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ABSTRACT

Cardiac growth and remodeling (G&R) are intricate processes that occur in response to
various physiological and pathological conditions to maintain the optimal function of the
heart. These processes involve complex molecular, cellular, and structural alterations that
influence the size, shape, and function of the heart. Research efforts, utilizing in vitro and
in vivo models, have shed light on the mechanisms of G&R at the cellular and tissue levels.
Clinically, we have access to a wealth of sophisticated information, ranging from 0D (e.g.
pressure, heart rate, and ECG) to 4D (e.g. dynamic MRI and CT) data about our cardiovas-
cular system. However, a significant challenge lies in the interpretation of these data, as they
provide macroscale information and how this links to microscale mechanisms remains poorly
understood. In consequence, a vast amount of clinical data, particularly imaging data, are
employed qualitatively rather than quantitatively. Furthermore, many microstructural dis-
coveries have not yet been fully leveraged for the improvement of diagnostic accuracy and
therapeutic strategies.

The main goal of this thesis is to develop multiscale patient-specific simulations to con-
nect microscale insights and clinically accessible macroscale information. I propose a growth
characterization workflow utilizing in vivo cardiac MRI, kinematic growth modeling, and
inverse finite element method to quantify tissue level growth. Tested on in vivo data of
swine models, this approach showcases the potential of non-invasive measurement of mi-
crostructural growth properties. It also highlights two potential areas of improvements: a
more granular growth analysis currently hindered by the simplified kinematic growth model
and a more efficient process of the inverse analysis, catering to the time-sensitive nature
of clinical practice. To address this, I create a multiscale model using a microstructurally
motivated growth theory . The model enables investigation of changes in different tissue
components (e.g. myocytes and collagen) during the process of G&R and its subsequent
reversal. In addition, I develop a data-driven surrogate model that can efficiently generate
dynamic patient-specific simulations of the left ventricle with mean nodal error below 3 mm.
The surrogate model achieves a speed increase of 4 orders of magnitude compared to the
traditional finite element model, making it ideal for inverse studies in fast-paced clinical
settings.

In summary, this thesis introduces simulation frameworks that effectively quantify G&R
properties, bridge the mechanobiological insights of G&R across different scales, and facilitate
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the generation of personalized models. These advancements represent progress towards the
realization of cardiac digital twins in the realm of clinical practice.

Thesis supervisor: Ellen T. Roche, PhD
Title: Associate Professor of Mechanical Engineering and Institute for Medical Engineering
& Science
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Chapter 1

Introduction

1.1 Motivation

Cardiac growth and remodeling (G&R) refers to the changes that occur in the size, shape,

structure, and functionality of the heart in response to various physiological or pathological

stimuli. Physiological cardiac growth happens during normal development or in response

to regular exercise, leading to a healthy, stronger heart. Pathological remodeling, on the

other hand, typically arises in response to chronic diseases such as hypertension, myocardial

infarction (heart attack), or heart failure. This can result in alterations in the structure of

the heart, such as hypertrophy (increased muscle mass), fibrosis (excess fibrous connective

tissue), and chamber dilation, all of which can diminish cardiac function and lead to further

cardiovascular complications. The molecular mechanisms underpinning these changes involve

complex interactions between cardiomyocytes, fibroblasts, endothelial cells, and various sig-

naling molecules. Understanding these processes can guide the development of therapeutic

strategies for progressive heart failure and other chronic heart diseases.

The research on cardiac G&R can be broadly categorized into experimental and compu-

tational studies. Experimental studies often rely on in vivo models [1, 112, 123, 124], which

are animal models designed to replicate the pathophysiology of cardiac diseases. While
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these models provide valuable insights into the progression of cardiac G&R at various scales,

they come with two important limitations. Firstly, the cross-species difference limits animal

models in representing human pathophysiology accurately. Secondly, the development and

maintenance of these models are costly and time-consuming. More recently, in vitro models

have emerged as a viable alternative for studying cardiac G&R with relatively lower cost and

more precise control of the G&R stimuli [88]. However, these models typically have shorter

lifespan, ranging from days to a few weeks, which restricts the investigation of the long-term

effects. In addition, they are limited to the cellular and tissue levels and do not always

resemble the complexity of the whole organism. Computational studies, on the other hand,

can emulate experimental observations across different scales with significantly lower cost

and shorter timelines. This offers the potential to enhance our understanding of the complex

G&R mechanisms. However, due to computational complexity and lack of patient-specific

data, many of the in silico studies (conducted via computer modeling) were conducted un-

der generalized and somewhat simplistic models. Moreover, these models usually focus on

a specific scale, either at the cellular level or at the organ level without making the con-

nection between them. This motivates the development of computational frameworks that

can integrate with experimental approaches to generate multiscale patient-specific simula-

tions. These frameworks can be used to explore the complex mechanobiological theories of

G&R which are continuously evolving and remain controversial. In addition, the simula-

tions can quantify patient-specific properties that are difficult, if not impossible, to measure

experimentally. Recognizing these unique properties might bolster both diagnosis processes

and the formulation of personalized therapeutic strategies. This thesis presents a proof-

of-concept example of one such framework, delving into advancements in multiscale G&R

modeling and efficient patient-specific simulations, all of which can be further integrated into

the framework.
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1.2 Cardiac growth and remodeling

Cardiac growth can be categorized into two types at the macroscopic level: eccentric

growth – where the ventricular volume increases, and concentric growth – where the ven-

tricular wall thickness increases, as shown in Figure 1.1. At the microscopic level, growth

is the result of increased size of cardiomyocytes. Similar to macroscopic observations, in

vitro studies have shown that cardiomyocytes have two growth phenotypes: longitudinal

and transverse sarcomerogenesis [138]. Moreover, it has been hypothesized that longitudinal

and transverse growth at the microscopic level, result in eccentric and concentric growth at

the macroscopic level, respectively [47]. These distinctions in growth types are important

since different types of exercise induce different types of macroscopic growth – anaerobic

exercise, where the left ventricular (LV) pressure increases significantly within a short time

frame, is typically associated with concentric growth, while aerobic exercise, where LV vol-

ume increases gradually to stably achieve higher cardiac output to match the increases of

oxygen consumption, leads to eccentric growth [36, 81]. Interestingly, similar hypertrophic

phenotypes also appear in pathological conditions. The volume overload condition is usually

caused by myocyte loss due to ischemia, myocarditis, or mitral regurgitation, leading to heart

failure with reduced ejection fraction (HFrEF), or systolic heart failure. On the other hand,

the pressure overload condition is usually related to aortic stenosis and other chronic comor-

bidities such as hypertension, diabetes, and obesity, resulting in heart failure with preserved

ejection fraction (HFpEF), or diastolic heart failure. The etiology of the discrepancy between

physiologic and pathologic growth remains to be elucidated, apart from histological studies

showing that the latter is also accompanied by microstructural remodeling (e.g. interstitial

fibrosis, non-uniform cardiomyocyte alignment, and excessive collagen deposition) [127].
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Figure 1.1: An overview of cardiac growth and remodeling.

1.3 Experimental characterization of growth and remod-

eling

There is a long history of studying myocardial growth experimentally, both in vitro and

in vivo [1, 88]. In vitro studies apply static loads on isolated cardiomyocytes in both longi-

tudinal [74] and transverse directions [138] to mimic the conditions of volume overload and

pressure overload, respectively. These studies have observed sarcomerogenesis in series or in

parallel, and corroborates the current understanding of longitudinal or transverse growth in

response to pathological loading. In vivo studies on cardiac growth rely on small and large

animal models simulating pathological growth resulting from volume or pressure overload [1].

Volume overload models, associated with eccentric hypertrophy, have been generated by ei-

ther cutting the chordae tendineae to induce mitral regurgitation [72, 112], or by implanting

a pacemaker to repeatedly introduce premature ventricular contraction (PVC) [123]. Pres-

sure overload models, typically associated with concentric hypertrophy, have been created

by aortic banding [124, 90], dietary modifications [90, 56], or genetic modifications [70, 134].
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On the other hand, exercised-induced hypertrophic models have also been established in

both small and large animals using swim training, wheel running or treadmill running [130].

Most of these in vivo studies evaluate the effects of growth on cardiac function (e.g. ejection

fraction, cardiac output, hemodynamics) as well as morphological changes of the LV (e.g

relative wall thickness). A few studies have used histology, acquired either ex vivo at the

end of the study or through invasive biopsy, to quantify the level of cardiomyocyte growth

[72, 112, 90] or the changes in collagen fiber orientation [124]. However, due to limitations

associated with ex vivo analysis and the added complexity and risks of in vivo biopsies,

there is a profound paucity of data on the microstructural changes of the myocardium dur-

ing LV growth and remodeling. Thus, the mechanistic link between growth at the organ and

tissue-cellular levels remains poorly understood.

1.4 Computational modeling of cardiac growth and re-

modeling

Computational models that aim to develop quantitative links between growth observa-

tions at the organ level and tissue-cellular level are promising tools to give better insights

into growth mechanisms [88]. Currently, there are two main frameworks to model cardiac

G&R: kinematic growth and constrained mixture growth. The concepts of these two theories

are summarized in Figure 1.2.

The kinematic growth model is a phenomenon-based model that introduces inelastic

volumetric deformation to represent the change in myocardium volume. The total defor-

mation gradient at time 𝑠 (F(𝑠)) can be multiplicatively decomposed into an elastic tensor

(F𝑒(𝑠)) and a growth tensor (F𝑔(𝑠)), such that F(𝑠) = F𝑒(𝑠)F𝑔(𝑠). The growth tensor can

be set explicitly for longitudinal growth F𝑔 = I + (𝜗𝑔 − 1)f ⊗ f , or for transverse growth

F𝑔 = 𝜗𝑔I + (1 − 𝜗𝑔)f ⊗ f , where f is the unit direction of the sarcomere and 𝜗𝑔 is a pa-

rameter representing the level of growth. 𝜗𝑔 can be defined as a function of various growth

19



stimuli (e.g. stress and strain). Due to its simplicity, kinematic growth theory has been

widely applied in modeling cardiac G&R [88]. For example, Gsöktepe et al. [47] used an

idealized bi-ventricular model to simulate both concentric and eccentric hypertrophy. The

model was later extended with a stress-driven law to simulate ventricular growth under con-

ditions of systemic and pulmonary hypertension [105]. A strain-driven law was used with

a four-chamber human heart model and also demonstrated the capability to simulate both

concentric and eccentric hypertrophy [44].

The constrained mixture growth is a microstructure-based model where the tissue

(e.g. myocardium) is considered as a mixture of various constituents. Each constituent con-

tinuously degrades from and reproduces into the existing tissue. The "constrained" in the

name refers to the hypothesis that each individual mass of constituent 𝑖 added at time 𝜏 is

subject to a certain pre-stretch F𝑖
𝑝𝑟𝑒(𝜏), in order to maintain the structure of the whole organ-

ism under external constraints (i.e. forces). The elastic deformation gradient of constituent 𝑖

from time 𝜏 to 𝑠 can be calculated as F𝑖(𝜏)
𝑒 (𝑠) = F(𝑠)F−1(𝜏)F𝑖

𝑝𝑟𝑒(𝜏). The imbalance between

degradation and deposition rates in multiple constituents causes volumetric change of the

body (growth), while the stress difference between the newly added mass (due to pre-stretch)

and the degraded mass results in isochoric deformation of the body (remodeling). The classi-

cal constrained mixture growth model, which requires tracking the reference configuration of

each individual mass added at different time points, is difficult to implement and computa-

tionally expensive. Thereby, the theory has not been used extensively for myocardial growth

modeling, but instead has primarily been used in the context of vascular growth, involving

simplified geometries (e.g. 2D axisymmetric) with isotropic properties [88]. To overcome

this, a homogenized constrained mixture model has been proposed [26] and was recently

implemented to investigate the mechanobiological stability in the left ventricle G&R [42].

Another recent study introduced an updated reference configuration approach to simplify

the mass tracking process in the classical constrained mixture model [48]. This model was

used to simulate different phenotypes of growth in the LV. In this thesis, I will implement
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the homogenized constrained mixture model to study cardiac G&R and its reversal, with

further details to be provided in Chapter 3.

Figure 1.2: Schematic diagram of (a) kinematic growth theory and (b) constrained mixture
growth theory where a body is deformed due to growth and external loads from time 𝜏 to
𝑠. (a) F(𝑠) can be decomposed into an elastic component F𝑒(𝑠) and a growth component
F𝑔(𝑠). (b) In constrained mixture growth, the growth part is constructed by modeling new
components of different constituents continuously being deposited into the current body with
a determined pre-stretch F𝑖

𝑝𝑟𝑒(𝑠). (Figure adapted from Niestrawska et al. [88])

1.5 Patient-specific simulations

The concept of digital twins has a long history in many industries, and it is emerging as

a promising field in healthcare. The idea encompasses many levels, ranging from 0D to 3D

multiphysics simulations, but here, we will focus on 3D physics simulations. Patient-specific

simulation involves creating in silico models based on the unique anatomical, physiological,

or genetic data of a given patient. This approach serves as a cornerstone in personalized

medicine, facilitating accurate diagnosis, virtual treatment planning, and precise surgical ex-

ecution, while also advancing medical education and driving the design and testing of medical

devices. As shown in Figure 1.3, the typical workflow to generate patient-specific simulations

involves several crucial steps. First, patient-specific information (e.g. anatomy, physiological

boundary conditions) is acquired from non-invasive medical imaging (e.g. MRI, CT, and

ultrasound) and/or invasive measurement (e.g. angiography and catheterization). This data
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is then input to a physics simulator (e.g. finite element analysis - FEA, computational fluid

dynamics - CFD, or fluid structure interaction FSI) to provide different types of outputs, such

as pressure, volume, and flow, that can be compared with clinical measurements. However,

the physics simulator often requires more inputs than those available clinically. Therefore, to

validate the simulation, an inverse method is needed to tune these uncertain inputs such that

its outputs match the clinical measurements. The resultant validated patient-specific model,

often referred to as the ’digital twin’ of the corresponding medical application, provides a

precise and personalized means for extracting clinically useful information.

Figure 1.3: The workflow for building patient-specific simulations.

Due to the generality of this process, patient-specific simulations have been built for many

systems in the human body. For example, patient-specific lung simulations were developed

to track lung tumor motion non-invasively [69]. For surgical planning, Jordal et al. [65] used

CFD to build upper airways simulations to assess the effect nasal surgery on patients with

obstructive sleep apnea syndrome. In liver surgeries, preoperative 3D simulation is commonly

used to improve the efficiency of the surgical procedure [85]. In the field of medical device

design, patient-specific head simulations have been used to test a novel insertion device for

the external ventricular drain (EVD) procedure [125].

Patient-specific simulations are used even more often in the cardiac and cardiovascu-

lar system. Due to the sophisticated nature of the cardiovascular system, there are three

main types of simulations: electrical (electrophysiology), fluid (hemodynamics), and struc-
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tural (anatomy) simulations. Personalized electrophysiology models have been mainly used

to simulate ventricular and atrial arrhythmias in order to customize the associated inter-

ventional treatments, such as ablation and cardiac resynochronization therapy (CRT). A

thorough summary of these models can be found in a previous review [87]. In more recent

studies [102, 13], these models were further tested under actual clinical settings to demon-

strate the feasibility of changing the paradigm of ablation procedures. Fluid simulations,

on the other hand, target the cardiovascular system. Patient-specific CFD models can pro-

vide detailed hemodynamic information which is critical in studying vascular diseases (such

as atherosclerosis [63], aneurysms [103] and aortic dissection [22, 23]), planning vascular

interventions (such as coronary revascularization [54], the Fontan operation [39, 76, 114],

and treatments for aortic coarctation [68]), and optimizing cardiovascular devices (such as

stents [68, 122], aortic aneurysm endografts [115], and mechanical circulatory support devices

[46, 79, 92]). Structural simulations are presented in both the cardiac and cardiovascular sys-

tems. Structural simulations of heart can be divided into two categories, static and dynamic

models. Static models are usually used to estimate the elastic properties of the myocardium

[93, 133, 131] and further investigate the stress and strain distributions in the heart at a

specific stage of the cardiac cycle (e.g. end-diastole and end-systole). These properties are

challenging or impossible to measure in vivo. The static models can be further extended to

dynamic models, which aim to recreate the dynamic motions of the heart throughout the

cardiac cycle [38, 27]. They can also be coupled with fluid and/or electrophysiology sim-

ulations to provide holistic insight into the intricate physiology of the heart [113, 129]. In

cardiovascular mechanics, structural models are often used to study the stress distribution

in large vessels (e.g. aorta, pulmonary artery). Excessive wall stress is believed to cause

remodeling of the vessels, leading to aneurysms and dissections. Therefore, static models

[128, 37] that simulate the systolic stage with peak pressure have been generally deemed

sufficient for providing clinically relevant information. Nevertheless, a few studies have also

ventured into using fluid-structure interaction (FSI) models [71, 8].
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1.6 Thesis organization

The objective of this thesis is to create advanced computational frameworks with state-

of-the-art simulation techniques, such as multiscale modeling and data-driven modeling, to

advance the research in cardiac growth and remodeling.

1.6.1 Specific Aims

There are three specific aims presented in this thesis:

1. To develop a computational framework that can quantify myocardium growth proper-

ties from in vivo imaging via patient-specific simulations.

2. To advance the G&R simulations in order to explore the complex mechanobiology of

cardiac G&R, with a potential to provide clinically useful information.

3. To improve the efficiency of patient-specific simulations through the application of

data-driven modeling.

In this thesis, Chapter 2 will focus on Aim 1, demonstrating a workflow that com-

bines in vivo cardiac MRI, patient-specific modeling, and optimization to noninvasively

quantify growth properties of the myocardium. Chapter 3 will address Aim 2 by using

a microstructurally-driven modeling framework to create multiscale simulations and assess

different mechanobiological hypotheses related to cardiac G&R. Lastly, Aim 3 will be ad-

dressed in Chapter 4 where a data-driven surrogate model of the LV dynamic simulation is

introduced. This model demonstrates the potential to expedite the generation of patient-

specific simulations using machine learning techniques. As illustrated in Figure 1.4, Aims 2

and 3 enhance two different elements in the growth characterization workflow presented in

Chapter 2. Future work, which will be discussed in Chapter 5, envisions that by combining

multiscale methods, data-driven modeling, together with in vivo imaging, we can create an
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in silico platform to efficiently generate digital twins of the heart. Such a platform will enable

exploration of the complex interplay of various G&R stimuli, potentially yielding clinically

relevant insights and improving the diagnosis and treatments of chronic heart diseases.

