
Power Failure Cascade Prediction using Machine
Learning

by

Sathwik P. Chadaga

Dual Degree (B.Tech. and M.Tech.), Electrical Engineering,
Indian Institute of Technology Madras, 2020

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Masters of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

©2023 Sathwik P. Chadaga. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright,

including to reproduce, preserve, distribute and publicly display copies
of the thesis, or release the thesis under an open-access license.

Authored by: Sathwik P. Chadaga
Department of Aeronautics and Astronautics
August 8, 2023

Certified by: Eytan H. Modiano
R.C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by: Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Power Failure Cascade Prediction using Machine Learning

by

Sathwik P. Chadaga

Submitted to the Department of Aeronautics and Astronautics
on August 8, 2023, in partial fulfillment of the

requirements for the degree of
Masters of Science in Aeronautics and Astronautics

Abstract

We consider the problem of predicting power failure cascades due to branch failures.
We propose several flow-free models using machine learning techniques like support
vector machines, naive Bayes classifiers, and logistic regression. These models predict
the grid states at every generation of a cascade process given the initial contingency.
Further, we also propose a model based on graph neural networks (GNNs) that pre-
dicts cascades from the initial contingency and power injection values. We train the
proposed models using a cascade sequence data pool generated from simulations. We
then evaluate our models at various levels of granularity. We present several error
metrics that gauge the models’ ability to predict the failure size, the final grid state,
and the failure time steps of each branch within the cascade. We benchmark the
proposed models against the influence model proposed in the literature. We show
that the proposed machine learning models outperform the influence models under
every metric. We also show that the graph neural network model, in addition to being
generic over randomly scaled power injection values, outperforms multiple influence
models that are built specifically for their corresponding loading profiles. Finally, we
show that the proposed models reduce the computational time by almost two orders
of magnitude.

Thesis Supervisor: Eytan H. Modiano
Title: R.C. Maclaurin Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I want to thank my advisor Prof. Eytan Modiano for his guidance and constant

support. His insights and intuitions have been crucial in the formulation and devel-

opment of this work. I also want to thank my colleagues Xinyu Wu and Dr. Dan

Wu. Their works on the influence model and their implementation of the cascading

failure simulator, with which I generate the data required to train my models, have

been vital to my thesis. I am also grateful to my undergraduate advisors Prof. David

Koilpillai and Prof. Nambi Seshadri who inspired me to be a researcher.

This work was supported by NSF grants CNS-1735463 and CNS-2106268, and by

a research award from the C3.ai Digital Transformation Institute.

I would like to thank my colleagues at the Communications and Networking Re-

search Group - Bai Liu, Vishrant Tripathi, Chirag Rao, Nick Jones, Jerrod Wigmore,

Quang Nguyen, Vallabh Ramakanth, and Xinzhe Fu - for creating such a supportive

and friendly atmosphere in the lab. I also want to thank my friends Akshay Subra-

manian and Avik Pal for the useful discussions on graph neural networks that initially

encouraged me to explore its application in the field of power systems.

I am grateful to my friends - Naman Aggarwal, Keshav Gupta, Mansi Joisher,

Mrigi Munjal, Siddharth Nayak, Richa Nayak, and Saachi Chandrashekhar - for mak-

ing my life at MIT fun and enjoyable. I am lucky to have found you all. I thank the

groups that I have been a part of during my graduate life like the MIT Cricket Club,

the Tang Hall Residents Association, and the LIDS Socials Committee for the fun

and useful activities they have offered me.

I am grateful to my parents, Ahalya H. S. and Udaya Prakash Chadaga, for their

utmost love and support. To this day, I find myself using the skills that I learned from

my talented mother when I was a child, be it related to basic algebra, music or life in

general. My father’s hard work and dedication has been and will always be a constant

source of inspiration to me. I thank them for believing in me and encouraging me to

pursue my dreams.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Related Work . 15

1.2.1 Flow-Based Methods . 15

1.2.2 Flow-Free Methods . 16

1.2.3 Machine Learning Techniques 16

1.2.4 Graph Neural Network Methods 17

1.3 Problem Formulation . 18

1.4 Contributions . 19

1.5 Outline . 20

2 Machine Learning Techniques for Failure Cascade Prediction 21

2.1 Naive Bayes Model . 21

2.1.1 Prerequisite . 21

2.1.2 Naive Bayes for Cascade Prediction 22

2.2 Support Vector Machine Model . 23

2.2.1 Prerequisite . 23

2.2.2 Support Vector Machines for Cascade Prediction 24

2.3 Logistic Regression Model . 25

2.3.1 Prerequisite . 25

2.3.2 Regression Model for Cascade Prediction 25

7

3 The Graph Neural Network Model 27

3.1 Model Definition . 27

3.1.1 Initial Stage . 27

3.1.2 Attention Stage . 29

3.1.3 Averaging Stage (Hidden Layers) 30

3.1.4 Final Stage . 31

3.2 Model Training . 32

3.2.1 Forward Pass . 32

3.2.2 Back Propagation . 33

4 Results: Data Synthesis and Design Specifications 37

4.1 Data Synthesis . 37

4.1.1 The Cascading Failure Simulator Oracle 37

4.1.2 Data for Machine Learning Models 38

4.1.3 Data for the GNN Model . 39

4.2 Model Design Specifications . 40

4.2.1 GNN Model . 40

4.2.2 Machine Learning Models . 40

4.2.3 Influence Model . 41

5 Results: Graph Level Performance 43

5.1 Performance Metrics Definitions . 43

5.1.1 Failure Size Error Rate . 43

5.1.2 Final State Error Rate . 44

5.1.3 Failure Step Error Rate . 44

5.2 Results for the Machine Learning Models 44

5.3 Results for the GNN Models . 47

6 Results: Branch Level Performance 51

6.1 Performance Metrics Definitions . 51

6.1.1 Branch Failure Frequency . 51

8

6.1.2 Branch Final State Error Rate 52

6.1.3 Branch Failure Step Error Rate 52

6.2 Results for the Machine Learning Models 53

6.3 Results for the GNN Models . 55

7 Results: Runtime Analysis 61

8 Conclusion 63

8.1 Future Directions . 63

9

10

List of Figures

3-1 Block diagram of the GNN model. 28

5-1 Failure size error rates lαsize of various machine learning models for

IEEE89, IEEE118, and IEEE1354 (left to right) against load scaling

values α. 45

5-2 Final state error rates lαstate of various machine learning models for

IEEE89, IEEE118, and IEEE1354 (left to right) against load scaling

values α. 46

5-3 Failure step error rates lαfailure-step of various machine learning models

for IEEE89, IEEE118, and IEEE1354 (left to right) against load scaling

values α. 46

5-4 Failure size error rates lαsize of various models for IEEE89 (left) and

IEEE118 (right) against load scaling values α. 48

5-5 Final state error rates lαstate of various models for IEEE89 (left) and

IEEE118 (right) against load scaling values α. 49

5-6 Failure step error rates lαfailure-step of various models for IEEE89 (left)

and IEEE118 (right) against load scaling values α. 49

6-1 Branch-average error in prediction of final state lstate,e for IEEE89,

IEEE118, and IEEE1354 (left to right) for various load scaling plotted

against lfreq,e. 53

6-2 Branch-average error in prediction of failure steps lfailure−step,e for IEEE89,

IEEE118, and IEEE1354 (left to right) for various load scaling plotted

against lfreq,e. 55

11

6-3 Error in prediction of final state lstate,e for IEEE89 (left) and IEEE118

(right) averaged over all scaling values [1, 2] against branch failure fre-

quencies lfreq,e. 56

6-4 Branch-average error in prediction of final state lstate,e for IEEE89 (left)

and IEEE118 (right) for various load scaling against branch failure

frequencies lfreq,e. 57

6-5 Error in prediction of failure time steps lfailure−step,e for IEEE89 (left)

and IEEE118 (right) averaged over all scaling [1, 2] against failure fre-

quencies lfreq,e. 58

6-6 Branch-average error in prediction of failure steps lfailure−step,e for IEEE89

(left) and IEEE118 (right) for various scaling against branch failure

frequencies lfreq,e. 59

12

List of Tables

7.1 Prediction time in seconds per 1000 samples 61

13

14

Chapter 1

Introduction

1.1 Motivation

Modern power grids often experience unpredictable component failures that are caused

due to an exogenous event like a tree branch falling, bad weather, failure of an aged

device, or an operator error. These random failures, if not treated properly, can prop-

agate rapidly through the grid, potentially resulting in large scale blackouts. Hence, it

is important to study such failure cascades as part of the power contingency analysis.

Further, power grids have seen a recent surge in outages [1] due to extreme weather

conditions [2, 3] and power grid aging [4], causing significant losses to businesses, in-

dustries, and healthcare sectors [5, 6]. Additionally, the move towards electrification

of fossil fuel technologies [7] makes the modeling and prediction of power failures in-

creasingly important. However, failure cascade prediction is a difficult task due to the

complex and time varying nature of interactions between various grid components.

1.2 Related Work

1.2.1 Flow-Based Methods

There have been several studies performed on historical failure cascade data [8–11].

However, the scarce historical records of cascading failures are not representative of

15

all the possibilities, leaving potential blackouts concealed. To tackle this challenge,

numerical simulations and analysis of different initial outages have been studied based

on power flow models. This involves solving the static power flow problem step-by-

step and determining the sequence of quasi-static transmission link overflows [12,

13]. However, the AC power flow model is computationally expensive, while the

computationally tractable DC power flow model has been shown to underestimate

the failure sizes [14].

1.2.2 Flow-Free Methods

To overcome the high complexity of flow-based methods, efforts have been devoted to

constructing flow-free models of failure cascades. The branching process is a popular

tool that measures the distribution of the number of outages in a cascade [9, 10],

and the random chemistry algorithm together with such a distribution can efficiently

estimate the overall blackout risk [15,16]. Moreover, a model to predict blackout oc-

currence has been proposed using chemical master equation in [17]. The expectation-

maximization algorithm has been used to estimate interactions between branches

during a cascade in [18]. The branch interactions have also been captured using the

interaction [19] and influence [11, 20] models. The above flow-free models aspire to

capture the cascade flow dynamics from data, obtained either from simulations or

historic outage records. This approach of designing cascade models from data has led

researchers to investigate fast and accurate machine learning models.

1.2.3 Machine Learning Techniques

Machine learning has been used in power system analysis in various settings [21–23].

For example, as power flow calculation using Newton-Raphson is computationally

expensive, more efficient power flow calculation methods have been proposed using

deep [24] and convolutional [25] neural networks. Moreover, in the area of cascade

prediction, support vector machines have been employed in blackout prediction [26],

cascade failure size estimation [27], and load loss estimation [28]. A performance

16

comparison of various machine learning tools like support vector machines, k-nearest

neighbors, logistic regression, and decision trees for cascade size estimation is done

in [27]. Additionally, methods using Bayes networks have been proposed for failure

cascade prediction in [29]. Despite being computationally efficient, these techniques

fail to take advantage of the power grid topology information leading us to explore

techniques that use graph neural networks.

1.2.4 Graph Neural Network Methods

Graph neural networks (GNNs) are a type of neural networks that operate on graph-

structured data [30, 31]. They process input graphs by repetitively updating the

information at each node based on its neighbors, thereby leveraging the underlying

graph topology. There have been recent applications of GNNs in the field of power

networks. One such application is the design of computationally efficient power flow

solvers. In [32–34], GNNs are trained in a supervised way to imitate the Newton-

Raphson power flow solver. Whereas [35,36] follow an unsupervised learning method

that minimizes the violation of Kirchoff’s laws. GNNs have also been used to design

fast optimal power flow solvers [37,38].

Moreover, GNNs have seen recent application in the field of power failure cascades.

