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Abstract

Imaging underwater environments is crucial to advancing our understanding of marine
organisms, climate change, marine geology, aquaculture farming, and underwater
archaeology. Despite significant advances in underwater imaging, scalable and long-
term imaging of underwater environments is still an open problem. One of the main
challenges in scalably imaging the ocean is that existing underwater cameras are too
power-hungry for long-term observations. Recent work on ultra-low-power underwater
imaging has shown that in-situ wireless underwater imaging is possible using fully
submerged battery-free cameras and acoustic backscatter. Even though this is a
promising advance, enabling truly useful ultra-low-power underwater imaging remains
difficult due to many challenges and constraints including poor image quality (due to
marine snow, hazing, and lighting conditions), limited energy, limited memory and
computational power, and low bandwidth of the acoustic channel.

This thesis investigates the various challenges that efficient and ultra-low-power
underwater imaging faces and offers directions for solving them. In particular, we first
survey the various challenges of ultra-low-power underwater imaging. Subsequently,
we offer three solutions for addressing these challenges. First, we propose a sim-
ple denoising/desnowing method for ultra-low-power underwater imaging that shows
∼ 2𝑑𝐵 improvement in the quality of the images while reducing the memory consump-
tion by ∼ 17x when compared to the state-of-the-art systems. Second, we perform
ultra-low-power underwater edge inference that is ∼ 19x more memory efficient when
compared to the baseline model with comparable accuracies. Then, we propose a
solution for enabling ultra-low-power color imaging that is ∼ 10x less power-hungry
than the state-of-the-art battery-free underwater imaging system. We conclude by
offering a path to integrating these solutions into future end-to-end ultra-low-power
underwater imaging systems.
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Chapter 1

Introduction

Underwater imaging is an important problem for many domains and scientific dis-

ciplines. Images of marine organisms, aquatic plants, ocean floors, and particulate

organic carbon play a vital role in advancing our understanding of marine environ-

ments and their impact on global climate change [62, 58, 61]. Underwater imaging

also plays a role in food production and food security; in particular, underwater cam-

eras are used in aquaculture (seafood farming) to monitor different fish in order to

detect diseases such as sea lice and monitor fish growth [17, 78]. Underwater imaging

also enables the discovery of new marine species and helps us understand the impact

of human activities on the marine ecosystem [57, 42].

Despite advances in underwater imaging, more than 95% of the ocean has never

been explored or observed [29]. This is because we cannot perform in-situ large-scale

underwater imaging. The key challenge that stands in the way is that existing meth-

ods for continuous underwater imaging either require tethering or bulky batteries for

power and communication which limits their lifetime and scale of operation. Recently,

there have been exciting advances in underwater imaging that have demonstrated the

feasibility of doing underwater imaging, including marine life, plants, and underwater

navigation tags, that are both battery-free and wireless [3]. However, while the early

results are promising there is still a major leap that is required between these early

feasibility results and the ability to do meaningful and useful ultra-low-power under-

water imaging. Specifically, existing systems remain limited in their deployability,
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efficiency, image quality, and end-to-end capabilities. To this end, this thesis focuses

on investigating a path toward sustainable ultra-low-power underwater imaging, its

challenges, and an analysis of existing and potential solutions.

Enabling ultra-low-power, efficient, sustainable, and useful underwater imaging

requires addressing the following key challenges:

• Image Quality: Achieving high-quality underwater imaging is challenging for

two main reasons. The first reason is that underwater environments introduce

artifacts in the captured images. Specifically, the presence of suspended par-

ticles in water, a varied range of turbidity, and wavelength selective nature of

the water introduce artifacts, like underwater backscatter, marine snow, color

degradation, etc, in the images. Second, ultra-low-power underwater imaging

sensors are low-resolution due to their limited power budget [31], adding an ad-

ditional constraint to the quality of images. These not only degrade the quality

of the images but also limit the usefulness of the images in different vision-based

applications, discovery of species, disease detection, etc.

• Energy Constraints: In underwater sensing, one of the biggest challenges is

charging or replacing the sensors’ batteries, which is both expensive and labor

intensive. Recent developments in the field of underwater backscatter [39, 25]

have opened the door for battery-free underwater sensing and communication,

eliminating the need for replacing batteries frequently. Recent work in under-

water imaging [3] has made use of this technology to achieve battery-free and

wireless underwater imaging by means of a remote transducer. However, these

cameras still require a continuous source of energy to operate, which is obtained

from a nearby sound source. In the absence of such a source, they become in-

operational. Thus, they remain lacking a mechanism to enable long-term and

resilient underwater imaging.

• Memory and Computational Constraints: Enabling underwater imaging

based applications requires processing the captured images since they are not

useful in their raw form. The biggest challenges that ultra-low-power imaging
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platforms face, in processing these images, are the memory and computational

constraints of the ultra-low-power edge processors on them. These ultra-low-

power edge processors have a limited memory budget and computational power

on them because of their energy-efficient embedded system design. For instance,

the ultra-low power series of STM32 boards typically offers RAM of a few hun-

dred of kilobytes and FLASH of a few megabytes [72]. This puts a constraint

on both the amount of processing that can be done and the data that can

be stored on the device adding computational and memory constraints on the

imaging system.

• Bandwidth Constraints: Wireless underwater acoustic channel is inherently

bandlimited and allows only a few kilobits per second (kbps) of data rates for

communication. This not only slows down the communication process but also

increases the energy consumption of the device. Specifically, in the past work

[3] the battery-free underwater camera took 40 minutes to backscatter one

grayscale image.

While each of these constraints is individually difficult, their combination makes

the problem of ultra-low-power underwater imaging even more challenging. For ex-

ample, ideally, we would like to be able to do edge compression before transmitting in

order for us to enable low-latency imaging while operating within the limited band-

width of underwater communication channels; however, more complex compression

algorithms typically consume more energy and memory. Similarly, doing complex

tasks, like recognition, monitoring, and segmentation (to further pre-process the data

prior to transmission), are difficult not only because the computation, memory, and

power are limited but also because the underwater imaging environments are very

challenging to work with. Underwater environments change with changing light con-

ditions, water quality, and region of imaging. Ideally, we would want to both adapt

to such changing environments and remain within the resource budget. All of these

make the problem of underwater imaging extremely rich as well as a difficult-to-solve

problem.
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This thesis explores and investigates a series of techniques in order to solve the

aforementioned problems. In Chapter 2, we investigate the ways of removing ar-

tifacts from underwater images, problems with the existing approaches that make

them unsuitable for ultra-low power imaging systems, and implementation and eval-

uation of a low-complexity solution for underwater image cleaning that is suitable

for ultra-low power underwater imaging. This chapter also discusses how underwater

artifact removal not only improves the quality of the images but in some cases also

removes the unwanted information from the data reducing the amount of data to be

communicated, benefiting both in terms of latency and overall energy consumption.

Then, in Chapter 3, we talk about super-resolution as a technique to overcome the

low resolution of the imaging sensor. This chapter investigates the super-resolution

techniques that have been used in the past and how they can be helpful in terms of

ultra-low-power underwater imaging. In Chapter 4, we investigate the possibility of

colorization and color correction of the underwater images by means of processing

the images based on the underwater imaging model and why existing methods fall

short. Next, in Chapter 5, we investigate and discuss the possibility of using edge

machine learning in an ultra-low-power underwater imaging system in order to solve

one or many above-mentioned problems faced by such systems. This chapter also

talks about the challenges that this technique faces when deploying in an underwater

environment on an extremely resource-constrained platform.
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Chapter 2

Desnowing Underwater Images

The presence of underwater artifacts lowers the quality of the underwater images

which, as a result, reduces the usefulness of an imaging system. Removing artifacts,

such as marine snow, turbidity, veiling effect, underwater backscatter, etc, from an

underwater image is a well-known problem and is necessary for implementing vision-

based tasks for robotics, environment monitoring, marine mammal detection, and

species discovery. Enabling underwater image enhancement can increase the useful-

ness of the images and, in some cases, reduce the data to be stored and communicated

by removing unwanted data from the image.

This chapter explores past work, investigates new techniques that follow the afore-

mentioned criteria, and proposes a simple and effective desnowing algorithm.

2.1 Related Work

Artifacts in underwater images can be compared to noise and snow present in airborne

images. Denoising and desnowing in-air images is an extensively studied problem,

however, these models cannot be directly applied to underwater images since under-

water images have inherent differences from in-air images. These disparities include

color selectivity, veiling light, marine snow, and underwater backscatter. Further-

more, these artifacts are heavily influenced by water and lighting conditions, render-

ing the underwater imaging problem even more challenging [40]. With the emergence
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of deep learning technologies, there have been several efforts to denoise and enhance

these underwater images [53, 67, 30, 85]. But these deep learning-based techniques

suffer from the lack of training datasets available for underwater images [40, 67].

Owing to the diverse underwater artifacts and our limited capacity to image the un-

derwater world, it is hard to obtain the data and its ground truth for training any

supervised network [40]. There have been efforts to synthesize training data, for un-

derwater image processing, using either the underwater image model [67] or cGANs

(cyclic generative adversarial networks) [83, 53], which are not true representatives

of the real underwater images. Furthermore, deep learning-based underwater image

denoising and enhancing methods remain very expensive in terms of memory foot-

print and computation cost, which prevents deploying them on a ultra-low-power edge

device [50].

