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for the Degree of Doctor of Philosophy in Operations Research
ABSTRACT

This dissertation formulates and develops soluticn procedures for a new problem archetype
for a class of physical goods distribution operations. The generic problem is called the deliverer
dispatch problem, or DDP. The key entities of the DDP are the supplier, who controls a stock of
inventory of a certain good and a fleet of delivery vehicles, and a set of geographically distributed
customers who consume that good in a stochastic manner. Activity in the DDP consists of the
repeated dispatch of vehicles over an infinite time horizon to replenish the customers’ depleting
inventories. Costs are incurred through the transport of the good by the vehicles, through the
holding of the good by the customers, and through customer inventory stockouts. The objective in
the DDP is to develop a strategy for dispatching vehicles to minimize the systemwide expected

costs incurred per unit time.

One principal assumption of the deliverer dispatch problem is that the dispatcher has access
to information about the customers’ current inventory levels at all times. This assumption and
the presence of demand uncertainty render dispatch plans that are fixed cyclic schedules inferior
to plans where each vehicle’s assignment is determined just prior to its leaving the supplier. In
our formulation of the DDP, the supplier dispatches a vehicle by assigning it a set of delivery

instructions called an itinerary as soon as it becomes available for duty.



The variant of the deliverer dispatch problem we choose for closer study is a Markov decision
problem. However, the size of the Markov decision problem grows rapidly with the number of
customers and vehicles in the associated DDP, making exact solution of the DDP impractical for
all problems but those of the most trivial size. We develop an heuristic algorithm modeled after
an exact procedure, particularly in the way it achieves tradeoffs in short-term versus long-term
objectives. For each dispatch, a finite horizon dispatching problem is solved, but the objective
function of the problem includes penalty terms that are assessed according to the status of the
system at the end of the horizon. These penalty functions are obtained by decomposing by
customer the underlying infinite horizon problem. The decomposition is necessarily imperfect,

but does seem to provide a good basis for devising penalties for poor dispatching.

Computational tests are performed on both abstract problems and on a case study involving
the New York City Department of Sanitation’s marine waste transport system. In both
situations, the newly-developed aigorithm outperforms techniques that fix one or more dispatches
in advance of their execution. While this result may not be surprising, the magnitudes of the
improvements in dispatching performance are clear indications that substantial savings in
systemwide costs are in store by switching from a mode of scheduling dispatches in advance to one
of deciding each vehicle's assignment only when it becomes ready. Judging from the results, it
does not seem unreasonable to place these savings magnitudes on the order of 5% when the
variability of the inventory depletion process is light, and 15% or more when variability is

moderate to heavy.

Thesis Supervisor: Professor Richard C. Larson

Title: Professor of Electrical Engineering and Urban Studies;

Codirector of the Operations Research Center
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CHAPTERI1

REAL-TIME DISPATCHING

1.0 Introduction

Many physical distribution operations are distinguished by uncertainty in the demand for the
delivered goods and a transfer to the supplier of the responsibility for maintaining adequate
inventory levels at the customer locations. Yet many popular optimization models employed to
provide decision support for these operations tend to ignore these salient characteristics. Instead,
they assume delivery requirements to be fixed and imposed from an outside source, and
concentrate on optimizing only the transportation component of the system. The potential
impacts of demand uncertainty on delivery schedules derived from such models are either to
render them less and less effective the further they extend into the future, or to require frequent
intervention to correct them. In this age of accelerated computer and information technology
development, it seems unreasonable to have to accept these limitations. One can now visualize
sophisticated decision support systems for delivery vehicle fleet dispatchers that can suggest
effective dispatches in real time on the basis of current customer inventory information. This
dissertation aims to demonstrate the feasibility of a physical distribution operation dispatch
decision support system with a prescriptive capability operating in an environment of substantial

customer demand uncertainty.

We refer to a physical distribution operation dispatch decision support system as a computer-
aided dispatching (CAD) system, in the terminology of Lee and Larson [17]. Several features of a
prototypical CAD system come readily to mind. The system should allow the exploration of
alternative dispatches with respect to their effects on the total performance of the operation. It
should have access to current and historical information about the distribution environment, and

permit the manipulation of the data in various ways. The system should contain user-database
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and user-model interfaces that do not interfere with the facile utilization of the system.
Unquestionably, none of these features requires a significant extension of the state of the art for
its successful implementation, as is evidenced by today’s operational CAD systems. But there is
one last feature which may or may not be handled adequately by modern means, and that is a

prescriptive mode of operation.

Prescriptive computer-aided dispatching systems currently in use generally derive their
dispatch decisions by solving variations of the vehicle routing problem (VRP). The VRP is a
standard network optimization problem in which a fleet of vehicles is assigned routes and
deliveries to satisfy customer delivery requirements at minimum transportation cost (see, for
example, Bodin et al. [5]). The routes are paths through the network that begin at a depot node
and end there after passing through a subset of the customer nodes. The lengths of paths and/or
the sum of deliveries along paths may be constrained by vehicle capacities. Customer delivery
demands are imposed exogeneously to the problem and must be met completely in any feasible
solution to the problem. Hence, the implicit responsibility of the dispatcher is solely to meet the

current set of demands.

For the types of physical distribution operations we devote our attention to, we believe
prescriptive CAD capability based on VRP-type models to be inadequate. In their stead, we
suggest the employment of a kind of problem we designate the deliverer dispatch problem (DDP),
which to our knowledge constitutes a new problem archetype within the operations research
literature. Although the deliverer dispatch problem is discussed in more detail later in this
chapter, some points of comparison with the VRP are merited here. While the VRP generates a
one-time-period (e.g., one-day) schedule, the DDP provides schedule guidelines for the infinite
horizon. The VRP concerns itself solely with transportation objectives; the DDP adds inventory
considerations to its list of objectives (to be fair, some recently researched extensions to the VRP

support inventory considerations, too). Finally, VRP-guided deliveries correspond exactly to
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deterministic, exogeneously enforced demands; in the DDP, they are left to the discretion of the

decision-maker, and ill-planned deliveries are costly rather than infeasible.

It is rightly conjectured that an optimization problem which extends in so many ways upon
the already hard-to-solve vehicle routing problem will prove impenetrable to exact solution in
relevant cases. Indeed, one might consider it extremely fortunate to be able to derive any analytic
insight into this class of problems. We have sought to fulfill our aims primarily by the
demonstration of the techniques we have developed in a real world operation, rather than by pure
analysis. Therefore, the theoretical development of the solution procedures examined in this
dissertation is complemented by a case study, one drawn from the New York City Department of

Sanitation’s marine waste transport system. We introduce this system later on in this chapter.
1.1 Example

Some of the complexities of vehicle dispatching under demand variability and supplier

inventory responsibility can be conveyed via the following small example.

Consider a physical distribution operation in which a fleet of two delivery vehicles, each of
which can carry up to four item units, provides regular delivery service to four customers. Such
an operation is depicted in Exhibit 1.1. Each customer is represented as a nede labeled by an
identification number and a daily demand (assume for now that the demand is deterministic).
Each arc is labeled with its traversal cost. By formulating the appropriate vehicle routing
problem and solving it, we obtain a set of route and delivery assignments for each vehicle. These
assignments can also be extended to represent a delivery schedule yielding minimum
transportation cost among those whose assignments do not vary by day of a certain (perhaps

infinite) planning horizon. One solution, at an objective cost of 14 units, is:
Vehicle 1: deliver one unit to customer 1 and two units to customer 2.

Vehicle 2: deliver two units to customer 3 and one unit te customer 4.
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Exhibit 1.1: Sample Physical Distribution Operation

Key

Ci:D = customeri, demands D
units daily

-T- = arc costs T units to traverse

Vehicle Fleet

Size = 2 vehicles
Capacity/vehicle = 4 units

Objective: Design set of routes and deliveries to minimize travel cost.

Constraints: 1) One route/vehicle
2) Vehicle capacity

This example is based on one discussed in [2].

The total daily cost of this schedule is 14 cost units.

Now suppose, in the same example, that deliveries over and above daily demand may be put

into inventory and be used on subsequent days. Then consider this two-day schedule:
On odd-numbered days:

Vehicle 1: deliver two units each to customers 1 and 2.
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Vehicle 2: deliver two units each to customers 3 and 4.
On even-numbered days:

Vehicle 1: deliver two units each to customers 2 and 3.
Vehicle 2: remain idle.

This schedule incurs 23 cost units every two days while completely satisfying customer demands.
The first schedule costs 28 units over the same timespan. The basic VRP is not geared to detect
such economies. More complex problem formulations must be and have been devised for optimal

or near-optimal scheduling when the planning horizon extends beyond one day (see [5]).

The multi-day schedule given above required that two of the customers hold an item in
inventory every other night. A more general model of a physical distribution operation such as
this one would attach a cost to thé activity of holding items in inventory. If this were the case in
our example, then the second schedule would be rejected in favor of the first one if the systemwide
holding cost per item were greater than 2.5 cost units. Additionally, suppose costs or frequency
constraints are ascribed to customer stockouts. Then, for instance, it may be more economical to
forego any replenishment of customers 1 and 4 under some stockout objective structures. Useful
models for delivery scheduling support in such environments need to accomodate the potential
tradeoffs among transportation, inventory holding and inventory stockout objectives. Recent
research efforts in this area include the work of Federgruen and Zipkin {10], Fisher, Jaikumar,

and Bell[11], and Dror [8].

Up until this point, we have assumed that the customer demands presented in the example
are deterministic quantities. Now suppose they are merely averages of probabilistically varying
demands. The presence of uncertainty in customer demand patterns transforms the vehicle

scheduling task in several critical ways. It is no longer possible to time deliveries so that they
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arrive just as customers run out of stock, because the time of stockout is uncertain. To guarantee
that each customer is well-stocked at all times may require intolerably high inventory holding
levels, so that the transportation-holding-stockout tradeoffs are felt more acutely here. In multi-
day scheduling, the quality of dispatch performance is likely to decrease for dispatches made later
in the planning period, because the true inventory status of the system becomes more and more
likely to depart from its anticipated status (some customers may stock out more quickly than
expected, while others may encounter lighter demand than usual). Indeed, uncertainty may even
be associated with the assumed current values of inventory levels at the time a schedule is

designed.

For illustrative purposes, suppose it is true for each customer that, given its average daily
demand of D units, either D—1 units or D+ 1 units are demanded on any particular day. Each
outcome has a probability of occurrence of one-half, and these probabilities do not depend on
previous days’ or other customers’ demands. Suppose, also, that deliveries occur at the beginning
of the day, and demands occur at the end of the day, with the implication that each day’s demands
are unknown at the time of dispatch. Demands experienced by a stocked-out customer are lost

rather than backlogged, by assumption here.

Exhibit 1.2 displays a number of scenarios marked by different demand quantities over a two-
day planning horizon and/or different initial inventories. In each scenario, the two-day delivery
schedule given above is adhered to. The first two scenarios begin with each customer holding no
inventory, as in the deterministic case. The fortunate circumstances of scenario 1 allow the
system to return to its original state with no demand lost. The operation does not go unscathed in
scenario 2, though, where aggregate demand is only two units higher. One may quickly surmise
that it is advantageous to hold some inventory at all times to act as a buffer in periods of high
demand. Scenarios 3 and 4 feature such safety stocks. No lost demand is suffered in scenario 3,
even though demand there is much like the disastrous scenario 2. In scenario 4, demand is lighter

than in scenario 3, yet one unit of demand is lost. The point to be learned is that the second day’s
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Exhibit 1.2: Initial Inventory/Demand Scenarios

Delivery Inventory | Delivery Inventory §

"Tepresents one unit of 10st demand.

S/C = scenario/ customer
schedule, fixed in advance, could have been easily improved if rescheduling at the beginning of
the second day had been allowed. Taking this further, a better way to go about scheduling might
be to forestall the decision about each day’s routes to be run to the beginning of that day, when the

latest inventory information is available. It is the formalization of this type of scheduling that we

pursue in this dissertation.
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Before we move on, it seems only fair to say that the degree of variability in the foregoing
scenarios may have exaggerated the levels to be found in most applications. Nevertheless, we feel
that this example conveys our main points effectively. We also acknowledge that there is some
cost to be associated with implementing a computer-aided dispatching system more responsive to
system characteristic changes. But with the costs of the hardware components of CAD systems
dropping, and the penalties of poor dispatching tending to increase, we believe that the time is
ripe to study these sorts of dispatching problems and to develop methods for generating effective

dispatches.

1.2 Characterization of the Deliverer Dispatch Problem

The deliverer dispatch problem is intended to be a representation of a physical distribution
system more realistic than the vehicle routing problem in cases where the deliverer bears some
responsibility for customer inventories. A more rigorous treatment of the DDP is performed in

Chapter III. This section offers a brief characterization of the deliverer dispatch problem.

A dispatch decision, the focus of our study, is a set of instructions listing when and to where a
vehicle is to be dispatched, and how much is to be delivered at each stop on the dispatch
assignment. In our deliverer dispatch model, dispatch decisions are made at moments in time,
over a time horizon that extends infinitely far into the future. We call a moment when a dispatch
decision is to be made a decision point. Relative to the decision point that establishes it, a
dispatch may occur immediately or at some future time. A point in time at which a dispatch
occurs is a dispatch point. Depending on the decision-making procedure (one might say, on how
adaptive it is), there may or may not be a one-to-one correspondence between decision points and
dispatch points. Note, also, that not to dispatch a vehicle is a valid dispatch decision. The result
of the dispatch of a vehicle is that it undergoes a period of unavailability for dispatch, during
which time it is carrying out its dispatch assignment. As it visits each customer on its list, it

delivers the assigned amount. From each customer’s perspective, inventory is depleting over
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time. The depletion process results from stochastic, exogeneous demands for goods from the
custemer. A customer’s inventory level may drop to zero; in this case, the customer is stocked out,
and further demands are either backordered or lost to the system. When a vehicle visits a

customer, that customer’s inventory level jumps up by the quantity of the delivery.

The objective in the DDP is one of cost-minimization. Costs arise in both the transportation
and the inventory components of the system. Each itinerary, or list of customers and their
deliveries, incurs a certain transportation cost upon its execution. Inventory costs are assessed on
the holding of units in inventory and on demands which are backordered or lost. The time horizon
against which the quality of decisions is judged is an infinite one, so minimization of total costs
will not serve as a useful principle for the evaluation of competing decision-making procedures, or
decisicn rules. Instead, we characterize the objective as one of minimizing cost per unit time over
the long run. Because the systems we deal with are stochastic, the objective cost will be expressed

as an expectation.

Given a more mathematically explicit problem statement like the one put forward in Chapter
III, the DDP can be readily formulated as a Markov decision problem. Deriving a dispatch
decision rule from such a formulation is an entirely different matter. Only the smallest ¢f DDPs
may be solved exactly using Markov decision theory, since the size of the problem to be solved
grows exponentially in the number of customers. To make practical use of the DDP in computer-
aided dispatching (CAD) systems, the development of good approximate techniques is required.

We undertake this task in Chapters IV and V.

1.3 Characterization of a Marine Waste Transport System

To help bridge the gap between theoretical formulation and practical implementation of
adaptive dispatching methodology, we intend to demonstrate the development of a computer-
aided dispatching system for a complex operation, namely marine waste transport in New York

City. This demonstration comprises the second part of the dissertation. This section provides a
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quick synopsis of the marine waste transport operation and its relationship to the deliverer
dispatch problem. Chapter VI is devoted to a fuller explication of this system and our model

thereof.

Each day, New York City generates tens of thousands of tons of refuse. It is the responsibility
of the New York City Department of Sanitation (DOS for short) to put that refuse where it is least
offensive to the most people. A great proportion of it finds its final resting place in Fresh Kills
Landfill (FKL), a sizable chunk of land on Staten Island. The landfill is located a comfortable
distance away from most citizens of New York City. This degree of separation invites the
question, How does the refuse get from the trash can to the landfill? The most economical mode of

transport is the marine operations system, which works as follows:

Sanitation trucks carry their loads several times a day to marine transfer stations (MTSs),
two-story structures that jut out into the local waterway. They drive onto the second story of the
MTS, back up to one of several apertures in the floor of the building, and dump their load through
the aperture onto a large barge in the water beneath (the first story). Tugboats also visit the MTS
from time to time, dropping off empty barges and picking up full oncs. The barges are towed,
typically in a train of three or four barges, by tugs to FKL, where they are unloaded by large

cranes or "diggers.” The empty barges are towed back to the MTSs by the tugs to be filled again.

Human decision-making faculties impinge on the DOS marine waste transport operation
most critically in the activity of directing where tugs are to pick up and drop off barges. The
dispatch decision-making function as it is currently practiced consists of two phases. First, each
morning, DOS Operations personnel decide how many empty barges must be present at each MTS
by the next morning. These requirements are then radioed to the Marine Dispatchers at FKL. In
the second phase, Marine Dispatchers draw on their experience to direct tugs and barges
throughout the day to meet the next day’s requirements. The second phase is by no means

straightforward to execute because the marine system is subject to many idiosyncrasies. The
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number of barges available for delivery varies constantly over time. Tug travel is strongly
affected by tides, which operate on a lunar cycle, and by weather conditions. Tug service is
provided by an independent firm, so that the degree of control dispatchers may exert on route
selection is limited. Key components of the system may go out of service for varying lengths of
time; these service outages often affect other system components as well. Since refuse inflow to
MTSs cannot be predicted precisely, barge requirements may change during the day, sometimes
necessitating changes in the dispatching schedule. Other system quirks also must be borne in

mind by the dispatcher when making decisions.

That the task of routing tugs through the marine system can be modeled as a (suitably
detailed) deliverer dispatch problem may not be evident at first glance. Most difficulties are
resolved, however, when it is realized that “inventory” in this system refers to empty space on
barges. An MTS suffering a “stockout” has no empty barge capacity, i.e. nowhere to put the
incoming refuse. In practice, what happens in this situation is that sanitation trucks either
queue up at the MTS and wait for an empty barge to be moved into loading position, or are
rerouted to a more distant facility. Both solutions cost the city in terms of additional salary and
fuel expenditures, hence stockouts are costly and are to be avoided. The cost of holding empty
barges in inventory at MTSs corresponds, in the short term, to the risk of diminished barge
availability elsewhere in the system, and in the long term, to increased capital expense. Refuse
inflow rates, or the rates at which inventories deplete, are always subject to some degree of
random variation. Given these observations, one should feel much more comfortable modeling
the system with a DDP than with the vehicle routing problem. But modeling is one thing, and
deriving good policies from a model is quite another. Chapters VII and VIII detail our successes

and failures at the latter endeavor.

1.4 Preview of the Thesis
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Chapter I of this thesis has introduced the topic of our research, real-time dispatching of

delivery vehicles.

Hereafter, the dissertation is divided into two parts. The first part lays a theoretical
foundation for a prescriptive component of a computer-aided dispatching system. The second part

demonstrates the application of the material contained in the first part by means of a case study.

Chapter 1I provides a perspective on the broader class of vehicle dispatching problems, and
suggests a framework for the characterization of such problems. In doing so, it reviews the

current literature on problems related to the one we study in this thesis.

Chapter III describes in detail, both verbal and mathematical, the deliverer dispatch problem.
The general problem and some interesting special cases are treated. This chapter also establishes

a basis for treating the DDP as a Markov decision problem.

After demonstrating that exact solution via Markov decision theory is infeasible, Chapter IV
explores a heuristic solution approach to the DDP. The approach is to solve a finite horizon
scheduling problem for each state of the underlying system as it arises, with a penalty function
incorporated in the objective function. The dispatches derived from solving the finite horizon
problems are influenced to serve long-range objectives through the imposition of strong penalties
when the current decision will tend to leave the system in undesirable states in the future. The
resulting heuristic is shown to parallel in several ways the policy iteration algorithm for solving

Markov decision problems.

To illustrate the working of the somewhat complex heuristic propcsed in Chapter IV, the
heuristic is applied to a small DDP in Chapter V. This chapter continues by documenting

computational experiments involving various instances of the DDP and the heuristic.
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Chapter VI begins the case study. It describes the marine waste transport system (MWTS)
and presents a mathematical model of it. The subject of dispatching within this system is

postponed for one chapter.

It is noted in Chapter VII that many aspects of the operation described in the case study do not
conform to the deliverer dispatch model. Chapter VII details what must be done to adapt the
previously developed DDP solution algorithms for application in the MWTS model. It also
describes a dispatching algorithm that emulates to some degree what is presently done to route

tugs and barges in the MWTS.

Chapter VIII provides extensive numerical results relating the performance of the DDP

algorithms in their implementation in the MWTS model.

Chapter IX summarizes both the answered and the unanswered questions raised during the

course of the dissertation.
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PARTI

THEORETICAL FOUNDATICNS:
THE DELIVERER DISPATCH PROBLEM
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CHAPTERII

A PERSPECTIVE ON VEHICLE DISPATCHING PROBLEMS

2.0 Introduction

A multitude of common operations in both the private and the public sectors of daily
commerce can be characterized as vehicle dispaiching operations. Attempts to model and/or
improve these operations have resulted in the establishment of a wide body of operations research
literature devoted to the formulation and solution of vehicle dispatching problems of various
types. However, little has been done to unify these disparate theoretical works within a cohesive
framework. This chapter is intended to provide a global perspective on vehicle dispatching

problems and to lay the foundation of a comprehensive system for their portrayal.

The general structure of the class of vehicle dispatching operations that we address consists of
the dispatching of vehicles over time from some facility to perform a number of tasks in a
geographic region before returning to the same (or possibly a different) dispatching facility.
Many real world activities are described by this structure. One of the more common examples is
the distribution of goods from a warehouse to local retailers. The dispatched vehicle may render a
service, rather than deliver a good, so that police patrol car and fire engine dispatching fall under
this domain, too. And vehicles may pick up, rather than deliver, a given quantity; thus, local
refuse collection and airport limousine service operations may be modeled as vehicle dispatching
operations. The key decisions that must be made in all these operations are when to dispatch a

vehicle, and what the vehicle is to do on its dispatch assignment.

The operations mentioned above, as well as many others, have been the subject of
quantitative modeling efforts, and have produced interesting theoretical problems. The variety of
approaches taken toward modeling vehicle dispatching operations tends to obscure the common

bonds shared by the activities and the models. We consider below three prototypical problems
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that abstract vehicle dispatching operations (we refer to such problems as vehicle dispatching
problems, or VDPs). These problems also serve to focus subsequent discussion of VDP

characteristics in Section 2.4.

The vehicle routing problem (as described in Bodin et al. [5]) models a one-shot assignment of
customers to vehicle delivery routes. Each customer is represented by its delivery requirement or
demand for the planning period (typically one day} and by its location in the transportation
network. Each vehicle in the fleet has a certain carrying capacity for the delivered good, and may
be constrained in total travel time or distance. The objective in the vehicle routing problem
(VRP) is to design a set of vehicle routes and deliveries that incurs minimum transportation costs,

while assuring that each customer's demand is met and that all vehicle constraints are respected.

We use the term “emergency dispatch problem” (EDP) to label models of emergency service
systems such as police, fire, and ambulance systems. In these systems, vehicles are dispatched in
response to calls for service. Most problems abstracted from these systems model call arrival
rates and service administration durations as stochastic quantities. Planning horizons are
usually taken as infinite in these problems, and decisions are usually evaiuated for their

performance in the long run or steady-state.

The third vehicle dispatching problem we consider here is the deliverer dispatch problem
which was introduced in Chapter I. To review, the DDP models certain kinds of physical
distribution operations in a more detailed and comprehensive way. The vehicle fleet-customer
structure resembles that of the VRP, except that customer demands are replaced by stochastically
depleting inventories. Further, the planning horizon in the DDP extends arbitrarily far into the
future, and dispatch decisions are made generally when vehicles are available for dispatch.
Customer inventory concerns become intertwined with transportation concerns in the problem
objective. Hence, good dispatch decisions must seek a balance between aveidance of inventory

stockouts and overburdening the delivery and inventory holding systems.
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As diverse as these problems seem, it is nonetheless possible to detect common threads among
them. This chapter has been organized with the intention of developing such a structure. Section
2.1 reviews previous VDP characterization efforts. Section 2.2 sets up an appropriate paradigm
for understanding the basic processes active in any VDP. From the standpoint of this paradigm, a
set of core components of VDPs is extracted in Section 2.3. Section 2.4 discusses each of these
components in detail, with discussion centering on the three VDP prototypes described in the
introduction to this chapter. Several other VDPs are examined in Sectior. 2.5 to reinforce certain
VDP component concepts. Section 2.6 presents conclusions and points to further research topics

in this area.

2.1 Background

The small number of characterization efforts that have preceded this work have focused on
variations of the vehicle routing problem described in Section 2.0. Although the resultant VDP
subclasses treated encompass many of those vehicle dispatching problems that have been studied
in the literature, several important classes lie outside their domain. Furthermore, the
characterization schemes themselves are incomplete with respect to our conceptions of these
problems. We refer to two studies, one by Bodin and Golden [4] and the other by Bodin et al. [5].
The two characterization schemes do not differ greatly, in that the latter is based explicitly on the

former. We outline their approaches before proceeding with our proposal.

The referenced characterization schemes initially group the vehicle dispatching problems of

their selected domain into three categories:

(1) Routing problems are problems in which vehicles are assigned to visit points in the

geographic region to pick up or drop off goods, and are unconstrained by time-of-day and other

point-specific factors.
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(2) Scheduling problems require vehicles to visit assigned points at certain prescribed moments

in time.

(3) Combined routing and scheduling problems cover all types of vehicie routing and scheduling
problems that do not fit into the other two categories, including problems that specify “time
windows” on visiting times, and those that enforce a full or partial ordering on the points

assigned in vehicle routes.

The cited works extend their characterization schemes by listing a series of characteristics
common to all vehicle routing and scheduling problems. These characteristics include the size
and type of the vehicle fleet, demand characteristics, network configuration, and system
objectives. For each characteristic, several potential values are given. The listings of
characteristic values are clearly not meant to be exhaustive of all possible values. This work
seems intended as a loose framework for identifying members of the class of vehicle routing

problems.

2.2 A Dynamic Decision Paradigm

The framework that we elect for the characterization of vehicle dispatching problems relates
to the fundamental evolutionary process of any vehicle dispatching operation. To reiterate, a
vehicle dispatching operation involves the periodic dispatch of vehicles to perform tasks in the
geographic region of responsibility. The action of the dispatched vehicles, together with external
forces, produce changes, or evolution, in the environment in which the vehicles operate. The
vehicle actions are dictated in turn by decisions made somewhere within the system. Alternative
decisions are appraised according to the anticipated level of performance of the system, where
performance is the interpretation of evolution in light of system objectives. The interplay of these
concepts suggests that a dynamic decision problem paradigm would serve as a useful foundation

for a cohesive VDP characterization framework.
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The formal dynamic decision problem paradigm we utilize is as follows: Each decision during
the course of evolution of a system takes into account potential future evolutionary paths. For a
given future evolutionary path, a sequence of points in time at which decisions can be made is
indexed by the set of nonnegative integers k, where k=0 represents the current decision point. At
the k-th decision point in the path, the system occupies state xi, the decision u; is made, and
uncontrollable factors wy act upon the system from then until decision point k+ 1. The decision u;
depends solely on information contained in the system state x;. The state of the system at
decision point £+ 1 derives from the previous state, decision, and uncontrollable factor activity.
System performance during that decision point interval is a product of the same three system

elements. The dynamic decision problem may then be expressed symbolically as

min{uk}E{wk}g(x Ugy Wi, Xy, Uy, W, X, gy Wy )
subject to
X1 —fk(xk,u w,)
and
u, = Uk(xk)'

where g, f3, and U, are the performance, evolution, and decision functions, respectively. In order
to assure that the value of the objective function is finite, g must incorporate either a discount

factor or a performance averaging function. Often the function g may be reexpressed as

@®

e [z upm,)

We withhold further discussion of the elements of this formulation until Section 2.4.
2.3 Core Components of Vehicle Dispatching Problems

We identify four core components of the general vehicle dispatching problem. By ascribing
specific attributes to each of these components, we can generate any instance of the vehicle

dispatching problem. The core components are:

(1) the set of events that precipitate decision points:
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(2) the structure of the system,;
(3) the way that the system evolves;

(4) the system's performance function.

2.4 Discussion of Core Components

In this section, we discuss each of the four core components of vehicle dispatching problems.
The discussion is intended to illustrate how each component contributes to the formulation of
particular instances of vehicle dispatching problems, and to treat the key issues associated with
each component. We make extensive use of the three VDP prototypes described in Section 2.0

during the course of our discussion.

2.4.1 Decision Point-Precipitating Events

A variety of events can precipitate vehicle dispatch decision points, all depending on the
nature of the problem. Some problems contain artificial events that occur solely to initiate
dispatch decisions, while others reach decision points as a result of normal operational events.
The interval between decision points may be of fixed or variable duration. We assume that, in
any problem we shall consider, decisions are made at at least one point in time, otherwise the

problem is of no interest from a decision-making perspective.

In many formulations of vehicle dispatching problems, there is only one decision point
allotted; its precipitating event may be understood as the start of the time period being modeled.
One VDP that has this characteristic is the vehicle routing problem. Basically, the VRP
represents a single-period distribution operation. Dispatch decisions bear no consequences on the
evolution of the system to the next decision point, because there is no “next” decision point.

Further examples of single-decision point problems include vehicle scheduling problems
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(described in [5]) and the designing of fixed, repeating schedules for longer time intervals (e.g., a

metropolitan bus schedule valid for three months).

With respect to the number of decision points in a typical evolutionary path, the emergency
dispatch problem lies at the other end of the spectrum from the VRP. Two types of events
precipitate dispatch decisions in the EDP. The first precipitating event type is the arrival of a call
for service; the decision that arises is which vehicle (if any) to dispatch to the call. Because calls
for service may be placed into a queue of calls awaiting dispatch (for instance, when all vehicles
are busy), the return of a vehicle to the "available” status may also initiate a dispatch decision.
Hence, a service completion is a second decision-precipitating event in some situations. Because
call arrivals and service completions occur at random instants in time, the spacing between
dispatch decision points fluctuates stochastically. Models of emergency dispatch systems, such as
the HYPERCUBE queueing model presented in [14], explicitly account for this randomness in the

problem formulation. Section 2.4.2 discusses the nature of decisions in these systems.

The deliverer dispatch problem also may associate dispatch decision points with the return to
the dispatching location of a vehicle from its previous assignment. Prompting the need for models
with this characteristic are operations in which vehicles are heavily utilized and completion
times vary considerably from assignment to assignment. If a model of this type of system only
allowed all vehicles to be dispatched simultaneously (as in the VRP), a considerable amount of
delivery resources may be wasted as vehicles completing their assignments prior to the next
decision point sit idle. Another characteristic of all-at-once dispatching further exacerbates the
resource wastage problem in the DDP. Since customer inventories deplete stochastically, an all-
at-once dispatching system cannot, without the aid of intervention, react timely to extraordinary
inventory depletion patterns. For the types of operations that the DDP is designed to emulate,

dispatch-when-ready schemes fit the circumstances better.

37



One system which could be modeled well as a deliverer dispatch problem is the New York City
Department of Sanitation's marine waste transport system, as is indicated in Chapter I. The
vehicles that are dispatched are tugboats, and their task is to transport empty refuse barges to
special sites called marine transfer stations, where sanitation trucks dump their loads into the
barges. Because the rates of refuse arrival to the marine transfer stations are variable, and
because the lack of barge capacity at stations strains the system, dispatchers must be in a position
to respord to critical barge needs in the system. This requires flexibility in dispatching and
causes to be untenable the fixing of delivery schedules too far in advance, as all-at-once
dispatching requires. Thus, only when a tug is ready to depart from the dispatch facility with
several barges in tow is the tug's assignment determined. Of course, it is necessary to anticipate
future dispatch decisions for other tugs, because performance in the domain of the marine

transfer stations is dependent on the times of barge deliveries.

From this discussion, we have learned that it is important to define the set of events (start of
time period, call for service, return of vehicle) that may precipitate the dispatch decision points in
the context of a problem. It is also possible, for some problems, that the occurrence of a
precipitating event does not guarantee that a dispatch decision besides “no dispatch” will be
made, or that certain combinations of events are required. For instance, in a police dispatch
system, the return of a patrol car when no calls for service are in queue requires no dispatch
decision, yet the return of a car when there are calls in queue normally signals a new dispatch to
one of the waiting calls. Similarly, the return of a tug in the marine waste transport system
might not result in a new dispatch, if barge demand throughout the system is relatively light, but
in the creation of a different precipitating event--a dispatch delay period--that initiates a dispatch
decision point some time in the future. The importance, to the definition of a vehicle dispatch
problem, of decision-precipitating events cannot be overemphasized, because the length of the
interim period between decisions, and the capacity of the system to evolve during that period,

bear on the deterrnination of the quality of alternative dispatch decisions.
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2.4.2 Structure of the System

We employ the term “system structure” to refer to those elements of a vehicle dispatching

problem that contribute to problem characterization by:

(1) defining the nature of a “solution” to the preblem;

(2) characterizing feasible solutions: or

(3) listing the types of information that are needed to determine feasibility.

One might argue that the length of description required to define completely the structure of a
vehicle dispatching problem is so great that the goal of problem characterization is defeated. We
would respond that the vehicle dispatching literature is already replete with generalized problem
prototypes, so that characterization along this component may normaily be performed by
referencing the appropriate prototype. Indeed, many of these prototypes may be generated with
more refined characterization sc.hemes such as the one by Bodin et al. {5] that was mentioned

earlier. The rest of this section elaborates upon the concept of system structure.
2.4.2.1 Nature of a Solution

If a vehicle dispatching problem models the periodic dispatch of vehicles to execute tasks over
space and time, then the solution of such a problem ought to supply the guidelines for the timing
of the dispatches of and the activities to be performed by the vehicles. Our dynamic decision
problem paradigm further stipulates that a unique decision is associated with each possible state
of the system at any decision point. We find that all vehicle dispatching problems share this basic
solution structure, but that different classes of these problems exhibit markedly different solution
characteristics. We explore. particular solution structures and the state-decision correspondence

in our discussion below of our three VDP prototypes.
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There are two principal components to the solution of a (deterministic) vehicle routing
problem: the route that each vehicle is to travel, and the activity that the vehicle must perform at
each stop on the route. After the problem is solved, it can be determined exactly what transpires
in the model during the planning period. The state-decision correspondence is trivial in the VRP
case, since there are no future decision points, so a decision need only be found for one state of the

system (the original state).

In the emergency dispatch problem, actual service requirements are known a priori only in a
probabilistic way, yet dispatching rules must give precise information on when and to where
vehicles are to be dispatched. Hence, the solution to the EDP provides dispatching rules that are
conditional on the state of the system at a decision pcint. The rules associating state and decision
might take the form of a table of order of preference among vehicles for each customer or customer
region, a nearest available vehicle function, or more generally, a reference to another problem

whose solution supplies the dispatch decision.

The concept of a solution referencing other problems and their selutions may be quite useful
in characterizing the solutions of more complex vehicle dispatching problems such as the
deliverer dispatch problem. As in the EDP, the dispatch decision in the DDP is a nontrivial
function of the state of the system at the time of dispatch. However, it is often true that the
combinatorially large or infinite number of states makes tabular storage of dispatch decisions
either infeasible or impossible, even in principle. The logical alternative here would be for the
“solution” to simply point to a smaller-scale vehicle dispatching (or other mathematical) problem;
the exact instance of the problem to be solved would derive from the current state of the system,
and the solution of the smaller problem would yield the dispatch decision. Where both options are

feasible, the tradeoff is one of reduced storage versus additional computation.

The form of a solution for the DDP with the system in a given state is likely to be more

complex than that for the VRP. Although perhaps only one vehicle route is solved for at a
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decision point, the specification of an assignment might consist in part of a number of conditional
actions. To illustrate, an assignment may be a list of locations to visit, with the size of each
delivery to be calculated upon arrival at each location as the local fill-up-to point minus the
current inventory level. The inventory level is likely to change between the time of dispatch and
the time of arrival. Not only are the delivery sizes uncertain in the original assignment, but the
original route itself may become ineffectual if the vehicle’s supply of the delivered good is
exhausted while further stops on the route remain. An additional condition may be supplied for
such occurrences, stipulating that the vehicle travel to a supply point for refill and then finish its

original assignment.