GNN based methods have been proposed for predicting grid safety from the grid

operation conditions [39, 40]. Additionally, GNNs have been used for real time grid

monitoring tasks during a cascade, like predictions of optimal load shedding [41],

total load lost [42], and fraction of tripped branches [43]. All these works involve a

graph-level prediction task, i.e. they predict a particular property of the grid as a

whole. GNNs can also be used for edge-level and node-level prediction tasks. For

example, in [44], a node-level vulnerability metric called the Avalanche Centrality is

predicted for all nodes of the grid using GNNs.

The existing works as discussed above are focused on characterizing one or two

aspects of failure cascades, like load loss, failure size, or blackout possibility, lacking

a comprehensive evaluation of the cascade at finer levels of granularity. This is done

in [20], where an influence model is trained to predict the power grid states at every

17

generation of the cascade. However, the influence model approach cannot generalize

for variable loading as it only takes the initial contingency as its input and not the

power injection or the power flow values. A flow-based GNN model has been proposed

in [45] that can generalize for variable power injections. However, this model is

centered around predicting the power flow values in a step-by-step manner to obtain

the sequence of branch overflows. Hence, even though this technique speeds up the

cascade prediction process compared to traditional methods, it still involves a high

computational overhead in handling the formation of islands during the cascade, such

as identification of islands and rebalancing the load and power generation within

islands.

1.3 Problem Formulation

We consider the power failure cascade process due to branch failures. In this setting,

a failure cascade begins with an initial failure of one or more branches in the grid.

The initial branch failures perturb the power flow in the grid, leading other branches

to overload and trip. The new failures further cause additional branches to trip and

so on, consequently triggering a cascade process. The cascade process can be grouped

into generations in time [10], which we refer to as time steps.

We represent the power grid by a directed graph G = (V,E), where the nodes V

represent buses and the directed edges E represent branches. For a branch e ∈ E

at time t, we choose the branch state se[t] to be its binary operational state, which

can either be 0 (failed) or 1 (active). We define the network state at time t as

s[t] := (se[t])e∈E.

Our goal is to predict the cascade sequence s := (s[t])T−1
t=0 for a given initial con-

tingency s[0] (the network state at t = 0) where T is the cascade length. However, we

assume that once a branch fails, it stays in the failed state for the rest of the cascade.

This allows us to define the failure step of a branch e, the time step at which its

state changes from 1 to 0, as fe :=
∑︁T−1

t=0 se[t]. From this failure step fe, we can fully

recover the branch states se[t], and hence s, by setting se[t] = 1 for 0 ≤ t < fe and

18

se[t] = 0 for fe ≤ t < T for all e ∈ E. Hence, instead of predicting s directly, we

design a model that predicts the branch failure steps f := (fe)e∈E.

1.4 Contributions

In this thesis, we build several flow-free models for cascade sequence prediction with-

out requiring power flow calculation at every generation of the cascade. We summarize

our contributions below.

1. We propose several flow-free models using machine learning techniques like the

support vector machines, naive Bayes classifiers, and logistic regression. Given

the initial contingency, these models predict the grid state at every generation

of a cascade, providing a way to comprehensively evaluate cascades at various

levels of granularity.

2. We propose a flow-free model based on GNN that predicts grid states at every

generation of a cascade. This model takes as input the node power injection

values, the initial contingency, and the grid topology. Hence, the GNN model

can be generalized over variable load injection profiles.

3. We use the cascading failure simulator oracle from [15] to generate a cascade

sequence dataset to train our models. We then evaluate the performance of our

models at various levels of granularity including prediction of the failure size,

the final grid state, and the failure steps within a cascade.

4. We benchmark our models against the influence model and show that the ma-

chine learning models have much lower error rates. Further, we show that the

GNN model, in addition to being generic over randomly scaled loading values,

outperforms different load-specific influence models under every metric.

5. We perform a runtime analysis and show that the proposed models reduce the

prediction time by almost two orders of magnitude compared to the DC power

flow calculation based simulators.

19

1.5 Outline

The rest of the thesis is organized as follows. We propose the machine learning models

in Chapter 2 and propose the GNN model in Chapter 3. We discuss the cascading

failure simulator oracle with which we generate the data required to train and evaluate

our models in Chapter 4. We also discuss several implementation details in Chapter

4. We present graph-level prediction performance of the models in Chapter 5, branch-

level prediction performance of the models in Chapter 6, and runtime performance of

the models in Chapter 7. We end with some concluding remarks in Chapter 8.

20

Chapter 2

Machine Learning Techniques for

Failure Cascade Prediction

In this chapter, we propose several models based on machine learning techniques

to predict cascade sequences from the given initial contingency. We explore three

classifiers from the machine learning domain: the naive Bayes classifier, the support

vector machine classifier, and the logistic regression classifier. The proposed models

take as input the initial contingency s[0] and predict the cascade failure steps fe of

all branches e ∈ E. We formally define the proposed models in the following sections.

2.1 Naive Bayes Model

2.1.1 Prerequisite

We first explain the naive Bayes classifier [46] before we explain how we adapt it

to solve our problem. A naive Bayes classifier naiveBayes takes a vector x⃗ :=

[x1, x2, ..., xn] as input and predicts a label ˆ︁y := naiveBayes(x⃗) ∈ {0, ..., K − 1}.

For our problem, we explore a suitable variant called the Bernoulli naive Bayes clas-

sifier, in which each of the inputs is binary ∀j, xj ∈ {0, 1}. The mechanics of such a

classifier is explained below.

On a high level, the naive Bayes classifier tries to find a label y that maximizes

21

the conditional probability P(y | x⃗). We modify this conditional probability using the

Bayes theorem as follows.

P(y | x⃗) = P(y)P(x⃗ | y)
P(x⃗)

=
P(y)P(x1, ..., xn | y)

P(x⃗)
. (2.1)

Further, the classifier assumes conditional independence among the input features

(hence, the name naive Bayes) allowing the numerator to be decomposed as follows.

P(y | x⃗) =
P(y)

∏︁
j P(xj | y)
P(x⃗)

. (2.2)

Hence, for a given input, the naive Bayes classifier predicts the output label by picking

the y that maximizes the above probability.

ˆ︁y = naiveBayes(x⃗) := arg max
y∈{0,...,K−1}

P(y)
∏︂
j

P(xj | y) (2.3)

The probabilities P(y) can be estimated as the fraction of samples in training

dataset whose labels are y. And since xj ∈ {0, 1}, the probabilities P(xj | y) can be

estimated as follows.

P(xj | y) = P(xj = 1 | y)xj + P(xj = 0 | y)(1− xj) (2.4)

where, the probabilities P(xj = 1 | y) and P(xj = 0 | y) can be estimated from

training dataset again by counting the frequencies of data samples.

2.1.2 Naive Bayes for Cascade Prediction

In our cascade prediction problem, our goal is to predict the failure time step fe for

all branches e ∈ E given the initial contingency s[0]. For this purpose, we use a set

of naive Bayes classifiers {naiveBayese, e ∈ E}, where each naive Bayes classifier

naiveBayese is associated with the prediction task of a particular branch e ∈ E.

Analogous to the previous subsection, for each classifier naiveBayese, we treat the

initial contingency s[0] as the classifier’s input vector x⃗ and treat the classifier’s output

22

ˆ︁y as the failure step prediction ˆ︁fe with possible labels {0, ..., T − 1}. Hence, our

proposed naive Bayes model is composed of |E| naive Bayes classifiers that predict

the failure steps of all branches as follows.

∀e ∈ E, ˆ︁fe = naiveBayese(s[0]) (2.5)

We train each of these |E| classifiers separately using training data as explained

in the previous subsection by treating s[0] as the input vectors x⃗ and treating the

true failure steps fe as the target labels y.

2.2 Support Vector Machine Model

2.2.1 Prerequisite

We first explain the support vector machine (SVM) classifier [47] before we explain

how we adapt it to solve our problem. Similar to naive Bayes, an SVM classifier svm

takes a vector x⃗ ∈ Rn as input and predicts a label ˆ︁y := svm(x⃗) ∈ {0, ..., K − 1}.

The SVM classifier contains trainable parameters wk ∈ Rn and bk ∈ R correspond-

ing to each label k ∈ {0, ..., K − 1}. It predicts the label ˆ︁y as

ˆ︁y := svm(x⃗) = arg max
k∈{0,...,K−1}

wT
k x⃗+ bk. (2.6)

Note that we are using the linear variant of SVMs. Now, given the training data

with input-output pairs (x⃗i, yi), i = 1, ...,m, the training phase involves learning the

parameters wk and bk by solving the following optimization problem for each class

k ∈ {0, ..., K − 1} separately. This type of classification in which we are predicting

whether the output is a particular label or not for each label separately (note the

23

term I(yi = k)) is called one-versus-rest classification.

min
wk,bk,γ

1

2
wT

k wk + C
n∑︂

i=1

γk,i (2.7)

subject to (2I(yi = k)− 1)(wT
k x⃗i + b) ≥ 1− γk,i and γk,i ≥ 0 for all i = 1, ..., n.

where, I(·) represents the indicator function, γk,i represents the distance of each sam-

ple i = 1, ...,m away from the decision hyperplane that separates the label k from

other labels, and C is a penalty term that controls the extent of regularization. We

refer the reader to [47] for details on this optimization problem and its solution.

2.2.2 Support Vector Machines for Cascade Prediction

In our cascade prediction problem, our goal is to predict the failure time step fe for

all branches e ∈ E given the initial contingency s[0]. For this purpose, we use a set

of SVM classifiers {svme, e ∈ E}, where each classifier svme is associated with the

prediction task of a particular branch e ∈ E. Analogous to the previous subsection,

for each classifier svme, we treat the initial contingency s[0] as the classifier’s input

vector x⃗ and treat the classifier’s output ˆ︁y as the failure step prediction ˆ︁fe with

possible labels {0, ..., T − 1}. Hence, our proposed SVM model is composed of |E|

SVM classifiers that predict the failure steps of all branches as follows.

∀e ∈ E, ˆ︁fe = svme(s[0]) (2.8)

We train each of these |E| classifiers separately using training data as explained

in the previous subsection by treating s[0] as the input vectors x⃗ and treating the

true failure steps fe as the target labels y.

24

2.3 Logistic Regression Model

2.3.1 Prerequisite

We first explain the logistic regression classifier [48] before we explain how we adapt it

to solve our problem. Similar to naive Bayes and SVM, a logistic regression classifier

regression takes a vector x⃗ ∈ Rn as input and predicts a label ˆ︁y := regression(x⃗) ∈

{0, ..., K − 1}.

The logistic regression classifier contains trainable parameters wk ∈ Rn and bk ∈

R, where each parameter corresponds to a label k ∈ {0, ..., K − 1}. The classifier

predicts the probability ˆ︁pk(x⃗) := P(y = k|x⃗) for each label k ∈ {0, ..., K − 1} as

ˆ︁pk(x⃗) := P(y = k|x⃗) = exp(wT
k x⃗+ bk)∑︁K−1

l=0 exp(wT
l x⃗+ bl)

. (2.9)

Then, it predicts the output label as

ˆ︁y := regression(x⃗) = arg max
k∈{0,...,K−1}

ˆ︁pk(x⃗) (2.10)

Now, given the training data with input-output pairs (x⃗i, yi), i = 1, ...,m, the

training phase involves learning the parameters wk and bk by solving the following

optimization problem.

min
w

1

2

K−1∑︂
k=0

wT
k wk − C

m∑︂
i=1

K−1∑︂
k=0

I(yi = k) log ˆ︁pk(x⃗i) (2.11)

where, C is a penalty term that controls the extent of regularization, and I(·) is the

indicator function. We refer the reader to [48] for details on this optimization problem

and its solution.

