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ABSTRACT

In this work, we propose a model-free reinforcement learning algorithm for infinte-horizon,
average-reward decision processes where the transition function has a finite yet unknown
dependence on history, and where the induced Markov Decision Process is assumed to be
weakly communicating. This algorithm combines the Lempel-Ziv (LZ) parsing tree structure
for states introduced in [4] together with the optimistic Q-learning approach in [9]. We
mathematically analyze the algorithm towards showing sublinear regret, providing major
steps towards the proof of such. In doing so, we reduce the proof to showing sub-linearity
of a key quantity related to the sum of an uncertainty metric at each step. Simulations of
the algorithm will be done in a later work.
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Chapter 1

Introduction

This thesis is on designing model-free reinforcement learning (RL) algorithms for infinite-
horizon decision processes in stationary environments where the transition function has a
finite yet unknown dependence on history. The objective is to design general RL agents
with sublinear regret under this setting. Our approach will center on combining ideas from
optimistic Q-learning and from data compression algorithms such as Lempel-Ziv to efficiently
summarize information from states.

1.1 Mathematical Formulation and Assumptions

We use the standard RL setup, similar to [3] and [4], where an agent interacts with an
environment over time steps t ∈ Z+. At time t, the agent selects action At from an alphabet
A of actions and then observes a response Xt from alphabet X of states, with both sets A
and X being fixed over time. (To avoid trivial models, assume that both alphabets have size
at least 2.) 1 The interaction produces a stream of actions and states (A1, X1, A2, X2, . . .).
Denote the history Ht = (A1, X1, . . . , At, Xt) as the actions and responses through time t,
and Hj

i = (Ai, Xi, . . . , Aj, Xj) as the history from t = i to t = j, inclusive.
To represent a finite yet unknown dependence on history, environment dynamics involve

a parameter k which specifies the maximum dependence on history. Then, it is assumed
that there exists a transition kernel P = P (Xt|H t−1

t−k , At), fixed across time, that specifies
the probabilities for the response Xt over X given the most recent action as well as the
last k (action, response) pairs in history. All draws from P (Xt|H t−1

t−k , At) are assumed to be
mutually independent. The environment also generates a reward Rt = R(H t−1

t−k , At) ∈ [0, 1]

1The choice of using “response" rather than “state" here is made to prevent confusion with the “state" in
the associated Markov Decision Process (MDP) formulation.
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that is a deterministic function of the current action and the previous k such pairs in history.2

The design of an agent involves formulating a policy π(Ht) that selects an action a ∈ A
based on the history, potentially from the very start of the process. However, an agent that
efficiently learns will likely involve learning the parameter k, therefore not needing the whole
history. We aim to minimize the infinite-horizon average cost, i.e.

λπ = lim inf
T→∞

Eπ

[
1

T

T−1∑
t=1

Rt

]
.

Writing λ∗ to be the maximum λπ over all policies π, we aim to the regret Rπ with respect
to an optimal policy. In the finite (episodic) case, as a policy’s design may depend on the
number of time steps the interaction will run for, we allow π to be parameterized by T , as
πT . For example, a larger total duration may involve a longer horizon for exploration before
exploitation. We thus define regret, which we aim to be sublinear in T :

RegretπT (T ) = EπT

[
T∑
t=1

(λ∗ −Rt)

]
.

Similar to the setting in [4], the agent has no knowledge of P or even k. However, in order to
aid analysis of a policy in this setting relative to λ∗, we consider the Markov Decision Process
(MDP) induced by the given dynamics. Such a MDP can be formulated by specifying the
state St at time t to be the history H t−1

t−k . To confirm that it is indeed a MDP, note that the
distribution of St+1 = H t

t−k+1 is uniquely specified given the previous state St = H t−1
t−k and

the action At. Examining the contents of St+1 = H t
t−k+1, the distribution of Xt is specified

by the transition function, while At and H t−1
t−k+1 are already conditioned on. This MDP has

(|A| |X|)k states and |A| choices for the action from each state. However, for each (state,
action) pair, there are only |X| possible immediate next states.

We assume that this MDP is weakly communicating, which by standard MDP theory such
as in [1], ensures that λ∗ is the same regardless of the starting conditions. This assumption,
which is also used in [4] and [9], is reasonable as it is essentially required for any meaningful
comparison across policies.

1.1.1 Example and Applications

A prototypical example, which is also exhibited in [4], and is designing an agent that plays
Rock-Paper-Scissors. Here, the environment is an opponent that maintains a fixed strategy

2This formulation allows us to interpret the “state" as the previous k (action, response) pairs.
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consistent with the mathematical formulation above, meaning that it draws from a random
distribution determined by a fixed length of recent history. Knowing the opponent’s strategy
will allow computation of the optimal solution through standard dynamic programming
methods for the associated MDP. We need, however, a learning algorithm that allow k being
unknown, which the MDP approach does not accommodate.

The design of such a model-free agent may also contribute to the broader understanding
of the role of information theory in RL. Algorithms in RL vary in the nature of states stored.
For example, most model-based approaches will involve data structures that will only depend
on input parameters, and will not substantially vary over vastly different transition functions.
Model-free algorithms have the potential to form data structures that properly characterize
the information captured in the transition function. This direction may be explored in future
work extending from this thesis.

