
Algorithms and Systems for Scalable Multi-Agent
Geometric Estimation

by

Yulun Tian
B.A., University of California, Berkeley (2017)

S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Yulun Tian. All Rights Reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to

exercise any and all rights under copyright, including to reproduce, preserve, distribute and
publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Yulun Tian
Department of Aeronautics and Astronautics
August 7, 2023

Certified by: Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT
Thesis Supervisor

Certified by: Ali Jadbabaie
JR East Professor of Engineering, MIT
Thesis Supervisor

Certified by: Luca Carlone
Associate Professor of Aeronautics and Astronautics, MIT
Thesis Supervisor

Accepted by: Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Algorithms and Systems for Scalable Multi-Agent

Geometric Estimation

by

Yulun Tian

Submitted to the Department of Aeronautics and Astronautics
on August 7, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Collaborative geometric estimation, which enables multiple agents to construct glob-
ally consistent geometric models of the environment (e.g., maps and robot poses)
from noisy local measurements, is a crucial capability for multi-agent systems. How-
ever, achieving scalable collaborative estimation in the real world is challenging. On
one hand, solving the underlying geometric optimization problems is hard due to the
coupling among agents and poor numerical conditioning. On the other hand, real-
world communication networks impose operational constraints (e.g., in the form of
available bandwidth) that need to be accounted for during deployment.

This thesis develops algorithms and systems toward enabling scalable collabo-
rative geometric estimation, with a focus on tackling the aforementioned technical
challenges. The first part of this thesis considers geometric estimation under a fully
distributed communication architecture, in which agents directly communicate with
each other without relying on a central server. To this end, this thesis presents dis-
tributed pose graph optimization algorithms with the goals of achieving certifiable
global optimality and convergence under asynchronous communication. Leveraging
the developed algorithms, this thesis then develops a complete system for distributed
simultaneous localization and mapping (SLAM), and demonstrates the proposed sys-
tem in large-scale urban environments where up to 8 ground robots traverse a total
distance close to 8 km. The second part of this thesis tackles geometric estimation
under a server-client architecture, where a server coordinates communication during
collaborative optimization. To this end, this thesis presents a communication-efficient
solver that enables large-scale collaborative mapping with significantly reduced com-
munication. Furthermore, specialized solvers for collaborative rotation averaging and
translation estimation are developed, which exploit spectral graph theoretic methods
to achieve fast convergence. These algorithmic contributions, together with open-
source code and datasets, facilitate the development of scalable multi-agent percep-
tion systems in complex environments.

3

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics, MIT

Thesis Supervisor: Ali Jadbabaie
Title: JR East Professor of Engineering, MIT

Thesis Supervisor: Luca Carlone
Title: Associate Professor of Aeronautics and Astronautics, MIT

4

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Jonathan P. How for your

continuous guidance and support over the past six years. Six years ago, I joined Jon’s

group as a fresh college graduate who had little experience in research. Since then,

you have introduced me to the exciting world of robotics research and taught me skills

that have become instrumental in my work. You helped me form confidence in myself

and always encouraged me to explore things I am interested in. Your professionalism

and dedication will continue to motivate me regardless of what I work on in the future.

Thank you to my wonderful committee members, Prof. Luca Carlone and Prof.

Ali Jadbabaie. Thank you Luca for your support and many encouragements. I have

learned so much by working with you over the past three years. I am also very grateful

to Ali, for your insightful comments and challenging questions that have been very

inspiring and helped me better shape my ideas. Thanks to Dr. Kasra Khosoussi and

Prof. David Rosen for being my thesis readers and valuable colleagues. A special

thank you to Kasra, for being an amazing mentor who taught me how to do research

and helped me form my research interests.

I have been incredibly fortunate to work with many talented researchers over the

past six years. Many thanks to Katherine Liu, Kyel Ok, and Prof. Nicholas Roy for

helping me start my research and get hands-on with hardware. Thank you, Kyel and

Katherine, for the great memories of flying drones in the forest at NASA Langley

research center. A big thank you to Yun Chang, for your friendship during the many

field experiments and the countless hours we spent together on the Jackal robots.

Thanks to Kaveh Fathian, Carlos Nieto-Granda, Alec Koppel, Amrit Singh Bedi,

Parker Lusk, Miguel Calvo-Fullana, Matt Giamou, and Loc Tran for being wonderful

collaborators. I have learned a lot by working with each one of you.

Thank you to other members of my ACL family. Thank you Jesus Tordesil-

las, Macheng Shen, Dong-Ki Kim, Michael Everett, Kris Frey, Andrew Fishberg,

Jeremy Cai, Andrea Tagliabue, Lakshay Sharma, Mason Peterson, Lena Downes,

Kota Kondo, Nick Rober ... for being great labmates. A special thank you to our

5

amazing administrative assistant, Bryt Bradley, for your prompt help with each of

my requests and questions over the past six years.

Thank you, Jinghuan Jiang, for being an amazing and trustworthy friend since

high school. Thank you so much, Siyi Hu. I cannot imagine how I could otherwise

navigate through the challenges of the past few years without your love and support.

Lastly, I want to thank my parents. I would never have had the chance to pursue my

dreams without their unconditional love all along the way.

This work was supported by ARL DCIST under Cooperative Agreement Number

W911NF-17-2-0181, NASA Convergent Aeronautics Solutions project Design Envi-

ronment for Novel Vertical Lift Vehicles (DELIVER), and ONR under BRC Award

N000141712072.

6

Contents

1 Introduction 19

1.1 Motivation . 19

1.2 Thesis Overview . 22

1.2.1 Contributions . 23

1.2.2 Related Publications . 25

1.2.3 Thesis Organization . 26

2 Background 29

2.1 Mathematical Preliminaries . 29

2.2 Collaborative Geometric Estimation 34

2.2.1 Rotation Averaging . 34

2.2.2 Pose Graph Optimization (PGO) 37

2.2.3 Bundle Adjustment (BA) . 38

3 Literature Review 41

3.1 Collaborative SLAM . 41

3.1.1 CSLAM Front-End . 41

3.1.2 CSLAM Back-End . 42

3.1.3 Complete Systems . 44

3.1.4 CSLAM Datasets . 45

3.2 Certifiably Correct Geometric Estimation 45

3.3 Outlier-Robust Geometric Estimation 46

3.4 Spectral Graph Theoretic Methods 47

7

3.4.1 Graph Structure in Rotation Averaging and PGO 47

3.4.2 Measurement Selection and Sparsification 48

3.4.3 Spectral Sparsification and Laplacian Solvers 48

3.5 Block-Coordinate Descent Methods 49

3.6 Asynchronous and Communication-Efficient Distributed Optimization 50

4 Certifiably Correct Distributed Pose Graph Optimization 51

4.1 Introduction . 51

4.2 Certifiably Correct Pose Graph Optimization 55

4.2.1 SDP Relaxation for PGO . 55

4.2.2 Solving the Relaxation: The Distributed Riemannian Staircase 59

4.2.3 The Complete Algorithm . 63

4.3 Distributed Local Search via Riemannian Block-Coordinate Descent . 64

4.3.1 Block Selection Rules . 66

4.3.2 Computing a Block Update 68

4.3.3 Accelerated Riemannian Block-Coordinate Descent 71

4.3.4 Parallel Riemannian Block-Coordinate Descent 74

4.4 Convergence Analysis for RBCD and RBCD++ 76

4.5 Distributed Verification . 80

4.5.1 Distributed Minimum-eigenvalue Computation 82

4.5.2 Descent from Suboptimal Critical Points 87

4.6 Distributed Initialization and Rounding 88

4.6.1 Distributed Initialization . 88

4.6.2 Distributed Rounding . 90

4.7 Experiments . 91

4.7.1 Evaluations of Distributed Local Search 93

4.7.2 Evaluations of Distributed Verification 96

4.7.3 Evaluations of Complete Algorithm (Algorithm 4.2) 99

4.8 Conclusion . 104

8

5 Asynchronous Distributed Pose Graph Optimization 105

5.1 Introduction . 105

5.2 Problem Formulation . 107

5.3 Proposed Algorithm . 108

5.3.1 Communication Thread . 108

5.3.2 Optimization Thread . 109

5.3.3 Implementation Details . 111

5.4 Convergence Analysis . 112

5.4.1 Global View of the Algorithm 112

5.4.2 Sufficient Conditions for Convergence 113

5.5 Experimental Results . 116

5.5.1 Evaluation in Simulation . 116

5.5.2 Evaluation on benchmark PGO datasets 119

5.6 Conclusion . 120

6 Robust and Fully Distributed SLAM System and Large-Scale Field

Experiments 121

6.1 Introduction . 121

6.2 System Overview . 124

6.3 Distributed Loop Closure Detection 126

6.4 Robust Distributed Trajectory Estimation 127

6.4.1 Background: Graduated Non-Convexity 128

6.4.2 Robust Distributed Initialization 130

6.4.3 Robust Distributed Pose Graph Optimization 133

6.4.4 Implementation Details . 135

6.5 Local Mesh Optimization . 136

6.6 Offline Experiments . 139

6.6.1 PGO Robustness Analysis . 139

6.6.2 Evaluation in Simulation and Benchmarking Datasets 143

6.6.3 Evaluation in Outdoor Datasets 149

9

6.7 Large-Scale Field Experiments . 153

6.7.1 Datasets . 154

6.7.2 Experimental Setup . 155

6.7.3 Real-time Evaluation Under Unreliable Communication 157

6.7.4 Parameter Sensitivity . 162

6.7.5 Live Results and Discussions 163

6.8 Conclusion . 166

7 Collaborative Geometric Estimation with Event-Triggered Commu-

nication 169

7.1 Introduction . 169

7.2 Problem Formulation . 171

7.3 Proposed Algorithm . 173

7.3.1 Distributed Update with Analytic Elimination 174

7.3.2 Incorporating Lazy Communication 177

7.3.3 The Complete Algorithm . 181

7.4 Convergence Analysis . 181

7.5 Experimental Results . 183

7.5.1 Evaluating Lazy Communication 184

7.5.2 Performance on Collaborative SLAM Datasets 186

7.5.3 Performance on Collaborative SfM Datasets 188

7.6 Conclusion . 190

8 Collaborative Rotation Averaging and Translation Estimation with

Spectral Sparsification 193

8.1 Introduction . 193

8.2 Problem Formulation . 196

8.3 Laplacian Systems Arising from Rotation Averaging and Translation

Estimation . 198

8.3.1 Rotation Averaging . 198

8.3.2 Translation Estimation . 204

10

8.4 Algorithms and Performance Guarantees 205

8.4.1 A Collaborative Laplacian Solver with Spectral Sparsification 205

8.4.2 Collaborative Rotation Averaging 211

8.4.3 Collaborative Translation Estimation 214

8.4.4 Extension to Outlier-Robust Optimization 216

8.5 Experimental Results . 220

8.5.1 Evaluation of Estimation Accuracy and Communication Effi-

ciency . 221

8.5.2 Evaluation on Benchmark PGO Datasets 227

8.5.3 Robust PGO Initialization for Real-World CSLAM 232

8.5.4 Evaluation on Real-World SfM Datasets 235

8.5.5 Discussion . 237

8.6 Conclusion . 239

9 Conclusion 241

9.1 Future Work . 242

A Supplemental Materials for Chapter 4 245

A.1 Exactness of SDP Relaxation . 245

A.1.1 Proof of Theorem 4.1 . 251

A.1.2 Proof of Theorem 4.2 . 252

A.2 Convergence of RBCD and RBCD++ 255

A.2.1 Proof of Lemma 4.1 . 255

A.2.2 Proof of Theorem 4.4 . 259

A.2.3 Proof of Theorem 4.5 . 262

A.2.4 Convergence on Problem 4.3 263

A.3 Proof of Theorem 4.3 . 272

B Supplemental Materials for Chapter 5 283

B.1 Proof of Lemma 5.2 . 283

B.2 Proof of Theorem 5.1 . 288

11

C Supplemental Materials for Chapter 7 293

C.1 Proof of Lemma 7.1 . 293

C.2 Proof of Theorem 7.1 . 294

D Supplemental Materials for Chapter 8 305

D.1 Details of Spectral Sparsification Algorithm 307

D.2 Analysis of Riemannian Hessian of Rotation Averaging 309

D.2.1 Auxiliary Results for 3D Rotation Averaging 311

D.2.2 Proof of Theorem 8.1 . 316

D.2.3 Proof of Corollary 8.1 . 319

D.3 Performance Guarantees for Collaborative Laplacian Solver 320

D.3.1 Proof of Lemma 8.1 . 320

D.3.2 Proof of Theorem 8.2 . 320

D.4 Convergence Analysis . 322

D.4.1 Analysis of General Approximate Newton Method 322

D.4.2 Proof of Theorem 8.3 . 327

D.4.3 Proof of Theorem 8.4 . 333

D.5 Auxiliary Lemmas . 333

12

List of Figures

1-1 Communication architectures considered in this thesis 20

2-1 Graph representations for collaborative rotation averaging and pose

graph optimization . 36

2-2 Graph representations for bundle adjustment 40

4-1 Relations between problems considered in Chapter 4 56

4-2 Illustration of parallel Riemannian Block-Coordinate Descent 75

4-3 Solution estimates produced by DC2-PGO on example PGO problems 92

4-4 Convergence rates and final estimation errors of RBCD and RBCD++ 94

4-5 Comparison between adaptive restart and fixed restart in RBCD++ . 95

4-6 Convergence of RBCD and RBCD++ under varying rotation and trans-

lation measurement noise . 96

4-7 Scalability of RBCD and RBCD++ as the number of robots increases 97

4-8 Performance of accelerated power iteration (API) on the Killian court

dataset . 98

4-9 Evaluation of the proposed DC2-PGO under increasing measurement

noise . 100

4-10 Globally optimal estimates returned by DC2-PGO on benchmark datasets102

4-11 Illustration of saddle point escaping by DC2-PGO from random ini-

tialization . 103

5-1 Example pose graph and the corresponding robot-level dependency graph106

5-2 Convergence of ASAPP on 5 robot simulation 117

13

5-3 Convergence of ASAPP under varying communication delay 118

6-1 Demonstration of Kimera-Multi in a three-robot collaborative SLAM

dataset collected at Medfield, Massachusetts, USA 122

6-2 Kimera-Multi system architecture . 124

6-3 data flow between pair of robots in Kimera-Multi 126

6-4 Illustration of robust distributed initialization in Kimera-Multi 131

6-5 Illustration of local mesh optimization in Kimera-Multi 137

6-6 Robustness comparisons between solvers on single-robot synthetic PGO

problems . 140

6-7 Robustness comparisons between solvers on three-robot synthetic PGO

problems . 142

6-8 Robustness comparison 3-robot problem simulated using the INTEL

dataset . 143

6-9 Dense metric-semantic 3D mesh model generated by Kimera-Multi in

the simulated Camp scene . 145

6-10 Dense metric-semantic 3D mesh model generated by Kimera-Multi in

the simulated City scene . 146

6-11 Dense metric 3D mesh model generated by Kimera-Multi with three

robots in the simulated Medfield scene 147

6-12 Metric reconstruction evaluation on the Euroc sequences 149

6-13 Metric reconstruction evaluation on the Camp, City, and Medfield sim-

ulator datasets . 149

6-14 Kimera-Multi trajectory estimates on the Stata dataset 151

6-15 Kimera-Multi optimized mesh on the Stata dataset 152

6-16 Jackal robots used for large-scale field experiments 153

6-17 Snapshots from the Campus-Hybrid dataset 154

6-18 Estimated trajectories, estimated meshes, and reference point cloud

for the Campus-Hybrid dataset . 156

14

6-19 Estimated trajectories, estimated meshes, and reference point cloud

for the Campus-Outdoor and Campus-Tunnels datasets 157

6-20 Number of detected loop closures on the Campus-Tunnels dataset under

the Full communication scenario . 158

6-21 Kimera-Multi ATE evaluation under different communication scenarios 160

6-22 Parameter sensitivity analysis for Kimera-Multi 164

6-23 Trajectory estimates from example live experiments 165

7-1 Castle30 dataset . 184

7-2 Evaluation of lazy communication on Castle30 dataset 185

7-3 Visualization of BA problems in collaborative SLAM scenarios 187

7-4 Visualization of BA problems in collaborative SfM scenarios 189

8-1 Illustration of developed algorithms based on spectral sparsification . 194

8-2 Empirical validation of the Hessian approximation relation in Theo-

rem 8.1 . 202

8-3 Visualization of 𝑐(𝜖) in Theorem 8.2. 210

8-4 Intuitions behind the convergence rate in Theorem 8.3 213

8-5 Evaluation of Algorithm 8.4 on the 5-robot rotation averaging problem

from the Cubicle dataset . 221

8-6 Scalability of Algorithm 8.4 as the number of robots increases 224

8-7 Sensitivity of Algorithm 8.4 to accuracy of initial guess 225

8-8 Sensitivity of Algorithm 8.4 to rotation measurement noise 226

8-9 Evaluation of robust optimization on rotation averaging problems . . 228

8-10 Spectral sparsification runtime on benchmark datasets 230

8-11 Robust PGO initialization on real-world collaborative SLAM dataset 232

8-12 Impact of the density of exact Schur complements on the performance

of spectral sparsification . 237

D-1 Illustration of leverage scores on a toy graph 308

15

16

List of Tables

4.1 Evaluation of DC2-PGO on benchmark PGO datasets 101

5.1 Evaluation of ASAPP on benchmark PGO datasets 119

6.1 Comparisons on absolute trajectory errors (ATE) on photo-realistic

simulations and benchmarking datasets 144

6.2 Communication usage and solution runtime of Kimera-Multi on photo-

realistic simulations and benchmarking datasets 148

6.3 Kimera-Multi semantic reconstruction evaluation 150

6.4 Loop closure statistics on Medfield and Stata datasets 152

6.5 Trajectory lengths and end-to-end errors on Medfield and Stata datasets 153

6.6 Summary of front-end and back-end statistics for Kimera-Multi in large-

scale field experiments . 157

6.7 Summary of communication statistics in field experiments 159

7.1 Default parameters of LARPG used in experiments 184

7.2 Evaluation of LARPG on collaborative SLAM scenarios 186

7.3 Evaluation of LARPG on collaborative SfM scenarios 190

8.1 Rotation averaging on benchmark SLAM datasets with 5 robots . . . 229

8.2 PGO initialization on benchmark SLAM datasets with 5 robots . . . 230

8.3 Evaluation of robust PGO initialization on real-world CSLAM dataset 234

8.4 Evaluation of robust PGO initialization on the Nebula multi-robot

datasets . 235

17

8.5 Evaluation of robust PGO initialization on the Kimera-Multi field ex-

periment datasets . 235

8.6 Robust rotation averaging on real-world SfM datasets 236

A.1 List of problems considered in Chapter 4 246

D.1 Summary of key notations used in this Chapter 8 306

18

Chapter 1

Introduction

1.1 Motivation

The past two decades have seen significant advances in single-robot spatial percep-

tion, which enables a robot to perform real-time simultaneous localization and map-

ping (SLAM) and semantic scene understanding for increasingly complex downstream

tasks. However, many emerging applications such as disaster response, planetary ex-

ploration, and multi-user mixed reality require deploying and coordinating multiple

robots and/or smart devices at once. At the forefront of these tasks is the crucial

capability of collaborative geometric estimation, in which agents build glob-

ally consistent geometric models of the environment (e.g., robot trajectories, object

poses, and 3D maps) that constitute the basis of higher-level inference and plan-

ning. Such “back-end estimation” is typically accomplished by solving a large-scale

and non-convex geometric optimization problem that fuses noisy observations col-

lected by individual agents. However, efficiently solving this optimization problem

is challenging due to the coupling between individual agents’ estimation problems

as well as various operational constraints imposed by real-world computation and

communication hardware.

The Collaborative Optimization Paradigm. Existing multi-agent systems

often offload the aforementioned global optimization to a powerful central server or

base station [1–5]. Such a centralized paradigm offers a number of advantages, includ-

19

ing the ease of data management and the availability of off-the-shelf centralized solvers

[6–8]. However, this approach also faces a critical scalability issue since the central

server ultimately becomes a computational bottleneck as more agents participate in

the collaborative estimation. In this thesis, we investigate an alternative, collabo-

rative paradigm in which agents jointly solve the underlying optimization problem

leveraging the availability of communication and local computation. By distributing

the underlying computation and memory requirements to the entire team of agents,

this framework offers significantly better scalability compared to centralized compu-

tation. Furthermore, this framework effectively mitigates privacy concerns associated

with centralized computation, by avoiding sending raw data that could reveal sensitive

information (e.g., appearance or location data of different users).

ð1

ð2

ð3

ð4

(a) Fully distributed

ð1 ð2 ð3 ð4

(b) Server-client

Figure 1-1: Communication architectures considered in this thesis.

Communication Architectures. In the collaborative optimization paradigm,

communication is an integral part through which information propagates among

agents, ultimately leading to convergent and globally consistent estimation. In prac-

tice, depending on the nature of the application, communication can be implemented

under different architectures. In this thesis, we consider two prominent architectures

that together cover a wide range of applications. In the first one, henceforth referred

to as the fully distributed architecture (Figure 1-1a), agents achieve collaborative op-

timization by passing messages among themselves without the presence of a central

server. The decentralized nature of this architecture makes it resilient against single

point of failure. Furthermore, its flexibility makes this architecture suitable for various

20

types of multi-robot missions, including those in extreme environments (e.g. disaster

response and planetary exploration) where communication is severely constrained.

In addition to the fully distributed architecture, this thesis also investigates the

server-client architecture (Figure 1-1b), in which a central server coordinates commu-

nication among different agents (clients). Despite the use of a server, the underlying

computation is still distributed across all agents to achieve scalability and protect

user privacy. In related literature, this architecture is also referred to as the federated

architecture and has received surging interest due to the recent success of federated

learning (e.g., [9–12]). This architecture is suitable in scenarios where a central server

is readily available, e.g., as a result of prior mission planning or pre-existing commu-

nication infrastructures. For example, in future smart cities, multiple devices (e.g.,

smartphones) could contribute updates to a shared map by communicating with a

remote server. In this thesis, we show that the server-client architecture brings two

benefits compared to the fully distributed model: (i) it enables collaborative estima-

tion at a higher level of granularity, and (ii) it leads to faster optimization (in the

sense of significantly smaller number of iterations) by leveraging global information

accessible by the server.

Technical Challenges. Despite the relative maturity of single-robot geometric

estimation, achieving a similar level of accuracy and reliability in large-scale, dis-

tributed robot teams faces many technical challenges. One group of challenges arises

from the underlying optimization problems. First, most problems of practical inter-

est are non-convex due to geometric constraints on the search space (e.g., estimating

robot orientations on the group of rotations). To handle this issue, certifiable algo-

rithms [13–16] that are capable of verifying global optimality of candidate solutions

(or otherwise declaring failure of verification) are desirable, but are unexplored in the

multi-agent setting prior to this thesis. Second, many real-world problem instances

are ill-conditioned, which could slow down numerical optimization or even cause er-

ratic behaviors. In our applications, poor conditioning is usually a result of the poor

connectivity of the underlying measurement graph, which characterizes the couplings

among the individual geometric states to be estimated. In some cases, poor condi-

21

tioning also arises as a result of the strong nonlinearity of the measurement model,

e.g., when working with projective measurements from monocular cameras. Further-

more, larger problems tend to have worse conditioning, which makes scaling to more

agents or longer operation time challenging.

The second group of challenges arises from operational constraints imposed by

real-world communication networks. For instance, in wireless ad hoc networks, con-

nections among robots are usually opportunistic and subject to high latency. To

address this issue, algorithms that are designed to cope with communication delays

are highly desirable. In addition, communication constraints may also be manifested

in the form of limited bandwidth. This issue is especially relevant when one wishes

to transmit large-scale geometric models such as large 3D maps. In general, trans-

mitting large models under limited bandwidth may result in long delays, especially if

such communication needs to be repeated, e.g., during iterative optimization.

1.2 Thesis Overview

This thesis develops algorithms and systems toward scalable collaborative geometric

estimation, with an emphasis on addressing the technical challenges outlined in the

previous section. First, we give a high-level overview of the technical approaches

adopted in this thesis, before presenting the main contributions in Section 1.2.1.

From the algorithmic side, we propose collaborative optimization methods with

theoretical guarantees on convergence and (local or global) optimality. Compared to

the plethora of existing works on distributed optimization, the proposed approaches

exploit unique properties of multi-view geometric estimation to obtain better per-

formance. First, as the basis of all developed algorithms, we leverage the frame-

work of Riemannian optimization [17, 18], which allows us to express the problems

of interest as unconstrained optimization problems on certain smooth matrix mani-

folds. The Riemannian approach brings computational benefits (e.g., by eliminating

parametrization singularities caused by heuristic formulations) and also paves the

way for rigorous theoretical analysis. Second, the developed algorithms exploit the

22

intimate connections between the optimization problems and their underlying graph

representations, e.g., pose graphs [14] and generic factor graphs [19]. Specifically,

Chapters 4 and 5 leverage graph sparsity to develop distributed algorithms with very

efficient communication at each iteration. Furthermore, Chapter 8 shows that graph

connectivity (as captured by the graph Laplacian matrix) contains rich information

that enables fast convergence in collaborative rotation averaging and translation es-

timation. Lastly, for an important special case of geometric estimation known as

pose graph optimization, this thesis leverages recent results on its convex relaxation

to achieve certifiably correct distributed optimization, which extends similar perfor-

mance guarantees from the single-agent [14, 20] to the multi-agent domain.

From the systems side, this thesis integrates the proposed algorithms to enable

multi-robot SLAM with real-world demonstrations. To this end, we focus on the

development of a fully distributed metric-semantic SLAM system. The proposed

system consists of a front-end for distributed loop closure based on sparse visual

features, a back-end for distributed trajectory estimation based on the distributed

optimization algorithm developed in this thesis, and a local mapping module for 3D

dense metric-semantic mapping. Furthermore, we conduct extensive, large-scale field

experiments to validate the proposed system and test its scalability.

1.2.1 Contributions

The contributions of this thesis are organized in two parts. The first part presents

algorithms and systems for collaborative geometric estimation under the fully dis-

tributed architecture (Figure 1-1a). The specific contributions are:

• Distributed Pose Graph Optimization [21, 22]. This thesis develops dis-

tributed pose graph optimization (PGO) algorithms that serve as the estimation

back-end of modern collaborative SLAM (CSLAM) systems. Chapter 4 develops

a distributed PGO algorithm with certifiable global optimality. The proposed

method is based upon a sparse semidefinite relaxation that provably recovers

globally optimal PGO solutions under moderate measurement noise, and is fur-

23

thermore amenable to distributed optimization using the low-rank Riemannian

Staircase framework. Chapter 5 further adapts the distributed local search

algorithm to operate under asynchronous communication, thereby offering re-

siliency against communication delays. We prove first-order convergence and

establish sublinear convergence rates for the proposed distributed local search

methods. Extensive numerical evaluations on synthetic and real-world datasets

demonstrate the superior performance of the proposed algorithms.

• Distributed Metric-Semantic SLAM System [23–25]. Leveraging the dis-

tributed PGO algorithms, Chapter 6 presents a robust and fully distributed

system for multi-robot metric-semantic SLAM. The proposed system, called

Kimera-Multi, is able to accurately estimate robot trajectories and dense 3D

metric-semantic meshes in a common reference frame. We perform live ex-

periments and evaluate Kimera-Multi on the resulting large-scale datasets that

include up to 8 robots traversing long distances (up to 8 km) in challenging ur-

ban environments. The experiments demonstrate the resilience of Kimera-Multi

under different communication scenarios, and provide a quantitative compari-

son with a centralized baseline system. Both the implementations and datasets

are made publicly available to facilitate future research.1

The second part of the thesis focuses on collaborative geometric estimation under

the server-client architecture (Figure 1-1b). The specific contributions are:

• Collaborative Optimization with Event-Triggered Communication [26].

Chapter 7 develops a communication-efficient solver for collaborative geometric

estimation. The proposed method allows agents to cooperatively reconstruct

a shared geometric model on the central server by fusing individual observa-

tions, but without the need to transmit potentially sensitive information about

the agents themselves (such as their locations). Furthermore, to alleviate the

burden of communication during iterative optimization, the proposed method

1Code is available at https://github.com/MIT-SPARK/Kimera-Multi, and datasets are avail-
able at https://github.com/MIT-SPARK/Kimera-Multi-Data.

24

https://github.com/MIT-SPARK/Kimera-Multi
https://github.com/MIT-SPARK/Kimera-Multi-Data

incorporates a set of communication triggering conditions that enable agents to

selectively upload a targeted subset of local information that is useful to global

optimization. We establish first-order convergence for the proposed method.

Numerical results show the proposed algorithm achieves significant communi-

cation reduction on large-scale bundle adjustment problems.

• Collaborative Rotation Averaging and Translation Estimation with

Spectral Sparsification [27]. Chapter 8 designs specialized solvers with fast

convergence for rotation averaging, translation estimation, and two-stage pose

graph initialization. The proposed methods are based on theoretical relations

between the Riemannian Hessians and the Laplacians of suitably weighted

graphs. In the proposed methods, robots coordinate with the central server

to perform approximate second-order optimization by approximately solving

a Laplacian system at each iteration of Riemannian optimization. Further-

more, the proposed algorithms permit robots to employ spectral sparsification to

sparsify intermediate dense matrices before communication, and hence provide

a mechanism to trade off accuracy with communication efficiency with prov-

able guarantees. We prove (local) linear rate of convergence for the proposed

methods. Furthermore, the developed methods are combined with graduated

non-convexity [28] to achieve outlier-robust estimation. Extensive experiments

on real-world SLAM and Structure-from-Motion (SfM) scenarios demonstrate

the superior convergence rate and communication efficiency of the proposed

methods.

1.2.2 Related Publications

The technical contents of this thesis are based on the following publications.

• Y. Tian, K. Khosoussi, D. M. Rosen and J. P. How, “Distributed Certifiably Cor-

rect Pose-Graph Optimization,” IEEE Transactions on Robotics, 2021. Honorable

Mention for King-Sun Fu Memorial Best Paper Award, 2021.

25

• Y. Tian, A. Koppel, A. S. Bedi and J. P. How, “Asynchronous and Parallel Dis-

tributed Pose Graph Optimization,” IEEE Robotics and Automation Letters, 2020.

Honorable Mention for Best Paper Award, 2020.

• Y. Chang, Y. Tian, J. P. How and L. Carlone, “Kimera-Multi: a System for Dis-

tributed Multi-Robot Metric-Semantic Simultaneous Localization and Mapping,”

IEEE International Conference on Robotics and Automation (ICRA), 2021.

• Y. Tian, Y. Chang, F. Herrera Arias, C. Nieto-Granda, J. P. How and L. Car-

lone, “Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-

Robot Systems,” IEEE Transactions on Robotics, 2022. King-Sun Fu Memorial

Best Paper Award, 2022.

• Y. Tian, Y. Chang, L. Quang, A. Schang, C. Nieto-Granda, J. P. How and L.

Carlone, “Resilient and Distributed Multi-Robot Visual SLAM: Datasets, Exper-

iments, and Lessons Learned,” IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2023 (To Appear).

• Y. Tian, A. S. Bedi, A. Koppel, M. Calvo-Fullana, D. M. Rosen and J. P. How,

“Distributed Riemannian Optimization with Lazy Communication for Collaborative

Geometric Estimation,” IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2022.

• Y. Tian and J. P. How, “Spectral Sparsification for Communication-Efficient Col-

laborative Rotation and Translation Estimation,” Under Review, 2022, https:

//arxiv.org/abs/2210.05020.

1.2.3 Thesis Organization

Chapter 2 presents mathematical preliminaries and formally introduces the collabo-

rative geometric estimation problems considered in this thesis. Chapter 3 provides a

summary of related works. Chapters 4 to 6 present contributions under the fully dis-

tributed communication architecture (Figure 1-1a). In particular, Chapter 4 develops

26

https://arxiv.org/abs/2210.05020
https://arxiv.org/abs/2210.05020

a certifiably correct distributed PGO solver. Chapter 5 extends the distributed local

search algorithm to operate under asynchronous communication. Chapter 6 develops

a robust and fully distributed SLAM system, Kimera-Multi, and presents evaluation

results obtained from large-scale field experiments. Chapters 7 and 8 present con-

tributions under the server-client architecture (Figure 1-1b). Specifically, Chapter 7

develops a communication-efficient collaborative solver based on event-triggered com-

munication. Chapter 8 develops specialized solvers with fast convergence for collabo-

rative rotation averaging and translation estimation based on spectral sparsification.

Finally, Chapter 9 presents the conclusion and discusses future work.

27

28

Chapter 2

Background

This chapter presents mathematical preliminaries and formulations for understanding

the collaborative geometric estimation problems considered in this thesis. Section 2.1

first introduces basic notations and concepts. Section 2.2 then formally defines the

geometric estimation problems.

2.1 Mathematical Preliminaries

Unless stated otherwise, lowercase and uppercase letters denote vectors and matrices,

respectively. We define [𝑛] ≜ {1, 2, . . . , 𝑛} as the set of positive integers from 1 to 𝑛.

Linear Algebra

For a symmetric matrix 𝐴, 𝐴 ⪰ 0 means that 𝐴 is positive semidefinite. Furthermore,

𝒮𝑛 and 𝒮𝑛
+ denote the set of 𝑛-by-𝑛 symmetric and symmetric positive semidefinite

matrices, respectively. We use ⊗ to denote the Kronecker product. For a positive

integer 𝑛, 1𝑛 ∈ R𝑛 denotes the vectors of all ones, and 𝐼𝑛 ∈ R𝑛×𝑛 and 𝐼𝑛×𝑛 ∈ R𝑛×𝑛

denote the identity matrix. For any matrix 𝐴, ker(𝐴) and image(𝐴) denote the kernel

(nullspace) and image (span of column vectors) of 𝐴, respectively. 𝐴† denotes the

Moore-Penrose inverse of 𝐴, which coincides with the inverse 𝐴−1 when 𝐴 is invertible.

When 𝐴 ∈ 𝒮𝑛, 𝜆1(𝐴), . . . , 𝜆𝑛(𝐴) denote the real eigenvalues of 𝐴 sorted in increasing

29

order. When 𝐴 ∈ 𝒮𝑛
+, we also define ‖𝑋‖𝐴 ≜

√︀
tr(𝑋⊤𝐴𝑋) where 𝑋 is of compatible

dimensions. Proj𝒮 denotes the orthogonal projection operator onto a given set 𝒮 with

respect to the Frobenius norm.

Graph Theory

A weighted undirected graph is denoted as 𝐺 = (𝒱 , ℰ , 𝑤), where 𝒱 and ℰ denote

the vertex and edge sets, and 𝑤 : ℰ → R>0 is the edge weight function that assigns

each edge (𝑖, 𝑗) ∈ ℰ a positive weight 𝑤𝑖𝑗. For a graph 𝐺 with 𝑛 vertices, its graph

Laplacian 𝐿(𝐺;𝑤) ∈ 𝒮𝑛
+ is defined as,

𝐿(𝐺;𝑤)𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︀
𝑘∈Nbr(𝑖) 𝑤𝑖𝑘, if 𝑖 = 𝑗,

−𝑤𝑖𝑗, if 𝑖 ̸= 𝑗, (𝑖, 𝑗) ∈ ℰ ,

0, otherwise.

(2.1)

In (2.1), Nbr(𝑖) ⊆ 𝒱 denotes the neighbors of vertex 𝑖 in the graph. Our notation

𝐿(𝐺;𝑤) serves to emphasize that the Laplacian of 𝐺 depends on the edge weight 𝑤.

When the edge weight 𝑤 is irrelevant or clear from context, we will write the graph

as 𝐺 = (𝒱 , ℰ) and its Laplacian as 𝐿(𝐺) or simply 𝐿. The graph Laplacian 𝐿 always

has a zero eigenvalue, i.e., 𝜆1(𝐿) = 0. The second smallest eigenvalue 𝜆2(𝐿) is known

as the algebraic connectivity, which is always positive for connected graphs.

Optimization on Matrix Manifolds

The reader is referred to [17, 18] for a comprehensive review of optimization on matrix

manifolds. In general, we useℳ to denote a smooth matrix manifold embedded in an

ambient Euclidean space. For integer 𝑛 > 1,ℳ𝑛 denotes the product manifold formed

by 𝑛 copies ofℳ. The tangent space at 𝑥 ∈ℳ is denoted as 𝑇𝑥ℳ, or simply as 𝑇𝑥

when the manifold ℳ is clear from context. Informally, 𝑇𝑥ℳ contains all possible

directions of change at 𝑥 while staying on ℳ. When ℳ is a matrix manifold, 𝑇𝑥ℳ

can be identified with a linear subspace of the ambient Euclidean space. For tangent

30

vectors 𝜂, 𝜉 ∈ 𝑇𝑥ℳ, their inner product is denoted as ⟨𝜂, 𝜉⟩𝑥, and the corresponding

norm is ‖𝜂‖𝑥 =
√︀
⟨𝜂, 𝜂⟩𝑥. By default, we define the inner product by treating tangent

vectors as elements of the ambient (Euclidean) space and inheriting the standard inner

product from the ambient space, i.e., ⟨𝜂, 𝜉⟩𝑥 ≜ tr(𝜂⊤𝜉). An exception is Chapter 8,

in which we use a different definition of the inner product for the rotation group; see

the end of Section 8.1 for details. For the sake of brevity, we drop the subscript 𝑥

from our notations ⟨·, ·⟩𝑥 and ‖·‖𝑥 it will be clear from context.

A tangent vector can be mapped back to the manifold through a retraction Retr𝑥 :

𝑇𝑥ℳ→ℳ, which is a smooth mapping that preserves the first-order structure of the

manifold [18, Chapter 3.6]. The exponential map Exp𝑥 : 𝑇𝑥ℳ→ℳ is a particular

retraction that produces geodesic curves on the manifold [18, Chapter 10.2]. The

injectivity radius inj(𝑥) is a positive constant such that Exp𝑥 is a diffeomorphism

when restricted to the domain 𝑈 = {𝜂 ∈ 𝑇𝑥ℳ : ‖𝜂‖ < inj(𝑥)}. In this case, we

define the logarithm map to be Log𝑥 ≜ Exp−1𝑥 . Unless otherwise mentioned, we use

d(𝑥, 𝑦) to denote the geodesic distance between two points 𝑥, 𝑦 ∈ ℳ induced by the

Riemannian metric. In addition, it holds that d(𝑥, 𝑦) = ‖𝑣‖ where 𝑣 = Log𝑥(𝑦); see

[18, Proposition 10.22].

For a smooth real-valued function defined on a matrix manifold 𝑓 :ℳ→ R, we

use ∇𝑓(𝑥) and grad 𝑓(𝑥) to denote the Euclidean and Riemannian gradients of 𝑓 at

𝑥 ∈ ℳ. Under the inner product inherited from the ambient Euclidean space, the

Riemannian gradient is given by the orthogonal projection of the Euclidean gradient

onto the tangent space:

grad 𝑓(𝑥) = Proj𝑇𝑥ℳ(∇𝑓(𝑥)). (2.2)

We call 𝑥⋆ ∈ℳ a first-order critical point if grad 𝑓(𝑥⋆) = 0. The Riemannian Hessian

is a linear mapping on the tangent space which captures the directional derivative of

31

the Riemannian gradient:

Hess 𝑓(𝑥) : 𝑇𝑥ℳ→ 𝑇𝑥ℳ,

𝜂 ↦→ Proj𝑇𝑥ℳ(D grad 𝑓(𝑥)[𝜂]).
(2.3)

Above, the operator D denotes the standard directional derivative in the Euclidean

space; see [17, Chapter 5].

Details of Specific Matrix Manifolds

In the following, we discuss important matrix manifolds used throughout this thesis.

The special orthogonal group SO(𝑑). The special orthogonal group (i.e., the

group of rotations) is defined as,

SO(𝑑) ≜ {𝑅 ∈ R𝑑×𝑑 : 𝑅⊤𝑅 = 𝐼𝑑, det(𝑅) = 1}. (2.4)

We exclusively work with 2D and 3D rotations, i.e., 𝑑 ∈ {2, 3}. The tangent space at

𝑅 is given by 𝑇𝑅 SO(𝑑) = {𝑅𝑉 : 𝑉 ∈ so(𝑑)} ⊂ R𝑑×𝑑, where so(𝑑) is the space of 𝑑-

by-𝑑 skew-symmetric matrices. For computational benefits, we also define a basis for

𝑇𝑅 SO(𝑑) such that each tangent vector 𝜂 ∈ 𝑇𝑅 SO(𝑑) is identified with a Euclidean

vector 𝑣 ∈ R𝑝, where 𝑝 = dimSO(𝑑) = 𝑑(𝑑 − 1)/2 is the dimension of the tangent

space. For 3D rotations, we define 𝑣 ∈ R3 such that,

𝜂 = 𝑅 [𝑣]× = 𝑅

⎡⎢⎢⎢⎣
0 −𝑣3 𝑣2

𝑣3 0 −𝑣1
−𝑣2 𝑣1 0

⎤⎥⎥⎥⎦ . (2.5)

For 2D rotations, we define 𝑣 ∈ R in an analogous way,

𝜂 = 𝑅 [𝑣]× = 𝑅

⎡⎣0 −𝑣
𝑣 0

⎤⎦ . (2.6)

32

In (2.5) and (2.6), we have overloaded the notation [·]× to map the input scalar or

vector to the corresponding skew-symmetric matrix in so(2) or so(3). In addition, we

define the function Exp : R𝑝 → SO(𝑑) as,

Exp(𝑣) ≜ exp([𝑣]×), (2.7)

where exp(·) denotes the conventional matrix exponential. Note that Exp : R𝑝 →

SO(𝑑) should not be confused with the exponential mapping on Riemannian manifolds

Exp𝑥 : 𝑇𝑥ℳ → ℳ discussed in the previous section, although the two are closely

related in the case of rotations. Specifically, at a point 𝑅 ∈ SO(𝑑) where 𝑑 ∈ {2, 3},

the exponential map can be written as Exp𝑅(𝜂) = 𝑅Exp(𝑣). Lastly, we also denote

Log as the inverse of Exp in (2.7).

The special Euclidean group SE(𝑑). The special Euclidean group (i.e., the

group of rigid body transformations) is defined as,

SE(𝑑) ≜ {(𝑅, 𝑡) : 𝑅 ∈ SO(𝑑), 𝑡 ∈ R𝑑}. (2.8)

While SE(𝑑) is itself a matrix Lie group, this representation is rarely used in this

thesis. This is because for the purpose of performing optimization, it suffices to treat

SE(𝑑) as the product manifold SO(𝑑) × R𝑑 as in prior works such as [14, 29]. The

Riemannian geometry, including the definitions of tangent vectors and inner products,

is readily available from the product structure.

The Stiefel manifold St(𝑑, 𝑟). The Stiefel manifold St(𝑑, 𝑟) (with 𝑑 ≤ 𝑟) is

defined as,

St(𝑑, 𝑟) ≜ {𝑌 ∈ R𝑟×𝑑 | 𝑌 ⊤𝑌 = 𝐼𝑑}. (2.9)

The dimension of this manifold is given by dim(St(𝑑, 𝑟)) = 𝑑𝑟 − 𝑑(𝑑 + 1)/2. Note

that for 𝑑 = 𝑟, the Stiefel manifold becomes the orthogonal group O(𝑑). Given a

matrix 𝐴 ∈ R𝑟×𝑑, if 𝐴 = 𝑈Σ𝑉 ⊤ is the singular value decomposition (SVD) of 𝐴, the

33

projection of 𝐴 onto St(𝑑, 𝑟) can be obtained as:

ProjSt(𝑑,𝑟)(𝐴) = 𝑈𝑉 ⊤. (2.10)

2.2 Collaborative Geometric Estimation

This section formally presents the collaborative geometric estimation problems stud-

ied in this thesis. For each problem, we first present its optimization formulation

derived from maximum likelihood estimation under a suitable measurement model.

Then, we describe its realization in the setting of multi-agent collaborative estimation.

As we will see, these problems differ in the underlying geometric states one wishes to

estimate and the corresponding measurement models. However, they also share two

important features. First, all problems are instances of unconstrained Riemannian

optimization problems defined on certain smooth matrix manifolds. Second, all prob-

lems admit sparse, graph-based representations. Both properties are important and

are leveraged in this thesis to develop efficient collaborative optimization algorithms.

2.2.1 Rotation Averaging

In rotation averaging, we are concerned with estimating 𝑛 rotation variables given

noisy relative measurements between pairs of rotations. Rotation averaging is a fun-

damental problem in robotics and computer vision [30]. In SLAM (e.g., [31]) and SfM

(e.g., [32]), rotation averaging appears as a key subproblem toward estimating robot

trajectories and/or building large-scale 3D maps. In distributed camera networks

(e.g., [33]), rotation averaging is also used to estimate the orientations of spatially

distributed cameras with overlapping fields of view. We model rotation averaging

using an undirected measurement graph 𝐺 = (𝒱 , ℰ). Each vertex 𝑖 ∈ 𝒱 = [𝑛] cor-

responds to a rotation variable 𝑅𝑖 ∈ SO(𝑑) to be estimated. Each edge (𝑖, 𝑗) ∈ ℰ

corresponds to a noisy relative measurement of the form,

̃︀𝑅𝑖𝑗 = 𝑅⊤𝑖 𝑅𝑗𝑅
err
𝑖𝑗 , (2.11)

34

where 𝑅𝑖, 𝑅𝑗 ∈ SO(𝑑) are the latent (ground truth) rotations and 𝑅err
𝑖𝑗 ∈ SO(𝑑) is the

independent measurement noise. We consider two probabilistic generative models

for 𝑅err
𝑖𝑗 , both of which can be viewed as generalizations of the standard Gaussian

distribution to the rotation group. The first model assumes that 𝑅err
𝑖𝑗 is distributed

according to the isotropic Langevin distribution [14, Appendix A]. In general, the

Langevin distribution with mode 𝑀 ∈ SO(𝑑) and concentration parameter 𝜅 > 0 has

the following probability density function with respect to the Haar measure on SO(𝑑),

𝑝(𝑅;𝑀,𝜅) =
1

𝑐𝑑(𝜅)
𝑒𝜅 tr(𝑀⊤𝑅). (2.12)

In (2.12), 𝑐𝑑(𝜅) is the normalization constant. In our first noise model, we assume that

each 𝑅err
𝑖𝑗 is independently sampled from a Langevin distribution with mode 𝑀 = 𝐼𝑑

and concentration parameter 𝜅𝑖𝑗 > 0, i.e.,

𝑅err
𝑖𝑗 ∼ Langevin(𝐼𝑑, 𝜅𝑖𝑗). (2.13)

Under the generative model (2.13), maximum likelihood estimation amounts to solv-

ing the following non-convex optimization problem,

minimize
𝑅=(𝑅1,...,𝑅𝑛)∈SO(𝑑)𝑛

∑︁
(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗

⃦⃦⃦
𝑅𝑖
̃︀𝑅𝑖𝑗 −𝑅𝑗

⃦⃦⃦2
𝐹
. (2.14)

In the second noise model, we assume that 𝑅err
𝑖𝑗 is independently sampled from a

wrapped Gaussian distribution with zero mean and covariance Σ𝑖𝑗 = 𝜅−1𝑖𝑗 𝐼𝑝,

𝑅err
𝑖𝑗 = Exp(𝑣err

𝑖𝑗), 𝑣err
𝑖𝑗 ∼ 𝒩 (0, 𝜅−1𝑖𝑗 𝐼𝑝). (2.15)

When Σ𝑖𝑗 is small (equivalently, when the precision 𝜅𝑖𝑗 is large), maximum likelihood

estimation under (2.15) is well approximated by the following optimization program.

minimize
𝑅=(𝑅1,...,𝑅𝑛)∈SO(𝑑)𝑛

∑︁
(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗

⃦⃦⃦
Log(̃︀𝑅⊤𝑖𝑗𝑅⊤𝑖 𝑅𝑗)

⃦⃦⃦2
. (2.16)

35

ð𝛼 ð𝛽

ð𝛾

(a) Example measurement graph

ð𝛼 ð𝛽

ð𝛾

(b) Robot-level dependency graph

Figure 2-1: (a) Example multi-robot measurement graph for rotation averaging or pose graph
optimization (PGO). Each robot has multiple rotation or pose variables (vertices) that are
connected by intra-robot and inter-robot measurements. We refer to vertices that have inter-
robot measurements (dashed edges) as separators (marked in red), and all other vertices as
interior vertices (marked in black). (b) Robot-level dependency graph corresponding to the
measurement graph in (a). Each vertex corresponds to a robot, and two robots are adjacent
if and only if there exists at least one inter-robot measurement between the corresponding
robots.

Importantly, problems (2.14) and (2.16) can be combined into the following unified

description, by noting that both minimize the sum of squared measurement residuals,

where the each residual is evaluated using either the chordal distance or the geodesic

distance.

Problem 2.1 (Rotation Averaging).

minimize
𝑅=(𝑅1,...,𝑅𝑛)∈SO(𝑑)𝑛

∑︁
(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗 d(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗)

2. (2.17)

For each edge (𝑖, 𝑗) ∈ ℰ , 𝜅𝑖𝑗 > 0 is the corresponding measurement weight. The

function d(·, ·) refers to either the chordal distance (2.18a) or the geodesic (2.18b)

distance on SO(𝑑),

d(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗) =

⎧⎨⎩dchr(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗) ≜

⃦⃦⃦
𝑅𝑖
̃︀𝑅𝑖𝑗 −𝑅𝑗

⃦⃦⃦
𝐹
. (2.18a)

d∠(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗) ≜

⃦⃦⃦
Log(̃︀𝑅⊤𝑖𝑗𝑅⊤𝑖 𝑅𝑗)

⃦⃦⃦
. (2.18b)

Collaborative Rotation Averaging. In Chapter 8, we study multi-robot col-

laborative rotation averaging. Each robot owns a subset of all rotation variables and

36

only knows about measurements involving its own variables. As a result, robots must

collaborate to solve the overall rotation averaging problem. From the graph perspec-

tive, the entire measurement graph is partitioned based on multiple disjoint subsets

of vertices (i.e., rotation variables), where each subset corresponds to the variables

owned by a different robot. See Figure 2-1a for an example measurement graph. The

existence of inter-robot measurements (i.e., edges) creates coupling among individual

robots’ estimation problems, which can be visualized at the level of robots as a depen-

dency graph. Figure 2-1b shows the robot-level dependency graph that corresponds

to the example in Figure 2-1a.

Definition 2.1 (Separator and interior vertices). In a measurement graph, we identify

a special set of vertices called the separators. Intuitively, the separators “separate”

the remaining graph into multiple connected components, where each component

contains the interior variables of each robot. In collaborative rotation averaging or

pose graph optimization (the latter will be introduced in the next subsection), the

separators correspond to the set of vertices that share inter-robot measurements. For

example, in Figure 2-1a, the separators are marked in red while interior vertices are

marked in black. In Chapters 4 and 5, we also refer to separators and interior vertices

as public and private variables, respectively.

2.2.2 Pose Graph Optimization (PGO)

Pose graph optimization (PGO) is the crucial backbone of state-of-the-art single-robot

SLAM (e.g., [34–37]) and multi-robot SLAM (e.g., [3, 4, 24, 38]) systems. Similar to

rotation averaging, PGO can be represented using a measurement graph 𝐺 = (𝒱 , ℰ).

The main difference is that each vertex 𝑖 ∈ 𝒱 = [𝑛] is now augmented to represent a

full pose variable 𝑇𝑖 ∈ SE(𝑑) to be estimated. Correspondingly, each edge (𝑖, 𝑗) ∈ ℰ

represents a noisy relative pose measurement ̃︀𝑇𝑖𝑗 = (̃︀𝑅𝑖𝑗,̃︀𝑡𝑖𝑗) ∈ SE(𝑑) between poses

𝑇𝑖 and 𝑇𝑗. In this thesis, we adopt the following generative noise model,

̃︀𝑅𝑖𝑗 = 𝑅⊤𝑖 𝑅𝑗𝑅
err
𝑖𝑗 , 𝑅err

𝑖𝑗 ∼ Langevin(𝐼𝑑, 𝜅𝑖𝑗). (2.19a)

37

̃︀𝑡𝑖𝑗 = 𝑅⊤𝑖 (𝑡𝑗 − 𝑡𝑖) + 𝑡err𝑖𝑗 , 𝑡err𝑖𝑗 ∼ 𝒩 (0, 𝜏−1𝑖𝑗 𝐼𝑑). (2.19b)

Above, 𝑅𝑖, 𝑅𝑗 ∈ SO(𝑑) and 𝑡𝑖, 𝑡𝑗 ∈ R𝑑 denote the latent (ground truth) rotations and

translation vectors of pose 𝑖 and 𝑗. Under the noise model (2.19a)-(2.19b), it can be

shown that a maximum likelihood estimate is obtained as a minimizer of the following

non-convex optimization problem [14]:

Problem 2.2 (Pose Graph Optimization (PGO)).

minimize
𝑅=(𝑅1,...,𝑅𝑛)∈SO(𝑑)𝑛,

𝑡=(𝑡1,...,𝑡𝑛)∈R𝑑×𝑛

∑︁
(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗

⃦⃦⃦
𝑅𝑗 −𝑅𝑖

̃︀𝑅𝑖𝑗

⃦⃦⃦2
𝐹
+ 𝜏𝑖𝑗

⃦⃦
𝑡𝑗 − 𝑡𝑖 −𝑅𝑖

̃︀𝑡𝑖𝑗⃦⃦22 . (2.20)

Collaborative PGO. Chapters 4 and 5 study collaborative PGO, in which mul-

tiple robots collaboratively estimate their trajectories in a common reference frame

leveraging distributed computation. Collaborative PGO admits the same graph repre-

sentations as collaborative rotation averaging (see Figure 2-1a). The main difference

is that each vertex represents the full pose (instead of the rotation) of a robot at

a certain time step. Odometry measurements and intra-robot loop closures connect

poses within a single robot’s trajectory. When two robots visit the same place (not

necessarily at the same time), they establish inter-robot loop closures that link their

respective poses [39–41]. The notions of separators and interior variables (Defini-

tion 2.1), as well as the robot-level dependency graph (Figure 2-1b) also apply for

PGO.

2.2.3 Bundle Adjustment (BA)

Bundle adjustment (BA) is a fundamental problem in computer vision [42], and is a

crucial building block of modern visual SLAM and SfM systems. While the problem

formulation admits multiple variations, in this thesis, we focus on one of the most

popular forms of BA that aims to jointly estimate 3D camera poses {𝑇1, . . . , 𝑇𝑛} ∈

SE(3)𝑛 and point landmarks {𝑦1, 𝑦2, . . . , 𝑦𝑚} ∈ R3×𝑚 from noisy 2D observations.

Given known camera intrinsics, each observation 𝑞𝑗𝑙 ∈ R2 on the image plane relates

38

the pose of a camera 𝑇𝑗 = (𝑅𝑗, 𝑡𝑗) ∈ SE(3) and a 3D landmark 𝑦𝑙 ∈ R3 as follows,

𝑞𝑗𝑙 = 𝜋(𝑇𝑗, 𝑦𝑙) + 𝑞err
𝑗𝑙 , 𝑞err

𝑗𝑙 ∼ 𝒩 (0, 𝑤−1𝑗𝑙 𝐼2). (2.21)

In (2.21), 𝜋(𝑇𝑗, 𝑦𝑙) is the camera reprojection function that predicts the 2D observation

of landmark 𝑦𝑙 ∈ R3 by a camera with pose 𝑇𝑗 ∈ SE(3). The measurement noise 𝑞𝑗𝑙 ∈

R2 is assumed to be independently sampled from a Gaussian distribution on the image

plane with covariance Σ𝑗𝑙 = 𝑤−1𝑗𝑙 𝐼2. Under this measurement model, the maximum

likelihood estimation formulation of BA is specified by the following optimization

problem.

Problem 2.3 (Bundle Adjustment).

minimize
𝑇=(𝑇1,...,𝑅𝑛)∈SE(3)𝑛,
𝑦=(𝑦1,...,𝑦𝑚)∈R3×𝑚

∑︁
(𝑗,𝑙)∈ℰ

𝑤𝑗𝑙 ‖𝑞𝑗𝑙 − 𝜋(𝑇𝑗, 𝑦𝑙)‖22 . (2.22)

Problem 2.3 also admit representation as a measurement graph 𝐺 = (𝒱 , ℰ). How-

ever, different from rotation averaging and PGO, the vertex set now contains two

distinct types of vertices 𝒱 = 𝒱𝑇 ⊎ 𝒱𝑝 that correspond to the pose variables and

landmark variables, respectively. Furthermore, 𝐺 is a bipartite graph, because every

edge (𝑗, 𝑙) ∈ ℰ connects a pose variable from 𝒱𝑇 and a landmark variable from 𝒱𝑝.

Collaborative BA. Chapter 7 studies BA in the setting of multi-robot collabo-

rative estimation. Figure 2-2a illustrates an example BA measurement graph. Similar

to the case of PGO, the overall set of pose variables 𝒱𝑇 is partitioned into disjoint

subsets, where each subset corresponds to the trajectory of a single robot. Further-

more, notice that the point landmarks 𝒱𝑝 (shown as red triangle vertices) form a

natural set of separators, given which robots’ pose variables (black circle vertices)

become disconnected. Figure 2-2b shows the corresponding robot-level dependency

graph, where we treat the set of all landmarks as a single aggregated vertex (marked

with “L”). Each robot vertex corresponds to the set of all pose variables owned by that

robot. Note that robots’ poses are only coupled together through the set of landmark

39

ð1

ð2 ð3

ð4

(a) Example measurement graph

ð1

ð2 ð3

ð4

L

(b) Robot-level dependency graph

Figure 2-2: Graph representations for bundle adjustment. (a) Illustration of a simple BA
measurement graph. Each robot has multiple pose variables (black circle vertices). The
shared geometric map consists of multiple point landmarks (red triangle vertices) to be esti-
mated. Each measurement (edge) relates a single pose variable and a single point landmark,
and the overall graph is thus bipartite. (b) Robot-level dependency graph corresponding to
the measurement graph in (a). Each robot vertex corresponds to the set of all pose variables
owned by that robot. The middle vertex marked with “L” corresponds to the shared map
(i.e., the set of all point landmarks). In this case, the point landmarks form the separators
and the dependency graph has a “star” structure.

variables. In Chapter 7, we exploit the special “star” graph structure in Figure 2-2b

by developing a collaborative optimization algorithm in which a server updates the

shared landmark map 𝒱𝑝 and robots perform parallel and distributed updates over

their sets of pose variables in 𝒱𝑇 .

Remark 2.1 (Extension to problem formulations beyond standard BA). By em-

ploying alternative map representations and/or measurement models, the problem

formulation in Problem 2.3 can be extended to many other estimation problems that

belong to the general category of feature-based SLAM. All these formulations can be

described with a factor graph [19]. Examples include other multi-view reconstruc-

tion problems that use alternative sensors (e.g., lidar instead of camera) or estimate

other types of geometric primitives (e.g., planes, quadrics, and cuboids). However,

in this thesis (in particular, in Chapter 7), we focus on the standard BA formulation

(Problem 2.3) due to its fundamental role in multi-robot visual SLAM [1, 2, 4, 43].

40

Chapter 3

Literature Review

3.1 Collaborative SLAM

In this section, we review the crucial components that constitute a collaborative

SLAM (CSLAM) system, including the front-end (inter-robot loop closure detection)

and the back-end (localization and mapping). Then, we review state-of-the-art com-

plete CSLAM systems and relevant datasets. The reader is also referred to [44] for a

recent survey.

3.1.1 CSLAM Front-End

The CSLAM front-end is responsible for detecting inter-robot loop closures, which

are critical to align the trajectories of the robots in a common reference frame and to

improve their trajectory estimates. In a centralized visual SLAM system (e.g., [2]),

robots transmit a combination of global descriptors (e.g., bag-of-words vectors [45, 46]

and learned full-image descriptors [47]) and local visual features (e.g., [48, 49]) to a

central server that performs centralized place recognition and geometric verification.

Recent work develops distributed and communication-efficient paradigms for inter-

robot loop closure detection. Cieslewski and Scaramuzza [50] propose an efficient

method for distributed visual place recognition, based on splitting and distributing

bag-of-words visual features [45]. A subsequent approach is developed in [39, 51]

41

based on clustering and distributing NetVLAD [47] descriptors. A complementary

line of work develops efficient methods for distributed geometric verification. Gi-

amou et al. [40] develop a method to verify a set of candidate inter-robot loop closures

using minimum data exchange. Tian et al. [41, 52] consider distributed geometric ver-

ification under communication and computation budgets and develop near-optimal

communication policies based on submodular optimization.

3.1.2 CSLAM Back-End

The CSLAM back-end is responsible for performing the collaborative localization and

mapping tasks given loop closures and data associations produced by the CSLAM

front-end. This is usually formulated as a collaborative PGO or BA problem. Cen-

tralized CSLAM back-ends leverage off-the-shelf high-performance solvers such as

GTSAM [6], Ceres Solver [7], and g2o [8]. Zhang et al. [53] develop a centralized

incremental solver that generalizes the iSAM solver [54] to the setting of multi-agent

estimation.

One of the earliest distributed SLAM solvers is DDF-SAM [55–57], in which each

agent communicates a “condensed graph” produced by marginalizing out internal vari-

ables (those without inter-robot measurements) in its local Gaussian factor graph.

Choudhary et al. [38] develop DGS, a two-stage approach for finding approximate

solutions to multi-robot PGO in the distributed setting. The first stage approxi-

mately solves the underlying rotation averaging problem by relaxing the non-convex

SO(𝑑) constraints, solving the resulting (unconstrained) linear least squares prob-

lem, and projecting the results back to SO(𝑑). The rotation estimates are then used

in the second stage to initialize a single Gauss-Newton iteration on the full PGO

problem. In both stages, iterative and distributable linear solvers such as Jacobi

over-relaxation (JOR) and successive over-relaxation (SOR) [58] are used to solve the

normal equations. The experimental evaluations presented in [38] demonstrate that

this approach significantly outperforms prior techniques [55, 57]. Motivated by appli-

cations in camera network localization, Tron et al. [29, 29, 59] propose a multi-stage

distributed estimation protocol based on distributed Riemannian gradient descent.

42

Camera network localization can be seen as a special instance of collaborative PGO

where each agent owns a single pose rather than an entire trajectory. In these works,

the authors establish convergence to critical points and, under perfect (noiseless)

measurements, convergence to globally optimal solutions. Similar methods based on

distributed Riemannian gradient descent include [60, 61]. Fan and Murphey [62–64]

propose a majorization-minimization approach to solve distributed PGO. Each iter-

ation constructs a quadratic upper bound on the cost function, and minimization of

this upper bound is carried out in a distributed and parallel fashion. The core benefits

of this approach are that it is guaranteed to converge to a first-order critical point

of the PGO problem, and that it allows one to incorporate Nesterov’s acceleration

technique, which provides significant empirical speedup on typical PGO problems.

Recently, Murai et al. [65] develop a new approach for distributed SLAM based on

Gaussian Belief Propagation, and demonstrate its potential to scale to many agents

during collaborative localization.

Related works in computer vision also propose to leverage distributed optimization

to solve large-scale BA problems. Earlier work proposes to use distributed conjugate

gradients for multi-core BA (e.g., [66]). Methods of this type frequently leverage

a domain decomposition approach (e.g., see [67, Chapter 14]) that eliminates point

landmarks from the normal equations using the Schur complement. Related works use

sparse approximations of the resulting matrix (e.g., with tree-based sparsity patterns)

to precondition the optimization [66, 68–70]. More recently, researchers have proposed

alternative algorithms for distributed BA based on Douglas-Rachford splitting [71] or

alternating direction method of multipliers (ADMM) [72].

For collaborative mapping, existing works have explored different map representa-

tions, including dense geometric representations (e.g., occupancy maps [73]) or sparse

landmark maps [55, 57]; see [74] and the references therein. Recent work begins to

incorporate sparse objects or dense semantic information in multi-robot perception.

Choudhary et al. [38] use class labels to associate objects within a multi-robot pose

graph SLAM framework. Tchuiev and Indelman [75] develop a distributed object-

based SLAM method that leverages the coupling between object classification and

43

pose estimation. Yue et al. [76] leverage dense semantic segmentation to perform

relative localization and map matching between pairs of robots.

3.1.3 Complete Systems

Existing CSLAM systems can be categorized based on whether they implement a

centralized or distributed architecture. CCM-SLAM [2] is a well-established central-

ized system for visual-inertial CSLAM, in which a central server is responsible for

multi-robot map management, fusion, and optimization. COVINS [4, 77] further

extends and generalizes [2] and is demonstrated to scale to 12 robots. CVIDS [78]

is another recent centralized CSLAM system that produces a dense global TSDF

map. LAMP [3, 43] is a state-of-the-art centralized system for lidar-centric CSLAM

and includes a loop closure prioritization module and an outlier-robust PGO module

based on graduated non-convexity (GNC) [28]. MAPLAB 2.0 [5] is another recent

centralized multi-robot multi-session SLAM system that supports multiple sensing

modalities. While centralized systems offer great accuracy and ease of data manage-

ment, they often require a stable connection with the server and are susceptible to a

single point of failure.

Distributed CSLAM systems seek to alleviate the aforementioned limitations by

removing the dependence on the central server. Zhang et al. [79] develop a distributed

system for monocular-only CSLAM, where each robot performs global map merging

onboard. Cieslewski et al. [39] and DOOR-SLAM [80] apply distributed PGO using

the distributed Gauss-Seidel (DGS) method [38]. DOOR-SLAM [80] further em-

ploys Pairwise Consistency Maximization (PCM) [81] to reject outlier inter-robot

loop closures. 𝐷2SLAM [82] is a recent system that applies distributed and asyn-

chronous optimization on multi-robot VIO and PGO. In parallel, Huang et al. [83]

and Zhong et al. [84] also develop distributed systems for lidar-based CSLAM. Swarm-

SLAM [85] is a very recent open-source system that supports both visual and lidar

sensors. Building on a spectral sparsification method for single-robot SLAM [86],

Swarm-SLAM prioritizes inter-robot loop closures by selecting candidates that max-

imize the algebraic connectivity of the multi-robot measurement graph. In contrast

44

to the distributed back-ends used by previous works [24, 39, 80], Swarm-SLAM im-

plements a protocol that dynamically elects a leader among the connected robots to

solve the full multi-robot PGO problem.

3.1.4 CSLAM Datasets

Apart from recent system works, several research groups have also contributed new

large-scale CSLAM datasets. The NeBula [3] and CERBERUS [87] datasets are

collected during the recent DARPA Subterranean Challenge. GRACO [88] includes

multiple ground and aerial sequences for evaluating CSLAM using heterogeneous

platforms. S3E [89] is a collection of CSLAM datasets that includes multiple indoor

and outdoor trajectory designs with varying difficulties for 3 robots. M2DGR [90]

are datasets collected by a single robot that traverses diverse scenarios, and contains

multiple sequences in the same environments.

3.2 Certifiably Correct Geometric Estimation

Rosen et al. [14] developed SE-Sync, a state-of-the-art certifiably correct algorithm for

PGO. SE-Sync is based upon a (convex) semidefinite relaxation that its authors prove

admits a unique, low-rank minimizer providing an exact, globally-optimal solution to

the original PGO problem whenever the noise on the available measurements is not

too large; moreover, in the (typical) case that exactness obtains, it is possible to

verify this fact a posteriori [91], thereby certifying the correctness (optimality) of

the recovered estimate. To solve the resulting semidefinite program (SDP) efficiently,

SE-Sync employs the Riemannian Staircase [92], which leverages symmetric low-rank

(Burer-Monteiro) factorization [93] to directly search for a symmetric low-rank factor

of the SDP solution, and implements this low-dimensional search using the truncated-

Newton Riemannian trust-region (RTR) method [17, 94]. This combination of low-

rank factorization and fast local search (via truncated-Newton RTR) enables SE-Sync

to recover certifiably globally optimal PGO solutions at speeds comparable to (and

frequently significantly faster than) standard state-of-the-art local search methods

45

(e.g. Gauss-Newton) [14].

A similar centralized solver, Cartan-Sync, is proposed in [20]. The main differ-

ence between SE-Sync and Cartan-Sync is that the latter directly relaxes the PGO

problem without first analytically eliminating the translations [95]; consequently, the

resulting relaxation retains the sparsity present in the original PGO problem. How-

ever, this alternative SDP relaxation (and consequently Cartan-Sync itself) has not

previously been shown to enjoy any exactness guarantees; in particular, its minimiz-

ers, and their relation to solutions of PGO, have not previously been characterized.

As one of the main contributions of Chapter 4, we derive sharp correspondences be-

tween minimizers of Cartan-Sync’s relaxation and the original relaxation employed

by SE-Sync (Theorem 4.1); in particular, this correspondence enables us to extend

the exactness guarantees of the latter to cover the former, thereby justifying its use

as a basis for the distributed certifiably correct PGO algorithms in Chapter 4.

As a related note, similar SDP relaxations [15, 96–98] have also been proposed

for rotation averaging (Problem 2.3) [30]. Mathematically, rotation averaging can be

derived as a specialization of PGO obtained by setting the measurement precisions for

the translational observations to zero (practically, ignoring translational observations

and states).

3.3 Outlier-Robust Geometric Estimation

Standard least squares formulation of PGO is susceptible to outlier loop closures that

can severely impact trajectory estimation. To mitigate the effect of outliers in single-

robot SLAM, early methods are based on RANSAC [99], branch & bound [100],

and M-estimation ([30, 101]). Sünderhauf and Protzel [102] develop a method to

deactivate outliers using binary variables. Agarwal et al. [103] build on the same

idea and develop the dynamic covariance scaling method. Hartley et al. [104] and

Casafranca et al. [105] propose to minimize the ℓ1-norm of residual errors. Chatterjee

and Govindu [106, 107] develop iteratively reweighted least squares (IRLS) methods

to solve rotation averaging using a family of robust cost functions. Hu et al. [108]

46

develop similar IRLS methods for single-robot SLAM. Olson and Agarwal [109] and

Pfingsthorn and Birk [110, 111] consider multi-modal distributions for the noise. La-

joie et al. [112] and Carlone and Calafiore [113] develop global solvers based on convex

relaxations. A separate line of work investigates consensus maximization formula-

tions that seek to identify the maximal set of mutually consistent inliers [114–116].

Yang et al. [28] develop graduated non-convexity (GNC) that optimizes a sequence

of increasingly non-convex surrogate cost functions, and demonstrate state-of-the-art

performance on robust PGO problems. In addition to GNC as a fast heuristic for ro-

bust estimation, Yang and Carlone also develop methods with optimality certificates

based on semidefinite relaxations and global optimization [16].

In multi-robot SLAM, Indelman et al. [117] and Dong et al. [118] apply expectation-

maximization to find consistent inter-robot loop closures and estimate initial relative

transformations between robots. Mangelson et al. [81] design the Pairwise Consis-

tency Maximization (PCM) approach to perform robust map merging between pairs

of robots. Lajoie et al. [80] implements an extended version of PCM as the outlier

rejection method before distributed trajectory estimation.

3.4 Spectral Graph Theoretic Methods

3.4.1 Graph Structure in Rotation Averaging and PGO

Prior works have investigated the impact of graph structure on rotation averaging

and PGO problems from different perspectives. One line of research [119–122] adopts

an estimation-theoretic approach and shows that the Fisher information matrix is

closely related to the underlying graph Laplacian matrix. Eriksson et al. [13] estab-

lish sufficient conditions for strong duality to hold in rotation averaging, where the

derived analytical error bound depends on the algebraic connectivity of the graph.

Doherty et al. [123] establish performance guarantees for spectral initialization in

rotation averaging and PGO. Recently, Bernreiter et al. [124] use tools from graph

signal processing to correct onboard estimation errors in multi-robot PGO.

47

From the perspective of nonlinear optimization, Carlone [125] analyzes the in-

fluences of graph connectivity and noise level on the convergence of Gauss-Newton

methods when solving PGO. Tron [29] derives the Riemannian Hessian of rotation

averaging under the geodesic distance, and uses the results to prove convergence of

Riemannian gradient descent. In a pair of papers [126, 127], Wilson et al. study

the local convexity of rotation averaging under the geodesic distance, by bounding

the Riemannian Hessian using the Laplacian of a suitably weighted graph. Recently,

Nasiri et al. [128] develop a Gauss-Newton method for rotation averaging under the

chordal distance, and show that its convergence basin is influenced by the norm of

the inverse reduced Laplacian matrix.

3.4.2 Measurement Selection and Sparsification

Khosoussi et al. [120] and subsequent works [121, 122] propose measurement selection

methods for geometric estimation based on the theory of optimal experimental design,

where the objective is to maximize quantities such as the D-optimality criterion.

Researchers have also developed information-based sparsification methods to sparsify

the dense information matrix after marginalization, using methods such as the Chow-

Liu tree (e.g., [129, 130]) or convex optimization (e.g., [131, 132]). In these works,

sparsification is guided by an information-theoretic objective such as the Kullback-

Leibler divergence, and requires linearization to compute the information matrix.

Recently, Doherty et al. [86] propose a measurement selection approach for pose graph

SLAM that seeks to maximize the algebraic connectivity of the underlying graph.

3.4.3 Spectral Sparsification and Laplacian Solvers

Beyond the domain of geometric estimation considered in this thesis, the graph Lapla-

cians also have immense applications in other fields such as control [133] and fast

linear solvers [134]. Many of these applications leverage a common property of graph

Laplacians, namely, they admit sparse approximations; see [135] for a survey. Spiel-

man and Srivastava [136] show that every graph with 𝑛 vertices can be approximated

48

using a sparse graph with 𝑂(𝑛 log 𝑛) edges. This is achieved using a random sampling

procedure that selects each edge with probability proportional to its effective resis-

tance, which intuitively measures the importance of each edge to the whole graph.

Batson et al. [137] develop a procedure based on the so-called barrier functions for

constructing linear-sized sparsifiers. Another line of work [138, 139] employs sparsi-

fication during approximate Gaussian elimination. Spectral sparsification is one of

the main tools that enables recent progress in fast Laplacian solvers (i.e., for solving

linear systems of the form 𝐿𝑥 = 𝑏, where 𝐿 is a graph Laplacian); see [134] for a

survey. Peng and Spielman [140] develop a parallel solver that invokes sparsification

as a subroutine, which is improved and extended in following works [141, 142]. Re-

cently, Tutunov [143] extends the approach in [140] to solve decentralized consensus

optimization problems.

3.5 Block-Coordinate Descent Methods

Block-coordinate descent (BCD) methods (also known as Gauss-Seidel-type methods)

are classical techniques [58, 144] that have recently regained popularity in large-scale

machine learning and numerical optimization [145–148]. These methods are popular

due to their simplicity, cheap iterations, and flexibility in the parallel and distributed

settings [58]. BCD is a natural choice for solving PGO in the distributed setting due

to the graphical decomposition of the underlying optimization problem. In fact, BCD-

type techniques such as the Gauss-Seidel method have been applied in the past [149,

150] to solve SLAM. Similarly, in computer vision, variants of the Weiszfeld algorithm

have also been used for robust rotation averaging [30, 104]. More recently, [98] propose

a BCD-type algorithm for solving the SDP relaxation of rotation averaging. Their

row-by-row (RBR) solver extends the approach of [151] from SDPs with diagonal

constraints to block-diagonal constraints. The algorithms developed in Chapter 4 are

originally inspired by block-coordinate minimization algorithms for solving SDPs with

diagonal constraints via the Burer-Monteiro approach [152, 153]. Furthermore, the

recent paper [154] extends these algorithms and the global convergence rate analysis

49

provided by [153] from the unit sphere (SDPs with diagonal constraints) to the Stiefel

manifold (SDPs with block -diagonal constraints).

3.6 Asynchronous and Communication-Efficient Dis-

tributed Optimization

Within the broader optimization literature, there is a plethora of works on parallel

and asynchronous optimization, partially motivated by popular applications in large-

scale machine learning and deep learning. Study of asynchronous gradient-based

algorithms began with the seminal work of Bertsekas and Tsitsilis [58], and has led to

the recent development of asynchronous randomized block coordinate and stochastic

gradient algorithms, see [155–161] and references therein. We are especially inter-

ested in asynchronous parallel schemes for non-convex optimization, which have been

studied in [159, 161]. In Chapter 5, we generalize these approaches to the setting

where the feasible set is the product of non-convex matrix manifolds, which makes

our method applicable to distributed PGO applications.

Meanwhile, communication efficiency is another central theme in distributed op-

timization. Recently, this topic has gained increasing attention due to the success of

federated learning [9–12]. Multiple techniques to achieve communication efficiency

have been proposed, including the use of quantization [162] and distributed second-

order methods [163]. In Chapter 7, we explore an alternative strategy based on lazy

or event-triggered communication, which has demonstrated impressive results [164].

50

Chapter 4

Certifiably Correct Distributed Pose

Graph Optimization

4.1 Introduction

Collaborative multi-robot missions require consistent collective spatial perception

across the entire team. In unknown GPS-denied environments, this is achieved by

collaborative simultaneous localization and mapping (CSLAM), in which a team of

agents jointly constructs a common model of an environment via exploration. As

introduced in Chapter 2, at the heart of CSLAM, robots must solve a pose graph

optimization (PGO) problem to estimate their trajectories based on noisy relative

inter-robot and intra-robot measurements.

While several prior approaches to CSLAM have appeared in the literature, to date

no method has been proposed that is capable of guaranteeing the recovery of an op-

timal solution in the distributed setting. In this chapter, we advance the state of the

art in CSLAM by proposing the first PGO algorithm that is both fully distributed and

certifiably correct. Our method leverages the same semidefinite relaxation strategy

that underpins current state-of-the-art (centralized) certifiably correct PGO algo-

rithms [14], but employs novel decentralized optimization and solution verification

techniques that enable these relaxations to be solved efficiently in the distributed

setting.

51

Contributions. Specifically, this chapter makes the following contributions:

• We prove that a sparse semidefinite relaxation of PGO employed by [20] enjoys

the same exactness guarantees as the one used in SE-Sync [14]: namely, that

its minimizers are low-rank and provide exact solutions of the original PGO

problem under moderate measurement noise.

• We describe an efficient low-rank optimization scheme to solve this semidefi-

nite relaxation in the distributed setting. Specifically, we employ a distributed

Riemannian Staircase approach [92], and propose Riemannian block coordinate

descent (RBCD), a novel method for minimizing a function over a product of

Riemannian manifolds, to solve the resulting low-rank subproblems in the dis-

tributed setting. We prove that RBCD converges to first-order critical points

with a global sublinear rate under standard (mild) conditions, and that these

are in particular always satisfied for the low-rank PGO subproblems. We also

describe Nesterov-accelerated variants of RBCD that significantly improve its

convergence speed in practice.

• We propose the first distributed solution verification and saddle escape methods

to certify the optimality of low-rank critical points recovered via RBCD, and to

descend from suboptimal critical points (if necessary).

• Finally, we describe simple distributed procedures for initializing the distributed

Riemannian Staircase optimization, and for rounding the resulting low-rank

factor to extract a final PGO estimate.

Each of these algorithmic components has the same communication, computation,

and privacy properties enjoyed by current distributed CSLAM methods [38, 55, 57],

including

1. Communication and computational efficiency: Robots need only communicate

with their neighbors in the pose graph. To this end, the minimum requirement

is that robots form a connected network, so that information can flow between

any pair of robots (possibly relayed by intermediate robots). The payload size

52

in each round of communication is only 𝒪(𝑚inter) where 𝑚inter is the number of

inter-robot loop closures. Moreover, local updates in RBCD can be performed

efficiently and in parallel, and the solution is produced in an anytime fashion.

2. Spatial privacy protection: Robots are not required to reveal any information

about their own observations or their private poses (those poses that are not

directly observed by other robots).

Our overall algorithm, Distributed Certifiably Correct Pose Graph Optimization (DC2-

PGO), thus preserves the desirable computational properties of existing state-of-the-

art CSLAM methods while enabling the recovery of provably globally optimal solutions

in the distributed setting.

The rest of this chapter is organized as follows. In the remainder of this section

we introduce additional notations used in this chapter. In Section 4.2, we introduce

the sparse SDP relaxation of PGO, and present a distributed procedure to solve

this SDP via the Riemannian Staircase framework. On the theoretical front, we

establish formal exactness guarantees for the SDP relaxation. In Section 4.3, we

present our distributed local search method to solve the rank-restricted SDPs using

block-coordinate descent. In Section 4.4, we prove convergence of the proposed local

search method and analyze its global convergence rate. In Section 4.5, we present

a distributed solution verification procedure that checks the global optimality of our

local solutions, and enables us to escape from suboptimal critical points, if necessary.

We discuss distributed initialization and rounding in Section 4.6. Finally, we conclude

with extensive experimental evaluations in Section 4.7.

Notations

In the following, we introduce additional notations that are necessary for developing

the algorithms in this chapter.

53

Linear Operators. Given a list of square matrices 𝐴1, . . . , 𝐴𝑛 (possibly with

different dimensions), Diag assembles them into a block-diagonal matrix:

Diag(𝐴1, . . . , 𝐴𝑛) ≜

⎡⎢⎢⎢⎣
𝐴1

. . .

𝐴𝑛

⎤⎥⎥⎥⎦ . (4.1)

For an arbitrary square matrix 𝐴, Sym returns its symmetric part Sym(𝐴) ≜ (𝐴 +

𝐴⊤)/2. Let SBD(𝑑, 𝑛) denote the set of [𝑑𝑛× 𝑑𝑛] symmetric block-diagonal matrices

with diagonal blocks of size 𝑑× 𝑑. For a [𝑑× 𝑑]-block-structured matrix 𝑍 ∈ R𝑑𝑛×𝑑𝑛,

we define the following linear operator that outputs another [𝑑 × 𝑑]-block-diagonal

matrix as follows,

SymBlockDiag𝑑(𝑍)[𝑖,𝑗] ≜

⎧⎪⎨⎪⎩ Sym(𝑍[𝑖,𝑖]), if 𝑖 = 𝑗,

0𝑑×𝑑, otherwise.
(4.2)

In addition, for a [(𝑑 + 1) × (𝑑 + 1)]-block-structured matrix 𝑍 ∈ R(𝑑+1)𝑛×(𝑑+1)𝑛, we

define a similar linear operator:

SymBlockDiag+𝑑 (𝑍)[𝑖,𝑗] ≜

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎣Sym(𝑍[𝑖,𝑖](1:𝑑,1:𝑑)) 0𝑑

0⊤𝑑 0

⎤⎥⎦ , if 𝑖 = 𝑗,

0(𝑑+1)×(𝑑+1), otherwise.

(4.3)

The PGO Manifold. In this chapter, the following product manifold is also

used extensively and we give it a specific name:

ℳPGO(𝑟, 𝑛) ≜ (St(𝑑, 𝑟)× R𝑟)𝑛 ⊂ R𝑟×(𝑑+1)𝑛. (4.4)

In our notation (4.4), we highlight the constants 𝑟 and 𝑛 and omit the constant 𝑑, as

the latter is essentially fixed (i.e., 𝑑 ∈ {2, 3} corresponding to 2D or 3D SLAM). As a

product manifold, we can readily characterize the first-order geometry ofℳPGO(𝑟, 𝑛)

54

using those of St(𝑑, 𝑟) and R𝑟 (see Section 2.1 for an introduction to the Stiefel

manifold). In particular, the tangent space of ℳPGO(𝑟, 𝑛) is given as the Cartesian

product of the tangent spaces of individual components. In matrix form, we can write

the tangent space as:

𝑇𝑋ℳPGO(𝑟, 𝑛) = {�̇� ∈ R𝑟×(𝑑+1)𝑛 | SymBlockDiag+𝑑 (�̇�
⊤𝑋) = 0}. (4.5)

The normal space is the orthogonal complement of 𝑇𝑋ℳPGO(𝑟, 𝑛) in the ambient

space. It can be shown that the normal space takes the form,

𝑇⊥𝑋ℳPGO(𝑟, 𝑛) = {𝑋𝑆 | 𝑆 = Diag(𝑆1, 0, . . . , 𝑆𝑛, 0), 𝑆𝑖 ∈ 𝒮𝑑}. (4.6)

Finally, given a matrix 𝑈 ∈ R𝑟×(𝑑+1)𝑛 in the ambient space, the orthogonal projection

onto the tangent space at 𝑋 (4.5) is given by:

Proj𝑇𝑋
:R𝑟×(𝑑+1)𝑛 → 𝑇𝑋ℳPGO(𝑟, 𝑛),

𝑈 ↦→ 𝑈 −𝑋 SymBlockDiag+𝑑 (𝑋
⊤𝑈).

(4.7)

4.2 Certifiably Correct Pose Graph Optimization

Recall PGO (Problem 2.2) and its collaborative version presented in Section 2.2.2.

In this section, we formally introduce the semidefinite relaxation of PGO and our

certifiably correct algorithm for solving these in the distributed setting. Figure 4-1

summarizes the problems introduced in this section and how they relate to each other.

4.2.1 SDP Relaxation for PGO

Traditionally, Problem 2.2 is solved with local search algorithms such as Gauss-

Newton. However, depending on the noise level and the quality of initialization,

local search algorithms are susceptible to local minima [91]. To address this critical

issue, recent works aim to develop certifiably correct PGO solvers. In particular, tech-

niques based on SDP relaxation demonstrate empirical state-of-the-art performance

55

PGO
(Problem 2.2)

SDP Relaxation
(Problem 4.1)

Rank-restricted SDP
(Problem 4.3)

Rank-restricted SDP
(Problem 4.3)

Rank-𝑟 restric-
tion of SDP

(Problem 4.3)

relax

recover
(Thm 4.2)

BM

recover
(Thm 4.3)

Figure 4-1: Relations between problems considered in Chapter 4. From the MLE formulation
of PGO (Problem 2.2), applying semidefinite relaxation yields the SDP (Problem 4.1). Ap-
plying a distributed implementation of the Riemannian staircase algorithm [92] and Burer-
Monteiro (BM) factorization [93] on the SDP then yields a set of rank-restricted problems
(Problem 4.3) which can be locally optimized using our distributed Riemannian local search
method (Section 4.3). After local search, the global optimality of the recovered first-order
critical points of Problem 4.3 as solutions of the original SDP (Problem 4.1) can then be
checked via post hoc verification, and if necessary, a descent direction can be constructed
from a suboptimal critical point to continue the search (Section 4.5). Finally, under suf-
ficiently low noise, SDP relaxations are guaranteed to recover global minimizers of PGO
(Theorem 4.2).

while providing theoretical correctness (global optimality) guarantees under low noise

regimes [14, 97, 98].

In this section, we present a semidefinite relaxation of Problem 2.2 that was first

studied in [20]. Let 𝑇 ≜ [𝑅1 𝑡1 . . . 𝑅𝑛 𝑡𝑛] ∈ (SO(𝑑)× R𝑑)𝑛 be the block-row matrix

obtained by aggregating all rotation and translation variables. In [20], it is shown that

the cost function in Problem 2.2 can be written in matrix form as 𝑓(𝑇) = ⟨𝑄, 𝑇⊤𝑇 ⟩,

where 𝑄 ∈ 𝒮(𝑑+1)𝑛 is a symmetric matrix known as the connection Laplacian formed

using all relative measurements. Consider the “lifted” variable 𝑍 = 𝑇⊤𝑇 ∈ 𝒮(𝑑+1)𝑛
+ .

Treating 𝑍 as a (𝑑+1)×(𝑑+1)-block-structured matrix, we see that several necessary

conditions for 𝑍 to satisfy the original constraints in PGO are,

𝑍 ⪰ 0, (4.8)

rank(𝑍) = 𝑑, (4.9)

𝑍[𝑖,𝑖](1:𝑑,1:𝑑) = 𝑅⊤𝑖 𝑅𝑖 = 𝐼𝑑×𝑑, ∀𝑖 ∈ [𝑛], (4.10)

det(𝑍[𝑖,𝑗](1:𝑑,1:𝑑)) = det(𝑅⊤𝑖 𝑅𝑗) = 1, ∀𝑖, 𝑗 ∈ [𝑛], 𝑖 ̸= 𝑗. (4.11)

Dropping the non-convex rank and determinant constraints (4.9) and (4.11) yields an

SDP relaxation of Problem 2.2.

56

Problem 4.1 (SDP Relaxation for Pose Graph Optimization [20]).

minimize
𝑍∈𝒮𝑛+𝑑𝑛

+

⟨𝑄,𝑍⟩ (4.12a)

subject to 𝑍[𝑖,𝑖](1:𝑑,1:𝑑) = 𝐼𝑑×𝑑,∀𝑖 ∈ [𝑛]. (4.12b)

The original SE-Sync algorithm [14] employs a different SDP relaxation for Prob-

lem 2.2, obtained by first exploiting the so-called separable structure of PGO [95] to

analytically eliminate the translation variables, and then performing convex relax-

ation over the resulting rotation-only problem. This approach yields:

Problem 4.2 (Rotation-only SDP Relaxation for Pose Graph Optimization [14]).

minimize
𝑍R∈𝒮𝑑𝑛+

⟨𝑄R, 𝑍R⟩ (4.13a)

subject to 𝑍R[𝑖,𝑖] = 𝐼𝑑×𝑑,∀𝑖 ∈ [𝑛], (4.13b)

where 𝑄R is obtained by computing a generalized Schur complement of the connection

Laplacian 𝑄 (Appendix A.1).

Remark 4.1 (Choosing the right SDP for Distributed PGO). Problem 4.2 has several

advantages over Problem 4.1, including a compact search space and better numerical

conditioning. Nevertheless, unlike 𝑄 in Problem 4.1, the cost matrix 𝑄R in Prob-

lem 4.2 is generally dense (Appendix A.1.1). In graphical terms, eliminating the

translation variables makes the underlying dependency graph fully connected. This is

a major drawback in the distributed setting, since it corresponds to making all of the

poses public (Definition 2.1), thereby substantially increasing the required commu-

nication. As we shall see in the following sections, our proposed algorithm relies on

and exploits the sparse graphical structure (both intra-robot and inter-robot) of the

problem to achieve computational and communication efficiency, and to preserve the

privacy of participating robots. Therefore, in this work we seek to solve Problem 4.1

as a sparse convex relaxation to PGO.

57

However, in contrast to the SE-Sync relaxation (Problem 4.2) [14], Problem 4.1

has not previously been shown to enjoy any exactness guarantees. We now present

new results to characterize the connection between the solutions of these problems,

thereby extending the guarantee of exactness from Problem 4.2 to Problem 4.1.

Theorem 4.1 (Connection between Problems 4.1 and 4.2). Problem 4.1 admits a

minimizer 𝑍⋆ with rank(𝑍⋆) = 𝑟 if and only if Problem 4.2 admits a minimizer

𝑍⋆
R with the same rank. Furthermore, ⟨𝑄,𝑍⋆⟩ = ⟨𝑄R, 𝑍

⋆
R⟩ for all minimizers of

Problem 4.1 and Problem 4.2.

Theorem 4.1 indicates that relaxing the additional translational variables when

forming Problem 4.1 does not weaken the relaxation versus the SE-Sync relaxation

(Problem 4.2), nor (crucially) introduce any additional minimizers that do not corre-

spond to PGO solutions. In particular, Theorem 4.1 and [14, Proposition 2] together

imply the following exactness guarantee for Problem 4.1 under low measurement

noise.

Theorem 4.2 (Exact recovery via Problem 4.1). Let 𝑄 be the connection Laplacian

in Problem 4.1 , constructed using the true (latent) relative transformations (𝑅𝑖𝑗, 𝑡𝑖𝑗).

There exists a constant 𝛿 > 0 such that if
⃦⃦
𝑄−𝑄

⃦⃦
2
< 𝛿, every minimizer 𝑍⋆ to

Problem 4.1 has its first 𝑑× (𝑛+ 𝑑𝑛) block row given by,

𝑍⋆
(1:𝑑,:) =

[︁
𝑅⋆

1 𝑡⋆1 . . . 𝑅⋆
𝑛 𝑡⋆𝑛

]︁
, (4.14)

where {𝑅⋆
𝑖 , 𝑡

⋆
𝑖 } is an optimal solution to Problem 2.2.

Theorem 4.2 provides a crucial missing piece for achieving certifiably correct dis-

tributed PGO solvers: under low noise (quantified by the deviation in spectral norm

of the connection Laplacian 𝑄 from its latent value), one can directly read off a global

minimizer to PGO (Problem 2.2) from the first block row of any solution 𝑍⋆ of the

sparse SDP relaxation (Problem 4.1). As empirically shown in [14, 20], both SDP

relaxations are exact in real-world scenarios (see Section 4.7 for additional empirical

evidence).