2.4.2.2 Feasible Solutions

The structure of a system must allow one to discriminate between feasible and infeasible
solutions. Therefore, it must delineate the operational constraints that all feasible decisions must
observe. Since the specifics of these constraints may change as the system evolves, the system
structure’s feasibility assessment aspect should not be considered simply a list of constraints.
Rather, it is preferable to construe the discriminating function as being composed of two
complementary entities: a description of the general format of the constraints, and a list of
information requirements for establishing the actual set of operational constraints at any
dispatch decision point. This section further explores how system structures characterize feasible

solutions.

The feasibility discrimination mechanism of the vehicle routing problem is embedded in the
constraints identified in its verbal or mathematical programming formulation. For example,
assuming that all dispatches take place at the beginning of the planning period (day), then the
system structure includes a constraint of the format, “the number of dispatches may not exceed
the size of the vehicle fleet.” Feasible routes must respect the network structure of the problem.

Length of route constraints may also be active. Deliveries must satisfy demand (perhaps exactly),
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vet not exceed vehicle capacities. Further possible details include compatibility of vehicle and
delivery locations and, to move into the realm of vehicle scheduling problems, acceptable time of

visit intervals.

Feasible solutions may be characterized more succinctly for the emergency dispatch problem.
Because vehicles are generally dispatched to perform a single task under a condition of
emergency, the system structure is unlikely to carry constraints limiting lengths of routes or
lengths of service times. Indeed, route selection from origin to destination, for a given origin-
destination pair, is usually not accounted for in EDPs. (Travel time is a consideration in
evaluating the quality of a dispatch decision; see Section 2.4.4.) The main constraint on
feasibility in the EDP is of the form, "a busy vehicle may not be dispatched.” In problems
allowing preemption of service, even this constraint may not be present; at the very least, several
classes of the "busy” state must be defined, and a table must be established showing which busy

states may be interrupted for dispatch to which types of service calls.

The deliverer dispatch problem shares many of the characteristics of the vehicle routing
problem and the emergency dispatch problem. Consequently, solutions for the DDP combine
characteristics of feasibility outlined for both problems. The environment in which the vehicles
operate is usually similar to those modelled in VRPs. Hence, system structure will define feasible
routes, feasible delivery quantities, and vehicle/location compatibility. In regard to actual
dispatching, the DDP more clearly resembles the EDP, for dispatch is generally addressed to one
of the (non-busy) vehicles located at the dispatching facility. Some problem variations may allow
the adjustment of assignments in progress as a result of new information about the system. One
important example of this type of operational modification was presented in the last section, the
case where the exact size of a delivery is resolved only when the vehicle arrives at the place of
delivery. In this case, the vehicle may run out of supply before the assignment has been
completed, thus necessitating a change in that assignment. This example also illustrates that

even a feasible solution may be impossible to fully carry out within the context of the model. It is
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therefore essential to articulate fully the qualifications of a feasible solution in problems such as

the DDP, as it is in any vehicle dispatching problem.
2.4.2.3 Information

Given a description of the format of the constraints on feasible dispatches in a vehicle
dispatching problem, the constraints active at any decision point in a system's evolution are
established by supplying the constraint formats with system state information. In characterizing
a VDP’s system structure, then, it is crucial to enumerate the types of information required to
assess feasibility. Since feasibility discrimination is an integral component of the decision
function (as presented in the dynamic decision paradigm), and since the decision function relies
solely on information contained in the current system state, the discussion of this section also

sheds light on the meaning of “system state.”

The information requirements for the assessment of feasibility in the vehicie routing problem
can be read quite straightforwardly from its constraint formats. For instance, the constraint that
the number of dispatches may not exceed the size of the vehicle fleet cannot be tested until the
size of the vehicle fleet is known; hence, “size of vehicle fleet” constitutes one item of information
required to discriminate feasible solutions from nonfeasible ones. This item may be considered to
belong to a class of vehicle operating characteristics information. This class will also contain
information on travel range and carrying capacity limits. Similarly, the class of customer
informatien will contain information on delivery demands. A third class of information concerns
the geographic network in which the customers are located and the vehicles travel. Some types of
information may belong to more than one class, such as lists of vehicles which may or may not

make deliveries to a certain location.

Dispatching within the emergency dispatch problem operates under fewer constraints, so less
information must be supplied than in the VRP in order to determine which dispatches are

feasible. In the basic EDP (one free server dispatched to each call for service), the only constraint
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is that a busy server must not be dispatched. A list of which servers are busy at a decision point is
essentially the only item of information that is needed; this list also acts to define the state of the
EDP system. Most variations on this basic problem do not require much more information than
this. For instance, in models where vehicles busy on low-priority tasks may be preempted, the
priorities of both the incoming call and the activities of the busy vehicles accompany the busy

vehicle list.

Just as deliverer dispatch problem constraints resemble characteristics of constraints in the
VRP and the EDP, so, too, will the former’s feasibility information requirements resemble those
in the latter two. Again, as in the VRP, information classes arise covering the domains of the
vehicle fleet, the customers, and the transportation network. Here it must be noted, though, that
the DDP explicitly models a multi-decision point, dynamic dispatching environment. Therefore,
it must be expected that many information elements will vary in value over time, unlike the
static information elements of the VRP. For example, the number of vehicles available for
dispatch will vary according to the number not yet returned from their previous assignment; in
this way, the DDP looks more like the EDP. Other time-varying information elements, such as
customer inventory information, may or may not play a role in assessing feasibility, although this
information would certainly be found in any plausible representation of the system state in the

DDP.

In general, it should be recognized that system state information possesses different
behavioral traits which affect the way that information can be utilized in formulating and solving
a vehicle dispatching problem. The enumeration and analysis of these traits remains a topic for

further research.

2.4.3 System Evolution

System evolution refers to the process of change of the state of the system over time. Besides

the state, the dispatch decision and the action of uncontrollable or externali factors are identified
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as evolution inﬂuenqu in the dynamic decision problem paradigm. In many vehicle dispatching
problems, the behavior of the uncontrollable factors is known a priori in only a stochastic sense.
Yet the prediction of future evolutionary paths guides the selection of the current dispatch
decision in most instances. The proper characterization of a VDP must therefore provide a

thorough treatment of system evolution, with emphasis on the behavior of external factors.

Because evolution may depend on the system state, it is necessary for us to widen our
conception of the system state and state information to include not just information for
determining decision feasibility, but also information that is required to explain how the system
evolves. We must also examine how decisions affect evolution, and how external factors influence
it, if at all. The three VDP prototypes that we have heretofore studied serve to focus this

discussion as well.

The vehicle routing problem does not model a dynamic system at all. At its sole decision point,
the decision-maker is not concern;ad with future evolution, but only the performance of the system
until the end of the planning period. Also, external factors are absent in the deterministic case,
and only affect performance in stochastic variations of the VRP (where customer demands are
probabilistically distributed). System performance is treated as a separate problem component in

the next section, so there is no point of further discussion here.

The emergency dispatch problem, on the other hand, models a dynamic system strongly
influenced by external factors. As related in Section 2.4.2.3, the basic ingredients of state
information are the characterization of each vehicle as being either busy or free, and the identity
of the decision-precipitating event. Dispatch decision points are generated by a call for service or
by the completion of a task by a vehicle (see Section 2.4.1). While the state of the system
immediately after a decision follows directly from the previous state and the decision (which
vehicle, if any, to dispatch), both the event precipitating the next decision point and the time that

that next event will occur are known only probabilistically. Two types of external factors may be
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identified: the phenomena in the environment that generate calls for service, and the application
of service to the phenomenon being addressed. In model terminology, the external factors
manifest themselves as call rates and service times, quantities whose behavior can be conveyed

only in probabilistic terms.

The more complex model of the deliverer dispatch problem may incorporate external factors
that impinge on different components of the system. First, consider the set of customers. Each
customer may be perceived as a consumer who consumes the delivered good in a probabilistic and
uncontrollable fashion, or a retailer who experiences random demands for the good that must
either be filled out of inventory or be lost or backordered. The evolution of these geographically
distributed inventories usually determines in great measure the quality of system performance
(see Section 2.4.4). Hence, information about inventory levels, although possibly not required to
determine solution feasibility, certainly assumes a prominent part in defining the state of the

distribution system.

In many cases, the inventory position of a particular customer at the next decision point in
time may be given as the sum of the current inventory level and the quantity to be delivered
according to the current decision, minus the demand experienced from the current decision point
to the next. Each of these three components may be rendered uncertain in magnitude by the
action of external factors. First and foremost, many of the imaginable cases of DDPs would model
inventory depletion processes as stochastic, pure death processes, often assumed to obey a known
probability function. Second, a dispatch decision may make delivery quantities contingent on
inventory or other information obtained after the current decision point (e.g., upon arrival at the
customer location). Third, at a given decisicn point, the inventory levels themselves may be
treated as random variables for the purpose of modeling imperfect information about customer
inventories. The characterization of a DDP must provide an explicit formulation of the system’s
inventory state transition behavior, including the identification of external factors and their

effects.
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Uncertainty may also be present in the evolution of the vehicle availability portion of state
information. The availability of a vehicle can be represented in the system state by the number of
time units remaining until the vehicle may next be dispatched (zero if currently ready for
dispatch). This measure is best treated as a random variable due to the many sources of

availability uncertainty. For instance, suppose a dispatch decision is of the fellowing format:

Visit these customers in the given sequence. Make the delivery te each visited
customer that brings the inventory level to the given quantity. Return when supply
is exhausted.

If external factors are active in customer inventory depletion, then inventory levels, and therefore
deliveries, are uncertain. This uncertainty carries over to the duration of the assignment, which
depends on the inventory levels of the visited customers. Other factors contributing to future
vehicle availability uncertainty which may be present in particular DDPs include stochastic
vehicle travel times, stochastic lengths of stay at delivery points, and random vehicle outage
effects. To allow the tracking of the evolution of the “time until next dispatch” random variables,

a DDP statement must detail the effects of all factors that may interact with vehicle availability.

The foregoing examples highlight the need for a complete account of state transition behavior
in vehicle dispatching problem characterizations. It is particularly crucial to focus on the effects
of external factors. “State information” may comprise a truly extensive body of information for
some instances of the vehicle dispatching problem. in these instances, progress in problem
characterization can be achieved by assembling reference sets of VDP archetypes. The

construction of such sets remains an undertaking for future characterization efforts.

2.4.4 System Performance

The ultimate criterion of the quality of a dispatch decision lies in the performance of the
system following the rxecution of the decision. Predicted performance acts as a driving force in

the decision-making component of a vehicle dispatching system. Hence, ne characterization of a



problem abstracted from a vehicle dispatching operation can be considered complete until the
mechanism that interprets and grades system performance is described. This section discusses

the system performance function in its various forms.

System performance can be related as the degree to which the evolution of the system
corresponds to certain idealized patterns of evolution. Like system evolution, performance must
be expressed as a function of three system elements: the state of the system, the dispatch decision,
and external factors. In practical terms, it is often more useful to limit the appraisal of system
performance to performance in the interval between dispatch decision points. Under this
qualification, performance results from the state and decision at the first decision point, plus
external factors active from then until the second decision point. Because performance is actually
a perception of evolution, we may yet need to extend our descriptions of state, decision, and
external factors to include the extra information needed to interpret evolution. This idea will be

reinforced below as we return to our illustrative VDP examples.

We begin once again with the vehicle routing problem. Performance in this context means
the closeness of the solution's objective value to the optimal. One common objective is the
minimization of total travel cost, where cost may be expressed in terms of money, distance, or
time. Suppose, in a particular case, the unit of cost is monetary. Then additional information
must be supplied in the state of the system if, for instance, the network arc lengths and travel
range limits are given in units of time or distance. This shows that the list of information
elements embodied in the system state may need to be augmented in order to contain all

information relevant to performance.

Many plausible performance measures have been identified in the literature for emergency
dispatch problems. Perhaps the most intuitively appealing and easy to calculate performance
measure is the mean response time, i.e. the mean time elapsed from the arrival of a call for service

until a vehicle first reaches the point of origin of the call and begins administering service.
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Components of the response time include dispatcher reaction time, queueing delay, and travel
time. The average measure of response time may be superseded in preferability by the
probability that the response time exceeds a certain threshold value, although the latter measure
is generally more difficult to evaluate. Subsidiary goals in emergency dispatch systems include
the balancing of workloads among the fleet of vehicles, and the maintenance of customer-primary
server relationships by dispatching non-primary servers to customers as infrequently as possible.
In fact, the ideal performance function may be multidimensional in many cases, and would
require the imposition of a multiattribute utility function for the determination of the most
preferred dispatch decision, or to identify a class of “good” decisions. These considerations may
lead to historical and preferential information being added to the system state, and/or a finer

detailing of external factor behavior.

The deliverer dispatch problem can incorporate both deliverer and customer objectives.
Deliverer objectives, and therefore supplemental state information, will follow in form what has
been given for the VRP. Customer objectives, often expressed in inventory terms, may be
included on a per customer basis or amalgamated into a quantity for the system as a whole. If
both deliverer and customer performance measures are related in monetary terms, overall system
performance may be expressed in a single monetary figure. If, instead, customer performance is
assessed by frequency and duration of stockouts while deliverer performance is measured
monetarily, or if each customer is monitored separately, the resulting performance function will
ve multidimensional, and decision analysis techniques must be employed to select a dispatch

action.

Several other important issues readily arise in conjunction with the DDP. In tracking system
evolution, the only concern is the state of the system at dispatch decision points; in gauging
system performance, what happens between decision points makes a difference. For instance,
consider a DDP where customers backorder demands when stocked out, and where a vehicle

dispatched at one decision point always returns before the next. Then if a certain customer is to

49



receive a delivery during the upcoming decision point interval, the customer’s inventory level at
the next decision point dees not depend on when the vehicle dispatched at the current decision
point reaches that customer. However, system performance may depend on time of delivery,
because holding and backorder costs may reflect the moment-to-moment inventory/backorder
level. This idea carries important consequences for the contents of the state, decision, and
external factors components. Inventory depletion rates (external factors), in the form of
probability distributions, need only be based on the timespan of a decision point interval for
evolution-tracking purposes; the timespan might require refinement for assessing performance
over the interval, especially if depletion rates vary significantly over time. Further, the targeted
time of arrival must also be included in the decision. And in the case where vehicles do not
always return by the next dispatch decision point, state information should include some account

of the current degree of fulfillment of each outstanding vehicle's delivery assignment.

Performance objectives may also influence feasibility in some problems. A specific case of this
behavior occurs when some system performance criteria are expressed as constraints on dispatch
decisions. For instance, in the DDP, a constraint limiting the probability of stockout of each
customer inventory may be included in the problem constraint set. Then, although the resulting
system objective may simply be expressed as minimization of transportation costs, the implicit
inventory objective must not be overlooked. Such constraints may be better characterized as

elements of the system performance function than of system structure.

It should he clear from the foregoing discussion that the characterization of the system
performance function in the general VDP may be a difficult task. Once again, we can be
successful in the VDP characterization endeavor provided we can assemble a reference set of
performance functions of sufficient scope to cover most types of VDPs, and can develop a concise

means of describing those functions that lie outside the set.
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2.5 Further Examples

In this section, some of the vehicle dispatching problems that have appeared in the operations
research literature are described and characterized according to the core components we have

identified.
2.5.1 Inventory Routing Problem

Dror [8] defines the inventory routing problem (IRP) in this manner:

“We are given two subsets of customers, M and M’, together with their corresponding
storage capacities. We are also given their inventory status for each day of a specified
planning period. The customers’ inventory is to be replenished from a central facility
using a fleet of vehicles with a known capacity. The fleet size and the maximal number of
routes per vehicle per day is given for each day of the period. During the planning period,
no customer is replenished more than once. Customers that belong to the subset M’ may
not be replenished during the period but the customers from M must be. We are also
given the time limit on the drivers’ work day. In addition, the cost coefficients for
replenishing the customers are given for each day of the planning period. Travel costs
and travel times between customers are given together with the unloading times on each
day for each customer. The objective is to find the routing sequence for each vehicle on
each route for each day that minimizes total distribution cost for the planning pe¢riod as
expressed by the cost coefficients, without violating any service, capacity, or time
constraints.” (p. 6)

Decision-precipitating events: This problem is an extension of the vehicle routing problem to
cover a multi-day planning period and inventory considerations. We therefore identify only one
dispatch decision-precipitating event, the start of the planning period; it occurs exactly once in

any potential evolutionary path.

System structure. Many elements of the IRP system structure can be found in the structure of
the VRP. A solution consists of a set of routes for each vehicle, for each day of the planning period.
To be feasible, a solution must provide for exactly one delivery to each customer in set M, for no
customer to receive more than one delivery, for restrictions on vehicle capacity and driver time to

be observed, for all routes to be valid in the given network, and for each route to be handled by



exactly one vehicle. The information required to determine feasibility can be inferred from the

above constraints.

System evolution: Since there is only one dispatch decision point, no evolution takes place; no

external factors need be considered.

System performance: Performance is measured in total costs accruing from both
transportation and inventory components. The inventory component allows for an “opportunity
saving” to be achieved by servicing customers who do not absolutely require service during the

planning period.

The IRP and its solution are actually intended to be components in a computerized system for
supporting dispatching to minimize long-run (specifically, annual) distribution costs [8]. In
principle, the annual dispatching problem could be solved in its entirety prior to the start of the
first planning period, assuming that all demand information is known at this point, since all IRPs
solved are transformed into deterministic problems. However, it may be possible to retain both
demand uncertainty and computational feasibility by construing the problem as an infinite
horizon dynamic decision problem. Here, the dynamically-changing elements of the system state
are the sets M and M’. To be specific, the inclusion of customers in the set M’ on routes for one
planning period affects the constitution of the sets M and M’ in the next period. The IRP then
satisfies the description of a solution as a reference to another problem as was discussed in Section
2.4.2.1, and the greater problem that the [RP is embedded in is a variety of the deliverer dispatch
problem. The opportunity savings mentioned above can be interpreted as assisting in the
valuation of alternative future M-M’ states of the system, while the other transportation and

inventory cost factors measure performance in the upcoming decision point interval.
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2.5.2 EDP With A Cutoff-Priority Queue

Schaack and Larson [24] studied an EDP with N servers (vehicles) and multiple call
priorities, in which calls of priority i are placed in queue unless and until fewer than N; servers
are busy. The point of this type of queueing discipline is that it grants a higher probability of high
priority calls being dispatched to immediately. It does induce longer delays in attending to lower

priority calls, though.

Decision-precipitating events: Dispatches may be occasioned by call arrivals or service
completions. No dispatch will occur in the former case when a priority i call arrives with at least
N; vehicles busy, and in the latter case when no calls are in queue (or the highest priority call in

queue is of priority i and at least N; vehicles are still busy).

System structure: A solution consists of the dispatch decision to make (vehicle to assign to a
call) in any realizable system state. The only infeasible dispatch decisions are those which assign
a busy vehicle, or a free one to a priority i call when at least N; vehicles are busy. Dynamic étate
information includes the status of each vehicle, the decision-precipitating event, and the number
of calls of each priority in queue. In addition, the cutoff N, is an item of information required to

determine feasibility.

System evolution: Once a dispatch decision is made, the queue state at the next decision point
is known with certainty. Also, at most one vehicle’s status may change from busy to free, and
only if the next event is a service completion: none may change in the other direction. (Of course,
if the current decision involves a dispatch, that vehicle’s status immediately changes from free to
busy.) Given that interarrival times of calls and service durations are negative exponentially
distributed, the next event type and the time of its occurrence are discretely and negative

exponentially distributed, respectively.



System performance: Relevant system performance measures include the mean response
times to priority i calls for each priority level i, and the probabilities that calls of each type are

placed into queue.

It is semewhat ambiguous whether the cutoff-priority queue scheme defines a distinct vehicle
dispatching problem or simply serves as a plausible decision rule for ordinary priority queues.

One could argue the question either way, both here and in other VDPs as well.

2.5.3 Coordinated Inventory Replenishment

Although not designed to be a vehicle dispatching problem, the problem of coordinated
inventory replenishment (see Silver [26]) can be construed as one. The basic idea is to devise
policies for periodically replenishing a set of (in our case, geographically distributed) inventories,
where it is more economical transportation-wise to replenish several customers on one dispatch
than it is to dispatch to each individually. The main difference between this problem and the
DDP is that the former simplifies several problem components so as to facilitate the derivation of

a certain type of replenishment policy.

Decision-precipitating events: If the inventory monitoring system operates under continuous
review, each and every moment in system evolution is a dispatch decision point. Under the
assumption of negative exponentially distributed intervals between customer inventory
depletions, it is possibie to show that one need only consider dispatching when a depletion event
has just occurred. If periodic review is used, the review points are the dispatch decision points,

although actual dispatch may occur between review points.

One convention often employed is to restrict replenishment policies to those of the (S,c,s)
variety. An (S,c,s) policy is one in which customer i places an order when his inventory position
falls to or below s;, and all other customers j whose inventory positions are lower than c; are

replenished on the same dispatch: the delivery to each customer j in the dispatch is S; minus the



current inventory level. By restricting our attention to such policies, we may reduce the set of

decision-precipitating events to customer order arrivals.

System structure: A solution, in the general case, consists of a decision on whether or not to
dispatch, and if so, of how much to deliver to whom, for each possible combination of customer
inventory positions. If we only consider (S,c,s) policies, decisions only cccur when orders arrive, so
a dispatch is assured at each decision point. Under the (S,c,s) policy restriction, a feasible
decision must include a delivery to the orderer, but otherwise, no restrictions on total delivery
size is enforced. The idea that vehicles carry the replenishment orders is incidental to these
problems, although one could certainly introduce them by appending constraints on total order
size and travel distance. These measures severely complicate the process of determining good
(S,c,s) policies and have not been treated per se in coordinated replenishment research efforts.
Requisite state information consists of inventory levels, and for the (S,¢,s) qualification, the set of

(S,¢,s) policies.

System evolution: In all cases studied in the literature, a customer’s new inventory position at
the next decision point is found by adding the inventory position at the current decision point and
the delivery quantity (if the customer is to receive a delivery), and subtracting quantity
demanded through the next decision point (inventory position may or may not be bounded below
by zero). Demand is usually assumed to follow a Poisson arrival law, and the size of each demand

may be one unit or randomly distributed.

System performance: In Silver [26], the objective is to minimize transportation and inventory
holding costs (the relevant performance measure) subject to certain stockout constraints. The
transportation cost function is of a particularly simple form: to replenish k& customers on one
dispatch costs A +ka units, where A>a. This cost structure poorly models transportation

resource expenditure over a geographic region, but once again, more realistic structures tend to



render the problem intractable. The fact that leadtimes may be positive mandates performance to

be analyzed throughout each decision point interval.

2.6 Summary

Using a dynamic decision paradigm, we have partitioned the set of vehicle dispatching
problem characteristics into four groups: the set of decision-precipitating events, the system
structure (including the nature of a solution and the feasibility discriminating mechanism),
system evolution characteristics (including the activity of external factors), and criteria of system
performance. We sought to illustrate characterization and highlight important associated issues
through the analysis of three prototypical vehicle dispatching problems: the vehicle routing
problem, the emergency dispatch problem, and the deliverer dispatch problem. Since the number
of existing and potential VDPs is so great, progress toward the objective of routine and concise
VDP characterization requires in part the construction of reference sets of VDP elements. It is

here that further VDP characterization efforts should be focused.
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CHAPTERIII

FORMULATION OF THE DELIVERER DISPATCH PROBLEM

3.0 Introduction

This chapter describes various formulations of deliverer dispatch problems. Initially, a
general formulation is presented. The general DDP is intended as a foundation for the
development of more useful DDPs; in its detail, it will almost surely prove impervious to analysis
for optimal or near-optimal dispatching procedures, and may only serve practically as a realistic
model for simulation work. Following the general formulation, restrictions are introduced to
obtain interesting and more tractable specialized DDPs. Some of these special cases are shown to

be time-homogeneous Markov decision problems of a certain form.

3.1 The General Deliverer Dispatch Problem

The basic objective of the deliverer dispatch problem is to find the dispatch policy that
minimizes expected cost per dispatch decision. A dispatch policy returns a dispatch decision or
vehicle assignment when supplied with the information profile of the system at any point in time.
The information profile contains information about all system characteristics that may change in
value over time, and that are relevant to dispatch decision-making. Costs are generated by
transportation of the delivered good, by holding of the good by customers in their inventories, and
by demands arriving to stocked-out customers. The terminology presented thus far will be
clarified in meaning in the problem formulation below. A summary of the symbols employed in

this chapter appears in Exhibit 3.1.

Dispatch decisions are made at decision points. These decision points are regarded as instants
in time and extend over an infinite planning horizon. The interval between two successive

decision points is termed a period. All periods are taken here to be equal in duration. Decision

-1
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Exhibit 3.1: Symbols Used in Chapter II1

C;t: transportation cost of itinerary j at decision point ¢
dij:  delivery to customer iin itinerary j

eir: lost demand for customer i from tto¢t+1

g8:  costrate of policy §

H;;: inventory holding cost of customer i at ¢

i customer index

Iy information profile at ¢
B itinerary index

k: vehicle index

K: number of vehicles

liij  leadtime to customer iin itineraryj

[*: maximum leadtime

L;s: lost demand cost for customer i at ¢

m:  number of customers

n: number of itineraries

pi(xis): probability of customer i experiencing demand x;; at ¢

pss’Y: transition probability from s to s’ under decision y

P8:  transition probability matrix for rule §

gsY: costof decision y in state s

s: state of DDP

S: number of states in DDP

t: decision point index

ui:  holding capacity of customer i

wgs:  number of periods until vehicle k ready for dispatch (at decision point £)
xj: number of units demanded from customer i between tand t+1
yjke:  dispatch decision variable (1 if vehicle k assigned itinerary j at ¢)
zi:  inventory level of customer i at ¢

5: dispatch rule (or stationary dispatch policy)

A: dispatch policy

ngS: steady-state probability of occupying state s under stationary policy &
T duration of itinerary j

Qp: capacity of vehicle &

points are indexed by ¢, but the assignment of indices to decisior points changes in such a way
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that the current decision point is marked by ¢=0.

Customers are indexed by i, i=1, ..., m, m being the total number of customers in the system.
Each customer has an inventory of the delivered good whose level varies over time. Let the
inventory level of customer i at decision point ¢ be z;; (an integer). Inventory levels diminish due
to demands (orders placed with the customer that the customer either fills out of inventory or, in
the current formulation, loses altogether) and increase by deliveries. Customer i’s inventory level
may never be less than 0 (no backorders) nor more than its capacity u;. Let the joint probability
that x;; (an integer) units of the good are demanded from customer i during period ¢ (the period

from decision point ¢ to decision point ¢+ 1), for each customer i, be written

pt(xlb X2t - - - xmtl It),

where I; is the historical information profile (record of all previous inventory levels, demands, and
dispatches) at decision point ¢£. Hence, there may exist correlations among demands between and

within periods.

The vehicle fleet consists of K vehicles, each having a certain maximum carrying capacity.
Let the carrying capacity of vehicle £ be denoted Q3. Vehicle availability is represented by the
time to availability (TTA) quantity wg,. If wp, equals 0, then vehicle £ is available for dispatch at
decision point ¢£. Otherwise, wy, represents the number of periods remaining until vehicle & first
becomes available. (One could generalize the TTA reduction process to account for stochastic
travel times, and also to depend on the decision point ¢ and factors r:lating to presumed load and

location chracteristics of vehicle k at decision point t. We avoid this generalization here.)

An itinerary is a subset of customers that a vehicle is to visit between its departure from a
depot until its next return to that (or another) depot, and a description of the activities it is to
perform at each visit. Specifically, since the primary vehicle activity is delivery of physical goods

in the svstems we are studyving, an itinerary consists basically of a list of customer-delivery
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quantity pairs. Itineraries are indexed by j, j = 0,1,..., n, where j=0 refers to a vehicle not being
dispatched at a decision point. In our DDP, any itinerary j is fully defined by specifying the

following quantities:

1) the (integral) number of units d,; delivered to each customer i in itinerary j (0 if customer i is

not visited);
2) the transportation cost Cj; of each dispatch of itinerary j at decision point ¢

3) the duration 1; (an integral number of periods) of itinerary j (i.e., a vehicle dispatched on

itinerary j at decision point ¢ is next available for dispatch at decision point £+ t,); and

4) the leadtimes [;; between the dispatch of itinerary j and the arrival of the delivery to each
customer i on that itinerary (for i with d,;>0). (Leadtime works as follows: if the leadtime
for customer i on itinerary j is [;;, and if itinerary j is dispatched at decision point ¢, then the

delivery to i has not occurred by decision point ¢+, but has by point ¢+ ;;+1.)

It is presumed that the itinerary set is supplied to the DDP rather than being created within
it. A practical implementation of a CAD system configuring its prescriptive dispatch capability
around the DDP would require an itinerary generator to set up the itinerary set in a preliminary
phase of the implementation. Itineraries may be designed on the basis of expert testimony and/or
cost and travel time approximation functions utilizing the solutions of traveling salesman
problems. Note that two itineraries can visit the same subset of customers yet be distinguished
by the deliveries to those customers, or have the same customer-delivery quantity characteristics
yet differ on, say, leadtime characteristics (because the customers are visited in different

sequences). Inorder for vehicle & to be dispatched on itinerary j, it must be true that

m
Nd Q.
—_—y k

1=1

Also denote the maximum leadtime among all i-j pairs by [~.
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The dispatch decision at decision point ¢ can be expressed as the set of decision variables {y;z,
where yjy; has value one if and only if vehicle % is dispatched on itinerary j at decision point ¢.

Since only available vehicles may be dispatched, then feasible dispatch decisions must have

Z Y ke =1 —sgn(wu), (3.1

Jj=1

where sgn(x) is 1, 0, or — 1 when x is positive, zero, or negative, respectively.

The transition function for customer i’s inventory level from decision point ¢ to decision point

t+1, given the demand x;; and the dispatch decisions {yjz+.;} for v=0,...,{", can be written

K n .

- i (3.2)

Zigey UL IU, max(o’zit+ 2 > dijyjk,t-z.“xit)]'
k=1;=1 y

Correspondingly, the number of units demanded from and lost by customer i during period ¢,
which we signify by e;, is found by

K n \ (3 3)
e, = max(O,xlt-—zlt— E E d"yjk,t—l ) .

One implication of the inventory transition function is that demands encountered during a period
may be satisfied by units held in inventory any time during the period, as if all deliveries occur
before any demands are registered. Another is that units that cannot be held in inventory due to
customer capacity limitations disappear at the end of each period. The inventory costs incurred
by customar i from decision point ¢ to decision point t+1 are the holding cost H;;+1-2;¢+1 and
the lost demand cost L,;-e;;, where H,; and L,; are, respectively, the unit holding cost at decision

point t and the lost demand cost in period ¢.

The objective function for the deliverer dispatch problem may be expressed, at least

conceptually, as

1 T-1 n K m
: . S Sse © v(
mmb, } lim { E(’x } e | e Cj( ot ~Jk¢+ — Ht,t+lzz.t+l+Ltt €t ’ (3'4)
Ji Tox ioy=p ' y=0 7 k=1 1=1



with z;,+1 and e;; defined in terms of z;, Yikt 1 and x;; as above. Depending on structures of
demands and costs over time, the limit in expression (3.4), and therefore the entire objective
function, may or may not be well-defined. The specializations we introduce next allow us to

surmount this difficulty while still retaining most of the general DDP’s desirable characteristics.
3.2 Specializations of the General Problem

This section describes a series of specializations or refinements to the general deliverer
dispatch problem. Each specialization here builds on the previous ones, although any subset may
be taken for modeling particular operations. We target one specialized version of the general

problem as the DDP we direct our algorithmic development toward.
3.2.1 Time-Homogeneity of Costs

This specialization says that, for every decision point ¢,
N Ci=Cj;
2) H;=H;and
3) L,=L.

Also, these costs are all finite.
3.2.2 Demand Independence From Historical Information

Under this refinement, demand during each period does not depend on the demands of
previous periods, nor does it depend on previous decisions. Hence,
Phx1ts -y Xmel 1) = plxre, oo Xm)

for any decision point ¢ and historical information profile I,.
3.2.3 Cyclic Demand

Here we constrain the demand process to follow the cyclic pattern

Pixyy - Xme) = poX1gy .- Xme),
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where t = (¢+0) mod N, 0 is the phase of the cycle, and N is the number of periods in a cycle. For
example, if N=4 and 8=3, then t=3 for decision points 0, 4, 8, etc. Inclusion of the phase is
necessary because the ¢ index always changes in meaning with respect to absolute time. The
problem formulation must include the transformation 6=(8+1) mod N for when the current

decision point advances one period in time.

Through specializations 3.2.1-3.2.3, we have refined the original, nonstationary (with respect
to time) DDP into a stationary one, which renders the objective function of Section 3.1 well-

defined.
3.2.4 Steady Demand

This specialization corresponds to specialization 3.2.3, when N, the cycle length, is one. In
other words,
pt(xlt; sy xmt) = P(xlt» ey xmt):

for each period ¢.
3.2.5 Independent Demands Among Customers

If each customer’s demand probability law does not depend on other customers’ demands

during the same period, then we may write the joint demand probability law in product form: i.e.,

m

p(xlt’ T ’xmt) = I_I pi(xlt)

1=1

where here pi(x,,) is the demand probability mass function of customer i (for all £).
3.2.6 Identical Vehicles

This specialization sa_vé that all vehicles are identical in their carrying capacities. In the

given terminology, this translates to

Q= Q
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for every vehicle k.

The general deliverer dispatch problem with specializations 3.2.1 through 3.2.6 constitutes

the main DDP to be studied in this dissertation. Two more specializations are listed below.
3.2.7 No Leadtimes

In this specialization, all leadtimes [;; are taken to be zero. Hence, all deliveries from
itineraries dispatched at decision point ¢ enter their respective inventories by decisicn point ¢+1,

so that, for instance,
K n

N\ -
u, max(O,zu+ kzl -‘,"1 dijyjkt X,
=1lj=

= min

zt.t+1
for all customers i and decision points t. This specialization renders previous dispatch
information useless, since all previously dispatched vehicles will have made their deliveries by

the next decision point.

3.2.8 Phased Dispatching

This final specialization permits the removal of vehicle TTA measures from the information
profile. We first specify that the duration t, of each itinerary j is a constant t (even for j=0, which
is difficult to justify on realistic grounds unless t=1). We further stipulate that K = K’t, where K
is the number of vehicles and K’ a positive integer. Finally, letting ¢; represent the last decision
point when vehicle k was dispatched (¢; < 0 because t=0 always represents the current decision
point), we specify that vehicle k£ can only be dispatched at current and future decision points ¢
when

(t - ¢tp)modt=0.
For example, with a vehicle fleet size of 10 and t=5, if vehicle 2 was last dispatched at decision
point —3, then it can be dispatched at decision points 2, 7, 12, and so on. Note that the

interdispatch time for a vehicle equals the uniform itinerary duration t, and that exactly K’
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vehicles are available at every dispatch (hence the term “phased dispatching”). There is thus no
need to track vehicle availability under this specialization. The DDP incorporating all these

specializations was studied in [19].
3.3 The Deliverer Dispatch Problem as a Markov Decision Problem

In this section, the deliverer dispatch problem specialized in Sections 3.2.1-3.2.6 (referred to
in this section as “the” DDP) is shown to be a time-homogeneous Markov decision problem (MDP).

This relationship enables a much simpler conceptualization of the objective in the DDP.

The first concept to be handled in establishing the relationship between DDPs and MDPs is
that of state. The state of a stochastic process or system is the set of values, at a given point in
time, of the minimal set of system characteristics that contribute to the prediction of both future
evolution and performance (in the terminology of Chapter II) of the system. Because the decision
processes of our interest are Markovian, we may discard knowledge of any previous state and still
retain the same degree of accuracy in projecting future evolution and performance solely from
information contained in the current state. The existence of events occurring in the past and
having future relevance can be accommodated in the Markov decision problem framework by

embedding this information in the state.

