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Abstract

Electric power is a key enabler for economic development; nevertheless, 770 mil-
lion people live without electricity access and 3.5 billion have unreliable connections.
There is general consensus that the global community is off-track from realizing the
United Nation’s Sustainable Development Goal #7 (SDG7) target of “universal access
to affordable, reliable and modern energy services” by the year 2030. Under the Inter-
national Energy Agency’s (IEA) central “Stated Policies Scenario,” 670 million people
are expected to still be without electricity access in 2030.

Simultaneously, we as a global community are off-track from achieving the Paris
Agreement ambitions to limit global warming to 1.5 degrees Celsius compared to pre-
industrial levels. A 2021 U.N. report notes that national mitigation pledges for 2030 will
collectively produce only one-seventh of the emissions reductions necessary to achieve
the 1.5 degree goal. While electricity and heat together comprise 31.9% of all green-
house gas (GHG) emissions globally, the electric power sector is expected to play a
significant role in virtually all credible pathways towards climate stabilization: power
sector emissions must be cut to near-zero by mid-century, and the power sector must
also expand to electrify and therefore decarbonize a larger share of total energy use.
The IEA’s “Net Zero by 2050” roadmap for net zero emissions models that electricity
demand for “emerging market and developing economies” will need to exceed double
the electricity demand in “advanced economies” by mid-century. Our development
and climate imperatives both rest upon electricity demand in low- and middle-income
counties.

This dissertation attempts to push the state-of-the-art with regards to understand-
ing, estimating, forecasting electricity demand in underserved contexts. We present
four technical chapters towards these ends.

First, we assess the importance of accurately estimating aggregate demand levels
by performing sensitivity analyses using technoeconomic optimization models. We find
that efforts to improve methods for demand forecasting are essential to prospects for
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right-sizing system designs. Over the domain of aggregate demand values modeled, the
average cost of service provision range from $0.13/kWh to $0.37/kWh. This nearly
three-fold difference demonstrates the critical influence of economies of scale and im-
proved grid utilization on cost. We additionally find that characterizing building-level
consumer type diversity plays a critical role in the outcome of high-resolution infras-
tructure plans. For our ‘central demand case,” we show that modeling a diversity of
consumer types results in least-cost plans that are 9% less costly than modeling as-
suming demand assuming there is only one customer type. When comparing supply
technology shares for cost-optimal designs, modeling consumer type diversity demand
decreases prescribed grid extension shares from 89% to 77%.

In our second technical chapter, we employ machine learning systems for probabilis-
tic data fusion to the problem of forecasting annual electricity demand at the country-
level for all African countries. We provide a novel set of probabilistic forecasts for the
continent while addressing missing data issues and employing a rigorous framework for
cross-validation and backtesting model results.

In our third technical chapter, we show how machine learning systems for proba-
bilistic data fusion can be used for estimating electricity access rates at building-level
resolutions in low-access countries. Estimating electricity access is a key component to
understanding electricity demand because aggregated consumption statistics only re-
flect demand from buildings with electricity access. Without access information, there
is significant ambiguity when attempting to attribute aggregated consumption values to
individual buildings. We train and evaluate our model using data describing electrified
and non-electrified buildings in Rwanda and we achieve state-of-the-art results relative
to existing methods in the literature. For our test set in Rwanda, our method achieves
an accuracy score of 80.7% while the closest published baseline in the literature achieves
70.9%. Our system additionally enables explicit uncertainty quantification and has the
potential to be scaled across the whole African continent.

In our final technical chapter, we develop novel methods for estimating building-
level electricity demand. Challengingly, ground truth metered consumption datasets
in low-access countries are often only accompanied by noisy geolocation data. This
issue is exacerbated by the fact that meter and building connections reflect many-to-
many relationships. There may be many electricity meters residing within a single
building, and there may also be many buildings that are connected to a single meter.
While our consumption data is logged at the meter-level, machine learning features of
interest can only be extracted at the building-level. Because standard supervised ma-
chine learning models cannot express this complexity, we develop an application-tailored
model based on a neural network (NN)-embedded probabilistic graphical model (PGM)
for probabilistic data fusion. The PGM-based approach allows us to explicitly define
potential relationships between meters and nearby buildings while the NN models em-
ployed enable us to effectively to extract information from multimodal features at the
building-level. As a result, our model reflects a principled approach to training and
running building-level demand estimation models using only meter-level ground truth
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information. We also make a few additional contributions: we show novelty by pro-
viding probabilistic building-level output; training and testing in Rwanda, a country
for which building-level estimates are not currently available; and provide demand es-
timates for commercial and industrial consumers in addition to residential consumers.
From a methodological standpoint, ours is the first machine learning model that em-
beds and trains NNs within PGMs employing Markov chain Monte Carlo (MCMC)
sampling algorithms for inference. This application serves as an example for the novel
combination of these individually important classes of algorithms.

Taken together, the methods and studies presented in this dissertation enable the
improved deployment of continuous electricity infrastructure planning across all low-
and middle-income countries worldwide. We hope the research community continues to
catalyze progress towards enabling continuous planning methodologies and map efficient
pathways for achieving our global climate and development goals.
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Chapter 1

Introduction

Electric power is a key enabler for economic development; nevertheless, 770 million
people live without electricity access [1] and 3.5 billion have unreliable connections [2].
There is general consensus that the global community is off-track from realizing the
United Nation’s Sustainable Development Goal #7 (SDG 7) target of “universal access
to affordable, reliable and modern energy services” by the year 2030 [3]. Under the
International Energy Agency’s (IEA) central “Stated Policies Scenario,” 670 million
people are expected to still be without electricity access in 2030.

Simultaneously, we as a global community are far off-track from achieving the Paris
Agreement ambitions to limit global warming to 1.5 degrees Celsius compared to pre-
industrial levels. A 2021 U.N. report notes that national mitigation pledges for 2030 will
collectively produce only one-seventh of the emissions reductions necessary to achieve
the 1.5 degree goal [4]. While electricity and heat together comprise 31.9% of all green-
house gas (GHG) emissions globally [5], the electric power sector is expected to play a
significant role in virtually all credible pathways towards climate stabilization: power
sector emissions must be cut to nearly zero by mid-century, and the power sector must
also expand to electrify and therefore decarbonize a larger share of total energy use.
End uses to be electrified include heating, industry, and transportation [6]. As shown in
Fig. 1.1, IEA’s Net Zero Emissions by 2050 Scenario (NZE) [7] models that electricity
demand for “emerging market and developing economies” will need to exceed double
the electricity demand in “advanced economies” by mid-century. Electricity demand
growth in low- and middle-income counties will have profound impacts on both our
global development and climate objectives.

We are left in a challenging predicament: how do we provide energy for economic
growth and pursue climate stabilization, all under tight resource constraints in emerg-
ing regions? Compounding these challenges, world population figures are projected to
increase by over three billion by the end of the century, mostly in the same low- and
middle-income countries currently experiencing energy poverty [8].

One source of hope pertains to our improving ability to deal with real world complex-
ity using computational systems. State-of-the-art technoeconomic optimization models,
machine learning systems, and improved data resources can provide valuable new in-
sight into strategies and measures we can take to meet our goals. As evidenced by
the rise of tech giants in Silicon Valley, computational systems have and continue to

1
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Figure 1.1: Electricity demand in low- and middle-income countries are center stage
when considering climate stabilization. The IEA’s “Net Zero by 2050” roadmap for net
zero emissions outlines how electrification demand must decarbonize and grow to comprise a
larger share of total energy use. In the IEA’s Net Zero Emissions by 2050 Scenario (NZE),
“emerging market and developing economies” will constitute a much larger share of energy
demand than “advanced economies.” Figure derived from data presented in [7].

transform myriad economic sectors. We attempt to make progress towards deploying
computational systems to address the energy-poverty-climate nexus [9] through electric-
ity infrastructure planning activities. We focus on two important aspects of planning:
characterizing electricity access rates and electricity demand.

In Chapter 3, we employ high-resolution and large-scale technoeconomic models
to show sensitivities associated with adequately estimating demand and its evolution.
We present characteristic curves that show the extent to which demand errors affect
costs and find that efforts to improve methods for demand forecasting are essential to
prospects for right-sizing system designs. Over the domain of aggregate demand values
modeled, the average cost of service provision range from $0.13/kWh to $0.37/kWh.
This nearly three-fold difference demonstrates the critical influence of economies of scale
and improved grid utilization on cost. We additionally find that characterizing building-
level consumer type diversity plays a critical role in the outcome of high-resolution
infrastructure plans. For our ‘central demand case,” we show that modeling a diversity
of consumer types results in least-cost plans that are 9% less costly than modeling
assuming demand assuming there is only one customer type. When comparing supply
technology shares for cost-optimal designs, modeling consumer type diversity demand
decreases prescribed grid extension shares from 89% to 77%.

In Chapter 4, we employ machine learning systems for probabilistic data fusion to
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the problem of forecasting annual electricity demand at the country-level for all African
countries. We provide a novel set of probabilistic forecasts for the continent while
addressing missing data issues and employing a rigorous framework for cross-validation
and backtesting model results.

In Chapter 5, we show how machine learning systems for probabilistic data fusion
can be used for estimating electricity access rates at building-level resolutions in low-
access countries. Estimating electricity access is a key component to understanding
demand because aggregated consumption statistics only reflect demand from buildings
with electricity access. Without access information, there is significant ambiguity when
attempting to attribute aggregated consumption values to individual buildings. We
train and evaluate our model using data describing electrified and non-electrified build-
ings in Rwanda and we achieve state-of-the-art results relative to existing methods in
the literature. For our test set in Rwanda, our method achieves an accuracy score of
80.7% while the closest published baseline in the literature achieves 70.9%. Our sys-
tem additionally enables explicit uncertainty quantification and has the potential to be
scaled across the whole African continent.

Finally, in Chapter 6, we develop novel methods for estimating building-level elec-
tricity demand. Challengingly, ground truth metered consumption datasets in low-
access countries are often only accompanied by noisy geolocation data. This issue is
exacerbated by the fact that meter and building connections reflect many-to-many re-
lationships. There may be many electricity meters residing within a single building,
and there may also be many buildings that are connected to a single meter. While our
consumption data is logged at the meter-level, machine learning features of interest can
only be extracted at the building-level. Because standard supervised machine learning
models cannot express this complexity, we develop application-tailored neural network
(NN)-embedded probabilistic graphical models (PGM) for probabilistic data fusion.
The PGM-based approach allows us to explicitly define potential relationships between
meters and nearby buildings while the NN models employed enable us to effectively to
extract information from multimodal features at the building-level. As a result, our
model reflects a principled approach to training and running building-level demand es-
timation models using only meter-level ground truth information. We also make a few
additional contributions: we show novelty by providing probabilistic building-level out-
put; training and testing in Rwanda, a country for which building-level estimates are
not currently available; and provide demand estimates for commercial and industrial
consumers in addition to residential consumers. From a methods standpoint, ours is
the first machine learning model that embeds and trains NNs within PGMs employing
Markov chain Monte Carlo (MCMC) sampling algorithms. This application serves as an
example for the novel combination of these individually important classes of algorithms.

Taken together, the methods and studies presented in this dissertation enable the
improved deployment of continuous electricity infrastructure planning across all low-
and middle-income countries worldwide. We hope the research community continues to
catalyze progress towards enabling continuous planning methodologies and map efficient
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pathways for achieving our global climate and development goals.



Chapter 2

Background

In this chapter, we provide methodological and application-specific background material
in Sec. 2.1 and Sec. 2.2, respectively.

■ 2.1 Methodological Background

■ 2.1.1 Bayes’ Rule

Bayes’ rule, also known as Bayes’ theorem, is a fundamental concept in statistics. It
allows for the updating of probability estimates for a hypothesis based on evidence or
observed data. The general form of Bayes’ rule is given in equation 2.1.

pθ|y (θ|y) =
pθ(θ)py |θ(y|θ)

py (y)
=

pθ(θ)py |θ(y|θ)∑
θ′ pθ(θ

′)py |θ(y|θ′)
(2.1)

In this equation, the terms have the following interpretations:

• pθ(θ) is the prior probability. It represents the initial degree of belief in the hy-
pothesis θ before the new evidence y is observed.

• py |θ(y|θ) is the likelihood. It measures the compatibility of the observed data y
with the given hypothesis θ.

• py (y) is the marginal likelihood. It acts as a normalizing constant to ensure that
the posterior probabilities sum to one.

• pθ|y (θ|y) is the posterior probability. It represents the updated belief for the hy-
pothesis θ after observing the evidence y .

Bayes’ rule provides a mathematical framework for updating prior beliefs in light of
new data or evidence, forming the basis for Bayesian inference.

■ 2.1.2 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) provide a framework for dealing with the in-
tractability issues that arise when trying to represent a joint probability distribution,

5
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pX , over a large set of random variables X = {x1, ..., xN}. As [10] points out, even in
the simplest scenario of binary-valued random variables, there are 2N potential config-
urations for X , resulting in 2N − 1 parameters needed to fully specify pX . Such a large
number of parameters can be computationally prohibitive, difficult to comprehend, and
statistically challenging to handle.

PGMs address this issue by exploiting the inherent structure and independence
properties within the joint distribution. In these models, nodes represent subsets of
random variables, and edges signify statistical dependencies between them. This leads
to a sparser and more tractable representation of pX by focusing on local interactions
rather than exhaustive specification of the joint distribution.

In addition to allowing for efficient representation of complex joint distributions,
the graphical nature of PGMs allows facilitates inference and learning. For instance,
given a PGM, one can efficiently perform inference: answering probabilistic queries
about certain variables given the states of others. Further, given observed data, one
can perform learning: adjusting the parameters of the model to better fit the data.

■ 2.1.3 Bayesian networks

Bayesian networks, also referred to as Bayes nets, belief networks, directed graphi-
cal models, are a particular type of PGM that captures the conditional independence
properties associated with a probability distribution.

A Bayesian network is represented by a directed acyclic graph (DAG), denoted by
G = (V, E). In this structure, nodes V = {1, 2, ..., N} correspond to random variables
and directed edges E ⊂ V ×V symbolize direct dependencies between the variables. An
edge (i, j) ∈ E specifies a direct influence from node i to node j.

One key property of Bayesian networks is the factorization of the joint probability
distribution of all random variables into a product of conditional probabilities. Each
node in the network is associated with a conditional probability distribution function
that characterizes the relationship between that node and its immediate parents in the
network.

More formally, let xπi denote the parent nodes of xi. Then, the joint probability
distribution px1,...,xN (x1, ..., xN ) over all random variables factors as per equation 2.2.

px1,...,xN (x1, ..., xN ) =
N∏

i=1

fi(xi, xπi) =
N∏

i=1

pxi|xπi (xi|xπi) (2.2)

In this equation, the function fi(xi, xπi) represents the probability distribution for
xi conditioned on its parent variables xπi . These functions must be non-negative and
sum to one over the possible values of xi for any given set of parent values xπi , ensuring
that they are valid probability distributions.

This factorization property allows for efficient computation of joint probabilities
and makes Bayesian networks a powerful tool for probabilistic inference sand machine
learning.
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■ 2.1.4 Inference

Inference over probabilistic graphical models is an operation that allows for updating
beliefs and making predictions based on observed data. The central task in inference is
the calculation of posterior distributions, given a certain set of observed variables.

Let’s consider a model for joint distribution px ,y ,z(x, y, z), where x represents latent
variables of interest, y are the observed variables, and z denotes latent variables not
directly of interest. Given a prior belief of px(x), the task is to compute the posterior
distribution, px |y (x|y), represented in equation 2.3. Note that for continuous variables,
summations should be replaced with integrations.

px |y (x|y) =
px ,y (x, y)

py (y)
=

∑
z px ,y ,z(x, y, z)∑
x,z px ,y ,z(x, y, z)

∝
∑

z

px ,y ,z(x, y, z) (2.3)

Performing exact inference, i.e., directly calculating the posterior distribution or
expectations, is often infeasible for a variety of reasons. For continuous variables, the
necessary integrations may not have closed-form analytical solutions, and numerical
integration may be impractical due to high dimensionality. For discrete variables, the
required summations may be computationally expensive.

Instead of exact inference, approximate methods are usually employed. These meth-
ods can be broadly divided into two categories: deterministic methods and stochastic
methods. Deterministic methods, such as variational inference, aim to provide analyt-
ical approximations of the posterior distribution. These methods often provide useful
bounds on the true posterior but typically do not yield exact results. They are not
explored further in this thesis.

In contrast, stochastic methods such as Markov chain Monte Carlo (MCMC) tech-
niques are based on drawing samples from the posterior distribution. While these
methods can yield exact results given infinite computational resources, they provide
only approximations in the practical scenario of limited computation time. MCMC
methods, being employed thesis, will be described in greater detail.

■ 2.1.5 Markov Chain Monte Carlo Methods

Sampling methods, often referred to as Monte Carlo methods, are a powerful set of
techniques used to approximate distributions based on sample data. The foundational
idea is that if a sufficient number of samples from a distribution are available, we can
characterize that distribution in any manner we desire. This principle is encapsulated
in the strong law of large numbers as shown in equation 2.4:

1

K

K∑

k=1

f(xk)
a.s.−→ E[f(x)] when k →∞ (2.4)

In the equation,
a.s.−→ denotes almost sure convergence, which means that the prob-

ability of convergence is one. By selecting different functions f , we can quantify any
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aspect of the distribution p. For instance, by setting f(x) = x, we can calculate the
mean, while f(x) = (x − E[x])2 gives the variance. Similarly, f(x) = −log p(x) corre-
sponds to the entropy, and f(x) = 1x∈S provides the probability p(x ∈ S).

Additionally, marginal distributions can be computed from samples by ignoring the
values of variables that are not of interest. For instance, if x1, ..., xK are samples from
the joint distribution p(x), then x1i , ..., x

K
i are samples from the marginal distribution

p(xi).
Monte Carlo methods provide us with the ability to sample from complex distribu-

tions for which we can only evaluate up to a normalizing constant, Z. This situation
is often encountered when we want to sample from a distribution p(x) as expressed in
equation 2.5:

p(x) =
p̃(x)

Z
, x ∈ X , (2.5)

Here, we can evaluate p̃(x), but Z is infeasible to compute when the state space X is
large. Despite this, Monte Carlo methods can still produce samples of p(x). However,
these methods tend to be inefficient when X is large. Challengingly, these are the
situations where sampling methods are most needed.

Markov Chain Monte Carlo (MCMC) provides a solution to this problem. MCMC is
an efficient method for sampling from distributions that are difficult to directly sample
from, particularly when dealing with large X and high-dimensional spaces. Unlike other
sampling methods like rejection sampling, MCMC constructs a Markov chain whose
stationary distribution is p(x). This process is essentially a random walk through the
state space such that the proportion of time spent in any given state x corresponds to
p(x).

■ 2.1.6 Metropolis Hastings Algorithm

One of the most utilized MCMC methods is the Metropolis Hastings (MH) algorithm.
The MH algorithm constructs a Markov chain of samples from the target distribution p,
based on a proposal distribution q(x′|x). The proposal distribution, from which we can
directly sample, is used to generate a candidate for the next state of the Markov chain,
given the current state xs. If the proposed state x′ is accepted, it becomes the next
state in the chain; if it is rejected, the current state xs is repeated. The MH algorithm
is detailed in Algorithm 2.1.

A critical feature of the MH algorithm is the concept of detailed balance. This
principle ensures that the Markov chain converges to a stationary distribution, which
is our target distribution p(x). In mathematical terms, the detailed balance condition
is stated as:

p(x)q(x′|x) = p(x′)q(x|x′), (2.6)

where p(x) and p(x′) are the stationary probabilities of states x and x′ respectively,
and q(x′|x) and q(x|x′) are the probabilities of transitioning between states under the
proposal distribution q.
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1: procedure MetropolisHastings(x0,S)
2: for s = 0, 1, 2, ..., S − 1 do
3: Define x = xs;
4: Sample x′ ∼ q(x′|x);
5: Compute acceptance probability

α =
p̃(x′)q(x|x′)
p̃(x)q(x′|x)

6: Compute r = min(1, α)
7: Sample u ∼ Uniform(0, 1)
8: Set new sample

xs+1 =

{
x′

xs
ifu < r
ifu ≥ r .

9: end for
10: return {xs}Ss=1

11: end procedure

Algorithm 2.1: Metropolis Hastings algorithm

The acceptance probability in the MH algorithm is designed to ensure detailed
balance. Each transition is reversible, meaning that the probability of moving from state
x to x′ equals the probability of moving from state x′ to x. This property guarantees
that the Markov chain will eventually converge to the stationary distribution regardless
of the initial state.

The MH algorithm also necessitates careful selection of the number of iterations,
S, to ensure that the Markov chain has reached its stationary distribution, a phase
referred to as ”burn-in”. A common practice is to discard some of the initial samples,
known as ”burn-in samples”. Furthermore, we need to collect a sufficient number of
samples for the estimates of the distribution’s properties to converge due to the strong
law of large numbers. It may also be necessary to perform subsampling to minimize
dependencies between samples, particularly in situations where consecutive samples are
highly correlated.

■ 2.1.7 Exponential Family and Conjugate Pairs

Exponential families are a class of probability distributions that have a certain form, de-
fined by specific parameterization. A statistical model based on data y = (y1, y2, . . . , yn)
belongs to the exponential family if its likelihood function can be written as follows:

p(y|θ) = f(y; θ) ≜ h(y) exp
{
η(θ)⊤t(y)−NA(θ)

}
(2.7)

In this equation, θ denotes the parameters of the distribution, h(y) is a function of
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the data, η(θ) is a vector of functions of the parameters called the natural parameters,
t(y) is a vector of functions of the data called sufficient statistics, N is the number of
observations, and A(θ) is a function of the parameters called the cumulant generating
function.

The prior distribution for the parameter θ of the exponential family distribution can
be chosen to be a conjugate prior. A conjugate prior of a likelihood function is a prior
that, when used in conjunction with the given likelihood, yields a posterior distribution
that is in the same family as the prior. The conjugate prior for the parameter θ in the
exponential family has the following form:

p(θ) = π(θ, λ0) ≜ hθ(θ) exp

{[
τ0
ν0

]⊤ [
η(θ)
−A(θ)

]
− logZ(τ0, ν0)

}
. (2.8)

In this equation, τ0 and ν0 are hyperparameters that specify the distribution of the
prior, hθ(θ) is the base measure, Z(τ0, ν0) is the normalizing constant ensuring that the
prior is a valid probability distribution.

Through the use of exponential families and their conjugate priors, we are able to
perform Bayesian inference in a more tractable and systematic manner. Conjugacy is
particularly useful in sequential Bayesian updating, since the posterior distribution will
be of the same form as the prior distribution, and thus each updated posterior becomes
the prior for the next update.

■ 2.1.8 Evaluation Metrics for Binary Classification

In machine learning, the performance of models is assessed using various metrics, each
offering different insights into the model’s behavior. This is particularly relevant in
binary classification tasks, where the model’s predictions can be categorized as either
positive or negative. The common metrics include binary accuracy, precision, recall, F1
score, and Area Under the ROC Curve (AUC).

Binary accuracy, also simply known as accuracy, calculates the ratio of correct
predictions over the total predictions. It can be expressed mathematically as:

Accuracy =
TP + TN

TP+ TN+ FP + FN
, (2.9)

where TP, TN, FP, and FN denote the counts of true positives, true negatives, false
positives, and false negatives, respectively. Accuracy’s main advantage is its simplicity
and interpretability, but it can be misleading when used with imbalanced datasets.

Precision quantifies the proportion of true positive predictions among all positive
predictions. It is defined as:

Precision =
TP

TP + FP
. (2.10)

High precision indicates a low false-positive rate. However, this metric doesn’t consider
false negatives, which could be a significant factor in datasets where false negatives have
a high cost.
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Recall, also known as sensitivity or true positive rate, determines the proportion of
true positives correctly identified, and can be defined as:

Recall =
TP

TP + FN
. (2.11)

This metric is particularly relevant when the cost of false negatives is high, but it doesn’t
account for false positives.

The F1 score balances both precision and recall, expressed as:

F1 Score = 2× Precision× Recall

Precision + Recall
. (2.12)

It outperforms accuracy as a measure for imbalanced datasets. Its main disadvantage
is that it assumes equal importance for precision and recall, which might not always be
the case.

The Precision-Recall curve (PR curve) is a visualization tool that plots the precision
against the recall for every possible threshold. It provides an overview of the model’s
performance concerning the positive class, making it particularly useful in scenarios
with imbalanced datasets.

The Area Under the Precision-Recall Curve (AUPRC) is a measure of model perfor-
mance that calculates the two-dimensional area underneath the entire PR curve, from
recall values of 0 to 1. The AUPRC value can range from 0.0 to 1.0, with 1.0 indicat-
ing a perfect model. A high AUPRC value suggests that the model maintains a high
precision at different recall levels.

■ 2.1.9 The Binomial Distribution

Figure 2.1: Examples of the binomial distribution with different parameterizations.
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The binomial distribution is a discrete probability distribution that models the
number of successes in a fixed number of Bernoulli trials.

Consider a data set D = {x1, ..., xn} composed of observed values of binary random
variables xi ∈ {0, 1}, each with a probability of success (i.e., obtaining a result of 1)
denoted by θ where θ ∈ [0, 1]. A Bernoulli trial is an experiment where the outcome
can be classified as either a failure or a success (0 or 1, respectively), and each trial is
assumed to be independent of each other.

The binomial distribution is a distribution over the number of successes x ∈ {0, 1,
. . . , n} in these n trials, expressed by the probability mass function:

px(k) = P{x = k} = Binomial(k;n, θ)
∆
=

(
n

k

)
θk(1− θ)n−k, (2.13)

where k represents the number of instances of xi = 1 observed given n trials, and(
n
k

)
denotes the number of combinations of n items taken k at a time.
The mean and variance of a binomial distribution are given by:

E[x] = nθ, (2.14)

var(x) = nθ(1− θ). (2.15)

■ 2.1.10 The Bernoulli Distribution

Figure 2.2: An example of the Bernoulli distribution.

The Bernoulli distribution is a discrete probability distribution concerning a single
binary random variable, x ∈ {0, 1}, which can be thought of as a single experiment, or
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trial, that results in a binary outcome. An example of a Bernoulli trial is a single coin
toss where x = 1 represents ‘heads’ or ‘success’ and x = 0 represents ‘tails’ or ‘failure.’

The probability that x = 1 is represented by

P{x = 1|θ} = θ, (2.16)

where θ ∈ [0, 1]. The complementary event x = 0 happens with probability P{x =
0|θ} = 1− θ.

The probability mass function for x under a Bernoulli distribution with parameter
θ is given by

px(x) = Bernoulli(x; θ)
∆
= θx(1− θ)1−x. (2.17)

The expected value and variance of a Bernoulli distribution are given by

E[x] = θ, (2.18)

var(x) = θ(1− θ). (2.19)

The Bernoulli distribution is a special case of the binomial distribution: the Bernoulli
distribution is a binomial distribution where the number of trials n is equal to 1.

■ 2.1.11 The Multinomial Distribution

Figure 2.3: An example of the multinomial distribution. Note that x3 is not being
displayed, but its value is determined by 5− x1 − x2.
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The Multinomial distribution is a generalization of the Binomial distribution, de-
signed to handle cases where each trial can result in one of k different outcomes, rather
than just two.

Given n trials and a vector of probabilities θ = (θ1, . . . , θk) such that each θi ∈ [0, 1]
and

∑k
i=1 θi = 1, a multinomial random vector X = (X1, . . . , Xk) satisfies

p(X = x|θ, n) = Multinomial(x;n, θ)
∆
=

(
n

x1, . . . , xk

) k∏

i=1

θxi
i , (2.20)

where
(

n
x1,...,xk

)
= n!

x1!...xk!
is the multinomial coefficient, and each xi is the number of

times outcome i is observed among the n trials.
The expectation and variance of each Xi under a Multinomial distribution are given

by

E[Xi] = nθi, (2.21)

var(Xi) = nθi(1− θi), (2.22)

and the covariance of Xi and Xj for i ̸= j is

cov(Xi, Xj) = −nθiθj . (2.23)

The Multinomial distribution reduces to the Binomial distribution in the case where
k = 2.

■ 2.1.12 The Beta Distribution

The beta distribution is a continuous probability distribution defined on the interval
[0, 1]. It is parametrized by two shape parameters α and β, and it is typically used to
model the distribution of random variables that represent probabilities or proportions.

The probability density function of the beta distribution is given by

p(x;α, β) = Beta(x;α, β)
∆
=

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (2.24)

where x ∈ [0, 1] and Γ(·) is the gamma function, which generalizes the factorial
function to complex numbers. The gamma function is defined by

Γ(z)
∆
=

∫ ∞

0
tz−1e−tdt.

The gamma functions in the Beta distribution ensure normalization.
The parameters α and β control the shape of the distribution. In particular, they

determine the mean, variance, and mode of the Beta distribution, which are given by

E[X] =
α

α+ β
, (2.25)
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Figure 2.4: Examples of the beta distribution with different parameterizations.

var(X) =
αβ

(α+ β)2(α+ β + 1)
, (2.26)

and

mode(X) =
α− 1

α+ β − 2
for α, β > 1. (2.27)

The beta distribution is the conjugate prior for the bernoulli and binomial distri-
butions, among others. This means that if the prior distribution for the parameter θ
of these distributions is beta-distributed, then the posterior distribution for θ given the
observed data will also be a beta distribution. This property simplifies the computation
of the posterior distribution.

■ 2.1.13 The Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of the beta distribution. It’s
defined over the (K−1)-dimensional standard simplex whereK is the number of possible
categories 1, and it is parametrized by a vector of K positive shape parameters, α =
(α1, α2, . . . , αK).

The probability density function of the Dirichlet distribution is given by

p(x;α) = Dir(x;α)
∆
=

Γ
(∑K

k=1 αk

)

∏K
k=1 Γ(αk)

K∏

k=1

xαk−1
k , (2.28)

1The (K − 1)-dimensional standard simplex is a set of K-dimensional vectors whose entries are
nonnegative and sum to one
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(a) (b)

Figure 2.5: Examples of the Dirichlet distribution with different parameterizations.

where x = (x1, x2, . . . , xK) is a random vector in the (K − 1)-dimensional standard
simplex, i.e., xk ≥ 0 for all k, and

∑K
k=1 xk = 1. Here, Γ(·) is the Gamma function

defined as in the previous subsection.
The parameters α control the shape of the distribution. The mean and variance of

each component of the Dirichlet distribution are given by

E[Xk] =
αk∑K
i=1 αi

, (2.29)

and

var(Xk) =
αk(α0 − αk)

α2
0(α0 + 1)

, (2.30)

where α0 =
∑K

i=1 αi.
The Dirichlet distribution is the conjugate prior for the Multinomial distribution.