58

4.2.2 Solving the Relaxation: The Distributed Riemannian

Staircase

In typical CSLAM scenarios, the dimension of the SDP relaxation can be quite large

(e.g. dim(𝑍) > 104), and thus it is often impractical to solve Problem 4.1 using

standard (interior-point) methods. In a seminal paper, [93] proposed a more scal-

able approach to search for low-rank solutions 𝑍⋆ in particular: assume that some

solution admits a symmetric low-rank factorization of the form 𝑍⋆ = 𝑋⋆⊤𝑋⋆, where

𝑋⋆ ∈ R𝑟×𝑛 and 𝑟 ≪ 𝑛, and then directly search for the low-rank factor 𝑋⋆. This

substitution has the two-fold effect of (i) dramatically reducing the dimension of the

search space, and (ii) rendering the positive semidefiniteness constraint on 𝑍 redun-

dant, since 𝑋⊤𝑋 ⪰ 0 for any 𝑋 ∈ R𝑟×𝑛. In consequence, the rank-restricted version of

the original semidefinite program obtained by performing the substitution 𝑍 = 𝑋⊤𝑋

is actually a lower-dimensional nonlinear program, and so can be processed much

more efficiently using standard (local) NLP methods.

For SDPs with block-diagonal constraints, [92] extends the general approach of [93]

by further exploiting the geometric structure of the constraints in the Burer-Monteiro-

factored problem. The result is an elegant algorithm known as the Riemannian

Staircase, which is used to solve the (large-scale) semidefinite relaxations in SE-Sync

[14] and Cartan-Sync [20].

In this work, we show how to implement the Riemannian Staircase approach in

a distributed manner, thereby enabling us to solve collaborative PGO. Algorithm 4.1

presents our distributed Riemannian Staircase algorithm. In each iteration of the

Riemannian Staircase, we assume a symmetric rank-𝑟 factorization 𝑍 = 𝑋⊤𝑋 where

𝑋 ∈ R𝑟×(𝑛+𝑑𝑛). Writing the blocks of 𝑋 as 𝑋 = [𝑌1 𝑝1 . . . 𝑌𝑛 𝑝𝑛], the SDP con-

straints (4.12b) require that 𝑌𝑖 ∈ St(𝑑, 𝑟) and 𝑝𝑖 ∈ R𝑟, for all 𝑖 ∈ [𝑛]. Equiv-

alently, the aggregate variable 𝑋 is constrained to live on the product manifold

ℳPGO(𝑟, 𝑛) ≜ (St(𝑑, 𝑟) × R𝑟)𝑛. Imposing the rank-𝑟 factorization thus transforms

the original SDP into the following rank-restricted problem:

59

Algorithm 4.1 Distributed Riemannian Staircase

Input:
- Initial point 𝑋 ∈ℳPGO(𝑟0, 𝑛).

Output:
- A minimizer 𝑋⋆ ∈ ℳPGO(𝑟, 𝑛) of Problem 4.3 such that 𝑍⋆ = (𝑋⋆)⊤(𝑋⋆) is a
solution to Problem 4.1.

1: for 𝑟 = 𝑟0, 𝑟0 + 1, . . . do
2: Compute first-order critical point of Problem 4.3: 𝑋⋆ ← RBCD(𝑋) (Sec-

tion 4.3).
3: Lift to first-order critical point at next level: 𝑋⋆ ← [(𝑋⋆)⊤ 0]⊤ as in (4.44).
4: Construct corresponding dual certificate matrix 𝑆(𝑋⋆) in (4.43).
5: Compute minimum eigenpair: (𝜆, 𝑣)←MinEig(𝑆(𝑋⋆)) (Algorithm 4.6).
6: if 𝜆 ≥ 0 then
7: Return 𝑋⋆.
8: else
9: Construct second-order descent direction �̇�+ in (4.45).

10: Descend from 𝑋⋆: 𝑋 ← EscapeSaddle(𝑋⋆, �̇�+) (Algorithm 4.7).
11: end if
12: end for

Problem 4.3 (Rank-restricted SDP for Pose Graph Optimization).

minimize
𝑋∈ℳPGO(𝑟,𝑛)

⟨𝑄,𝑋⊤𝑋⟩. (4.15)

In Section 4.3, we develop a novel local search algorithm, Riemannian block co-

ordinate descent (RBCD), which we will use to recover first-order critical points of

the rank-restricted SDP (Problem 4.3) in the distributed setting. Inspired by Nes-

terov’s accelerated coordinate descent [148], we also propose an accelerated variant,

RBCD++. In Section 4.4, we establish global first-order convergence guarantees for

both RBCD and RBCD++.

From a first-order critical point 𝑋⋆, we ultimately wish to recover a solution to

the SDP relaxation. To do so, we first lift 𝑋⋆ to the next level of the staircase (i.e.,

increment rank 𝑟 by one). This can be trivially done by padding 𝑋⋆ with a row of

zeros (line 3). The motivations behind this operation will become clear later. By

construction, the matrix 𝑍 = 𝑋⋆⊤𝑋⋆ is feasible in Problem 4.1. We may verify

the global optimality of 𝑍 by checking the (necessary and sufficient) Karush-Kuhn-

60

Tucker (KKT) conditions; for a first-order critical point 𝑋⋆, this amounts to verifying

that a certain dual certificate matrix 𝑆(𝑋⋆) is positive semidefinite (see line 4). In

Section 4.5, we present the first distributed procedure to carry out this verification.

If the dual certificate has a negative eigenvalue, then 𝑍 is not a minimizer of the

SDP, and 𝑋⋆ is in fact a saddle point to Problem 4.3. Fortunately, in this case, the

procedure in Section 4.5 also returns a descent direction, with which we can escape

the saddle point (line 10) and restart distributed local search.

Remark 4.2 (First- vs. second-order optimization in the Riemannian Staircase). The

formulation of the Riemannian Staircase presented in Algorithm 4.1 differs slightly

from its original presentation in [92]: specifically, the latter presupposes access to an

algorithm that is capable of computing second -order critical points of Problem 4.3,

whereas the Riemannian block coordinate descent method we employ in line 2 only

guarantees convergence to first-order critical points. This has implications for the

convergence properties of the overall algorithm: while one can show that the second-

order version of the Riemannian Staircase [92, Alg. 1] is guaranteed to terminate

at a level 𝑟 ≤ 𝑛 when applied to Problem 4.1 [92, Thm. 3.8],1 the weaker (first-

order) guarantees provided by RBCD are reflected in a correspondingly weaker set of

convergence guarantees for our (first-order) Algorithm 4.1 provided in the following

theorem.

Theorem 4.3 (Convergence of Algorithm 4.1). Let {𝑋(𝑟)} denote the sequence of

low-rank factors generated by Algorithm 4.1 in line 3 using a particular saddle escape

procedure described in Appendix A.3. Then exactly one of the following two cases

holds:

(𝑖) Algorithm 4.1 terminates after finitely many iterations and returns a symmetric

factor 𝑋(𝑟) for a minimizer 𝑍⋆ = (𝑋(𝑟))⊤𝑋(𝑟) of Problem 4.1 in line 7.

(𝑖𝑖) Algorithm 4.1 generates an infinite sequence {𝑋(𝑟)} satisfying 𝑓(𝑋(𝑟2)) < 𝑓(𝑋(𝑟1))

1Strictly speaking, the finite-termination guarantees provided by [92, Thm. 3.8] only hold for
the SE-Sync relaxation Problem 4.2 (cf. [14, Prop. 3]); however, we can extend these guarantees to
Problem 4.1 by exploiting the correspondence between critical points of the low-rank factorizations
of Problems 4.1 and 4.2 that we establish in Lemma A.1 (Appendix A.1).

61

for all 𝑟2 > 𝑟1, with

lim
𝑟→∞

𝑓(𝑋(𝑟)) = 𝑓 ⋆
SDP, (4.16)

and there exists an infinite subsequence {𝑋(𝑟𝑘)} ⊂ {𝑋(𝑟)} satisfying:

lim
𝑘→∞

𝜆min
(︀
𝑆(𝑋(𝑟𝑘))

)︀
= 0. (4.17)

In a nutshell, Theorem 4.3 states that Algorithm 4.1—with a particular version of

saddle escape procedure described in Appendix A.3—either terminates after a finite

number of iterations, or generates an infinite sequence of factors {𝑋(𝑟)} that monoton-

ically strictly decrease the objective to the optimal value 𝑓 ⋆
SDP and that can arbitrarily

well-approximate the satisfaction of the KKT condition 𝜆min(𝑆(𝑋
(𝑟))) ≥ 0. We prove

this theorem in Appendix A.3.

We remark that while the convergence guarantees of Theorem 4.3 are formally

weaker than those achievable using a second-order local search method, as a practical

matter these differences are inconsequential. In any numerical implementation of the

Riemannian Staircase framework, both the second-order criticality of a stationary

point (in the second-order version) and the nonnegativity of the minimum eigenvalue

𝜆 (in Algorithm 4.1) are checked subject to some numerical tolerance 𝜖tol > 0; this

accounts for both the finite precision of real-world computers, and the fact that the

low-rank factors 𝑋 computed via local search in line 2 are themselves only approx-

imations to critical points, as they are obtained using iterative local optimization

methods. In particular, practical implementations of Algorithm 4.1 (including ours)

would replace line 6 with a termination condition of the form “𝜆 ≥ −𝜖tol”2, and

(4.17) guarantees that this condition is satisfied after finitely many iterations for any

𝜖tol > 0. As a practical matter, the behavior of Algorithm 4.1 is far from the pes-

simistic case described in part (𝑖𝑖) of Theorem 4.3; as we show empirically in Section

4.7, in real-world applications typically only 1-3 iterations suffice.

2This is analogous to the standard stopping criterion ‖∇𝑓(𝑥)‖ < 𝜖tol for local optimization
methods.

62

Algorithm 4.2 Distributed Certifiably Correct Pose Graph Optimization
(DC2-PGO)

Input:
- Initial rank 𝑟0 ≥ 𝑑 for the Riemannian Staircase.

Output:
- A feasible solution 𝑇 ∈ SE(𝑑)𝑛 to Problem 2.2 and the lower bound 𝑓 ⋆

SDP on
Problem 2.2’s optimal value.

1: Obtain initial point 𝑋 ∈ℳPGO(𝑟, 𝑛) through distributed initialization.
2: 𝑋⋆ ← DistributedRiemannianStaircase(𝑋).
3: Recover optimal value of the SDP relaxation 𝑓 ⋆

SDP = ⟨𝑄,𝑋⋆⊤𝑋⋆⟩.
4: From 𝑋⋆, obtain feasible 𝑇 ∈ SE(𝑑)𝑛 through distributed rounding.
5: return 𝑇, 𝑓 ⋆

SDP.

4.2.3 The Complete Algorithm

The distributed Riemannian Staircase (Algorithm 4.1) is the core computational pro-

cedure of our overall algorithm. Nevertheless, to implement a complete distributed

method for solving the original PGO problem (Problem 2.2), we must still specify

procedures for (i) initializing the Riemannian Staircase by constructing an initial

point 𝑋 ∈ ℳPGO(𝑟0, 𝑛), and (ii) rounding the low-rank factor 𝑋⋆ returned by the

Riemannian Staircase to extract a feasible solution 𝑇 ∈ SE(𝑑)𝑛 of the PGO problem.

We discuss the details of both distributed initialization and rounding in Section 4.6.

Combining these procedures produces our complete distributed certifiably correct

algorithm, DC2-PGO (Algorithm 4.2).

Since the SDP (Problem 4.1) is a convex relaxation of PGO, its optimal value 𝑓 ⋆
SDP

is necessarily a lower bound on the global minimum of PGO. Using this fact, we may

obtain an upper bound on the suboptimality of the solution returned by DC2-PGO.

Specifically, let 𝑓(𝑇) denote the objective achieved by the final estimate, and let 𝑓 ⋆
MLE

denote the optimal value of Problem 2.2. Then:

𝑓(𝑇)− 𝑓 ⋆
MLE ≤ 𝑓(𝑇)− 𝑓 ⋆

SDP. (4.18)

In particular, if 𝑓(𝑇) = 𝑓 ⋆
SDP, then the SDP relaxation is exact, and 𝑓(𝑇) = 𝑓 ⋆

MLE. In

this case, (4.18) serves as a certificate of the global optimality of 𝑇 .

63

4.3 Distributed Local Search via Riemannian Block-

Coordinate Descent

In this section, we introduce a new distributed local search algorithm to identify a

first-order critical point of the rank-restricted SDP relaxation (Problem 4.3), which is

needed by the Distributed Riemannian Staircase framework (Algorithm 4.1, line 2).

Our algorithm is applicable to a broad class of smooth optimization problems defined

over the Cartesian product of matrix manifolds:

minimize
𝑋∈ℳ

𝑓(𝑋), ℳ ≜ℳ1 × . . .×ℳ𝑁 . (4.19)

The above problem contains Problem 4.3 as a special case. Specifically, in distributed

PGO, each block 𝑏 exactly corresponds to a robot andℳ𝑏 =ℳPGO(𝑟, 𝑛𝑏) ≜ (St(𝑑, 𝑟)×

R𝑟)𝑛𝑏 corresponds to the search space of this robot’s trajectory. Here, 𝑛𝑏 is the number

of poses owned by the robot associated to block 𝑏, and 𝑁 is the total number of robots.

For this reason, unless otherwise mentioned, in this section we use the words “block”

and “robot” interchangeably.

To solve (4.19), we leverage the product structure of the underlying manifold and

propose a distributed block-coordinate descent algorithm that we call RBCD (Algo-

rithm 4.3). In each iteration of RBCD, a block 𝑏 ∈ [𝑁] is selected to be optimized.

Specifically, let 𝑋𝑏 ∈ℳ𝑏 be the component of 𝑋 corresponding to the selected block,

and let ̂︀𝑋[𝑁]∖{𝑏} be the (fixed) values of remaining blocks. We update 𝑋𝑏 by minimiz-

ing the following reduced cost function.

minimize
𝑋𝑏∈ℳ𝑏

𝑓𝑏(𝑋𝑏) ≜ 𝑓(𝑋𝑏, ̂︀𝑋[𝑁]∖{𝑏}). (4.20)

For the rank-restricted SDP (Problem 4.3) in PGO, the reduced problem for block 𝑏

takes the form,

𝑓𝑏(𝑋𝑏) = ⟨𝑄𝑏, 𝑋
⊤
𝑏 𝑋𝑏⟩+ 2⟨𝐹𝑏, 𝑋𝑏⟩+ const. (4.21)

In the above equation, 𝑄𝑏 is the submatrix of 𝑄 formed with the rows and columns

64

that correspond to block 𝑏 (i.e., the trajectory of robot 𝑏), and 𝐹𝑏 ∈ R𝑟×(𝑑+1)𝑛𝑏 is a

constant matrix that depends on the (fixed) public variables of robot 𝑏’s neighbors in

the pose graph.

Remark 4.3 (Communication requirements of RBCD). RBCD is designed such that

it can be easily implemented by a network of robots. At each iteration, the team first

coordinates to select the next block (robot) to update (Algorithm 4.3, line 3). Then, to

update the selected block (Algorithm 4.3, line 4), the robot corresponding to this block

receives public variables from its neighboring robots in the pose graph. Afterwards,

this robot forms and solves its local optimization problem (4.20), which does not

require further communications. Finally, to determine when to terminate RBCD

(Algorithm 4.3, line 2), robots need to collaboratively evaluate their total gradient

norm. In practice, checking the termination condition may be done periodically

(instead of after every iteration) to save communication resources.

Remark 4.4 (Block-coordinate minimization on product manifolds). Prior works

(e.g., [152–154]) have proposed similar block-coordinate minimization (BCM) algo-

rithms to solve low-rank factorizations of SDPs with diagonal or block-diagonal

constraints. Our approach generalizes these methods in two major ways. First,

while prior methods are explicitly designed for problems over the product of spheres

[152, 153] or Stiefel manifolds [154], our algorithm is applicable to the product of

any matrix manifolds. Secondly, prior works [152–154] require that the cost function

to have a certain quadratic form, so that exact minimization of each variable block

admits a closed-form solution. In contrast, our algorithm does not seek to perform

exact minimization, but instead computes an inexpensive approximate update that

achieves a sufficient reduction of the objective (see Section 4.3.2). This makes our

method more general and applicable to a much broader class of smooth cost func-

tions that satisfy a Lipschitz-type condition. We discuss this point in greater detail

in Section 4.4.

The rest of this section is organized to discuss each step of RBCD in detail.

We begin in Section 4.3.1 by discussing block selection rules. These rules determine

65

Algorithm 4.3 Riemannian Block-Coordinate Descent (RBCD)

Input:
- Global cost function 𝑓 :ℳ ≜ℳ1 × . . .×ℳ𝑁 → R.
- Initial solution 𝑋0 ∈ℳ.
- Stopping condition on gradient norm 𝜖.

Output:
- First-order critical point 𝑋⋆.

1: 𝑘 ← 0.
2: while

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦
> 𝜖 do

3: Select next block 𝑏𝑘 ∈ [𝑁].
4: Update the selected block 𝑋𝑘+1

𝑏𝑡
← BlockUpdate(𝑓𝑏𝑘 , 𝑋

𝑡
𝑏𝑘
).

5: Carry over all other blocks 𝑋𝑘+1
𝑏′ = 𝑋𝑘

𝑏′ , ∀𝑏′ ̸= 𝑏𝑘.
6: 𝑘 ← 𝑘 + 1.
7: end while
8: return 𝑋⋆ = 𝑋𝑘.

how blocks are selected at each iteration (Algorithm 4.3, line 3). In Section 4.3.2,

we propose a general block update rule (Algorithm 4.3, line 4) based on approximate

minimization of trust-region subproblems [94]. In Section 4.3.3, we further develop an

accelerated variant of RBCD based on Nesterov’s celebrated accelerated coordinate-

descent algorithm [148], which greatly speeds up convergence near critical points.

Finally, in Section 4.3.4 we show that, using a slight modification of our blocking

scheme, we can allow multiple robots to update their coordinates in parallel, thereby

speeding up our distributed local search.

4.3.1 Block Selection Rules

In this section, we describe three mechanisms for selecting which block to update at

each iteration of RBCD (Algorithm 4.3, line 3). We note that similar rules have been

proposed in the past; see, e.g., [145, 153, 165].

• Uniform Sampling. The first rule is based on the idea of uniform sampling.

At each iteration, each block 𝑏 ∈ [𝑁] is selected with equal probability 𝑝𝑏 = 1/𝑁 .

• Importance Sampling. In practice, it is often the case that selecting cer-

tain blocks leads to significantly better performance compared to others [145].

Therefore, it is natural to assign these blocks higher weights during the sampling

66

process. We refer to this block selection rule as importance sampling. In this

work, we set the probability of selecting each block to be proportional to the

squared gradient norm, i.e., 𝑝𝑏 ∝ ‖grad𝑏 𝑓(𝑋)‖2 , ∀𝑏 ∈ [𝑁]. Here, grad𝑏 𝑓(𝑋)

denotes the component of the Riemannian gradient of 𝑓(𝑋) that corresponds

to block 𝑏. Under Lipschitz-type conditions, the squared gradient norm can be

used to construct a lower bound on the achieved cost decrement; see Lemma 4.1.

• Greedy (Gauss-Southwell). We can also modify importance sampling into a

deterministic strategy that simply selects the block with the largest squared gra-

dient norm, i.e., 𝑏 ∈ argmax ‖grad𝑏 𝑓(𝑋)‖2. We refer to this strategy as greedy

selection or the Gauss-Southwell (GS) rule [145]. Recent works also propose

other variants of greedy selection such as Gauss-Southwell-Lipschitz (GSL) and

Gauss-Southwell-Quadratic (GSQ) [145]. However, such rules require additional

knowledge about the block Lipschitz constants that are hard to obtain in our

application. For this reason, we restrict our deterministic selection rule to GS.

Despite its simplicity, empirically the GS rule exhibits satisfactory performance;

see Section 4.7.

Remark 4.5 (Communication requirements of different block selection rules). In

practice, uniform sampling does not incur communication overhead, and can be ap-

proximately implemented using synchronized clocks on each robot (to conduct and

coordinate BCD rounds) and a common random seed for the pseudorandom number

generator (to agree on which robot should update in the next round). In contrast, im-

portance sampling and greedy selection require additional communication overhead

at each round, as robots need to evaluate and exchange local gradient norms. In

particular, the greedy selection rule can be implemented via flooding gradient norms;

see, e.g., the FloodMax algorithm for leader election in general synchronized networks

[166, Chapter 4]. This requires robots to have unique IDs and communicate in syn-

chronized rounds. While greedy and importance rules have higher communication

overhead than uniform sampling, they also produce more effective iterations and thus

converge faster (see Section 4.7).

67

4.3.2 Computing a Block Update

Algorithm 4.4 BlockUpdate

Input:
- Reduced cost function 𝑓𝑏 :ℳ𝑏 → R.
- Current block estimate 𝑋𝑘

𝑏 ∈ℳ𝑏.
- User-specified mapping on tangent space 𝐻 : 𝑇𝑋𝑘

𝑏
→ 𝑇𝑋𝑘

𝑏
(default to Riemannian

Hessian).
- Initial trust-region radius ∆0.

Output:
- Updated block estimate 𝑋𝑘+1

𝑏 ∈ℳ𝑏.
1: ∆← ∆0.
2: Form model function �̂�𝑏(𝜂𝑏) = 𝑓𝑏(𝑋

𝑘
𝑏) + ⟨grad 𝑓𝑏(𝑋𝑘

𝑏), 𝜂𝑏⟩+ 1
2
⟨𝜂𝑏, 𝐻[𝜂𝑏]⟩.

3: while true do
4: Compute an approximate solution 𝜂⋆𝑏 ∈ 𝑇𝑋𝑘

𝑏
ℳ𝑏 to the trust-region subproblem

(4.24).
5: if 𝜌(𝜂⋆𝑏) > 1/4 then
6: return 𝑋𝑘+1

𝑏 = Retr𝑋𝑘
𝑏
(𝜂⋆𝑏).

7: else
8: Decrease trust-region radius ∆← ∆/4.
9: end if

10: end while

Note that since (4.20) is in general a non-convex minimization, computing a block

update by exactly solving this problem is intractable. In this section, we describe

how to implement a cheaper approach that permits the use of approximate solutions

of (4.20) by requiring only that they produce a sufficient decrease of the objective.

In Section 4.4, we show that under mild conditions, such approximate updates are

sufficient to ensure global first-order convergence of RBCD. While there are many

options to achieve sufficient descent, in this work we propose to (approximately)

solve a single trust-region subproblem using the truncated preconditioned conjugate

gradient method [17, 94]. Compared to a full minimization that would solve (4.20)

to first-order critical point, our approach greatly reduces the computational cost.

On the other hand, unlike other approximate update methods such as Riemannian

gradient descent, our method allows us to leverage (local) second-order information

of the reduced cost which leads to more effective updates.

Let 𝑏 be the block that we select to update, and denote the current value of this

68

block (at iteration 𝑘) as 𝑋𝑘
𝑏 . We define the pullback of the reduced cost function

(4.20) as follows [17, 167],

̂︀𝑓𝑏 : 𝑇𝑋𝑘
𝑏
→ R,

𝜂𝑏 ↦→ 𝑓𝑏 ∘ Retr𝑋𝑘
𝑏
(𝜂𝑏).

(4.22)

Note that the pullback is conveniently defined on the tangent space which itself is

a vector space. However, since directly minimizing the pullback is nontrivial, it is

approximated with a quadratic model function [17, 167], as defined below.

̂︀𝑚𝑏(𝜂𝑏) ≜ 𝑓𝑏(𝑋
𝑘
𝑏) + ⟨grad 𝑓𝑏(𝑋𝑘

𝑏), 𝜂𝑏⟩+
1

2
⟨𝜂𝑏, 𝐻[𝜂𝑏]⟩. (4.23)

In (4.23), 𝐻 : 𝑇𝑋𝑘
𝑏
→ 𝑇𝑋𝑘

𝑏
is a user-specified mapping on the tangent space. By

default, we use the Riemannian Hessian 𝐻 = Hess 𝑓𝑏(𝑋
𝑘
𝑏) so that the model function

is a second-order approximation of the pullback. Then, we compute an update di-

rection 𝜂⋆𝑏 on the tangent space by approximately solving the following trust-region

subproblem,

minimize𝜂𝑏∈𝑇𝑋𝑘
𝑏
ℳ𝑏

̂︀𝑚𝑏(𝜂𝑏) subject to ‖𝜂𝑏‖ ≤ ∆. (4.24)

To ensure that the obtained update direction yields sufficient descent on the orig-

inal pullback, we follow standard procedure [17, 94] and evaluate the following ratio

that quantifies the agreement between model decrease (predicted reduction) and pull-

back decrease (actual reduction),

𝜌(𝜂⋆𝑏) ≜
̂︀𝑓𝑏(0)− ̂︀𝑓𝑏(𝜂⋆𝑏)̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂⋆𝑏)

=
𝑓𝑏(𝑋

𝑘
𝑏)− ̂︀𝑓𝑏(𝜂⋆𝑏)

𝑓𝑏(𝑋𝑘
𝑏)− ̂︀𝑚𝑏(𝜂⋆𝑏)

. (4.25)

If the above ratio is larger than a constant threshold (default to 1/4), we accept the

current update direction and set 𝑋𝑘+1
𝑏 = Retr𝑋𝑘

𝑏
(𝜂⋆𝑏) as the updated value of this

block. Otherwise, we reduce the trust-region radius ∆ and solve the trust-region

subproblem again. Algorithm 4.4 gives the pseudocode for the entire block update

procedure.

In Appendix A.2, we prove that under mild conditions, we can always find an

69

update direction (the so-called Cauchy step [17, 94]) that satisfies the required ter-

mination condition (Algorithm 4.4, line 5). Furthermore, the returned solution is

guaranteed to produce sufficient descent on the cost function, which is crucial to es-

tablish global convergence rate of RBCD (Algorithm 4.3). We discuss the details of

convergence analysis in Section 4.4.

Remark 4.6 (Solving the trust-region subproblem (4.24)). Following [17, 94], we

also use the truncated conjugate-gradient (tCG) method to solve the trust-region

subproblem (4.24) inside Algorithm 4.4. tCG is an efficient “inverse-free” method,

i.e., it does not require inverting the Hessian itself, and instead only requires eval-

uating Hessian-vector products. Furthermore, tCG can be significantly accelerated

using a suitable preconditioner. Formally, a preconditioner is a linear, symmetric, and

positive-definite operator on the tangent space that approximates the inverse of the

Riemannian Hessian. Both SE-Sync [14, 168] and Cartan-Sync [20] have already pro-

posed empirically effective preconditioners for problems similar to (4.21).3 Drawing

similar intuitions from these works, we design our preconditioner as,

Precon 𝑓(𝑋𝑘
𝑏) : 𝑇𝑋𝑘

𝑏
→ 𝑇𝑋𝑘

𝑏
,

𝜂𝑏 ↦→ Proj𝑇
𝑋𝑘

𝑏

(𝜂𝑏(𝑄𝑏 + 𝜆𝐼)−1). (4.26)

The small constant 𝜆 > 0 ensures that the proposed preconditioner is positive-definite.

In practice, we can store and reuse the Cholesky decomposition of 𝑄𝑏+𝜆𝐼 for improved

numerical efficiency.

Remark 4.7 (Block update via exact minimization). Algorithm 4.4 employs RTR

[94] to sufficiently reduce the cost function along a block coordinate. It is worth

noting that in some special cases, one can exactly minimize the cost function along

any single block coordinate [153, 154]. In the context of PGO, this is the case when

every block consists only of a single pose which naturally arises in camera network

localization. We provide a quick sketch in the following. First, note that the reduced
3The only difference is the additional linear terms in our cost functions, as a result of anchoring

variables owned by other robots.

70

problem (4.21) is an unconstrained convex quadratic over the Euclidean component

ofℳ𝑏 = St(𝑑, 𝑟)× R𝑟 (i.e., the so-called lifted translation component). We can thus

first eliminate this component analytically by minimizing the reduced cost over the

lifted translation vector, thereby further reducing (4.21) to an optimization problem

over St(𝑑, 𝑟). Interestingly, the resulting problem too admits a closed-form solution

via the projection operator onto St(𝑑, 𝑟) provided in (2.10) (see also [154, Sec. 2] for

a similar approach). Finally, using this solution we can recover the optimal value for

the Euclidean component via linear least squares (see, e.g., [95]).

4.3.3 Accelerated Riemannian Block-Coordinate Descent

In practice, many PGO problems are poorly conditioned. Critically, this means that a

generic first-order algorithm can suffer from slow convergence as the iterates approach

a first-order critical point. Such slow convergence is also manifested by the typical

sublinear convergence rate, e.g., for Riemannian gradient descent as shown in [167].

To address this issue, Fan and Murphy [62, 63] recently developed a majorization-

minimization algorithm for PGO. Crucially, their approach can be augmented with

a generalized version of Nesterov’s acceleration that significantly speeds up empirical

convergence.

Following the same vein of ideas, we show that it is possible to significantly

speed up RBCD by adapting the celebrated accelerated coordinate-descent method

(ACDM), originally developed by Nesterov [148] to solve smooth convex optimiza-

tion problems. Compared to the standard randomized coordinate descent method,

ACDM enjoys an accelerated convergence rate of 𝒪(1/𝑘2). Let 𝑁 denote the dimen-

sion (number of coordinates) in the problem. ACDM updates two scalar sequences

71

Algorithm 4.5 Accelerated Riemannian Block-Coordinate Descent
(RBCD++)

Input:
- Global cost function 𝑓 :ℳ ≜ℳ1 × . . .×ℳ𝑁 → R.
- Initial solution 𝑋0 ∈ℳ.
- Stopping condition on gradient norm 𝜖.
- Restart constant 𝑐1 > 0.

Output:
- First-order critical point 𝑋⋆.

1: 𝑘 ← 0, 𝑉 0 ← 𝑋0, 𝛾−1 ← 0.
2: while

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦
> 𝜖 do

3: 𝛾𝑘 ← (1 +
√︀

1 + 4𝑁2𝛾𝑘−12)/2𝑁, 𝛼𝑘 ← 1/𝛾𝑘𝑁 .
4: // Y update
5: 𝑌 𝑘 ← Projℳ((1− 𝛼𝑘)𝑋

𝑘 + 𝛼𝑘𝑉
𝑘).

6: // X update
7: Select next block 𝑏𝑘 ∈ [𝑁].
8: Update the selected block 𝑋𝑘+1

𝑏𝑘
← BlockUpdate(𝑓𝑏𝑘 , 𝑌

𝑘
𝑏𝑘
) .

9: Carry over all other blocks 𝑋𝑘+1
𝑏′ ← 𝑌 𝑘

𝑏′ , ∀𝑏′ ̸= 𝑏𝑘.
10: // V update
11: 𝑉 𝑘+1 ← Projℳ(𝑉 𝑘 + 𝛾𝑘(𝑋

𝑘+1 − 𝑌 𝑘)).
12: // Adaptive restart
13: if 𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1) < 𝑐1

⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2 then

14: // Use default block update
15: 𝑋𝑘+1

𝑏𝑘
← BlockUpdate(𝑓𝑏𝑘 , 𝑋

𝑘
𝑏𝑘
).

16: Carry over all other blocks 𝑋 𝑡+1
𝑏′ ← 𝑋𝑘

𝑏′ , ∀𝑏′ ̸= 𝑏𝑘.
17: // Reset Nesterov’s acceleration
18: 𝑉 𝑘+1 ← 𝑋𝑘+1.
19: 𝛾𝑘 = 0.
20: end if
21: 𝑘 ← 𝑘 + 1.
22: end while
23: return 𝑋⋆ = 𝑋𝑘.

{𝛾𝑘}, {𝛼𝑘} and three sequences of iterates {𝑥𝑘}, {𝑦𝑘}, {𝑣𝑘} ∈ R𝑁 .

𝛾𝑘 = (1 +
√︀

1 + 4𝑁2𝛾𝑘−12)/2𝑁, (4.27)

𝛼𝑘 = 1/(𝛾𝑘𝑁), (4.28)

𝑦𝑘 = (1− 𝛼𝑘)𝑥
𝑘 + 𝛼𝑘𝑣

𝑘, (4.29)

𝑥𝑘+1 = 𝑦𝑘 − 1/𝐿𝑏𝑘∇𝑏𝑘𝑓(𝑦
𝑘), (4.30)

𝑣𝑘+1 = 𝑣𝑘 + 𝛾𝑘(𝑥
𝑘+1 − 𝑦𝑘). (4.31)

72

In (4.30), 𝐿𝑏𝑘 is the Lipschitz constant of the gradient that corresponds to coordinate

𝑏𝑘. Note that compared to standard references (e.g., [144, 148]), we have slightly

changed the presentation of ACDM, so that later it can be extended to our Rieman-

nian setting in a more straightforward manner. Still, it can be readily verified that

(4.27)-(4.31) are equivalent to the original algorithm.4

In Algorithm 4.5, we adapt the ACDM iterations to design an accelerated variant

of RBCD, which we call RBCD++. We leverage the fact that our manifolds of interest

are naturally embedded within some linear space. This allows us to first perform the

additions and subtractions as stated in (4.27)-(4.31) in the linear ambient space, and

subsequently project the result back to the manifold. For our main manifold of interest

ℳPGO(𝑟, 𝑛), the projection operation only requires computing the SVD for each Stiefel

component, as shown in (2.10). Note that the original ACDM method performs a

coordinate descent step (4.30) at each iteration. In RBCD++, we generalize (4.30) by

employing the BlockUpdate procedure (Algorithm 4.4) to perform a descent step

on a block coordinate 𝑌𝑏 ∈ℳ𝑏 (Algorithm 4.5, line 8).

Unlike the convex case, it is unclear how to prove convergence of the above accel-

eration scheme subject to the non-convex manifold constraints. Fortunately, conver-

gence can be guaranteed by adding adaptive restart [169], which has also been em-

ployed in recent works [62, 63]. The underlying idea is to ensure that each RBCD++

update (specifically on the {𝑋 𝑡} variables) yields a sufficient reduction of the overall

cost function. This is quantified by comparing the descent with the squared gradi-

ent norm at the selected block (Algorithm 4.5, line 13), where the constant 𝑐1 > 0

specifies the minimum amount of descent enforced at each iteration. If this criterion

is met, the algorithm simply continues to the next iteration. If not, the algorithm

switches to the default block update method (same as RBCD), and restarts the ac-

celeration scheme from scratch. Empirically, we observe that setting 𝑐1 close to zero

(corresponding to a permissive acceptance criterion) gives the best performance.

Remark 4.8 (Adaptive vs. fixed restart schemes). Our adaptive restart scheme

4For example, we can recover (4.27)-(4.31) from [144, Algorithm 4], by setting the strong con-
vexity parameter 𝜎 to zero.

73

requires aggregating information from all robots to evaluate the cost function and

gradient norm (Algorithm 4.5, line 13). This step may become the communication

bottleneck of the whole algorithm. While in theory we need adaptive restart to

guarantee convergence (see Section 4.4), a practical remedy is to employ a fixed restart

scheme [169] whereby we simply restart acceleration (Algorithm 4.5, lines 14-19)

periodically in fixed intervals. Our empirical results in Section 4.7 show that the fixed

restart scheme also achieves significant acceleration, although is inferior to adaptive

restart scheme.

Remark 4.9 (Communication requirements of RBCD++). With fixed restart, the

communication pattern of RBCD++ is identical to RBCD. In particular, with syn-

chronized clocks, robots can update the scalars 𝛾𝑘 and 𝛼𝑘 (line 3) locally in parallel.

Similarly, the “𝑌 update” (line 5) and “𝑉 update” steps (line 11) do not require

communication, since both only involve local linear combinations and projections to

manifold. The main communication happens before the “𝑋 update” (line 8), where

each robot communicates the public components of their 𝑌 variables with neighbors

in the global pose graph. Finally, if adaptive restart is used, robots need to commu-

nicate and aggregate global cost and gradient norms to evaluate the restart condition

(line 13).

4.3.4 Parallel Riemannian Block-Coordinate Descent

Thus far in each round of RBCD and RBCD++ (Algorithms 4.3 and 4.5), exactly one

robot performs BlockUpdate (Algorithm 4.4). However, after a slight modification

of our blocking scheme, multiple robots may update their variables in parallel as long

as they are not neighbours in the dependency graph (i.e., do not share an inter-robot

loop closure; see Figure 2-1b). This is achieved by leveraging the natural graphical

decomposition of objectives in Problem 4.3 (inherited from Problem 2.2). Updating

variables in parallel can significantly speed up the local search.

Gauss-Seidel-type updates can be executed in parallel using a classical technique

known as red-black coloring (or, more generally, multicoloring schemes) [58]. We

74

ð𝛼 ð𝛽

ð𝛾

(a) A 2-coloring for the
dependency graph

ð𝛼 ð𝛽

ð𝛾

(b) Induced aggregate blocks

Figure 4-2: Parallel updates for the collective pose graph shown in Figure 2-1: (a) First,
we find a coloring for the corresponding dependency graph such that adjacent robots have
different colors; (b) The 2-coloring induces two “aggregate blocks” 𝒜1,𝒜2 where 𝒜1 and 𝒜2

consist of all blue and red vertices, respectively. In each iteration, we select a color and
update the corresponding variables. Note that 𝒜1 contains variables from both ð𝛼 and ð𝛽 ,
and therefore these robots can update their variables in parallel when blue is selected.

apply this technique to PGO (Figure 4-2):

1. First, we find a coloring for the set of robots such that adjacent robots in the

dependency graph have different colors (Figure 4-2a). Although finding a vertex

coloring with the smallest number of colors is NP-hard, simple greedy approx-

imation algorithms can produce a (∆ + 1)-coloring, where ∆ is the maximum

degree of the dependency graph; see [170, 171] and the references therein for

distributed algorithms. Note that ∆ is often bounded by a small constant due

to the sparsity of the CSLAM dependency graph.

2. In each iteration, we select a color (instead of a single robot) by adapting

the block selection rules presented in Section 4.3.1. The robots that have the

selected color then update their variables in parallel.

Implementing the (generalized) importance sampling and greedy rules with col-

oring requires additional coordination between the robots. In particular, the greedy

rule requires computing the sum of squared gradient norms for each color at the be-

ginning of each iteration. Similar to Section 4.3.1, a naïve approach would be to

flood the network with the current squared gradient norms such that after a sufficient

number of rounds (specifically, the diameter of the dependency graph), every robot

75

aggregates all squared gradient norm information for every color. Robots can then

independently compute the sum of squared gradient norms for every color and up-

date their block only if their color has the largest gradient norm among all colors. We

conclude this part by noting that it is also possible to allow all robots to update their

private variables in all iterations (irrespective of the selected color) because private

variables are separated from each other by public variables.

4.4 Convergence Analysis for RBCD and RBCD++

In this section, we formally establish first-order convergence guarantees for RBCD

(Algorithm 4.3) and its accelerated variant RBCD++ (Algorithm 4.5), for generic op-

timization problems of the form (4.19) defined on the Cartesian product of smooth

matrix submanifolds. Then, at the end of this section, we remark on how our gen-

eral convergence guarantees apply when solving the rank-restricted SDPs of PGO

(Remark 4.10), with detailed proofs and discussions in Appendix A.2.4. Our global

convergence proofs extend the recent work of Boumal et al. [167]. Similar to [167],

we begin by listing and discussing several mild technical assumptions.

Assumption 4.1 (Lipschitz-type gradient for pullbacks). In the optimization prob-

lem (4.19), consider the reduced cost 𝑓𝑏 and its pullback ̂︀𝑓𝑏 for an arbitrary block

𝑏 ∈ [𝑁]. There exists a constant 𝑐𝑏 ≥ 0 such that at any iterate 𝑋𝑘 generated by a

specified algorithm, the following inequality holds for all 𝜂𝑏 ∈ 𝑇𝑋𝑘
𝑏
ℳ𝑏,

⃒⃒ ̂︀𝑓𝑏(𝜂𝑏)− [𝑓𝑏(𝑋
𝑘
𝑏) + ⟨𝜂𝑏, grad 𝑓𝑏(𝑋𝑘

𝑏)⟩]
⃒⃒
≤ 𝑐𝑏

2
‖𝜂𝑏‖22 . (4.32)

In [167], Boumal et al. use (4.32) as a convenient generalization of the classical

property of Lipschitz continuous gradient. With this property, the authors show that

it is straightforward to establish global first-order convergence guarantees, e.g., for

the well-known Riemannian gradient descent algorithm. Furthermore, it is shown

that (4.32) holds under mild conditions in practice, e.g., whenever the cost function

76

has Lipschitz continuous gradients in the ambient Euclidean space and the underlying

submanifold is compact [167, Lemma 2.7]. In Appendix A.2.4, we will generalize this

result to show that Assumption 4.1 holds when running RBCD and RBCD++ in the

context of PGO.

Assumption 4.2 (Global radial linearity of 𝐻). In BlockUpdate (Algorithm 4.4),

the user-specified map 𝐻 (4.23) is globally radially linear, i.e., for any block 𝑏 ∈ [𝑁],

𝐻[𝑐𝜂𝑏] = 𝑐𝐻[𝜂𝑏], for all 𝜂𝑏 ∈ 𝑇𝑋𝑏
ℳ𝑏 and 𝑐 ≥ 0. (4.33)

Assumption 4.3 (Boundedness of 𝐻). In BlockUpdate (Algorithm 4.4), the user-

specified map 𝐻 (4.23) is bounded along the iterates of local search, i.e., there exists

𝑐0 ≥ 0 such that for at any iterate 𝑋𝑘 generated by a specified algorithm, the following

inequality holds for any block 𝑏 ∈ [𝑁],

max
𝜂𝑏∈𝑇𝑋𝑘

𝑏
ℳ𝑏,‖𝜂𝑏‖≤1

|⟨𝜂𝑏, 𝐻[𝜂𝑏]⟩| ≤ 𝑐0. (4.34)

Assumption 4.4 (Lower bound on initial trust-region radius). In BlockUpdate

(Algorithm 4.4), the initial trust-region radius ∆0 is bounded away from zero by,

∆0 ≥ 𝜆𝑏

⃦⃦
grad𝑋𝑏

𝑓𝑏
⃦⃦
, (4.35)

where 𝑋𝑏 is the input block estimate to Algorithm 4.4 and 𝜆𝑏 is a block-specific

constant defined as,

𝜆𝑏 ≜
1

8(𝑐𝑏 + 𝑐0)
. (4.36)

Assumptions 4.2-4.4 concern the execution of BlockUpdate (Algorithm 4.4),

and are once again fairly lax in practice. In particular, the simplest choice of 𝐻 that

77

satisfies radial linearity (4.33) and boundedness (4.34) is the identity mapping. In our

PGO application, we use the Riemannian Hessian 𝐻 = Hess 𝑓𝑏(𝑋𝑏) to leverage local

second-order information for faster convergence. In this case, 𝐻 is still radially linear,

and in Appendix A.2.4 we show that 𝐻 is also bounded along the sequence of iterates

generated by RBCD or RBCD++. Finally, Assumption 4.4 can be easily satisfied by

using a sufficiently large initial trust-region radius. We are now ready to establish

an important theoretical result, which states that each block update (Algorithm 4.4)

yields sufficient decrease on the corresponding reduced cost function.

Lemma 4.1 (Sufficient descent property of Algorithm 4.4). Under Assumptions 4.1-

4.4, applying BlockUpdate(Algorithm 4.4) on a block 𝑏 ∈ [𝑁] with an input value

𝑋𝑘
𝑏 decreases the reduced cost by at least,

𝑓𝑏(𝑋
𝑘
𝑏)− 𝑓𝑏(𝑋

𝑘+1
𝑏) ≥ 1

4
𝜆𝑏

⃦⃦
grad 𝑓𝑏(𝑋

𝑘
𝑏)
⃦⃦2

, (4.37)

where 𝜆𝑏 is the block-specific constant corresponding to the selected block defined in

(4.36).

Lemma 4.1 states that after each iteration of RBCD, we are guaranteed to decrease

the corresponding reduced cost function. Furthermore, the amount of reduction is

lower bounded by some constant times the squared gradient norm at the selected

block. Thus, if we execute RBCD for long enough, intuitively we should expect the

iterates to converge to a solution where the gradient norm is zero (i.e., a first-order

critical point). The following theorem formalizes this result.

Theorem 4.4 (Global convergence rate of RBCD). Let 𝑓 ⋆ denote the global minimum

of the optimization problem (4.19). Denote the iterates of RBCD (Algorithm 4.3) as

𝑋0, 𝑋1, . . . , 𝑋𝐾−1, and the corresponding block selected at each iteration as 𝑏0, . . . , 𝑏𝐾−1.

Under Assumptions 4.1-4.4, RBCD with uniform sampling or importance sampling

have the following guarantees,

min
0≤𝑘≤𝐾−1

E𝑏0:𝑘−1

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2 ≤ 4𝑁(𝑓(𝑋0)− 𝑓 ⋆)

𝐾 ·min𝑏∈[𝑁] 𝜆𝑏

. (4.38)

78

In addition, RBCD with greedy selection yields the following deterministic guarantee,

min
0≤𝑘≤𝐾−1

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2 ≤ 4𝑁(𝑓(𝑋0)− 𝑓 ⋆)

𝐾 ·min𝑏∈[𝑁] 𝜆𝑏

. (4.39)

Theorem 4.4 establishes a global sublinear convergence rate for RBCD.5 Specifi-

cally, as the number of iterations 𝐾 increases, the squared gradient norm decreases

at the rate of 𝒪(1/𝐾). Using the same proof technique, we can establish a similar

convergence guarantee for the accelerated version RBCD++.

Theorem 4.5 (Global convergence rate of RBCD++). Let 𝑓 ⋆ denote the global min-

imum of the optimization problem (4.19). Denote the iterates of RBCD++ (Algo-

rithm 4.5) as 𝑋0, 𝑋1, . . . , 𝑋𝐾−1, and the corresponding block selected at each iteration

as 𝑏0, . . . , 𝑏𝐾−1. Define the constant,

𝐶 ≜ min

(︂
𝑐1, min

𝑏∈[𝑁]
𝜆𝑏/4

)︂
. (4.40)

Under Assumptions 4.1-4.4, RBCD++ with uniform sampling or importance sampling

have the following guarantees,

min
0≤𝑘≤𝐾−1

E𝑏0:𝑘−1

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2 ≤ 𝑁(𝑓(𝑋0)− 𝑓 ⋆)/𝐶𝐾. (4.41)

In addition, RBCD++ with greedy selection yields the following deterministic guar-

antee,

min
0≤𝑘≤𝐾−1

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2 ≤ 𝑁(𝑓(𝑋0)− 𝑓 ⋆)/𝐶𝐾. (4.42)

Remark 4.10 (Convergence on Problem 4.3). So far, we have shown that under mild

conditions, RBCD and RBCD++ are guaranteed to converge when solving general op-
5We note that in our current analysis, uniform sampling and importance sampling share the

same convergence rate estimate. In practice, however, it is usually the case that importance sampling
yields much faster empirical convergence (see Section 4.7). This result suggests that it is possible to
further improve the convergence guarantees for importance sampling. We leave this for future work.

79

timization problems defined on the Cartesian product of smooth matrix submanifolds.

Recall that in the specific application of PGO, we are using RBCD and RBCD++ to

solve a sequence of rank-restricted semidefinite relaxations (Problem 4.3). In Ap-

pendix A.2.4, we show that Assumptions 4.1-4.4 are satisfied in this case, and hence

RBCD and RBCD++ retain their respective convergence guarantees. In particular,

we show that although Assumption 4.1 (Lipschitz-type gradient) and Assumption 4.3

(bounded Hessian) do not hold globally (due to the non-compact translation search

space), they still hold within the sublevel set of the cost function determined by the

initial iterate 𝑋0. Since RBCD and RBCD++ are inherently descent methods, it suf-

fice to restrict our attention to this initial sublevel set as future iterates will not leave

this set. The reader is referred to Appendix A.2.4 for more details.

Remark 4.11 (Convergence under parallel executions). With the parallel iterations

described in Section 4.3.4, we can further improve the global convergence rates of

RBCD and RBCD++ in Theorems 4.4 and 4.5. For example, the constant 𝑁 that ap-

pears in the rate estimates of uniform sampling and importance sampling (4.38) can

be replaced by the number of aggregate blocks (colors) in the dependency graph. Re-

call that in practice, this is typically bounded by a small constant, e.g., the maximum

degree in the sparse robot-level dependency graph (see Section 4.3.4).

4.5 Distributed Verification

In this section we address the problem of solution verification [91] in the distributed

setting. Concretely, we propose distributed solution verification and saddle escape

algorithms to certify the optimality of a first-order critical point 𝑋 of the rank-

restricted relaxation (4.15) as a global minimizer 𝑍 = 𝑋⊤𝑋 of problem (4.12), and

for escaping from suboptimal stationary points after ascending to the next level of

the Riemannian Staircase (Algorithm 4.1). To the best of our knowledge, these are

the first distributed solution verification algorithms to appear in the literature.

Our approach is based upon the following simple theorem of the alternative, which

is a specialization of [172, Theorem 4] to problems (4.12) and (4.15):

80

Theorem 4.6 (Solution verification and saddle escape). Let 𝑋 ∈ ℳPGO(𝑟, 𝑛) be

a first-order critical point of the rank-restricted semidefinite relaxation (4.15), and

define:

Λ(𝑋) ≜ SymBlockDiag+𝑑 (𝑋
⊤𝑋𝑄), (4.43a)

𝑆(𝑋) ≜ 𝑄− Λ(𝑋). (4.43b)

Then exactly one of the following two cases holds:

(𝑎) 𝑆(𝑋) ⪰ 0 and 𝑍 = 𝑋⊤𝑋 is a global minimizer of (4.12).

(𝑏) There exists 𝑣 ∈ R(𝑑+1)𝑛 such that 𝑣⊤𝑆(𝑋)𝑣 < 0, and in that case:

𝑋+ ≜

⎡⎣𝑋
0

⎤⎦ ∈ℳPGO(𝑟 + 1, 𝑛) (4.44)

is a first-order critical point of (4.15) attaining the same objective value as 𝑋,

and

�̇�+ ≜

⎡⎣ 0

𝑣⊤

⎤⎦ ∈ 𝑇𝑋+(ℳPGO(𝑟 + 1, 𝑛)) (4.45)

is a second-order direction of descent from 𝑋+. In particular, taking 𝑣 to be the

eigenvector corresponding to the smallest eigenvalue of 𝑆(𝑋) satisfies the above

conditions.

Remark 4.12 (Interpretation of Theorem 4.6). Let us provide a bit of intuition for

what Theorem 4.6 conveys. Part (a) is simply the standard (necessary and sufficient)

conditions for 𝑍 = 𝑋⊤𝑋 to be the solution of the (convex) semidefinite program

(4.12) [173]. In the event that these conditions are not satisfied (and therefore 𝑍 is

not optimal in (4.12)), there must exist a direction of descent �̇� ∈ 𝒮(𝑑+1)𝑛 from 𝑍 that

is not captured in the low-rank factorization (4.15), at least to first order (since 𝑋

is stationary). This could be because 𝑋 is a saddle point of the non-convex problem

(4.15) (in which case there may exist a second -order direction of descent from 𝑋), or

because the descent direction �̇� is towards a set of higher-rank matrices than the rank-

𝑟 factorization used in (4.15) is able to capture. Part (b) of Theorem 4.6 provides an

81

approach that enables us to address both of these potential obstacles simultaneously,

by using a negative eigenvector of the certificate matrix 𝑆(𝑋) to construct a second -

order direction of descent �̇�+ from 𝑋+, the lifting of 𝑋 to the next (higher-rank)

“step” of the Riemannian Staircase. Geometrically, this construction is based upon the

(easily verified) fact that 𝑆(𝑋) is the Hessian of the Lagrangian ∇2
𝑋ℒ of the extrinsic

(constrained) form of (4.15), and therefore ⟨�̇�+,∇2
𝑋ℒ �̇�+⟩ = ⟨𝑣, 𝑆(𝑋)𝑣⟩ < 0, so that

�̇�+ is indeed a direction of second-order descent from the lifted stationary point 𝑋+

[172, 174, 175].

In summary, Theorem 4.6 enables us to determine whether a first-order critical

point 𝑋 of (4.15) corresponds to a minimizer 𝑍 = 𝑋⊤𝑋 of (4.12), and to descend

from 𝑋 if necessary, by computing the minimum eigenpair (𝜆, 𝑣) of the certificate

matrix 𝑆(𝑋) defined in (4.43). In the original SE-Sync algorithm, the corresponding

minimum-eigenvalue computation is performed by means of spectrally-shifted Lanczos

iterations [14, 168]; while this works well for the centralized SE-Sync method, adopting

the Lanczos algorithm in the distributed setting would require an excessive degree of

communication among the agents. Therefore, in the next subsection, we investigate

alternative strategies for computing the minimum eigenpair that are more amenable

to a distributed implementation.

4.5.1 Distributed Minimum-eigenvalue Computation

In this subsection we describe an efficient distributed algorithm for computing the

minimum eigenpair of the certificate matrix 𝑆(𝑋) required in Theorem 4.6. We begin

with a brief review of eigenvalue methods.

In general, the Lanczos procedure is the preferred technique for computing a small

number of extremal (maximal or minimal) eigenpairs of a symmetric matrix 𝐴 ∈ 𝒮𝑛

[176, Chp. 9]. In brief, this method proceeds by approximating 𝐴 using its orthogonal

projection 𝑃𝑘 ≜ 𝑉 ⊤𝑘 𝐴𝑉𝑘 onto the Krylov subspace:

𝒦(𝐴, 𝑥0, 𝑘) ≜ span
{︀
𝑥0, 𝐴𝑥0, . . . , 𝐴

𝑘−1𝑥0

}︀
= image𝑉𝑘, (4.46)

82

where 𝑥0 ∈ R𝑛 is an initial vector and 𝑉𝑘 ∈ St(𝑘, 𝑛) is a matrix whose columns

(called Lanczos vectors) provide an orthonormal basis for 𝒦(𝐴, 𝑥0, 𝑘). Eigenvalues 𝜃𝑖

of the (low-dimensional) approximation 𝑃𝑘, called Ritz values, may then be taken as

approximations for eigenvalues of 𝐴. The 𝑘-dimensional Krylov subspace 𝒦(𝐴, 𝑥0, 𝑘)

in (4.46) is iteratively expanded as the algorithm runs (by computing additional

matrix-vector products), thereby providing increasingly better approximations of 𝐴’s

extremal eigenvalues (in accordance with the Courant-Fischer variational character-

ization of eigenvalues [176, Thm. 8.1.2]). The Lanczos procedure thus provides an

efficient means of estimating a subset of 𝐴’s spectrum (particularly its extremal eigen-

values) to high accuracy at the cost of only a relatively small number (compared to

𝐴’s dimension 𝑛) of matrix-vector products, especially if the initial vector 𝑥0 lies

close to an eigenvector of 𝐴. In particular, if 𝜆(𝐴) = 𝜆1 > 𝜆2 > · · · > 𝜆𝑛 and 𝜑1

is the eigenvector associated to 𝜆1, it is well-known that the error in the eigenvector

estimate 𝑦1 from the maximal Ritz pair (𝜃1, 𝑦1) decays asymptotically according to

[177, eq. (2.15)]:

sin(𝜑1, 𝑦1) ∼ 𝜏−𝑘1 , (4.47)

where

𝜏1 = 𝜌1 +
√︁

𝜌21 − 1, (4.48a)

𝜌1 = 1 + 2
𝜆1 − 𝜆2

𝜆2 − 𝜆𝑛

. (4.48b)

However, while the Lanczos procedure is the method of choice for computing a

few extremal eigenpairs in the centralized setting, it is unfortunately not well-suited

to distributed computations when inter-node communication is a bottleneck. This

is because the Lanczos vectors 𝑉𝑘 must be periodically re-orthonormalized in order

to preserve the accuracy of the estimated eigenpairs (𝜃𝑖, 𝑣𝑖). While several strategies

have been proposed for performing this reorthonormalization, all of them essentially

involve computing a QR decomposition of (possibly a subset of columns from) 𝑉𝑘

(see [176, Sec. 9.2] and the references therein). Constructing this decomposition in

the distributed setting would require frequent synchronized all-to-all message passing,

83

which is impractical when inter-node communication is expensive or unreliable.

We are therefore interested in exploring alternatives to the Lanczos method that

require less coordination in the distributed setting. Many commonly-used eigenvalue

methods can be viewed as attempts to simplify the “gold-standard” Lanczos proce-

dure, achieving a reduction in storage and per-iteration computation at the cost of a

slower convergence rate. An extreme example of this is the well-known power method

[176, Sec. 8.2], which can be viewed as a simplification that retains only the final

generator 𝐴𝑘−1𝑥0 of the Krylov subspace 𝒦(𝐴, 𝑥0, 𝑘) in (4.46) at each iteration. This

leads to a very simple iteration scheme, requiring only matrix-vector products:6

𝑥𝑘+1 = 𝐴𝑥𝑘. (4.49)

Note that with 𝐴 = 𝑆(𝑋), the matrix-vector product in (4.49) can be computed us-

ing the same inter-agent communication pattern already employed in each iteration

of the RBCD method developed in Section 4.3, and so is well-suited to a distributed

implementation. However, the power method’s simplicity comes at the expense of a

reduced convergence rate. In particular, if 𝜆1 and 𝜆2 are the two largest-magnitude

eigenvalues of 𝐴 (with |𝜆1| > |𝜆2|), then the vector 𝑦1 in the Ritz estimate (𝜃1, 𝑦1)

computed via the power method converges to the dominant eigenvector 𝜑1 of 𝐴 ac-

cording to [176, Thm. 8.2.1]:

sin(𝜑1, 𝑦1) ∼
⃒⃒⃒⃒
𝜆1

𝜆2

⃒⃒⃒⃒−𝑘
. (4.50)

Let us compare the rates (4.47) and (4.50) for the case in which the eigengap

𝛾 ≜ 𝜆1 − 𝜆2 is small relative to the diameter 𝐷 of the spectrum of 𝐴 (which is of

the same order as 𝜆2 − 𝜆𝑛 and 𝜆2 for the Lanczos and power methods, respectively);

intuitively, this is the regime in which the problem is hard, since it is difficult to

distinguish 𝜆1 and 𝜆2 (and consequently their associated eigenspaces). In particular,

6Note that while the power method iteration is commonly written in the normalized form 𝑥𝑘+1 =
𝐴𝑥𝑘/‖𝐴𝑥𝑘‖, normalization is only actually required to compute the Ritz value 𝜃𝑘 = 𝑥⊤

𝑘 𝐴𝑥𝑘/‖𝑥𝑘‖2
associated with 𝑥𝑘.

84

let us compute the number of iterations 𝑘(𝜖) required to reduce the angular error in

the dominant Ritz vector 𝑦1 by the factor 𝜖 ∈ (0, 1). For the Lanczos method, using

(4.47) and (4.48) and assuming 𝛾 ≪ 𝐷, we estimate:

𝑘𝑙(𝜖) = −
log 𝜖

log 𝜏1
≈ − log 𝜖

log

(︂
1 + 2 𝛾

𝐷
+
√︁

4 𝛾
𝐷
+ 4 𝛾2

𝐷2

)︂ ≈ − log 𝜖

log
(︀
1 + 2

√︀
𝛾
𝐷

)︀ ≈ − log 𝜖

2
√︀

𝛾
𝐷

.

(4.51)

Similarly, using (4.50), the analogous estimate for the power method is:

𝑘𝑝(𝜖) = −
log 𝜖

log
(︁

𝜆1

𝜆2

)︁ = − log 𝜖

log
(︁
1 + 𝛾

𝜆2

)︁ ≈ − log 𝜖

𝛾/𝐷
. (4.52)

In our target application (certifying the optimality of a first order-critical point 𝑋),

the minimum eigenvalue we must compute will always belong to a tight cluster when-

ever 𝑋 is a global minimizer,7 so the power method’s 𝒪(1/𝛾) dependence upon the

eigengap 𝛾 translates to a substantial reduction in performance versus the Lanczos

method’s 𝒪(1/√𝛾) rate.

In light of these considerations, we propose to adopt the recently-developed ac-

celerated power method [178] as our distributed eigenvalue algorithm of choice. In

brief, this method modifies the standard power iteration (4.49) by adding a Polyak

momentum term, producing the iteration:

𝑥𝑘+1 = 𝐴𝑥𝑘 − 𝛽𝑥𝑘−1, (4.53)

where 𝛽 ∈ R+ is a fixed constant. We note that because 𝛽 is constant, the iteration

(4.53) has the same communication pattern as the standard power method (4.49), and

so is well-suited to implementation in the distributed setting. Furthermore, despite

the simplicity of the modification (4.53) versus (4.49), the addition of momentum

actually allows the accelerated power method to match the 𝒪(1/√𝛾) dependence of

the Lanczos method on the dominant eigengap for a well-chosen parameter 𝛽. More
7This is an immediate consequence of the (extrinsic) first-order criticality condition for (4.15),

which requires 𝑆(𝑋)𝑋⊤ = 0, i.e., that each row of 𝑋 be an eigenvector of 𝑆(𝑋) with eigenvalue 0
[168, Sec. III-C].

85

precisely, we have the following result:

Theorem 4.7 (Theorem 8 of [178]). Let 𝐴 ∈ 𝒮𝑛
+ with eigenvalues 𝜆1 > 𝜆2 ≥ · · · ≥

𝜆𝑛 ≥ 0, and 𝜑1 be the eigenvector associated with the maximum eigenvalue 𝜆1. Given

𝛽 ∈ R+ satisfying 𝛽 < 𝜆2
1/4 and an initial Ritz vector 𝑦0 ∈ R𝑛, after 𝑘 accelerated

power iterations (4.53) the angular error in the Ritz vector 𝑦𝑘 satisfies:

sin(𝜑1, 𝑦𝑘) ≤
√︀
1− (𝜑⊤1 𝑦0)

2

|𝜑⊤1 𝑦0|
·

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

(︂
2
√
𝛽

𝜆1+
√

𝜆2
1−4𝛽

)︂𝑘

𝛽 > 𝜆2
2/4(︂

𝜆2+
√

𝜆2
1−4𝛽

𝜆1+
√

𝜆2
1−4𝛽

)︂𝑘

𝛽 ≤ 𝜆2
2/4

. (4.54)

Remark 4.13 (Selection of 𝛽). While the hypotheses of Theorem 4.7 require that

𝛽 < 𝜆2
1/4, note that lower bounds on 𝜆1 (which provide admissible values of 𝛽) are

easy to obtain; indeed, the Courant-Fischer theorem [176, Thm. 8.1.2] implies that

𝜆1 ≥ 𝑦⊤𝐴𝑦 for any unit vector 𝑦 ∈ R𝑛. We also observe that the bound on the

right-hand side of (4.54) is an increasing function of 𝛽 for 𝛽 > 𝜆2
2/4 and a decreasing

function for 𝛽 ≤ 𝜆2
2/4, with

lim
𝛽→(𝜆2

2/4)
+

2
√
𝛽

𝜆1 +
√︀

𝜆2
1 − 4𝛽

=
𝜆2

𝜆1 +
√︀
𝜆2
1 − 𝜆2

2

<
𝜆2 +

√︀
𝜆2
1 − 𝜆2

2

𝜆1 +
√︀

𝜆2
1 − 𝜆2

2

= lim
𝛽→(𝜆2

2/4)
−

𝜆2 +
√︀

𝜆2
1 − 4𝛽

𝜆1 +
√︀

𝜆2
1 − 4𝛽

;

(4.55)

consequently, the optimal rate is achieved in the limit 𝛽 → (𝜆2
2/4)

+.

Combining the power and accelerated power methods with the spectral shifting

strategy proposed in [168, Sec. III-C] produces our distributed minimum-eigenvalue

method (Algorithm 4.6). In brief, the main idea is to construct a spectrally-shifted

version 𝐶 of the certificate matrix 𝑆(𝑋) such that (i) a maximum eigenvector 𝑣 of 𝐶

coincides with a minimum eigenvector of 𝑆, and (ii) 𝐶 ⪰ 0, so that we can recover the

maximum eigenpair (𝜃, 𝑣) of 𝐶 using accelerated power iterations (4.53). Algorithm

4.6 accomplishes this by first applying the (basic) power method (4.49) to estimate

the dominant eigenpair (𝜆dom, 𝑣dom) of 𝑆 in line 1 (which does not require 𝑆 ⪰ 0),

86

Algorithm 4.6 Minimum eigenpair (MinEig)

Input: Certificate matrix 𝑆 = 𝑆(𝑋) from (4.43b).
Output: Minimum eigenpair (𝜆min, 𝑣min) of 𝑆.
1: Compute dominant (maximum-magnitude) eigenpair (𝜆dom, 𝑣dom) of 𝑆 using

power iteration (4.49).
2: if 𝜆dom < 0 then
3: return (𝜆dom, 𝑣dom)
4: end if
5: Compute maximum eigenpair (𝜃, 𝑣) of 𝐶 ≜ 𝜆dom𝐼 − 𝑆 using accelerated power

iteration (4.53).
6: return (𝜆dom − 𝜃, 𝑣)

and then applying the accelerated power method to compute the maximum eigenpair

(𝜃, 𝑣) of 𝐶 = 𝜆dom𝐼 − 𝑆 ⪰ 0 in line 5. Note that while the minimum eigenvalue of

𝑆(𝑋) belongs to a tight cluster whenever 𝑋 is optimal for (4.15) (necessitating our

use of accelerated power iterations in line 5), the dominant eigenvalue of 𝑆 is typically

well-separated, and therefore can be computed to high precision using only a small

number of power iterations in line 1.

Remark 4.14 (Communication requirements of Algorithm 4.6). The bulk of the

work in Algorithm 4.6 lies in updating the eigenvector estimate via the matrix-vector

products (4.49) and (4.53). In the distributed regime, these can be implemented

by having each robot estimate the block of the eigenvector that corresponds to its

own poses. The communication pattern of this process is determined by the sparsity

structure of the underlying matrix, which for our application are the dual certificate

𝑆 and its spectrally-shifted version 𝐶. Fortunately, both 𝑆 and 𝐶 inherit the sparsity

of the connection Laplacian 𝑄. This means that at each iteration of (4.49) or (4.53),

each robot only needs to communicate with its neighbors in the global pose graph.

Therefore, Algorithm 4.6 provides an efficient way (in terms of both computation and

communication) to compute a minimum eigenpair of 𝑆 in the distributed setting.

4.5.2 Descent from Suboptimal Critical Points

In this subsection we describe a simple procedure for descending from a first-order

critical point 𝑋 ∈ℳPGO(𝑟, 𝑛) of Problem 4.3 and restarting local optimization in the

87

event that 𝑍 = 𝑋⊤𝑋 is not a minimizer of Problem 4.1 (as determined by 𝜆 < 0,

where (𝜆, 𝑣) is the minimum eigenpair of the certificate matrix 𝑆(𝑋) in Theorem 4.6).

In this setting, Theorem 4.6(b) shows how to use the minimum eigenvector 𝑣 of

𝑆(𝑋) to construct a second -order direction of descent �̇�+ from the lifting 𝑋+ of 𝑋

to the next level of the Riemannian Staircase. Therefore, we can descend from 𝑋+ by

performing a simple backtracking line-search along �̇�+; we summarize this procedure

as Algorithm 4.7. Note that since grad 𝑓(𝑋+) = 0 and ⟨�̇�+,Hess 𝑓(𝑋+)[�̇�+]⟩ < 0

by Theorem 4.6(b), letting 𝑋(𝛼) ≜ Retr𝑋+(𝛼�̇�+), there exists a stepsize 𝛿 > 0 such

that 𝑓(𝑋(𝛼)) < 𝑓(𝑋+) and ‖grad 𝑓(𝑋(𝛼))‖ > 0 for all 0 < 𝛼 < 𝛿, and therefore the

loop in line 3 is guaranteed to terminate after finitely many iterations. Algorithm 4.7

is thus well-defined. Moreover, since 𝛼 decreases at an exponential rate (line 4), in

practice only a handful of iterations are typically required to identify an acceptable

stepsize. Therefore, even though Algorithm 4.7 requires coordination among all of the

agents (to evaluate the objective 𝑓(𝑋(𝛼)) and gradient norm ‖grad 𝑓(𝑋(𝛼))‖ each

trial point 𝑋(𝛼), and to distribute the trial stepsize 𝛼), it requires a sufficiently small

number of (very lightweight) globally-synchronized messages to remain tractable in

the distributed setting. Finally, since the point returned by Algorithm 4.7 has nonzero

gradient, it provides a nonstationary initialization for local search at the next level

𝑟 + 1 of the Riemannian Staircase (Algorithm 4.1), thereby enabling us to continue

the search for a low-rank factor in Problem 4.3 corresponding to a global minimizer

of the SDP relaxation Problem 4.1.

4.6 Distributed Initialization and Rounding

4.6.1 Distributed Initialization

A distinguishing feature of our approach versus prior distributed PGO methods is that

it enables the direct computation of globally optimal solutions of PGO Problem 2.2

via (convex) semidefinite programming, and therefore does not depend upon a high-

quality initialization in order to recover a good solution. Nevertheless, it can still

88

Algorithm 4.7 Descent from a suboptimal critical point 𝑋+ (EscapeSaddle)

Input:
- Lifted suboptimal critical point 𝑋+ as defined in (4.44).
- Second-order descent direction �̇�+ as defined in (4.45).

Output: Feasible point 𝑋 ∈ ℳPGO(𝑟 + 1, 𝑛) satisfying 𝑓(𝑋) < 𝑓(𝑋+),
‖grad 𝑓(𝑋)‖ > 0.

1: Set initial stepsize: 𝛼 = 1.
2: Set initial trial point: 𝑋 ← Retr𝑋+(𝛼�̇�+)
3: while 𝑓(𝑋) ≥ 𝑓(𝑋+) or ‖grad 𝑓(𝑋)‖ = 0 do
4: Halve steplength: 𝛼← 𝛼/2.
5: Update trial point: 𝑋 ← Retr𝑋+(𝛼�̇�+).
6: end while
7: return 𝑋.

benefit (in terms of reduced computation time) from being supplied with a high-

quality initial estimate whenever one is available.

Arguably the simplest method of constructing such an initial estimate is spanning

tree initialization [179]. As the name suggests, we compute the initial pose estimates

by propagating the noisy pairwise measurements along an arbitrary spanning tree

of the global pose graph. In the distributed scenario, this technique incurs minimal

computation and communication costs, as robots only need to exchange few public

poses with their neighbors.

While efficient, the spanning tree initialization is heavily influenced by the noise

of selected edges in the pose graph. A more resilient but also more heavyweight

method is chordal initialization, originally developed to initialize rotation synchro-

nization [31, 180]. With this technique, one first relaxes rotation synchronization

into a linear least squares problem, and subsequently projects the solution back to

the rotation group. For distributed computation, [38] propose to solve the resulting

linear least squares problem via distributed iterative techniques such as the Jacobi

and Gauss-Seidel methods [58]. One detail to note is that in [38], the translation

estimates are not explicitly initialized but are instead directly optimized during a sin-

gle distributed Gauss-Newton iteration. However, we find that this approach leads to

poor convergence for [38] on some real-world datasets. To resolve this, in this work we

also explicitly initialize the translations by fixing the rotation initialization and using

89

distributed Gauss-Seidel to solve the reduced linear least squares over translations.

On the other hand, to prevent significant communication usage in the initialization

stage, we limit the number of Gauss-Seidel iterations to 50 for both rotation and

translation initialization.

Lastly, we note that both initialization approaches return an initial solution 𝑇 ∈

SE(𝑑)𝑛 on the original search space of PGO. Nevertheless, recall from Algorithm 4.1

that the Riemannian Staircase requires a initial point 𝑋 ∈ℳPGO(𝑟0, 𝑛) on the search

space of the rank-restricted SDP (Problem 4.3). We thus need a mechanism that

lifts the initial solution from SE(𝑑)𝑛 to the higher dimensionalℳPGO(𝑟0, 𝑛). This can

be achieved by sampling a random point 𝑌rand ∈ St(𝑑, 𝑟), and subsequently setting

𝑋 = 𝑌rand𝑇 .

4.6.2 Distributed Rounding

After solving the SDP relaxation, we need to “round” the low-rank factor 𝑋⋆ ∈

ℳPGO(𝑟, 𝑛) returned by the Riemannian Staircase to a feasible solution to the original

PGO problem (see line 4 in Algorithm 4.2). In this section, we describe a distributed

rounding procedure that incurs minimal computation and communication costs, and

furthermore is guaranteed to return a global minimizer to the original PGO (Prob-

lem 2.2) provided that the SDP relaxation is exact.

Given the output 𝑋⋆ from the Riemannian Staircase, consider its individual com-

ponents that correspond to the “lifted” rotation and translation variables,

𝑋⋆ =
[︁
𝑌 ⋆
1 𝑝⋆1 . . . 𝑌 ⋆

𝑛 𝑝⋆𝑛

]︁
∈ (St(𝑑, 𝑟)× R𝑟)𝑛. (4.56)

In Theorem 4.2, we have shown that if the SDP relaxation is exact, then the first block-

row of the corresponding SDP solution, which can be written as 𝑇 ⋆ ≜ (𝑌 ⋆
1)
⊤𝑋⋆, gives

a global minimizer to PGO (Problem 2.2). Looking at the rotation and translation

of each pose in 𝑇 ⋆ separately,

𝑅⋆
𝑖 = (𝑌 ⋆

1)
⊤𝑌𝑖, 𝑡

⋆
𝑖 = (𝑌 ⋆

1)
⊤𝑝𝑖. (4.57)

90

Equation (4.57) thus recovers globally optimal rotation and translation estimates. If

the SDP relaxation is not exact, the 𝑅⋆
𝑖 as computed in (4.57) may not be a valid

rotation. To ensure feasibility, we additionally project it to SO(𝑑),

𝑅𝑖 = ProjSO(𝑑)(𝑌
⋆
1
⊤𝑌 ⋆

𝑖). (4.58)

In (4.58), the projection can be carried out by computing the SVD.

Remark 4.15 (Communication requirements of distributed initialization and round-

ing). The distributed chordal initialization [38] has a similar communication pattern

as distributed local search, where at each iteration robots exchange messages cor-

responding to their public poses. On the other hand, distributed rounding incurs

minimal communication, since agents only need to relay the small 𝑟-by-𝑑 matrix 𝑌 ⋆
1

over the network.

4.7 Experiments

We perform extensive evaluations of the proposed DC2-PGO algorithm on both simu-

lations and benchmark CSLAM datatsets. Our simulation consists of multiple robots

moving next to each other in a 3D grid with lawn mower trajectories. With a given

probability (default 0.3), loop closures are added to connect neighboring poses. For

all relative measurements, we simulate isotropic Langevin rotation noise according

to (2.19a) with mode 𝐼𝑑 and concentration parameter 𝜅. To make the process of

setting 𝜅 more intuitive, we first set a desired standard deviation 𝜎𝑅 for the rotation

angle of the rotational noise, and then use the asymptotic approximation shown in

SE-Sync [14, Appendix A] to compute the corresponding concentration parameter

𝜅. We also simulate Gaussian translation noise according to (2.19b) with zero mean

and standard deviation 𝜎𝑡. The default noise parameters are 𝜎𝑅 = 3∘, 𝜎𝑡 = 0.05𝑚.

See Figure 4-3 for an example simulation together with the certified global minimizer

found by DC2-PGO (Algorithm 4.2). All implementations are written in MATLAB.

All experiments are carried out on a laptop with an Intel i7 CPU and 8 GB RAM.

91

-4

-2

15

0

2

15

4

10

6

8

10

10

5
5

(a) Ground truth

-4

-2

0

2

10

4

6

10

8

5
5

0 0

(b) Certified solution from Al-
gorithm 4.2

Figure 4-3: Example simulation consisting of 9 robots (trajectories shown in different colors)
where each robot has 125 poses. Loop closures are drawn as dotted lines. (a) Ground truth.
(b) Certified global minimizer returned by DC2-PGO (Algorithm 4.2).

When evaluating our approach and baseline methods, we use the following per-

formance metrics. First, we compute the optimality gap 𝑓 − 𝑓 ⋆
SDP, where 𝑓 ⋆

SDP is

the optimal value of the centralized SDP relaxation computed using SE-Sync [14].

In the (typical) case that the SDP relaxation is exact, the rounded PGO estimates

returned by both our approach and SE-Sync will achieve a zero optimality gap (to

within numerical tolerances). Additionally, when evaluating convergence rates of local

search methods, we compute the evolution of the Riemannian gradient norm, which

quantifies how fast the iterates are converging to a first-order critical point. Lastly,

in some experiments, we also compute the translational and rotational root mean

square errors (RMSE) with respect to the solution of SE-Sync. Given two sets of

translations 𝑡, 𝑡′ ∈ R𝑑×𝑛, the translational RMSE is based on the standard ℓ2 distance

after aligning 𝑡, 𝑡′ in the same frame. Given two sets of rotations 𝑅,𝑅′ ∈ SO(𝑑)𝑛, we

define the rotational RMSE to be,

RMSE(𝑅,𝑅′) =
√︀

𝑑𝑆(𝑅,𝑅′)2/𝑛, (4.59)

where 𝑑𝑆(𝑅,𝑅′) is the orbit distance for SO(𝑑)𝑛 defined in SE-Sync [14, Appendix

C.1]. Although we measure rotational and translational errors separately, both still

give meaningful metrics of the overall PGO solution. This is especially true for

92

rotational RMSE, since we know that given rotation estimates, the corresponding

optimal translations can be computed in closed-form [14].

The rest of this section is organized as follows. In Section 4.7.1, we evaluate

our distributed local search methods, specifically RBCD and its accelerated version

RBCD++, when solving the rank-restricted relaxations of PGO. Then, in Section 4.7.2,

we evaluate the proposed distributed verification scheme. Lastly, in Section 4.7.3, we

evaluate our complete distributed certifiably correct PGO algorithm (Algorithm 4.2).

4.7.1 Evaluations of Distributed Local Search

We first evaluate the performance of the proposed RBCD and RBCD++ algorithms

when solving the rank-restricted relaxations (Problem 4.3). Recall that this serves

as the central local search step in our overall Riemannian Staircase algorithm. By

default, we set the relaxation rank to 𝑟 = 5, and enable parallel execution as described

in Section 4.3.4.

Figure 4-4 shows the performance on our 9 robot scenario shown in Figure 4-3. We

report the performance of our proposed methods using all three block selection rules

proposed in Section 4.3.1: uniform sampling, importance sampling, and greedy selec-

tion. For reference, we also compare our performance against the Riemannian gra-

dient descent (RGD) algorithm with Armijo’s backtracking line search implemented

in Manopt [181]. As the results demonstrate, both RBCD and RBCD++ dominate

the baseline RGD algorithm in terms of convergence speed and solution quality. As

expected, importance sampling and greedy block selection also lead to faster con-

vergence compared to uniform sampling. Furthermore, RBCD++ shows significant

empirical acceleration and is able to converge to the global minimum with high pre-

cision using only 100 iterations. Note that in this experiment, we choose to report

convergence speed with respect to iteration number, because it is directly linked to

the number of communication rounds required during distributed optimization. For

completeness, we also note that the average runtime of BlockUpdate (implemented

based on a modified version of the trust-region solver in Manopt [181]) is 0.023 s.

In Figure 4-4, we report the performance of RBCD++ with the default adaptive

93

0 20 40 60 80 100
10 -8

10 -6

10 -4

10 -2

10 0

10 2

10 4

RBCD (greedy)

RBCD (importance)

RBCD (uniform)

RBCD++ (greedy)

RBCD++ (importance)

RBCD++ (uniform)

Armijo RGD

(a) Average optimality gap

0 20 40 60 80 100
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

RBCD (greedy)

RBCD (importance)

RBCD (uniform)

RBCD++ (greedy)

RBCD++ (importance)

RBCD++ (uniform)

Armijo RGD

(b) Average gradient norm

RBCD(grd) RBCD(imp) RBCD(unif) RBCD++(grd) RBCD++(imp)RBCD++(unif) RGD

10-6

10-5

10-4

10-3

10-2

(c) rotation RMSE
RBCD(grd) RBCD(imp) RBCD(unif) RBCD++(grd) RBCD++(imp)RBCD++(unif) RGD

10-5

10-4

10-3

10-2

10-1

(d) translation RMSE

Figure 4-4: Convergence rates and final estimation errors of RBCD and RBCD++ with
uniform, importance, or greedy selection rules, on the 9 robot simulation shown in Figure 4-3.
(a) Evolution of optimality gap averaged over 10 random runs. (b) Evolution of Riemannian
gradient norm averaged over 10 random runs. (c) Boxplot of final rotation RMSE (after
rounding) with respect to the global minimizer. (d) Boxplot of final translation RMSE (after
rounding) with respect to the global minimizer.

restart scheme (see Algorithm 4.5). As we have discussed in Remark 4.8, a less expen-

sive and hence more practical restart scheme is simply to reset Nesterov’s acceleration

after a fixed number of iterations; this scheme is typically referred to as fixed restart in

the literature. In Figure 4-5, we compare adaptive restart with fixed restart on a ran-

dom instance of our simulation. For fixed restart, we use different restart frequency

ranging from every 5 to every 100 iterations. We observe that with a short restart

period (e.g., 5), convergence of RBCD++ is significantly slowed down. This result

is expected, as frequent restarting essentially removes the effect of acceleration from

the iterations of RBCD++. In the extreme case of restarting at every iteration, the

algorithm essentially reduces to RBCD. On the other hand, long restart period (e.g.,

100) also has a negative impact, and we observe that the overall convergence displays

94

0 50 100 150 200
10

-10

10
-5

10
0

10
5

RBCD++ (adaptive)

RBCD++ (fix 5)

RBCD++ (fix 15)

RBCD++ (fix 30)

RBCD++ (fix 50)

RBCD++ (fix 100)

(a) Optimality Gap

0 50 100 150 200
10

-6

10
-4

10
-2

10
0

10
2

10
4

RBCD++ (adaptive)

RBCD++ (fix 5)

RBCD++ (fix 15)

RBCD++ (fix 30)

RBCD++ (fix 50)

RBCD++ (fix 100)

(b) Gradient norm

Figure 4-5: Adaptive restart vs. fixed restart for RBCD++ (greedy selection) on a random
instance of our simulation. For fixed restart, we use restart frequency ranging from every 5 to
every 100 iterations. For adaptive restart (black curves), we also highlight iterations where
restart is triggered with circle markers. (a) Evolution of optimality gaps. (b) Evolution of
Riemannian gradient norm.

undesirable oscillations. Finally, we find that a suitably chosen restart period (e.g.,

30) demonstrates a superior convergence rate that is similar to the adaptive restart

scheme.

On the same 9 robot scenario, we also report the convergence of RBCD and

RBCD++ (using greedy selection) under increasing measurement noise, shown in Fig-

ure 4-6. As expected, as rotation noise increases, the convergence rates of both RBCD

and RBCD++ are negatively impacted. On the other hand, we observe that increasing

translation noise actually leads to better convergence behavior, as shown in Figure 4-

6c-4-6d. To explain these observations, we conjecture that increasing rotation noise

and decreasing translation noise magnify the ill conditioning of the optimization prob-

lem. Qualitatively similar results were also reported in [14] (decreasing translational

noise was observed to increase SE-Sync’s wall-clock time).

Lastly, we evaluate the scalability of RBCD and RBCD++ (both with greedy block

selection) as the number of robots increases from 4 to 49 in the simulation. As each

robot has 125 poses, the maximum size of the global PGO problem is 6125. Figure 4-

7 reports the convergence speeds measured in Riemannian gradient norm. Both

RBCD and RBCD++ are reasonably fast for small number of robots. Nevertheless, the

non-accelerated RBCD algorithm begins to show slow convergence as the number of

95

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

10
2

10
4

R
 =3 deg

R
 =5 deg

R
 =7 deg

R
 =9 deg

R
 =11 deg

R
 =13 deg

R
 =15 deg

(a) RBCD under increasing rotation
noise

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

10
2

10
4

R
 =3 deg

R
 =5 deg

R
 =7 deg

R
 =9 deg

R
 =11 deg

R
 =13 deg

R
 =15 deg

(b) RBCD++ under increasing rota-
tion noise

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

10
2

10
4

t
 =0.05 m

t
 =0.1 m

t
 =0.2 m

t
 =0.3 m

t
 =0.4 m

t
 =0.5 m

(c) RBCD under increasing transla-
tion noise

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

10
2

10
4

t
 =0.05 m

t
 =0.1 m

t
 =0.2 m

t
 =0.3 m

t
 =0.4 m

t
 =0.5 m

(d) RBCD++ under increasing trans-
lation noise

Figure 4-6: Convergence of RBCD and RBCD++ with greedy selection under varying rotation
and translation measurement noise. (a)-(b) Convergence of RBCD and RBCD++ under
increasing rotation noise and fixed translation noise of 𝜎𝑡 = 0.05 m. (c)-(d) Convergence of
RBCD and RBCD++ under increasing translation noise and fixed rotation noise of 𝜎𝑡 = 3∘.
All results are averaged across 10 random runs.

robots exceeds 16. In comparison, our accelerated RBCD++ algorithm shows superior

empirical convergence speed, even in the case of 49 robots. We note that in this case

although RBCD++ uses 400 iterations to achieve a Riemannian gradient norm of 10−2,

the actual optimality gap (Figure 4-7c) decreases much more rapidly to 10−5, which

indicates that our solution is very close to the global minimum.

4.7.2 Evaluations of Distributed Verification

In this section we evaluate our proposed distributed verification method. Recall from

Section 4.5 that the bulk of work happens when using accelerated power iteration

96

0 100 200 300 400 500

10
-5

10
0

10
5 4 robots

6 robots

9 robots

16 robots

25 robots

36 robots

49 robots

(a) RBCD optimality gap

0 100 200 300 400 500
10

-2

10
0

10
2

10
4

4 robots

6 robots

9 robots

16 robots

25 robots

36 robots

49 robots

(b) RBCD gradient norm

0 100 200 300 400 500

10
-5

10
0

10
5 4 robots

6 robots

9 robots

16 robots

25 robots

36 robots

49 robots

(c) RBCD++ optimality gap

0 100 200 300 400 500
10

-2

10
0

10
2

10
4

4 robots

6 robots

9 robots

16 robots

25 robots

36 robots

49 robots

(d) RBCD++ gradient norm

Figure 4-7: Scalability of RBCD and RBCD++ with greedy selection as the number of
robots increases. Each robot has 125 poses. Convergence speed is measured in terms of the
Riemannian gradient norm.

to compute the dominant eigenpair of the spectrally-shifted dual certificate matrix

𝐶 ≜ 𝜆dom𝐼 − 𝑆(𝑋). We thus examine the efficiency of this process, and compare

the performance of accelerated power iteration against standard power method and

the centralized Lanczos procedure. We note that since 𝐶 and 𝑆(𝑋) share the same

set of eigenvectors, in our experiment we still report results based on the estimated

eigenvalues of 𝑆(𝑋).

From Remark 4.13, the accelerated power iteration achieves the theoretical op-

timal rate when the employed momentum term satisfies 𝛽 ≈ 𝜆2
2/4, where 𝜆2 is the

second dominant eigenvalue of 𝐶. Since we know that 𝜆dom belongs to a tight cluster

whenever 𝑋 is globally optimal, we expect that typically 𝜆2 ≈ 𝜆dom. Using this in-

sight, in our experiment we first estimate 𝜆2 by multiplying 𝜆dom with a factor 𝛾 < 1

that is close to one, i.e., ̂︀𝜆2 = 𝛾𝜆dom. Subsequently we use this estimated value to set

97

0 100 200 300
10

-10

10
-8

10
-6

10
-4

10
-2

(a) Distance to minimum eigenvalue
when verifying global minimizer

0 100 200 300
10

-4

10
-2

10
0

(b) Eigenvector residual norm when
verifying global minimizer

0 100 200 300

10
-15

10
-10

10
-5

10
0

10
5

(c) Distance to minimum eigenvalue
when verifying suboptimal local min-
imizer

0 100 200 300
10

-10

10
-5

10
0

10
5

(d) Eigenvector residual norm when
verifying suboptimal local minimizer

Figure 4-8: Performance of accelerated power iteration (API) on the Killian court dataset,
using different values of 𝛾 to set the momentum term according to (4.60). (a)-(b) Verification
of a global minimizer computed by SE-Sync. (c)-(d) Verification of a suboptimal first-order
critical point. In both cases, the minimum eigenvalue of the dual certificate matrix (denoted
as 𝜆⋆) is computed using the eigs function in MATLAB.

the momentum term,

𝛽 = ̂︀𝜆2
2/4 = 𝛾2𝜆2

dom/4. (4.60)

We design two test cases using the Killian court dataset. In the first case,

we verify the global minimizer computed by SE-Sync [14]. By Theorem 4.6, the

dual certificate matrix 𝑆(𝑋) must be positive semidefinite. Furthermore, since 𝑆(𝑋)

always has a nontrivial nullspace spanned by the rows of the corresponding primal

solution, we expect the minimum eigenvalue of 𝑆(𝑋) to be zero in this case. Indeed,

when computing this using the eigs function in MATLAB, the final value (denoted

as 𝜆⋆ in Figure 4-8a) is close to zero to machine precision. Figure 4-8a shows how fast

98

each method converges to 𝜆⋆, where we use an initial eigenvector estimate obtained

by (slightly) randomly perturbing a row of the global minimizer [168]. Figure 4-8b

shows the corresponding Ritz residual for the estimated eigenvector 𝑣. Assuming 𝑣

is normalized, this is given by,

ResidualNorm(𝑣) =
⃦⃦
𝑆(𝑋)𝑣 − (𝑣⊤𝑆(𝑋)𝑣)𝑣

⃦⃦
2
. (4.61)

As the results suggest, with a suitable choice of 𝛾, accelerated power iteration is signif-

icantly faster than the standard power method. Furthermore, in this case convergence

speed is close to the Lanczos procedure.

In the second case, we verify a suboptimal first-order critical point obtained by

running RBCD++ with 𝑟 = 𝑑 using random initialization. We verify that the minimum

eigenvalue of 𝑆(𝑋) is negative (≈ −2.97), which is consistent with the prediction of

Theorem 4.6. In this case, we observe that using a random initial eigenvector estimate

leads to better convergence compared to obtaining the initial estimate from a per-

turbed row of the primal solution. Intuitively, using the perturbed initial guess would

cause the iterates of power method to be “trapped” for longer period of time near the

zero eigenspace spanned by the rows of 𝑋. Figure 4-8c-4-8d shows results generated

with random initial eigenvector estimate. Note that there is a bigger performance

gap between accelerated power iteration and the Lanczos algorithm. However, we

also note that in reality, full convergence is actually not needed in this case. Indeed,

from Theorem 4.6, we need only identify some direction that satisfies 𝑣⊤𝑆(𝑋)𝑣 < 0

in order to escape the current suboptimal solution.

4.7.3 Evaluations of Complete Algorithm (Algorithm 4.2)

So far, we have separately evaluated the proposed local search and verification tech-

niques. In this section, we evaluate the performance of the complete DC2-PGO al-

gorithm (Algorithm 4.2) that uses distributed Riemannian Staircase (Algorithm 4.1)

to solve the SDP relaxation of PGO. By default, at each level of the Staircase we

use RBCD++ with greedy selection to solve the rank-restricted relaxation until the

99

3 5 7 9 11 13 15 17 19

0

0.5

1

1.5

2

2.5

(a) Relative subopti-
mality bound under in-
creasing rotation noise

3 5 7 9 11 13 15 17 19

0

200

400

600

800

1000

1200

1400

1600

1800

(b) Total number of
RBCD++ iterations
under increasing rota-
tion noise

3 5 7 9 11 13 15 17 19

0

100

200

300

400

500

600

700

(c) Total number of ac-
celerated power itera-
tions under increasing
rotation noise

0.05 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

12

14

10
-13

(d) Relative subopti-
mality bound under
increasing translation
noise

0.05 0.1 0.2 0.3 0.4 0.5

30

40

50

60

70

80

(e) Total number of
RBCD++ iterations
under increasing trans-
lation noise

0.05 0.1 0.2 0.3 0.4 0.5

140

150

160

170

180

190

200

(f) Total number of ac-
celerated power itera-
tions under increasing
translation noise

Figure 4-9: Evaluation of the proposed DC2-PGO (Algorithm 4.2) under increasing mea-
surement noise. At each noise level, we simulate 10 random realizations of the 9-robot
scenario shown in Figure 4-3. Left column shows boxplot of relative suboptimality bound
(𝑓(𝑇)− 𝑓⋆

SDP)/𝑓
⋆
SDP. Middle and right columns show boxplots of total number of iterations

used by RBCD++ and accelerated power method. The top row shows results under increas-
ing rotation noise 𝜎𝑅 ∈ [3, 19] deg and fixed translation noise 𝜎𝑡 = 0.05 m. The bottom row
shows results under increasing translation noise 𝜎𝑡 ∈ [0.05, 0.5] m and fixed rotation noise
𝜎𝑅 = 3 deg.

