

P
er

ce
p
tu

al
D

is
ta

n
ce

�50 0 50
↵

0.0

0.2

0.4

0.6

0.8

P
er

ce
p
tu

al
D

is
ta

n
ce

�400 �200 0 200 400
↵

0.0

0.2

0.4

0.6

0.8

P
er

ce
p
tu

al
D

is
ta

n
ce

�400 �200 0 200 400
↵

0.0

0.2

0.4

0.6

0.8

P
er

ce
p
tu

al
D

is
ta

n
ce

�2 �1 0 1 2
log(↵)

0.0

0.2

0.4

0.6

0.8

P
er

ce
p
tu

al
D

is
ta

n
ce

Rotate 3D

�500 �250 0 250 500
↵

0.0

0.2

0.4

0.6

0.8

P
er

ce
p
tu

al
D

is
ta

n
ce

Figure A-2: Perceptual distances along the transformation path. LPIPS Perceptual
distances between images generated from pairs of consecutive 𝛼𝑖 and 𝛼𝑖+1. We sample 1000
images from randomly selected categories using BigGAN, transform them according to the
learned linear trajectory for each transformation. We plot the mean perceptual distance and
one standard deviation across the 1000 samples (shaded area), as well as 20 individual samples
(scatterplot). Because the Rotate 3D operation undershoots the targeted transformation, we
observe more visible effects when we increase the 𝛼 magnitude.

112

Figure A-3: Visualization of object boxes. Bounding boxes for random selected classes
using ImageNet training images.

Figure A-4: Object boxes for generated images. Bounding boxes for random selected
classes using model-generated images for zoom and horizontal and vertical shift transforma-
tions under random values of 𝛼.

113

Figure A-5: Optimization using perceptual losses. Linear walks in BigGAN, trained
to minimize LPIPS loss. For comparison, we show the same samples as in Fig. 2-1 (which
used a linear walk with L2 loss).

Figure A-6: Nonlinear walks in BigGAN. These are trained to minimize L2 loss for
color and LPIPS loss for the remaining transformations. For comparison, we show the same
samples in Fig. 2-1 (which used a linear walk with L2 loss), replacing the linear walk vector
𝑤 with a nonlinear walk.

114

�1.0 �0.5 0.0 0.5 1.0
↵

0.00

0.25

0.50

0.75

1.00

In
te

rs
ec

ti
on

�200 �100 0 100 200
↵

0.00

0.25

0.50

0.75

1.00

In
te

rs
ec

ti
on

�200 �100 0 100 200
↵

0.00

0.25

0.50

0.75

1.00
In

te
rs

ec
ti
on

�2 0 2
log(↵)

0.00

0.25

0.50

0.75

1.00

In
te

rs
ec

ti
on

0.20 0.25 0.30
Data �

0.1

0.2

0.3

0.4

0.5

M
o
d
el

�
µ

0.10 0.15 0.20
Data �

0.0

0.2

0.4

M
o
d
el

�
µ

0.05 0.10 0.15
Data �

0.1

0.2

0.3

0.4

M
o
d
el

�
µ

0.2 0.3
Data �

0.2

0.4

0.6

0.8

M
o
d
el

�
µ

0.0 0.2 0.4 0.6 0.8 1.0
Pixel Intensity

0.0

0.5

1.0

1.5

2.0

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

0.0 0.2 0.4 0.6 0.8 1.0
Center X

0.0

0.5

1.0

1.5

2.0

2.5

P
D

F

⇥10�2

model

↵=-200

↵=-150

↵=-100

↵=-50

↵=50

↵=100

↵=150

↵=200

0.0 0.2 0.4 0.6 0.8 1.0
Center Y

0

1

2

3

4

P
D

F

⇥10�2

model

↵=-200

↵=-150

↵=-100

↵=-50

↵=50

↵=100

↵=150

↵=200

�1.0 �0.5 0.0 0.5 1.0
↵

20

30

40

50

F
ID

�200 �100 0 100 200
↵

20

30

40

50

F
ID

�200 �100 0 100 200
↵

20

30

40

50

F
ID

�2 0 2
log(↵)

20

30

40

50

F
ID

0.0 0.2 0.4 0.6 0.8 1.0
Area

0.0

0.5

1.0

1.5

P
D

F

⇥10�4

model

↵=0.0625

↵=0.125

↵=0.25

↵=0.5

↵=2.0

↵=4.0

↵=8.0

↵=16.0

0.0 0.2 0.4 0.6 0.8 1.0
Pixel Intensity

0.0

0.5

1.0

1.5

2.0

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

0.0 0.2 0.4 0.6 0.8 1.0
Center X

0.0

0.5

1.0

1.5

2.0

2.5

P
D

F

⇥10�2

model

↵=-200

↵=-150

↵=-100

↵=-50

↵=50

↵=100

↵=150

↵=200

0.0 0.2 0.4 0.6 0.8 1.0
Center Y

0

1

2

3

4

P
D

F

⇥10�2

model

↵=-200

↵=-150

↵=-100

↵=-50

↵=50

↵=100

↵=150

↵=200

0.0 0.2 0.4 0.6 0.8 1.0
Area

0.0

0.5

1.0

1.5

P
D

F

⇥10�4

model

↵=0.0625

↵=0.125

↵=0.25

↵=0.5

↵=2.0

↵=4.0

↵=8.0

↵=16.0

Luminance Shift X Shift Y Zoom

p=0.49 p=0.49 p=0.55 p=0.60

Figure A-7: Quantitative experiments for nonlinear walks in BigGAN. We show
the attributes of generated images under the raw model output 𝐺(𝑧), compared to the
distribution under a learned transformation model(𝛼), the intersection area between 𝐺(𝑧)
and model(𝛼), FID score on transformed images, and scatterplots relating dataset variability
to the extent of model transformation.

115

- Color +- Zoom +

- Shift X + - Shift Y +

- Rotate 2D + - Rotate 3D +

Figure A-8: Samples with L2 loss. Qualitative examples for randomly selected categories
in BigGAN, using the linear trajectory and L2 objective.

116

- Rotate 2D +

- Shift X +

- Zoom +

- Rotate 3D +

- Shift Y +

- Color +

Figure A-9: Samples with perceptual loss. Qualitative examples for randomly selected
categories in BigGAN, using the linear trajectory and LPIPS objective.

117

- Rotate 2D +

- Shift X +

- Zoom +

- Rotate 3D +

- Shift Y +

- Color +

Figure A-10: Samples with nonlinear trajectory. Qualitative examples for randomly
selected categories in BigGAN, using a nonlinear trajectory.

118

- Rotate 2D +

- Shift X +

- Zoom +

- Rotate 3D +

- Shift Y +

- Color +

Figure A-11: Samples using StyleGAN car generator. Qualitative examples for learned
transformations using the StyleGAN car generator.

119

0.0 0.5 1.0
Luminance

0.5

1.0

P
D

F

⇥10�2

data

model

�1 0 1
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

�100 0 100
↵

20

40

F
ID

0.0 0.5 1.0
ShiftX

0.0

0.5

1.0

P
D

F

⇥10�2

data

model

�100 0 100
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
ShiftX

0.00

0.25

0.50

0.75

1.00

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

�100 0 100
↵

25

50

75

F
ID

0.0 0.5 1.0
ShiftY

0.0

0.5

1.0

P
D

F

⇥10�2

data

model

�100 0 100
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
ShiftY

0.00

0.25

0.50

0.75

1.00

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

�1 0 1
log(↵)

0

200
F
ID

0.0 0.5 1.0
Zoom

0

2

4

6

P
D

F

⇥10�6

data

model

�1 0 1
log(↵)

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
Zoom

0.0

0.5

1.0

1.5

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

�1 0 1
↵

25

50

75

F
ID

0.00 0.25 0.50 0.75 1.00
ShiftY

0.00

0.25

0.50

0.75

1.00

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.00 0.25 0.50 0.75 1.00
Zoom

0.0

0.5

1.0

1.5

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

0.00 0.25 0.50 0.75 1.00
ShiftX

0.00

0.25

0.50

0.75

1.00

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

Luminance Shift X Shift Y Zoom

Figure A-12: StyleGAN car model transformation metrics. Quantitative experiments
for learned transformations using the StyleGAN car generator.

120

- Rotate 2D +

- Shift X +

- Zoom +

- Rotate 3D +

- Shift Y +

- Color +

Figure A-13: Samples using StyleGAN cat generator. Qualitative examples for learned
transformations using the StyleGAN cat generator.

121

�1 0 1
↵

20

40

F
ID

0.0 0.5 1.0
Luminance

2

3

4

5

P
D

F

⇥10�3

data

model

�1 0 1
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

�100 0 100
↵

20

25

F
ID

0.0 0.5 1.0
ShiftX

0

1

2

P
D

F

⇥10�2

data

model

�100 0 100
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
ShiftX

0.0

0.5

1.0

1.5

2.0

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

�100 0 100
↵

20

30

40

F
ID

0.0 0.5 1.0
ShiftY

0

1

2

P
D

F

⇥10�2

data

model

�100 0 100
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
ShiftY

0

1

2

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

�1 0 1
log(↵)

50

100

F
ID

0.0 0.5 1.0
Zoom

0.5

1.0

1.5

P
D

F

⇥10�5

data

model

�1 0 1
log(↵)

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
Zoom

0

2

4

6

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

0.00 0.25 0.50 0.75 1.00
ShiftX

0.0

0.5

1.0

1.5

2.0

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.00 0.25 0.50 0.75 1.00
ShiftY

0

1

2

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.00 0.25 0.50 0.75 1.00
Zoom

0

2

4

6

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

Luminance Shift X Shift Y Zoom

Figure A-14: StyleGAN cat model transformation metrics. Quantitative experiments
for learned transformations using the StyleGAN cat generator.

122

- Rotate 2D +

- Shift X +

- Zoom +

- Rotate 3D +

- Shift Y +

- Color +

Figure A-15: Samples using StyleGAN face generator. Qualitative examples for
learned transformations using the StyleGAN FFHQ face generator.

123

0.4 0.6 0.8
ShiftX

0

2

4

6
P

D
F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.4 0.6 0.8
ShiftY

0

2

4

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.00 0.25 0.50 0.75 1.00
Zoom

0.0

0.5

1.0

1.5

2.0

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

Shift X Shift Y Zoom

�1 0 1
↵

50

100

150

F
ID

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

�100 0 100
↵

50

100

F
ID

0.4 0.6 0.8
ShiftX

0

2

4

P
D

F

⇥10�2

data

model

�100 0 100
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

�100 0 100
↵

50

100

F
ID

0.4 0.6 0.8
ShiftY

0

1

2

P
D

F

⇥10�2

data

model

�100 0 100
↵

0.0

0.5

1.0
In

te
rs

ec
ti

on

�1 0 1
log(↵)

100

200

300

F
ID

0.0 0.5 1.0
Zoom

0.0

0.5

1.0

P
D

F

⇥10�5

data

model

�1 0 1
log(↵)

0.0

0.5

1.0

In
te

rs
ec

ti
on

�1 0 1
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.0 0.5 1.0
Luminance

2

4

P
D

F

⇥10�3

data

model

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

Luminance

0.4 0.6 0.8
ShiftX

0

2

4

6
P

D
F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.4 0.6 0.8
ShiftY

0

2

4

P
D

F

⇥10�2

model

↵=-100.0

↵=-75.0

↵=-50.0

↵=-25.0

↵=25.0

↵=50.0

↵=75.0

↵=100.0

0.00 0.25 0.50 0.75 1.00
Zoom

0.0

0.5

1.0

1.5

2.0

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

Figure A-16: StyleGAN face model transformation metrics. Quantitative experiments
for learned transformations using the StyleGAN FFHQ face generator. For the zoom operation
not all faces are detectable; we plot the distribution as zeros for 𝛼 values in which no face is
detected. We use the dlib face detector [113] for bounding box coordinates.

124

- Zoom + - Color +

- Shift X + - Shift Y +

Figure A-17: Samples using ProGAN face generator. Qualitative examples for learned
transformations using the Progressive GAN CelebaA-HQ face generator.

125

0.0 0.5 1.0
Luminance

2

4

P
D

F

⇥10�3

data

model

�1 0 1
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

�1 0 1
↵

15

20

25

F
ID

0.00 0.25 0.50 0.75 1.00
Luminance

0.0

0.5

1.0

1.5

P
D

F

⇥10�2

model

↵=-1.0

↵=-0.75

↵=-0.5

↵=-0.25

↵=0.25

↵=0.5

↵=0.75

↵=1.0

Luminance

0.4 0.6 0.8
ShiftX

0.0

0.5

P
D

F

⇥10�1

data

model

�200 0 200
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.4 0.6 0.8
ShiftX

0.00

0.25

0.50

0.75

P
D

F

⇥10�1

model

↵=-200.0

↵=-150.0

↵=-100.0

↵=-50.0

↵=50.0

↵=100.0

↵=150.0

↵=200.0

�200 0 200
↵

15

20

F
ID

0.4 0.6 0.8
ShiftX

0.00

0.25

0.50

0.75

P
D

F

⇥10�1

model

↵=-200.0

↵=-150.0

↵=-100.0

↵=-50.0

↵=50.0

↵=100.0

↵=150.0

↵=200.0

Shift X

0.4 0.6 0.8
ShiftY

0

2

4

P
D

F

⇥10�2

data

model

�200 0 200
↵

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.4 0.6 0.8
ShiftY

0

1

2

3

P
D

F

⇥10�2

model

↵=-200.0

↵=-150.0

↵=-100.0

↵=-50.0

↵=50.0

↵=100.0

↵=150.0

↵=200.0

�200 0 200
↵

15

20

F
ID

0.4 0.6 0.8
ShiftY

0

1

2

3

P
D

F

⇥10�2

model

↵=-200.0

↵=-150.0

↵=-100.0

↵=-50.0

↵=50.0

↵=100.0

↵=150.0

↵=200.0

Shift Y

0.0 0.5 1.0
Zoom

0

1

2

P
D

F

⇥10�5

data

model

�1 0 1
log(↵)

0.0

0.5

1.0

In
te

rs
ec

ti
on

0.00 0.25 0.50 0.75 1.00
Zoom

0

2

4

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

�1 0 1
log(↵)

20

30

F
ID

0.00 0.25 0.50 0.75 1.00
Zoom

0

2

4

P
D

F

⇥10�5

model

↵=0.25

↵=0.35

↵=0.50

↵=0.71

↵=1.41

↵=2.00

↵=2.83

↵=4.00

Zoom

Figure A-18: ProGAN face model transformation metrics. Quantitative experiments
for learned transformations using the Progressive GAN CelebA-HQ face generator.

126

Target

w latent

z latent

- Brightness + - Brightness +

Figure A-19: StyleGAN latent space comparisons. Comparison of optimizing for color
transformations in the Stylegan w and z latent spaces.

- Contrast +- Color +

Figure A-20: Latent walk variations. Qualitative examples of optimizing for a color
walk with a segmented target using StyleGAN in left column and a contrast walk for both
BigGAN and StyleGAN in the right column.

Figure A-21: Combination of walk vectors. Qualitative examples of a linear walk
combining the zoom, shift X, and shift Y transformations. First row shows the target image,
second row shows the result of learning a walk for the three transformations jointly, and
the third row shows results for combining the separately trained walks. Green vertical line
denotes image center.

127

argmin W + augargmin W argmin G,W

Figure A-22: DCGAN zoom visualization. Qualitative experiments on steerability with
an MNIST DCGAN for the Zoom transformation. Odd rows are the target images and even
rows are the learned transformations.

argmin W + augargmin W argmin G,W

Figure A-23: DCGAN shift visualization. Qualitative experiments on steerability with
an MNIST DCGAN for the Shift X transformation. Odd rows are the target images and
even rows are the learned transformations.

128

argmin W + augargmin W argmin G,W

Figure A-24: DCGAN rotate visualization. Qualitative experiments on steerability
with an MNIST DCGAN for the Rotate 2D transformation. Odd rows are the target images
and even rows are the learned transformations.

129

130

Appendix B

Supplementary: Latent Composition

B.1 Supplementary Methods

B.1.1 Additional training details

The loss function of the encoder contains image loss terms to ensure that the output

of the generator approximates the target image, and a latent recovery loss term to

ensure that the predicted latent code matches the original latent code. On the image

side, we use mean square error loss in conjunction with LPIPS perceptual loss [281].

The latent recovery loss depends on the type of GAN. Due to pixel normalization

in ProGAN, we use a latent recovery loss based on cosine similarity, as the exact

magnitude of the recovered latent code does not matter after normalization:

𝐿𝑧 = 1− 𝑧

||𝑧||2
· 𝐸(𝑥)

||𝐸(𝑥)||2
. (B.1)

For StyleGAN, we invert to an intermediate latent space, as it is known that in

this space semantic properties are better disentangled than in 𝒵 [107]. Furthermore,

allowing the latents to differ on different scales has been shown to better capture the

variability of real images [1]. During training, we therefore generate different latents

for different scales, and train the encoder to estimate different styles, i.e. estimate

𝑤 ∈ 𝒲+. Unlike the latent space of ProGAN, however, 𝑤 ∈ 𝒲+ is not normalized to

131

the hypersphere. Instead of a cosine loss, we therefore use a mean square error loss as

the latent recovery loss:

𝐿𝑤 = ||𝑤 − 𝐸(𝑥)||2. (B.2)

We train the encoders using a ResNet backbone (ResNet-18 for ProGAN, and

ResNet-34 for Stylegan; He et al. [79]), modifying the output dimensionality to match

the number of latent dimensions for each GAN. The encoders are trained with the

Adam optimizer [114] with learning rate 𝑙𝑟 = 0.0001. Training takes from two days to

about a week on a single GPU, depending on the resolution of the GAN. For ProGAN

encoders, we use batch size 16 for the 256 resolution generators, and train for 500K

batches. For the 1024 resolution generator, we use batch size 4 and 400K batches.

We train the StyleGAN encoders for 680k batches (256 and 512 resolution) or 580k

batches (1024 resolution), and add identity loss [188] with weight 𝜆 = 1.0 on the

FFHQ encoder.

When training with masks, we take a small 6x6 patch of random uniform noise 𝑢,

upsample to the generator’s resolution, and sample a threshold 𝑡 from the uniform

distribution in range [0.3, 1.0] to create the binary mask:

𝑚 = 1 [Upsample(𝑢) > 𝑡]

𝑥𝑚 = 𝑚⊗ 𝑥
(B.3)

We also experimented with masks comprised of random rectangular patches [279], but

obtained qualitatively similar results. At inference time, the exact shape of the mask

does not matter: we can use hard coded rectangles, hand-drawn masks, or masks

based on other pretrained networks. Note that the mask does not distinguish between

input image parts – it is a binary mask with value 1 where the generator should try

to reconstruct, and 0 where the generator should fill in the missing region.