1.2 Related Work

1.2.1 Model-free RL and Optimistic Q-learning

The most well-known form of model-free RL is Q-learning, though it is most extensively
analyzed in the discounted-reward rather than the average-reward setting. Wei et. al (2019)
[9] proposes a model-free RL algorithm for this setting through an optimistic algorithm. An
extended framework of model-free RL that involves transitions on subset of history called
the aleatoric state is discussed in [7].

Some recent literature ([3], [9]) on model-free RL uses the technique of optimistic Q-
learning, which involves both a time-varying bonus function to the temporal difference term
in the update, and a non-increasing value function. This use of optimism is a smooth version
of the traditional ϵ-greedy approach towards the exploration-exploitation trade-off, and is
related to Thompson sampling, which is applied in [8] to a similar problem. Another related
technique is that of the Upper Confidence Bound (UCB), the efficiency of which in Q-learning
is examined in [5].

1.2.2 Data compression algorithms and information theory in RL

A 2007 paper [4] proposes a model-based RL algorithm that constructs the Lempel-Ziv
(LZ) parsing tree by simulating the LZ algorithm on (state, action) pairs. The algorithm
maintains estimates of probabilities and value functions at each node of the parsing tree. On
the information theory side, Lu and Van Roy (2019) [6], as well as Section 4 in a related paper
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[7], analyze the role of information gain towards per-period performance, characterizing the
exploration-exploitation tradeoff.

1.2.3 Undetermined and Growing Horizons

The planning horizon H is central in the analysis of a learning algorithm, as H can be
adjusted depending on the total running time T . For example, [9] and [3] decompose the
regret into separate terms that increase and decrease in H, then solving for the value of H
that gives the best asymptotic regret in T . A related technique to handle the situation where
k is variable and unknown is growing the horizon, which is covered in [3].

12



Chapter 2

LZ-augmented Optimistic Q-learning

In this chapter, we present the LZ-augmented Optimistic Q-learning algorithm, the central
idea of which involves combining the Lempel-Ziv (LZ) parsing tree structure in [4] (where the
|AX| possible (action, response) pairs comprise the alphabet), with the optimistic Q-learning
value functions and corresponding updates presented in [9] (where the value functions are
computed at each context generated by the LZ parsing tree). The algorithm is presented in
Algorithm 1 at the following page, and the two main ideas are expounded in this chapter.

2.1 Lempel-Ziv Parsing Tree

Algorithm 1 builds a LZ parsing tree very similar to that in [4]. The contexts in the tree are
subsequences of (action, response) pairs in the history. A count nt(c, a) is maintained at each
(context, action) pair and incremented after each phrase of the LZ parsing. The algorithm
starts with an empty context, which is updated by including the (action, response) pairs in
the current phrase (line 7). An action is then picked (line 8) based on the value functions at
the context, to be described in the next section, after which a response is observed (line 9).

The algorithm then checks whether the context has been seen before (line 10). If it is
in a context that has not been seen before, then similar to the LZ algorithm, the phrase is
ended (line 19). In Algorithm 1, however, the value functions along the phrase are updated
in addition. The timing and duration of the phrases are tracked by the variables u and
startu, which refer to the index of the current phrase and the start time of the uth phrase,
respectively. The process is continued until the T th time step.

A context that contains a history of length at least k is called a valid context ; otherwise, it
is called an invalid context. It is only at valid contexts where the distribution of the response,
given a specific action at this context, is known, as otherwise, the history of length k for
which the distribution depends on will contain history from a previous phrase.
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Algorithm 1 LZ-augmented Optimistic Q-learning Algorithm
Parameters: horizon H ≥ 2, confidence level δ ∈ (0, 1)

Define: ∀τ : ατ =
H + 1

H + τ
, βτ = 4sp(v∗)

√
H

τ
ln

2T

δ
1: γ ← 1−H−1

2: V̂1(·)← H, Q1(·, ·)← H, Q̂1(·, ·)← H {initialize value functions at each context}
3: n1(·, ·)← 0 {initialize context counts}
4: u1 ← 1 {index of the current phrase}
5: startu ← 1 {start time of the uth phrase}
6: for t = 1, . . . , T do
7: ct ← H t−1

startu {context at time t; may be empty when t = startu }
8: Pick action at uniformly at random over the set argmaxa∈AQ̂t(ct, a).
9: Observe response xt

10: if
∑
a∈A

nt(ct, a) = 0 then {we are in a context not seen before}

11: for t′ with startu ≤ t′ ≤ t in decreasing order do
12: {traverse backward through the current phrase to perform the Optimistic Q-

learning update steps at each context}
13: nt+1(ct′ , at′)← nt(ct′ , at′) + 1
14: τ ← nt+1(ct′ , at′)
15: c′t′ = H t′

startu {context at which to get value estimate for Q-learning}
16: Qt+1(ct′ , at′)← (1− ατ )Qt(ct′ , at′) + ατ

[
r(at, xt) + γV̂t(c

′
t′) + bτ

]
17: Q̂t+1(ct′ , at′)← min{Q̂t(ct′ , at′), Qt+1(ct′ , at′)}
18: V̂t+1(ct′)← maxa∈AQ̂t+1(ct′ , a).
19: ut+1 ← ut + 1, startu ← t+ 1 {start the next phrase}
20: end for
21: else
22: ut+1 ← ut