What constitutes a state in the DDP? The relevant time-varying characteristics are the
inventory levels of the customers, the time to availability measures of the vehicles, and the [+
previous dispatches. Hence, the state of the system at decision point ¢ may be represented by the
vector

(Z1ty oy Zmes W1t - - WKL Wpkp—1h o k==
By assuring that itinerary durations are bounded above, the state space of the DDP is finite, if
combinatorially large. Let the cardinality of the state space be S. We may then associate a
unique positive integer with each state, so that the state space may also be expressed as {s}, where

sranges from 1to S.
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Let us restrict the set of types of dispatch decision-making processes we may consider in a
search for an optimal dispatching procedure to those which associate exactly one dispatch
decision with each potential state of the system. (It is proven in [12] that this restriction never
removes all optimal procedures from consideration among the DDPs we address.) We define a
dispatch rule § to be an S-vector whose s-th element 8(s) is the dispatch decision {yjs} taken when
the state of the system is s. A dispatch policy A assigns a dispatch rule §, to each decision point¢; a
stationary dispatch policy has §,=8 for all ¢, and may be alternately identified as “the stationary

dispatch policy 8” or just “the dispatch pelicy §.”

We now claim that, for a given stationary dispatch policy 8, the stochastic process governing
the state transition behavior of the deliverer dispatch model is a discrete-state, discrete-time,
time-homogeneous Markov chain. To see that this is so, we must examine the moedel and the way

each state element changes from one decision point to the next.

First, that the stochastic process is discrete-state is clear by definition of the state. The
process is discrete-time, because decisions are only made, and therefore the state is only observed,
at distinct instants in time. Neither costs nor demand probability laws change over time, and
only a constant, finite number of previous dispatches are retained in the state space, so the
process is time-homogeneous. All that remains to demonstrate is that all of the available
information that may aid the prediction of future process evolution is contained in the current

state of the system.

Let the state of the system at decision point ¢ be s, which corresponds to the state
(zlb ey Zmt, W1ty - - - WK ijk.t—l}, ceey {yjk,t—l"})»
and consider the transition probability to the state s’ equivalent to

(2141 » Zma+ 1, Wig+1y - - - WK t+1s {ij.t}, ce. ,{J’jk.t+1—l‘})

when the dispatch decision {yj.} is made at decision point ¢. Let ¢ be the set of all m-vectors

(x1,...,Xm) such that the following relationships hold:
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K n

= mi by - 3
241 mm[ui, max(O,zl.t+ ,f"l Zl dijyjk.:-—lij )| Vi
=1;=

(3.5)

and

wk.t+1 = max(O,wkt+ z r’jyjkt_l) VEk. (3.6)
Jj=1

The first set of relationships indicate that all inventory levels embedded in state s have increased
or decreased to their respective levels of state s The second set assures that vehicle TTA
measures have made the appropriate transformation from their levels in state s at ¢ to theirsin s’
at t+1; unavailable vehicles at decision point ¢ (wz¢>0, therefore Z; yj»=0) have had their
availability measures reduced, available vehicles that have been dispatched (w;=0 and yjr=1
for the itinerary j dispatched with vehicle k) become unavailable for the duration of the dispatch

assignment, and available vehicles not dispatched (w;,=0 and Z; yjz,=0) remain available. The

probability of occurrence of the random event (x4, . . ., xp,), denoted p(xy, . . ., xn), is equal to

m

p(xl, . ,xm) = I—l pi(xl),

1=1

due o the independence of demands. Let

8(s) _
P = Z plx,, ..., xm).

(x.,....x €@
1’ m

Then, provided that the previous dispatch state elements of state s’ are the same as those of state s
with {y;; ;.;+} deleted, the remaining previous dispatches shifted one decision point into the past,

and the decision {y;;} at ¢t added as the most recent dispatch, it may be verified that:

1) pge88) is the probability of a transition from state s to state s’ in one period, and

2) pgs'9s) can be determined solely from the elements of state s and the dispatch policy 6.

Thus, the state transition process of the deliverer dispatch model obeys all the conditions for

qualification as a time-homogeneous Markov chain.

It remains to be demonstrated that the decision and performance structures of the DDP

conform to Markov decision problem specifications. In the standard MDP, a cost gY; is incurred



when the chain occupies state s at a decision point and decision y is taken. These state occupancy
costs may be expectations of cost outcomes over probability distributions. Performance over any
horizon is judged according to the sum of occupancy costs incurred during that horizon. The
decision objective of the MDP is to select the policy 8§ which yields the minimum expected
occupancy cost per decision point over an infinite horizon. The length of a period is likely to be too
short to permit the advantageous use of Markov decision theory for the discounted net present
cost case, since the discount factor would be so close to 1 that the usual methodology would be very

slow to converge (see [12, p. 171)).

From the DDP’s objective function given in (3.4), we can infer that performance over any

finite horizon does relate to the sum of state occupancy costs of the form

n K m

Y= N ¢ N (3.7)
;= 2 C 2 Yot EL, > (Hiz'i+l‘iei>’
J=1 k=1 Ui=1
provided that
K n .
.. (3.8)
Z, = min ul,max(0,2i+ Z Z dijyjk,—l. —xi) ,
k=1j=1 y
K n
_ (3.9)
e = max(O,xl—zi— z E dijyjk,—l ),
k=1)=1 y
s corresponds to the state
(le e 2m, Wy, ..., WK, b’jk,—l}, e ,b'jk,—l+})y

and the decision v={yjz o} is feasible in state s. Note that all information needed to determine
each occupancy cost is included in either the state s or the decision y. The MDP decision structure
thus applies fully to the deliverer dispatch problem, and we may conclude that the DDP is a

Markov decision problem of the form detailed above.

Given further assumptions about the types of Markov chains yielded by potential dispatch
policies for the deliverer dispatch problem. we may prepare a more succinct statement of its

objective function. Suppose, again, that the only allowable type of dispatching procedure for the
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DDP is of the dispatch policy type, and that only stationary dispatch policies are considered. Let
P8 be the SxS matrix whose element in row s and column s’ is ps3(3); PS is the state transition
matrix of the Markov chain induced by policy 8. Further, require the combination of probabilistic
system components and feasible dispatch policies to only produce Markov chains with exactly one
recurrent class which is aperiodic--this is the unichain assumption. Then for each dispatch policy
8, there exists a single set of stationary unconditional state occupancy probabilities {nfg}. An
unconditional state occupancy probability is the probability that a Markov chain occupies a
certain state at a certain future point in time, not conditioned on any previous state occupancies.
The likelihood is that, for any point in time within some finite horizon, these probabilities cannot
be calculated without knowledge of the unconditional state occupancy probabilities at the
beginning of the horizon. Under the unichain assumption, however, the unconditional state
occupancy probabilities will converge to the stationary values as projections further and further
into the future are made. The stationary values correspond to the unique solution to the set of

simultaneous linear equations

S
P8 = and Z n8=l, (3.10)
s
s=1
where md=(nd;, ..., ndg). Likewise, averaging costs over the infinite horizon causes expected cost
per decision point to converge to the stationary expected cost or cost rate
: (3.11)
5 8 B(s) .
g= > mq)®
s=1
A more useful form for the DDP objective is then
¢ (3.12)
. 5 _ N .8 Bls) .
mingg" = > nq-,

=1

[~

the minimization of the average cost per decision point or cost rate.
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CHAPTERI1V
SOLUTION PROCEDURES FOR THE DELIVERER DISPATCH PROBLEM
4.0 Introduction

To find the optimal dispatch policy for an instance of the deliverer dispatch problem, we may
attempt to use any procedure for solving a Markov decision problem. However, we shall find that
it is impractical to solve any but the smallest problems exactly, since the numbers of states and
decisions grow exponentially in the number 6f customers and vehicles. Our hope for constructing
a viable dispatch selection methodology for the type of computer-aided dispatching system that
we visualize rests on our being able to devise good heuristic algorithms for handling the DDP.
This chapter covers the development of such algorithms. Since some of the heuristic notions that
we propose in this chapter are based on approximations to the policy iteration method for solving
MDPs (see, e.g., Howard [13]), we initially describe policy iteration. (Note: new symbols used in

this chapter are described in Exhibit 4.1.)
4.1 The Policy Iteration Algorithm

The policy iteration algorithm for the Markov decision problem is an iterative algorithm that
is guaranteed to find an optimal policy in a finite number of iterations, provided that the unichain
assumption holds. The algorithm starts with an initial policy and progressively updates the
decision for each state if that yields improvement in the objective function. When no further
improvement can be achieved, the algorithm termirates with the solution to the problem being
the policy that could not be improved upon. This algorithm is also known as policy improvement

and, in the name of its originator, Howard’s algorithm.

Before we formally present the policy iteration algorithm, we must develop a new concept,

that of a state’s “relative value.” Define the function J; 3(¢) iteratively as follows:



Exhibit 4.1: New Symbols Used in Chapter IV

A: number of vehicles available at the decision point (MSP)

Ci4: replenishment cost to i of delivery d (approximated for DDSP)

Cj*: dispatch cost of itinerary j (MSP)

da:  actual delivery (DDSP)

dq: desired delivery (DDSP)

dijl: =1ifcustomer i visited in itinerary j

di:  total delivery to customer i in MSP dispatch

F: dispatch failure probability (approximated for DDSP)

ig%i:  cost rate in DDSP for customer i

Js8(¢): expected cost over next ¢ decision points, starting from s with policy &

Jig: setofitinerariesj with d;j=d

lig: leadtime to i of delivery d (approximated for DDSP)

i ps;s"dd: transition probability in DDSP for i from s; to s’; choosing dg with
failure probability F

iFqs da:  costin DDSP for i choosing dg in s; with failure probability F

iQs,d4:  immediate inventory costs in DDSP when choosing dgqin s; with F=0

s state in DDSP for customer i

Si: set of states in DDSP for customer i

Si;: states s where inventory level of customer i is 2

tyi:  time to arrival of outstanding delivery (DDSP)

vsd:  relative value of state s under dispatch policy §

ivs B2 relative value of s; under policy 8; in DDSP for customer i
¥i outstanding delivery (DDSP)

yj =1 ifroutej dispatched (MSP)
y: dispatch decision
Si: replenishment policy in DDSP for customer i

ms|s,0(¢): Pr{state at tis s |state at 0 is sq, policy 8 in use}
iz’ |2 8:(t):Pr{state at tis z'; | state at 0 is z;, policy 8; in use} (DDSP)
ing 8i: steady-state probability of occupying s; under policy 8; (DDSP)

(4.1a)



Ja(t)—Js(t—l)+ S I (t_l)qs“” t=23,... (4.1b)

where

nd 0 =1, §=5y,

slso

= 0 otherwise, (4.23)
and

J 4.2b

® = S o (t— l)p&“ =1. (4.2b)
slsO P |

s'=1

It can be verified that J; 3(¢) is the expected total cost incurred over a planning horizon consisting
of the next ¢ decision points when the current state is sg and the stationary policy 8 is in effect.

The average expected cost incurred per decision point over this finite horizon is

Jfo(t)

t
We claim that the limit of this average, as t+=, is g8. To see this, consider the difference

S o-L @-n.
%0 %0
This difference can be reexpressed, using the steady-state occupancy probabilities 118 for policy 8,

as

S
- 8 8(s)
Jgo(t)—Jio(t— D= > e ¢~ D9,

s=1

S
8(s) 86() 88()
=> o=, s f_ s E s
s=1 s=1 s=1

S S
N ss(syv(s 8 &
= = 19 + P .nslso(t b RNy
=1

»
[}
—

@

(t Dem ) 8(8) (43)



Now, as t+®, ngls 8(£—1)+n,8, so that the limit of the difference is g8. Hence, for each additional
decision point appended to the decision horizon, total expected cost incurred will increase by a
factor growing closer and closer to gb. In the limit, this average increment will dominate the
average cost incurred per decision point during the transient portion of the system’s evolution to
the steady state. A more rigorous argument for the convergence of average expected cost to gd can

be found in [12].

Now consider the quantity v, 5(¢) defined as

t S
8 — 8 8\ 8s) (4.4)
So=X Y (1 == gl

]
]

One can easily check that
4.5

P o =tg8+8 . (4.5)
SO So

Define
(4.6)

v§ = lim % (9.

0 t—> s0
Under the assumptions we have made thus far, v%6 is always finite (see [12], Section 4-6, for a
detailed proof of this statement). We call v 8 the relative value of state so under stationary
decision policy 8, although a more descriptive term might be the "transient cost difference,” since
it represents the difference between actual and steady-state expected costs accruing from

transient activity in the Markov chain. No matter the terminology, this quantity figures

prominently in the development of the policy iteration algorithm.

Suppose that, in the course of our search for the best policy for our Markov decision problem,
we currently have the best policy § found thus far. Let us consider the nonstationary policy
{meaning that different decision rules may be used at different decision points) of using decision
rule & at the current decision point and & at every future decision point. Bellman’s principle of
optimality (see [3]), when applied to this problem, indicates that if this nonstationary policy is
better, in some sense, than the stationary policy of using § always, then a better stationary policy

is to use & always. The nonstationary policy is judged better if the difference between the old
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stationary and the new nonstationary policies’ performances is in favor of the latter; i.e., if

limt Js(t+1)—
5o 5

S
PLALNER Y ps"f’(um f,(t))]zo, s=12,...8, 47
s '_'1 ss t—o g
. s =

with strict inequality for at least one state s. Substitute for the total expected cost terms their

equivalents in terms of ¢, g5, and v8:

S 4.8
(limt (t+1)g6+ua)—lq6“”+ D pS(,s’(lim tg8+us.))]20 (4.8)
—p® 8 s s ss t—x 8
=1
or
w_ 5§ 4.9
Bridgi o Y bz, s, @3)
s'=1

Relation (4.9) serves as the foundation of the pelicy iteration algorithm. Policy iteration consists
of alternatively finding the cost rate gd and the relative values {vs8} of the current policy 8 (the

“value determination” phase), and searching for a better policy by testing changes in the decision

at each state (the “policy improvement” phase).

First, observe that every policy can be no worse or no better than itself, so that

S

g6+vg_q§(s)_ E pf(:')v{:.zo’ s=1,....8S. (410)
s'=1

(4.10) is a set of S simultaneous linear equations in the S+1 unknown quantities {v¢6},
s=1,...,5, and gb. Value determination is achieved by arbitrarily setting one v (say, vgd ) to
zero and solving the S resulting equations for the average expected cost and the relative values.
(It may be observed that the policy improvement criterion is unaffected by the addition of a
constant to all v8(s), hence the use of the word “relative” in “relative value.”) Given these
quantities, the policy improvement phase involves, for each state s, finding the decision y that

maximizes

S

ga+02_q:_ S pr (4.11)

155" s’

s'=1

L

or equivalently, that minimizes the improvement criterion



S
DI (4.12)
s =

If y 2 8(s), then the policy §', where §(s)=y and §'(s)=8(s"), s’#s, improves upon 8. In practice,

several policy improvements are instituted simultaneously on each policy iteration.

The improvement criterion offers the following insight: The immediate effect of any decision
y when the system is in state s is the incurring of the cost g,¥--call this the immediate cost. If we
were solving a finite horizon problem, consisting only of the current decision point, with the same
cost and decision structures as the original MDP, the decision y! minimizing the objective
function q,Y would be the optimal decision. But if the problem were in fact an infinite horizon
problem, y! would be considered myopic and would probably be suboptimal. Suppose that an
additional term were added to the objective function that brought additional cost consequences
depending on which states were accessible from s under decision y. If this term penalized future
states according to how undesirable, in some sense, they were, then the decisions obtained from
solutions to these modified singl;a-decision point problems might perform better in the infinite
horizon problem than myopic decisions. The terms Iy pg¥Y vgd, which we denote as expected
future values, serve ideally as penalty functions. assuming that the stationary policy 6 is used at
all future decision points. This is because the expected future value relates in a single quantity
the expected sum of costs incurred (relative to what would be incurred at the steady-state cost
rate for policy 8), starting from state s’ with probability ps¥, until the steady-state is reached.
The objective function of the augmented single decision point problem is then the improvement
criterion (4.12). The augmentation of a single-period problem with a penalty function is a major
feature of the heuristic algorithm for the deliverer dispatch problem that we propose later in this

chapter.
The policy iteration algorithm is summarized as follows:

0. Begin with an initial policy 8.



1. Solve the simultaneous linear equations

S
§,. 86 8s) 8§ _ ®&s) __
g +v — N p v, =q. s=1,...,8

P s’
s’=1

for g8, v;5, ... ,vs.18, with vg8=0.

2. Foreachs, find y* such that

S S

Yo N ¥v,0 Y Y B

qs + f’-—-1 pss'vs’ <qs+ less’vs' Yy
g’ = s’=

and set §°(s) = y*.
3. If§’=8,setd = 6 and go to step 1. Otherwise, terminate with the optimal policy 6.
4.2 The Infeasibility of Exact Solution of the Deliverer Dispatch Problem

At each iteration, the policy iteration algorithm requires the solution of a set of S
simultaneous linear equations, and the calculation of the improvement criterion for each state
and decision at that state. In terms of computational complexity, for a Markov decision problem
with S states and A alternatives at each state, the first step takes O(S3) and the second O(AS2)
operations per iteration. Since the number of states of the deliverer dispatch problem grows
exponentially in the numbers of customers and vehicles, it quickly becomes clear that solving the
deliverer dispatch problem exactly through policy iteration (or any other method) is feasible only
for very small problems. It is not even feasible to calculate and store the quantities qzY and pgsY
for any but the most trivial instances. Hence, progress toward dealing with DDPs can only be
achieved by resorting to approximations of various sorts. The rest of this chapter explores ideas
for DDP heuristics. These heuristics are generally predicated on the basic concepts of policy
iteration. (A more detailed comparison of computational complexity between policy iteration and

the heuristic developed next appears later in this chapter.)
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4.3 A Decomposition Heuristic for the DDP

This section develops a Markov decision theory-based heuristic algorithm for the deliverer
dispatch problem. The key concept of the algorithm is the utilization of decomposition by
customer of the original problem for the purpose of estimating the expected future values that

comprise a penalty function for a single-period dispatching problem.

4.3.1 The Difficulties of Decompaosition

It was intimated in Chapter II that the DDP could be viewed as a problem of coordinated
inventory replenishment, but that research aimed at the latter problem has tended to sacrifice
model realism (at least in the domain of multilocation inventory theory) for improved analytical
capability. Chief among the simplifications invoked are the implied special network structure
yielding transportation costs that are linear in the number of customers visited per dispatch, and
a vehicle fleet of unlimited capacity. These simplifications allow the development of a
decomposition scheme for deriving (S,c,s) policies by solving inventory subproblems for each
custormer. Recall that in the (S,c,s) inventory policy, customer i triggers its replenishment to the
inventory level S, whenever its inventory level drops to or below s,, and receives a replenishment
to S, whenever another customer triggers a replenishment and i’s inventory level is no greater

thanc,.

By omitting the above simplifications, as we do in the DDP, one might expect to encounter the
following difficulties, were one to try to establish good customer (S,c,s) policies with a

decomposition approach:

1) The replenishment cost share borne by a customer in the single-customer subproblems would
be impossible to assess accurately, because it depends not only on the number of customers in
a replenishment, but alsc on their identities, which change from replenishment to

replenishment.



2) There are no guarantees that there will be sufficient fleet capacity available to deliver to

every customer the order dictated by its optimal inventory policy.

On the other side of the coin, it is doubtful that pure (S,c,s) policies would serve well the physical
distribution operation as we have modeled it, because who gets combined on a single
replenishment dispatch should be a function of customer location as well as of inventory levels.
Even when the role of decomposition is limited to the task of estimating the future consequences
of current dispatches, the complications cited above will hamper any effort to apply decomposition

in an intelligent way. We try to proceed as best we can. Our efforts are documented below.

4.3.2 Overview of the FVD Algorithm

In Section 4.1, the search for the best decision in a particular state of a Markov decision
problem was likened to solving an "augmented” finite horizon problem (the end of the horizon
being the next decision point). The augmentation consisted of a term in the objective function to
penalize the tactic of minimizing costs during the horizon at the expense of leaving the system in
a bind at the end of the horizon. The consistent application of such penalty functions yields
decisions which benefit the system over the long run, even though it is only finite horizon
problems that are being solved. This penalty function device drives the heuristic algorithm we

propose for the deliverer dispatch problem.

If we were in possession of them, we weuld surely use the expected future values derived from
the optimal solution of the corresponding Markov decision problem as penalty functions, for
reasons stated near the end of Section 4.1. But Section 4.2 makes clear the infeasibility of
obtaining an exact set of expected future values. We pursue instead an approximate penalty
determination method, where the exact expected future values are the quantities we attempt to
approximate. The fundamental approximating assumption of this method is that all decisions

and costs are separable by customer. In other words, we assume that the future performance of



the system as a whole can be forecasted accurately by studying customers individually. It is true
that the inventory costs a customer endures, given its inventory state and the delivery quantity
commissioned at a decision point, may be calculated independently of inventory costs for other
customers. But the transportation cost of a dispatch decision for the entire system cannot usually
be inferred by considering each customer’s delivery quantity in isolation of what the other
customers are having delivered. Moreover, it may be impossible to locate a feasible dispatch that
meets the delivery quantities set for each customer at a decision point, due to vehicle availability
factors. It seems inevitable, then, that systemwide cost forecasts obtained by decomposition of the
original system into single-customer systems will prove inaccurate. Our hope is that, if the
expectation of costs incurred in the finite horizon is always calculated exactly and approximation
by decomposition is only utilized for the forecast of future activity required for penalization
purposes, the quality of guidance supplied by the resultant penalty factors will diminish only
slightly with respect to that offered by the optimal penalties. In recognition of the role that
decomposition plays in the proposed heuristic, we label our algorithm the “Future Value

Decomposition” (FVD) algorithm.

The implementation of the decomposition principle in an heuristic solution scheme for the
DDP transmutes the formulation of the DDP, from the perspective of the algorithm, at future
decision points. Dispatches at all decision points beyond the current one draw from a different set
of itineraries. This new set is composed of itineraries which send vehicles to one customer only
before they return to the depot. The characteristics of each itinerary in the new set “resemble”
those of itineraries in the original set that make the same delivery to the same customer.
Leadtimes are averaged over this subset of itineraries. The resemblance with respect to
transportation costs is one based on separability; the cost of a multi-customer itinerary in the
original problem is as near as possible to the total cost of the subset of itineraries in the new set
producing the same aggregate delivery. Additionally, all future dispatches are feasible

regardless of the state of vehicle availability as it would be determined under the original DDP.



However, a dispatch failure phenomenon may be instituted, which may cause any future
itinerary intended for execution to be canceled with some probability. Vehicle unavailability is
represented indirectly by this phenomenon. Separability (with respect to costs and decisions) of
the transmuted DDP is irsured in the presence of the foregoing mutations. Yet when each
problem starts with the same customer inventory levels, the transient cost differences incurred in
each DDP may agree approximately if the forms of the mutations are chosen judiciously. The

viability of the FVD algorithm hinges on such agreement.

To further cultivate the understanding of the approximation mechanism that our algorithm
employs, we refer to the illustrations of Exhibit 4.2. The exhibit consists of four “pictures” of the
distribution region, the first taken at the current decision point and the others at the next three
decision points in the future. These pictures are meant to convey some sense of what the
algorithm may “see” as it peers into the future to judge what a good dispatch would be now.
Overlayed in each picture are routes corresponding io itineraries permissible in whichever DDP
is presumed to be in effect at that decision point (original for the current decision point,
transmuted for the future ones), and inventory « -els for each customer arising from the initial
set of inventory levels, the displayed itineraries, and one set of future customer demands. A route
composed of a dashed line corresponds to an itinerary that has been canceled. All intended
replenishment routes for the transmuted DDP are of the “hub-and-spoke” variety--vehicles visit
one customer and return. A complete pictorial representation of what the algorithm “looks at” in
obtaining the current decision would need to show all possible combinations of current and future
decisions and customer demands, and would have to extend toward t== rather than t=3. But
the exhibit does serve to illustrate what the FVD algorithm perceives to be possible evolutionary

paths for the system.

Exhibit 4.3 displays two evolutionary paths for the inventory level of a selected customer.
The first path may be potentially observed in actual operations. The second one shows how the

inventory level would respond to the same set of demands under the assumptions of the FVD
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Exhibit 4.2: Potential System Evolution in the Mind of the FVD Algorithm
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Nodes labeled by inventory level (actua

or result of assumed demand quantities)

at decision point
solid line = executed itinerary
dashed line =canceled itinerary

algorithm. One impiication of the separability property is that each customer operates under a

replenishment policy depending only on that customer's inventory state.

Assuming that the

customer’s optimal replenishment policy is to receive 3 units when the inventory level is zero and

to receive nothing at any other level, then all delivery quantities except possibly the first must be
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either 0 or 3. The first quantity is determined by the solution of the augmented finite horizon
problem, when any of the original itineraries may be executed. Since itineraries from the original
set are executed at every decision point in the actual operation, the delivery to the customer in the
first path may be any quantity, provided that there exists an itinerary directing that delivery to

the customer in question.

The prediction of future system activity in the transmuted DDP can be achieved with little
difficulty, owing to the separability property. What each customer has delivered to it, and what
the systemwide cost consequences are, can be determined on a customer-by-customer basis in the
transmuted DDP. This determination is accomplished through the formulation and solution of
single-customer DDP-like subproblems, which we label the “customer DDSPs” (DDSP =deliverer
dispatch subproblem). The subproblems do not strictly conform to the DDP mold established
through the specializations of Sections 3.2.1-3.2.6, but their structure is similar enough and their
state spaces small enough so that they all can be solved to optimality using Markov decision-

theoretic techniques. The MDP solutions provide the approximate expected future values for the

Exhibit 4.3: Potential Evolutionary Paths in Actuality and in Heuristic,
One Customer’s Inventory Process
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penalty function, since the approximations are sums over expected future values by customer,
which are generated in the course of solving the DDSPs. The finite horizon dispatch selection
problem augmented by the penalty function is named the “master scheduling preblem”; its

solution determines the final dispatch.

The rest of Section 4.3 describes the FVD algorithm in more detail. The reader might want to
skim this material initially, study the implementation of the algorithm on a small numerical

example in the next chapter, then come back and read this material carefully.
4.3.3 The Single-Customer Deliverer Dispatch Subproblems

A customer’s deliverer dispatch subproblem is intended to represent that portion of the entire
system's delivery operation affecting the customer. In the DDSP, customer i is entitled to order
whatever quantity of goods dy it wants, provided that some itinerary j exists in the original DDP
that makes that delivery (d,;=dy) to that customer, and that no previous order has not been
delivered (time since last order is greater than leadtime of replenishment); the latter measure is
taken to reduce the complexity of the problem. However, the customer may find the

replenishment canceled immediately with the dispatch failurs probability F.

The attributes of a replenishment to a customer are determined by averaging the respective
attributes of certain itineraries in the original problem. This is done in an attempt to
approximate some of the effects of joint replenishment. Let J;g be the set of itineraries j
delivering d units to customer i:

J, = {jldij=d}. (4.13)
The leadtime for the delivery of d units in customer i's DDSP is taken as the average of leadtimes
to i of itineraries in J;q:
N

st t]

"e'jzd
[J
1

(4.14)

lld -

’

4
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where [x] is the nearest integer to x. The replenishment cost C;q4 of such a delivery is based on an

average of “cost shares,” or transportation costs prorated according to the proportion of the total

delivery in itinerary j going to customer i:

d.

> —C,

. m J

g S g
P iy

“ 4.15
- Y (4.15)
: Vd

We formulate the single-customer deliverer dispatch subprobiem for customer i as follows:

State: s; = (2;, y, ty), where z; is the customer’s current inventory level, y; the delivery

outstanding, and ¢, the number of periods until the arrival of the outstanding delivery. S;

is the state space for the problem.

Decision: dg, the delivery quantity desired to be dispatched at the decision point. Note: dy may

be chosen positive only when y; = 0. The actual delivery d, will equal dg with

probability 1 — F and 0 otherwise.

Evolution: Let n’denote the value of quantity n at the next decision point. Then:

Z,=min|u, max(O,zl—xl+yi) ift ;=0andy >0, (4.16a)
= min [ui, max(O,zi—xi+da)] if d >0and ‘;d‘fo' (4.16b)
= min |u,, max( O,zi-xl.> otherwise; (4.16¢)
Y=y, ift,>0, (4.17a)
=d_ otherwise: (4.17b)
L=t =1 it >0, (4.18a)
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- 4.18b
-4, -1 (4.18b)

ifda>0 osndl‘.da>0,

(4.18¢)

=0 otherwise,

where x; = x¢ (demand) with probability p;(xg), x0=0,1,2,.... Let

be the probability of moving from s;=(z;, y;, ty,) to s’;=(2%;, ', ;) over one period,

given decision d, and failure probability F.

Perjormance: Let the number of lost demands e; be found by

-~ : — 4
e = max(O,xi—z‘.—yi> zftyi—-Oandyi>O, (4.19a)
= max(O, xi—zi—da) if d >0 andlida=0, (4.19b)
= max(O,x'—zi) otherwise, (4.19¢)
then the performance of decision dg in state s; is the immediate cost
d
Fe=E  |c, 6 +HZ +L.e.‘. (4.20)
s x.d 1d [} ii
1 L a a
Objective: Select dispatch policy §, to minimize
8 5. 8.5.)
i i F it 3
g = z ins.xiqs ! (4.21)
s €S t !
l l
where
5.
n 4
[

4

is the steady-state probability of being in state s, under dispatch policy §,, given by

] §ts) 8
N ontxFpt i =nt, §€S,and (4.22a)
- s 1 Fss LS P
\ES ! i 1
14
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S =1 (4.22b)

Using the policy iteration algorithm to solve the resulting Markov decision problems, we wiil

obtain for later use the following quantities for each customer i:

* the optimal policy §;* providing the replenishment order or delivery target for each inventory

level;

* the single-customer expected future values

S 0pd x it (4.23)

We can also reduce some of the computational effort of the master scheduling problem if we save
the readily available quantities
d _0d
iQsi = iqsi_cid ' (4.24)

i.e., the inventory cost incurred in the upcoming period, if dispatches cannot fail. Call (4.24) the

immediate failsafe inventory cost.

We justify our approximations as follows: Averaging seems to us a reasonable basis, in lieu of
auxiliary itinerary dispatch frequency information, for allocating the cost of an itinerary to the
customers it services. C,qis simply the average of this cost “share” over itineraries delivering d to
customer i. (Dror and Ball [9, p. 22] describe a different method for a related cost allocation task.)
Likewise, leadtime is averaged over the itineraries in J;y. We presume that there is always one
vehicle available for dispatch; finite vehicle availability is represented via the dispatch failure
probability F. The failure probability should be set to the systemwide proportion of delivery
targets missed, although this quantity is unknown a priori. Iterative refinement or calibration of
an initial estimate of the failure probability may be nonetheless possible by either simulation or
queueing-type analysis. It may improve systemwide dispatching performance to condition the

failure probability on the identity of the customer and on the delivery size, but we do not do so
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here. Also, the question of what constitutes a dispatch “failure” should be addressed. It is
possible for a customer to receive a dispatch of a positive quantity that is not its delivery target;

this will not be regarded as a “failure.”
4.3.4 The Master Scheduling Problem

The master scheduling problen: (MSP) for s.ate s is to find the immediate dispatch y=/{y;}
that minimizes the sum of the immediate cost and the expected penalty for the state entered at
the next decision point. The penalty function used is the expected future value in the transmuted
DDP (see Section 4.3.2). By construction of the transmuted DDP, this penalty is equivalent to the
sum of expected future values for each customer from its DDSP when the replenishment to the
customer equals the total delivery to it over itineraries selected in y. This function is intended to
approximate the actual expected value for dispatch y in state s. The validity of the penalty
function is predicated on the assumption that good future dispatches for the system as a whole
will yield total costs close to the sum of those each customer would endure using its optimal
replenishment policy from the single-customer operation modeled by its DDSP. The MSP

receives treatment in greater depth below.

The proper objective function for the MSP would be the improvement criterion of relation
(4.12). While the immediate cost term of the objective function can be calculated readily, the
expected future value term cannot. Recall from Section 3.3 that the immediate cost g,Y in the

original DDP for decision y in state s is given by

n K m

Y= N ¢ 7

9, = C_) i y_}k,0+E{x} z (Hz~i+Liez)’
j=1 k=1 vi=1

with all terms as defined there. It can be easily verified, using the notation in the last section,

that
n K m d
. 4.
q:‘ = S C.i S yjk,0+ S zQsl’ ( 25)

provided that y is feasible and s attainable vis-a-vis the single-customer DDSP stipulation that no



more than one order per customer may remain outstanding at any point in time, the customer

states s, are consistent with the master state s, and the delivery to customer i

K n
d = Z 2 d;Y o
k=1j=1
Our formulation of the master scheduling problem addresses the infeasibility of evaluating
the expected future value term exactly. Let 8* be the dispatch policy obtained by use of the FVD
algorithm, and {vs6"} its relative values. Then consider the expected future value for any state s
and decision y in the original problem, under the condition that dispatch policy §* is used at all
future decision points. This is the second term in (4.12), the expression we take as the MSP’s

objective function. Our fundamental assumption is that this expected future value can be

approximated by
S m
d. 6*.
y & 0 i i (426)
NI o S
This is the mathematical translation of the assumption made at the beginning of this subsection

for the validity of the decomposition approach. Therefore, 8§ is the dispatch policy with the

characteristic that the dispatch §(s) minimizes the MSP’s objective function

+ n d &*

qs WSS 0% (4.27)
s A s 17 8§88 U S .
=1 ses, b

({d;} derived from §*(s) ) for every state s. The master scheduling problem seeks, for any given s,

the best feasible dispatch 6 *(s).

Let the decision variable y,; equal one if and only if vehicle & is dispatched on itinerary j at

the current decision point. We can express the master scheduling problem as:

n K m
d. d. &*
min > C.Sy +51@i+ N %t (4.28)
— T f b gk e | DTS —_— 158 s
J=1 " k=1 1=1 boyes vt
S 4.29
st Sy, Sl-sgniw,) VE (4.29)

=1

~
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n K K
sz?-y. S1-3 3 X diyy Vi (4.30)

- - (4.31)
di- }: Z duyjkzo Vi :

k=1)=1

Ya = Oorl. (4.32)

where
d' =1 ifd >0, (4.33a)
y y
(4.33b)

= 0 otherwise.

Constraints (4.29) permit only available vehicles to be dispatched. Constraints (4.30) further
restrict dispatches to only those customers with no outstanding deliveries, and assure that this
condition will be maintained in the upcoming period by allowing each customer to fall on at most
one itinerary in the current dispatch. This condition may detract from the quality of the resultant
dispatches in some applications, but it allows certain key simpiifications in the stricture of the
MSP (see below). The total delivery d, to customer i is expressed as a function of the dispatch in

(4.31).

Several simplifications can be introduced te the MSP (4.28)-(4.32). Since all vehicles are

specified identical in Section 3.2.6, we may replace the dispatch decision {yj;} with {y;}, where

K
4.34
1=y, (4.34)
=1

e

Constraints (4.29) can be summed over k, and substitutions of y; and y; can be conducted in
constraints (4.30) and the objective function to simplify the MSP statement. Also consider the
objective function (4.28). If customer i is not in any itinerary j where y,=1, then d,=0 and the
term for i in the sum over customers in the (4.28) is
8*
'Q8+ N Opo vt

—_— Y85 s

L s'GS Lt 12
I 1
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If customer i is in dispatched itinerary j (and therefore, by constraint (4.30), not in any other one),

then the corresponding term is

d. d.. &*.
1] N 0, i
1Qs. + s ips.s’. ivs'. ’
t s'.€S. L t
[ At

Now we introduce some notation to simplify the form of the MSP. First, suppose we were to start
with the solution y;=0 for all j (a solution that is always feasible). Then the solution y;=1, y;-=0

for j’#j improves on the no-dispatch solution if and only if

i d d, & m

< 0 S 9, 0 (4.35)
ACJ+.'_'{1Q Y+ E zpss z's'!}< Z{zQs - 1 } ]

1=1 i leSl t t =1 t ’lGS 5

We define the dispatch cost C,” of itinerary j by

m d d.. &* 6"
+ y 0 "y t 0 0.0 i (436)
CJ - CJ+ z {zQs + Z Ps s zvs' _th - Z iPss. iVs }
_ s’ ES |2 4 1 1 S’.GS. t 1 t
1 L 3 13
Then dispatching j improves upon not dispatching at all if C;* <0, and the more that C;* is

negative, the greater the improvement.

