
Representation Learning Through the Lens of
Science: Symmetry, Language and Symbolic

Inductive Biases
by

Rumen Rumenov Dangovski
B. S., Massachusetts Institute of Technology (2018)
S. M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Rumen Rumenov Dangovski. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright, including to
reproduce, preserve, distribute and publicly display copies of the thesis, or release

the thesis under an open-access license.

Authored by: Rumen Rumenov Dangovski
Department of Electrical Engineering and Computer Science
August 31, 2023

Certified by: Marin Soljačić
Professor of Physics
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Representation Learning Through the Lens of Science:

Symmetry, Language and Symbolic Inductive Biases

by

Rumen Rumenov Dangovski

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2023, in Partial Fulfillment of the

Requirements for the Degree of
Doctor of Philosophy

Abstract

In this thesis, we explore representation learning, a key technique in machine learning
and artificial intelligence that has led to remarkable advancements in fields such as
speech, vision, language perception and generation, as well as solving complex sci-
entific problems like protein folding. Despite its success, the prevailing method of
end-to-end supervised learning faces challenges, including the need for large datasets,
non-interpretable classifications, and difficulties in transferring representations.

To address these limitations, we adopt a scientific perspective, focusing on machine
learning tasks that are particularly affected by these issues, and developing bench-
marks inspired by scientific principles. Our approach centers on the identification and
development of novel inductive biases (assumptions made by the learning algorithm
to improve generalization) based on symmetry, language, and symbolic properties.
These inductive biases prove beneficial for both solving scientific problems using ma-
chine learning and enhancing representation learning methods.

We term this methodology “Representation Learning through the Lens of Science”
and demonstrate its effectiveness in various applications. Finally, we discuss the
limitations of our approach and propose directions for future research to further refine
and expand upon the concepts introduced in this thesis.

Thesis Supervisor: Marin Soljačić
Title: Professor of Physics

3

Dedicated to Mom Tsetska and Dad Rumen

whose unconditional love gave me the courage

to become a researcher and live my dreams.

“One day Sendov said that we live on a small planet and the only way to

stay on it is to live as friends. I would very much like this to come true.”

—John Vincent Atanasoff (1985)

Children in the Information Era Conference

Varna, Bulgaria

Translated from Bulgarian

Acknowledgments

I am grateful to Professor Marin Soljačić who supervised, and Professors Isaac Chuang

and Pulkit Agrawal who read the thesis.

To my cherished academic family:

Marin, thank you for the plethora of conversations about numerous ideas, from

automating science journalism, through discovering laws in social sciences, to rep-

resentation learning for materials science, etc. From the first minutes of our first

meeting when I declared a double major in physics and you became my undergradu-

ate advisor, I knew it would be an incredible journey doing research together. Little

did I know that my life would be impacted in a profound way. A major reason why I

wanted to pursue a Ph.D. is because I wanted to be part of the unique group you are

leading. I learned not only how to be a researcher striving for impactful science and

thorough engineering, but also how to be a supportive mentor and pass my experience

effectively to fellow students. I look forward to our future collaborations and weekly

reflections!

Charlotte, thank you for being the most caring and inspiring collaborator! With-

out you, my Ph.D. would not have been so memorable and meaningful. I look forward

to many more of K-pop classes, walks with JJ and Xia, OccamAI, coffee breaks, life

talks, etc.

Li, thank you for bringing me into machine learning research. Working with you

is always an honor. Apart from a great mentor, you are my friend, and I hope

5

our collaborations continue to be fruitful. I hope to have many more energizing

conversations in the Bay Area.

JJ, thank you for providing vital guidance on how to present my research to a

wider audience who can benefit from my work. I truly appreciate your inspiring

suggestions and look forward to future discussions.

Ike and Pulkit, thank you for encouraging me toward becoming an academic

leader. I am working on building my “rocket” for “moonshots” by following a “back-

propagation” approach that helps me to follow reflective and impactful research.

Thank you for the fruitful discussions!

Ido and Nick, thank you for being my first mentors in Soljačić’s Lab and helping

me make my first steps. I admire your enthusiasm for science and that motivates me

to work even harder.

Charles, thank you for being my meditation buddy and collaborator. Without

you, I would not have felt so welcomed to Soljačić’s group. I look forward to many

more fruitful conversations in the Bay Area.

The entire Soljačić’s lab, a huge thank you for making my work at MIT my

dream job since 2016 when I first entered the lab. Special thanks to Jamison, Peter,

Sam, Thomas, Ali, Di, Zhuo, Andrew, Yannick, Sachin, Shiekh, André, Seou, Yi,

Simo, Josué, Tena, Hrvoje for all the collaborations, conversations, joint struggles

and laughts, and everything memorable and dull that could happen to us Ph.D.

students and postdocs :).

Preslav, Peter, Mohamed, Allan, Yung-Sung, Geeticka, Elyssa, Ileana, Ge, Brian,

Akash and Seungwook and the MIT-IBM folks, Olga and Nick and Mark and the Air

Force and Lincoln Lab folks, Daniel and the Meta folks, MLxMIT folks, thanks for

all the collaboration and guidance!

Owen, Isaac, Viggo, Evan, Guillem, Varun, Ali, Anugrah, the Michaels, Michelle,

Lay, Pawan, Dawson, and many other talented students I have the privilege to work

with: many thanks for joining the journey of research with me! I hope we continue

collaborating :).

Yichen, Paul, Spencer and the Lightelligence folks. Thank you for making me at

6

home in one of the most amazing ventures.

Google DeepMind, thank you for accepting me during a particularly challenging

economic time. I look forward to our work :).

To my fellow friends:

Rumen and Momchil, thank you for being the most caring roommates. Growing

up, in elementary and high school I dreamt to learn from you how to become a better

programmer. It has truly been a dream coming true to live with you in the Boston

area and also learn to be a better person.

GANG GANG—Yusu, Stan, Alex, and Ivan—thank you for the most “prestigious”

and memorable friendship time of the last few years and onward. Yusu, let us devour

more and more books together and learn about life! Stan, let us hunt more raccoons

and dance till exhaustion with the New York gang! Alex, let us continue our walks

and deep conversations about physics and life! Ivan, let us continue our conversations

in the style of the Bulgarian events.

Kate, Gordon and the Baty Family, Rayna, Kris, Victor, Momchil, Noah, Allan,

The Number Six Club, The Bulgarians at Boston, Sean, Jeremy, Liz and Darius and

the Dog Gang, thank you for your friendship and all the happy moments across the

US and Europe! :)

Microtonal Marauders—Polly, Kamen—Moni, George, the Alexes, Deni, Kalina,

Milena, Stefan, Oleg and his Princesses and The Academy folks, thank you for being

my Bulgarian support through the last few years. I look forward to many Odd Jobs

and Mob Psychos together :).

János, Dora and Jason, thank you for being so helpful in the beginning of my

Ph.D. Without your help, I would not have oriented myself toward research that

fulfills me.

The Capoeira, Korean Karate, MIT Gymnastics, Ludo Mlado Folk Ensemble,

Flamenco, and Tai Chi folks, thank you for keeping me sane throughout all these

years through continual exercises of the body and mind!

Valeria, Sudhanshu, Edgar, Anton, Attilio, Thiago, Amanda, Eric, Emma, Shurong,

Christina, Laura, Langelo, Eric, Yu-Na and the K-Pop gang — thank you for being

7

integral parts of my journey at MIT and the Boston area. I cherish our moments

together!

Jenny and Pesho and The RSI folks, Krasi, Jenny and Vessi et al., thank you for

all of your wisdom and unconditional friendship!

To my dearest family:

Mom, thank you for being with me always and loving me unconditionally in such

a strong way. Our deep bond defies the physical distance between us. From Treasure

Island to artificial (and natural:) intelligence, we will be discussing various states of

affairs in person for many decades ahead.

Dad, thank you for lighting the fire within me to pursue crazy projects with grand

and beautiful impacts —- from the “sink” project to shipbuilding Santa Maria. Your

love and support are greatly appreciated. We will continue holding our conversations

over walks in nature for many decades ahead.

Dragana Holding—Baba Genka, Dad, Mom, Itcheto, Tomi, Tsveti, Yuli, Kosio—

thank you for your love and support. You have been a foundation for me.

Xia, I am blessed to have met you and found a soulmate. Our love sparked a

vision for AI and education that is truly one of the brightest I have felt in my life.

8

“Онзи ден Сендов каза, че ние живеем на малка планета и че единственият

начин да останем на нея е да живеем като приятели. Много бих искал

това да се осъществи.”

—John Vincent Atanasoff (1985)

Children in the Information Era Conference

Varna, Bulgaria

9

10

Contents

1 Introduction 31

1.1 Big Question . 31

1.2 Goals . 33

1.3 Prior Art . 34

1.4 New Question . 38

1.5 Ideas . 39

1.6 Results . 40

2 Addressing the Need for Data with the Symmetry Inductive Bias 43

2.1 Introduction . 43

2.1.1 Symmetry . 43

2.1.2 Need for Data . 44

2.2 Equivariant Contrastive Learning . 47

2.2.1 Introduction . 47

2.2.2 Related Work . 51

2.2.3 Method . 53

2.2.4 Experiments . 56

2.2.5 Discussion . 60

2.2.6 Appendix: Summary of Main Text and Layout of Appendix . 62

2.2.7 Appendix A: Proof of Proposition 1 63

2.2.8 Appendix B: Rotation prediction and I-SSL benefit from similar

data augmentation. 64

2.2.9 Appendix C: CIFAR-10 Experiments 65

11

2.2.10 Appendix E: ImageNet Experiments 69

2.2.11 Appenix F: PhC Experiments 70

2.3 Flowers-102 Experiments . 72

2.3.1 Appendix G: Relative Orientation Prediction 74

2.4 Multi-Symmetry Ensembles . 76

2.5 DiffCSE: Difference-Based Contrastive Learning for Sentence Embed-

dings . 81

2.6 Surrogate- and Invariance-Boosted Contrastive Learning for Data-Scarce

Applications in Science . 86

2.7 Contrastive Learning for Stormy Event Imagery 90

2.7.1 Storm Event Imagery . 90

2.7.2 Benchmark Construction . 91

2.7.3 Methods . 92

2.7.4 Experimental Details . 93

2.7.5 Self-supervised Pre-training 94

2.8 Conclusion . 97

3 Addressing the Ability to Transfer with the Language Inductive Bias 99

3.1 Introduction . 99

3.2 Towards Automating Science Journalism at Scale 101

3.2.1 Introduction . 101

3.2.2 Related Work . 103

3.2.3 The Science Daily Dataset . 105

3.2.4 Evaluation . 111

3.2.5 Experiments . 112

3.2.6 Discussion . 118

3.2.7 Conclusion and Future Work 120

3.3 Conclusion . 122

4 Addressing the Lack of Interpretability with the Symbolic Inductive

Bias 123

12

4.1 Introduction . 123

4.2 OccamNet: A Fast Neural Model for Symbolic Regression at Scale . . 125

4.2.1 Introduction . 125

4.2.2 Model Architecture . 127

4.2.3 Training . 130

4.2.4 Results . 131

4.2.5 Discussion . 139

4.2.6 Methods . 141

G PMLB Experiment Results . 169

H Analysis of Fits to PMLB Datasets 169

I Analysis of PMLB Scaling Tests 174

J Ablation Studies . 176

K Neural Approaches to Benchmarks 178

L Small Experiments . 180

M Related Work . 181

N Symbolic Regression Benchmarks 183

O Code . 185

4.3 AI-Assisted Discovery of Quantitative and Formal Models in Social

Science . 186

4.4 Phase Transitions and Representation Geometry in Contrastive Learning196

4.5 Conclusion . 203

5 Beyond the Limitations of Representation Learning Through the

Lens of Science. Promising Directions of Future Work. 205

5.1 Future Work on the Symmetry Inductive Bias: Multimodality 206

5.2 Future Work on the Language Inductive Bias: Large Language Models

for Science Education and Research. 210

5.3 Future Work on the Symbolic Inductive Bias: OccamNet as Represen-

tation in Novel Domains . 211

5.4 Final Remarks . 213

13

14

List of Figures

2-1 SSL representations should be encouraged to be either insensitive or

sensitive to transformations. The baseline is SimCLR with random

resized cropping only. Each transformation on the horizontal axis is

combined with random resized cropping. The dataset is CIFAR-10 and

the kNN accuracy is on the test set. More experimental details can be

found in Section 4.2.4. 49

2-2 E-SSL framework. Left: framework. Right: methods. Egomotion,

Context, Colorization and Jigsaw use other transformations than ro-

tations, but their patterns looks like that of RotNet’s. Likewise, for

E-SSL can use transformations different from rotation. 53

2-3 Sketch of E-SSL with four-fold rotations prediction, resulting in a back-

bone that is sensitive to rotations and insensitive to flips and blurring.

ImageNet example n01534433:169. 55

2-4 Reducing the labels for training and the data augmentation for pre-

training on CIFAR-10. Error bars for 5 different training data splits. 60

2-5 PhC datasets with transformations for sensitivity. The regression task

is to predict the DOS labels (an example of a label in R400 is shown on

the right) from 2D square periodic unit cells (examples of the inputs

in R32×32 are shown on the left). We consider two types of input unit

cells; at the top is the Blob dataset where the feature variation is always

centered; at the bottom is the Group pm (Gpm) dataset where inputs

have a horizontal mirror symmetry. 61

15

2-6 Demonstration of the evolution of the invariance (top) and equivariance

(bottom) measures during training. Left is E-SimCLR and right is E-

SimSiam. 69

2-7 E-SimCLR gives sizable improvements for the Flowers-102 SSL pre-

training. kNN accuracy (%) is on the validation set. 74

2-8 The Flowers-102 is not completely invariant to rotation. The top row

shows data points which are roughly invariant to four-fold translations.

The bottom row shows counterexamples to that hypothesis. 75

2-9 (a) A comparative illustration of the diversity in the hypothesis space

that traditional deep ensembles and our MSE can achieve. While deep

ensembles are effective at capturing different solutions around one hy-

pothesis, MSE can learn diverse solutions around inherently opposing

hypotheses. (b) Schematic visualization of invariance (top) v.s. equiv-

ariance (bottom) for the four-fold rotation. The spheres denote the

representation space of the models. 78

2-10 Ensembles with opposing hypotheses have significantly larger

potential. Ensembles constructed only from a single hypothesis very

quickly give marginal ensembling gains from adding more members. . 79

2-11 Understanding the effectiveness of including the opposing hy-

pothesis. Plot shows the proportion of classes in each dataset where

each hypothesis dominates. The remaining proportions (not shown)

are classes where Eq and Inv are equally performant. Gains are mini-

mal in datasets with a high level of imbalance between the leading and

opposing hypothesis. 81

2-12 Examples of images from the “jellyfish” class in ImageNet

(left) and ImageNet-R (right). Samples visualized using https:

//knowyourdata-tfds.withgoogle.com/ 82

16

https://knowyourdata-tfds.withgoogle.com/
https://knowyourdata-tfds.withgoogle.com/

2-13 Illustration of DiffCSE. On the left-hand side is a standard SimCSE

model trained with regular contrastive loss on dropout transformations.

On the right hand side is a conditional difference prediction model

which takes the sentence vector h as input and predict the difference

between 𝑥 and 𝑥′′. During testing we discard the discriminator and

only use h as the sentence embedding. 83

2-14 Overcoming data scarcity with SIB-CL. We propose to overcome

data scarcity by leveraging a) an abundance of unlabeled data, b) prior

knowledge of the underlying physics (e.g., symmetries and invariances

of the data) and c) knowledge from a possibly-approximate surrogate

data which is faster and cheaper to generate (e.g., coarse-grained com-

putations or special-case analytical solutions). d) SIB-CL incorporates

these auxiliary information into a single framework to accelerate train-

ing in data-scarce settings. 87

2-15 Network prediction results for PhC-DOS problem. a) Network

prediction error against fine-tuning dataset sizes, 𝑁t, between 50 and

3000, when using our SIB-CL framework (based on SimCLR [Chen

et al., 2020a] during contrastive learning) compared against the base-

lines: direct supervised learning (SL) and standard approaches involv-

ing transfer learning (TL) or involving invariances via data augmenta-

tion (SL-I). A 9-fold (7-fold) reduction in target data requirements is

obtained by using SIB-CL over SL (SL-I, TL) at a relative error target

of ∼ 5.1%. Error bars show the 1𝜎 uncertainty level estimated from

varying the data selection of 𝐷t. b) Examples of the DOS spectrum

predicted by the SIB-CL-trained network compared against the actual

DOS at various error levels (insets depict associated unit cells, shown

here using the network-inputs’ resolution of 32× 32). 88

17

2-16 Comparison of SIB-CL with an equivariant network E2CNN [Weiler

and Cesa, 2019]. E2CNN is trained using supervised learning (E2CNN-

SL) as well as fine-tuned after an additional pre-training stage using

the surrogate dataset (E2CNN-TL). The supervised baseline (SL) using

the non-equivariant architecture that SIB-CL uses is also included for

comparison. Error bars show the 1𝜎 uncertainty level when varying

the data selection of the fine-tuning dataset. 90

2-17 Frame from The Storm Event Imagery (SEVIR) dataset. We

use four of the five available modalities: 2 IR, VIL, and lightning in-

formation. 91

2-18 Augmentations for the contrastive learning experiment By in-

dicating “more” we show examples of a larger magnitude of the aug-

mentation being applied. 96

2-19 Contrastive Learning for SEVIR. For mean absolute error lower

is better. For every other evaluation measure, higher is better. 96

2-20 Pretrained encoder - generated samples Pretrained models better

identify the sparse high VIL values. 97

3-1 Histogram for number of articles vs. number of words for the selected

publishers in Science Daily. Stars indicate modes of the histograms

(excluding the outliers with fewer than 1,000 words for Elsevier). . . . 108

3-2 Density vs. coverage of source-target pairs for Science Daily, ArXiv,

PubMed, and CNN and Daily Mail. Warmer colors show more data

entries, and # is number of pairs. Outliers with extreme densities are

omitted. Arrows indicate the modes of the datasets. 109

3-3 Positions of the source sentences that maximize the NLI entailment of

the summary sentences for Science Daily. On the left are gold sum-

maries, and on the right are summaries by our model (Story+Parts).

The counts are normalized, so that the bin with the highest counts is

at 1.0. 110

18

4-1 OccamNet architecture and training. a. OccamNet is a stack of “sym-

bolic layers” each described by a collection of learned distributions

(over the neurons from the previous layer) for each neuron within the

layer, as well as non-linearities that are collections of symbolic expres-

sions. b. By sampling from each distribution independently, we are

able to sample paths from OccamNet that represent symbolic expres-

sions, ready for evaluation. c. We evaluate each expression by feeding

the observations’ support data and comparing the outputs with the

ground truth. The probability of the best paths is increased and the

process is repeated until convergence. 127

4-2 Experiment on analytic functions. a. A sketch of the function
∑︀3

𝑛=1 sin(𝑛𝑥)

as an example of the analytics functions we consider in our work. b.

Success rate (out of 10 trials) for each of the five methods considered:

OccamNet, Eureqa, Eplex, AI Feynman 2.0 (AIF) and Deep Symbolic

Regression (DSR) (at the top). Training time for the methods (at the

bottom). Eureqa almost always finishes much more quickly than the

other methods, so we do not provide training times for Eureqa. We

enumerate the functions to ease the discussion. c. The “worst-case”

performance for each methods, showing the minimal success rate across

the six tasks. 132

4-3 Experiments on non-analytic functions. a. Two prominent examples of

non-analytic functions: The challenging recursion 𝑔(𝑥) = 𝑥2 if 𝑥 < 2,

else 𝑥/2, 𝑦(𝑥) = 𝑔∘4(𝑥) (top) and a sorting circuit of three numbers

(bottom). b. Success rate (out of 10 trails) and training time for Oc-

camNet and Eplex. We enumerate the functions to ease the discussion.

. 134

19

4-4 Experiments on implicit functions and standard vision benchmarks. a.

Examples of implicit functions’ loci (left) and the corresponding suc-

cess rate on a suite of implicit functions (right). b. Examples of image

recognition tasks (left) and the best accuracy from 10 trials for both

OccamNet and the baseline. The baseline for MNIST Binary/ Trinary

and ImageNet Binary is HeuristicLab Wagner et al. [2014]. The base-

line for Backprop OccamNet and Finetune ResNet is a feed-forward

neural network with the same number of parameters as OccamNet. . 135

4-5 A bar chart showing the relative performance between OccamNet and

two baseline methods, Eplex and AIF. The x-axis is the dataset in-

volved. The y-axis is the relative performance according to the given

metric: the MSE on the training, validation, or testing set or the train-

ing time. To compute this relative performance, we divide the higher

(worse) performance value by the lower (better) performance value

for each dataset. The green bars represent datasets where OccamNet

has a lower (better) performance value than the comparison baseline

method, and the red bars represent the datasets where the comparison

method has a better performance than OccamNet. 138

4-6 Left: The run time for OccamNet V100 or Eplex as a function of the

number of functions sampled per epoch. Each curve represents one

of the 15 datasets. Right: Gradual modularity with training. Dark

blue is the correct function. Light blue is a suboptimal fit with a high

probability early in training. Red corresponds to the correct function.

The insets show the first sample of the correct function. 139

20

4-7 (a) A two-output network model with depth 𝐿 = 2, 𝑥⃗ = [𝑥0, 𝑥1], user-

selected constants 𝒞 = [1, 𝜋], and basis functions Φ = (+(·, ·), sin(·), (·)2,×(·, ·)).

Highlighted are the arguments sublayer, composed of P-nodes, and the

images sublayer, composed of the basis functions from Φ. Together,

these two sublayers define a single layer of our model. (b) An exam-

ple of function-specifying directed acyclic graphs (DAGs) that can be

sampled from the network in (a). These DAGs represent the functions

𝑦0 = sin2(𝑥0 + 1) and 𝑦1 = sin(𝜋2 sin(𝑥1)). 142

4-8 A demonstration of the dropped connections from sampled paths in

OccamNet. All red paths are dropped from the final symbolic form of

the sampled function because they are not directly connected to the

outputs. These paths are unnecessarily computed during OccamNet’s

training process, leading to potential slowdowns in training. 144

4-9 Skip connections. Dotted lines and color: the origin of the reused

neurons. 148

4-10 OccamNet V100 and Eplex’s Training, Validation, and Testing MSE

as a function of run time for the 15 PMLB datasets discussed above. . 170

4-11 OccamNet V100 and Eplex’s Training, Validation, and Testing MSE

as a function of run time for the 15 PMLB datasets discussed above.

For this figure, we only consider the losses for a restricted subset of

hyperparameter combinations. 171

4-12 In this figure, we present two video frames for the target sin(3𝑥 + 2),

which could be accessed via videos/sin(3x + 2).mp4 in our code

files. We show the beginning of the fitting (left) and the end, where

OccamNet has almost converged (right). 185

4-13 In this figure we present two video frames for the target SORT(𝑥0, 𝑥1, 𝑥2),

which could be accessed via videos/sorting.mp4 in our code files. We

show the beginning of the fitting (left) and the end, where OccamNet

has almost converged (right). 186

21

4-14 Using neuro-symbolic regression to systematically guide model discov-

ery in social science. Analogous to the inductive-deductive reasoning

process, a dataset of interest (1) – which may be time-series, cross-

sectional, or longitudinal – is supplied to OccamNet. The user can

provide inductive biases (2), such as the choice of key variables, known

constants, or specific functional forms to constrain the search space.

OccamNet finds interpretable and compact solutions that model the

input data by sampling functions from an internal probability distri-

bution represented using P-nodes [Costa et al., 2021]. In this example,

OccamNet recovers the governing equation of the Solow-Swan model

of economic growth [Solow, 1956] from a synthetic dataset. Each for-

mal model is characterized by its error distribution in the training set

(3), allowing the user to identify outliers and interrogate its internal

validity. The symbolic model is then used to generate predictions (4)

to perform deductive tests across unseen data, either by partitioning a

test set or informing experimental designs (5). 187

4-15 Regression of coupled dynamical models using noisy real-world data.

(a) Time-series plot of a simulated Lotka-Volterra predator-prey sys-

tem. OccamNet was able to correctly reconstruct the functional form

and constants with high accuracy. (b) Using cubic spline interpola-

tion, our system was able to learn the two differential equations from

noisy, real-world data of lynx and hare populations with just 21 data

points each. The inferred non-linear model can then be used to extend

predictions of future populations. (c) The symbolic regression system

is used to infer the SIR model of pandemic spread in synthetic data

and (d) an ensemble of real-world measles infection data in the UK. . 189

22

4-16 Ensemble learning of longitudinal (panel) macroeconomic data. (a)

Country-level macroeconomic data on capital and income per capita,

savings rates, and population growth for 18 OECD member countries.

(b) Ensemble learning of the Solow economic growth model. The er-

ror distribution of the differential equation, applied to each country,

is shown for three expressions generated with increasing levels of com-

plexity regularization. The identification of outliers may inform alter-

native explanations, hidden parameters, or higher-order corrections to

the economic model. 194

4-17 Main result. Augmentations used in contrastive learning typically ex-

hibit a tradeoff between robustness (how much noise is removed) and

destructiveness (how much signal is removed). In order to explore

the effect of robustness alone, we study non-destructive augmentations

which preserve all relevant data. We observe in multiple settings that

increased robustness speeds up training by speeding up the occurrence

of phase transitions, points in training at which representation geom-

etry changes suddenly and significantly. Each numbered point in the

first plot corresponds to the augmentations of the idealized training

curve on the right. 197

4-18 How the data generation for our Kepler dataset works. Images on

bottom right are real examples sourced from the dataset. 199

4-19 Phase transition from Twisted Disk to Bowl showing transitory inter-

mediate embedding geometry. 201

4-20 Visual comparison showing poor alignment in Twisted Disk, but not

in the Bowl. Black outline is embedding of a single orbit. 202

4-21 Number of epochs needed until the phase transition for Kepler charted

against percentage of trajectory seen during training. 16 trials for each

𝛼 plotted, with a 95% confidence interval shown. 202

23

4-22 The phase transition in this run on the Kepler dataset can be observed

from epochs 65-85 where there is a sudden and surprising increase in

the 𝑅2 metric. At the same time, loss does not sharply decrease. . . . 202

5-1 Multimodal representation learning for crystaline materials. 207

5-2 Our fine-tuning of LLaMA on an example question. The LLM can

understand the question and remember the correct formula for the

hydrostatic pressure exerted on the submarine. 211

5-3 OccamNet as a representation for LLMs. a. The standard information

flow for Transformers where the encoder layers updates the representa-

tions of each token in the input sequence. b. Extracting the numerical

tokens from the tokenized input. c. A special token representation

from the LLM is used to configure the weights of an OccamNet that

receives the numerical tokens as input and produces a numerical out-

put that is used by the following encoder layer. The process is repeated

for all the layers of the Transformer. 213

24

List of Tables

2.1 Parallel between self-supervised learning stages and physics process. . 46

2.2 Linear probe accuracy (%) on CIFAR-10. Models are pre-trained for

800 epochs. Baseline results are from Appendix D in [Chen and He,

2021b]. Standard deviations are from 5 different random initializations

for the linear head. Deviations are small because the linear probe is

robust to the seed. 59

2.3 Linear probe accuracy (%) on ImageNet. Each model is pre-trained for

100 epochs. Baseline results are from Table B.1 in [Chen et al., 2020a]

from Table 4 in [Chen and He, 2021b]. Numbers marked with * use a

less optimal setting than our reproduction for SimCLR (see ImageNet

setup). 60

2.4 Linear probe accuracy (%) on ImageNet with longer pre-training. “BT”

is short for “Barlow Twins.” . 61

2.5 Fine-tuning the backbone on PhC datasets using 3000/ 2000 labeled

train/ test samples. Relative error (%) is ℓDOS = (
∑︀

𝜔

⃒⃒
DOSpred −

DOS
⃒⃒
)/(
∑︀

𝜔 DOS). Lower is better. SimCLR for Blob includes 𝐶4𝑣

(rotations and flips); SimCLR for Gpm includes rolling translations

and mirrors. E-SimCLR encourages the features to be sensitive to the

selected transformation explained in the text (four-fold translations for

Blob and four-fold rotations for Gpm). “+ Transform” means adding

this transformation to SimCLR. Error bars are for 3 different training

data splits. 62

25

2.6 RotNet’s augmentation sweet spot. kNN and Rotation Prediction

have the same sweep spot (Level 4) which gives best accuracy in both

columns. RotNet is trained on CIFAR-10 for 100 epochs with the same

optimization setup as in our I-SSL experiments. Accuracies are on the

test split. (↓ ·) marks the deviation from the sweet spot. Every new

level adds a new augmentation to the previous level incrementally. . . 65

2.7 Tuning the 𝜆 parameter for CIFAR-10. 66

2.8 Comparing the augmentation sensitivity for CIFAR-10. Levels: 0 is

no transformations; 1 adds random resized cropping; 2 adds horizontal

flips; 3 adds color jitter; 4 adds grayscale. 67

2.9 Studying the effect of disjoint representations on CIFAR-10. Split Rep-

resentation means that we encourage similarity only on one half of the

backbone representation. Disentangled Representation means that one

half of the representation is trained to be insensitive to four-fold rota-

tions and the other half is sensitive four-fold rotations. Linear probe

accuracy (%) after 800 epochs. 67

2.10 Overhead in doing rotation prediction. Reported GPU hours for an

experiment on 100 epochs. 70

2.11 Frozen backbone experiment on PhC datasets for 3000/ 2000 labelled

train/ test samples. 72

2.12 Fine-tuning the backbone on PhC datasets using 3000/ 2000 labelled

train/ test samples. Relative error (%) is ℓDOS = (
∑︀

𝜔

⃒⃒
DOSpred −

DOS
⃒⃒
)/(
∑︀

𝜔 DOS). Lower is better. E-SimCLR encourages the fea-

tures to be sensitive to scaling. “+ Scaling” means adding scaling to

SimCLR. Error bars are for 3 different training data splits. 73

26

2.13 Most suitable functional class differs within a dataset. The

top-half shows the overall accuracy for models from the SimCLR base-

line and each of the opposing hypotheses wrt 4-fold rotations. The

bottom-half shows the proportion of classes within each dataset where

each hypotheses dominate (i.e. averaged over all samples within the

class), suggesting that hypotheses apart from the one with the highest

individual accuracy are still beneficial. 77

2.14 Capturing opposing hypotheses across transformations for𝑀 =

6. The upper three rows are ensembles that consist of both equivariant

and invariant learners with respect to a single transformation and the

bottom row greedily searches over all models across the three transfor-

mations. 80

2.15 The performance on STS tasks (Spearman’s correlation) for different

sentence embedding models. ♣: results from Reimers and Gurevych

[2019]; ♡: results from Zhang et al. [2020]; ♢: results from Gao et al.

[2021]; ♠: results from Yang et al. [2020]; †: results from Kim et al.

[2021b]; *: results from our experiments. 86

2.16 Computational times for building the network and performing a single

forward pass of the network in SIB-CL vs in E2CNN models of equal

number of parameters (approx. 8M parameters). 89

3.1 Summary from our dataset (short Science Daily) using our model (SciBertSumAbs).

We see the need for extreme paraphrasing and coherent generation. . 102

3.2 Statistics about the Science Daily datasets. 106

3.3 Science Daily covers diverse journals. 106

3.4 Complexity of related datasets’ sources based on readability scores such

as SMOG, CLI, and LIX. The datasets from scientific sources (the

top half) use more complex language (bigger numbers indicate higher

complexity). 110

27

3.5 Short Science Daily : SciBERT pre-training improves over vanilla BERT

(ROUGE scores in %). LEAD takes the first 45 words from the input. 113

3.6 Long Science Daily : baselines. Fconv outperforms Story in ROUGE

1/2/L and Prompt Ranking (PR); top-𝑘 sampling generally helps for

Fconv. PR does not depend on the decoding scheme. LEAD takes the

first 488 input words. 114

3.7 Long Science Daily : Training with ArXiv. We can observe sizeable

and consistent improvements. 115

3.8 Training in parts yields improvements: sizable for Prompt Ranking,

but partial for ROUGE 1/2/L. 116

3.9 Summary from long Science Daily. Shown are some snippets (gen-

erated, gold, and original) when using the Story model with top-𝑘

sampling and data augmentation using ArXiv (StoryTopK+Arxiv). . 119

3.10 Manual expert analysis of the utility of models trained with SciB-

ertSumAbs on short Science Daily. See the text for a definition of the

criteria and their abbreviations. Legend: Y=Yes, N=No, P=Probably,

ML=Most Likely, NMT=Needs Minor Tweaks, NFT=Needs Few Tweaks.121

4.1 Analytic Functions. The proportion of 10 trials that converge to the

correct analytic function for OccamNet, Eureqa, Eplex, AI Feynman

2.0, and Deep Symbolic Regression (DSR). sec. is the average number

of seconds for convergence. Eureqa almost always finishes much more

quickly than the other methods, so we do not provide training times

for Eureqa. 142

4.2 Non-analytic Functions. The proportion of 10 trials that converge to

the correct function for OccamNet, Eureqa, and Eplex. sec. is the

average number of seconds for convergence. Eureqa almost always

finishes much more quickly than OccamNet and Eplex, so we do not

provide training times for Eureqa. *For program #6, Eplex fits 𝑦1

every time and never fits 𝑦0 correctly, so we give it a score of 0.5. . . 143

28

4.3 Implicit Functions: The proportion of 10 trials that converge to the cor-

rect implicit function for OccamNet and Eureqa. Image Recognition:

The best accuracy from 10 trials for both OccamNet and the baseline.

The baseline above the mid-line is HeuristicLab [Wagner et al., 2014],

and the baseline below the mid-line is a feed-forward neural network

with the same number of parameters as OccamNet. sec. is the average

number of seconds for convergence. The baselines almost always fin-

ish much more quickly than OccamNet, so we do not provide baseline

training times. 144

4.4 Basis functions tested for clustering 159

4.5 Hyperparameters for Experiments Where 𝐸 = 0 165

4.6 Hyperparameters for Experiments Where 𝐸 = 1 165

4.7 Datasets Tested . 166

4.8 OccamNet Hyperparameters . 166

4.9 Number of Functions Sampled Per Epoch 167

4.10 Ablation studies on representative experiments 177

4.11 Minimal configurations to sort list of length “input size.” 179

29

30

Chapter 1

Introduction

1.1 Big Question

Inductive Biases. In the era of vast data repositories and powerful computers,

it is undeniable that learning algorithms play a crucial role in automating mundane

tasks and creative endeavors. A central question to researchers in machine learning is

“How to represent data and design algorithms? ” Representation learning is a subfield

of machine learning focused on developing methods for automatically learning feature

representations from raw data, which can be used to improve the performance of

various tasks and domains [Bengio et al., 2013]. The central question in representation

learning is determining the most effective inductive biases to facilitate learning these

representations. Inductive biases refer to the assumptions or predispositions made by

a learning algorithm, which influence the model’s ability to generalize from limited

training data [Mitchell, 1980]. These biases can be encouraged through factors such

as architecture, training objectives, choice of data, etc.

The Norm. End-to-end supervised learning has become a very popular approach

to representation learning. This process involves training deep neural networks using

gradient descent on a dataset containing raw data points and their corresponding

labels [Rumelhart et al., 1985]. This approach has gained popularity because, given

enough data and training, it allows the model to automatically learn representations

31

of data that are optimal for the task at hand, often leading to improved performance

compared to manually designed features [LeCun et al., 2015a].

In 2012, a pivotal event in the field of deep learning, often referred to as the

“ImageNet moment,” marked a significant turning point for the advancement of ma-

chine learning. This breakthrough was achieved by AlexNet, a deep convolutional

neural network (CNN) [LeCun et al., 1998a], which outperformed all other competi-

tors by a wide margin in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [Deng et al., 2009b, Russakovsky et al., 2015]. The ILSVRC, based on

the extensive ImageNet dataset, consisted of over 14 million labeled images spanning

20,000 classes, and aimed at evaluating the performance of algorithms for object de-

tection and image classification. AlexNet’s remarkable success in this competition not

only demonstrated the potential of deep learning models in the realm of computer

vision, but also laid the foundation for further research and development in the field.

As a result, end-to-end supervised learning has become the standard approach (the

norm) in the field.

Limitations. End-to-end supervised learning is not without limitations. Specifi-

cally, this approach often:

(i) requires extensive human annotation via crowd-sourcing efforts [Russell et al.,

2007, Russakovsky et al., 2015], which sometimes can also yield wrong or am-

biguous labels;

(ii) leads to a lack of interpretability in representations despite their confident pre-

dictions. This lack of transparency and understanding in decision-making is a

critical concern, especially when errors are made with high confidence [Nguyen

et al., 2015, Arazo et al., 2020].

(iii) may result in learned representations that can only be modestly transferred to

other tasks with less available data [Huh et al., 2016, He et al., 2020].

The problems (i-iii) are especially pronounced in the realm of Science. Regarding

(i): While fields like computer vision and natural language processing successfully ex-

32

ploit the vast Internet data for training and development, scientific domains such as

bioinformatics and materials science face unique challenges due to the need for highly-

specialized expertise in data labeling. For instance, predicting a protein’s folding can

be so intricate that it becomes the core focus of a PhD thesis, as exemplified in

the AlphaFold study by Jumper et al. [2021]. Similarly, in materials science, iden-

tifying and characterizing novel materials often demands specialized knowledge and

extensive research projects. As for (ii): In the medical domain, predictions must be

interpretable and well-calibrated to gain acceptance from doctors. Finally, regarding

(iii), complex systems like materials have been investigated across various scientific

disciplines, such as chemistry, quantum physics, and lab experiments. However, these

fields have diverse representations, complicating transfer learning and establishing

interdisciplinary connections for learning algorithms.

To tackle issues (i-iii), it is crucial to emphasize the deliberate development of in-

ductive biases that promote generalization. Additionally, considering the pronounced

impact of (i-iii) in Science, examining these challenges from the perspective of specific

scientific fields serves as a key motivation for the goals outlined in our study.

1.2 Goals

Considering the challenges associated with end-to-end supervised learning, our re-

search aims to enhance representation learning by developing novel inductive biases.

The key goals are:

1. Minimize dependence on extensive human annotation, enabling models to learn

effectively from limited or unsupervised data, accelerating the learning process,

and reducing the burden on human experts.

2. Increase classifier interpretability, making them more useful for practical de-

ployment in computer vision and natural language processing, as well as for

making scientific discoveries with machine learning.

3. Improve the transferability of learned representations, facilitating the creation

33

of more general and versatile models that can efficiently adapt to new tasks and

domains across multiple scientific fields.

4. Deploy our work on Goals 1-3 to make advancement in scientific fields, either

by accelerating prediction or providing novel insights by inspecting the learned

representations.

Objectives 1-3 can be accomplished through the development of innovative neural

network architectures, training objectives, and judicious data selection. Additionally,

Goal 4 can leverage the progress made in these areas. In the following section, we

will review the relevant literature around 1-4.

1.3 Prior Art

Developing neural network architectures, refining self-supervised learning techniques,

and enhancing transfer learning approaches are all effective strategies for address-

ing the challenges posed by Problems 1-3. We will begin discussing those research

direction, and will conclude with some applications in Science.

Neural Network Architectures. Over the years, a variety of neural network

architectures have been developed to address different tasks and modalities. Con-

volutional Neural Networks (CNNs) [LeCun et al., 1998a] have been widely used

for computer vision to encourage the inductive bias of equivariance to translations.

Equivariance to more general transformations has been pioneered by the more general

equivariant neural networks [Cohen and Welling, 2016] and explored more broadly in

the framework of geometric deep learning [Bronstein et al., 2021].

For sequential data Recurrent Neural Networks (RNNs) [Hochreiter and Schmid-

huber, 1997, Pascanu et al., 2013], in which a hidden state is recurrently updated

by the neural network through the time dimension, have been leading the fields in

speech recognition, natural language processing, etc. In contrast to the local updates

of internal representations found in CNNs and RNNs, attention mechanisms, such as

34

those introduced by Bahdanau et al. [2014] and Hermann et al. [2015], enable global

updates. Most notably, the self-attention mechanism in Transformers [Vaswani et al.,

2017b] has achieved remarkable success in natural language processing, effectively

supplanting RNNs as the dominant architecture.

A longstanding problem in the field has been the issue of exploding and vanishing

gradients in deep computational graphs, exacerbated by the chain rule of backprop-

agation. Residual Networks (ResNets) [He et al., 2016b] have been developed to

tackle vanishing gradient issues in deep networks, by allowing for a simple residual

connection that adds the input to the output of each intermediate layer.

Neurosymbolic architectures [Trask et al., 2018b, Martius and Lampert, 2016,

Sahoo et al., 2018b, Kim et al., 2020a] integrate symbolic reasoning into representation

learning with neural networks, which allows for more interpretable solutions. Other

architectures aim for compositions of the internal representations as a gated mixture

of experts [Shazeer et al., 2017].

There is a prevailing trend in neural network design towards universality, aiming

to apply a single architecture across various modalities. Notable examples include the

adaptation of Transformers to vision tasks [Dosovitskiy et al., 2020] and the Perceiver,

which employs iterative attention on any tokenized input [Jaegle et al., 2021]. This

interplay between modalities has fostered the development of increasingly efficient

architectures. However, when it comes to scientific advancements, specialized archi-

tectures, such as AlphaFold’s customized Transformer for protein folding [Jumper

et al., 2021], have also demonstrated significant effectiveness. The quest for a univer-

sally applicable architecture remains an open challenge.

Self-supervised Learning. Self-supervised learning methods have emerged as pow-

erful alternatives to supervised learning because they do not require human an-

notated and can be trained on large datasets, typically extracted from the Inter-

net. [Balestriero et al., 2023].

Autoencoders [Hinton and Zemel, 1993] learn compact representations by recon-

structing input data, while word2vec [Mikolov et al., 2013] captures semantic rela-

35

tionships between words in vector space. Contrastive learning [Oord et al., 2018, He

et al., 2020, Chen et al., 2020a] maximizes the similarity between semantically similar

data points, and masked autoencoding [Devlin et al., 2018, He et al., 2022] learns to

reconstruct masked portions of input data. ELMo [Peters et al., 2018b], BERT [De-

vlin et al., 2018], and GPT [Radford et al., 2018, Brown et al., 2020] leverage language

modeling and masked autoencoding to learn rich contextual language representations,

generalizing the static representations obtained from word2vec. Researchers aim to

develop a unified training objective for self-supervised learning, which remains an

open challenge.