Apart from the deep learning-based solutions, researchers have also worked on

removing underwater artifacts using different mathematical and image processing

techniques like Laplacian pyramids [7], hierarchical processing [23], foreground and

background separation [16], and even using special purpose cameras including RGBD

and light field cameras [5, 70]. These methods are computationally expensive and

water quality dependent thus they are not deployable on ultra-low-power cameras

and are not generalizable for all underwater imaging environments.

2.2 The Problem with Past Approaches

Although there has been development on removing artifacts from underwater images,

there has been little investigation into the problem of artifact removal from under-

water images on an ultra-low-power camera. In order to realize underwater artifact

removal on an ultra-low-power camera for long-term and sustainable imaging, the

past approaches cannot be directly used because of the following reasons:

• These algorithms are computationally expensive. Specifically, past approaches

either rely on machine learning or complex mathematical modeling, necessitat-

ing a large number of computations. In particular, these algorithms demand the
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utilization of GPUs and sophisticated processors [53, 14, 55], such as Intel Xeon

E5-1630 [53], to facilitate artifact removal in underwater images. Conversely,

ultra-low power underwater cameras are equipped with only a few megabytes of

Flash memory and a few hundred kilobytes of RAM [72], accompanied by a 32-

bit Arm Cortex processor. While these ultra-low-power microcontrollers enable

edge processing, they are incapable of meeting the computational requirements

of previous approaches.

• Secondly, underwater imaging environments exhibit a high degree of diversity.

These environments are heavily influenced by factors such as variations in light-

ing conditions, water types, and operational regions [4]. However, there is

limited availability of representative data encompassing every underwater en-

vironment. This limitation arises due to our constrained ability to capture

accurate imagery of the underwater world and acquire ground truth data for

training machine learning models. Specifically, machine learning models trained

under one set of conditions (lighting, water type, region, etc.) lack robustness

when applied to different water types [6]. Recent work [16] has also proposed

to calibrate the image enhancement method with changing water conditions

but these approaches prove insubstantial for constantly changing underwater

environments. Therefore, when designing an underwater image processing al-

gorithm, it is important to consider these dynamic conditions and develop a

robust algorithm capable of accommodating environmental changes.

2.3 A Low-Complexity Solution for Desnowing Un-

derwater Images Method

Given that existing methods for denoising underwater images are complex for our

power, memory, and compute constraints, we ask: Is it possible to develop a low-

complexity algorithm that works sufficiently well for these environments? Our intu-

ition for coming up with an algorithm stems from the problem itself.
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A) Raw Underwater Image at time 
stamp t1 and t2

D) Raw Underwater Image at time 
stamp t3 and t4

B) Mask of the di�erence

E) Mask of the di�erence

t1-t2

t3-t4

C) Mask removed from t1

F) Mask removed from t3

G) Recovered marine snow free
underwater image

Inpainting C) using 
the information in F)

Figure 2-1: Differencing Algorithm for Marine Snow Removal The figure
shows a high-level flow of the algorithm. The camera captures multiple images of the
underwater scene (4 in this example) as shown in A) and D). Then the mask of the
marine snow particles is made using the difference between two consecutive images
as shown in B) and E). The mask is used to remove the snow particles from the first
frame, as shown in C) and F). C) represents the mask removed from the frame at t1
and F) shows the mask removed from frame t3. The images shown in C) and F) are
used to inpaint the holes created in the image owing to the marine snow particles and
reconstruct the denoised/desnowed underwater image as shown in G)

Though marine snow and underwater backscatter are two different phenomena,

the goal of our algorithm is to design a general image processing technique that is

capable of removing these artifacts without making the cameras task-specific and

keeping the memory and energy budget in consideration. The design of our low-

complexity algorithm relies on the observation that the majority of the artifacts in

underwater images are due to suspended particles in water, be it marine snow or

underwater backscatter. These little particles are not stationary and the motion of

these particles is relatively rapid as compared to the motion of many marine animals.

Thus, in principle, one could detect and/or eliminate these artifacts by implementing

a simple differencing technique.

Mathematically, the underwater images with such artifacts can be modeled as the

sum of the background 𝐵 and time-varying marine snow particles 𝑆(𝑡).

𝐼𝑡 = 𝐵 + 𝑆(𝑡)

Our algorithm exploits this observation by taking multiple images and processing

them onboard to remove these rapidly moving particles from the scene. Specifically,
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we capture multiple underwater images with some time interval between each image as

shown in Fig 2-1A and D. Since these images are captured at different time instances,

randomly moving snow particles appear at different positions in each of the captured

images. Now, we take the difference between two consecutive images i.e, for two

images 𝐼𝑡1 and 𝐼𝑡2 taken at time instance 𝑡1 and 𝑡2 respectively:

𝐼𝑑𝑖𝑓𝑓 = 𝐼𝑡1 − 𝐼𝑡2

This is essentially the change in the first image with respect to the other image. This

difference is, most of the time, rapidly moving particles. Next, we make a mask of

these pixels fig. 2-1B and remove them from the original image as shown in fig. 2-1C.

This not only removes the snow particles but also creates holes in the picture. Now

we take the third and fourth images and perform the same set of operations as above,

shown in fig. 2-1D, E, and F. Now we have two processed images -without snow and

some missing background - as shown in fig. 2-1 C and F. To reconstruct the desnowed

image, we use information from both images to fill in the missing parts of the other

image, shown in fig. 2-1G. As a result of these operations, we have reconstructed a

marine snow-free underwater image.

The algorithm of the proposed method is shown in Algorithm 1, where 𝐼(𝑡) is the

captured image at time instant 𝑡, 𝜏 represents the number of unknown pixels in the

image that needs to be recovered,𝜏𝑡ℎ represents the unknown pixel threshold, 𝑆𝑚𝑎𝑠𝑘

is the mask for the snow in the underwater image, 𝑅 represents the recovered image

and 𝐼𝑑𝑖𝑓𝑓 is the difference between two consecutive images. 𝑆𝑚𝑎𝑠𝑘, 𝑅 and 𝐼𝑑𝑖𝑓𝑓 are

the same size as the captured image, and 𝑆𝑚𝑎𝑠𝑘 and 𝑅 are initialized with 1 and ∞

respectively. In the beginning, the camera captures a second image, 𝐼(𝑡+ 1), and we

use this image to take the difference between the two consecutive frames and save it

to 𝐼𝑑𝑖𝑓𝑓 . The difference in these frames helps in constructing the snow mask 𝑆𝑚𝑎𝑠𝑘.

For the unknown pixels (i.e., where 𝐼𝑑𝑖𝑓𝑓 ̸= 0), we assign a value of ∞ to 𝑆𝑚𝑎𝑠𝑘. As a

result, 𝑆𝑚𝑎𝑠𝑘 equals 1 for known pixel values and ∞ otherwise. We use this mask to

remove the unknown pixels from 𝐼(𝑡) and save it in 𝐼𝑚𝑎𝑠𝑘. Now this masked image is
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Algorithm 1 Algorithm for a Simple Difference based Underwater Image Desnowing
Method

Captured Image at time 𝑡, 𝐼(𝑡)
Number of unknown pixel values 𝜏
Minimum number of unknown pixel values 𝜏𝑡ℎ
Snow mask 𝑆𝑚𝑎𝑠𝑘

Difference of Images 𝐼𝑑𝑖𝑓𝑓
Recovered Image 𝑅
Initialize:

𝜏 = 𝑠𝑖𝑧𝑒(𝐼(𝑡+ 1), 𝑅 = array of ∞ of same size as 𝐼(𝑡) ,
𝑆𝑚𝑎𝑠𝑘 =array of 1𝑠 of same size as 𝐼(𝑡)

while 𝜏 ≥ 𝜏𝑡ℎ do
Capture 𝐼(𝑡+ 1)
𝐼𝑑𝑖𝑓𝑓 = 𝐼(𝑡)− 𝐼(𝑡+ 1)
𝑆𝑚𝑎𝑠𝑘(𝑖) =∞ where 𝐼𝑑𝑖𝑓𝑓 (𝑖) ̸= 0
𝐼𝑚𝑎𝑠𝑘 = 𝐼(𝑡). * 𝑆𝑚𝑎𝑠𝑘

𝑅(𝑖) = 𝐼𝑚𝑎𝑠𝑘(𝑖) where 𝑅(𝑖) =∞
𝜏 ← Number of ∞ in 𝑅
𝑡← 𝑡+ 1
𝑆𝑚𝑎𝑠𝑘 =array of 1𝑠 of same size as 𝐼(𝑡)

end while

compared with the recovered image 𝑅 to add in the known pixel values and then 𝜏

and 𝑡 are updated and the process is repeated until 𝜏 < 𝜏𝑡ℎ. Ideally, this threshold

should be zero; however, if enough pixels are recovered then it becomes more effective

and efficient to set this threshold to a small non-zero integer value and estimate the

remaining unknown pixel values from the neighboring pixels than to recapture a new

image.

