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Abstract

Efficient localization of RFID-tagged items is crucial in scenarios that require tracking
and managing a large inventory. Current systems for fine-grained RFID localization
have shown limitations since they only collect measurements on a pre-defined trajec-
tory or optimize measurement locations for a single tag. Thus, there is a need for
an RFID localization system that can autonomously optimize for multiple tags and
adaptively relocalize tags with lower confidence to achieve a more precise and efficient
localization.

We introduce RL-SAR, an end-to-end autonomous Synthetic Aperture Radar
(SAR) based RFID localization system, utilizing a Reinforcement Learning (RL) al-
gorithm to determine the most optimal trajectory for localizing multiple tags. We
implemented this system with an antenna moving on a ceiling-mounted 2D track.
The core of the system is a RL-based trajectory optimization algorithm for collecting
RF measurements. Based on these RF measurements, we developed a data processing
pipeline to compute the estimated tag locations along with their confidence metrics,
derived from the RF SAR hologram. The RL algorithm leverages confidence metrics
associated with the tags and is capable of learning a strategy that minimizes the
antenna’s traveled distance while enhancing the localization accuracy.

We built and evaluated a proof-of-concept prototype of RL-SAR. Experimental
evaluation demonstrates a mean 3D localization accuracy of 0.244m and the capability
to locate 15 tags within an average scanning distance of 19.14 m. We compared our
algorithm to naive baselines and show that the baselines require 86% longer trajectory
than RL-SAR. Our results show the potential for achieving robust and efficient
localization to enhance the current inventory processes across the manufacturing,
retail, and logistics sectors.

Thesis Supervisor: Fadel Adib
Title: Associate Professor
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Chapter 1

Introduction

Moving antenna 
to perform SAR RFID tag

Figure 1-1: RL-SAR in a store setting. RL-SAR moves an ceiling-mounted an-
tenna autonomously to perform Synthetic Aperture Radar (SAR) and localize RFID
tags.

The adoption of Ultra High Frequency (UHF) RFID technology is expanding at

an unprecedented rate in industries such as retail, manufacturing, and warehousing.

In 2021, over 30 billion RFID tags were sold, with 70% used in apparel, footwear, and

other retail products [1]. These tags are batteryless, small, and inexpensive (around 3
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cents), which allows companies to apply the technology to all their products for more

efficient inventory management. Many retailers use RFID systems to track inventory

availability, perform automatic checkout, and detect theft activities. Apart from

these applications, there is considerable interest in achieving fine-grained localization

of these RFID-tagged items to enable precise inventory tracking. State-of-the-art

RFID localization systems have demonstrated a centimeter level of accuracy using

techniques such as Time-of-flight ranging [2] and Synthetic Aperture Radar (SAR)

[3–8]. This level of accuracy paves the way for enabling us to differentiate between

items on the same shelf and potentially create a digital map of items, which would

be beneficial for locating specific items or managing inventory more efficiently.

Unfortunately, existing systems for fine-grained RFID localization in these envi-

ronments are inefficient. One of the most popular approaches for performing such

localization is to mount an RFID antenna on a mobile robot that moves on a prede-

fined trajectory (e.g., traversing a dense spatial grid), collecting measurements from

different locations in order to localize RFID tags in the environment [3, 4, 9–13].

However, such an approach suffers in scenarios where a subset of tags has not been

localized accurately; this is because the robot either needs to repeat the entire tra-

jectory for scanning again or it must settle for poor localization accuracy for these

tags. To enable more accurate and efficient tag localization, some recent work [14]

has considered using reinforcement learning to choose efficient locations for the robot

to move to in order to collect RF measurements for localization; such an approach

speeds up the task of localizing an individual RFID, but must be repeated for every

tag in the environment, making it inefficient for localizing all tags in the environment.

In this thesis, we investigate whether we can achieve autonomous RFID localiza-

tion more efficiently for multiple RFID tags using SAR with a trajectory optimization

algorithm. SAR-based RFID localization leverages the relative movement between the

antenna and the tag to create virtual antenna arrays and improves localization accu-

racy by increasing the aperture of the tag measurements. At a high level, our aim is

to construct a robotic system that can optimally select a SAR trajectory to collect

RF measurements and minimize the total scanning distance needed to localize all the
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target tags in the environment. With this system, we can not only localize multiple

tags more efficiently but also perform additional scans to adaptively relocalize tags

with lower confidence.

Translating this concept into a practical system presents several challenges. First,

we need to develop an autonomous robotic system that synchronizes antenna mo-

bility with RF measurements to achieve real-time data collection. Also, this system

employs Commercial Off-The-Shelf (COTS) hardware, which introduces the issue of

phase ambiguity in RF measurements. Furthermore, the system needs to consider

the localization confidence for all the tags and identify the locations to take new

measurements. To address these challenges, we developed RL-SAR, an end-to-end

autonomous SAR-based RFID localization system that operates based on an antenna

moving on a ceiling-mounted 2D track. The core part of this system is a Reinforcement

Learning (RL) framework that identifies the next best SAR trajectory for localizing

multiple tags. We explore various confidence metrics and their relationship to the sys-

tem’s performance. The RL algorithm exploits the confidence metrics of the target

tags and learns a policy to minimize the trajectory length while enhancing their lo-

calization confidence. Through this algorithm, RL-SAR can operate autonomously in

the background of environments such as stores or warehouses, continuously tracking

many RFID-tagged inventory items simultaneously, as shown in Figure 1-1.

I built and evaluated the system in a real-world scenario where RL-SAR conducted

scans in an indoor environment mimicking a store setting and visualized the localiza-

tion results on a 3D indoor map. This application also includes a depth camera to

incorporate 3D point cloud data and achieve real-time scanning of the environment.

This vision-based 3D data provides the system with the necessary information about

the environment to enable the creation of a digital twin of the area. This represents

the concept of an RFID localization system that can be used in the retail industry,

creating a digital twin of the tagged items within the store.
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Chapter 2

Background

In this section, we explore the associated studies on RFID localization and delve into

state-of-the-art RFID localization systems with RF measurement path optimization.

Moreover, we examine the necessary background knowledge and requirements for

designing a SAR-based RFID localization system using Commercial Off-The-Shelf

(COTS) hardware.

2.1 Related Work

We offer an overview of various RFID localization methods, drawing particular atten-

tion to the latest advancements in RFID localization systems with RF measurement

path optimization.

2.1.1 RFID Localization

RFID localization can be achieved using active [15–17] and passive tags. In the

realm of large-scale RFID-tagged item tracking, passive tags are frequently used due

to their compact size and lower cost. Passive UHF RFID localization systems rely

on measurements derived from the backscattered signal emitted by the tag. These

systems can be broadly categorized into signal strength-based, time of flight-based,

direction-of-arrival-based, and SAR-based methods.
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Signal strength, also known as Received Signal Strength Indicator (RSSI), based

approaches depend on the amplitude of the backscattered signal [18, 19]. However,

the RSSI is highly sensitive to factors such as multipath propagation, attenuation due

to obstructions, tag material, and orientation, which can result in localization errors

of up to a meter.

Systems like RFind [2] and TurboTrack [20] leverage the emulated wide bandwidth

and incorporate a super-resolution technique to achieve sub-centimeter level accuracy

even in a multipath-rich environment. They sample the RF measurements over a wide

bandwidth and apply the Inverse Fast Fourier Transform (IFFT) to recover the dis-

tance through time-of-flight. Unfortunately, this method requires a very wide range of

emulated frequencies and needs specialized hardware for localization. Current COTS

hardware is not suitable for this technique. Angle of arrival localization techniques

capitalize on the phase difference between measurements from different antennas to

estimate the direction of the backscattered signal [21]. However, scaling such a system

poses challenges as it would necessitate many antennas to deliver adequate spatial

resolution.