Transformer-based Large Language Models (LLMs) [Brown et al., 2020, Chowd-

hery et al., 2022] have demonstrated remarkable versatility and performance across

various tasks due to their training on the simple general objective of next token pre-

diction and increased scaling of the model and the training data. This has led to a

pursuit of increasingly larger models, which exhibit more sophisticated abilities and

result in significant performance improvements when they reach a certain size thresh-

old [Wei et al., 2022]. Whether the size of data and model needs to grow is debated

[Hoffmann et al., 2022] and remains an open problem.

One aspect that stands clear amidst the ongoing debate is the crucial role of

self-supervised pre-training in enabling large models to adapt to a wide variety of

tasks. This pre-training process facilitates the extraction of valuable patterns and

representations from large amounts of unlabeled data, which in turn contributes to

the models’ performance and versatility. Consequently, self-supervised pre-training

serves as the backbone for the subsequent transfer learning phase, where the acquired

knowledge is fine-tuned and adapted to specific tasks.

Transfer Learning. Transfer learning has been explored to adapt pre-trained mod-

els to new tasks or domains. Techniques such as computer vision pre-training [Krizhevsky

et al., 2012], meta-learning [Vinyals et al., 2016, Finn et al., 2017, Mishra et al., 2017],

and multitask learning [Caruana, 1997] have been developed to leverage shared knowl-

edge across tasks.

36

The question about the best way to adapt the pre-trained representations, beyond

fine-tuning all parameters on new the new data, has been heavily researched, with

ideas ranging from prompting methods [Radford et al., 2018], linear probing [He et al.,

2020], and adapter modules [Houlsby et al., 2019]. Proper data curation and scale are

essential for successful transfer learning. The research community is actively working

to find the best approach for solving new tasks, such as determining whether to use

one general model versus many specialized models, or prompting versus fine-tuning.

This remains an open problem.

Representation Learning in Science. Representation learning has been success-

fully applied to various scientific domains, such as protein folding with AlphaFold

[Jumper et al., 2021], medical text mining using Med-PaLM [Singhal et al., 2022], and

quantum physics with Restricted Boltzmann Machines (RBMs) [Carleo and Troyer,

2017]. Other examples include training neural networks to guide mathematical and

physical discoveries [Davies et al., 2021], deep reinforcement learning for novel ma-

trix multiplication [Fawzi et al., 2022], using supervised learning for inverse design in

optics [Peurifoy et al., 2018], and transfer learning for migrating physical knowledge

[Qu et al., 2019].

Taking a Deeper Dive. We notice that almost all of the representation learning

methods above deploy end-to-end supervised learning as a representation learning

method. Many of these methods do not utilize specialized architectures, and in some

instances, they even benefit from operating on handcrafted features, as exemplified

in the prediction of topological insulators from chemical formulas [Ma et al., 2023],

and prediction of stability of materials [Manti et al., 2023]. Self-supervised learning

and transfer learning have not been properly introduced in the above scientific tasks,

while high-dimensional data for pre-training is becoming more accessible at scale [Jain

et al., 2013].

Concurrently, these challenging domains can provide a fertile ground for the de-

velopment of representation learning methods. The significant acceleration in rep-

37

resentation learning progress can be attributed to the introduction of public bench-

marks [Deng et al., 2009b, Russakovsky et al., 2015]. This prompts the inquiry of

whether it is possible to establish scientific benchmarks that could similarly propel

advancements in representation learning. Moreover, can we derive inspiration from

concepts that are effective in science, such as symmetry, to devise innovative archi-

tectures for general machine learning applications? Indeed, some examples in Science

have inspired the creation of novel neural networks, which in turn facilitate enhanced

representation learning [Jing et al., 2017].

We continue with this inquiry in the subsequent section.

1.4 New Question

Can the development of representation learning within the context of Science con-

tribute to the overall improvement of representation learning, beyond enhancing ma-

chine learning applications in scientific domains?

From studying the Prior Art it is clear that representation learning has not been

extensively explored in the realm of Science. Most applications thus far have relied on

supervised learning, which inherits the limitations (i-iii) discussed earlier. However,

recent advances in novel architectures, self-supervised learning, and transfer learn-

ing may prompt a reconsideration of representation learning’s limited application in

scientific domains.

The development of novel inductive biases related to symmetry, language, and

symbolic representations can help enhance representation learning for scientific disci-

plines. Just as progress in NLP has proven beneficial for computer vision (and vice

versa), we anticipate that advances in representation learning for science could foster

improvements across various modalities, including NLP and others prevalent on the

internet. We propose the development of a bridge between representation learning

and science, coining this research direction as “Representation Learning through the

Lens of Science.”

Our focus on symmetry, language, and symbolic biases stems from their demon-

38

strated success in both standard machine learning and representation learning within

scientific contexts. By integrating these biases, we aim to create a more robust and

comprehensive approach to representation learning that can drive progress in various

scientific fields while addressing the aforementioned limitations.

1.5 Ideas

The development of representation learning within the context of Science presents

several key ideas that could contribute to its overall improvement.

Firstly, symmetry as an inductive bias plays a crucial role. While CNNs have effec-

tively harnessed symmetry to generalize, real-world symmetry is often more nuanced.

Equivariant neural networks, as a generalization of CNNs, have been proposed, but

their specialized hard coding of symmetry is not well-suited for existing hardware

accelerators. Thus, there is a need to explore novel ways of incorporating symme-

try into neural networks. We hypothesize that self-supervised learning can efficiently

achieve this through data augmentation, encouraging neural networks to learn sym-

metry in a general function approximation that is the neural network. While this

approach offers potential benefits in terms of speed and generalization, the depen-

dence on training data is a limitation that warrants further investigation. Addressing

problems (i) and (iii), symmetry can help reduce the reliance on labeled data and

enhance transferability.

Secondly, Occam’s razor, a principle stating that simpler explanations are prefer-

able to more complex ones when accounting for a given set of observations, serves

as an essential inductive bias for promoting sparsity in representation learning. By

favoring sparse and interpretable solutions, we can facilitate the discovery of new sci-

entific laws and improve our understanding of complex phenomena. In this context,

compositionality is also vital, as it enables the construction of more expressive models

by combining simpler components, akin to the mixture of experts approach.

Lastly, language is a powerful bias for transferring ideas efficiently. The vast

amount of scientific data available in natural language and programming offers signif-

39

icant potential for transfer learning. To leverage this, the development of novel neural

networks capable of handling challenges specific to scientific datasets is necessary. For

instance, networks should be able to maintain a long context in memory and utilize

associative recall effectively.

By exploring these ideas, representation learning in Science can be advanced,

improving machine learning applications within scientific domains and potentially

beyond.

1.6 Results

In this thesis, we have taken preliminary steps in exploring “Representation Learn-

ing through the lens of Science.” Our work is structured into three chapters, each

focusing on one inductive bias to tackle one of the problems (need for data, lack of

interpretability, and lack of transferability), as follows:

1. Addressing the Need for Data with the Symmetry Inductive Bias

(Chapter 2): The primary focus in this chapter is on our work on “Equivari-

ant Contrastive Learning” [Dangovski et al., 2021a], published at International

Conference on Learning Representations (ICLR) 2022. The motivation of this

work is to reconsider symmetry in self-supervised learning, which directly tackles

Problems (i,iii). In our work we improve representation learning for computer

vision and nanophotonics. Furthermore, we present a novel testbed, based on

nanophotonics data, that is helpful to the development of Equivariant Con-

trastive Learning. Then we will discuss the impact of Equivariant Contrastive

Learning to our further work:

• “Surrogate-and invariance-boosted contrastive learning for data-scarce ap-

plications in science”, published in Nature Communications [Loh et al.,

2022a]. In this work, we use contrastive learning to induce the inductive

bias of symmetry in problems in nanophotonic and quantum systems, in

order to learn more useful representations with fewer labeled data.

40

• “DiffCSE: Difference-based contrastive learning for sentence embeddings”,

published at North American Chapter of the Association for Computa-

tional Linguistics - Human and Language Technologies (NAACL-HLT)

2022 [Chuang et al., 2022]. In this work, we apply Equivariant Contrastive

Learning to the learning of representations of sentences.

• “Multi-Symmetry Ensembles: Improving Diversity and Generalization via

Opposing Symmetries”, published at International Conference on Machine

Learning (ICML) 2023 [Loh et al., 2023]. In this work, we ensemble multi-

ple models trained with Equivariant Contrastive Learning to obtain more

accurate and calibrated classifiers.

• “Meta-Learning and Self-Supervised Pretraining for Real World Image

Translation”, to appear at IEEE High Performance Extreme Computing

Conference (IEEE HPEC) 2023 [Rugina et al., 2021]. In this work, we

apply our work on contrastive learning to a realistic weather system.

We also briefly discuss our works as listed: [Liao et al., 2022] to appear at

TMLR, [Luo et al., 2022] submitted to NeuRIPS 2023, [Dangovski et al., 2019a]

at TACL 2023, [Jing et al., 2018] to appear at IEEE HPEC 2023, [Loh et al.,

2022b] to appear at TMLR, [Dugan et al., 2023] at ICML 2023, and [Han et al.,

2023] at Generative Models for Computer Vision Workshop 2023.

2. Addressing the Ability to Transfer with the Language Inductive Bias

(Chapter 3): In this chapter we will discuss the role of language for transfer

learning through our work “We Can Explain Your Research in Layman’s Terms:

Towards Automating Science Journalism at Scale”, published at AAAI Confer-

ence on Artificial Intelligence 2021 [Dangovski et al., 2021b]. The work focused

on transfer learning for the summarization of scientific text.

We also briefly discuss our works as listed: [Ramı́rez et al., 2020] submitted

to IJCNLP-AACL 2023, [Khoury et al., 2020] at EMNLP 2020, [Rugina et al.,

2020] submitted to IJCNLP-AACL 2023, and [Vogelbaum et al., 2020] to appear

at IEEE HPEC 2023.

41

3. Addressing the Lack of Interpretability with the Symbolic Inductive

Bias (Chapter 4): The main focus in this chapter is on our work on “Fast neu-

ral models for symbolic regression at scale”, prepared for submission to Nature

Machine Intelligence [Costa et al., 2020], which proposes a novel neurosym-

bolic inductive bias that is faster and more scalable on modern hardware. Then

we will discuss the impact of OccamNet to our work “AI-Assisted Discovery

of Quantitative and Formal Models in Social Science”, under review at Nature

Human Behavior [Balla et al., 2022]. In this work, we apply the neurosym-

bolic inductive bias from above to search for quantitative and formal models in

social science. We will conclude with our work on “Phase Transitions and Rep-

resentation Geometry in Contrastive Learning”, submitted to NeurIPS 2023,

where discover phase transitions in the representation dynamics of contrastive

learning. We will also birefly mention [Lu et al., 2022], to appear at Nature

Communications and [Hernandez et al., 2023] at NeurIPS SVRHM Workshop

2022.

In the following chapters, we will discuss these biases and their implications for

representation learning in science, with each chapter dedicated to a particular bias.

There are many limitations to our results and we will discuss addressing them through

future work in Chapter 5.

42

Chapter 2

Addressing the Need for Data with

the Symmetry Inductive Bias

2.1 Introduction

2.1.1 Symmetry

Symmetry, the phenomenon in which the properties of a system are preserved after

that system is transformed, is an indispensable tool for helping us understand Nature.

For example, symmetry benefits the study of complex physical systems, which are

modeled in a high-dimensional space and/ or with complex dynamics. In such type of

physics knowing the exact solution describing the state of the system is unattainable

due to high-dimensionality space of possible solutions and the complex dynamics.

However, we could infer a large portion of the properties of the solution by looking

at the global or local symmetries of the system: e.g. materials that have certain

symmetries induce corresponding symmetries to the light that interacts with the

materials [Joannopoulos et al., 2008]. Symmetry effectively limits the space of solution

we consider when studying a system. Likewise, symmetry could also be broken, which

further constrains the space of possible solutions by forcing all considered properties

of the system to have a particular stance to a symmetric operation. One famous

example of breaking the symmetry is the study of spin glasses that was instrumental

43

in the Nobel Prize in Physics to Giorgio Parizi [Parisi, 1979].

Symmetry is crucial not only in deciphering the solutions of complex physical

phenomena, but also in building physical theories from ground up. Einstein famously

built his theory of General Relativity by starting from first-principle symmetry argu-

ments and following these principles in constructing the equations in the theory [Ein-

stein, 1922].

So far we have seen two useful sides of the the study of symmetry: one is using

symmetry to help us decipher complex systems (materials), and the other is using

symmetry from ground-up to help us develop understadning that can explain a gen-

eral class of phenomena (motion in space). To support such useful applications of

symmetry, certain mathematical abstractions have been developed. Namely, two of

these abstractions stand out:

1. Group theory [Borel and Tits, 1965] — the study of symmetry by abstracting

transformations in mathematical objects and using these grouping these trans-

formations in a set that satisfies symmetries between the operations. Group

theory is an indispencible mathematical tool that has revlolutionized all the

natural sciences, ranging from physics, chemistry, biology, etc.

2. Representation theory [Serre et al., 1977] — a single Group, an abstract mathe-

matical object, can appear in Nature in many forms of manifestation. In order

to understand the possible ways a group can interact with Nature, we study all

the possible ways a group transformation can be presented as a linear operator

in vector spaces, hence we aim to find “representations” of the Group. The

symmetries of the Group constrain the possible representations. Similartly to

Group theory, Representation theory has been instrumental in understadingn

how the abstract notion of symmetry can be manifested in Nature.

2.1.2 Need for Data

Mirroring our discussion of physical phenomena, neural networks with a large number

of parameters can be considered as complex systems with high-dimensional solutions

44

space and complicated dynamics.

Given the extensive nature of the machine learning solution space and the complex

dynamics involved, a significant volume of data is required for traditional supervised

learning to discover meaningful solutions. This necessity can often lead to several

challenges, such as data scarcity or the immense computational resources needed to

process large datasets. One potential solution to mitigate this issue is to leverage the

concept of symmetry, which has been instrumental in understanding complex physical

systems, to influence the inductive bias in neural networks.

Symmetry can effectively reduce the complexity of a problem by limiting the

possible solutions that need to be considered. Similar to how symmetry aids in

understanding physical phenomena, symmetry can guide the structure and function

of neural networks, thereby constraining their solution space and making them more

efficient and robust.

Supervised learning, despite its strengths, comes with its limitations. For instance,

it requires labeled data, which can be expensive and time-consuming to produce, and

it is prone to overfitting on the available training data, potentially yielding models

that fail to generalize well to new data. One alternative approach is self-supervised

learning (SSL), which can be broken down into two stages: representation learning

and fine-tuning.

During the first stage, an objective is established that encourages symmetry as

the inductive bias in the neural network. Here, we do not concern ourselves with

the final task the network will perform; rather, we seek to expose the network to

vast amounts of data so that it can learn robust, generalizable representations. This

process, in essence, is akin to a physicist identifying the symmetries of a system to

form an initial solution framework or ansatz.

The second stage involves using the learned representations from the first stage

and fine-tuning them for a specific task using a limited amount of labeled data. This

echoes the physics process where, after identifying the symmetries and formulating an

ansatz, the physicist proceeds to solve the equations within this framework, refining

and specifying the solution to the particular context at hand.

45

Thus, we can view self-supervised learning as a two-step process parallel to the

practice of physics. This parallelism is outlined in the table below:

Stage Self-Supervised Learning Physics Process

First Stage Learning representations Identifying symmetries
Second Stage Task-specific fine-tuning Solution refinement

Table 2.1: Parallel between self-supervised learning stages and physics process.

As depicted in Table 2.1, there is a clear parallel between the two-stage process

in self-supervised learning and that of problem-solving in physics.

In the first stage of both processes, the goal is to establish a general understanding

or a framework. In self-supervised learning, we aim to learn general representations

of the data. Similarly, in physics, we seek to identify the fundamental symmetries of

a system, which helps us formulate an ansatz, a starting point that constrains the

possible solutions.

The second stage revolves around the utilization and fine-tuning of the previously

established framework. For self-supervised learning, the representations learned in

the first stage are fine-tuned on a specific task with a smaller amount of labeled data.

In physics, we use the ansatz to solve the equations and refine the solution in the

specific context of interest.

This parallelism is more than just an interesting comparison; it provides valuable

insights into how we might approach problem-solving in machine learning. By taking

cues from the methodical, principles-based approach in physics, we could improve the

efficiency and efficacy of machine learning models, especially in scenarios where data

may be scarce or costly to acquire. Utilizing symmetry as an inductive bias in neural

networks could be a powerful tool for constraining the solution space and improving

generalization, much like it is in the study of physical systems.

In summary, leveraging symmetry as an inductive bias in machine learning mod-

els, particularly within a self-supervised learning paradigm, offers an efficient and

effective approach to manage the high-dimensionality and complex dynamics of these

systems. Drawing parallels from physics, we can potentially guide the formulation and

46

execution of such models, reducing data dependency, and increasing their potential

for generalization.

We continue our discussion in the following section with our most extensive funda-

mental contribution to SSL through the lens of symmetry, which aims at mitigating

the need for data in representation learning.

2.2 Equivariant Contrastive Learning

2.2.1 Introduction

Human knowledge about what makes a good representation and the abundance of

unlabeled data has enabled the learning of useful representations via self-supervised

learning (SSL) pretext tasks. State-of-the-art SSL methods encourage the represen-

tations not to contain information about the way the inputs are transformed, i.e.

to be invariant to a set of manually chosen transformations. One such method is

contrastive learning, which sets up a binary classification problem to learn invari-

ant features. Given a set of data points (say images), different transformations of

the same data point constitute positive examples, whereas transformations of other

data points constitute the negatives [He et al., 2020, Chen et al., 2020a]. Beyond

contrastive learning, many SSL methods also rely on learning representations by en-

couraging invariance [Grill et al., 2020b, Chen and He, 2021b, Caron et al., 2021,

Zbontar et al., 2021]. Here, we refer to such methods as Invariant-SSL (I-SSL).

The natural question in I-SSL is to what transformations should the representa-

tions be insensitive [Chen et al., 2020a, Tian et al., 2020b, Xiao et al., 2020]. Chen

et al. [2020a] highlighted the importance of transformations and empirically evalu-

ated which transformations are useful for contrastive learning (e.g., see Figure 5 in

their paper). Some transformations, such as four-fold rotations, despite preserving

semantic information, were shown to be harmful for contrastive learning. This does

not mean that four-fold rotations are not useful for I-SSL at all. In fact, predicting

four-fold rotations is a good proxy task for evaluating the representations produced

47

with contrastive learning [Reed et al., 2021]. Furthermore, instead of being insensi-

tive to rotations (invariance), training a neural network to predict them, i.e. to be

sensitive to four-fold rotations, results in good image representations [Gidaris et al.,

2018, 2019]. These results indicate that the choice of making features sensitive or

insensitive to a particular group of transformations can have a substantial effect on

the performance of downstream tasks. However, the prior work in SSL has exclusively

focused on being either entirely insensitive [Grill et al., 2020b, Chen and He, 2021b,

Caron et al., 2021, Zbontar et al., 2021] or sensitive [Agrawal et al., 2015, Doersch

et al., 2015, Zhang et al., 2016, Noroozi and Favaro, 2016, Gidaris et al., 2018] to

a set of transformations. In particular, the I-SSL literature has proposed to simply

remove transformations that hurt performance when applied as invariance.

To understand how sensitivity/ insensitivity to a particular transformation affects

the resulting features, we ran a series of experiments summarized in Figure 2-1. We

trained and tested a simple I-SSL baseline, SimCLR [Chen et al., 2020a], on CIFAR-

10 using only the random resized cropping transformation (solid yellow line). The test

accuracy is calculated as the retrieval accuracy of a k-nearest neighbors (kNN) classi-

fier with a memory bank consisting of the representations on the training set obtained

after pre-training for 800 epochs. Next, in addition to being invariant to resized crop-

ping, we additionally encouraged the model to be either sensitive (shown in pink) or

insensitive (shown in blue) to a second transformation. We encourage insensitivity

by adding the transformation to the SimCLR data augmentation, and sensitivity by

predicting it (see Section 4.2.4). We varied the choice of this second transformation.

We found that for some transformations, such as horizontal flips and grayscale, in-

senstivity results in better features, but is detrimental for transformations, such as

four-fold rotations, vertical flips, 2x2 jigsaws (4! = 24 classes), four-fold Gaussian

blurs (4 levels of blurring) and color inversions. When we encourage sensitivity to

these transformations, the trend is reversed. In summary, we observe that if invari-

ance to a particular transformation hurts feature learning, then imposing sensitivity

to the same transformation may improve performance. This leads us to conjecture

that instead of choosing the features to be only invariant or only sensitive as done

48

horizontal flips grayscale four-fold rotations vertical flips 2x2 jigsaws four-fold blurs color inversions

60

80

100

kN
N

ac
cu

ra
cy

 (%
)

baseline

insensitive
sensitive

Figure 2-1: SSL representations should be encouraged to be either insensitive or
sensitive to transformations. The baseline is SimCLR with random resized cropping
only. Each transformation on the horizontal axis is combined with random resized
cropping. The dataset is CIFAR-10 and the kNN accuracy is on the test set. More
experimental details can be found in Section 4.2.4.

in prior work, it may be possible to learn better features by imposing invariance to

certain transformations (e.g., cropping) and sensitivity to other transformations (e.g.,

four-fold transformations).

The concepts of sensitivity and insensitivity are both captured by the mathemati-

cal idea of equivariance [Agrawal et al., 2015, Jayaraman and Grauman, 2015, Cohen

and Welling, 2016]. Let 𝐺 be a group of transformations. For any 𝑔 ∈ 𝐺 let 𝑇𝑔(𝑥)

denote the function with which 𝑔 transforms an input image 𝑥. For instance, if 𝐺

is the group of four-fold rotations then 𝑇𝑔(𝑥) rotates the image 𝑥 by a multiple of

𝜋/2. Let 𝑓 be the encoder network that computes feature representation, 𝑓(𝑥). I-SSL

encourages the property of “invariance to 𝐺,” which states 𝑓(𝑇𝑔(𝑥)) = 𝑓(𝑥), i.e. the

output representation, 𝑓(𝑥), does not vary with 𝑇𝑔. Equivariance, a generalization of

invariance, is defined as, ∀𝑥 : 𝑓(𝑇𝑔(𝑥)) = 𝑇 ′
𝑔(𝑓(𝑥)), where 𝑇 ′

𝑔 is a fixed transformation

(i.e., without any parameters). Intuitively, equivariance encourages the feature rep-

resentation to change in a well defined manner to the transformation applied to the

input. Thus, invariance is a trivial instance of equivariance, where 𝑇 ′
𝑔 is the identity

function, i.e. 𝑇 ′
𝑔(𝑓(𝑥)) = 𝑓(𝑥). While there are many possible choices for 𝑇 ′

𝑔 [Cohen

and Welling, 2016, Bronstein et al., 2021], I-SSL uses only the trivial choice that

encourages 𝑓 to be insensitive to 𝐺. In contrast, if 𝑇 ′
𝑔 is not the identity, then 𝑓 will

be sensitive to 𝐺 and we say that the “equivariance to 𝐺” will be non-trivial.

Therefore, in order to encourage potentially more useful equivariance properties,

49

we generalize SSL to an Equivariant Self-Supervised Learning (E-SSL) framework. In

our experiments on standard computer vision data, such as the small-scale CIFAR-

10 [Torralba et al., 2008, Krizhevsky, 2009] and the large-scale ImageNet [Deng et al.,

2009b], we show that extending I-SSL to E-SSL by also predicting four-fold rotations

improves the semantic quality of the representations. We show that this approach

works for other transformations too, such as vertical flips, 2x2 jigsaws, four-fold Gaus-

sian blurs and color inversions, but focus on four-fold rotations as the most promising

improvement we obtain with initial E-SSL experiments in Figure 2-1.

We also note that the applications of E-SSL in this paper are task specific, meaning

that the representations from E-SSL may work best for a particular downstream

task that benefits from equivariance dictated by the available data. E-SSL can be

further extended to applications in science; in particular, we focus on predictive tasks

using (unlabelled and labelled) data collected via experiments or simulations. The

downstream tasks in prediction problems in science are often fixed and can be aided

by incorporating scientific insights. Here, we also explore the generality of E-SSL

beyond computer vision, on a different application: regression problems in photonics

science and demonstrate examples where E-SSL is effective over I-SSL.

Our contributions can be summarized as follows:

• We introduce E-SSL, a generalization of popular SSL methods that highlights

the complementary nature of invariance and equivariance. To our knowledge,

we are the first to create a method that benefits from such complementarity.

• We improve state-of-the-art SSL methods on CIFAR-10 and ImageNet by en-

couraging equivariance to four-fold rotations. We also show that E-SSL is more

general and works for many other transformations, previously unexplored in

related works.

• We demonstrate the usefulness of E-SSL beyond computer vision with exper-

iments on regression problems in photonics science. We also show that our

method works both for finite and infinite groups.

50

The rest of this section is organized as follows. In Subsection M we elaborate

on related work. In Subsection 2.2.3 we introduce our experimental method for E-

SSL. In Subsection 4.2.4 we present our main experiments in computer vision. In

Subsection 4.2.5 provide a discussion around our work that extends our study beond

computer vision. Beginning from Appendix 2.2.6, we provide more details behind our

findings and discuss several potential avenues of future work.

2.2.2 Related Work

To encourage non-trivial equivariance, we observe that a simple task that predicts the

synthetic transformation applied to the input, works well and improves I-SSL already;

some prediction tasks create representations that can be transferred to other tasks of

interest, such as classification, object detection and segmentation. While prediction

tasks alone have been realized successfully before in SSL [Agrawal et al., 2015, Do-

ersch et al., 2015, Zhang et al., 2016, Misra et al., 2016, Noroozi and Favaro, 2016,

Zamir et al., 2016, Lee et al., 2017, Mundhenk et al., 2018, Gidaris et al., 2018, Zhang

et al., 2019, Zhang, 2020], to our knowledge we are the first to combine simple pre-

dictive objectives of synthetic transformations with I-SSL, and successfully improve

the semantic quality of representations. We found that the notion of equivariance

captures the generality of our method.

To improve representations with pretext tasks, Gidaris et al. [2018] use four-fold

rotations prediction as a pretext task for learning useful visual representations via

a new model named RotNet. Feng et al. [2019] learn decoupled representations:

one part trained with four-fold rotations prediction and another with non-parametric

instance discrimination [Wu et al., 2018] and invariance to four-fold rotations. Yam-

aguchi et al. [2021] use a joint training objective between four-fold rotations prediction

and image enhancement prediction. Xiao et al. [2020] propose to learn representations

as follows: for each atomic augmentation from the contrastive learning’s augmenta-

tion policy, they leave it out and project to a new space on which I-SSL encourages

invariance to all augmentations, but the left-out one. The resulting representation

could either be a concatenation of all projected left-out views’ representations, or the

51

representation in the shared space, before the individual projections. Our method

differs from the above contributions in that E-SSL is the only hybrid framework that

encourages both insensitive representations for some transformations and sensitive

representations for others and does not require representations to be sensitive and

insensitive to a particular transformation at the same time. Thus, what distinguishes

our work is the complementary nature of invariance and equivariance for multiple

transformations, including finite and infinite groups.

To obtain performance gains from transformations, Tian et al. [2020b] study which

transformations are the best for contrastive learning through the lens of mutual in-

formation. Reed et al. [2021] use four-fold rotations prediction as an evaluation mea-

sure to tune optimal augmentations for contrastive learning. Wang and Qi [2021] use

strong augmentations to improve contrastive learning by matching the distributions of

strongly and weakly augmented views’ representation similarities to a memory bank.

Wang et al. [2021] provide an effective way to bridge transformation-insensitive and

transformation-sensitive approaches in self-superived learning methods via residual

relaxation. A growing body of work encourages invariance to domain agnostic trans-

formations [Tamkin et al., 2021, Lee et al., 2021, Verma et al., 2021] or strengthens

invariance with regularization [Foster et al., 2021]. Our framework is different from

the above works, because we work with transformations that encourage equivariance

beyond invariance.

To understand and improve equivariant properties of neural networks, Lenc and

Vedaldi [2015] study emerging equivariant properties of neural networks and [Cohen

and Welling, 2016, Bronstein et al., 2021] construct equivariant neural networks. In

contrast, our work does not enforce strict equivariance, but only encourages equivari-

ant properties for the encoder network through the choice of the loss function. While

strict equivariance is concerned with groups, some of the transformations, such as

random resized cropping and Gaussian blurs, may not even be groups, but they could

still be analyzed in the E-SSL framework. Thus, ours is a flexible framework, which

allows us to consider a variety of transformations and how the encoder might exhibit

equivariant properties to them.

52

sensitive

�ips

rotations

grayscale

...tr
an

sf
or

m
at

io
ns

E-SSL framework

insensitive

MethodsMoCo (He et al., 2020)
SimCLR (Chen et al., 2020)
BYOL (Grill et al., 2020)
BT (Zbontar et al., 2021)
DINO (Caron et al., 2021)
etc.

Egomotion (Agrawal et al., 2015)
Context (Doersch et al., 2015)
Colorization (Zhang et al., 2016)
Jigsaw (Noorozi & Favaro., 2016)
RotNet (Gidaris et al., 2018)
etc. E-SSL (ours)

Figure 2-2: E-SSL framework. Left: framework. Right: methods. Egomotion,
Context, Colorization and Jigsaw use other transformations than rotations, but their
patterns looks like that of RotNet’s. Likewise, for E-SSL can use transformations
different from rotation.

2.2.3 Method

Our method is designed to test our primary conjecture that a hybrid approach of

sensitive and insensitive representations learns better features. Surprisingly, this hy-

brid approach is not yet present in SSL, as Figure 2-2 illustrates. In this figure, we

can view transformations in SSL as “levers.” Each downstream task has an optimal

configuration of the levers, which should be tuned in the SSL objective: left for insen-

sitive and right for sensitive representations. E.g., make representations insensitive

to horizontal flips and grayscale and sensitive to four-fold rotations, vertical flips,

2x2 jigsaws, Gaussian blurs or color inversions. Formally, insensitive and sensitive

features correspond to trivial and regular group representations, respectively. Here,

we present an effective method to achieve this control.

Let 𝑓(·;𝜃𝑓) with trainable parameters 𝜃𝑓 be a backbone encoder. Analogously, let

𝑝1(·;𝜃𝑝1) be a projector network for the I-SSL loss. There might be an extra prediction

head and parameters, depending on the objective, which we omit for simiplicity.

Let 𝑝2(·;𝜃𝑝2) be the predictor network for encouraging sensitivity, which we will call

“predictor for equivariance.” We share the backbone encoder 𝑓 jointly for I-SSL and

the objective of predicting the transformations from the backbone representations.

Let ℓI-SSL be the I-SSL loss and ℓE-SSL be the added E-SSL loss that encourages

sensitivity to a particular transformation. Let the parameter 𝜆 be the strength of the

E-SSL loss. The optimization objective for an image 𝑥 with views {𝑥′} in the batch

53

is given as follows

arg min
𝜃𝑓 ,𝜃𝑝1 ,𝜃𝑝2

ℓSSL(𝑝1(𝑓({𝑥′};𝜃𝑓);𝜃𝑝1)) + 𝜆E𝑔∈𝐺 [PredictionLoss(𝑔, 𝑝2(𝑓(𝑇𝑔(𝑥
′);𝜃𝑓);𝜃𝑝2)]

(2.1)

where ℓE-SSL (the expectation in the second summand) can take either one or all of the

views, but we take only one for simplicity. The goal of ℓE-SSL is to predict 𝑔 from the

representation 𝑝2(𝑓(𝑇𝑔(𝑥
′);𝜃𝑓);𝜃𝑝2), which encourages equivariance to the group of

transformations 𝐺. The PredictionLoss could be either a cross entropy loss for finite

groups or L1/ MSE loss for infinite groups. In practice we replace the expectation

with an unbiased estimate. Most of our experiments in this paper focus on finite

groups, but we show one example for an infinite group in Appendix 2.2.11.

E-SSL can be constructed for any semantically meaningful transformation (see

for example, Figure 2-1). From Figure 2-1 we choose four-fold rotations as the most

promising transformation and we fix it for the upcoming section. As a minor mo-

tivation, we also present empirical results about the similarities between four-fold

rotations prediction and I-SSL in Appendix 2.2.8. In particular, both tasks benefit

from the same data augmentation. Figure 2-3 sketches how our construction works for

predicting four-fold rotations. In particular, we sample each of the 4 possible rotations

uniformly and use the cross entropy loss for the PredictionLoss in Equation 2.1.

What transformations could work for E-SSL? A common property of the

successful transformations we have studied up to this point is that they form groups

in the mathematical sense, i.e. (i) each transformation is invertible, (ii) composition

of two transformations is part of the set of transformations and (iii) compositions are

associative.

In this paper, we encourage equivariance to a group of transformation by pre-

dicting them. This does not guarantee that the encoder we learn will be strictly

equivariant to the group. In practice we observe that invariance and equivariance is

well encouraged by the training objectives we use (see Appendix 2.2.9 for detailed

analysis). In fact, even strict equivariance is possible, i.e. there exists an encoder

54

view 1 view 2

prediction
views

backbone f backbone f backbone f

projector p1

invariance equivariance

projector p1

backbone fbackbone fbackbone f

predictor p2 predictor p2predictor p2 predictor p2

Figure 2-3: Sketch of E-SSL with four-fold rotations prediction, resulting in a back-
bone that is sensitive to rotations and insensitive to flips and blurring. ImageNet
example n01534433:169.

that is non-trivially equivariant, under a reasonable assumption which is formulated

as follows. Let 𝑋 be the set of all images. Let 𝐺 be a group whose elements 𝑔 ∈ 𝐺

transform 𝑋 via the function 𝑇𝑔 : 𝑋 → 𝑋. Let 𝑋 ′ = {𝑇𝑔(𝑥) | 𝑔 ∈ 𝐺,𝑥 ∈ 𝑋}

be the set of all transformed images. Let 𝑓(·;𝜃) : 𝑋 ′ → 𝑆 be an encoder network

that we learn with parameters 𝜃. We write 𝑓(·) ≡ 𝑓(·;𝜃) for simplicity. Finally, let

𝑆 = {𝑓(𝑥′) | 𝑥′ ∈ 𝑋} be the set of all representations of the images in 𝑋 ′. The

following is our statement.

Proposition 1 (Non-trivial Equivariance). Given 𝑇𝑔 : 𝑋 ′ → 𝑋 ′ for the group 𝐺,

there exists an encoder 𝑓 : 𝑋 ′ → 𝑆 that is non-trivially equivariant to the group 𝐺

under the assumption that if 𝑓(𝑇𝑔(𝑥)) = 𝑓(𝑇𝑔′(𝑥
′)) then 𝑔 = 𝑔′ and 𝑥 = 𝑥′ for all

𝑔, 𝑔′ ∈ 𝐺 and 𝑥,𝑥′ ∈ 𝑋.

We defer the proof to Appendix 2.2.7. The significance of this proof is that it

explicitly constructs a non-trivially equivariant encoder network for groups 𝐺 if the

assumption is satisfied. The intuition of the assumption is that if the representations

of two transformed inputs are the same, the inputs should coincide, and likewise

the transformations. More formally, this assumption reflects the condition when the

55

dataset contains only one element of each group orbit. We speculate that satisfying

this assumption is reasonable for the datasets in this work, since we observe a nat-

ural setting of the data, e.g. horizontal mirror symmetry in Gpm, and we consider

transformations that disturb this natural setting. In Appendix 2.3 we also show that

E-SSL is crucial for the Flowers-102 dataset for which this assumption might be less

clear. In Appendix 2.3.1 we also present a natural modification of E-SSL for scenarios,

where that assumption is violated.

Could other transformations still help? To motivate our work, in Figure 2-1 we

observed additional transformations that could be useful, such as vertical flips, 2x2

jigsaws, four-fold Gaussian blurs and color inversions. All of these transformations

are groups, except for four-fold Gaussian blurs. Each element of Gaussian blurs is in-

vertible (de-blurring), but the inverse is not a transformation in the set. Interestingly,

we observe that four-fold Gaussian blurs still improve the baseline, which means the

success of E-SSL may not be limited to groups.

We might also consider combining the prediction of multiple transformations to

encourage sensitivity to all of them. However, the gains we saw in Figure 2-1 may

not add up when we combine transformations, because they may not be independent.

The gains may also depend on the transformations that we choose for I-SSL. While

we see combinations of transformations as promising future work, we focus on a single

transformation to make a clear presentation of E-SSL.

2.2.4 Experiments

Setups

CIFAR-10 setup. We use the CIFAR-10 experimental setup from [Chen and He,

2021b]. We consider two simple I-SSL methods: SimCLR (with InfoNCE loss [Oord

et al., 2018] and temperature 0.5) and SimSiam [Chen and He, 2021b]. We were able

to obtain baseline results close to those in [Chen and He, 2021b]. The predictor for

equivariance takes a smaller crop with size 16x16. We report performance on the

standard linear probe. We tune 𝜆 to 0.4 both for SimCLR and SimSiam (full tuning

56

in Table 2.7 in Appendix 2.2.9). Remaining experimental details can be found in

Appendix 2.2.9.

ImageNet setup. We use the original augmentation setting for each method. The

predictor for equivariance takes a smaller crop with size 96x96. We use a ResNet-

50 [He et al., 2016a] backbone for each method. In terms of optimizer and batch size

settings, we follow the standard training recipe for each method. For our SimCLR

experiments we use a slightly more optimal implementation that uses BYOL’s aug-

mentations (i.e. it includes solarization), initializes the ResNet with zero BatchNorm

weights and uses the InfoNCE loss with temperature 0.2.

Photonic-crystals setup. Photonic crystals (PhC) are periodically-structured ma-

terials engineered for wide ranging applications by manipulating light waves[Yablonovitch,

1987, Joannopoulos et al., 2008]. The density-of-states (DOS) is often used as a de-

sign metric to engineer the desired properties of these crystals and thus here, we

consider the regression task of predicting the DOS of PhCs. Examples of this dataset

are depicted in Section 4.2.5 and further details can be found in Appendix 2.2.11.

The use of symmetry or invariance knowledge is common in scientific problems; here,

the DOS labels are invariant to several physical transformations of the unit cell,

namely, rolling translations (due to its periodicity), operations arising from the sym-

metry group (𝐶4𝑣) of the square lattice, i.e. rotations and mirror flips, and refractive

scaling. We construct an encoder network comprising of simple convolutional and

fully-connected layers (see Appendix 2.2.11) and create various synthetic datasets

to investigate encouragement of equivariance. After SSL/ E-SSL, we fine-tune the

network with L1 loss; for better interpretability of prediction accuracies, we use a

relative error metric [Liu et al., 2018a, Loh et al., 2021] for evaluation, given by

ℓDOS = (
∑︀

𝜔

⃒⃒
DOSpred − DOS

⃒⃒
)/(
∑︀

𝜔 DOS), reported in (%). We defer the results to

Section 4.2.5, because of the novelty of the experimental setup.

The predictor 𝑝2 for E-SSL. The predictor is a 2 layer MLP for CIFAR-10 and

Photonic-crystals, and a 3 layer MLP for ImageNet, followed by a linear head that pro-

57

Algorithm 1 PyTorch-style pseudocode for E-SSL, predicting four-fold rotations.
f: backbone encoder network
p1: projector network for I-SSL
p2: predictor network for E-SSL
ssl_loss: loss function for I-SSL
lambda: weight of the E-SSL

for x in loader:
large views for SSL and small view for EE
V_large = augment(x, small_crop=False) # list of views
v_small = augment(x, small_crop=True) # change: crop with size =96 and scale =(0.05 , 0.14)

loss
loss_invariance = ssl_loss(p1(f(V_large))
labels = [0] * N + [1] * N + [2] * N + [3] * N # 4Nx1
v_cat = cat([v_small] * 4, dim=0) # 4Nx3x96x96
v_equivariance = rot90(v_cat , labels) # constructing the rotated views

logits = p2(f(v_equivariance)) # 4Nx4
loss_equivariance = CrossEntropyLoss(logits , labels) # rotation prediction
loss = loss_invariance + lambda * loss_equivariance

optimization step
loss.backward ()
optimizer.step()

duces the logits for the an n-way classification (for example four-fold rotations is 4-way

classification), or a single node for the continuous group experiment. The predictor’s

hidden dimension is shared across all layers and it equals 2048 for CIFAR-10 and Im-

ageNet and 512 for PhC. After each linear layer, there is a Layer Normalization [Ba

et al., 2016] followed by ReLU. We experimented with Batch Normalization [Ioffe and

Szegedy, 2015] (with trainable affine parameters) instead of Layer Normalization, but

did not observe any significant changes. For some experiments, we discovered that

removing the last ReLU from the MLP improves the results slightly. In particular,

for SimSiam on CIFAR-10 and for all models on ImageNet we omit the last ReLU.

Finally, Algorithm 1 presents pseudocode for E-SSL with four-fold rotations on

ImageNet. In our implementation, we use smaller resolution for the rotated images, so

that we can fit all views on the same batch and have minimal overhead for pre-training

(additional details in Table 2.10 in Appendix 2.2.10).

Main results

CIFAR-10 results. To highlight the benefits of our method, Table 2.2 demon-

strates the improvement we obtain by using E-SSL on top of SimCLR and SimSiam

and then shows different ablations and alternative methods. We label the E-SSL ex-

tensions as E-SimCLR and E-SimSiam respectively. We observe that we can increase

58

Table 2.2: Linear probe accuracy (%) on CIFAR-10. Models are pre-trained for 800
epochs. Baseline results are from Appendix D in [Chen and He, 2021b]. Standard
deviations are from 5 different random initializations for the linear head. Deviations
are small because the linear probe is robust to the seed.