2.4 Implementation and Evaluation

To study the effectiveness of our proposed algorithm, we evaluated its performance

in a real underwater environment. We also implemented two state-of-the-art baseline

algorithms (described below) for desnowing [14] and denoising [55] to compare the

performance of our proposed algorithm. All the computation of the proposed algo-

rithm was done in MATLAB and the images were collected using a GoPro camera.
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2.4.1 Dataset Generation

To conduct a quantitative evaluation of the proposed algorithm’s performance, it is

necessary to have ground truth images that are devoid of snow, in addition to the

noisy images. However, due to the lack of existing datasets, we conducted a data col-

lection procedure as outlined below. First, we placed an object (a coral reef model)

inside a plastic tank filled with clean water to obtain artifact-free images. Subse-

quently, a camera was submerged in the water, and multiple images were captured

from various angles. These images serve as the ground truth for our quantitative

evaluation. Following that, we introduced underwater plant soil into the water and

captured additional images while ensuring the camera remained stationary. An ex-

ample of the collected images is shown in Figure 2-2. Figure 2-2A) displays the clean

water image, representing the ground truth, while Figure 2-2B) illustrates the image

after the addition of plant soil, representing the image with marine snow.

�� ������������������������
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Figure 2-2: Generated Dataset The figure shows an example image from the gen-
erated dataset for evaluating the proposed method. A) shows the image of the coral
reef model captured in clean water which serves as the ground truth image and B)
shows the image of the same scene in water with plant soil (with floating particles
similar to natural water bodies)

2.4.2 Baselines

We compare the performance of our algorithm against the following baselines:

• All Snow Removal [14] is a state-of-the-art snow removal method for in-air im-

ages that claim to remove all sizes of snow particles along with snow streaks

in an image. It uses a hierarchical approach to remove all sizes and direc-

tions of snow particles from an image. Specifically, it uses Dual-Tree Complex
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Wavelet Transform (DTCWT) [68] representation of an image and processes

each level of the transform separately to desnow the image before combining

them back. Each level passes through an image reconstruction neural network

with Res2Net [24] backbone with 6.99M parameters. The results in the paper

show that this method outperforms state-of-the-art desnowing networks with

PSNR (Peak SNR) of 31.54 and SSIM (Structural Similarity Index) of 0.95 on

Snow100K dataset [56].

• Invertible Denoising Network (InvDN) [55] is a state-of-the-art denoising net-

work that uses an invertible neural network [9, 37], with 2.64M parameters, for

removing noise from noisy images. This method uses invertible neural networks

because of their lightweight, information-lossless, and memory-saving nature.

InvDN transforms a noisy input image into a low-resolution clean image and la-

tent representation containing noise. To denoise the image, InvDN replaces the

noisy latent representation by sampling from a prior distribution of clean im-

ages before the backward pass. The results show that this method outperforms

state-of-the-art denoising networks with PSNR of 39.28 and SSIM of 0.955 on

SIDD dataset [2].

2.4.3 Evaluation Metrics

To evaluate the performance of the proposed method we use the following metrics:

1. Peak Signal-to-Noise Ratio (PSNR): PSNR is the ratio of the maximum

possible value of the signal to the distorting signal (noise). For signals, such as

images, with a wide range of values, PSNR helps in quantifying the quality of

the signals.

2. Structural Similarity Index Measure (SSIM): SSIM is a quantitative mea-

sure of the perceived quality of the image. It is used to measure the structural

similarity between the two images.

3. Color Difference (CIEDE 2000): CIEDE 2000 [69] is a color difference
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formula developed in 2001. This formula quantifies the difference between the

perceived color of two images.

2.5 Results

2.5.1 Qualitative Results

Table 2.1 shows the qualitative results of our algorithm against the baselines. The

results show that our algorithm not only succeeds in snow removal but it also out-

performs the other two algorithms. Though these are preliminary evaluations, these

results show that it is feasible to design lightweight algorithms that can be deployed

at the edge to perform effective image denoising.

Raw Underwater Image SOTA Denoising
with Marine Snow Method [55]

SOTA Desnowing Differencing based Marine
Method [14] Snow Removal (Our)

Table 2.1: Qualitative Analysis of the Proposed Algorithm Against the
Baselines. The table shows the qualitative comparison of our proposed snow removal
algorithm against the state-of-the-art denoising and desnowing methods.

2.5.2 Quantitative Results

Table 2.2 shows the PSNR, SSIM, and CIEDE 2000 of the baselines and our proposed

method. Our proposed algorithm shows a higher PSNR and SSIM, and a lower
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Method PSNR SSIM CIEDE 2000
SOTA Desnowing Method [14] 19.0373 0.5668 9.5803
SOTA Denoising Method [55] 20.7097 0.5703 8.4569

Differencing based Marine Snow Removal (Ours) 22.8068 0.6419 6.5298

Table 2.2: Quantitative Analysis of the Proposed Algorithm Compared with
the Baselines. The table compares the performance of the proposed algorithm
against the baselines quantitatively. The table shows the PeakSNR(PSNR), Struc-
tural Similarity Index Measure(SSIM) and CIEDE 2000 (Color Distance) of the three
methods.

Number of Parameters Input Size
SOTA Desnowing Method [14] 6.99M Input Image Size (80kB)
SOTA Denoising Method [55] 2.64M Input Image Size (80kB)

Differencing based Marine 2 * Input Image Size
Snow Removal (Ours) 0 (160kB)

Table 2.3: Memory Consumption. The tables compares the memory consumption
of the proposed method against the baselines algorithms. The table shows the number
of parameters that need to be saved, in case of all three methods, in order to perform
image cleaning on the input image and the size of the input image.

CIEDE 2000 as compared to the baselines. These improvements indicate the enhanced

performance of our proposed desnowing method in comparison to the baselines. It is

important to note that although the results show improvement, the absolute values

of PSNR and SSIM are not exceedingly high. This can be attributed to the alteration

of water properties by the introduction of underwater plant soil, which consequently

introduces attenuation, scattering (as explained in Chapter 3), and small particles

that contribute to the snow in the water. As our proposed algorithm focuses on simple

desnowing, it is the relative change in evaluation metrics that holds significance, rather

than the absolute values.

Table 2.3 compares the memory consumption of our proposed method with the

baselines. The first row shows how many parameters each algorithm needs to save

in memory. Our method doesn’t require any parameters, while the baselines and

other algorithms need to save millions of parameters in the memory. Similarly,the

second row represents the size of the input that a method requires for processing. The
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baselines only require one input image whereas our proposed method require two input

images at single time instant. Specifically, for an ultra-low-power underwater camera,

the baselines require 80kB of input data whereas our proposed method requires to

save 160kB of input data at a time in the camera. Comparing both rows show that our

proposed algorithm is much more memory-efficient compared to the state-of-the-art

image desnowing and denoising algorithms, using significantly less memory.

2.6 Conclusion

The proposed image desnowing algorithm shows an average PSNR improvement of

2dB in the quality of the image while decreasing the memory consumption by a

significant amount (eliminating millions of parameters). This shows that a simple

effective algorithm can outperform advanced state-of-the-art mechanisms that have

been developed for in-air processing. While this does not mean that future ML-based

methods that are tailored to underwater environments would not perform better

than the simple differencing method, it suggests that a low-complexity algorithm

may offer an ideal first step for enhancing underwater images (for potential use in

in-situ recognition/tracking tasks).
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Chapter 3

Edge Inference on Ultra-Low-Power

Underwater Imaging Systems

3.1 Introduction

One of the key tasks in underwater imaging is to perform analysis on different kinds

of fish including the discovery of new species, detection of diseases, immigration and

reproduction patterns etc. One way of doing so is to do analysis on all the captured

images which includes processing and sending all the images back to a remote re-

ceiver. However, this is undesirable because underwater communication remains a

high-latency and high-energy component of wireless underwater cameras [3]. Ideally,

it would be more desirable to perform pre-processing locally and transmit only data

that must be processed at a central server.

In this chapter, we exploit a few observations to perform edge inference (and ML)

to realize this preprocessing task. One key observation is that these images are often

sparse in both space and time, i.e., not all captured images would necessarily have

a fish for analysis. Therefore a natural first step in such systems is to identify if

there is a fish in the image before processing and sending back the data. This not

only makes the system efficient but also makes it more accurate by removing false

positives from the analysis. Object detection is a classic computer vision task that

is realized via machine learning which makes it both memory and compute-intensive.
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Recently, there has been extensive research on enabling machine learning on resource-

constrained devices also known as edge machine learning. The rest of this chapter

investigates the past approaches in similar domains and implements the first fish

detection method on an ultra-low-power microcontroller.