If we reexpress the transportation cost C; in terms of C;”, substitute into the objective

function, and rearrange terms, we get the equivalent objective functicn

n n d. g*.
min S C;'yj+ F_ “iQsH- DY Op vt |
l

ss t's
J=1 =1 leS t
n d.. d. &
- ij N0 Ty i N 0.0 (437)
Z le + - zps s". ivs'. iQs 4- lp
J=1 t s'lESl L t t ES

Remember that y, may equal one for at most one j for which d;;1=1. Consider the expression
summed over i in the objective function. If, for customer i, no itinerary j with y,= 1 visits i, then

d, =0, the coefficients of all y,'s equaling 1 are zero, and the expression has value

8*

0 N 0.0 1
+

th —— zps s tvs' .

5" €S Lt t
)

Otherwise, let j be the itinerary with yv,=1 and d,!=1. Then d,=d,, and it can be verified once

again that the expression in the sum over i reduces to
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The objective function thus is equivalent to

n da 5*.

. + 0 0.0 i (4.38)

min Z Cj yj+ Z [iQs.+ iPss % J
J=1 i=1 ¢ s',€8; L t

Since the latter term in (4.38) does not depend on yj, it is equivalent to minimize

n

v +
2 €y
J=1

We utilize these simplifications to form the simpler MSP

n

min Z C;'yj (4.39)
=1

st z y,sA (4.40)
J=1

n n
< 1 S N gt (4.41)
_dU.USl—_,_ hd d!jyjl i
J=1 J=1ll= -—ll.j
y =0orl, (4.42)
where the number of available vehicles
K
A= Z l-sgn(wk). (4.43)

a

=1
The MSP (4.39)-(4.42) is observed to be equivalent to an (m + 1)-dimensional (0,1)-knapsack

problem. With constraint (4.40) omitted, the MSP is of the form of a set packing problem ([22, p.
407)). The MSP is also similar to certain routing problems studied by Cullen, Jarvis, and Ratliff
[7]. Several classes of procedures (e.g., branch and bound) have been developed to find optimal
solutions for these types of problems. If the MSP is large or a rapid and not necessarily optimal
solution is desired, one may solve the MSP heuristicaly. Heuristic methods that have

traditionally been applied to problems resembling the MSP include linear programming and
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Lagrangian relaxation-based methods and other types of procedures. In our computational work,

we have used a different type of heuristic, which we describe later.

The set of itineraries to consider may be reduced to further simpiify the MSP. Let I be a
subset of the customer set {1,...,m} and let J(I) be the set of itineraries j such that dijl=1ifi€land
dy1=0if i¢l. J(I) is thus the subset of itineraries visiting exactly the customer subset . The
itinerary jr* with the minimum dispatch cost among all itineraries in J(I) dominates all other
itineraries in J(I) in this sense: Suppose we switch from dispatching ji* to dispatching some other
itinerary j in J(I) in some MSP solution . All constraints are still respected but the objective cost
increases (gets worse). Also, no improvement in the solution can be made by exchanging
dispatched and undispatched itineraries that could not be made with j;* in the solution. Hence,
we need only consider in the MSP itineraries j that are undominated among all itineraries

delivering to the same customer subset.

An heuristic algorithm for the solution of the master scheduling problem is offered through
Exhibits 4.4, 4.5, and 4.6. The BEST__ITIN procedure (Exhibit 4.4) takes each undominated
feasible itinerary j as a seed itinerary and approximates the objective cost of the best dispatch
that includes the seed itinerary via an embedded greedy heuristic (GREEDY__ASSIGN in
Exhibit 4.5) for dispatching the unassigned vehicles. The seed yielding the lowest objective cost,
provided that it is negative (represents an improvement over not dispatching), is then fixed for
dispatch, and if any vehicles remain, the process is repeated. The main procedure given in
Exhibit 4.6 controls the execution of this heuristic. Since all feasible itinerary singletons and
pairs are examined in the algorithm, the MSP is solved optimally via the heuristic for A £2. The
quality of MSP solutions for A>2 is unknown as yet. Further research into MSP solution

procedures is called for.
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Exhibit 4.4: BEST _ITIN Procedure from MSP Heuristic

W N

10.

11.

procedure BEST _ITIN(Ip, k)

begin
MIN_ OBJECT _COST<0
MIN__ITIN<O
for each undominated itinerary j do
begin
if {customersinj} N Ip = @ then
begin
OBJECT__COST<C;*
for each customer i do
IT « Ip U {customers in j}
GREEDY__ASSIGN(T, OBJECT__COST, k)
if OBJECT__COST < MIN__OBJECT__COST then
begin
MIN__OBJECT__COST«OBJECT__COST
MIN__ITIN «j
end
end
end
return MIN__ITIN
end

4.3.5 Summary of the FVD Algorithm

The FVD algorithm may be considered to consist of a “preprocessor” and a “dispatcher.” The
preprocessor solves a set of DDP-like Markov decision problems, one for each customer, in
advance of the onset of system evolution. The kéy information derived from these solutions is not
the set of single-customer dispatch policies, but the cost information generated as a byproduct of
the solution methodology. The dispatcher solves a master scheduling problem at each decision
point to obtain the dispatch for that decision point. The MSP is a multidimensional knapsack

problem, and the instance examined at any particular decision point is dependent on the state of
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Exhibit 4.5: GREEDY__ ASSIGN Procedure from MSP Heuristic

procedure GREEDY__ASSIGN(I1, OBJECT__COST, k)
begin
1. for k’«<k+1 until A do
begin
2. find itinerary j* with minimum C;'* among itineraries j’ with
{customersin;} NI = &
3. if no such itinerary j* exists then return
4, OBJECT__COST«<OBJECT_COST + Cj+*
5. IT « IT U {customers in j*}
end
6. return
end

Exhibit 4.6: Main Procedure from MSP Heuristic

begin
1. Ip « set of all customers with outstanding deliveries
12. for each available vehicle k do DISPATCH(k)<«0
3. k<0
4. repeat
begin
5. ke-k+1
6. DISPATCH(k)«<-BEST__ITIN(, k)
7. Io « Ip U {customers in DISPATCH(k)}
end
8. until k=A or DISPATCH(k)=0
end

the system at that point. Exhibit 4.7 presents a flowchart that shows how the delivery system

functions when using the FVD algorithm to generate dispatches.

We may gain some insight about how the FVD algorithm approximates the policy iteration

algorithm by seeking some form of correspondence in their respective phases.
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Exhibit 4.7: Implementation of FVD Algorithm in Delivery System

......................... '. S°|ve DDSPS
: Preprocessor: : for each

: before
. dispatching customer
: begins

grreessseeni v

. foreach current |e
- decision point : system state t

............................. :

Determine
cost coefficients,
numbers of
vehicles available,
and outstanding
delivery info
for MSP

Solve MSP

v
Execute resulting
dispatch

l

Learn demands _p

algorithm may be considered a one-iteration policy iteration algorithm. Value determination in
the FVD algorithm is performed by the preprocessor, although it is expectations of the relative
values, rather than the relative values themselves, which are determined. The value

determination process has embedded within it the exact solution of small Markov decision



problems, so that by using the policy iteration algorithm to solve them, iteration goes on within
value determination for the original DDP. Policy improvement in the FVD algorithm works
much as does its counterpart in policy iteration, with approximations employed for the expected
future values. Because there is no iteration in the FVD algorithm, the search for the best
dispatch at a given state may be postponed until that state is entered during the evolution of the

vehicle dispatching system.
4.3.6 Properties of the FVD Algorithm

In this section we establish a potentially useful lower bound property of the decemposition
algorithm applied to a slightly more specialized veision of the DDP. We also investigate the

computational complexity of the algorithm.

Consider the DDP we have been studying with the additional stipulation that all leadtimes
are zero. Further, restrict the maximum total delivery allowable to any customer during a period

to be one full vehicle load €.

Proposition 1. Suppose that the number of vehicles K equals or exceeds the number of
customers times the maximum itinerary duration, and that the itinerary set {j} has the properties
that there exists a itinerary j,4 that delivers only d units to customer i, d=1,...,Q and i=1,...,m,
and that

(4.44)

where the replenishment cost shares C,y are strictly convex in the sense that

Cy *Cy>C 4 vq Vd;dy>0.

1 2 1 72
Then the policy 8D obtained via the decomposition algorithm using cost shares C,4 and zero

dispatch failure probability is optimal for the original DDP.
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Proof. Basically, the foregoing assumptions cause any resource constraints and economies of
scale to be removed, so each customer’s replenishment problem can be treated separately, as we
do in solving the DDSPs. In case this argument is not satisfactory to the reader, a more rigorous
demonstration of the validity of the proposition is given below. It expresses the same argument

mathematically. Also, the proofs of two further propositions extend in part from this proof.

We need to show that
D S b D S D
s, N bt 8 Y, N .y 8 (4.45)
qs + f-l ss’ s qu+ ‘4.1 pss. us.
s = s’=

for every state s and decision y feasible when the system is in state s. We may reduce the
information contained in state s to the set of customer inventory levels, since the zero leadtimes
assumption makes previous dispatch information valueless, and the large vehicle fleet size and
the customer delivery limit assure that no desired and permissible dispatch will fail due to vehicle

unavailability. So let

s=(zl, ey zm)
and
s’=(z’1,. L,2)
m
First we demonstrate that
26w &0 5P Mol R é‘ 8 (z) &* ]
— i 13 1
g RIS P Ve = 21 4, + - zpzz, AR l’ (446)

s'=1 1=1 t 2, =0 b t

where 8;* is the optimal policy from customer i's DDSP. (Since the dispatch failure probability F
will always be zero, the F superscripts are dropped from the notation.) Keep in mind that the
decomposition: policy 80 is obtained via application of the master scheduling problem. For the

given specialized DDP, the MSP becomes.

NSEES d é d,. & g 0 &
[ Y g _ i
min {_ [C,.d +1Qz o Lo by !QZ - P, Y ”yj (4.47)
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st > d y Sl Vi (4.48)

=1

.

y;= Oorl (4.49)

The objective function is obtained primarily by the substitution of (4.44) into (4.36). The

constraint (4.40) disappears due to the ample vehicle supply.

Lemma. There exists an optimal solution {y;*} to the MSP (4.47) - (4.49) with

m

S dl=1

s 1]
i=1

for all j with y,* =1 (i.e., all selected itineraries visit one customer only).

Proof. Suppose one optimal solution {y,*} for the MSP has some itinerary j’ for which y;*=1
and I; d;jl=M>1. Consider the solution {y,**} identical to this {y,*} except that itinerary j’ is
replaced in the dispatch by single-customer itineraries making the same aggregate delivery. Let
i, k=1,... .M, be the customers in itinerary j' and {j;} the single-customer itineraries where j3

delivers diu 'to ip. The itineraries {j;} exist by assumption, and

m M m M
Cv*—\_‘c =V?C y** :YCy**.
7' — Tid ., e e Tid . Iy = 0

1= Voo ok=1:1=1 ty k=1

The objective value remains the same after this alteration to the solution, and constraint (4.48) is
still respected, hence {y,**} is also optimal. If we continue to make these substitutions involving
the {y,}, we will eventually arrive at an optimal solution in which all executed itineraries visit

single customers only.[]

By the preceding lemma, the following MSP variant has the same objective value as the

original:
m & (4.50)
d : d &* &* .
: N\ + SN t , t_ % _ X 0 1
mm{d} e Cz.d zQz, —_— zpz 2 sz' zQz — zpz z’ zvz' )
U, =1 t i ;=0 i L t L t

L

The optimal solution of deliverv quantities {d,*} to this problem yields one optimal solution of

dispatches {y;*} to the preceding MSP. when y*=1 if and only if d;;=d,* and d,;=0 for i"=i
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(assuming there is only one single-customer iiinerary J for which d;j=d;*). Problem (4.50) can be
solved for each i independently. The objective function component for customer i is its
improvement criterion minus a constant, hence d,* =8§,*(z;), and the relationship between 82 and

{8,*} is established.

To verify that relationship (4.46) holds for all s, we first show that

D m 8* (2
8 (s)_ [ (4.51)
5 = z 9z :

=1 !

From (3.7),

D n m
q5 =N cy+E Y (H.z.’+L,e.), (4.52)
s — g {xl} — T i

i=1 1=1

where 8D(s)={y;} and 2, and ¢, are as defined in (3.8) and (3.9), respectively (with all [;;=0). By

application of the lemma, we have

n
> dy,=8%()

J=1
and
n m
N\ -
pa— c e TiB* (2
j=1 =
(4.52) may then be reexpressed as
8 m
NI . +E (H.z.’+Le)
s et 1,8% (z) x i 1
1=1 t
m
&*(z)
I N L
=4,

Now we would like to equate the expected future value terms of (4.46). To do this, we

establish and employ the relationship

< ﬁDcsl_ 8*1(‘-:’ (453)
—_ pss' ! 22, ’
s C '~.
“l
where
S -=jsiz =7l
1z T '['
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(4.53) holds since the inventory state of customer i in s is z;, each customer’s inventory process
behaves independently of the others (since there is never vehicle unavailability), and for i’s
inventory to be z;" at the next decision point, the system must enter a state s’ where i's inventory

level is z;. This independence relationship can be extended to show that

D &*
by rl8 )= o ‘z . (4-54)
14

P sls z |
s'€S |, t
iz !

The relative value is defined through (4.4) and (4.6) as

£ omtim Y Y (nﬁ, ()it ),,8, (s (4.55)
S P SIS s s
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Using (4.51),
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S =timS S S ([ aon)-rd )q & (4.56)
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Observe that a sum over s’ from 1 to S is equivalent to a double sum, the inside sum being over

states s’ in S;; -, and the outside sum over z, from 0 to u;, for any chosen i. Hence,

s’

mn t ! D N\ §*(zh
O =timS Y NS (ns, (t—l)—nSD).q A
s — — — G—-— s'ls i'z
1

_< ¥ (4.57)

invoking the corresponding definition of the relative value in i’s DDSP of state z, under policy §,.

From here, the expected future value terms of (4.46) are shown to be equivalent by the following:

S D D S D m a*
N L8 ,8 I N R R
Py Vo= 2 P lbzz‘
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s'=1 s'=1 =1
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To complete the proof, we show that, by contradiction, no dispatch better than 8D(s) exists in

any state s. Suppose that, indeed, in state s, it would be better to make dispatch decision y than

8D(s). This implies

S D D S Db . D
Yo N oy 88, N 8(s) 8 (4.59)
qs+ L Py Vg <qs T2 ss' Us

s'=1 s'=1

If y={y,} does not have the property that, for every itinerary j with y,>0,

m
N gl =
pa dij =1,
=1
then there must exist a decision y'={y;} which does have that property and has an improvement
criterion value equal to the one for y. This is so because each itinerary visiting multiple

customers can be replaced by single-customer itineraries yielding the same transportation costs

and inventory effects. So consider y to just dispatch single-customer itineraries. Let d,=ZX; d;; y;.

Note that
n n m m n m
Scy-S3c,,-S3c 250,
=1 J =1:=1 1ey =1;=1 Iy =1 i
J j=li= =1y 1
by the convexity of C,4, so
G Log g S D (4.60)
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Together with (4.59) and (4.46). this inequality means that
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must hold for at least one i. But this would contradict the meaning of the optimal replenishment

policy 8;* for customer i. Therefore, 8D(s) is optimal in state s, and the decomposition algorithm
finds the optimal dispatch policy.[]

As a consequence of this property, we can also establish the followirg:

Proposition 2. The cost rate g8 for the decomposition policy 80 is equivalent to the sum of the
cost rates from the customer DDSPs.

Proof.
S
£ < 82 5P
g = __ 0. q
s=1
S DM stz
= E I'If Z zqz
s=1

1 t (461)
z itz 1g E]
0 1 13

Now we may establish a lower bound for the optimal cost rate in the restricted DDP of this
section.
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Proposition 3. The optimal cost rate gb* for the DDP with zero leadtimes and maximum
customer delivery Q per period is greater than or equal to the sum of the cost rates ,g5* for the
optimal solutions of single-customer DDSPs solved with F=0 and C,4 chosen such that

m

> C,=C vj
et o J
=1 Y

and Cjq is strictly convex with respect to d for d>0.
Proof. Consider the following two DDPs obtained through modification of the original DDP:
1) DDP;=DDPwithC,1=E, Ci.d,d for every j and number of vehicles K1 =K.

2) DDPy=DDP; with C2=C,! for every j and KZ=m1, where maximum itinerary duration

T=max; ;.

Let g18* and go8* be the optimal cost rates for DDP; and DDPy, respectively. It is clear that
g5*=g18* | since the only difference between the two problems is that the transportation costs in
DDP; are smaller. Also, g18* =g98* , since the only operational difference between DDP; and
DDP, is that the dispatch 89*(s) may be infeasible in DDP; for state s due to vehicle
unavailability. But §9* =80, therefore

&* SD %‘ gs‘l (462)
by Proposition 2.[]

It is reasonable to expect that, the closer on the whole that the sums Z, C,,dy are to Cj, the
tighter the lower bound on g6* will be. The effect of vehicle availability on the quality of the lower
bound is generally more difficult to gauge Customers may commonly receive a positive delivery
quantity other than the delivery target, but how close the decomposition policy’s cost rate comes

to £, ,g5%* is uncertain under these circumstances. Also. we have not attempted to answer
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questions about the validity of these lower bounds for the more general DDP studied in the rest of

this chapter.

In Section 4.2, the computational complexity of each iteration of the policy iteration
algorithm with S states and A actions in each state was shown to be O(S3+ AS2) operations. If
ifnding the optimal solution takes [ iterations, then the complexity of the policy iteration
algorithm is O(I1S3 + AS2]) (the substantial calculations needed to determine p4,Y and q.Y are not
even included here). Let us estimate the quantities S and A for the deliverer dispatch problem

with zero leadtimes.

If each customer has capacity for u— 1 units of the delivered good, and if each itinerary takes a
maximum of t units to complete, then the number of states is umtK, where m is the number of
customers and K the number of vehicles. (Since leadtimes are all zero, no previous dispatch
information need be included in the system state description.) The number of dispatches varies
by state. First let us approximate the number of itineraries. Suppose vehicles travel with full
loads (Q units), and visit two customers per itinerary (in the applications we envision, the number
of visits per itinerary will usually be three or less). There are approximately m2 different ways to
pair customers in an itinerary, and for each pair, Q-1 ways to split the load so that each customer
receives one unit. Add to this the m single-customer itineraries, and it seems reasonable to
estimate the total number of itineraries conservatively as being O(Qm?2). Suupose now that the
average itinerary duration is t, periods. Then a reasonable guess for the average number of
vehicles available at a decision point is K/t,. Working from these estimates, the average number

of actions available in a state is judged to be

o([Qm-l

‘)K/ta)

We therefore place the complexity of the policy iteration algorithm for solving the DDP at

K/t
9

: C . 9m 2 a
AR 2 K Qm?)

ol 1

) (4.63)

acknowledging that this may underestimate the true complexity to some extent.
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Comparing the computational complexity of the FVD algorithm to that of policy iteration is
hard to do in one sense. The policy iteration algorithm finds the policy for every state as a matter
of course, whereas the FVD algorithm only determines them as needed. We will calculate the
complexity of the solution of the DDSPs and the per decision point complexity of the MSP to gain
some conception of the magnitude of the computational difference between the exact method and

our heuristic.

We use the same information about the structure of the DDSP as above. Each DDSP is a
Markov decision problem which is solved exactly. Each has only u different states (when
leadtimes are zero), and Q + 1 actions (replenishment quantities) per state. If it takes I’ iterations
to solve each DDSP by the policy iteration algarithm, then the total computational complexity of
the preprocessing phase of the FVD algorithm is O(m[I’ [u3 + u2Q] ). If the MSP is solved via the
algorithm given in Section 4.3.4, then the number of operations can be inferred from what
amounts to a nested do-loop structure. The outermost loop, in the main procedure, ranges over
the number of available vehicles, which we guess to be K/t, in the average case. The loop in the
BEST__ITIN procedure runs over the set of undominated itineraries. This set varies roughly in
size according to the square of the number of customers, when itineraries visit two customers at
most. GREEDY__ASSIGN adds two more nested do-loops, one over vehicles and one over
itineraries. Hence, the complexity of determining a dispatch by heuristically solving the MSP is
O([K/14]2[m2]2) or O( K2m4/ 1,2). To determine the dispatches for D decision points via the FVD

algorithm requires a total number of operations of

o
W+

DK’m* ) (4.64)
L_’

0<m1’

The FVD algorithm is thus observed to be polynomial, with repect to the numbers of customers

and of vehicles, in its order of complexity, while the policy iteration algorithm is exponential.
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4.3.7 Extensions

The approximations that have been utilized to separate the original DDP into single-
customer problems in the preprocessing phase limit the quality of dispatching through the
decomposition algorithm. That is, misrepresentation of joint replenishment effects in the
customer subproblems may inflict serious damage to the effectiveness of our proposed heuristic.
We prescribe in this section several extensions to the basic algorithm that may help prevent

algorithm-generated schedules from going awry.

4.3.7.1 Determination of F

One important input to the single-customer DDSPs is the dispatch failure probability F. The
probability of a dispatch failure depends upon demand rates, itinerary duration<, and the
dispatch policy being used. If the decomposition algorithm described in this section directs
dispatching, then the dispatch policy, in turn, depends upon the failure probability. Although
these forms of mutual dependence relationships often render it impossible to derive closed-form
problem solutions, they do sometimec lend themselves to iterative solution schemes where the
outputs of succeeding iterations converge to the quantities desired. In our case, even the
development of an iterative scheme proceeds only with difficulty. The root of the problem lies
with the activity of joint replenishment. Vehicles frequently replenish two or more customers on
a single trip in our models. One might be inclined to depict vehicles as “servers” and customers’
optimal replenishment quantities (from the DDSPs) as “"customers” and to derive a dispatch
failure probability via queueing analysis. But the service characteristic that possibly more than
one customer may be served during a single service administration, depending on who the
customers in queue are, severely complicates the analysis. One can choose to rely on
approximations of the queue’s behavior to derive the required measures, but only at some risk of

accuracy.
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The ready alternative to analytic determination of the dispatch failure probability is
simulation. Using the decomposition algorithm for dispatching with F set at an initial value, one
may simulate the delivery system for a given number of periods. The value of F updated through
the simulation would correspond to the number of customer-dispatches executed (incremented by
one for each customer on each dispatch), divided by the number of customer-periods in which the
customer’s DDSP policy dictates it receives a dispatch that period. The simulation process may
then be repeated, each time taking the updated value of F from the last round as the initial guess
for the next, until the last updated value of the dispatch failure probability is judged adequate for
dispatching needs. We note that it would be just as easy to obtain from simulation distinet failure
probabilities F, for each customer i, possibly at the expense of longer simulation trials for the

same degree of accuracy as with determining F alone.

When simulating the delivery system in the manner described above, one must negotiate the
simulation hazards of start-up bias and autocorrelation of observed dispatch success and failure
counts. These hazards may be potentially avoided using a slightly different scheme. From the
solutions of the DDSPs, it is easy to obtain the steady-state occupancy probabilites for the states
of the customer subproblems. A general idea for randomly drawing a state for the entire system
at the steady state is as follows: Draw a customer state randomly for each customer. These draws
supply directly the current inventory levels of the system state. The outstanding deliveries of the
random customer states, together with the vehicle fleet size and itinerary durations, then will
either indicate current vehicle availability, at which point the MSP may be solved to determine
customer-dispatches executed and failed, or be inconsistent with available vehicle resources,
causing the draw to be discarded. Each observation is generated in this fashion. Using this
procedure, we sample directly from the steady-state (or approximation thereof), and the
observations are uncorrelated with one another. The one loose thread here is how to determine
what the set of outstanding deliveries implies for vehicle availability in a given draw,

particularly when it is only possible to have arrived at the outstanding delivery state by packing
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several customer deliveries into single itineraries. Further investigation of this approach is

warranted for future research efforts.

4.3.7.2 DDSP Itinerary Attribute Estimation

If the dispatch failure probability is to be iteratively refined and simulation or random
sampling is the method of choice for this task, refining the cost and leadtime of replenishment for
each customer and delivery quantity can be accomplished simultaneously. The procedure is
straightforward: For each customer i, let the updated cost share C,y and leadtime [,4 for a
replenishment of size d be the averages of their respective quantities in the simulation.
Determination of the simulation duration for a given refinement iteration should take into

account the requirements for refining the estimates of replenishment cost shares and leadtimes.

4.3.7.3 Real-Time Updates

The principles of input parameter refinement can also be utilized to adjust the components of
a decomposition-based dispatching mechanism once it is installed and running in a physical
distribution environment. Provided that the mechanism has access to an historical system
information bank, the same iterative process as outlined above can be executed in real-time to
generate updated penalty functions for use by the master scheduler at subsequent decision points.
Since the computational effort for an iteration may be rather extensive, and the rate of parameter

change slow, updating is probably advisable only on an infrequent basis.

Periodic parameter refinement carries an additional benefit in real-world systems: it enables
the dispatch mechanism to adapt to changes in the physical environment. Just as replenishment
cost and leadtime information for the customer DDSPs is garnered from the recent historical
profile. so too should the inventory cost and demand rate inputs be drawn from this database. The
CAD system whose dispatch generator is implemented with this feature may be qualified to

handle real-world operations corresponding to less-specialized DDPs, such as those in which the
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specializations of Sections 3.2.3 and 3.2.4 do not hold. Exhibit 4.8 indicates how a delivery system

would operate when utilizing a CAD system with real-time updates.

4.3.7.4 Extended Scheduling Horizon

A further extension of the FVD algorithm is intended to address two of its perceptible
shortcomings, namely: the potential inadequacy of the expected future value approximations, and
the omission of future vehicle availability considerations in the master scheduling problem. The
first shortcoming noted was discussed in more depth in the algorithm’s development above. The
second refers to the algorithm’s characteristic that the impacts of vehicle availability with respect
to dispatch decisions are only felt in the limit on the number of dispatches that can be issued at
the current decision point and indirectly in the expected future values arising from the DDSPs.
The effect of vehicle availability on the valuation of states attainable at the next decision point is
lost. To illustrate, consider a DDP with a two-vehicle fleet, and suppose that at a particular
decision point, only one vehicle is ready to be dispatched. The master scheduler would return the
same dispatch whether the unavailable vehicle were ready one decision point or four decision
points hence. If the latter were the case, the current dispatch may be better directed toward
heavy demand customers, who may experience severe stockout consequences regardless of their
current inventories if their deliveries are postponed until the next dispatch. The current
inventory state of the system probably will have more influence in the former case, because the
customers with heavy demand may be served equaily well between dispatch now and at the next

decision point.

The extension to the FVD algorithm we propose converts the master scheduling problem from
a one-period to a multi-period scheduling horizon. Exhibit 4.9 describes this extension
graphically. The scheduling horizon refers to that interval over which immediate costs are
assessed: expected future values accrue over the future planning horizon. The original MSP

implicitly utilizes a scheduling horizon one period in duration. The extended master scheduling

109



Exhibit 4.8: Implementation of FVD Algorithm with Real-Time Updating
in Delivery System
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Exhibit 4.9: Extended Master Scheduling Problem

SH Originai Master Scheduling Problem
| | 1 | | N
G- i | — 1 1 i T 7
Extended Master Scheduling Problem
| | | | ] N
C— i I B — l ¥ I | 7
SH =Scheduling Horizon: assess immediate transportation and inventory costs.
FPH = Future Planning Horizon: assess expected future values.

problem (EMSP) involves the selection of dispatches over a multi-period scheduling horizon to
minimize immediate costs sustained during the horizon plus the approximated expected future
value registered afterwards. However, commitment is only made to the dispatches scheduled for
the current decision point. In order for the EMSP to produce meaningful results, the DDSPs that

are solved to generate some of its coefficients must also be extended to multi-period problems.

There are several advantages to be realized from this extension to the FVD algorithm. One is
that vehicle availability effects are better represented when scheduling over a multi-period
horizon: the EMSP would probably be more sensitive to situations such as the one in the two-
vehicle example given above. Multi-period DDSPs must have extended decision spaces indicating
the timing as well as quantity of the replenishment order, and state transition probabilities and
inventory costs may be more difficult to handle for an extended planning horizon. Yet it should

prove less difficult to approximate accurately. if that is indeed necessary, immediate costs than
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expected future values in the multi-period DDSP. That being the case, the objective function of
the EMSP will resemble more precisely the improvement criterion for the current state, because

the immediate cost compenent comprises a greater proportion of the improvement criterion.

To confirm the supposition that extending the scheduling horizon “improves” the
improvement criterion, we refer back to ihe development of the policy iteration algorithm in
Section 4.1. Extending from the principle of optimality, if the nonstationary policy of using rule &
for the first n decision points (the "immediate horizon”) and rule § thereafter outperforms the
stationary policy 8, then among stationary policies, & is better than 8. In terms of improvement

criteria, 8 improves on § if and only if

n—1 S
lim (H n)g +v T g% > n® (m)+ Z S (n)( lim tgd+v )] (4.65)
t—x 0 P S siso - SI t—»0
s= l m—0 s=1

for all s, with strict inequality for at least one sg. As in policy iteration for n=1, policy

improvement proceeds here by maximizing the left-hand side of (4.65), which is equivalent to

-1

S
ng +v T qS‘S) T i (m=- > oS (4.66)
pats SB -_— ss s
%0 .~,_1 m=0 s=1 0
or by minimizing
n—-1 S
T 45 v R N . (4.67)
q s|0 i sls s
s—l m= 0 s=1

for each state sg. This criterion reduces to (4.12) for n=1, as expected. Observe that, as n
increases, the immediate cost term of (4.67) gets larger, whereas the expected future value term

converges to the constant

S
T l’I5 08
s S S

Hence, the immediate cost term asymptotically assumes a greater proportion of the improvement
criterion. Under the assumption that approximations of the immediate costs are more accurate
than those of the expected future values. the improvement criteria become in some sense more

reliable as n (the scheduling horizon in our application) grows. Of course, it also becomes more
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and more burdensome to estimate immediate costs with increasing n; tradeoffs must be made

when deciding upon the length of the immediate horizon.

Some real-world systems that -we might want to apply our dispatch decision support
methodology to exhibit, in our medel’s terminology, interperiod demand correlation. Consider a
continuous-time system in which, each occasion on which a customer receives a demand, the size
of the demand is exactly one unit. Moreover, these demands may occur at any instant in time. If
we choose to fit this system within our deliverer dispatch framework as it has been established to
this point, full interperiod demand independence only occurs when the probability distribution of
interdemand intervals is negative exponential. If the intervals follow some other probability
distribution, then information at a decision point about demand in the preceding period allows a
more accurate forecast of demand for the upcoming period. The presence of interperiod demand
correlation violates the assumptions necessary to establish that the DDP derived from the system
at hand is a Markov decision problem, and therefore dispatch policies generated via Markov
decision theory may be suboptimal, perhaps severely so. With an extended scheduling horizon,
the impact on predictive accuracy of prior demand information decreases in magnitude, so that
the degree of suboptimality in Markov decision-theoretic solutions may be assumed to decline as
well. Additionally, expected immediate cost calculations can be easier to perform over an
extended horizon for interdemand interval distributions with low coefficients of variation than for
those with high ones (such as the negative exponential), since the range of total demand
quantities per period of the scheduling horizon may well be smaller (refer to the case study in Part

II of this dissertation).

One other potential drawback of multi-period scheduling horizons concerns feasible dispatch
decisions, feasible both in the sense of legitimacy and in the sense of computability. In the
original DDSP, we permitted only one delivery to remain outstanding in order to restrict the state
space, although multiple outstanding deliveries do not pose any inordinate difficulties toward the

calculation of immediate costs and transition probabilities. The implication of single outstanding
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deliveries is that a customer receives a maximum of one dispatch per decision point. The DDSPs
would sustain a combinatorial increase in the size of the decision space, and the master
scheduling problem in the number of decision variables, were multiple dispatches to a customer
permitted. While the restriction to single dispatches might not ruin the quality of dispatching
with the one-period scheduling horizon procedure, it will tend to relegate multi-period schedules
to greater and greater degrees of suboptimality as the length of the horizon increases, simply
because an increasing proportion of customers will experience demand for over one vehicle-load of
the delivered good. This is not to say that the quality of dispatching for long scheduling horizons
necessarily suffers, since only the current decision point’s dispatches are adhered to. But there is
the danger that customers will want their single delivery to cover demand for the entire
scheduling horizon, when near-optimal policies dictate more frequent visits with smaller delivery
quantities. We warn that the information contained in the solution to EMSPs with long horizons
is, at best, misleading. The impetus to keep the EMSP manageable contributes to the forces

limiting the length of the scheduling horizon.

The formulation and solution of multi-period deliverer dispatch subproblems and master
scheduling problems will be treated in conjunction with the computational and applied work of

Chapters V, VII, and VIII.
4.4 Other Heuristic Approaches

Other avenues can be explored in the quest for a viable DDP solution procedure. This section

briefly describes alternative heuristic approaches. Some of these ideas have been pursued in [19].
4.4.1 Value Approximation Via Weighted Functions of the State

An alternative method for approximating the expected future value of a given state, decision,
and policy set is suggested by the recent work of Schweitzer and Seidmann [25]. Their main idea

is to approximate the cost rate gb and relative values v8 by weighted sums of functions of the
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state. Exploiting this assumption, the value determination phase reduces to the determination of
the weights of the functions (which are ideally far less in number than states are) and the cost
rate. Policy improvement remains about as computationally burdensome as in exact policy

iteration.

The foregoing approach is appealing as a basis for a DDP heuristic because the state contains
extensive inventory level and vehicle availability information in vector form. A condensed
expression of the state of the system for value assessment purposes may well suffice in some
circumstances. However, because the policy improvement step of Schweitzer and Seidmarnn’s
approximation algorithm is still computationally infeasible in problems with large state spaces,
their ideas cannot be applied directly in CAD systems for operations commonly encountered. The
approximation idea of weighted sums of state functions may prove useful as a component in some

larger heuristic scheme.

4.4.2 Aggregation/Disaggregation

Aggregation/disaggregation is a general idea for reducing the computational load of a DDP
solution procedure to a manageable size. The intent is to develop a hierarchical dispatch policy
via Markov decision theory. The initial aggregation phase of the prototypical procedure
formulates and solves a small MDP designed to “resemble” the original problem. Geographic
clustering of customers and aggregations of units of the delivered good are some mears that may
be employed in this endeavor. Preferably, the resemblance between original and aggregate
problems will be such that good dispatches in each problem will usually be aimed at the same
geographic region. At the next level, the dispatch is further refined by referring the state of the
targeted region to the solution of a somewhat less aggregate MDP in which only the customers of
that region are considered. This level may not provide the final dispatch if there are still too
many customers in the region for feasible solution of a modified DDP over the subset of customers

in the region. The disaggregation process continues until a dispatch relevant to the original DDP
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is produced. How to perform the aggregations and disaggregations well is a topic for future

research.

4.4.3 Modified Coordinated Inventory Replenishment

Section 4.3.1 presented the obstacles impeding the direct application of coordinated inventory
replenishment theory to the DDP we have formulated. However, it may still be possible to modify
the function of the (S,c,s) policies (say, limiting add-on orders to only those customers in the same
geographic region) and the procedures for determining them so that they respect the

distinguishing characteristics of our DDP.
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CHAPTER YV

COMPUTATIONAL STUDIES OF THE DELIVERER DISPATCH PROBLEM

5.0 Introduction

This chapter studies the deliverer dispatch problem from a computational perspective. The
Future Value Decomposition algorithm developed in Chapter IV is applied to instances of the
DDP conforming to the specializations set out in Sections 3.2.1-3.2.6. The main vehicle for
evaluating the FVD heuristic is simulation. Initially, we illustrate the basic concepts of our
computational analysis through their application to a small, in fact optimally solvable, instance
of a DDP. This preliminary investigation also serves to provide insight into how the FVD

algorithm operates and how well it performs, at least on small problems.

