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Abstract

We consider the problem of empirical Bayes estimation for (multivariate) Poisson means.
Existing solutions that have been shown theoretically optimal for minimizing the regret (ex-
cess risk over the Bayesian oracle that knows the prior) have several shortcomings. For
example, the classical Robbins estimator does not retain the monotonicity property of the
Bayes estimator and performs poorly under moderate sample size. Estimators based on
the minimum distance and non-parametric maximum likelihood (NPMLE) methods correct
these issues, but are computationally expensive with complexity growing exponentially with
dimension. Extending the approach of [1], in this work we construct monotone estimators
based on empirical risk minimization (ERM) that retain similar theoretical guarantees and
can be computed much more efficiently. Adapting the idea of offset Rademacher complex-
ity [38] to the non-standard loss and function class in empirical Bayes, we show that the
shape-constrained ERM estimator attains the minimax regret within constant factors in one
dimension and within logarithmic factors in multiple dimensions.
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Chapter 1

Introduction

In its early days, the use of empirical Bayes is inspired by two schools of researchers. On

one hand, Stein showed in [59] the inadmissibility of maximum likelihood estimators for

multivariate Gaussian models beyond two-dimensional settings. The James-Stein estimator

[29] demonstrated a strictly lower squared loss of mean estimation problem, and exhibits

some desired properties of a Bayesian estimator [18]. In the meantime, for Poisson models,

Herbert Robbins produced the celebrated Robbins estimator [55], which we will discuss in

more detail later in the thesis. An area where empirical Bayes is applied is the missing species

problem (e.g. datasets on the butterfly species [22] and Shakespeare vocabulary estimation

[19]), where estimators like the Good-Turing estimator were developed [23, 24].

1.1 Application Overview

The two applications of empirical Bayes we will introduce are microarray data and large

scale hypothesis testing.

The modern use of empirical Bayes is mainly in large-scale inference [15], thanks to the

microarray technology [20] in which a large number of gene expression measurements can be

done simultaneously. Indeed, several sequencing frameworks based on microarray data and

empirical Bayes have been produced shortly after: baySeq [39, 26], EBSeq [36], and NPEBSeq

[9]. The shrinkage property of empirical Bayes has helped improving the false discovery rate

in hypothesis testing, which drastically improves the power in multiple hypothesis testing

13



[28]. Finally, empirical Bayes has also been used in PCA in high-dimensional regime [64],

which is an important preprocessing step.

Another prominent use of empirical Bayes pertains to large scale hypothesis testing.

It started off with Miller summarizing past advances in simultaneous inferences in [48].

Later, [7] adapted the Bonferroni-type algorithm for multiple hypothesis testing problem,

but focusing on false discovery rate (FDR) instead of the familywise error rate (FWER).

The algorithm by these authors do have an empirical Bayes interpretation in calculating the

false discovery proportion, where the 𝑧-scores from multiple hypothesis testing are considered

together. The control of FDR instead of FWER prevents our estimates from being overly

conservative.

With microarray technology, testing in the scale of thousands becomes available (see, for

example, [13]). This motivates the study of local inference, and consequently popularizes

the notion of local FDR [21]. The use of local FDR admits a more general structure and

use of prior knowledge, which is more closely related to the spirit of empirical Bayes. Using

empirical Bayes, correlation estimation has also been factored in large scale hypothesis testing

[12, 14]. This removes the independence assumption and works better in practice.

1.2 Estimation Task

For this thesis, we will focus on the estimation task. Specifically, we will demonstrate that

empirical Bayes has the ability to make the exceed loss (regret) approach 0 as the number

of sample increases.

1.2.1 Mixture Model

In terms of modelling, the model is typically framed as a mixture model with known channel

but unknown prior, as per Fig. 1-1. Concretely, we have the following: an unknown prior

𝜋 and a channel 𝛾 depending on a parameter 𝜃. The hidden parameters 𝜃1, · · · , 𝜃𝑛 and

observations 𝑋1, · · · , 𝑋𝑛 have the following distributions:

𝜃𝑖
iid∼ 𝜋 𝑋𝑖 ∼ 𝛾(𝜃𝑖) (1.1)

14
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Figure 1-1: Graphical Illustration of a Mixture Model

Some tasks of interest in this setting are:

1. Estimate the underlying estimators 𝜃1, · · · , 𝜃𝑛;

2. Estimate 𝑋 ′
1, · · · , 𝑋 ′

𝑛 taken from a fresh set of samples;

3. Estimate the prior 𝜋 based on the observed samples 𝑋1, · · · , 𝑋𝑛.

1.2.2 The Poisson Model

In this thesis, we focus on the special case where 𝛾(𝜃) = Poi(𝜃), i.e. the Poisson mixture

(with mean 𝜃). That is, the latent parameter 𝜃 is drawn from prior 𝜋 and observation 𝑋 is

sampled from Poi(𝜃). This means that the mixture density of 𝑝𝜋 of a nonnegative integer 𝑥

is

𝑝𝜋(𝑥) =

∫︁
exp(−𝜃)

𝜃𝑥

𝑥!
𝑑𝜋(𝜃) (1.2)

In addition, we focus on the goal of recovering 𝜃1, · · · , 𝜃𝑛 while minimizing the 𝐿2 loss. That

is, we consider an estimator ̂︀𝑓 : Z+ → R that minimizes the loss

E[( ̂︀𝑓(𝑋)− 𝜃)2] (1.3)

The minimizer of the squared 𝐿2 loss, i.e. the Bayes estimator, turns out to also be the

posterior mean that can be expressed in terms of the mixture density as follows:

𝑓 *(𝑥) = E[𝜃|𝑥] = (𝑥+ 1)
𝑝𝜋(𝑥+ 1)

𝑝𝜋(𝑥)
(1.4)
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In the empirical Bayes setting, the prior 𝜋 is unknown, but we have access to a training

sample 𝑋1, . . . , 𝑋𝑛 drawn independently from the mixture 𝑝𝜋. The goal is to learn a data-

driven rule that produces vanishing excess risk over the Bayes risk, known as the regret1

Regret𝜋(𝑓) , E
[︁
( ̂︀𝑓(𝑋)− 𝜃)2

]︁
− E

[︀
(𝑓 *(𝑋)− 𝜃)2

]︀
. (1.5)

The problem of interest in this context is thus:

Can we construct computationally efficient and practically sound estimators of

𝑓 * with optimal regret over a class of priors?

1.3 Background and Prior Work

1.3.1 𝑓-Modelling

An approach, termed “𝑓 -modelling”, focuses on approximating the mixture density [16]. This

is motivated by the Tweedie’s formula of the Poisson model given by (1.4), and this formula

also exists for other distributions, such as those in Table 1.1. Although the mixture density

𝑝𝜋 is unknown by our modelling, it can be estimated from the sample. An example is the

Robbins estimator to the Poisson model that works as an empirical approximation of (1.4)

[54, 55]:

̂︀𝑓Rob(𝑋) , ̂︀𝑓Rob(𝑋;𝑋1, . . . , 𝑋𝑛) = (𝑋 + 1)
𝑁𝑛(𝑋 + 1)

𝑁𝑛(𝑋) + 1
(1.6)

where 𝑁𝑛(𝑥) =
∑︀𝑛

𝑖=1 1{𝑋𝑖=𝑥} is the empirical count for each 𝑥 ∈ Z+ in the training sample.

Recent theoretical developments [11, 51] have established that the Robbins method

achieves the optimal rate of regret when 𝜋 has either bounded support or subexponential

tails. On the other hand, in practice, it is well-recognized that the Robbins estimator suffers

1In the literature there are multiple ways to formulate the regret in empirical Bayes estimation [63].
As opposed to the formulation (known as the individual regret) in (1.5), where the data are split into the
training set 𝑋1, . . . , 𝑋𝑛 and the test set 𝑋, one can consider the total excess risk of estimating the latent
parameters 𝜃1, . . . , 𝜃𝑛 based on 𝑋1, . . . , 𝑋𝑛 over the Bayes risk. This quantity, known as the total regret, in
fact equals to 𝑛 times the individual regret (1.5) (with 𝑛 replaced by 𝑛− 1) as shown in [52, Lemma 5].
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Mixture 𝑝(𝑋|𝜃) Tweedie’s formula for 𝑓 *(𝑋)

Geo(𝜃) 𝜃𝑋(1− 𝜃) 1− 𝑝𝜋(𝑋+1)
𝑝𝜋(𝑋)

NB(𝑟, 𝜃)
(︀
𝑋+𝑟−1

𝑋

)︀
(1− 𝜃)𝑟𝜃𝑋 𝑋+1

𝑋+𝑟
𝑝𝜋(𝑋+1)
𝑝𝜋(𝑋)

𝒩 (𝜃, 1) 1√
2𝜋

exp
(︁
− (𝑋−𝜃)2

2

)︁
𝑋 + 𝑝′𝜋(𝑋)

𝑝𝜋(𝑋)

Exp(𝜃) 𝜃 exp(−𝜃𝑋) −𝑝′𝜋(𝑋)
𝑝𝜋(𝑋)

Table 1.1: Tweedie formulae for geometric, negative binomial, normal location, and expo-
nential distributions.

from multiple shortcomings such as numerical instability (cf. e.g. [45, Section 1], [43, Sec-

tion 1.9], [17, Section 6.1]) and lack of regularity properties, including, notably, the desired

monotonicity property of the Bayes rule 𝑓 * (see [27]). Most recently, these shortcomings of

the Robbins estimator has been demonstrated in [30] extensively through both simulated

and real data experiment.

1.3.2 𝑔-Modelling

In another approach to the empirical Bayes problem, known as “𝑔-modeling” [16], one tries

to mimic the structure of the Bayes estimator by substituting the prior in the posterior

mean with a suitable estimator. This is done via the following procedure: first, using a

generalized distance 𝑑, one estimates the prior 𝜋 via an estimator ̂︀𝜋 that minimizes the

distance between the mixture distribution 𝑝̂︀𝜋 and the empirical distribution 𝑝𝑛. Next, one

calculates the estimator ̂︀𝑓 using the plugged-in Bayes estimator based on 𝑝̂︀𝜋.

̂︀𝜋 , argmin
𝑄

E𝑑(𝑝𝑛, 𝑝̂︀𝜋) ̂︀𝑓(𝑥) , (𝑥+ 1)
𝑝̂︀𝜋(𝑥+ 1)

𝑝̂︀𝜋(𝑥) (1.7)

It has recently been shown that optimal regret can be attained by 𝑔-modeling estimators

based on the minimum distance methodology that first finds the best approximation 𝑝̂︀𝜋 to

the empirical distribution of the training data under suitable distances then applies the Bayes

rule with the learned prior ̂︀𝜋.

A prominent example is the nonparametric maximum likelihood estimator (NPMLE)

̂︀𝜋NPMLE = argmax
𝑄

𝑛∏︁
𝑖=1

𝑝𝑄(𝑋𝑖) (1.8)
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which minimizes the Kullback-Leibler divergence. Thanks to their Bayesian form, these es-

timators inherit the desired regularity of Bayes estimator (such as monotonicity) and lead to

more stable, accurate, and interpretable estimates in practice. Recently, [30] has shown that

estimators including the NPMLE, minimum 𝜒2 estimator, and minimum Hellinger estimator,

attain the optimal regret similar to the Robbins estimator for both bounded or subexpo-

nential priors. In addition, when 𝜋 has heavier (polynomial) tails, the NPMLE achieves

the corresponding optimal regret while Robbins estimator provably fails [56]. However, the

downside of 𝑔-modeling is its much higher computational cost. For example, (1.8) entails

solving an infinite-dimensional convex optimization. Although in one dimension faster al-

gorithms akin to Frank-Wolfe have been proposed [40, 30], for multiple dimensions existing

solvers essentially all boil down to maximizing the weights over a discretized domain [33]

which clearly does not scale with the dimension. The fact that NPMLE requires (in most

cases) grid search (at a level of at least
√
𝑛 to be statistically meaningful) means that it

would require 𝑛Θ(𝑑) for a 𝑑-dimensional problem.

1.4 Thesis Organization

This thesis is primarily based on a conference proceeding at the 2023 Conference on Learning

Theory (COLT) (also on arXiv at 2307.02070), of which I am a primary author. The rest

of this thesis is organized as follows. In Chapter 2, we introduce our estimator to solve

this ERM problem, along with the main results that demonstrate minimax optimality of

this estimator. Chapter 3 demonstrates the efficient algorithm of our proposed estimator,

along with the necessary technology to prove the regret bound. Finally, in Chapter 4, we

discuss some future direction where this work can be extended into. Appendix A describes

some additional experiments that demonstrate the empirical performances, and Appendix B

demonstrates some auxiliary proofs omitted in the main part of the thesis.
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Chapter 2

Empirical Bayes via Empirical Risk

Minimization

In this thesis we propose a new approach for Poisson empirical Bayes by incorporating a

framework based on empirical risk minimization (ERM) and the needed technology from

learning theory, notably, the offset Rademacher complexity, refined via localization, to es-

tablish the optimality of the achieved regret. In contrast to 𝑓 -modeling and 𝑔-modelling

that aim at approximating the mixture density and the prior respectively, the main idea is

to directly approximate the Bayes rule by solving a suitable ERM subject to certain struc-

tural constraints satisfied by the Bayesian oracle. We note that a similar technique has been

applied earlier in [1] to the Gaussian model; however, the theoretical guarantees therein are

highly suboptimal.

The benefits of the ERM-based methodology are manifold:

1. Unlike the Robbins method, the constrained ERM produces an estimator that enjoys

the same regularity as that of the Bayes rule, at a small permillage of the computa-

tional cost of 𝑔-modeling methods such as the NPMLE and other minimum-distance

estimators.

2. The ERM-based estimator is scalable to high dimensions and runs in time that is

polynomial in both 𝑛 and the dimension 𝑑. In contrast, all existing algorithms for

NPMLE are essentially grid-based and scales poorly with the dimension as 𝑛Θ(𝑑).
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3. The ERM approach invites powerful tools from empirical processes theory (such as

Rademacher complexity and variants) to bear on its regret.

4. The flexibility of the ERM framework allows one to easily incorporate extra constraints

or replace the function class by more powerful ones (such as neural nets) in order to

tackle more challenging empirical Bayes problems in high dimensions for which there

is no feasible proposal so far.

To summarize, the ERM can be seen as an alternative solution to the empirical Bayes

problem, that excels over the Robbins method in terms of retaining the regularity properties

of the Bayes estimator, and is computationally much efficient than the other existing non-

parametric alternatives. We will also show that theoretically it achieves the optimal regret

for certain light-tailed classes of priors. Whether these guarantees carry over to the heavy-

tailed classes of prior, where the Robbins method is known to be suboptimal and NPMLE

is known to be optimal [56], is beyond the scope of the current thesis.

Next, we describe the construction of the ERM-based empirical Bayes estimator in details.

To derive the objective function for the ERM, note that using 𝑓 *(𝑋) = E [𝜃|𝑋], we have

𝑓 * = argmin
𝑓

E[(𝑓(𝑋)− 𝜃)2] = argmin
𝑓

E[(𝑓(𝑋))2 − 2𝜃𝑓(𝑋)]

= argmin
𝑓

E
[︀
𝑓(𝑋)2 − 2𝑋𝑓(𝑋 − 1)

]︀
,

where we get the last step applying the identity E [𝜃𝑓(𝑋)] = E [𝑋𝑓(𝑋 − 1)] for 𝑋 ∼ Poi(𝜃).

Since 𝑓 * is monotone, this naturally leads to the ERM-based estimator

̂︀𝑓erm ∈ argmin
𝑓∈ℱ

̂︀E[𝑓(𝑋)2 − 2𝑋𝑓(𝑋 − 1)], (2.1)

where ̂︀E[ℎ(𝑋)] , 1
𝑛

∑︀𝑛
𝑖=1 ℎ(𝑋𝑖) denotes the empirical expectation of a function ℎ based on

the sample 𝑋1, . . . , 𝑋𝑛, and the minimization (2.1) is over the class of monotone functions

ℱ = {𝑓 : 𝑓(𝑥) ≤ 𝑓(𝑥 + 1),∀𝑥 ≥ 0}. We also note that the solution (2.1) is only uniquely

specified on the set 𝑆 , {𝑋1, . . . , 𝑋𝑛}∪{𝑋1− 1, . . . , 𝑋𝑛− 1}, which can be easily computed

by an algorithm akin to isotonic regression (see Lemma 1). We then extend this solution
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to the whole Z+ in a piecewise constant manner: for those 𝑥 < min𝑆, set ̂︀𝑓erm(𝑥) = 0; for

those 𝑥 > max𝑆 = 𝑋max , max{𝑋1, . . . , 𝑋𝑛}, set 𝑓(𝑥) = 𝑓(𝑋max); for the remaining 𝑥 ̸∈ 𝑆,

set ̂︀𝑓erm(𝑥) = ̂︀𝑓erm(max{𝑦 ∈ 𝑆 : 𝑦 ≤ 𝑥}). This natural piecewise constant extension clearly

retains monotonicity.

We note that the above construction of the ERM-based empirical Bayes estimator can be

done in a principled way for other mixture models than Poisson (see Table 2.1, as inspired by

Table 1.1). Indeed, [1] was the first to apply this approach to the Gaussian mixture model.

However, only the slow rate of polylog(𝑛)√
𝑛

is obtained for the regret by applying standard

empirical process theory. In addition, they use extra constraints, such as the ones based on

bounded derivatives, bounds on the parameter space, etc. These constraints can be used

to further improve upon the practical performances of the ERM estimator we use for the

Poisson model; however, the corresponding analysis is beyond the scope of this thesis. One

of the major technical contributions of the present paper is to introduce a suitable version

of the offset Rademacher complexity [38] that leads to the fast rate of polylog(𝑛)
𝑛

(even with

the optimal logarithmic factors!)

Mixture 𝑝(𝑋|𝜃) Bayes estimator ERM Objective

Geo(𝜃) 𝜃𝑋(1− 𝜃) 1− 𝑝𝜋(𝑋+1)
𝑝𝜋(𝑋)

̂︀E[𝑓(𝑋)2 − 2𝑓(𝑋) + 2𝑓(𝑋 − 1)1{𝑋>0}]

NB(𝑟, 𝜃)
(︀
𝑋+𝑟−1

𝑋

)︀
(1− 𝜃)𝑟𝜃𝑋 𝑋+1

𝑋+𝑟
𝑝𝜋(𝑋+1)
𝑝𝜋(𝑋)

̂︀E[𝑓(𝑋)2 − 2𝑋+1
𝑋+𝑟

𝑓(𝑋 − 1)1{𝑋>0}]

𝒩 (𝜃, 1) 1√
2𝜋

exp
(︁
− (𝑋−𝜃)2

2

)︁
𝑋 + 𝑝′𝜋(𝑋)

𝑝𝜋(𝑋)
̂︀E[𝑓(𝑋)2 − 2𝑋𝑓(𝑋) + 2𝑓 ′(𝑋)]

Exp(𝜃) 𝜃 exp(−𝜃𝑋) −𝑝′𝜋(𝑋)
𝑝𝜋(𝑋)

̂︀E[𝑓(𝑋)2 − 2𝑓 ′(𝑋)]

Table 2.1: ERM objectives for distributions listed in Table 1.1.

2.1 Regret optimality

In addition to its conceptual simplicity and computational advantage, the ERM-based es-

timator comes with strong statistical guarantees, which we now describe. Let 𝒫 [0, ℎ] de-

note the class of all priors supported on the interval [0, ℎ] and SubE(𝑠) the set of all 𝑠-

subexponential distributions on R+, namely SubE(𝑠) =
{︀
𝐺 : 𝐺([𝑡,∞)]) ≤ 2𝑒−𝑡/𝑠,∀𝑡 > 0

}︀
.