This means that if the prior distribution for the parameters θ of a Multinomial distri-
bution is Dirichlet-distributed, then the posterior distribution for θ given the observed
data will also be a Dirichlet distribution.

■ 2.1.14 The Beta-Binomial Distribution

The Beta-Binomial distribution is a compound probability distribution that combines
the Beta distribution and the Binomial distribution. This distribution models the
number of successes in n Bernoulli trials with a success probability that is not fixed but
randomly drawn from a Beta distribution.

Suppose we have a random variableX with a Binomial distribution,X ∼ Binomial(n, p),
where n is the number of trials, and p is the probability of success in each trial. Also,
suppose that p is itself a random variable following a Beta distribution, p ∼ Beta(α, β).
Then the distribution of X is said to follow a Beta-Binomial distribution.
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Figure 2.6: Examples of the beta-binomial distribution with different parameterizations.

The probability mass function of a Beta-Binomial distributed random variable x is
given by

pX(x) = BetaBinomial(x;n, α, β)
∆
=

(
n

x

)
B(x+ α, n− x+ β)

B(α, β)
, (2.31)

where B(α, β) is the Beta function, defined as Γ(α)Γ(β)
Γ(α+β) with Γ(x) being the Gamma

function.
The mean, variance, and mode of the Beta-Binomial distribution are given by

E[X] = n
α

α+ β
, (2.32)

var(X) = n
αβ(α+ β + n)

(α+ β)2(α+ β + 1)
, (2.33)

and

mode(X) =
(n+ 1)(α− 1)

α+ β + 2
, (2.34)

provided that α, β > 1.
To derive the Beta-Binomial distribution, we simplify the following integral:

p(X = x) =

∫
Binomial(x;n, p)× Beta(p;α, β)dp.

■ 2.1.15 The Gamma Distribution

The gamma distribution can be parameterized by a shape parameter a > 0 and an
inverse scale parameter, or rate, b > 0. The distribution is defined over positive real
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Figure 2.7: Examples of the gamma distribution with different parameterizations.

numbers (x > 0). The probability density function of a gamma distributed random
variable x is given by

px(x) = Gamma(x; a, b)
∆
=

ba

Γ(a)
xa−1 exp(−bx), (2.35)

where Γ(a) is the gamma function, defined for positive integers as (a− 1)!. The param-
eters a and b control the shape and rate of the distribution, respectively.

The mean, variance, and mode of the gamma distribution are given by

E[x ] =
a

b
, (2.36)

var(x) =
a

b2
, (2.37)

and

mode(x) =

{
0 if a ≤ 1,
a−1
b otherwise.

(2.38)

The distribution of the Gamma distribution varies significantly with the values of a and
b.

■ 2.1.16 The Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the prob-
ability of a given number of events occurring in a fixed interval of time or space. These
events occur with a known constant mean rate and are assumed to be independent of
the time since the last event. A random variable X that is Poisson-distributed can take
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Figure 2.8: Examples of the Poisson distribution with different parameterizations.

on any non-negative integer value, denoting the number of occurrences of an event. It
has a single parameter λ > 0, which represents the expected number of occurrences in
the specified interval.

The probability mass function of the Poisson distribution is given by:

pX(x) = Poisson(x;λ)
∆
=
λxexp(−λ)

x!
, (2.39)

for x ∈ {0, 1, 2, . . .}, where x is the number of occurrences, and λ is the expected number
of occurrences.

The Poisson distribution is uniquely characterized by its mean and variance both
being equal to λ, as shown in the following equations:

E[X] = λ, (2.40)

var(X) = λ. (2.41)

■ 2.1.17 The Gamma-Poisson (Negative Binomial) Distribution

The Gamma-Poisson distribution, also known as the Negative Binomial distribution,
is a compound probability distribution that results from the combination of a Gamma
distribution and a Poisson distribution.

Suppose we have a random variable X following a Poisson distribution, X ∼
Poisson(λ), where λ represents the average rate of success. Suppose that λ is itself
a random variable following a Gamma distribution, λ ∼ Gamma(r, p) with r and p
representing the shape and rate parameters respectively. Then the distribution of X is
said to follow a Gamma-Poisson or Negative Binomial distribution.
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Figure 2.9: Examples of the gamma-Poisson distribution with different parameteriza-
tions. Note how modeling overdispersion can be observed when comparing the gray distribution
to the yellow distribution. Both exhibit the same mean value, but the yellow distribution re-
flects higher variance.

The probability mass function of a Gamma-Poisson distributed random variable x
is given by:

pX(x) = GammaPoisson(x; r, p)
∆
=

(
x+ r − 1

x

)
(1− p)xpr, (2.42)

where
(
x+r−1

x

)
represents the binomial coefficient.

The mean, variance, and mode of the Gamma-Poisson distribution are given by:

E[X] =
rp

1− p, (2.43)

var(X) =
rp

(1− p)2 , (2.44)

mode(X) = ⌊(r − 1)(1− p)
p

⌋, (2.45)

for r > 1.
To derive the Gamma-Poisson distribution, we simplify the following integral:

p(X = x) =

∫
Poisson(x;λ)×Gamma(λ; r, p)dλ.

This distribution particularly useful in modeling overdispersed count data. Overdis-
persion is a phenomenon observed in statistical modeling where the variability (disper-
sion) in the data is higher than what is assumed by the model. For example, when
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modeling count data using a Poisson distribution, the underlying assumption is that
the mean and the variance of the data are equal. However, in many practical appli-
cations, the observed variance in the data can be much larger than the mean. This
situation, known as overdispersion, indicates that the data exhibits more variability
than what the Poisson model assumes.

The Gamma-Poisson distribution provides a solution to this problem. It introduces
an additional parameter compared to the Poisson distribution. This added flexibility
allows the Gamma-Poisson distribution to model count data where the variance is larger
than the mean, thereby effectively handling overdispersion. Consequently, the Gamma-
Poisson distribution often provides a better fit to overdispersed count data compared
to the Poisson distribution.

■ 2.1.18 Multilayer perceptrons (feedforward neural networks)

Multilayer perceptrons (MLP), also known as feedforward neural networks, deep feed-
forward networks, have gained prominence in recent years. The major advantage of
MLPs over traditional methods is their ability to learn specific features directly from
input data, reducing or eliminating the need for hand-engineered features.

An MLP consists of multiple layers of computational units or neurons. These layers
include an input layer, one or more hidden layers, and an output layer, as illustrated
in Fig. 2.10.

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Figure 2.10: Simple multilayer perceptron. Figure source: [11].

The input layer is designed to receive the components of an input vector, written
as x1, ..., xD, following the notation used in [11]. These inputs are then transformed
through a linear combination operation involving weights and biases, leading to what
are called activations, aj , where j = 1, ...,M . This transformation is mathematically
expressed as in 2.46.
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aj =
D∑

i=1

w
(1)
ji xi + w

(1)
j0 (2.46)

Following this, each activation is passed through a nonlinear activation function,
h(·), to yield the outputs of the hidden units, zj . These functions introduce non-
linear properties into our network, modeling more complex relationships within the
data. Commonly used activation functions include the logit sigmoid, hyperbolic tangent
function, or the rectified linear activation function (ReLU).

zj = h(aj) (2.47)

The outputs zj from the hidden layer(s) are subsequently used to define output unit
activations ak for k = 1, ...,K as illustrated in 2.48.

ak =

M∑

j=1

w
(2)
kj zj + w

(2)
k0 (2.48)

Finally, output unit activations are transformed using output activation functions
to yield the network’s final output.

The architecture of MLPs is highly flexible and can be generalized by adding ad-
ditional hidden layers or modifying the activation functions. An example of this gen-
eralization is the incorporation of skip layer connections, which effectively define unit
connections that bypass one or more layers in the network. This concept is depicted in
Fig. 2.11.

x1

x2

z1

z3

z2

y1

y2

inputs outputs

Figure 2.11: Sparse feedforward neural network with skip layer connections. Figure
source: [11].

To train a feedforward neural network, an error (or loss) function E(w) is defined
and an optimization process, often employing stochastic gradient descent, is used to
iteratively tune the model parameters (weights and biases) to minimize this error. A
central part of this training process is the backpropagation algorithm, which adjusts
the model parameters based on the gradient of the error function with respect to these
parameters. This gradient is calculated by passing error information backwards through
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the network, thus the name “backpropagation.” A general description of the backprop-
agation algorithm is given in Algorithm 2.2.

1: Input: set input variables as training vector xn

2: Feedforward: use aj =
∑

iwjizi and zj = h(aj) to forward propagate through the
network

3: Output error: evaluate δk for all output units using δk = yk − tk
4: Backpropagate error: backpropagate δ values for each hidden unit in the network

using δj = h′(aj)
∑

k wkjδk
5: Output: Compute the required derivatives using δEn

δwji
= δjzi

Algorithm 2.2: Backpropagation algorithm

■ 2.1.19 Convolutional Neural Networks

In the previous section, we explored MLPs with fully connected layers and hinted at
various possible model architectures including those with skip architectures and model
sparsity. A generalization of the MLP architecture is the Convolutional Neural Network
(CNN), often used in handling image data. CNNs leverage local receptive fields, weight
sharing, and sub-sampling for efficient and effective processing of image data.

The primary distinguishing feature of a CNN, depicted in Fig. 2.12, is the structured
organization of the input layer into a multidimensional array. For common imagery
(including the satellite imagery we later introduce), this array typically has dimensions
h× w × d, representing the height, width, and the number of channels in an image.

Input image Convolutional layer
Sub-sampling
layer

Figure 2.12: Layers in convolutional neural networks. Figure source: [11].
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In CNNs, convolutional layers consist of units organized into planes called feature
maps. Each unit within a feature map receives inputs from a small patch of the previous
layer. Furthermore, all units within the same feature map share the same set of weights,
which correspond to a filter or kernel. This configuration facilitates computational
efficiency and provides a form of translational invariance, as each filter can be applied
across the entire input image.

Pooling or sub-sampling layers often follow convolutional layers in a CNN. These
layers perform an “pooling” operation on a small window of inputs to output a single
value, resulting in a reduced spatial dimensionality of the layer’s output. This operation
further assists in making the CNN model robust to small translations or distortions in
the input.

Most contemporary CNN architectures for image classification employ multiple fea-
ture maps at each convolutional layer, allowing the model to learn and detect different
features from the input. CNNs also typically include several layers of convolution and
sub-sampling, with deeper layers learning more complex, higher-level features from the
lower-level features detected by earlier layers.

Just like the MLPs described in Section 2.1.18, the last layer or layers of a CNN are
often fully connected.

■ 2.1.20 Residual Networks (ResNet)

Residual Networks (ResNet) were developed by He et al. in 2015, employing skip layer
connections in a convolutional neural network architecture.

ResNets addressed the ‘degradation problem’: with traditional deep neural net-
works, adding more layers didn’t necessarily lead to an improvement in performance
due to the degradation problem, where accuracy gets saturated and then degrades with
increasing network depth. ResNets tackle this issue by providing direct paths for the
gradient to flow through.

A specific architecture of ResNet, known as ResNet50, achieved state-of-the-art
performance on several benchmark datasets. ResNet50 has 50 layers, including 1 input
layer, 48 convolutional layers, and 1 fully connected layer.

The main building block of ResNet is the ‘residual block,’ which consists of several
convolutional layers and a shortcut connection. Each residual block takes an input
x, applies several transformations F (x, {Wi}), and then combines the output with the
original input x. This is expressed as H(x) = F (x, {Wi})+x, where H(x) is the desired
underlying mapping. It’s easier to optimize this residual mapping F (x, {Wi}) than to
optimize the original mapping H(x) directly. If the identity mapping is optimal it can
be achieved by driving F (x, {Wi}) to zero.

H(x) = F (x, {Wi}) + x (2.49)

In ResNet50, these residual blocks are stacked together, with each block’s output
serving as the next block’s input. The skip connections allow the model to learn identity
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functions, making the layers effectively ”disappear”. This counteracts the degradation
problem and enables the successful training of deeper networks.

■ 2.1.21 Lightweight data fusion

The LDF framework combines probabilistic graphical models (PGMs) with NNs for
computationally efficient posterior inference. It was originally introduced by Dean
et al. [12]. It requires the delineation of two distinct classes of data, primary data
and auxiliary data. Primary data y = (y1, ..., yM ) has well-characterized statistical
relationships to local latent variables of interest θ = (θ1, ..., θM ). For primary data, we
have a known likelihood model p(yi|θi) in the exponential family and a conjugate prior
distribution p(θi). Auxiliary data x = (x1, ..., xM ) is related to θ, but with unknown or
complex statistical relationships p(xi|θi).

Lightweight Data Fusion with Conjugate Mappings

x1 θ1 y1j

N1

· · · xM θM yMj

NM

λ0

Figure 2: Data fusion in a simple model whereM latent variables θi are accompanied by corresponding
shaded observation nodes xi and yi = {yi1, . . . , yMj}. The direction of the arrows indicate known
conditional distributions.

2.1 Exponential Families and Sufficient Statistics

We consider the case when the known forward model p(yi | θi) is a distribution in the
exponential family and p(θi | γ) is a conjugate prior (Bernardo and Smith, 2000). It is in
this sense that primary data yi has a well-characterized probabilistic relationship to θi. The
exponential family contains many commonly-used distributions, including the Bernoulli,
binomial, multinomial, Poisson, Gaussian, beta, Dirichlet, gamma, exponential, and others.
They are the only class of distributions for which conjugate priors exist, reducing the
complexity of doing inference to calculating and adding sufficient statistics. Finally, they
make the fewest a priori assumptions about the data, since they arise as solutions to the
maximum entropy problem subject to linear constraints. The exponential family assumption
may be relaxed with respect to primary data (with some loss of computational efficiency);
for purposes of introducing the method we maintain it throughout.

We briefly summarize relevant properties of exponential family distributions that play a
central role in our analysis. The reduction of primary data to sufficient statistics and the
tractability of the resulting posterior-predictive likelihood are of particular importance. The
former motivates the output of the auxiliary data mapping while the latter enables use of
various Bayesian learning objectives.

The primary data yi = {yi1, · · · , yiNi} in Figure 2 are drawn from a known exponential
family distribution with unknown latent parameters θi,

p(yij | θi) = hy0(yij) exp
{
η(θi)

>ty0(yij)−A(θi)
}

(4)

where η(θi) are the natural parameters, hy0(yij) is the base measure, ty0(yij) is the sufficient
statistics, and A(θi) , log

∫
hy0(yij) exp

{
η(θi)

>ty0(yij)
}
dyij is the log-partition function.

Clearly, the joint distribution of a set of Ni conditionally-independent observations yi =
{yi1, . . . , yiNi} is also in the exponential family with identical natural parameter η(θi),
sufficient statistics ty(yi) =

∑
j ty0(yij), base measure hy(yi) =

∏
j hy0(yij), and log-partition

function NiA(θi):

p(yi | θi) = f(yi; θi) , hy(yi) exp
{
η(θi)

>ty(yi)−NiA(θi)
}
. (5)

5

Figure 2.13: A simple data fusion model with M latent variables θi and observed nodes of
auxiliary and primary data xi and yi, respectively. Note that yi can be expanded as yi,1, ..., yi,Ni

as shown here. Figure from [12].

A simple model with independent and identically distributed latent variables θi is
shown in Fig. 2.13 and can be factorized as follows:

p(θ|x, y) ∝
M∏

i=1

p(θi)p(xi|θi)p(yi|θi). (2.50)

Likelihood and prior distributions forming conjugate pairs are formulated as:

p(yi|θi) = f(yi; θi) ≜ hy(yi) exp
{
η(θi)

⊤ty(yi)−NiA(θi))
}

(2.51)

p(θi) = π(θi, λ0) ≜ hθ(θi) exp

{[
τ0
ν0

]⊤ [
η(θi)
−A(θi)

]
− logZ(τ0, ν0)

}
. (2.52)

In these equations, the base measures for the likelihood and prior are denoted as hy(yi)
and hθ(θi), respectively. The natural (canonical) parameter for the likelihood is η(θi),
while the sufficient statistic for the likelihood is ty(yi). Ni refers to the number of
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observations, and the log-partition function for the likelihood is A(θi). The hyperpa-
rameters for the prior distribution are λ0 ≜ [τ0 ν0]

⊤, and the log partition function for
the prior distribution is log Z(τ0, ν0). Because p(θi) is a conjugate prior distribution,
the posterior distribution conditioned on yi is given by:

p(θi|yi) = π(θi;λ0 + Ty(yi)) (2.53)

where Ty(yi) = [ty(yi) Ni] are the aggregated sufficient statistics [12]. Fig. 2.14 depicts
three PGM models that collectively demonstrate how inference over θi is equivalent
with our primary data yi and sufficient statistics of our primary data Ty(yi).

The LDF framework makes sufficiency and learnability assumptions, specifying that
conjugate mapping transformations can be learned from auxiliary data x to approximate
sufficient statistics Tx(xi;ϕ) = [tx(xi;ϕ) nx(xi;ϕ)] for posterior inference via conjugate
updates over our latent variables of interest. NNs are one out of potentially many model
types that can be used to effectively learn these conjugate mapping transformation
functions; for NNs, ϕ represents NN weight parameters. The posterior distribution
given xi and the full posterior distribution take the forms:

p(θi|xi;ϕ) = π(θi;λ0 + Tx(xi;ϕ)) (2.54)

p(θi|xi, yi;ϕ) = π(θi;λ0 + Tx(xi;ϕ) + Ty(yi)). (2.55)

Fig. 2.15 demonstrates how inference over θi can be performed using approximate suf-
ficient statistics Tx(xi;ϕ).

For models where Z(τ, ν) is finite, Dean et al. also show that we can derive a
closed-form conditional distribution p(yi|xi;ϕ) that takes the same form as the posterior
predictive distribution for y [12].

p(yi|xi;ϕ) = p(yi|Tx(xi;ϕ)) =
∫
f(yi; θi)π(θi;λ0 + Tx(xi;ϕ))dθi

= hy(yi)
Z(τ0 + tx(xi;ϕ) + ty(yi), ν0 + nx(xi;ϕ) +Ni)

Z(τ0 + tx(xi;ϕ), ν0 + nx(xi;ϕ))
(2.56)

Although different functions may be used, this distribution is also a natural choice for
use in maximum likelihood objective functions for NN training:

ϕ̂ = arg max
ϕ

M∑

i=1

log p(yi|Tx(xi;ϕ)). (2.57)

Fig. 2.16 depicts a representative LDF NN structure and functions used for inference,
NN training (learning), and mode evaluation.



Sec. 2.2. Qualitative Background on the value of probabilistic estimates and forecasts 27

Lightweight Data Fusion with Conjugate Mappings

θ1 y1j Ty(y1)

N1

· · · θM yMj Ty(yM )

NM

λ0

(a)

θ1 Ty(y1) y1j

N1

· · · θM Ty(yM ) yMj

NM

λ0

(b)

θ1 Ty(y1) · · · θM Ty(yM )

λ0

(c)

Figure 3: Three equivalent subgraphs showing inference over θ1, . . . , θM based on primary data
only. These graphs are equivalent because Ty(yi) is sufficient for yi w.r.t. inferences about θi. (a)
Inference for p(θi | yi). (b) p(θi |Ty(yi))) that is equivalent in distribution to the former by sufficiency.
Given a sufficient statistic Ty the Markov property shows that θi is conditionally independent from
the actual data realization yi. (c) The original data yi may be discarded, as inference only relies on
the sufficient statistics Ty(yi).

2.2 Conjugate Mappings of Auxiliary Data

Utilizing the properties above, we consider transforming auxiliary data xi = (xi1, . . . , xiP ),
subject to θi by some unknown forward model p(xi|θi), to a representation that is interpretable
as a sufficient statistic (akin to primary data). In many applications, the lack of a forward
model precludes posterior inference. Here we bypass the forward model by focusing on the
sufficient statistics. The methodology is predicated on the following two assumptions:

1. Sufficiency: there exists a statistic T ∗x (xi) = [t∗x(xi), n
∗
x(xi)] that is Bayes sufficient

for xi w.r.t. θi in the same way that Ty(yi) is sufficient for yi:

p(θi | xi) = p(θi | T ∗x (xi)) = π(θi;λ0 + T ∗x (xi)). (13)

7

Figure 2.14: Three equivalent graphs illustrating inference over θi from observed primary
data yi. (a) We introduce sufficient statistics Ty(yi) for yi. (b) p(θi|Ty(yi)) is equivalent to
p(θi|yi) through sufficiency. (c) Inference over θi only depends on Ty(yi). Figure from [12].

■ 2.2 Qualitative Background on the value of probabilistic estimates and
forecasts

In this section, we discuss ways in which probabilistic electricity demand estimates and
forecasts can provide unique value by elucidating economically viable investments that
were previously foregone because their perceived investment risks were too high. By
doing so, probabilistic estimates and forecasts have the potential to expand the resource
pool available for electrification efforts by enabling private investment. We also discuss
how probabilistic estimates and forecasts can aid in efforts to efficiently incentivize
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Lightweight Data Fusion with Conjugate Mappings

Table 1: Interpretations of the different conjugate mappings of auxiliary data under a selection of
common primary data likelihoods.

Primary Data Conjugate Prior Auxiliary data interpretation
Bernoulli/binomial Beta number of trials nx(xi;φ) ≥ 0,

success rate µ(xi;φ) ∈ [0, 1]
Multinoulli/multinomial Dirichlet number of trials nx(xi;φ) ≥ 0,

outcome probabilities δ(xi;φ) ∈ ∆d−1

Poisson Gamma number of arrivals a(xi;φ) ≥ 0,
number of intervals b(xi;φ) ≥ 0

Multivariate Gaussian NIW potential vector hy(xi;φ) ∈ Rd,
precision matrix lower triangle L(xi;φ)L(xi;φ)> � 0

Tx(x1) θ1 y1j

N1

· · · Tx(xM ) θM yMj

NM

λ0

φ

Figure 5: PGM incorporating a mapping Tx(x;φ) = [tx(x;φ), Nx(x;φ)] with shared hyperparameters
φ learned from jointly observed auxiliary and primary data instances xi, yi generated by diverse and
unobserved θi. After learning and validation of φ, we are solely interested in the role of Tx(xi;φ) for
posterior inference over θi. Note that LDF mappings are applicable to a variety of PGM structures
beyond the model depicted here.

The learned sufficient statistics functions tx(xi;φ) and nx(xi;φ) are directly interpretable
as the corresponding quantities for primary data, enabling reasoning over the quality of
information contributed by each data source. Table 1 shows the interpretations for several
common primary data types. Additional details can be found in Appendix A.

Under the conjugate mappings assumptions, inference in the model of Figure 2 can be
viewed equivalently as Figure 5. The dependence on xi has been replaced by dependence
on Tx(xi;φ), made possible by sufficiency as in Figure 3, and the arrow reversed to indicate
that we always condition on the conjugate mapping Tx(xi;φ) instead of the original data xi.

The form of the posterior p(θi | xi;φ) in Equation 15 is in the same exponential family as
our original conjugate prior p(θi), resulting in convenient forms for two conditionals critical
for learning and inference in both simple models (e.g., Fig. 2 and Sec. 5) and more complex
hierarchical models where γ 6= ∅, (e.g., Sec. 6). Specifically, p(θi | xi;φ) remains conjugate to
the likelihood of primary data yi, Equation 4, yielding a full posterior

p(θi | xi, yi;φ) = π(θi;λ0 + Tx(xi;φ) + Ty(yi)), (16)
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Figure 2.15: Lightweight data fusion introduces conjugate mappings Tx(xi;ϕ) to enable
efficient posterior inference over thetai in the same way as yi and Ty(yi). Notably, conjugate
mapping hyperparameters ϕ are shared and are learned from jointly observed samples of auxil-
iary data xi and primary data yi. Figure from [12].
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Figure 4: Detail of NN used for mapping (architecture varies by application) transforming auxiliary
data to sufficient statistics used for inference, learning, and model validation.

2. Learnability: one can learn an approximation to T ∗x (xi) given enough joint pri-
mary/auxiliary data observations and a suitably expressive function class Tx(xi;φ).

Consequently, the posterior distribution takes the form

p(θi | xi;φ) = π(θi;λ0 + Tx(xi;φ)) (14)

= hθ(θi) exp

{[
τ0 + tx(xi;φ)
ν0 + nx(xi;φ)

]> [
η(θi)
−A(θi)

]
− logZ(τ0 + tx(xi;φ), ν0 + nx(xi;φ))

}
(15)

which shows that conditioning on the auxiliary data xi simplifies to calculating aggregated
sufficient statistics Tx(xi;φ) and performing a conjugate update, analogous to inference given
the primary data. It is for this reason that we refer to Tx(xi;φ) as a conjugate mapping of the
auxiliary data xi. As with the primary data, this model implies p(θi |xi;φ) = p(θi |Tx(xi;φ)).

Neither assumption represents a departure from Bayesian methodology. The existence
of sufficient statistics is well-established, as is the existence of minimal sufficient statistics
under mild regularity conditions. Other methods learn transformations of input data and/or
assume a conjugate surrogate likelihood as we describe in Sec. 4.

The conjugate mapping Tx(xi;φ) must be suitably flexible to capture any relevant
information about θi from the auxiliary data xi. We use NNs to represent the functions
tx(xi;φ) and nx(xi;φ), e.g. the network shown in Figure 4, but other nonlinear functions may
also be used. Note that this only a notional figure, and that in practice the network outputs
tx(xi;φ) and nx(xi;φ) may differ by far more than one linear transformation. By modern
standards, even small networks are adequately expressive to extract relevant information
about θi from xi. Training such networks is generally straightforward in modern deep learning
frameworks (e.g. TensorFlow and PyTorch) that do not require the specification of gradients
for many reasonable loss functions and make these models an attractive option even for
non-experts. We describe details of training in Sec. 3.

Importantly for learning, the mappings Tx(xi;φ) are shared across all M models much
like the aggregate sufficient statistics Ty(yi) = [ty(yi); Ni] that compresses primary data.
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Figure 2.16: An neural network view of LDF with corresponding functions for inference,
training (learning), and model evaluation. Figure from [12].

low-carbon electricity supplies in support of climate goals.
Latent and unmetered existing demand is inherently uncertain. There is only so

much information one can gather about what is happening inside of a building based
on what can be observed outside of it. Given limited information, we argue that quan-
tifying uncertainty is a critical endeavor towards ensuring that decisions made are rep-
resentative of many perceived possibilities regarding demand. Because demand is such
a critical input to decision-making frameworks and tools, we argue that uncertainty
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around its characterization is also critically important.
Future electricity demand is also uncertain because its human, environmental, and

technical drivers are themselves uncertain. For instance, we could not have predicted
the exact nature of the COVID-19 pandemic and its effects on power consumption
years before the first human outbreaks. Neither can we determine when the next major
economic recession will occur, what political party will drive U.S. climate policy in five
years time, or what battery storage costs will be a decade from now. Because of this
inherent uncertainty, we believe that in many cases, electricity demand should be be
forecasted probabilistically. These characterizations can be informed by data on past
and present experiences.

The uncertainty intrinsic to electricity demand estimation and forecasting varies by
time and space. For example, because electricity demand for groups of consumers often
evolves in a relatively smooth and continuous manner, it should naturally be easier to
forecast near-term demand with high certainty than doing so with long-term demand.
Another example pertains to regional stability: areas with less conflict can be thought
to have more predictable demand patterns than those with more.

Better characterizations of the intrinsic uncertainty in future electricity demand can
translate into significant bottom-line value if coupled with the right decision-making
frameworks. Because probabilistic forecasts and ways to employ them come in various
types and qualities, precisely estimating the total economic value that probabilistic
forecasting can provide is likely a hopeless endeavor. Nevertheless, in this section we
outline major ways in which forecasts can provide value, especially when considering
electricity infrastructure investments in low-access countries. We expect the potential
value from these methods to be significant given the scale of investment needed to
achieve SDG7.

■ 2.2.1 Enabling beneficial investments that could not have occurred oth-
erwise

Perhaps the most concrete way that probabilistic electricity demand forecasts can pro-
vide value is by bringing to light economically viable investments that are otherwise
foregone because their perceived investment risks are wrongly believed to be too high.

We start this section by introducing key concepts to support the recognition of these
benefits. First, we discuss the concept of diminishing marginal utility and explain how
it should affect decision-making under uncertainty. We then discuss planning without
any forecasts and planning with point forecasts, before describing how probabilistic
forecasts can be of value.

■ 2.2.2 Decision-makers should be risk-averse and favor smaller and more
modular investments

The concept of diminishing marginal utility (DMU) is fundamental to thinking about
public decision-making and serving demand for electricity. In this case, DMU reflects
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the fact that each unit of electricity consumed by a given customer leads to a smaller
increase in value relative to that associated with the previous unit [13]. This means
that the first units of electricity consumed should bring consumers the most value.
In practice, the first few watts of electricity demand may be enough to power basic
but critical activities: lighting so that commerce and studies can continue at night, or
phone charging so that important communications can be made. Additional electric-
ity consumption is still valuable, but less so on a per-unit basis: consumers can do
more electricity-intensive activities such as watching TV, boiling water, or irrigating
farmland.

Because of DMU, a decision-maker should be risk-averse when facing demand un-
certainty and should pursue smaller and more modular investments, all else equal. This
is because over-forecasting and over-building entails high opportunity-costs: wasted ex-
penditures could otherwise have gone to electrify or reinforce supplies in other, under-
served areas. The net result is in creating a situation where consumers in some areas are
compelled to live without electricity, while consumers in other areas are afforded extra
capacity that goes unused. Because of DMU, the expected costs from this arrangement
vastly outweigh their benefits as high-utility demand is not met. The strategy of mak-
ing smaller and more modular investments is often prudent because, while it may entail
the potential for missing out on economies of scale, it decreases the chances and severe
ramifications of over-building.