Figure 1.4: An overview of the thesis projects.
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Chapter 2

Development of growth characterization

workflow

2.1 Introduction

Exercise is known to lead to long-term physiological changes in the cardiovascular system

such as an increase in contractility and a decrease in vascular resistance, heart rate and blood

pressure as a result of parasympathetic mediation [36]. In addition, it induces morphologi-

cal changes to the heart, which are typically referred to as cardiac growth or hypertrophy.

Cardiac growth can be categorized into two types at the macroscopic level: eccentric growth

– where the ventricular volume increases, and concentric growth – where the ventricular

wall thickness increases. At the microscopic level, growth is the result of increasing size of

cardiomyocytes and, similarly to the macroscopic observations, in vitro studies have shown

that cardiomyocytes have two growth phenotypes: longitudinal and transverse sarcomero-

genesis [138]. Moreover, it has been hypothesized that longitudinal and transverse growth

at the microscopic level, result in eccentric and concentric growth at the macroscopic level

[47]. These distinctions in growth types are important since different types of exercise pro-

duce different types of macroscopic growth – anaerobic exercise is typically associated with
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concentric growth, while aerobic exercise leads to eccentric growth [36, 81] — and, more

importantly, growth can also be triggered by pathologic causes such as pressure-overload,

with similar hypertrophic phenotypes, but leading to heart failure instead of improved car-

diac function. The root cause of the discrepancy between physiologic and pathologic growth

remains unclear except for histology studies showing that the latter is also accompanied by

microstructure remodeling (e.g. interstitial fibrosis, non-uniform cardiomyocyte alignment,

and excessive collagen deposition) [127].

There is a long history of studying myocardial growth experimentally, both in vitro and

in vivo [1, 88]. In vitro studies apply static loads on isolated cardiomyocytes in the lon-

gitudinal [74] or transverse direction [138] to mimic the conditions of volume overload or

pressure overload, respectively. These studies showed sarcomerogenesis in series or in paral-

lel corroborates the current understanding of longitudinal or transverse growth in response

to these pathological loading. in vivo studies on cardiac growth rely on small and large

animal models of pathological growth resulting from volume overload or pressure overload

[1]. Volume overload models, associated with eccentric hypertrophy, have been generated by

either cutting the chordae tendineae to induce mitral regurgitation [72, 112] or by implanting

a pacemaker to repeatedly introduce premature ventricular contraction (PVC) [123]. Pres-

sure overload models, which are usually linked to concentric hypertrophy, have been created

by aortic banding [124, 90], diet modification [90, 56], or genetic modification [70, 134]. On

the other hand, exercise-induced hypertrophic models have also been created in both small

and large animals by swim training, wheel running or treadmill running [130]. Most of these

in vivo studies evaluate the effects of growth on the cardiac function (e.g. ejection fraction,

cardiac output, hemodynamics) as well as morphological changes of the LV (e.g relative wall

thickness). A few studies have used histology, acquired either ex vivo at the end of the study

or through invasive biopsy, to quantify the level of cardiomyocyte growth [72, 112, 90] or

the changes in collagen fiber orientation [124]. Due to the limitations associated with ex

vivo analysis and the added complexity and risks of in vivo biopsies, there is a profound
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paucity of data on the microstructural changes of the myocardium during LV growth and

remodeling. Thus, the mechanistic link of growth between the organ level and tissue-cellular

level remains poorly understood.

Computational models that try to develop quantitative links between growth observations

at the organ level and tissue-cellular level are promising tools to give better insights into

growth mechanisms [88]. Currently, there are two main types of growth constitutive models:

kinematic growth and constrained mixture growth. Kinematic growth is a phenomenon-

based model which has been used to create FE models for both concentric [47, 44, 105]

and eccentric hypertrophy [47, 112, 44]. Both stress-driven and strain-driven growth laws

have been tested in these studies. Constrained mixture growth is a microstructure-based

model. It has been used mostly in the context of vascular growth which involves simpler

geometry and isotropic properties due to the associated complexity of implementation and

high computational cost [88].

Although computational models provide a powerful platform to test different hypothet-

ical growth mechanisms, large amounts of experimental data either at the tissue level (for

kinematic growth) or at the cellular level (for constrained mixture growth) are required to

facilitate the simulations and validate the models. To date, histology is the most commonly

used approach that can provide details about the microstructural changes of the myocardium.

However, histology is typically limited to in vitro or ex vivo studies. Moreover, it is typically

evaluated in a small number of regions with a reduced field of view. Consequently, it requires

researchers to identify which areas are to be sampled beforehand and, more crucially, it is

challenging to repeat longitudinally on the same subject without invasive biopsy. On the

other hand, non-invasive imaging techniques such as cardiac magnetic resonance (CMR) can

provide information about the macrostructural and functional changes of the heart in multi-

ple pathological and physiological states, including cardiac remodeling [119, 3, 4]. Moreover,

the non-invasive nature of CMR allows imaging of the same subject at multiple time points,

hence, enabling longitudinal studies. The main limitation of CMR compared to histology

28



is its relatively low resolution, on the order of mm, which impedes the direct observation

of cellular shape changes in the heart . In order to perform in vivo assessments of the mi-

crostructural changes occurring during diseases or exercise, it is necessary to bridge the gap

between the macrostructural changes observed with CMR and the underlying microstruc-

tural changes in the myocardium.

With CMR data, FE can be used as a forward model to build subject-specific growth sim-

ulations and predict the LV morphological changes for given growth parameters. Assuming

the governing laws of growth are valid, it is possible to estimate a set of growth parameters

that predict the LV geometry observed post-growth from CMR using iterative optimization

approaches. Such a technique would provide a quantitative link between growth in myocar-

dial microstructure and morphological changes in the LV geometry. However, subject-specific

FE models are computationally expensive and consequently running a large number of it-

erations within an optimization algorithm becomes prohibitive. In this context, Bayesian

Optimization (BO) was developed as a gradient-free optimization technique designed to op-

timize cost functions that are expensive to evaluate. Hence, BO can be used to optimize

over parameterized FE models of the heart without evaluating a grid search, which could

take weeks or months to compute per subject.

The aim of this work is to propose an optimization framework to estimate the microstruc-

tural changes in the myocardial tissue by combining CMR imaging with FE-based computa-

tional models and BO. In short, our approach parameterizes the possible myocardial growth

mechanisms (e.g. transverse or longitudinal growth) within an FE model and then estimates

the growth parameters that best describe the heart geometry observed with CMR after

growth. Since the heart is imaged in its entirety and non-invasively, it is also possible to

assess whole-heart changes and perform longitudinal studies to assess progression within the

same subject. In this study, we illustrated the accuracy of the FE+BO framework by testing

it on multiple synthetic and animal growth models. In all cases, initial and final (post-

growth) geometries were obtained and the FE+BO algorithm was used to predict which
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combination of transverse/longitudinal microstructural growth occurred in the myocardium.

2.2 Materials and Methods

We developed an inverse-problem approach to non-invasively characterize cardiomyocyte

growth from CMR and FE models, as described in Figure 2.1. Specifically, we acquired

two CMR volumes of the LV at two time points – pre-growth (before starting exercise) and

post-growth (after the exercise regime). Next, we built FE models of both LV geometries

and applied hemodynamic loading and pericardial constraints to each. Finally, we applied

cardiac growth to the pre-growth model and used it to estimate the microstructural cardiac

growth parameters that best account for the macrostructural cardiac shape observed in the

post-growth model. The overall method is composed of three main components, the myocyte

growth model, the computational FE model and the estimation of the growth parameters

performed with BO.

2.2.1 Myocardium Kinematic Growth Model

Since we used MRI data as the input information, kinematic growth was chosen instead

of constrained mixture growth as the resolution of MRI is better suited for imaging at the

macrostructural (i.e. tissue) level. Kinematic growth theory introduces volumetric deforma-

tion to a continuum formulation with an approach similar to thermal-elastic coupling. In

other words, the growth resulting from cardiomyocyte hypertrophy is modeled as volume

increase in the myocardium. Within the kinematic growth framework, the total deformation

gradient (F) can be multiplicatively decomposed into an elastic response (F𝑒) and a growth

multiplier (F𝑔) as shown in Equation 2.1. The former is used to determine the stress in the

stress-strain constitutive model and the latter defines the growth magnitude in the three

local orthogonal directions of the cardiac microstructure (fiber, sheetlet, and sheet-normal).
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Figure 2.1: Overview of the workflow used to characterize cardiomyocyte growth. The
workflow contains three modules: (1) in vivo data collection, (2) building finite element model
(FEM) of the pre-growth and post-growth LV geometries with idealized fiber orientation and
boundary conditions (BCs) such as end-diastolic pressure and pericardium constraint, and
(3) growth optimization. (LV - Left Ventricle, BO - Bayesian Optimization)
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F = F𝑒F𝑔 (2.1)

As discussed earlier, cardiomyocytes have two main modes of growth, longitudinal and

transverse growth, which correspond to series and parallel sarcomerogenesis, respectively.

Therefore, we modeled the growth as transversely isotropic, where growth in the fiber di-

rection is associated with longitudinal growth and growth in the sheetlet and sheet-normal

directions are associated with transverse growth. The growth multiplier has the form:

F𝑔 = (1 + 𝛼𝑓 )f ⊗ f + (1 + 𝛼𝑛)(n⊗ n+ s⊗ s) (2.2)

where f, s, and n are unit vectors corresponding to the fiber, sheetlet and sheet-normal

directions that are orthogonal to each other. Similarly, 𝛼𝑓 and 𝛼𝑛 are the longitudinal and

transverse growth coefficients.

For the elastic response of myocardium, the invariant-based hyperelastic model purposed

by Holzapfel and Ogden [55] was used. The strain energy density function of the model is

shown in Equation 2.3, where 𝐼𝑒1 , 𝐼𝑒4𝑓 , 𝐼𝑒4𝑠, and 𝐼𝑒8𝑓𝑠 are invariants of the right Cauchy green

tensor (C𝑒 = F𝑒𝑇F𝑒) and 𝑎, 𝑏, 𝑎𝑓 , 𝑏𝑓 , 𝑎𝑠, 𝑏𝑠, 𝑎𝑓𝑠 and 𝑏𝑓𝑠 are material parameters [55]. The

‘𝑎’ parameters have units of MPa and ‘𝑏’ parameters correspond to an exponential constant

that is dimensionless. The subscripts ’𝑓 ’ and ’𝑠’ indicate the fiber and sheetlet (normal)

directions, respectively. We adopted the material parameters characterized by Sack et al.

[110] from swine models, where 𝑎 = 1.05 kPa, 𝑏 = 7.542, 𝑎𝑓 = 3.465 kPa, 𝑏𝑓 = 14.472, 𝑎𝑠 =

0.481 kPa, 𝑏𝑠 = 12.548, 𝑎𝑓𝑠 = 0.283 kPa, and 𝑏𝑓𝑠 = 3.088.

Ψ =
𝑎

2𝑏
𝑒𝑥𝑝(𝑏(𝐼𝑒1 − 3)) +

∑︁
𝑖=𝑓,𝑠

𝑎𝑖
2𝑏𝑖

{𝑒𝑥𝑝[𝑏𝑖(𝐼𝑒4𝑖 − 1)2]− 1}+ 𝑎𝑓𝑠

2𝑏𝑓𝑠
[𝑒𝑥𝑝(𝑏𝑓𝑠𝐼

𝑒
8𝑓𝑠

2)− 1] (2.3)

In the FE models that will be described in the next section, the elastic material properties
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are kept constant while growth parameters 𝛼𝑓 and 𝛼𝑛 are varied from model to model in the

workflow. With the kinematic growth frame work (Equation 2.1), F𝑒 can be derived from F

and F𝑔, in which the former is computed as the gradient of the continuous deformation map

and the latter is explicitly defined as in Equation 2.2. The second Piola-Kirchhoff stress can

then be computed from Fe and strain energy density function (Equation 2.3) as 𝑆 = 𝜕Ψ
𝜕C𝑒 .

More details of the kinematic growth in the continuum mechanics framework are described

in [44].

2.2.2 Finite Element Model Analysis

Finite element models apply constitutive models that describe the growth behavior at

the tissue level into each element and enable the evaluation of deformation and morphology

changes at the organ level. To start building a finite element model of the LV, a 3D volu-

metric model of its geometry is required. In this study, the LV geometries at end-diastole

were generated from in vivo CMR imaging using semi-automatic segmentation tool Segment

(Medviso) [51]. In order to avoid through-slice discontinuities, the epicardial and endocar-

dial contours from each slice were further smoothed by fitting a smoothing B-spline to the

mask control points along the slice direction [101]. The contours were used to create the 3D

shape of the LV in finite element software ABAQUS 2018 (Dassault Systèmes, Providence,

RI, USA) [31]. The LV was meshed with hexahedron elements (C3D8) with element edge

length of approximately 1.5 mm (i.e. a 1.5 x 1.5 x 1.5 𝑚𝑚3 element), resulting in 4-5 layers

of elements across the myocardial wall. An idealized fiber orientation was applied using the

Laplace–Dirichlet Rule-Based (LDRB) algorithm [9] with epicardial-endocardial helix angle

of -60° to 60°. Standard ABAQUS user subroutines VUHYPER and VUEXPAN [31] were

used to implement the Holzapfel-Ogden hyperelastic model and transversely isotropic growth

model in ABAQUS. To create pericardial constraints at the epicardium, a 3D shell geometry

was obtained from the epicardial surface to model the geometry of the pericardium explicitly.

The pericardium was meshed with quadrilateral shell elements (S4) and modelled as a linear
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elastic material with a Young’s modulus of 10 MPa [73]. A frictionless contact interaction

was applied between the epicardial surface (Γ𝑒𝑝𝑖) and the pericardium surface (Γ𝑝𝑒𝑟𝑖) using

the penalty contact algorithm [31]. A penalty pressure, which is linearly dependent on the

overclosure distance (h), was applied on the two surfaces (Equation 2.4). A Dirichlet bound-

ary condition was applied at the basal plane (Γ𝑏𝑎𝑠𝑒) and the basal ring of the pericardium

(𝐶𝑏𝑎𝑠𝑒−𝑟𝑖𝑛𝑔) to prevent movement of body in the longitudinal direction (Equation 2.4). A

preload step followed by a growth step was implemented into the model. Assuming that the

segmented LV geometry is closed to the stress-free configuration, an end-diastolic pressure

(𝑝𝑒𝑑) of 10 mmHg was applied on the endocardial surface to obtain the preloaded LV shape

in the preload step. The LV pressure was kept constant in the growth step while kinematic

growth in the transverse and longitudinal directions were implemented. All the boundary

conditions of the model are summarized in Equation 2.4 and are indicated in Figure 2.2.

FSn = 𝑝𝑒𝑝𝑖n 𝑜𝑛 Γ𝑒𝑝𝑖

FSn = −𝑝𝑒𝑝𝑖n 𝑜𝑛 Γ𝑝𝑒𝑟𝑖

𝑝𝑒𝑝𝑖 = 2ℎ

𝑢𝑧 = 0 𝑜𝑛 Γ𝑏𝑎𝑠𝑒, 𝐶𝑏𝑎𝑠𝑒−𝑟𝑖𝑛𝑔

FSn = 𝑝𝑒𝑛𝑑𝑜n 𝑜𝑛 Γ𝑒𝑛𝑑𝑜

𝑝𝑒𝑛𝑑𝑜 =

⎧⎪⎪⎨⎪⎪⎩
𝑝𝑒𝑑𝑡 𝑡 ∈ [0, 1] (preload step)

𝑝𝑒𝑑 𝑡 ∈ (1, 2] (growth step)

(2.4)

(where h is the overclosure distance between the two contacted surfaces)

Due to nonlinearities (large deformation, nonlinear material model, and contact) in the

model, the ABAQUS/Explicit solver was used to conduct a quasi-static analysis [31]. The

Explicit Dynamic Analysis in ABAQUS is designed to solve the dynamic equilibrium (Equa-

tion 2.5). When the inertial force (Mü) is small enough, the equation reduces to the static

form of equilibrium and therefore leads to a quasi-static problem. The explicit solver uses
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Figure 2.2: An overview of the LV finite element model. (endo - endocardium, epi - epi-
cardium)

the forward Euler method, in which the equations of motion are updated using previous in-

formation as shown in Equation 2.6 and 2.7. Preload and growth step time periods were set

to 1 using a mass scaling technique and small stable time increments of 5e−6 to ensure that

the kinetic energy was negligible (< 5%) compared to the total energy, as suggested in the

ABAQUS manual for quasi-static analysis [31]. Hence, the “time” is an arbitrary value that

indicates the loading magnitude but does not reflect the actual loading rate. For example,

a growth simulation that linearly increases the transverse growth magnitude from 0 to 𝛼0

can provide intermediate outputs at time 𝑡 ∈ [0, 1] as the solution of growth with trans-

verse growth magnitude equals 𝛼0𝑡. Figure 2.3 illustrates the macroscopic growth produced

by three types of microscopic growth: transverse, longitudinal and isotropic. Transverse

growth increased the wall thickness of the LV, longitudinal growth dilated the LV chamber

and isotropic growth resulted in both wall-thickening and LV chamber dilation. Both the

transverse and longitudinal results agree with clinical observations and histological findings

of eccentric and concentric hypertrophy [45].
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Mü = P− I (2.5)

(where M is the lumped element mass matrix, ü is acceleration, P is the external force

vector, and I is the internal force vector)

u̇𝑖+ 1
2 = u̇𝑖− 1

2 +
∆𝑡𝑖+1 +∆𝑡𝑖

2
ü𝑖 (2.6)

u𝑖+1 = u𝑖 +∆𝑡𝑖+1u̇𝑖+ 1
2 (2.7)

(where u is displacement and u̇ is velocity, the superscript (𝑖) indicates the increment

number and 𝑖− 1
2

and 𝑖+ 1
2

refer to mid-increment values)