B.1.2 Additional details on composition

When creating automated collages from image parts, we use a pretrained segmentation

network [265] to extract parts from randomly sampled individual images. We manually

132

define a set of segmentation class for a given image class, and, to handle overlap

between parts, specify an order to these segmentation classes. To generate a collage,

we then sample one random image per class. For church scenes, we use an ordering of

(from back to front) sky, building, tree, and foreground layers – this ensures that a

randomly sampled building patch will appear in front of the randomly sampled sky

patch. For living rooms, the ordering we use is floor, ceiling, wall, painting, window,

fireplace, sofa, and coffee table – again ensuring that the more foreground elements

are layered on top. For cars, we use sky, building, tree, foreground, and car. For faces

we order by background, skin, eye, mouth, nose, and hair. In Sec. B.2.4 we investigate

using other methods to extract patches from images, rather than image parts derived

from segmentation classes.

B.2 Supplementary Results

B.2.1 Additional applications

In the main text, we primarily focus on using the regression network as a tool to

understand how the generator composes scenes from missing regions and disparate

image parts. However, because the regressor allows for fast inference, it enables a

number of other real-time image synthesis applications.

Image Completion From Masked Inputs. Using the masked latent space re-

gressor in Eqn. 3.3, we investigate the GAN’s ability to automatically fill in unknown

portions of a scene given incomplete context. These reconstructions are done on parts

of real images to ensure that the regressor is not simply memorizing the input, as

could be the case with a generated input (the regressor is never trained on real images).

For example, when a headless horse is shown to the masked regressor, the rest of the

horse can be filled in by the GAN. In contrast, a regressor that is unaware of missing

pixels (Eqn. 3.2; RGB) is unable to produce a realistic output. We show qualitative

examples in Fig. B-1.

133

Source Masked RGB RGBM
ProGAN Church

Source Masked RGB RGBM
StyleGAN Horse

Figure B-1: Image completion from masked inputs. Given a masked real image, a
regressor without knowledge of masked images (RGB) is unable to realistically reconstruct
the scene, while the regressor trained on masks inputs inpaints in the unknown region in a
way that is consistent with the given context (RGBM).

Multimodal Editing. Because the regressor only requires a single example of the

property we want to reconstruct, it is possible to achieve multimodal manipulations

simply by overlaying different desired properties on a given context image. Here, we

demonstrate an example of adding different styles of trees to a church scene. In each

of the context images, there is originally no tree on the right-hand side. We can

add different types of trees to each context image simply by replacing some pixels

with tree pixels from a different image, and performing image inversion to create the

composite. Here, we use a rectangular region as a mask, rather than following the

boundary of the tree precisely. However, note that, after inversion, the color of the sky

remains consistent in the composite image, and so does the building color in second

tree example. This image editing approach does not require learning separate clusters

or having labelled attributes, and therefore can be done with a single pair of images

without known cluster definitions, unlike the methods of Bau et al. [10] and Collins

et al. [42]. Furthermore, unlike methods based on segmentation maps [172, 73], styles

within each individual semantic category, e.g. the color of the sky, is also changeable

based on the provided input to the encoder.

Attribute Editing With A Single Unlabeled Example. Typically in attribute

editing using generative models, one requires a collection of labeled examples of the

attribute to modify; for example, we take a collection of generated images with and

without the attribute based on an attribute classifier, and find the average difference

in their latent codes [98, 182, 68, 210]. Here, we demonstrate an approach towards

attribute editing without using attribute labels (Fig. B-3). We overlay a single example

134

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Tree 6 Tree 7

C
on

te
xt

 1
C

on
te

xt
 2

C
on

te
xt

 3

Figure B-2: Latent regression for multimodal editing. Using latent regression, we can
perform multimodal editing to a context image. Each editing operation uses a single pair of
images. Here, our editing mask is a rough rectangular box. Note how in case of Tree 2, the
pasted region includes part of the church; the regressor attempts to include this part, and
the resulting re-generated building therefore looks different from the building in the other
examples.

of our target attribute (e.g. a smiling mouth or a round church tower), on top of the

context image we want to modify, and encode it to get the corresponding latent code.

We then subtract the difference between the original and modified latent codes, and

add it to the latent code of the secondary context image: 𝑧1,modified − 𝑧1 + 𝑧2. This

bypasses the need for an attribute classifier, such as one that identifies round or square

church towers.

Dataset Rebalancing. Because the latent regression inverter only requires a forward

pass through the network, we can quickly generate a large number of reconstructions.

Here, we use this property to investigate rebalancing a dataset (Fig. B-4). Using

pretrained attribute detectors from Karras et al. [107], we first note that there is a

smaller fraction of smiling males than smiling females in CelebA-HQ (first panel),

although the detector itself is biased and tends to overestimate smiling in general

compared to ground truth labels (second panel). The detections in the GAN generated

images mimic this imbalance (third panel). Next, using a fixed set of generated

135

Make laugh Make smile Make frown Make round Make square

C
on

te
xt

Se
co

nd
ar

y

Figure B-3: Transferring manipulations to unseen images. We demonstrate the
transfer capability of the latent code manipulations. From a single pair of images, we can
compute a manipulation vector and apply it to a secondary image, which edits the secondary
image accordingly.

images, we randomly swap the mouth regions among them in accordance to our

desired proportion of smiling rates – we give each face a batch of 16 possible swaps and

taking the one that yields the strongest detection as smiling/not smiling based on our

desired characteristic (if no swaps are successful, the face is just used as is). We use a

hardcoded rectangular box region around the mouth, and encode the image through

the generator to blend the modified mouth to the face. After performing swapping on

generated images, this allows us rebalance the smiling rates, better equalizing smiling

among males and females (fourth panel). Finally, we use the latent regression to

perform mouth swapping on the dataset, and train a secondary GAN on this modified

dataset – this also improves the smiling imbalance, although the effect is stronger in

males than females (fifth panel). We note that a limitation of this method is that

the rebalanced proportion uses the attribute detector as supervision, and therefore

a biased or inaccurate attribute detector will still result in biases in the rebalanced

dataset.

B.2.2 Comparing composition with latent space interpolation

In the main text, we compare our composition approach to two types of interpolations

– latent 𝛼-blending and pixel 𝛼-blending – on a living room generator. Here, we show

136

Female Male
0.0

0.2

0.4

0.6

0.8
Pr

ob
ab

ili
ty

Dataset
GT labels

Female Male
0.0

0.2

0.4

0.6

0.8

Dataset
Detections

Female Male
0.0

0.2

0.4

0.6

0.8

Generated
Detections

Female Male
0.0

0.2

0.4

0.6

0.8

Generated
Equalize

Female Male
0.0

0.2

0.4

0.6

0.8

Retrained
GAN

Not Smiling
Smiling

Figure B-4: Dataset rebalancing using latent space regression. From pretrained
attribute detectors, a smaller fraction of males smile than females in CelebA-HQ, and the
GAN samples mimic this trend. By swapping mouths in the GAN samples, we can equalize
male and female smiling rates. Next, we do this swap and invert operation on the dataset
and retrain a GAN on the modified dataset, which also improves balance in smiling rates
although the effect is stronger for the male category.

equivalent examples in church scenes. In Fig. B-5, we demonstrate a “tree” edit, in

which we want the background church to remain the same but trees to be added in

the foreground. Compared to latent and pixel 𝛼-blending, the composition approach

better preserves the church while adding trees, which we quantify using masked L1

distance. Similarly, we can change the sky of context scene – e.g. by turning a clear

sky into a cloudy one in Fig. B-6, where again, using composition better preserves the

details of the church as the sky changes, compared to 𝛼-blending.

In Fig B-7, we show the result of changing the smile on a generated face image.

For the smile attribute, we also compare to a learned smile edit vector using labelled

images from a pretrained smile classifier. We additionally measure the the facial

embedding distance using a pretrained face-identification network∗ – the goal of the

interpolation is to change the smile of the image while reducing changes to the rest of

the face identity, and thus minimize embedding distance. Because the mouth region

is small, choosing the interpolation weight 𝛼 by the target area minimally changes

the interpolated image (𝛼 > 0.99), so instead we use an 𝛼 = 0.7 weight so that

all methods have similar distance to the target. While the composition approach

and applying learned attribute vector perform similarly, learning the attribute vector

requires labelled examples, and cannot perform multimodal modifications such as

applying different smiles to a given face.

∗https://github.com/timesler/facenet-pytorch

137

https://github.com/timesler/facenet-pytorch

Target Context Collage Composition
Latent
-Blend

Pixel
-Blend

Add Trees

Context Target Collage
Distance From

0.0

0.2

0.4

0.6

0.8

1.0

M
as

ke
d

L1
 D

is
ta

nc
e Composition

Latent -Blend
Pixel -Blend

Figure B-5: Quantifying reconstruction fidelity: adding trees. Comparison of image
editing outcomes when adding trees (Target) to different scenes (Context). The overlay of
these two components is shown in Collage, where we use a mask to indicate missing regions.
We compare (1) Composition: using the encoder and generator to blend the images together
to (2) Latent 𝛼-blend: interpolation in the latent codes of the encoded images and (3) Pixel
𝛼-blend: interpolation in pixel space, which then passes through the encoder to pull the
image closer to the image manifold. (Right) Over 500 randomly sampled images, we find
that the composition approach is better able to match properties of both the context and
target images compared to the two alpha-blending techniques.

Target Context Collage Composition
Latent
-Blend

Pixel
-Blend

Add Clouds

Context Target Collage
Distance From

0.0

0.2

0.4

0.6

0.8

1.0

M
as

ke
d

L1
 D

is
ta

nc
e Composition

Latent -Blend
Pixel -Blend

Figure B-6: Quantifying reconstruction fidelity: changing sky. Comparison of image
editing outcomes when changing the sky of a scene, using similar encoder-based Composition,
Latent 𝛼-blend, and Pixel 𝛼-blend methods as above.

Target Context Collage Composition
Latent
-Blend

Pixel
-Blend

Attribute
Vector

Add Smile

Context Target Collage Collage
Embedding

Distance From

0.0

0.1

0.2

0.3

0.4

M
as

ke
d

L1

Face Smile Interpolation

Composition
Latent -Blend
Pixel -Blend
Smile Vector

0.0

0.1

0.2

0.3

0.4

E
m

be
dd

in
g

D
is

ta
nc

e

Figure B-7: Quantifying reconstruction fidelity: add smile. Comparison of image
editing outcomes using the same encoder-based Composition, Latent 𝛼-blend, and Pixel
𝛼-blend methods as above when adding a smile to a face. We also compare these approaches
to the modifications produced by edit vector learned from attribute labels.

138

B.2.3 Loss ablations

When training the regression network, we use a combination of three losses: pixel loss,

perceptual loss [281], and a latent recovery loss. In this section, we investigate the

reconstruction result using different combinations of losses on the ProGAN church

generator. In the first case, we do not enforce latent recovery, so the encoded latent

code does not have to be close to the ground truth latent code but the encoder and

generator just need to reconstruct the masked input image. In the second case, we

investigate omitting the perceptual loss, and simply use an L2 loss in image space.

Since the encoders are trained with L2 loss and the VGG variant of perceptual loss, we

evaluate with L1 reconstruction and the AlexNet variant of perceptual loss. Training

with all losses leads to reconstructions that are more perceptually similar (lower LPIPS

loss) compared to the two other variants, while per-pixel L1 reconstruction is not

greatly affected (Tab. B.1). We show qualitative examples of the reconstructions on

masked input in Fig. B-8.

Table B.1: Encoder network ablations. Table of masked L1 and LPIPS-Alexnet
reconstruction errors for encoder networks trained with all losses, no latent loss, and no
perceptual loss.

All Losses No Latent No LPIPS

L1 0.194 0.194 0.197
LPIPS(alex) 0.291 0.305 0.318

B.2.4 Additional composition results

Comparing different composition approaches. In Fig B-9, we show examples

of extracted image parts, the collage formed by overlaying the image parts, and the

result of poisson blending the images according to the outline of each extracted part.

We further compare to variations of the encoder setup, where (1) RGB: the encoder is

not aware of missing pixels in the collaged input, (2) RGB Fill: we fill the missing

pixels with the average color of the background layer, and (3) RGBM: we allow the

encoder and generator to inpaint on missing regions. Table B.2 shows image quality

metrics of FID (lower is better; Heusel et al. [82]) and density and coverage (higher

139

In
pu

t
M

as
ke

d
Al

l L
os

se
s

N
o

Z
N

o
LP

IP
S

Figure B-8: Visualization of encoder variations. Qualitative examples of reconstructions
from masked inputs on encoders trained with different combinations of loss terms.

is better; Naeem et al. [161]) and masked L1 reconstruction (lower is better) for

each generator and domain. To obtain feature representations for the density and

coverage metrics, we resize all images to 256px and use pretrained VGG features prior

to the final classification layer [218]. While the composite input collages are highly

unrealistic with high FID and low density/coverage, the inverted images are closer to

the image manifold. Of the three inversion methods, the RGBM inversion tends to

yield lower FID and higher density and coverage, while minimizing L1 reconstruction

error. We compare the GAN inversion methods to Poisson blending [177], in which we

incrementally blend the 4-8 image layers on top of each other using their respective

masks. As Poisson blending does not naturally handle inpainting, we do not mask the

bottom-most image layer, but rather use it to fill in any remaining holes in the blended

image. We find that Poisson blending is unable to create realistic composites, due to

the several overlapping, yet misaligned, image layers used to create the composites.

Comparing different image reconstruction generators. How are image priors

different across different image reconstruction pipelines? Our encoder method relies on

140

Pr
oG

AN
C

el
eb

A-
H

Q

Part 1 Part 2 Part 3 Collage Poisson RGB RGB Fill RGBM

Pr
oG

AN
C

hu
rc

h
Pr

oG
AN

Li
vi

ng
ro

om
St

yl
eG

AN
FF

H
Q

St
yl

eG
AN

C
hu

rc
h

St
yl

eG
AN

C
ar

Figure B-9: Qualitative examples of automatic image composition. We extract
parts of sampled images and overlay them to form a rough collage. We compare Poisson
blending the image parts (we use the bottom-most image layer to fill in any remaining
holes in the collaged image) to encoder-based methods that invert the collage through the
generator, either without knowledge of missing pixels (RGB and RGB Fill methods), or
with the objective of inpainting the missing regions (RGBM). While the RGB and RGB Fill
methods also demonstrate an alignment-correcting effect, we find quantitatively that the
RGBM encoder tends to have lower FID over 50K samples (Tab. B.2).

a pretrained generator, and trains an encoder network to predict the generator’s latent

code of a given image. Therefore, it can take advantage of the image priors learned

by the generator to keep the result close to the image manifold. Here, we compare

to different image reconstruction approaches, such as autoencoder architectures or

optimization methods rather than feed-forward inference. We construct the same

set of input collages using parts of real images and compare a variety of image

reconstruction methods encompassing feed-forward networks, pretrained GAN models,

encoder networks. Since some reconstruction methods are optimization-based and

thus take several minutes, we use a set of 200 images. We then compute the L1

141

Table B.2: Quantitative comparison of automated collaging. The latent regressor
and generator pulls the unrealistic composite images closer to the real manifold, yielding high
density and coverage and lower FID on output, compared to the collaged inputs and Poisson
blending. For ProGAN models, we use PyTorch models from Bau et al. [11]; for StyleGAN
models, we use a Pytorch conversion of the Tensorflow models from Karras et al. [107].

Model Metric GAN
Samples

GAN
Reconstructions Collage

Collage
Filled

Poisson
Blended

RGB
Inverted

RGB Filled
Inverted

RGBM
Inverted

ProGAN
Church

FID 8.01 6.72 21.20 27.35 24.12 10.85 12.90 9.40
Density 0.94 1.04 0.15 0.15 0.45 1.02 0.92 1.23
Coverage 0.78 0.82 0.22 0.22 0.41 0.71 0.74 0.78

Masked L1 – – – – – 0.26 0.28 0.26

ProGAN
Living Room

FID 13.17 10.46 72.82 69.95 47.84 19.50 17.70 14.90
Density 0.69 0.86 0.01 0.03 0.28 0.98 0.81 1.05
Coverage 0.63 0.69 0.02 0.02 0.26 0.60 0.59 0.64

Masked L1 – – – – – 0.33 0.34 0.30

ProGAN
CelebA-HQ

FID 10.43 12.38 81.82 82.09 53.76 16.24 15.35 17.41
Density 1.27 1.55 0.11 0.14 0.28 1.14 1.19 1.69
Coverage 0.83 0.84 0.03 0.03 0.15 0.72 0.74 0.78

Masked L1 – – – – – 0.26 0.26 0.24

StyleGAN
Church

FID 3.90 4.27 15.66 22.89 16.92 6.13 6.75 6.09
Density 0.88 1.06 0.15 0.14 0.41 1.31 1.31 1.50
Coverage 0.85 0.87 0.26 0.25 0.50 0.85 0.86 0.87

Masked L1 – – – – – 0.32 0.32 0.30

StyleGAN
Car

FID 2.31 2.98 17.44 141.21 15.38 6.23 5.87 5.38
Density 1.07 1.32 0.37 0.42 0.61 1.69 1.53 1.51
Coverage 0.94 0.94 0.44 0.36 0.54 0.92 0.91 0.91

Masked L1 – – – – – 0.32 0.34 0.30

StyleGAN
FFHQ

FID 2.86 6.27 92.15 92.00 36.54 26.25 25.63 24.09
Density 1.17 1.61 0.16 0.17 0.26 1.67 1.58 2.01
Coverage 0.90 0.89 0.02 0.02 0.24 0.67 0.67 0.74

Masked L1 – – – – – 0.30 0.30 0.28

reconstruction error in the valid region of the input, density (measures proximity to

the real image manifold; Naeem et al. [161]), and FID (measures realism; Heusel et al.

[82]; but note that we are limited to small sample sizes due to optimization time).

For the church domain, we first compare to four methods that do not rely on a

pretrained GAN network; rather, the generator and encoder is jointly learned using an

autoencoder-like architecture. (1) We train a CycleGAN [293] between image collages

and the real image domain, creating a network that is explicitly trained for image

composition in an unpaired manner, as there are no ground-truth “composited” images

for the randomly generated image collages. (2) We use a pretrained SPADE [172]

network which creates images from segmentation maps, but information about object

style (e.g. color and texture) is lost in the segmentation input. (3) We use a pretrained

inpainting model that is trained to fill in small holes in the image [272], but does not

correct for misalignments or global color inconsistencies between image parts. (4) We

142

train Deep Image Prior (DIP) networks [242] which performs test-time optimization

on an autoencoder to reconstruct a single image, where using a masked loss allows it

to inpaint missing regions.