23: end if
24: {All function values not updated at time t remain the same between indices t and

t+ 1.}
25: end for
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2.2 Q-learning value functions

Algorithm 1 uses similar setup as in [9] for the Q-learning process. It takes in a horizon
H and confidence level δ as parameters, which parameterize the update weight ατ (used in
determining the weights of the previous Q value and the value estimate) and the bonus term
βτ (added to the value estimate). The Q-learning process involves the same three functions as
in [9] — V̂ (c), Q(c, a), and Q̂(c, a) — which are updated in a similar manner. The function
Q̂(c, a) is used (line 8) to decide on the action. The key difference is that the algorithm
has a value function at each context rather than each state; this distinction is important
as the agent is not supposed to know the maximum history length k, which determines the
corresponding set of states.

The other difference is in computing the value estimate (line 16) for the Q-learning
update, as the value functions are updated at the end of each phrase, and the update is
done by traversing backward through the current context in order to perform the Q-learning
update steps, as is done in [4]. When the algorithm is in a context not seen before, instead
of using the value estimate at the next context, which will be the empty context, it uses
the un-updated value estimate (which has the value H) of the context formed by appending
the last (action, response) pair of the phrase (line 15). This is to stay consistent with the
tree structure induced by the LZ algorithm, as well as to avoid a meaningless value from the
empty context, which is an invalid context.

In Algorithm 1, the functions are indexed by the time t, mostly as a notational convenience
for the subsequent analysis, so that we can keep track of the value of the functions at different
times. The functions are also defined in theory for all possible contexts c, even those never
visited, and for all times t. In a practical implementation, however, only the latest value
needs to be stored. Similarly, only values of the functions at contexts that have been visited
need to be stored, as otherwise, the value will simply be H.

15



Chapter 3

Theoretical Analysis of the Algorithm

In this chapter, we present steps towards proving that Algorithm 1 obtains sublinear regret.
We follow a similar approach as Section 4 in [9], where the analysis is done for a particular
setting of H and δ. The major differences stem from the distinction between the state st,
context ct, and response xt at the time t.

3.1 Preliminaries

Unlike the previous chapter, the analysis in this chapter may explicitly consider the states
st, as there is an underlying MDP that was only unknown to the algorithm.

3.1.1 Definitions

We define C to be the set of valid contexts, and T to be the set of times 1 ≤ t ≤ T where
ct ∈ C. A consequence is that for a valid context c ∈ C, there is a unique corresponding state
given by the last k (state, action) pairs in c; we denote this state as s(c).

We consider the MDP over (A × X)k as discussed in Section 1.1. Under the weakly
communicating assumption, the discounted (with horizon H and corresponding decay γ =

1−H−1) and undiscounted value functions V ∗(s) and v∗(s), respectively.
Similar to Section A.2 in [9], define nt = nt+1(ct, at), the number of visits to the context-

action pair (ct, at) in the first t times. As will be seen later, a key quantity of interest is the
measure of uncertainty U =

∑
t∈T

n
−1/2
t .

We also adapt the definitions α0
τ =

τ∏
j=1

(1− αj) and αi
τ = αi

τ∏
j=i+1

(1− αj) from [9], where

by convention α0
0 = 1. αi

τ represents the weight of the ith value estimate (line 16 in Algorithm
1 ) towards the value of Q(ct, at) after the τth visit to this context-action pair.
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3.1.2 Lemmas from [9]

We make use of the following lemmas from Appendix A of [9], copied below for reference.

Lemma 1 The following properties hold for αi
τ :

1.
1√
τ
≤

τ∑
i=1

αi
τ√
i
≤ 2√

τ
for every τ ≥ 1.

2.
τ∑

i=1

(αi
τ )

2 ≤ 2H

τ
for every τ ≥ 1.

3.
τ∑

i=1

αi
τ = 1 for every τ ≥ 1 and

∑∞
τ=i α

i
τ = 1 + 1

H
for every i ≥ 1.

Lemma 2 (Azuma’s inequality) Let X1, X2, · · · be a martingale difference sequence with

|Xi| ≤ ci for all i. Define c̄2T =
T∑
i=1

c2i . Then, for δ ∈ (0, 1), P

(
T∑
i=1

Xi ≥
√

2c̄2T log
1

δ

)
≤ δ.

We can also adapt the following lemmas in Section 4.1 of [9], which is valid as these
lemmas are about the value functions of MDPs, and we indeed have a MDP where the states
are st and actions are at.

Lemma 3 Let sp(v∗) and sp(V ∗) be the spans of the undiscounted and discounted MDPs,
respectively. Then,

1. |J∗ − (1− γ)V ∗(s)| ≤ (1− γ)sp(v∗), ∀s ∈ (A× X)k

2. sp(V ∗) ≤ 2sp(v∗)

Lemma 4 With probability at least 1− δ,

T∑
t=1

(Q∗(st, at)− γV ∗(st)− r(st, at) ≤ 2sp(v∗)
√
2T log

1

δ
+ 2sp(v∗).

3.2 Reduction to bounding U =
∑
t∈T

n
−1/2
t

We focus on the dependence on the parameters H and T dropping dependence on all other
parameters and quantities for simplicity of analysis. In our initial attempts towards showing
sublinear regret, we simply need to find an appropriate H for each T .

