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Abstract

Battery systems have become crucial components in many modern technological so-
lutions. Battery balancers are among the most important parts of these systems
because they play a significant role in the battery’s lifespan and performance. A
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Chapter 1

Introduction

With the latest trends towards electric vehicles and renewable energy storage, battery

systems have continued to play an important role in the modern technological land-

scape. Many batteries are made up of multiple small cells in series (a battery with 𝑁

cells is referred to as an NS battery) whose charge is nominally identical. However,

due to manufacturing tolerances and temperature differences, when a battery pack

is placed into operation, different cells in the system can discharge at different rates.

This causes the state of charge (SOC) in the cells to differ, which can reduce the

lifespan of the battery since some cells can overcharge or undercharge. Thus, battery

balancing circuits are needed for batteries with greater longevity [2].

There are two primary ways of balancing: passive and active. Passive balancing

involves removing excess charge from cells by using resistors. This means dissipating

energy away as heat until the charge of higher SOC cells matches the charge of

lower SOC cells in the battery pack. These balancers are simple and cheap, but are

extremely inefficient as they bring high energy losses. Active balancing is much better

in this regard since it involves moving charge from higher energy cells into lower energy

cells. The main trade-off with active balancers is usually complex control circuitry.

There are many topologies for active balancing including capacitive, inductive, and

transformer based. This thesis will work primarily with capacitive-based balancing

topologies [3].
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1.1 Background

1.1.1 Batteries

Batteries are electrochemical devices that store and provide electrical energy for vari-

ous applications. They are used in a wide range of devices, from small electronics like

cell phones and laptops to larger applications like electric cars and power grids. The

invention of the modern battery is often attributed to Alessandro Volta, who created

the first true battery in 1800 [24].

Figure 1-1: Alessandro Volta with two of his inventions: the electric battery (left)
and the electrophorus [22].
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Batteries consist of one or more cells, which are units that convert chemical energy

into electrical energy. Each cell contains an anode, a cathode, and an electrolyte.

The anode is the negative electrode,and the cathode is the positive electrode. The

electrolyte is the medium that allows the flow of ions between the anode and cathode.

When a battery is connected to a circuit, a chemical reaction occurs in the cell that

creates a flow of electrons, which generates an electrical current in the circuit [24].

Figure 1-2: Battery Cell Diagram [23]

Figure 1-3: Lithium iron phosphate cell (LiFePO4 battery)

There are many different types of batteries, including alkaline, lead-acid, nickel-

cadmium, and lithium-ion. Each type has its own unique characteristics, such as

energy density, voltage, and lifespan [28]. Rechargeable batteries, also known as

secondary cells, can be recharged and used multiple times, while non-rechargeable

batteries, also known as primary cells, can only be used once and must be disposed

of afterwards.

19



1.1.2 Battery Balancing

Figure 1-4: Battery state of charge in various balancing modes [25]

Passive and active battery balancing are two different techniques used to balance

the state of charge (SOC) of individual cells in a battery pack. The main differences

between passive and active battery balancing are [2, 3]:

Passive Battery Balancing:

• Dissipates excess charge from higher SOC cells through a bleed resistor or bypass

route

• Simple and cost-effective to implement

• May result in energy losses and heat generation due to the dissipation of excess

charge

• Does not redistribute charge between cells during the charging and discharging

cycle

Active Battery Balancing:

• Redistributes charge between cells during the charging and discharging cycle

• Utilizes inductive or capacitive charge shuttling to transfer charge between cells

• More complex and expensive to implement compared to passive balancing

20



• Increases system run-time and charging efficiency by utilizing excess charge from

higher SOC cells

Both passive and active battery balancing techniques have their advantages and

disadvantages [2, 3]. The choice of balancing technique depends on factors such as

the battery chemistry, desired balancing accuracy, power handling capability, and

cost considerations. The remainder of the thesis will focus on a subset of active

balancing techniques, namely capacitive based balancing in the form of switched-

capacitor converters.

1.1.3 Switched-Capacitor Converters (SCC)

Switched capacitor converters are a fundamental building block of analog integrated

circuit design [16]. They are electronic circuits that use capacitors to transfer charge

when electronic switches are turned on and off. These circuits are used for a variety

of applications, including voltage conversion and energy transfer. SCC have several

trade-offs when compared to magnetic-based converters including:

Advantages of switched capacitor converters [8, 13]:

• Smaller size and lower weight due to the absence of magnetic components

• Higher efficiency at low power levels

• Easier to integrate into a chip due to their simple structure and lower output

power requirements

Disadvantages of switched capacitor converters [8, 10]:

• Lower efficiency at high power levels

• Limited output power because of the limited charge transfer capability of ca-

pacitors

• Higher output voltage ripple due to the discrete nature of the capacitor charge

transfer
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• Limited frequency range due to component parasitics

Overall, switched capacitor converters are ideal for low-power applications, where

size and weight are critical, and efficiency is more important than output power.

However, for high-power applications, magnetic-based converters are preferred due to

their higher efficiency and power handling capabilities.

1.2 Current Gaps in Literature

There is extensive analysis and study dedicated to 2S SCC balancers [7, 10, 11, 20,

21]. However, improvements can be made in low-entropy modeling of and theoretical

insight into the behavior of higher order SCC balancers [18, 27, 30, 32, 33]. The

author envisions an impedance-based approach to modeling of higher order balancers

to yield balance time constants for every battery cell and gain intuition on how each

cell voltage waveform evolves over time. The author believes that this can be achieved

through the application of clever circuit techniques [6, 17, 19]. Lastly, there also seems

to be some SCC balancer topologies that remain undiscovered.

1.3 Thesis Contributions

The shortcomings in the current state of SCC battery balancing as outlined in Sec-

tion 1.2 presents opportunities for theoretical insights and improvement of practical

circuit design. This thesis aims to address some of these gaps through the following

contributions:

1. Insights into modeling and analysis of higher order balancers. A potential path-

way to an analytical solution is shown.

2. Presentation of a new SCC balancing topology

3. Practical implementation of the latter.
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1.4 Thesis Outline

The goal of this thesis is to address some of the gaps in SCC battery balancing circuits.

In Chapter 2, we describe the modeling and analysis of these circuits starting from

their fundamental building block: the canonical 2S SCC battery balancer. We perform

a static and dynamic analysis on this balancer, deriving an average model of circuit

behavior to gain intuition into its operation and to drive practical design methodology.

This model is then generalized for higher order balancers. Additionally, a pathway for

theoretical insights and meaningful analytical solutions are discussed. The chapter

will also introduce a new balancing topology. Chapter 3 applies the derived models

on various SCC topologies to compare their balancing times. In Chapter 4, we build

three practical SCC battery balancers, the final one being our proposed balancer

topology. Experimental results, practical design considerations, and part selection

are also provided. Chapter 5 closes this thesis with conclusions on the modeling,

analysis, and design of SCC battery balancers. We also present opportunities for

future investigations.
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Chapter 2

Modeling and Analysis of

Switched-Capacitor Battery

Balancers

2.1 Canonical 2-Cell SCC Balancer

The fundamental building block for all SCC balancer topologies is the canonical

switching cell. It is comprised of two switches: one connected to the negative terminal

of the battery cell, and the other connected to the positive terminal. This canonical

switching cell connects to an energy tank (usually comprised of capacitors and/or

inductors), which transfers charge efficiently from higher energy cells to lower energy

cells.

Figure 2-1: Canonical Switching Cell
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All SCC battery balancers are essentially energy tanks interfacing with each

switching cell such that the average voltage of the cells in aggregate is imparted

as a steady state voltage constraint on all 𝑁 cells: lim
𝑡→∞

𝑉𝑐𝑒𝑙𝑙,𝑛(𝑡) =
𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑁
(see Fig.

2-2) where 𝑉𝑐𝑒𝑙𝑙,𝑛 is the voltage of the 𝑛th cell and 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the battery voltage. One

way to prove this equilibrium condition is through the principle of virtual work, as

shown in Appendix C.1 [31].

Figure 2-2: SCC Balancer Abstraction

We can use 2 canonical switching cells connected together by a capacitive energy

tank to construct the simplest possible 2S SCC battery balancer (see Fig. 2-3). The

Figure 2-3: Canonical 2S SCC Battery Balancer

odd numbered switches share the same state and are complementary to the even

numbered switches. This means that in a given switching state, one of the cells (𝑉1

or 𝑉2) will be connected in parallel with the flying capacitor energy tank 𝐶 (see Fig.

2-4). The resistor 𝑅 is the combination of capacitor series resistance (ESR) and the

resistance of the switches. The switches are controlled via pulse width modulation
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(PWM) with duty cycle 𝐷 and switching frequency 𝑓𝑠. From the point of view of the

Figure 2-4: Switching State of 2S SCC Balancer

flying capacitor, it will see a pulse wave input oscillating between 𝑉1 and 𝑉2 with a

DC average of 𝐷𝑉1 + (1−𝐷)𝑉2 and AC peak-to-peak amplitude1 of ∆𝑉 = 𝑉1 − 𝑉2.

These SCC circuits typically operate with 𝐷 = 0.5 to minimize impedance [15]. Thus,

the average flying capacitor voltage ⟨𝑉𝑐⟩ = 𝑉1+𝑉2

2
(refer to Fig. 2-5). We also know

from periodic steady state (PSS) analysis that ⟨𝑖𝑐⟩ = 0 [4].