Figure 2.3: Different types of growth evolution predicted by the FE model, (A) transverse
growth, (B) longitudinal growth, (C) isotropic growth. (D) Demonstration of transverse and
longitudinal growth directions in a block of myocardium from endocardium to epicardium.
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2.2.3 Growth Parameter Estimation with Bayesian Optimization

The cardiac growth parameters (𝛼𝑓 ,𝛼𝑛) were estimated by maximizing the similarity

between the LV geometries obtained from the growth FE model and from the LV geometry

imaged with the second scan. Specifically, we maximized the DICE score [33] between the

masks of the FE and CMR geometries (𝑀𝐹𝐸(𝛼𝑓 , 𝛼𝑛) and 𝑀𝐶𝑀𝑅, respectively):

max
𝛼𝑓 ,𝛼𝑛

2 | 𝑀𝐹𝐸(𝛼𝑓 , 𝛼𝑛) ∩𝑀𝐶𝑀𝑅 |
| 𝑀𝐹𝐸(𝛼𝑓 , 𝛼𝑛) | + | 𝑀𝐶𝑀𝑅 |

(2.8)

Unfortunately, the cost function in this maximization problem requires solving an FE

growth model over the parameters (𝛼𝑓 ,𝛼𝑛) numerically. Hence, it is non-linear, does not

have an analytical expression and each iteration is computationally expensive (around 2

hours per iteration). These limitations impede using gradient-descent methods [89, 12] and

is computationally infeasible for classical gradient-free methods [86, 100]. Instead, we used

Bayesian Optimization (BO), which is a gradient-free optimization method designed for prob-

lems whose cost function can only be evaluated at discrete points and which are expensive to

compute [64, 91, 60]. At each iteration, BO interpolates the cost function with a Gaussian

process [104] using the samples evaluated in previous iterations and then proposes a new

point to evaluate within a bounded search space. The optimization is effectively performed

in the process of proposing new points to evaluate. These are generated by maximizing

an analytical acquisition function that balances the exploration of the search space against

the exploitation of current local maxima to further improve the current best result. There

have been multiple acquisition functions proposed in the literature, each providing differ-

ent balances between exploration and exploitation [67, 120, 53, 52], and allowing for the

introduction of non-linear constraints to the optimization [52, 5]. In this work, we used the

Upper Confidence Bound [120], which maximizes the following trade-off between the mean

𝜇(𝑥) and variance 𝜎(𝑥) of the Gaussian Process, balanced by the scalar parameter 𝛽:

37



max
𝑥

𝜇(𝑥) + 𝛽𝜎(𝑥) (2.9)

As discussed, the cost function used in BO was the DICE score (DSC) between the

masks of the predicted and imaged LV geometries. Evaluation of this cost function requires

generating a 3D mask of the LV using the 3D coordinates of the nodes that constitute the

FE mesh. In order to generate such mask, we determined which voxels in the 3D volume

belong within the LV by interpolating a binary function in each voxel. Specifically, we

used kernel density estimation with B-spline interpolation (kernel width of 4 voxels) and

interpolated values of ‘1’ at the position of the FE nodes. Finally, we implanted a threshold

for the interpolated values at >0.25 and further filtered the resulting binary mask with a

morphological closing filter with an element size of 6 voxels to avoid holes in the LV. To

ensure that both the FE and CMR masks were aligned, we registered them with a rigid

registration algorithm of their nodes in 3D [84].

2.2.4 Experiments

We tested our method with a series of synthetic experiments and further illustrated its

application in a real scenario with animal models of exercise-induced cardiac growth. All

experiments were done under IACUC-approved protocols at the Massachusetts General Hos-

pital. Four Yucatan swine (2 months old) underwent treadmill exercise training for 12 weeks

and were imaged in vivo at weeks 0, 6 and 12 after onset of exercise (one swine could not

finish exercise before the submission). Cardiac imaging was performed on a 3T clinical MRI

system (MAGNETOM Prisma or a Connectome, Siemens Healthineers, Erlangen, Germany)

set at max 80mT/m gradient strength and a standard 32-channel antero-posterior surface

coil. The animals were anesthetized, placed on a ventilator, and then imaged with a ret-

rospectively ECG gated CINE MRI flow compensated gradient echo sequence (repetition

time = 5.8ms, echo time = 3.2ms, flip angle = 20°, 4 averages, 1.4x1.4x2.5mm3, 25 cardiac
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phases). After imaging, the LV at end-diastole was segmented to generate an FE model

as described in the previous section. The FE model and the LV masks at weeks 6 and 12

were then introduced into the optimization framework to estimate the transverse (𝛼𝑛) and

longitudinal (𝛼𝑓 ) growth of the myocardium. The optimization was performed in python

using the BO implementation in the BoTorch package [6] with Upper Confidence Bound

(UCB) as the acquisition function. The parameter 𝛽, which balances exploration and ex-

ploitation in UCB, was somewhat arbitrarily set to 10 since it provided balance between

the mean and variance of the Gaussian Process estimate after initialization. The maximum

growth was set to 1 (equivalent to doubling of size), resulting into a search space bounded

between 0 and 1 for both growth parameters. The optimization was initialized with 3 sam-

ples of growth parameters set to [0, 1], [1, 0], and [1, 1] and BO was run for 10 iterations.

Given the numerical nature of the quasi-static FE model, it provided intermediate outputs of

growth that could be used as additional samples within the Gaussian Process fitting in BO.

Consequently, each growth simulation provided 5 valid cost-function evaluations between

zero-growth and the selected combination of transverse and longitudinal growth parameters,

and these were introduced into each iteration of the BO algorithm to improve the estimate

of the Gaussian Process. In order to evaluate the results, synthetic growth was applied to

3 LV geometries from the previously described swine models. For each LV geometry, the

ventricle was modified with 6 randomly prescribed transverse and longitudinal growth pa-

rameters. The growth parameters were set to be equal across geometries to reliably compare

the results across subjects. Hence, the resulting synthetic dataset consisted of a total of 18

simulations (3 geometries x 6 growth realizations), each with known ground truth for their

respective growth parameters. In order to avoid committing an inverse crime “noise” was

added in the form of forward model differences between the generation of the synthetic data

and the model used within the optimization. Specifically, the synthetic data were generated

with increased spatial resolution in the FE meshes (element size reduced to 1 mm from 1.5

mm) and smaller increment step size in the quasi-static growth model (reduced from 5E-6
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to 1E-6) in the ABAQUS/Explicit solver. We evaluated the parameter estimation error in

the synthetic experiments with the normalized prediction error between the ground truth

(𝛼𝐺𝑇
𝑓 ,𝛼𝐺𝑇

𝑠 ) and predicted (𝛼𝑝
𝑠, 𝛼

𝑝
𝑓 ) growth parameters:

𝐸𝑟𝑟𝑜𝑟 =

⎯⎸⎸⎷(𝛼𝐺𝑇
𝑓 − 𝛼𝑝

𝑓 )
2 + (𝛼𝐺𝑇

𝑠 − 𝛼𝑝
𝑠)2

𝛼𝐺𝑇
𝑓

2
+ 𝛼𝐺𝑇

𝑠
2

(2.10)

For all experiments, including the real-case examples, we report the final DSC between

the predicted growth model and the true LV geometry, and illustrate the similarity between

LV geometries with 3D plots, as well as contour plots of the LV masks in short and long axis

views.

2.3 Results

An overview of the outputs generated with the FE+BO framework is shown in Figure

2.4. The heatmap in Figure 2.4(A) shows the DSC distribution across two axes of transverse

and longitudinal growth parameters. Regions with high DSC were indicative of good align-

ment between the predicted and true geometries and the parameters with the highest DSC

(typically >90%) were identified as the final prediction (indicated with a blue star). The LV

geometries that correspond to several iterations in the BO optimization are shown in Figure

2.4 B and C. The 3D views (B) provide clear morphology of the predicted and imaged LVs

and the yellow intersection illustrates the volume overlap between them after registration.

Similarly, the 2D contours (C), provide a more detailed comparison between target and pre-

diction in two planes. Figure 2.4 illustrates three samples obtained along the optimization

and sorted from low to high DSCs . The first example (top row) with parameters 𝛼𝑓=0.1 and

𝛼𝑛=1 showed a thickened LV wall and an elongated chamber, compared to the target LV.

The second example (middle row) presented lower transverse growth but higher longitudinal

growth ( 𝛼𝑓=0.4 and 𝛼𝑛=0.4). In this case, the geometry was more similar to the target one

and was characterized by smaller wall thickness and smaller apex-to-base distance. Due to
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larger longitudinal growth, the chamber was more dilated in the radial direction, compared

to the targeted LV. The best example (bottom row) was found for parameters 𝛼𝑓=0.17 and

𝛼𝑛=0.33. Both the 2D contours and the 3D plots are closer to the target LV than that

obtained with the previous examples, albeit the LV size was slightly under-predicted.

Figure 2.4: An overview of the results. (A) Heatmap of DICE scores (DSC) for different sets
of growth parameters. (B) 3D views comparing predicted and targeted geometries at three
different scenarios indicated on the heatmap. (C) 2D contour comparison of predicted and
targeted geometries from the long and short axis views. (1)-(3) indicate three different sets
of growth parameters that were tested during the optimization process. From (1) to (3), the
BO method increasingly finds solutions that improve the DICE score.

The DSC heatmaps of the synthetic experiments are shown in Figure 2.4. These illustrate

how the FE+BO framework was capable of estimating growth parameters in the synthetic

models. In all cases, the DICE score heatmaps resulted in a single local maximum with a

peak in the vicinity of the true parameters. Consequently, the estimated growth parame-

ters were similar to those of the ground truths across different LV geometries and growth
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scenarios. Figure 2.6 (B and C) shows a scatter plot with the estimated and true growth pa-

rameters. Both the estimated transverse and longitudinal growth resulted in good alignment

with the ground truth (points are near the identity line), although these were respectively

underestimated and overestimated (below and above the identity line). Quantitatively, the

normalized error of the growth parameters, shown in Figure 2.6 A, was 5.5±5.8% and there

was no significant difference in error across different LV geometries. The 2D contours of

the predicted and true masks are shown in Figure 2.7. These resulted in good subjective

alignment of the predicted LV geometry and that of the ground truth.

An example of the true end-diastolic LV geometries segmented from MRI along different

time points during the exercise training (week 0, 6, and 12) is shown in Figure 2.8. From

Figure 2.8 D and E, the long-axis view comparisons after rigid registration between the two

geometries show LV chamber elongation and dilation is relatively minimum at week 6 but

substantial at week 12. Similarly, the short-axis views (Figure 2.8 F and G) show that wall

thickening effect is more evident in week 12 than week 6. Quantitative evaluation of LV

shape changes during exercise training are shown in Figure 2.9. The LV (n=4) shows an

increased end-diastolic (ED) volume (Figure 2.9A), and a significant increase in myocardial

volume (Figure 2.9B) as the exercise program progresses. These results are consistent with

eccentric hypertrophy. The results of growth characterization on these four exercised ani-

mals are shown in Figure 2.10. As reported in the synthetic experiments, all DICE score

heatmaps resulted in a single local maximum within the search space. Since this data was

obtained in vivo, there is no ground truth for the growth parameters. However, the esti-

mated parameters consistently resulted in larger longitudinal growth than transverse growth.

In fact, transverse growth values were almost negligible for most of the cases while a con-

tinuous increase in longitudinal growth was observed between weeks 6 and 12, except for

Swine 1. On average, all animals (n=4) that underwent exercise training resulted in growth

parameters ( 𝛼𝑓=0.580±0.196 and 𝛼𝑛=0.040±0.080) at week 6 and ( 𝛼𝑓=0.793±0.156 and

𝛼𝑛=0.078±0.094) at week 12. The estimated growth parameters for each swine and session
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Figure 2.5: DICE score heatmap results of the synthetic experiments. The top row shows
the three LV geometries that were used in the synthetic experiments. The final prediction
and ground truth are indicated in each heatmap as a blue star and red dot respectively. For
each LV geometry, two out of all six cases are shown. The middle row includes examples of
growth that is largely dominated by longitudinal growth (𝛼𝑓=0.9, 𝛼𝑛=0.3) and the bottom
shows examples of growth that is largely dominated by transverse growth (𝛼𝑓=0.1, 𝛼𝑛=0.3).
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Figure 2.6: Quantitative analysis of the results from 18 synthetic experiments. (A) Boxplot
of normalized error across different subjects. (Boxplots show median, interquartile ranges
and whiskers show range. P values were calculated using standard t-test.) (B) Scatter plot
of predicted longitudinal growth vs ground truth longitudinal growth. (C) Scatter plot of
predicted transverse growth vs ground truth longitudinal growth. Dash lines in (B) and (C)
indicate the identity line where predictions with zero error should locate on.

Figure 2.7: Contour plots comparing the predicted and target LV geometry from the short
axis and long axis views. The top row (A) includes the longitudinal growth examples
(𝛼𝑓=0.9, 𝛼𝑛=0.3) and the bottom row (B) includes the transverse growth examples (𝛼𝑓=0.1,
𝛼𝑛=0.3).
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Figure 2.8: A comparison of the LV geometries before and after exercise-induced growth.
(A-C) MRI short-axis views of the LVs at week 0, 6 and 12 during exercise training. (D, E)
Long-axis views comparing week 0 to week 6 and 12 LV geometries. (F, G) Short-axis views
comparing week 0 to week 12 LV geometries. Rigid registrations were performed between
the two geometries in D-G.

Figure 2.9: Quantitative comparisons of LV end-diastolic volume (A) and myocardium vol-
ume (B) between week 0, 6 and 12 during exercise training. (Boxplots show median, in-
terquartile ranges and whiskers show range. P values were calculated using standard t-test.)
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are reported in Table 2.1.

Swine 1 Swine 2 Swine 3 Swine 4
𝛼𝑓 𝛼𝑛 𝛼𝑓 𝛼𝑛 𝛼𝑓 𝛼𝑛 𝛼𝑓 𝛼𝑛

Week 6 0.86 0.16 0.54 0.00 0.40 0.00 0.52 0.00
Week 12 0.65 0.19 0.70 0.00 0.82 0.12 1.00 0.00

Table 2.1: Predictions of growth parameters in four exercised animals at two time points
(week 6 and week 12).

Both the 3D plots and 2D contours of the predicted and target LV geometries are com-

pared in Figure 2.11 for all four animals at week 12. Both visualizations of the LV geometries

show that the FE+BO framework was able to find growth parameters that resulted in sim-

ilar predicted LV geometries to those observed in the in-vivo data. The 2D long-axis views

show that the method tends to underpredict chamber elongation, except for Swine 2. On

the contrary, overprediction on wall thickening is shown in the short-axis views. From the

3D overlapping views, it is clear that rigid registration realigned the two geometries before

calculating the DSC. ED volume and myocardial volume of the preloaded LVs and growth

model predicted LVs at week 6 and 12 are shown in Figure 2.12. The optimized growth

simulations predicted a continuous increase of myocardium volume at week 6 and week 12

similar to experimental measurements in Figure 2.9B. However, the trend for ED volume

elevation, which is shown in the experimental data, was not reproduced in the growth sim-

ulations. This indicates that the pericardium constraint may have been over-estimated in

the FE model such that longitudinal growth did not provide a sufficient level of LV cham-

ber dilation. Overall, the method shows that exercise growth is more prone to longitudinal

growth than transverse growth.
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Figure 2.10: DICE score heatmaps of growth parameter prediction for four exercised animals
at two different time points (week 6 and week 12).
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Figure 2.11: Plots of 3D geometries and 2D LV contours to compare the predicted and
targeted LV geometries of exercised animals at week 12.

Figure 2.12: Quantitative comparison of end-diastolic volume (A) and myocardium volume
(B) between the preloaded LVs at week 0 and the predicted growth LVs at week 6 and week
12. (Boxplots show median, interquartile ranges and whiskers show range. P values were
calculated using standard t-test.)
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2.4 Discussion and Conclusion

The results of synthetic experiments suggest that the proposed FE+BO framework is

capable of estimating the growth parameters of the myocardium with inputs of pre- and

post- growth LV geometries. The overall normalized error was 5.5±5.8% and there were

no significant differences across heart geometries. In the cases with lower level of growth,

especially in the longitudinal direction, the predictions have higher errors. This indicates

that the DSC score is more sensitive to transverse growth than longitudinal growth. All

DICE scores at the optimal parameters were higher than 90%, presented a single global

maxima and the optimized LV geometries were similar to their corresponding ground truths

(Figure 2.6), providing confidence on the stability of the estimated parameters. Moreover,

the results from the animal model predicted significantly higher levels of longitudinal growth

(58% for week 6 and 79.3% for week 12) than transverse growth (4% for week 6 and 7.8%

for week 12). Longitudinally, all animals show an increase of growth level in the longitu-

dinal direction from week 6 to week 12, expect for Swine 1 in which the predicted level of

longitudinal growth reduces from 86% at week 6 to 65% at week 12. Although minimal, the

transverse growth level predicted in Swine 1 and 3 also increases over time during the exer-

cise training process. Performing such longitudinal analysis without the FE+BO framework

would only be possible with invasive and potentially hazardous biopsies of the heart. Overall,

the growth characterization results suggest that exercise-induced myocardial growth is more

prone to longitudinal growth. This is not only consistent with the qualitative LV imaging

comparisons showing LV elongation and dilation (Figure 2.8 and 2.9), but also agrees with

the literature where running – categorized as aerobic exercise – has been reported to lead to

eccentric hypertrophy with longitudinal growth at the cardiomyocyte level in different species

[36, 81]. However, the predicted level of growth in the longitudinal direction is much higher

than reported cardiomyocyte dimensional increase (15-35%) from literature [130]. This dis-

crepancy is likely due to the over-simplified FE model with generalized material properties,
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fiber orientation and hemodynamic boundary conditions such that it cannot simultaneously

represent concentric and eccentric hypertrophy. In order to refine the subject-specific model,

myocardium properties can be characterized using CINE data and dynamic LV models and

more realistic fiber orientation can be assigned using cardiac structural information from

diffusion tensor imaging data [111]. While LV pressure is difficult to assess non-invasively,

the preload step could be improved by using the early-diastolic filling geometry [141] in-

stead of the end-diastolic geometry as the reference configuration such that the preloaded

LV configuration is more representative of the ED state. Despite its computational cost,

an even more rigorous approach would be to use inverse methods to identify the stress-free

LV configuration so that the subsequent preloaded LV geometry should be equivalent to the

true ED geometry [131, 106]. Moreover, the cardiac growth process in the swine models

was monitored from 2 months old to 6 months old during which time the animals also grow

in size. Thus, the results we are seeing may not only contain exercise-induced growth but

also physical growth where the LV mass increases as the body weight increases. Further

validation of our results with histology is warranted.