In this section, take note that the Q̂, Q, and V̂ functions are on context-action pairs, as
they are functions in Algorithm 1, while the Q∗ and V ∗ functions are on state-action pairs,
as they are value functions in the associated MDP.
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3.2.1 Regret Decomposition

We use a similar regret decomposition in Section 4.1 of [9]. However, considering that for
t /∈ T , the actions at are likely to stay suboptimal as there is no correct transition pmf to

learn at the context ct, we consider these times separately for the
T∑
t=1

(V ∗(st) − Q∗(st, at)

term. Hence, we get:

RT =
T∑
t=1

(J∗ − r(st, at)) (3.1)

=
T∑
t=1

(J∗ − (1− γ)V ∗(st)) +
T∑
t=1

(Q∗(st, at)− γV ∗(st)− r(st, at)) (3.2)

+
∑
t∈T

(V ∗(st)−Q∗(st, at)) +
∑

t/∈T ,1≤t≤T

(V ∗(st)−Q∗(st, at)) (3.3)

The first term in (3.2) is O
(
T
H

)
by Lemma 3, and the second term in (3.2) is O(

√
T ) by

Lemma 4.
We now bound the second term of (3.3). For each t, 0 ≤ V ∗(st)−Q∗(st, at) ≤ V ∗(st) ≤ H,

so the second term of (3.3) is bounded above by H times the size of the set {t : t ∈ T , 1 ≤
t ≤ T}, the latter of which is bounded by K times cT , the number of LZ phrases involved
in the parsing. By a similar reasoning as Lemma 13.5.3 in [2] (extending from a binary

sequence to an alphabet with size |A||X|), cT = O

(
T

log T

)
. Combining,

∑
t/∈T ,1≤t≤T

(V ∗(st)−Q∗(st, at)) = O

(
H

T

log T

)
.

It remains to bound
∑
t∈T

(V ∗(st) − Q∗(st, at)). In the remainder of this section, we show

that, where U =
∑
t∈T

n
−1/2
t ,

∑
t∈T

(V ∗(st)−Q∗(st, at)) = O

(
H

T

log T

)
+O(

√
H log T ) · U.

Collecting the bounds above gives RT = O

(
T

H
+H

T

log T

)
+O(

√
H log T ) · U .
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3.2.2 Bounding
∑
t∈T

(V ∗(st) − Q∗(st, at))

We show a bound of
∑
t∈T

(V ∗(st)−Q∗(st, at)) = O

(
H

T

log T

)
+O(

√
H log T ) ·U . The proof

will follow Lemma 3 in [9], though it will deviate considerably as the telescoping argument
is more complicated. We show this bound by restating Lemma 12 in [9], and then adapting
the telescoping argument given the unbounded number of possible contexts.

Restating Lemma 12 in [9]

Given our formulation with contexts and states, we provide a restated version of Lemma
12 in [9]. Here, c′ti is the context at time ti, with the (action, response) pair at time ti, as
specified in line 15 of Algorithm 1.

Lemma 5 With probability at least 1 − δ, for any time 1 ≤ t ≤ T and context-action pair
(c, a), and where t1, . . . , tτ ≤ t are the times where (c, a) is visited,

0 ≤ Q̂t+1(c, a)−Q∗(s(c), a) ≤ Hα0
τ + γ

τ∑
i=1

αi
τ

[
V̂ti(c

′
ti
)− V ∗(s(c′ti))

]
+ 12sp(v∗)

√
H

τ
log

2T

δ
.

The proof is very similar as that of Lemmas 12 in [9], though some lines have to be
restated given the distinction between states and contexts.

As in [9], we compute Qt(c, a) and Q∗(s(c), a), then subtract the latter from the former.
Qt+1(c, a) is computed by expanding the τ applications of line 16 in Algorithm 1 :

Qt+1(c, a) = Hα0
τ +

τ∑
i=1

αi
τ

[
r(s(c), a) + γV̂ti(c

′
ti
)
]
+

τ∑
i=1

αi
τbi.

Meanwhile, Q∗(s(c), a) can be written in a similar form using the Bellman Equation of the
MDP, Q∗(s(c), a) = r(s(c), a) + γEs′∼p(·|s(c),a)V

∗(s′):

Q∗(s(c), a) = α0
τQ

∗(s(c), a) +
τ∑

i=1

αi
τ

[
r(s(c), a) + γEs′∼p(·|s(c),a)V

∗(s′)
]
.

Taking the difference,

Qt+1(c, a)−Q∗(s(c), a) = (H−Q∗(s(c), a))α0
τ+γ

τ∑
i=1

αi
τ

[
V̂ti(c

′
ti
)− Es′∼p(·|s(c),a)V

∗(s′)
]
+

τ∑
i=1

αi
τbi.
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Finally, we can split[
V̂ti(c

′
ti
)− Es′∼p(·|s(c),a)V

∗(s′)
]
=
[
V̂ti(c

′
ti
)− V ∗(s(c′ti))

]
+
[
V ∗(s(c′ti))− Es′∼p(·|s(c),a)V

∗(s′)
]
,

after which the rest of the proof can proceed similarly as in [9]. The union bound can proceed
similarly as the second term in the above split only takes T different forms.