■ 2.2.3 Planning without forecasts

In the absence of any forecast whatsoever, investors are left with only their prior ex-
pectations about demand to plan investment decisions. This translates to significant
decision-making uncertainty. Given the fact that risk-averse decision-makers with de-
mand uncertainty should favor smaller and more modular investments, only very small
investments are likely to be made, entailing very high per-unit electricity costs. In
practice, this may mean an over-reliance on solar kits when underlying demand may be
able to substantiate much larger minigrid systems or grid connections, benefiting from
economies of scale.

Planners can still work to find suitable sites by surveying and collecting better
data; however, site-by-site surveys can be both costly and slow, keeping it such that
economically viable but unknown investment opportunities remain hidden for undue
periods of time.

■ 2.2.4 Planning with point forecasts

Some might see it as an improvement for decision-makers to at least be equipped with
point forecasts. While this may be true, point forecasts have notable weaknesses.

Even if point forecasts are accurate on average, if decision-makers are overconfident
in their individual accuracy, they are more likely to make imprudent investment deci-
sions yielding inefficiencies that prevent other beneficial investments from taking place.
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As described before, the expected costs from such overbuilding outweigh expected ben-
efits because of DMU.

The situation can be similarly damaging if decision-makers do not know how trust-
worthy the forecast is likely to be. They may remain too weary to make otherwise sound
investments without first still incurring the financial and temporal costs of surveying
and data gathering. As in the “planning without forecasts” case, significant value will
be left on the table.

Any inaccuracies in point-forecasts can additionally engender the development of
human stigmas that undermine what value point forecasts have the potential to bring.
This may be inevitable, given the fact that forecasting electricity demand is inherently
uncertain.

■ 2.2.5 Planning with probabilistic forecasts

Probabilistic forecasts, on the other hand, allow decision-makers to better decisions
in the face of future uncertainty. They can implicitly or explicitly combine these
probabilistic characterizations with functions of social utility and attempt to maxi-
mize the expected utility from their investments [14]. Probabilistic characterizations
allow decision-makers to better tune their infrastructure investment strategies, fully
accounting for the effects of DMU and economies of scale. All else equal, this should
equate to targeting investment projects that provide higher value and are characterized
by lower demand uncertainty. Such projects may be overlooked in the absence of such
probabilistic descriptions. Only when all of these low-risk high-value opportunities are
realized should decision-makers choose to make investments with lower value or higher
uncertainty.

The value of improved information via probabilistic forecasts also has major im-
plications when considering the importance of ‘unlocking’ private sector investment in
electricity infrastructure for most low-access countries. In these countries, public fund-
ing is often stretched as far as it can go, at all times. In contrast, the private sector
represents a comparably boundless source that could manifest reliable electricity con-
nections if viable business cases can be made [15, 16]. Probabilistic forecasts have the
promise to illuminate such viable cases and make progress that would not be realized
otherwise.

■ 2.2.6 Valuing flexibility via real options analysis

In the previous section, we abstractly describe how probabilistic demand estimates and
forecasts can yield improved decision-making considering uncertainty and the effects of
DMU and economies of scale. These decisions can be made more concrete by assessing
the value of flexibility afforded by some infrastructure types and not others.

The value of flexibility can be assessed using methods for real options analysis. Real
options analysis commonly models the present value of the right to make tangible future
investments assuming uncertainties in business factors. Part of doing so may entail the
definition of strategies to exercise these rights with Monte Carlo simulations drawn from
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probability distributions over input variables [17].
In the case of electricity demand uncertainty and forecasting, a real options anal-

ysis could focus on valuing the flexibility provided by grid-compatible minigrids. In
this example, we consider the comparison of two types of investment: simple (grid-
incompatible) minigrids and grid-compatible minigrids. Simple minigrids involve in-
vestment in comparatively cheaper generation, storage, and network components that
bring electricity to consumers but do not meet the specifications of the main grid. They
entail low fixed costs and high variable costs. On the other hand, grid-compatible mini-
grids are more expensive: they ensure that generation, storage, and network components
meet grid specifications. In our example, they entail both high fixed costs and the same
high variable cost. In a vacuum, it would only make sense to build simple minigrids;
however, grid-compatible minigrids can be advantageous if demand reaches levels that
justify connection from the main grid. The main grid can provide reliable electricity
with comparatively lower variable costs by taking advantage of much larger economies
of scale. If this occurs, assets from a grid-compatible minigrid can be subsumed by
the main grid, while those from simple minigrids become obsolete and expenditures in
redundant grid-spec assets become necessary. The decision on whether to spend more
upfront in a minigrid with the ‘real option’ to connect to the main grid depends fully on
the perceived probability that high demand warrant connection to the main grid and
on what timeframe. Better probabilistic characterizations of this demand can support
the rational decision-making pertaining to such investments in flexibility.

Considerations of flexibility extend beyond the grid-compatible minigrid case. They
apply equally well to possible investments in extensible and modular mini-grid com-
ponents and solar kits, and more flexible generation and storage assets. Flexibility is
also apparent when simply considering the value of doing nothing except waiting for
the future when improved information arises about demand, new storage technologies,
and other uncertain factors. Understanding the context behind when these technologies
should and should not be employed ultimately rests on characterizing probability dis-
tributions surrounding business factors including demand. Better forecasts promise to
inform strategies for exploiting flexibility and realizing the value of flexible technologies.

In their 2011 book, de Neufville and Scholtes present a simple, artificial example of
how uncertainty regarding electricity demand can provide value when building a thermal
power plant. Considering variability in demand and can help plant managers avoid over-
forecasting expected profitability through the probabilistic consideration of potential
downside losses associated with non-linear plant operations costs [17]. Agaton and
Karl present a more applied example in a 2018 study that uses the real options analysis
framework to account for electricity price, oil price, and oil tax externality when making
renewable energy investment decisions on Palawan island in the Philippines. Though
uncertainties stem from more than just electricity price, and demand uncertainty is
not a perfect proxy for electricity price uncertainty, the study is notable because it
calculates that the value of the option to invest in renewables can exceed $150 million
on Palawan Island alone [18].
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■ 2.2.7 Adaptive approaches and the value of information

The benefits of probabilistic electricity demand forecasting are underscored when con-
sidering the fact that decision-makers can exercise information planning along with
infrastructure planning. Information planning stems the fact that data provides value,
and from the propensity for model-characterized uncertainty to decrease as more and
better information is collected and used. Users can assess model-based value of infor-
mation (VoI) metrics associated with different input features of interest. If a piece of
information’s VoI exceeds the practical costs of obtaining it, a modeler would do well to
procure it. Probabilistic modeling frameworks can rationally direct the calculation of
VoI and investments in information along with physical infrastructure. Moreover, these
investments can occur over rolling time frames and continue to adapt as new informa-
tion is gained, new infrastructure is built, and new revenue is collected. Though we
are not aware of empirical examples for which such adaptive approaches to electricity
infrastructure planning have been exercised at scale, the concept of Adaptive Electricity
Access Planning has been proposed in [19].

■ 2.2.8 Climate goals and low-carbon infrastructure planning

Global climate efforts, goals, and agreements add an additional layer of complexity to
electricity infrastructure planning. Researchers are projecting that achieving the Paris
climate goals will be unlikely given current rates of progress [20, 21]. The electric power
sector is central to these goals. Electricity and heat together comprise 31.9% of all
greenhouse gas (GHG) emissions globally [5]; however, decarbonizing broader sectors
of the economy will very likely necessitate expanding the scope of electrification and
meeting new demand with renewable supply [6, 9].

We argue that probabilistic characterizations of future demand in low-access regions
can be used to efficiently achieve low-carbon electricity supplies in much the same way
they can improve infrastructure right-sizing efforts. Two key concepts are useful to de-
fine before supporting this claim: energy system momentum and committed emissions.
Energy system momentum reflects the fact that long-lived generation, distribution, and
transmission assets, in addition to the regulatory frameworks that govern them, yield
significant system-level inertia. In the context of climate, energy system momentum
yields committed emissions. Already-purchased physical assets reflect sunk fixed costs
and can be thought to have future emissions effectively embedded within them [22].
Because of this, decisions made now affect the future carbon intensity of the sector for
decades by way of committed emissions.

These effects inform the planning problem for low-carbon energy systems in low-
access contexts. Consider a situation in which a low-access country with electricity
demand uncertainty is committed to reaching some level of emissions reductions by
a future year. Too much upfront investment in fossil-derived supplies and too little
investment in renewable resources can result in futures for which it is overwhelmingly
costly and inefficient to achieve climate commitments. Too little upfront investment
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in fossil-derived sources and too much investment in renewables can yield electricity
supplies that, in the short-term, are overly costly and unreliable due to the intermittency
of renewables. By estimating uncertainty in future electricity demand, planners can
better manage risks in meeting emissions targets while seeking to maximize economic
efficiency and growth.



Chapter 3

The Need for Demand
Characterization and Stimulation for
Geospatial Electrification Planning

“Geospatial electrification plans”1 aim to prescribe cost-optimal and practicable mixes
of grid extension, mini-grid, and stand-alone system solutions to power areas currently
without electricity services. They can additionally guide the rollout of infrastructure
over time, improve coordination among stakeholders, and provide transparency to in-
vestors [23, 26]. Because of financial constraints commonly faced by low-access coun-
tries, geospatial electrification plans are essential instruments for achieving universal
electricity access in a timely manner.

Electrification planning models have become more popular in recent years to assist in
the production of geospatial electrification plans. These computer-based models employ
optimization algorithms that automate parts of the engineering design process. They
have shown to be particularly effective in supporting electrification planning because of
the significant technical complexity associated with designing systems that can employ
a diversity of supply technologies in different places with unique demand, geography,
and resource characteristics. Traditional manual approaches to engineering design do
not scale as well as computer-based methods. While numerous electrification planning
models are available [27, 28, 29], many of them have different characteristics and occupy
unique niches, as elucidated by Ciller et al. [29].

Users of more detailed electrification planning models benefit from improving data

1The specific vocabulary describing a “geospatial electrification plan” is not well-defined in the
planning literature. The types of individual consumer-level and large-area electrification plans modeled
in this study are sometimes referred to as “comprehensive geospatial plans,” and also “nationwide
geospatial coverage least-cost plan[s] for implementation” and “national electrification rollout plan[s]”
when extended to the country-scale [23]. They are sometimes equated to “electrification master plans,”
which may also go by variants including “rural electrification master plan,” “national electrification
master plan,” “low cost rural electrification master plan,” “rural electrification strategy and plan,” and
“national electrification plan” [24, 25]. Nevertheless, some sources differentiate between the two groups
due to the level of granularity employed. “Electrification master plans” may not necessarily encompass
detailed system designs in the way “comprehensive geospatial plans” do [23].
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availabilities, remote sensing capabilities, and machine learning-powered inference to
produce high-resolution country-scale plans. While these methods were previously lim-
ited to areas with detailed geospatial data collected via extensive surveys, they are now
able to extend to larger areas as massive data sets of building locations, electrifica-
tion status, productive uses, existing grid topology, and inferred demand are becoming
available [30, 31, 32, 33]. Previously, only more coarse (region-level) electrification plan-
ning modeling was feasible for planning over large spatial extents due to input data
limitations.

The goal of this chapter is to explore the value of demand characterization and stim-
ulation for electrification planning. Numerous accounts in the literature describe how
characterizing demand is critical to electrification planning [34, 35, 36, 37, 38]; however,
these accounts miss key insights that can only be appreciated when modeling at very
high levels of granularity and large spatial extents.

We employ the Reference Electrification Model (REM) [29, 39] to analyze sensitivi-
ties for a 10,914 km2 area of Uganda with 366,946 individual consumers, representing
20 consumer types. REM uses information about areas with poor electricity access to
determine cost-optimal electrification modes (e.g., grid-connected, mini-grid, or stand-
alone system) for each consumer, estimate costs of electrification, and produce detailed
engineering designs of recommended systems. The model takes account of highly gran-
ular economic and technical detail: it considers multiple customer types with different
demand profiles, individual lines, transformers, and generation assets, medium and low
voltage network codes, voltage drops, solar resource availability, and even topographical
and streetmap-level information if desirable [29, 39].

The studies we present are unique from those previously reported due to the high
(individual consumer-level) spatial granularity, engineering design detail, and large areal
extent of analysis. We make a number of contributions:

1. We demonstrate the criticality of adequately estimating demand and its evolu-
tion for large-scale planning: we observe significant cost and supply technology
sensitivities as a function of anticipated demand levels. The average cost of ser-
vice provision ranges from $0.13/kWh to $0.37/kWh over the domain of aggregate
demand values we model: a nearly three-fold difference.

2. We demonstrate the importance of consumer-level modeling and representing a
diversity of consumer types; using homogeneous consumer type assumptions can
significantly distort costs and prescribed designs relative to heterogeneous repre-
sentations. We show improved characterizations of consumer types to decrease
costs and yield plans that more efficiently serve populations of interest. For our
“central demand case,” modeling demand heterogeneity results in least-cost plans
that are 9% less costly than modeling assuming homogeneous demand. Modeling
heterogeneous demand decreases prescribed grid extension shares from 89% to 77%
when comparing supply technology shares for cost-optimal designs.

3. We demonstrate the potential economic benefits of demand stimulation. We show
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how stimulating demand can lead to positive feedback loops: increasing demand
can lower electricity unit-costs through realized economies of scale and improved
network utilization, improve the viability of additional electric loads, and further
increase demand, continuing the cycle. Specific studies comparing the economics
of clean cooking via electric and LPG cookstoves demonstrate how these feedback
loops can jointly benefit progress towards universal access to clean cooking and
electricity through coordinated planning. The demand assumptions we model show
that coordinated planning can reduce electricity costs by 34% and increase electric
cookstove viabilities from 42% to 82%.

■ 3.1 Data: the South Service Territory in Uganda

According to the World Bank, Uganda had a 22% electrification rate in 2017 [40]. As
a result, universal electricity access in Uganda is seen as a major national priority.
The country is split into 13 electric service territories. The study region we model in
REM comprises the majority of consumers across one of them (as of 2017): the South
Service Territory (SST). The SST covers the districts of Masaka, Rakai, Isingiro, and
Ntungamo, with electrification rates of 37%, 15%, 11%, and 12%, respectively, according
to the Uganda 2014 Census [41]. The case study that we base these analyses on was
originally produced and compiled by the MIT-Comillas Universal Energy Access Lab in
partnership with German Corporation for International Cooperation GmbH (GIZ) in
support of master electrification planning and mini-grid project evaluation across the
territory.

The buildings across the SST are identified using satellite imagery from the Google
Maps API and a convolutional neural network for semantic segmentation with human-
based manual corrections. We identify 366,946 individual consumers, as shown in Fig.
3.1. Some consumers were not accounted for due to incomplete satellite image coverage
for the service territory. The supplemental material for the work in this chapter [42]
enumerates the assumptions that we use in the base model, including the network and
generation component catalogs that we employ in REM, financial modeling assump-
tions, and other key parameters.

While some parts of the SST are electrified, we assume that all buildings are non-
electrified in the following experiments to observe the full effects of the demand assump-
tions made on cost-optimal plans. We obtained georeferenced data representing the
existing medium-voltage (MV) grid from partners at the Rural Electrification Agency
of Uganda (REA).

We estimate solar irradiance data using the National Renewable Energy Labora-
tory’s PVWatts tool [43, 44] to describe the generation potential of solar resources in
the territory. Because PVWatts data was not available in the SST, historical PV perfor-
mance data is used for Mombasa, Kenya, which is assumed to have adequately similar
solar irradiance characteristics for modeling purposes.



Figure 3.1: Buildings identified in the Uganda South Service Territory (SST). An image show-
ing a basemap with the SST border (white outline), building locations from deep learning-based
building extraction (yellow points), a sub-area with manual corrections (orange outline), and
building locations from German Corporation for International Cooperation GmbH (GIZ)-led
manual building identification efforts (blue points). Note that building points are fully missing
in regions where high quality satellite imagery was not available (green outlines).
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■ 3.2 Methods: Employing the Reference Electrification Model

The studies we present employ REM and make a number of general assumptions when
analyzing cost-optimal plans for the SST; a full list of assumptions are provided by
Ciller et al. and the MIT-Comillas Universal Energy Access Lab in [29] and [39],
respectively. Although REM has the ability to account for topography when designing
electrification plans, it is omitted in these analyses because this region is mostly flat,
it does not affect the demand-specific conclusions of this study, and disabling this
feature decreases computation time. Lastly, we do not employ diesel generation as an
option in these studies; mini-grids and stand-alone systems are powered exclusively
using solar generation and battery storage options. This modeling decision conforms to
specifications of the original SST study in REM and relates to area-specific ambitions
for low-carbon electrification.

■ 3.2.1 Case Study 1: Why estimating demand and its evolution deserves
more attention

Estimating and forecasting electricity demand is a nontrivial task. A recent review
paper by Riva et al. categorizes 85 studies that pertain to long-term electricity and
thermal energy planning [45]. The authors classify demand forecasting methods and
identify drawbacks for every class of methods reviewed. Additionally, since data con-
straints are ubiquitous for electricity demand forecasting in developing countries, it
is often common to rely on non-local data to construct plausible demand scenarios.
In this section, we argue that this problem deserves more consideration by showing
how forecasting demand is critical to efforts for right-sizing infrastructure development
programs.

Section 3.2.2 investigates a related but different dimension of the problem: the
importance of modeling demand heterogeneity. The demand scenarios employed in
this section and Section 3.2.2 should be contrasted up-front. For the purposes of this
chapter, we define demand heterogeneity as variability in the demand profiles modeled
for the consumers of interest. In contrast, demand homogeneity assumes that there is
only one consumer type: all consumers are assumed to have the same demand profile.
In this section, we assume heterogeneous demand types for all the cases modeled. In
Section 3.2.2, these cases are contrasted with those assuming homogeneous demand.

Modeling Assumptions

While electricity demand for any one consumer is theoretically a function of price,
reliability, individual preferences, available productive uses of energy, historical con-
sumption, precise time and day of the year, and other factors, we make a number of
simplifications for modeling tractability. For every consumer and for every hour of a
full year, we model two types of demand in REM: critical and regular demand. We as-
sume each type of demand has a different cost of non-served energy (CNSE), with the
CNSE of critical demand set to a per-kWh value higher than that of regular demand.



40
CHAPTER 3. THE NEED FOR DEMAND CHARACTERIZATION AND STIMULATION FOR GEOSPATIAL

ELECTRIFICATION PLANNING

REM then takes account of the specified demand profiles and CNSE values to prescribe
designs for supply infrastructure that minimize the sum of these social costs with the
explicit costs of service provision.

There are two steps required to define demand profiles for the consumers considered
in REM. The first is to specify a basic hourly demand profile or pattern spanning a
full year, and the second is to optionally specify a nonnegative scalar multiplier to be
applied to this basic profile that proportionally increases or decreases demand values
at every hour of the year.

In the experiments described in this section, we specify one base demand profile
for all of the consumers modeled, shown in Fig. 3.2. This base pattern is computed
by taking time series data of hourly aggregate consumption for the agricultural village
of Karambi in Rwanda and scaled to match the total energy demanded annually by a
typical residential consumer in the “central case with heterogeneous demand,” which
we will describe shortly. Because Karambi has residential loads, a school, health center,
bank, government buildings and shops, using its demand profile may be considered a

Consumer
type

Number of
consumers
modeled in
region

Demand
multiplier
for low case

Demand
multiplier
for central case

Demand
multiplier
for high case

Cell office 271 8.98 32.08 79.55

Coffee washing station 29 6.74 24.06 59.66

Health center 91 8.08 28.87 71.60

Health post 11 4.49 16.04 39.78

Large market 10 58.38 208.50 517.08

Small market 65 35.93 128.31 318.20

Irrigation pumping 5 13,472.53 48,115.44 119,325.86

Milk collection center 10 6.29 22.45 55.69

Mining 16 112.27 400.96 994.38

Preprimary school 96 1.80 6.42 15.91

Primary school 259 1.80 6.42 15.91

Secondary school 213 5.84 20.85 51.71

Sector Office 67 6.29 22.45 55.69

Tea Factory 2 17,065.21 60,946.23 151,146.10

Technical Schools 7 116.76 417.00 1,034.16

Telecom Tower Type 1 45 1,257.44 4,490.77 11,137.08

Telecom Tower Type 2 47 1,257.44 4,490.77 11,137.08

Universities and Institutes 18 583.81 2,085.00 5,170.79

Water pumping stations 16 179.63 641.54 1,591.01

Residential 365,668 0.28 1.00 2.48

Table 3.1: Heterogeneous consumer type information. For each of the 20 consumer types
modeled, we show the number of consumers modeled in the SST and corresponding demand
multipliers over the basic demand profile shown in Fig. 3.2 for the low, central, and high demand
cases.
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Figure 3.2: The base demand profile. The base demand profile shown corresponds to a resi-
dential consumer in the heterogeneous central demand case. Note that we differentiate critical
and regular demand.

reasonable composite for the types of profiles found in other rural parts of East Africa.
Additional information about the base demand profile can be found in [46, 47]. Because
appropriate data on the effects of seasonality on basic demand profiles was not available,
we use this basic profile for every day of the year modeled in REM.

We differentiate critical and non-critical shares for this base demand profile by
applying expert-validated logic for determining which hours are critical and not critical
for individual consumer types. For instance, every hour of health center demand is
considered critical; residential demand is only considered to be critical in the evening
hours; and school, government building, and shop-related demand is considered critical
during the day. We sum differentiated critical and non-critical demand values across all
consumer types. For each hour, we compute critical shares as the fraction of aggregated
critical demand in Karambi over the village’s total demand.

We model demand heterogeneity using 20 multipliers, one for each consumer type
analyzed as reflected in Table 3.1. We apply the same base demand profile to each
consumer type before accounting for the multiplier. Though in reality the various
consumer types we model have different relative demand patterns from those in the
base profile chosen, we made the modeling decision to use the multipliers due to data
availability constraints. Our base pattern still reflects a composite of residential and
non-residential East African consumers. The multipliers and the number of consumers
for the consumer types shown are derived from a data set shared by Rwanda Energy
Group Limited (REG) Energy Development Corporation Limited (EDCL) across the
country of Rwanda [48]. The data set provides frequencies of these various consumer
types and peak demand values for each type. Relative multipliers for the different
consumer types in the SST case study are computed in accordance with relative levels
of peak demand from the Rwanda data set. We argue that the implicit assumption
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that all consumer types roughly have the same load factor is reasonable because likely
load factor variations would only cause minor distortions. Additionally, while data
sets on Rwandan consumers are certainly different from those that would be most
appropriate to our Uganda SST case study, they are assumed to be acceptable proxies
in the absence of better information. We finally spatially distribute each of the 20
consumer types across the Ugandan SST in a random manner following a multinoulli
distribution. The parameters of the distribution specifying the probabilities of each of
the 20 possible consumer types are set to the empirical share of consumer types from
the Rwanda data set. In essence, the multinoulli distribution reflects a 20-sided die,
each side of which is weighted and represents a single consumer type; this die is rolled
once for each consumer, dictating its type. We assume that the spatial distributions of
consumer types do not vary as a function of land use, urbanization, or other attributes;
while erroneous, this assumption is necessary due to data limitations and we believe
the results of the following experiments still provide useful comparisons for analysis.

Analysis

Demand growth in the real world is a phenomenon with intrinsic uncertainty. Forecast-
ing demand for any population at any future date with very high accuracy is typically
infeasible, though on-going research in the planning community is aimed at making
improvements to current forecasting methods. Because of this uncertainty, we try to
appreciate the value of demand forecasting improvements by modeling three cases that
are designed to target aggregate demand levels within a reasonable range of what a plan-
ner may consider. We show sensitivities to aggregate demand in cost-optimal planning
under heterogeneous demand assumptions by modeling a “low case,” “central case,”
and “high case” with annual aggregate demand levels of 103 GWh, 369 GWh, and
915 GWh respectively. We summarize demand multipliers for various consumer types
across these cases in Table 3.1; multipliers across customer types are higher for demand
cases with higher aggregate demand.

We compute demand multipliers for residential and commercial & industrial (C&I)
consumer types differently from one another. We scale residential demand values in
accordance with empirical consumption data for newly electrified consumers in Kenya.
Monthly demand for a residential consumer under the “low case,” “central case,” and
“high case” are 7.1, 25.3, and 62.8 kWh, respectively. These values roughly match
median consumption values observed by grid-connected consumers in Kenya at 0.25,
1, and 10 year time spans from initial connections as presented by Fobi et al. [49].
Assuming demand growth in Uganda may progress similarly to how consumption growth
has proceeded in Kenya, the 0.25 to 10 year time horizons we choose may be considered
to be reasonable bounds on the domain of residential demand values modeled.

We calculate demand multipliers for C&I consumer types differently than those for
residential consumers in these three cases. We compute a linear relationship between
per capita residential and C&I consumption for all of Kenya using country-level data
from the IEA’s World Energy Statistics database [50] and the World Bank’s World
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Development Indicators data set [40] between 1971-2012 as shown in Fig. 3.3. Per capita
values are used instead of aggregate ones to mitigate the effects of nonstationarities from
population growth. Given aggregate levels of residential demand for the three cases
as defined in the preceding paragraph, aggregate C&I demand figures are determined
following this learned function. We assume that the historical relationship between
residential and C&I consumption in Kenya can serve as an adequate proxy for that in
the Uganda SST.

y = 2.3623x + 46.979 
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Figure 3.3: Historical relationship between residential and commercial and industrial (C&I)
consumption in Kenya. We use aggregate country-level statistics from the IEA’s World Energy
Statistics database [50] and population data from the World Bank’s World Development Indi-
cators data set [40] to understand the relationship between residential and C&I consumption in
Kenya. Each point on the scatterplot represents per capita residential and C&I consumption
for a single year between 1971-2012. We use this relationship as a proxy for how C&I demand
could reasonably develop in the Uganda SST for the three demand cases defined.

■ 3.2.2 Case study 2: Why consumer-level modeling and characterizing
demand heterogeneity is needed

Many of the published approaches to large-area electrification planning aggregate con-
sumers spatially when performing analyses at the region-level. As a result, they ignore
consumer-level characteristics. While aggregate analyses can provide value and have
numerous advantages in terms of improved input data availability, the simplifications
they make inhibit their utility for detailed system design. Further, even when consumer-
level electrification planning models are used, they are oftentimes employed to assume
that all consumers are of the same “type,” with one single demand profile and level of
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annual demand2. When these assumptions are made, it is likely because more granular
demand data is unavailable at high spatial resolutions. A review of planning models
and the methods they employ is provided in [29].

Analysis

We demonstrate the importance of characterizing demand heterogeneity by contrasting
key metrics of cost-optimal plans for the Uganda SST when modeling with homogeneous
and helterogeneous demand assumptions. We use the same low, central, and high
demand cases as those described in Section 3.2.1. The three cases previously discussed
employ multipliers for 20 consumer types as described in Table. 3.1. We now designate
these cases the “low case with heterogeneous demand,” “central case with heterogeneous
demand,” and “high case with heterogeneous demand.” These cases stand in contrast
with three new homogeneous demand cases, each of which are constrained to have the
same total system demand as one of the previous three, but only have one composite
consumer type modeled. We refer to these cases as the “low case with homogeneous
demand,” “central case with homogeneous demand,” and “high case with homogeneous
demand,” and their demand profile multipliers are provided in Table 3.2. As with the
heterogeneous cases, the homogeneous cases reflect annual aggregate demand levels of
103 GWh, 369 GWh, and 915 GWh respectively.

Consumer
type

Number of
consumers
modeled in
region

Demand
multiplier
for low case

Demand
multiplier
for central case

Demand
multiplier
for high case

Aggregated 366,946 0.94 3.35 8.31

Table 3.2: Homogeneous consumer type information. In the homogeneous case, only one
aggregated consumer type is modeled per case. Demand multipliers are based on the basic
demand profile shown in Fig. 3.2.

■ 3.2.3 Case study 3: How coordinated clean cooking and electrification
planning can yield significant co-benefits and why demand stimula-
tion pays dividends

In this section, we explore demand stimulation using electric cookstoves to investigate
techno-economic pathways towards the joint achievement of universal electricity access
and universal access to clean cooking solutions. Although the topic of clean cooking
is complex and involves cultural and behavioral challenges (e.g., it may be difficult to
prepare some traditional foods with electric cookstoves, etc.) [51, 52], techno-economic
dimensions to the problem are still important to explore. This is especially true con-
sidering that there are 2.7 billion people without access to clean cooking solutions.

2To our best knowledge, REM is the only consumer-level electrification planning model that can be
employed at regional scales [29, 39]
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Further, under current and planned policies, the number of people without access is
expected to be 2.2 billion in 2030, with significant impacts on health, environment,
and gender equality [53]. There is significant potential for electric stoves to displace
solid fuels and compete with LPG-powered options. In 2018, the IEA reported that
around 1.7 billion of those without access to clean cooking have some sort of electric-
ity connection [26]. Urban markets in some countries, including India, already have a
mature market for electric induction stoves. Additionally, electric-powered appliances
including pressure cookers, rice cookers, and insulated pots may be preferable for more
specialized cooking-related loads [26, 54].
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Figure 3.4: The demand profile for residential consumers with electric cooking. This
alternative demand profile corresponds to a residential consumer that has adopted elec-
tric cooking. Critical demand increases significantly for three hours out of the day

The studies presented in this section aim to isolate the techno-economic dimensions
of choosing between alternatives for clean cooking fuels and technologies. We employ
the Uganda SST REM base case to demonstrate the synergistic effects of clean cooking
and electrification goals. We introduce a new demand profile for residential consumers
who cook meals exclusively with electric cookstoves, and REM sensitivities are analyzed
showing the effects of demand from different penetrations of electric cookstoves on cost-
optimal electrification designs. We subsequently present analyses that characterize the
economic viability of clean cooking solutions assuming that each residential consumer
is constrained to choose between adopting electric- or LPG-powered cookstoves.

Although the benefits of cooking with electric stoves are central to the analyses pre-
sented [55], we demonstrate more general effects concerning electricity demand stimu-
lation and how notable positive feedback effects can result from it.
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Analysis

The analyses in this case study build off of the “central case with heterogeneous de-
mand,” initially described in Section 3.2.1. In this case, 20 consumer types are dis-
tributed throughout the Uganda SST as shown in Table 3.1. The key difference between
runs for this case study and the “central case with heterogeneous demand,” is the mod-
eling and implementation of one additional consumer type: residential households that
have adopted electric cookstoves. The demand profile for this consumer type is shown
in Fig. 3.4, representing the same basic demand profile shown in Fig. 3.2, but with ad-
ditional critical demand from electric cooking for five hours of the day. These modeling
assumptions reflect a conservative level of demand from electric cooking, as expounded
upon in the supplemental material corresponding to the work in this chapter [42].