Method SimCLR SimSiam
[Chen et al., 2020a] [Chen and He, 2021b]

Baseline [Chen and He, 2021b] 91.1 91.8
Baseline (our reproduction) 92.0± 0.0 91.6± 0.0

E-SSL (ours) 94.1± 0.0 94.2± 0.1

Ablating E-SSL

Single random rotation 93.4± 0.0 (↓ 0.7) 92.6± 0.0 (↓ 1.6)
Linear predictor for equivariance 93.3± 0.0 (↓ 0.8) 93.4± 0.0 (↓ 0.8)
No SSL augmentation in equivariance views 92.7± 0.1 (↓ 1.4) 92.0± 0.1 (↓ 2.2)

Alternatives to E-SSL

Disentangled representations 91.3± 0.0 (↓ 2.7) 91.1± 0.0 (↓ 3.1)
Insensitive instead of sensitive 86.3± 0.1 (↓ 7.8) 86.1± 0.1 (↓ 8.1)

a tuned baseline accuracy by about 2− 3%. When ablating E-SSL, we see that each

component of E-SSL is important. Most useful is the SSL augmentation applied on

top of the rotated views. We also study alternatives to E-SSL. With “Disentangled

representations” we investigate whether a “middle ground” is optimal for E-SSL: half

of the representation to be insensitive to a transformation and the other half to be

sensitive to the same transformation. This results in degradation of performance,

which reflects our hypothesis that the representations should be either insensitive or

sensitive. We conducted this experiment by using four-fold rotations in I-SSL for half

of the representation and E-SSL for the other half. Finally, making the represen-

tations “Insensitive instead of sensitive” to four-fold-rotations hurts the performance

significantly, as it is also observed in Figure 2-1, and in [Chen et al., 2020a, Xiao

et al., 2020].

Figure 2-4 reveals that E-SSL is more robust to removing transformations for I-

SSL or reducing the labels for training. For example, E-SimCLR and E-SimSiam

with only random resized cropping obtain 83.5% and 84.6% accuracies. Encouraging

sensitivity to one transformation, namely four-fold-rotations, can reduce the need

for selecting many transformations for I-SSL and with only 1% of the training data,

59

0.0 0.5 1.0
fraction of training data

86

88

90

92

94
to

p-
1

lin
ea

r p
ro

be
 a

cc
. (

%
)

SimCLR semi-supervised

Baseline
E-SSL (ours)

No A
ugment.

Crop
 on

ly

Crop
 + Fli

p on
ly

No G
ray

sca
le

Full A
ugment.

40

60

80

SimCLR remove data aug.

0.0 0.5 1.0
fraction of training data

60

70

80

90

SimSiam semi-supervised

No A
ugment.

Crop
 on

ly

Crop
 + Fli

p on
ly

No G
ray

sca
le

Full A
ugment.

20

40

60

80

SimSiam remove data aug.

Figure 2-4: Reducing the labels for training and the data augmentation for pre-
training on CIFAR-10. Error bars for 5 different training data splits.

Table 2.3: Linear probe accuracy (%) on ImageNet. Each model is pre-trained for
100 epochs. Baseline results are from Table B.1 in [Chen et al., 2020a] from Table 4
in [Chen and He, 2021b]. Numbers marked with * use a less optimal setting than our
reproduction for SimCLR (see ImageNet setup).

Method SimCLR SimSiam Barlow Twins

[Chen et al., 2020a] [Chen and He, 2021b] [Zbontar et al., 2021]
Baseline [Chen et al., 2020a] 64.7* - -
Baseline [Chen and He, 2021b] 66.5* 68.1 -
Baseline (our reproduction) 67.3 68.1 66.9
E-SSL (ours) 68.3 68.6 68.2

E-SimCLR and E-SimSiam achieve 90.0± 1.0% and 88.6± 1.0% respectively.

ImageNet results. Table 2.3 demonstrates our main results on the linear probe on

ImageNet after pre-training with various state-of-the-art I-SSL methods and their E-

SSL versions. By only sweeping 𝜆 and slightly reducing the original learning rate for

SimSiam we obtain consistent 1%/ 0.5%/ 1.3% improvements for SimCLR/ SimSiam/

Barlow Twins respectively. Additionally, in Table 2.4 we observe consistent benefits

of using E-SSL with longer pre-training. Finally, after 800 epochs of pre-training

E-SimCLR achieves 72.5%, which is 0.6% better than SimCLR’s 71.9% baseline.

2.2.5 Discussion

To show that other domains benefit from E-SSL in a qualitatively similar way to

the applications in the previous section, here we introduce two datasets in photonics

science. Figure 2-5 depicts the datasets, i.e. input-label pairs consisting of 2D square

60

Table 2.4: Linear probe accuracy (%) on ImageNet with longer pre-training. “BT”
is short for “Barlow Twins.”

Method pre-training epochs

100 200 300

SimCLR (repro) 67.3 69.7 70.6
E-SimCLR (ours) 68.3 70.5 71.5

BT (repro) 66.9 70.0 71.1
E-BT (ours) 68.2 71.0 71.9

Bl
ob

G
pm

four-fold translations

four-fold rotations

Frequency (arbitrary units)

D
O

S
(a

rb
itr

ar
y

un
its

)

Input unit cells Label

Photonic crystal

mirror

center

Figure 2-5: PhC datasets with transformations for sensitivity. The regression task is
to predict the DOS labels (an example of a label in R400 is shown on the right) from
2D square periodic unit cells (examples of the inputs in R32×32 are shown on the left).
We consider two types of input unit cells; at the top is the Blob dataset where the
feature variation is always centered; at the bottom is the Group pm (Gpm) dataset
where inputs have a horizontal mirror symmetry.

periodic unit cells of PhCs and their associated DOS. The physics of the problem

dictates that the DOS is invariant to (rolling) translations, scaling of all pixels by a

fixed positive factor, and operations of the 𝐶4𝑣 symmetry group, i.e. rotations and

mirror flips. In choosing the transformations that E-SSL should encourage sensitivity

to, we observe that the transformations that have worked for CIFAR-10 and ImageNet

disturb the natural setting of the data (e.g. rotations disturb the natural upright

setting of images). Thus, we encourage sensitivity to transformations that fit this

observation, and insensitivity to the rest of the transformations.

In Figure 2-5, the top dataset is a “Blob” dataset where the shape variation in

each image is centered. We encourage sensititivy to the group of four-fold transla-

tions, given by 𝐺 = {𝑒, ℎ, 𝑣, ℎ𝑣}, where ℎ and 𝑣 are 1/2-unit cell translations in the

horizontal and vertical axis, respectively, 𝑒 is the unit element (no transformation)

and ℎ𝑣 is the composition of ℎ and 𝑣. In the bottom dataset of Figure 2-5, the

61

Table 2.5: Fine-tuning the backbone on PhC datasets using 3000/ 2000 labeled train/
test samples. Relative error (%) is ℓDOS = (

∑︀
𝜔

⃒⃒
DOSpred−DOS

⃒⃒
)/(
∑︀

𝜔 DOS). Lower
is better. SimCLR for Blob includes 𝐶4𝑣 (rotations and flips); SimCLR for Gpm
includes rolling translations and mirrors. E-SimCLR encourages the features to be
sensitive to the selected transformation explained in the text (four-fold translations
for Blob and four-fold rotations for Gpm). “+ Transform” means adding this trans-
formation to SimCLR. Error bars are for 3 different training data splits.
PhC Dataset Supervised SimCLR SimCLR + Transform E-SimCLR (ours)

Blob 1.068 ± 0.015 0.987± 0.005 0.999± 0.005 0.974± 0.009

Gpm 3.212± 0.041 3.122± 0.002 3.139± 0.005 3.091± 0.006

PhC unit cells are generated to have a horizontal mirror symmetry, i.e. we use the

2D wallpaper (or crystallographic plane) group pm. We encourage sensitivity to the

group of four-fold rotations (the same group we used for CIFAR-10 and ImageNet),

since rotating any of the images disturbs the (horizontal) mirror symmetry. More

accurately, since only ±𝜋/2 rotations disturb the symmetry, we separate them in two

classes, {𝜋/2, −𝜋/2} and {0, 𝜋}, and perform binary prediction in E-SSL.

Table 2.5 shows the results of fine-tuning the backbone and an additional DOS-

predictor head (see Appendix 2.2.11) with 3000 labelled samples for this regression

task. We observe that encouraging sensitivity to the selected transformations (via E-

SimCLR) leads to the largest reduction in the error. On the contrary, including these

transformations to SimCLR (indicated by “+ Transform”) increases the error. Fur-

thermore, we explore scaling transformations and show that E-SSL can be generalized

to infinite groups (see Appendix 2.2.11). This supports our observations about the

usefulness of E-SSL over I-SSL and demonstrates E-SSL’s generality beyond computer

vision.

2.2.6 Appendix: Summary of Main Text and Layout of Ap-

pendix

In this paper we motivated the generalization of state-of-the-art methods in self-

supervised learning to the more general framework of equivariant self-supervised

learning (E-SSL). In E-SSL rather than using only invariance as a trivial case of

62

equivariance, we encouraged non-trivial equivariance and improved state-of-the-art

methods on common computer vision benchmarks and regressions tasks in photonics

science. We also discussed that there are many types of equivariance we can consider

for E-SSL. We observed that most of the successful transformations for E-SSL that we

explored form groups, but forsee that potentially many more transformations could

be explored.

For future work one could learn transformations that are equivariances, instead of

setting them manually. Thus, the concept of E-SSL could potentially be extended to

natural language processing or other science domains, whose transformations for SSL

are less well-understood. To facilitate further research in E-SSL, below we provide

additional details and analysis of the experiments in the main text. We also discuss

interesting avenues for future work.

2.2.7 Appendix A: Proof of Proposition 1

Proof. To construct a non-trivially equivariant 𝑓 , we first need to show that both 𝑋 ′

and 𝑆 are 𝐺-sets, i.e. that there is a group action 𝑇𝑔 of 𝐺 on 𝑋 ′, which is given by

the statement of the proposition, and another (non-trivial) group action 𝑇 ′
𝑔 of 𝐺 on

𝑆, which we will construct. Then, we need to show that 𝑓 commutes with the group

action, i.e. that 𝑓(𝑇𝑔(𝑥
′)) = 𝑇 ′

𝑔(𝑓(𝑥′)).

Group actions. Note that by the setup of the problem, we are already given how

𝐺 acts on the input 𝑋 ′, i.e. 𝑇𝑔 is known. For example, if 𝐺 is the group of four-fold

rotations, then 𝑇𝑔 is the rotation of the input by a multiple of 𝜋/2. We proceed to

construct the non-trivial group action 𝑇 ′
𝑔 of 𝐺 on 𝑆.

Define the function 𝑇 ′ : 𝐺 × 𝑆 → 𝑆 as 𝑇 ′(𝑔, 𝑠) = 𝑓(𝑇𝑔(𝑇𝑔′(𝑥
′))), where 𝑠 =

𝑓(𝑇𝑔′(𝑥
′)). Note that 𝑇 ′ is well-defined, because 𝑔𝑔′ ∈ 𝐺 by the closure of the group

and 𝑠 is uniquely written as 𝑠 = 𝑓(𝑇𝑔′(𝑥
′)). To see why 𝑠 is uniquely written, it

suffices to show that if 𝑓(𝑇𝑔′(𝑥
′)) = 𝑓(𝑇𝑔′′(𝑥

′′)) then both 𝑔′ = 𝑔′′ and 𝑥′ = 𝑥′′, which

follows directly from our assumption in the statement.

Now, to prove that 𝑇 ′ is a group action, it suffices to show two properties.

63

• Identity: 𝑇 ′(𝑒, 𝑠) = 𝑠 for 𝑠 = 𝑓(𝑔′(𝑥′)) and 𝑒 is the unit element of the group.

To show that, note that by definition 𝑇 ′(𝑒, 𝑠) = 𝑓(𝑇𝑒(𝑇𝑔′(𝑥
′))) = 𝑓(𝑇𝑔′(𝑥

′)),

because 𝑒𝑔′ = 𝑔′.

• Compositionality: 𝑇 ′(𝑔, 𝑇 ′(ℎ, 𝑓(𝑇𝑔′(𝑥
′)))) = 𝑇 ′(𝑔ℎ, 𝑓(𝑇𝑔′(𝑥

′))). To show this, we

expand the LHS and use the definition of 𝑇 ′ to obtain as follows 𝑇 ′(𝑔, 𝑇 ′(ℎ, 𝑓(𝑇𝑔′(𝑥
′)))) =

𝑇 ′(𝑔, 𝑓(𝑇ℎ(𝑇𝑔′(𝑥
′)))) = 𝑓(𝑇𝑔(𝑇ℎ𝑔′(𝑥

′))) = 𝑓(𝑇𝑔ℎ𝑔′(𝑥
′)) = 𝑓(𝑇𝑔ℎ(𝑇𝑔′(𝑥

′))) =

𝑇 ′(𝑔ℎ, 𝑓(𝑇𝑔′(𝑥
′))), because the group operation is associative.

Hence, 𝑇 ′ is a group action, and thus 𝑆 is a 𝐺-set, and we can write 𝑇 ′(𝑔, ·) ≡ 𝑇 ′
𝑔(·).

Commuting with the group action. To see this property, note that 𝑇 ′
𝑔′(𝑓(𝑥′)) =

𝑇 ′
𝑔′(𝑓(𝑇𝑔(𝑥))) = 𝑓(𝑇𝑔′(𝑇𝑔(𝑥))) = 𝑓(𝑇𝑔′(𝑥

′)) as desired. Note that 𝑇 ′
𝑔 is non-trivial.

Therefore, we can conclude that 𝑓 , which satisfies the constructed group action

𝑇 ′
𝑔, is not-trivially equivariant to the group 𝐺.

2.2.8 Appendix B: Rotation prediction and I-SSL benefit from

similar data augmentation.

Recently, rotation prediction with a linear head from the frozen backbone represen-

tations proved to be useful for validating the augmentation policies of contrastive

learning [Reed et al., 2021]. This shows that the two tasks of classification of ground

truth classes and synthetic rotation classes from frozen backbone representations ben-

efit from similar augmentation policies. We took this experiment a step further, and

performed rotation prediction with the augmentation policies, typically used in con-

trastive learning.

The result is in Table 2.6. Interestingly, RotNet benefits from augmentations,

typically used in contrastive learning, and the RotNet training shares the same sweet

spot [Tian et al., 2020b] as kNN classification. There are several takeaways from this

experiment: (i) we can find good augmentations for contrastive learning by doing

RotNet alone, i.e. without doing any contrastive learning; (ii) RotNet benefits from

64

augmentations needed in contrastive learning; (iii) we may be able to combine four-

fold rotations prediction and contrastive learning.

Table 2.6: RotNet’s augmentation sweet spot. kNN and Rotation Prediction have
the same sweep spot (Level 4) which gives best accuracy in both columns. RotNet is
trained on CIFAR-10 for 100 epochs with the same optimization setup as in our I-SSL
experiments. Accuracies are on the test split. (↓ ·) marks the deviation from the sweet
spot. Every new level adds a new augmentation to the previous level incrementally.

Level Added Augmentation Supervised kNN Acc. (%) Rotation Prediction Acc. (%)

0 none 44.8 (↓ 19.8) 90.2 (↓ 4.8)
1 random resized cropping 59.2 (↓ 5.4) 93.7 (↓ 1.3)
2 horizontal flips w.p. 0.5 59.4 (↓ 5.2) 94.5 (↓ 0.5)
3 color jitter w.p. 0.8 64.3 (↓ 0.3) 94.9 (↓ 0.1)
4 grayscale w.p. 0.2 64.6 95.0
5 Gaussian blur w.p. 0.2 64.1 (↓ 0.5) 94.5 (↓ 0.5)
6 random rotation (±𝜋/6) 59.4 (↓ 5.2) 93.1 (↓ 1.9)
7 vertical flip w.p. 0.5 51.9 (↓ 12.7) 90.6 (↓ 4.4)

2.2.9 Appendix C: CIFAR-10 Experiments

Experimental setup

Our experiments use the following architectural choices: ResNet-18 backbone (the

CIFAR-10 version has kernel size 3, stride 1, padding 1 and there is no max pool-

ing afterwards); 512 batch size (only our baseline SimSiam model uses batch size

1024); 0.03 base learning rate for the baseline SimCLR and SimSiam and 0.06 base

learning rate for E-SimCLR and E-SimSiam; 800 pre-training epochs; standard co-

sine decayed learning rate; 10 epochs for the linear warmup; two layer projector with

hidden dimension 2048 and output dimension 2048; for SimSiam a two layer (bottle-

neck) predictor with hidden dimension 512 whose learning rate is not decayed; the

last batch normalization for the projector does not have learnable affine parameters;

0.0005 weight decay value; SGD with momentum 0.9 optimizer. The augmentation

is Random Resized Cropping with scale (0.2, 1.0), aspect ratio (3/4, 4/3) and size

32x32, Random horizontal Flips with probability 0.5, Color Jittering (0.4, 0.4, 0.4,

0.1) with probability 0.8 and Grayscale with probability 0.2. Some of our evaluations

use a kNN-classifer with 200 neighbors, cosine similarity and Gaussian kernel with

temperature 0.1. This evaluation correlates well with the standard linear probe, but

it is more efficient to calculate. We report the kNN accuracy in % at the end of the

65

800 epochs of training. For our main results, we report a linear probe accuracy from

training a linear classifier for 100 epochs on top of the frozen representations with

SGD with momentum 0.9 and cosine decay of the learning rate, batch size 256 and

initial laerning rate of 30. For linear probe experiments we try 5 different initaliza-

tions of the linear head and report mean and standard deviations. The deviations are

negligible because the linear probe is robust to the random seed. All parameters are

reported in a Pytorch-like style.

For Figure 2-1 we use resolution of 32x32 for the transformations studied. The 4

levels of the Gaussian blur are for kernel sizes 0, 5, 9 and 15 in the default Gaussian

blur torchvision implementation. The prediction of the transformations follows the

experimental setup in Section 2.2.3. When we apply the transformations in I-SSL, we

add them in the beginning of the augmentation policy with probability 1. The same

setup is used for “Disentangled representations” and “Insensitive instead of sensitive”

in Table 2.2.

Additional experiments

Explored hyperparameters. Both for SimCLR and SimSiam we ran a grid search

over the following hyperparameters: base learning rate: {0.01, 0.03, 0.06}, batch size:

{512, 1024}, 𝜆 (for E-SSL): {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, predictor’s MLP depth: {2, 3,

4}, predictor’s normalization: {None, BatchNorm, LayerNorm}, nonlinearity at the

last MLP layer of the predictor: {True, False}.

Tuning 𝜆. Table 2.7 shows tuning of the CIFAR-10 results. We observe noticeable

improvements over the SSL baselines by using E-SSL instead.

Table 2.7: Tuning the 𝜆 parameter for CIFAR-10.

Method Baseline E-SSL

0.0 0.2 0.4 0.6 0.8 1.0

SimCLR 92.0± 0.0 93.6± 0.0 94.1± 0.0 94.0± 0.0 94.1± 0.0 93.5± 0.0

SimSiam 91.1± 0.0 94.1± 0.0 94.2± 0.1 93.7± 0.0 93.8± 0.0 93.3± 0.0

66

Sensitivity to transformations for I-SSL. Table 2.8 demonstrates that E-SSL

can produce good representation with as few SSL transformations for I-SSL as possi-

ble. We observe that E-SSL is less sensitive than SSL to the choice of data augmen-

tation.

Table 2.8: Comparing the augmentation sensitivity for CIFAR-10. Levels: 0 is no
transformations; 1 adds random resized cropping; 2 adds horizontal flips; 3 adds color
jitter; 4 adds grayscale.

Method Augmentation Level

0 1 2 3 4

SimCLR 28.0± 0.1 76.0± 0.1 77.0± 0.0 87.4± 0.0 92.0± 0.0

E-SimCLR 69.5± 0.0 83.5± 0.0 84.6± 0.1 91.6± 0.0 94.1± 0.0

SimSiam 17.6± 0.1 71.5± 0.0 72.2± 0.0 88.1± 0.0 91.1± 0.0

E-SimSiam 67.5± 0.1 84.6± 0.0 85.7± 0.1 92.9± 0.0 94.2± 0.1

The importance of complete invariance or sensitivity. Table 2.9 studies

whether a middle ground for the representations exist, i.e. whether it is possible

to have part of the representation invariant and the other part sensitive to the trans-

formation. If we apply the E-SSL loss only to half of the representation, then there is

a very small drop in the performance. Furthermore, we observe that having a disjoint

mix between insensitivity and sensitivity in the representation is noticeably harmful.

Table 2.9: Studying the effect of disjoint representations on CIFAR-10. Split Rep-
resentation means that we encourage similarity only on one half of the backbone
representation. Disentangled Representation means that one half of the representa-
tion is trained to be insensitive to four-fold rotations and the other half is sensitive
four-fold rotations. Linear probe accuracy (%) after 800 epochs.

Method Baseline Split Representation Disentangled Representation

E-SimCLR 94.1± 0.0 94.1± 0.0 (↓ 0.0) 91.3± 0.0 (↓ 2.7)
E-SimSiam 94.2± 0.1 93.8± 0.0 (↓ 0.4) 91.1± 0.0 (↓ 3.1)

Fully connected backbone. We perform a simple experiment with a fully con-

nected backbone, instead of a ResNet-18. The hidden dimensions of the backbone

67

are listed in order as {3×32×32, 2048, 2048, 512} with Batch Normalization and

ReLUs in between. The rest of the experimental setup is exactly the same. On

the linear probe (%), we obtain 70.5±0.0 for SimCLR and 73.8±0.1 for E-SimCLR,

and 70.9±0.0 for SimSiam and 73.5±0.1 for E-SimSiam, highlighting noticeable gains

from using E-SSL.

CIFAR-100 experiments. We test our CIFAR-10 experimental setup directly on

CIFAR-100. On the linear probe (%), we obtain 65.8±0.0 for SimCLR and 69.5±0.1

for E-SimCLR, and 65.8±0.1 for SimSiam and 69.3±0.1 for E-SimSiam, highlighting

sizable gains from using E-SSL.

Large crop study. We study whether using a large crop with a single rotation on

CIFAR-10 can be just as good as a small crop. We obtain 93.9±0.0 on the linear

probe using E-SimCLR, which is only 0.2 absolute points below our best result of

94.1±0.0 using four small crops.

Appendix D: Norm-differences Analysis

In Figure 2-6 we present analysis that shows our training objectives encourage invari-

ance and equivariance to transformations. We take our best performing E-SimCLR

and E-SimSiam methods on CIFAR-10. During training we keep track of two mea-

sures that can capture how invariant/ equivariant the backbone representations are.

The “invariance measure” computes the negative cosine similarity between two

views of the backbone representations. The lower this measure is, the higher the

similarity between the two views, and thus the more invariant the backbone repre-

sentations are to the transformations in I-SSL. We observe that during training high

similarity between the two views is maintained (roughly between 0.8 and 0.9), which

indicates that invariance is encouraged in the backbone representations, as desired.

Likewise, the “equivariance measure” computes the average cosine similarity of the

backbone represenations, between all six pairs of the four rotated views. The lower

this measure is, the lower the similarity between the four views, and thus the more

68

non-trivially equivariant the backbone representations are to the transformations for

equivariance. We observe that the measure decays to about 0.3 during training,

which indicates that the backbone representations are encouraged to be equivariant

to four-fold rotations, as desired.

0 20000 40000 60000 80000
1.0

0.8

0.6

0.4

0.2

0.0

in
va

ria
nc

e
m

ea
su

re

E-SimCLR

0 20000 40000 60000 80000
1.0

0.8

0.6

0.4

0.2

0.0
E-SimSiam

0 20000 40000 60000 80000
training steps

0.0

0.2

0.4

0.6

0.8

1.0

eq
ui

va
ria

nc
e

m
ea

su
re

0 20000 40000 60000 80000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2-6: Demonstration of the evolution of the invariance (top) and equivariance
(bottom) measures during training. Left is E-SimCLR and right is E-SimSiam.

2.2.10 Appendix E: ImageNet Experiments

We had limited computational resources, so we kept the learning rates the same as

in the original methods. Only for SimSiam we found that choosing a smaller learning

rate 0.08 leads to better results for E-SimSiam. We only swept the 𝜆 parameter, where

for SimCLR and SimSiam the sweep was between 0 and 1 and for Barlow Twins it

was between 0 and 100. The optimal 𝜆 is 0.4 for SimCLR, 0.08 for SimSiam, 8 for

Barlow Twins. We use (0.05, 0.14) scale range for 100 pre-training epochs. For more

pre-training epochs we use (0.05, 0.14) for SimCLR and (0.08, 1.0) for Barlow Twins.

69

Table 2.10 lists the overhead from using rotation prediction in our experiments.

Table 2.10: Overhead in doing rotation prediction. Reported GPU hours for an
experiment on 100 epochs.

SimCLR SimSiam Barlow Twins

Baseline 256 295 246
E-SSL (ours) 307 364 294

Overhead 20% 23% 19%

2.2.11 Appenix F: PhC Experiments

Dataset generation. 2D Photonic crystals (PhCs) are characterized by a peri-

odically varying permitivitty 𝜀(𝑥, 𝑦); here, for simplicity we consider a “two-tone”

permitivitty profile i.e. 𝜀 ∈ {𝜀1, 𝜀2}, with 𝜀𝑖 ∈ [1, 20] discretized to a resolution of

32 × 32. To generate the unit cells in the “blob” dataset, we follow the proceedure

in Christensen et al. [2020]. For the Gpm dataset, the unit cells are defined using a

level set of a 2D Fourier sum function like in Kim et al. [2021a], Loh et al. [2021], with

additional constraints applied to the lattice to create the mirror symmetry adopted

from the method in Christensen et al. [2021]. We then follow the procedure in Loh

et al. [2021] to compute, and subsequently process, the density-of-states (DOS) of

each unit cell, specifically, via the MIT Photonics Bands (MPB) software [Johnson

and Joannopoulos, 2001] and the Generalized Gilat-Raubenheimer method in an im-

plementation from Liu et al. [2018a].

Network architecture. We use an encoder network composing of simple convo-

lutional (CNN) and fully-connected (FC) layers for the backbone; specifically, our

backbone begins with 3 CNN layers, all with a kernel size of 7 and channel dimen-

sions given by [64, 256, 256]. The output is flattened and fed into 2 FC layers each

with 1024 nodes (i.e. the representations have dimension 1024). We include Batch-

Norm [Ioffe and Szegedy, 2015], ReLU and MaxPooling for the CNNs, and ReLU only

for the first FC layer. The projector and predictor networks, 𝑝1 and 𝑝2 are 2-layer

MLPs with hidden dimension 512, with BatchNorm and ReLU between each layer

70

except the last and the projection dimension for 𝑝1 is 256. Additionally, since this is

a regression task and the label space is much larger than in image classification tasks,

we include a dense DOS-predictor head after the representations, which is fine-tuned

with 3000 labelled samples after SSL or E-SSL. The DOS-predictor has 4 FC layers,

with number of nodes given by [1024, 1024, 512, 400]. We explore two fine-tuning pro-

tocols of the DOS-predictor: freezing the backbone (discussed later in the Appendix)

or fine-tuning the backbone (discussed in the main text).

Hyperparameters. For SSL and E-SSL, we performed 250 pre-training epochs

using the SGD optimizer with a standard cosine decayed learning rate; the batch size

was fixed to 512. The pre-trained model was saved at various epochs {20, 50, 100,

180, 250} for further fine-tuning. Fine-tuning was performed for 100 epochs using

Adam optimizer and a fixed batch size of 64. No transformations were applied to

the input during fine-tuning for both freezing or fine-tuning the backbone. We ran a

grid search over the following hyperparameters; for pre-training, base learning rate:

{10−3, 10−4, 10−5}, 𝜆 (for E-SSL): {0.2, 1.0, 2.0, 5.0, 10.0}, and for fine-tuning: a

learning rate in {10−3, 10−4, 10−5}.

Frozen backbone experiment. In Table 2.11 we present our results from freezing

the backbone encoder while fine-tuning the DOS-predictor head. We observe similar

trends as in Table 2.5 where we allowed fine-tuning of the backbone. Relative error

is reported in % and the lower the error is, the better. SimCLR for Blob includes

𝐶4𝑣 (rotations and flips) and SimCLR for Gpm includes rolling translations and flips.

E-SimCLR encourages the features to be sensitive to the selected transformation

(four-fold translations for Blob and four-fold rotations for Gpm), which improves

the performance of SimCLR. On the contrary, adding the selected transformation to

SimCLR, as indicated by “+ Transform”, increases the error of SimCLR. Error bars

are reported for 3 different choices of training data. Supervised (frozen) refers to

the impractical situation of freezing a random backbone and fine-tuning the DOS-

predictor.

71

Table 2.11: Frozen backbone experiment on PhC datasets for 3000/ 2000 labelled
train/ test samples.

PhC Dataset Supervised (frozen) SimCLR SimCLR + Transform E-SimCLR (ours)

Blob 1.686± 0.014 1.237± 0.005 1.242± 0.013 1.165± 0.020
Gpm 5.450± 0.077 3.214± 0.048 3.313± 0.029 3.187± 0.000

Continuous group experiment. In all experiments shown so far, we dealt with

finite groups of transformations. To show that E-SSL generalizes beyond the finite

group setting, we also explore transformations from a continuous group. An example

is the scaling transformation where every pixel of the input unit cell is scaled by the

same positive factor. More specifically, this set of positive scaling transformations

𝑔(𝑠)𝑥 = 𝑠𝑥 defines a continuous group 𝐺 = {𝑔(𝑠)|𝑠 ∈ R+} which leaves the DOS

labels invariant due to the physics of the problem and normalization applied when

pre-processing the dataset [Loh et al., 2021]. In our experiment, we uniformly sample

𝑠 ∈ (1, 𝑠𝑚𝑎𝑥] and apply the inverse with probability 0.5 (i.e. we cap the scaling factor

to a maximum of 𝑠𝑚𝑎𝑥 = {5, 10} for numerical stability during training and we apply

up-scaling and down-scaling with equal probability). To encourage equivariance to

this group, we simply predict the scale factor applied to the input using L1 loss (i.e.

the final layer of the predictor 𝑝2 is a single node). In Table 2.12, we show results after

fine-tuning the backbone and the DOS predictor network with 3000 labelled samples.

We observe similar trends to Table 2.5; encouraging sensitivity to scaling produces

the lowest error and including scaling to SimCLR increases the error. To isolate the

effect of scaling transformation, the remaining physics-governed invariances excluding

scaling (translations, rotations and mirrors) are used in SimCLR and the invariance

part of E-SimCLR for both datasets.

2.3 Flowers-102 Experiments

In order to study the importance of the assumption in Proposition 1 we perform an

experiment with a dataset that might not be amenable to such an assumption at first

sight. We choose the Flowers-102 dataset [Nilsback and Zisserman, 2008], because at

first sight the dataset might not benefit from four-fold rotations in E-SSL. Therefore,

72

Table 2.12: Fine-tuning the backbone on PhC datasets using 3000/ 2000 labelled
train/ test samples. Relative error (%) is ℓDOS = (

∑︀
𝜔

⃒⃒
DOSpred−DOS

⃒⃒
)/(
∑︀

𝜔 DOS).
Lower is better. E-SimCLR encourages the features to be sensitive to scaling. “+
Scaling” means adding scaling to SimCLR. Error bars are for 3 different training data
splits.

PhC Dataset Supervised SimCLR SimCLR + Scaling E-SimCLR (ours)

Blob (𝑠𝑚𝑎𝑥 = 10) 1.068 ± 0.015 0.988± 0.001 1.005± 0.006 0.974± 0.000

Blob (𝑠𝑚𝑎𝑥 = 5) 1.068 ± 0.015 0.988± 0.001 1.000± 0.014 0.987± 0.017

Gpm (𝑠𝑚𝑎𝑥 = 10) 3.212± 0.041 3.073± 0.003 3.112±0.011 3.062± 0.005

Gpm (𝑠𝑚𝑎𝑥 = 5) 3.212± 0.041 3.073± 0.003 3.082±0.013 3.058± 0.008

this dataset complements the experiments we performed for CIFAR-10 and ImageNet.

Experimental setup. We train SimCLR and E-SimCLR. We use the same op-

timization hyperparameters from the experimental setup for our CIFAR-10 experi-

ments. We downsize the images to 96x96 resolution and use the standard ResNet-18,

instead of its modified version for CIFAR-10. For the data augmentation in I-SSL,

we use the same RandomResizedCropping as in CIFAR-10 (with size 96 of the crops

being the only difference), the same Color Jittering and Random horizontal flips as

in the CIFAR-10 experiment. We report the kNN accuracy in (%) on the validation

set. We study both four-fold rotations and four-fold translations as transformations

for invariance/ equivariance. Four-fold rotations are chosen following the hypothesis

that most of the data points should be invariant to rotation. Four-fold translations

are chosen, because of our observation that most of the data points are centered, just

like in the Blob PhC dataset. The 𝜆 for predicting four-fold translations is 0.01 and

for four-fold rotations is 0.5 (chosen from a grid search among {0.001, 0.01, 0.1, 0.5,

1.0, 2.0}).

Results. Following our observations in Figure 2-1, we observe that encouraging in-

sensitivity to four-fold rotations and translations, by adding the transformations to

the SimCLR data augmentation, worsens the SimCLR baseline. In contrast, using

these transformations for E-SSL improves the baselines and further shows the utility

of E-SSL for real-world data. We even observe benefit from encouraging equivariance

73

to four-fold rotations, which is against the intuition that rotations should be invari-

ant. This is probably due to the fact that some images in the dataset are not truly

rotationally invariant (see examples of the data points in Figure 2-8).

0 100 200 300 400 500 600 700 800
epochs

20

30

40

50

60

kN
N

ac
cu

ra
cy

 (%
)

Translation Experiment

SimCLR (baseline)
E-SimCLR w/ Translation (ours)
SimCLR w/ Translation

0 100 200 300 400 500 600 700 800

10

20

30

40

50

60

Rotation Experiment

SimCLR (baseline)
E-SimCLR w/ Rotation (ours)
SimCLR w/ Rotation

Figure 2-7: E-SimCLR gives sizable improvements for the Flowers-102 SSL pre-
training. kNN accuracy (%) is on the validation set.

2.3.1 Appendix G: Relative Orientation Prediction

In our experiments we demonstrate that if a shared biased between the train and test

sets exists, we should exploit it via the E-SSL training objective. However, in some

scenarios, the class label of the downstream tasks depends on the orientation (e.g.,

classifying road signs) and the current E-SSL method may not be very useful, because

both 𝑥 and 𝑇𝑔(𝑥) exist in the data. This situation invites a natural generalization

of our method in the spirit of [Agrawal et al., 2015]. If 𝑥 and 𝑇𝑔(𝑥) exist in the

data then we can modify E-SSL minimally to form a useful objective. In particular,

we can set the objective for 𝑝2 to predict the relative orientation between two data

points, i.e. given 𝑥, we form 𝑇𝑔′(𝑥) by sampling 𝑇𝑔′ from 𝐺 uniformly, and then

predict 𝑔′ from 𝑝2(𝑧;𝜃𝑝2), where 𝑧 = [𝑓(𝑥), 𝑓(𝑇𝑔′(𝑥))] is the concatenation of the two

representations. This modification requires minimal change to our framework.

74

Figure 2-8: The Flowers-102 is not completely invariant to rotation. The top row
shows data points which are roughly invariant to four-fold translations. The bottom
row shows counterexamples to that hypothesis.

To test the usefulness of the modified method when 𝑥 and 𝑇𝑔′(𝑥) exist in the data,

we artificially modify CIFAR-10 so that any rotation of an image can appear in the

dataset. We consider the downstream task of predicting the rotation orientation of

an image, which clearly depends on the orientation of the image. Our hypothesis is

that the modified E-SimCLR will be better than SimCLR, which is what we observe

in our results below. Intuitively, SimCLR is not able to capture the orientation of the

image, while the modified E-SimCLR is able to, because the latter predicts relative

orientation.

The experimental setting is as follows: we pretrain for 100 epochs. The predictor

for equivariance’s input dimension is doubled, because we concatenate two represen-

tations. We set 𝜆 to 0.4. All other hyperparameters are the same as the rest of the

CIFAR-10 experiments. The downstream task is 4-way rotation orientation classifica-

tion. Using pre-training with SimCLR on the standard CIFAR-10 dataset, we obtain

75

baseline linear probe (%) accuracy 67.1±0.1. Using our modification of E-SSL on the

same experimental setting, we obtain 71.2±0.1. linear probe accuracy, which is a

sizable gain and points to the promise of the relative orientation prediction as future

work.

The relative orientation prediction scenario is also highly relevant in other domains

such as in photonic crystals. For example, we can modify the PhC setup and remove

the “orientation bias” of the datasets while predicting a different property, the band

structures. Unlike the DOS, the PhC band structures are not invariant to rotations

and so we can consider the group of four-fold rotations. This setup would fit the

scenario described above since 1) both 𝑥 and 𝑇𝑔′(𝑥) exist in the data due to the lack

of bias and 2) the downstream task is sensitive to rotation. We will explore the above

framework on this setup in future work.

Outlook. In this section we present equivariant contrastive learning as a framework

for using transformations in various ways, equivariant or invariant. We showed that

each dataset has a preference for invariance or equivariance to a particular transfor-

mation. However, we only considered the downstream task performance aggregated

across the entire dataset. What if a single dataset benefits from a variety of sym-

metries, both invariant and equivariant? We address the limitation of equivariant

contrastive learning in the following section.

2.4 Multi-Symmetry Ensembles

To motivate the study of multiple symmetries, we consider the transformation of 4-

fold rotations from the previous section. In Table 2.13 we consider various pretraining

strategies (“Baseline” SimCLR training, “Eq”, E-SimCLR and “Inv”, I-SimCLR), and

show their accuracies at the top of the table. For each of the 1,000 classes in the

dataset, we compute the accuracy per each pretraining strategy after fine-tuning on

ImageNet. Then we check the proportion of the classes, where Eq performs the best,

Inv performs the best, or where both pretraining strategies are similar. We observe

76

Table 2.13: Most suitable functional class differs within a dataset. The top-
half shows the overall accuracy for models from the SimCLR baseline and each of the
opposing hypotheses wrt 4-fold rotations. The bottom-half shows the proportion of
classes within each dataset where each hypotheses dominate (i.e. averaged over all
samples within the class), suggesting that hypotheses apart from the one with the
highest individual accuracy are still beneficial.

Model Accuracy on ImageNet (%)

Baseline 76.5
Eq 76.9
Inv 76.0

Proportion of Classes (%)

Eq > Inv 47.7
Eq < Inv 36.3
Eq == Inv 16.0

that a sizable portion of the classes prefer Eq, and likewise for Inv. This experiment

suggests that both symmetries create useful hypothesis spaces during pre-training

that could be exploited in the fine-tuning stage. However, what is a useful way of

combining these symmetries?

In Figure 2-9 we present a very simple and natural method to combine multiple

symmetries, which we dub Multi-Symmetry Ensembles (MSE). In Panel (a) we in-

troduce the notion of our method. In green we show multiple solutions around one

hypothesis, which forms the methods of deep ensembles Deep Ensembles : averages

of the predicted distributions of multiple solutions around one hypothesis (in green)

[Lakshminarayanan et al., 2016]. While this method offers sizable gains in accuracy

and improved calibration, it is only limited to a single hypothesis, which seems sub-

optimal as judged by our experiments presented in Table 2.13. Thus, we introduce

multiple axes of hypotheses labelled by 𝐻𝑖 for 𝑖 = 1, 2, 3 where we collect multiple so-

lutions around a hypothesis that is either equivariant or invariant to a corresponding

transformation 𝑇𝑖. We could consider multiple types of transformations 𝑇 . In Panel

(b) we present the four-fold rotation.

77

𝐻!:	𝐸𝑞 𝑡𝑜 𝑇!

𝐻!′:	 𝐼𝑛𝑣 𝑡𝑜 𝑇!

: Deep Ensemble (random init.)
: Deep Ensemble of Eq.
: Multi-Symmetry Ensemble (ours)

𝐻"

𝐻"′

𝐻#𝐻#'

Hypothesis
Space

(a)

𝐼𝑛𝑣

𝐸𝑞

(b) 𝑇 = four-fold rotations

Figure 2-9: (a) A comparative illustration of the diversity in the hypothesis space
that traditional deep ensembles and our MSE can achieve. While deep ensembles
are effective at capturing different solutions around one hypothesis, MSE can learn
diverse solutions around inherently opposing hypotheses. (b) Schematic visualization
of invariance (top) v.s. equivariance (bottom) for the four-fold rotation. The spheres
denote the representation space of the models.

Scalability. In Figure 2-10 we present the effect of having a variety of hypotheses

in an ensemble (MSE) on scaling the accuracy of the ensemble. Namely, we observe

that using both equivariant and invariant members of the ensemble (orange line, our

MSE method) is the only method that continues scaling noticeably by increasing the

number of ensemble members.

Mixing transformations. In Table 2.14 we also demonstrate a new capability of

equivariant contrastive learning, where we can combine multiple transformations in a

single classifier in the form of an MSE. Recall that we found it challenging to combine

multiple transformations in a single model [Dangovski et al., 2021a]. Using MSE is a

78

2 3 4 5 6 7
of models

77.0

77.5

78.0

78.5

79.0

79.5
En

se
m

. A
cc

. (
%

)

Eq
Eq + Inv (MSE)
Inv
DE SimCLR
DE supervised

Figure 2-10: Ensembles with opposing hypotheses have significantly larger
potential. Ensembles constructed only from a single hypothesis very quickly give
marginal ensembling gains from adding more members.

more scalable alternative that enables noticeable improvements (of about 1%) when

all transformations are combined.

Effectiveness of MSE depends on dataset diversity. In Figure 2-11 we present

the ensemble efficiency, the change in the performance of the ensemble relative to the

mean accuracy of the individual models in the ensemble. we aim to provide empirical

guidance on when the inclusion of opposing hypotheses in an ensemble is beneficial.

We evaluate the proportion of classes dominated by each of the opposing hypotheses

(invariant and equivariant symmetries) for different datasets, including iNaturalist-

1k, CIFAR-100, ImageNet-V2, and ImageNet-R. These results are shown in 2-11. Our

findings indicate that on datasets such as iNaturalist-1k, the inclusion of opposing

hypotheses in the ensemble improves performance. However, on datasets like CIFAR-

100 and ImageNet-R, the opposing hypotheses do not provide significant gains. This

is because these datasets have a high level of imbalance between the dominance of

the two hypotheses, with one hypothesis dominating in a majority of the classes. For

example, in ImageNet-R, the equivariant hypothesis dominates in 76.5% of the classes

79

Table 2.14: Capturing opposing hypotheses across transformations for 𝑀 =
6. The upper three rows are ensembles that consist of both equivariant and invariant
learners with respect to a single transformation and the bottom row greedily searches
over all models across the three transformations.

Ensemble Accuracy on ImageNet-100 (%)

Rotate 86.60
Halfswap 86.00
ColorInvert 86.26

Rotate + Halfswap + ColorInvert 87.22

while the invariant hypothesis only dominates in 18% of classes. These datasets are

poorly described by the opposing hypothesis and thus including them in the ensemble

provides little to no improvement in performance.