Riemannian gradient norm reaches 10−1. Then, we use the accelerated power method

to verify the obtained solution. To set the momentum term, we employ the same

method introduced in the last section with 𝛾 = 0.999 in (4.60). The accelerated

power iteration is deemed converged when the eigenvector residual defined in (4.61)

reaches 10−2.

We first examine the exactness of the SDP relaxation in the 9-robot scenario

shown in Figure 4-3 under increasing measurement noise. Recall that DC2-PGO

returns both a rounded feasible solution 𝑇 ∈ SE(𝑑)𝑛 as well as the optimal value

of the SDP relaxation 𝑓 ⋆
SDP. To evaluate exactness, we record the upper bound on

the relative suboptimality of 𝑇 , defined as (𝑓(𝑇)− 𝑓 ⋆
SDP)/𝑓

⋆
SDP. We note that a zero

100

Table 4.1: Evaluation on benchmark PGO datasets. Each dataset simulates a CSLAM
scenario with five robots. On each dataset, we report the objective value achieved by initial-
ization, centralized SE-Sync [14], the distributed Gauss-Seidel (DGS) with SOR parameter
1.0 as recommended in [38], and the proposed DC2-PGO algorithm. For the latter two
distributed algorithms, we also report the total number of local search iterations. On each
dataset, we highlight the distributed algorithm that (i) achieves lower objective and (ii) uses
less local search iterations. On all datasets, our approach is able to verify its solution as the
global minimizer. We note that the numerical difference with SE-Sync on some datasets is
due to the looser convergence condition during distributed local search.

Dataset # Vertices # Edges
Objective Local Search Iterations

Init. SE-Sync [14] DGS [38] DC2-PGO DGS [38] DC2-PGO

Killian Court (2D) 808 827 229.0 61.15 63.52 61.22 27105 189
CSAIL (2D) 1045 1171 31.50 31.47 31.49 31.47 10 197

Intel Research Lab (2D) 1228 1483 396.6 393.7 428.89 393.7 10 187
Manhattan (2D) 3500 5453 369.0 193.9 242.05 194.0 1585 785
KITTI 00 (2D) 4541 4676 1194 125.7 269.87 125.7 1485 2750
City10000 (2D) 10000 20687 5395 638.6 2975.2 638.7 2465 1646

Parking Garage (3D) 1661 6275 1.64 1.263 1.33 1.311 25 47
Sphere (3D) 2500 4949 1892 1687 1689 1687 300 53
Torus (3D) 5000 9048 24617 24227 24246 24227 100 88

Cubicle (3D) 5750 16869 786.0 717.1 726.69 717.1 45 556
Rim (3D) 10195 29743 8177 5461 5960.4 5461 515 1563

suboptimality bound means that the SDP relaxation is exact and the solution 𝑇 is a

global minimizer. As shown in the first column of Figure 4-9, DC2-PGO is capable of

finding global minimizers for all translation noise considered in our experiments, and

for rotation noise up to 11 degree, which is still much larger than noise magnitude

typically encountered in SLAM. The middle and right columns of Figure 4-9 show the

total number of iterations used by RBCD++ and accelerated power method, across

all levels of the staircase. Interestingly, we observe that changing measurement noise

has a greater impact for distributed local search compared to distributed verification.

Lastly, we evaluate DC2-PGO on benchmark datasets. Figure 4-10 shows the

globally optimal solutions returned by our algorithm. In Table 4.1, we compare the

performance of DC2-PGO against the centralized certifiable SE-Sync algorithm [14],

as well as the state-of-the-art distributed Gauss-Seidel (DGS) algorithm by Choud-

hary et al. [38]. For DGS, we set the SOR parameter to 1.0 as recommended by the

authors, and for which we also observe stable performance in general. On all datasets,

DC2-PGO is able to verify its solution as the global minimizer. We note that on some

101

(a) CSAIL (b) Intel Research Lab (c) Manhattan

(d) KITTI 00 (e) City10000 (f) Parking Garage

(g) Sphere (h) Torus (i) Cubicle

Figure 4-10: Globally optimal estimates returned by DC2-PGO (Algorithm 4.2) on bench-
mark datasets.

datasets, the final objective value is slightly higher than SE-Sync. This is due to the

looser convergence condition used in our distributed local search: for RBCD++ we set

the gradient norm threshold to 10−1, while for SE-Sync we set the threshold to 10−6

in order to obtain a high-precision reference solution.8 On the other hand, DC2-PGO

is clearly more advantageous compared to DGS, as it returns a global minimum, of-

ten with fewer iterations. The performance of DGS is more sensitive to the quality

of initialization, as manifested on the Killian Court and City10000 datasets. In

addition, while our local search methods are guaranteed to reduce the objective value

at each iteration, DGS does not have this guarantee as it is operating on a linearized

8In general it is not reasonable to expect RBCD or RBCD++ to produce solutions that are as
precise as those achievable by SE-Sync in tractable time, since the former are first-order methods,
while the latter is second-order.

102

-200 -150 -100 -50 0

-100

-50

0

50

100

(a) Suboptimal critical
point at rank 𝑟 = 3

-200 -150 -100 -50 0

-50

0

50

100

150

(b) Certified global mi-
minizer at rank 𝑟 = 4

0 500 1000 1500 2000
10

-2

10
0

10
2

10
4

10
6

(c) Combined optimality
gap (𝑟 = 3 and 𝑟 = 4) dur-
ing local search

0 500 1000 1500 2000
10

-2

10
0

10
2

10
4

(d) Combined Riemannian
gradient norm (𝑟 = 3 and
𝑟 = 4) during local search

Figure 4-11: DC2-PGO (Algorithm 4.2) returns the global minimizer of the Killian court
dataset even from random initialization. (a) From random initialization, RBCD++ converges
to a suboptimal critical point at rank 𝑟 = 3. (b) Via distributed verification and saddle
point escaping, our algorithm is able to escape the suboptimal solution and converges to the
global minimizer at rank 𝑟 = 4. (c) Evolution of optimality gap across 𝑟 = 3 and 𝑟 = 4. (d)
Evolution of Riemannian gradient norm across 𝑟 = 3 and 𝑟 = 4. The vertical dashed line
indicates the transition from 𝑟 = 3 to 𝑟 = 4.

approximation of the PGO problem.

To further demonstrate the uniqueness of our algorithm as a global solver, we show

that it is able to converge to the global minimum even from random initialization.

This is illustrated using the Killian court dataset in Figure 4-11. Due to the ran-

dom initialization, the first round of distributed local search at rank 𝑟 = 3 converges

to a suboptimal critical point. This can be seen in Figure 4-11c, the optimality gap

at 𝑟 = 3 (first 1068 iterations) converges to a non-zero value. From distributed ver-

ification, our algorithm detects the solution as a saddle point and is able to escape

and converges to the correct global minimizer at rank 𝑟 = 4. This can be clearly

seen in Figure 4-11d, where escaping successfully moves the iterate to a position with

103

large gradient norm, from where local search can successfully descend to the global

minimizer.

4.8 Conclusion

This chapter developed the first certifiably correct algorithm for distributed pose graph

optimization. Our method is based upon a sparse semidefinite relaxation of the PGO

problem that we prove enjoys the same exactness guarantees as current state-of-the-

art centralized methods [14]: namely, that its minimizers are low-rank and provide

globally optimal solutions of the original PGO problem under moderate noise. To

solve large-scale instances of this relaxation in the distributed setting, we leveraged

the existence of low-rank solutions to propose a distributed Riemannian Staircase

framework, employing Riemannian block coordinate descent as the core distributed

optimization method. We proved that RBCD enjoys a global sublinear convergence

rate under standard (mild) conditions, and can be significantly accelerated using

Nesterov’s scheme. We also developed the first distributed solution verification and

saddle escape algorithms to certify the optimality of critical points recovered via

RBCD, and to descend from suboptimal critical points if necessary. Finally, we

provided extensive numerical evaluations, demonstrating that the proposed approach

correctly recovers globally optimal solutions under moderate noise, and outperforms

alternative distributed methods in terms of estimation quality and convergence speed.

104

Chapter 5

Asynchronous Distributed Pose

Graph Optimization

5.1 Introduction

In Chapter 4, we developed distributed local search procedures for PGO and its rank-

restricted relaxations. However, both RBCD and RBCD++ developed in Chapter 4 are

inherently synchronous, which necessitates that robots, for instance, pass messages

over the network or wait at predetermined points, in order to ensure up-to-date

information sharing during distributed optimization. In practice, doing so may incur

considerable communication overhead and increase the complexity of implementation.

In this chapter, we complement the algorithmic contributions of Chapter 4 by

developing an asynchronous algorithm for distributed PGO that we call ASAPP

(Asynchronous StochAstic Parallel Pose Graph Optimization). We take inspiration

from existing parallel and asynchronous algorithms [58, 155–157, 159], and adapt

these ideas to solve the non-convex Riemannian optimization problem underlying

PGO. In ASAPP, each robot executes its local optimization loop at a high rate,

without waiting for updates from others over the network. This makes ASAPP easier

to implement in practice and flexible against communication delay. Furthermore, we

show that ASAPP can support both the maximum likelihood estimation (MLE)

formulation of PGO (Problem 2.2) and its rank-restricted relaxations (Problem 4.3)

105

ð1

ð2 ð3

ð4

(a) Pose graph 𝐺

𝑥1

𝑥2 𝑥3

𝑥4

(b) Robot-level graph 𝐺ℛ

Figure 5-1: (a) Example pose graph 𝐺 with 4 robots, each with 3 poses. Each edge denotes a
relative pose measurement. Private poses are colored in gray. (b) Corresponding robot-level
graph 𝐺ℛ. Two robots are connected if they share any relative measurements (inter-robot
loop closures). Note that at any time during distributed optimization, robots do not need
to share their private poses with any other robots.

studied in Chapter 4.

Contributions. Since asynchronous algorithms allow communication delays to

be substantial and unpredictable, it is usually unclear under what conditions they

converge in practice. In this chapter, we provide a rigorous answer to this question

and establish the first known convergence result for asynchronous algorithms on the

non-convex PGO problem. In particular, we show that as long as the worst-case delay

is not arbitrarily large, ASAPP with a sufficiently small stepsize always converges to

first-order critical points when solving PGO and its rank-restricted relaxations, with

global sublinear convergence rate. The derived stepsize depends on the maximum de-

lay and inherent problem sparsity, and furthermore reduces to the well known constant

of 1/𝐿 (where 𝐿 is the Lipschitz constant) for synchronous algorithms when there is

no delay. Numerical evaluations on simulated and real-world datasets demonstrate

that ASAPP compares favorably against state-of-the-art synchronous methods, and

furthermore is resilient against a wide range of communication delays. Both results

show the practical value of the proposed algorithm in a realistic distributed setting.

106

5.2 Problem Formulation

In this chapter, we use ℛ = {1, 2, . . . , 𝑛} to denote a set of 𝑛 robots, and 𝑖, 𝑗 ∈ ℛ

serve as indices that refer to specific robots. We consider solving the MLE formu-

lation of collaborative PGO (Problem 2.2), as well as its rank-restricted relaxations

(Problem 4.3) studied in Chapter 4. For the purpose of designing decentralized al-

gorithms (Section 5.3), it is more convenient to rewrite both problems into a more

abstract form at the level of robots, which has the following form.

Problem 5.1 (Robot-level Optimization Problem).

min
∑︁

(𝑖,𝑗)∈𝐸ℛ

𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) +
∑︁
𝑖∈ℛ

ℎ𝑖(𝑥𝑖),

s.t. 𝑥𝑖 ∈ℳ𝑖, ∀𝑖 ∈ ℛ.
(5.1)

In (5.1), each variable 𝑥𝑖 concatenates all variables owned by robot 𝑖 ∈ ℛ. For in-

stance, in the case of solving the rank-restricted relaxations (Problem 4.3), 𝑥𝑖 contains

all the “lifted” rotation and translation variables of robot 𝑖, i.e.,

𝑥𝑖 =
[︁
𝑌𝑖1 𝑝𝑖1 . . . 𝑌𝑖𝑛𝑖

𝑝𝑖𝑛𝑖

]︁
, (5.2)

ℳ𝑖 = (St(𝑑, 𝑟)× R𝑟)𝑛𝑖 , (5.3)

where 𝑌𝑖𝑘 ∈ St(𝑑, 𝑟) and 𝑝𝑖𝑘 ∈ R𝑝 correspond to the 𝑘-th “lifted” rotation and trans-

lation of robot 𝑖, and 𝑛𝑖 is the total number of pose variables owned by robot 𝑖.

The cost function in (5.1) consists of a set of shared costs 𝑓𝑖𝑗 : ℳ𝑖 ×ℳ𝑗 → R

between pairs of robots, and a set of private costs ℎ𝑖 : ℳ𝑖 → R for individual

robots. Intuitively, 𝑓𝑖𝑗 is formed by relative measurements between any of robot

𝑖’s poses and 𝑗’s poses (i.e., inter-robot loop closures). In contrast, ℎ𝑖 is formed

by relative measurements within robot 𝑖’s own trajectory. The sparsity structure of

(5.1), specified by the robot-level edge set 𝐸ℛ, corresponds exactly to the robot-level

dependency graph 𝐺ℛ ≜ (ℛ, 𝐸ℛ) first introduced in Section 2.2.2. For convenience,

Figure 5-1 shows an example of pose graph together with the corresponding robot-

107

level dependency graph 𝐺ℛ. Recall that each vertex in 𝐺ℛ corresponds to the entire

trajectory of a single robot 𝑖 ∈ ℛ. Two robots 𝑖, 𝑗 are connected in 𝐺ℛ if they share

any inter-robot loop closures. In this case, we call 𝑗 a neighboring robot of 𝑖, and the

poses that have inter-robot loop closures neighboring poses. If a pose variable is not

a neighboring pose to any other robots (i.e., it does not have any inter-robot loop

closure), we call this pose a private pose. For robot 𝑖 to evaluate the shared cost 𝑓𝑖𝑗,

it only needs to know its neighboring poses in robot 𝑗’s trajectory (see Figure 5-1).

This property is crucial in preserving the privacy of participating robots, because at

any time a robot does not need to share its private poses with any of its teammates.

5.3 Proposed Algorithm

We present our main algorithm, Asynchronous Stochastic Parallel Pose Graph Op-

timization (ASAPP), for solving distributed PGO problems of the form (5.1). Our

algorithm is inspired by asynchronous stochastic coordinate descent (e.g., see [157]).

In the context of distributed PGO, each coordinate corresponds to the stacked pose

variables 𝑥𝑖 of a single robot as defined in (5.1).

In a practical multi-robot SLAM scenario, each robot can optimize its own pose

estimates at any time, and can additionally share its (non-private) poses with others

when communication is available. Correspondingly, each robot running ASAPP has

two concurrent onboard processes, which we refer to as the optimization thread and

communication thread. We emphasize that the robots perform both optimization

and communication completely in parallel and without synchronization with each

other. We begin by describing the communication thread and then proceed to the

optimization thread. Without loss of generality, we describe the algorithm from the

perspective of robot 𝑖 ∈ ℛ.

5.3.1 Communication Thread

As part of the communication module, each robot 𝑖 ∈ ℛ implements a local data

structure, called a cache, that contains the robot’s own variable 𝑥𝑖, together with

108

the most recent copies of neighboring poses received from the robot’s neighbors. A

very similar design that allows asynchronous communication is proposed by Cun-

ningham et al. [55–57], although the authors have not discussed convergence in the

asynchronous setting.

Since only 𝑖 can modify 𝑥𝑖, the value of 𝑥𝑖 in robot 𝑖’s cache is guaranteed to

be up-to-date at anytime. In contrast, the copies of neighboring poses from other

robots can be out-of-date due to communication delay. For example, by the time

robot 𝑖 receives and uses a copy of robot 𝑗’s poses, 𝑗 might have already updated its

poses due to its local optimization process. In Section 5.4, we show that ASAPP is

resilient against such network delay. Nevertheless, for ASAPP to converge, we still

assume that the total delay induced by the communication process remains bounded

(Section 5.4). The communication thread performs the following two operations over

the cache.

∙ Receive: After receiving a neighboring pose from a neighboring robot 𝑗 over the

network, the communication thread updates the corresponding entry in the cache to

store the new value.

∙ Send: Periodically (when communication is available), robot 𝑖 also transmits its

latest public pose variables (i.e., poses that have inter-robot measurements with other

robots) to its neighbors. Recall from Section 5.2 that robot 𝑖 does not need to send

its private poses, as these poses are not needed by other robots to optimize their

estimates.

5.3.2 Optimization Thread

Concurrent to the communication thread, the optimization thread is invoked by a

local clock that ticks according to a Poisson process of rate 𝜆 > 0.

Definition 5.1 (Poisson process [182]). Consider a sequence {𝑋1, 𝑋2, ...} of positive,

independent random variables that represent the time elapsed between consecutive

events (in this case, clock ticks). Let 𝑁(𝑡) be the number of events up to time

𝑡 ≥ 0. The counting process {𝑁(𝑡), 𝑡 ≥ 0} is a Poisson process with rate 𝜆 > 0 if the

109

interarrival times {𝑋1, 𝑋2, ...} have a common exponential distribution function,

𝑃 (𝑋𝑘 ≤ 𝑎) = 1− 𝑒−𝜆𝑎, 𝑎 ≥ 0. (5.4)

The use of Poisson clocks originates from the design of randomized gossip algo-

rithms by Boyd et al. [183] and is a commonly used tool for analyzing the global

behavior of distributed randomized algorithms. The rate parameter 𝜆 is equal among

robots. In practice, we can adjust 𝜆 based on the extent of network delay and the

robots’ computational capacity. Using this local clock, the optimization thread per-

forms the following operations in a loop.

∙ Read: For each neighboring robot 𝑗 ∈ Nbr(𝑖), read the value of 𝑥𝑗 stored in the

local cache. Denote the read values as �̂�𝑗. Recall that �̂�𝑗 can be outdated, for example

if robot 𝑖 has not received the latest messages from robot 𝑗. In addition, read the

value of 𝑥𝑖, denoted as �̂�𝑖. Recall from Section 5.3.1 that �̂�𝑖 is guaranteed to be

up-to-date.

In practice, �̂�𝑗 only contains the set of neighboring poses from robot 𝑗 since 𝑓𝑖𝑗 is

independent from the rest of 𝑗’s poses (Fig. 5-1). However, for ease of notation and

analysis, we treat �̂�𝑗 as if it contains the entire set of 𝑗’s poses.

∙ Compute: Form the local cost function for robot 𝑖, denoted as 𝑔𝑖(𝑥𝑖) :ℳ𝑖 → R,

by aggregating relevant costs in (5.1) that involve 𝑥𝑖,

𝑔𝑖(𝑥𝑖) = ℎ𝑖(𝑥𝑖) +
∑︁

𝑗∈Nbr(𝑖)

𝑓𝑖𝑗(𝑥𝑖, �̂�𝑗). (5.5)

Compute the Riemannian gradient at robot 𝑖’s current estimate �̂�𝑖,

𝜂𝑖 = grad 𝑔𝑖(�̂�𝑖) ∈ 𝑇�̂�𝑖
ℳ𝑖. (5.6)

∙ Update: At the next local clock tick, update 𝑥𝑖 in the direction of the negative

gradient,

𝑥𝑖 ← Retr�̂�𝑖
(−𝛾𝜂𝑖), (5.7)

110

where 𝛾 > 0 is a constant stepsize. Equation (5.7) gives the simplest update rule that

robots can follow. In Section 5.4, we further prove convergence for this update rule.

To accelerate convergence in practice, SE-Sync [14] and Cartan-Sync [20] use

a heuristic known as preconditioning, which is also applicable to ASAPP. With

preconditioning, the following alternative update direction is used,

𝑥𝑖 ← Retr�̂�𝑖
(−𝛾 Precon 𝑔𝑖(�̂�𝑖)[𝜂𝑖]). (5.8)

In (5.8), Precon 𝑔𝑖(�̂�𝑖) : 𝑇�̂�𝑖
ℳ𝑖 → 𝑇�̂�𝑖

ℳ𝑖 is a linear, symmetric, and positive definite

mapping on the tangent space that approximates the inverse of Riemannian Hessian.

Intuitively, preconditioning helps first-order methods benefit from using the (approx-

imate) second-order geometry of the cost function, which often results in significant

speedup especially on poorly conditioned problems.

5.3.3 Implementation Details

To make the local clock model valid, we require that the total execution time of

the Read-Compute-Update sequence be smaller than the interarrival time of the

Poisson clock, so that the current sequence can finish before the next one starts.

This requirement is fairly lax in practice, as all three steps only involve minimal

computation and access to local memory. In the worst case, since the interarrival

time is determined by 1/𝜆 on average [182], one can also decrease the clock rate 𝜆 to

create more time for each update.

In addition, we note that although the optimization and communication threads

run concurrently, minimal thread-level synchronization is required to ensure the so-

called atomic read and write of individual poses. Specifically, a thread cannot read

a pose in the cache if the other thread is actively modifying its value (otherwise the

read value would not be valid). Such synchronization can be easily enforced using

software locks.

111

Algorithm 5.1 Global View of ASAPP (For Analysis Only)

Input:
Initial solution 𝑥0 ∈ℳ and stepsize 𝛾 > 0.

1: for global iteration 𝑘 = 0, 1, . . . do
2: Select robot 𝑖𝑘 ∈ ℛ uniformly at random.
3: Read �̂�𝑖𝑘 = 𝑥𝑘

𝑖𝑘
.

4: Read �̂�𝑗𝑘 = 𝑥
𝑘−𝐵(𝑗𝑘)
𝑗𝑘

, ∀𝑗𝑘 ∈ Nbr(𝑖𝑘).
5: Compute local gradient 𝜂𝑘𝑖𝑘 = grad 𝑔𝑖𝑘(�̂�𝑖𝑘).
6: Update 𝑥𝑘+1

𝑖𝑘
= Retr�̂�𝑖𝑘

(−𝛾𝜂𝑘𝑖𝑘).
7: Carry over all 𝑥𝑘+1

𝑗 = 𝑥𝑘
𝑗 , ∀𝑗 ̸= 𝑖𝑘.

8: end for

5.4 Convergence Analysis

5.4.1 Global View of the Algorithm

In Section 5.3, we described ASAPP from the local perspective of each robot. For

the purpose of establishing convergence, however, we need to analyze the systematic

behavior of this algorithm from a global perspective [157, 158, 160, 183]. To do so, let

𝑘 = 0, 1, . . . be a virtual counter that counts the total number of Update operations

applied by all robots. In addition, let the random variable 𝑖𝑘 ∈ ℛ represent the robot

that updates at global iteration 𝑘. We emphasize that 𝑘 and 𝑖𝑘 are purely used for

theoretical analysis, and are unknown to any of the robots in practice.

Recall from Section 5.3.2 that all Update steps are generated by 𝑛 = |ℛ| inde-

pendent Poisson processes, each with rate 𝜆. In the global perspective, merging these

local processes is equivalent to creating a single, global Poisson clock with rate 𝜆𝑛.

Furthermore, at any time, all robots have equal probabilities of generating the next

Update step, i.e., for all 𝑘 ∈ N, 𝑖𝑘 is i.i.d. uniformly distributed over the set ℛ. See

[182] for proofs of these results.

Using this result, we can write the iterations of ASAPP from the global view; see

Algorithm 5.1. We use 𝑥𝑘 ≜
[︁
𝑥𝑘
1 𝑥𝑘

2 . . . 𝑥𝑘
𝑛

]︁
to represent the value of all robots’

poses after 𝑘 global iterations (i.e., after 𝑘 total Update steps). Note that 𝑥 lives

on the product manifold ℳ ≜ ℳ1 ×ℳ2 × . . .ℳ𝑛. At global iteration 𝑘, a robot

𝑖𝑘 is selected from ℛ uniformly at random (line 2). Robot 𝑖𝑘 then follows the steps

112

in Section 5.3.2 to update its own variable (line 3-6). We have used the fact that

�̂�𝑖𝑘 is always up-to-date (line 3), while �̂�𝑗𝑘 is outdated for 𝐵(𝑗𝑘) total Update steps

(line 4). Except robot 𝑖𝑘, all other robots do not update (line 7).

5.4.2 Sufficient Conditions for Convergence

We establish sufficient conditions for ASAPP to converge to first-order critical points.

We adopt the commonly used partially asynchronous model [58], which assumes that

delay caused by asynchrony is not arbitrarily large. In practice, the magnitude of

delay is affected by various factors such as the rate of communication (Section 5.3.1),

the rate of local optimization (Section 5.3.2), and intrinsic network latency. For the

purpose of analysis, we assume that all these factors can be summarized into a single

constant 𝐵, which bounds the maximum delay in terms of number of global iterations

(i.e., Update steps applied by all robots) in Algorithm 5.1.

Assumption 5.1 (Bounded Delay). In Algorithm 5.1, there exists a constant 𝐵 ≥ 0

such that 𝐵(𝑗𝑘) ≤ 𝐵 for all 𝑗𝑘.

Assumption 5.1 imposes a worst-case upper bound on the delay, and allows the

actual delay to fluctuate within this upper bound. In addition, for both PGO (Prob-

lem 2.2) and its rank-restricted relaxations (Problem 4.3), the gradients enjoy a

Lipschitz-type condition, which is proved in Appendix A.2.4 as part of the algo-

rithmic developments in Chapter 4. For convenience, we restate this result in the

following lemma.

Lemma 5.1 (Lipschitz-type gradient for pullbacks). Let 𝑓 :ℳ→ R denote the cost

function in PGO (Problem 2.2) or its rank-restricted relaxation (Problem 4.3). Define

the pullback cost as 𝑓𝑥 ≜ 𝑓 ∘ Retr𝑥 : 𝑇𝑥ℳ→ R. There exists a constant 𝐿 ≥ 0 such

that for any 𝑥 ∈ℳ and 𝜂 ∈ 𝑇𝑥ℳ,

⃒⃒ ̂︀𝑓𝑥(𝜂)− [𝑓(𝑥) + ⟨𝜂, grad 𝑓(𝑥)⟩]
⃒⃒
≤ 𝐿

2
‖𝜂‖2 . (5.9)

113

Using the bounded delay assumption and the Lipschitz-type condition in (5.9),

we can proceed to analyze the change in cost function after a single iteration of

Algorithm 5.1 (in the global view). We formally state the result in the following

lemma.

Lemma 5.2 (Descent Property of Algorithm 5.1). Under Assumption 5.1, each it-

eration of Algorithm 5.1 satisfies,

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘) ≤ −𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2 − 𝛾 − 𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

+
∆𝐵𝐿2𝛼2𝛾3

2

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦2
,

(5.10)

where 𝜂𝑘𝑖 denotes the update taken by robot 𝑖𝑘, grad𝑖𝑘
𝑓(𝑥𝑘) is the component of the

Riemannian gradient that corresponds to robot 𝑖𝑘, 𝛼 > 0 is a constant related to the

retraction, and ∆ > 0 is the maximum degree of the robot-level graph 𝐺ℛ.

In (5.10), the last term on the right-hand side sums over the squared norms of a set

of {𝜂𝑘′𝑗𝑘}, where each 𝜂𝑘
′

𝑗𝑘
corresponds to the update taken by a neighbor 𝑗𝑘 at an earlier

iteration 𝑘′. This term is a direct consequence of delay in the system, and is also the

main obstacle for proving convergence in the asynchronous setting. Indeed, without

this term, it is straightforward to verify that any stepsize that satisfies 0 < 𝛾 < 1/𝐿

guarantees 𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘), and thus leads to convergent behavior. With the last

term in (5.10), however, the overall cost could increase after each iteration.

While the delay-dependent error term gives rise to additional challenges, our next

theorem states that with sufficiently small stepsize, this error term is inconsequential

and ASAPP provably converges to first-order critical points.

Theorem 5.1 (Global convergence of ASAPP). Let 𝑓 ⋆ be any global lower bound on

the optimum of (5.1). Define 𝜌 ≜ ∆/𝑛. Let 𝛾 > 0 be an upper bound on the stepsize

that satisfies,

2𝜌𝛼2𝐵2𝐿2𝛾2 + 𝐿𝛾 − 1 ≤ 0. (5.11)

114

In particular, the following choice of 𝛾 satisfies (5.11):

𝛾 =

⎧⎪⎨⎪⎩
√

1+8𝜌𝛼2𝐵2−1
4𝜌𝛼2𝐵2𝐿

, 𝐵 > 0,

1/𝐿, 𝐵 = 0.

(5.12)

Under Assumption 5.1, if 0 < 𝛾 ≤ 𝛾, ASAPP converges to a first-order critical point

with global sublinear rate. Specifically, after 𝐾 total update steps,

min
𝑘∈{0,...,𝐾−1}

E𝑖0:𝐾−1

[︂ ⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2]︂ ≤ 2𝑛(𝑓(𝑥0)− 𝑓 ⋆)

𝛾𝐾
. (5.13)

Remark 5.1. To the best of our knowledge, Theorem 5.1 establishes the first con-

vergence result for asynchronous algorithms when solving a non-convex optimization

problem over the product of matrix manifolds. While the existence of a convergent

stepsize 𝛾 is of theoretical importance, we further note that its expression (5.12) offers

the correct qualitative insights with respect to various problem-specific parameters,

which we discuss next.

Relation with maximum delay (𝐵): 𝛾 increases as maximum delay 𝐵 decreases. Intu-

itively, as communication becomes increasingly available, each robot may take larger

steps without causing divergence. The inverse relationship between 𝛾 and 𝐵 is well

known in the asynchronous optimization literature, and is first established by Bert-

sekas and Tsitsilis [58] in the Euclidean setting.

Relation with problem sparsity (𝜌): 𝛾 increases as 𝜌 decreases. Recall that 𝜌 ≜ ∆/𝑛

is defined as the ratio between the maximum number of neighbors a robot has and the

total number of robots. Thus, 𝜌 is a measure of sparsity of the robot-level graph 𝐺ℛ.

Intuitively, as 𝐺ℛ becomes more sparse, robots can use larger stepsize as their prob-

lems become increasingly decoupled. Such positive correlation between 𝛾 and problem

sparsity has been a crucial feature in state-of-the-art asynchronous algorithms; see

e.g., [156].

Relation with problem smoothness (𝐿): From (5.12), it can been seen that 𝛾 increases

115

asymptotically with 𝒪(1/𝐿). Moreover, when there is no delay (𝐵 = 0), our stepsize

matches the well-known constant of 1/𝐿 with which synchronous gradient descent

converges to first-order critical points; see e.g., [167].

5.5 Experimental Results

We implement ASAPP in C++ and evaluate its performance on both simulated and

real-world PGO datasets. We use ROPTLIB [184] for manifold related computations,

and the Robot Operating System (ROS) [185] for inter-robot communication. The

Poisson clock is implemented by halting the optimization thread after each itera-

tion for a random amount of time exponentially distributed with rate 𝜆 (default to

1000 Hz). Since the time taken by each iteration is negligible, we expect the practical

difference between this implementation and the theoretical model in Section 5.3.2 to

be insignificant. All robots are simulated as separate ROS nodes running on a desktop

computer with an Intel i7 quad-core CPU and 16 GB memory.

For each PGO problem, we use ASAPP to solve its rank-restricted relaxation

(Problem 4.3) with 𝑟 = 5. As is commonly done in prior work [155–161], in our

experiments we select the stepsize empirically. During optimization, we record the

evolution of the Riemannian gradient norm
⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦
, which measures convergence

to a first-order critical point. In addition, we also record the optimality gap 𝑓(𝑥𝑘)−

𝑓(𝑥⋆), where 𝑥⋆ is a global minimizer to PGO (Problem 2.2) computed by Cartan-

Sync [20]. In Section 5.5.2, we also round the solution to SE(𝑑) using the method in

Section 4.6.2 and then compute the translation root mean squared error (RMSE) and

rotation RMSE (in chordal distance) with respect to the global minimizer.

5.5.1 Evaluation in Simulation

We evaluate ASAPP in a simulated multi-robot SLAM scenario in which 5 robots

move next to each other in a 3D grid with lawn mower trajectories (Figure 5-2a).

Each robot has 100 poses. With probability 0.3, loop closures within and across

trajectories are generated for poses within 1 m of each other. All measurements are

116

(a) Simulation

0 5 10 15 20 25 30 35

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

(b) Optimality gap

0 5 10 15 20 25 30 35 40 45 50 55

10
-1

10
0

10
1

10
2

10
3

10
4

(c) Gradient norm

Figure 5-2: Performance evaluation on 5 robot simulation. The communication delay is fixed
at 0.5 sec. We compare ASAPP (with stepsize 𝛾 = 5× 10−4) with a baseline algorithm in
which each robot uses Riemannian trust-region method to optimize its local variables. For a
comprehensive evaluation, we run the baseline with varying optimization rate to record its
performance under both synchronous and asynchronous regimes. (a) Example trajectories
estimated by ASAPP, where trajectories of 5 robots are shown in different colors. Inter-
robot measurements (loop closures) are shown as black dashed lines. (b) Optimality gap
with respect to the centralized global minimizer 𝑓(𝑥𝑘) − 𝑓(𝑥⋆). (c) Riemannian gradient
norm

⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦
.

corrupted by Langevin rotation noise with 2 deg standard deviation, and Gaussian

translation noise with 0.05 m standard deviation. To minimize communication during

initialization, we initialize the solution by propagating relative measurements along a

spanning tree of the global pose graph. The stepsize used in simulation is 𝛾 = 5×10−4.

In the first experiment, we simulate communication delay by letting each robot

communicate every 0.2 sec. We compare the performance of ASAPP (without pre-

conditioning) against a baseline algorithm in which each robot uses the second-order

Riemannian trust-region (RTR) method to optimize its local variable, similar to the

approach in Chapter 4. Starting with SE-Sync [14], RTR has been used as the default

solver in centralized or synchronous settings due to its global convergence guarantees

and ability to exploit second-order geometry of the cost function. For a comprehen-

sive evaluation, we record the performance of this baseline at different optimization

rates (i.e. frequency at which robots update their local trajectories).

Figure 5-2b shows the optimality gaps achieved by the evaluated algorithms as a

function of wall clock time. The corresponding reduction in the Riemannian gradi-

ent norm is shown in Figure 5-2c. ASAPP outperforms all variants of the baseline

algorithm (dashed curves). We note that the behavior of the baseline algorithm is

117

0 5 10 15 20 25 30 35 40 45 50

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Figure 5-3: Convergence speed of ASAPP (stepsize 𝛾 = 5× 10−4) under varying communi-
cation delay. As delay decreases, convergence becomes faster because robots have access to
more up-to-date information from each other.

expected. At a low rate, e.g., 𝜆 = 1 Hz (dark blue dashed curve), the baseline al-

gorithm is essentially synchronous as each robot has access to up-to-date poses from

others. The empirical convergence speed is nevertheless slow, since each robot needs

to wait for up-to-date information to arrive after each iteration. At a high rate, e.g.,

𝜆 = 1000 Hz (dark yellow dashed curve), robots essentially behave asynchronously.

However, since RTR does not regulate stepsize at each iteration, robots often sig-

nificantly alter their solutions in the wrong direction (as a result of using outdated

information), which leads to slow convergence or even non-convergence. In contrast,

ASAPP is provably convergent, and furthermore is able to exploit asynchrony effec-

tively to achieve speedup.

In addition, we also evaluate ASAPP under a wide range of communication delays.

Figure 5-3 shows the speed of convergence in terms of gradient norm. We note that

ASAPP converges in all cases, demonstrating its resilience against various delays in

practice. Furthermore, as delay decreases, convergence becomes faster as robots have

access to more up-to-date information from each other.

118

Dataset # Poses # Edges
Cost value 𝑓 Additional statistics for ASAPP

Opt. [20] Initial DGS [38] ASAPP [ours] Grad. Norm Rot. RMSE [chordal] Trans. RMSE [m] Stepsize

CSAIL (2D) 1045 1171 31.47 36.10 31.54 31.51 0.36 0.0017 0.03 1.0

Intel (2D) 1228 1483 393.7 1205.9 394.6 393.7 0.002 2× 10−6 7× 10−5 1.0

Manhattan (2D) 3500 5453 193.9 1187.2 242.7 227.7 5.42 0.07 1.18 0.03

Garage (3D) 1661 6275 1.267 4.477 1.277 1.309 0.04 0.014 0.41 0.05

Sphere (3D) 2500 4949 1687.0 3075.7 1743.1 1711.7 2.73 0.02 0.50 0.23

Torus (3D) 5000 9048 24227 25812 24305 24240 8.38 0.017 0.07 1.0

Cubicle (3D) 5750 16869 717.1 916.2 720.8 734.5 12.67 0.030 0.08 0.065

Table 5.1: Evaluation on benchmark PGO datasets. Each dataset is divided into trajectories
of 5 robots. We run ASAPP for 60 sec under a fixed communication delay of 0.1 sec. For
reference, we also run DGS [38] for 600 synchronous iterations. We compare the final cost
values of the two approaches, and highlight the better solution in bold. For ASAPP, we also
report the used stepsize, achieved gradient norm, and rotation and translation root mean
squared errors (RMSE) with respect to the global minimizer, computed by Cartan-Sync [20].

5.5.2 Evaluation on benchmark PGO datasets

We evaluate ASAPP on benchmark PGO datasets and compare its performance

with Distributed Gauss-Seidel (DGS) [38], a state-of-the-art synchronous approach

for distributed PGO used in recent multi-robot SLAM systems [39, 112]. Each dataset

is divided into 5 segments simulating a collaborative SLAM mission with 5 robots.

Following Choudhary et al. [38], we initialize rotation estimates via distributed

chordal initialization. To initialize the translations, we fix the rotation estimates and

use distributed Gauss-Seidel to solve the reduced linear system over translations. To

test on scenarios where accurate initializations are not available, we restrict the num-

ber of Gauss-Seidel iterations to 50 for both rotation and translation initialization.

Starting from the initial estimate, we run ASAPP with preconditioning for 60 sec,

assuming for simplicity a fixed delay of 0.1 sec. Accordingly, we run DGS [38] on the

problem (linearized at the initial estimate) for 60/0.1 = 600 synchronous iterations.

This setup favors DGS inherently, since each DGS iteration requires robots to com-

municate multiple times and update according to a specific order, which is likely to

increase execution time in reality.

Table 5.1 compares the final cost values achieved by the two approaches, where

for ASAPP we first round the solutions to SE(𝑑). For ASAPP, we also report

the used stepsize, final gradient norm, and estimation errors with respect to the

119

global minimizer computed by Cartan-Sync [20]. As our results show, ASAPP often

compares favorably against DGS, especially when the quality of initialization is poor.

This is an important advantage, as good initialization schemes (such as distributed

chordal initialization developed in [38]) are usually iterative and thus expensive in

terms of communication. Furthermore, the ASAPP solution is close to the global

minimizer, except on the Manhattan dataset where the rotation and translation errors

are relatively high.

We conclude this section by observing that on certain large datasets, convergence

of ASAPP is slow as the iterate approaches a critical point. This is a consequence

of the sublinear convergence rate, and in our case convergence is further impacted

by the presence of communication delay. To address this, future work could consider

accelerated methods (e.g., the one presented in Chapter 4) to achieve higher precision.

5.6 Conclusion

This chapter presented ASAPP, an asynchronous and provably delay-tolerant algo-

rithm to solve distributed pose graph optimization and its rank-restricted semidefinite

relaxations. ASAPP enables each robot to run its local optimization process at a

high rate, without waiting for updates from its peers over the network. Assuming a

worst-case bound on the communication delay, we established the global first-order

convergence of ASAPP, and showed the existence of a convergent stepsize whose

value depends on the worst-case delay and inherent problem sparsity. When there is

no delay, we further showed that this stepsize matches exactly with the corresponding

constant in synchronous algorithms. Numerical evaluations on both simulation and

real-world datasets confirm the advantages of ASAPP in reducing overall execution

time, and demonstrate its resilience against a wide range of communication delay.

120

Chapter 6

Robust and Fully Distributed SLAM

System and Large-Scale Field

Experiments

6.1 Introduction

The previous chapters focus on developing fully distributed optimization algorithms

for collaborative PGO. In this chapter, we leverage these algorithms to develop a

complete and fully distributed system for multi-robot collaborative SLAM (CSLAM),

and demonstrate its usefulness on real-world datasets (e.g., Figure 6-1) and large-scale

field experiments (Section 6.7).

Contributions. The first contribution of this chapter is Kimera-Multi, a fully

distributed system for multi-robot dense metric-semantic SLAM. Our sys-

tem enables a team of robots to collaboratively estimate a semantically annotated 3D

mesh model of the environment in real time. Each robot runs Kimera [36] to process

onboard visual-inertial sensor data and obtain local trajectory and 3D mesh estimates.

When communication becomes available, a fully distributed procedure is triggered to

perform inter-robot place recognition, relative pose estimation, and robust distributed

trajectory estimation. From the jointly optimized trajectory estimates, each robot

performs real-time local mesh deformation to correct local mapping drift and improve

121

(a) Kimera-VIO trajectory estimate

(b) Kimera-Multi trajectory estimate

(c) Kimera-Multi optimized mesh

Figure 6-1: Demonstration of Kimera-Multi in a three-robot collaborative SLAM dataset
collected at Medfield, Massachusetts, USA. Total trajectory length (including all robots)
is 2188 meters. (a) Trajectory estimate from Kimera-VIO is affected by estimation drift.
(b) Kimera-Multi achieves accurate and robust trajectory estimation. (c) Kimera-Multi also
produces an optimized 3D mesh of the environment.

global map consistency. The implementation of Kimera-Multi is modular and allows

different components to be disabled or replaced.

The second technical contribution of this chapter is a new, two-stage method

for outlier-robust distributed pose graph optimization (PGO), which serves

as the distributed back-end of Kimera-Multi. The first stage initializes robots’ local

trajectories in a global reference frame by using graduated non-convexity (GNC) [28]

122

to estimate relative transformations between the coordinate frames of pairs of robots.

This method is robust to outlier loop closures and, furthermore, is efficient because

it does not require iterative communication. The second stage solves the full robust

PGO problem. For this purpose, we present a distributed extension of GNC built

on top of the RBCD solver developed in Chapter 4. Compared to prior techniques,

our approach achieves more robust and accurate trajectory estimation, and is less

sensitive to parameter tuning.

Lastly but not least, this chapter presents extensive quantitative evaluation

and large-scale field experiments of Kimera-Multi. First, we validate the accuracy,

robustness, and communication efficiency of Kimera-Multi using a collection of photo-

realistic simulations and real-world datasets. Furthermore, we describe large-scale

live experiments conducted on the MIT campus along with the challenging large-scale

benchmarking datasets compiled from data recorded during the live experiments. We

provide quantitative results from controlled experiments and discuss lessons learned

from live field tests. We release the source code of Kimera-Multi1 and all datasets2

together with accurate reference trajectories and point cloud maps to facilitate further

research in this area.

The remainder of this chapter is organized as follows. Section 6.2 presents an

overview of the proposed system. Sections 6.3 to 6.5 describe the individual system

components, including the distributed front-end for inter-robot loop closure detec-

tion, the distributed back-end for robust trajectory estimation, and the local mesh

optimization for locally dense metric-semantic mapping. Section 6.6 presents offline

evaluation on photo-realistic simulations and real-world datasets. Lastly, Section 6.7

presents field experiments where Kimera-Multi is deployed on 6-8 ground robots that

perform CSLAM in large-scale mixed indoor-outdoor environments.

123

Robot n
Distributed Front-end

Recognition

Verification

Candidates w/ Frames

Coarsening

Stereo / 2D Semantics / Depth Images IMU / Wheel Odometry

Kimera-Semantics Kimera-VIO

Robust Dist. PGO

Local Mesh
Optimization

Odometry
Incremental Mesh

Optimized
Trajectory

Remote Topic
Manager

Pose Graph

Missing
BoW +
Candidate
Frames

Local BoW

Coarse Pose Graph
(w/ Loop Closures)

Global Frame
Estimation

Distributed
GNC Public

Poses

Loop
Closures

Figure 6-2: Kimera-Multi: system architecture. Each robot runs Kimera (including Kimera-
VIO and Kimera-Semantics) to estimate local trajectory and mesh. Robots then communi-
cate to perform distributed loop closure detection and robust distributed PGO. Given the
optimized trajectory, each robot performs local mesh optimization. All inter-robot commu-
nication is handled by the remote topic manager module.

6.2 System Overview

In Kimera-Multi, each robot runs the fully decentralized metric-semantic SLAM sys-

tem shown in Fig. 6-2. The system consists of the following main modules: (i) local

(single-robot) Kimera, (ii) distributed loop closure detection, (iii) robust distributed

trajectory estimation via PGO, (iv) local mesh optimization, and (v) remote topic

manager. Among these modules, distributed loop closure detection and robust dis-

tributed PGO are the only ones that involve communication between robots, and the

detailed communication is managed by the remote topic manager. Fig. 6-2 shows the

data flow between these modules.

Kimera [36] runs onboard each robot and provides real-time local trajectory

and mesh estimation. In particular, Kimera-VIO [186] serves as the visual-inertial

odometry module, which processes raw stereo images and IMU data to obtain an

estimate of the odometric trajectory of the robot. Kimera-Semantics [186] processes

depth images (possibly obtained from RGB-D cameras or by stereo matching) and

1https://github.com/MIT-SPARK/Kimera-Multi
2https://github.com/MIT-SPARK/Kimera-Multi-Data

124

https://github.com/MIT-SPARK/Kimera-Multi
https://github.com/MIT-SPARK/Kimera-Multi-Data

2D semantic segmentations [187] and produces a dense metric-semantic 3D mesh using

the VIO pose estimates. In addition, Kimera-VIO computes a Bag-of-Words (BoW)

representation of each keyframe using ORB features and DBoW2 [46], which is used

for distributed loop closure detection. Interested readers are referred to [36, 186] for

more technical details.

Distributed Loop Closure Detection (Section 6.3) is executed whenever

two robots 𝛼 and 𝛽 are within communication range. The robots exchange BoW

descriptors of the keyframes they collected. When the robots find a pair of matching

descriptors (typically corresponding to observations of the same place), they perform

relative pose estimation using standard geometric verification techniques. The relative

pose corresponds to a putative inter-robot loop closure, and is used during robust

distributed trajectory estimation.

Robust Distributed Trajectory Estimation (Section 6.4) solves for the op-

timal trajectory estimates of all robots in a global reference frame, by performing

robust distributed PGO using odometric measurements from Kimera-VIO and all pu-

tative loop closures detected so far. At the beginning, a robust initialization scheme is

used to find coarse relative transformations between robots’ reference frames. Then, a

robust optimization procedure based on a distributed extension of GNC [28] using the

RBCD solver developed in Chapter 4 is employed to simultaneously select inlier loop

closures and recover optimal trajectory estimates. Compared to the incremental PCM

technique [81] used in an earlier version of this system [23], our new approach enables

more robust and accurate trajectory estimation, and is less sensitive to parameter

tuning.

Local Mesh Optimization (LMO; Section 6.5) is executed after the robust

distributed trajectory estimation stage. This module performs a local processing

step that deforms the mesh at each robot to enforce consistency with the trajectory

estimate resulting from distributed PGO.

Inter-Robot Communication. Kimera-Multi implements a remote topic man-

ager module to handle communication between robots. This module closely integrates

with the Robot Operating System (ROS) [185] publish-subscribe paradigm and man-

125

BoW
vector

Dist. Loop Closure Detection

keypoints
 descriptors

Robust Dist. PGO

Figure 6-3: Communication protocol and data flow between pair of robots.

ages incoming and outgoing ROS messages with other robots. The remote topic

manager also keeps track of currently connected robots, and initiates new connec-

tions when others are within communication range. The remote topic manager is

implemented using the open-source ENet library,3 which provides lightweight com-

munication using UDP and supports reliable, in-order transmission of selected data

streams. Lastly, ENet also provides diagnostic statistics such as delay and packet loss

that are helpful for evaluating communication performance.

The entire Kimera-Multi implemented in C++.4 The system runs online using a

CPU and is modular, thus allowing modules to be replaced or removed. For instance,

the system can also produce a dense metric mesh if semantic labels are not available,

or only produce the optimized trajectory if the dense reconstruction is not required

by the user.

6.3 Distributed Loop Closure Detection

This section describes the front-end of Kimera-Multi, which is responsible for detecting

inter-robot loop closures between pairs of robots. The information flow is summarized

in Fig. 6-3. Whenever two robots can communicate, one of the robots executes the

Kimera-Multi front-end to detect inter-robot loop closures.5 The front-end consists

of three main components: place recognition, geometric verification, and pose graph

3http://enet.bespin.org/
4Source code is available at https://github.com/MIT-SPARK/Kimera-Multi.
5In our implementation, between each pair of robots, the robot with a smaller ID is designated

to run the front-end.

126

http://enet.bespin.org/
https://github.com/MIT-SPARK/Kimera-Multi

coarsening.

The place recognition component subscribes to BoW vectors from the other robot,

and finds matches by searching the local database of past BoW vectors. To avoid

a high bandwidth usage, we perform an optional downsampling and only transmit

every 𝑛𝑏th BoW vector (default 𝑛𝑏 = 3). A candidate loop closure is identified if

the normalized similarity score is higher than a threshold 𝛼 (default 0.5). In order to

operate robustly under sporadic communication, our implementation tolerates out-of-

order arrival of BoW vectors. Each robot also periodically examines its local database

for missing BoW vectors, and publishes a request to the connected robot that has the

most missing BoW vectors.

The geometric verification component processes the queue of candidate loop clo-

sures. For each candidate inter-robot loop closure, a request is transmitted to the

other robot to send its corresponding visual keyframe, which contains 3D keypoints

and ORB descriptors. This robot then performs standard descriptor matching and

computes the underlying relative transformation using monocular and stereo RANSAC.

The estimated transformation is sent back to the other robot to be included in its

local pose graph.

To prevent the rapid growth of the multi-robot pose graph, we add a pose graph

coarsening component that subscribes to the local pose graph and loop closures, and

then reduces the graph by aggregating pose variables within a specified distance 𝑑

(default 𝑑 = 2m). In our experiments, the coarsened pose graph is on average 90%

smaller than the original pose graph, which enables more efficient optimization in our

back-end.

6.4 Robust Distributed Trajectory Estimation

In Kimera-Multi, the robots estimate their trajectories by collaboratively solving a

PGO problem using the entire team’s odometry measurements and intra-robot and

inter-robot loop closures. Some of these loop closures may be outliers (due to, e.g.,

perceptual aliasing) and thus we need an outlier-robust method for solving PGO.

127

Many prior systems (including an earlier version of Kimera-Multi [23]) use PCM [81]

for outlier rejection via maximum clique computation prior to trajectory estimation.

However, even with parallelization [188], the runtime of exact maximum clique search

exceeds 10 seconds already in graphs with 700 loop closures, which is not practical for

our application. For this reason, in practice PCM has to rely on heuristic maximum

clique algorithms and thus often exhibits poor recall, as shown in Section 6.6.1.

We propose a new distributed approach for robust trajectory estimation based

on GNC [28]. The main idea in GNC is to start from a convex approximation of

the robust cost function and then gradually introduce the non-convexity to prevent

convergence to spurious solutions. While in general GNC does not require an initial

guess [28], it has been observed that global solvers for 3D SLAM (e.g., SE-Sync [14])

become too slow in the presence of outliers [116]. For this reason, in [116] local

optimization is performed instead at each iteration of GNC (starting from an outlier-

free initial guess), and this approach has been shown to be very effective. In single-

robot SLAM, one can easily obtain an outlier-free initial guess by chaining together

odometry measurements. In the multi-robot case, there is no odometry between

different robots’ poses, and the challenge thus becomes building an initial guess that

is insensitive to outliers.

To address the aforementioned challenge, the proposed distributed graduated non-

convexity (D-GNC) approach involves two stages. In the first stage (Section 6.4.2),

we use an outlier-robust and communication-efficient method to initialize robots’

trajectories in a global reference frame. In the second stage (Section 6.4.3), we develop

a fully distributed procedure to execute GNC, using the RBCD distributed solver as

a subroutine. We discuss several additional implementation details in Section 6.4.4.

Algorithm 6.1 provides the pseudocode of D-GNC.

6.4.1 Background: Graduated Non-Convexity

We start by providing a brief review of GNC [28, 189]. One challenge associated with

classical M-estimation [190, 191] is that the employed robust cost function 𝜌 can be

highly non-convex, hence making local search techniques sensitive to the initial guess.

128

Algorithm 6.1 Distributed Graduated Non-Convexity (D-GNC)

Input:
- Initial trajectory estimates in local frames of each robot
- Odometry and intra-robot and inter-robot loop closures that each robot is in-
volved in
- Threshold 𝑐 of truncated least squares (TLS) cost

Output:
- Optimized trajectory estimate of each robot in global frame

1: Robust initialization: robots communicate to initialize trajectory estimates in
a global reference frame (Section 6.4.2).

2: In parallel, each robot initializes GNC weights for its local intra and inter-robot
loop closures 𝑤𝑖 = 1,∀𝑖.

3: while not converged do
4: Variable update: with fixed weights, robots communicate to execute RBCD

for 𝑇 iterations (default 𝑇 = 15).
5: Weight update: in parallel, each robot updates GNC weights for intra-robot

loop closures and inter-robot loop closures it is involved in.
6: Parameter update: in parallel, each robot updates the control parameter

𝜇.
7: end while

The key idea behind GNC is to optimize a sequence of easier (i.e., less non-convex)

surrogate cost functions that gradually converges to the original robust cost function.

Each surrogate problem takes the same form as classical M-estimation,

min
𝑥∈𝒳

∑︁
𝑖

𝜌𝜇(𝑟𝑖(𝑥)), (6.1)

where 𝑟𝑖 : 𝒳 → R is the residual error associated with the 𝑖th measurement. The

sequence of surrogate functions 𝜌𝜇, parameterized by control parameter 𝜇, satisfies

that for some given constants 𝜇0 and 𝜇1: (i) for 𝜇 → 𝜇0, the function 𝜌𝜇 is convex,

and (ii) for 𝜇→ 𝜇1, 𝜌𝜇 converges to the original (non-convex) robust cost function 𝜌.

In practice, one initializes 𝜇 near 𝜇0, and gradually updates its value to approach 𝜇1

as optimization proceeds.

For each instance of (6.1), GNC reformulates the problem using the Black-Rangarajan

Duality [189], which states that under certain technical conditions (satisfied by all

common choices of robust cost functions), (6.1) is equivalent to the following opti-

129

mization problem,

min
𝑥∈𝒳 ,𝑤𝑖∈[0,1]

∑︁
𝑖

[︀
𝑤𝑖𝑟

2
𝑖 (𝑥) + Φ𝜌𝜇(𝑤𝑖)

]︀
, (6.2)

where 𝑤𝑖 ∈ [0, 1] is a scalar weight associated with the 𝑖th measurement. In (6.2),

the outlier process Φ𝜌𝜇(𝑤𝑖) introduces a penalty term for each 𝑤𝑖, and its expression

depends on the chosen robust cost function 𝜌 and the control parameter 𝜇. Similar

to the classical iterative reweighted least squares (IRLS) scheme, GNC performs al-

ternating minimization over the variable 𝑥 and weights 𝑤𝑖 to optimize (6.2), but in

the meantime also updates the control parameter 𝜇:

1. Variable update: Minimize (6.2) with respect to 𝑥 with fixed weights 𝑤𝑖. This

amounts to solving a standard weighted least-squares problem,

𝑥⋆ ∈ argmin
𝑥∈𝒳

∑︁
𝑖

𝑤𝑖𝑟
2
𝑖 (𝑥). (6.3)

2. Weight update: Minimize (6.2) with respect to 𝑤𝑖 with fixed variable 𝑥. The

corresponding update for each 𝑤𝑖 has a closed-form expression that depends on

the current robust surrogate function 𝜌𝜇; see [28, Proposition 3-4].

3. Parameter update: Update 𝜇 by a constant factor to approach 𝜇1.

The control parameter 𝜇 is initialized at a value close to 𝜇0. In the absence of a

better guess, all weights are initialized to one (i.e., all measurements are considered

inliers initially). Then the steps above are repeated until 𝜇 approaches 𝜇1.

6.4.2 Robust Distributed Initialization

To optimize the pose graph, we first need to initialize all robot poses in a shared

(global) coordinate frame (Algorithm 6.1, line 1). Each robot can readily initialize

its trajectory in its local reference frame by chaining odometry measurements. To

express these local initial guesses in the global reference frame, however, we must

estimate the relative pose between the local reference frames.

130

Figure 6-4: Robust distributed initialization. Left: Three-robot scenario with local reference
frames 𝐴,𝐵,𝐷, each coinciding with the first pose of the corresponding robot. Between every
pair of robots, inlier loop closures (−→) lead to similar estimates for the alignment between
frames (99K). Each outlier loop closure (−→) produces an outlier frame alignment (99K),
which can be rejected with GNC. Right: Corresponding robot-level spanning tree.

Pairwise coordinate frame estimation. First, let us see how this can be

done between two robots 𝛼 and 𝛽, with local reference frames 𝐴 and 𝐵, respectively.

Consider a loop closure between the 𝑖th pose of 𝛼 and 𝑗th pose of 𝛽, denoted as̃︁𝑋𝛼𝑖
𝛽𝑗
∈ SE(3). Denote the odometric estimates of pose 𝑖 and 𝑗 (in the local frames

of the two robots) as ̂︁𝑋𝐴
𝛼𝑖
,̂︁𝑋𝐵

𝛽𝑗
∈ SE(3). By combining these pose estimates with

the loop closure, we obtain a noisy estimate of the relative transformation between

frames 𝐴 and 𝐵, ̂︁𝑋𝐴
𝐵𝑖𝑗

≜ ̂︁𝑋𝐴
𝛼𝑖
̃︁𝑋𝛼𝑖

𝛽𝑗

(︀̂︁𝑋𝐵
𝛽𝑗

)︀−1
, (6.4)

where the subscript of ̂︁𝑋𝐴
𝐵𝑖𝑗

indicates that this estimate is computed using loop closure

(𝑖, 𝑗). From (6.4), we see that each inter-robot loop closure provides a candidate

alignment for the reference frames 𝐴 and 𝐵. Furthermore, candidate alignments

produced by inlier loop closures are expected to be in mutual agreement; see Fig. 6-4

and also [117]. To obtain a reliable estimate of the true relative transformation, we

thus formulate and solve the following robust pose averaging problem,

̂︁𝑋𝐴
𝐵 ∈ argmin

𝑋∈SE(3)

∑︁
(𝑖,𝑗)∈𝐿𝛼,𝛽

𝜌(𝑟𝑖𝑗(𝑋)), (6.5)

where 𝜌 : R→ R is the truncated least squares (TLS) robust cost function [28], and

𝐿𝛼,𝛽 is the set of inter-robot loop closures between robot 𝛼 and 𝛽. Each residual

measures the geodesic distance between the to-be-computed average pose 𝑋 and the

131

measurement ̂︁𝑋𝐴
𝐵𝑖𝑗

,

𝑟𝑖𝑗(𝑋) ≜
⃦⃦⃦
𝑋 ⊟ ̂︁𝑋𝐴

𝐵𝑖𝑗

⃦⃦⃦
Σ
, (6.6)

where Σ ∈ S6
++ is a fixed covariance matrix. In our implementation, we use a diagonal

covariance with a standard deviation of 0.1 rad for rotation and 0.5 m for transla-

tion. Between a given pair of robots, one robot can solve (6.5) locally using GNC [28]

without extra communication (since each robot already has access to all loop closures

it is involved in), and transmits the solution to the other robot. In practice, we use

the GNC implementation available in GTSAM [6], which uses Levenberg-Marquardt

(initialized at identity pose) in each GNC variable update to solve (6.5). The esti-

mated transformation is accepted if the solution is supported by at least 3 inlier loop

closures.

Multi-robot coordinate frame estimation. The above pairwise procedure can

be executed repeatedly to express all local reference frames (and trajectory estimates)

in a global frame while being robust to outliers. To do so, we first choose an arbitrary

spanning tree in the robot-level dependency graph first introduced in Section 2.2.2.

Recall that this is a graph whose vertices correspond to robots and edges represent the

presence of at least one inter-robot loop closure between the two corresponding robots

(Fig. 6-4). Note that the spanning tree induces a unique path between any two robots.

We select an arbitrary robot 𝛼 and use its reference frame 𝐴 as the global frame.6 For

each remaining robot 𝛽, we need to obtain its relative transformation to the global

frame ̂︁𝑋𝐴
𝐵 ∈ SE(3). This is done by traversing the unique path in the robot-level

spanning tree from 𝛼 to 𝛽, and composing all estimated pairwise transformations

computed using (6.5) along the way. In practice, this procedure can be performed

in a fully distributed fashion, by incrementally growing the robot-level spanning tree

from 𝛼 using local communication. Finally, each robot 𝛽 uses its corresponding ̂︁𝑋𝐴
𝐵

to express its initial trajectory in the global frame. Note that our distributed PGO

approach does not require the robots to share these initial trajectory estimates, but

6In our implementation, the reference frame of the robot with the smallest ID is used as the
global frame.

132

only requires them to be expressed in a shared global frame at each robot.

6.4.3 Robust Distributed Pose Graph Optimization

Following the initialization stage, robots perform robust distributed PGO to obtain

optimal trajectory estimates while simultaneously rejecting outlier loop closures. Let

𝑋𝛼𝑖
= (𝑅𝛼𝑖

, 𝑡𝛼𝑖
) ∈ SE(3) denote the 𝑖th pose of robot 𝛼 in the global frame. We aim

to optimize all pose variables using all odometric measurements and putative loop

closures.

min
𝑋𝛼𝑖∈SE(3),
∀𝛼∈ℛ, ∀𝑖

∑︁
𝛼∈ℛ

𝑛𝛼−1∑︁
𝑖=1

𝑟𝛼𝑖
(𝑋𝛼𝑖

,𝑋𝛼𝑖+1
)2⏟ ⏞

odometry

+
∑︁

(𝛼𝑖,𝛽𝑗)∈𝐿

𝜌
(︀
𝑟𝛼𝑖
𝛽𝑖
(𝑋𝛼𝑖

,𝑋𝛽𝑗
)
)︀
,

⏟ ⏞
loop closures

(6.7)

where ℛ = {𝛼, 𝛽, . . .} denotes the set of robots, 𝑛𝛼 is the total number of poses of

robot 𝛼, and the set of loop closures 𝐿 includes both intra-robot and inter-robot loop

closures. Each residual error in (6.7) corresponds to a single relative pose measure-

ment in the global pose graph, where the residual error is measured using the chordal

distance. For example, the residual corresponding to a loop closure is given by [14],

𝑟𝛼𝑖
𝛽𝑖
(𝑋𝛼𝑖

,𝑋𝛽𝑗
) ≜

(︂
𝑤𝑅

⃦⃦⃦
𝑅𝛽𝑗
−𝑅𝛼𝑖

̃︀𝑅𝛼𝑖
𝛽𝑗

⃦⃦⃦2
𝐹
+ 𝑤𝑡

⃦⃦⃦
𝑡𝛽𝑗
− 𝑡𝛼𝑖

−𝑅𝛼𝑖
̃︀𝑡𝛼𝑖
𝛽𝑗

⃦⃦⃦2
2

)︂1/2

, (6.8)

where ̃︁𝑋𝛼𝑖
𝛽𝑗

= (̃︀𝑅𝛼𝑖
𝛽𝑗
, ̃︀𝑡𝛼𝑖

𝛽𝑗
) ∈ SE(3) is the observed noisy transformation, and 𝑤𝑅, 𝑤𝑡 > 0

specify measurement precisions. We employ the standard quadratic cost for odometric

measurements as they are outlier-free. For loop closures, we choose 𝜌 to be the TLS

function as in Section 6.4.2.

To solve (6.7), we develop a fully distributed variant of GNC which uses the RBCD

solver developed in Chapter 4 as the workhorse during iterative optimization. Recall

from Section 6.4.1 that GNC alternates between variable (i.e., trajectory) updates

and weight updates. In the following, we discuss how each of these two operations

are performed in the distributed setup.

Variable update. In this case, the variable update step becomes an instance of

133

standard (weighted) PGO,

min
𝑋𝛼𝑖∈SE(3),
∀𝛼∈ℛ, ∀𝑖

∑︁
𝛼∈ℛ

𝑛𝛼−1∑︁
𝑖=1

𝑟𝛼𝑖
(𝑋𝛼𝑖

,𝑋𝛼𝑖+1
)2 +

∑︁
(𝛼𝑖,𝛽𝑗)∈𝐿

𝑤𝛼𝑖
𝛽𝑗
· 𝑟𝛼𝑖

𝛽𝑖
(𝑋𝛼𝑖

,𝑋𝛽𝑗
)2. (6.9)

Compared to (6.7), terms including the robust cost function 𝜌 (corresponding to the

loop closures) are replaced by weighted squared residuals; see also (6.3). We apply

the RBCD solver for distributed optimization of (6.9) (Algorithm 6.1, line 4). In

the following, we recall several properties of RBCD that are discussed in depth in

Chapter 4. RBCD operates on the rank-restricted relaxation [14] of (6.9) and subse-

quently projects the solution to the Special Euclidean group. In our implementation,

we set the default rank relaxation to 5. In RBCD, each robot 𝛼 ∈ ℛ is responsible for

estimating its own trajectory 𝑋𝛼 ≜ {𝑋𝛼𝑖
, 𝑖 = 1, . . . , 𝑛𝛼}. During execution, robots

alternate to update their trajectories by relying on partial information exchange with

their teammates. Specifically, at each iteration in which robot 𝛼 updates its trajec-

tory, it needs to communicate once with its neighboring robots (i.e., robots that share

inter-robot loop closures with robot 𝛼), where the communication can be either direct

or relayed by other robots. Furthermore, robot 𝛼 only needs to receive neighboring

robots’ “public poses” (i.e., poses that share inter-robot loop closures with robot 𝛼).

This property allows RBCD to preserve privacy and saves communication effort over

the remaining poses.

In the original (centralized) GNC algorithm, each variable update step is solved

to full convergence using a global solver or local search technique. In the distributed

setup, however, solving each instance of (6.9) to full convergence can be slow, due

to the first-order nature of typical distributed optimization methods (including both

RBCD and DGS [38]). To develop a more practical and efficient approach, we re-

lax the convergence requirements and allow approximate solutions during variable

updates. Specifically, our implementation supports two strategies for performing ap-

proximate optimization. The first strategy (used in Section 6.6) is to run RBCD for

a fixed number of iterations (default 15) and use the resulting trajectory estimates to

warm start the next variable update step. The second strategy (used in Section 6.7)

134

is to run RBCD until reaching a (potentially loose) convergence threshold. In our

implementation, we terminate optimization once the relative changes of all robots’

translation estimates are less than a threshold 𝜖rel (default 0.2m).

Weight update. In the original GNC paper [28], it has been shown that the

weight update for each residual function using TLS only depends on the current

residual error ̂︀𝑟𝑖, control parameter 𝜇, and the threshold 𝑐 of the TLS cost,

𝑤𝑖 ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if ̂︀𝑟2𝑖 ∈ [︀𝜇+1

𝜇
𝑐2,+∞

]︀
,

𝑐̂︀𝑟𝑖
√︀

𝜇(𝜇+ 1)− 𝜇, if ̂︀𝑟2𝑖 ∈ [︀ 𝜇
𝜇+1

𝑐2, 𝜇+1
𝜇
𝑐2
]︀
,

1, if ̂︀𝑟2𝑖 ∈ [︀0, 𝜇
𝜇+1

𝑐2].

(6.10)

See [28, Proposition 4] for more details. The weight update step is particularly suit-

able for distributed computation, as (6.10) suggests that this operation can be per-

formed independently and in parallel for each residual function (i.e., loop closure).

We leverage this insight to implement a fully distributed weight update scheme (Al-

gorithm 6.1, line 5). Specifically, each robot first updates weights associated with its

internal loop closures in parallel. Then, for each inter-robot loop closure, one of the

two involved robots computes the updated weight, and subsequently transmits the

new weight to the other robot. After the weight update stage, each robot also up-

dates its local copy of the control parameter 𝜇, so that the sequence of surrogate cost

functions gradually converges to the original TLS function (Algorithm 6.1, line 6).

6.4.4 Implementation Details

Standard formulation of distributed PGO assumes that all robots are available and

connected, so that the team can collaborate to solve the entire multi-robot PGO

problem. However, this may be a strong assumption in practice, as robots may form

multiple disconnected clusters at any time (e.g., due to sporadic communication). To

address this challenge, our implementation allows concurrent PGO within multiple

clusters of connected robots. To maintain consistency across clusters, a prior over

135

the global reference frame is added to each cluster.7 Within each cluster, robots

iteratively refine their trajectory estimates by performing local optimization steps

and communicating public poses as described above. For this purpose, we assume

that robots within the same cluster can reach each other (either via direct links or

additional routing), so that they can transmit their public poses to the intended

destination and maintain synchronization during distributed optimization.

6.5 Local Mesh Optimization

This section describes how to perform local correction of the 3D mesh in response to

a loop closure. Kimera-Semantics builds the 3D mesh from the Kimera-VIO (odometric)

estimate. However, since distributed PGO described in previous section improves the

accuracy of the trajectory estimate by enforcing loop closures, it is desirable to correct

the mesh according to the optimized trajectory estimate (i.e., each time distributed

PGO is executed). Here we propose an approach for mesh optimization based on

deformation graphs [192]. Deformation graphs are a model from computer graphics

that deforms a given mesh in order to anchor points in this mesh to user-defined

locations while ensuring that the mesh remains locally rigid; deformation graphs are

typically used for 3D animations, where one wants to animate a 3D object while

ensuring it moves smoothly and without artifacts [192].

Creating the deformation graph. In our approach, we create a unified defor-

mation graph including a simplified mesh and a pose graph of trajectory keyframes.

The process is illustrated in Fig. 6-5. The intuition is that the "anchor points" in [192]

will be the keyframes in our trajectory. More specifically, while Kimera-Semantics builds

a local 3D mesh for each robot 𝛼 using pose estimates from Kimera-VIO, we keep track

of the subset of 3D mesh vertices seen in each keyframe from Kimera-VIO. To build

the deformation graph, we first subsample the mesh from Kimera-Semantics to obtain

a simplified mesh. We simplify the mesh with an online vertex clustering method by

7The prior is obtained from the last round of distributed optimization involving the first robot
(who we assign as the global reference frame). Within each cluster, the prior is added to the robot
with the smallest ID.

136

(a) Undeformed mesh. (b) Deformed mesh

Figure 6-5: LMO deformation graph including mesh vertices (violet) and keyframe vertices
(red). Edges connect two mesh vertices that are adjacent in the mesh (gray links), as well
as mesh vertices with the keyframe vertices they are observed in (orange links). The green
poses denote optimized poses from distributed PGO.

storing the vertices of the mesh in an octree data structure; as the mesh grows, the

vertices in the same voxel of the octree are merged and degenerate faces and edges are

removed. The voxel size is tuned according to the environment or the dataset. Then,

the vertices of this simplified mesh and the corresponding keyframe poses are added as

vertices in the deformation graph; we are going to refer to the corresponding vertices

in the deformation graph as mesh vertices and keyframe vertices. Moreover, we add

two types of edges to the deformation graph: mesh edges (corresponding to pairs of

mesh vertices sharing a face in the simplified mesh), and keyframe edges (connecting

a keyframe with the set of mesh vertices it observes).

For each mesh vertex 𝑘 in the deformation graph, we assign a transformation

𝑀𝑘 = (𝑅𝑀
𝑘 , 𝑡𝑀𝑘), where 𝑅𝑀

𝑘 ∈ SO(3) and 𝑡𝑀𝑘 ∈ R3; 𝑀𝑘 defines a local coordinate

frame, where 𝑅𝑘 is initialized to the identity and 𝑡𝑘 is initialized to the position 𝑔𝑘

of the mesh vertex from Kimera-Semantics (i.e., without accounting for loop closures).

We also assign a pose 𝑋𝑖 = (𝑅𝑥
𝑘, 𝑡

𝑥
𝑘) to each keyframe vertex 𝑖. The pose is initialized

to the pose estimates from Kimera-VIO.

Optimizing the deformation graph. The goal is to correct the mesh on each

robot in response to changes in the keyframe poses (due to PGO). Towards this goal,

we need to adjust the poses (and the mesh vertex positions) to “anchor” the keyframe

137

poses to the latest estimates from distributed PGO as shown in Fig. 6-5. Denoting the

optimized poses from distributed PGO as �̄�𝑖, and calling 𝑛 the number of keyframes

in the trajectory and 𝑚 the total number of mesh vertices in the deformation graph.

Following [192], we compute updated poses 𝑋𝑖, 𝑀𝑘 of the vertices in the deformation

graph by solving the following local optimization problem at each robot,

argmin
𝑋1,...,𝑋𝑛∈SE(3)
𝑀1,...,𝑀𝑚∈SE(3)

𝑛∑︁
𝑖=0

||𝑋𝑖 ⊟ �̄�𝑖||2Σ𝑥
+

𝑚∑︁
𝑘=0

∑︁
𝑙∈𝒩𝑀 (𝑘)

||𝑅𝑀
𝑘 (𝑔𝑙 − 𝑔𝑘) + 𝑡𝑀𝑘 − 𝑡𝑀𝑙 ||2Σ+

𝑛∑︁
𝑖=0

∑︁
𝑙∈𝒩𝑀 (𝑖)

||𝑅𝑥
𝑖 ̃︀𝑔𝑖𝑙 + 𝑡𝑥𝑖 − 𝑡𝑀𝑙 ||2Σ (6.11)

where 𝑔𝑘 denotes the non-deformed position of vertex 𝑘 in the deformation graph, ̃︀𝑔𝑖𝑙

denotes the non-deformed position of vertex 𝑙 in the coordinate frame of keyframe 𝑖,

𝒩𝑀(𝑘) denotes all the mesh vertices in the deformation graph connected to vertex

𝑘, and ⊟ denotes a tangent-space representation of the relative pose between 𝑋𝑖 and

�̄�𝑖 [, 7.1]. Intuitively, the first term in the minimization (6.11) enforces (“anchors”) the

poses of each keyframe 𝑋𝑖 to match the optimized poses �̄�𝑖 from distributed PGO.

The second term enforces local rigidity of the mesh by minimizing the mismatch

with respect to the non-deformed configuration 𝑔𝑘. The third term enforces local

rigidity of the relative positions between keyframes and mesh vertices by minimizing

the mismatch with respect to the non-deformed configuration in the local frame of

pose 𝑋𝑖. We optimize (6.11) using a Levenberg-Marquardt method in GTSAM [6].

Since the deformation graph contains a subsampled version of the original mesh,

after the optimization, we retrieve the location of the remaining vertices as in [192].

In particular, the positions of the vertices of the complete mesh are obtained as affine

transformations of nodes in the deformation graph:

̃︀𝑣𝑖 =
𝑚∑︁
𝑗=1

𝑠𝑗(𝑣𝑖)[𝑅
𝑀
𝑗 (𝑣𝑖 − 𝑔𝑗) + 𝑡𝑀𝑗] (6.12)

138

where 𝑣𝑖 indicates the original vertex positions and ̃︀𝑣𝑖 are the new deformed positions.

The weights 𝑠𝑗 are defined as

𝑠𝑗(𝑣𝑖) = (1− ||𝑣𝑖 − 𝑔𝑗||/𝑑max)
2 (6.13)

and then normalized to sum to one. Here 𝑑max is the distance to the 𝑘 + 1 nearest

node as described in [192] (we set 𝑘 = 4).

Note that the Kimera-Semantics mesh also includes semantic labels as an attribute

for each node in the mesh, which remain untouched in the mesh deformation.

6.6 Offline Experiments

In this section, we perform offline evaluations of Kimera-Multi using photo-realistic

simulations and real-world datasets. Our results show that Kimera-Multi provides

robust and accurate estimation of trajectories and metric-semantic meshes, is efficient

in terms of communication usage, and is flexible thanks to its modularity. The rest

of this section is organized as follows. In Section 6.6.1, we analyze the robustness of

Kimera-Multi in numerical experiments. In Section 6.6.2, we evaluate the quality of

trajectory estimates and metric-semantic reconstruction in photo-realistic simulations

and benchmarking datasets. Lastly, in Section 6.6.3, we demonstrate Kimera-Multi on

two challenging real-world datasets collected by ground robots.

6.6.1 PGO Robustness Analysis

In this section, we evaluate different robust trajectory estimation techniques on syn-

thetic datasets with varying ratios of outlier loop closures. Our results demonstrate

the importance of robust initialization for multi-robot PGO. Furthermore, we show

that alternative technique based on PCM [81] has low recall (i.e., missing correct

loop closures). Overall, we show that the proposed D-GNC method achieves the best

performance, and is not sensitive to parameter tuning.

139

1 20 40 60 80 99 100

Probability threshold (%)

10
-3

10
-2

10
-1

10
0

10
1

A
T

E
 (

m
)

L2 PCM GNC PCM + GNC

(a) Outlier ratio: 10%

1 20 40 60 80 99 100

Probability threshold (%)

10
-3

10
-2

10
-1

10
0

10
1

A
T

E
 (

m
)

L2 PCM GNC PCM + GNC

(b) Outlier ratio: 70%

Figure 6-6: Single-robot tests. Comparisons between solvers on single-robot synthetic
PGO problems across 10 Monte Carlo runs.

Single-robot experiments. To offer additional insights and contrast with the

multi-robot analysis later, we first perform ablation studies on single-robot synthetic

datasets. We simulate 2D PGO problems contaminated by outliers using the IN-

TEL dataset [193]. To generate outlier loop closures, we randomly select pairs of

non-adjacent poses in the original pose graph, and add relative measurements with

uniformly random rotations and translations. For translations, we sample each coor-

dinate uniformly at random within the domain [−10, 10] m.

The following trajectory estimation techniques are compared: (1) L2: standard

least squares optimization using Levenberg-Marquardt (LM), (2) PCM: outlier rejec-

tion with pairwise consistency maximization [81] using the approximate maximum

clique solver [188] followed by LM, (3) GNC: graduated non-convexity [28], (4) PCM

+ GNC: PCM outlier rejection followed by GNC. Both LM and GNC are imple-

mented in GTSAM [6]. All methods start from the odometry initial guess. Note that

both PCM and GNC require the user to specify a confidence level (in the form of a

probability threshold) that determines the maximum residual of inliers. We vary this

probability threshold and compare different techniques across the entire spectrum.

Figure 6-6 shows the absolute trajectory errors (ATE) with respect to the max-

imum likelihood estimate, computed using the outlier-free pose graph. Results are

collected over 10 Monte Carlo runs. Standard LM optimization is not robust even

140

under 10% outlier loop closures (Figure 6-6a). In many cases, PCM tends to be overly

conservative and reject inliers (due to approximate maximum clique search), which

leads to an increase in the trajectory error. The same issue also negatively impacts

the performance of PCM + GNC (blue), since rejected inliers cannot be recovered.

On the other hand, GNC (green) achieves smaller error across the entire spectrum.

Under 70% outliers (Figure 6-6b), PCM has larger errors especially at higher proba-

bility thresholds (e.g., 99%), indicating that the method is unable to reject all outliers.

In this case, applying subsequent GNC helps to improve the performance of PCM.

However, also in this case, applying GNC alone consistently achieves the best perfor-

mance over the entire range of probability thresholds. This result suggests that GNC

should be the method of choice in single-robot PGO independent from the parameter

tuning.

Multi-robot experiments. In multi-robot PGO, there is no longer an outlier-

free initial guess (i.e., odometry), which is crucial for the strong performance of GNC

observed in the single-robot case. We investigate this issue in the next experiment,

and demonstrate the robust initialization scheme proposed in Section 6.4.2 as an

effective solution. Similar to the previous experiment, we use the INTEL dataset with

the same outlier model described previously. The pose graph is divided into three

segments with approximately equal lengths to simulate a three-robot collaborative

SLAM scenario.

We compare two variants of GNC using different initial guesses. The first variant

uses the proposed robust initialization scheme, and is labeled as “GNC” in Figure 6-7

(green). The second variant uses a naïve initialization formed using the local odom-

etry of each robot and randomly sampled inter-robot loop closures between pairs of

robots; see (6.4). This variant is labeled as “GNC (naïve init)” in Figure 6-7 (ma-

genta). When PCM is used, we sample inter-robot loop closures from the inlier set

returned by PCM. All problems are solved using a centralized implementation based

on GTSAM [6]. Distributed experiments will be presented in the next section.

Figure 6-7 reports ATE results across 10 Monte Carlo runs. With 10% outlier

loop closures (Figure 6-7a), it is less likely that the naïve initialization is affected by

141

1 20 40 60 80 99 100

Probability threshold (%)

10
-3

10
-2

10
-1

10
0

10
1

A
T

E
 (

m
)

(a) Outlier ratio: 10%

1 20 40 60 80 99 100

Probability threshold (%)

10
-3

10
-2

10
-1

10
0

10
1

A
T

E
 (

m
)

(b) Outlier ratio: 70%

Figure 6-7: Multi-robot tests. Comparisons between solvers on three-robot synthetic
PGO problems across 10 Monte Carlo runs.

outliers. Consequently, the two variants of GNC have similar performance in most

cases, but naïve initialization still causes occasional failures (magenta outliers). The

failure cases correspond to instances when the initial guess was accidentally built

using an outlier loop closure. The problem caused by incorrect initialization becomes

more evident under 70% outlier loop closures (Figure 6-7b), where naïve initialization

fails in the majority of instances. This is because under 70% outliers, the naïve initial

guess is almost always contaminated by wrong loop closures, which severely affects the

performance of GNC. In comparison, using PCM helps to avoid catastrophic failures,

but PCM still exhibits low recall as in the single-robot case. Finally, the proposed

robust initialization effectively corrects the wrong initial guess, and applying GNC

from the robust initialization (green) consistently outperforms other techniques.

To provide additional insights over the performance of different techniques, Fig-

ure 6-8 shows qualitative comparisons of final trajectory estimates on a random prob-

lem instance with 70% outliers. All techniques use the same probability threshold of

99%. Under this setting, PCM (Figure 6-8a) fails to reject all outlier loop closures. As

a result, its solution is distorted when compared to the maximum likelihood estimate.

When applying GNC from naïve initialization (Figure 6-8b), the method fails to re-

cover any inlier loop closures due to incorrect initialization that causes the variable

update to converge to wrong estimates. Figure 6-8c-6-8d show that applying either

142

-10 -5 0 5 10 15

-20

-15

-10

-5

0

Robot 1 Robot 2 Robot 3 MLE

(a) PCM (ATE = 2.24m)

-10 0 10 20

-30

-25

-20

-15

-10

-5

0

5

Robot 1 Robot 2 Robot 3 MLE

(b) GNC (naïve init) (ATE =
11.59m)

-10 -5 0 5 10 15

-20

-15

-10

-5

0

Robot 1 Robot 2 Robot 3 MLE

(c) PCM + GNC (ATE = 0.09m)

-10 -5 0 5 10 15

-20

-15

-10

-5

0

Robot 1 Robot 2 Robot 3 MLE

(d) GNC (ATE = 0.003m)

Figure 6-8: Comparing final trajectory estimates of different techniques under 70% outlier
loop closures. All methods use the same probability threshold of 99%.

PCM or robust initialization to correct the initial guess before applying GNC can

effectively resolve the problem. Between this two approaches, however, our proposed

robust initialization produces lower trajectory error, which can also be seen by com-

paring the trajectory estimates within the red box. This is because PCM incorrectly

removes inlier loop closures during outlier rejection, which causes a loss of accuracy

that cannot be recovered by GNC.

6.6.2 Evaluation in Simulation and Benchmarking Datasets

We evaluate Kimera-Multi in three photo-realistic simulation environments (Medfield,

City, Camp), developed by the Army Research Laboratory Distributed and Collabo-

rative Intelligent Systems and Technology (DCIST) Collaborative Research Alliance

[194]. Figures 6-9 to 6-11 show the dense 3D mesh models built by Kimera-Multi in

143

Table 6.1: Absolute trajectory errors (ATE) in meters with respect to ground truth trajec-
tories. For each dataset, we also report the total trajectory length (including all robots). L2:
standard least squares optimization using LM; PCM: pairwise consistency maximization [81];
D-GNC: proposed distributed trajectory estimation method (using robust initialization); NI:
naïve initialization; ES: early stopping. For reference, we also report the ATE of centralized
GNC (colored in gray).

Length [m] L2 PCM D-GNC (NI) PCM + D-GNC D-GNC D-GNC (ES) Centralized GNC

Medfield 2396 64.2 12.5 57.4 4.64 3.92 4.32 3.88

City 1213 3.58 1.57 0.91 1.08 0.85 0.76 1.00

Camp 1037 11.9 1.37 0.97 1.09 0.96 0.75 1.33

Vicon Room 1 211 1.17 1.00 0.34 0.45 0.35 0.21 0.36

Vicon Room 2 206 1.87 1.56 0.46 0.62 0.47 0.48 0.43

Machine Hall 466 1.92 1.76 0.48 0.70 0.41 0.49 0.52

these simulated environments. In addition, we also evaluate on three real-world en-

vironments (Vicon Room 1, Vicon Room 2, Machine Hall) from the EuRoc dataset [195].

Among all datasets, Machine Hall contains five sequences which are used to simulate

collaborative SLAM with five robots. The simulation and Vicon Room datasets contain

three sequences that are used to simulate a three-robot scenario. In our experiments

in this section and Section 6.6.3, we run Kimera-Multi in a setting where robots are

constantly in communication range, which means that inter-robot loop closures are

established at the earliest possible time.

Trajectory estimation results. We first evaluate the accuracy of different

distributed trajectory estimation techniques. In this experiment, we use Kimera-VIO to

process raw sensor data, and it is thus hard to obtain accurate covariance information

for all measurements. In our implementation, we use a fixed isotropic covariance

for each residual in PGO, with a standard deviation of 0.01 rad for rotation and

0.1 m for translation. Moreover, we use a relatively conservative probability threshold

of 50% for all robust estimation techniques. We compare the following distributed

solvers: (1) L2: standard PGO (least squares optimization) using RBCD (Chapter 4),

(2) PCM: outlier rejection with PCM [81], followed by RBCD, (3) D-GNC (NI):

proposed D-GNC method starting from a naïve initial guess that combines local

odometry of each robot with randomly sampled inter-robot loop closures between

pairs of robots, (4) PCM + D-GNC: outlier rejection with PCM, followed by D-GNC,

144

Figure 6-9: Dense metric-semantic 3D mesh model generated by Kimera-Multi with three
robots in the simulated Camp scene.

(5) D-GNC: the proposed D-GNC method with robust initialization, (6) D-GNC (ES):

an “early stopped” version of D-GNC that terminates after 50 total RBCD updates,

(7) centralized GNC from GTSAM [6].

Table 6.1 reports the final ATE of each method when evaluated against the ground

truth. Note that the total trajectory length varies significantly across datasets, which

also causes ATE to vary. Due to the existence of outlier loop closures, standard

least squares optimization (L2) gives large errors. PCM improves over the L2 results,

but still yields large errors on a subset of datasets. The proposed D-GNC method

achieves significantly lower trajectory errors on all datasets. Similar to the synthetic

experiments (Section 6.6.1), we observe that applying GNC after PCM (“PCM + D-

GNC” in the table) always leads to suboptimal performance compared to the proposed

approach, due to the low recall of PCM. On the Medfield simulation, applying D-GNC

from naïve initialization fails. In this case, the naïve initialization is wrong due to the

selection of an outlier loop closure. This creates an error in the initial alignment of

145

Figure 6-10: Dense metric-semantic 3D mesh model generated by Kimera-Multi with three
robots in the simulated City scene.

robots’ reference frames which D-GNC is unable to correct. Finally, we observe that

on three of the datasets, applying early stopping (ES) leads to lower error compared

to full optimization (distributed or centralized). In this experiment, estimation errors

are computed with respect to the ground truth trajectories, which are in general

different from the true (unknown) maximum likelihood estimate. In summary, the

proposed D-GNC method achieves the best performance, and applying early stopping

(ES) does not significantly affect the accuracy of trajectory estimation, which remains

comparable to the centralized GNC.

Communication usage and solution runtime. In Table 6.2, we compare the

communication usage of Kimera-Multi with two baseline centralized architectures that

either transmit all images or keypoints. Data payloads used by Kimera-Multi are di-

146

Figure 6-11: Dense metric 3D mesh model generated by Kimera-Multi with three robots in
the simulated Medfield scene.

vided into three parts: place recognition (exchanging bag-of-word vectors), geometric

verification (exchanging keypoints and descriptors), and distributed PGO. The front-

end (first two modules) consumes more communication than the back-end (distributed

PGO). Overall, our results demonstrate that Kimera-Multi is communication-efficient.

For instance, on the Vicon Room 2 dataset, our system achieves a communication reduc-

tion of 70% compared to the baseline centralized system that transmits all keypoints

and descriptors. On the other hand, the system does not achieve equally significant

communication reduction on the Machine Hall dataset. Compared to other datasets,

the increased number of robots in Machine Hall results in more data transmission.

In particular, the loose thresholds for loop closure detection lead to increased data

transmission during the geometric verification (GV) stage.

In addition, Table 6.2 reports the runtime of D-GNC and also compares with the

centralized solver (implemented in GTSAM [6]). Our method has reasonable run-

time (approximately 10 seconds) for the smaller Vicon Room datasets. For the larger

datasets, D-GNC requires more time for full convergence. Nevertheless, applying

early stopping (ES) effectively keeps the runtime close to its centralized counterpart,

147

Table 6.2: Communication usage and solution runtime. The data payloads induced by
Kimera-Multi are further divided into three modules: place recognition (PR) that exchanges
bag-of-word vectors, geometric verification (GV) that transmits keypoints and feature de-
scriptors, and distributed pose graph optimization (DPGO). Centralized communication and
runtime are colored in gray.

Dataset # Poses # Edges
Communication [MB] Runtime [sec]

PR GV DPGO Total
Centralized

(Images)

Centralized

(Keypoints)
Distributed Distributed (ES) Centralized

Medfield 2918 3104 22.6 41.5 1.8 65.9 2113 141 29.2 5.9 4.4

City 3212 4173 16.2 44.5 8.8 69.5 2326 155 22.1 4.5 3.2

Camp 5088 5200 39.2 19.7 0.5 59.4 3685 246 43.2 9.1 4.4

Vicon Room 1 1693 2788 9.5 14.7 3.6 27.8 1226 81.7 8.9 2.2 3.1

Vicon Room 2 1738 2335 11.5 10.2 2.7 24.4 1259 83.9 11.7 3.2 1.7

Machine Hall 3261 5196 46.0 76.8 22.9 145.7 2362 157 20.5 2.5 6.3

without heavily compromising estimation accuracy.

Metric-Semantic Mesh Quality. We use the ground-truth point clouds avail-

able in the EuRoc Vicon Room 1 and 2 datasets, and the ground-truth mesh (and its

semantic labels) available in the DCIST simulator to evaluate the accuracy of the 3D

metric-semantic mesh built by Kimera-Semantics and the impact of the local mesh opti-

mization (LMO). For evaluation, the estimated and ground-truth meshes are sampled

with a uniform density of 103 points/m2 as in [186]. The resulting semantically-labeled

point clouds are then registered using the ICP [196] implementation in Open3D [197].

Then, we calculate the mean distance between each point in the ground-truth point

cloud to its nearest neighbor in the estimated point cloud to obtain the metric accu-

racy of the 3D mesh. In addition, we evaluate the semantic reconstruction accuracy

by calculating the percentage of correctly labeled points [186] relative to the ground

truth using the correspondences given by ICP. Figure 6-12 and Figure 6-13 report

the metric accuracy of the individual meshes constructed by each robot as well as the

merged global mesh, and Table 6.3 shows the semantic reconstruction accuracy in the

simulator (EuRoc does not provide ground-truth semantics). In general, the metric-

semantic mesh accuracy improves after LMO for both individual and merged 3D

meshes, demonstrating the effectiveness of LMO in conjunction with our distributed

trajectory optimization. The dense metric-semantic meshes are shown in Figure 6-9

and Figure 6-10. In the case when semantic labels are unavailable, we are still able

148

Figure 6-12: Metric reconstruction evaluation on the Euroc sequences. Mesh error (in
meters) for the 3D meshes by Kimera-Semantics and Kimera-Multi’s LMO.