5.1 Decomposition Applied to a Small DDP: Illustration of Computational Analysis

Consider a distribution operation in which two vehicles regularly replenish three customers.
Exhibit 5.1 displays such an operation. Customers are identical with respect to the following

characteristics:

Inventory holding capacity: 3 units of the delivered good.

Demand: 1 unit with probability 0.91:
0 and 2 units with probability 0.045 each (the coefficient of variation of demand per

customer per period is 0.3).

Holding cost: 4 cost units per unit of the delivered good in stock per period.

Lost demand cost: 30 cost units per unit of lost demand.
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Exhibit 5.1: Transportation Network for a Small DDP

The two vehicles in the fleet have the same carrying capacity of 3 units per itinerary.
Information about the itinerary set is supplied in Exhibit 5.2. All leadtimes are zero, but the
itinerary durations may be one or two periods in length. Since itinerary durations do not exceed
two periods, then any vehicle not available at one decision point will definitely be ready by the
next one. The leadtime and itinerary duration specifications reduce the set of non-inventory
information elements that must be included in the system state to the number of vehicles

available for dispatch at a decision point.

5.1.1 Optimal Solution

Since each of the three customers’ inventory levels can assume four different values (0, 1, 2,
and 3), and there are three potential vehicle states (0. 1, and 2 vehicles available), there are
4x4x4x3 =192 states present in this “small” DDP. When no vehicles are available, the dispatch
decision must be automatically “do not dispatch any vehicles.” With one vehicle ready, 19

different decisions (the number of itineraries in the itinerary set) may be made. The number of
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Exhibit 5.2: Route Set for a Small DDP

Delivery o
Itinerary# -__ﬁ Duration Transgggatlon 3
G1CGIG

1 6
2 8
3 8
4 6
5 8
6 8
7 11
8 14

-
w
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distinct dispatch decisions jumps to 190 when both vehicles may be dispatched immediately
(19X 18+ 2 ways of dispatching two vehicles on different itineraries, plus 19 decisions sending
both vehicles on the same itinerary). Nevertheless, this example may be solved optimally.
Exhibit 5.3 presents the optimal solution. The cost rate for the best dispatch policy is
approximately 19.1. (Note: the Markov decision problem algorithm used was a modified version

of the policy iteration algorithm known as a “k-th order” algorithm--see [12, pp. 257-266].)
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Exhibit 5.3: Optimal Solution for DDP Example

| States

“Z=1nventory
subcolumn headings are numbers of vehicles available;
table entries are the itineraries to select for each state

Exhibit 5.4 reveals some other interesting information associated with the optimal solution of
this DDP. The steady-state occupancy probabilities yielded by the optimal dispatch policy
indicate that no customer will ever hold three units of inventory (except perhaps initially), and
that both vehicles are never simultaneously unavailable at any decision point. The cost and
demand structures of the DDP produce the former condition. Prior to solving the problem, one
might have anticipated that dispatch decision (13,18) (sending two units to each customer) might
be useful in the state with no customers holding any inventory and both vehicles available, even

though no vehicles would be available at the next decision point. But even in that state, the
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Exhibit 5.4: Steady-State Probabilities for DDP Example

States
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"Z,=1nventory evel o omer 1
subcolumn headings are numbers of vehicles available

optimal dispatch assures that one vehicle can be dispatched at the next decision point, if

necessary. This decision risks customer 1 sustaining a lost demand in the immediate period;

evidently, the benefits of maintaining vehicle availability and reducing transportation cost

outweigh the added lost demand risk.

The relative values for the deliverer dispatch problem example also emphasize the
importance of having vehicles available. Exhibit 5.5 lists the relative values of all the states. We

have calculated and displaved in Exhibit 5.6 the differences in relative value between the states
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Exhibit 5.5: Relative Values for DDP Example

States

| 21§ 22

RWIN]| 2O |lWIN]I=2|lOJWIN]=JOJlWwWIN]=]O

state of reterence. (U,

values rounded to nearest mteger

s= (z V2241 a) (5.1)
and

so=(21,22, z,: O)

(where z; is customer {'s inventory level and a is the number of vehicles available) for the seven
states s most likely to be occupied in the steady-state under the optimal dispatch policy. Recall
that the difference between two states’ relative values provides a measure of the preferability of
occupying one state versus the other, or, conceptually, what one would "pay” to occupy the more

preferred state. The magnitudes of these differences. in comparison with, sav, the cost rate or the



Exhibit 5.6: The Value of Vehicle Availability

relative value differences between two vehicles and one vehicle available, clearly indicate how

critically the best performing dispatching procedures depend on vehicle availability.

5.1.2 FVD Algorithm Solutions

Now we demonstrate the application of the FVD algorithm developed in the previous chapter
to this example. First we notice that, because all leadtimes are zero, the state of a single-
customer deliverer dispatch subproblem is simply the customer’s inventory level (no deliveries
can be outstanding). Initially we solve the DDSPs with the dispatch failure probability F=0. The
cost rates and replenishment policies generated by the optimal solutions to the DDSPs are given

in Exhibit 5.7. More relevant to establishing a dispatch policy for the original problem are the

dispatch savings quantities

S =NZ1, 22,23, @)

sp=(21,22,23,0)

s ngo* V5,8t —vsb*
(1,0,0;2) 70.1797 457
(0,1,1;2) 0.1595 23.5
(1,0,1;2) 0.1127 22.4
(1,1,0;2) 0.1112 22.5
(0,1,0:2) 0.1099 46.7
(0,0,1;2) 0.1078 46.7
(0,0,0;2) 0.0451 70.9
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components of the dispatch costs C,"as defined in (4.36). The dispatch savings is the difference
between the sums of immediate failsafe inventory cost and expected future value for dispatches of
d and zero units to customer i, and is employed in the calculations of the modified cost coefficients

for the master scheduling problem. Exhibit 5.8 provides their values extracted from the DDSP

solutions.

Exhibit 5.8: Dispatch Savings Values for the Example

ol

0
0
0
_.
0
0
0
0
0
0

After the DDSPs have been solved, the solution of a master scheduling problem produces a
dispatch decision for any state of the original system. For instance, suppose the inventory portion
of the state is (21, 29, 23)=(0, 1, 0). Exhibit 5.9 contains the modified costs C;* for each itinerary j.
If only one vehicle is available (state of the system s=(0, 1, 0: 1), in the format of (5.1) ), then we
would naturally select the itinerary j having the minimum C,~, itinerary 17. If two vehicles are

available, though, we can dispatch both itineraries 4 and 6 without dispatching twice to one
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Exhibit 5.9: Itinerary Dispatch Costs for
Inventory State (0,1,0)

Delivery
j(itinerary) I |
dij | dgj | dgj

|
1
0
0
2
0
0
1
1
0
3
0
0
2
2
0
1
1
0
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customer, and the objective value of this combination is —48.7, which would be a little bit better
than the objective value —46.4 for itinerary 17 alone. The dispatches for all states of the system,
as generated by the heuristic algorithm for the MSP described in Section 4.3.4, are supplied in

Exhibit 5.10.
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Exhibi¢ 5.10: FVD Algorithm Solution for DDP Example

States

AWM =2 | COlWIN]RIO]IWIN]I=]|OJWIN)]=210

= Inventory revel ot omer1;
subcolumn headings are numbers of vehicles available;
table entries are the itineraries to select for each state

Because the example is not large, we may calculate the true steady-state occupancy
probabilities and cost rate for the dispatch policy that the FVD algorithm finds, and compare
them to the optimal policy’s properties. The average cost per decision point for the FVD
heuristic’s solution is 19.8, a 3.7% increase above the optimal cost rate. Exhibit 5.11 has the
steady-state probabilities for the FVD policy. As with the optimal policy, no customer ever has

three units of inventory, and there is always one vehicle available at a decision point. The latter
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Exhibit 5.11: Steady-State Probabilities for DDP Exampie,
FVD Solution

States
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“Zi=I1nventory
subcolumn headings are numbers of vehicles available

occurrence arises from the structures of the itinerary set and costs, and not from any conscious

effort on the algorithm’s part to maintain vehicle availability, since future vehicle availability

has no representation in the MSP’s objective function. The FVD policy is nonetheless effective,

and requires a fraction of the computer time to generate (for the example, the modified policy

iteration algorithm took 291 seconds of CPU time on an Apollo DN660 workstation, while the

FVD algorithm found its solution in 2 seconds).



Exhibit 5.7 gave the average cost per period incurred by each customer under the optimal
replenishment policy. That sum for the example comes to 20.2 cost units per period, a relative
error of only 2% from the actual rate of 19.8. Nothing can be generalized from the closeness of this
approximation, but its occurrence is encouraging. However, we can apply the results of Section

4.3.6 to determine a lower bound for the optimal cost rate. Using

. ij
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satisfies in this example both convexity of C,q and the condition that the sum of cost shares along
any itinerary is less than or equal to the cost of the itinerary. The DDSP results are given in
Exhibit 5.12. The sum of the DDSP cost rates comes to 15.7, a figure 18% lower than the known
optimal cost rate, so the bound is not very tight in this circumstance. It is noteworthy that the
FVD algorithm using C,q as above (and F=0) achieved an actual cost rate of 19.4, a mark better
than the FVD with averaged cost shares. This observation may indicate that the best cost shares
to use in the FVD algorithm are closer to the minimum ones than the averages in this example, or
that some itineraries present in the itinerary set but never used in good dispatch policies may be

boosting the cost share averages to the detriment of systemwide dispatch selection.

One source of discrepancy in behavior between actual and FVD-transmuted (see Section
4.3.2) dispatching systems is associated with the phenomenon of dispatch failure. The optimal
DDSP policies imply that the only time dispatch failure occurs is when each customer has o
inventory, because that is the one situation in which each customer wants a replenishment. The

steady-state occupancy probabilities for inventory states in each of the customer subproblems are
(;mgb:*, ;my 8™, ;med*, ;ngd™) = (0.489, 0.488, 0.023, 0.000)

for i=1,2,3; they are the same for each customer since each faces the same demand distribution

and uses the same replenishment policy. We may be able to effect an improvement in systemwide
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Exhibit 5.12: Solutions of the DDs‘a:Ps to Obtain a Lower Bound on

i (customer)

dispatching by running the FVD algorithm with a non-zero failure probability F. Let us
approximate F as follows. Suppose all customer inventories vary independently of one another.
Then the probability that both customers /', i’ #i, want a replenishment when i wants one is
(0.489)2=0.239. Further, suppose that at most two customers of the three may receive
replenishment, since to replenish all three would leave no vehicles available at the next decision
point, which we have already seen is an event that is avoided. Each customer has a 1/3 chance of
being left out of the replenishment, so there may be some justification for using an overall failure
probability of (0.239)/3=0.08. Exhibit 5.13 shows what happens to the DDSP solutions when
F=0.08 and C,4 is obtained by averaging. The sum of DDSP cost rates here is 22.7, yet the actual

cost rate for the resulting systemwide dispatch policy is 19.3, the best FVD solution seen thus far.

We do not aim to try all imaginable combinations of F and {C;g} in a quest for the best FVD-

derived policy, but to gain an idea of how well the FVD algorithm may be able to perform, and of

Exhibit 5.13: Solutions of the DDSPs with F =0.08

i (customer)
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how sensitive it might be to its joint replenishment-simulating factors. The next section provides

us with a little more insight into the workings of the proposed heuristic.

5.1.3 Variations to the Example

Let us see how the performance of the various solution approaches compare on two variations

to the original instance of the DDP.

The first variation changes the customer demand probability distributions so that the
coefficients of variation (CV) are doubled to 0.6. This means that each customer experiences a
demand for one unit with probability 0.64, and for zero or two units with probability 0.18 each.
We may conjecture that the customers will tend to hold larger inventories for buffering ag sinst
the greater demand uncertainty, while still suffering from more frequent stocking out. In other

words, we should see an increase in average cost per decision point in all disptach policies.

The main results for this example, presented in Exhibit 5.14, confirm these suspicions. On
this occasion, the FVD heuristic with C;4 obtained by averaging and F =0 performed best, with
cost rate only slightly more than 2% above optimal. The lower bound on the optimal cost rate
attainable from the sum of customer cost rates when the minimumn cost share is used for C;q is
23.3, only 7% lower than the true optimal in this case. A FVD algorithm policy utilizing a non-
zero dispatch failure probability (0.13 here, calculated in much the same manner as in the
previous section; no other positive value of F did much better) did not improve upon the respective
policy with F=0. Recall that a policy of this last type worked best on the original example.
Already we observe that the best FVD variation to use on a particular problem depends on the

problem characteristics, probably in some unpredictable way.

In the second variation, the coefficient of variation is the same as in the original problem, but
the cost of holding a unit of good in inventory has been marked down to one cost unit. Since it has

become cheaper to hold inventory, or relatively more expensive to replenish inventory and to lose
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Exhibit 5.14: Results for Variation with CV=0.6

Sum of
Overall
Alg Type Cid F Customer
' Cost Rates Cost Rate

‘Optimal
FVD
FVD
FVD

demands, we would expect average inventory levels to rise. Good policies must achieve lower
average costs than in the original problem, since the optimal policy from the original problem

necessarily would incur a lower average cost here, and may not be optimal.

Exhibit 5.15 provides the alternative policies’ results on this second problem variation. Cost
rates are lower, as expected. What might not have been anticipated is how close the performances
of the policies are to one another. The averaged C,4, F =0 FVD policy’s cost rate is less than 0.2%
worse than the optimal, and the other heuristics about 0.3% worse. Moreover, the lower bound is
only 0.4% away from the optimal cost rate. Why the FVD does so well in this instance can be
answered best by considering the optimal policy (not shown). It so happens that, in the steady
state, most dispatches send vehicles on single-customer itineraries fully loaded. Hence,
systemwide replenishment activity corresponds quite closely to what is represented in the single-
customer DDSPs, resulting in good approximations for expected future value in the master

scheduling problem.

5.1.4 Perforinance Evaluation by Simulation

Before we proceed to the bigger deliverer dispatch problems, we need to find some way of
evaluating the performance of alternative dispatching policies on them. Just as the size of the

state space will grow bevond our means for determining the optimal policy, so will it be infeasible
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Exhibit 5.15: Results for Variation with Hi=1

Sum of Overall

Customer
Cost Rates Cost Rate

to solve the MSP for each state of the DDP and calculate the cost rate of the resultant policy. Our
only recourse in this situation, apart from the determination of lower bounds, is to simulate the
delivery operation as modeled by the DDP, apply the heuristics, and collect results. In this
section, we illustrate, with our original example, the simulation methods to be employed for

studying heuristic performance in larger DDP instances.

The design of the simulation model requires no discussion here, because its structure is drawn
directly from the dynamic properties of the system inherent in the formulation of the relevant
DDP. The potential difficulties we must deal with concern the analysis of the simulation output.
Specifically, how long must we run the simulation in order to be fairly confident that the cost
averages we obtain reflect the true cost rates? We have chosen the sequential procedure of Law

and Carson [16} to assist us in this determination. The procedure is described briefly below.

Two factors that plague simulation analysis are start-up bias and autocorrelation. If our aim
is to estimate the steady-state attributes of a system, we must recognize that the initial
measurements of the attributes obtained from the simulation may depe:iid more upon the initial
system state than on the .system’s steady-state characteristics. Start-up bias refers to the
contaminating influence that the simulation’s start-up configuration exerts on attribute

measurements. This bias tends to diminish as the length of the simulation increases, but should
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not be assumed to disappear at any particular point in the simulation unless adequate statistical

tests are made.

The application of classical statistical techniques is impeded by the usual presence of
autocorrelation in the output measures of the simulation. Autocorrelation means that statistical
correlations exist among values of the output measures taken from near points in time. The
estimate of variance of a random variable under the assumption of independence among
measurements will be biased if, in fact, the measurements are correlated. Since confidence
intervals are constructed with these variance estimates, this is an important problem to be aware
of. The Law and Carson procedure is geared primarily toward obtaining unbiased estimates of
variance for establishing confidence intervals of a prescribed relative width, presumably under
the assumption that any simulation long enough to generate a proper confidence interval will

have eliminated any serious start-up bias.

Law and Carson utilize the method of batch means in their procedure. The observations of a
single simulation run are grouped into batches, and the means of the batches, rather than the
original observations themselves, are tested for autocorrelation. When no substantial positive
autocorrelation is found, a confidence interval is calculated. If the first test detects
autocorrelation, the data is grouped into larger batches, and another test judges whether to
collect more observations or not. If the current dataset is deemed satisfactory, a re-batching takes
place and the resulting confidence interval is determined. The simulation is stopped and the most
recent point and interval estimates for the attribute used if the relative half-width (ratio of half-
width to mean) of the confidence interval falls within some prescribed tolerance. Otherwise, the
simulation continues until the total number of observations reaches some new threshold, and the
tests are performed again. This process repeats until the confidence interval shrinks to the

desired relative width.
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We tried this procedure in a simulation of the FVD heuristic with averaged C;y and F=0 on
the original DDP. First we conducted 200 simulation runs, invoking the Law and Carson
procedure on each to obtain a 90% confidence interval (CI) for the average cost per decision point.
Each run simulated the delivery operation for 800 decision points, ran the tests, and continued as
necessary. The initial run length and other parameters (including a batch size of 40 for
determining the CI and a relative half-width tolerance of 0.075) were set to the values suggested
by Law and Carson. Of the 200 runs, the 90% CI covered the actual cost rate 180 times. Although
this result might not seem unusual (180 is 90% of 200), empirical studies of sequential procedures
often find that Cls fail to cover with frequencies exceeding their intended confidence levels.
Inventory systems do seem the best-behaving of the types of systems generally experimented

with, so our results might not be too surprising.

Acting on the suspicion that perhaps we were being too cautious in running the simulations
initially for 800 periods, we pared down the initial run length to 200 and reduced the final batch
size to 20 and looked at another 200 simulation runs. This time, 177 of the runs covered the cost
rate, although the CI half-widths were typically a little over 1 cost unit, as compared to the first
set’s being in the neighborhood of 0.5. Since we will be moving to larger problems, we will adhere

to the larger initial run length, since systemwide cost variation per period is likely to be greater.

5.1.5 Partially Adaptive Heuristics

One of the fundamental goals of this research is to demonstrate that basing each dispatch on
the state of the system at the time of dispatch (or being “fully adaptive” to state information)
works substantially better than establishing schedules that fix some dispatches well in advance
of their execution (the “partially adaptive” approach that is the one most commonly adopted). To
support this claim we must be able to compare the performances of both the fully and the partially

adaptive approaches on specific DDP instances. But we have been looking at only fully adaptive
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techniques thus far. Below, we propose a class of partially adaptive dispatching techniques and

present simulation results pitting members of this class against the fully adaptive methods.

The general method we suggest can be easily applied to the examples we have seen thus far.
It is denoted PAD-T; "PAD” stands for "partially adpative decomposition,” and the “T” refers to
the number of dispatches prepared at a decision point. (T may also be described as the
“scheduling horizon,” using the terminology of Section 4.3.7.) The first version of PAD-T,
outlined below, requires each customer’s mean demand per period to be integral (non-integral

mean demand is treated later).
0. Obtain the FVD policy. Set the schedule counter ¢=T. Then, for every decision point:

1. If ¢<T, the dispatch {y,} for this decision point has been fixed in advance; execute {yj}, set
t=t+1, and stop. Otherwise, solve the MSP for the current state sg to get the dispatch {y;o} for
the current decision point (indexed 0), execute it, set the schedule counter ¢ to 1, and proceed

to step 2.

2. Obtain the projected state of the system s, at decision point ¢ from s;_1 and {y;;_}, assuming
that the number of units x,; _; demanded of customer i from ¢—1 to ¢ is equal to customer i’s

demand mean.

3. Solve the MSP for s;. Save the resulting dispatch {y;}. Set ¢t=t+1. If t<T, go to step 2.

Otherwise, set =1 and stop.

Customer demands in the examples studied thus far are all one, so there is no difficulty in
using the first version of PAD-T as is. Exhibit 5.16 and 5.17 compare cost rates from simulation
runs {exact evaluation of PAD-T performance would be hard to do) on which the FVD algorithm
and PAD-2, PAD-3, and PAD-4 handled the same demand flow. Each run lasted 800 periods. The
first fous runs were based on the original problem presented in this section, and the second four

used the 0.6 coefficient of variation modification. Averages of the cost rates for each set of four
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Exhibit 5.16: Simulation Results for Fully vs. Partially Adaptive
Decomposition with CV=0.3

Simulation Run*
Heuristic

20.04
20.43
| 20.54
€ entries are average cost per period pased on 3 fated periods

Exhibit 5.17: Simulation Results for Fully vs. Partially Adaptive
Decomposition with CV =0.6

Heuristic —————————————e e AV( %F\c;\éer

FVD.
PAD-2
PAD-3

PAD-4 30.51 29.89 30.41 30.49 30.33 16
" TaDIC eNLries are average cost per perioq pased on 80U simulated periods

runs are also shown, as well as the percentage that average lies above the FVD policy’s average.

Two trends may be detected in the results:

1) As T, the length of the scheduling horizon, increases, the dispatch performance of PAD-T

deteriorates.

2) Asthe degree of demand uncertainty grows, PAD-T’s performance level decreases.

These trends could well have heen anticipated before examining the simulation results.

However, it is interesting to note the magnitudes of the performance deterioration. For the case
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where demand variation is lower, the average cost rates are all close, with PAD-4 only 5% above
the FVD average. On the other hand, even PAD-2 scores over 10% worse than the fully adaptive
FVD when demand uncertainty is set at the higher level. When one considers that, in this
scenario, planning four rather than one dispatch decisions at a time bringz 1 15% reduction in
dispatching quality, and that that result was obtained with a relatively good partially adaptive
technique (since it is based on the FVD algorithm), one begins to realize what kind of cost savings
may be achieved with the implementation of a CAD system equipped with a fully adaptive
dispatching algorithm, when the deliverer must cope with demand uncertainty. We should

therefore be sensitive to these trends as we analyze dispatching performance in larger problems.

An extreme case of the partially adaptive approach is an algorithm that follows a fixed, cyclic
schedule, where dispatches are made without regard to any state information. This would be
termed a “non-adaptive” approach. Two cyclic schedules (labeled CYCLE-1 and CYCLE-2) for the
original DDP example are given in Exhibit 5.18. They were drawn from good fully-adaptive
dispatch policies by looking for cycling state occupancy patterns under the assumption of
deterministic demand. We start, for instance, with the information about the FVD policy for
averaged C;y and F =0 contained in Exhibits 5.10 and 5.11. The state occupied most frequently is
state (0,0,1;1). The policy says to dispatch the available vehicle on itinerary 16 here. Under that
dispatch and one unit demanded from each customer, the next state entered is (0,1,0;1), not
coincidentally the second most occupied state. Now the policy has itinerary 17 dispatched, and if
demand is one unit per customer, the system winds up in state (0,0,1:1) again. Hence, one cyclic
schedule that may work well is to alternately dispatch itineraries 16 and 17. This is the policy
CYCLE-1. CYCLE-2 was derived from another FVD-based policy. The simulation results for
these and the averaged C,q4, F=0 fully adaptive FVD algorithm are displayed in Exhibit 5.19. It
is evident that these non-adaptive policies are far inferior to the fully adaptive heuristic policy for

this problem. We suspect that the same will be true for all problems except perhaps those in
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Exhlbnt 5 18 Two Cychc Schedules

m Perlod 1 Period 2 Perlod 3 Period 4
2 4‘ 16,0 K} ' is2 mn pei)
| 4,0 | | 616

Heuristic

CYCLE-1
| cvcle2

which demand is nearly or totally deterministic. If demand were totally deterministic, then a

method such as the one described in [23] could be employed to generate cyclic schedules.

Lastly we must deal with the case where demand means are not integral. We suggest two

approaches. The first one amends the algorithm in the following ways:

Step 1. Also set for each customer i the demand counter X to Th;, where y; is the mean of demand

for customer i.

Step 2. Determine demand x;,_ from

Xl
Tie-17 [T—(t—l) I

where [z] is the closest integer to z.
Step 3. Also update X, via X, =X, —x,;_1.

Note that when p, is an integer, this algorithm works exactly as does the original PAD-T.
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By projecting demands in the same way for every scheduling horizon, as the first approach
does, one may introduce some form of bias in the dispatching procedure. The second approach
attempts to mitigate this bias by randomizing the demand projection method. It works the same

way as does the first approach, except for the projection of x,; in step 2. Letting
X
|7
T--1)

X

-t
T-it-1)

where {z} is the greatest integer less than or equal to 2, x;; is found as follows:

and

f=

Xyt e with probability 1-f,

e+ 1 with probability f.

Computational results using these methods will be presented in Section 5.4.

5.2 Aims of the Computational Experiments

The goals of the first part of this dissertation are twofold: to demonstrate the computational
viability of fully adaptive heuristics for the DDP, and to convey a sense of the potential cost
savings achievable by switching from partially to fully adaptive dispatch support technology.
The first goal has largely been achieved by the formulation of the FVD algorithm. However, we
have yet to confirm that the method performs well, or at least significantly better than naive
methods, in more complex settings. The remainder of this chapter documents computational
experiments involving the FVD algorithm in application to larger DDPs (more customers, more
vehicles). One aim of these experiments is to evaluate the algorithm’s performance, both in
quality and in computational speed, when dealing with the larger problems. We also pursue our
second goal here by comparing the dispatching performance of the PAD-T heuristics on the same

problem instances. The PAD-T heuristics serve as surrogates for the various techniques that are
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typically employed to set up delivery schedules in the class of operations modeled suitably by the
DDP. By measuring the differences in quality between the FVD algorithm and the PAD-T
heuristics over the set of DDP instances studied, we hope to gain some notion about both the
magnitude of savings afforded by the fully adaptive approach, and the factors which contribute to

greater or smaller savings than expected in particular problems.

Results for a myopic algorithm corresponding to the minimization of expected costs during the
upcoming periad, with no penalties factored into the objective function, are included for further

comparison and discussion.
5.3 The Set of Larger Problem Instances

Fourteen instances of the deliverer dispatch problem containing more customers and more
vehicles than did the example studied earlier provide the basis for our ccmputational assessment
of the methodology we have developed. These instances were generated largely at random,
although the author needed to intervene in the establishment of certain probiem characteristics.
This section relates the manner in which the test instances were generated. The data for each

instance appear in Appendix B.

Instance sizes: Initially, seven instances of six customers each, and labeled 1 through 7, were
produced. A 12-customer instance Ix was adapted from each 6-customer instance I by changing
the customer locations, the vehicle fleet size, and the customer demand distributions. Further

discussion of the selection of the latter two problem characteristics appears later.

Holding capacities: In each instance, all customers have the same inventory holding capacity.

The capacities vary from problem to probiem, but all were picked in advance by the author.

Demand distributions: In every instance generated, customer demands are assumed
independent of one another. Also, each customer’s demands are taken as independent from one

period to another. In a given instance, customer demand distributions are such that each
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distribution has the same coefficient of variation (CV) and the same maximum number of units
that can be demanded per period. The CVs and the maximum demand quantities of each problem
were selected by the author to yield a good mix of problem characteristics. Each customer’s mean
demand was drawn initially at random. Sometimes this mean level was adjusted to achieve pre-
selected targets of aggregate mean demand in a scenario, and sometimes the mean level was
rejected for another because no demand distribution having the necessary mean and CV
attributes could be found in a limited search. The CVs of some of the distributions do not match
exactly the CV target of the instances they are used in, owing to the same difficulty in locating a
distribution that matched both qualities exactly. Demand distributions were unimodal for the

most part.

For the 12-customer problem associated with a given 6-customer problem, the demand
distribution for each customer was selected at random from distributions used in any of the 6-
customer problems having the same CV and maximum demand. In this way, we avoided having

to search for new demand distributions.

Vehicle fleet characteristics: The order of establishment of vehicie fleet characteristics ran as
follows: Vehicle transport capacities, identical for each vehicle in the fleet of a given instance,
were assigned by the author for each instance in the set of 6-customer problems. Then, a
“utilization factor” was generated randomly for each instance. The utilization factor was
intended to measure the ratio of systemwide mean demand per period to systemwide mean
quantity deliverable per period. With the utilization factor and mean demand having been
determined, a target was established for the mean quantity deliverable. Expressing this quantity

as

where K is the vehicle fleet size, Q the vehicle capacity, and t, some targeted average itinerary

duration, the integral vehicle fleet size K was obtained that allowed the average itinerary
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duration and utilization factor to best meet their targets. The utilization factors were drawn from
the range (0.5, 0.95) in such a way that their logarithms were distributed uniformly (the
utilization factors are referred to as being distributed “log-uniformly”). The purpose of having the
logarithm distributed uniformly was to skew the distribution of the factors themselves toward the
values which we were most interested in, while allowing a couple of instances with other values to
be simulated, too. (Note: the actual utilization rates of vehicles differed significantly from the

factors employed to select the fleet sizes.)

The actual utilization rates from the set of 6-customer instances were examined for signs of
over- or under-utilization of vehicles. Vehicle fleet sizes for the corresponding 12-customer
problems were chosen intuitively with the intent to avoid extremes in vehicle utilization (less
than 50% or nearly 100% of the fleet transport capacity used over the simulation). Our intuition
proved faulty in many instances, as vehicle fleets tended to be over-utilized with respect to our
intentions. In these instances, we looked at alternate scenarios where more vehicles were
available, in part to test the sensitivity of algorithmic performance to changes in the amount of

delivery resources.

[tineraries: In each instance (both 6-customer and 12-customer), customers were distributed
uniformly over the unit square, and the depot location was drawn from a uniform distribution
over the 0.5x0.5 square concentric to the unit square. Customers were clustered visually il.lto
groups of two to five, with some customers belonging to more than one group. All one-, two-, and
three-customer routes {"route” just referring to the subset of customers visited in an itinerary)
were generated such that all customers in a route belonged to a common group. All itineraries
delivering from 2 to Q units to the customers in a route were included in the itinerary set for a
particular problem. The cost of each itinerary was determined by the function

CJ=c(EJ+O.25 m ), (5.2)

where E; is the Euclidean distance of the optimal traveling salesman tour through the depot and
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the customers in itinerary j, m; the number of customers in the itinerary plus one, and ¢ a
randomly selected (log-uniformly distributed) unit cost of transportation. The cost function
models costs as accruing linearly over the time taken to execute an itinerary, where time is spent
both in travel and in delivery activities. In the problems studied, ¢ ranged from 0.8 to 21.
Transportation cost was used as the basis of itinerary duration determination. Thresholds for
itinerary duration in terms of cost were chosen in an effort to produce an average itinerary
duration that would come close to the value targeted in selecting the vehicle fleet size. All

leadtimes were set to zero.

Inventory costs: Inventory holding costs were one cost unit per unit of inventory held per
period in every scenario. The cost per unit of lost demand was drawn from a log-uniform
distribution. The values of this cost appearing in this study range from 6 to 75, skewed toward

the lower end.
5.4 Presentation of the Results

For each instance designed using the methods of the previous section, we ran at least one
simulation in which these five heuristic algorithms were used for dispatching in response to a

common demand pattern:

1) the FVD algorithm with cost shares C,; obtained by averaging over equally-weighted

itineraries and dispatch failure probability F=0;
2) aPAD-2 heuristic based on the penalties used in the FVD algorithm (1) above;
3) aPAD-4 heuristic based on the penalties used in the FVD algorithm (1) above;

4) a fully-adaptive (dispatch decided at each decision point) myopic heuristic to minimize
expected costs in the upcoming period with no penalties attached to states likely to be entered

at the next decision point:
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5) an updated FVD algorithm, where cost shares are obtained by weighting the relevant
itineraries by their frequencies of dispatch using algorithm (1) in a previous simulation run of
the same instance, and the dispatch failure probability is set to the frequency with which a
customer who would receive a replenishment at a decision point according to its DDSP was
not included in any dispatched itinerary then (refer to Sections 4.3.7.1-4.3.7.3 for a fuller

discussion of updating).

The six-customer instances ran anywhere from 800 to 3200 periods, and the twelve-customer ones
from 200 to 800. Each simulation was terminated according to the Law and Carson procedure
discussed in [16] and Section 5.1.4 of this dissertation. But 6-customer and 12-customer
simulations that had not terminated according tc this procedure by 3200 or 800 periods,
respectively, were stopped and statistics calculated. The simulation control parameters are listed
in Exhibit 5.20. Uniformly distrivuted random numbers were obtained using the routine listed in

[27]. The complete computer program appears in [20].

Exhibit 5.21 summarizes the simulation results for the fourteen instances. This table shows
the average cost per period using each of the five algorithms. (In some of the twelve-customer
instances, when several vehicle fleet sizes were tried, one representative run was chosen for
presentation; the other results are presented when we study sensitivity to vehicle fleet sizes
below.) It is clear that the fully adaptive FVD algorithm (initial or updated) is superior to the
partially adaptive and myopic heuristics. The degree of this superiority varies from problem to
problem, though. The rest of this chapter compares and contrasts the simulation results across a

number of different dimensions.

5.4.1 Fully vs. Partially Adaptive Heuristics

The fully adaptive FVD heuristic outperformed the PAD-4 algorithm in every instance, and
the PAD-2 in every instance but one. Even in the case where PAD-2 had lower average simulated

cost, the difference was not significant: in fact, on the run used to generate itinerary weights for

144



'7 ’ ina numr atcs ]

Parameter*

(k)

Size of problem
(# of customers)

correlation test initial

batch size (m)

initial simulation run
length (n4)

relative half-width
tolerance (y)

Symb

Exhibit 5.21: Average Simulated Costs of DDP Heuristics

, Initial : Updated
Instance FVD PAD-2 PAD-4 Myopic FVD :

59.4

58.4

34.6

353

81.0

823

10.9

13.6

29.0

33.0

12.0

14.0

70.9

74.0

99.5

101.8

108.2

108.6

179.3

180.5

19.7

27.4

499

60.2

37.2

38.C

145




the updated FVD algorithm, the initial FVD algorithm did better than PAD-2, 56.7 to 57.6, on a
common demand pattern. We therefore judge the fully adaptive FVD algorithm to be at least

marginally, if not substantially, better than good adaptive techniques.

Still unanswered is the question of whether the benefit of improved dispatching performance
achievable by switching from partially to fully adaptive dispatching methods outweighs the costs
of more frequent information gathering and acquisition of the means by which to make good fully
adaptive dispatches. The answer will vary from situation to situation, since it depends on a
number of factors. One important factor brought out by the simulation results is the degree of
demand uncertainty in the system, as measured by the coefficient of variation of demand. Exhibit
5.22 shows for each instance the decline in dispatching quality of the PAD-2 and PAD-4 heuristics
relative to the FVD algorithm. The decline is expressed as a percentage increase in average
simulated cost. Also provided are the prevailing CVs in each instance. For PAD-2, which
represents updating the information base at every other decision point, the percentage increases
above the FVD cost range from -1.7% to 16.7% for instances with CV=0.3, and from 2.3% to
39.1% when CV=0.6. More to the point, the median increase is 1.6% over DDP instances with
CV=0.3, and 13.8% with CV=0.6. The respective ranges and medians are even more pronounced
for the PAD-4 heuristic. For CV=0.3, percentage increases extend from 1.1% to 38.3%, with
median 5.2%, and for CV=0.6, from 5.4% to 62.4%, with median 42.1%. Dispatch performance is

thus observed to deteriorate rapidly as the frequency of information base update decreases.