Five additional REM cases are modeled for these cooking analyses. The “central
case with heterogeneous demand,” reflects electrification planning assuming there is
0% electric cookstove penetration. We model additional cases with 20%, 40%, 60%,
80%, and 100% electric cookstove penetration, assuming that electric cookstoves are
distributed randomly across the residential population of interest.

After modeling REM cases with the full range of electric cookstove penetrations, we
perform analyses to investigate the economic viability of electric cookstoves assuming
universal access to clean cooking solutions is achieved in addition to universal elec-
tricity access. The major assumption in these analyses is that clean cooking can only
be brought about using electric or LPG-powered cookstoves and that LPG prices are
$2.5/kg across the study region. Since the fixed costs of these two different cookstove
options are similar, only the energy costs are compared in these analyses. While numer-
ous clean cooking technologies have been developed including solar and biogas stoves,
we constrain the analysis to LPG and electric cooking solutions as these technologies
have the greatest potential to scale and serve the majority of consumers.

■ 3.3 Results and Discussion

■ 3.3.1 Case study 1: Why estimating demand and its evolution deserves
more attention

We design independent consumer-level electrification plans using REM for each of the
low, central, and high demand cases. In Fig. 3.5, we show geospatial maps of the differ-
ent plans reflecting qualitative changes to the prescribed designs as demand increases.
Fig. 3.6 depicts key metrics from these plans more concretely. For this case study, we will
only discuss general trends for the heterogeneous cases (the red curves in the figures).
Fig. 3.6a depicts how total system and administrative costs increase with increasing
total system demand and follows a nearly linear relationship. While this should be
expected, understanding the general shape of this relationship is critical to right-sizing
planning. Under-estimating demand leads to more non-served energy and lower relia-
bility levels, undermining potentials for economic growth. Over-estimating demand can
lead to unnecessary expenditures and underutilized infrastructure. Fig. 3.6b reinforces
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Figure 3.5: Prescribed system designs featuring grid extension, mini-grid, and stand-alone
systems. These cases use the heterogeneous consumer type assumptions reflected in Table 3.1.
Key metrics for these different runs are provided in Fig 3.6
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Figure 3.6: Cost and grid share sensitivities for various demand cases across heterogeneous and
homogeneous consumer type assumptions. The analyses we present in Section 3.2.1 only reflect
the general trends shown in the heterogeneous cases. Section 3.2.2 contrasts both heterogeneous
and homogeneous cases. (a) As demand increases, total system and administrative costs increase
nearly linearly. (b) As demand increases, the share of consumers prescribed grid extension-based
supply increases as well. Homogeneous demand assumptions bias plans towards higher costs
and high grid extension shares. (c) Finally, average costs per kWh of electricity served reflect
significant economies of scale.
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this finding, as it shows how the ratio of grid-extensions to mini-grids and stand-alone
systems can change by tens of percentage points over the modeled range of demand
cases. Large demand forecasting errors can change the supply technology pathways
planned for large shares of a population. Although planners may have the ability to
make adjustments, such forecasting errors are likely to precipitate the need for costly
reactive measures.

Fig. 3.6c reflects the economies of scale that impact per-kWh system costs. The ex-
plicit costs of service provision decrease significantly as demand grows: the average cost
in the central case is half that in the low demand case at $0.18/kWh and $0.37/kWh,
respectively. These effects weaken, however, as demand continues to increase. The
average cost of the high demand case only falls to $0.13/kWh. These trends reveal part
of how beneficial it can be to stimulate demand for electricity, especially if demand
is initially very small. Increasing demand can improve the affordability of electricity
services for the system as a whole. In section 3.2.3, we investigate the benefits of
stimulating demand further. Further, lower per-unit electricity costs can help accel-
erate development. Adequately characterizing the economies of scale associated with
increasing demand can be instrumental to endeavors around planning for infrastructure
and development.

■ 3.3.2 Case study 2: Why consumer-level modeling and characterizing
demand heterogeneity is needed

As in Section 3.3.1, the key metrics evaluated for this case study includes total system
and administrative cost, grid extension share, and average cost per kWh of demand,
as shown in Figs. 3.6a, 3.6b, and 3.6c, respectively. In this section, the comparison of
interest pertains to the blue and red trend lines, contrasting homogeneous and hetero-
geneous demand assumptions. It should be noted that while the general trends for each
series are similar, systematic shifts in these key metrics are observed. When comparing
the total and average costs, as in Fig. 3.6a and Fig. 3.6c, modeling more granular types
of demand decreases costs relative to cases under the homogeneous demand assumption.
For the central demand cases in particular, we find that modeling demand heterogeneity
results in least-cost plans that are 9% less costly than modeling assuming homogeneous
demand. When comparing the supply technology shares of these cost-optimal designs
for the central case as in Fig. 3.6b, heterogeneous demand types decrease prescribed
grid extension shares from 89% to 77%.

Our analyses demonstrate that failing to account for demand heterogeneity at the
consumer-level for large-scale and cost-optimal plans can potentially distort plans in
significant ways. The homogeneous demand assumption biases designs towards higher
grid shares and costs. This results in large part from the fact that such an assump-
tion effectively blends C&I and residential consumers into a single composite consumer
type. While this assumption keeps demand distributed in ways consistent with average
demand across the homogeneous and heterogeneous demand cases and in both urban
and rural areas, the assumption contrasts significantly with the power law-distributed
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demand types (reflecting few consumers with very high demand, many consumers with
low demand, and some in between) represented by the heterogeneous cases, as reflected
in Table 3.1.

To understand the distortive effects of modeling homogeneous demand, consider a
hypothetical example with a number of non-electrified rural villages. Each of these
villages has equal land areas, consumer densities, and distances to the existing grid. In
the heterogeneous case, most of these hypothetical villages will only have consumers
with very low latent demand: the consumers may be mostly residential with perhaps a
school and a health center. The small remainder of these villages may have very high
demand, with the vast majority coming from one or a few massive-demand consumers:
a tea factory, telecom tower, or farm employing large-scale irrigation. The many low-
demand villages are much more likely to be cost-optimally supplied with mini-grids and
stand-alone systems while the few high demand villages are much more likely to be
supplied by extensions to the main grid. Because there are many fewer high-demand
villages than low-demand villages, the overall grid-extension share will be low. Now,
consider the homogeneous demand case where we assume that all consumers in each
of these villages have the same medium-level of demand. Since we are now effectively
distributing demand from the few massively-demanding tea factories, telecom towers,
and commercial farms across all villages in our example, demand will rise significantly
for villages that were low-demanding in the heterogeneous case. Such a large increase
can change the cost-optimal mode of supply from mini-grid and standalone-systems to
grid-extensions, necessitating higher infrastructure costs. As a result, the share of grid-
extensions and total and average costs in cost-optimal planning can be understood to
rise. The phenomena described by this thought-experiment is directly observed when
analyzing results for the consumer-level designs produced by REM. While other com-
plexities may also affect the designs ultimately produced, the underlying observation is
that cost-optimal plans can demonstrate significant sensitivities to spatial characteri-
zations of demand heterogeneity.

■ 3.3.3 Case study 3: How coordinated clean cooking and electrification
planning can yield significant co-benefits and why demand stimula-
tion pays dividends

We summarize our analyses of REM cases with various levels of electric cookstove
penetration in Fig. 3.7. Fig. 3.7a depicts a boxplot reflecting the distribution of energy
costs per meal using electric cookstoves as a function of electric cookstove penetration.
As electric cookstove penetrations increase, the distributions of energy costs per meal
for electric cooking shift downward due to economies of scale and economies stemming
from increased utilization of discrete network investments. As the distribution shifts
with each subsequent increase in electric cookstove penetration, greater and greater
numbers of households are more economically served with electric-powered cookstoves
than by LPG-powered ones.

Comparing energy costs per meal from electric- and LPG-powered cookstoves en-
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Figure 3.7: Positive feedback from demand stimulation via electric cooking showing the ben-
efits of coordinated planning. (a) As electric cookstove penetrations increase, the distributions
of energy costs per meal for electric cooking shift downward due to economies of scale and
economies stemming from increased utilization of discrete network investments. The boxplots
depict the minimum, first quartile, median, third quartile, and maximum energy costs per meal
using electric cookstoves, and the dotted line reflects the energy cost per meal assuming LPG
is employed with a market price of $2.5/kg. (b) Assuming that LPG costs are a constant
$2.5/kg, the share of households for which electric cooking is economically viable over LPG-
powered cooking is calculated. As more electric cookstoves are adopted, electricity prices for
cost-optimal plans fall and electric cooking becomes viable for more households.
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ables our calculation of the share of residential households for which electric cooking is
economically viable. We calculate energy costs per meal from electric-cooking solutions
for every consumer modeled in REM given costs for electricity, the efficiency of electric
cookstoves, and the energy required to cook two-and-a-half meals each day, as described
in the supplemental material corresponding to the work in this chapter [42]. We reason
that electric cooking is economically viable if the energy costs per meal from electric
cooking are lower than those for LPG-powered cooking. Using these energy cost-based
comparisons, we compute the shares of residential households for which electric cook-
ing is economically viable over LPG-powered cooking as a function of electric cookstove
penetration and displayed by the blue line in Fig. 3.7b. An interesting comparison
can be made between the blue line and the reference line in black, the latter of which
depicts economically rational electric cookstove penetrations. The assumption of ratio-
nality reflects the fact that electric cookstove penetrations should be equal to the share
of households for which electric cooking is economically viable. If electric cookstove
penetrations are lower than this share, then some consumers that are recommended
LPG-powered cooking could cook more cost-effectively with electric solutions, and costs
could be decreased by increasing electric cookstove penetrations. The reverse is also
true: if electric cookstove penetrations are higher than the share of households for which
electric cooking is economically viable, some consumers recommended electric cooking
solutions would save by switching to LPG-powered solutions. Costs could be decreased
by decreasing electric cookstove penetrations. Because of the characteristic shape of the
blue curve in Fig. 3.7b, positive feedback effects are evident. At 0% electric cookstove
penetration, electric cooking is economically viable in 42% of residential households. A
Pareto improvement can be made by naively increasing electric cookstove penetrations
to the 42% of households for which electric cooking is less expensive than LPG-powered
options. When this is done, however, demand for electricity increases, the economies
of scale in electricity provision and economies stemming from increased utilization of
discrete network investments cause electricity prices to fall, and the share of households
for which electric cooking is economically viable actually increases. This effect reflects
a positive feedback loop of increasing electric cookstove penetrations, falling electricity
costs, and greater demand for electric cookstoves. Fig. 3.7b shows that this positive
feedback loop can continue until Pareto optimality with an equilibrium share of 82%
electric cookstove penetrations.

This analysis demonstrates how there is promise for coordinating planning endeav-
ors around universal electricity access and clean cooking goals. Without coordinated
planning, systems for universal electricity access are planned assuming that no addi-
tional demand for electric cooking persists; a planner may assume that clean cooking
might not be achieved in a reasonable time frame or that LPG stoves would predomi-
nate. Such independent or uncoordinated planning around clean cooking and universal
electricity access results in cost-optimal plans reflecting 42% electric cookstove viability
and $0.51 average electricity costs per household meal. On the other hand, coordinated
planning accounts for positive feedback effects from electric cooking-related demand
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stimulation and results in plans with 82% electric cookstove viability and $0.33 average
electricity costs per household meal.

While these results demonstrate how coordinated clean cooking and electrification
planning can yield significant co-benefits, it more generally reflects how demand stimu-
lation can have profound effects on prospects for the provision of affordable electricity.

■ 3.4 Conclusions

In this chapter, we employ large-scale, high-resolution electrification modeling to demon-
strate “why estimating demand and its evolution deserves more attention,” “why consumer-
level modeling and characterizing demand heterogeneity is needed,” and “how coordi-
nated clean cooking and electrification planning can yield significant co-benefits and
why demand stimulation pays dividends.” Changes to aggregate demand assumptions
and the characterization of how these demands are distributed geospatially can have
outsized effects on both the contents of electrification plans and projected costs for
achieving universal energy access. Improving georeferenced demand forecasts can help
planners to ‘right-size’ infrastructure designs and lower risks associated with under- or
overbuilding energy systems. Average per-kWh costs under the central demand case
with heterogeneous consumer types were 51% lower than those under the correspond-
ing low demand case. Additionally, plans considering demand heterogeneity resulted
in 9% lower costs than those employing a single, homogeneous consumer type. Our
third case study goes further to show that coordinated clean cooking and electrifica-
tion planning can yield significant co-benefits. Positive feedback loops of increasing
electric cookstove penetrations, lower electricity costs through economies of scale and
economies stemming from increased utilization of discrete network investments, and
increasing electric cooking viabilities can have significant effects on lowering per-unit
costs and expanding access to clean cooking solutions. The demand cases we model
show that coordinated planning can reduce electricity costs by 34% and increase elec-
tric cookstove viabilities from 42% to 82%. These same effects are characteristic of
demand stimulation more generally, and demonstrate the significant potential bene-
fits of electrifying other economic sectors including agriculture and transportation. As
better data becomes available, more attention should be paid to improving methods
for demand forecasting. While the geospatial electrification modeling community has
recently made significant advances in large-scale and highly granular planning [29, 39],
sensitivity analyses demonstrate that much of the potential benefit from such method-
ologies can only be realized provided better capabilities around characterizing demand,
forecasting its evolution, and determining ways to stimulate its growth.

■ 3.5 Future Work

The work presented in this chapter opens up a number of avenues for future work.
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■ 3.5.1 Coincident Factors

REM is currently treating aggregated cluster-level demand as the sum of corresponding
individual demand profiles. As such, coincident factors are not properly accounted for
when planning new systems. Coincident factors are defined as: Coincident Factor =

Coincident Peak Demand
Non-Coincident Peak Demand .

In a power system, the peak demand is the maximum power consumed over some
time frame. “Coincident peak demand” refers to the peak demand when considering all
loads, while ”non-coincident peak demand” is the sum of each individual load’s peak
demand, even if those peaks happen at different times. If the coincident factor is high, it
implies that a large portion of the total load is using electricity simultaneously, requiring
more capacity. Smaller aggregations or clusters of consumers will generally have less
diversity among demand profiles, and thus exhibit higher coincident factors than larger
aggregations. Future work is directed towards better modeling such phenomena and
determining model sensitivities to coincident factors.

■ 3.5.2 Quantifying the Value of Improved Demand Estimates as Input into
Optimization-Based Planning Models.

In this chapter, we demonstrate significant electrification modeling sensitivities to both
aggregate demand and the spatial distribution of demand. In subsequent chapters, we
present novel methods for estimating consumer-level access and demand. For future
work, we would like to quantify the value of such improved demand estimates.

Computing Costs of Over- and Under-Planning

First, methods are needed to compute the costs associated with of over- and under-
planning specific supply designs. These functions are likely specific to each electrifica-
tion planning model used, since different models have different assumptions, modeling
scopes, and their own constraints. Such functions can be parameterized by a given set
of prescribed electrification designs (e.g. for a given cluster of consumers), a description
of demand characteristics for those consumers, and a characterization of the social costs
associated with non-served energy. Under-building should yield high social costs asso-
ciated with non-served energy. On the other hand, over-building results in unnecessary
infrastructure investment and reflects direct and unnecessary capital costs.

Comparing Demand Scenarios

Provided methods for computing the costs of over- and under-planning, we propose a
method for comparing between different demand scenarios to ultimately quantify the
value of improved demand estimates.

First, we propose comparing the content of electrification plans developed using the
following:

• Real demand data, which is only sparsely available.
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• Estimated demand values from machine learning models, which can be made
widely available.

• Assumed values using rural and urban classifications or other methods.

These plans will allow us to compare the effects of planning using different estimates of
demand to an ideal scenario: performing electrification planning for regions in which we
already know their exact levels of electricity demand. While this ideal baseline provides
an informative point for comparison, it is not a usable strategy in practice because
places for which we have historical demand data are by definition already electrified.
Nevertheless, we can compare the performance of prescribed plans developed under
this ideal scenario against those developed using estimated and other assumed demand
values.

It is also likely that the relative merit of prescribed plans under the different demand
scenarios vary by region. We propose doing the aforementioned comparisons for all areas
that we can find real historical demand data. We can also compute distributions over
these cost penalties for different sub-regions of analysis and in the case of probabilistic
estimates: Monte Carlo samples of consumer demand from their estimated distributions.

We can then do additional analyses to calculate the value of improved estimation
accuracy and precision. For example, we could run our analyses using historical or
inferred values with added noise or with different bias terms. Finally, we could do
analyses to investigate features of demand are most critical for planning. For instance,
we can test the affects of greater estimation accuracy for urban v.s. rural consumer
segments or for large commercial and industrial consumer types v.s. small commercial
and residential consumers.
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Chapter 4

The AMPED Model for
Country-Level Electricity Demand

Estimation

In Ch. 1, we introduce the challenges that energy poverty poses for economic devel-
opment and climate endeavors. In Ch. 3, we describe how technoeconomic models
can be used to recommend solutions to these challenges at high levels of spatial reso-
lution across large regions, countries, and continents. Challengingly, we also elucidated
that such models demonstrate significant sensitivities to exogenous assumptions about
electricity demand.

In this chapter, we advance the state-of-the-art in providing coarse but scalable
demand estimates and forecasts to inform the wide-spread use of technoeconomic mod-
eling with a specific focus on African countries. While multi-country country-level
demand forecasts do exist in the literature, they reflect a number of shortcomings that
we address using novel methods for probabilistic data fusion.

First, existing methods provide point-forecasts for country-level demand. Point-
forecasts reflect one estimated scalar value of electricity demand for each of a number
of future years. Such point-forecasts do not provide characterizations of uncertainty and
preclude the possibility for rigorous decision-making analyses. This is especially prob-
lematic because forecasting within the power sector and other sociotechnical systems
is inherently uncertain. There are limits to how accurate electricity demand forecasts
can be in the face of intrinsically unknown drivers of the power sector, including tech-
nological advancements, public policy, a changing population, and climate variability.
The probabilistic methods we present in this thesis promise further value by eluci-
dating economically viable investments that would otherwise be forgone because their
perceived investment risks are too high. We provide more context on decision-making
under uncertainty in Sec. 2.2.

Secondly, existing methods have not been demonstrated to be rigorously backtested
against historical data. Backtesting is used to evaluate the performance of a forecasting
model using historical data. The goal of backtesting is to assess how well the forecasting
model would have performed if it had been used to make predictions in the past. We
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argue that failure to provide backtesting metrics limit the credibility of forecasts for
decision-making.

Finally, existing methods have relatively limited spatial extents, limiting their ap-
plicability to only a few regions and countries.

In this chapter, we present results of a probabilistic machine learning system that
provides electricity consumption forecasts for 43 African countries out to at least the
year 2032. Our system provides scenarios that are predictive, able to characterize
forecast uncertainty via probability distributions, and can be evaluated by means of
model checking. We also provide comparisons to popular autoregressive integrated
moving average (ARIMA) models for timeseries analysis using a consistent backtesting
framework. The model is driven by historical data pertaining to electricity consumption,
per capita gross domestic product, population, electricity production, coal production,
coal net exports, natural gas production, natural gas net exports, oil production, oil net
exports, renewables production, battle-related deaths, cooling degree-days, and heating
degree-days. Providing backtesting metrics, improving the availability of country-level
forecasts for often-neglected regions, and characterizing forecast uncertainty can help
to spur action, improve transparency, and motivate equitable investments to those most
in need.

Overall, we make a number of contributions in this work. (1) We apply a novel
neural network-embedded probabilistic model to the problem of forecasting electricity
demand out to at least the year 2032 for 43 African countries. The model uses trans-
parent inputs and is employed in a way that is fully data-driven and easy to explain.
(2) The machine learning model explicitly characterizes forecast uncertainty by way of
predicting probability distributions for electricity consumption over time. We provide a
backtesting and model checking framework for evaluating these results. (3) We produce
forecasts made in both the presence and absence of historical electricity consumption
data. Our model generally confers higher certainty to forecasts made with the benefit
of observing historical electricity consumption. These experiments demonstrate the im-
portance of collecting and promulgating historical country-level electricity consumption
data in low- and middle-income countries (LMICs). (4) We employ traditional ARIMA-
based forecasting approaches within our framework as well, and compare results using
ARIMA models to our novel probabilistic method.

■ 4.1 Related Work

In this section, we review commonly used methods for long-term electricity demand
forecasting, prominent forecasting models for continent- and country-level forecasting,
and probabilistic electricity demand forecasting.

■ 4.1.1 Long-term electricity demand forecasting methods

A review paper by Riva et al. categorizes 85 studies that pertain to long-term elec-
tricity planning in low-access regions and they classify each of their demand forecast-
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ing methods. While the methods they describe apply to both regional and local-level
analyses, they are broadly applicable for categorizing demand forecasting endeavors
at the country-level. The authors classify these methods as belonging to one of five
categories: “fixed demand,” “arbitrary trends,” “extrapolation,” “input/output,” and
“system dynamics” [45]. “Fixed demand” reflects no evolution in energy consumption
over a planning horizon. “Arbitrary trends” assume energy demand will evolve at some
constant amount or growth rate, often derived from national plans or goals. “Extrapo-
lation” refers to the extrapolation and aggregation of historical demand patterns [45].
“Input/output” refers to a specific type of top-down macroeconomic modeling that char-
acterizes the interdependencies of different sectors of regional or national economies [56].
Finally, “system dynamics” refers to a framework for analyzing nonlinear attributes of
complex systems over time, often using systems of differential equations describing
stocks and flows [57].

The “fixed demand” and “arbitrary trend” methods used are only weakly supported
by demand and consumption growth data. Fixed demand studies ignore any forms
of evolution in consumption among a chosen planning horizon; while they are easy to
specify in the absence of better information, they ignore dynamic attributes of electricity
demand that can drastically affect project feasibilities and cost-optimality. Examples of
studies that rely on “fixed demand” include [58] and [59]. Contrary to the assumption
of fixed demand, empirical studies demonstrate characteristic load growth curves in
different parts of the world. For instance, Fobi et al. demonstrate clear consumption
growth and saturation behavior for both rural and urban consumer types in Kenya [49].
The “arbitrary trend” method suffers from similar challenges. It assumes that energy
demand will grow by a constant amount or rate, which is generally defined through
aspirational goals, ambiguously stated for various scenarios, or adopted from regional
growth trends. Examples of these studies include [60] and [61]. Despite allowing for
more dynamism, the “arbitrary trend” method is lacking in that it comprises point-
forecasts and does not intrinsically encourage justification via historical backtesting or
the incorporation of context-specific details.

The “extrapolation” and “input-output” methods defined by Riva et al. pertain
to very few studies. The extrapolation method is described by Malik et al. who use
demographic and agricultural features for rural villages in the Wardha District in In-
dia to estimate village-level energy consumption [62, 63]. The authors use data for the
year 1981 to provide consumption estimates for the year 2000. While the approach
is based on granular data and seems to reflect well founded estimates, it is hypothe-
sized that it has not been extended to new regions because of its reliance on detailed
local surveys [45]. While input-output models have been commonly used in macroe-
conomic analyses, to our knowledge, Subhash et al. present the only study to apply
this method to energy demand forecasting in low-income contexts. The authors design
an input-output model that represents relationships between the agricultural, animal
husbandry, industrial, forestry, and commerce sectors [64]. While input-output models
encompass more complexity than other model types through the explicit representa-
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tion of the interdependencies between industries, they still reflect a lack of flexibility
for characterizing real-world data. A research note produced for the Australian Gov-
ernment’s Productivity Commission warns of the limitations of input-output models
concerning the number of potentially unrealistic assumptions they necessarily make.
Among others, the model class assumes fixed industry input structures, fixed industry
product proportions, and constant returns to scale of production. The author describes
how these limitations may contribute to “abuses” of this model type in practice [65].
Riva et al. finally describe how it is likely difficult to apply input-output models to
electricity demand forecasting in low-income countries due to the prominence of the
shadow economic activity in these regions [45].

“System dynamics” is the final method class used for energy demand forecasting
in the Riva et al. literature review. System dynamics models rely on characterizing
causal and feedback relationships between elements in a complex system to capture
the nonlinear behavior of these systems. To accomplish this, they quantify flows be-
tween concepts of various economic stocks. Jordan [66] combines system dynamics and
optimization approaches to show how the characterization of endogenous demand can
have significant impacts on optimal capacity expansion planning efforts. The author
describes how this can be particularly important when large fractions of populations are
without electricity access or when there is potential for large improvements in service
reliability. Zhang and Cao [67] additionally use a system dynamics model to model
complex interactions between energy consumption and economic development in rural
China. While some espouse the use of these types of models for their ability to repre-
sent the complex interactions characteristic of rural energy systems, limitations of the
model class are well-documented. Featherston et al. acknowledge one of the criticisms
of system dynamics in that they are often unable to mimic historical data when applied
in practice. The authors explain how the goal of system dynamics is not necessarily
to mirror or predict real world outcomes, but rather to enable improved understand-
ings of a complex system [68]. For this reason, while system dynamics studies may be
informative, they are often inappropriate for contexts involving concrete investments
decisions.

■ 4.1.2 The IEA’s WEM and EIA’s WEPS systems for continent- and country-
level forecasting

The most prominent electricity demand forecasts are provided at the continent-level,
and for some countries, by the IEA’s World Energy Outlook (WEO) [69] and the U.S.
Energy Information Administration’s (EIA) International Energy Outlook (IEO) [70]
series.1 They each rely on relatively complex and unique energy modeling systems.
The IEA’s scenarios result from the World Energy Model (WEM) [72], while the EIA’s
forecasts are driven by the World Energy Projection System (WEPS) model [73]. The

1While neither the IEA or EIA claim that their scenarios are meant to be directly interpreted as
“forecasts,” the “outlooks,” “futures,” or “scenarios” they share are commonly interpreted and used as
such [71].
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Figure 4.1: Historical and forecasted electricity consumption are shown from the
IEA’s WEO series (top) and the EIA’s IEO series (bottom). Notably, all “scenarios”
are provided as point-forecasts at the continent-level. Backtesting on decadal timescales
cannot be performed at greater levels of spatial granularity.



62 CHAPTER 4. THE AMPED MODEL FOR COUNTRY-LEVEL ELECTRICITY DEMAND ESTIMATION

IEA’s WEM is a simulation model that links supply and demand across different sec-
tors of the economy to outline scenarios of future energy flows, CO2 emissions, and
investments. In determining electricity demand, it uses econometric methods to re-
late historical data and exogenous assumptions on socioeconomic drivers to determine
demand-side drivers (e.g. steel production in industry, household size, etc.). It then uses
a least-cost approach to determine fuel and technology type allocations and accounts
for efficiency scores to determine final levels of demand [72]. The EIA’s WEPS system
is comprised of a set of models that simulate the international energy system, including
models for global output, residential demand, commercial demand, industrial demand,
and transportation demand. These models use dynamic econometric equations, ordi-
nary least squares and least absolute difference regression, model selection algorithms,
and bottom-up approaches to determine demand from different segments [73]. Despite
the multifaceted and complicated nature of these systems, when considering Africa,
neither the IEA nor EIA provide adequate historical scenarios with country-level reso-
lution for backtesting, and instead only provide such scenarios for the whole continent.2

Both the IEA’s and EIA’s forecasts are exclusively point-forecasts and no backtesting
metrics are provided.

■ 4.1.3 Probabilistic electricity demand forecasts

Probabilistic electricity demand forecasts are seldom employed in low-access contexts.
A 2020 review paper focusing on electricity demand forecasting in low and middle
income countries by Mir et al. exemplifies this point: while the review details the
importance of accurate forecasts, surveys all of the major model classes used to forecast
electricity demand, and cites over 130 articles, the authors provide no description of
the difference between a probabilistic forecast and a point forecast, nor of the former’s
relative merits [76]. In contrast, a 2016 review paper focused exclusively on probabilistic
electricity demand forecasting by Hong and Fan reviews common methods, describes
notable studies, and characterizes the frontier of research in this subfield (i.e. the need
to apply probabilistic forecasting models to account for climate variability, electric
vehicles, demand response, energy efficiency, and wind and solar power generation) but
fails to mention the specific applicability and need for probabilistic demand forecasting
in low-access contexts [77].

2Recent editions of the WEO and associated documents by the IEA have started to share country-
level scenarios, but only for select countries. These scenarios are forecasts and are also too recent to
enable backtesting. Specifically, the IEA presents multi-country country-level forecasts in its 2014 and
2019 Africa Energy Outlook reports [74, 75]. In its 2014 report, electricity demand is forecasted out
to 2040 but only for Nigeria and South Africa. In its 2019 report, electricity demand is forecasted out
to 2040 for Angola, Côte d’Ivoire, the Democratic Republic of the Congo, Ethiophia, Ghana, Kenya,
Mozambique, Nigeria, Senegal, South Africa, and Tanzania.
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■ 4.2 Data

Historical data pertaining to electricity consumption, per capita gross domestic prod-
uct, population, electricity production, coal production, coal net exports, natural gas
production, natural gas net exports, oil production, oil net exports, renewables pro-
duction, battle-related deaths, cooling degree-days, and heating degree-days are used
as features to predict future electricity consumption in our model. In this section, we
begin by outlining the raw data used, and then we describe the preprocessing steps
followed.

Figure 4.2: Data availability across countries of the world. A significant challenge with
this line of research pertains to missing data for different features by country. Importantly,
historical electricity consumption time series are only available in some countries.

Raw Data

Historical electricity consumption, electricity production, coal production, coal net ex-
ports, natural gas production, natural gas net exports, oil production, oil net exports,
renewables production is obtained from the Organization for Economic Co-operation
and Development’s (OECD) World Energy Statistics 2019 database [78, 79]. Though
incomplete spatially and temporally, the dataset provides country-level historical data
for energy supply and consumption for 136 countries ranging from 1960 through 2017.
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Of these 136, 25 countries are situated on the African continent. Historical data cor-
responding to country-level cooling degree-days, and heating degree-days was obtained
for these same time periods obtained from the IEA’s Weather for Energy Tracker [80].

Historical data for per capita GDP in constant 2010 US dollars [81], population [82],
and battle-related deaths [83] data is obtained from The World Bank’s public data
portals. The start year for these time series is 1960 for most countries. Per capita GDP
data for Somalia is obtained from the United Nations (UN) [84] because it is missing
in the World Bank database [81].