2.3.2 Regression Model for Cascade Prediction

In our cascade prediction problem, our goal is to predict the failure time step fe for

all branches e ∈ E given the initial contingency s[0]. For this purpose, we use a set

25

of regression classifiers {regressione, e ∈ E}, where each classifier regressione is

associated with the prediction task of a particular branch e ∈ E. Analogous to the

previous subsection, for each classifier regressione, we treat the initial contingency

s[0] as the classifier’s input vector x⃗ and treat the classifier’s output ˆ︁y as the failure

step prediction ˆ︁fe with possible labels {0, ..., T − 1}. Hence, our proposed regression

model is composed of |E| logistic regression classifiers that predict the failure steps

of all branches as follows.

∀e ∈ E, ˆ︁fe = regressione(s[0]) (2.12)

We train each of these |E| classifiers separately using training data as explained

in the previous subsection by treating s[0] as the input vectors x⃗ and treating the

true failure steps fe as the target labels y.

26

Chapter 3

The Graph Neural Network Model

The machine learning models proposed in Chapter 2 do not take the node power injec-

tion values as input. Hence, it is not possible to generalize a single machine learning

model to predict cascades under variable loading profiles. Further, the machine learn-

ing models do not take advantage of the information available regarding the graph

topology. Thus, in order to build a model that can predict cascade sequences for any

given loading profile, we propose a model based on GNNs that take the node power

injection as one of its inputs.

3.1 Model Definition

The proposed model takes as input the topology of the grid G = (V,E), the initial

contingency s[0] ∈ {0, 1}|E|, and the power injection values Pv ∈ R at each node

v ∈ V . The model predicts the cascade failure steps fe of all branches e ∈ E. In

this model, we process the input data in multiple stages as explained in the following

subsections. Fig. 3-1 shows a block diagram that summarizes the model.

3.1.1 Initial Stage

We start by removing the edges corresponding to failed branches in the initial con-

tingency and get the new set of edges E ′ = {e ∈ E : se[0] = 1}. Then, we pass the

27

(a) Initial stage (left) and attention stage (right).

Averaging Stage 1
(averaging adjacent
edges and branches)

Averaging Stage K
(averaging adjacent
edges and branches)

(b) Hidden stage.

(c) Final stage.

Figure 3-1: Block diagram of the GNN model.

28

node power injection values Pv through a neural network to obtain the hidden latent

features ˜︁Pv ∈ RL as follows.

∀v ∈ V, ˜︁Pv = Hinitial(Pv) (3.1)

where, the mapping Hinitial : R→ RL represents a dense neural network

Hinitial(Pv) = σ(WM
initial...σ(W

2
initialσ(W

1
initialPv+b1initial)+b2initial)...+bMinitial) (3.2)

where, the weights and biases W initial and binitial are trainable parameters of ap-

propriate dimensions. These parameters will be learned during the training phase.

Further, σ is a non-linear function like sigmoid, tanh, or rectified linear unit (ReLU).

Note that the same neural network is being used on all the nodes v ∈ V i.e. the

weights and biases are not a function of v.

Further, we use these values ˜︁Pv to initiate the edge hidden features h0
e as follows.

∀e = (u, v) ∈ E ′, h0
e = h0

(u,v) = ˜︁Pu − ˜︁Pv (3.3)

where, a directed edge e ∈ E ′ is represented as e = (u, v) with u, v ∈ V being its

source and destination nodes respectively.

3.1.2 Attention Stage

In this stage, we generate several attention coefficients that will be necessary in the

later stages. But first, for an edge e = (u, v) ∈ E ′, we define the set of adjacent edges

as Ne = N(u,v) = {(u,w) : w ∈ V, (u,w) ∈ E ′} ∪ {(w, v) : w ∈ V, (w, v) ∈ E ′}.

Now, we generate two types of attention coefficients: the edge-to-edge coefficients

aed for every two neighboring edges e ∈ E ′, d ∈ Ne; and the node-to-edge coefficients

(beu, bev) for all edges e = (u, v) ∈ E ′ and their nodes u, v. We generate these attention

coefficients by passing the given initial contingency s[0] through dense neural networks

as follows.

a = Hattn
edge-edge(s[0]), b = Hattn

node-edge(s[0]) (3.4)

29

where, a is the collection of edge-to-edge coefficients a = (aed){e,d∈E′:d∈Ne,d ̸=e}, and

b is the collection of node-to-edge coefficients b = (beu, bev)e=(u,v)∈E′ . The mappings

Hattn
edge-edge : R|E| → R

∑︁
e∈E′ (|Ne|−1) and Hattn

node-edge : R|E| → R2|E| represent two dense

neural networks

Hattn
edge-edge(s[0]) = σ(W attn,M

edge-edge...σ(W
attn,1
edge-edges[0] + battn,1edge-edge)...+ battn,Medge-edge) (3.5)

Hattn
node-edge(s[0]) = σ(W attn,M

node-edge...σ(W
attn,1
node-edges[0] + battn,1node-edge)...+ battn,Mnode-edge) (3.6)

where, the weights and biases will be learned through back propagation in training,

and σ is a non-linear function like sigmoid, tanh, or rectified linear unit (ReLU).

These attention coefficients will be used in the next hidden stage, where we repet-

itively update edge hidden features by weighted-averages of neighboring edge and

node hidden features. The attention coefficients will act as weights for this purpose.

They represent how much weight, or attention, needs to be given on adjacent edges

and nodes while updating an edge’s hidden features.

3.1.3 Averaging Stage (Hidden Layers)

In this stage, we pass the outputs of the initial stage h0
e through a sequence of K

averaging steps. In each step k = 1, ..., K, we calculate the weighted average of

neighboring branch and node features and pass them through a neural network to

obtain the new branch features. Here, the coefficients obtained as outputs from the

attention stage are used as weights in the calculation of weighted averages. This is

formally described in the following equation.

∀k = 1, ..., K, ∀e = (u, v) ∈ E ′,

hk
e =

hk−1
e

|Ne|
+Hk

edge-edge

(︄ ∑︂
d∈Ne,d̸=e

aed√︁
|Ne|

√︁
|Nd|

hk−1
d

)︄

+Hk
node-edge

(︄
beu ˜︁Pu + bev ˜︁Pv

2

)︄
(3.7)

30

where, K is the total number of averaging steps, hk
e is the edge hidden feature of

edge e at k-th averaging step, and Ne is the set of edges that are adjacent to and

including e. The coefficients aed and bue are the edge-to-edge and node-to-edge atten-

tion coefficients respectively outputted by the attention stage. Finally, the functions

Hk
edge-edge, H

k
node-edge : R

L → RL for k = 1, ..., K represent dense neural networks

Hk
edge-edge(·) = σ(W k,M

edge-edge...σ(W
k,1
edge-edge(·) + bk,1edge-edge)...+ bk,Medge-edge) (3.8)

Hk
node-edge(·) = σ(W k,M

node-edge...σ(W
k,1
node-edge(·) + bk,1node-edge)...+ bk,Mnode-edge) (3.9)

where, the weights and biases will be learned through back propagation during the

training phase, and σ is a non-linear function like sigmoid, tanh, or rectified linear

unit (ReLU). Note that these neural networks are the same for all edges.

3.1.4 Final Stage

In the final stage, we predict the failure step probability values ˆ︁pe := [ˆ︁pe,0, ..., ˆ︁pe,T−1]

for all branches e ∈ E ′, where each entry ˆ︁pe,t is the predicted probability that branch

e fails at time t. We do this by passing the output of last averaging step hK
e through

a dense neural network as follows.

∀e ∈ E ′, ˆ︁pe = Hfinal(h
K
e) ∈ [0, 1]T (3.10)

where, the function Hfinal : RL → RT represents a dense neural network

Hfinal(h
K
e) = σ(WM

final...σ(W
2
finalσ(W

1
finalh

K
e + b1final) + b2final)...+ bMfinal) (3.11)

where, the weights W final and biases bfinal will be learnt during the training phase,

and σ is a non-linear function like sigmoid, tanh, or rectified linear unit (ReLU).

However, in this neural network, the last non-linear function needs to be softmax, so

that its outputs represent valid probability values. Finally, the failure steps of edges

31

is predicted by picking the index with the highest predicted probability value,

∀e ∈ E ′, ˆ︁fe = arg max
t=0,...,T−1

ˆ︁pe,t. (3.12)

3.2 Model Training

In this section, we discuss the training of the proposed GNN model using the cross

entropy loss function and the Adam optimizer. The goal here is to learn all the

trainable weights and biases present in all the stages of our model. This includes the

weights and biases of the following neural networks: the neural network Hinitial in the

initial stage, the neural networks Hattn
edge-edge and Hattn

node-edge in the attention stage, the

neural networks Hk
edge-edge (k = 1, ..., K) and Hk

node-edge (k = 1, ..., K) in the averaging

stage, and the neural network Hfinal in the final stage.

We start by initializing these weights and biases randomly. We then update these

weights and biases in multiple iterations. In each iteration, we first sample a random

batch of cascade samples Dbatch ⊂ Dtrain from the training dataset Dtrain. For these

samples, we run two routines called the forward pass and back propagation. In forward

pass, we obtain the model’s prediction and calculate the cross entropy loss between the

prediction and the true labels. In back propagation, we calculate the gradients of the

loss with respect to each parameter (weights and biases) and update the parameters

using this loss gradient. We repeat this process over multiple iterations of random

batches until the loss value has been reduced to a required minimum threshold value.

We discuss the details of these routines in the following subsections.

3.2.1 Forward Pass

During forward pass, we simply run the GNN model on all the samples in Dbatch,

obtain the model’s predicted output values, and save these values. Specifically, we

run a forward pass through the model and save the model’s predicted failure step

probability values ˆ︁pde := [ˆ︁pde,0, ..., ˆ︁pde,0] for all branches e ∈ E, where each entry ˆ︁pde,t is

the predicted probability that the branch e fails at time step t. We also save all the

32

intermediate variables calculated during the forward pass like edge hidden features

hk
e for all e ∈ E, k = 1, ...K, transformed node injection values ˜︁Pv for all v ∈ V , and

attention coefficients aed, bev for all e, d ∈ E, v ∈ V .

Now that we have the model’s prediction, we can calculate the cross entropy loss

between these predicted values and the true values. Let fd
e for any branch e ∈ E be

the true time step at which the branch failed. Then the cross entropy loss for this

train sample d and branch e is defined as Cd
e := − log ˆ︁pd

e,fd
e
. Note that the constraint∑︁

t ˆ︁pde,t = 1 is already satisfied since the final layer of the model’s final stage is a

softmax layer. So it is enough to penalize only the predicted probability value of the

index corresponding to t = fd
e . Finally, we can accumulate the loss of all the branches

and samples of the training batch by calculating the following average value.

Cbatch :=
1

|Dbatch|
∑︂

d∈Dbatch

1

|E|
∑︂
e∈E

Cd
e =

1

|Dbatch|
∑︂

d∈Dbatch

1

|E|
∑︂
e∈E

− log ˆ︁pde,fd
e
. (3.13)

3.2.2 Back Propagation

Now to update the model parameters, we calculate the gradients of the cross entropy

loss with respect to each parameter of the model using the chain rule. We do this

in a backward manner starting from the final stage and going back to the averaging

stage, and finally to the attention and initial stages.

Final Stage

Consider the final stage of the model. Recall that the final stage includes the following

operations.

∀e ∈ E ′, ˆ︁pe = Hfinal(h
K
e). (3.14)

Hence, the final stage contains the dense neural network Hfinal(·), whose weights

and biases need to be learned. Let the parameters of this dense neural network be

W final and bfinal (weights and biases respectively). Expanding the internal calcula-

33

tions within the neural network Hfinal(·), the final stage now looks as follows.

∀e ∈ E ′, ˆ︁pe = Hfinal(h
K
e) = σ(W finalh

K
e + bfinal) (3.15)

where, σ is a non-linear activation function (in this case, softmax). Note that the

dense neural networks in practice and in our experiments have more than one layers

Hfinal(h
K
e) = σ(WM

final...σ(W
2
finalσ(W

1
finalh

K
e +b1final)+b2final)...+bMfinal). However,

here we describe for brevity the neural network with only one layer. We update these

parameters W final and bfinal as follows.