Next, we use the ProGAN and StyleGAN2 pretrained generators, and experiment

with different ways of inverting into the latent code. Methods that leverage a pretrained

GAN for inversion, but are optimization-based rather than feed-forward include (5&6)

LBFGS methods [138] on ProGAN and StyleGAN, which iteratively optimizes for

the best latent code starting from the best latent among 500 random samples, (7)

Multi-Code Prior [72], which combines multiple latent codes in the intermediate layers

of the GAN, and (8) a StyleGAN2 projection method using perceptual loss [107].

For all optimization-based GAN inversion methods, we modify the objective with a

masked loss to only reconstruct valid regions of the input.

We use our trained regressor network for the remaining comparisons. (9&10) We

use our ProGAN and StyleGAN regressors to encode the input image as initialization,

and then perform LBFGS optimization. (11&12) We use our ProGAN and StyleGAN

regressors in a fully feed-forward manner.

Tab. B.3 summarizes the methods and illustrates the tradeoff between reconstruc-

tion (L1), realism (Density and FID), and optimization time. Due to the unrealistic

nature of the input collages, a method that reduces reconstruction error is less real-

istic, whereas a more realistic output may offer a worse reconstruction of the input.

Furthermore, methods that are not feed-forward incur substantially more time per

image. Fig B-10 shows qualitative results, where in particular the third example is

a challenging input where the lower part of the tower is missing. The two encoders

demonstrate an image prior in which the bottom of the tower is reconstructed on

output. While DIP can inpaint missing regions, it cannot leverage learned image prior.

CycleGAN can fill in missing patterns, but with visible artifacts, whereas SPADE

changes the style of each input component. Iteratively optimizing on a pretrained

generator can lose semantic priors as it optimizes towards an unrealistic input.

On the face domain, we compare (1) the inpainting method of Yu et al. [272]

pretrained on faces, (2) the Im2StyleGAN method [1] which optimizes within the 𝒲+

143

Table B.3: Quantifying reconstruction/realism tradeoff on churches. On a set of 200
input collages constructed from random image parts, we compare compositional properties
of several image reconstruction approaches including methods based on autoencoder-style
networks that do not leverage a pretrained GAN, methods based on optimization on the latent
code of a pretrained GAN, and methods based on encoder networks to regress the latent code.
Autoencoder-based and optimization-based methods can achieve lower reconstruction error
(L1; lower is better), but are less realistic (Density; higher is better). Another tradeoff is
optimization time, as feed-forward methods are orders of magnitude faster than optimization-
based approaches. We also report FID (lower is better), but our sample size is limited due
to the latency of optimization-based approaches.

Inversion
Method

GAN-
Based

Encoder-
Based

Feed-
Forward L1 (↓) Density (↑) FID (↓) Time (s) (↓)

1. CycleGAN ✓ 0.14 0.43 74.63 0.10
2. SPADE ✓ 0.50 1.01 137.96 0.07
3. Inpainting ✓ 0.00 0.34 72.86 0.02
4. DIP 0.04 0.18 86.44 98.90
5. ProGAN LBFGS ✓ 0.23 1.04 53.64 188.94
6. StyleGAN LBFGS ✓ 0.13 0.50 84.97 368.92
7. Multi-Code Prior ✓ 0.13 0.21 104.34 477.93
8. StyleGAN Projection ✓ 0.23 0.25 62.62 86.87
9. ProGAN Encode+LBFGS ✓ ✓ 0.23 0.88 49.60 66.55
10. StyleGAN Encode+LBFGS ✓ ✓ 0.15 0.38 64.29 176.96
11. Ours: ProGAN Encoder ✓ ✓ ✓ 0.32 0.79 55.11 0.02
12. Ours: StyleGAN Encoder ✓ ✓ ✓ 0.36 1.86 48.08 0.03

latent space of StyleGAN, and (3) the ALAE model [178] which jointly trained the

encoder and generator. More similar to our approach, (4&5) the In-domain encoding

and diffusion methods [291] encodes and optimizes for a latent code of StyleGAN

that matches the target image. (6) We modify and retrain the Pixel2Style2Pixel

network (PSP; Richardson et al. [188]), which also leverages the StyleGAN generator,

to perform regression with arbitrarily masked regions. The PSP network uses a feature

pyramid to predict latent codes. (7&8) We use our regressor network on ProGAN and

StyleGAN, which uses a ResNet backbone and predicts the latent code after pooling

all spatial features.

Qualitatively, we find that the optimization-based Im2StyleGAN [1] algorithm is

not able to realistically inpaint missing regions in the input collage. While the ALAE

autoencoder [178] exhibits characteristics of blending the collage into a cohesive output

image, the reconstruction error is higher than that of the GAN-based approaches.

The In-domain encoder method [291] does not correct for misalignments in the inputs,

resulting in low density, although the subsequent optimization step is able to further

reduce L1 distance (Fig. B-11). The PSP network modified with the masking objective

144

is conceptually similar to our regressor; we find that it is better able to reconstruct

the input image, but produces less realistic output. This suggests that an encoder

which processes the input image globally before predicting the latent code output can

help retain realism in output images. We measure reconstruction (L1) and realism

(Density and FID) over 200 samples in Tab. B.4.

Table B.4: Quantifying reconstruction/realism tradeoff on faces. We construct 200
input collages from random face image parts, and compare to several image reconstruction
methods. Again, we find a tradeoff between better reconstruction (low L1) and better realism
(higher Density, lower FID), due to the imperfect nature of the input collages. There is no
ground truth image that perfectly reconstructs the input yet is realistic.

Inversion
Method

GAN-
Based

Encoder-
Based

Feed-
Forward L1 (↓) Density (↑) FID (↓)

1. Inpainting ✓ 0.02 0.33 90.17
2. Im2StyleGAN ✓ 0.21 0.20 106.79
3. ALAE ✓ 0.33 0.47 80.13
4. In-domain Encoder ✓ ✓ ✓ 0.21 0.44 77.43
5. In-domain Diffusion ✓ ✓ 0.12 0.40 73.74
6. Masked PSP ✓ ✓ ✓ 0.15 0.52 73.06
7. Ours: ProGAN Encoder ✓ ✓ ✓ 0.27 1.55 57.20
8. Ours: StyleGAN Encoder ✓ ✓ ✓ 0.26 1.21 64.33

Composing images using alternative definitions of image parts. In the main

text, we focus on creating composite images using a pretrained segmentation network.

However, we note that the exact process of extracting image parts does not matter, as

the encoder and generator form an image prior that will remove inconsistencies in the

input. In Fig. B-12 we show composites generated using the output of a pretrained

saliency network [140], and in Fig. B-13 we show compositions using hand-selected

compositional parts, where the parts extracted from each image do not have to

correspond precisely with object boundaries.

Editing with global illumination consistency. A property of the regressor

network is that it enforces global coherence of the output, despite an unrealistic input,

by learning a mapping from image to latent domains that is averaged over many

samples. Thus, it is unable to perform exact reconstructions of the input image, but

rather exhibits error-correcting properties when the input is imprecise, e.g. in the case

of unaligned parts or abrupt changes in color. In Fig. B-14, we investigate the ability

145

of the regressor network to perform global adjustments to accommodate a desired

change in lighting – such as adding a reflections or changing illumination outside of

the manipulated region – to maintain realism at the tradeoff of higher reconstruction

error.

Improving compositions on real images. As the regressor network is trained to

minimize reconstruction on average over all images, it can cause slight distortions on

any given input image. To retain the compositionality effect of the regressor network,

yet better fit a specific input image, we can finetune the weights of the regressor

towards the given input image. Generally, a few seconds of finetuning suffices (30

optimizer steps; < 5 seconds), and subsequent editing on the image only requires a

forward pass. We demonstrate this application in Fig. B-15.

Random composition samples. We show additional random samples of the

generated composites across the ProGAN and StyleGAN2 generators for a variety of

image domains in Fig. B-16 and Fig. B-17.

146

Input CycleGAN SPADE Inpaint DIP
ProGAN
LBFGS

StyleGAN
LBFGS

Multi-Code
Prior

StyleGAN
Projection

ProGAN
Enc+LBFGS

StyleGAN
Enc+LBFGS

Ours: ProGAN
Encode

Ours: StyleGAN
Encode

Input CycleGAN SPADE Inpaint DIP
ProGAN
LBFGS

StyleGAN
LBFGS

Multi-Code
Prior

StyleGAN
Projection

ProGAN
Enc+LBFGS

StyleGAN
Enc+LBFGS

Ours: ProGAN
Encode

Ours: StyleGAN
Encode

Input CycleGAN SPADE Inpaint DIP
ProGAN
LBFGS

StyleGAN
LBFGS

Multi-Code
Prior

StyleGAN
Projection

ProGAN
Enc+LBFGS

StyleGAN
Enc+LBFGS

Ours: ProGAN
Encode

Ours: StyleGAN
Encode

Figure B-10: Comparing across encoder-decoder or generator-only setups. For
each example, we show the input collage created from randomly selected parts of images
(Input), and four autoencoder-based methods (CycleGAN, SPADE, Inpaint, DIP) in which
the encoder and decode is trained jointly; as these are fully convolutional they lack global
semantic priors. Next, we show four optimization-based methods (ProGAN & StyleGAN
LBFGS, Multi-Code Prior, StyleGAN Projection); these can better match the target collage
after optimizing for reconstruction, but they are orders of magnitude slower, making real-time
interaction infeasible, and also lose semantic priors (as in the “floating tower” in the third
example). We then show the combination of our encoder with LBFGS optimization, and
our encoder using only a forward pass. While the feed-forward approach retains the tower
prior and enables real-time interaction, its can distort the input image parts, illustrating a
tradeoff between reconstruction and realism.

147

Input Inpaint Im2StyleGAN ALAE
In-domain
Encoder

In-domain
Diffusion Masked PSP

Ours: ProGAN
Encode

Ours: StyleGAN
Encode

Input Inpaint Im2StyleGAN ALAE
In-domain
Encoder

In-domain
Diffusion Masked PSP

Ours: ProGAN
Encode

Ours: StyleGAN
Encode

Input Inpaint Im2StyleGAN ALAE
In-domain
Encoder

In-domain
Diffusion Masked PSP

Ours: ProGAN
Encode

Ours: StyleGAN
Encode

Figure B-11: Face composites across GAN-based generators. We show the input im-
age, a collage from parts of random images (Input). We compare to Inpainting, Im2StyleGAN
which iteratively optimizes for a latent code, the ALAE autoencoder where the generator and
encoder is trained jointly, the In-domain encoder and diffusion which encodes and optimizes
the latent, a masked version of the Pixel2Style2Pixel (PSP) network, and our masked encoder
approaches (ProGAN Encoder and StyleGAN encoder).

148

Saliency Context Collage Inverted
ProGAN CelebA-HQ

Saliency Context Collage Inverted
StyleGAN Car

Figure B-12: Automatic composition using saliency. Qualitative examples of automatic
image composition using a pretrained saliency network to generate input collages rather than
a segmentation network. Note that in the second car example, the collage overlays the blue
car with the yellow car still visible, but inversion via the encoder corrects this inconsistency.

Context Modification Composite
ProGAN Living Room

Context Modification Composite
StyleGAN Church

Figure B-13: Collages from user inputs. Qualitative examples of collages based on user-
selected regions and the corresponding generator output. Note that the selected regions do not
have to coincide neatly with object boundaries, and the generator will blend inconsistencies
in the inputs together.

149

Context Modification Composite

ProGAN Living Room StyleGAN Church

Context Modification Composite

Figure B-14: Non-local editing effects. We investigate the capabilities of our instance-
based regression and editing approach to modify lighting effects, similar to [12]. Editing
lighting induces non-local changes, as the network must also change regions outside of the
modified region to ensure global consistency – for example the reflection of the window on
the floor (ProGAN Living Room), or changes in the illumination of the building (StyleGAN
Church) – indicating a tradeoff between reconstructing the input versus creating a realistic
image overall.

Context Modifications Collage Input Composite

Figure B-15: Finetuned encoder for collaging on real faces. To improve the recon-
struction towards real faces, yet preserve the properties of real-time composition, we can
slightly finetune the regressor towards a context image (30 gradient steps, < 5 seconds).
Subsequent modifications to the context image can be performed using just a feed-forward
pass, enabling fast editing to create image composites.

150

(a) ProGAN CelebA-HQ

(b) ProGAN Church

(c) ProGAN Living Room

Figure B-16: Additional collages: ProGAN. Random samples of automatically generated
colleges using a pretrained ProGAN generator.

151

(a) StyleGAN FFHQ

(b) StyleGAN Church

(c) StyleGAN Car

Figure B-17: Additional collages: StyleGAN. Random samples of automatically
generated colleges using a pretrained StyleGAN generator.

152

B.2.5 Additional part variation results

Here, we show additional qualitative results similar to those in Fig. 3-8 in the main

paper. In each case, the heatmap shows appearance variation when changing the part

marked in red. In Fig. B-18, it can be seen that the variation is usually strongest in

the face part that is changed, indicating that the composition of face parts learned by

the model is a good match for our intuitive understanding of a face. In Fig. B-19, we

vary a single superpixel of a car. The resulting variations show regions of the images

that commonly vary together (such as the floor, the body of the car, or the windows),

which can be interpreted as a form of unsupervised part discovery.

153

Figure B-18: Part variation visualization: faces. When changing semantic parts of a
face (such as the eyes or the hair, shown in red), the resulting change in the image is often
limited to those parts, indicating that the model parses faces into meaningful and intuitive
components.

154

Figure B-19: Part variation visualization: cars. Our encoder-generator pair can be
used to detect correlated parts of objects. Here, the value indicates how much a pixel changes
when the superpixel shown in red is changed; oftentimes, semantic segments emerge, such as
the car body, windows, the street, or the background.

155

156

Appendix C

Supplementary: Anyres-GAN

In the supplementary, we first demonstrate an extension of our approach towards

panorama generation (Section C.1). In Section C.2, we provide additional qualita-

tive and quantitative comparisons to baselines (super-resolution methods, discrete-

resolution and oracle generators), explore additional model variations, and investigate

the detectability of our method using an off-the-shelf forensics method. We provide

implementation details in Section C.3.

C.1 Panorama Generation Extension

Our default training setup assumes that we use low-resolution images to learn global

context and patches from high-resolution images to learn details. An alternative

setup to learn from patches directly, without ever knowing the entire global context.

One such scenario is panorama generation, where a large-scale dataset would be

much more difficult to obtain than single images. We investigate this setup on the

Mountains domain, in which the generator is tasked with synthesizing a panorama from

landscape images, without training directly on panoramas. Accordingly, we modify the

[0, 1]× [0, 1] coordinate grid to [−𝜋, 𝜋]× [0, 1], and enforce continuity on the endpoints

by using a sine and cosine encoding prior to Fourier feature embedding. At training

time, we sample a “slice” of the coordinate grid for generation corresponding to a

random viewing angle, but at inference time the entire panorama can be synthesized by

157

specifying the full grid of coordinates. In this case, we find that it is important to use a

cross-frame discriminator, in which the discriminator straddles the boundary between

two generated slices to enable seamless boundaries in the panorama. Qualitative

results are shown in Fig C-1. At inference time, we can spatially interpolate the

𝑤 latent code with arbitrary spacing, which generates seamless infinite landscapes

(Fig. C-2).

158

Figure C-1: Panorama generation from patches. We modify our training framework to
train without the global image context. We map our coordinate grid to [−𝜋, 𝜋]× [0, 1] and
use a cross-frame discriminator to enable seamless transitions between patches. The model
is trained with FOV = 60∘. The vertical white line indicates a full 360∘ revolution.

159

Figure C-2: Infinite image generation. By spatially adjusting the latent code only at
inference time, the same model is capable of generating infinite landscapes, shown on multiple
lines here for visibility.

C.2 Experiments

C.2.1 Dataset collection
Table C.1: Dataset
sources. Image sources
for construction of our
varied-resolution datasets.

Domain Flickr Source

Church Church Exteriors

Mountains Mountains Anywhere

Birds Birding in the Wild

To collect our varied-size dataset, we scrape image collec-

tions from Flickr photo groups (Tab. C.1). In cases where

a standard fixed-resolution dataset is available (e.g . LSUN

Churches [271]), we seek to find photos that approximately

match the domain of the standard dataset. Due to domain

mismatches between LSUN and the photos scraped from

160

𝑁(𝜇, Σ)𝐹inception

Resize
(to 299)

PatchFID
(texture)

𝑁(𝜇, Σ)𝐹inception

FID
(structure)

CropInput image database

Fréchet
Distance

Fréchet
Distance

Figure C-3: Preprocessing for FID and patch-FID (pFID). FID evaluates global
structure, but downsamples all images to a common 299px size which ignores higher resolution
details. pFID takes images crops instead rather than downsampling to capture texture realism
at higher resolutions. We use both to measure structure and texture properties.

Flickr, we manually filter the collected images to approximately match the LSUN

domain, which remains tractable for the few thousand HR images used in the patch-

based training phase. As is standard practice [235, 173], and to not violate license

permissions, we will release the image IDs but not the images directly.

C.2.2 Patch-FID

We describe details of our Patch FID metric, introduced in Section 4.4.1 of the main

paper. The metric is aimed at better capturing the realism of details at high resolution

by avoiding downsampling to capture texture details. In our setting, we have a smaller

number of real images present at various resolutions. Standard FID, which focuses on

global structure, does not capture these varied-resolution details. We modify the FID

pipeline to avoid downsampling global images at higher resolutions to a fixed 299 pixel

width. Instead, we randomly sample patches of size 𝑝 from real images at global scale

𝑠 and locations 𝑐v,𝑠, and generate the corresponding patch 𝐺 (𝑧,𝑐v,𝑠,𝑠). The number of

samples is crucial to getting an accurate estimate in FID calculation [39], and 50,000

is typically used. A benefit of this patch-sampling procedure also means that we can

obtain the necessary large number of patches for FID computation, more than the

161

4.5 5.0 5.5 6.0 6.5
FID@1024

4

5

6

7

8

9

10

pF
ID

Figure C-4: pFID vs FID@1024. These two
metrics are largely correlated. FID@1024 generates
images at 1024 resolution and then downsamples
images, which assumes a fixed-size dataset and
ignores details present at higher resolution. On
other domains where a ground-truth HR dataset is
not available, we primarily use pFID to measure
sample quality, particularly in high-resolution detail
regions.

available number of real images in the HR dataset. In the Mountains generator, where

the patch size 𝑝 is larger than 299, we subsequently also select a random 299-pixel crop

from the patches to compute the image features. Because this avoids downsampling

the generated content, we find that it is more sensitive to image quality at high

resolutions. Using the full FFHQ dataset as ground-truth, we find that our patch-FID

metric is largely correlated to the standard FID numbers at 1024 resolution (Fig. C-4).