Our main result is as follows:
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Theorem 1 (Regret optimality of ERM-based estimators). Let ̂︀𝑓erm be defined in (2.1), with

ℱ the class of all monotone functions on Z+. Then there exist s a constant 𝐶 > 0 such that

for any ℎ, 𝑠 > 0,

sup
𝜋∈𝒫([0,ℎ])

Regret𝜋( ̂︀𝑓erm) ≤ 𝐶max{1, ℎ}3

𝑛

(︂
log 𝑛

log log 𝑛

)︂2

,

sup
𝜋∈SubE(𝑠)

Regret𝜋( ̂︀𝑓erm) ≤ 𝐶max{1, 𝑠}3

𝑛
(log 𝑛)3.

The regret bounds in Theorem 1 match the minimax lower bounds in [52, Theorem 2]

up to constant factors, thereby establish the strong optimality of the ERM-based empirical

Bayes estimators. Finally, as a side remark, we mention that, one can show that a monotone

projection of the Robbins estimator, given by ̂︀𝑓mono-Rob = argmin𝑓∈ℱ
̂︀E[(𝑓(𝑋) − ̂︀𝑓Rob(𝑋))2],

also attains similar regret guarantees as in Theorem 1. This is outside the scope of the

current paper.

2.2 Multiple dimensions

The ERM-based estimator (2.1) can be easily extended to the 𝑑-dimension Poisson model.

For clarity, we use the bold fonts to denote a vector, e.g., 𝜃 = (𝜃1, . . . , 𝜃𝑑) ,𝜃𝑖 = (𝜃𝑖1, . . . , 𝜃𝑖𝑑),𝑋 =

(𝑋1, . . . , 𝑋𝑑),𝑋𝑖 = (𝑋𝑖1, . . . , 𝑋𝑖𝑑),𝑥 = (𝑥1, . . . , 𝑥𝑑), etc. Let 𝜋 be a prior distribution on R𝑑
+.

Consider the following data-generating process

𝜃𝑖
iid∼𝜋 𝑋𝑖𝑗

ind.∼ Poi(𝜃𝑖𝑗). (2.2)

Note that the marginal distribution of the multidimensional Poisson mixture is given by

𝑝𝜋(𝑥) =

∫︁
𝜃

𝑑∏︁
𝑖=1

𝑒−𝜃𝑖
𝜃𝑥𝑖
𝑖

𝑥𝑖!
𝑑𝜋(𝜃), 𝑥 ∈ Z𝑑

+.

Similar to (1.5), let us define the regret of a given estimator 𝑓 : Z𝑑
+ → R𝑑

+ as

Regret𝜋(𝑓) = E
[︀
‖𝑓(𝑋)− 𝜃‖2

]︀
− E

[︀
‖𝑓 *(𝑋)− 𝜃‖2

]︀
, (2.3)
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where 𝑋 ∼ 𝑝𝜋 is a test point independent from the training sample 𝑋1, . . . ,𝑋𝑛
iid∼𝑝𝜋. For

each 𝑓 , let 𝑓 = (𝑓1, · · · , 𝑓𝑑) where 𝑓𝑖 : Z𝑑
+ → R+. Denote by 𝑓 * the Bayes estimator, whose

𝑖-th coordinate 𝑓 *
𝑖 is given by

𝑓 *
𝑖 (𝑥) = E[𝜃𝑖|𝑥] =

∫︀
𝜃
𝜃𝑖
∏︀𝑑

𝑗=1 𝑒
−𝜃𝑖 𝜃

𝑥𝑖
𝑖

𝑥𝑖!
𝑑𝜋(𝜃)

𝑝𝜋(𝑥)
= (𝑥𝑖 + 1)

𝑝𝜋(𝑥+ 𝑒𝑖)

𝑝𝜋(𝑥)
, 𝑖 = 1, . . . , 𝑑,

where 𝑒𝑖 denote the 𝑖-th coordinate vector. Using Cauchy-Schwarz, one can show that the

Bayes estimator for the 𝑖-th coordinate is increasing in the 𝑖-th coordinate of the input if all

other coordinates are fixed, i.e.,

𝑓 *
𝑖 (𝑥) ≤ 𝑓 *

𝑖 (𝑥+ 𝑒𝑖), ∀𝑖 = 1, . . . , 𝑑, ∀𝑥 ∈ Z𝑑
+ (2.4)

This leads to the following ERM procedure.

̂︀𝑓erm = argmin
𝑓∈ℱ

̂︀E[︃‖𝑓(𝑋)‖2 − 2
𝑑∑︁

𝑗=1

𝑋𝑗𝑓𝑗(𝑋 − 𝑒𝑖)

]︃
,

ℱ ={𝑓 : Z𝑑
+ → R𝑑

+ : 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥+ 𝑒𝑖), ∀𝑖 = 1, · · · , 𝑑,∀𝑥 ∈ Z𝑑
+}. (2.5)

We again note that ̂︀𝑓erm is not uniquely defined for all 𝑥 ∈ Z𝑑
+. To specify a minimizer, note

that ( ̂︀𝑓erm)𝑗, the 𝑗-th coordinate of ̂︀𝑓erm, is uniquely defined on 𝑆 , {𝑋𝑖} ∪ {𝑋𝑖 − 𝑒𝑗}. We

may extend it to Z𝑑
+ in the same manner as the one-dimensional case of (2.1) in a piecewise

constant manner. That is, for each 𝑥 ̸∈ 𝑆, if there exists 𝑦 ≥ 0 such that 𝑥 − 𝑦𝑒𝑗 ∈ 𝑆, we

set ( ̂︀𝑓erm)𝑗(𝑥) = ( ̂︀𝑓erm)𝑗(min 𝑦≥0
𝑥−𝑦𝑒𝑗∈𝑆

𝑥 − 𝑦𝑒𝑗). Otherwise, set ( ̂︀𝑓erm)𝑗(𝑥) = 0. By convention,

we also define ( ̂︀𝑓erm)𝑗(−𝑒𝑗) = 0.

Theorem 2. The ERM estimator (2.5) satisfies the following regret bounds whenever 𝑛 ≥ 𝑑:

1. If 𝜋 is supported on [0, ℎ]𝑑, then Regret𝜋( ̂︀𝑓erm) ≤ 𝑂( 𝑑
𝑛
max{𝑐1, 𝑐2ℎ}𝑑+2( log(𝑛)

log log(𝑛)
)𝑑+1) ;

2. If all marginals of 𝜋 are 𝑠-subexponential for some 𝑠 > 0, then

Regret𝜋( ̂︀𝑓erm) ≤ 𝑂( 𝑑
𝑛
(max{𝑐3, 𝑐4𝑠} log(𝑛))𝑑+2),

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 > 0 are absolute constants.
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(a) Latent 𝜃𝑖’s. (b) Observations 𝑋𝑖’s. (c) Denoised ̂︀𝑓erm.

Figure 2-1: A two-dimensional experiment with 𝑛 = 106: Left: 𝜃𝑖’s are sampled uniformly
from a triangle. Middle: the observations 𝑋𝑖’s are drawn independently from Poi(𝜃𝑖), with
their empirical distribution shown on the grid Z2

+ (notice that this is also the MLE estimator
for 𝜃, hence very different from the empirical Bayes solution). Right: the empirical Bayes
denoised version obtained by applying ̂︀𝑓erm in (2.5) to 𝑋𝑖’s.

We conjecture these regret bounds in Theorem 2 are nearly optimal and factors like

(log 𝑛)𝑑 are necessary. Indeed, for the Gaussian model in 𝑑 dimensions, the minimax squared

Hellinger risk for density estimation is shown to be at least 𝑂((log 𝑛)𝑑/𝑛) for subgaussian

mixing distributions and the minimax regret is typically even larger. A rigorous proof of a

matching lower bound for Theorem 2 will likely involve extending the regret lower bound

based on Bessel kernels in [52] to multiple dimensions; this is left for future work.

Remark 1 (Time complexity). For the statistical rate of ERM in multiple dimensions to

be meaningful, we require 𝑑 to be significantly smaller than 𝑛. Nonetheless, even in the

dimensions where the regret in Theorem 2 is vanishing, the ERM method is computationally

much more scalable, compared with the conventional approach based on NPMLE or other

minimum-distance estimators.

To elaborate on this, ERM is a linear program and has a dedicated solver due to its

special form. NPMLE is an infinite-dimensional convex optimization, and the prevailing

solver either discretizes the domain (at least
√
𝑛 level in order to be statistically relevant,

thus requires a grid of size 𝑛Θ(𝑑)) or runs Frank-Wolfe style iteration, which is only known

to converge slowly at 1
𝑡

rate [40] and requires mode finding that is expensive in multiple

dimensions. In contrast, the ERM approach scales much better with the dimension. To

evaluate the 𝑑-dimensional ERM (2.5), as we will demonstrate in Remark 4, if ℓ is the number

of distinct vector-valued observations 𝑋1, . . . ,𝑋𝑛, our algorithm runs in 𝑂(𝑑ℓ2) ≤ 𝑂(𝑑𝑛2)
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time (apart from reading the sample of size 𝑛). An almost linear time 𝑂(𝑑ℓ log ℓ) algorithm

(which is how we implemented in the simulations), exists but is beyond the scope of this

paper. (We will describe the basic idea in Appendix B.2.)

On the empirical side, we demonstrate the multidimensional feasibility of ERM by running

a simulation with 𝜃1, . . . ,𝜃𝑛 sampled uniformly from a triangle with 𝑛 = 106 and compute the

empirical Bayes denoiser ̂︀𝑓erm in (2.5) to 𝑋𝑖
ind.∼ Poi(𝜃𝑖). Here, we see that ̂︀𝑓erm can recover

the triangular structure of the prior, as in Fig. 2.2. To further compare the computational

costs of ERM and minimum distance methods, we did a comparison in the statistical software

𝑅 with the popular package “REBayes" [32] and the results are as follows. With the prior

Unif(4, 30) and sample sizes 𝑛 = 50, 500, 5000, 50000, we ran both REBayes and ERM 100

times and found that on average, the ERM is respectively 21, 50, 212, 588 times faster. This

improvement is even more pronounced (25, 58, 227.5, 2160 times) if we supply the empirical

distribution to the ERM instead of the full sample.

Remark 2 (Comparison with 𝑓 -modelling). While both 𝑓 -modelling (i.e. the Robbins esti-

mator) and the ERM estimator ̂︀𝑓erm are asymptotically optimal, we demonstrate more con-

cretely the advantage of ̂︀𝑓erm over Robbins. The shortcomings of the Robbins method have

been widely observed in practice and discussed in the existing literature. Most recently, it

has been demonstrated in [30] extensively through both simulated and real data experiment.

Expanding on Fig. 2-1(a), which compares the performance of the multidimensional Robbins

method and ̂︀𝑓erm under a uniform prior on the 2d triangle, for 𝑛 = 10𝑘, 𝑘 = 4, 5, 6, 7, we

found that the Robbins method achieved a regret of 0.356, 0.0575, 0.00771, 0.00116 and ̂︀𝑓erm
achieved a regret of 0.0748, 0.0161, 0.00276, 0.000463, suggesting a much better performance.

On another experiment, we also compared the methods in dimensions 1, 2, 3, 4 using a prod-

uct of Exp(2) distributions as prior, fixing 𝑛 = 10000. The Robbins method achieved regrets

0.0125, 0.0607, 0.185, 0.427; ̂︀𝑓erm achieved regrets 0.00422, 0.0208, 0.0660, 0.161. More empir-

ical studies (Hockey dataset and exponential prior simulation) can be found in Appendix A.
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2.3 Related work

Empirical Bayes estimation for the Poisson means incorporating shape constraint has a long

research thread. However, the majority of the work relies on approximating the Robbins

estimator using monotone functions. For example, [44] used linear approximation to the

Robbins estimator and [46] represented the marginal distribution 𝑝𝜋 based on a monotone

ordinate fit to the Robbins and then used it to compute a maximum likelihood estimation of

the ordinates. Both of these papers focus on numerical comparison of the corresponding error

guarantees; see [43, Section 3.4.5] for a concise exposition. In recent work, [11] discussed

the numerical benefits of first performing a Rao-Blackwellization on the Robbins estimator

and then using an isotonic regression to impose the monotonicity of the final estimator. An

important theoretical contribution to the monotone smoothing of any given empirical Bayes

estimator has been proposed in [61]. Using the monotone likelihood ratio property of the

Poisson distribution, it is shown that any estimator (e.g., the Robbins estimator) can be

made monotone without increasing the regret. In contrast, our main estimator is computed

directly via minimizing an empirical version of the regret. It might be possible to use the

monotone smoothing of [61] to further improve the ERM-estimator which is not pursued in

this work.

As mentioned in the beginning of this chapter, the application of empirical risk mini-

mization in empirical Bayes has been introduced in the one-dimensional normal mean model

by [1]. Using the monotonicity of the posterior mean, they construct an empirical Bayes

estimator by solving the ERM under monotonicity constraint (see Table 2.1). However, the

regret bound they establish is of the slow rate polylog(𝑛)√
𝑛

which is highly suboptimal, com-

pared with the nearly optimal rate of 𝑂( (log𝑛)
5

𝑛
) by [31] (based on the 𝑔-modeling approach

via NPMLE) and 𝑂( (log𝑛)
8

𝑛
) by [37] (based on the 𝑓 -modeling approach of polynomial kernel

density estimates). As mentioned earlier, the NPMLE is computationally expensive, espe-

cially in multiple dimensions due to the reliance on grid-based approximation [33, 58]. In

contrast, as mentioned before, ERM-based estimators algorithm can be easily constructed

for multiple or high dimensions.
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Chapter 3

Regret guarantees for the ERM

estimator via Offset Rademacher

complexity

3.1 The ERM algorithm

As mentioned in Chapter 2, our proposed estimator is based on ERM framework. In many

statistical problems, the statistician intends to find a function 𝑓 that approximates a target

statistic 𝑠(𝑋) in order to minimize the error E [ℓ (𝑠(𝑋), 𝑓(𝑋))] for some suitable loss function

ℓ. In the ERM framework, the population average is replaced by the empirical averagê︀E [ℓ (𝑠(𝑋); 𝑓(𝑋))] over the training sample. There is a rich literature on using such methods

to approximate nonparametric target functions. See, for example, [50, 60] for regression

problems, [2, 4, 3] for penalized empirical risk minimization, [10, 42] for consistency results

of general nonparametric ERM-estimators, etc. In this paper, we aim to approximate the

nonparametric target function 𝑓 * (the Bayes rule) by minimizing E [(𝑓 *(𝑋)− 𝑓(𝑋))2]. As

shown in Chapter 2, in the Poisson mixture model, this can be equivalently expressed as

minimizing E [𝑓(𝑋)2 − 2𝑋𝑓(𝑋 − 1)] and we minimize the corresponding empirical loss over

the class of all monotone functions. Isotonic minimization of such quadratic loss is easy to

compute; [8] showed that monotone projection can be done in linear time. In the following
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lemma we present one such minimization algorithm that we use in numerical analyses. The

proof is deferred to Appendix B.2.

Lemma 1. Let 𝑎1 < · · · < 𝑎𝑛 be a sequence of non-negative integers and {𝑣𝑖}𝑛𝑖=1, {𝑤𝑖}𝑛𝑖=1 be

two non-negative sequences with 𝑣𝑛 > 0 and max{𝑣𝑖, 𝑤𝑖} > 0 for all 𝑖. Consider the iterative

𝑏𝑖

𝑏𝑖 =

⎧⎪⎨⎪⎩
1 𝑖 = 0

1 + argmin𝑏𝑖−1≤𝑖*≤𝑛

∑︀𝑖*
𝑖=𝑏𝑖−1

𝑤𝑖∑︀𝑖*
𝑖=𝑏𝑖−1

𝑣𝑖
𝑖 ≥ 1

where the fraction is +∞ whenever the denominator is 0, and where tie exists at argmin,

choose biggest such 𝑖*. We stop at 𝑏𝑚 = 𝑛+ 1. Then the solution to

̂︀𝑓erm = argmin
𝑓∈ℱ

𝑛∑︁
𝑖=1

𝑣𝑖𝑓(𝑎𝑖)
2 − 2𝑤𝑖𝑓(𝑎𝑖)

is given as

∀𝑖 = 1, · · · ,𝑚,∀𝑥 : 𝑏𝑚 ≤ 𝑥 < 𝑏𝑚+1 : ̂︀𝑓erm(𝑎𝑥) = ∑︀𝑏𝑚+1−1
𝑖=𝑏𝑚

𝑤𝑖∑︀𝑏𝑚+1−1
𝑖=𝑏𝑚

𝑣𝑖
.

Remark 3. Making the restriction 𝑣𝑖 ≥ 0 and 𝑣𝑛 > 0 ensures that our solution will be

well-formed. To apply this algorithm to estimate ̂︀𝑓erm, let {𝑎1, · · · , 𝑎𝑘} ⊆ {1, · · · , 𝑋max} be

such that either 𝑁(𝑎𝑖) > 0 or 𝑁(𝑎𝑖 + 1) > 0. Here, 𝑣𝑖 = 𝑁(𝑎𝑖) and 𝑤𝑖 = (𝑎𝑖 + 1)𝑁(𝑎𝑖 + 1).

Our choice of 𝑎𝑖’s for 𝑖 = 1, . . . , 𝑘 ensures that max{𝑣𝑖, 𝑤𝑖} > 0, and also 𝑣𝑘 > 0.

Remark 4. Lemma 1 can be applied to compute the ERM estimator (2.5) for the multivariate

case. Recall that the function class ℱ dictates the following form of monotonicity: for each

vector 𝑥′ = (𝑥′
1, · · · , 𝑥′

𝑗−1, 𝑥
′
𝑗+1, · · · , 𝑥𝑑) of length 𝑑− 1, we define

𝐶𝑗(𝑥
′) , {𝑥 ∈ R𝑑

+ : 𝑥𝑖 = 𝑥′
𝑖,∀𝑖 ̸= 𝑗} (3.1)

Here are several examples for 𝑑 = 3:

𝐶0((0, 0)) = {(0, 0, 0), (1, 0, 0), (2, 0, 0), · · · } 𝐶1((0, 0)) = {(0, 0, 0), (0, 1, 0), (0, 2, 0), · · · }

𝐶2((0, 0)) = {(0, 0, 0), (0, 0, 1), (0, 0, 2), · · · }
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Then 𝑓 ∈ ℱ if and only if for each 𝑗 ∈ [𝑑], 𝑓𝑗 restricted on each 𝐶𝑗(𝑥
′) is monotone in the 𝑗-

th coordinate of the argument. Since the objective function ̂︀E[‖𝑓(𝑋)‖2−2
∑︀𝑑

𝑗=1𝑋𝑗𝑓𝑗(𝑋−𝑒𝑗)]

is separable, for each 𝑗 we may determine ( ̂︀𝑓erm)𝑗 by partitioning the samples 𝑋1, · · · ,𝑋𝑛

into classes of 𝐶𝑗(𝑥
′), and then apply Lemma 1 to each class.

To bound the regret of such ERM-estimators, we used the technique of Rademacher

complexities. The Rademacher analysis, popularized by [34, 47, 5], etc., uses a symmetriza-

tion argument to bound the error using the supremum of an empirical process of the form

sup𝑔∈ℱ
1
𝑛

∑︀𝑛
𝑖=1 𝜖𝑖𝑔(𝑋𝑖), where 𝜖1, . . . , 𝜖𝑛 are iid Rademacher random variables, and ℱ is some

suitable function class. The complexity of such a function class is often characterized by the

VC dimension or the covering numbers. An immediate bound on the complexity is produced

by the uniform convergence bound when ℱ is chosen to be the class of all possible candidate

functions, however, this has been shown to guarantee only a slow rate of regret ( 1√
𝑛
), which

is the case in the prior work [1] that applies the ERM approach to the Gaussian model.

An improvement on this is made by restricting ℱ to be a smaller class, for example using

the techniques of local Rademacher complexities [6, 35, 41] which analyzes the complexity

within a small ball around the target function, the empirical minimizer, etc. We employ a

similar technique of using function classes with smaller complexity. Note that the empirical

minimizer in (2.1) satisfies the following regularity property.

Lemma 2. Let ̂︀𝑓erm be the ERM-estimator defined in (2.1). Let 𝑋max = max{𝑋1, . . . , 𝑋𝑛}.

Then max0≤𝑥≤𝑋max
̂︀𝑓erm(𝑥) ≤ 𝑋max.