We presume that in real-world operations, if an inventory database is not updated at every
dispatch decision point (or whatever this corresponds to in the actual operation), it seems likelier
that it would be updated every fourth decision point or more, rather than every other one. Also,
we have reason to believe that partially adaptive dispatching configured around the FVD
algorithm performs better than whatever partially adaptive methods are currently employed in
practice, since allowing the system to enter undesirable future states is still explicitly penalized

in the algorithm’s objective function. We may venture to say that a fourfold increase in
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Exhibit 5.22: Increase in Average Simulated
Costs for Partially Adaptive Heuristics

g Instance PAD-2 PAD-4 cv ’
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['ADle 1lgures are percentage Increases in average
simulated cost of the partially adaptive heuristics
relative to the (initial) FVD algorithm for the same
demand flow.
information base update frequency may be counted on to induce a savings of 5% in distribution
and inventory costs unless future demand is nearly or entirely known beforehand. The savings
rate may approach 10%, 20%, or more when demand uncertainty is moderate to high. Of course,

information collection frequency is not the sole determinant of dispatching quality; that

information must be acted upon by an effective dispatching procedure.
5.4.2 Myopic vs. Long-Range Planning

We acknowledge that the representation of future dispatching activity embodied in the
deliverer dispatch subproblems. from which we derive the FVD algorithm’'s penalty function,

tends to be flawed. This prompts the question: Is it worth going to the bother of calculating
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penaities? In other words, does the FVD algorithm improve upon fully adaptive, myopic
dispatching? A comparison of the “initial FVD” and “myopic” columns of Exhibit 5.21 leads us to

answer, with firm conviction, in the affirmative.

Exhibit 5.23 highlights the loss of dispatch quality after an exchange of the initial FVD
algorithm for the myopic algorithm for dispatching. The median percentage increase in
simulated per period cost of the myopic against the FVD algorithm is 21%. The spectrum of
actual dispatching quality declines is very wide. In one scenario (Instance 4), the myopic
algorithm actually outperformed the initial FVD (although not the updated FVD), and in t‘hat
scenario’s extended version (Instance 4x), performances were about equal. Yet in another,
(Instance 5), the myopic algorithm suffered twice the costs of the FVD algorithm. Demand
coefficients of variation do not seem to explain why the myopic algorithm does well in several
instances and poorly in most of the others. Added to Exhibit 5.23 are other potential explanatory
factors, the cost of a lost demand L and the transportation cost multiplier ¢ (as employed in
expression (5.2) ). The best myopic performances occurred when ¢ was at its lowest values
(Instances 4 and 6 and extensions), and when L attained its lowest value (Instance 2). On the
other side of the coin, the worst performances relative to the FVD algorithm took place when

either L or ¢ was at its highest point (Instances 3 and 5).

The foregoing results seem to indicate that when delivering can be done cheaply, or when the
penalty for not filling a demand is relatively low, myopic procedures may be adequate for
dispatching purposes. We offer the following rationale for this conjecture. By dispatching a
vehicle, the system immediately incurs transportation costs. Further, under the zero leadtime
assumption, inventories at the end of the period are higher when several vehicles are dispatched
than they would be if no vehicles were. Therefore, the only gain to be realized in the immediate
period by dispatching is the reduction of expected lost demand costs. But dispatching is only
likely to make a significant impact on lost demand for the immediate period when inventories are

very low, lower than might instigate dispatching in near-optimal policies. Hence, using myopic
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dispatching, we might expect to obtain lower inventory holding costs and higher lost demand

costs than we would by using the FVD algorithm. The overall difference between myopic and
long-range planning may be small under these circumstances: If the cost of a lost demand is
especially small, the impact of the higher lost demand risk is less than the norm, perhaps small
enough to balance savings in holding and possibly transportation costs. If transportation costs
are expecially low, the return a dispatch must show in terms of lost demand risk reduction does

not need to be so great, so that dispatching at higher inventory levels may occur.

The preceding suppositions are supported by the simulation results. Exhibit 5.23 has

columns for the simulated average inventory holding and lost demand costs per period for the
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myopic heuristic, in terms of their percentage decrease and increase, respectively, relative to the
corresponding cost using the initial FVD algorithm. When transportation costs were their
smallest, holding and lost demand costs went opposite to their overall trend of being substantially
lower and higher, respectively, than their FVD counterparts. Although the trend was upheld
when the cost of a lost demand was small, the net effect on total costs was not as great as in some
of the other scenarios. The difficulty with applying the above conjectures about when myopic
dispatching is not much worse than dispatching via the FVD heuristic is that it is hard to judge a
priori when transportation or lost demand costs are low enough for the cor;jectures to hold.
Therefore, we wholeheartedly endorse the type of long-range planning that the FVD algorithm

performs.
5.4.3 Initial vs. Updated FVD Algorithms

In Section 4.3.7.3, we suggested updating the cost shares C,4 and dispatch failure probability
F of the DDSPs once better information about the relative frequency with which each itinerary is
dispatched comes available, namely after the algorithm is implemented and has been used for a
while. The pertinent question here is, does updating make a difference? Preliminary indications
read from our simulation experiments are that is does to some extent, but rarely does it turn a bad
procedure into a good one, or a good one into a great one (see Instances 1 and 6x). Exhibit 5.24

recapitulates the outcomes of our experiments.

Two simulation outputs are enlisted to help explain the observed updating effects. The values
of these outputs for each instance are included in Exhibit 5.24. These particular outputs were
selected because they indicate to what degree the perceptions of the FVD algorithm about future
dispatches are misguided. Recall that the FVD algorithm works from the assumption that in the
future, each customer always receives its optimal replenishment quantity as specified in the
solution to its DDSP (since F is set to zero on the preliminary simulation run to get the itinerary

dispatch frequencies and dispatch failure proportion), and that it is visited in a single-customer
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Exhibit 5.24: Comparison of Initial and Updated FVD
Algorithms
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itinerary. The second column of Exhibit 5.24 tells what fraction of the time in each instance (in
the preliminary runs) a customer anticipated a replenishment being sent and none was. We have
termed this fraction the "dispatch failure proportion.” It quantifies the degree of violation of the
first FVD assumption listed above. The last column of the exhibit shows what fraction of
dispatched itineraries were single-customer itineraries. A customer can receive its optimal (with
respect to its DDSP) delivery quantity on a multiple customer route, if the delivery is less than a
vehicle’s capacity. However, it may also receive less than the target quantity. This event has not
been accredited as a dispatch failure: nevertheless, it breaks the correspondence between actual

operations and those in the perception of the FVD algorithm.
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Our search for relationships between the -improvement percentage of updating and the DDSP
violation measures can be counted only as partly successful. In the six instances where updating
has the most positive impact, the fraction of single-customer itineraries dispatched is greater
than 0.8 in only one of them. Yet the two cases where the updated FVD algorithm performed
worse than the original had this fraction well below 0.8 also. There appeared no clear
relationship between the measure of fraction of replenishments not to arrive and the level of
improvement due to updating. We did not try additional updates to seek further dispatching
improvement. We stop here by intimating that occasional updating may be valuable in
finetuning dispatch performance, but no quantum leaps in performance should be expected
through updating We may add that the “quantum leap” has in most cases already been made by
moving to the FVD algorithm, that is to say, by appending realistic penalty functions to the finite

horizon dispatching problem objective functions.
5.4.4 Uses of DDSP Cost Rates

The cost rates generated in the solutions of the customer DDSPs can be put to several uses, in
ways described earlier. The primary use is in constructing a lower bound for the average cost per
period incurred with the FVD algorithm: refer to Section 4.3.6 to review how. Exhibit 5.25
supplies the lower bound for each instance, and marks the percentage decrease to it from the
average cost of the initial FVD algorithm. The DDSP violation measures from Exhibit 5.24 are
repeated here for explanatory purposes. A third factor is appended to the table. It is the mean
vehicle loading percentage, an average of the proportion of vehicle capacity utilized over all

dispatches, each dispatched itinerary weighted by its duration.

The correlation between percentage of single-customer itineraries dispatched and percentage
gap between the actual cost rate of the FVD algorithm and its lower bound is evident. The same
is not true of the percentage of desired replenishments not delivered, though. For each instance

in which the mean vehicle loading proportion is less than one, the lower bound was markedly
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Exhibit 5.25: Comparison of Initial FVD Performance with Lower
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lower than the average cost of the FVD algorithm; the causes behind this observation are unclear.

The disparity between the average cost of a heuristic and the lower bound is made up of two sub-

disparities: the degree of suboptimality of the heuristic, and the underestimate of the optimal

value by the lower bound. Updating makes up some of the total disparity in the instances with

the most widely separated average cost/lower bound pairs, but much remains.

Further

investigation is necessary to explain the relationships among the contributory factors cited here

and the lower bound/actual performance disparity.
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The customer cost rates from the DDSPs can be summed to provide a guess of the average cost
per period of the resultant algorithm. We compare predicted and actual costs for both the initial
and the updated FVD algorithms in Exhibit 5.26. The predictions for the initial FVD’s
performance lie closer to the actual values than do the lower bounds thereof, but not that much
closer. Almost all predictions here were underestimates (understandable, since no dispatch
failures are predicted). Conirast this with predicted vs. actual average costs for the updated FVD.
About half the predictions underestimate average costs, and half overestimate it. Also, the
predictions lie much closer to the simulated values. The median absolute percentage deviation of
the predicted from the actual value in the updated case is 3.2%, as opposed to 6.0% for the initial
FVD. Especially when dealing with the updated FVD heuristic, then, the quality of cost rate
predictions seems to be very good. The capability of predicting average costs may come to be quite

useful for strategic planning purposes.

5.4.5 Sensitivity to Vehicle Fleet Capacity

Misjudgments in the appraisal of vehicle fleet sizes sufficient for delivery needs in the twelve-
customer problems led us to cormpare alternative fleet sizes for some instances. Average cost
results for the updated FVD algorithm with the different fleet sizes examined are presented in
Exhibit 5.27. Also printed for each scenario is the capacity utilization rate of the fleet, i.e. the
mean proportion of vehicle transpert capacity in use over the simulation run. In these scenarios,
utilization for the first fleet size value tried was at or near 100%, and lower bounds were
substantially lower than the average cost (except in Instance 2x). In Instance 5x, increasing the
number of vehicles from 4 to 6 brought nearly a six-fold reduction in average costs. Yet in
Instances 2x and 3x, boosting the fleet size actually induced an increase in average costs, though
not necessarily a statistically significant one. Perhaps with more vehicles available, the
algorithm becomes “dispatch-happy,” not realizing that the incremental inventory cost savings of

an extra dispatch does not outweigh the added transportation cost. Utilization always dropped as
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Exhibit 5.26: Comparison of Predicted and Actual Cost Rates in the
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more vehicles were added, but the rate of the drop varied in unpredictable ways from instance to
instance. If we were to keep adding vehicles, the cost rate could approach its lower bound, but this
depends on the itinerary cost structure. Vehicle fleet capacity effects on FVD dispatching is an

interesting topic for further research.

5.4.6 Extended Scheduling Horizon

In Section 4.3.7.4, the idea of employing an extended scheduling horizon in the FVD
algorithm was discussed, but technical details were for the most part avoided in order to limit the

scope of the algorithmic development. The absence of details notwithstanding, FVD algorithm
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Exhibit 5.27: Sensitivity of the Updated FVD Algorithm
to Vehicle Flee Sze, Slected Instances
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prototypes operating with an extended scheduling horizon were applied to a few of the instances
studied heretofore. In Instance 1, average costs for the initial FVD algorithm were reduced from
59.4 to 48.8, albeit on different simulation runs. In Instance 5x with a vehicle fleet size of 4, the
average cost rate shrank from 326.4 to 212.5 for the updated FVD algorithm when the scheduling
horizon was extended. The horizon extension in each case was to two periods. We infer that
considering the vehicle availability consequences of decisions even just one period into the future
can have a tremendous impact on dispatching performance when vehicle utilization is heavy.
Continued study of extended scheduling horizons is highly recommended. (Note: extended

scheduling horizons are used extensively in Part II of this dissertation.)

5.4.7 Computation Time

The final operating characteristic of the FVD algorithm that we need to examine is its speed

of computation. No matter how good the dispatches suggested by the algorithm are, we will not
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have achieved our objective of demonstrating the feasibility of implementing the algorithm in a
CAD system if it takes too long to generate dispatches. The CAD system must be able to respond
quickly to a dispatcher’s command in order for the dispatcher to consider it a useful decision
support tool. This section relates some of our findings about the computation times of the FVD

algorithm.

For each scenario, we ran a simulation 100 periods long for the purpose of measuring
computation time. The sole algorithm active in this simulation was the initial FVD algorithm.
We timed both the DDSP soiution phase and the elapsed time of the actual simulation. The latter
quantity included statistics gathering and state update operations as well as the solution of the
MSP to obtain the dispatch at each decision point. The computation times of each of these phases
are listed in Exhibit 5.28. As with the small example studied in the beginning of this chapter, all
computations were performed on an Apollo DN660 computer. The times in the exhibit are in

units of CPU seconds.

The first column of Exhibit 5.27 shows the time taken to solve the DDSPs. The DDSPs tend to
be solved very quickly, somewhere on the order of 6.1 CPU seconds per customer. This being the
case, frequent updating of the penalty functions may be quite feasible, especially when the time to
do an update is compared to the time to make a dispatch decision. While in the 6-customer case,
each decision was generated in a little over 0.03 CPU seconds, on average, the mean elapsed time
per decision for twelve customers was on the order of 0.75 CPU seconds. This is a 25-fold increase
in response to a doubling of customers (with associated doubling or near-doubling of vehicles). It
may also be an indication that, if the FVD algorithm is to be applied to larger problems, a faster
heuristic must be implemented to solve the MSP. The reader may consult Section 4.3.4 to review
the classes of heuristics that have been studied in the operations research literature to solve
problems of a form similar to the MSP. Customer and itinerary elimination procedures may also
help reduce the computation time for a dispatch decision in the FVD algorithm. More research is

called for in the development of efficient MSP heuristics.
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Exhibit 5.28: Computation Times for the
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PARTII

CASE STUDY:

THE NEW YORK CITY DEPARTMENT OF SANITATION’S

MARINE WASTE TRANSPORT SYSTEM
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CHAPTER VI
A MODEL OF THE MARINE WASTE TRANSPORT SYSTEM
6.0 Introduction

This chapter presents a mathematical model of the New York City Department of
Sanitation’s marine waste transport system (MWTS). The model simplifies many of the MWTS’s
features. We believe that, even in its streamlined form, the model depicts marine waste transport
operations realistically enough to serve as a key component in a viable decision support system
for tug and refuse barge dispatching. Significant departures from reality in the model are

nonetheless duly noted in the course of the presentation.

6.1. Model Terminology

The marine waste transport system model we construct is in essence a stochastic decision
process. To wit, many components of the model evolve over time, as a result of both exogeneous
stochastic factors and endogeneous decisions. We also permit certain key parameters affecting
the evolution of the system to change in value with time, hence the process is not time-
homogeneous. For the sake of convenience, the time dimension is discretized into units we shall

term pulses.

Implicit in the notion of a decision process is that somewhere embedded in the process is a
decision-maker who is trying to make good decisions. At any given point in time when a decision
may be made, the decision-maker takes all the information about the system that he finds useful
and comes up with a decision. The effect of that decision unfolds thereafter, although this effect

may be confounded with the effects of other decisions and with stochastic phenomena.
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We mark the progress of the evolution of the system at any point in time as the system state.
The state is basically a body of time-varying information about the system. To assume its place in
the decision-maker paradigm, the s.tate must contain all the kinds of information relevant to
decision-making and system performance evaluation. We need only represent dynamic system
components in the system state. static components may be regarded as fixtures of the decision
mechanism. The state of the process will actually be a vector of integer, real, and perhaps other
descriptive values, each value informing of some component of the system. It is the object of this
chapter to represent verbally and notationally the interrelationships among the various dynamic

state components as they evolve from pulse to pulse.

6.2. The MWTS Model

The purpose of the New York City Department of Sanitation’s marine waste transport system
is to convey refuse from various collection points throughout New York City to Fresh Kills
Landfill on Staten Island, and thereby to facilitate the disposal of much of New York City's refuse.
A map of New York City noting the Department of Sanitation’s marine and landfill facilities
appears in Exhibit 6.1. To review, here is a brief description of how the system functions: Many
sanitation trucks, after completing their refuse pick-up assignments, dispose of their loads at
marine transfer stations (MTS). An MTS is a two-story structure located on New York City’s
shoreline. A sanitation truck assigned to an MTS drives onto the second stery of the MTS, backs
up to one of several apertures in the platform, and dumps its load through the aperture onto a
refuse barge moored in the slip directly below (the first story of the MTS). Tugboats circulate
throughout New York City’s waterways, dropping off empty refuse barges and picking up loaded
ones. Loaded barges are assembled into barge trains at MTSs or at staging areas (SA). The tugs
tow the trains to Fresh Kills Landfill (FKL), where the barges are unloaded with large cranes
called “diggers.” Refuse dug out of the barges is deposited in large wagons. Tractors pull the

wagons out to the active "face” of the landfill. the location where the contents of the wagon are
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dumped. Dispatchers send tugs back to the SAs and MTSs with newly dug-out barges.

While the entire journey of an item of refuse from the trash can to the landfill is not accounted
for within our MWTS model, the model does cover a major segment of that journey. Our model
formulation is organized by the various locales (MTS, FKL, waterway) where system activity
occurs. The activity at each locale is first described verbally, then translated into algebraic

relationships. Points where the model departs significantly from reality are identified.

6.2.1 Marine Transfer Stations

At each MTS, a random amount of refuse arrives every pulse. Thiz amount depends on the
MTS and the pulse index, but not on what arrived in previous pulses or at other MTSs during the
same pulse. If the MTS is open (meaning that there is empty barge space on barges there), the
refuse is loaded onto the barge. Otherwise, the refuse is weighed and then lost to the system. A
running count is kept of total lost refuse (also referred to as “deferred refuse,” as in [21]) at each
MTS. Systemwide lost refuse is the primary performance measure in our model of the MWTS.

(Discussion of performance measures for the actual system appears in Chapter VIIL)

Each barge has loading criteria assigned to it before it begins receiving refuse. The loading
criteria are random variables in the general case. The function of these criteria is to determine
when, in terms of tons of refuse loaded aboard, the barge may and must stop receiving refuse. The
criteria consist of a maximum and a minimum tonnage level (i.e., the tug must stop taking on
refuse once it reaches its maximum level, but may be towed away by a tug if its loading exceeds
the minimum level). After taking care of incoming refuse, if the MTS is open, the tonnage level
aboard the loading barge is referred to these criteria and the tug presence situation to see
whether it has become full. If so, it is moved out to the queue of loaded barges awaiting tow to
FKL. If any empty barges are present. one empty barge leaves the empty queue and becomes

active. If not, the MTS enters the blocked state. Exhibit 6.2 explains the notation used in
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depicting these relationships in our model. Exhibit 6.3 provides the model’s state transition
equations that portray MTS operations.
Actual normal operations depart from their portrayal in the model in the following ways:
*  the operations work over continuous time;
* refuse arrival quantities may exhibit dependence among MTSs and/or over time;
* lost refuse queues up at the MTS or is rerouted--it is never “lost to the system”;
*  most MTSs have two locations at which barges can load;

*  barge transfers (“shifts”) from empty queue to active and from active to full queue are not
instantaneous (although there is no break in refuse transfer when another location with an

empty barge exists at that MTS);

*  the ability to shift barges depends on the MTS’s structure, location, staffing level and whether

or not a tug is present.

6.2.2 Fresh Kills Landfill

Barges are dug out at one location at FKL. When the digger is active, a random amount of
refuse is dug out of the unloading barge every pulse. In any pulse, if the amount of refuse
remaining on the barge drops to zero, that barge moves to the FKL empty queue. Then if any
loaded barges are available, one becomes active; otherwise, FKL becomes idle. Exhibit 6.4
explains the notation used in depicting these relationships in our model. Exhibit 6.5 provides the

model’s state transition equations that portray FKL cperations.

Actual normal operations depart from their portrayal in the model in the following ways:

*  the operation works over continuous time:
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Exhibit 6.2: MTS State Components

ME: number of empty barges at MTS

MA: amount of refuse on loading barge at MTS

MF: number of full barges at MTS

MW: amount of refuse on each full barge at MTS

MS: statusof MTS (1 =open, 0 =blocked)

MD: amount of refuse deferred at MTS

MT: number of tugs at MTS

fiox): probability that loading barge has capacity x of refuse

fi1(x): probability that loading barge loaded with up to x less than capacity may
be towed away by tug

w;(t): amount of refuse delivered to MTS i in pulse ¢t (random variable)

Exhibit 6.3: MTS State Transition Equations

MAj(t) « MA;(t-1) + wi(t)-MS;(t)
MDj(t) « MDj(t-1) + wi(t)(1 — MSj(t))
if MA;(t) = ML;(0) then
begin
MFi(t) « MFi(t) + 1
MW;(MFj(t),t) « ML;(0)
if ME;(t) > O then
begin
ME;(t) « ME;(t) - 1
MA;(t) « MA;(t) — ML;(0)
ML;(0) « x, x drawn from fig(x)
ML;(1) « ML;(0) — x, xdrawn from fi1(x)
end
else
begin
MA;(t) <0
MSi(t) « 0
end

end
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Exhibit 6.4: FKL State Components

FE: numberofempty barges at FKL

FA: amount of refuse on unloading barge at FKL

FF: number of full barges at FKL

FW: amount of refuse on each full barge at FKL

FS: statusof FKL (1=active, 0=idle)

FT: numberoftugsat FKL

v(t): maximum amount of refuse unloaded at FKL in pulse ¢ (random variable)

Exhibit 6.5: FKL State Transition Equations

FA(t) « max(0, FA(t-1) — v(t)-FS(t))
if FA(t) = 0 and FS(t) = 1 then
begin
FE(t) <« FE(t) + 1
if FF(t) > 0 then

begin
FA(t) « FW(FF(t),t)
FF(t) « FF(t) — 1
end
else FS(t) « 0

end

there are usually several diggers working simultaneously at FKL, each with its own loaded

barge queue;

the number of barges that are unloaded per digger per eight-hour shift is often bounded above

by work rules:

barge transfers from full queue to active and from active to empty queue are not

instantaneous:

there may be some dependence among quantities unloaded from pulse to pulse.
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6.2.3 Waterways

A tugboat that is en route to a facility (MTS, SA, or FKL) in the marine waste transport

system travels a certain distance through the waterways each pulse. The travel distance depends
on the tug and the composition of its barge train. Upon its arrival, the tug transfers its train to
the destination’s facilities. It waits a certain number of pulses at this location and then either
departs or begins another waiting period at the location. A tug’s arrival and/or presence at a
facility may affect other activities (in particular, whether a loading barge is considered full
enough to be towed away or not). The tug’s new destination and the size and makeup of its barge
train is decided upon its departure. It is here that dispatch decisions impinge on the modeled
operation. Exhibit 6.6 explains the notation used in depicting these relationships in our model.

Exhibit 6.7 provides the model’s state transition equations that portray waterway (tug)

operations.

Actual normal operations depart from their portrayal in the model in the following ways:

E£xhibit 6.6: SA, Tug, and Other State Components

M:
S:
D:

number of barges at SA

amount of refuse on each barge at SA (0 if empty )
number of barges towed by tug

amount of refuse on each barge towed by tug (0 if empty)
status of tug (1 =0n assignment, 0 =awaiting dispatch)

if positive, destination of tug (tug is en route);
if negative, location of tug (tug is docked)

progress of tug
(if en route, distance remaining to destination;
if docked, number of pulses until next dispatch attempt)

set of facility identification numbers corresponding to MTSs
set of facility identification numbers corresponding to SAs
dwell time at a facility, in pulses (function of facility and tug status TZ)

uj(t): maximum distance traveled by tugj in pulse ¢ (random variable)
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Exhibit 6.7: Waterway State Transition Equations

if TDj(t—1) <Othen  “docked
begin
TPj(t) « TPj(t—-1) — 1
if TPj(t) = O then  “dispatch attempt
begin
i« ~TDjt-1)
ifi € M then
begin
if MA;(t—1) = MLji(1) then
begin
MFj(t-1) « MF;(t-1) + 1
MW;(MFij(t—-1),t—-1) «MA;(t-1)
if MEj(t—1) > O then
begin
ME;i(t—-1) «ME;(t-1) -1
MA;i(t—1) <0
ML;(0) « x, x drawn from fijp(x)
ML;(1) « ML;(0) — x, xdrawn from fj1(x)
end
else
begin
MAi(t—1) <0
MSi(t=1) «0
end
end
DISPATCH (TDj(t—1), MFi(t—1), MWj(-, t - 1), TZi(t - 1),
TDj(t), TPj(t), TTj(t), TW;(-, t), TZi(t) )
if TDj(t—1) > 0 then MTj(t) «MTj(t—-1) - 1
end
elseifi €. S then
DISPATCH (TDj(t-1), SBi(t - 1), SWi(:, t - 1), TZj(t - 1),
TD;(t), TP;(t), TTjt), TW;(-, t), TZi(t))
(continued)
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Exhibit 6.7: Waterway State Transition Equations (continued)

else
begin
DISPATCH (TDj(t--1), FE(t-1), — — , TZ;j(t-1),
TDj(t), TPj(t), TTj(t), TWj(-, t), TZ;(t) )
if TD;(t)>0 then FT(t) « FT(t-1) — 1
end
end
end
else “en route
begin

TPj(t) « max (0, TPj(t—1) — uj(t))
if TPj(t) = O then  “arrival
begin
i «<TDj(t-1)
TPj(t) « Di(0)
TDj(t) « —TDj(t—1)
ifi € M then
begin
MTit-1) «MTi(t-1) + 1
forn «1to TTj(t—1)do “unload barges
if TWj(n,t —1) = 0 then
ME;j(t—-1) « MEj(t-1) + 1
else
begin
MFi(t—1) «MFi(t-1) + 1
MW;( MFij(t—1),t—-1) « TWj(n, t-1)
end ‘
TTj(t) <0
if MEij(t—1) > 0 and MSj(t—1) = 0 then
begin
MSi(t—=1) <1
ME;(t—1) « ME;(t-1) - 1
end
end

(continued)
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Exhibit 6.7: Waterway State Transition Equations (continued)

elseifi € S then

begin
forn < 1to TTj{t—1) do
begin
SBi(t—1) «~SBj(t—-1) + 1
SWi(8Bi(t—1),t—1) «TWj(n,t—-1)
end
TTj(t) « 0
end
else
begin

FT(t-1) «FT(t-1) + 1
forn «1to TTj(t—1)do
begin
FF(t—1) «FF(t—1) + 1
FW(FF(t-1),t—1) « TWjn,t-1)

end
TTj(t) <0
ifFF(t—1) > 0 and FS(t—1) = 0 then
begin
FS(t-1) «1
FF(t—-1) «FF(t-1) -1
end

end
end

end

the operation works over continuous time;

there may be statistical dependence among the travel distance random variables;

barge transfers between tugs and stationary facilities are not instantaneous;

the dwell times vary stochastically.
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6.2.4 Additional Notes

Unless indicated otherwise, each quantity Y has the property that
Y(t) = Y(t-1)
The only significant sequence rule in this model is that, in every pulse, waterway activity occurs
prior to MTS and FKL activity. No dependence relationships exist among any of the random
variables. Random variables of the same type and facility need not be identically distributed over
pulses. The one model component yet to be described, the dispatch procedure, is treated in the

next section.

6.3. Dispatching

In the marine waste transport system, to dispatch a tug means to decide:

*  when the tug is to depart from the facility it resides at;

* what its new destination will be; and

*  which barges at the current facility it is to tow (if any),

and to execute this decision. In practice, a tug can be "dispatched” at any time, even when it isen
route to some facility in the MWTS, because the tug can be rerouted via radio command to some
other destination. In our model, we constrain dispatches to occur only when the tug in question
resides at some fixed location in the system. This model feature is not as restrictive as it may
seem, because we may locate artificial facilities (adding them to the set of staging areas) within
the waterway network so as to allow some tug rerouting. This is accomplished as follows: add
artificial staging areas with no barge holding capabilities and zero dwell times to the network
such that every path between real facilities passes through at least one artificial staging area.
The ideal positioning of the artificial staging areas is where a rerouted tug would normally break

off from its former path.
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A dispatch is normally executed immediately after it has been decided. In some cases,
particularly when a tug awaits dispatch at FKL, it may be advantageous to hold the tug at the
facility for a period of time before executing the dispatch. Examples where a dispatch delay is
sometimes called for include waiting for barges to be emptied at FKL and waiting until barges
become fully loaded at MTSs. The dwell time function allows us to incorporate dispatch delays
into our model by making dwell times at facilities on the second and subsequent dispatch

attempts short enough to allow frequent monitoring of system activity.

From a macroscopic perspective, our MWTS model’s dispatch mechanism may be construed
thusly: Initially, a decision is made about where to send the tug that is awaiting dispatch. This
decision may alternately specify that the dispatch be delayed. If the dispatch is to be made
immediately, then the composition of the barge train is decided, and the tug departs for its first
destination. Otherwise, a new dispatch attempt is scheduled some number of pulses into the
future. The algorithm given in Exhibit 6.8 portrays the dispatch procedure from this perspective.
(Note: the line

TP(t) « DISTANCE (TD(t-1), TD(t) )
in Exhibit 6.8 causes the progress of the tug to be set to the travel distance from origin to

destination.)

We recognize three possible dispatching modes in the MWTS model. The first mode may be
termed “all points dispatching.” In this mode, a dispatch procedure to determine the next
destination is executed whenever a tug is ready to leave any facility, real or artificial, in the
system. In the second or “fixed route” mode, the sequence of system points that a tug visits and
the numbers of empty barges delivered to each MTS visited between stays at FKL is fixed upon
departure from FKL. The third mode, called “fixed MTS” mode, is similar to fixed route
dispatching in that the set of MTSs to be visited is fixed in advance. but the sequence of the visits

is a matter left undecided until the tug has to depart for one of the MTSs in its assignment that it



Exhibit 6.8: Structure of the Dispatch Procedure

procedure DISPATCH (TD(t-1), BA(t-1), BW(-,t-1), TZ(t-1),
TD(t), TP(t), TT(t), TW(-,t), TZ(t) )
DESTINATION ( TD(t-1), TD(t), TZ(t) )
if TZ(t) = 1 then
begin
TRAIN ( BA(t-1), BW(-,t-1), TT(t), TW(-, t))
TP(t) « DISTANCE (TD(t-1), TD(t) )
end
else TP(t) « D _Tp)(1)
return

has not yet visited. With the last two medes, compositions of barge trains may remain undecided
until departure from each facility, but changing the set of system points to visit is prohibited
except possibly when, due to stochastic effects, certain visits in the sequence become entirely
unproductive. Clearly, the first dispatching mode will, if implemented properly, produce more
effective decisions, but the dispatch mechanism used here must be more sophisticated. The
second and third modes are considered because they may be more practical to implement. Our
algorithms for dispatching in the MWTS model employ the “fixed MTS” dispatching mode.
Chapter VII provides more detail about procedures DESTINATION and TRAIN, the procedures

making up the heart of any dispatching algorithm.
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CHAPTER VII

DISPATCHING IN THE MWTS MODEL

7.0 Introduction

To complete the description of our model of the marine waste transport system, we must
specify how dispatching is accomplished, or how the dispatcher decides to move tugs and barges
throughout the system. We have isolated two procedures the dispatcher must perform for each
decision: a DESTINATION procedure which determines the system facility a tug is to next travel
to (or signals that the disptach be delayed), and a TRAIN procedure which selects the locally-held
barges to take along. In this chapter, we adapt the MWTS model structure, insofar as the
dispatching algorithm is aware of it, so that the methods of Chapter IV may be applied for MWTS
dispatching. We also assemble another algorithm to serve as a basis for performance

comparisons.

The task of dispatching in the MWTS environment conforms closely to the deliverer dispatch
problem paradigm. The dispatcher tries to deploy scarce delivery resources to avoid undesirable
customer inventory events (demands while stocked out, holding excessive inventory). The
delivery resources are the tugs and the delivered good is the empty space on barges. Tugs operate
around the clock, and often start out on a new assignment shortly after finishing the old one.
Barge usage (demand) is uncertain to some extent. But the fit between the MWTS model and the
DDP that the Future Value Decomposition algorithm was designed for is not close enough to
allow the straightforward application of the methods being developed in this dissertation. We
therefore need to study the discrepancies between the MWTS model and the DDP. This chapter
proceeds by alternatingly identifying a key discrepancy and describing how the resulting
difficulties are overcome in our case study. The final assessment of the FVD algorithm in MWTS

ispatching is performed in Chapter VIII.
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7.1 Time Scales

The first notable discrepancy between the MWTS model and the DDP that the decomposition
algorithm was developed for is one of time scale. While both models operate in discrete time with
constant intervals between event or decision points, the most practical length of a pulse to use in
the MWTS model is a great deal shorter than the most practical length of a period in the DDP. In
the MWTS model, decisions and events only occur at the start of each pulse. From this it can be
reasoned that, for instance, all trip times from facility to facility in the MWTS model must take
an integral number of pulses. Since some trips may take half an hour or less, choosing a pulse
length of more than 15 minutes might distort the representation of travel activity in the model.
Now suppose a period were 15 minutes long. Then in the DDP representation of the system, the
probability of demanding one unit in a period, when the unit equals the empty space of one barge,
would be very low at any marine transfer station. Since the FVD algorithm is based in part on
the assumption of demand being independent from period to period, we would need to model barge
demand as having a Bernoulli distribution with a very low probability of “success”
(success=barge demand). The time between barge demands would as a result have far greater

variance than occurs in reality, another serious distortion of MWTS activity.

The resolution to the period-pulse discrepancy is to allow a period to span multiple pulses. In
our later computational work, we fix a pulse at 15 minutes of real time, and use a period length of
15 pulses (3.75 hours). This resolution will require the FVD algorithm to reinterpret some
elements of system behavior. Characteristics of refuse arrival, expressed in tons per pulse in the
MWTS model, are translated into barges per period. Itinerary leadtimes and duration attributes,
which also must be related in terms of periods, are inferred from travel distances and tug travel
rates. When these time intervals work out to non-integral numbers of periods, the values are

generally rounded upwards; it is safer to assume a tug arrives at a destination later than it does,
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than to assume it arrives earlier. More information about pulse-period transformations is

provided below.
7.2 Barge Demand over an Extended Scheduling Horizon

The demand for the delivered good is continuous rather than discrete. The quantity of the
good delivered to an MTS is generally expressed as an integral number of barges, but the rate at
which the space on the barges is used is more closely reflected by a statement such as “X number
of tons per pulse.” In other words, we have fractional demand for barges per pulse. An added
complication pertains to the assumption of demand independence between periods. Exhibit 7.1
indicates the nature of the problem. Suppose, at a certain MTS, refuse arrives at a constant rate
so that each barge takes exactly eight pulses to fill, while a period lasts six pulses (these figures
are for illustrative purposes only). Even though the variance of refuse inflow per pulse is zero, the
barge demand per period (demand being equated to wanting to start loading another barge) is not
constant, a phenomenon known as the “integer round-off effect”. Furthermore, knowledge of
when the last barge was filled in the preceding period enables the more accurate prediction of

barge demand in the upcoming period, so that barge demands are not truly independent.

To deal with barge demand dependence, we switch to an extended scheduling horizon version
of the FVD algorithm (refer back to Section 4.3.7.4 for an introductory discussion). Let the
scheduling horizon be T periods long. To solve the DDSP for customer i, we need the quantities

pi(xi0, %1, ..., % T-1),
the probabilities that the barge demand in period ¢ is x;, t=0,1,...,T—1, for each realizable
demand T-tuple (xj,%,;1,...,x;, 7—1). If interperiod demands are independent and identically

distributed according to p,(x,), then the above probability equals

T-1
n pi(xtt)’
t=0

and there are (X + 1) possible T-tuples, where X is the maximum demand per period. But if the
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Exhibit 7.i: Effects of Time-Discretization on Barge Demand

HRHH R P

I 3¢ : x{ } V2 I Mo periods

number filled
1 1 0 1 in period

X = barge filling completion moment

demands are not indep.ndent, then the number of demand T-tuples that occur with positive
probability may be somewhat less than (X+1)7, and we may have direct methods of assessing
their probabilities. For instance, in Exhibit 7.1, when the scheduling horizon is two periods, the
demand 2-tuple (0,0) will never occur, even though it is pessible for no barges to become full in a

single period.