The Synthetic Aperture Radar (SAR) approach has been widely used in state-of-

the-art RFID localization systems due to its ability to achieve good spatial resolu-

tion [3–5, 7, 11–13, 22–25]. These advanced systems often incorporate Visual Inertial

Odometry (VIO) to collect a known trajectory of measurements and exploit wireless

channel estimation to create a SAR hologram for localization. Existing SAR-based

localizations can be primarily separated into two categories. The first category is

human-motion-based SAR localization. Systems like XAR [26] combine an RF an-

tenna with an augmented reality headset to enable SAR RFID localization based on

human motion.

The second category revolves around robot-based SAR localization. Systems such

as PinIt [3] use mobile robot-based SAR to extract the multipath profile of each

tag and localize based on the nearest reference tag. Other researchers have utilized

ground or flying robots to collect measurements at various locations, often relying on

generating RF holograms to find the best match for the phase sequence calculated
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based on prior knowledge of the robot’s motion trajectory.

2.1.2 RFID Localization Systems with Path Optimization

Current methods for fine-grained RFID localization lack efficiency. A common strat-

egy for achieving RFID localization involves attaching an RFID antenna to a mobile

robot, which then follows a pre-defined trajectory [3, 4, 9–13]. This approach is not

efficient when it comes to large amount of tags. If the system cannot find the tag, the

robot has to go over the same path again. To improve the localization accuracy and

efficient, some recent works employ path optimization to guide the user or robot to

the optimal next locations for attempting to read RFID tags. RF-AR [27] explores

the synergies between humans and the RFID localization system, introducing a path

optimization algorithm based on Dilution of Precision (DoP) improvements. This

optimal path is displayed as an arrow on the AR headset worn by the user. However,

RF-AR only optimizes the trajectory for finding a single tag, and is inefficient when

localizing multiple RFID tags simultaneously.

RFusion [14] uses a robotic arm to move the antenna and capture RF measure-

ments from several locations. The system incorporates an RF-visual reinforcement

learning algorithm to determine the optimal next vantage point to which the arm

should move and take measurements. Guided by this RL-based algorithm, the robotic

arm repeats the measurement process until it achieves sufficient localization confi-

dence in its estimated location of the RFID tag. Unfortunately, much like RF-AR,

RFusion is also solely designed to optimally search for a single RFID tag.

In this thesis, our objective is to construct a robotic system capable of moving the

antenna to gather measurements and calculate location estimates using SAR. Fur-

thermore, we aim to develop an RL-based path optimization algorithm that identifies

the next best SAR trajectory for localizing multiple target tags.

21



PP

P

Generate SAR 
Hologram

Antenna 
scan path

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2-1: Illustration of SAR. The antenna moves along an L-shaped trajectory
and collects wireless channel measurements at each point. These measurements are
then used to create a SAR hologram, which is a likelihood map of the location of tag
P. The hologram values are normalized between 0 and 1.

2.2 Primer on SAR-based RFID Localization

This section provides the fundamental background for SAR-based RFID localization

system. First, we introduce the basic concept of SAR. Then, we explore the system

requirements and constraints involved in designing a SAR-based RFID localization

system using Commercial off-the-shelf (COTS) hardware.

2.2.1 SAR Localization

Synthetic Aperture Radar, or SAR, is a technique that enhances the spatial resolu-

tion of RF measurements by moving the antenna. In contrast to conventional antenna

arrays, it offers the advantage of requiring fewer antennas to achieve the same spa-

tial resolution. Broadly, SAR computes an RF hologram based on wireless channel

estimations at each RFID measurement point. This RF hologram represents the like-

lihood of a tag being at each grid location in the space. The grid with the maximum

value is estimated as the location most likely to contain that tag.

The SAR approach requires that the system estimates the current location of

the antenna while it’s moving. Existing systems often use Visual and/or Inertial

Odometry (VIO) or stepper motor step counts to estimate the relative movement
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between measurements [3, 27, 28]. In this thesis, RL-SAR leverages the stepper

motor step counts provided by the ceiling-mounted 2D track to obtain the antenna

position estimates required to perform SAR. Figure 2-1 illustrates the antenna moving

in an L-shaped trajectory and creating a SAR hologram based on wireless channel

estimation.

As the antenna moves on the ceiling-mounted track, it simultaneously transmits

RF signals to communicate with the passive RFID tags in the environment. After

the tag receives the signal from the antenna, it backscatters a signal with its identifier

to the same antenna. RL-SAR exploits this received signal to estimate the wireless

channel for measurement point 𝑖 based on the following equation [29].

ℎ𝑖 = 𝐴𝑖𝑒
−𝑗𝜑𝑖 (2.1)

where 𝐴𝑖 is the measured amplitude and 𝜑𝑖 is the measured phase value at point 𝑖.

This wireless channel estimation is repeated at various measurement points, and

the channel information can be combined to calculate the likelihood 𝑃 at every point

in the environment. Equation 2.2 provides a definition of the likelihood 𝑃 at coordi-

nate (𝑥, 𝑦, 𝑧).

𝑃 (𝑥, 𝑦, 𝑧) =

⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

ℎ𝑖𝑒
𝑗
2𝜋𝑑𝑖(𝑥,𝑦,𝑧)

𝜆

⃒⃒⃒⃒
⃒ (2.2)

where 𝑁 is the total number of measurements, ℎ𝑖 is the channel estimation of the 𝑖𝑡ℎ

location, 𝑑𝑖 is the round trip distance from (𝑥, 𝑦, 𝑧) to the 𝑖𝑡ℎ location, and 𝜆 is the

wavelength of the received signal. Finally, the tag location 𝑝𝑒𝑠𝑡 can be estimated by

the following equation.

𝑝𝑒𝑠𝑡 = argmax(𝑥,𝑦,𝑧)(𝑃 (𝑥, 𝑦, 𝑧)) (2.3)
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2.2.2 Measurement Interval Requirements

When performing SAR localization, the intervals between measurements are con-

strained by a value to avoid multiple candidates on the SAR hologram. This inter-

measurement constraint is defined to eliminate the spatial aliasing effect caused by

grating lobes [30]. If the measurement locations are separated by more than 𝜆/4,

there will be multiple candidates for each possible on the SAR hologram that result

in the same likelihood value. This is non-ideal for locating a large number of tags

and compromises the localization accuracy of our system. Therefore, RL-SAR incor-

porates a filter to ensure that subsequent measurements in the same trajectory are

within this maximum interval limit.

2.2.3 Constraints on COTS Hardware

According to the COTS hardware - ThingMagic M6e RFID reader [31] that we used

and the report from this research [32], these COTS RFID readers only return 0 − 𝜋

phase values instead of 0−2𝜋 phase values. This creates a 𝜋 ambiguity for the system

and causes problems during SAR computation. Firstly, the maximum gap derived

from §2.2.2 becomes one-half of the original value due to the fact that the effective

wavelength is half of the original wavelength.

The maximum gap constraints now become 𝜆/8 when using COTS hardware.

Furthermore, to aggregate the wireless channel estimation when calculating the RF

hologram, we need to perform signal phase unwrapping as described in §3.2.2.
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Chapter 3

RL-based SAR RFID Localization

This chapter first provides an overview of the RL-SAR system, followed by a detailed

description of the autonomous SAR-based localization pipeline. Lastly, we introduce

the RL-based trajectory optimization algorithm designed to identify tags with lower

confidence and suggest efficient scanning trajectories for their localization.