1. We can first calculate the gradient of the cross entropy loss ∇ˆ︁peCbatch with

respect to the final stage output ˆ︁pe. From (3.13), the gradient is given as

∇ˆ︁peCbatch =
1

|Dbatch|
∑︂

d∈Dbatch

1

|E|
∇ˆ︁pe

(︄∑︂
e′∈E

Cd
e′

)︄

=
1

|Dbatch|
∑︂

d∈Dbatch

1

|E|
∇ˆ︁peCd

e

=
1

|Dbatch||E|
∑︂

d∈Dbatch

∇ˆ︁pe
(︂
− log ˆ︁pde,fd

e

)︂
=

1

|Dbatch||E|
∑︂

d∈Dbatch

− 1ˆ︁pd
e,fd

e

Ifd
e
.

where, It represents a one-hot vector with an unit entry at t-th element and

zeros everywhere else.

2. Using this gradient, we can calculate the loss gradients∇W final
Cbatch and∇bfinal

Cbatch

with respect to the parameters W final and bfinal from (3.15) using chain rule

as

∇W final
Cbatch =

(︁
∇ˆ︁peCbatch ⊙ σ′(W finalh

K
e + bfinal)

)︁
·
(︁
hK
e

)︁T
, (3.16)

∇bfinal
Cbatch = ∇ˆ︁peCbatch ⊙ σ′(W finalh

K
e + bfinal) (3.17)

where, ⊙ represents element-wise multiplication and σ′ is the derivative of the

34

non-linear activation function. Recall that we have saved the values of all the

intermediate variables during the forward pass. So we do have access to values

like hK
e making the gradient calculation possible.

3. Now, the values of the parameters can be updated as

W final ←W final − η∇W final
Cbatch, (3.18)

bfinal ← bfinal − η∇bfinal
Cbatch (3.19)

where, η is the step size. Note that the update rule shown above is followed by

the gradient descent optimizer. However, we use the Adam optimizer to train

our model, whose update rule is slightly more involved. We refer the reader

to [49] for details about the parameter update rule of the Adam optimizer.

4. Additionally, we can also calculate the gradient ∇hK
e
Cbatch with respect to the

input hK
e to this final stage. Applying chain rule on (3.15),

∇hK
e
Cbatch = (W final)

T ·
(︁
∇ˆ︁peCbatch ⊙ σ′(W finalh

K
e + bfinal)

)︁
(3.20)

This gradient calculation will be useful to extend the chain rule to other stages

as explained in the later paragraphs.

After we update the parameters of the final stage, we can use the chain rule again

to propagate further back to the averaging stage, the attention stage and the initial

stage. We explain this briefly below without going into the mathematical details.

Averaging Stage

Recall that the averaging stage contains dense neural networks Hk
edge-edge(·) and Hk

node-edge(·)

for all k = 1, ..., K, whose parameters need to be learned in training. Let the weights

of these neural networks be W k
edge-edge and W k

node-edge. Let the biases of these networks

be bkedge-edge and bknode-edge. To update the parameters of these neural networks, we fol-

low a similar procedure as the final stage. We start with the gradient ∇hK
e
Cbatch which

35

has already been calculated in (3.20) and do the following for each k = K,K−1, ..., 1.

1. Using the chain rule and using the calculated gradient value ∇hk
e
Cbatch, we can

calculate the loss gradients ∇W k
edge-edge

Cbatch, ∇W k
node-edge

Cbatch, ∇bkedge-edge
Cbatch,

and ∇bknode-edge
Cbatch with respect to the weights and biases.

2. Once we have the gradients, we can update the weights and parameters as

W k
edge-edge ←W k

edge-edge − η∇W k
edge-edge

Cbatch (3.21)

W k
node-edge ←W k

node-edge − η∇W k
node-edge

Cbatch (3.22)

bkedge-edge ← bkedge-edge − η∇bkedge-edge
Cbatch (3.23)

bknode-edge ← bknode-edge − η∇bknode-edge
Cbatch (3.24)

3. Finally, using the value of∇hk
e
Cbatch and using chain rule again, we can calculate

the gradient ∇hk−1
e

Cbatch required to update the parameters of step k − 1. We

repeat this procedure until we have updated the parameters of all K steps of

the averaging stage.

Attention Stage and Initial Stage

Using the gradient values calculated in the previous step, we can further apply chain

rule to calculate the loss gradients ∇aCbatch, ∇bCbatch with respect to the attention

coefficients a and b. This can be used to update the parameters of neural networks

Hattn
edge-edge(·) and Hattn

node-edge(·) in the attention stage.

Similarly, we can calculate the loss gradients ∇ ˜︁Pv
Cbatch with respect to the trans-

formed node injection values ˜︁Pv and with this, we can update the parameters of the

neural network Hinitial(·) in the initial stage of the model.

This way, we can use back propagation to update all the parameters within the

GNN model at each iteration of the training process. We keep repeating the feed

forward and back propagation pair with random training batches until the model’s

prediction loss has reached a required minimum threshold.

36

Chapter 4

Results: Data Synthesis and Design

Specifications

4.1 Data Synthesis

In this section, we explain the data synthesis approach we use to generate the data

useful for training the proposed models. We follow the cascading failure simulator

(CFS) oracle proposed in [15] to generate the training data. However, historic data

obtained from utility records or synthetic data generated from other oracles can also

be used to train our model without any changes to its architecture.

4.1.1 The Cascading Failure Simulator Oracle

As summarized in Algorithm 1, the CFS oracle simulates the cascade process for a

given initial contingency s[0] and power injection values (Pv)v∈V , and outputs the

failure steps f := (fe)e∈E. The CFS oracle treats branch failures deterministically, a

branch e is treated to be failed whenever the power flow ge through it crosses its given

capacity value ce. The oracle also assumes that optimal redispatch is not applicable

within a fast cascade. However, it does perform urgent load shedding and generation

curtailment in case of power mismatch. We implement the CFS oracle in MATLAB,

where we use the MATPOWER toolbox [50] to get the graph topology and branch

37

capacity values. We also use the toolbox’s DC power flow solver to calculate the

branch power flow values.

Algorithm 1 Simulating failure cascade using the CFS oracle.
Input: The grid topology G = (V,E), the initial contingency s[0], the capacity
values of branches (ce)e∈E, and the power injection values (Pv)v∈V .
Output: The branch failure steps in the cascade (fe)e∈E.
initialize t← 0; overloaded ← true.
while overloaded do

1) E ← {e ∈ E : se[t] = 1}.
2) Detect all the islands (disconnected sub-graphs) that appear. If the whole
network is connected, then it can be viewed as the only island.
for each island do

a) Specify a bus as the slack bus of the island.
b) Rebalance the power injection within the island by either generation cur-
tailment or load shedding depending on whether the supply exceeds demand
in the island.
c) Recompute the power flow values ge within the island for each branch of
the island.

end for
3) s[t+ 1]← s[t]; ∀e ∈ E : ge > ce, se[t+ 1]← 0.
4) if s[t+ 1] = s[t] then overloaded ← false end if
5) t← t+ 1.

end while
return f =

∑︁
t s[t].

4.1.2 Data for Machine Learning Models

Using the CFS oracle, we generate a data pool Dα of size M as summarized in Al-

gorithm 2. Each sample in the data pool Dα is a tuple (s[0], (fe)e∈E) containing a

random initial contingency and the corresponding cascade failure steps respectively.

All the samples in this dataset Dα are generated by scaling the node power injections

by a constant value α. Specifically, in each sample, we first generate random |E| − 2

initial contingencies s[0] by selecting two branches randomly, say e1, e2, and setting

their states to failed se1 [0] = se2 [0] = 0. Then, we scale the default power injection

values obtained from the MATPOWER toolbox uniformly across all nodes by a con-

stant given scaling value α to get (Pv)v∈V . Finally, we use the CFS oracle described

in Algorithm 1 to get the cascade failure steps (fe)e∈E for each sample.

38

Algorithm 2 Generating the failure cascade data pool for machine learning models.
Input: The grid topology G = (V,E), power injection values (Pv)v∈V that are
already scaled by a constant value α, and required data pool size M .
Output: The failure cascade data pool Dα.
initialize Dα ← {}.
while |Dα| < M do

1) s[0]← Random |E| − 2 initial contingency.
2) (fe)e∈E ← CFS oracle’s output for (s[0], (Pv)v∈V , G).
3) Dα ← Dα appended with (s[0], (Pv)v∈V , (fe)e∈E).

end while
return Dα.

4.1.3 Data for the GNN Model

We generate a data pool D of size M as summarized in Algorithm 3. Each sample in

the data pool D is a tuple (s[0], (Pv)v∈V , (fe)e∈E) containing a random initial contin-

gency, randomly scaled power injection values, and the corresponding cascade failure

steps respectively. Specifically, in each sample, we first generate random |E| − 2 ini-

tial contingencies s[0] by selecting two branches randomly, say e1, e2, and setting their

states to failed se1 [0] = se2 [0] = 0. Then, we scale the default power injection values

obtained from the MATPOWER toolbox uniformly across all nodes by a random

scaling value α ∼ Unif[1, 2] to get (Pv)v∈V . This way, our data pool contains cascades

at various loading and initial contingencies. Finally, we use the CFS oracle described

in Algorithm 1 to get the cascade failure steps (fe)e∈E for each sample.

Algorithm 3 Generating the failure cascade data pool for the GNN model.
Input: The grid topology G = (V,E), default power injection values (P 0

v)v∈V , and
required data pool size M .
Output: The failure cascade data pool D.
initialize D ← {}.
while |D| < M do

1) s[0]← Random |E| − 2 initial contingency.
2) α← Unif[1, 2]; ∀v ∈ V, Pv ← αP 0

v .
3) (fe)e∈E ← CFS oracle’s output for (s[0], (Pv)v∈V , G).
4) D ← D appended with (s[0], (Pv)v∈V , (fe)e∈E).

end while
return D.

39

4.2 Model Design Specifications

In this section, we discuss the design details of the proposed models that we use to

evaluate the performance of the models in this work.

4.2.1 GNN Model

To train the GNN model, we generate data pools D for two power grids, IEEE89 and

IEEE118, which are available in the MATPOWER toolbox using the data synthesis

methods explained in Section 4.1.3. The two generated datasets each contain 200,000

cascade sequence samples, each sample simulated on a random initial contingency

and random uniform scaling as discussed in the previous section. We get the required

graph topology, default power injection values, and branch capacities (we set the

unavailable capacities to twice the default power flows through the branches) from

the MATPOWER toolbox. In both cases, we split 90% of the dataset D into train

Dtrain and 10% to test Dtest sets.

We train two instances of the proposed GNN model, one corresponding to the

IEEE89 case and another to the IEEE118 case. We build the instances in Python us-

ing the neural network modules available in the PyTorch library [51]. The implemen-

tation can be found in https://github.com/sathwikchadaga/failure-cascade.

4.2.2 Machine Learning Models

To train the machine learning models, we generate data poolsDα for three power grids,

IEEE89, IEEE118, and IEEE1354, which are available in the MATPOWER toolbox

using the data synthesis methods explained in Section 4.1.2. For each of these IEEE

systems, we generate eleven datasets Dα for scaling values α = 1.00, 1.10, ..., 2.00.

The generated datasets each contain 10,000 cascade sequence samples, each sample

simulated on a random initial contingency as discussed in the previous section. We get

the required graph topology, default power injection values, and branch capacities (we

set the unavailable capacities to twice the default power flows through the branches)

from the MATPOWER toolbox. In all cases, we split 90% of the dataset Dα into

40

https://github.com/sathwikchadaga/failure-cascade

train Dα
train and 10% to test Dα

test sets.