Therefore, we use Patch-FID as a metric of sample quality on our datasets collected

from Flickr, when a full high-resolution dataset of images all at the same resolution is

not available.

C.2.3 Additional quantitative results

In Table 4.3 of the main text, we report comparisons of our method and off-the-shelf

super-resolution methods using the patch-FID metric. We report additional metrics

in Table C.2 here, including the FID at base resolution (the result of the pretraining

step), and FID at a higher resolution after downsampling all images in the HR dataset

(between 5k-10k images, which is lower than the typical 50k used to compute FID) to

a common size. Notably, the base resolution FID is largely similar before and after

patch-based training, and in the case of FFHQ and Birds, patch-based training at

higher resolutions even improves the low-resolution FID. Without direct multi-scale

training, however, the fixed-size model obtained from the pretraining step does not

naturally generalize to higher resolutions. We find that our pFID metric is more

discriminative to differences in image quality at higher resolutions. In particular,

162

Table C.2: Alternative FID evaluation metrics. We primarily use pFID, which avoids
downsampling synthesized content and evaluates multiscale patches, as an evaluation metric.
Here, we also report FID at the base resolution from the result of fixed-size pretraining (Fixed-
Size), and compare to global FID metrics after downsampling the HR images to a common
size. On FFHQ, we also tried applying GFP-GAN [253] which is a facial super-resolution
model.

FFHQ6K Church Birds Mountain

FID pFID FID pFID FID pFID FID pFID

256 1024 random 256 1024 random 256 512 random 1024 down random

Fixed-Size 3.71 33.80 52.95 3.39 242.10 146.24 3.92 12.69 55.42 3.09 13.42 46.20
Upsample – 11.70 17.29 – 14.21 80.48 – 7.67 30.57 – 4.53 20.00
LIIF – 7.05 22.93 – 18.66 83.88 – 7.29 30.19 – 4.55 23.10
Real-ESRGAN – 19.04 16.92 – 12.26 23.04 – 8.51 16.10 – 7.60 19.05
GFP-GAN – 19.15 16.27 – – – – – – – – –
Ours 3.34 4.06 2.96 3.84 6.98 9.89 3.78 6.29 6.52 3.14 4.33 7.99

the LIIF super-resolution model tends to obtain better FID@1024 (corresponding to

super-resolving generated images to 1024 resolution and computing FID) compared

to Real-ESRGAN, but the outputs are visually blurry. Because our pFID does not

perform downsampling, it can better capture this blurriness, reflected in an increased

pFID. In another variant, we compute pFID on patches of size 1024 synthesized by the

Mountain generator, and then subsequently downsample them, which we denote as

pFID (down), rather than cropping. Again, we find that this downsampling operation

can obscure image deterioration at higher resolution, producing artificially lower FID

scores compared to pFID computed without downsampling.

C.2.4 Comparison to powers-of-two synthesis

Using the same set of generator weights, our model can synthesize images at a specified

scale by simply providing the corresponding 𝑠 and 𝑐v,𝑠 inputs. On the other hand,

other methods for multi-resolution synthesis [136, 106, 45, 105] generate images that

are iteratively enlarged by a factor of two, by adding additional network layers. These

methods are typically introduced to impove training stability. For this baseline, we

modify the recent Anycost-GAN [136] framework to fit our varied-size training setting.

Specifically, we downsample all images in FFHQ6K to the nearest power of two, and

train the corresponding network layers only on the appropriate subset of data. To

generate at any resolution below 1024, we take the nearest model output that is larger

163

than the target resolution, and apply Lanczos downsampling. Similar to our approach,

we start with a pretrained model at 256 resolution, and initialize both the generator

and discriminator with pretrained weights. Because each increase in output resolution

involves training additional weights, and the number of images at a given resolution

decreases as resolution increases, we find that this training approach yields visual

artifacts at higher resolutions, shown in Fig. C-5.

Base Image

1.9x (476)

A
n

y
C

o
st

-G
A

N
O

u
rs

Patch Base Image Patch

1.9x (476)

3.4x (862)

3.4x (862)

Figure C-5: Comparison to Anycost-GAN. Using the same FFHQ6K dataset, we train
an Anycost-GAN [136] and compare it to our model. While Anycost-GAN adds additional
modules to increase synthesis resolution, our model shares weights across resolutions. Note
that the output from Anycost-GAN contain more visual artifacts, particularly in finely
textured regions such as hair.

C.2.5 Comparison to oracle generator

In Section 4.4 of the paper, we describe our experimental setup on the face domain,

and in Table 4.5, we show competitive performance training on few HR images, even

compared training on the whole HR dataset. We provide additional details and

visualizations here.

We use the FFHQ dataset as a collection of 70k high-resolution ground-truth

images. To simulate more “in-the-wild” settings, we use a fraction (6k) of HR images

for patch-based training with a generator of size 𝑝 = 256, where only 1k of the images

164

Table C.3: Oracle comparisons. Comparison of our patch generator (6k images, varied
sizes) to oracle generators which train on the entire FFHQ dataset (70k images, 1024
resolution). Although the oracle generators attain better FID, our method enables synthesis
at continuous resolutions and can train without assuming that all images are resized to a
common resolution. We also include pFID at the maximum 1024 scale.

FID pFID

256 512 1024 random 1024

SGAN2 Oracle 3.05 2.81 2.69 2.26 4.83
SGAN3 Oracle 3.54 3.23 3.06 2.44 4.29
Patch (Ours) 3.34 3.71 4.06 2.96 8.01

are the full 1024 resolution, and the remainder are uniformly downsampled between 512

and 1024 prior to training. As a comparison, we also evaluate two oracle models that

train a generator directly for the 𝑠 = 1024 global image, using the entire 70K images

in the FFHQ dataset, and Lanczos downsample the result for FID computations at

other resolutions. We also evaluate a variant of pFID, by holding the scale fixed at the

maximal resolution and randomly sampling crop locations (pFID 1024), in addition

to our original pFID metric that randomly samples both scale and location (pFID

random). Note that this evaluation is only possible for FFHQ controlled setting, as

all images are present at the maximal 1024 size.

Despite being trained to generate patches, our generator can approximately match

the frequency content in real images, and that of a StyleGAN3 model trained for 1024

resolution generation on the full FFHQ dataset (Fig. C-6). While StyleGAN2 achieves

better FID than StyleGAN3, we find that it has a different frequency profile that is

less similar to that of real images. We compare the FID of these oracle models with

our continuous patch model in Tab. C.3. While the oracles can achieve lower FID and

pFID variants, we note that training the oracle assumes that a sufficient number of

high-resolution images of the same size are available, and trains the model specifically

for a fixed resolution, whereas we employ mixed resolution training on fewer than 10%

of the full HR dataset. Our training strategy therefore allows us to take advantage of

the varied resolutions of images in the wild, which is not possible in the oracle setting.

165

512 256 0 256 512
Frequency

512

256

0

256

512

Fr
eq

ue
nc

y

Real Images

512 256 0 256 512
Frequency

512

256

0

256

512

Fr
eq

ue
nc

y

1024 Generator - SGAN2

512 256 0 256 512
Frequency

512

256

0

256

512

Fr
eq

ue
nc

y

1024 Generator - SGAN3

512 256 0 256 512
Frequency

512

256

0

256

512

Fr
eq

ue
nc

y

Patch Generator

40

30

20

10

0

10

20

40

30

20

10

0

10

20

40

30

20

10

0

10

20

40

30

20

10

0

10

20

0 64 128 192 256 320 384 448 512
Frequency

50

40

30

20

10

0

10

20

30

dB

0° slice
Real Images
1024 Generator - SGAN2
1024 Generator - SGAN3
Patch Generator

0 91 181 272 362 453 543 634 724
Frequency

50

30

10

10

30

dB

45° slice
Real Images
1024 Generator - SGAN2
1024 Generator - SGAN3
Patch Generator

Figure C-6: Comparison of frequency distribution. We plot the frequency spectrum
of real images, StyleGAN2 and StyleGAN3 trained on the entire FFHQ dataset at 1024
resolution, and our Patch Generator which is trained on 𝑝× 𝑝 patches of FFHQ6K (which
contains approximately 1k images at 1024 resolution and 5k at lower resolutions). The
frequency distributions are similar, suggesting that even a smaller generator is able to
approximate fine textures well.

C.2.6 Additional model variations

In Section 4.4.2 of the main text, we describe and study variations of our model. Here,

we provide additional quantitative and qualitative results and study additional factors.

Alternative metrics. In addition to FID and pFID, we also report precision and

recall [196] for our model, naive upsampling, and super-resolution models (Tab. C.4).

Super-resolution obtains lower precision (suggesting out-of-distribution results) and

similar or lower recall. Upsampling obtains similar or better precision, but lower recall

(suggesting that is does not sufficiently cover the real image distribution). Here, we

also include pFID measured at the maximum resolution for FFHQ (1024).

Variations on teacher regularization. In the main text, we introduce variations

on the teacher regularization including “forward” and “inverse” loss formulations, and

discarding the teacher regularization all-together. Tab. C.5 shows the FID comparisons

of these three variants, in which the “inverse” loss obtains the best FID scores at

166

Table C.4: Precision and recall. We
evaluate additional precision and recall met-
rics [196], and their corresponding patch
variants, for our model, naive upsampling,
and super-resolution methods on the FFHQ
dataset. We also include pFID at a fixed
1024 scale evaluated in Tab. C.3.

Precision Recall pFID

1024 Patch 1024 Patch 1024

Upsample 0.68 0.77 0.37 0.20 31.70
Real-ESRGAN 0.40 0.54 0.51 0.47 20.04
GFP-GAN 0.48 0.62 0.34 0.32 20.58
Ours 0.69 0.68 0.47 0.55 8.01

Table C.5: Variations of teacher regular-
izer on FFHQ6k. The inverse teacher reg-
ularization outperforms forward regulariza-
tion, and adding a scale-conditioning branch
further improves higher resolutions. Omit-
ting the teacher harms global structure. (*)
indicates default setting.

FID pFID

256 512 1024 random

Forward teacher 3.23 4.21 5.35 6.06
Inverse teacher 3.35 4.18 4.88 4.67
No teacher 5.50 5.93 7.13 3.17
Inverse + scale (*) 3.37 4.41 4.47 4.28

Base Image Inverse + ScaleNo TeacherInverseForward

Te
ac

he
r V

ar
ia

tio
ns

Base Image Multiscale Patch1024 SubsetResize to 1024Resize to 512

Pa
tc

h
Va

ri
at

io
ns

3.3x (841)

3.7x (936)

Figure C-7: Qualitative examples of model variations. (Top) Using an inverse
teacher loss and the scale conditioning branch generates sharper details while also preserving
similarity to the base image. (Bottom) We compare our multi-size training approach to
methods that do not take advantage of different image sizes and instead train for a fixed
resolution. Fixed-resolution training cannot generalize to other resolutions, and upsampling
images leads to blurring. Our final model is able learn from mixed-resolution training images
and also synthesize at arbitrary resolutions.

the highest 1024 resolution. Adding the scale-conditioning branch to inject scale

information throughout the generator further improves FID@1024 and pFID. We

show qualitative examples in Fig. C-7 (top), where the inverse teacher with scale-

conditioning input can synthesize the cleanest details while still being similar to the

base image.

As default, we set 𝜆teacher = 5 during the patch-based training phase. Changing

167

Table C.6: Teacher regularization. Teacher
regularization weight trades off between improved
detail synthesis (pFID) and global realism (full
image FIDs). We choose an in-between value
(𝜆teacher = 5); this value can be adjusted based
on desired similarity to the base resolution. (*)
indicates our default setting.

FID pFID L1
256 512 1024 random

𝜆teacher = 0 5.50 5.93 7.13 3.17 0.16
𝜆teacher = 2 3.42 4.58 5.46 3.15 0.10
𝜆teacher = 5 (*) 3.37 4.41 4.47 4.28 0.08
𝜆teacher = 10 3.46 4.25 4.61 5.39 0.07

Table C.7: Patch sampling. We sample
patches from the HR dataset at global res-
olutions between (𝑠min, 𝑠max). The same
model architecture trained on patches
from higher resolution images improves
the synthesis result at 1024 resolution. (*)
indicates our default setting.

FID pFID

256 512 1024 random

(256, 512) 5.20 5.92 19.01 35.66
(256, 1024) 3.43 4.16 4.61 4.19
(512, 1024) (*) 3.28 4.04 4.16 3.61

𝜆teacher balances between local image quality and similarity to the base resolution

image, where higher 𝜆teacher offers the most similarity to the base resolution with

lower L1 difference, but lower 𝜆teacher improves pFID, suggesting better quality of the

synthesized patches (Tab. C.6).

0 1000 2000 3000 4000 5000
kimg

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

Generator
1k
5k
10k
70k

0 1000 2000 3000 4000 5000
kimg

0.8

1.0

1.2

1.4

1.6

Lo
ss

Discriminator
1k
5k
10k
70k

Figure C-8: Number of training images. While FID numbers are similar, we find that
using 1K HR images for training shows some evidence of divergence. The training dynamics
of 5K images is similar to that of the full dataset.

Fixed-size vs Multi-size training. Fig C-7 (bottom) shows an example of a

synthesized patch comparing our multi-size training to strategies of fixed-size training.

Fixed-size training does not naturally generalize to other sizes, causing deterioration

in image quality when sampled at resolutions not equal to the training resolution.

Upsampling the training images to a common resolution introduces blurriness in

the synthesized output. The result of training on only the subset of images at 1024

resolution looks qualitatively similar to that of multi-scale training, but multi-scale

training attains better FID metrics and is able to use more images for training.

Changing the number of training images. While the model FID scores remain

168

largely similar (within a range of 0.3) when training on 1k to 70k high-resolution

images, we found that using 1k images showed some evidence of training divergence

(Fig. C-8). On the other hand, the training trajectory of using 5k images looks

largely similar to that of using the full HR dataset (70k) images. Therefore, when

collecting images for the remaining domains, we aim to collect between 5k-10k images

to construct the HR dataset.

1x (256) 8x (2048)4x (1024)2x (512)1.5x (384)

U
p

 t
o

 5
12

U
p

 t
o

 1
0

2
4

Figure C-9: Impact of sampling resolutions. Using the same model architecture and
FFHQ6k dataset, we sample images (top) from 256 to 512 resolution, and (bottom) from 512
to 1024 resolution. The dotted line indicates when inference resolution exceeds the maximum
training resolution. Watery artifacts start to appear when extrapolation, but this can be
tempered by simply training on patches from larger images.

Investigating the impact of sampling resolutions. Our FFHQ6k dataset contains

images between 512 and 1024 resolution, and during training the images are randomly

downsampled from their native resolution, and can be optionally clipped at an upper

resolution. Here, we conduct experiments to study the effects of these sampling

ranges. When training the model on resolutions 𝑠 sampled between 256 and 512,

the image quality declines by 1024 resolution at inference time and contains visual

artifacts (Tab. C.7, Fig. C-9). Taking the same image and model architecture, but

instead training on resolutions between 256 and 1024 offers better FID@1024, and

sampling from 512 to 1024 resolution further improves FID@1024. As before, all

models are trained on patches of size 𝑝 = 256, and the model is jointly trained on

the fixed-size dataset to preserve FID@256. Accordingly for the other domains, our

169

sampled resolutions for HR dataset range between the native resolution 𝑠im and the

minimum resolution of the HR images. These results suggest that the synthesized

resolution can be dictated by the training images; simply adding patches from higher

resolution images can allow the same model to better synthesize at a higher resolution.

We also tried an experiment using a separately trained smaller 128px patch generator

and the same 512 to 1024 resolution patch sampling scheme, but obtained worse FID

(8.38 at 1024 resolution compared to 4.16 for our default model); we hypothesize this

is because may be due to worse FID from the initial pretraining phase that carries

over to the patch training phase (5.14 compared to 3.71 for our default model).

Table C.8: Discriminator variations.
Our default discriminator, which jointly
trains globally on the LR dataset and
patches from the HR dataset attains
the best FID metrics. Other changes
to the discriminator did not improve
performance. (*) indicates default.

FID pFID

256 512 1024 random

Default Discriminator (*) 3.28 4.04 4.16 3.61

No Base Resolution 9.96 4.23 4.69 2.92

Two Discriminators 3.82 4.63 5.34 3.38

Scale-conditioned Discriminator 31.81 71.33 89.38 120.06

Changing the discriminator. Our final

model introduces changes to the generator, but

keeps the same discriminator from the initial

pretraining step. During patch-training, the

discriminator must also learn to distinguish be-

tween real and synthesized patches. Here, we

investigate alternatives of changing the discrimi-

nator setup (Tab. C.8). (1) We remove sampling

from the LR dataset, now causing the discrimi-

nator to focus entirely on patches. This causes pFID to improve but the remaining

global FIDs to worsen. In particular, this allows the generator to forget how to

synthesize at the base resolution, causing a large increase in FID@256. The impact

of sampling from the base resolution and the teacher regularization have similar

outcomes: both encourage global coherence, but the teacher has a stronger effect than

base resolution training. (2) We also try adding a second discriminator so that one

focuses entirely on the global low-resolution image, and the other entirely on patches.

Both discriminators are initialized with the result from pretraining, but we find that

this setting leads to suboptimal metrics, compared to using a single discriminator. (3)

We inject scale information into the discriminator following a similar method as the

generator via weight modulation. In this case, the training becomes unstable as the

discriminator is able to out-compete the generator.

170

Removing the pretraining step. Our final model is first pretrained at a fixed,

smaller resolution before varied-size patch training is enabled. This pretraining phase

encourages global coherence and also serves as the teacher model later during patch-

based training. We conduct an experiment in which the initial pretraining step is

omitted, and the model is trained on randomly sampled patches from the start of

training. When trained with the same number of HR image patches, the model without

global pretraining suffers in both structure and texture – FID for 1024px generated

images is 26.78 and pFID is 8.64 – compared to our original model which performs

global pretraining at low resolution – FID at 1024px is 4.50 and pFID is 3.46 after

10M training images.

C.2.7 Detectability

0 512 1024 1536 2048 2560 3072 3584 4096
Resolution

50

60

70

80

90

100
Av

er
ag

e
Pr

ec
is

io
n

(A
P)

birds
mountains

Figure C-10: Detection score. We run the
model from Wang et. al [251] on our Birds
and Mountains datasets. All scores are above
chance of 50%. Note in both cases, the de-
tectability of our network trends upwards with
resolution.