3.1 System Overview

RL-SAR is an autonomous platform for SAR-based RFID localization using a 2D

robotic track system. It is installed on the ceiling with an RFID antenna installed on

the track. The antenna can move in both X and Y direction to collect measurements

from various locations. These measurements are utilized to perform SAR calculations

and localize the tag. Figure 3-1 provides an overview of the RL-SAR system.

The localization procedure starts with the RL-SAR controller sending preset tra-

jectory movement commands to the 2D ceiling-mounted track system. As it starts

moving, it also simultaneously enables the RFID reader to collect measurements along

the way. After RL-SAR finishes one scan, the data is sent to the local server for pre-

processing such as timestamp synchronization, phase unwrapping, and maximum gap

filtering. The processed data is then used to compute the RF SAR hologram, which

is aggregated with previous measurements to form a cumulative RF hologram. From

this, we are able to derive the estimated location of the tag and calculate its con-
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fidence intervals. If the confidence intervals satisfy the predetermined convergence

criteria, the system returns a localization result. If they do not, it activates the adap-

tive relocalization procedure, and RL-SAR recommends an optimal path for the next

scan.

Ceiling-mounted 
Moving Antenna

§3.2.1 Control Movement 
and Collect Measurements

§3.3 RL-based 
Trajectory Optimization

§3.2.3 SAR Hologram

§3.2.2 Data Preprocessing

P1
P2

P3

Figure 3-1: RL-SAR Overview. RL-SAR utilizes a ceiling-mounted moving an-
tenna to perform SAR and localize RFID tags. §3.2.1 describes the process of con-
trolling the movement and collect RF measurements. §3.2.2 describes the data pre-
processing steps. §3.2.3 describes the SAR RF hologram computation. §3.3 shows
how to use RL-based trajectory optimization algorithm to find the optimal trajectory
for doing SAR on finding multiple tags with low confidence.

3.2 End to End RFID Localization using SAR

In the section, we describe how RL-SAR achieves autonomous SAR based 3D localiza-

tion in detail, including how it controls movement, collects measurements, performs

preprocessing, computes SAR hologram, and calculates confidence metrics.

3.2.1 Control Movement and Collect Measurements

To achieve SAR, it is necessary to control the movement of the antenna and know

its position at each measurement point. We define the basic movement at index 𝑖 as

(𝑥𝑖, 𝑦𝑖, 𝑠𝑖, 𝑟𝑖), where 𝑥𝑖 and 𝑦𝑖 are the next position where we want the antenna to move

to, 𝑠𝑖 defines the speed that the antenna is moving at, and 𝑟𝑖 defines whether we want
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the RFID reader to read during this movement. When we controls the movement of

RL-SAR’s antenna, we provide a sequence of basic movements, or a trajectory:

𝜏 = [(𝑥0, 𝑦0, 𝑠0, 𝑟0), (𝑥1, 𝑦1, 𝑠1, 𝑟1), . . . , (𝑥𝑖, 𝑦𝑖, 𝑠𝑖, 𝑟𝑖)] (3.1)

where each of the 𝑥𝑖, 𝑦𝑖 coordinates in 𝜏 represents a setpoint in a trajectory, and

RL-SAR continues to read the current location of the antenna to see if it arrives at

the setpoint before executing another movement toward the next setpoint. Note that

𝑥𝑖 and 𝑦𝑖 are in meters, and 𝑠𝑖 has the unit of mm/min. Also, the coordinate (𝑥𝑖, 𝑦𝑖)

needs to be constrained in the (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥), (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) bound. 1

During the movement, RL-SAR continues to request current coordinate feedback

from the linear track system and save the feedback information as (𝑥𝑛, 𝑦𝑛, 𝑡𝑛). (𝑥𝑛, 𝑦𝑛)

is the coordinate at which the feedback is collected from, and 𝑡𝑛 is the timestamp

information in epoch time. After scanning through a trajectory, we get a list of

feedback positions Ω at different timestamps:

Ω = [(𝑥0, 𝑦0, 𝑡0), (𝑥1, 𝑦1, 𝑡1), ..., (𝑥𝑛, 𝑦𝑛, 𝑡𝑛)] (3.2)

If the read flag, 𝑟𝑖, is enabled in the movement, RL-SAR controls the RFID reader

to simultaneously read RFID tags in the environment. RL-SAR communicates with

the RFID reader through the Mercury API [33] to begin reading the tags, and the

reader responds when a successful measurement has been collected. Each measure-

ment at time 𝑡𝑘 contains (𝑒𝑝𝑐𝑘, 𝑟𝑠𝑠𝑖𝑘, 𝜑𝑘, 𝑓𝑘, 𝑡𝑘) where 𝑒𝑝𝑐𝑘 is the RFID tag electronic

product code (EPC) identifier, 𝑟𝑠𝑠𝑖𝑘 is the RSSI of the received signal, 𝜑𝑘 is the

measured phase value, and 𝑓𝑘 is the frequency of the received signal. After RL-SAR

completes a scan, we can get a list of measurements collected by the RFID reader:

Λ = [(𝑒𝑝𝑐0, 𝑟𝑠𝑠𝑖0, 𝜑0, 𝑓0, 𝑡0), (𝑒𝑝𝑐1, 𝑟𝑠𝑠𝑖1, 𝜑1, 𝑓1, 𝑡1), ..., (𝑒𝑝𝑐𝑘, 𝑟𝑠𝑠𝑖𝑘, 𝜑𝑘, 𝑓𝑘, 𝑡𝑘)] (3.3)

1RL-SAR uses (0, 3) for (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥), and (0, 2) for (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥). It defines an area of 3m x 2m
that the antenna can move in.
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At the beginning of the autonomous SAR localization task, RL-SAR moves along

a preset trajectory 𝜏𝑖𝑛𝑖𝑡 to maximize the possibility of reading all the tags in the

environment. This preset trajectory is a rectangular trajectory that has a 0.5m offset

from all four bounds of the ceiling-mounted track system. 2

3.2.2 Data Preprocessing

To prepare data for computing the SAR RF hologram, RL-SAR performs data prepro-

cessing tasks which include target tags filtering, timestamps synchronization, maxi-

mum gap filtering, and phase unwrapping. In this section, we discuss these processes

in detail in the following subsections.

Target Tags Filtering

Before doing the following preprocessing tasks, we define the target tags that we aim

to localize. In this thesis, we define a set of target tags 𝑆𝑡 before the localization

process starts. In actual application, this set may be defined during the previous

inventory round, with known tags’ EPC corresponding to each of the items in the

database. Nonetheless, if we want to search and localize all tags in the target area,

RL-SAR also works with 𝑆𝑡 containing all the unique RFID tag EPCs that are in the

measurement list Λ.

For all of the measurements in Λ, we categorize the measurements by their EPC

identifiers. Therefore, we formally define the measurement list for tag 𝑚 as:

Λ𝑚 = [..., (𝑒𝑝𝑐𝑘, 𝑟𝑠𝑠𝑖𝑘, 𝜑𝑘, 𝑓𝑘, 𝑡𝑘), ...] ∀ 𝑒𝑝𝑐𝑘 = EPC of tag 𝑚 (3.4)

where Λ𝑚 filters out all the measurements of tag 𝑚 from Λ using the RFID tag’s

EPC. Note that tag 𝑚 should be a target tag that is included in 𝑆𝑡.
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Figure 3-2: Synchronizing RF Measurements with Position Feedback. The
timestamp of the RF measurement and the timestamp of the position feedback are not
synchronized. 𝑝𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 represents the positions on the track that the measurement
was collected, and 𝑝𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 is the periodic position feedback from the track. We use
linear interpolation on the position feedback data (𝑝𝑛 and 𝑝𝑛+1) to find the exact
position 𝑝𝑘, when the measurement was collected.