We train instances of the machine learning models (naive Bayes, SVM, and re-

gression) corresponding to the IEEE89, IEEE118, and IEEE1354 cases. Note, how-

ever, that the machine learning models do not take node power injection values into

consideration, making them specific to a single loading profile. Hence, it is impossi-

ble to generalize a single machine learning model over all random load scaling val-

ues. Thus, for each IEEE system and for each of SVM, naive Bayes, and regression

models, we build multiple instances of the model for different load scaling values

α and train them using the generated data pool Dα
train. We build these models in

Python using the Scikit-Learn library [52]. The implementation can be found in

https://github.com/sathwikchadaga/failure-cascade.

4.2.3 Influence Model

Finally, we use the performance of the influence model [20] as a benchmark since

this model can evaluate metrics in almost the same granularity level as the GNN and

the machine learning models. Similar to the machine learning models, we cannot

generalize a single influence model over all random load scaling values. Thus, we

train multiple instances of the influence models specialized for different load scaling

values and IEEE systems. The implementation can be found in https://github.

com/sathwikchadaga/failure-cascade.

41

https://github.com/sathwikchadaga/failure-cascade
https://github.com/sathwikchadaga/failure-cascade
https://github.com/sathwikchadaga/failure-cascade

42

Chapter 5

Results: Graph Level Performance

In this chapter, we evaluate the trained models on several metrics that capture the

graph-level prediction performance. We first define several evaluation metrics in Sec-

tion 5.1 like the graph-level failure size error rate, final state error rate, and failure

step error rate. We then show the performance of the proposed machine learning

models in Section 5.2 using the defined metrics. We show that the regression model

performs the best among them. Finally, we show the performance of the GNN model

in Section 5.3. Here, we show that the GNN model, in addition to being generic

over randomly scaled loading values, outperforms the load-specific influence models

and competes with the load-specific regression models. An implementation of these

models can be found in https://github.com/sathwikchadaga/failure-cascade.

5.1 Performance Metrics Definitions

5.1.1 Failure Size Error Rate

The cascade failure size is defined as the number of branches in the failed state at the

end of a cascade. The failure size error rate lαsize at a load scaling value α encapsulates

the average error in model’s prediction of the cascade failure size. Formally, let

Dα
test ⊂ Dtest be the set of test samples whose input load scaling is α. For a sample

d ∈ Dα
test (with a random |E| − 2 initial contingency), let Ed

failed ⊂ E be the set of

43

https://github.com/sathwikchadaga/failure-cascade

edges that truly fail and let ˆ︁Ed
failed ⊂ E be the set of edges that are predicted to have

failed, then failure size error rate at this load scaling value is given by

lαsize =
1

|Dα
test|

∑︂
d∈Dα

test

||Ed
failed| − | ˆ︁Ed

failed||
|Ed

failed|
. (5.1)

5.1.2 Final State Error Rate

The final state error rate lαstate at a load scaling value α represents the error in model’s

prediction of the network state at the end of the cascade. Formally, if the true final

state of a cascade sample d ∈ Dα
test (with a random |E| − 2 initial contingency) is

sd[T] = (sde[T])e∈E, and its predicted final state is ŝd[T] = (ŝde[T])e∈E, then the final

state error rate at this load scaling value is given by

lαstate =
1

|Dα
test|

∑︂
d∈Dα

test

1

|E|
∑︂
e∈E

⃓⃓
sde[T]− ŝde[T]

⃓⃓
. (5.2)

5.1.3 Failure Step Error Rate

Failure step error lαfailure−step is the error between model’s predicted failure steps and

the true failure steps at a load scaling value α. If the true failure steps in a sample

d ∈ Dα
test (with a random |E|−2 initial contingency) is fd = (fd

e)e∈E and the predicted

failure steps are ˆ︁fd = (ˆ︁fd
e)e∈E, then the failure step error at this load scaling value is

given by

lαfailure−step =
1

|Dα
test|

∑︂
d∈Dα

test

1

|E|
∑︂
e∈E

|fd
e − ˆ︁fd

e |. (5.3)

5.2 Results for the Machine Learning Models

In this section, we present the graph-level performance metrics defined in Section 5.1

for the proposed machine learning models: the regression model, the SVM model, and

the naive Bayes model. Note, however, that none of these models take node power

injection values into consideration, making them specific to a single loading profile.

Hence, it is impossible to generalize a single model over all random load scaling values

44

α. Thus, we build multiple instances of these models, each trained on a unique load

scaling value, and plot their error rates as a function of their corresponding load

scaling values. Specifically, for a given IEEE bus, we train eleven instances of the

regression model, eleven instances of the SVM model, and eleven instances of the

naive Bayes model that are specific to load scaling values of 1.00, 1.10, ..., 2.00.

5.2.1 Failure Size Error Rate

Fig. 5-1 shows the failure size error rates of the regression, SVM, and naive Bayes

models trained and tested on IEEE89, IEEE118, and IEEE1354 (left to right) datasets.

Note again that, since these models cannot be generalized over variable loading val-

ues, each of the points in the plot corresponds to a different instance of the model

that is specifically trained for its corresponding load scaling value. As can be seen,

the regression models have the best performance followed by the SVM models at all

load scaling values. The naive Bayes models perform worse than others as expected

because of their independence assumption.

1 1.2 1.4 1.6 1.8 2

2

4

6

8

10

12

Load scaling

Fa
ilu

re
si

ze
er

ro
r

(%
)

Regression models
SVM models
Naive Bayes models

1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

Load scaling

Regression models
SVM models
Naive Bayes models

1 1.2 1.4 1.6 1.8 2
0

2

4

6

Load scaling

Regression models
SVM models
Naive Bayes models

Figure 5-1: Failure size error rates lαsize of various machine learning models for IEEE89,
IEEE118, and IEEE1354 (left to right) against load scaling values α.

5.2.2 Final State Error Rate

Similar to the previous metric, Fig. 5-2 shows the final state error rates of various

load-specific instances of the regression, SVM, and naive Bayes models trained and

tested on IEEE89, IEEE118, and IEEE1354 (left to right) datasets. As can be seen,

the regression models have the best performance at all load scaling values. The worst

45

case final state error rate is 4.1%, which is experienced by the naive Bayes model at

a load scaling value of 1.3 for the IEEE89 case.

1 1.2 1.4 1.6 1.8 2

1

2

3

4

Load scaling

F
in

al
st

at
e

er
ro

r
(%

)

Regression models
SVM models
Naive Bayes models

1 1.2 1.4 1.6 1.8 2

0.8

1

1.2

1.4

Load scaling

Regression models
SVM models
Naive Bayes models

1 1.2 1.4 1.6 1.8 2

0.5

1

1.5

Load scaling

Regression models
SVM models
Naive Bayes models

Figure 5-2: Final state error rates lαstate of various machine learning models for IEEE89,
IEEE118, and IEEE1354 (left to right) against load scaling values α.

5.2.3 Failure Step Error Rate

Similar to the previous metric, Fig. 5-3 shows the failure step error rates of various

load-specific instances of the regression, SVM, and naive Bayes models trained and

tested on IEEE89, IEEE118, and IEEE1354 (left to right) datasets. Similar to the

previous metrics, the regression models outperform the naive Bayes and SVM models

at all scaling values.

1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

Load scaling

Fa
ilu

re
ti

m
e

st
ep

er
ro

r
(g

en
er

at
io

ns
)

Regression models
SVM models
Naive Bayes models

1 1.2 1.4 1.6 1.8 2

4

5

6

7

8

·10−2

Load scaling

Regression models
SVM models
Naive Bayes models

1 1.2 1.4 1.6 1.8 2

0.05

0.1

0.15

Load scaling

Regression models
SVM models
Naive Bayes models

Figure 5-3: Failure step error rates lαfailure-step of various machine learning models for
IEEE89, IEEE118, and IEEE1354 (left to right) against load scaling values α.

46

5.3 Results for the GNN Models

In this section, we present the graph-level performance metrics defined in Section 5.1

for the GNN model. We have seen in the previous section that the regression models

perform the best among proposed machine learning models. Hence, we compare the

GNN model against the regression models. We also present the performance metrics

of the influence model [20] as a benchmark since this model can evaluate metrics in

almost the same granularity level as the GNN and the regression models.

Similar to the regression model, the influence model does not take node power in-

jection values into consideration, making it specific to a single loading profile. Hence,

it is impossible to generalize a single influence model over all random load scaling

values α. Thus, we build multiple instances of the influence model, each trained on

a unique load scaling value, and compare our single generalized GNN model against

them. Specifically, for a given IEEE bus, we train eleven instances of the influence

model and eleven instances of the regression model that are specific to load scaling

values of 1.00, 1.10, ..., 2.00. Whereas, we train only one instance of the GNN model

for a given bus, which is generic over all load scaling values.

5.3.1 Failure Size Error Rate

Fig. 5-4 shows the failure size error rates of the two GNN models trained and tested

on IEEE89 (left) and IEEE118 (right) datasets. Here, the GNN model’s error rates

at nearby load scaling values are grouped together and their bin averages are plotted

for clarity. The plot also shows the error rates of multiple load-specific instances of

the regression and influence models trained and tested on IEEE89 (left) and IEEE118

(right) datasets.

As can be seen, the GNN model experiences a worst case relative error of 15%

for IEEE89 and 2% for IEEE118. Further, for a given IEEE bus, even though we are

using a single instance of the GNN model generic to all scaling values, it has lower

error rates than all the load-specific influence models. Additionally, its performance

is comparable to all the load-specific regression models. Finally, we see that the error

47

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

Load scaling

Fa
ilu

re
si

ze
er

ro
r

(%
)

GNN (bin average)
Regression models
Influence models

1 1.2 1.4 1.6 1.8 2

1

1.5

2

2.5

3

3.5

Load scaling

GNN (bin average)
Regression models
Influence models

Figure 5-4: Failure size error rates lαsize of various models for IEEE89 (left) and
IEEE118 (right) against load scaling values α.

rates are higher for all the models when the load scaling values are low for IEEE89.

This is because when the system loading is low, the true failure sizes are small. This

increases the error rate metric, as it is calculated relative to the true sizes.

5.3.2 Final State Error Rate

Similar to the previous metric, Fig. 5-5 shows the final state error rates of two

instances of the GNN model trained and tested on IEEE89 (left) and IEEE118 (right)

datasets. The figure also shows the error rates of multiple load-specific instances of

the regression and influence models trained and tested on IEEE89 (left) and IEEE118

(right) datasets.

As can be seen, both instances of the GNN model are better by around 2% (nearly

a factor of 2) than the load-specific influence models at all load scaling values. Further,

the GNN models’ performance is similar to that of the load-specific regression models

at almost all of the load scaling values. The worst final state error rate experienced

by the GNN model is 4.8%, which is at a loading value of 1.23 for the IEEE89 case.

48

1 1.2 1.4 1.6 1.8 2

2

4

6

Load scaling

F
in

al
st

at
e

er
ro

r
(%

)
GNN (bin average)
Regression models
Influence models

1 1.2 1.4 1.6 1.8 2

1

2

3

Load scaling

GNN (bin average)
Regression models
Influence models

Figure 5-5: Final state error rates lαstate of various models for IEEE89 (left) and
IEEE118 (right) against load scaling values α.

5.3.3 Failure Step Error Rate

Similar to the previous metric, Fig. 5-6 shows the failure step error rates of two

instances of the GNN model trained and tested on IEEE89 (left) and IEEE118 (right)

datasets. The figure also shows the error rates of multiple load-specific instances of

the regression and influence models trained and tested on IEEE89 (left) and IEEE118

(right) datasets.

1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

Load scaling

Fa
ilu

re
ti

m
e

st
ep

er
ro

r
(g

en
er

at
io

ns
)

GNN (bin average)
Regression models
Influence models

1 1.2 1.4 1.6 1.8 2

0.05

0.1

0.15

0.2

Load scaling

GNN (bin average)
Regression models
Influence models

Figure 5-6: Failure step error rates lαfailure-step of various models for IEEE89 (left) and
IEEE118 (right) against load scaling values α.