A concern with improved image gener-

ation is the potential for more convinc-

ing deceiving images, particularly those

of higher resolution, which is the focus

of our work. We use the off-the-shelf

detector from Wang et al. [251] on our

Birds (generated 256 → 2048) and Moun-

tains (1024 → 4096) generators, across

a large range of resolutions. As shown

in Figure C-10, the scores are well above

chance (50%) across both datasets and

resolutions. Interestingly, the curve generally trends upwards, indicating that while

higher resolution images may look more natural, they are also easier to detect.

C.3 Additional Implementation Details

Building off the StyleGAN3 [111] architecture, we describe our coordinate conditioning

and scale modulation branch applied to enable generation of multi-scale patches during

171

the second training phase.

C.3.1 Patch-based training

Extracting patches from varied size images From our dataset of images 𝒟, we

sample an image 𝑥𝑖 ∈ R𝐻𝑖×𝑊𝑖×3 ∼ 𝒟, with short-side 𝑠im = min(𝐻𝑖,𝑊𝑖), and take an

𝑠im-by-𝑠im square crop. We then Lanczos downsample the image to an intermediate

resolution 𝑠 ∈ [𝑝, 𝑠im], which provides “free” additional views from the same image,

without introducing image corruptions.

Next, we sample a random crop of size 𝑝 and record the sampling location 𝑣 ∈
R2. To summarize this procedure, we obtain a patch 𝑥 ∈ R𝑝×𝑝×3 from these two

operations, while saving the sampled image resolution 𝑠 and patch center location

v = (v𝑥,v𝑦) ∈ [0, 1]2 for later use.

𝑥, 𝑠,v = Crop(Downsample(𝑥𝑖)) (C.1)

Synthesizing patches from the generator. Given a set of patches from the image

dataset, the generator is tasked with synthesizing images at the corresponding patch

locations. To transform the normalized coordinate domain [0, 1] × [0, 1] into patch

coordinates, we apply a transformation matrix to each 2D location 𝑐 in homogenous

coordinates:

𝑐v,𝑠 = 𝑇patch * 𝑐 =

⎡⎢⎢⎢⎣
𝑝
𝑠

0 v𝑥

0 𝑝
𝑠

v𝑦

0 0 1

⎤⎥⎥⎥⎦ * 𝑐 (C.2)

Following StyleGAN3, these transformed coordinates are then encoded as 𝐾

random Fourier channels by multiplying by frequencies 𝐵 ∈ R𝐾×2 and adding phases

𝜑 ∈ R𝐾 . For patch synthesis, the Fourier feature extraction at index (ℎ,𝑤) becomes:

𝐹ℎ,𝑤(𝑐v,𝑠) = sin
(︀
2𝜋𝐵𝑐v,𝑠 + 𝜑

)︀
∈ R𝐾 , (C.3)

172

C.3.2 Scale-conditioning branch

As individual coordinate positions 𝑐v,𝑠 do not directly convey scale information, we

found it beneficial additionally incorporate the scale input to intermediate layers of

the generator. To do this, we first normalize the target scale 𝑠 to [0, 1] using:

𝑠 =
𝑠− 𝑝

𝑠max − 𝑝
(C.4)

where 𝑠max is selected from dataset statistics and is only present as a normalization

factor, but does not clip the upper synthesis bound during inference. Empirically, we

found that adding a small offset factor (we use 0.1) to the normalized target scale 𝑠

allows for smoother interpolations between resolutions by avoiding a discontinuity at

zero.

We then encode 𝑠 using a parallel mapping network of identical architecture to

the latent mapping network 𝑀(𝑧), and add the two inputs after undergoing a layer-

specific affine transformation into style-space [261, 175] to obtain the final modulation

parameter 𝑀(𝑧, 𝑠)𝑘 at layer 𝑘:

𝑀(𝑧, 𝑠)𝑘 = (𝑊𝑧,𝑘 *𝑀𝑧(𝑧) + 𝑏𝑧,𝑘) + (𝑊𝑠,𝑘 *𝑀𝑠(𝑠) + 𝑏𝑠,𝑘) (C.5)

Because the modulation parameter is a multiplicative factor on the network weights

and the scale-conditioning portion is added only during the secondary patch-wise

training step, we initialize 𝑏𝑧,𝑘 = 1 and 𝑏𝑠,𝑘 = 0 to allow the network to smoothly

transition between the initial pretraining step and secondary patch-based training.

C.3.3 Training procedure

We train our models on four to eight V100 GPUs with 16GB memory. By sampling

fixed-size patches, the memory and compute footprint remain constant during training.

For FFHQ, we finetune our initial fixed-scale generator from the pretrained FFHQ-

U model [111], which reaches a minimum FID within 4M training images. In the

remaining domains, we perform the pretraining step from scratch, retaining the

173

checkpoint with the lowest FID, computed over 25M image samples, before continuing

with the second, mixed-resolution training phase. Our training procedure is compatible

with both 3×3 and 1×1 kernel sizes in StyleGAN3 (T & R configurations, respectively).

For the patch-based training step, we proceed with the model configuration that reaches

the best FID in pretraining, which is typically Config T with the exception of the

FFHQ domain.

174

Appendix D

Supplementary: Persistent Nature

In supplemental materials, we investigate an alternative 3D feature representation

based on extendable triplane units D.1. We provide additional implementation details

of our method in Section D.2, additional ablations in Section D.3, and we provide

further discussion on our model in Section D.4.

D.1 Extended Triplane Variation

Instead of decoding the scene from a 2D layout feature grid and height of a 3D point

above this layout plane, we also experiment with a model variation that adds vertical

support planes parallel to the XY and YZ planes. Thus, the layout features are

described by a 2D extended XZ layout feature grid, and sets of orthogonal support

planes shown in pink in Fig. D-1-left. Decoding a given 3D point projects the point

to the XZ plane, the four nearest vertical planes (two parallel to XY and two parallel

to YZ, which are weighted linearly according to the distance of the point from each

plane).

Qualitatively, the triplane model achieves more geometry diversity, with more

mountainous terrain compared to the feature layout model. We attribute this to the

additional support provided from the vertical feature planes. Additionally, the vertical

feature planes allow for a lighter decoding network with higher neural rendering

resolution, allowing for faster video rendering and improved temporal consistency

175

(lower one-step consistency error) due to less reliance on a 2D upsampling operation.

We show qualitative examples in Fig. D-2 with video results on our project page, and

quantitative evaluations in Tab. D.1. Quantitatively, while this extended triplane

variation does not output perform the layout model in terms of FID, we hypothesize that

the FID may be impacted by two possible factors: first, this model requires inference-

time camera height adjustment to avoid intersecting with increased complexity of

the generated geometry, and second, interpolation between vertical feature planes

qualitatively produces more muted colors compared to the real image distribution.

Ebg Gbg

Gland

x
y

z

z z
Gxy Gxz Gyz

SOATyz

SOATxz

SOATxy

Extended Triplane Triplane + 3D SOAT

Figure D-1: Diagram of extended triplane representation. The extended triplane
representation adds a sequence of orthogonal vertical feature planes outlined in pink in
addition to the ground plane features outlined in white (left). Each unit consists of a
triplane representation [27] generated from three independent generators – 𝐺𝑋𝑌 , 𝐺𝑋𝑍 , and
𝐺𝑌 𝑍 – tied to the same latent code and mapping network (right). At inference time, the
features of each generator are stitched along the appropriate dimensions using the SOAT
procedure [40].

We also investigate the impact of using a projected 3D noise pattern as input into

the extended triplane upsampler, with results in Tab. D.2. While this improves FID

and consistency in the layout representation, we find that the benefits of the projected

noise are more limited in the extended triplane setting. Adding projected noise offers

improvements in FID, but also a small increase in consistency error. Qualitatively, the

model outputs are similar with and without the projected noise, perhaps attributed

to decreased reliance on the upsampling operation.

176

Model FID Consistency Render
Time (s)

𝐶train 𝐶forward 𝐶random

Extended Layout 21.42 26.67 23.39 3.56 8.49
Extended Triplane 24.47 34.89 34.76 2.29 0.16

Table D.1: Extended Layout vs. Extended Triplane. While the extended layout
representation presented in the main paper attains better image quality (lower FID scores),
the extended triplane representation offers improved consistency (lower one-step consistency
error) and dramatically faster video rendering (as the layout model requires supersampling for
video smoothness). We hypothesize that inference-time camera adjustments and interpolation
between vertical feature planes may negatively impact FID for the extended triplane model,
despite its ability to generate more complex and diverse landscape geometry.

Model FID Consistency
𝐶train 𝐶forward 𝐶random

Without Noise 24.47 34.89 34.76 2.29
With 3D noise 25.31 33.30 33.28 3.06

Table D.2: Effect of 3D Projected Noise. Adding projected noise into the upsampler
of the extendable triplane representation offers improvements in FID but is slightly more
inconsistent, but still more consistent than the layout model.

Figure D-2: Extendable triplane visualization. Qualitative examples of rendering
from the extendable triplane representation. This representation results in larger scene
and geometry diversity compared to the layout feature representation, with improved 3D
consistency.

177

D.2 Additional Methodological Details

D.2.1 Preprocessing

(a) Training Images (b) Removed Images

Figure D-3: Result of dataset filtering. The dataset filtering step (a) retains images
that contain sufficient sky pixels near the top of the image, and (b) removes images that are
not typical images of landscapes. These atypical images include images without sky pixels,
or images with nearby occluding objects such as windows or trees. The filtering criteria is
based on sky segmentation and disparity estimation obtained from DPT [184].

Dataset Filtering. To remove images in the LHQ [221] dataset that contain occluding

objects close to the camera, we apply filtering criteria to construct the training dataset.

Using the segmentation output of DPT [184], we detect the sky region and boundaries

of the resulting binary sky mask. As the segmentation results can include small

regions with inconsistent labels (e.g . small holes in the sky), we remove all bounded

regions with area under 250 pixels to create a more unified sky mask. Next, using this

segmentation mask we filter out images for which any of the following hold: (1) there

are more than three bounded sky regions, (2) more than 90% of the scene is not sky

pixels, (3) more than 40% of the upper one-fifth of the image is not sky pixels, and

(4) less than 80% of the lower quarter of the image is not sky pixels. The first three

criteria are meant to filter out images that contain occluding structures (such as trees

or windows) or images in which there is no sky region present. The fourth criteria is

meant to filter out images taken from unusual camera angles (such as from underneath

a bridge). Using the monocular depth prediction from DPT, we also remove images

containing too many vertical edges: images are removed if the 99th percentile of the

pixel-wise finite difference is greater than 0.05, which tends to be indicative of trees

178

or man-made buildings. Fig. D-3 shows examples of images that were retained for

training, and those that were filtered out.

Disparity Normalization. Using the monocular depth prediction from DPT, we

normalize the disparity values between 0 and 1 using the 1st and 99th percentile values

per image. Next, we clip the minimum disparity for non-sky regions and rescale the

disparity values to correspond to the near and far bounds used in volumetric rendering

(see § D.2.2). We use 0.05 for our clip value and 1/16 for the scale factor; this means

that after normalization, the disparity values for non-sky pixels range from 1/16 to 1.

The disparity for the sky pixels is clamped at zero.

(a) Cameras
for training

(b) Cameras
after forward motion

(c) Cameras
randomly oriented

Figure D-4: Illustration of camera distributions. (a) Cameras used for training are
sampled with a random translation uniformly over the scene layout feature grid, with rotation
sampled to overlap with this feature grid. To evaluate view extrapolation, we (b) move the
cameras forward a distance equivalent to 100 steps of InfiniteNature-Zero [131], corresponding
to roughly halfway across the scene layout grid, or (c) randomly sample a random translation
and random rotation.

Camera Poses. We sample training camera poses with a random (𝑥, 𝑧) position within

the layout grid, and a rotation such that the near half of the view frustrum lies entirely

within the training grid. To simulate the forward motion of InfiniteNature-Zero [131],

we move the camera forward a distance equivalent to 100 steps of InfiniteNature-Zero,

corresponding to roughly half of the scene layout grid. To evaluate view extrapolation,

we randomize the position and rotation of the cameras at inference time. These

settings are illustrated in Fig. D-4.

179

D.2.2 Training and implementation

Training objective

Each stage of our model is trained following the StyleGAN2 objective [110], with a

non-saturating GAN loss 𝑉 and 𝑅1 regularization [153]:

𝑉 (𝐷,𝐺(𝑧), 𝐼) = 𝐷(𝐼)−𝐷(𝐺(𝑧)),

𝑅1(𝐷, 𝐼) = ||∇𝐷(𝑥)||2,

𝐺 = argmin
𝐺

max
𝐷

E𝑧,𝐼∼𝒟 𝑉 (𝐷,𝐺(𝑧), 𝐼)+

𝜆𝑅1

2
𝑅1(𝐷, 𝐼),

(D.1)

where 𝐺,𝐷 refer to the corresponding generator and discriminator networks at each

training stage, and 𝑥 refers to real images sampled from dataset 𝒟. Additional

auxiliary losses for each part of the model are described in the following sections.

Layout Generator

Our layout generator is based on the architecture from GSN [47], which is comprised

of two components: 𝐺land, which synthesizes the scene layout grid, and 𝑀 which

decodes the 2D layout feature into a 3D feature.

The layout generator 𝐺land follows StyleGAN2 [110], which generates a 256× 256

grid of features 𝑓land ∈ R32. 𝐺land contains three mapping layers and the maxi-

mum channel dimension is capped at 256; all other parameters are unchanged from

StyleGAN2.

The network 𝑀 is modeled after the style-modulated MLP from CIPS [5], con-

taining eight layers with a hidden channel dimension of 256 and producing features

𝑓color ∈ R128. The constant input to 𝑀 is replaced with the 𝑦-coordinate (height above

the ground plane), and the modulation input is the interpolated feature from 𝑓land.

We adapt the rendering procedure of GSN to handle unbounded outdoor scenes.

For volumetric rendering, we set the near bound to 1 and the far bound to 16,

which corresponds to the scale factor used in disparity normalization during data

180

preprocessing. Each scene layout feature has a unit width of 0.15, such that the full

width of the feature grid is 256 × 0.15 = 38.4, which is slightly over twice the far

bound distance. We omit positional encoding from 𝑀 , as we found that including

positional encoding yielded grid-aligned artifacts in generated images; we also omit

the view direction input. Camera rays are sampled using FOV = 60∘ with linearly

spaced sampling between the near bound and the far bound. We use inverse-depth

(disparity) supervision rather than depth supervision so that we can represent content

at infinite distances. This also encourages the terrain generator to create empty space

in the sky content, which will be filled with the skydome generator.

We use the volumetric rendering equations from NeRF [156], in which the weights

𝑤𝑖 of the 𝑖-th point along a ray depends on densities 𝜎 which is predicted by multi-layer

perceptron 𝑀 and the distance between samples 𝛿:

𝛼𝑖 = 1− exp (−𝜎𝑖𝛿𝑖) , 𝑤𝑖 = 𝛼𝑖 exp
(︀
−

𝑖−1∑︁
𝑗=1

𝜎𝑗𝛿𝑗
)︀
. (D.2)

Our training procedure for the layout decoder follows that of GSN [47], which

provides the real RGB image 𝐼RGB and disparity 𝑑 (obtained from DPT) to the

discriminator 𝐼 = {𝐼RGB, 𝑑}, and also adds a reconstruction loss on real images using

a decoder network 𝐺𝜑 on discriminator features 𝐷𝜑:

ℒrec = (𝐼 −𝐺𝜑(𝐷𝜑(𝐼)))2. (D.3)

The full GAN objective follows Eqn. D.1 with weights 𝜆𝑅1 = 0.01 and 𝜆rec = 1000, and

we follow the optimizer settings from StyleGAN2 and train for 12M image samples.

Because the layout decoder tends to generate semi-transparent geometry, which

also causes unrealistic sky masks, we regularize the geometry following Eqn. 4 in the

main document, and add the sky mask into the discriminator. We finetune with this

additional loss for 400k samples with 𝜆transparent which linearly increases from zero to

𝜆transparent = 80 over the finetuning procedure.

181

z00

Glz01

Glz10

Glz11

Gl

fl

β00

β01

β10

β11

fl+1

β00

Gl Gl+1Gl−1
.fl fl+1

2D SOAT

Figure D-5: Layout extension. We adapt the
procedure in SOAT [40] for 2D layout extension.
Operating on each layer of the generator, we take
the incoming feature grid 𝑓𝑙, and construct the
outgoing feature grid using the generator weights
conditioned on each corner latent code 𝑧 (the con-
ditioning uses weight modulation on the mapping
network outputs in StyleGAN2 [110]). Then, these
four outgoing feature maps are multiplied with bi-
linear weights 𝛽 and the result is summed, to obtain
the blended feature for the next layer 𝑓𝑙+1.

Layout extension

We use the procedure of SOAT [40] in two dimensions to smoothly transition between

adjacent feature grids sampled from independent latent codes. SOAT proceeds by

operating on 2x2 sub-grids and stitching each layer of intermediate features in the

generator (Fig. D-5). To start, we simply concatenate the StyleGAN constant tensors,

to obtain a feature grid 𝑓0 of size 2𝐻0 × 2𝑊0, where 𝐻0 and 𝑊0 are the height and

width of the constant tensor. For each subsequent layer 𝑓𝑙+1, we modulate the weights

𝐺𝑙 with each of four corner latent codes (after applying the mapping network to obtain

the style-code) and apply it in a fully convolutional manner to 𝑓𝑙, obtaining 𝑓𝑘,𝑙+1 of

size 2𝐻𝑙 × 2𝑊𝑙. Then, we multiply each of 𝑓𝑘,𝑙+1 with bilinear interpolation weights

𝛽 and take the sum to obtain 𝑓𝑙+1. This procedure is repeated for each layer of the

generator, obtaining a an output feature grid of size 2𝐻 × 2𝑊 . To reduce the effect

of padding, these output feature grids are tiled in an overlapping manner, with a 50%

overlap on each side and with weights that linearly decay to zero away from the center

of the tile.

Refinement Network

The refinement network 𝐺up uses a truncated StyleGAN2 backbone, which replaces

the feature input of the 32× 32 block with the 32× 32 rendered feature 𝑓im and initial

image 𝐼LR, depth 𝑑LR, and sky mask 𝑚LR. The skip connection of the upsampler

takes in 𝐼LR, 𝑑LR, 𝑚LR and predicts 𝐼HR, 𝑑HR, and 𝑚HR. Following the noise injection

182

operation in StyleGAN2, we replace the image-space 2D noise tensor with our 3D-

consistent projected noise (Eqn. 7 in the main document). This network uses two

mapping layers, taking as input the style latent vector from 𝐺land.