Figure 2-5: Square Wave Input to Flying Capacitor

2.1.1 Static Analysis

We can initially model the battery cells as ideal voltage sources to gain intuition on

the static operation of the circuit and then relax this constraint later to perform a

dynamic analysis. We can model the average behavior of the circuit by defining an

1This assumes that 𝑉1 > 𝑉2.
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equivalent impedance 𝑅𝑒𝑞 that connects the unbalanced battery cells and carries out

the charge transfer (see Fig. 2-6) [5, 10]. The cell voltage differential and equivalent

Figure 2-6: Equivalent Circuit Model of 2S SCC Balancer

impedance determine the balance current 𝐼𝑏 = Δ𝑉
𝑅𝑒𝑞

. By inspection of Fig. 2-6, one

can see that ⟨𝑖1⟩ = −⟨𝑖2⟩ = −𝐼𝑏, where 𝑖1 and 𝑖2 are the battery cell currents. It

is worth noting that in most practical designs, there will be some difference in the

magnitude of ⟨𝑖1⟩ and ⟨𝑖2⟩ due to resistive mismatches in the circuit. It is thus better

to define the balance current as

𝐼𝑏 =
|⟨𝑖1⟩|+ |⟨𝑖2⟩|

2
(2.1)

The power loss through the flying capacitor will be determined by its root mean

square (RMS) current, which can be expressed as 𝑖𝑅𝑀𝑆 =
√︁

𝑖2𝐷𝐶 + 𝑖2𝑅𝑀𝑆,𝐴𝐶 . Since

𝑖𝐷𝐶 = ⟨𝑖𝑐⟩ = 0, then 𝑖𝑅𝑀𝑆 = 𝑖𝑅𝑀𝑆,𝐴𝐶 . From Fourier analysis, it can be shown that

𝑖𝑅𝑀𝑆,𝑡𝑜𝑡𝑎𝑙 =

√︃
𝑁∑︀
𝑘=1

𝑖2𝑘,𝑅𝑀𝑆 if the set of 𝑖𝑘 form an orthogonal basis [4]. With this in

mind, we can express the capacitor RMS current as

𝑖𝑐,𝑅𝑀𝑆 =
√︁
𝑖21,𝑅𝑀𝑆 + 𝑖22,𝑅𝑀𝑆 (2.2)

Assuming resistive symmetry, 𝑖1,𝑅𝑀𝑆 ≈ 𝑖2,𝑅𝑀𝑆 and therefore 𝑖𝑐,𝑅𝑀𝑆 ≈
√
2 · 𝑖1,𝑅𝑀𝑆.

The average power loss in the flying capacitor is thus

⟨𝑃𝑐,𝑙𝑜𝑠𝑠⟩ = 𝑖𝑐,𝑅𝑀𝑆 · 𝑉𝑐,𝑅𝑀𝑆 ≈
√
2 · 𝑖1,𝑅𝑀𝑆 · 𝑉1 + 𝑉2

2
(2.3)
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Note that 𝑉𝑐,𝑅𝑀𝑆 ≈ 𝑉1+𝑉2

2
if the capacitor voltage ripple is sufficiently small, as is in

the case if the equivalent impedance is dominated by the circuit series resistances. It

is crucial to understand why and how 𝑅𝑒𝑞 changes as a function of both switching

frequency and duty cycle [15, 16].

2.1.2 Equivalent Impedance

We can define the circuit time constant 𝜏 = 𝑅𝐶 (see Fig. 2-4) and compare its

magnitude to the switching period 𝑇𝑠. From here, we can distinguish between 3

different regions for 𝑅𝑒𝑞 as the switching frequency is varied. If 𝜏 ≪ 𝑇𝑠, then the

capacitor fully charges and discharges within each switch period. This implies that

𝑅𝑒𝑞 will behave as a capacitive impedance (see leftmost region of Fig. 2-7). If 𝜏 ≫ 𝑇𝑠,

the capacitor voltage ripple is approximately linear since the charge interchange is

very small. This causes 𝑅𝑒𝑞 to behave as a resistive impedance (see rightmost region

of Fig. 2-7). Finally, if 𝜏 ≈ 𝑇𝑠, there is partial charge interchange from the capacitor

to the cells. This will cause 𝑅𝑒𝑞 to behave as an intermediate impedance between the

two main regions (refer to the curved section of impedance curve in Fig. 2-7). This

characterizes the transition from the capacitive region to the resistive region. The

total impedance formula is commonly approximated as

𝑅𝑒𝑞,𝑡𝑜𝑡𝑎𝑙 ≈
√︁

𝑅2
𝑆𝑆𝐿 +𝑅2

𝐹𝑆𝐿 (2.4)

where 𝑅𝑆𝑆𝐿 is the impedance in the capacitive region (slow switching limit) and 𝑅𝐹𝑆𝐿

is the impedance in the resistive region (fast switching limit) [15]. The 2S canonical

SCC balancer has 𝑅𝑆𝑆𝐿 = 1
𝑓𝑠𝐶

and 𝑅𝐹𝑆𝐿 = 𝑅
𝐷(1−𝐷)

. However, it is worth noting that

in practice, there is an additional region to 𝑅𝑒𝑞.

A practical 𝑅𝑒𝑞 curve is shown in Fig. 2-8. There will always be some stray

(or intentional) inductance present in any practical circuit and as such will affect

the equivalent impedance. This third region is commonly referred to as the inductive

switching limit (ISL) [12]. The transition to ISL will depend upon the circuit’s quality

factor 𝑄. For an 𝑅𝐿𝐶 circuit whose impedances depend on duty cycle, the quality
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Figure 2-7: Ideal Equivalent Impedance vs Frequency

Figure 2-8: Practical Equivalent Impedance vs Frequency
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factor is

𝑄 =
2𝜋𝑓𝑟𝑒𝑠𝐿

𝑅
(2.5)

where 𝑓𝑟𝑒𝑠 = 𝐷
𝜋
√
𝐿𝐶

. The 𝑄 factor will approach zero as 𝐿 becomes smaller. This

will cause the transition from the resistive region to the inductive region to occur

at an arbitrarily large frequency and the practical 𝑅𝐿𝐶 impedance curve will look

more like the ideal 𝑅𝐶 impedance curve. It is recommended to operate the circuit

near resonance for high 𝑄 factors, which can also occur if 𝑅 or 𝐷 is low with 𝐿 fixed.

Additionally, variations in duty cycle will change the magnitude and frequency cutoffs

of 𝑅𝑒𝑞 throughout the various regions in Fig. 2-7 and 2-8. For a detailed discussion on

the trade-offs involved with intentionally augmenting the flying capacitor’s impedance

with a series inductor, please refer to [12, 34].

2.1.3 Dynamic Analysis

To approximate the 2S canonical SCC balancer’s dynamic behavior, we can replace

the ideal voltage sources with a simple battery cell model in the form of a very large

capacitor. This will approximate a real battery cell’s behavior in its linear region

of operation. This opens up the opportunity for meaningful analytical solutions and

thus provides a reasonable estimate on balancer performance. One can utilize more

complicated cell models to predict battery cell performance beyond the linear region,

but we will utilize this large capacitor model for the remainder of this thesis [28].

Figure 2-9: Equivalent Circuit Model of Dynamic 2S SCC Balancer
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We will begin by replacing 𝑉1 and 𝑉2 with capacitors 𝐶1 and 𝐶2 (see Fig. 2-

9). Each capacitor is initialized to the respective voltage of its original ideal voltage

source. Furthermore, let 𝐶1 = 𝐶2 = 𝐶. We now can take the Laplace transform of

each circuit element to construct its 𝑠-domain analog. The equations of motion for

this circuit (KVL and KCL) are

𝑉1(𝑠)− 𝐼𝑏𝑅𝑒𝑞 − 𝑉2(𝑠) = 0 (2.6)

𝑉1(𝑠)−
𝑉1(0)

𝑠
− 𝐼1

𝑠𝐶
= 0 (2.7)

𝑉2(𝑠)−
𝑉2(0)

𝑠
− 𝐼2

𝑠𝐶
= 0 (2.8)

𝐼1 + 𝐼2 = 0 (2.9)

𝐼𝑏 − 𝐼2 = 0 (2.10)

This is just a first-order linear system of ordinary differential equations (ODEs).

Solving this system yields the following voltage equations

𝑉1(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

2
+

∆𝑉12

2
𝑒

−2𝑡
𝑅𝐶

}︂
(2.11)

𝑉2(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

2
− ∆𝑉12

2
𝑒

−2𝑡
𝑅𝐶

}︂
(2.12)

where 𝑉𝑏𝑎𝑡𝑡(𝑡) = 𝑉1(0) + 𝑉2(0) = 𝑉1(𝑡) + 𝑉2(𝑡) since we shall assume that 𝑑
𝑑𝑡
𝑉𝑏𝑎𝑡𝑡 = 0.

Additionally, we express the initial voltage differential as ∆𝑉12 = 𝑉1(0)− 𝑉2(0). This

system is comprised of two poles (or eigenvalues) at locations 𝜆𝑘 = [0,− 2
𝑅𝐶

], which

characterize system stability and settling time. Since ℜ(𝜆𝑘) ≤ 0, the system is stable

[26]. The balance time 𝜏𝑏 can be expressed as

𝜏𝑏 =
𝑅𝐶

2
ln

(︂
|∆𝑉12|
∆𝑣𝑏

)︂
(2.13)

The balanced voltage differential ∆𝑣𝑏 is chosen arbitrarily by the circuit designer.