As can be seen, the GNN model’s worst error rates are 0.7 time steps (or genera-

49

tions) and 0.1 time steps for IEEE89 and IEEE118 respectively. For both buses, the

generic GNN model outperforms all the influence model instances built specifically

for their corresponding load scaling values. However, it is worse than the load-specific

regression models.

50

Chapter 6

Results: Branch Level Performance

In this chapter, we evaluate the trained models on several metrics that represent the

performance in prediction of several branch features of the cascade. We first define

several evaluation metrics in Section 6.1 like the branch-level final state error rate and

failure step error rate. We then show the performance of the proposed machine learn-

ing models in Section 6.2 using the defined metrics. We show that the regression model

performs the best among them. Finally, we show the performance of the GNN model

in Section 6.3. Here, we show that the GNN model, in addition to being generic over

randomly scaled loading values, outperforms the load-specific influence models and

compares well with the load-specific regression models. An implementation of these

models can be found in https://github.com/sathwikchadaga/failure-cascade.

6.1 Performance Metrics Definitions

In this section, we define several performance metrics that are useful to evaluate the

model’s branch-level prediction performance.

6.1.1 Branch Failure Frequency

Before we define the branch-level performance metrics, we define the branch failure

frequency lfreq,e of branch e ∈ E. Let De
failed ⊂ Dtrain be the set of train samples

51

https://github.com/sathwikchadaga/failure-cascade

where the branch has eventually failed in the cascade but not as part of the initial

contingency, then the branch failure frequency is given by the following fraction.

lfreq,e =
|De

failed|
|Dtrain|

. (6.1)

This is an important value as it captures the prediction differences between branches

with different failure frequencies. For example, predicting the features of a branch

that rarely fails is easier than a branch that fails half the time. Hence, in the later

sections, we will be plotting the branch-level performance metrics as a function of the

branch failure frequencies.

6.1.2 Branch Final State Error Rate

Branch final state error rate lstate,e for a branch e ∈ E represents the ratio of test

samples with incorrect final state predictions. Say, De
wrong ⊂ Dtest represents the

set of test samples in which the model wrongly predicted the final state of edge e.

Further, say De
initial ⊂ De

wrong be the samples in which branch e failed as part of the

initial contingency. We do not count such samples as predicting their states is trivial,

hence we define the final state error as the following ratio.

lstate,e =
|De

wrong| − |De
initial|

|Dtest|
. (6.2)

6.1.3 Branch Failure Step Error Rate

Branch failure step error rate lfailure−step,e is the error in prediction of the failure step

of a particular branch e ∈ E across all test samples. Let De
failed ⊂ Dtest be the set

of test samples where the branch e has eventually failed in the cascade but not as

part of the initial contingency. Say, the true failure step of a branch e ∈ E in sample

d ∈ De
failed is fd

e and the predicted state is ˆ︁fd
e , then

lfailure−step,e =
1

|De
failed|

∑︂
d∈De

failed

| ˆ︁fd
e − fd

e |. (6.3)

52

6.2 Results for the Machine Learning Models

In this section, we present the performance of proposed machine learning models like

regression, SVM, and naive Bayes models using the metrics defined in Section 6.1.

6.2.1 Branch Final State Error Rate

Fig. 6-1 shows the branch final state error rates lstate,e for various instances of the

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Branch failure frequency

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

5

10

Branch failure frequency

Regression model
SVM model
Naive Bayes model

(a) Load scaling = 1.40 for IEEE89, IEEE118, and IEEE1354 (left to right) datasets.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Branch failure frequency

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

5

10

Branch failure frequency

Regression model
SVM model
Naive Bayes model

(b) Load scaling = 1.50 for IEEE89, IEEE118, and IEEE1354 (left to right) datasets.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Branch failure frequency

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

5

10

15

Branch failure frequency

Regression model
SVM model
Naive Bayes model

(c) Load scaling = 1.90 for IEEE89, IEEE118, and IEEE1354 (left to right) datasets.

Figure 6-1: Branch-average error in prediction of final state lstate,e for IEEE89,
IEEE118, and IEEE1354 (left to right) for various load scaling plotted against lfreq,e.

53

regression model, the SVM model, and the naive Bayes model. The figure contains

three sub-figures (a), (b), and (c) showing the performance of different model instances

trained and tested on load scaling values of 1.40, 1.50, and 1.90 respectively. Further,

each of these sub-figures present three model instances trained and tested on IEEE89,

IEEE118, and IEEE1354 (left to right) datasets. The error rates of branches are

plotted as a function of the branch failure frequencies lfreq,e and the branches having

similar branch failure frequencies are grouped together and their bin averages are

plotted for clarity.

We can see that the error rate is highest for those branches with failure frequencies

close to 0.5. This is expected since these branches are harder to predict because of

their outcome’s high variance. Further, the final state prediction error is below 10%,

8%, and 15% in all the instances for IEEE89, IEEE118, and IEEE154 respectively.

In these plots, the highest final state prediction error is seen 15%, which is seen by

the naive Bayes model for the IEEE1354 system at a load scaling value of 1.90 and a

branch failure frequency of 0.6. Finally, the regression model outperforms the SVM

and the naive Bayes models in all the cases.

6.2.2 Branch Failure Step Error Rate

Fig. 6-2 shows the branch failure step error rates lfailure−step,e of various instances

of the regression model, the SVM model, and the naive Bayes model trained and

tested on load scaling values of 1.40, 1.50, and 1.90. Each of these sub-figures show

three plots corresponding to three model instances trained and tested on IEEE89,

IEEE118, and IEEE1354 (left to right) datasets. The error rates of branches are

plotted as a function of the branch failure frequencies lfreq,e and the branches having

similar branch failure frequencies are grouped together and their bin averages are

plotted for clarity.

We can see that the error in failure time step prediction is in the order of 0.1 time

steps (or generations) on an average whenever the branch is failed. The highest error

in failure step prediction is 0.12, which occurs in the case of IEEE1354 system at a

load scaling of 1.40 for branches with failure frequency 0.2. Finally, the regression

54

model has the best performance in most except some cases, where it is outperformed

by the SVM model.

0 0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

Branch failure frequency

Fa
ilu

re
ti

m
e

st
ep

er
ro

r
(g

en
er

at
io

ns
)

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

Branch failure frequency

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Branch failure frequency

Regression model
SVM model
Naive Bayes model

(a) Load scaling = 1.40 for IEEE89, IEEE118, and IEEE1354 (left to right) datasets.

0 0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

Branch failure frequency

Fa
ilu

re
ti

m
e

st
ep

er
ro

r
(g

en
er

at
io

ns
)

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

Branch failure frequency

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

Branch failure frequency

Regression model
SVM model
Naive Bayes model

(b) Load scaling = 1.50 for IEEE89, IEEE118, and IEEE1354 (left to right) datasets.

0 0.2 0.4 0.6 0.8 1

1

2

3

·10−2

Branch failure frequency

Fa
ilu

re
ti

m
e

st
ep

er
ro

r
(g

en
er

at
io

ns
)

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

·10−2

Branch failure frequency

Regression model
SVM model
Naive Bayes model

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

·10−2

Branch failure frequency

Regression model
SVM model
Naive Bayes model

(c) Load scaling = 1.90 for IEEE89, IEEE118, and IEEE1354 (left to right) datasets.

Figure 6-2: Branch-average error in prediction of failure steps lfailure−step,e for IEEE89,
IEEE118, and IEEE1354 (left to right) for various load scaling plotted against lfreq,e.

6.3 Results for the GNN Models

In this section, we present the performance of the proposed GNN model using the

metrics defined in Section 6.1.

55

6.3.1 Branch Final State Error Rate

Fig. 6-3 shows the final state error rate lstate,e for two instances of the GNN model

trained and tested on IEEE89 (left) and IEEE118 (right) datasets. The error rates are

averaged over all test samples, containing random initial contingencies and random

load scaling values, and plotted against failure frequency lfreq,e. Also, the failure

frequencies close to each other are grouped together and their bin averages are plotted.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

Branch failure frequency

Generalized GNN

Figure 6-3: Error in prediction of final state lstate,e for IEEE89 (left) and IEEE118
(right) averaged over all scaling values [1, 2] against branch failure frequencies lfreq,e.

As can be seen, the average error rate in final state prediction by the GNN model is

below 6% and 2.5% at all branches for IEEE89 and IEEE118 systems respectively. It

can be observed that the error rate is higher for the branches whose failure frequencies

are close to 0.5. This is expected since these branches are harder to predict because

of their outcome’s high variance.

Further, the error plot in Fig. 6-3 is generated by averaging over random scaling

values in [1, 2], which demonstrates that the GNN model can be generalized over

variable load profiles. Now, in order to benchmark the performance, Fig. 6-4 plots

the final state error rates of the same GNN model, tested on load scaling values of

1.40, 1.50, and 1.90, against different instances of the regression and influence models

built specifically for load scaling values of 1.40, 1.50, and 1.90. Note again that the

GNN model works on any load scaling values in [1, 2] as shown in Fig. 6-5, where the

metric has been averaged over random scaling values.

56

0 0.2 0.4 0.6 0.8 1

0

5

10

15

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN
Regression model (1.40)
Influence model (1.40)

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

Branch failure frequency

Generalized GNN
Regression model (1.40)
Influence model (1.40)

(a) Load scaling = 1.40 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

5

10

15

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN
Regression model (1.50)
Influence model (1.50)

0 0.2 0.4 0.6 0.8 1

0

5

10

Branch failure frequency

Generalized GNN
Regression model (1.50)
Influence model (1.50)

(b) Load scaling = 1.50 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

5

10

Branch failure frequency

F
in

al
st

at
e

er
ro

r
(%

)

Generalized GNN
Regression model (1.90)
Influence model (1.90)

0 0.2 0.4 0.6 0.8 1

0

5

10

15

Branch failure frequency

Generalized GNN
Regression model (1.90)
Influence model (1.90)

(c) Load scaling = 1.90 for IEEE89 (left) and IEEE118 (right)s.

Figure 6-4: Branch-average error in prediction of final state lstate,e for IEEE89 (left)
and IEEE118 (right) for various load scaling against branch failure frequencies lfreq,e.

57

As can be seen, the GNN model, despite being generic over load scaling values,

outperforms the load-specific instances of the influence model at almost all branches,

beating the influence model by almost 10% in some cases. Further, the regression

model performs better by around 3% than the GNN model at most of the branches.

However, at some load scaling values in the IEEE118 case, the GNN model outper-

forms the regression model.

6.3.2 Branch Failure Step Error Rate

Fig. 6-5 shows the branch failure step error rate lfailure−step,e for two instances of the

GNN model trained and tested on IEEE89 (left) and IEEE118 (right) systems. The

error rates are averaged over all test samples, containing random initial contingencies

and random load scaling values, and plotted as a function of branch failure frequencies

lfreq,e. The failure frequencies close to each other are grouped together and their bin

averages are plotted.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

·10−2

Branch failure frequency

Fa
ilu

re
ti

m
e

st
ep

er
ro

r
(g

en
er

at
io

ns
)

Generalized GNN

0 0.2 0.4 0.6 0.8 1

1

2

3

·10−2

Branch failure frequency

Generalized GNN

Figure 6-5: Error in prediction of failure time steps lfailure−step,e for IEEE89 (left) and
IEEE118 (right) averaged over all scaling [1, 2] against failure frequencies lfreq,e.

As seen in the plot, the failure step error rate is in the order of 0.01 time steps.

The significantly low error performance when averaged over random scaling values

demonstrates the generalization capabilities of the GNN model.