We add an additional objective to encourage consistency between the refined color

pixels and the sky mask:

ℒconsistency = |𝑑HR − 𝑑LR↑|+ |𝑚HR −𝑚LR↑|,

ℒsky = exp(−20 *
∑︁
𝑐

|𝐼HR[𝑐]|) *𝑚HR.
(D.4)

The loss ℒconsistency encourages the high resolution depth and mask outputs to match

their upsampled low resolution counterparts (this results in a smoother outcome

compared to downsampling the high resolution outputs). The loss ℒsky encourages

pixel colors to be nonzero (reserved for the gray sky color) when 𝑚HR = 1, by summing

over the three channels 𝑐 of the predicted image 𝐼HR; this is meant to encourage the

RGB colors produced refinement network to be consistent with the mask and depth

outputs. The refinement network is trained with the GAN objective (Eqn. D.1) with

weights 𝜆𝑅1 = 4, 𝜆consistency = 5, and 𝜆sky = 100, and the discriminator loss is applied

only on the RGB images.

Due to the computational costs of volume rendering, we train the refinement

network on 32×32 inputs to produce 256×256 outputs. For 30 fps video visualizations,

we supersample the camera rays at 8x spatial density and apply depth-based filtering

to the noise input to improve video smoothness; however all metrics in the paper are

computed without supersampling for additional smoothness.

We note that while StyleGAN3 [111] is intended to resolve the texture sticking

effect caused by the noise input in StyleGAN2, replacing 𝐺up with a StyleGAN3

backbone resulted in worse image quality in our setting with FID 67.90, compared to

FID 21.42 for our final model.

183

Skydome Generator

The skydome generator takes as input the CLIP [183] embedding of a single terrain

image, and predicts a sky output that is consistent with the terrain. The generator

architecture follows StyleGAN3 [111] adapted with cylindrical coordinates to generate

360∘ panoramas [25].

For the terrain input, we take the filtered LHQ dataset and select the non-sky pixels

with normalized disparity greater than 1/16 (this leaves some background mountains

to be predicted). We follow the training procedure from [25] with a few adaptations. In

addition to concatenating the CLIP embedding of the terrain image to the style-code,

the generated sky is composited with the terrain input prior to the discriminator

with 50% probability, which is compared to full RGB images from LHQ. The 50%

compositing behavior ensures that the bottom of the generated skydome can still

appear realistic (when unmasked), while also matching provided terrain image (when

masked). This portion is trained with the 𝜆𝑅1 = 2 in the GAN objective (Eqn. D.1),

with randomly sampled cylindrical coordinates and a cross-frame discriminator applied

to the boundary of two adjacent frames.

D.2.3 Extendable triplane implementation

To construct the extendable triplane representation, we modify the triplane model

from EG3D [27] to generate three planes from independent synthesis networks 𝐺𝑋𝑌 ,

𝐺𝑋𝑍 , and 𝐺𝑌 𝑍 , tied to the same latent code and mapping network. Similar to our

layout feature model, we train the terrain generator on sky-segmented images and

disparity maps as input into the low-resolution discriminator to help the model learn

geometry. The upsampler portion of this model and the training procedure is the same

as EG3D, using 𝜆𝑅1 = 10. To prevent the model from rendering the segmented sky

color (we use white for the sky color, following the background color of NeRF [156]),

we finetune the model penalizing for white pixels when the sky mask is one:

ℒsky = exp(−5 *
∑︁
𝑐

(𝐼LR[𝑐]− 1) *𝑚LR. (D.5)

184

(a) Accumulated ray density with
separate skydome

(b) Accumulated ray density without
separate skydome

Figure D-6: Training without a separate skydome. We supervise the sky content with
zero inverse-depth (infinite distance) to ensure that the camera does not intersect the sky
as the layout features are extended. As such, we model content at infinite distances with a
separate skydome model, such that the terrain model treats sky regions as empty space (left).
Without the separated skydome, the model is forced to put sky content at finite distances
leading to foggy, semi-transparent content near the camera (right).

The finetuning operation is performed for 400K samples with 𝜆sky increasing from

zero to 40 during training. At inference time, we perform SOAT [40] feature stitching

to each generator along the appropriate dimensions to obtain the extended triplane

representation. As the skydome model does not train on generated images, we use

the same skydome model as before. We use 50 randomly sampled camera poses

for training, which improves the geometry diversity (more mountainous terrain) the

compared to using 1K random training poses.

D.3 Additional Experiments

D.3.1 Training without a separate skydome

Modelling faraway content separately is a common strategy in unbounded scene-

reconstruction [9, 76]. To ensure that we cannot intersect the skydome as we arbitrarily

extend the layout features, we use zero inverse-depth for sky pixels, which can only

render a solid color as the weight of all points along the ray must be zero to obtain zero

inverse-depth. In this experiment, we train 𝐼LR using the same training strategy as our

final 𝐼LR model, but instead supervise with full RGB images rather than sky-segmented

RGB images. This corresponds to training the model without a separate skydome. We

185

find that without the separate skydome, the model learns incorrect geometry, as it is

forced to place some density at finite distances in order to render content in the sky to

match the training distribution. Figure D-6 shows the difference in ray accumulations

from models trained with the skydome (prior to opacity regularization) and without

the skydome. The model without the skydome places semi-transparent content in the

sky region, which creates a fog-like effect when moving the camera throughout the

landscape.

D.3.2 Changing the number of sampled cameras

We train our model using a set of one thousand cameras with randomly sampled

translations within the layout feature grid, and rotations such that the camera view

frustum overlaps with the feature grid. However, one limitation of this training

strategy is that we find the model can learn repeating geometry, such that the

rendered disparity map may look similar when sampling different random latent

codes at the same camera position, despite the pixel color values being different. We

hypothesize that the diversity of camera poses sampled during training may obscure

the repeating geometry effect from the discriminator, as images sampled from different

camera poses will appear different in terms of both color and geometry.

To investigate this effect, we train another model using only five camera poses

during training. The disparity maps per camera pose show more diversity in this

setting, however we find that this setting results in “holes” and incorrect geometry

in the landscape when moving the camera away from the training poses, illustrated

in Figure D-7. We use one thousand training cameras as our default setting, but a

more optimal setting may involve fewer training cameras, while still ensuring adequate

coverage over the feature grid.

D.4 Discussion

A limiting factor of our method is the reliance on a volume rendering operation to

decode the 2D layout feature grid into a 3D feature at each sampled point along the ray.

186

(a) 1K training cameras; training poses (b) 5 training cameras; training poses

(c) 1K training cameras;
independent test poses

(d) 5 training cameras;
independent test poses

Figure D-7: Adjusting the set of training cameras. We plot disparity maps corre-
sponding to training with one thousand cameras, and five cameras. (a) With our default
setting of one thousand training cameras with camera origins uniformly sampled over the
layout feature grid, we find that the model can learn repeating geometry, such that the
disparity map generated from the same pose but different latent codes tends to look similar
(each row corresponds to the same pose), despite the RGB colors appearing different. (b)
With fewer training cameras, the models learns more diversity in the rendered geometry,
where again each row corresponds to the same camera pose. (c & d) However, the model
trained with one thousand cameras generalizes better to an independent set of cameras,
whereas the model trained with five cameras has a greater frequency to put holes in the
decoded landscape (evidenced by completely black disparity maps, or disparity maps that
have no nearby content and thus are darker overall) or regions of solid content without sky
(evidenced by disparity maps that do not fade to black near the top of each image). We
use one thousand training cameras as our default setting, but a more optimal setting may
involve fewer training cameras, while still ensuring adequate coverage over the feature grid.

Due to this operation, the rendered output 𝐼LR can only be trained at low resolution

(32x32), and does not learn to generate detailed textures. (In contrast to NeRF-style

models which can use per-ray supervision, we must render a complete image as an

input for the discriminator.) We rely on a refinement module to upsample the result

and add additional textures, but any refinement in image space is prone to losing 3D

consistency. Our extended triplane variation reduces the computational expense of

187

volume rendering by reducing the capacity of the decoder MLP and increasing the

capacity of the feature representation, thus allowing for neural rendering at 64x64

resolution (we find that geometry degrades at higher resolutions) and decreasing

reliance on the upsampler. While we did not find improvements when training on

rendered patches, improved patch sampling techniques could help in adding more

detail to the rendered result [223].

As our model does not have explicit 3D or aerial supervision, we find that it may

generate unnatural or repeating geometry. This can appear as thin mountains, sloping

water, or hills of a similar shape but different appearance when sampling from different

random noise codes.

188

Bibliography

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed
images into the stylegan latent space? In Int. Conf. Comput. Vis., 2019.

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit
the embedded images? In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[3] Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bachman, and
Aaron Courville. Augmented cyclegan: Learning many-to-many mappings from
unpaired data. In Int. Conf. Machine Learning, 2018.

[4] Alexander Amini, Ava P Soleimany, Wilko Schwarting, Sangeeta N Bhatia, and
Daniela Rus. Uncovering and mitigating algorithmic bias through learned latent
structure. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, pages 289–295, 2019.

[5] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempit-
sky, and Denis Korzhenkov. Image generators with conditionally-independent
pixel synthesis. In IEEE Conf. Comput. Vis. Pattern Recog., pages 14278–14287,
2021.

[6] Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and
David J Fleet. Synthetic data from diffusion models improves imagenet classifi-
cation. arXiv preprint arXiv:2304.08466, 2023.

[7] Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so
poorly to small image transformations? Journal of Machine Learning Research,
2020.

[8] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P Srinivasan. Mip-nerf: A multiscale representation
for anti-aliasing neural radiance fields. In Int. Conf. Comput. Vis., pages
5855–5864, 2021.

[9] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter
Hedman. Mip-NeRF 360: Unbounded anti-aliased neural radiance fields. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 5470–5479, 2022.

189

[10] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum,
William T Freeman, and Antonio Torralba. Gan dissection: Visualizing and
understanding generative adversarial networks. In Int. Conf. Learn. Represent.,
2019.

[11] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei
Zhou, and Antonio Torralba. Seeing what a gan cannot generate. In IEEE Conf.
Comput. Vis. Pattern Recog., 2019.

[12] David Bau, Hendrik Strobelt, William Peebles, Bolei Zhou, Jun-Yan Zhu,
Antonio Torralba, et al. Semantic photo manipulation with a generative image
prior. ACM Trans. Graph., 2020.

[13] Michel Besserve, Arash Mehrjou, Rémy Sun, and Bernhard Schölkopf. Counter-
factuals uncover the modular structure of deep generative models. In Int. Conf.
Learn. Represent., 2018.

[14] Irving Biederman. Recognition-by-components: a theory of human image
understanding. Psychological review, 94(2):115, 1987.

[15] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton.
Demystifying MMD GANs. In Int. Conf. Learn. Represent., 2018.

[16] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook
Kim, Sanja Fidler, and Karsten Kreis. Align your latents: High-resolution video
synthesis with latent diffusion models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

[17] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed
sensing using generative models. In Int. Conf. Machine Learning, 2017.

[18] Richard Strong Bowen, Huiwen Chang, Charles Herrmann, Piotr Teterwak,
Ce Liu, and Ramin Zabih. OCONet: Image extrapolation by object completion.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 2307–2317, 2021.

[19] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training
for high fidelity natural image synthesis. In Int. Conf. Learn. Represent., 2018.

[20] Tim Brooks, Janne Hellsten, Miika Aittala, Ting-Chun Wang, Timo Aila, Jaakko
Lehtinen, Ming-Yu Liu, Alexei A Efros, and Tero Karras. Generating long videos
of dynamic scenes. In Adv. Neural Inform. Process. Syst., 2022.

[21] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning
to follow image editing instructions. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 18392–18402, 2023.

[22] Peter Burt and Edward Adelson. The laplacian pyramid as a compact image
code. IEEE Transactions on communications, 31(4):532–540, 1983.

190

[23] Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola. What makes fake images
detectable? understanding properties that generalize. In Eur. Conf. Comput.
Vis., 2020.

[24] Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, and Richard Zhang.
Ensembling with deep generative views. In IEEE Conf. Comput. Vis. Pattern
Recog., 2021.

[25] Lucy Chai, Michael Gharbi, Eli Shechtman, Phillip Isola, and Richard Zhang.
Any-resolution training for high-resolution image synthesis. In Eur. Conf.
Comput. Vis., 2022.

[26] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wet-
zstein. pi-GAN: Periodic implicit generative adversarial networks for 3D-aware
image synthesis. In IEEE Conf. Comput. Vis. Pattern Recog., pages 5799–5809,
2021.

[27] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan,
Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh
Khamis, Tero Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
2022.

[28] Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W Bergman,
Jeong Joon Park, Axel Levy, Miika Aittala, Shalini De Mello, Tero Karras,
and Gordon Wetzstein. Generative novel view synthesis with 3d-aware diffusion
models. arXiv preprint arXiv:2304.02602, 2023.

[29] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit:
Masked generative image transformer. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 11315–11325, 2022.

[30] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama,
Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T Freeman, Michael
Rubinstein, et al. Muse: Text-to-image generation via masked generative trans-
formers. In Int. Conf. Machine Learning, 2023.

[31] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan,
and Ilya Sutskever. Generative pretraining from pixels. In Int. Conf. Machine
Learning, pages 1691–1703. PMLR, 2020.

[32] Xu Chen, Jie Song, and Otmar Hilliges. Monocular neural image based rendering
with continuous view control. In Int. Conf. Comput. Vis., pages 4090–4100,
2019.

[33] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image represen-
tation with local implicit image function. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 8628–8638, 2021.

191

[34] Zhaoxi Chen, Guangcong Wang, and Ziwei Liu. Scenedreamer: Unbounded 3d
scene generation from 2d image collections. arXiv preprint arXiv:2302.01330,
2023.

[35] Yen-Chi Cheng, Chieh Hubert Lin, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov,
and Ming-Hsuan Yang. In&Out: Diverse image outpainting via GAN inversion.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 11431–11440, 2022.

[36] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H Kim, and Jan Kautz.
Extreme view synthesis. In Int. Conf. Comput. Vis., pages 7781–7790, 2019.

[37] Jooyoung Choi, Jungbeom Lee, Yonghyun Jeong, and Sungroh Yoon. Toward
spatially unbiased generative models. In Int. Conf. Comput. Vis., 2021.

[38] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. Stargan: Unified generative adversarial networks for multi-domain
image-to-image translation. In IEEE Conf. Comput. Vis. Pattern Recog., pages
8789–8797, 2018.

[39] Min Jin Chong and David Forsyth. Effectively unbiased fid and inception score
and where to find them. In IEEE Conf. Comput. Vis. Pattern Recog., pages
6070–6079, 2020.

[40] Min Jin Chong, Hsin-Ying Lee, and David Forsyth. StyleGAN of All
Trades: Image Manipulation with Only Pretrained StyleGAN. arXiv preprint
arXiv:2111.01619, 2021.

[41] Taco S Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge
equivariant convolutional networks and the icosahedral cnn. In Int. Conf.
Machine Learning, 2019.

[42] Edo Collins, Raja Bala, Bob Price, and Sabine Süsstrunk. Editing in style:
Uncovering the local semantics of gans. In IEEE Conf. Comput. Vis. Pattern
Recog., 2020.

[43] Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong. Gram: Generative
radiance manifolds for 3D-aware image generation. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 10673–10683, June 2022.

[44] Emily Denton and Rob Fergus. Stochastic video generation with a learned prior.
In Int. Conf. Machine Learning, pages 1174–1183. PMLR, 2018.

[45] Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep genera-
tive image models using a laplacian pyramid of adversarial networks. In Adv.
Neural Inform. Process. Syst., 2015.

[46] Emily Denton, Ben Hutchinson, Margaret Mitchell, and Timnit Gebru. Detecting
bias with generative counterfactual face attribute augmentation. arXiv preprint
arXiv:1906.06439, 2019.

192

[47] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava, Graham W Taylor,
and Joshua M Susskind. Unconstrained scene generation with locally conditioned
radiance fields. In Int. Conf. Comput. Vis., pages 14304–14313, 2021.

[48] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image
synthesis. In Adv. Neural Inform. Process. Syst., volume 34, 2021.

[49] Jeff Donahue and Karen Simonyan. Large scale adversarial representation
learning. In Adv. Neural Inform. Process. Syst., 2019.

[50] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature
learning. In Int. Conf. Learn. Represent., 2017.

[51] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex
Lamb, Martin Arjovsky, and Aaron Courville. Adversarially learned inference.
In Int. Conf. Learn. Represent., 2016.

[52] Alexei A Efros and William T Freeman. Image quilting for texture synthesis and
transfer. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 341–346, 2001.

[53] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric
sampling. In Int. Conf. Comput. Vis., volume 2, pages 1033–1038. IEEE, 1999.

[54] Dave Epstein, Allan Jabri, Ben Poole, Alexei A Efros, and Aleksander Holyn-
ski. Diffusion self-guidance for controllable image generation. arXiv preprint
arXiv:2306.00986, 2023.

[55] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for
high-resolution image synthesis. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 12873–12883, 2021.

[56] Patrick Fernandes, Aman Madaan, Emmy Liu, António Farinhas, Pedro Henrique
Martins, Amanda Bertsch, José GC de Souza, Shuyan Zhou, Tongshuang Wu,
Graham Neubig, et al. Bridging the gap: A survey on integrating (human)
feedback for natural language generation. arXiv preprint arXiv:2305.00955,
2023.

[57] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for
physical interaction through video prediction. In Adv. Neural Inform. Process.
Syst., 2016.

[58] John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe,
Ryan Overbeck, Noah Snavely, and Richard Tucker. DeepView: View synthesis
with learned gradient descent. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 2367–2376, 2019.

193

[59] Gereon Fox, Ayush Tewari, Mohamed Elgharib, and Christian Theobalt. Style-
VideoGAN: A temporal generative model using a pretrained StyleGAN. In Brit.
Mach. Vis. Conf., 2021.

[60] William T. Freeman and Edward H Adelson. The design and use of steerable
filters. IEEE Trans. Pattern Anal. Mach. Intell., (9):891–906, 1991.

[61] Rafail Fridman, Amit Abecasis, Yoni Kasten, and Tali Dekel. Scenescape:
Text-driven consistent scene generation. arXiv preprint arXiv:2302.01133, 2023.

[62] Stephanie Fu*, Netanel Tamir*, Shobhita Sundaram*, Lucy Chai, Richard
Zhang, Tali Dekel, and Phillip Isola. Dreamsim: Learning new dimensions of
human visual similarity using synthetic data. arXiv:2306.09344, 2023.

[63] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal
Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-
to-image generation using textual inversion. arXiv preprint arXiv:2208.01618,
2022.