We will use ∆𝑣𝑏 = 10 mV for numerical characterization of the balance time in later
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sections of this thesis. The average efficiency of the balance process is

𝜂𝑏(𝑡) =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

=
min (|𝑖1𝑉1|, |𝑖2𝑉2|)
max (|𝑖1𝑉1|, |𝑖2𝑉2|)

(2.14)

If we assume that 𝑉1 ≥ 𝑉2 and utilize Eq. (2.9), then 𝜂𝑏(𝑡) =
𝑉2(𝑡)
𝑉1(𝑡)

. Thus, the average

balance process efficiency is purely determined by the distance between battery cell

voltages. If the linear region of the cell voltages is constrained to be within the range

[3.0, 3.4], as is generally the case with LiFePO4 battery cells, then the minimum

average balance efficiency is 𝜂𝑚𝑖𝑛 = 3
3.4

= 0.882 [14].

2.2 Canonical Balancer Generalization

The 2-cell canonical balancer model can be generalized for higher-order balancing

topologies. In our investigation, we will focus exclusively on balancing topologies

that utilize the minimum number of required switches per cell (two). We place a

heavy emphasis on this since the addition of more switches will typically bring more

gate drivers along with them. Thus, designers have the freedom to choose the number

of energy tanks to connect between the switching nodes (𝑛 of them) created by the

2𝑛 switches, where 𝑛 is the number of cells to be balanced.

2.2.1 Multi-Tier Topology

There has been a tremendous amount of work done on enumerating SCC balancing

topologies and characterizing their behavior [1, 7, 9, 30, 32, 33]. However, in the

author’s opinion, there is room for additional theoretical insight into the behavior of

these topologies and exploration of interesting circuit structures that may be hidden

in plain sight. A key insight from the aforementioned papers is the idea of adding

charge paths to facilitate both direct and indirect energy transfer between cells. If

one generalizes this idea to a particular set of SCC balancer topologies, then a Grand

Canonical Balancer may be found for that topological family. We can apply this idea

to the set of SCC battery balancer topologies with the minimum switch count.
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Figure 2-10: Conventional or Flat 4S Balancer

Figure 2-11: Double-Tier 1 4S Balancer

Figure 2-12: Double-Tier 2 4S Balancer

Figure 2-13: Multi-Tier 4S Balancer
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Let us examine a few 4S implementations of circuits within this family. In Fig.

2-10, the Conventional or Flat topology within the minimum switch family is shown.

To improve the balance time performance of this circuit, consider adding an addi-

tional capacitor between the furthest switching nodes. This yields a topology with

an additional capacitor tier, that we will label: Double-Tier 1 (see Fig. 2-11). We

can also consider adding two additional capacitors to the Flat topology by connect-

ing them between every odd and even pair of switching nodes. We will refer to this

topology as Double-Tier 2 (see Fig. 2-12).

Finally, we can extend the idea of facilitating charge paths to its limit and obtain

the Multi-Tier topology (shown in Fig. 2-13). Observe that each switching node is

connected to every other switching node via a capacitor. Thus, in the simplest terms,

to construct the Multi-Tier balancer for any number of battery cells, connect each

switching node to every other switching node via a capacitor (or more generally an

appropriate energy tank). This is the Grand Canonical Balancer for the set of SCC

balancers with the minimum number of switches and the maximum number of unique

capacitors connecting pairs of switch nodes.

To the best of the author’s knowledge, the Multi-Tier is a novel balancing topology

that has been overlooked until now2. The number of capacitors required to construct

this topology for arbitrary 𝑛 is
(︀
𝑛
2

)︀
= 𝑛(𝑛−1)

2
. This grows asymptotically as 𝑛2

2
, which

is impractical as the number of battery cells grows. However, the topology may be

advantageous for a low number of cells (probably 𝑛 ≤ 9). The author believes that

the topology can primarily be used to study the set of SCC balancers with minimum

switch count, as all other topologies in the family exist within the Multi-Tier. One

can make certain resistances infinite to map the Multi-Tier structure to any other

within the set. In the following sections, we explore some of this topology’s behavior

by analyzing its 3S and 4S average circuit models.

2However, it is important to note that the idea of connecting all switching node pairs together in
switched-capacitor circuits is not new (see Fig. 11 in [29]).
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2.2.2 3S Multi-Tier Analysis

The 3S Multi-Tier balancer is shown in Fig. 2-14 and its average circuit model in

Fig. 2-15. To aid with the analysis, we will assume that all capacitances are equal

i.e. 𝐶1 = 𝐶2 = 𝐶3 = 𝐶, and the resistances scale such that 𝑅12 = 𝑅, 𝑅23 = 𝛽𝑅,

and 𝑅13 = 𝛼𝑅 where {𝛼, 𝛽 ∈ R | 𝛼, 𝛽 > 0}. The equations of motion for the 3S

Multi-Tier balancer can be found in Appendix C.2.1. Solving these equations with

this level of generality leads to a rather complicated set of analytical solutions, as

shown in Eq. (2.15).

𝑉1(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

3
+

1

3
𝑒−𝜎3𝑡 (cosh (𝜎1𝑡)− 𝜎4 sinh (𝜎1𝑡)) (∆𝑉1,2 +∆𝑉1,3)

}︂
where

𝜎1 =
𝜎2

𝑅𝐶𝛼𝛽

𝜎2 =
√︀
𝛼2𝛽2 − 𝛼2𝛽 + 𝛼2 − 𝛼𝛽2 − 𝛼𝛽 + 𝛽2

𝜎3 =
𝛼 + 𝛽 + 𝛼𝛽

𝑅𝐶𝛼𝛽

𝜎4 =
𝛼𝛽 (∆𝑉1,2 −∆𝑉2,3) + 𝛽 (∆𝑉1,3 +∆𝑉2,3)− 𝛼 (∆𝑉1,2 +∆𝑉1,3)

𝜎2 (∆𝑉1,2 +∆𝑉1,3)

(2.15)

We can eliminate one of the free parameters by setting 𝛽 = 1. This implies that all

equivalent impedances at the lower (flat) level share the same value, which in practice

should be approximately true. As a result, (2.15) simplifies to the following battery

cell voltage equations

𝑉1(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

3
+

∆𝑉12 −∆𝑉23

6
𝑒

−3𝑡
𝑅𝐶 +

∆𝑉13

2
𝑒

−𝑡
𝑅𝐶 (1+

2
𝑎)
}︂

(2.16)

𝑉2(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

3
− ∆𝑉12 −∆𝑉23

3
𝑒

−3𝑡
𝑅𝐶

}︂
(2.17)

𝑉3(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

3
+

∆𝑉12 −∆𝑉23

6
𝑒

−3𝑡
𝑅𝐶 − ∆𝑉13

2
𝑒

−𝑡
𝑅𝐶 (1+

2
𝑎)
}︂

(2.18)

The system has three poles at locations 𝜆𝑘 = [0,− 3
𝑅𝐶

,−1+ 2
𝛼

𝑅𝐶
]. Using the method of
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Figure 2-14: 3S Multi-Tier Balancer

Figure 2-15: Average Model for 3S Multi-Tier
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dominant time constant, we can determine which of the non-zero poles will bottleneck

the balance time [29]. The dominant time constant is expressed as 𝜆1 such that

0 > 𝜆1 ≥ . . . ≥ 𝜆𝑛−1. Thus, the balance time can be approximated as

𝜏𝑏 ≈ max

(︂
𝑅𝐶

3
ln

(︂
max (|∆𝑉12|, |∆𝑉23|)

∆𝑣𝑏

)︂
,
𝑅𝐶

1 + 2
𝛼

ln

(︂
|∆𝑉13|
∆𝑣𝑏

)︂)︂
(2.19)

We can determine for what range of 𝛼 does − 3
𝑅𝐶

become the dominant time constant.

If − 3
𝑅𝐶

≥ −1+ 2
𝛼

𝑅𝐶
, then 𝛼 ≤ 1. One might be quick to assume that the effect of the top-

tier capacitor is negligible, however that is not necessarily true because lim
𝛼→∞

−1+ 2
𝛼

𝑅𝐶
=

− 1
𝑅𝐶

> − 3
𝑅𝐶

. Therefore, while having 𝛼 > 1 causes its respective pole to be the

dominant pole, the associated time constant is still lower than if 𝛼 were infinite.

Observe that when − 1
𝑅𝐶

≥ −1+ 2
𝛼

𝑅𝐶
implies that 𝛼 ≤ 𝛼 + 2, which is true for all

practical values of 𝛼. This can also be shown by taking the ratio of the balance time

for 𝛼 ≥ 1 over the balance time for the case where 𝛼 → ∞:

𝜏𝑏,𝛼
𝜏𝑏,𝑓𝑙𝑎𝑡

=
1

1 + 2
𝛼

(2.20)

Note that at 𝛼 = 2, the balance time is half of what it would be without the top-tier

capacitor.

2.2.3 4S Multi-Tier Analysis

The 4S Multi-Tier balancer is shown in Fig. 2-16 and its average circuit model in

Fig. 2-17. To aid with the analysis, we assume that 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 𝐶, 𝑅12 =

𝑅23 = 𝑅34 = 𝑅, 𝑅13 = 𝑅24 = 𝛼𝑅, and 𝑅14 = 𝜑𝑅 such that {𝛼, 𝜑 ∈ R | 𝛼, 𝜑 > 0}.

The equations of motion can be found in Appendix C.2.2. Solving these equations

with this level of generality leads to a rather complicated set of analytical solutions,

as such we will analyze two sets of solutions by setting one of the free parameters to

unity and letting the other vary.