Timestamps Synchronization

Recall from equation 2.2 that we need the exact position of each measurement to

compute SAR RF hologram. However, there might not be an exact same timestamp

in Ω for the measurements in Λ𝑚 to find their corresponding locations. As we can

see from Figure 3-2, both the location feedback and the measurements are taken at

different timestamps, and we aim to find the location 𝑝𝑘 where RL-SAR collects the

𝑘𝑡ℎ measurement.

As the antenna moves at a constant speed on the 2D ceiling-mounted track, we

can apply linear interpolation to find precisely where the measurements in Λ𝑚 were

collected from. For each measurement timestamp 𝑡𝑘, we can find the two closest

position feedback points in Ω as (𝑥𝑛, 𝑦𝑛, 𝑡𝑛) and (𝑥𝑛+1, 𝑦𝑛+1, 𝑡𝑛+1). The location 𝑝𝑘 of

the measurement 𝑘 can be calculated by the following equation:

𝑝𝑘 =

(︂
1− 𝑡𝑘 − 𝑡𝑛

𝑡𝑛+1 − 𝑡𝑛

)︂
· 𝑝𝑛 +

𝑡𝑘 − 𝑡𝑛
𝑡𝑛+1 − 𝑡𝑛

· 𝑝𝑛+1 (3.5)

And the synchronized RF measurement data can now include the position data

2Formally, 𝜏𝑖𝑛𝑖𝑡 is defined as [(0.5, 0.5, 1000, 1), (0.5, 1.5, 1000, 1), (2.5, 1.5, 1000, 1),
(2.5, 0.5, 1000, 1), (0.5, 0.5, 1000, 1)]
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and transform the measurement list to become:

Λ𝑚
′ = [..., (𝑒𝑝𝑐𝑘, 𝑟𝑠𝑠𝑖𝑘, 𝜑𝑘, 𝑓𝑘, 𝑥𝑘, 𝑦𝑘, 𝑡𝑘), ...] (3.6)

Maximum Gap Filtering

Recall from §2.2.2 that there is a requirement in antenna array measurement spacing

to avoid multiple candidates in SAR localization. For neighboring measurements, we

ensure their locations are separated by a gap smaller than 𝜆/8. Therefore, we filter

Λ𝑚
′ based on the interval requirement and group measurements into different clusters

𝑠. All the measurements within cluster 𝑠 are separated no more than 𝜆/8 from their

neighbors. We define the measurement list of cluster 𝑠 as Λ𝑚𝑠
′. For each Λ𝑚𝑠

′, we

also ensure that there are at least 5 measurements in the list to provide a meaningful

update to SAR computation. We discard all Λ𝑚𝑠
′ with a measurement count of less

than 5.

Phase Unwrapping

Recall from §2.2.3 that because RL-SAR uses a COTS RFID reader for collecting

measurements, there exists a 𝜋 ambiguity in the collected phase values. Therefore, we

apply a phase unwrapping algorithm to unwrap the phase to prevent phase ambiguity

from leading to faulty results. As we can see from Figure 3-3, the standard blue

line shows the raw phase reading collected by the RFID reader, and it has several

discontinuities that jump from 0 to 𝜋. The phase unwrapping algorithm looks for the

sudden jump and adds an offset to the raw phase reading in order to eliminate the

discontinuities. The unwrapped phase 𝜑′
𝑘 can be formally defined as follows:

𝜑′
𝑘 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜑𝑘 + 𝜋 if 𝜑𝑛 − 𝜑𝑛−1 ≤ −𝜋

2

𝜑𝑘 − 𝜋 if 𝜑𝑛 − 𝜑𝑛−1 ≥ 𝜋
2

𝜑𝑘 otherwise

(3.7)
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Figure 3-3: Raw and Unwrapped
Phase vs Antenna Position. The an-
tenna is controlled to move only in the
y axis direction. Therefore, the antenna
position represents the y coordinate. The
standard blue line shows the raw phase
readings from the RFID reader, while the
dotted line shows the unwrapped phase.
We can see that the raw phase readings
wrap around at [0, 𝜋] and RL-SAR un-
wraps the phase whenever there’s a sud-
den jump from 0 to 𝜋.
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Figure 3-4: SAR Hologram with
Confidence Interval. The SAR RF
hologram shows the likelihood value of
having the target tag at each grid in
the 3D space. The confidence interval
is defined by 𝑐𝑥 and 𝑐𝑦, the length and
width of the bounding box that encom-
pass locations that are likely to have the
tag. Smaller confidence intervals indicate
lower variance in the localization result,
which implies higher confidence in the es-
timated location.

It means that if the algorithm senses a discontinuity of greater than 𝜋/2, it will add

or subtract an offset 𝜋 to unwrap the raw phase values. Using this algorithm, we find

phase discontinuities in all Λ𝑚𝑠
′ and update the phase value for every measurement

in the list accordingly.

3.2.3 SAR RF Hologram

Based on the preprocessed measurement data Λ𝑚𝑠
′, we compute the SAR RF Holo-

gram for each tag 𝑚. RL-SAR defines the localization area with bounds: (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥),

(𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), and (𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥)
3. To perform SAR RF hologram, we discretize the 3D

space and calculate the likelihood of every grid. The grid size (𝑥𝑔𝑟𝑖𝑑 = 0.1𝑚, 𝑦𝑔𝑟𝑖𝑑 =

0.1𝑚, 𝑧𝑔𝑟𝑖𝑑 = 0.2𝑚) is chosen so that the SAR computation can be completed in a

reasonable timeframe with an acceptable accuracy. The likelihood value for each grid

in the hologram is calculated based on the equation 2.2. However, when we perform
3RL-SAR uses (0, 3) for (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥), (0, 2) for (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), and (0, 1.6) for (𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥)

31



wireless channel estimation based on the measured data, the measured RSSI values

can be easily affected by multipath or obstructions in the environment, leading to

inaccurate channel estimation. Therefore, we set all the amplitude of all channel

estimation to 1 and only use the phase information to calculate the likelihood value.

Formally, the likelihood RF hologram for the measurement list Λ𝑚𝑠
′ is defined as:

𝑃𝑚𝑠(𝑥, 𝑦, 𝑧) =

⃒⃒⃒⃒
⃒ 1𝑁

𝑁∑︁
𝑖=1

𝑒−𝑗𝜑𝑖𝑒𝑗
2𝜋𝑑𝑖(𝑥,𝑦,𝑧)

𝜆

⃒⃒⃒⃒
⃒ (3.8)

For each tag 𝑚, we have multiple measurements Λ𝑚𝑠
′ as the process continues and

perform more scans. In order to combine these results, we aggregate the hologram

values calculated with a single measurement list and update the global SAR RF holo-

gram for each tag. In order to reinforce the RF hologram with quality measurements

that result in a higher likelihood value, we apply a weighted number for each holo-

gram before aggregating the hologram values to the global hologram. The weighted

number is chosen to be the maximum likelihood of that particular hologram, and the

global SAR RF hologram for tag 𝑚 can be formally defined as:

𝑃𝑚(𝑥, 𝑦, 𝑧) =
∑︁
𝑠

𝑃𝑚𝑠(𝑥, 𝑦, 𝑧) · max
(𝑥,𝑦,𝑧)

𝑃𝑚𝑠(𝑥, 𝑦, 𝑧) (3.9)

Based on the global SAR RF hologram, we find the coordinate of the grid that

contains the maximum likelihood value and output the estimated location 𝑝𝑚 for the

specific tag 𝑚.