[64] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau.
Erasing concepts from diffusion models. arXiv preprint arXiv:2303.07345, 2023.

[65] Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang, David Jacobs,
Jia-Bin Huang, and Devi Parikh. Long video generation with time-agnostic
VQGAN and time-sensitive transformer. arXiv preprint arXiv:2204.03638, 2022.

[66] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A
Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased towards
texture; increasing shape bias improves accuracy and robustness. In Int. Conf.
Learn. Represent., 2019.

[67] Daniel Glasner, Shai Bagon, and Michal Irani. Super-resolution from a single
image. In Int. Conf. Comput. Vis., pages 349–356. IEEE, 2009.

[68] Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. Ganalyze:
Toward visual definitions of cognitive image properties. In Int. Conf. Comput.
Vis., 2019.

[69] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Adv. Neural Inform. Process. Syst., 2014.

[70] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In Int. Conf. Learn. Represent., 2015.

[71] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. StyleNeRF: A
style-based 3D-aware generator for high-resolution image synthesis. In Int. Conf.
Learn. Represent., 2022.

194

[72] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing using multi-code gan
prior. In IEEE Conf. Comput. Vis. Pattern Recog., 2019.

[73] Shuyang Gu, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen, and Lu Yuan.
Mask-guided portrait editing with conditional gans. In IEEE Conf. Comput.
Vis. Pattern Recog., 2019.

[74] Shanyan Guan, Ying Tai, Bingbing Ni, Feida Zhu, Feiyue Huang, and Xiaokang
Yang. Collaborative learning for faster stylegan embedding. arXiv preprint
arXiv:2007.01758, 2020.

[75] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy
evolution. In Adv. Neural Inform. Process. Syst., volume 31, 2018.

[76] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu. Gancraft: Unsu-
pervised 3D neural rendering of Minecraft worlds. In Int. Conf. Comput. Vis.,
pages 14072–14082, 2021.

[77] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace:
Discovering interpretable gan controls. In Adv. Neural Inform. Process. Syst.,
2020.

[78] James Hays and Alexei A Efros. Scene completion using millions of photographs.
In ACM Trans. Graphics (SIGGRAPH North America), 2007.

[79] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conf. Comput. Vis. Pattern Recog.,
2016.

[80] Ari Heljakka, Yuxin Hou, Juho Kannala, and Arno Solin. Deep automodulators.
In Adv. Neural Inform. Process. Syst., 2019.

[81] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Prompt-to-prompt image editing with cross attention control.
arXiv preprint arXiv:2208.01626, 2022.

[82] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a
local nash equilibrium. In Adv. Neural Inform. Process. Syst., volume 30, 2017.

[83] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-
encoders. In International Conference on Artificial Neural Networks, pages
44–51. Springer, 2011.

[84] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[85] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In Adv. Neural Inform. Process. Syst., volume 33, pages 6840–6851,
2020.

195

[86] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey
Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet,
et al. Imagen video: High definition video generation with diffusion models.
arXiv preprint arXiv:2210.02303, 2022.

[87] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei-Fei, and Juan Carlos
Niebles. Learning to decompose and disentangle representations for video
prediction. In Adv. Neural Inform. Process. Syst., volume 31, 2018.

[88] Ronghang Hu, Nikhila Ravi, Alexander C. Berg, and Deepak Pathak. Worldsheet:
Wrapping the world in a 3D sheet for view synthesis from a single image. In Int.
Conf. Comput. Vis., 2021.

[89] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tieniu Tan, and Jian
Sun. Meta-sr: A magnification-arbitrary network for super-resolution. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 1575–1584, 2019.

[90] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-
resolution from transformed self-exemplars. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 5197–5206, 2015.

[91] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A Efros. Fighting fake
news: Image splice detection via learned self-consistency. In Eur. Conf. Comput.
Vis., pages 101–117, 2018.

[92] Minyoung Huh, Richard Zhang, Jun-Yan Zhu, Sylvain Paris, and Aaron Hertz-
mann. Transforming and projecting images into class-conditional generative
networks. In Eur. Conf. Comput. Vis., 2020.

[93] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and locally
consistent image completion. ACM Trans. Graph., 2017.

[94] Michal Irani and Shmuel Peleg. Improving resolution by image registration.
CVGIP: Graphical models and image processing, 53(3):231–239, 1991.

[95] Phillip Isola and Ce Liu. Scene collaging: Analysis and synthesis of natural
images with semantic layers. In IEEE Conf. Comput. Vis. Pattern Recog., 2013.

[96] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 1125–1134, 2017.

[97] Ali Jahanian, SVN Vishwanathan, and Jan P Allebach. Learning visual balance
from large-scale datasets of aesthetically highly rated images. In Human Vision
and Electronic Imaging, volume 9394, page 93940Y. International Society for
Optics and Photonics, 2015.

[98] Ali Jahanian, Lucy Chai, and Phillip Isola. On the “steerability” of generative
adversarial networks. In Int. Conf. Learn. Represent., 2020.

196

[99] Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola. Generative models
as a data source for multiview representation learning. In Int. Conf. Learn.
Represent., 2021.

[100] Varun Jampani, Huiwen Chang, Kyle Sargent, Abhishek Kar, Richard Tucker,
Michael Krainin, Dominik Kaeser, William T Freeman, David Salesin, Brian
Curless, et al. SLIDE: Single image 3D photography with soft layering and
depth-aware inpainting. In Int. Conf. Comput. Vis., pages 12518–12527, 2021.

[101] Wonbong Jang and Lourdes Agapito. CodeNeRF: Disentangled neural radiance
fields for object categories. In Int. Conf. Comput. Vis., pages 12949–12958,
2021.

[102] Yuming Jiang, Kelvin CK Chan, Xintao Wang, Chen Change Loy, and Ziwei
Liu. Robust reference-based super-resolution via c2-matching. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 2103–2112, 2021.

[103] Biliana Kaneva, Josef Sivic, Antonio Torralba, Shai Avidan, and William T.
Freeman. Infinite images: Creating and exploring a large photorealistic virtual
space. In Proceedings of the IEEE, 2010.

[104] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain
Paris, and Taesung Park. Scaling up gans for text-to-image synthesis. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 10124–10134, 2023.

[105] Animesh Karnewar and Oliver Wang. MSG-GAN: Multi-scale gradients for
generative adversarial networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 7799–7808, 2020.

[106] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. In Int. Conf.
Learn. Represent., 2017.

[107] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
2019.

[108] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. Training generative adversarial networks with limited data. In Adv.
Neural Inform. Process. Syst., 2020.

[109] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and improving the image quality of stylegan. In IEEE
Conf. Comput. Vis. Pattern Recog., 2020.

[110] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and improving the image quality of StyleGAN. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 8110–8119, 2020.

197

[111] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. Alias-free generative adversarial networks. In Adv.
Neural Inform. Process. Syst., volume 34, 2021.

[112] Seung Wook Kim, Jonah Philion, Antonio Torralba, and Sanja Fidler. Drivegan:
Towards a controllable high-quality neural simulation. In IEEE Conf. Comput.
Vis. Pattern Recog., 2021.

[113] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine
Learning Research, 10:1755–1758, 2009.

[114] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Int. Conf. Learn. Represent., 2015.

[115] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[116] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible
1x1 convolutions. In Adv. Neural Inform. Process. Syst., 2018.

[117] Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason Baldridge, and Peter Anderson.
Pathdreamer: A world model for indoor navigation. In Int. Conf. Comput. Vis.,
pages 14738–14748, 2021.

[118] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean Quigley, Francis Ge,
Yangming Chong, Josh Patterson, Jan-Michael Frahm, Shu Wu, Matthew Yu,
Peizhao Zhang, Zijian He, Peter Vajda, Ayush Saraf, and Michael Cohen. One
shot 3D photography. ACM Trans. Graphics (SIGGRAPH North America), 39
(4), 2020.

[119] Adam Kortylewski, Ju He, Qing Liu, and Alan L Yuille. Compositional convolu-
tional neural networks: A deep architecture with innate robustness to partial
occlusion. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[120] Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard
Zhang, and Jun-Yan Zhu. Ablating concepts in text-to-image diffusion models.
arXiv preprint arXiv:2303.13516, 2023.

[121] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan
Zhu. Multi-concept customization of text-to-image diffusion. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1931–1941, 2023.

[122] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have
a semantic latent space. arXiv preprint arXiv:2210.10960, 2022.

[123] Hugo Larochelle and Iain Murray. The neural autoregressive distribution esti-
mator. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 29–37. JMLR Workshop and Conference Pro-
ceedings, 2011.

198

[124] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[125] Wonkwang Lee, Whie Jung, Han Zhang, Ting Chen, Jing Yu Koh, Thomas
Huang, Hyungsuk Yoon, Honglak Lee, and Seunghoon Hong. Revisiting hierar-
chical approach for persistent long-term video prediction. In Int. Conf. Learn.
Represent., 2021.

[126] Karel Lenc and Andrea Vedaldi. Understanding image representations by
measuring their equivariance and equivalence. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 991–999, 2015.

[127] Marc Levoy and Pat Hanrahan. Light field rendering. In ACM Trans. Graphics
(SIGGRAPH North America), 1996.

[128] Jiaxin Li, Zijian Feng, Qi She, Henghui Ding, Changhu Wang, and Gim Hee
Lee. MINE: Towards continuous depth MPI with NeRF for novel view synthesis.
In Int. Conf. Comput. Vis., pages 12578–12588, October 2021.

[129] Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-sdf: Text-to-shape
via voxelized diffusion. In IEEE Conf. Comput. Vis. Pattern Recog., pages
12642–12651, 2023.

[130] Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. MAT: Mask-
aware transformer for large hole image inpainting. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 10758–10768, 2022.

[131] Zhengqi Li, Qianqian Wang, Noah Snavely, and Angjoo Kanazawa.
InfiniteNature-Zero: Learning perpetual view generation of natural scenes from
single images. In Eur. Conf. Comput. Vis., pages 515–534. Springer, 2022.

[132] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun
Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d:
High-resolution text-to-3d content creation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 300–309, 2023.

[133] Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei
Wei, and Hwann-Tzong Chen. Coco-gan: Generation by parts via conditional
coordinating. In Int. Conf. Comput. Vis., pages 4512–4521, 2019.

[134] Chieh Hubert Lin, Hsin-Ying Lee, Yen-Chi Cheng, Sergey Tulyakov, and Ming-
Hsuan Yang. InfinityGAN: Towards infinite-pixel image synthesis. In Int. Conf.
Learn. Represent., 2022.

[135] Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei Chai, Aliaksandr
Siarohin, Ming-Hsuan Yang, and Sergey Tulyakov. InfiniCity: Infinite-scale city
synthesis. arXiv preprint arXiv:2301.09637, 2023.

199

[136] Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-Yan Zhu. Anycost
gans for interactive image synthesis and editing. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 14986–14996, 2021.

[137] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely,
and Angjoo Kanazawa. Infinite nature: Perpetual view generation of natural
scenes from a single image. In Int. Conf. Comput. Vis., pages 14458–14467,
2021.

[138] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large
scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[139] Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong Han, and Jing
Liao. PD-GAN: Probabilistic diverse GAN for image inpainting. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 9371–9381, 2021.

[140] Nian Liu, Junwei Han, and Ming-Hsuan Yang. Picanet: Learning pixel-wise
contextual attention for saliency detection. In IEEE Conf. Comput. Vis. Pattern
Recog., 2018.

[141] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov,
and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object. arXiv preprint
arXiv:2303.11328, 2023.

[142] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
Eur. Conf. Comput. Vis., pages 21–37. Springer, 2016.

[143] Yuchen Liu, Zhixin Shu, Yijun Li, Zhe Lin, Federico Perazzi, and Sun-Yuan
Kung. Content-aware GAN compression. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 12156–12166, 2021.

[144] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Int. Conf. Comput. Vis., 2015.

[145] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas
Lehrmann, and Yaser Sheikh. Neural volumes: Learning dynamic renderable
volumes from images. ACM Trans. Graphics (SIGGRAPH North America), 38
(4):65:1–65:14, July 2019.

[146] Liying Lu, Wenbo Li, Xin Tao, Jiangbo Lu, and Jiaya Jia. Masa-sr: Matching
acceleration and spatial adaptation for reference-based image super-resolution.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 6368–6377, 2021.

[147] Jingwei Ma, Lucy Chai, Minyoung Huh, Tongzhou Wang, Ser-Nam Lim, Phillip
Isola, and Antonio Torralba. Totems: Physical objects for verifying visual
integrity. In Eur. Conf. Comput. Vis., pages 164–180. Springer, 2022.

200

[148] Ye Ma, Jin Ma, Min Zhou, Quan Chen, Tiezheng Ge, Yuning Jiang, and Tong
Lin. Boosting image outpainting with semantic layout prediction. arXiv preprint
arXiv:2110.09267, 2021.

[149] Arun Mallya, Ting-Chun Wang, Karan Sapra, and Ming-Yu Liu. World-
consistent video-to-video synthesis. In Eur. Conf. Comput. Vis., pages 359–378.
Springer, 2020.

[150] Chengzhi Mao, Amogh Gupta, Augustine Cha, Hao Wang, Junfeng Yang, and
Carl Vondrick. Generative interventions for causal learning. In IEEE Conf.
Comput. Vis. Pattern Recog., 2020.

[151] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoor-
thi, and Manmohan Chandraker. Modulated periodic activations for generalizable
local functional representations. In Int. Conf. Comput. Vis., pages 14214–14223,
2021.

[152] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu,
and Stefano Ermon. Sdedit: Guided image synthesis and editing with stochastic
differential equations. In Int. Conf. Learn. Represent., 2022.

[153] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training
methods for GANs do actually converge? In Int. Conf. Machine Learning, pages
3481–3490, 2018.

[154] Elad Mezuman and Yair Weiss. Learning about canonical views from internet
image collections. In Adv. Neural Inform. Process. Syst., pages 719–727, 2012.

[155] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi
Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field
fusion: Practical view synthesis with prescriptive sampling guidelines. In ACM
Trans. Graphics (SIGGRAPH North America), 2019.

[156] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields
for view synthesis. In Eur. Conf. Comput. Vis., pages 405–421. Springer, 2020.

[157] Ron Mokady, Sagie Benaim, Lior Wolf, and Amit Bermano. Mask based
unsupervised content transfer. In Int. Conf. Learn. Represent., 2019.

[158] Thomas Möllenhoff and Daniel Cremers. Flat metric minimization with applica-
tions in generative modeling. In Int. Conf. Machine Learning, 2019.

[159] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graphics (SIGGRAPH North America), 2022.

201

[160] Andres Munoz, Mohammadreza Zolfaghari, Max Argus, and Thomas Brox.
Temporal shift GAN for large scale video generation. In Proc. Winter Conf. on
Computer Vision (WACV), pages 3179–3188, 2021.

[161] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and
Jaejun Yoo. Reliable fidelity and diversity metrics for generative models. In Int.
Conf. Machine Learning, 2020.

[162] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang
Yang. HoloGAN: Unsupervised learning of 3D representations from natural
images. In Int. Conf. Comput. Vis., Nov 2019.

[163] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion
probabilistic models. In Int. Conf. Machine Learning, pages 8162–8171. PMLR,
2021.

[164] Michael Niemeyer and Andreas Geiger. CAMPARI: Camera-aware decomposed
generative neural radiance fields. In Int. Conf. on 3D Vision (3DV), pages
951–961. IEEE, 2021.

[165] Michael Niemeyer and Andreas Geiger. GIRAFFE: Representing scenes as
compositional generative neural feature fields. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 11453–11464, 2021.

[166] Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3D Ken Burns effect from
a single image. ACM Trans. Graph., 38(6):1–15, 2019.

[167] Evangelos Ntavelis, Mohamad Shahbazi, Iason Kastanis, Radu Timofte, Martin
Danelljan, and Luc Van Gool. Arbitrary-scale image synthesis. In IEEE Conf.
Comput. Vis. Pattern Recog., 2022.

[168] OpenAI. Gpt-4 technical report. 2023.

[169] Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and
Ira Kemelmacher-Shlizerman. StyleSDF: High-Resolution 3D-Consistent Image
and Geometry Generation. In IEEE Conf. Comput. Vis. Pattern Recog., pages
13503–13513, June 2022.

[170] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, and
Ping Luo. Exploiting deep generative prior for versatile image restoration and
manipulation. In Eur. Conf. Comput. Vis., 2020.

[171] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic
image synthesis with spatially-adaptive normalization. In IEEE Conf. Comput.
Vis. Pattern Recog., 2019.

[172] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic
image synthesis with spatially-adaptive normalization. In IEEE Conf. Comput.
Vis. Pattern Recog., 2019.

202

[173] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A.
Efros, and Richard Zhang. Swapping autoencoder for deep image manipulation.
In Adv. Neural Inform. Process. Syst., 2020.

[174] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and
surprising subtleties in gan evaluation. In IEEE Conf. Comput. Vis. Pattern
Recog., 2022.

[175] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski.
Styleclip: Text-driven manipulation of stylegan imagery. In Int. Conf. Comput.
Vis., pages 2085–2094, October 2021.

[176] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. Context encoders: Feature learning by inpainting. In IEEE Conf. Comput.
Vis. Pattern Recog., 2016.

[177] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In
ACM Trans. Graphics (SIGGRAPH North America), pages 313–318. 2003.

[178] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial
latent autoencoders. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[179] Marcos Pividori, Guillermo L Grinblat, and Lucas C Uzal. Exploiting gan
internal capacity for high-quality reconstruction of natural images. arXiv preprint
arXiv:1911.05630, 2019.

[180] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion:
Text-to-3D using 2D diffusion. In Int. Conf. Learn. Represent., 2023.

[181] Ori Press, Tomer Galanti, Sagie Benaim, and Lior Wolf. Emerging disentangle-
ment in auto-encoder based unsupervised image content transfer. In Int. Conf.
Learn. Represent., 2020.

[182] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In Int. Conf.
Comput. Vis., 2015.

[183] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision. In
Int. Conf. Machine Learning, pages 8748–8763. PMLR, 2021.

[184] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for
dense prediction. In Int. Conf. Comput. Vis., pages 12179–12188, 2021.

[185] Suman Ravuri and Oriol Vinyals. Classification accuracy score for conditional
generative models. In Adv. Neural Inform. Process. Syst., 2019.

203

[186] Daniel Rebain, Mark Matthews, Kwang Moo Yi, Dmitry Lagun, and Andrea
Tagliasacchi. LOLNeRF: Learn from one look. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 1558–1567, 2022.

[187] Xuanchi Ren and Xiaolong Wang. Look outside the room: Synthesizing a
consistent long-term 3D scene video from a single image. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 3563–3573, 2022.