We first consider the case where 𝜑 = 1 and 𝛼 is allowed to vary, such as in a design

where much emphasis is placed on matching the lower and higher-tier equivalent
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Figure 2-16: 4S Multi-Tier Balancer

Figure 2-17: Average Model for 4S Multi-Tier
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impedances while allowing flexibility at the middle-tier. As a result, solutions are

much neater and understandable. The battery cell voltages can be expressed as

𝑉1,𝛼(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
+

∆𝑉14 −∆𝑉23

4
𝑒

−4𝑡
𝑅𝐶 +

∆𝑉13

2
𝑒

−𝑡
𝑅𝐶 (2+

2
𝑎)
}︂

(2.21)

𝑉2,𝛼(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
− ∆𝑉12 +∆𝑉34

4
𝑒

−4𝑡
𝑅𝐶 +

∆𝑉24

2
𝑒

−𝑡
𝑅𝐶 (2+

2
𝑎)
}︂

(2.22)

𝑉3,𝛼(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
+

∆𝑉12 +∆𝑉34

4
𝑒

−4𝑡
𝑅𝐶 − ∆𝑉13

2
𝑒

−𝑡
𝑅𝐶 (2+

2
𝑎)
}︂

(2.23)

𝑉4,𝛼(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
− ∆𝑉14 −∆𝑉23

4
𝑒

−4𝑡
𝑅𝐶 − ∆𝑉24

2
𝑒

−𝑡
𝑅𝐶 (2+

2
𝑎)
}︂

(2.24)

The system has three poles at locations 𝜆𝑘 = [0,− 4
𝑅𝐶

,−2+ 2
𝛼

𝑅𝐶
]. It is important to note

that more poles are possible in the general case with two free resistor parameters.

As before, we may utilize the method of dominant time constant to determine the

balance time

𝜏𝑏 ≈ max
(︁

𝑅𝐶
4
ln
(︁

max (|Δ𝑉12|,|Δ𝑉14|,|Δ𝑉23|,|Δ𝑉34|)
Δ𝑣𝑏

)︁
, 𝑅𝐶
2+ 2

𝛼

ln
(︁

max(|Δ𝑉13|,|Δ𝑉24|)
Δ𝑣𝑏

)︁)︁
(2.25)

We can also assess the effect of variations in 𝛼 by taking the ratio of the balance time

for 𝛼 ≥ 1 over the balance time for the case where 𝛼 → ∞

𝜏𝑏,𝛼
𝜏𝑏,𝛼→∞

=
1

1 + 1
𝛼

(2.26)

Note that at 𝛼 = 2, the balance time is two-thirds of what it would be without the

middle-tier equivalent impedances. The reduction in balance time is less than that

of Eq. (2.20) for a given 𝛼. This is likely due to the top-tier capacitor’s ability to

provide an alternative charge path to that of the middle-tier capacitors.

Now we will consider the case where 𝛼 = 1 and 𝜑 is allowed to vary, for example in

a design where significant emphasis is placed on matching the lower and middle-tier

equivalent impedances while allowing flexibility at the high-tier. These solutions are
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also clean and simple. The battery cell voltages can be expressed as

𝑉1,𝜑(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
+

∆𝑉12 −∆𝑉34

4
𝑒

−4𝑡
𝑅𝐶 +

∆𝑉14

2
𝑒

−𝑡
𝑅𝐶 (2+

2
𝜑)
}︂

(2.27)

𝑉2,𝜑(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
− ∆𝑉12 −∆𝑉23 −∆𝑉24

4
𝑒

−4𝑡
𝑅𝐶

}︂
(2.28)

𝑉3,𝜑(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
− ∆𝑉13 +∆𝑉23 −∆𝑉34

4
𝑒

−4𝑡
𝑅𝐶

}︂
(2.29)

𝑉4,𝜑(𝑡) =

{︂
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

4
+

∆𝑉13 −∆𝑉24

4
𝑒

−4𝑡
𝑅𝐶 − ∆𝑉14

2
𝑒

−𝑡
𝑅𝐶 (2+

2
𝜑)
}︂

(2.30)

The system has three poles at locations 𝜆𝑘 = [0,− 4
𝑅𝐶

,−2+ 2
𝜑

𝑅𝐶
]. As before, we may

utilize the method of dominant time constant to determine the balance time

𝜏𝑏 ≈ max

(︂
𝑅𝐶
4
ln
(︁

max (|Δ𝑉12|,|Δ𝑉13|,|Δ𝑉23|,|Δ𝑉24|,|Δ𝑉34|)
Δ𝑣𝑏

)︁
, 𝑅𝐶
2+ 2

𝜑

ln
(︁

|Δ𝑉14|
Δ𝑣𝑏

)︁)︂
(2.31)

We can also assess the effect of variations in 𝜑 by taking the ratio of the balance time

for 𝜑 ≥ 1 over the balance time for the case where 𝜑 → ∞

𝜏𝑏,𝜑
𝜏𝑏,𝜑→∞

=
1

1 + 1
𝜑

(2.32)

Note that this result is identical to that of Eq. (2.26), except now in terms of 𝜑. This

is likely due to the middle-tier capacitors’ ability to provide an alternative charge

path to that of the higher-tier capacitor.
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2.2.4 NS Multi-Tier Analysis

From these results, we can predict what may happen in the general case of an NS

Multi-Tier balancer. We can represent the solution of an arbitrary cell voltage 𝑉𝑘 as

𝑉𝑘(𝑡) =

{︃
𝑡 ≥ 0 :

𝑉𝑏𝑎𝑡𝑡

𝑁
+

𝑁−1∑︁
𝑚=1

𝛼𝑚𝑘𝑒
𝜆𝑚𝑡

}︃
where

𝛼𝑚𝑘 = 𝑓 (𝑅12, 𝑅13, . . . , 𝑅𝑖𝑗, 𝐶,∆𝑉12,∆𝑉13, . . . ,∆𝑉𝑖𝑗) for 𝑖 < 𝑗

𝜆𝑚 = 𝑚th non-zero eigenvalue or pole of system

(2.33)

In general, the most challenging portions of the solution to obtain are the poles

𝜆𝑚 and coefficients 𝛼𝑚𝑘. These can and will be very complicated functions of the

circuit resistances, capacitances, and initial conditions [29]. Although this may seem

daunting, for considerations of balance time, one needs to just find the dominant

pole. There are various matrix algorithms to accomplish this task, but it may also be

possible to find an elegant analytical solution utilizing the approaches in [6, 17, 18, 19].

The maximum possible balance time for an 𝑁S Multi-Tier balancer can be

𝜏𝑏 ≈
1

max(𝜆1, 𝜆2, . . . , 𝜆𝑁−1)
ln

(︂
∆𝑣𝑏

max (|∆𝑉12|, |∆𝑉13|, ..., |∆𝑉𝑚𝑛|)

)︂
(2.34)
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Chapter 3

Comparing Switched Capacitor

Balancing Topologies

We present and compare four different SCC battery balancing topologies. Average

circuit models for each are shown at the 4S level. We also compare their balance time

performances through simulation.

3.1 Topologies

We compare the balance time, component selection, and capacitor stress of the Flat,

Double-Tier, and Multi-Tier topologies (these topologies are initially introduced in

Section 2.2.1). Table 3.1 compares the component selection and capacitor stress of

these topologies. Fig. 3-1, 3-2, 3-3, and 3-4 depict their equivalent circuit models.

Topology Number of Capacitors Number of Switches Capacitor Stress

Flat SC 𝑛− 1 2𝑛 𝑉𝑐𝑒𝑙𝑙,𝑚𝑎𝑥

Double-tier SC 1 𝑛 2𝑛 (𝑛− 1)𝑉𝑐𝑒𝑙𝑙,𝑚𝑎𝑥

Double-tier SC 2 2𝑛− 3 2𝑛 2𝑉𝑐𝑒𝑙𝑙,𝑚𝑎𝑥

Multi-tier SC 𝑛2−𝑛
2

2𝑛 (𝑛− 1)𝑉𝑐𝑒𝑙𝑙,𝑚𝑎𝑥

Table 3.1: Comparison on Capacitor Number, Switch Number, and Capacitor Stress
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Figure 3-1: 4S Flat Average Model
Figure 3-2: 4S Double-Tier 1 Average
Model

Figure 3-3: 4S Double-Tier 2 Average
Model Figure 3-4: 4S Multi-Tier Average

Model
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3.2 Balance Speed Comparison

We define the balance time (𝜏𝑏) as the time it takes for the maximum difference

between cell voltages to be smaller than 10 mV. We simulate five different SPICE

simulations, each with varying initial condition, for the average model for each topol-

ogy. The simulation parameters are listed in Table 3.2 and the initial conditions (ICs)

are shown in Table 3.3. Table 3.4 presents the resulting balance times for all initial

conditions and shows that the Multi-Tier topology performs most consistently across

these initial conditions. We highlight the cell voltage waveforms for initial condition

5 in Fig. 3-5, 3-6, 3-7, and 3-8. These curves validate the addition of higher-tier

capacitors across switching nodes to significantly improve the balance time. Table

3.5 presents the average balance time for each SCC balancer topology over all ICs .