The current growth model was designed to characterize growth with two unique pa-

rameters for the entire geometry. However, spatially heterogeneous growth is prevalent in

patients with hypertrophic cardiomyopathy [75]. To address spatially dependent characteri-

zations, the current model could be extended to include a parameterized spatial distribution

of growth and optimize those parameters. Moreover, this framework can be further extended

to more sophisticated growth laws (e.g. stretch-driven growth and strain-driven growth). An

example of such a model is the work by Costabal et al. [112], who introduced a probabilistic

model to connect sub-cellular remodeling to strain-driven myocardium growth. Combination

of this method with our current FE+BO framework and optimization of biologically signifi-

cant parameters such as magnitude, rate, and biomechanical driving factors of growth could

yield interesting mechanistic findings. To further improve the capability of our framework

to investigate growth at the cellular level, a constrained mixture model can be incorporated.
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Despite its complexity and high computational cost, this model can provide a more power-

ful framework to reveal the mechanistic link between biomechanics at the organ level and

biological factors at the tissue-cellular level [88]. Implementing these growth models into

our framework would enable efficient in silico testing of different growth hypotheses with

multi-scale models.

Furthermore, this framework is not limited to growth parameter characterization. Ideally,

it can be used as a generic method to characterize material parameters as long as the unde-

formed and deformed geometries of the object are given in the application. Theoretically, it

would be possible to run a grid search parametric study to determine the optimal parameters

in these models. However, grid search quickly becomes computationally intractable in the

context of FE models due to their expensive computationally costs (around 2 hours with 10

CPUs for each evaluation). For example, for an accuracy of 90% in the growth model pre-

sented, it would be needed to compute a grid search with spacing of 0.05. This search would

require computing 400 simulations, resulting in 800h (33.3 days) of computation. Instead, the

FE+BO approach resolved the maxima within 10 iterations, corresponding to about 20h of

computation. Similarly, classical optimization methods (e.g. Simplex, Monte-Carlo) would

not be feasible due to the high computational costs of each FE model evaluation. These

limitations are set to increase with more complex growth models (longer compute time) or

increased dimension of the parameterization (exponentially larger search space). Moreover,

the current FE+BO method could be further modified to improve its accuracy and speed-to-

convergence. One immediate source of improvement is to modify the acquisition function to

incorporate knowledge of the multiple samples generated during the quasi-static FE model

evaluations. Currently, we incorporate these samples in the Gaussian process estimation,

but the optimization of the acquisition function is done with off-the-shelf UCB, which as-

sumes a single evaluation of the cost function will be provided. This modification would

facilitate more efficient sampling of the search space in each BO iteration. Similarly, the

selection of the trade-off 𝛽 parameter in UCB should be done more systematically before the
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first iteration to balance the mean and variance of the Gaussian Process estimated during

initialization.

2.4.1 Limitations

The experimental limitations arise from two aspects: (1) acquisition of the MRI data and

(2) segmentation of the LV geometry. The MRI data was acquired with two different scanners

with different resolutions (mostly 1.4x1.4x2.5 mm with two exceptions of 1.3x1.3x2.5 mm

and 1.8x1.8x6 mm). Lower resolution could reduce the accuracy of segmented LV geometry.

The data was acquired along the short axis of the LV, and the actual positions of where the

first and last slices reach the base and apex of the LV affect the length of the reconstructed

LV geometry. Slice thickness of 2.5 mm is large enough to compare the growth magnitude,

especially in the longitudinal direction. Therefore, one or two long axis views of MRI should

be acquired and used in future segmentations. A semi-automatic segmentation approach

was used in this study and then manually corrected to identify the LV contours in Segment

(Medviso)[51]. Further, there are motion artifacts and distortion around the free wall due to

field homogeneity caused by the liver. The automatic segmentation method underperforms in

these regions and manual corrections are subjective. A more robust automatic segmentation

method should be used with minimal manual correction in order to increase reproducibility

and reduce human bias.

Another limitation of this framework is introduced by the selection of boundary conditions

and tissue properties in the FE model. Model mis-specification can lead to errors in the

optimization and result in unrealistic growth parameters. Identifying which models and

parameters are most important for an accurate growth selection will be essential in future

work. During the development of this study, we found that pericardial constraints are critical

for creating realistic concentric hypertrophy in the transverse growth model. In this context,

constraints from the pericardium and surrounding tissue at the epicardial surface is even

more difficult since there is no clear consensus in the literature about what model to use for
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dynamic heart modeling. Some studies propose explicitly creating surrounding structures

[40], while others propose using “spring-dashpot” surrogates [98] to apply the constraints in

dynamic heart modeling. Both models demonstrated the importance of including pericardial

constraints on dynamic heart modeling. However, these models might not be applicable in

the context of cardiac growth modeling since the heart undergoes gradual deformation at

a much longer time scale. Within these time periods, the pericardium and surrounding

tissue are likely to undergo their own remodeling, hence changing the constraints to the

LV growth. Applying a constant linear elastic material models on the pericardium is likely

to over-constrain the epicardium resulting in severe wall-thickening and chamber volume

reduction which is shown in Figure 2.12. For future work, it will be important to consider the

remodeling of pericardium and surrounding tissue so that more realistic boundary conditions

can be applied to the FE model. In addition to the pericardial constraints, sensitivity studies

on the LV pressure boundary condition and the initial configuration should be conducted.

In this study, the ED state was used for the initial configuration since it is the state that can

be consistently identified with CINE MRI and is a geometry that is relatively unaffected by

external forces compared to the end-systolic state. For future studies, the growth simulation

could be initiated from alternative configurations in the diastolic part of the cardiac cycle

(e.g. early-diastolic filling, or diastasis) with different diastolic pressure boundary conditions

to check whether the growth optimization results are sensitive to any of these variations.

A limitation of the synthetic experiments is the simplistic source of “noise” added to

the generated data which could lead to an overestimation of the accuracy of the synthetic

results. In future work more representative noise could include segmentation variability [121],

and the post-growth geometry could be generated with a more biologically relevant growth

model (e.g. stress/strain-driven growth or constrained mixture growth) to further evaluate

the framework performance. However, with our current implementation, such growth models

are computationally impractical for whole LV geometries. Further validation is warranted for

the animal experiments by comparing histological imaging results to the growth parameters
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estimated by the model [112].

2.4.2 Conclusion

In summary, this study introduces a Bayesian optimized framework that can be used

to non-invasively characterize growth at the tissue level at multiple time points. The FE

modeling in this framework enables discernment of mechanistic links between macrostruc-

tural imaging and microstructural changes at the tissue level. As such, we believe that the

framework can be a powerful tool to reveal fundamental insights into myocardial growth

and remodeling mechanisms. In the future, this framework could facilitate the longitudinal

study of multiple physiological and pathological conditions and may have practical utility in

assessing cardiac disease progression or response to therapy.
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Chapter 3

Using constrained mixture growth

theory to simulate cardiac growth and

remodeling

3.1 Introduction

Growth in biological tissue is a broad-ranging process, impacting all organs and stages

of life, from the subcellular to the organ level. It begins with the turnover of biological ma-

terials within cells, leading to cell division and differentiation, and culminates in significant

morphological changes in every organ. This omnipresent process spans from the rapid physi-

ological growth seen in newborns to the cell proliferation in disease states during adulthood.

Given its pervasiveness, studying growth becomes essential. Understanding these growth

dynamics can provide crucial insights, contributing to therapeutic advancements, improved

disease management, and the overall progress of biomedical science.

By considering the way growth alters a body, it can be broken down into three distinct

processes: growth, remodeling, and morphegenesis. ’Growth’ indicates the change of mass

and volume. ’Remodeling’ represents the evolution of material properties (e.g. stiffness, fiber
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structure). ’Morphogenesis’ refers to formation of new tissues and organs achieved through

reorganization and differentiation of cells. From a spatial perspective, growth can happen

at a tip (e.g. growth of neurons), on a surface (e.g. formation of teeth, skin regeneration

and healing), or in a within a volume (e.g. any organ development, solid tumor formation).

In adult hearts, the growing process is considered volumetric and has both the growth and

remodeling aspects.

Cardiac growth and remodeling (G&R), especially within the left ventricle (LV), can be

broadly categorized based on both the anatomical changes and the underlying physiological

or pathological triggers responsible for those changes. Physiological hypertrophy, often in-

duced by exercise, is marked by an increase in both chamber size and wall thickness without

the presence of fibrosis or fetal gene expression. In contrast, pathological G&R, commonly

provoked by pressure or volume overload, are frequently linked with upregulation of fetal

gene, fibrosis, and dysfunctional myocyte [80]. Specifically, pressure overload usually leads

to concentric hypertrophy, manifesting macroscopically as increased wall thickness and mi-

croscopically through parallel sarcomerogenesis with substantial fibrosis. Volume overload

typically results in eccentric hypertrophy, expressing macroscopically as wall thinning and

ventricular chamber dilation, and microscopically characterized by sarcomerogenesis in series

with minimal fibrosis [66]. Interestingly, both physiological and pathological growth exhibit

some degrees of reversibility, often in response to the removal of the growth stimuli. For

example, in exercise-induced growth, the reverse remodeling occurs once training is ceased

or reduced [94]. Conversely, pathological growth may be reversed through the implantation

of the left ventricular assist device (LVAD), which is a pump designed to redirect blood flow

from the LV to the aorta for heart failure patients. It has been shown that in patients,

when the failing heart is unloaded by the LVAD, the native heart is also under-going reverse

remodeling [17]. Therefore, understanding the underlying mechanisms and reversibility of

cardiac G&R holds significant clinical interest.

In silico models of cardiac biomechanics play an important role in the pursuit of un-
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derstanding cardiac G&R as previously reviewed by others [140, 88, 118]. Predominantly,

these efforts have utilized the kinematic growth theory [108], multiplicatively decomposing

deformation into elastic and growth-related components. Within this framework, various

growth constitutive laws, either strain-driven or stress-driven, have been purposed to model-

ing concentric and/or eccentric hypertrophy [136]. More recent studies, including ours shown

in Chapter 2, incorporated imaging data and machine learning to identify different growth

characteristics [95, 112, 35]. Although these studies demonstrated the efficacy of the kine-

matic growth framework, they also highlight a critical limitation: the inability to capture

remodeling and changes in tissue properties resulting from microstructure variations.

The constrained mixture growth theory [59], which describes the turnover of each tissue

component separately, has emerged as an ideal alternative for modeling such microstructural

adaptations. Historically, this modeling framework has been applied primarily to vascular

G&R due to its computational complexity and challenges in generalizing to 3D. However,

the recent introduction of a simplified model known as the homogenized constrained mix-

ture model [26] has significantly reduced computational demands and has been successfully

extended to 3D [15]. These advancements open up exciting possibilities for employing this

microstructurally motivated theory to recreate the complex processes that occur during car-

diac G&R.

The main goal of this study is to leverage the homogenized constrained mixture model

(HCMM) to develop multiscale simulations of cardiac growth and remodeling (G&R), thus

connecting experimental findings from cellular to organ levels. In particular, we implement

the HCMM to simulate cardiac G&R triggered by an increase in left ventricular (LV) end-

diastolic pressure, also known as the LV pre-load. Moreover, the model is extended to

simulate reverse remodeling (RR) brought about by LVAD intervention. We demonstrate

the capability of using the model to tack the changes of various tissue components throughout

the G&R process and its reversal. By employing the RR model, we conduct in silico studies

to investigate the effects of LVAD implantation time on RR, as well as the influence of
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intrinsic growth parameters on this process. These studies substantiate the potential of such

a multiscale model to serve as a platform to explore therapeutic interventions for heart failure

patients and provide clinically useful information, thereby enhancing patient-specific care.

3.2 Materials and Methods

In this section, we first provide a brief overview of the fundamental frameworks of con-

tinuum mechanics, within which the constrained mixture growth theory is established. Fol-

lowing this, we delve into the homogenized constrained mixture theory (Section 3.2.2) and

its realization in modeling myocardium G&R (Sections 3.2.3 to 3.2.7). Finally, we describe

the bi-ventricular finite element model following with a demonstration of its application in

simulating the reverse remodeling process.

3.2.1 Basics of Continuum Mechanics: Kinematics and Equations

of Motions

Let a continuous body with reference configuration B0 ⊂ R3 undergo a deformation to

the current configuration B𝑡 at time 𝑡 ≥ 0. The deformation gradient F = 𝜕x
𝜕X

describes a

mapping from the reference material point X ∈ B0 to its current position x(𝑡,X) ∈ B𝑡. The

determinant, also known as the Jacobian (𝐽 = |F|), therefore maps the reference volume

elements 𝑑𝑉 to the deformed volume elements 𝑑𝑣 = 𝐽𝑑𝑉 . For incompressible materials, the

Jacobian is equal to 1.

For hyperelastic material models, a constitutive equation for the strain energy density

Ψ(F) defines the material behavior with the first Piola-Kirchhoff stress:

P =
𝜕Ψ

𝜕F
(3.1)

By definition, the Cauchy stress (𝜎) and the second Piola-Kirchhoff stress (S) can be written
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as the following:

𝜎 =
1

𝐽
PF𝑇 (3.2)

S = F−1P =
𝜕Ψ

𝜕E
(3.3)

where E = 1
2
(C − I) = 1

2
(F𝑇F − I) is the Green-Lagrange strain tensor, C is the right

Cauchy-Green tensor, and I is the identity tensor.

Since the G&R happens under very long time scales (days to weeks), the process is

modeled under a quasi-static assumption where the balance of linear momentum can be

written as

∇ ·P+ 𝜚0b0 = 0 (3.4)

where 𝜚0 is the mass density per unit reference volume, and b0 is the body force per unit

mass. Unlike in the classical continuum mechanics, mass density in the constrained mixture

model is changing over time and can be computed from the mass density in the reference

configuration as:

𝜚 =
𝜚0
|F|

(3.5)

3.2.2 Homogenized Constrained Mixture Model of Myocardium

In HCMM, the total deformation gradient is decomposed into the elastic part (F𝑖
𝑒) and

the in-elastic part (F𝑖
𝑔𝑟) for each individual constituent 𝑖 (Equation 3.6). The latter is also

known as the growth and remodeling part which can be further decomposed into F𝑖
𝑔 and F𝑖

𝑟

(Equation 3.7).

F = F𝑖
𝑒F

𝑖
𝑔𝑟 (3.6)

F𝑖
𝑔𝑟 = F𝑖

𝑟F
𝑖
𝑔 (3.7)
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F𝑒 describes the elastic deformation of the body due to external forces and therefore is

the only deformation gradient the strain energy density function depends on. On the other

hand, F𝑖
𝑟 captures changes in microstructure due to stress imbalance and F𝑖

𝑔 is associated

with the change of mass per unit reference volume due to mass imbalance during the turnover

process. Under this framework, three types of constitutive relations are needed, in addition

to the proper initial and boundary conditions, to close the system of equations and enable

computation of the mechanical equilibrium configuration of the body at each time instance.

(1) The mechanical constitutive equations that define the strain energies 𝑊𝑖 for the Cauchy

stress to compute the elastic material behavior. (2) The mechanobiological constitutive

equations that define the evolution of the remodeling deformation gradient. (3) The changes

in mass densities depending on mechanical stimuli that determine the evolution of the growth

deformation gradient. (2) and (3) are also known as the growth laws.

Mechanical constitutive laws: The myocardium is considered to have three types of

constituents, elastin (𝑒𝑙), collagen (𝑐𝑜), and myocyte (𝑚𝑦). The total mass density per unit

reference volume is therefore:

𝜚0 =
∑︁

𝜚𝑖0 (𝑖 = 𝑒𝑙, 𝑐𝑜,𝑚𝑦) (3.8)

Similarly, the total strain energy function per unit reference volume is:

Ψ =
∑︁

Ψ𝑖 =
∑︁

𝜚𝑖0𝑊
𝑖 (3.9)

where Ψ𝑖 and 𝑊 𝑖 are the strain energies per unit reference volume and mass of each con-

stituent, respectively. For all constituents, hyperelastic material models, which are widely

used for modeling biological tissues, are chosen as their strain energy density equations. In

particular, the elastin matrix is modeled with a 3D Neo-Hookean model as:

𝑊 𝑒𝑙
3𝐷 =

𝜇

2
(𝑡𝑟(C̄𝑒𝑙

𝑒 )− 3) (3.10)
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Both collagen and myocyte are considered as quasi-1D materials aligning with the unit direc-

tion vector a𝑖
0 in the reference configuration. And their inelastically deformed intermediate

configuration can be represented as:

a𝑖
𝑔𝑟 =

F𝑖
𝑔𝑟a

𝑖
0

|F𝑖
𝑔𝑟a

𝑖
0|

(𝑖 = 𝑐𝑜,𝑚𝑦) (3.11)

Under this assumption, both collagen and myocyte are modeled using a quasi-1D Fung-type

constitutive law as:

𝑊 𝑖
1𝐷 =

𝑘𝑖
1

2𝑘𝑖
2

(𝑒𝑘
𝑖
2(𝐼

𝑖
𝑎−1)2 − 1) (𝑖 = 𝑐𝑜,𝑚𝑦) (3.12)

where 𝐼 𝑖𝑎 = C𝑖
𝑒 : (a𝑖

𝑔𝑟 ⊗ a𝑖
𝑔𝑟) = C𝑖

𝑒 : A𝑖
𝑔𝑟 = 𝜆𝑖

𝑒
2 is the pseudo-invariant. (Note that an

arbitrary direction tensor a𝑚 ⊗ a𝑚 is abbreviated as A𝑚 and we will use these expression

interchangeably henceforward.) The quasi-1D material implies incompressibile behavior. In

order to enforce the incompressibility of the myocardium as a whole, an additional volumetric

penalty term is included for the elastin extracellular matrix as:

𝑊𝑣𝑜𝑙 = 𝜀(|F𝑒𝑙
𝑒 | − 1)2 (3.13)

Therefore, Equation 3.9 becomes:

Ψ =
∑︁

𝜚𝑖0𝑊
𝑖 +𝑊𝑣𝑜𝑙 (3.14)

Growth and remodeling constitutive laws: In the constrained mixture theory, differ-

ent constituents are assumed to undergo continuous deposition and degradation at different

rates, where new mass deposits with pre-stress 𝜎𝑖
𝑝𝑟𝑒 at a rate �̇�𝑖0+ ≥ 0 while extant mass de-

grades at rate �̇�𝑖0− ≥ 0. This results in a net rate of mass production �̇�𝑖0 = �̇�𝑖0+ − �̇�𝑖0−, which

is also known as mass turnover. Growth and remodeling are the results of mass turnover.

