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Abstract

A vital aspect of human intelligence is the ability to compose increasingly complex
concepts out of simpler ideas, enabling both rapid learning and adaptation of knowledge.
Despite their impressive performance, current AI systems fall short in this area and
are often unable to solve tasks that fall outside of their training distribution. The work
contained in this thesis aims to bridge this gap by incorporating compositionality into
deep neural networks, thereby enhancing their ability to generalize and solve novel
and complex tasks, such as generating 2D images and 3D assets based on complicated
specifications, or enabling humanoid agents to perform a diverse range of household
activities. The implications of this thesis are far-reaching, as compositionality has
numerous applications across fields such as biology, robotics, and art production. By
significantly improving the compositionality ability of AI systems, this research will
pave the way for more data-efficient and powerful models in different research areas.
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Chapter 1

Introduction

Compositionality is a crucial aspect of human intelligence missing from modern AI

systems. The ability to compose concepts: to combine patterns, ideas, and subgoals

to build a structured representation of the world, and then to reason about the

world by manipulating individual components, manifests in crucial cognitive abilities.

Humans can incorporate individual observations into sophisticated knowledge and belief

structures, make small targeted adjustments to complex plans, imagine alternatives

to a base scenario, and create new technology or art inspired by existing work.

Such compositional abilities have largely failed to materialize in AI systems, yet

achieving this could be one of the keys to unlocking major AI capabilities such as

continual learning, controllable and robust behavior, high-level planning, counterfactual

reasoning, and stronger generalization.

This dissertation focuses on developing neural networks that exhibit compositional

abilities to solve a wide range of tasks, such as image generation, question answering,

mathematical reasoning, robot manipulation, and embodied decision-making. The

goal is for the network to solve tasks with combinations of concepts, goals or skills

beyond what it was exposed to during training.

Our study on compositional AI spans the following two axes: Prior Knowledge

and Compositional Structure. Prior knowledge describes the set of basic concepts

and capabilities that the model learns over the course of training. The large deep

learning models [131, 125, 13] trained on a large amount of data contain rich prior
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knowledge, but they miss the compositional structure, which is another key compo-

nent to achieve compositionality. To build the compositional structure, we propose

compositional operators to compose the basic concepts. Applying the compositional

operators to pre-trained models enables us to significantly improve the compositional

generation ability of AI systems.

This dissertation incorporates the introduction of how to build the Compositional

Structure in the first two parts. Part I: Composing concepts and goals: We develop

neural networks that can compose concepts or goals to give rise to highly controllable

and complex, fine-grained behaviors. Part II: Composing models: We compose

pre-trained models from different domains to yield powerful crossmodal capabilities

without any training or finetuning. In Part III: Transferring Compositionality,

we introduce how to achieve Prior Knowledge in a data-efficient way by transferring

knowledge from pre-trained models.

1.1 Composing Concepts and Goals

Humans have limitless capacity to recombine concepts in unconventional ways. For

example, given a 3D scene, we can easily imagine changing the color of each object

beyond their natural distribution, and we can separate the color changes of one

object from color changes of other objects. But neural networks seem to lack such

compositional ability, and often fail to generalize to new patterns beyond their training

distribution. As an example, consider the state-of-the-art image generation model

DALL-E 2 [125]. Given an input language description “a red house and a blue car”,

this model often generates images that either omit the car or apply a color to the

wrong objects (Fig. 1-2 first column), even when the model is perfectly capable of

generating separate images of red houses and blue cars.

We try to solve this problem by equipping the model with three compositional

operators [25, 88] – AND, OR, and NOT – that allow the model to combine concepts

such as facial attributes, objects, object relations, and natural language descriptions

(Fig. 1-1). The key insight is to use the inherent compositional behavior of probability
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“A large blue metal cube to the left of a small yellow metal sphere” AND
“A large blue metal cube in front of a large cyan metal cylinder”
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“A small brown metal sphere below a small green metal sphere” AND
“A small brown metal sphere behind a large gray rubber cube”

StyleGAN2 EBM GLIDE DALLE-2 Ours

Figure 1-1: Composing concepts and goals. We develop neural networks that can
compose various concepts or goals for highly controllable visual generation, such as facial
attributes, objects, object relations, and natural language descriptions, to give rise to highly
controllable and complex, fine-grained behaviors.

distributions to model concept composition within iterative frameworks such as Energy-

based Models (EBMs) [79] and Diffusion Models [145, 147, 51]. Producing an image

that matches an individual concept can be understood as a “subgoal” of the generative

model, and hence this framework naturally extends to composing subgoals in goal-

directed settings. The proposed compositional operators allow us to compose concepts

or goals using pre-trained models, resulting in remarkable generalization abilities and

fine-grained user control over the model’s outputs.

Composable energy-based model [25, 87]. EBMs [79] are trained to match an

unnormalized probability distribution 𝑝𝜃(𝑥) ∝ 𝑒−𝐸𝜃(𝑥) to a given dataset of images.

Its energy function 𝐸𝜃, which is parameterized by a neural network, maps an image 𝑥

to a scalar energy. At inference time, the model optimizes 𝑥 to minimize 𝐸𝜃(𝑥) under

a stochastic process called Langevin sampling: 𝑥𝑡 = 𝑥𝑡−1 − 𝜆
2
∇𝑥𝐸𝜃(𝑥𝑡−1) + 𝜔𝑡, 𝜔𝑡 ∼

𝒩 (0, 𝜎2𝐼). When the EBM is well-trained, it can generate photorealistic images by

running Langevin sampling for many iterations.

We want to generate samples from some conditional distribution 𝑝𝜃(𝑥|𝑐), where

𝑐 is the conditioned concept which may be complex and far from the training dis-

tribution, such as a long sentence that is never seen during training. The proposed
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A lake AND A 
mountain AND
Cherry Blossoms 
next to the lake

A mystical tree AND
A magical pond 
AND NOT Dark

A mystical tree 
AND A magical 
pond AND Dark

A red house and 
a blue car

A red house AND
A blue car

Diffusion Model Composable Diffusion (Ours)

A clear blue sky AND
A church in the horizon 
AND Colorful flower 
fields around the church

Figure 1-2: Results of Stable Diffusion [131] and our composable diffusion model.
Our method can compose concepts using compositional operators on pre-trained diffusion
models without training or fine-tuning. It generates images that reflect the combined concepts
more accurately.

compositional operators [25] leverage inherent structure in 𝑐, without needing to

modify the architecture or training scheme of the EBM. We discover that the EBM

energy of an image conditioned on two concepts can be set to the sum of the energies

of the image conditioned on each individual concept. This concept conjunction

(AND) operator produces images that convincingly combine the concepts. Using a

similar strategy, we introduce the concept disjunction (OR) operator to generate

images containing at least one of several concepts, and concept negation (NOT)

to remove concepts from an image. In Chapter 2, we show that chaining energy

functions in this manner can generate images with conditions far more complex than

those observed at training time. Remarkably, these compositional operators perform

well even when they are only introduced at inference time: the EBM can be trained

entirely on individual objects or concepts, and generalize to multiple concepts at test

time without additional finetuning.

Composable diffusion model [88]. Diffusion Models [145, 147, 51] have shown

amazing image generation results. Starting from random noise, diffusion models

generate images through an iterative denoising process: 𝑥𝑡−1 = 𝑥𝑡−𝜖𝜃(𝑥𝑡, 𝑡)+𝜔𝑡, 𝜔𝑡 ∼
𝒩 (0, 𝜎2𝐼), where 𝜖𝜃(𝑥𝑡, 𝑡) is the noise pattern to be filtered out. In Chapter 3, we show

that diffusion models can be interpreted as implicitly parameterized EBMs, where

the noise term 𝜖𝜃(𝑥𝑡, 𝑡) represents the gradient of a time-dependent energy function.
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With such an interpretation, we can generate images conditioned on combinations of

concepts by composing their individual noise terms using the proposed compositional

operators. Similarly, we can define the AND operator and the NOT operator on top

of diffusion models. As with EBMs, employing compositional operators enhances the

robustness, user control, and generalization ability of these powerful models. They

produce high-quality images matching detailed specifications (Fig. 1-2).

1.2 Composing Models

Humans continually expand their capabilities over their lifetime, readily integrating

new knowledge and skills with existing ones. Compositionality is a powerful framework

for imbuing neural networks with a similar capacity. Large pre-trained models exhibit

distinct and complementary capabilities dependent on the data they are trained

on. Language models are capable of textual reasoning but cannot process visual

information, while vision models such as DALL-E 2 [125] can generate photorealistic

images but fail to understand complex language descriptions. However, there is no

effective way to robustly combine the capabilities of these models without additional

training. Prior approaches [2, 174] for composing models are task-specific or scale

poorly.

In Chapter 4, we propose a unified framework [83] to compose different pre-trained

models in a zero-shot manner∗ to solve diverse multi-modal tasks without any training

or finetuning. The framework consists of a single generator model that proposes

feasible solutions and an ensemble of scorer models that guide the generator to the

best solution. The generator’s output is iteratively refined to optimize the sum of the

scores in a manner reminiscent of our earlier Concept Conjunction operator.

This iterative closed-loop feedback between the generator and scorers results in

stable performance, and enables each scorer to compensate for the potential weaknesses

of other scorers. We demonstrate that guiding the generator with an ensemble of

scorers significantly outperforms a generator guided by a single scorer.

∗By zero-shot, we mean the composed models are never trained together on the evaluation task.
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Generator(G) Scorers(E)

Iterative Consensus

Video Question Answering

Q: How to make the food step by step? 
A: Put water in the pot, …, add sausage, …

Grade School Math

Q: A robe takes 2 bolts of blue fiber and half 
that much white fiber. How many bolts in 
total does it take? A: 3 
Q: Claire makes a 3 egg omelet every 
morning for breakfast. How many dozens of 
eggs will she eat in 4 weeks? A: 7 

Image Generation Robot Manipulation

G: Language models
E: CLIP models

G: Language models
E: QA classifiers

G: Diffusion models
E: CLIP models, …, 

Image classifiers

G: World models
E: Image 
segmentation models Orange mug to the right of orange bowl; …;

Orange mug on top of orange bowl
GrasshopperA red car in 

front of a tree
Hamster

Figure 1-3: Composing models. We develop a unified framework to compose pre-trained
models from different modalities to solve diverse tasks in a zero-shot manner.

This framework achieves strong zero-shot performance on diverse tasks, including

image generation, video question answering, mathematical reasoning, and robot

manipulation (Fig. 1-3). For example, in the video question-answering task, the

generator is a language model which is trained on pure text data and the scorers are

CLIP [119] models which are trained on image-caption pairs. Their combination can

be used to answer questions about videos even though none of them has ever seen

video data. In addition, the models can be trained on different data and tasks in an

incremental learning manner, presenting an avenue for applications in lifelong and

continual learning settings.

1.3 Transferring Compositionality

Composing concepts and composing models aim at building compositional structures.

An equally crucial factor in achieving compositionality is enhancing its prior knowledge,

which amplifies the models’ capacity to grasp a wide range of concepts.

Recent advancements demonstrate that sufficiently massive models, trained on

extensive datasets, exhibit more than just an understanding of basic concepts; they

also showcase the emergence of compositional abilities. After being exposed to images

or text aggregated from billions of web pages, image and text generation models can

often succeed on unconventional prompts such as generating an image with “teddy
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Goal: Inside (pancake, stove): 1

(a) Agent doing tasks in VirtualHome

(b) VirtualCity examples

Indoor scene Outdoor scene Segmentation mapNight scene

Figure 1-4: Decision-making tasks in VirtualHome [118]. VirtualHome is a large-scale
embodied environment to simulate household activities, such as “making breakfast”. Agents
are represented as humanoid avatars which can interact with the environment through
high-level instructions.

bears swimming at the Olympics”, suggesting that despite some outstanding failure

modes (as described before), these models have arrived at some implicit structure that

allows them to reason in a compositional manner. Such large pre-trained models can

be further combined with the compositional structures described above to enhance

compositionality.

Nonetheless, numerous tasks like decision-making, embodied behavior, and policy

learning pose considerably greater challenges for such scaling. The collection of

extensive data on a large scale for many real-world tasks remains intricate or, in

certain cases, unattainable. In this part, rather than relying on training extensive

models with massive datasets to establish a solid foundation of prior knowledge for

compositionality, we study how to transfer the compositionality from large pre-trained

models to solve new tasks without the necessity of vast amounts of data.

Language models are one of the most commonly used models for studying compo-

sitionality because of the compositional nature of natural language. Large language

models such as GPT-4 [109] have shown remarkable compositionality on language tasks.

One question to ask is whether we can transfer the compositionality in pre-trained

language models to solve other tasks, such as embodied decision-making tasks shown

in Fig. 1-4, without using extensive training data.

In Chapter 5, we use large pre-trained language models as a general scaffold for

interactive decision-making across a variety of environments by converting policy inputs

into sequential data. We demonstrate that language modeling induces compositional

generalization in learned policies: initializing a policy with a pre-trained language
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model substantially improves out-of-distribution performance on novel combinations.

These results highlight the promise of leveraging existing large pre-trained models and

transferring their compositionality to solve new tasks.

We believe that compositionality is a crucial component of next-generation AI

systems. Our research presents a new direction for overcoming the constraints of

current AI models and paving the way for more composable AI systems. By building

AI systems that can learn and compose from multiple pre-trained models, we can

unlock the potential for AI systems to continually improve performance and effectively

handle new tasks in a dynamic world. Through model composition and continual

learning, we are one step closer to realizing the full potential of AI.

1.4 Dissertation Structure

This dissertation investigates compositionality from three distinct but interrelated

perspectives: the composition of concepts and goals, the combination of models across

various domains, and the transfer of compositional strategies to novel applications.

Part I focuses on exploring methods for composing concepts and goals, such as facial

attributes, objects, and natural language descriptions, using two types of generative

models, i.e., energy-based models and diffusion models.

– Chapter 2 composes energy-based models using compositional operators, i.e.,

conjunction, disjunction, and negation, for image generation. The compositional

operators allow us to generalize to new combinations that are outside the training

distribution.

– Chapter 3 interprets diffusion models as energy-based models, and the proposed

compositional operators can be directly applied to diffusion models. As diffusion

models are more stable to train, composing concepts over diffusion models

enables us to generate more complex and photorealistic images.

Part II delves into methods for composing models from different domains. This

process aims to construct a robust multi-modal framework capable of tackling a wide
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range of tasks that may not have been encountered during training.

– In Chapter 4, we introduce an approach that enables the composition of pre-

trained models from diverse domains, such as vision models, language models,

and mathematical problem solvers. The method facilitates communication and

collaboration between pre-trained models, harnessing their collective intelligence.

Models learn from each other, exchange feedback, and iteratively improve their

performance.

Part III takes a different perspective on compositionality by investigating its

transferability for solving novel tasks without relying on extensive amounts of data.

– Chapter 5 explores pre-trained models as a way to bootstrap compositional

reasoning capabilities, facilitating the transfer of accumulated knowledge and

insights from well-established models to unexplored tasks. This approach sub-

stantially lessens the requirement for intensive training on large datasets, thus

circumventing a common bottleneck in AI development.
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Part I

Composing Concepts and Goals
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Chapter 2

Compositional Visual Generation with

Energy-Based Models

Yilun Du, Shuang Li, Igor Mordatch; NeurIPS 2020.

Nan Liu∗, Shuang Li*, Yilun Du*, Joshua B. Tenenbaum, Antonio Torralba;

NeurIPS 2021.

A vital aspect of human intelligence is the ability to compose increasingly complex

concepts out of simpler ideas, enabling both rapid learning and adaptation of knowledge.

We find that energy-based models (EBMs) can exhibit this ability by directly combining

probability distributions. Samples from the combined distribution correspond to

compositions of concepts. For example, given one distribution for smiling face images,

and another for male faces, we can combine them to generate smiling male faces.

This allows us to generate natural images that simultaneously satisfy conjunctions,

disjunctions, and negations of concepts.

2.1 Introduction

Humans are able to rapidly learn new concepts and continuously integrate them into

prior knowledge. The core component in enabling this is the ability to compose increas-

∗Equal Contribution
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ingly complex concepts out of simpler ones as well as recombining and reusing concepts

in novel ways [35]. By combining a finite number of primitive components, humans

can create an exponential number of new concepts, and use them to rapidly explain

current and past experiences [78]. We are interested in enabling such capabilities in

machine learning systems, particularly in the context of generative modeling.

Past efforts have attempted to enable compositionality in several ways. One

approach decomposes data into disentangled factors of variation and situates each

datapoint in the resulting - typically continuous - factor vector space [157, 46]. The

factors can either be explicitly provided or learned in an unsupervised manner. In both

cases, however, the dimensionality of the factor vector space is fixed and defined prior

to training. This makes it difficult to introduce new factors of variation, which may

be necessary to explain new data, or to taxonomize past data in new ways. Another

approach to incorporate compositionality is to spatially decompose an image into a

collection of objects, each object slot occupying some pixels of the image defined by a

segmentation mask [155, 39]. Such approaches can generate visual scenes with multiple

objects, but may have difficulty in generating interactions between objects. These

two incorporations of compositionality are considered distinct, with very different

underlying implementations.

In this chapter, we introduce how to implement compositionality via energy-based

models (EBMs). Instead of using an explicit vector of factors that is input to a

generator function, or object slots that are blended to form an image, our unified

treatment defines factors of variation and object slots via energy functions. Each

factor is represented by an individual scalar energy function that takes an image as

input and outputs a low energy value if the factor is exhibited in the image. Images

that exhibit the factor can then be generated implicitly through a Markov Chain

Monte Carlo (MCMC) sampling process that minimizes the energy. Importantly, it is

also possible to run the MCMC process on some combinations of energy functions

to generate images that exhibit multiple factors or multiple objects, in a globally

coherent manner.

There are several ways to combine energy functions. One can add or multiply
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Figure 2-1: Illustration of logical composition operators over energy functions
𝐸1 and 𝐸2 (drawn as level sets where red = valid areas of samples, grey = invalid areas of
samples).

distributions as in mixtures [139, 39] or products [49] of experts. We view these as

probabilistic instances of logical operators over concepts. Instead of using only one, we

consider three operators: logical conjunction, disjunction, and negation (illustrated in

Figure 2-1). We can then flexibly and recursively combine multiple energy functions

via these operators. More complex operators can be formed out of our base operators.

EBMs with such composition operations enable a breadth of new capabilities -

among them is a unique approach to continual learning. Our formulation defines

concepts or factors implicitly via examples, rather than pre-declaring an explicit latent

space ahead of time. For example, we can create an EBM for the concept of “black

hair” from a dataset of face images that share this concept. New concepts (or factors),

such as hair color can be learned by simply adding a new energy function and can then

be combined with energies of previously trained concepts. This process can repeat

continually. This view of few-shot concept learning and generation is similar to the

work of [127], with the distinction that instead of learning to generate holistic images

from few examples, we learn factors from examples, which can be composed with

other factors. A related advantage is that finely controllable image generation can

be achieved by specifying the desired image via a collection of logical clauses, with

applications to neural scene rendering [34]. In summary, our contributions are:

• First, while the composition of energy-based models has been proposed in

abstract settings before [49], we show that it can be used to generate plausible

natural images.
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• Second, we propose a principled approach to combine independently trained

energy models based on logical operators, which can be chained recursively,

allowing controllable generation based on a collection of logical clauses at test

time.

• Finally, by being able to recursively combine independent models, we show our

approach allows us to extrapolate to new concept combinations, continually

incorporate new visual concepts for generation, and infer concept properties.

2.2 Related Work

Our work draws on results in energy-based models - see [79] for a comprehensive review.

A number of methods have been used for inference and sampling in EBMs, from Gibbs

Sampling [50], Langevin Dynamics [166, 30], Path Integral methods [29] and learned

samplers [71, 149]. In this work, we apply EBMs to the task of compositional visual

generation.

Compositionality has been incorporated in representation learning (see [4] for a

summary) and generative modeling. One approach to compositionality has focused

on learning disentangled factors of variation [45, 77, 157]. Such an approach allows

for the combination of existing factors, but does not allow the addition of new

factors. A different approach to compositionality includes learning various different

pixel/segmentation masks for each concept [39, 40]. However, such a factorization

may have difficulty capturing the global structure of an image, and in many cases,

different concepts cannot be explicitly factored using segmentation masks. Individual

compositions of factors can also be seen as a domain translation problem [10, 116, 101].

Such a formulation, however, requires separate retraining of models for each considered

composition.

In contrast, our approach towards compositionality focuses on composing separate

learned probability distributions of concepts. Such an approach allows viewing factors

of variation as constraints [98]. In prior work, [48] show that products of EBMs can be

used to decompose complex generative modeling problems into simpler ones. [157, 46]
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further apply products of distributions over the latent space of VAE to define compo-

sitions. Both of them rely on joint training to learn compositions of a fixed number of

concepts. In contrast, in this work, we show how we can realize concept compositions

using completely independently trained probability distributions. Furthermore, the

proposed three compositional logical operators, i.e., conjunction, disjunction, and

negation, can be realized and nested together through the manipulation of probability

distributions of different concepts.

Our compositional approach is inspired by the goal of continue/lifelong learning -

see [110] for a thorough review. New concepts can be composed with past concepts

by combining their probability distributions. Many methods in continual learning

are focused on how to overcome catastrophic forgetting [73, 85], but do not support

dynamically growing capacity. Progressive growth of models [132] has been considered,

but is implemented at the level of the model architecture, whereas our method

composes independent models together.

2.3 Method

In this section, we first give an overview of the energy-based Model formulation

employed, along with the introduction of three logical operators that operate on these

models. Subsequently, we delve into the distinctive properties that arise from this

particular form of compositionality.

2.3.1 Energy-based models

EBMs represent data by learning an unnormalized probability distribution across the

data. For each data point 𝑥, an energy function 𝐸𝜃(𝑥), parameterized by a deep

neural network, outputs a scalar energy value such that the model distribution can be

written as:

𝑝𝜃(𝑥) ∝ 𝑒−𝐸𝜃(𝑥). (2.1)
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To train an EBM on a data distribution 𝑝𝐷, we use contrastive divergence [48]. In

particular we use the methodology defined in [30], where a Monte Carlo estimate of

maximum likelihood ℒ is minimized with the following gradient:

∇𝜃ℒ = E𝑥+∼𝑝𝐷∇𝜃𝐸𝜃(𝑥
+)− E𝑥−∼𝑝𝜃∇𝜃𝐸𝜃(𝑥

−). (2.2)

To sample 𝑥− from 𝑝𝜃 for both training and generation, we use MCMC based on

Langevin dynamics [162]. Samples are initialized from uniform random noise and are

iteratively refined using

𝑥𝑡 = 𝑥𝑡−1 −
𝜆

2
∇𝑥𝐸𝜃(𝑥𝑡−1) + 𝜔𝑡, 𝜔𝑡 ∼ 𝒩 (0, 𝜎2𝐼), (2.3)

where 𝑡 is the iteration step, 𝜆 is the step size, 𝜔𝑡 is sampled from the Gaussian

distribution, and 𝐼 is the identity matrix. We refer to each iteration of Langevin

dynamics as a negative sampling step. We note that this form of sampling allows us to

use the gradient of the combined distribution to generate samples from distributions

composed of 𝑝𝜃 and the other distributions. We use this ability to generate images

from multiple different compositions of distributions. To enable high-resolution image

generation, we further apply techniques in [27] to improve EBM training on CelebA

images.

2.3.2 Composition of energy-based models

We next present different ways to compose EBMs using the proposed compositional op-

erators. We consider a set of independently trained EBMs, 𝐸(𝑥|𝑐1), 𝐸(𝑥|𝑐2), . . . , 𝐸(𝑥|𝑐𝑛),
which are learned conditional distributions on underlying concept codes 𝑐𝑖. Latent

codes we consider include position, size, color, gender, hairstyle, and age, which we

also refer to as concepts.

Concept conjunction. In concept conjunction, given a set of independent concepts

(such as a particular hairstyle, facial expression, or eye color), we aim to construct

an output with the specified combination of the concepts. Since the likelihood of an
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output given a set of specific concepts is equal to the product of the likelihood of each

individual concept, we have Equation (2.4), which is also known as the product of

experts [49]:

𝑝(𝑥|𝑐1 AND 𝑐2 . . . AND 𝑐𝑛) ∝
𝑛∏︁

𝑖=1

𝑝(𝑥|𝑐𝑖) ∝ 𝑒−
∑︀𝑛

𝑖=1 𝐸(𝑥|𝑐𝑖). (2.4)

We can thus apply Equation (2.3) to the distribution that is the sum of the energies

of different concepts. We sample from this joint concept space:

𝑥𝑡 = 𝑥𝑡−1 −
𝜆

2
∇𝑥

(︃
𝑛∑︁

𝑖=1

𝐸𝜃(𝑥𝑡−1|𝑐𝑖)
)︃

+ 𝜔𝑡, 𝜔𝑡 ∼ 𝒩 (0, 𝜎2𝐼), (2.5)

where 𝜔𝑡 is the Gaussian noise.

Concept disjunction. In concept disjunction, we aim to construct an output that

represents either of the concepts, such as the colors red or blue. This involves creating

a distribution where there is a significant probability that either of the chosen concepts

is true. A natural choice of such a distribution is the sum of the likelihood of each

concept:

𝑝(𝑥|𝑐1 OR 𝑐2 . . . OR 𝑐𝑛) ∝
𝑛∑︁

𝑖=1

𝑝(𝑥|𝑐𝑖)/𝑍(𝑐𝑖), (2.6)

where 𝑍(𝑐𝑖) denotes the partition function of each concept. A tractable simplification

becomes available if we assume all partition functions 𝑍(𝑐𝑖) to be equal:

𝑛∑︁

𝑖=1

𝑝(𝑥|𝑐𝑖) ∝
𝑛∑︁

𝑖=1

𝑒−𝐸(𝑥|𝑐𝑖) = 𝑒logsumexp
(︀
−𝐸(𝑥|𝑐1),−𝐸(𝑥|𝑐2),...,−𝐸(𝑥|𝑐𝑛)

)︀
, (2.7)

where logsumexp(𝑓1, . . . , 𝑓𝑛) = log
∑︀𝑛

𝑖=1 exp(𝑓𝑖). We can thus apply Equation (2.3)

again to the distribution that is a negative smooth minimum of the energies of each

35



concept. We then sample from the disjunction concept space:

𝑥𝑡 = 𝑥𝑡−1 −
𝜆

2
∇𝑥logsumexp

(︀
−𝐸(𝑥𝑡−1|𝑐1),−𝐸(𝑥𝑡−1|𝑐2), . . . ,−𝐸(𝑥𝑡−1|𝑐𝑛)

)︀
+ 𝜔𝑡,

(2.8)

where 𝜔𝑡 ∼ 𝒩 (0, 𝜎2𝐼). While the assumption that leads to Equation 2.7 is not

guaranteed to hold in general, in our experiments, we empirically find that the

partition function 𝑍(𝑐𝑖) estimates to be similar across different partition functions

and also analyze cases in which partitions functions are different (see Appendix A.1).

Concept negation. In concept negation, we aim to generate an output that does

not contain certain concepts. Given the color red, we want the model output to

have a different color, such as blue. Thus, we need to construct a distribution that

places a high likelihood of data that is different from a given concept. One choice

is a distribution inversely proportional to the concept. Importantly, negation must

be defined with respect to another concept to be useful. For example, in image

generation, the opposite of a person wearing eyeglasses is a person without wearing

eyeglasses rather than a random noise image. Negation without a data distribution is

not integrable and leads to a generation of chaotic textures which, while satisfying

the absence of a concept, is not desirable. Thus in our experiments with the negation

operation, we combine it with another concept to ground the negation and obtain an

integrable distribution:

𝑝(𝑥|NOT(𝑐1), 𝑐2) ∝
𝑝(𝑥|𝑐2)
𝑝(𝑥|𝑐1)𝛼

∝ 𝑒𝛼𝐸(𝑥|𝑐1)−𝐸(𝑥|𝑐2). (2.9)

We found the smoothing parameter 𝛼 to be a useful regularize and we use 𝛼 = 0.01

in our experiments. The above equation allows us to apply Langevin dynamics to

sample from the negation concept space:

𝑥𝑡 = 𝑥𝑡−1 −
𝜆

2
∇𝑥

(︀
−𝛼𝐸(𝑥𝑡−1|𝑐1) + 𝐸(𝑥𝑡−1|𝑐2)

)︀
+ 𝜔𝑡, (2.10)
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where 𝜔𝑡 ∼ 𝒩 (0, 𝜎2𝐼). The equation can be further extended to the negation of more

concepts.

Recursive concept combinations. We have defined the three classical symbolic op-

erators for concept combinations. These symbolic operators can further be recursively

chained on top of each other to specify more complex logical operations.

2.4 Composing Visual Concepts

In this section, we evaluate the proposed method for composing visual concepts, such

as facial attributes and objects. We perform empirical studies to answer the following

questions: (1) Can EBMs exhibit concept compositionality (such as concept negation,

conjunction, and disjunction) in image generation? (2) Can we take advantage of

concept combinations to learn new concepts in a continual manner? (3) Does explicit

factor decomposition enable generalization to novel combinations of factors? (4) Can

we perform concept inference using EBMs?

2.4.1 Experiment setup

Datasets. We perform experiments on the CelebA dataset [89] and the object scenes

dataset rendered by MuJoCo [153]. The MuJoCo Scene images contain a central

object of varying size and color at a varying position. The object shape includes

“sphere”, “cylinder”, and “cube”. The images are generated under different lighting

conditions.

Implementation details. To train the energy-based models, we use the ImageNet32×32

model architecture and ImageNet128×128 model architecture from [30]. More model

architecture details can be found in Appendix A.2.2.

Models trained on the Mujoco Scenes and CelebA datasets use the Adam optimizer

with a learning rate of 3e-4. The first-order moment is 0.0, and the second-order

moment is 0.999. The batch size is 128. The replay buffer size is 50, 000 with a 5%

replacement rate. Spectral normalization is applied to models with a step size of 100
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Young
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Young
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Figure 2-2: Concept conjunction of different concepts on CelebA. Each row adds an
additional energy function. Images on the first row are conditioned on young, while images
on the last row are conditioned on young, female, smiling, and wavy hair.

for each Langevin dynamics step. We use 60 steps of Langevin sampling per training

iteration for the CelebA dataset and 80 steps of Langevin sampling per training

iteration for the Mujoco Scenes dataset. We use the Swish activation [124] to train

the models and find that it greatly stabilizes and speeds up the training procedure.

2.4.2 Compositional generation

Qualitative evaluation. We first provide qualitative results of conjunction, dis-

junction, and negation operations on the CelebA and MuJoCo Scenes datasets.

Concept conjunction: In Fig. 2-2, we show that the conjunction of EBMs is able to

combine multiple independent concepts, such as age, gender, smiling, and wavy hair,

and get more precise generations after composing more concepts. Similarly, EBMs can

combine independent concepts of shape, position, size, and color to get more precise

generations in Fig. 2-3. We also show results of recursive concept combinations in

Fig. 2-4. The conjunction operator can be used with other logical operators for more

complex compositional visual generation.

Concept disjunction: The last row of Fig. 2-4 shows EBMs can combine concepts

additively (generate images that contain at least one of the concepts). By constructing

the Langevin sampling using the disjunction operator, EBMs can generate an image
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shape

shape 
AND

position

shape 
AND position

AND size
shape 

AND position
AND size

AND color

Figure 2-3: Concept conjunction of different concepts on MuJoCo Scenes. Each
row adds an additional energy function. Images on the first row are only conditioned on
shape, while images on the last row are conditioned on shape, position, size, and color. The
left part is the generation of a sphere shape and the right is a cylinder.

that is “not smiling male” or “smiling female”, where both “not smiling male” and

“smiling female” are specified through the conjunction of energy-based models.

Concept negation: In Fig. 2-4, the fourth row shows images that are opposite to

the trained concept using the negation operation. Since concept negation operation

should be used with another concept as described in Section 2.3.2, we use “smiling” as

the second concept.

Quantitative evaluation. We first evaluate the image generation quality on the

MuJoCo Scenes dataset. We train a classifier to predict the object position and color

on the MuJoCo Scenes dataset. The classifier is well trained with an accuracy of

99.3% accuracy for position inference and an accuracy of 99.9% for color inference. We

use this pre-trained classifier to evaluate the generated images. For a given positional

generation, we first use the pre-trained classifier to predict the object location in the

generated image. If the distance between the predicted position and the given position

is smaller than a threshold, the generation is considered correct. Similarly, a color

generation is considered correct if the predicted color is the same as the given color.