Completing the Telescoping Argument

For t ∈ T , define ∆V (t) = V̂t(ct) − V ∗
t (s(ct)), and analogously, ∆′

V (t) = V̂t(c
′
t) − V ∗

t (s(c
′
t)).

∆V (t) represents the difference between the time-t estimate of the value function ct, with the
true value function of the associated state in the MDP. ∆′

V (t) represents the same, though
for the context c′t. Note that this is not necessarily the next context, but rather, ct appended
with the (action, response) pair at time t. Now, we compute:∑

t∈T

(V ∗(st)−Q∗(st, at)) (3.4)

=
∑
t∈T

(V ∗(s(ct))−Q∗(s(ct), at)) (3.5)

=
∑
t∈T

(V̂t(ct)−Q∗(s(ct), at))−
∑
t∈T

(V̂t(ct)− V ∗(s(ct)) (3.6)

=
∑
t∈T

(V̂t(ct)−Q∗(s(ct), at))−
∑
t∈T

∆v(t), (3.7)

where (3.5) is from ct being a valid context, (3.6) is from adding then subtracting V̂t(ct)

inside the summation, and (3.7) is from the definition of ∆v(t).
Then, we express the first summation of (3.7) as∑

t∈T

(V̂t(ct), Q
∗(s(ct), at)) (3.8)

=
∑
t∈T

(Q̂t(ct, at)−Q∗(s(ct)), at) (3.9)

=
∑
t∈T

(Q̂t+1(ct, at)−Q∗(s(ct), at)) +
∑
t∈T

(Q̂t(ct, at)− Q̂t+1(ct, at)), (3.10)

where (3.9) is from at being the chosen action at time t, and (3.10) is from adding and
subtracting Q̂t+1(ct, at) inside the summation, then splitting the summation.

The second term of (3.10) can be analyzed by split splitting the summation by (context,
action) pair. Within each context-action pair, the terms are a telescoping sequence of dif-
ferences of value function estimates bounded in [0, H], so the sum of all such differences is
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bounded by H. The number of (context, action) pairs is at most |A|cT , and cT = O

(
T

log T

)
,

so ∑
t∈T

(Q̂t(ct, at)− Q̂t+1(ct, at)) = O

(
H

T

log T

)
(3.11)

Meanwhile, the bound in 5 can be used to analyze the first term of (3.10). First, we restate
5 using the definition of ∆′

V (t) as

0 ≤ Q̂t+1(c, a)−Q∗(s(c), a) ≤ Hα0
τ + γ

τ∑
i=1

αi
τ∆

′
V (t) + 12sp(v∗)

√
H

τ
log

2T

δ
. (3.12)

Let ti(c, a) be the ith time when the (context, action) pair (c, a) is visited. Substituting the
right-hand side of (3.12) into the first term of (3.10), and noting that τ ≥ 1 always for any
t, ∑

t∈T

(Q̂t+1(ct, at)−Q∗(s(ct), at)) (3.13)

≤
∑
t∈T

(
12sp(v∗)

√
H

nt

log
2T

δ
+ γ

nt∑
i=1

αi
nt
∆′

V (ti(ct, at))

)
(3.14)

= 12sp(v∗)

√
H log

2T

δ

∑
t∈T

n
−1/2
t + γ

∑
t∈T

nt∑
i=1

αi
nt
∆′

V (ti(ct, at)) (3.15)

= O(
√

H log T ) · U + γ
∑
t∈T

nt∑
i=1

αi
nt
∆′

V (ti(ct, at)). (3.16)

The second term in (3.15) term be bounded in a similar way as the third term of Equation
(17) in [9], though only valid contexts correspond to those visited at times t ∈ T . It is also
adaptable given 5. This procedure yields a bound of

γ
∑
t∈T

nt∑
i=1

αi
nt
∆′

V (ti(ct, at)) ≤
(
1 +

1

H

)
γ
∑
t∈T

∆′
V (t) ≤

∑
t∈T

∆′
V (t). (3.17)

Finally, combining (3.7), (3.10), (3.11), (3.16), and (3.17) gives∑
t∈T

(V ∗(st)−Q∗(st, at)) (3.18)

=
∑
t∈T

(V̂t(ct)−Q∗(s(ct), at))−
∑
t∈T

∆v(t) (3.19)
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=
∑
t∈T

(Q̂t+1(ct, at)−Q∗(s(ct), at)) +
∑
t∈T

(Q̂t(ct, at)− Q̂t+1(ct, at))−
∑
t∈T

∆v(t) (3.20)

≤ O(
√
H log T ) · U + γ

∑
t∈T

nt∑
i=1

αi
nt
∆′

V (ti(ct, at)) +O

(
H

T

log T

)
−
∑
t∈T

∆v(t) (3.21)

≤ O(
√
H log T ) · U +

∑
t∈T

∆′
V (t) +O

(
H

T

log T

)
−
∑
t∈T

∆v(t) (3.22)

= O
(√

H log T
)
· U +O

(
H

T

log T

)
+

(∑
t∈T

∆′
V (t)−

∑
t∈T

∆V (t)

)
(3.23)

Finally, we upper-bound the second quantity in (3.24) by comparing the quantities in the
summation. First, note that 0 ≤ ∆V (t),∆