We now outline a method for establishing demand probabilities over a horizon; an example
follows. We return to the original MWTS model to obtain, for a given MTS, the distribution of the
quantity of refuse arriving per pulse. This information is used to calculate the mean and
standard deviation of refuse arriving per scheduling horizon. Invoking the Central Limit
Theorem, total refuse per scheduling horizon is taken to be distributed normally (but truncated

below zero so that no negative inflows are possible). We assume that the amount of refuse



residing in the barge loading at the start of the horizon is evenly distributed between zero and the
full capacity of a barge, a random incidence assumption. (In practice, we would know the time
this barge began loading, and would therefore be able to restrict the range of initial barge
loading; this information has no role in the solution of the deliverer dispatch subproblems,
though.) The sum of this holdover amount and the total arrival in the scheduling horizon
indicates how many barges are demanded (filled or lost) in the scheduling horizon. We
numerically deterraine the probability py, for each N, that N barges are demanded in the
scheduling horizon. For each N, we find the ay distinct allotments of the N barges to the T
periods of the scheduling horizon such that no more than one barge is demanded per period (which
we can certify with a high degree of confidence if we make the period length small enough) and
assume each allotment is equally likely to occur. The probability of any demand T-tuple of total
demand N occurring is then

Py

N
When these probability assessments are incorporated into the solution of the DDSPs, we must

still assume these demand pattern probabilities are independent between scheduling horizons.
This will not be the case in the MWTS model, although the degree of correlation of patterns

between extended scheduling horizons may be less than that between periods.

An example may help to clarify this procedure. Using Exhibit 7.1 as a basis, we consider an
MTS which receives exactly one-eighth of a barge worth of refuse each pulse, a period length of six
pulses, and a scheduling horizon length of two periods (twelve pulses). Exactly one and one-half
bargeloads of refuse arrives during each scheduling horizon (this can be considered normally
distributed with zero variance). The number of barges actually filled in the current scheduling
horizon depends on the time the currently loading barge began loading, meaning how much
refuse is in it at the start of the horizon (we assume the MTS is not stocked out). Employing the

principle of random incidence. we consider the number of eighth-barges of refuse already on board
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to be evenly distributed from zero to seven. If the number of eighths on board is not more than
three, then only the currently loading barge will be completed during the scheduling horizon.
Two will be finished if four eighths or more have already been loaded. By our assumption, it is
equally likely that the initial barge loading be three-eighths or less, or four or more. Hence, for

this example, the horizon demand probabilities p; and pg both equal 1/2.

To complete the estimation of the probability of occurrence of each demand 2-tuple, we must
generate the barge allotments to periods for N=1 and N=2 barges demanded. If N=1, we
consider the two allotments (1,0) and (0,1) to be equally likely. For N=2, only one allotment
exists with a maximum of one barge demanded per period, (1,1). The tota! number of possible 2-
tuples is found here to be 3, less than the the (X+ 1)" =4 combinations of 0 or 1 barges demanded
per period. Exhibit 7.2 summarizes the horizon demand probability assessment process and
presents final results. Exhibit 7.3 shows each of the eight possible barge completion patterns over
a scheduling horizon, one for each of the eight possible pulses when the currently loading barge
began loading. Assuming each pattern is equally likely, then the demand 2-tuple probabilities
given in Exhibit 7.2 are corroborated by their frequencies of occurrence as indicated in Exhibit

7.3.

We observe that, for any particular scheduling horizon, if we have some knowledge about the
time of start-up of the currently loading barge, then our forecast of horizon demand is liable to
change. For instance, if we know that the current barge began loading at least two pulses ago, the
first two patterns of Exhibit 7.3 must be eliminated, and the assessment of 2-tuple probabilities
(assuming all remaining patterns equally likely) would become

(1,0) with probability 1/3,

(1,1) with probability 2/3.
Incorporating this type of information within the FVD algorithm would be infeasible to do,
though, because new DDSPs would have to be solved for each potential information profile. Some

consideration might be lent to this information when solving the master scheduling problem,
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Exhibit 7.2: Horizon Demand Probability Assessment Process

Probability of |
N PN anN Allotment demand
2-tuple

perhaps for selecting the scheduling horizon dispatch decision among the ones with the lowest

objective value.

In the DDP we have developed the FVD algorithm for, it is assumed that the demand
distributions hold steady over the infinite planning horizon. Our computational experiments
treat only the situation in which, for each MTS, refuse inflow is independent and identically
distributed across all pulses. The random amount of refuse x that arrives in a pulse at an MTS is

taken to have the gamma distribution

1
mﬁuxa_le—ﬁz, x>0,
for given parameters a and B. The mean of the gamma distribution is o/p, and the standard
deviation is (Va) / B. In each scenario we simulate in Chapter VIII, each MTS has its own mean
rate of refuse inflow per pulse, while the scenario has a daily coefficient of variation (0.1 or 0.2)
assumed the same for each MTS. This information provides us with all we need to calculate a and

B for a given MTS. Let P be the number of pulses in a day. If refuse flows in at the rate of u per

pulse, and the daily coefficient of variation is c, then:

=p or a=pf;

(ch)2 .

a
standard deviation of inflow perday=cu= — VP ora=

therefore,
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If, for example, ¢c=0.1 and P=100 (P=96 when a pulse is 15 minutes long), the standard

deviation of refuse inflow per pulse ‘would equal p. An assumption of normality about refuse
inflow per pulse would cause a sizable proportion of refuse inflows to be negative, if no truncation
of the distribution were used. This is why we have opted for the gamma distribution.
Unfortunately, the data do not currently exist to verify or reject the supposition of gamma-

distributed refuse inflows per pulse.

The way in which refuse arrival is modeled in the previous chapter allows for the arrival
distribution to vary over time. Data analyses (see [15]) have shown that refuse arrival means
vary by time of year, day of week, and time of day. The only means visibie to us for incorporating
demand distribution variability into the FVD algorithm in a natural way is by< augmentation of
the state spaces of the DDSPs. Assuming cyclic demand, as it is defined in Section 3.2.3, the state
space for each DDSP may be augmented with an information element that indicates which phase
the demand cycle will be in in the upcoming period. If we assume the phases to cycle in a given
sequence, then the resultant DDSP, while larger, can be solved in the same way as before. We use
the output from the DDSPs to construct cost coefficients Cjg"* for the extended master scheduling
problem (see Section 7.3), since now future expected values depend on which phases come soonest
in the future. The maximum number of phases that can be accommodated in a cycle is limited by
the computational burden one is willing to endure in the execution of the FVD algorithm, and by
the data storage one has at hand. In application to the MWTS case, there will be the additional
difficulty that dispatches sometimes occur in the middle of a phase. A round-off technique should
be applied to position the dispatch point squarely at the beginning of one phase or another, so that
the cost coefficients of the MSP may be determined in the usual manner. We have no
computational experience for the method just described. We also remark that we know of no

feasible way to formally handle the case where demand varies acyclically.
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Exhibit 7.3: Barge Completion Patterns
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7.3 Other Adaptations for an Extended Scheduling Horizon

When an extended scheduling horizon is used in the FVD algorithm, several modificaticns to
the algorithm’s components must be introduced. In each deliverer dispatch subproblem, the
optimal replenishment policy and expected future values must make reference to the period in

which the order is dispatched, not just the quantity of the order. The decision variables of the
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master scheduling problem must specify the period of the dispatch as well as the itinerary, and
vehicle availability constraints must be broken down by period (with undispatched vehicles in
one period made available in the next). We stipulate that in both the DDSPs and the MSP we
restrict each customer to be included in at most one dispatched itinerary per scheduling horizon,
in order to avoid serious complications of the formulation and/or solution of the problems.
Remember, though, that only the dispatches of the first decision point in the horizon are executed
immediately; the rest may be changed as new information becomes available at the next decision

point and the extended problem is solved once again.

Another important difference between the MWTS model and the DDP assumptions is that the
ability to dispatch a tug from Fresh Kills Landfill does not depend alone on the tug being ready,
but also on whether there are enough barges available at FKL to send with the tug. A finite
number of barges circulate throughout the system. Empty barge availability at FKL is directly
related to previous full barge deliveries to FKL and to FKL'’s unloading capabilities. In order to
utilize the extendad scheduling horizon enhancement, one must obtain forecasts of barge
availability in future periods of the scheduling horizon. Generally, the degree of variability of
barge unloading times will be small, so that a deterministic approximation of barge unloading
activity at FKL will suffice for projecting the number of barges newly coming available at each
decision point. It is important, for algorithmic purposes, not to overlook that barges delivered to
FKL early in the scheduling horizon may be unloaded before the last decision point in the horizon,
so that barge availability forecasts should not depend solely on how many full barges are present
at FKL at the start of the horizon. Also, barges available at future decision points must include

barges available but not assigned to a tug earlier in the horizon.

Let us rephrase the master scheduling problem (4.39)-(4.42) for dispatching in the MWTS
model under an extended scheduling horizon. The new decision variable y, has value 1 if and
only if itinerary j is to be dispatched at decision point ¢ of the scheduling horizon. The dispatch

cost C;;~ in the objective function (7.1) becomes dependent on the decision point of dispatch as
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well. The number of tugs ready for dispatch at decision point ¢ is denoted A;, and the number of

barges ready then is written B;. We introduce the number of delayed tugs variable r; to allow tugs

not dispatched at one decision point to be available at the next (constraints (7.2) ), and the number

of barges held over variable s; to do the same for barges (constraints (7.3) ). Let d; in constraints

(7.3) be the total number of barges delivered in itinerary j. Constraints (7.4) state that no MTS

may have more than one delivery outstanding at the end of a period. Finally, in this formulation

we restrict each vehicle to be dispatched at most once in the scheduling horizon (constraints (7.5)

). Then the extended master scheduling problem is:

n T-1
NN ¢t
min > e e
J=1¢t=0

J=1
n n t—-1
N 4t NN 1
_—y yjf<1 — du yjl Vi, ¢=0,
J=1 J=li=t-1

184

(7.1)

(7.2a)

(7.2b)

(7.33)

(7.3b)

(7.4)

(7.5)

(7.6)



The heuristic algorithm given in Section 4.3.4 for solving the MSP can also be used to solve

the EMSP, if it is modified in the following ways:
Procedure BEST__ITIN, step 5: Substitute Cjp” for C;*.

Procedure GREEDY__ASSIGN, step 1: Understand A to equal
T-1

D> A,
t=0
Step 2: Substitute C;¢" for C, ", where ¢ is the period of dispatch of #’. Also consider only
J’ with total delivery less than or equal to the number of barges available.
Step 3: Only return if ¢t=T—1; otherwise, move all unassigned tugs and barges to ¢+1,
and start again from step 2.
Step 4: Substitute Cj»;~ for C;»".

Step 5: Remove from I7 all customers who had outstanding deliveries at t=0 that will

have arrived by the end of period ¢.

Main Procedure: Substitute Ag for A.

Because the MSP heuristic considers all itineraries for the imminent dispatch, the tendency
to go for the "biggest bang for the tug” is diminished. However, we may need to try as seeds those
itineraries regarded as "dominated,” since domination in the sense that it is defined in Section

4.3.4 pays no regard to constraints on the total delivery of vehicles dispatched at a decision point.

One could allow vehicles dispatched during the scheduling horizon that return before the end
of the horizon to be dispatched again. In addition, one could implement procedures at the end of
GREEDY__ASSIGN to seek improvement in the final vehicle-itinerary assignments. Two types
of improvement procedures are dispatch delays and assignment exchanges. A dispatch delay
improvement procedure tests whether delaying the dispatch by one period of a vehicle on its
assigned itinerary decreases the value of the objective function. If so (and if no other dispatches

are affected, as could happen if the vehicle is scheduled for a later dispatch in the scheduling
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horizon), the horizon schedule is modified to dispatch the vehicle one period later, and the
objective value OBJECT__COST of this assignment is reduced accordingly. If any exchange of
vehicle assignments proves beneficial, an assignment exchange is carried out and the new,

improved value of OBJECT__COST calculated.

7.4 The TRAIN Procedure

MTS barge holding capacities were not modeled in Chapter VI; they are better represented in
the TRAIN procedure in the general dispatching procedure presented there for deciding which
barges to take with a tug on the trip to its next destination. This section discusses the TRAIN

procedure.

Tugs leaving FKL simply take the number of empty barges equal to the total delivery on its
assigned itinerary. The dispatching procedure, in assigning an itinerary, must verify that
sufficient empty barges are currently available for the assignment. There are no barge capacity
restrictions at FKL. Similarly, tugs leaving an MTS, waether for a staging area cr for FKL, take
away as many full barges as there are at the MTS up to the tug’s towing limit of four barges. Tugs
leaving staging areas for FKL do the same thing. There is no peint to leaving full barges

anywhere other than FKL if the tug has room to move them along to FKL.

The determination of the composition of the barge train for tugs departing staging areas for
MTSs is more complex. The complicating factor is the general inability of tugs to tow full and
empty barges in the same train. This restriction requires the TRAIN procedure for a tug heading
from a staging area to an MTS to be a little more sophisticated than “tow the number of empty
barges corresponding to the delivery to the MTS in the currently executing itinerary for that tug,”
if it is to prevent an MTS from storing more barges than its holding capacity allows. The TRAIN
procedure should estimate its future time of departure from the MTS it is preparing to visit, and
forecast the numbers of empty and full barges that will be there at that time. The anticipated

delivery from the itinerary assigned to the tug may have to be adjusted to respect the train
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composition and holding capacity constraints. Since refuse inflow and tug travel times are
stochastic, the forecasts are susceptible to some error. When the tug is scheduled to depart from
the MTS, if the MTS still has more empty barges than it can store, the tug should wait until it can
remove enough full barges to put the MTS’s barge storage level at its given capacity; i.e., it should
wait for one or more barges to fill up. These considerations will have a further impact on the
choice of MTS to visit next from an SA. (Note: We do not employ this sort of forecasting technique
in our procedure for dispatching from SAs to MTSs in the dispatching algorithms tested in
Chapter VIII. In the implementation of the FVD algorithm there, MTS holding capacities are
represented only within the MSP. Some potential itineraries are by-passed if their dispatch at a

given time is judged likely to induce an MTS capacity violation in the future.)

7.5 The Itinerary Set

Tugs generally visit one or two MTSs before returning to FKL. Since barges cannot tow
empty and full barges in the same train, routes for itineraries including more than one MTS visit
must be of the “hub-and-spoke” variety. The hub is typically a staging area (SA), where the tug
travels to once it has left FKL with empty barges in tow. The spokes of the route “::« the trips
from SA to MTS with empty barges, and from MTS back to SA with full ones. The itinerary set we
use is given in Appendix C. It is based on the MWTS facility configuration of Exhibit 6.1, and
includes most of the conceivably useful one- and two-MTS itineraries. A potential itinerary was
regarded as useful if the MTSs to visit were all relatively close to the hub of the route (termed the
“focal facility”), if the total delivery was at least two barges, and if no MTS delivery quantity
exceeded that MTS's storage capacity. Rather than further distinguishing itineraries by
leadtimes, all MTSs were assigned a common leadtime of about one-half the duration of the
itinerary. Itinerary durations can be estimated quite accurately in advance, because in our
computational study, we assume that travel distances per tug per pulse are deterministic. Since

the number of full barges towed on any execution of an itinerary is uncertain, so are actual
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itinerary durations, to some degree. The transportation cost of an itinerary is the product of its

duration in pulses and the transporation cost rate per pulse (see Section 7.7).
7.6 The DESTINATION Procedure at MTSs and SAs

When a tug prepares to leave FKL, the modified FVD algorithm is executed to assign the tug
an itinerary, and the tug heads for the focal facility of that itinerary. Tugs leaving an MTS head
for their focal facility, or FKL if the focal facility is the MTS it is leaving. But when a tug leaves
an SA for an MTS, the question of which MTS to visit may not be so clearcut, if more than one
MTS remains to be visited. The sequencing of the visits in multiple-MTS itineraries is handled by
the DESTINATION procedure for tugs leaving SAs. This is in accordance with our selection of
the “fixed MTS” mode of dispatching. The DESTINATION procedure tested sent the tug to the
MTS left on the itinerary that was estimated to be stocking out the soonest. If more than one were
already stocked out of empty barges, the MTS with the highest mean rate of refuse arrival became

the destination.

A more sophisticated procedure for choosing which MTS to next visit would consider each
possible sequence of the remaining MTSs. It would determine the expected tug arrival and
departure times for each facility under each sequence. Information about these times would serve
two purposes. First, it would enable the forecast of barge configurations at MTSs at the time of
MTS departure, as was discussed in conjunction with the TRAIN procedure. Second, it would
support a more accurate estimation of the total expected lost tonnage among the MTSs under
consideration in each sequence. Lost tonnage is the measure of sequence quality that we would
most like to minimize. The procedure would choose the sequence minimizing expected lost
tonnage. To the extent that MTS visit order decisions are in the hands of the dispatcher, a

sophisticated CAD system should incorporate a DESTINATION procedure of this type.
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7.7 Performance Measures

The chief objective in the MWTS model is to minimize lost refuse throughout the system.
Drawing a parallel to the DDP, this would seem to imply that all transportation costs C; and
inventory holding costs H; should be set to zero. Indeed, since the barges are owned by New York
City no matter where the barges are located, and the tug services rented at a cost independent of
the proportion of the time they are in use (except for the occasional hiring of an extra tug on a
temporary basis), perhaps zero is the relevant cost for these resources. However, setting the costs
to zero for solving a DDP based on this operation may be hazardous, due to the finite availability
of barges and tugs. For instance, if barge holding costs were zero, DDP-generated dispatches
would keep all MTSs nearly fully stocked at all times, if possible. This tendency may put a
greater strain on barge and tug resources than might otherwise be applied, leaving the system

more vulnerable (without buffer) to heavier than normal demand.

We test two alternatives to establishing transportation and holding costs, in order to learn
about the sensitivity of the FVD algorithm to their values. One examines the consequences of
attaching nominal costs to these activities. In the other method, the capitalized cost of a barge is
used as a basis for calculating holding costs, and the hourly contracted rate at which a tug is
rented for transportation costs. Let us take a look at some cost information for the MWTS in the
year 1982. The following data are drawn from work done by the author on the project described in

[21], and are rough rather than precise figures:

Barges:Capital and maintenance costs: $150,000 per barge per year.
Tugs: Rented at the rate of $200 per tug per hour.

Lost refuse: Costed at about $20 per ton lost.

If a pulse lasts a quarter of an hour and there are 15 pulses in a period, then the figures above

imply the following activity and lost demand costs for use by the FVD algorithm:
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Inventory holding: To hold one unit (barge) in inventory costs $65 per unit (barge) per period.

Itineraries: Tugs cost $50 per pulse--multiply by the duration of an itinerary in pulses to find the

cost of the itinerary.

Lost Demand: Each barge holds around 600 tons of refuse. At $20 per ton, a barge-full of lost

refuse would cost $12,000.

In every simulation run in Chapter VIII, the cost of a lost demand L, assumed equal axﬁong all
MTSs, will be set at $12,000. We will try some runs with the holding and transportation per pulse
costs at $40 and $50, respectively, and others at $0 and $1. (The transportation cost in the latter
approach is not set to $0 due to computer programming considerations; $1 is still an almost trivial

cost, when compared with the cost of a lost demand.)

The optimal activity costs to feed into the FVD algorithm for purposes of minimizing the rate
of lost refuse may not be either of the cost combinations mentioned thus far. The resource base is
considered fixed while the algorithm operates--i.e., the algorithm cannot issue the decision “rent
another tug” if it finds none available when it wants to dispatch one. This suggests that the
shadow price of a resource might prove the best way to cost out its usage. The shadow price of a
unit of resource is essentially the maximum price one would pay to acquire an additional unit of
the resource. Although shadow prices are a natural by-product of such constrained optimization
procedures as the simplex method for linear programming, the relationships among constraints,
objectives, and decision variables are much more opaque in this problem. We feel that the

assessment of shadow prices in models such as this one is an excellent topic for future research.
7.8 A Competing Dispatch Algorithm

The chief competition for the FVD algorithm adapted to the MWTS model is a procedure
based on the actual methods used to route tugs and barges. Here is a brief recap of what goes on

in dispatching in the real-world operation:
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Every morning, officials in Operations at the Bureau of Waste Disposal estimate how many
barges each MTS will require to handle the following day’s refuse inflow. On the basis cf these
forecasts, the officials determine how many empty barges, including fractions thereof, must be
present at each MTS by the startf of the next day. Taking into account the amount of empty barge
space that may be left over from the eurrent day’s activity, barge delivery requirements for over
the course of the current day are established. These requirements are radioed in the morning to
the dispatchers (who are situated at FKL). The dispatchers then plan the day’s tug schedule,
earmarking empty and soon-to-be-emptied barges for the different MTSs. Dispatchers may
intercede at various times during the day and alter the schedule to respond to updated forecasts.
Barge requirements forecasts and tug schedules are not based on explicit formulas and solutions
to routing problems, but on human judgment, so it is difficult to translate verbatim the actual

procedure into a computer algorithm.

The algorithm we offer below is intended to carry the flavor of current dispatching methods.
It is named the Actual Dispatching Emulator (ADE) algorithm. Exhibits 7.4 and 7.5 give
flowcharts of the algorithm. The ADE algorithm consists of two phases. In the first phase
(Exhibit 7.4), all the itineraries that will be dispatched during the next 24 hours are identified.
Itineraries are selected to meet targets for barges-on-hand at each MTS one day hence. These
itineraries are sequenced in the second phase of the algorithm (Exhibit 7.5) with the objective of

minimizing expected lost tonnage during the day.

The ADE algorithm is executed once each day, say, at midnight. The first step in the
algorithm is to determine a barge capacity holding target ¢, for each MTS i. This is the number of
tons of barge capacity we want to be at each MTS or en route there 24 hours hence (midnight
tomorrow). Let P be the number of pulses in a day, and 4, the mean rate of refuse arriving at MTS
i per pulse. Py, is the expected tonnage inflow to MTS i for one day. Also let w, be the mean

capacity of a barge at MTS { (in tons), and u, the maximum number of barges that MTS i may
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Exhibit 7.4: Itinerary Selection Phase of ADE Algorithm

Initialize
yj=0 for allj
a=1.2
| bm+1=KP

'

Capacity holding targets

ti = min(aPy;, ujw;)

a=a-0.2|

I

Barge delivery targets

bi = [(ti+Ppj—vi)wi] [

Solve LP relaxation of

barge delivery problem
(LBDP)

Yes

Find itinerary j* minimizing
xj £i min(b;,dj)

!

yit = yi*+1
vi=vi+djj*

A 4

bm+1=bm+1'Tj*

 /

192




Exhibit 7.5: Itinerary Sequencing Phase of ADE Algorithm
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store (aside from the loading barge). Finally, let a be some constant (a has been initialized at 1.2

in our computational experiments). Then we set

t,= min (aPpl. , uimi).

The number of barges we initially seek to deliver to each MTS is the number that causes its
holding target to be equaled or exceeded, taking into account how much barge space is currently
on hand and how much is likely to be consumed over the day. Let v; be the number of tons of
refuse that can be accommodated solely with the barges currently at MTS i plus any barges en
route to MTS i. If b; additional barges are dispatched to MTS i over the course of the day, then the

targets for next midnight will be met provided that
v+wb —-Pp.=t Vi
l L1 12 13
Hence, the initial barge delivery targets {b;} are determined by
- [ t;+sz-Ui
t W,
1

where [x] here is the smallest integer greater than or equal to x, and m is the number of MTSs.

,i=1,...,m,

The next step consists of seeking a collection of itineraries J whose aggregate delivery meets
or exceeds the delivery targets, while being feasible to execute given the present tug fleet. To
accomplish this, we attempt to solve an integer program called the barge delivery problem (BDP).
The constraints of the BDP reflect the delivery targets and tug availability. Our objective in
solving the BDP is simply to find a feasible solution, or ascertain that none exists. We are
therefore quite flexible as to what objective function we may use in the definition of the problem.
Our choice of objective function is based on our use of a linear programming relaxation heuristic
to find a feasible solution. We seek cost coefficients for the itineraries that tend to yield solutions
from which feasible integral solutions are most easily derived. After testing several functions of

itinerary properties, it was found that the cost coefficient which worked best for our needs was
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cj = (4—Inj) Xd',

with m; being the total number of MTSs visited in itinerary j, and d; the total delivery in the
itinerary. The 4—m; term prevented only fractions of single-customer itineraries from being
included in the optimal solution, and the d; term discouraged delivering more to MTSs than was
necessary (tendencies which were observed in the optimal solution under other objective

functions). The complete barge delivery problem is:

min S ¢ (7.7)
P

st S dy=b Vi (7.8)
J:-l uy} i

(7.9)

yj=0 orl. (7.10)

In the BDP, t1; is the duration of itinerary j in pulses and K is the number of tugs. Its LP

relaxation, denoted LBDP, is obtained by dropping the integrality constraint (7.10) and

substituting the decision variables x; for y,.

Our LP relaxation heuristic works as follows: We start with a solution y;=0 for allj. Then we
solve the LBDP. Depending upon whether it has a feasible solution or not, one of two actions is
taken. If the problem proves infeasible, we reduce the multiplier a by 0.2 (or some other
increment). Then we generate new b;'s and re-solve the LBDP. Once we find an a which yields an
optimal solution, we look at all itineraries j for which x;>0 in the solution. We have found that by

finding the j* which minimizes



and setting yj»=y»+ 1, we move toward a good integral solution. We add itinerary j* to the set of
itineraries J to dispatch, update b; to max (0,b;—d;j+), and update by +1t0 byp+1—1;. We then
start the process all over again. The process continues until the sum of remaining delivery

targets falls below some criterion.

Having the itineraries to dispatch over the course of the day in the set o/, the question
becomes, In what order are they sequenced? We try to sequence the itineraries to minimize lost

refuse, in the following way:

Let 6; be the time MTS i is expected to stock out of barge space:

I_G

8 =

L

=

1

Also let the times of the first two dispatches of the day be approximated as w; and wg. These
times are both midnight if two tugs currently wait at FKL; otherwise, times corresponding to tugs
not at FKL are obtained from estimating how long it will take them to return to FKL from
whatever they are doing now. The itinerary assigned to the first dispatch is the one that produces
the greatest savings in lost refuse if dispatched at w; instead of at we. If [j is the average leadtime

in itinerary j, then the savings for itinerary j is computed as
m

N

P

=1

(di! =1 if MTS i receives a delivery in itinerary j, =0 otherwise). Suppose itinerary j* has

1
max( O,w2+lj —61)-— max(O,wl+ lj—Bl)]dU.pi

maximum savings. Then j* is assigned to the first tug to leave FKL. The 6, for all customers i in
itinerary j* are updated to show the time following their delivery on j* that they run out of barge
space, and the time of dispatch w of the tug running j* and the itinerary duration tj» are used to
determine when this tug is next dispatched during the day. This process resumes with departure
times we and wj to select the itinerary to dispatch at wo, and so on until all itineraries from J are

assigned or the next midnight passes. Of course, the actual time of dispatch of a tug, when using
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the ADE algorithm, depends both on the exact time it becomes ready and on barge availability

then and in the near future.

Obviously, many features of the ADE algorithm are ad hoc, and some could probably be
improved upon. Nevertheless, we feel that the algorithm as it was implemented for our case
study suited its purpose well, that of affording us some idea of how a partially adaptive
dispatching algorithm performs relative to the adapted FVD algorithm. The performance of the
ADE algorithm could have been possibly enhanced in some scenarios were we to allow
rescheduling during the day. Again, our intention was not to devise the best algorithm
reminiscent of actual dispatching practices, but to suggest and to test one such algorithm against

the performance of the technique we have devoted this dissertation to.

Other procedures can be contemplated for aiding tug and barge dispatching in the MWTS.
The dispatching algorithm used in the Barge Operations System Simulator (or BOSS, described
in [21]), though not strictly a variant of either the FVD or the ADE algorithm, bears
resemblances to both. The BOSS dispatching algorithm features dispatch-by-dispatch
scheduling, and tries to optimize dispatches over a finite time horizon, like the adapted FVD.
However, no penalties are assessed on the state of the system at the end of the horizon, so the
resemblance is more to the myopic algorithm described in Chapter VIII. Each dispatch is decided
by considering sequences of current and future itinerary dispatches, with the objective of
minimizing the expected amount of lost refuse. This procedure is similar to the second phase of
the ADE algorithm. The BOSS algorithm was designed for dispatching within a more complex
MWTS model: it was not adapted to our version of the model for our computational experiments in

the next chapter.



CHAPTER VIII

COMPUTATIONAL RESULTS FOR MWTS DISPATCHING

8.0 Introduction

In this chapter, the adapted Future Value Decomposition algorithm and the Actual
Dispatching Emulator algorithm intended to emulate present dispatching practices are run side-
by-side on a series of scenarios deriving from actual or potential situations arising in New York

City’s marine waste transport system.

8.1 Aims of the Computational Experiments

It will be recalled that the FVD algorithm addresses a variant of the deliverer dispatch
problem. Dispatching in the MWTS differs in many ways from dispatching in the deliverer
dispatch model. Hence, some doubt arises as to whether an FVD-type algorithm is suited to the
demands of MWTS dispatching, even after certain adaptations are instituted. The adapted FVD
algorithm is put on trial in this chapter. The charge is that it does not improve much upon
current dispatching practices, as represented by the ADE algorithm. In a moment, the results of

that trial. ..

8.2 The Scenarios

FVD performance is compared to ADE performance across a number of scenarios. The
scenarios vary in the numbers of barges and tugs available, in Fresh Kills Landfill unloading
rates, in the coefficient of variation of daily demand, and in marine transfer station refuse inflow
rates. Exhibit 8.1 lists most of the details of how the scenarios differ. All share the same
itinerary set, and system activity in each of the scenarios is governed by the set of dynamics

described in Chapter VI
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Exhibit 8.1: MWTS Scenarios

Coefficient of
variation of
daily demand

Digger speed

Scenario (tons/pulse)

jhwbbwwww'

Exhibit 8.2 provides the mean refuse inflow for each MTS for the scenarios. The mean inflows
in the second four scenarios are those of the first, multiplied by 1.5. The first set corresponds to
mean system workloads in 1982, at the time that work on building a simulation of the MWTS for
barge purchasing decisions (documented in [21]) was being performed. The future event
motivating the MWTS simulation project was the shutdown of a major truck-based landfill, the
Fountain Avenue Landfill (shown on the map in Exhibit 6.1), scheduled to take effect in 1985.
The result of this shutdown, as far as the MWTS was concerned, was a 50% jump in refuse inflow

to MTSs. This is the reason why inflow rates are increased 50% in the second set of scenarios.

Each scenario was simulated for two weeks without gathering statistics (to reduce the serious
start-up biases that were observed in practice runs) and ten weeks with statistics gathering.
Hence, scenarios were of fixed length. The Law and Carson method for terminating simulations,
described in Section 5.1.4, was not used: however, their method for calculating the final
confidence interval was used here. Let the reader beware that any stated confidence interval may

possibly be based on a biased estimate of variance. The simulation was run for ten weeks in the
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Exhibit 8.2: MTS Refuse Inflow Rates

Scenario range

pE 0NV HRITWINE =

ble entries are 1n tons per pulse

hope that such biases would be minimal. The generators for the gamma-distributed random
numbers are the ones given in [1] (Johnk’s algorithm) and [6]. Uniform random numbers to feed

these generators were obtained from the generator listed in [27]. Programs are listed in [20].
8.3 The Algorithms

The ADE algorithm was executed in each scenario, but on a different refuse inflow pattern in
Scenarios 5-8, due to a late change installed in the algorithm. The FVD algorithm actually
becomes a whole class of algorithms when applied to MWTS dispatching. Not only can the
replenishment cost determination method and dispatch failure probability be twiddled with, but
there also arise choices for the following quantities:

* theinventory holding cost:
* the transportation cost per pulse:
*  the number of pulses in a period.

*  the number of periods in the scheduling horizon



Also, a myopic algorithm derives from the FVD procedure when no penalties are assessed on the
final state entered. We test a number of FVD variants along with the ADE algorithm on each of
the scenarios. The details of the FVD variants used, and the labels according to which they are

referred to in the discussion below, are supplied in Exhibit 8.3.
8.4 The Results

Exhibit 8.4 carries the dispatch performance results for each of the eight simulated scenarios.
The figures in each cell of the table are, on the top, the estimated mean percentage of lost refuse,
and below in parentheses, the half-width of a 90% confidence interval for the mean percentage of
lost refuse. The mean percentage given is not the measured mean from the simulation, but rather
a mean inflow-weighted average of the fraction of time each MTS is stocked out of barges. Since,
in many cases, stockouts occur very infrequently, the total number of tons lost measured in the
simulation is the sum of a small number of random variables, each with a very high standard
deviation (it equals or exceeds the mean). More of interest at a particular MTS is the mean
amount of refuse that would arrive there during the fraction of time that it is out of barge capacity
(fraction of time out of stock is measured empirically within the simulation). Our measure is the

ratio of the sum of the mean amounts of lost refuse divided by the total mean arrival rate. The

Exhibit 8.3: MWTS Dispatching Algorithms Tested

Stanard

initial

Transp- :
FVD variant depreicg*'c}gn Holding | ortation Pe;eords Hours per
label method cost cc;s:lsp:r horizon horizon

01

initial

15

2:450

initial

40

50

7.5

Updated

updated

40

50

15

M4:900

myopic

40

50

15

M2:450

myopic
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confidence intervals shown are derived from observed percentages of lost refuse, however. The

lowest mean percentage of refuse lost measure in each scenario is printed in bold in Exhibit 8.4.

We now compare results of the simulations along several dimensions.

8.4.1 FVDvs. ADE

Scenario 1 is the scenario that most closely resembles the actual MWTS in 1982, in terms of
number of barges, tugs, and diggers operated. The ADE algorithm performed respectably in this
scenario, where less than 3% of the refuse delivered to MTSs was lost. When viewed along with
the performance of the FVD algorithms, however, ADE’s performance pales by comparison. The
same holds true in all the scenarios. The ratio of lost tonnage of ADE to that of the Standard FVD
algorithm was never less than 2.6, and usually much more. Hence, to the extent that the ADE
implementation in this dissertation reflects current dispatching practice, we conclude that
dispatching performance can be greatly improved by employing an FVD-type algorithm for

dispatch support.

The advantage of using the FVD algorithm instead of the ADE may be exhibited in another
way. The base scenario provides 45 barges to do marine waste transport work. Suppose we
regard the 3% lost refuse rate as the maximum tolerable rate. The Standard FVD algorithm, as
well as most of the other ones tested, produces a more tolerable lost refuse rate with ten fewer
barges. With refuse inflow increased 50%, several additional simulation runs of the ADE
algorithm showed that the lost refuse rate could be cut to about 2% if 4 tugs and 60 barges were
available; the FVDs could do that with 45 barges (the base size of the barge fleet). The point here
is that new barge acquisitions, for replacement or for accommodating greater demand, can be
forestalled or eliminated by implementation of an FVD algorithm in a CAD system. The same

can undoubtedly be said for additional tug hires and digger acquisitions.
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8.4.2 Initial vs. Updated FVD

The updated FVD algorithm used here applied updates only to the determination of
replenishment costs. The fact that the MWTS model operates on close to continuous time made it
difficult, though not impossible, to quantify a dispatch failure in this circumstance. The dispatch
failure probability was left at zero in all runs. This may explain in part why the updated FVD did
not show consistent improvement over the Standard FVD, from which it differs by only its
updating procedure. It is true that even in the simulations of Chapter V, updating did not
uniformly improve dispatching performance in every instance. One cause for occasional updating
ineffectiveness cited there was that several more update iterations may have been necessary to
allow the procedure to converge to the best set of replenishment costs and failure probabilities.
The same may be true in this case. More extensive testing of updating in the FVD algorithm is

called for here.
8.4.3 Resource Costs

The 0/1 FVD algorithm is configured as the Standard FVD algorithm except that it charges
nothing to hold inventory and costs tug transport at the exceedingly cheap rate of $1 per pulse.
No consistent dominance relationship between the 0/1 and Standard FVDs materializes in the
simulations. One might think that under tight resource constraints, the Standard FVD would
perform better. This was observed in the base inflow rate Scenario 3, but not in the added inflow
rate Scenarios 6 and 7, each scenario of which was somewhat insufficient in the number of barges
or tugs supplied. There did seem to be some consistent difference in performance in the higher
inflow variation Scenarios 4 and 8. We conjectured in Section 7.7 that under-costing inventory
holding and transportation may leave the system vulnerable to heavier barge demands than

usual. This conjecture may be construed to be supported by the lower proportions of lost refuse for
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the Standard FVD algorithm in the high demand variability scenarios. Still, the improvement

may not be significant.