Parameter Value

Battery cell capacitance [kF] 9
𝑅12, 𝑅23, 𝑅34 [mΩ] 100
𝑅13, 𝑅24 [mΩ] 150
𝑅14 [mΩ] 200

Table 3.2: Balance Time Comparison Simulation Parameters

Initial Condition Number 𝑉1 [V] 𝑉2 [V] 𝑉3 [V] 𝑉4 [V]

(1) 3 3.4 3 3.4
(2) 3 3 3.4 3.4
(3) 3 3.2 3.2 3.4
(4) 3 3.1 3.3 3.4
(5) 3 3.3 3.1 3.4

Table 3.3: Battery Cell Voltages for Different Initial Conditions

Topology Balance Time Balance Time Balance Time Balance Time Balance Time
for IC1 [min] for IC2 [min] for IC3 [min] for IC4 [min] for IC5 [min]

Multi-Tier 19.818 23.143 21.771 22.747 20.631
Flat 77.435 100.593 91.525 96.431 85.108

Double-Tier 1 26.816 42.627 37.558 40.302 33.489
Double-Tier 2 33.210 36.256 35.001 35.698 33.978

Table 3.4: Comparison of Balance Times for Different Initial Conditions (ICs)
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Figure 3-5: 𝑉1 Simulated Waveform
for Initial Condition 5

Figure 3-6: 𝑉2 Simulated Waveform
for Initial Condition 5

Figure 3-7: 𝑉3 Simulated Waveform
for Initial Condition 5

Figure 3-8: 𝑉4 Simulated Waveform
for Initial Condition 5
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Topology Average Balance Time [min]

Multi-Tier 21
Flat 90

Double-Tier 1 36
Double-Tier 2 34

Table 3.5: Battery Cell Voltages for Different Initial Conditions
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Chapter 4

Implementation of SCC Balancer

We design and validate three practical SCC balancers on printed circuit boards

(PCBs). Two of these are 2S balancers, one utilizes only N-channel (NCH) switches

while the other uses a combination of NCH and P-channel (PCH). Building upon

these designs, a 4S NCH+PCH balancer is developed and tested. The 4S balancer

is a practical implementation of the new Multi-Tier topology from Chapters 2 and

3. Component selection, schematics, and PCB layout are provided for each design.

We perform frequency sweeps, battery cell voltage differential sweeps, and dynamic

balance experiments. All tests are performed at 50% duty cycle. Table A.4 lists the

lab equipment utilized for testing. Battery cell emulation parameters can be found

in Table A.5.

4.1 2S NCH Design

The schematic for the 2S NCH design is in Fig. B-4. We utilize a resonant SCC 2S

balancer [8, 12]. An LTSpice simulation of the circuit is created to verify the design

before PCB layout (see Fig. B-1). Top and bottom 3D views of the PCB layout are

shown in Fig. B-7 and B-8. The populated PCB is shown in Fig. B-9 and B-10. A

complete component list can be found in Table A.1.
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4.1.1 LC Tank

The LC tank is comprised of 10x22 𝜇F parallel ceramic capacitors in series with a 100

nH inductor, yielding a nominal resonant frequency of 34 kHz. Including many capac-

itors in parallel helps reduce ESR and mitigate DC bias effects. GMK325BJ226MM-P

is the chosen capacitor component with a voltage rating of 35 V. We choose the in-

ductor based on the guidelines provided in [34], which suggests choosing an L with a

DC resistance on the order of the switch resistance. Thus, we choose PA5189.101HLT

as the inductor component with 𝑅𝐷𝐶 = 0.39 mΩ (around half the NCH switch resis-

tance). Its inductance value is also selected to keep the resonant frequency somewhere

between 30-100 kHz. The LC tank needs to operate near this frequency band to min-

imize switching loss and capacitor ESR.

4.1.2 Input Bypass Capacitors

As described in [10], input bypass capacitors are required to mitigate poor battery

cell current waveforms, in the form of impulses. The addition of bypass capacitors

smooths the cell current waveforms by attenuating its AC component. The larger

the bypass capacitors, the more the cell current resembles that of a buck converter

output: triangular with small AC ripple and minimal high frequency content. This

also reduces the associated RMS current loss across the cells, assuming that 𝑍𝑏𝑦𝑝𝑎𝑠𝑠 ≤

𝛼𝑍𝑐𝑒𝑙𝑙, where {𝛼 ∈ R | 0 < 𝛼 < 10}. Additionally, if 𝑍𝑖𝑛𝑝𝑢𝑡
1 ⪆ 𝑅𝑒𝑞 − 𝑍𝑖𝑛𝑝𝑢𝑡, then the

average cell current will notably increase by including the bypass capacitor (see Fig.

4-1).

A practical way of achieving high capacitance and low resistance across the cell

terminals is following an approach similar to the flying capacitors, utilizing several

capacitors in parallel. Our design uses a 0603 0.1 𝜇F, 0805 1 𝜇F, and 1210 10 𝜇F

ceramic capacitors in parallel for general noise rejection in addition to 1210 3x22 𝜇F

parallel ceramic capacitors for larger bulk capacitance. One should also be aware

that most of the current will flow through the larger capacitors via capacitor charge

1𝑍𝑖𝑛𝑝𝑢𝑡 = 𝑍𝑐𝑒𝑙𝑙 ‖ 𝑍𝑏𝑦𝑝𝑎𝑠𝑠
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Figure 4-1: Effect of Bypass Capacitors on Cell Current

sharing. The voltage rating of these components should be at least twice the cell

voltage to have a comfortable safety margin. This design uses 6.3 V rated capacitors.

4.1.3 Switches and Bootstrap

The NCH switches are chosen such that their threshold voltages could be reached

within a 2S battey voltage swing while minimizing 𝑅𝐷𝑆,𝑜𝑛. Our design utilizes the

Infineon IAUC120N04S6L008ATMA1 with 𝑅𝐷𝑆,𝑜𝑛 of 0.8 mΩ and a 𝑉𝐺𝑆,𝑡ℎ of 2 V.

These switches are capable of blocking up to 40 V (well above anything produced

in the circuit) and handling 120 A at room temperature. We choose gate resistors

with resistance value 10 Ω to help with noise and ringing in the gate drive path.

The resistor is also specified such that its power rating was sufficient to handle the

average power loss as the gate driver pushes current through it. Furthermore, a turn-

off diode in parallel with the resistor is necessary to have the switches reach their

off-state as quickly as possible to mitigate shoot-through and switching loss. We use

a Schottky diode (CUS10S30,H3F) for its low forward-biased voltage (𝑉𝐷) that can

also handle the gate driver’s peak sinking current. A bootstrap circuit is needed for

this implementation because the circuit is powered completely off the cell voltages.
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We design a quasi-synchronous bootstrap to generate nearly identical 𝑉𝐺𝑆 signals

for each switch (see Fig. 4-2). The bootstrap circuit is essentially another SCC that

connects a bootstrap capacitor to the entire battery in state 1, and then connects the

capacitor to the gate driver power rails in state 2. The main advantage of this circuit

is that it avoids adding extra components by utilizing the switches that are already

in the power circuit. However, this bootstrap does add to the switch stress since

the existing switches have to perform more functions. This issue can be mitigated

with appropriately rated components. Additionally, we use low-power PCH devices

to provide quasi-synchronous bootstrap that can run off the same gate signals as the

NCH devices in the power circuit. One of the diodes (D7 in Fig. B-4) cannot be

easily replaced with a PCH switch since the existing gate signals are not compatible

with it and can cause shoot-through. Similar to the NCH devices, the PCH gates are

equipped with 10 Ω gate resistors and Schottky diodes in parallel for quick turn-off2.

Figure 4-2: Bootstrap Circuit for 2S NCH Balancer

2For quick PCH turn-off, the turn-off diode must point towards the gate (opposite to that of the
NCH switch).
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4.1.4 Gate Drive

As shown in the power circuit on Fig. B-4, the majority of sources on the NCH

switches are referenced to non-zero voltages or switching nodes. Thus, we decide

to use opto-isolated gate drivers (IS480P). Four gate drivers are required in the 2S

NCH design due to the nature of controlling four NCH switches (later we reduce the

number of gate drivers by utilizing CMOS technology). Although the circuit can be

operated using an on-board square wave generator, as is the case in v1.0.0 of the

design (refer to the op-amp multivibrator in Fig. B-1), in the final revision (v1.1.0),

we use an off-board square wave generator (Juntek JDS-2900-60M) to streamline the

experimental testing and PCB population.

To prevent shoot-through from occurring between the NCH devices, a dead-time

circuit is designed using an op-amp integrator topology. The input to the integrator

is a square wave. The output is a clipped triangle wave with a much smaller slope

between the waveform’s transition points than that of the input square wave. The

output is then fed into two pairs of anti-parallel gate driver inputs. Dead-time occurs

and therefore no switches conduct when the clipped triangle waveform’s voltage is

between ±𝑉𝐷, where 𝑉𝐷 is the forward voltage of the gate driver input diode.

4.1.5 Testing

In the experimental testing, the resonant frequency is 53 kHz with a maximum average

balance current of 4.9 A, as shown in Fig. 4-3. A plot of the equivalent impedance

is also shown in Fig. 4-4. The measured minimum impedance is 81.7 mΩ. We define

the balance time (𝜏𝑏,𝑚𝑒𝑎𝑠) to be the time when the difference between cell voltages is

constrained such that ∆𝑉 < 10 mV. This 2S NCH design achieves 𝜏𝑏,𝑚𝑒𝑎𝑠 = 25.2 min

(see Fig. 4-5). The battery cell emulation parameters can be found in Table A.5.

One cell is initialized to 3.4 V (100% SOC) and the other to 3 V (0% SOC).

We determine that the bypass capacitors are the main resistive bottleneck for

this practical implementation by running a high cell differential thermal test (nearly

identical to Fig. B-30). The quasi-synchronous bootstrap also operates as intended as
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shown in Fig. B-24. Each channel shows the 𝑉𝐺𝑆 waveform for each of the switches.