Therefore, in order to model the mechanobiological behaviors of growth and remodeling,

we first need to construct a mass production law. Here, we assume the mass production is
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driven by the difference between the stress in the current state and in the homeostatic state,

resulting in the following constitutive relation:

�̇�𝑖𝑜(𝑡) = 𝜚𝑖0(𝑡)𝑘
𝑖
𝜎

𝜎𝑖 − 𝜎𝑖
ℎ

𝜎𝑖
ℎ

(3.15)

where 𝑘𝑖
𝜎 is the growth rate, 𝜎𝑖

ℎ = 𝜎𝑖
ℎ : A𝑖

0 is the homeostatic stress at the fiber direction a𝑖
0,

and 𝜎𝑖 = 𝜎𝑖
𝑅 : A𝑖

0 is the current corotated stress (𝜎𝑖
𝑅 = R𝑇𝜎𝑖R) at the fiber direction a𝑖

0.

Growth is a result of imbalanced mass turnover (i.e. �̇�𝑖𝑜(𝑡) = 0) which is in general

associated with volume changes in the current body. Therefore, it has to happen in the

mixed material level. In other words, all constituents are experiencing the same growth

deformation gradient (i.e. F𝑔 = F𝑖
𝑔). Here, we implemented anisotropic growth in direction

a𝑔 which results in the following form of growth deformation gradient:

F𝑔 =
𝜚0(𝑡)

𝜚0(0)
(a𝑔 ⊗ a𝑔) + (I− a𝑔 ⊗ a𝑔) (3.16)

Remodeling, which describes the change of microstructure in the tissue, is the result of

mass turnover in general. It is assumed to only happen in collagen and myocyte as the

elastin turnover rate is small enough to be neglected. The remodeling deformation gradient

in quasi-1D materials can be written as:

F𝑖
𝑟 = 𝜆𝑖

𝑟A
𝑖
0 +

1

𝜆𝑖
𝑟

(I−A𝑖
0) (3.17)

where 𝜆𝑖
𝑟 is the remodeling stretch. It is worth pointing out that, unlike growth, remodeling

exists even under balanced mass turnover (i.e. �̇�𝑖𝑜(𝑡) = 0). This is due to the fact that

newly added mass has a pre-stress (𝜎𝑖
𝑝𝑟𝑒) which is different from the current Cauchy stress

(𝜎𝑖) of the extant mass that is being degraded. This will therefore change the traction-free

state leading to microstructural adaption in the tissue. According to Cyron et al. [26], the
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evolution equation of F𝑖
𝑟 can be derived into:

[︂
�̇�𝑖0(𝑡)

𝜚𝑖0(𝑡)
+

1

𝑇 𝑖

]︂ [︀
S𝑖 − S𝑖

𝑒

]︀
= 2

𝜕S𝑖

𝜕C𝑖
𝑒

: C𝑖
𝑒L

𝑖
𝑟 (3.18)

The remodeling velocity gradient (L𝑖
𝑟) is defined as:

L𝑖
𝑟 = Ḟ𝑖

𝑟(F
𝑖
𝑟)

−1 (3.19)

and can be further simplified under the quasi-1D assumption as:

L𝑖
𝑟 = �̇�𝑖

𝑟

[︂
1

𝜆𝑖
𝑟

(
3

2
A𝑔𝑟 −

1

2
I)

]︂
(3.20)

with the initial pre-stretch 𝜆
𝑖(0)
𝑟 = 1/𝜆𝑖

𝑝𝑟𝑒.

3.2.3 Pre-stress

The in vivo configuration of biological tissue is in general not a stress-free configuration.

According to the constrained mixture theory, each constituent has its own stress-free con-

figuration and is under stress in the in vivo configuration. At a healthy (preferable) in vivo

configuration, this stress is defined as the homeostatic stress (𝜎𝑖
ℎ) and the associate stretch

is the homeostatic stretch (𝜆𝑖
ℎ). Homeostatic stretches for both collagen and myocyte are

explicitly defined to yield specific homeostatic stress according to Braeu et al. [15]. On the

other hand, the 3D elastin matrix, which has a low turnover rate [24] and therefore is not

subject to G&R, does not have a homeostatic configuration to be maintained. This provides

an opportunity to implicitly define the elastin pre-stretch deformation gradient locally such

that it can counter the deformation due to external loads and internal stresses applied from

collagen and myocyte. In other words, the elastin pre-stretch can recover the in vivo config-

uration under physiological external loads and internal pre-stress. Here, we use a pre-stress

algorithm [83] to iteratively calculate the elastin pre-stretch deformation gradient such that
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it can yield a pre-stressed configuration that is similar, if not identical, to the in vivo con-

figuration. This pre-stress procedure starts from applying external loads and pre-stretches

(F𝑖
𝑝𝑟𝑒 = 𝜆𝑖

ℎA
𝑖
0+1/

√︀
𝜆𝑖
ℎ(I−A𝑖

0)) of collagen and myocyte which result in global deformation

(F ̸= 1). The elastin pre-stretch deformation gradient is then iteratively updated as:

F𝑒𝑙
𝑘+1,𝑝𝑟𝑒 = FF𝑒𝑙

𝑘,𝑝𝑟𝑒 (3.21)

where F𝑒𝑙
0,𝑝𝑟𝑒 = I. This process is repeated until the maximum nodal displacements between

the in vivo reference configuration and the pre-stressed configuration falls below a prescribed

tolerance, 𝜉 = 0.01.

3.2.4 Model Implementation and Material Parameters

The HCMM of myocardium was implemented as a user material subroutine (UMAT)

in Abaqus/Implicit [31] via Fortran. The UMAT requires five steps of simulation which

is demonstrated schematically in Figure 3.1. First, the nodal coordinates at the reference

configuration are saved. Second, external loads and pre-stretch of the collagen and myocyte

are applied resulting in a global deformation. Third, the pre-stress algorithm is applied

to calculate the pre-stretch deformation gradient of the elastin as well as the homeostatic

stresses of the collagen and myocyte. Forth, a growth stimuli (e.g. a variation in external

loads) is applied to shift the stress deviate from its homeostatic condition. Finally, the

growth and remodeling is initiated, aiming to bring the entire body back to mechanobiological

homeostasis. Material parameters for myocardium are summarized in Table 3.1. Both the

G&R parameters and elastic parameters of the collagen were adapted from Braeu et al. [15]

while the elastic parameters of the elastin and myocyte were adapted from Xi et al. [137].
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Figure 3.1: Five simulation steps in the HCMM UMAT.
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Name Parameter Value
Collagen elastic parameters 𝑘𝑐𝑜

1 568.0E6 [𝑚𝐽/𝑘𝑔]
𝑘𝑐𝑜
2 11.2 [ ]

Myocyte elastic parameters 𝑘𝑚𝑦
1 6.74E6 [𝑚𝐽/𝑘𝑔]

𝑘𝑚𝑦
2 9.147 [ ]

Elastin elastic parameters 𝜇 6.0 [𝑀𝑃𝑎]
𝜀 6.0E3 [ ]

pre-stretch 𝜆𝑐𝑜
𝑝𝑟𝑒 1.062 [ ]

𝜆𝑚𝑦
𝑝𝑟𝑒 1.1 [ ]

Density 𝜚0 1.1E-9 [𝑡/𝑚𝑚3]
Volume fraction 𝜙𝑐𝑜

0 0.026 [ ]
𝜙𝑚𝑦
0 0.7 [ ]
𝜙𝑒𝑙
0 0.274 [ ]

Turnover time 𝑇 𝑐𝑜 101 [days]
𝑇𝑚𝑦 101 [days]

Growth gain 𝑘𝑐𝑜
𝜎 0.2/𝑇 𝑐𝑜

𝑘𝑚𝑦
𝜎 0.2/𝑇𝑚𝑦

Table 3.1: Summary of material parameters

3.2.5 Collagen fiber families

While the myocyte are oriented only in the global fiber direction x0, the collagen fibers

point in several directions, surrounding the myocyte. To simulate remodeling in the blood

vessel plane [15], four directions of the collagen were used, the reason being that the G&R is

realized by a change in the density 𝜚𝑖0 w.r.t the volume in the reference configuration. This

means that for remodeling from the 0∘ to the 90∘ fiber to occur, there must be comparable

to the ansatz-functions within a finite element, an additional diagonal fiber that allows the

interchange between the two orthogonal directions. We extend this to a 3D case where

13 fiber directions are considered, as shown in Figure 3.2, with three fibers parallel to the

axes, two fibers between each axis pair, and four fibers in the diagonal directions that allow

remodeling between the orthogonal planes.

Having different groups of collagen fibers arranged in various directions provides extra

flexibility to adjust the elastic material behavior at the mixed level. Even the elastic param-

eters of each constituent are fixed, we can tune the elastic response of the entire myocardium
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Figure 3.2: Fiber directions of the collagen in the myocardium.

model by adjusting the volume fractions of each group of collagen fibers. The volumes of 13

collagen families are set with five volume fraction parameters:

𝜙𝑥

𝜙𝑦 = 𝜙𝑧

𝜙𝑥𝑦+ = 𝜙𝑥𝑦− = 𝜙𝑥𝑧+ = 𝜙𝑥𝑧−

𝜙𝑦𝑧+ = 𝜙𝑦𝑧−

𝜙𝑥+𝑦+𝑧+ = 𝜙𝑥+𝑦+−𝑧+ = 𝜙𝑥−𝑦+𝑧+ = 𝜙𝑥−𝑦−𝑧+

(3.22)

where the volume fraction of each fiber family is 𝜙𝑐𝑜𝑙
𝑖 = 𝜙𝑐𝑜𝑙𝜙𝑖 with

∑︀
𝜙𝑐𝑜𝑙
𝑖 = 𝜙𝑐𝑜𝑙. We tuned

the parameters to match the elastic response of the Holzapfel-Ogden model [55] (same as

Equation 2.3) in a single cube element under the biaxial test. The Isight engine (Simulia,

Providence,RI) was used coupling with Abaqus [31] for this parameter optimization task
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Parameter 𝜙𝑥 𝜙𝑦 𝜙𝑥𝑦+ 𝜙𝑦𝑧+ 𝜙𝑥+𝑦+𝑧+

Value 0.1008 0.1178 0.0001 0.2091 0.0612

Table 3.2: Volume fraction parameters of collagen fiber families

where the objective function was defined as:

∑︁
𝑖

(𝜎𝑖,𝐻𝐶𝑀𝑀 − 𝜎𝑖,𝐻𝑂)
2 𝑖 ∈ {𝑥, 𝑦} (3.23)

with the constraint

∑︁
𝑖

𝜙𝑖 = 𝜙𝑥 + 2𝜙𝑦 + 4𝜙𝑥𝑦+ + 2𝜙𝑦𝑧+ + 2𝜙𝑥+𝑦+𝑧+ = 1 (3.24)

The NLPQLP algorithm was used for the optimization with default settings. The opti-

mal volume fraction parameters are summarized in Table 3.2 with the stress-strain curves

comparison shown in Figure 3.3.

Figure 3.3: Stress-strain curve fitting results with optimized collagen volume fraction pa-
rameters from Table 3.1.
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3.2.6 FE Model Setup

The bi-ventricular geometry was reconstructed from an in-house ex vivo cardiac MRI

dataset. The geometry was mesh with 235625 tetrahedron elements. Idealized fiber ori-

entation with helix angle varying transmurally from -60° at the epicardium to 60° at the

endocardium was applied using a rule-based algorithm [9]. To account for the expansion

constraint imposed by the surrounding tissues, the epicardium was subjected to a spring-like

boundary condition with stiffness of 0.1 𝑘𝑃𝑎/𝑚𝑚 [98]. In the healthy condition, end-diastolic

pressure of 4 𝑚𝑚𝐻𝑔 and 5 𝑚𝑚𝐻𝑔 were applied on to the endocardial surfaces of the RV and

LV respectively. The basal nodes were fixed in the longitudinal direction and their radial

and circumferential displacements are coupled to the two basal centroids of the left and right

ventricular rings. To induce growth and remodeling, the LV pressure was further increase to

15 𝑚𝑚𝐻𝑔 to mimic the pressure overloaded condition.

3.2.7 Reverse Remodeling Simulation

To model reverse modeling induced by LVAD intervention, the overloaded LV pressure

was simply reduced back to normal after certain time of growth. This mimics the pressure

relief due to LVAD intervention. Using the same method, we created two in silico studies

trying to answer two hypothetical questions: 1) Does implantation of the LVAD timing affect

reverse remodeling? and 2) How do intrinsic growth parameters affect reverse remodeling?

To look at LVAD implantation time effects, three cases (early, mid, and late LVAD implanta-

tion) were created by simply reducing the LV pressure at different time point of growth. To

explore the second question, we investigate the effects on changing two parameters, myocyte

growth rate and collagen growth rate, both of which were increased 25% from the baseline

values.
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3.3 Results

3.3.1 G&R under an increase of LV pre-load

The HCMM model was used to model myocardium G&R induced by increase of LV

end-diastolic pressure (pre-load) in a bi-ventricular model (Figure 3.4 (a)). The changes of

stresses in different constituents and wall thicknesses in different regions of the LV during

the G&R process are shown in 3.4 (b) and (c), respectively. Stresses in both the myocyte

and fiber direction (f) collagen successfully return to their homeostatic states after growth.

Stresses of collagen in the sheetlet (s) and sheetlet-normal (n) directions significantly in-

crease at the beginning of growth but eventually return below the homeostatic stress. Wall

thickening is more significant at the apex than the free wall. In contrast, the septal wall

thickness decreases at the end of growth. Figure 3.4 (d) shows the contour plots of nor-

malized density change of different constituents after growth being stabilized. Locally, the

growth of all constituents is localized around the endocardium. Density change profile of

the myocyte has a similar pattern but higher magnitude than collagen (f). The collagen

families in the orthogonal directions (s and n) have lower level of density change mainly

concentrated at the septum and free-wall of the endocardium. Quantitatively, Figure 3.5

shows the changes of densities (growth) and remodeling stretches over time in the entire

LV field. Both myocyte and collagen (f) average densities are increased by over 30%. The

average densities of collagen (s) and (n) are slightly reduced by 16% and 8%, respectively.

Remodeling stretches of myocyte and collagen (f) are both increased by around 5% while

decreasing by around 1.5% for collagen (s) and (n). For all metrics, the standard deviation

increase during the process of growth, indicating that the field becomes more inhomogeneous

as G&R proceeds.
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Figure 3.4: Simulation results of growth under increase of left ventricular (LV) pre-load. (a)
A bi-ventricle finite element model; (b) plots of myocyte and different directional collagen
stresses change during the process of G&R, dashed lines indicate the associated homeostatic
stresses; (c) changes in wall thickness over time; (d) changes of densities in different con-
stituents after growth.

Figure 3.5: Quantitative results of growth and remodeling in different constituents under LV
pressure overload. Each solid line represents the change of average density or stretch over
the entire left ventricle during G&R. One standard deviation within the LV myocardium is
shown as the shaded area indicating the variability of the field.

71



3.3.2 Parametric study

A parametric study was conducted to explore the effects of LV pre-load, myocyte growth

rate, and collagen growth rate on the G&R behaviors of different constituents. By further

increasing the LV pre-load from 15 𝑚𝑚𝐻𝑔 to 25 𝑚𝑚𝐻𝑔, the growth effects of most con-

stituents are amplified as shown in Figure 3.6. All these metrics in the LV field become more

inhomogeneous which led to a divergence of the simulation. Before the simulation reaches

numerical issues, the average densities of myocyte and collagen (f) increase up to 75% while

the atrophy of collagen (s) and (n) decrease. In fact, collagen (n) change from atrophy (re-

duce by 8%) to growth (increase by 3%). In terms of remodeling, myocyte and collagen (f)

are further stretched by over 6% while collagen (s) and (n) shrink by over 3%.

By increasing the myocyte growth rate from 0.2 to 0.25 (Figure 3.7), the growth of

average myocyte density increases from 40% to 47% while all collagen densities are slightly

reduced (less than 5%). Myocyte and collagen (f) remodeling stretches are decreased while

remodeling shrinking gets more severe in collagen (s) and (n). As shown in Figure 3.8,

increasing the collagen growth rate from 0.2 to 0.25 manly increases the average density of

collagen (f). Although average densities of collagen (s) and (n) remain the same, their field

inhomogeneity increase. Remodeling across all four constituents remain similar comparing

to the baseline.

3.3.3 Simulations of reverse remodeling

Reverse remodeling (RR) was simulated by remove the excessive LV pre-load which can be

clinically achieved by implanting LVAD. As shown in Figure 3.9, myocyte density is reduced

close to the healthy condition, with small growth effect remains at the endocardium, at the

end of RR. Quantitatively, the average myocyte density remains 12% higher than the healthy

condition.

Using this RR simulation, two hypothetical questions were explored. 1) How does LVAD
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Figure 3.6: Effect of increasing LV overloaded pressure on growth and remodeling of different
constituents. Blue curves represent the baseline case (15 𝑚𝑚𝐻𝑔) and orange curves represent
the severe case (25 𝑚𝑚𝐻𝑔).