In Table 2.1, we evaluate the quality of generated images given combinations

of conjunction, disjunction, and negation on the color and position concepts. We

use the pre-trained classifiers described above to evaluate the position accuracy
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Figure 2-4: Recursive concept compositions. Examples of recursive compositions of
disjunction, conjunction, and negation on the CelebA dataset.

Model Pos Accuracy (%) ↑ Color Accuracy (%) ↑
ColorEBM 12.8 99.7
PosEBM 98.4 20.1
PosEBM AND ColorEBM 80.1 81.3
PosEBM AND (NOT ColorEBM) 87.2 9.6
(NOT PosEBM) AND ColorEBM 3.3 97.1

Color [157] 13.2 33.3
Pos [157] 14.6 20.2
Pos AND Color [157] 15.1 34.2

Table 2.1: Quantitative results of EBMs and baselines. Image generation results on the
Mujoco Scenes dataset using the conjunction (AND), disjunction (OR), and negation (NOT)
operators. “ColorEBM” means the energy-based model trained on the color information.
“PosEBM” means the energy-based model trained on the position information.
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and color accuracy of the generated images. When using a single Color EBM for

image generation, the color accuracy is higher while the position accuracy is lower.

Similarly, the positional accuracy is higher if we use a single Position EBM (PosEBM

in Table 2.1). “PosEBM AND ColorEBM” has high accuracy on both position and

color, demonstrating the conjunction operator can combine different concepts. In

“PosEBM AND (NOT ColorEBM)”, the color accuracy drops. This means negating a

concept reduces the likelihood of that concept. “(NOT PosEBM) AND ColorEBM”

shows similar results. We compare energy-based models with the approach proposed

in [157] and find that EBMs have better performance.

2.4.3 Continual learning

position

shape

color

Figure 2-5: Continual learning of concepts. A
position EBM is first trained on one shape (cube) of
one color (purple) at different positions (first row).
A shape EBM is then trained on different shapes
of one fixed color (purple) (second row). Finally,
a color EBM is trained on shapes of many colors
(third row).

Compositionality enables models to

continually learn from the world by

composing new knowledge with pre-

viously learned knowledge. However,

it is still extremely challenging for

existing AI models to have such con-

tinual learning ability. Our composi-

tional energy-based models provide a

possible solution for continual learn-

ing. In this part, we evaluate to what

extent compositionality in EBMs en-

ables continual learning of new con-

cepts and their combination with previously learned concepts. If we create an EBM

for a novel concept, can it be combined with previous EBMs that have never observed

this concept in their training data? And can we continually repeat this process?

To answer these questions, we use the following methodology on the MuJoCo

Scenes dataset: 1) We first train a position EBM on a dataset of objects in different

positions, but with a fixed color and a fixed shape. In this experiment, we use the

shape “cube” and the color “purple”. The position EBM allows us to generate a purple
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Table 2.2: Quantitative evaluation of continual learning. A position EBM is first
trained on “purple” “cubes” at different positions. A shape EBM is then trained on different
“purple” shapes. Finally, a color EBM is trained on shapes of many colors with earlier
EBMs fixed. We compare EBMs with a GAN model [120] which is trained on the same
position, shape, and color dataset. EBMs are better at continually learning new concepts
and remembering old concepts (Acc means accuracy).

Model Position Acc (%) ↑ Shape Acc (%) ↑ Color Acc (%) ↑
EBM (Position) 90.1 - -
EBM (Position + Shape) 81.3 74.3 -
EBM (Position + Shape + Color) 78.1 70.3 52.1

GAN (Position) 94.1 - -
GAN (Position + Shape) 11.1 97.7 -
GAN (Position + Shape + Color) 11.7 47.6 98.4

cube at various positions. (first row in Fig. 2-5). 2) Next, we train a shape EBM

by training the model in combination with the position EBM to generate images of

different shapes at different positions, but without training the position EBM. As

shown in the second row of Fig. 2-5, after combining the position and shape EBMs, the

“spheres” are placed in the same position as the “cubes” in the first row, even though

these “spheres” never appear in these positions during training. 3) Finally, we train a

color EBM in combination with both position and shape EBMs to generate images of

different shapes and colors at different positions. Again, we fix both position and shape

EBMs, and only train the color model. In the third row, the objects with different

colors have the same position as the objects in the first row and the same shape as the

objects in the second row. Continual learning is still a challenging research problem.

Our results indicate that EBMs have the potential to enable continual learning of new

concepts and compose them with previously learned concepts to generate new images.

In Table 2.2, we compare the continual learning ability of our EBMs and GAN [120].

Similar to the evaluation method used in Section 2.4.2, we train classifiers for position,

shape, and color, respectively, to evaluate the quality of generated images. For a fair

comparison, the GAN model is also trained sequentially on the position, shape, and

color datasets.

The position accuracy of EBM does not drop significantly when continually learning

new concepts (shape and color), indicating EBMs are able to extrapolate earlier learned
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large spheres only

all sphere sizes

...
10% 1%

Training Dataset 1 % 10 % 100 %
EBM Baseline GT EBM Baseline GT EBM Baseline GT

Figure 2-6: Cross product extrapolation. Left: the spheres of all sizes only appear in
the top right corner (1%, 10%, . . . ) of the scene and the remaining positions only have large
size spheres. Right: generated images of novel size and position combinations using EBM
and the baseline model.

concepts by combining them with newly learned concepts. In contrast, while the

GAN models are able to learn different concepts given the corresponding data, their

accuracy on position and shape drops significantly after learning the color concept.

The bad performance shows that GAN models are bad at combining the newly learned

attributes with the previous attributes.

2.4.4 Cross product extrapolation

Humans are endowed with the ability to extrapolate novel concept combinations when

only a limited number of combinations were originally observed. For example, despite

never having seen a “purple cube”, a human can imagine what it looks like based on

the previous observation of “red cube” and “purple sphere”.

To evaluate the extrapolation ability of EBMs, we construct a new dataset of

MuJoCo scene images with spheres of all possible sizes appearing only in the top

right corner of the scene, and spheres of only large sizes appearing in the remaining

positions as shown in the left part of Fig. 2-6. For spheres only in the top right corner

of the scene, we design different settings. For example, 1% means only 1% of positions

(starting from the top right corner) that contain all sphere sizes are used for training.

At test time, we evaluate the generation of spheres of all sizes at positions that are

not seen during training. Similar to 1%, 10% and 100% mean the spheres of all sizes

appear only in the top right 10% and 100% of the scene, respectively. The task is

to test the quality of generated objects with unseen size and position combinations.
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This requires the model to extrapolate the learned position and size concepts in novel

combinations.

We train two EBMs on this dataset. One is conditioned on the position information

and trained only on large sizes. The second one is conditioned on the size information

and trained at the aforementioned percentage of positions. The conjunction of the

two EBMs is fine-tuned for generation through gradient descent. We compare this

composed model with a baseline holistic model that is trained on both position and size

information jointly. The baseline is trained on the same position and size combinations

and optimized directly from the Mean Squared Error between the generated images

and the ground truth image. For fair comparisons, the baseline model and our

EBMs use a similar number of model parameters. The model details are described in

Appendix A.2.2.

Qualitative evaluation. We qualitatively compare the EBM and baseline in Fig. 2-

6. When spheres of all sizes are only distributed in the 1% of possible locations, both

the EBM and baseline have bad performance. This is because the few combinations of

sizes and positions make both models fail in extrapolation. For the 10% setting, our

EBM is better than the baseline. EBM is able to combine concepts to form images

from a few combination examples by learning an independent model for each concept

factor. Both EBM and baseline models generate accurate images when given examples

of all combinations (100% setting), but our EBM is closer to the ground truth than

the baseline.

Quantitative evaluation. In Fig. 2-7, we quantitatively evaluate the extrapolation

ability of EBM and the baseline. We train a regression model that outputs both the

position and size of a generated image. We compute the error between the predicted

size and ground truth size and report it in the left part of Fig. 2-7. Similarly, we report

the position error in the right part. EBMs are able to extrapolate both position and

size better than the baseline model with smaller errors. The size errors go down given

more examples of all sphere sizes. For position error, both EBM and the baseline

model have smaller errors at 1% data than 5% or 10% data. This result is due to the
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Figure 2-7: Quantitative evaluation of cross product extrapolation. Cross product
extrapolation results with respect to the percentages of areas in the top right corner. EBM
has smaller size and position errors, which means EBM is able to extrapolate better than
the baseline model.

make-up of the data – with 1% data, only 1% of the rightmost sphere positions have

different size annotations, so the models generate large spheres at the conditioned

position, which are closer to the ground truth position since most positions (99%) are

large spheres.

2.4.5 Concept inference

The EBM formulation also allows us to infer concepts from the generated images. For

example, a positional EBM takes an image and an object’s 2D position (𝑥,𝑦) as input

and outputs an energy value. During inference, we iterate through all the possible

positions (20 by 20 grid of positions) and select the position with minimal energy as

the inference result. We evaluate this result by computing the Mean Absolute Error

between the predicted position and the ground truth object position.

To evaluate the inference ability of EBMs, we generate a new MuJoCo Scene

dataset for training and testing. In the training set, each scene has varying lighting

conditions with one object, either sphere or cube, at all possible positions and some

sizes. We build several test sets to evaluate the generalization ability of different

models. The easiest one is “Test”, which has the same data distribution as the training
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Table 2.3: Position errors on different test datasets. “Test” has the same data
distribution as the training set. Other datasets change one environmental parameter, e.g.,
color, size, type, and light, which are unseen in the training set. “Avg” is the average error of
“Color”, “Light”, “Size”, and “Type”. “Steps” indicates the number of sampling steps used to
train EBMs. EBMs are able to generalize better on unseen datasets. The larger number of
sampling steps significantly decreases overall errors.

Model Steps Color ↓ Light ↓ Size ↓ Type ↓ Avg ↓ Test ↓
Resnet [43] - 20.002 5.881 10.378 6.310 10.643 3.635
PixelCNN [108] - 60.607 58.589 33.889 48.138 50.306 43.460
EBM 200 10.899 6.307 8.431 6.304 7.985 3.903
EBM 400 4.084 4.033 6.853 3.694 4.666 2.917

dataset. The “Size” test set contains objects twice larger than objects in the training

set. The “Color” set has object colors that have never been seen during training.

“Light” is a test set with different lighting sources. The “Type” test set consists of

cylinder images while the training images only contain spheres or cubes.

We compare EBMs with two baseline models, ResNet [43] (with the same model

architecture as EBM) and PixelCNN [108]. Table 2.3 shows the comparison results

using a different number of Langevin sampling steps. We find that inference in EBMs

is able to generalize well to different test sets that are outside the training distribution,

such as Color, Light, Size, and Type. A larger number of Langevin sampling steps

further improves the generalization ability.

2.5 Composing Visual Relations

We have shown that the proposed compositional operators enable EBMs to compose

concepts and objects and generate images that are outside the training distribution

in Section 2.4. However, the visual world around us contains not only concepts and

objects but also their associated relations. To better understand the visual world

around us, we study composing visual relations between objects in this section.

While there has been significant work on designing deep neural networks that

may compose individual objects together, less work has been done on composing the
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individual relations between objects. A principal difficulty is that while the placement

of objects is mutually independent, their relations are entangled and dependent on

each other. To circumvent this issue, existing works primarily compose relations by

utilizing a holistic encoder, in the form of text or graphs. In this section, we instead

propose to represent each relation as an unnormalized density (an energy-based model),

enabling us to compose separate relations in a factorized manner. We show that such

a factorized decomposition allows the model to both generate and edit scenes that

have multiple sets of relations more faithfully. We further show that decomposition

enables our model to effectively understand the underlying relational scene structures

(Figure 2-8).

2.5.1 Learning relational energy functions

Given a training dataset 𝒟 = {𝑥𝑖, 𝑠𝑖}𝑁𝑖=1 with 𝑁 distinct images and associated rela-

tional descriptions, we aim at learning the underlying probability distribution 𝑝𝜃(𝑥|𝑠)
— the probability distributions of an image 𝑥 given the corresponding relational de-

scriptions 𝑠. The relational descriptions 𝑠 contain a set of object relations {𝑟1 · · · , 𝑟𝑛}.
To represent 𝑝𝜃(𝑥|𝑠), we model each component relation separately using a probability

distribution 𝑝𝜃(𝑥|𝑟𝑖) which is represented as an energy-based model. The overall scene

probability distribution is then modeled by a composition of individual probability

distributions of the object relations 𝑝𝜃(𝑥|𝑠) ∝
∏︀𝑛

𝑖=1 𝑝𝜃(𝑥|𝑟𝑖).
In Section 2.3.2, we show that EBMs enable us to naturally compose separate

probability distributions. Given a scene relational description 𝑟𝑖, we seek to learn a

conditional EBM to model the underlying probability distribution 𝑝𝜃(𝑥|𝑟𝑖):

𝑝𝜃(𝑥|𝑟𝑖) ∝ 𝑒−𝐸𝜃(𝑥|𝑟𝑖), (2.11)

where 𝑝𝜃(𝑥|𝑟𝑖) represents the probability distribution over images given relation 𝑟𝑖.

The most straightforward manner of encoding relational scene descriptions is to

encode the entire sentence using an existing text encoder, such as CLIP [119]. However,

we find that such an approach cannot capture scene relations accurately. An issue
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StyleGAN2 Ours
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Figure 2-8: Composing visual relations. The proposed method can generate and edit
images with multiple composed relations. Top: Image generation results based on relational
scene descriptions. Bottom: Image editing results based on relational scene descriptions.

with such an approach is that the sentence encoder loses or masks the information

captured by the relation tokens in 𝑟𝑖.

To enforce that the underlying relation tokens in 𝑟𝑖 are effectively encoded, we

instead propose to decompose the relation 𝑟𝑖 into a relation triplet (𝑟′𝑖, 𝑜1𝑖 , 𝑜2𝑖 ), where

𝑟′𝑖 is the relation token, e.g ., “below” and “to the right of”, 𝑜1𝑖 is the description of the

first object, and 𝑜2𝑖 is the description of the second object appeared in 𝑟𝑖. Each entry

in the relation triplet is then separately encoded.

Such an encoding scheme encourages the models to encode underlying objects and

relations in a scene, enabling us to effectively model the relational distributions. We

explored two separate approaches to encode the underlying object descriptions.

CLIP embedding. We use the pre-trained CLIP model to encode objects and a

learned embedding layer to encode their relations. Taking the scene description of “a

large blue rubber cube to the left of a small red metal cube” as an example, we use

the pre-trained CLIP model to encode the two objects separately, i.e., 𝑜1𝑖 for “a large

blue rubber cube” and 𝑜2𝑖 for “a small red metal cube”. We then use an embedding
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Figure 2-9: Overview of our pipeline for understanding a relational scene de-
scription. A relational scene description is split into a set of underlying object relation
descriptions. Individual relation descriptions are represented as EBMs which are subsequently
composed together to generate images.

layer to encode their relation, i.e., 𝑟′𝑖 for “to the left”. The features of the first and

second objects and their relations are concatenated and used as the feature of the

relational scene description, which is further sent to the relational energy functions

for image generation or image editing.

Learned embedding. We use the learned embedding layers for both objects and

their relations. To encode an object, we use six different embedding layers to encode its

color, size, material, shape, relation, and position separately. The embedded features

of objects and their relations are concatenated and used as the feature of the relational

scene description, which is further sent to the relational energy functions.

2.5.2 Composing relational energy functions

Given an underlying scene description 𝑠, we represent the underlying probability

distribution 𝑝(𝑥|𝑠) by factorizing it as a product of probabilities over the object

relations 𝑟𝑖 described in 𝑠. Given the separate relational energy functions learned in

Section 2.5.1, this probability 𝑝(𝑥|𝑠) can be written as:

𝑝(𝑥|𝑠) = 𝑒−𝐸𝜃(𝑥|𝑠) ∝
𝑛∏︁

𝑖=1

𝑝(𝑥|𝑟𝑖) = 𝑒−
∑︀𝑛

𝑖=1 𝐸𝜃(𝑥|𝑟𝑖). (2.12)

The overview of the proposed method is shown in Figure 2-9.
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2.5.3 Experiment setup

We conduct empirical studies to answer the following questions: (1) Can we learn

relational models that generate and edit complex multi-object scenes given relational

scene descriptions? (2) Can we use our model to generalize to scenes that are never

seen in training? (3) Can we understand the set of relations in a scene and infer

semantically equivalent descriptions?

To answer these questions, we evaluate the proposed method and baselines on

image generation, image editing, and image classification on two main datasets,

i.e., Relational CLEVR [63] and iGibson [140]. We also test the image generation

performance of the proposed model and baselines on a real-world dataset i.e., Blocks

[81].

Datasets. Relational CLEVR. We use 50, 000 pairs of images and relational scene

descriptions for training. Each image contains 1 ∼ 5 objects. Each object consists of

five different attributes, including color, shape, material, size, and its spatial relation

to another object in the same image. There are 9 types of colors, 4 types of shapes, 3

types of materials, 3 types of sizes, and 6 types of relations.

iGibson. On the iGibson dataset, we use 30, 000 pairs of images and relational

scene descriptions for training. Each image contains 1 ∼ 3 objects. Each object

consists of the same five different types of attributes as the Relational CLEVR dataset.

There are 6 types of colors, 5 types of shapes, 4 types of materials, 2 types of sizes,

and 4 types of relations. The objects are randomly placed in the scenes.

Blocks. On the real-world Blocks dataset, a number of 3, 000 pairs of images and

relational scene descriptions are used for training. Each image contains 1 ∼ 4 objects

with different colors. We only consider the “above” and “below” relations as objects

are placed vertically in the form of towers.

In the training set, each image’s relational scene description only contains one

scene relation, and objects are randomly placed in the scene. We generated three test

subsets that contain relational scene descriptions with a different number of scene

relations to test the generation ability of the proposed methods and baselines. The
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Table 2.4: Quantitative evaluation of image generation and image editing. The
accuracy of object relations in the generated images or edited images on the Relational
CLEVR and iGibson datasets. We compare our method with baselines on three test sets, i.e.
1R, 2R, and 3R (see text).

Dataset Model Image Generation (%) Image Editing (%)
1R Acc ↑ 2R Acc ↑ 3R Acc ↑ 1R Acc ↑ 2R Acc ↑ 3R Acc ↑

Relational
CLEVR

StyleGAN2 10.68 2.46 0.54 10.04 2.10 0.46
StyleGAN2 (CLIP) 65.98 9.56 1.78 - - -
Ours (CLIP) 94.79 48.42 18.00 95.56 52.78 16.32
Ours (Learned Embed) 97.79 69.55 37.60 97.52 65.88 32.38

iGibson

StyleGAN2 12.46 2.24 0.60 11.04 2.18 0.84
StyleGAN2 (CLIP) 49.20 17.06 5.10 - - -
Ours (CLIP) 74.02 43.03 19.59 78.12 32.84 12.66
Ours (Learned Embed) 78.27 45.03 19.39 84.16 44.10 20.76

1R test subset is similar to the training set where each relational scene description

contains one scene relation. The 2R and 3R test subsets have two and three scene

relations in each relational scene description, respectively. Each test set has 5, 000

images with corresponding relational scene descriptions.

Baselines. We compare our method with two baseline approaches. The first base-

line is StyleGAN2 [65], one of the state-of-the-art methods for unconditional image

generation. To enable StyleGAN2 to generate images and edit images based on

relational scene descriptions, we train a ResNet-18 classifier on top of it to predict the

object attributes and their relations. Recently, CLIP [119] has achieved a substantial

improvement in the text-image retrieval task by learning text-image feature embed-

dings on large-scale datasets. We thus design another baseline, StyleGAN2+CLIP,

that combines the capabilities of both approaches. To do this, we encode relational

scene descriptions into text embeddings using CLIP and condition StyleGAN2 on the

embeddings to generate images.

2.5.4 Image generation results

Given a relational scene description, e.g ., “a blue cube on top of a red sphere”, we aim

to generate images that contain corresponding objects and their relations as described

in the given descriptions.
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A small purple metal 
sphere to the left of a small 

green rubber cube
A small purple metal 

sphere below a large red 
metal cube

A large yellow rubber 
cylinder in front of 

a large green metal sphere

StyleGAN2 
(CLIP)

OursInput relational scene 
description

A large red rubber cylinder above a small 
green rubber cylinder

A small cyan metal sphere above a small 
green rubber cylinder

A small cyan metal sphere above a large 
red rubber cylinder

A small green rubber cylinder in front of a 
small blue rubber cylinder

A large blue metal sphere above a 
small red rubber cylinder

A large blue metal sphere to the left of 
a small blue metal cylinder

A large blue metal sphere behind a 
small cyan metal sphere

StyleGAN2 
(CLIP)

OursInput relational scene 
description

Figure 2-10: Image generation results on the Relational CLEVR dataset. Images
are generated based on 1 ∼ 4 relational descriptions. Note that the models are trained
on a single relational description and the composed scene relations (2, 3, and 4 relational
descriptions) are outside the training distribution.

Quantitative comparisons. To evaluate the quality of generated images, we train

a binary classifier to predict whether the generated image contains objects and their

relations described in the given relational scene description.

Given an image and a relational scene description, we first feed the image to

convolutional layers to generate an image feature, and then send the relational scene

description to an embedding layer, followed by fully connected layers to generate a

relational scene feature. The image feature and relational scene feature are combined

and then passed through fully connected layers and a sigmoid function to predict

whether the given image matches the relational scene description. The binary classifier

is trained on real images from the training dataset. We train a classifier on each

dataset. The classification accuracy on real images is close to 100%, indicating that

the classifier is effective. During testing, we generate an image based on a relational

scene description and send the generated image and the relational scene description

to the classifier for prediction. For a fair comparison, we use the same classifier to

evaluate images generated by all the approaches on each dataset.

The “Image Generation” column in Table 2.4 shows the classification results of

different approaches on the Relational CLEVR and iGibson datasets. On each dataset,

we test each method on three test subsets, i.e., 1R, 2R, and 3R, and report their

binary classification accuracies. Both variants of our proposed approach outperform
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A maple wood cabinet
behind a blue fabric 

couch

A maple wood table 
in front of 

a maple wood cabinet
A maple wood cabinet 

to the right of
a blue fabric couch 

A maple wood cabinet to 
the left of a red leather 

couch

A gray fabric couch
in front of

A maple wood table
A maple wood table

to the right of
a gray fabric stool

StyleGAN2 
(CLIP)

OursStyleGAN2 
(CLIP)

Ours Input relational scene 
description

Input relational scene 
description

Figure 2-11: Image generation results on the iGibson dataset. Images are generated
based on 1 ∼ 2 relational descriptions. Note that the two composed scene relations are
outside the training distribution.

StyleGAN2 and StyleGAN2 (CLIP), indicating that our method can generate images

that contain the objects and their relations described in the relational scene descriptions.

We find that our approach using the learned embedding, i.e., Ours (Learned Embed),

achieves better performances on the Relational CLEVR and iGibson datasets than

the other variant using the CLIP embedding, i.e., Ours (CLIP).

StyleGAN2 and StyleGAN2 (CLIP) can perform well on the 1R test subset. This

is an easier test subset because the models are trained on images with a single scene

relation, and the models generate images based on a single relational scene description

during testing as well. The 2R and 3R are more challenging test subsets because

the models need to generate images conditioned on relational scene descriptions of

multiple scene relations. Our models outperform the baselines by a large margin,

indicating the proposed approach has a better generalization ability and can compose

multiple relations that are never seen during training.

Human evaluation results. To further evaluate the performance of the proposed

method on image generation, we conduct a user study to ask humans to evaluate

whether the generated images match the given input scene description. We compare

the correctness of the object relations in the generated images and the input language.

Given a language description, we generate an image using “Ours (Learned Embed)”

and “StyleGAN2 (CLIP)”. We shuffle these two generated images and ask the workers
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A red cube above
a green cube

A yellow cube below
a blue cube

A green cube below
a red cube

A yellow cube above
a green cube

A blue cube below
a red cube

A red cube above
a blue cube

A green cube above
a yellow cube

A green cube below
a red cube

A blue cube below
a yellow cube

A yellow cube below
a red cube

StyleGAN2 
(CLIP)

OursStyleGAN2 
(CLIP)

Ours Input relational scene 
description

Input relational scene 
description

Figure 2-12: Image generation results on the Blocks dataset. Images are generated
based on the relational scene description. Note that the models are trained on a single
relational scene description and the composed scene relations are outside the training
distribution.

to tell which image has better quality and the object relations match the input

language description. We tested 300 examples in total, including 100 examples with a

single-sentence relational description (1R), 100 examples with two-sentence relational

descriptions (2R), and 100 examples with three-sentence relational descriptions (3R).

There are 32 workers involved in this human experiment.

The workers think that there are 87%, 86%, and 91% of generated examples

that “Ours (Learned Embed)” is better than “StyleGAN2 (CLIP)” for 1R, 2R, and

3R, respectively. The human experiment shows that our proposed method is better

than “StyleGAN2 (CLIP)”. The conclusion is coherent with our binary classification

evaluation results.

Qualitative comparisons. The image generation results on Relational CLEVR,

iGibson, and Block scenes are shown in Figure 2-10, 2-11, and 2-12, respectively. We

show examples of generated images conditioned on relational scene descriptions of

different numbers of scene relations. Our method generates images that are consistent

with the relational scene descriptions. Note that both the proposed method and the

baselines are trained on images that only contain a single scene relation describing

the visual relationship between two objects. Our approach can generalize well when

composing more visual relations. Taking the upper right figure in Figure 2-10 as an
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example, a relational scene description of multiple scene relations, i.e., “A large blue

metal sphere above a small red rubber cylinder. A large blue metal sphere to the

left of a small blue metal cylinder, · · · ”, is never seen during training. “StyleGAN2

(CLIP)” generates wrong objects and scene relations. In contrast, our method has the

ability to generalize to novel combinations and generate correct images.

2.5.5 Image editing results

Given an input image, we aim to edit this image based on relational scene descriptions,

such as replacing “put a red cube in front of the blue cylinder” with “put a red cube

behind the blue cylinder”.

Quantitative comparisons. Similar to image generation, we use a classifier to

predict whether the image after editing contains the objects and their relations

described in the relational scene descriptions. For the evaluation on each dataset, we

use the same classifier for both image generation and image editing.

The “Image Editing” column in Table 2.4 shows the classification results of different

approaches on the Relational CLEVR and iGibson datasets. Both variants of our

proposed approach, i.e., “Ours (CLIP)” and “Ours (Learned Embed)” outperform

the baselines, i.e., “StyleGAN2” and “StyleGAN2 (CLIP)”, substantially. The high

performance of our approach on the 2R and 3R test subsets shows that the proposed

method is able to generalize to relational scene descriptions that are outside the

training distribution.

Qualitative comparisons. We show image editing examples in Figure 2-13. The

left part is image editing results conditioned on a single scene relation, while the right

part is conditioned on two scene relations. We show examples that edit images by

inverting individual spatial relations between two objects. Taking the first image

in Figure 2-13 as an example, “the small purple metal sphere” is behind “the large

yellow rubber sphere”, after editing, our model can successfully put “the small purple

metal sphere” in front of “the large yellow rubber sphere”. Even for relational scene

descriptions of two object relations that are never seen during training, our model can
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The small purple 
metal sphere

behind in front of
The large yellow 

rubber sphere

The large gray 
rubber cylinder
below above

The large red 
rubber cylinder

Inverse relation editing results conditioned on two relationsInverse relation editing results conditioned on a single relation

StyleGAN2 OursStyleGAN2 OursInput relational scene 
description

Input imageInput image

The large brown metal cylinder
in front of behind

the large yellow rubber cylinder
The large yellow rubber cylinder

behind in front of
the small blue metal sphere

The large blue metal cylinder 
to the left of to the right of

the small green metal sphere
The large blue metal sphere

to the right of to the left of
the small green metal sphere

Input relational scene 
description

Figure 2-13: Image editing results on the Relational CLEVR dataset. Left: image
editing results based on a single relational scene description. Right: image editing results
based on two composed relational scene descriptions. Note that the composed scene relations
in the right part are outside the training distribution. Our approach can still edit the images
accurately.

edit images so that the selected objects are placed correctly.

2.5.6 Relational understanding

We hypothesize the good generation performance of our proposed approach is due to

our system’s understanding of relations and ability to distinguish between different

relational scene descriptions. In this section, we evaluate the relational understanding

ability of our proposed method and baselines by comparing their image-to-text retrieval

and semantic equivalence results.

Image-to-text retrieval. In Figure 2-14, we evaluate whether our proposed model

can understand different relational scene descriptions by image-to-text retrieval. We

create a test set that contains 240 pairs of images and relational scene descriptions.

Given a query image, we compute the similarity of this image and each relational scene

description in the gallery set. The top 1 retrieved relational scene description is shown

in Figure 2-14. We compare our method with two baselines. We use the pre-trained

CLIP model and test it on our dataset directly. “Fine-tuned CLIP” means the CLIP

model is fine-tuned on our dataset. Even though CLIP has shown good performance

on the general image-text retrieval task, we find that it cannot understand spatial

relations well, while EBMs can retrieve all the ground truth descriptions.
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•A maple wood coffee table on the 
right of a gray fabric couch 𝗫
•A gray fabric couch on the left of
a maple wood coffee table 𝗫
•A maple wood coffee table in 
front of a blue fabric stool 𝗫

•A maple wood coffee table on 
the left a gray fabric couch ✓
•A gray fabric couch behind

a blue fabric stool 𝗫
•A blue fabric stool in front of 

a maple wood coffee table ✓

•A maple wood coffee table on 
the left of a gray fabric couch ✓
•A gray fabric couch on the right 
of a blue fabric stool ✓
•A blue fabric stool in front of 

a maple wood coffee table ✓

•A large gray metal sphere on the left 
of a small red metal cube 𝗫
•A small red metal cube on the right 
of a large brown metal cube 𝗫
•A large brown metal cube below a 
large green rubber cylinder ✓

•A large gray metal sphere above 
a small red metal cube ✓
•A small red metal cube behind
a large brown metal cube ✓
•A large brown metal cube below 
a large green rubber cylinder ✓

•A large gray metal sphere above 
a small red metal cube ✓
•A small red metal cube on the left 
of a large brown metal cube ✓
•A large brown metal cube below 

a large green rubber cylinder ✓

•A blue object in front of
a gray object 𝗫
•A gray object on the left of

a green object ✓
•A green object behind

a blue object 𝗫

•A blue object in front of
a gray object 𝗫
•A gray object behind 
a green object 𝗫
•A green object on the left of
a blue object 𝗫

•A blue object behind 
a gray object ✓
•A gray object on the left of
a green object ✓
•A green object on the right of
a gray object ✓

CLIPQuery image Fine-tuned CLIP Ours

(a) Top 1 image-text retrieval result on iGibson scenes.

(b) Top 1 image-text retrieval result on CLEVR scenes.

(c) Top 1 image-text retrieval result on Blender scenes (outside the training distribution).

Figure 2-14: Image-to-text retrieval results. We compare the proposed approach with
the pretrained CLIP and fine-tuned CLIP and show their top-1 retrieved relation description
based on the given image query.

We also find that our approach generalizes across datasets. In the bottom row

of Figure 2-14, we conduct an additional image-to-text retrieval experiment on the

Blender [18] scenes that are never seen during training. Our approach can still find

the correct relational scene description for the query image.

Can we understand semantically equivalent relational scene descriptions?

Given two relational scene descriptions describing the same image but in different

ways, can our approach understand that the descriptions are semantically similar or

equivalent? To evaluate this, we create a test subset that contains 5, 000 images. Each

image has 3 different relational scene descriptions. There are two relational scene

descriptions that match the image but describe the image in different ways, such as

“a cabinet in front of a couch” and “a couch behind a cabinet”. There is one further

description that does not match the image. The relative score difference between the

two ground truth relational scene descriptions should be smaller than the difference

between one ground truth relational scene description and one wrong relational scene
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Table 2.5: Quantitative evaluation of semantic equivalence on the Relational
CLEVR dataset.