Note that the their amplitudes are nearly identical.
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Figure 4-3: 2S NCH Average Balance Current vs Frequency

Figure 4-4: 2S NCH 𝑅𝑒𝑞
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Figure 4-5: 2S NCH Dynamic Cell Voltages

Figure 4-6: 2S NCH Dynamic Cell Currents
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4.2 2S NCH+PCH Design

While PCH devices have limited use in the power electronics community, they can be

more advantageous than NCH technology in some designs [10, 20, 21]. The schematic

for the 2S NCH+PCH design is in Fig. B-5. We utilize a resonant SCC 2S balancer.

To verify the design before PCB layout, we simulate the circuit in LTSpice (see Fig.

B-2). Fig. B-11 and B-12 show the top and bottom 3D views of the PCB layout. The

populated PCB is displayed in Fig. B-13 and B-14. Table A.2 presents a complete

component list for this design.

4.2.1 LC Tank

Same component selection and reasoning as Section 4.1.1.

4.2.2 Input Bypass Capacitors

Same component selection and reasoning as Section 4.1.2.

4.2.3 Switches and Bootstrap

The NCH and PCH switches are selected such that they reach their threshold volt-

ages within a 2S battery voltage swing while minimizing 𝑅𝐷𝑆,𝑜𝑛. This design uses

the Nexperia PH2925U,115 for the NCH switches with an 𝑅𝐷𝑆,𝑜𝑛 of 3 mΩ and a

𝑉𝐺𝑆,𝑡ℎ of 1 V. We also use the Vishay Siliconix SQJ123ELP-T1_GE3 for the PCH

switches with an 𝑅𝐷𝑆,𝑜𝑛 of 4 mΩ and a 𝑉𝐺𝑆,𝑡ℎ of 1.5 V. Both of these switches are

capable of blocking the highest voltages produced in this circuit. We also include gate

resistors for both NCH and PCH switches (with sufficient power ratings) to reduce

the noise and ringing in the gate drive path. The gate resistance for the NCH and

PCH switches are 10 Ω and 1 Ω respectively. Furthermore, we connect a turn-off

Schottky diode (CUS10S30,H3F) diode in parallel with each gate resistor to have the

switches transition to their off-state as quickly as possible to mitigate shoot-through

and switching loss.
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We also design a bootstrap to generate about the same 𝑉𝐺𝑆 signals for each switch

(see Fig. 4-7). The bootstrap circuit works by connecting a bootstrap capacitor in

parallel to battery cell 1 in state 1, which charges the capacitor to roughly the cell

voltage. Then, another capacitor is connected in parallel to battery cell 1 in state 2,

which also charges this second capacitor to roughly the cell voltage. These capacitors

are connected in series between the gate driver power rails. This provides 𝑉𝑐𝑐 ≈ 𝑉𝑏𝑎𝑡𝑡.

The circuit is repeated for battery cell 2.

Figure 4-7: Bootstrap Circuit for 2S NCH+PCH Balancer
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4.2.4 Gate Drive

As shown in the power circuit on Fig. B-5, the NCH and PCH sources are referenced to

switching nodes. Thus, we decide to use opto-isolated gate drivers (IS480P). Two gate

drivers are required in this design due to the nature of controlling two CMOS switch

pairs. The circuit can similarly operate with an on-board square wave generator, as

is the case in v1.0.0 of the design (refer to the op-amp multivibrator in Fig. B-2),

but for the final revision in v1.1.0, we use an off-board square wave generator to

streamline the experimental testing and PCB population.

4.2.5 Testing

In our experimental testing, the resonant frequency is 57 kHz with a maximum aver-

age balance current of 4.24 A, as shown in Fig. 4-8. Fig. 4-9 presents a plot of the

equivalent impedance. The measured minimum impedance is 94.4 mΩ. The difference

between this impedance and that of the NCH design is due to the increase in switch

resistance: ∆𝑅𝑒𝑞 = 𝑅𝑒𝑞,2 − 𝑅𝑒𝑞,1 = ∆𝑅𝑆𝑊 ≈ 12 mΩ. Similarly, the bypass capaci-

tors are the main resistive bottleneck for this practical implementation, determined

through a high cell differential thermal test, as shown in Fig. B-30.

Using the same definition for the balance time (𝜏𝑏,𝑚𝑒𝑎𝑠) defined in Section 4.1.5,

this NCH+PCH design achieves a 𝜏𝑏,𝑚𝑒𝑎𝑠 = 31.4 min (see Fig. 4-10). The battery

cell emulation parameters can once again be found in Table A.5. One cell is also

initialized to 3.4 V (100% SOC) and the other to 3 V (0% SOC).
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Figure 4-8: 2S NCH+PCH Average Balance Current vs Frequency

Figure 4-9: 2S NCH+PCH 𝑅𝑒𝑞
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Figure 4-10: 2S NCH+PCH Dynamic Cell Voltages

Figure 4-11: 2S NCH+PCH Dynamic Cell Currents
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4.3 Comparing Practical 2S Designs

4.3.1 Balance Time

As expected, the 2S NCH design is slightly faster than the 2S NCH+PCH design since

𝑅𝑒𝑞,1 < 𝑅𝑒𝑞,2 (see Table 4.1). This due to the switches in the latter design having

higher resistance. Otherwise, the power circuits are identical.

Design Balance Time [min]

2S NCH 25.2
2S NCH+PCH 31.4

Table 4.1: Measured Balance Times for 2S Balancers

4.3.2 Volume and Cost

While the board outline is the same for both PCBs, the 2S NCH+PCH design uses

less volume and is cheaper to fabricate. The 2S NCH+PCH design does not need

an op-amp and its associated passives, and requires two gate drivers instead of four

[10, 20, 21]. The reduction in volume and simplification of the PCB layout starts to

become more significant as the balancer is generalized for more cells. However, this

improvement in cost, volume, and PCB layout comes with a trade-off of slower bal-

ance time. Any engineer developing these circuits should weigh relevant performance

metrics accordingly and make informed design choices tailored for the application at

hand. Table A.1 and A.2 show complete component lists for the 2S NCH and 2S

NCH+PCH designs respectively.

4.4 4S Design

We build a 4S Multi-Tier balancer by extending the work in Sections 4.1, 4.2, and 4.3.

The 2S NCH+PCH Balancer is chosen as the fundamental building block to minimize

cost, component count, and simplify PCB layout. Fig. B-6 shows the schematic for

the 4S NCH+PCH design, which utilizes a resonant SCC 4S balancer. To verify the
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design before PCB layout, we simulate this circuit using LTSpice (refer to Fig. B-3).

Top and bottom 3D views of the PCB layout are shown in Fig. B-15 and B-16. The

populated PCB is presented in Fig. B-17 and B-18. Table A.3 shows a complete

component list.

4.4.1 LC Tank

Same component selection and reasoning as Section 4.1.1 for 𝐿𝐶 tanks at the bottom

tier of the balancer hierarchy: 𝐿12 and 𝐶12, 𝐿23 and 𝐶23, 𝐿34 and 𝐶34. However, for

the middle and top tier, we add additional capacitors to mitigate increased DC bias

effects due to the higher average voltage. For 𝐶13 and 𝐶24, five additional capacitors

(of the same component) were added. For 𝐶14, ten additional capacitors were added

(of the same component).

4.4.2 Input Bypass Capacitors

Same component selection and reasoning as Section 4.1.2. Additionally, we add 4x47

𝜇F capacitors (TMK325ABJ476MM-T) to provide further benefits in circuit perfor-

mance. This capacitor is rated for 25 V and has a 1210 package.

4.4.3 Switches and Bootstrap

Same component selection and reasoning as Section 4.2.3. However, we now have

eight switches due to the increase in number of battery cells. The bootstrap circuit

is identical but the associated component count is doubled.

4.4.4 Gate Drive

Same component selection and reasoning as Section 4.2.4. However, we now have

four gate drivers due to the increase in number of battery cells. We also place unity

gain buffers before each pair of gate driver inputs to prevent current overloading of

the external signal generator serving as the square wave input.
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4.4.5 Testing

In experimental testing, the resonant frequency is 46 kHz with a maximum average

balance current of 4.31 A, as shown in Fig. 4-12. This frequency sweep is performed

with [𝑉1, 𝑉2, 𝑉3, 𝑉4] = [3, 3.4, 3.4, 3]. Like the other designs, the main resistive bottle-

neck for this practical implementation is the bypass capacitors, determined through a

high cell differential thermal test, as shown in Fig. 4-13. We conducted six different

dynamic balancing tests (see Table 4.2). The balance time (𝜏𝑏,𝑚𝑒𝑎𝑠) is still the time

when |∆𝑉𝑖,𝑗| < 10 mV for every combination of battery cells 𝑖 and 𝑗. We also use the

same battery cell emulation parameters found in Table A.5.

We highlight the waveforms for initial condition 3 (see Fig. 4-14 and 4-15). Note

that the curves of cells 2 and cells 3 move away and then back to each other due to

resistive mismatches between 𝐿𝐶 tanks, which can cause the outer cells to "pull" the

inner cells towards them during the balancing process. This phenomenon is avoided if

all the resistances of the 𝐿𝐶 tanks are perfectly matched, but this is rarely the case in

practical designs. The remaining curves for all other initial conditions can be found

in Appendix B (starting with Fig. B-31). Table A.6 compares the performances of

the 4S NCH+PCH and a commercial balancer.