Proof. Recall that ̂︀𝑓erm is characterized by piecewise constancy, where for each maximal

interval 𝐼 on which ̂︀𝑓erm is constant (maximal in the sense we cannot extend 𝐼 further), we

have

∀𝑥0 ∈ 𝐼 : ̂︀𝑓erm(𝑥0) =

∑︀
𝑥∈𝐼(𝑥+ 1)𝑁(𝑥+ 1)∑︀

𝑥∈𝐼 𝑥𝑁(𝑥)

Now that we have defined ̂︀𝑓erm(𝑥) = ̂︀𝑓erm(𝑋max) for all 𝑥 > 𝑋max, it suffices to show that
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̂︀𝑓erm(𝑋max) ≤ 𝑋max. Indeed, there exists an 𝑖* ≤ 𝑋max such that

̂︀𝑓erm(𝑘) = ∑︀𝑋max

𝑖=𝑖* (𝑖+ 1)𝑁(𝑖+ 1)∑︀𝑋max

𝑖=𝑖* 𝑁(𝑖)

(a)
=

∑︀𝑋max

𝑖=𝑖*+1 𝑖𝑁(𝑖)∑︀𝑋max

𝑖=𝑖* 𝑁(𝑖)
≤
∑︀𝑋max

𝑖=𝑖*+1𝑋max𝑁(𝑖)∑︀𝑋max

𝑖=𝑖* 𝑁(𝑖)
= 𝑋max(1−

𝑁(𝑖*)∑︀𝑘
𝑖=𝑖* 𝑁(𝑖)

) ≤ 𝑋max (3.2)

where (a) is due to 𝑁(𝑋max + 1) = 0.

When 𝑋1, . . . , 𝑋𝑛 are generated from the Poisson mixture with either a compactly sup-

ported or subexponential prior, the above result implies that the value of ERM-estimator is at

most Θ(polylog(𝑛)) with high probability. This, in essence, dictates the required complexity

of the function class.

3.2 Risk bounds for ERM via Rademacher complexities

Lemma 2 shows that ̂︀𝑓erm coincides with the ERM over the following more restrictive class

ℱ* , {𝑓 : 𝑓 is monotone, 𝑓(𝑋max) ≤ max {𝑋max, 𝑓
*(𝑋max)}} . (3.3)

Note that ℱ* is a (random) class that depends on the sample maximum. Furthermore, since

it depends on the unknown ground truth 𝑓 *, it is not meant for data-driven optimization but

only for theoretical analysis of the ERM (2.1). In addition, our work utilizes the quadratic

structure of the empirical loss to obtain a stronger notion of the Rademacher complexity

measure, which closely resembles and is motivated by the offset Rademacher complexity

introduced in [38].

Theorem 3. Let ℱ be a convex function class that contains the Bayes estimator 𝑓 *. Let

𝑋1, . . . , 𝑋𝑛 be a training sample drawn iid from 𝑝𝜋, 𝜖1, . . . , 𝜖𝑛 an independent sequence of

iid Rademacher random variables, and ̂︀𝑓 the corresponding ERM solution. Then for any

function class ℱ𝑝𝑛 depending on the empirical distribution 𝑝𝑛 = 1
𝑛

∑︀𝑛
𝑖=1 𝛿𝑋𝑖

that includes ̂︀𝑓
and 𝑓 * we have

Regret𝜋( ̂︀𝑓) ≤ 3

𝑛
𝑇1(𝑛) +

4

𝑛
𝑇2(𝑛) (3.4)
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where

𝑇1(𝑛) = E

[︃
sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

(𝜖𝑖 −
1

6
)(𝑓(𝑋𝑖)− 𝑓 *(𝑋𝑖))

2

]︃
, (3.5)

𝑇2(𝑛) = E

[︃
sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

{︃
2𝜖𝑖(𝑓

*(𝑋𝑖)(𝑓
*(𝑋𝑖)− 𝑓(𝑋𝑖))−𝑋𝑖(𝑓

*(𝑋𝑖 − 1)− 𝑓(𝑋𝑖 − 1)))

− 1

4
(𝑓 *(𝑋𝑖)− 𝑓(𝑋𝑖))

2

}︃]︃
, (3.6)

and ℱ𝑝′𝑛 is defined in the same way as ℱ𝑝𝑛 with respect to an independent copy of 𝑋1, . . . , 𝑋𝑛.

Proof. Define

R(𝑓) = E
[︀
𝑓(𝑋)2 − 2𝑋𝑓(𝑋 − 1)

]︀
, ̂︀R(𝑓) = ̂︀E [︀𝑓(𝑋)2 − 2𝑋𝑓(𝑋 − 1)

]︀
. (3.7)

We first note that ̂︀𝑓 satisfies the following inequality, thanks to the convexity of ℱ :

̂︀R(ℎ)− ̂︀R( ̂︀𝑓) ≥ ̂︀E[(ℎ− ̂︀𝑓)2], ∀ℎ ∈ ℱ . (3.8)

To show this claim, since ℱ is convex,for any 𝜖 ∈ [0, 1], (1 − 𝜖) ̂︀𝑓 + 𝜖ℎ is inside the class ℱ ,

so with ̂︀R( ̂︀𝑓) ≤ ̂︀R((1− 𝜖) ̂︀𝑓 + 𝜖ℎ) we have

𝜕

𝜕𝜖
̂︀R((1− 𝜖) ̂︀𝑓 + 𝜖ℎ) = 2̂︀E[(ℎ(𝑋)− ̂︀𝑓(𝑋))((1− 𝜖) ̂︀𝑓(𝑋) + 𝜖ℎ(𝑋))−𝑋(ℎ(𝑋 − 1)− ̂︀𝑓(𝑋 − 1))]

By the ERM minimality of ̂︀𝑓 , such derivative must be nonnegative when evaluated at 0.

That is, ̂︀E[(ℎ(𝑋)− ̂︀𝑓(𝑋)) ̂︀𝑓(𝑋)−𝑋(ℎ(𝑋 − 1)− ̂︀𝑓(𝑋 − 1))] ≥ 0 (3.9)

Therefore, evaluating the difference gives us

̂︀R(ℎ)− ̂︀R( ̂︀𝑓)− ̂︀E[(ℎ(𝑋)− ̂︀𝑓(𝑋))2]

= ̂︀E[(ℎ(𝑋)2 − ̂︀𝑓(𝑋)2)− 2𝑋(ℎ(𝑋 − 1)− 𝑓(𝑋 − 1))]− ̂︀E[(ℎ(𝑋)− ̂︀𝑓(𝑋))2]

= 2̂︀E[ℎ(𝑋) ̂︀𝑓(𝑋)− ̂︀𝑓(𝑋)2 −𝑋(ℎ(𝑋 − 1)− ̂︀𝑓(𝑋 − 1))] ≥ 0 (3.10)
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as desired. Then using Regret𝜋( ̂︀𝑓) = R( ̂︀𝑓)− R(𝑓 *) we get

Regret𝜋( ̂︀𝑓)
≤ E

[︁
R( ̂︀𝑓)− R(𝑓 *) + ̂︀R(𝑓 *)− ̂︀R( ̂︀𝑓)− ̂︀E(𝑓 * − ̂︀𝑓)2]︁

= E
[︁
(R( ̂︀𝑓)− R(𝑓 *)− E[(𝑓 * − ̂︀𝑓)2]) + (̂︀R(𝑓 *)− ̂︀R( ̂︀𝑓) + ̂︀E[(𝑓 * − ̂︀𝑓)2])

+ E[(𝑓 * − ̂︀𝑓)2]− 2̂︀E[(𝑓 * − ̂︀𝑓)2]]︁
= E

[︁̂︀E[2𝑓 *(𝑋)(𝑓 *(𝑋)− ̂︀𝑓(𝑋))− 2𝑋(𝑓 *(𝑋 − 1)− ̂︀𝑓(𝑋 − 1))]

−E[2𝑓 *(𝑋)(𝑓 *(𝑋)− ̂︀𝑓(𝑋))− 2𝑋(𝑓 *(𝑋 − 1)− ̂︀𝑓(𝑋 − 1))]− 1

4
(̂︀E[(𝑓 * − ̂︀𝑓)2] + E[(𝑓 * − ̂︀𝑓)2])]︂

(3.11)

+ E
[︂
5

4
E[(𝑓 *(𝑋)− ̂︀𝑓(𝑋))2]− 7

4
̂︀E[(𝑓 *(𝑋)− ̂︀𝑓(𝑋))2]

]︂
. (3.12)

We separately bound the two terms (3.11) and (3.12) in the above display in terms of

the Rademacher complexities using the following symmetrization result.

Lemma 3. Let 𝜖1, · · · , 𝜖𝑛 as independent Rademacher symbols. Let 𝑇, 𝑈 be two operators

mapping 𝑓(𝑥) to 𝑇𝑓(𝑥) and 𝑈𝑓(𝑥). Then

E

[︃
sup

𝑓∈ℱ𝑝𝑛

[E[𝑇𝑓(𝑋)]− ̂︀E[𝑇𝑓(𝑋)]− (E[𝑈𝑓(𝑋)] + ̂︀E[𝑈𝑓(𝑋)])]

]︃

≤ 2

𝑛
E

[︃
sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

𝜖𝑖𝑇𝑓(𝑋𝑖)− 𝑈𝑓(𝑋𝑖)

]︃

where 𝑝′𝑛 is an independent copy of the empirical distribution 𝑝𝑛.

Proof. Here, we note that the symmetrization technique has been introduced in [38, p.11-12].

However, given that we are taking a supremum over a data-dependent subclass of ℱ , some

extra care needs to be taken.
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E[ sup
𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

̂︀E′[𝑇 (𝑓(𝑋))]− ̂︀E[𝑇 (𝑓(𝑋))]− (̂︀E′[𝑈(𝑓(𝑋))] + ̂︀E[𝑈(𝑓(𝑋))])]

(a)
=

1

2
E[ sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

̂︀E′[𝑇 (𝑓(𝑋))]− ̂︀E[𝑇 (𝑓(𝑋))]− (̂︀E′[𝑈(𝑓(𝑋))] + ̂︀E[𝑈(𝑓(𝑋))])]

+
1

2
E[ sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

̂︀E[𝑇 (𝑓(𝑋))]− ̂︀E′[𝑇 (𝑓(𝑋))]− (̂︀E′[𝑈(𝑓(𝑋))] + ̂︀E[𝑈(𝑓(𝑋))])]

=
1

2𝑛
E[ sup

𝑓,𝑔∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

𝑇 (𝑓)(𝑋 ′
𝑖)− 𝑇 (𝑓)(𝑋𝑖)− 𝑈(𝑓)(𝑋𝑖)− 𝑈(𝑓)(𝑋 ′

𝑖)

+ 𝑇 (𝑔)(𝑋𝑖)− 𝑇 (𝑔)(𝑋 ′
𝑖)− 𝑈(𝑔)(𝑋𝑖)− 𝑈(𝑔)(𝑋 ′

𝑖)]

≤ 1

2𝑛
E[ sup

𝑓1,𝑔1∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

𝑇 (𝑔1)(𝑋𝑖)− 𝑇 (𝑓1)(𝑋𝑖)− 𝑈(𝑓1)(𝑋𝑖)− 𝑈(𝑔1)(𝑋𝑖)]

+
1

2𝑛
E[ sup

𝑓2,𝑔2∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

𝑇 (𝑓2)(𝑋
′
𝑖)− 𝑇 (𝑔2)(𝑋

′
𝑖)− 𝑈(𝑓2)(𝑋

′
𝑖)− 𝑈(𝑔2)(𝑋

′
𝑖)]

(b)
=

1

𝑛
E[ sup

𝑓,𝑔∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

𝑇 (𝑔)(𝑋𝑖)− 𝑇 (𝑓)(𝑋𝑖)− 𝑈(𝑓)(𝑋𝑖)− 𝑈(𝑔)(𝑋𝑖)]

(c)
≤ 2

𝑛
E[ sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

𝜖𝑖𝑇 (𝑓)(𝑋𝑖)− 𝑈(𝑓)(𝑋𝑖)] (3.13)

where (a), (b) are symmetry and (c) is Jensen’s inequality.

As 𝑓 ∈ ℱ𝑝𝑛 , applying the last lemma to the previous display above, with the choice for

the first expectation (3.11)

𝑇𝑓(𝑥) = − [2𝑓 *(𝑥)(𝑓 *(𝑥)− 𝑓(𝑥))− 2𝑥(𝑓 *(𝑥− 1)− 𝑓(𝑥− 1))] , 𝑈𝑓(𝑥) =
1

4
(𝑓 *(𝑥)− 𝑓(𝑥))2 ,

and the choice for the second expectation (3.12) 𝑇𝑓(𝑥) = 3
2
(𝑓 *(𝑥) − 𝑓(𝑥))2, 𝑈𝑓(𝑥) =

1
2
(𝑓 *(𝑥)− 𝑓(𝑥))2, we get the desired result.

3.2.1 Controlling the Rademacher complexities

To prove Theorem 1, we apply Theorem 3 with the function class ℱ𝑝𝑛 = ℱ* defined in (3.3).

Denote by ℱ𝑝′𝑛 = ℱ ′
* its independent copy based on a fresh sample 𝑋 ′

1, . . . , 𝑋
′
𝑛. Let us define
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the following generalization of (3.5) and (3.6): For 𝑏 > 1,

𝑇1(𝑏, 𝑛) = E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

𝑛∑︁
𝑖=1

(𝜖𝑖 −
1

𝑏
)(𝑓(𝑋𝑖)− 𝑓 *(𝑋𝑖))

2

]︃
, (3.14)

𝑇2(𝑏, 𝑛) = E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

𝑛∑︁
𝑖=1

2𝜖𝑖(𝑓
*(𝑋𝑖)(𝑓

*(𝑋𝑖)− 𝑓(𝑋𝑖))

−𝑋𝑖(𝑓
*(𝑋𝑖 − 1)− 𝑓(𝑋𝑖 − 1)))− 1

𝑏
(𝑓 *(𝑋𝑖)− 𝑓(𝑋𝑖))

2

]︃
. (3.15)

Then we have the following bound on the complexities.

Lemma 4. Let 𝜋 ∈ 𝒫 [0, ℎ] with ℎ being either a constant or ℎ = 𝑠 log 𝑛 for some 𝑠 > 0. Let

𝑀 := 𝑀(𝑛, ℎ) > ℎ be such that

∙ sup𝜋∈𝒫([0,ℎ]) P𝑋∼𝑝𝜋 [𝑋 > 𝑀 ] ≤ 1
𝑛7 .

∙ For 𝑋𝑖
𝑖𝑖𝑑∼ 𝑝𝜋, E

[︀
𝑋𝑘

max

]︀
≤ 𝑐(𝑘)𝑀𝑘 for 𝑘 = 1, . . . , 4 and absolute constant 𝑐 > 0.

Then there exists a constant 𝑐0(𝑏) > 0 such that

𝑇1(𝑏, 𝑛), 𝑇2(𝑏, 𝑛) ≤ 𝑐0(𝑏)
(︀
max{1, ℎ2}𝑀 +max{1, ℎ}𝑀2

)︀
. (3.16)

The first condition on the probability is an artifact of the proof. In general, any tail

bounds on the random variable 𝑋 that decay polynomially in 𝑛, such as the ones satisfied

by bounded priors or priors with subexponential tails, are good enough for our proofs to go

through.

Proof of Lemma 4. We consider the following notations.

𝑁(𝑥) =
𝑛∑︁

𝑖=1

1{𝑋𝑖=𝑥} 𝜖(𝑥) =
𝑛∑︁

𝑖=1

𝜖𝑖1{𝑋𝑖=𝑥} (3.17)

where 𝜖1, · · · , 𝜖𝑛 are independent Rademacher symbols.
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Bound on 𝑇2(𝑏, 𝑛): Using 𝑓(−1) = 0 we note that

𝑛∑︁
𝑖=1

2𝜖𝑖(𝑓
*(𝑋𝑖)(𝑓

*(𝑋𝑖)− 𝑓(𝑋𝑖))−𝑋𝑖(𝑓
*(𝑋𝑖 − 1)− 𝑓(𝑋𝑖 − 1)))− 1

𝑏
(𝑓 *(𝑋𝑖)− 𝑓(𝑋𝑖))

2

=
∑︁
𝑥≥0

2𝜖(𝑥)(𝑓 *(𝑥)(𝑓 *(𝑥)− 𝑓(𝑥))− 𝑥(𝑓 *(𝑥− 1)− 𝑓(𝑥− 1)))− 𝑁(𝑥)

𝑏
(𝑓 *(𝑥)− 𝑓(𝑥))2

=
∑︁
𝑥≥0

2(𝜖(𝑥)𝑓 *(𝑥)− (𝑥+ 1)𝜖(𝑥+ 1))(𝑓 *(𝑥)− 𝑓(𝑥))− 𝑁(𝑥)

𝑏
(𝑓 *(𝑥)− 𝑓(𝑥))2 (3.18)

In view of the above, we can bound 𝑇2(𝑏, 𝑛) using the sum of the following two terms

𝑡1(𝑛) , E{ sup
𝑓∈ℱ*∪ℱ ′

*

[
∑︁
𝑥≥0

2(𝜖(𝑥)𝑓 *(𝑥)−(𝑥+1)𝜖(𝑥+1))(𝑓 *(𝑥)−𝑓(𝑥))−𝑁(𝑥)

𝑏
(𝑓 *(𝑥)−𝑓(𝑥))2]1{𝑁(𝑥)>0}}

𝑡0(𝑛) , E{ sup
𝑓∈ℱ*∪ℱ ′

*

[
∑︁
𝑥≥0

−2(𝑥+ 1)𝜖(𝑥+ 1)(𝑓 *(𝑥)− 𝑓(𝑥))]1{𝑁(𝑥)=0}}.

For analyzing the term 𝑡1(𝑛), since 𝑁(𝑥) > 0, using 2𝑎𝑥 − 𝑏𝑥2 ≤ 𝑎2

𝑏
for any 𝑎, 𝑥 and 𝑏 > 0

we get

𝑡1(𝑛) ≤ 𝑏 · E

[︃∑︁
𝑥≥0

(𝜖(𝑥)𝑓 *(𝑥)− (𝑥+ 1)𝜖(𝑥+ 1))2

𝑁(𝑥)
1{𝑁(𝑥)>0}

]︃
(3.19)

Using E {𝜖(𝑥)|𝑋1, . . . , 𝑋𝑛} = 0 and E [(𝜖(𝑥))2|𝑋1, . . . , 𝑋𝑛] = 𝑁(𝑥) we get

E
[︂
(𝑓 *(𝑥)𝜖(𝑥)− (𝑥+ 1)𝜖(𝑥+ 1))2

𝑁(𝑥)
1{𝑁(𝑥)>0}

]︂
= E

[︂(︂
(𝑓 *(𝑥))2 +

(𝑥+ 1)2𝑁(𝑥+ 1)

𝑁(𝑥)

)︂
1{𝑁(𝑥)>0}

]︂
.