𝑝𝑚 = argmax(𝑥,𝑦,𝑧)(𝑃𝑚(𝑥, 𝑦, 𝑧)) (3.10)

3.2.4 Confidence Metrics

In this section, we discuss different metrics that represent the confidence level for

the location estimate 𝑝𝑚. Specifically, we compute the confidence interval and the

Dilution of Precision (DoP) of the tag’s location estimate based on the current mea-

surements.
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Confidence Interval

To understand the confidence level across three different axes, we define the confidence

interval as a region that encompasses all (𝑥, 𝑦, 𝑧) grid locations where the likelihood

value is greater than -0.75 dB of the maximum likelihood value. The confidence

interval includes three numbers: (𝑐𝑥, 𝑐𝑦, 𝑐𝑧), and it describes the maximum span in all

three directions that include all grid locations meeting the likelihood requirement of -

0.75 dB. The larger the confidence interval, the greater the variance of the localization

results, indicating a lower localization confidence. Conversely, smaller confidence

interval values indicate higher localization confidence. Figure 3-4 displays the SAR

RF Hologram and the confidence interval of this localization result.

Dilution of Precision

Dilution of Precision (DoP) is a concept that describes how errors in the measurements

will affect the final state estimation [34]. It is widely used in satellite navigation like

GPS and can be used to express the level of uncertainty based on the geometry of the

measurement points and the estimated target location. When all measurements are

from approximately the same regions, the DoP value will be large, and the error in

the measurement creates a larger uncertainty in the estimated location. Conversely,

if the measurements are taken from a larger variety of locations, DoP will be smaller.

We can formally calculate the DoP value based on measurement positions and the

estimated tag position as follows 4:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1−𝑥𝑚

𝑅1

𝑦1−𝑦𝑚
𝑅1

𝑥2−𝑥𝑚

𝑅2

𝑦2−𝑦𝑚
𝑅2

...
...

𝑥𝑘−𝑥𝑚

𝑅𝑘

𝑦𝑘−𝑦𝑚
𝑅𝑘

⎤⎥⎥⎥⎥⎥⎥⎦ (3.11)

4In RL-SAR, we only focus on DoP values in the 𝑥 and 𝑦 directions, as our robotic system has
no freedom in the 𝑧 direction to enhance DoP.
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𝑄 =
(︀
𝐴𝑇𝐴

)︀−1
, DOP =

√︀
𝑡𝑟(𝑄) (3.12)

where (𝑥𝑘, 𝑦𝑘) correspond to the location of the antenna for measurement 𝑘, (𝑥𝑚, 𝑦𝑚)

is the estimated target RFID tag location calculated in equation 3.10, 𝑅𝑘 is the

distance from the measurement location to the estimated tag location, and 𝑡𝑟(.) is

the trace of matrix.

RL-SAR uses confidence interval and DoP as indicators to suggest whether the tag

location estimate has converged and has high possibility of meeting the localization

accuracy requirements. The convergence criteria is defined as follow:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑥 < 0.3,

𝑐𝑦 < 0.3,

𝑐𝑧 < 0.6,

DOP < 0.008

(3.13)

When the above criteria holds, the system determines that a specific tag 𝑚 is localized

successfully. Details on the microbenchmarks of these values can be found in §5.1,

where we compare different confidence intervals and DoP to the localization accuracy.

3.3 RL-based Trajectory Optimization

In this section, we detail RL-SAR’s approach to determine next best scanning tra-

jectory and relocalize tags with low localization confidence. Recal from §3.2.1 that

RL-SAR initiates the localization process by sending 𝜏𝑖𝑛𝑖𝑡 to the system. After this

initial scan, if the confidence interval and DoP do not meet the convergence criteria

3.13, RL-SAR begins to identify the next location for a scan. The goal of this algo-

rithm is to achieve convergence criteria for all the tags while minimizing the antenna

scanning distance.

Given the estimated locations of the tags, one might assume that the optimal path

would be to set all these candidate locations as the setpoints of the trajectories and
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move toward all of them. However, this strategy does not account for the confidence

interval, DoP, or whether it can optimize multiple tags simultaneously. To address

these confidence metrics and the ability to optimize localization for multiple tags

concurrently, we formulate this as an optimization problem aimed at minimizing the

scanning distance for RL-SAR’s antenna. We then employ a reinforcement learning

network to solve this problem, enabling the reinforcement learning agent to learn an

optimal policy in the simulator. The simulator setup is detailed in §4.2.

At a high level, the reinforcement learning network attempts to recommend the

next best location for the antenna to move to and collect RFID tag readings along the

way. It strives to minimize the total scanning distance while successfully localizing all

the tags. Let 𝑁 denote the number of tags we aim to optimize using the RL algorithm
5. We assign 5 state parameters for each of the tags as: (𝑥𝑒𝑠𝑡, 𝑦𝑒𝑠𝑡, 𝑐𝑥, 𝑐𝑦, 𝐿𝑓 ). Here,

(𝑥𝑒𝑠𝑡, 𝑦𝑒𝑠𝑡) represents the current estimated location of a specific tag, (𝑐𝑥, 𝑐𝑦) indicates

the confidence interval of the localization results, and 𝐿𝑓 is a flag that records whether

the tag has been localized. To simplify the complexity of the reinforcement learning

problem, we only chose the confidence interval as the metric to include in the state

representation. It’s important to note that although we fix the number of tags to 𝑁

in our RL algorithm, the method can locate an arbitrary number of tags by feeding a

subset of 𝑁 tags into the RL network. In RL-SAR, we select the closest 𝑁 tags to the

current antenna location to iteratively optimize the localization of the tags at a closer

distance. In addition, we have 3 fixed parameters: (𝑠𝑡𝑜𝑡𝑎𝑙, 𝑎𝑥, 𝑎𝑦), which represent the

total scanning distance, current antenna position x, and current antenna position y.

Consequently, our state space has a size of 5𝑁 + 3, and the representation 𝑆 can be

defined as follows:

𝑆 = {(𝑥𝑖
𝑒𝑠𝑡, 𝑦

𝑖
𝑒𝑠𝑡, 𝑐

𝑖
𝑥, 𝑐

𝑖
𝑦, 𝐿

𝑖
𝑓 )

𝑁
𝑖=1, 𝑠𝑡𝑜𝑡𝑎𝑙, 𝑎𝑥, 𝑎𝑦} (3.14)

The RL network takes in the state 𝑆 and outputs an action that represents the

next best coordinate that it suggests RL-SAR to move to. The action space has two

5RL-SAR sets 𝑁 = 5
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values: 𝐴𝐶 = (𝑛𝑥, 𝑛𝑦), the next 𝑥 and 𝑦 coordinate.