Model Semantic Equivalence (%)
1R Acc ↑ 2R Acc ↑ 3R Acc ↑

Classifier 52.82 27.76 14.92
CLIP 37.02 14.40 5.52
CLIP (Fine-tuned) 60.02 35.38 20.9
Ours (CLIP) 70.68 50.48 38.06
Ours (Learned Emb) 74.76 57.76 44.86

A  blue fabric couch behind a maple wood cabinet
A maple wood cabinet to the right of a garden walnut wood coffee table 

A maple wood cabinet behind a blue fabric couch
A garden walnut wood coffee table to the right of a maple wood cabinet

A maple wood cabinet in front of a blue fabric couch
A garden walnut wood coffee table to the left of a maple wood cabinet

A small red metal sphere behind a small purple metal cube
A small purple metal cube above a large blue rubber cube

A small purple metal cube behind a small red metal sphere
A large blue rubber cube above a small purple metal cube

A small purple metal cube in front of a small red metal sphere
A large blue rubber cube below a small purple metal cube

Semantically Equivalent 
Pair (Energy diff: 0.250)

Mismatching Pair 
(Energy diff: 0.520)

Semantically Equivalent 
Pair (Energy diff: 0.061)

Mismatching Pair 
(Energy diff: 0.186)

Figure 2-15: Examples of semantic equivalence on Relational CLEVR and iGibson
scenes. Given an input image, our approach is able to recognize whether the relational
scene descriptions are semantically equivalent or not.

description.

We compare our approach with three baselines. For each model, given an image,

if the difference between two semantically equivalent relational scene descriptions is

smaller than the difference between the semantically different ones, we will classify it

as correct. We compute the percentage of correct predictions and show the results in

Table 2.5. Our proposed method outperforms the baselines substantially, indicating

that our EBMs can distinguish semantically equivalent relational scene descriptions

and semantically nonequivalent relational scene descriptions. In Figure 2-15, we further

show two examples generated by our approach on the iGibson and Relational CLEVR

datasets. The energy difference between the semantically equivalent relational scene

descriptions is smaller than the mismatching pairs.
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2.5.7 Zero-shot generalization across datasets
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Figure 2-16: Zero-shot generalization
on Blender scenes. Our approach with
learned embedding outperforms other meth-
ods on image-to-text retrieval.

We find that our method can generalize

across datasets as shown in the third ex-

ample in Figure 2-14. To quantitatively

evaluate the generalization ability across

datasets of the proposed method, we test

the image-to-text retrieval accuracy on the

Blender dataset. We render a new Blender

dataset using three different objects, includ-

ing boots, toys, and trucks. Note that our

model and baselines are trained on Rela-

tional CLEVR. They had never seen the

Blender scenes during training.

We generate a Blender test set that contains 300 pairs of images and relational

scene descriptions. For each image, we do text retrieval on the 300 relational scene

descriptions. The top 1 accuracy is shown in Figure 2-16. We compare our approaches

with two baselines, i.e., CLIP and CLIP fine-tuned on the Relational CLEVR dataset.

We find the CLIP model and our approach using the CLIP embedding perform badly

on the Blender dataset. This is because CLIP is not good at modeling relational scene

description, as we have shown in Section 2.5.6. Our approach using the learned embed-

ding outperforms other methods, indicating that our EBMs with a good embedding

feature can generalize well even on unseen datasets, such as Blender.

2.6 Conclusion

In this chapter, we demonstrate the potential usage of energy-based models for

compositional image generation, editing, and concept inference. We illustrate that

EBMs support composition on both concept and object relation levels, unifying

different perspectives of compositionality and can recursively combine them together.

We further show how this composition can be applied to continual learning and cross
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product extrapolation.

Our proposed approach represents a significant stride towards enhancing the

composability of deep learning models. A truly compositional system stands to offer

remarkable societal advantages, potentially ushering in an era of intelligent robots

with the ability to seamlessly acquire diverse skills over time. Furthermore, it could

facilitate a superhuman synthesis of scientific knowledge, leading to groundbreaking

scientific discoveries. We hope that our findings will serve as a wellspring of inspiration

for future research endeavors in these domains.

One limitation of the current approach is that the evaluated datasets are simpler

compared to the complex descriptions used in the real world. In the next chapter, we

will study how to scale these models to more complex datasets.
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Chapter 3

Compositional Visual Generation with

Diffusion Models

Nan Liu∗, Shuang Li*, Yilun Du*, Antonio Torralba, Joshua B. Tenenbaum;

ECCV 2022.

In this chapter, we focus on compositional visual generation using diffusion mod-

els [145, 147, 51]. Similar to energy-based models, diffusion models are another type of

generative model that has been broadly used for visual generation recently. Text-guided

diffusion models such as DALL-E 2 [125] are able to generate stunning photorealistic

images given natural language descriptions. While such models are highly flexible,

they struggle to understand the composition of certain concepts, such as confusing the

attributes of different objects or relations between objects. We introduce an alternative

structured approach for compositional generation using diffusion models. An image

is generated by composing a set of diffusion models, with each of them modeling a

certain component of the image. To do this, we build the connection between diffusion

models and energy-based models and apply the compositional operators to diffusion

models for composing different concepts.

The proposed method can generate scenes at test time that are substantially

more complex than those seen in training, composing sentence descriptions, object
∗Equal Contribution
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relations, human facial attributes, and even generalizing to new combinations that are

rarely seen in the real world. We further illustrate how our approach may be used to

compose pre-trained text-guided diffusion models and generate photorealistic images

containing all the details described in the input descriptions, including the binding of

certain object attributes that have been shown difficult for DALL-E 2, which is one of

the-start-of-the-art image generation models. These results point to the effectiveness

of the proposed method in promoting structured generalization for visual generation.

3.1 Introduction

Existing text-conditioned diffusion models such as DALL-E 2 [125] have recently made

remarkable strides towards compositional generation, and are capable of generating

photorealistic images given textual descriptions. However, such systems are not fully

compositional and generate incorrect images when given more complex descriptions

[95, 150]. An underlying difficulty may be that such models encode text descriptions

as fixed-size latent vectors. However, as textual descriptions become more complex,

more information needs to be squeezed into the fixed-size vector. Thus it is impossible

to encode arbitrarily complex textual descriptions.

We propose to factorize the compositional generation problem, using different

diffusion models to capture different subsets of a compositional specification. These

diffusion models are then explicitly composed together to generate an image. By

explicitly factorizing the compositional generative modeling problem, our method can

generalize to significantly more complex combinations that are unseen during training.

Such an explicit form of compositionality has been explored before under the

context of energy-based models [25, 26, 87]. However, directly training EBMs is

unstable and hard to scale. We show that diffusion models can be interpreted as

implicitly parameterized EBMs, which can be further composed for image generation,

significantly improving training stability and image quality.

Our proposed method enables zero-shot compositional generation across different

domains as shown in Fig. 3-1. First, we illustrate how our approach may be applied
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(b) Composing Language Descriptions (Composed GLIDE)

“A red car parked 
in a desert” AND
“hills behind the 
car” AND “Aurora 
in the sky”

“The sun setting in 
a horizon” AND “A 
house next to a 
pond” AND “Hills 
in the background”

“A house with snow 
on the roof” AND
“The house behind a 
tree” AND “A car in 
front of a tree”

Obj1
Obj2

Obj3

Obj4

(NOT Female) AND
Smiling AND 
(NOT Glasses)

(e) Composing Facial Attributes

Male AND
Blonde hair AND
(NOT glasses)

“A Ferris wheel” AND
“A lake right next to 
the Ferris wheel” 
AND “Buildings next 
to the lake”

“A cloudy blue sky” 
AND “A mountain in 
the horizon” AND
“Cherry Blossoms in 
front of the mountain”

“Palm trees on both 
sides of the street” 
AND “Pink Sunset in 
the horizon” AND “A 
car moving away”

(c) Composing Objects

Obj1 (0.1, 0.5) AND
Obj2 (0.5, 0.3) AND
Obj3 (0.5, 0.65) AND
Obj4 (0.7, 0.5)

Obj4

Obj3

Obj1

Obj2

Obj1 (0.1, 0.65) AND
Obj2 (0.3, 0.55) AND
Obj3 (0.5, 0.45) AND
Obj4 (0.7, 0.3)

Obj1
Obj2

Obj3

Obj4

(d) Composing Object Relations

“A large purple metal 
cube to the left of a 
large gray rubber 
cube” AND “A large 
purple metal cube to 
the right of a large 
yellow rubber sphere”

“A large yellow rubber 
cylinder to the right 
of a small gray metal 
cube” AND “A large 
yellow rubber cylinder 
below a large red 
rubber cube”

(a) Composing Language Descriptions (Composed Stable Diffusion)

“A photo of cherry 
blossom trees” AND
“Sun dog” AND
“Green grass”

“A church” AND
“Lightning in the 
background” AND
“A beautiful pink sky”

“A stone castle 
surrounded by lakes 
and trees,” AND
“Black and white”

“A mystical tree ” 
AND “A dark 
magical pond” 
AND “Dark”

“A stone castle 
surrounded by lakes 
and trees,” AND (NOT 
“Black and white”)

“A mystical tree ” 
AND “A dark 
magical pond” 
AND (NOT “Dark”)

Figure 3-1: Our method allows compositional visual generation across a variety of domains,
such as language descriptions, objects, object relations, and human attributes.

to large pre-trained diffusion models, such as Stable Diffusion [131], GLIDE [103],

and Point-E [104] to compose multiple text descriptions to generate 2D images or

3D assets. Next, we illustrate how our approach can be applied to compose objects,

enabling zero-shot generalization to a larger number of objects. Finally, we illustrate

how our framework can compose different facial attributes to generate human faces.

We introduce an approach for compositional visual generation using diffusion

models. In summary, our contributions are:

• First, we show that diffusion models can be composed by interpreting them as
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energy-based models, and drawing on this connection, we demonstrate how to

compose diffusion models together.

• Second, we propose two compositional operators, Conjunction and Negation, on

top of diffusion models that allow us to compose concepts in different domains

during inference without any additional training. We show that the proposed

method enables effective zero-shot combinatorial generalization, i.e., generating

images with more complicated compositions of concepts.

• Finally, we evaluate our method on composing language descriptions, objects,

and human facial attributes. Our method can generate high-quality images

containing all the concepts and outperforms baselines by a large margin. For

example, the accuracy of our method is 24.02% higher than the best baseline

for composing three objects in specified positions on the CLEVR dataset.

3.2 Related Work

Controllable image generation. Our work is related to existing work on controllable

image generation. One type of approach towards controllable image generation specifies

the underlying content of an image utilizing text through GANs [167, 175, 9], VQ-VAEs

[126], or diffusion models [103]. An alternative type of approach towards controllable

image generation manipulates the underlying attributes in an image [142, 165, 177].

In contrast, we are interested in compositionally controlling the underlying content

of an image at test time, generating images that exhibit compositions of different

components. Recent work has utilized EBMs to compose different factors for image

generation [25, 106, 26, 87]. We illustrate how to implement such composition on

diffusion models, achieving better performance.

Diffusion models. Diffusion models have emerged as a promising class of generative

models that formulate the data-generating process as an iterative denoising procedure

[145, 51]. The denoising procedure can be seen as parameterizing the gradients of the

data distribution [148], which is similar to EBMs [79, 30, 107, 38, 36]. Diffusion models
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have recently shown great promise in image generation tasks [23], enabling effective

image editing [96, 70], text conditioning [103, 131, 41], and image inpainting [133]. The

iterative, gradient-based sampling of diffusion models enables us to compose multiple

factors during inference. While diffusion models have been developed for image

generation [146], they have further proven successful in the generation of waveforms

[15], 3D shapes [176], decision making [61], and text [8], suggesting that our proposed

composition operators may further be applied to such domains.

3.3 Background

3.3.1 Denoising diffusion models

Denoising Diffusion Probabilistic Models (DDPMs) [51] are a class of generative

models where generation is modeled as a denoising process. Starting from a sampled

noise, the diffusion model performs 𝑇 denoising steps until a sharp image is formed.

In particular, the denoising process produces a series of intermediate images with

decreasing levels of noise, denoted as 𝑥𝑇 ,𝑥𝑇−1, ...,𝑥0, where 𝑥𝑇 is sampled from a

Gaussian prior and 𝑥0 is the final output image.

DDPMs construct a forward diffusion process by gradually adding Gaussian noise

to the ground truth image. A diffusion model then learns to revert this noise corruption

process. Both the forward processes 𝑞(𝑥𝑡|𝑥𝑡−1) and the reverse process 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

are modeled as the products of Markov transition probabilities:

𝑞(𝑥0:𝑇 ) = 𝑞(𝑥0)
𝑇∏︁

𝑡=1

𝑞(𝑥𝑡|𝑥𝑡−1), 𝑝𝜃(𝑥𝑇 :0) = 𝑝(𝑥𝑇 )
1∏︁

𝑡=𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡), (3.1)

where 𝑞(𝑥0) is the real data distribution and 𝑝(𝑥𝑇 ) is a standard Gaussian prior.

A generative process 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) is trained to generate realistic images by approxi-

mating the reverse process through variational inference. Each step of the generative

process is a Gaussian distribution 𝒩 with a learned mean 𝜇𝜃(𝑥𝑡, 𝑡) and covariance
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matrix 𝜎2
𝑡 𝐼, where 𝐼 is the identity matrix.

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) := 𝒩
(︀
𝜇𝜃(𝑥𝑡, 𝑡), 𝜎

2
𝑡 𝐼
)︀
= 𝒩

(︀
𝑥𝑡 − 𝜖𝜃(𝑥𝑡, 𝑡

)︀
, 𝜎2

𝑡 𝐼). (3.2)

The mean 𝜇𝜃(𝑥𝑡, 𝑡) is represented by a perturbation 𝜖𝜃(𝑥𝑡, 𝑡) to a noisy image 𝑥𝑡. The

goal is to remove the noise gradually by predicting a less noisy image at timestep 𝑥𝑡−1

given a noisy image 𝑥𝑡. To generate real images, we sample 𝑥𝑡−1 from 𝑡 = 𝑇 to 𝑡 = 1

using the parameterized marginal distribution 𝑝𝜃(𝑥𝑡−1|𝑥𝑡), with an individual step

corresponding to:

𝑥𝑡−1 = 𝑥𝑡 − 𝜖𝜃(𝑥𝑡, 𝑡) +𝒩 (0, 𝜎2
𝑡 𝐼). (3.3)

The generated images become more realistic over multiple iterations.

The sampling procedure used by diffusion models in Equation (3.3) is functionally

similar to the sampling procedure used in energy-based models (see Section 2.3.1):

𝑥𝑡 = 𝑥𝑡−1 −
𝜆

2
∇𝑥𝐸𝜃(𝑥𝑡−1) +𝒩 (0, 𝜎2

𝑡 𝐼). (3.4)

In both settings, images are iteratively refined starting from Gaussian noise, with a

small amount of additional noise added at each iterative step.

3.4 Method

In this section, we first introduce how we interpret diffusion models as energy-based

models in Section 3.4.1 and then present how to compose diffusion models for visual

generation in Section 3.4.2.

3.4.1 Diffusion models as energy-based models

The sampling procedure of diffusion models in Equation (3.3) and EBMs in Equa-

tion (3.4) are functionally similar. At a timestep 𝑡, in diffusion models, images are

updated using a learned denoising network 𝜖𝜃(𝑥𝑡, 𝑡) while in EBMs, images are updated

using the gradient of the energy function ∇𝑥𝐸𝜃(𝑥𝑡) ∝ ∇𝑥 log 𝑝𝜃(𝑥𝑡). The denoising
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Sentence 1 (!!):
“Road leading into 
the mountains”

Sentence n (!"):
“Yellow trees on the 
side of the road”

Score "#($$ , &| !!)

Generated Image ('')

Concept 
Conjunction

Diffusion 
Model

Score "#($$ , &| !")

Image at iteration t ('&)

Diffusion 
Model

…… …

Figure 3-2: Compositional generation. Our method can compose multiple concepts
during inference and generate images containing all the concepts without further training.
We first send an image from iteration 𝑡 and each of the concepts to the diffusion model to
generate a set of scores {𝜖𝜃(𝑥𝑡, 𝑡|𝑐1), . . . , 𝜖𝜃(𝑥𝑡, 𝑡|𝑐𝑛)}. We then compose different concepts
using the proposed compositional operators, such as conjunction, to denoise the generated
image. The final image is obtained after 𝑇 iterations.

network 𝜖𝜃(𝑥𝑡, 𝑡) is trained to predict the underlying score of the data distribution

[159, 146] when the number of diffusion steps increases to infinity. Similarly, an EBM

is trained so that ∇𝑥𝐸𝜃(𝑥𝑡) corresponds to the score of the data distribution as well.

In this sense, 𝜖𝜃(𝑥𝑡, 𝑡) and ∇𝑥𝐸𝜃(𝑥𝑡) are functionally the same, and the underlying

sampling procedure in Equation (3.3) and Equation (3.4) are equivalent. We may

view a trained diffusion model 𝜖𝜃(𝑥𝑡, 𝑡) as an implicitly parameterized EBM. Such

parameterization enables us to apply previous techniques for composing EBMs to

diffusion models.

Composing EBMs. Previous EBMs [49, 25, 87] have shown good performance on

compositional visual generation. Given 𝑛 independent EBMs, 𝐸1
𝜃 (𝑥), · · · , 𝐸𝑛

𝜃 (𝑥), the

functional form of EBMs in Equation (2.1) enables us to compose multiple separate

EBMs together to obtain a new EBM. The composed distribution can be represented

as:

𝑝compose(𝑥) ∝
𝑛∏︁

𝑖=1

𝑝𝑖𝜃(𝑥) ∝ 𝑒−
∑︀𝑛

𝑖=1 𝐸
𝑖
𝜃(𝑥), (3.5)

where 𝑝𝑖𝜃 ∝ 𝑒−𝐸𝑖
𝜃(𝑥) is the probability density of image 𝑥 (Equation (2.1)). Langevin

dynamics is then used to iteratively refine the generated image 𝑥 [25, 87]:

𝑥𝑡 = 𝑥𝑡−1 −
𝜆

2
∇𝑥

(︃
𝑛∑︁

𝑖=1

𝐸𝑖
𝜃(𝑥𝑡−1)

)︃
+𝒩 (0, 𝜎2

𝑡 𝐼). (3.6)
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Composing diffusion models. By leveraging the interpretation that diffusion

models are functionally similar to EBMs, we may compose diffusion models in a

similar way. The generative process and the score function of a diffusion model can be

represented as 𝑝𝑖𝜃(𝑥𝑡−1|𝑥𝑡) and 𝜖𝑖𝜃(𝑥𝑡, 𝑡), respectively. If we treat the score functions

in diffusion models as the learned gradient of energy functions in EBMs, the score

function of the composed diffusion model can be written as
∑︀𝑛

𝑖=1 𝜖
𝑖
𝜃(𝑥𝑡, 𝑡). Thus the

generative process of composing multiple diffusion models becomes:

𝑝compose(𝑥𝑡−1|𝑥𝑡) = 𝒩
(︃
𝑥𝑡 −

𝑛∑︁

𝑖=1

𝜖𝑖𝜃(𝑥𝑡, 𝑡), 𝜎
2
𝑡 𝐼

)︃
. (3.7)

A complication of parameterizing a gradient field of EBM ∇𝑥𝐸𝜃(𝑥𝑡) with a learned

score function 𝜖𝜃(𝑥𝑡, 𝑡) is that the gradient field may not be conservative, and thus does

not correspond to a valid probability density. However, as discussed in [136], explicitly

parameterizing the learned function 𝜖𝜃(𝑥𝑡, 𝑡) as the gradient of EBM achieves similar

performance as the non-conservative parameterization of diffusion models, suggesting

this is not problematic.

3.4.2 Compositional generation through diffusion models

Next, we discuss how we compose diffusion models for image generation. We aim

to generate images conditioned on a set of concepts {𝑐1, 𝑐2, . . . , 𝑐𝑛}. To do this,

we represent each concept 𝑐𝑖 using a diffusion model, which can be composed to

generate images. Inspired by EBMs [25, 87], we define two compositional operators,

conjunction (AND) and negation (NOT), to compose diffusion models. We learn

a set of diffusion models representing the conditional probability distribution 𝑝(𝑥|𝑐𝑖)
given concept 𝑐𝑖 and an unconditional probability distribution 𝑝(𝑥).

Concept conjunction (AND). We aim to generate images containing certain

attributes. Following [25], the conditional probability can be factorized as:

𝑝(𝑥|𝑐1, . . . , 𝑐𝑛) ∝ 𝑝(𝑥, 𝑐1, . . . , 𝑐𝑛) = 𝑝(𝑥)
𝑛∏︁

𝑖=1

𝑝(𝑐𝑖|𝑥). (3.8)
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Here we assume the concepts are conditionally independent given 𝑥. We can represent

𝑝(𝑐𝑖|𝑥) using the combination of a conditional distribution 𝑝(𝑥|𝑐𝑖) and an unconditional

distribution 𝑝(𝑥), with both of them are parameterized as diffusion models 𝑝(𝑐𝑖|𝑥) ∝
𝑝(𝑥|𝑐𝑖)
𝑝(𝑥)

. The expression of 𝑝(𝑐𝑖|𝑥) corresponds to the implicit classifier that represents

the likelihood of 𝑥 exhibiting concept 𝑐𝑖. Substituting 𝑝(𝑐𝑖|𝑥) in Equation 3.8, we

can rewrite Equation 3.8 as:

𝑝(𝑥|𝑐1, . . . , 𝑐𝑛) ∝ 𝑝(𝑥)
𝑛∏︁

𝑖=1

𝑝(𝑥|𝑐𝑖)
𝑝(𝑥)

. (3.9)

We sample from this resultant distribution using Equation (3.7) with the composed

score function 𝜖(𝑥𝑡, 𝑡):

𝜖(𝑥𝑡, 𝑡) = 𝜖𝜃(𝑥𝑡, 𝑡) +
𝑛∑︁

𝑖=1

𝑤𝑖

(︀
𝜖𝜃(𝑥𝑡, 𝑡|𝑐𝑖)− 𝜖𝜃(𝑥𝑡, 𝑡)

)︀
, (3.10)

where 𝑤𝑖 is a hyperparameter corresponding to the temperature scaling on concept 𝑐𝑖.

We can generate images with the composed concepts using the following generative

process :

𝑝𝑐𝑜𝑚𝑝𝑜𝑠𝑒(𝑥𝑡−1|𝑥𝑡) := 𝒩
(︀
𝑥𝑡 − 𝜖(𝑥𝑡, 𝑡), 𝜎

2
𝑡 𝐼
)︀
. (3.11)

In the setting in which image generation is conditioned on a single concept, the above

sampling procedure reduces to the classifier-free guidance [52].

Concept negation (NOT). In concept negation, we aim to generate realistic

images with the absence of a certain factor 𝑐𝑗. However, the negation of a concept

can be ill-defined. For example, the negation of “dark” can be “bright” or random

noises. Thus we generate images conditioned on other concepts as well to make the

generated images look real. Following [25], concept negation can be represented as

the composed probability distribution 𝑝(𝑥|NOT 𝑐𝑗, 𝑐𝑖). Similarly, we refactorize the

joint probability distribution as follows:

𝑝(𝑥|NOT 𝑐𝑗, 𝑐𝑖) ∝ 𝑝(𝑥,NOT 𝑐𝑗, 𝑐𝑖) ∝ 𝑝(𝑥)
𝑝(𝑐𝑖|𝑥)
𝑝(𝑐𝑗|𝑥)

. (3.12)
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Algorithm 1: Code for Composing Diffusion Models
1: Require Diffusion model 𝜖𝜃(𝑥𝑡, 𝑡|𝑐), scales 𝑤𝑖 and 𝑤, covariance matrix 𝜎2

𝑡 𝐼
2: // Code for conjunction
3: Initialize sample 𝑥𝑇 ∼ 𝒩 (0, 𝐼)
4: for 𝑡 = 𝑇, . . . , 1 do
5: 𝜖𝑖 ← 𝜖𝜃(𝑥𝑡, 𝑡|𝑐𝑖) // compute conditional scores for each concept 𝑐𝑖
6: 𝜖← 𝜖𝜃(𝑥𝑡, 𝑡) // compute unconditional score
7: 𝑥𝑡−1 ∼ 𝒩

(︁
𝑥𝑡 −

(︀
𝜖+

∑︀𝑛
𝑖=1𝑤𝑖(𝜖𝑖 − 𝜖)

)︀
, 𝜎2

𝑡 𝐼
)︁

// sampling
8: end for
9:

10: // Code for negation
11: Initialize sample 𝑥𝑇 ∼ 𝒩 (0, 𝐼)
12: for 𝑡 = 𝑇, . . . , 1 do
13: 𝜖𝑗 ← 𝜖𝜃(𝑥𝑡, 𝑡|𝑐𝑗) // compute conditional score for the negated concept 𝑐𝑗
14: 𝜖𝑖 ← 𝜖𝜃(𝑥𝑡, 𝑡|𝑐𝑖) // compute conditional score for concept 𝑐𝑖
15: 𝜖← 𝜖𝜃(𝑥𝑡, 𝑡) // compute unconditional score
16: 𝑥𝑡−1 ∼ 𝒩

(︁
𝑥𝑡 −

(︀
𝜖+ 𝑤(𝜖𝑖 − 𝜖𝑗)

)︀
, 𝜎2

𝑡 𝐼
)︁

// sampling
17: end for

Using the factorization 𝑝(𝑐𝑖|𝑥) ∝ 𝑝(𝑥|𝑐𝑖)
𝑝(𝑥)

, we can rewrite Equation (3.12) as:

𝑝(𝑥|NOT 𝑐𝑗, 𝑐𝑖) ∝ 𝑝(𝑥)
𝑝(𝑥|𝑐𝑖)
𝑝(𝑥|𝑐𝑗)

(3.13)

We may construct the composed score function 𝜖(𝑥, 𝑡) as:

𝜖(𝑥𝑡, 𝑡) = 𝜖𝜃(𝑥𝑡, 𝑡) + 𝑤
(︀
𝜖𝜃(𝑥𝑡, 𝑡|𝑐𝑖)− 𝜖𝜃(𝑥𝑡, 𝑡|𝑐𝑗)

)︀
, (3.14)

where 𝑤 is the hyperparameter that controls the strength of the negation. We can

generate samples using this composed score function and Equation 3.11.

Algorithm 1 provides the pseudo-code for composing diffusion models using concept

conjunction and negation. Our method can compose pre-trained diffusion models

during inference without any additional training.

3.5 Experiment Setup

3.5.1 Datasets
CLEVR. CLEVR [63] is a synthetic dataset containing objects with different shapes,

colors, and sizes. The training set consists of 30, 000 images at 128× 128 resolution.

Each image contains 1 ∼ 5 objects and a 2D coordinate (𝑥, 𝑦) label indicating that
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the image contains an object at (𝑥, 𝑦). In our experiments, the 2D coordinate label is

the coordinate of one object in the image.

Relational CLEVR. Relational CLEVR [87] contains relational descriptions be-

tween objects in the image, such as “a red cube to the left of a blue cylinder”. The

training dataset contains 50, 000 images at 128× 128 resolution. Each training image

contains 1 ∼ 5 objects and one label describing a relation between two objects. If

there is only one object in the image, the second object and their relation in the

relational description are both nulls.

FFHQ. FFHQ [67] is a real-world human face dataset. The original FFHQ dataset

consists of 70,000 human face images without labels. [19] annotates three binary

attributes, including smile, gender, and glasses, for the images using pre-trained

classifiers. There are 51,067 images labeled by the classifiers.

3.5.2 Evaluation metrics

Binary classification accuracy. During testing, we evaluate the performance of

the proposed method and baselines on three different settings. The first test setting,

1 Component, generates images conditioned on a single concept (matching the

training distribution). The second and third test settings, 2 Components and 3

Components, generate images by composing two and three concepts, respectively,

using the conjunction and negation operators. They are used to evaluate the model’s

generalization ability to new combinations.

For each task, we use the training data (real images) to train a binary classifier that

takes an image and a concept, e.g ., ‘smiling’, as input and predicts whether the image

contains or represents the concept. We then apply this classifier to a generated image,

checking whether it faithfully captures each of the concepts. In each test setting, each

method generates 5, 000 images for evaluation. The accuracy of the method is the

percentage of generated images capturing all the concepts (See Appendix B.2 for more

details about the classifiers).

Fréchet Inception Distance (FID) is a commonly used metric for evaluating the
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quality of generated images. It uses a pre-trained inception model [151] to extract

features for the generated images and real images, and measures their feature similarity.

Specifically, we use Clean-FID [111] to evaluate the generated images. FID is usually

computed on 50, 000 generated images, but we use 5, 000 images in our experiments.

3.6 Experiments

We compare the proposed method and baselines (Section 3.6.1) on compositional

generation in different domains. We show results of composing natural language

descriptions (Section 3.6.2), objects (Section 3.6.3), and human facial attributes

(Section 3.6.4). Results analysis are shown in Section 3.6.5.

3.6.1 Baselines

We compare our method with baselines for compositional visual generation.

StyleGAN2-ADA [66] is the state-of-the-art GAN method for both unconditional

and conditional image generation.

StyleGAN2 [68] is one of the state-of-the-art GAN methods for unconditional image

generation. To enable compositional image generation, we optimize the latent code 𝑧

by decreasing the binary classification loss of the generated image and the given label.

We use the resultant latent code to generate images.

LACE [106] uses pre-trained classifiers to generate energy scores in the latent space

of the pre-trained StyleGAN2 model. LACE uses compositional operators [25] for

compositional image synthesis.

GLIDE [103] is a recently released text-conditioned diffusion model for image

generation. For composing language descriptions, we use the pre-trained GLIDE

released by OpenAI. For the rest of the tasks, we use the GLIDE code and train a

model on each task.

Energy-based models (EBM) [25] is the first paper using EBMs for compositional

visual generation. We use the three compositional operators for composing different

concepts.
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“A blue bird on a 
tree” AND “A red 
car behind the 
tree” AND “A 
green forest in the 
background”

“A green tree swaying 
in the wind” AND “A 
red brick house 
located behind a tree” 
AND “A healthy lawn 
in front of the house”

“A pink sky in 
the horizon” 
AND “A sailboat 
at the sea” AND 
“Overwater 
bungalows”

“A starry night 
sky” AND “A 
polar bear in a 
forest”

“A white church 
sitting on a hill” 
AND “Aurora in 
the sky”

GLIDE

Composed GLIDE (Ours)

“A pink sky” AND 
“A blue mountain 
in the horizon” 
AND “Cherry 
Blossoms in front 
of the mountain”

Figure 3-3: Composing language descriptions. We develop Composed GLIDE (Ours),
a version of GLIDE [103] that utilizes our compositional operators to combine textual
descriptions, without further training. We compare it with the original GLIDE, which
directly encodes the descriptions as a single long sentence. Our approach can capture text
details more accurately, such as the “overwater bungalows” in the third example.

3.6.2 Composing language descriptions

Composing language for 2D image generation. Our approach can effectively

compose natural language descriptions. We first show the image generation results

of the pre-trained diffusion model, GLIDE [103], in Fig. 3-3. We develop Composed

GLIDE, a version of GLIDE that utilizes our compositional operators to combine

textual descriptions, without further training. We compare this model with the original

GLIDE model.

In Fig. 3-3, GLIDE takes a single long sentence as input, for example, “A pink sky

in the horizon, a sailboat at the sea, and overwater bungalows”. In contrast, Composed

GLIDE composes several short sentences using the concept conjunction operator, e.g .,

“A pink sky in the horizon” AND “A sailboat at the sea” AND “Overwater bungalows”.

While both GLIDE and Composed GLIDE can generate reasonable images containing

objects described in the text prompt, our approach with the compositional operators

can more accurately capture text details, such as the presence of “a polar bear” in the

first example and the “overwater bungalows” in the third example.
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“A large blue metal cube to the left of a small yellow metal sphere” AND
“A large blue metal cube in front of a large cyan metal cylinder”

Obj1

Obj2

Obj3

Obj4

Obj5

Obj1

Obj2
Obj3 Obj5

Obj6

Obj1

Obj2 Obj3

Obj4

Obj5

Obj1

Obj2
Obj3

Obj4
Obj5

Obj2

LACE

Obj7

“A small brown metal sphere below a small green metal sphere” AND
“A small brown metal sphere behind a large gray rubber cube”

StyleGAN2 EBM GLIDE DALL-E 2 Ours

Figure 3-4: Composing object relational descriptions. Image generation results on
the Relational CLEVR dataset. Our model is trained to generate images conditioned on a
single object relation, but during inference, our model can compose multiple object relations,
generating better results than baselines.