Empirical intuition on datasets where MSE are effective. In our work, we

found the effectiveness of MSE to be highly dependent on dataset diversity. In partic-

ular, if the datasets are poorly described by the opposing hypothesis (i.e. ImageNet-R,

i.e. IN-R in Figure 2-11), the gains from MSE would be negligible. Here, we provide

some intuition on why this may be so. Following the intuition provided in the previ-

ous paragraph, we conjecture that this could be related to the existence of a dominant

pose of images in the dataset. An example of the class of “jellyfish” in ImageNet (IN)

and IN-R is shown in 2-12. In IN-R which contains renditions of the images, such as

in cartoon and art, many images assume a conventional “upright" pose of the jellyfish

with its head on top and its tentacles trailing below vertically. However, in IN where

real-life jellyfish are imaged, they often occur in multiple poses. We believe this is

true for other classes as well, since artists often draw objects in their ‘conventional

pose’. Thus, for IN, invariant models are useful for 36.3% (v.s. equivariant models

being useful in 47.7%). In contrast, for IN-R, invariant models are dominant only for

18% of the classes (v.s. equivariant models being dominant in 76.5%). Given the ex-

istence of an upright pose in IN-R, equivariant models that encode pose information

are likely more useful than invariant models leading to this stark difference.

80

Δ Ensem. E�.
Δ Ensem. Acc. 1.6 0.2 0.1 0.1 0.1 0.0

0.8 0.2 0.4 0.5 0.2 0.0

Figure 2-11: Understanding the effectiveness of including the opposing hy-
pothesis. Plot shows the proportion of classes in each dataset where each hypothesis
dominates. The remaining proportions (not shown) are classes where Eq and Inv are
equally performant. Gains are minimal in datasets with a high level of imbalance
between the leading and opposing hypothesis.

Outlook. Our work on MSE addressed the limitation of our work on equivariant

contrastive learning by allowing a single classifier (an ensemble) to contain different

types of hypotheses (equivariant or invariant). However, we used our background

knowledge for what might be a good transformations, such as Rotation, Halfswap,

or ColorInvert (see Table 2.14). In reality our intuition of what might be a useful

synthetic transformation could fail, and we might be challenged to use any meaningful

synthetic transformation at all. We address that problem in the following section by

studying contrastive learning for sentence embedding.

2.5 DiffCSE: Difference-Based Contrastive Learning

for Sentence Embeddings

Motivation. Learning “universal” sentence representations that capture rich se-

mantic information and are at the same time performant across a wide range of

downstream NLP tasks without task-specific finetuning is an important open issue in

the field [Conneau et al., 2017, Cer et al., 2018, Kiros et al., 2015, Logeswaran and

81

Figure 2-12: Examples of images from the “jellyfish” class in Ima-
geNet (left) and ImageNet-R (right). Samples visualized using https://
knowyourdata-tfds.withgoogle.com/

Lee, 2018, Giorgi et al., 2020, Yan et al., 2021, Gao et al., 2021]. Recent work has

shown that finetuning pretrained language models with contrastive learning makes it

possible to learn good sentence embeddings without any labeled data [Giorgi et al.,

2020, Yan et al., 2021, Gao et al., 2021]. Contrastive learning uses multiple aug-

mentations on a single datum to construct positive pairs whose representations are

trained to be more similar to one another than negative pairs. While different data

augmentations (random cropping, color jitter, rotations, etc.) have been found to be

crucial for pretraining vision models [Chen et al., 2020a], such augmentations have

generally been unsuccessful when applied to contrastive learning of sentence embed-

dings. Indeed, Gao et al. [2021] find that constructing positive pairs in SimCLR via a

simple dropout-based augmentation works much better than more complex augmen-

tations such as word deletions or replacements based on synonyms or masked lan-

guage models. This is perhaps unsurprising in hindsight; while the training objective

in contrastive learning encourages representations to be invariant to augmentation

transformations, direct augmentations on the input (e.g., deletion, replacement) often

change the meaning of the sentence. That is, ideal sentence embeddings should not

be invariant to such transformations.

82

https://knowyourdata-tfds.withgoogle.com/
https://knowyourdata-tfds.withgoogle.com/

 “You [MASK] know what you’re gonna [MASK] .” “You never know what you’re gonna get .”

Sentence Encoder

Generator (fixed)

Contrastive Loss

 “You gotta know what you’re gonna do .”

Discriminator

0 1 0 0 0 0 1

Replaced Token Detection Loss

Random
Masking

0: original
1: replaced

Figure 2-13: Illustration of DiffCSE. On the left-hand side is a standard SimCSE
model trained with regular contrastive loss on dropout transformations. On the right
hand side is a conditional difference prediction model which takes the sentence vector
h as input and predict the difference between 𝑥 and 𝑥′′. During testing we discard
the discriminator and only use h as the sentence embedding.

Our method: DiffCSE. In Figure 2-13 we demonstrate the application of equivari-

ant contrastive learning to sentence embeddings. We present an additional training

objective of the Sentence Encoder1 from the SimCSE “Contrastive Loss” objective

(left). Namely, we apply random masking to the input sentence and use a small fixed

Generator2 to replace the masked tokens. Then we condition a Discriminator (the

same model as the Sentence Encoder) on the hidden state from the Sentence En-

coder and the modified sentence from the Generator to perform the “Replaced Token

Detection Loss” (right).

We are inspired by a recent generalization of contrastive learning in computer

vision (CV) called equivariant contrastive learning [Dangovski et al., 2021a]. We now

explain how this CV technique can be adapted to natural language.

1We also use the checkpoints of BERT Devlin et al. [2019] and RoBERTa Liu et al. [2019] as the
initialization of our sentence encoder.

2DistilBERT or DistilRoBERTa [Sanh et al., 2019].

83

Understanding the role of input transformations is crucial for successful contrastive

learning. Past empirical studies have revealed useful transformations for contrastive

learning, such as random resized cropping and color jitter for computer vision Chen

et al. [2020a] and dropout for NLP Gao et al. [2021]. Contrastive learning encourages

representations to be insensitive to these transformations, i.e. the encoder is trained

to be invariant to a set of manually chosen transformations. The above studies in CV

and NLP have also revealed transformations that are harmful for contrastive learning.

For example, Chen et al. [2020a] showed that making the representations insensitive to

rotations decreases the ImageNet linear probe accuracy, and Gao et al. [2021] showed

that using an MLM to replace 15% of the words drastically reduces performance

on STS-B. While previous works simply omit these transformations from contrastive

pre-training, here we argue that we should still make use of these transformations

by learning representations that are sensitive (but not necessarily invariant) to such

transformations.

The notion of (in)sensitivity can be captured by the more general property of

equivariance in mathematics. Let 𝑇 be a transformation from a group 𝐺 and let 𝑇 (𝑥)

denote the transformation of a sentence 𝑥. Equivariance is the property that there is

an induced group transformation 𝑇 ′ on the output features [Dangovski et al., 2021a]:

𝑓(𝑇 (𝑥)) = 𝑇 ′(𝑓(𝑥)).

In the special case of contrastive learning, 𝑇 ′’s target is the identity transformation,

and we say that 𝑓 is trained to be “invariant to 𝑇 .” However, invariance is just a

trivial case of equivariance, and we can design training objectives where 𝑇 ′ is not the

identity for some transformations (such as MLM), while it is the identity for others

(such as dropout). Dangovski et al. [2021a] show that generalizing contrastive learn-

ing to equivariance in this way improves the semantic quality of features in CV, and

here we show that the complementary nature of invariance and equivariance extends

to the NLP domain. The key observation is that the encoder should be equivariant to

MLM-based augmentation instead of being invariant. We can operationalize this by

using a conditional discriminator that combines the sentence representation with an

84

edited sentence, and then predicts the difference between the original and edited sen-

tences. This is essentially a conditional version of the ELECTRA model [Clark et al.,

2020], which makes the encoder equivariant to MLM by using a binary discriminator

which detects whether a token is from the original sentence or from a generator. We

hypothesize that conditioning the ELECTRA model with the representation from our

sentence encoder is a useful objective for encouraging 𝑓 to be “equivariant to MLM.”

To the best of our knowledge, we are the first to observe and highlight the above

parallel between CV and NLP. In particular, we show that equivariant contrastive

learning extends beyond CV, and that it works for transformations even without al-

gebraic structures, such as diff operations on sentences. Further, insofar as the canon-

ical set of useful transformations is less established in NLP than is in CV, DiffCSE

can serve as a diagnostic tool for NLP researchers to discover useful transformations.

Data. For unsupervised pretraining, we use the same 106 randomly sampled sen-

tences from English Wikipedia that are provided by the source code of SimCSE.

We evaluate our model on 7 semantic textual similarity (STS) and 7 transfer tasks

in SentEval.3 STS tasks includes STS 2012–2016 [Agirre et al., 2016], STS Bench-

mark [Cer et al., 2017] and SICK-Relatedness [Marelli et al., 2014]. All the STS

experiments are fully unsupervised, which means no STS training datasets are used

and all embeddings are fixed once they are trained.

Results. We compare our model with many strong unsupervised baselines including

SimCSE [Gao et al., 2021], IS-BERT [Zhang et al., 2020], CMLM [Yang et al., 2020],

DeCLUTR [Giorgi et al., 2020], CT-BERT [Carlsson et al., 2021], SG-OPT [Kim

et al., 2021b] and some post-processing methods like BERT-flow [Li et al., 2020]

and BERT-whitening [Su et al., 2021] along with some naive baselines like averaged

GloVe embeddings [Pennington et al., 2014] and averaged first and last layer BERT

embeddings.

We show the results of STS tasks in Table 2.15 including BERTbase (upper part)

3https://github.com/facebookresearch/SentEval

85

https://github.com/facebookresearch/SentEval

and RoBERTabase (lower part). We also reproduce the previous state-of-the-art Sim-

CSE [Gao et al., 2021]. DiffCSE-BERTbase can significantly outperform SimCSE-

BERTbase and raise the averaged Spearman’s correlation from 76.25% to 78.49%.

For the RoBERTa model, DiffCSE-RoBERTabase can also improve upon SimCSE-

RoBERTabase from 76.57% to 77.80%.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embeddings (avg.)♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase (first-last avg.)♢ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERTbase-flow♢ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening♢ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERTbase

♡ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CMLM-BERTbase

♠ (1TB data) 58.20 61.07 61.67 73.32 74.88 76.60 64.80 67.22
CT-BERTbase

♢ 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
SG-OPT-BERTbase

† 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
SimCSE-BERTbase

♢ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
* SimCSE-BERTbase(reproduce) 70.82 82.24 73.25 81.38 77.06 77.24 71.16 76.16
* DiffCSE-BERTbase 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49

RoBERTabase (first-last avg.)♢ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabase-whitening♢ 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTabase ♢ 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99
SimCSE-RoBERTabase ♢ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
* SimCSE-RoBERTabase(reproduce) 68.60 81.36 73.16 81.61 80.76 80.58 68.83 76.41
* DiffCSE-RoBERTabase 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21

Table 2.15: The performance on STS tasks (Spearman’s correlation) for different
sentence embedding models. ♣: results from Reimers and Gurevych [2019]; ♡: results
from Zhang et al. [2020]; ♢: results from Gao et al. [2021]; ♠: results from Yang et al.
[2020]; †: results from Kim et al. [2021b]; *: results from our experiments.

Outlook. So far in our discussion we have used symmetry-based inductive biases to

improve representation learning in computer vision and natural language processing.

A critical part of our new question is whether we could utilize these improvements in

representation learning to mitigate the issues with representation learning for Science.

We address that challenge in the following section by applying our insights for data-

scarce applications in Science.

2.6 Surrogate- and Invariance-Boosted Contrastive

Learning for Data-Scarce Applications in Science

In Figure 2-14 we demonstrate the power of contrastive learning to improve data-

scarce applications. Since we have a limited number of labeled data for predicting

86

a �������������� b �������������������� c �������
���������
����
���������

	����������� �����������
���
���	��
�� ������������
�����

����
� �

d

�

Figure 2-14: Overcoming data scarcity with SIB-CL. We propose to overcome
data scarcity by leveraging a) an abundance of unlabeled data, b) prior knowledge of
the underlying physics (e.g., symmetries and invariances of the data) and c) knowledge
from a possibly-approximate surrogate data which is faster and cheaper to generate
(e.g., coarse-grained computations or special-case analytical solutions). d) SIB-CL
incorporates these auxiliary information into a single framework to accelerate training
in data-scarce settings.

the desired physical property (density of states, bandgaps, ground states, etc.), we

make use of useful background knowledge and resources that are cheap to obtain and

do not require extensive human annotation. Namely, in Panel a) we show examples of

2D PhC unit cells that are unlabeled but easy to obtain. In Panel b) we demonstrate

the transformations under which the physical properties should be invariant. We

encourage that property with a contrastive learning objective. In Panel c) we use a

simpler, easily obtainable, surrogate dataset that is labeled with the desired physical

properties and so it could also be used for pretraining. We use a-c) to pretrain a neural

network framework, which we further finetune on a small dataset. The objective of

our work is to improve the prediction performance of the neural network with our

pretraining strategy.

Our method, Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

is sketched in Panel d). SIB-CL applies the physical invariances from Panel b) as

87

data augmentation for contrastive learning on the unlabeled dataset from Panel a).

Additionally, jointly we pretrain the neural network encoder to predict the desired

properties on the surrogate data from Panel c).

DOS ΔDOS
pred DOS EL

b Visualization of prediction error

0.24 0.96 0.24 0.96
1

10
1

10
1

10
Error: 1.5% 2.5%

3.2% 3.8%

4.5% 5.5%

D
en

si
ty

 o
f s

ta
te

s
ω

0
D

O
S (

ω
/ω

0)

Frequency ω/ω0

a Results of DOS prediction

1 20�Δ

Re
la

tiv
e

er
ro

r (
%

)

4

3

5
6
7
8

Fine-tuning size Nt

50 100 200 400 800 1600 3200
2

SL
TL
SIB-CL13x

7x

Figure 2-15: Network prediction results for PhC-DOS problem. a) Network
prediction error against fine-tuning dataset sizes, 𝑁t, between 50 and 3000, when
using our SIB-CL framework (based on SimCLR [Chen et al., 2020a] during con-
trastive learning) compared against the baselines: direct supervised learning (SL)
and standard approaches involving transfer learning (TL) or involving invariances via
data augmentation (SL-I). A 9-fold (7-fold) reduction in target data requirements is
obtained by using SIB-CL over SL (SL-I, TL) at a relative error target of ∼ 5.1%.
Error bars show the 1𝜎 uncertainty level estimated from varying the data selection
of 𝐷t. b) Examples of the DOS spectrum predicted by the SIB-CL-trained network
compared against the actual DOS at various error levels (insets depict associated unit
cells, shown here using the network-inputs’ resolution of 32× 32).

Results. We focus our results on photonic crystals, which we studied in Section 4.2.5.

In Figure 2-15 we demonstrate the performance gains from SIB-CL. In Panel a) we ob-

serve that we can obtain an order of magnitude reduction in the number of datapoints

we need in order to match the relative error. In Panel b) we further demonstrate that

88

the predictions of the SIB-CL network are highly accurate across the various error

levels.

Comparison with neural networks that have the inductive bias of invari-

ance. While with SIB-CL we are encouraging the inductive bias of physical invari-

ances during pretraining, there are neural networks that are parameterized to be al-

ways invariant by design. These are equivariant neural networks [Cohen and Welling,

2016, Bronstein et al., 2021]. Since we are enforcing the inductive bias through a

training objective on a training dataset and not through a parameterization, it is

natural to hypothesize that equivariant neural networks could generalize better than

SIB-CL.

Method Time to build/init. model (s) Time for a forward pass(s)

SIB-CL 0.046 0.0098
E2CNN 56.5 1.33

Table 2.16: Computational times for building the network and performing a single
forward pass of the network in SIB-CL vs in E2CNN models of equal number of
parameters (approx. 8M parameters).

However, we observe that the generalization of equivariant neural networks comes

at a trade-off cost. First of all, in Table 2.16 we compare the time efficiency of SIB-CL

with E2CNN [Weiler and Cesa, 2019], a state-of-the-art neural network. We observe

that SIB-CL is several orders of magnitude faster. Furthermore, in Figure 2-16 we

observe that SIB-CL (orange) can even improve upon E2CNN when there are enough

datapoints for fine-tuning. These findings indicate that the use of contrastive learning

to encourage the property of equivariance is a fruitful area of research.

Outlook. Our study has successfully showcased the employment of contrastive

learning to induce an inductive bias that adheres to physical invariances. Nonethe-

less, our work does harbor a limitation; the labels we utilize are derived synthetically

by conducting physics simulations for the DOS values of the photonic crystals. An

intriguing prospect arises as to whether the efficacy of contrastive learning would re-

89

SL
E2CNN - SL
E2CNN - TL
SIB-CL (rotations + mirrors only)

Figure 2-16: Comparison of SIB-CL with an equivariant network E2CNN [Weiler
and Cesa, 2019]. E2CNN is trained using supervised learning (E2CNN-SL) as well as
fine-tuned after an additional pre-training stage using the surrogate dataset (E2CNN-
TL). The supervised baseline (SL) using the non-equivariant architecture that SIB-CL
uses is also included for comparison. Error bars show the 1𝜎 uncertainty level when
varying the data selection of the fine-tuning dataset.

main observable in a more pragmatic context, where scientific data is not artificially

generated, but systematically recorded.

2.7 Contrastive Learning for Stormy Event Imagery

To address the limitation from the previous section, we study a dataset of real scien-

tific recordings and a novel few-shot learning benchmark as follows.

2.7.1 Storm Event Imagery

The Storm Event Imagery (SEVIR) [Veillette et al., 2020] is a radar and satellite me-

teorology dataset (Figure 2-17). It is a collection of over 10,000 weather events, each

of which tracks 5 sensor modalities within 384 km× 384 km patches for 4 hours. The

events are uniformly sampled so that there are 49 frames for each 4 hour period, and

the 5 channels consist of: i) 1 visible and 2 IR sensors from the GOES-16 advanced

baseline [Schmit et al., 2017] ii) vertically integrated liquid (VIL) from NEXTRAD

iii) lightning flashes from GOES-16 . Figure 2-17 shows examples of the two IR and

the VIL modalities. We disregard the visible channel because it often contains no

90

Figure 2-17: Frame from The Storm Event Imagery (SEVIR) dataset. We
use four of the five available modalities: 2 IR, VIL, and lightning information.

information as visible radiation is easily occluded. Veillette et al. [2020] suggested

several machine learning problems that can be studied on SEVIR and provided base-

lines for two of these: nowcasting and synthetic weather radar generation. In both

cases they train U-Net models [Ronneberger et al., 2015] to predict VIL information

and experiment with various loss functions.

Evaluation We review common evaluation metrics used in the satellite and radar

literature to analyse artificially-generated VIL imagery. They all compare the target

and generated samples after binarizing them with an arbitrarily threshold in [0, 255]

and look at counts in the associated confusion matrix. Let 𝐻 denote the number of

true positives, 𝑀 denote the number of false negatives and 𝐹 the number of false

positives. Veillette et al. [2020] define four evaluation metrics: Critical Succes Index

(CSI) is equivalent to the intersection over union 𝐻
𝐻+𝑀+𝐹

; Probability of detection

(POD) is equivalent to recall 𝐻
𝐻+𝑀

; Succes Ratio (SUCR) is equivalent to precision
𝐻

𝐻+𝐹
.

2.7.2 Benchmark Construction

We leverage the SEVIR [Veillette et al., 2020] dataset to construct a few-shot multi-

task image-to-image translation problem where each task corresponds to one event.

From the 49 available frames we keep the first 𝑁support frames to form the task’s

support set and the next𝑁query to be the query. Throughout the following experiments

91

we set 𝑁support = 𝑁query = 10.

For the sake of this discussion let’s assume we have re-scaled all input modalities

to the maximum observed resolution 384 × 384 so that we can view all of SEVIR

as a simple input tensor 𝒟1 ∈ R𝑁event×𝑁frames×𝐶×𝑤×ℎ, where: i) 𝑁event = 11479; ii)

𝑁frames = 𝑁support + 𝑁query; iii) 𝐶 = 4; iv) 𝑤 = ℎ = 384. The four input channels

are split into three input modalities 𝐶in = 3 and one target 𝐶out = 1. For joint

training we ignore the hierarchical dataset structure and collapse the first two axis

𝒟2 ∈ R𝑁×𝐶×𝑤×ℎ, where 𝑁 = 𝑁event ×𝑁frames — the total number of frames.

2.7.3 Methods

We solve the aforementioned task using either first-order or second-order gradient

descent methods on U-Nets trained using either reconstruction or adversarial objec-

tives. Note that in the case when we train GANs using MAML we are searching for a

good initialization for multiple related saddle-point problems. Despite this challeng-

ing task, we still obtain good performance.

Below we present the meta-train loop for adversarial networks, which is a novel

contribution of our work. For simplicity, we only present the variant with a single

SGD inner-loop adaptation step. We train a U-Net generator 𝐺 with model weights

𝑤𝐺 jointly with an extranous patch discriminator 𝐷 with model weights 𝑤𝐷 using

data 𝒟 ∈ R𝑁event×𝑁frames×𝐶×𝑤×ℎ. We use batched alternating gradient descent as

our optimization algorithm and consider batches ℬ ∈ R𝐵×𝑁frames×𝐶×𝑤×ℎ, where 𝐵

is the meta-batch size. Each of these can be split along the second axis into the

support and query sets, and along the third axis into the source (𝑆) and target tensors

(𝑇) to create 𝑆support ∈ R𝐵×𝑁support×𝐶in×𝑤×ℎ, 𝑆query ∈ R𝐵×𝑁query×𝐶in×𝑤×ℎ, 𝑇 support ∈

R𝐵×𝑁support×𝐶out×𝑤×ℎ, 𝑇 query ∈ R𝐵×𝑁query×𝐶out×𝑤×ℎ. For any of these tensors 𝑋 ∈

{𝑆support, 𝑆query, 𝑇 support, 𝑇 query} we refer to the four-dimensional tensor given by

the 𝑖th task or event as 𝑋𝑖. We use such four-dimensional tensor quantities to evaluate

the generator and discriminator loss functions:

ℒ̂𝐺(𝑡generated, 𝑡, 𝑠;𝑤𝐺, 𝑤𝐷) = − log𝐷(𝑠, 𝑡generated) + 𝜆||𝑡generated − 𝑡||1 (2.2)

92

ℒ̂𝐷(𝑡generated, 𝑡, 𝑠;𝑤𝐺, 𝑤𝐷) =
log𝐷(𝑠, 𝑡generated)− log𝐷(𝑠, 𝑡)

2
, (2.3)

where 𝑡generated = 𝐺(𝑠) is a generated target sample, 𝑡 and 𝑠 are corresponding

input and output modalities, ||𝑥||1 is the mean absolute error. Note the slight

abuse of notation where by log𝐷(𝑥, 𝑦) with 𝑥, 𝑦 ∈ R𝑁×𝐶×𝑤×ℎ we mean the average
1
𝑁

∑︀𝑁
𝑖=1 log𝐷(𝑥𝑖, 𝑦𝑖). This formulation also uses the trick of replacing max log (1−𝐷(𝐺(𝑧)))

with min log𝐷(𝐺(𝑧)) to obtain a non-saturating generator objective. We wrote the

loss functions above such that both players want to minimize their respective objec-

tives.

For each task in a meta-batch size we evaluate the losses above on the support set

frames and adapt to this event using SGD to obtain parameters 𝜑. We then evaluate

the same losses on the task’s query set using finetuned models. We repeat these two

steps for each event in the meta-batch and perform a second-order gradient update

to the initial parameters to optimize the average loss across all events in the meta-

batch. The procedure for the Reconstruction loss requires minimal modification. In

particular, we modify Equation 2.2 by removing the first term for the discriminator.

2.7.4 Experimental Details

We run experiments using a single 32GB Nvidia Volta V100 GPU. For MAML op-

timization [Arnold et al., 2020] we use meta-batch sizes of 2, 3 or 4 events. For the

corresponding joint training baselines we used 𝑁support+𝑁query frames from each event

and comparable number of events to keep comparisons fair. We randomly split all

SEVIR events into 9169 train, 1162 validation, and 1148 test tasks. Joint training

baselines and MAML outer loop optimizations are both performed using the Adam

optimizer [Kingma and Ba, 2017] with learning rate 0.0002 and momentum 0.5.

We resize input modalities to all have 192× 192 resolution and keep the target at

384 × 384. The generator’s encoder has four convolutional blocks, and the decoder

has five. All generator blocks except for the last decoder layer use ReLU activation

functions. The very last layer uses linear activation functions to support z-score

normalization for all four image modalities.

93

2.7.5 Self-supervised Pre-training

Method

We follow recent work in self-supervised pretraining which applies contrastive learn-

ing to convolutional networks before finetuning on classification tasks and improves

downstream performance and data efficiency. We ask if these improvements extrap-

olate to our image-to-image setup. The main distinction between our scenario and

those in previous work is that we can initialize only a fraction of our parameters

through contrastive pretraining.

We restrict our attention to the U-Net encoder parameters during the pretraining

stage and follow the same network architecture as the standard U-Net from the pre-

vious section. Our experiments are inspired by the large-scale study on unsupervised

spatiotemporal representation learning, conducted by [Feichtenhofer et al., 2021]. In

particular, we focus on MoCoV3 [Chen et al., 2021], which is a state-of-the-art con-

trastive learning method, because [Feichtenhofer et al., 2021] identify the momentum

contrast (MoCo) contrastive learning method as the most useful for our data.

Pre-training objective. For a given representation 𝑞 of a query frame from the

dataset, a positive key representation 𝑘+ and a negative key representation 𝑘−, the

loss function increases the similarity between the representations within the positive

pair (𝑞, 𝑘+) and decreases the similarity within the negative pair (𝑞, 𝑘−) respectively.

All representations are normalized on the unit sphere and the similarity is the dot

product (i.e. the cosine similarity, because the representations are normalized). The

loss is the InfoNCE loss [Oord et al., 2018]:

ℒ̂𝑞 = − log
𝑒𝑝(𝑞)·sg(𝑘

+)/𝜏

𝑒𝑝(𝑞)·sg(𝑘+)/𝜏 +
∑︀

𝑘− 𝑒
𝑝(𝑞)·sg(𝑘−)/𝜏

(2.4)

for a temperature parameter 𝜏 and a predictor MLP 𝑝, which is a two layer MLP, with

input dimension 128, hidden dimension 2048, output dimension 128, BatchNorm and

ReLU in the hidden layer activation, and where “sg” is the stopgradient operation.

Following [Chen et al., 2021], the gradients are not backpropagated through 𝑘{+,−} and

94

the encoder representations both for keys and queries are obtained after a composition

of the backbone and the projector (which is a two layer MLP, with dimensions [256,

2048, 128] with BatchNorm and ReLUs in between the hidden layers, and ending with

a BatchNorm with no trainable affine parameters). Additionally, the branch for key

representations follows the momentum update policy 𝜃k ← 𝑚𝜃k + (1−𝑚)𝜃q from [He

et al., 2020] with momentum parameter 𝑚 = 0.999, where 𝜃k are the weights in the

key branch and 𝜃q are the weights in the query branch.

Data Augmentations. Another difficulty particular to our setup is the problem

of choosing data augmentations the input domain is invariant to because weather

modalities have different invariances than natural images: for example, the popular

color jitter transformation is not applicable here, because image-to-image translation

is sensitive to color. From the standard augmentations, the ones we consider are:

random resized crops, random horizontal flips, gaussian noise, gaussian blur, random

vertical flips and random rotation. We also further exploit the temporal structure of

SEVIR to obtain “natural” augmentations, which we introduce next.

Natural augmentations. We further consider using the temporal structure of

SEVIR for augmentations, as follows. Each event consists of 49 frames, so we anchor

every even frame as query frame and use every odd frame as key frame. For each

query frame, to obtain 𝑞 and 𝑘+ we apply the following stochastic transformations to

the frame twice: random resized crops using scale (0.8, 1.0); random horizontal flips

with probability 0.5, pixel-wise gaussian noise sampled from the normal distribution

𝒩 (0, 0.1) with probability 0.5, gaussian blur with kernel size 19, random vertical flips

with probability 0.2, random rotation by angle unformly chosen in (−𝜋/6, 𝜋/6). The

rest of the augmentation arguments follow the default in the Torchvision library4. In

Figure 2-18 we present a conceptual visualization of the transforms. To obtain 𝑘− we

apply the above stochastic transformations to the corresponding key frame once.

Training hyperparameters. Our experiments use the following architectural

choices: mini-batch, consisting of 3 events with 24 frames for queries and key 24 frames

for keys each; 0.015 base learning rate; 100 pre-training epochs; standard cosine

4https://pytorch.org/vision/stable/transforms.html

95

https://pytorch.org/vision/stable/transforms.html

Figure 2-18: Augmentations for the contrastive learning experiment By in-
dicating “more” we show examples of a larger magnitude of the augmentation being
applied.

0:
 R

an
do

m
 (N

o
Pr

et
ra

in
in

g)
1:

 M
oC

oV
3

(N
o

Au
gm

en
ta

tio
n)

2:
 M

oC
oV

3
(+

 C
ro

pp
in

g)
3:

 M
oC

oV
3

(+
 H

or
izo

nt
al

 F
lip

)
4:

 M
oC

oV
3

(+
 G

au
ss

ia
n

Bl
ur

)
5:

 M
oC

oV
3

(+
 G

au
ss

ia
n

No
ise

)
6:

 M
oC

oV
3

(+
 V

er
tic

al
 F

lip
)

7:
 M

oC
oV

3
(+

 R
ot

at
io

n
±

/6
)

0.36

0.38

0.40

M
AE baseline

0 1 2 3 4 5 6 7

0.10

0.15

0.20

0.25

0.30

0.35

CS
I7

4

0 1 2 3 4 5 6 7
0.06

0.08

0.10

0.12

0.14
CS

I1
33

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

PO
D7

4

0 1 2 3 4 5 6 7

0.08

0.10

0.12

0.14

PO
D1

33

0 1 2 3 4 5 6 7

0.5

0.6

0.7

0.8

0.9

SU
CR

74

0 1 2 3 4 5 6 7

0.72
0.74
0.76
0.78
0.80
0.82

SU
CR

13
3

Figure 2-19: Contrastive Learning for SEVIR. For mean absolute error lower is
better. For every other evaluation measure, higher is better.

decayed learning rate; 5 epochs for the linear warmup; 0.0005 weight decay value;

SGD with momentum 0.9 optimizer. We report the joint training reconstruction loss

experimental setup by finetuning the checkpoint obtained from pretraining.

Results

In Figure 2-19 we report our results. Firstly, for mean absolute error we find marginal

yet somewhat consistent gains up to level 3 augmentation. Secondly, we also evaluate

on meteorological metrics. We find that even though pretraining has a marginal

effect on the reconstruction loss train objective, it often provides important gains on

96

Figure 2-20: Pretrained encoder - generated samples Pretrained models better
identify the sparse high VIL values.

domain-specific evaluation criteria. We highlight the large improvement in CSI133

and POD133, which stems mostly from significant improvements in precision. We

observe that up to level 4 MoCoV3 augmentation we obtain improvements throughout

all measures with the contrastive pretraining. Finally, we show example samples in

figure 2-20 and find that pretraining the U-Net encoder leads to better performance

in high-VIL regions.

2.8 Conclusion

Chronologically, in the discussion above we explored a contribution that generalizes

the symmetries used in self-supervised learning [Dangovski et al., 2021a] for computer

vision, efficiently combined such symmetries in a single classifier with solutions to

multiple hypotheses [Loh et al., 2023], enabled synthetically meaningful symmetries

for NLP [Chuang et al., 2022], provided an application to scarce data in science [Loh

et al., 2022a], as well as an application to severe weather events from real-world

recordings [Rugina et al., 2021].

Several of our contributions are related to the importance of symmetry in reducing

the need for data, which we have not discussed above.

Firstly, we show that symmetry is useful for improving the sampling complexity

of optimization algorithms. Namely, in [Liao et al., 2022] we develop an optimizer

97

that learns during optimization and is parameterized through efficient unitary neural

networks [Jing et al., 2017]. Furthermore, we speed up quantum optimization and

machine learning through Koopman’s operator learning theory [Luo et al., 2022].

Secondly, we show that architectural modifications can boost symmetry and re-

duce the need for data for learning representations. In [Dangovski et al., 2019a] we

develop a phase-coded norm-preserving memory mechanism that enables better as-

sociative memory and recall for NLP tasks. In [Jing et al., 2018] we use logarithmic

asymmetry to improve efficient models for computer vision. In [Loh et al., 2022b] we

develop a Bayesian approach to reducing confirmation bias during semi-supervised

learning. In [Dugan et al., 2023] we reformulate the quantum evolution of complex-

valued quantum mechanics to the evolution of real-valued probability distributions to

speed up simulations of open quantum mechanics by orders of magnitude. We also

explore how using generative models can improve the quality of contrastive learning

in computer vision [Han et al., 2023].

Finally, a promising direction for future research is to view representation learning

as invariant to the modalities that correspond to a given datapoint object. Through-

out the Internet and Science there is a natural correspondence between a variety of

modalities, such as images, captions, videos and waveforms in the Internet, and vari-

eties of scientific measurement for a single scientific phenomenon. It is only natural

to learn representations with the objective to maintain invariance across modalities.

We saw in the above discussion that representation learning in one domain, say vi-

sion, can yield useful methods for other domains, such as NLP and materials science.

Thus, we present promising directions for multimodal learning in Chapter 5.

98

Chapter 3

Addressing the Ability to Transfer

with the Language Inductive Bias

3.1 Introduction

Language is a very efficient means of communication. With only very few bits of

information, we can transfer knowledge through the communication channel of lan-

guage. For example, we could be observing a less popular animal that could be found

on safari, such as a pangolin1. However, we could describe the animal to anyone

around the world in an efficient way, using natural language, and detailing the unique

features of pangolins. The person on the other side of the phone would be able to

provide a meaningful reconstruction of a pangolin. In linguistics, Chomsky’s theory

of universal grammar posits that there is a fundamental inductive bias of language.

However, in machine learning, communication similar to language emerges from sim-

ilar interactions between AI agents in the safari environment above [Evtimova et al.,

2017].

An example of the role of language in scientific discourse is the contrast between

the development of mathematical methodologies in Greek and Chinese mathemat-

ics [Crossley et al., 1999].

Greek mathematical language is formal and symbolic, which is instrumental in
1A pangolin is a unique mammal known for its protective keratin scales, which cover its body.

99

the development of abstract and deductive mathematical reasoning. Mathematical

concepts are often presented in the form of definitions, postulates, and proofs, rep-

resenting a language of logic and precision. This axiomatic approach enables Greek

mathematics to form and solve problems irrespective of their real-world application.

This linguistic method provides a strong basis for the rigorous logical framework re-

quired in disciplines such as geometry and calculus. The Greek emphasis on logical

completeness is also manifested in their mathematical language, with the Pythagorean

theorem or Euclid’s Elements serving as examples of a detailed logical construct.

However, Chinese mathematics exhibits a more descriptive and concrete language,

emphasizing practical problem solving. This is reflected in the structure and style of

mathematical problems in key texts such as The Nine Chapters on the Mathemat-

ical Art, which frequently present mathematical problems embedded in real-world

scenarios. The language of Chinese mathematics tends to be more intuitive and

less formal, favoring direct computational procedures and empirical approaches over

abstract proofs. This allows for a close alignment of mathematics with practical ap-

plications, leading to the development of innovative methods in areas like algebra

and arithmetic. Furthermore, the inherent flexibility of the Chinese language, with

its reliance on context, aligns well with this approach, lending itself to multiple inter-

pretations and thereby encouraging an empirical approach to mathematical problem

solving.

In the context of machine learning, understanding these linguistic differences could

shed light on the interaction between the formal symbolic language used in algorithm

design and the more descriptive context-dependent language used in problem defi-

nition and data interpretation. The balance between these two modes of thought:

logical abstraction and empirical problem solving can be crucial in designing and

refining machine learning systems.

How can we efficiently use the inductive bias of language for representation learn-

ing? The power of merging concepts formed by language in self-similarity patterns is

arguably a way to create an infinite number of meaningful constructs [Adger, 2019].

Furthermore, we can communicate the “infinity” of constructs in a very efficient man-

100

ner, using language, i.e. just a few bits of information.

Looking at some of the most influential works in representation learning, we can

find connections to the power of merging language concepts and the transferability

of the representations learned in that way. Some examples include:

• Using language as weak supervision for image representation learning in the

CLIP model [Radford et al., 2021]. The representations of the images have

been used to construct state-of-the-art image generative models [Ramesh et al.,

2022].

• Using language to describe a wide range of tasks and benefit from language

modeling as a pre-training strategy of language representations [Radford et al.,

2018, Brown et al., 2020, Chowdhery et al., 2022, OpenAI, 2023, Anil et al.,

2023]. The hypothesis in such works is that langugage is a natural representation

of abstract internal representations that “understand about the world.”

In all these works, formulating the training task of the neural network representation

learners with language has been instrumental. In the next section, we use that in-

spiration to show how we can improve transfer learning by formulating a variety of

representation learning tasks with proper constructions in natural language. The task

of “automating science journalism” is a fruitful bed to study such transfer learning

techniques, as we demonstrate next.

3.2 Towards Automating Science Journalism at Scale

3.2.1 Introduction

Recent years have been characterized by rapid growth of published scientific research.

Coping with this quantity is increasingly challenging, which has led to the emergence

of a number of initiatives, including software applications that try to summarize and

to organize research articles. For example, Scholarcy helps researchers and students

by summarizing relevant portions of academic papers. Likewise, Mendeley establishes

101

meaningful links between research papers. Furthermore, there are emerging tools,

such as Litmaps that place scientific research in a broader perspective, thus making

it accessible to layman readers.

Generated: it ’s no secret that women are as good
as men . but when it comes to job satisfaction ,
a new study shows that this gender equality can affect
one ’s own job and make the impression that women
experience higher levels of gender equity among women .

Target: male workers appear to support women becoming
ceos even more than female workers do , finds new
research on the proverbial glass ceiling and job
satisfaction in six formerly socialist countries .

Source snippets: . . . moreover , recent data show that ,
in spite of significant barriers , more women reach the
upper managerial ranks in the workplace . . . does gender
equality in workplace promotion opportunities have
consequences for job satisfaction ? we address this
question by examining the link between job satisfaction
and perceived prospects for women to become top
manager at the firm .

Table 3.1: Summary from our dataset (short Science Daily) using our model
(SciBertSumAbs). We see the need for extreme paraphrasing and coherent gen-
eration.

Traditionally, this was the task of science journalism, led by media outlets such as

Science Daily, Scientific American, and Popular Science, which establish some of the

few direct connections between scientific research and the general public. As demon-

strated in Table 3.1, this is a tremendously difficult task: it requires writing factual

summaries, while also paraphrasing complex scientific concepts using a language that

is accessible to the general public.

We argue that the abundance of science journalism articles enables a variety of

learning approaches, most notably neural text summarization [Rush et al., 2015]. The

latter has undergone strong evolution recently [Lin and Ng, 2019]: from extractive

[Nallapati et al., 2017] through abstractive [Nallapati et al., 2016] to hybrid [See

et al., 2017] models; from maximum likelihood to reinforcement learning objectives

[Celikyilmaz et al., 2018, Chen and Bansal, 2018]; from small to large datasets [Grusky

102

et al., 2018], which are also abstractive [Sharma et al., 2019]; from short to orders of

magnitude longer sources and targets [Liu et al., 2018b]; from models trained from

scratch to using pre-trained representations [Edunov et al., 2019, Liu and Lapata,

2019].

From a modelling perspective, these advances are yet to be challenged with an

abstractive summarization task (i) from long source research articles into long tar-

gets, and (ii) using extreme paraphrasing. Here, we argue that automating science

journalism is a natural testbed for this.

The task is defined as follows: Given a scientific article, produce a layman sum-

mary of that article.

Our contributions can be summarized as follows:

• We introduce a text summarization task: generate a layman’s terms summary

of a research article in the form of a press release.

• We create a specialized dataset for the task and we experiment with a number

of models.

• We focus on story generation as a way to model press releases, and we propose

suitable data augmentation methods, which we validate extensively.

3.2.2 Related Work

Summarization of Scientific Documents Abu-Jbara and Radev [2011] pro-

duced readable and coherent citation-based summaries improving upon a history of

related work [Nanba et al., 2000, Nakov et al., 2004, Elkiss et al., 2008, Qazvinian and

Radev, 2008, Mei and Zhai, 2008, Mohammad et al., 2009, Divoli et al., 2012]. Collins

et al. [2017] studied extractive summarization of scientific papers to highlights, fol-

lowing a history of predominantly extractive summarization of scientific documents

[Kupiec et al., 1995, Saggion et al., 2016]. Yasunaga et al. [2019] proposed hybrid

summarization of well-annotated datasets, thus extending work by [Jaidka et al.,

2016, 2017, 2018]. Beltagy et al. [2019] fine-tuned BERT on scientific articles and im-

proved the baselines for some downstream scientific tasks. Subramanian et al. [2020]

103

performed summarization of very long documents, but did not address the task of

extreme paraphrasing, nor did they use a seq2seq architecture. Luu et al. [2020] ex-

plained the relationship between two scientific documents via citations. Finally, recent

advances in efficient Transformers [Beltagy et al., 2020] made it possible to process

long scientific documents efficiently, and thus scale ASJ. Recent proof-of-concept work

has approached automating scientific reviewing [Wang et al., 2020, Yuan et al., 2021].

Furthermore, workshops, such as CL-SciSumm/ CL-LaySumm Chandrasekaran et al.

[2019] and LongSumm Chandrasekaran et al. [2020] have offered opportunities for

developing summarization of scientific documents.

Unlike the above work, we use orders of magnitude larger datasets with diverse

content domains, and we generate meaningful abstractive summaries in layman’s

terms. To our knowledge, we are the first to explore scaling automating science jour-

nalism through summarization of long sources, which require extreme paraphrasing

and long generation.

Scientific Datasets Dangovski et al. [2019b] presented pioneering results on the

Science Daily dataset using a seq2seq model with novel RNN units, based on rotation.

However, their work was limited to short source and target pairs. Moreover, they

performed summarization from a journalistic article in Science Daily article to the

highlight of that article, again in Science Daily.