As the RL agent performs a scan based on the output action in the simulator,

the environment calculates a reward. The reward is primarily dependent on the total

traveled distance of the scanning antenna. The agent will also be rewarded if it

localizes all the tags. However, it includes a penalty term when the movement is too

small or doesn’t localize all the tag as it reaches maximum allowed steps. The reward

function is defined as follow6:

𝑅 = −𝛼 · 𝑠𝑡𝑜𝑡𝑎𝑙 + 𝛽 · 𝑎𝑐𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (3.15)

where 𝑎𝑐𝑝𝑒𝑛𝑎𝑙𝑡𝑦 penalizes antenna scan length shorter than 0.5m. We define the an-

tenna scan length as ∆𝐴𝐶 = ||𝐴𝐶𝑖 −𝐴𝐶𝑖−1||, the length between coordinate at time

𝑖 and time 𝑖− 1. Formally, this term is defined as:

𝑎𝑐𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = min

(︂
−
(︂
1− ∆𝐴𝐶

0.5

)︂
, 0

)︂
(3.16)

Based on the state, action, and reward definitions, we apply the state-of-the-art

RL policy optimization algorithm - Proximal Policy Optimization (PPO) to learn the

optimal policy and minimize scanning trajectory length in order to localize all the

tags [35]. PPO is a policy gradient method that incorporates a clipping function to

prevent the improvement step from deviating too far, which could lead to performance

collapse. It calculates the reward value based on interaction with the environment

and computes an advantage estimate using the current value function. With these

values, the PPO algorithm updates the network parameters by maximizing the PPO

objective. Formally, the objective and update step can be defined as follows:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = Ê𝑡

[︁
min

(︁
𝑟𝑡(𝜃)𝐴𝑡, clip(𝑟𝑡(𝜃), 1− 𝜖, 1 + 𝜖)𝐴𝑡

)︁]︁
(3.17)

𝜃𝑡+1 = argmax𝜃 𝐿𝐶𝐿𝐼𝑃 (𝜃) (3.18)

where 𝜃 is the policy network parameters, 𝐴𝑡 is the estimated advantage at time 𝑡,

6We set 𝛼 = 1
180 and 𝛽 = 1 to normalize both terms to 0− 1
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𝑟𝑡(𝜃) is the ratio of the probability of the action under the new policy to the probability

under the old policy: 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
, and 𝜖 is a hyperparameter that defines the

maximum allowable change in policy, usually set to 0.2.

As the RL agent learns the policy in a simulation environment, the learned policy

might not generalize well when implemented on the real hardware. In this thesis,

we apply the system identification technique to attempt to close the gap between

the simulation and the real-world environment. We experimented with various sets of

values for system parameters such as the noise range of the measured phase value and

the tag readability parameters, and evaluated the system performance on localization

accuracy and convergence time based on the same scenario. Then, we selected a set of

parameters that yields performance most similar to the real-world RL-SAR system.

Detailed descriptions of the parameters and the values we used in this thesis are

specified in §4.2. This approach narrows the gap between the simulation environment

and the real-world system, enabling the RL agent to learn in the simulated world and

apply the same policy to the real system.
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Chapter 4

Implementation and Evaluation

In this section, we discuss the hardware and experimental setup for RL-SAR, the

simulator setup for the RL agent to learn the optimal trajectory policy, and the

evaluation metrics for the system.

4.1 Hardware and Experimental Setup

The RL-SAR setup includes a 2D ceiling-mounted track system, a circularly polarized

antenna attached to the ceiling-mounted movement platform, motor controller, a

Thingmagic RFID reader, and a local server for computation. These components can

be seen in Figure 4-1.

The 2D motion track system is constructed with two V-slot linear rails allocated

to the X and Y axes respectively. These linear rails are attached to several T-slots,

which are fastened to the wall near the room’s ceiling. The system incorporates a

NEMA 23 stepper motor [36] for each axis to pull the belt attached to a pulley, thus

creating X and Y linear movement. The stepper motors are connected to the Pro-

toneer Raspberry PI CNC board. This CNC board, equipped with a microcontroller

running grbl [37], a motion control software for CNC machines, is mounted on top of

a Raspberry PI 4 Model B and communicates through a serial port. We control the

movement of the 2D motion track system by sending G code commands to the CNC

board. The code that dispatches the G code via serial is implemented in Python. We
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Figure 4-1: Experimental Setup for RL-SAR

attached the MTI MT-242025/TRH/A (RHCP) Outdoor RFID Antenna [38] to the

movement platform. In addition, we have installed the Intel Realsense D435i depth

camera on the movement platform for constructing end-to-end digital twin applica-

tions and combining both sensing modalities to create a 3D map of the environment.

Further details on this digital twin application are described in §7.

The mobile antenna is connected to the Thingmagic M6e UHF RFID reader [31],

which links to the Raspberry PI via a USB cable. We control the Thingmagic RFID

reader through the Mercury API [33]. It should be noted that we control the reader

in such a way that it only transmits signals at the frequency of 915MHz, which falls
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within the ISM band for UHF RFID applications. The implementation of the Mercury

API and the program to collect RF measurements are written in Python code. The

collected RF measurements and 2D motion track location feedback are transmitted

to the local server via a ZMQ socket [39]. This initiates the data preprocessing and

SAR RF hologram computation required to calculate the localization results. All of

this code is written in Python and runs on a local server—an Ubuntu 22.04 machine

equipped with a 12th Gen Intel(R) Core(TM) i9-12900K CPU @ 5.30GHz.

The experimental environment for RL-SAR is established in a multipath-rich en-

vironment featuring shelves, sofas, and clothing racks, simulating a standard store

environment. The target items are labeled using standard off-the-shelf UHF RFID

tags on their surfaces. The global origin of the environment is set at the ground

level beneath the origin of the 2D motion track system. The coordinate system is

established as a right-hand coordinate system, with z+ pointing upward, x+ to the

right, and y+ to the front, as illustrated in Figure 4-1a.

4.2 Simulator Setup for RL training

We have developed a simulator for RL-SAR with the same dimensions of (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)

and (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥). To make the system interchangeable with the actual hardware

setup, the simulator accepts the same trajectory input and outputs data in the same

measurement format as the RL-SAR hardware. When the simulator receives the

trajectory input, it simulates the stochastic nature of the measurement points and

generates random read points along the trajectory. The simulator also integrates a tag

readability parameter - 𝑡𝑟. This tag readability parameter is employed to determine

the probability of the reader being able to read the tag at a particular point. It is

set to reflect the real-world situation where the further the reader is from the tag,

the lower the likelihood that the reader can read the tag’s response. Consequently,

the simulated RFID reader has a probability of 𝑡𝑟 to read a tag, and this value is

dependent on the simulated RSSI of the signal received by the reader. It can be
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formally defined as follows:

𝑡𝑟 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− −48−𝑅𝑆𝑆𝐼

−48−(−80)
if − 80 ≤ 𝑅𝑆𝑆𝐼 ≤ −48

1 if 𝑅𝑆𝑆𝐼 > −48

0 if 𝑅𝑆𝑆𝐼 < −80

(4.1)

The simulated RL-SAR can read all the tags if the simulated RSSI value is greater

than -48, and it cannot collect any measurement when the RSSI value is lower than

-80. The simulated RSSI value is calculated based on a standard backscatter received

signal link budget [40], and we add noise to the ideal distance, which is discussed

next.

Regarding the simulated RF measurements for the output, the simulator computes

the ideal RSSI and phase values based on the distance from the measurement point to

the tag location. However, in the real-world RFID reader, the measurements can be

distorted due to noise or obstructions in the environment. Therefore, we introduce a

uniform random noise with the bound of (−𝑛𝑟, 𝑛𝑟) to the distance estimation, which

affects both the RSSI and phase measurements. In this thesis, we choose 𝑛𝑟 = 0.015.

We have confirmed that our selection of 𝑛𝑟 and definition of 𝑡𝑟 yield localization

accuracy and total scanning distance to convergence similar to those of the actual

system when using the same scanning trajectories and the same localization method.