3.2 Related Work

3.2.1 Edge Machine Learning

Edge machine learning enables the execution of machine learning processes on edge

devices. Generally, machine learning models are large in size and necessitate servers

with high computational power for running inferences. Earlier methods for running

ML models on data collected from edge devices like smartphones required the edge

device to transmit its data to the cloud for processing. More recently, researchers

have dedicated significant effort to exploring ways of reducing machine learning model

sizes, the number of operations, and quantization levels, among other factors, in order

to enable machine learning inference on resource-constrained edge devices. Various

model compression techniques, including knowledge distillation [32], neural architec-

ture search [22], pruning [27], and quantization [26], have emerged that are capable of

reducing model sizes from gigabytes to a few hundreds of kilobytes [51, 49]. Alongside

model compression, it is equally crucial to consider RAM usage. Specifically, the net-

work layers should be designed such that the activations in a layer fit within the RAM

capacity of the edge device. Recent work has proposed and implemented patch-based

inference [49] to mitigate the high memory usage during inference in the initial layers

of CNN, thus reducing the peak RAM usage. Similarly, recent work has demonstrated

the feasibility of training on microcontrollers [52] through Quantization-Aware scaling

of gradients and sparse weight updates
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3.2.2 Visual Wake Word

“Wake Word” refers to a phrase that acts as a trigger for edge devices to start their

operation. For instance, devices such as Amazon Echo and Apple Siri keep listening

for their wake word (Alexa, and Hey Siri) locally in order to start recording and

sending user’s requests to the cloud for computation and inference. Similarly, visual

edge devices use visual wake words to detect the presence of someone or something in

the image. There is extensive past work on wake word detection on an edge device.

However, many of the early detection algorithms could not be directly deployed on

ultra-low-power microcontrollers that have orders of magnitude less memory than

a voice assistance device or a smartphone [44, 76]. Recent works [64, 84, 43, 49]

have explored the design and implementation of wake word systems on ultra-low-

power microcontrollers. However, these models are not designed for ultra-low-power

underwater imaging applications and therefore do not meet the requirements of such

systems.

3.3 Edge Inference Deployment on an Ultra-Low-

Power Underwater Camera

Given that previous approaches to edge machine learning have been relatively compute-

intensive and unsuitable for ultra-low-power underwater cameras, this section takes

the first step towards achieving ultra-low-power underwater edge machine learning.

Specifically, we focus on implementing and evaluating the deployment of a fish visual

wake word (fishVWW) on an ultra-low-power microcontroller. Similar to other visual

wake words, fishVWW activates the camera when it detects a fish in the captured

image. Its primary purpose is to serve as a trigger, indicating to the underwater cam-

era that the captured image contains a fish and is ready for analysis. The subsequent

subsections provide details on the method.
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3.3.1 Baseline Model

The first step in developing fishVWW is to train a baseline model. A baseline model

is a standalone and simple machine learning model that can perform the task we

want our final edge model to perform. Specifically, like every other approach e.g.,

once-for-all network [13], knowledge distillation [32], pruning [27], etc, we require a

model that can act as a teacher model that not only helps in narrowing down the

search space but also offers a starting point for model compression.

Architecture: We train a baseline fishVWW model with MBConv block back-

bone [66, 51] shown in Fig. 3-1C. The baseline model comprises 15 MBConv blocks.

The last MBConv block serves as the classification layer for our network that works

as a pointwise convolution layer and outputs only two channels. The network archi-

tecture is shown in Fig 3-1B.

Dataset: The network was trained on the DeepFish dataset [65] with an 80-20 split

ratio for training and validation.

Preprocessing: Since the training dataset images are different from the images

captured by a low-power imaging sensor, we preprocess the data to make the images

similar to the ones captured from an ultra-low-power imaging system. Since the lowest

power CMOS sensor [31] is grayscale, we convert all the 3 channel color images in the

DeepFish dataset into one channel grayscale images. Similarly, we also downsample

the images from the dataset to match the resolution of the ultra-low-power imaging

platform as shown in fig. 3-1A. Note that since ultra-low-power CMOS sensors can

allow multiple levels of resolution, e.g., VGA, QVGA, and QQVA, we can downsample

and resize the training dataset to match the resolution of the mode the camera is being

operated in.

Training: The baseline fishVWW network is trained using an SGD optimizer and

cosine warm-up learning rate scheduler over 400 epochs.
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Figure 3-1: Baseline Model. A) shows the data preprocessing steps (grayscale con-
version and downsampling), B) shows the architecture of the baseline neural network
with MBConv backbone and C) shows the MBConv block.

3.3.2 Neural Architecture Search (NAS)

The next step after training a baseline model is to do a Neural Architecture Search

(NAS). NAS is a process of finding the best architecture of a neural network from a

search space that obeys certain constraints. There are different types of NAS depend-

ing on the application; in this implementation, we use automatic neural architecture

search (autonas) [28]1 with a constraint on the maximum number of parameters in

the neural network as they are directly related to the FLASH memory of a micro-

controller. Given a certain constraint and a baseline model, autoNAS gives a smaller

network obeying the constraints.

3.3.3 Fine Tuning

After NAS, the next step is to fine-tune the searched model. AutoNAS searches for

a smaller model that removes all the extra parameters, layers, and kernels. This

reduced model has parameters of the old baseline model and hence does not give a

good performance. At this stage, this new network needs to be fine-tuned (not trained

from scratch). After fine-tuning, we have a smaller (searched) neural network model

that is capable of performing fish detection.

1AutoNAS is one of the well-known NAS techniques that involves a rigorous search of architec-
tures given the certain constraints. We direct the reader to [28] for details of this method.
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3.3.4 Quantization

After finetuning the searched model, we have a smaller neural network model that

can perform fish detection. To further compress the model we quantize a model.

Quantization is one of the most common, simple, and effective model compression

techniques. There are multiple quantization techniques, for instance, k-means based

quantization [26], linear quantization [36], per-channel weight quantization [60, 36,

59] etc from 8-bit integers to an extreme of 1-bit binary quantization [18]. We convert

our model into an onnx model and then perform static quantization followed by a

calibration step. Similar to NAS, quantization also impacts model performance and

we perform another finetuning step to improve fish detection.

3.3.5 Deployment

After quantization, we have a model that is ready to be deployed. In order to de-

ploy the model, we need to convert it into a low-level C code that can be inter-

preted by a microcontroller. Different microcontroller companies offer their own AI

model converters. For instance, X-Cube-AI [74] and TinyEngine [51, 52, 48] are some

of the known model conversion tools for STM’s ultra-low-power microcontrollers.

TinyEngine was designed to make the inference process efficient in a microcontroller

but recent updates in the X-Cube-AI have made the performance of both methods

comparable. We use X-Cube-AI to convert the model into a low-level code (c-code).

After C-code conversion, the model is ready to be deployed and tested on a micro-

controller.

3.4 Implementation and Evaluation

Implementation: We trained a baseline pytorch model in python and then used

OmniML [1] to run autoNAS with a constraint on the number of parameters to be

less than equal to 160k. Next, we converted the pytorch model into an onnx model and

performed static quantization and calibration. For deployment on a microcontroller,
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we converted the onnx model into a low-level C code using X-Cube-AI and deployed

it on an ultra-low-power microcontroller (STM32L476RG) [73]. It is worth mention-

ing here that researchers have used STM32L476RG [63] for battery-free underwater

imaging.

Evaluation Metrics: We evaluated the performance of our method using model

accuracy, number of floating point operations (FLOPs), and the peak RAM usage as

evaluation metrics.

3.5 Results

3.5.1 Accuracy and Flash Memory Consumption

Table 3.1 shows the accuracy, number of parameters, and number of MACs (Multi-

ply–accumulate operation) of the proposed model at different stages. The accuracy

of the final compressed model shows a 0.7% drop from the original baseline model.

However, the final compressed model is 18 times more memory efficient with 4 times

less number of operations than the original baseline model. This shows that model

compression can help us achieve similar results as a big machine learning model on a

memory constraint device such as an ultra-low-power underwater camera.

Model Accuracy Number of Parameters Number of MAC
(∝ FLASH Memory) (multiply-accumulate)

Operations
Baseline Model 99.7% 334k (∼2.67MB) 11.16M
Pruned Model 99.4% 146k (∼1.17MB) 2.7M

(After AutoNAS)
Final Compressed 99% 146k (∼146kB) 2.7M
(Low-Level) Model

Table 3.1: Accuracy and Memory Consumption. The table compares the model
accuracy, number of parameters, and number of MAC operations of the baseline
model, pruned model, and the final low-level compressed model.
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3.5.2 Peak RAM Usage

In edge machine learning, peak RAM usage plays a crucial role in determining whether

a machine learning model can be executed on an edge device. It represents the maxi-

mum memory required by a model layer during the inference process. While reducing

the number of parameters in a neural network is often prioritized to ensure compat-

ibility with microcontrollers, the activations of layers can also impose limitations on

running the inference on an edge device.

Model parameters are typically stored in the FLASH memory of a microcontroller,

while each inference step relies on the RAM of the device. Therefore, it is essential to

assess the RAM requirements of each layer for successful inference on an edge device.

To determine if a model can run on such a device, the peak RAM usage of the model

should be lower than the available RAM memory.

Figure 3-2 illustrates the memory footprint of running the inference on a micro-

controller using a neural network. The maximum memory footprint corresponds to

the peak RAM usage. In our experiments, the proposed model exhibits a peak RAM

usage of approximately 65.5kb, significantly lower than the 128kB RAM capacity of

the ultra-low-power microcontroller (STM32L476RG) we utilized.