[188] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav
Shapiro, and Daniel Cohen-Or. Encoding in style: a stylegan encoder for
image-to-image translation. In IEEE Conf. Comput. Vis. Pattern Recog., 2021.

[189] Gernot Riegler and Vladlen Koltun. Free view synthesis. In Eur. Conf. Comput.
Vis., 2020.

[190] Chris Rockwell, David F Fouhey, and Justin Johnson. PixelSynth: Generating a
3D-consistent experience from a single image. In Int. Conf. Comput. Vis., pages
14104–14113, 2021.

[191] Robin Rombach, Patrick Esser, and Björn Ommer. Geometry-free view synthesis:
Transformers and no 3D priors. In Int. Conf. Comput. Vis., pages 14356–14366,
2021.

[192] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent diffusion models. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 10684–10695, 2022.

[193] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein,
and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for
subject-driven generation. In IEEE Conf. Comput. Vis. Pattern Recog., pages
22500–22510, 2023.

[194] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):
211–252, 2015.

[195] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim
Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image
diffusion models. In ACM Trans. Graphics (SIGGRAPH North America), pages
1–10, 2022.

[196] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain
Gelly. Assessing generative models via precision and recall. In Adv. Neural
Inform. Process. Syst., volume 31, 2018.

[197] Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin
Recht, and Angjoo Kanazawa. Plenoxels: Radiance fields without neural net-
works. In IEEE Conf. Comput. Vis. Pattern Recog., 2022.

204

[198] Mert Bülent Sarıyıldız, Karteek Alahari, Diane Larlus, and Yannis Kalantidis.
Fake it till you make it: Learning transferable representations from synthetic
imagenet clones. In IEEE Conf. Comput. Vis. Pattern Recog., pages 8011–8021,
2023.

[199] Axel Sauer and Andreas Geiger. Counterfactual generative networks. In Int.
Conf. Learn. Represent., 2021.

[200] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to
large diverse datasets. In ACM Trans. Graphics (SIGGRAPH North America),
pages 1–10, 2022.

[201] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-
t: Unlocking the power of gans for fast large-scale text-to-image synthesis. In
Int. Conf. Machine Learning, 2023.

[202] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis,
Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for train-
ing next generation image-text models. In Adv. Neural Inform. Process. Syst.,
volume 35, pages 25278–25294, 2022.

[203] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Gen-
erative radiance fields for 3d-aware image synthesis. In Adv. Neural Inform.
Process. Syst., volume 33, pages 20154–20166, 2020.

[204] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a
generative model from a single natural image. In Int. Conf. Comput. Vis., pages
4570–4580, 2019.

[205] Tamar Rott Shaham, Michaël Gharbi, Richard Zhang, Eli Shechtman, and
Tomer Michaeli. Spatially-adaptive pixelwise networks for fast image translation.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 14882–14891, 2021.

[206] Prafull Sharma, Ayush Tewari, Yilun Du, Sergey Zakharov, Rares Ambrus,
Adrien Gaidon, William T Freeman, Fredo Durand, Joshua B Tenenbaum, and
Vincent Sitzmann. Seeing 3D objects in a single image via self-supervised
static-dynamic disentanglement. In Int. Conf. Learn. Represent., 2023.

[207] Eli Shechtman and Michal Irani. Matching local self-similarities across images
and videos. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1–8. IEEE, 2007.

[208] Yuan Shen, Wei-Chiu Ma, and Shenlong Wang. SGAM: Building a virtual 3D
world through simultaneous generation and mapping. In Adv. Neural Inform.
Process. Syst., 2022.

[209] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in
gans. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

205

[210] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent
space of gans for semantic face editing. In IEEE Conf. Comput. Vis. Pattern
Recog., 2019.

[211] Lixin Shi, Haitham Hassanieh, Abe Davis, Dina Katabi, and Fredo Durand.
Light field reconstruction using sparsity in the continuous fourier domain. In
ACM Trans. Graphics (SIGGRAPH North America), 2014.

[212] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3D photogra-
phy using context-aware layered depth inpainting. In IEEE Conf. Comput. Vis.
Pattern Recog., 2020.

[213] Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot” super-resolution
using deep internal learning. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3118–3126, 2018.

[214] Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani. Ingan: Capturing
and retargeting the “dna” of a natural image. In Int. Conf. Comput. Vis., pages
4492–4501, 2019.

[215] Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal Yarom, Michal Irani,
William T Freeman, and Tali Dekel. Semantic pyramid for image generation. In
IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[216] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and
Gordon Wetzstein. 3d neural field generation using triplane diffusion. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 20875–20886, 2023.

[217] Joel Simon. Ganbreeder. http:/https://ganbreeder.app/, accessed 2019-03-
22.

[218] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In Int. Conf. Learn. Represent., 2015.

[219] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang,
Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-
to-video generation without text-video data. arXiv preprint arXiv:2209.14792,
2022.

[220] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial gener-
ation of continuous images. In IEEE Conf. Comput. Vis. Pattern Recog., pages
10753–10764, 2021.

[221] Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. Aligning latent
and image spaces to connect the unconnectable. In Int. Conf. Comput. Vis.,
pages 14144–14153, 2021.

206

http:/https://ganbreeder.app/

[222] Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. StyleGAN-V: A
continuous video generator with the price, image quality and perks of StyleGAN2.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 3626–3636, 2022.

[223] Ivan Skorokhodov, Sergey Tulyakov, Yiqun Wang, and Peter Wonka. EpiGRAF:
Rethinking training of 3D GANs. In Adv. Neural Inform. Process. Syst., 2022.

[224] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit
models. In Int. Conf. Learn. Represent., 2021.

[225] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of
the data distribution. In Adv. Neural Inform. Process. Syst., volume 32, 2019.

[226] Yang Song and Stefano Ermon. Improved techniques for training score-based
generative models. In Adv. Neural Inform. Process. Syst., volume 33, pages
12438–12448, 2020.

[227] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[228] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova,
Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong
Park, and Victor Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proc. Winter Conf. on Computer Vision (WACV),
pages 2149–2159, 2022.

[229] Ryohei Suzuki, Masanori Koyama, Takeru Miyato, Taizan Yonetsuji, and
Huachun Zhu. Spatially controllable image synthesis with internal representation
collaging. arXiv preprint arXiv:1811.10153, 2018.

[230] Domen Tabernik, Matej Kristan, Jeremy L Wyatt, and Aleš Leonardis. Towards
deep compositional networks. In Int. Conf. Pattern Recog., 2016.

[231] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng.
Fourier features let networks learn high frequency functions in low dimensional
domains. In Adv. Neural Inform. Process. Syst., volume 33, pages 7537–7547,
2020.

[232] Piotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron Maschinot, David Belanger,
Ce Liu, and William T Freeman. Boundless: Generative adversarial networks
for image extension. In Int. Conf. Comput. Vis., pages 10521–10530, 2019.

[233] Ayush Tewari, Michael Zollhofer, Hyeongwoo Kim, Pablo Garrido, Florian
Bernard, Patrick Perez, and Christian Theobalt. Mofa: Model-based deep
convolutional face autoencoder for unsupervised monocular reconstruction. In
IEEE Conf. Comput. Vis. Pattern Recog. Worksh., pages 1274–1283, 2017.

207

[234] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian Bernard, Hans-Peter
Seidel, Patrick Pérez, Michael Zollhofer, and Christian Theobalt. Stylerig:
Rigging stylegan for 3d control over portrait images. In IEEE Conf. Comput.
Vis. Pattern Recog., 2020.

[235] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl
Ni, Douglas Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The new data in
multimedia research. Communications of the ACM, 59(2):64–73, 2016.

[236] Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan.
Stablerep: Synthetic images from text-to-image models make strong visual
representation learners. In arXiv preprint arXiv:2306.00984, 2023.

[237] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In IEEE
Conf. Comput. Vis. Pattern Recog., 2011.

[238] Richard Tucker and Noah Snavely. Single-view view synthesis with multiplane
images. In IEEE Conf. Comput. Vis. Pattern Recog., June 2020.

[239] Shubham Tulsiani, Richard Tucker, and Noah Snavely. Layer-structured 3D
scene inference via view synthesis. In Eur. Conf. Comput. Vis., pages 302–317,
2018.

[240] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan:
Decomposing motion and content for video generation. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 1526–1535, 2018.

[241] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play
diffusion features for text-driven image-to-image translation. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1921–1930, 2023.

[242] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In
IEEE Conf. Comput. Vis. Pattern Recog., 2018.

[243] Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita
Bala, and Kilian Weinberger. Deep feature interpolation for image content
changes. In IEEE Conf. Comput. Vis. Pattern Recog., pages 7064–7073, 2017.

[244] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex
Graves, et al. Conditional image generation with pixelcnn decoders. In Adv.
Neural Inform. Process. Syst., volume 29, 2016.

[245] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. In Int. Conf. Machine Learning, pages 1747–1756. PMLR,
2016.

[246] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Adv. Neural Inform. Process. Syst., volume 30, 2017.

208

[247] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee.
Decomposing motion and content for natural video sequence prediction. In Int.
Conf. Learn. Represent., 2017.

[248] Carl Vondrick and Antonio Torralba. Generating the future with adversarial
transformers. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1020–1028,
2017.

[249] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos
with scene dynamics. In Adv. Neural Inform. Process. Syst., 2016.

[250] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard
Zhou, Jonathan T Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas
Funkhouser. IBRNet: Learning multi-view image-based rendering. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 4690–4699, 2021.

[251] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A
Efros. Cnn-generated images are surprisingly easy to spot... for now. In IEEE
Conf. Comput. Vis. Pattern Recog., 2020.

[252] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. Esrgan: Enhanced super-resolution generative adversarial
networks. In Proceedings of the European conference on computer vision (ECCV)
workshops, 2018.

[253] Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. Towards real-world
blind face restoration with generative facial prior. In IEEE Conf. Comput. Vis.
Pattern Recog., 2021.

[254] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training
real-world blind super-resolution with pure synthetic data. In Int. Conf. Comput.
Vis., pages 1905–1914, 2021.

[255] Yi Wang, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Wide-context semantic image
extrapolation. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1399–1408,
2019.

[256] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S
Yu. PredRNN: Recurrent neural networks for predictive learning using spa-
tiotemporal LSTMs. In Adv. Neural Inform. Process. Syst., pages 879–888,
2017.

[257] Daniel Watson, William Chan, Ricardo Martin-Brualla, Jonathan Ho, Andrea
Tagliasacchi, and Mohammad Norouzi. Novel view synthesis with diffusion
models. arXiv preprint arXiv:2210.04628, 2022.

[258] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion of
video. IEEE Trans. Pattern Anal. Mach. Intell., 29(3):463–476, 2007.

209

[259] Tom White. Sampling generative networks. arXiv preprint arXiv:1609.04468,
2016.

[260] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. SynSin:
End-to-end view synthesis from a single image. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 7467–7477, 2020.

[261] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disen-
tangled controls for stylegan image generation. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 12863–12872, 2021.

[262] Jonas Wulff and Antonio Torralba. Improving inversion and generation diversity
in stylegan using a gaussianized latent space. arXiv preprint arXiv:2009.06529,
2020.

[263] Bin Xia, Yapeng Tian, Yucheng Hang, Wenming Yang, Qingmin Liao, and Jie
Zhou. Coarse-to-fine embedded patchmatch and multi-scale dynamic aggregation
for reference-based super-resolution. AAAI Conf. Artificial Intelligence, 2022.

[264] Jianfeng Xiang, Jiaolong Yang, Binbin Huang, and Xin Tong. 3d-aware image
generation using 2d diffusion models. arXiv preprint arXiv:2303.17905, 2023.

[265] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified
perceptual parsing for scene understanding. In Eur. Conf. Comput. Vis., 2018.

[266] Rui Xu, Xintao Wang, Kai Chen, Bolei Zhou, and Chen Change Loy. Positional
encoding as spatial inductive bias in gans. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 13569–13578, 2021.

[267] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. Learning
texture transformer network for image super-resolution. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 5791–5800, 2020.

[268] Zongxin Yang, Jian Dong, Ping Liu, Yi Yang, and Shuicheng Yan. Very long
natural scenery image prediction by outpainting. In Int. Conf. Comput. Vis.,
pages 10561–10570, 2019.

[269] Yufei Ye, Maneesh Singh, Abhinav Gupta, and Shubham Tulsiani. Compositional
video prediction. In Int. Conf. Comput. Vis., 2019.

[270] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. PixelNeRF: Neural
radiance fields from one or few images. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 4578–4587, 2021.

[271] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in
the loop. arXiv preprint arXiv:1506.03365, 2015.

210

[272] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang.
Generative image inpainting with contextual attention. In IEEE Conf. Comput.
Vis. Pattern Recog., 2018.

[273] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang.
Free-form image inpainting with gated convolution. In Int. Conf. Comput. Vis.,
pages 4471–4480, 2019.

[274] Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake images to gans:
Learning and analyzing gan fingerprints. In Int. Conf. Comput. Vis., 2019.

[275] Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha,
and Jinwoo Shin. Generating videos with dynamics-aware implicit generative
adversarial networks. In Int. Conf. Learn. Represent., 2022.

[276] Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shechtman, and Huchuan
Lu. High-resolution image inpainting with iterative confidence feedback and
guided upsampling. In Eur. Conf. Comput. Vis., 2020.

[277] Kai Zhang, Martin Danelljan, Yawei Li, Radu Timofte, Jie Liu, Jie Tang,
Gangshan Wu, Yu Zhu, Xiangyu He, Wenjie Xu, et al. Aim 2020 challenge on
efficient super-resolution: Methods and results. In Eur. Conf. Comput. Vis.,
pages 5–40. Springer, 2020.

[278] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-
image diffusion models. arXiv preprint arXiv:2302.05543, 2023.

[279] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe
Yu, and Alexei A Efros. Real-time user-guided image colorization with learned
deep priors. ACM Trans. Graph., 2017.

[280] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric. In IEEE
Conf. Comput. Vis. Pattern Recog., 2018.

[281] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric. In IEEE
Conf. Comput. Vis. Pattern Recog., 2018.

[282] Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting and simulating arti-
facts in gan fake images. In 2019 IEEE International Workshop on Information
Forensics and Security (WIFS), 2019.

[283] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela
Barriuso, Antonio Torralba, and Sanja Fidler. Datasetgan: Efficient labeled data
factory with minimal human effort. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10145–10155, 2021.

211

[284] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable
augmentation for data-efficient gan training. In Adv. Neural Inform. Process.
Syst., volume 33, pages 7559–7570, 2020.

[285] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I
Chang, and Yan Xu. Large scale image completion via co-modulated generative
adversarial networks. In Int. Conf. Learn. Represent., 2021.

[286] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I
Chang, and Yan Xu. Large scale image completion via co-modulated generative
adversarial networks. In Int. Conf. Learn. Represent., 2021.

[287] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image
augmentations for gan training. arXiv preprint arXiv:2006.02595, 2020.

[288] Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and Lu Fang. Crossnet: An
end-to-end reference-based super resolution network using cross-scale warping.
In Eur. Conf. Comput. Vis., pages 88–104, 2018.

[289] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely.
Stereo magnification: Learning view synthesis using multiplane images. In ACM
Trans. Graphics (SIGGRAPH North America), 2018.

[290] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui
Huang. Non-stationary texture synthesis by adversarial expansion. In ACM
Trans. Graphics (SIGGRAPH North America), 2018.

[291] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inversion
for real image editing. In Eur. Conf. Comput. Vis., 2020.

[292] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Genera-
tive visual manipulation on the natural image manifold. In Eur. Conf. Comput.
Vis., 2016.

[293] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Int. Conf.
Comput. Vis., 2017.

[294] Xiru Zhu, Fengdi Che, Tianzi Yang, Tzuyang Yu, David Meger, and Gregory
Dudek. Detecting gan generated errors. arXiv preprint arXiv:1912.00527, 2019.

212

	Introduction
	Variations of the Synthesis Problem
	Making Synthesis Controllable
	Emergent Control
	Designed Control

	Outline

	I Emergent Control in Image Synthesis
	Natural Image Variations from Latent Space Manipulations
	Introduction
	Related Work
	Method
	Objective
	Quantifying steerability
	Reducing transformation limits

	Experiments
	What transformations can we achieve in latent space?
	How does the data affect the transformations?
	Alternative architectures and walks
	Towards steerable GANs

	Conclusion

	Exemplar-based Control via Compositionality in Latent Space
	Introduction
	Related Work
	Method
	Latent code recovery in GANs
	Learning with missing data
	Image composition using latent regression

	Experiments
	Image composition from approximate collages
	Compositional properties across architectures
	How does composition differ from interpolation?
	Investigating independence of image components

	Conclusion

	II Image Synthesis with Designed Control
	Variable Resolution Synthesis with Continuous Coordinate Control
	Introduction
	Related Work
	Methods
	Multi-resolution GAN
	Two-phase training
	Implementation details

	Experiments
	Continuous multi-scale image synthesis
	Model variations
	Properties of multi-scale generation

	Conclusion

	Unbounded Persistent Landscapes with 3D Camera Control
	Introduction
	Related Work
	Method
	Scene layout generation and rendering
	Layout extension
	Image refinement
	Skydome
	Training

	Experiments
	Persistent, unbounded scene synthesis
	Comparing scene representations
	Model variations

	Discussion and conclusion

	Epilogue
	Supplementary: GAN Steering
	Additional Methodological Details
	Optimization for the linear walk
	Implementation details for linear walk
	Linear NN(z) walk
	Optimization for the non-linear walk

	Additional Experiments
	Model and data distributions
	Quantifying transformation limits
	Detected bounding boxes
	Alternative walks in BigGAN
	Walks in StyleGAN
	Walks in Progressive GAN
	Qualitative examples for additional transformations
	Additional results for improving model steerability

	Supplementary: Latent Composition
	Supplementary Methods
	Additional training details
	Additional details on composition

	Supplementary Results
	Additional applications
	Comparing composition with latent space interpolation
	Loss ablations
	Additional composition results
	Additional part variation results

	Supplementary: Anyres-GAN
	Panorama Generation Extension
	Experiments
	Dataset collection
	Patch-FID
	Additional quantitative results
	Comparison to powers-of-two synthesis
	Comparison to oracle generator
	Additional model variations
	Detectability

	Additional Implementation Details
	Patch-based training
	Scale-conditioning branch
	Training procedure

	Supplementary: Persistent Nature
	Extended Triplane Variation
	Additional Methodological Details
	Preprocessing
	Training and implementation
	Extendable triplane implementation

	Additional Experiments
	Training without a separate skydome
	Changing the number of sampled cameras

	Discussion