Initial Condition 𝑉1 [V] 𝑉2 [V] 𝑉3 [V] 𝑉4 [V] Balance Time [min]

(1) 3 3.4 3 3.4 49.17
(2) 3 3 3.4 3.4 67.9
(3) 3 3.2 3.2 3.4 61.3
(4) 3 3.1 3.3 3.4 64.95
(5) 3 3.3 3.1 3.4 57.45
(6) 3 3.4 3.4 3 25.8

Table 4.2: Measured Balance Times for 4S Balancer
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Figure 4-12: 4S Average Balance Current vs Frequency

Figure 4-13: 4S Thermal Test
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Figure 4-14: 4S Dynamic Balance Test 3 Cell Voltages

Figure 4-15: 4S Dynamic Balance Test 3 Cell Currents
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Chapter 5

Conclusions

This thesis has addressed and made progress towards some of the gaps in the present

state of SCC battery balancers. We have presented a novel balancer topology called

the Multi-Tier and derived an analytical solution (at the 3S and 4S level) through

an average circuit model. A potential pathway towards low-entropy solutions for

higher order balancers was shown (Chapter 2). We compared the new topology with

a few others and demonstrated its potential through circuit simulations (Chapter 3).

A practical implementation of the 4S Multi-Tier topology was built and its validity

demonstrated (Chapter 4).

5.1 Modeling and Analysis

In Chapter 2, we began our modeling of SCC battery balancers by focusing on the

fundamental building block for various topologies: the canonical 2S balancer. We

showed how one can model its average behavior through an impedance based ap-

proach. A static and dynamic analysis was performed. We then presented a novel

balancer topology, the Multi-Tier, and derived an analytical solution at the 3S and

4S level through simplifying assumptions. Theoretical balance time improvement was

demonstrated with the addition of higher-tier capacitors. A pathway to low-entropy

analysis of higher order balancers was discussed. Additionally, it was shown how

analytical solutions of several other balancer topologies could be extracted from the
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Multi-Tier. In Chapter 3, we ran simulations to compare the balance time of the new

topology with similar ones.

5.2 Design

In Chapter 4, we built three practical SCC battery balancers. We designed two 2S

canonical balancers and validated their functionality. One balancer utilized an all

NCH power circuit while the other used NCH+PCH. Component selection, schemat-

ics, PCB layout, and experimental results were shown. Performance between designs

was compared. This led to a practical 4S Multi-Tier Balancer. The 2S NCH+PCH

design was chosen as the fundamental building block due to its reduced component

selection and simplified PCB layout. Components, schematics, PCB layout, and ex-

perimental results were given for the 4S balancer.

5.3 Future Work

There is much analysis work needed for various higher order SCC balancing topolo-

gies. The author believes that meaningful analytical solutions using clever impedance

approaches, such as the N Extra Element Theorem or Generalized Time-and Transfer-

Constants, can yield fruitful theoretical insight. It could be worth starting from first

principles and thinking of new creative approaches. There are also several other SCC

battery balancing topologies that can be compared with the ones presented in this

thesis.

On the practical side, there are plenty of experiments beyond those conducted

for the 4S Multi-Tier balancer in this thesis. One can remove some of the energy

tanks in the circuit to turn the Multi-Tier into a Double-Tier or Flat topology, and

then perform the same experiments described in Chapter 4. Future work can also be

design and testing of an 8S or higher order balancer implementation. Tests may also

be ran with actual battery cells instead of supplies emulating them.
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Appendix A

Tables
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Component Type Designator Part Number Manufacturer Value

Decoupling Capacitor C1, C8, C15, C18 CL21B105KPFNNNE Samsung Electro-Mechanics 1 𝜇F

Bypass Capacitor* C14, C19 CL32B106KAJNNNE Samsung Electro-Mechanics 10 𝜇F
GMK325BJ226MM-P Taiyo Yuden 3×(22 𝜇F)

Decoupling Capacitor C2, C4, C6, C9, CL10B104KO8NFNC Samsung Electro-Mechanics 0.1 𝜇FC10, C12, C16, C17

Deadtime Capacitor C3 885012006029 Würth Elektronik 1 nF

Bootstrap Capacitor C5, C7, C11, C13 CL32B106KAJNNNE Samsung Electro-Mechanics 10 𝜇F

Flying Capacitor 𝐶𝑓𝑙𝑦 GMK325BJ226MM-P Taiyo Yuden 10×(22 𝜇F)

Schottky Diode D1, D2, D3, D4, CUS10S30,H3F Toshiba Semiconductor
and StorageD5, D6, D7

LED D8 XZMDKVG55W-4 SunLED

Terminal Block H1 OSTTC032162 On Shore Technology Inc.

Flying Inductor 𝐿𝑓𝑙𝑦 PA5189.101HLT Pulse Electronics 100 nH

Gate Driver O1, O2, O3, O4 IS480P Isocom Components 2004 LTD

NCH Switch Q1, Q2, Q3, Q4 IAUC120N04S6L008ATMA1 Infineon Technologies

Bootstrap Switch Q5, Q6 SSM3J340R,LF Toshiba Semiconductor and Storage

NCH Gate Resistor R1, R2, R3, R4 WR06X100 JTL Walsin Technology Corporation 10 ΩR11, R12

LED Resistor R5 RMCF0603JT100R Stackpole Electronics Inc. 100 Ω

Deadtime Resistor R7, R8 RMCF0603JT100R Stackpole Electronics Inc. 100 Ω

DC Gain Resistor R6 RC0603FR-071M6L YAGEO 1.6 MΩ

Gate Driver Resistor R9, R10 RC0603FR-07499RL YAGEO 499 Ω

Test Point
TP1, TP2, TP6, TP7, TP8,

5196TR Keystone ElectronicsTP13, TP14, TP15, TP16
TP17, TP18, TP19, TP20

Op-amp U1 OPA2197ID Texas Instruments
* C14, C19 are each the parallel combination of the two listed values.

Table A.1: Components of 2S NCH Balancer v1.1.0
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Component Type Designator Part Number Manufacturer Value

Bootstrap Capacitor C1, C3, C4, C5, C7, C8 CL32B106KAJNNNE Samsung Electro-Mechanics 10 𝜇F

Decoupling Capacitor C10, C13 CL21B105KPFNNNE Samsung Electro-Mechanics 1 𝜇F

Decoupling Capacitor C2, C6, C11, C12 CL10B104KO8NFNC Samsung Electro-Mechanics 0.1 𝜇F

Bypass Capacitor* C9, C14 CL32B106KAJNNNE Samsung Electro-Mechanics 10 𝜇F
GMK325BJ226MM-P Taiyo Yuden 3×(22 𝜇F)

Flying Capacitor 𝐶𝑓𝑙𝑦 GMK325BJ226MM-P Taiyo Yuden 10×(22 𝜇F)

Schottky Diode D1, D2, D3, D4, CUS10S30,H3F Toshiba Semiconductor
and StorageD5, D6, D7, D8

LED D9 XZMDKVG55W-4 SunLED

Terminal Block H1 OSTTC032162 On Shore Technology Inc.

Flying Inductor 𝐿𝑓𝑙𝑦 PA5189.101HLT Pulse Electronics 100 nH

Gate Driver O1, O2 IS480P Isocom Components 2004 LTD

PCH Switch Q1, Q3 SQJ123ELP-T1_GE3 Vishay Siliconix

NCH Switch Q2, Q4 PH2925U,115 Nexperia USA Inc.

PCH Gate Resistor R1, R3 RK73B1JTTD1R0J KOA Speer Electronics, Inc. 1 Ω

Gate Driver Resistor R5, R6 RC0603FR-07499RL YAGEO 499 Ω

NCH Gate Resistor R2, R4 WR06X100 JTL Walsin Technology Corporation 10 Ω

LED Resistor R7 RMCF0603JT100R Stackpole Electronics Inc. 100 Ω

Test Point TP1, TP2, TP6, TP7, TP8, 5196TR Keystone ElectronicsTP13, TP14, TP15, TP16
* C9, C14 are each the parallel combination of the two listed values.

Table A.2: Components of 2S NCH+PCH Balancer v1.1.0
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Component Type Designator Part Number Manufacturer Value

Flying Capacitor* 𝐶12, 𝐶13, 𝐶14, 𝐶23, 𝐶24, 𝐶34 GMK325BJ226MM-P Taiyo Yuden 10×(22 𝜇F)

Bootstrap Capacitor C1, C3, C4, C5, C7, C8 CL32B106KAJNNNE Samsung Electro-Mechanics 10 𝜇FC9, C13, C14, C15, C19, C20

Decoupling Capacitor C10, C16, C22, C25, C28, C31 CL21B105KPFNNNE Samsung Electro-Mechanics 1 𝜇F

Decoupling Capacitor C2, C6, C11, C12, C17, C18, CL10B104KO8NFNC Samsung Electro-Mechanics 0.1 𝜇FC23, C24, C29, C30

Bypass Capacitor† C21, C26, C27, C32
CL32B106KAJNNNE Samsung Electro-Mechanics 10 𝜇F
GMK325BJ226MM-P Taiyo Yuden 3×(22 𝜇F)

TMK325ABJ476MM-T Taiyo Yuden 4×(47 𝜇F)

Schottky Diode
D1, D2, D3, D4, D5, D6,

CUS10S30,H3F Toshiba Semiconductor
and StorageD7, D8, D10, D11, D12, D13,

D14, D15, D16, D17

LED D9 XZMDKVG55W-4 SunLED

Terminal Block H1, H2 OSTTC032162 On Shore Technology Inc.