Figure 3-2: PeakRAM Usage. The figure shows the RAM memory footprint of the
machine learning network on the y-axis and the life cycle (operator) on the x-axis.
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3.6 Conclusion

Enabling fish detection on ultra-low-power underwater imaging systems has the po-

tential to significantly enhance the efficiency of these platforms. The ability to detect

fish serves as a trigger, allowing the cameras to selectively save and transmit only the

important images. This approach greatly improves the memory and energy efficiency

of the system. Additionally, ultra-low-power fish detection can also serve as a wake-

up signal for more complex and resource-intensive operations, such as segmentation,

tracking, etc on the ultra-low-power underwater cameras.

Implementing a fish visual wake word represents a crucial initial step towards en-

abling advanced tasks, including fish analysis, identification of new marine species,

climate change monitoring, and more, on ultra-low-power edge devices. This devel-

opment opens up a wide range of research opportunities for sustainable imaging of

underwater environments in fields such as oceanography, climatology, marine biology,

ecology, and beyond.
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Chapter 4

Ultra-Low-Power Underwater Color

Imaging

4.1 Introduction

Capturing color images of underwater environments is critical for various applications.

Underwater color images can be used for the discovery of marine species, detecting

diseases of animals, recognizing different fish in aquafarms, monitoring coral reef

bleaching, and tracking geological processes (e.g., submarine volcanoes). Additionally,

enabling ultra-low-power color imaging of underwater environments is important since

it enables underwater cameras to last for long periods of time for sustainable, scalable,

and long-term monitoring of marine ecosystems.

Unfortunately, capturing color images in underwater environments at low power is

extremely difficult. Today, there are two approaches for capturing underwater color

images, both of which are power-consuming in their own way: The first and most

classical approach is to use an RGB image sensor; the lowest-power image sensor on

the market is onsemi ARX3A0 [34], and it consumes 19𝑚𝑊 for each image. The

second, more recent approach [3], is to use a grayscale CMOS sensor and multi-color

illumination. This approach was recently proposed and its idea is to illuminate the

scene with a single LED (e.g., red, green, blue), capture separate grayscale images for

each LED, and apply the grayscale images to the different RGB channels of a color
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image. Interestingly, even though this approach requires LEDs, the average power

consumption in power limited phase (i.e., when the LEDs are active) is ∼ 7.1𝑚𝑊

(1.1𝑚𝑊 for the CMOS sensor and 1.9 - 8.2 mW for the LEDs), making it more

power-efficient than using an off-the-shelf RGB image sensor. Thus, today, the most

power-consuming component of this past method (>90% of power) comes from the

need to capture color in images.

This chapter asks the following question: is it possible to reconstruct color under-

water images at even lower power and without LED illumination? If we can do so,

then we can drastically reduce the power consumption of underwater color images.

We propose WaveColor, a novel ultra-low power underwater color imaging method

that is capable of capturing underwater color images without using active LED il-

lumination or high power consuming RGB cameras. WaveColor exploits wavelength

selectivity of the water in order to reconstruct the colors of the underwater scene.

Specifically, the proposed method captures multiple grayscale images of an underwa-

ter scene at different distances and uses the decay in the colors of different parts of the

scene to reconstruct the original color. Importantly, since many underwater cameras

are deployed on (battery-free) floats or marine mammals, this approach would en-

able leveraging natural mobility to reconstruct color images while leveraging existing

ultra-low-power grayscale CMOS sensors.

One might think that one could simply capture a grayscale image and then colorize

the image using existing methods like those used in colorizing old films. However,

doing this is not straightforward and would yield undesirable results (as we show in

this chapter). Specifically, most of the colorization mechanisms are trained on videos

taken above the surface, thus the deep-learning models are overfitting to above-air

rather than underwater images. Moreover, the variable nature of underwater imaging

environments makes this problem more challenging. Specifically, different lighting

conditions, regions of imaging, distance of the camera and water types change the

colors of an underwater object that appears in a captured image i.e. the same object

will appear to have different colors in different water conditions making it difficult for

any colorization method to colorize underwater images.
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In contrast to these above methods, WaveColor is inherently designed for un-

derwater image colorization, leveraging the wavelength-selectivity of the underwater

environments This method is particularly powerful for two reasons:

1. Ultra-low-power: First, it does not use any active illumination for imaging

underwater environments i.e. the proposed method is capable of capturing

color images using ultra-low power grayscale imaging sensors in the presence of

ambient light. This significantly reduces the power consumption of the system.

2. Generalizability: Second, the method exploits the natural wavelength se-

lectivity of the water in order to understand the water type and colorize the

images. Unlike other colorization methods, this method does not depend on any

training dataset and therefore is capable of working in practically any unseen

underwater environments.

We implemented the first prototype of the method in MATLAB and conducted exper-

iments in MIT SeaGrant in order to generate preliminary results. The results show

that

1. WaveColor is capable of reducing power consumption of the state-of-the-art

ultra-low-power color underwater imaging system [3] by 10x

2. The results also show WaveColor’s capability of recovering real colors of under-

water objects without any color degradation with an average color difference

(deltaE) of 0.025.

In this Chapter, we talk in detail about past work on colorization and color correction,

then we talk in detail about the physical underwater imaging model. After that, we

describe the proposed underwater color imaging method, WaveColor, followed by

some preliminary implementation and results.
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4.2 Related Work

4.2.1 Color Restoration

With the increasing interest in underwater imaging, researchers have started explor-

ing ways to remove underwater artifacts from the images. Specifically, researchers

are actively exploring ways to enhance the colors of the underwater images to extract

the true colors of the scene. With the advancements in technology, researchers have

been exploring ways to use deep learning to extract the actual colors of an underwa-

ter scene. Past work [10] has explored the ways of removing the haze and blurring

effect from a single underwater image. However, these techniques only remove the

haze from the underwater images and fail to recover the true colors of the scene.

Researchers have also explored ways of joint dehazing and color restoration of un-

derwater images [47, 75, 21]. These methods include training neural networks with

attention maps [75], using multiscale structures [75], channel-wise processing [46], and

introducing new datasets [10] etc. Although these techniques help in recovering the

colors and removing blurriness in the images, they fail to account for the effect of

changing lights, water types, and distances. Recent work [47] shows that introducing

light source and attenuation estimation in neural networks enhances the performance

of the color restoration of underwater images. While all these advancements are

encouraging, the main limitation of using deep-learning-based color reconstruction

techniques is the lack of real-world datasets. Synthetic datasets [40] are not represen-

tative of the true underwater images and hence, they introduce an inherent bias in

the neural network inferences. Some past works [83, 53] have explored the possibility

of using cyclic GANs to learn the color images from the relatively vast dataset of

in-air images. However, these images start adding bias from the in-air images (like

clouds, sky, grass, etc) in the inference.

Researchers have also explored the possibility of using model-based techniques -

which do not require any dataset for training - to reconstruct the actual colors from

the environment. Some initial work in this domain [79] proposed to solve simple lin-

ear equations to reconstruct the absorbed colors in an underwater image. However,
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in real underwater images, the imaging models are more complex than the proposed

simplistic model. Researchers have taken into account these effects and proposed dif-

ferent underwater color restoration methods for both deep [71] and shallow waters [6].

These developments in enhancing underwater images are encouraging; however, none

of the past approaches have explored the possibility of using grayscale images to

reconstruct enhanced color underwater images.

4.2.2 Colorization

Colorization is the process of adding colors to a grayscale image. It is one of the clas-

sic computer vision problems that has been worked on for more than 20 years [80].

Past approaches [45, 82, 35, 77, 54] have discovered the possibility of using user-

guided colorization techniques. These techniques use hints from the user in the form

of scribbling [45, 82] some colors in the pixels or some example images [35, 77, 54] of

the same or similar objects. Though these techniques show impressive performance,

they require prior knowledge of the color to color the images. With the advancements

in the field of machine learning, researchers have extensively started using neural net-

works to colorize the images [15, 11, 19, 33]. Although theoretically, this technique

is also a kind of example-based reconstruction, these networks have shown remark-

able performance on unseen data as well. Some recent works [82] have also explored

the possibility of designing hint-based colorization neural networks that combine the

benefits of both prior techniques. The process of colorization has evolved and im-

proved over the past decades, however, these techniques fail to work on underwater

images. Underwater images are very different, diverse, and complex as compared

to airborne images, and therefore, these techniques cannot be directly used to col-

orize the captured underwater scenes. Moreover, the diversity of underwater images

and our limited ability to obtain the training data make it difficult to train any new

network that can colorize an underwater image.
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4.3 Background

Before going into the details of the proposed color reconstruction algorithm, we briefly

explain the underwater imaging model. This is important to understand phenomena

like light attenuation and scattering, and how they affect underwater images. Specif-

ically, we talk about underwater image formation and its mathematical modeling in

both RGB and grayscale.
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Figure 4-1: Underwater Imaging Scene. The figure shows an underwater scene in
which an underwater camera is imaging a red, green, and blue cube. The cubes are
illuminated by natural illumination (solid white arrows). A part of natural illumina-
tion reaches the object whereas some part of it is scattered by small particles in the
water (dotted white arrows). The figure also shows that the light reflected from the
object experiences some absorption (solid color arrows) and scattering (dotted color
arrows) before reaching the camera. The captured camera image is shown in the top
left corner of the figure.