Using the results that

1. 𝑁(𝑥) ∼ Binom(𝑛, 𝑝𝜋(𝑥)) and for absolute constant 𝑐′ > 0 [52, Lemma 16]

E
[︂
1{𝑁(𝑥)>0}

𝑁(𝑥)

]︂
≤ 𝑐′ min

{︂
𝑛𝑝𝜋(𝑥),

1

𝑛𝑝𝜋(𝑥)

}︂
,

2. conditioned on 𝑁(𝑥), 𝑁(𝑥+ 1) ∼ Binom(𝑛−𝑁(𝑥), 𝑝𝜋(𝑥+1)
1−𝑝𝜋(𝑥)

),

3. 𝑓 *(𝑥) = (𝑥+ 1)𝑝𝜋(𝑥+1)
𝑝𝜋(𝑥)

= E [𝜃|𝑋 = 𝑥] ≤ ℎ for all 𝑥 ≥ 0,
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4. Since for every 𝑥 > 0, 𝑥𝑦𝑒−𝑥

𝑦!
≤ 𝑦𝑦𝑒−𝑦

𝑦!
≤ 1√

2𝜋𝑦
(Stirling’s), we have

𝑝𝜋(𝑦) <
1√
2𝜋𝑦

, 𝑦 ≥ 1, (3.20)

we continue (3.19) to get

1

𝑏
𝑡1(𝑛) ≤ E

[︃∑︁
𝑥≥0

𝑓 *(𝑥)21{𝑁(𝑥)>0}

]︃
+
∑︁
𝑥≥0

(𝑥+ 1)2
𝑛𝑝𝜋(𝑥+ 1)

1− 𝑝𝜋(𝑥)
E
[︂
1{𝑁(𝑥)>0}

𝑁(𝑥)

]︂
≤ ℎ2E [1 +𝑋max] +

𝑛𝑝𝜋(1)

1− 𝑝𝜋(0)
E
[︂
1{𝑁(0)>0}

𝑁(0)

]︂
+ 𝑛

∑︁
𝑥≥1

(𝑥+ 1)2𝑝𝜋(𝑥+ 1)E
[︂
1{𝑁(𝑥)>0}

𝑁(𝑥)

]︂
≤ ℎ2E [1 +𝑋max] +

𝑐′𝑝𝜋(1)

(1− 𝑝𝜋(0))𝑝𝜋(0)
+ 𝑐′ℎ

∑︁
𝑥≥1

(𝑥+ 1)min
{︀
(𝑛𝑝𝜋(𝑥))

2, 1
}︀
.

Let 𝑀 > ℎ be as in the lemma statement. For the second term, notice that 𝑝𝜋(1)
(1−𝑝𝜋(0))𝑝𝜋(0)

≤

max {1, ℎ}. For the third term, we use the bound

ℎ
∑︁
𝑥≥1

(𝑥+ 1)min
{︀
(𝑛𝑝𝜋(𝑥))

2, 1
}︀
≤ ℎ𝑀2 + ℎ

∑︁
𝑥≥𝑀

(𝑥+ 1)min
{︀
(𝑛𝑝𝜋(𝑥))

2, 1
}︀

≤ ℎ𝑀2 + 2𝑛2ℎ
∑︁
𝑥≥𝑀

𝑥(𝑝𝜋(𝑥))
2

(a)

≤ ℎ𝑀2 + 2𝑛2ℎ2P𝑋∼𝑝𝜋 [𝑋 > 𝑀 ] ≤ 2(ℎ𝑀2 +
2ℎ2

𝑛5
). (3.21)

where (a) is due to that 𝑥𝑝𝜋(𝑥) = 𝑓 *(𝑥− 1)𝑝𝜋(𝑥− 1) ≤ ℎ for all 𝑥 ≥ 1. We finally note that

since ℎ is either constant or in the form 𝑂(𝑠 log 𝑛) for some constant 𝑠, the term ℎ2

𝑛5 can be

neglected.

Next, we evaluate 𝑡0(𝑛). As |𝜖(𝑥+1)| ≤ 𝑁(𝑥+1) and 𝑁(𝑥+1) = 0 for 𝑥 ≥ 𝑋max we get

𝑡0(𝑛) ≤ E

[︃∑︁
𝑥≥0

2(𝑥+ 1)𝑁(𝑥+ 1) sup
𝑓∈ℱ*∪ℱ ′

*

|𝑓 *(𝑥)− 𝑓(𝑥)|1{𝑁(𝑥)=0}

]︃

≤ E

[︃
𝑋max−1∑︁

𝑥=0

2(𝑥+ 1) (𝑓 *(𝑥) +𝑋max +𝑋 ′
max)𝑁(𝑥+ 1)1{𝑁(𝑥)=0}

]︃
. (3.22)

Let 𝑀 > 0 be as in the lemma statement and 𝐴 = {𝑋max ≤ 𝑀,𝑋 ′
max ≤ 𝑀}. Then P [𝐴𝑐] ≤
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2
𝑛6 via the union bound argument. Thus we have, for some absolute constant 𝑐 > 0,

E

[︃
𝑋max−1∑︁

𝑥=0

2(𝑥+ 1) (𝑓 *(𝑥) +𝑋max +𝑋 ′
max)𝑁(𝑥+ 1)1{𝑁(𝑥)=0} · 1{𝐴𝑐}

]︃

≤ E

[︃
𝑋max(ℎ+𝑋max +𝑋 ′

max)
𝑋max−1∑︁

𝑥=0

𝑁(𝑥+ 1)1{𝑁(𝑥)=0}1{𝐴𝑐}

]︃
(a)

≤ 𝑛E
[︀
(𝑋max) · (ℎ+𝑋max +𝑋 ′

max)1{𝐴𝑐}
]︀ (b)

≤ 𝑛
√︁
E
[︀
(ℎ+𝑋max +𝑋 ′

max)
4]︀√︀P [𝐴𝑐] ≤ 𝑐𝑀2

𝑛2
.

(3.23)

with (a) due to that
∑︀𝑋max−1

𝑥=0 𝑁(𝑥 + 1) ≤
∑︀∞

𝑥=0𝑁(𝑥) = 𝑛, and (b) the Cauchy-Schwarz

inequality and E [𝑋4
max] . 2𝑀4.

For each 𝑥 ≤ 𝑀 , define 𝑞𝜋,𝑀(𝑥) , 𝑝𝜋(𝑥)
P𝑋∼𝑝𝜋 [𝑋≤𝑀 ]

. Note that P [𝑁(𝑥) = 0|𝐴] = (1 −

𝑞𝜋,𝑀(𝑥))𝑛 and conditioned on the set 𝐴 and {𝑁(𝑥) = 0}, the random variable 𝑁(𝑥 + 1)

has Binom
(︁
𝑛,

𝑞𝜋,𝑀 (𝑥+1)

1−𝑞𝜋,𝑀 (𝑥)

)︁
distribution. This implies

E

[︃
𝑋max−1∑︁

𝑥=0

2(𝑥+ 1) (𝑓 *(𝑥) +𝑋max +𝑋 ′
max)𝑁(𝑥+ 1)1{𝑁(𝑥)=0}

⃒⃒⃒⃒
⃒𝐴
]︃

≤
𝑀−1∑︁
𝑥=0

2(𝑥+ 1)(ℎ+ 2𝑀)E [𝑁(𝑥+ 1)|𝑁(𝑥) = 0, 𝐴]P [𝑁(𝑥) = 0|𝐴]

≤
𝑀−1∑︁
𝑥=0

2(𝑥+ 1)(ℎ+ 2𝑀)
𝑛𝑞𝜋,𝑀(𝑥+ 1)

1− 𝑞𝜋,𝑀(𝑥)
(1− 𝑞𝜋,𝑀(𝑥))𝑛

=
𝑀−1∑︁
𝑥=0

2(ℎ+ 2𝑀)𝑓 *(𝑥)𝑛𝑞𝜋,𝑀(𝑥) (1− 𝑞𝜋,𝑀(𝑥))𝑛−1
(a)

≤ 2𝑀ℎ(ℎ+ 2𝑀).

where (a) uses 𝑓 *(𝑥) ≤ ℎ for all 𝑥, and also 𝑛𝑤 (1− 𝑤)𝑛−1 ≤ (1− 1
𝑛
)𝑛−1 < 1 for all 𝑤 ∈ [0, 1].

We conclude our proof by combining the above with (3.23).

Bound on 𝑇1(𝑏, 𝑛): Denote 𝑚𝑏 = 𝑏 + 1. Conditional on the sample 𝑋1, . . . , 𝑋𝑛 and

𝑋1, . . . , 𝑋𝑛, given any 𝑓 ∈ ℱ* ∪ ℱ ′
* define

𝑣(𝑓) = min {min {𝑥 : 𝑓(𝑥) ≤ 𝑚𝑏ℎ} , 𝑋max} .
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Then using the above definition we get for each 𝑓 ∈ ℱ* ∪ ℱ ′
*, conditional on the samples,

𝑛∑︁
𝑖=1

(𝜖𝑖 −
1

𝑏
)(𝑓(𝑋𝑖)− 𝑓 *(𝑋𝑖))

2 =
∑︁

𝑥:𝑁(𝑥)>0

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓(𝑥)− 𝑓 *(𝑥))2

=

⎛⎝𝑣(𝑓)∑︁
𝑥=0

+
𝑋max∑︁

𝑥=𝑣(𝑓)+1

⎞⎠ (𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓(𝑥)− 𝑓 *(𝑥))2

≤ 𝑚2
𝑏ℎ

2

𝑋max∑︁
𝑥=0

max

{︂
𝜖(𝑥)− 1

𝑏
𝑁(𝑥), 0

}︂
(3.24)

+ sup
𝑣≥0

{︃
sup

𝑚𝑏ℎ≤𝑓≤𝑋max

{︃
𝑋max∑︁
𝑥>𝑣

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓(𝑥)− 𝑓 *(𝑥))2

}︃}︃
. (3.25)

For the first term (3.24), we invoke the following lemma, to be proven in Appendix B.2.

Lemma 5. For each 𝑥 and 𝑏 > 1, conditioned on 𝑋𝑛
1 we have

E[max{𝜖(𝑥)− 1

𝑏
𝑁(𝑥), 0}] ≤

1− 1
𝑏

𝑒 ·𝐷(
1+ 1

𝑏

2
||1
2
)

For brevity, we denote 𝑁𝑏 ,
1− 1

𝑏

𝑒·𝐷(
1+1

𝑏
2

|| 1
2
)
. This gives us

E

[︃
𝑚2

𝑏ℎ
2

𝑋max∑︁
𝑥=0

max

{︂
𝜖(𝑥)− 1

𝑏
𝑁(𝑥), 0

}︂⃒⃒⃒⃒
⃒𝑋𝑛

1

]︃
≤ 𝑁𝑏𝑚

2
𝑏ℎ

2E[(1 +𝑋max)]. (3.26)

For the second term (3.25), we note that for any 𝑓 with values in [𝑚𝑏ℎ,𝑋max], we have
𝑚𝑏−1
𝑚𝑏

𝑓 ≤ 𝑓 − 𝑓 * ≤ 𝑓 and hence

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓(𝑥)− 𝑓 *(𝑥))2 ≤ max

{︃(︂
𝜖(𝑥)− 1

𝑏
𝑁(𝑥)

)︂
,

(︂
𝑚𝑏 − 1

𝑚𝑏

)︂2(︂
𝜖(𝑥)− 1

𝑏
𝑁(𝑥)

)︂}︃
𝑓(𝑥)2.

(3.27)

Now given that −𝑁(𝑥) ≤ 𝜖(𝑥) ≤ 𝑁(𝑥), define function 𝑔 : [−1, 1] → R given by

𝑔(𝑥) = max

(︃(︂
𝑥− 1

𝑏

)︂
,

(︂
𝑚𝑏 − 1

𝑚𝑏

)︂2(︂
𝑥− 1

𝑏

)︂)︃
(3.28)
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Since 𝑔 is the maximum of two linear functions, it is convex, and therefore bounded by the

line joining their endpoints, (−1,−(1
𝑏
+ 1) ·

(︁
𝑚𝑏−1
𝑚𝑏

)︁2
) and (1, 1− 1

𝑏
). Now define:

𝛼 =
1

2

[︃(︂
1 +

1

𝑏

)︂
·
(︂
𝑚𝑏 − 1

𝑚𝑏

)︂2

+

(︂
1− 1

𝑏

)︂]︃
;

𝛽 =
1

2

[︃(︂
1 +

1

𝑏

)︂
·
(︂
𝑚𝑏 − 1

𝑚𝑏

)︂2

−
(︂
1− 1

𝑏

)︂]︃
=

1

2𝑏(𝑏+ 1)

using the fact that 𝑚𝑏 = 𝑏 + 1. Note that 0 < 𝛽 < 𝛼. Then we have 𝑔(𝑥) ≤ 𝛼𝑥 − 𝛽 for all

𝑥 ∈ [−1, 1]. Hence, we have

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓(𝑥)− 𝑓 *(𝑥))2 ≤ (𝛼𝜖(𝑥)− 𝛽𝑁(𝑥))𝑓(𝑥)2 (3.29)

Hence (3.25) can be bounded by, modulo a constant multiplicative factor 𝑐2(𝑏) depending

on 𝑏,

sup
𝑣≥0

{︃
sup

𝑚𝑏ℎ≤𝑓≤𝑋max

{︃
𝑋max∑︁
𝑥>𝑣

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓(𝑥)− 𝑓 *(𝑥))2

}︃}︃

≤ 𝑐2(𝑏)

[︃
sup
𝑣≥0

{︃
sup

𝑚𝑏ℎ≤𝑓≤𝑋max

{︃
𝑋max∑︁
𝑥>𝑣

(𝜖(𝑥)− 𝛽

𝛼
𝑁(𝑥))𝑓(𝑥)2

}︃}︃]︃
. (3.30)

Note that the above 𝑓 -based maximization problem is a linear programming of the form

sup
𝑎1,...,𝑎𝑘

𝑘∑︁
𝑖=1

𝑣𝑖𝑎𝑖, (𝑚𝑏ℎ)
2 ≤ 𝑎1 · · · ≤ 𝑎𝑘 ≤ (𝑋max)

2 ,

with 𝑘 = 𝑋max +1. The optimization happens on the corner points of the above convex set,

that are given by 𝑋max + 1 length vectors of the form

{︀
(𝑚𝑏ℎ)

2, . . . , (𝑚𝑏ℎ)
2, (𝑋max)

2 , . . . , (𝑋max)
2}︀ .

This implies we can bound (3.30) by

39



(𝑚𝑏ℎ)
2

𝑋max∑︁
𝑥=0

max

{︂
𝜖(𝑥)− 𝛽

𝛼
𝑁(𝑥), 0

}︂
+ (𝑋max)

2 sup
𝑣≥0

{︃
𝑋max∑︁
𝑥>𝑣

(𝜖(𝑥)− 𝛽

𝛼
𝑁(𝑥))

}︃
. (3.31)

The bound of the first term, conditional on the data, is given as per Lemma 5 as 𝑚2
𝑏ℎ

2𝑁𝑏(1+

𝑋max). For the second term, we first note the following result.

Lemma 6. Let 𝑐 > 0 be given. For 𝜖 = (𝜖1, · · · , 𝜖𝑛) 𝑛 independent Rademacher symbols,

denote

𝐿𝑐(𝜖) = max
0≤𝑗≤𝑛

{︃
𝑗∑︁

𝑖=1

𝜖𝑖 − 𝑐𝑗

}︃
(3.32)

Then E[𝐿𝑐(𝜖)] ≤ 𝑀𝑐 where 𝑀𝑐 , 1 + (1− exp(−𝐷( 𝑐+1
2
||1
2
)))−2.

The proof of the above result is provided in Appendix B.2.

Therefore, using Lemma 6, we have

E

[︃
sup
𝑣≥0

{︃
𝑋max∑︁
𝑥>𝑣

(𝜖(𝑥)− 𝛽

𝛼
𝑁(𝑥))

}︃⃒⃒⃒⃒
⃒𝑋𝑛

1

]︃
≤ E[ sup

𝑤:0≤𝑤≤𝑛
(𝜖𝑤+1 + · · ·+ 𝜖𝑛)−

𝛽

𝛼
(𝑛− 𝑤)] ≤ 𝑐(𝑏)

for some constant 𝑐(𝑏) > 0 via Lemma 6. Thus we get

E

[︃
(𝑋max)

2 sup
𝑣≥0

{︃
𝑋max∑︁
𝑥>𝑣

(𝜖(𝑥)− 𝛽

𝛼
𝑁(𝑥))

}︃ ⃒⃒⃒⃒
⃒𝑋1, . . . , 𝑋𝑛

]︃
≤ 𝑐(𝑏)(1 +𝑋max)

2. (3.33)

Combining (3.30), (3.31), and (3.33) we get

E

[︃
sup
𝑣≥0

{︃
sup

𝑚𝑏ℎ≤𝑓≤𝑋max

{︃
𝑋max∑︁
𝑥>𝑣

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓(𝑥)− 𝑓 *(𝑥))2

}︃}︃ ⃒⃒⃒⃒
⃒𝑋𝑛

1

]︃
≤𝑐3(𝑏)

(︀
ℎ2(1 +𝑋max) + (1 +𝑋max)

2
)︀

(3.34)

for a constant 𝑐3(𝑏) depending on 𝑏. Then taking expectation on both the sides and using

the definition of 𝑀 in the lemma statement we finish the proof.
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3.2.2 Proof of Regret optimality (Theorem 1)

We use the above result to first prove the regret bound for bounded priors in 𝒫([0, ℎ]). Note

that by Lemma 10 and Lemma 12, there are constants 𝑐1, 𝑐2 > 0 such that for any fixed

ℎ > 0 such that 𝑀 = max{𝑐2, 𝑐1ℎ} · log𝑛
log log𝑛

satisfies both conditions in Lemma 4, and we get

𝑂(max{1,ℎ3}
𝑛

( log𝑛
log log𝑛

)2) bound on the regret, which is optimal up to constants that possibly

depend on ℎ.

Next we extend the above proof to the subexponential case. Given 𝜋 ∈ SubE(𝑠) define

the truncated version 𝜋𝑐,𝑛[𝜃 ∈ ·] = 𝜋[𝜃 ∈ · | 𝜃 ≤ 𝑐 log 𝑛] for 𝑐 > 0. Then we have the following

reduction.

Lemma 7. There exists constants 𝑐1, 𝑐2, 𝑐3 > 0 such that

Regret𝜋( ̂︀𝑓erm) ≤ Regret𝜋𝑐1𝑠,𝑛
( ̂︀𝑓erm) + max{𝑐2, 𝑐3𝑠}

𝑛
.

Proof. Let 𝜋 ∈ SubE(𝑠), then there exists a constant 𝑐(𝑠) , 11𝑠 by the definition of SubE(𝑠)

such that

𝜀 = P[𝜃 > 𝑐(𝑠) log 𝑛] ≤ 1

𝑛10
, 𝜃 ∼ 𝜋 (3.35)

Denote, also, the event 𝐸 = {𝜃𝑖 ≤ 𝑐(𝑠) log 𝑛,∀𝑖 = 1, · · · , 𝑛}; we have P[𝐸𝑐] ≤ 𝑛−9. Let

𝜋𝑐(𝑠),𝑛 as the truncated prior 𝜋𝑐(𝑠),𝑛[𝜃 ∈ ·] = 𝜋[𝜃 ∈ · | 𝜃 ≤ 𝑐(𝑠) log 𝑛]. Define mmse(𝜋) ,

min𝑓 E𝜃∼𝜋[(𝑓(𝑋) − 𝜃)2] (i.e. the error by the Bayes estimator). Then we may use [52,

Equation 131] to obtain

Regret𝜋( ̂︀𝑓erm) ≤ Regret𝜋𝑐,𝑛
( ̂︀𝑓erm) + mmse(𝜋𝑐,𝑛)− mmse(𝜋) + E𝜋[( ̂︀𝑓erm(𝑋)− 𝜃)21{𝐸𝑐}] (3.36)

By [62, Lemma 2], mmse(𝜋𝑐,𝑛) − mmse(𝜋) ≤ 𝜀
1−𝜀

mmse(𝜋) ≤ 2𝜀 whenever 𝜀 ≤ 1
2
. In ad-

dition, Lemma 2 entails that ̂︀𝑓erm(𝑋) ≤ 𝑋max, which means that E[ ̂︀𝑓 4
erm(𝑋)] ≤ E[𝑋4

max] ≤

𝑂(max{1, 𝑠4}(log 𝑛)4) as per Lemma 13. Meanwhile, for all 𝜋 ∈ SubE(𝑠) we have E𝜋[𝜃
4] ∈

𝑂(𝑠4). This means E𝜋[( ̂︀𝑓erm − 𝜃)4] .𝑠 (log 𝑛)
4. Thus by Cauchy-Schwarz inequality

E𝜋[( ̂︀𝑓erm(𝑋)−𝜃)21{𝐸𝑐}] ≤
√︁

P[𝐸𝑐]E𝜋[( ̂︀𝑓erm(𝑋)− 𝜃)4] ≤
√︁

𝑛−9E𝜋[( ̂︀𝑓erm(𝑋)− 𝜃)4] .
max{1, 𝑠2}

𝑛
.
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Given this lemma, it suffices to bound Regret𝜋𝑐,𝑛
( ̂︀𝑓erm). Then by Lemma 11 and Lemma 12

there exist constants 𝑐1, 𝑐2 > 0 such that 𝑀 = max{𝑐1, 𝑐2𝑠} log 𝑛 satisfies both the require-

ments in Lemma 4. Hence we get the desired regret bound of 𝑂(max{1,𝑠3}(log𝑛)3
𝑛

).