′
V (t) ≤ H for all t, by definition. When t does not

mark the end of a phrase, t + 1 ∈ T and c′t = ct+1, so ∆′
V (t) = ∆V (t + 1), so for all such

t, the term ∆′
V (t) is cancelled out by ∆V (t + 1) in the second summation. Therefore, the

second quantity in (3.23) is upper-bounded by H times the number of phrases, uT , and thus

it is O

(
H

T

log T

)
. Combining in (3.23) finally gives

∑
t∈T

(V ∗(st)−Q∗(st, at)) = O
(√

H log T
)
· U +O

(
H

T

log T

)
. (3.24)

3.3 Progress towards on bounding U

In this subsection, we discuss progress towards bounding U in order to achieve sublinear re-
gret in T . The previous subsection uses the perspective of guaranteeing a particular bound
with a given probability, specified by the parameter. Here, however, we will currently be
content at bounding E[U ], though possible approaches towards a similar probabilistic guar-
antee will be presented towards the end. (Note, however, that given that U is nonnegative,
a bound of E[U ] trivially yields a probabilistic bound via Markov’s inequality, though this
bound has an inferior scaling in the confidence parameter δ.)

The approach in [9] involves setting H for the overall regret RT to be sub-linear. Consid-

ering the bound RT = O

(
T

H
+H

T

log T

)
+ O(

√
H log T ) · U , we need U to be sufficiently

sublinear in T . Given the definition of U , it is likely that our bounds will depend on T alone

and not H. It can be seen that when U = o

(
T√
log T

)
, then there will exist H such that

RT is sublinear, by setting H sufficiently small yet still growing in T .
So far, we have yet to bound U or E[U ], though below we present a simplified version of

the setting, which proves to be more tractable to combinatorial techniques. Then, we discuss
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how the simplified version may be related to the original setting.

3.3.1 Branching Process Approach

The simplified version involves reinterpreting on the sequence of (context, action) pairs en-
countered as a branching process over the context tree, ignoring the causality of the learning
algorithm’s process towards future actions. This formulation enables combinatorial analysis,
as will be seen below, though with the difficulty of having some distance to the setting with
the learning algorithm.

Formulation of Alternative Model

In the alternative model, replace the learning algorithm with deterministic functions g1(u, c)
and g2(u, c, a), where g1 prescribes the action of the agent when at the uth context and
at context c, and where g2 prescribes the PMF of the environment’s response at the uth
context, at context c, and when the player has done action a. These two functions replace
the learning algorithm of the agent and the history-dependent PMF of the environment,
respectively.

Given g1(u, c) and g2(u, c, a), a stochastic process is defined over the context tree, which
we subsequently analyze combinatorially and using recursion on the number of visits to each
(context, action) pair. We furthermore assume that for any u, c, a, the PMF given by
g2(u, c, a) places a probability of at least ϵ < |X|−1 at each of |X| possible responses. This
restriction is easily translated to the original setting, by imposing this on the transition
kernel P (Xt|H t−1

t−k , At). In the analysis below, we consider dependence in ϵ in addition to H

and T .
Define u′ as the minimum number of phrases needed to guarantee a total time of at least

T . Then, run the algorithm for u′ time steps, taking a total time of T ′, which is stochastic.

The below bound will be computed in terms of u′, though as u′ = O

(
T

log T

)
from the

previous discussion, the bound can easily be converted into a bound in T .

Bound Setup

We consider the setting of the alternative model with fixed functions g1 and g2. We bound

the expectation of U ′ =
T ′∑
i=1

n
−1/2
t . We write this as

U ′ =
T ′∑
i=1

n
−1/2
t (3.25)
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=
T ′∑
i=1

∑
c,a

n
−1/2
t+1 (c, a)1[ct = c, at = a] (3.26)

=
∑
c,a

nT ′+1(c,a)∑
j=1

j−1/2 (3.27)

=
∞∑
i=1

i−1/2

T ′∑
j=1

1[nj = i] (3.28)

=
∞∑
i=1

i−1/2
∑
c,a

1[nT ′+1(c, a) ≥ i] (3.29)

=

u′|A|∑
i=1

i−1/2
∑
c,a

1[nT ′+1(c, a) ≥ i], (3.30)

where the last equality is due to the number of visited contexts being upper-bounded by u′,
the number of phrases times the number of actions. Hence,

E[U ′] =

u′|A|∑
i=1

i−1/2
E [f(l)] , (3.31)

where we define f(l) =
∑
c,a

1[nT ′+1(c, a) ≥ l], the number of (context, action) pairs that were

visited at least i times.
We claim the bound E[f(l)] ≤ max

(
u′|A|, f̃(u′, ϵ, l)

)
, where

f̃(n, ϵ, l) =

0 n < l

n−ϵ(l−1)
1+ϵ(l−1)

n ≥ l
.

Showing this bound implies that E[f(l)] ≤ max

(
u′|A|, u

′

ϵl

)
, as

u′ − ϵ(l − 1)

1 + ϵ(l − 1)
≤ u′

ϵl
; substi-

tuting into (3.31) gives a bound of E[U ′] = O
(
u′ϵ−1

)
Proof of Bound

We now prove the bound E[f(l)] ≤ f̃(u′, ϵ, l), where

f̃(n, ϵ, l) =

0 n < l

n−ϵ(l−1)
1+ϵ(l−1)

n ≥ l
.
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It is easy to see that for any n1 and n2, f̃(n1 + n2, ϵ, l) > f̃(n1, ϵ, l) + f̃(n2, ϵ, l), and by
induction, this extends to an arbitrary number of ni. We call this property superadditivity,
for short.