In contrast, we perform summarization from a research journal article to Sci-

ence Daily highlights. This is an important distinction, as research articles use very

different style, language, and terminology compared to journalistic articles.

Other work preserved the style of the source [Teufel and Moens, 2002, Nikolov

et al., 2018, Cohan et al., 2018] or generated very short targets taking the form of

blog titles [Vadapalli et al., 2018]. Sharma et al. [2019] introduced BigPatent as a new

challenge for abstractive summarization, which is a good parallel to our task, as it still

summarizes scientific content in an abstractive manner. Lev et al. [2019] proposed a

dataset, TalkSumm, for generating summaries using conference talks. Recently, Ca-

chola et al. [2020] introduced SciTldr for extreme summarization of scientific papers

104

in Computer Science. Gidiotis and Tsoumakas [2020] used the RNN units from [Dan-

govski et al., 2019b] and a divide-and-conquer approach to improve summarization of

ArXiv and PubMed [Cohan et al., 2018] articles to abstracts. However, none of the

above work addressed our task of producing a press release for a research article in

layman’s terms.

Data-Augmentation and Multitask Learning for Language Generation Our

task and the corresponding datasets made it possible to use recent advances in trans-

fer learning for NLP [Raffel et al., 2020, Ruder, 2019]. Namely, we combine datasets

sharing a source domain, i.e., scientific articles, with different target domains, i.e., ab-

stracts and press releases. We take inspiration from recent work on automatically gen-

erating news articles [Zellers et al., 2019], trained on multiple variations of the same

dataset, e.g., in some instances, the headline might be used to generate the body,

while in other, the body can be used to generate the headline. Similarly, via a special

tag, we can signal to the decoder to generate either an abstract or a press release,

or to generate the target in several steps by conditioning on intermediate outputs.

Other ways to signal to the decoder were proposed in the context of summarization

with user preferences [Fan et al., 2018a], neural machine translation [Lample and

Conneau, 2019, Aharoni et al., 2019], and controllable text generation [Keskar et al.,

2019] that contain tags, similarly to pre-training contextual word embeddings [Peters

et al., 2018a, Delvin et al., 2019]. Finally, we should mention multitask learning Raffel

et al. [2020], Lewis et al. [2019], Cachola et al. [2020] for improving summarization.

3.2.3 The Science Daily Dataset

Dataset

We introduce two versions of Science Daily : (i) for long summarization, consisting of

pairs of full-text scientific papers and their corresponding Science Daily press releases,

and (ii) for short summarization, made of pairs of scientific papers cut after the first

400 words and corresponding short highlights in the press releases. Even though

105

Science Daily short long

pairs 50,308 50,134

source words 400 ± 0 5,975 ± 2,731

target words 45 ± 19 488 ± 219

train/ dev/ test 90%/5%/5% 80%/10%/10%

Table 3.2: Statistics about the Science Daily datasets.

Rank Journal # dataset entries

1 PNAS 5,482
2 Science 4,006

14 Nature Geoscience 472
15 Nature Medicine 425
16 Nature Neuroscience 397
17 Nature Climate Change 396

Table 3.3: Science Daily covers diverse journals.

in this paper we put emphasis on long summarization, the short Science Daily is a

task that is closer, in terms of length of sources and targets, to the one considered

in [Dangovski et al., 2019b].

Moreover, they both contain another challenging aspect, that is the difference

in the style of language between the source and the target. See Table 3.2 for some

statistics.

Note that the number of pairs in these datasets do not match, as not all Science

Daily articles had highlights. The training split for long Science Daily is lower by

10% since its pairs contain more tokens than their counterparts in the short dataset.

Below, we explain how we created our datasets.

Note also that our Science Daily dataset differs from existing datasets for sum-

marization of scientific content as it is extremely diverse and covers a wide range of

scientific fields, as shown in Table 3.3, and as it features a drastic change in style

between the source and the target.

106

Press Releases. Science Daily2 is a website that aggregates and publishes lightly

edited press releases about science. We were granted access to download about

100,000 HTML pages from their website, each containing a public story about a

recent research paper. From each HTML page, we extracted the main content, a

short highlight, and a title.

Scientific Articles. We further parsed each HTML page of the press releases to

obtain information about the target scientific article: title, short description, main

content and DOI. Then, we sent the DOI to the Crossref API 3 to obtain the meta

information about the target paper. We downloaded the papers as PDF files, and

we then converted them to raw text. These papers span a large range of publishers

including American Association for the Advancement of Science (AAAS), Elsevier,

Public Library of Science (PLOS), Proceedings of the National Academy of Sciences

(PNAS), Springer and Wiley. We ignored publishers with fewer than 100 papers.

There are many such publishers and the style of their PDFs is not consistent;

hence, we opted to convert to text and to use scientific papers from the most prevalent

publishers only.

Figure 3-1 shows statistics about the publishers. The figure gives a peek into the

differences in style among the publishers. For example, AAAS publishes short letters,

while PNAS publishes longer articles. We treat articles with fewer then 1,000 words

as outliers, and we do not include them in the dataset.

Analysis: Comparison to Related Datasets

Compared to other datasets, Science Daily summaries are significantly more abstrac-

tive. To see this, we compare to the ArXiv dataset, which summarizes scientific

articles to their abstracts. We use two statistics from [Grusky et al., 2018]:

coverage(𝐴, 𝑆) = (1/|𝑆|)
∑︀

𝑓∈ℱ(𝐴,𝑆) |𝑓 |

and

density(𝐴, 𝑆) = (1/|𝑆|)
∑︀

𝑓∈ℱ(𝐴,𝑆) |𝑓 |2

2http://www.sciencedaily.com/
3https://www.crossref.org/

107

http://www.sciencedaily.com/
https://www.crossref.org/

Figure 3-1: Histogram for number of articles vs. number of words for the selected
publishers in Science Daily. Stars indicate modes of the histograms (excluding the
outliers with fewer than 1,000 words for Elsevier).

where ℱ(𝐴, 𝑆) is the set of extractive fragments, a sequence of words that is shared

between the source and the target for a set of articles {𝐴} and a corresponding set

of summaries {𝑆}, |𝑓 | is the number of words in fragment 𝑓 , and |𝑆| is the number

of words in summary 𝑆.

The coverage represents the fraction of words in an extractive fragment, and the

density is the average length of these fragments. Figure 3-2 compares Science Daily

to established datasets. We can see that the coverage is around 0.4 for Science Daily

vs. 0.8 for ArXiv. Moreover, while the density for Science Daily is on the order of a

few absolute density points, it is in the hundreds for ArXiv.

Another important characteristic of our Science Daily dataset is that both the

source and the target are relatively long, with source articles and target press releases

containing about 6,000 and 500 word tokens, respectively. For comparison, the CNN/

Daily Mail dataset is much shorter, with sources of 800 word tokens and targets of

just 50 word tokens, and even the ArXiv dataset has substantially shorter targets of

around 200 word tokens.

We further computed standard measures of language complexity such as SMOG,

108

Daily	Mail
#	219,506

CNN
#	92,579

Long	Science	Daily
#	50,308

low	density	
and	coverage

Short	Science	Daily
#	50,134

ArXiv
#	215,913

PubMed
#	133,215

high	density	
and	coverage

de
ns
ity

coverage

Figure 3-2: Density vs. coverage of source-target pairs for Science Daily, ArXiv,
PubMed, and CNN and Daily Mail. Warmer colors show more data entries, and #
is number of pairs. Outliers with extreme densities are omitted. Arrows indicate the
modes of the datasets.

CLI, and LIX, as implemented in the NELA toolkit [Horne et al., 2018]. The results

are shown in Table 3.4, where we can see that the texts from scientific sources use

more complex language.

109

quantile position	of	the	highest	entailment	score

targets generated

no
rm

al
ize

d	
co
un

ts

0.0 1.00.80.60.40.2
0.0

0.5

1.0

Figure 3-3: Positions of the source sentences that maximize the NLI entailment of
the summary sentences for Science Daily. On the left are gold summaries, and on
the right are summaries by our model (Story+Parts). The counts are normalized, so
that the bin with the highest counts is at 1.0.

Dataset SMOG CLI LIX

Science Daily 15.23± 1.51 14.34± 1.21 55.60± 4.66
PubMed 16.98± 1.65 14.21± 1.67 59.00± 6.73
ArXiv 13.74± 1.53 12.09± 1.64 50.26± 6.19

CNN 12.01± 1.67 10.66± 1.87 45.31± 8.20
Daily Mail 12.29± 1.61 10.35± 1.50 49.01± 7.80

Table 3.4: Complexity of related datasets’ sources based on readability scores such as
SMOG, CLI, and LIX. The datasets from scientific sources (the top half) use more
complex language (bigger numbers indicate higher complexity).

We further used natural language inference (NLI) to explore which parts of the

source text contain the most relevant information for summarizing Science Daily re-

search articles. For each sentence from the target summary, we found a corresponding

one in the source text that entailed it with the highest probability, and we marked

the relative position of that sentence in the source text.

We repeated the procedure for all summaries, and we generated aggregated statis-

tics about the relative positions of these source sentences (in bins), as shown in Fig-

ure 3-3. We can see on the left side of the figure that the gold journalistic summaries

use information not only from the introduction and from the conclusion of the input

110

research articles, but also from the entire input text. On the right side of the fig-

ure, we show a similar analysis for summaries generated by our model: we can see a

similar pattern, (albeit different from the left histogram, the right histogram spreads

throughout its entire range too), which means that the model learns to look at the

entire input when generating a summary.

3.2.4 Evaluation

ROUGE. We use the standard ROUGE 1/2/L scores [Lin and Hovy, 2003].

Natural Language Inference (NLI). Ideally, each summary should be fully en-

tailed from the source text. With this in mind, Falke et al. [2019] proposed an evalua-

tion measure for text summarization that uses NLI and tries to find for each sentence

in the summary the maximal probability of it being entailed from some sentence in

the source text. The final score is calculated as the average of these probabilities:

𝜎(𝑆) =
1

𝑛

𝑛∑︁
𝑗=1

max
𝑑∈𝐷

𝑁(𝑑, 𝑠𝑗) (3.1)

where 𝑁(𝑑, 𝑠𝑗) is the probability that sentence 𝑠𝑗 from the summary 𝑆 is entailed

from sentence 𝑑 in the source document 𝐷, and 𝑛 is the number of sentences in the

summary.

This approach resembles the NLI analysis method we used above, but here the

focus is on the score, while above we were interested in the relative position of the

best-matching source sentence.

Prompt Ranking (PR). For long Science Daily, we further used an evaluation

measure, inspired by the prompt ranking measure from [Fan et al., 2018b]. For a

target in the dataset, it takes the source and nine additional sources of different

targets. Then, it tests whether the generator assigns higher probability to the target

when conditioned on the correct source (by feeding the source into the encoder)

compared to conditioning on the incorrect sources, and measures the success rate of

111

that test on a selected number of targets from the dataset.

Here, we follow the same procedure, but with the important modification that

instead of taking the full source, we select a random substring of 100 words to feed

into the encoder. To provide results in the context of existing work on prompt ranking,

our aim is to mirror the original prompt ranking measure, which was used to rank

the prompts (short prompts, such as a title of a movie) based on the probability that

the true story (long generation) has, when conditioned on the prompts. In the long

Science Daily, the press releases are similar to the stories in [Fan et al., 2018b], but

the sources (the scientific papers) are not similar to the prompts. Hence, we take

100-word random substrings to form prompts for the press releases. We calculate the

prompt ranking score on a hold-out set of 1,000 long Science Daily pairs, and we

report its value in percentage points.

3.2.5 Experiments

Given that the size of the Science Daily dataset is not that large compared to existing

summarization corpora, our task should benefit from using pre-trained models or from

augmenting the data. Below, we present experiments that demonstrate techniques in

both directions, which lay the foundations for our task.

Summarization with Pre-trained BERT

We begin by exploring familiar ground: short summarization using the short Science

Daily (Table 3.2) à la CNN/ Daily Mail [See et al., 2017], i.e., our sources are up to

512 tokens long, and the targets are up to 140 tokens long. We choose an abstractive

seq2seq model, following a strong neural summarization baseline with pre-trained

BERT [Liu and Lapata, 2019]. In particular, we experiment with their BertSumAbs,

which uses a pre-trained BERT model as an encoder and a Transformer [Vaswani

et al., 2017a] trained from scratch as a decoder. We denote this experiment with

BertSumAbs as well.

112

Model 1 2 L

LEAD 19.7 3.7 13.1
BertSumAbs 27.16 4.54 21.45
SciBertSumAbs 30.30 6.24 24.00

Table 3.5: Short Science Daily : SciBERT pre-training improves over vanilla BERT
(ROUGE scores in %). LEAD takes the first 45 words from the input.

Scientific Pre-training Since we are in the scientific domain, we replace the BERT

[Delvin et al., 2019] encoder with SciBERT Beltagy et al. [2019], which is fine-tuned on

scientific papers, and we dub the resulting model SciBertSumAbs. We train the model

for 200K steps. The hyper-parameter values coincide with those for BertSumAbs.

In Table 3.5, we show how BertSumAbs and SciBertSumAbs compare in terms of

ROUGE 1/2/L scores using beam search decoding and trigram blocking [Paulus et al.,

2018], thereby following the decoding setup in [Liu and Lapata, 2019], but limiting

the generation to 50–200 tokens. We observe sizable gains from using SciBERT. This

result is expected since Science Daily focuses on the scientific articles (Table 3.3).

In the following experiments, we focus on the long Science Daily (Table 3.2)

dataset.

Efficiency with CNN seq2seq

For the long Science Daily, we use CNN-based seq2seq architectures, which can handle

long input. We start with a small vanilla convolutional seq2seq model [Gehring et al.,

2017], corresponding to fairseq’s ISWLT German–English (de-en) model [Ott et al.,

2019], which we take directly from the library.

We train the model until convergence on the dev set with a learning rate of

0.25, Nesterov accelerated gradient (NAG) descent, 0.2 dropout, and a 0.1 gradient

threshold. We name this experiment Fconv.

ASJ as Story Generation

We can frame ASJ as story generation, since a press release can be viewed as a story

shaped around a scientific paper. The scientific paper itself can be viewed as a “writing

113

Model 1 2 L NLI PR

LEAD 39.6 10.1 16.1 N/A N/A

Fconv 39.2 9.5 36.9 0.23 38.0
FconvTopK 39.2 10.8 37.0 0.23 38.0

Story 38.9 7.8 36.4 0.12 22.7
StoryTopK 38.2 8.5 36.0 0.14 22.7

Table 3.6: Long Science Daily : baselines. Fconv outperforms Story in ROUGE 1/2/L
and Prompt Ranking (PR); top-𝑘 sampling generally helps for Fconv. PR does not
depend on the decoding scheme. LEAD takes the first 488 input words.

prompt” for the story. Hence, our second model is a modification of a state-of-the-art

model for neural story generation [Fan et al., 2018b, 2019]. It introduces attention

[Bahdanau et al., 2015] between the output of the encoder and the decoder layers, as

well as multi-head self-attention on the decoder layers [Vaswani et al., 2017a] that is

gated [Dauphin et al., 2017] and equipped with a multi-scale mechanism for down-

sampling [Fan et al., 2018b]. Since our sources are three orders of magnitude larger

than the writing prompt sources for which the original story model has been used,

we additionally equip the encoders with gated multi-scale multi-head self-attention.

Thus, we extend the fairseq implementation with additional four-gated self-attention

heads both on the encoders and on the decoders with projected inputs and down-

sampling. We train the model until convergence on Dev with a learning rate of 0.25,

NAG, dropout of 0.2, and a gradient threshold of 1.0. We call this experiment Story.

Training for all our fairseq models takes about 20-30 epochs depending on the

batch size, which is around 30-40. In preprocessing, we only keep words that appear

at least ten times in the source, or at least ten times in the target. Moreover, for these

models we converted all textual data to byte pair encoding (BPE) [Sennrich et al.,

2016] with 32,000 BPE tokens both on the source and on the target side following

the guidelines for fairseq.

Table 3.6 shows a comparison between Fconv and Story. Surprisingly, the simple

Fconv baseline outperforms the Story model both on ROUGE scores and Prompt

Ranking. We speculate that this might be due to Fconv being more extractive, which

114

Model 1 2 L NLI PR

LEAD 39.6 10.1 16.1 N/A N/A

Fconv 39.2 9.5 36.9 0.23 38.0
Fconv+ArXiv 41.2 10.2 38.6 0.28 77.8

FconvTopK 39.2 10.8 37.0 0.23 38.0
FconvTopK+ArXiv 41.8 11.6 38.6 0.25 77.8

Story 38.9 7.8 36.4 0.12 22.7
Story+ArXiv 41.0 9.2 38.6 0.15 64.1

StoryTopK 38.2 8.5 36.0 0.13 22.7
StoryTopK+ArXiv 41.4 10.6 38.8 0.14 64.1

Table 3.7: Long Science Daily : Training with ArXiv. We can observe sizeable and
consistent improvements.

might influence the scores marginally.

I.e., the model might optimize for generating words that overlap between the

source paper and the target, e.g., by copying scientific terms. Thus, high ROUGE

scores do not necessarily imply a good story Fan et al. [2018b], and we will proceed

with both models as baselines.

Moreover, sampling from the top-𝑘 candidates (𝑘 = 10) has been shown useful

for story generation [Fan et al., 2018b], and we try it here as well. We label such

experiments by appending TopK ; Table 3.6 shows that top-𝑘 decoding yields sizable

improvements for ROUGE-2.

Data Augmentation with ArXiv

As summarization in Arxiv to generate abstracts and our ASJ task share similar

domains for their sources, namely scientific papers, it is natural to try to augment

our Science Daily dataset with the ArXiv dataset. We do so using specially designed

tags: (i) we prepend the tag [begin-paper] and we append the tags [end-paper]

[begin-press] for Science Daily.

For ArXiv examples, we do the same, but we replace press with abstract. (ii) We

also append the target with [end-press] or [end-abstract], respectively. These tags

indicate the source domain (ArXiv or Science Daily) and the target domain (abstract

115

Model 1 2 L NLI PR

LEAD 39.6 10.1 16.1 N/A N/A

Fconv 39.2 9.5 36.9 0.23 38.0
Fconv+Parts 32.8 7.8 31.2 0.25 77.1

FconvTopK 39.2 10.8 37.0 0.23 38.0
FconvTopK+Parts 31.1 9.0 29.6 0.27 77.1

Story 38.9 7.8 36.4 0.12 22.7
Story+Parts 42.8 10.6 40.2 0.17 73.8

StoryTopK 38.2 8.5 36.0 0.14 22.7
StoryTopK+Parts 41.4 11.0 39.1 0.16 73.8

Table 3.8: Training in parts yields improvements: sizable for Prompt Ranking, but
partial for ROUGE 1/2/L.

or press release). To ensure equal balance between the two datasets, we take 40,000

examples from their training sets, 5,000 from their test, and 5,000 from their dev set,

for a final train/dev/test split of 80,000/10,000/10,000.

We hypothesize that the encoder layers and the decoder attention mechanism

will focus on these tags while processing the source and while generating the output,

respectively. Table 3.7 shows that using ArXiv yields sizable improvements both for

ROUGE 1/2/L and for our Prompt Ranking score. Note that we did not use ArXiv

source-target paris for generation and calculation of ROUGE, NLI and PR. We only

used the originally designated Science Daily test source-target pairs (even though the

model has been trained using ArXiv source-target pairs too). We believe that the

ability to co-train with other datasets offers important flexibility in our experimental

setup.

Data Augmentation with Targets in Parts

In order to increase the total number of training examples and to focus the summa-

rization on particular parts, we experimented with augmenting Science Daily with

partitioned targets as follows:

1. For each source–target pair in Science Daily, we preserve the source body, and

we divide the target into three equal parts: part-1, part-2, and part-3.

116

2. We construct the source-target pairs as follows: for all bodies body, for indices

i equal to 2 or 3, the source is

[begin-body]body[end-body][begin-part-(i-1)]

part-(i-1)[end-part-(i-1)][begin-part-i]

and for i equal to 1, the source is

[begin-body]body[end-body][begin-part-i],

where the corresponding target to the source is part-i [end-part-i].

3. At inference, we generate the parts part-i autoregressively from part-1 to

part-3.

Instead of training the model to generate the full press release, we train it to

generate specific sections only. Thus, we increase the data split threefold, which

yields a train/dev/test split of size 120,741/15,087/15,087. Recently, similar divide-

and-conquer approaches have improved the state of the art on scientific summariza-

tion [Gidiotis and Tsoumakas, 2020]. Table 3.8 shows results when using this partition.

Note that to compute ROUGE, NLI, and PR, we generate each designated part,

concatenate the generations, and then we calculate the scores. We can see in Table 3.8

sizable improvements over the baselines for the in-parts training method, both for

ROUGE 1/2/L and for PR, which confirms that this data augmentation scheme is

indeed helpful.

NLI Scores. We computed the NLI scores using RoBERTa-large [Liu et al., 2019],

fine-tuned for natural language inference on the MNLI dataset. We noted an increase

in the scores when training with ArXiv (+ArXiv) compared to the baseline models.

Although the TopK strategy also improves the scores for the baseline models, the

ArXiv (+ArXiv) models performed better on their own. Training parts (+Parts)

also yielded a higher score for both the Story and the Fconv models. However, we

should note that there is a significant difference between the scores of the Story and

of the Fconv models due to the more extractive nature of the Fconv model, which

ultimately yields higher NLI scores.

117

PR Scores. For Fconv models, training with ArXiv (+ArXiv) and in parts (+Parts)

outperforms the baseline Fconv/ FconvTopK significantly by 39.8 and 39.1 abso-

lute percentage points, respectively. For Story models, both training with ArXiv

(+ArXiv) and in parts (+Parts) outperforms the Story baseline significantly by 42.6

and 51.1 percentage points absolute, respectively. Tables 3.6, 3.7 and 3.8 further

show that, in general, Prompt Ranking is in agreement with the ROUGE scores, but

it is more sensitive to training using data augmentation with ArXiv or using parts.

3.2.6 Discussion

Short Science Daily For short Science Daily, we observe that the results are

particularly coherent and fluent, given the short sources. For example, in Table 3.1, in

contrast to the gold summary, the source does not mention male or socialist countries.

Yet, SciBertSumAbs gets it correctly even though SciBERT and Science Daily are

biased towards biomedical topics, which is not the case here.

Long Science Daily Table 3.9 shows a summary from long Science Daily, which

is fluent and logical, and focuses on specific information relevant to the source paper.

It demonstrates structured and concise writing with sections that are both relevant

and conceptually accurate. For example, it mentions that x-ray crystallography was

used to determine the three-dimensional structure of the proteins. The target article

says that this was done by the study’s authors in previous work, but this technique

is not mentioned in the source, which is all the model sees. This demonstrates a very

important and promising phenomenon: similarly to [Tshitoya et al., 2019], where un-

supervised word embeddings captured information about materials, the model learns

representations of key concepts such as x-ray crystallography, and applies this knowl-

edge at generation time. In contrast, the baseline Fconv generates fragments like in

the new study , the scientists used a technique called “ dna, ” the researchers say,

which misreads the meaning of DNA.

Overall, the advantages of our transfer learning experiments include (i) topical

and factual generation, (ii) memorization and utilization of scientific concepts beyond

118

Generated: . . . histone proteins are the building
blocks of proteins , and they are involved in a variety of
biological functions , marino said . histones are the amino
acids that make up the cell ’s dna . when dna is copied ,
the proteins are copied to form proteins , which are called
histones . histones have been studied for more than a
decade , but until now it has been difficult to determine
how these histone proteins assemble and how histones are
assembled in the cell the researchers used a technique
called x-ray crystallography , which allows scientists to
determine the atomic structure of proteins . . . other
co-authors of the paper are postdoctoral researcher
zachary sandman , a former ohio state graduate student
in biochemistry and molecular biology and a member of
the marino lab.

Target: the colorado state university researcher
studies how these hardy microbes – which constitute one
of three surviving domains of life – express their genes ,
produce their energy , and thrive in hot , lightless
environments in 1997 , luger and colleagues first
reported the exact structure of eukaryotic nucleosomes
via x-ray crystallography . . .

Source snippets: . . . small basic proteins present in most
archaea share a common ancestor with the eukaryotic core
histones . we report the crystal structure of an archaeal
histone-dna complex . . . our data establish that most
features of eukaryotic dna compaction into nucleosomes
are conserved in archaeal histone-based chromatin

Table 3.9: Summary from long Science Daily. Shown are some snippets (generated,
gold, and original) when using the Story model with top-𝑘 sampling and data aug-
mentation using ArXiv (StoryTopK+Arxiv).

the current source, and (iii) clear semantic and syntactic structure.

Limitations We found that in some cases, the output of Fconv+ArXiv, Story+ArXiv,

and Fconv+Parts is repetitive, unable to match named entities (e.g., Zachary Sand-

man in Table 3.9 is not a real person), diverging from the topic, and limited in the

sense that it only has access to a single scientific paper. Moreover, the Story model

sometimes overfits to a set of concepts, and then creates a story around those con-

cepts rather than based on the input sequence. For example, a source paper about

119

the structural similarities of DNA in archaea and eukaryotes might not be accurately

summarized by story-based experiments: they might elaborate on related topics, even

though still focusing on DNA.

Human Evaluation on IEEE Articles Using our SciBertSumAbs model on short

Science Daily, we generated summaries for five IEEE articles, randomly selected by

an IEEE expert. The summaries were manually evaluated by that expert using the

following criteria, which he selected independently from us:

• (Rel.) Is the generated summary relevant to the article in context?

• (Read.) Is the generated summary readable by the market of interest?

• (Compr.) Can the summary be comprehended by the market of interest?

• (As-is) Is the summary acceptable As-Is?

• (Cons.) Can the summary be consumed by the market of interest as is (leads to

effort level required from IEEE to polish the summaries before they are market-

ready)?

We present the evaluation results in Table 3.10. Overall, our summaries appear

deployable after some polishing by IEEE experts. Note that, in general, human

evaluation is hard, as it requires a domain expert, as opposed to evaluating topics

that are common sense [Chang et al., 2009]. Evaluating even a small number of

articles properly is a difficult task.

In our setting, it took more than an hour per paper by an expert. Naturally, such

settings are very difficult to scale, and they take up a sizable portion of the expert’s

time and effort. The challenge becomes even more acute when we recognize that

outsourcing such evaluations would be harder than for domains closer to a layman.

3.2.7 Conclusion and Future Work

We have proposed to study Automating Science Journalism (ASJ), which is the pro-

cess of producing a layman’s terms summary of a research article, as a new benchmark

120

Rel. Read. Compr. As-is Cons.

1 Y Y Y Y ML
2 Y P Y N NMT
3 Y P Y N NMT
4 Y P Y N NMT
5 Y P Y N NFT

Table 3.10: Manual expert analysis of the utility of models trained with SciBert-
SumAbs on short Science Daily. See the text for a definition of the criteria and their
abbreviations. Legend: Y=Yes, N=No, P=Probably, ML=Most Likely, NMT=Needs
Minor Tweaks, NFT=Needs Few Tweaks.

for long neural abstractive summarization and story generation. We further created

a specialized dataset that contains scientific papers and their Science Daily press

releases: short and long versions. We demonstrated numerous sequence to sequence

(seq2seq) applications using Science Daily with the aim of facilitating further research

on language generation, which requires extreme paraphrasing and coping with long

research articles. We further improved the quality of the press releases using co-

training with scientific abstracts of sources or partitioned press releases. Finally, we

further confirmed our results using quantitative and qualitative evaluation, including

manual evaluation and analysis by a domain expert. The results suggested that our

model is potentially usable in practice, possibly after post-editing.

There are many exciting directions that we plan to explore in future work. One

possibility is to use more efficient linear Transformers that can model long sequences

better. Another option is to encourage factuality more explicitly during training and

inference, e.g., by combining variants of the NLI score and Prompt Ranking measures

with the maximum likelihood objective at training time, and with the generation

method at inference time. More explicit text simplification and style transfer methods

could also improve the performace. Finally, we could apply our models directly to

many practical problems, which would truly test generalization, and could serve as

the basis of fruitful applications of automating science journalism.

121

3.3 Conclusion

In the discussion above, we demonstrated how we could use natural language con-

structions to guide the training of representations used in creating abstractive sum-

marizes of scientific input text. A few other of our contributions are focused on the

power of language as an inductive bias in improving representation learning tasks

and transfer learning, in particular. In [Ramı́rez et al., 2020] we develop a novel

method to translate between vocabularies of different languages without any super-

vision. In [Khoury et al., 2020] we provide a novel matrix-vector parameterization

for neural networks, which enables efficient applications in machine translation and

language modeling. In [Rugina et al., 2020] we developed a simple statistical method

that can reduce the computational cost of running neural networks with attention

mechanisms, by introducing a data-informed global sparseness in attention mecha-

nisms. Finally, in [Vogelbaum et al., 2020] we demonstrate how the mechanism of

contextualization using self-attention in multiple stages improves gradient based meta

learning.

A promising direction for future work is to take inspiration from education based

on exploration with the computer. A middle ground between Chinese and Greek

mathematics is the educational program of using intuitive programming languages,

such as Logo [Abelson and DiSessa, 1986], to allow students to explore mathematical

concepts and formulate their own hypotheses for exploration. Having an intuitive

language interface allows students to develop their hypotheses in well-defined “mi-

croworlds” that allow explorations and well-defined solutions [Papert, 2020]. For

example, Elementary school education in Bulgaria has been hugely influenced by al-

lowing students to explore hypotheses with educational programming languages [Hen-

riksen et al., 2018, Stager, 2021]. In a similar fashion, a curriculum learning protocol

that enables large language models to a wide range of programming tools and for-

mulate their own hypothesis could be a fruitful bed for learning more transferable

representations. Thus, we present promising directions for learning to use tools in

Chapter ??.

122

Chapter 4

Addressing the Lack of

Interpretability with the Symbolic

Inductive Bias

4.1 Introduction

In his profound endeavor writing the “Principia,” Sir Isaac Newton meticulously doc-

umented a plethora of observations and elegantly derived the equations of classical

mechanics that encapsulate these phenomena [Newton, 1687]. The significance of his

discoveries was profound, given the universal applicability of his laws across diverse

systems—from the diminutive dynamics of a falling apple to the colossal movements

of celestial bodies. One can speculate that the immense power of Newton’s laws is

fueled by their simplistic, intuitive, symbolic representations.

Symbolic expressions stand at the core of scientific revelations. The challenge lies

in deciphering the correct symbolic expression that accurately describes the observed

data, a task known as symbolic regression. Its potential benefits are noteworthy,

including interpretability and generalizability, which grant scientists an opportunity

to deduce meaningful insights and extrapolate to new, uncharted situations.

However, the pursuit of symbolic regression presents its own set of formidable

123

challenges. The search navigates through a combinatorially vast space of expressions –

a task that appears hopelessly daunting if undertaken at random. Furthermore, there

is no straightforward method to define gradients, as is the case for neural network

optimization, which compounds the complexity of the problem.

How then do we venture through this labyrinthine search space efficiently? A

brute force enumeration of solutions is computationally prohibitive. Here, reinforce-

ment learning, especially deep reinforcement learning, offers a glimmer of hope. By

intelligently exploring the search space, these methods have yielded profound dis-

coveries. The Monte Carlo Tree Search (MCTS) was instrumental in shaping Deep-

Mind’s revolutionary game-playing techniques such as AlphaGo [Silver et al., 2017],

AlphaZero [Silver et al., 2018], MuZero [Schrittwieser et al., 2020], as well as in

conceptualizing optimization challenges as games, evident in matrix mulitplaciatoin

algorithms, i.e. AlphaTensor [Fawzi et al., 2022] and sorting algorithms, i.e. Al-

phaDev [Mankowitz et al., 2023]. In all of these accomplishments, a neural network

is trained to make actions in a well-defined environment and the observed behavior of

the network led to discoveries that changed the way experts think about the games/

optimization challenges.

Yet, while neural networks offer a means to traverse the solution space, the repre-

sentations they learn during this quest are often cryptic and provide limited utility.

What if we could foster interpretable representations within the neural network during

the search process? By making minimal modifications to the network, we could ex-

ploit the extensive engineering and theoretical advancements in training and deploying

neural networks, but repurpose them for interpretable internal representations.

It is worth noting that Newton, with his “biological neural network,” was able to

conceive symbolic expressions that dictate the dynamics of our world. What distin-

guished him from DeepMind’s deep reinforcement learning was his ability to articulate

intermediate representations in a symbolic form, as evidenced by his authorship of

scientific treatises.

The introduction of symbolic bias in neural networks could potentially enable us

to conduct an efficient and interpretable search. The remaining part of this chapter

124

focuses on presenting our contributions in that direction of research.

4.2 OccamNet: A Fast Neural Model for Symbolic

Regression at Scale

4.2.1 Introduction

Deep learning has revolutionized a variety of complex tasks, ranging from language

modeling to computer vision [LeCun et al., 2015b]. Key to this success is designing

a large search space in which many local minima sufficiently approximate given data

[Choromanska et al., 2015]. This requires large, complex models, which conflicts with

the goals of sparsity and interpretability, making neural nets ill-suited for a myriad

of physical and computational problems with compact and interpretable underlying

mathematical structures [Lample and Charton, 2020]. Neural networks also might

not preserve desired physical properties (e.g., time invariance) and are unable to

generalize beyond observed data.

In contrast, Evolutionary Algorithms (EAs), in particular genetic programming,

can find interpretable, compact models that explain observed data [Schmidt and Lip-

son, 2009, Udrescu and Tegmark, 2020, Poli et al., 2008]. EAs have been employed as

an alternative to gradient descent for optimizing neural networks in what is known as

neuroevolution [Angeline et al., 1994, Arnold and Hansen, 2012, Such et al., 2017].

Recently, evolutionary strategies that model a probability distribution over param-

eters, updating this distribution according to their own best samples (i.e., selecting

the fittest), were found advantageous for optimization on high-dimensional spaces,

including neural networks’ hyperparameters [Hansen, 2016, Loshchilov and Hutter,

2016].

A number of evolution-inspired, probability-based models have been explored for

Symbolic Regression [Mckay et al., 2010]. Along these lines, Petersen et al. [2021]

explore deep symbolic regression by using an RNN to define a probability distribu-

tion over a space of expressions and sample from it using autoregressive expression

125

generation. More recently, Biggio et al. [2021] have pretrained Transformer models

that receive input-output pairs as input and return functional forms that could fit the

data. In the related field of program synthesis, probabilistic program induction using

domain-specific languages [Ellis et al., 2018b,a, 2019] has proven successful. Balog

et al. [2016] first train a machine learning model to predict a DSL based on input-

output pairs and then use methods from satisfiability modulo theory [Solar Lezama,

2008] to search the space of programs built using the predicted DSL.

One approach to symbolic regression which can integrate with deep learning is

the Neural Arithmetic Logic Unit (NALU) and related models [Trask et al., 2018a,

Madsen and Johansen, 2020], which provide neural inductive bias for arithmetic in

neural networks by shaping a neural network towards a gating interpretation of the

linear layers. Neural Turing Machines [Graves et al., 2014, 2016] and their stable

versions [Collier and Beel, 2018] can also discover interpretable programs, simulated

by neural networks connected to external memory, via observations of input-output

pairs. Another option is Equation Learner (EQL) Networks [Martius and Lampert,

2016, Sahoo et al., 2018a, Kim et al., 2020b], which identify symbolic fits to data by

training a neural network with symbolic activation functions, such as multiplication

or trigonometric functions. However, these methods require strong regularization

to be interpretable. NALUs and to a lesser extent EQL Networks can also only

use a restricted set of differentiable basis functions, and Neural Turing Machines do

not include the concept of a “basis.” Additionally, these methods often converge to

local minima and often converge to uninterpretable models unless they are carefully

regularized for sparsity.

In this paper, we consider a mixed approach of connectionist and sample-based

optimization for symbolic regression. We propose a neural network architecture, Oc-

camNet, which preserves key advantages of EQL networks and other neural-integrable

symbolic regression frameworks while addressing many of these architectures’ limita-

tions. Inspired by neuroevolution, our architecture uses a neural network to model

a probability distribution over functions. We optimize the model by sampling to

compute a REINFORCE-type loss, tunable for different tasks, based on the train-

126

ex
pr

es
si

on
s’

 e
va

l

c.

Encoder Layer 1

Encoder Layer 3

Encoder Layer 1

Encoder Layer 3

Encoder Layer 1

Encoder Layer 3

Symbolic Layer 1

Symbolic Layer 3
…

Sample Symbolic
Expressions

observations’ support

ground truth
expression 1
expression 2

a. b.

increase the probability
of the best paths and

move to a.
until convergence

Figure 4-1: OccamNet architecture and training. a. OccamNet is a stack of “sym-
bolic layers” each described by a collection of learned distributions (over the neurons
from the previous layer) for each neuron within the layer, as well as non-linearities
that are collections of symbolic expressions. b. By sampling from each distribution
independently, we are able to sample paths from OccamNet that represent symbolic
expressions, ready for evaluation. c. We evaluate each expression by feeding the
observations’ support data and comparing the outputs with the ground truth. The
probability of the best paths is increased and the process is repeated until conver-
gence.

ing method presented in Risk-Seeking Policy Gradients [Petersen et al., 2021]. Our

method handles non-differentiable and implicit functions, converges to sparse, inter-

pretable symbolic expressions, and can work across a wide range of symbolic regression

problems. Further, OccamNet consistently outperforms other symbolic regression al-

gorithms in testing on real-world regression datasets. We also introduce a number of

strategies to induce compactness and simplicity, à la Occam’s Razor.

4.2.2 Model Architecture

In Figure 4-1 we sketch the OccamNet architecture and the method for training it, be-

fore following with a more detailed description. We can view OccamNet as a standard

feed-forward network, a stack of fully connected linear layers with non-linearities. The

unique features of OccamNet are two-fold. First, the parameters of the linear layer are

127

substituted with a learned probability distribution associated with the neurons from

the preceding layer for each neuron within the layer. Second, the non-linearities form

a collection of symbolic expressions. Thus we obtain a collection of “symbolic layers”

that form OccamNet (panel a.). Panel b. shows a variety of symbolic expressions,

representing paths within OccamNet from sampling each probability distribution in-

dependently. Panel c. shows OccamNet’s training objective, which increases the

probability of the paths that are closest to the ground truth. Below we formalize

OccamNet in details.

Layer structure

A dataset 𝒟 = {(𝑥⃗𝑝, 𝑦⃗𝑝)}|𝒟|
𝑝=1 consists of pairs of inputs 𝑥⃗𝑝 and targets 𝑦⃗𝑝 = 𝑓 * (𝑥⃗𝑝) =

[𝑓 *
(0)(𝑥⃗𝑝), . . . , 𝑓

*
(𝑣−1)(𝑥⃗𝑝)]

⊤. Our goal is to compose either 𝑓 *
(𝑖)(·) or an approximation

of 𝑓 *
(𝑖)(·) using a predefined collection of 𝑁 basis functions Φ = {𝜑𝑖(·)}𝑁𝑖=1, which act

as primitives. Note that bases can be repeated, their arity (number of arguments) is

not restricted to one, and they may operate over different domains. The concept of

bases Φ is similar to that of DSL, domain-specific languages [Fowler, 2010].

To solve this problem, we follow a similar approach as in EQL networks [Sahoo

et al., 2018a, Martius and Lampert, 2016, Kim et al., 2020b], in which the bases act

as activation functions on the nodes of a neural network. Specifically, each hidden

layer consists of an arguments sublayer and an images sublayer, as shown in Figure

4-7a (in the SM). The bases are stacked in the images sublayer and act as activation

functions for their respective nodes. Each basis takes in nodes from the arguments

sublayer. Additionally, we use skip connections similar to those in DenseNet [Huang

et al., 2017] and ResNet [He et al., 2016b], concatenating image states with those of

subsequent layers.

To overcome EQL networks’ challenges, we introduce a probabilistic modification.

Instead of computing the inputs to the arguments sublayers using dense feed-forward

layers, we compute them probabilistically and sample through the network. This ad-

dresses all of the issues with EQL described above: (i) sampling enforces sparsity and

interpretability without requiring regularization, (ii,iii) sampling allows us to avoid

128

backpropagating through the activation functions, thereby allowing non-differentiable

and fast-growing functions in the bases, and (iv) sampling helps our model avoid pre-

mature convergence to local minima.

Because they behave probabilistically, we call nodes in the arguments sublayer P-

nodes. Figure 4-7 highlights this sublayer structure, while the supplemental material

(SM) describes the complete mathematical formalism behind it.

Temperature-controlled connectivity

Instead of dense linear layers, we use 𝑇 -softmax layers. For any temperature 𝑇 > 0, we

define a 𝑇 -softmax layer as a standard 𝑇 -controlled softmax layer with weighted edges

connecting an images sublayer and the subsequent arguments sublayer, in which each

P-node from the arguments sublayer probabilistically samples a single edge between

itself and a node in the images sublayer. Each node’s sampling distribution is given

by

p(𝑙,𝑖)(𝑇) = softmax(w(𝑙,𝑖);𝑇),

where w(𝑙,𝑖) and p(𝑙,𝑖) are the weights and probabilities for edges leading to the 𝑖th P-

node of the 𝑙th layer. Selecting these edges for all 𝑇 -softmax layers produces a sparse

DAG specifying a function 𝑓, as seen in Figure 4-7b. OccamNet thus automatically

enforces sparsity.

A neural network as a probability distribution over functions

Let W =
{︀
w(𝑙,𝑖); 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑖 ≤ 𝑁

}︀
. The probability of the model sampling 𝑓(𝑖)

as its 𝑖th output, 𝑞𝑖(𝑓(𝑖)|W), is the product of the probabilities of the edges of 𝑓(𝑖)’s

DAG. Similarly, 𝑞(𝑓 |W), the probability of the model sampling 𝑓, is given by the

product of 𝑓 ’s edges, or 𝑞(𝑓 |W) =
∏︀𝑣−1

𝑖=0 𝑞𝑖(𝑓(𝑖)|W).

In practice, we compute an approximate of this probability which we denote 𝑞, as

described in Methods Section 4.2.6. We find that OccamNet performs well with this

approximation. For all other sections of this paper, unless explicitly mentioned, we

use 𝑞 to mean 𝑞.

129

Our model thus represents a probability distribution 𝑞(·|W) over a function space

of all functions sampleable by the network,

ℱ𝐿Φ = {all function compositions up to nesting depth 𝐿 of Φ}.