4.3.1 Underwater Imaging Model

Underwater images, unlike in-air images, are complex to model. This complexity

mainly comes from the water itself, the presence of different types and sizes of particles

in the water, the light source, etc. Fig. 4-1 shows an underwater imaging environment

in which a camera is capturing an underwater scene (three different color cubes). At

the top left corner, we can also see the captured image. According to the Jaffe-

McGlamery model, underwater images consist of three components 1. Direct path

(solid red, green, and blue lines in fig. 4-1) 2. Backscattering (dotted white lines in
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fig. 4-1) and 3. Forwardscattering(dotted red, green and blue lines in fig. 4-1 [38].

Direct path refers to the light that directly reflects from the object’s surface toward

the camera. This direct path experiences attenuation depending on the wavelength of

the light. Similarly, forwardscattering refers to the light scattered from the direct path

due to the suspended particles in the water whereas backscattering, in the context

of underwater imaging, refers to all other scattering of light captured in the camera

that is not coming from the direct path. Both of these scattering components are also

wavelength dependant. We can combine both the scattering lights as one component

and, mathematically, an underwater image can be written as the sum of the direct

path and all the scattering lights,

𝐼𝜆 = 𝐷𝜆 +𝐵𝜆 (4.1)

where 𝜆 is the wavelength of the captured light, 𝐼𝜆 is the underwater image, 𝐷𝜆 is the

direct signal, and 𝐵𝜆 is the backscattering light. 𝐵𝜆 includes both backscatter and

forwardscatter and for simplicity, we would refer to it as scattering light. The direct

signal 𝐷𝜆 has the information about the imaging scene whereas 𝐵𝜆 causes hazing and

blurring in the image which is also known as the veiling effect.

Direct Path: As mentioned earlier, the direct path signal corresponds to the light

that gets reflected from the imaging object and reaches the camera. This direct

path signal gets attenuated because of the absorptive nature of the water. This

absorption rate is wavelength dependent i.e., some wavelengths would get absorbed

quicker than others. Similarly, this direct path’s absorption is also distance dependent

i.e., as we move further away from the imaging object, more light gets absorbed.

Mathematically, the direct path can be written as,

𝐷𝜆(𝑑) = 𝐷𝜆𝑒
−𝛽𝑑(𝜆)𝑑 (4.2)

where 𝐷𝜆 is non-attenuated light, 𝛽𝑑 is the attenuation coefficient which is wavelength

dependent, and 𝑑 is the distance between the imaging scene and the camera. The

attenuation coefficient encapsulates the attenuation of light caused by both absorption
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and scattering and therefore is often written as the sum of scattering and absorption

coefficient [12].

Scattering Light: Similar to the direct path, the scattering light 𝐵𝜆 is also depen-

dent on wavelength and distance and can be written as follows [6]:

𝐵𝜆(𝑑) = 𝐵𝜆
∞(1− 𝑒−𝛽𝑏(𝜆)𝑑) (4.3)

Where 𝐵𝜆
∞ is the veiling light at an infinite distance from the object. And 𝛽𝑏 is the

decay coefficient of the scattering light which is a function of wavelength. Note that

as the distance from the object increases, 𝐼𝜆 approaches 𝐵𝜆 (eq. 4.1) which means

that as we move away from the object we see more and more scattering light and after

some point, the scattering light starts dominating the direct path and therefore the

captured intensity of the light starts increasing as we move further from the imaging

scene1.

All the derivation above assumes uniform illumination of the imaging scene. In the

case of active imaging i.e., with an artificial light source, the imaging model becomes

much more complex. This is because it needs to take into account the nonuniform

illumination, angle of illumination, the shape of the spreading, etc [71].

4.3.2 Underwater Imaging Model For Grayscale Images

For a captured underwater color image, we have three color channels i.e., red, green,

and blue. For a single channel, the captured intensity can be written as follows [4].

𝐼𝑐 =
1

𝜅

∫︁ 𝜆2

𝜆1

𝑆𝑐(𝜆)𝜌(𝜆)𝐸(𝑑, 𝜆)𝑒−𝛽𝑑(𝜆)*𝑑 𝑑𝜆+
1

𝜅

∫︁ 𝜆2

𝜆1

𝑆𝑐(𝜆)𝐵𝜆
∞(1− 𝑒−𝛽𝑏(𝜆)*𝑑) 𝑑𝜆 (4.4)

where 𝑐 is one of the three color channels, 𝑆𝑐(𝜆) is the spectral sensitivity of the

camera,𝜌(𝜆) is the reflectance of the underwater imaging scene, 𝐸(𝑑, 𝜆) is the irradi-

ance from the illumination, 𝜅 is a scalar that compensates for the exposure and offsets

1We refer the readers to [38] for more details on the imaging model.
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of the camera, and 𝜆1 and 𝜆2 correspond to the band of the electromagnetic spectrum

of the channel. Although one channel does not correspond to one wavelength, we can

still write the above equation as a sum of the direct path and scattering light,

𝐼𝑐 = 𝐷𝑐 +𝐵𝑐 (4.5)

Since the channel is no longer a single wavelength, the attenuation coefficients become

a function of both channel (red, green, and blue) and distance. We refer readers to [4]

for more details.

Now that we have the imaging model for a three-channel color image, let us

derive the underwater imaging model for a monochromatic camera. A monochrome

camera is a one-channel image sensor that captures the intensity of different colors

that are incident on the imaging sensor. A grayscale image can also be represented

as a weighted sum of red, green, and blue color channels. Given this information,

mathematically a grayscale image can be written as,

𝐼𝑔𝑟𝑎𝑦 = 𝑎𝑟𝑅 + 𝑎𝑔𝐺+ 𝑎𝑏𝐵 (4.6)

Where 𝑎𝑟, 𝑎𝑔, and 𝑎𝑏 are the weights of the different color channels and are mostly

dependent on the camera’s sensitivity. 𝑅, 𝐺 and 𝐵 are the three channel intensity

and 𝐼𝑔𝑟𝑎𝑦 is the intensity of the grayscale image. From eq. 4.5, eq. 4.6 can be written

as,

𝐼𝑔𝑟𝑎𝑦 = 𝑎𝑟(𝐷𝑟 +𝐵𝑟) + 𝑎𝑔(𝐷𝑔 +𝐵𝑔)) + 𝑎𝑏(𝐷𝑏 +𝐵𝑏)) (4.7)

𝐼𝑔𝑟𝑎𝑦 = 𝑎𝑟𝐷𝑟 + 𝑎𝑔𝐷𝑔 + 𝑎𝑏𝐷𝑏 + 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑠 (4.8)

We combine all the scattering terms in the equation above and get an imaging model

for a grayscale imaging device. Equation 4.8 can further be expanded as follows,

𝐼𝑔𝑟𝑎𝑦 = 𝑎𝑟(𝐷𝑎𝑖𝑟𝑟𝑒
−𝛽𝑑(𝑟,𝑑)𝑑)+𝑎𝑔(𝐷𝑎𝑖𝑟𝑔𝑒

−𝛽𝑑(𝑔,𝑑)𝑑)+𝑎𝑏*(𝐷𝑎𝑖𝑟𝑏𝑒
−𝛽𝑑(𝑏,𝑑)𝑑)+𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑠

(4.9)

Where 𝐷𝑎𝑖𝑟𝑟, 𝐷𝑎𝑖𝑟𝑔 and 𝐷𝑎𝑖𝑟𝑏 are the red, green, and blue channel pixel values respec-
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tively, representing the actual colors of the underwater scene if they were captured

in air. In order to do ultra-low-power underwater imaging using a grayscale camera,

the goal is to estimate the values of 𝐷𝑎𝑖𝑟𝑟, 𝐷𝑎𝑖𝑟𝑔 and 𝐷𝑎𝑖𝑟𝑏.

4.4 WaveColor - An Ultra-Low-Power Underwater

Color Imaging Method

Now that we have the necessary background, in this section, we talk about an ultra-

low-power underwater color imaging method.
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Figure 4-2: WaveColor - Method Overview The figure shows an ultra-low-power
grayscale underwater camera capturing an underwater scene. The underwater scene
is illuminated by uniform natural illumination. A part of this light illuminates the
underwater scene whereas some part of it is scattered by suspended particles in the
water (also known as backscattering light). The underwater camera captures the
underwater scene at one location and then moves by a distance ∆𝑑 to capture another
image. As the camera changes its location, the light reaching the camera changes and
the camera captures a slightly different/attenuated grayscale image.

The wavelength-selective nature of water degrades the colors in an underwater

image and thus at different distances, the colors of the same underwater scene ap-

pear different. We exploit this observation and use the decay profiles of the colors of

different parts of the underwater image, as the camera moves away from the scene,

to reconstruct the real colors from multiple monochromatic images. Fig 4-2 shows an
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underwater scene that is illuminated by natural light. The scene is being imaged using

a grayscale camera that moves away from the scene by a distance ∆𝑑 as it captures

a grayscale image. As the camera moves away from the underwater scene, it cap-

tures the light attenuation and scattering patterns at different distances. WaveColor

constitutes of the following steps

1. Distance estimation: This step involves estimating the distance of the camera

from the underwater scene.