Composing object relational descriptions. We further compare the proposed

approach and baselines on composing object relational descriptions in Figure 3-4. Our

model is trained to generate images conditioned on a single object relation, but it can

compose multiple object relations during inference without additional training. Both

LACE and StyleGAN2 fail to capture object relations in the input sentences, but EBM

and diffusion models can correctly compose multiple object relations. Diffusion models

generate higher-quality images compared with EBM, e.g ., the object boundaries are

sharper in our results than EBM. Surprisingly, DALL-E 2 and GLIDE can generate

high-quality images, but they fail to understand object relations.

Composing language for 3D asset generation. We demonstrate that the pro-

posed method can compose language descriptions for 3D point cloud generation, which

can be further used to generate 3D meshes. We first use Point-E [104], the pre-trained

3D point cloud generation model, to generate the point clouds of an object based

on the text description. We then convert the 3D point clouds into 3D meshes using

marching cubes [90]. The results are shown in Fig. 3-5.
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“A green avocado” AND “A chair” “A boat” AND “A couch” “A chair” AND “A cake”

“A toilet” AND “A chair”“A brown couch” AND “A monitor”“A chair” AND NOT “Chair legs”

Figure 3-5: Composing language descriptions for 3D asset generation. We provide
qualitative results of composing the pre-trained text-to-3D diffusion model, Point-E [104], to
generate 3D objects.

3.6.3 Composing objects

Given a set of 2D object positions, we aim to generate images containing objects at

these positions.

Qualitative results. We compare the proposed method with baselines on composing

objects in Fig. 3-6. We only show the concept conjunction here because the object

positions are not binary values, and thus the negation of object positions is not

interpretable. Given a set of object position labels, we compose them to generate

images. Our model can generate images of objects at certain locations, while the

baseline methods either miss objects or generate incorrect objects.

Quantitative results. As shown in Table 3.1, our method outperforms baselines

by a large margin. The binary classification accuracy of our method is 15.88% higher

than EBM in the 1 component test setting and is 24.02% higher than EBM in the

more challenging 3 Components setting. Our method is more effective in zero-shot

compositional generalization. In addition, our method can generate images with lower
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Figure 3-6: Composing objects. Our method can compose multiple objects while baseline
methods either miss objects or generate objects at wrong positions.

Table 3.1: Quantitative evaluation of image generation results on CLEVR. The
binary classification accuracy (Acc) and FID scores are reported. Our method outperforms
baselines on all three test settings.

Models 1 Component 2 Components 3 Components
Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

StyleGAN2-ADA [66] 37.28 57.41 - - - -
StyleGAN2 [68] 1.04 51.37 0.04 23.29 0.00 19.01
LACE [106] 0.70 50.92 0.00 22.83 0.00 19.62
GLIDE [103] 0.86 61.68 0.06 38.26 0.00 37.18
EBM [25] 70.54 78.63 28.22 65.45 7.34 58.33
Ours 86.42 29.29 59.20 15.94 31.36 10.51

FID scores, indicating the generated images are more similar to real images.

3.6.4 Composing human facial attributes
Qualitative results. We compare the proposed method with baselines on composing

facial attributes in Fig. 3-7. We find that LACE and StyleGAN2 can generate high-

fidelity images, but the generated images do not match the given labels. For example,

StyleGAN2 generates humans without wearing glasses when the input label contains

“Glasses”, while LACE generates males sometimes when the input is “Not Male”. Our

method can generate high-fidelity images, containing all the attributes in the input

label.

Quantitative results. The results of our method and baselines on three test settings

are shown in Table 3.2. Our method is comparable with the best baseline on each
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Figure 3-7: Composing facial attributes. Image generation results on the FFHQ dataset.
Our model is trained to generate images conditioned on a single human facial attribute,
but during inference, our model can recursively compose multiple facial attributes using the
proposed compositional operators.

Table 3.2: Image generation results on FFHQ. The binary classification accuracy (Acc)
and FID are reported. Our method achieves comparable results with the best baseline on
three test settings.

Models 1 Component 2 Components 3 Components
Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

StyleGAN2-ADA [66] 91.06 10.75 - - - -
StyleGAN2 [68] 58.90 18.04 30.68 18.06 16.96 18.06
LACE [106] 97.60 28.21 95.66 36.23 80.88 34.64
GLIDE [103] 98.66 20.30 48.68 22.69 27.24 21.98
EBM [25] 98.74 89.95 93.10 99.64 30.01 335.70
Ours 99.26 18.72 92.68 17.22 68.86 16.95

evaluation metric.

3.6.5 Results analysis

We show our composed results on image generation and the results generated condi-

tioned on each individual sentence description in Fig. 3-8. We provide four successfully

composed examples, where the generated images contain all the concepts mentioned

in the input sentences.

Failure cases. We observed three main failure cases of the proposed method. The

first one is that the pre-trained diffusion models do not understand certain concepts,

such as “person” in (b). This is because the pre-trained diffusion model, GLIDE [103],
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“A bird” “A flower” “A bird” AND
“A flower”

(b) Diffusion model fails

“A bus” “A person” “A bus” AND
“A person”

“A bear in a red 
forest”

“A car stuck in 
the forest”

“A bear in a red 
forest” AND “A car 
stuck in the forest”

(c) Diffusion model confuses object attributes

(d) Composition fails

“A camel” “A forest” “A camel” AND 
“A forest”

(a) Successful Examples

“An abandoned 
vehicle”

“A forest covered 
with snow”

“An abandoned vehicle” 
AND “A forest covered 
with snow”

“A dog sitting in 
the living room”

“A couch” “A couch” AND “A dog 
sitting in the living room”

“A horse” “A yellow flower field” “A horse” AND “A 
yellow flower field”

“A boat” “A desert” “A boat” AND
“A desert”

Figure 3-8: Results analysis. Successful examples (a) and failure examples (b-d) generated
by the proposed method. There are three main types of failures: (b) The pre-trained diffusion
model does not understand certain concepts, such as “person”. (c) The pre-trained diffusion
model confuses objects’ attributes. (d) The composition fails. This usually happens when
the objects are in the center of the images.

is trained to avoid generating human images. The second type of failure is because the

diffusion models confuse the objects’ attributes. In (c), the generated image contains

“a red bear” while the input is “a bear in a red forest”. The third type of failure is

because the composition does not work, e.g ., the “bird-shape and flower-color object”

and the “dog-fur and sofa-shape object” in (d). Such failures usually happen when the

objects are in the center of the images.
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GLIDE Ours

“A dog” AND “the sky”

“A bear” AND “A red tree”

GLIDE Ours“A dog” AND “the sky”

“A bear” AND “A red tree”

GLIDE Ours

Figure 3-9: Interesting cases. Our method (composing multiple sentences) generates
different styles of images compared to GLIDE (directly encoding the descriptions as a single
long sentence).

Interesting cases. As shown in Fig. 3-9, we find that our method, which combines

multiple textual descriptions, can generate different styles of images compared to

GLIDE, which directly encodes the descriptions as a single long sentence. Taking

“a dog” and “the sky” as inputs, our method generates a dog-shaped cloud, whereas

GLIDE generates a dog under the sky using the prompt “a dog and the sky”.

3.7 Conclusion

In this chapter, we compose diffusion models for image generation. By building the

connection between energy-based models and diffusion models, we may explicitly

compose diffusion models and generate images with significantly more complex combi-

nations that are never seen during training. The proposed compositional operators

allow us to compose diffusion models during inference time without any additional

training. The proposed composable diffusion models can generate images conditioned

on sentence descriptions, objects, and human facial attributes, and can generalize to

new combinations that are rarely seen in the real world. These results demonstrate

the effectiveness of the proposed method for compositional visual generation.

In Chapter 2 and Chapter 3, we define the compositional operators for composing

concepts and goals. These concepts and goals are usually from the same domain.

However, it is important to note that our reality exhibits a rich tapestry of modalities,
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encompassing various modes of existence and perception. In the next chapter, we will

introduce how to compose pre-trained models from different modalities, such as vision

models and language models, and build a more powerful multi-modal framework that

can solve a wide range of tasks.
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Chapter 4

Composing Ensembles of Pre-trained

Models via Iterative Consensus

Shuang Li, Yilun Du, Joshua B. Tenenbaum, Antonio Torralba, Igor Mordatch;

ICLR 2023.

In Part I, we developed compositional operators to compose concepts and goals,

predominantly from a single domain like natural language descriptions. Building on

that foundation, this section delves into composing models from diverse domains. Our

goal is to establish a robust multimodal framework capable of addressing different

tasks.

Large pre-trained models exhibit distinct and complementary capabilities dependent

on the data they are trained on. Language models such as GPT-3 [13] are capable

of textual reasoning but cannot understand visual information, while vision models

such as DALL-E 2 [125] can generate photorealistic photos but fail to understand

complex language descriptions. In this part, we introduce a unified framework for

composing ensembles of different pre-trained models – combining the strengths of

each individual model to solve various multimodal problems in a zero-shot manner.

We use pre-trained models as “generators” or “scorers” and compose them via closed-

loop iterative consensus optimization. The generator constructs proposals and the

scorers iteratively provide feedback to refine the generated result. Such closed-loop
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communication enables models to correct errors caused by other models, significantly

boosting performance on downstream tasks. We demonstrate that consensus achieved

by an ensemble of scorers outperforms the feedback of a single scorer, by leveraging

the strengths of each expert model. Results show that the proposed method can be

used as a general purpose framework for a wide range of zero-shot multimodal tasks,

such as image generation, video question answering, mathematical reasoning, and

robotic manipulation.

4.1 Introduction

Large pre-trained models have shown remarkable zero-shot generalization abilities,

ranging from zero-shot image generation and natural language processing to machine

reasoning and action planning. Such models are trained on large datasets scoured

from the internet, often consisting of billions of datapoints. Individual pre-trained

models capture different aspects of knowledge on the internet, with language models

(LMs) capturing textual information in news, articles, and Wikipedia pages, and

visual-language models (VLMs) modeling the alignments between visual and textual

information. While it is desirable to have a single sizable pre-trained model capturing all

possible modalities of data on the internet, such a comprehensive model is challenging

to obtain and maintain, requiring intensive memory, an enormous amount of energy,

months of training time, and millions of dollars. A more scalable alternative approach

is to compose different pre-trained models together, leveraging the knowledge from

different expert models to solve complex multimodal tasks.

Building a unified framework for composing multiple models is challenging. Prior

works [2, 174] have explored composing pre-trained models in two main ways: (jointly)

finetuning models on large datasets, or using common interfaces such as language

to combine different models. However, these works have several key limitations:

First, simply combining models does not fully utilize each pre-trained model as there

is no closed-loop feedback between models. Cascading models, such as Socratic

models [174], allows one-way communication but prevents information processed by
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Generator(G) Scorers(E)

Iterative Consensus

Video Question Answering

Q: How to make the food step by step? 
A: Put water in the pot, …, add sausage, add 
seasoning on top of the pizza …
Q: What food is being made? A: Make pizza

Grade School Math

Q: A robe takes 2 bolts of blue fiber and 
half that much white fiber. How many 
bolts in total does it take? A: 3 
Q: Claire makes a 3 egg omelet every 
morning for breakfast. How many dozens 
of eggs will she eat in 4 weeks? A: 7 

Image Generation Robot Manipulation

G: Language models
E: CLIP models

G: Language models
E: QA classifiers

G: Diffusion models
E: CLIP models, …, 

Image classifiers

G: World models
E: Image 
segmentation models

Orange mug to the right of orange bowl; …;
Orange mug on top of orange bowlGrasshopperA red car in 

front of a tree
Hamster

Figure 4-1: Composing models. The proposed framework that composes a “generator”
and an ensemble of “scorers” through iterative consensus enables zero-shot generalization
across a variety of multimodal tasks.

later models from propagating back to earlier models to correct errors. Secondly,

common interfaces are limited to particular types of models. Language is used as

the intermediate connection in Socratic models [174], but a language interface is

insufficient to solve many real-world tasks, such as continuous robot control, which

requires continuous representations. In addition, Socratic models require pre-designed

language templates for the communication between models, which limits scalability.

Thirdly, jointly finetuning multiple models [2] requires careful optimization to ensure

that the model behaviors remain stable. Such models also require intensive memory

and large datasets and can only be used for solving specific tasks.

To resolve these difficulties, we propose a unified framework to compose models in

a zero-shot manner∗ without any training/finetuning. Our framework employs a single

model as a generator and an ensemble of scorers. The generator iteratively generates

proposals, and each scorer provides a feedback score indicating their agreement. The

generator refines its outputs until all the scorers achieve a final consensus. This

iterative closed-loop communication between the generator and scorers enables models

to correct the errors caused by other models, substantially boosting performance.

The ensemble of scorers is inspired by the idea of “wisdom of the crowds”. Each

scorer provides complementary feedback to the generator, compensating for the

∗By zero-shot, we mean the composed models are never trained together on the evaluation task.

85



potential weaknesses of other scorers. A Vision-Language scorer, for example, may

correct the biases of a language model. We notice that different pre-trained model

instances from the same family have a diversity of outputs, which leads to more robust

scorers. We demonstrate that guiding the generator with such an ensemble of scorers

significantly outperforms a generator guided by a single scorer. In summary, our

contributions are:

• First, we propose a unified framework for composing pre-trained models across

a variety of tasks, such as image generation, video question answering, mathe-

matical reasoning, and robot manipulation.

• Second, we illustrate how the proposed framework can effectively solve zero-shot

multimodal tasks without any training/finetuning. The closed-loop communica-

tion between the generator and scorers allows the models to interact with each

other to improve performance iteratively.

• Finally, we illustrate how our framework enables the use of ensembles of different

pre-trained models as scorers, significantly improving the zero-shot results by

leveraging the strengths of multiple expert models.

These observations point to the effectiveness of the proposed method as a general

purpose framework for composing pre-trained models for solving various zero-shot

multimodal tasks.

4.2 Related Work

Large pre-trained models have shown great success across a variety of domains, such

as language generation/translation, image generation, and decision-making.

Language models. Large language models, such as ELMo [113], BERT [22], and

GPT-2 [122], are able to achieve state-of-the-art performance on many standard NLP

benchmarks. More recent works, such as PALM [16], Chinchilla [55], GPT-3 [13], and

GPT-4 [109] further enable few-shot learning from textual prompts.
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Vision-language models. Large pre-trained vision-language generative models,

such as DALL-E 2 [125], Parti [171], and Imagen [134], can generate high-resolution

images given natural language descriptions. Large pre-trained vision-language dis-

criminative models, such as CLIP [119], convert images and languages into the same

feature space, achieving remarkable zero-shot generalization ability on downstream

tasks.

Decision-making models. Large pre-trained models have been widely applied to

solve decision-making tasks, such as learning general purpose policies [128, 84, 143],

making planners [58, 1], and learning world models [32]. However, due to the large

variability in decision-making tasks, no existing pre-trained models can be readily

applied across different tasks.

Composing pre-trained models. Composing large pre-trained models has been

widely studied recently. The predominant way to compose pre-trained models is

to (joint) finetune them on new tasks [82, 161, 2, 102], but such approaches are

computationally expensive. Alternative approaches compose models through a common

interface such as language [152, 174]. Other works compose pre-trained models

by composing learned probability distributions of the data, such as energy-based

models [88, 87, 25], which can be applied to image generation. In this chapter, we

propose a framework to compose pre-trained models across a variety of domains

without any training or finetuning.

4.3 Method

Given a set of large pre-trained models, we aim to utilize the expert knowledge

from different models to solve zero-shot multimodal tasks. We separate pre-trained

models into two categories – generators (𝐺) such as GPT [13, 122] and Diffusion

models [51] that can generate candidate solutions, and scorers (𝐸) such as CLIP [119]

and classifiers that output a scalar score to evaluate each generated solution. We

propose PIC (composing ensembles of Pre-trained models via Iterative Consensus),
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a framework which composes ensembles of pre-trained models for multimodal tasks.

The core idea of PIC is to generate solutions through iterative optimization, where we

leverage the knowledge from different models to jointly construct a consensus solution.

In PIC, a generator 𝐺 iteratively and sequentially generates candidate solutions, each

of which is refined based on the feedback from a set of scorers. In particular, we seek

to obtain a solution 𝑥* such that

𝑥* = argmin
𝑥∼𝐺

𝑛∑︁

𝑖=1

𝐸𝑖(𝑥), (4.1)

where {𝐸1, · · · , 𝐸𝑛} is the set of scorers. At each iteration, we refine the solutions

to have a lower score than the previous iterations. This procedure, described in

Equation (4.1), converges to a solution that minimizes the energy across multiple pre-

trained models, which maximizes the agreement between the generator and scorers. In

contrast to Socratic Models where different pre-trained models are called sequentially,

the closed-loop iterative refinement through which we obtain 𝑥* enables the generator

and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image gen-

eration, video question answering, grade school math, and robot manipulation. To

optimize Equation (4.1), we consider two different optimization procedures – either a

continuous approach that leverages the gradients of each scorer 𝐸𝑖(𝑥) or a discrete

approach that directly samples possible solutions.

4.3.1 Applications to zero-shot tasks

Image generation. We first apply the proposed framework to image generation to

generate images conditioned on a text description or a class label. We use the reverse

diffusion process of GLIDE [103], a text-guided diffusion model, as the generator to

generate image proposals. At each step of the diffusion process (corresponding to a

step of the iterative refinement), we use the gradient from an ensemble of scorers, such

as CLIP [119], to guide and update the generated proposals. We iteratively repeat

this procedure until the final step.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As
shown in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained
with different configurations, for zero-shot video frame captioning. Given a video frame, the CLIP
models compute its feature distance (score) to the feature of the generated caption. Similar to image
generation, the gradient of summed scores are propagated to the generator to update the next token
xt+1. We cascade the video frame captions and questions about this video to prompt GPT-3. Results
show that utilizing the proposed framework and GPT-3 enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
2009) with the image resolution of 64⇥ 64. The class labels are used as text input to guide the image
generation. Each method generate 50 images on each class.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:
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where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As
shown in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained
with different configurations, for zero-shot video frame captioning. Given a video frame, the CLIP
models compute its feature distance (score) to the feature of the generated caption. Similar to image
generation, the gradient of summed scores are propagated to the generator to update the next token
xt+1. We cascade the video frame captions and questions about this video to prompt GPT-3. Results
show that utilizing the proposed framework and GPT-3 enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
2009) with the image resolution of 64⇥ 64. The class labels are used as text input to guide the image
generation. Each method generate 50 images on each class.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:
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where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As
shown in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained
with different configurations, for zero-shot video frame captioning. Given a video frame, the CLIP
models compute its feature distance (score) to the feature of the generated caption. Similar to image
generation, the gradient of summed scores are propagated to the generator to update the next token
xt+1. We cascade the video frame captions and questions about this video to prompt GPT-3. Results
show that utilizing the proposed framework and GPT-3 enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
2009) with the image resolution of 64⇥ 64. The class labels are used as text input to guide the image
generation. Each method generate 50 images on each class.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:
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where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation maps
for images captured by different camera views, and the corresponding text label for each segment,
which are used to obtain object relations. We compare the generated object relations and the relations
specified by the text description to obtain the scorer, i.e. score equals 0 if they match; otherwise,
1 (here the score means the distance) (see Appendix A.4 for details). To obtain a final world state
xT that satisfies the specified relations, and the action sequence {a1, · · · , aT } that manipulates
the objects into the final state xT , the generator iteratively samples possible actions âk

t+1 and gets
feedback from scorers. The best action is selected by:

at+1 = arg min
âk

t+1

NX

n=1

En
✓ (xt, â

k
t+1). (4)

Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action âk

t+1 is
applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
a pre-defined answer set (Yang et al., 2021; Lei et al., 2022). To evaluate such free-form VQA, we
ask workers from Amazon Mechanical Turk to measure whether the generated answer matches the
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Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1  x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t  Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We
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diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.
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xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:
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the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We
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diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
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Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
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Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:
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where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
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(c). We use GPT-2 as the generator and multiple different CLIP models, trained with different
configurations, as the scorers. Given a video frame I , we generate a sequence of words to describe it.
To integrate feedback from scorers to the generator, similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in GPT-2) that stores the context information generated so
far, which is updated iteratively based on the feedback from scorers. The prediction of the next word
from the generator G is given by xt+1 = G(xt, Ct). To update Ct, we first use G to generate a
set of candidate words X̂t+1 = {x̂t+1}, and then use the feature distance (after softmax) between
each sentence (the concatenation of previous words and each new word {x1, x2, · · · , x̂t+1}, where
x̂t+1 2 X̂t+1) and the video frame as the probability of them matching. The CLIP score is the
cross-entropy loss LCLIP between this new probability distribution and the original distribution of the
next word obtained from the generator G. The gradient of the summed score (multiple CLIP models)
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k
t+1) (10)

1

test

Shuang Li

August 2023

1 Introduction
nX

i=1

Ei
✓(x

k, c) (1)

xk (2)

xk+1 (3)

x̂k+1 (4)

{x1, · · · , xt} (5)

xt (6)

xt+1 (7)

x̂t+1 (8)

nX

i=1

LCLIP(Ei
✓ (x1, x2, · · · , x̂t+1, I)) (9)

arg min
âk
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âk

t+1

nX

i=1

Ei
✓(xt, â
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k
t+1) (10)

1

test

Shuang Li

August 2023

1 Introduction
nX

i=1

Ei
✓(x

k, c) (1)

xk (2)

xk+1 (3)

x̂k+1 (4)

{x1, · · · , xt} (5)

xt (6)

xt+1 (7)

x̂t+1 (8)

nX

i=1

LCLIP(Ei
✓ (x1, x2, · · · , x̂t+1, I)) (9)

arg min
âk
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Figure 4-2: The proposed framework and examples on three representative tasks.
(a) Overview of the proposed unified framework. Dashed lines are omitted for certain tasks.
(b) Image generation. A pre-trained diffusion model is used as the generator, and multiple
scorers, such as CLIP and image classifiers, are used to provide feedback to the generator.
(c) Video question answering. GPT-2 is used as the generator, and a set of CLIP models are
used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and
a pre-trained image segmentation model is used to compute the scores from multiple camera
views to select the best action. Orange lines represent the components used to refine the
generated result.

As shown in Fig. 4-2 (b), the image 𝑥𝑘 generated at iteration 𝑘 is first sent to the

diffusion model to generate an image proposal 𝑥̂𝑘+1. Each scorer outputs a score to

evaluate whether the generated image matches the given text input. For example,

CLIP computes the cosine similarity between the image and text features as the score.

The scores generated by different scorers are summed, and their gradient with respect

to 𝑥𝑘 is used to compute the next reverse prediction 𝑥𝑘+1:

𝑥𝑘+1 ← 𝑥̂𝑘+1 − 𝜆∇𝑥𝑘

𝑛∑︁

𝑖=1

𝐸𝑖
𝜃

(︀
𝑥𝑘, 𝑐

)︀
, (4.2)
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where 𝑛 is the number of scorers and 𝑐 is the input label. We denote the reverse

process prediction as 𝑥𝑘+1 instead of 𝑥𝑘−1 (used by most diffusion models) to keep

the consistent notation across tasks.

Video question answering (VQA). Caption generation for a single video frame

is shown in Fig. 4-2 (c). We use GPT-2 as the generator and multiple different CLIP

models, trained with different configurations, as the scorers. Given a video frame 𝐼,

we generate a sequence of words to describe it. To integrate feedback from scorers

to the generator, similar to [152], we define a context cache 𝐶𝑡 (a set of embedding

functions in GPT-2) that stores the context information generated so far, which is

updated iteratively based on the feedback from scorers. The prediction of the next

word from the generator 𝐺 is given by 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡). To update 𝐶𝑡, we first use

𝐺 to generate a set of candidate words X̂𝑡+1 = {𝑥̂𝑡+1}, and then use the feature

distance (after softmax) between each sentence (the concatenation of previous words

and each new word {𝑥1,𝑥2, · · · , 𝑥̂𝑡+1}, where 𝑥̂𝑡+1 ∈ X̂𝑡+1) and the video frame as

the probability of them matching. The CLIP score is the cross-entropy loss ℒCLIP

between this new probability distribution and the original distribution of the next

word obtained from the generator 𝐺. The gradient of the summed score (multiple

CLIP models) is then propagated to 𝐺 to update 𝐶𝑡:

𝐶𝑘+1
𝑡 ← 𝐶𝑘

𝑡 + 𝜆∇𝐶𝑘
𝑡

𝑛∑︁

𝑖=1

ℒCLIP(𝐸
𝑖
𝜃 (𝑥1,𝑥2, · · · , 𝑥̂𝑡+1, 𝐼)), (4.3)

where 𝑘 is the step of iterative refinement. After several iterations, the updated 𝐶𝑡

is used to generate the next token 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡). We repeat this process until

we generate the entire caption. We cascade the captions of multiple video frames

and questions about this video to prompt GPT-3 for video question answering (See

Appendix C.1.2 for more details).

Grade school math. We further apply PIC to solve grade school math problems.

We use GPT-2 as the generator and treat the grade school math problem as a text-

generation problem. The scorer, a pre-trained question-solution classifier, provides
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the generator feedback to guide the next token’s generation 𝑥𝑡+1. We follow the

approach used in VQA to iteratively optimize the generations based on the feedback

from scorers. Our generator 𝐺 first generates a set of candidate words X̂𝑡+1 = {𝑥̂𝑡+1},
and then the classifier predicts the probability of each solution (the concatenation of

previous words and each new word {𝑥1,𝑥2, · · · , 𝑥̂𝑡+1}, where 𝑥̂𝑡+1 ∈ X̂𝑡+1) matching

the given question. The classifier score is the cross-entropy loss between this new

probability distribution and the original distribution of the next word obtained from

the generator 𝐺. The gradient of the classifier score is used to update 𝐶𝑡 through

iterative refinement, same as Eq. (4.3). The updated 𝐶𝑡 is used to predict the next

word 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡). We repeat this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate

objects in the robot environment to conform to a set of object relations such as “red

bowl on top of blue mug” shown in Fig. 4-2 (d). We use the combination of Model

Predictive Control (MPC) [163] and the World Model as the generator. At each time

step, we first use MPC to sample a set of possible actions and then render the state

images (after executing an action) from multiple camera views using the world model.

For each action, the scorer computes a summed score across all camera views as its

final score, which is used to select the best action to execute. Thus, in this domain,

the ensemble consists of scorers based on different views of the scene.

For the generator, we assume that there is a pre-trained model, i.e. world model,

that can accurately render and simulate the dynamic changes in the robot world.

Since such a large pre-trained model does not directly exist, we approximate it using

an environment simulator combined with MPC as the generator. For the scorer, we

use the pre-trained ViLD [42] to generate segmentation maps for images captured by

𝑛 different camera views, and the corresponding text label for each segment, which

are used to obtain object relations. We compare the generated object relations and

the relations specified by the text description to obtain the score, i.e. score equals 0 if

they match; otherwise, 1 (here the score means the distance) (see Appendix C.1.4 for

details). To obtain a final world state 𝑥𝑇 that satisfies the specified relations, and
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the action sequence {𝑎1, · · · , 𝑎𝑇} that manipulates the objects into the final state 𝑥𝑇 ,

the generator iteratively samples possible actions 𝑎̂𝑘𝑡+1 and gets feedback from scorers.

The best action is selected as:

𝑎𝑡+1 = argmin
𝑎̂𝑘𝑡+1

𝑛∑︁

𝑖=1

𝐸𝑖
𝜃(𝑥𝑡, 𝑎̂

𝑘
𝑡+1). (4.4)

Each scorer, 𝐸𝑖
𝜃, outputs a score for the resultant state obtained when a candidate

action 𝑎̂𝑘𝑡+1 is applied to the current world state 𝑥𝑡. We execute 𝑎𝑡+1 in the environment

and get a new state 𝑥𝑡+1. We repeat this process until the task is accomplished or we

are at the final step 𝑇 .

4.4 Experiment Setup

We evaluate the proposed framework for composing pre-trained models on four repre-

sentative tasks, including image generation, video question answering, grade school

math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generator

and scorer models such as CLIP enables effective zero-shot image generation. We

evaluate the image generation results on ImageNet [21] with the image resolution of

64× 64. The class labels are used as the text input to guide image generation. Each

method generates 50 images for each class. We evaluate the image generation quality

using Inception Score (IS) [135], Fréchet Inception Distance (FID) [44], and Kernel

Inception Distance (KID) [11]. IS measures the distribution of generated images.

Higher values mean the models can generate more distinct images. FID considers the

distributions of both generated images and real images. Lower scores represent that

the generated images are closer to the real images. KID is similar to FID, measuring

the similarity between two data distributions, but is in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on

ActivityNet-QA [172]. Our method generates free-form language answers instead of
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selecting an answer from a pre-defined answer set [168, 80]. To evaluate such free-form

VQA, we ask workers from Amazon Mechanical Turk to measure whether the generated

answer matches the given question and video (See Appendix C.2 for IRB approval

and experimental details). For fair comparisons, all the approaches answer the same

300 video questions, and each answer is evaluated by three different workers. The

accuracy rate and vocabulary size are reported. An answer is correct if at least two

workers believe it is correct. The accuracy rate is the percentage of correctly answered

questions over all the questions. To evaluate the diversity of generated answers, we

also report the vocabulary size (i.e., the number of words) of answers generated by

each method.

Grade school math. GSM8K [17] is a dataset for grade school math problems.

Each problem consists of a question, intermediate analyses, and a final solution. We

evaluate approaches to solving problems on the 1K test set. We use beam search to

generate candidate solutions. The accuracy of beam size=1 and beam size=5 are

reported. For beam size=1, we mark the result as correct if it matches the final

solution. For beam size=5, we mark the result as correct if any of the five generated

results matches the solution.

Robot manipulation. We evaluate how pre-trained models may be used to manip-

ulate objects in Ravens [173]. In Ravens, the action space of the robot is to drop an

object at a 2D location on the table. The goal is to obtain a scene configuration that

satisfies the object relations specified by a textual description or a real-world image,

such as “blue mug to the left of purple bowl”. The task is successful if the object

relations in the final state satisfy all the relations specified by the input text or image.

We report the success rate of tasks with two and three specified object relations.

4.5 Experiments

We compare the proposed method with baselines on the above four zero-shot tasks.
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Table 4.1: Image generation results on ImageNet. Our PIC can compose the pre-
trained generator (G) and scorers (E) through iterative optimization. Composing multiple
scorers further boosts performance.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E1) GLIDE CLIP 25.017 30.462 6.174
PIC (G+E2) GLIDE CLS 22.077 30.871 7.952
PIC (G+E3) GLIDE CLS-FREE 25.926 29.219 5.325

PIC (G+E1+E2+E3) GLIDE CLIP + CLS + CLS-FREE 34.952 29.184 3.766

4.5.1 Image generation

We evaluate the zero-shot conditional image generation on ImageNet in Table 4.1.

We first show the results of composing a single generator (G) and a single scorer (E).

We compose GLIDE [103] with three different types of scorers, respectively. E1 is

CLIP [119] that computes the cosine similarity between the image and text features.

We use the negative cosine similarity as the score. E2 is the image classifier (CLS) [23]

that provides the probability of the image matching the text label. We use the negative

probability as the score. E3 is the classifier-free guidance (CLS-FREE) [53] which can

be treated as an implicit classifier that directly provides pixel-wise gradient feedback

to the generated image (Appendix C.1.1). We then compose the generator with all

scorers, i.e., G+E1+E2+E3. Composing the generator and a single scorer allows

zero-shot image generation. Composing multiple scorers significantly outperforms a

single scorer. We note that the generator is not trained on ImageNet; thus the results

in Table 4.1 cannot be directly compared with methods trained on ImageNet.

4.5.2 Video question answering
Quantitative results. We compare PIC with one of the state-of-the-art VQA

approaches, i.e., JustAsk [168], on ActivityNet-QA [172]. In Table 4.2, JustAsk (FT)

is finetuned on ActivityNet-QA, thus achieving the best results. We then compare

PIC with JustAsk (Pretrain) for zero-shot VQA. The generator of our method, GPT-2

(medium size), is trained on Webtext [122] using the Huggingface library [164]. Our

scorers are CLIP models [119, 130] trained on different datasets or using different

configurations. PIC (G+E1) outperforms JustAsk (Pretrain) by %7.72. Composing
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Table 4.2: Video question answering results on ActivityNet-QA. JustAsk (FT)
is finetuned on ActivityNet-QA, thus achieving the best results. For zero-shot VQA, our
method (PIC) significantly outperforms JustAsk (Pretrain), one of the best VQA methods.
Using multiple scorers further improves performance.