We initialize the network with weights Wi such that 𝑞(𝑓1|Wi) = 𝑞(𝑓2|Wi) for all

𝑓1 and 𝑓2 in ℱ𝐿Φ. After training (Section 4.2.3), the network has weights Wf. The

network then selects the function 𝑓f with the highest probability 𝑞(𝑓f|Wf). We discuss

our algorithms for initialization and function selection in the Methods section. A key

benefit of OccamNet is that, unlike other approaches such as Petersen et al. [2021],

it allows for efficiently identifying the function with the highest probability using a

dynamic programming algorithm.

4.2.3 Training

To express a wide range of functions, we include non-differentiable and fast-growing

bases. Additionally, in symbolic regression, we are interested in finding global minima.

To address these constraints, we implement a loss function and training method that

combine gradient-based optimization and sampling-based strategies for efficient global

exploration of the function space. Our loss function and training procedure are closely

related to those proposed by Petersen et al. [2021], differing mainly in the fitness

function and regularization terms.

Loss Function

Consider a mini-batchℳ = (𝑋, 𝑌) and a sampled function from the network 𝑓(·) ∼

𝑞(·|W). We compute the fitness of each 𝑓(𝑖)(·) with respect to a training pair (𝑥⃗, 𝑦⃗)

by evaluating

𝑘𝑖
(︀
𝑓(𝑖)(𝑥⃗), 𝑦⃗

)︀
= (2𝜋𝜎2)−1/2 exp(−

[︀
𝑓(𝑖)(𝑥⃗)− (𝑦⃗)𝑖

]︀2
/(2𝜎2)),

130

which measures how close 𝑓(𝑖)(𝑥⃗) is to the target (𝑦⃗)𝑖. The total fitness is determined

by summing over the entire mini-batch: 𝐾𝑖

(︀
ℳ, 𝑓(𝑖)

)︀
=
∑︀

(𝑥⃗,𝑦⃗)∈ℳ 𝑘𝑖
(︀
𝑓(𝑖)(𝑥⃗), 𝑦⃗

)︀
.

We then define the loss function

𝐻𝑞𝑖 [𝑓(𝑖),W,ℳ] = −𝐾𝑖

(︀
ℳ, 𝑓(𝑖)

)︀
· log

[︀
𝑞𝑖(𝑓(𝑖)|W)

]︀
. (4.1)

as in Petersen et al. [2021]. As in Petersen et al. [2021], we train the network by

sampling functions, selecting the 𝜆 functions with the highest fitness for each output,

and perform a gradient step based on these highest-fitness functions using the loss

defined in Equation 4.1.

To improve implicit function fitting, we implement regularization terms that pun-

ish trivial solutions by reducing the fitness 𝐾, as discussed in the Methods Section.

We also introduce regularization to restrict OccamNet to solutions that preserve units.

Recurrence

OccamNet can also be trained to find recurrence relations. To augment the training

algorithm, for each sampled function, we compute its recurrence to a maximum depth

𝐷, obtaining a collection of 𝑅𝐷 functions. Training continues similarly to Petersen

et al. [2021], in which we compute the corresponding fitnesses, select the best 𝑣𝜆

functions, and update the weights. See the Methods section for more details.

4.2.4 Results

To empirically validate our model, we first develop a diverse collection of benchmarks

in four categories: Analytic Functions, simple, smooth functions; Implicit Functions,

functions specifying an implicit relationship between inputs; Non-Analytic Functions,

discontinuous and/or non-differentiable functions; Image/Pattern Recognition, pat-

terns explained by analytic expressions. We then test OccamNet’s performance and

ability to scale on real-world symbolic regression datasets. The purpose of these ex-

periments is to demonstrate that OccamNet can perform competitively with other

symbolic regression frameworks in a diverse range of applications.

131

a. b.

c.

1 2 3 4 5 6

Figure 4-2: Experiment on analytic functions. a. A sketch of the function∑︀3
𝑛=1 sin(𝑛𝑥) as an example of the analytics functions we consider in our work. b.

Success rate (out of 10 trials) for each of the five methods considered: OccamNet,
Eureqa, Eplex, AI Feynman 2.0 (AIF) and Deep Symbolic Regression (DSR) (at the
top). Training time for the methods (at the bottom). Eureqa almost always finishes
much more quickly than the other methods, so we do not provide training times for
Eureqa. We enumerate the functions to ease the discussion. c. The “worst-case”
performance for each methods, showing the minimal success rate across the six tasks.

We compare OccamNet with several other symbolic regression methods: Eureqa

[Schmidt and Lipson, 2009], a genetic algorithm with Epsilon-Lexicase (Eplex) se-

lection [La Cava et al., 2016], AI Feynman 2.0 (AIF) [Udrescu and Tegmark, 2020,

Udrescu et al., 2020], and Deep Symbolic Regression (DSR) [Petersen et al., 2021].

We do not compare to Transformer-based models such as Biggio et al. [2021] because,

unlike our method, these methods utilize a prespecified and immutable set of basis

functions which are not always sufficiently general to fit our experiments. The results

are shown in Tables 4.1, 4.2, and 4.3, and we discuss them below. More details about

the experimental setup are given in the SM.

Analytic functions

In Figure 4.2.4 and Table 4.1 (in the Methods) we present our results on analytic

functions. Panel a. presents an analytic function that is particularly challenging for

Eureqa. Panel b. shows that OccamNet is competetive to state-of-the-art symbolic

regression methods, while it has the only non-zero minimal success rate across the

132

considered functions (panel c.).

We highlight the large success rate for function 4, which we originally speculated

could easily trick the network with the local minimum 𝑓(𝑥) ≈ 𝑥+ 1 for large enough

𝑥. In contrast, as with the difficulties faced by AI Feynman, we find that OccamNet

often failed to converge for function 5 because it approximated the factor 𝑥20(𝑥0 + 1)

to 𝑥30; even when convergence did occur, it required a relatively large number of steps

for the network to resolve this additional constant factor. Notably, Eureqa and Eplex

had difficulty finding function 3.

AI Feynman consistently identifies many of the functions, but it struggles with

function 5 and is also generally much slower than other approaches. Eplex also per-

forms well on most functions and is fast. However, like Eureqa, Eplex struggles with

functions 3 and 6. We suspect that this is because evolutionary approaches require

a larger sample size than OccamNet’s training procedure to adequately explore the

search space. DSR consistently identifies many of the functions and is very fast. How-

ever, DSR struggles to fit Equation 6, which we suspect is because such an equation

is complex but can be simplified using feature reuse. OccamNet’s architecture allows

such feature reuse, demonstrating an advantage of OccamNet’s inductive biases.

Non-analytic functions

In Figure 4.2.4 and Table 4.2 (in the Methods) we benchmark the ability to find several

non-differentiable, potentially recursive/iterative functions. From our experiments,

we highlight both the network’s fast convergence to the correct functional form and the

discovery of the correct recurrence depth of the final expression. This is pronounced

for function 7 in, which is a challenging chaotic series on which Eureqa and Eplex

struggle. Interestinly, Eplex fails to identify the simpler functions 1-3 correctly. We

suspect that this may be because, for these experiments, we restrict both OccamNet

and Eplex to smaller expression depths. Although OccamNet is able to identify the

correct functions with small expression depth, we suspect that Eplex often identifies

expressions by producing more complex equivalents to the correct program and so

cannot identify the correct function when restricted to simpler expressions.

133

a. b. 1 2 3 4 5 6 7 8

Figure 4-3: Experiments on non-analytic functions. a. Two prominent examples
of non-analytic functions: The challenging recursion 𝑔(𝑥) = 𝑥2 if 𝑥 < 2, else 𝑥/2,
𝑦(𝑥) = 𝑔∘4(𝑥) (top) and a sorting circuit of three numbers (bottom). b. Success
rate (out of 10 trails) and training time for OccamNet and Eplex. We enumerate the
functions to ease the discussion.

We also investigated the usage of bases such as MAX and MIN to sort numbers

(function 4), obtaining relatively well-behaved final solutions: the few solutions that

did not converge fail only in deciding the second component, 𝑦2, of the output vector.

Finally, we introduced binary operators and discrete input sets for testing a simple

4-bit LFSR (function 5), the function (𝑥0, 𝑥1, 𝑥2, 𝑥3) → (𝑥0 + 𝑥3 mod 2, 𝑥0, 𝑥1, 𝑥2),

which converges fast with a high success rate.

We do not compare to AI Feynman in these experiments because AI Feynman

does not support the required basis functions.

Implicit Functions and Image Recognition

Figure 4-4 and Table 4.3 demonstrate applications of OccamNet in domains that

are not natural for standard symbolic regression baselines, but are quite natural for

OccamNet due to its interpretation as a feed-forward neural network.

OccamNet demonstrates a sizable advantage on all of the implicit functions. No-

tably, Eureqa is unsuccessful in fitting 𝑚1𝑣1−𝑚2𝑣2 = 0 (conservation of momentum).

Note that we only compare OccamNet to Eureqa for Implicit Functions because none

of the other methods include regularization to fit such functions.

134

a.

b.

porcupine/
minivan

0/7
0/1/2OccamNet

OccamNetResNet

Figure 4-4: Experiments on implicit functions and standard vision benchmarks. a.
Examples of implicit functions’ loci (left) and the corresponding success rate on a
suite of implicit functions (right). b. Examples of image recognition tasks (left) and
the best accuracy from 10 trials for both OccamNet and the baseline. The baseline for
MNIST Binary/ Trinary and ImageNet Binary is HeuristicLab Wagner et al. [2014].
The baseline for Backprop OccamNet and Finetune ResNet is a feed-forward neural
network with the same number of parameters as OccamNet.

We train OccamNet to classify MNIST [LeCun et al., 1998b]1 in a binary setting

between the digits 0 and 7 (MNIST Binary). For this high-dimensionality task, we

implement OccamNet on an Nvidia V100 GPU, yielding a sizable 8x speed increase

compared to a CPU. For MNIST Binary, one of the successful functional fits that

OccamNet finds is 𝑦0 (𝑥⃗) = tanh (10(max(𝑥715, 𝑥747)+tanh(𝑥435)+2𝑥710 +2𝑥713)) and

𝑦1 (𝑥⃗) = tanh (10 tanh(10 (𝑥512 + 𝑥566))) . The model learns to incorporate pixels into

the functional fit that are indicative of the class: here 𝑥512 and 𝑥566 are indicative of

the digit 7. These observations hold when we further benchmark the integration of

OccamNet with deep feature extractors. We extract features from ImageNet [Deng

et al., 2009a]2 images using a ResNet 50 model, pre-trained on ImageNet [He et al.,

2016b]. For simplicity, we select two classes, “minivan” and “porcupine” (ImageNet

Binary). OccamNet significantly improves its accuracy by backpropagating through

our model using a standard cross-entropy signal. We either freeze the ResNet weights

1Creative Commons Attribution Share Alike 3.0 License
2The Creative Commons Attribution (CC BY) License

135

(Backprop OccamNet) or finetune ResNet through OccamNet (Finetune ResNet). In

both cases, the converged OccamNet represents simple rules, (𝑦0(𝑥⃗) = 𝑥1838, 𝑦1(𝑥⃗) =

𝑥1557), suggesting that replacing the head in deep neural networks with OccamNet

might be promising.

Real-world regression datasets

We also test OccamNet’s ability to fit real-world datasets, selecting 15 datasets with

1667 or fewer datapoints from the Penn Machine Learning Benchmarks (PMLB3)

regression datasets Olson et al. [2017]. These are real-world datasets, and based on

their names, we infer that many are from social science, suggesting that they are

inherently noisy and likely to follow no known symbolic law. Additionally, 1/3 of

the datasets we choose have feature sizes of 10 or greater. These factors make the

PMLB datasets challenging symbolic regression tasks. We again compare OccamNet

to Eplex and AI Feynman 2.0.4

We test OccamNet twice. For the first test, “OccamNet,” we test exactly 1,000,000

functions, the same number as we test for Eplex. For the second test, “V100,” we

exploit our architecture’s integration with the deep learning framework by running

OccamNet on an Nvidia V100 GPU and testing a much larger number of functions.

We allow AIF to run for approximately as long or longer than OccamNet for each

dataset.

As discussed in the SM, we perform grid search on hyperparameters and identify

the fits with the best training, validation, and testing Mean Squared Error (MSE)

losses. The raw data from these experiments are shown in the SM.

Figure 4-5 shows the relative performance of OccamNet and comparison datasets

according to several metrics. As shown in Figure 4-5a,b,c, overall, Eplex outperforms

OccamNet in training and testing MSE loss, but OccamNet outperforms Eplex in val-

idation loss. We speculate that OccamNet’s performance drop between the validation
3Creative Commons Attribution 4.0 International License
4AIF’s regression algorithm examines all possible feature subsets, the number of which grows

exponentially with the number of features. Accordingly, we only test the datasets with ten or fewer
features. AI Feynman failed to run on a few datasets. All remaining datasets are included in tables
and figures.

136

and testing datasets results from overfitting from the larger set of hyperparameter

combinations for OccamNet (details in the SM).

Additionally, OccamNet runs faster than Eplex in nearly all datasets tested, often

by an order of magnitude (Figure 4-5d). Furthermore, OccamNet is highly parallel

and can easily scale on a GPU. Thus, a major advantage of OccamNet is its speed

and scalability (see Section 4.2.4 for a further discussion of OccamNet’s scaling).

Comparing V100 and Eplex demonstrates that OccamNet continues to improve when

testing more functions. The testing MSE is where V100 performs worst in comparison

to Eplex (see Figure 4-5e), but it still outperforms Eplex at 10/15 of the datasets while

running more than nine times faster. Thus OccamNet’s speed and scalability can be

exploited to greatly increase its accuracy at symbolic regression. This demonstrates

that OccamNet is a powerful alternative to genetic algorithms for interpretable data

modeling.

OccamNet also outperforms AIF for training, validation, and testing while run-

ning faster. OccamNet achieves a lower training and validation MSE than AIF for

every dataset tested. For training loss, OccamNet performs better than AIF in 4/7

datasets (Figure 4-5f). Additionally, unlike OccamNet, AIF performs polynomial fit-

ting, giving it an additional advantage. However, the datasets we test are likely a

worst-case for AIF; the datasets are small, have no known underlying formula, and

we normalize the data prior to training, meaning that AIF will likely struggle not to

overfit with its neural network and will also be unlikely to identify graph modularities.

Scaling on real-world regression datasets

As discussed in Section 4.2.4, OccamNet runs far more quickly than Eplex, meaning

that it can scale to testing far more functions per epoch than Eplex in the same

runtime. To explore this advantage, we compare OccamNet running on an Nvidia

V100 GPU (OccamNet) against Eplex while varying the number of functions sampled

per epoch for each method. We benchmark both methods on the same 15 PMLB

datasets (see the methods section for more details).

We include and discuss the complete results of this experiment in Appendix I.

137

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151.0

1.1

1.2

1.3

1.4

1.5
Hi

gh
er

/L
ow

er

a)

1.06

1.01
1.04

1.27
1.31

1.04

1.15

1.1

1.04 1.02 1.04
1.02

1.11

1.18

1.38

OccamNet v. Eplex, Training
OccamNet Performs Better
Comparison Performs Better

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151.0

1.5

2.0

2.5

3.0

3.5
b)

1.08
1.26

2.62

1.02
1.13

1.35 1.36

1.61

2.66

3.26

1.1 1.09 1.03 1.02

1.47

OccamNet v. Eplex, Validation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151

2

3

4

5

c)

1.06

2.47

1.11 1.15
1.53

1.91

1.13 1.14 1.05

5.08

1.65

1.14

2.23

1.29

3.77

OccamNet v. Eplex, Testing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dataset

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Hi
gh

er
/L

ow
er

d)

2.04
1.05

19.6 19.5
18.4

6.01 5.91

9.54

17.9

4.93 4.77

17.2

1.03 1.02 1.37

OccamNet v. Eplex, Timing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dataset

1.0

1.5

2.0

2.5

3.0

e)

1.58

1.05 1.12 1.09 1.13

1.56

1.99

3.1

1.0

1.32

1.04 1.0

1.8

1.11
1.29

OccamNetV100 v. Eplex, Testing

1 4 6 7 10 11 13 15
Dataset

1

2

3

4

5

f)

2.95

1.25

2.08

1.3
1.52

1.71

1.26

5.13

OccamNet v. AIF, Testing

Figure 4-5: A bar chart showing the relative performance between OccamNet and
two baseline methods, Eplex and AIF. The x-axis is the dataset involved. The y-axis
is the relative performance according to the given metric: the MSE on the training,
validation, or testing set or the training time. To compute this relative performance,
we divide the higher (worse) performance value by the lower (better) performance
value for each dataset. The green bars represent datasets where OccamNet has a
lower (better) performance value than the comparison baseline method, and the red
bars represent the datasets where the comparison method has a better performance
than OccamNet.

In this section, we highlight key results. Figure 4-6 shows that OccamNet is often

more than an order of magnitude faster than Eplex. Eplex scales quadratically with

the number of functions, whereas OccamNet’s runtime asymptotes to linear growth.

However, the V100 GPU’s extreme parallelism initially suppresses OccamNet’s linear

growth, demonstrating an advantage of OccamNet’s ability to scale on a GPU.

In all of the 15 datasets, OccamNet’s training loss decreases with larger runtimes,

demonstrating that OccamNet can utilize the greater number of sampled functions

that its efficient scaling allows. Additionally, for 11 of the training datasets, the

OccamNet best fit has a loss that is lower than or equal to the Eplex best fit. In-

terestingly, OccamNet’s validation and training loss do not always show such a clear

trend of improvement with increasing sample size. Given that the training loss does

improve, we suspect that this is a case of overfitting. OccamNet’s validation loss does

decrease for most of the datasets.

138

250 500 1000 2000 4000 8000 16000 32000 64000
Functions Sampled per Epoch

26

28

210

212

214

216

M
ea

n
Ru

n
Ti

m
e

(s
)

Eplex
OccamNet

0 200 400
Epoch

10 6

10 5

10 4

10 3

10 2

10 1

Pr
ob

ab
ilit

y

sin(x0 + x0)
sin(x0) + sin(x0)
sin(x0) + sin(x0)
sin(x0) + sin(x0)

0

50

100

150

Ti
m

es
 S

am
pl

ed

Figure 4-6: Left: The run time for OccamNet V100 or Eplex as a function of the
number of functions sampled per epoch. Each curve represents one of the 15 datasets.
Right: Gradual modularity with training. Dark blue is the correct function. Light
blue is a suboptimal fit with a high probability early in training. Red corresponds to
the correct function. The insets show the first sample of the correct function.

4.2.5 Discussion

Since our experimental settings did not require very large depths, we have not tested

the limits of OccamNet in terms of depth rigorously (preliminary results on increasing

the depth for pattern recognition are in the SM). We expect increasing depth to yield

significant complications as the search space grows exponentially. We recognize the

need to create symbolic regression benchmarks that would require expressions that

are large in depth. We believe that other contributions to symbolic regression would

also benefit from such benchmarks. Another direction where OccamNet might be

improved is low-level optimization that would make the method more efficient to

train. For example, in our PMLB experiments, we estimate that OccamNet performs

>8x as many computations as necessary. Eplex may also benefit from optimization.

Finally, similarly to other symbolic regression methods, OccamNet requires a specified

basis to fit a dataset. While it is a notable advantage of OccamNet to have non-

differentiable bases, further work needs to be done to explore optimization at a meta

level that discovers appropriate bases for the datasets of interest.

OccamNet’s learning procedure allows it to combine partial solutions into better

results. For example in Figure 4-6, the correct function’s probability increases by more

than 100 times before being sampled because OccamNet samples similar approximate

139

solutions.

OccamNet successfully fits many implicit functions that other neurosymbolic ar-

chitectures struggle to fit because of the non-differentiable regularization terms re-

quired to avoid trivial solutions. Although Eureqa also fits many of these equations,

we find that it sometimes requires the data to be ordered by some latent variable and

struggles when the dataset is very small. This is likely because Eureqa numerically

evaluates implicit derivatives from the dataset [Schmidt and Lipson, 2010], which can

be noisy when the data is sparse. While Schmidt and Lipson [2010] propose methods

for analyzing unordered data, it is unclear whether these methods have been imple-

mented in Eureqa. Thus, OccamNet seems to shine in its ability to fit unordered and

small datasets described by implicit equations (e.g., momentum conservation in line

5 in Table 4.3).

To our knowledge, a unique advantage of our method is that OccamNet repre-

sents complete analytic expressions with a single forward pass, which allows sizable

gains when using an AI accelerator, as demonstrated by our experiments on a V100

GPU (Figure 4-5). Furthermore, because of this property, OccamNet can be easily

integrated with components from the standard deep learning toolkit. For example,

lines 9-10 in Table 4.3 demonstrate integration and joint optimization with neural

networks which is not possible with Eureqa. We also conjecture that such integration

with autoregressive approaches [Petersen et al., 2021] might be challenging as the

memory and latency would increase.

An advantage of OccamNet over transformer-based approaches to symbolic re-

gression is that OccamNet is basis-agnostic. In particular, OccamNet can find fits to

data regardless of the basis functions it is given, whereas transformer-based models

[Biggio et al., 2021] can only fit functions that contain a certain set of basis functions

chosen at pretraining time. This makes OccamNet and other similar approaches more

flexible and broadly applicable than transformer-based models. As discussed above,

this is the reason that we do not compare against transformer-based methods in our

experiments.

140

4.2.6 Methods

We divide our methods section into two parts. In Section 4.2.6, we provide a more

detailed description of OccamNet, and in 4.2.6 we fully describe the setup for all of

our experiments.

Complete Model Description

We divide this section as follows:

1. In Section 4.2.6, we present additional materials that support the figures from

the main text.

2. In Section 4.2.6, we describe OccamNet’s probability distribution.

3. In Section 4.2.6, we describe of OccamNet’s sampling process.

4. In Section 4.2.6, we describe OccamNet’s initialization process.

5. In Section 4.2.6, we describe OccamNet’s function selection.

6. In Section 4.2.6, we describe OccamNet’s loss function.

7. In Section 4.2.6, we describe OccamNet’s training.

8. In Section 4.2.6, we describe OccamNet’s two-step training method for fitting

constants.

9. In Section 4.2.6, we describe OccamNet’s handling of recurrence.

10. In Section 4.2.6, we describe OccamNet’s regularization for fitting implicit func-

tions.

11. In Section 4.2.6, we describe OccamNet’s method for regularizing to respect

units.

12. In Section 4.2.6, we describe OccamNet’s procedure for handling functions with

undefined outputs.

141

Supporting Materials for the Main Figures

Figure 4-7 presents our OccamNet architecture in more detail. Tables 4.1,4.2, and

4.3 present our experiments in a tabular format.

Figure 4-7: (a) A two-output network model with depth 𝐿 = 2, 𝑥⃗ = [𝑥0, 𝑥1], user-
selected constants 𝒞 = [1, 𝜋], and basis functions Φ = (+(·, ·), sin(·), (·)2,×(·, ·)).
Highlighted are the arguments sublayer, composed of P-nodes, and the images sub-
layer, composed of the basis functions from Φ. Together, these two sublayers define
a single layer of our model. (b) An example of function-specifying directed acyclic
graphs (DAGs) that can be sampled from the network in (a). These DAGs represent
the functions 𝑦0 = sin2(𝑥0 + 1) and 𝑦1 = sin(𝜋2 sin(𝑥1)).

Table 4.1: Analytic Functions. The proportion of 10 trials that converge to the
correct analytic function for OccamNet, Eureqa, Eplex, AI Feynman 2.0, and Deep
Symbolic Regression (DSR). sec. is the average number of seconds for convergence.
Eureqa almost always finishes much more quickly than the other methods, so we do
not provide training times for Eureqa.

Analytic Functions

Targets OccamNet sec. Eureqa Eplex sec. AI Feynman sec. DSR sec.

1 2𝑥2 + 3𝑥 1.0 5 1.0 1.0 16 1.0 35 1.0 3
2 sin(3𝑥 + 2) 0.8 56 1.0 0.9 16 1.0 620 1.0 3
3

∑︀3
𝑛=1 sin(𝑛𝑥) 0.7 190 0.0 0.0 17 1.0 815 1.0 36

4 (𝑥2 + 𝑥)/(𝑥 + 2) 0.9 81 0.7 0.5 44 1.0 807 1.0 2
5 𝑥2

0(𝑥0 + 1)/𝑥5
1 0.3 305 1.0 0.9 53 0.0 1918 1.0 84

6 𝑥2
0/2 + (𝑥1 + 1)2/2 0.6 83 0.7 0.2 92 1.0 3237 0.0 3935

OccamNet’s Probability Distribution As discussed in the main text, OccamNet

represents not only the probability of sampling a given function 𝑓 = (𝑓(0), . . . , 𝑓(𝑣−1))
⊤

but also the probability of sampling each 𝑓(𝑖) independently of the other components

of 𝑓. Because 𝑞(·|·) is a probability distribution we have
∑︀

𝑓∈ℱ𝐿
Φ
𝑞(𝑓 |W) = 1 and

142

Table 4.2: Non-analytic Functions. The proportion of 10 trials that converge to
the correct function for OccamNet, Eureqa, and Eplex. sec. is the average number
of seconds for convergence. Eureqa almost always finishes much more quickly than
OccamNet and Eplex, so we do not provide training times for Eureqa. *For program
#6, Eplex fits 𝑦1 every time and never fits 𝑦0 correctly, so we give it a score of 0.5.

Non-analytic Functions

Targets OccamNet sec. Eureqa Eplex sec.

1 3𝑥 if 𝑥 > 0, else 𝑥 0.7 26 1.0 0.0 52
2 𝑥2 if 𝑥 > 0, else −𝑥 1.0 10 1.0 0.0 46
3 𝑥 if 𝑥 > 0, else sin(𝑥) 1.0 236 1.0 0.0 47
4 SORT(𝑥0, 𝑥1, 𝑥2) 0.7 81 1.0 1.0 191
5 4LFSR(𝑥0, 𝑥1, 𝑥2, 𝑥3) 1.0 14 1.0 1.0 262

6

𝑦0(𝑥⃗) = 𝑥1 if 𝑥0 < 2,

0.3 157 0.1 *0.5 121else −𝑥1
𝑦1(𝑥⃗) = 𝑥0 if 𝑥1 < 0,

else 𝑥21

7
𝑔(𝑥) = 𝑥2 if 𝑥 < 2,

1.0 64 0.0 0.0 189else 𝑥/2
𝑦(𝑥) = 𝑔∘4(𝑥)

8
𝑔(𝑥) = 𝑥+ 2 if 𝑥 < 2,

1.0 64 0.6 1.0 116else 𝑥− 1
𝑦(𝑥) = 𝑔∘2(𝑥)

𝑞(𝑓 |W) ≥ 0 for all 𝑓 in ℱ𝐿Φ. Similar results hold for the probability distributions of

each component 𝑓(𝑖).

OccamNet’s sampling process involves independently sampling connections from

each layer. Although each of OccamNet’s layers represents an independent probability

distribution, when sampling a function, the layers do not act independently. This is

because the samples from layers closer to the outputs inform which of the sampled

connections from previous layers are used. In particular, the full DAG that OccamNet

samples has many disconnected components, and all components of the DAG which

are not connected to any of the output nodes are effectively trimmed (See Figure 4-8).

This is advantageous as it allows OccamNet to produce very different distributions of

functions for different choices of connections in the final few layers, thereby allowing

OccamNet to explore multiple classes of functions simultaneously.

143

Table 4.3: Implicit Functions: The proportion of 10 trials that converge to the correct
implicit function for OccamNet and Eureqa. Image Recognition: The best accuracy
from 10 trials for both OccamNet and the baseline. The baseline above the mid-line
is HeuristicLab [Wagner et al., 2014], and the baseline below the mid-line is a feed-
forward neural network with the same number of parameters as OccamNet. sec. is
the average number of seconds for convergence. The baselines almost always finish
much more quickly than OccamNet, so we do not provide baseline training times.

Implicit Functions Image Recognition

Target OccamNet sec. Eureqa # Target OccamNet sec. Baseline

1 𝑥0𝑥1 = 1 1.0 294 1.0 6 MNIST Binary 92.9 150 92.8
2 𝑥2

0 + 𝑥2
1 = 1 1.0 153 0.6 7 MNIST Trinary 59.6 400 81.2

3 𝑥0/ cos(𝑥1) = 1 1.0 131 1.0 8 ImageNet Binary 70.7 400 78.0

4 𝑥1/𝑥0 = 1 0.9 232 1.0 9 Backprop OccamNet 98.1 37 97.7
5 𝑚1𝑣1 − 𝑚2𝑣2 = 0 1.0 270 0.0 10 Finetune ResNet 97.3 200 95.4

Figure 4-8: A demonstration of the dropped connections from sampled paths in Oc-
camNet. All red paths are dropped from the final symbolic form of the sampled
function because they are not directly connected to the outputs. These paths are
unnecessarily computed during OccamNet’s training process, leading to potential
slowdowns in training.

As discussed in the main text, 𝑞(𝑓 |W) is the product of the probabilities of the

sampled connections in 𝑓 ’s DAG which are connected to the output nodes. However,

in practice, we compute probabilities of functions in a feed-forward manner. This

computation underestimates some probabilities; it actually computes an estimate

𝑞(𝑓 |W) of 𝑞(𝑓 |W).

To compute the probability of a given function, we assign each image and argument

node a probability given this function’s DAG. We denote the probability of the 𝑖’th

node of the 𝑙’th image layer with 𝑝
(𝑙)
𝑖 and the probability of the 𝑖’th node of the 𝑙’th

argument layer with 𝑝(𝑙)𝑖 .

144

We propagate probabilities as follows. If the 𝑖’th image node in layer 𝑙 − 1 is

connected to the 𝑗’th argument node in layer 𝑙, the probability of the 𝑗’th argument

node in layer 𝑙 is

𝑝
(𝑙)
𝑗 = 𝑝

(𝑙−1)
𝑖 · 𝑝(𝑙,𝑗)𝑖 (𝑇). (4.2)

The 𝑖th image node of the 𝑗th layer then has probability given by

𝑝
(𝑙)
𝑖 =

𝑛+𝛼(𝜑𝑖)∏︁
𝑘=𝑛+1

̃︀𝑝(𝑙)𝑘 , 𝑛 =
𝑖−1∑︁
𝑗=1

𝛼(𝜑𝑗). (4.3)

Finally, to calculate the probability of a function, we multiply the probabilities of the

output nodes.

This algorithm computes function probabilities correctly unless a function’s DAG

has multiple nodes connecting to the same earlier node in the DAG. In this case,

the probability of the earlier node is included multiple times in the final function

probability, producing an estimate that is below the true probability of sampling the

function.

In practice, we find that this biased evaluation of probabilities does not substan-

tially affect OccamNet training. Note that when we equalize all functions to have the

same probability (Section 4.2.6) or sample the highest probability function (Section

4.2.6), we do so with respect to the probability estimate 𝑞, not with respect to 𝑞. In

this paper, we use 𝑞 to mean 𝑞 unless otherwise specified.

Sampling from OccamNet Here we introduce the full mathematical formalism

behind OccamNet. As described in the main text, we start from a predefined collec-

tion of 𝑁 basis functions Φ = {𝜑𝑖(·)}𝑁𝑖=1. Each neural network layer is defined by

two sublayers, the arguments and image sublayers. For a network of depth 𝐿, each

of these sublayers is reproduced 𝐿 times. Now let us introduce their corresponding

hidden states: each 𝑙’th arguments sublayer defines a hidden state vector ̃︀h(𝑙), and

145

each 𝑙’th image sublayer defines a hidden state h(𝑙), as follows:

̃︀h(𝑙) =
[︁̃︀ℎ(𝑙)1 , . . . ,̃︀ℎ(𝑙)𝑀]︁ , h(𝑙) =

[︁
ℎ
(𝑙)
1 , . . . , ℎ

(𝑙)
𝑁

]︁
, (4.4)

where

𝑀 =
∑︁

0≤𝑘≤𝑁

𝛼(𝜑𝑘)

and 𝛼(𝜑) is the arity of function 𝜑(·, . . . , ·). These vectors are related through the

basis functions

ℎ
(𝑙)
𝑖 = 𝜑𝑖

(︁̃︀ℎ(𝑙)𝑗+1, . . . ,
̃︀ℎ(𝑙)𝑗+𝛼(𝜑𝑖))︁ , 𝑗 =

∑︁
0≤𝑘<𝑖

𝛼(𝜑𝑘). (4.5)

This formally expresses how the arguments connect to the images in any given layer,

visualized as the bold edges between sublayers in Figure 1 in the main paper. To

complete the architecture and connect the images from layer 𝑙 to the arguments of

layer (𝑙 + 1), we use the described softmax transformation: 5

W(𝑇) · h(𝑙) = sample

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

softmax(w1;𝑇)⊤

...

softmax(w𝑀𝑙+1
;𝑇)⊤

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎣
ℎ
(𝑙)
1

...

ℎ
(𝑙)
𝑁𝑙

⎤⎥⎥⎥⎦

≡

⎡⎢⎢⎢⎣
̃︀ℎ(𝑙+1)
1

...̃︀ℎ(𝑙+1)
𝑀𝑙+1

⎤⎥⎥⎥⎦ = ̃︀h(𝑙+1),

(4.6)

where the hidden states 𝑏ℎ(𝑙) and ̃︁𝑏ℎ(𝑙+1)
have 𝑁𝑙 and 𝑀𝑙+1 coordinates, respectively,

and where the sample function samples a one-hot row vector for each row based on

the categorical probability distribution defined by softmax(w;𝑇)⊤. In practice, we

set 𝑇 to a fixed, typically small, number. The last layer is usually set to a higher

temperature to allow more compositionality. These sampled edges are encoded as

5as before, we define for any z = [𝑧1, . . . , 𝑧𝑁𝑙] the softmax function as follows softmax(z;𝑇) :=[︂
exp(𝑧1/𝑇)∑︀𝑁𝑙
𝑖=1 exp(𝑧𝑖/𝑇)

, . . . ,
exp(𝑧𝑁𝑙/𝑇)∑︀𝑁𝑙
𝑖=1 exp(𝑧𝑖/𝑇)

]︂⊤
146

sparse matrices, through which a forward pass evaluates 𝑓 .

It is also possible to implement OccamNet without the sampling part of the prop-

agation. In this case, the softmax of the weight matrices is treated as the weights

of linear layers, and we minimize the MSE loss between the outputs and the desired

outputs. In practice, however, we find that this approach is less interpretable and

often converges to suboptimal local minima.

As shown in Figure 4-9, we use skip connections similar to those in DenseNet [Huang

et al., 2017] and ResNet [He et al., 2016b], concatenating image states with those of

subsequent layers. Skip connections yield several desirable properties: (i) The depth

of equations is not fixed, lifting the requirement that the number of layers of the solu-

tion be known in advance. (ii) The network can find compact solutions as it considers

all levels of composition. This promotes solution sparsity and interpretability. (iii)

Primitives in shallow layers can be reused, analogous to feature reuse in DenseNet.

(iv) Subsequent layers may behave as higher-order corrections to the solutions found

in early layers. Additionally, if we implement OccamNet without sampling, shal-

low layers are trained before or alongside the subsequent layers due to more direct

supervision because gradients can propagate to shallow layers more easily to avoid

exploding or vanishing gradients.

From Equation equation 4.5, we see that 𝑀𝑙+1 = 𝑀 =
∑︀

0≤𝑘≤𝑁 𝛼(𝜑𝑘). If no skip

connections are used, 𝑁𝑙 = 𝑁 = |Φ|. If skip connections are used, however, 𝑁𝑙 grows

as 𝑙 increases. We demonstrate how the scaling grows as follows. Let 𝑢 be the number

of inputs and 𝑣 be the number of outputs. When learning connections from images

to arguments at layer 𝑙 (1 ≤ 𝑙 ≤ 𝐿), there will be skip connections from the images

of the previous 𝑙 − 1 layers 1, . . . , 𝑙 − 1. Hence the 𝑖th layer has an image size of

𝑢 + (𝑖 + 1)𝑁, as shown in Figure 4-9. We learn linear layers from these images to

arguments, and the number of arguments is always 𝑀 . Thus, in total, we have the

following number of parameters:

𝑣(𝑢+ (𝐿+ 1)𝑁) +𝑀
𝐿−1∑︁
𝑖=0

(𝑢+ (𝑖+ 1)𝑁) ∈ 𝑂(𝑁𝑀𝐿2).

147

Figure 4-9: Skip connections. Dotted lines and color: the origin of the reused
neurons.

Note that in the above discussion we assume that 𝑀 remains constant. However,

to be able to represent all functions up to a particular depth, we must repeat bases in

earlier layers, causing 𝑀 to grow exponentially. For small numbers of layers, this is

not problematic, and one can always increase the number of layers to generate more

functions.

Along with the added inputs and constants, this description fully specifies the

mathematical structure of our architecture.

Initialization We originally initialized all model weights to 1. However, this ini-

tializes complex functions, which have DAGs with many more edges than simple

functions, to low probabilities. As a result, we found in practice that the network

sometimes struggled to converge to complex functions with high fitness 𝐾(ℳ, 𝑓) be-

cause their initial low probabilities meant that they were sampled far less often than

simple functions. This is because even if complex functions have a higher probability

increase than simple functions when they are sampled, the initial low probabilities

caused the complex functions to be sampled far less and to have an overall lower

expected probability increase.

To address this issue, we use a second initialization algorithm, which initializes all

functions to equal probability.

This initialization algorithm iterates through the layers of the network. It estab-

148

lishes as an invariant that, after assigning the weights up to the 𝑙th layer, all paths

leading to a given node in the 𝑙th argument layer have equal probabilities. Then,

each argument layer node has a unique corresponding probability, the probability

of all paths up to that node. We denote the probability of the 𝑖th node in the 𝑙th

argument sublayer as ̃︀𝑝(𝑙)𝑖 . Because each argument layer node has a corresponding

probability, each image layer node must also have a unique corresponding probabil-

ity, which, for the 𝑖th node in the 𝑙th image sublayer, we denote as 𝑝(𝑙)𝑖 . These image

layer probabilities are given by

𝑝
(𝑙)
𝑖 =

𝑛+𝛼(𝜑𝑖)∏︁
𝑘=𝑛+1

̃︀𝑝(𝑙)𝑘 , 𝑛 =
𝑖−1∑︁
𝑗=1

𝛼(𝜑𝑗). (4.7)

Our algorithm initializes the input image layer’s nodes to probability 1. As the al-

gorithm iterates through all subsequent 𝑇 -Softmax layers, the invariant established

above provides a system of linear equations involving the desired connection proba-

bilities, which the algorithm solves. The algorithm groups the previous image layer

according to the node probabilities, obtaining a set of ordered pairs {(𝑝′(𝑙)𝑖 , 𝑛
(𝑙)
𝑖)}𝑘𝑖=1

representing 𝑛(𝑙)
𝑖 nodes with probability 𝑝′(𝑙)𝑖 in the 𝑙th layer. Note that if two image

nodes have the same probability, for each 𝑃 -node in the arguments sublayer, the edges

between the image nodes and the 𝑃 -node must have the same probability in order

to satisfy the algorithm’s invariant. Then, we define 𝑝′(𝑙,𝑗)𝑖 as the probability of the

edges between the image nodes with probability 𝑝′(𝑙)𝑖 and the 𝑗th argument 𝑃 -node of

the 𝑙th layer. The probabilities of the edges to a given 𝑃 -node sum to 1, so for each

𝑗, we must have
∑︀

𝑖 𝑛𝑖𝑝
′(𝑙,𝑗)
𝑖 = 1. Further, the algorithm requires that the probability

of a path to a 𝑃 -node through a given connection is the same as the probability of a

path to that 𝑃 -node through any other connection. The probability of a path to the

𝑗th 𝑃 -node through a connection with probability 𝑝′(𝑙,𝑗)𝑖 is 𝑝′(𝑙)𝑖 𝑝′
(𝑙,𝑗)
𝑖 , so we obtain the

equations 𝑝′(𝑙)0 𝑝′
(𝑙,𝑗)
0 = 𝑝′

(𝑙)
𝑖 𝑝

′(𝑙,𝑗)
𝑖 , for all 𝑖 and 𝑗. These two constraints give the vector

149

equation ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛
(𝑙)
0 𝑛

(𝑙)
1 𝑛

(𝑙)
2 · · · 𝑛

(𝑙)
𝑘

𝑝′
(𝑙)
0 −𝑝′(𝑙)1 0 · · · 0

𝑝′
(𝑙)
0 0 −𝑝′(𝑙)2 · · · 0
...

...
...

𝑝′
(𝑙)
0 0 0 · · · −𝑝′(𝑙)𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝′
(𝑙,𝑗)
0

𝑝′
(𝑙,𝑗)
1

𝑝′
(𝑙,𝑗)
2

...

𝑝′
(𝑙,𝑗)
𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for all 1 ≤ 𝑗 ≤𝑀 . The algorithm then solves for each 𝑝′(𝑙,𝑗)𝑖 .

After determining the desired probability of each connection of the 𝑙th layer, the

algorithm computes the SPL weights w′(𝑙,𝑗) that produce the probabilities 𝑝′(𝑙,𝑗)𝑖 . Since

there are infinitely many possible weights that produce the correct probabilities, the

algorithm sets 𝑤′(𝑙,𝑗)
0 = 0. Then, the algorithm uses the softmax definition of the edge

probabilities to determine the required value of
∑︀𝑘

𝑚=1 exp(𝑤′(𝑙,𝑗)
𝑖 /𝑇 (𝑙)):

𝑝′
(𝑙,𝑗)
0 =

exp(𝑤′(𝑙,𝑗)
0 /𝑇 (𝑙))∑︀𝑘

𝑚=1 exp(𝑤′(𝑙,𝑗)
𝑚 /𝑇 (𝑙))

=
1∑︀𝑘

𝑚=1 exp(𝑤′(𝑙,𝑗)
𝑚 /𝑇 (𝑙))

so
𝑘∑︁

𝑚=1

exp(𝑤′(𝑙,𝑗)
𝑚 /𝑇) = 1/𝑝′

(𝑙,𝑗)
0 .

Substituting this equation into the expression for the other probabilities gives

𝑝′
(𝑙,𝑗)
𝑖 = exp(𝑤′(𝑙,𝑗)

𝑖 /𝑇 (𝑙))/

(︃
𝑘∑︁

𝑚=1

exp(𝑤𝑖/𝑇
(𝑙))

)︃
= 𝑝′

(𝑙,𝑗)
0 exp(𝑤′(𝑙,𝑗)

𝑖 /𝑇 (𝑙)).