Figure 6-13: Metric reconstruction evaluation on the Camp, City, and Medfield simulator
datasets. Mesh error (in meters) for the 3D meshes by Kimera-Semantics and Kimera-Multi’s
LMO.

to generate the mesh, colored by the RGB image colors, as shown in Figure 6-11 for

the experiment in the simulator portraying the Medfield scene.

6.6.3 Evaluation in Outdoor Datasets

Experimental Setup. We demonstrate Kimera-Multi on two challenging outdoor

datasets, collected using a Clearpath Jackal UGV equipped with a forward-facing

RealSense D435i RGBD Camera and IMU. The first dataset was collected at the

Medfield State Hospital, Massachusetts, USA (Figure 6-1). Three sets of trajectories

were recorded, with the longest trajectory being 860 meters in length. The second

dataset was collected around the Ray and Maria Stata Center at MIT (Figure 6-

14), and also includes three different trajectories with each trajectory being over

500 meters in length. In both Figure 6-1 and Figure 6-14, the red, orange, and

149

Table 6.3: Semantic reconstruction evaluation. Semantic labels accuracy before and after
correction by LMO in the DCIST simulator.

Dataset Robot ID Kimera-Semantics (%) LMO (%)
0 81.6 96.2

Camp 1 92.8 98.1
2 82.8 96.1

Merged 79.4 95.2
0 77.1 77.7

City 1 80.7 83.1
2 71.4 70.6

Merged 76.1 78.8

blue trajectories correspond to robots with ID 0, 1, and 2, respectively. Both sets

of experiments are challenging and include many similar-looking scenes that induce

spurious loop closures. The results presented below are obtained by replaying the

data sequences at reduced speed on a single desktop computer.

Results and Discussions. Table 6.4 reports statistics about loop closures on

the outdoor datasets. Specifically, for each pair of robots, we report the number of

loop closures accepted by D-GNC over the total number of detected loop closures

(including outliers). Diagonal entries in the table correspond to intra-robot loop

closures. Both datasets contain many outlier loop closures, which are successfully

rejected by D-GNC. Compared to Medfield, the Stata dataset contains significantly

less inter-robot loop closures, which makes distributed PGO particularly challenging.

In order to evaluate estimation accuracy in the absence of ground truth trajecto-

ries, we measure end-to-end errors as in [198]. In particular, we design each individual

robot trajectory to start and finish at the same place, and then compute the final

end-to-end position errors. The end-to-end error is not equivalent to the ATE, but

still provides useful information about the final estimation drift on each trajectory.

Table 6.5 compares the end-to-end errors of Kimera-VIO, Kimera-Multi (using D-GNC

to estimate trajectories), and centralized result (solved using GNC in GTSAM [6]).

To complement the quantitative result, we also provide qualitative visualizations of

the optimized trajectories and meshes in Figure 6-1 and Figure 6-14.

On the Medfield dataset (Figure 6-1), Kimera-VIO accumulates a drift of approxi-

mately 15-25 m on each trajectory sequence. We note that the drift is mostly in the

150

(a) Kimera-VIO (b) Kimera-Multi (D-GNC with approxi-
mate variable updates)

(c) Kimera-Multi (D-GNC with full variable
updates)

(d) Centralized GNC

Figure 6-14: Stata experiment. (a) Trajectory estimate from Kimera-VIO. (b) Trajectory
estimate produced by Kimera-Multi, using D-GNC with the default approximate variable
updates. (c) Trajectory estimate produced by Kimera-Multi, using D-GNC with full variable
updates. (d) Trajectory estimate produced by centralized GNC.

vertical direction, hence only partially visible in Figure 6-1a. Through loop closures

and robust distributed PGO, Kimera-Multi significantly reduces the error and further-

more achieves the same performance as the centralized solver as shown in Table 6.5.

In this case, the global pose graph has 15650 poses in total (including all robots).

D-GNC uses a total of 100 RBCD iterations which takes 53 seconds. Further runtime

reduction may be achieved by decreasing the rate at which keyframes are created. In

summary, our trajectory estimation results together with the final optimized mesh

shown in Figure 6-1c demonstrate the effectiveness of the proposed system.

In comparison, the Stata dataset (Figure 6-14) is more challenging, partially due

to the lack of enough inter-robot loop closures (Table 6.4b). Kimera-VIO accumu-

151

Figure 6-15: Stata experiment. Optimized mesh produced by Kimera-Multi corresponding
to trajectory estimate shown in Figure 6-14c.

Table 6.4: Loop closure statistics on outdoor datasets. For each pair of robots, we show the
number of loop closures accepted by D-GNC over the total number of putative loop closures
(including outliers). Diagonal entries correspond to intra-robot loop closures.

(a) Medfield experiment

Robot 0 Robot 1 Robot 2

Robot 0 1/1 11/41 27/53

Robot 1 79/114 340/707

Robot 2 172/182

(b) Stata experiment

Robot 0 Robot 1 Robot 2

Robot 0 391/416 1/2 1/1

Robot 1 217/271 0/0

Robot 2 57/76

lates higher drifts as shown in Figure 6-14a and Table 6.5. Figure 6-14b shows the

Kimera-Multi trajectory estimates produced using the default settings of D-GNC (see

Algorithm 6.1). In this case, the global pose graph has 11184 poses in total. D-

GNC uses 120 RBCD iterations which takes 50 seconds. We observe that while the

orange and red trajectory estimates are qualitatively correct, the blue trajectory is

not correctly aligned in the global frame. This is because with the approximate vari-

able updates of D-GNC (presented in Section 6.4.3), the only inter-robot loop closure

with the blue trajectory is rejected. Additionally, with fewer inter-robot loop clo-

sures, RBCD generally converges at a slower rate. To resolve this issue, we increase

the number of RBCD iterations within each variable update, hence making D-GNC

more similar to the centralized GNC algorithm. With this change, D-GNC uses a

152

Table 6.5: Trajectory lengths and end-to-end errors in meters on outdoor datasets.

Dataset Robot ID Length [m] Kimera-VIO Kimera-Multi Centralized
0 600 18.74 0.01 0.01

Medfield 1 860 14.84 0.13 0.13
2 728 24.55 0.09 0.09
0 515 49.02 0.03 0.01

Stata 1 570 24.19 33.13 21.56
2 610 29.35 1.26 1.17

total of 2000 RBCD iterations which takes 14 minutes. However, the final trajec-

tory estimates (Figure 6-14c) are significantly improved and are close to centralized

GNC (Figure 6-14d). The corresponding end-to-end errors are also close to central-

ized GNC as shown in Table 6.5. Figure 6-15 shows the optimized mesh produced

by Kimera-Multi corresponding to the trajectory estimates shown in Figure 6-14c. In

this experiment, the difficulty faced by Kimera-Multi is primarily due to the lack of

inter-robot loop closures (Table 6.4b).

6.7 Large-Scale Field Experiments

Realsense

D455

Velodyne

Intel NUC

Clearpath

Jackal

Figure 6-16: The Jackal robots used for the experiments.

In this section, we present results from large-scale field experiments of Kimera-Multi

on the MIT campus with a fleet of Clearpath Jackal rovers equipped with a Realsense

153

Figure 6-17: Snapshots from the Campus-Hybrid dataset.

D455 RGB-D Camera and an Ouster or Velodyne 3D lidar (Figure 6-16). Each robot

has an Intel NUC computer with an Intel i7 4.70 GHz processor, and communicates

with the other robots via a 2.4 GHz wireless network. Each robot was tele-operated

by a human operator. During the experiment, there were often humans and vehicles

moving around the robots, and the robots traverse through a variety of both indoor

and outdoor environments (Figure 6-17).

6.7.1 Datasets

We compiled three real-world datasets based on the data recorded. The first dataset is

the Campus-Outdoor dataset (Figure 6-19a), which consists of six Jackal rovers travers-

ing a total of 6044 meters over a duration of around 20 minutes on the MIT campus.

Except for one of the robots traversing a crowded building, most of the dataset con-

sists of outdoor campus and urban scenes. The second dataset is the Campus-Tunnels

dataset (Figure 6-19b), which consists of eight Jackal rovers traversing a total of 6753

meters over a duration of almost 30 minutes in the tunnels underneath the university

campus. The trajectories are entirely indoors and consist mostly of long homogeneous

tunnels and corridors. The last dataset is the Campus-Hybrid dataset (Figure 6-18),

154

which consists of eight Jackal rovers traversing a total of 7785 meters over a duration

of almost 30 minutes both on and below the university campus. This dataset is also

multi-level, with some trajectories crossing each other on different levels.

The reference trajectory we use for evaluation is generated by first building a

reference point cloud map as shown in the background of Figure 6-18 using lidar-based

SLAM [3, 199], with additional total station measurements for the indoor portions

of the datasets and differential GPS measurements throughout the outdoor areas in

and around the university campus. Once we have the reference point cloud map, we

obtain the reference trajectories using LOCUS 2.0 [199] by matching the lidar point

cloud for each robot at each time-step against the reference point cloud map. All

datasets and reference trajectories are publicly available.8

6.7.2 Experimental Setup

The experiments in this section are obtained by playing back the datasets on robots

in real-time. All agents communicate with each other via a 2.4 GHz wireless network.

On top of the real communication, we simulate different types of disconnections (dis-

cussed in the next paragraph) by controlling connectivity in the remote topic manager

module (Section 6.2). Apart from the simulated communication disruptions, other

aspects of the experiments such as available onboard compute and the rate at which

the input is received by Kimera-Multi are equivalent to the live experiments.

Communication Scenarios. We evaluate our system under four simulated com-

munication scenarios (implemented in the remote topic manager):9 (i) Full: all nodes

are connected at all times; (ii) Random: each node is disconnected randomly three

times during the mission, and each disconnection lasts 90 seconds. This scenario

tests the resilience of our system to situations in which some robots experience tem-

porary failures and go offline for some time; (iii) Distance: connection is established

between nodes within a distance threshold. Note that under this setup, there can be

8https://github.com/MIT-SPARK/Kimera-Multi-Data
9The simulation applies to all robots, and optionally to the base station (placed at the origin)

when running the centralized baseline. For the purpose of computing the trajectory error, for each
dataset we start the simulation after at least two robots are initialized in the global frame.

155

https://github.com/MIT-SPARK/Kimera-Multi-Data

Top View 3D View

100 m

Figure 6-18: Kimera-Multi trajectories and meshes overlaid on top of the reference point
cloud map from the Campus-Hybrid experiment where 8 robots traverse indoor-outdoor scenes
covering a total of 7785m.

multiple clusters of connected nodes at any given time. In our experiments, we set

the distance threshold to 75m, which we observe to create interesting and challenging

network topologies on all datasets. We assume robots in each connected component

can help route information to others, so that all robots in the same cluster can com-

municate with each other; (iv) Base: nodes can communicate only within a certain

radius of the base station (75m and same as Distance). This setting is the closest to

the communication setup observed in our live experiments.

Centralized Baseline. We implement a centralized baseline system that detects

all inter-robot loop closures at a base station. The back-end subscribes to the pose

graphs and the loop closures from the robots, and optimizes the full problem using

GNC with Levenberg-Marquardt as implemented with GTSAM [6]. The loop closure

156

(a) Campus-Outdoor (b) Campus-Tunnels

Figure 6-19: Estimated trajectories, estimated meshes, and reference point cloud for the
Campus-Outdoor (6 robots, 6044m) and Campus-Tunnels (8 robots, 6753m) datasets.

Table 6.6: Summary of front-end and cack-end statistics for Kimera-Multi (Dist) and cen-
tralized baseline (Cent).

Front-end Back-end

Loop Closures Size Iterations Optimization Time Metric Error

Matches # Loops % Inliers # Poses # Max # Median Max(s) Avg(s) ATE(m) AME(m)

Dist
Tunnels 12397 ± 74 10620 ± 70 20.8 ± 0.3 2832 ± 6 1083 ± 23 571 ± 68 285.55 ± 31.74 139.52 ± 15.52 4.48 ± 0.29 2.62 ± 0.07
Hybrid 2999 ± 136 1252 ± 30 26.9 ± 0.2 3201 ± 6 1190 ± 62 698 ± 133 336.98 ± 26.25 174.05 ± 14.97 7.71 ± 0.78 1.9 ± 0.26
Outdoor 714 ± 19 172 ± 10 36.5 ± 2.3 2383 ± 1 735 ± 327 344 ± 31 196.9 ± 43.11 100.92 ± 11.46 12.4 ± 1.92 4.83 ± 1.35

Cent
Tunnels 12432 ± 70 8247 ± 188 19.8 ± 0.4 3053 ± 4 - - 11.51 ± 1.05 3.24 ± 0.28 4.38 ± 0.21 2.58 ± 0.12
Hybrid 3052 ± 45 1302 ± 18 24.7 ± 0.5 3508 ± 1 - - 11.44 ± 0.21 1.65 ± 0.16 5.83 ± 0.16 1.58 ± 0.05
Outdoor 732 ± 6 182 ± 5 37.4 ± 1.0 2647 ± 0 - - 11.49 ± 2.94 0.55 ± 0.12 9.38 ± 0.31 4.99 ± 0.48

parameters, GNC parameters, along with other related parameters like BoW vector

downsampling and pose graph coarsening are consistent with the distributed setup.

Additionally, details such as the initial reference frame alignment were implemented

to be congruent to its distributed counterpart. For our experiments, the base station

is ran on a laptop with an Intel i9 2.40 GHz processor.

6.7.3 Real-time Evaluation Under Unreliable Communication

In the following, we first discuss the key statistics from the front-end, the back-end,

and the communication system. Then, we discuss in depth the performance for each

of the data sequences under each communication scenario.

157

Figure 6-20: Number of detected loop closures on the Campus-Tunnels dataset under the
Full communication scenario. Vertical dashed line denotes the time when all robots finish
exploration.

Front-end Statistics. We present a summary of front-end statistics in Table 6.6.

The number of BoW matches, detected loop closures, and the percentage of inlier loop

closures are summarized over 3 trials under the Full communication scenario. A loop

closure is classified as an inlier if the corresponding relative transformation is within

10 cm in translation and 10 degrees in rotation compared to the ground truth. We

only present the summary from the Full communication scenario. Results under other

scenarios are quantitatively similar.

Significantly more loop closures are detected on the indoor Campus-Tunnels dataset

as there are smaller viewpoint variations in narrow corridors compared to outdoor

areas that are generally more spacious. In general, the distributed system and the

centralized baseline detect similar number of loop closures with similar inlier per-

centage. On the Campus-Tunnels dataset, however, the distributed front-end detects

significantly more loop closures than the centralized baseline. This is because we

terminate the experiment at 3500 seconds (more than twice the duration of the ac-

tual dataset), and the centralized system has not yet finished processing all the loop

closures; see Figure 6-20. Lastly, we note that there is a significant number of out-

lier loop closures detected across all datasets, which highlights the importance of

implementing an outlier-robust back-end.

Back-end Statistics. Table 6.6 also presents the statistics from the distributed

and centralized back-end. In particular, the following metrics are reported: (1) the

number of poses in the PGO problem, (2) the maximum and median number of iter-

158

Table 6.7: Summary of communication statistics.

Delay Bandwidth Packet Drop

Max(s) Avg(s) Max(MB/s) Avg(MB/s) % Drop

Tunnels 7.71 ± 1.65 0.10 ± 9e-3 2.10 ± 0.02 0.55 ± 0.04 45.55 ± 7.89
Hybrid 4.17 ± 0.98 0.05 ± 3e-3 0.41 ± 0.02 0.12 ± 4e-3 21.50 ± 5.41
Outdoor 1.53 ± 0.36 0.05 ± 3e-3 0.10 ± 0.01 0.01 ± 2e-3 20.28 ± 5.72

ations taken by the distributed back-end, (3) the maximum and average optimization

time, (4) the final absolute trajectory error (ATE), and (5) the final average map

error (AME). Among these metrics, the ATE is defined as the root-mean-square er-

ror between the estimated and reference trajectories, and the AME is defined as the

average mesh-vertex-to-point distance between the estimated mesh and the reference

point cloud map. All metrics are computed by summarizing the results over 3 trials

taken from the Full communication scenario.

For all three datasets, the distributed back-end achieves comparable but less accu-

rate results compared to the centralized back-end, due to the fact that the distributed

solver only solves GNC approximately. The distributed back-end also has a much

higher optimization time, mainly because of the large number of iterations required

by distributed PGO and the communication overhead accumulated across iterations.

We remark that Table 6.6 compares the centralized and distributed system under Full

communication; later in this section we discuss how different communication scenarios

create a more interesting trade-off between centralized and distributed architectures.

Communication Statistics. Table 6.7 presents the communication profile of

Kimera-Multi. The results are averaged over all pairs of robots from 3 trials under the

Full communication scenario. During the experiments, there are sometimes delays of

up to 7 seconds and a substantial amount of dropped packets (up to 45%), which

demonstrates the challenges of using real-world wireless communication. The other

three communication scenarios introduce even more challenges in the form of long pe-

riods of disconnections. Overall, our results demonstrate that Kimera-Multi is resilient

to imperfect communication with large delays and unreliable packet delivery.

159

(a) Campus-Tunnels (Full) (b) Campus-Tunnels (Random)

(c) Campus-Tunnels (Distance) (d) Campus-Tunnels (Base)

(e) Campus-Hybrid (Full) (f) Campus-Hybrid (Random)

(g) Campus-Hybrid (Distance) (h) Campus-Hybrid (Base)

(i) Campus-Outdoor (Full) (j) Campus-Outdoor (Random)

(k) Campus-Outdoor (Dis-
tance)

(l) Campus-Outdoor (Base)

Figure 6-21: ATE evaluation under different communication scenarios. Each row shows
results on a single dataset, and each column corresponds to a communication scenario.
Dashed line indicates that only a subset of robots is estimated, whereas solid line indicates
that all robots are estimated.

Evolution of ATE. In Figure 6-21, we visualize the evolution of the ATE on

the Campus-Tunnels, Campus-Hybrid, and Campus-Outdoor datasets under all four com-

160

munication scenarios. Each plot includes the ATE of both the distributed system

and the centralized baseline, where the line represents the average ATE over 3 trials

and the shaded area shows one standard deviation. The dashed portion of each line

indicates that only a subset of robots is initialized in the global frame at that time,

and consequently the ATE is only computed over that subset of robots. The line

turns solid as soon as all robots are initialized in the global frame, at which point

the ATE is computed over all robots. Finally, the vertical dashed line in each plot

denotes the end of the mission (i.e. all robots finish mapping.)

The Campus-Tunnels dataset represents a scenario with many loop closures (see

Table 6.6). For the Full communication scenario (Figure 6-21a), the distributed system

is able to detect enough loop closures to initialize all robots in the global frame sooner

and also achieves a lower ATE in the earlier portions of the data sequence. This is

mostly due to the faster processing of the distributed front-end, which parallelizes

loop closure detection across robots. However, the distributed back-end is slower than

the centralized back-end, and the centralized system converges quickly after most of

the loop closures are detected. At steady state, the performance of the centralized

and distributed systems are similar. For the Random scenario (Figure 6-21b), we

observe that random disconnects in the communication leads to a delayed decrease

in ATE for both the distributed and centralized systems. However, the effect is more

significant for the distributed system as the distributed back-end is interrupted by

disconnections. The centralized system behaves similarly for the Distance and Base

scenarios, but the distributed system performs better under the Distance scenario

(Figure 6-21c) compared to the Base scenario (Figure 6-21d). This is because the

distributed system is able to both detect loop closures and perform distributed PGO

while being disconnected from the base station (as shown by the drop in ATE around

1300 seconds in Figure 6-21c).

In the Campus-Hybrid dataset, we again see the advantage of the distributed front-

end as the distributed system stabilizes faster than the centralized baseline for the

Full scenario (Figure 6-21e). For the Random scenario (Figure 6-21f), the overall ATE

is increased for the distributed system due to delays caused by random disconnects.

161

The distributed system under the Distance (Figure 6-21g) and Base (Figure 6-21h)

scenarios has similar performance to the centralized system throughout the mission,

but the distributed system under the Distance scenario is able to maintain lower and

more stable ATE between 1200 to 1800 seconds due to its flexibility to detect loop

closures and perform PGO while being disconnected from the base station.

On the Campus-Outdoor dataset, the distributed front-end has little advantage due

to the much smaller number of loop closures (see Table 6.6). This dataset is also

challenging for the distributed back-end, as the sparse loop closures make the under-

lying optimization problem poorly conditioned and the distributed solver struggles to

reach a good precision solution.

In summary, the distributed front-end is able to speed up loop closure detection

by distributing the computational load across the robots; on the other hand, the

distributed back-end requires substantially more time to converge compared to its

centralized counterpart, but in some cases, it provides extra flexibility by enabling

clusters of robots to optimize their trajectories while being away from the base station.

This translates into reduced ATE in some portions of the trajectories (e.g. Figure 6-

21a, 6-21b, and 6-21g).

6.7.4 Parameter Sensitivity

In this section, we present a detailed analysis of three key parameters that are observed

to directly impact the accuracy of our system. These include two parameters related

to our distributed solver: the gradient norm threshold 𝜖𝑔 that controls the precision

when robots solve their local optimization problems, and the relative change threshold

𝜖rel that determines when to terminate distributed optimization. Intuitively, setting

smaller values for these thresholds enable distributed PGO to obtain more accurate

results at the expense of increasing iterations and runtime. The last parameter we

analyze is the distance threshold 𝑑 used to coarsen the pose graph. Recall from

Section 6.3 that our system aggregates nearby pose graph nodes within this distance

threshold. Thus, larger values of 𝑑 yield a smaller and coarser pose graph. As we vary

each parameter, we fix the remaining parameters to their nominal values (𝜖𝑔 = 0.1,

162

𝜖rel = 0.2m, and 𝑑 = 2m).

Figure 6-22a-6-22b show the impact on ATE as we vary the PGO convergence

parameters 𝜖𝑔 and 𝜖rel. For each dataset, we also show the reference ATE (constant

dashed line) obtained from a centralized solver that solves GNC to full convergence.

As expected, using smaller values (i.e. tighter termination conditions) helps the

distributed back-end achieve similar accuracy as the reference solution. However,

smaller values also lead to increased number of iterations; for example, decreasing 𝜖rel

from 1.0 to 0.1 leads to 51%-180% more iterations across the three datasets. Larger

values lead to worse solutions as optimization terminates before correcting all errors.

Among the three datasets, Campus-Outdoor is the most sensitive to parameter changes

due to poor conditioning caused by sparse loop closures. Meanwhile, Campus-Tunnels

is less sensitive to the choice of 𝜖𝑔, again due to the abundance of loop closures

(Table 6.6) that helps robots improve their estimates even with a loose convergence

parameter.

Figure 6-22c shows the effect of changing the distance threshold 𝑑 for pose graph

coarsening. The dashed lines again show the ATEs achieved by the centralized solver.

Note that the dashed line is no longer constant because each value of 𝑑 corresponds

to a different PGO problem. Generally, decreasing 𝑑 (i.e. increasing the pose graph

resolution) yields better ATE. On the other hand, larger values of 𝑑 significantly im-

prove the efficiency of the back-end: across the three datasets, increasing 𝑑 from 1m

to 5m decreases the number of iterations by 38%-54%. We observe slightly different

trends across datasets, where Campus-Outdoor is once again more sensitive to param-

eter changes. Lastly, on the Campus-Outdoor dataset we also observe a small increase

in ATE towards smaller value of 𝑑. This is due to the fact that as 𝑑 decreases, the

pose graph becomes larger and the distributed back-end requires more iterations to

achieve better accuracy.

6.7.5 Live Results and Discussions

In this section, we discuss key lessons learned from live field tests of Kimera-Multi and

quantitative results. We summarize the capabilities and limitations of our system,

163

0.2 0.4 0.6 0.8 1

Local gradient norm tolerance

6

8

10

12

14

16

T
e

a
m

 A
T

E
 (

m
)

Tunnels

Hybrid

Outdoor

(a) 𝜖𝑔

0.2 0.4 0.6 0.8 1

Relative change tolerance (m)

5

10

15

T
e

a
m

 A
T

E
 (

m
)

Tunnels

Hybrid

Outdoor

(b) 𝜖rel

5 10 15

Distance threshold (m)

5

10

15

20

T
e

a
m

 A
T

E
 (

m
)

Tunnels
Hybrid
Outdoor

(c) 𝑑

Figure 6-22: Effect on final ATE by varying key parameters: (a) local gradient norm
threshold 𝜖𝑔, (b) relative change tolerance threshold 𝜖rel, and (c) pose graph coarsening
threshold 𝑑.

and present challenges and future work towards the resilient deployment of distributed

multi-robot SLAM systems.

Resilience to Real-World Failures. Failures can happen in unexpected ways

during real-world deployments. Kimera-Multi is resilient to some of these failure cases,

and maintains its core CSLAM capability even if a subset of the robots experience

total failures. Figure 6-23a shows a representative field test result, in which 8 robots

initially explored a mixed indoor and outdoor scene similar to the Campus-Hybrid

dataset, but 3 robots experienced hardware failures (2 robots ran out of battery and

1 robot’s camera went offline) during the mission. Our system was able to adapt to

the situation and obtain reasonable trajectory estimates for the remaining 5 robots.

In general, resilience to unexpected failures is crucial for the reliable deployment of

CSLAM systems.

Distributed Front-End (Loop Closure Detection). Oftentimes, the accu-

racy of trajectory estimation depends crucially on detecting sufficient loop closures.

As shown in our experiments, by parallelizing loop closure detection among robots,

the distributed front-end in Kimera-Multi is able to detect loop closures faster than the

centralized baseline. Nevertheless, our front-end is subject to two limitations. First,

the BoW-based place recognition is sensitive to the type of scenes, and often detects

too many matches indoor and not enough outdoor (despite having trained the BoW

vocabulary using both indoor and outdoor data). This makes setting parameters such

as the similarity threshold 𝛼 a challenging task, and using incorrect values could lead

164

-300 -250 -200 -150 -100 -50 0

x (m)

-250

-200

-150

-100

-50

0

50

y
 (

m
)

(a) Hybrid (5 out of 8 robots)

100 150 200 250 300 350

x (m)

-250

-200

-150

-100

-50

0

50

y
 (

m
)

(b) Tunnels (8 robots)

Figure 6-23: Trajectory estimates from example live experiments.

to significantly degraded performance.

Second, Kimera-Multi only performs visual loop closure detection, which is sensitive

to changes in the viewpoint. This negatively impacts the performance on the Campus-

Outdoor dataset, where some robots visit the same locations in opposite directions

(e.g. right part of Figure 6-19a), and consequently no loop closure is detected and

no trajectory correction occurs. View dependence is a well-known issue of vision-

based loop closure methods. Further improvement in this module or incorporation of

other approaches (e.g. hierarchical and object-based loop closures [200] and utilizing

additional hardware such as ultra-wideband sensors) would be needed for Kimera-Multi

to be resilient to different missions and trajectory plans.

Distributed Back-End (Pose Graph Optimization). Our results demon-

strate that our back-end based on distributed GNC (Section 6.4) is able to achieve

comparable accuracy as a centralized solver, and offers additional flexibility by en-

abling optimization within clusters of connected robots. The latest large-scale exper-

iment with 8 robots shows that the accuracy of distributed GNC comes at the cost

of increased runtime (Table 6.6). This is because on these larger problems, the dis-

tributed PGO solver requires more iterations to solve the intermediate optimization

problems within GNC. Using a loose termination condition in the distributed solver

could cause optimization to stop before correcting all errors, or even cause the rejec-

165

tion of critical inlier loop closures. Figure 6-23b shows an example failure case from

a live field test for Campus-Tunnels, where we used a loose relative change threshold of

𝜖rel = 1m. The result showed a significant error between the estimated trajectories

(colored based on robots) and reference solution (colored in gray) on the top right

part of the map. The worse performance is also consistent with the parameter sensi-

tivity analysis presented in Section 6.7.4. In general, striking a good balance between

optimization time and estimation accuracy can be difficult, and more work is needed

to further improve the speed and scalability of distributed back-ends.

Communication. The communication module in Kimera-Multi is able to handle

realistic network conditions with delays and message drops. However, in scenarios

such as the Campus-Tunnels dataset where there are many loop closures, the front-end

sometimes uses most of the available bandwidth for exchanging visual keypoints and

descriptors, causing network congestion that interferes with the distributed back-end.

To address this issue, recent methods that prioritize and impose a communication

budget on inter-robot loop closure detection [3, 41, 85] would be helpful. Another

potential solution is to implement system-level prioritization that allocates commu-

nication resources to different modules based on their current importance and the

network condition.

6.8 Conclusion

This chapter presented Kimera-Multi, a distributed multi-robot system for robust and

dense metric-semantic SLAM. Our system advances state-of-the-art multi-robot per-

ception by estimating 3D mesh models that capture both dense geometry and seman-

tic information of the environment. Kimera-Multi is fully distributed : each robot per-

forms independent navigation, using Kimera to estimate local trajectories and meshes

in real time. When communication becomes available, robots engage in local commu-

nication to detect loop closures and perform distributed trajectory estimation. From

the globally optimized trajectory estimates, each robot performs local mesh optimiza-

tion to refine its local map. We also presented D-GNC, a novel two-stage method for

166

robust distributed pose graph optimization, which serves as the estimation backbone

of Kimera-Multi and outperforms prior outlier rejection methods. Based on offline

experiments using photo-realistic simulations and real-world datasets, we validated

that Kimera-Multi (i) provides robust and accurate trajectory estimation while being

fully distributed, (ii) estimates 3D meshes with improved metric-semantic accuracy

compared to inputs from Kimera, and (iii) is communication-efficient and achieves

significant communication reductions.

Furthermore, we conclude this chapter with results from large-scale field exper-

iments of Kimera-Multi and a discussion about lessons learned. As a result of our

field tests, we also contributed new challenging multi-robot CSLAM datasets with

accurate reference trajectories and maps. Our datasets feature many robots travers-

ing diverse indoor and outdoor scenes, facing additional challenges such as severe

visual ambiguities and dynamic objects. We perform extensive quantitative analysis

including comparisons of Kimera-Multi against a centralized baseline under simulated

communication disruptions. These results further validate the accuracy and resilience

of our system while identifying key factors affecting its performance.

167

168

Chapter 7

Collaborative Geometric Estimation

with Event-Triggered Communication

7.1 Introduction

In this chapter and the next chapter, we shift our focus to tackle collaborative geo-

metric estimation under the server-client communication architecture (Figure 1-1b).

We first consider a generic problem setup where multiple agents (e.g., robots, smart-

phones) coordinate with a central server to estimate a shared geometric model (e.g.,

a 3D map). Recall that despite the use of a server, the underlying computation is

still distributed across all agents. While distributing the computation promises better

scalability and mitigates privacy concerns, it also requires more frequent communi-

cation due to the iterative nature of most optimization algorithms. Furthermore, the

amount of data communicated at each iteration often grows proportionally with the

dimension of the shared model. For large models, this type of iterative communication

can result in long delays under real-world communication networks.

In this chapter, we address the aforementioned technical challenge by developing

a communication-efficient algorithm for collaborative geometric estimation, which

significantly reduces the burden of communication when performing distributed op-

timization on high-dimensional problems. The core idea behind our approach is the

so-called lazy or event-triggered communication: instead of uploading all information

169

at every iteration, agents selectively upload parts of their local information that have

changed significantly from the past. While the main idea is intuitive, incorporating

lazy communication in geometric estimation applications raises a series of technical

questions ranging from algorithm design to theoretical analysis of convergence that

we address in this chapter.

Contributions. This chapter presents a communication-efficient distributed Rie-

mannian optimization algorithm for collaborative geometric estimation. To tackle the

numerical poor conditioning associated with most real-world problems, we design a

distributed method that performs approximate second-order updates while simulta-

neously protecting the privacy of participating agents. Furthermore, we augment our

basic method with lazy communication, which enables agents to only transmit the

parts of their local information that satisfy certain communication triggering con-

ditions , and hence significantly reduces overall communication. We prove that our

final algorithm converges globally to first-order critical points with a global sublin-

ear rate. Compared to related works that study lazy communication in distributed

first-order methods (e.g., [164]), our algorithm design and convergence analysis are

significantly different and account for the employed second-order updates, the treat-

ment of non-convex manifold constraints, among other details (see Remark 7.1). We

perform extensive evaluations on large-scale BA problems in collaborative SLAM and

SfM scenarios, which are central to emerging multi-robot navigation and mixed reality

applications. Results show that our algorithm achieves competitive performance com-

pared to other state-of-the-art methods under the same communication architecture,

while achieving up to 78% total communication reduction.

Notations

We introduce several additional notations that are necessary for developing the al-

gorithms in this chapter. We use calligraphic letters 𝒳 ,𝒴 to denote smooth matrix

manifolds. Let 𝑀 : 𝑇𝑥1𝒳 → 𝑇𝑥2𝒳 be a linear map between two tangent spaces of a

smooth matrix manifold 𝒳 . With a slight abuse of notation, we also use 𝑀 to denote

the matrix representation of this linear map under chosen bases of 𝑇𝑥1𝒳 and 𝑇𝑥2𝒳 .

170

For a tangent vector 𝑢 ∈ 𝑇𝑥1𝒳 , 𝑀𝑢 ∈ 𝑇𝑥2𝒳 denotes the result of applying 𝑀 on

𝑢. Further, ‖𝑀‖ denotes the operator norm of 𝑀 with respect to the Riemannian

metric. When 𝑀 : 𝑇𝑥𝒳 → 𝑇𝑥𝒳 maps a tangent space to itself and is symmetric and

positive definite, we define its associated inner product as ⟨𝑢1, 𝑢2⟩𝑀 ≜ ⟨𝑢1,𝑀𝑢2⟩ with

the corresponding norm ‖𝑢‖𝑀 ≜
√︀
⟨𝑢, 𝑢⟩𝑀 .

7.2 Problem Formulation

We consider a generic collaborative geometric estimation scenario, where 𝑁 agents

navigate in a common environment, and seek to collaboratively estimate a shared

geometric model 𝑦 ∈ 𝒴 . For this purpose, agents communicate with a central server,

who is responsible for coordinating updates across the team. In practice, the server

can be a lead agent or a base station. Motivated by most real-world applications,

we assume that the shared model 𝑦 consists of 𝑚 smaller elements 𝑦 = {𝑦1, . . . , 𝑦𝑚},

where each element 𝑦𝑙 ∈ 𝒴𝑙 corresponds to a single geometric primitive. For instance,

when 𝑦 represents a point cloud map, each 𝑦𝑙 corresponds to a single 3D point. During

navigation, each agent 𝑖 ∈ [𝑁] ≜ {1, . . . , 𝑁} observes a subset of the shared model. In

addition, agent 𝑖 also maintains private variable 𝑥𝑖 ∈ 𝒳𝑖, which can contain sensitive

information such as the trajectory of this agent.

We focus on solving the maximum likelihood estimation (MLE) problem in the

multi-agent scenario described above. Under the MLE formulation, local measure-

ments collected by agent 𝑖 induce a local cost function1 𝑓𝑖 : 𝒳𝑖 × 𝒴 → R that is

usually non-convex. Under the standard assumption that agents’ measurements are

corrupted by independent noise, the global MLE problem takes the following form.

1For clarity of presentation, we assume that 𝑓𝑖 depends on the entire shared model 𝑦. See
Remark 7.2 for discussions of the general case.

171

Problem 7.1 (Generic MLE Formulation for Collaborative Geometric Estimation).

min
𝑥𝑖,𝑦

𝑓(𝑥, 𝑦) ≜
𝑁∑︁
𝑖=1

𝑓𝑖(𝑥𝑖, 𝑦), (7.1a)

s.t. 𝑥𝑖 ∈ 𝒳𝑖, ∀𝑖 ∈ [𝑁], 𝑦 ∈ 𝒴 . (7.1b)

In (7.1), we use 𝑥 ∈ 𝒳 to denote the concatenation of all private variables 𝑥𝑖, 𝑖 ∈

[𝑁]. The MLE formulation is very general and encompasses a wide range of robot

perception problems [19]. In particular, Problem 7.1 includes collaborative bundle

adjustment (Section 2.2.3) as a special case, as shown in the following example.

Example 1 (Collaborative Bundle Adjustment). Bundle adjustment (BA) [42] is

a crucial building block of modern visual SLAM and SfM systems. Recall from

Section 2.2.3 that in collaborative BA, agents jointly estimate a global map us-

ing local measurements collected by monocular cameras. Assuming known cam-

era intrinsics, the private variable 𝑥𝑖 contains camera poses of agent 𝑖, i.e., 𝑥𝑖 =

{𝑇 (𝑖)
1 , . . . , 𝑇

(𝑖)
𝑛𝑖 } ∈ SE(3)𝑛𝑖 . The shared variable 𝑦 consists of points in the global map,

i.e., 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑚} ∈ R3×𝑚. Under the standard Gaussian noise model, the

local cost function is given by the sum of local squared reprojection errors,

𝑓𝑖(𝑥𝑖, 𝑦) =

𝑛𝑖∑︁
𝑗=1

∑︁
𝑙∈𝐿𝑖𝑗

𝑤
(𝑖)
𝑗𝑙

⃦⃦⃦
𝑞
(𝑖)
𝑗𝑙 − 𝜋(𝑇

(𝑖)
𝑗 , 𝑦𝑙)

⃦⃦⃦2
2
. (7.2)

In (7.2), 𝐿𝑖𝑗 ⊆ [𝑚] denotes the set of points observed by agent 𝑖 at pose 𝑇
(𝑖)
𝑗 , 𝜋(·, ·) is

the camera projection model, 𝑞(𝑖)𝑗𝑙 ∈ R2 denotes noisy observation on the image plane,

and 𝑤
(𝑖)
𝑗𝑙 > 0 is the corresponding measurement weight. Note that (7.2) is essentially

the same as the problem formulation in Section 2.2.3. The only difference is that we

introduce an extra index 𝑖 ∈ [𝑁] to distinguish between multiple agents.

In addition to collaborative BA, Problem 7.1 also includes other important types

of problems. In what follows, we give two additional examples.

172

Example 2 (Collaborative Point Cloud Registration). Multiple point cloud registra-

tion (e.g., [201]) is an important problem with robotic applications such as merging

multiple point cloud maps or collaborative SLAM with range sensors. In this case,

the private and shared variables are the same as Example 1. The local cost function

is given by,

𝑓𝑖(𝑥𝑖, 𝑦) =

𝑛𝑖∑︁
𝑗=1

∑︁
𝑙∈𝐿𝑖𝑗

𝑤
(𝑖)
𝑗𝑙

⃦⃦⃦
𝑦𝑙 −𝑅

(𝑖)
𝑗 𝑞

(𝑖)
𝑗𝑙 − 𝑡

(𝑖)
𝑗

⃦⃦⃦2
2
, (7.3)

where 𝑇
(𝑖)
𝑗 = (𝑅

(𝑖)
𝑗 , 𝑡

(𝑖)
𝑗) ∈ SE(3) denote the rotation matrix and translation vector of

the 𝑗th pose of agent 𝑖, and 𝑞
(𝑖)
𝑗𝑙 ∈ R3 denotes noisy 3D observation in the local frame.

Example 3 (Collaborative Object-Based PGO). In some applications, it suffices

to produce an object-level map of the environment (e.g., [38]). In this case, the

set of shared variables becomes 𝑦 = {𝑇1, 𝑇2, . . . , 𝑇𝑚} ∈ SE(3)𝑚, where 𝑇𝑙 is the

pose of object 𝑙, and the optimization problem becomes an instance of pose graph

optimization (PGO). The local cost function (using chordal distance) is given by,

𝑓𝑖(𝑥𝑖, 𝑦) =

𝑛𝑖∑︁
𝑗=1

∑︁
𝑙∈𝐿𝑖𝑗

𝑤
(𝑖)
𝑗𝑙

⃦⃦⃦
𝑇𝑙 − 𝑇

(𝑖)
𝑗
̃︀𝑇 (𝑖)
𝑗𝑙

⃦⃦⃦2
Ω

(𝑖)
𝑗𝑙

, (7.4)

where ̃︀𝑇 (𝑖)
𝑗𝑙 ∈ SE(3) is a noisy relative measurement of object 𝑙 collected by agent 𝑖 at

pose 𝑇
(𝑖)
𝑗 , and Ω

(𝑖)
𝑗𝑙 is the corresponding measurement precision matrix.

In this chapter, we focus on collaborative BA (Example 1) in our experimental

validation (Section 7.5), due to its fundamental role in multi-robot visual SLAM [1,

2, 4, 43]. However, we note that our approach extends beyond the above examples

to many other multi-agent estimation problems that can be described with a factor

graph [19]; see Remark 2.1 for additional discussions.

7.3 Proposed Algorithm

In this section, we present our communication-efficient distributed algorithm for solv-

ing Problem 7.1. In Section 7.3.1, we develop the basic form of our method based on

173

distributed approximate second-order updates. Similar to DDF-SAM [55, 57], in each

iteration our method analytically eliminates the updates to private variables, which

leads to more effective updates and also protects the privacy of participating agents.

However, unlike DDF-SAM, our method avoids the transmission of dense matrices

resulting from elimination, which makes it applicable to larger scale problems. Fur-

thermore, in Section 7.3.2, we augment our basic method with lazy communication,

which achieves significant communication reduction. Lastly, Section 7.3.3 summarizes

the discussion and presents the complete algorithm.

7.3.1 Distributed Update with Analytic Elimination

At each iteration, agents collaboratively compute an updated solution that decreases

the global cost in Problem 7.1. To start, each agent 𝑖 constructs a second-order

approximation ̂︀𝑚𝑖 for its local cost 𝑓𝑖, which is defined at the tangent space of the

current iterate (𝑥𝑖, 𝑦) at iteration 𝑘. For now, we drop the iteration index 𝑘 to ease

the burden of notations.

Intuitively, ̂︀𝑚𝑖 approximates the true local cost 𝑓𝑖 when perturbing 𝑥𝑖 and 𝑦 on

the tangent space. Formally, given tangent vectors (𝑢𝑖, 𝑣) ∈ 𝑇𝑥𝑖
𝒳𝑖 × 𝑇𝑦𝒴 , we define2

̂︀𝑚𝑖(𝑢𝑖, 𝑣) ≜ 𝑓𝑖(𝑥𝑖, 𝑦)+

⟨⎡⎣𝑔𝑖𝑥
𝑔𝑖𝑦

⎤⎦
⏟ ⏞

𝑔𝑖

,

⎡⎣𝑢𝑖

𝑣

⎤⎦⟩+1

2

⟨⎡⎣𝑢𝑖

𝑣

⎤⎦ ,

⎡⎣ 𝐴𝑖 𝐶𝑖

𝐶𝑖
⊤ 𝐵𝑖

⎤⎦
⏟ ⏞

𝑀𝑖

⎡⎣𝑢𝑖

𝑣

⎤⎦⟩.
(7.5)

In (7.5), 𝑔𝑖 ≜ grad 𝑓𝑖(𝑥𝑖, 𝑦) is the local Riemannian gradient. The user-specified

linear map 𝑀𝑖 ≻ 0 serves as an approximation of the local Riemannian Hessian, and

is assumed to be symmetric and positive definite. For geometric estimation problems

such as BA (7.2), we obtain the second-order approximation via the Riemannian

Levenberg–Marquardt (LM) method [17, Chapter 8]. In this case, we have 𝑀𝑖 =

𝐽𝑖
⊤𝐽𝑖 + 𝜆𝐼, where 𝐽𝑖 is the Jacobian of agent 𝑖’s measurement residuals, and 𝜆 > 0 is

a regularization parameter that ensures 𝑀𝑖 to be positive definite.

2Note that ̂︀𝑚𝑖 depends on the linearization points 𝑥𝑖 and 𝑦. We drop this from our notation for
simplicity.

174

Given the local approximations ̂︀𝑚𝑖, a second-order approximation of the global

cost 𝑓 is given by ̂︀𝑚(𝑢, 𝑣) ≜
∑︀𝑁

𝑖=1 ̂︀𝑚𝑖(𝑢𝑖, 𝑣), where we use 𝑢 to denote the concatena-

tion of local tangent vectors 𝑢𝑖. Note that ̂︀𝑚 can be expanded as,

̂︀𝑚(𝑢, 𝑣) = 𝑓(𝑥, 𝑦) +

⟨⎡⎣𝑔𝑥
𝑔𝑦

⎤⎦
⏟ ⏞

𝑔

,

⎡⎣𝑢
𝑣

⎤⎦⟩+
1

2

⟨⎡⎣𝑢
𝑣

⎤⎦ ,

⎡⎣ 𝐴 𝐶

𝐶⊤ 𝐵

⎤⎦
⏟ ⏞

𝑀

⎡⎣𝑢
𝑣

⎤⎦⟩. (7.6)

It can be verified that 𝑔 = grad 𝑓(𝑥, 𝑦) is the Riemannian gradient of the global ob-

jective. The linear map 𝑀 in (7.6) is now an approximation of the global Riemannian

Hessian. More importantly, 𝑀 is a block matrix with an arrowhead sparsity pattern,

and its blocks are related to the blocks of 𝑀𝑖 in (7.5) as follows,

𝐴 = Diag(𝐴1, . . . , 𝐴𝑁), 𝐵 =
𝑁∑︁
𝑖=1

𝐵𝑖, 𝐶⊤ =
[︁
𝐶⊤1 . . . 𝐶⊤𝑁

]︁
. (7.7)

In the proposed method, we seek to compute an update for all variables by ap-

proximately minimizing ̂︀𝑚. To proceed, we analytically eliminate private vector 𝑢

from (7.6). Formally, define 𝑢⋆(𝑣) ≜ argmin𝑢 ̂︀𝑚(𝑢, 𝑣) as the optimal private vector

conditioned on the shared vector. Furthermore, define the reduced second-order ap-

proximation as ̂︀ℎ(𝑣) ≜ ̂︀𝑚(𝑢⋆(𝑣), 𝑣), which only involves the shared vector 𝑣. Both

𝑢⋆(𝑣) and ̂︀ℎ(𝑣) admit closed-form expressions.

Lemma 7.1 (Reduced second-order approximation). For each agent 𝑖 ∈ [𝑁], the

corresponding optimal private vector is,

𝑢⋆
𝑖 (𝑣) = −𝐴−1𝑖 (𝐶𝑖𝑣 + 𝑔𝑖𝑥), ∀𝑖 ∈ [𝑁]. (7.8)

Furthermore, ̂︀ℎ(𝑣) has the closed-form expression,

̂︀ℎ(𝑣) = 𝑓(𝑥, 𝑦)− 1

2

⟨︀
𝑔𝑥, 𝐴

−1𝑔𝑥
⟩︀
+ ⟨𝑤, 𝑣⟩+ 1

2
⟨𝑣, 𝑆𝑣⟩ , (7.9)

175

where vector 𝑤 and matrix 𝑆 are defined as,

𝑤 ≜
𝑁∑︁
𝑖=1

𝑤𝑖, 𝑤𝑖 ≜ 𝑔𝑖𝑦 − 𝐶⊤𝑖 𝐴
−1
𝑖 𝑔𝑖𝑥, ∀𝑖 ∈ [𝑁]. (7.10)

𝑆 ≜
𝑁∑︁
𝑖=1

𝑆𝑖, 𝑆𝑖 ≜ 𝐵𝑖 − 𝐶⊤𝑖 𝐴
−1
𝑖 𝐶𝑖, ∀𝑖 ∈ [𝑁]. (7.11)

In the following, we refer to 𝑤 in (7.10) and 𝑆 in (7.11) as the reduced gradient and

reduced Hessian, respectively. The analytic elimination technique presented above has

been widely used to solve SLAM and BA [42], and is a special case of the variable

projection approach to solve nonlinear least squares problem [202]. In the distributed

setting, Lemma 7.1 suggests that the server can first aggregate 𝑤𝑖 and 𝑆𝑖 from all

agents, and then minimize ̂︀ℎ(𝑣) by computing 𝑣⋆ = −𝑆−1𝑤. This type of approach has

been proposed by DDF-SAM [55, 57]. Nevertheless, for large-scale problems such as

BA, this approach is less suitable as it requires the communication of the 𝑆𝑖 matrices,

which are generally dense and thus expensive to evaluate, store, and transmit.

To design a communication-efficient update, we instead resort to finding an ap-

proximate minimizer of ̂︀ℎ(𝑣). In the following, let 𝑘 denote the iteration number,

and let 𝑤𝑘 and 𝑆𝑘 denote the values of the reduced gradient and reduced Hessian at

iteration 𝑘. We let our approximate minimizer of ̂︀ℎ(𝑣) take the following form,

𝑣𝑘 ≜ −𝛾𝑃 𝑘𝑤𝑘, (7.12)

where 𝛾 > 0 is a constant stepsize, and 𝑃 𝑘 is a sparse matrix that approximates the

inverse of the reduced Hessian 𝑆𝑘. Viewing 𝑤𝑘 as the reduced gradient and 𝑃 𝑘 as a

preconditioner, we may interpret (7.12) as a single step of preconditioned Riemannian

gradient descent. In the following, we use the block Jacobi preconditioner [176] due

to its simplicity,

𝑃 𝑘 =

(︃
𝑁∑︁
𝑖=1

𝐷𝑘
𝑖

)︃−1
, 𝐷𝑘

𝑖 ≜ Diag(𝑆𝑘
𝑖,1, . . . , 𝑆

𝑘
𝑖,𝑚), (7.13)

176

where 𝑆𝑘
𝑖,𝑙 is the 𝑙-th diagonal block of 𝑆𝑘

𝑖 . Note that each block 𝑙 corresponds to a

single element 𝑦𝑙 in the shared variable 𝑦 (see Section 7.2). With (7.12) and (7.13),

agent 𝑖 only needs to upload 𝑤𝑘
𝑖 and the diagonal blocks of 𝑆𝑘

𝑖 to the server. Further-

more, the server can easily compute 𝑃 𝑘 as it only requires inverting a block-diagonal

matrix.

Once the shared update 𝑣𝑘 is computed, we leverage Lemma 7.1 to compute the

corresponding optimal second-order update for each agent’s private variable,

𝑢𝑘
𝑖 ≜ 𝑢⋆

𝑖 (𝑣
𝑘), ∀𝑖 ∈ [𝑁]. (7.14)

Finally, we compute the updated estimates using retraction,

𝑦𝑘+1 = Retr𝑦𝑘(𝑣
𝑘), 𝑥𝑘+1

𝑖 = Retr𝑥𝑘
𝑖
(𝑢𝑘

𝑖),∀𝑖 ∈ [𝑁], (7.15)

and the algorithm proceeds to the next iteration.

7.3.2 Incorporating Lazy Communication

In the method developed so far, at each iteration, agent 𝑖 needs to upload 𝑤𝑖 and 𝐷𝑖

to the server. For larger problems, the resulting transmission can still become too

expensive. In this subsection, we present a technique to further reduce communica-

tion. The core idea behind our approach is lazy communication: when some blocks of

𝑤𝑖 and 𝐷𝑖 do not change significantly from previous iterations, agent 𝑖 simply skips

the transmission of those blocks, and the server reuses values received at previous

iterations for its computation. In the following, we describe this process in detail for

the computation of preconditioner and the reduced gradient, respectively. Without

loss of generality, we present our method from the perspective of agent 𝑖.

Lazy communication of preconditioner. Let 𝑘 be the current iteration num-

ber. For each block 𝑙, let 𝑘′ < 𝑘 be the last iteration when agent 𝑖 uploads 𝑆𝑘′

𝑖,𝑙 to the

177

server.3 Using 𝑆𝑘′

𝑖,𝑙, we can compute an approximation of 𝑆𝑘
𝑖,𝑙 as,

̃︀𝑆𝑘
𝑖,𝑙 ≜ 𝑇 𝑘←𝑘′

𝑙 ∘ 𝑆𝑘′

𝑖,𝑙 ∘ 𝑇 𝑘′←𝑘
𝑙 , (7.16)

where 𝑇 𝑘′←𝑘
𝑙 is the matrix that represents a transporter [18, Sec. 10.5] from the

tangent space at iteration 𝑘 to iteration 𝑘′, and 𝑇 𝑘←𝑘′

𝑙 is its adjoint. Intuitively,

transporters are needed to ensure that the approximation defined in (7.16) represents

a valid linear map on the tangent space at iteration 𝑘. For matrix manifolds, a

simple and computationally efficient transporter can be obtained from orthogonal

projections to tangent spaces [18, Proposition 10.60]. Note that since (7.16) only

uses past information, both the server and agent 𝑖 can compute ̃︀𝑆𝑘
𝑖,𝑙 without any

communication.

The above approximation leads to the following lazy communication scheme.

First, agent 𝑖 compares 𝑆𝑘
𝑖,𝑙 and its approximate version ̃︀𝑆𝑘

𝑖,𝑙 locally. Then, agent

𝑖 only uploads 𝑆𝑘
𝑖,𝑙 to the server if the approximation error is large,

⃦⃦⃦
𝑆𝑘
𝑖,𝑙 − ̃︀𝑆𝑘

𝑖,𝑙

⃦⃦⃦
> 𝛿𝑝

⃦⃦
𝑆𝑘
𝑖,𝑙

⃦⃦
, (7.17)

where 𝛿𝑝 ≥ 0 is a user defined threshold. On the other hand, if (7.17) does not hold

(i.e., approximation error is small), agent 𝑖 skips the communication of 𝑆𝑘
𝑖,𝑙, and the

server uses the approximation ̃︀𝑆𝑘
𝑖,𝑙 instead.

In summary, for each agent 𝑖, instead of using 𝐷𝑘
𝑖 as defined in (7.13), the server

now uses an approximation ̂︀𝐷𝑘
𝑖 that consists of a mixture of exact and approximate

blocks. Specifically, the 𝑙-th diagonal block of ̂︀𝐷𝑘
𝑖 is given by,

̂︀𝐷𝑘
𝑖,𝑙 ≜

⎧⎪⎨⎪⎩𝑆𝑘
𝑖,𝑙, if (7.17) holds,

̃︀𝑆𝑘
𝑖,𝑙, otherwise.

(7.18)

Finally, the preconditioner becomes 𝑃 𝑘 = (
∑︀𝑁

𝑖=1
̂︀𝐷𝑘
𝑖)
−1.

Lazy communication of reduced gradient. We can employ a similar strategy

3For notation simplicity, we drop the dependence of 𝑘′ on 𝑖 and 𝑙.

178

to design a lazy communication rule for the transmission of the reduced gradient 𝑤𝑖,

which is needed by the server to compute the update step in (7.12). For this purpose,

let us view 𝑤𝑖 as a block vector, where each block 𝑤𝑖,𝑙 corresponds to a single element

𝑦𝑙 in the shared variable. For each block 𝑙, let 𝑘′ < 𝑘 be the last iteration when agent

𝑖 uploads 𝑤𝑘′

𝑖,𝑙 to the server. Using 𝑤𝑘′

𝑖,𝑙, we can compute an approximation of 𝑤𝑘
𝑖,𝑙 as

follows, ̃︀𝑤𝑘
𝑖,𝑙 ≜ 𝑇 𝑘←𝑘′

𝑙

(︁
𝑤𝑘′

𝑖,𝑙

)︁
. (7.19)

Once again, a transporter is needed to ensure (7.19) defines a valid tangent vector on

the tangent space at the current iteration 𝑘. Similar to (7.16), computing (7.19) does

not require communication between the server and agent 𝑖.

Similar to the previous development, at each iteration, agent 𝑖 only uploads 𝑤𝑘
𝑖,𝑙

to the server if it differs significantly from ̃︀𝑤𝑘
𝑖,𝑙. Specifically, we define the following

communication triggering condition,

⃦⃦ ̃︀𝑤𝑘
𝑖,𝑙 − 𝑤𝑘

𝑖,𝑙

⃦⃦2
𝑃𝑘
𝑙

>
1

𝑚𝑁2

𝑑∑︁
𝑑=1

𝜖𝑑
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑃𝑘−𝑑 . (7.20)

The left-hand side of (7.20) measures the approximation error, using the norm as-

sociated with the current preconditioner of this block. The right-hand side defines

a threshold on the approximation error using information from the past 𝑑 itera-

tions. Specifically, ̂︀𝑤𝑘−𝑑 is the approximate reduced gradient used by the server at

iteration 𝑘 − 𝑑, and its exact definition is provided in (7.22). Both 𝑑 and weights

{𝜖𝑑 ≥ 0, 𝑑 = 1, . . . 𝑑} are user specified constants. Note that setting 𝜖𝑑 = 0 forces the

agent to always upload.

Consequently, on the server’s side, instead of using the up-to-date 𝑤𝑘
𝑖 vector for

agent 𝑖, it uses an approximate version ̂︀𝑤𝑘
𝑖 that consists of both exact and approximate

blocks,

̂︀𝑤𝑘
𝑖,𝑙 ≜

⎧⎪⎨⎪⎩𝑤𝑘
𝑖,𝑙, if (7.20) holds,

̃︀𝑤𝑘
𝑖,𝑙, otherwise.

(7.21)

Finally, instead of using 𝑤𝑘 to compute the update in (7.12), the server uses the

179

Algorithm 7.1 LARPG

1: Initialize solution 𝑥0, 𝑦0.
2: for iteration 𝑘 = 0, 1, . . . do
3: In parallel, agent 𝑖 computes the local second-order approximation ̂︀𝑚𝑖 (7.5),

and evaluates 𝑤𝑘
𝑖 (7.10) and 𝐷𝑘

𝑖 (7.13)
4: // Lazy communication of preconditioner
5: for each agent 𝑖 in parallel do
6: for each block 𝑙 do
7: Upload 𝑆𝑘

𝑖,𝑙 to server if (7.17) is true
8: end for
9: end for

10: Server collects uploads and forms ̂︀𝐷𝑘
𝑖 (7.18) for each agent

11: Server computes preconditioner 𝑃 𝑘 = (
∑︀𝑁

𝑖=1
̂︀𝐷𝑘
𝑖)
−1 and broadcasts to agents

12: // Lazy communication of reduced gradient
13: for each agent 𝑖 in parallel do
14: for each block 𝑙 do
15: Upload 𝑤𝑘

𝑖,𝑙 to server if (7.20) is true
16: end for
17: end for
18: Server collects uploads and forms ̂︀𝑤𝑘

𝑖 and ̂︀𝑤𝑘

19: // Compute update vector and next iterate
20: Server computes 𝑣𝑘 = −𝛾𝑃 𝑘 ̂︀𝑤𝑘 and broadcasts to agents
21: In parallel, each agent computes 𝑢𝑘

𝑖 = 𝑢⋆
𝑖 (𝑣

𝑘); c.f. (7.8)
22: Both server and agents update iterates

𝑦𝑘+1 = Retr𝑦(𝑣
𝑘), 𝑥𝑘+1

𝑖 = Retr𝑥𝑘
𝑖
(𝑢𝑘

𝑖).

23: end for

approximation defined as,

̂︀𝑤𝑘 ≜
𝑁∑︁
𝑖=1

̂︀𝑤𝑘
𝑖 . (7.22)

We conclude this subsection by noting that the lazy communication condition for

reduced gradient (7.20) is more complex than the condition for preconditioner (7.17).

The more complex rule (7.20) is needed for our convergence analysis, and we provide

more discussions in Section 7.4.

180

7.3.3 The Complete Algorithm

We collect the steps discussed above and present the Lazily Aggregated Reduced

Preconditioned Gradient (LARPG) algorithm with the complete pseudocode in Al-

gorithm 7.1. Each iteration of LARPG has three stages. The first stage (lines 4-11)

performs the lazy communication of the preconditioner. The second stage (lines 12-

18) performs the lazy communication of the reduced gradients. We note that this

stage needs to happen after the first stage, as the triggering rule for the reduced

gradient (7.20) depends on the preconditioner 𝑃 𝑘. The third stage (lines 19-22) uses

the lazily aggregated information to compute the next iterate of the algorithm.

Remark 7.1 (Novelty with respect to [164]). Our lazy communication scheme is

inspired by Chen et al. [164], who study lazily aggregated gradient methods in dis-

tributed optimization. However, our algorithm and analysis (Section 7.4) consists

of the following important innovations to account for the unique challenges of Prob-

lem 7.1: (i) we consider problems with non-convex manifold constraints that are

prevalent in robot perception applications, (ii) we incorporate the use of approximate

second-order updates that require substantial changes in the convergence analysis,

(iii) we handle private variables via analytic elimination, and (iv) we propose lazy

communication on individual blocks of the gradient and preconditioner, which leads

to further communication reduction.

Remark 7.2 (Implementation). In many applications, such as collaborative SLAM,

each agent 𝑖 only observes parts of the shared model during navigation. Consequently,

the local cost 𝑓𝑖 only depends on the observed subset of the shared variable 𝑦. In our

implementation and experiments (Section 7.5), we account for this fact by performing

lazy communication only on the observed parts of 𝑦 for each agent.

7.4 Convergence Analysis

Since LARPG allows agents to lazily upload information to the server, it is unclear

if the algorithm can converge to a desired solution in general. In this section, we

181

provide a rigorous answer to this important question. In particular, we show that

under several technical conditions, LARPG provably converges to a first-order critical

point of Problem 7.1, despite the use of lazy communication. Assumption 7.1 below

summarizes these technical assumptions.

Assumption 7.1. There exist constants 𝐿 > 𝜇 ≥ 𝑐𝑔 > 0 and 𝜇𝑝, 𝜎𝑝 > 0 such that

the following conditions hold at any iteration 𝑘 ∈ N of Algorithm 7.1,

A1 (Lipschitz-type gradient for pullbacks [167]) Let 𝑓𝑘 ≜ 𝑓(𝑥𝑘, 𝑦𝑘) and 𝑔𝑘 ≜

grad 𝑓(𝑥𝑘, 𝑦𝑘) denote the objective and Riemannian gradient at iteration 𝑘.

The pullback function ̂︀𝑓𝑘(𝑢, 𝑣) ≜ 𝑓(Retr𝑥𝑘(𝑢),Retr𝑦𝑘(𝑣)) satisfies

⃒⃒⃒⃒
⃒⃒ ̂︀𝑓𝑘(𝑢, 𝑣)−

⎡⎣𝑓𝑘 +

⟨⎡⎣𝑔𝑘𝑥
𝑔𝑘𝑦

⎤⎦ ,

⎡⎣𝑢
𝑣

⎤⎦⟩⎤⎦⃒⃒⃒⃒⃒⃒ ≤ 𝑐𝑔
2

⃦⃦⃦⃦
⃦⃦
⎡⎣𝑢
𝑣

⎤⎦⃦⃦⃦⃦⃦⃦
2

, (7.23)

for all (𝑢, 𝑣) ∈ 𝑇𝑥𝑘𝒳 × 𝑇𝑦𝑘𝒴 .

A2 (Bounded Hessian approximation) At any iteration 𝑘, the approximate Hessian

𝑀𝑘 defined in (7.6) satisfies 𝜇𝐼 ⪯𝑀𝑘 ⪯ 𝐿𝐼.

A3 (Preconditioner) At any iteration 𝑘, the preconditioner 𝑃 𝑘 used in Algorithm 7.1

(line 11) satisfies 𝑃 𝑘 ⪰ 𝜇𝑝𝐼 and
⃦⃦
𝑆𝑘𝑃 𝑘

⃦⃦
𝑃𝑘 ≤ 𝜎𝑝.

Above, (A1) is first introduced in [167] as a generalization of the standard Lips-

chitz smoothness assumption to the Riemannian setting. Intuitively, (A1) bounds the

pullback function by its local linearization. Prior work in distributed BA [71, 72] re-

quires similar smoothness conditions for convergence. In comparison, our assumptions

and convergence guarantees extend beyond BA and hold for more general problems.

(A2) assumes that the employed Hessian approximation 𝑀 is bounded, which is also a

standard assumption. Lastly, (A3) assumes that the preconditioner 𝑃 𝑘 is sufficiently

positive definite, and the approximation error of 𝑃 𝑘 as the inverse of the reduced

Hessian 𝑆𝑘 is bounded.

182

The key to our convergence analysis (inspired by [164]) is to study the iterates of

LARPG with respect to a Lyapunov function,

𝑉 𝑘 ≜ 𝑓(𝑥𝑘, 𝑦𝑘) +
𝑑∑︁

𝑑=1

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2
𝑃𝑘−𝑑 . (7.24)

At iteration 𝑘, 𝑉 𝑘 combines the cost function with weighted squared norms of past

approximate reduced gradients. Intuitively, these squared norms account for the

approximation errors caused by lazy communication. In Appendix C.2, we show that

LARPG is a descent method with respect to 𝑉 𝑘. This enables us to establish our

main theoretical result.

Theorem 7.1. Under Assumption 7.1, there exist suitable choices of algorithm pa-

rameters 𝛾, 𝑑, and {𝜖𝑑 ≥ 0, 𝑑 = 1, . . . , 𝑑} such that after 𝐾 iterations, the iterates

generated by Algorithm 7.1 satisfy,

min
𝑘∈[𝐾]

⃦⃦
grad 𝑓(𝑥𝑘, 𝑦𝑘)

⃦⃦2
= 𝑂(1/𝐾). (7.25)

In Appendix C.2, we prove Theorem 7.1 and provide explicit parameter settings

that guarantee convergence. The established 𝑂(1/𝐾) convergence rate matches stan-

dard global convergence result in Riemannian optimization [167]. While our conver-

gence conditions involve additional parameters, experiments (Section 7.5) show that

LARPG is not sensitive to these parameters and converges under a wide range of

values.

7.5 Experimental Results

In this section, we evaluate LARPG on BA problems from benchmark collaborative

SLAM and SfM datasets. All algorithms are implemented in C++ using g2o [8],

and experiments are conducted on a computer with Intel i7-7700K CPU and 16 GB

RAM. Unless otherwise mentioned, the default parameters we use for LARPG are

183

Table 7.1: Default parameters of LARPG used in experiments (Section 7.5).

Parameter Value Description

𝛾 1.0 Stepsize used to update shared variable (7.12).

𝜆 106 Regularization parameter in LM.

𝜖𝑑 10 Parameter used to compute the lazy communication threshold (7.20).

𝑑 10 Number of past gradients considered when computing lazy communication threshold (7.20).

𝛿𝑝 0.1 Parameter used for updating the lazy Jacobi preconditioner (7.17).

summarized in Table 7.1. Our results show that LARPG converges under a wide

range of parameter settings, and compares favorably against existing methods while

achieving up to 78% total communication reduction. In the rest of this section, we first

perform ablation studies on the proposed lazy communication scheme (Section 7.5.1).

Then, we present evaluation and comparison results on large-scale benchmark datasets

(Section 7.5.2 and 7.5.3).

7.5.1 Evaluating Lazy Communication

Figure 7-1: Castle30 dataset.

We evaluate the proposed lazy communication scheme using the Castle30 dataset

[203], which consists of 30 images observing a courtyard (Figure 7-1). We use Theia

[204] to generate the input BA problem, which contains 23564 map points in total.

We divide the BA problem into 30 agents and run LARPG for 50 iterations. In this

184

(a) Effect of varying 𝜖 (RMSE vs. itera-
tion)

(b) Effect of varying 𝜖 (RMSE vs. total
uploads)

(c) Effect of varying 𝜖 (% gradient blocks
uploaded)

(d) Effect of varying 𝑑 (RMSE vs. total
uploads)

Figure 7-2: Evaluation of lazy communication on Castle30 dataset [203]. We evaluate the
performance of LARPG under varying values of parameters 𝜖 and 𝑑 that control the behavior
of lazy communication.

experiment, we find that it is sufficient to fix the preconditioner at the initial iteration,

which corresponds to letting 𝛿𝑝 → +∞ in (7.17). This is because for this relatively

simple problem, the initial preconditioner already gives a good approximation of

curvature information at all subsequent iterates. Consequently, we mainly focus on

evaluating parameters that affect the lazy communication of gradients (7.20).

We first evaluate the impact of 𝜖𝑑 in (7.20). Intuitively, larger values of 𝜖𝑑 imply

that agents are more tolerant of gradient approximation error, and hence communicate

less at each iteration. We set all 𝜖𝑑 (𝑑 = 1, . . . , 𝐷) to a common value 𝜖 and vary 𝜖

in our experiments. To measure solution accuracy, we record the root-mean-square

error (RMSE) of camera positions, computed after aligning with the ground truth

via a similarity transformation. Figure 7-2a shows the convergence of LARPG under

varying values of 𝜖. For comparison, we also include a reference solution computed

by centralized optimization using g2o. Except when using a very loose threshold of

185

Table 7.2: Evaluation on collaborative SLAM scenarios [195, 205]. Columns N, #IM,
#MP, #Obs denote the total number of agents, images (keyframes), map points, and
observations, respectively. Init: input to all algorithms. Ref : reference solution from
centralized optimization using g2o [8]. PCG: baseline distributed preconditioned conjugate
gradient method [66]. DR: baseline Douglas-Rachford splitting method [71]. LARPG:
proposed method (𝜖 = 1). For each metric, the best-performing distributed method is
highlighted in bold.

Dataset 𝑁 #IM #MP #Obs
Absolute Trajectory Error (ATE) [m] Mean Reprojection Error [px] Total Uploads [MB]

Init Ref PCG DR LARPG Init Ref PCG DR LARPG PCG DR LARPG

Vicon Room 1 3 464 13K 121K 0.213 0.127 0.127 0.127 0.126 47.3 1.38 1.39 1.40 1.38 34 26 11

Vicon Room 2 3 631 20K 176K 0.191 0.087 0.089 0.088 0.088 45.3 1.42 1.51 1.46 1.43 43 32 14

Machine Hall 5 719 19K 187K 0.297 0.274 0.253 0.215 0.232 50.3 1.38 3.72 1.38 1.43 61 46 17

KITTI 00 10 1699 96K 553K 6.83 5.88 5.88 5.86 5.87 133.1 1.08 1.49 1.09 1.10 176 133 71

KITTI 06 10 422 22K 120K 10.87 10.32 10.42 10.32 10.36 107.9 1.11 1.11 1.12 1.11 44 34 16

𝜖 = 100 (red curve), lazy communication has minimal impact on the iterations of

LARPG. Furthermore, the communication efficiency of our method is clearly seen in

Figure 7-2b, where we plot convergence as a function of total amount of uploads to the

server. To provide more insights, Figure 7-2c visualizes the amount of gradient blocks

uploaded to the server at each iteration. For each value of 𝜖, the corresponding solid

line denotes the percentage of uploaded gradient blocks averaged across all agents, and

the surrounding shaded area represents one standard deviation. Recall that choosing

𝜖 = 0 forces all agents to upload all blocks at every iteration (blue curve in Figure 7-

2c). Our result clearly shows that varying 𝜖 provides an effective way to control the

amount of uploads during optimization.

In addition, we also evaluate the impact of 𝑑 on convergence. Recall from (7.20)

that 𝑑 determines the number of past gradients that are used to compute the triggering

threshold. Figure 7-2d shows the performance of LARPG under different choices of

𝑑 with fixed 𝜖 = 5. While the differences are not significant, our result still suggests

that using more past gradients (e.g., 𝑑 = 9) helps to save more communication.

7.5.2 Performance on Collaborative SLAM Datasets

In this subsection, we evaluate LARPG on collaborative BA problems from multi-

robot SLAM applications. We use the monocular version of ORB-SLAM3 [37] to

extract BA problems from the EuRoc [195] and KITTI [205] datasets. Figure 7-3 show

186

(a) Vicon Room 1 (b) Vicon Room 2

(c) Machine Hall (d) KITTI 00

(e) KITTI 06

Figure 7-3: Visualization of BA problems in collaborative SLAM scenarios [195, 205], gen-
erated using ORB-SLAM3 [37]. Map points are shown in black. Poses of each simulated
agent are shown in a distinct color.

visualizations of selected collaborative SLAM datasets. Each EuRoc dataset contains

multiple sequences recorded in the same indoor space, and we use the multi-session

feature of ORB-SLAM3 to simulate each sequence as a single robot. For each KITTI

dataset, we divide the overall trajectory into multiple segments to simulate multiple

robots. We generate noisy inputs for each dataset by perturbing the ORB-SLAM3

187

estimates by zero-mean Gaussian noise.4

We compare LARPG against two baseline methods that can be implemented under

the communication architecture considered in this work. The first baseline is the

method in [66] using distributed preconditioned conjugate gradient (PCG). In our

case, we use distributed PCG to solve the reduced second-order approximation in

Lemma 7.1, where the problem is re-linearized after every 10 PCG iterations. The

second baseline is the Douglas-Rachford (DR) splitting method proposed in [71].

Similar to our method, both baseline methods only require agents to communicate

information over the observed parts of the shared model (see Remark 7.2).

Table 7.2 shows the performance of all algorithms after 50 iterations. All results

are averaged across 10 random runs. We evaluate the RMSE absolute trajectory error

(ATE) against ground truth, the mean reprojection error, as well as the total amount

of uploads during optimization. For comparison, we also include a reference solu-

tion computed by centralized optimization using g2o. We note that the higher ATE

in KITTI is due to the larger scale of the datasets. As shown in Table 7.2, LARPG

achieves similar or better performance compared to baseline methods, while using sig-

nificantly less communication. Specifically, when compared to DR, LARPG achieves

up to 65% total communication reduction, clearly demonstrating the communication

efficiency of our method.

7.5.3 Performance on Collaborative SfM Datasets

We also evaluate LARPG on collaborative SfM scenarios using the 1DSfM dataset

[206], which contains 15 medium to large scale internet photo collections. Figure 7-4

show visualizations of selected datasets. We use Theia [204] to generate the input BA

problems. Then, we partition each problem randomly to simulate a scenario with 50

agents.

Similar to the previous subsection, we evaluate the performance of all algorithms

after 50 iterations. Table 7.3 shows the results. Since ground truth is not available, we

4Specifically, the noise standard deviation for robot rotation, robot position, and map points are
set to 5 deg, 0.1 m, 0.05 m for EuRoc, and 5 deg, 2 m, 0.1 m for KITTI.

188

(a) Alamo (b) Montreal Notre Dame

(c) Notre Dame (d) Tower of London

(e) Vienna Cathedral (f) Yorkminster

Figure 7-4: Visualization of BA problems in collaborative SfM scenarios [206], generated
using Theia [204]. Map points and camera poses are shown in black and blue, respectively.
Each dataset is partitioned into 50 agents to simulate a collaborative BA problem.

only record the final mean reprojection error. LARPG outperforms baseline methods

in most datasets, and achieves final reprojection errors that are close to the central-

189

Table 7.3: Evaluation on collaborative SfM scenarios [206]. Each dataset is divided to
simulate 50 agents. For LARPG, we set 𝜖 = 10. All columns are named in the same way as
Table 7.2. For each metric, the best performing distributed method is highlighted in bold.

Dataset #IM #MP #Obs
Mean Reprojection Error [px] Total Uploads [MB] Average Local Iteration Time [ms]

Init Ref PCG DR LARPG PCG DR LARPG PCG DR LARPG

Alamo 576 138K 813K 2.56 1.39 1.57 1.63 1.44 989 745 186 16 151 76

Ellis Island 234 22K 86K 5.30 2.61 5.04 4.07 3.24 117 90 22 1 8 8

Gendarmenmarkt 704 78K 271K 4.34 2.02 2.96 2.67 2.23 379 286 73 5 35 27

Madrid Metropolis 345 45K 198K 3.77 1.28 1.48 1.87 1.49 272 205 56 3 23 19

Montreal Notre Dame 459 152K 811K 3.05 1.96 2.04 2.10 2.08 1048 790 171 16 124 80

Notre Dame 548 225K 1180K 3.97 2.18 2.34 2.87 2.23 1345 1014 257 23 239 109

NYC Library 336 54K 210K 3.67 1.72 2.17 2.21 1.89 294 222 57 4 24 21

Piazza del Popolo 336 31K 154K 4.63 1.88 2.54 2.33 2.20 199 150 38 2 14 14

Piccadilly 2303 185K 797K 4.64 2.11 3.72 3.27 2.55 972 733 177 16 159 80

Roman Forum 1067 227K 1046K 4.20 1.82 2.14 2.79 1.90 1400 1056 279 21 221 108

Tower of London 484 124K 557K 5.14 1.68 4.48 2.61 2.50 702 583 127 12 101 57

Trafalgar 5067 333K 1286K 4.80 2.11 3.76 3.24 2.17 1678 1265 309 28 293 146

Union Square 816 26K 90K 6.77 1.93 3.71 3.32 2.91 121 91 22 1 8 8

Vienna Cathedral 843 157K 504K 5.73 1.88 3.69 3.32 2.37 723 545 146 11 92 55

Yorkminster 428 101K 377K 5.29 2.02 2.99 3.16 2.24 542 409 128 7 59 39

ized reference solutions. Once again, LARPG demonstrates superior communication

efficiency. When compared to DR, our method achieves 68%-78% reduction in terms

of total uploads. Lastly, we also evaluate the average local iteration time of all meth-

ods (last three columns in Table 7.3). Our method is faster than DR, since the latter

requires each agent to solve a smaller nonlinear optimization problem at every itera-

tion. On the other hand, the local iteration time of our method is larger than PCG.

However, considering the large size of the SfM datasets, an average iteration time

ranging from 8 ms to 293 ms for our method is still reasonable, and can be improved

by further optimizing our implementation (e.g., via additional parallelization).

7.6 Conclusion

This chapter presented LARPG, a communication-efficient distributed algorithm for

collaborative geometric estimation. Each iteration of LARPG allows agents to an-

alytically eliminate private variables. Furthermore, by incorporating lazy and par-

tial aggregation at the server, LARPG achieves significant communication reduction,

which makes it suitable for multi-robot and mixed reality applications subject to lim-

190

ited network bandwidth. Under generic conditions, we proved that LARPG converges

globally to first-order critical points with a sublinear convergence rate. Evaluations on

large-scale BA problems in collaborative SLAM and SfM scenarios show that LARPG

performs competitively against existing techniques while achieving a consistent com-

munication reduction of up to 78%.

191

192

Chapter 8

Collaborative Rotation Averaging and

Translation Estimation with Spectral

Sparsification

8.1 Introduction

Chapter 7 develops a communication-efficient algorithm for generic collaborative geo-

metric estimation under the server-client architecture. However, despite its generality,

the LARPG algorithm only achieves sublinear convergence rate (Theorem 7.1); this

means that on challenging problem instances, the algorithm could use many iterations

to converge to high-precision solutions. In this chapter, we show that for the spe-

cial problems of collaborative rotation averaging and translation estimation, we can

in fact develop optimization algorithms that achieve much faster convergence while

preserving communication efficiency. These problems are fundamental and have ap-

plications ranging from initialization for PGO [31], SfM [32], and camera network

localization [33].

Similar to Chapter 7, the approach developed in this chapter is based on the

server-client architecture (Figure 1-1b). The crux of our method lies in exploit-

ing theoretical relations between the Hessians of the optimization problems and the

193

R bot 2

Robo

Robot 3

(a) Measurement graph

R bot 2

Robo

Robot 3

(b) Robot 2’s dense reduced
graph

R bot 2

Robo

Robot 3

(c) Robot 2’s sparsified graph

Figure 8-1: (a) Example 3-robot problem visualized as a graph. For each robot 𝛼 ∈ {1, 2, 3},
its vertices (variables) 𝒱𝛼 are shown in a distinct color. Each edge corresponds to a relative
measurement between two variables. Separators (solid line) correspond to variables with
inter-robot measurements, and the remaining variables form the interior vertices (dashed
line). (b) For robot 2, elimination of its interior vertices creates a dense matrix 𝑆2, which
corresponds to a dense graph over its separators. (c) In our approach, robot 2 achieves
communication efficiency by transmitting a sparse approximation ̃︀𝑆2 of the original dense
matrix 𝑆2, which also corresponds to a sparsified graph over its separators.

Laplacians of the underlying graphs. We leverage these theoretical insights to de-

velop a fast collaborative optimization method in which each iteration computes an

approximate second-order update by approximately solving a Laplacian system of

the form 𝐿𝑥 = 𝑏. Importantly, before communication, robots use spectral sparsifi-

cation [135, 136] to sparsify intermediate dense matrices resulted from elimination

of its internal variables. Figure 8-1 shows a high-level illustration of our approach.

By varying the degree of sparsification, our method thus provides a principled way

for trading off accuracy with communication efficiency. Furthermore, the theoretical

properties of spectral sparsification allow us to perform rigorous convergence analy-

sis, and establish linear rates of convergence for our methods. Lastly, we also present

an extension to outlier-robust estimation by combining our approach with graduated

non-convexity (GNC) [28, 189].

Contributions. The key contributions of this chapter are summarized as follows:

• We present collaborative optimization algorithms for multi-robot rotation av-

eraging and translation estimation under the server-client architecture, which

enjoy fast convergence (in terms of the number of iterations) and efficient com-

munication through the use of spectral sparsification.

194

• In contrast to the typical sublinear convergence of prior methods, we prove

(local) linear convergence for our methods and show that the rate of convergence

depends on the user-defined sparsification parameter.

• We present an extension to outlier-robust estimation by combining the proposed

algorithms with GNC.

• We perform extensive evaluations of our methods and demonstrate their values

on real-world SLAM and SfM scenarios with outlier measurements.

Lastly, while our algorithms and theoretical guarantees cover separate rotation av-

eraging and translation estimation, we demonstrate through our experiments that

their combination can be used to achieve robust initialization for collaborative pose

graph optimization (PGO), which is another fundamental problem commonly used

in collaborative SLAM (CSLAM).

Chapter Organization. The rest of this chapter is organized as follows. The

remainder of this section introduces additional notations and mathematical prelimi-

naries. Section 8.2 reviews the problem formulation. In Section 8.3, we establish theo-

retical relations between the Hessians and the underlying graph Laplacians. Then, in

Section 8.4, we leverage these theoretical results to design fast and communication-

efficient solvers for the problems of interest and establish convergence guarantees.

Finally, Section 8.5 presents numerical evaluations of the proposed algorithms using

large-scale datasets from CSLAM and SfM scenarios.

Notations and Preliminaries

In the following, we introduce additional notations and preliminaries that are nec-

essary for developing the algorithms in this chapter. The reader is also referred to

Table D.1 for a summary of detailed notations used in this chapter.

Spectral Approximation. Following [141, 142], for 𝐴,𝐵 ∈ 𝒮𝑛 and 𝜖 > 0, we

say that 𝐵 is an 𝜖-approximation of 𝐴, denoted as 𝐴 ≈𝜖 𝐵, if the following holds,

𝑒−𝜖𝐵 ⪯ 𝐴 ⪯ 𝑒𝜖𝐵, (8.1)

195

where 𝐵 ⪯ 𝐴 means 𝐴 − 𝐵 ∈ 𝒮𝑛
+. Note that (8.1) is symmetric and holds under

composition: if 𝐴 ≈𝜖 𝐵 and 𝐵 ≈𝛿 𝐶, then 𝐴 ≈𝜖+𝛿 𝐶. Furthermore, if 𝐴 is singular,

the relation (8.1) implies that 𝐵 is necessarily singular and ker(𝐴) = ker(𝐵).

Inner Products on the Tangent Spaces of SO(𝑑). In this chapter, we define

the inner products on the tangent space of SO(𝑑) (where 𝑑 ∈ {2, 3}) as follows. For

any tangent vectors 𝜂1, 𝜂2 ∈ 𝑇𝑅 SO(𝑑), let 𝑣1, 𝑣2 ∈ R𝑝 be their representation using

the basis defined in Section 2.1 (eqs. (2.5) and (2.6)), i.e.,

𝜂1 = 𝑅 [𝑣1]× , 𝜂2 = 𝑅 [𝑣2]× . (8.2)

We define the inner product as follows,

⟨𝜂1, 𝜂2⟩𝑅 ≜ 𝑣⊤1 𝑣2. (8.3)

It can be verified that the inner product defined above is related to the standard inner

product (inherited from the ambient space) by a constant factor of 1/2,

𝑣⊤1 𝑣2 =
1

2
tr(𝜂⊤1 𝜂2). (8.4)

8.2 Problem Formulation

Rotation Averaging. Recall the setup of (collaborative) rotation averaging from

Section 2.2.1. The following shows an equivalent formulation of the optimization

problem corresponding to rotation averaging,

Problem 8.1 (Rotation Averaging).

minimize
𝑅=(𝑅1,...,𝑅𝑛)∈SO(𝑑)𝑛

∑︁
(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗𝜙(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗). (8.5)

196

For each edge (𝑖, 𝑗) ∈ ℰ , 𝜅𝑖𝑗 > 0 is the corresponding measurement weight. The

function 𝜙 is defined as either the squared geodesic (8.6a) or chordal distance (8.6b),

𝜙(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗) ≜

⎧⎪⎨⎪⎩
1

2

⃦⃦⃦
Log(̃︀𝑅⊤𝑖𝑗𝑅⊤𝑖 𝑅𝑗)

⃦⃦⃦2
, (8.6a)

1

2

⃦⃦⃦
𝑅𝑖
̃︀𝑅𝑖𝑗 −𝑅𝑗

⃦⃦⃦2
𝐹
. (8.6b)

Note that Problem 8.1 is equivalent to Problem 2.1 up to a constant factor of

1/2 in the cost function that we include for convenience. The constant factor is

inconsequential as it does not alter the solution to the optimization problem.

Translation Estimation. Similar to rotation averaging, we also consider the

problem of estimating multiple translation vectors given noisy relative translation

measurements.

Problem 8.2 (Translation Estimation).

minimize
𝑡=(𝑡1,...,𝑡𝑛)∈R𝑑×𝑛

∑︁
(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗
2

⃦⃦
𝑡𝑗 − 𝑡𝑖 − ̂︀𝑡𝑖𝑗⃦⃦22 . (8.7)

Note that (8.7) is a linear least squares problem. Similar to rotation averaging,

(8.7) can be modeled using the undirected measurement graph 𝐺 = (𝒱 , ℰ), where

vertex 𝑖 represents the translation variable 𝑡𝑖 ∈ R𝑑 to be estimated, and edge (𝑖, 𝑗) ∈ ℰ

represents the relative translation measurement ̂︀𝑡𝑖𝑗 ∈ R𝑑. Lastly, 𝜏𝑖𝑗 > 0 is the positive

weight associated with measurement (𝑖, 𝑗) ∈ ℰ .

Initialization for PGO. In the context of collaborative SLAM, rotation aver-

aging and translation estimation (Problem 8.2) can be combined to provide accurate

initialization for PGO [31]. Recall the PGO formulation in Problem 2.2,

minimize
𝑅=(𝑅1,...,𝑅𝑛)∈SO(𝑑)𝑛,

𝑡=(𝑡1,...,𝑡𝑛)∈R𝑑×𝑛

∑︁
(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗

⃦⃦⃦
𝑅𝑖
̃︀𝑅𝑖𝑗 −𝑅𝑗

⃦⃦⃦2
𝐹
+
∑︁

(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗
⃦⃦
𝑡𝑗 − 𝑡𝑖 −𝑅𝑖

̃︀𝑡𝑖𝑗⃦⃦22 . (8.8)

In (8.8), 𝑅𝑖 ∈ SO(𝑑) and 𝑡𝑖 ∈ R𝑑 are rotation matrices and translation vectors to

be estimated, ̃︀𝑅𝑖𝑗 ∈ SO(𝑑) and ̃︀𝑡𝑖𝑗 ∈ R𝑑 are noisy relative rotation and translation

197

measurements, and 𝜅𝑖𝑗, 𝜏𝑖𝑗 > 0 are constant measurement weights. Notice that in

(8.8), the first sum of terms is equivalent to rotation averaging (Problem 8.1) under

the chordal distance. Furthermore, given fixed rotation estimates ̂︀𝑅 ∈ SO(𝑑)𝑛, the

second sum of terms is equivalent to translation estimation (Problem 8.2) where eacĥ︀𝑡𝑖𝑗 in (8.7) is given by ̂︀𝑡𝑖𝑗 = ̂︀𝑅𝑖
̃︀𝑡𝑖𝑗. In both cases, the equivalence is up to a multiplying

factor of 1/2, but this is inconsequential since it does not change solutions to the

optimization problems. Following Carlone et al. [31], we use these observations to

initialize PGO in a two-stage process. The first stage initializes the rotation variables

using the proposed rotation averaging solver (Section 8.4.2). Given the initial rotation

estimates, the second stage initializes the translations using the proposed translation

estimation solver (Section 8.4.3). We note that this initialization scheme does not

have theoretical guarantees with respect to the full PGO problem. However, we still

demonstrate its practical value through our experiments.

8.3 Laplacian Systems Arising from Rotation Aver-

aging and Translation Estimation

In this section, we show that for rotation averaging (Problem 8.1) and translation

estimation (Problem 8.2), their Hessian matrices are closely related to the Laplacians

of suitably weighted graphs. The theoretical relations we establish in this section

pave the way for designing fast and communication-efficient solvers in Section 8.4.

8.3.1 Rotation Averaging

To solve rotation averaging (Problem 8.1), we resort to an iterative Riemannian op-

timization framework. Before proceeding, however, one needs to be careful of the

inherent gauge-symmetry of rotation averaging: in (8.5), note that left multiplying

each rotation 𝑅𝑖 ∈ SO(𝑑), 𝑖 ∈ [𝑛] by a common rotation 𝑆 ∈ SO(𝑑) does not change

the cost function. As a result, each solution 𝑅 = (𝑅1, . . . , 𝑅𝑛) ∈ SO(𝑑)𝑛 actually

198

corresponds to an equivalence class of solutions in the form of,

[𝑅] = {(𝑆𝑅1, . . . , 𝑆𝑅𝑛), 𝑆 ∈ SO(𝑑)}. (8.9)

The equivalence relation (8.9) shows that rotation averaging is actually an optimiza-

tion problem defined over a quotient manifold ℳ =ℳ/ ∼, where ℳ = SO(𝑑)𝑛 is

called the total space and ∼ denotes the equivalence relation underlying (8.9); see

[18, Chapter 9] for more details. Accounting for the quotient structure is critical for

establishing the relation between the Hessian and the graph Laplacian.

In this work, we are interested in applying Newton’s method on the quotient

manifold ℳ due to its superior convergence rate. The Newton update can be

derived by considering a local perturbation of the cost function. Specifically, let

𝑅 = (𝑅1, . . . , 𝑅𝑛) ∈ SO(𝑑)𝑛 be our current rotation estimates. For each rotation

matrix 𝑅𝑖, we seek a local correction to it in the form of Exp(𝑣𝑖)𝑅𝑖, where 𝑣𝑖 ∈ R𝑝 is

some vector to be determined and Exp(·) is defined in (2.7). In (8.5), replacing each

𝑅𝑖 with its correction Exp(𝑣𝑖)𝑅𝑖 leads to the following local approximation1 of the

optimization problem,

min
𝑣∈R𝑝𝑛

ℎ(𝑣;𝑅) ≜
∑︁

(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗𝜙(Exp(𝑣𝑖)𝑅𝑖
̃︀𝑅𝑖𝑗,Exp(𝑣𝑗)𝑅𝑗). (8.10)

In (8.10), the overall vector 𝑣 ∈ R𝑝𝑛 is formed by concatenating all 𝑣𝑖’s. Compared to

(8.5), the optimization variable in (8.10) becomes the vector 𝑣 and the rotations 𝑅 are

treated as fixed. Furthermore, we note that the quotient structure of Problem 8.1 gives

rise to the following vertical space [18, Chapter 9.4] that summarizes all directions of

1The approximation defined in (8.10) is exactly the pullback function considered in Riemannian
optimization [18, page 55], but expressed using a particular basis of the tangent space. We provide
an explanation for the case of 𝑑 = 3 (the case of 𝑑 = 2 is simpler). Conventionally, the pullback is
defined by considering a right perturbation of each rotation variable in the form of 𝑅𝑖 Exp(𝑣

′
𝑖). In

this work, we instead consider the left perturbation given by Exp(𝑣𝑖)𝑅𝑖. However, using the adjoint
operator on SO(3), we see that Exp(𝑣𝑖)𝑅𝑖 = 𝑅𝑖 Exp(𝑅

⊤
𝑖 𝑣𝑖), i.e., 𝑣′𝑖 = 𝑅⊤

𝑖 𝑣𝑖. This shows that the
basis we consider (corresponding to left perturbation) and the conventional basis (corresponding
to right perturbation) only differ by an orthogonal transformation. In this work, we consider the
left perturbation instead of the right perturbation, since the resulting Hessian has a particularly
interesting relationship with the graph Laplacian matrix, as shown in Theorem 8.1.