Flying Inductor 𝐿12, 𝐿13, 𝐿14, 𝐿23, 𝐿24, 𝐿34 PA5189.101HLT Pulse Electronics 100 nH

Gate Driver O1, O2, O3, O4 IS480P Isocom Components 2004 LTD

PCH Switch Q1, Q3, Q5, Q7 SQJ123ELP-T1_GE3 Vishay Siliconix

NCH Switch Q2, Q4, Q6, Q8 PH2925U,115 Nexperia USA Inc.

PCH Gate Resistor R1, R3, R5, R7 RK73B1JTTD1R0J KOA Speer Electronics, Inc. 1 Ω

Gate Driver Resistor R10, R11, R12, R13 RC0603FR-07499RL YAGEO 499 Ω

NCH Gate Resistor R2, R4, R6, R8 WR06X100 JTL Walsin Technology Corporation 10 Ω

LED Resistor R9 RMCF0603JT100R Stackpole Electronics Inc. 100 Ω

Test Point TP1, TP2, TP16, TP17, TP18, 5196TR Keystone ElectronicsTP19, TP20, TP21, TP22, TP23

Op-amp U1 OPA2197ID Texas Instruments
* 𝐶12, 𝐶23, 𝐶34 are each 10×(22 𝜇F). 𝐶13, 𝐶24 are each 15×(22 𝜇F). 𝐶14 is 20×(22 𝜇F).

† C21, C26, C27, C32 are each the parallel combination of the three listed values.

Table A.3: Components of 4S NCH+PCH Balancer v1.0.0

Equipment Name Function

Juntek JDS-2900-60M Signal Generator
Itech IT-M3432 Battery Cell Emulation

Tektronix DP04034 Oscilloscope
LPKF Protoflow S4 Reflow Oven

Table A.4: Lab Equipment

Parameter Value

Full Voltage 3.4 V
Empty Voltage 3 V

Capacity 1 Ah
Cell Resistance 0 mΩ

Table A.5: Battery Cell Emulation Parameters
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Initial Condition 𝑉1 [V] 𝑉2 [V] 𝑉3 [V] 𝑉4 [V] Commercial Balancer 4S NCH+PCH Multi-Tier Balancer
Experimental 𝜏𝑏 [min] Experimental 𝜏𝑏 [min]

(1) 3 3.4 3 3.4 76.22 41.5
(2) 3 3 3.4 3.4 56.23 57.8
(3) 3 3.2 3.2 3.4 48.48 52.8
(4) 3 3.1 3.3 3.4 47.13 57.1
(5) 3 3.3 3.1 3.4 58.98 48.9

These balance time values use Δ𝑣𝑏 = 20 mV

Table A.6: Balance Time Comparison Between Commercial Balancer and 4S
NCH+PCH Multi-Tier Balancer
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Appendix B

Figures
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Figure B-7: 2S NCH Balancer Top Layout

Figure B-8: 2S NCH Balancer Bottom Layout
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Figure B-9: 2S NCH Balancer PCB Top View

Figure B-10: 2S NCH Balancer PCB Bottom View
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Figure B-11: 2S NCH+PCH Balancer Top Layout

Figure B-12: 2S NCH+PCH Balancer Bottom Layout
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Figure B-13: 2S NCH+PCH Balancer PCB Top View

Figure B-14: 2S NCH+PCH Balancer PCB Bottom View
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Figure B-15: 4S NCH+PCH Balancer Top Layout

Figure B-16: 4S NCH+PCH Balancer Bottom Layout
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Figure B-17: 4S NCH+PCH Balancer PCB Top View

Figure B-18: 4S NCH+PCH Balancer PCB Bottom View

87



Figure B-19: 2S NCH Dynamic Balance Current vs ∆𝑉

Figure B-20: 2S NCH Dynamic ∆𝑉
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Figure B-21: 2S NCH Dynamic Efficiency

Figure B-22: 2S NCH Efficiency vs ∆𝑉
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Figure B-23: 2S NCH Balancer Deadtime Verification

Figure B-24: 2S NCH Balancer Quasi-Synchronous Bootstrap Verification (𝑉𝐺𝑆 shown
for each switch)

Figure B-25: 2S NCH Balancer Switching Node Voltages
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Figure B-26: 2S N+P Dynamic Balance Current vs ∆𝑉

Figure B-27: 2S N+P Dynamic ∆𝑉
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Figure B-28: 2S N+P Dynamic Efficiency

Figure B-29: 2S N+P Efficiency vs ∆𝑉
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Figure B-30: 2S N+P Thermal Test at ∆𝑉 = 0.6 V
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Figure B-31: 4S Dynamic Balance Test 1 Cell Voltages

Figure B-32: 4S Dynamic Balance Test 1 Cell Currents
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Figure B-33: 4S Dynamic Balance Test 2 Cell Voltages

Figure B-34: 4S Dynamic Balance Test 2 Cell Currents
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Figure B-35: 4S Dynamic Balance Test 4 Cell Voltages

Figure B-36: 4S Dynamic Balance Test 4 Cell Currents
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Figure B-37: 4S Dynamic Balance Test 5 Cell Voltages

Figure B-38: 4S Dynamic Balance Test 5 Cell Currents
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Figure B-39: 4S Dynamic Balance Test 6 Cell Voltages

Figure B-40: 4S Dynamic Balance Test 6 Cell Currents
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Appendix C

Equations

C.1 Principle of Virtual Work

Let 𝑉𝑘 be the final state voltage of cell 𝑘. We define 𝛿𝑞𝑘 as the virtual charge displace-

ment, 𝑄𝑘 as the generalized electromotive force associated with this displacement, 𝑁

as the number of battery cells, and 𝛿𝑊 as the virtual work such that

𝛿𝑊 =
𝑁−1∑︁
𝑘=1

𝑄𝑘𝛿𝑞𝑘 = 0 (C.1)

where 𝑄𝑘 = 𝑉𝑘−𝑖𝑘𝑗𝑅𝑘𝑗−𝑉𝑗 for 𝑗 = 𝑘+1. Assume the system of cells is in electrostatic

equilibrium i.e. 𝑖𝑘𝑗 = 0 (no current flow). Thus,

𝑄𝑘 = 0, ∀𝑘 ∈ {1, 2, . . . , 𝑁 − 1} (C.2)

Therefore, in equilibrium

𝑉1 = 𝑉2 = . . . = 𝑉𝑁 (C.3)

𝑉𝑘 is also constrained by
𝑁∑︁
𝑘=1

𝑉𝑘 = 𝑉𝑏𝑎𝑡𝑡 (C.4)
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By (C.3) and (C.4), the end state for all cell voltages is given by

𝑉𝑘 =
𝑉𝑏𝑎𝑡𝑡

𝑁
(C.5)

C.2 Equations of Motion

C.2.1 3S Equations of Motion

𝑉1(𝑠)− 𝑖1,2𝑅− 𝑉2(𝑠) = 0 (C.6)

𝑉1(𝑠)− 𝑖1,3𝛼𝑅− 𝑉3(𝑠) = 0 (C.7)

𝑉2(𝑠)− 𝑖2,3𝛽𝑅− 𝑉3(𝑠) = 0 (C.8)

𝑉1(𝑠)−
𝑉1(0)

𝑠
− 𝐼1

𝑠𝐶
= 0 (C.9)

𝑉2(𝑠)−
𝑉2(0)

𝑠
− 𝐼2

𝑠𝐶
= 0 (C.10)

𝑉3(𝑠)−
𝑉3(0)

𝑠
− 𝐼3

𝑠𝐶
= 0 (C.11)

𝑖1 + 𝑖1,2 + 𝑖1,3 = 0 (C.12)

𝑖2 − 𝑖1,2 + 𝑖2,3 = 0 (C.13)

𝑖3 − 𝑖2,3 − 𝑖1,3 = 0 (C.14)

C.2.2 4S Equations of Motion

𝑉1(𝑠)− 𝑖1,2𝑅− 𝑉2(𝑠) = 0 (C.15)

𝑉1(𝑠)− 𝑖1,3𝛼𝑅− 𝑉3(𝑠) = 0 (C.16)

𝑉1(𝑠)− 𝑖1,4𝜑𝑅− 𝑉4(𝑠) = 0 (C.17)

𝑉2(𝑠)− 𝑖2,3𝑅− 𝑉3(𝑠) = 0 (C.18)

𝑉2(𝑠)− 𝑖2,4𝛼𝑅− 𝑉4(𝑠) = 0 (C.19)
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𝑉3(𝑠)− 𝑖3,4𝑅− 𝑉4(𝑠) = 0 (C.20)

𝑉1(𝑠)−
𝑉1(0)

𝑠
− 𝐼1

𝑠𝐶
= 0 (C.21)

𝑉2(𝑠)−
𝑉2(0)

𝑠
− 𝐼2

𝑠𝐶
= 0 (C.22)

𝑉3(𝑠)−
𝑉3(0)

𝑠
− 𝐼3

𝑠𝐶
= 0 (C.23)

𝑉4(𝑠)−
𝑉4(0)

𝑠
− 𝐼4

𝑠𝐶
= 0 (C.24)

𝑖1 + 𝑖1,2 + 𝑖1,3 + 𝑖1,4 = 0 (C.25)

𝑖2 − 𝑖1,2 + 𝑖2,3 + 𝑖2,4 = 0 (C.26)

𝑖3 − 𝑖1,3 − 𝑖2,3 + 𝑖3,4 = 0 (C.27)

𝑖4 − 𝑖1,4 − 𝑖2,4 − 𝑖3,4 = 0 (C.28)
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