2. Dehazing: This step involves the removal of the estimated scattering compo-

nent from the image. By removing the scattering, also known as haze in the

image, we are only left with the direct path that has the information about the

colors of the underwater scene.

3. Attenuation coefficient estimation: Next step is to estimate the decay

coefficients of red, green, and blue channels of the color underwater image.

This is crucial for the final color estimation process.

4. Color estimation: After estimating the decay coefficients, we estimate the

colors of different parts of the underwater scene.

In the following sections, we describe these steps in detail.

4.4.1 Distance Estimation

The first step before starting the reconstruction process is to estimate the distance

of an object from the camera. There has been extensive work on estimating the

distance of the object from the camera [20, 41]. However, these methods cannot be

used directly because these methods either rely on the prior information about the

actual size of the object or are machine learning models that are trained for a certain

class of objects. Instead, we leverage the motion of the camera in order to estimate

the distance between the camera and the scene.

For a given object of width 𝑊 that is 𝐷1 distance away from the camera and

has a pixel width of 𝑃1 when captured at the given distance, the focal length of the
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camera can be written as,

𝐹 =
𝑊𝑃1

𝐷1

=> 𝐷1 =
𝑊𝑃1

𝐹
(4.10)

Where the pixel width of an object is defined as the number of pixels in one dimension

that contains the target object. Pixel width can easily be found by using any object

detection and bounding box estimation algorithm. Similar to the previous equation,

for another captured image at distance 𝐷2 and pixel width 𝑊2, the equation above

becomes

𝐷2 =
𝑊𝑃2

𝐹
(4.11)

Subtracting equations 4.10 and 4.11,

∆𝑑 =
𝑊 (𝑃1 − 𝑃2)

𝐹
(4.12)

Where ∆𝑑 = 𝐷1−𝐷2 is the known distance between two consecutive camera positions

and can easily be extracted using the time between two consecutive frames and the

speed of the camera. By substituting eq. 4.10 in eq. 4.12 and rearranging, we get

𝐷1 =
∆𝑑𝑃1

𝑃1 − 𝑃2

(4.13)

The equation above can be used to estimate the distance of the object from the

camera given the pixel width of the object in two different frames and the change in

distance between the given frames.

4.4.2 Dehazing

Now that we have estimated the distance of all the captured images, the next step is to

remove any unwanted haze from the images. As mentioned in sec. 4.3, the suspended

particles in water bodies are responsible for scattering of the light which shows as

haze in the underwater images. This haze caused by scattering is also termed as the

veiling effect [6]. Recall from eq. 4.8, the monochromatic image has a scattering term
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that is responsible for the hazing effect in an underwater image which is both distance

and wavelength dependent. Fig. 4-3A shows the grayscale underwater images of a
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Figure 4-3: Veiling Effect in underwater Images. The figure demonstrates the
hazing/veiling effect in the underwater images. A) shows the underwater images
captured at different distances and the growing veiling effect with the distance. B)
shows the same images after dehazing.

tag at different distances from the camera. It can be seen from the figure that as the

distance between the camera and the tag increases, the veiling effect also increases.

The same effect can also be seen quantitatively in fig 4-4. The blue curve shows the

average pixel values of a certain color (blue in this example) against distance. The

graph shows that instead of monotonically decreasing, the pixel intensity starts to

increase after a certain point. This is because the scattering light intensity increases

with increasing distance i.e., scattering starts dominating the direct path. Since the

scattering does not have any useful information about the colors of the scene, the

first step in the color reconstruction of grayscale underwater images is to remove the

haze from the images. After removing the hazing effect i.e., the scattering from these

images, we are only left with the attenuated direct path which makes it much easier to

reconstruct the colors in the images. Fig 4-3B shows the dehazed underwater images

at different distances. It can be seen from the figure that as the distance increases

the color of the image (direct path) attenuates. This can also be seen quantitatively

in fig 4-4 (purple curve) that the average pixel density of the dehazed images shows

a monotonically decreasing trend as it mostly contains the direct path in it.

In order to remove the hazing effect, that is caused by scattering of light under-

water, we need to know the light source and its illumination patterns. However, since

WaveColor does not have its own light source and mostly relies on ambient light for
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Figure 4-4: Average Pixel Value Curve - Before and After Dehazing. The
figure shows the experimental average pixel values of a specific color before and after
dehazing on the captured images at different distances. The blue curve shows the
average pixel values before the dehazing. These images have both direct path and
scattering light. Whereas, the purple curve shows the average pixel values after
dehazing and thus these images only comprise the direct path light.

illumination, we can safely assume the illumination to be uniform. In the case of

uniform illumination, it has been observed that at a given distance, the scattering

effect is fairly uniform across all the pixels with similar depths. Past work [6] proposes

depth-based scattering light removal using an RGBD camera. We take inspiration

from the prior work and use the darkest pixels around the target object in order to

estimate the scattering signal and remove it from the whole image. We can safely

assume that for small objects in the image, the depth across all the pixels is similar.

For testing the initial idea, we used known black pixels in order to remove the scat-

tering signal. Although this method does not take into account the randomness of

the scattering light, however, since the illumination is fairly uniform, this randomness

does not greatly affect the pixel values. Moreover, any noise that might have been

introduced by this randomness is taken into account in the color estimation process.

(sec. 4.4.3).
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4.4.3 Attenuation Coefficient Estimation

After dehazing the images, we remove the scattering part from the underwater images

and the resultant images consist of direct paths only. Mathematically, eq 4.9 becomes,

𝐼𝑔𝑟𝑎𝑦 = 𝑎𝑟𝐷𝑟𝑒
(−𝛽𝑑(𝑟,𝑑)*𝑑) + 𝑎𝑔𝐷𝑔𝑒

(−𝛽𝑑(𝑔,𝑑)*𝑑) + 𝑎𝑏𝐷𝑏𝑒
(−𝛽𝑑(𝑏,𝑑)*𝑑) (4.14)

Recall that the goal of this method is to do underwater color imaging i.e., to

estimate the values for 𝐷𝑟, 𝐷𝑔, and 𝐷𝑏. In order to do that, the next step is to find

attenuation coefficients 𝛽𝑑(𝑟, 𝑑), 𝛽𝑑(𝑔, 𝑑) and 𝛽𝑑(𝑏, 𝑑) for the three color channels red,

green and blue respectively. These attenuation coefficients are dependent on multiple

things including the concentration and sizes of different particles in water, the distance

between the camera and the imaging scene, the spectral sensitivity of the camera,

etc. It is not possible to find out the exact attenuation coefficient with our limited

knowledge and the continuously changing nature of the underwater environment.

Recent work [6, 4] has shown theoretically and experimentally that the attenuation

coefficients can be modeled as an exponential function, that can be written as,

𝛽𝑑(𝑐, 𝑑) = 𝑗𝑒𝑘𝑑 + 𝑙𝑒𝑚𝑑 (4.15)

Where 𝑗, 𝑘, 𝑙, and 𝑚 are the constants that are different for all three color channels

and d is the estimated distance between the camera and the underwater scene.

Coefficient Estimation Method

In order to estimate the attenuation coefficient 𝛽𝑑(𝑐, 𝑑), we first need to estimate the

constants in eq 4.15. We do so in a calibration step and use known colors in the image

to estimate the coefficients. We put a red, green, and blue color patch in the water

and image at different distances. Note that we have a grayscale camera therefore for

a given color patch (say red) we can assume that other color channels (say green and
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blue) become zero and eq. 4.14 reduces to,

𝐼𝑔𝑟𝑎𝑦 = 𝑎𝑐(𝐷𝑐𝑒
−𝛽𝑑(𝑐,𝑑)𝑑) (4.16)

Where 𝑐 is either 𝑟 (red), 𝑔 (green), or 𝑏 (blue) and 𝐷𝑐 is the actual color (pixel value)

of the patch. We substitute eq 4.15 in eq 4.16,

𝐼𝑔𝑟𝑎𝑦 = 𝑎𝑐(𝐷𝑐𝑒
−(𝑗𝑒(𝑘𝑑)+𝑙𝑒(𝑚𝑑))𝑑) (4.17)

Given observed dehazed grayscale images i.e, 𝐼𝑔𝑟𝑎𝑦𝑜𝑏𝑠𝑒𝑟𝑣 vector and estimated distances

i.e., a 𝑑 vector, we formulate an optimization problem as follows

min
𝐷𝑐,𝑗,𝑘,𝑙,𝑚

||𝐼𝑔𝑟𝑎𝑦 − 𝐼𝑔𝑟𝑎𝑦
𝑜𝑏𝑠𝑒𝑟||

s/t 𝐼𝑔𝑟𝑎𝑦
𝑜𝑏𝑠𝑒𝑟(𝑑(0)) ≤ 𝐷𝑐 ≤ 255

𝑗, 𝑘 ≤ 0

𝑙,𝑚 ≥ 0.