3.3 Regret bounds in multiple dimensions

To prove the regret bound for the multidimensional estimator ̂︀𝑓 = ( ̂︀𝑓1, . . . , ̂︀𝑓𝑑) we use the

approximation error for the different coordinates. In particular, similar to (3.7) we define

R(𝑓) , E

[︃
‖𝑓(𝑋)‖2 − 2

𝑑∑︁
𝑖=1

𝑋𝑖𝑓𝑖(𝑋 − 𝑒𝑖)

]︃
, ̂︀R(𝑓) , ̂︀E[︃‖𝑓(𝑋)‖2 − 2

𝑑∑︁
𝑖=1

𝑋𝑖𝑓𝑖(𝑋 − 𝑒𝑖)

]︃
(3.37)

and note that

Regret𝜋( ̂︀𝑓erm) = E
[︁
R( ̂︀𝑓erm)− R(𝑓 *)

]︁
(3.38)

As mentioned before, in the multidimensional setup our estimator is produced by optimizing

over the class of coordinate-wise monotone functions ℱ in (2.5) and 𝑓 * ∈ ℱ as well. Using

the quadratic structure of the regret and the convexity of ℱ , we can mimic the proof of (3.8)

to get

̂︀R(𝑓)− ̂︀R( ̂︀𝑓) ≥ ̂︀E [︁‖𝑓 − ̂︀𝑓‖2]︁ , 𝑓 ∈ ℱ . (3.39)
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Then following a similar argument as in (3.11), (3.12), using (3.38) we have

Regret𝜋( ̂︀𝑓erm) ≤ E
[︂
R( ̂︀𝑓)− R(𝑓 *) + ̂︀R(𝑓 *)− ̂︀R( ̂︀𝑓)− ̂︀E⃦⃦⃦𝑓 * − ̂︀𝑓 ⃦⃦⃦2]︂

= E

[︃̂︀E[︂ 𝑑∑︁
𝑗=1

2𝑓 *
𝑗 (𝑋)(𝑓 *

𝑗 (𝑋)− ̂︀𝑓𝑗(𝑋))− 2𝑋𝑗(𝑓
*
𝑗 (𝑋 − 𝑒𝑗)− ̂︀𝑓𝑗(𝑋 − 𝑒𝑗))

]︂

− E
[︂ 𝑑∑︁

𝑗=1

2𝑓 *
𝑗 (𝑋)(𝑓 *

𝑗 (𝑋)− ̂︀𝑓𝑗(𝑋))− 2𝑋𝑗(𝑓
*
𝑗 (𝑋 − 𝑒𝑗)− ̂︀𝑓𝑗(𝑋 − 𝑒𝑗))

]︂

− 1

4
(̂︀E [︁‖𝑓 * − ̂︀𝑓‖2]︁+ E[‖𝑓 *(𝑋)− ̂︀𝑓(𝑋)‖2])

]︃
(3.40)

+ E
[︂
5

4
E[‖𝑓 *(𝑋)− ̂︀𝑓(𝑋)‖2]− 7

4
̂︀E[‖𝑓 *(𝑋)− ̂︀𝑓(𝑋)‖2]

]︂
. (3.41)

As Lemma 3 is still directly applicable in the multidimensional setting, applying it with

𝑇 (𝑓(𝑥)) = −
𝑑∑︁

𝑗=1

[2𝑓 *
𝑗 (𝑥)(𝑓

*
𝑗 (𝑥)− 𝑓𝑗(𝑥))− 2𝑥𝑗(𝑓

*
𝑗 (𝑥− 𝑒𝑗)− 𝑓𝑗(𝑥− 𝑒𝑗))],

𝑈(𝑓(𝑥)) =
1

4
‖𝑓 *(𝑥)− 𝑓(𝑥)‖2

to bound (3.40) and with 𝑇 (𝑓(𝑥)) = 3
2
‖𝑓 *(𝑥)− 𝑓(𝑥)‖2, 𝑈(𝑓(𝑥)) = 1

2
‖𝑓 *(𝑥)− 𝑓(𝑥)‖2 to

bound (3.41) we get: for any function class ℱ𝑝𝑛 depending on the empirical distribution 𝑝𝑛

of the sample 𝑋1, . . . ,𝑋𝑛 that includes ̂︀𝑓erm and 𝑓 * and its independent copy ℱ𝑝′𝑛 based on

an independent sample 𝑋 ′
1, . . . ,𝑋𝑛

Regret𝜋( ̂︀𝑓erm) ≤
3

𝑛
E

[︃
sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

(𝜖𝑖 −
1

6
)(𝑓𝑗(𝑋𝑖)− 𝑓 *

𝑗 (𝑋𝑖))
2

]︃

+
2

𝑛
E

[︃
sup

𝑓∈ℱ𝑝𝑛∪ℱ𝑝′𝑛

𝑛∑︁
𝑖=1

2𝜖𝑖(𝑓
*
𝑗 (𝑋𝑖)(𝑓

*
𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))−𝑋𝑖𝑗(𝑓

*
𝑗 (𝑋𝑖 − 𝑒𝑗)

− 𝑓𝑗(𝑋𝑖 − 𝑒𝑗)))−
1

4
(𝑓 *

𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))
2

]︃
(3.42)

To achieve the best possible bound we choose ℱ𝑝𝑛 with low complexity. Note that the

objective function R defined in (3.37) is separable into sum of individual loss functions.

Thus, given the definition of ℱ in (2.5), for each coordinate 𝑗 and each class 𝐶𝑗(𝑥
′) defined
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in (3.1), we have

( ̂︀𝑓erm)𝑗|𝐶𝑗(𝑥′) = argmin
𝑓∈ℱ1

̂︀E [𝑓𝑗(𝑋)− 2𝑋𝑗𝑓𝑗(𝑋 − 𝑒𝑗)|𝑋 ∈ 𝐶𝑗(𝑥
′)] , ∀𝑥′ ∈ R𝑑−1

+ .

where ℱ1 is the class of all one-dimensional monotone function from Z+ → R+. Considering

this for all classes 𝐶𝑗(𝑥
′) and from Lemma 2, we have

( ̂︀𝑓erm)𝑗(𝑋𝑖) ≤ 𝑋𝑗,max, 𝑋𝑗,max ,
𝑛

max
𝑖=1

𝑋𝑖𝑗, 𝑗 = 1, . . . , 𝑑. (3.43)

Given the sample 𝑋1, . . . ,𝑋𝑛 define the sample based function class

ℱ* ,
{︀
𝑓 ∈ ℱ : 𝑓𝑗(𝑋𝑖) ≤ max

{︀
𝑓 *
𝑗 (𝑋𝑖), 𝑋𝑗,max

}︀
, 𝑗 = 1, . . . , 𝑑, 𝑖 = 1, . . . , 𝑛

}︀
. (3.44)

Let ℱ ′
* be an independent copy of ℱ*. Then simplifying (3.42) with ℱ𝑝𝑛 = ℱ*,ℱ𝑝𝑛 = ℱ ′

*

we get

Regret𝜋( ̂︀𝑓erm) ≤
1

𝑛

𝑑∑︁
𝑗=1

(3𝑈1(𝑗, 𝑛) + 4𝑈2(𝑗, 𝑛))

𝑈1(𝑗, 𝑛) , E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

𝑛∑︁
𝑖=1

(𝜖𝑖 −
1

6
)(𝑓𝑗(𝑋𝑖)− 𝑓 *

𝑗 (𝑋𝑖))
2

]︃

𝑈2(𝑗, 𝑛) , E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

𝑛∑︁
𝑖=1

𝜖𝑖(𝑓
*
𝑗 (𝑋𝑖)(𝑓

*
𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))−𝑋𝑖𝑗(𝑓

*
𝑗 (𝑋𝑖 − 𝑒𝑗)

−𝑓𝑗(𝑋𝑖 − 𝑒𝑗)))−
1

8
(𝑓 *

𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))
2

]︂
. (3.45)

We bound these 2𝑑 Rademacher complexities to arrive at the results. Note that as we

want to analyze the supremum over all possible prior distributions whose marginals are

subject to the same tail assumption (either supported on [0, ℎ] or 𝑠-subexponential), by the

inherent symmetry on the 𝑑 coordinates, it suffices to consider only a single coordinate, say,

the 𝑗-th, when bounding the offset Rademacher complexity. The final regret bound then

includes an extra factor of 𝑑 over this single instance of Rademacher complexity. Note that

in our problem the function class ℱ* is supported over the hypercube
∏︀𝑑

𝑗=1[0, 𝑋𝑗,max]. The

high-level idea for our analysis is that the effective size of this hypercube, corresponding to
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different classes of priors, controls the Rademacher complexity and hence the regret upper

bound.

3.3.1 Bounding Rademacher Complexity for Bounded Prior

Here we first prove a bound for the generalization of the Rademacher complexities in (3.45)

for 𝑏 > 1:

𝑈1(𝑏, 𝑗, 𝑛) , E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

𝑛∑︁
𝑖=1

(𝜖𝑖 −
1

𝑏
)(𝑓𝑗(𝑋𝑖)− 𝑓 *

𝑗 (𝑋𝑖))
2

]︃

𝑈2(𝑏, 𝑗, 𝑛) , E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

𝑛∑︁
𝑖=1

2𝜖𝑖(𝑓
*
𝑗 (𝑋𝑖)(𝑓

*
𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))−𝑋𝑖𝑗(𝑓

*
𝑗 (𝑋𝑖 − 𝑒𝑗)

−𝑓𝑗(𝑋𝑖 − 𝑒𝑗)))−
1

𝑏
(𝑓 *

𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))
2

]︂
(3.46)

We have the following result similar to Lemma 4.

Lemma 8. Let 𝜋 ∈ 𝒫 [0, ℎ] with ℎ being either a constant or ℎ = 𝑠 log 𝑛 for some 𝑠 > 0.

Given 𝑋1, . . . ,𝑋𝑛 be iid observations from 𝑝𝜋, let 𝑀 := 𝑀(𝑛, ℎ) > ℎ be such that

∙ For each coordinate 𝑗 = 1, · · · , 𝑑, we have the 𝑗-th coordinate 𝑋𝑗 of 𝑋 satisfying

sup
𝜋∈𝒫([0,ℎ])𝑑

P𝑋∼𝑝𝜋 [𝑋𝑗 > 𝑀 ] ≤ 1

𝑛7
.

∙ For 𝛽 = 1, 2, 3, 4, constants 𝑐1(𝛽) depending on 𝛽 and absolute constant 𝑐 > 0

E
[︀
(𝑋𝑗,max)

4
]︀
≤ 𝑐𝑀4, E

⎡⎢⎣(1 +𝑋𝑗,max)
𝛽

𝑑∏︁
𝑘=1
𝑘 ̸=𝑗

(1 +𝑋𝑘,max)

⎤⎥⎦ ≤ 𝑐1(𝛽)𝑀
𝑑−1+𝛽.

Then there exists a constant 𝑟(𝑏) > 0 such that for all 𝑛 ≥ 𝑑,

𝑈1(𝑏, 𝑗, 𝑛), 𝑈2(𝑏, 𝑗, 𝑛) ≤ 𝑟(𝑏)
{︀
max{1, ℎ2}+max{1, ℎ}𝑀

}︀
(1 +𝑀)𝑑. (3.47)

Proof. At a high level, using the monotonicity of ℱ , for a target coordinate 𝑗 we partition

the samples 𝑋1, · · · ,𝑋𝑛 such that samples in the same class differ by (possibly) only the
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𝑗-th coordinate. Then for each class, using monotonicity, we mimic the proof for the one-

dimensional case. Before proceeding with the proof we define the following notations for all

𝑗 = 1, . . . , 𝑑 and 𝑥′ ∈ Z𝑑−1
+

𝐶𝑗(𝑥
′) , {𝑥 ∈ Z𝑑

+ : 𝑥𝑖 = 𝑥′
𝑖 ∀𝑖 ≤ 𝑗 − 1 and 𝑥𝑖 = 𝑥′

𝑖−1 ∀𝑖 ≥ 𝑗 + 1},

𝑁𝑗(𝑥
′) =

∑︁
𝑥∈Z𝑑

+

𝑁(𝑥)1{𝑥∈𝐶𝑗(𝑥′)}.
(3.48)

In addition, we will use multiple times that by union bound we have

sup
𝜋∈𝒫([0,ℎ])𝑑

P𝑋∼𝑝𝜋

[︀
𝑋 ̸∈ [0,𝑀 ]𝑑

]︀
≤

𝑑∑︁
𝑖=1

sup
𝜋∈𝒫([0,ℎ])𝑑

P𝑋∼𝑝𝜋 [𝑋𝑗 > 𝑀 ] ≤ 𝑑

𝑛7

Bound on 𝑈1(𝑏, 𝑗, 𝑛). Denote 𝑚𝑏 = 1 + 𝑏 and note that for each 𝑓 ∈ ℱ , and for each

class 𝐶𝑗(𝑥
′), as 𝑓𝑗 is monotone over the 𝑗-th coordinate of all 𝑥-s in 𝐶𝑗(𝑥

′), there exists

𝑣 , 𝑣(𝑓𝑗,𝑥
′) such that for all 𝑥 ∈ 𝐶𝑗(𝑥

′), 𝑓𝑗(𝑥) ≤ 𝑚𝑏ℎ if and only if 𝑥𝑗 ≤ 𝑣. Using the

above we can write

sup
𝑓∈ℱ*∪ℱ ′

*

𝑛∑︁
𝑖=1

(︂
𝜖𝑖 −

1

𝑏

)︂
(𝑓 *

𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))
2 = sup

𝑓∈ℱ*∪ℱ ′
*

∑︁
𝑥:𝑁(𝑥)>0

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓𝑗(𝑥)− 𝑓 *

𝑗 (𝑥))
2

= sup
𝑓∈ℱ*∪ℱ ′

*

∑︁
𝑥′:𝑁𝑗(𝑥′)>0

∑︁
𝑥∈𝐶𝑗(𝑥′)

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓𝑗(𝑥)− 𝑓 *

𝑗 (𝑥))
2

= sup
𝑓∈ℱ*∪ℱ ′

*

∑︁
𝑥′:𝑁𝑗(𝑥′)>0

⎛⎝ ∑︁
𝑥∈𝐶𝑗(𝑥′),𝑥𝑗≤𝑣

+
∑︁

𝑥∈𝐶𝑗(𝑥′),𝑥𝑗>𝑣

⎞⎠ (𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓𝑗(𝑥)− 𝑓 *

𝑗 (𝑥))
2

≤ sup
𝑓∈ℱ*∪ℱ ′

*

∑︁
𝑥′:𝑁𝑗(𝑥′)>0

(︃
𝑚2

𝑏ℎ
2
∑︁

𝑥∈𝐶𝑗(𝑥
′),

𝑥𝑗≤𝑣

max{0, 𝜖(𝑥)− 1

𝑏
𝑁(𝑥)}+

∑︁
𝑥∈𝐶𝑗(𝑥

′),
𝑥𝑗>𝑣

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓𝑗(𝑥)− 𝑓 *

𝑗 (𝑥))
2

)︃

≤ 𝑚2
𝑏ℎ

2
∑︁

𝑁(𝑥)>0

max{0, 𝜖(𝑥)− 1

𝑏
𝑁(𝑥)}

+

⎧⎪⎪⎨⎪⎪⎩
∑︁

𝑥′:𝑁𝑗(𝑥′)>0

sup
𝑓∈ℱ*∪ℱ′

*,
𝑁𝑐ℎ≤𝑓𝑗≤𝑋𝑗,max

⎧⎪⎪⎨⎪⎪⎩ sup
𝑣(𝑥′)≥0

∑︁
𝑥∈𝐶𝑗(𝑥

′),
𝑥𝑗>𝑣(𝑥′)

(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓𝑗(𝑥)− 𝑓 *

𝑗 (𝑥))
2

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (3.49)

As there are at most
∏︀𝑑

𝑗=1(1 +𝑋𝑗,max) vectors 𝑥 with 𝑁(𝑥) > 0, we apply Lemma 5 to
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bound the expectation of the first term in the above display as

𝑚2
𝑏ℎ

2E[
∑︁

𝑁(𝑥)>0

max{0, 𝜖(𝑥)− 1

𝑏
𝑁(𝑥)}|𝑋1, . . . ,𝑋𝑛]

≤𝑚2
𝑏ℎ

2E[
∑︁

𝑁(𝑥)>0

1|𝑋1, . . . ,𝑋𝑛]
(a)

≤ 𝑟1(𝑏)𝑚
2
𝑏ℎ

2

𝑑∏︁
𝑗=1

(1 +𝑋𝑗,max). (3.50)

where (a) followed from Lemma 5 with 𝑟1(𝑏) =
1−1/𝑏

𝑒·𝐷(
1+1/𝑏

2
‖ 1
2
)
.