199

change along which (8.10) is invariant,

𝒩 = image(1𝑛 ⊗ 𝐼𝑝) ⊂ R𝑝𝑛. (8.11)

Intuitively, 𝒩 captures the action of any global left rotation. Indeed, for any 𝑣 ∈ 𝒩 ,

we have Exp(𝑣𝑖) = Exp(𝑣𝑗) for all 𝑖, 𝑗 ∈ [𝑛], and thus the cost function (8.10) remains

constant. Let us denote the gradient and Hessian of (8.10) as follows,

𝑔(𝑅) ≜ ∇ℎ(𝑣;𝑅)|𝑣=0, 𝐻(𝑅) ≜ ∇2ℎ(𝑣;𝑅)|𝑣=0. (8.12)

Our notations 𝑔(𝑅) and 𝐻(𝑅) serve to emphasize that the gradient and Hessian are

defined in the total spaceℳ and depend on the current rotation estimates 𝑅. In [18,

Chapter 9.12], it is shown that executing the Newton update on the quotient manifold

amounts to finding the minimum norm solution of the following linear system,

(𝑃𝐻 𝐻(𝑅)𝑃𝐻⏟ ⏞
𝐻(𝑅)

)𝑣 = −𝑔(𝑅), (8.13)

where 𝑃𝐻 is the orthogonal projection onto the horizontal space ℋ, defined as the

orthogonal complement of the vertical space, i.e., ℋ ≜ 𝒩⊥. We note that 𝑃𝐻 is

symmetric, and so is 𝐻(𝑅). Furthermore, it holds that 𝑔(𝑅) = 𝑃𝐻𝑔(𝑅), which

follows from known results on optimization over quotient manifolds (see Remark 8.2

for details). Intuitively, including 𝑃𝐻 in (8.13) accounts for the gauge symmetry

by eliminating the effect of any vertical component from 𝑣. The following theorem

reveals an interesting connection between 𝐻(𝑅) defined in (8.13) and the Laplacian

of the underlying graph.

Theorem 8.1 (Local Hessian Approximation for Rotation Averaging). Let 𝑅 ∈

SO(𝑑)𝑛 denote the set of ground truth rotations from which the noisy measurements̃︀𝑅𝑖𝑗 are generated according to (2.11). For any 𝛿 ∈ (0, 1/2), there exist constants

𝜃, 𝑟 > 0 such that if,

d(̃︀𝑅𝑖𝑗, 𝑅
⊤
𝑖 𝑅𝑗) ≤ 𝜃, ∀(𝑖, 𝑗) ∈ ℰ , (8.14)

200

then for all 𝑅 ∈ 𝐵𝑟(𝑅
⋆) = {𝑅 ∈ SO(𝑑)𝑛 : d(𝑅,𝑅⋆) < 𝑟} where 𝑅⋆ ∈ SO(𝑑)𝑛 is a

global minimizer of Problem 8.1, it holds that,

𝐻(𝑅) ≈𝛿 𝐿(𝐺;𝑤)⊗ 𝐼𝑝. (8.15)

In (8.15), 𝐺 = (𝒱 , ℰ) is the measurement graph. For each edge (𝑖, 𝑗) ∈ ℰ, its edge

weight 𝑤𝑖𝑗 used in (8.15) is given by 𝑤𝑖𝑗 = 𝜅𝑖𝑗 for the squared geodesic distance cost

(8.6a), and 𝑤𝑖𝑗 = 2𝜅𝑖𝑗 for the squared chordal distance cost (8.6b).

Before proceeding, we note that Theorem 8.1 directly implies the following bound

on the Hessian 𝐻(𝑅).

Corollary 8.1 (Local Hessian Bound and Condition Number for Rotation Averag-

ing). Under the assumptions of Theorem 8.1, define constants 𝜇𝐻 = 𝑒−𝛿𝜆2(𝐿(𝐺;𝑤))

and 𝐿𝐻 = 𝑒𝛿𝜆𝑛(𝐿(𝐺;𝑤)). Then for all 𝑅 ∈ 𝐵𝑟(𝑅
⋆),

𝜇𝐻𝑃𝐻 ⪯ 𝐻(𝑅) ⪯ 𝐿𝐻𝑃𝐻 . (8.16)

In the following, 𝜅𝐻 = 𝐿𝐻/𝜇𝐻 is referred to as the condition number.

We prove Theorem 8.1 and Corollary 8.1 in Appendix D.2. Theorem 8.1 shows

that under small measurement noise, the Hessian near a global minimizer is well

approximated by the Laplacian of an appropriately weighted graph.2 In Figure 8-

2, we perform numerical validation of this result using synthetic chordal rotation

averaging problems defined over a 3D grid with 125 rotation variables (Figure 8-2a).

With a probability of 0.3, we generate noisy relative measurements between pairs of

nearby rotations, corrupted by increasing levels of Langevin noise [14, Appendix A].

At each noise level, we obtain the global minimizer 𝑅⋆ (global optimality is certified

2Currently, Theorem 8.1 only shows the existence of constants 𝜃, 𝑟 > 0 such that the approxi-
mation relation (8.15) holds. In a nutshell, this is because our proof is based on the following key
relation that holds in the limit: if we define 𝜃𝑖𝑗(𝑅) = d(̃︀𝑅𝑖𝑗 , 𝑅

⊤
𝑖 𝑅𝑗) as the measurement residual of

edge (𝑖, 𝑗) ∈ ℰ at a solution 𝑅 ∈ SO(𝑑)𝑛, then we can show that 𝐻(𝑅)→ 𝐿(𝐺;𝑤)⊗𝐼𝑝 as 𝜃𝑖𝑗(𝑅)→ 0
for all (𝑖, 𝑗) ∈ ℰ ; see discussions around (D.55) in the appendix. While it would be interesting to
derive explicit and accurate bounds for 𝜃 and 𝑟 (as a function of 𝛿), this would require a substantial
improvement to our current proof technique, which we leave for future work.

201

(a) Grid simulation

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) Empirical values of 𝛿

Figure 8-2: Empirical validation of the Hessian approximation relation in Theorem 8.1. (a)
Example synthetic chordal rotation averaging problem with 125 rotations. Each rotation
is visualized as an oriented camera. Each blue edge shows a relative rotation measurement
corrupted by Langevin noise. (b) Evolution of the empirical approximation constant 𝛿 such
that 𝐻(𝑅⋆) ≈𝛿 𝐿⊗ 𝐼𝑝. We perform 20 random runs for each noise level. Solid line denotes
the average value for 𝛿 and the surrounding shaded area shows one standard deviation.

using the approach in [13]) and numerically compute the smallest constant 𝛿 such that

𝐻(𝑅⋆) ≈𝛿 𝐿 ⊗ 𝐼𝑝. Figure 8-2b shows the evolution of the empirical approximation

constant 𝛿 as a function of noise level. In the special case when there is no noise,

it can be shown that 𝐻(𝑅⋆) = 𝐿 ⊗ 𝐼𝑝, and thus the empirical 𝛿 is zero. In general,

the empirical value of 𝛿 increases smoothly as the noise level increases. Since the

Hessian 𝐻(𝑅) varies smoothly with 𝑅, our results confirm that the Laplacian is a

good approximation of the Hessian locally around 𝑅⋆, as predicted by Theorem 8.1.

The result in Theorem 8.1 directly motivates an approximate Newton method that

replaces the Hessian with its Laplacian approximation. Specifically, instead of solving

(8.13), one solves the following approximate Newton system,

(𝐿(𝐺;𝑤)⊗ 𝐼𝑝) 𝑣 = −𝑔(𝑅). (8.17)

In the following, it would be more convenient to consider the matrix form of the above

202

linear system. For this purpose, let us define matrices 𝑉,𝐵(𝑅) ∈ R𝑛×𝑝,

𝑉 ≜

⎡⎢⎢⎢⎣
𝑣⊤1
...

𝑣⊤𝑛

⎤⎥⎥⎥⎦ , 𝐵(𝑅) ≜

⎡⎢⎢⎢⎣
−𝑔1(𝑅)⊤

...

−𝑔𝑛(𝑅)⊤

⎤⎥⎥⎥⎦ . (8.18)

Using properties of the Kronecker product, we can show that (8.17) is equivalent to,

𝐿(𝐺;𝑤)𝑉 = 𝐵(𝑅). (8.19)

Algorithm 8.1 shows the pseudocode of the approximate Newton algorithm. Com-

pared to the original Newton’s method, Algorithm 8.1 uses a constant matrix across all

iterations, and hence could be significantly more computationally efficient by avoiding

to re-compute and re-factorize the Hessian matrix at every iteration. For this reason,

we believe that Algorithm 8.1 could be of independent interest for standard (central-

ized) rotation averaging. Furthermore, in Section 8.4, we show that Algorithm 8.1

admits communication-efficient extensions in multi-robot settings.

Remark 8.1 (Connections with prior work). Theorem 8.1 leverages prior theories

developed by Tron [29] and Wilson et al. [126, 127] and extend them to cover rota-

tion averaging under both geodesic and chordal distance metrics. Nasiri et al. [128]

first developed Algorithm 8.1 for chordal rotation averaging using a Gauss-Newton

formulation. In contrast, we motivate Algorithm 8.1 by proving the theoretical ap-

proximation relation between the Hessian and the graph Laplacian (Theorem 8.1).

Lastly, the theoretical approximation relation we establish also allows us to prove

local linear convergence for our methods.

Remark 8.2 (Feasibility of the approximate Newton system). Using the properties

of the graph Laplacian and the Kronecker product, we see that ker(𝐿(𝐺;𝑤)⊗𝐼𝑝) = 𝒩

where 𝒩 is the vertical space defined in (8.11). Furthermore, in [18, Chapter 9.8], it

is shown that 𝑔(𝑅) ⊥ 𝒩 . Thus, we conclude that 𝑔(𝑅) ∈ image(𝐿(𝐺;𝑤) ⊗ 𝐼𝑝), i.e.,

the linear system (8.17) and its equivalent matrix form (8.19) are always feasible. In

fact, the system is singular and hence admits infinitely many solutions. Similar to

203

Algorithm 8.1 Approximate Newton’s Method for Rotation Averaging
1: for iteration 𝑘 = 0, 1, . . . do
2: Compute approximate Newton update by solving 𝐿(𝐺;𝑤)𝑉 𝑘 = 𝐵(𝑅𝑘).
3: Update iterate by 𝑅𝑘+1

𝑖 = Exp(𝑣𝑘𝑖)𝑅
𝑘
𝑖 , for all 𝑖 ∈ [𝑛].

4: end for

the original Newton’s method on quotient manifold, we will select the minimum norm

solution 𝑣 which guarantees that 𝑣 ⊥ 𝒩 .

8.3.2 Translation Estimation

Unlike rotation averaging, translation estimation (Problem 8.2) is a convex linear

least squares problem. In particular, it can be shown that Problem 8.2 is equivalent

to a linear system involving the graph Laplacian 𝐿(𝐺; 𝜏), where 𝜏 : ℰ → R>0 is

the edge weight function that assigns each edge (𝑖, 𝑗) ∈ ℰ a weight given by the

corresponding translation measurement weight 𝜏𝑖𝑗 in Problem 8.2. Denote 𝑀𝑡 =[︁
𝑡1 . . . 𝑡𝑛

]︁⊤
∈ R𝑛×𝑑 as the matrix where each row corresponds to a translation

vector to be estimated. One can show that the optimal translations are solutions of,

𝐿(𝐺; 𝜏)𝑀𝑡 = 𝐵𝑡, (8.20)

where 𝐵𝑡 ∈ R𝑛×𝑑 is a constant matrix that only depends on the measurements.

Furthermore, each column of 𝐵𝑡 belongs to the image of the Laplacian 𝐿(𝐺; 𝜏), so

(8.20) is always feasible; see [14, Appendix B.2] for details. To conclude this section,

we note that similar to rotation averaging, translation estimation (Problem 8.2) is

subject to a gauge symmetry. Specifically, two translation solutions 𝑀𝑡 and 𝑀 ′
𝑡 are

equivalent if they only differ by a global translation. Mathematically, this means that

𝑀𝑡 = 𝑀 ′
𝑡 + 1𝑛𝑐

⊤ where 1𝑛 ∈ R𝑛 is the vector of all ones and 𝑐 ∈ R𝑑 is some constant

vector.

204

8.4 Algorithms and Performance Guarantees

In Section 8.3, we have shown that Laplacian systems naturally arise when solving

the rotation averaging and translation estimation problems; see (8.19) and (8.20),

respectively. Recall that we seek to find the solution 𝑋 ∈ R𝑛×𝑝 to a linear system of

the form,

𝐿𝑋 = 𝐵, (8.21)

where 𝐿 ∈ 𝒮𝑛
+ is the Laplacian of the multi-robot measurement graph (see Figure 8-

1a), and each column of 𝐵 ∈ R𝑛×𝑝 is in the image of 𝐿 so that (8.21) is always

feasible. In Section 8.4.1, we develop a communication-efficient solver for (8.21) un-

der the server-client architecture. Then, in Section 8.4.2 and Section 8.4.3, we use the

developed solver to design communication-efficient algorithms for collaborative rota-

tion averaging and translation estimation, and establish convergence guarantees for

both cases. Lastly, in Section 8.4.4, we present extension to outlier-robust estimation

based on GNC.

8.4.1 A Collaborative Laplacian Solver with Spectral Sparsi-

fication

We propose to solve (8.21) using the domain decomposition framework [67, Chap-

ter 14], which has been utilized in earlier works such as DDF-SAM [55–57] to solve

collaborative SLAM problems. This is motivated by the fact that in the multi-robot

measurement graph with 𝑚 robots, there is a natural disjoint partitioning of the

vertex set 𝒱 :

𝒱 = 𝒱1 ⊎ . . . ⊎ 𝒱𝑚, (8.22)

where 𝒱𝛼 contains all vertices (variables) of robot 𝛼 ∈ [𝑚]. Furthermore, 𝒱𝛼 can be

partitioned as 𝒱𝛼 = ℱ𝛼 ⊎ 𝒞𝛼 where 𝒞𝛼 denotes all separator (interface) vertices and

ℱ𝛼 denotes all interior vertices of robot 𝛼. In multi-robot SLAM, the separators are

given by the set of variables that have inter-robot measurements; see Figure 8-1a.

Note that given the set of all separators 𝒞 = 𝒞1 ⊎ . . . ⊎ 𝒞𝑚, robots’ interior vertices

205

ℱ𝛼 become disconnected from each other. The natural vertex partitioning in (8.22)

further gives rise to a disjoint partitioning of the edge set,

ℰ = ℰ1 ⊎ . . . ⊎ ℰ𝑚 ⊎ ℰ𝑐. (8.23)

For each robot 𝛼 ∈ [𝑚], its local edge set ℰ𝛼 consists of all edges that connect two

vertices from 𝒱𝛼. In Figure 8-1a, the local edges are shown using colors corresponding

to the robots. The remaining inter-robot edges form ℰ𝑐, which are highlighted as bold

black edges in Figure 8-1a.

In domain decomposition, we adopt a variable ordering in which the interior nodes

ℱ = ℱ1 ⊎ . . .⊎ℱ𝑚 appear before the separators 𝒞 = 𝒞1 ⊎ . . .⊎𝒞𝑚. With this variable

ordering, the Laplacian system (8.21) can be rewritten as,

⎡⎢⎢⎢⎢⎢⎢⎣
𝐿11 𝐿1𝑐

.

𝐿𝑚𝑚 𝐿𝑚𝑐

𝐿𝑐1 . . . 𝐿𝑐𝑚 𝐿𝑐𝑐

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑋1

...

𝑋𝑚

𝑋𝑐

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐵1

...

𝐵𝑚

𝐵𝑐

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.24)

For 𝛼 ∈ [𝑚], 𝑋𝛼 and 𝐵𝛼 denote the rows of 𝑋 and 𝐵 in (8.21) that correspond to

robot 𝛼’s interior variables ℱ𝛼. On the other hand, we treat separators from all robots

as a single block 𝒞 = 𝒞1 ⊎ . . . ⊎ 𝒞𝑚, and use 𝑋𝑐 and 𝐵𝑐 to denote the rows of 𝑋 and

𝐵 that correspond to the separator block 𝒞.

Remark 8.3 (Computation of (8.24) under the server-client architecture). Under the

server-client architecture we consider, the overall Laplacian system (8.24) is stored

distributedly across the robots (clients) and the server. Specifically, since each robot

𝛼 knows the subgraph induced by its own vertices 𝒱𝛼 (e.g., in Figure 8-1a, robot 2

knows all edges incident to the blue vertices), it independently computes and stores

its Laplacian blocks 𝐿𝛼𝛼 and 𝐿𝛼𝑐. Similarly, each robot 𝛼 also independently com-

putes and stores the block 𝐵𝛼. Meanwhile, we assume that the blocks defined over

separators 𝐿𝑐𝑐 and 𝐵𝑐 are handled by the central server that performs additional

computations.

206

In (8.24), the special “arrowhead” sparsity pattern motivates us to first solve the

reduced system defined over the separators,⎛⎝𝐿𝑐𝑐 −
∑︁
𝛼∈[𝑚]

𝐿𝑐𝛼𝐿
−1
𝛼𝛼𝐿𝛼𝑐

⎞⎠
⏟ ⏞

𝑆=Sc(𝐿,ℱ)

𝑋𝑐 = 𝐵𝑐 −
∑︁
𝛼∈[𝑚]

𝐿𝑐𝛼𝐿
−1
𝛼𝛼𝐵𝛼⏟ ⏞

𝑈

. (8.25)

In the following, let us define 𝑈𝛼 ≜ 𝐿𝑐𝛼𝐿
−1
𝛼𝛼𝐵𝛼 for each robot 𝛼 ∈ [𝑚]. Then, the

matrix on the right-hand side of (8.25) can be written as,

𝑈 ≜ 𝐵𝑐 −
∑︁
𝛼∈[𝑚]

𝑈𝛼. (8.26)

Meanwhile, the matrix 𝑆 defined on the left-hand side of (8.25) is the Schur comple-

ment resulting from eliminating all interior nodes ℱ from the full Laplacian matrix

𝐿, denoted as 𝑆 = Sc(𝐿,ℱ). The next lemma shows 𝑆 is the sum of multiple smaller

Laplacian matrices.

Lemma 8.1. For each robot 𝛼 ∈ [𝑚], define 𝐺𝛼 = (ℱ𝛼 ⊎ 𝒞, ℰ𝛼) as its local graph

induced by its interior edges ℰ𝛼. Let 𝑆𝛼 be the matrix resulting from eliminating

robot 𝛼’s interior vertices ℱ𝛼 from the Laplacian of 𝐺𝛼, i.e., 𝑆𝛼 = Sc(𝐿(𝐺𝛼),ℱ𝛼).

Furthermore, define 𝐺𝑐 = (𝒞, ℰ𝑐) as the graph induced by inter-robot loop closures ℰ𝑐.

Then, the matrix 𝑆 that appears in (8.25) can be written as,

𝑆 = 𝐿(𝐺𝑐) +
∑︁
𝛼∈[𝑚]

𝑆𝛼. (8.27)

Lemma 8.1 is proved in Appendix D.3.1. Since Laplacian matrices are closed under

Schur complements [141, Fact 4.2], each 𝑆𝛼 defined in Lemma 8.1 is also a Laplacian

matrix.3 Furthermore, as a result of Remark 8.3, each robot 𝛼 can independently
3In Lemma 8.1, we can technically define 𝐺𝛼 = (ℱ𝛼 ⊎ 𝒞𝛼, ℰ𝛼) since ℰ𝛼 only involves robot 𝛼’s

vertices. However, we choose to involve all separators and define 𝐺𝛼 = (ℱ𝛼 ⊎ 𝒞, ℰ𝛼), where any
separator from 𝒞 ∖ 𝒞𝛼 simply does not have any edges. This is done for notation simplicity, so that
after eliminating ℱ𝛼 from 𝐺𝛼, the resulting 𝑆𝛼 matrix is defined over all separators and thus can be
added together as in (8.27).

207

Algorithm 8.2 Sparsified Schur Complement

1: function ̃︀𝑆 = SparsifiedSchurComplement(𝐿, 𝜖)
2: for each robot 𝛼 in parallel do
3: Compute a sparse approximation ̃︀𝑆𝛼 such that ̃︀𝑆𝛼 ≈𝜖 𝑆𝛼.
4: Upload ̃︀𝑆𝛼 to the server.
5: end for
6: Server computes and stores ̃︀𝑆 = 𝐿(𝐺𝑐) +

∑︀
𝛼∈[𝑚]

̃︀𝑆𝛼.
7: end function

Algorithm 8.3 Sparsified Laplacian Solver

1: function 𝑋 = SparsifiedLaplacianSolver(𝐿, 𝐵, ̃︀𝑆)
2: for each robot 𝛼 in parallel do
3: Compute 𝑈𝛼 = 𝐿𝑐𝛼𝐿

−1
𝛼𝛼𝐵𝛼.

4: Upload 𝑈𝛼 to the server.
5: end for
6: Server collects 𝑈𝛼 and computes 𝑈 = 𝐵𝑐 −

∑︀
𝛼∈[𝑚] 𝑈𝛼.

7: Server solves ̃︀𝑆𝑋𝑐 = 𝑈 (where ̃︀𝑆 is obtained from Algorithm 8.2), and broadcasts
solution 𝑋𝑐 to all robots.

8: for each robot 𝛼 in parallel do
9: Compute interior solution 𝑋𝛼 = 𝐿−1𝛼𝛼 (𝐵𝛼 − 𝐿𝛼𝑐𝑋𝑐) .

10: end for
11: end function

compute 𝑆𝛼 = Sc(𝐿(𝐺𝛼),ℱ𝛼) and 𝑈𝛼 = 𝐿𝑐𝛼𝐿
−1
𝛼𝛼𝐵𝛼. This observation motivates a

method in which robots first transmit their 𝑆𝛼 and 𝑈𝛼 to the server in parallel. Upon

collecting 𝑆𝛼 and 𝑈𝛼 from all robots, the server can then form 𝑆 using (8.27) and

𝑈 using (8.26). It then solves the linear system 𝑆𝑋𝑐 = 𝑈 (8.25) and broadcasts the

solution 𝑋𝑐 back to all robots. Finally, once robots receive the separator solutions

𝑋𝑐, they can in parallel recover their interior solutions via back-substitution,

𝑋𝛼 = 𝐿−1𝛼𝛼 (𝐵𝛼 − 𝐿𝛼𝑐𝑋𝑐) . (8.28)

The aforementioned method is a multi-robot implementation of domain decomposi-

tion. While it effectively exploits the separable structure in the problem, this method

can incur significant communication cost as it requires each robot 𝛼 to transmit its

Schur complement matrix 𝑆𝛼 that is potentially dense. This issue is illustrated in

Figure 8-1b, where for robot 2 (blue) its 𝑆𝛼 corresponds to a dense graph over its

separators.

208

In the following, we propose an approximate domain decomposition algorithm that

is significantly more communication-efficient while providing provable approximation

guarantees. Our method is based on the facts that (i) each local Schur complement

𝑆𝛼 is itself a graph Laplacian, and (ii) graph Laplacians admit spectral sparsifica-

tions [135], i.e., for a given approximation threshold 𝜖 > 0, one can compute a sparse

Laplacian ̃︀𝑆𝛼 such that ̃︀𝑆𝛼 ≈𝜖 𝑆𝛼. Generally, a larger value of 𝜖 leads to a sparser̃︀𝑆𝛼. In this work, we implement the method of Spielman and Srivastava [136] that

sparsifies 𝑆𝛼 by sampling edges in the corresponding dense graph based on their effec-

tive resistances. Intuitively, the effective resistances measure the importance of edges

to the overall graph connectivity. The sparse matrix ̃︀𝑆𝛼 produced by this method

has 𝑂(|𝒞| log |𝒞|) entries, as opposed to the worst case 𝑂(|𝒞|2) entries in 𝑆𝛼. Ap-

pendix D.1 provides the complete description and pseudocode of the sparsification

algorithm. Figure 8-1c illustrates a spectral sparsification for robot 2’s dense reduced

graph. In the proposed method, each robot transmits its sparse approximation ̃︀𝑆𝛼 in-

stead of the original Schur complement 𝑆𝛼. By summing together these ̃︀𝑆𝛼 matrices,

the server can obtain a sparse approximation to the original dense Schur complement

𝑆; see Algorithm 8.2. Then, we can follow the same procedure as standard domain

decomposition to obtain an approximate solution to the Laplacian system (8.21); see

Algorithm 8.3. Specifically, the server first solves an approximate reduced system

using ̃︀𝑆 obtained from Algorithm 8.2 (line 7). Then, the interior solution for each

robot is recovered using back-substitution (line 9).

Together, Algorithms 8.2 and 8.3 provide a parallel procedure for computing an

approximate solution to the original Laplacian system (8.21) in the server-client ar-

chitecture. Crucially, the use of spectral sparsifiers allows us to establish theoretical

guarantees on the accuracy of the approximate solution as stated in the following

theorem.

Theorem 8.2 (Approximation guarantees of Algorithms 8.2 and 8.3). Given a Lapla-

cian system 𝐿𝑋 = 𝐵, Algorithms 8.2 and 8.3 together return a solution ̃︀𝑋 ∈ R𝑛×𝑝

209

0 0.5 1
0

1

2

3

Sparsification parameter 𝜖

B
ou

nd
𝑐(
𝜖)

Figure 8-3: Visualization of 𝑐(𝜖) in Theorem 8.2.

such that ̃︀𝐿 ̃︀𝑋 = 𝐵, where ̃︀𝐿 ∈ 𝒮𝑛
+ satisfies,

̃︀𝐿 ≈𝜖 𝐿. (8.29)

Furthermore, let 𝑋⋆ ∈ R𝑛×𝑝 be an exact solution to the input linear system, i.e.,

𝐿𝑋⋆ = 𝐵. It holds that, ⃦⃦⃦ ̃︀𝑋 −𝑋⋆
⃦⃦⃦
𝐿
≤ 𝑐(𝜖) ‖𝑋⋆‖𝐿 , (8.30)

where the constant 𝑐(𝜖) is defined as,

𝑐(𝜖) =
√
1 + 𝑒2𝜖 − 2𝑒−𝜖. (8.31)

We prove Theorem 8.2 in Appendix D.3.2. We have shown that the approximate

solution ̃︀𝑋 produced by Algorithms 8.2 and 8.3 remains close to the exact solution

𝑋⋆ when measured using the “norm” induced by the original Laplacian 𝐿.4 Further-

more, the quality of the approximation is controlled by the sparsification parameter

𝜖 through the function 𝑐(𝜖) visualized in Figure 8-3. Note that when 𝜖 = 0, sparsifi-

cation is effectively skipped and robots transmit the original dense matrices 𝑆𝛼. In

this case, we have 𝑐(𝜖) = 0 and the solution ̃︀𝑋 produced by our methods is exact,

i.e., 𝐿 ̃︀𝑋 = 𝐵. Meanwhile, by increasing 𝜖, our methods smoothly trade off accuracy

with communication efficiency.

4The reader might question the use of ‖·‖𝐿 in (8.30) because the Laplacian 𝐿 is singular. Indeed,
due to the singularity of 𝐿, ||𝑋⋆ − ̃︀𝑋||𝐿 ignores any component of 𝑋⋆ − ̃︀𝑋 that lives on the kernel
of 𝐿, which is spanned by the vector of all ones 1𝑛. However, this does not create a problem for us
since we only seek to compare 𝑋⋆ and ̃︀𝑋 when considering both as solutions to the Laplacian system
𝐿𝑋 = 𝐵, and using ‖·‖𝐿 naturally eliminates any difference on ker(𝐿) that is inconsequential.

210

Remark 8.4 (Connections with existing Laplacian solvers [141, 142]). Our collabo-

rative Laplacian solver (Algorithms 8.2 and 8.3) is inspired by the centralized solvers

developed in [141, 142] for solving Laplacian systems in nearly linear time. However,

our result differs from these works by focusing on the use of spectral sparsification

in the multi-robot setting to achieve communication efficiency. Furthermore, in Sec-

tion 8.4.2, we apply our Laplacian solver on the non-convex Riemannian optimization

problem underlying rotation averaging, and establish provable convergence guarantees

for the resulting Riemannian optimization algorithm.

Remark 8.5 (Communication efficiency of Algorithms 8.2 and 8.3). We discuss the

communication costs of Algorithms 8.2 and 8.3 under the server-client architecture.

Denote the number of separators in the measurement graph as |𝒞|. In Algorithm 8.2,

each robot uploads the sparsified matrix ̃︀𝑆𝛼 to the server (line 4), which is guaranteed

to have 𝑂(|𝒞| log |𝒞|) entries [136]. Consequently, Algorithm 8.2 incurs a total upload

cost of 𝑂(𝑚|𝒞| log |𝒞|), where 𝑚 is the number of robots. In Algorithm 8.3, robots

upload their block vectors 𝑈𝛼 in parallel (line 4) and the server broadcasts back the

solution 𝑋𝑐 (line 7). Since both 𝑈𝛼 and 𝑋𝑐 have a dimension of |𝒞|-by-𝑝 (where

𝑝 = dimSO(𝑑) is constant), Algorithm 8.3 uses 𝑂(𝑚|𝒞|) communication in both

upload and download stages.

8.4.2 Collaborative Rotation Averaging

In this section, we utilize the Laplacian solver developed in the previous section to

design a fast and communication-efficient solver for rotation averaging. Recall the

centralized method in Algorithm 8.1, where each iteration solves a Laplacian system

𝐿𝑉 = 𝐵(𝑅). In the multi-robot setting, we can use the solver developed in Sec-

tion 8.4.1 to obtain an approximate solution to this system. Algorithm 8.4 shows the

pseudocode. First, an initial guess 𝑅0 is computed (line 1). Then, at line 2, robots

first form the approximate Schur complement ̃︀𝑆 using SparsifiedSchurComple-

ment (Algorithm 8.2). Each iteration consists of three main steps. At the first step

(line 4-8), robots compute and store the right-hand side 𝐵(𝑅). Specifically, recall

211

Algorithm 8.4 Collaborative Rotation Averaging

1: Initialize rotation estimates 𝑅0.
2: ̃︀𝑆 = SparsifiedSchurComplement(𝐿, 𝜖).
3: for iteration 𝑘 = 0, 1, . . . do
4: // Distributed computation of 𝐵(𝑅𝑘)
5: Server computes 𝐵(𝑅𝑘)𝑐 that corresponds to all separators.
6: for each robot 𝛼 in parallel do
7: Compute 𝐵(𝑅𝑘)𝛼 that corresponds to interior ℱ𝛼.
8: end for
9: // Single round of communication to compute 𝑉 𝑘

10: Solve 𝑉 𝑘 = SparsifiedLaplacianSolver(𝐿,𝐵(𝑅𝑘), ̃︀𝑆).
11: // Distributed updates of all rotation variables
12: for each robot 𝛼 in parallel do
13: Update iterates by 𝑅𝑘+1

𝑖 = Exp(𝑣𝑘𝑖)𝑅
𝑘
𝑖 , for each rotation variable 𝑅𝑖 owned by

robot 𝛼.
14: end for
15: end for

from Remark 8.3 that the overall 𝐵(𝑅) is divided into multiple blocks,

𝐵(𝑅) =
[︁
𝐵(𝑅)⊤1 . . . 𝐵(𝑅)⊤𝑚 𝐵(𝑅)⊤𝑐

]︁⊤
. (8.32)

In our algorithm, each robot 𝛼 ∈ [𝑚] computes the block 𝐵(𝑅)𝛼 corresponding to its

interior variables ℱ𝛼, and the server computes the block 𝐵(𝑅)𝑐 corresponding to all

separators. At the second step (line 10), robots collaboratively solve for the update

vector 𝑉 𝑘 by calling SparsifiedLaplacianSolver (Algorithm 8.3). Finally, at the

last step (line 11-14), we obtain the next iterate using the solutions 𝑉 𝑘, where robots

in parallel update the rotation variables they own.

In the following, we proceed to establish theoretical guarantees for our collab-

orative rotation averaging algorithm. We will show that starting from a suitable

initial guess, Algorithm 8.4 converges to a global minimizer at a linear rate. One

might be tempted to state the linear convergence result on the total space, i.e.,

d(𝑅𝑘+1, 𝑅⋆) ≤ 𝛾 d(𝑅𝑘, 𝑅⋆) where 𝑘 is the iteration number, 𝛾 ∈ (0, 1) is a constant,

and 𝑅⋆ is a global minimizer. However, it is challenging to prove this statement due

to the gauge symmetry of rotation averaging. The iterates {𝑅𝑘} might converge to a

212

𝐻(𝑅)𝑣 = −𝑔(𝑅) (𝐿 ⊗ 𝐼𝑝)𝑣 = −𝑔(𝑅) (̃︀𝐿 ⊗ 𝐼𝑝)𝑣 = −𝑔(𝑅)
Thm. 8.1 Thm. 8.2

Figure 8-4: Intuitions behind the convergence rate in Theorem 8.3. Recall from Theorem 8.1
that under bounded measurement noise, the original Newton system (left box) is locally 𝛿-
approximated by a linear system specified by a Laplacian 𝐿 (middle box). In addition, in
Theorem 8.2 we have shown that our distributed Laplacian solver approximates 𝐿 with ̃︀𝐿
where 𝐿 ≈𝜖

̃︀𝐿 (right box). The composition of the two approximation relations thus gives
𝐻(𝑅) ≈𝛿+𝜖 (̃︀𝐿⊗ 𝐼𝑝), which intuitively explains why (8.34) depends on a function of 𝛿 + 𝜖.

solution 𝑅∞ that is only equivalent to 𝑅⋆ up to a global rotation, i.e.,

(𝑆𝑅∞1 , . . . , 𝑆𝑅∞𝑛) = (𝑅⋆
1, . . . , 𝑅

⋆
𝑛), for some 𝑆 ∈ SO(𝑑), (8.33)

and as a result d(𝑅∞, 𝑅⋆) ̸= 0 in general. Fortunately, this issue can be resolved using

the machinery of Riemannian quotient manifolds. Instead of measuring the distance

on the total space d(𝑅𝑘, 𝑅⋆), we will compute the distance between the underlying

equivalence classes d([𝑅𝑘], [𝑅⋆]). We note that d([𝑅𝑘], [𝑅⋆]) is well-defined since a

quotient manifold inherits the Riemannian metric from its total space [18, Chapter 9].

Equipped with this distance metric, we are ready to formally state the convergence

result for Algorithm 8.4.

Theorem 8.3 (Convergence rate of Algorithm 8.4). Define 𝛾(𝑥) = 2
√
𝜅𝐻𝑐(𝑥) where

𝜅𝐻 = 𝐿𝐻/𝜇𝐻 is the condition number in Corollary 8.1 and 𝑐(·) is defined in (8.31).

Under the assumptions of Theorem 8.1, suppose 𝜖 is selected such that 𝛾(𝛿 + 𝜖) < 1.

In addition, suppose at each iteration 𝑘, the update vector 𝑣𝑘 ∈ R𝑝𝑛 is orthogonal to

the vertical space, i.e., 𝑣𝑘 ⊥ 𝒩 . Let 𝑅⋆ be an optimal solution to Problem 8.1. There

exists 𝑟′ > 0 such that for any 𝑅0 where d([𝑅0], [𝑅⋆]) < 𝑟′, Algorithm 8.4 generates an

infinite sequence {𝑅𝑘} where the corresponding sequence of equivalence classes [𝑅𝑘]

converges linearly to [𝑅⋆]. Furthermore, the convergence rate factor is,

lim sup
𝑘→∞

d([𝑅𝑘+1], [𝑅⋆])

d([𝑅𝑘], [𝑅⋆])
= 𝛾(𝛿 + 𝜖). (8.34)

We prove Theorem 8.3 in Appendix D.4.2. Theorem 8.3 shows that using the

213

distance metric on the quotient manifold, Algorithm 8.4 locally converges to the global

minimizer at a linear rate.5 Figure 8-4 provides intuitions behind the convergence rate

in (8.34). Recall that 𝛿 appears in Theorem 8.1 where we show 𝐻(𝑅) ≈𝛿 (𝐿 ⊗ 𝐼𝑝)

under bounded measurement noise. On the other hand, 𝜖 is the parameter for spectral

sparsification and is controlled by the user. In Theorem 8.2, we showed that our

methods transform the input Laplacian 𝐿 into an approximation ̃︀𝐿 such that 𝐿 ≈𝜖
̃︀𝐿.

The composition of the two approximation relations thus gives 𝐻(𝑅) ≈𝛿+𝜖 (̃︀𝐿 ⊗ 𝐼𝑝),

which intuitively explains why the convergence rate depends on a function of 𝛿 + 𝜖.

Lastly, we note that while our theoretical convergence guarantees require 𝛾(𝛿+𝜖) < 1,

our experiments (Section 8.5) show that Algorithm 8.4 is not sensitive to the choice

of 𝜖 and converges under a wide range of parameter settings.

Remark 8.6 (Communication efficiency of Algorithm 8.4). In Algorithm 8.4, note

that only a single call to SparsifiedSchurComplement (Algorithm 8.2) is needed,

which incurs a total upload of 𝑂(𝑚|𝒞| log |𝒞|); see Remark 8.5. In each iteration, a

single call to SparsifiedLaplacianSolver (Algorithm 8.3) is made, which requires

a single round of upload and download. Furthermore, by Remark 8.5, both upload

and download costs are bounded by 𝑂(𝑚|𝒞|). Therefore, after 𝐾 > 0 iterations,

Algorithm 8.4 uses a total upload of 𝑂(𝑚|𝒞| log |𝒞| + 𝑚𝐾|𝒞|) and a total down-

load of 𝑂(𝑚𝐾|𝒞|). In particular, the terms that involve the number of iterations 𝐾

scales linearly with the number of separators |𝒞|, which makes the algorithm very

communication-efficient.

8.4.3 Collaborative Translation Estimation

Similar to rotation averaging, we can develop a fast and communication-efficient

method to solve translation estimation, which is equivalent to the Laplacian system

(8.20) as shown in Section 8.3.2. Specifically, we employ our collaborative Laplacian
5In Theorem 8.3, the orthogonality assumption 𝑣𝑘 ⊥ 𝒩 is needed to ensure that the update

vector 𝑣𝑘 corresponds to a valid tangent vector on the tangent space of the underlying quotient
manifold; see Appendix D.4.2 for details. One can satisfy this assumption by projecting 𝑣𝑘 to the
horizontal space, which requires a single round of communication between the server and robots.
However, in practice, we find that this has have negligible impact on the iterates and thus skip this
step in our implementation.

214

Algorithm 8.5 Collaborative Translation Estimation

1: Initialize translation estimates 𝑀0
𝑡 = 0𝑛×𝑑.

2: ̃︀𝑆 = SparsifiedSchurComplement(𝐿, 𝜖).
3: for iteration 𝑘 = 0, 1, . . . do
4: // Distributed computation of 𝐸𝑘

5: Server computes 𝐸𝑘
𝑐 that corresponds to all separators.

6: for each robot 𝛼 in parallel do
7: Compute 𝐸𝑘

𝛼 that corresponds to interior ℱ𝛼.
8: end for
9: // Single round of communication to compute 𝐷𝑘

10: Solve 𝐷𝑘 = SparsifiedLaplacianSolver(𝐿,𝐸𝑘, ̃︀𝑆).
11: // Distributed updates of all translations: 𝑀𝑘+1

𝑡 = 𝑀𝑘
𝑡 +𝐷𝑘

12: for each robot 𝛼 in parallel do
13: Update iterates by 𝑡𝑘+1

𝑖 = 𝑡𝑘𝑖 + (𝐷𝑘
[𝑖,:])

⊤ for each translation variable 𝑡𝑖 owned by
robot 𝛼.

14: end for
15: end for

solver (Section 8.4.1) in an iterative refinement framework. Let 𝑀𝑘
𝑡 ∈ R𝑛×𝑑 be our

estimate for the translation variables at iteration 𝑘 (in practice 𝑀0
𝑡 can simply be

initialized at zero). We seek a correction 𝐷𝑘 to 𝑀𝑘
𝑡 by solving the residual system

corresponding to (8.20):

𝐿(𝑀𝑘
𝑡 +𝐷𝑘) = 𝐵𝑡 ⇐⇒ 𝐿𝐷𝑘 = 𝐵𝑡 − 𝐿𝑀𝑘

𝑡 ≜ 𝐸𝑘. (8.35)

Observing that the system on the right-hand side of (8.35) is another Laplacian sys-

tem in 𝐿 ≡ 𝐿(𝐺; 𝜏), we can deploy our Laplacian solver to find an approximate

solution 𝐷𝑘. Algorithm 8.5 shows the pseudocode, which shares many similarities

with the proposed collaborative rotation averaging method Algorithm 8.4. In par-

ticular, the computation of the right-hand side 𝐸𝑘 (line 4-8) and the update step

(line 11-14) are performed in a distributed fashion. The two methods also share the

same communication complexity; see Remark 8.6. The following theorem states the

theoretical guarantees for Algorithm 8.5.

Theorem 8.4 (Convergence rate of Algorithm 8.5). Suppose 𝜖 is selected such that

the constant 𝑐(𝜖) defined in (8.31) satisfies 𝑐(𝜖) < 1. Let 𝑀⋆
𝑡 be an optimal solution

to Problem 8.2 and let 𝑀𝑘
𝑡 denote the solution computed by Algorithm 8.5 at iteration

215

𝑘 ≥ 1. It holds that, ⃦⃦
𝑀𝑘

𝑡 −𝑀⋆
𝑡

⃦⃦
𝐿
≤ 𝑐(𝜖)𝑘 ‖𝑀⋆

𝑡 ‖𝐿 , (8.36)

where 𝐿 ≡ 𝐿(𝐺; 𝜏).

We prove Theorem 8.4 in Appendix D.4.3. Theorem 8.4 is simpler compared to

its counterpart for rotation averaging (Theorem 8.3). The convergence rate (8.36)

only depends on the sparsification parameter 𝜖. Furthermore, since the translation

estimation problem is convex, the convergence guarantee is global and holds for any

initial guess.6 While Theorem 8.4 requires 𝑐(𝜖) < 1, our experiments show that

Algorithm 8.5 is not sensitive to the choice of sparsification parameter 𝜖 and converges

under a wide range of parameter settings.

8.4.4 Extension to Outlier-Robust Optimization

So far, we have considered estimation using the standard least squares cost function,

which is sensitive to outlier measurements that might arise in practice (e.g., due to

incorrect loop closures in multi-robot SLAM). In this section, we present an extension

to outlier-robust optimization by embedding the developed solvers in the graduated

non-convexity (GNC) framework [28, 189]. A similar extension has been developed

in Chapter 6, but under a fully distributed architecture instead of the server-client

architecture considered in this chapter. Specifically, we consider robust estimation

using the truncated least squares (TLS) cost:7

minimize
𝑥∈𝒳

∑︁
(𝑖,𝑗)∈ℰ

𝜌TLS(𝑒𝑖𝑗(𝑥)). (8.37)

In (8.37), 𝑥 ∈ 𝒳 is the model to be estimated, and 𝑒𝑖𝑗(𝑥) is the measurement error

associated with edge (𝑖, 𝑗) ∈ ℰ in the measurement graph. For the robust extension of

rotation averaging (Problem 8.1), we define 𝑥 = (𝑅1, . . . , 𝑅𝑛) ∈ SO(𝑑)𝑛, and 𝑒𝑖𝑗(𝑥) =

6In (8.36), the use of ‖·‖𝐿 naturally accounts for the global translation symmetry of Problem 8.2
(see Section 8.3.2). Specifically, since ker(𝐿) = image(1𝑛), ||𝑀𝑘

𝑡 −𝑀⋆
𝑡 ||𝐿 disregards any difference

between 𝑀𝑘
𝑡 and 𝑀⋆

𝑡 that corresponds to a global translation.
7Other robust cost functions, such as the Geman McClure function, can also be used in the same

framework; see [28].

216

√︀
𝜅𝑖𝑗/2d(𝑅𝑖

̃︀𝑅𝑖𝑗, 𝑅𝑗) where d(·, ·) is the geodesic or the chordal distance. For the

robust extension of translation estimation (Problem 8.2), we define 𝑥 = (𝑡1, . . . , 𝑡𝑛) ∈

R𝑑×𝑛 and 𝑒𝑖𝑗(𝑥) =
√︀

𝜏𝑖𝑗/2
⃦⃦
𝑡𝑗 − 𝑡𝑖 − ̂︀𝑡𝑖𝑗⃦⃦. Notice that 𝑒𝑖𝑗(𝑥) is simply the square root

of a single cost term in Problem 8.1 or Problem 8.2. Finally, 𝜌TLS(𝑒) ≜ min(𝑒2, 𝑒2)

denotes the TLS cost function, where 𝑒 is a constant threshold that specifies the

maximum acceptable error of inlier measurements. Intuitively, the TLS cost function

achieves robustness by eliminating the impact of any outliers with error larger than

𝑒.

To mitigate the non-convexity introduced by robust cost functions, GNC solves

(8.37) by optimizing a sequence of easier (i.e., less non-convex) surrogate functions

𝜌TLS
𝜇 that gradually converges to the original, highly non-convex cost function 𝜌TLS.

Here, 𝜇 is the control parameter and for the TLS function, it satisfies that (i) 𝜌TLS
𝜇 is

convex for 𝜇 → 0, and (ii) 𝜌TLS
𝜇 recovers 𝜌TLS for 𝜇 → +∞; see [28, Example 2]. In

practice, we initialize by setting 𝜇 ≈ 0, and gradually increase 𝜇 as optimization pro-

gresses. Furthermore, leveraging the Black-Rangarajan duality [189], each surrogate

problem can be formulated as follows,

minimize
𝑥∈𝒳 ,𝑤GNC

𝑖𝑗 ∈[0,1]

∑︁
(𝑖,𝑗)∈ℰ

[︀
𝑤GNC

𝑖𝑗 𝑒2𝑖𝑗(𝑥) + Φ𝜇(𝑤
GNC
𝑖𝑗)

]︀
. (8.38)

In (8.38), 𝑤GNC
𝑖𝑗 is a mutable weight attached to the measurement error 𝑒𝑖𝑗, and Φ𝜇

acts as a regularization term on the weight whose expression depends on the control

parameter 𝜇.

GNC leverages (8.38) by performing alternating updates on the model 𝑥 and the

weights 𝑤GNC
𝑖𝑗 , while simultaneously updating the control parameter 𝜇. Specifically,

each GNC outer iteration consists of three steps:

1. Variable update: optimize the surrogate problem (8.38) with respect to 𝑥, under

fixed weights 𝑤GNC
𝑖𝑗 . Notice that this amounts to a standard weighted least squares

problem,

minimize
𝑥∈𝒳

∑︁
(𝑖,𝑗)∈ℰ

𝑤GNC
𝑖𝑗 𝑒2𝑖𝑗(𝑥). (8.39)

217

Algorithm 8.6 Outlier-robust rotation averaging with GNC
1: Initialize control parameter 𝜇 and measurement weights by setting 𝑤𝑖𝑗 = 1 for all

measurements (𝑖, 𝑗) ∈ ℰ .
2: while not converged do
3: Variable update: under fixed weights, solve the weighted rotation averaging

problem by executing Algorithm 8.4 under the server-client architecture.
4: Weight update: in parallel, server computes (8.40) for all inter-robot mea-

surements ℰ𝑐, and each robot 𝛼 computes (8.40) for its local measurements ℰ𝛼.

5: Parameter update: in parallel, server and all robots updates the control
parameter 𝜇.

6: end while

2. Weight update: optimize the surrogate problem (8.38) with respect to all 𝑤GNC
𝑖𝑗 ,

under fixed model 𝑥. For TLS, the resulting 𝑤GNC
𝑖𝑗 has a closed-form solution,

𝑤GNC
𝑖𝑗 ←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if 𝑒2𝑖𝑗 ∈

[︁
𝜇+1
𝜇
𝑒2,+∞

]︁
,

𝑒
𝑒𝑖𝑗

√︀
𝜇(𝜇+ 1)− 𝜇, if 𝑒2𝑖𝑗 ∈

[︀
𝜇

𝜇+1
𝑒2, 𝜇+1

𝜇
𝑒2
]︀
,

1, if 𝑒2𝑖𝑗 ∈
[︀
0, 𝜇

𝜇+1
𝑒2],

(8.40)

where 𝑒𝑖𝑗 ≡ 𝑒𝑖𝑗(𝑥) is the current measurement error.

3. Parameter update: update control parameter 𝜇 via 𝜇 ← 1.4𝜇 (recommended in

[28, Remark 5]), and move on to the next surrogate problem.

Initially, all measurement weights are initialized at one.

Next, we show that our algorithms developed in this chapter can be used within

GNC to perform outlier-robust optimization. Algorithm 8.6 shows the pseudocode

for robust rotation averaging (the case for translation estimation is analogous). The

main observation is that, in the context of robust rotation averaging and translation

estimation, the weighted least squares problems (8.39) solved during the variable

update step have identical forms as Problems 8.1 and 8.2. The only difference is that

each measurement is now discounted by the GNC weight 𝑤GNC
𝑖𝑗 , as shown in (8.39).

Therefore, we can use Algorithm 8.4 to perform the variable update for rotation

averaging (line 3), and Algorithm 8.5 for translation estimation. Furthermore, the

218

weight update step can also be executed under the server-client architecture, where

each robot 𝛼 computes (8.40) for its local measurements ℰ𝛼, and the server handles

the inter-robot measurements ℰ𝑐; see line 4. Lastly, the server and all robots can in

parallel perform the parameter update step by updating their local copies of the

control parameter 𝜇 (line 5).

Remark 8.7 (Implementation details of GNC). We discuss several implementation

details for GNC.

• Initialization. In Chapter 6, we have observed that using an outlier-free initial

guess when solving the variable update step is critical to ensure good performance.

For multi-robot SLAM, we adopt the method described in Section 6.4 that aligns

each robot’s odometry in the global reference frame by solving a robust single pose

averaging problem. Notably, this method does not require iterative communication

and hence is very efficient.

• Known inliers. In many cases, a subset of measurements ℰin ⊆ ℰ are known to

be inliers. For instance, ℰin may contain robots’ odometry measurements. In our

implementation, we use the standard least squares cost for ℰin and only apply GNC

on the remaining measurements.

• Approximate optimization. Recall that each outer iteration of GNC invokes Al-

gorithm 8.4 or Algorithm 8.5 to perform the variable update step. Thus, when

the number of outer iterations is large, the resulting optimization might become

expensive in terms of both runtime and communication. However, in practice, we

observe that GNC only requires a few outer iterations before the resulting estimates

stabilize (see Section 8.5.3). This suggests that instead of running GNC to full con-

vergence (i.e., fully classifying each measurement as either inlier or outlier), we can

perform approximate optimization by limiting the number of outer iterations while

still achieving robust estimation. In our experiments, we set the maximum number

of GNC outer iterations to 20.

We conclude this subsection by noting that the linear convergence results (The-

orems 8.3 and 8.4) we prove in this chapter only hold for the outlier-free case. Ex-

219

tending the linear convergence to the case with outliers is challenging because GNC

(and the similar method of iterative reweighted least square) is itself a heuristic. Nev-

ertheless, our experiments demonstrate that in practice, the proposed outlier-robust

extension is very effective and produces accurate solutions on real-world SLAM and

SfM problems contaminated by outlier measurements.

8.5 Experimental Results

In this section, we extensively evaluate our proposed methods and demonstrate their

fast convergence and communication efficiency. In addition, we show that the combi-

nation of our rotation estimation and translation estimation algorithms can be used

for accurate PGO initialization. Sections 8.5.1 and 8.5.2 show evaluations using syn-

thetic and benchmark datasets. Then, Section 8.5.3 and Section 8.5.4 demonstrate

outlier-robust estimation using our approach on real-world collaborative SLAM and

SfM problems. Lastly, Section 8.5.5 provides additional discussions on the perfor-

mance of our approach in real-world problem instances. All algorithms are imple-

mented in MATLAB and evaluated on a computer with an Intel i7-7700K CPU and

16 GB RAM.

Performance Metrics. In the experiments, we use the following metrics to eval-

uate algorithm performance. First, we compute the evolution of gradient norm that

measures the rate of convergence. Second, to quantify communication efficiency, we

record the total communication used by an algorithm. For the server-client archi-

tecture, communication is reported for both the upload and download stages. When

evaluating the proposed PGO initialization method, we also compute the relative opti-

mality gap in the cost function, defined as (𝑓init−𝑓opt)/𝑓opt, where 𝑓init and 𝑓opt denote

the cost achieved by our initialization and the global minimizer, respectively. Lastly,

we also report the solution distance to the global minimizer and optionally to the

ground truth (the latter is only available in our synthetic experiments). Specifically,

for rotation estimation, we compute the distance between our solution ̂︀𝑅 ∈ SO(𝑑)𝑛

and the reference 𝑅ref ∈ SO(𝑑)𝑛 (either global minimizer or ground truth) using the

220

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
10

4

(a) Sparsity of ̃︀𝑆𝛼

0 1 2 3 4 5
10

-6

10
-4

10
-2

10
0

10
2

(b) Gradient norm vs. iterations

10
0

10
1

10
2

10
3

10
-6

10
-4

10
-2

10
0

10
2

(c) Gradient norm vs. uploads

0 50 100 150 200 250 300
10

-6

10
-4

10
-2

10
0

10
2

(d) Gradient norm vs. downloads

Figure 8-5: Evaluation of Algorithm 8.4 on the 5-robot rotation averaging problem from the
Cubicle dataset. (a) For each robot 𝛼, we show the number of nonzero entries (nnz) in its
sparsified matrix ̃︀𝑆𝛼 as a function sparsification parameter 𝜖. (b) Evolution of Riemannian
gradient norm as a function of iterations. (c) Evolution of Riemannian gradient norm as a
function of total uploads. (d) Evolution of Riemannian gradient norm as a function of total
downloads.

orbit distance:

RMSE(̂︀𝑅,𝑅ref) ≜ min
𝑆∈SO(𝑑)

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

⃦⃦⃦
𝑆 ̂︀𝑅𝑖 −𝑅ref

𝑖

⃦⃦⃦2
𝐹
. (8.41)

Intuitively, (8.41) computes the root-mean-square error (RMSE) between two sets of

rotations after alignment by a global rotation. The optimal alignment 𝑆 in (8.41)

has a closed-form expression; see [14, Appendix C.1]. Similarly, for translations, we

report the RMSE between our solution and the reference after a global alignment.

8.5.1 Evaluation of Estimation Accuracy and Communication

Efficiency

In this section, we evaluate the estimation accuracy and communication efficiency

221

of the proposed methods under varying problem setups and algorithm parameters.

Unless otherwise mentioned, we initialize Algorithm 8.4 using the distributed chordal

initialization approach in [38], where the number of iterations is limited to 50. Our

experiments mainly consider rotation averaging problems under the chordal distance

metric.

Impact of Spectral Sparsification on Convergence and Communication.

First, we evaluate the impact of spectral sparsification on convergence rate and com-

munication efficiency. We start by evaluating the proposed collaborative rotation

averaging solver (Algorithm 8.4), by simulating a 5-robot problem using the Cubicle

dataset. Recall that Algorithm 8.4 calls the SparsifiedSchurComplement pro-

cedure (Algorithm 8.2), which requires each robot 𝛼 to transmit its sparsified matrix̃︀𝑆𝛼. Figure 8-5a shows the number of nonzero entries in ̃︀𝑆𝛼 as a function of the spar-

sification parameter 𝜖. Note that when 𝜖 = 0, sparsification is effectively skipped

and each robot transmits its exact 𝑆𝛼 matrix that is potentially large and dense. In

Figure 8-5a, this is reflected on robot 1 (blue curve) whose exact 𝑆𝛼 matrix has more

than 2 × 104 nonzero entries and hence is expensive to transmit. However, spectral

sparsification significantly reduces the density of the matrix and hence improves com-

munication efficiency. In particular, for robot 1, applying sparsification with 𝜖 = 2

creates a sparse ̃︀𝑆𝛼 with 2300 nonzero entries, which is much sparser than the original

𝑆𝛼.

Next, we evaluate the convergence rate and communication efficiency of Algo-

rithm 8.4 with varying sparsification parameter 𝜖. We introduce three baseline meth-

ods for the purpose of comparison. The first baseline, called Newton in Figure 8-5,

implements the exact Newton update using domain decomposition, where each robot

computes and transmits the Schur complement of its local Hessian matrix to the

server. Inspired by existing works [66, 68–70], we also implement two baselines that

apply heuristic sparsification to Newton: in Block-Diagonal, each robot only transmits

the diagonal blocks of its Hessian Schur complement (this strategy is also known as

Jacobi preconditioning [67]), whereas in Block-Tree, each robot transmits both diago-

nal blocks and off-diagonal blocks that form a tree sparsity pattern. Figure 8-5b shows

222

the accuracy achieved by all methods (measured by norm of the Riemannian gradi-

ent) as a function of iterations. As expected, Newton achieves the best convergence

speed and converges to a high-precision solution in two iterations. However, when

combined with heuristic sparsifications in Block-Diagonal and Block-Tree, the resulting

methods have very slow convergence. Intuitively, this result shows that a diagonal

or tree sparsity pattern is not sufficient for preserving the spectrum of the original

dense matrix.8 In contrast, our proposed method achieves fast convergence under a

wide range of sparsification parameter 𝜖. Furthermore, by varying 𝜖, the proposed

method provides a principled way to trade off convergence speed with communication

efficiency.

Figure 8-5c visualizes the accuracy as a function of total uploads to the server.

Since both the Hessian and Laplacian matrices are symmetric, we only record the

communication when uploading their upper triangular parts as sparse matrices. To

convert the result to kilobyte (kB), we assume each scalar is transmitted in double

precision. Our results show that the proposed method achieves the best communica-

tion efficiency under various settings of the sparsification parameter 𝜖. Moreover, even

without sparsification (i.e., 𝜖 = 0), the proposed method is still more communication-

efficient than Newton. This result is due to the following reasons. First, since the Hes-

sian matrix varies across iterations, Newton requires communication of the updated

Hessian Schur complements at every iteration. In contrast, the proposed method

works with a constant graph Laplacian, and hence only requires a one-time com-

munication of its Schur complements; see line 2 in Algorithm 8.4. Second, Newton

requires communication to form the Schur complement of the original 𝑝𝑛-by-𝑝𝑛 Hes-

sian matrix, where 𝑛 is the number of rotation variables and 𝑝 = dimSO(𝑑) is the

intrinsic dimension of the rotation group (for the Cubicle dataset, 𝑛 = 5750 and 𝑝 = 3).

In contrast, the proposed method operates on the smaller 𝑛-by-𝑛 Laplacian matrix,

and the decrease in matrix size directly translates to communication reduction.

Lastly, Figure 8-5d visualizes the accuracy as a function of total communication

8In centralized optimization (e.g., [66, 68–70]), these heuristic sparsifications often serve as pre-
conditioners and need to be used within iterative methods such as conjugate gradient to provide the
best performance.

223

(a) Synthetic rotation averaging

0 1 2 3 4 5
4.5

5

5.5

6

6.5

7

7.5

8

(b) RMSE vs. iterations

0 1 2 3 4 5

10
-4

10
-2

10
0

10
2

(c) Gradient norm vs. iterations

0 2 4 6
0

100

200

300

400

500

600

700

(d) Uploads vs. iterations

Figure 8-6: Scalability of Algorithm 8.4 as the number of robots increases. (a) Synthetic
chordal rotation averaging problem with 8000 total rotation variables arranged in a 3D
grid. Each edge indicates a relative rotation measurement corrupted by Langevin noise. (b)
Evolution of RMSE (in degree) with respect to ground truth rotations. (c) Evolution of
Riemannian gradient norm as a function of iterations. (d) Evolution of total uploads as a
function of iterations.

in the download stage. Notice that the evolution follows the same trend as Figure 8-

5b, where the horizontal axis shows the number of iterations. This observation is

expected as a result of Remark 8.6, which shows that the communication complexity

in the download stage is 𝑂(𝑚𝐾|𝒞|), i.e., the total downloads grows linearly with

respect to the number of iterations 𝐾.

Scalability with Number of Robots. In this experiment, we evaluate the

scalability of Algorithm 8.4. For this purpose, we generate a large-scale synthetic

rotation averaging problem with 8000 rotations arranged in a 3D grid (Figure 8-6a).

With probability 0.3, we add relative measurements between nearby rotations, which

224

0 10 20 30 40 50
0

20

40

60

80

100

(a) Success rate

1 5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

0

10

20

30

40

50

(b) Number of iterations

Figure 8-7: Sensitivity of Algorithm 8.4 to accuracy of initial guess. We generate synthetic
initial guesses with degrading accuracy by perturbing the global minimizer with increasing
levels of Langevin noise. At each level of perturbation, 10 random runs are performed.
(a) Percentage of runs that converge to the global minimizer. (b) Boxplot of number of
iterations used by Algorithm 8.4.

are corrupted by Langevin noise with a standard deviation of 5 deg. Then, we divide

the dataset to simulate increasing number of robots, and run Algorithm 8.4 with

sparsification parameter 𝜖 = 0.5 until the Riemannian gradient norm reaches 10−5.

Figure 8-6b shows the evolution of the estimation RMSE with respect to the ground

truth rotations. For reference, we also show the RMSE achieved by the global mini-

mizer to Problem 8.1 (denoted as “MLE” in the figure). Note that due to measurement

noise, the MLE is in general different from the ground truth. The proposed method

is able to achieve an RMSE similar to the MLE after a single iteration, despite the

worse initialization as the number of robots increases. Figure 8-6c shows the evolution

of gradient norm as a function of iterations. Note that all curves in Figure 8-6c have

similar slopes, which suggests that the empirical convergence rate of our method is

not sensitive to the number of robots. This observation is compatible with the (local)

convergence rate established in Theorem 3, which does not depend on the number

of robots 𝑚. Lastly, Figure 8-6d shows the evolution of total uploads as a function

of iterations. As we divide the dataset to simulate more robots, both the number of

inter-robot measurements and the number of separators |𝒞| increase, and thus each

iteration requires more communication.

Sensitivity to Initial Guess. So far, we have used the distributed chordal ini-

tialization technique [38] to initialize Algorithm 8.4. In the next experiment, we test

225

0 10 20 30 40 50
0

20

40

60

80

100

(a) Success rate

1 5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

20

40

60

80

100

(b) Number of iterations

Figure 8-8: Sensitivity of Algorithm 8.4 to rotation measurement noise. We generate syn-
thetic chordal rotation averaging problems with increasing magnitude of measurement noise.
At each noise level, 10 random runs are performed. (a) Percentage of runs that converge to
the global minimizer. (b) Boxplot of number of iterations used by Algorithm 8.4.

the sensitivity of our proposed method to poor initial guesses. For this purpose, we

use a 9-robot simulation where each robot owns 512 rotation variables, and generate

synthetic initial guesses by perturbing the global minimizer with increasing level of

Langevin noise. Using the synthetic initialization, we run Algorithm 8.4 with sparsi-

fication parameter 𝜖 = 0.5 until the Riemannian gradient norm reaches 10−5 or the

number of iterations exceeds 50. At each noise level, 10 random runs are performed.

Figure 8-7a shows the fraction of trials that successfully converge to the global mini-

mizer. We observe that Algorithm 8.4 enjoys a large convergence basin: the success

rate only begins to decrease at a large initial guess error of 35 deg. Figure 8-7b shows

the number of iterations used by Algorithm 8.4 to reach convergence. Our results

suggest that the proposed method is not sensitive to the quality of initialization and

usually requires a small number of iterations to converge.

Sensitivity to Measurement Noise. Next, we analyze the sensitivity of Al-

gorithm 8.4 to increasing levels of measurement noise. The setup is similar to the

previous experiment, where we use a 9-robot simulation and each robot owns 512 ro-

tations. However, instead of varying the quality of the initial guess, we vary the noise

level when generating the synthetic problem. Figure 8-8 shows the results. We find

that Algorithm 8.4 is relatively more sensitive to the measurement noise, and start to

converge to suboptimal local minima as the noise level increases above 25 deg. Nev-

ertheless, we note that the level of rotation noise encountered in practice is usually

226

much lower,9 and thus we expect our algorithm to still provide effective estimation

(see real-world evaluations in Sections 8.5.3 and 8.5.4).

Outlier-Robust Optimization. Lastly, we evaluate the proposed outlier-robust

optimization method to solve robust rotation averaging problems. In this experiment,

we use a 9-robot simulation where each robot owns 512 rotations. In Sections 8.5.3

and 8.5.4, we demonstrate our method on real-world SLAM and SfM problems. As

in common SLAM scenarios, we assume each robot has a backbone of odometry mea-

surements within its own trajectory that are free of outliers. Then, with increasing

probability, we replace the remaining measurements (corresponding to intra-robot

and inter-robot loop closures) with gross outliers. All inlier measurements (including

odometry) are corrupted by Langevin noise with a standard deviation of 3 deg, and

we set the TLS threshold 𝑒 to correspond to 10 deg. Figure 8-9a visualizes the RMSE

with respect to ground truth rotations. As expected, Algorithm 8.4 without GNC

is not robust to outliers and shows significant error as soon as outlier measurements

are introduced. Nevertheless, by using Algorithm 8.4 within GNC as described in

Section 8.4.4, the resulting approach becomes robust and is able to tolerate up to

70% of outlier loop closures. In Figure 8-9b, we study the efficiency of our approach

by showing the total number of inner iterations of Algorithm 8.4 used by GNC. Re-

call that each inner iteration also corresponds to a single round of communication.

When the outlier ratio is zero, GNC reduces to the standard Algorithm 8.4 and only

requires a few iterations to converge. When outliers are added, GNC requires mul-

tiple outer iterations and thus multiple calls to Algorithm 8.4, resulting in increased

communication rounds. Nevertheless, for all test cases with less than 70% outlier

measurements, the number of communication rounds is approximately 100, which is

a reasonable requirement for a real system.

8.5.2 Evaluation on Benchmark PGO Datasets

In this subsection, we evaluate our approach on 12 benchmark pose graph SLAM

9Here we only consider rotation noise of inlier measurements. Outlier measurements will be
handled using the robust optimization framework presented in Section 8.4.4.

227

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

(a) RMSE with ground truth (b) Communication rounds

Figure 8-9: Evaluation of robust optimization on synthetic rotation averaging problems
corrupted by increasing percentage of outlier loop closures. At each outlier percentage,
10 random runs are performed. (a) RMSE with respect to ground truth rotations. (b)
Communication rounds used by GNC. Sold line and shaded area correspond to the mean
and one standard deviation, respectively.

datasets. For these datasets, we do not explicitly handle outliers. Outlier-robust

estimation will be evaluated in Sections 8.5.3 and 8.5.4.

Evaluation on Rotation Averaging Subproblem. We first evaluate Al-

gorithm 8.4 on the rotation averaging subproblems extracted from the benchmark

datasets. For each problem, we simulate a scenario with 5 robots, and run the pro-

posed method (Algorithm 8.4) with sparsification parameter 𝜖 = 1.5 and the baseline

Newton method. Both methods are terminated when the Riemannian gradient norm

is smaller than 10−5. Since the spectral sparsification method we use [136] is ran-

domized, we perform 5 random runs of our method. Table 8.1 shows the average

number of iterations, uploads, and downloads to reach the desired precision. On

all datasets, we are able to verify that all methods converge to the global minima

of the considered rotation averaging problems. The proposed method achieves an

empirical convergence speed that is close to Newton and typically converges in a few

iterations.10 We note that this is significantly faster than existing fully distributed

methods that often require hundreds of iterations to achieve moderate precision. For

10One notable exception is the Rim dataset, for which our method uses more than 20 itera-
tions to converge. A closer investigation reveals that this dataset actually contains some outlier
measurements. Specifically, at the global minimizer 𝑅⋆, there are 28 measurements ̃︀𝑅𝑖𝑗 for which
d(𝑅⋆

𝑖
̃︀𝑅𝑖𝑗 , 𝑅

⋆
𝑗) > 60 deg. Since these outliers have large residuals, their contributions to the Hes-

sian can no longer be well approximated by the corresponding Laplacian terms. As a result, the
performance of our method is negatively impacted.

228

Table 8.1: Rotation averaging on benchmark SLAM datasets with 5 robots. |𝒱| and |ℰ|
denote the total number of rotation variables and measurements, respectively. We run
the baseline Newton method and the proposed method (Algorithm 8.4) with sparsification
parameter 𝜖 = 1.5, and compare the number of iterations, uploads, and downloads to reach
a Riemannian gradient norm of 10−5. For the proposed method, we also show the sparsity
achieved by sparsification (lower is better). Results averaged across 5 runs.

Dataset |𝒱| |ℰ| Iterations Upload (kB) Download (kB) Achieved sparsity
by proposed (%)Newton Proposed Newton Proposed Newton Proposed

Killian Court (2D) 808 827 2 3 1.6 1.1 0.5 0.8 100
CSAIL (2D) 1045 1171 2 4 7.2 5.9 2.3 4.6 97.3
INTEL (2D) 1228 1483 3 4.2 10.5 5.8 3.3 4.6 96.4
Manhattan (2D) 3500 5453 2 5 118.9 49.5 12.5 31.3 38.7
KITTI 00 (2D) 4541 4676 2 2 13.2 6.6 4.4 4.4 100
City (2D) 10000 20687 2 4 450.3 351.5 129 258.1 97.3
Garage (3D) 1661 6275 1 2 274.4 88.9 35.8 71.6 93.2
Sphere (3D) 2500 4949 2 8.6 2548.8 106 19.2 82.6 16.9
Torus (3D) 5000 9048 3 9.6 10423.7 229.5 57 182.2 12.4
Grid (3D) 8000 22236 3 9.2 206871.6 886.6 220.8 677 2.7
Cubicle (3D) 5750 16869 2 6.8 7015 440.3 107.7 366.2 19.9
Rim (3D) 10195 29743 4 23.4 53657.9 1320.9 209.1 1223.2 6.6

both Newton and the proposed method, the total download is proportional to the

number of iterations (see Remark 8.6). Thus, our method uses more downloads since

it requires more iterations. However, we note that compared to the download stage,

the upload stage is more communication-intensive since robots need to transmit (po-

tentially dense) Schur complements to the server. Using spectral sparsification, the

proposed approach achieves significant reduction in uploads, especially on challeng-

ing datasets such as Grid and Rim. Finally, the last column of Table 8.1 shows the

achieved sparsification as the percentage of nonzero elements that remain after spec-

tral sparsification. We observe that the benefit of sparsification varies across datasets.

For example, on Killian Court and INTEL, the effect of sparsification is limited because

the exact Schur complement 𝑆 is already sparse. Meanwhile, on datasets such as Grid

and Rim, the benefit of sparsification is substantial and the results have less than 10%

nonzero elements. In Section 8.5.5, we provide a thorough discussion on the impact

of problem properties on sparsification performance.

Sparsification Runtime. Recall that in the SparsifiedSchurComplement

step in Algorithm 8.4, each robot 𝛼 sparsifies its 𝑆𝛼 matrix and transmits the result̃︀𝑆𝛼 to the server. This step uses the majority of robots’ local computation time. In

Figure 8-10, we evaluate the runtime of the sparsification algorithm [136] on the 12

229

10
2

10
4

10
6

10
-4

10
-2

10
0

Killian Court

CSAIL

INTEL

Manhattan

KITTI 00

City

Garage

Sphere

Torus

Grid

Cubicle

Rim

Figure 8-10: Spectral sparsification runtime on benchmark datasets.

Table 8.2: PGO initialization on benchmark SLAM datasets with 5 robots. 𝑒Σ measures the
average error in marginal covariance due to decoupled rotation and translation estimation.
Optimality gap and RMSE are computed with respect to optimal solutions from SE-Sync [14].
In addition, we also show the number of iterations and communication (both upload and
download) used by the rotation and translation estimation stages in our approach, and
compare the results with RBCD++ (Chapter 4) to achieve the same optimality gap.

Dataset |𝒱| |ℰ| 𝑒Σ
Optimality

Gap
RMSE with optimal PGO solution Iterations Total communication (kB)
Rotation (deg) Translation (m) Rot. Tran. RBCD++ Rot. Tran. RBCD++

Killian Court (2D) 808 827 0.76 0.12 4.48 4.12 5 2 173 3.0 2.4 246
CSAIL (2D) 1045 1171 0.33 4.6× 10−4 0.06 0.01 3 3 442 8.3 15.2 1.9× 103

INTEL (2D) 1228 1483 0.21 2.2× 10−3 0.36 0.03 4 4 68 10.0 18.7 370
Manhattan (2D) 3500 5453 0.92 0.15 1.75 0.47 4 5 57 72.8 147.8 1.3× 103

KITTI 00 (2D) 4541 4676 0.86 0.33 0.46 0.64 3 2 289 15.4 19.8 3.1× 103

City (2D) 10000 20687 0.95 0.12 0.63 0.18 4 4 1000 611 1.1× 103 1.9× 105

Garage (3D) 1661 6275 0.99 0.12 0.43 0.33 2 2 59 161 162 3.7× 103

Sphere (3D) 2500 4949 0.87 0.17 1.39 0.38 7 7 89 185 185 2.9× 103

Torus (3D) 5000 9048 0.25 0.01 2.15 0.07 8 6 113 394 317 4.8× 103

Grid (3D) 8000 22236 0.43 0.03 1.22 0.06 8 8 102 1.7× 103 1.7× 103 2.5× 104

Cubicle (3D) 5750 16869 0.86 0.18 1.53 0.16 7 6 42 869 722 4.4× 103

Rim (3D) 10195 29743 0.79 0.63 4.95 0.78 25 6 102 2.8× 103 748 6.8× 103

benchmark datasets shown in Table 8.1. For each dataset, we record the maximum

sparsification time among all robots, and visualize the result as a function of the

number of nonzero entries in the input matrix 𝑆𝛼. On most datasets, the maximum

runtime is below one second. On the Grid dataset, the input matrix has more than

5 × 105 nonzero entries and our implementation uses 10.2 seconds. Overall, we con-

clude that the runtime of our implementation is still reasonable. However, we believe

that further improvements are possible, e.g., by approximately computing effective

resistances during spectral sparsification as suggested in [136].

Initialization for PGO. Lastly, we evaluate the use of our methods to initial-

ize PGO. Recall from Section 8.2 that our initialization scheme involves two stages.

230

First, we initialize rotations by solving the rotation averaging subproblem in PGO.

Then, fixing the rotation estimates in the PGO cost function (8.8), we can initial-

ize translations by solving the resulting translation estimation subproblem. For this

experiment, we start Algorithm 8.4 at an initial guess computed from a spanning

tree of the pose graph. This is done to demonstrate that our method does not need

to rely on distributed chordal initialization [38], which is itself an iterative proce-

dure. Table 8.2 reports the optimality gap and estimation RMSE of our initialization

method compared to the optimal PGO solutions computed using SE-Sync [14]. Our

results show that the quality of initialization varies across datasets. In general, since

our initialization method decouples the estimation of rotations and translations, we

expect its performance to degrade when there is significant coupling between rotation

and translation terms in the full PGO problem. To investigate this hypothesis, we

treat PGO as an inference problem over factor graphs [19] and consider the covariance

ΣPGO of the pose estimates at the optimal solution. We compare ΣPGO with the corre-

sponding covariance ΣINIT produced by our two-stage initialization, where the rotation

and translation blocks of ΣINIT are extracted from rotation averaging and translation

estimation, respectively. Since both covariance matrices are large and dense, we only

compute their diagonal blocks ΣPGO
𝑖 and ΣINIT

𝑖 that correspond to the marginal covari-

ances of pose 𝑖. We quantify the error introduced by decoupled rotation and transla-

tion estimation by computing the normalized error 𝑒Σ𝑖 = ‖ΣPGO
𝑖 − ΣINIT

𝑖 ‖𝐹 / ‖ΣPGO
𝑖 ‖𝐹 .

Table 8.2 reports 𝑒Σ, which is the average of 𝑒Σ𝑖 over all poses. We find that the

results separate all datasets into two groups. INTEL, CSAIL, Torus, and Grid have small

values of 𝑒Σ, and our initialization achieves the best performance, especially in terms

of optimality gap. On the remaining datasets with larger values of 𝑒Σ, the two-stage

initialization produces worse results. Lastly, we note that Rim is a special case due to

the presence of outlier measurements.

In addition, Table 8.2 also reports the number of iterations and total commu-

nication (both uploads and downloads) used by our initialization during rotation

estimation and translation estimation. To provide additional context, we also report

corresponding results for the RBCD++ solver developed in Chapter 4 to achieve the

231

(a) Dataset visualization

0 0.5 1 1.5 2

200

400

600

800

(b) Evaluation of sparsification

0 5 10
0

20

40

60

80

0

10

20

30

40

50

(c) Rotation estimation

0 5 10
0

5

10

15

20

25

0

10

20

30

(d) Translation estimation

Figure 8-11: Robust PGO initialization on real-world collaborative SLAM dataset. (a)
Trajectory estimates produced by the proposed robust PGO initialization, which are quali-
tatively overlaid on top of a point cloud map of the experiment area. The point cloud map
was created at an earlier time (certain objects such as cars have changed) and is included
only for visualization. (b) Evaluation of spectral sparsification. (c) Rotation RMSE as a
function of communication rounds during rotation estimation. (d) Translation RMSE as a
function of communication rounds during translation estimation.

same optimality gap from the same initial guess. We note that the RBCD++ re-

sults are only included for reference since this method is fully distributed whereas

our method assumes a server-client architecture. Furthermore, given more iterations,

RBCD++ will eventually achieve better accuracy because the method is solving the

full PGO problem. However, our results still suggest that when a server-client archi-

tecture is available, our method is favorable and provides high-quality initialization

using only a few iterations.

8.5.3 Robust PGO Initialization for Real-World CSLAM

In this section, we show that our approach can be used to achieve robust PGO ini-

232

tialization in a real-world collaborative SLAM (CSLAM) scenario with outlier mea-

surements. For this purpose, we collected three sets of trajectories using a Clearpath

Jackal robot equipped with a front-facing RealSense D455 RGBD camera and IMU.

Each trajectory covers a different area outside a building on the MIT campus, with

the robot making multiple loops within the designated area. The three trajectories

also overlap in a small region such that common features are observed (Figure 8-11a).

We run Kimera-Multi (Chapter 6) to process the dataset as a 3-robot collaborative

visual SLAM mission. The resulting multi-robot pose graph contains a 3D pose vari-

able for each keyframe generated by visual-inertial odometry, and each robot has a

backbone of odometry measurements that are free of outliers. However, there are

many outlier loop closures (both within each robot’s trajectory and between different

robots), due to incorrect visual feature matching.

We demonstrate the two-stage PGO initialization as described in Section 8.2. To

account for outliers, we use the GNC-based robust optimization during both rotation

estimation and translation estimation stages. In our experiment, we observe that

setting the TLS threshold to a smaller value of 0.5 deg for rotation estimation leads

to better performance. The TLS threshold for translation estimation is set to 0.25 m.

With this setting, the two-stage initialization rejects 1090 out of 1540 loop closures

(71%). Table 8.3 reports statistics and the accuracy achieved by our robust initializa-

tion for each robot. As ground truth trajectories are not available, we compare against

a reference solution computed by the GNC-based robust PGO solver implemented in

GTSAM [6]. While standard initialization (without GNC) has large errors, using

GNC achieves robust initialization, and the final rotation and translation RMSE over

all robots are 3.0 deg and 0.57 m, respectively. Figure 8-11b evaluates the effects of

spectral sparsification on the real-world dataset. We observe similar benefits as in

previous experiments, where enabling sparsification (𝜖 > 0) significantly reduces the

number of nonzero entries each robot needs to communicate. Lastly, Figures 8-11c

and 8-11d evaluate the efficiency of our two-stage robust initialization, by visualizing

the evolution of RMSE and number of communication rounds as a function of GNC

outer iterations. Recall that each communication round also corresponds to a single

233

Table 8.3: Evaluation of robust PGO initialization on real-world collaborative SLAM
dataset.

Robot Length (m) Keyframes
RMSE without GNC RMSE with GNC

Rot. (deg) Tran. (m) Rot. (deg) Tran. (m)
1 483 3192 67.5 11.9 1.8 0.5
2 458 2518 73.1 17.6 3.3 0.7
3 524 3374 86.8 23.6 3.7 0.6

iteration of Algorithm 8.4 or Algorithm 8.5. For this experiment, the sparsification

parameter is fixed at 𝜖 = 2. Overall, for both rotation estimation and translation

estimation, the RMSE converges after a few GNC outer iterations, and consequently,

only a small number of communication rounds is needed.

Evaluations on large-scale CSLAM datasets. To conclude this subsection,

we extend our previous evaluations to large-scale CSLAM datasets. To this end, we

use the lidar-centric Nebula multi-robot datasets [3] and the vision-based Kimera-Multi

datasets presented in Section 6.7. Tables 8.4 and 8.5 report the performance of the

proposed two-stage PGO initialization scheme on these datasets. We compare our

two-stage approach against the initial guesses (computed using the robust initializa-

tion method in Section 6.4.2) as well as reference solutions obtained using the GNC

implementation in GTSAM [6]. On all datasets, the two-stage approach improves over

the initial guesses and furthermore achieves estimation accuracy that is comparable

to or slightly worse than the GTSAM solutions. For the proposed method, we also

report additional information including the average achieved sparsity by spectral spar-

sification, number of iterations (communication rounds), total communication (both

uploads and downloads), and runtimes on a single computer.11 We note that spectral

sparsification achieves limited sparsity improvements on the Kimera-Multi datasets in

Table 8.5. This is because on these datasets, the exact Schur complements are al-

ready sparse, and thus sparsification is not necessary; see Section 8.5.5 for an in-depth

discussion.

11The runtime results are obtained by running the proposed method on a single computer and
thus do not take into account the effect of communication delays. Future work will improve the
runtime evaluation by implementing the proposed approach on real-world multi-robot systems.

234

Table 8.4: Evaluation of robust PGO initialization on the Nebula multi-robot datasets [3].

Datasets Distance (m) Robots |𝒱| |ℰ| RMSE against ground truth (m) Additional Information
Initial Two-Stage GTSAM Achieved sparsity (%) Iterations Comm. (MB) Runtime (sec)

Tunnel 2556 2 1278 6832 1.68 1.13 1.06 47.9 112 5.62 8.1
Urban 1530 3 765 2214 1.27 1.11 1.23 63.1 93 1.33 1.8
Prelim2 1224 4 613 2072 0.88 0.29 0.38 83.3 104 2.29 1.9
KU 6304 4 3153 4034 5.56 1.75 1.18 94.8 88 0.85 3.4

Table 8.5: Evaluation of robust PGO initialization on the Kimera-Multi field experiment
datasets (Section 6.7).

Datasets Distance (m) Robots |𝒱| |ℰ| RMSE against ground truth (m) Additional Information
Initial Two-Stage GTSAM Achieved sparsity (%) Iterations Comm. (MB) Runtime (sec)

Campus-Outdoor 6044 6 4015 4196 27.76 13.92 11.61 100 49 0.57 3.6
Campus-Tunnels 6753 8 4952 13231 22.67 4.01 4.03 98.8 76 11.88 10.8
Campus-Hybrid 7785 8 5502 6592 29.29 6.77 6.84 98.6 68 3.72 6.1

8.5.4 Evaluation on Real-World SfM Datasets

Lastly, we evaluate our method on rotation averaging problems extracted from 15

real-world structure-from-motion (SfM) datasets [206]. Each dataset is a collection of

many internet images taken at a particular location. We use Theia [204] to process each

dataset and extract a rotation averaging problem with outliers (caused by incorrect

feature matching). As ground truth is not available, we follow [204] and use 3D

reconstructions produced by the incremental SfM pipeline [207] as reference solutions.

Table 8.6 reports full dataset statistics.

We divide each dataset to simulate 5 robots and run our GNC-based rotation

averaging solver, with the TLS threshold set to 5 deg. Unlike collaborative SLAM,

each robot no longer has an outlier-free odometry backbone in SfM. This also means

that we cannot use the approach in Section 6.4 to compute an outlier-free initial guess

for the variable update step in GNC (see Remark 8.7). Instead, we use the initial

guess from Theia that is computed using a spanning tree of the measurement graph.

Table 8.6 reports the mean estimation error. On 14 out of the 15 datasets, our GNC-

based robust rotation averaging produces accurate results that significantly improve

from the initial guesses. The only failure case, Gendarmenmarkt, is known to be a very

challenging case in which the underlying 3D scene is highly symmetric, consisting of

two visually similar churches. The symmetry leads to a significantly lower percentage

of good inlier measurements and also causes the spanning tree initial guess to have a

235

Table 8.6: Robust rotation averaging on real-world SfM datasets. Each dataset is divided
to simulate 5 robots. |𝒱| and |ℰ| denote the total number of rotation variables and measure-
ments, respectively. Using the reference solution, we quantify the difficulty of each dataset by
computing the percentage of high-quality inlier measurements (measurement error < 5 deg)
and gross outliers (measurement error > 45 deg). For the proposed method, we show the
sparsity achieved by sparsification (lower is better) and total communication.

DATASETS |𝒱| |ℰ| Measurement Quality (%) Mean Error (deg) Achieved
sparsity (%)

Communication (MB)
Inlier Outlier Other Initial No GNC With GNC Upload Download

Montreal Notre Dame 468 49705 81 4 15 4.2 3.3 1.1 55.1 2.09 1.21
Ellis Island 241 19507 63 1 26 7.0 5.6 2.3 66.0 0.95 0.57
NYC Library 355 17579 61 6 33 4.3 4.3 2.3 75.8 1.24 0.83
Notre Dame 553 97764 70 9 21 3.5 4.5 2.4 41.8 2.85 1.54
Roman Forum 1099 53989 74 3 23 16.5 5.1 2.5 68.1 4.43 2.73
Alamo 606 87725 74 3 23 8.0 4.5 2.9 44.7 2.62 1.39
Madrid Metropolis 379 18811 47 20 33 7.7 8.0 3.4 70.3 1.48 1.08
Yorkminster 448 24416 73 5 22 8.3 4.5 3.4 76.5 1.69 1.1
Tower of London 493 19798 76 3 21 7.4 4.7 3.5 75.3 2.00 1.35
Trafalgar 5433 680012 63 7 30 20.0 6.4 3.5 40.7 35.89 24.97
Piazza del Popolo 343 22342 82 4 14 5.4 7.8 3.6 70.0 1.29 0.8
Piccadilly 2436 254175 58 10 32 13.9 14.6 4.9 53.1 14.23 9.79
Union Square 930 25561 57 6 37 11.9 10.9 6.0 82.1 4.15 3.37
Vienna Cathedral 900 96546 70 6 24 13.9 9.6 8.9 51.9 4.62 3.13
Gendarmenmarkt 723 42980 36 27 37 45.0 40.8 38.1 63.8 4.13 3.03

large error, which GNC is unable to recover from.12 In summary, we conclude that on

most datasets, our proposed rotation averaging solver combined with GNC is able to

achieve robust rotation estimation, despite outlier measurements and the increased

noise level present in internet images.

We report the performance of spectral sparsification and the total communication

costs of our method. For our SfM experiment, we increase the sparsification parameter

to 𝜖 = 5. In Section 8.5.5, we explain the reasons behind using the increased value for

𝜖. Table 8.6 shows the achieved sparsity as the average ratio between the number

of nonzero elements in the sparsified matrix and the input (dense) matrix. On all

datasets, spectral sparsification significantly improves sparsity to as low as 40.7%

on the largest Trafalgar dataset. These results, together with the total amounts of

uploads and downloads, demonstrate the effectiveness of our approach to achieve

communication efficiency.

12We note that our result on Gendarmenmarkt is also consistent with performance reported by
Theia, which shows a large final error: http://theia-sfm.org/performance.html.

236

http://theia-sfm.org/performance.html

Exact Schur Complement

100 200 300

0

50

100

150

200

250

300
-10

-8

-6

-4

-2

0

Sparsified Schur Complement

100 200 300

0

50

100

150

200

250

300
-10

-8

-6

-4

-2

0

(a) Garage (𝜖 = 1.5)
Exact Schur Complement

50 100 150 200

0

50

100

150

200
-10

-8

-6

-4

-2

0

2

Sparsified Schur Complement

50 100 150 200

0

50

100

150

200
-10

-8

-6

-4

-2

0

2

(b) Manhattan (𝜖 = 1.5)
Exact Schur Complement

20 40 60 80 100

0

20

40

60

80

100

-10

-5

0

5

Sparsified Schur Complement

20 40 60 80 100

0

20

40

60

80

100

-10

-5

0

5

(c) Notre Dame (𝜖 = 5.0)

Figure 8-12: Impact of the density of exact Schur complements on the performance of
spectral sparsification. For each dataset, we select one robot and visualize the sparsity
pattern of its exact Schur complement (corresponding to 𝑆𝛼 in Algorithm 8.2), and the
result after spectral sparsification (corresponding to ̃︀𝑆𝛼 in Algorithm 8.2). Entries in the
matrix are color-coded based on their magnitude in log scale.

8.5.5 Discussion

We conclude our experimental evaluations by discussing the impacts of real-world

problem properties on the performance of the proposed algorithms.

Effectiveness of Laplacian Approximation in the Presence of Outliers.

Our rotation averaging method exploits the fact that under small measurement residu-

als, the Laplacian is an effective approximation of the Hessian (Theorem 8.1). When

there are outlier measurements, we have seen that the approximation quality de-

237

grades, leading to increased number of iterations. An example is the Rim dataset in

Table 8.1, which is contaminated by outliers. Nonetheless, we note that this issue is

mitigated when using a robust optimization framework such as GNC, since outliers

will be gradually discounted and eventually rejected from the measurement graph.

This is shown in Figure 8-11c. During the first two GNC outer iterations, outliers

have a substantial influence on the problem, causing our method (Algorithm 8.4) to

use more communication rounds. However, as GNC proceeds, outliers receive increas-

ingly small weights, and our method recovers its fast convergence. In Figure 8-11c,

this is shown as the slower increase in communication rounds starting from the third

GNC outer iteration.

Impact of Problem Density on Sparsification Performance. As we have

seen (e.g., from Table 8.1), spectral sparsification achieves different levels of spar-

sity improvement on the various SLAM and SfM datasets. This is because in our

method, sparsification is applied to the Schur complements that the robots form

after eliminating their interior variables (see Algorithm 8.2). Thus, we expect the

performance of sparsification to vary depending on the density of the Schur comple-

ments. To make the discussion more concrete, we identify three types of problems

and Figure 8-12 shows a representative sparsification result for each case. In the first

case (Figure 8-12a), the multi-robot measurement graph is extremely sparse; conse-

quently, the resulting Schur complements are already sparse and sparsification is not

necessary. In the second case, the original measurement graph is still sparse, but the

robots’ Schur complements become dense due to fill-in introduced during the elimi-

nation of interior variables. For the example in Figure 8-12b, the fill-in is visualized

as patches of dense entries in the exact Schur complement, and our method is highly

effective at sparsifying these dense blocks. Moreover, notice that the dense fill-ins

have relatively smaller magnitudes (e.g., compared to the diagonal), and thus they

can be sparsified with a smaller value of the sparsification parameter 𝜖. In the last

case, the original measurement graph is already dense and so are the resulting Schur

complements (Figure 8-12c). All of the SfM datasets in Table 8.6 belong to this cat-

egory because there are many images viewing a common landmark (e.g., the Notre

238

Dame cathedral), albeit from different locations or angles. Consequently, a relative

rotation can be estimated for many image pairs, which makes the input measurement

graph dense. Since there is no significant difference in the magnitudes of different

matrix entries, a larger value of 𝜖 is needed. Similar to the second case, sparsification

is highly effective at promoting sparsity in each robot’s transmitted matrix in this

case.

8.6 Conclusion

This chapter presented fast and communication-efficient methods for solving rotation

averaging and translation estimation in multi-robot SLAM, SfM, and camera network

localization applications. Our algorithms leverage theoretical relations between the

Hessians of the optimization problems and the Laplacians of the underlying graphs.

At each iteration, robots coordinate with a central server to perform approximate

second-order optimization, while using spectral sparsification to achieve communica-

tion efficiency. We performed rigorous analysis of our methods and proved that they

achieve (local) linear rate of convergence. Furthermore, we proposed the combination

of our solvers with GNC to achieve outlier-robust estimation. Extensive experiments

in real-world collaborative SLAM and SfM scenarios validate our theoretical results

and demonstrate the superior convergence rate and communication efficiency of our

proposed methods.

239

240

Chapter 9

Conclusion

This thesis has developed optimization algorithms and multi-robot systems toward

scalable collaborative geometric estimation. The first part of the thesis focuses on

the fully distributed communication architecture. Chapter 4 presented DC2-PGO, a

distributed certifiably correct PGO solver based on a sparse semidefinite relaxation.