Where 𝐼𝑜𝑏𝑠𝑒𝑟𝑔𝑟𝑎𝑦 (𝑑(0)) is the observed pixel intensity at first distance and it is used as

the lower bound on 𝐷𝑐. We run a global search on the values of 𝐷𝑐, 𝑗, 𝑘, 𝑙, and 𝑚 to

estimate the decay coefficients for all three colors separately. Once the constants are

estimated, we plug them in eq 4.15 to find the values of the attenuation coefficients.

4.4.4 Color Estimation

Now that we have estimated the distance, removed the veiling effect from the im-

ages, and estimated the decay coefficients, the next step is to estimate the colors of

the object captured underwater. Recall that in order to reconstruct the colors in a

grayscale image, we need to estimate the values of 𝐷𝑟,𝐷𝑔, and 𝐷𝑏 in the eq 4.14. In

principle, we have a decay profile2 of all the colors in the underwater scene since we

have captured images at different distances. We use these decay profiles to estimate

2Decay profile refers to the decay in the pixel values of certain parts of the underwater scene with
increasing distance.
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the contribution of red, green, and blue in different parts of the object, essentially

estimating the RGB channels of the corresponding color image.

Similar to sec. 4.4.3, in this section we formulate an optimization problem for

estimating the colors in eq. 4.14. Mathematically, the optimization problem is written

as,

min
𝐷𝑟,𝐷𝑔 ,𝐷𝑏

||𝐼𝑔𝑟𝑎𝑦 − 𝐼𝑔𝑟𝑎𝑦
𝑜𝑏𝑠𝑒𝑟||

s/t 0 ≤ 𝐷𝑟, 𝐷𝑔, 𝐷𝑏 ≤ 255

We run a global search on this optimization problem in order to estimate the colors

in different parts of the object We then use the estimated 𝐷𝑟,𝐷𝑔, and 𝐷𝑏 to generate

red, green, and blue channels of the corresponding color image.

4.5 Implementation and Evaluation

For initial testing of the idea, we used a GoPro camera, suspended and moved with

the help of an 80/20 rode structure in a tank. We used a color grid shown in fig. 4-6

as a test object to capture color images. After capturing the images we convert them

into grayscale and then use MATLAB for all the post-processing of the images. We

run all the tests in a 4x4-meter tank at MIT SeaGrant.

4.5.1 Baselines

We evaluated the qualitative results of our proposed method against state-of-the-

art algorithms. Our proposed method essentially colorizes and color corrects the

grayscale underwater images in one step to realize ultra-low power underwater color

imaging; however past approaches have never explored the possibility of doing so.

There is no state-of-the-art color reconstruction (colorization and color correction)

method available for underwater grayscale images; however, there is a wide range of

separate colorization and color correction methods. We use state-of-the-art coloriza-

tion and color correction methods in cascade in order to perform color reconstruction
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of grayscale underwater images and use them as a baseline. The state-of-the-art

methods used are as below:

1. Colorization: Colorization is the process of coloring grayscale images. There

is no specific underwater image colorization method available therefore we use a

general state-of-the-art colorization method to compare the performance of our

system. Colorful Image Colorization [81] is a CNN-based colorization method

trained on the ImageNet dataset. The results of this work show the improvement

in the colorization process against the past methods.

2. Color restoration: Color restoration corresponds to restoring the actual col-

ors of an underwater scene. UWCNN [8] is a machine learning-based color

restoration method for underwater images. The results show that this model

is capable of restoring the colors of colored underwater images in 10 different

water types.

4.6 Results

Since this is a testing of the initial idea, we present the theoretical reduction in the

power consumption and qualitative results for images and compare them with state-

of-the-art systems.

4.6.1 Power Consumption

In this section, we compare the power consumption of our proposed underwater color

imaging method against the state-of-the-art battery-free underwater color imaging [3].

Fig. 4-5 shows the power consumption along the y-axis and time along the x-axis;

the blue and purple curves represent the power consumption of the SOTA battery-

free underwater color camera and WaveColor respectively across time. The spikes

in the curve correspond to the time when the camera actively captures an image,

whereas the low power (∼ 20𝜇𝑊 ) regions correspond to the time when the camera

backscatters the image. We make the following remarks
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1. The blue curve shows spikes in the power consumption of the system. These

spikes correspond to the powering up of LEDs (red, blue, and green) and the

CMOS image sensor. Specifically, on average, the LEDs (say red) consume

∼ 8𝑚𝑊 of power whereas the CMOS sensor itself consumes ∼ 1.1𝑚𝑊 of power

and therefore, the power consumption of the camera is mainly dominated by

the power consumption of the LEDs

2. On the other hand, although the power consumption curve of WaveColor (purple

curve) shows similar spikes in power consumption when capturing the image,

these spikes are caused by the powering of the camera alone, which is 10x less

than the power consumption of LEDs.

Figure 4-5: Power Consumption. The figure shows the comparison between
the power consumption of the state-of-the-art battery-free underwater camera (blue
curve) [3] and WaveColor(purple curve). The power-limited phase of these cam-
eras corresponds to the time when the camera is actively imaging (the spikes in the
curve). The flat (few microwatts) region corresponds to the time in which the camera
backscatters the images.

4.6.2 Reconstruction Results

Qualitative Performance

In this section we compare the performance of our proposed method against two

methods a) SOTA colorization network only and b) colorization network combined
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with SOTA underwater color restoration network UWCNN. Fig. 4-6 shows the quali-

tative results of the three methods as mentioned earlier (Colorful Image Colorization

Method, Colorful Image Colorization Method with UWCNN, and WaveColor). We

make the following remarks:

1. It can be seen that the state-of-the-art colorization method is unable to correctly

recover the colors of the image. As a result, UWCNN is also unable to restore

the true colors of the image. This is because the joint problem of colorization

and color correction cannot be simply solved in two steps.

2. It can be seen in the table that WaveColor is able to construct all the colors

in the grid. It is to be noted that the results shown in fig 4-6 are preliminary

results. Further improvement and methods like user-guided colorization can

make the coloring of the images smoother.
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Figure 4-6: Qualitative Analysis. The figure shows the qualitative results of
the proposed method against the state-of-the-art colorization, and colorization and
color restoration method. The first row shows the input grayscale image and the
corresponding captured image. The second row shows the results of the three
methods (Colorful Image Colorization [81], Colorful Image Colorization followed by
UWCNN [8], and WaveColor)

Quantitative Performance

The table 4.1 shows the mean CIEDE2000 (defined in Sec. 2.4.3) of the baselines and

our proposed method (WaveColor) on three sets of experiments run with the same tag

(shown in fig. 4-6) in different locations and orientations in the tank. CIEDE2000 is
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a measure of how different the colors of the image are from another (original) image,

which means the smaller the value of CIEDE2000 the better the method is. It can

be seen from the table that our method outperforms the baselines by ∼ 85% and

∼ 89% by reducing the CIEDE200 from 84.5 and 109.1 to 11.9 respectively. While

these results are preliminary, they demonstrate the promise of our method for color

reconstruction.

Method CIEDE2000
Colorful Image Colorization [81] 84.5

Colorful Image Colorization and UWCNN [8] 109.1
WaveColor 11.9

Table 4.1: Quantitative Analysis. The table compares the color difference
(CIEDE2000) of the state-of-the-art colorization method, staet-of-the-art coloriza-
tion followed by color correction method and WaveColor

4.7 Conclusion

WaveColor is the first underwater imaging method that is capable of performing

ultra-low-power underwater color imaging without using any power-consuming RGB

image sensors or LEDs. This method is not only capable of performing underwater

color imaging at the lowest power possible but it also captures the true colors of

the underwater scene without any color degradation and veiling effect. The proposed

method uses undesirable color degradation in underwater images to its benefit thereby

revolutionizing the field of underwater image processing.
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Chapter 5

Conclusion

This thesis investigates some of the major challenges associated with efficient and

ultra-low-power underwater imaging and proposes potential solutions to address them.

To this end, we conducted a survey of the challenges faced by ultra-low-power un-

derwater imaging. Subsequently, we presented three solutions to address some of

the key challenges, including denoising and desnowing underwater images, enabling

ultra-low-power underwater edge inference, and facilitating ultra-low-power underwa-

ter color imaging. Specifically, (in Chapter 2) our proposed desnowing method shows

∼ 2𝑑𝐵 improvement in PSNR and ∼ 17x reduction in the required memory. Simi-

larly, (in Chapter 3) this thesis demonstrated edge inference on an ultra-low-power

underwater imaging system for the first time that is in both the power and mem-

ory budget of the system. Lastly, (in Chapter 4) we presented an ultra-low-power

underwater color imaging system, WaveColor, that is capable of reducing the power

consumption of the state-of-the-art ultra-low-power color underwater imaging system

by ∼ 10x and produces colored underwater images with an average color difference

of 0.025. Importantly, these solutions are capable of operating within the constraints

of ultra-low-power underwater imaging systems.

This thesis paves the way for future research on end-to-end ultra-low-power under-

water imaging systems by highlighting the open problems in ultra-low-power under-

water imaging and providing avenues for addressing them. Integrating the proposed

approaches into an end-to-end system would enable realizing scalable and long-term
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underwater imaging. Such imaging would lead to new methods to support long-term

underwater observations with applications to monitoring marine ecosystems for ap-

plications spanning oceanography, marine biology, and environmental conservation.
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