Method Name Zero-Shot Generator Scorer Accuracy ↑ Vocab ↑
JustAsk (FT) No - - 64.667 160

JustAsk (Pretrain) Yes - - 50.671 210
PIC (G+E1) Yes GPT-2 CLIP-32 58.389 267
PIC (G+E1+E2+E3) Yes GPT-2 CLIP-32 + CLIP-14 + CLIP-multi 61.168 304

Q: is the person in blue 
a man or a woman?

A: woman A: woman A: yesA: no

Q: what happened 
before the pole vault?

A: the person 
in the video is 
stretching

A: the athlete 
is running

A: magnesia
powder

A: audience 
cheered

PIC 
(G+E1)

PIC 
(G+E1+E2+E3)

JustAsk (FT)
(not zero-shot)

JustAsk
(Pretrain)

Q: what kind of trousers 
does the woman wearing 
yellow clothes look like?

A: short A: short A: shortA: tight 
trousers

Q: how many people are 
there in the video?

A: 1 A: 4 A: 2A: no

Q: what happened to 
the person in the hat 
before the engine?

A: put on 
the helmet

A: turn on 
the engine

A: speechA: someone 
passed 
through

Q: what is the person 
with hat doing?

A: using a 
pickup

A: cutting 
grass

A: weedA: nursing 
bicycle

One video 
frame

Figure 4-3: Video question answering example results. Our approach successfully
identifies gender and clothing, but its failure to count objects is a reflection of GPT-2 and
CLIP’s inability to count.

more scorers further improves the accuracy by %2.78. In addition, the vocabulary size

of answers generated by our method is larger than other approaches, indicating that

our method can answer questions using richer language and more diverse phrasing.

Note that our method solves a “more challenging” problem than JustAsk (Pretrain) and

JustAsk (FT). Our method generates open-language answers while JustAsk (Pretrain)

and JustAsk (FT) select an answer from a pre-defined answer set. Generating free-form

responses requires both semantic and grammatical correctness. PIC performs well on

both these dimensions while also using a richer vocabulary.

Qualitative results. In Fig. 4-3, we show answers generated by different approaches

given a video (only showing a single video frame) and questions. Our approach

successfully identifies gender and clothing, but none of the approaches know how to
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Table 4.3: Grade school math results on GSM8K. Our method (PIC) that composes
GPT-2 and a pre-trained question-solution classifier significantly outperforms the baselines,
including GPT-FT that is finetuned on GSM8K.

Method Name Generator Scorer BS=1 ↑ BS=5 ↑
GPT-Pretrain GPT-2 (Pretrain) - 1.744 12.206
GPT-FT GPT-2 (FT) - 3.487 18.271

PIC (G+E) GPT-2 (Pretrain) CLS 16.831 20.773

Q: In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of 
the remaining enrolled in jazz dance, and the rest enrolled in hip-hop dance. 
What percentage of the entire students enrolled in hip-hop dance?

A: 25%60

GPT
Pretrain

GPT
FT

PIC 
(G+E)

A: 20

Ground
Truth

A: 60

Q: Melanie is a door-to-door saleswoman. She sold a third of her vacuum cleaners 
at the green house, 2 more to the red house, and half of what was left at the 
orange house. If Melanie has 5 vacuum cleaners left, how many did she start with?

A: 518 A: 15 A: 18

Q: A fog bank rolls in from the ocean to cover a city. It takes 10 minutes to cover every 
3 miles of the city. If the city is 42 miles across from the oceanfront to the opposite 
inland edge, how many minutes will it take for the fog bank to cover the whole city?

A: 10140 A: 10 A: 140

Grade school 
math questions

Figure 4-4: Grade school math example results. Our method can solve math problems
involving addition, subtraction, multiplication, and division.

count numbers.

4.5.3 Grade school math

Quantitative results. In Table 4.3, we compare PIC with two baselines, i.e. GPT-

Pretrain and GPT-FT, for solving math problems on GSM8K [17]. GPT-Pretrain uses

the pre-trained GPT-2 (medium-size GPT-2 trained on Webtext using Huggingface)

to generate numeric strings. GPT-FT is based on GPT-Pretrain and then finetuned

on GSM8K. Our method uses the same GPT-2 (Pretrain) as the generator and a

question-solution classifier (CLS) as the scorer. The classifier is trained on GSM8K to

distinguish whether a solution is correct for a given question. We surprisingly find that

PIC achieves significantly better performance than GPT-FT (%13.344 higher on beam

size=1), even though the generator has never seen the math problems before. The

classifier only provides feedback to the generator, but through iterative refinement,

combining a generator and a scorer without joint training is more effective than directly

finetuning GPT-2 on GSM8K (we find the overfitting problem when finetuning GPT-2

on GSM8K).
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Table 4.4: Robot manipulation results on Ravens. PIC can manipulate objects to
achieve object relations specified by textual descriptions (Text) or real-world images (Image).
Using scorers of multiple camera views substantially improves the success rate.

Method Name 2 Relations 3 Relations
Text ↑ Image ↑ Text ↑ Image ↑

PIC (G+E1) 35.0 27.5 50.0 45.0
PIC (G+

∑︀5
i=1Ei) 67.5 52.6 75.0 65.3

Qualitative results. Example results of different methods are shown in Fig. 4-4.

Our method can solve math problems involving addition, subtraction, multiplication,

and division, even for solutions with three-digit numbers. In contrast, GPT-FT often

fails to understand math problems.

4.5.4 Robot manipulation

Quantitative results. We evaluate the proposed method of manipulating objects

to achieve object relations specified by the textual descriptions (Text) or real-world

images (Image). The success rate of two object relations and three object relations are

reported in Table 4.4. We find that using scorers of multiple camera views substantially

improves the accuracy on both settings.

Qualitative results. Figure 4-5 shows the example results of the proposed method

manipulating objects to accomplish the given task. Our method enables zero-shot

robot manipulation on objects with different sizes, colors, and shapes given either the

language goal or image goal.

4.6 Analysis

PIC exhibits effective zero-shot generalization ability on a variety of tasks. To further

understand the source of such generalization, we investigate two key components in

PIC, i.e., the composition of multiple scorers (consensus optimization) (Section 4.6.1)

and the iterative refinement (Section 4.6.2).
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Final scene Input object relations 

blue mug to the 
left of cyan mug

blue bowl on top 
of cyan mug

cyan bowl to the  
right of blue bowl

green bowl to the  
right of cyan mug

orange mug to the 
left of green bowl

brown mug to the 
right of orange mug

Final scene Input object relations Final scene Input object relations 

cyan bowl to the  
right of cyan mug

green bowl on top 
of cyan mug

orange mug to the 
right of green bowl

Figure 4-5: Robot manipulation example results. The robot manipulates objects
to achieve certain object relations that are specified by textual descriptions (first row) or
real-world images (second row).

4.6.1 Effect of consensus optimization

We have shown that composing multiple scorers contributes to zero-shot generalization.

We further explore the influence of gradually adding each new scorer on the zeros-shot

performance.

Image generation. In Table 4.5, we first show the results of composing GLIDE

and the CLIP scorer. We then gradually add a new scorer, the image classifier or

classifier-free guidance, each time. Finally, we report the results of composing the

generator and all scorers. The performance improves every time we add a new scorer,

indicating that composing multiple scorers improves zero-shot performance.

Robot manipulation. In Table 4.7, we analyze the effect of composing multiple

scores on robot manipulation. The goal is specified by textual descriptions. Composing

scores from multiple views, PIC (G+
∑︀3

𝑖=1𝐸𝑖) and PIC (G+
∑︀5

𝑖=1𝐸𝑖), leads to higher

accuracy.

4.6.2 Effect of iterative refinement

Next, we explore the influence of iterative refinement on zero-shot generalization, i.e.,

the feedback loop between the generator and scorers. We compare PIC with baselines
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Table 4.5: Effect of composing multiple scorers. Image generation results on ImageNet.
Gradually adding new scorers keeps improving the performance, indicating that composing
multiple scorers contributes to zero-shot image generation.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E1) GLIDE CLIP 25.017 30.462 6.174
PIC (G+E1+E2) GLIDE CLIP + CLS 30.438 29.543 5.435
PIC (G+E1+E3) GLIDE CLIP + CLS-FREE 30.500 29.726 4.304
PIC (G+E1+E2+E3) GLIDE CLIP + CLS + CLS-FREE 34.952 29.184 3.766

Table 4.6: Effect of iterative refinement. Grade school math results on GSM8K. PIC
with iterative refinement outperforms baselines where the scorer only provides feedback to
the generator at the end stage (𝑡 = 𝑇 ). BS is the beam search size.

Method Name Generator Scorer Interaction BS=1 ↑
GPT-Pretrain+E GPT-2 (Medium) (Pretrain) CLS 𝑡 = 𝑇 9.704
GPT-FT+E GPT-2 (Medium) (FT) CLS 𝑡 = 𝑇 14.481

PIC (G+E) GPT-2 (Medium) (Pretrain) CLS 𝑡 = {1, · · · , 𝑇} 17.210

that compose the generator and scorers, but with the scorers only providing feedback

to the generator at the end.

Grade school math. In Table 4.6, the baselines, GPT-Pretrain+E and GPT-FT+E,

generate five proposal solutions for a given math problem. Then the scorer, i.e., the

same question-solution classifier used in PIC, selects the best solution based on its score.

PIC iteratively refines the generated answer while the baselines refine the entirely

generated solutions at the end. PIC and GPT-Pretrain+E use the same generator and

scorer, but PIC outperforms GPT-Pretrain+E by %7.507. PIC also achieves better

performance than GPT-FT+E, which uses a stronger generator (finetuned on the

GSM8K dataset).

Robot manipulation. In Table 4.7, the baseline, No-IR (G+
∑︀5

𝑖=1𝐸𝑖), first samples

100 trajectories without using the feedback from scorers. Then the scorers select the

best trajectories based on the summed score. The generator and scorers of this baseline

are the same as our method, i.e., PIC (G+
∑︀5

𝑖=1 𝐸𝑖), but our method outperforms the

baseline by %37.5 on the “2 Relations” setting, indicating the effectiveness of iterative

refinement in the proposed framework.

Together, these results show that the composition of multiple scorers and iterative
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Table 4.7: Effect of composing multiple scorers and iterative refinement on robot
manipulation. Both components are important for zero-shot generalization.

Method Name Interaction 2 Relations ↑ 3 Relations ↑

PIC (G+E1) 𝑡 = {1, · · · , 𝑇} 35.0 50.0
PIC (G+

∑︀3
i=1Ei) 𝑡 = {1, · · · , 𝑇} 57.5 63.3

PIC (G+
∑︀5

i=1Ei) 𝑡 = {1, · · · , 𝑇} 67.5 75.0

No-IR (G+
∑︀5

i=1Ei) 𝑡 = 𝑇 30.0 46.6

refinement are both important for zero-shot generalization. These results point to the

potential broader applicability of the proposed method as a general purpose framework

for zero-shot multimodal tasks.

4.7 Conclusion

In this chapter, we propose a unified framework for composing ensembles of pre-

trained models through iterative consensus without any training or finetuning. Our

framework consists of a generator and an ensemble of scorers. The scorers provide

feedback to the generator to iteratively improve its generated results. We show that

the proposed method allows effective zero-shot generalization on four representative

tasks, i.e., image generation, video question answering, grade school math, and robot

manipulation, and even outperforms methods that directly fine-tune models on certain

tasks. We further analyze the source of such zero-shot generalization by exploring the

effect of the composition of multiple scorers and the iterative refinement, and find

that both are important for zero-shot generalization.

Our framework enables the composition of separately trained models and boosts

performance by leveraging the knowledge from multiple expert models. The scorers

can be learned at different times on different data in an incremental learning manner,

enabling the combination of incrementally learned knowledge. Our framework thus

paves the way for many potential applications in lifelong learning and continual

learning settings.

As our method does not need any training or finetuning, one drawback is that its

100



performance depends on the pre-trained models. Thus effective zero-shot generalization

also requires powerful pre-trained models. Training large models is complementary to

the framework and methods we proposed and may be directly applied. In the next

chapter, we will introduce how to obtain pre-trained models efficiently.

101



Part III

Transferring Compositionality
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Chapter 5

Pre-Trained Language Models for

Interactive Decision-Making

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan,

Tao Chen, De-An Huang, Ekin Akyürek, Anima Anandkumar, Jacob Andreas,

Igor Mordatch, Antonio Torralba, Yuke Zhu; NeurIPS 2022.

In Part I and Part II, we introduce constructing compositional structures upon

pre-trained models, enhancing their compositionality. In this part, we focus on the

methodology of acquiring pre-trained models enriched with substantial prior knowledge

of fundamental concepts as well as their combinations.

Recent progress illustrates that sufficiently large-scale models such as GPT-4 [109]

and DALL-E 2 [125] demonstrate the emergence of compositionality. It is important

to note that the training of such models often requires extensive datasets, a process

that can be both financially expensive and challenging to scale for a wide range of

real-world applications. In fact, for many practical scenarios, achieving the same level

of data availability and quality might be unfeasible or even impossible. One question

to ask is whether we can transfer the compositionality in pre-trained models to solve

new tasks without using extensive training data.

Large pre-trained language models (LMs) have shown remarkable composition

ability in language tasks. We propose an approach for using LMs to scaffold learning
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and generalization in general sequential decision-making problems. This approach

leverages pre-trained language models as a starting point, facilitating efficient knowl-

edge transfer from well-established models to new tasks. We demonstrate that this

framework reduces the need for extensive training on large datasets, and enables

effective combinatorial generalization across different environments and supervisory

modalities. The ability to leverage existing knowledge could accelerate the development

of AI systems for real-world problems.

5.1 Introduction

Language models (LMs) play a key role in machine learning approaches to natural

language processing tasks [22]. This includes tasks that are not purely linguistic, and

require nontrivial planning and reasoning capabilities [94, 47]: for example, instruction

following, vision-language navigation, and visual question answering. Indeed, some of

these tasks are so distant from language modeling that one can ask whether pre-trained

LMs can be used as a general framework even for tasks that involve no language at

all. If so, how might these capabilities be accessed in a model trained only to process

and generate natural language strings?

We study these questions through the lens of embodied decision-making, investi-

gating the effectiveness of LM pre-training as a general framework for learning policies

across a variety of environments. We propose PIC, a framework that uses Pre-Trained

Language Models for Interactive Decision-Making. As shown in Figure 5-1 (right),

we encode the inputs to a policy—including observations, goals, and history—as a

sequence of embeddings. These embeddings are passed to a policy network initial-

ized with the parameters of a pre-trained LM, which is fine-tuned to predict actions.

This framework is broadly applicable, accommodating goals and environment states

represented as natural language strings, image patches, or scene graphs.

We find that imitation learning using pre-trained LMs as policy initializers improves

in-domain performance and enables strong generalization over novel tasks. For i.i.d.

training and evaluation tasks, this approach yields 20% more successful policies than
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Figure 5-1: Environments (left): Different environments have different types of observa-
tions and goals. Our approach (right): We use pre-trained LMs as a general framework
for interactive decision-making by converting policy inputs into sequential data. Such a
method enables effective combinatorial generalization to novel tasks.

other baseline methods in VirtualHome [117]. For combinatorial generalization to

out-of-distribution tasks, i.e., tasks involving new combinations of goals, states or

objects, LM pre-training confers even more benefits: it improves task completion rates

by 43.6% for novel tasks (see Fig. 5-3). These results hold for a variety of environment

representations: encoding states as natural language strings, when possible, improves

the data efficiency of training, but even LMs fine-tuned on random environment

encodings generalize combinatorially to new goals and states when trained on large

enough datasets.

We further examine how our method may be used in environments where expert

data is not available, and agents must instead actively gather data. To do this,

we integrate an Active Data Gathering (ADG) procedure into pre-trained LMs.

Our proposed approach to ADG consists of three parts. First, exploration collects

trajectories using a mix of random actions and actions generated by the current

policy. Exploration is insufficient in this high dimensional problem and most of the

trajectories will likely fail to achieve the end goal. A key insight is that even the

failed trajectories contain useful sub-trajectories that solve certain sub-goals, and

we relabel these goals in a hindsight relabeling stage. The relabeled goal describes

what was achieved in the extracted sub-trajectory. The policy update stage samples

relabeled trajectories to update the policy. The active data gathering procedure allows
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us to train the LM-policy without pre-collected expert data. It also outperforms

reinforcement learning (RL) methods on embodied decision-making tasks and enables

more effective compositional generalization to novel tasks.

Finally, we investigate why LID contributes to compositional generalization. We

hypothesize three possible causes for the effectiveness of LM-based policy initialization:

(1) the use of language-based input encodings, and more generally LMs’ ability to reason

about natural language strings; (2) the sequential structure of transformer inputs, in

contrast to the fixed-sized observations used by most policy architectures, and (3)

task-general inductive bias conferred by weight initialization with LM pretraining.

We investigate (1) by encoding the policy inputs as different types of sequences.

Different input encoding schemes have only a negligible impact on the performance:

the effectiveness of language modeling is not limited to utilizing natural strings, but in

fact extends to arbitrary sequential encodings. We study (2) by encoding observations

with a single vector embedding, thereby removing its sequential structure. This

operation significantly degrades the model’s performance on novel tasks. Finally, we

investigate (3) by learning the parameters of the policy from scratch. The success

rate after removing the pre-trained LM weights drops by 11.2%, indicating that LM

pretraining provides useful inductive bias for sequence processing even when sequences

are not natural language strings. To summarize, our work has four main contributions:

• First, we propose to use pre-trained LMs as a general scaffold for interactive

decision-making across a variety of environments by converting all policy inputs

into sequential data.

• Second, we demonstrate that language modeling improves combinatorial general-

ization in policy learning: initializing a policy with a pre-trained LM substantially

improves out-of-distribution performance on novel tasks.

• Third, we integrate an active data gathering procedure into the proposed ap-

proach to further enable policy learning on environments without using pre-

collected expert data.
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• Finally, we perform several analyses to explain the generalization capabilities

of pre-trained LMs, finding that natural strings are not needed to benefit from

LM pre-training, but the sequential input encoding and weight pre-training are

important.

Our approach starts with pre-trained models, which lets us transfer knowledge effec-

tively from these well-established models to solve new tasks. This means we don’t

have to spend as much time training on huge amounts of data. These results point to

the effectiveness of the proposed framework with pre-trained LMs as a general-purpose

framework to promote compositional generalization.

5.2 Related Work

In recent years, word and sentence representations from pre-trained LMs [114, 22, 121]

have become ubiquitous in natural language processing [178, 115]. Some of the

most successful applications of pre-training lie at the boundary of natural language

processing and other domains, as in instruction following [47] and language-guided

image retrieval [92].

Learning representations of language. From nearly the earliest days of the

field, natural language processing researchers observed that representations of words

derived from distributional statistics in large text corpora serve as useful features

for downstream tasks [20, 31]. The earliest versions of these representation learning

schemes focused on isolated word forms [97, 112]. However, recent years have seen

a number of techniques for training (masked or autoregressive) language models to

produce contextualized word representations (which incorporate information neigh-

boring words in sentences and paragraphs) via a variety of masked-word prediction

objectives [22, 170].

Applications of pre-trained LMs. LMs can be fine-tuned to perform language

processing tasks other than language modeling by casting those tasks as word-prediction

problems. Successful uses of representations from pre-trained models include syntactic

parsing [74] and language-to-code translation [160]; successful adaptations of LM
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prediction heads include machine translation [178], sentiment classification [13] and

style transfer [69]. A number of tasks integrate language and other modalities, including

visual question answering and image captioning [169]. Recent works find that image

representations can be injected directly into LMs’ embedding layers [154].

Policy learning and LM. Traditional policy learning methods, such as PPO [137],

DQN [100], DDPG [86], A3C [99], perform well on playing tasks on Atari, OpenAI

gym [12], and MuJoCo [153]. Some of them might fail to solve more challenging tasks

on embodied environments [117, 141]. Several recent papers [129, 60, 57] propose to

use LM for policy learning. Frozen Pretrained Transformer (FPT) [93] demonstrates

that pre-trained LMs require very little fine-tuning to match the performance of

task-specific models on several image classification and numerical sequence processing

tasks. Semi-Supervised Skill Learning with Latent Language (SL)3 [138] shows that

LMs can serve as an effective backbone for hierarchical policies that express plans

as natural language strings [5, 7]. In this chapter, we focus on building a general

framework for decision-making tasks using pre-trained LMs, even when language is

not provided as an input or output.

5.3 Decision-Making and Language Modeling

5.3.1 POMDPs and policy learning

We explore the application of LMs to general sequential decision-making tasks in

partially observed environments. These tasks may be formalized as partially observable

Markov decision processes (POMDPs). A POMDP is defined by a set of states, a

set of observations, a set of actions, and a transition model 𝒯 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) that maps

the current state and action to the next state. Importantly, in a POMDP setting,

the observation 𝑜𝑡 only captures a portion of the underlying state 𝑠𝑡, and an optimal

decision-making strategy (a policy) must incorporate both the current observation

and the history of previous observations and actions. In our experiments, policies are

parametric models 𝜋𝜑(𝑎𝑡|𝑔, ℎ𝑡, 𝑜𝑡) that output the probability of an action given the
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goals 𝑔, history information ℎ𝑡 = {𝑜1, 𝑎1, · · · , 𝑜𝑡−1, 𝑎𝑡−1}, and partial observations 𝑜𝑡

of the current state 𝑠𝑡.

In Fig. 5-1 (right), we show a high-level overview of the proposed method. We first

convert all policy inputs into a sequence and provide them as input to a transformer

encoder. Representations from this encoder model are then passed to a task-specific

decoder that predicts actions. We collect a dataset of 𝑁 training trajectories 𝒟 =

{𝑑𝑖}𝑁𝑖=1, where each trajectory consists of a goal and a sequence of observations and

actions: 𝑑𝑖 = {𝑔𝑖, 𝑜𝑖1, 𝑎𝑖1, · · · , 𝑜𝑖𝑇𝑖
, 𝑎𝑖𝑇𝑖
}, where 𝑇𝑖 is the length of the trajectory. We

then train the policy to maximize the probability of actions we want to achieve

𝑎𝑖 = {𝑎𝑖1, . . . , 𝑎𝑖𝑇𝑖
} across trajectories using the cross-entropy loss:

𝜑* = argmin
𝜑

(︃
−

𝑁∑︁

𝑖=1

𝑇𝑖∑︁

𝑡=1

ln 𝜋𝜑(𝑎
𝑖
𝑡|𝑔𝑖, ℎ𝑖

𝑡, 𝑜
𝑖
𝑡)

)︃
. (5.1)

5.3.2 Language models as policy initializers

Our experiments focus on autoregressive, transformer-based LMs [156]. These

models are trained to fit a distribution over a text sequence 𝑦 = {𝑦𝑖}𝑛𝑖=1 via the

chain rule 𝑝(𝑦) = 𝑝(𝑦1)
∏︀𝑛

𝑖=2 𝑝(𝑦𝑖 | 𝑦1, . . . , 𝑦𝑖−1). Each term on the right hand side

is parameterized by a transformer network, which accepts the conditioned tokens

as input. Each token passes through a learned embedding layer 𝐹𝜃, then the full

conditioned sequence is fed into the LM. In our work, we use a standard LM, GPT-2,

to process the input sequence rather than to predict future tokens.

Both POMDP decision-making and language modeling are naturally framed as

sequence prediction tasks, where successive words or actions/observations are predicted

based on a sequence of previous words or actions/observations. This suggests that

pre-trained LMs can be used to initialize POMDP policies by fine-tuning them to

model high-reward or expert trajectories, as described below.

109



5.4 Method

We evaluate the effectiveness of pre-trained LMs in solving decision-making tasks

across environments. We use BabyAI [59] and VirtualHome [117] to evaluate the

proposed method. While both environments feature complex goals, the nature of

these goals, as well as the state and action sequences that accomplish them, differ

substantially across environments (Fig. 5-1 (left)).

5.4.1 Policy network

We first examine whether pre-trained LMs provide effective initializers when states

and action histories are represented as natural language strings. We encode the

inputs to the policy—including observations, goals, and action histories—as sequences

of words. These word sequences are passed to the LM (using its pre-trained word

embedding layer 𝐹𝜃) and used to obtain contextualized token representations. Token

representations are averaged and used to predict actions. We design a policy network

following the general policy framework proposed in Fig. 5-1.

Environment encodings in VirtualHome. In VirtualHome, each goal consists of

a sequence of predicates and multiplicities, and is translated into a templated English

sentence (e.g ., “Inside(apple, fridge):2” becomes “put two apples inside the

fridge”). To encode the agent’s partial observation, we extract a list of currently visible

objects, their states (e.g ., “open, clean”), and 3D world coordinates. We use a fully-

connected layer to encode the 3D information and generate a feature representation

of each object in the observation. To encode history, we store information about all

previous actions and convert them into templated English sentences (e.g ., “I have put

the plate on the kitchen table and the apple inside the fridge”).

Environment encodings in BabyAI. The observation by default is a 7× 7 grid.

We convert the observation into 7× 7 text descriptions, e.g ., “purple ball”, “grey wall”,

“open door”, and combine them into a long sentence. We then convert the history

actions into text descriptions, e.g ., “turn left” and “go forward”. We combine the
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language instruction (without modification) with the observation and history text

descriptions, and feed them to the pre-trained LM.

We note that the policy network described above does not strictly require that

these encodings take the form of natural language strings—other encodings of the

environment as a sequence also work (see Section 5.7). This framework could also be

generalized to support pixel-based observations using discretization schemes like the

one employed in the Vision Transformer [24].

Action prediction. We pool LM outputs into a “context representation” that is used

to predict the next action. In training, we maximize the probabilities of demonstrated

actions. In inference, we select the valid action with the highest probability. See

Appendix D.3.1 for details.

VirtualHome and BabyAI have quite different observation spaces, action spaces,

and goal spaces; however, we show that embedding policy inputs as sequences and

utilizing the pre-trained LM as a policy initializer, enables effective generalization to

novel tasks in both environments. We note that PIC is not limited to VirtualHome

and BabyAI, but is straightforwardly applicable to other embodied environments, such

as ALFRED [144] and iGibson [141].

5.4.2 Training

We first examine PIC through imitation learning on data collected by experts. We

then show that integrating an active data gathering procedure into PIC enables policy

learning without using expert data. We use VirtualHome as an example to explain

the data gathering.

Policy learning with expert data. The policy model is first initialized from

a pre-trained LM and then fine-tuned on data collected by experts. We build on

the VirtualHome environment to collect a set of expert trajectories using regression

planning [75] and create a VirtualHome-Imitation Learning dataset. Given

a task described by goal predicates, the planner generates an action sequence to

accomplish this task (See Appendix D.5.1). The planner has access to privileged
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Interacted objectsNavigation trajectory

Useful sub-trajectory for hindsight relabeling

1. Exploration

2. Hindsight relabeling …   [walk] <kitchen>… [walk] <kitchentable>; [put] <apple> <kitchentable>;  [walk] <bedroom>; …

Extract the useful sub-trajectory and relabel a task goal: On (apple, kitchen table)

3. Policy update
Sample a random goals:
Inside (milk, fridge)

Actions generated by the current 
policy or random exploration:
[open] <kitchen cabinet> 
…
[put] <apple> <kitchentable>
…

Figure 5-2: PIC with the active data gathering procedure. By iteratively repeating
the exploration, hindsight relabeling, and policy update, PIC with active data gathering can
learn an effective policy without using pre-collected expert data.

information, such as information about the pre-conditions and effects of each action,

allowing an agent to robustly perform tasks in partially observable environments and

generate expert trajectories for training and evaluation.

Policy learning with active data gathering. Collecting expert data is sometimes

challenging. It may require privileged information of the environment or human

annotations, which can be time-consuming and difficult to scale. A promising way to

scale up supervision is Hindsight Experience Replay (HER) [6], which allows agents to

learn from orders of magnitude more data without supervision. However, existing HER

methods [37] focus on simple tasks with small state/action space and full observability.

They cannot tackle more complicated embodied decision-making tasks, requiring

nontrivial planning and reasoning or natural language understanding. PIC with the

active data gathering (PIC-ADG) can be used in solving tasks in such environments.

As shown in Fig. 5-2, PIC-ADG consists of three stages, i.e., exploration, hind-

sight relabeling, and policy update. The key idea is to gradually improve the task

success rate by asking the agent to iteratively explore the environment, relabel failure

samples, and update its policy using imitation learning. In the exploration stage, we

first randomly sample a goal and an initial state. We then use a mix of random actions

and actions generated by the current policy 𝜋𝜑(𝑎𝑡|𝑔, ℎ𝑡, 𝑜𝑡) to obtain the next action.

We repeat this process until this episode ends. We collect 𝑀 trajectories and store
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them in the replay buffers. The generated actions in the early stages rarely complete

the given task. However, even the failed trajectories contain useful sub-trajectories

that solve certain sub-goals. In the hindsight relabeling stage, we extract useful

sub-trajectories and relabel a goal 𝑔′ for each of them. We design a goal relabel

function 𝑓𝑙 that generates a goal based on the sequence of observations and actions

using hand-designed templates. In practice, we implement the goal relabel function as

a program (see Appendix D.5.2). The hindsight relabeling stage allows sample-efficient

learning by reusing the failure cases. During policy update, the agent samples the

data from the replay buffers and updates its policy network 𝜋𝜑.

By interleaving the exploration, hindsight relabeling, and policy update, PIC-ADG

can gradually improve the policy without requiring pre-collected expert data. In

embodied environments with large action spaces, sparse rewards, and long-horizon

planning, RL methods often struggle to obtain stable policy gradients during training.

Our method enables sample-efficient learning from the sparse rewards by relabeling

new goals for the bad samples that the agent fails to achieve. In addition, PIC-ADG

leverages the stability of supervised learning in the policy update stage, enabling it to

outperform RL approaches on a wide range of decision-making tasks.

5.5 Experiment Setup

We evaluate the proposed method and baselines on VirtualHome and BabyAI.

5.5.1 VirtualHome

VirtualHome is a 3D embodied environment featuring partial observability, large

action spaces, and long time horizons. We evaluate policies’ performance from three

aspects: (1) performance on in-distribution tasks; (2) generalization to novel scenes;

and (3) compositional generalization to novel tasks.

In-Distribution. The predicate types and their counts in the goal are randomly

sampled from the same distribution as the training data. The objects are initially
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placed in the environment according to common-sense layouts (e.g ., plates appear

inside the kitchen cabinets rather than the bathtub).

Novel Scenes. The objects are placed in random positions in the initial environment

without common-sense constraints (e.g ., apples may appear inside the dishwasher).

Novel Tasks. The components of all goal predicates are never seen together during

training (e.g ., both plates and fridges appear in training goals, but Inside(plate,

fridge) only appears in the test set. (See Appendix D.6 for more details.)

We evaluate the success rates of different methods on each test set. A given episode

is scored as successful if the policy completes its entire goal within the maximum

allowed steps of the environment. On each of the 3 test subsets, we use 5 different

random seeds and test 100 tasks under each seed. Thus there are 1, 500 examples used

to evaluate each model.

5.5.2 BabyAI

BabyAI is a 2D grid world environment for instruction following. Observations in

BabyAI are 7× 7× 3 grids describing a partial and local egocentric view of the state of

the environment. We evaluate the methods on four representative tasks: GoToRedBall,

GoToLocal, PickupLoc, and PutNextLocal. Performing well on the test set requires

the models to generalize to new environment layouts and goals, resulting in new

combinations of tasks not seen in training. For each method, we compute success

rates over 500 episodes on each task.

5.6 Experiments

We first show the results of the proposed method and baselines for embodied decision-

making tasks using expert data in Section 5.6.1. We then show our results when using

actively gathered data in Section 5.6.2.

114



In-Distribution Novel Scenes Novel Tasks
0

25

50

75

100

Su
cc

es
s

R
at

e

MLP-1
MLP

LSTM
LID-Text (Ours)

Figure 5-3: Comparisons of the proposed method and baselines on VirtualHome.
All the methods are trained on expert data using imitation learning. MLP-1, MLP, and
LSTM are baselines without using the pre-trained LM. The proposed method, PIC-Text
(Ours), outperforms all baselines.