The decision to employ historical electricity consumption, GDP, population, cooling
degree-days, and heating degree-days to determine future country-levels electricity con-
sumption is well-supported by the literature. Mir et al. review 69 electricity forecasting
studies and tabulate the frequencies in which these studies employ different electricity
demand determinants. In these studies, historical consumption-related features were
used 37 times (54%), GDP-related features 26 times (38%), population-related features
20 times (29%), and weather-related features 21 times (30%) [76]. While energy sup-
plies and trade-related features (i.e., electricity production, coal production, coal net
exports, natural gas production, natural gas net exports, oil production, oil net exports,
and renewables production) and battle-related deaths are not explicitly mentioned by
Mir et al., we argue that they all describe processes with close relationships to electric-
ity consumption. For instance, the abundance (or lack thereof) of energy supplies may
imply low (or high) energy prices, which can impact electricity demand and reliability.
Battle-related deaths are used as a proxy for the presence and extent of war-related
conflict, which also has direct implications on the health of economies and energy use.

Preprocessing

We start by computing per-capita electricity consumption as the quotient of total elec-
tricity consumption and population for each country. We use per-capita consumption
in our experiments, though future work could include forecasts of total electricity con-
sumption values with minimal modification.

We then perform an outer join with time series for the remaining features and
standard score (z-score) normalize all features. If any country or year is missing a value
for any of these features, we replace the missing value with a zero. While this is not a
perfect method for dealing with missing values, such a practice is commonly justified
by reasoning that a zero value on a z-scored feature means that the feature confers no
additional information past what it might confer on average across all countries. With
enough data samples, our machine learning model might further associate zero values
with unobserved information.

The primary keys for this dataset are country and year. We partition the full dataset
into two groups: data samples corresponding to countries with a non-zero historical
electricity consumption feature and those without a non-zero historical electricity con-
sumption feature. We specifically treat data samples corresponding to the 136 countries
with historical electricity consumption data as ground truth data used for training, val-
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idation, and testing. 25 of these countries are situated on the African continent. An
additional 18 countries on the African continent have other features, but no historical
consumption information available. Fig. 4.2 shows a geographic view of the gaps in
electricity consumption data at the country-level.

We specify an experimental design where 15 years of historical data across the
corresponding features is observed as input, xi,j , and used to probabilistically predict
15 years of unobserved consumption as output, yi,k, where i indexes countries and j
and k indexes years in our sliding window. In our construction, j ∈ [0, ..., 14]. j = 0
corresponds to historical data 15 years prior to the year from which the forecast is made,
and j = 14 corresponds to one year preceding the year from which the forecast is made.
We also specify k ∈ [0, ..., 14]. k = 0 corresponds to the year from which the forecast is
made: the first year of our forecast. k = 14 corresponds to the 15th forecasted year.

If a given country has fewer than a total of 30 years of contiguous features in the
data sets, it gets dropped. If it has greater than 30 years, the earliest possible 30-year
contiguous sample is defined and a sliding window approach is used to extract time
series data samples that are offset from the previous sample by exactly one year [85].
For each country, we create as many distinct data samples from sliding windows as
possible. For example, historical electricity consumption data for Angola between 1971
through 1985 is used to forecast between 1986 and 2000. The next window, from 1972
through 1986 is used to forecast electricity consumption between 1987 and 2001.

A number of African countries do not make it into either the data set with consump-
tion data or the data set without consumption data due to data availability constraints.
As such, we work with and provide forecasts for a total of only 43 African countries:
25 of these have consumption data, and 19 do not have consumption data. Expanding
the spatial scope of this dataset is planned for future work.

■ 4.3 Methods

In this section, we describe the three methods we evaluate to produce probabilistic
electricity demand forecasts: a novel method for predicting country-level demand em-
ploying historical consumption data: (1) Aggregate-level Model for Projecting Electric
Demand employing Historical data (AMPED-Hist); (2) a novel model for predicting
country-level demand without historical consumption data: Joint Electricity Demand
Inference employing No Historical data (AMPED-NoHist) and the traditional ARIMA
model which exclusively employs historical consumption data: ARIMA-hist. We also
describe key parts of the machine learning framework we employ.

■ 4.3.1 A novel probabilistic method for predicting country-level demand
employing historical consumption data: “AMPED-Hist”

Our model consists of a multi-output neural network embedded into a simple proba-
bilistic model. We begin by describing the neural network architecture used, and then
continue by describing the probabilistic function its outputs parameterize.
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Neural network embedding

The neural network is a specialized form of multilayer perceptron (MLP) incorporating
fully-connected (dense) layers, dropout layers, and a skip-layer path that bypasses all
steps. The input to the model, a sequence of feature vectors is reshaped to a one-
dimensional vector before being processed by three Dense layers with 20, 10, and 5
neurons respectively. Each dense layer employs a Rectified Linear Unit (ReLU) activa-
tion function, Gaussian weight initialization, and a maximum weight norm constraint
to prevent gradient-related issues. Dropout layers are interspersed between dense layers
to mitigate overfitting.

In parallel to this main path, a skip-layer track operates to connect the historical
consumption value associated with the final observed time step directly to the output
layer: z0. In the output layer, the output from the last dense layer and the data from
the skip-layer path are concatenated to yield the final output: [z0 z1(xi;ϕ) z2(xi;ϕ)
z3(xi;ϕ) z4(xi;ϕ) z5(xi;ϕ)]

⊺. Both the learning rate and the dropout parameter value
are ascertained through hyperparameter tuning.

Probabilistic model

The model is both trained and evaluated through a simple probabilistic model, where
xi = [xi,0 ... xi,14]

⊺ and yi = [yi,0 ... yi,14]
⊺ respectively symbolize observed 15 years of

backwards-looking historical features and unobserved 15 years of forward-looking per
capita electricity consumption for country i, as described in Sec. 4.2.

The likelihood model for yi|xi;ϕ where ϕ are neural network parameters is provided
below:

yi |xi, ϕ ∼ N (z0 + z0z1(xi;ϕ)t+ z0z2(xi;ϕ)t
2,

diag(softplus(z3(xi;ϕ)) + softplus(z4(xi;ϕ))t+ softplus(z5(xi;ϕ))t
2))
(4.1)

where

t =



1
...
15


 (4.2)

and
softplus(x) = log(1 + ex) (4.3)

Our likelihood follows a multivariate Gaussian distribution and is parameterized by
a mean vector and a covariance matrix with diagonal parameters.

The parameter vector given by z0 + z0z1(xi;ϕ)t + z0z2(xi;ϕ)t
2 defines the mean

forecasted values for all future years of interest. t takes values from 1 to 15, represent-
ing forward-looking time steps from the last observed historical consumption value z0.
Fittingly, at t = 0, the consumption from our equation is z0. The term z0z1(xi;ϕ)t
defines a linear growth term, and the term z0z2(xi;ϕ)t

2 defines a quadratic one. No-
tably, the neural network learns transformations of our historical features xi into two
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terms, z1(xi;ϕ) and z2(xi;ϕ) that characterize the forecasted growth characteristics of
our demand values.

The covariance matrix with diagonal parameters given by diag(softplus(z3(xi;ϕ))+
softplus(z4(xi;ϕ))t+softplus(z5(xi;ϕ))t

2) reflects constant, linear growth, and quadratic
growth terms for the variance of our distribution. The softplus functions ensure that
each of these terms is positive.

We train the parameters of our neural network model ϕ by maximizing the log likeli-
hood of observed historical electricity consumption data within our model’s backtesting
framework, analogous to the maximum likelihood neural network fitting procedures de-
scribed by Dean et. al. via the lightweight data fusion framework as in Eq. 2.57 and
[12].

■ 4.3.2 A probabilistic method for predicting country-level demand without
observing historical consumption data: “AMPED-NoHist”

We present a very similar model to AMPED-Hist, and refer to it as AMPED-
NoHist; the key difference between these two models is that AMPED-Hist neces-
sitates historical consumption information and provides the option for incorporating
other features. AMPED-NoHist specifically does not employ historical consumption
information.

Similarly to the model “AMPED-Hist,” we employ a multi-output neural network
embedded into a simple probabilistic model.

Neural network embedding

We employ a simple MLP architecture that combines dense and dropout layers. The
model takes an input sequence of feature vectors, which is subsequently reshaped into
a one-dimensional vector. This reshaped input is processed through a sequence of two
dense layers containing 20 and 10 neurons respectively. Each dense layer employs a
ReLU activation function, Gaussian weight initialization, and a maximum weight norm
constraint, assisting in the prevention of exploding gradients.

Dropout layers are interspersed between dense layers. The final dense layer com-
prises 6 output neurons and employs a linear activation function. Similar to previous
layers, this layer adheres to the same weight initialization method and norm constraint.

Key hyperparameters include dropout and learning rates and are determined via
hyperparameter tuning.

Probabilistic model

The likelihood model employed is nearly identical to that for “AMPED-Hist,” but with
a different construction for the mean parameter vector:

yi |xi, ϕ ∼ N (z0(xi;ϕ) + z1(xi;ϕ)t+ z2(xi;ϕ)t
2,

diag(softplus(z3(xi;ϕ)) + softplus(z4(xi;ϕ))t+ softplus(z5(xi;ϕ))t
2))
(4.4)
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Notably, the mean parameter vector is no longer formulated as a quadratic function
based off of the latest observed consumption data point. In the use of this model, no
consumption data is observed. Instead, the model is free to specify its own constant,
linear, and quadratic terms based off of historical features xi.

While historical consumption data is known to be informative for predicting future
consumption (demand), the key benefit of the AMPED-NoHist model is that it does
not necessitate the presence of historical consumption data in our historical featuers xi.
Historical consumption data is only used to train AMPED-NoHist by maximizing the
likelihood of yi in our the objective function defined by our distribution. When running
“AMPED-NoHist,” distributions for p(yi|xi;ϕ) are obtained without the presence of
historical consumption data.

■ 4.3.3 A review of ARIMA models: “ARIMA-hist”

Finally, we employ ARIMA models as implemented in the popular Python statsmod-
els library [86]. Autoregressive Integrated Moving Average (ARIMA) models incorpo-
rate three components: autoregressive (AR), integrated (I), and moving average (MA).
These components are denoted by three parameters p, d, and q, in ARIMA(p, d, q) re-
spectively. The AR(p) component is described as a linear combination of the last p
observations:

AR(p) : xt = c+ ϕ1xt−1 + ϕ2xt−2 + . . .+ ϕpxt−p + ϵt (4.5)

where xt is the time series, c is a constant, and ϵt is white noise.
The I(d) component represents the differencing required to make the time series

stationary. A differenced series is given by:

I(d) : yt = xt − xt−d (4.6)

where d is the order of differencing, and yt is the differenced series. After differencing,
the autoregressive and moving average components of the model can be applied as
presented.

The MA(q) component is a linear combination of past error terms:

MA(q) : xt = µ+ ϵt + θ1ϵt−1 + θ2ϵt−2 + . . .+ θqϵt−q (4.7)

where µ is the expectation of xt, and the θ’s are the parameters of the model.
Notably, with ARIMA models, only data about historical electricity consumption is

used to forecast future consumption. ARIMA models can only be used with historical
data is present, hence we refer to this model type as “ARIMA-hist.”

Cross-validation

For AMPED-Hist and “AMPED-NoHist,” we employ a nested cross-validation frame-
work. We divide our data into three sets: training, validation, and testing sets. Our
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training test is always comprised of data from the 111 non-African world countries
for which we have historical electricity consumption data, in addition to 23 of the 25
African countries for which we have historical consumption data. Data corresponding
to each of the the remaining two African countries form the validation and test sets,
respectively.

We employ nested cross-validation, allowing us to train on our training set, fit
hyperparameters on our validation set, and evaluate generalization error in our test
across each African country we have samples for.

We only employ regular cross-validation for the “ARIMA-hist” model, as the train-
ing does not necessitate using a distinct training set. For “ARIMA-hist,” only validation
is needed for optimizing hyperparameters p, d, q.

■ 4.4 Results

In this section, we describe qualitative representations of our model results, present
performance comparisons, and show model checking results.

■ 4.4.1 Qualitative representations
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Figure 4.3: Backtests for test folds under model setup [Hist]. Different models were
trained for each backtest, on all world countries with data available except for the country
visualized.

Fig. 4.3 depicts an example backtest of the probabilistic forecasts that are made by
“Our [hist]” model for Senegal, when Senegal comprises the test fold with an optimal
dropout hyperparameter chosen via nested cross validation. For these backtests, input
features are only observed up until a threshold year, 2002. The model then makes
probabilistic forecasts for each year up until 2017, 15 years past the threshold date. In
the plot, past observed per-capita electricity consumption is shown with the black series.
Credible regions describing probabilistic forecasts are shown in blue. The 80% credible
region reflects the smallest interval where the model predicts future consumption will
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be with 80% certainty. Analogous 60%, 40%, and 20% credible regions are plotted with
sequentially darker shades of blue. Because the model never observes consumption data
for Botswana when training, we can use unobserved historical consumption data, shown
via the red series, to validate the performance of the probabilistic forecasts.

Qualitatively, it is evident that model-determined uncertainty grows for forecast
years that are further into the future. Additional backtest plots for experiment setup
AMPED-Hist for all 25 African countries with historical consumption data available
in Fig. 4.10 and Fig. 4.11. Forward-looking forecasts past the year 2032 are also shown
in Fig. 4.12 and Fig. 4.13 for these same countries. Finally, forecasts are shown for
the 18 countries where we have other features but do not have historical consumption
in Fig. 4.14 and Fig. 4.15 corresponding to setup AMPED-NoHist.

■ 4.4.2 Comparing loss metrics
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Figure 4.4: Performance metrics as box plots across our three models. (a) Negative
Log likelihood (NLL) metrics for out test folds under nested cross validation are visualized; lower
NLL scores imply greater likelihood under our model. (b) Root-mean-square error (RMSE) as
a fraction of consumption metrics are also presented as means across countries; lower values
imply better fits between predicted means and held-out historical consumption values.

In this section, we share various performance results comparing our three models:
AMPED-Hist, AMPED-NoHist, and ARIMA-hist.

Fig. 4.4a and Fig. 4.4b depict box and whisker plots showing the median, interquar-
tile ranges, and 95th and 5th percentage values for negative log likelihood (NLL) and
root-mean-square error (RMSE) as a fraction of consumption, respectively. Elements
that comprise the box and whisker plots are means across countries, so that each of
our 25 test countries has equal weight on the graphs. Lower NLL scores imply greater
likelihood under our model, and lower values for RMSE as a fraction of consumption
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imply better fits between predicted means and held-out historical consumption values.
The median NLL values for AMPED-Hist, AMPED-NoHist, and ARIMA-hist
are 5.84, 7.88, and 6.35, respectively. The same for RMSE as a fraction of consumption
are 0.30, 2.47, and 0.34 respectively.
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Figure 4.5: Mean NLL vs mean annual per capita consumption. Individual points
represent means computed at the individual country-level. Outliers are labeled, and log-log
regression lines are also plotted to allow qualitative comparison.

In Fig. 4.5, we elucidate the individual country-level components of Fig. 4.4a by
presenting a scatterplot of mean NLL vs mean annual per capita consumption. Notably,
this presentation allows us to view potential outliers. As we are showing results on log-
axes, log-log regression lines are also plotted to allow qualitative comparison. Fig. 4.6
depicts an analogous graph comparing RMSE as a fraction of consumption and mean
annual per capita consumption.

Finally, Fig. 4.7 depicts a new metric: predicted standard deviation as a fraction
of mean predicted consumption. Similar to the previous graphs, we plot this metric
as a function of mean annual per capita consumption. Predicted standard deviation
as a fraction of mean predicted consumption provides a measure of relative predicted
uncertainty.

■ 4.4.3 Model Checking

Another useful attribute of probabilistic demand forecasts is their ability to facilitate
empirical model checking analyses. Model checks show how well forecasts made on
held-out (unseen) data performed historically, and give an indication for how well one
may expect the model to perform on other out-of-sample data.

Fig. 4.8a and Fig. 4.8b represents model checking histograms our AMPED-Hist
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Figure 4.6: RMSE as a fraction of consumption vs mean annual per capita consump-
tion. Individual points represent means computed at the individual country-level. Log-log
regression lines are also plotted to allow qualitative comparison.
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Figure 4.7: Predicted standard deviation as a fraction of mean predicted consump-
tion vs mean annual per capita consumption. Individual points represent means com-
puted at the individual country-level. Log-log regression lines are also plotted to allow qualita-
tive comparison.
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and AMPED-NoHist models, respectively. Each histogram has 50 bins that shows
the frequency that empirical electricity consumption fell into 2% cumulative distribu-
tion function (CDF) intervals within predicted probability distributions. These CDF
intervals can be interpreted as intervals that should have equal probability of occur-
rence. Because the probabilistic forecast follows the Normal distribution, the intervals
will generally correspond to different total ranges of consumption. One way to think
about these intervals is to consider each as representing one side of a 50-sided dice.
Ideally, the dice should be fair: all sides are ideally equally probable, and with enough
rolls, they should have more-or-less equal frequencies of occurrence. This is analogous
to our histogram: a perfectly fit model would show a more-or-less uniform histogram.
Analogously, the dice is not perfectly fair. Histograms closer to uniform distributions
show evidence of better model calibration than those that are further away.

■ 4.5 Discussion

In general, our results demonstrate that probabilistic machine learning frameworks
can be applied to the problem of country-level electricity demand forecasting with
reasonable results. While the NLL and RMSE loss metric values presented in Sec.
4.4.2 may not seem highly impressive by the standards of other applications, forecasting
country-level electricity demand 15 years into the future relative to observed data points
is a difficult task. Political circumstances, economic dynamics, technology, and levels of
conflict can change in ways that are not able to be predicted using historical data alone.
We believe that the methods presented in this chapter estimate forecast uncertainty in
a sensible manner: we train models to learn how uncertain its forecasts are likely to be
using our backtesting framework across the majority of the world’s countries.

■ 4.5.1 “AMPED-Hist” performs the best, but it can also be overconfident

The NLL and RMSE fraction box and whisker plots from Fig. 4.4a and Fig. 4.4b, demon-
strate that for most countries, AMPED-Hist demonstrates higher data likelihood and
lower mean error than ARIMA-hist. This implies that the additional information pro-
vided by non-consumption features and the additional complexity of the neural network
embeddings provide measurable value to the application of forecasting future electricity
demand at the country-level. Nevertheless, there still is substantial overlap between
the distributions over error metrics, implying that relative to other features, the ma-
jority of the explanatory power for forecasting future electricity demand comes from
observations of historical electricity demand.

AMPED-Hist has some unique performance characteristics. Fig. 4.7 depicts how
the AMPED-Hist model learns to decrease its relative uncertainty (increasing confi-
dence) substantially as annual consumption increases. In comparison theARIMA-hist
and AMPED-NoHist models do not exhibit this trend. While increasing forecast cer-
tainty confers higher-likelihood backtests relative to baselines in many cases, Fig. 4.5
suggests how this increased confidence actually penalizes NLL performance significantly
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Figure 4.8: Model checking plots. (top) This histogram represents model setup AMPED-
Hist. We observe that the model is reasonably well-fit. (bottom) The histogram for setup
AMPED-NoHist shows that these models are less well-fit.
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for backtests from at least one country: Mozambique. In the next section, we discuss
reasons behind inaccuracies in forecasts for Mozambique.

Finally, our results show that the “AMPED-Hist” model depicts imperfect, but
reasonably well-fit model checking results, as shown in Fig. 4.8a.

■ 4.5.2 Mozambique: a mini-case study exposing probabilistic forecasting
methods
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Figure 4.9: An example backtest for Mozambique. A low likelihood forecast is made,
likely due to the model being able to predict large discrete industrial growth events.

An example backtest for Mozambique as a test country from AMPED-Hist in our
nested cross validation framework is presented in Fig. 4.9, depicting a low-likelihood
prediction on held out historical data. Our model’s forecast was made only having
observed historical features (including consumption data) up until the year 2002. Before
1999, the model observes low per capita demand growth, and between 1999-2002, the
model observes high growth, as depicted by the black line. The model’s moderate-
certainty low growth forecast between the years 2003-2017 differs sharply from held-out
consumption pattern depicted in red, where very high growth continues until 2004
before reverting back to moderate growth. Our model is evidently unable to predict
the second half of Mozambique’s ‘S-shaped’ growth curve.

While this example suggests a failure of the AMPED-Hist model, its inaccura-
cies may be at least partially explained by large discrete industrial growth events that
are inherently hard to predict. During the late 1990s and early 2000s, Mozambique
experienced significant macroeconomic improvements due to a combination of struc-
tural reforms, substantial foreign aid, and large capital projects. Notably, the Mozal
aluminium smelter, which began production in 2000, had a transformative impact on
Mozambique’s economy. It is one of the largest industrial projects ever undertaken
in Africa and a major power consumer as aluminium production is a highly energy-
intensive process. As of 2013, Mozal was responsible for 30% of the country’s official
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exports, and uses 45% of the electricity produced in Mozambique [87].
While the construction of large infrastructure projects like Mozal are public knowl-

edge, their existence cannot be directly observed in our country-level historical features.
For low-consumption countries like Mozambique, such projects can have outsized effects
on forecasts.

■ 4.5.3 While “AMPED-NoHist” underperforms, it provides answers when
no other model can.

When historical electricity consumption is not available, AMPED-Hist andARIMA-
hist are not applicable. AMPED-Hist necessitates an observed historical consump-
tion value one year prior to forecasting against which to define relative growth. ARIMA-
hist is fully driven by observed historical consumption values. Because the AMPED-
NoHist model uses all of our historical features except consumption data, it has more
value for use in countries for which historical consumption data is not available.

Notably, error metrics for AMPED-NoHist far exceed those for AMPED-Hist
and ARIMA-hist. Additionally, our model checks suggest that the probabilistic fore-
casts provided by AMPED-NoHist are not well-calibrated. Future work should go
into identifying more informative features and improving the results given by “AMPED-
NoHist.”

■ 4.6 Conclusion

This chapter marks a step in addressing the gaps in the current state of electricity
demand forecasting in African countries. The implementation of our novel probabilistic
data fusion methods provides a more comprehensive and accurate understanding of the
demand forecasts. We provide solutions beyond the use of point-forecasts by offering
probability distributions that implicitly account for various uncertainty levels and we
also expand the geographical scope of such forecasting methods.

Our approach additionally addresses the need for rigorous backtesting in evaluating
the credibility of forecasting models. By setting up a consistent framework for model
checking and backtesting, we were able to validate the performance of our models,
increasing their reliability and credibility for informing investment decisions.

This chapter also highlights the important role that historical electricity consump-
tion data plays in achieving more accurate and reliable forecasts. The results of our
experiments underscore the critical need for concerted efforts to collect and disseminate
such data in low- and middle-income countries (LMICs). This would help improve the
precision and certainty of forecasts in such regions, and subsequently, spur much-needed
action and investment.

Our comparison of results obtained from the traditional ARIMA-based approaches
and our novel probabilistic model provides valuable insights into the strengths and
potential limitations of different forecasting methods.

In conclusion, the methods, findings, and insights presented in this chapter enrich
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our understanding of electricity demand forecasting in African countries. Our contribu-
tions address shortcomings of existing forecasting models and suggest potential paths
for future research and development in this field.

■ 4.7 Future Work

For future work, we advise:

• Updating time series data to the latest available.

• Investigating the relative performance of estimating per capita v.s. total country
demand.

• Extending the model to estimate important economic features like GDP. Compare
the relationship of forecasts for electricity demand with GDP.

• Extend our probabilistic model to more explicitly handle missing feature data.
Currently, our construction fills missing data with zero-values after z-scoring, which
biases our models. Analyze the error that our current assumption introduces.

• Expand the feature set to include additional time series features including stan-
dardized annual nighttime lights composites dating back decades.

• Perform feature sensitivity analyses using automatic differentiation.

• Run hyperparameter optimization over other popular neural network architectures.

• Aggregate historical held out forecasts across the African continent and compare
against historical Africa-wide forecasts from the IEA and EIA.

Supplemental Information

In the proceeding pages, figures and tables are shared that support the main text. Figs.
4.10 and 4.11 show backtesting results for the 25 countries from the AMPED-Hist
model that benefit from historical electricity consumption data. Figs. 4.12, 4.13 show
forecasts made out to the year 2032 for these same 25 countries. Figs. 4.14, and 4.15
show forecasts made out to the year 2032 for the 18 countries from the AMPED-
NoHist experimental setup that do not benefit from historical electricity consumption
data.
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Figure 4.10: Backtests for test folds under model setup [Hist]. Different models were
trained for each backtest, on all world countries with data available except for the country
visualized. Some forecasts, specifically that for Mozambique, appear to provide forecasts with
poor accuracy and low model-determined variance, implying that the model is over-confident
in its forecast.
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Figure 4.11: Backtests for test folds under model setup [Hist]. Different models were
trained for each backtest, on all world countries with data available except for the country
visualized.
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Figure 4.12: Forecasts out to the year 2032 made by models corresponding to valida-
tion folds under model setup [Hist], continued. These models benefit from observations
of historical consumption in addition to other historical features.
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Figure 4.13: Forecasts out to the year 2032 made by models corresponding to valida-
tion folds under model setup [Hist], continued. These models benefit from observations
of historical consumption in addition to other historical features.
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Figure 4.14: Forecasts out to the year 2032 made by models corresponding to vali-
dation folds under model setup [NoHist]. These models do not benefit from observations
of historical consumption data. They predict using the remaining historical features.
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Figure 4.15: Forecasts out to the year 2032 made by models corresponding to vali-
dation folds under model setup [NoHist]. These models do not benefit from observations
of historical consumption data. They predict using the remaining historical features.
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Chapter 5

The BEACON Model for
Building-level Electricity Access

Estimation

Individual buildings can be classified as “electrified” or “non-electrified” (equivalently,
“unelectrified”) and electricity access rates reflect what share of consumers within a ge-
ographic region have electricity connections. Information regarding current access rates
underpin energy infrastructure planning in low-access regions. This information allows
decision-makers to understand what potential consumers can benefit from infrastruc-
ture investment and how to avoid earmarking funds for redundant systems. Electricity
access information also enables the informed assessment of technology choices: plan-
ners can use this information to determine the attractiveness of off-grid technologies
relative to grid extension. Extending the main grid is more cost-efficient near the ex-
isting grid. Mini-grid and stand-alone system technologies are generally more viable in
areas far from the main grid. Finally, electricity access information also serves as a key
component to understanding electricity demand as aggregated consumptions statistics
only reflect demand from buildings with electricity access. Without access information,
there is significant ambiguity when attempting to attribute aggregated consumption
values to individual buildings.

A major issue is that information about electricity access is only widely available
at low spatial resolutions (i.e. at the country-, district-, or grid cell-levels). Accurate
information about the electricity access rates at high spatial resolution (e.g., for indi-
vidual buildings, etc.) is less commonly available. While data collection is an ongoing
process, distribution companies in low-access and low-reliability regions often do not
have digitized representations of their low-voltage networks or customers’ access status.
As we discuss in this chapter, some studies use remote sensing-based approaches to
estimate electricity access rates at sub national and grid cell-resolutions. Despite this
fact, they do not provide detailed accounts of uncertainty that can additionally inform
infrastructure planning endeavors.

In this chapter, we present the novel application of the lighweight data fusion frame-
work to estimate probabilistic electricity access rates at the individual building-level.
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As far as we know, we are the first to do so and characterize accuracies at this level of
spatial granularity. Our approach is also unique in that we are using official Rwanda
consumer data, high-resolution satellite imagery, nighttime lights data, building den-
sity, building rooftop area, internet speeds data, and land use information, as described
in the next section. Additionally, the lightweight data fusion (LDF) framework that
our systems utilize also enable explicit uncertainty quantification, provide enhanced
human-interpretability, and yield state-of-the-art results.

■ 5.1 Related Work

Doll et al. attempt one of the first remote sensing-based sets of electricity access esti-
mates. The authors estimate electricity access by making the assumption that anywhere
with zero light intensity in Defense Meteorological Satellite Program - Operational
Linescan System (DMSP-OLS) annual composite nighttime light images confers lack of
electrification [88]. While Doll et al. are able to expand their analyses to very large
regions with ease, their analyses hinge on this assumption. Buildings that are located
in areas that have positive nighttime light signals may be non-electrified and conversely,
buildings that are located in areas with zero-valued nighttime light signals may be elec-
trified. A study by Min et al. exemplifies the inadequacy of Doll et al.’s assumption,
finding that nighttime lights imagery most strongly reflects the presence of streetlights
and is not on its own a strong indicator for household electricity use [89]. As such, this
methodology is unsuitable for high-resolution infrastructure planning activities.

Min et al. consider electricity access in Senegal and Mali at the village-level for the
year 2011. They compare nighttime light output from the DMSP-OLS sensor against
survey data representing 232 electrified and 899 unelectrified villages. Among other
studies, the authors present a logistic regression model using population and monthly
average light output to classify village electricity access status. Though they produce
a visualization conveying classification efficacy, they do not publish metrics for classifi-
cation accuracy using this model. Min et al. also do not provide the precise definitions
they use for village access [89]; this is problematic because one could imagine village
electricity access as a non-binary metric. From what we have witnessed in our field
visits and from what has been reported in the literature, ”under grid” villages in devel-
oping countries are often highly heterogeneous [90]. This makes the disaggregation of
village-level metrics subject to inaccuracies.

A second study by Min et al. provides the High-Resolution Energy Access (HREA)
dataset [91], providing probabilities of electricity access at the settlement-level us-
ing nightly VIIRS satellite imagery and Facebook’s High Resolution Settlement Layer
(HRSL) dataset [92]. Their methodology trains a statistical model to characterize back-
ground illumination noise. Settlements with higher illumination are assumed to have
electricity access.

Falchetta et al. provide the Gridded Dataset for Electrification in Sub-Saharan
Africa (GDESSA) dataset, based on an open-source computing framework for electricity
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access estimation using VIIRS nighttime lights data, LandScan gridded population data,
and MODIS land cover data for sub-Saharan Africa at 30 m and 1 km resolution [33].
While the framework operates at wide scales, the authors only validate and provide error
metrics for large aggregated regions: at the country- and province-levels. The output
data set only provides point-estimates for absolute values for the population without
access, not shares of the population without access. When applying it to buildings data
sets, users must make the assumption that all buildings under a ”no access” pixel are
non-electrified.