For the second term in (3.49), note that for the vectors in the set 𝐶𝑗(𝑥
′), the only

coordinate that takes different values is the 𝑗-th coordinate, and the function 𝑓𝑗 is monotone

when we condition on the coordinates {1, . . . , 𝑗 − 1, 𝑗 +1, . . . , 𝑑}. It follows that conditional

on 𝑋1, . . . ,𝑋𝑛, for this class 𝐶𝑗(𝑥
′), we can mimic the proof for (3.34) in one dimensional

case of 𝑇1(𝑏, 𝑛) to bound the innermost term as

E

⎡⎢⎢⎣sup
𝑣

sup
𝑓∈ℱ*∪ℱ ′

*

⎧⎪⎪⎨⎪⎪⎩
∑︁

𝑥∈𝐶𝑗(𝑥
′),

𝑥𝑗>𝑣

max{0, (𝜖(𝑥)− 1

𝑏
𝑁(𝑥))(𝑓𝑗(𝑥)− 𝑓 *

𝑗 (𝑥))
2}

⎫⎪⎪⎬⎪⎪⎭
⃒⃒⃒⃒
⃒𝑋𝑛

1

⎤⎥⎥⎦
≤𝑟2(𝑏)

(︀
ℎ2(1 +𝑋𝑗,max) + (1 +𝑋𝑗,max)

2
)︀

for a constant 𝑐(𝑏) depending on 𝑏. Finally, the number of such classes with 𝑁𝑗(𝑥
′) > 0 is

bounded above by
∏︀𝑑

𝑘=1
𝑘 ̸=𝑗

(1 + 𝑋𝑘,max). Therefore, summing over all classes and taking the

expectation, and including (3.50), we get the bound

𝑈1(𝑏, 𝑗, 𝑛) = E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

𝑛∑︁
𝑖=1

(︂
𝜖𝑖 −

1

𝑏

)︂
(𝑓 *

𝑗 (𝑋𝑖)− 𝑓𝑗(𝑋𝑖))
2

]︃

≤ 𝑟1(𝑏)𝑚
2
𝑏ℎ

2E

[︃
𝑑∏︁

𝑗=1

(1 +𝑋𝑗,max)

]︃
+ 𝑟2(𝑏)E

⎡⎢⎣ 𝑑∏︁
𝑘=1
𝑘 ̸=𝑗

(1 +𝑋𝑘,max) · (ℎ2𝑋𝑗,max +𝑋2
𝑗,max)

⎤⎥⎦
≤ (𝑟1(𝑏) + 𝑟2(𝑏))(𝑐1(1)ℎ

2 + 𝑐1(2)𝑀)𝑀𝑑. (3.51)
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Bounding 𝑈2(𝑏, 𝑗, 𝑛). As per the one dimensional case, we bound the Rademacher com-

plexity term 𝑈2(𝑏, 𝑗, 𝑛) with 𝑡0(𝑛) + 𝑡1(𝑛), where

𝑡1(𝑛) , E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

∑︁
𝑥

(2(𝜖(𝑥)𝑓 *
𝑗 (𝑥)− (𝑥𝑗 + 1)𝜖(𝑥+ 𝑒𝑗))(𝑓

*
𝑗 (𝑥)− 𝑓𝑗(𝑥))

−𝑁(𝑥)

𝑏
(𝑓 *

𝑗 (𝑥)− 𝑓𝑗(𝑥))
21{𝑁(𝑥)>0}

]︂
(3.52)

𝑡0(𝑛) , E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

∑︁
𝑥

−2(𝑥𝑗 + 1)𝜖(𝑥+ 𝑒𝑗)(𝑓
*
𝑗 (𝑥)− 𝑓𝑗(𝑥))1{𝑁(𝑥)=0}

]︃
(3.53)

We first analyze 𝑡1(𝑛). Using the inequality 2𝑎𝑥− 𝑏𝑥2 ≤ 𝑎2

𝑏
for any 𝑏 > 0 we have

1

𝑏
𝑡1(𝑛) ≤ E

[︃∑︁
𝑥

(𝜖(𝑥)𝑓 *
𝑗 (𝑥)− (𝑥𝑗 + 1)𝜖(𝑥+ 𝑒𝑗))

2

𝑁(𝑥)
1{𝑁(𝑥)>0}

]︃
(3.54)

Using the facts

∙ E[𝜖(𝑥)|𝑋1, . . . ,𝑋𝑛] = 0, E[𝜖(𝑥)𝜖(𝑥+ 𝑒𝑗)|𝑋1, . . . ,𝑋𝑛] = 0

∙ E[𝜖(𝑥)2|𝑋1, . . . ,𝑋𝑛] = 𝑁(𝑥), and,

∙ E[𝑁(𝑥+ 𝑒𝑗) | 𝑁(𝑥)] =
(𝑛−𝑁(𝑥))𝑝𝜋(𝑥+𝑒𝑗)

1−𝑝𝜋(𝑥)
≤ 𝑛𝑝𝜋(𝑥+𝑒𝑗)

1−𝑝𝜋(𝑥)

we continue the last display to get

1

𝑏
𝑡1(𝑛) ≤ E[

∑︁
𝑥

(︂
𝑓 *
𝑗 (𝑥)

2 +
(𝑥𝑗 + 1)2𝑁(𝑥+ 𝑒𝑗)

𝑁(𝑥)

)︂
1{𝑁(𝑥)>0}]

≤ E[
∑︁
𝑥

ℎ21{𝑁(𝑥)>0}] + E[
∑︁
𝑥

(𝑥𝑗 + 1)2𝑛𝑝𝜋(𝑥+ 𝑒𝑗)

1− 𝑝𝜋(𝑥)
·
1{𝑁(𝑥)>0}

𝑁(𝑥)
]

(a)

≤ E[
∑︁
𝑥

ℎ21{𝑁(𝑥)>0}] + 𝑐′ ·
∑︁
𝑥

(𝑥𝑗 + 1)2𝑛𝑝𝜋(𝑥+ 𝑒𝑗)

1− 𝑝𝜋(𝑥)
·min{𝑛𝑝𝜋(𝑥),

1

𝑛𝑝𝜋(𝑥)
}

(b)
= E[

∑︁
𝑥

ℎ21{𝑁(𝑥)>0}] + 𝑐′ ·
∑︁
𝑥

(𝑥𝑗 + 1)𝑓 *
𝑗 (𝑥)

1− 𝑝𝜋(𝑥)
·min{1, (𝑛𝑝𝜋(𝑥))2}

(c)

≤ ℎ2E[
𝑑∏︁

𝑗=1

(1 +𝑋𝑗,max)] +
𝑐′𝑓 *

𝑗 (0)

1− 𝑝𝜋(0)
+ 𝑐′

∑︁
𝑥̸=0

(𝑥𝑗 + 1)𝑓 *
𝑗 (𝑥) ·min{1, (𝑛𝑝𝜋(𝑥))2}

(3.55)
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(here 𝑐′ is an absolute constant), where:

∙ (a) is due to Property 1 in the analysis of 𝑇2(𝑏, 𝑛);

∙ (b) is using 𝑓 *
𝑗 (𝑥) = (𝑥𝑗 + 1)

𝑝𝜋(𝑥+𝑒𝑗)

𝑝𝜋(𝑥)
= E [𝜃𝑗|𝑋 = 𝑥] ≤ ℎ;

∙ (c): for the first term, we use the fact that the number of vectors 𝑥 with 𝑁(𝑥) > 0

is bounded by
∏︀𝑑

𝑗=1(1 +𝑋𝑗,max); for the third term, for each 𝑥 ̸= 0 we may choose a

coordinate 𝑘 with 𝑥𝑘 > 0. Thus setting 𝑝𝜋𝑘
as the marginal distribution of 𝑥𝑘 we have

by Stirling’s inequality, again,

𝑝𝜋(𝑥) ≤ 𝑝𝜋𝑘
(𝑥𝑘) ≤ sup

𝜃≥0
P𝑋∼Poi(𝜃)[𝑋 = 𝑥𝑘] = sup

𝜃≥0

𝜃𝑥𝑘𝑒−𝜃

𝑥𝑘!
=

𝑥𝑥𝑘
𝑘 𝑒−𝑥𝑘

𝑥𝑘!
≤ 1√

2𝜋𝑥𝑘

≤ 1√
2𝜋

and therefore 1
1−𝑝𝜋(𝑥)

≤ 1
1− 1√

2𝜋

≤ 𝑂(1).

Now, the first term in (3.55) is bounded by ℎ2𝑐(1)𝑀𝑑. For the second term, using 𝑝𝜋(𝑒𝑗) ≤

1− 𝑝𝜋(0) we have 𝑓*
𝑗 (0)

1−𝑝𝜋(0)
≤ 𝑓*

𝑗 (0)

𝑝𝜋(𝑒𝑗)
= 1

𝑝𝜋(0)
, so

𝑓 *
𝑗 (0)

1− 𝑝𝜋(0)
≤ min

{︂
𝑓 *
𝑗 (0)

1− 𝑝𝜋(0)
,

1

𝑝𝜋(0)

}︂
≤ 2max{𝑓 *

𝑗 (0), 1} ≤ 2max{ℎ, 1} (3.56)

given that 𝑓 * is bounded by ℎ in each coordinate. Finally, the third term in (3.55) has the

following bound:

∑︁
𝑥̸=0

(𝑥𝑗 + 1)𝑓 *
𝑗 (𝑥) ·min{1, (𝑛𝑝𝜋(𝑥))2}

≤ ℎ
∑︁

𝑥∈[0,𝑀 ]𝑑

(𝑥𝑗 + 1) + 𝑛2ℎ
∑︁

𝑥̸∈[0,𝑀 ]𝑑

(𝑥𝑗 + 1) · 𝑝𝜋(𝑥)2

(a)

≤ ℎ(1 +𝑀)𝑑+1 + 𝑛2ℎP𝑋∼𝑝𝜋

[︀
𝑋 /∈ [0,𝑀 ]𝑑

]︀
E𝑋∼𝑝𝜋 [𝑋𝑗 + 1]

(b)

≤ ℎ(1 +𝑀)𝑑+1 + ℎ𝑑𝑛−4(1 + 𝑐1(4)
1/4𝑀) (3.57)

where (a) followed as there are (1 + 𝑀)𝑑 elements in [0,𝑀 ]𝑑, and (b) is due to the as-

sumptions in Lemma 8 and E[𝑋𝑗,max + 1] ≤ {E[(𝑋𝑗,max + 1)4]}1/4. Thus, summarizing
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(3.55),(3.56),(3.57), we have

𝑡1(𝑛) ≤ 𝑐′′ · 𝑏
(︀
ℎ2𝑐1(1)𝑀

𝑑 +max{ℎ, 1}+ ℎ(1 +𝑀)𝑑+1 + ℎ𝑑𝑛−4𝑀
)︀

≤ 2𝑐′′𝑏
(︀
max{1, ℎ}(1 +𝑀)𝑑+1 +max{1, ℎ2}𝑐1(1)(1 +𝑀)𝑑 + ℎ𝑑𝑛−4𝑀

)︀
for an absolute constant 𝑐′′, as desired. Since 𝑑 ≤ 𝑛, ℎ𝑑𝑛−4𝑀 ≤ ℎ𝑛−3𝑀 < ℎ(1 +𝑀)𝑑, and

can therefore be neglected.

Next we analyze 𝑡0(𝑛). Since we have |𝜖(𝑥+ 𝑒𝑗)| ≤ 𝑁(𝑥+ 𝑒𝑗) and 𝑁(𝑥+ 𝑒𝑗) = 0 for all

𝑥 with 𝑥+ 𝑒𝑗 ̸∈
∏︀𝑑

𝑘=1[0, 𝑋𝑘,max], we get

𝑡0(𝑛) = E

[︃
sup

𝑓∈ℱ*∪ℱ ′
*

∑︁
𝑥

[−2(𝑥𝑗 + 1)𝜖(𝑥+ 𝑒𝑗)(𝑓
*
𝑗 (𝑥)− 𝑓𝑗(𝑥))1{𝑁(𝑥)=0}]

]︃

≤ E

⎡⎣ ∑︁
𝑥+𝑒𝑗∈

∏︀𝑑
𝑘=1[0,𝑋𝑘,max]

2(𝑥𝑗 + 1)𝑁(𝑥+ 𝑒𝑗) sup
𝑓∈ℱ*∪ℱ ′

*

⃒⃒
𝑓 *
𝑗 (𝑥)− 𝑓𝑗(𝑥)

⃒⃒
1{𝑁(𝑥)=0}

⎤⎦
≤ E

⎡⎣ ∑︁
𝑥+𝑒𝑗∈

∏︀𝑑
𝑘=1[0,𝑋𝑘,max]

2(𝑥𝑗 + 1)
(︀
𝑓 *
𝑗 (𝑥) +𝑋𝑗,max +𝑋 ′

𝑗,max

)︀
𝑁(𝑥+ 𝑒𝑗)1{𝑁(𝑥)=0}

⎤⎦
(3.58)

where 𝑋 ′
𝑗,max is the maximum of 𝑗-th coordinate on 𝑛 samples independent of 𝑋1, · · · ,𝑋𝑛.

Define 𝐴 =
{︀
𝑋𝑖,𝑋𝑖′ ∈ [0,𝑀 ]𝑑,∀𝑖 = 1, · · · , 𝑛

}︀
. We have P [𝐴𝑐] ≤ 2𝑑

𝑛6 via union bound.

Then we have for an absolute constant 𝑐′1 > 0

E

⎡⎣ ∑︁
𝑥+𝑒𝑗∈

∏︀𝑑
𝑘=1[0,𝑋𝑘,max]

2(𝑥𝑗 + 1)
(︀
𝑓 *
𝑗 (𝑥) +𝑋𝑗,max +𝑋 ′

𝑗,max

)︀
𝑁(𝑥+ 𝑒𝑗)1{𝑁(𝑥)=0} · 1{𝐴𝑐}

⎤⎦
≤ E

⎡⎣2(𝑋𝑗,max + 1)
(︀
ℎ+𝑋𝑗,max +𝑋 ′

𝑗,max

)︀ ∑︁
𝑥+𝑒𝑗∈

∏︀𝑑
𝑘=1[0,𝑋𝑘,max]

𝑁(𝑥+ 𝑒𝑗)1{𝑁(𝑥)=0} · 1{𝐴𝑐}

⎤⎦
(a)

≤ 𝑛E
[︀
(𝑋𝑗,max + 1)

(︀
ℎ+𝑋𝑗,max +𝑋 ′

𝑗,max

)︀
1{𝐴𝑐}

]︀
(b)

≤ 𝑛

√︂
E
[︁(︀
ℎ+𝑋𝑗,max +𝑋 ′

𝑗,max

)︀2
(𝑋𝑗,max + 1)2

]︁√︀
P [𝐴𝑐] ≤ 𝑐′1

ℎ𝑑1/2𝑀2

𝑛2

(c)

≤ 𝑐′1ℎ𝑀
2

𝑛
, (3.59)

where (a) is using
∑︀

𝑥+𝑒𝑗∈
∏︀𝑑

𝑘=1[0,𝑋𝑘,max]
𝑁(𝑥+𝑒𝑗)1{𝑁(𝑥)=0} ≤

∑︀
𝑥𝑁(𝑥) = 𝑛, (b) is via Cauchy-
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Schwarz inequality and E[(𝑋𝑗,max)
4],E[(𝑋 ′

𝑗,max)
4] ≤ 𝑐𝑀4, and (c) is because 𝑑 ≤ 𝑛 by our

assumption.

Next, we condition on the event 𝐴. Similar to the proof of bound on 𝑇2(𝑏, 𝑛) in the

one-dimensional setup, we define 𝑞𝜋,𝑀(𝑥) , 𝑝𝜋(𝑥)
P𝑋∼𝑝𝜋 [𝑋∈[0,𝑀 ]𝑑]

. We have P [𝑁(𝑥) = 0|𝐴] = (1−

𝑞𝜋,𝑀(𝑥))𝑛, and conditioned on the set 𝐴 and {𝑁(𝑥) = 0}, 𝑁(𝑥+𝑒𝑗) ∼ Binom
(︁
𝑛,

𝑞𝜋,𝑀 (𝑥+𝑒𝑗)

1−𝑞𝜋,𝑀 (𝑥)

)︁
.

Therefore:

E

⎡⎣ ∑︁
𝑥+𝑒𝑗∈

∏︀𝑑
𝑘=1[0,𝑋𝑘,max]

2(𝑥𝑗 + 1)
(︀
𝑓 *
𝑗 (𝑥) +𝑋𝑗,max +𝑋 ′

𝑗,max

)︀
𝑁(𝑥+ 𝑒𝑗)1{𝑁(𝑥)=0}

⃒⃒⃒⃒
⃒⃒𝐴
⎤⎦

≤
∑︁

𝑥∈
∏︀𝑑

𝑘=1[0,𝑀 ]𝑑

2(𝑥𝑗 + 1)(ℎ+ 2𝑀)E [𝑁(𝑥+ 𝑒𝑗)|{𝑁(𝑥) = 0}, 𝐴]P [𝑁(𝑥) = 0|𝐴]

≤
∑︁

𝑥∈
∏︀𝑑

𝑘=1[0,𝑀 ]𝑑

2(𝑥𝑗 + 1)(ℎ+ 2𝑀)
𝑛𝑞𝜋,𝑀(𝑥+ 𝑒𝑗)

1− 𝑞𝜋,𝑀(𝑥)
(1− 𝑞𝜋,𝑀(𝑥))𝑛

(a)
=

∑︁
𝑥∈

∏︀𝑑
𝑘=1[0,𝑀 ]𝑑

2(ℎ+ 2𝑀)𝑓 *
𝑗 (𝑥)𝑛𝑞𝜋,𝑀(𝑥) (1− 𝑞𝜋,𝑀(𝑥))𝑛−1 ≤ 2(𝑀 + 1)𝑑ℎ(ℎ+ 2𝑀).

where (a) followed using 𝑓 *
𝑗 (𝑥) = (𝑥𝑗 + 1)

𝑝𝜋(𝑥+𝑒𝑗)

𝑝𝜋(𝑥)
and the definition of 𝑞𝜋,𝑀(𝑥 + 𝑒𝑗), and

for the last inequality, we used the fact that 𝑛𝑥(1 − 𝑥)𝑛−1 ≤ (1 − 1
𝑛
)𝑛−1 < 1 for all 𝑥 with

0 < 𝑥 < 1 and 𝑓 *
𝑗 (𝑥) ≤ ℎ. Collecting terms and using 𝑀 > ℎ, we therefore have

𝑡0(𝑛) ≤ 𝑐′1
ℎ𝑑1/2𝑀2

𝑛2
+ ℎ(𝑀 + 1)𝑑+1 ≤ 𝑐′2ℎ(𝑀 + 1)𝑑+1 (3.60)

for absolute constants 𝑐′1, 𝑐
′
2 as required.

3.3.2 Proof of Regret bound in the multidimensional setup (Theo-

rem 2)

We start by describing the bounds on E[
∏︀𝑑

𝑗=1(1+𝑋𝑗,max)
𝑘𝑗 ] in this multidimensional setting,

which we claim the following.

Lemma 9. Given any 𝑠, ℎ > 0 and integer 𝛽 ≥ 0 there exist constants 𝑐(𝛽), 𝑐1, 𝑐2, 𝑐3, 𝑐4 > 0

such that
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1. For all 𝜋 ∈ 𝒫([0, ℎ]𝑑), E
[︁
(1 +𝑋𝑗,max)

𝛽
∏︀𝑑

𝑘=1
𝑘 ̸=𝑗

(1 +𝑋𝑘,max)
]︁
≤ 𝑐(𝛽)

(︁
max{𝑐1, 𝑐2ℎ} log(𝑛)

log log(𝑛)

)︁𝑑−1+𝛽

;

2. For all 𝜋 ∈ 𝒫([0, 𝑠 log 𝑛]𝑑), E
[︁
(1 +𝑋𝑗,max)

𝛽
∏︀𝑑

𝑘=1
𝑘 ̸=𝑗

(1 +𝑋𝑘,max)
]︁
≤ 𝑐(𝛽)(max{𝑐3, 𝑐4𝑠} log(𝑛))𝑑−1+𝛽.

We will defer the proof to Appendix B.1.

For 𝜋 ∈ 𝒫([0, ℎ])𝑑, by Lemma 9, there exist constants 𝑐1, 𝑐2 such that we may take

𝑀 = max{𝑐1, 𝑐2ℎ} log(𝑛)
log log(𝑛)

into Lemma 8. Note that This gives the overall regret bound as
𝑑
𝑛
max{𝑐1, 𝑐2ℎ}𝑑+2( log(𝑛)

log log(𝑛)
)𝑑+1.

Now assume that each marginal of 𝜋𝑗 are of SubE(𝑠) for some 𝑠 > 0. We now show that

the multidimensional version of Lemma 7 applies here.

Here, we choose 𝑐 = 𝑐(𝑠) , 11𝑠 such that for each 𝑗 = 1, · · · , 𝑑, we have P[𝑋𝑗 >

𝑐(𝑠) log(𝑛)] ≤ 1
𝑛10 . This means that we now have

𝜀 = P[𝑋 ̸∈ [0, 𝑐(𝑠) log(𝑛)]𝑑] ≤
𝑑∑︁

𝑗=1

P[𝑋𝑗 > 𝑐(𝑠) log 𝑛] ≤ 𝑑

𝑛10
(3.61)

the middle inequality via union bound on each coordinate.

Define the event 𝐸 = {𝑋𝑖 ∈ [0, 𝑐(𝑠) log(𝑛)]𝑑,∀𝑖 = 1, · · · , 𝑛}, and we have P[𝐸𝑐] ≤ 𝑑𝑛−9.

Again we define the truncated prior 𝜋𝑐,𝑛[𝑋 ∈ ·] = 𝜋[𝑋 ∈ · | 𝑋 ∈ [0, 𝑐(𝑠) log(𝑛)]𝑑]. Then,

similar to (3.36) in the one-dimensional case, the following equation applies:

Regret𝜋( ̂︀𝑓erm) ≤ Regret𝜋𝑐,𝑛
( ̂︀𝑓erm)+mmse(𝜋𝑐,𝑛)−mmse(𝜋)+E𝜋,𝑐[‖ ̂︀𝑓erm(𝑋)−𝜃‖21{𝐸𝑐}] (3.62)

Given that ̂︀𝑓𝑗(·) ≤ 𝑋𝑗,max, we have E[( ̂︀𝑓𝑗)4] ≤ E[𝑋4
𝑗,max] ≤ 𝑂(𝑠4(log 𝑛)4) by Lemma 11, and

E𝜋[𝜃
4
𝑗 ] ≤ 𝑂(𝑠4 log4 𝑛) from the properties of subexponential priors. The logic E𝜋[(𝑓

*
𝑗 −𝜃𝑗)

4] ≤

𝑂((𝑠 log 𝑛)4) and

E𝜋[(𝑓erm,𝑗(𝑋)− 𝜃𝑗)
21{𝐸𝑐}] ≤

√︁
P[𝐸𝑐]E𝜋[(𝑓erm,𝑗(𝑋)− 𝜃𝑗)4] .