Solving for 𝑤′(𝑙,𝑗)
𝑖 gives

𝑤′(𝑙,𝑗)
𝑖 = 𝑇 (𝑙) log

(︁
𝑝′

(𝑙,𝑗)
𝑖 /𝑝′

(𝑙,𝑗)
0

)︁
,

which the algorithm uses to compute 𝑤′(𝑙,𝑗)
𝑖 .

After determining the weights 𝑤′(𝑙,𝑗)
𝑖 the algorithm assigns them to the correspond-

150

ing 𝑤(𝑙,𝑗)
𝑖 . In particular, if the 𝑖th image node has probability 𝑝′(𝑙)𝑘 , the weights of edges

to the 𝑖th node are given by 𝑤(𝑙,𝑗)
𝑖 = 𝑤′(𝑙,𝑗)

𝑘 , for all 𝑗. The algorithm then determines

the values of ̃︀𝑝(𝑙+1)
𝑖 , given by ̃︀𝑝(𝑙+1)

𝑖 = 𝑝
(𝑙)
1 𝑝

(𝑙,𝑖)
1 . Finally, the algorithm determines 𝑝(𝑙+1)

𝑖

using Equation 4.7 and repeats the above process for subsequent layers until it reaches

the end of the network.

This algorithm efficiently equalizes the probabilities of all functions in the net-

work. In practice, however, we find that perfect equalization of functions causes

activation functions with two inputs to be highly explored. This is because there are

many more possible functions containing activation functions with two inputs than

with one input. Additionally, as mentioned in Section 4.2.6, in this section we have

implicitly been using the approximate probability 𝑞. This probability underestimates

many functions that include activation functions with two or more inputs because

these functions are those which can use a node multiple times in their DAG. As a re-

sult, although all functions will have an equal 𝑞, some functions with multiple inputs

will have larger 𝑞 than other functions, and 𝑞 is what determines the probability of

being sampled. In practice, therefore, we find that a balance between initializing all

weights to one and initializing all functions to equal probability is most effective for

exploring all types of functions.

To implement this balance, we create an equalization hyperparameter, 𝐸. If 𝐸 = 0,

we initialize all weights to 1 as in the original OccamNet architecture. If 𝐸 ̸= 0, we

use the algorithm presented above to initialize the weights and then divide all of the

weights by 𝐸. For 𝐸 > 1, this has the effect of initializing weights between the two

initialization approaches. In practice, we find that values of 𝐸 = 1 and 𝐸 = 5 are

most effective for exploring all types of functions (See Section 4.2.6).

Function Selection As discussed in the main text, after training using a sampling

strategy, the network selects the function 𝑓 with the highest probability 𝑞(𝑓 |W).

We develop a dynamic programming algorithm that determines the DAG with the

highest probability. The algorithm steps sequentially through each argument layer,

and at each argument layer it determines the maximum probability path to each

151

argument node. Knowing the maximum probability paths to the previous argument

layer nodes allows the algorithm to easily determine the maximum probability paths

to the next argument layer.

As with the network initialization algorithm, the function selection algorithm

associates the 𝑖th 𝑃 -node of the 𝑙th argument sublayer with a probability, ̃︀𝑝(𝑙)𝑖 , which

represents the highest probability path to that node. Similarly, we let 𝑝(𝑙)𝑖 represent

the assigned probability of the 𝑖th node of the 𝑙th image sublayer, defined as the

highest probability path to a given image node. 𝑝
(𝑙)
𝑖 can once again be determined

from ̃︀𝑝(𝑙)𝑖 using Equation 4.7. Further, the algorithm associates each node with a

function, ̃︀𝑓 (𝑙)
𝑖 for argument nodes and 𝑓

(𝑙)
𝑖 for image nodes, which represents the

highest probability function to the corresponding node. Thus, ̃︀𝑓 (𝑙)
𝑖 has probabilitỹ︀𝑝(𝑙)𝑖 , and 𝑓 (𝑙)

𝑖 has probability 𝑝(𝑙)𝑖 . Further, 𝑓 (𝑙)
𝑖 is determined from ̃︀𝑓 (𝑙)

𝑖 using

𝑓
(𝑙)
𝑖 (𝑥⃗) = 𝜑𝑖

(︁ ̃︀𝑓 (𝑙)
𝑛+1(𝑥⃗), . . . , ̃︀𝑓 (𝑙)

𝑛+𝛼(𝜑𝑗)
(𝑥⃗)
)︁
, 𝑛 =

𝑖−1∑︁
𝑗=1

𝛼(𝜑𝑗). (4.8)

The algorithm iterates through the networks layers. At the 𝑙th layer, it determines

the maximum probability path to each argument node, computing

̃︀𝑝(𝑙+1)
𝑖 = MAX

(︁
𝑝
(𝑙)
0 𝑝

(𝑙,𝑖)
0 , . . . , 𝑝

(𝑙)
𝑁 𝑝

(𝑙,𝑖)
𝑁

)︁

̃︀𝑓 (𝑙+1)
𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓
(𝑙)
0 if ̃︀𝑝(𝑙+1)

𝑖 = 𝑝
(𝑙)
0 𝑝

(𝑙,𝑖)
0

𝑓
(𝑙)
1 if ̃︀𝑝(𝑙+1)

𝑖 = 𝑝
(𝑙)
1 𝑝

(𝑙,𝑖)
1

...
...

𝑓
(𝑙)
𝑁 if ̃︀𝑝(𝑙+1)

𝑖 = 𝑝
(𝑙)
𝑁 𝑝

(𝑙,𝑖)
𝑁

.

Next, it determines the maximum probability path up to each image node, com-

puting 𝑝
(𝑙+1)
𝑖 and 𝑓

(𝑙+1)
𝑖 using Equations 4.7 and 4.8, respectively. The algorithm

repeats this process until it reaches the output layer, at which point it returns

𝑓max = [̃︀𝑓 (𝐿)
1 , . . . , ̃︀𝑓 (𝐿)

𝑁]⊤ and 𝑝max =
∏︀𝑁

𝑖=1 ̃︀𝑝(𝐿)𝑖 .

An advantage of this process is that identifying the highest probability function

152

is just as efficient as sampling functions. In particular, the complexity at each layer

is 𝑂(𝑀𝑁𝑖), leading to an overall complexity of 𝑂(𝑁𝑀𝐿2) if skip connections are

included.

Loss We train our network on mini-batches of data to provide flexibility for devices

with various memory constraints. Consider a mini-batchℳ = (𝑋, 𝑌), and a sampled

function from the network 𝑓(·) ∼ 𝑞(·|W). We compute the fitness of each 𝑓(𝑖)(·) with

respect to a training pair (𝑥⃗, 𝑦⃗) by evaluating the likelihood

𝑘𝑖
(︀
𝑓(𝑖)(𝑥⃗), 𝑦⃗

)︀
= (2𝜋𝜎2)−1/2 exp(−

[︀
𝑓(𝑖)(𝑥⃗)− (𝑦⃗)𝑖

]︀2
/(2𝜎2)),

which is a Normal distribution with mean 𝑦 and variance 𝜎2, and measures how close

𝑓(𝑖)(𝑥⃗) is to the target (𝑦⃗)𝑖. The likelihood can be also viewed as a Bayesian posterior

with a noninformative prior. The total fitness is determined by summing over the

entire mini-batch: 𝐾𝑖

(︀
ℳ, 𝑓(𝑖)

)︀
=
∑︀

(𝑥⃗,𝑦⃗)∈ℳ 𝑘𝑖
(︀
𝑓(𝑖)(𝑥⃗), 𝑦⃗

)︀
.

The variance of 𝑘𝑖
(︀
𝑓(𝑖)(𝑥⃗), 𝑦⃗

)︀
characterizes the fitness function’s smoothness. As

𝜎2 → 0, the likelihood is a delta function with nonzero fitness for some (𝑥⃗, 𝑦⃗) only if

𝑓(𝑖)(𝑥⃗) = (𝑦⃗)𝑖. Similarly, a large variance characterizes a fitness in which potentially

many solutions provide accurate approximations, increasing the risk of convergence

to local minima. In the former case, learning becomes harder as few 𝑓(𝑖)(·) out of

exponentially many sampleable functions result in any signal, whereas in the latter

case learning might not converge to the optimal solution. We let 𝜎2 be a network hy-

perparameter, tuned for the tradeoff between ease of learning and solution optimality

for different tasks.

Similar to Petersen et al. [2021], we use a loss function for backpropagating on

the weights of 𝑞(·|W):

𝐻𝑞𝑖 [𝑓(𝑖),W,ℳ] = −𝐾𝑖

(︀
ℳ, 𝑓(𝑖)

)︀
· log

[︀
𝑞𝑖(𝑓(𝑖)|W)

]︀
. (4.9)

We can interpret equation 4.9 as the cross-entropy of the posterior for the target and

the probability of the sampled function 𝑓(𝑖). If the sampled function 𝑓(𝑖) is close to

153

𝑓 *
(𝑖), then 𝐾𝑖(ℳ, 𝑓(𝑖)) will be large, and the gradient update below will also be large:

∇W𝐻𝑞𝑖

[︀
𝑓(𝑖),W,ℳ

]︀
= −
∇W𝑞𝑖(𝑓(𝑖)|W)

𝑞𝑖(𝑓(𝑖)|W)
𝐾𝑖

(︀
ℳ, 𝑓(𝑖)

)︀
. (4.10)

The first term on the right-hand side (RHS) of update equation 4.10 increases

the likelihood of the function 𝑓(𝑖). The second term on the RHS is maximal when

𝑓(𝑖) ≡ 𝑓 *
(𝑖). Importantly, the second term approaches zero as 𝑓(𝑖) deviates from 𝑓 *

(𝑖). If

the sampled function is far from the target, then the likelihood update is suppressed

by 𝐾𝑖(ℳ, 𝑓(𝑖)). Therefore, we only optimize the likelihood for functions close to the

target. Note that in equation 4.10 we backpropagate only through the probability

of the function 𝑓(𝑖) given by 𝑞𝑖
(︀
𝑓(𝑖)|W

)︀
, whose value does not depend on the bases

in Φ, implying that the bases can be non-differentiable. This is particularly useful

for applications requiring non-differentiable basis functions. Furthermore, this loss

function allows non-differentiable regularization terms, which greatly expands the

regularization possibilities.

Sample-based Training We use a sampling-based strategy to update our model,

explained below. This training procedure was first proposed in Risk-Seeking Policy

Gradients [Petersen et al., 2021]. We denote W(𝑡) as the set of weights at training

step 𝑡, and we fix two hyperparameters: 𝑅, the number of functions to sample at each

training step, and 𝜆, or the truncation parameter, which defines the number of the 𝑅

paths chosen for optimization via equation 4.10. We initialize W(0) as described in

Section 4.2.2. We then proceed as follows:

1. Sample 𝑅 functions 𝑓1, . . . , 𝑓𝑅 ∼ 𝑞(·|W(𝑡)). We denote the 𝑗th output of 𝑓𝑖 as

𝑓𝑖(𝑗).

2. For each output 𝑗, sort 𝑓𝑖(𝑗) from greatest to least value of 𝐾𝑗

(︀
ℳ, 𝑓𝑖(𝑗)

)︀
and

select the top 𝜆 functions, yielding a total of 𝑣𝜆 selected functions 𝑔1,𝑗, . . . , 𝑔𝜆,𝑗.

The total loss is then given by
∑︀𝜆

𝑖=1

∑︀𝑣−1
𝑗=0 𝐻𝑞𝑗 [𝑔𝑖,𝑗,W,ℳ], which yields the

training step gradient update:

−
𝜆∑︁
𝑖=1

𝑣−1∑︁
𝑗=0

∇W𝑞𝑗(𝑔𝑖,𝑗|W)

𝑞𝑗(𝑔𝑖,𝑗|W)
𝐾𝑗(ℳ, 𝑔𝑖,𝑗). (4.11)

154

Notice that through equation 4.11 we have arrived at a modified REINFORCE

update [Williams, 1992], where the policy is 𝑞𝑖(·|·) and the regret is the fitness

𝐾𝑖(·, ·).

3. Perform the gradient step equation 4.11 on W(𝑡) for all selected paths to obtain

W(𝑡+1). In practice, we find that the Adam algorithm [Kingma and Ba, 2015]

works well.

4. Set 𝑡 = 𝑡+ 1 and repeat from Step 1 until a stop criterion is met.

Note that Equations equation 4.10 and equation 4.11 represent different objective

functions. The benefit of using Equation equation 4.11 is that accumulating over

the top 𝑣𝜆 best fits to the target allows for explorations of function compositions

that contain desired components but are not fully developed. In practice, we find

that reweighting the importance of the top-𝑣𝜆 routes, substituting 𝐾 ′
𝑗(ℳ, 𝑔𝑖,𝑗) =

𝐾𝑗(ℳ, 𝑔𝑖,𝑗)/𝑖, improves convergence speed by biasing updates towards the best routes.

Constant Fitting In some cases, we may wish to fit functions that involve con-

stants that are not known a priori. To fit such undetermined constants, we use

activation functions with unspecified constants, such as 𝑥𝑐 and 𝑐 · 𝑥 (𝑐 is undefined).

We then combine the training process described in Section 4.2.6 with a constant

fitting training process.

The two-step training process works as follows: We first sample a batchℳ and a

function batch (𝑓1, . . . , 𝑓𝑅). Next, for each function 𝑓𝑖, we fit the unspecified constants

to ℳ in 𝑓𝑖 using gradient descent. Any other constant optimization method would

also work. Finally, we update the network weights according to Section 4.2.6, using

the fitness 𝐾 of the constant-fitted function batch. To increase training speed, we

store each function’s fitted constants for reuse.

Recurrence OccamNet can also be trained to find recurrence relations, which is

of particular interest for programs that rely on FOR or WHILE loops. To find such

155

recurrence relations, we assume a maximal recursion𝐷. We use the following notation

for recurring functions: 𝑓 ∘(𝑛+1)(𝑥) ≡ 𝑓 ∘𝑛(𝑓(𝑥)), with base case 𝑓 ∘1(𝑥) ≡ 𝑓(𝑥).

To augment the training algorithm, we first sample (𝑓1, . . . , 𝑓𝑅) ∼ 𝑞(·|W(𝑡)). For

each 𝑓𝑖, we compute its recurrence to depth 𝐷 as follows
(︁
𝑓 ∘1
𝑖 , 𝑓

∘2
𝑖 , . . . , 𝑓

∘𝐷
𝑖

)︁
, obtain-

ing a collection of 𝑅𝐷 functions. Training then continues as usual; we compute the

corresponding 𝐾𝑗(ℳ, 𝑓 ∘𝑛
𝑖(𝑗)), select the best 𝑣𝜆, and update the weights. It is impor-

tant to note that we consider all depths up to 𝐷 since our maximal recurrence depth

might be larger than the one for the target function.

Note that we do not change the network architecture to accommodate for recur-

rence depth 𝐷 > 1. As described in the main text, we can efficiently use the network

architecture to evaluate a sampled function 𝑓(𝑥⃗) for a given batch of 𝑥⃗. To incor-

porate recurrence, we take the output of this forward pass and feed it again to the

network 𝐷 times, similar to a recurrent neural network. The resulting outputs are

evaluations
(︁
𝑓 ∘1
𝑖 (𝑥⃗), 𝑓 ∘2

𝑖 (𝑥⃗), . . . , 𝑓 ∘𝐷
𝑖 (𝑥⃗)

)︁
for a given batch of 𝑥⃗.

Regularization As discussed in the main text, to improve implicit function fitting,

we implement a regularized loss function,

𝐾 ′
𝑖(ℳ, 𝑓) = 𝐾𝑖(ℳ, 𝑓)− 𝑠 · 𝑟[𝑓],

for some regularization function 𝑟, where 𝑠 = 𝑛(ℳ)/
√

2𝜋𝜎2 is the maximum possible

value of 𝐾𝑖(ℳ, 𝑓). We define

𝑟[𝑓] = 𝑤𝜑 · 𝜑[𝑓] + 𝑤𝜓 · 𝜓[𝑓] + 𝑤𝜉 · 𝜉[𝑓] + 𝑤𝛾 · 𝛾[𝑓],

where 𝜑[𝑓] measures trivial operations, 𝜓[𝑓] measures trivial approximations, 𝜉[𝑓]

measures the number of constants in 𝑓 , 𝛾[𝑓] measures the number of activation func-

tions in 𝑓, and 𝑤𝜑, 𝑤𝜓, 𝑤𝜉, and 𝑤𝛾, are weights for their respective regularization

terms. We now discuss each of these regularization terms in more detail.

156

The Phi Term The 𝜑[𝑓] term measures whether the unsimplified form of 𝑓 contains

trivial operations, operations that cause an expression to simplify. For example,

division is a trivial operation in 𝑥/𝑥, because the expression simplifies to 1. Similarly,

1 · 𝑥, 𝑥1, and 𝑥0 are all trivial operations. We punish these trivial operations because

they often produce constant outputs without ever adding meaning to an expression.

To detect trivial operations, we employ two procedures. The first uses the SymPy

package [Meurer et al., 2017] to simplify 𝑓 . If the simplified expression is different

from the original expression, then there are trivial operations in 𝑓 , and this proce-

dure returns 1. Otherwise the first procedure returns 0. Unfortunately, the SymPy

== function to test if functions are equal often incorrectly indicates that nontrivial

functions are trivial. For example, SymPy’s simplify function, which we use to test

if a function can be simplified, converts 𝑥 + 𝑥 to 2 · 𝑥, and the == function states

that 𝑥 + 𝑥 ̸= 2 · 𝑥. To combat this, we develop a new function, sympyEquals which

corrects for these issues with ==. The sympyEquals is equivalent to ==, except that it

does not take the order of terms into account, and it does not mark expressions such

as 𝑥+𝑥 and 𝑥 ·𝑥 as unsimplified. We find that this greatly improves function fitting.

The constant fitting procedure often produces functions that only differ from a

trivial operation because of imperfect constant fitting, such as 𝑓(𝑥0) = 𝑥0.00010 , which

is likely meant to represent 𝑥00. SymPy, however, will not mark this function as trivial.

The second procedure addresses this issue by counting the constant activations, such

as 𝑥0.00010 , 1.001 · 𝑥0, and 𝑥0 + 0.001, which approximate trivial operations. For the

activation function 𝑓(𝑥) = 𝑥+ 𝑐, if the fitted 𝑐 satisfies −0.1 < 𝑐 < 0.1, the procedure

adds 1 to its counter. Similarly, for the activation functions 𝑓(𝑥) = 𝑐𝑥 and 𝑓(𝑥) = 𝑥𝑐,

if the fitted 𝑐 satisfies −0.1 < 𝑐 < 0.1 or 0.9 < 𝑐 < 1.1, the procedure adds 1 to

its counter. We select these ranges to capture instances of imperfect constant fitting

without labeling legitimate solutions as trivial. After checking all activation functions

used, the procedure returns the counter.

The 𝜑[𝑓] term returns the sum of the outputs of the first and second procedures.

We find that a weight of 𝑤𝜑 ≈ 0.7 for 𝜑[𝑓] is most effective in our loss function. This

value of 𝑤𝜑 ensures that most trivial 𝑓 have 𝐾𝑖(ℳ, 𝑓)−𝑠 ·𝑤𝜑 ·𝜑[𝑓] < 0, thus actively

157

reducing the weights corresponding to functions with trivial operations, without over

punishing functions and hindering learning.

The Psi Term When punishing trivial operations using the 𝜑 term, we find that the

network discovers many nontrivial operations which very closely approximate trivial

functions by exploiting portions of functions with near-zero derivatives, which can be

used to artificially compress data. For example, cos(𝑥/2) closely approximates 1 if

−1 < 𝑥 < 1. Unfortunately, it is often difficult to determine if a function approximates

a trivial function simply from its symbolic representation. This issue is also identified

in [Schmidt and Lipson, 2010].

To detect these trivial function approximations, we develop an approach that

analyzes the activation functions’ outputs during the forward pass. The 𝜓[𝑓] term

counts the number and severity of activation functions which, during a forward pass,

the network identifies as possibly approximating trivial solutions. For each basis

function, the network stores values around which outputs of that function often cluster

artificially. Table 4.4 lists the bases which the network tests for clustering.

The procedure for determining 𝜓 is as follows. The algorithm begins with a

counter of 0. During the forward pass, if the network reaches a basis function 𝜑 listed

in Table 4.4, the algorithm tests each ordered tuple (𝜑, 𝑎, 𝛿) from Table 4.4, where

𝑎 is the point tested for clustering and 𝛿 is the clustering tolerance. If the mean of

all the outputs of the basis function, 𝑦, for a given batch satisfies |𝑦 − 𝑎| < 𝛿, the

algorithm adds min(5, 0.1/ |𝑦 − 𝑎|) to the counter. These expressions increase with

the severity of clustered data; the more closely the outputs are clustered, the higher

the punishment term. The minimum term ensures that 𝜓[𝑓] is never infinite.

We also test for the approximation sin(𝑥) ≈ 𝑥 by testing the inputs and outputs

of the sine basis function. If the inputs and outputs 𝑥 and 𝑦 to the sine basis satisfy

|𝑦 − 𝑥| < 0.1, the algorithm adds min(5, 0.05/|𝑦 − 𝑥|) to the counter. In the future,

we plan to consider more approximations similar to the small angle approximation.

𝜓[𝑓] should not artificially punish functions involving the bases listed in Table 4.4

that are not trivial approximations because no proper use of these basis functions

158

Table 4.4: Basis functions tested for clustering
Basis Functions Cluster Points Cluster Tolerance

(·)2 {0} 0.25
(·)3 {0} 0.25
sin(·) {1,−1} 0.25
cos(·) {1,−1} 0.25
(·)𝑐 {1} 0.5

will always produce outputs very close to the clustering points. Because 𝜓[𝑓] flags

functions based on their batch outputs, each batch will likely give different outcomes.

This allows 𝜓[𝑓] to better discriminate between trivial function approximations and

nontrivial operations: 𝜓[𝑓] should flag trivial function approximations often, but it

should only flag nontrivial operations rarely when the inputs statistically fluctuate to

produce clustered outputs. In practice, we find that a weight of 𝑤𝜓 ≈ 0.3 for 𝜓[𝑓] is

most effective in our loss function.

The Xi Term When our network converges to the correct solution, it may converge

to a more complicated expression equivalent to the desired expression. To promote

simpler expressions, we slightly punish functions based on their complexity. The

𝜉[𝑓] term counts the number of activation functions used to produce 𝑓, which serves

as a measure of 𝑓 ’s complexity. We find that a small weight of 𝑤𝜉 ≈ 0.1 for 𝜉[𝑓]

is most effective in our loss function. This small value has little significance when

distinguishing between a function that fits a dataset well and a function that does

not, but it is enough to promote simpler functions over complex functions when they

are otherwise equivalent.

The Gamma Term The 𝛾[𝑓] term also punishes functions for their complexity.

The 𝛾[𝑓] term counts the number of constants in 𝑓 , which, like the number of ac-

tivation functions, serves as a metric for 𝑓 ’s complexity. We find that a weight of

𝑤𝛾 ≈ 0.15 for 𝛾[𝑓] is most effective in our loss function. Just as with 𝜉[𝑓], this small

value has little significance when distinguishing between a function that fits a dataset

well and a function that does not, but it is enough to slightly promote simpler func-

159

tions over complex functions when they are otherwise equivalent. We weight 𝛾[𝑓]

slightly higher than 𝜉[𝑓] because many functions with constants can be simplified.

OccamNet with Units

Although we do not use this feature in our experiments, we also allow users to provide

units for inputs and outputs. OccamNet will then regularize its functions so that they

preserve the desired units.

To determine if a function 𝑓 preserves units, we first encode the units of each

input and output. We encode an input parameter’s units as a NumPy array in which

each entry represents the power of a given base unit. For example, if for a problem

the relevant units are kg, m, and s, and we have an input 𝐹 with units kg ·m/s2, we

would represent 𝐹 ’s units as [1, 1,−2].

We then feed these units through the sampled function. Each basis function

receives a set of variables with units, may have requirements on those units for them

to be consistent, and returns a new set of units. For example, sin(·) receives one

variable which it requires to have units [0, . . . , 0] and returns the units [0, . . . , 0].

Similarly, +(·, ·) takes two variables with units that it requires to be equal and returns

the same units. Using these rules, we propagate units through the function until we

obtain units for the output. If at any point the input units for a basis function do not

meet that basis’s requirements, that basis returns [∞, . . . ,∞]. Any basis functions

that receive [∞, . . . ,∞] also return [∞, . . . ,∞]. Finally, if the output units of 𝑓 do

not match the desired output units (including if 𝑓 outputs [∞, . . . ,∞]), we mark 𝑓

as not preserving units.

For the multiplication by a constant basis function, ·𝑐, we have to be careful. Be-

cause the units of 𝑐 are unspecified, this basis function can produce any output units.

As such, it returns [NaN, . . . ,NaN]. If any basis function receives [NaN, . . . ,NaN], it

will either return [NaN, . . . ,NaN] if it has no constraints on the input units, or it

will treat the [NaN, . . . ,NaN] as being the units required to meet the basis function’s

consistency conditions. For example, if the sin(·) function receives [NaN, . . . ,NaN],

it will treat the input as [0, . . . , 0], and if the +(·, ·) function receives [1, 2, 3] and

160

[NaN,NaN,NaN], it will return [1, 2, 3].

After sampling functions from OccamNet, we determine which functions do not

preserve units. Because we wish to avoid these functions entirely, we bypass evaluating

their normal fitness (thereby saving compute time) and instead assign a fitness of

𝐾 ′
𝑖(ℳ, 𝑓) = −𝑤units𝑠, where 𝑠 = 𝑛(ℳ)/

√
2𝜋𝜎2 is the maximum possible value of

𝐾𝑖(ℳ, 𝑓) and 𝑤units is a hyperparameter that can be tuned (set to 1 by default).

Functions with Undefined Outputs One difficulty that may arise when training

OccamNet is that many sampled functions are undefined on the input data range.

Two cases of undefined functions are: 1) the function is undefined on part of the input

data range for all values of a set of constants, or 2) the function is only undefined

when the function’s constants take on certain values. An example function satisfying

case 1 is 𝑓1(𝑥0) = 𝑐0/(𝑥0 − 𝑥0), which divides by 0 regardless of the value of 𝑐0. An

example function satisfying case 2 is 𝑓2(𝑥0) = 𝑥𝑐00 , which is undefined whenever 𝑥0 is

negative and 𝑐0 is not an integer.

In the first case, the network should abandon the function. In the second case,

the network should try other values for the constants. However, the network cannot

easily determine which case an undefined function satisfies. To balance both cases, if

the network obtains an undefined result, such as NaN or inf, for the forward pass, the

network tests up to 100 more randomized sets of constants. If none of these attempts

produce defined results, the network returns the array of undefined outputs. For

example, with 𝑐0/(𝑥0 − 𝑥0), the network tests a first set of constants, determines

that they produce an undefined output, and tests 100 more constants. None of these

functions are defined on all inputs, so the network returns the undefined outputs.

In contrast, with 𝑥𝑐00 , the network might find that the first set of constants pro-

duces undefined outputs, but after 20 retries, the network might discover that 𝑐0 = 2

produces a function defined on all inputs. The network will then perform gradient

descent and return the fitted value of 𝑐0. Further, if at any point in the gradient de-

scent, the forward pass yields undefined results, the network returns the well-defined

constants and associated output from the previous forward pass. For example, for

161

𝑥𝑐00 , after the network discovers that 𝑐0 = 2 works, the gradient for the constants will

be undefined because 𝑐0 can only be an integer. Thus, the network will return the

outputs of 𝑥𝑐00 , for 𝑐0 = 2, before the undefined gradients.

We find that if the network simply ignores functions with undefined outputs, these

functions will increase in probability because our network regularization punishes

many other functions. Since these punished functions decrease in probability during

training, the functions with undefined outputs begin to increase in probability. To

combat this, instead of ignoring undefined functions, we use a modified fitness for

undefined functions, 𝐾 ′
𝑖(ℳ, 𝑓) = −𝑤undef𝑠, where 𝑤undef is a hyperparameter that

can be tuned. This punishes undefined functions, causing their weights to decrease.

In practice, we find that a value of 𝑤undef between 0 and 1 is most effective, depending

on the application.

Experimental Setup

We divide this section as follows:

1. Section 4.2.6 describes the hyperparameters used for the experiments described

in the main text testing OccamNet on Analytic Functions, Non-Analytic Func-

tions, Implicit Functions, and Image Recognition.

2. Section 4.2.6 describes the experimental setup for our tests with the PMLB

datasets.

Experimental Setup and Hyperparameters for Non-PMLB Experiments

For the non-PMLB experiments, we terminate learning when the top-𝑣𝜆 sampled

functions all return the same fitness𝐾(·, 𝑓) for 30 consecutive epochs. If this happens,

these samples are equivalent function expressions.

Computing the most likely DAG allows retrieval of the final expression. If this

final expression matches the correct function, we determine that the network has

converged. For pattern recognition, there is no correct target composition, so we

measure the accuracy of the classification rule on a test split, as is conventional. Note

162

that in the experiments where 𝐸 = 0, we instead take an approximate of the highest

probability function by taking the argmax of the weights into each argument node.

In all experiments, if termination is not met in a set number of steps, we consider

it as not converged. We also keep a constant temperature for all the layers except for

the last one. An increased last layer temperature allows the network to explore higher

function compositionality, as shallow layers can be further trained before the last layer

probabilities become concentrated; this is particularly useful for learning functions

with high degrees of nesting. More details on hyperparameters for experiments are

in the SM. Our network converges rapidly, often in only a few seconds and at most a

few minutes.

In Tables 4.5 and 4.6, we present and detail the hyperparameters we used for our

experiments in the main paper. Note that detail about the setup for each experiment

is provided in the attached code.

In Tables 4.5 and 4.6, + is addition (2 arguments); − is subtraction (2 arguments)

· is multiplication (2 arguments); / is division (2 arguments); sin(·) is sine, +𝑐 is

addition of a constant, ·𝑐 is multiplication of a constant, (·)𝑐 is raising to the power

of a constant, ≤ is an if-statement (4 arguments: comparing two numbers, one return

for a true statement, and one for a false statement); −(·) is negation. MIN, MAX, and

XOR all have two arguments. Here, SIGMOID′ is a sigmoid layer, and tanh′ is a tanh

layer where the inputs to both functions are scaled by a factor of 10, +4, and +9 are

the operations of adding 4 and 9 numbers respectively, and MAX4, MIN4, MAX9 and

MIN9 are defined likewise. The bases for pattern recognition experiments are given

as follows: Φ𝐴 consists of SIGMOID′, SIGMOID′, tanh′, tanh′, +4, +4, +9, +9, +, +,

MIN, MIN, MAX and MAX; Φ𝐵 consists of id, id, id, id, +, +, +, +4, +4, +9, +9, +9,

tanh,, tanh, SIGMOID, and SIGMOID. Additionally, the constants used for pattern

recognition are C = {−1,−1, 0, 0, 1, 1, 1}.

In Tables 4.5 and 4.6, 𝐿 is the depth, 𝑇 is the temperature, 𝑇last is the temperature

of the final layer, 𝜎 is the variance, 𝑅 is the sample size, 𝜆 is the fraction of best fits,

𝛼 is the learning rate, 𝐸 is the initialization parameter described in Section 4.2.6, and

𝑤𝜑, 𝑤𝜓, 𝑤𝜉, and 𝑤𝛾 are as defined in Appendix 4.2.6. Table 4.5 does not include 𝐸 as

163

a listed hyperparameter because for all experiments listed, 𝐸 = 0. With * we denote

the experiments for which the best model is without skip connections. We do not

regularize for any experiments in Table 4.5. NA entries mean that the corresponding

hyperparameter is not present in the experiment. Note that the first three equations

in Table 4.6 are not discussed in the main text. Instead, they are smaller experiments

that we performed and which we discuss in the SM.

For all experiments in Table 4.6, we use a learning rate of 0.01 and, when ap-

plicable, a constant-learning rate of 0.05. We also set the temperature to 1 and

the final layer temperature to 10 for all experiments in the table. For the equation

𝑚1𝑣1−𝑚2𝑣2 = 0, we sample 𝑚1, 𝑣1, and 𝑚2 from [−10, 10] and compute 𝑣2 using the

implicit function.

All our experiments in Table 4.5 use a batch size of 1000, except for Backprop

OccamNet and Finetune ResNet, for which we use batch size 128. All our experiments

in Table 4.6 use a batch size of 200. For each of our pattern recognition experiments,

we use a 90%/10% train/test random split for the corresponding datasets. The input

pixels are normalized to be in the range [0, 1]. During validation, for MNIST Binary,

MNIST Trinary and ImageNet Binary the outputs of OccamNet are thresholded

at 0.5. If the output matches the one-hot label, then the prediction is accurate;

otherwise, it is inaccurate. For Backprop OccamNet and Finetune ResNet the outputs

of OccamNet are viewed as the logits of a negative log likelihood loss function, so the

prediction is the argmax of the logits. Backprop OccamNet and Finetune ResNet use

an exponential decay of the learning rate with decay factor 0.999.

PMLB Experiments Setup As described in the main text, we test OccamNet

on 15 datasets from the Penn Machine Learning Benchmarks (PMLB) repository

[Olson et al., 2017]. The 15 datasets chosen and the corresponding numbers we use

to reference them, are shown in Table 4.7. We chose these datasets by selecting the

first 15 regression datasets with fewer than 1667 datapoints. These 15 datasets are

the only datasets from PMLB we examine.

We test four methods on these datasets. OccamNet, V100, Eplex, AIF, and Ex-

164

Table 4.5: Hyperparameters for Experiments Where 𝐸 = 0
Target Bases Constants Range 𝐿/ 𝑇/ 𝑇last/ 𝜎 𝑅/ 𝜆/ 𝛼

Analytic Functions

2𝑥2 + 3𝑥 (·, ·,+,+) ∅ [−10, 10] 2/1/1/0.01 50/5/0.05
sin(3𝑥 + 2) (·, sin, sin,+,+) 1, 2 [−10, 10] 3/1/1/0.001 50/5/0.005∑︀3
𝑛=1 sin(𝑛𝑥) (sin, sin,+,+,+) 1, 2 [−20, 20] 5/1/1/0.001 50/5/0.005

(𝑥2 + 𝑥)/(𝑥 + 2) (·, ·,+,+, /, /) 1 [−6, 6] 2/1/2/0.0001 100/5/0.005
𝑥2
0(𝑥0 + 1)/𝑥5

1 (·, ·,+,+, /, /) 1 [[−10, 10], [0.1, 3]] 4/1/3/0.0001 100/10/0.002
𝑥2
0/2 + (𝑥1 + 1)2/2 (·, ·,+,+, /) 1, 2 [[−20,−2], [2, 20]] 3/1/2/0.1 150/5/0.005

Program Functions

3𝑥 if 𝑥 > 0, else 𝑥 (≤,≤, ·,+,+, /) 1 [−20, 20] 2/1/1.5/0.1 100/5/0.005
𝑥2 if 𝑥 > 0, else −𝑥 (≤,≤,−(·),+,+,−, ·) 1 [−20, 20] 2/1/1.5/0.1 100/5/0.005
𝑥 if 𝑥 > 0, else sin(𝑥) (≤,≤,+,+, sin, sin) 1 [−20, 20] 3/1/1.5/0.01 100/5/0.005

SORT(𝑥0, 𝑥1, 𝑥2)
(≤,+,MIN,MAX, 1, 2 [−50, 50]4 3/1/4/0.01 100/5/0.004

MAX/, ·,−)

4LFSR(𝑥0, 𝑥1, 𝑥2, 𝑥3) (+,+, XOR, XOR) ∅ {0, 1}4 2/1/1/0.1 100/5/0.005

𝑦0(𝑥⃗) = 𝑥1 if 𝑥0 < 2, else −𝑥1 (≤,≤,−(·), ·) 1, 2 [−5, 5]2 3/1/3/0.01 100/5/0.002
𝑦1(𝑥⃗) = 𝑥0 if 𝑥1 < 0, else 𝑥2

1

𝑔(𝑥) = 𝑥2 if 𝑥 < 2, else 𝑥/2 (≤,≤,+, ·, ·, /, /) 1, 2 [−8, 8] 2/1/2/0.01 100/5/0.005
𝑦(𝑥) = 𝑔∘4(𝑥)

𝑔(𝑥) = 𝑥 + 2 if 𝑥 < 2, else 𝑥 − 1 (≤,≤,+,+, 1, 2 [−3, 6] 2/1/1.5/0.01 100/5/0.005
𝑦(𝑥) = 𝑔∘2(𝑥) +,−,−)

Pattern Recognition

MNIST Binary Φ𝐴 C [0, 1]784 2/1/10/0.01 150/ 10/0.05
MNIST Trinary Φ𝐴 C [0, 1]784 2/1/10/0.01 150/ 10/0.05
ImageNet Binary* Φ𝐴 C [0, 1]2048 4/1/10/10 150/10/0.0005
Backprop OccamNet* Φ𝐵 C [0, 1]2048 4/1/10/NA NA/NA/0.1
Finetune ResNet* Φ𝐵 C [0, 1]3×224×224 4/1/10/NA NA/NA/0.1

treme Gradient Boosting (XGB) [Chen and Guestrin, 2016]. We have described all

of these methods except for XGB in the main text. XGB is a tree-based method

that was identified by [Orzechowski et al., 2018] as the best machine learning method

based on validation MSE for modeling the PMLB datasets. However, XGB is not

interpretable and thus cannot be used as a one-to-one comparison with Occam-

Net. Hence, although we provide the raw data for XGB’s performance, we do

not analyze it further. We train all methods except “V100” on a single core of an

Table 4.6: Hyperparameters for Experiments Where 𝐸 = 1
Target Bases Constants Range 𝐿 𝜎 𝑅 𝜆 𝑤𝜑/𝑤𝜓/𝑤𝜉/𝑤𝛾

Analytic Functions

10.5𝑥3.1
(+,−, ·, /, sin, ∅ [0, 1] 2 0.0005 200 10 0/0/0/0
cos,+𝑐, ·𝑐, (·)𝑐)

cos(𝑥) (+, /, sin) 2, 𝜋 [−100, 100] 3 0.01 400 50 0/0/0/0
𝑒𝑥 (+, ·𝑐, (·)𝑐) 10 [0, 1] 3 0.05 200 1 0.7/0.3/0.05/0.03

Implicit Functions

𝑥0𝑥1 = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 400 1 0.7/0.3/0.15/0.1
𝑥0/𝑥1 = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 400 1 0.7/0.3/0.15/0.1
𝑥2
0 + 𝑥2

1 = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 200 10 0.7/0.3/0.15/0.1
𝑥0/ cos(𝑥1) = 1 (+,−, ·, /, sin, cos) ∅ [−1, 1] 2 0.01 200 10 0.7/0.3/0.15/0.1
𝑚1𝑣1 − 𝑚2𝑣2 = 0 (+,−, ·, /, sin, cos) ∅ [−10, 10]3 2 0.01 200 10 0.7/0.3/0.15/0.1

165

Intel Xeon E5-2603 v4 @ 1.70GHz. For all methods, we use the basis set Φ =

(+(·, ·),−(·, ·),×(·, ·),÷(·, ·), sin(·), cos(·), exp(·), log | · |) .

Table 4.7: Datasets Tested
Dataset Size # Features

1 1027_ESL 488 4
2 1028_SWD 1000 10
3 1029_LEV 1000 4
4 1030_ERA 1000 4
5 1089_USCrime 47 13
6 1096_FacultySalaries 50 4
7 192_vineyard 52 2
8 195_auto_price 159 15
9 207_autoPrice 159 15
10 210_cloud 108 5
11 228_elusage 55 2
12 229_pwLinear 200 10
13 230_machine_cpu 209 6
14 4544_GeographicalOriginalofMusic 1059 117
15 485_analcatdata_vehicle 48 4

For each dataset, we perform grid search to identify the best hyperparameters.

The hyperparameters searched for the two OccamNet runs are shown in Table 4.8.

The other hyperparameters not used in the grid search are set as follows: 𝑇 = 10,

𝑇last = 10, 𝑤𝜑 = 𝑤𝜓 = 𝑤𝜉 = 𝑤𝛾 = 0, and the dataset batch size is the size of the

training data. For OccamNet V100, we set 𝑅 to be approximately as large as can

fit on the V100 GPU, which varies between datasets. See Table 4.9 for the exact

number of functions tested for each dataset for OccamNet V100. For XGBoost, we

use exactly the same hyperparameter grid as used in Orzechowski et al. [2018]. For

Eplex, we use the same hyperparameter grid as used in Orzechowski et al. [2018],

with the exception that we use a depth of 4 to match that of OccamNet.

Table 4.8: OccamNet Hyperparameters
Hyperparameter OccamNet OccamNet V100

𝛼 {0.5, 1} {0.5, 1}
𝜎 {0.5, 1} {0.1, 0.5, 1}
𝐸 {1, 5} {0, 1, 5}

𝜆/𝑅 {0.1, 0.5, 0.9} {0.1, 0.5, 0.9}
𝑅 {500, 1000, 2000} max
𝑁 1000000/𝑅 1000

166

Table 4.9: Number of Functions Sampled Per Epoch
𝑅

1 17123
2 8333
3 8333
4 8333
5 178571
6 166666
7 161290
8 52631
9 52631
10 78125
11 151515
12 41666
13 40000
14 7874
15 178571

We select the best run from the grid search as follows. For each hyperparameter

combination, we first identify the models with the lowest training MSE and the lowest

validation MSE:

• For OccamNet, we examine the highest probability function after each epoch.

From these functions, we select the function with the lowest testing MSE and

the function with the lowest validation MSE.

• For Eplex, we examine the highest-fitness individual from each generation. From

these individuals, we select the individual with the lowest training MSE and the

individual with the lowest validation MSE.

• For XGBoost, we train the model until the validation loss has not decreased

for 100 epochs. We then return this model as the model with the best training

MSE and validation MSE.

Once we have the models with the lowest training and validation MSE for each hyper-

parameter combination, we identify the overall model with the lowest training MSE

from the set of lowest training MSE models, and we identify the overall model with

the lowest validation MSE from the set of lowest validation MSE models. We then

record these models’ training MSE and validation MSE as the best training MSE

167

and validation MSE, respectively. Finally, we test the model with the overall lowest

validation MSE on the testing dataset and record the result as the grid search testing

MSE.