Figure 3.7: Effect of increasing the myocyte growth rate on growth and remodeling of dif-
ferent constituents. Myocyte growth rate is increased from 0.2 (blue) to 0.25 (orange).
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Figure 3.8: Effect of increasing the collagen growth rate on growth and remodeling of different
constituents. Collagen growth rate is increased from 0.2 (blue) to 0.25 (orange).

implantation time effect RR? 2) How does the intrinsic growth rates effect RR? The result

of LVAD implantation time effect is shown in Figure 3.10. Excessive pre-load was removed

at three different time points, representing scenarios of early, mid, and late LVAD implan-

tation. In general, the further we let growth continue without LVAD intervention the more

inhomogeneous the fields of these constituents will become. Although all densities are de-

creasing during RR, they do not return back to normal. The level of inhomogeneity at the

end of RR is directly related to how long this uncontrolled growth last. To look at G&R

of each constituents, myocyte and collagen densities stay higher when uncontrolled growth

last longer. RR changes the collagen (s) and collagen (n) from atrophy to growth but the

densities are converged to similar level regardless of LVAD intervention time. Similarly, the

remodeling stretch levels in myocyte and collagen (f) also reverse back to normal in all cases.

In collagen (s) and (n) the remodeling stretch cannot fully recover back to normal. The later

the LVAD intervention is introduced, the less recovery happens. Effects of increasing my-

ocyte growth rate and collagen growth rate were investigated. According to Figure 3.11, with

74



higher myocyte growth rate, all average densities remain similar to the baseline while the

field inhomogeneity get severer in myocyte and collagen (s) at the end of RR. Remodeling

stretches are also similar to baseline except of collagen (s) and (n) whose stretches are slightly

reduced. With higher collagen growth rate (Figure 3.12), density field inhomogeneity of all

families of collagen increase while the average values remain close to the baseline. There is

no significant change of remodeling stretch in all constituents.

Figure 3.9: Results of reverse remodeling. The top contour plots represent normalized
myocyte density before growth (left), after growth (middle), and after reverse remodeling
(right). The black arrow in the average myocyte density graph indicates where LV pressure
is reduced back to normal to trigger reverse remodeling.
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Figure 3.10: The effects of LVAD implantation time on reverse remodeling. Three cases,
early (green), mid (orange), and late (blue) LVAD implantation, are compared. The black
arrows in the top left figure indicates when the implantation is triggered.

Figure 3.11: The effects of large myocyte growth rate on on reverse remodeling. Myocyte
growth rate is increased from 0.2 (blue) to 0.25 (orange).
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Figure 3.12: The effects of large collagen growth rate on on reverse remodeling. Collagen
growth rate is increased from 0.2 (blue) to 0.25 (orange).

3.4 Discussion and Conclusion

In this work, we successfully used the homogenized constrained mixture model [15] to

simulate cardiac G&R under increased LV pre-load. Through this multiscale approach, we

were able to track the change of individual components of the myocardium (i.e. myocyte,

collagen, and elastin) throughout the G&R process. The model was further extended to

study reverse remodeling (RR) induced by LVAD intervention. The study showed that both

the timing of LVAD intervention as well as innate growth properties significantly affect the

RR outcomes of different constituents.

3.4.1 G&R under increase of pre-load

The bi-ventricular model successfully simulated G&R under an increase of pre-load. At

the organ level, the simulation shows an increase in wall thickness which agrees with the

pathophysiology of concentric hypertrophy under the pressure-overloaded condition [66].
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Although the simulation provides the details of evolution of each constituent during G&R,

the lack of experimental studies, especially in the context of myocardium G&R, limits our

ability to validate the behavior at such a granular level. Through the parametric study,

it becomes evident that increasing the level of growth triggers (e.g. pre-load) augments

not only the level of G&R but also the field inhomogeneity, which could potentially lead

to instability. In general, increasing the growth rate of one constituent reduces the level

of G&R of the other constituents. The growth rate of myocyte has a stronger effect than

that of collagen on G&R. An increase in the growth rate of myocyte significantly amplifies

myocyte G&R and reduces G&R across all collagen families. Conversely, an increase in the

growth rate of collagen primarily boosts the growth of collagen in the fiber direction.

3.4.2 Reverse Remodeling

There is emerging interest in studying reverse remodeling (RR) since it can provide guid-

ance on therapeutic strategies. As a proof-of-concept study, we chose to simulate RR under

LVAD implantation. Our in silico study reveals that prolonged uncontrolled growth dimin-

ishes the level of RR following LVAD intervention, a finding supported by a retrospective

clinical study [117] that observed benefits from early LVAD intervention. The same study

noted better RR responses in women, hinting at innate biological factors impacting RR. Al-

though the current model cannot simulate the effects of gender differences, we explored the

effects of innate growth properties on RR responses. Interestingly, our results show that the

effects of increasing myocyte or collagen growth rate on G&R are counterbalanced during

RR. Consequently, the final RR states remain similar compared to the baseline, regardless

of these changes. Similar to how these two parameters affecting G&R, the myocyte growth

rate exerts noticeable RR effects on myocyte and collagen (s) and (n), while the collagen

growth rate mainly impacts the density of collagen (f).
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3.4.3 Limitations and future work

The limitations of this work fall into three different areas: HCMM implementation, FE

simulation, and model validation. It is crucial to discuss these limitations as they offer

insights into potential avenues for future research.

HCMM implementation: In this study, the implementation of the HCMM closely

followed the aortic G&R example [15], incorporating necessary modifications to the me-

chanical constitutive equations, collagen fiber orientations, and pre-stress algorithm to suit

cardiac G&R specifics. While we adopted the stress-driven growth law following the ex-

ample, the question of whether cell growth is indeed stress or strain-driven is a topic of

ongoing debate [58], warranting the exploration of alternative growth laws in future studies.

In addition, the direction of growth is currently defined explicitly in the transverse direc-

tion of the myocyte (Equation 3.16), assuming the volumetric growth happens as parallel

sarcomerogenesis. Further implementation should include a general growth direction ten-

sor to enable multidirectional growth as purpose in the aortic example [15]. Although the

HCMM is much more efficient compared to the classical constrained mixture model, the

simulations remain computationally intensive. For instance, the bi-ventricular model with

235k of tetrahedron elements requires 14.5 hours to run on a single CPU. Some aspects of

the UMAT subroutine implementation can be further optimized to improve the computa-

tional efficiency. First, separating the pre-stress steps from the growth steps would allow

for multiple growth scenarios to be tested without repeating pre-stress steps. This could be

achieved by using two UMAT subroutines: a pre-stress UMAT and a growth UMAT. The

pre-stress UMAT would calculate and output a file to record element-wise pre-stretch values,

which the growth UMAT could then read for initialization. Second, the UMAT subroutine

could benefit from utilizing predefined functions from the GNU Fortran compiler to avoid

redundant computation. Third, enabling parallel execution of the HCMM UMAT using the

Intel Fortran Math Kernel Library (MKL) would leverage the multiprocessing capabilities
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of Abaqus, potentially speeding up the process.

FE simulation: For the purpose of demonstrating the HCMM modeling capability,

a number of simplifications were made in both the pressure overload simulation and the

following RR simulation. For example, the pericardium spring-like boundary condition is

defined with a constant stiffness. However, recent research, include our own study shown

in Chapter 2, has shown that the pericardium boundary condition substantially influences

both the phenotype and the level of growth [97, 35, 42]. Additionally, to avoid having extra

active stress parameters, the end diastolic phase is chosen to define the homeostatic state,

while the precise definition and understanding of this homeostatic state remains somewhat

elusive. Similarly, RR simulations only modeled pressure unloading at the end-diastolic

state, while in reality, patients with LVADs can experience reductions in both systolic and

diastolic pressures and develop unique hemodynamic profiles [21, 62]. Therefore, dynamic

simulations that model a full cardiac cycle should be used to account for these hemodynamic

changes. In general, these FE simulation setups should be rigorously tested and defined to

better represent and study the specific pathophysiology of G&R.

Model validation: We quantitatively show that both the pressure overloaded model

and the RR model align with current understanding of cardiac G&R at the macroscale level.

However, the evolution of microscale changes has not been validated due to the lack of exper-

imental data on myocardium microstructure. To validate the model rigorously, it is essential

to have experimental data at multiple levels, encompassing everything from the elastic and

G&R properties of each constituent to the evolution of the microstructure. Significant efforts

have been made to characterize constrained mixture growth parameters of the aorta [135],

utilizing tension-controlled biaxial testing data [126]. A similar method could be employed

to determine the parameters for the myocardium. However, challenges arise due to the more

complex microstructure and three-dimensional geometry of the myocardium, compared to the

planar geometry typically found in vessel walls. Consequently, multi-directional mechanical

tests [55] are essential to properly determine the extensive set of material parameters specific
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to the myocardium. Turnover parameters, such as growth rate, will need to be ascertained

based on longitudinal studies with animal models. Although many in vivo models have been

developed to study chronic heart diseases [72, 112, 123, 90, 56], longitudinal information

regarding different myocardium constituents is notably lacking, and the information varies

widely between studies, as summarized in [88]. The collagen microstructure variations are

even less reported [124]. Nevertheless, the advent of newer, more controllable animal models

[99, 82], together with advanced microstructural imaging [96], holds promise for gathering

more comprehensive and consistent G&R data, which will be critical for the development

and validation of the myocardium HCMM.

In conclusion, we have demonstrated that the HCMM model can be used to simulate

cardiac growth and remodeling as well as the reversal process. This type of in silico model

can be used to rapidly test hypothetical G&R mechanisms as well as explore potential

therapies for reversing G&R in chronic cardiac diseases. Validation of the model would

require further experimental data to characterize the microstructural properties and the

evolutionary behavior of the myocardium. Finally, this multiscale model can be further

integrated with the inverse workflow described in Chapter 2 to achieve a more comprehensive

quantification of patient-specific growth properties.
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Chapter 4

Efficient patient-specific cardiac

simulations using data-driven surrogate

models

4.1 Introduction

Patient-specific models of biomechanics in cardiovascular medicine typically comprise

computational models tailored to the unique anatomical and physiological characteristics of

individual patients. Constructed through high-resolution medical imaging techniques such

as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT), these models em-

ploy computational methods and inverse analysis to accurately capture cardiovascular tissue

properties and mechanical loads, enabling a comprehensive exploration of the intricate in-

teractions between tissue mechanics, hemodynamics, and electrophysiology within the car-

diovascular system [14]. The essence of inverse analysis lies in its ability to extract hidden

information from observed data, such as determining the mechanical properties of tissues

from their deformation and stress patterns [93, 133], making it a key component in the

development of patient-specific models. Once generated, these patient-specific models can
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play a critical role in numerous medical applications, including improving the accuracy of

diagnosis [132], facilitating the planning of treatments [20, 116], and potentially predicting

the progression of cardiovascular diseases [34]. The ultimate goal of this approach is to in-

form and personalize treatment, further emphasizing the importance of patient specificity in

cardiovascular medicine.

Developing patient-specific simulations for the cardiovascular systems presents signifi-

cant computational challenges. The reliance on comprehensive physics simulations, such as

finite element (FE) models, necessitates numerous iterative runs through inverse analysis to

accurately determine personalized system parameters. This requirement for extensive com-

putational resources forms a significant barrier to translating these promising technologies

into routine clinical practice.

Several strategies have been explored to mitigate the extensive computational costs as-

sociated with patient-specific cardiovascular simulations. Notable strides have been made

due to advancements in computing technology. A recent study successfully reduced the

simulation time of a whole-heart model from days to a few hours using GPU acceleration

[129]. Despite these impressive advancements, such a timeline remains prohibitive for rou-

tine applications in fast-paced clinical settings. Alternatively, other methodologies focus

on augmenting the modeling framework itself to enhance computational efficiency. For in-

stance, lumped parameter models (LPM) simplify the cardiovascular system into 0D models,

significantly reducing the computational burden [41]. However, this approach risks sacrific-

ing much of the individualized information that lends value to patient-specific simulations.

Reduced-order modeling offers another route towards reduced computational load. This

strategy employs a set of radial basis functions to project the full-dimensional model onto

a lower-dimensional space, thus simplifying the computational task [11, 16]. More recently,

data-driven modeling has emerged as a promising solution [29, 16, 78, 7]. This approach

utilizes neural network-based surrogate models to learn and exploit the correlation between

system parameters and output predictions, thereby bypassing the need for computationally
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expensive simulations.

In this work, we explore the potential of accelerating patient-specific cardiac simulation

through the data-driven approach, harnessing the power of current deep learning techniques.

Specifically, we develop a surrogate model utilizing a transformer-based architecture to pre-

dict left ventricle (LV) dynamics and global hemodynamics. We take a holistic approach,

combining a customized automatic meshing tool with a robust FE model to generate a diverse

dataset of dynamic LV simulations. The LV anatomies and dynamics in the dataset are fur-

ther transformed into low-order representations via principal component analysis (PCA). The

transformer-based model is then trained to predict dynamics within this reduced-dimensional

space.

The surrogate model achieves improvement in speed of 4 orders of magnitude compared to

the FE model, while maintaining an acceptable degree of accuracy. Given its efficiency, this

surrogate model is ideally suited for carrying out inverse analyses, where it can replace the

computationally demanding FE simulator as the forward model to expedite the identification

of patient-specific parameters and the generation of patient-specific simulations.

I present the key methodologies in Section 4.2 including the creation of the LV simula-

tion dataset as well as the details of the surrogate model. In Section 4.3, we compare the

predictions of the surrogate model with the FE solutions in terms of 3D cardiac motion as

well as clinically relevant metrics such as ejection fraction, systolic pressure, and diastolic

pressure.

4.2 Materials and Methods

The proposed LV surrogate model uses transformer-based architecture to predict LV

motion in a reduced order space, as illustrated in Figure 4.1. The success of this model

hinges on the use of personalized LV meshes with consistent topology in building the FE

simulation dataset. As detailed in Section 4.2.1, we developed a workflow to automatically
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Figure 4.1: An overview of the LV surrogate model.

generate these meshes from segmented cardiac MRI data using elastic morphing. The FE

model and the simulation dataset built upon this set of topologically consistent meshes are

described in Section 4.2.2. We used principal component analysis (PCA) to create two

reduced order models, a shape model and a displacement model, from the dataset. A LV

reference (i.e. end-diastolic) geometry can be reconstructed from a shape latent vector using

the shape model. Similar, a displacement filed can be recovered from a displacement latent

vector using the displacement model. These two reduced order models are elaborated upon

in Section 4.2.3. Lastly, the transformer-based model, which takes a shape latent vector and

FE model parameters as inputs and autoregressively predicts a sequence of displacement

latent vectors, is described in Section 4.2.4.

4.2.1 Automatic LV mesh reconstruction

The automated LV meshing workflow, depicted in Figure 4.2, includes two key steps.

The first step extracts segmented cardiac MRI data to form the epicardial and endocardial

surfaces of the LV. In particular, the epicardial and endocardial rings along with a LV cen-

troid are extracted from each slice. One inherent characteristic of cine cardiac MRI is the

misalignment between slices posing a challenge to 3D reconstruction [30]. To overcome this,

multislice alignment is performed by shifting slices following a centroid-based cubic smooth-

ing spline. This process allows the shifted epicardial and endocardial rings to form more

realistic epicardial and endocardial surfaces, respectively, The same cubic spline approxima-

tion algorithm is used to further smooth the surfaces and reconstruct a realistic apex. The
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Figure 4.2: The workflow of automatic LV meshing. (Epi - epicardial, Endo - endocardial,
cMRI - cardiac MRI.)
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second step converts the epicardial and endocardial surfaces into a patient-specific LV mesh

using an elastic morphing technique. Specifically, an idealized LV mesh (a truncated ellip-

soid) with 23069 hexahedral elements is used. Nodes from the epicardial and endocardial

surfaces are projected onto their corresponding patient-specific surfaces. These projection

vectors are subsequently used as surface nodal displacements driving the idealized LV to

elastically morph to the patient-specific geometry. The workflow was used to generate LV

meshes from the M&Ms open dataset [19], which contains 290 sets of cine cardiac MRI with

both left and right ventricles labeled at the end-diastolic phase.

4.2.2 Dynamic FE model

Figure 4.3: An overview of the dynamic LV model. (LV - left ventricle, LA - left atrium, AV
- aortic vale, Sys - systemic resistance, PV - pulmonary valve, MV - mitral valve.)

The dynamic FE model was developed in Abaqus/Explicit [31]. It contains a high fidelity

FE model of the LV coupled with an open-loop lumped parameter model (LPM) representing
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the circulatory system as shown in Figure 4.3. The LV model uses the patient-specific

LV mesh assigned with an idealized fiber orientation (epicardial to endocardial helix angle

varying from -60° to 60°) following our previous approach [35]. Similarly, the LV basal nodes

are fixed in the long-axis while the radial and circumferential displacements are coupled to

the basal centroid. The myocardium material model is adapted from the Dassault Systèmes

Living Heart Human Model [139] where an incompressible Holzapfel-Ogden hyperelastic

model (Equation 4.1) [55] is used for the passive behavior coupling with an active stress

model (Equation 4.2) [49] for contraction during systole. The active stresses are added in

both the fiber (f) and normal (s and n) directions as shown in Equation 4.4. The baseline

material parameters inherent from [139] are summarized in Table 4.1. Prior to simulating

the cardiac dynamics, a two-step pre-load procedure is conducted, where the end-diastolic

pressure of 8 𝑚𝑚𝐻𝑔 is applied to the endocardial surface followed by a pre-stress process

[43] to recover the MRI-reconstructed LV geometry under diastolic pressure loads. The LPM

contains three compliance chambers and four unidirectional valves which are represented by

the "fluid cavity" and "fluid exchange" modules in Abaqus, respectively. The pressure (𝑃 )

and volume (𝑉 ) relationship inside a Fluid Cavity chamber is governed by Equation 4.5 with

a compliance property (𝜅). The flow (Q) between two chambers is governed by Equation 4.6

with a valve resistance (𝑅). The total of 7 LPM parameters are summarized in Table 4.2. To

couple the LV and the LPM models, the LV chamber is also defined as a fluid cavity chamber

connecting with the atrium and arterial chambers through the mitral valve and aortic valve,

respectively. The pressure in the LV fluid cavity chamber is applied to the endocardial surface

of the LV model after the pre-load procedure. The time-varying pressure in the LA chamber

is explicitly defined in order to mimic realistic atrial contraction during end-diastole. As

shown in Figure 4.4, the model outputs motion, stress and strain fields of the LV as well as

pressure and volume tracings of different chambers. In order to reduce the number of input

variables in the LV model, the linear (𝑎𝑖) and exponential (𝑏𝑖) terms in Equation 4.1 are

subject to uniform scaling by scalar multipliers 𝑐𝑎 and 𝑐𝑏, respectively. In addition, all active
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parameters except for 𝑇𝑚𝑎𝑥 are assumed to be constant across different patients. This results

in a total of 10 input variables in the dynamic FE model. To further reduce the parameter

space, a sensitivity analysis was conducted to investigate the impact of each variable on the

pressure-volume loop of the LV. Each parameter was varied in increments between 0.25 to

2.5 times of its baseline value and the associated pressure-volume loop was evaluated. The

sensitivity analysis further reduced the number of input variables into 6, which are 𝑐𝑎, 𝑐𝑏,

𝑇𝑚𝑎𝑥, 𝜅𝐴𝑂, 𝑅𝑀𝑉 , and 𝑅𝑠𝑦𝑠.