Define T(c,a) to be the set of times t for which (ct, at) has (c, a) as prefix, when we
consider the simple concatenation of the stream of actions and responses. Then, define
V l
(c,a) =

∑
t∈T(c,a)

1[nt ≥ l], and define S(c,a) as the set of indices of the phrases that contain the

(context, action) pair (c, a). Extend the notation analogously for (context, action, response)
triples (c, a, x).

We now show the following claim: For any (context, action) pair (c, a) and set S ⊂ [u′]

such that P(S(c,a) = S) > 0,

E[V l
(c,a)|S(c,a) = S] ≤ f̃(|S|, ϵ, l).

We show this claim by strong induction on |S|, and simultaneously for all (c, a). The base
cases 1 ≤ |S| ≤ l − 1 are immediate as V l

(c,a) = 0, due to there being fewer than l visits to
(c, a), so none of its descendants will have l or greater visits.

For the inductive step, consider the stochastic process that splits S(c,a) = S into the sets
S(c,a,x) = Sx, for x ∈ X, based on the PMF given by g2 After this, for each t ∈ S(c,a,x), the
next action is given deterministically from g1, so the split from a set S(c,a,x) = Sx to the sets
S(c,a,x,a′) = S(x,a′), a ∈ A is deterministic.

Therefore, we can write:

E[V l
(c,a)|S(c,a) = S] = 1 + E

[∑
x

∑
a′

E
[
V l
(c,a,x,a′)|S(c,a,x,a′) = S(x,a′)

]]
(3.32)

≤ 1 + E

[∑
x

∑
a′

f̃(|S(x,a′)|, ϵ, l)

]
(3.33)

≤ 1 + E

[∑
x

f̃(|Sx|, ϵ, l)

]
(3.34)

where (3.32) is from the definition of V l
(c,a) and counting the context (c, a) separately from

the descendants; (3.33) is from the induction hypothesis, and (3.34) is from super-additivity.
Next, we index the actions as a1, . . . , aA and the responses as x1, . . . , xX. Define the

indicator random variables yi = 1[|Sxi | ≤ l−1], and make the observation that
|X|∑
i=1

= |S|−1.
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Continuing,

E[V l
(c,a)|S(c,a)] ≤ 1 + E

[∑
x

f̃(|Sx|, ϵ, l)

]
(3.35)

= 1 + E

 |X|∑
i=1

(1− yi)

(
|Sxi | − ϵ(l − 1)

1 + ϵ(l − 1)

) (3.36)

= 1 + E

 |X|∑
i=1

(
|Sxi | − ϵ(l − 1)

1 + ϵ(l − 1)

)
−

|X|∑
i=1

yi

(
|Sxi | − ϵ(l − 1)

1 + ϵ(l − 1)

) (3.37)

≤ 1 +
(|S| − 1)− 2ϵ(l − 1)

1 + ϵ(l − 1)
−

E
[∑|X|

i=1 yi(|Sxi | − ϵ(l − 1))
]

1 + ϵ(l − 1)
(3.38)

=
|S| − ϵ(l − 1)

1 + ϵ(l − 1)
−
∑|X|

i=1 E[yi(|Sxi | − ϵ(l − 1))]

1 + ϵ(l − 1)
, (3.39)

where (3.38) uses the fact that |X| ≥ 2.
We then use the following Lemma, the proof of which is deferred to the appendix.

Lemma 6 Consider a sequence of Bernoulli random variables Y1, Y2, . . ., where Yi ∼ Ber(p̃i),

where 0 < p̃i < 1 for all i ≥ 1. Define Xm =
m∑
i=1

Yi. Then,

1. For fixed m ≥ 2,
P(Xm = j)

P(Xm ≤ j)
is decreasing in j, for 1 ≤ j ≤ m.

2. Suppose p̃i ≥ ϵ for all i. Then, for γ ∈ Z+, E[Xm|Xm ≤ γ] ≥ kϵ.

From this lemma, for every 1 ≤ i ≤ |X|,

E[|Sxi |||Sxi | ≤ l − 1] ≥ ϵ(l − 1) (3.40)

⇐⇒ E[|Sxi | − ϵ(l − 1)|yi] ≥ 0 (3.41)

⇐⇒ E[yi(|Sxi| − ϵ(l − 1))] ≥ 0, (3.42)

so the second term in (3.39) is negative, and so E[V l
(c,a)|S(c,a)] ≤

|S| − ϵ(l − 1)

1 + ϵ(l − 1)
, as desired.

Finally, applying the induction hypothesis on the empty context, and using super-additivity
over the |A| actions yields the bound E[f(l)] ≤ f̃(u′, ϵ, l).

Weakness of Approach

The main weakness of this alternative model is that the distribution of histories through time
T is not captured by any randomization over different possible (g1, g2). This is because the
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learning algorithm involves the actual outcome at a particular time affecting actions made
by the agent in the ancestor nodes in the context tree at a future time; this also applies to
the PMF’s of the environment’s response at invalid contexts.