5.6.1 Embodied decision-making with pre-trained language

model (PIC)

Results on VirtualHome. We evaluate the following methods: PIC-Text (Ours)

is the proposed method that converts all environment inputs into text descriptions. The

pre-trained LM is fine-tuned for decision-making (conditioned on goals, observations,

and histories) as described in Section 5.4.1. Recurrent Network. We compare our

method with a recurrent baseline using an LSTM [54] to encode the history information.

The hidden representation from the last timestep, together with the goal and current

observation, is used to predict the next action. MLP and MLP-1. We perform

additional comparisons with baselines that do not use recurrent networks or pre-trained

LMs. MLP and MLP-1 take the goal, histories, and the current observation as input

and send them to the multilayer perceptron neural network (MLP) to predict actions.

MLP-1 has three more average-pooling layers than MLP that average the features of

tokens in the goal, history actions, and the current observation, respectively, before

sending them to the MLP layer.

Each method is trained on 20𝐾 demos from the VirtualHome-Imitation Learning

dataset and then evaluated on the three test subsets: In-Distribution, Novel Scenes,

and Novel Tasks. In Figure 5-3, PIC-Text (Ours), which initializes the policy with

a pre-trained LM, has higher success rates than other methods. This difference is

most pronounced in the Novel Tasks setting, where test tasks require combinatorial
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Table 5.1: Success rates on BabyAI tasks. All the methods are trained on offline expert
data using imitation learning. PIC-Text (Ours) outperforms BabyAI-Ori, the method used
in the original paper [59].

Tasks Methods Number of Demos

100 ↑ 500 ↑ 1K ↑ 5K ↑ 10K ↑

GoToRedBall BabyAI-Ori [59] 81.0 96.0 99.0 99.5 99.9
PIC-Text (Ours) 93.9 99.4 99.7 100.0 100.0

GoToLocal BabyAI-Ori [59] 55.9 84.3 98.6 99.9 99.8
PIC-Text (Ours) 64.6 97.9 99.0 99.5 99.5

PickupLoc BabyAI-Ori [59] 28.0 58.0 93.3 97.9 99.8
PIC-Text (Ours) 28.7 73.4 99.0 99.6 99.8

PutNextLocal BabyAI-Ori [59] 14.3 16.8 43.4 81.2 97.7
PIC-Text (Ours) 11.1 93.0 93.2 98.9 99.9

generalization across goals that are never seen during training. Here, PIC-Text (Ours)

dramatically (43.6%) improves upon all baselines. Such combinatorial generalization

is necessary to construct general purpose agents, but is often difficult for existing

approaches. Our results suggest that pre-trained LMs can serve as a computational

backbone for combinatorial generalization.

Results on BabyAI. We use the standard training and test data provided by

[59]. In BabyAI, performing well on unseen test tasks with new environment layouts

and goals requires combinatorial reasoning. In Table 5.1, we report the success rate

of models trained on different numbers of demos. BabyAI-Ori [59] is the method

used in the original paper. PIC-Text (Ours) is the proposed method that converts

policy inputs into a text sequence. Given enough training data, i.e., 10K demos, both

methods achieve high success rates, but PIC-Text (Ours) outperforms BabyAI-Ori

with less training data, indicating the proposed method improves sample efficiency

when generalizing to novel tasks.

5.6.2 Pre-trained language model with active data gathering

(PIC-ADG)

We compare PIC-ADG, the proposed LM framework for decision-making using

actively gathered data (Section 5.4.2), to a variety of baselines that do not use

116



Table 5.2: Comparisons of methods without using expert data on VirtualHome.
PIC-ADG (Ours) is the only successful approach.

In-Distribution ↑ Novel Scenes ↑ Novel Tasks ↑
Random 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Goal-Object 0.8 ± 0.5 0.0 ± 0.0 0.4 ± 0.4
PPO 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
DQN+HER 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
PIC-ADG (Ours) 46.7 ± 2.7 32.2 ± 3.3 25.5 ± 4.1

pre-collected expert data on VirtualHome.

Random. The agent selects the next action randomly from the valid action

space at that state. Goal-Object. The agent randomly selects an object that is

in the goal and in the valid action space to interact with. For example, given a

goal of “Inside(apple, fridge):1”, this baseline might choose “grab apple”, “open

fridge”, or other actions containing “apple” or “fridge”. Online RL. We compare with

PPO [137], one of the most commonly used online RL methods. For fair comparisons,

we equip PPO with the same main policy network as the proposed method. Our

implementation is based on Stable Baselines3 [123]. Hindsight Experience Replay.

We compare with DQN+HER used in [6] and modify its main policy network to be

the same as the proposed method.

Quantitative results. We compare PIC-ADG with baselines on VirtualHome in

Table 5.2. Each experiment is performed 5 times with different random seeds. The

Random baseline is always 0, indicating the tasks in VirtualHome cannot be easily

solved by a random policy. Goal-Object is better than Random because Goal-Object

has access to objects in the goal and it samples actions from a much smaller action

space. The online RL baseline, PPO, fails to solve tasks in VirtualHome featured by

partial observation, large state/action space, and long-term horizon. DQN+HER

works well on simple tasks in 2D environments, but they cannot tackle VirtualHome

tasks either, requiring nontrivial planning and reasoning. PIC-ADG does not require

expert data and can solve complicated tasks in 3D embodied environments, which

cannot be easily achieved using RL.
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Table 5.3: The proposed method with active data gathering. PIC-ADG (Ours) can
be used as a policy initializer for online RL or a data provider for offline RL.

In-Distribution ↑ Novel Scenes ↑ Novel Tasks ↑
PIC-ADG (Ours) 46.7 ± 2.7 32.2 ± 3.3 25.5 ± 4.1
PPO (PIC-ADG Init) 53.7 ± 3.5 30.2 ± 3.4 27.8 ± 2.7
DT (PIC-ADG Data) 42.4 ± 1.5 21.6 ± 2.48 16.8 ± 1.0

Policy initializer and data provider. PIC-ADG can further be used to initialize

the weights for fine-tuning RL policies and to gather data for offline learning. As

shown in Table 5.2, directly training RL, e.g ., PPO, fails to solve tasks in VirtualHome.

However, after using the policy trained by PIC-ADG to initialize the PPO policy, we

may effectively learn an interactive policy with good performance. In Table 5.3, PPO

(PIC-ADG Init) is initialized from PIC-ADG and further fine-tuned to solve the

tasks in VirtualHome. After initialization, PPO improves its success rate by 53.7% on

the In-Distribution setting (See PPO results in Table 5.2 and Table 5.3). In addition,

PIC-ADG can provide data for offline learning. PIC-ADG saves the relabeled data in

replay buffers. We train Decision Transformer (DT) [14] using the data collected by

PIC-ADG. See DT (PIC-ADG Data) in Table 5.3 ∗.

5.7 Analysis: Understanding the Sources of Compo-

sitional Generalization

The pre-trained LM policy, fine-tuned on either expert data or actively gathered data,

exhibits effective combinatorial generalization. Is this simply because LMs are effective

models of relations between natural language descriptions of states and actions [3], or

because they provide a more general framework for combinatorial generalization in

decision-making? We hypothesize and investigate three possible factors to understand

the sources of such combinatorial generalization. We use policies trained on the expert

data as an example to explain the experiments.

∗Note that the results of PIC-Text in Fig. 5-3 and results of PIC-ADG in Table 5.2 are not directly
comparable because the difficulty level of the evaluated tasks is different. See Appendix D.6 for more
details.
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Table 5.4: Success rates of policies trained with different input encodings in the
Novel Tasks setting on VirtualHome. The text encoding is the most sample-efficient,
but all models converge to similar performance given sufficient training data.

Methods Number of Demos

100 ↑ 500 ↑ 1K ↑ 5K ↑ 10K ↑ 20K ↑
PIC-Text (Ours) 8.8 ± 1.4 22.2 ± 1.7 26.8 ± 1.0 46.0 ± 1.0 58.2 ± 1.2 58.2 ± 1.6
PIC-Index (Ours) 6.4 ± 0.6 18.0 ± 3.8 18.8 ± 1.0 45.5 ± 2.1 54.6 ± 0.8 57.8 ± 0.9
PIC-Unnatural (Ours) 6.8 ± 1.3 18.6 ± 2.1 27.0 ± 1.1 47.2 ± 1.7 55.8 ± 0.8 58.8 ± 0.9

5.7.1 Input encoding scheme

We first hypothesize that converting environment inputs into natural language con-

tributes to combinatorial generalization as the LMs are trained on language data.

We explore the role of natural language by investigating three alternative ways of

encoding policy inputs to our model without using natural language strings: two in

VirtualHome, and one in BabyAI. BabyAI results are in Appendix D.1.

Index encoding in VirtualHome. Rather than natural language strings, PIC-

Index (Ours) converts policy inputs into integer indices. PIC-Index (Ours) retains the

discrete, serial format of the goal, history, and observation, but replaces each word

with an integer, and replaces the embedding layer from the pre-trained LM with a

new embedding layer trained from scratch. For example, grab apple is mapped to (5,3)

based on the positions of grab and apple in the vocabulary set.

Unnatural string encoding in VirtualHome. PIC-Unnatural (Ours) replaces

the natural language tokens (e.g., converting the goal “On(fork, table):1” to put one

fork on the table) with random ones (e.g., converting On(fork, table) to brought wise

character trees fine yet). This is done by randomly permuting the entire vocabulary

that maps each token to a new token. Such a permutation breaks the semantic

information in natural strings.

PIC-Index (Ours) and PIC-Unnatural (Ours) have the same policy network as

PIC-Text (Ours). All are fine-tuned on the expert data. The averaged results using 5

different random seeds on the Novel Tasks setting are reported in Table 5.4. Given few

training data, e.g ., 100 demos, all the models perform poorly, with success rates lower
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Table 5.5: Experiments on sequential inputs and weight initialization. Fine-tuning
the pre-trained weights and the usage of sequential encoding are important for combinatorial
generalization.

In-Distribution ↑ Novel Tasks ↑
PIC-Text (Ours) 87.6 ± 1.9 58.2 ± 2.3
No-Seq 74.0 ± 2.3 2.0 ± 0.6
No-Pretrain 90.8 ± 2.0 47.0 ± 2.8
No-FT 51.2 ± 4.5 17.0 ± 2.9

than 10%. PIC-Text (Ours) achieves higher success rates than PIC-Index (Ours) and

PIC-Unnatural (Ours) when dataset size increases, e.g ., PIC-Text (Ours) is around

4% higher than PIC-Index (Ours) and PIC-Unnatural (Ours) with 500 training demos.

When the training dataset is further enlarged, e.g ., 20K demos, success rates of all

approaches reach similar performance. This result indicates that the effectiveness of

pre-trained LMs in compositional generalization is not unique to natural language

strings, but can be leveraged from arbitrary encodings, although adapting the model

to arbitrary encodings may require more training data.

5.7.2 Sequential input representation

Next, we explore whether generalization requires sequential processing mechanisms in

transformer-based LMs. We investigate whether the LM pre-trained policy will still

be effective when the input encoding is not sequential. No-Seq encodes the goal as

a single vector by averaging all goal embeddings. History and observation features

are obtained in the same way. All features are then sent to the pre-trained LM to

predict actions. As shown in Table 5.5, removing sequential structure significantly

hurts performance on Novel Tasks. No-Seq achieves good performance on test tasks

that are closer to training tasks, but cannot generalize well to more challenging unseen

tasks. Thus, combinatorial generalization in pre-trained LMs may be attributed in

part to transformers’ ability to process sequential input representations effectively.
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5.7.3 Favorable weight initialization

Finally, we investigate if the favorable weight initialization from LM pre-training

enables effective generalization of the proposed model. No-Pretrain does not initialize

the policy using the pre-trained LM, but instead trains the policy on the expert data

from scratch. In Table 5.5, we find that removing the pre-trained weights can fit

the in-domain data and thus performs well on the In-Distribution setting. However,

its success rate is 11.2% lower than the proposed model on the Novel Tasks setting,

indicating the pre-trained weights are important for effective generalization, but not

necessary for effective data fitting. We further test a baseline, No-FT, that keeps the

pre-trained weights of the language model but freezes them while training the rest of

the model on our expert data. Freezing the pre-trained weights without fine-tuning

significantly hurts the performance on both settings, suggesting that fine-tuning the

transformer weights is essential for effective combinatorial generalization.

Together, these results suggest that sequential input representations (vs. fixed-

dimensional feature vectors) and favorable weight initialization are both important for

combinatorial generalization, however, the input encoding schemes (e.g., as a natural

language string vs. an arbitrary encoding scheme) have little influence. These results

point to the potential broader applicability of pre-trained LMs as a computational

backbone for compositional embodied decision-making, where arbitrary inputs, such

as language, images, or grids, may be converted to sequential encodings.

5.8 Qualitative Results

In Figure 5-4, we show examples of PIC-Text (Ours) completing tasks in Virtu-

alHome and BabyAI. We show two successful examples from VirtualHome on the

In-Distribution and Novel Tasks settings, and two successful examples from BabyAI

on solving the GoToLocal and PickupLoc tasks. We only show short trajectories or

extract a sub-trajectory for saving space.
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Figure 5-4: Qualitative results of our model on VirtualHome and BabyAI. We
only show a sub-trajectory in each example to save space. The interacted objects are labeled
by green bounding boxes.
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Figure 5-5: Failure cases. We show failure cases caused by the grounding error and policy
error. The interacted objects are labeled by green bounding boxes.

Failure case analysis. In Figure 5-5, we show some failure cases of the proposed

method. We observed two main types of failure cases: grounding error and policy

error. For failures caused by the grounding error, the agent interacts with a wrong

object that is not related to the given goal, e.g ., the agent puts cutlets instead of the

salmon inside the fridge. For failures caused by the policy error, the agent cannot

find the target objects or does not interact with them. The proposed method that

converts policy inputs into sequential encodings and feeds them to the general LM

framework can accomplish decision-making tasks efficiently, however, there are still

challenging tasks that the policy fails to accomplish. Larger LMs, e.g ., GPT-3 [13],

may improve the success rate of those challenging tasks.
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5.9 Conclusion

In this chapter, we introduced a general approach to sequential decision-making that

converts goals, histories, and observations into sequences and processes them using

a policy initialized with a pre-trained LM. We integrated an active data-gathering

procedure into the proposed method to enable policy learning without using expert

data. Our analysis showed that input representation and favorable weight initialization

both contribute to the combinatorial generalization while the input encoding scheme

has little influence. Our results demonstrate that the proposed method enables effective

combinatorial generalization across different environments, and highlight the promise

of LM pre-training for more general decision-making problems.

The success of using language models for decision-making tasks involving new

combinations shows that we can transfer the compositional skills from large pre-trained

models. The data we needed to fine-tune these models is much smaller compared

to what was used to train them in the first place. By shifting this compositional

knowledge from pre-trained models, we can achieve compositionality more efficiently.
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Chapter 6

Epilogue

We are standing at the threshold of a remarkable era in the advancement of Artificial

Intelligence (AI). This era is marked by the advent of colossal AI models such as

GPT-4 [109] and DALL-E 2 [125], which have not only astonished the scientific

community but also permeated daily life. These systems, driven by deep neural

networks, epitomize the transformative nature of AI technology, highlighting the

intriguing possibilities of what the future may hold.

As we navigate this age of exponential growth in AI research and development, we

are met with vital questions that deserve our reflection and scrutiny. In the relentless

pursuit of larger and more complex models, one cannot help but notice a dichotomy

between the learning paradigms in artificial systems and the organic cognitive processes

observed in human beings. Human learning is characterized by its remarkable ability to

swiftly assimilate and synthesize new information, leveraging existing knowledge and

often operating with sparse input. In stark contrast, contemporary large-scale models

require vast amounts of training data and typically require extensive fine-tuning to

adapt to new tasks.

In our research, we argue that large-scale models alone cannot encapsulate the

full potential of artificial intelligence. To create more effective, adaptive, and resilient

AI in real-world applications, we need systems that integrate new features without

undermining existing functions. Compositionality emerges as a potent framework to

navigate this challenge.
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Our approach emphasizes the blending of the strengths of pre-trained models with

compositional structures. We design logical compositional operators in the probability

domain to construct composition structures. Additionally, we obtain efficient pre-

trained models by transferring compositionality from other well-developed models

without the need for large datasets.

We advocate for the construction of decentralized and composable AI systems,

recognizing the significance of both pre-trained models and compositional structures.

Our work represents a stride toward the construction of more structured, controllable,

and interpretable representations of the world. It is a step that not only aligns more

closely with the nature of human cognition but also paves the way for the development

of more robust and effective AI systems.

While our current system boasts significant advancements, it is not without its

limitations, as detailed in each chapter of this thesis. However, we firmly believe in

compositionality as an essential facet of intelligence. Our conviction is that future

endeavors will further equip AI systems with a more robust and coherent composition-

ality. This will enable the model to engage in continual learning in our ever-changing

and dynamic world.
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Appendix A

Supplementary: Compositional Visual

Generation with Energy-Based Models

A.1 Partition Function

We estimate the magnitude of the partition function of an EBM by evaluating the

energy it assigns to all data points it is trained on. The histogram of energies is shown

in Figure A-1. Due to a combination of L2 normalization and spectral normalization,

the EBMs we evaluated have different architectures but similar histograms.

In Figure A-1, The energy histograms are the CelebA model trained on the smiling

concept, the CelebA model trained on the attractive concept, and the CIFAR-10 model

trained on CIFAR-10 objects [30]. We find that all energy histograms are similar,

exhibiting minimum and maximum energies between -0.01 and 0.01. This is true even

for the CIFAR-10 model, which uses a significantly different dataset.

In scenarios where partition functions are different, our defined disjunction operator

does not fail drastically. If two unnormalized probability distributions have partition

function values of 𝑤1 and 𝑤2, then models will be sampled with proportion 𝑤1

𝑤1+𝑤2
and

𝑤2

𝑤1+𝑤2
, which is not a dramatic failure in disjunction.
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Figure A-1: Energy histograms. Models trained on CelebA smiling (left), CelebA
attractive (middle), and a pretrained CIFAR-10 model from [30] (right). The EBMs we
evaluate have different architectures but similar histograms.

A.2 Composing Visual Concepts

In Section 2.4, we introduced composing visual concepts using energy-based models.

In this part, we first show additional experiments in Appendix A.2.1. We then provide

the model architecture details (Appendix A.2.2) of experiments used in Section 2.4.

A.2.1 Disjoint compositionality results

Frog

Truck

Frog
+ Truck

Figure A-2: Hybrid com-
binations of frog and
truck EBMs.

We further evaluate compositionality when conditioned

factors are mutually disjoint from each other. In particular,

we train EBM models on frog and truck image classes in

CIFAR-10. In Figure A-2, we illustrate resulting gener-

ations. We find that when conditioning on both classes,

our resultant generations exhibit characteristics of each

individual class.

A.2.2 Model architecture details

We list the EBM architectures used for the Mujoco Scenes dataset in Figure A-3a and

for the Celeba dataset in Figure A-3b. The baseline model used for comparisons in

Section 2.4.4 is shown in Figure A-3c.
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3x3 conv2d, 64

ResBlock down 64

ResBlock down 128

ResBlock down 128

ResBlock down 256

Global Mean Pooling

Dense → 1

(a) Model architecture of
EBM trained on the Mu-
joco Scenes dataset.

3x3 conv2d, 64

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ResBlock 1024

Global Sum Pooling

dense → 1

(b) Model architecture
of EBM trained on the
CelebA dataset.

Dense → 4096

Reshape → 256x4x4
ResBlock up 256

ResBlock up 128

ResBlock up 64

ResBlock up 64

3x3 conv2d, 3

(c) Model architecture of
the baseline model used
in Section 2.4.4.

Figure A-3: Model architecture of methods trained on different datasets.

A.3 Composing Visual Relations

In Section 2.5, we introduced composing visual relations using energy-based mod-

els. In this part, we first present additional experiments from Appendices A.3.1

to A.3.3. We then show the model architecture details of various approaches and their

implementation details in Appendix A.3.4 and Appendix A.3.5, respectively.

A.3.1 Comparison with more baseline approaches

We compare our method with more baselines on image generation in Table A.1.

StyleGAN2. We used the unconditional StyleGAN2 [65] as one of the baselines.

We train the unconditional StyleGAN2 and the ResNet-18 classifier separately on each

dataset. For training, we use the default setting provided by [65]. To generate an

image with respect to a particular relation, we optimize the underlying latent code to

minimize the loss from the classifier.

StyleGAN2 (CLIP). StyleGAN2 (CLIP) is the same as StyleGAN2 except that

StyleGAN2 (CLIP) uses the text encoder of the CLIP model [119] to encode relational
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Table A.1: Accuracy of object relations in the generated images. We compare our
method with baselines on the three test sets, i.e. 1R, 2R, and 3R, of Relational CLEVR and
iGibson, respectively.

Dataset Model Image Generation (%)
1R Acc 2R Acc 3R Acc

Relational
CLEVR

StyleGAN2 10.68 2.46 0.54
StyleGAN2 (CLIP) 65.98 9.56 1.78
StyleGAN2 (CLIP) (Multi-Relations) 66.62 9.60 1.68
Scene Graph GAN 83.72 14.18 4.48
EBM (CLIP) (Full Sentence) 4.75 0.24 0.00
Ours (CLIP) 94.79 48.42 18.00
Ours (Learned Embed) 97.79 69.55 37.60

iGibson

StyleGAN2 12.46 2.24 0.60
StyleGAN2 (CLIP) 49.20 17.06 5.10
StyleGAN2 (CLIP) (Multi-Relations) 36.94 13.42 6.86
Scene Graph GAN 54.64 0.02 0.00
EBM (CLIP) (Full Sentence) 34.25 8.05 3.47
Ours (CLIP) 74.02 43.04 19.59
Ours (Learned Embed) 78.27 45.03 19.39

scene descriptions. We follow the same configuration as StyleGAN2 to train StyleGAN2

(CLIP).

StyleGAN2 (CLIP) (Multi-Relations). StyleGAN2 (CLIP) (Multi-Relations)

has the same model architecture as StyleGAN2 (CLIP) but is trained with more scene

relations. In StyleGAN2 (CLIP), we only use a single scene relation during training,

while StyleGAN2 (CLIP) (Multi-Relations) uses 1 ∼ 3 scene relations.

Scene Graph GAN. We apply the models from [62] and utilize the extracted scene

graphs as input to train a conditional StyleGAN2. As there are no object bounding

boxes available in our setting, we set the input bounding box to be the whole image

frame, and our input scene graphs only consist of two objects and their relation.

EBM (CLIP) (Full Sentence). In this setting, we use the text encoder of CLIP

to encode every word in the relational scene descriptions.

As shown in Table A.1, our approach achieves the highest accuracy among all

the methods. Directly utilizing CLIP to encode a relational scene description such

as “a large blue rubber cube to the left of a small red metal cube” to train an EBM
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Table A.2: Comparison of different methods on Relational CLEVR. The accuracy
of graph-based relational similarity proposed by [33] is reported.

Model Relational Similarity (%)
1R Acc ↑ 2R Acc ↑ 3R Acc ↑

StyleGAN2 22.37 19.75 17.13
StyleGAN2 (CLIP) 37.50 28.62 28.75
Ours (Learned Emb) 50.77 36.87 42.50

“EBM (CLIP) (Full Sentence)” performs much worse than the proposed method “Ours

(CLIP)” and “Ours (Learned Embed)”.

A.3.2 Additional evaluation metric

We evaluate different methods based on their binary classification accuracy. In this

part, we provide an additional metric to evaluate the image generation results. We

investigate the performance of utilizing the graph-based relational similarity metric

proposed by [33]. A graph-based relational similarity score is used to test the correct

placement of objects, without requiring the model to draw the objects exactly in the

same locations as the ground truth. Such a metric can construct scene graphs for both

the generated and ground truth images without telling the model to draw objects

precisely at the exact locations. However, it heavily relies on the pre-trained object

detector and localizer. The pre-trained object detector or localizer could generate

false predictions on both real and generated images, especially when the generated

images are out of the training distribution.

The evaluation metric used in [33] focuses more on local matching while our binary

classification focuses on global matching. We report the results of two baselines and

our approach using the new evaluation metric. The image generation results on the

Relational CLEVR dataset are shown in Table A.2. The conclusion obtained by using

this new metric is coherent with using our binary classification metric: our proposed

method outperforms the baselines.
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A small red metal cylinder 
below a small blue metal sphere 
A small red metal cylinder to the 

right of a large green rubber 
cylinder

A small purple metal cylinder 
above a large yellow rubber cube

A small  purple metal cylinder
behind a large brown rubber 

sphere

A large gray rubber cylinder to the 
right of a large red rubber cylinder
A large gray rubber cylinder below

a large brown metal cylinder

A small cyan metal sphere to the 
left of a large gray rubber cylinder
A small cyan metal sphere behind

a large green metal sphere

A large purple metal cube to the 
right of a small yellow rubber cube
A large purple metal cube below a 

large green rubber sphere

A large red rubber cube to the 
left of a large blue metal cube 

A large red rubber cube behind
a small yellow rubber cube

Input relational scene description Scene Graph GAN StyleGAN2 StyleGAN2 
(CLIP) 

StyleGAN2 
(CLIP) 

(Multi-Relations)

EBM
(CLIP) 

(Full Sentence)

Ours 
(CLIP)

Ours
(Learned Embed)

Figure A-4: Image generation results on the Relational CLEVR dataset. Images
are generated based on 2 relational descriptions. Note that the models are trained on a
single relational description, and the two composed scene relations are outside the training
distribution. Our approaches “Ours (CLIP)” and “Ours (Learned Embed)” are able to
generate images accurately based on the input scene descriptions.

A.3.3 Additional qualitative results

Image generation results on Relational CLEVR and iGibson. We show more

qualitative results of image generation in Fig. A-4 and Fig. A-5. Our approach can

generate images with correct relations, and can even generalize to relational scene

descriptions that are out of the training distribution.

Image generation results on real-world datasets. In terms of image generation

on real scenes, we train and evaluate our model on two real-world datasets, the Blocks

dataset [81] and the Visual Genome dataset [76].

The Blocks dataset is from [81]. We train our model using two types of object
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A maple wood cabinet to the 
right of a gray fabric stool

A large maple wood table to the 
right of a maple wood cabinet

A blue fabric couch to the right 
of a maple wood cabinet

A maple wood table behind a 
maple wood cabinet

A garden walnut wood table to 
the left of a blue fabric stool 

A red leather couch to the right 
of a blue fabric stool

A gray fabric stool in front of a 
red leather couch

A maple wood cabinet to the 
left of a gray fabric stool

A blue fabric stool to the left of
a garden walnut wood cabinet 

A gray fabric couch to the right 
of a blue fabric stool

A maple wood table to the right 
of a gray fabric stool 

A blue fabric couch behind a 
gray fabric stool

Input relational scene description Scene Graph GAN StyleGAN2 StyleGAN2 
(CLIP) 

StyleGAN2 
(CLIP) 

(Multi-Relations)

EBM
(CLIP) 

(Full Sentence)

Ours 
(CLIP)

Ours
(Learned Embed)

Figure A-5: Image generation results on the iGibson dataset. Images are generated
based on 2 relational descriptions. Note that the models are trained on a single relational
description, and the two composed scene relations are outside the training distribution.
Our approaches “Ours (CLIP)” and “Ours (Learned Embed)” are able to generate images
accurately based on the input scene descriptions.

relations, e.g ., “above” and “below”. We show the images generated conditioned on

two relational descriptions and three relational descriptions in Fig. A-6.

For the Visual Genome dataset [76], we train our models on a subset that consists

of common objects and relations for computational efficiency. As shown in Fig. A-7, we

find that the CLIP text encoder performs better, as it has seen large-scale image-text

pairs that cover a wide range of relations, attributes, and objects.

Our approach is able to generate images (objects and their relations) matching the

given language descriptions on the real-world Blocks dataset and the Visual Genome

dataset. The quality of generated images on the Blocks dataset is great. However,

the quality of results on the Visual Genome dataset is a bit worse. We believe the

generation quality could be further improved given more powerful text encoders.
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A yellow cube above a green cube
A green cube below a yellow cube
A yellow cube below a red cube

A green cube below a red cube
A blue cube below a yellow cube
A yellow cube below a red cube

A green cube below a red cube
A yellow cube above a green cube

A blue cube below a red cube

Ours
(Learned Embed)

EBM
(CLIP) 

(Full Sentence)

StyleGAN2 
(CLIP)

A red cube above a green cube
A yellow cube below a blue cube

A red cube above a blue cube
A green cube above a yellow cube

A blue cube below a red cube
A green cube below a red cube

Ours
(Learned Embed)

EBM
(CLIP) 

(Full Sentence)

StyleGAN2 
(CLIP)

Input relational scene 
description

Input relational scene 
description

A yellow cube below a green cube
A red cube above a green cube

A red cube above a yellow cube
A blue cube above a green cube

A red cube below a green cube
A blue cube above a yellow cube
A yellow cube below a red cube

A blue cube above a yellow cube
A green cube below a red cube

A yellow cube below a blue cube

Figure A-6: Image generation results on the Block dataset. Images are generated
based on 2 or 3 relational descriptions. Note that the models are trained on a single relational
description, and the composed scene relations (2 and 3 relational descriptions) are outside
the training distribution. Our approach “Ours (Learned Embed)” is able to generate images
accurately based on the input scene descriptions.

A.3.4 Model architecture details

We follow the implementation of EBMs from [28] in our experiments. Similar to [28],

we use the multi-scale model architecture to compute energies as shown in Table A.3.

Each model generates an energy value and the final energy 𝐸𝜃(𝑥) is the sum of

energies from all the models listed in Table A.3. Given relational scene descriptions,

we generate or edit images based on the final energy.

A.3.5 Implementation details

StyleGAN2. It takes 2 days to train the StyleGAN2 model and 2 hours to train the

classifier using a single Tesla 32GB GPU on each dataset. We use the Adam optimizer

[72] with 𝛽1 = 0, 𝛽2 = 0.99, and 𝜖 = 10−8 to train the model.

StyleGAN2 (CLIP). For StyleGAN2 (CLIP) and StyleGAN2 (CLIP) (Multi-

Relations), it takes around 2 days to train each of them on each dataset using a
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Ours
(Learned Embed)

EBM
(CLIP) 

(Full Sentence)

Building next 
to sky

Building in 
front of sky

Grass 
underneath 

building

Tree below 
building

Grass to the 
right of 
woman

Figure A-7: Image generation results on the Visual Genome dataset. “EBM (CLIP)
(Full Sentence)” performs better than “Ours (Learned Emb)” in generating more complex
natural images because the pretrained CLIP text encoder has seen large-scale image-text
pairs that cover a wide range of objects and their relations.

single Tesla 32GB GPU. We use the Adam optimizer [72] with 𝛽1 = 0, 𝛽2 = 0.99, and

𝜖 = 10−8 to train them.

Scene Graph GAN. We train the model on each dataset with the default training

configuration provided in the codebase from [62] for 2 days using a single Tesla 32GB

GPU. We use the Adam optimizer [72] with 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−4 to

train the model.

EBMs (i.e., Ours (CLIP), Ours (Learned Embed), EBM (CLIP) (Full

Sentence)). In our experiments, we use the same setting to train models using

EBMs, i.e., Ours (CLIP), Ours (Learned Embed), and EBM (CLIP) (Full Sentence),

for fair comparisons. We use the Adam optimizer [72] with learning rates of 10−4 and

2× 10−4 on the Relational CLEVR and iGibson datasets, respectively. For MCMC

sampling, we use a step size of 300 on the Relational CLEVR dataset, 750 on the

iGibson dataset, and 300 on the Blocks dataset. On each dataset, the model is trained

for 3 days on a single Tesla 32GB GPU.

To generate images at test time, we initialize an image sample from random noise.

We then iteratively apply data augmentation on the image sample, followed by 20
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Table A.3: Model architectures. We use the multi-scale model architecture to compute
energies.

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

CondResBlock 128

CondResBlock Down 256

Self-Attention 256

CondResBlock 256

CondResBlock Down 256

CondResBlock 512

CondResBlock Down 512

Global Mean Pooling

Dense → 1

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

CondResBlock 128

CondResBlock Down 128

Self-Attention 256

CondResBlock 256

CondResBlock Down 256

Global Mean Pooling

Dense → 1

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

Self-Attention 128

CondResBlock 128

CondResBlock Down 128

Global Mean Pooling

Dense → 1

steps of Langevin sampling. To generate the final image, we ran 80 additional steps of

Langevin sampling on the image sample.