This dynamic LV model with 6 input variables was employed to obtain a dataset of LV

simulations. 275 patient-specific LV meshes were created from the M&M dataset [19] using

the automated meshing workflow. 270 meshes were used twice to generate 540 patient-

specific LV simulations where the input parameters were sampled via a Sobol sequence.

Additionally, a test dataset (n=50) was created by using the surplus 5 LV meshes - each

was applied with 10 extra sets of input variables produced by the Sobol sequence. To ensure

convergence, the model was run for 4 cardiac cycles providing a total of 80 frames for each

simulation.

Ψ =
𝑎

2𝑏
𝑒𝑥𝑝(𝑏(𝐼𝑒1 − 3)) +

∑︁
𝑖=𝑓,𝑠

𝑎𝑖
2𝑏𝑖

{𝑒𝑥𝑝[𝑏𝑖(𝐼𝑒4𝑖 − 1)2]− 1}+ 𝑎𝑓𝑠

2𝑏𝑓𝑠
[𝑒𝑥𝑝(𝑏𝑓𝑠𝐼

𝑒
8𝑓𝑠

2)− 1]

+
1

𝐷
(
𝐽2 − 1

2
− 𝑙𝑛(𝐽))

(4.1)

𝜎𝑎 =
𝑇𝑚𝑎𝑥

2

𝑐𝑎20
𝑐𝑎20 + 𝐸𝑐𝑎250

(1− 𝑐𝑜𝑠(𝜔(𝑡, 𝑙))) (4.2)

where
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𝐸𝐶𝑎50(𝑙) =
(𝐶𝑎0)𝑚𝑎𝑥√
𝑒𝐵(𝑙−𝑙0) − 1

𝜔(𝑡, 𝑙) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜋 𝑡

𝑡0
𝑡 ∈ [0, 𝑡0)

𝜋 𝑡−𝑡0+𝑡𝑟(𝑙)
𝑡𝑟(𝑙)

𝑡 ∈ [𝑡0, 𝑡0 + 𝑡𝑟(𝑙))

0 𝑡 ∈ [𝑡0 + 𝑡𝑟(𝑙),∞)

𝑡𝑟(𝑙) = 𝑚𝑙 + 𝑏

𝑙(𝐸𝑓𝑓 ) = 𝑙𝑟
√︀

2𝐸𝑓𝑓 + 1

(4.3)

𝜎 = 𝜎𝑝 + 𝜎𝑎f ⊗ f + 𝑛𝑠𝜎𝑎(s⊗ s+ n⊗ n) (4.4)

where 𝜎𝑝 =
1
𝐽
𝜕Ψ
𝜕F

F𝑇 is the passive stress tensor.

passive 𝑎
[MPa]

𝑏
[ ]

𝑎𝑓
[MPa]

𝑏𝑓
[ ]

𝑎𝑠
[MPa]

𝑏𝑠
[ ]

𝑎𝑓𝑠
[MPa]

𝑏𝑓𝑠
[ ]

𝐷
[ ]

3.94e-4 3.67 1.85e-3 14.38 1.05e-3 10.56 3.56e-7 7.82e-4 0.1

active 𝑡0
[s]

𝑚
[s/mm]

𝑏
[s]

𝑙0
[mm]

𝐵
[1/mm]

(𝐶𝑎0)𝑚𝑎𝑥

[𝜇𝑚𝑜𝑙/𝐿]
𝐶𝑎0

[𝜇𝑚𝑜𝑙/𝐿]
𝑇𝑚𝑎𝑥

[MPa]
𝑛
[ ]

0.35 950 -1.5 1.58e-3 4750 4.35 4.35 0.2 0.35

Table 4.1: Baseline myocardium material parameters.

𝑉 (𝑡) = 𝑉 (0) + 𝜅𝑃 (𝑡) (4.5)

𝑄(𝑡) = �̇� =
1

𝑅
�̇� (4.6)

1/𝜅𝐴𝑂 1/𝜅𝐿𝐴 1/𝜅𝑉 𝐸 1/𝑅𝑀𝑉 1/𝑅𝐴𝑉 1/𝑅𝑠𝑦𝑠 1/𝑅𝑃𝑉

12.86 0.13 3.78 2.27 1.0 135.93 1.0

Table 4.2: Baseline LPM parameters. (In the Abaqus environment, 1/𝜅 is the elasticity of a
spring element that is attached to the fluid cavity chamber and it has the unit of 𝑚𝑙/𝑘𝑃𝑎.
1/𝑅 is the viscous coefficient of a fluid exchange element and it has the unit of 𝑘𝑃𝑎 ·𝑚𝑠/𝑚𝑙)
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Figure 4.4: Outputs of the dynamic LV model. (a) Contour plots of LV fiber stress field at
the 1○ end-diastolic, 2○ early-systolic, and 3○ end-systolic stages. (b) Pressure tracings of
the left ventricle (LV), aorta (AO), venous bed (VE), and left atrium (LA) over 4 cardiac
cycles. (c) Pressure-volume (PV) loops of the LV over 4 cardiac cycles. The different cardiac
phases associated with the contour plots in (a) are annotated. 4○ indicates the start of the
simulation which is the beginning of the end-diastolic stage before atrial kick.
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4.2.3 Reduced order models of LV shape and displacement

Principal component analysis (PCA) was used to project the shape and displacement

information onto lower dimensional spaces (also known as the latent space). In particular,

the shape of an LV mesh, with 27161 nodes in 3 dimensions, can be represented by a row

vector y𝑖 ∈ R𝑑 where (𝑑 = 27161× 3 = 81483) and (𝑖 = 1, 2, 3..., 𝑛). Each shape vector was

centered by the mean shape vector ȳ evaluated over all LV samples (𝑛 = 270), Equation

4.7. PCA [77] was used to find an orthogonal matrix U ∈ R𝑑×𝑚 such that the centered

shape vector (ŷ𝑖) can be projected to a lower dimensional latent vector (s𝑖 ∈ R𝑚) as shown

in Equation 4.8. The latent vector can be re-projected back to the full dimensional shape

vector as shown in Equation 4.9. The same process was employed to the displacement fields

where y𝑖 is the flattened displacement vector and n is the number of simulations times the

number of output frames per simulation (𝑛 = 540×80 = 43200). For convenience, we denote

the shape latent vector as s and displacement latent vector as z.

ŷ𝑖 = y𝑖 − ȳ (4.7)

s𝑖 = U𝑇 ŷ𝑖 (4.8)

ŷ*
𝑖 = Us𝑖 ≈ ŷ𝑖 (4.9)

4.2.4 Transformer-based surrogate model

Inspired by a temporal attention architecture [50], this surrogate model is designed to

take a conditional vector I (i.e. a set of LV model input variables) and a shape latent vector

s as inputs and predict a sequence of displacement latent vectors (z1, ..., z𝑡) autoregressively

as depicted in Figure 4.5. Specifically, a Multi-Layer Perceptron (MLP) is used to encode
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the conditional vector into a state representation vector c that has the same length as s and

z. The three vectors c, s and z are concatenated and linearly projected to an embedding

dimension 𝑑𝑚 = 512:

X = 𝑐𝑜𝑛𝑐𝑎𝑡(c, s, z1, ..., z𝑡−1)W1 +W𝑏
1 (4.10)

A single layer transformer decoder [2], including a multi-head attention layer (𝐾 = 4 heads)

and a feed forward layer, is applied to have output:

H = 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟_𝑏𝑙𝑜𝑐𝑘(X) (4.11)

The last column of the output (h𝑡−1) is linearly projected to become the following predicted

displacement latent vector.

z𝑡 = h𝑡−1W2 +W𝑏
2 (4.12)

To enable predictions of LV pressure simultaneously, the scalar value is concatenated to both

the shape and displacement latent vectors. The two latent vectors are selected to have the

same size of 16 which results in a total of 3.2 M trainable parameters in this transformer-

based model.

To train the model, the LV simulation dataset (n=540) was divided into 90% for training

and 10% for validation. An extracted dataset (n=50) was used for testing. The model was

trained incrementally [32], with a constant learning rate of 1e-6, and dropout rate of 0.1 in

both the multi-head attention layer and the feed forward layer, to minimize the prediction

loss as Equation 4.13. The model was evaluated on both the 3D LV dynamics as well as

global LV pressure predictions.

𝐿𝑜𝑠𝑠 =
𝑇∑︁
𝑡=1

||z̃𝑡 − z𝑡||2 (4.13)
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Figure 4.5: The autoregressive transformer model. I - FE parameter vector, S - shape latent
vector, Z - displacement latent vector.

4.3 Results

4.3.1 LV simulation dataset

LV meshes: The automatic meshing tool successfully generated 286 out of 290 LV

meshes from the M&M dataset [19] with averaged disc coefficient (DSC) of 89%. 11 meshes

were further discarded due to thin wall or highly distorted apex. A subset of the LV meshes

are shown in Figure 4.6, illustrating the diversity of the LV anatomies including healthy

subjects and patients with hypertrophic and dilated cardiomyopathies.

Figure 4.6: LV meshes with consistent topology.

Sensitivity analysis: The impacts of each of the 10 FE input parameters on the left
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ventricular PV loop are shown in Figure 4.7. We identified 6 out 10 influential parameters.

They are stiffness (𝑐𝑎, 𝑐𝑏) and contractility (𝑇𝑚𝑎𝑥) of the LV as well as mitral valve resistance

(𝑅𝑀𝑉 ), systemic resistance (𝑅𝑠𝑦𝑠) and aortic compliance (𝜅𝐴𝑂). All the non-influential

parameters are LPM variables that are peripheral to the LV.

Figure 4.7: Results of a sensitivity analysis illustrating the impact of 10 different parameters
on the LV pressure-volume loop. The left 3 columns represent the 6 influential parameters
and the right 2 columns represent the 4 non-influential parameters.

4.3.2 LV surrogate model

Reduced order models: The shape model with 16 principal components (PCs) cap-

tures over 95% of variation within the 270 LV meshes. The average nodal displacement

error is around 1.2 mm as shown Figure 4.8. Qualitative comparisons between the original

LV meshes and the PCA reconstructed LV meshes are shown in Figure 4.9. Similarly, the

displacement model also uses 16 PCs capturing well over 95% of variation within the 43,200

displacement frames with around 0.5 mm of average nodal displacement error, Figure 4.10.

Based on the average nodal error, the 540 dynamic LV simulations are divided into three

subsets, typical, intermediate, and atypical subsets, with error range of [0.22, 0.59], [0.59,

0.95], and [0.95, 1.32], respectively. The distribution of the three subsets are shown in Figure

4.11. The qualitative performance of the displacement PCA model is illustrated in Figure
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4.12 where the median case in each subset is selected as the representation of the subset.

Figure 4.8: Quantitative evaluation of the shape PCA model with different number of prin-
cipal components (PCs). (a) The cumulative contribution rate of 32 PCs. (b) The average
nodal errors using 4 - 64 PCs. The red dot indicates the 16 PCs model which is selected in
this study.

Figure 4.9: Qualitative comparison between the original LV meshes (wire-frames) and the
PCA (PCs=16) reconstructed LV meshes (color contours). The color contour indicates the
nodal error.

Transformer model: Figure 4.13 illustrates the error statistics associated with the
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Figure 4.10: Quantitative evaluation of the displacement PCA model with different number
of principal components (PCs). (a) The cumulative contribution rate of 32 PCs. (b) The
average nodal errors using 4 - 64 PCs. The red dot indicates the 16 PCs model which is
selected in this study.

Figure 4.11: The average error distribution of PCA reconstructed LV displacements in the
LV simulation dataset (n=540).
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Figure 4.12: Qualitative comparison between the ground truth LV motion (white) and the
PCA (PCs=16) reconstructed (color contour) LV motions within a cardiac cycle. The color
contour indicates the nodal error. (a), (b) and (c) are the typical, intermediate and atypical
cases, representing 79%, 19% and 2% of the cases in the LV simulation dataset (n=540),
respectively.
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3D dynamic predictions of the surrogate model with regard to the training, validation, and

testing datasets. For each simulation, the average nodal error was calculated across the

entire sequence. The mean and standard deviation of the average error for each dataset are

shown. The model was trained to have prediction error of 0.81 ± 0.20𝑚𝑚 on the training

dataset. When applied to the validation and testing sets, these error margins expanded to

1.3±0.53𝑚𝑚 and 1.44±0.48𝑚𝑚, respectively. Despite the increase, it is worth noting that

the maximum average errors recorded in both the validation and testing sets remain below

3.5𝑚𝑚, indicating reasonable predictive performance by the surrogate model. Considering

the performance of the surrogate model is intrinsically constrained by the accuracy of the

PCA model, as it predicts the 16 PCs of displacement instead of the actual displacement,

reference error statistics derived from the displacement PCA model are also provided. PCA

was conducted using the training and validation datasets; hence, the reprojection errors in

the two datasets are similar, (0.49 ± 0.17𝑚𝑚) and (0.48 ± 0.16𝑚𝑚), respectively. This is

also consistent with Figure 4.8 (b). The testing dataset, featuring previously unseen LV

anatomies and dynamics, registered a slightly elevated error rate of (0.58± 0.2𝑚𝑚).

The error statistics of the global hemodynamics and cardiac function predictions on the

validation and testing sets are shown in Figure 4.14, where the normalized errors of ejection

fraction (EF), end-diastolic pressure (EDP), and peak systolic pressure (PSP) are calculated.

In particular, the EF errors are 0.16± 0.23 (validation) and 0.12± 0.14 (testing), the EDP

errors are 0.07±0.56 and −0.13±0.28 (testing), and the PSP errors are 0.05±0.22 (validation)

and 0.07± 0.21 (testing).

To further demonstrate the performance of the surrogate model, the test set is divided

into three subset, typical, intermediate, and atypical subsets according to the average nodal

error. The typical subset has an error range of [0.92, 1.68] 𝑚𝑚 including 74% of all test cases;

the intermediate subset has an error range [1.68, 2.43] 𝑚𝑚 including 20% of all test cases;

and the atypical subset has an error range of [2.43, 13.17] 𝑚𝑚 including 6% of all test cases.

The predictions of the median case in each subset are analyzed in details. The nodal errors
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in the typical, intermediate, and atypical cases are 1.33 ± 0.82𝑚𝑚, 2.17 ± 1.62𝑚𝑚, and

2.88 ± 2.10𝑚𝑚, respectively. Figure 4.15 provides 3D visual representations of the ground

truth (GT) and predicted (PD) LV shapes at the end-diastolic, mid-systolic, and end-systolic

stages in the last cardiac cycle. The corresponding PV loop (four cardiac cycles) predictions

are shown in Figure 4.16. In terms of the hemodynamic and cardiac function prediction, for

the typical case, the EDP is 16.31 (GT) vs 15.89 (PD) 𝑚𝑚𝐻𝑔, the PSP is 110.47 vs 107.47

𝑚𝑚𝐻𝑔, and the EF is 54.87% vs 58.66%; for the intermediate case, the EDP is 8.65 vs 4.29

𝑚𝑚𝐻𝑔, PSP is 107.76 vs 115.78 𝑚𝑚𝐻𝑔, and EF is 48.51% vs 46.30%; for the atypical case,

the EDP is 16.00 vs 15.70 𝑚𝑚𝐻𝑔, PSP is 99.48 vs 143.81 𝑚𝑚𝐻𝑔, and EF is 44.06% vs

54.15%.

Figure 4.13: Average nodal errors of LV displacement comparing between the FE generated
ground truth and the PCA reprojected approximations (red) or the transformer model pre-
dictions (blue). The errors are calculated on the training (n=486), validation (n=54), and
testing (n=50) sets, showing as mean and standard deviation in the box-plot with outliers
indicated by the dots in each column.
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Figure 4.14: Normalized errors of hemodynamics and cardiac functions predicted by the
surrogate model on validation and testing sets. (a) Ejection Fraction (EF), (b) End-Diastolic
Pressure (EDP), (c) Peak Systolic Pressure (PSP).

Figure 4.15: Qualitative comparison of the LV motion between the FE generated ground
truth (white mesh) and the surrogate model predictions (colored mesh). (a), (b), and (c)
represent typical, intermediate and atypical cases, respectively. The red bars in the top
histogram plots indicate the proportion of these cases in the entire testing set. The shapes
are generated from the last cardiac cycle at the end-diastolic (top row), mid-systolic (middle
row), and end-systolic (bottom row) stages.
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Figure 4.16: Comparisons of PV loops generated by the FE model (blue) and the surrogate
model (orange). (a), (b), and (c) are the three cases corresponding to Figure 4.15.

4.4 Discussion and Conclusion

In this study, we took a multi-step approach to develop a data-driven surrogate model

that can efficiently generate dynamic LV simulations. First, an automated meshing workflow

was implemented to produce topologically consistent LV meshes from a segmented cardiac

MRI dataset. These meshes were utilized by a dynamic FE model to produce an LV sim-

ulation dataset. The detailed LV shapes and dynamics from these simulations were then

projected into lower-dimensional representations through PCA. Building on these advance-

ments, a transformer-based model was trained to effectively predict LV 3D dynamics and

global hemodynamics using these shape representation vectors and FE parameters as inputs.