Similar to the previous metric, to benchmark the performance, Fig. 6-6 plots the

58

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Branch failure frequency

Fa
ilu

re
st

ep
er

ro
r

(g
en

er
at

io
ns

)
Generalized GNN
Regression model (1.40)
Influence model (1.40)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Branch failure frequency

Generalized GNN
Regression model (1.40)
Influence model (1.40)

(a) Load scaling = 1.40 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Branch failure frequency

Fa
ilu

re
st

ep
er

ro
r

(g
en

er
at

io
ns

)

Generalized GNN
Regression model (1.50)
Influence model (1.50)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

Branch failure frequency

Generalized GNN
Regression model (1.50)
Influence model (1.50)

(b) Load scaling = 1.50 for IEEE89 (left) and IEEE118 (right).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

Branch failure frequency

Fa
ilu

re
st

ep
er

ro
r

(g
en

er
at

io
ns

)

Generalized GNN
Regression model (1.90)
Influence model (1.90)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

Branch failure frequency

Generalized GNN
Regression model (1.90)
Influence model (1.90)

(c) Load scaling = 1.90 for IEEE89 (left) and IEEE118 (right).

Figure 6-6: Branch-average error in prediction of failure steps lfailure−step,e for IEEE89
(left) and IEEE118 (right) for various scaling against branch failure frequencies lfreq,e.

59

branch failure step error rates of the same GNN model, tested on load scaling values

of 1.40, 1.50, and 1.90, and compares it to different instances of the regression and

the influence models built specifically for load scaling values of 1.40, 1.50, and 1.90.

Note again that the GNN model works on any load scaling values in [1, 2] as shown

in Fig. 6-5, where the metric has been averaged over random scaling values.

The failure step prediction performance of the GNN model, despite being generic

to all load scaling values, is very close to that of the load-specific regression models.

Additionally, the performance of the generic GNN model is significantly better than

the load-specific influence models. In the influence model, when doing state prediction

in a step-by-step manner, the errors that occur in initial steps propagate to later steps,

thereby accumulating to a high final error. This is completely avoided by the GNN

model since it predicts the failure steps directly instead of predicting network states

at each time steps individually. We believe this causes the GNN to outperform the

influence models in these metrics.

60

Chapter 7

Results: Runtime Analysis

We perform a runtime analysis to demonstrate how the GNN and the machine learning

models can harvest the power of GPUs to predict cascade sequences much faster than

the flow-based simulation methods. We run cascade predictions on 11,000 test samples

with the CFS oracle, the influence model, the GNN model, and the machine learning

models. Table 7.1 presents the resulting runtime, in seconds per 1000 runs. The CFS

oracle cannot be run on a GPU, hence it was tested in MATLAB 2019a on a Intel(R)

Core(TM) i9-7920X CPU@2.90GHz processor with 128GB of installed memory. The

DC power flow calculation in the CFS oracle was done by the MATPOWER toolbox.

Further, the influence model, the machine learning models, and the GNN models were

tested on an NVIDIA GeForce RTX 2080 Ti GPU with 11GB of total memory.

Table 7.1: Prediction time in seconds per 1000 samples

CFS oracle Influence GNN Naive Bayes SVM Regression
IEEE89 24.18 2.34 0.53 0.27 0.15 0.18
IEEE118 62.54 2.03 0.28 0.22 0.12 0.13

It can be seen that the time taken by the influence models, the machine learning

models, and the GNN models are significantly lower than the CFS oracle. In the

influence model, the matrix multiplications can be sped up using a GPU. However,

because of its step-by-step prediction nature, each cascade prediction lasts for a vari-

61

able number of steps. Hence, we cannot run multiple predictions simultaneously with

the influence model. Meanwhile, the GNN model can be fully parallelized allowing us

to run thousands of cascade sequence predictions simultaneously. This makes predic-

tions with the GNN model almost five times faster than the influence model. Further,

the machine learning models are even faster as these simple models do not need to

keep track of the graph topology like the GNN model. Among the three machine

learning models, it can be seen that the regression model is the fastest.

62

Chapter 8

Conclusion

We considered the problem of predicting the failure cascade sequence due to branch

failures given the initial contingency, the power injection values, and the grid topology.

We first proposed several flow-free models based on machine learning techniques like

support vector machines, naive Bayes classifiers, and logistic regression. These models

predict the gird states at every generation of a cascade, without requiring power flow

calculations. We also proposed a flow-free graph neural network model that can

be generalized over variable load profiles. We trained the proposed models using

simulated data and evaluated them at various levels of prediction granularity. We

showed that the machine learning models have lower error performance than the

influence model. We also showed that the GNN model, in addition to being generic

over randomly scaled loading values, outperforms the influence models that were built

specifically for their corresponding loading profiles. Finally, we presented a runtime

analysis that showed the models’ ability to harvest the power of GPUs and reduce the

computational time by almost two orders of magnitude compared to the flow-based

cascading failure simulator.

8.1 Future Directions

Some of the potential future directions to this work are listed below.

1. In the results, we train our models using data generated from DC power flow

63

calculations. In future, data samples generated from AC power flow can be

used. We believe that the proposed models will definitely be faster than the AC

cascade sequence generator as AC solvers are much slower than the DC solvers.

2. We can extend the data pool to large scale buses like IEEE 2383 bus system.

This will require the GNN model to be more efficient so as to avoid GPU

memory overflow issues. This can be done by using a more efficient attention

mechanism technique like the graph attention networks [53].

3. The GNN model we proposed is limited to a specific graph topology. This is

because the input dimension in the attention stage of the proposed model is

fixed and is equal to the number of branches in the model. This limits our

model to be trained over data samples generated from a specific topology. A

natural extension to the proposed GNN model is to make the model generic over

any given topology. This can again be done by changing the attention stage of

the model using concepts from graph attention networks [53].

4. A study of interactions between various branches can also be conducted. One

possible way to do this from our GNN model is to observe the attention coeffi-

cients. These coefficients can potentially signal the extent of correlation between

any two branches in the system.

64

Bibliography

[1] J. Kim, “Increasing Power Outages Don’t Hit Everyone Equally,” 2023.
Scientific American. Available at: https://www.scientificamerican.com/
article/increasing-power-outages-dont-hit-everyone-equally1/#:~:
text=Between%202013%20and%202021%2C%20the,events%20per%20customer%
20per%20year (accessed: 08 August 2023).

[2] Climatecentral.org, “Surging Weather-related Power Outages,” 2022. On-
line. Available at: https://www.climatecentral.org/climate-matters/
surging-weather-related-power-outages (accessed: 08 August, 2023).

[3] J. Jiménez and R. Carballo, “Cleanup Begins After Severe Storms Tear Through
Eastern U.S.,” 2023. New York Times. Available at: https://www.nytimes.com/
2023/08/08/us/us-severe-storms-damage.html (accessed: 08 August, 2023).

[4] C. Clifford, “Why america’s outdated energy grid is a climate prob-
lem,” 2023. CNBC. Available at: https://www.cnbc.com/2023/02/17/
why-americas-outdated-energy-grid-is-a-climate-problem.html (ac-
cessed: 08 August 2023).

[5] K. H. LaCommare, J. H. Eto, L. N. Dunn, and M. D. Sohn, “Improving the esti-
mated cost of sustained power interruptions to electricity customers,” Energy, vol.
153. Elsevier BV, pp. 1038–1047, Jun. 2018. doi: 10.1016/j.energy.2018.04.082.

[6] B. Stone Jr. et al., “How Blackouts during Heat Waves Amplify Mortality
and Morbidity Risk,” Environmental Science & Technology, vol. 57, no.
22. American Chemical Society (ACS), pp. 8245–8255, May 23, 2023. doi:
10.1021/acs.est.2c09588.

[7] N. Popovich and B. Plumer, “How electrification became a major
tool for fighting climate change,” 2023. New York Times. Available
at: https://www.nytimes.com/interactive/2023/04/14/climate/
electric-car-heater-everything.html (accessed: 08 August 2023).

[8] Vaiman et al., “Risk Assessment of Cascading Outages: Methodologies and Chal-
lenges,” in IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 631-641, May
2012, doi: 10.1109/TPWRS.2011.2177868.

65

https://www.scientificamerican.com/article/increasing-power-outages-dont-hit-everyone-equally1/#:~:text=Between%202013%20and%202021%2C%20the,events%20per%20customer%20per%20year
https://www.scientificamerican.com/article/increasing-power-outages-dont-hit-everyone-equally1/#:~:text=Between%202013%20and%202021%2C%20the,events%20per%20customer%20per%20year
https://www.scientificamerican.com/article/increasing-power-outages-dont-hit-everyone-equally1/#:~:text=Between%202013%20and%202021%2C%20the,events%20per%20customer%20per%20year
https://www.scientificamerican.com/article/increasing-power-outages-dont-hit-everyone-equally1/#:~:text=Between%202013%20and%202021%2C%20the,events%20per%20customer%20per%20year
https://www.climatecentral.org/climate-matters/surging-weather-related-power-outages
https://www.climatecentral.org/climate-matters/surging-weather-related-power-outages
https://www.nytimes.com/2023/08/08/us/us-severe-storms-damage.html
https://www.nytimes.com/2023/08/08/us/us-severe-storms-damage.html
https://www.cnbc.com/2023/02/17/why-americas-outdated-energy-grid-is-a-climate-problem.html
https://www.cnbc.com/2023/02/17/why-americas-outdated-energy-grid-is-a-climate-problem.html
https://www.nytimes.com/interactive/2023/04/14/climate/electric-car-heater-everything.html
https://www.nytimes.com/interactive/2023/04/14/climate/electric-car-heater-everything.html

[9] I. Dobson, “Estimating the Propagation and Extent of Cascading Line Out-
ages From Utility Data With a Branching Process,” in IEEE Transactions on
Power Systems, vol. 27, no. 4, pp. 2146-2155, Nov. 2012, doi: 10.1109/TP-
WRS.2012.2190112.

[10] H. Ren and I. Dobson, “Using Transmission Line Outage Data to Estimate Cas-
cading Failure Propagation in an Electric Power System,” in IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 55, no. 9, pp. 927-931, Sept.
2008, doi: 10.1109/TCSII.2008.924365.

[11] P. D. H. Hines, I. Dobson and P. Rezaei, “Cascading Power Outages Propagate
Locally in an Influence Graph That is Not the Actual Grid Topology,” in IEEE
Transactions on Power Systems, vol. 32, no. 2, pp. 958-967, March 2017, doi:
10.1109/TPWRS.2016.2578259.

[12] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu and G. Zussman, “Power
grid vulnerability to geographically correlated failures — Analysis and control
implications,” IEEE INFOCOM 2014 - IEEE Conference on Computer Com-
munications, Toronto, ON, Canada, 2014, pp. 2634-2642, doi: 10.1109/INFO-
COM.2014.6848211.

[13] S. Soltan, D. Mazauric and G. Zussman, “Analysis of Failures in Power Grids,”
in IEEE Transactions on Control of Network Systems, vol. 4, no. 2, pp. 288-300,
June 2017, doi: 10.1109/TCNS.2015.2498464.

[14] H. Cetinay, S. Soltan, F. A. Kuipers, G. Zussman and P. Van Mieghem, “Com-
paring the Effects of Failures in Power Grids Under the AC and DC Power Flow
Models,” in IEEE Transactions on Network Science and Engineering, vol. 5, no.
4, pp. 301-312, 1 Oct.-Dec. 2018, doi: 10.1109/TNSE.2017.2763746.

[15] M. J. Eppstein and P. D. H. Hines, “A “Random Chemistry” Algorithm for Iden-
tifying Collections of Multiple Contingencies That Initiate Cascading Failure,” in
IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1698-1705, Aug. 2012,
doi: 10.1109/TPWRS.2012.2183624.

[16] P. Rezaei, P. D. H. Hines and M. J. Eppstein, “Estimating Cascading Failure
Risk With Random Chemistry,” in IEEE Transactions on Power Systems, vol.
30, no. 5, pp. 2726-2735, Sept. 2015, doi: 10.1109/TPWRS.2014.2361735.