The conditioning argument for the above bound was valid because the (action, response)
pairs in a node’s subtree does not affect the events that are being conditioned on, which is
at which phrase-times the context will be reached. Applying the inductive argument to the
original setting would thus not be valid due to possible influence on future contexts. As will
be discussed below, however,

3.3.2 Possible Directions

There are several possible directions towards bounding U that can be explored in future
work.

• Considering an adversarial specification of the functions g1 and g2 that instead depend
on possibly the entire history: this resolves the issue of future actions being uncorre-
lated to the outcomes. This approach might be more tractable when only considering
valid contexts, as the environment’s response PMF will be fixed at any given (context,
action) pair, so only the player’s actions will need to be prescribed. This formula-
tion can potentially be handled by similar recursive approaches, though with a more
complicated setup.

• Redoing the previous sub-section with an expected value bound instead: this can
potentially remove some of the multipliers that only arose due to application of Azuma’s
inequality. However, there might be difficulties from loosening the condition that the
value estimates are always an overestimate, as this is invariant is used in some key
steps in the proof.
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Appendix A

Proof of Lemma 6

A.1 Proof of Part 1

For integer l ∈ [0,m], define Sl as the lth elementary symmetric polynomial in (q1, . . . , qm) =(
p̃1

1− p̃1
, . . . ,

p̃m
1− p̃m

)
. Define pl = P(Xm = l), and based on the previous definition,

pl = P(Xm = l) = Sl

m∏
i=1

(1− p̃i).

By Newton’s Inequalities, the elementary symmetric means of (q1, . . . , qm), which are

Sl

(
n

l

)−1

, form a log-concave sequence in l = 0, . . . ,m. As
(
n

l

)−1

is a log-convex sequence

in l = 0, . . . ,m, Sl and thus pl are also log-concave sequences in l = 0, . . . ,m.
We now show that for all 0 ≤ j ≤ m− 1,

P(Xm = j)

P(Xm ≤ j)
>

P(Xm = j + 1)

P(Xm ≤ j + 1)
.

Indeed, taking the difference, and using the fact that pjpi ≥ pj+1pi−1 for all 1 ≤ i ≤ l which
follows from log-concavity of pl,

P(Xm = j)

P(Xm ≤ j)
− P(Xm = j + 1)

P(Xm ≤ j + 1)
(A.1)

=
pj∑j
i=1 pi

− pj+1∑j+1
i=1 pi

(A.2)

=
(pj
∑j+1

i=1 pi)− (pj+1

∑j
i=1 pi)∑j

i=1 pi
∑j+1

i=1 pi
=

pjp1 +
∑j

i=1(pjpi − pj+1pi−1)

(
∑j

i=1 pi)(
∑j+1

i=1 pi)
> 0. (A.3)
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A.2 Proof of Part 2

The statement is clearly true for m ≤ γ. For m > γ, we show it by induction on m, by
showing that the function g(m) = E[Xm|Xm ≤ γ] is non-decreasing in m.

Consider the function
h(m, l) =

P(l ≤ Xm ≤ γ)

P(Xm ≤ γ)
.

Then, g(m) =

γ∑
i=1

h(m, i), so it suffices to show that h(m, l) is non-decreasing in m, over

positive integer m > γ, for each fixed l ≤ γ.
This is equivalent to showing that

h(m+ 1, l)− h(m, l) =
P(l ≤ Xm+1 ≤ γ)

P(Xm+1 ≤ γ)
− P(l ≤ Xm ≤ γ)

P(Xm ≤ γ)
≥ 0.

We use the recurrence relations

P(l ≤ Xm+1 ≤ γ) = P(l ≤ Xm ≤ γ) + p̃m+1P(Xm = l − 1)− p̃m+1P(Xk = γ), and (A.4)

P(Xm+1 ≤ γ) = P(Xm ≤ γ)− p̃m+1P(Xm = γ), (A.5)

which can be computed by casework on the ranges of values of Xm and Ym+1. Finally, we
can evaluate, and substituting (A.4) and (A.5) to (A.7):

P(l ≤ Xm+1 ≤ γ)

P(Xm+1 ≤ γ)
− P(l ≤ Xm ≤ γ)

P(Xm ≤ γ)
≥ 0 (A.6)

⇐⇒ P(l ≤ Xm+1 ≤ γ)P(Xm ≤ γ)− P(Xm+1 ≤ γ)P(l ≤ Xm ≤ γ) ≥ 0 (A.7)

⇐⇒ P(Xm = l − 1)P(Xm ≤ γ)− P(Xm = γ)P(Xm ≤ γ) + P(Xm = γ)P(l ≤ Xm ≤ γ) ≥ 0

(A.8)

⇐⇒ P(Xm = l − 1)P(Xm ≤ γ) ≥ P(Xm = γ)P(Xm ≤ l − 1) (A.9)

⇐⇒ P(Xm = l − 1)

P(Xm ≤ l − 1)
≥ P(Xm = γ)

P(Xm ≤ γ)
, (A.10)

which is true by Part 1.
(To go from (A.7) to (A.8), substitute (A.4) and (A.5) into the relevant expressions,

expand, cancel out the like terms P(l ≤ Xk ≤ γ)P(Xk ≤ γ), and then cancel out the
common factor of p̃m+1. )
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