In Chapter 5, we further adapt the distributed local optimization algorithm to op-

erate under asynchronous communication, and showed that the resulting algorithm,

ASAPP, maintains first-order convergence guarantees under bounded delay. Utiliz-

ing the developed distributed optimization approach, Chapter 6 developed Kimera-

Multi, an outlier-robust and fully distributed system for metric-semantic CSLAM,

and presented extensive evaluations in both photo-realistic simulations and large-

scale field experiments involving up to 8 robots. The second part of the thesis focuses

on the server-client communication architecture. Chapter 7 presented LARPG, a

communication-efficient collaborative solver for large-scale bundle adjustment based

on event-triggered communication. Lastly, Chapter 8 presented specialized collabora-

tive solvers for collaborative rotation averaging, translation estimation, and two-stage

pose graph initialization that achieve fast convergence by leveraging fast Laplacian

solvers and spectral sparsification.

241

9.1 Future Work

While the results presented in this thesis are promising, they also suggest the following

interesting future directions.

Hierarchical Optimization and Communication. While the distributed op-

timization algorithms developed in Chapters 4 and 5 are flexible and faster than

prior fully distributed methods, they still could exhibit slow convergence on very

large-scale problem instances, e.g., the ones encountered in the Kimera-Multi field

experiments (Section 6.7). An interesting direction to address this challenge is hi-

erarchical optimization, which aims to tackle the optimization problem at multiple

levels of resolution. Intuitively, performing optimization at coarser levels helps to

more efficiently correct long-range or low-frequency errors that are otherwise hard to

eliminate at the fine level. This idea lies at the heart of multigrid methods in fast

linear solvers (e.g., [67, Chapter 13]), and has also been explored in prior works in

single-agent SLAM (e.g., [150, 208, 209]). Nevertheless, hierarchical optimization has

been less explored in the multi-agent domain. To this end, leveraging the techniques

developed in this thesis under a hierarchical or multi-resolution formulation could be

an interesting direction to investigate.

In addition to hierarchical optimization, hierarchical communication is another

interesting avenue to explore. In our applications, the distinction between the two

notions is that the former defines hierarchy on the measurement graph (e.g., the multi-

robot pose graph), while the latter considers a hierarchical communication graph.

From this perspective, the server-client architecture (Figure 1-1b) can be viewed as

a hierarchical communication graph with two levels, and it would be interesting to

explore the generalization of the algorithms developed in this thesis (e.g., the use

of spectral sparsification in Chapter 8) to hierarchical communication graphs with

multiple levels. Lastly, studying the interplay between the measurement graph and

the communication graph is another interesting open question.

Collaborative Estimation of More Expressive Models. This thesis consid-

ers collaborative estimation problems that involve standard geometric models, e.g.,

242

pose graphs for collaborative localization and point landmarks for collaborative map-

ping (bundle adjustment). Meanwhile, state-of-the-art single-agent perception sys-

tems are able to construct increasingly expressive models of the environment that

facilitate higher-level inference and planning. It would be interesting to extend the

methods developed in this thesis to support these more expressive models. An exam-

ple is to generalize distributed optimization algorithms to support maps with learned

representations (e.g., learned embeddings that parametrize object shapes [210]). As a

second example, recent works have moved beyond the standard SLAM formulation by

constructing hierarchical maps that unify geometric, semantic, and topological repre-

sentations [36, 200, 211]. While there are preliminary works that generalize these new

representations to the multi-agent domain [212, 213], robustly and efficiently solving

the resulting large-scale optimization problems still remains an open challenge.

Improving and Generalizing Theoretical Guarantees. This thesis has es-

tablished performance guarantees (e.g., in terms of convergence) for the developed

collaborative optimization algorithms. Nevertheless, the theoretical guarantees often

appear conservative compared to what was observed in numerical experiments, and it

would be useful to improve the theoretical analysis to bridge this gap. For example,

in Chapter 7, it would be useful to relax the assumptions needed to establish the con-

vergence guarantees. In Chapter 8, it would be highly useful to generalize the Hessian

approximation result in Theorem 8.1 to problems such as PGO and to derive explicit

bound for the approximation constant 𝛿. For the latter, considering the statistics of

the measurement model (instead of working with realizations of measurement errors)

could be useful. In addition, it would be interesting to investigate whether the con-

vergence rate established in Theorem 8.3 is optimal from the perspective of iteration

complexity.

243

244

Appendix A

Supplemental Materials for Chapter 4

A.1 Exactness of SDP Relaxation

In this section, we provide additional discussions of our SDP relaxation (Problem 4.1)

and give a proof of its exactness under low noise. To facilitate the discussion, we

summarize all problems that are considered in this work in Table A.1. The core idea

behind our proof is to establish certain equivalence relations with the rotation-only

SDP relaxation (Problem 4.2), which is first developed by Rosen et al. in SE-Sync

[14]. To begin, we first define the cost matrix 𝑄R that appears in the rotation-only

SDP; see also [14, Equation 20(b)].

𝑄R ≜ 𝐿R + ̃︀Σ− ̃︀𝑉 ⊤𝐿(𝑊 𝜏)
† ̃︀𝑉 , (A.1)

In (A.1), 𝐿R ∈ 𝒮𝑑𝑛
+ is the rotation connection Laplacian, and 𝐿(𝑊 𝜏) ∈ 𝒮𝑛

+ is the graph

Laplacian of the pose graph with edges weighted by the translation measurement

weights {𝜏𝑖𝑗}. The remaining two matrices ̃︀𝑉 ∈ R𝑛×𝑑𝑛 and ̃︀Σ ∈ R𝑑𝑛×𝑑𝑛 are formed

using relative translation measurements. The exact expressions of these matrices

are given in equations (13)-(16) in [14] and are omitted here. Let us consider the

rank-restricted version of the rotation-only SDP defined below.

245

Table A.1: List of problems considered in Chapter 4. Here 𝑖 ∈ [𝑛] where 𝑛 denotes the total
number of poses in the (collective) pose graph. The dimension of the problem in denoted
by 𝑑 ∈ {2, 3}. We note that Problem 4.2 and A.1 are not directly used in the proposed
approach, but are nonetheless crucial for establishing the performance guarantees of the
SDP relaxation for pose synchronization (Theorem 4.1 and Theorem 4.2).

Problem Description Cost Function Domain Constraints

2.2 MLE for PGO (2.20) (𝑅𝑖, 𝑡𝑖) ∈ SO(𝑑)× R𝑑 –

4.1 Full SDP Relaxation of PGO 𝐹 (𝑍) ≜ ⟨𝑄,𝑍⟩ 𝑍 ∈ 𝒮𝑛+𝑑𝑛
+ 𝑍[𝑖,𝑖](1:𝑑,1:𝑑) = 𝐼𝑑

4.2 Rotation-only SDP Relaxation for PGO 𝐹R(𝑍R) ≜ ⟨𝑄R, 𝑍R⟩ 𝑍R ∈ 𝒮𝑑𝑛+ 𝑍R[𝑖,𝑖] = 𝐼𝑑

4.3 Rank-Restricted Full SDP for PGO 𝑓(𝑋) ≜ ⟨𝑄,𝑋⊤𝑋⟩ 𝑋 ∈ (St(𝑑, 𝑟)× R𝑟)𝑛 –

A.1 Rank-Restricted Rotation-only SDP for PGO 𝑓R(𝑌) ≜ ⟨𝑄R, 𝑌
⊤𝑌 ⟩ 𝑌 ∈ St(𝑑, 𝑟)𝑛 –

Problem A.1 (Rotation-only Rank-restricted SDP for Pose Synchronization [14]).

minimize
𝑌 ∈St(𝑑,𝑟)𝑛

⟨𝑄R, 𝑌
⊤𝑌 ⟩. (A.2)

Problem A.1 and the sparse rank-restricted relaxation we solve in this work (Prob-

lem 4.3) are intimately connected. The following lemma precisely characterizes this

connection, and also provides an important tool for proving subsequent theorems in

this section.

Lemma A.1 (Connections between Problems 4.3 and A.1). Let 𝑋 = [𝑌1 𝑝1 . . . 𝑌𝑛 𝑝𝑛] ∈

ℳPGO(𝑟, 𝑛) be a first-order critical point of Problem 4.3. Let 𝑌 = [𝑌1 . . . 𝑌𝑛] ∈

St(𝑑, 𝑟)𝑛 and 𝑝 = [𝑝1 . . . 𝑝𝑛] ∈ R𝑟×𝑛 be block matrices constructed from the Stiefel

and Euclidean elements of 𝑋, respectively. Then:

(i) The translations 𝑝 ∈ R𝑟×𝑛 satisfy:

𝑝 ∈
{︁
−𝑌 ̃︀𝑉 ⊤𝐿(𝑊 𝜏)

†
+ 𝑐1⊤𝑛

⃒⃒⃒
𝑐 ∈ R𝑟

}︁
. (A.3)

(ii) 𝑌 is a first-order critical point of Problem A.1, and ⟨𝑄,𝑋⊤𝑋⟩ = ⟨𝑄R, 𝑌
⊤𝑌 ⟩.

246

(iii) Let Λ̄(𝑋) denote the symmetric (𝑑×𝑑)-block-diagonal matrix constructed by ex-

tracting the nonzero (𝑑×𝑑) diagonal blocks from the Lagrange multiplier matrix

Λ(𝑋) defined in (4.43a):

Λ̄(𝑋) ∈ SBD(𝑑, 𝑛) (A.4)

Λ̄(𝑋)[𝑖,𝑖] ≜ Λ(𝑋)[𝑖,𝑖](1:𝑑,1:𝑑) ∀𝑖 ∈ [𝑛] (A.5)

(see also (4.3)). Then the Lagrange multiplier matrix:

ΛR(𝑌) ≜ SymBlockDiag(𝑄R𝑌
⊤𝑌) (A.6)

for the simplified (rotation-only) Problem A.1 (cf. [14, eq. (107)]) satisfies:

ΛR(𝑌) = Λ̄(𝑋). (A.7)

(iv) Let 𝑆R(𝑌) ≜ 𝑄R−ΛR(𝑌) denote the certificate matrix for the simplified (rotation-

only) SE-Sync relaxation Problem A.1 [14, Thm. 7]. Then 𝑆R(𝑌) ⪰ 0 if and

only if 𝑆(𝑋) ⪰ 0.

(v) 𝑋 is a global minimizer of Problem 4.3 if and only if 𝑌 is a global minimizer

to Problem A.1.

Proof. Using the definition of the connection Laplacian matrix 𝑄 in Problem 4.3 (see

[20, Appendix II]), it can be shown that the cost function in Problem 4.3 can be

expanded into the following,

⟨𝑄,𝑋⊤𝑋⟩ =
∑︁

(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗

⃦⃦⃦
𝑌𝑗 − 𝑌𝑖

̃︀𝑅𝑖𝑗

⃦⃦⃦2
𝐹
+
∑︁

(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗
⃦⃦
𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖

̃︀𝑡𝑖𝑗⃦⃦22 . (A.8)

Using (A.8), we may rewrite the cost function in a way that separates the Euclidean

247

(translation) variables from the Stiefel (rotation) variables:

⟨𝑄,𝑋⊤𝑋⟩ =

⎡⎣vec(𝑝)

vec(𝑌)

⎤⎦⊤ (𝑀 ⊗ 𝐼𝑟)

⎡⎣vec(𝑝)

vec(𝑌)

⎤⎦ = tr
(︁[︀

𝑝 𝑌
]︀
𝑀
[︀
𝑝 𝑌

]︀⊤)︁
. (A.9)

𝑀 ≜

⎡⎣𝐿(𝑊 𝜏) ̃︀𝑉̃︀𝑉 ⊤ 𝐿R + ̃︀Σ
⎤⎦ . (A.10)

Above, the vec(·) operator concatenates columns of the input matrix into a single

vector. A detailed derivation for (A.9) is already presented in [14, Appendix B] for

the case when 𝑟 = 𝑑. For 𝑟 ≥ 𝑑, the derivation is largely identical with minor

modifications to the dimensions of certain matrices, and thus is omitted. We make

an additional remark that the new data matrix 𝑀 (A.10) is related to the original

connection Laplacian 𝑄 via a permutation of the columns and rows.

Let us define 𝑓(𝑋) ≜ ⟨𝑄,𝑋⊤𝑋⟩ and 𝑓R(𝑌) ≜ ⟨𝑄R, 𝑌
⊤𝑌 ⟩. From (A.9), we derive

the Euclidean gradients of 𝑓(𝑋) with respect to 𝑝 and 𝑌 , respectively.

∇𝑝𝑓(𝑋) = 2
(︁
𝑝𝐿(𝑊 𝜏) + 𝑌 ̃︀𝑉 ⊤)︁ , (A.11)

∇𝑌 𝑓(𝑋) = 2
(︁
𝑝̃︀𝑉 + 𝑌 (𝐿R + ̃︀Σ))︁ . (A.12)

Similarly, we also have:

∇𝑌 𝑓R(𝑌) = 2𝑌 𝑄R. (A.13)

Part (i): Since 𝑋 is a first-order critical point, the Euclidean gradient with respect

to the translations must be zero. In light of (A.11), we need to identify 𝑝 such that,

𝑝𝐿(𝑊 𝜏) + 𝑌 ̃︀𝑉 ⊤ = 0. (A.14)

Using the general fact that vec(𝐴𝐵𝐶) = (𝐶⊤⊗𝐴)vec(𝐵), we may vectorize the above

system of equations to,

(𝐿(𝑊 𝜏)⊗ 𝐼𝑟)vec(𝑝) + vec(𝑌 ̃︀𝑉 ⊤) = 0. (A.15)

248

Define 𝐴 ≜ 𝐿(𝑊 𝜏) ⊗ 𝐼𝑟 and 𝑏 ≜ vec(𝑌 ̃︀𝑉 ⊤). Since 𝐴 is the Kronecker product

between the Laplacian of a connected graph and the identity matrix, it holds that

rank(𝐴) = 𝑟𝑛− 𝑟 and the kernel of 𝐴 is spanned by the columns of 𝑈 ≜ 1𝑛 ⊗ 𝐼𝑟. We

can equivalently express ker(𝐴) as (cf. [14, Equation (76)]),

ker(𝐴) = {𝑈𝑐 | 𝑐 ∈ R𝑟} = {vec(𝑐1⊤𝑛) | 𝑐 ∈ R𝑟}. (A.16)

Let 𝑢 = vec(𝑐1⊤𝑛) ∈ ker(𝐴) be an arbitrary null vector of 𝐴. Consider the inner

product between 𝑢 and 𝑏,

⟨𝑏, 𝑢⟩ = ⟨𝑌 ̃︀𝑉 ⊤, 𝑐1⊤𝑛 ⟩ = tr(1⊤𝑛 ̃︀𝑉 𝑌 ⊤𝑐) = 0. (A.17)

The last equality is due to the fact that 1⊤𝑛 ̃︀𝑉 = 0 by the definition of ̃︀𝑉 ; see equation

(15) in [14]. Therefore, we have proven that 𝑏 ⊥ ker(𝐴). Since 𝐴 is symmetric

positive-semidefinite, it holds that 𝑏 ∈ range(𝐴). Thus, the system of linear equations

(A.15) admits infinitely many solutions, characterized by the following set,

vec(𝑝) ∈
{︁
−𝐴†

𝑏+ 𝑈𝑐
⃒⃒⃒
𝑐 ∈ R𝑟

}︁
. (A.18)

Recalling the definitions of 𝐴 and 𝑏, we can convert (A.18) back to matrix form (cf.

[14, Equation (21)]):

𝑝 ∈
{︁
−𝑌 ̃︀𝑉 ⊤𝐿(𝑊 𝜏)

†
+ 𝑐1⊤𝑛

⃒⃒⃒
𝑐 ∈ R𝑟

}︁
. (A.19)

Part (ii): Substituting the translation expression (A.19) into the Euclidean gra-

dient with respect to 𝑌 (A.12), we obtain:

∇𝑌 𝑓(𝑋) = 2
(︁
(−𝑌 ̃︀𝑉 ⊤𝐿(𝑊 𝜏)

†
+ 𝑐1⊤𝑛)̃︀𝑉 + 𝑌 (𝐿R + ̃︀Σ))︁

= 2
(︁
−𝑌 ̃︀𝑉 ⊤𝐿(𝑊 𝜏)

† ̃︀𝑉 + 𝑌 (𝐿R + ̃︀Σ))︁
= 2𝑌 𝑄R

= ∇𝑓R(𝑌),

(A.20)

249

where in the second line we again used the fact that the all-1s vector 1𝑛 belongs to

the null space of ̃︀𝑉 . Thus, we have shown that Problems 4.3 and A.1 have the same

Euclidean gradient with respect to the Stiefel elements 𝑌 . Since 𝑋 is a first-order

critical point, the Riemannian gradient of 𝑓(𝑋) with respect to 𝑌 is zero, which

implies that:

grad𝑌 𝑓(𝑋) = Proj𝑌 (∇𝑌 𝑓(𝑋)) = Proj𝑌 (∇𝑓R(𝑌)) = grad 𝑓R(𝑌) = 0, (A.21)

i.e., 𝑌 is a first-order critical point of Problem A.1. Finally, plugging the expression

of 𝑝 into 𝑓(𝑋) shows that ⟨𝑄,𝑋⊤𝑋⟩ = ⟨𝑄R, 𝑌
⊤𝑌 ⟩.

Part (iii): The Lagrange multiplier matrices Λ(𝑋) and ΛR(𝑌) for Problem 4.3

and Problem A.1 are:

Λ(𝑋) = SymBlockDiag+𝑑
(︀
𝑋⊤𝑋𝑄

)︀
=

1

2
SymBlockDiag+𝑑

(︀
𝑋⊤∇𝑋𝑓(𝑋)

)︀
, (A.22)

ΛR(𝑌) = SymBlockDiag
(︀
𝑌 ⊤𝑌 𝑄R

)︀
=

1

2
SymBlockDiag

(︀
𝑌 ⊤∇𝑌 𝑓R(𝑌)

)︀
; (A.23)

see (4.43a) and [14, eq. (107)], respectively. Extracting and aggregating the nonzero

diagonal blocks Λ̄(𝑋) of Λ(𝑋) (cf. (4.3)), we obtain:

Λ̄(𝑋) =
1

2
SymBlockDiag𝑑

(︀
𝑌 ⊤∇𝑌 𝑓(𝑋)

)︀
=

1

2
SymBlockDiag𝑑

(︀
𝑌 ⊤∇𝑌 𝑓R(𝑌)

)︀
= ΛR(𝑌),

(A.24)

where we have used (A.20) for the middle equality.

Part (iv): After permutation, the certificate matrix 𝑆(𝑋) defined in (4.43b) can

be written in the block form:

𝑆(𝑋) =

⎡⎣𝐿(𝑊 𝜏) ̃︀𝑉̃︀𝑉 ⊤ 𝐿R + ̃︀Σ− Λ̄(𝑋)

⎤⎦ (A.25)

(cf. (A.10)). Since 𝐿(𝑊 𝜏) ⪰ 0 and (𝐼 − 𝐿(𝑊 𝜏)𝐿(𝑊 𝜏)†)̃︀𝑉 = 0, it follows from [214,

Thm. 4.3] that 𝑆(𝑋) ⪰ 0 if only if the following generalized Schur complement of

250

𝑆(𝑋) with respect to 𝐿(𝑊 𝜏) is positive semidefinite:

(︁
𝐿R + ̃︀Σ− Λ̄(𝑋)

)︁
− ̃︀𝑉 ⊤𝐿(𝑊 𝜏)†̃︀𝑉 = 𝑄R − ΛR(𝑌) = 𝑆R(𝑌), (A.26)

where we have used the substitutions (A.1) and (A.7).

Part (v): We show that Problem A.1 is obtained from Problem 4.3 after analyt-

ically eliminating the translations 𝑝. Consider the problem of minimizing the cost

function (A.9) with respect to translations 𝑝 only (as a function of 𝑌). Since this

is an unconstrained convex quadratic problem, we can minimize this cost first with

respect to 𝑝 by setting the corresponding gradient to zero. In part (i) we identi-

fied the set of all translations (for a fixed 𝑌) satisfying this condition; see equation

(A.19). After replacing 𝑝 in the original cost function (A.9) with any element from

{−𝑌 ̃︀𝑉 ⊤𝐿(𝑊 𝜏)
†
+ 𝑐1⊤𝑛 | 𝑐 ∈ R𝑟}, we obtain the following rotation-only problem,

minimize
𝑌 ∈St(𝑑,𝑟)𝑛

tr(𝑌 (𝐿R + ̃︀Σ− ̃︀𝑉 ⊤𝐿(𝑊 𝜏)
† ̃︀𝑉)𝑌 ⊤) = tr(𝑄R𝑌

⊤𝑌), (A.27)

which is exactly Problem A.1. This concludes our proof.

A.1.1 Proof of Theorem 4.1

With Lemma A.1 in place, we are ready to prove the equivalence relations between

our SDP relaxation (Problem 4.1) and its rotation-only version (Problem 4.2), stated

in Theorem 4.1 in Chapter 4.

Proof of Theorem 4.1. We give a constructive proof where we show that from a min-

imizer 𝑍⋆ ∈ 𝒮𝑛+𝑑𝑛
+ to Problem 4.1 (full SDP relaxation), we can recover a minimizer

𝑍⋆
R ∈ 𝒮𝑑𝑛

+ to Problem 4.2 (rotation-only SDP relaxation) with the same rank, and

vice versa. Without loss of generality, let 𝑟⋆ = rank(𝑍⋆) ≥ 𝑑. Consider the rank-𝑟⋆

factorization 𝑍⋆ = (𝑋⋆)⊤𝑋⋆. Since 𝑍⋆ is a feasible point for Problem 4.1, it can be

readily verified that 𝑋⋆ is an element of the product manifoldℳPGO(𝑟
⋆, 𝑛) (4.4). Let

𝑌 ⋆ ∈ St(𝑑, 𝑟⋆)𝑛 be obtained by stacking all rotational components of 𝑋⋆. We prove

that 𝑍⋆
R = (𝑌 ⋆)⊤𝑌 ⋆ is an optimal solution to Problem 4.2. To see this, first note

251

that 𝑋⋆ is an optimal solution to the rank-restricted SDP Problem 4.3. Therefore,

by Lemma A.1, it holds that,

⟨𝑄,𝑍⋆⟩ = ⟨𝑄,𝑋⋆⊤𝑋⋆⟩ = ⟨𝑄R, 𝑌
⋆⊤𝑌 ⋆⟩ = ⟨𝑄R, 𝑍

⋆
R⟩. (A.28)

Now, suppose 𝑍⋆
R is not an optimal solution to Problem A.1. Then there exists 𝑍*R

such that ⟨𝑄R, 𝑍
*
R⟩ < ⟨𝑄R, 𝑍

⋆
R⟩. Once again, without loss of generality, let rank(𝑍*R) =

𝑟* and consider the rank-𝑟 factorization 𝑍*R = 𝑌 *⊤𝑌 * where 𝑌 * ∈ St(𝑑, 𝑟*)𝑛. Now

suppose 𝑝* is an optimal value for translations given 𝑌 * (see (A.19)):

𝑝* ∈
{︁
−𝑌 *̃︀𝑉 ⊤𝐿(𝑊 𝜏)

†
+ 𝑐1⊤𝑛

⃒⃒⃒
𝑐 ∈ R𝑟

}︁
. (A.29)

Let 𝑋* ∈ℳPGO(𝑟
*, 𝑛) be obtained by combining 𝑌 * and 𝑝* and define 𝑍* ≜ 𝑋*⊤𝑋*.

Again by Lemma A.1, it holds that,

⟨𝑄,𝑍*⟩ = ⟨𝑄,𝑋*⊤𝑋*⟩ = ⟨𝑄R, 𝑌
*⊤𝑌 *⟩ = ⟨𝑄R, 𝑍

*
R⟩. (A.30)

The combination of (A.28) and (A.30) would imply that ⟨𝑄,𝑍*⟩ < ⟨𝑄,𝑍⋆⟩, which

contradicts the starting assumption that 𝑍⋆ is an optimal solution. Therefore 𝑍⋆
R

must be an optimal solution with rank 𝑟⋆. To conclude the proof, note that using

a similar argument, we can construct an optimal solution to Problem 4.1 from an

optimal solution 𝑍⋆
R to Problem 4.2 with the same rank.

A.1.2 Proof of Theorem 4.2

In this subsection, we formally prove the exactness guarantees of the SDP relaxation

(Problem 4.1) used in this work, which is stated in Theorem 4.2 in Chapter 4.

Proof of Theorem 4.2. By [14, Proposition 2], there exists a constant as a function of

the noiseless data matrix of the rotation-only SDP relaxation (Problem 4.2), denoted

as 𝛽 ≜ 𝛽(𝑄R), such that if
⃦⃦
𝑄R −𝑄R

⃦⃦
2
< 𝛽, the rotation-only SDP relaxation

252

(Problem 4.2) admits a unique solution 𝑍◇R = 𝑅◇⊤𝑅◇, where 𝑅◇ ∈ SO(𝑑)𝑛 is a globally

optimal rotation estimate to PGO (Problem 2.2). Let 𝑍⋆ be an arbitrary minimizer

to Problem 4.1. By Theorem 4.1, it holds that ⟨𝑄,𝑍⋆⟩ = ⟨𝑄R, 𝑍
◇
R⟩. Without loss of

generality, let rank(𝑍⋆) = 𝑟 where 𝑟 ≥ 𝑑. Consider the rank-𝑟 factorization 𝑍⋆ =

𝑋⊤𝑋, where 𝑋 ∈ ℳPGO(𝑟, 𝑛). Note that 𝑋 is a global minimizer to Problem 4.3,

and hence by Lemma A.1, it holds that,

⟨𝑄,𝑍⋆⟩ = ⟨𝑄,𝑋⊤𝑋⟩ = ⟨𝑄R, 𝑌
⊤𝑌 ⟩ = ⟨𝑄R, 𝑍

◇
R⟩. (A.31)

Above, 𝑌 ∈ St(𝑑, 𝑟)𝑛 extracts the Stiefel elements from 𝑋. Since Problem 4.2 admits

a unique minimizer, (A.31) implies that 𝑌 ⊤𝑌 is the same minimizer:

𝑌 ⊤𝑌 = 𝑍◇R = 𝑅◇⊤𝑅◇. (A.32)

In addition, (A.32) also implies that rank(𝑌) = rank(𝑍◇R) = 𝑑. We may thus consider

the 𝑑-dimensional (thin) singular value decomposition 𝑌 = 𝑈𝑑Σ𝑑𝑉
⊤
𝑑 . Let us define

𝑌 ≜ Σ𝑑𝑉
⊤
𝑑 . Since 𝑈𝑑 ∈ St(𝑑, 𝑟), it holds that 𝑌 ⊤𝑌 = 𝑅◇⊤𝑅◇, and therefore 𝑌

consists of 𝑛 orthogonal matrices 𝑌 ∈ O(𝑑)𝑛. By inspecting the first block row of this

equality, we may further deduce that,

𝑌 ⊤1 𝑌𝑖 = 𝑅◇1
⊤𝑅◇𝑖 , ∀𝑖 ∈ [𝑛]. (A.33)

Multiplying both sides in (A.33) from the left by 𝑈𝑑𝑌1, such that the left-hand side

simplifies to 𝑌𝑖.

𝑌𝑖 = 𝑈𝑑𝑌1𝑅
◇
1
⊤𝑅◇𝑖 . (A.34)

Let us define 𝐴 ≜ 𝑈𝑑𝑌1𝑅
◇
1
⊤. Since 𝑈𝑑 ∈ St(𝑑, 𝑟) and 𝑌1, 𝑅

◇
1 ∈ O(𝑑), it holds that 𝐴 ∈

St(𝑑, 𝑟). Combining equality (A.34) for all 𝑖 yields the following compact equation.

𝑌 = 𝐴𝑅◇. (A.35)

Let 𝑝 ∈ R𝑟×𝑛 contains the translations in 𝑋. Since 𝑋 is a global minimizer, it

253

is also a first-order critical point. Therefore, we can apply part (i) of Lemma A.1 to

relate 𝑝 with 𝑌 :

𝑝 = −𝑌 ̃︀𝑉 ⊤𝐿(𝑊 𝜏)
†
+ 𝑐1⊤𝑛 (A.36)

= −𝐴𝑅◇̃︀𝑉 ⊤𝐿(𝑊 𝜏)
†
+ 𝑐1⊤𝑛 (A.35) (A.37)

= 𝐴𝑡◇ + 𝑐1𝑇𝑛 . (A.38)

In the last equality (A.38), we have defined 𝑡◇ ≜ −𝑅◇̃︀𝑉 ⊤𝐿(𝑊 𝜏)
† . Notice that 𝑡◇

corresponds to a set of globally optimal translations. Finally, we note that the first

block-row of the SDP solution 𝑍⋆ = 𝑋⊤𝑋 may be expressed as,

𝑍⋆
(1:𝑑,:) = (𝑌1)

⊤
[︁
𝑌1 𝑝1 . . . 𝑌𝑛 𝑝𝑛

]︁
(A.39)

= (𝐴𝑅◇1)
⊤
[︁
𝐴𝑅◇1 𝐴𝑡◇1 + 𝑐 . . . 𝐴𝑅◇𝑛 𝐴𝑡◇𝑛 + 𝑐

]︁
(A.40)

=
[︀

𝐼𝑑⏟ ⏞
𝑅⋆

1

𝑅◇1
⊤𝑡◇1 +𝑅◇1

⊤𝐴⊤𝑐⏟ ⏞
𝑡⋆1

. . . 𝑅◇1
⊤𝑅◇𝑛⏟ ⏞
𝑅⋆

𝑛

𝑅◇1
⊤𝑡◇𝑛 +𝑅◇1

⊤𝐴⊤𝑐⏟ ⏞
𝑡⋆1

]︀
. (A.41)

In particular, 𝑍⋆
(1:𝑑,:) can be obtained from (𝑅◇, 𝑡◇) via a global rigid body transforma-

tion with rotation 𝑅◇1
⊤ and translation 𝑅◇1

⊤𝐴⊤𝑐. Due to the global gauge symmetry

of PGO, 𝑍⋆
(1:𝑑,:) thus also is an optimal solution.

So far, we have proved that the SDP relaxation (Problem 4.1) is exact if its

rotation-only counterpart (Problem 4.2) satisfies
⃦⃦
𝑄R −𝑄R

⃦⃦
2
< 𝛽. To conclude the

proof, let us consider the matrix 𝑀 defined in (A.10) and its latent value 𝑀 (i.e.,

constructed using noiseless relative transformation measurements). Note that 𝑀 and

𝑀 only differ in certain blocks,

𝑀 =

⎡⎣ 𝐿(𝑊 𝜏) ̃︀𝑉 +∆12

(̃︀𝑉 +∆12)
⊤ 𝐿R + ̃︀Σ +∆22

⎤⎦ = 𝑀 +

⎡⎣ 0 ∆12

∆⊤12 ∆22

⎤⎦ . (A.42)

Once again, the underline notation denotes the latent value of each data matrix.

Matrices ∆12 and ∆22 summarize the measurement noise. Notice that the upper left

block of 𝑀 is not affected by noise, since by construction it is always the (constant)

254

translation-weighted graph Laplacian. Using the notation above, we can also express

𝑄R (A.1) as a function of ∆12 and ∆22,

𝑄R(∆12,∆22) = 𝐿R + ̃︀Σ +∆22 − (̃︀𝑉 +∆12)
⊤𝐿(𝑊 𝜏)

†
(̃︀𝑉 +∆12). (A.43)

Crucially, note that 𝑄R varies continuously with respect to the noise terms ∆12 and

∆22. Therefore, as the noise tends to zero (equivalently, as 𝑀 tends to 𝑀), 𝑄R

converges to its latent value 𝑄R. By definition, this guarantees the existence of a

constant 𝛿 > 0, such that ‖𝑀 −𝑀‖2 < 𝛿 implies
⃦⃦
𝑄R −𝑄R

⃦⃦
2
< 𝛽. Finally, since

the connection Laplacian 𝑄 and 𝑀 are related by a permutation of the rows and

columns, it holds that,

⃦⃦
𝑄−𝑄

⃦⃦
2
< 𝛿 =⇒ ‖𝑀 −𝑀‖2 < 𝛿 =⇒

⃦⃦
𝑄R −𝑄R

⃦⃦
2
< 𝛽, (A.44)

which concludes the proof.

A.2 Convergence of RBCD and RBCD++

A.2.1 Proof of Lemma 4.1

Proof of Lemma 4.1. Our proof largely follows the proof of Lemma 3.11 in [167]. By

Assumption 4.1, the reduced cost over each block 𝑓𝑏 satisfies (4.32) globally with

Lipschitz constant 𝑐𝑏. To simplify our notation, we drop the iteration counter 𝑘 and

use 𝑋𝑏 to represent the input into BlockUpdate (Algorithm 4.4). In addition, define

𝑔𝑏 ≜ grad 𝑓𝑏(𝑋𝑏). In the remaining proof, we also use 𝜂 to represent a tangent vector

in 𝑇𝑋𝑏
ℳ𝑏. Using the simplified notation, consider the first trust-region subproblem

solved in BlockUpdate (Algorithm 4.4).

minimize
𝜂∈𝑇𝑋𝑏

ℳ𝑏

̂︀𝑚𝑏(𝜂) ≜ 𝑓𝑏(𝑋𝑏) + ⟨𝜂, 𝑔𝑏⟩+
1

2
⟨𝜂,𝐻[𝜂]⟩, (A.45a)

subject to ‖𝜂‖ ≤ ∆0. (A.45b)

255

Recall that ∆0 above is the initial trust-region radius. By Assumption 4.3, there

exists 𝑐0 ≥ 0 such that ⟨𝜂,𝐻[𝜂]⟩ ≤ 𝑐0 ‖𝜂‖2 for all 𝜂 ∈ 𝑇𝑋𝑏
ℳ𝑏. Define the constant,

𝜆𝑏 ≜
1

4
min

(︂
1

𝑐0
,

1

2𝑐𝑏 + 2𝑐0

)︂
=

1

8(𝑐𝑏 + 𝑐0)
. (A.46)

Note that 𝜆𝑏 is the same constant that appears in the lower bound of the initial

trust-region radius (Assumption 4.4).

We show that the required cost decrement in Lemma 4.1 is achieved by taking

the so-called Cauchy step [167] in the first trust-region subproblem. By definition,

the Cauchy step 𝜂𝐶 minimizes the model function (A.45) along the direction of the

negative Riemannian gradient, i.e., 𝜂𝐶 = −𝛼𝐶𝑔𝑏. The step size 𝛼𝐶 ∈ [0,∆0/ ‖𝑔𝑏‖]

can be determined in closed-form as,

𝛼𝐶 =

⎧⎪⎪⎨⎪⎪⎩
min

(︂
‖𝑔𝑏‖2
⟨𝑔𝑏,𝐻[𝑔𝑏]⟩

, Δ0

‖𝑔𝑏‖

)︂
, if ⟨𝑔𝑏, 𝐻[𝑔𝑏]⟩ > 0,

Δ0

‖𝑔𝑏‖
, otherwise.

(A.47)

A straightforward calculation (see [167, Lemma 3.7]) shows that the Cauchy step

reduces the model function ̂︀𝑚𝑏 by at least,

̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂
𝐶) ≥ 1

2
min

(︂
∆0,
‖𝑔𝑏‖
𝑐0

)︂
‖𝑔𝑏‖ . (A.48)

Next, we need to relate the above model decrement (A.48) with the actual decrement

of the cost function 𝑓𝑏. For this, we show that the following ratio,

⃒⃒⃒⃒ ̂︀𝑓𝑏(0)− ̂︀𝑓𝑏(𝜂𝐶)̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂𝐶)
− 1

⃒⃒⃒⃒
=

⃒⃒⃒⃒ ̂︀𝑚𝑏(𝜂
𝐶)− ̂︀𝑓𝑏(𝜂𝐶)̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂𝐶)

⃒⃒⃒⃒
(A.49)

is close to zero. Note that in (A.49) we use the fact that, by definition, ̂︀𝑚𝑥𝑏
(0) =

256

̂︀𝑓𝑥𝑏
(0) = 𝑓𝑏(𝑋𝑏). We derive an upper bound on the numerator of (A.49) as follows,

|̂︀𝑚𝑏(𝜂
𝐶)− ̂︀𝑓𝑏(𝜂𝐶)| = ⃒⃒𝑓𝑏(𝑋𝑏) + ⟨𝑔𝑏, 𝜂𝐶⟩+

1

2
⟨𝜂𝐶 , 𝐻[𝜂𝐶]⟩ − ̂︀𝑓𝑏(𝜂𝐶)⃒⃒ (A.50)

≤
⃒⃒
𝑓𝑏(𝑋𝑏) + ⟨𝑔𝑏, 𝜂𝐶⟩ − ̂︀𝑓𝑏(𝜂𝐶)⃒⃒+ 1

2

⃒⃒
⟨𝜂𝐶 , 𝐻[𝜂𝐶]⟩

⃒⃒
(A.51)

≤ 1

2
(𝑐𝑏 + 𝑐0) ‖𝜂𝑐‖2 . (A.52)

For the last inequality, we have used the Lipschitz-type gradient condition of 𝑓𝑏 for

the first term, and the boundedness of 𝐻 for the second term. Plugging (A.48) and

(A.52) into (A.49), we obtain,

⃒⃒⃒⃒ ̂︀𝑓𝑏(0)− ̂︀𝑓𝑏(𝜂𝐶)̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂𝐶)
− 1

⃒⃒⃒⃒
≤

1
2
(𝑐𝑏 + 𝑐0) ‖𝜂𝑐‖2

1
2
min

(︀
∆0,

‖𝑔𝑏‖
𝑐0

)︀
‖𝑔𝑏‖

(A.48) and (A.52) (A.53)

≤ (𝑐𝑏 + 𝑐0)∆
2
0

min
(︀
∆0,

‖𝑔𝑏‖
𝑐0

)︀
‖𝑔𝑏‖

(A.54)

≤ (𝑐𝑏 + 𝑐0)∆0

‖𝑔𝑏‖
. (A.55)

In order to proceed, let us first impose an additional assumption that the initial

trust-region radius ∆0 is also bounded above by ∆0 ≤ 4𝜆𝑏 ‖𝑔𝑏‖. Towards the end of

this proof, we show how this assumption can be safely removed. Under this additional

assumption, it holds that ∆0 ≤ 4𝜆𝑏 ‖𝑔𝑏‖ ≤ ‖𝑔𝑏‖ /(2𝑐𝑏 +2𝑐0), and thus (A.55) implies,

⃒⃒⃒⃒ ̂︀𝑓𝑏(0)− ̂︀𝑓𝑏(𝜂𝐶)̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂𝐶)
− 1

⃒⃒⃒⃒
≤ 1

2
=⇒ 𝜌 ≜

̂︀𝑓𝑏(0)− ̂︀𝑓𝑏(𝜂𝐶)̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂𝐶)
≥ 1

2
. (A.56)

In particular, 𝜌 is bigger than the acceptance threshold of 1/4 in BlockUpdate (see

Algorithm 4.4), and thus 𝜂𝐶 is guaranteed to be accepted. Consider the candidate

solution corresponding to the Cauchy step 𝑋 ′𝑏 = Retr𝑋𝑏
(𝜂𝐶). Using the definition of

257

the pullback function, it holds that,

𝑓𝑏(𝑋𝑏)− 𝑓𝑏(𝑋
′
𝑏) =

̂︀𝑓𝑏(0)− ̂︀𝑓𝑏(𝜂𝐶) (A.57)

≥ 1

2

(︀̂︀𝑚𝑏(0)− ̂︀𝑚𝑏(𝜂
𝐶)
)︀

(A.58)

≥ 1

4
min

(︂
∆0,
‖𝑔𝑏‖
𝑐0

)︂
‖𝑔𝑏‖ (A.59)

≥ 1

4
min

(︂
𝜆𝑏,

1

𝑐0

)︂
‖𝑔𝑏‖2 (A.60)

=
1

4
𝜆𝑏 ‖𝑔𝑏‖2 . (A.61)

Therefore, we have proven that under the additional assumption that ∆0 ≤ 4𝜆𝑏 ‖𝑔𝑏‖,

the desired cost reduction can be achieved simply by taking the Cauchy step in the

first trust-region subproblem. As we mention in Section 4.3, in practice, we use the

truncated conjugate-gradient (tCG) algorithm to improve upon the initial Cauchy

step. However, since each additional tCG iteration will strictly decrease the model

function (see [17, Proposition 7.3.2]), we can show that the inequality (A.55) holds

at all times, and thus the desired cost reduction is always achieved.

To complete the proof, we need to show that Algorithm 4.4 still achieves the

desired cost reduction, even after removing the additional assumption that ∆0 ≤

4𝜆𝑏 ‖𝑔𝑏‖. To do so, note that after dropping this assumption, inequality (A.56) might

fail to hold and as a result the Cauchy step can be rejected in the first iteration.

However, by the mechanism of BlockUpdate (Algorithm 4.4), after each rejection

the trust-region radius will be divided by four in the next iteration. Therefore, in the

worst case, the trust-region radius will be within the interval [𝜆𝑏 ‖𝑔𝑏‖ , 4𝜆𝑏 ‖𝑔𝑏‖] after

𝒪(log(4𝜆𝑏 ‖𝑔𝑏‖∆0)) consecutive rejections, after which the Cauchy step is guaranteed

to be accepted in the next trust-region subproblem.

258

A.2.2 Proof of Theorem 4.4

Proof of Theorem 4.4. We begin by using the sufficient descent property proved in

Lemma 4.1, which states that after each BlockUpdate operation, the reduced cost

is decreased by at least,

𝑓𝑏𝑘(𝑋
𝑘
𝑏𝑘
)− 𝑓𝑏𝑘(𝑋

𝑘+1
𝑏𝑘

) ≥ 1

4
𝜆𝑏𝑘

⃦⃦
grad 𝑓𝑏𝑘(𝑋

𝑘
𝑏𝑘
)
⃦⃦2

=
1

4
𝜆𝑏𝑘

⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2

. (A.62)

Recall that by design of the RBCD algorithm, at each iteration the values of all blocks

other than 𝑏𝑘 remain unchanged. Denote the values of these fixed blocks as 𝑋𝑘
𝑐 . By

definition of the reduced cost 𝑓𝑏𝑘 , it is straightforward to verify that the decrease in

𝑓𝑏𝑘 exactly equals the decrease in the global cost 𝑓 ,

𝑓𝑏𝑘(𝑋
𝑘
𝑏𝑘
)− 𝑓𝑏𝑘(𝑋

𝑘+1
𝑏𝑘

) = 𝑓(𝑋𝑘
𝑏𝑘
, 𝑋𝑘

𝑐)− 𝑓(𝑋𝑘+1
𝑏𝑘

, 𝑋𝑘
𝑐) = 𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1). (A.63)

The above result directly implies that each iteration of RBCD reduces the global cost

function by at least,

𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1) = 𝑓𝑏𝑘(𝑋
𝑘
𝑏𝑘
)− 𝑓𝑏𝑘(𝑋

𝑘+1
𝑏𝑘

) ≥ 1

4
𝜆𝑏𝑘

⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2

. (A.64)

In the remaining proof, we use (A.64) to prove the stated convergence rate for each

block selection rule.

Uniform Sampling. In this case, the updated block 𝑏𝑘 ∈ [𝑁] is selected uniformly

at random at each iteration. Conditioned on all previously selected blocks 𝑏0:𝑘−1, we

can take expectation on both sides of (A.64) with respect to the current block 𝑏𝑘.

E𝑏𝑘|𝑏0:𝑘−1

[︁
𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1)

]︁
≥
∑︁
𝑏∈𝑁

Prob(𝑏𝑘 = 𝑏) · 1
4
𝜆𝑏

⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦2 (A.65)

Recall that all block are selected with equal probability, i.e., Prob(𝑏𝑘 = 𝑏) = 1/𝑁 for

all 𝑏 ∈ [𝑁]. Using this, we arrive at a simplified inequality that lower bounds the

259

expected cost decrease by the squared gradient norm with respect to all variables 𝑋.

E𝑏𝑘|𝑏0:𝑘−1

[︁
𝑓(𝑋𝑘)−𝑓(𝑋𝑘+1)

]︁
≥
∑︁
𝑏∈𝑁

1

𝑁
·1
4
𝜆𝑏

⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦2 ≥ min𝑏∈[𝑁] 𝜆𝑏

4𝑁

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2
.

(A.66)

We can use the above inequality (A.66) to bound the expected cost decrease over all

iterations from 𝑘 = 0 to 𝑘 = 𝐾. To do so, we first write the overall cost reduction

as a cascading sum, and then apply the law of total expectation on each expectation

term that appears inside the sum.

𝑓(𝑋0)− E𝑏0:𝐾−1
𝑓(𝑋𝐾) =

𝐾−1∑︁
𝑘=0

E𝑏0:𝑘

[︁
𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1)

]︁
=

𝐾−1∑︁
𝑡=0

E𝑏0:𝑘−1

[︁
E𝑏𝑘|𝑏0:𝑘−1

[𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1)]
]︁
.

(A.67)

Observe that each innermost conditional expectation is already bounded by our pre-

vious inequality (A.66). Plugging in this lower bound, we arrive at,

𝑓(𝑋0)− E𝑏0:𝐾−1
𝑓(𝑋𝐾) ≥

𝐾−1∑︁
𝑘=0

E𝑏0:𝑘−1

[︂
min𝑏∈[𝑁] 𝜆𝑏

4𝑁

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2]︂ (A.68)

≥ 𝐾 ·
min𝑏∈[𝑁] 𝜆𝑏

4𝑁
min

0≤𝑘≤𝐾−1
E𝑏0:𝑘−1

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2
. (A.69)

To conclude the proof, we note that since 𝑓 ⋆ is the global minimum, we necessarily

have 𝑓(𝑋0)− 𝑓 ⋆ ≥ 𝑓(𝑋0)− E𝑏0:𝐾−1
𝑓(𝑋𝐾). This directly implies,

𝑓(𝑋0)− 𝑓 ⋆ ≥ 𝐾 ·
min𝑏∈[𝑁] 𝜆𝑏

4𝑁
min

0≤𝑘≤𝐾−1
E𝑏0:𝑘−1

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2
. (A.70)

Rearranging the last inequality gives the desired convergence rate (4.38).

Importance Sampling. We start with the same procedure of taking conditional

expectations on both sides of (A.64). The only difference is that with importance

sampling, at each iteration the block is selected with probability proportional to the

squared gradient norm, i.e., 𝑝𝑏 =
⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦2

/
⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2. Using this to

260

expand the conditional expectation gives:

E𝑏𝑘|𝑏0:𝑘−1
[𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1)] ≥

∑︁
𝑏∈[𝑁]

⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦2

‖grad 𝑓(𝑋𝑘)‖2
· 1
4
𝜆𝑏

⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦2 (A.71)

≥
min𝑏∈[𝑁] 𝜆𝑏

4
·
∑︀

𝑏∈[𝑁]

⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦4∑︀

𝑏∈[𝑁] ‖grad𝑏 𝑓(𝑋
𝑘)‖2

(A.72)

=
min𝑏∈[𝑁] 𝜆𝑏

4
·
∑︀

𝑏∈[𝑁] 𝑎
2
𝑏∑︀

𝑏∈[𝑁] 𝑎𝑏
, (A.73)

where we define 𝑎𝑏 ≜
⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦2 for brevity. Applying the Cauchy-Schwarz

inequality gives,
1

𝑁2

(︂ ∑︁
𝑏∈[𝑁]

𝑎𝑏

)︂2

≤ 1

𝑁

∑︁
𝑏∈[𝑁]

𝑎2𝑏 . (A.74)

Rearranging the above inequality yields,∑︀
𝑏∈[𝑁] 𝑎

2
𝑏∑︀

𝑏∈[𝑁] 𝑎𝑏
≥ 1

𝑁

∑︁
𝑏∈[𝑁]

𝑎𝑏 =
1

𝑁

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2
. (A.75)

Combining (A.73) and (A.75) gives,

𝑓(𝑋𝑘)− E𝑏𝑘|𝑏0:𝑘−1
𝑓(𝑋𝑘+1) ≥

min𝑏∈[𝑁] 𝜆𝑏

4𝑁

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2
. (A.76)

The rest of the proof is identical to the proof for uniform sampling.

Greedy Selection. With greedy selection, we can perform a deterministic anal-

ysis. Recall that at each iteration, the block with the largest squared gradient norm

is selected. Using this information inside our inequality (A.64), we arrive at,

𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1) ≥ 1

4
𝜆𝑏𝑘

⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2 (A.77)

≥ 1

4

(︂
min
𝑏∈[𝑁]

𝜆𝑏

)︂
·
(︂
max
𝑏∈[𝑁]

⃦⃦
grad𝑏 𝑓(𝑋

𝑘)
⃦⃦2)︂ (A.78)

≥ 1

4𝑁
min
𝑏∈[𝑁]

𝜆𝑏 ·
⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2
. (A.79)

261

A telescoping sum of the above inequalities from 𝑘 = 0 to 𝑘 = 𝐾 − 1 gives,

𝑓(𝑋0)− 𝑓 ⋆ ≥
𝐾−1∑︁
𝑘=0

[𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1)] (A.80)

≥
𝐾−1∑︁
𝑘=0

1

4𝑁
min
𝑏∈[𝑁]

𝜆𝑏 ·
⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2 (A.81)

≥ 𝐾

4𝑁
· min
𝑏∈[𝑁]

𝜆𝑏 · min
0≤𝑘≤𝐾−1

⃦⃦
grad 𝑓(𝑋𝑘)

⃦⃦2
. (A.82)

Rearranging the last inequality gives (4.39).

A.2.3 Proof of Theorem 4.5

Proof. For the purpose of proving global first-order convergence, we only focus on

the evolution of the {𝑋𝑘} sequence in RBCD++ (Algorithm 4.5). After each itera-

tion, there are two possibilities depending on whether the adaptive restart condition

(line 13) is triggered. If restart is not triggered, then by construction the current

iteration must achieve a cost reduction that is at least,

𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1) ≥ 𝑐1
⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2

. (A.83)

On the other hand, if restart is triggered, then the algorithm would instead update the

selected block using the default BlockUpdate method. In this case, using the same

argument as the beginning of proof for Theorem 4.4, we can establish the following

lower bound on global cost reduction.

𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1) = 𝑓𝑏𝑘(𝑋
𝑘
𝑏𝑘
)− 𝑓𝑏𝑘(𝑋

𝑘+1
𝑏𝑘

) ≥ 1

4
𝜆𝑏𝑘

⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2

. (A.84)

262

Combining the two cases, we see that each iteration of RBCD++ decreases the global

cost by at least,

𝑓(𝑋𝑘)− 𝑓(𝑋𝑘+1) ≥ min (𝑐1, 𝜆𝑏𝑘/4)
⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2 (A.85)

≥ min

(︂
𝑐1, min

𝑏∈[𝑁]
𝜆𝑏/4

)︂ ⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2 (A.86)

≥ 𝐶
⃦⃦
grad𝑏𝑘

𝑓(𝑋𝑘)
⃦⃦2

. (A.87)

The above inequality serves as a lower bound on the global cost reduction after each

iteration. Note that this lower bound is very similar to (A.64) used in the proof of

Theorem 4.4. The only difference is the change of constant on the right-hand side.

From this point on, we can employ the same steps used in the proof of Theorem 4.4

to prove the desired convergence rates for all three block selection rules.

A.2.4 Convergence on Problem 4.3

In this section, we address the convergence of RBCD and RBCD++ when solving

the rank-restricted semidefinite relaxations of PGO (Problem 4.3). To apply the

general convergence results in Section 4.4, we need to check that the required technical

conditions are satisfied. Among these, we note that the Riemannian Hessian operator

(which we use as the user-specified map 𝐻 in Algorithm 4.4) satisfies Assumption 4.2

due to the linearity of affine connections [17, Section 5.2]. In addition, Assumption 4.4

can be satisfied by choosing a sufficiently large initial trust-region radius. Therefore,

to establish convergence, we are left to verify Assumption 4.1 (Lipschitz-type gradients

for pullback) and Assumption 4.3 (boundedness of Riemannian Hessian).

Verifying Assumption 4.1

We now show that Assumption 4.1 is satisfied in Problem 4.3, i.e., the reduced cost

function (4.21) corresponding to any block has Lipschitz-type gradient for pullbacks

along the iterates of RBCD and RBCD++. In [167], Boumal et al. prove a sim-

ple condition for a function 𝑓 : ℳ → R defined on a matrix submanifold to have

263

Lipschitz-type gradient for pullbacks. For convenience, we include their result below.

Lemma A.2 (Lemma 2.7 in [167]). Let ℰ be a Euclidean space and letℳ be a compact

Riemannian submanifold of ℰ. Let Retr be a retraction on ℳ (globally defined). If

𝑓 : ℰ → R has Lipschitz continuous gradient then the pullbacks 𝑓 ∘Retr𝑥 satisfy (4.32)

globally with some constant 𝑐𝑔 independent of 𝑥.

In our case, we need a generalized version of Lemma A.2 that extend the result

to product manifold with Euclidean spaces.

Lemma A.3 (Extension of Lemma A.2 to product manifolds with Euclidean spaces).

Let ℰ1 and ℰ2 be Euclidean spaces, and define ℰ ≜ ℰ1 × ℰ2. Let ℳ ≜ ℳ1 × ℰ2,

where ℳ1 is a compact Riemannian submanifold of ℰ1. Given 𝑥 = [𝑥1 𝑥2] ∈ ℳ

and 𝜂 = [𝜂1 𝜂2] ∈ 𝑇𝑥ℳ, define a retraction operator Retr𝑥 : 𝑇𝑥ℳ → ℳ as:

Retr𝑥(𝜂) = [Retr𝑥1(𝜂1) Retr𝑥2(𝜂2)] = [Retr𝑥1(𝜂1) 𝑥2 + 𝜂2] , where Retr𝑥1 is a glob-

ally defined retraction on ℳ1 and we employ the standard retraction for Euclidean

space. If 𝑓 : ℰ → R has bounded and Lipschitz continuous gradient with Euclidean

Lipschitz constant 𝑐𝑙, then the pullbacks 𝑓 ∘ Retr𝑥 satisfy (4.32) globally with some

constant 𝑐𝑔 ≥ 𝑐𝑙 independent of 𝑥; i.e.,

⃒⃒ ̂︀𝑓𝑥(𝜂)− [𝑓(𝑥) + ⟨𝜂, grad𝑥 𝑓⟩]
⃒⃒
≤ 𝑐𝑔

2
‖𝜂‖2 . (A.88)

Proof. This proof is a straightforward generalization of the proof of Lemma A.2.

By assumption, the Euclidean gradient ∇𝑓 is Lipschitz continuous with Lipschitz

constant 𝑐𝑙 , which implies that for any 𝑥, 𝑦 ∈ℳ,

|𝑓(𝑦)− [𝑓(𝑥) + ⟨∇𝑥𝑓, 𝑦 − 𝑥⟩]| ≤ 𝑐𝑙
2
‖𝑦 − 𝑥‖2 . (A.89)

The above inequality is true in particular for any 𝑦 = Retr𝑥(𝜂), 𝜂 ∈ 𝑇𝑥ℳ. In this

264

case, the inner product that appears in the LHS of (A.89) can be expanded as,

⟨∇𝑥𝑓,Retr𝑥(𝜂)− 𝑥⟩ =
⟨[︁
∇𝑥1𝑓 ∇𝑥2𝑓

]︁
,
[︁
Retr𝑥1(𝜂1)− 𝑥1 (𝑥2 + 𝜂2)− 𝑥2

]︁⟩
(A.90)

= ⟨∇𝑥1𝑓,Retr𝑥1(𝜂1)− 𝑥1⟩+ ⟨∇𝑥2𝑓, 𝜂2⟩ (A.91)

= ⟨∇𝑥1𝑓,Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1 + 𝜂1⟩+ ⟨∇𝑥2𝑓, 𝜂2⟩ (A.92)

= ⟨∇𝑥1𝑓, 𝜂1⟩+ ⟨∇𝑥2𝑓, 𝜂2⟩+ ⟨∇𝑥1𝑓,Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1⟩.

(A.93)

Next, we use two facts: (1) the Riemannian gradient in Euclidean space is just the

standard (Euclidean) gradient; and (2) the Riemannian gradient of submanifolds

embedded in a Euclidean space is the orthogonal projection of the Euclidean gradient

onto the tangent space ([17, Equation 3.37]). With these, the above equality can be

further simplified to,

⟨∇𝑥𝑓,Retr𝑥(𝜂)− 𝑥⟩ = ⟨grad𝑥1
𝑓, 𝜂1⟩+ ⟨grad𝑥2

𝑓, 𝜂2⟩+ ⟨∇𝑥1𝑓,Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1⟩

(A.94)

= ⟨grad𝑥 𝑓, 𝜂⟩+ ⟨∇𝑥1𝑓,Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1⟩. (A.95)

Plugging (A.95) into (A.89) gives,

⃒⃒
𝑓(𝑦)− [𝑓(𝑥) + ⟨∇𝑥𝑓, 𝑦 − 𝑥⟩]

⃒⃒
=
⃒⃒
𝑓(Retr𝑥(𝜂))− [𝑓(𝑥) + ⟨grad𝑥 𝑓, 𝜂⟩+ ⟨∇𝑥1𝑓,Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1⟩]

⃒⃒
≤𝑐𝑙
2
‖Retr𝑥(𝜂)− 𝑥‖2 . (A.96)

Applying the triangle and Cauchy-Schwarz inequalities and expanding ‖Retr𝑥(𝜂)− 𝑥‖2

265

yields,

|𝑓(Retr𝑥(𝜂))− [𝑓(𝑥) + ⟨grad𝑥 𝑓, 𝜂⟩]|

≤𝑐𝑙
2
‖Retr𝑥(𝜂)− 𝑥‖2 + |⟨∇𝑥1𝑓,Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1⟩| (A.97)

≤𝑐𝑙
2
‖Retr𝑥(𝜂)− 𝑥‖2 + ‖∇𝑥1𝑓‖ ‖Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1‖ (A.98)

=
𝑐𝑙
2
‖𝜂2‖2 +

𝑐𝑙
2
‖Retr𝑥1(𝜂1)− 𝑥1‖2 + ‖∇𝑥1𝑓‖ ‖Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1‖ . (A.99)

Since we assume that the Euclidean gradient is bounded, there exists constant 𝐺1 ≥ 0

such that ‖∇𝑥1𝑓‖ ≤ 𝐺1 for all 𝑥1 ∈ ℳ1. In equations (B.3) and (B.4) in [167],

Boumal et al. show that for the compact submanifoldℳ1, the following inequalities

hold,

‖Retr𝑥1(𝜂1)− 𝑥1‖ ≤ 𝛼1 ‖𝜂1‖ , (A.100)

‖Retr𝑥1(𝜂1)− 𝑥1 − 𝜂1‖ ≤ 𝛽1 ‖𝜂1‖2 , (A.101)

for some 𝛼1, 𝛽1 ≥ 0. Plugging (A.100) and (A.101) in (A.99) gives,

|𝑓(Retr𝑥(𝜂))− [𝑓(𝑥) + ⟨grad𝑥 𝑓, 𝜂⟩]| ≤
𝑐𝑙
2
‖𝜂2‖2 +

𝑐𝑙
2
𝛼2
1 ‖𝜂1‖

2 +𝐺1𝛽1 ‖𝜂1‖2 . (A.102)

Let us define 𝑐𝑔 as follows,

𝑐𝑔 ≜ max
(︁
𝑐𝑙, 𝑐𝑙𝛼

2
1 + 2𝐺1𝛽1

)︁
≥ 𝑐𝑙. (A.103)

Finally, combining (A.102) and (A.103) yields the desired result,

|𝑓(Retr𝑥(𝜂))− [𝑓(𝑥) + ⟨grad𝑥 𝑓, 𝜂⟩]| ≤ 𝑐𝑔(‖𝜂1‖2 + ‖𝜂2‖2) =
𝑐𝑔
2
‖𝜂‖2 . (A.104)

Let us consider the reduced cost 𝑓𝑏 (4.21) as a function defined on the product

manifold St(𝑑, 𝑟)𝑛𝑏 × R𝑟×𝑛𝑏 , where 𝑛𝑏 is the number of poses contained in block 𝑏.

266

Note that in the ambient (Euclidean) space, 𝑓𝑏 is a quadratic function of 𝑋𝑏. Hence,

its Euclidean gradient ∇𝑓𝑏(𝑋𝑏) is Lipschitz continuous, with Lipschitz constant given

by the maximum eigenvalue of 𝑄𝑏. Next, we show that within any sublevel set of

the global cost function 𝑓 , ∇𝑓𝑏(𝑋𝑏) is also bounded for any block 𝑏 ∈ [𝑁]. Since

∇𝑓𝑏(𝑋𝑏) = ∇𝑏𝑓(𝑋) by construction of the reduced cost function, it is equivalent to

bound the global Euclidean gradient ∇𝑓(𝑋). Write out the individual rotation and

translation components of 𝑋 ∈ℳPGO(𝑟, 𝑛),

𝑋 =
[︁
𝑌1 𝑝1 . . . 𝑌𝑛 𝑝𝑛

]︁
. (A.105)

For any 𝑋 in the 𝑓 -sublevel-set, expanding 𝑓(𝑋) ≤ 𝑓 yields,

𝑓(𝑋) =
∑︁

(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗

⃦⃦⃦
𝑌𝑗 − 𝑌𝑖

̃︀𝑅𝑖𝑗

⃦⃦⃦2
𝐹
+
∑︁

(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗
⃦⃦
𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖

̃︀𝑡𝑖𝑗⃦⃦22 ≤ 𝑓. (A.106)

Since the objective consists of a sum over squared terms, we can obtain a uniform

upper bound on each single term. Specifically, for each edge (𝑖, 𝑗) ∈ ℰ , the associated

relative translation cost is bounded by,

⃦⃦
𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖

̃︀𝑡𝑖𝑗⃦⃦22 ≤ 𝑓/ min
(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗 =⇒
⃦⃦
𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖

̃︀𝑡𝑖𝑗⃦⃦2 ≤√︂𝑓/ min
(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗. (A.107)

Note that when forming ∇𝑓(𝑋), the only terms that are potentially unbounded

correspond to the translation terms ℎ𝑖𝑗 ≜ 𝜏𝑖𝑗
⃦⃦
𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖

̃︀𝑡𝑖𝑗⃦⃦22, since the rotation

terms are defined on compact search spaces. The Euclidean gradients of ℎ𝑖𝑗 with

respect to 𝑌𝑖, 𝑝𝑖, 𝑝𝑗 are given by,

∇𝑌𝑖
ℎ𝑖𝑗 = −2(𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖

̃︀𝑡𝑖𝑗)̃︀𝑡⊤𝑖𝑗, (A.108)

∇𝑝𝑖ℎ𝑖𝑗 = −2(𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖
̃︀𝑡𝑖𝑗), (A.109)

∇𝑝𝑗ℎ𝑖𝑗 = 2(𝑝𝑗 − 𝑝𝑖 − 𝑌𝑖
̃︀𝑡𝑖𝑗), (A.110)

By (A.107), the norms of (A.108)-(A.110) are bounded, which implies that the overall

Euclidean gradient ∇𝑓(𝑋) is bounded within the sublevel set. Applying Lemma A.3,

267

we have shown that 𝑓𝑏 has Lipschitz-type gradient for pullbacks within the sublevel

set of 𝑓 .

Finally, note that both RBCD and RBCD++ are by construction descent methods,

i.e., the sequence of iterates satisfies 𝑓(𝑋𝑘) ≤ 𝑓(𝑋𝑘−1) ≤ . . . ≤ 𝑓(𝑋1) ≤ 𝑓 0 for any

𝑘. For RBCD, this is true since we explicitly enforce that each block update should

produce a function decrease that is at least a constant fraction of the model decrease

(Algorithm 4.4, line 5). For RBCD++, this is also guaranteed by the adaptive restart

condition (see Section 4.3.3). This property ensures that the sequence of iterates

generated by RBCD or RBCD++ never leaves the initial sublevel set, and therefore

Assumption 4.1 is satisfied.

Verifying Assumption 4.3

We can follow a similar strategy and show that the Riemannian Hessian operator is

bounded at any iterate generated by RBCD and RBCD++, hence satisfying Assump-

tion 4.3. Let 𝑓 denote the cost function in Problem 4.3, and 𝑋𝑘 ∈ℳPGO(𝑟, 𝑛) denote

the solution at iteration 𝑘. From (2.3), it may be straightforwardly verified that for

Problem 4.3, the Riemannian Hessian operator has the following explicit form:

Hess 𝑓(𝑋)[𝜂] = 2Proj𝑇𝑋
(𝜂𝑆(𝑋)). (A.111)

Above, 𝑆(𝑋) is the “dual certificate” matrix (4.43b) defined in Theorem 4.6, repeated

below for convenience,

𝑆(𝑋) ≜ 𝑄− SymBlockDiag+𝑑 (𝑋
⊤𝑋𝑄). (A.112)

In particular, note that (A.111) implies the following equality,

⟨𝜂,Hess 𝑓(𝑋)[𝜂]⟩ = 2⟨𝜂, 𝑆(𝑋)𝜂⟩. (A.113)

Following the strategy in Section A.2.4, we now show that 𝑆(𝑋) is bounded within

the sublevel sets of 𝑓 . To make the presentation clear, we present the proof in three

268

steps.

Step 1: Eliminating Global Translation Symmetry from 𝑆(𝑋). To begin,

we observe that the connection Laplacian 𝑄 in Problem 4.3 always has a null vector

[20],

𝑣0 ≜ 1𝑛 ⊗

⎡⎣0𝑑
1

⎤⎦ , (A.114)

where 1𝑛 stands for the vector of all ones. Intuitively, 𝑣0 arises as a result of the

global translation symmetry inherent in PGO. We note that although 𝑣0 is a single

vector, it actually accounts for the complete set of translational symmetries which has

dimension 𝑟. More precisely, adding a multiple of 𝑣0 on the 𝑘-th row of 𝑋 (1 ≤ 𝑘 ≤ 𝑟)

corresponds to applying a global translation along the 𝑘-th unit direction. Let us

consider projecting each row of our decision variable 𝑋 onto the subspace orthogonal

to 𝑣0. In matrix notation, this operation can be written as a matrix product 𝑋𝑃 ,

where 𝑃 is a projection matrix defined as follows.

𝑃 ≜ 𝐼 − 𝑣0𝑣0
⊤/‖𝑣0‖22. (A.115)

Note that after projection, it holds that 𝑋 = 𝑋𝑃 + 𝑢𝑣⊤0 for some vector 𝑢 ∈ R𝑟.

Substitute this decomposition into the second term of (A.112),

SymBlockDiag+𝑑 (𝑋
⊤𝑋𝑄) =SymBlockDiag+𝑑 ((𝑋𝑃 + 𝑢𝑣⊤0)

⊤(𝑋𝑃 + 𝑢𝑣⊤0)𝑄) (A.116)

=SymBlockDiag+𝑑 ((𝑋𝑃 + 𝑢𝑣⊤0)
⊤𝑋𝑃𝑄) (A.117)

=SymBlockDiag+𝑑 ((𝑋𝑃)⊤𝑋𝑃𝑄)

+ SymBlockDiag+𝑑 (𝑣0𝑢
⊤𝑋𝑃𝑄⏟ ⏞
𝐴

). (A.118)

In (A.118), we have used the linearity of the SymBlockDiag+𝑑 operator (4.3). Consider

𝐴 defined in (A.118) as a (𝑑+1)-by-(𝑑+1) block-structured matrix. Using the special

structure of 𝑣0, we can verify that for each diagonal block of 𝐴, its top-left 𝑑-by-𝑑

submatrix is always zero. Thus, applying SymBlockDiag+𝑑 zeros out this term and it

269

holds that,

𝑆(𝑋) = 𝑄−SymBlockDiag+𝑑 (𝑋
⊤𝑋𝑄) = 𝑄−SymBlockDiag+𝑑 ((𝑋𝑃)⊤𝑋𝑃𝑄) = 𝑆(𝑋𝑃).

(A.119)

Equation (A.119) proves the intuitive result that the dual certificate matrix 𝑆(𝑋) is

invariant to any global translations applied to 𝑋.

Step 2: Bounding 𝑆(𝑋) within the sublevel set of 𝑓 . We now prove that for

all 𝑋 for which 𝑓(𝑋) ≤ 𝑓 , the spectral norm ‖𝑆(𝑋)‖2 is upper bounded by a constant

which only depends on 𝑓 . In light of (A.119), for the purpose of bounding 𝑆(𝑋), we

can assume without loss of generality that 𝑋 = 𝑋𝑃 . This simply means that each

row of 𝑋 is orthogonal to 𝑣0, which implies that
∑︀𝑛

𝑖=1 𝑝𝑖 = 0, i.e., the translations are

centered at zero. Recall the bound (A.107) we have obtained for translation terms in

the previous section. Using triangle inequality, we can move 𝑌𝑖
̃︀𝑡𝑖𝑗 to the right-hand

side, so that we obtain an upper bound on the relative translation between 𝑝𝑖 and 𝑝𝑗,

‖𝑝𝑗 − 𝑝𝑖‖2 ≤
√︂

𝑓/ min
(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗 +
⃦⃦
𝑌𝑖
̃︀𝑡𝑖𝑗⃦⃦2 (A.120)

=
√︂

𝑓/ min
(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗 +
⃦⃦̃︀𝑡𝑖𝑗⃦⃦2 (A.121)

≤
√︂

𝑓/ min
(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗 + max
(𝑖,𝑗)∈ℰ

⃦⃦̃︀𝑡𝑖𝑗⃦⃦2 . (A.122)

Taking the square of the above bound and summing over all edges in the pose graph,

it holds that,

∑︁
(𝑖,𝑗)∈ℰ

‖𝑝𝑗 − 𝑝𝑖‖22 ≤ |ℰ|
(︂√︂

𝑓/ min
(𝑖,𝑗)∈ℰ

𝜏𝑖𝑗 + max
(𝑖,𝑗)∈ℰ

⃦⃦̃︀𝑡𝑖𝑗⃦⃦2)︂2

≜ 𝑐𝑓 . (A.123)

Note that the constant 𝑐𝑓 only depends on 𝑓 and the input measurements. Let

vec(𝑝) ∈ R𝑟𝑛 be the vector formed by concatenating all 𝑝1, . . . , 𝑝𝑛. The left-hand

side of (A.123) can be written in matrix form as vec(𝑝)⊤(𝐿 ⊗ 𝐼𝑟)vec(𝑝), where 𝐿 is

the (unweighted) Laplacian of the pose graph 𝐺 = (𝒱 , ℰ). Since 𝐺 is connected, the

Laplacian has a rank-1 null space spanned by the all-ones vector 1𝑛. Correspondingly,

270

𝐿 ⊗ 𝐼𝑟 has a rank-𝑟 null space spanned by the columns of 1𝑛 ⊗ 𝐼𝑟. Crucially, using

our assumption that
∑︀𝑛

𝑖=1 𝑝𝑖 = 0, it can be readily checked that vec(𝑝) is orthogonal

to this null space. Therefore, we can obtain a lower bound on vec(𝑝)⊤(𝐿⊗ 𝐼𝑟)vec(𝑝)

using the smallest positive eigenvalue of 𝐿 ⊗ 𝐼𝑟, which coincides with the algebraic

connectivity of 𝐺, denoted as 𝜆2(𝐿),

vec(𝑝)⊤(𝐿⊗ 𝐼𝑟)vec(𝑝) ≥ 𝜆2(𝐿) ‖vec(𝑝)‖22 . (A.124)

Combine this inequality with (A.123), we have thus shown that,

𝜆2(𝐿) ‖vec(𝑝)‖22 ≤ 𝑐𝑓 . (A.125)

Since 𝜆2(𝐿) is guaranteed to be positive as the graph is connected, we can divide both

sides by 𝜆2(𝐿). After taking the square root, we obtain the following bound on the

translations,

‖vec(𝑝)‖2 ≤
√︁

𝑐𝑓/𝜆2(𝐿). (A.126)

Recall that 𝑋 contains translations in addition to 𝑛 “lifted” rotations 𝑌1, . . . , 𝑌𝑛 ∈

St(𝑑, 𝑟). Since 𝑌𝑖 is an element of the Stiefel manifold, the norm of 𝑌𝑖 in the ambient

space is always a constant. This implies that the Frobenius norm ‖𝑋‖𝐹 is bounded.

Finally, using the fact that 𝑆(𝑋) as defined in (A.112) is a continuous operator

together with (A.113), it holds that the induced operator norm of Hess 𝑓(𝑋) on the

tangent space is bounded within the sublevel set.

Step 3: Bounding the Riemannian Hessian along iterates of RBCD and

RBCD++. Once again, since both RBCD and RBCD++ are descent methods by

construction, any sequence of iterates will remain in the initial sublevel set. Therefore,

by the result obtained in Step 2, there exists a constant 𝑐0 (whose value only depends

on 𝑓(𝑋0)) that bounds the Riemannian Hessian at all iterations:

max
𝜂∈𝑇

𝑋𝑘ℳPGO(𝑟,𝑛),‖𝜂‖=1
|⟨𝜂,Hess 𝑓(𝑋𝑘)[𝜂]⟩| ≤ 𝑐0, ∀𝑘. (A.127)

271

To complete the proof, we show that the reduced Riemannian Hessian, Hess 𝑓𝑏(𝑋𝑘
𝑏),

at an arbitrary block 𝑏 is also bounded by 𝑐0. This is needed as during distributed

local search, we apply BlockUpdate (Algorithm 4.4) on individual blocks instead

of the full problem. Suppose for the sake of contradiction that there exists a tangent

vector 𝜂𝑏 ∈ 𝑇𝑋𝑘
𝑏
ℳPGO(𝑟, 𝑛𝑏) such that ‖𝜂𝑏‖ = 1 and |⟨𝜂𝑏,Hess 𝑓𝑏(𝑋𝑘

𝑏)[𝜂𝑏]⟩| > 𝑐0. Let

𝛾𝑏 : [−𝜖, 𝜖] → ℳPGO(𝑟, 𝑛𝑏) be the corresponding geodesic such that 𝛾𝑏(0) = 𝑋𝑏 and

𝛾′𝑏(0) = 𝜂𝑏. Define the scalar function ℎ𝑏 ≜ 𝑓𝑏 ∘ 𝛾𝑏. By standard results in differential

geometry (e.g., see [17]), it holds that ℎ′′𝑏 (0) = ⟨𝜂𝑏,Hess 𝑓𝑏(𝑋𝑘
𝑏)[𝜂𝑏]⟩.

Using the product structure of our manifold, we can associate 𝛾𝑏 with a corre-

sponding geodesic 𝛾 : [−𝜖, 𝜖]→ℳPGO(𝑟, 𝑛) on the overall manifold such that 𝛾 agrees

with 𝛾𝑏 at the selected block coordinate 𝑏 and stays constant at all other blocks.

Consider the tangent vector 𝜂 ∈ 𝑇𝛾(0)ℳPGO(𝑟, 𝑛). By construction, the blocks of 𝜂

are given by,

𝜂𝑏′ =

⎧⎪⎨⎪⎩ 𝜂𝑏, if 𝑏′ = 𝑏,

0, otherwise.
(A.128)

As a result, we have ‖𝜂‖ = 1. Define the scalar function ℎ ≜ 𝑓 ∘ 𝛾 and we have by

construction that ℎ′′(0) = ℎ′′𝑏 (0). This would then imply,

|ℎ′′𝑏 (0)| = |ℎ′′(0)| = |⟨𝜂,Hess 𝑓(𝑋𝑘)[𝜂]⟩| > 𝑐0, (A.129)

which is a contradiction.

A.3 Proof of Theorem 4.3

In this subsection we establish the convergence properties of the (first-order) dis-

tributed Riemannian Staircase (Algorithm 4.1) described in Theorem 4.3.

If Algorithm 4.1 terminates finitely (case (i)) then there is nothing to prove, so

henceforward let us assume that Algorithm 4.1 generates an infinite sequence {𝑋(𝑟)}

of factors in line 3. Our overall strategy is to exploit the correspondence between the

critical points 𝑋(𝑟) of Problem 4.3 (rank-restricted full SDP) and the critical points

272

𝑌 (𝑟) of Problem A.1 (rank-restricted rotation-only SDP) provided by Lemma A.1,

together with the compactness of the feasible set of the SE-Sync relaxation Problem

4.2, to control the behavior of this sequence. To that end, define:

𝑍(𝑟) ≜ (𝑋(𝑟))⊤𝑋(𝑟), 𝑍
(𝑟)
R ≜ (𝑌 (𝑟))⊤𝑌 (𝑟), ∀𝑟 ≥ 𝑟0, (A.130)

where 𝑌 (𝑟) is the first-order critical point of Problem A.1 obtained from 𝑋(𝑟) as

described by Lemma A.1. In addition, let Λ(𝑟) and Λ
(𝑟)
R denote the Lagrange multiplier

matrices corresponding to 𝑍(𝑟) and 𝑍
(𝑟)
R , respectively.

Since {𝑍(𝑟)
R } is an infinite sequence contained in the (compact) feasible set of

Problem 4.2, it must contain a convergent subsequence {𝑍(𝑟𝑘)
R }, with limit point 𝑍⋆

R.

Since the Lagrange multiplier Λ
(𝑟𝑘)
R is a continuous function of 𝑍(𝑟𝑘)

R (see (A.23) and

[14, eq. (107)]), it follows that {Λ(𝑟𝑘)
R } likewise converges to a limit Λ⋆

R. By Lemma

A.1(iii) (cf. (A.7)), it follows that the subsequence of Lagrange multipliers {Λ(𝑟𝑘)}

for the full (translation-explicit) problem also converges to a limit point Λ⋆, and

consequently so does the sequence of certificate matrices 𝑆(𝑟𝑘) ≜ 𝑆(𝑋(𝑟𝑘)) computed

in line 4 of Algorithm 4.1:

lim
𝑘→∞

𝑆(𝑟𝑘) = 𝑆⋆. (A.131)

Now, let us consider two cases, corresponding to whether 𝑆⋆ is positive semidefinite.

Case 1: 𝑆⋆ ⪰ 0. It is easy to check that 𝑆(𝑟𝑘)(𝑋(𝑟𝑘))⊤ = 0 since 𝑋(𝑟𝑘) is by definition

a first-order critical point. This shows that 𝑆(𝑟𝑘) has a zero eigenvalue. Using this

property, together with the fact that the eigenvalues of a matrix 𝑆 are continuous

functions of 𝑆 and that 𝑆⋆ ⪰ 0, it holds that lim𝑘→∞ 𝜆min
(︀
𝑆(𝑋(𝑟𝑘))

)︀
= 0, thus proving

(4.17).

To prove (4.16), note that by Lemma A.1(iv), the certificate matrix 𝑆⋆
R ≜ 𝑄R −

SymBlockDiag (𝑍⋆
R𝑄R) associated with the limit point 𝑍⋆

R is likewise positive semidef-

inite, and therefore 𝑍⋆
R is a minimizer of Problem 4.2 [14, Thm. 7]. Since 𝑓(𝑋(𝑟)) =

273

⟨𝑄R, 𝑌
(𝑟)⊤𝑌 (𝑟)⟩ = ⟨𝑄R, 𝑍

(𝑟)
R ⟩ for all 𝑟 ≥ 𝑟0 (Lemma A.1(ii)), it follows that:

lim
𝑘→∞

𝑓(𝑋(𝑟𝑘)) = lim
𝑘→∞
⟨𝑄R, 𝑌

(𝑟𝑘)
⊤
𝑌 (𝑟𝑘)⟩ = lim

𝑘→∞
⟨𝑄R, 𝑍

(𝑟𝑘)
R ⟩ = ⟨𝑄R, 𝑍

⋆
R⟩ = 𝑓 ⋆

SDP.

(A.132)

But then in fact we must have:

lim
𝑟→∞

𝑓(𝑋(𝑟)) = 𝑓 ⋆
SDP (A.133)

since the sequence of objective values {𝑓(𝑋(𝑟))} is monotonically decreasing. This

establishes that Theorem 4.3(ii) holds for the case 𝑆⋆ ⪰ 0.

Case 2: 𝑆⋆ ̸⪰ 0. To finish the proof, we now show that in fact 𝑆⋆ ̸⪰ 0 cannot occur.

To do so, suppose for contradiction that 𝜆min(𝑆
⋆) < 0, and define 𝜇 ≜ |𝜆min(𝑆

⋆)|.

Then there exists 𝑘1 > 0 sufficiently large that 𝜆min(𝑆
(𝑟𝑘)) < −𝜇/2 for all 𝑘 > 𝑘1.

Our aim is to show that this upper bound (away from 0) on the minimum eigenvalue

of 𝑆(𝑟𝑘) implies a lower bound 𝛿 > 0 on the achievable decrease in the objective value

each time the saddle escape procedure in line 10 of Algorithm 4.1 is invoked with any

𝑘 > 𝑘1; since this occurs infinitely many times, this would imply that the optimal

value of Problem 4.1 is −∞, a contradiction.

We note that the following analysis holds at any rank 𝑟𝑘 of Algorithm 4.1 with 𝑘 >

𝑘1. For the ease of reading, however, we will suppress 𝑘 in our notation and assume

that 𝑘 and 𝑟𝑘 are clear from the context. Let 𝑋 be the critical point generated by the

distributed Riemannian Staircase at iteration rank 𝑟𝑘 (Algorithm 4.1, line 3). Denote

𝜆 as the minimum eigenvalue of the corresponding certificate matrix (Algorithm 4.1,

line 5), and �̇� ∈ 𝑇𝑋ℳPGO(𝑟𝑘, 𝑛) as the corresponding second-order descent direction

constructed (Algorithm 4.1, line 9). Recall that since 𝑘 > 𝑘1, we have 𝜆 < −𝜇/2.

Consider the geodesic emanating from point 𝑋 with initial velocity �̇� = �̇�+ (see

Theorem 4.6). With a slight abuse of notation, we denote this geodesic as 𝑋(𝑡) and

274

it may be parameterized as follows,1

𝑋 : R→ℳPGO(𝑟𝑘, 𝑛) : 𝑡 ↦→ exp𝑋

(︁
𝑡�̇�
)︁

(A.134)

In addition, the cost function 𝑓 of Problem 4.3 restricted to 𝑋(𝑡):

𝑔 : R→ R≥0 : 𝑡 ↦→ 𝑓 ∘𝑋(𝑡). (A.135)

From the integral form of Taylor’s Theorem, we have:

𝑔(𝑡) = 𝑔(0) + 𝑡�̇�(0) +
𝑡2

2
𝑔(0) +

∫︁ 𝑡

0

𝛼2

2
𝑔(3)(𝛼) 𝑑𝛼. (A.136)

Differentiating 𝑔(𝑡) and applying the chain rule, we arrive at,

�̇�(𝑡) = D𝑓(𝑋(𝑡))[�̇�(𝑡)] = ⟨grad 𝑓(𝑋(𝑡)), �̇�(𝑡)⟩, (A.137)

where ⟨·, ·⟩ denotes the Frobenius inner product. Differentiating (A.137) again, we

obtain,

𝑔(𝑡) =
𝑑

𝑑𝑡

⟨︀
grad 𝑓(𝑋(𝑡)), �̇�(𝑡)

⟩︀
=
⟨︀ 𝑑
𝑑𝑡

[grad 𝑓(𝑋(𝑡))] , �̇�(𝑡)
⟩︀
+
⟨︀
grad 𝑓(𝑋(𝑡)), �̈�(𝑡)

⟩︀
=
⟨︀
Hess 𝑓(𝑋(𝑡))[�̇�(𝑡)], �̇�(𝑡)

⟩︀
+
⟨︀
grad 𝑓(𝑋(𝑡)), �̈�(𝑡)

⟩︀
.

(A.138)

Equations (A.137)-(A.138) hold by applying standard results for embedded manifolds;

see [18, Chapters 3 and 5] and [17]. Furthermore, since 𝑋(𝑡) is a geodesic, we may

further show (see, e.g., [17, Section 5.4]) that its extrinsic acceleration �̈�(𝑡) is always

orthogonal to the tangent space at 𝑋(𝑡). This means that the last term in (A.138) is

identically zero since the Riemannian gradient at 𝑋(𝑡) belongs to the tangent space

1Note that this map is in fact well-defined on all of R because both the Stiefel manifold and R𝑛

are geodesically complete.

275

at that point. Therefore, the second-order derivative further simplifies to,

𝑔(𝑡) =
⟨
Hess 𝑓(𝑋(𝑡))[�̇�(𝑡)], �̇�(𝑡)

⟩
= 2⟨�̇�(𝑡)𝑆(𝑋(𝑡)), �̇�(𝑡)⟩. (A.139)

The second equality makes use of (A.113). In particular, (A.137) and (A.139) show

that �̇�(0) = 0 (since 𝑋(0) = 𝑋 is a critical point of 𝑓) and 𝑔(0) = 2𝜆 (since �̇�(0) = �̇�

is nothing but �̇�+ in Theorem 4.6 and Remark 4.12). It follows from (A.136) that:

𝑔(0)− 𝑔(𝑡) = −𝜆𝑡2 −
∫︁ 𝑡

0

𝛼2

2
𝑔(3)(𝛼) 𝑑𝛼. (A.140)

Thus, if we can exhibit scalars 𝜅, 𝜏 > 0 such that:

|𝑔(3)(𝑡)| ≤ 𝜅 ∀𝑡 ∈ [0, 𝜏], (A.141)

then (A.140) implies:

𝑔(0)− 𝑔(𝑡) ≥ −𝜆𝑡2 − 𝜅

6
𝑡3⏟ ⏞

𝛿(𝑡)

∀𝑡 ∈ [0, 𝜏]. (A.142)

Since:

𝛿′(𝑡) = −2𝜆𝑡− 𝜅

2
𝑡2, 𝛿′′(𝑡) = −2𝜆− 𝜅𝑡, (A.143)

a straightforward calculation shows that the lower-bound 𝛿(𝑡) for the reduction in the

objective value attained in (A.142) is maximized by the steplength:

𝑡* = −4𝜆

𝜅
, (A.144)

and that:

𝛿′(𝑡) > 0 ∀𝑡 ∈ (0, 𝑡*). (A.145)

In consequence, by choosing a stepsize of:

𝑡 = min

{︂
−4𝜆

𝜅
, 𝜏

}︂
≥ min

{︂
2𝜇

𝜅
, 𝜏

}︂
≜ 𝜎 (A.146)

276

when performing the retraction in the saddle escape procedure, we can guarantee that

the objective is decreased by at least:

𝛿(𝑡) ≥ 𝛿(𝜎) = −𝜆𝜎2 − 𝜅

6
𝜎3 ≥ 𝜇

2
𝜎2 − 𝜅

6
𝜎3 ≜ 𝛿 > 0 (A.147)

each time the saddle escape procedure is invoked, producing our desired contradiction.

It therefore suffices to exhibit fixed constants 𝜅, 𝜏 > 0 that will satisfy (A.141)

for all invocations of the saddle escape procedure in line 10 with 𝑘 > 𝑘1. Before

proceeding, we make one simplifying assumption that will remain in effect throughout

the remainder of the proof: we assume without loss of generality that all iterates 𝑋(𝑟)

are translated so that the sum of the translational components 𝑝(𝑟)𝑖 is 0, as in Section

A.2.4.2 We now proceed in two stages: first we will identify an upper bound 𝜅 for

the magnitude of 𝑔(3)(𝑡) on the sublevel set of the initial value 𝑓 (0) of 𝑓 , and then a

minimum distance 𝜏 from a given suboptimal critical point that we can retract along

while still remaining inside this sublevel set.

Calculation of 𝜅. Recall the following notation for the sublevel sets of the cost

function 𝑓 :

ℒ𝑓 (𝑟, 𝑛; 𝑓) ≜
{︀
𝑋 ∈ℳPGO(𝑟, 𝑛)|𝑓(𝑋) ≤ 𝑓

}︀
. (A.148)

Our goal is to identify a fixed constant 𝜅 > 0 that upper bounds the magnitude of

𝑔(3)(𝑡) within the initial sublevel set, i.e.,

|𝑔(3)(𝑡)| ≤ 𝜅 ∀𝑋(𝑡) ∈ ℒ𝑓 (𝑟, 𝑛; 𝑓
(𝑟0)), 𝑟 ≥ 𝑟0, (A.149)

where 𝑓 (𝑟0) ≜ 𝑓(𝑋(𝑟0)) is the initial value of the objective at the starting point 𝑋(𝑟0)

supplied to Algorithm 4.1. From the second-order derivative (A.139), differentiate

once again to obtain an explicit expression for 𝑔(3)(𝑡). Here, we make use of the

equality derived in (A.113) that relates the Riemannian Hessian and the certificate

2Note that this map leaves the objective 𝑓 invariant, and is an isometry of both the ambient
Euclidean space and ℳPGO(𝑟, 𝑛). Consequently, applying this transformation leaves all objective
values and derivative norms invariant – we perform this transformation simply to achieve a param-
eterization that is more convenient for calculation.

277

matrix 𝑆(𝑋),

𝑔(3)(𝑡) =
𝑑

𝑑𝑡

⟨︀
Hess 𝑓(𝑋(𝑡))[�̇�(𝑡)], �̇�(𝑡)

⟩︀
= 2

𝑑

𝑑𝑡

⟨︀
�̇�(𝑡)𝑆(𝑋(𝑡)), �̇�(𝑡)

⟩︀
. (A.150)

Fully expanding the differentiation yields,

𝑔(3)(𝑡) = 2
⟨︀ 𝑑
𝑑𝑡
[�̇�(𝑡)𝑆(𝑋(𝑡))], �̇�(𝑡)

⟩︀
+ 2
⟨︀
�̇�(𝑡)𝑆(𝑋(𝑡)), �̈�(𝑡)

⟩︀
= 2
⟨︀
�̈�(𝑡)𝑆(𝑋(𝑡)) + �̇�(𝑡)

𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))], �̇�(𝑡)

⟩︀
+ 2
⟨︀
�̇�(𝑡)𝑆(𝑋(𝑡)), �̈�(𝑡)

⟩︀
= 2
⟨︀
�̇�(𝑡)

𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))], �̇�(𝑡)

⟩︀
+ 4
⟨︀
�̇�(𝑡)𝑆(𝑋(𝑡)), �̈�(𝑡)

⟩︀
(A.151)

where in the last step, we have used the symmetry of the certificate matrix 𝑆(𝑋(𝑡))

to combine terms. We proceed to bound the two inner products in (A.151) separately.

To bound the first inner product, we first use the Cauchy-Schwarz inequality

followed by applying the submultiplicative property of the Frobenius norm:

⃒⃒⟨︀
�̇�(𝑡)

𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))], �̇�(𝑡)

⟩︀⃒⃒
≤
⃦⃦
�̇�(𝑡)

𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))]

⃦⃦
𝐹

⃦⃦
�̇�(𝑡)

⃦⃦
𝐹
≤
⃦⃦ 𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))]

⃦⃦
𝐹

⃦⃦
�̇�(𝑡)

⃦⃦2
𝐹
.

(A.152)

By construction of the descent direction (4.45), the velocity vector at 𝑡 = 0 satisfies

‖�̇�(0)‖𝐹 = 1. Since geodesics have constant speed, it thus holds that ‖�̇�(𝑡)‖𝐹 = 1

for all 𝑡. Therefore, it suffices to bound the derivative of 𝑆(𝑋(𝑡)). Using the chain

rule and repeatedly applying the submultiplicative property yields,⃦⃦⃦⃦
𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))]

⃦⃦⃦⃦
𝐹

=
⃦⃦⃦
SymBlockDiag+𝑑

(︁
�̇�(𝑡)T𝑋(𝑡)𝑄+𝑋(𝑡)T�̇�(𝑡)𝑄

)︁⃦⃦⃦
𝐹

≤
⃦⃦
SymBlockDiag+𝑑

⃦⃦
𝐹𝑜𝑝

⃦⃦⃦
�̇�(𝑡)T𝑋(𝑡)𝑄+𝑋(𝑡)T�̇�(𝑡)𝑄

⃦⃦⃦
𝐹

≤ 2
⃦⃦
SymBlockDiag+𝑑

⃦⃦
𝐹𝑜𝑝
‖𝑄‖𝐹‖𝑋(𝑡)‖𝐹‖�̇�(𝑡)‖𝐹 .