Andrade-Pacheco et al. provide estimates for household electricity access estimates
across Africa for 5 km grid cells employing nighttime lights imagery, land use land cover
data, population data, and electrification status data points from 69 Demographic and
Health Surveys (DHS), Malaria Indicator Surveys (MIS), and AIDS Indicator Surveys
(AIS) [93]. The authors use probabilistic modeling techniques, including generalized
linear models (GLM) Gaussian process (GP) regression; however, they only share point-
estimates from their analyses. They do not quantify model-characterized uncertainty
available or share model calibration analyses. The location data used in the DHS,
MIS, and AIS surveys used also lack spatial precision. Households are aggregated into
clusters, and data is only reported on the cluster-level. These cluster centroids are
further randomly offset between 2 and 10 km. While the authors report results on
sensitivity analyses to the impact of the locations displacement, the randomized nature
of the geolocation data precludes analyses at resolutions higher than 5 km grid cells.

Correa et al. analyze ground truth data of 57 thousand distribution transformer lo-
cations in Kenya, high-resolution satellite imagery, and nighttime lights imagery. They
use convolutional neural network models to classify electricity access at the settlement-
level [94]. While the authors achieve impressive performance metrics, they also provide
point-estimates at more aggregated, settlement-levels.

■ 5.2 Data

We aggregate, process, and join large geospatial datasets to compile features describ-
ing individual buildings in Rwanda. We start with the Google Open Buildings [99]
and Open Street Maps (OSM) [100] datasets, both of which provide individual build-
ings represented as polygons of geospatial coordinates. Because OSM building foot-
prints are human-annotated, we assume they are of higher quality than the computer
vision-derived annotations from the Google Open Buildings dataset. We merge the two
datasets with the rule that if buildings from OSM overlap with those from Google Open
Buildings, we keep those from OSM and remove those from Google Open Buildings.
From this combined dataset, we compute features including building footprint areas and
a local building density attribute defined as the number of buildings in a 1km radius of
each building in our dataset, as depicted in Fig. 5.1.

We subsequently perform spatial joins between our buildings data and other features
of interest, always using building identifiers as primary keys. These features include
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Figure 5.1: Building density and rooftop areas are calculated using building footprint
datasets. Building density gives a metric corresponding to urbanization, and building footprint
area is used to approximate the size of the building.

Figure 5.2: High-resolution satellite imagery available from ESRI at 50cm-1m spatial
resolutions [95]. Image tiles are compiled and clipped so that each building is mapped to a
corresponding tile centered over the building’s centroid.
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Figure 5.3: 10m Land use/Land cover data from ESRI and Microsoft, provided as the
output of applying computer vision methods with Sentinel-2 10m imagery [96]. We additionally
calculate LULC share statistics at 50m and 110m resolutions.
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Figure 5.4: VIIRS nighttime lights from NOAA and NASA shows the intensity and lo-
cation of artificial light sources from the Earth during nighttime. It is available globally as
annual composite images at 15 arc-second (∼ 500m at the Equator) spatial resolution [97]. We
additionally calculate mean intensity values at 3 and 5 cell resolutions.
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• Avg. download speed (kbps): 18025

• Avg. upload speed (kbps): 4537

• Avg. latency (ms): 18

• Number of tests: 6

• Number of unique devices: 3

Figure 5.5: Ookla internet speeds dataset shows internet speed test results, describing
average download speeds, average upload speeds, average latency, the number of speed tests,
and the number of devices contributing tests. The dataset is geospatially aggregated at Web
Mercator ‘zoom level 16’ (∼ 610.8m spatial resolution at the equator) [98].

zoom 17 (1.194 m/pixel) satellite image tiles from Esri (Fig. 5.2) [95] that we center
over building centroids and clip to tiles of dimension 224 × 224 as shown in Fig. 5.2;
local shares of land use land cover (LULC) types from Esri’s 10-Meter Land Cover
dataset for crop, built areas, and rangeland shares covering 11×11 grids (Fig. 5.3) [96];
overhead nighttime lights values and local averages for 5×5 and 11×11 building-centered
grids from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor (Fig. 5.4)
[97]; and internet connectivity speeds from Ookla (Fig. 5.5) [98], including download
speeds and the number of fixed devices running tests. All of these feature datasets are
either available across the whole continent of Africa, or are globally available, lending
themselves for use in other African countries of interest.

Our ground truth labels come from a meter location dataset obtained from the
Rwanda Electrical Geo-Portal [101]. Additional expert-derived annotations for large
commercial and industrial buildings were completed and added to the dataset, directed
by a former Energy Development Corporation Limited (EDCL) planning engineer. We
make the assumption that buildings within 40 meters of a meter to be electrified. This
assumption is based on REG documentation [102] that specifically states: “single-phase
connections can be done with 6 mm2 stranded copper conductor single core concentric
conductor up to 40 m distance.”
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■ 5.3 Methodology: the BEACON model

In this chapter, we employ an instantiation of the lightweight data fusion (LDF) frame-
work described in Section 2.1.21 and originally introduced in Dean et al. [12]. We call
this model the Bayesian Electricity Access ClassificatiON (BEACON) Model Fig. 5.6
depicts the simple structure we use modeling our building-level electricity access rate
θ = {θ1, ..., θM} as independently and identically distributed latent variables.

Lightweight Data Fusion with Conjugate Mappings

Table 1: Interpretations of the different conjugate mappings of auxiliary data under a selection of
common primary data likelihoods.

Primary Data Conjugate Prior Auxiliary data interpretation
Bernoulli/binomial Beta number of trials nx(xi;φ) ≥ 0,

success rate µ(xi;φ) ∈ [0, 1]
Multinoulli/multinomial Dirichlet number of trials nx(xi;φ) ≥ 0,

outcome probabilities δ(xi;φ) ∈ ∆d−1

Poisson Gamma number of arrivals a(xi;φ) ≥ 0,
number of intervals b(xi;φ) ≥ 0

Multivariate Gaussian NIW potential vector hy(xi;φ) ∈ Rd,
precision matrix lower triangle L(xi;φ)L(xi;φ)> � 0

Tx(x1) θ1 y1j

N1

· · · Tx(xM ) θM yMj

NM

λ0

φ

Figure 5: PGM incorporating a mapping Tx(x;φ) = [tx(x;φ), Nx(x;φ)] with shared hyperparameters
φ learned from jointly observed auxiliary and primary data instances xi, yi generated by diverse and
unobserved θi. After learning and validation of φ, we are solely interested in the role of Tx(xi;φ) for
posterior inference over θi. Note that LDF mappings are applicable to a variety of PGM structures
beyond the model depicted here.

The learned sufficient statistics functions tx(xi;φ) and nx(xi;φ) are directly interpretable
as the corresponding quantities for primary data, enabling reasoning over the quality of
information contributed by each data source. Table 1 shows the interpretations for several
common primary data types. Additional details can be found in Appendix A.

Under the conjugate mappings assumptions, inference in the model of Figure 2 can be
viewed equivalently as Figure 5. The dependence on xi has been replaced by dependence
on Tx(xi;φ), made possible by sufficiency as in Figure 3, and the arrow reversed to indicate
that we always condition on the conjugate mapping Tx(xi;φ) instead of the original data xi.

The form of the posterior p(θi | xi;φ) in Equation 15 is in the same exponential family as
our original conjugate prior p(θi), resulting in convenient forms for two conditionals critical
for learning and inference in both simple models (e.g., Fig. 2 and Sec. 5) and more complex
hierarchical models where γ 6= ∅, (e.g., Sec. 6). Specifically, p(θi | xi;φ) remains conjugate to
the likelihood of primary data yi, Equation 4, yielding a full posterior

p(θi | xi, yi;φ) = π(θi;λ0 + Tx(xi;φ) + Ty(yi)), (16)

9

Figure 5.6: Lightweight data fusion introduces conjugate mappings Tx(xi;ϕ) to enable
efficient posterior inference over thetai in the same way as yi and Ty(yi). Notably, conjugate
mapping hyperparameters ϕ are and are learned from jointly observed samples of auxiliary data
xi and primary data yi. Figure from [12].

Our primary data yi represents binary labels for buildings that were considered
likely electrified as described in Section 5.2. Our auxiliary data xi represents the high-
resolution satellite imagery, building density, building rooftop area, nighttime lights,
LULC, and internet speeds features also described in Section 5.2. As defined in Sec-
tion 2.1.21, λ0 describes hyperparameters for the prior distribution on θi, ϕ represents
learnable neural network parameters, and Tx(xi;ϕ) are approximate sufficient statistics
of the auxiliary data for posterior inference over our latent variables of interest θi.

In our instantiation, we use the likelihood model for yi:

p(yi|θi) = Bern(yi; θi) = Bin(yi; 1, θi) i = 1, ...,M. (5.1)

The prior distribution for θi is beta-distributed and represents the probability that
building i has electricity access. It has hyperparameters α and β:

p(θi) = Beta(θi;α, β) i = 1, ...,M. (5.2)

The term xi represents auxiliary data where RGB image tiles are represented by a
matrix of size 224 × 244 × 3 and the remainder of the features are concatenated into
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a single vector representation that is z-score-normalized by feature. NN weights ϕ
are learned as we train our model and conjugate mappings T (xi) = [a(xi;ϕ) b(xi;ϕ)]
represent sufficient statistics for xi with respect to the auxiliary data posterior:

p(θi|xi;ϕ) = Beta(θi;αb + a(xi;ϕ), βb + b(xi;ϕ)) i = 1, ...,M. (5.3)

It follows from the LDF framework that ϕ can be trained via Eq. 5.4 employing the
beta-binomial posterior predictive distribution reflected in Eq. 5.5:

ϕ̂ = arg max
ϕ

M∑

i=1

log p(yi|Tx(xi;ϕ)) (5.4)

p(yi|xi;ϕ) = p(yi|Tx(xi;ϕ)) = BeBi(yi; 1, α+a(xi;ϕ), β+ b(xi;ϕ)) i = 1, ...,M. (5.5)
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Figure 5.7: A multi-input neural network. The top branch represents the ResNet50
convolutional neural network architecture and the bottom branch represents a simple multi-
layered perceptron architecture. The branches are concatenated and followed with additional
fully connected layers. Output neurons are interpreted as approximate sufficient statistics for
the auxiliary data via LDF.

We implement a multi-input neural network. On the top branch, we use the
ResNet50 architecture pre-trained on ImageNet [103] without the fully-connected layer
at the top of the network. We then add a 2D average pooling layer of size 7× 7, flatten
the output, add a dense layer of size 256 with ReLu activation, a dropout layer with
variable dropout values, and a dense layer of size 4 with softmax activation.

On the bottom branch, we have a dense layer of size 20 with a normal kernel initial-
izer, ReLu activation, and variable kernel regularization values; a dropout layer with
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variable dropout values; a dense layer of size 10 with normal kernel initializer, ReLu ac-
tivation, and variable kernel regularization values; a dropout layer with variable dropout
values; and a dense layer of size 2 with normal kernel initializer, ReLu activation, and
variable kernel regularization values.

Image input of dimension 224× 224× 3 is provided to the top branch. vector input
with all other features z-score-normalized by feature and concatenated are provided to
the bottom branch.

Each of the branches are concatenated. Finally, we use a dense layer of size 4
with normal kernel initializer and ReLu activation before a dense output layer of size
2 with normal kernel initializer and softplus activation. We choose this architecture
as it represents a relatively basic multi-input structure that processes and concatenate
image feature tensor and general feature vector inputs.

■ 5.4 Results

Table 5.1: Comparison of different methods on measures of accuracy, F1 Score, AUC,
precision, and recall

Method Accuracy (%) F1 Score AUC Precision Recall

LDF (ours) 80.7 0.748 0.859 0.810 0.696

HREA 70.9 0.539 0.691 0.778 0.412

GDESSA 48.3 0.580 N/A 0.436 0.866

Naive classifier 58.7 0.585 N/A 0.413 1.000

We compare results corresponding to the held-out test dataset for our model em-
ploying the LDF framework with a naive classifier and from publicly available outputs
from the HREA model and the GDESSA model. The naive classifier assumes that the
majority class, ”non-electrified” is always predicted regardless of the input features.
Results from HREA and GDESSA were downscaled from their original resolutions to
apply to the building-level. For each of these models, if a building is situated under
a specific raster pixel, we assign the pixel’s electrification probability to the individual
building. As of the time of writing, the HREA model provides continuous values for
the probability of electrification, while the GDESSA model provides only binary classes.
For the LDF model, we assign a positive predicted class (designating that the building
is “electrified”) if the building’s mean electricity access probability value E[θi] is greater
than or equal to 0.5, and we assign a negative class (“non-electrified”) otherwise. We
use the same default threshold of 0.5 for continuous probability values provided by
the HREA model. Table 5.1 outlines results for all models across accuracy, F1 Score,
AUC, precision, and recall. Please refer to Section 2.1.8 for a definition of each of these
metrics.
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Figure 5.8: Precision-recall curves for the LDF and HREA models.

Figure 5.8 depicts precision and recall curves for our model and for the HREA
model, which both provide continuous probabilities of electricity access. Plotting such
curves for the GDESSA and naive classifier models are not informative, as the provide
only binary predictions.

Finally, we provide model calibration results for the LDF model, the HREA model,
and the GDESSAmodel, as shown in Fig. 5.9. The left plot shows empirical vs predicted
electricity access rates. It is produced by binning test set building by their expected
probabilities of electrification using 100 distinct bins. For each group of buildings
corresponding to a bin, empirical access rates are calculated through averaging and
plotted on the y-axis. The right plot shows the corresponding number of samples from
the dataset in each bin.

■ 5.5 Discussion

In this section, we discuss model performance, benefits from uncertainty quantification,
and potential for scaling across larger regions.

■ 5.5.1 Performance

As shown in Table 5.1, when considering accuracy, F1 score, and AUC metrics, the LDF
model that we employ outperforms the HREA, GDESSA, and Naive classifier baselines
we compare against. Additionally, Fig. 5.8 shows that LDF outperforms HREA for both
precision and recall metrics for every classification threshold that is swept over. Finally,
the model calibration analyses performed and displayed in Fig. 5.9 qualitatively shows
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Figure 5.9: Electricity access model calibration data for the LDF, HREA, and GDESSA
models using our Rwanda test dataset. On the left plot, ideal model calibration corresponds to
line with intercept and slope equal to zero and one, respectively.

that LDF is also better calibrated than baseline models as its calibration scatterplot
much more closely traces the diagonal line with slope 1 and intercept 0.

Taken together, these results imply that the LDF model and our training frame-
work makes a notable contribution to the application of building-level electricity access
rate estimation and achieves state-of-the-art performance. Compared to the HREA
and GDESSA models, our approach employing the LDF framework has the benefit of
explicitly training on building-level data across Rwanda. HREA and GDESSA have
their own training procedures, but are fit at coarser levels of spatial granularity across
wider regions in Africa. The specificity of the training procedure and the richness of
the building-level features employed likely contribute to our model’s enhanced charac-
terization of building-level electricity access.

■ 5.5.2 Uncertainty quantification

One of the key differentiators of our probabilistic modeling approach is that we explicitly
quantify uncertainty over our predicted electricity access rates via the representation
of distributions over this quantity. In contrast, HREA provides only point estimates
of predicted electricity access rates. GDESSA doesn’t provide electricity access rate
predictions but instead provides predictions in the form of binary access classifications.
For many decision-making applications, characterizations of uncertainty over electricity
access rates can provide additional value, as it allows planners to prioritize planning
infrastructure for low-access communities that are considered low-access with higher
certainty as opposed to those with less certainty.

Lee et al. [104] outlines how uncertainty quantification is a key input to methodolo-
gies for ‘continuous infrastructure planning.’ It is a key input to account for ‘explore-
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exploit tradeoffs’ pertaining to marginal investing decisions in physical infrastructure
or additional data collection and surveying efforts. This type of analysis may be espe-
cially pertinent for countries in which only sparse regions have accurate building-level
electricity access datasets. Without such tradeoff analyses, it would be unclear whether
expenditures of scarce resources are better spent on directly expanding access or on im-
proved surveying and data collection to better inform infrastructure planning activities.
Because of the iterative and continuous nature of these planning activities, managing
this decision sub-optimally may entail significant planning inefficiencies over time.

■ 5.5.3 Future work: scaling building-level predictions

Figure 5.10: Scaled versions of this work can be visualized on a web map. Results
can be visualized to geospatial web maps which allow users to view corresponding outputs
for individual buildings. In a demo interface that we’ve built, users can click on individual
buildings and view their inferred access rate probability distributions. For interpretability, we
present these outputs as distributions over the number of times the building is observed to be
electrified per 100 ‘simulations.’

Inferences resulting from trained LDF models are highly scalable as all of the build-
ing features we employ are near-globally available. Nevertheless, there are a few key
challenges for doing so including feature data procurement around high-resolution satel-
lite imagery and the significant computational resource requirements for joining features
and processing large-scale buildings datasets. A significant additional challenge includes
procuring enough meter-level or building-level ground truth datasets to calibrate the
models to new geospatial contexts outside of Rwanda. One strategy we could adopt to
circumvent needing to collect high-resolution ground truth is to instead collect aggre-
gated ground truth electricity access statistics at the national- and regional-levels. We
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could then shift our building-level distributions accordingly so that we are calibrated
with such aggregate statistics.

Conversely, the methodologies behind the HREA and GDESSA datasets do not
rely on building-level features, allowing these methods to be significantly more scalable.
For instance, instead of building-level validation, the GDESSA dataset validates at the
country- and province-levels. Future work in this research direction pertains to scaling
widely and validating against similar aggregate statistics for more complete comparison
with the HREA and GDESSA approaches.

■ 5.6 Conclusion

In this chapter, we present the novel application of the LDF framework to estimate
electricity access rates at the individual building-level. We demonstrate state-of-the-
art performance on a dataset comprising electrified buildings in Rwanda, and we use
a set of novel features for this application including high-resolution satellite imagery,
nighttime lights data, building density, building rooftop area, internet speeds data,
and land use information. Beyond offering superior performance, our model addition-
ally provides uncertainty quantification capabilities around access rate statistics that
promise to inform an improve decision-making efficiencies. Future work includes scaling
our approach to other countries and continents and comparing against benchmarks at
aggregated national and regional scales.

■ 5.7 Future Work

For future work, we advise:

• Adding features, including estimated building height, time series nighttime lights
values, time series imagery from Planet, additional satellite images from differ-
ent image sources, updated building polygons also including “Microsoft Building
Footprints,” and mobile payments data.

• Extend the methodology to contain additional PGM elements, adding the capabil-
ity to use aggregated observations of electricity access rates similar to the LItLDF
model we introduce in Ch. 6.

• Perform feature sensitivity analyses using automatic differentiation.

• Test performance with and without high-res satellite image features.

• Run hyperparameter optimization over other possible neural network architec-
tures.
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Chapter 6

The LItLDF Model for
Building-Level Electricity Demand

Estimation

Electricity demand (i.e. load) estimates and forecasts are central to infrastructure
right-sizing [29, 34, 35, 36, 37, 38, 39]. Over-sizing is the direct result of over-estimating
demand, while under-sizing stems from under-estimating. The study described in Ch.
3 employs a building-level electrification model for 366 thousand customers in Uganda
and demonstrates how electricity unit costs in low-demand scenarios may be nearly
three times those in high-demand scenarios resulting from economies of scale and net-
work utilization improvements [105]. Better estimates allow planners to pursue such
economies while minimizing the risk of over-sizing.

In this paper, we present the Load Inference through Lightweight Data Fusion
(LItLDF) model for estimating building-level electricity demand. Our model overcomes
a major challenge: that ground truth metered consumption datasets in low-access coun-
tries are often only accompanied by noisy geolocation data. Because of this, there is
significant ambiguity when trying to assign that consumption to a nearby building.
This ambiguity is exacerbated by the fact that meter and building connections reflect
many-to-many relationships. There may be many electricity meters within a single
building (e.g., apartment buildings, etc.), and there may also be many buildings that
are connected to a single meter (e.g., buildings with detached accessory dwelling units,
etc.). While consumption data is measured at the meter-level, planners often care about
modeling consumption at the building-level. This is especially true when planners are
analyzing populations without historical metered data, either because this data was not
previously collected and digitized or because electricity connections do not exist.

Fig. 6.1 depicts the challenge of matching meters and buildings using a map popu-
lated with data from Rwanda. Electricity meters are illustrated using green circles and
building footprints are depicted using polygons. In general, meters do not match build-
ings with high fidelity. In this figure, buildings that are ‘nearest neighbors’ to meters
are highlighted in blue, with nearest neighbor mappings depicted using red connecting
lines. Notably, mapping meters to buildings using this assumption leaves out many
buildings that may have plausible connections to meters.

To account for such noisy data, we develop the application-tailored LItLDF model
with a Bayesian network (Bayes net) component and an embedded neural network (NN)

99
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electricity meter

circle with 40m radius centered at meter

building that is a nearest neighbor to a meter

building that is not a nearest neighbor to a meter

nearest neighbor connecting line

Figure 6.1: Electricity meter location data often reflects significant noise. This is
especially evident because of their misalignment with building locations datasets. As a result of
this noise, the ‘nearest neighbor’ assumption for mapping meters and buildings ends up missing
many likely building connections. All data shown reflects an unspecified location in Rwanda.

component for probabilistic data fusion following the lightweight data fusion (LDF)
framework. The Bayes net component of our model defines potential relationships be-
tween meters and nearby buildings and the NN-component enables us to learn mappings
between multimodal building-level features and consumption. Our methods differ from
others for this application for a number of reasons. First, we explicitly model unknown
building-meter relationships and provide building-level consumption estimates using
only meter-level ground truth. Second, our analysis includes geospatial scope cover-
ing Rwanda, a country for which building-level estimates are not currently available.
Third, it provides probabilistic estimates, enabling frameworks for decision-making un-
der uncertainty. Fourth, we provide demand estimates including both commercial &
industrial (C&I) consumers and residential consumers. The probability distributions
we employ can express ‘the long tail’ of consumption from large consumers. Finally,
from a methods standpoint, our model is the first that embeds NNs in PGMs to in-
fer distributions over latent variables employing Markov chain Monte Carlo (MCMC)
algorithms for inference.
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■ 6.1 Related Work

We review literature on models providing high-spatial resolution electricity demand
estimates using machine learning-related methodologies in Section 6.1.1. We define
high-spatial resolution models to be those that provide output at the building- or sub-
national grid cell-level. In Section 6.1.2, we look broadly at a model that uses the
negative binomial probability distribution when modeling specific electric loads. In
Appendix 6.2, we additionally cover differing demand estimation models employing
‘bottom-up’ modeling approaches.

■ 6.1.1 High spatial resolution forecasting in low-access countries using ma-
chine learning approaches

Supervised machine learning approaches are a natural option for high spatial resolu-
tion electricity demand forecasting where large historical consumption datasets can be
obtained. These model types can be trained using historical electricity consumption
datasets and other more commonly available features, and they can extend to provide
forecasts even where historical electricity consumption is not available. Nevertheless,
following this basic strategy is data-intensive when trying to generalize forecasts to large
areas. Likely because of the scarcity of this data, only a few studies have attempted
machine learning-driven approaches for this application.

Heunis and Dekenah [106, 107] predict hourly load profiles for South African res-
idential consumers using generalized additive models (GAMs) and linear regression
models for describing the average load profile and standard deviation profile of groups
of consumers. Hourly models are trained on different aspects of South Africa’s Na-
tional Residential Load Research Project data, comprised of 900 million load readings
and over 8400 socio-demographic questionnaires. Different models are trained for week-
days, Saturdays, and Sundays, for each month of the year, accounting for differences in
seasonal consumption, climate, and geographic position in South Africa. To generate
a prediction, users click on a geospatial map to select a geographic site location and
input their community’s average income.

Fobi et al. provide a high-spatial resolution satellite imagery-driven convolutional
neural network model towards demand classification for residential consumers in Kenya
[108]. Georeferenced billing data for 20,000 residential consumers is used to classify
consumers as belonging to “low” and “high” consuming consumer types, defined as the
ranges 0-30 kWh monthly consumption and greater than 60 kWh monthly consumption,
respectively.

While these models have their respective merits, neither attempt to extend their
inferences to areas of countries other than South Africa or Kenya, respectively. Addi-
tionally, both studies are exclusively focused on residential consumers.
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■ 6.1.2 The negative binomial distribution in electricity demand forecasting

Daraghmi et al. use negative binomial generalized linear models (GLMs) for forecasting
hourly electrical load for 15 transformers and 17 consecutive days in Jericho city, Pales-
tine. The authors explain how their model’s use of the negative binomial distribution
allows it to address issues with overdispersion, which is common in electricity consump-
tion data [109]. Overdispersion is a characteristic of datasets in which the variance is
larger than the mean. Different parameterizations of the negative binomial distribution
afford the ability for the distribution’s mean and variance to be changed independently
from one another.

The GLMs used by Daraghmi et al. reflect a relatively simple model type with
limited modeling capacity; the authors outline their favorable time complexity when
performing model training and forecasting for electric load forecasting in internet of
energy (IoE) applications [109].

■ 6.2 High spatial resolution electricity demand forecasting in low-access
countries using ‘bottom-up’ approaches

Falchetta et al. [110] introduce the Multi-sectoral Latent Electricity Demand (M-LED)
platform for large-scale bottom-up electricity demand assessment. They specifically
share results quantifying latent electricity demand in Kenya for residential, irrigation,
crop processing, healthcare, education, and productive commercial sectors for 1 km
× 1 km grids. The platform employs building location information, nighttime lights-
based consumption estimates, demographic surveys, school locations datasets, health
facility location datasets, cropland estimates, precipitation data, crop schedules, and
road density data. They match these datasets by sector with aggregated load estimates
from literature sources and techno-economic modeling.

Mentis et al. describe demand estimates given by the World Resources Institute
(WRI) Energy Access Explorer [111], which also follows a bottom-up approach to de-
mand forecasting. The authors describe how a demand index score is calculated using
a weighted sum of normalized demographic, social, and productive use data. The
methodology used to determine weights is not made clear.

While these bottom-up approaches are easily explainable and are shown to be highly
scalable, their accuracies are limited by their assumptions about which loads are where,
and how large each load is based on consumer types. To our knowledge, they are also
not validated against any ground truth consumption data, and as such, are susceptible
to engender overconfidence in the unknown accuracy of their estimations.

■ 6.3 Data

We aggregate, process, and join large geospatial datasets to compile features describing
individual buildings in Rwanda, our study area of interest. We start with the Google
Open Buildings dataset [99] and Open Street Maps (OSM) [100] dataset, both of which
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provide individual buildings represented as polygons of geospatial coordinates. Because
OSM building footprints are human-annotated, we assume they are of higher quality
than the computer vision-derived annotations from the Google Open Buildings dataset.
We merge the two datasets with the rule that if buildings from OSM overlap with those
from Google Open Buildings, we keep those from OSM and remove those from Google
Open Buildings. From this combined dataset, we compute features including building
footprint areas and a local building density attribute defined as the number of buildings
in a 1 kilometer radius of each building in our dataset.

We subsequently perform spatial joins between our buildings data and other features
of interest, always using building identifiers as primary keys. These features include
zoom 17 (1.194 meters/pixel) satellite image tiles from Esri (Fig. 5.2) [95] that we
center over building centroids and clip to tiles of dimension 224×224; local shares of land
use land cover (LULC) types from Esri’s 10-Meter Land Cover dataset for crop, built
areas, and rangeland shares covering 11 × 11 grids (Fig. 5.3) [96]; overhead nighttime
lights values and local averages for 5× 5 and 11× 11 building-centered grids from the
Visible Infrared Imaging Radiometer Suite (VIIRS) sensor (Fig. 5.4) [97]; and internet
connectivity speeds from Ookla (Fig. 5.5) [98], including download speeds and the
number of fixed devices running tests. All of these feature datasets are either available
across the whole continent of Africa, or are globally available, lending themselves for
use in other African countries of interest.

Our meter-level observations come from consumption dataset shared by Rwanda
Energy Group (REG) and meter location data was obtained from the Rwanda Electri-
cal Geo-Portal [101]. We annualize monthly consumption data for the year 2018 and
join the dataset with meter location data to get a single dataset with consumption
and geolocation data for 102,165 meters. These meters describe both residential and
commercial & industrial loads.

A second meter-level observations dataset, used for benchmarking, comes from
Kenya Power and Lighting Company. It describes monthly consumption data for 33,445
“minigrid” consumers for the year 2018. Notably, these KPLC minigrids are oftentimes
decades old and serve thousands of consumers, and are dissimilar to the now more
popularized small minigrid systems commonly being deployed today.

■ 6.4 Computing Connected Subgraphs

We have K electricity meters and J buildings that fall within 40 meter1 radii of these
meters. We choose buildings within 40 meter radii of meters to align with standards
defined by REG [102]. Relationships between meters and proximate buildings can be
represented using a bipartite graph. As will be made clear in Section 6.5.1, we find
it useful to identify connected sub-graphs of this bipartite graph. Partitioning our
graph into connected sub-graphs represents a convenient solution to the ‘graph coloring
problem’ and informs the implementation of parallelized inference algorithms. For each

1meter here refers to the unit of distance, not electricity meters
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connected subgraph indexed by g in G, we define connections between Jg buildings and
Kg meters.

We define a bipartite graph (Nm, Nb, E) where Nm is a set of nodes representing
meters, Nb is a set of nodes representing buildings, and E is a set of edges. An edge
{nm, nb} connects a meter node nm ∈ Nm and a building node nb ∈ Nb. For convenience,
we also define two functions that map connected meters and buildings. We define
m2b : nm → Bm where Bm is the set of buildings connected to node nm and Bm ⊆ Nb.
We define b2m : nb → Mb where Mb is the set of all meters connected to node nb and
Mb ⊆ Nm.

In Algorithm 6.1, we outline the bipartite flood fill algorithm that we use to identify
sets of meter and building nodes within a sub-graph. We run the bipartite flood fill
algorithm while looping over all nm ∈ Nm to identify all G connected sub-graphs in
our dataset. For each connected subgraph indexed by g in G, we define connections
between Jg buildings and Kg meters.

After identifying all connected sub-graphs in our dataset, we randomly partition the
subgraphs into train, validation, and test sets, targeting roughly 40%, 30% and 30% of
the total number of meters in the dataset, respectively.