[17] X. Zhang, C. Zhan and C. K. Tse, “Modeling the Dynamics of Cascading Fail-
ures in Power Systems,” in IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 7, no. 2, pp. 192-204, June 2017, doi: 10.1109/JET-
CAS.2017.2671354.

[18] J. Qi, J. Wang and K. Sun, “Efficient Estimation of Component Interactions
for Cascading Failure Analysis by EM Algorithm,” in IEEE Transactions on
Power Systems, vol. 33, no. 3, pp. 3153-3161, May 2018, doi: 10.1109/TP-
WRS.2017.2764041.

66

[19] J. Qi, K. Sun and S. Mei, “An Interaction Model for Simulation and Mitigation
of Cascading Failures,” in IEEE Transactions on Power Systems, vol. 30, no. 2,
pp. 804-819, March 2015, doi: 10.1109/TPWRS.2014.2337284.

[20] X. Wu, D. Wu and E. Modiano, “Predicting Failure Cascades in Large Scale
Power Systems via the Influence Model Framework,” in IEEE Transactions on
Power Systems, vol. 36, no. 5, pp. 4778-4790, Sept. 2021, doi: 10.1109/TP-
WRS.2021.3068409.

[21] J. Xie, I. Alvarez-Fernandez and W. Sun, “A Review of Machine Learning
Applications in Power System Resilience,” 2020 IEEE Power & Energy Soci-
ety General Meeting (PESGM), Montreal, QC, Canada, 2020, pp. 1-5, doi:
10.1109/PESGM41954.2020.9282137.

[22] L. Duchesne, E. Karangelos and L. Wehenkel, “Recent Developments in
Machine Learning for Energy Systems Reliability Management,” in Pro-
ceedings of the IEEE, vol. 108, no. 9, pp. 1656-1676, Sept. 2020, doi:
10.1109/JPROC.2020.2988715.

[23] N. M. Sami and M. Naeini, “Machine Learning Applications in Cascad-
ing Failure Analysis in Power Systems: A Review.” arXiv, 2023. doi:
10.48550/ARXIV.2305.19390.

[24] Y. Yang, Z. Yang, J. Yu, B. Zhang, Y. Zhang, and H. Yu, “Fast Calculation
of Probabilistic Power Flow: A Model-Based Deep Learning Approach,” IEEE
Transactions on Smart Grid, vol. 11, no. 3. Institute of Electrical and Electronics
Engineers (IEEE), pp. 2235–2244, May 2020. doi: 10.1109/tsg.2019.2950115.

[25] Y. Du, F. Li, J. Li and T. Zheng, “Achieving 100x Acceleration for N-1 Con-
tingency Screening With Uncertain Scenarios Using Deep Convolutional Neural
Network,” in IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3303-3305,
July 2019, doi: 10.1109/TPWRS.2019.2914860.

[26] S. Gupta, R. Kambli, S. Wagh and F. Kazi, “Support-Vector-Machine-Based
Proactive Cascade Prediction in Smart Grid Using Probabilistic Framework,” in
IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2478-2486, April
2015, doi: 10.1109/TIE.2014.2361493.

[27] R. A. Shuvro, P. Das, M. M. Hayat and M. Talukder, “Predicting Cascad-
ing Failures in Power Grids using Machine Learning Algorithms,” 2019 North
American Power Symposium (NAPS), Wichita, KS, USA, 2019, pp. 1-6, doi:
10.1109/NAPS46351.2019.9000379.

[28] H. Zhang, T. Ding, J. Qi, W. Wei, J. P. S. Catalão and M. Shahidehpour,
“Model and Data Driven Machine Learning Approach for Analyzing the Vul-
nerability to Cascading Outages With Random Initial States in Power Sys-
tems,” in IEEE Transactions on Automation Science and Engineering, 2022, doi:
10.1109/TASE.2022.3204273.

67

[29] R. Pi, Y. Cai, Y. Li and Y. Cao, “Machine Learning Based on Bayes Networks to
Predict the Cascading Failure Propagation,” in IEEE Access, vol. 6, pp. 44815-
44823, 2018, doi: 10.1109/ACCESS.2018.2858838.

[30] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini, “The
Graph Neural Network Model,” in IEEE Transactions on Neural Networks, vol.
20, no. 1, pp. 61-80, Jan. 2009, doi: 10.1109/TNN.2008.2005605.

[31] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convo-
lutional Networks.” arXiv, 2016. doi: 10.48550/ARXIV.1609.02907.

[32] B. Donon, B. Donnot, I. Guyon, and A. Marot, “Graph Neural Solver for Power
Systems,” 2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, Jul. 2019. doi: 10.1109/ijcnn.2019.8851855.

[33] D. Wang, K. Zheng, Q. Chen, G. Luo, and X. Zhang, “Probabilistic Power
Flow Solution with Graph Convolutional Network,” 2020 IEEE PES Innova-
tive Smart Grid Technologies Europe (ISGT-Europe). IEEE, Oct. 26, 2020. doi:
10.1109/isgt-europe47291.2020.9248786.

[34] J. B. Hansen, S. N. Anfinsen, and F. M. Bianchi, “Power Flow Bal-
ancing with Decentralized Graph Neural Networks,” arXiv, 2021, doi:
10.48550/ARXIV.2111.02169.

[35] B. Donon, R. Clément, B. Donnot, A. Marot, I. Guyon, and M. Schoe-
nauer, “Neural networks for power flow: Graph neural solver,” Electric
Power Systems Research, vol. 189. Elsevier BV, p. 106547, Dec. 2020. doi:
10.1016/j.epsr.2020.106547.

[36] A. B. Jeddi and A. Shafieezadeh, “A Physics-Informed Graph Attention-based
Approach for Power Flow Analysis,” 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA). IEEE, Dec. 2021. doi:
10.1109/icmla52953.2021.00261.

[37] D. Owerko, F. Gama and A. Ribeiro, “Optimal Power Flow Using Graph Neural
Networks,” ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 5930-5934,
doi: 10.1109/ICASSP40776.2020.9053140.

[38] T. Pham and X. Li, “Reduced Optimal Power Flow Using Graph Neural Net-
work,” 2022 North American Power Symposium (NAPS), Salt Lake City, UT,
USA, 2022, pp. 1-6, doi: 10.1109/NAPS56150.2022.10012256.

[39] A. Varbella, B. Gjorgiev, and G. Sansavini, “Geometric deep learning for
online prediction of cascading failures in power grids,” Reliability Engineer-
ing and System Safety, vol. 237. Elsevier BV, p. 109341, Sep. 2023. doi:
10.1016/j.ress.2023.109341.

68

[40] S. Gupta, F. Kazi, S. Wagh, and R. Kambli, “Neural Network Based Early
Warning System for an Emerging Blackout in Smart Grid Power Networks,” In-
telligent Distributed Computing. Springer International Publishing, pp. 173–183,
2015. doi: 10.1007/978-3-319-11227-5_16.

[41] C. Kim, K. Kim, P. Balaprakash, and M. Anitescu, “Graph Convolutional Neu-
ral Networks for Optimal Load Shedding under Line Contingency,” 2019 IEEE
Power & Energy Society General Meeting (PESGM). IEEE, Aug. 2019. doi:
10.1109/pesgm40551.2019.8973468.

[42] Y. Zhu, Y. Zhou, W. Wei, and L. Zhang, “Real-Time Cascading Failure Risk Eval-
uation With High Penetration of Renewable Energy Based on a Graph Convolu-
tional Network,” IEEE Transactions on Power Systems. Institute of Electrical and
Electronics Engineers (IEEE), pp. 1–12, 2022. doi: 10.1109/tpwrs.2022.3213800.

[43] S. Lonapalawong, C. Chen, C. Wang, and W. Chen, “Interpreting the vulnerabil-
ity of power systems in cascading failures using multi-graph convolutional net-
works,” Frontiers of Information Technology and Electronic Engineering, vol. 23,
no. 12. Zhejiang University Press, pp. 1848–1861, Jun. 20, 2022. doi: 10.1631/fi-
tee.2200035.

[44] B. Jhun, H. Choi, Y. Lee, J. Lee, C. H. Kim, and B. Kahng, “Prediction and
mitigation of nonlocal cascading failures using graph neural networks,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 33, no. 1. AIP Publishing,
p. 013115, Jan. 2023. doi: 10.1063/5.0107420.

[45] Y. Zhu, Y. Zhou, W. Wei, and N. Wang, “Cascading Failure Analysis Based on a
Physics-Informed Graph Neural Network,” IEEE Transactions on Power Systems.
Institute of Electrical and Electronics Engineers (IEEE), pp. 1–10, 2022. doi:
10.1109/tpwrs.2022.3205043.

[46] H. Zhang, “The Optimality of Naive Bayes,” in Proceedings of the Seventeenth In-
ternational Florida Artificial Intelligence Research Society Conference (FLAIRS
2004), Miami Beach, Florida, USA, 2004.

[47] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics
and Computing, vol. 14, no. 3. Springer Science and Business Media LLC, pp.
199–222, Aug. 2004. doi: 10.1023/b:stco.0000035301.49549.88.

[48] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[49] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv,
2014. doi: 10.48550/ARXIV.1412.6980.

[50] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Matpower:
Steady-State Operations, Planning and Analysis Tools for Power Systems Re-
search and Education,” Power Systems, IEEE Transactions on, vol. 26, no. 1,
pp. 12–19, Feb. 2011. doi: 10.1109/TPWRS.2010.2051168.

69

[51] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library.” arXiv, 2019. doi: 10.48550/ARXIV.1912.01703.

[52] F. Pedregosa et al., “Scikit-Learn: Machine Learning in Python”, J. Mach. Learn.
Res., vol. 12, no. null, pp. 2825–2830, Nov. 2011.

[53] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,
& Bengio, Y. (2017). “Graph Attention Networks” (Version 3). arXiv.
https://doi.org/10.48550/ARXIV.1710.10903.

70

	Introduction
	Motivation
	Related Work
	Flow-Based Methods
	Flow-Free Methods
	Machine Learning Techniques
	Graph Neural Network Methods

	Problem Formulation
	Contributions
	Outline

	Machine Learning Techniques for Failure Cascade Prediction
	Naive Bayes Model
	Prerequisite
	Naive Bayes for Cascade Prediction

	Support Vector Machine Model
	Prerequisite
	Support Vector Machines for Cascade Prediction

	Logistic Regression Model
	Prerequisite
	Regression Model for Cascade Prediction

	The Graph Neural Network Model
	Model Definition
	Initial Stage
	Attention Stage
	Averaging Stage (Hidden Layers)
	Final Stage

	Model Training
	Forward Pass
	Back Propagation

	Results: Data Synthesis and Design Specifications
	Data Synthesis
	The Cascading Failure Simulator Oracle
	Data for Machine Learning Models
	Data for the GNN Model

	Model Design Specifications
	GNN Model
	Machine Learning Models
	Influence Model

	Results: Graph Level Performance
	Performance Metrics Definitions
	Failure Size Error Rate
	Final State Error Rate
	Failure Step Error Rate

	Results for the Machine Learning Models
	Failure Size Error Rate
	Final State Error Rate
	Failure Step Error Rate

	Results for the GNN Models
	Failure Size Error Rate
	Final State Error Rate
	Failure Step Error Rate

	Results: Branch Level Performance
	Performance Metrics Definitions
	Branch Failure Frequency
	Branch Final State Error Rate
	Branch Failure Step Error Rate

	Results for the Machine Learning Models
	Branch Final State Error Rate
	Branch Failure Step Error Rate

	Results for the GNN Models
	Branch Final State Error Rate
	Branch Failure Step Error Rate

	Results: Runtime Analysis
	Conclusion
	Future Directions