(A.153)

Above,
⃦⃦
SymBlockDiag+𝑑

⃦⃦
𝐹𝑜𝑝

denotes the operator norm of the linear map SymBlockDiag+𝑑

with respect to the Frobenius norm. A closer examination of the definition of SymBlockDiag+𝑑

278

in (4.3) reveals that in fact:3

‖SymBlockDiag+𝑑 ‖𝐹𝑜𝑝 = 1. (A.154)

Furthermore, since 𝑋(𝑡) ∈ ℒ𝑓 (𝑟, 𝑛; 𝑓
(𝑟0)) and is assumed to be centered, applying the

results in Appendix A.2.4 (Step 2) shows that,

‖𝑋(𝑡)‖𝐹 =
√︁
‖𝑌 (𝑡)‖2𝐹 + ‖𝑝(𝑡)‖2𝐹 ≤

√︂
𝑑𝑛+

𝑐𝑓
𝜆2(𝐿)

. (A.155)

Finally, using that fact that the geodesic has constant speed ‖�̇�(𝑡)‖𝐹 = 1, we establish

the following constant bound for (A.153),

⃒⃒⟨︀
�̇�(𝑡)

𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))], �̇�(𝑡)

⟩︀⃒⃒
≤ 2‖𝑄‖𝐹

√︂
𝑑𝑛+

𝑐𝑓
𝜆2(𝐿)

. (A.156)

Now, let us return to (A.151) to bound the second inner product. Once again, we

start by invoking the Cauchy-Schwarz inequality and the submultiplicative property

of the Frobenius norm,

⃒⃒⟨︀
�̇�(𝑡)𝑆(𝑋(𝑡)), �̈�(𝑡)

⟩︀⃒⃒
≤
⃦⃦⃦
�̇�(𝑡)

⃦⃦⃦
𝐹
‖𝑆(𝑋(𝑡))‖𝐹

⃦⃦⃦
�̈�(𝑡)

⃦⃦⃦
𝐹
= ‖𝑆(𝑋(𝑡))‖𝐹

⃦⃦⃦
�̈�(𝑡)

⃦⃦⃦
𝐹
.

(A.157)

Since 𝑋(𝑡) ∈ ℒ𝑓 (𝑟, 𝑛; 𝑓
(𝑟0)), applying the result of Appendix A.2.4 (Step 2) shows

that there exists a constant 𝑐𝑠 > 0 such that ‖𝑆(𝑋(𝑡))‖𝐹 ≤ 𝑐𝑠. Next, we obtain

an upper bound on the extrinsic acceleration. To this end, we note that in order to

bound ‖�̈�(𝑡)‖𝐹 , it suffices to bound the extrinsic acceleration of each Stiefel element

‖𝑌𝑖(𝑡)‖𝐹 (since translations have zero extrinsic acceleration). Here, we use a result

that gives an explicit characterization of 𝑌𝑖(𝑡) along a geodesic on the Stiefel manifold

3This conclusion follows from the observation that SymBlockDiag+𝑑 sets off-diagonal block
elements of its argument to zero, and extracts the symmetric parts of the on-diagonal blocks;
consequently SymBlockDiag+𝑑 cannot increase the Frobenius norm of its argument, so that
‖SymBlockDiag+𝑑 ‖𝐹𝑜𝑝 ≤ 1. Equality follows from the fact that SymBlockDiag+𝑑 fixes any symmetric
block-diagonal matrix with the sparsity pattern appearing in (4.3).

279

[215, Eq. (2.7)]:

𝑌𝑖(𝑡) + 𝑌𝑖(𝑡)[�̇�𝑖(𝑡)
⊤�̇�𝑖(𝑡)] = 0. (A.158)

From the above characterization, it holds that,

‖𝑌𝑖(𝑡)‖𝐹 ≤ ‖𝑌𝑖(𝑡)‖𝐹‖�̇�𝑖(𝑡)‖2𝐹 ≤ ‖𝑌𝑖(𝑡)‖𝐹 =
√
𝑑, (A.159)

where in the second inequality, we use the fact that ‖�̇�𝑖(𝑡)‖𝐹 ≤ ‖�̇�(𝑡)‖𝐹 = 1. There-

fore, ‖�̈�(𝑡)‖𝐹 is upper bounded as follows,

‖�̈�(𝑡)‖2𝐹 =
𝑛∑︁

𝑖=1

‖𝑌𝑖(𝑡)‖2𝐹 ≤ 𝑑𝑛 =⇒ ‖�̈�(𝑡)‖𝐹 ≤
√
𝑑𝑛. (A.160)

Combining these results yields a constant bound for the second inner product (A.157):

⃒⃒⟨︀
�̇�(𝑡)𝑆(𝑋(𝑡)), �̈�(𝑡)

⟩︀⃒⃒
≤ 𝑐𝑠
√
𝑑𝑛. (A.161)

Finally, using the upper bounds (A.156) and (A.161) in (A.151) yields the final fixed

upper bound 𝜅,

|𝑔(3)(𝑡)| = 2
⃒⃒⟨︀
�̇�(𝑡)

𝑑

𝑑𝑡
[𝑆(𝑋(𝑡))], �̇�(𝑡)

⟩︀⃒⃒
+ 4
⃒⃒⟨︀
�̇�(𝑡)𝑆(𝑋(𝑡)), �̈�(𝑡)

⟩︀⃒⃒
≤ 4‖𝑄‖𝐹

√︂
𝑑𝑛+

𝑐𝑓
𝜆2(𝐿)

+ 4𝑐𝑠
√
𝑑𝑛

≜ 𝜅.

(A.162)

Calculation of 𝜏 : Now we derive a 𝜏 > 0 such that 𝑋(𝑡) ∈ ℒ𝑓 (𝑟𝑘, 𝑛; 𝑓
(𝑟0)) for all

𝑡 ∈ [0, 𝜏] and 𝑘 ≥ 𝑘1. Our approach is based upon deriving a simple upper bound for

the magnitude of the change in objective value between two points 𝑋1 and 𝑋2. To

that end, consider:

|𝑓(𝑋1)− 𝑓(𝑋2)| =
⃒⃒
tr(𝑄𝑋⊤1 𝑋1)− tr(𝑄𝑋⊤2 𝑋2)

⃒⃒
=
⃒⃒
tr
[︀
𝑄
(︀
𝑋⊤1 𝑋1 −𝑋⊤2 𝑋2

)︀]︀⃒⃒
≤ ‖𝑄‖𝐹

⃦⃦
𝑋⊤1 𝑋1 −𝑋⊤2 𝑋2

⃦⃦
𝐹
.

(A.163)

280

Defining:

∆ ≜ 𝑋2 −𝑋1, (A.164)

we may substitute 𝑋2 = 𝑋1 +∆ in (A.163) to obtain:

|𝑓(𝑋1)− 𝑓(𝑋2)| ≤ ‖𝑄‖𝐹
⃦⃦
𝑋⊤1 𝑋1 − (𝑋1 +∆)⊤(𝑋1 +∆)

⃦⃦
𝐹

= ‖𝑄‖𝐹
⃦⃦
𝑋⊤1 ∆+∆⊤𝑋1 +∆⊤∆

⃦⃦
𝐹

≤ ‖𝑄‖𝐹
(︀
2‖𝑋1‖𝐹‖∆‖𝐹 + ‖∆‖2𝐹

)︀
.

(A.165)

We will use inequality (A.165) to derive a lower bound 𝜏 on the admissible steplength

𝑡 of the retraction applied at a critical point 𝑋(𝑟𝑘) while still remaining inside the

original sublevel set ℒ𝑓 (𝑟𝑘, 𝑛; 𝑓
(𝑟0)). Given the fact that 𝑓 (𝑟𝑘) < 𝑓 (𝑟0) and since, by

definition, 𝑋(𝑡) ∈ ℒ𝑓 (𝑟𝑘, 𝑛; 𝑓
(𝑟0)) iff 𝑓(𝑋(𝑡)) ≤ 𝑓 (𝑟0), it suffices to ensure that:

|𝑓 (𝑟𝑘) − 𝑓(𝑋(𝑡))| ≤ 𝑓 (𝑟0) − 𝑓 (𝑟𝑘). (A.166)

Applying inequality (A.165) with 𝑋1 = 𝑋(𝑟𝑘), 𝑋2 = 𝑋(𝑡) and ∆ = 𝑋(𝑡)−𝑋(𝑟𝑘),

|𝑓 (𝑟𝑘) − 𝑓(𝑋(𝑡))| ≤ ‖𝑄‖𝐹
(︀
2
⃦⃦
𝑋(𝑟𝑘)

⃦⃦
𝐹
‖∆‖𝐹 + ‖∆‖2𝐹

)︀
. (A.167)

From (A.166) and (A.167), for 𝑋(𝑡) to remain in the sublevel set, it suffices to ensure

that,

‖𝑄‖𝐹
(︀
2
⃦⃦
𝑋(𝑟𝑘)

⃦⃦
𝐹
‖∆‖𝐹 + ‖∆‖2𝐹

)︀
≤ 𝑓 (𝑟0) − 𝑓 (𝑟𝑘). (A.168)

After rearranging and simplification, we can arrive at the following equivalent condi-

tion:

‖𝑋(𝑡)−𝑋(𝑟𝑘)‖𝐹 = ‖∆‖𝐹 ≤

√︃
‖𝑋(𝑟𝑘)‖2𝐹 +

𝑓 (𝑟0) − 𝑓 (𝑟𝑘)

‖𝑄‖𝐹
−
⃦⃦
𝑋(𝑟𝑘)

⃦⃦
𝐹
. (A.169)

It is worth noting that each invocation of escaping procedure strictly reduces the

objective, and thus here 𝑓 (𝑟0) > 𝑓 (𝑟𝑘). We identify a constant lower bound for the

right-hand side of (A.169). To this end, let us view the right-hand side as a function

281

of ‖𝑋(𝑟𝑘)‖𝐹 . It can be straightforwardly verified that this function is nonincreasing.

Since by (A.155) we have ‖𝑋(𝑟𝑘)‖𝐹 ≤
√︁

𝑑𝑛+
𝑐𝑓

𝜆2(𝐿)
, it follows that the right-hand side

of (A.169) is always lower bounded the following constant,

𝜏 ≜

√︃
𝑑𝑛+

𝑐𝑓
𝜆2(𝐿)

+
𝑓 (𝑟0) − 𝑓 (𝑟𝑘1)

‖𝑄‖𝐹
−
√︂

𝑑𝑛+
𝑐𝑓

𝜆2(𝐿)
. (A.170)

Recalling (A.169), we have shown that 𝑋(𝑡) remains in the sublevel set if the following

holds:

‖𝑋(𝑡)−𝑋(𝑟𝑘)‖𝐹 ≤ 𝜏. (A.171)

Note that the above bound is expressed in terms of the chordal distance between 𝑋(𝑡)

and 𝑋(𝑟𝑘). To complete the proof, we note that the geodesic distance 𝑑
(︀
𝑋(𝑟𝑘), 𝑋(𝑡)

)︀
=

𝑡 is always at least as large as the chordal distance. This means that for all 𝑡 ∈ [0, 𝜏],

we have:

‖𝑋(𝑡)−𝑋(𝑟𝑘)‖𝐹 ≤ 𝑑
(︀
𝑋(𝑟𝑘), 𝑋(𝑡)

)︀
= 𝑡 ≤ 𝜏, (A.172)

and thus 𝑋(𝑡) ∈ ℒ𝑓 (𝑟𝑘, 𝑛; 𝑓
(𝑟0)), as claimed.

282

Appendix B

Supplemental Materials for Chapter 5

B.1 Proof of Lemma 5.2

Proof of Lemma 5.2. Suppose that at iteration 𝑘, robot 𝑖𝑘 is selected for update.

Recall that 𝑥𝑘 =
[︁
𝑥𝑘
1 𝑥𝑘

2 . . . 𝑥𝑘
𝑛

]︁
∈ ℳ, where ℳ is the product manifold ℳ =

ℳ1×ℳ2× . . .ℳ𝑛 (Section 5.4.1). For all 𝑘 ∈ N, define the aggregate tangent vector

𝜂𝑘 ∈ 𝑇𝑥𝑘ℳ as,

𝜂𝑘𝑖 ≜

⎧⎪⎨⎪⎩ 𝜂𝑘𝑖𝑘 , if 𝑖 = 𝑖𝑘,

0, otherwise.
(B.1)

By definition of 𝜂𝑘, the update step in Algorithm 5.1 (line 6-7) is equivalent to,

𝑥𝑘+1 = Retr𝑥𝑘(−𝛾𝜂𝑘). (B.2)

By Lemma 5.1, 𝑓 has Lipschitz-type gradient for pullbacks. Therefore,

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘) ≤ −𝛾⟨grad 𝑓(𝑥𝑘), 𝜂𝑘⟩+ 𝐿𝛾2

2

⃦⃦
𝜂𝑘
⃦⃦2

= −𝛾⟨grad𝑖𝑘
𝑓(𝑥𝑘), 𝜂𝑘𝑖𝑘⟩+

𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

.

(B.3)

283

Using the equality ⟨𝜂1, 𝜂2⟩ = 1
2
[‖𝜂1‖2 + ‖𝜂2‖2 − ‖𝜂1 − 𝜂2‖2], we can convert the inner

product that appears on the right-hand side of (B.3) into,

⟨grad𝑖𝑘
𝑓(𝑥𝑘), 𝜂𝑘𝑖𝑘⟩ =

1

2

[︂ ⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2

+
⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2 − ⃦⃦grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦2]︂

. (B.4)

Substitute (B.4) into (B.3). After collecting relevant terms, we have,

𝑓(𝑥𝑘+1)−𝑓(𝑥𝑘) ≤ −𝛾⟨grad𝑖𝑘
𝑓(𝑥𝑘), 𝜂𝑘𝑖𝑘⟩+

𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

= −𝛾

2

[︂ ⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2

+
⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2 − ⃦⃦grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦2]︂

+
𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

= −𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2 − 𝛾 − 𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

+
𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦2

.

(B.5)

We proceed to bound the last term on the right-hand side of (B.5). Recall from (5.5)

and (5.6) that 𝜂𝑘𝑖𝑘 is formed with stale gradients,

𝜂𝑘𝑖𝑘 = grad𝑖𝑘
ℎ𝑖𝑘(𝑥

𝑘
𝑖𝑘
) +

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

grad𝑖𝑘
𝑓𝑒𝑘(𝑥

𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

), (B.6)

where we abbreviate the notation by defining 𝑒𝑘 ≜ (𝑖𝑘, 𝑗𝑘) ∈ 𝐸ℛ. In contrast, the

Riemannian gradient grad𝑖𝑘
𝑓(𝑥𝑘) is by definition formed using up-to-date variables,

grad𝑖𝑘
𝑓(𝑥𝑘) = grad𝑖𝑘

ℎ𝑖𝑘(𝑥
𝑘
𝑖𝑘
) +

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

grad𝑖𝑘
𝑓𝑒𝑘(𝑥

𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
). (B.7)

Note that the only difference between (B.6) and (B.7) is that delayed information

is used in (B.6). In order to form the last term on the right-hand side of (B.5), we

subtract (B.6) from (B.7) and compute the norm distance. Subsequently, we use the

284

triangle inequality to obtain an upper bound on this norm distance,

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦
=

⃦⃦⃦⃦
⃦⃦ ∑︁
𝑒𝑘=(𝑖𝑘,𝑗𝑘)∈𝐸ℛ

[︂
grad𝑖𝑘

𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)− grad𝑖𝑘

𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)

]︂⃦⃦⃦⃦⃦⃦
≤

∑︁
𝑒𝑘=(𝑖𝑘,𝑗𝑘)∈𝐸ℛ

⃦⃦⃦
grad𝑖𝑘

𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)− grad𝑖𝑘

𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)
⃦⃦⃦

⏟ ⏞
𝜖(𝑖𝑘,𝑗𝑘)

.

(B.8)

Next, we proceed to bound each 𝜖(𝑖𝑘, 𝑗𝑘) term. To do so, we use the fact that for

a real-valued function 𝑓 defined over a matrix submanifold ℳ ⊆ ℰ , its Riemannian

gradient is obtained as the orthogonal projection of the Euclidean gradient onto the

tangent space (see [17, Section. 3.6.1]),

grad 𝑓(𝑥) = Proj𝑇𝑥ℳ∇𝑓(𝑥). (B.9)

Substituting (B.9) into the right-hand side of (B.8), it holds that,

𝜖(𝑖𝑘, 𝑗𝑘) =
⃦⃦⃦
grad𝑖𝑘

𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)− grad𝑖𝑘

𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)
⃦⃦⃦

=

⃦⃦⃦⃦
Proj𝑇

𝑥𝑘
𝑖𝑘

∇𝑖𝑘𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)− Proj𝑇

𝑥𝑘
𝑖𝑘

∇𝑖𝑘𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)

⃦⃦⃦⃦
.

(B.10)

Furthermore, since the tangent space is identified as a linear subspace of the ambient

space ℰ [17, Section 3.5.7], the orthogonal projection operation is a non-expansive

mapping, i.e.,

𝜖(𝑖𝑘, 𝑗𝑘) =

⃦⃦⃦⃦
Proj𝑇

𝑥𝑘
𝑖𝑘

∇𝑖𝑘𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)− Proj𝑇

𝑥𝑘
𝑖𝑘

∇𝑖𝑘𝑓𝑒𝑘(𝑥
𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)

⃦⃦⃦⃦
≤
⃦⃦⃦
∇𝑖𝑘𝑓𝑒𝑘(𝑥

𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)−∇𝑖𝑘𝑓𝑒𝑘(𝑥

𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)
⃦⃦⃦
.

(B.11)

Since the norm distance with respect to 𝑖𝑘 is no greater than the overall norm distance,

we furthermore have,

𝜖(𝑖𝑘, 𝑗𝑘) ≤
⃦⃦⃦
∇𝑖𝑘𝑓𝑒𝑘(𝑥

𝑘
𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)−∇𝑖𝑘𝑓𝑒𝑘(𝑥

𝑘
𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)
⃦⃦⃦

≤
⃦⃦⃦
∇𝑓𝑒𝑘(𝑥𝑘

𝑖𝑘
, 𝑥𝑘

𝑗𝑘
)−∇𝑓𝑒𝑘(𝑥𝑘

𝑖𝑘
, 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

)
⃦⃦⃦
.

(B.12)

285

In (5.1), the Euclidean gradient of each cost function 𝑓𝑒𝑘 is Lipschitz continuous.

Furthermore, it is straightforward to show that the Lipschitz constant of 𝑓𝑒𝑘 is always

less than or equal to the Lipschitz constant of the overall cost function 𝑓 . Denote the

latter as 𝐶 > 0. By definition, we thus have,

𝜖(𝑖𝑘, 𝑗𝑘) ≤ 𝐶
⃦⃦⃦
𝑥𝑘
𝑗𝑘
− 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

⃦⃦⃦
. (B.13)

In addition, by Lemma A.3 in the appendix of Chapter 4, we know that Riemannian

version of the Lipschitz constant 𝐿 that appears in Lemma 5.1 is always greater than

or equal to the Euclidean Lipschitz constant 𝐶.1 Thus,

𝜖(𝑖𝑘, 𝑗𝑘) ≤ 𝐿
⃦⃦⃦
𝑥𝑘
𝑗𝑘
− 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

⃦⃦⃦
. (B.14)

We proceed by bounding the norm on the right-hand side of (B.14). Writing the

subtraction as a telescoping sum and invoking triangle inequality, we first obtain,

⃦⃦⃦
𝑥𝑘
𝑗𝑘
− 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

⃦⃦⃦
=

⃦⃦⃦⃦
⃦⃦ 𝑘−1∑︁
𝑘′=𝑘−𝐵(𝑗𝑘)

(︂
𝑥𝑘′+1
𝑗𝑘
− 𝑥𝑘′

𝑗𝑘

)︂⃦⃦⃦⃦⃦⃦ ≤ 𝑘−1∑︁
𝑘′=𝑘−𝐵(𝑗𝑘)

⃦⃦⃦
𝑥𝑘′+1
𝑗𝑘
− 𝑥𝑘′

𝑗𝑘

⃦⃦⃦
. (B.15)

Recall that for all 𝑗𝑘 and iterations 𝑘′, the next iterate 𝑥𝑘′+1
𝑗𝑘

is obtained from 𝑥𝑘′
𝑗𝑘

via

the following update,

𝑥𝑘′+1
𝑗𝑘

= Retr𝑥𝑘′
𝑗𝑘

(−𝛾𝜂𝑘′𝑗𝑘). (B.16)

Furthermore, in Lemma A.3 (specifically, (A.100)), it is shown that for each manifold

ℳ𝑖, there exists a corresponding constant 𝛼𝑖 > 0 such that the Euclidean distance

from the initial point to the new point after retraction is always bounded by the

following quantity,

‖Retr𝑥𝑖
(𝜂𝑖)− 𝑥𝑖‖ ≤ 𝛼𝑖 ‖𝜂𝑖‖ , ∀𝑥 ∈ℳ, ∀𝜂𝑖 ∈ 𝑇𝑥𝑖

ℳ. (B.17)

1Note that Lemma A.3 uses different notations for the Lipschitz constants. In particular, the
Riemannian and Euclidean Lipschitz constants are denoted as 𝑐𝑔 and 𝑐𝑙, respectively.

286

Equation (B.17) thus provides a way to bound the term on the right-hand side of

(B.15),

⃦⃦⃦
𝑥𝑘
𝑗𝑘
− 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

⃦⃦⃦
≤

𝑘−1∑︁
𝑘′=𝑘−𝐵(𝑗𝑘)

⃦⃦⃦
Retr𝑥𝑘′

𝑗𝑘

(−𝛾𝜂𝑘′𝑗𝑘)− 𝑥𝑘′

𝑗𝑘

⃦⃦⃦
≤

𝑘−1∑︁
𝑘′=𝑘−𝐵(𝑗𝑘)

𝛼𝑗𝑘

⃦⃦⃦
𝛾𝜂𝑘

′

𝑗𝑘

⃦⃦⃦
.

(B.18)

To remove the dependency on 𝛼𝑗𝑘 , let 𝛼 ≜ max𝑖∈ℛ 𝛼𝑖. We thus have,

⃦⃦⃦
𝑥𝑘
𝑗𝑘
− 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

⃦⃦⃦
≤ 𝛼𝛾

𝑘−1∑︁
𝑘′=𝑘−𝐵(𝑗𝑘)

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦
. (B.19)

We can further more use the bounded delay assumption (Assumption 5.1) to replace

𝐵(𝑗𝑘) with 𝐵,

⃦⃦⃦
𝑥𝑘
𝑗𝑘
− 𝑥

𝑘−𝐵(𝑗𝑘)
𝑗𝑘

⃦⃦⃦
≤ 𝛼𝛾

𝑘−1∑︁
𝑘′=𝑘−𝐵(𝑗𝑘)

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦
≤ 𝛼𝛾

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦
. (B.20)

Substituting (B.20) into (B.14), we have,

𝜖(𝑖𝑘, 𝑗𝑘) ≤ 𝛼𝛾𝐿
𝑘−1∑︁

𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦
. (B.21)

Substituting (B.21) into (B.8), we then have,

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦
≤

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝜖(𝑖𝑘, 𝑗𝑘) ≤ 𝛼𝛾𝐿
∑︁

𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦
. (B.22)

Squaring both sides of (B.22), we obtain,

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦2 ≤ (︂𝛼𝛾𝐿 ∑︁

𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦)︂2

= 𝛼2𝛾2𝐿2

(︂ ∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦)︂2

.

(B.23)

287

Recall that the sum of squares inequality states that (
∑︀𝑛

𝑖=1 𝑎𝑖)
2 ≤ 𝑛

∑︀𝑛
𝑖=1 𝑎

2
𝑖 . This

gives an upper bound on the squared term in (B.23),

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦2 ≤ 𝛼2𝛾2𝐿2𝐵∆𝑖𝑘

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦2
≤ 𝛼2𝛾2𝐿2𝐵∆

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦2
,

(B.24)

where ∆𝑖𝑘 ≤ ∆ is robot 𝑖𝑘’s degree in the robot-level graph 𝐺ℛ. Finally, substituting

(B.24) in (B.5) concludes the proof,

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)

≤− 𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2 − 𝛾 − 𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

+
𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)− 𝜂𝑘𝑖𝑘
⃦⃦2

≤− 𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2 − 𝛾 − 𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

+
𝛼2𝛾3𝐿2𝐵∆

2

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦2
.

(B.25)

B.2 Proof of Theorem 5.1

Proof. Since 𝑓 ⋆ is a global lower bound on 𝑓 , we can obtain the following inequality,

𝑓 ⋆ − 𝑓(𝑥0) ≤ E𝑖0:𝐾−1

[︂
𝑓(𝑥𝐾)

]︂
− 𝑓(𝑥0) = E𝑖0:𝐾−1

[︂𝐾−1∑︁
𝑘=0

(𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘))

]︂
, (B.26)

where the right-hand side rewrites the middle term as a telescoping sum. Using the

linearity of expectation, we obtain,

𝑓 ⋆ − 𝑓(𝑥0) ≤ E𝑖0:𝐾−1

[︂𝐾−1∑︁
𝑘=0

(𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘))

]︂
=

𝐾−1∑︁
𝑘=0

E𝑖0:𝑘

[︂
𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)

]︂
. (B.27)

288

For each expectation term, applying the law of total expectation yields,

𝑓 ⋆ − 𝑓(𝑥0) ≤
𝐾−1∑︁
𝑘=0

E𝑖0:𝑘−1

[︂
E𝑖𝑘|𝑖0:𝑘−1

[𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘)]

]︂
. (B.28)

Next, recall that Lemma 5.2 already gives an upper bound on the innermost term of

(B.28). Substituting this upper bound into (B.28) gives,

𝑓 ⋆ − 𝑓(𝑥0) ≤
𝐾−1∑︁
𝑘=0

E𝑖0:𝑘−1

[︂
E𝑖𝑘|𝑖0:𝑘−1

[︂
− 𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2 − 𝛾 − 𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2

+
∆𝐵𝛼2𝐿2𝛾3

2

∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦2]︂]︂
.

(B.29)

Next, we simplify individual terms on the right-hand side of (B.29). We start with the

first conditional expectation term. Using the definition of conditional expectation,

E𝑖𝑘|𝑖0:𝑘−1

[︂
− 𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2]︂

= −𝛾

2

𝑛∑︁
𝑖=1

𝑃 (𝑖𝑘 = 𝑖|𝑖0:𝑘−1)
⃦⃦
grad𝑖 𝑓(𝑥

𝑘)
⃦⃦2

. (B.30)

Recall that {𝑖𝑘} are i.i.d. random variables uniformly distributed over 1 to 𝑛 (Sec-

tion 5.4.1). Setting 𝑃 (𝑖𝑘 = 𝑖|𝑖0:𝑘−1) = 1/𝑛 thus gives,

E𝑖𝑘|𝑖0:𝑘−1

[︂
− 𝛾

2

⃦⃦
grad𝑖𝑘

𝑓(𝑥𝑘)
⃦⃦2]︂

= −𝛾

2

𝑛∑︁
𝑖=1

1

𝑛

⃦⃦
grad𝑖 𝑓(𝑥

𝑘)
⃦⃦2

= − 𝛾

2𝑛

⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2
.

(B.31)

Similarly, for the third conditional expectation in (B.29), we note that,

E𝑖𝑘|𝑖0:𝑘−1

[︂ ∑︁
𝑗𝑘∈Nbr(𝑖𝑘)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗𝑘

⃦⃦⃦2]︂
=

𝑛∑︁
𝑖=1

1

𝑛

∑︁
𝑗∈Nbr(𝑖)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗

⃦⃦⃦2
. (B.32)

In equation (B.32), exchange the order of summations and collect relevant terms,

𝑛∑︁
𝑖=1

1

𝑛

∑︁
𝑗∈Nbr(𝑖)

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′

𝑗

⃦⃦⃦2
=

1

𝑛

𝑘−1∑︁
𝑘′=𝑘−𝐵

𝑛∑︁
𝑖=1

∑︁
𝑗∈Nbr(𝑖)

⃦⃦⃦
𝜂𝑘

′

𝑗

⃦⃦⃦2
=

2

𝑛

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′
⃦⃦⃦2

. (B.33)

289

Using our simplified expressions for the first and third term on the right-hand side of

(B.29), we obtain,

𝑓 ⋆ − 𝑓(𝑥0) ≤
𝐾−1∑︁
𝑘=0

E𝑖0:𝑘−1

[︂
− 𝛾

2𝑛

⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2 − E𝑖𝑘|𝑖0:𝑘−1

[︂
𝛾 − 𝐿𝛾2

2

⃦⃦
𝜂𝑘𝑖𝑘
⃦⃦2]︂

+
∆𝐵𝛼2𝐿2𝛾3

𝑛

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′
⃦⃦⃦2]︂

.

(B.34)

Next, using the independence relations and the linearity of expectation, we obtain,

𝑓 ⋆ − 𝑓(𝑥0) ≤E𝑖0:𝐾−1

𝐾−1∑︁
𝑘=0

[︂
− 𝛾

2𝑛

⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2 − 𝛾 − 𝐿𝛾2

2

⃦⃦
𝜂𝑘
⃦⃦2

+
∆𝐵𝛼2𝐿2𝛾3

𝑛

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′
⃦⃦⃦2]︂

.

(B.35)

At this point, our bound still involves the squared norms of update vectors from

earlier iterations (last term on the right-hand side). To simplify the bound further,

note that,

𝐾−1∑︁
𝑘=0

𝑘−1∑︁
𝑘′=𝑘−𝐵

⃦⃦⃦
𝜂𝑘

′
⃦⃦⃦2
≤ 𝐵

𝐾−1∑︁
𝑘=0

⃦⃦
𝜂𝑘
⃦⃦2

. (B.36)

Using the above inequality in (B.35), we obtain,

𝑓 ⋆ − 𝑓(𝑥0) ≤ E𝑖0:𝐾−1

𝐾−1∑︁
𝑘=0

[︂
− 𝛾

2𝑛

⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2
+ (

∆𝛼2𝐵2𝐿2𝛾3

𝑛
+

𝐿𝛾2 − 𝛾

2
)⏟ ⏞

𝐴1(𝛾)

⃦⃦
𝜂𝑘
⃦⃦2]︂

.

(B.37)

We establish a sufficient condition on 𝛾 such that 𝐴1(𝛾) as a whole is nonpositive.

Let us define 𝜌 ≜ ∆/𝑛. Consider the following factorization of 𝐴1(𝛾),

𝐴1(𝛾) =
𝛾

2
(2𝜌𝛼2𝐵2𝐿2𝛾2 + 𝐿𝛾 − 1)⏟ ⏞

𝐴2(𝛾)

. (B.38)

290

Note that 𝐴2(𝛾) is the same as (5.11) in Theorem 5.1. For the moment, suppose that

we can find 𝛾 > 0 such that 𝐴2(𝛾) ≤ 0. This implies that 𝐴1(𝛾) ≤ 0, and we can

thus drop this term on the right-hand side of (B.37),

𝑓 ⋆ − 𝑓(𝑥0) ≤ − 𝛾

2𝑛

𝐾−1∑︁
𝑘=0

E𝑖0:𝐾−1

[︂ ⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2]︂
. (B.39)

Replacing the expected value at each iteration with the minimum across all iterations,

we have,

𝑓 ⋆ − 𝑓(𝑥0) ≤ −𝛾𝐾

2𝑛
min

𝑘∈{0,...,𝐾−1}
E𝑖0:𝐾−1

[︂ ⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2]︂
. (B.40)

Finally, rearranging the last inequality yields,

min
𝑘∈{0,...,𝐾−1}

E𝑖0:𝐾−1

[︂ ⃦⃦
grad 𝑓(𝑥𝑘)

⃦⃦2]︂ ≤ 2𝑛(𝑓(𝑥0)− 𝑓 ⋆)

𝛾𝐾
. (B.41)

Thus we have proved the main part of Theorem 5.1. To prove the expression (5.12),

note that if 𝐵 = 0 (i.e., there is no delay), the condition 𝐴2(𝛾) ≤ 0 entails 𝐿𝛾 ≤ 1.

In this case, we can thus set the upper bound 𝛾 to 1/𝐿. On the other hand, if 𝐵 > 0,

𝐴2(𝛾) becomes a quadratic function of 𝛾, and furthermore has the following positive

root,

𝛾 =

√︀
1 + 8𝜌𝛼2𝐵2 − 1

4𝜌𝛼2𝐵2𝐿
> 0. (B.42)

It is straightforward to verify that 𝐴2(𝛾) ≤ 0 for all 𝛾 ∈ (0, 𝛾]. Therefore, we have

proved that the condition 𝐴2(𝛾) ≤ 0 is ensured by the following choice of 𝛾,

𝛾 =

⎧⎪⎨⎪⎩
√

1+8𝜌𝛼2𝐵2−1
4𝜌𝛼2𝐵2𝐿

, 𝐵 > 0,

1/𝐿, 𝐵 = 0.

(B.43)

In particular, under this choice, ASAPP converges globally to first-order critical

points, with an associated convergence rate given in (B.41).

291

292

Appendix C

Supplemental Materials for Chapter 7

C.1 Proof of Lemma 7.1

Proof of Lemma 7.1. Recall from (7.6) that the global second-order approximation̂︀𝑚(𝑢, 𝑣) involving both private vectors 𝑢 ∈ 𝑇𝑥𝒳 and shared vector 𝑣 ∈ 𝑇𝑦𝒴 is defined

as,

̂︀𝑚(𝑢, 𝑣) = 𝑓(𝑥, 𝑦) +

⟨⎡⎣𝑔𝑥
𝑔𝑦

⎤⎦,
⎡⎣𝑢
𝑣

⎤⎦⟩+
1

2

⟨⎡⎣𝑢
𝑣

⎤⎦ ,

⎡⎣ 𝐴 𝐶

𝐶⊤ 𝐵

⎤⎦⎡⎣𝑢
𝑣

⎤⎦⟩. (C.1)

Setting the gradient of ̂︀𝑚(𝑢, 𝑣) with respect to 𝑢 to zero yields,

∇𝑢 ̂︀𝑚(𝑢, 𝑣) = 𝑔𝑥 + 𝐴𝑢+ 𝐶𝑣 = 0 =⇒ 𝑢⋆(𝑣) = −𝐴−1(𝐶𝑣 + 𝑔𝑥). (C.2)

Recall the definition of 𝐴 and 𝐶 in (7.7). In particular, since 𝐴 is a block-diagonal

matrix, the 𝑖-th component of 𝑢⋆(𝑣) (corresponding to agent 𝑖) is given by,

𝑢⋆
𝑖 (𝑣) = −𝐴−1𝑖 (𝐶𝑖𝑣 + 𝑔𝑖𝑥), ∀𝑖 ∈ [𝑁]. (C.3)

293

Next, substitute 𝑢⋆(𝑣) defined in (C.2) into (C.1). After collecting terms, we obtain,

̂︀ℎ(𝑣) ≜ ̂︀𝑚(𝑢⋆(𝑣), 𝑣)

= 𝑓(𝑥, 𝑦)− 1

2

⟨︀
𝑔𝑥, 𝐴

−1𝑔𝑥
⟩︀
+

⟨
𝑔𝑦 − 𝐶⊤𝐴−1𝑔𝑥⏟ ⏞

𝑤

, 𝑣

⟩
+

1

2

⟨
𝑣,
(︀
𝐵 − 𝐶⊤𝐴−1𝐶

)︀⏟ ⏞
𝑆

𝑣

⟩
.

(C.4)

Consider the vector 𝑤 as defined in (C.4). Note that the global Riemannian gradient

with respect to 𝑦 satisfies 𝑔𝑦 =
∑︀𝑁

𝑖=1 𝑔𝑖𝑦 where 𝑔𝑖𝑦 ≜ grad𝑦 𝑓𝑖(𝑥𝑖, 𝑦). In addition,

because of the block-diagonal structure of 𝐴 in (7.7), 𝐶⊤𝐴−1𝑔𝑥 =
∑︀𝑁

𝑖=1𝐶
⊤
𝑖 𝐴
−1
𝑖 𝑔𝑖𝑥.

Combining these results, we have that 𝑤 =
∑︀𝑁

𝑖=1𝑤𝑖 where 𝑤𝑖 is defined as in (7.10).

Similarly, for the matrix 𝑆 defined in (C.4), it can be readily verified that 𝑆 =
∑︀𝑁

𝑖=1 𝑆𝑖

where 𝑆𝑖 is defined as in (7.11).

C.2 Proof of Theorem 7.1

We start by reviewing several notations that are needed in this section. We use the

superscript 𝑘 to denote the value of a variable at iteration 𝑘 of Algorithm 7.1. For

example, 𝑔𝑘𝑥 denotes the value of the Riemannian gradient 𝑔𝑥 introduced in (7.6) at

iteration 𝑘. Recall that ‖·‖ (without subscript) denotes the standard norm associated

with the Riemannian metric. We also introduce an additional notation to simplify our

presentation. Recall that 𝑃 𝑘 : 𝑇𝑦𝑘𝒴 → 𝑇𝑦𝑘𝒴 is the preconditioner used at iteration 𝑘

to update the shared variable. In the following, we use ⟨·, ·⟩𝑘 and ‖·‖𝑘 as shortcuts

for ⟨·, ·⟩𝑃𝑘 and ‖·‖𝑃𝑘 , i.e.,

⟨𝑣1, 𝑣2⟩𝑘 ≜ ⟨𝑣1, 𝑣2⟩𝑃𝑘 =
⟨︀
𝑣1, 𝑃

𝑘𝑣2
⟩︀
, ∀𝑣1, 𝑣2 ∈ 𝑇𝑦𝑘𝒴 , (C.5)

‖𝑣‖𝑘 ≜ ‖𝑣‖𝑃𝑘 =
√︀
⟨𝑣, 𝑃 𝑘𝑣⟩, ∀𝑣 ∈ 𝑇𝑦𝑘𝒴 . (C.6)

In order to establish the convergence of Algorithm 7.1, we start by analyzing the

change in the global objective (7.1a) after a single iteration (one step change). The

following lemma provides an upper bound on the change in objective value.

294

Lemma C.1. Under Assumption 7.1, each iteration of Algorithm 7.1 satisfies,

𝑓(𝑥𝑘+1, 𝑦𝑘+1)− 𝑓(𝑥𝑘, 𝑦𝑘) ≤− 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2 − 𝛾

2

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
−
(︂
𝛾

2
− 𝜎𝑝𝛾

2

2

)︂ ⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘

+
𝛾

2

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

.

(C.7)

Proof. Let ̂︀𝑚𝑘(·) and ̂︀ℎ𝑘(·) denote the second-order approximation in (7.6) and re-

duced second-order approximation in (7.9) at iteration 𝑘, respectively. Substitute

𝑣𝑘 = −𝛾𝑃 𝑘 ̂︀𝑤𝑘 into ̂︀ℎ𝑘(·):

̂︀ℎ𝑘(𝑣𝑘) = 𝑓(𝑥𝑘, 𝑦𝑘)− 1

2

⟨︀
𝑔𝑘𝑥, (𝐴

𝑘)−1𝑔𝑘𝑥
⟩︀
− 𝛾

⟨︀
𝑤𝑘, 𝑃 𝑘 ̂︀𝑤𝑘

⟩︀
+

𝛾2

2

⟨︀
𝑃 𝑘 ̂︀𝑤𝑘, 𝑆𝑘𝑃 𝑘 ̂︀𝑤𝑘

⟩︀
. (C.8)

In (C.8), recall that 𝑤𝑘 =
∑︀𝑁

𝑖=1 𝑤
𝑘
𝑖 is the true global gradient computed using latest

local gradients from all agents. On the other hand, ̂︀𝑤𝑘 =
∑︀𝑁

𝑖=1 ̂︀𝑤𝑘
𝑖 is the approximate

global gradient computed using the lazily uploaded gradients from agents. Rearrange

the third term in the right-hand side of (C.8) as,

−𝛾
⟨︀
𝑤𝑘, 𝑃 𝑘 ̂︀𝑤𝑘

⟩︀
= −𝛾

⟨︀
𝑤𝑘, 𝑃 𝑘(𝑤𝑘 + ̂︀𝑤𝑘 − 𝑤𝑘)

⟩︀
(C.9)

= −𝛾
⃦⃦
𝑤𝑘
⃦⃦2
𝑘
− 𝛾

⟨︀
𝑤𝑘, 𝑃 𝑘(̂︀𝑤𝑘 − 𝑤𝑘)

⟩︀
(C.10)

= −𝛾
⃦⃦
𝑤𝑘
⃦⃦2
𝑘
− 𝛾

⟨
𝑤𝑘, 𝑃 𝑘

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⟩
(C.11)

= −𝛾
⃦⃦
𝑤𝑘
⃦⃦2
𝑘
+

⟨
−
√︀

𝛾𝑃 𝑘𝑤𝑘,
√︀

𝛾𝑃 𝑘

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⟩
. (C.12)

In (C.12), the matrix 𝛾𝑃 𝑘 is positive definite, and we use
√︀
𝛾𝑃 𝑘 to denote its matrix

square root. Recall the equality ⟨𝑎, 𝑏⟩ = 1
2
‖𝑎‖22 +

1
2
‖𝑏‖22 −

1
2
‖𝑎− 𝑏‖22. Applying this

equality on the inner product term in (C.12), we obtain,

⟨
−
√︀

𝛾𝑃 𝑘𝑤𝑘,
√︀

𝛾𝑃 𝑘

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⟩
=

𝛾

2

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
+

𝛾

2

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

− 𝛾

2

⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘
.

(C.13)

295

Substitute (C.13) into (C.12), we obtain,

−𝛾
⟨︀
𝑤𝑘, 𝑃 𝑘 ̂︀𝑤𝑘

⟩︀
= −𝛾

2

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
− 𝛾

2

⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘
+

𝛾

2

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

. (C.14)

Now, let us focus on the last term in (C.8). Applying the Cauchy-Schwartz inequality

with respect to the norm induced by 𝑃 𝑘, it holds that,

𝛾2

2

⟨︀
𝑃 𝑘 ̂︀𝑤𝑘, 𝑆𝑘𝑃 𝑘 ̂︀𝑤𝑘

⟩︀
=

𝛾2

2

⟨︀ ̂︀𝑤𝑘, 𝑆𝑘𝑃 𝑘 ̂︀𝑤𝑘
⟩︀
𝑘

(C.15)

≤ 𝛾2

2

⃦⃦ ̂︀𝑤𝑘
⃦⃦
𝑘

⃦⃦
𝑆𝑘𝑃 𝑘 ̂︀𝑤𝑘

⃦⃦
𝑘

(C.16)

≤ 𝜎𝑝𝛾
2

2

⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘
. (C.17)

The last inequality (C.17) holds because of assumption (A3). Finally, substitute

(C.14) and (C.17) into (C.8), we obtain that,

̂︀ℎ𝑘(𝑣𝑘) ≤𝑓(𝑥𝑘, 𝑦𝑘)− 1

2

⟨︀
𝑔𝑘𝑥, (𝐴

𝑘)−1𝑔𝑘𝑥
⟩︀
− 𝛾

2

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
−
(︂
𝛾

2
− 𝜎𝑝𝛾

2

2

)︂ ⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘

+
𝛾

2

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

.

(C.18)

This further implies that,

̂︀ℎ𝑘(𝑣𝑘) ≤𝑓(𝑥𝑘, 𝑦𝑘)− 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2 − 𝛾

2

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
−
(︂
𝛾

2
− 𝜎𝑝𝛾

2

2

)︂ ⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘

+
𝛾

2

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

,

(C.19)

where the last inequality holds, because 𝐴𝑘 ⪯ 𝐿𝐼 due to assumption (A2). To con-

clude the proof, note that (A1) and (A2) together imply that the model function ̂︀𝑚𝑘

296

is an upper bound on the current pullback function ̂︀𝑓𝑘,

̂︀𝑓𝑘(𝑢, 𝑣) ≤ 𝑓(𝑥𝑘, 𝑦𝑘) +

⟨⎡⎣𝑔𝑘𝑥
𝑔𝑘𝑦

⎤⎦ ,

⎡⎣𝑢
𝑣

⎤⎦⟩+
𝑐𝑔
2

⃦⃦⃦⃦
⃦⃦
⎡⎣𝑢
𝑣

⎤⎦⃦⃦⃦⃦⃦⃦
2

(C.20)

≤ 𝑓(𝑥𝑘, 𝑦𝑘) +

⟨⎡⎣𝑔𝑘𝑥
𝑔𝑘𝑦

⎤⎦ ,

⎡⎣𝑢
𝑣

⎤⎦⟩+
1

2

⟨⎡⎣𝑢
𝑣

⎤⎦ ,𝑀𝑘

⎡⎣𝑢
𝑣

⎤⎦⟩ (C.21)

≜ ̂︀𝑚𝑘(𝑢, 𝑣). (C.22)

Above, the first inequality holds due to the Lipschitz-type gradient conditions for

pullback (A1), and the second inequality holds because 𝑀𝑘 ⪰ 𝑐𝑔𝐼 (A2). The above

inequality directly shows that,

𝑓(𝑥𝑘+1, 𝑦𝑘+1) = ̂︀𝑓𝑘(𝑢𝑘, 𝑣𝑘) ≤ ̂︀𝑚𝑘(𝑢𝑘, 𝑣𝑘) = ̂︀𝑚𝑘(𝑢⋆(𝑣𝑘), 𝑣𝑘) = ̂︀ℎ𝑘(𝑣𝑘). (C.23)

This concludes the proof.

In Lemma C.1, the RHS of (C.7) bounds the absolute reduction in the global

cost function after each iteration of Algorithm 7.1. However, due to the last term in

(C.7) (which captures the error between the approximate gradient ̂︀𝑤𝑘 and true 𝑤𝑘),

the RHS can in general be positive. This means that we cannot directly use (C.7)

to show that Algorithm 7.1 decreases the global cost function at every iteration,

i.e., Algorithm 7.1 is not a descent method with respect to the cost function 𝑓 .

Fortunately, we can still show that Algorithm 7.1 is a descent method with respect to

a Lyapunov function, which is sufficient for proving convergence. This proof technique

is inspired by LAG [164]. Specifically, we define the Lyapunov function to be the sum

of global objective and the squared norms of past approximate gradients,

𝑉 𝑘 ≜ 𝑓(𝑥𝑘, 𝑦𝑘) +
𝑑∑︁

𝑑=1

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2
𝑘−𝑑 , (C.24)

where {𝛽𝑑 ≥ 0, 𝑑 = 1, . . . , 𝑑} are constants to be specified. Note that 𝑉 𝑘 combines

the current cost function with weighted squared norms of past approximate reduced

297

gradients. Intuitively, these squared norms account for the approximation errors

induced by lazy communication, and allows us to establish the convergence of the

proposed method.

Lemma C.2 (Descent lemma). Under Assumption 7.1, there exist suitable choices

of parameters 𝛾, {𝛽𝑑}, {𝜖𝑑}, such that each iteration of Algorithm 7.1 satisfies,

𝑉 𝑘+1 − 𝑉 𝑘 ≤ − 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2 − 𝛼0

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
−

𝑑∑︁
𝑑=1

𝛼𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2
𝑘−𝑑 ≤ 0, (C.25)

where 𝛼0, . . . , 𝛼𝑑 > 0 are fixed constants. In particular, the following provides a set

of admissible conditions on the parameters such that (C.25) holds,

0 < 𝛾 < 1/𝜎𝑝, (C.26)

𝛽1 = (𝛾 − 𝜎𝑝𝛾
2)/2, (C.27)

𝛽𝑑 < 𝛽𝑑−1 − 𝛾𝜖𝑑−1/2, 𝑑 = 2, . . . , 𝑑, (C.28)

𝛽𝑑 > 𝛾𝜖𝑑/2. (C.29)

Proof. Consider the difference between the Lyapunov function between the current

and next iterations,

𝑉 𝑘+1 − 𝑉 𝑘 = 𝑓(𝑥𝑘+1, 𝑦𝑘+1)− 𝑓(𝑥𝑘, 𝑦𝑘) +
𝑑∑︁

𝑑=1

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑+1
⃦⃦2
𝑘−𝑑+1

−
𝑑∑︁

𝑑=1

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2
𝑘−𝑑 .

(C.30)

Using Lemma C.1, we can obtain the following upper bound,

𝑉 𝑘+1 − 𝑉 𝑘 ≤− 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2 − 𝛾

2

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
−
(︂
𝛾

2
− 𝜎𝑝𝛾

2

2

)︂ ⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘
+

𝛾

2

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

+
𝑑∑︁

𝑑=1

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑+1
⃦⃦2
𝑘−𝑑+1

−
𝑑∑︁

𝑑=1

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2
𝑘−𝑑 .

(C.31)

298

Grouping terms that involve
⃦⃦ ̂︀𝑤𝑘

⃦⃦2
𝑘

together, we obtain,

𝑉 𝑘+1 − 𝑉 𝑘 ≤− 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2 − 𝛾

2

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
+

(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂ ⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘
+

𝛾

2

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

+
𝑑∑︁

𝑑=2

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑+1
⃦⃦2
𝑘−𝑑+1

−
𝑑∑︁

𝑑=1

𝛽𝑑

⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2
𝑘−𝑑 .

(C.32)

Next, we obtain an upper bound for
⃦⃦ ̂︀𝑤𝑘

⃦⃦2
𝑘
. First, using the definition of the approx-

imate gradient ̂︀𝑤𝑘, it holds that,

⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘
=

⃦⃦⃦⃦
⃦𝑤𝑘 +

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

=

⃦⃦⃦⃦
⃦√𝑃 𝑘𝑤𝑘 +

√
𝑃 𝑘

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

. (C.33)

Next, applying Young’s inequality, we arrive at the following upper bound,

⃦⃦ ̂︀𝑤𝑘
⃦⃦2
𝑘
≤ (1 + 𝜌)

⃦⃦⃦√
𝑃 𝑘𝑤𝑘

⃦⃦⃦2
+ (1 + 𝜌−1)

⃦⃦⃦⃦
⃦√𝑃 𝑘

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

(C.34)

= (1 + 𝜌)
⃦⃦
𝑤𝑘
⃦⃦2
𝑘
+ (1 + 𝜌−1)

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

, (C.35)

where 𝜌 > 0 is any constant. Plug (C.35) into (C.32). After grouping terms, we

arrive at,

𝑉 𝑘+1 − 𝑉 𝑘 ≤− 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2

+

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌)− 𝛾

2

]︂ ⃦⃦
𝑤𝑘
⃦⃦2
𝑘

+

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌−1) +

𝛾

2

]︂ ⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

+
𝑑−1∑︁
𝑑=1

(𝛽𝑑+1 − 𝛽𝑑)
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑘−𝑑 − 𝛽𝑑

⃦⃦⃦ ̂︀𝑤𝑘−𝑑
⃦⃦⃦2
𝑘−𝑑

.

(C.36)

299

Next, we obtain an upper bound for the second row of (C.36). Note that,

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

=

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

√
𝑃 𝑘(̂︀𝑤𝑘

𝑖 − 𝑤𝑘
𝑖)

⃦⃦⃦⃦
⃦
2

(C.37)

≤ 𝑁
𝑁∑︁
𝑖=1

⃦⃦⃦√
𝑃 𝑘(̂︀𝑤𝑘

𝑖 − 𝑤𝑘
𝑖)
⃦⃦⃦2

(C.38)

= 𝑁

𝑁∑︁
𝑖=1

⃦⃦ ̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖

⃦⃦2
𝑘
. (C.39)

Recall the communication triggering condition (7.20). By definition, (7.20) guarantees

that the approximation error for each block 𝑙 is upper bounded as follows,

⃦⃦ ̂︀𝑤𝑘
𝑖𝑙 − 𝑤𝑘

𝑖𝑙

⃦⃦2
𝑃𝑘
𝑙

≤ 1

𝑚𝑁2

𝑑∑︁
𝑑=1

𝜖𝑑
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑘−𝑑 . (C.40)

Summing the above inequality over all 𝑚 blocks, we can obtain an upper bound on

the approximation error for the entire local gradient,

⃦⃦ ̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖

⃦⃦2
𝑘
=

𝑚∑︁
𝑙=1

⃦⃦ ̂︀𝑤𝑘
𝑖𝑙 − 𝑤𝑘

𝑖𝑙

⃦⃦2
𝑃𝑘
𝑙

≤ 1

𝑁2

𝑑∑︁
𝑑=1

𝜖𝑑
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑘−𝑑 . (C.41)

Substitute (C.41) into (C.39),

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

(̂︀𝑤𝑘
𝑖 − 𝑤𝑘

𝑖)

⃦⃦⃦⃦
⃦
2

𝑘

≤ 𝑁
𝑁∑︁
𝑖=1

(︃
1

𝑁2

𝑑∑︁
𝑑=1

𝜖𝑑
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑘−𝑑

)︃
(C.42)

=
𝑑∑︁

𝑑=1

𝜖𝑑
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑘−𝑑 . (C.43)

300

Substitute (C.43) into the second row of (C.36),

𝑉 𝑘+1 − 𝑉 𝑘 ≤− 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2

+

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌)− 𝛾

2

]︂ ⃦⃦
𝑤𝑘
⃦⃦2
𝑘

+

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌−1) +

𝛾

2

]︂ 𝑑∑︁
𝑑=1

𝜖𝑑
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑘−𝑑

+
𝑑−1∑︁
𝑑=1

(𝛽𝑑+1 − 𝛽𝑑)
⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2

𝑘−𝑑 − 𝛽𝑑

⃦⃦⃦ ̂︀𝑤𝑘−𝑑
⃦⃦⃦2
𝑘−𝑑

.

(C.44)

After grouping terms in (C.44), we arrive at,

𝑉 𝑘+1 − 𝑉 𝑘 ≤− 1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2 − [︂𝛾

2
−
(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌)

]︂ ⃦⃦
𝑤𝑘
⃦⃦2
𝑘

−
𝑑−1∑︁
𝑑=1

{︂
𝛽𝑑 − 𝛽𝑑+1 − 𝜖𝑑

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌−1) +

𝛾

2

]︂}︂ ⃦⃦ ̂︀𝑤𝑘−𝑑⃦⃦2
𝑘−𝑑

−
{︂
𝛽𝑑 − 𝜖𝑑

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌−1) +

𝛾

2

]︂}︂ ⃦⃦⃦ ̂︀𝑤𝑘−𝑑
⃦⃦⃦2
𝑘−𝑑

.

(C.45)

Define the following constants that correspond to the coefficients in the above in-

equality,

𝛼0 ≜
𝛾

2
−
(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌), (C.46)

𝛼𝑑 ≜ 𝛽𝑑 − 𝛽𝑑+1 − 𝜖𝑑

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌−1) +

𝛾

2

]︂
, 𝑑 = 1, . . . , 𝑑− 1, (C.47)

𝛼𝑑 ≜ 𝛽𝑑 − 𝜖𝑑

[︂(︂
𝛽1 −

𝛾

2
+

𝜎𝑝𝛾
2

2

)︂
(1 + 𝜌−1) +

𝛾

2

]︂
. (C.48)

For the Lyapunov function to be decreasing, it suffices to choose 𝛾, {𝜖𝑑}, {𝛽𝑑} such

that 𝛼𝑑 > 0 for all 𝑑 = 0, 1, . . . , 𝑑. To conclude the proof, we show that the conditions

outlined in (C.26)-(C.29), which are inspired by similar conditions in [164], indeed

satisfy this requirement. Let us assume that {𝛽𝑑} is a decreasing sequence, i.e.,

𝛽1 > 𝛽2 > . . . > 𝛽𝑑. This assumption makes intuitive sense, since it assigns larger

weights to more recent gradients in the definition of the Lyapunov function (C.24).

In addition, let us also assume that the stepsize satisfies 0 < 𝛾 < 1/𝜎𝑝. Note the

301

similarity of this assumption with the condition 0 < 𝛾 < 1/𝐿 that is commonly

used to ensure the convergence of gradient descent (e.g., see [167]). Under these two

simplifications, let us choose 𝛽1 = (𝛾− 𝜎𝑝𝛾
2)/2 > 0, so that 𝛽1− 𝛾

2
+ 𝜎𝑝𝛾2

2
= 0. Then,

it can be verified that the following conditions ensure 𝛼𝑑 > 0 for all 𝑑 = 0, 1, . . . , 𝑑:

𝛽𝑑 − 𝛽𝑑+1 − 𝜖𝑑𝛾/2 > 0, 𝑑 = 1, . . . , 𝑑− 1, (C.49)

𝛽𝑑 − 𝜖𝑑𝛾/2 > 0. (C.50)

We can verify that the above conditions are equivalent to (C.26)-(C.29).

Remark C.1 (Intuitions behind parameter settings). Before proceeding, let us pro-

vide more insights on the choice of algorithm parameters (C.26)-(C.29) outlined in

Lemma C.2. For this purpose, let us focus on the special case when 𝑑 = 1, i.e., only

a single past gradient is used in the calculation of the communication triggering con-

dition (7.20). In this case, it can be shown that the conditions (C.26)-(C.29) reduce

to the following,

0 < 𝛾 < 1/𝜎𝑝, (C.51)

𝛽1 = (𝛾 − 𝜎𝑝𝛾
2)/2, (C.52)

𝜖1 < 2𝛽1/𝛾 = 1− 𝜎𝑝𝛾. (C.53)

In particular, the last inequality demonstrates the intuitive trade-off between the

stepsize 𝛾 and the lazy communication threshold 𝜖1: with smaller stepsize, we can

tolerate larger approximation errors (and hence save more communication) at each

iteration.

With Lemma C.2, we are ready to prove Theorem 7.1 which is stated in Section 7.4

and is repeated below.

Theorem 7.1. Under Assumption 7.1 and the conditions in Lemma C.2, after 𝐾

iterations, the iterates generated by Algorithm 7.1 satisfy,

min
𝑘∈[𝐾]

⃦⃦
grad 𝑓(𝑥𝑘, 𝑦𝑘)

⃦⃦2
= 𝑂(1/𝐾). (C.54)

302

Proof. Using Lemma C.2 we know that,

1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2

+ 𝛼0

⃦⃦
𝑤𝑘
⃦⃦2
𝑘
≤ 𝑉 𝑘 − 𝑉 𝑘+1 (C.55)

Furthermore, from Assumption (A3),

1

2𝐿

⃦⃦
𝑔𝑘𝑥
⃦⃦2

+ 𝛼0𝜇𝑝

⃦⃦
𝑤𝑘
⃦⃦2 ≤ 𝑉 𝑘 − 𝑉 𝑘+1 (C.56)

Define 𝛼 ≜ min(1/2𝐿, 𝛼0𝜇𝑝),

𝛼
(︁⃦⃦

𝑔𝑘𝑥
⃦⃦2

+
⃦⃦
𝑤𝑘
⃦⃦2)︁ ≤ 𝑉 𝑘 − 𝑉 𝑘+1 (C.57)

A telescoping sum of (C.57) from 𝑘 = 1 to 𝑘 = 𝐾 yields,

𝛼
𝐾∑︁
𝑘=1

(︁⃦⃦
𝑔𝑘𝑥
⃦⃦2

+
⃦⃦
𝑤𝑘
⃦⃦2)︁ ≤ 𝑉 1 − 𝑉 𝐾+1 ≤ 𝑉 1 − 𝑓 ⋆. (C.58)

Above, 𝑓 ⋆ denotes the global minimum of Problem 7.1. The second inequality holds,

because by definition of the Lyapunov function (C.24) we have 𝑉 𝑘 ≥ 𝑓 ⋆ for all 𝑘.

Inequality (C.58) further implies that,

min
𝑘∈[𝐾]

(︁⃦⃦
𝑔𝑘𝑥
⃦⃦2

+
⃦⃦
𝑤𝑘
⃦⃦2)︁ ≤ 𝑉 1 − 𝑓 ⋆

𝛼𝐾
. (C.59)

To conclude the proof, we show that (C.59) implies (7.25) in Theorem 7.1. From

now on, let 𝑘 denote the iteration that minimizes the LHS of (C.59). In addition,

define 𝜀 ≜
√︀

(𝑉 1 − 𝑓 ⋆)/(𝛼𝐾). Then, (C.59) implies that we have both
⃦⃦
𝑔𝑘𝑥
⃦⃦
≤ 𝜀

and
⃦⃦
𝑤𝑘
⃦⃦
≤ 𝜀. Recall from (C.4) that 𝑤 = 𝑔𝑦 − 𝐶⊤𝐴−1𝑔𝑥. From (A2) we have that

‖𝐴−1‖ ≤ 𝜇−1. Also, since the approximate Hessian 𝑀 (7.6) is positive definite,

𝑀 =

⎡⎣ 𝐴 𝐶

𝐶⊤ 𝐵

⎤⎦ ⪰ 0, (C.60)

it holds that 𝐶 = 𝐴1/2𝑍𝐵1/2 where ‖𝑍‖ ≤ 1 [216, Lemma 3.5.12]. Therefore we also

303

have that ‖𝐶‖ ≤ 𝐿. Applying these results together with the triangle inequality,

⃦⃦
𝑔𝑘𝑦
⃦⃦
≤
⃦⃦
𝑤𝑘
⃦⃦
+
⃦⃦
𝐶⊤𝐴−1𝑔𝑘𝑥

⃦⃦
≤
(︂
1 +

𝐿

𝜇

)︂
𝜀. (C.61)

Lastly, for 𝑔𝑘 ≜ grad 𝑓(𝑥𝑘, 𝑦𝑘), it holds that

⃦⃦
𝑔𝑘
⃦⃦2

=
⃦⃦
𝑔𝑘𝑥
⃦⃦2

+
⃦⃦
𝑔𝑘𝑦
⃦⃦2 ≤ [︃1 + (︂1 + 𝐿

𝜇

)︂2
]︃
𝜀2 =

[︃
1 +

(︂
1 +

𝐿

𝜇

)︂2
]︃
𝑉 1 − 𝑓 ⋆

𝛼𝐾
. (C.62)

The proof is completed.

304

Appendix D

Supplemental Materials for Chapter 8

305

Table D.1: Summary of key notations used in this Chapter 8 (organized by sections).

Notation Description Reference
Section 8.2

𝐺 = (𝒱 , ℰ) Multi-robot measurement graph with vertex (variable) set 𝒱 and edge (measurement) set ℰ
𝑅𝑖 The 𝑖th rotation variable to be estimated in rotation averaging (8.5)̃︀𝑅𝑖𝑗 Noisy relative rotation measurement in rotation averaging (8.5)
𝜙(·, ·) Squared geodesic or chordal distance function between two rotations (8.6a)-(8.6b)
𝑡𝑖 The 𝑖th translation variable to be estimated in translation estimation (8.7)̂︀𝑡𝑖𝑗 Noisy relative translation measurement in translation estimation (8.7)̃︀𝑡𝑖𝑗 Noisy relative translation measurement in PGO (8.8)
𝜅𝑖𝑗 Weight (precision) associated with the relative rotation measurement between vertex 𝑖 and 𝑗 (8.5), (8.8)
𝜏𝑖𝑗 Weight (precision) associated with the relative translation measurement between vertex 𝑖 and 𝑗 (8.7), (8.8)

Section 8.3
𝑝 𝑝 ≜ dimSO(𝑑) is the intrinsic dimension of the rotation group SO(𝑑)

[𝑅] The equivalent class corresponding to 𝑛 rotations 𝑅 = (𝑅1, . . . , 𝑅𝑛) ∈ SO(𝑑)𝑛 (8.9)
𝑣𝑖 𝑣𝑖 ∈ R𝑝 is the correction vector (to be optimized) for rotation variable 𝑅𝑖

𝑣 𝑣 ∈ R𝑝𝑛 is formed by concatenating the 𝑣𝑖 vectors of all 𝑛 rotation variables (8.10)
𝑉 𝑉 ∈ R𝑛×𝑝 is the matrix representation of 𝑣 (8.18)
𝒩 ,ℋ Subspaces of R𝑝𝑛 corresponding to the vertical space and horizontal space in rotation averaging (ℋ ≜ 𝒱⊥) (8.11)
𝑃𝐻 Orthogonal projection onto the horizontal space ℋ (8.13)
𝑔(𝑅) 𝑔(𝑅) ∈ R𝑝𝑛 is the vector corresponding to the Riemannian gradient of rotation averaging in the total space (8.12)
𝐻(𝑅) 𝐻(𝑅) ∈ 𝒮𝑝𝑛 is the matrix corresponding to the Riemannian Hessian of rotation averaging in the total space (8.12)
𝐻(𝑅) 𝐻(𝑅) ∈ 𝒮𝑝𝑛 is the matrix corresponding to the Riemannian Hessian in the quotient space (8.13)
𝑤 𝑤 : ℰ → R>0 is the edge weight function that appears in Theorem 8.1 (8.15)
𝛿 The approximation constant in Theorem 8.1 between 𝐻(𝑅) and the Laplacian 𝐿(𝐺;𝑤)⊗ 𝐼𝑝 (8.15)
𝜇𝐻 Lower bound of 𝐻(𝑅) in Corollary 8.1 (8.16)
𝐿𝐻 Upper bound of 𝐻(𝑅) in Corollary 8.1 (8.16)
𝜅𝐻 Condition number of 𝐻(𝑅) as defined by 𝜅𝐻 = 𝐿𝐻/𝜇𝐻 Cor. 8.1
𝐵(𝑅) 𝐵(𝑅) ∈ R𝑛×𝑝 is the matrix representation of the negative Riemannian gradient −𝑔(𝑅) (8.18)

Section 8.4
𝒱𝛼 The set of vertices (variables) of robot 𝛼 ∈ [𝑚], and 𝒱𝛼 = ℱ𝛼 ⊎ 𝒞𝛼 (8.22)
ℱ𝛼 ℱ𝛼 ⊆ 𝒱𝛼 is the set of interior vertices of robot 𝛼 that does not have inter-robot measurement
𝒞𝛼 𝒞𝛼 ⊆ 𝒱𝛼 is the set of separator vertices of robot 𝛼 hat have inter-robot measurement
𝒞 𝒞 = 𝒞1 ⊎ . . . ⊎ 𝒞𝑚 is the union of separator vertices of all 𝑚 robots
ℰ𝛼 The set of local edges (measurements) of robot 𝛼 ∈ [𝑚] (8.23)
ℰ𝑐 The set of inter-robot edges (measurements) (8.23)
𝑆𝛼 𝑆𝛼 ∈ 𝒮 |𝒞|+ is the exact Schur complement of robot 𝛼’s local graph 𝐺𝛼

𝑆 𝑆 ∈ 𝒮 |𝒞|+ is the exact Schur complement of the multi-robot measurement graph (8.27)̃︀𝑆𝛼 The sparsified version of 𝑆𝛼 robot 𝛼 transmits to the server in Algorithm 8.2 Alg. 8.2, line 4̃︀𝑆 The sparsified version of 𝑆 computed by the server in Algorithm 8.2 Alg. 8.2, line 6
𝑈𝛼 𝑈𝛼 ∈ R|𝒞|×𝑝 is the block vector robot 𝛼 transmits to the server in Algorithm 8.3 Alg. 8.3, line 4
𝜖 The spectral sparsification parameter that is used in the algorithm and appears in Theorem 8.2
𝜌TLS The truncated least squares (TLS) cost function for outlier-robust estimation (8.37)
𝑒𝑖𝑗 Measurement error corresponding to the measurement (𝑖, 𝑗) ∈ ℰ in the measurement graph
𝑒 Threshold that specifies the maximum error of inlier measurement in TLS
𝜇 Control parameter of graduated non-convexity (GNC)
𝑤GNC

𝑖𝑗 GNC weight for measurement (𝑖, 𝑗) ∈ ℰ in the measurement graph (8.38)

306

Algorithm D.1 Spectral Sparsification by Effective Resistance Sam-
pling
1: for each edge (𝑖, 𝑗) ∈ ℰ in the graph 𝐺 corresponding to the input Laplacian 𝐿 (in

parallel) do
2: Compute leverage score ℓ𝑖𝑗 = 𝑤𝑖𝑗(Δ𝑖 −Δ𝑗)

⊤𝐿†(Δ𝑖 −Δ𝑗).
3: Select this edge with probability 𝑝𝑖𝑗 = min(1, 3.5 log 𝑛ℓ𝑖𝑗/𝜖

2
𝑙).

4: If this edge is selected, add it to the sparsified graph ̃︀𝐺 with increased edge weight
𝑤𝑖𝑗/𝑝𝑖𝑗 .

5: end for
6: return The Laplacian ̃︀𝐿 of the sparse graph ̃︀𝐺.

D.1 Details of Spectral Sparsification Algorithm

In this appendix, we provide details of the spectral sparsification algorithm used in

Chapter 8. Given the Laplacian matrix 𝐿 of a dense graph 𝐺, recall that the goal of

spectral sparsification is to find a sparse Laplacian ̃︀𝐿 such that,

𝑒−𝜖𝐿 ⪯ ̃︀𝐿 ⪯ 𝑒𝜖𝐿, (D.1)

where 𝜖 > 0 is the desired sparsification parameter. Note that (D.1) is the same

definition as (8.1). In graph terms, this is the same as finding a sparse graph ̃︀𝐺 whose

Laplacian approximates that of the dense graph 𝐺.

In this work, we use the random sampling approach developed by Spielman and

Srivastava [136]. In particular, we implement the improved version presented in [217,

Chapter 32], which is more suitable for batch computation since it avoids sampling

with replacement and the decision to keep or remove each edge can be made in parallel.

Given a constant 𝜖𝑙 ∈ (0, 1), this method produces a sparse ̃︀𝐿 with 𝑂(𝑛 log 𝑛) entries

(where 𝑛 is the number of vertices in the graph) such that with high probability,

(1− 𝜖𝑙)𝐿 ⪯ ̃︀𝐿 ⪯ (1 + 𝜖𝑙)𝐿. (D.2)

Note that (D.2) can be used to ensure that (D.1) holds: in our implementation, given

𝜖, we find the smallest 𝜖𝑙 such that (D.1) holds, which is given by,

𝜖𝑙 = min(𝑒𝜖 − 1, 1− 𝑒−𝜖). (D.3)

307

Figure D-1: Illustration of leverage scores on a toy graph.

The sparsification algorithm works by selecting edges in the input dense graph

𝐺 based on their leverage scores. Recall that each edge corresponds to a non-zero

off-diagonal term in the Laplacian 𝐿, and thus selecting a small subset of edges leads

to a sparse output Laplacian ̃︀𝐿. For each edge (𝑖, 𝑗) ∈ ℰ , its leverage score is defined

as,

ℓ𝑖𝑗 ≜ 𝑤𝑖𝑗(∆𝑖 −∆𝑗)
⊤𝐿†(∆𝑖 −∆𝑗), (D.4)

where ∆𝑖 ∈ R𝑛 is the 𝑖-th basis vector with a one in coordinate 𝑖, and 𝑤𝑖𝑗 > 0 is the

edge weight. The quantity ℓ𝑖𝑗/𝑤𝑖𝑗 is also known as the effective resistance. Intuitively,

the leverage score measures the importance of each edge to the connectivity of the

overall graph. Figure D-1 shows an illustration on a toy graph consisting of two

clusters of vertices connected by a single edge. All edges have unit weights, and

each edge is labeled by its leverage score computed according to (D.4). Notice that

the middle edge has the highest leverage score, since it is critical to keep the overall

graph connected. In comparison, the remaining edges have lower leverage scores, due

to the redundancy of edges in each cluster. The actual sparsification algorithm is a

remarkably simple method, which independently selects each edge with a probability

proportional to its leverage score:

𝑝𝑖𝑗 = min

(︂
1,

3.5 log 𝑛

𝜖2𝑙
ℓ𝑖𝑗

)︂
. (D.5)

If edge (𝑖, 𝑗) ∈ ℰ is selected, we add it to the sparsified graph ̃︀𝐺 with an increased edge

308

weight 𝑤𝑖𝑗/𝑝𝑖𝑗. The reason behind increasing the edge weight is to ensure that we can

recover 𝐿 in expectation, i.e., E(̃︀𝐿) = 𝐿. Algorithm D.1 shows the pseudocode. The

majority of computation is spent on factorizing 𝐿 to compute the leverage scores in

(D.4). The approximation guarantee (D.2) of the resulting ̃︀𝐿 is proved using certain

concentration bounds of random matrices. The interested reader is referred to [217,

Chapter 32] for the complete proof.

Lastly, we refer the reader to Figure 8-12, which demonstrates spectral sparsifica-

tion on Laplacian matrices encountered in our application. Recall that in our case, we

apply sparsification on the Schur complement 𝑆𝛼 of robot 𝛼’s local Laplacian. Since

Laplacians are closed under Schur complements [141, Fact 4.2], 𝑆𝛼 is still a Laplacian

matrix and thus the sparsified result ̃︀𝑆𝛼 retains all the theoretical guarantees.

D.2 Analysis of Riemannian Hessian of Rotation Av-

eraging

In this appendix, we use d∠ ≡ d to denote the geodesic distance on the rotation

group, and use dchr to denote the chordal distance. Recall the definition of 𝜙 in

Problem 8.1 as either the squared geodesic distance or the squared chordal distance,

𝜙(𝑅1, 𝑅2) =

⎧⎪⎨⎪⎩
1

2
d∠(𝑅1, 𝑅2)

2 =
1

2

⃦⃦
Log(𝑅⊤1 𝑅2)

⃦⃦2
, (D.6a)

1

2
dchr(𝑅1, 𝑅2)

2 =
1

2
‖𝑅1 −𝑅2‖2𝐹 . (D.6b)

Using the notion of “reshaped distance” introduced in [29], we may express both cases

as a function of the geodesic distance as follows,

𝜙(𝑅1, 𝑅2) = 𝜌(d∠(𝑅1, 𝑅2)). (D.7)

Note that the notation for reshaped distance 𝜌 is not to be confused with 𝜌TLS in

Section 8.4.4, which instead denotes the truncated least squares function. It can be

309

shown that the scalar function 𝜌(·) is defined as,

𝜌(𝜃) =

{︃
𝜃2/2, for squared geodesic distance (D.6a), (D.8a)

2− 2 cos(𝜃), for squared chordal distance (D.6b). (D.8b)

The first case (D.8a) is readily verified. The second case (D.8b) makes use of the

relation between chordal and geodesic distances; see [30, Table 2]. To analyze the

Hessian of rotation averaging (8.5), we start by considering the cost associated with

a single relative rotation measurement,

𝑓𝑖𝑗(𝑅𝑖, 𝑅𝑗) = 𝜙(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗). (D.9)

In addition to (D.9), we also consider its approximation defined on the Lie algebra,

ℎ𝑖𝑗(𝑣𝑖, 𝑣𝑗) ≜ 𝜙(Exp(𝑣𝑖)𝑅𝑖
̃︀𝑅𝑖𝑗,Exp(𝑣𝑗)𝑅𝑗). (D.10)

Note that (D.10) corresponds to a single term in the overall approximation defined

in (8.10). Similar to (8.10), ℎ𝑖𝑗 depends on the current rotation estimates 𝑅, but we

omit this from our notation for simplicity. Define the gradient and Hessian of ℎ𝑖𝑗 as

follows,

𝑔𝑖𝑗 ≜ ∇ℎ𝑖𝑗(𝑣𝑖, 𝑣𝑗)|𝑣𝑖=𝑣𝑗=0, (D.11)

𝐻 𝑖𝑗 ≜ ∇2ℎ𝑖𝑗(𝑣𝑖, 𝑣𝑗)|𝑣𝑖=𝑣𝑗=0. (D.12)

We prove the main theoretical results Theorem 8.1 and Corollary 8.1 for 3D ro-

tation averaging. The case of 𝑑 = 2 can be proved using the exact same arguments,

and some steps would simplify due to the fact that 2D rotations commute. In the

following, we first derive auxiliary results that characterize 𝑔𝑖𝑗 and 𝐻 𝑖𝑗. Once we

understand the properties of 𝑔𝑖𝑗 and 𝐻 𝑖𝑗, understanding the full rotation averaging

problem becomes straightforward thanks to the additive structure in the cost function

(8.5).

310

D.2.1 Auxiliary Results for 3D Rotation Averaging

Lemma D.1. Consider a 3D rotation averaging problem. Let

𝜃𝑖𝑗 =
⃦⃦⃦
Log(̃︀𝑅⊤𝑖𝑗𝑅⊤𝑖 𝑅𝑗)

⃦⃦⃦
, (D.13)

𝑢𝑖𝑗 = Log(̃︀𝑅⊤𝑖𝑗𝑅⊤𝑖 𝑅𝑗)/𝜃𝑖𝑗, (D.14)

denote the angle-axis representation of the current rotation error. Then the gradient

is given by,

𝑔𝑖𝑗 = �̇�(𝜃𝑖𝑗)

⎡⎣𝑅𝑖
̃︀𝑅𝑖𝑗 0

0 𝑅𝑗

⎤⎦⎡⎣−𝑢𝑖𝑗

𝑢𝑖𝑗

⎤⎦ . (D.15)

The Hessian is given by,

𝐻 𝑖𝑗 =

⎡⎣𝑅𝑖
̃︀𝑅𝑖𝑗 0

0 𝑅𝑗

⎤⎦⎡⎣𝒮(̃︀𝐻𝑖𝑗) − ̃︀𝐻𝑖𝑗

− ̃︀𝐻⊤𝑖𝑗 𝒮(̃︀𝐻𝑖𝑗)

⎤⎦⎡⎣𝑅𝑖
̃︀𝑅𝑖𝑗 0

0 𝑅𝑗

⎤⎦⊤ , (D.16)

where ̃︀𝐻𝑖𝑗 = 𝛼(𝜃𝑖𝑗)𝐼 + 𝛾(𝜃𝑖𝑗)𝑢𝑖𝑗𝑢
⊤
𝑖𝑗 + 𝛽(𝜃𝑖𝑗) [𝑢𝑖𝑗]× with

𝛼(𝜃𝑖𝑗) =
�̇�(𝜃𝑖𝑗) cot(𝜃𝑖𝑗/2)

2
, (D.17)

𝛾(𝜃𝑖𝑗) = 𝜌(𝜃𝑖𝑗)− 𝛼(𝜃𝑖𝑗), (D.18)

𝛽(𝜃𝑖𝑗) =
�̇�(𝜃𝑖𝑗)

2
. (D.19)

Proof. Introduce new rotation variables 𝑆𝑖, 𝑆𝑗 ∈ SO(3) and consider the following

function, ̂︀ℎ𝑖𝑗(𝑆𝑖, 𝑆𝑗) = 𝜙(𝑆𝑖𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑆𝑗𝑅𝑗). (D.20)

Note that 𝑔𝑖𝑗 and 𝐻 𝑖𝑗 correspond to the Riemannian gradient and Riemannian Hessian

of (D.20) evaluated at 𝑆𝑖 = 𝑆𝑗 = 𝐼. Define 𝐹 : SO(3)× SO(3) → SO(3)× SO(3) be

311

the mapping such that,

𝐹 (𝑆𝑖, 𝑆𝑗) = (𝑆𝑖𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑆𝑗𝑅𝑗) ≜ (̂︀𝑆𝑖, ̂︀𝑆𝑗). (D.21)

Then we have ̂︀ℎ𝑖𝑗(𝑆𝑖, 𝑆𝑗) = 𝜙(𝐹 (𝑆𝑖, 𝑆𝑗)). By chain rule,

grad̂︀ℎ𝑖𝑗(𝑆𝑖, 𝑆𝑗) = 𝐷𝐹 (𝑆𝑖, 𝑆𝑗)
⊤[grad𝜙(̂︀𝑆𝑖, ̂︀𝑆𝑗)] (D.22)

= 𝐷𝐹 (𝑆𝑖, 𝑆𝑗)
⊤[�̇�(𝜃𝑖𝑗) gradd∠(̂︀𝑆𝑖, ̂︀𝑆𝑗)] (D.23)

= �̇�(𝜃𝑖𝑗)𝐷𝐹 (𝑆𝑖, 𝑆𝑗)
⊤[gradd∠(̂︀𝑆𝑖, ̂︀𝑆𝑗)]. (D.24)

In (D.24), 𝐷𝐹 (𝑆𝑖, 𝑆𝑗)
⊤ stands for the adjoint operator (transpose in matrix form)

of the differential 𝐷𝐹 (𝑆𝑖, 𝑆𝑗). Using the standard basis for the Lie algebra so(3),

Tron [29] showed that the Riemannian gradient of the geodesic distance is,

gradd∠(̂︀𝑆𝑖, ̂︀𝑆𝑗) =

⎡⎣−𝑢𝑖𝑗

𝑢𝑖𝑗

⎤⎦ , (D.25)

c.f. [29, Equation (E.31)]. Substituting (D.25) into (D.24) and furthermore using the

matrix form of the differential 𝐷𝐹 (𝑆𝑖, 𝑆𝑗) in the standard basis, we have

𝑔𝑖𝑗 = grad̂︀ℎ𝑖𝑗(𝑆𝑖, 𝑆𝑗) = �̇�(𝜃𝑖𝑗)

⎡⎣𝑅𝑖
̃︀𝑅𝑖𝑗 0

0 𝑅𝑗

⎤⎦⎡⎣−𝑢𝑖𝑗

𝑢𝑖𝑗

⎤⎦ . (D.26)

For the Riemannian Hessian, differentiating (D.22) again yields,

Hesŝ︀ℎ𝑖𝑗(𝑆𝑖, 𝑆𝑗) = 𝐷𝐹 (𝑆𝑖, 𝑆𝑗)
⊤ ∘ Hess𝜙(̂︀𝑆𝑖, ̂︀𝑆𝑗) ∘𝐷𝐹 (𝑆𝑖, 𝑆𝑗). (D.27)

For the Hessian term in the middle of (D.27), we once again leverage existing results

from [29, Proposition E.3.1]:

Hess𝜙(̂︀𝑆𝑖, ̂︀𝑆𝑗) =

⎡⎣𝒮(̃︀𝐻𝑖𝑗) − ̃︀𝐻𝑖𝑗

− ̃︀𝐻⊤𝑖𝑗 𝒮(̃︀𝐻𝑖𝑗)

⎤⎦ , (D.28)

312

where the inner matrix ̃︀𝐻𝑖𝑗 is defined as,

̃︀𝐻𝑖𝑗 = 𝜌(𝜃𝑖𝑗)𝑢𝑖𝑗𝑢
⊤
𝑖𝑗 +

�̇�(𝜃𝑖𝑗)

𝜃𝑖𝑗
(𝐷 Log(̃︀𝑅⊤𝑖𝑗𝑅⊤𝑖 𝑅𝑗)− 𝑢𝑖𝑗𝑢

⊤
𝑖𝑗). (D.29)

Using the expression for the differential of the logarithm map [29, Proposition E.2.1],

the previous expression further simplifies to,

̃︀𝐻𝑖𝑗 = 𝜌(𝜃𝑖𝑗)𝑢𝑖𝑗𝑢
⊤
𝑖𝑗 +

�̇�(𝜃𝑖𝑗)

𝜃𝑖𝑗

(︂
𝑢𝑖𝑗𝑢

⊤
𝑖𝑗 +

𝜃𝑖𝑗
2

(︀
[𝑢𝑖𝑗]× − cot(𝜃𝑖𝑗/2) [𝑢𝑖𝑗]

2
×
)︀
− 𝑢𝑖𝑗𝑢

⊤
𝑖𝑗

)︂
= 𝜌(𝜃𝑖𝑗)𝑢𝑖𝑗𝑢

⊤
𝑖𝑗 +

�̇�(𝜃𝑖𝑗)

2

(︀
[𝑢𝑖𝑗]× − cot(𝜃𝑖𝑗/2) [𝑢𝑖𝑗]

2
×
)︀

= 𝜌(𝜃𝑖𝑗)𝑢𝑖𝑗𝑢
⊤
𝑖𝑗 +

�̇�(𝜃𝑖𝑗)

2
[𝑢𝑖𝑗]× −

�̇�(𝜃𝑖𝑗) cot(𝜃𝑖𝑗/2)

2

(︀
−𝐼 + 𝑢𝑖𝑗𝑢

⊤
𝑖𝑗

)︀
=

�̇�(𝜃𝑖𝑗) cot(𝜃𝑖𝑗/2)

2
𝐼 +

(︂
𝜌(𝜃𝑖𝑗)−

�̇�(𝜃𝑖𝑗) cot(𝜃𝑖𝑗/2)

2

)︂
𝑢𝑖𝑗𝑢

⊤
𝑖𝑗 +

�̇�(𝜃𝑖𝑗)

2
[𝑢𝑖𝑗]×

= 𝛼(𝜃𝑖𝑗)𝐼 + 𝛾(𝜃𝑖𝑗)𝑢𝑖𝑗𝑢
⊤
𝑖𝑗 + 𝛽(𝜃𝑖𝑗) [𝑢𝑖𝑗]× .

(D.30)

To conclude, the Hessian is obtained by substituting the above results into (D.27):

𝐻 𝑖𝑗 = Hesŝ︀ℎ𝑖𝑗(𝑆𝑖, 𝑆𝑗) =

⎡⎣𝑅𝑖
̃︀𝑅𝑖𝑗 0

0 𝑅𝑗

⎤⎦⎡⎣𝒮(̃︀𝐻𝑖𝑗) − ̃︀𝐻𝑖𝑗

− ̃︀𝐻⊤𝑖𝑗 𝒮(̃︀𝐻𝑖𝑗)

⎤⎦⎡⎣𝑅𝑖
̃︀𝑅𝑖𝑗 0

0 𝑅𝑗

⎤⎦⊤ . (D.31)

The Hessian expression in Lemma D.1 is complicated in general. However, we

will show that as the angular error 𝜃𝑖𝑗 tends to zero, the Hessian 𝐻 𝑖𝑗 converges to a

particular simple form. We note that the case under geodesic distance (Lemma D.2

below) can also be derived as a special case of [126, Theorem 1].

Lemma D.2 (Limit of 𝐻 𝑖𝑗 under geodesic distance). For rotation averaging under

the geodesic distance, it holds that,

lim
𝜃𝑖𝑗→0

𝐻 𝑖𝑗(𝜃𝑖𝑗) =

⎡⎣ 𝐼3 −𝐼3
−𝐼3 𝐼3

⎤⎦ . (D.32)

313

Proof. We first compute limits of 𝛼(𝜃), 𝛾(𝜃), and 𝛽(𝜃) that appear in the definition

of 𝐻 𝑖𝑗. For rotation averaging under the geodesic distance, the scalar function 𝜌(𝜃)

is defined as in (D.8a). In this case, we have

�̇�(𝜃) = 𝜃, 𝜌(𝜃) = 1. (D.33)

Substituting into (D.17)-(D.19),

𝛼(𝜃) =
1

2
𝜃 cot(𝜃/2) =

1

2

𝜃

sin(𝜃/2)
cos(𝜃/2), (D.34)

𝛾(𝜃) = 1− 𝛼(𝜃), (D.35)

𝛽(𝜃) = 𝜃/2. (D.36)

Take the limit as 𝜃 tends to zero,

lim
𝜃→0

𝛼(𝜃) =
1

2
· lim
𝜃→0

𝜃

sin(𝜃/2)
· lim
𝜃→0

cos(𝜃/2) = 1, (D.37)

lim
𝜃→0

𝛾(𝜃) = 1− lim
𝜃→0

𝛼(𝜃) = 0, (D.38)

lim
𝜃→0

𝛽(𝜃) = 0. (D.39)

Define the following matrix,

𝑃 =

⎡⎣𝑅𝑖
̃︀𝑅𝑖𝑗 0

0 𝑅𝑗

⎤⎦ . (D.40)

From the definition of 𝐻 𝑖𝑗 in (D.16),

𝐻 𝑖𝑗 = 𝛼(𝜃𝑖𝑗)𝑃

⎡⎣ 𝐼3 −𝐼3
−𝐼3 𝐼3

⎤⎦𝑃⊤

+ 𝛾(𝜃𝑖𝑗)𝑃

⎡⎣ 𝑢𝑖𝑗𝑢
⊤
𝑖𝑗 −𝑢𝑖𝑗𝑢

⊤
𝑖𝑗

−𝑢𝑖𝑗𝑢
⊤
𝑖𝑗 𝑢𝑖𝑗𝑢

⊤
𝑖𝑗

⎤⎦𝑃⊤

+ 𝛽(𝜃𝑖𝑗)𝑃

⎡⎣ 03 − [𝑢𝑖𝑗]×

− [𝑢𝑖𝑗]
⊤
× 03

⎤⎦𝑃⊤.

(D.41)

314

Since lim𝜃→0 𝛾(𝜃) = lim𝜃→0 𝛽(𝜃) = 0 and all matrices involved in (D.41) are bounded,

we conclude that the last two terms in (D.41) vanish as 𝜃𝑖𝑗 converges to zero. For the

first term in (D.41), notice that,

𝛼(𝜃𝑖𝑗)𝑃

⎡⎣ 𝐼3 −𝐼3
−𝐼3 𝐼3

⎤⎦𝑃⊤ = 𝛼(𝜃𝑖𝑗)

⎡⎣ 𝐼3 −𝑅𝑖
̃︀𝑅𝑖𝑗𝑅

⊤
𝑗

−𝑅𝑗
̃︀𝑅⊤𝑖𝑗𝑅⊤𝑖 𝐼3

⎤⎦ . (D.42)

As 𝜃𝑖𝑗 tends to zero, 𝛼(𝜃𝑖𝑗) converges to 1 and the off-diagonal blocks in (D.42) tend

to −𝐼3. Hence the proof is completed.

Lemma D.3 (Limit of 𝐻 𝑖𝑗 under chordal distance). For rotation averaging under

the chordal distance, it holds that,

lim
𝜃𝑖𝑗→0

𝐻 𝑖𝑗(𝜃𝑖𝑗) = 2

⎡⎣ 𝐼3 −𝐼3
−𝐼3 𝐼3

⎤⎦ . (D.43)

Proof. For rotation averaging under the chordal distance, the scalar function 𝜌(𝜃) is

defined as in (D.8b). In this case, we have

�̇�(𝜃) = 2 sin(𝜃), 𝜌(𝜃) = 2 cos(𝜃). (D.44)

Substituting into (D.17)-(D.19),

𝛼(𝜃) = sin(𝜃) cot(𝜃/2) = 2 cos(𝜃/2)2, (D.45)

𝛾(𝜃) = 2 cos(𝜃)− 𝛼(𝜃), (D.46)

𝛽(𝜃) = sin(𝜃). (D.47)

315

Take the limit as 𝜃 tends to zero,

lim
𝜃→0

𝛼(𝜃) = 2, (D.48)

lim
𝜃→0

𝛾(𝜃) = 2− lim
𝜃→0

𝛼(𝜃) = 0, (D.49)

lim
𝜃→0

𝛽(𝜃) = 0. (D.50)

The remaining proof is similar to that of Lemma D.2 and is omitted.

D.2.2 Proof of Theorem 8.1

Proof. We will use Lemma D.2 to prove the theorem for the case of squared geodesic

cost. The case of squared chordal cost is analogous: instead of Lemma D.2, we will

use Lemma D.3 and the remaining steps are the same. Recall the approximation of

the overall cost function defined in (8.10):

ℎ(𝑣;𝑅) =
∑︁

(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗ℎ𝑖𝑗(𝑣𝑖, 𝑣𝑗) =
∑︁

(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗𝜙(Exp(𝑣𝑖)𝑅𝑖
̃︀𝑅𝑖𝑗,Exp(𝑣𝑗)𝑅𝑗), (D.51)

Observe that the Hessian of ℎ(𝑣;𝑅) is simply given by the sum of the Hessian matrices

of ℎ𝑖𝑗(𝑣𝑖, 𝑣𝑗), after “lifting” the latter to the dimension of the full optimization problem,

i.e.,

𝐻(𝑅) =
∑︁

(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗𝑊𝑖𝑗, 𝑊𝑖𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖 𝑗

...
...

𝑖 . . . 𝐻
(𝑖𝑖)

𝑖𝑗 . . . 𝐻
(𝑖𝑗)

𝑖𝑗 . . .
...

...

𝑗 . . . 𝐻
(𝑗𝑖)

𝑖𝑗 . . . 𝐻
(𝑗𝑗)

𝑖𝑗 . . .
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(D.52)

In (D.52), 𝑊𝑖𝑗 is formed by placing the 𝑝-by-𝑝 blocks of 𝐻 𝑖𝑗 defined in (D.16) in

corresponding locations of the full matrix. For instance, 𝐻(𝑖𝑖)

𝑖𝑗 is the block of 𝐻 𝑖𝑗 that

corresponds to vertex 𝑖.