■ 6.5 Methodology

Our methodology encompasses a Bayesian network (Bayes net) component and an em-
bedded neural network (NN) component for probabilistic data fusion. We refer you to
first review Section 2.1.21 covering the LDF framework, which we employ to combine
the Bayes net and NN components of our model. We then introduce the broader Bayes
net model and describe how we train, validate, and test the whole model.

yg,jθg,j

Tx(xg,j)ϕ

αb, βb mg,k

ng,k

αg,k

Jg Kg

G

Figure 6.2: A plate model describing the LItLDF Bayesian network. For visual sim-
plicity, we use a compact representation here such that only inner plates representing buildings
and meters within 40 meter proximity to one another have corresponding connected nodes.
Please see text for a description of variables of interest.



1: procedure BipartiteFloodFill(nm)
2: set meterQueue, meterConnected to empty lists
3: set bldgQueue, bldgConnected to empty lists
4: finished← False
5: nb ← None
6: while not finished do
7: if not empty(meterQueue) then
8: nm = pop(meterQueue)
9: else if not empty(bldgQueue) then

10: nb = pop(bldgQueue)
11: end if
12: if nm is not None then
13: bldgs← m2b(nm) ▷ Find adjacent buildings
14: extend bldgQueue with bldgs
15: bldgQueue← unique values of bldgQueue not in bldgConnected
16: append nm to meterConnected
17: end if
18: if nb is not None then
19: meters← b2m(nb) ▷ Find adjacent meters
20: extend meterQueue with meters
21: meterQueue← unique values of meterQueue not in meterConnected
22: append nb to bldgConnected
23: end if
24: if empty(meterQueue) and empty(bldgQueue) then
25: finished← True
26: end if
27: end while

return meterConnected, bldgConnected
28: end procedure

Algorithm 6.1: A flood fill algorithm for bipartite graphs.
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■ 6.5.1 Our proposed approach: the LItLDF model

LItLDF embeds LDF structures within a larger probabilistic graphical model. Figure
6.2 depicts LItLDF as a plate model where the embedded LDF structures correspond to
blue nodes and edges. Prior LDF formulations relied on direct observation of primary
data. In contrast, primary data nodes are latent variables raising additional issues for
both inference and conjugate mapping learnability. On the graph, six nodes on the
graph sit on the outer plate with G repetitions, denoting variables corresponding to a
connected subgraph of buildings and meters. Nodes describing variables associated with
individual buildings sit on the left inner plate with Jg repetitions and nodes describing
variables associated with individual meters sit on right inner plate with Kg repetitions.
The presence of edges between inner plates does not necessarily imply full connections
between all associated nodes; we only provide a compact representation: connections
between nodes associated with buildings and meters are only made if an associated
building is physically situated within 40 meters of an associated electricity meter.

An Embedded LDF Model

The nodes and relationships on the part of the graph colored in blue follow a specific
instantiation of the independent and identically distributed LDF model described in
Section 2.1.21; however, we deviate from the basic LDF framework by treating our pri-
mary data as a latent variable yg,j . yg,j specifically represents latent monthly electricity
consumption in discrete units of kWh per month. We model yg,j using the likelihood
model

p(yg,j |θg,j) = Poisson(yg,j ; θg,j). (6.1)

The prior distribution for θg,j is gamma-distributed and it represents the ‘rate’ param-
eter for the likelihood. It has hyperparameters αb and βb:

p(θg,j) = Gamma(θg,j ;αb, βb). (6.2)

The term xg,j represents auxiliary data reflecting all of the building features described
in Section 6.3, where RGB image tiles are represented by a matrix of size 224× 244× 3
and the remainder of the features are concatenated into a single vector representation
that is z-score-normalized by feature. NN parameters ϕ are tuned as we train our model.
Conjugate mappings Tx(xg,j ;ϕ) = [a(xg,j ;ϕ); b(xg,j ;ϕ)] represent sufficient statistics for
xg,j with respect to the auxiliary data posterior:

p(θg,j |xg,j ;ϕ) = Gamma(θg,j ;αb + a(xg,j ;ϕ), βb + b(xg,j ;ϕ)). (6.3)

The LDF framework shows that ϕ can be trained via Eq. 2.57 employing the closed-form
conditional distribution:

p(yg,j |xg,j ;ϕ) = p(yg,j |Tx(xg,j ;ϕ)) = GaPo(yg,j ;αb + a(xg,j ;ϕ), βb + b(xg,j ;ϕ)). (6.4)

In our instantiation, this is the gamma-Poisson mixture distribution, which can equiv-
alently be represented as a Negative Binomial distribution.
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All together, the embedded LDF component of our model enables us to infer likely
building-level electricity demand yg,j from building-level features xg,j using NN parame-
ters ϕ. It also allows us to learn ϕ provided data samples of yg,j and xg,j using standard
neural network training techniques and a maximum likelihood objective function based
on p(yg,j |Tx(xg,j ;ϕ)). Users may also choose to explicitly express the latent parameter
θg,j , which describes the mean rate of electricity demand per unit time.

Partitioning values of yg,j to reflect meter allocations

As shown in Fig. 6.2, ng,k and mg,k are both parents of yg,j corresponding to meter
k ∈ {1, ...,Kg} on plate g ∈ {1, ..., G}. In our application, ng,k represents observed
meter consumption values and mg,k is a Dirichlet-distributed latent variable represent-
ing parameters influencing the allocation of meter-level consumption ng,k to individual
buildings:

p(mg,k) = Dirichlet(mg,k; am) for k = 1, ...,Kg g = 1, ..., G. (6.5)

In the previous section, we treated yg,j as scalar values representing consumption at
the individual building-level. Going forward, we will interpret yg,j as a vector with
elements yg,k,j representing discrete values of building consumption allocated to one of
potentially many connected meters k ∈ {1, ...,Kg} on plate g ∈ {1, ..., G}.

We introduce a few functions to aid in mapping yg,j with connected ng,k and mg,k

and vice versa:
gj({yg,k,j |j ∈ J ′}) := J ′ where J ′ ⊆ {1, ..., Jg}. (6.6)

gk({mg,k|k ∈ K ′}) := K ′ where K ′ ⊆ {1, ...,Kg} (6.7)

The above functions take in sets of random variables and returns corresponding sets of
indices. We use them to define the below functions:

cj(mg,k) := gj(Ch(mg,k)) (6.8)

pk(yg,j) := gk(Pa(yg,j)). (6.9)

The function defined by equation 6.8 takes a random variablemg,k as input and returns a
set of indices J ′ ⊆ {1, ..., Jg} corresponding to all of the children ofmg,k. From a physical
point of view, it returns plate indices corresponding to each of the buildings within
40 meters of electricity meter (g, k). Analogously, the function defined by equation
6.9 takes a random variable yg,j as input and returns a set of indices K ′ ⊆ {1, ...,Kg}
corresponding to all of the parents of building yg,j . It returns plate indices corresponding
to each of the meters within 40 meters of building (g, j).

Given our reinterpretation of yg,j as a vector [yg,k,j ]k∈pk(yg,j), we rewrite Eq. 6.1 and
Eq. 6.4 from Section 6.5.1 using the following formulations:

p(yg,j |θg,j) = Poisson(
∑

k∈pk(yg,j)
yg,k,j ; θg,j) (6.10)



322
4

224

Input

6411
2

112

Conv1
64

112

64

112

6411
2256 11

2

+

× 3

128

56

128 56 512 56

+

× 4

256

28

256 281024 28

+

× 6

512

14

512

14

2048

14 +

× 3

120
48

1

avgpool

1 3
full connection

120
48

1

vectorpenultimate
120

48
1

vector2
120

48
1

vectorinput

1 3
full connection

1 3
full connection

1 3
full connection

1 3
full connection

Multi-Input Neural Network

Auxiliary Data

Sufficient Statistics

mA mB

nA nB

y1 y2

y3y4

y5

θ1 θ2

θ3θ4

θ5

αb, βb

αA

αB

Tx(x1) Tx(x2)

Tx(x3)Tx(x4)

Tx(x5)

ϕ

hidden

hiddenhiddenhidden

hidden

x1 x2

x3x4

x5

hidden

hidden

hidden hidden

hidden

Legend

Meters

Buildings

A B

1 2

34

5

(a
)
N
e
u
ra

l
N
e
tw

o
rk

A
rc
h
it
e
ct
u
re

(b
)
B
a
y
e
si
a
n

N
e
tw

o
rk

R
e
p
re
se
n
ta
ti
o
n

(c
)
M

a
p

V
ie
w

Figure 6.3: Potential connections between buildings and meters are depicted in (c)
based on proximity, our corresponding Bayes net is juxtaposed in (b), and our multi-input
convolutional neural network (CNN)-multilayer perceptron (MLP) architecture is mapped to
our Bayes net and shown in (a). Note that we are now explicitly representing bi, a variable that
we marginalized out in practice, to reduce clutter on the graph.
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p(yg,j |xg,j ;ϕ) = p(yg,j |Tx(xg,j ;ϕ)) = GaPo(
∑

k∈pk(yg,j)
yg,k,j ;αb+a(xg,j ;ϕ), βb+b(xg,j ;ϕ)).

(6.11)
Total consumption for building j ∈ {1, ..., Jg} on plate g ∈ {1, ..., G} is now represented
by the sum of that building’s consumption values allocated to connected meters pk(yg,j).

Modeling meter-building allocations

Equation 6.11 defines a distribution for yg,j conditioned on xg,j . We now propose a
function proportional to the joint conditional distribution for p(yg,1, ... , yg,Jg | xg,1,
... , xg,Jg , ng,1, ... , ng,Kg , mg,1, ... ,mg,Kg ; ϕ, αb, βb) for use in deriving our inference
algorithm:

p(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg , ng,1, ... , ng,Kg ,mg,1, ... ,mg,Kg ;ϕ, αb, βb)

∝ q(yg,1, ... , yg,Jg | ng,1, ... , ng,Kg ,mg,1, ... ,mg,Kg) ×
q(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg ;ϕ, αb, βb)

=

Kg∏

k=1

Multinomial([yg,k,j ]j∈cj(mg,k) | ng,k,mg,k) ×

Jg∏

j=1

GaPo(
∑

k∈pk(yg,j)
yg,k,j | αb + a(xg,j ;ϕ), βb + b(xg,j ;ϕ)). ∀ g ∈ 1, ..., G

(6.12)

In Eq. 6.12, the decomposition for p(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg , ng,1, ...
, ng,Kg , mg,1, ... ,mg,Kg ; ϕ, αb, βb) to be proportional to the product of q(yg,1, ...
, yg,Jg | ng,1, ... , ng,Kg ,mg,1, ... ,mg,Kg) and q(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg ;ϕ, αb, βb)
is a deliberate modeling choice. We introduce the multinomial conditional distribution
for q([yg,k,j ]j∈cj(mg,k) | ng,k,mg,k) for g ∈ 1, ..., G and k ∈ 1, ...,Kg. This enforces
the constraint that values of [yg,k,j ]j∈cj(mg,k) must be able to sum to values of ng,k in
accordance with our graph structure based on meter-building proximity.

Figure 6.3 displays a geospatial map view for how nodes in our Bayes net correspond
to specific buildings and meters, in addition to depicting the NN architecture used for
our conjugate mappings. Additional information about our specific NN architectures is
provided in Appendix 6.6.

Training and Inference

The G connected sub-graphs depicted by the outer plate in Fig. 6.2, represent a solution
to the ‘graph coloring problem.’ Variables on separate subgraphs have no connections
to one another and therefore their values can be sampled independently during infer-
ence. We construct a Metropolis Hastings (MH) sampler for this model, presented in
Algorithm 6.2. Notably, sampling from the posterior distribution via our MH sampler



1: function LitLdfMetropolisHastings(m(0), y(0), n, x, S, δm, trainF lag,
trainInterval, ϕ = None )

Require: m(0): Initialization for m; y(0): Initialization for y; n: Meter consumption
vector; x: Auxiliary data; S: Number of samples; δm: Proposal concentration
multiplier; trainF lag: Flag for whether to train NN; trainInterval: Number of
Metropolis Hastings samples between NN training epochs; ϕ: NN weights.

Ensure: ϕ: NN weights; [m(s)]Ss=0: samples of m; [y(s)]Ss=0 samples of y
2: if ϕ == None then
3: Initialize ϕ
4: end if
5: for s = 1 to S do
6: Sample m′

g,k, {y′g,k,j |j ∈ cj(mg,k))} from q(m′
g,k, {y′g,k,j |j ∈

cj(mg,k))}|m(s−1)
g,k ) :

m′
g,k ∼ Dir(δm,m

(s−1)
g,k )

[y′g,k,j ]j∈cj(mg,k) ∼ Multinomial(ng,k,m
′
g,k)

∀ k ∈ {1, ...,Kg}, g ∈ {1, ..., G}
7: Compute acceptance ratios:

rg =

∏Kg

k=1Dir(m′
g,k|αg,k)Dir(m

(s−1)
g,k |δmm′

g,k)∏Kg

k=1Dir(m
(s−1)
g,k |αg,k)Dir(m′

g,k|δmms−1
g,k )

×
∏Jg

j=1GaPo(
∑

k∈pk(yg,j) y
′
g,k,j |αb + a(xg,j ;ϕ), βb + b(xg,j ;ϕ))

∏Jg
j=1GaPo(

∑
k∈pk(yg,j) y

(s−1)
g,k,j |αb + a(xg,j ;ϕ), βb + b(xg,j ;ϕ))

∀ g ∈ {1, ..., G}
8: Sample ug ∼ Uniform(0, 1) ∀ g ∈ {1, ..., G}
9: if ug < rg then ∀ g ∈ {1, ..., G}

10: Accept: m
(s)
g = m′

g; y
(s)
g = y′g

11: else
12: Reject: m

(s)
g = m

(s−1)
g ; y

(s)
g = y

(s−1)
g

13: end if
14: if trainF lag and (S % trainInterval == 0) then ∀ g ∈ {1, ..., G}
15: LDF Training:

ϕ = argmax
ϕ




G∑

g=1

Jg∑

j=1

log GaPo(
∑

k∈pk(yg,j)
y
(s)
g,k,j ; αb + a(xg,j ;ϕ), βb + b(xg,j ;ϕ))




16: end if
17: end for
18: return ϕ, [m(s)]Ss=0, [y

(s)]Ss=0

19: end function

Algorithm 6.2: LItLDF Inference via Metropolis Hastings
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is performed conditioned on our NN parameters ϕ; because ϕ is fixed, the stationary
distribution we are sampling from is fixed.

1: function LitLdfTraining(n, x, S, δm, trainInterval)
Require: n: Meter consumption vector; x: Auxiliary data; S: Number of samples; δm:

Proposal concentration multiplier; trainInterval: Number of Metropolis Hastings
samples between NN training epochs.

Ensure: ϕ: trained NN weights; [m(s)]Ss=0: samples of m obtained during training;
[y(s)]Ss=0 samples of y obtained during training.

2: Initialize m
(0)
g,k ∀ k ∈ {1, ...,Kg}, g ∈ {1, ..., G}

3: Initialize y
(0)
g,k,j ∀ j ∈ cj(mg,k), k ∈ {1, ...,Kg}, g ∈ {1, ..., G}

4: ϕ, [m(s)]Ss=0, [y
(s)]Ss=0 = LitLdfMetropolisHastings(m(0), y(0), n, x, S, δm, True,

trainInterval)
5: return ϕ, [m(s)]Ss=0, [y

(s)]Ss=0

6: end function

Algorithm 6.3: LItLDF Training

In Algorithm 6.3, we show how NN training occurs sequentially within the sampling
loop in our Metropolis Hastings algorithm. The trainF lag within our function call to
LitLdfMetropolisHastings() is set to True. Each sampling step obeys the allocation
constraints defined by the Dirichlet and multinomial components of our model. As
the NN trains, it learns a smooth and continuous transformation function Tx(xgj ) that
explains ‘valid’ values of yg,j across plates with increasing predictive power. Training is
performed using training data, and validation and test data are used to tune hyperpa-
rameters and evaluate the performance of the model, respectively. We also implement
early stopping on validation data.

1: function LitLdfEvaluation(m(0), y(0), n, x, S, δm, ϕ)
Require: m(0): Initialization for m; y(0): Initialization for y; n: Meter consumption

vector; x: Auxiliary data; S: Number of samples; δm: Proposal concentration
multiplier; ϕ: NN weights.

Ensure: [m(s)]Ss=0, [y
(s)]Ss=0: Metropolis Hastings samples.

2: , [m(s)]Ss=0, [y
(s)]Ss=0 = LitLdfMetropolisHastings(m(0), y(0), n, x, S, δm, False,

0, ϕ=ϕ)
3: return [m(s)]Ss=0, [y

(s)]Ss=0

4: end function

Algorithm 6.4: LItLDF Evaluation

Once we are finished training, we run Algorithm 6.4 to get Monte Carlo samples from
our distribution. The trainF lag within our function call to LitLdfMetropolisHastings()
is set to False, and ϕ is a fixed input for our sampler. As with typical MCMC methods,
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burn-in is required before samples of the stationary distribution are obtained.

Model checking

We deviate from traditional approaches for Bayesian model checking. Unlike the pos-
terior predictive model checking methodology based on computing p(ytest|xtest) as de-
scribed by Dean et al. [12], ground truth data for ytest is not available at the building-
level, precluding computation.

While computing quantities like p(ntest|xtest), may be a logical extension based on
the available observations of ntest in our setting, we find that computing this quantity
to be too expensive to compute, even when considering MCMC approximations:

p(ng,1, ..., ng,Kg | xg,1, ... , xg,Jg) =∫
...

∫
p(ng,1, ... , ng,Kg | yg,1, ... , yg,Jg) p(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg) dyg,1 ... dyg,Jg

∀g ∈ 1, ..., G

(6.13)

where

p(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg) =∫
...

∫
p(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg , ng,1, ... , ng,Kg ,mg,1, ... ,mg,Kg) ×

p(mg,1) ... p(mg,Kg) dmg,1 ... dmg,Kg (6.14)

and referencing Eq. 6.12 we have

p(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg , ng,1, ... , ng,Kg ,mg,1, ... ,mg,Kg) =

q(yg,1, ... , yg,Jg | ng,1, ... , ng,Kg ,mg,1, ... ,mg,Kg) ×
q(yg,1, ... , yg,Jg | xg,1, ... , xg,Jg ;ϕ, αb, βb) /

Z(xg,1, ... , xg,Jg , ng,1, ... , ng,Kg ,mg,1, ... ,mg,Kg) (6.15)

Notably, computing p(ng,1, ..., ng,Kg | xg,1, ... , xg,Jg) requires nested MCMC sam-
pling: an inner-loop for computing the partition function Z(xg,1, ... , xg,Jg , ng,1, ...
, ng,Kg ,mg,1, ... ,mg,Kg), and an outer-loop for computing the distribution.

Instead, we propose an alternative model checking approach, comparing distribu-
tions for p(ysamp|xtest;ϕ) and p(ysamp|xtest, ntest;ϕ). Owing to the LDF framework, the
former can be computed in closed-form, and we generate samples from the latter using
Alg. 6.4. An ideal model checking result would follow from a case where the transfor-
mation Tx(xg,j ;ϕ) is highly informative and these two distributions are equivalent after
averaging over subgraphs.
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Figure 6.4: Bayes net structure for our simple example with three buildings and two meters.
Note that we are marginalizing out θ for visual simplicity.
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■ 6.5.2 A simple example

In this subsection, we describe and visualize how our model works employing a simple
graph with three building nodes and two meter nodes. Our purpose is to provide
additional intuition for how we combine the various components of the LItLDF model
to allow for learning and inference for building-level consumption from building-level
features using only consumption observations at the meter-level.

Figure 6.4 depicts a Bayes net structure for this simple example. Observe that
we are marginalizing out θ1, θ2, and θ3 from the graph for visual simplicity and we
are focused on inferring consumption values y1, y2, and y3 for buildings 1, 2, and 3,
respectively. We additionally observe consumption nA and nB for meters A and B,
respectively. We specify that meter A only has potential connections to buildings 1 and
2, and meter B only has the potential connections to buildings 2 and 3, as implied by
edges on the graph. mA models latent allocation weights for nA with respect to y1 and
y2, and mB models latent allocation weights for nB with respect to y2 and y3.

For this model, we explicity write .y1 =

[
y1,A
y1,B

]
, y2 =

[
y2,A
y2,B

]
, and y3 =

[
y3,A
y3,B

]
. It

follows that:

y⊺11 = y1,A + y1,B

y⊺21 = y2,A + y2,B

y⊺31 = y3,A + y3,B.

(6.16)

We can write the conditional distribution for p(y1, y2, y3 | x1, x2, x3, nA, nB,mA,mB;ϕ,
αb, βb) according to Eq. 6.17. Note that values for m3,A, m1,B, y3,A, and y1,B equal
zero, in line with the sparse connectivity implied by the graph.

p(y1, y2, y3 | x1, x2, x3, nA, nB,mA,mB;ϕ, αb, βb)

∝ p(y1, y2, y3 | nA, nB,mA,mB) ×
p(y1, y2, y3 | x1, x2, x3;ϕ, αb, βb)

= Multinomial
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m1,A
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0




 ×

Multinomial







0
y2,B
y3,B



∣∣∣∣∣∣
nB,




0
m2,B

m3,B




 ×

GaPo(y⊺11 | αb + a(x1;ϕ), βb + b(x1;ϕ)) ×
GaPo(y⊺21 | αb + a(x2;ϕ), βb + b(x2;ϕ)) ×
GaPo(y⊺31 | αb + a(x3;ϕ), βb + b(x3;ϕ))

(6.17)

Notably, the constraints inherent in the multinomial terms in Eq. 6.17 imply that:

y1,A + y2,A = nA

y2,B + y3,B = nB.
(6.18)
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Observing Eqs 6.16 and introducing ν as the fraction of y⊺21 read by meter A such that
y2,A = ν y⊺21 and y2,B = (1− ν) y⊺21, we can rewrite Eq 6.18 as:

y⊺11 + ν y⊺21 = nA

(1− ν) y⊺21 + y⊺31 = nB.
(6.19)

These equations have a straightforward and intuitive interpretation: the first equation
states that meter consumption nA is fully accounted for by the total consumption from
building 1 y⊺11 and a fraction of consumption from building 2 ν y⊺21. The second states
that meter consumption nB is comprised of the remaining share of consumption from
building 2 (1−ν) y⊺21 and the total consumption from building 3 y⊺31. The variable ν can
take any continuous value ranging from 0 to 1. Enumerating all discrete combinations of
y⊺11, y

⊺
21, y

⊺
31, and ν that satisfy these constraints defines the set of feasible consumption

values within our model. We also find it useful to add both constraints from Eq. 6.19
to obtain:

y⊺11 + y⊺21 + y⊺31 = nA + nB. (6.20)

The interpretation of Eq. 6.20 is straightforward: for our graph (or sub-graph) defined
by building 1, 2, and 3, and meters A and B, the sum of all consumption read at the
meter-level must equal that read at the building-level.

We visualize the constraints from Eq. 6.19 and Eq. 6.20 in Fig. 6.5. For a given
value of ν, the intersection of any two of the three constraints defines feasible values for
the total consumption of buildings 1, 2, and 3: y⊺11, y

⊺
21, and y

⊺
31. Notably in this figure,

because ν = 1.0, y⊺31 = n3 and is constant at that value over the whole feasible line on
the plot. It can also be noted that the constraint defined by Eq. 6.20 is visualized as a
simplex over y⊺11, y

⊺
21, and y

⊺
31 with axes intercepts at the values nA + nB.

We show that we can sweep over values of ν from 1.0, to 0.5, to 0.0, and visualize
the feasible region allowed by our model in Figs. 6.6 and 6.7.

Finally, we show in Fig. 6.8 that our feasible region comes out to be a subregion of
the simplex defined by Eq. 6.20. The geometry of this feasible region makes intuitive
sense. The value of y⊺11 can range from 0 to nA, as it may account for no consumption
(when building 2 instead accounts for all of meter A’s consumption), and it can account
for all of meter A’s consumption. Similarly, the value of y⊺31 can range from 0 to nB.
The value of y⊺21, on the other hand, can range from 0 to nA+nB. In the former extreme,
buildings 1 and 3 fully account for consumption read by meters A and B, respectively.
In the latter extreme, buildings 1 and 3 each account for zero consumption, leaving
building 2 to account for the total consumption on the graph.

For any subgraph with observed values of meter consumption, MH samples from our
posterior distribution via Algorithm 6.2 are constrained to feasible regions analogous
to that depicted in Fig. 6.8. We show that samples from many such subgraphs can be
employed to successfully train embedded neural networks.

Fig. 6.9 depicts LItLDF training over MH iterations for data in a synthetic experi-
ment. In this setup, we are visualizing feasible regions and corresponding MH samples



Figure 6.5: Constraints visualized when ν = 1.0. Given any two of the three constraints
from Eq. 6.19 and Eq. 6.20, the feasible region defines a line.

Figure 6.6: Constraints visualized when ν = 0.5. Sweeping over values of ν from 1.0 to
0.5 defines a feasible region on the plane as shown in light green.



Figure 6.7: Constraints visualized when ν = 0.0. Sweeping over values of ν from 1.0 to
0.0 defines the full feasible region on the plane as shown in light green.

Figure 6.8: The feasible region shown in green is a subregion of the simplex defined by Eq.
6.20.
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Figure 6.9: LItLDF training visualized over different MH iterations. Feasible regions and
corresponding MH samples from two different subgraphs with analogous building features are
visualized. The top row reflects iteration 0, the middle row iteration 30, and the bottom row
iteration 935. The left and right columns show the same plot but from views at different angles
to elucidate estimated posterior likelihoods via point clouds.
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from two different subgraphs as shown in Fig. 6.4 with analogous building auxiliary data
x1, x2, and x3. We can visualize these constraints on the same set of axes correspond-
ing to y⊺11, y

⊺
21, and y⊺31 because our NN-mediated conjugate mappings will predict

the same distribution p(yi|xi;ϕ, αb, βb) across subgraphs provided the same auxiliary
data values xi for i = 1, 2, 3. The top row in the figure reflects iteration 0, the middle
row reflects iteration 30, and the bottom row reflects iteration 935. The left and right
columns show the same plot but from views at different angles to elucidate estimated
posterior likelihoods p(yi|xi;ϕ, αb, βb) via point clouds. Throughout LItLDF training
as outlined in Algorithm 6.2 , we iteratively sample from our stationary distribution
conditioned on NN parameters ϕ and sequentially and separately optimize ϕ based off
of those samples. Assuming the true conjugate mapping between auxiliary features
and parameters describing building consumption values is smooth and continuous, we
expect to eventually converge to learned mappings that accurately characterize our
training data. At iteration 0 in Fig. 6.9, LItLDF reflects distributions p(yi|xi;ϕ, αb, βb)
concentrated around priors near the origin. At this iteration, our MH algorithm returns
distant samples projected onto the green and blue feasible regions. At iteration 30, the
LItLDF learns to improve its maximum likelihood objective function by characterizing
distributions reflecting high uncertainty. Finally, by iteration 935, the model learns
a more favorable conjugate mapping transformation that has higher likelihood values
centered around the feasible regions depicted.

■ 6.6 Neural Network Architectures and Parameter Settings

■ 6.6.1 MLP for Synthetic Data Experiments

We define a multilayer perceptron (MLP) architecture with a dense hidden layer of size
20 with ReLu activation and normal kernel initialization; a dense hidden layer of size
10 with ReLu activation and normal kernel initialization; and a dense output layer of
size 2 with ReLu activation and normal kernel initialization.

We parameterize our Bayes net with L = 20,000 plates and we use a NN learning
rate of 0.001. We training the MLP for 5 epochs every 10 MCMC samples. We use
a MH early stopping patience of 100 iterations. We repeat our experiments with 5
random restarts.

■ 6.6.2 Multi-input Neural Network for Building Demand Estimation

We implement a multi-input neural network. On the top branch, we use the ResNet50
architecture pre-trained on ImageNet [103] without the fully-connected layer at the
top of the network. We then add a 2D average pooling layer of size 7 × 7, flatten the
output, add a dense layer of size 256 with ReLu activation, a dropout layer with variable
dropout values, and a dense layer of size 4 with softmax activation.

On the bottom branch, we have a dense layer of size 20 with a normal kernel initial-
izer, ReLu activation, and variable kernel regularization values; a dropout layer with
variable dropout values; a dense layer of size 10 with normal kernel initializer, ReLu ac-
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tivation, and variable kernel regularization values; a dropout layer with variable dropout
values; and a dense layer of size 2 with normal kernel initializer, ReLu activation, and
variable kernel regularization values.

Image input of dimension 224× 224× 3 is provided to the top branch. vector input
with all other features z-score-normalized by feature and concatenated are provided to
the bottom branch.

Each of the branches are concatenated. Finally, we use a dense layer of size 4
with normal kernel initializer and ReLu activation before a dense output layer of size
2 with normal kernel initializer and softplus activation. We choose this architecture
as it represents a relatively basic multi-input structure that processes and concatenate
image feature tensor and general feature vector inputs.

■ 6.7 Results

In this section, we presents results using both synthetic data and real data for Rwandan
utility customers. We run our model on synthetic data so we can compare learned
functions with exact conjugate mappings. Such exact conjugate mappings cannot be
known in real data settings.

yl,1

Tx(xl,1)

yl,2

Tx(xl,2)

yl,3

Tx(xl,3)

φ

αb, βb

ml,A

nl,A

ml,B

nl,B

αl,A

αl,B

L

Figure 6.10: Bayes net reflecting graph structure of synthetic data experiments In
our simple synthetic data experiment, we model multiple plates, each with two meters and three
buildings connected as shown.
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■ 6.7.1 Synthetic data experiments

We employ a simplification of our general Bayes net in synthetic data experiments. As
shown in Fig. 6.10, we have L plates with corresponding connected subgraphs, each
with variables for two meters and three buildings.

(a) (b) (c)

(d) (e) (f)

Figure 6.11: Exact and learned nonlinear auxiliary data transformations. The exact
transformations corresponding to Eqs. 6.11b and 6.11e are shown in (a) and (d), respectively.
Corresponding function-informed optimization transformations are presented in (b) and (e),
and transformations learned via LItLDF are in (c) and (f).