Our RL agent was trained in the simulator described above. The PPO algorithm

was implemented using the stable baselines3 API [41]. The Adam optimizer was

employed for training the policy. We used actor-critic as the main policy framework

for training the RL agent. The minibatch size was set to 64. The network was trained

over 150,000 interactions. The training process was performed on a machine running

Ubuntu 22.04, equipped with an RTX 3090 graphics card, an Intel Core i9 CPU, and

32 GB DDR5 RAM.
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LoS NLoS
Counts 11 4

Clothes Non-Clothes
Counts 5 10

Table 4.1: Number of RFID Tagged Items by Category. The experimental
setup for RL-SAR includes 15 RFID-tagged items, randomly placed and categorized
in the table. Non-Line-of-Sight (NLoS) tags represent RFID-tagged items that are
hidden in shelf compartments, and cannot be directly seen by the antenna. Examples
of non-clothes tagged items include shoes and small plastic boxes.

4.3 Evaluation

We evaluated RL-SAR in a multipath rich indoor environment designed to mimic a

store setting. Figure 4-1a illustrates the evaluation environment for RL-SAR. This

indoor area features common store furniture such as shelves, a sofa, and clothing

racks. We selected clothes and shoes as the items we wanted to localize and attached

standard UHF RFID tags to them. The shelves, racks, and sofa were randomly placed

within the target localization area of RL-SAR, and the clothes and shoes were likewise

randomly positioned on these furnitures in the area. Note that some of the tags were

in non-line-of-sight situations due to obstructions like shelves or other items. Table

4.1 shows the profile for these randomly tagged items.

Before evaluating the system, we collected the target tags’ EPC ids and input

this information as the target tag set 𝑆𝑡, as described in §3.2.2. We also recorded the

ground truth locations for these target tags relative to the origin of the environment.

RL-SAR was evaluated based on two primary metrics: localization error and total

scanning distance. The localization error is defined as the difference between the

estimated tag location output by RL-SAR and the actual RFID tag location. The

total scanning distance refers to the cumulative distance that the antenna traversed

on the 2D ceiling mounted track to successfully locate all of the tags assigned in the

target tag set 𝑆𝑡. Our goal is to find an optimal strategy that minimizes both the

localization error and the total scanning distance.

Regarding RL-SAR’s RL-based trajectory optimization strategy, we evaluated our

policy alongside two different naive strategies to assess whether it demonstrated an

improvement in minimizing the total scanning distance. The two naive strategies are

the random trajectory and the exhaustive search strategy. The random trajectory
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strategy generates random (x,y) coordinates as the next movement location for the

antenna. The exhaustive search strategy, meanwhile, controls the robot to move in

a rectangular spiral pattern and aims to cover all areas through a fixed pattern to

exhaustively search the entire environment. This strategy recommends a path that

starts from the border of the RL-SAR movement space and follows a rectangular

spiral path inward towards the center of the region. The antenna begins by following

the outermost four edges of the search space, offsetting the rectangular path inward

by 0.1m at each iteration. If RL-SAR has not localized all the tags after reaching the

center of the space, it continues its movement by moving outward again, hoping to

gather more measurements along the way. While this naive strategy guarantees that

the antenna reaches all locations in the search region, it does not optimize the total

antenna scanning distance by effectively leveraging existing information.
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Chapter 5

Microbenchmarks

5.1 Confidence Metrics

In our first microbenchmark, we evaluated various confidence metrics to demonstrate

their relationship with the localization results. These metrics include confidence in-

tervals, DoP, and aperture. While the first two metrics are explained in §3.2.4, the

aperture refers to the span of the measurement points. For example, we define X aper-

ture as the difference between the maximum x location and the minimum x location

of all measurements.

In this experiment, we placed 5 Line-of-Sight tags in the environment, and imple-

mented a random trajectory strategy with RL-SAR to create a variety of localization

confidence profiles. Throughout the scan, we recorded each confidence metric at each

step as well as the current location estimates. When the localization converged, we

initiated a new round with new random scans. We repeated the process until we had

collected data from 100 experiments. Figure 5-1 plots the localization error across

three different confidence metrics. From the results, we make the following remarks:

• The localization error increases as DoP and confidence intervals increase, whereas

the error decreases when the aperture of the measurement points increases.

• RL-SAR can consistently locate the tags when the DoP and confidence intervals

are sufficiently low. In Section 3.2.4, we define the convergence criteria to be
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Figure 5-1: Localization Error vs Various Confidence Metrics. Each bar
represents the median localization error of that bin. The error bar of each bar marks
the 10𝑡ℎ percentile and 90𝑡ℎ percentile of the data. We only evaluated the aperture
and confidence interval metrics for the X axis and not the Y axis because RL-SAR
moves in XY direction, and these two axes are interchangeable.

DoP < 0.008 and confidence intervals < (0.3, 0.3, 0.6). Figure 5-1a shows that

the 3D median localization is less than 0.241m when DoP < 0.008. Additionally,

when the confidence intervals are less than (0.3, 0.3, 0.6), Figure 5-1b shows an

X error of 0.05m, while Figure 5-1c displays a median Z error of less than 0.3m.

As the X and Y-axis performances are interchangeable, we can combine the

error in three directions and estimate a 3D localization error of 0.308m. When

all convergence criteria are met, we can expect that RL-SAR has a median 3D

localization error of less than 0.308m.

This microbenchmark demonstrates that the confidence metrics we selected for

RL-SAR can be used as an indicator to understand the localization accuracy of our

system.

5.2 Impact of Interval Filtering

To understand the impact of the measurement interval on localization performance,

we evaluated RL-SAR over a partial implementation without interval filtering. The

interval filtering process is described in §3.2.2. The filter is designed to meet the

maximum gap requirement as explained in §2.2.2.

We applied the random trajectory strategy to 5 Line-of-Sight tags in the envi-

ronment. We repeated scanning the tags until their localization confidence met the
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Figure 5-2: Benefit of Interval Filtering. This graph shows the CDF comparison of
3D localization error between the RL-SAR system with and without interval filtering.
The system without interval filtering displays 3D localization error of more than 2m at
high percentile, which might be caused by multiple localization candidates discussed
in §2.2.2.

convergence criteria. Finally, we plotted the CDF of the localization accuracy for

both implementations in Figure 5-2. The blue line shows the CDF of the results us-

ing RL-SAR, and the pink line displays the results using the partial implementation

without interval filtering. We draw the following conclusions from the results:

• Both implementations of with and without interval filtering yield a similar me-

dian localization error of 0.223m and 0.230m, respectively.

• The implementation without an interval filter has a larger localization error for

its 90𝑡ℎ percentile and above. The maximum localization error for this imple-

mentation is larger than 2m. The reason why the localization result converges

to this poor estimate might be that the spatial aliasing effect creates a faulty

localization candidate for the RF SAR hologram.

This experiment demonstrates the benefit of using interval filtering. It shows that

this technique leads to better overall localization accuracy by preventing multiple

localization candidates in the SAR computation.
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Chapter 6

Results

6.1 Localization Accuracy

To understand the overall performance of RL-SAR, we evaluated the 3D localization

accuracy of 15 tags in our experimental setup. These 15 tags were placed according to

the profile defined in Table 4.1. The ground truths were carefully taken and measured

relative to the origin. We repeatedly scanned the environment 10 times until the

localization confidence converged for all the tags. Figure 6-1 plots the cumulative

probability of the absolute error in X, Y, and Z directions. It indicates that the

median X error is 0.07m, the median Y error is 0.07m, and the median Z error is

0.11m. Figure 6-2 combines the error in these three directions and plots the CDF

of the total 3D localization error. It demonstrates that the median L2-norm error of

RL-SAR is 0.225m.