316

In the following, let 𝜃𝑖𝑗(𝑅) denote the residual of edge (𝑖, 𝑗) ∈ ℰ evaluated at

𝑅 ∈ SO(𝑑)𝑛. From (D.52) and Lemma D.2, we see that 𝐻(𝑅) has the following limit

point as all edge residuals tend to zero,

lim
𝜃𝑖𝑗(𝑅)→0,
∀(𝑖,𝑗)∈ℰ

𝐻(𝑅) = 𝑀 ≜ 𝐿(𝐺;𝜅)⊗ 𝐼𝑝. (D.53)

Recall from Remark 8.2 that 𝑀 ⪰ 0 and ker(𝑀) = 𝒩 where 𝒩 is the vertical space

defined in (8.11). In addition, recall the definition of 𝐻(𝑅) in (8.13):

𝐻(𝑅) = 𝑃𝐻𝐻(𝑅)𝑃𝐻 . (D.54)

Since 𝑃𝐻 is the (constant) orthogonal projection matrix onto the horizontal space

ℋ = 𝒩⊥, it holds that,

lim
𝜃𝑖𝑗(𝑅)→0,
∀(𝑖,𝑗)∈ℰ

𝐻(𝑅) = 𝑃𝐻 𝑀 𝑃𝐻 = 𝑀. (D.55)

Note that for singular symmetric matrices 𝐴 and 𝐵, 𝐴 ≈𝛿 𝐵 necessarily means

that ker(𝐴) = ker(𝐵). Therefore, to prove the theorem, we must first show that

ker(𝐻(𝑅)) = ker(𝑀) = 𝒩 under our assumptions. Let 𝜆1(𝐴), 𝜆2(𝐴), . . . denote the

eigenvalues of a symmetric matrix 𝐴 sorted in increasing order. By construction, 𝒩

is always contained in ker(𝐻(𝑅)), and thus dim(𝒩) = 𝑝 eigenvalues of 𝐻(𝑅) are

always zero. Next, we will show that if all measurement residuals are sufficiently

small, then the remaining 𝑝𝑛− 𝑝 eigenvalues of 𝐻(𝑅) will be strictly positive. Define

𝐸(𝑅) ≜ 𝐻(𝑅)−𝑀 . Let 𝑥 be any unit vector such that 𝑥 ⊥ 𝒩 . Note that,

𝑥⊤𝐻(𝑅)𝑥 = 𝑥⊤𝑀𝑥+ 𝑥⊤𝐸(𝑅)𝑥

≥ 𝜆𝑝+1(𝑀)− ‖𝐸(𝑅)‖2 .
(D.56)

Since 𝑀 = 𝐿(𝐺;𝜅) ⊗ 𝐼𝑝, it holds that 𝜆𝑝+1(𝑀) = 𝜆2(𝐿(𝐺;𝜅)). The latter is known

as the algebraic connectivity which is always positive for a connected graph 𝐺. Thus

𝜆𝑝+1(𝑀) > 0 and by (D.55), we also have lim𝜃𝑖𝑗(𝑅)→0𝐸(𝑅) = 0. Consequently, when

317

all 𝜃𝑖𝑗(𝑅) are sufficiently small, the right-hand side of (D.56) is strictly positive, i.e.,

there exists 𝜃1 > 0 such that if 𝜃𝑖𝑗(𝑅) ≤ 𝜃1 for all (𝑖, 𝑗) ∈ ℰ , we have,

ker(𝐻(𝑅)) = ker(𝑀) = 𝒩 . (D.57)

Under (D.57), the desired approximation 𝐻(𝑅) ≈𝛿 𝑀 is equivalent to,

𝑒−𝛿𝑃𝐻 ⪯𝑀
+
2 𝐻(𝑅)𝑀

+
2 ⪯ 𝑒𝛿𝑃𝐻 , (D.58)

where 𝑀
+
2 denotes the square root of the pseudoinverse of 𝑀 , and 𝑃𝐻 is the orthog-

onal projection onto the horizontal space ℋ. This condition is true if and only if the

nontrivial eigenvalues are bounded as follows,

𝜆𝑝+1(𝑀
+
2 𝐻(𝑅)𝑀

+
2) ≥ 𝑒−𝛿, 𝜆𝑝𝑛(𝑀

+
2 𝐻(𝑅)𝑀

+
2) ≤ 𝑒𝛿. (D.59)

Using the convergence result (D.55) and the eigenvalue perturbation bounds in [218,

Corollary 6.3.8], we conclude that there exists 𝜃0 ∈ (0, 𝜃1] such that if 𝑅 ∈ SO(𝑑)𝑛

satisfies

𝜃𝑖𝑗(𝑅) ≤ 𝜃0, ∀(𝑖, 𝑗) ∈ ℰ , (D.60)

then (D.59) holds, i.e., we have the desired approximation,

𝐻(𝑅) ≈𝛿 𝑀. (D.61)

To conclude the proof, we need to show that there exist 𝜃, 𝑟 > 0 such that condition

(D.60) holds for all 𝑅 ∈ 𝐵𝑟(𝑅
⋆). Let us first consider residuals at the global minimizer

𝑅⋆. Using assumption (8.14) and the cost function, we obtain the following simple

bound:

max
(𝑖,𝑗)∈ℰ

𝜅𝑖𝑗𝜃𝑖𝑗(𝑅
⋆)2

2
≤ 𝑓(𝑅⋆) ≤ 𝑓(𝑅) ≤

∑︀
(𝑖,𝑗)∈ℰ 𝜅𝑖𝑗𝜃

2

2
. (D.62)

It can be verified that if,

𝜃 ≤ 𝜃0
2

√︃
min(𝑖,𝑗)∈ℰ 𝜅𝑖𝑗∑︀

(𝑖,𝑗)∈ℰ 𝜅𝑖𝑗

, (D.63)

318

then (D.62) yields 𝜃𝑖𝑗(𝑅
⋆) ≤ 𝜃0/2 for all edges (𝑖, 𝑗) ∈ ℰ . Finally, let us select

𝑟 ∈ (0, 𝜃0/4). For 𝑖 ∈ [𝑛], let 𝐸𝑖 ∈ SO(𝑑) such that 𝑅𝑖 = 𝐸𝑖𝑅
⋆
𝑖 . Using the triangle

inequality and the fact that the geodesic distance d∠(·, ·) is bi-invariant, we can show

that for any 𝑅 ∈ 𝐵𝑟(𝑅
⋆),

𝜃𝑖𝑗(𝑅) = d∠(𝑅𝑖
̃︀𝑅𝑖𝑗, 𝑅𝑗) (D.64)

= d∠(𝐸𝑖𝑅
⋆
𝑖
̃︀𝑅𝑖𝑗, 𝐸𝑗𝑅

⋆
𝑗) (D.65)

= d∠(𝑅
⋆
𝑖
̃︀𝑅𝑖𝑗(𝑅

⋆
𝑗)
⊤, 𝐸⊤𝑖 𝐸𝑗) (D.66)

≤ d∠(𝑅
⋆
𝑖
̃︀𝑅𝑖𝑗(𝑅

⋆
𝑗)
⊤, 𝐼) + d∠(𝐸𝑖, 𝐼) + d∠(𝐸𝑗, 𝐼) (D.67)

≤ 𝜃𝑖𝑗(𝑅
⋆) + 2𝑟 (D.68)

≤ 𝜃0. (D.69)

In summary, we have shown that if 𝜃 satisfies (D.63) and furthermore 0 < 𝑟 < 𝜃0/4,

then the desired approximation 𝑀 ≈𝛿 𝐻(𝑅) holds for all 𝑅 ∈ 𝐵𝑟(𝑅
⋆). This concludes

the proof.

D.2.3 Proof of Corollary 8.1

Proof. To simplify notation, we use 𝐿 to denote 𝐿(𝐺;𝑤). By (8.15), it holds that,

𝑒−𝛿(𝐿⊗ 𝐼𝑝) ⪯ 𝐻(𝑅) ⪯ 𝑒𝛿(𝐿⊗ 𝐼𝑝). (D.70)

Note that the eigenvalues of 𝐿 ⊗ 𝐼𝑝 are given by the eigenvalues of 𝐿, repeated 𝑝

times. Therefore, the desired result follows by noting that,

𝜆2(𝐿)𝑃𝐻 ⪯ 𝐿⊗ 𝐼𝑝 ⪯ 𝜆𝑛(𝐿)𝑃𝐻 . (D.71)

319

D.3 Performance Guarantees for Collaborative Lapla-

cian Solver

D.3.1 Proof of Lemma 8.1

Proof. By definition in (8.25),

𝑆 = 𝐿𝑐𝑐 −
∑︁
𝛼∈[𝑚]

𝐿𝑐𝛼𝐿
−1
𝛼𝛼𝐿𝛼𝑐. (D.72)

Above, 𝐿𝑐𝑐 is the block of the full Laplacian 𝐿 that corresponds to the separators,

denoted as 𝐿𝑐𝑐 ≡ 𝐿(𝐺)𝑐𝑐. Note that 𝐿𝑐𝑐 can be decomposed as the sum,

𝐿𝑐𝑐 = 𝐿(𝐺𝑐) +
∑︁
𝛼∈[𝑚]

𝐿(𝐺𝛼)𝑐𝑐. (D.73)

Intuitively, the first term in (D.73) accounts for inter-robot edges ℰ𝑐, and the second

group of terms accounts for robots’ local edges ℰ𝛼; see Figure 8-1a. Substitute (D.73)

into (D.72),

𝑆 = 𝐿(𝐺𝑐) +
∑︁
𝛼∈[𝑚]

(︀
𝐿(𝐺𝛼)𝑐𝑐 − 𝐿𝑐𝛼𝐿

−1
𝛼𝛼𝐿𝛼𝑐

)︀
= 𝐿(𝐺𝑐) +

∑︁
𝛼∈[𝑚]

Sc(𝐿(𝐺𝛼),ℱ𝛼).
(D.74)

D.3.2 Proof of Theorem 8.2

Proof. Let us simplify the notations in the Laplacian system (8.24) by considering

interior nodes from all robots as a single block:⎡⎣𝐿𝑓𝑓 𝐿𝑓𝑐

𝐿𝑐𝑓 𝐿𝑐𝑐

⎤⎦⎡⎣𝑋𝑓

𝑋𝑐

⎤⎦ =

⎡⎣𝐵𝑓

𝐵𝑐

⎤⎦ (D.75)

320

where

𝐿𝑓𝑓 = Diag(𝐿11, . . . , 𝐿𝑚𝑚), (D.76)

𝐿𝑐𝑓 = 𝐿⊤𝑓𝑐 =
[︁
𝐿𝑐1 . . . 𝐿𝑐𝑚

]︁
, (D.77)

𝑋𝑓 =
[︁
𝑋⊤1 . . . 𝑋⊤𝑚

]︁⊤
, (D.78)

𝐵𝑓 =
[︁
𝐵⊤1 . . . 𝐵⊤𝑚

]︁⊤
. (D.79)

By applying the Schur complement to (D.75), we obtain the following factorization

for the input Laplacian system 𝐿𝑋 = 𝐵,⎡⎣ 𝐼 0

𝐿𝑐𝑓𝐿
−1
𝑓𝑓 𝐼

⎤⎦⎡⎣𝐿𝑓𝑓 0

0 𝑆

⎤⎦⎡⎣𝐼 𝐿−1𝑓𝑓𝐿𝑓𝑐

0 𝐼

⎤⎦
⏟ ⏞

𝐿

⎡⎣𝑋𝑓

𝑋𝑐

⎤⎦ =

⎡⎣𝐵𝑓

𝐵𝑐

⎤⎦ , (D.80)

where 𝑆 = Sc(𝐿,ℱ) is the Schur complement that appears in (8.25). It can be verified

that Algorithm 8.3 returns a solution to the following system,⎡⎣ 𝐼 0

𝐿𝑐𝑓𝐿
−1
𝑓𝑓 𝐼

⎤⎦⎡⎣𝐿𝑓𝑓 0

0 ̃︀𝑆
⎤⎦⎡⎣𝐼 𝐿−1𝑓𝑓𝐿𝑓𝑐

0 𝐼

⎤⎦
⏟ ⏞ ̃︀𝐿

⎡⎣𝑋𝑓

𝑋𝑐

⎤⎦ =

⎡⎣𝐵𝑓

𝐵𝑐

⎤⎦ . (D.81)

Recall from Lemma 8.1 that,

𝑆 = 𝐿(𝐺𝑐) +
∑︁
𝛼∈[𝑚]

𝑆𝛼. (D.82)

Meanwhile, by construction, ̃︀𝑆 is given by,

̃︀𝑆 = 𝐿(𝐺𝑐) +
∑︁
𝛼∈[𝑚]

̃︀𝑆𝛼, (D.83)

where ̃︀𝑆𝛼 ≈𝜖 𝑆𝛼 for all 𝛼 ∈ [𝑚]. Since spectral approximation is preserved under

addition, it holds that ̃︀𝑆 ≈𝜖 𝑆. Furthermore, by comparing 𝐿 defined in (D.80) and ̃︀𝐿
321

Algorithm D.2 Approximate Newton Method
1: for iteration 𝑘 = 0, 1, . . . do
2: 𝜂𝑘 = −𝑀(𝑥𝑘)−1 grad 𝑓(𝑥𝑘).
3: Update iterate by 𝑥𝑘+1 = Retr𝑥𝑘(𝜂𝑘).
4: end for

defined in (D.81) and using [141, Fact 3.2], we conclude that ̃︀𝐿 ≈𝜖 𝐿 and thus (8.29)

is true. Lastly, (8.30) follows from Lemma D.4.

D.4 Convergence Analysis

In this section, we establish convergence guarantees for the collaborative rotation

averaging (Algorithm 8.4) and translation estimation (Algorithm 8.5) methods devel-

oped in Section 8.4. Between the two, analyzing Algorithm 8.4 is more complicated

owing to the fact that rotation averaging is an optimization problem defined on a

Riemannian manifold. To establish its convergence, in appendix D.4.1 we first prove

a more general result that holds for generic approximate Newton methods on mani-

folds. Then, in appendix D.4.2, we invoke this result for the special case of rotation

averaging and show that Algorithm 8.4 enjoys a local linear convergence rate. Lastly,

in appendix D.4.3, we prove the linear convergence of translation estimation (Algo-

rithm 8.5).

D.4.1 Analysis of General Approximate Newton Method

In this subsection, we consider a generic optimization problem on a smooth Rieman-

nian manifoldℳ:

min
𝑥∈ℳ

𝑓(𝑥). (D.84)

We consider solving the above problem using an approximate Newton method de-

scribed in Algorithm D.2. At each iteration, the Riemannian Hessian Hess 𝑓(𝑥) is

replaced with an approximation 𝑀(𝑥), and the update is computed by solving a lin-

ear system in 𝑀(𝑥); see line 2. We will show that under the following assumptions (in

particular, 𝑀(𝑥) is a sufficiently good approximation of Hess 𝑓(𝑥)), Algorithm D.2

322

achieves a local linear rate of convergence.

Assumption D.1. Let 𝑥⋆ denote a strict second-order critical point. There exist

𝜇𝐻 , 𝐿𝐻 , 𝛽, 𝜖 > 0 such that for all 𝑥 in a neighborhood 𝒰 of 𝑥⋆,

(A1) 𝜇𝐻𝐼 ⪯ Hess 𝑓(𝑥) ⪯ 𝐿𝐻𝐼.

(A2) 𝑀(𝑥) is invertible and ‖𝑀(𝑥)−1‖ ≤ 𝛽.

(A3) 𝑀(𝑥) ≈𝜖 Hess 𝑓(𝑥) and 𝜖 satisfies

𝛾(𝜖) ≜ 2
√
𝜅𝐻𝑐(𝜖) < 1, (D.85)

where 𝑐(𝜖) is defined in (8.31) and 𝜅𝐻 = 𝐿𝐻/𝜇𝐻 is the condition number.

Theorem D.1. Under Assumption D.1, there exists a neighborhood 𝒰 ′ ⊆ 𝒰 such that

for all 𝑥0 ∈ 𝒰 ′, Algorithm D.2 generates an infinite sequence 𝑥𝑘 converging linearly

to 𝑥⋆. Furthermore, the linear convergence factor is given by,

lim sup
𝑘→∞

d(𝑥𝑘+1, 𝑥⋆)

d(𝑥𝑘, 𝑥⋆)
= 𝛾(𝜖). (D.86)

Proof. We prove the theorem by adapting the local convergence analysis of the Rie-

mannian Newton method presented in [17, Theorem 6.3.2]. Let (𝒰 ′, 𝜙) be a local

coordinate chart defined by the normal coordinates around 𝑥⋆. Similar to the original

proof, we will use the ·̂ notation to denote coordinate expressions in this chart. In

particular, let us define, ̂︀𝑥 = 𝜙(𝑥) = Exp−1𝑥⋆ (𝑥). (D.87)

Note that under the normal coordinates, we have ̂︀𝑥⋆ = 0, Exp𝑥⋆(̂︀𝑥) = 𝑥, and

323

d(𝑥, 𝑥⋆) = ‖̂︀𝑥‖. In addition, let us define,

̂︀𝜂 = D𝜙(𝑥)[𝜂], 𝜂 ∈ 𝑇𝑥ℳ, (D.88)

̂︀𝑔(̂︀𝑥𝑘) = D𝜙(𝑥𝑘)[grad 𝑓], (D.89)̂︀𝐻(̂︀𝑥𝑘) = D𝜙(𝑥𝑘) ∘ Hess 𝑓(𝑥𝑘) ∘ (D𝜙(𝑥𝑘))−1, (D.90)̂︀𝑅̂︀𝑥(̂︀𝜂) = 𝜙(Retr𝑥(𝜂)), 𝜂 ∈ 𝑇𝑥ℳ, (D.91)

to be the coordinate expressions of vector fields, gradient, Hessian, and the retraction,

respectively. Finally, let ̂︁𝑀 denote the coordinate expression of the linear map 𝑀

used in Algorithm D.2:

̂︁𝑀(̂︀𝑥𝑘) = D𝜙(𝑥𝑘) ∘𝑀(𝑥𝑘) ∘ (D𝜙(𝑥𝑘))
−1. (D.92)

Let us express each iteration of Algorithm D.2 in the chart,

̂︀𝑥𝑘+1 = ̂︀𝑅̂︀𝑥𝑘(−̂︁𝑀(̂︀𝑥𝑘)−1̂︀𝑔(̂︀𝑥𝑘)). (D.93)

Using the triangle inequality, we can bound the distance between 𝑥𝑘+1 and 𝑥⋆,

d(𝑥𝑘+1, 𝑥⋆) =
⃦⃦̂︀𝑥𝑘+1 − ̂︀𝑥⋆

⃦⃦
=
⃦⃦⃦ ̂︀𝑅̂︀𝑥𝑘(−̂︁𝑀(̂︀𝑥𝑘)−1̂︀𝑔(̂︀𝑥𝑘))− ̂︀𝑥⋆

⃦⃦⃦
≤
⃦⃦⃦ ̂︀𝑅̂︀𝑥𝑘(−̂︁𝑀(̂︀𝑥𝑘)−1̂︀𝑔(̂︀𝑥𝑘))− (̂︀𝑥𝑘 − ̂︁𝑀(̂︀𝑥𝑘)−1̂︀𝑔(̂︀𝑥𝑘))

⃦⃦⃦
⏟ ⏞

𝐴

+

⃦⃦⃦̂︀𝑥𝑘 − ̂︁𝑀(̂︀𝑥𝑘)−1̂︀𝑔(̂︀𝑥𝑘)− ̂︀𝑥⋆
⃦⃦⃦

⏟ ⏞
𝐵

(D.94)

In the following, we will derive upper bounds for 𝐴 and 𝐵 as a function of
⃦⃦̂︀𝑥𝑘 − ̂︀𝑥⋆

⃦⃦
=

d(𝑥𝑘, 𝑥⋆).

324

Bounding 𝐴: Note that at 𝑥⋆, we have D𝜙(𝑥⋆) = 𝐼. Since 𝜙 is smooth, there

exists 𝑟1 > 0 such that for all 𝑥 ∈ 𝐵𝑟1(𝑥
⋆) = {𝑥 ∈ℳ, d(𝑥, 𝑥⋆) < 𝑟1},

‖D𝜙(𝑥)‖ ≤
√
2,
⃦⃦
(D𝜙(𝑥))−1

⃦⃦
≤
√
2. (D.95)

It follows from (A2) and (D.92) that,

⃦⃦⃦̂︁𝑀(̂︀𝑥)−1⃦⃦⃦ ≤ 2𝛽, ∀𝑥 ∈ 𝐵𝑟1(𝑥
⋆). (D.96)

Furthermore, Assumption (A1) implies that the gradient is Lipschitz continuous.

Using the fact that ̂︀𝑔(̂︀𝑥⋆) = 0 (since 𝑥⋆ is a critical point), we have the following

upper bound for the norm of the Newton step,

⃦⃦⃦̂︁𝑀(̂︀𝑥𝑘)−1̂︀𝑔(̂︀𝑥𝑘)
⃦⃦⃦
=
⃦⃦⃦̂︁𝑀(̂︀𝑥𝑘)−1(̂︀𝑔(̂︀𝑥𝑘)− ̂︀𝑔(̂︀𝑥⋆))

⃦⃦⃦
≤ 2𝛽𝐿′

⃦⃦̂︀𝑥𝑘 − ̂︀𝑥⋆
⃦⃦
,

(D.97)

where 𝐿′ > 0 is a fixed constant. Using the local rigidity property of the retraction

(e.g., see [17, Definition 4.1.1]), we have that,

⃦⃦⃦ ̂︀𝑅̂︀𝑥(̂︀𝜂)− (̂︀𝑥+ ̂︀𝜂)⃦⃦⃦ = 𝑂(‖̂︀𝜂‖2), (D.98)

for all 𝑥 in a neighborhood of 𝑥⋆ and all 𝜂 sufficiently small; see also the discussions

in [17, p. 115]. It follows from (D.98) and (D.97) that there exists 𝑟2, 𝐶2 > 0 such

that

𝐴 ≤ 𝐶2

⃦⃦̂︀𝑥𝑘 − ̂︀𝑥⋆
⃦⃦2

, (D.99)

for all 𝑥𝑘 ∈ 𝐵𝑟2(𝑥
⋆).

325

Bounding 𝐵: To begin, we derive the following upper bound for 𝐵 using triangle

inequality,

𝐵 =
⃦⃦⃦̂︀𝑥𝑘 − ̂︁𝑀(̂︀𝑥𝑘)−1̂︀𝑔(̂︀𝑥𝑘)− ̂︀𝑥⋆

⃦⃦⃦
=
⃦⃦⃦̂︁𝑀(̂︀𝑥𝑘)−1

[︁̂︀𝑔(̂︀𝑥⋆)− ̂︀𝑔(̂︀𝑥𝑘)− ̂︁𝑀(̂︀𝑥𝑘)(̂︀𝑥⋆ − ̂︀𝑥𝑘)
]︁⃦⃦⃦

=
⃦⃦⃦̂︁𝑀(̂︀𝑥𝑘)−1

[︁̂︀𝑔(̂︀𝑥⋆)− ̂︀𝑔(̂︀𝑥𝑘)− ̂︀𝐻(̂︀𝑥𝑘)(̂︀𝑥⋆ − ̂︀𝑥𝑘)− (̂︁𝑀(̂︀𝑥𝑘)− ̂︀𝐻(̂︀𝑥𝑘))(̂︀𝑥⋆ − ̂︀𝑥𝑘)
]︁⃦⃦⃦

≤
⃦⃦⃦̂︁𝑀(̂︀𝑥𝑘)−1

[︁̂︀𝑔(̂︀𝑥⋆)− ̂︀𝑔(̂︀𝑥𝑘)− ̂︀𝐻(̂︀𝑥𝑘)(̂︀𝑥⋆ − ̂︀𝑥𝑘)
]︁⃦⃦⃦

⏟ ⏞
𝐵1

+

⃦⃦⃦[︁
𝐼 − ̂︁𝑀(̂︀𝑥𝑘)−1 ̂︀𝐻(̂︀𝑥𝑘)

]︁
(̂︀𝑥⋆ − ̂︀𝑥𝑘)

⃦⃦⃦
⏟ ⏞

𝐵2

(D.100)

To bound 𝐵1, it follows from (D.96) that,

𝐵1 ≤ 2𝛽
⃦⃦⃦̂︀𝑔(̂︀𝑥⋆)− ̂︀𝑔(̂︀𝑥𝑘)− ̂︀𝐻(̂︀𝑥𝑘)(̂︀𝑥⋆ − ̂︀𝑥𝑘)

⃦⃦⃦
. (D.101)

Furthermore, in the proof of [17, Theorem 6.3.2], it is shown that there exist 𝑟3, 𝐶3 > 0

such that, ⃦⃦⃦̂︀𝑔(̂︀𝑥⋆)− ̂︀𝑔(̂︀𝑥𝑘)− ̂︀𝐻(̂︀𝑥𝑘)(̂︀𝑥⋆ − ̂︀𝑥𝑘)
⃦⃦⃦
≤ 𝐶3

⃦⃦̂︀𝑥𝑘 − ̂︀𝑥⋆
⃦⃦2

, (D.102)

for 𝑥𝑘 ∈ 𝐵𝑟3(𝑥
⋆). Combining this result with (D.101), it holds that,

𝐵1 ≤ 2𝛽𝐶3

⃦⃦̂︀𝑥𝑘 − ̂︀𝑥⋆
⃦⃦2

. (D.103)

It remains to establish an upper bound for the matrix that appears in 𝐵2:

𝐼 − ̂︁𝑀(̂︀𝑥𝑘)−1 ̂︀𝐻(̂︀𝑥𝑘) =D𝜙(𝑥) ∘ (𝐼 −𝑀(𝑥𝑘)−1Hess 𝑓(𝑥𝑘)) ∘ (D𝜙(𝑥))−1. (D.104)

In the following, we first bound the norm of 𝐼 −𝑀(𝑥𝑘)−1Hess 𝑓(𝑥𝑘). For any 𝜂 ∈

𝑇𝑥𝑘ℳ, let us consider the following quantity,

⃦⃦(︀
𝐼 −𝑀(𝑥𝑘)−1Hess 𝑓(𝑥𝑘)

)︀
𝜂
⃦⃦
𝐻𝑘

=
⃦⃦(︀

Hess 𝑓(𝑥𝑘)−1 −𝑀(𝑥𝑘)−1
)︀
Hess 𝑓(𝑥𝑘)𝜂

⃦⃦
𝐻𝑘 ,

(D.105)

326

where ‖𝜀‖𝐻𝑘 =
√︀
⟨𝜀,Hess 𝑓(𝑥𝑘)[𝜀]⟩ denotes the norm induced by the Riemannian

Hessian. Since 𝑀(𝑥𝑘) ≈𝜖 Hess 𝑓(𝑥
𝑘) by Assumption (A3), we can use Lemma D.4 to

obtain an upper bound of (D.105),

⃦⃦(︀
Hess 𝑓(𝑥𝑘)−1 −𝑀(𝑥𝑘)−1

)︀
Hess 𝑓(𝑥𝑘)𝜂

⃦⃦
𝐻𝑘 ≤ 𝑐(𝜖) ‖𝜂‖𝐻𝑘 . (D.106)

In addition, using Assumption (A1), it holds that,

√
𝜇𝐻 ‖𝜀‖ ≤ ‖𝜀‖𝐻𝑘 ≤

√︀
𝐿𝐻 ‖𝜀‖ , ∀𝜀 ∈ 𝑇𝑥𝑘ℳ. (D.107)

Combining (D.105)-(D.107) yields,

√
𝜇𝐻

⃦⃦(︀
𝐼 −𝑀(𝑥𝑘)−1Hess 𝑓(𝑥𝑘)

)︀
𝜂
⃦⃦
≤
√︀

𝐿𝐻𝑐(𝜖) ‖𝜂‖

=⇒
⃦⃦(︀

𝐼 −𝑀(𝑥𝑘)−1Hess 𝑓(𝑥𝑘)
)︀⃦⃦
≤
√
𝜅𝐻𝑐(𝜖).

(D.108)

Combining (D.108) and (D.95) in (D.104), we conclude that,

𝐵2 ≤ 2
√
𝜅𝐻𝑐(𝜖)

⃦⃦̂︀𝑥𝑘 − ̂︀𝑥⋆
⃦⃦
. (D.109)

Finishing the proof: We conclude the proof by combining the upper bounds (D.99),

(D.103), and (D.109) in (D.94), and using the fact that
⃦⃦̂︀𝑥𝑘 − ̂︀𝑥⋆

⃦⃦
= d(𝑥𝑘, 𝑥⋆),

d(𝑥𝑘+1, 𝑥⋆) ≤ 2
√
𝜅𝐻𝑐(𝜖)d(𝑥

𝑘, 𝑥⋆) + (𝐶2 + 2𝛽𝐶3)d(𝑥
𝑘, 𝑥⋆)2. (D.110)

The linear convergence factor in (D.86) is obtained by noting that the second term

on the right-hand side vanishes at a quadratic rate.

D.4.2 Proof of Theorem 8.3

Proof. We will use the general linear convergence result established in Theorem D.1.

However, in order to properly account for the gauge symmetry in rotation averag-

ing, we need to invoke Theorem D.1 on the quotient manifold that underlies our

327

optimization problem. In the following, we break the proof into three main parts

(highlighted in bold). The proof makes heavy use of results regarding Riemannian

quotient manifolds. The reader is referred to [18, Chapter 9] for a comprehensive

review.

Rotation Averaging and Optimization on Quotient Manifolds. Following

standard references, we denote a Riemannian quotient manifold as ℳ = ℳ/ ∼.

For rotation averaging (Problem 8.1), the total space is given by ℳ = SO(𝑑)𝑛. Let

𝑅 = {𝑅1, . . . , 𝑅𝑛} and 𝑅′ = {𝑅′1, . . . , 𝑅′𝑛} be two points on ℳ. We say that 𝑅 and

𝑅′ are equivalent if they are related via a left group action:

𝑅 ∼ 𝑅′ ⇐⇒ ∃𝑆 ∈ SO(𝑑), 𝑆𝑅𝑖 = 𝑅′𝑖,∀𝑖 = 1, . . . , 𝑛. (D.111)

The equivalence class represented by 𝑅 is defined as,

[𝑅] = {(𝑆𝑅1, . . . , 𝑆𝑅𝑛), 𝑆 ∈ SO(𝑑)}. (D.112)

Note that the cost function of Problem 8.1 is invariant within an equivalence class. In

the following, we use 𝑇𝑅ℳ to denote the usual tangent space at 𝑅 ∈ℳ, and 𝑇[𝑅]ℳ

to denote the corresponding tangent space on the quotient manifold.

Given a retraction Retr on ℳ (see [18, Chapter 9.6]), we can execute the Rie-

mannian Newton’s method onℳ:

[𝑅𝑘+1] = Retr[𝑅𝑘](𝜉
𝑘), (D.113)

Above, 𝜉𝑘 ∈ 𝑇[𝑅𝑘]ℳ is the solution of the following linear equation,

Hess 𝑓([𝑅𝑘])[𝜉𝑘] = − grad 𝑓([𝑅𝑘]), (D.114)

where grad 𝑓([𝑅𝑘]) and Hess 𝑓([𝑅𝑘]) denote the Riemannian gradient and Hessian on

the quotient manifold, respectively.

328

Expressing the iterates of Algorithm 8.4 on the quotient manifold. Recall

that Algorithm 8.4 generates a sequence of iterates {𝑅𝑘} on the total space ℳ. To

prove convergence, we need to analyze the corresponding sequence of equivalence

classes {[𝑅𝑘]} on the quotient manifold ℳ. Once we understand how [𝑅𝑘] evolves,

we can prove the desired result by invoking Theorem D.1 on the quotient manifold

ℳ. To begin with, we write the update step in Algorithm 8.4 in the following general

form:

𝑅𝑘+1 = Retr𝑅𝑘(𝑣𝑘), (D.115)

where 𝑣𝑘 is the vector corresponding to the matrix 𝑉 𝑘 in line 10; see (8.18) for how 𝑣𝑘

and 𝑉 𝑘 are related. Together, Retr𝑅𝑘(𝑣𝑘) is the concise notation for the update steps

in line 11-14, where we update each rotation 𝑅𝑘
𝑖 to Exp(𝑣𝑘𝑖)𝑅

𝑘
𝑖 . Our notation Retr

serves to emphasize that the retraction is performed on the total space ℳ. Recall

from (8.17)-(8.19) and Theorem 8.2 that 𝑣𝑘 is a solution to the linear system,

(̃︀𝐿⊗ 𝐼𝑝)𝑣
𝑘 = −𝑔(𝑅𝑘), (D.116)

where ̃︀𝐿 ≈𝜖 𝐿 ≡ 𝐿(𝐺;𝑤) is defined in (8.29) and 𝑔(𝑅𝑘) ∈ 𝑇𝑅ℳ is the Riemannian

gradient in the total space defined in (8.12). In this proof, we will use the notations

𝒩𝑅 and ℋ𝑅 to denote the vertical and horizontal spaces at 𝑅 ∈ℳ.1 By assumption,

𝑣𝑘 is the unique solution to (D.116) that satisfies 𝑣𝑘 ⊥ 𝒩𝑅𝑘 , i.e., 𝑣𝑘 ∈ ℋ𝑅𝑘 . This

implies that there is a unique tangent vector 𝜂𝑘 ∈ 𝑇[𝑅𝑘]ℳ on the tangent space of the

quotient manifold such that 𝑣𝑘 is the horizontal lift [18, Definition 9.25] of 𝜂𝑘 at 𝑅𝑘:

𝑣𝑘 = lift𝑅𝑘(𝜂𝑘). (D.117)

At any 𝑅 ∈ℳ, define 𝑀(𝑅) : ℋ𝑅 → ℋ𝑅 to be the linear map,

𝑀(𝑅) : 𝑣 ↦→ (̃︀𝐿⊗ 𝐼𝑝)𝑣, (D.118)

1For rotation averaging, it turns out that definitions of vertical and horizontal spaces do not
depend on the point 𝑅; e.g., see (8.11) for the definition of the vertical space. However, in this proof
we will still use the more general notations 𝒩𝑅 and ℋ𝑅, which help us to emphasize that 𝒩𝑅 and
ℋ𝑅 are subspaces of the tangent space 𝑇𝑅ℳ.

329

where 𝑣 ∈ ℋ𝑅 is any vector from the horizontal space. Since ker(̃︀𝐿 ⊗ 𝐼𝑝) = 𝒩𝑅, it

holds that 𝑀(𝑅) is invertible on ℋ𝑅. Define 𝑀([𝑅]) : 𝑇[𝑅]ℳ → 𝑇[𝑅]ℳ to be the

corresponding linear map on the quotient manifold,

𝑀([𝑅]) = lift−1𝑅 ∘𝑀(𝑅) ∘ lift𝑅 . (D.119)

Note that 𝑀([𝑅]) is indeed linear because when considered as a mapping lift𝑅 :

𝑇[𝑅]ℳ → ℋ𝑅, the horizontal lift is linear and invertible (see [18, Definition 9.25]).

Furthermore, applying lift𝑅 from the left on both sides of (D.119) shows that for any

tangent vector 𝜂 ∈ 𝑇[𝑅]ℳ,

lift𝑅 (𝑀([𝑅])[𝜂]) = 𝑀(𝑅)[lift𝑅(𝜂)]. (D.120)

By [18, Proposition 9.39], at iteration 𝑘, the Riemannian gradients on the total space

and quotient space are related via,

𝑔(𝑅𝑘) = lift𝑅𝑘(grad 𝑓([𝑅𝑘])). (D.121)

Combining (D.117)-(D.121), we see that (D.116) is equivalent to,

lift𝑅𝑘

(︀
𝑀([𝑅𝑘])[𝜂𝑘]

)︀
= − lift𝑅𝑘(grad 𝑓([𝑅𝑘])). (D.122)

Applying lift−1
𝑅𝑘 to both sides of (D.122),

𝑀([𝑅𝑘])[𝜂𝑘] = − grad 𝑓([𝑅𝑘]). (D.123)

In [18, Chapter 9.6], it is shown that Retr[𝑅](𝜂) = [Retr𝑅(lift𝑅(𝜂))]. Using this result,

we see that the update equation on the total space (D.115) can be converted to the

following update equation, defined on the quotient space:

[𝑅𝑘+1] = [Retr𝑅𝑘(𝑣𝑘)] = Retr[𝑅𝑘](𝜂
𝑘). (D.124)

330

In summary, let {𝑅𝑘} denotes the iterates generated by Algorithm 8.4 on the total

spaceℳ. We have shown that {𝑅𝑘} corresponds to a sequence {[𝑅𝑘]} on the quotient

spaceℳ that evolves according to (D.123)-(D.124).

Invoking Theorem D.1 on the quotient manifold. To finish the proof, we will

invoke Theorem D.1 to show that the sequence of iterates [𝑅𝑘] generated by (D.123)-

(D.124) converges linearly to [𝑅⋆]. This amounts to verifying that each condition in

Assumption D.1 holds on the quotient manifold ℳ. To start, note that there exists

𝑟′ > 0 such that for any 𝑅 ∈ SO(𝑑)𝑛, the condition d([𝑅], [𝑅⋆]) < 𝑟′ implies that

𝑅 ∈ 𝐵𝑟(𝑅
⋆) for some global minimizer 𝑅⋆ in the total space, where 𝐵𝑟(𝑅

⋆) is the

neighborhood within which Theorem 8.1 and Corollary 8.1 hold.

Verifying (A1). We need to derive lower and upper bounds for the Hessian of

the quotient optimization problem Hess 𝑓([𝑅]). For any 𝜂 ∈ 𝑇[𝑅]ℳ, let 𝑣 = lift𝑅(𝜂).

By [18, Proposition 9.45], we have,

⟨𝜂,Hess 𝑓([𝑅])𝜂⟩ = ⟨𝑣,𝐻(𝑅)𝑣⟩ , (D.125)

where 𝐻(𝑅) is defined in (8.13). Since 𝑣 ∈ ℋ𝑅 ≡ ℋ belongs to the horizontal space,

we conclude using Corollary 8.1 that ⟨𝑣,𝐻(𝑅)𝑣⟩ ≥ 𝜇𝐻 ‖𝑣‖2 where 𝜇𝐻 is the constant

defined in Corollary 8.1. Furthermore, since the quotient manifold ℳ inherits the

Riemannian metric from the total space ℳ, we have ‖𝜂‖ = ‖𝑣‖. We thus conclude

that,

⟨𝜂,Hess 𝑓([𝑅])𝜂⟩ = ⟨𝑣,𝐻(𝑅)𝑣⟩ ≥ 𝜇𝐻 ‖𝑣‖2 = 𝜇𝐻 ‖𝜂‖2 . (D.126)

Similarly, we can show that ⟨𝜂,Hess 𝑓([𝑅])𝜂⟩ ≤ 𝐿𝐻 ‖𝜂‖2 where 𝐿𝐻 is also defined in

Corollary 8.1. Therefore,

𝜇𝐻𝐼 ⪯ Hess 𝑓([𝑅]) ⪯ 𝐿𝐻𝐼. (D.127)

Verifying (A2). We need to show that 𝑀([𝑅]) defined in (D.119) is invertible

and the operator norm of its inverse can be upper bounded. The invertibility follows

331

from (D.119) and the fact that both lift𝑅 and 𝑀(𝑅) are invertible on the horizontal

space. To upper bound 𝑀([𝑅])−1, it is equivalent to derive a lower bound on 𝑀([𝑅]).

Let 𝜂 ∈ 𝑇[𝑅]ℳ and 𝑣 = lift𝑅(𝜂). We have,

⟨𝜂,𝑀([𝑅])𝜂⟩ =
⟨︀
𝑣,𝑀(𝑅)𝑣

⟩︀
= 𝑣⊤(̃︀𝐿⊗ 𝐼𝑝)𝑣 ≥ 𝜆2(̃︀𝐿) ‖𝑣‖2 . (D.128)

The last inequality holds because 𝑣 ⊥ 𝒩 . Thus, we conclude that,

⃦⃦
𝑀([𝑅])−1

⃦⃦
≤ 1/𝜆2(̃︀𝐿). (D.129)

Verifying (A3). Lastly, we need to show that the linear map 𝑀([𝑅]) is a spectral

approximation of the Riemannian Hessian Hess 𝑓([𝑅]) on the quotient manifold. From

Theorem 8.1, it holds that,

𝐻(𝑅) ≈𝛿 𝐿⊗ 𝐼𝑝. (D.130)

In addition, from Theorem 8.2, we have

𝐿 ≈𝜖
̃︀𝐿 =⇒ 𝐿⊗ 𝐼𝑝 ≈𝜖

̃︀𝐿⊗ 𝐼𝑝. (D.131)

Composing the two approximations yields,

𝐻(𝑅) ≈𝛿+𝜖
̃︀𝐿⊗ 𝐼𝑝. (D.132)

Note that the above result directly implies the following approximation relation on

the quotient manifold,

Hess 𝑓([𝑅]) ≈𝛿+𝜖 𝑀([𝑅]). (D.133)

To see this, note that for any 𝜂 ∈ 𝑇[𝑅]ℳ and 𝑣 = lift𝑅(𝜂),

⟨𝜂,Hess 𝑓([𝑅])𝜂⟩ = ⟨𝑣,𝐻(𝑅)𝑣⟩

≤ 𝑒𝛿+𝜖
⟨︀
𝑣,𝑀(𝑅)𝑣

⟩︀
= 𝑒𝛿+𝜖 ⟨𝜂,𝑀([𝑅])𝜂⟩ .

(D.134)

332

The same argument leads to,

⟨𝜂,Hess 𝑓([𝑅])𝜂⟩ ≥ 𝑒−𝛿−𝜖 ⟨𝜂,𝑀([𝑅])𝜂⟩ . (D.135)

D.4.3 Proof of Theorem 8.4

Proof. We prove this result using induction. The base case of 𝑘 = 1 (first iteration)

is true by Theorem 8.2. Now suppose (8.36) holds at iteration 𝑘 ≥ 1. Define 𝐷⋆ =

𝑀⋆
𝑡 −𝑀𝑘

𝑡 . By Theorem 8.2, the approximate refinement 𝐷𝑘 computed at line 10 of

Algorithm 8.5 satisfies,

⃦⃦
𝐷𝑘 −𝐷⋆

⃦⃦
𝐿
≤ 𝑐(𝜖) ‖𝐷⋆‖𝐿 =⇒

⃦⃦
𝐷𝑘 +𝑀𝑘

𝑡 −𝑀⋆
𝑡

⃦⃦
𝐿
≤ 𝑐(𝜖)

⃦⃦
𝑀𝑘

𝑡 −𝑀⋆
𝑡

⃦⃦
𝐿

=⇒
⃦⃦
𝑀𝑘+1

𝑡 −𝑀⋆
𝑡

⃦⃦
𝐿
≤ 𝑐(𝜖)𝑘+1 ‖𝑀⋆

𝑡 ‖𝐿 .
(D.136)

The second step above holds by the inductive hypothesis.

D.5 Auxiliary Lemmas

Lemma D.4. Let 𝐿, ̃︀𝐿 ∈ 𝒮𝑛
+ such that 𝐿 ≈𝜖

̃︀𝐿. Let 𝐵 ∈ R𝑛×𝑝 be a matrix where

each column of 𝐵 lives in the image of 𝐿. Let 𝑋⋆, ̃︀𝑋 ∈ R𝑛×𝑝 be matrices such that

𝐿𝑋⋆ = 𝐵 and ̃︀𝐿 ̃︀𝑋 = 𝐵. Then,

⃦⃦⃦
𝑋⋆ − ̃︀𝑋 ⃦⃦⃦

𝐿
≤ 𝑐(𝜖) ‖𝑋⋆‖𝐿 , (D.137)

where 𝑐(𝜖) =
√
1 + 𝑒2𝜖 − 2𝑒−𝜖.

Proof. We note that the proof of a similar result can be found at [142, Claim 2.4].

In the following, we provide the proof for the case where 𝐿 and ̃︀𝐿 are singular. The

non-singular case can be proved in the same way by replacing matrix psuedoinverse

333

with the inverse. Observe that

⃦⃦⃦
𝑋⋆ − ̃︀𝑋 ⃦⃦⃦2

𝐿
=

𝑝∑︁
𝑖=1

⃦⃦⃦
𝑋⋆

[:,𝑖] − ̃︀𝑋[:,𝑖]

⃦⃦⃦2
𝐿
, (D.138)

where 𝑋⋆
[:,𝑖] denotes the 𝑖-th column of 𝑋⋆. Therefore, we can first obtain an upper

bound for the squared norm on a single column. To simplify notation, let 𝑥⋆ be a

column of 𝑋⋆, and let ̃︀𝑥 and 𝑏 be the corresponding columns of ̃︀𝑋 and 𝐵. Let us

expand the squared norm,

‖𝑥⋆ − ̃︀𝑥‖2𝐿 = 𝑥⋆⊤𝐿𝑥⋆ − 2𝑥⋆⊤𝐿̃︀𝑥+ ̃︀𝑥⊤𝐿̃︀𝑥. (D.139)

Note that since 𝐿 ≈𝜖
̃︀𝐿, we have ker(𝐿) = ker(̃︀𝐿). In addition, any ̃︀𝑥 where ̃︀𝐿̃︀𝑥 = 𝑏

can be written as ̃︀𝑥 = ̃︀𝐿†𝑏+̃︀𝑥⊥ for some ̃︀𝑥⊥ ∈ ker(𝐿). Now, let us consider the middle

term in (D.139),

𝑥⋆⊤𝐿̃︀𝑥 = 𝑥⋆⊤𝐿̃︀𝐿†𝑏 = 𝑥⋆⊤𝐿̃︀𝐿†𝐿𝑥⋆ = (𝐿1/2𝑥⋆)⊤(𝐿1/2̃︀𝐿†𝐿1/2)(𝐿1/2𝑥⋆). (D.140)

The relation ̃︀𝐿 ≈𝜖 𝐿 implies ̃︀𝐿† ≈𝜖 𝐿
†, which is equivalent to,

𝑒−𝜖Π ⪯ 𝐿1/2̃︀𝐿†𝐿1/2 ⪯ 𝑒𝜖Π, (D.141)

where Π denotes the orthogonal projection onto image(𝐿1/2̃︀𝐿†𝐿1/2) = image(𝐿). By

construction, it holds that 𝐿1/2𝑥⋆ ∈ image(𝐿). Therefore,

𝑥⋆⊤𝐿̃︀𝑥 = (𝐿1/2𝑥⋆)⊤(𝐿1/2̃︀𝐿†𝐿1/2)(𝐿1/2𝑥⋆) ≥ 𝑒−𝜖 ‖𝑥⋆‖2𝐿 . (D.142)

Next, expand the last term in (D.139):

̃︀𝑥⊤𝐿̃︀𝑥 = 𝑏⊤̃︀𝐿†𝐿̃︀𝐿†𝑏 = 𝑥⋆⊤𝐿̃︀𝐿†𝐿̃︀𝐿†𝐿𝑥⋆

= (𝐿1/2𝑥⋆)⊤(𝐿1/2̃︀𝐿†𝐿1/2)(𝐿1/2̃︀𝐿†𝐿1/2)(𝐿1/2𝑥⋆)

=
⃦⃦⃦
(𝐿1/2̃︀𝐿†𝐿1/2)(𝐿1/2𝑥⋆)

⃦⃦⃦2
2
.

(D.143)

334

Using (D.141), we conclude that,

̃︀𝑥⊤𝐿̃︀𝑥 ≤ 𝑒2𝜖 ‖𝑥⋆‖2𝐿 . (D.144)

Combining (D.142) and (D.144) in (D.139) yields,

‖𝑥⋆ − ̃︀𝑥‖2𝐿 ≤ (1 + 𝑒2𝜖 − 2𝑒−𝜖) ‖𝑥⋆‖2𝐿 = 𝑐(𝜖)2 ‖𝑥⋆‖2𝐿 . (D.145)

Finally, using this upper bound on (D.138) yields the desired result,

⃦⃦⃦
𝑋⋆ − ̃︀𝑋 ⃦⃦⃦2

𝐿
=

𝑝∑︁
𝑖=1

⃦⃦⃦
𝑋⋆

[:,𝑖] − ̃︀𝑋[:,𝑖]

⃦⃦⃦2
𝐿

≤
𝑝∑︁

𝑖=1

𝑐(𝜖)2
⃦⃦
𝑋⋆

[:,𝑖]

⃦⃦2
𝐿

= 𝑐(𝜖)2 ‖𝑋⋆‖2𝐿 .

(D.146)

335

336

Bibliography

[1] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative monocu-
lar SLAM with multiple Micro Aerial Vehicles,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2013.

[2] P. Schmuck and M. Chli, “CCM-SLAM: Robust and efficient centralized collab-
orative monocular simultaneous localization and mapping for robotic teams,”
in Journal of Field Robotics (JFR), 2018.

[3] Y. Chang, K. Ebadi, C. E. Denniston, M. F. Ginting, A. Rosinol, A. Reinke,
M. Palieri, J. Shi, A. Chatterjee, B. Morrell, et al., “LAMP 2.0: A robust
multi-robot SLAM system for operation in challenging large-scale underground
environments,” IEEE Robotics and Automation Letters, 2022.

[4] P. Schmuck, T. Ziegler, M. Karrer, J. Perraudin, and M. Chli, “COVINS: Visual-
Inertial SLAM for Centralized Collaboration,” in IEEE International Sympo-
sium on Mixed and Augmented Reality Adjunct, 2021.

[5] A. Cramariuc, L. Bernreiter, F. Tschopp, M. Fehr, V. Reijgwart, J. Nieto,
R. Siegwart, and C. Cadena, “MAPLAB 2.0–A Modular and Multi-Modal
Mapping Framework,” IEEE Robotics and Automation Letters, vol. 8, no. 2,
pp. 520–527, 2022.

[6] Frank Dellaert et al., “Georgia Tech Smoothing And Mapping (GTSAM).”
https://gtsam.org/, 2019.

[7] Sameer Agarwal et al., “Ceres Solver.” http://ceres-solver.org.

[8] G. Grisetti, R. Kümmerle, H. Strasdat, and K. Konolige, “g2o: A general frame-
work for (hyper) graph optimization,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 9–13, 2011.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,”
in Artificial intelligence and statistics, pp. 1273–1282, PMLR, 2017.

[10] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fed-
PAQ: A Communication-Efficient Federated Learning Method with Periodic
Averaging and Quantization,” in Proceedings of the Twenty Third International

337

https://gtsam.org/
http://ceres-solver.org

Conference on Artificial Intelligence and Statistics, vol. 108 of Proceedings of
Machine Learning Research, pp. 2021–2031, PMLR, 26–28 Aug 2020.

[11] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Chal-
lenges, Methods, and Future Directions,” IEEE Signal Processing Magazine,
vol. 37, no. 3, pp. 50–60, 2020.

[12] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., “Advances and
open problems in federated learning,” Foundations and Trends® in Machine
Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[13] A. P. Eriksson, C. Olsson, F. Kahl, and T. Chin, “Rotation Averaging and
Strong Duality,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018.

[14] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard, “SE-Sync: A certi-
fiably correct algorithm for synchronization over the special Euclidean group,”
Intl. J. of Robotics Research, vol. 38, no. 2-3, pp. 95–125, 2019.

[15] F. Dellaert, D. Rosen, J. Wu, R. Mahony, and L. Carlone, “Shonan Rotation Av-
eraging: Global optimality by surfing 𝑆𝑂(𝑝)𝑛,” in European Conf. on Computer
Vision (ECCV), 2020.

[16] H. Yang and L. Carlone, “Certifiably optimal outlier-robust geometric percep-
tion: Semidefinite relaxations and scalable global optimization,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 45, no. 3, pp. 2816–2834, 2022.

[17] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix
manifolds. Princeton University Press, 2009.

[18] N. Boumal, “An introduction to optimization on smooth manifolds,” 2020.

[19] F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,” Foundations
and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

[20] J. Briales and J. Gonzalez-Jimenez, “Cartan-Sync: Fast and Global SE(d)-
Synchronization,” IEEE Robotics and Automation Letters, 2017.

[21] Y. Tian, K. Khosoussi, D. M. Rosen, and J. P. How, “Distributed certifiably cor-
rect pose-graph optimization,” IEEE Trans. Robotics, vol. 37, no. 6, pp. 2137–
2156, 2021.

[22] Y. Tian, A. Koppel, A. S. Bedi, and J. P. How, “Asynchronous and Parallel
Distributed Pose Graph Optimization,” IEEE Robotics and Automation Letters,
vol. 5, no. 4, pp. 5819–5826, 2020.

338

[23] Y. Chang, Y. Tian, J. P. How, and L. Carlone, “Kimera-Multi: a System for
Distributed Multi-Robot Metric-Semantic Simultaneous Localization and Map-
ping,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 11210–
11218, 2021.

[24] Y. Tian, Y. Chang, F. H. Arias, C. Nieto-Granda, J. P. How, and L. Carlone,
“Kimera-multi: Robust, distributed, dense metric-semantic slam for multi-robot
systems,” IEEE Trans. Robotics, vol. 38, no. 4, 2022.

[25] Y. Tian, Y. Chang, L. Quang, A. Schang, C. Nieto-Granda, J. P. How, and
L. Carlone, “Resilient and distributed multi-robot visual slam: Datasets, ex-
periments, and lessons learned,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2023.

[26] Y. Tian, A. S. Bedi, A. Koppel, M. Calvo-Fullana, D. M. Rosen, and J. P. How,
“Distributed riemannian optimization with lazy communication for collabora-
tive geometric estimation,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pp. 4391–4398, IEEE, 2022.

[27] Y. Tian and J. P. How, “Spectral Sparsification for Communication-Efficient
Collaborative Rotation and Translation Estimation.” https://arxiv.org/
pdf/2210.05020.pdf, 2022.

[28] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone, “Graduated Non-
Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global
Outlier Rejection,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 1127–1134, 2020.

[29] R. Tron, Distributed optimization on manifolds for consensus algorithms and
camera network localization. The Johns Hopkins University, 2012.

[30] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation Averaging,” Intl. J. of
Computer Vision, 2013.

[31] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert, “Initialization techniques
for 3D SLAM: A survey on rotation estimation and its use in pose graph op-
timization,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), May
2015.

[32] S. Zhu, R. Zhang, L. Zhou, T. Shen, T. Fang, P. Tan, and L. Quan, “Very
Large-Scale Global SfM by Distributed Motion Averaging,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[33] R. Tron and R. Vidal, “Distributed 3-D Localization of Camera Sensor Networks
From 2-D Image Measurements,” IEEE Trans. on Automatic Control, vol. 59,
pp. 3325–3340, Dec 2014.

339

https://arxiv.org/pdf/2210.05020.pdf
https://arxiv.org/pdf/2210.05020.pdf

[34] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator,” IEEE Trans. Robotics, vol. 34, no. 4, pp. 1004–
1020, 2018.

[35] T. Qin, S. Cao, J. Pan, and S. Shen, “A General Optimization-based Framework
for Global Pose Estimation with Multiple Sensors,” ArXiv, vol. abs/1901.03642,
2019.

[36] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, and
L. Carlone, “Kimera: From SLAM to spatial perception with 3D dynamic scene
graphs,” Intl. J. of Robotics Research, vol. 40, no. 12-14, pp. 1510–1546, 2021.

[37] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós,
“ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial,
and Multimap SLAM,” IEEE Trans. Robotics, 2021.

[38] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Del-
laert, “Distributed mapping with privacy and communication constraints:
Lightweight algorithms and object-based models,” Intl. J. of Robotics Research,
2017.

[39] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-Efficient Decentral-
ized Visual SLAM,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
pp. 2466–2473, 2018.

[40] M. Giamou, K. Khosoussi, and J. P. How, “Talk resource-efficiently to me:
Optimal communication planning for distributed loop closure detection,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 3841–3848, IEEE,
2018.

[41] Y. Tian, K. Khosoussi, and J. P. How, “A Resource-Aware Approach to Collab-
orative Loop-Closure Detection with Provable Performance Guarantees,” Intl.
J. of Robotics Research, 2021.

[42] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle Ad-
justment — A Modern Synthesis,” in Vision Algorithms: Theory and Practice,
pp. 298–372, Springer, 2000.

[43] K. Ebadi, Y. Chang, M. Palieri, A. Stephens, A. Hatteland, E. Heiden,
A. Thakur, N. Funabiki, B. Morrell, S. Wood, L. Carlone, and A.-a. Agha-
mohammadi, “LAMP: Large-Scale Autonomous Mapping and Positioning for
Exploration of Perceptually-Degraded Subterranean Environments,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2020.

[44] P.-Y. Lajoie, B. Ramtoula, F. Wu, and G. Beltrame, “Towards collaborative
simultaneous localization and mapping: a survey of the current research land-
scape,” Field Robotics, 2021.

340

[45] J. Sivic and A. Zisserman, “Video Google: a text retrieval approach to object
matching in videos,” in Intl. Conf. on Computer Vision (ICCV), 2003.

[46] D. Gálvez-López and J. D. Tardós, “Bags of Binary Words for Fast Place Recog-
nition in Image Sequences,” IEEE Trans. Robotics, vol. 28, pp. 1188–1197, Oc-
tober 2012.

[47] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD: CNN
Architecture for Weakly Supervised Place Recognition,” in IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pp. 5297–5307, 2016.

[48] D. Lowe, “Object Recognition from Local Scale-Invariant Features,” in Intl.
Conf. on Computer Vision (ICCV), pp. 1150–1157, 1999.

[49] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: speeded up robust features,” in
European Conf. on Computer Vision (ECCV), 2006.

[50] T. Cieslewski and D. Scaramuzza, “Efficient Decentralized Visual Place Recog-
nition Using a Distributed Inverted Index,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 640–647, 2017.

[51] T. Cieslewski and D. Scaramuzza, “Efficient decentralized visual place recogni-
tion from full-image descriptors,” in 2017 International Symposium on Multi-
Robot and Multi-Agent Systems (MRS), pp. 78–82, 2017.

[52] Y. Tian, K. Khosoussi, M. Giamou, J. P. How, and J. Kelly, “Near-optimal
budgeted data exchange for distributed loop closure detection,” in Robotics:
Science and Systems (RSS), 2018.

[53] Y. Zhang, M. Hsiao, J. Dong, J. Engel, and F. Dellaert, “MR-iSAM2: Incre-
mental Smoothing and Mapping with Multi-Root Bayes Tree for Multi-Robot
SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
pp. 8671–8678, 2021.

[54] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the Bayes tree,” Intl. J. of
Robotics Research, vol. 31, no. 2, pp. 216–235, 2012.

[55] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully distributed
SLAM using Constrained Factor Graphs,” in IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS), 2010.

[56] A. Cunningham, K. M. Wurm, W. Burgard, and F. Dellaert, “Fully distributed
scalable smoothing and mapping with robust multi-robot data association,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2012.

[57] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0: Consistent
distributed smoothing and mapping,” in IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA), 2013.

341

[58] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: nu-
merical methods, vol. 23. Prentice hall Englewood Cliffs, NJ, 1989.

[59] R. Tron, J. Thomas, G. Loianno, K. Daniilidis, and V. Kumar, “A Distributed
Optimization Framework for Localization and Formation Control: Applica-
tions to Vision-Based Measurements,” IEEE Control Systems Magazine, vol. 36,
no. 4, pp. 22–44, 2016.

[60] J. Knuth and P. Barooah, “Collaborative 3D localization of robots from relative
pose measurements using gradient descent on manifolds,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), pp. 1101–1106, 2012.

[61] E. Cristofalo, E. Montijano, and M. Schwager, “GeoD: Consensus-based
Geodesic Distributed Pose Graph Optimization,” 2020.

[62] T. Fan and T. D. Murphey, “Generalized proximal methods for pose graph
optimization,” in Proc. of the Intl. Symp. of Robotics Research (ISRR), 2019.

[63] T. Fan and T. Murphey, “Majorization Minimization Methods for Distributed
Pose Graph Optimization with Convergence Guarantees,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2020.

[64] T. Fan and T. Murphey, “Majorization Minimization Methods for Distributed
Pose Graph Optimization,” arXiv preprint arXiv:2108.00083, 2021.

[65] R. Murai, J. Ortiz, S. Saeedi, P. H. Kelly, and A. J. Davison, “A robot web for
distributed many-device localisation,” arXiv preprint arXiv:2202.03314, 2022.

[66] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle adjustment,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 3057–
3064, 2011.

[67] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[68] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle Adjustment in
the Large,” in European Conf. on Computer Vision (ECCV) (K. Daniilidis,
P. Maragos, and N. Paragios, eds.), (Berlin, Heidelberg), pp. 29–42, Springer
Berlin Heidelberg, 2010.

[69] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. E. Thorpe, “Subgraph-
preconditioned conjugate gradients for large scale SLAM,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), pp. 2566–2571, 2010.

[70] A. Kushal and S. Agarwal, “Visibility Based Preconditioning for bundle adjust-
ment,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 1442–1449, 2012.

[71] A. Eriksson, J. Bastian, T. Chin, and M. Isaksson, “A Consensus-Based Frame-
work for Distributed Bundle Adjustment,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2016.

342

[72] R. Zhang, S. Zhu, T. Fang, and L. Quan, “Distributed Very Large Scale Bundle
Adjustment by Global Camera Consensus,” in Intl. Conf. on Computer Vision
(ICCV), 2017.

[73] M. J. Schuster, K. Schmid, C. Brand, and M. Beetz, “Distributed stereo vision-
based 6D localization and mapping for multi-robot teams,” Journal of Field
Robotics (JFR), vol. 36, no. 2, pp. 305–332, 2019.

[74] G. S. Saeedi, M. Trentini, M. L. Seto, and H. Li, “Multiple-Robot Simultaneous
Localization and Mapping: A Review,” Journal of Field Robotics (JFR), vol. 33,
pp. 3–46, 2016.

[75] V. Tchuiev and V. Indelman, “Distributed Consistent Multi-Robot Semantic
Localization and Mapping,” IEEE Robotics and Automation Letters, vol. 5,
no. 3, pp. 4649–4656, 2020.

[76] Y. Yue, C. Zhao, M. Wen, Z. Wu, and D. Wang, “Collaborative Semantic
Perception and Relative Localization Based on Map Matching,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.

[77] M. Patel, M. Karrer, P. Bänninger, and M. Chli, “COVINS-G: A Generic Back-
end for Collaborative Visual-Inertial SLAM,” arXiv preprint arXiv:2301.07147,
2023.

[78] T. Zhang, L. Zhang, Y. Chen, and Y. Zhou, “CVIDS: A Collaborative Local-
ization and Dense Mapping Framework for Multi-Agent Based Visual-Inertial
SLAM,” IEEE Transactions on Image Processing, 2022.

[79] H. Zhang, X. Chen, H. Lu, and J. Xiao, “Distributed and collaborative monocu-
lar simultaneous localization and mapping for multi-robot systems in large-scale
environments,” International Journal of Advanced Robotic Systems, vol. 15,
no. 3, p. 1729881418780178, 2018.

[80] P.-Y. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, “DOOR-
SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams,”
IEEE Robotics and Automation Letters, 2020.

[81] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan, “Pairwise Con-
sistent Measurement Set Maximization for Robust Multi-robot Map Merging,”
in IEEE Intl. Conf. on Robotics and Automation (ICRA), (Brisbane, Australia),
pp. 1–8, May 2018.

[82] H. Xu, P. Liu, X. Chen, and S. Shen, “𝐷2 SLAM: Decentralized and Distributed
Collaborative Visual-inertial SLAM System for Aerial Swarm,” arXiv preprint
arXiv:2211.01538, 2022.

343

[83] Y. Huang, T. Shan, F. Chen, and B. Englot, “DiSCo-SLAM: distributed scan
context-enabled multi-robot lidar SLAM with two-stage global-local graph opti-
mization,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1150–1157,
2021.

[84] S. Zhong, Y. Qi, Z. Chen, J. Wu, H. Chen, and M. Liu, “DCL-SLAM: A Dis-
tributed Collaborative LiDAR SLAM Framework for a Robotic Swarm,” arXiv
preprint arXiv:2210.11978, 2022.

[85] P.-Y. Lajoie and G. Beltrame, “Swarm-SLAM: Sparse Decentralized Collab-
orative Simultaneous Localization and Mapping Framework for Multi-Robot
Systems,” arXiv preprint arXiv:2301.06230, 2023.

[86] K. J. Doherty, D. M. Rosen, and J. J. Leonard, “Spectral Measurement Sparsi-
fication for Pose-Graph SLAM,” arXiv preprint arXiv:2203.13897, 2022.

[87] M. Tranzatto, F. Mascarich, L. Bernreiter, C. Godinho, M. Camurri, S. M. K.
Khattak, T. Dang, V. Reijgwart, J. Loeje, D. Wisth, S. Zimmermann,
H. Nguyen, M. Fehr, L. Solanka, R. Buchanan, M. Bjelonic, N. Khedekar,
M. Valceschini, F. Jenelten, M. Dharmadhikari, T. Homberger, P. De Petris,
L. Wellhausen, M. Kulkarni, T. Miki, S. Hirsch, M. Montenegro, C. Papachris-
tos, F. Tresoldi, J. Carius, G. Valsecchi, J. Lee, K. Meyer, X. Wu, J. Nieto,
A. Smith, M. Hutter, R. Siegwart, M. Mueller, M. Fallon, and K. Alexis, “CER-
BERUS: Autonomous Legged and Aerial Robotic Exploration in the Tunnel and
Urban Circuits of the DARPA Subterranean Challenge,” Field Robotics, 2021.

[88] Y. Zhu, Y. Kong, Y. Jie, S. Xu, and H. Cheng, “GRACO: A Multimodal Dataset
for Ground and Aerial Cooperative Localization and Mapping,” IEEE Robotics
and Automation Letters, 2023.

[89] D. Feng, Y. Qi, S. Zhong, Z. Chen, Y. Jiao, Q. Chen, T. Jiang, and H. Chen,
“S3E: A Large-scale Multimodal Dataset for Collaborative SLAM,” arXiv
preprint arXiv:2210.13723, 2022.

[90] J. Yin, A. Li, T. Li, W. Yu, and D. Zou, “M2DGR: A multi-sensor and multi-
scenario slam dataset for ground robots,” IEEE Robotics and Automation Let-
ters, vol. 7, no. 2, pp. 2266–2273, 2021.

[91] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and F. Dellaert, “La-
grangian duality in 3D SLAM: Verification techniques and optimal solutions,”
in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 125–
132, 2015.

[92] N. Boumal, “A Riemannian low-rank method for optimization over semidefinite
matrices with block-diagonal constraints,” arXiv preprint arXiv:1506.00575,
2015.

344

[93] S. Burer and R. D. C. Monteiro, “A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization,” Math. Program., vol. 95,
pp. 329–357, 2003.

[94] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods on Rie-
mannian manifolds,” Foundations of Computational Mathematics, vol. 7, no. 3,
pp. 303–330, 2007.

[95] K. Khosoussi, S. Huang, and G. Dissanayake, “A Sparse Separable SLAM Back-
End,” IEEE Trans. Robotics, vol. 32, no. 6, pp. 1536–1549, 2016.

[96] A. Singer, “Angular synchronization by eigenvectors and semidefinite program-
ming,” Applied and Computational Harmonic Analysis, 2011.

[97] A. S. Bandeira, N. Boumal, and A. Singer, “Tightness of the maximum likeli-
hood semidefinite relaxation for angular synchronization,” Mathematical Pro-
gramming, vol. 163, pp. 145–167, May 2017.

[98] A. Eriksson, C. Olsson, F. Kahl, and T. Chin, “Rotation Averaging with the
Chordal Distance: Global Minimizers and Strong Duality,” IEEE Trans. Pat-
tern Anal. Machine Intell., 2019.

[99] M. Fischler and R. Bolles, “Random sample consensus: a paradigm for model
fitting with application to image analysis and automated cartography,” Com-
mun. ACM, vol. 24, pp. 381–395, 1981.

[100] J. Neira and J. Tardós, “Data Association in Stochastic Mapping Using the Joint
Compatibility Test,” IEEE Trans. Robot. Automat., vol. 17, no. 6, pp. 890–897,
2001.

[101] M. Bosse, G. Agamennoni, and I. Gilitschenski, “Robust Estimation and Appli-
cations in Robotics,” Foundations and Trends in Robotics, vol. 4, no. 4, pp. 225–
269, 2016.

[102] N. Sünderhauf and P. Protzel, “Switchable Constraints for Robust Pose Graph
SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2012.

[103] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robust
map optimization using dynamic covariance scaling,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2013.

[104] R. Hartley, K. Aftab, and J. Trumpf, “L1 rotation averaging using the Weiszfeld
algorithm,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 3041–3048, IEEE, 2011.

[105] J. Casafranca, L. Paz, and P. Piniés, “A back-end ℓ1 norm based solution for fac-
tor graph SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pp. 17–23, 2013.

345

[106] A. Chatterjee and V. M. Govindu, “Efficient and Robust Large-Scale Rotation
Averaging,” in Intl. Conf. on Computer Vision (ICCV), pp. 521–528, 2013.

[107] A. Chatterjee and V. M. Govindu, “Robust Relative Rotation Averaging,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 40, no. 4, pp. 958–972, 2018.

[108] G. Hu, K. Khosoussi, and S. Huang, “Towards a reliable SLAM back-end,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 37–43,
2013.

[109] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot
mapping,” in Robotics: Science and Systems (RSS), July 2012.

[110] M. Pfingsthorn and A. Birk, “Simultaneous localization and mapping with mul-
timodal probability distributions,” Intl. J. of Robotics Research, vol. 32, no. 2,
pp. 143–171, 2013.

[111] M. Pfingsthorn and A. Birk, “Generalized graph SLAM: Solving local and global
ambiguities through multimodal and hyperedge constraints,” Intl. J. of Robotics
Research, vol. 35, no. 6, pp. 601–630, 2016.

[112] P. Lajoie, S. Hu, G. Beltrame, and L. Carlone, “Modeling Perceptual Alias-
ing in SLAM via Discrete-Continuous Graphical Models,” IEEE Robotics and
Automation Letters, vol. 4, pp. 1232–1239, April 2019.

[113] L. Carlone and G. Calafiore, “Convex Relaxations for Pose Graph Optimization
with Outliers,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1160–
1167, 2018. arxiv preprint: 1801.02112.

[114] L. Carlone, A. Censi, and F. Dellaert, “Selecting good measurements via ℓ1
relaxation: a convex approach for robust estimation over graphs,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2014.

[115] M. Graham, J. How, and D. Gustafson, “Robust incremental SLAM with
consistency-checking,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems (IROS), pp. 117–124, Sept 2015.

[116] P. Antonante, V. Tzoumas, H. Yang, and L. Carlone, “Outlier-robust estima-
tion: Hardness, minimally tuned algorithms, and applications,” IEEE Trans.
Robotics, vol. 38, no. 1, pp. 281–301, 2021.

[117] V. Indelman, E. Nelson, N. Michael, and F. Dellaert, “Multi-Robot Pose Graph
Localization and Data Association from Unknown Initial Relative Poses via
Expectation Maximization,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2014.

[118] J. Dong, E. Nelson, V. Indelman, N. Michael, and F. Dellaert, “Distributed real-
time cooperative localization and mapping using an uncertainty-aware expecta-
tion maximization approach,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), pp. 5807–5814, 2015.

346

[119] N. Boumal, A. Singer, P.-A. Absil, and V. D. Blondel, “Cramér–Rao bounds
for synchronization of rotations,” Information and Inference: A Journal of the
IMA, pp. 1–39, 2014.

[120] K. Khosoussi, M. Giamou, G. S. Sukhatme, S. Huang, G. Dissanayake, and
J. P. How, “Reliable graphs for SLAM,” Intl. J. of Robotics Research, 2019.

[121] Y. Chen, S. Huang, L. Zhao, and G. Dissanayake, “Cramér–Rao bounds and
optimal design metrics for pose-graph SLAM,” IEEE Trans. Robotics, 2021.

[122] J. A. Placed and J. A. Castellanos, “A General Relationship between Optimality
Criteria and Connectivity Indices for Active Graph-SLAM,” IEEE Robotics and
Automation Letters, 2022.

[123] K. J. Doherty, D. M. Rosen, and J. J. Leonard, “Performance Guarantees for
Spectral Initialization in Rotation Averaging and Pose-Graph SLAM,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), pp. 5608–5614, IEEE, 2022.

[124] L. Bernreiter, S. Khattak, L. Ott, R. Siegwart, M. Hutter, and C. Cadena,
“Collaborative Robot Mapping using Spectral Graph Analysis,” arXiv preprint
arXiv:2203.00308, 2022.

[125] L. Carlone, “A convergence analysis for pose graph optimization via Gauss-
Newton methods,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
pp. 965–972, 2013.

[126] K. Wilson, D. Bindel, and N. Snavely, “When is rotations averaging hard?,” in
European Conf. on Computer Vision (ECCV), 2016.

[127] K. Wilson and D. Bindel, “On the distribution of minima in intrinsic-metric ro-
tation averaging,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020.

[128] S.-M. Nasiri, R. Hosseini, and H. Moradi, “Novel Parameterization for Gauss-
Newton Methods in 3-D Pose Graph Optimization,” IEEE Trans. Robotics,
vol. 37, no. 3, pp. 780–797, 2021.

[129] H. Kretzschmar and C. Stachniss, “Information-theoretic compression of pose
graphs for laser-based SLAM,” Intl. J. of Robotics Research, vol. 31, no. 11,
pp. 1219–1230, 2012.

[130] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice, “Generic node removal for
factor-graph SLAM,” IEEE Trans. Robotics, vol. 30, no. 6, pp. 1371–1385, 2014.

[131] M. Mazuran, G. D. Tipaldi, L. Spinello, and W. Burgard, “Nonlinear Graph
Sparsification for SLAM.,” in Robotics: Science and Systems (RSS), pp. 1–8,
2014.

347

[132] L. Paull, G. Huang, M. Seto, and J. J. Leonard, “Communication-constrained
multi-AUV cooperative SLAM,” in IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA), 2015.

[133] M. Siami, A. Olshevsky, and A. Jadbabaie, “Deterministic and randomized
actuator scheduling with guaranteed performance bounds,” IEEE Trans. on
Automatic Control, vol. 66, no. 4, pp. 1686–1701, 2020.

[134] N. K. Vishnoi, “Lx=b Laplacian Solvers and their Algorithmic Applications,”
Foundations and Trends in Theoretical Computer Science, 2013.

[135] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng, “Spectral sparsifica-
tion of graphs: theory and algorithms,” Communications of the ACM, vol. 56,
no. 8, pp. 87–94, 2013.

[136] D. A. Spielman and N. Srivastava, “Graph Sparsification by Effective Resis-
tances,” SIAM Journal on Computing, 2011.

[137] J. D. Batson, D. A. Spielman, and N. Srivastava, “Twice-ramanujan sparsi-
fiers,” in Proceedings of the forty-first annual ACM symposium on Theory of
computing, pp. 255–262, 2009.

[138] R. Kyng and S. Sachdeva, “Approximate gaussian elimination for laplacians-
fast, sparse, and simple,” in IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, 2016.

[139] D. Durfee, R. Kyng, J. Peebles, A. B. Rao, and S. Sachdeva, “Sampling random
spanning trees faster than matrix multiplication,” in Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 730–742, 2017.

[140] R. Peng and D. A. Spielman, “An efficient parallel solver for SDD linear sys-
tems,” in Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pp. 333–342, 2014.

[141] Y. T. Lee, R. Peng, and D. A. Spielman, “Sparsified cholesky solvers for SDD
linear systems,” arXiv preprint arXiv:1506.08204, 2015.

[142] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman, “Sparsified
cholesky and multigrid solvers for connection laplacians,” in Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pp. 842–850,
2016.

[143] R. Tutunov, H. Bou-Ammar, and A. Jadbabaie, “Distributed Newton Method
for Large-Scale Consensus Optimization,” IEEE Trans. on Automatic Control,
vol. 64, no. 10, pp. 3983–3994, 2019.

[144] S. J. Wright, “Coordinate Descent Algorithms,” Math. Program., vol. 151, pp. 3–
34, June 2015.

348

[145] J. Nutini, I. Laradji, and M. Schmidt, “Let’s Make Block Coordinate Descent
Go Fast: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and
Superlinear Convergence,” 2017.

[146] J. Mareček, P. Richtárik, and M. Takáč, “Distributed block coordinate descent
for minimizing partially separable functions,” in Numerical Analysis and Opti-
mization, pp. 261–288, Springer, 2015.

[147] A. Beck and L. Tetruashvili, “On the convergence of block coordinate descent
type methods,” SIAM journal on Optimization, vol. 23, no. 4, pp. 2037–2060,
2013.

[148] Y. Nesterov, “Efficiency of Coordinate Descent Methods on Huge-Scale Opti-
mization Problems,” SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–362,
2012.

[149] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent maps by
relaxation,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 4,
pp. 3841–3846, IEEE, 2000.

[150] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm for
simultaneous localization and mapping,” IEEE Trans. Robotics, vol. 21, no. 2,
pp. 196–207, 2005.

[151] Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg, “Row by row methods for
semidefinite programming,” Industrial Engineering, pp. 1–21, 2009.

[152] P.-W. Wang, W.-C. Chang, and J. Z. Kolter, “The Mixing method: low-rank
coordinate descent for semidefinite programming with diagonal constraints,”
arXiv preprint arXiv:1706.00476, 2017.

[153] M. A. Erdogdu, A. Ozdaglar, P. A. Parrilo, and N. D. Vanli, “Convergence Rate
of Block-Coordinate Maximization Burer-Monteiro Method for Solving Large
SDPs,” arXiv preprint arXiv:1807.04428, 2018.

[154] Y. Tian, K. Khosoussi, and J. P. How, “Block-Coordinate Minimiza-
tion for Large SDPs with Block-Diagonal Constraints,” arXiv preprint
arXiv:1903.00597, 2019.

[155] A. Agarwal and J. C. Duchi, “Distributed Delayed Stochastic Optimization,”
Advances in Neural Information Processing Systems (NIPS), 2011.

[156] F. Niu, B. Recht, C. Re, and S. Wright, “Hogwild: A Lock-Free Approach
to Parallelizing Stochastic Gradient Descent,” Advances in Neural Information
Processing Systems (NIPS), 2011.

[157] J. Liu and S. J. Wright, “Asynchronous Stochastic Coordinate Descent: Paral-
lelism and Convergence Properties,” SIAM Journal on Optimization, 2015.

349

[158] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An Asynchronous Par-
allel Stochastic Coordinate Descent Algorithm,” Journal of Machine Learning
Research, 2015.

[159] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous Parallel Stochastic Gradi-
ent for Nonconvex Optimization,” Advances in Neural Information Processing
Systems (NIPS), 2015.

[160] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous Decentralized Parallel
Stochastic Gradient Descent,” in Intl. Conf. on Machine Learning (ICML),
2018.

[161] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous paral-
lel algorithms for nonconvex optimization,” Mathematical Programming, 2019.

[162] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan, “Distributed mean
estimation with limited communication,” in Intl. Conf. on Machine Learning
(ICML), pp. 3329–3337, PMLR, 2017.

[163] O. Shamir, N. Srebro, and T. Zhang, “Communication-Efficient Distributed
Optimization Using an Approximate Newton-Type Method,” in Proceedings
of the 31st International Conference on International Conference on Machine
Learning - Volume 32, ICML’14, JMLR.org, 2014.

[164] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily Aggregated Gradi-
ent for Communication-Efficient Distributed Learning,” in Advances in Neural
Information Processing Systems (NIPS), vol. 31, 2018.

[165] A. Javanmard, A. Montanari, and F. Ricci-Tersenghi, “Phase transitions in
semidefinite relaxations.,” Proceedings of the National Academy of Sciences
(PNAS), 2016.

[166] N. A. Lynch, Distributed algorithms. Elsevier, 1996.

[167] N. Boumal, P.-A. Absil, and C. Cartis, “Global rates of convergence for noncon-
vex optimization on manifolds,” IMA Journal of Numerical Analysis, vol. 39,
pp. 1–33, 02 2018.

[168] D. Rosen and L. Carlone, “Computational Enhancements for Certifiably Correct
SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2017. Workshop on “Introspective Methods for Reliable Autonomy”.

[169] B. O’Donoghue and E. Candes, “Adaptive Restart for Accelerated Gradient
Schemes,” Foundations of Computational Mathematics, vol. 15, 04 2012.

[170] L. Barenboim and M. Elkin, “Distributed (∆ + 1)-coloring in linear (in ∆)
time,” in Proceedings of the forty-first annual ACM symposium on Theory of
computing, pp. 111–120, ACM, 2009.

350

[171] J. Schneider and R. Wattenhofer, “A new technique for distributed symmetry
breaking,” in Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, pp. 257–266, ACM, 2010.

[172] D. M. Rosen, “Scalable Low-Rank Semidefinite Programming for Certifiably
Correct Machine Perception,” in Intl. Workshop on the Algorithmic Foundations
of Robotics (WAFR), June 2020.

[173] L. Vandenberghe and S. Boyd, “Semidefinite Programming,” SIAM Review,
vol. 38, pp. 49–95, Mar. 1996.

[174] N. Boumal, V. Voroninski, and A. S. Bandeira, “The Non-convex Burer–
Monteiro Approach Works on Smooth Semidefinite Programs,” in Advances in
Neural Information Processing Systems (NIPS), (USA), pp. 2765–2773, Curran
Associates Inc., 2016.

[175] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre, “Low-Rank Optimization
on the Cone of Positive Semidefinite Matrices,” SIAM J. Optim., vol. 20, no. 5,
pp. 2327–2351, 2010.

[176] G. Golub and C. V. Loan, Matrix Computations. Baltimore, MD: Johns Hopkins
University Press, 3rd ed., 1996.

[177] Y. Saad, “On the Rates of Convergence of the Lanczos and the block-Lanczos
Methods,” SIAM J. Numer. Anal., vol. 17, pp. 687–706, Oct. 1980.

[178] C. de Sa, B. He, I. Mitliagkas, C. Ré, and P. Xu, “Accelerated Stochastic Power
Iteration,” in Proc. Mach. Learn. Res., pp. 58–67, 2018.

[179] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vin-
cent, “Sparse pose adjustment for 2d mapping,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2010.

[180] D. Martinec and T. Pajdla, “Robust Rotation and Translation Estimation in
Multiview Reconstruction,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), (Minneapolis, MN), pp. 1–8, June 2007.

[181] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a Matlab Tool-
box for Optimization on Manifolds,” Journal of Machine Learning Research,
2014.

[182] H. Tijms, A First Course in Stochastic Models. John Wiley and Sons, Ltd,
2004.

[183] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algo-
rithms,” IEEE Transactions on Information Theory, 2006.

[184] W. Huang, P.-A. Absil, K. A. Gallivan, and P. Hand, “ROPTLIB: an object-
oriented C++ library for optimization on Riemannian manifolds,” tech. rep.,
Florida State University, 2016.

351

[185] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Work-
shop on Open Source Software, 2009.

[186] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an Open-Source
Library for Real-Time Metric-Semantic Localization and Mapping,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2020.

[187] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. García-Rodríguez, “A Review on Deep Learning Techniques Applied to Se-
mantic Segmentation,” ArXiv Preprint: 1704.06857, 2017.

[188] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin, “Parallel maximum clique
algorithms with applications to network analysis,” SIAM Journal on Scientific
Computing, vol. 37, no. 5, pp. C589–C616, 2015.

[189] M. J. Black and A. Rangarajan, “On the unification of line processes, outlier
rejection, and robust statistics with applications in early vision,” Intl. J. of
Computer Vision, 1996.

[190] P. Huber, Robust Statistics. John Wiley & Sons, New York, NY, 1981.

[191] Z. Zhang, “Parameter estimation techniques: a tutorial with application to
conic fitting,” Image and Vision Computing, vol. 15, no. 1, pp. 56–76, 1997.

[192] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for shape
manipulation,” ACM SIGGRAPH 2007 papers on - SIGGRAPH ’07, 2007.

[193] L. Carlone and A. Censi, “From Angular Manifolds to the Integer Lattice: Guar-
anteed Orientation Estimation With Application to Pose Graph Optimization,”
IEEE Trans. Robotics, vol. 30, no. 2, pp. 475–492, 2014.

[194] Army Research Laboratory, “Distributed and Collaborative Intelligent Sys-
tems and Technology Collaborative Research Alliance (DCIST CRA).” https:
//www.dcist.org/, 2020.

[195] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik,
and R. Siegwart, “The EuRoC micro aerial vehicle datasets,” Intl. J. of Robotics
Research, 2016.

[196] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 14, no. 2, 1992.

[197] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A Modern Library for 3D Data
Processing,” arXiv:1801.09847, 2018.

[198] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Preinte-
gration for Real-Time Visual-Inertial Odometry,” IEEE Trans. Robotics, vol. 33,
no. 1, pp. 1–21, 2017.

352

https://www.dcist.org/
https://www.dcist.org/

[199] A. Reinke, M. Palieri, B. Morrell, Y. Chang, K. Ebadi, L. Carlone, and
A. Agha-mohammadi, “LOCUS 2.0: Robust and Computationally Efficient Li-
DAR Odometry for Real-Time Underground 3D Mapping,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 9043–9050, 2022.

[200] N. Hughes, Y. Chang, and L. Carlone, “Hydra: a real-time spatial perception
engine for 3D scene graph construction and optimization,” in Robotics: Science
and Systems (RSS), 2022.

[201] K. N. Chaudhury, Y. Khoo, and A. Singer, “Global Registration of Multiple
Point Clouds Using Semidefinite Programming,” SIAM Journal on Optimiza-
tion, vol. 25, no. 1, pp. 468–501, 2015.

[202] D. P. O’Leary and B. W. Rust, “Variable projection for nonlinear least squares
problems,” Computational Optimization and Applications, vol. 54, pp. 579–593,
2013.

[203] C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoennessen, “On
benchmarking camera calibration and multi-view stereo for high resolution im-
agery.,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2008.

[204] C. Sweeney, “Theia Multiview Geometry Library: Tutorial & Reference.” http:
//theia-sfm.org.

[205] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2012.

[206] K. Wilson and N. Snavely, “Robust Global Translations with 1DSfM,” in Euro-
pean Conf. on Computer Vision (ECCV), 2014.

[207] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring photo col-
lections in 3D,” ACM Trans. Graph., 2006.

[208] K. Ni and F. Dellaert, “Multi-level submap based SLAM using nested dis-
section,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
pp. 2558–2565, 2010.

[209] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg, “Hierar-
chical optimization on manifolds for online 2D and 3D mapping,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), pp. 273–278, 2010.

[210] E. Sucar, K. Wada, and A. Davison, “NodeSLAM: Neural Object Descriptors
for Multi-View Shape Reconstruction,” in 2020 International Conference on 3D
Vision (3DV), pp. 949–958, 2020.

353

http://theia-sfm.org
http://theia-sfm.org

[211] H. Bavle, J. L. Sanchez-Lopez, M. Shaheer, J. Civera, and H. Voos, “Situational
graphs for robot navigation in structured indoor environments,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 9107–9114, 2022.

[212] Y. Chang, N. Hughes, A. Ray, and L. Carlone, “Hydra-multi: Collaborative
online construction of 3d scene graphs with multi-robot teams,” arXiv preprint
arXiv:2304.13487, 2023.

[213] M. Fernandez-Cortizas, H. Bavle, J. L. Sanchez-Lopez, P. Campoy, and H. Voos,
“Multi s-graphs: A collaborative semantic slam architecture,” arXiv preprint
arXiv:2305.03441, 2023.

[214] J. Gallier, “The Schur Complement and Symmetric Positive Semidefinite (and
Definite) Matrices.” unpublished note, available online: http://www.cis.
upenn.edu/~jean/schur-comp.pdf, Dec. 2010.

[215] A. Edelman, T. A. Arias, and S. T. Smith, “The Geometry of Algorithms with
Orthogonality Constraints,” SIAM J. Matrix Anal. Appl., vol. 20, p. 303–353,
Apr. 1999.

[216] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University
Press, 1991.

[217] D. A. Spielman, “Spectral and Algebraic Graph Theory.” http://cs-www.cs.
yale.edu/homes/spielman/sagt/sagt.pdf, 2019.

[218] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press,
2012.

354

http://www.cis.upenn.edu/~jean/schur-comp.pdf
http://www.cis.upenn.edu/~jean/schur-comp.pdf
http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf

	Introduction
	Motivation
	Thesis Overview
	Contributions
	Related Publications
	Thesis Organization

	Background
	Mathematical Preliminaries
	Collaborative Geometric Estimation
	Rotation Averaging
	Pose Graph Optimization (PGO)
	Bundle Adjustment (BA)

	Literature Review
	Collaborative SLAM
	CSLAM Front-End
	CSLAM Back-End
	Complete Systems
	CSLAM Datasets

	Certifiably Correct Geometric Estimation
	Outlier-Robust Geometric Estimation
	Spectral Graph Theoretic Methods
	Graph Structure in Rotation Averaging and PGO
	Measurement Selection and Sparsification
	Spectral Sparsification and Laplacian Solvers

	Block-Coordinate Descent Methods
	Asynchronous and Communication-Efficient Distributed Optimization

	Certifiably Correct Distributed Pose Graph Optimization
	Introduction
	Certifiably Correct Pose Graph Optimization
	SDP Relaxation for PGO
	Solving the Relaxation: The Distributed Riemannian Staircase
	The Complete Algorithm

	Distributed Local Search via Riemannian Block-Coordinate Descent
	Block Selection Rules
	Computing a Block Update
	Accelerated Riemannian Block-Coordinate Descent
	Parallel Riemannian Block-Coordinate Descent

	Convergence Analysis for RBCD and RBCD++
	Distributed Verification
	Distributed Minimum-eigenvalue Computation
	Descent from Suboptimal Critical Points

	Distributed Initialization and Rounding
	Distributed Initialization
	Distributed Rounding

	Experiments
	Evaluations of Distributed Local Search
	Evaluations of Distributed Verification
	Evaluations of Complete Algorithm (Algorithm 4.2)

	Conclusion

	Asynchronous Distributed Pose Graph Optimization
	Introduction
	Problem Formulation
	Proposed Algorithm
	Communication Thread
	Optimization Thread
	Implementation Details

	Convergence Analysis
	Global View of the Algorithm
	Sufficient Conditions for Convergence

	Experimental Results
	Evaluation in Simulation
	Evaluation on benchmark PGO datasets

	Conclusion

	Robust and Fully Distributed SLAM System and Large-Scale Field Experiments
	Introduction
	System Overview
	Distributed Loop Closure Detection
	Robust Distributed Trajectory Estimation
	Background: Graduated Non-Convexity
	Robust Distributed Initialization
	Robust Distributed Pose Graph Optimization
	Implementation Details

	Local Mesh Optimization
	Offline Experiments
	PGO Robustness Analysis
	Evaluation in Simulation and Benchmarking Datasets
	Evaluation in Outdoor Datasets

	Large-Scale Field Experiments
	Datasets
	Experimental Setup
	Real-time Evaluation Under Unreliable Communication
	Parameter Sensitivity
	Live Results and Discussions

	Conclusion

	Collaborative Geometric Estimation with Event-Triggered Communication
	Introduction
	Problem Formulation
	Proposed Algorithm
	Distributed Update with Analytic Elimination
	Incorporating Lazy Communication
	The Complete Algorithm

	Convergence Analysis
	Experimental Results
	Evaluating Lazy Communication
	Performance on Collaborative SLAM Datasets
	Performance on Collaborative SfM Datasets

	Conclusion

	Collaborative Rotation Averaging and Translation Estimation with Spectral Sparsification
	Introduction
	Problem Formulation
	Laplacian Systems Arising from Rotation Averaging and Translation Estimation
	Rotation Averaging
	Translation Estimation

	Algorithms and Performance Guarantees
	A Collaborative Laplacian Solver with Spectral Sparsification
	Collaborative Rotation Averaging
	Collaborative Translation Estimation
	Extension to Outlier-Robust Optimization

	Experimental Results
	Evaluation of Estimation Accuracy and Communication Efficiency
	Evaluation on Benchmark PGO Datasets
	Robust PGO Initialization for Real-World CSLAM
	Evaluation on Real-World SfM Datasets
	Discussion

	Conclusion

	Conclusion
	Future Work

	Supplemental Materials for Chapter 4
	Exactness of SDP Relaxation
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Convergence of RBCD and RBCD++
	Proof of Lemma 4.1
	Proof of Theorem 4.4
	Proof of Theorem 4.5
	Convergence on Problem 4.3

	Proof of Theorem 4.3

	Supplemental Materials for Chapter 5
	Proof of Lemma 5.2
	Proof of Theorem 5.1

	Supplemental Materials for Chapter 7
	Proof of Lemma 7.1
	Proof of Theorem 7.1

	Supplemental Materials for Chapter 8
	Details of Spectral Sparsification Algorithm
	Analysis of Riemannian Hessian of Rotation Averaging
	Auxiliary Results for 3D Rotation Averaging
	Proof of Theorem 8.1
	Proof of Corollary 8.1

	Performance Guarantees for Collaborative Laplacian Solver
	Proof of Lemma 8.1
	Proof of Theorem 8.2

	Convergence Analysis
	Analysis of General Approximate Newton Method
	Proof of Theorem 8.3
	Proof of Theorem 8.4

	Auxiliary Lemmas