𝑠2𝑑1/2

𝑛2
, ∀𝑗 = 1, 2, · · · , 𝑑

then follows from there. This gives E𝜋,𝑐[‖ ̂︀𝑓erm(𝑋) − 𝜃‖21{𝐸𝑐}] ≤ 𝑑3/2

𝑛4 by considering all the

𝑑 coordinates.

The identity mmse(𝜋𝑐) − mmse(𝜋) ≤ 𝜀
1−𝜀

mmse(𝜋) ≤ 2𝑑𝜀 ≤ 2𝑑2

𝑛2 still applies here in

the following sense. Let 𝑓 * be the Bayes estimator corresponding to 𝜋. Then denoting
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𝑀 , 𝑐(𝑠) log(𝑛) here we have

mmse(𝜋) = E[‖𝑓 *(𝑋)− 𝜃‖2]

= E𝜃∼𝜋[E𝑋∼Poi(𝜃)[‖𝑓 *(𝑋)− 𝜃‖2]|𝜃]

≥ E𝜃∼𝜋[E𝑋∼Poi(𝜃)[‖𝑓 *(𝑋)− 𝜃‖2]1{𝜃∈[0,𝑀 ]𝑑}|𝜃]

= P[𝜃 ∈ [0,𝑀 ]𝑑]E𝜃∼𝜋[E𝑋∼Poi(𝜃)[‖𝑓 *(𝑋)− 𝜃‖2]1{𝜃∈[0,𝑀 ]𝑑}|𝜃]

≥ (1− 𝜖)mmse(𝜋𝑐,𝑛) (3.63)

and that mmse(𝜋) ≤ 𝑑 given that the naive estimation of 𝑓id(𝑥) = 𝑥 achieves an expected loss

of 𝑑 (i.e. 1 for each coordinate). This shows that we also have Regret𝜋(𝑓 *) ≤ Regret𝜋𝑐,𝑛
(𝑓 *)+

𝑂(𝑑
2𝑠2

𝑛2 ) ≤ Regret𝜋𝑐,𝑛
(𝑓 *) +𝑂(𝑑𝑠

2

𝑛
) in this multidimensional case (given that 𝑑 ≤ 𝑛). Thus, it

suffices to work on prior 𝜋𝑐,𝑛 supported on [0, 𝑐 log(𝑛)]𝑑 for some 𝑐 , 𝑐(𝑠).

Now under this truncated prior, by Lemma 9 there exist absolute constants 𝑐3, 𝑐4 such

that we may take 𝑀 = max{𝑐3, 𝑐4𝑠} log 𝑛 and substitute into Lemma 8. This gives an overall

regret bound of 𝑑
𝑛
(max{𝑐3, 𝑐4𝑠} log(𝑛))𝑑+2.
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Chapter 4

Future Directions

In this chapter, we detail some future directions we can potentially extend from this work.

4.1 Generalization to Other Models

An immediate next step is to generalize our analysis into non-Poisson models, such as the

ones provided in Table 2.1. In particular, the objective function we need to optimize over

(empirically) is clear from the table.

Some questions we may ask are the following:

∙ Do the Bayes estimators of these families satisfy the monotone condition? We note

that this holds true for some distributions in the table (exponential and normal) due

to the monotone likelihood ratio. In general, however, it is still unclear if this holds for

an arbitrary distribution in the exponential family, in the form detailed in [15, (A.1)].

∙ Is the monotone condition sufficient in bounding the Rademacher complexity? For

Poisson model, this seems to be the case due to the discreteness of the model. For

continuous models, however, conditions like bounded derivative or smoothness (c.f. [1,

Theorem 2]) seems to be necessary.
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4.2 Lower Bounds

A lower bound for minimax lower bound has been established for Poisson and Gaussian

location models [52], but for one-dimensional case. This is why we can only prove asymp-

totic minimax optimality for the multidimensional Poisson settings in this thesis up to a

polylogarithmic factor, with exponent growing in dimension.

A natural future work will therefore be to work on establishing the lower bound for

multidimensional settings, following the recipe of [52, Section 2.3, Section 3]. In view of

Section 4.1, and the natural extension given by the ERM, one other direction is to work on

establishing a lower bound for other models, particularly those detailed in Table 2.1.

4.3 ERM with respect to Other Function Classes

In the thesis, we have focused solely on ERM on monotone function class, both for the one-

dimensional and multidimensional cases. As we have seen, the monotone class is restrictive

enough such that the ERM has an optimal Rademacher complexity, while expressive enough

to contain all possible Bayes estimators and have an efficient exact ERM estimator.

One direction that we may explore is the class that contains precisely estimators that are

Bayes estimator for some prior. That is:

ℱ ,

{︂
𝑓 : ∃𝜋, 𝑓(𝑥) = (𝑥+ 1)

𝑝𝜋(𝑥+ 1)

𝑝𝜋(𝑥)
=

𝑀𝜋(𝑥+ 1)

𝑀𝜋(𝑥)

}︂
(4.1)

where 𝑀𝜋(𝑥) , E𝜃∼𝜋[𝜃
𝑥] is the 𝑥-th moment of the prior 𝜋. To characterize this, we consider

the matrix 𝑀𝑛×𝑛 where 𝑀𝑖,𝑗 = 𝑀𝜋(𝑖+ 𝑗− 2) for 𝑖, 𝑗 = 1, · · · , 𝑛. Then by [57, Theorem 3.1],

the matrix 𝑀 is positive semidefinite. While this ℱ is smaller than the monotone class (and

hence having Rademacher complexity at most that of the monotone class), taking ERM over

such class is a lot less straightforward.

Another property satisfied by the Bayes estimator in the multidimensional setting is the
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following coordinate symmetry property: for any coordinates 𝑖 ̸= 𝑗 we have

𝑓 *
𝑖 (𝑥)𝑓

*
𝑗 (𝑥+ 𝑒𝑖) =

E𝜃1,··· ,𝜃𝑑∼𝜇[𝜃
𝑋1
1 · · · 𝜃𝑋𝑖+1

𝑖 · · · 𝜃𝑋𝑗+1
𝑖 · · · 𝜃𝑋𝑑

𝑑 ]

E𝜃1,··· ,𝜃𝑑∼𝜇[𝜃
𝑋1
1 · · · 𝜃𝑋𝑑

𝑑 ]
= 𝑓 *

𝑗 (𝑥)𝑓
*
𝑖 (𝑥+ 𝑒𝑗)

which is also equal to (𝑥𝑖 + 1)(𝑥𝑗 + 1)
𝑝𝜋(𝑥+𝑒𝑖+𝑒𝑗)

𝑝𝜋(𝑥)
. It then follows that apart from the mono-

tonicity condition, we can impose the condition 𝑓𝑖(𝑥)𝑓𝑗(𝑥 + 𝑒𝑖) = 𝑓𝑖(𝑥)𝑓𝑗(𝑥 + 𝑒𝑖). Again,

the challenge lies in that it is a lot less straightforward to perform ERM over such class of

functions.

4.4 Heavy Tail Settings

We now consider the setting as studied in [56], where our prior 𝜋 is no longer subexponential

but instead has finite 𝑝-th moment for some 𝑝 > 2, i.e. E𝜃∼𝜋[𝜃
𝑝] < ∞. As mentioned in their

work, the minimax optimal regret (achieved by NPMLE) for this setting is ̃︀Θ(𝑛−1+ 3
2𝑝+1 ),

while the Robbins, with an appropriate truncation, has rate ̃︀Θ(𝑛−1+ 3
𝑝+2 ) (here ̃︀Θ denotes

asymptotics that ignore logarithmic factors in 𝑛).

One may ask if it is possible to demonstrate that ERM for monotone functions can achieve

the minimax optimal regret just like the NPMLE. It seems like the proofs in Chapter 3 is

unlikely to succeed for the following reasons:

1. the proof techniques used in Proposition 1, mimicked from [52, Lemma 16], suggests

that it is unlikely that we can show strict asymptotic improvement over the Robbins;

2. the Rademacher complexity in our proof is determined by the effective size E𝑋∼𝑝𝜋 [𝑋max],

which is different from the one in [56, Section 5.2], suggesting that our method might

not be effective in the heavy tail settings.

One direction we may look into is to consider a smaller function class, e.g. the class con-

taining all possible Bayes estimators like (4.1), in the hope that the Rademacher complexity

can be smaller.
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4.5 Online Learning

Here, we briefly discuss the setting where the observations are supplied sequentially and the

estimates are to be updated in an online fashion [25]. To this end, we consider the following

definition of accumulative regret (see [52, Eq. (73)]):

AccRegret𝜋( ̂︀𝑓) = E[
𝑛∑︁

𝑡=1

( ̂︀𝑓𝑡(𝑋𝑡)− 𝑓 *(𝑋𝑡))
2] (4.2)

where ̂︀𝑓𝑡 can only depend on 𝑋1, · · · , 𝑋𝑡. By evaluating the ERM for sample sizes 1 through

𝑛 and invoking Theorem 1, one achieves an accumulative regret 𝑂( log3 𝑛
(log log𝑛)2

) for compactly

supported priors. The question is whether this can be attained without recomputing the

ERM 𝑛 times.

Given the natural connection between the ERM and stochastic gradient descent (SGD)

on one pass of the data, we suggest the following. First, we initialize ̂︀𝑓1 , 𝑓id the identity

function (i.e. ̂︀𝑓1(𝑥) = 𝑥 for all 𝑥 ∈ Z+). Next, at time 𝑡, we do the following update based

on the new values 𝑋𝑡: using the loss function 𝐿𝑡 , ̂︀𝑓𝑡(𝑋𝑡)
2 − 2𝑋𝑡

̂︀𝑓𝑡(𝑋𝑡 − 1), consider the

function ̂︀𝑔𝑡 , ̂︀𝑓𝑡−𝜂𝑡∇𝑡, where 𝜂𝑡 is the step size, and ∇𝑡 is the gradient function that updates

coordinates 𝑋𝑡−1 and 𝑋𝑡 (to be precise, ∇𝑡(𝑋𝑡) = 2 ̂︀𝑓𝑡(𝑋𝑡) and ∇𝑡(𝑋𝑡−1) = −2𝑋𝑡). Finally,̂︀𝑓𝑡+1 , argmin𝑓∈ℱ
∑︀𝑡

𝑖=1(𝑓(𝑋𝑖)− ̂︀𝑔𝑡(𝑋𝑖))
2, i.e. the monotone projection of ̂︀𝑔𝑡. In this setting,

the possible directions will be to analyze the accumulative regret of this algorithm, and to

find a suitable step size, 𝜂𝑡.
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Appendix A

Empirical Results

The main part of the thesis has been focusing solely on the theoretical results. Here, we

elaborate more on some simulation and experiments to support our theoretical claims, other

than the ones mentioned briefly in an earlier remark. Again, the focus is two-folds:

∙ When compared against 𝑓 -modelling, the focus is to highlight the regularity of ERM,

and also its lower regret (if applicable);

∙ When compared against 𝑔-modelling, the focus is to highlight the lower runtime re-

quired by the ERM.

We will use both the actual and simulated datasets, motivated by the experiments run

in [30] in both settings.

A.1 Hockey Dataset

The experimental framework is provided in [30, Section 5.2]; in this thesis, we simply add the

ERM algorithm. As for the setting, we consider the number of goals scored by 𝑛 = 745 hockey

players in the National Hockey League, taken from https://www.hockey-reference.com.

We consider the following problem formulation:

∙ the observed variables 𝑋1, · · · , 𝑋𝑛 are the goals scored in the 2017-18 season by players

1, · · · , 𝑛;
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Figure A-1: Comparison of the prediction methods on hockey dataset.

Robbins min 𝐻2 NPMLE min 𝜒2 ̂︀𝑓erm
RMSE 15.59 6.02 6.04 6.05 6.20
MAD 6.64 4.37 4.38 4.39 4.35

Table A.1: Prediction error on 2018-19 Season

∙ we assume the empirical Bayes setting where there exists a prior 𝜋 and hidden variables

𝜃1, · · · , 𝜃𝑛 such that 𝜃𝑖
𝑖𝑖𝑑∼ 𝜋 and 𝑋𝑖 ∼ Poi(𝜃𝑖);

∙ our goal is to predict 𝑌1, · · · , 𝑌𝑛, the goals scored by the same players in the 2018-19

season.

Note that E[𝑋] = 𝜃 for 𝑋 ∼ Poi(𝜃), so the goal of predicting 𝑌1, · · · , 𝑌𝑛 is also the same as

predicting 𝜃1, · · · , 𝜃𝑛. The plots can be seen in Fig. A.1, where we see that Robbins estimator

fluctuates wildly while the ERM maintains the desired regularity, and achieves performance

on par with that of the minimum distance methods, as per Table A.1.
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(a) 𝛼 = 0.3 (b) 𝛼 = 1.05

(c) 𝛼 = 2.00

Figure A-2: Regret Plots for exponential priors

A.2 Simulated Dataset

We extend the setting of [30] in considering the case where the prior 𝜋 is Exp(𝛼), and like

the paper we focus on 𝛼 = 0.3, 1.05, 2.00. In this case, we can compute the Bayes estimator

as 𝑓 *(𝑥) = (𝑥+1) · 𝛼
𝛼+1

, and the Regret of each run computed as 1
𝑛

∑︀𝑛
𝑖=1(

̂︀𝑓erm(𝑥𝑖)− 𝑓 *(𝑥𝑖))
2.

When comparing among the methods, we focus on two aspects: the regret and the

running time per simulation, averaged over about 10000 runs. For the regret bound, we see

from the plots Fig. A-2 that the ERM outperforms the Robbins by a strong margin, while

the performance compared to the minimum distance methods is only a little worse than the

minimum distance estimators. For running time, we see from Table A.2 that ERM is on par

with the Robbins, and a few magnitudes faster than the minimum distance estimators.
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Method 𝑛 = 50 𝑛 = 125 𝑛 = 200 𝑛 = 300

Robbins 1.605e-04 1.783e-04 1.876e-04 1.957e-04
ERM 2.189e-04 2.442e-04 2.608e-04 2.752e-04

NPMLE 9.004e-02 1.592e-01 2.090e-01 2.642e-01
sqH 2.226e-01 4.242e-01 5.838e-01 7.648e-01
chiSq 2.793e-01 5.210e-01 7.074e-01 9.221e-01

Table A.2: Running time (seconds) against subexponential prior of 𝛼 = 2.00
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Appendix B

Proofs of Auxiliary Lemmas

B.1 Properties of Poisson mixtures

Lemma 10. There exist constants 𝑐1, 𝑐2 such that for all ℎ > 0, 𝑘 ≥ 1 and 𝜋 ∈ 𝒫([0, ℎ]),

𝑋max on 𝑛 ≥ 3 samples have the following bound:

P[1 + max𝑋𝑖 ≥ max{𝑐2, 𝑐1ℎ} · 𝑘
log 𝑛

log log 𝑛
] ≤ 𝑛−𝑘

Proof. Consider 𝜆 ∈ [0, ℎ]. Then for 𝑥 ≥ ℎ we have the following approximation for 𝑋 ∼

Poi(𝜆) via Chernoff’s bound [49, p.97-98]:

P[𝑋 ≥ 𝑥] ≤ (𝑒𝜆)𝑥𝑒−𝜆

𝑥𝑥
≤ (𝑒ℎ)𝑥𝑒−ℎ

𝑥𝑥
(B.1)

Therefore for 𝑋 ∼ 𝑝𝜋 and 𝑥 ≥ ℎ we have P(𝑋 ≥ 𝑥) ≤ (𝑒ℎ)𝑥𝑒−ℎ

𝑥𝑥 .

Now choose 𝑐0 such that 𝑐0 ≥ max{4, ℎ}, and for all 𝑛 ≥ 3,

log log 𝑛+ log 𝑐0 − log log log 𝑛− log ℎ− 1 ≥ 1

2
log log 𝑛

That is, denoting 𝐿 = sup𝑛≥3

{︀
log log log 𝑛− 1

2
log log 𝑛

}︀
, we take log 𝑐0 ≥ log ℎ + 1 + 𝐿.

Notice that this mean we may take 𝑐0 = max{4,max{1, exp(1+𝐿)} ·ℎ}. Then for all 𝑘 ≥ 1,

𝑐0𝑘
log𝑛

log log𝑛
≥ 𝑐0

log𝑛
log log𝑛

≥ 𝑐0 ≥ ℎ given that 𝑛 > log 𝑛 for all 𝑛 > 1, so the tail bound in (B.1)
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can be applied. Setting 𝑥 = 𝑐0𝑘
log𝑛

log log𝑛
, we have

log(
(𝑒ℎ)𝑥𝑒−ℎ

𝑥𝑥
) = −ℎ+ 𝑐0𝑘

log 𝑛

log log 𝑛
(1 + log ℎ− log 𝑐0 − log 𝑘 − log log 𝑛+ log log log 𝑛)

≤ −ℎ+ 4𝑘
log 𝑛

log log 𝑛
(−1

2
log log 𝑛)

< 2𝑘 log 𝑛 , (B.2)

which implies that P[𝑋 ≥ 𝑐0𝑘
log𝑛

log log𝑛
] ≤ 𝑛−2𝑘. Finally, taking 𝑐 = 2𝑐0 = max{8,max{2, 2 exp(1+

𝐿)} · ℎ}, we have

P[1 +𝑋max ≥ 𝑐𝑘
log 𝑛

log log 𝑛
]
(a)

≤ 𝑛P[1 +𝑋 ≥ 𝑐𝑘
log 𝑛

log log 𝑛
]
(b)

≤ 𝑛P[𝑋 ≥ 𝑐0𝑘
log 𝑛

log log 𝑛
]
(c)

≤ 𝑛−𝑘

where (a) is union bound on 𝑋1, · · · , 𝑋𝑛, (b) is using log𝑛
log log𝑛

> 1 for all 𝑛 ≥ 3 and log𝑛
log log𝑛

𝑘(𝑐−

𝑐0) ≥ 𝑐0𝑘 ≥ 𝑐0 > 1 for all 𝑘 ≥ 1, and (c) is 2𝑘 − 1 ≥ 𝑘 for all 𝑘 ≥ 1.

Lemma 11. There exist constants 𝑐1, 𝑐2 > 0 such that for all 𝑠 > 0, 𝑘 ≥ 1 and 𝜋 ∈

𝒫([0, 𝑠 log 𝑛]), 𝑋max on 𝑛 ≥ 2 samples has the following bound:

P[𝑋max ≥ max{𝑐2, 𝑐1𝑠}𝑘 log 𝑛] ≤ 𝑛−𝑘

Proof. Again, consider the following argument via Chernoff’s bound [49, p.97-98]: for 𝑥 ≥

𝑠 log 𝑛 and 𝑋 ∼ 𝑝𝜋 we have

P[𝑋 ≥ 𝑥] ≤ sup
0≤𝜆≤𝑠 log𝑛

(𝑒𝜆)𝑥𝑒−𝜆

𝑥𝑥
≤ (𝑒𝑠 log 𝑛)𝑥𝑒−𝑠 log𝑛

𝑥𝑥
= exp(−𝑠 log 𝑛+𝑥(1+log(𝑠 log 𝑛)−log 𝑥))

Now, choose 𝑐0 = max{2 + 𝑠, 𝑒2𝑠}. Then for 𝑘 ≥ 1 and 𝑥 = 𝑘𝑐0 log 𝑛 we have

− 𝑠 log 𝑛+ (𝑘𝑐0 log 𝑛)(1 + log(𝑠 log 𝑛)− log(𝑘𝑐0 log 𝑛))

= (log 𝑛)(−𝑠+ 𝑘𝑐0(1 + log 𝑠− log 𝑘 − log 𝑐0))

= (log 𝑛)(−𝑠+ 𝑘𝑐0(1− log 𝑘 − 2))

≤ (log 𝑛)(−𝑠− 𝑘(2 + 𝑠)) ≤ (log 𝑛)(−2𝑘) ≤ (log 𝑛)(−(𝑘 + 1)) (B.3)
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Therefore P[𝑋 ≥ 𝑐0𝑘 log 𝑛] ≤ 𝑛−(𝑘+1).