We plot the change in localization error as more scans are performed and the

total trajectory length increases. Figure 6-3 displays the localization error over total

trajectory lengths, ranging from 6 to 27 meters. It reveals that RL-SAR has a mean

error of 0.325m and a 90𝑡ℎ percentile of 0.763m when the scanning distance is 6

meters. As RL-SAR collects more measurements and the scanning distance increases,

the mean and the 90𝑡ℎ percentile localization errors decrease to 0.248m and 0.333m,

respectively. The trajectory length starts at 6 meters due to the initial trajectory scan

𝜏𝑖𝑛𝑖𝑡 that RL-SAR performs. For localization trials that converge before reaching 27
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meters, we extended the localization error at the time of convergence up to 27 meters

in order to calculate the mean error across trials.

We compare the L2-norm localization error between the two naive strategies and

the RL-SAR method. Figure 6-4 depicts the mean localization error for these three

different strategies. We set a timeout of 20 steps, meaning that if the localization

results don’t converge within 20 steps, the system will utilize the last position estima-

tion as the final tag observation. With the exhaustive scanning method, the mean 3D

localization error is 0.456m and the 90𝑡ℎ percentile is 1.072m. The random trajectory

strategy resulted in a mean error of 0.478m and a 90𝑡ℎ percentile of 1.195m. Finally,

RL-SAR achieves a mean localization error of 0.244m and a 90𝑡ℎ percentile of 0.349m.

Based on the results, we make the following remarks:

• RL-SAR exhibits a higher mean Z error (0.11m) than mean X (0.07m) and Y

error (0.07m). This is due to the ceiling-mounted track system moving solely

in a 2D plane, meaning the RF measurements lack diversity in the Z direction

to increase the Z aperture.

• As shown in Figure 6-3, the localization error decreases as RL-SAR performs

more scans. It shows that RL-based trajectory optimization algorithm continue

to advise new scanning paths that improve the localization accuracy.
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Figure 6-5: Comparison of Total
Scanning Distances. This bar plot
shows the total scanning distance across
three different methods. The error bars
indicate the 10𝑡ℎ and the 90𝑡ℎ percentiles
of the distance data.

• Figure 6-4 shows that both the exhaustive and random trajectory strategies

yield a higher mean error than RL-SAR. This could be due to the fact that

these strategies do not optimize the path to obtain measurements that would

enhance localization confidence. Therefore, the error tends to be larger, and in

some trials, the localization results may not even converge before reaching the

timeout steps.

Overall, the results indicate that RL-SAR has a mean localization error of 0.244m,

and the RL-based trajectory optimization algorithm helps improve system accuracy

with more scans. In addition, it has a 49% improvement in mean accuracy compared

to the random trajectory strategy.

6.2 Total Scanning Distance

The primary goal of RL-SAR is to more efficiently locate multiple tags using the RL-

based trajectory optimization algorithm. We compare our RL-based algorithm with

two naive strategies: exhaustive search and random trajectory, as defined in §4.3. We

implement these three methods in our experimental setup with 15 RFID tagged items
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and repeat each strategy across 10 rounds. Each round concludes when all 15 tags

converge or when they reach a predetermined timeout set to 20 steps. The results

are plotted in Figure 6-5, which shows the mean total scanning distances of RL-SAR

and their respective 10𝑡ℎ and 90𝑡ℎ percentiles for each strategy. We offer the following

observations:

• The exhaustive search method yields the highest mean total scanning distance

of 57.26m and a 90𝑡ℎ percentile of 130.93m. This is because it attempts to scan

all spaces within the environment, leading to many inefficient long scans.

• The random trajectory strategy records the second highest mean total scanning

distance of 35.59m and a 90𝑡ℎ percentile of 87.79m. In contrast, RL-SAR has a

mean error of 19.14m and a 90𝑡ℎ percentile of 26.33m. It shows that the random

trajectory strategy requires 86% longer scanning distance to achieve localization

convergence on 15 RFID tagged items.

The results show that the baseline requires 86% longer trajectory than RL-SAR.

It shows that the RL-based trajectory optimization algorithm improves the overall

efficiency to find multiple RFID tags.
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Chapter 7

Digital Twin Application

In this chapter, we show how RL-SAR can be leveraged to create digital twins of

store-like environments. This application aims to create a digital map of items by

merging the localization results from RL-SAR with a visual 3D reconstruction, using

a depth camera. Such a digital twin would enable more efficient inventory tracking

with intuitive visualization capabilities.

We built the application based on the Robot Operating System 2 (ROS2) frame-

work [42]. In ROS2, data are communicated through messages. Each ROS node

either publishes or subscribes to these messages for further processing. Real-time

position feedback from RL-SAR and RF measurements are relayed back to the local

server via a ZMQ socket. We created a ROS node to convert the ZMQ message into

a ROS2 message, enabling integration with our application. Following each scan,

the ROS node consolidates the RF measurements and computes SAR based on the

method described in §3.2.3. The estimated location and confidence interval are then

used to publish a visualization marker message, which can be used in the graphical

user interface (GUI) integration.

We utilized the Intel Realsense D435i depth camera to record depth images of the

environment. The camera, installed adjacent to the antenna, is directly connected to

the local server through a USB 3.0 cable. We utilized the realsense-ros node [43] to

receive real-time point cloud messages from the camera and developed a ROS node to

aggregate multiple point cloud data as RL-SAR moves. This process creates a global
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Figure 7-1: Visualization of a Digital Twin. RL-SAR creates a digital map of
the environment and visualize the tags’ locations on top of the 3D point cloud data of
the environment. The screenshot on the left shows the visualization of this 3D map,
and the blue circle defines the area that we primarily put the tags in. The images on
the right shows the comparison between the actual setup and the digital visualization
of the tags and their confidence intervals (green ellipses).

point cloud map that offers a detailed 3D reconstruction of the environment. Our

ROS node then publishes this global point cloud for visualizing the digital twin.

To create a digital twin of the indoor space, we gathered localization result mes-

sages and global point cloud messages, and visualized them in a ROS2 GUI software

named RVIZ2 [44]. The visualization is displayed in Figure 7-1. In RVIZ2, a 3D

representation of the environment is shown, with green ellipses representing the esti-

mated locations of our target tags. The length, width, and height of the ellipse denote

the confidence intervals (𝑐𝑥, 𝑐𝑦, 𝑐𝑧) of the specific tag. Furthermore, we developed a

Universal Robot Description File (URDF) for the RL-SAR model. RVIZ2 visualizes

this URDF file and synchronizes the movement between the actual hardware and the

GUI. As RL-SAR continues scanning, the ellipses decrease in size as the localization

results converge.

The digital twin application demonstrates the potential of a fine-grained RFID

localization system in creating a real-time digital map of items within an indoor space.
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Chapter 8

Conclusions

In this thesis, we introduced RL-SAR, an end-to-end, autonomous SAR-based RFID

localization system featuring an RL trajectory optimization algorithm. We have im-

plemented the system using an antenna that moves along a ceiling-mounted 2D track,

collecting RF measurements from various locations. These measurements are pro-

cessed to create a SAR hologram and estimate the location of each tag. The primary

objective of RL-SAR is to identify the optimal locations for taking measurements

to enhance localization confidence for multiple tags. We developed a RL algorithm

based on Proximal Policy Optimization (PPO) to minimize the total distance that the

antenna moves to obtain accurate localization results. Our evaluation results demon-

strated that RL-SAR has a mean localization error of 0.244m, and that the naive

strategies require 86% longer trajectory than RL-SAR. This shows the enhancement

in localization efficiency for multiple RFID-tagged items. Furthermore, we showcased

the potential for applying RL-SAR in real-world scenarios by implementing a digital

twin application, creating a digital map of the environment using our system and a

depth camera. As this research evolves, it would be interesting to explore how ad-

vancing the localizing algorithm with RF-visual sensor fusion (similar to [14] ) and

with more advanced RFID estimation techniques (similar to [2]) can further improve

efficiency.
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