To edit images at test time, we run 80 steps of Langevin sampling steps. The step

size of Langevin sampling is inversely proportional to the number of scene relations,

i.e., more scene relations lead to a smaller Langevin sampling step size.
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Appendix B

Supplementary: Compositional Visual

Generation with Diffusion Models

We first demonstrate additional results in Appendix B.1. We then show the details

of training classifiers in Appendix B.2. In Appendix B.3 and Appendix B.4, we

show more details of our approach and baselines, respectively. We finally provide the

implementation details in Appendix B.5.

B.1 Additional Results

We provide more qualitative results of the proposed method on composing concepts

using the conjunction operator. Fig. B-1, Fig. B-2, Fig. B-3, and Fig. B-4 show

more results of composing language descriptions. Fig. B-5 shows additional results

on composing objects on the CLEVR dataset. Our approach can reliably generate

images conditioned on multiple concepts, even for combinations that are outside the

training distribution.

We further show results of composing facial attributes on the FFHQ dataset in

Fig. B-6. Our model is trained to generate images conditioned on a single human facial

attribute, but it can compose multiple attributes during inference without further

training by using the conjunction and negation compositional operators. As shown in

the fifth row of Fig. B-6, our model can compose “NOT Male” and “NOT (No Glasses)”
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and generate images with females wearing glasses. The proposed compositional

operators allow our model to compose facial attributes recursively.

B.2 Details of Binary Classifiers

We provide more details of the binary classifiers in this section.

CLEVR. The CLEVR dataset consists of 30, 000 image-label pairs. We split the

dataset into training and validation subsets. There are 24, 000 data pairs used for

training and 6, 000 data pairs used for validation. We train a binary classifier to

evaluate whether there is an object appearing at a particular position of an image.

The classifier achieves an accuracy of 99.05% on the validation set, which is used to

evaluate the quality of generated images.

Relational CLEVR. The Relational CLEVR [87] dataset contains 50, 000 images

at 128× 128 resolution. We split the dataset into 40, 000 training data and 10, 000

validation data. Then we train a binary classifier to evaluate whether an image

contains an object relational description. The trained classifier achieves an accuracy

of 99.80% on the validation set.

FFHQ. We use 30, 000 image-label pairs from CelebA-HQ [64] to train a classifier

to evaluate the generated images. We split the dataset into the training (24, 000

data pairs) and validation (6, 000 data pairs) subsets. We select three attributes (i.e.,

“smiling”, “glasses”, and “gender”) to evaluate the compositional ability of our approach

and baselines. We thus train three binary classifiers to evaluate the “smiling”, “glasses”,

and “gender” concepts, respectively. Our classifiers achieve 95.01%, 99.20% and 97.49%

accuracy on the validation sets of “smiling”, “glasses”, and “gender”, respectively.

B.3 Details of Our Approach
Training. Our approach is implemented based on the code from [105, 103]. Ho

et al . [52] introduce a technique to train the conditional and unconditional diffusion
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models at the same time by masking some labels as nulls. We use the same approach

to train diffusion models. For each data point, its label has a 10% chance of being

replaced by a null label which is used to estimate the unconditional score.

Inference. To generate FFHQ images, we first generate images at 64× 64 resolution

and then upsample the images to 256× 256 using a sampler provided by [103]. For

CLEVR images, we generate images at 128× 128 resolution directly.

Label encoding. On the FFHQ dataset, we use three human facial attributes,

i.e., “smile”, “glasses”, and “gender”. For the “smile” and “glasses” attributes, label 1

indicates an image containing the attribute; otherwise, the label is 0. For the “gender”

attribute, label 0 indicates “male”, while label 1 represents “female”. We use the

embedding layer 𝑛𝑛.𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(7, 𝑑) to encode the attribute labels. The first six

dimensions represent the attribute labels and the last dimension indicates the null

class. The labels are encoded as a 𝑑-dimension feature vector, which is then fused

with the time embedding to estimate the score 𝜖𝜃.

On the CLEVR dataset, we encode the (𝑥, 𝑦) coordinates using a linear layer

𝑛𝑛.𝐿𝑖𝑛𝑒𝑎𝑟(2, 𝑑), where 𝑑 is the dimension of the output feature. The coordinate

embedding is then fused with the time embedding to estimate the score 𝜖𝜃.

B.4 Details of Baselines
StyleGAN2-ADA. On each dataset, we train a conditional StyleGAN2-ADA model

using the “stylegan” configuration provided by [66] without using augmentations.

StyleGAN2. We use the pre-trained StyleGAN2 model [68] to evaluate its per-

formance on facial image generation. As there is no pre-trained model for object

generation, we use the same code to train a model on the CLEVR dataset for image

generation conditioned on object positions. We use the “config-f” setting provided

by [68]. To enable image generation conditioned on multiple concepts, we train a

binary classifier on each task. During inference, we optimize the latent code z by

decreasing the binary classification loss of the generated image and the given label.
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We use the resultant latent code to generate images.

LACE. LACE [106] trains classifiers for image generation using the generated images

from StyleGAN2 and labels provided by the neural network. For the CLEVR dataset,

we first generate 10, 000 images using the above StyleGAN2 model that was trained on

CLEVR. Then we modify the code to train a position annotator using a DenseNet [56]

model provided by LACE to label the object positions of generated images. Lastly, we

train a classifier conditioned on object coordinates using the code provided by [106].

For FFHQ, we use the off-the-shelf pre-trained model from [106] for comparison.

GLIDE. We use the small GLIDE model released by [103] in our experiments. We

develop Composed GLIDE (Ours), a version of GLIDE that utilizes our compositional

operators to combine textual descriptions, without further training. We compare it

with the original GLIDE, which directly encodes the descriptions as a single long

sentence. [103] also releases an upsampler model to upsample the generated images

from a resolution of 64× 64 to a resolution of 256× 256. We use the upsampler model

for both the GLIDE and Composed GLIDE (Ours).

Energy-based models (EBMs). We train energy-based models using the codebase

from [28], where we encode discrete labels and continuous labels using an embedding

layer and a linear layer, respectively. We use the inference code from [25] to compose

multiple concepts.

B.5 Implementation Details

Each model is trained on a single Tesla V100 32GB GPU.

StyleGAN2-ADA. Each conditional StyleGAN2-ADA model is trained for two

days. We use the Adam optimizer [72] with 𝛽1 = 0 and 𝛽2 = 0.99 to train the models.

StyleGAN2. We train a StyleGAN2 model for two days on both CLEVR and

Relational CLEVR datasets. We use the Adam optimizer [72] with 𝛽1 = 0 and

𝛽2 = 0.99 to train the StyleGAN2 models. It takes 2 hours to train a binary classifier.
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The classifiers are trained using the Adam optimizer with 𝛽1 = 0 and 𝛽2 = 0.99. For

the FFHQ dataset, We use the pre-trained model provided by [68].

LACE. LACE uses the pre-trained model provided by [68] on the FFHQ dataset.

For both CLEVR and Relational CLEVR datasets, we directly reuse the trained

StyleGAN2 model. It takes less than 10 minutes to train the classifier on each dataset.

EBMs. In our experiments, we use the same setting to train models on different

datasets. We use the Adam optimizer [72] with a learning rate of 10−4. For MCMC

sampling, we use a step size of 300 and 80 iterations. Similarly, the model is trained

for two days on each dataset.

Ours. To train diffusion models on CLEVR and FFHQ, we use 1, 000 diffusion steps,

and the cosine noise schedule. We use the AdamW optimizer [91] with 𝛽1 = 0.9 and

𝛽2 = 0.999. We train the diffusion models on CLEVR for 750, 000 iterations and

FFHQ for 250, 000 iterations.
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“A church” AND “A 
forest behind the 
church” AND “A 
parking lot next to the 
church”

“A beach with black 
sand” AND “Palm trees 
on the black sand” AND 
“Orange sunset”

“Palm trees on both sides 
of the street” AND “Pink 
sunset in a horizon” AND 
“A car moving away”

“A city” AND “A river 
flowing through the city” 
AND “A gloomy sky”

“A red bridge above a 
river” AND “A yacht 
sitting on the river” 
AND “The river
surrounded by trees”

“Trees in the fall” AND 
“A long road down a 
hill” AND “A blue car at 
middle of the road”

“A village in a valley” 
AND “Red flowers in 
front of the village” AND 
“Mountains covered with 
snow”

“A car on a highway” 
AND “The highway 
surrounded by hills” 
AND “Hills are covered 
with snow”

“A Ferris wheel” AND 
“A lake next to the 
Ferris wheel” AND 
“Buildings next to the 
lake”

“A train on a bridge” 
AND “A river under the 
bridge” AND 
“Mountains behind the 
train”

“A cloudy blue sky” AND 
“A mountain in the 
horizon” AND “Cherry 
Blossoms in front of the 
mountain”

“A blue house” AND “A 
red tractor on a farm” 
AND “A cloudy sky”

Figure B-1: Examples of composing language descriptions. We provide more qual-
itative results of Composed GLIDE (Ours), a version of GLIDE [103] that utilizes our
compositional operators to combine textual descriptions without further training.
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“A river leading into mountains” AND “Red trees on the side”

Figure B-2: Examples of composing language descriptions. Images generated by our
method, Composed GLIDE (Ours).
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“A horse” AND “A yellow flower field”

Figure B-3: Examples of composing language descriptions. Images generated by our
method, Composed GLIDE (Ours).
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“A train on a bridge” AND “A river under the bridge”

Figure B-4: Examples of composing language descriptions. Images generated by our
method, Composed GLIDE (Ours).
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Obj1 (0.29, 0.47) AND
Obj2 (0.55, 0.31) AND
Obj3 (0.57, 0.68) AND
Obj4 (0.82, 0.45)

Obj1 (0.24, 0.61) AND
Obj2 (0.3, 0.38) AND
Obj3 (0.45, 0.62) AND
Obj4 (0.65, 0.68) AND
Obj5 (0.74, 0.43)

Obj1 (0.3, 0.3) AND
Obj2 (0.4, 0.4) AND
Obj3 (0.55, 0.55) AND
Obj4 (0.7, 0.65)

Obj1 (0.31, 0.64) AND
Obj2 (0.22, 0.31) AND
Obj3 (0.61, 0.68) AND
Obj4 (0.74, 0.37)

Obj1 (0.16, 0.46) AND
Obj2 (0.38, 0.68) AND
Obj3 (0.47, 0.32) AND
Obj4 (0.73, 0.59)

Obj1 (0.2, 0.65) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.5, 0.5) AND
Obj4 (0.6, 0.65)

Obj1 (0.1, 0.6) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.5, 0.35) AND
Obj4 (0.7, 0.5) AND
Obj5 (0.9, 0.6)

Obj1 (0.2, 0.66) AND
Obj2 (0.29, 0.39) AND
Obj3 (0.41, 0.58) AND
Obj4 (0.57, 0.29) AND
Obj5 (0.69, 0.5)

Obj1 (0.3, 0.65) AND
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Figure B-5: Examples of composing objects. During inference, our model can generate
images that contain multiple objects by composing their probability distributions using the
conjunction operator. Note that the training set only contains images with fewer than five
objects, but our model can compose more than five objects during inference.

146



Smiling AND NOT (No Glasses) AND NOT Female

NOT (No Smiling) AND No Glasses AND NOT Male

NOT (No Smiling) AND NOT (No Glasses) AND Male

No Smiling AND NOT Glasses AND NOT Female

Smiling AND NOT (No Glasses) AND NOT Male

Figure B-6: Examples of composing human facial attributes. During inference, our
model can generate images that contain multiple attributes by composing their probability
distributions using the conjunction and negation operators.
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Appendix C

Supplementary: Composing

Ensembles of Pre-trained Models via

Iterative Consensus

We first show experimental details of each task in Appendix C.1. We then show

the ethics statement of the Amazon Mechanical Turk experiment for video question

answering in Appendix C.2. We finally show additional experimental results in

Appendix C.3.

C.1 Experimental Details

In this section, we provide more experimental details of each task. We use TITAN

RTX 24GB GPUs for all the experiments.

C.1.1 Image generation

We use the reverse diffusion process of GLIDE, a text-guided diffusion model, as

the generator to generate image proposals. At each step of the diffusion process

(corresponding to a step of iterative refinement), we use the gradient from an ensemble

of scorers to guide and update the generated proposals. We iteratively repeat this
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procedure until the final step.
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Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1  x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t  Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We
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scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
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matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t  Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We

4

Under review as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1  x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
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(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
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GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:
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k
t+1) (11)

1

Figure C-1: Overview of image generation. We use the reverse diffusion process of
GLIDE [103], a text-guided diffusion model, as the generator to generate image proposals.
At each step of the diffusion process (corresponding to a step of the iterative refinement), we
use the gradient from an ensemble of scorers, such as CLIP [119], to guide and update the
generated proposals. The image 𝑥𝑘 generated at iteration 𝑘 is first sent to the diffusion model
to generate an image proposal 𝑥̂𝑘+1. The scorers provide feedback to refine the generated
result. The scores generated by different scorers are summed, and their gradient with respect
to 𝑥𝑘 is used to compute the next reverse prediction 𝑥𝑘+1. Classifier-free guidance [53] can
be treated as an implicit classifier that directly provides pixel-wise gradient feedback to the
generated image. We iteratively repeat this procedure until the final step. Our framework
enables the use of ensembles of different pre-trained models as scorers, significantly improving
the zero-shot results by leveraging the strengths of multiple expert models.

As shown in Fig. C-1, the image 𝑥𝑘 generated at iteration 𝑘 is first sent to the

diffusion model to generate an image proposal 𝑥̂𝑘+1. The scorers provide feedback to

refine the generated result. The scores generated by different scorers are summed, and

their gradient with respect to 𝑥𝑘 is used to compute the next reverse prediction 𝑥𝑘+1.

The classifier-free guidance [53] can be treated as an implicit classifier that directly

provides pixel-wise gradient feedback to the generated image. Our framework enables

the use of ensembles of different pre-trained models as scorers, significantly improving

the zero-shot results by leveraging the strengths of multiple expert models.

Our implementation for image generation is modified based on the code of
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generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) , �2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.
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generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) , �2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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Figure C-2: Overview of video frame captioning for video question answering. We
use GPT-2 as the generator and a set of CLIP models as scorers to generate captions for each
video frame. To integrate feedback from scorers to the generator, similar to ZeroCap [152],
we define a context cache 𝐶𝑡 (a set of embedding functions in GPT-2) that stores the context
information generated so far, which is updated iteratively based on the feedback from scorers.
To update 𝐶𝑡, we first use 𝐺 to generate a set of candidate words X̂𝑡+1 = {𝑥̂𝑡+1}, and then
use the feature distance (after softmax) between each sentence (the concatenation of previous
words and each new word {𝑥1,𝑥2, · · · , 𝑥̂𝑡+1}, where 𝑥̂𝑡+1 ∈ X̂𝑡+1) and the video frame as
the probability of them matching. The CLIP score is the cross-entropy loss ℒCLIP between
this new probability distribution and the original distribution of the next word obtained from
the generator 𝐺 (see Equation 4 in [152]). The gradient of summed scores (multiple CLIP
models) is propagated to 𝐺 to update 𝐶𝑡 (see Equation 5 in [152]). After several iterations,
the updated 𝐶𝑡 is used to generate the next token 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡). We repeat this process
until we generate the entire caption. We cascade the captions of multiple video frames and
questions about this video to prompt GPT-3 for video question answering.

GLIDE [103] and the classifier guidance diffusion [23]. We use DDIM to sample

images from GLIDE in 100 steps. The guidance scale is set to 3.

C.1.2 Video question answering

In video question answering, we use the proposed method to generate captions for

the video frames and then use GPT-3 to summarize the captions to answer questions.

We use GPT-2 as the generator and a set of CLIP models as scorers to generate

captions for each video frame. The CLIP models [119, 130] are from the Huggingface

library [164]:

• CLIP-32: https://huggingface.co/openai/clip-vit-base-patch32.
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• CLIP-14: https://huggingface.co/openai/clip-vit-large-patch14.

• CLIP-multilingual: https://huggingface.co/sentence-transformers/

clip-ViT-B-32-multilingual-v1.

Fig. C-2 shows the framework for generating frame captions. Given a video frame

𝐼, we generate a sequence of words to describe it. To integrate feedback from scorers

to the generator, similar to ZeroCap [152], we define a context cache 𝐶𝑡 (a set of

embedding functions in GPT-2, such as the embedding functions, 𝐾, 𝑄, 𝑉 , in the

Transformer blocks.) that stores the context information generated so far, which is

updated iteratively based on the feedback from scorers. The prediction of the next

word from the generator 𝐺 is given by 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡), where 𝐺 is the pre-trained

language model. ZeroCap uses the following loss function to optimize 𝐶𝑡:

argmin
𝐶𝑡

(︁
ℒCLIP

(︀
G(𝑥𝑡, 𝐶𝑡) , 𝐼

)︀
+ 𝜆ℒCE

(︀
G
(︀
𝑥𝑡, 𝐶𝑡

)︀
, 𝑥̂𝑡+1

)︀ )︁
, (C.1)

where 𝐼 is the feature of a video frame and 𝑥̂𝑡+1 is the next word predicted by the

original language model. The CLIP loss ℒCLIP optimizes 𝐶𝑡 to make the newly

generated sentence describe the video frame. The second loss ℒCE ensures the newly

generated sentence is close to the sentence generated by the original language model.

Our implementation is based on the code of ZeroCap [152]. The context cache 𝐶𝑡

is updated using:

𝐶𝑡 ←− 𝐶𝑡 + 𝛼
∇𝐶𝑡𝑝 (𝑥𝑡+1 | 𝐶𝑡)

‖∇𝐶𝑡𝑝 (𝑥𝑡+1 | 𝐶𝑡)‖2
, (C.2)

where 𝑝(𝑥𝑡+1|𝐶𝑡) is the probability of predicting word 𝑥𝑡+1 given 𝐶𝑡. Optimizing

Eq. (C.1) can be achieved by conducting the gradient descent using Eq. (C.2). In our

experiments, we use 5 steps of gradient descent. The learning rate 𝛼 is set to 0.3.

In the video question answering tasks, we compose multiple CLIP scores and use

their composed score to optimize 𝐶𝑡:

argmin
𝐶𝑡

(︁
ℒCLIP-32

(︀
G(𝑥𝑡, 𝐶𝑡) , 𝐼

)︀
+ℒCLIP-14

(︀
G(𝑥𝑡, 𝐶𝑡) , 𝐼

)︀
(C.3)

+ ℒCLIP-multilingual
(︀
G(𝑥𝑡, 𝐶𝑡) , 𝐼

)︀
+𝜆ℒCE

(︀
G
(︀
𝑥𝑡, 𝐶𝑡

)︀
, 𝑥̂𝑡+1

)︀ )︁
. (C.4)
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# Q: how many people are there in the video
# A: 2
# Q: what is behind the person in white clothes
# A: tree
# Q: what is in front of the person with braid
# A: chair
...
# Q: what is the person in white doing
# A: tie hair
# Q: what happened to the person in gray after he threw a goal
# A: clap with your teammates
# Summarize the following descriptions and answer the question as shown above:
a Video showing the new Hair tutorial; a video showing young blond hair clip attaching to 
top pony tail of teens hair; …; a video on the head hair clip website showing blonde long 
hair twisted in two knots.

# Q: is the person with a golden hair long hair

Figure C-3: Prompts given to GPT-3 for video question answering. Text in black
contains the question-answer pairs randomly sampled from the ActivityNet-QA training
dataset. Text in blue has the video frame captions generated by the proposed method. Text
in orange is the question about this video that needs to be answered.

After several iterations, the updated 𝐶𝑡 is used to generate the next token 𝑥𝑡+1 =

𝐺(𝑥𝑡, 𝐶𝑡). We repeat this process until we generate the entire caption.

To answer the video questions, we cascade the generated captions of the video

frames and the questions about this video to prompt GPT-3 to generate answers. For

each video, we delete the first 10 frames and the last 10 frames to remove the beginning

or ending advertisements. We then take 30 video frames evenly from the rest frames

and send them to GPT-3. To guide GPT-3 to generate proper answers, we randomly

select 30 question-answer pairs from the training set of ActivityNet-QA [172] and use

them as part of the prompt of GPT-3. As shown in Fig. C-3, the prompt of GPT-3

consists of examples of question-answer pairs, the video frame captions generated by

the proposed method, and the question about this video that needs to be answered.

The text generated by GPT-3 is used as the answer to the question asked. We also

used the profanity check tool (https://github.com/vzhou842/profanity-check)

to remove the improper answers.
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generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) , �2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.
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generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) , �2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.
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to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,
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Figure C-4: Overview of solving grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text-generation problem. The
scorer, a pre-trained question-solution classifier, provides the generator feedback to guide the
next token’s generation 𝑥𝑡+1. We follow the approach used in VQA to iteratively optimize
the generations based on feedback from scorers. Our generator 𝐺 first generates a set of
candidate words X̂𝑡+1 = {𝑥̂𝑡+1}, and then the classifier predicts the probability of each
solution (the concatenation of previous words and each new word {𝑥1,𝑥2, · · · , 𝑥̂𝑡+1}, where
𝑥̂𝑡+1 ∈ X̂𝑡+1) matching the given question. The classifier score is the cross-entropy loss
between this new probability distribution and the original distribution of the next word
obtained from the generator 𝐺. The gradient of the classifier score is used to update 𝐶𝑡

through iterative refinement (see Equation 5 in [152]). The updated 𝐶𝑡 is used to predict the
next word 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡). We repeat this process until we generate the complete solution.

C.1.3 Grade school math

We treat the grade school math problem as a text generation problem. As shown in

Fig. C-4, we use GPT-2 as the generator and a pre-trained question-solution classifier

as the scorer. The pre-trained classifier is a binary classifier trained on the training

set of GSM8K [17]. Given a math problem, such as “Natalia sold clips to 48 of her

friends in April, and then she sold half as many clips in May. How many clips did

Natalia sell altogether in April and May?”, and an answer, such as “72”. If the answer

is correct for the given problem, then the label is 1; otherwise, the label is 0.

After training, the classifier is used as the scorer to provide feedback to the

generator to guide the next token’s generation 𝑥𝑡+1. Similar to VQA, the generator

𝐺 first generates a set of candidate words X̂𝑡+1 = {𝑥̂𝑡+1}, and then the classifier

predicts the probability of each solution (the concatenation of previous words and

each new word {𝑥1,𝑥2, · · · , 𝑥̂𝑡+1}, where 𝑥̂𝑡+1 ∈ X̂𝑡+1) matching the given question.
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The classifier score is the cross-entropy loss between this new probability distribution

and the original distribution of the next word obtained from the generator 𝐺 (the

way to compute the classifier score is the same as computing the CLIP score in VQA).

We also used the cross-entropy loss ℒCE in Equation 2 of ZeroCap [152] to ensure the

generated sentence is grammatically sound. The context cache 𝐶𝑡 is updated in the

same way as Equation 5 in [152], but we use the classifier score when providing the

feedback to 𝐶𝑡. The updated 𝐶𝑡 is used to predict the next word 𝑥𝑡+1 = 𝐺(𝑥𝑡, 𝐶𝑡).

We repeat this process until we generate the complete solution. Similarly to the video

question task, we use 5 steps of gradient descent. The learning rate 𝛼 is set to 0.3.

C.1.4 Robot manipulation

In robot manipulation, we use the proposed method to manipulate objects in Ravens [173]

to conform to a set of object relations specified by text descriptions or real-world

images. We use MPC+World Model as the generator and ViLD [42] as the scorer.

As shown in Figure C-5, given a real-world image, our model manipulates objects in

the environment to achieve a state with objects having the same object relations as

the given image. We first use ViLD to generate a 2D segmentation of the real-world

image and the corresponding text label, such as “mug”, for each segment. We then use

the relative pixel-wise offsets of segmentation masks and the text labels to infer a set

of object relations (top panel of Figure C-5).

Given the current world state 𝑥𝑡, we aim to generate an action 𝑎𝑡+1 so that the

new world state after executing 𝑎𝑡+1 has object relations closer to the object relations

in the given image. To do this, we first use the generator (MPC+World Model) to

generate a set of candidate actions {𝑎̂𝑘𝑡+1} and the corresponding world states {𝑥̂𝑘
𝑡+1}

after executing each candidate action. For each new world state 𝑥̂𝑘
𝑡+1, we render

𝑛 2D images from 𝑛 camera views. Each rendered image is sent to VILD to get a

segmentation map and text labels. We project the objects into 3D space based on

the segmentation map and the depth map of the image. We then obtain the object

relations based on their 3D positions and the predicted text labels. We compare the

object relations obtained from each rendered image and the object relations obtained
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generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) , �2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.
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generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) , �2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.
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generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) , �2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.
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Figure 6: Overview of video frame captioning for video question answering. We define a context cache Ct

(a set of embedding functions in GPT-2 as in (Tewel et al., 2021)) that stores the context information generated
so far, which is updated iteratively based on the feedback from scorers. To update Ct, we first use G to generate
a set of candidate words {x̂i

t+1}, and then use the feature distance between each sentence (the concatenation
of previous words and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution and the
original distribution of the next word obtained from the generator G (see Equation 4 in (Tewel et al., 2021)). The
gradient of summed scores (multiple CLIP models) is propagated to G to update Ct. After several iterations,
the updated Ct is used to generate the next token xt+1 = G(xt, Ct). We repeat this process until we generate
the entire caption. We cascade the captions of multiple video frames and questions about this video to prompt
GPT-3 for video question answering.

# Q: how many people are there in the video
# A: 2
# Q: what is behind the person in white clothes
# A: tree
# Q: what is in front of the person with braid
# A: chair
...
# Q: what is the person in white doing
# A: tie hair
# Q: what happened to the person in gray after he threw a goal
# A: clap with your teammates
# Summarize the following descriptions and answer the question as shown above:
a Video showing the new Hair tutorial; a video showing young blond hair clip attaching to 
top pony tail of teens hair; …; a video on the head hair clip website showing blonde long 
hair twisted in two knots.

# Q: is the person with a golden hair long hair

Figure 7: Prompt given to GPT-3 for video question answering. Text in black contains the question-answer
pairs randomly sampled from the ActivityNet-QA dataset. Text in blue has the video frame captions generated
by the proposed method. Text in orange is the question about this video that needs to be answered.

A.4 ROBOT MANIPULATION

In robot manipulation, we use the proposed method to manipulate objects in Ravens (Zeng et al.,
2020) to conform to a set of object relations specified by text descriptions or real-world images. We
use MPC+World model as the generator and the ViLD (Gu et al., 2021) as the scorer. As shown in
Figure 9, given a real-world image, our model manipulates objects in the environment to achieve a
state with objects having the same object relations as the given image. We first use ViLD to generate
a 2D segmentation of the real-world image and the corresponding text label, such as “mug”, for each
segment. We then use the relative pixel-wise offsets of segmentation masks and the text labels to
infer a set of object relations (top panel of Figure 9).

Given the current world state xt, we aim to generate an action at+1 so that the new world state after
executing at+1 has object relations the same as object relations in the given image. To do this, we
first use the generator (MPC+World model) to generate a set of candidate actions {âk

t+1} and the
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cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation
maps for images captured by different camera views, and the corresponding text label for each
segment, which are used to obtain object relations. We compare the generated object relations and
the relations specified by the text description to obtain the scorer, i.e. score equals 0 if they match;
otherwise, 1 (here the score means the distance). To obtain a final world state xT that satisfies the
specified relations, and the action sequence {a1, · · · , aT } that manipulates the objects into the final
state xT , the generator iteratively samples possible actions âi

t+1 and gets feedback from scorers. The
best action is selected by:

at+1 = arg min
ât+1

NX

n=1

En
✓ (xt, ât+1). (4)

Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action ât+1 is

applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
a pre-defined answer set (Yang et al., 2021; Lei et al., 2022). To evaluate such free-form VQA, we
ask workers from Amazon Mechanical Turk to measure whether the generated answer matches the
given question and video (See Appendix B for IRB approval and experimental details). For fair
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cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation
maps for images captured by different camera views, and the corresponding text label for each
segment, which are used to obtain object relations. We compare the generated object relations and
the relations specified by the text description to obtain the scorer, i.e. score equals 0 if they match;
otherwise, 1 (here the score means the distance). To obtain a final world state xT that satisfies the
specified relations, and the action sequence {a1, · · · , aT } that manipulates the objects into the final
state xT , the generator iteratively samples possible actions âi

t+1 and gets feedback from scorers. The
best action is selected by:

at+1 = arg min
ât+1

NX

n=1

En
✓ (xt, ât+1). (4)

Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action ât+1 is

applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
a pre-defined answer set (Yang et al., 2021; Lei et al., 2022). To evaluate such free-form VQA, we
ask workers from Amazon Mechanical Turk to measure whether the generated answer matches the
given question and video (See Appendix B for IRB approval and experimental details). For fair
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cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation maps
for images captured by different camera views, and the corresponding text label for each segment,
which are used to obtain object relations. We compare the generated object relations and the relations
specified by the text description to obtain the scorer, i.e. score equals 0 if they match; otherwise,
1 (here the score means the distance) (see Appendix A.4 for details). To obtain a final world state
xT that satisfies the specified relations, and the action sequence {a1, · · · , aT } that manipulates
the objects into the final state xT , the generator iteratively samples possible actions âk

t+1 and gets
feedback from scorers. The best action is selected by:

at+1 = arg min
âk

t+1

NX

n=1

En
✓ (xt, â

k
t+1). (4)

Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action âk

t+1 is
applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

âk+2
t+1 (5)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
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âk

t+1

nX

i=1

Ei
✓(xt, â
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k
t+1) (11)

1

Figure C-5: Overview of robot manipulation. We use MPC+World Model as the
generator and ViLD as the scorer to manipulate objects to conform to a set of object relations
specified by text descriptions or real-world images. Top: Given a real-world image, we first
use ViLD to generate a 2D segmentation of the real-world image and the corresponding
text label, such as “mug”, for each segment. We then use the relative pixel-wise offsets of
segmentation masks and the text labels to infer a set of object relations. Bottom: Given
the current world state 𝑥𝑡, we aim to generate an action 𝑎𝑡+1 so that the new world state
after executing 𝑎𝑡+1 has object relations closer to the object relations in the given image.
To do this, we first use the generator (MPC+World model) to generate a set of candidate
actions {𝑎̂𝑘𝑡+1} and the corresponding world states {𝑥̂𝑘

𝑡+1} after executing each candidate
action. For each new world state 𝑥̂𝑘

𝑡+1, we render 𝑛 2D images from 𝑛 camera views. Each
rendered image is sent to VILD to get a segmentation map and text labels. We project the
objects into 3D space based on the segmentation map and the depth map of the image. We
then obtain the object relations based on their 3D positions and predicted text labels. We
compare the object relations obtained from each rendered image and the object relations
obtained from the real-world image to compute the score. The score is 0 if the relations are
matching; otherwise, 1. We sum the scores from each rendered image to obtain the final
score. We choose the action 𝑎𝑡+1 that leads to a world state with the minimum summed
score. We execute 𝑎𝑡+1 in the environment and get a new state 𝑥𝑡+1. We repeat this process
until the task is accomplished or we are at the final step 𝑇 .
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from the real-world image to compute the score. The score is 0 if the relations are

matching; otherwise, 1. We sum the scores from each rendered image to obtain the

final score. We choose the action 𝑎𝑡+1 that leads to a world state with the minimum

summed score. We execute 𝑎𝑡+1 in the environment and get a new state 𝑥𝑡+1. We

repeat this process until the task is accomplished or we are at the final step 𝑇 , where

𝑇 equals the number of relations extracted from the real-world image.

C.1.5 A unified framework for composing pre-trained models

Our method shares some similar architecture with existing works, such as ZeroCap [152]

and CLIP-guided diffusion models [103]. However, the focus of our paper is to propose

a general framework for composing different pre-trained models across a variety of tasks,

and these particular methods are concrete instantiations of our proposed framework.

In addition, in this work, we also illustrate how we may combine ensembles of different

pre-trained models as scorers to leverage the “wisdom of the crowds” where each scorer

provides complementary feedback to the generator, compensating for the potential

weaknesses of other scorers. Through iterative optimization and the composition of

multiple scorers, our method shows effective zero-shot generalization ability on various

multimodal tasks.