Take 𝑐3 = 𝑐0(1 +
1

log 2
), we have 1 + 𝑐0𝑘 log 𝑛 ≤ 𝑐3𝑘 log 𝑛 for all 𝑘 ≥ 1. Therefore, union

bound gives P[1 +𝑋max ≥ 𝑐3𝑘 log 𝑛] ≤ 𝑛P[1 +𝑋 ≥ 𝑐3𝑘 log 𝑛] ≤ 𝑛P[𝑋 ≥ 𝑐0𝑘 log 𝑛] ≤ 𝑛−𝑘. It

then follows that we can take 𝑐1 = 𝑒2(1 + 1
log 2

) and 𝑐2 = 6(1 + 1
log 2

).

Lemma 12. Consider a random variable 𝑊 . If there exists a function 𝑝(𝑛) such that for

all integers 𝑐 ≥ 1, P(𝑊 ≥ 𝑐𝑝(𝑛)) ≤ 𝑛−𝑐, then for each integer 𝑚 ≥ 1 there exists a constant

𝑐(𝑚) such that for all 𝑛 ≥ 2,

E[𝑊𝑚1{𝑊≥𝑝(𝑛)}] ≤
(︂
2𝑚 +

3𝑚𝑚!

(log 𝑛)𝑚+1

)︂
𝑝(𝑛)𝑚

𝑛

Proof of Lemma 12. Denote the event 𝐸𝑘 = {𝑘𝑝(𝑛) ≤ 𝑊 ≤ (𝑘+1)𝑝(𝑛)}, then for all 𝑛 ≥ 2,

we consider the expansion of 𝑃 (𝑚,𝑛) as per the claim to get

E[𝑊𝑚1{𝑊≥𝑝(𝑛)}] =
∞∑︁
𝑘=1

E[𝑊𝑚1{𝐸𝑘}] ≤ (𝑝(𝑛))𝑚
∞∑︁
𝑘=1

(𝑘 + 1)𝑚

𝑛𝑘
≤ (𝑝(𝑛))𝑚

𝑛

(︃
2𝑚 + 3𝑚

∞∑︁
𝑘=2

(𝑘 − 1)𝑚

𝑛𝑘−1

)︃
(B.4)

Using the Gamma integration we bound the last term in the above display using

∞∑︁
𝑘=2

(𝑘 − 1)𝑚

𝑛𝑘−1
≤
∫︁ ∞

0

𝑥𝑚𝑛−𝑥𝑑𝑥 =

∫︁ ∞

0

𝑥𝑚𝑒−𝑥 log𝑛𝑑𝑥 =
𝑚!

(log 𝑛)𝑚+1
.

Plugging this bound back in (B.4) finishes the proof.

Lemma 13. Given 𝑋1, · · · , 𝑋𝑛
𝑖𝑖𝑑∼ 𝑝𝜋 , Poi ∘ 𝜋. Let 𝑘 ≥ 1 be an integer. Then there exist

constant 𝑐0(𝑘), 𝑐1, 𝑐2, 𝑐3, 𝑐4 such that:

∙ E[(1 +𝑋max)
𝑘] ≤ 𝑐0(𝑘)(max{𝑐1, 𝑐2ℎ} log𝑛

log log𝑛
)𝑘 for all 𝜋 ∈ 𝒫([0, ℎ]).

∙ E[(1 +𝑋max)
𝑘] ≤ 𝑐0(𝑘)(max{𝑐3, 𝑐4𝑠} log 𝑛)𝑘 for all 𝜋 ∈ 𝒫([0, 𝑠 log 𝑛]).

Proof. For 𝜋 ∈ 𝒫([0, ℎ]), choose 𝑐1, 𝑐2 according to Lemma 10 and use Lemma 12 to obtain

the constant 𝑐0(𝑘) , (2𝑘 + 2𝑘𝑘!) with 𝑝(𝑛) , max{𝑐1, 𝑐2ℎ} log𝑛
log log𝑛

and 𝑊 = 1 + 𝑋max. For

𝜋 ∈ 𝒫([0, 𝑠 log 𝑛]), choose 𝑐3, 𝑐4 according to Lemma 11 and use Lemma 12 with 𝑝(𝑛) ,

max{𝑐3, 𝑐4𝑠} log 𝑛 and 𝑊 = 1 +𝑋max.
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Proof of Lemma 9. We note that conditioned on 𝜃1, · · · , 𝜃𝑑, the coordinates 𝑋1, · · · , 𝑋𝑑 are

independent (distributed as 𝑋𝑖 ∼ Poi(𝜃𝑖)). It then follows that

E

⎡⎢⎣(1 +𝑋𝑗,max)
𝛽

𝑑∏︁
𝑘=1
𝑘 ̸=𝑗

(1 +𝑋𝑘,max) | 𝜃1, · · · ,𝜃𝑛

⎤⎥⎦ =
𝑑∏︁

𝑖=1

E
[︀
(1 +𝑋𝑖,max)

𝛽𝑖 |𝜃1𝑖, · · · , 𝜃𝑛𝑖
]︀

where here 𝛽𝑖 is 𝛽 if 𝑖 = 𝑗 and 1 otherwise.

For the bounded prior case, i.e. 𝜋 ∈ 𝒫([0, ℎ])𝑑 for some ℎ > 0, we may mimic the proof

of Lemma 10 to obtain, for some absolute constant 𝑐(ℎ) , max{𝑐1, 𝑐2ℎ}, P[1 + 𝑋𝑖,max ≥

𝑘𝑐(ℎ) log𝑛
log log𝑛

| 𝜃1𝑖, · · · , 𝜃𝑛𝑖] ≤ 𝑛−𝑘 (given that 𝜃 ≤ ℎ). Thus we may then adapt Lemma 12 to

yield E[(1 +𝑋𝑖,max)
𝛽𝑖 | 𝜃1𝑖, · · · , 𝜃𝑛𝑖] ≤ 𝑐0(𝛽𝑖)(𝑐(ℎ)

log𝑛
log log𝑛

)𝛽𝑖 for some absolute constant 𝑐0(𝛽𝑖)

that depends only on the exponents 𝛽𝑖. Since this inequality holds regardless of 𝜃1𝑖, · · · , 𝜃𝑛𝑖
(so long as they are in the range [0, ℎ]), the desired bound now becomes

E

⎡⎢⎣(1 +𝑋𝑗,max)
𝛽

𝑑∏︁
𝑘=1
𝑘 ̸=𝑗

(1 +𝑋𝑘,max)

⎤⎥⎦ ≤ 𝑐0(𝛽)𝑐0(1)
𝑑−1

(︂
𝑐(ℎ)

log 𝑛

log log 𝑛

)︂𝑑−1+𝛽

≤ 𝑐0(𝛽)

(︂
𝑐(ℎ)max{1, 𝑐0(1)}

log 𝑛

log log 𝑛

)︂𝑑−1+𝛽

Likewise, for the case 𝜋 ∈ ([0, 𝑠 log 𝑛]𝑑), we may mimic the proof of Lemma 11 to obtain,

for some absolute constant 𝑐′(𝑠) , max{𝑐3, 𝑐4ℎ}, P[1 +𝑋𝑖,max ≥ 𝑘𝑐(𝑠) log 𝑛 | 𝜃1𝑖, · · · , 𝜃𝑛𝑖] ≤

𝑛−𝑘. Using Lemma 12 again, E[(1 +𝑋𝑖,max)
𝛽𝑖 | 𝜃1𝑖, · · · , 𝜃𝑛𝑖] ≤ 𝑐0(𝛽𝑖)(𝑐

′(𝑠) log 𝑛)𝛽𝑖 . Consider-

ing all 𝜃1, · · · ,𝜃𝑛 we then get

E

⎡⎢⎣(1 +𝑋𝑗,max)
𝛽

𝑑∏︁
𝑘=1
𝑘 ̸=𝑗

(1 +𝑋𝑘,max)

⎤⎥⎦ ≤ 𝑐0(𝛽) (𝑐
′(𝑠)max{1, 𝑐0(1)} log 𝑛)𝑑−1+𝛽
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B.2 Proof of technical results

Proof of Lemma 1

Throughout the solution, for 𝑠 ≤ 𝑡 we denote 𝑚(𝑠, 𝑡) ,
∑︀𝑡

𝑖=𝑠 𝑤𝑖∑︀𝑡
𝑖=𝑠 𝑣𝑖

, where 𝑚(𝑠, 𝑡) = ∞ if 𝑣𝑖 = 0

for 𝑠 ≤ 𝑖 ≤ 𝑡. Denote, also, the cost function 𝐺(𝑓) ,
∑︀𝑛

𝑖=1 𝑣𝑖𝑓(𝑎𝑖)
2 − 2𝑤𝑖𝑓(𝑎𝑖). We restrict

our attention to establishing ̂︀𝑓erm(𝑎1); the rest follows similarly. Let 𝑖2 be the maximum

index such that ̂︀𝑓erm(𝑎1) = · · · = ̂︀𝑓erm(𝑎𝑖2) for some 𝑖2 ≥ 1.

We first claim that ̂︀𝑓erm(𝑎1) = 𝑚(1, 𝑎𝑖2). Indeed, for each real 𝑡, and integer 𝑗 = 1, · · · , 𝑘,

we define the following function 𝑓𝑗,𝑡(𝑎𝑖) ,

⎧⎪⎨⎪⎩
̂︀𝑓erm(𝑎𝑖) + 𝑡 1 ≤ 𝑖 ≤ 𝑗

̂︀𝑓erm(𝑎𝑖) otherwise
. Then by the maximality

of 𝑖2, for some small 𝜖 > 0, 𝑓𝑖2,𝑡 is still monotone for some 𝑡 ∈ (−𝜖, 𝜖). In addition,

𝜕𝐺(𝑓𝑗,𝑡)

𝜕𝑡
=

𝑗∑︁
𝑖=1

2(𝑣𝑖( ̂︀𝑓erm(𝑎𝑖) + 𝑡)− 𝑤𝑖) . (B.5)

Since ̂︀𝑓erm = argmin𝐺(𝑓), 𝜕𝐺(𝑓𝑖2,𝑡)

𝜕𝑡
|𝑡=0 = 0. Therefore,

̂︀𝑓erm(𝑎1) 𝑖2∑︁
𝑖=1

𝑣𝑖 =

𝑖2∑︁
𝑖=1

̂︀𝑓erm(𝑎𝑖)𝑣𝑖 = 𝑖2∑︁
𝑖=1

𝑤𝑖 . (B.6)

Since max{𝑣𝑖, 𝑤𝑖} > 0 and each 𝑣𝑖, 𝑤𝑖 is nonnegative, we cannot have
∑︀𝑖2

𝑖=1 𝑣𝑖 =
∑︀𝑖2

𝑖=1 𝑤𝑖 = 0.

It then follows that ̂︀𝑓erm(𝑎1) = ∑︀𝑖2
𝑖=1 𝑤𝑖∑︀𝑖2
𝑖=1 𝑣𝑖

= 𝑚(1, 𝑖2).

It now remains to show that 𝑚(1, 𝑖2) ≤ 𝑚(1, 𝑗) for all 𝑗 = 1, · · · , 𝑘, and the inequality is

strict for 𝑗 > 𝑖2. Now for any 𝑗 with 1 ≤ 𝑗 ≤ 𝑘, for some small 𝜖 > 0, 𝑓𝑗,𝑡 is still monotone for

some 𝑡 ∈ (−𝜖, 0]. Given also ̂︀𝑓erm = argmin𝐺(𝑓), 𝜕𝐺(𝑓𝑗,𝑡)

𝜕𝑡
|𝑡=0 ≤ 0. Since ̂︀𝑓erm(𝑎𝑖) ≥ ̂︀𝑓erm(𝑎1)

for all 𝑖, we have ̂︀𝑓erm(𝑎1) ∑︁
1≤𝑖≤𝑗

𝑣𝑖 ≤
∑︁
1≤𝑖≤𝑗

̂︀𝑓erm(𝑎𝑖)𝑣𝑖 ≤ ∑︁
1≤𝑖≤𝑗

𝑤𝑖 , (B.7)

which implies that 𝑚(1, 𝑗) ≥ ̂︀𝑓erm(𝑎1) = 𝑚(1, 𝑖2). To show that 𝑚(1, 𝑗) > 𝑚(1, 𝑖2) for all

𝑗 > 𝑖2, suppose otherwise that 𝑚(1, 𝑗) = 𝑚(1, 𝑖2) for some 𝑗 > 𝑖2. This means the inequality
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in (B.7) is an equality for this 𝑗. In particular,

̂︀𝑓erm(𝑎1) 𝑗∑︁
𝑖=1

𝑣𝑖 =

𝑗∑︁
𝑖=1

̂︀𝑓erm(𝑎𝑖)𝑣𝑖 (B.8)

In view of (B.6), from
∑︀𝑗

𝑖=1
̂︀𝑓erm(𝑎𝑖)𝑣𝑖 =∑︀𝑗

𝑖=1𝑤𝑖 we have

𝑗∑︁
𝑖=𝑖2+1

̂︀𝑓erm(𝑎𝑖)𝑣𝑖 = 𝑗∑︁
𝑖=𝑖2+1

𝑤𝑖 . (B.9)

By the maximality of 𝑖2, we have ̂︀𝑓erm(𝑎𝑖) > ̂︀𝑓erm(𝑎1) for all 𝑖 > 𝑖2. Given that 𝑣𝑖 ≥ 0 for all

𝑖, (B.8) then implies 𝑣𝑖 = 0 for 𝑖 = 𝑖2 + 1, · · · , 𝑗. This would imply that
∑︀𝑗

𝑖=𝑖2+1𝑤𝑖 = 0, i.e.

𝑤𝑖 = 0 for all 𝑖 = 𝑖2 + 1, · · · , 𝑗. This contradicts max{𝑣𝑖, 𝑤𝑖} > 0 for each 𝑖 = 1, · · · , 𝑛.

Proof of Lemma 5

Recall that conditioned on 𝑋𝑛
1 , 𝜖(𝑥) ∼ 2 · 𝐵𝑖𝑛𝑜𝑚(𝑁(𝑥), 1

2
) − 𝑁(𝑥). Since 𝑏 > 1, it then

follows that

E[max{𝜖(𝑥)− 1

𝑏
𝑁(𝑥), 0}] = E[(𝜖(𝑥)− 1

𝑏
𝑁(𝑥))1{𝜖(𝑥)> 1

𝑏
𝑁(𝑥)}]

≤ (1− 1

𝑏
)𝑁(𝑥)P[𝜖(𝑥) >

1

𝑏
𝑁(𝑥)]

(a)

≤ (1− 1

𝑏
)𝑁(𝑥) exp(−𝑁(𝑥)𝐷(

1 + 1
𝑏

2
||1
2
))

(b)

≤
1− 1

𝑏

𝑒 ·𝐷(
1+ 1

𝑏

2
||1
2
)

where (a) is from [53, Example 15.1, p.254] and (b) is using the fact that for all 𝑎 > 0 and

𝑦 ≥ 0, 𝑦 exp(−𝑎𝑦) ≤ 1
𝑎𝑒

.

𝑂(𝑋max log𝑋max) Time Complexity Optimization

We now describe an algorithm based on stack that reduces the computation in Lemma 1

from 𝑂(𝑋2
max) to 𝑂(𝑋max log𝑋max), with this log factor only used in sorting {(𝑋,𝑁(𝑋))}

for 𝑋 = 0, 1, · · · , 𝑋max.

Let 𝑊1 < · · · < 𝑊𝑘 be the distinct elements in {𝑋1, · · · , 𝑋𝑛}∪{𝑋1−1, · · · , 𝑋𝑛−1}. We
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consider a stack 𝑆, initialized as ∅, with each element being the triple (𝐼, 𝑤, 𝑡) where 𝐼 denotes

the interval of piecewise constancy, 𝑤 =
∑︀

𝑘∈𝐼 𝑁(𝑊𝑘) and 𝑡 =
∑︀

𝑗∈𝐼(𝑊𝑘+1)𝑁(𝑊𝑘+1). The

invariant we are maintaining here is that the ratio 𝑡
𝑤

is nondecreasing (this ratio is considered

as +∞ if 𝑤 = 0).

At each step 𝑡 = 1, · · · , 𝑘 we do the following:

∙ Initialize 𝑎 , ([𝑡, 𝑡], 𝑁(𝑊𝑡), (𝑊𝑡 + 1)𝑁(𝑊𝑡 + 1)), the active element;

∙ Suppose, now, 𝑎 = (𝐼, 𝑤, 𝑡). While the stack is nonempty and the top (most recent)

element 𝑎′ = (𝐼, 𝑤, 𝑡) 𝑤′𝑡 ≤ 𝑤𝑡′ (in particular, when 𝑤,𝑤′ > 0 we have the ratio
𝑡
𝑤
≤ 𝑡′

𝑤′ ), we pop 𝑎′ from the stack, and set 𝑎 = (𝐼 ∪ 𝐼 ′, 𝑤 + 𝑤′, 𝑡+ 𝑡′).

∙ Push 𝑎 onto the stack.

Then for each element in the form ([𝑎, 𝑏], 𝑤, 𝑡) we have ̂︀𝑓erm(𝑥) = 𝑡
𝑤

for all 𝑥 = 𝑊𝑎, · · · ,𝑊𝑏.

Notice that the largest element, 𝑊𝑘, has 𝑁(𝑊𝑘) > 0, so the solution will always be well-

formed.

To justify the time complexity, we see that there are at most 𝑘 pushes into the stack.

Each pop decreases the stack size by 1, so that cannot appear more than 𝑘 times either.

Assuming that each elementary computation (e.g. calculating 𝑤′𝑡 and 𝑤𝑡′) is 𝑂(1), this

stack operation takes 𝑂(𝑘). Since 𝑘 ≤ 𝑋max, the claim follows.

Proof of Lemma 6

We will bound P[𝐿𝑐(𝜖) ≥ 𝑘] for each integer 𝑘 ∈ [0, 𝑛]. First, we see that
∑︀𝑗

𝑖=1 𝜖𝑖−𝑐𝑗 ≤ (1−𝑐)𝑗

(i.e. we’ll only consider 𝑗 ≥ 𝑘) and for this sum to be positive we need
∑︀𝑗

𝑖=1 𝜖𝑖 > 𝑐𝑗. If

𝑋𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑗, 1
2
) we have

P[
𝑗∑︁

𝑖=1

𝜖𝑖 > 𝑐𝑗] = P[𝑋𝑗 > 𝑗(
𝑐+ 1

2
)] ≤ exp(−𝑗𝐷(

𝑐+ 1

2
||1
2
))
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by (i.e. Lemma 5). Now denoting 𝐷( 𝑐+1
2
||1
2
) = 𝑐1 > 0, we have

P[𝐿𝑐(𝜖) ≥ 𝑘] = P[∃𝑗 ≥ 𝑘 :

𝑗∑︁
𝑖=1

𝜖𝑖 − 𝑐𝑗 ≥ 𝑘]

≤
𝑛∑︁

𝑗=𝑘

P[
𝑗∑︁

𝑖=1

𝜖𝑖 − 𝑐𝑗 ≥ 𝑘] ≤
𝑛∑︁

𝑗=𝑘

exp(−𝑗𝑐1) ≤
exp(−𝑐1𝑘)

1− exp(−𝑐1)
(B.10)

Therefore we have

E[𝐿𝑐(𝜖)] ≤ 1 +
𝑛∑︁

𝑘=0

P[𝐿𝑐(𝜖) ≥ 𝑘] ≤ 1 +
𝑛∑︁

𝑘=0

exp(−𝑐1𝑘)

1− exp(−𝑐1)
≤ 1 +

1

(1− exp(−𝑐1))2
.

as desired.
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