The benefit of using synthetic data is that we engineer known conjugate mappings
T ∗
x (xl,i;ϕ) and compare them to our learned approximations Tx(xl,i;ϕ). In this ex-

periment, we present two exact transformations T ∗,1
x (xl,i) and T ∗,2

x (xl,i) and compare
performance across two models. The first transformation is presented below and de-
picted in Fig. 6.11a:

T ∗,1
x (xl,i) = [a∗(xl,i) b

∗(xl,i)]

a∗(xl,i) = 800 ∗ cos(0.125 xl,i) + 2000

b∗(xl,i) = 50

yl,i|xl,i ∼ GaPo(a∗(xl,i), b
∗(xl,i))

(6.21)



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.12: Learned nonlinear auxiliary data transformations for synthetic data ex-
periments over MH iterations. Plots a through l correspond to iterations 0, 10, 50, 230, 390,
450, 690, 820, 850, 900, 1500, and 2450 in order.
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Our second transformation is below and depicted in Fig. 6.11d:

T ∗,2
x (xl,i) = [n∗(xl,i) p

∗(xl,i)]

n∗(xl,i) = 100

p∗(xl,i) =
cos(0.125 xl,i) + 1

3
+

1

6
yl,i|xl,i ∼ Binomial(n∗(xl,i), p

∗(xl,i))

(6.22)

In these experiments, we compare the LItLDF model to what we call a function-
informed optimization model, which optimizes parameters of a function that is identical
in form to the exact transformation defined in Eq. 6.21 and similar in form to that
from Eq. 6.22:

T f
x (xl,i; ξ, ω, γ, ν) = [af (xl,i; ξ, ω, γ) b

f (xl,i; ν)]

af (xl,i; ξ, ω, γ) = ξ cos(ω xl,i) + γ

bf (xl,i; ν) = ν

yl,i|xl,i ∼ GaPo(af (xl,i; ξ, ω, γ) b
f (xl,i; ν)).

(6.23)
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Figure 6.13: Error metrics by synthetic dataset and model. Negative log likelihood is
presented in plot (a), and absolute percentage error is presented in plot (b).

In this experiment, we set L = 20, 000 to ensure that our models have enough
data to learn from. Figures 6.11b and 6.11e reflect learned transformations from our
function-informed optimization model (Eq. 6.23) corresponding to data generated by
Eqs. 6.21 and 6.22, respectively. For a comparison, we employ the LItLDF model with
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a basic MLP NN architecture and parameters as described in Appendix 6.6.1. Figures
6.11c and 6.11f reflect learned transformations from the LItLDF model corresponding
to data generated by Eqs. 6.21 and 6.22, respectively. Fig. 6.12 depicts learned LItLDF
auxiliary data transforms as a function of MH iteration corresponding to data generated
by Eq. 6.21.

We present error metrics corresponding to Fig. 6.11 by negative log likelihood (NLL)
in Fig 6.13a and by absolute percentage error (APE) in 6.13b. The x-axes correspond to
the synthetic dataset that is used and the coloring corresponds to model. As expected,
function-informed optimization has favorable error metrics relative to LItLDF as it
is advantaged by its functional form being the same or nearly the same as the true
generating distributions.

For model checking, we compare our posterior predictive distribution conditioned
on auxiliary data p(ytest|xtest;ϕ) as defined in Eq. 6.11 with the posterior predic-
tive distribution conditioned on auxiliary data and observed meter consumption values
p(ytest|xtest, ntest;ϕ).

Figure 6.14a is a histogram qualitatively showing values for p(ysamp|xtest;ϕ) where
ysamp ∼ p(y|xtest, ntest;ϕ) for our synthetic experiment employing the LItLDF model
and gamma-Poisson likelihood function. The near-uniform shape of the histogram sug-
gests that the learned distribution p(y|xtest;ϕ) is a close approximation to that informed
by consumption allocation constraints p(y|xtest, ntest;ϕ).

(a) p(ysamp|xtest;ϕ) where ysamp ∼ p(y|xtest, ntest;ϕ)

Figure 6.14: Model checking results for synthetic experiment. The near-uniform shape
of the histogram suggests that the learned distribution p(y|xtest;ϕ) is a close approximation to
that informed by consumption allocation constraints p(y|xtest, ntest;ϕ).

■ 6.7.2 Rwanda Demand Estimation Case Study

In this section, we apply the LItLDF model to the problem of electric load allocation
and demand estimation for Rwandan consumers using the data described in Section 6.3
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and the NN architecture described in Appendix 6.6.2. We compare two experimental
setups: one with the full LItLDF model with connected subgraphs as depicted in Fig.
6.15a and another with the LItLDF model constrained to train using nearest neighbor
matches as shown in Fig. 6.15b. The former experimental setup (corresponding to the
“LItLDF model”) employs our default assumption that meters must allocate load to
buildings within 40 meter proximity; in this setup, meters and buildings share a many-
to-many relationship. The latter setup (corresponding to the “Nearest Neighbor-LDF
model”) assumes that meter consumption is matched to its nearest building so long as
it is within 40 meter distance of the electricity meter. If many meters are connected to
a single building, their corresponding consumption values are summed. In this setup,
each meter is connected to at most one building.
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Figure 6.15: Example meter-building connections contrasting experimental setups. The
example in (a) depicts our typical setup, modeling many-to-many building-meter connections
within 40 meter radii of meters. The example in (b) depicts meters being matched to its single
nearest building within 40 meter proximity.

Train, validation, and test sets are used for model fitting, hyperparameter tuning,
and performance evaluation. They are computed as described in Appendix 6.4. Be-
cause of the inherent ambiguity in our ground truth data regarding buildings-meter
connections, computing traditional error metrics is not possible at the building-level.
We instead choose to analyze total predicted building consumption values for connected
subgraphs in our analysis. Ground truth values are computed by summing all meter
consumption at the connected subgraph-level. Predicted values are computed by sum-
ming predicted building-level consumption for all buildings belonging to the connected
subgraph using posterior predictive means given only auxiliary data as defined in Eq.
6.11. Notably, this distribution only employs building-level auxiliary data and our
learned NN transformations; after predicting conjugate mapping values using the NN,
inference follows in closed-form. Figure 6.16 provides four views for comparing error
metrics for total consumption on connected subgraphs between the LItLDF model and
the Nearest Neighbor-LDF model across all test subgraphs for hyperparameter-optimal
models. Fig. 6.16a depicts a simple comparison of estimation consumption vs total
consumption. Fig. 6.16b displays absolute log error (base 10) metrics via a box and
whisker plot. Fig. 6.16c illustrates absolute error vs total consumption. And Fig. 6.16d
outlines absolute log (base 10) error vs total consumption.

Finally, Fig. 6.17 depicts a histogram qualitatively showing model checking results
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for p(ysamp|xtest;ϕ) where ysamp ∼ p(y|xtest, ntest;ϕ) for Rwanda test data employing
the LItLDF model . The non-uniform shape of the histogram suggests that the learned
distribution p(y|xtest;ϕ) is only a rough approximation to that informed by consumption
allocation constraints p(y|xtest, ntest;ϕ).
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Figure 6.16: Error metrics at the connected subgraph-level for Rwanda data. Because
no building-level ground truth data is available, we plot error metrics at the connected subgraph-
level. (a) estimation consumption vs total consumption (b) absolute log error (base 10) metrics
via box and whisker plot, (c) absolute error vs total consumption, and (d) absolute log (base
10) error vs total consumption.



Sec. 6.7. Results 127

(a) p(ysamp|xtest;ϕ) where ysamp ∼ p(y|xtest, ntest;ϕ)

Figure 6.17: Model checking results for Rwandan data. The non-uniform shape of the
histogram suggests that the learned distribution p(y|xtest;ϕ) is only a rough approximation to
that informed by consumption allocation constraints p(y|xtest, ntest;ϕ).

■ 6.7.3 Comparison to Fobi et al. in Kenya

In this section, we provide results comparing the LItLDF model to that those provided
by Fobi et al. [108] for a dataset in Kenya with 33,445 meters, as described in Sec. 6.3.
Notably, we use the entire Kenya dataset as a ‘test set;’ we do not train or fine-tune the
LItLDF model on any data outside of the Rwanda training data described. The Fobi et
al. model benefits from being trained and validated in Kenya. Outputs from the Fobi
et al. model are made available via API for aggregated 250 meter-resolution grid-cells.
For these grid cells, the authors provide estimated counts of low- and high-demand
customers, where low-consuming customers are categorized as having between 0-30
kWh monthly consumption and high-consuming customers are categorized as having
that above 60 kWh.

To compare models, we compute subgraphs of potentially connected meters and
buildings, as described in Sec. 6.4 and compare actual with estimated demand across
subgraphs. Observed subgraph consumption is computed by summing all of the his-
torical electricity consumption for every meter on the subgraph. We then use LItLDF
model to compute electricity demand for all buildings within the subgraph. Finally,
we employ the Fobi et al. API to compute estimated consumption for each building
in the subgraph and sum the estimates. Because Fobi et al. provides counts of low-
and high-consumers for each building location, we use those shares to compute lin-
ear combinations of reference low- and high- consumer values defining consumption for
an average building on the subgraph. We use empirical medians and means from the
KPLC dataset in 2018 to inform low- and high-consumer reference values. Using me-
dians, the low- and high- consumer reference values are 11.83 kWh/month and 111.58
kWh/month, respectively. Using means, the low- and high- consumer reference values
are 12.74 kWh/month and 306.19 kWh/month, respectively.
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Analogously to the comparisons that we present in Sec 6.7.2 and Fig. 6.16, we
present comparisons between the LItLDF model and the Fobi et al. model for the
Kenya dataset in Fig. 6.18. Notably, the LItLDF model systematically shows the most
favorable error metrics across absolute log error and absolute error metrics.

■ 6.7.4 Map Interfaces and Working with Decision-Makers

Fig. 6.19 shows a web map visualization tool that we’ve developed to allow users to
explore our inferences. Note that individual buildings are colored by point-estimates,
interpreted as the means of our probability distributions. If a user clicks on a building,
a distribution of its inferred consumption is rendered in the top right of the window.

■ 6.8 Discussion

In this section, we discuss implications of both the synthetic experiments presented in
Sec. 6.7.1 and the Rwanda case study from Sec. 6.7.2. The synthetic experiments
inform discussions about the feasibility of learning in our model and three contrasting
sources of uncertainty. The Rwanda case study informs discussion about empirical
error metrics and trends, and benefits afforded by probabilistic methods for electricity
planning applications.

■ 6.8.1 Estimating building-level consumption without observing building-
level consumption

As discussed in Sec. 6.7.1, we run experiments employing synthetic data with 1-
dimensional values for xl,i, and we compare two methods: the LItLDF model and
function-informed optimization (FIO) model. The FIO model is advantaged because it
is provided an ‘ideal’ functional form which matches the functions employed for data
generation as closely as possible. In contrast, the LItLDF model has no such knowledge
of the data generating function’s form. In Fig. 6.11 and 6.14, we qualitatively show com-
parable results between the conjugate mapping functions learned between the LItLDF
model and the FIO model, and the exact conjugate mapping functions. This demon-
strates that given enough samples, the probabilistic constraints encoded in our Bayes
net and the inference algorithm used provide enough information to learn non-linear
relationships between values of xl,i and yl,i via conjugate mapping functions. Further,
the fact that the LItLDF model learns comparable functions demonstrates that the NN
model employed is flexible enough to learn complex mappings without any information
about what that function may be. The relative success of these experiments engen-
ders confidence that we can estimate building demand without ever directly observing
building-level consumption during training: only meter-level consumption is required.



(a) (b)

(c) (d)

Figure 6.18: Error metrics at the connected subgraph-level for Kenya data. We com-
pare the LItLDF model trained in Rwanda to modified versions of the Fobi et al. (eGUIDE)
model, employing “median” and “mean” demand assumptions, as described in the text. Indi-
vidual plots reflect (a) estimation consumption vs total consumption (b) absolute log error (base
10) metrics via box and whisker plot, (c) absolute error vs total consumption, and (d) absolute
log (base 10) error vs total consumption. Note the faint non-linear scatterplot trends visible in
plots (c) and (d) represent subgraphs for which the Fobi et al. API reports zero consumption.
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Figure 6.19: Geospatial map of our building-level consumption prediction. We are
able to infer building-level consumption for every building in Rwanda, display point-estimates
on a map, and allow users to view poster distributions for any building they select.

■ 6.8.2 Three sources of error

The relative performance metrics plotted in Fig. 6.14 help to elucidate three key sources
of error: (1) uncertainty inherent in the true data generating distribution, (2) the
learned conjugate mapping transformations, and (3) the distributional assumptions
used when modeling.

When employing gamma-Poisson-distributed synthetic data, the median negative
log likelihood (NLL) value for the LItLDF model is 3.09 while it is 2.98 for the FIO
model. The median absolute percentage error (APE) value for the LItLDF model is
6.4% while it is 5.1% for the FIO model. In this experimental setup, the FIO model’s
positive median NLL and median APE values correspond to (1) the error arising from
inherent unceratinty in the true data generating distribution. Even a maximally ad-
vantaged model demonstrates some error as a result of the stochastic nature of these
distributions as shown in Fig. 6.11a and 6.11d. The discrepancy between the two sets of
error metrics for the LItLDF and FIO models demonstrates error directly attributable
to (2) the approximate nature of the NN transformations learned during LItLDF train-
ing. Using the FIO model as our limiting case for how well we can possibly learn a
conjugate mapping function, gaps between LItLDF and FIO error metrics are explained
by errors introduced by the use of NN transformations.

We employ a similar set of experiments using Binomial-distributed synthetic data
to additionally introduce error from a mismatch between ‘true’ noise distributions and
modeled noise distributions. While we cannot directly compare results from our models
employing Binomial-distributed synthetic data with those employing gamma-Poisson-
distributed synthetic data because of differences in how we parameterize the distribu-



Sec. 6.8. Discussion 131

tions, we can reason about the relative performance of the LItLDF and FIO models.
When employing Binomial-distributed synthetic data, the median NLL value for the
LItLDF model is 3.26 while it is 3.08 for the FIO model. The median APE value for
the LItLDF model is 5.1% while it is 3.8% for the FIO model. The increased dis-
crepancies between these two sets of values relative to those observed when fitting to
gamma-Poisson-distributed synthetic data exemplifies the increased difficulty of learn-
ing NN transformations when there is a mismatch between ‘true’ and modeled noise
distributions. This highlights the need for (3) accurate distributional assumptions when
modeling.

■ 6.8.3 Rwanda case study: relative error decreases as total consumption
increases

In Section 6.7.2, we present results comparing the “LItLDF model” with the “nearest
neighbor-LDF model” applied to Rwandan consumers. In this section, we discuss the
magnitude of log error values, compare performance between the LItLDF model with
the nearest neighbor-LDF model, and analyze trends observed pertaining to error as a
function of total subgraph consumption.

As shown in Fig. 6.16b, the median absolute log error (base 10 ) value across all
subgraphs for the LItLDF model is 0.33, implying that errors typically range on the
order of one third an order of magnitude in either direction. In Sec. 6.8.2, we identify
three potential sources of error: (1) uncertainty inherent in the true data generating
distribution, (2) the learned conjugate mapping transformations, and (3) the distri-
butional assumptions used when modeling. We believe (1) and (2) represent major
contributors to the error that we’re observing: when analyzing at individual building-
levels, there is an inherent limit to how informative remotely sensed information can
be; electricity-consuming activities happening behind closed doors cannot be directly
observed and there is significant natural variance as to what loads different buildings
have, especially considering the diversity of consumer types and economic activity hap-
pening across communities. There’s also a limit to how well our NN models can extract
relevant information about building consumption from a complex set of auxiliary data
inputs.

Further, the non-uniform model checking histogram as shown in Fig. 6.17 suggests
that (2) and (3) combine so that our distribution for p(y|xtest;ϕ) has does not well-
match our distribution p(y|xtest, ntest;ϕ). An ideal uniform histogram in Fig. 6.17
would suggest that distribution p(y|xtest;ϕ) matches our posterior distribution account-
ing for consumption allocation constraints p(y|xtest, ntest;ϕ). If this were the case, it
would imply that provided information about building features alone, information about
meter-consumption is redundant in our model. In our case, our histogram reflects a
distribution that is skewed towards values of p(y|xtest;ϕ) within the range 0.1-0.2. This
suggests that learned distributions for p(y|xtest;ϕ) are conservative with regards to the
level of certainty they convey, and that our distributional assumptions exemplify mod-
erate levels of systematic bias.
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Figure 6.16b also illustrates large discrepancies between the performance of these
two methods in predicting total consumption on connected subgraphs. These results
suggest that explicitly modeling uncertain meter-building connections using probabilis-
tic models can significantly improve accuracies. The median absolute log error value
across all subgraphs for the LItLDF model is 0.33 while it is 1.10 for the nearest
neighbor-LDF model. This discrepancy relates directly to conflicting assumptions used
in setting up our nearest neighbor-LDF model input data and our task of comparing to-
tal consumption on connected subgraphs. Specifically, the nearest neighbor-LDF model
trains using only a subset of the total building connections within 40 meter radii of me-
ters, as depicted in Fig. 6.15b. All else equal, when consumption for all buildings is
inferred within 40 meter radii of meters on connected subgraphs, the total consumption
is multiplied by a factor roughly equal to the ratio of nearest neighbor buildings to non-
nearest neighbor buildings. Given the inherent noise in our meter geolocations dataset
and the unknown connectivity between meters and buildings, allocating all meter-level
consumption to its nearest neighbor building proves to be an overly-strong assumption.

Lastly, we discuss the error metric trends as a function of total consumption on a
connected subgraph. In Fig. 6.16c, we show increasing absolute error as total con-
sumption increases on a kWh/month basis. This may be expected, as larger potential
consumers likely have more heterogeneity and higher variance consumption. Never-
theless, in Fig. 6.16d we observe significant negative correlation between absolute log
error for estimates as subgraph total consumption grows. When looking at the LItLDF
model’s trend line, absolute log error for total consumption on a subgraph decreases
from typical values over 0.50 to 0.25 as total consumption on the subgraph grows from
10 kWh/month to over 1000 kWh/month. The absolute log error metric normalizes
for consumption and this trend implies that relative error actually decreases as total
consumption grows. These results suggest that it may be easier to extract order-of-
magnitude information about high-consuming loads from remote sensing data than
about low-consuming loads. While we do not have the requisite building-level data to
test this directly: as subgraphs with high total consumption are generally also sub-
graphs that have more buildings, this trend may reflect the “law of large numbers.”
Uncertainty for the total consumption across multiple buildings decreases as the num-
ber of elements being summed increases. This result suggests that we can expect more
accurate predictions over larger, aggregated areas than what we show for individual
buildings.

■ 6.8.4 Kenya case study: comparing the LItLDF model to the eGUIDE
model with assumptions

In this section, we discuss results from Sec 6.7.3, depicting error metric comparisons
between the LItLDF model and the Fobi et al. (eGUIDE) model with different assump-
tions about demand multipliers for low- and high-demand consumers. The LItLDF
model systematically shows the most favorable error metrics across absolute log error
and absolute error metrics, regardless of what set of multipliers are chosen for the Fobi
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et al. model. The median absolute log error metric for the LItLDF model was 0.62,
while it was 1.04 for the Fobi et al. model assuming median demand multipliers, and
it was 1.38 for the Fobi et al. model assuming mean demand multipliers.

We note that these errors are relatively high for all models. Compared to the LItLDF
model trained on Rwanda data, and applied to held-out Rwanda data, the log error for
the LItLDF tested on Kenya data is notably higher. The former log error is 0.33 while
the latter is 0.62. This is very likely due to generalization error: the LItLDF model
employed not trained on any Kenya data. Future experiments are planned to show how
training in multiple contexts can improve generalization capabilities.

When comparing to Fobi et al., we recognize that the model is disadvantaged when
brought into our setting. Even though Fobi et al. trained on other Kenya Power
and Lighting Company datasets in Kenya, the model’s results have been processed a
number of times, likely degrading quality. First, the Fobi et al. model is really a
building-level classification model. We convert it to a regression model by applying
class multipliers as described in Sec. 6.7.3. Secondly, we recognize that the model
actually provides building-level estimates; however, its output are first aggregated to
250 meter grid cells, then disaggregated back down to the individual building-level, as
described in Sec. 6.7.3. Finally, the Fobi et al. model does not differentiate between the
concept of a meter (customer) and the concept of a building as our model does. Because
of this, disaggregating Fobi et al. results to the individual buildings might overstate
consumption, if there are more buildings in our buildings dataset than customers that
Fobi et al. would otherwise recognize.

■ 6.8.5 Probabilistic estimates enhance decision-making

In this section, we discuss the probabilistic nature of our estimates and how they provide
key benefits for our application. Unlike models that provide only point estimates, the
distributions provided reflect the inherent uncertainty in the predictions. Measures
such as variance or entropy serve as proxies for describing this uncertainty. The value
of this uncertainty quantification is evident when these predictions are used for decision-
making. In applications such as electrification planning, well-founded decisions are not
solely based on most-likely outcomes but also on the uncertainty associated with those
outcomes. This is because uncertainty is a key factor when determining risk. For
electrification planning, a prediction accompanied by high uncertainty may warrant a
more conservative approach. All else equal, a planner may wish to err on the side
of under-investing and building in more flexible ways to minimize the risk of wasted
resources. A prediction with high certainty may justify a more aggressive investment
approach as the risk of wasted resources is diminished and outweighed by expected
benefits from economies of scale.

Key properties of the gamma-Poisson posterior predictive distribution chosen for our
application are also made apparent in Fig. 6.17, including that the posterior predictive
exemplifies a ‘long tail’ distribution. This is fitting for our application as we are mod-
eling both commercial & industrial (C&I) consumers and residential consumers, and
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that some C&I consumers have orders of magnitude greater electricity demand than
ordinary residential consumers. If there is any ambiguity in differentiating C&I con-
sumers from residential consumers, we would need a long-tailed distribution to reflect
tail probabilities of outsized demand.

The provision of probabilistic predictions also enables the use of Monte Carlo simu-
lation techniques. These can be particularly useful when pairing demand estimates with
technoeconomic planning models. In the context of electrification planning, decision-
makers can draw multiple samples from the posterior predictive distributions provided
and simulate a variety of possible demand scenarios. By running technoeconomic mod-
els using these simulations, decision-makers can model the likely range of outcomes and
propose strategies that are robust to uncertainties in the predictions.

The probabilistic nature of our Bayesian model provides a richer, more nuanced
view of predictions than traditional deterministic models providing point-estimates.
Given the high uncertainty inherent in building-level demand estimation, we argue that
probabilistic output is critical. While the test estimates we present in Section 6.7.2
reflect high median error metrics, we believe our probabilistic outputs mitigates the
risk of misinformed decision-making while enabling a level of insight not previously
available.

■ 6.9 Conclusion

The global community is projected to fail in achieving the United Nations’ goal of
universal access to affordable, reliable, sustainable, and modern electricity by 2030.
This is ultimately due to inadequate levels of expenditure comprised of both capital
investment and operations and maintenance (O&M) costs. Efforts to right-size infras-
tructure investments promise improved efficiency: right-sized infrastructure yields more
connections with better reliability for every dollar invested. Recent research shows that
technoeconomic planning models show significant sensitivity to both aggregate levels of
electricity demand and the spatial distribution of demand. Improved characterizations
of consumer types are shown to decrease costs and yield plans that more efficiently
serve populations of interest [105].

The significance of this work is enhanced because the literature on high spatial
resolution electricity demand forecasting in low-access and low-reliability countries is
sparse. The primary reason for this likely relates to poor availability of electricity
consumption datasets at high spatial resolutions for these regions. By generalizing our
results, we are able to provide demand estimates in addition to characterizations of
inference uncertainty for individual buildings in regions for which no measured data
exists or can be accessed. Towards these ends, we develop a novel and state-of-the-art
probabilistic machine learning framework for providing estimates based on globally-
available features at high-spatial resolutions. These models can then be employed across
multiple country and continent contexts. While numerous sources of error make this
application difficult, we demonstrate that by explicitly modeling unknown building-
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meter relationships and by providing probabilistic estimates enabling frameworks for
decision-making under uncertainty, our model provides novel potential value towards
an important global challenge.

■ 6.10 Future work

For future work, we advise:

• Add additional features as described in the future work section of Ch. 5.

• Perform feature sensitivity analyses using automatic differentiation.

• Perform sensitivity analyses running LItLDF with different distance criteria for
mapping meters with potentially connected buildings. This will allow us to inves-
tigate sensitivities to our current 40m proximity assumption.

• Do additional tests across different countries across the African continent. This
will allow us to understand model generalization to new countries for which we do
not have historical meter consumption data.

• Test performance with and without high-res satellite image features.

• Investigate the use of employing very large regions like country-, district-, and
village-level historical consumption labels during training. Incorporate estimates
of electricity access (e.g. from the BEACON model in Ch. 5) to filter out non-
electrified buildings from those demonstrating historical demand from historical
labels at aggregate-levels.

• Run LItLDF at continent-scales to inform electrification planning at those scales.
Develop methods to ensure generalization uncertainty is adequately characterized
in such LItLDF models lacking historical consumption data.

• Extend the number of applications modeled using the LItLDF model. Heating
demand and income (GDP) may be similar in nature and can be tested.

• A limitation of our LItLDF analyses is that we are unable to validate our methods
at the building-level. All of our observations are made at the meter-level, and
because we model many-to-many relationships mapping buildings and meters, we
are only able to validate our model at more aggregated scales (for connected sub-
graphs). Collecting true building-level demand would allow us to better validate
our model and the empirical performance of our approach allocating buildings to
meters.

• Run hyperparameter optimization over other possible neural network architec-
tures.
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Chapter 7

Conclusions

■ 7.1 Thesis Overview

This thesis explored the use of high-resolution and large-scale technoeconomic models,
expanded data resources to applications, and novel machine learning systems to global
energy poverty problems. The work presented has demonstrated the value of these
tools in optimizing electricity infrastructure planning towards improved development
outcomes. We have focused on two key areas of planning: characterizing electricity
access rates and electricity demand, both of which are critical to effectively planning
our future energy systems.

In Chapter 3, we highlighted the importance of accurate demand forecasting in
infrastructure planning. Utilizing technoeconomic models, we identified substantial cost
variations depending on the accuracy of demand estimations, reinforcing the significance
of continual efforts to improve demand forecasting methodologies. Additionally, the
chapter emphasized the crucial role that consumer diversity plays in infrastructure
planning, demonstrating the need for more granular modeling approaches that capture
the complex dynamics of diverse consumer bases.

In Chapter 4, we employed machine learning for probabilistic data fusion to forecast
annual electricity demand at the country-level. The development of this novel forecast-
ing tool, which considers backtesting and nested cross validation frameworks, offers a
notable contribution to improving demand forecasting accuracy.

Chapter 5 introduced the use of machine learning for probabilistic data fusion in
estimating building-level electricity access rates. The developed model offered notable
improvements in accuracy compared to existing methodologies, suggesting a promising
avenue for future research. The ability of our model to provide explicit uncertainty
quantification offers a foundation for more robust decision-making.

Finally, in Chapter 6, we presented a novel approach for estimating building-level
electricity demand using neural network-embedded probabilistic graphical models. Ac-
counting for a complex data landscape with noisy meter geolocation data and many-to-
many relationships between meters and buildings, the model shows significant promise
in its ability to extract valuable information and produce principled demand estimation.

137
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■ 7.2 Contrasting with an ‘Ideal’ System for Estimating Demand

While this thesis demonstrates improvements to the state-of-the-art in estimating elec-
tricity demand in LMICs, our methods are characterized by a number of limitations
related to data constraints.

First, we treat historical consumption as noisy observations of true electricity de-
mand. In doing so, we make the implicit assumption that demand is independent of
price (i.e. demand is perfectly price inelastic) and reliability. We know that this isn’t
true in reality. Consumers are likely to consume less electricity if prices increase or re-
liability decreases. Adding price and reliability into our model was not feasible because
we were not able to collect adequate observations of either quantity, especially at the
individual consumer-level. Reliability data of the type we require would likely neces-
sitate more sophisticated and widespread data logging than what our utility partners
had deployed. While price information may be inferred from available consumer types,
known tariff values, and inflation metrics, its utility for us was limited by the fact that
the datasets we used had very little price heterogeneity. To get enough variance in
prices for us to model the impact of price on demand, we require data from many more
partners.

Data limitations also played a role in our decision not to try to forecast the tem-
poral evolution of building-level demand via the LItLDF model. Additional research
could be performed to forecast this quantity provided improved time-series data about
meter-level consumption. For electrification planning, however, uncertainty extends be-
yond the temporal evolution of demand for existing buildings. An additional challenge
relates to migration, or the geospatial uncertainty in the temporal evolution of building
footprints across societies. More research is needed to predict how societies are likely to
evolve: which cities will become more densely populated, where will societies expand,
and what areas may become less populated.

■ 7.3 Towards Improved Demand Estimates and Forecasts

We think modeling the impact of reliability and price on demand may be both impactful
and feasible as next steps for improving the content of demand estimation methodologies
like LItLDF. Researchers may soon be able to gather enough data to incorporate price
and reliability into demand estimation models. There are some companies (e.g., nLine,
etc.), that are now deploying sensors en masse for auditing grid reliability in different
African countries. Additionally, with more grid data, researchers will also be able
to analyze the likely impact of electricity price on demand. Treating reliability and
price as input features, a researcher retraining and employing LItLDF could estimate a
given consumer’s likely increase in demand if reliability were to be improved and they
would also be able to estimate their specific price electricity of demand. These analyses
could inform generation capacity investment and tariff rate adjustment decisions at very
granular scales with potentially significant benefit to both consumers and utilities.

Forecasting building-level demand may also be straightforward provided adequate
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time series data. Combining elements of the AMPED model with the LItLDF model
would allow such capabilities. Nevertheless, modeling the temporal evolution of build-
ing footprints across societies is likely a more challenging and uncertain task. Getting
historical building footprint data may be possible via mutli-temporal high-resolution
satellite imagery and predicting migration patterns may be possible; however, doing
so with adequate accuracy for planning over mutli-year time horizons will likely be a
challenge. Though forecasting the evolution of demand at high levels of spatial granular-
ity presents relatively more challenges, planning future energy systems would certainly
benefit from such forecasts, even if they are uncertain.

While the task of providing universal access to affordable, reliable, and sustainable
energy in line with the United Nations Sustainable Development Goal #7 remains,
the methods and studies presented herein make notable advances and provide concrete
and actionable tools that can be further developed and deployed across all low- and
middle-income countries worldwide.
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