C.2 Ethics Statement of Amazon Mechanical Turk

Experiments

For the video question answering tasks, we ask workers from Amazon Mechanical

Turk to evaluate the generated answer based on the video and the asked question.

Before showing the questions and answers to the workers, we used the profanity check

tool (https://github.com/vzhou842/profanity-check) to remove the improper

questions and answers. As shown in Fig. C-6, this experiment was approved by the

Committee on the Use of Humans as Experimental Subjects. A screenshot of the task

is shown in Fig. C-7. The instructions shown to participants are listed as follows:
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Figure C-6: Human experiments approval form. Screenshot of the approval form from
the Committee on the Use of Humans as Experimental Subjects.

Instructions: By making judgments about these questions and answers, you

are participating in a study being performed by [XXX]. Your participation in

this research is voluntary. You may decline further participation, at any time,

without adverse consequences. Your anonymity is assured; the researchers who

have requested your participation will not receive any personal information

about you.

Given a video, a question, and a generated answer, the workers from Amazon

Mechanical Turk measure whether the answer is correct for the given question and

video. Each video shows three question-answer pairs (only one question-answer pair

is shown in the screenshot). The answers are generated by different methods. The

workers are not told which method generates each answer. The workers are asked to

choose “yes” or “no”. If the worker thinks the answer matches the given video and

question, they should choose “yes”; otherwise, “no”.

To control the quality, each task is evaluated by three different workers. The

workers are required to have an approval rate greater than 98%. Our test shows

that each task takes around 10 seconds, but the workers are given up to one hour

to complete each task. The workers are paid $0.05 for finishing each task with an

estimated hourly payment of $18, more than the United States federal minimum wage.

There are 33 workers in total who joined our experiment.
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Figure C-7: Screenshot of Amazon Mechanical Turk we used for the video question
answering experiment. Workers are shown a video, three questions, and the answer to
each question. The answers are generated by different methods. The workers are not told
which method generates each answer. The workers are asked to select “yes” or “no” based on
their measurement of whether the answer is correct for the given video and question.

C.3 Additional Results

C.3.1 Image generation results

We show more image generation results using different scorer models in Fig. C-8. We

find that most of the time, the proposed framework, either using a single scorer model

or composing multiple scorer models, works well as shown in the first four examples

in the left column of Fig. C-8. In some hard cases, some scorer models might fail (the

rest examples in Fig. C-8). However, there is no discernible trend on which scorer is

better on what tasks. The results of composing multiple scorer models are significantly

better than using a single one, as different scorer models capture different aspects of

the information. For example, in the fifth example in the left column of Fig. C-8, our

method PIC with classifier-free guidance (CLS-FREE) and PIC with a pre-trained

classifier (CLS) cannot generate an image with “tench”, but PIC with the pre-trained

CLIP (CLIP) can generate the correct result and the composed model (CLS-FREE +

CLS + CLIP) also works. This is why we consider composing multiple scorers: to

leverage the strength of each expert model and improve the worst case.
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Figure C-8: Qualitative results. Image generation results using different scorer models.
Composing multiple scorers (CLS-FREE + CLS + CLIP) achieves the best performances.

Table C.1: Our framework can be applied to other generators. In the image
generation task, we use a new generator, i.e., Stable-Diffusion [131]. Using a more powerful
pre-trained model can further boost performance. Image generation results on ImageNet are
reported.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E) GLIDE CLS-FREE 25.926 29.219 5.325
PIC (G+E) Stable-Diffusion CLS-FREE 31.689 29.546 6.562

C.3.2 Image generation with different generator

Our framework can be applied to other generators as well. For example, we changed

the generator, GLIDE, to Stable Diffusion [131]. The results of composing Stable

Diffusion and classifier-free guidance (CLS-FREE) are shown in Table C.1. Using a

more powerful pre-trained model can further boost performance.

C.3.3 Composing scorer models

The key idea of our method is to compose ensembles of pre-trained models, and the

way to combine them can be variant, such as adding all the scores as we used or taking
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Table C.2: Different ways to compose scorer models. Composing scorers using their
summed score generates the best results. Image generation results on ImageNet are reported.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E1) GLIDE CLIP 25.017 30.462 6.174
PIC (G+E2) GLIDE CLS 22.077 30.871 7.952

PIC (G+E1+E2) Sum GLIDE CLIP + CLS 30.438 29.543 5.435
PIC (G+E1+E2) Max GLIDE CLIP + CLS 24.782 30.657 6.040
PIC (G+E1+E2) Weighted GLIDE CLIP + CLS 24.728 30.669 6.420

the best scorer. Here we add two additional experiments for comparison: (1) using the

best scorer (scorer that provides the highest score) and (2) using the weighted scores

and adding them together. Our method composes pre-trained models without training

or finetuning. Thus we did not learn separated weights for different models. We use

the scorers (after softmax) of each scorer model as their weights and then compose

the scorers using the weighted summed score. We compare these two baselines with

our method which uses the summation of all scores. As shown in Table C.2, using a

summed score generates the best results.
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Appendix D

Supplementary: Pre-Trained

Language Models for Interactive

Decision-Making

We first show the convolutional encoding in BabyAI in Appendix D.1. We then

describe the environment details in Appendix D.2 and the implementation details of

the proposed model in Appendix D.3. We show the algorithm of interactive evaluation

in Appendix D.4 and the data gathering procedure in Appendix D.5. The goal

predicates used in VirtualHome test subsets are shown in Appendix D.6. We visualize

the attention weights in language models in Appendix D.7.

D.1 Convolutional Encoding in BabyAI

In this part, we show the third way of encoding policy inputs in BabyAI. We test a

new model, PIC-Conv (Ours), that converts environment inputs into convolutional

embeddings. We pass the 7× 7× 3 grid observation in BabyAI to convolutional layers

and obtain a 7× 7× 𝑑 feature map, where 𝑑 is the feature dimension. We flatten the

feature map and get a sequence of features to describe the observation. The rest of the

model is the same as PIC-Text (Ours). Table D.1 shows the results of policies using

the text encoding and convolutional encoding. PIC-Text (Ours) and PIC-Conv (Ours)
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Table D.1: Success rate of policies trained with text encoding vs. convolutional
encoding on BabyAI. The text encoding is more sample-efficient, but both models converge
to near-perfect performance given sufficient training data.

Tasks Methods Number of Demos

100 500 1K 5K 10K

GoToRedBall PIC-Text (Ours) 93.9 99.4 99.7 100.0 100.0
PIC-Conv (Ours) 92.5 98.8 100.0 100.0 100.0

GoToLocal PIC-Text (Ours) 64.6 97.9 99.0 99.5 99.5
PIC-Conv (Ours) 69.5 86.0 98.2 99.9 99.9

PickupLoc PIC-Text (Ours) 28.7 73.4 99.0 99.6 99.8
PIC-Conv (Ours) 25.0 58.8 95.1 99.6 100.0

PutNextLocal PIC-Text (Ours) 11.1 93.0 93.2 98.9 99.9
PIC-Conv (Ours) 17.9 53.6 91.3 97.7 99.5

have similar results given enough training data, but PIC-Text (Ours) is slightly better

when there are fewer training data. This conclusion is coincident with the results on

VirtualHome.

Different input encoding schemes have only a negligible impact on model perfor-

mance: the effectiveness of pre-training is not limited to utilizing natural strings, but

in fact extends to arbitrary sequential encodings.

D.2 Environments

We use BabyAI [59] and VirtualHome [117] to evaluate the proposed method.

While both environments feature complex goals, the nature of these goals, as well

as the state and action sequences that accomplish them, differ substantially across

environments.

D.2.1 VirtualHome

VirtualHome is a 3D realistic environment featuring partial observability, large action

spaces, and long time horizons. It provides a set of realistic 3D homes and objects

that can be manipulated to perform household organization tasks.

Goal Space. For each task, we define the goal as a set of predicates and mul-
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tiplicities. For example, Inside(apple, fridge):2; Inside(pancake, fridge):1;

means “put two apples and one pancake inside the fridge”. In each task, the initial

environment (including initial object locations), the goal predicates, and their orders

and multiplicities are randomly sampled. There are 59 different types of predicates in

total.

Observation Space. The observation in VirtualHome, by default, is a graph

describing a list of objects and their relations in the current partial observation. Each

object has an object name, a state, e.g ., open, close, clean, and 3D coordinates.

Action Space. Agents can navigate in the environment and interact with objects.

To interact with an object, the agent must predict an action name and the index of

the interested object, e.g ., Open(5) to open the object with index (5). The agent can

only interact with objects that are in the current observation or execute the navigation

actions, such as Walk(bathroom). For some actions, such as open, the agent must be

close to the object. There are also strict preconditions for actions, e.g ., the agent must

grab an object before it can put the object on a target position. As a result of these

constraints, the subset of actions available to the agent changes at every timestep.

We evaluate the success rates of different methods on VirtualHome. A given

episode is scored as successful if the policy completes its entire goal within 𝑇 steps,

where 𝑇 = 70 is the maximum allowed steps of the environment.

D.2.2 BabyAI

BabyAI is a 2D grid world environment designed to evaluate the instruction following.

Different from VirtualHome, the observation in BabyAI by default is a 7 × 7 grid

describing a partial and local egocentric view of the state of the environment. Each

tile in the grid contains at most one object, encoded using 3 integer values: one for

the object type, one for the object color, and a state for doors indicating whether it is

open, closed, or locked. The goals in BabyAI are language instructions, e.g ., “put the

blue key next to the purple ball”. BabyAI has 7 actions, e.g ., “turn left”, “pick up”,

and “drop”.
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D.3 Implementation Details of PIC in VirtualHome

In Appendix D.3.1, we provide more details of the model architecture. We then

introduce the training detail in Appendix D.3.2.

D.3.1 Model architecture details in VirtualHome

In this part, we provide more details about the policy network we used in VirtualHome.

Our policy model consists of three parts, i.e., inputs, the pre-trained LM, and outputs.

As shown Fig. D-1, we encode the inputs to the policy—including goal 𝑔, history ℎ𝑡,

and the current partial observation 𝑜𝑡—as sequences of embeddings. These embeddings

are passed to the LM (using its pre-trained embedding layer 𝐹𝜃) and used to obtain

contextualized token representations. These token representations are averaged to

generate a context feature 𝑓𝑐, which is then passed to a fully connected layer to predict

the next action 𝑎𝑡. The output action in VirtualHome consists of a verb and an object.

For brevity, we omit the time subscript 𝑡 from now on.

In VirtualHome, the partial observation 𝑜 of the environment state can be repre-

sented as a list of objects in the agent’s view. We represent each object by its name,

e.g ., “oven”, a state description, e.g ., “open, clean”, and position both in the world and

relative to the agent. In this part, we provide more details of how PIC-Text (Ours)

encodes the name, state, and position of each object in the observation. Figure D-2

shows the model architecture we used to encode the observation.

Name encoding. For each object node, we serialize its object name as an English

phrase 𝑠𝑜. We extract its tokens and features using the tokenizer and the embedding

layer of the pre-trained LM, respectively. Since one object name might generate

several English tokens using the tokenizer from the pre-trained LM, e.g ., the tokens

of “kitchencabinet” is [15813, 6607, 16212, 500], we take the averaged features of all the

tokens in the object name and obtain a “name” feature 𝑓 𝑜,name
𝑖 for each object node as

shown in Figure D-2.
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observation into a sequence of image patches as in Vision
Transformer (Dosovitskiy et al., 2020).

4.1.1. POLICY NETWORK

We choose to convert the observations, goal predicates, and
history information into token sequences and pass them to a
pre-trained language model. We take the text tokens as an
example to explain the proposed method.

Goal. Each goal consists of a sequence of predicates and
multiplicities, and is translated into a templated English sen-
tence (e.g. “Inside(apple, fridge):2” becomes
“put two apples inside the fridge”). Observation. To en-
code the agent’s partial observation, we extract a list of
currently visible objects, their states (e.g. “open, clean”),
and 3D world coordinates. We use a fully-connected layer to
encode the 3D information and generate a feature represen-
tation of each object in the observation. See Appendix B.1
for more details. History. We store information about all
previous actions and convert them into templated English
sentences (e.g. “I have put the plate on the kitchen table and
the apple inside the fridge”).

Action prediction. VirtualHome features a large action
space, and the set of valid actions changes as the agent
moves through and interacts with the environment. Each
action consists of 1 verb and 1 object. In training, we maxi-
mize the probabilities of the verb and object selected by an
expert action. To produce the verb probabilities, we pool the
outputs of the pre-trained LM and pass this “context feature”
through a fully-connected layer as shown in Figure 2. To
determine the object probabilities, the model computes the
inner product of the context feature with the LM output vec-
tors corresponding to each object in the observation. This
design automatically filters out objects that are not in the ob-
servation and hence cannot be interacted with. In inference,
we select the valid action with the highest joint probability1.

at+1 = arg max
(at+1)2valid actions

p(at+1) (3)

4.2. Policy Learning on BabyAI

We further evaluate the effectiveness of the proposed method
on BabyAI (Hui et al., 2020). BabyAI contains program-
matically generated natural language instructions, e.g. “put
the green ball next to the box on your right” and requires
the agent to navigate the world and move objects to target
locations. BabyAI provides demos for 19 tasks of increasing
difficulty for testing imitation learning and reinforcement
learning algorithms. In our experiments, we compare the

1We assume that when constrained to valid actions, the mode
of the product distribution (of verb ⇥ object) is the same as the
mode of their joint distribution.
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Figure 2: Policy network in VirtualHome. The objects in the
current observation, the goal predicates, and history actions are
first converted into tokens sequences and then passed through an
embedding layer F✓ . The observation embeddings are refined
by incorporating information about the state and position of each
object. The combined sequence is passed through a pre-trained
language model, and the output tokens are pooled into a context
feature vector, which is then used for action prediction.

proposed method and baselines on four representative tasks:
GoToRedBall, GoToLocal, PickupLoc, and PutNextLocal.

In our proposed method, we convert the observation into
7⇥7 text descriptions, e.g. “purple ball”, “grey wall”, “open
door”, and combine them into a long sentence. We then con-
vert the history actions into text descriptions, e.g. “turn
left” and “go forward”. We combine the language instruc-
tion (without modification) with the observation and history
text descriptions, and feed them to the pre-trained language
model to predict actions using the framework described in
Figure 1 (right).

5. Experiments
5.1. Experiments on VirtualHome

5.1.1. EVALUATION METRICS

We build three test sets that evaluate policies’ ability from
three aspects: (1) performance on in-distribution tasks; (2)
generalization to novel scenes; and (3) generalization to
novel tasks. (See Appendix E for more details.)

In-Distribution. The predicate types and their counts are
randomly sampled based on the same distribution as the
training data. There are 2 ⇠ 10 predicates in each task. The
objects are initially placed in the environment according to
common-sense layouts; (e.g. plates appear inside the kitchen
cabinets rather than the bathtub). Even goal predicates are

Output action:

Figure D-1: Policy network in VirtualHome. The observation, goal, and history are
first converted into sequences and then passed through an embedding layer 𝐹𝜃. The combined
sequence is passed through a pre-trained LM, and the output tokens are pooled into a context
feature vector for action prediction.

167



fc

Observation otHistory htGoal g

F𝜃 F𝜃

FC FC

FC

Name (e.g.
“kitchen oven”)

State
vector

Position
vector

FC

FC

FC
F𝜃

FC

Token sequence

F𝜃

Avg pool

Concatenate

For each object in ot

FC

(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧)

Tokenization

ReLU

Figure D-2: Object encoding. In VirtualHome, the partial observation of the environment
state can be represented as a list of objects in the agent’s view. Each object is represented by
a name, a state vector, and a position vector. Object name encoding: each object’s name
is an English phrase. We tokenize the phrase, embed the tokens, and average the embeddings.
Object state encoding: each object is assigned one of six states: “clean”, “closed”, “off”,
“on”, “open”, or “none”. This state is represented as a 6-dimensional binary vector and passed
through a fully-connected layer. Object position encoding: an object’s position vector is
a 6-dimensional vector containing its world coordinates alongside its displacement to the
agent (i.e., the difference in their world coordinates). This position vector is passed through
two fully connected layers. These three features are concatenated and passed through a fully
connected layer to obtain the representation of an object in the current observation.
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State encoding. Some objects have a state description, e.g ., “oven: open, clean”.

There are six types of object states in the environment: “clean”, “closed”, “off”, “on”,

“open”, and “none”. For each object node, we use a binary vector to represent its state.

Taking the “oven” as an example, if the oven is open and clean, its state vector would

be [1, 0, 0, 0, 1, 0]. This state vector is then passed through a fully connected layer to

generate a state feature 𝑓 𝑜,state
𝑖 of the object 𝑜𝑖.

Position encoding. To encode the position information of each object 𝑜𝑖, we

take their world coordinates {𝑜𝑖,𝑥, 𝑜𝑖,𝑦, 𝑜𝑖,𝑧} and their spatial distance to the agent

{𝑎𝑥, 𝑎𝑦, 𝑎𝑧} to generate a position vector [𝑜𝑖,𝑥, 𝑜𝑖,𝑦, 𝑜𝑖,𝑧, 𝑜𝑖,𝑥−𝑎𝑥, 𝑜𝑖,𝑦−𝑎𝑦, 𝑜𝑖,𝑧−𝑎𝑧]. This

position vector is then passed through two fully connected layers with a ReLU layer

in the middle to generate a position feature 𝑓 𝑜,position
𝑖 of the object 𝑜𝑖.

The final feature 𝑓 𝑜
𝑖 of each object node is obtained by passing the concatenation

of its name feature 𝑓 𝑜,name
𝑖 , state feature 𝑓 𝑜,state

𝑖 , and position feature 𝑓 𝑜,position
𝑖 through

a fully connected layer. The observation at a single step can be written as a set of

features {𝑓 𝑜
1 , · · · , 𝑓 𝑜

𝑁}, where 𝑁 is the number of objects in the current observation.

D.3.2 Implementation details

Our proposed approach and baselines are trained on Tesla 32GB GPUs. We train

every single model on 1 Tesla 32GB GPU. All experiments used the AdamW optimizer

with the learning rate of 10−5. We utilize a standard pre-trained language model,

GPT-2, in our experiments. GPT-2 is trained on the Webtext dataset [122] using the

Huggingface library [164].

D.4 Interactive Evaluation

The algorithm for interactive evaluation is shown in Algorithm 2.
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Algorithm 2: Interactive evaluation
A set of task goals 𝐺 (each goal has a corresponding initial state);
Load the learned policy 𝜋𝜑;
Successful trajectory count: 𝑛 = 0;
for example=1, 𝑁test do

Sample a goal 𝑔 and an initial state;
for 𝑡 = 0, 𝑇 do

Sample an action 𝑎𝑡 from policy 𝜋𝜑(𝑎𝑡|𝑔, ℎ𝑡, 𝑜𝑡);
Execute the action 𝑎𝑡 and get a new observation 𝑜𝑡+1;
if success then

𝑛 = 𝑛+ 1;
break;

end
end

end
success rate: 𝑟 = 𝑛/𝑁test;

D.5 Data Gathering Details in VirtualHome

In this part, we provide more data gathering details in VirtualHome for training the

decision-making policies. We introduce the expert data collection and active data

gathering in Appendix D.5.1 and Appendix D.5.2, respectively.

D.5.1 Expert data collection

VirtualHome-imitation learning dataset. To train the models, we collect a set

of expert trajectories in VirtualHome using regression planning (RP) [75]. We follow

the implementation of the regression planner used in [118]. Given a task described by

goal predicates, the planner generates an action sequence to accomplish this task. As

shown in Figure D-3, the agent has a belief about the environment, i.e., an imagined

distribution of object locations. As the agent explores the environment, its belief

of the world becomes closer to the real world. At every step, the agent updates its

belief based on the latest observation (see [118]), finds a new plan using the regression

planner, and executes the first action of the plan. If the subtask (described by the goal

predicate) has been finished, the agent will select a new unfinished subtask; otherwise,

the agent will keep doing this subtask until it finishes.

Similarly to previous work [144, 141, 118], we generate training data using a
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Goal: INSIDE(plate, dishwasher): 1; ON(plate, table): 1

Selected an unfinished 
goal predicate:

INSIDE(plate, dishwasher): 1

Partial observation

Execute the 
first action

Belief graph

Regression planner

Put glass
1. walk.plate
2. grab.plate
3. walk.dishwasher

Figure D-3: Regression planner. Given a task described by goal predicates, the planner
generates an action sequence to accomplish this task. The agent has a belief about the
environment, i.e., an imagined distribution of object locations. As the agent explores the
environment, its belief of the world becomes closer to the real world. At every step, the
agent updates its belief based on the latest observation, finds a new plan using the regression
planner, and executes the first action of the plan. If the subtask (described by the goal
predicate) has been finished, the agent will select a new unfinished subtask, otherwise, the
agent will keep doing this subtask until finishing it.

planner that has access to privileged information, such as full observation of the

environment and information about the pre-conditions and effects of each action. The

planner allows an agent to robustly perform tasks in partially observable environments

and generate expert trajectories for training and evaluation. We generate 20, 000

trajectories for training and 3, 000 trajectories for validation. Each trajectory has

a goal, an action sequence, and the corresponding observations after executing each

action.

D.5.2 Active data gathering

The algorithm for active data gathering is shown in Algorithm 3. To sample the goal

and initial state, we first generate a set of initial states in VirtualHome using the

code released by [118]. For each initial state, we are able to get a set of feasible tasks

that can be accomplished in this environment. For example, in an initial state, if the
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Algorithm 3: Active Data Gathering
Given: a goal relabel function 𝑓𝑙;
Initialize: policy 𝜋𝜑; goal set 𝐺; training replay buffer ℛ𝑡𝑟𝑎𝑖𝑛 = {}; validation
replay buffer ℛ𝑣𝑎𝑙 = {};

for iteration=1, 𝑁 do
for example=1, 𝑀 do

Sample a goal 𝑔 from 𝐺 and an initial state 𝑠1;
for 𝑡 = 1, 𝑇 do

Sample an action from policy 𝜋𝜑(𝑎𝑡|𝑔, ℎ𝑡, 𝑜𝑡) or sample an action
randomly;

Execute 𝑎𝑡 and obtain a new observation 𝑜𝑡+1;
end
Store the trajectory (𝑜1, 𝑎1, · · · , 𝑜𝑇 , 𝑎𝑇 , 𝑔) in the replay buffer ℛ𝑡𝑟𝑎𝑖𝑛 or ℛ𝑣𝑎𝑙;

end
Relabel each failure trajectory 𝑑 = (𝑜1, 𝑎1, · · · , 𝑜𝑇 , 𝑎𝑇 ) in the replay buffers and
get new goal 𝑔′ = 𝑓𝑙(𝑑);

Put new goals 𝑔′ in the goal set 𝐺;
for 𝑘 = 1,𝐾 do

repeat
Sample data from ℛ𝑡𝑟𝑎𝑖𝑛 and update policy 𝜋𝜑;

until training episode ends;
Get validation accuracy using the data from ℛ𝑣𝑎𝑙;

end
𝜋𝜑 = 𝜋val_best

end

apple is on the kitchen table, a feasible task goal could be “put the apple inside the

fridge”. In contrast, “put the banana inside the fridge” is not a feasible task if there is

no banana in the initial state.

We collect 9893 initial states, and randomly sample an initial state and its feasible

goal every time when we reset the environment. After each data collection iteration,

we obtain a set of new goals using the goal relabel function. We save the goal and its

corresponding initial state in the replay buffers and use the same strategy to sample

the goal and initial state in the next iteration.

The hindsight relabeling stage is the key component for active data gathering.

Here we provide more implementation details of how we relabel “failed” trajectories

with new goals in the hindsight relabeling stage. For each “failed” trajectory, we
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extract its useful sub-trajectories and relabel a task goal 𝑔′ for it. We design a goal

relabel function 𝑓𝑙 that generates a goal based on the sequence of observations and

actions. To do this, we first use a hand-designed program to detect what tasks

are contained in a “failed” trajectory. This program finds useful tasks based on

the keywords in the action list. For example, in Fig. D-4, the program knows the

trajectory containing a task of “On(apple, kitchen table):1” based on the action

“[𝑝𝑢𝑡] < 𝑎𝑝𝑝𝑙𝑒 >< 𝑘𝑖𝑡𝑐ℎ𝑒𝑛𝑡𝑎𝑏𝑙𝑒 >”.

The selected sub-trajectories are not always optimal. We thus design a rule to filter

out bad trajectories, i.e., for trajectories with the same goal, selecting the “shorter”

ones. One example is shown in Fig. D-5. Suppose that there are two trajectories

having the same goal, e.g ., “On(apple, kitchen table):1”. The first trajectory has

actions that are redundant or not related to the task, such as “ [𝑤𝑎𝑙𝑘] < 𝑏𝑎𝑡ℎ𝑟𝑜𝑜𝑚 >”

and “ [𝑤𝑎𝑙𝑘] < 𝑘𝑖𝑡𝑐ℎ𝑒𝑛 >” while the second trajectory is more optimal given the goal.

We select the second trajectory and delete the first trajectory from the replay buffer.

Note that the “shorter” does not mean fewer actions, but fewer actions that are not

related to the task. The hindsight relabeling stage allows sample-efficient learning by

reusing the failure cases. The relabeled data are used to train policies in the policy

update stage.

D.6 Test Sets in VirtualHome

In this part, we provide more details of each test set. We first introduce the test

sets used for evaluating the proposed model trained on expert data, i.e., PIC, in

Section D.6.1. We then show the test sets used for evaluating the proposed model

with active data gathering, i.e., PIC-ADG, in Section D.6.2.

D.6.1 PIC test sets

In Table D.2, we provide a detailed description of each test subset, including the

count of goal predicate types and the number of goal predicates in each task. The

In-Distribution setting has 37 goal predicates in total, and each task has 2 ∼ 10
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Interacted objectsNavigation trajectory

Useful sub-trajectory for hindsight relabeling

…   [walk] <kitchen>; [walk] <kitchentable1>; … ; [walk]< kitchentable>; [put] <apple> <kitchentable>;  [walk] <bedroom>; …
Extract the useful sub-trajectory and relabel a task goal:

Action generated by the current 
policy or random exploration:
[walk] <kitchen> 
[walk] <kitchen cabinet 1> 
[open] <kitchen cabinet 1> 
[walk] <kitchen cabinet 2> 
[open] <kitchen cabinet 2> 
[grab] <apple>
[walk] <kitchentable>
[put] <apple> <kitchentable>
[walk] <bedroom> 
…

On (apple, kitchen table): 1

Figure D-4: Hindsight relabeling. We first use a hand-designed program to detect
what tasks are contained in the collected trajectory. This program finds tasks based on the
keywords in the action list. For example, the program knows the trajectory containing a task
of “On(apple, kitchen table):1” based on the action “ [𝑝𝑢𝑡] < 𝑎𝑝𝑝𝑙𝑒 >< 𝑘𝑖𝑡𝑐ℎ𝑒𝑛𝑡𝑎𝑏𝑙𝑒 >”.
Then the program extracts all previous actions related to this task using hand-designed rules.

goal predicates. The tasks are drawn from the same distribution as the training tasks.

The Novel Scenes setting also has 37 goal predicates, and each task has 2 ∼ 10 goal

predicates. The objects are randomly placed in the initial environment. The Novel

Tasks setting has 22 goal predicates in total, and each task has 2 ∼ 8 goal predicates.

The tasks are never seen during training.

D.6.2 PIC-ADG test sets

One limitation of active data gathering is that it relies on hand-designed rules for

task relabeling. In addition, it is sometimes challenging to define effective rules to

extract useful sub-trajectories and get high-quality hindsight labels, especially when

trajectories are long and tasks become more complex. Thus we only relabel short

sub-trajectories, where the goal consists of a single goal predicate, e.g ., “On(apple,

kitchen table):1”. During testing, we evaluate the success rate of approaches on

solving such tasks as well, i.e., the count of the goal predicate equals 1. The types

of goal predicates are the same as Appendix D.6.1, i.e., 37 goal predicates in the

In-Distribution setting and the Novel Scenes setting, and 22 goal predicates in the

Novel Tasks setting.
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Goal: On (apple,  kitchen table): 1

Action list 1:
…  [walk] <livingroom>; [grab] <apple>; [walk] <kitchen>; [walk] <bathroom>; [walk] <kitchen>; [put] <apple> <kitchentable> …

Action list 2:
… [walk] <livingroom>; [grab] <apple>; [walk] <kitchen>; [put] <apple> <kitchentable> …

Figure D-5: Sub-trajectory selection. Suppose there are two trajectories having the
same goal, e.g ., “On(apple, kitchen table):1”. The first trajectory has actions that
are redundant or not related to the task, such as “[𝑤𝑎𝑙𝑘] < 𝑏𝑎𝑡ℎ𝑟𝑜𝑜𝑚 >” and “[𝑤𝑎𝑙𝑘] <
𝑘𝑖𝑡𝑐ℎ𝑒𝑛 >” while the second trajectory is more optimal given the goal. We select the second
trajectory and delete the first trajectory from the replay buffer. Note that the “shorter” does
not mean fewer actions, but fewer actions that are not related to the task.

Table D.2: Test sets used for evaluating the proposed model trained on expert
data. We show the count of goal predicate types and the number of goal predicates used in
each task.

Test Sets Predicate Types #Predicate Per Task Compared with the training set

In-Distribution 37 2 ∼ 10 Tasks are drawn from the same distribution as training tasks.

Novel Scenes 37 2 ∼ 10 The objects are randomly placed in the initial environment.

Novel Tasks 22 2 ∼ 8 Tasks are never seen during training.

D.7 Visualization of Attention Weights

To better understand how LM pre-trained policies make decisions, we visualize the

attention weights from the self-attention layers of GPT-2 [156] in Figure D-6 and

Figure D-7. In the inference time, when we are decoding the actions, we save the

self-attention weights with respect to different layers and different heads. Then, we

use BertViz library [158] to visualize normalized attention weights. We show the

attention weights from the input to the output of PIC-Text (Ours). The order of

tokens in the input and output is observation, goal, and history. In Figure D-6 and

Figure D-7, the left side is the query side. The boldness of the lines is proportional to

the attention weight.

Figure D-6 illustrates the attention weights of a layer named “Head 3 Layer 2”.

We show attention weights on two different tasks. We find that “Head 3 Layer 2” can

capture objects in the goal predicates, such as “wineglass” and “cutleryfork” in the
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left figure, and “pancake” and “chicken” in the right figure (the figures are cropped for

visualization).

Figure D-7 illustrates the attention weights of layers named “Head 1 Layer 2” (left)

and “Head 4 Layer 11” (right). Given the goal predicates, history, and the current

observation, the policy predicts the next action as “grab milk”. We find that “Head 1

Layer 2” is able to capture objects in the goal predicates, such as “milk”, “pancake”,

and “chicken” while “Head 4 Layer 11” focuses on the interacted object in the predicted

action, such as “milk”.

The attention weights from different self-attention layers are significantly different—

some self-attention layers assign high attention weight to objects in the goal predicates

while some layers focus on the interacted object. There are also some layers that

do not have interpretable meanings. The attention weights just provide us with an

intuition of how does the internal language model works, more quantified results are

reported in the main text.
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Goal:
INSIDE (cutleryfork, dishwasher): 3
ON (wineglass, sink): 2
INSIDE (waterglass, dishwasher): 1
CLOSE (dishwasher)
TURNON (dishwasher)

Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Figure D-6: Attention weights of a layer named “Head 3 Layer 2”. We show attention
weights on two different tasks. We find that “Head 3 Layer 2” is able to capture objects in
the goal predicates, such as “wineglass” and “cutleryfork” in the left figure, and “pancake”
and “chicken” in the right figure (the figures are cropped for visualization).
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Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Action:
[grab] <milk>

Goal:
INSIDE (pancake, microwave): 1
ON (chicken, kitchentable): 2
ON (milk, kitchentable): 1
CLOSE (microwave)
TURNON (microwave)

Action:
[grab] <milk>

Figure D-7: Attention weights of layers named “Head 1 Layer 2” (left) and “Head
4 Layer 11” (right). Given the goal predicates, history, and the current observation, the
policy model predicts the next action as “grab milk”. We find that “Head 1 Layer 2” can
capture objects in the goal predicates, such as “milk”, “pancake”, and “chicken” while “Head 4
Layer 11” focuses on the interacted object in the predicted action, such as “milk”.
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