8.4.4 Scheduling Horizons

Consider the performance of the 2:450 FVD algorithm. The 2:450 FVD is the Standard FVD
with half the extended scheduling horizon. One would think that an algorithm which “sees” two
periods into the future would not perform as well as one which looks ahead four periods. On the
contrary, the 2:450 FVD outperformed the Standard in all but the last two scenarios. Actually,
the point about one algorithm seeing further into the future is not accurate, since both algorithms
use penalty structures based on infinite horizon performance. The difference is that the 2:450

calculates expectations of actual dispatch decisions over a shorter time period than the other.

How can the Standard FVD’s inferiority to techniques based on shorter scheduling horizons
be explained? Random statistical fluctuation cannot account entirely for this behavior, because
the methods were tested on identical refuse arrival patierns. The only explanation conceivable at
this time is that the accuracy of the estimates of costs incurred during the scheduling horizon
and/or future planning horizon deteriorate somewhat as the length of the scheduling horizon
increases, thereby causing some misguidance as the master scheduling problem is solved from
dispatch to dispatch. We suggest that the FVD algorithm feature most likely to be the main
source of this inaccuracy is the restrictions on inclusion of MTSs in itineraries over the scheduling

horizon.

Recall that customers are entitled to have at most one delivery outstanding at any time in the
FVD algorithm, may receive no more than one replenishment (of up to a vehicle load) per period
in the deliverer dispatch subproblems, and may not be included in more than one itinerary in
feasible solutions to the master scheduling problem. In the MWTS implementation of the
extended scheduling horizon version of the FVD algorithm, these restrictions are interpreted to

mean that no more than one delivery may be outstanding at the end of any period in the



scheduling horizon, and at most one replenishment per scheduling horizon may be planned for in
the DDSPs and the MSP. Dispatch schedules are updated with each dispatch, though, so the only
restriction that binds actual dispatching is that no MTS is included in an itinerary whenever it is
due to receive a delivery more than one period into the future from a previously dispatched tug.
In other words, MTSs may have received in retrospect two dispatches in a given scheduling
horizon. The likelihood of this event, and therefore the degree of misrepresentation of MWTS
operations within the FVD algorithm, increases as the scheduling horizon lengthens. The
inevitable misrepresentation of MWTS activity in the future planning horizon, which constitutes
a greater proportion of the entire horizon in the 2:450 FVD algorithm, may have less effect than
the misrepresentation within the longer scheduling horizon of the Standard FVD. This is the

only interpretation we can offer for the observed behavior.
8.4.5 FVD vs. Myopic Algorithms

One of the major surprises of the computational tests was the performance of the myopic
algorithm based on a 15-hour scheduling horizon. Percentage of tons lost for the M4:900
algorithm exceeded the best observed percentage by less than 0.4% in all scenarios except
Scenario 7, where tug resources were unrealistically tight. M4:900 even “"won” two of the
scenarios. We are even more hard-pressed to rationalize these findings than we were in the last

section.

Let us first review the results for the M2:450 algorithm. It has half the scheduling horizon of
the M4:900 algorithm, and performs far worse. In fact, the ADE algorithm outperforms M2:450
in several scenarios. These observations jibe with the inconsistent and usually poor results
obtained with myopic dispatching in Chapter V. M2:450 looks ahead 7.5 hours, long enough to
foresee what happens to MTSs included and not included on the current dispatch, but often not

long enough to also consider the consequences of the dispatch of the next available tug, which
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M4:900 usually can do. Herein may lie part of the reason for M4:900’s surprising dispatching

ability, but this alone does not explain all.

The disturbing thing about the M4:900 algorithm, if one can find disturbing things about
quality dispatching, is that it makes do without any consideration of what happens after 15 hours.
The conclusion being thrust upon us is that it usually suffices in this system to dispatch to
prevent near-term stockout, when “near-term” extends several dispatches into the future. We
draw a parallel here to the theoretical foundations of the FVD penalty functions. Penalties are
intended to approximate expected future values, in the sense that the term is used in the
description of the policy iteration algorithm in Section 4.1. The expected future values, in turn,
are composed of relative values, which measure the difference in costs over an infinite horizon
between starting in a given state and starting in the steady state, using a particular stationary
dispatch policy. The contribution made in each period to the relative value diminishes with each
successive period, because the system moves closer and closer to the steady state. What the
M4:900 results may be saying is that the point at which contributions to the dispatching objective
function become superfluous occurs less than 15 hours into the future, in most situations. Only

further research can help us fully explain this intriguing phenomenon.

8.5 A Note on Comparisons with the Actual MWTS

This section reviews the relationship between the model and reality, particularly with regard
to performance measures. The performance measure we have been relying upon is the percentage
of lost refuse, meaning the percentage of refuse delivered to MTSs that could not immediately be
dumped onto a barge. [n reality, refuse is never “lost.” When an MTS stockout occurs, one of two

things happens:

(1) sanitation trucks wait in a queue at the MTS for an empty barge to be placed in loading
position:

(2) the trucks are rerouted to another, less convenient disposal facility.
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The way MTS stockout is treated by DOS personnel makes comparisons between model and
reality difficult for a number of reasons. The first difficulty is associated with the source of the
MTS refuse inflow characteristics in our computational experiments. Refuse inflow data was
generated originally by consulting a set ¢” scale tapes. Just before a sanitation truck dumps its
load, it is weighed on a large scale and the weight printed on a paper tape connected to that scale.
Obviously, then, our refuse inflow data is tainted to some degree if we. want it to represent refuse
originally destined for each MTS. This is because the trucks that have been rercuted do not cross
the scales of their primary dumping facility. Unfortunately, no records are available of the
frequency with which sanitation trucks are diverted to secondary and tertiary facilities.
Similarly unavailable are records of temperary MTS shutdowns while waiting for empty barges.
Were either or both of these types of data extant, we would be better able to evaluate acutal

system performance, and to thereby compare the MWTS model with the actual operaticn.

A host of other performance measures can be extracted from MWTS operations and our model
of them. However, these other measures only tell us indirectly and incompletely about how
effectively the system is working, and hence must be considered auxiliary performance measures.

Some of them are the following:
* mean amount of refuse (or number of barges) unloaded per day;
*  mean cycle time of a barge (time between successive arrivals at FKL);

* mean time spent by barges at system facilities (MTS, SA, FKL, in tow) in various states

(empty, full, loading, unloading):
* mean cycle time of tug:
* mean fraction of cvcle tug spends waiting at FKL:

*  mean time FKL diggers are idle:
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* fraction of tug arrivals to FKL with less than four barges in tow (this is one of the few

measures actually used by management to evaluate dispatchir:g performance).

These quantities generally measure the utilization of the various system resources. Read in
certain combinations, the auxiliary performance measures may describe how well the MWTS is
executing its primary function. They may further serve as points of comparison between FVD
algorithm performance within the model and actual dispatching performance. Even these
measures would be difficult to acquire at present from the actual system, because the data exist
only in raw and incomplete form. The Department of Sanitation is moving in the direction of
increased computerization of its record-keeping, though, so some performance measures may

become routinely available in the next few years.
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CHAPTER IX

SUMMARY, CONCLUSIONS, AND DIRECTIONS FOR FUTURE RESEARCH

9.1 General Summary

We begin this last chapter with a restatement of the goal of this dissertation: to demonstrate
the feasibility of a prescriptive capability for a computer-aided dispatching system supporting
delivery dispatch decisions in an environment of demand uncertainty and supplier responsibility

for customer inventories. This section summarizes the novel achievements of this dissertation.

The first step in attacking the problem of dispatch decision-making, when the supplier strives
to balance customer inventory as well as transportation concerns, is to broaden the conception of
the problem. We have described a class of vehicle dispatching problems, of which the types of
problems we study in this dissertation constitute only a subclass. In the description of this class,
we detect common components in all manner of vehicle dispatching problems. Further, the list of

problem components provides a foundation for a formal classification scheme.

We have constructed a new model of a physical goods delivery operation and defined an
associated optimization problem, the deliverer dispatch problem (DDP). The objective of the
deliverer dispatch problem is to find a method of dispatching a set of vehicles to minimize a sum of
transportation and inventory costs incurred per unit time over an infinite time horizon. The DDP
is designed expressly to model those operations in which vehicles are sent out on new assignments
shortly after they have returned from previous ones, and in which the decision of how much to
deliver to a customer is left with the supplier. The model naturally incorporates random demand
for the delivered good. We show that some variants of the DDP are instances of Markov decision

problems.



The version of the DDP that we select for closer study is shown to be infeasible to solve
exactly. To continue the pursuit of our goal, we have developed an heuristic algorithm for solving
the DDP, which we have called the Fﬁture Value Decomposition (FVD) algorithm. This heuristic
returns a dispatch decision in response to the current status of the delivery system being supplied
to it. The FVD algorithm is based loosely on Markov decision theory, but is better explained
thusly: It solves a finite horizon dispatching problem, named the “master scheduling problem”
(MSP), with penalties of various sizes imposed according to what condition the system is in at the
end of the horizon. The penalties are determined in a preliminary phase of the algorithm (the
solution of a set of single-customer deliverer dispatch “"subproblems,” or DDSPs), and correspond
in rough fashion to what is perceived as likely to happen beyond the end of the horizon. The
roughness arises from a decomposition, necessarily imperfect, by customer of system activity,
meaning that what happens to each customer in the future is forecast in isolation of what happens

to the others. A more detailed summary of the FVD algorithm appears in the next section.

We have studied certain aspects of the FVD algorithm analytically, but our knowledge of how
well it performs has been acquired by and large through simulation. The algorithm behaves well
under a variety of conditions, certainly with resﬁect to other procedures which may potentially be
applied to the task of dispatching under the same conditions. It also executes very rapidly on a
computer. The newness of the model actually made seeking relevant competitors difficult. The
computational tests are more a comparison of dispatching concepts than of actual procedures in

use today.

We have demonstrated the adaptability of the FVD algorithm by applying it to a real-world
operation that does not strictly conform to the DDP model underlying the algorithm. This
operation is the New York City Department of Sanitation’s marine waste transport system
(MWTS). A mathematical and somewhat streamlined model of the MWTS was designec. This

model served as the basis for a simulation of the MWTS.
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The performance of the adapted FVD algorithm in the simulated MWTS was excellent across
a number of relevant scenarios, and clearly superior to an algorithm we developed that emulated
current dispatching practices. Projected savings by switching to the FVD procedure, expressed as
the number of additional barges needed in the current dispatching system to reach the same
performance level as the FVD algorithm achieved, was on the order of 10 to 15 barges. Since each

barge may cost somewhere between $600,000 and $1,000,000, the savings are indeed substantial.

9.2 Summary of the DDP Heuristic

This section summarizes the Future Value Decomposition algorithm in a little more depth.
The basic idea of the FVD algorithm is to try to approximate the exact solution that can be
obtained, but for most problems only in principle, with Markov decision theory. The stumbling
block to the direct application of Markov decision theory to the DDP is the calcuation of what are
known as “expected future values” that serve as penalty terms in a finite horizon dispatch
optimization problem. The inclusion of penalties in the finite horizon problem’s objective function
permits long-term dispatching objectives to be pursued while considering short-term strategies.

It is the expected future values, which are tte optimal penalty terms to use, that we approximate.

The approximation of expected future values derives from a transmutation of the DDP at
future decision points. The transmuted DDP is marked by the following alterations to the

original DDP:

1) the itinerary set of the original DDP is replaced by a new itinerary set with all itineraries

includins one customer only:
2) the vehicle fleet is unlimited in size:
3) dispatches fail at random with a given probability.

Under these changes to the nature of the DDP at future decision points, the expected future value

of a given decision in a given state equals a sum of expected future values by customer. The latter



values are found as a set of DDP-like problems called "single-customer deliverer dispatch
subproblems” is solved. The DDSPs are solved in advance of any dispatching, so that the
component expected future values for each customer can be accessed by the procedure used to
generate each dispatch. Since the decisions and dynamics of the transmuted DDP do not match
exactly those of the original DDP, the expected future values derived by this decomposition by
customer will be in error of the true values to some degree. We try to minimize that degree of
error by judicious selection of the itinerary set and the dispatch failure probability for the

transmuted DDP.

For each dispatch, a finite horizon dispatch optimization problem is solved. This problem is
called the "master scheduling problem.” The MSP’s objective function consists of terms
representing transporatation and expected inventory costs incurred during the horizon, plus
penalties incurred at the end of the horizon, as functions of the itineraries dispatched during the
horizon. Again, the penalty terms are approximated using the expected future values arising
from the solutions of the DDSPs in the preliminary phase of the algorithm. Under the additional
assumption that each customer may appear in at most one itinerary dispatched during the
horizon, the MSP attains a relatively simple form and can be solved using integer programming

methods or one of various heuristies.

9.3 Conclusions

The two main criteria for the evaluation of any proposed dispatch determination scheme, as
cited at the beginning of this dissertation, are that it supply good dispatches, and that it not take
too long to find them. The former criterion relates to the effectiveness of the scheme, and the
latter to the potential for its being accepted by those who have the choice whether to use or not to
use it. Judging from the amount of time the FVD algorithm needs to calculate a dispatch and

from the quality of the resultant dispatches observed in all our computational experiments, we
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conclude that computer-aided dispatching systems possessing prescriptive capabilities are viable

here and now for a broader class of delivery operations than may have been previously supposed.

It is true that the algorithm never was applied in a situation where a customer could hold
more than five units of the delivered good, or where a vehicle could transport more than four.
Also, the greatest number of customers the dispatcher ever had to deal with was twelve. Yet we
feel that the procedures we have developed, or at least their driving concepts, may be incorporated
in CAD systems for operations larger in one or more of the relevant dimensions (see the next
section for suggestions of how this may be done). The basis for this conjecture lies in the
robustness we have observed in the performances of different variants of the FVD algorithm in
many problems. It seems that any concerted effort to instill long-term objectives in short-term
dispatching is rewarded to some degree. The main contribution of this work may then be viewed
as the provision of a consistent framework for making tradeoffs between short-term and long-

term objectives in the types of problems we have examined.

9.4 Directions for Future Research

This dissertation represents the first formal study of the deliverer dispatch problem as we
have defined it. Because the subject is so new, many interesting and important questions have
yet to be answered. Some of them have been brought up during the course of this work, while
others have not even been conceived yet. This section summarizes the questions raised in this

thesis.

Some of the puzzling numerical results from the case study in Part II may indicate that the
constraints on dispatching in the FVD algorithm are too restrictive in certain situations. Can it
be made feasible computationally to allow multiple dispatches to a customer in the deliverer

dispatch subproblems or the master scheduling problem?



More efficient heuristics to solve the MSP seem to be required if the FVD algorithm is to be
applied to larger problems. Perhaps MSP heuristics can take computational advantage of the
slow change in system characteristics from dispatch to dispatch in large systems. Also, can the
FVD algorithm deal with large vehicle transport and customer holding capacities? The sizes of
the itinerary set and the DDSPs grow uncomfortably large in these circumstances. One way of
dealing with these situations may be to work in aggregated units of the delivered good, in which
case we can apply directly the techniques we have developed and then disaggregate to obtain the
final dispatch. This is reminiscent of what we did to adapt the FVD algorithm to MWTS
dispatching; although we planned deliveries in units of barges, the delivered good was consumed
in fractions of a barge. An interesting and related question about MWTS dispatching is: Would
working in units of fractions of a barge (say, half- or quarter-barges) improve dispatching
performance? Although the complexity of the DDSPs would grow, the itinerary set would remain

the same size, because only whole barges may be transported.

If the DDSPs are of managable size but the itinerary set has grown to unwieldy dimensions,
we may be able to employ itinerary elimination procedures so thui the number of itineraries to
include in any MSP is not too great. We already investigated one such procedure in Section 4.3.4,
where the MSP was first detailed, that utilized the principle of domination. There, one itinerary
could be shown to dominate all others visiting the same customer subset. Perhaps the domain of
domination can be extended beyond the same customer subset to, say, all itineraries visiting
customers in the same geographic region. Action elimination procedures that have been
developed for assisting in solving Markov decision problems may provide a basis for applying an
extended domination principle to itinerary elimination. Another potential basis for eliminating
itineraries from consideration are the optimal replenishment policies from the DDSPs. Maybe it
makes sense to eliminate an itinerary if the total delivery made to its customers in their DDSPs,
given their current inventory levels, falls below some threshold based on the optimal

replenishment policies.
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The itinerary size problem may be attacked from the other direction, too. Suppose only a
small set of “core” itineraries is considered for any dispatch. The resulting MSP would not be too
difficult to solve. We may then be able to test exchanges of itineraries in the solution set with
other itineraries not members of the core set to see if dispatch performance can be improved upon.
The form of the dispatch cost C,+ given in (4.36) also gives us the opportunity to quickly test
itineraries to see if they are useful or not, becuase it is never useful to dispatch an itinerary j wtih
C;*>0. For application of the DDP to larger problems, more research into itinerary elimination

procedures may be quite important.

Much work remains in the development of good methods for establishing replenishment costs
and dispatch failure probabilities for the DDSPs. We have made several suggestions about what
may be done, but have only had the liberty to investigate at a very superficial level. Along the
same lines, can missed delivery target effects be represented more realistically in the DDSPs? We
have assumed in the DDSPs that a customer receives either its optimal replenishment quantity
or nothing. Can we design DDSPs in which customers may receive deliveries in between these
amounts, at frequencies approaching those occurring in the actual system? Another approach is
to do away with dispatch failures entirely, and to discourage over-utilization of the vehicle fleet

by increasing the replenishment costs in the DDSPs.

The DDSPs as currently formulated also completely discard vehicle availability information.
Perhaps dispatch failure probabilities may be made to depend on the number of vehicles available
or some other quantity derived from the vehicle time-to-availability measures. The DDSP
formulation must then describe the dynamic behavior of the representation of systemwide vehicle
availability solely as a function of decisions made for the single customer. This poses the major

obstacle for vehicle availability representation in the DDSPs.

A very interesting question is how well an implemented FVD algorithm with periodic

updating would perform in a system where demand means have a tendency to drift over time. We
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have not had the opportunity to study this topic, but practical concerns create an interest in it.
Also, can the FVD algorithm be adapted feasibly to handle the case of cyclically varying demand

distributions?

It would be valuable to have some means of establishing lower bounds on cost rates in DDPs

more general than the one we developed bounds for in the dissertation.

The chapter on computational experience in this dissertation (Chapter V) went a long way in
answering some of the questions arising in connection with the development of a new algorithm.
But more work is called for. In particular, sensitivity analyses should be conducted to study the
effects of vehicle fleet capacity, demand coefficient of variation, and other factors on the

effectiveness of the FVD algorithm.

Finally, the more specialized questions that could not be answered completely concerning the
application of the FVD algorithm to MWTS dispatching merit further study. Why does myopic
dispatching perform as well as FVD dispatching? Why do shorter horizons work better than long
ones? The answers to these questions will teach us even more about the quality of the FVD

algorithm for solving deliverer dispatch problems.
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APPENDIX A
GRAPHIC DISPLAY OF THE MWTS

During the course of research on the case study of this dissertation, the author developed a
graphic display of the simulated marine waste transport system on an Apollo DN660 workstation.

This appendix discusses the display and considers its possible uses.

The development of the MWTS graphic display began as an exercise in computer graphics
programming for the author. After the graphics routines had been debugged, thou h, the display
supplied some unexpected dividends. Logic errors in the MWTS model (for instance, a vanishing
barge phenomenon) could easily be detected by visual inspection. Also, poor dispatching practices
became readily apparent. In one version of the set of dispatch procedures, full barges tended to
pile up at staging areas, creating a dearth of full barges for digging out at Fresh Kills Landfill.
Not only was bad dispatching no.ticed quickly, but little quirks in good dispatching procedures

could be identified, and finetuning measures assessed in short order.

Exhibit A.1 shows what is displayed on the graphics monitor at an instant in time during the
simulation. (Note: the picture was generated on a black-and-white monitor, whereas the main
version tested operates on the color monitor. The color version’s display is also less compact,
making it easier to distinguish the various system elements visually.) Marine transfer stations,
staging areas, Fresh Kills Landfill, tugs, empty barges, and full barges are each represented on
the screen by a distinct icon (and, in the color graphics version, with different colors). To depict a
partially loaded barge, the display fills in the empty barge icon in proportion to the fraction of
total barge capacity occupied by refuse. The loading barge icon at each MTS is situated within
the MTS icon in what looks like a slip  When an MTS is in a stockout condition, a solid triangle
replaces the barge icon in the MTS's slip. A rough map of New York City is drawn in the

background. Samples of each symbol are labeled in the exhibit for reference.
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Additional information appears in the upper left-hand corner of the display. At the very top
there, the week number, day, and time of day of the simulation are printed. Below this is located
a graphic “barometer” of recent system performance. The numbers running down the left side
refer to percentage of recently delivered refuse lost by the system. This performance measure is
an exponentially smoothed average of percentage of lost refuse per pulse (one pulse equals 15
minutes here). In Exhibit A.1, this measure stands at about 22% (not very good); also, three

MTSs were out of light barges at the moment this snapshot was taken.

What Exhibit A.1 cannot convey is that the display is animated. With every pulse, the entire
display is updated to reflect the current status of the system. On the Apollo DN660, the rate of
screen updates is quite fast, and the simulation time interval between updates short enough (15
minutes), so that tugs seem to move smoothly on their voyages, and barges gradually fill up with
refuse. Depending upon which algorithm is used to dispatch tugs from FKL, the display may
pause before some updates as a new dispatch is determined. A manual dispatching mode is also
available. In this mode, the graphic display user instructs tugs where to go and which barges to
take along by moving a mouse (the computer kind) over the adjacent tabletop and pressing

buttons on top of the mouse.

Exhibit A.2 shows the same system later in the week, when it stands in much better shape.

With a couple of alterations, the graphic display of the MWTS may qualify as a decision
simulator {DS), as it is described by Lembersky and Chi [18]. In their words, "a DS provides an
interactive, visual (instead of numerical) simulation of the actual decision-making scenario,
including the consequences of the decisions made” (p. 2). Lembersky and Chi offer three salient
features of DSs. Below, we list these features and indicate how the MWTS display carries or can

be made to carry each of them:

[
o]
o
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1) "A DS provides a believable representation of the actual decision-making environment.”
Believability is ultimately in the eye of the beholder, and the designs of the icons and the map
may not be to the liking of a particular user. Nevertheless, numerous studies cited by Lembersky
and Chi emphasize that watching a symbolic representation of a system in action engenders more
belief in a final report of system performance than simply being handed the final report would.
The display also received favorable feedback from an official at the New York City Department of

Sanitation after an informal demonstration.

2) “A DS is highly interactive and provides immediate feedback on the effect of decisions.”
When the display program is run in manual mode, the lost refuse barometer keeps the user
informed about recent system performance. In color, readings below 5%, which do not represent
serious system difficulties in and of themselves, are given in green on the baromenter. When the
lost refuse rate surpasses 5%, the excess is displayed in red. Since refuse inflows are modeled as
probabilistic, system performance for the same decisions may vary slightly from instance to
instance. But the barometer does not portray performance in fin: detail, so differences due to
stochastic fluctuation are by and large not easily detectable. Lembersky and Chi do not discuss
the case of implementing DSs in environments where some key system inputs have high degrees

of variability, although this seems to us an important issue.

3) "A DSis easy to use, without special training.” To use the MWTS display in manual mode,
the user must simply learn what to do with the mouse in order to relay his/her decisions to the
program. The user is cued on the display for what each button does at any particular point in the
dispatch process. Basically, the user must decide either to delay dispatch (and if so, for how long),
or to send the tug somewhere. In the latter case, the user rolls the mouse around to move a
pointer on the screen to the tug’s destination facility, then presses a button once for each barge to
take along. It does not take long for a user to learn how to execute dispatches in the MWTS

display program.



Here is one scenario for the employment of the MWTS display in real-time dispatching

support (i.e., within a computer-aided dispatching system):

The computer and graphics display monitor are located in the dispatcher’s office, and are on at
all times. When the dispatcher is not involved with the planning of dispatches using the CAD
system, the monitor carries a display of the current configuration of the system (with certain
elements extrapolated from their last known values, if necessary). The dispatcher presses a key
on the keyboard or a button on the mouse to switch from "display current system” to “plan
dispatch” mode when he/she wants to plan for a current or future dispatch. He/she then types in
the projected time that this dispatch will occur so that the CAD system can forecast what the
MWTS will look like at dispatch time and display that on the monitor. What follows is a series of
"what-if” investigations by the dispatcher. To relieve the burden of manually specifying each
future dispatch in each "what-if” scenario, the dispatcher may set up the CAD system to automate
some subset of future dispatches. Here is where the dispatching procedures studied in this thesis
may be implemented. When the dispatcher settles on a dispatch, he/she enters this information

into the CAD system, where it is stored and made available for future reference.

The MWTS graphic display does not require much modification to serve in the capacity
outlined above. In its present form, it also can be used to aid long-term MWTS decisions, much as
the Barge Operations System Simulator described in [20] did. The user may weigh alternate
decisions in barge purchasing, tug hiring, MTS shutdown, and other strategic actions by visually
inspecting their consequences as the MWTS is simulated on the display. The reader is invited to
consult [18] and its references for a broader discussion of the potential impacts of visual feedback

of decisions in a simulation environment.
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APPENDIX B

DESCRIPTION OF INSTANCES SIMULATED IN CHAPTER V

In this appendix, we provide the data for each of the DDP instances simulated during the

computational experiments reported on in Chapter V of this dissertation.
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Demand probabilities for each customer in each instance:

Customer

0 units

Instance 1

2 units

Customer

0 units

Instance 1x

1 units

3 units




Instance 2

Customer 0 units 1 units 2 units 3 units
0.09
0.01
0.02
0
0.04
0.03 |

Instance 2x

Customer 0 units 1 units 2 units 3 units

0.03 | 0.19 | 074 | o004
2 0.02 0.12 0.70 0.16
3 0 0.78 0.22 0

4 0.01 011 0.55 0.33
5 0.03 0.19 0.74 0.04
6 0 0.78 022 0

7 0.03 0.19 0.74 0.04
8 0.02 0.25 0.73 0

9 0.04 093 0.02 0.01
10 0.01 011 0.55 0.33
1 0.01 0.11 0.55 0.33
12 0.01 011 0.55 0.33

(o]
(V]
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Instance 3

e I R
2 0 0.70 0.30
3 0.10 0.90 0
4 0 0.70 0.30
5 0.02 0.25 0.73
6 0.88 0.11

Customer 2 units




Customer

Instance 4

Customer

0 units

Instance 4x

1 units

o]

wlo|lvljolunlsa]lw|~Nn) -
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(3]
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Instance 5

| Customer 0 units 1 units 2 units 3 units :

0.73

0.03

0.53

0.29

0.48

0.24

0.51

0.29

0.75

0.01

Customer 0 units

0.70

Instance 5x

1 units

0.12

3 units

W]joolNjIO bW IN] -




Customer 0 units

Instance 6

1 units

2 units

3 units

Customer

Instance 6x

1 units

2 units

wlvulolulsalw]l i =§




Instance 7

1 o018 | o018 | 032 | 032 |
0.32 0.26
0.12 0.12
0.20 0.27
037 0.19
0.25 0.27

Instance 7x
0.20
0.29
0.18
0.29
0.20
0.20
0.12
0.20
0.29
0.12
0.18

OO NI NI RARIWEN] =]
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Below we supply itinerary information for each instance simulated in Chapter V in the form
of "basic itinerary sets.” The full set of itineraries for each instance is generated from the basic
itinerary set in the following way: For each basic itinerary, include in the full itinerary set all
itineraries delivering at least one unit to each customer in the basic itinerary, provided that the
total delivery on that itinerary is at least two units but no greater than the vehicle capacity of
that instance. The other characteristics of that itinerary are the ones of the corresponding basic
itinerary.

Basic itinerary sets:
Itineraries for Instance 1

Duration Transport-

Customers (periods) ation Cost
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Itineraries for Instance 2

Duration Transport- |
f  Customers (periods) ation Cost

234



Itineraries for Instance 3

T

re— B YW N
219
26.1
30.9
353
374
31.1
39.5
354
36.8
445
423
428
44.4
49.8

(V) I V) VY NY VY V) V) VY R VY YY) DY [ U RN

o
w
(4]



Itineraries for Instance 4

Duration Transport- §
| Customers (periods) ation Cost §

HWIWININININININ] =)

Itineraries for Instance 5

: Duration Transport- ¥
A Customers (periods) ation Cost §

)

NININININN] ] =] a2 a]
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Itineraries for Instance 6

: Duration Transport- §
| Customers (periods) ation Cost §

ESTENI KN N Y =Y LV N ] N =Y =Y =Y =Y
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Itineraries for Instance 7

- Duration Transport- |
Customers (periods) ation Cost §

21.7

18.5

239

17.2

VHJWIN] -

9.7

17.6

28.3

30.5

22.3

21.0

28.0

238

33.7




Itineraries for Instance 1x

239

2 2 6-7 2 21.9

3 1 6-8 2 21.6

4 1 7-8 . 2 22.8

5 1 5-6-7 2 31.6

6 1 5-6-8 2 31.4

7 1 5-7-8 2 30.1

8 1 6-7-8 2 27.5

9 2 8-9 2 254
10 1 16.3 8-10 2 23.6
11 1 13.5 8-11 2 22.4
12 1 11.5 8-12 2 22.0
1-2 2 249 9-10 2 264
1-11 2 239 9-11 2 259
1-12 2 234 9-12 2 25.8
2-11 2 25.4 10-11 2 21.0
2-12 2 248 10-12 2 21.1
11-12 1 18.3 11-12 1 18.3
1-2-11 2 303 8-9-10 2 31.2
1-2-12 2 29.7 8-9-11 2 30.7
1-11-12 2 28.6 8-9-12 2 30.6
2-11-12 2 30.1 8-10-11 2 28.3
3-4 2 20.2 8-10-12 2 28.4
3-12 2 21.0 8-11-12 2 27.1
4-12 1 18.7 9-10-11 2 31.1
3-4-12 2 259 9-10-12 2 31.2
5-6 2 21.7 9-11-12 2 30.7
5-7 2 244 f 10-11-12 2 25.8




Ttineraries for Instance 2x

e i
> ” 122 2 19.7
3 3 71 2 23.4
2 > 120 1 11.0
5 2 13.8 1 12.5
6 1 5.9 1 19
- ” >3 2 15.2
2 ; 51 2 16.2
5 ” 39 2 19.3

2 2 16.0
> 2 19.1
2 2 18.8
2 2 18.8
2 2 21.8
5 2 220
3 2 219
5 2 18.2
2 2 20.1
2 2 20.0
2 2 23.0
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Itineraries for Instance 3x

'1 Customers Trans. cost §
18.4
12.1
239
20.1
239
29.1
36.5
30.4
32.3
40.5
37.1
45.1
25.1
333
29.6
304
26.7
29.2
43.5
39.8
38.6
35.7
31.8

Ol NJO TN WIN] =)

NEIENININININIENTINININININIENINININININININ =2 INEN

2
1
]
1
1
1
1
2
1
2
2
2
2
1
2
1
1
1
1
2
2
2
2
1
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Itineraries for Instance 4x

‘_‘ Dura- Dura- |
Customers tion Trans. cost § Customers tion Trans. cost |

1.9

242

1 2 1.4 5-7 3 )
2 2 1.0 5-8 3 1.9
3 2 1.2 6-7 3 1.9
4 2 1.3 6-8 3 1.9
5 2 1.6 7-8 2 1.6
6 2 1.7 5-6-7 3 2.1
7 2 1.4 5-6-8 3 2.1
8 2 1.3 5-7-8 3 2.1
9 2 1.3 6-7-8 3 2.1
10 2 1. 7-9 2 1.7
11 2 1.0 7-11 2 1.7
12 2 0.9 8-9 2 1.6
2 1.4 8-11 2 1.6
2 1.6 9-11 2 1.6
2 1.6 7-8-9 3 1.9
2 1.6 7-8-11 3 1.9
2 1.6 7-9-11 3 2.0
2 1.7 8-9-11 2 1.8
3 1.8 10-11 2 1.6
3 1.8 11-12 2 1.4
3 1.9 10-12 2 1.7
3 1.9 10-11-12 3 1.9
3




Itineraries for Instance 5x

5-6
3-4-6
3-4-5
3-5-6
4-5-6

5-7

6-7
5-6-7

8-9
8-10
9-10

8-9-10
9-11
9-12
10-11
10-12
11-12
9-10-11
9-10-12
9-11-12
10-11-12
1-11
1-12

| 1-11-12

Wi Niojluna~lw]IN] —
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Itineraries for Instance 6x

1 5-7 2 2.2
1 5-6-7 2 2.6
1 7-8 1 1.7
1 7-9 2 2.3
1 7-11 1 1.8
1 7-10 1 1.8
1 8-9 2 2.2
1 8-11 1 1.8
1 8-10 1 1.8
1 9-11 2 23
2 S-10 2 2.4
2 7-8-9 2 2.6
2 7-8-11 2 2.3
2 7-8-10 2 2.3
2 7-9-11 2 2.8
2 7-9-10 2 2.8
2 7-10-11 2 2.2
2 8-9-11 2 2.7
2 8-9-10 2 2.7
2 8-10-11 2 2.2
2 9-10-11 2 2.7
2 8-12 2 2.7
2 11-12 2 2.4
1 10-12 2 2.5
2 8-11-12 2 3.0
2 8-10-12 2 3.0
2 10-11-12 2 2.8
2 10-11 1 1.5




Itineraries for Instance 7x

Dura- ) Dura- |
% Customers tion Trans. cost ; Customers tion Trans. cost

10-11

16.0

1-11-12

25.6

1-10-12

25.4

1-10-11

24.4

10-11-12

21.5

7-10

14.2

6-10

14.6

7-12

18.7

6-12

19.5

7-11

16.5

6-11

17.3

6-7

13.9

7-10-12

22.1

6-10-12

22.9

7-10-11

19.9

6-10-11

20.8

6-7-10

18.5

7-11-12

22.1

6-11-12

22.9

6-7-12

23.0

6-7-11

20.8

7-9

28.7

7-8

30.1

8-9

30.8

245
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APPENDIX C
MWTS ITINERARY SET

This appendix describes the itinerary set used in all the marine waste transport system
scenarios in the computational work of Chapter VIII. Exhibit C.1 lists the facilities of the MWTS
and their digital codes. Exhibit C.2 gives, for each itinerary, its focal facility (by facility code),

the barge delivery to each marine transfer station, and the expected duration in pulses.

Exhibit C.1: MWTS Facilities

i Gansevoort . TS ]
West 135th Street

j East 91st Street

i Greenpoint

§52nd Street
[Southwest Brooklyn

d South Bronx

North Shore Queens
| Pier 56

§ 36th Street

OWIRIN[OAIUNIB|IWIN] =

>_ South Bronx
8§ Fresh Kills Landfill




Exhibit C.2: MWTS Itinerary Set

(pulses) |

Barge delivery to MTS
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Exhibit C.2: MWTS Itinerary Set (continued)

Barge delivery to MTS Approx. ‘,‘
eyl dUration |
7 8 (pulses) i

Focal
facility

folololo|e|o|v=|nl=|=]|o|o|o|e]|o|c|c|jo|o]|c]c]|c|ck o §

jo|olojo|o|o]lolo|o|o|o|o|o|o|o|o|o]o|w]=|n]|w]=]|n~
:f' olojo|lojojololo|lo]lolo]lolojo]lolo]jocjoclo]lolelolo o
ololololololololo]lololo o oj=Invf—=]=lolojo]olo o‘:
: olololojojolojololo]lo]=slwlnvfjwln]|nvlw]ololol=]lw Nf
—=IN]Jw]=a|N]s]ojo]lojo|ojolo]olojololoclololololo o:
wln| =]l a]lmfo]lolojolololjojoiololojololololole c"‘:
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