The automated meshing tool exhibited a robust performance, successfully generating

registered LV meshes from a diverse cohort of both healthy and diseased subjects [19], with

a success rate of 98.6%. The diversity of the LV anatomies can be seen in Figure 4.6.

Furthermore, the tool displayed a high degree of anatomical fidelity (DSC=89%), providing

a reliable basis for further analysis. The robustness and accuracy of this tool were key for

the successful implementation of the PCA models for dimensionality reduction.

The FE model coupling a high fidelity LV model with a LPM representing the cardiovas-

cular circulatory system provides multi-dimensional information of the cardiovascular system

as shown in Figure 4.4. The conducted sensitivity analysis proved to be an effective approach
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in reducing the design space of the FE model. Importantly, it preserved the diversity of the

subsequently created LV simulation dataset, ensuring the representation of a wide range of

LV hemodynamics as shown in Figure 4.7.

The PCA shape and displacement models demonstrated good representation of the

anatomies and dynamics within the LV dataset. Specifically, both models captured well

over 95% variation of the dataset with average reconstruction nodal errors of 1.4 mm and

0.6 mm in the shape PCA and displacement PCA, respectively. This illustrates the efficacy

of PCA in transforming complex, high-dimensional data into low-dimensional representa-

tions while preserving critical aspects of the information. From a qualitative perspective,

the shape PCA showed robust performance, as depicted in Figure 4.9, with larger errors

usually observed at the large curvature areas such as the base or apex, or at regions of

high waviness on the wall surface. Similarly, the displacement PCA model exhibited high

accuracy in majority of the LV cases (79%) with nodal errors usually falling below 1 𝑚𝑚

throughout the cardiac cycle as displayed in Figure 4.9 (a). However, certain challenges

were encountered in a subset of cases (19%), particularly where the end-diastolic surfaces

demonstrated substantial curvature and underwent significant twisting during systole, as in-

dicated in Figure 4.9 (b). Furthermore, an outlier was noted in a case involving an extremely

hypertrophic LV with large chamber volume and thick myocardium wall, as shown in Figure

4.9 (c). These observations highlight the nuanced performance of the PCA models across

different LV regions and conditions.

The transformer-based model demonstrated promising results in predicting the 3D dy-

namics and global hemodynamics of the LV. For 3D shape predictions, the model achieved

average errors of 1.3 mm on the validation set and 1.44 mm on the testing set. In terms of

global hemodynamics, the model had a tendency to over-predict EF (16%), PSP (5%), and

EDP (13%) in the validation set, with similar performance noted on the test set, except for

under-prediction of EDP by 12%. Despite these discrepancies, the model showed a generally

consistent performance on both the validation and testing sets, indicating its ability to be
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generalized to unseen LV anatomies and dynamics. Qualitative assessments showed that the

predicted 3D dynamics closely approximated the ground truth on the majority of the test

cases (74%) with average nodal errors less then 1.7 𝑚𝑚. Other cases with larger local nodal

errors up to 10 𝑚𝑚 usually occurred with out-of-phase predictions. For example, the case in

Figure 4.15 (b) predicted a cardiac cycle slightly shorter than the ground truth which results

in a noticeable advance of the systolic phase in the last cycle. On the contrary, the predicted

cardiac cycle in Figure 4.15 (c) is slightly longer, leading to a delay of the systolic phase.

As shown in Figure 4.16, the PV loop performances are in general more forgiving. Despite

3D dynamics of the intermediate case being predicted out of phase, the PV loop prediction

is still close to the ground truth. Only the atypical case has significant over-predictions on

both EF and ESP. Overall, this level of performance illustrates the potential applicability of

the model for simulating LV dynamics and hemodynamics.

Notably, the surrogate model demonstrates substantial efficiency benefits over the orig-

inal FE model. Whereas the FE model requires approximately 6 hours of processing on a

16-core CPU, the surrogate model performs inference in less than 0.5 seconds on a Nvidia

Volta V100 GPU. This is a dramatic increase in speed without sacrificing substantial ac-

curacy. Furthermore, the model showcases scalability, as it can be effectively parallelized

with minimal speed reduction (e.g. generating 100 simulations in the same GPU takes less

than 12 seconds). This quality is particularly beneficial for inverse studies, where multiple

simulations are often needed, thus underscoring the surrogate model’s practical utility in

time-sensitive applications.

An increasing number of data-driven surrogate models are being developed for LV me-

chanical simulations, signifying the growing recognition of the value these models provide.

Many of these models focus exclusively on the end-diastolic phase [28, 18] or the diastolic

filling process [78], given their use in passive myocardium stiffness estimation. There are

also efforts to develop surrogate models that learn from electro-mechanical simulations to

predict global heart hemodynamics [107]. Our model advances the field by providing es-
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timations of 3D dynamics over the full cardiac cycle, including both diastolic and systolic

phases, and global hemodynamics. Compared to other published work [16], our model offers

improvements in terms of speed and versatility. It does not require re-training for new LV

anatomies, significantly expediting the inference process. Furthermore, our model condi-

tions on a broader parameter space, considering not only contractility but also myocardium

stiffness, and other circulatory system parameters. This allows for the characterization of

a wider range of patient-specific cardiovascular parameters, enhancing the clinical utility of

our surrogate model.

4.4.1 Limitations

The work conducted has certain limitations which also highlight areas for future poten-

tial. First, the current meshing workflow is only compatible with segmented MRI data, a

relatively rare resource. An avenue for improvement could involve coupling the workflow

with automatic segmentation tools such as UNET [109], as adopted by Buoso et al. [16], to

generate meshes from unlabeled MRI data, which is far more common. This would enable

the creation of a much larger and diverse dataset of LV meshes. Secondly, in order to control

computational cost in generating the simulation dataset, the LV model employed is some-

what simplified, lacking aspects such as electrophysiology, pericardial boundary conditions,

and mechanical interactions with the right ventricle. In future studies, fully electro-fluid-

mechanical coupled whole heart models [113, 129] can be adopted to build a more accurate

simulation dataset, thus better representing the heart dynamics. In terms of the surrogate

model, this study serves as a proof of concept and did not involve thorough exploration of hy-

perparameter tuning. While the current number of principal components (PCs) sufficiently

represents the dataset, it is conceivable that fewer PCs might be used to reduce training

time without significant compromise on accuracy. Additional hyperparameter tuning in the

transformer model could further enhance performance. Moreover, while the FE model has

other field outputs such as stress, these are currently not predicted by the surrogate model.
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By creating another PCA for each specific field output and concatenating those PCA latent

vectors to the displacement latent vector, these field outputs could potentially be included in

future iterations of the model. Lastly, the surrogate model is not physically bounded, which

occasionally results in unrealistic predictions such as negative pressure or myocardium stiff-

ness. Incorporating physical constraints, similar to the approach of Buoso et al. [16], could

potentially rectify this issue and make the model more suitable for parameter identification.

4.4.2 Conclusion

In this work, we have introduced a unique surrogate model capable of simulating LV

dynamics and hemodynamics. The method is anchored in a combination of an automated

meshing workflow, a dynamic FE model, and PCA-driven dimensionality reduction. This

framework has enabled us to train a transformer-based model that predicts the dynamics of

the entire cardiac cycle and global hemodynamics efficiently, addressing certain limitations

in existing studies. Despite its own limitations, such as reliance on segmented MRI data and

a simplified LV model, this study offers a strong foundation for future enhancements and

broader applications. The demonstrated potential for model parallelization and the rapid

inference time suggest valuable implications for clinical applications, particularly in inverse

studies. In summary, this study provides a compelling proof of concept for using data-driven

surrogate models to facilitate efficient generation of patient-specific LV simulations.
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Chapter 5

Conclusion and future work

In this thesis, I described the development of advanced simulation tools to study the

biomechanics of cardiac growth and remodeling (G&R). First, I developed a growth charac-

terization workflow to quantify tissue-level growth properties from cardiac MRI. Recognizing

two main limitations in the workflow - the simplification of the growth theory and the compu-

tationally demanding nature of the finite element model, I addressed them by implementing

a multiscale model that enables a detailed microstructure growth analysis, and by developing

a data-driven surrogate model that substantially improves efficiency of patient-specific mod-

eling. In this chapter, I will summarize the key contributions and novel insights provided by

my doctoral work in Section 5.1, discuss some of the limitations and challenges encountered

in Section 5.2, and present an outlook on potential future avenues in Section 5.3.

5.1 Summary and contributions

In Chapter 1, I introduced the basic pathophysiology of cardiac growth and remodel-

ing, highlighting the clinical importance of understanding these mechanisms. Furthermore,

I summarized the recent experimental and computational efforts towards studying cardiac

G&R. Finally, I reviewed the applications of patient-specific simulations in the field of car-

diovascular medicine.
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In Chapter 2, I introduced a simulation workflow that combines in vivo cardiac MRI

(cMRI), finite element (FE) analysis, and Bayesian optimization (BO) to non-invasively

quantify myocardium growth properties. By inputting pre- and post-growth cMRI of the

same subject, the workflow can characterize two parameters representing the levels of trans-

verse and longitudinal microstructural growth. The patient-specific simulation, which uses

the heart geometry from cMRI and the characterized growth parameters, serves as a growth

digital twin of the subject. I employed the workflow to evaluate porcine heart growth due

to exercise stimulation. I demonstrated that growth in the longitudinal direction of the

cells dominates growth across all subjects, which aligns with our current physiological un-

derstanding. This framework establishes a platform for investigating myocardial growth at

the tissue level using existing clinical data. It also highlights two bottlenecks in the process:

1) the inability to simulate microstructural remodeling, and 2) the extensive computational

resources required for finite element simulations, limiting their immediate applicability in

time-sensitive clinical scenarios.

In Chapter 3, we addressed the first limitation by using a microstructurally motivated

theory, the constrained mixture growth theory, to develop multiscale models of cardiac G&R.

We implemented the homogenized constrained mixture growth model as a user material

subroutine in Abaqus. I demonstrated the capability of using the model to simulate growth

induced by an increase of LV preload on a bi-ventricular model. By using this method,

G&R of different components in the myocardium (i.e. myocyte, collagen, and elastin) can

be tracked individually, providing an opportunity to validate existing experimental data and

connect the findings from cellular to organ levels. I further used the model to simulate reverse

remodeling induced by left ventricular assist device (LVAD) intervention. The study showed

that reverse remodeling benefits from early intervention which agrees with retrospective

findings from a clinical study. Potentially, this multiscale model can be integrated with the

inverse workflow in Chapter 2 to achieve a more comprehensive quantification of patient-

specific growth properties.
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In Chapter 4, I focused on overcoming the second bottleneck by building a data-driven

surrogate model of the LV. I developed an automated meshing tool to create a diverse

dataset of registered LV meshes. These meshes were subsequently used in a robust dynamic

FE model to generate a dataset of LV simulations. By conducting principal component

analysis (PCA), I transformed the LV anatomies and dynamics in the dataset into low-order

representations. I then trained a transformer-based model to predict dynamics within this

reduced-dimensional space. The model is capable of predicting motion and pressure of the

LV at a speed 4 orders of magnitude faster than the conventional FE model, rendering the

surrogate model highly suitable for inverse analyses and significantly enhancing the efficiency

of patient-specific simulation frameworks.

5.2 Limitations of this thesis

Despite the successful development of the growth characterization workflow, multiscale

growth model, and surrogate modeling method, these tools have not been fully integrated

within this thesis. The challenge stems from the limitations in each of these tools as dis-

cussed in previous chapters. To provide a comprehensive overview of the limitations hin-

dering the creation of multiscale, patient-specific growth simulations for clinical practice, I

will summarize them within three distinct areas: experimental data, image processing, and

computational cost.

Experimental Data: We are currently lacking substantial growth data to construct

and validate the models. The workflow in Chapter 2 was tested on a small dataset (n=4).

Although the results qualitatively align with our current physiological understanding, we lack

quantitative data (e.g., myocyte size measured from biopsy) for comparison with the workflow

characterization results. The absence of biopsy data to extract microstructural information

also restricts validation of the HCMM model described in Chapter 3. Despite attempts to

collect in vivo biopsy samples, inconsistencies and challenges in maintaining the animal model
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have hindered the extraction of useful microstructural information. Consequently, improved

protocols and imaging methodologies are necessary to acquire microstructural data for model

validation.

Image Processing: The MRI data in Chapter 2 was manually segmented and recon-

structed to obtain the LV meshes, which extends the time required for the growth charac-

terization process. This approach would not be feasible when dealing with a large volume of

imaging data. Although we developed an automated meshing tool in Chapter 4, it requires

segmented MRI data as input. To address the needs of future large-scale processing, the

incorporation of existing machine learning-based automated segmentation tools [10] into the

pipeline could provide a viable solution.

Computational Cost: High computational demand is a shared characteristic of all

the FE simulations in this thesis, ranging from 2-3 hours (kinematic growth simulation) to

over 14 hours (HCMM bi-ventricular simulation). While the surrogate model developed in

Chapter 4 specifically addresses this issue, the computational cost of creating an appropriate

training dataset for such a data-driven surrogate model is substantial. For example, the

dynamic LV simulation dataset, containing 540 simulations, required 3240 hours of CPU

time. This computational cost, scaling with the complexity of the model and the size of the

parameter space, makes creating a data-driven surrogate model for HCMM simulations a

formidable challenge.

While it is technically possible to integrate all three tools to create a fast, multiscale

patient-specific growth model, the challenges outlined above need to be addressed first.

Without resolving the issues related to clinical data scarcity, labor-intensive image process-

ing, and high computational costs, the resulting model would lack clinical relevance. The

predictions, though potentially feasible from a computational standpoint, would not align

with the rigorous demands of clinical practice, limiting their effectiveness for real-world

application. Therefore, concerted efforts in overcoming these obstacles are critical for the

realization of a truly effective and clinically applicable growth model.
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5.3 Future perspectives

In this thesis, I have developed and explored tools and methods for patient-specific simu-

lation, focusing on cardiac growth and left ventricular dynamics. These foundational efforts

serve as initial steps towards constructing a cardiac digital twin and offer a launchpad for

further advancements in this arena. Despite its promise, this work is still in its early stages,

with challenges and limitations discussed above. In the subsequent sections, I will outline

potential directions for future research, considering improvements to the current workflow,

the broader applications of these techniques, and the exciting prospect of creating digital

twins for the heart.

5.3.1 Towards patient-specific simulations of cardiac growth

Building upon the foundational work presented in this thesis, further advancements are

necessary to fully realize the potential of patient-specific simulations for cardiac growth. The

integration of the growth characterization workflow, multiscale growth model, and surrogate

modeling methods holds promise for creating a comprehensive solution. However, the chal-

lenges previously identified in data collection, MRI data processing, and computational cost

must be systematically addressed. Endomyocardial biopsy remains the gold standard for

investigating myocardial microstructure [25]. Having serial biopsy to consistently monitor

the microstructure evolution during G&R will provide invaluable data for validating simula-

tions. Promising developments in tissue microstructural imaging, such as diffusion MRI [57]

and collagen optical imaging [61], could offer valuable insights to refine the current growth

models. Moreover, to accommodate potential large-scale imaging data, integration of ex-

isting automated segmentation tools [10], in conjunction with our automated meshing tool,

could establish an efficient pipeline for large-scale simulation data generation. Although

substantial computational cost in generating simulation datasets is an inherent challenge,

judicious utilization of computational resources is possible through strategies like sensitivity
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analysis to minimize parameter space or utilizing advanced machine learning strategies like

transfer learning and few-shot learning. Such adaptations can reduce both training data size

and computational effort, speeding up the development of data-driven surrogate models, and

thereby contributing to a more realistic and timely integration into clinical practice.

5.3.2 Cardiac digital twin

The tools developed in this thesis, particularly the characterization workflow and the

data-driven model, have potential applications that extend beyond their initial scope. One

significant application could be the non-invasive estimation of PV loops, currently obtainable

only through invasive catheterization. By incorporating the inverse method from Chapter

2 with the surrogate model from Chapter 4, non-invasive PV loop measurements from cine

cardiac MRI become a possibility. For accurate PV loop prediction, having a validated

dynamic LV model, coupled with a diverse dataset of LV anatomies and dynamics, is essen-

tial. Though our model currently includes only the left ventricle, there is growing interest

in studying the right heart. From a finite element simulation perspective, adding the right

ventricle and even the atria wouldn’t be overly complex, as demonstrated by other studies

[111, 139, 113]. The challenge lies in reconstructing a 4-chamber geometry from cMRI and

morphing all geometries from a single mesh. This would necessitate modifications to the

existing meshing tool. Alternatively, we could possibly adopt other surrogate models, such

as a Graph Neural Network, which has demonstrated promising performance in recreating

structural simulations [97]. Depending on specific cardiovascular diseases (e.g. arrhyth-

mia, thrombosis, or heart failure), simulating electrophysiology and hemodynamics may also

be highly relevant. A multi-physics model coupling electrophysiology, structural dynamics,

and hemodynamics could faithfully represent a digital twin of the heart. Although a fully

electro-mechanical-fluid coupled heart model would be even more computationally demand-

ing [113, 129], this very challenge underscores the value of developing a surrogate model for

such complex simulations. Moreover, these methodologies are not confined to the heart but
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can be extended to create digital twins of other parts of the cardiovascular system and even

other organs. As reviewed in Chapter 1, there is a wide range of interest in building patient-

specific simulations for various human body parts, opening new avenues for personalized

medicine and research.

5.3.3 Safety and trustworthy simulations

The integration of advanced simulation methods with artificial intelligence (AI) compo-

nents, as seen in this thesis, opens a new frontier in cardiac modeling. However, it also

raises crucial considerations regarding the safety and trustworthiness of these simulations.

Rigorous methods for AI safety must be implemented to ensure that predictions and deci-

sions derived from these models adhere to accepted medical standards and ethical guidelines.

Techniques for uncertainty quantification could be explored to provide confidence intervals or

error bounds on the predictions, adding transparency and reliability to the decision-making

process. Collaborative work with experts in AI ethics, medical regulations, and clinical

practice will be vital in establishing protocols and standards that govern the use of these

technologies. Through comprehensive validation, continuous monitoring, and thoughtful in-

tegration of ethical principles, these simulations can become a trustworthy and indispensable

part of future medical practice. Indeed, the work presented here represents a significant step

towards making this vision a reality.
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