For our test of OccamNet and Eplex’s scalability on the PMLB datasets, we use

the same hyperparameter combinations as those listed described above, except that,

as described in the main text, we run OccamNet with 250, 1000, 4000, 16000, and

64000 functions sampled per epoch and Eplex with 250, 500, 1000, 2000 and 4000

functions sampled per epoch. Our evaluation of training, validation, and testing loss

is exactly the same as described above, except that we evaluate the lowest losses for

each value of 𝑁 instead of grouping 𝑁 with all of the other hyperparameters.

Supplemental Material

Therefore, we leave tackling adversarial robustness of neural models for symbolic

regression as an exciting direction for future work.

We have organized the Supplemental Material as follows:

• In Section G we provide the results of our experiments on the PMLB datasets.

• In Section H we examine the fits each method provides for the PMLB Datasets.

• In Section I analyze the results of the experiment scaling OccamNet on the

PMLB datasets.

• In Section J we present a series of ablation studies.

• In Section K we discuss neural models for sorting and pattern recognition.

• In Section L we discuss a few small experiments we tested.

• In Section M we discuss research related to the various applications of Occam-

Net.

• In Section N we discuss the evolutionary strategies for fitting functions and

programs that we use as benchmarks.

168

• In Section O, we catalog our code and video files.

G PMLB Experiment Results

We compare OccamNet, Eplex, and AIF, marking the method with the lowest MSE or

training time in red. We also compare V100, Eplex, and AIF. Plots of the full results

for the PMLB scaling experiment are shown in Figures 4-10 and 4-11. As discussed

in Section I, Figure 4-11 shows OccamNet’s performance when only considering a

restricted set of hyperparameters.

H Analysis of Fits to PMLB Datasets

In this section, we analyze the fits that the methods discussed in Section 4.2.6 provide

for the PMLB dataset.

OccamNet’s solutions are all short, easy to comprehend fits to the data. We find

that OccamNet uses addition, subtraction, multiplication, and division most exten-

sively, exploiting sin(·) and cos(·) for more nonlinearity. Interestingly, OccamNet uses

exp(·) and log | · | less frequently, perhaps because both functions can vary widely with

small changes in input, making functions with these bases more likely to represent

poor fits.

OccamNet’s solutions demonstrate its ability to exploit modularity and reuse com-

ponents. These solutions often have repeated components, for example in dataset #1,

1027_ESL, where the best fit to the training data is

𝑦0 =
(sin(𝑥2) + 𝑥3 + 𝑥1) · (sin(𝑥2) + 𝑥3 + 𝑥1)

(sin(𝑥2) + 𝑥3 + 𝑥1) + (𝑥3 + 𝑥1) + (𝑥1 + 𝑥3)
.

In this fit, OccamNet builds sin(𝑥2)+𝑥3+𝑥1 in the first two layers of the network and

then reuses it three times. Solutions like the above demonstrate OccamNet’s ability

to identify successful subcomponents of a solution and then to rearrange the subcom-

ponents into a more useful form. Examples like the above, however, also demonstrate

that OccamNet often overuses modularity, potentially restricting the domain of func-

tions it can search. We suspect that the main reason that OccamNet may rely too

169

103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 1
OccamNet Train
OccamNet Validation
OccamNet Test
Eplex Train
Eplex Validation
Eplex Test

103 104 105

Run Time (s)

6 × 10 1

7 × 10 1

8 × 10 1

M
SE

 L
os

s

Dataset 2

103 104 105

Run Time (s)

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

M
SE

 L
os

s

Dataset 3

103 104 105

Run Time (s)

6.2 × 10 1

6.4 × 10 1

6.6 × 10 1

6.8 × 10 1

7 × 10 1

7.2 × 10 1

7.4 × 10 1

7.6 × 10 1

7.8 × 10 1

M
SE

 L
os

s

Dataset 4

103 104 105

Run Time (s)

10 1

100
M

SE
 L

os
s

Dataset 5

103 104 105

Run Time (s)

10 1

M
SE

 L
os

s

Dataset 6

103 104 105

Run Time (s)

10 1

100

101

M
SE

 L
os

s

Dataset 7

103 104 105

Run Time (s)

10 1

2 × 10 1

M
SE

 L
os

s

Dataset 8

103 104 105

Run Time (s)

10 1

9 × 10 2

2 × 10 1

M
SE

 L
os

s

Dataset 9

103 104 105

Run Time (s)

10 1

3 × 10 2

4 × 10 2

6 × 10 2

M
SE

 L
os

s

Dataset 10

103 104 105

Run Time (s)

10 1

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 11

103 104 105

Run Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 12

103 104 105

Run Time (s)

10 1

100

101

M
SE

 L
os

s

Dataset 13

103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

M
SE

 L
os

s

Dataset 14

103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 15

Figure 4-10: OccamNet V100 and Eplex’s Training, Validation, and Testing MSE as
a function of run time for the 15 PMLB datasets discussed above.

170

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 1
OccamNet Train
OccamNet Validation
OccamNet Test
Eplex Train
Eplex Validation
Eplex Test

102 103 104 105

Run Time (s)

100

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

M
SE

 L
os

s

Dataset 2

102 103 104 105

Run Time (s)

5 × 10 1

6 × 10 1

7 × 10 1

M
SE

 L
os

s

Dataset 3

102 103 104 105

Run Time (s)

6.25 × 10 1

6.5 × 10 1

6.75 × 10 1

7 × 10 1

7.25 × 10 1

7.5 × 10 1

7.75 × 10 1

M
SE

 L
os

s

Dataset 4

102 103 104 105

Run Time (s)

10 1

100

M
SE

 L
os

s

Dataset 5

102 103 104 105

Run Time (s)

10 1

4 × 10 2

6 × 10 2

2 × 10 1

M
SE

 L
os

s

Dataset 6

102 103 104 105

Run Time (s)

10 1

100

M
SE

 L
os

s

Dataset 7

102 103 104 105

Run Time (s)

10 1

M
SE

 L
os

s

Dataset 8

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

M
SE

 L
os

s

Dataset 9

102 103 104 105

Run Time (s)

10 1

3 × 10 2

4 × 10 2

6 × 10 2M
SE

 L
os

s

Dataset 10

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

M
SE

 L
os

s

Dataset 11

102 103 104 105

Run Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 12

102 103 104 105

Run Time (s)

10 1

100

M
SE

 L
os

s

Dataset 13

102 103 104 105

Run Time (s)

100

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 14

102 103 104 105

Run Time (s)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
SE

 L
os

s

Dataset 15

Figure 4-11: OccamNet V100 and Eplex’s Training, Validation, and Testing MSE as
a function of run time for the 15 PMLB datasets discussed above. For this figure, we
only consider the losses for a restricted subset of hyperparameter combinations.

171

heavily on modularity in some fits is that OccamNet uses an extremely high learning

rate of 1 for its training. We used such a large learning rate to allow OccamNet to

converge even when faced with 1030 or more functions. However, we suspect that

this may also cause OccamNet to converge to certain paths before exploring suffi-

ciently. For example, with the function above, OccamNet may have identified that

sin(𝑥2) + 𝑥3 + 𝑥1 is a useful component and, because of its high learning rate, used

this pattern several times instead of the one time needed. This hypothesis is sup-

ported by the fact that OccamNet V100, which samples many more functions before

taking a training step, repeats patterns less frequently than OccamNet. For example

OccamNet V100’s best-fit solution for the training dataset of dataset #1 is

𝑦0 = cos(𝑥1/𝑥1) · cos(𝑥1/𝑥1) · (𝑥2 + 𝑥3 + sin(𝑥0) + 𝑥3 + 𝑥1 − sin(𝑥3)),

which contains almost no repetition.

Remarkably, for dataset #4, 1030_ERA, both Eplex and OccamNet V100 discover

equivalent functions for both training and validation: OccamNet V100 discovers

𝑦0 = cos(sin(𝑥1 − 𝑥2)) · (sin(𝑥2) + 𝑥0 + 𝑥1) · cos(𝑥2/𝑥2),

and Eplex discovers

𝑦0 = cos(𝑥1/𝑥1) · (sin(𝑥2) + 𝑥0 + 𝑥1) · cos(sin(𝑥2 − 𝑥1)).

As a result, the two methods’ losses are identical up to 7 decimal places. Still, we mark

Eplex as performing better on this dataset because after the seventh decimal place it

has a slightly lower loss, likely due to differences in rounding or precision between the

two approaches. Two different methods identifying the same function is extremely

unlikely; OccamNet’s search space includes 2 · 1030 paths for this dataset, meaning

that the probability of both methods identifying this function purely by chance is

minuscule. In combination with the fact that this function was the best fit to both

the training and validation datasets for both methods, this suggests that the identified

172

function is a nearly optimal fit to the data for the given search space. Given the size

of the search space, this result thus provides further evidence that OccamNet and

Eplex perform far better than brute-force search. Interestingly, although OccamNet

did not discover this function, it’s best fit for the validation,

𝑦0 = sin(𝑥2/𝑥2) · (sin(𝑥2) + 𝑥0 + 𝑥1) · cos(cos(𝑥3)) · cos(sin(𝑥3)),

does include several features present in the fits found by V100 and Eplex, such as the

sin(𝑥2) +𝑥0 +𝑥1 term, the cos(sin(·)) term, and the 𝑥2/𝑥2 inside of the trigonometric

function. This suggests that OccamNet may also have been close to converging to

the function discovered by Eplex and OccamNet V100. OccamNet’s loss was also

always within 5% of Eplex’s loss on this dataset, again suggesting that OccamNet

had identified a function close to that of Eplex and V100.

Interestingly, AI Feynman 2.0’s fits generally tend to be very simple compared to

those of OccamNet. For example, AIF’s fit for the training dataset #11 is

𝑦0 = −0.050638447726 + log(𝑥0/ sin(𝑥0))− 𝑥0,

whereas OccamNet’s fit is

𝑦0 = sin(𝑥0) · 𝑥1 · 𝑥0 · sin(𝑥0) · log |𝑥0| − cos(𝑥1 · 𝑥0 − 𝑥1).

AI Feynman’s fit is slightly simpler and easier to interpret, but it comes at the cost

of having a 35% higher loss. We suspect that because the PMLB datasets likely do

not have modular representations, AI Feynman must rely mainly on its brute-force

search, which ultimately produces shorter expressions. AI Feynman can also produce

constants because of its polynomial fits, and it uses constants in nearly every solution

it proposes. We did not allow the other symbolic methods to fit constants, but they

still consistently performed better than AI Feynman, suggesting that fitting constants

may not be essential to accurately modeling the PMLB datasets.

As discussed in the main text, OccamNet is considerably faster than Eplex, often

173

running faster by more than an order of magnitude. This may be in part because

we train Eplex with the DEAP evolutionary computation framework Fortin et al.

[2012], which is implemented in Python and utilizes NumPy arrays for computation.

Thus, our implementation of Eplex may be somewhat slower than an implementation

written in C. However, because of its selection based on many fitness cases, Eplex is

also by nature considerably slower than many other genetic algorithms, running in

𝑂(𝑇𝑁2), where 𝑇 is the number of fitness cases and 𝑁 is the population size Melo

et al. [2019]. This suggests that even a pure C implementation of Eplex may not be as

fast as OccamNet. More recent selection algorithms perform comparably to Eplex but

run significantly faster, for example Batch Tournament Selection Melo et al. [2019].

However, because these methods did not exist at the time of Orzechowski et al. [2018],

they have not been compared to other methods on the PMLB datasets. Thus, we

have not tested these methods here. On the other hand, our current implementation

of sampling and the forward pass work with DAGs in which an edge leads to each

argument node, regardless of whether the argument node is connected to the outputs.

The result is that our implementation of OccamNet evaluates more than |Φ| times

more basis functions than is necessary, where |Φ| is the number of basis functions. In

the case of these experiments, this amounts to more than eight times the number of

calculations necessary. It may be possible to optimize OccamNet by not evaluating

such unused connections, thereby obtaining a much faster runtime.

I Analysis of PMLB Scaling Tests

As can be seen in Figure 4-10, OccamNet’s training loss decreases with increasing

sample size for every dataset – the training loss for 64000 functions sampled is always

less than the training loss for 250 functions sampled. For some datasets, Occam-

Net’s training loss is not monotonically decreasing, but this is to be expected given

OccamNet’s inherent randomness and the size of the search space.

For datasets 1, 2, 3, 4, 13, and 14, the training loss does not drop noticeably when

increasing the sample size beyond a certain point. There are two possible explanations

for this. (i) For all of these datasets, OccamNet’s training loss is very close to or lower

174

than Eplex’s best training loss, suggesting that OccamNet may be approaching an

optimal fit and that there is little room to further decrease the loss. (ii) There may

be critical sample sizes before which OccamNet’s training loss is stagnant and beyond

which its training loss begins to decrease. This is apparent in datasets 1, 3, 4, 10,

12, and 14, where the OccamNet training loss temporarily stops decreasing at 1000

or 4000 functions sampled. It is possible that for some datasets another such critical

sample size exists beyond 64000 functions.

For datasets 1, 2, 3, 4, 6, 12, and 14, OccamNet’s validation loss also decreases

with the number of functions sampled. However, for datasets 5, 7, 8, 9, 10, and 11,

it initially decreases and then begins to increase, and for datasets 13 and 15 it does

not decrease. Interestingly, the datasets for which OccamNet’s testing loss does not

decrease are generally the same as the datasets for which OccamNet’s validation loss

does not decrease. The datasets where the validation and testing loss do not decrease

are generally very small, with around 200 or fewer datapoints. This suggests that

OccamNet is overfitting. Such overfitting is to be expected given the small number

of samples in the PMLB datasets. On the other hand, Eplex only seems to overfit in

datasets 5 and 9. Because overfitting results from fitting a training dataset too well,

this is further evidence that OccamNet is fitting the training datasets better than

Eplex.

Note that for each number of functions sampled, we tested 81 different hyperpa-

rameter combinations for OccamNet and only 3 for Eplex. This is largely because, as

a new architecture, OccamNet’s optimal hyperparameters are not known. For a fair

comparison, the runtimes we report in Figure 4-10 are the times required to run all

hyperparameter combinations. Thus, because OccamNet uses 27 times more hyper-

parameter combinations, its speed advantage is lessened, although still significant.

After examining the results for all hyperparameter combinations, however, we

noted that all hyperparameters but the learning rate had an “optimal” value, listed

in Appendix 4.2.6. Restricting to only the remaining three hyperparameter combi-

nations produces a best training loss that is often the same as, and is never more

than 40% greater than, the lowest loss among all 81 hyperparameters. Figure 4-

175

11 shows the results when considering only OccamNet’s restricted hyperparameter

combinations for three datasets.

When OccamNet and Eplex are restricted to the same number of hyperparameter

combinations, OccamNet always runs faster when sampling 64000 functions per epoch

than Eplex does when sampling 1000 functions per epoch. OccamNet’s training loss

consistently decreases with increasing sample size, although its validation and testing

losses do not always follow such a clear trend. Further, OccamNet almost always con-

verges to training and validation losses that are close to or less than Eplex’s training

and validation losses. OccamNet’s best training loss is less than or approximately the

same as Eplex’s best training loss for all but datasets 1, 14, and 15.

Dataset 14 consists of over 1000 datapoints with 117 features, so it is likely one of

the most difficult datasets which we test. The fact that OccamNet does perform com-

paratively to Eplex when it tests additional hyperparameter combinations suggests

that for such difficult problems OccamNet benefits from additional hyperparameter

exploration, particularly involving weight initialization.

For dataset 15, because Eplex only identifies a better function than OccamNet

when it samples 1000 functions and not when it samples 2000 or 4000 functions,

Eplex’s better performance appears to be somewhat of an outlier.

With the restricted set of hyperparameters, OccamNet still overfits on every

dataset it overfitted on when using the full set of hyperparameters, suggesting that

the overfitting is not due to the large number of hyperparameters. Interestingly, for

both the full and restricted hyperparameter versions of OccamNet, OccamNet and

Eplex again identify the same fit for Dataset 4,

𝑦0 = cos(sin(𝑥1 − 𝑥2)) · (sin(𝑥2) + 𝑥0 + 𝑥1) · cos(𝑥3/𝑥3).

J Ablation Studies

We test the performance of various hyperparameters in a collection of ablation studies,

as shown in Table 4.10. Here, we focus on what our experiments demonstrate to

be the most critical parameters to be tuned: the collection of bases and constants,

176

the network depth, the variance of our interpolating function, the overall network

temperature (as well as the last layer temperature), and, finally, the learning rate of

our optimizer. As before, we set the stop criterion and terminate learning when the

top-𝜆 sampled functions all return the same fitness 𝐾(·, 𝑓) for 30 consecutive epochs.

If this does not occur in a predefined, fixed number of iterations, or if the network

training terminates and the final expression does not match the correct function we

aim to fit, we say that the network has not converged. All hyperparameters for

baselines are specified in Section 4.2.6, except for the sampling size, which is set to

𝑅 = 100.

Table 4.10: Ablation studies on representative experiments
Modification Convergence fraction 𝜂 Convergence epochs 𝑇𝑐

Experiment sin(3𝑥 + 2)

baseline 10/10 390
added constants (2) and bases (·, (·)2,−(·)) 10/10 710
lower last layer temperature (0.5) 10/10 300
higher last layer temperature (3) 10/10 450
lower learning rate (0.001) 10/10 2500
higher learning rate (0.01) 10/10 170
deeper network (6) 8/10 3100
lower variance (0.0001) 10/10 390
higher variance (0.1) 10/10 450
lower sampling (50) 10/10 680
higher sampling (250) 10/10 200

Experiment 𝑥2 if 𝑥 > 0, else −𝑥

baseline 10/10 100
added constants (1, 2) and bases (−,−(·)) 10/10 290
lower last layer temperature (0.5) 10/10 160
higher last layer temperature (3) 10/10 150
lower learning rate (0.001) 10/10 780
higher learning rate (0.01) 10/10 90
deeper network (6) 10/10 180
shallower network (2) 10/10 160
lower variance (0.001) 10/10 160
higher variance (1) 10/10 180
lower sampling (50) 10/10 290
higher sampling (250) 10/10 140

Our benchmarks use a sampling size large enough for convergence in most exper-

iments. It is worth noting, however, that deeper networks failed to always converge

(with a convergence fraction of 𝜂 = 8/10) for the analytic function we tested. Deeper

networks allow for more function composition and let approximations emerge as local

minima: in practice, we find that increasing the last layer temperature or reducing

the variance is often needed to allow for a larger depth 𝐿. For pattern recognition, we

found that MNIST Binary and Trinary require depth 2 for successful convergence,

while the rest of the experiments require depth 4. Shallower or deeper networks

either yield subpar accuracy or fail to converge. We also find that for OccamNet

177

without skip connections, larger learning rates usually work best, i.e., 0.05 works

best, while OccamNet with skip connections requires a smaller learning rate, usually

around 0.0005. We also tested different temperature and variance schedulers in the

spirit of simulated annealing. In particular, we tested increasing or decreasing these

parameters over training epochs, as well as sinusoidally varying them with different

frequencies. Despite the increased convergence time, however, we did not find any ad-

ditional benefits of using schedulers. As we test OccamNet in larger problem spaces,

we will revisit these early scheduling studies and investigate their effects in those

domains.

K Neural Approaches to Benchmarks

Since OccamNet is a neural model that is constructed on top of a fully connected

neural architecture, below we consider a limitation of the standard fully connected

architectures for sorting and then a simple application of our temperature-controlled

connectivity.

Exploring the limits of fully connected neural architectures for sorting

We made a fully connected neural network with residual connections. We used the

mean squared error (MSE) as the loss function. The output size was equal to the input

size and represented the original numbers in sorted order. We used 𝐿2 regularization

along with Adam optimization. We tested weight decay ranging from 1e-2 to 1e-6

and found that 1e-5 provided the best training and testing accuracy. Finally, we

found that the optimal learning rate was around 1e-3. We used 30, 000 data points

to train the model with batch size of 200. Each of the data points is a list of numbers

between 0 and 100. For a particular value of input size 𝑥 (representing the number

of points to be sorted), we varied the number of hidden units from 2 to 20 and the

number of hidden layers from 2 (just an input and an output layer) to 𝑥! + 2. Then,

the test loss was calculated on 20,000 points, chosen from same distribution. Finally,

for each input size, Table 4.11 records the combination (hidden_layer, hidden_unit)

178

for which the loss is less than 5 and (hidden_ layer * hidden_units) is minimized.

As seen from the table, the system failed to find any optimal combination for any

input size greater than or equal to 5. For example, for input size 5, the hidden units

were upper capped at 20 and hidden layers at 120 and thus 2400 parameters were

insufficient to sort 5 numbers.

Table 4.11: Minimal configurations to sort list of length “input size.”
Input Size Hidden units Hidden Layers Parameters

2 6 2 12
3 8 4 32
4 18 4 72
5 - - -

Generalization The model developed above generalizes poorly on data outside

the training domain. For example, consider the model with 18 hidden units and four

hidden layers, which is successfully trained to sort four numbers chosen from the

range 0 to 100. It was first tested on numbers from 0 to 100 and then on 100 to 200.

The error in the first case was around 2 while the average error in the second case

was between 6 and 8 (which is (200/100)2 = 4 times the former loss). Finally, when

tested on larger ranges such as (9900, 10000), the error exploded to around 0.1 million

(which is an order greater than (10000/100)2 = 10000 times the original loss). This

gives a hint that the error might be scaling proportionally to the square of the test

domain with respect to the train domain. A possible explanation for this comes from

the use of the MSE loss function. Scaling test data by 𝜌 scales the absolute error by

approximately the same factor and then taking a square of the error to calculate the

MSE scales the total loss by the square of that factor, i.e., 𝜌2.

Applying temperature-controlled connectivity to standard neural networks

for MNIST classification

We would like to demonstrate the promise of temperature-controlled connectivity as

a regularization method for the classification heads of models with a very simple

179

experiment. We used the ResNet50 model to train on the standard MNIST image

classification benchmark. We studied two variants of the model: the standard ResNet

model and ResNet augmented with our temperature-controlled connectivity (with

𝑇 = 1) between the flattened layer and the last fully connected layer (on the lines

discussed in the main paper). Then we trained both models with a learning rate fixed

at 0.05 and a batch size of 64 and ran it for 10 epochs. The model with regularization

performed slightly better than the one without it. The regularized model achieved the

maximum accuracy of 99.18%, while the same figure for the standard one was 98.43%.

Another interesting observation is that the regularized model produces much more

stable and consistent results across iterations than the unregularized model. These

results encourage us to study the above regularization method in larger experiments.

L Small Experiments

To demonstrate its ability to fit functions with constants, we also tested OccamNet

on the function 10.5𝑥3.1 without providing either 10.5 or 3.1 beforehand. OccamNet

identified the correct function 10 times out of 10, taking an average of 553s.

We also investigated whether OccamNet could discover a formula for cosine us-

ing only the bases sin(·), +(·, ·), and ÷(·, ·) and the constants 2 and 𝜋. We expected

OccamNet to discover cos(𝑥) = sin(𝑥 + 𝜋/2), but, interestingly, it instead always

identified the double angle identity cos(𝑥) = sin(2𝑥)/(2 sin(𝑥)). OccamNet success-

fully identified an identified an identity for cosine 8 out of 10 times and in an average

of 410s. A more optimized implementation of OccamNet takes only 7s for the same

task, although its accuracy is somewhat lower, fluctuating between 2 and 6 out of 10

correct identifications.

Similarly, we tested whether OccamNet could discover Taylor polynomials of 𝑒𝑥.

OccamNet identified 𝑒𝑥 ≈ 1 + 𝑥 + 𝑥2/2, but was unable to discover the subsequent

𝑥3/6 term.

180

M Related Work

Symbolic regression

OccamNet was partially inspired by the EQL network [Martius and Lampert, 2016,

Sahoo et al., 2018a, Kim et al., 2020b], a neural network-based symbolic regression

system that successfully finds simple analytic functions. Neural Arithmetic Logic

Units (NALU) and related models [Trask et al., 2018a, Madsen and Johansen, 2020]

provide a neural inductive bias for arithmetic in neural networks that can in principle

fit some benchmarks in Table 4.1. NALU updates the weights by backpropagating

through the activations, shaping the neural network towards a gating interpretation of

the linear layers. However, generalizing those models to a diverse set of function bases

might be a formidable task: from our experiments, backpropagation through some

activation functions (such as division or sine) makes training considerably harder.

In a different computational paradigm, genetic programming (GP) has performed

exceptionally well at symbolic regression [Schmidt and Lipson, 2009, Udrescu and

Tegmark, 2020], and a number of evolution-inspired, probability-based models have

been explored for this goal Mckay et al. [2010].

A concurrent work [Petersen et al., 2021] explores deep symbolic regression by

using an RNN to search the space of expressions using autoregressive expression gen-

eration. Interestingly, the authors observed that a risk-aware reinforcement learning

approach is a necessary component in their optimization, which is similar to our ap-

proach of selecting the top 𝜆 function for optimization in Step 2 of our algorithm.

A notable difference is that OccamNet does not generate the expressions autoregres-

sively, although it still exhibits a gradual increase in modularity during training,

as discussed in Section 4.2.5. This is also a benefit both for speed and scalability.

Moreover, their entropy regularization is a potentially useful addition to our train-

ing algorithm. Marrying our approach with theirs is a promising direction for future

work.

Transformer-based models can quickly and accurately identify functions given data

by leveraging their extensive pretraining. However, these approaches are limited in

181

that they are restricted to a set of basis functions specified at training time. It may

thus be fruitful to investigate combining OccamNet and such approaches in a way

that increases convergence speed while maintaining OccamNet’s flexibility.

Program synthesis

A field related to symbolic regression is program synthesis. For programs, one option

to fit programs is to use EQL-based models with logic activations (step functions, MIN,

MAX, etc.) approximated by sigmoid activations. Another is probabilistic program

induction using domain-specific languages [Ellis et al., 2018b,a, 2019]. Neural Turing

Machines [Graves et al., 2014, 2016] and their stable versions [Collier and Beel, 2018]

are also able to discover interpretable programs based on observations of input-output

pairs. They do so by simulating programs using neural networks connected to an

external memory. Balog et al. [2016] first train a machine learning model to predict

a DSL based on input-output pairs and then use methods from satisfiability modulo

theory [Solar Lezama, 2008] to search the space of programs built using the predicted

DSL. In contrast, our DSL is lower level and can fit components like “sort” instead

of including them in the DSL directly. Kurach et al. [2016] develop a neural model

for simple algorithmic tasks by utilizing memory access for pointer manipulation and

dereferencing. However, here we achieve similar results (for example, sorting) without

external memory and in only minutes on a CPU.

Integration with deep learning

We are not aware of classifiers that predict MNIST or ImageNet labels using symbolic

rules. The closest baseline we found is using GP [Montana and Davis, 1989], which

performs comparably well to our neural method, but cannot easily integrate with deep

learning. In the reinforcement learning (RL) domain, Such et al. [2017] and Salimans

et al. [2017] propose training deep models of millions of parameters on standard RL

tasks using a gradient-free GP, which is competitive to gradient-based RL algorithms.

182

SCGs and pruning

Treating the problem of finding the correct function or program as a stochastic com-

putational graph is appealing due to efficient soft approximations to discrete distri-

butions [Maddison et al., 2017, Jang et al., 2017, Tucker et al., 2017]. Our 𝑇 -softmax

layers offer such an approximation and could further benefit from an adaptive soft-

max methodology [Grave et al., 2017], which we leave for future work. Furthermore,

the sparsity induced by 𝑇 -softmax layers parallels the abundant work on pruning

connections and weights in neural networks [Han et al., 2015, Li et al., 2017] or us-

ing regularizations, encouraging sparse connectivity [Molchanov et al., 2017, Louizos

et al., 2018].

N Symbolic Regression Benchmarks

Eureqa

Eureqa is a software package for symbolic regression where one can specify different

target expressions, building block functions (analogous to the bases in OccamNet),

and loss functions [Schmidt and Lipson, 2009]. For most functions, we use the absolute

error as the optimization metric. We choose formula building blocks in Eureqa to

match the basis functions used in OccamNet.

For implicit functions, we use the implicit derivative error. We also order the data

to improve the performance. For the implicit functions in lines 1, 3, and 4 in Table 2

of the main text, the data is ordered by 𝑥0. For the equation 𝑥20 + 𝑥21 = 1, the data is

generated by sampling 𝜃 ∈ [0, 2𝜋) and calculating 𝑥0 = sin(𝑥) and 𝑥1 = cos(𝑥), and is

ordered by 𝜃. When the data is not ordered, the value of the implicit derivative error

is much higher, resulting in the algorithm favoring incorrect equations. For equation

𝑚1𝑣1 −𝑚2𝑣2, the ordering is more ambiguous because of the higher dimensionality.

We tried ordering by both 𝑚1 and the product 𝑚1𝑣1 without success.

183

HeuristicLab

Due to limits on the number of data points and feature columns in Eureqa, we instead

use HeuristicLab for the image recognition tasks described in Section 5.4 of the main

text. HeuristicLab is a software package for optimization and evolutionary algorithms,

including symbolic regression and symbolic classification. We use the Island Genetic

Algorithm with default settings.

Similar to the building block functions in Eureqa, HeuristicLab can specify the

basis symbols for each task. However, HeuristicLab does not have the bases MAX,

SIGMOID, or tanh. Instead, we use the symbols IfThenElse, GreaterThan, LessThan,

And, Or, and Not.

Eplex

As discussed in Section 4.2.6, Eplex [La Cava et al., 2016], short for Epsilon-Lexicase

selection, is a genetic programming population selection technique that we use as a

symbolic regression benchmark in our experiments with PMLB datasets. We imple-

ment a genetic algorithm using Eplex with the DEAP [Fortin et al., 2012] evolution-

ary framework, using Numpy arrays [Harris et al., 2020] for computation to increase

speed.

Eplex selects individuals from a population by evaluating the individuals on sub-

sets, or fitness cases, of the full data. For each fitness case, Eplex selects the top-

performing individuals and proceeds to the next fitness case. This process is repeated

until only one individual remains. This individual is then used as the parent for the

next generation.

AI Feynman 2.0

We also benchmark OccamNet against AI Feynman 2.0 [Udrescu et al., 2020]. AI

Feynman 2.0 is a mixed approach that combines brute-force symbolic regression,

polynomial fits, and identification for modularity in the data using neural networks.

To identify modularities in the data, AI Feynman first trains a neural network on it.

184

This serves as an interpolating function for the true data and allows the network to

search for symmetries and other forms of modularities.

Figure 4-12: In this figure, we present two video frames for the target sin(3𝑥 + 2),
which could be accessed via videos/sin(3x + 2).mp4 in our code files. We show
the beginning of the fitting (left) and the end, where OccamNet has almost converged
(right).

O Code

We will make our code public. We have grouped our code into five main folders.

analytic-and-programs stores our network and experiments for fitting analytic

functions and programs. implicit stores our network and experiments for implicit

functions, although it also includes the three analytic functions listed in Table 4.6.

constant-fitting stores code very similar to implicit but optimized for constant

fitting. image-recognition stores our network and experiments for image classi-

fication. pmlb-experiment stores our code for benchmarking against the PMLB

regression datasets. Finally, videos stores several videos of our model converging to

various functions. In Figures 4-12 and 4-13, we present snapshots of the videos.

Currently, our method is not explicitly designed against adversarial attacks. Thus,

malicious stakeholders could exploit our method and manipulate the symbolic fits that

OccamNet produces. A potential direction towards alleviating the problem would

185

Figure 4-13: In this figure we present two video frames for the target SORT(𝑥0, 𝑥1, 𝑥2),
which could be accessed via videos/sorting.mp4 in our code files. We show the
beginning of the fitting (left) and the end, where OccamNet has almost converged
(right).

be to explore ways to robustify OccamNet by training it against an adversary. In

the meantime, we ask that users of our code remain responsible and consider the

repercussions of their use cases.

Outlook. One of the biggest challenges in symbolic regression is the lack of well-

defined real-work benchmarks for discoveries. This is a notable limitation of the work

in this section too, hence we focus on providing an application of OccamNet on data

in the real world in the following section.

4.3 AI-Assisted Discovery of Quantitative and For-

mal Models in Social Science

In social science, formal and quantitative models, such as ones describing economic

growth and collective action, are used to formulate mechanistic explanations, provide

predictions, and uncover questions about observed phenomena. Here, we demonstrate

the use of a machine learning system to aid the discovery of symbolic models that

capture nonlinear and dynamical relationships in social science datasets. By extend-

186

Figure 4-14: Using neuro-symbolic regression to systematically guide model discovery
in social science. Analogous to the inductive-deductive reasoning process, a dataset of
interest (1) – which may be time-series, cross-sectional, or longitudinal – is supplied
to OccamNet. The user can provide inductive biases (2), such as the choice of key
variables, known constants, or specific functional forms to constrain the search space.
OccamNet finds interpretable and compact solutions that model the input data by
sampling functions from an internal probability distribution represented using P-nodes
[Costa et al., 2021]. In this example, OccamNet recovers the governing equation of the
Solow-Swan model of economic growth [Solow, 1956] from a synthetic dataset. Each
formal model is characterized by its error distribution in the training set (3), allowing
the user to identify outliers and interrogate its internal validity. The symbolic model
is then used to generate predictions (4) to perform deductive tests across unseen data,
either by partitioning a test set or informing experimental designs (5).

ing neuro-symbolic methods to find compact functions and differential equations in

noisy and longitudinal data, we show that our system can be used to discover in-

terpretable models from real-world data in economics and sociology. Augmenting

existing workflows with symbolic regression can help uncover novel relationships and

explore counterfactual models during the scientific process. We propose that this

AI-assisted framework can bridge parametric and non-parametric models commonly

employed in social science research by systematically exploring the space of nonlinear

models and enabling fine-grained control over expressivity and interpretability.

187

Our proposed workflow. Figure 4-14 outlines our workflow for AI-assisted model

discovery in social science. Symbolic regression allows us to uncover interpretable

expressions as opposed to black-box or fully non-parametric results. These expres-

sions, which may take the form of differential equations, scaling laws, or functional

relationships, can shed light on the interactions between variables and help social

scientists generalize beyond linear relationships. Furthermore, because symbolic laws

can have system-specific constants, the inferred models also describe precise structural

relationships that can be used to generate testable predictions across populations or

timeframes. We employ a neural network architecture built on OccamNet to find

sparse, interpretable formal models that fit the desired input data. In particular,

we leverage OccamNet’s architecture to implement two key features to systematically

explore the space of candidate models in social science: complexity regularization and

data ensemble learning.

Predator-prey relationships. Ecologists have long relied on mathematical mod-

els of population dynamics for studying ecological processes such as predator-prey

interactions. While these models – often taking the form of differential equations –

were historically derived from first principles and rigorous theory-building, symbolic

regression offers a promising tool for reverse-engineering ecological models from data

Martin et al. [2018].

A simple yet paramount model of predator-prey interactions between two species

is given by the Lotka-Volterra equations Lotka [1910],

𝑑𝐻

𝑑𝑡
= 𝛼𝐻 − 𝛽𝐻𝐿

𝑑𝐿

𝑑𝑡
= 𝛿𝐻𝐿− 𝛾𝐿,

(4.12)

where 𝐻 and 𝐿 are the populations of the prey and predator, respectively. The

constant parameter 𝛼 is the rate of exponential population growth for the prey, 𝛾 is the

rate of exponential death for the predator, 𝛽 is the rate at which the predators destroy

the prey, and 𝛿 is the rate of predator population growth due to the consumption of

prey. Inspired by the chemical law of mass action Berryman [1992], the Lotka-Volterra

188

Figure 4-15: Regression of coupled dynamical models using noisy real-world data.
(a) Time-series plot of a simulated Lotka-Volterra predator-prey system. OccamNet
was able to correctly reconstruct the functional form and constants with high ac-
curacy. (b) Using cubic spline interpolation, our system was able to learn the two
differential equations from noisy, real-world data of lynx and hare populations with
just 21 data points each. The inferred non-linear model can then be used to extend
predictions of future populations. (c) The symbolic regression system is used to infer
the SIR model of pandemic spread in synthetic data and (d) an ensemble of real-world
measles infection data in the UK.

189

equations state that the rate of predation is directly proportional to the product of

the populations of the prey and predator.

The Lotka-Volterra predator-prey model has significant implications beyond ecol-

ogy. Richard Goodwin was one of the first to adopt the model to describe the cycli-

cal relationship between employment and wages in economics, otherwise known as

Goodwin’s class struggle model Gandolfo [2007]. Other applications of generalized

Lotka-Volterra systems in economics include the modeling of wealth distributions in

society and values of firms in the stock market Malcai et al. [2002].

In Figure 4-15 (a) we simulate a system of Lotka-Volterra equations as defined in

equation 4.12 with synthetic parameters 𝛼, 𝛽, 𝛾, and 𝛿. We then use OccamNet to

fit 𝑑𝐻
𝑑𝑡

and 𝑑𝐿
𝑑𝑡

and simulate our generated differential equations using the same initial

conditions. Our model is able to rediscover the exact functional form and constant

parameters.

We then apply OccamNet to recover the Lotka-Volterra model from the Hudson

Bay Company’s data on the lynx and hare population in Canada from 1845-1935

[MacLulich, 1937]. As shown in Fig. 4-15 (b), we use the subset of records from

1900-1920 as it contains two population cycles with the least apparent noise.

When fitting the interpolated data using OccamNet, we recover a system of ODEs

that closely resembles the Lotka-Volterra equations. In particular, our model is able

to learn the exponential population growth and decay terms 𝛼𝐻 and −𝛾𝐿, as well

as the critical interaction terms of the form −𝛽𝐻𝐿 and 𝛿𝐻𝐿. Additionally, the best

OccamNet fit includes small constant correction terms of −0.449 and 0.188. These

constants have much smaller magnitudes relative to the other terms and may be due

to over-fitting. A researcher may choose to either ignore these kinds of correction

terms, or instead increase the level of constant regularization in OccamNet to obtain

a fit with higher loss but potentially better generalizability.

Epidemic spread. Next, we use OccamNet to discover compartmental models

of epidemics. In particular, we use synthetic and real datasets for the well-known

Susceptible-Infected-Recovered (SIR) [Kermack and McKendrick, 1927] model for

190

fixed population sizes, which is given by the ODE system

𝑑𝑠

𝑑𝑡
= −𝛽𝑖, 𝑑𝑖

𝑑𝑡
= 𝛽𝑖𝑠− 𝛾𝑖, 𝑑𝑟

𝑑𝑡
= 𝛾𝑖, (4.13)

where 𝑠(𝑡), 𝑖(𝑡), and 𝑟(𝑡) represent the proportions of the susceptible, infected, and

recovered populations at time 𝑡 respectively, and where 𝑠+ 𝑖+ 𝑟 = 1.

The SIR model and numerous variants are often used to describe the spread of in-

fectious diseases such as measles [Bjørnstad et al., 2002] or COVID-19 [Cooper et al.,

2020]. Such models are valuable for predicting the magnitude or duration of an epi-

demic, estimating epidemiological parameters such as the basic reproduction number

[van den Driessche, 2017] (given by 𝑅0 = 𝛽
𝛾

in the SIR model), and for forecasting the

impact of public health interventions. Beyond modeling disease spread, SIR variants

have also been used to study the diffusion of information on social networks [Woo and

Chen, 2016, Kumar and Sinha, 2021], and thus carry substantial relevance to social

science.

In Figure 4-15 (c), we simulate a synthetic time-series using the SIR model. Oc-

camNet discovers the correct functional form of the SIR model along with approx-

imately correct constant parameters up to rounding. The deviations of the learned

constant parameters likely stem from higher-order errors in the numerical derivative

estimate which are not addressed by the central difference formula. One could opt to

use higher-order derivative approximations to account for such errors if necessary.

Next, we demonstrate the data ensemble learning functionality of OccamNet on

a panel dataset for measles infection data in the UK. Horrocks and Bauch used the

SINDy (Sparse Identification of Nonlinear Dynamics) algorithm [Brunton et al., 2016]

to fit a variant of the SIR model with time-varying contact rates to this measles

dataset as well as to chickenpox and rubella data [Horrocks and Bauch, 2020]. We

note that SINDy requires the specification of a pre-set library of possible terms for

which the algorithm learns sparse vectors of coefficients. OccamNet instead uses a

specified library of simple bases to compose more complex terms with no additional

inductive bias necessary. Our method requires less prior knowledge about the expres-

191

sion structure and is thus better suited to deriving new functional forms.

Horrocks and Bauch fit the entire measles time-series to a singular equation for

𝑖(𝑡) with time-varying 𝛽(𝑡) [Horrocks and Bauch, 2020]. We instead demonstrate

OccamNet’s ability to discover the SIR model for each cycle of the epidemic with

different 𝛽 and 𝛾 parameters. Using a subset of the data from 1948-1958, we generate

an ensemble of five measles incidence cycles. We then apply the denoising techniques

as in [Brunton et al., 2016] and fit each dataset both individually and as an ensemble

in which we learn the same functional form for all five datasets with varying constant

parameters.

Figure 4-15 (d) highlights the advantage of ensemble learning over individual fits.

When each 2-year cycle is fit independently, OccamNet struggles to learn expressions

with the SIR-like form of 𝑑𝑖
𝑑𝑡

= 𝛽𝑖𝑠 − 𝛾𝑖. Due to the sparsity and noisiness of each

individual dataset, it only extracts the interaction term 𝛽𝑖𝑠 from one of the five pe-

riods. The ensemble fit, however, discovers a function that included the key form of

𝛽𝑖𝑠− 𝛾𝑖, as shown in the last row of the table in Fig. 4-15 (d). The parameter 𝑐0 is a

placeholder for a constant that varies for each cycle. Ensemble learning can therefore

help avoid over-fitting to individual datasets and improve generalization. While our

model also learns higher order terms such as 𝑖2 and 𝑐0𝑠𝑖2 for the ensemble, these terms

are of much smaller magnitude compared to the leading terms and are thus of less

importance to the correct fit. This is another example in which OccamNet’s custom

regularization capabilities could be applied to eliminate higher-order terms.

Long-run economic growth. The final dynamical system we consider is the neo-

classical Solow-Swan model of economic growth Solow [1956]. The model postu-

lates that long-run economic growth can be explained by capital accumulation, labor

growth, and technological progress. The model typically assumes Cobb-Douglas-type

aggregate production with constant returns to scale, given by

𝑦(𝑡) = 𝑘(𝑡)𝛼 (4.14)

192

where 𝑦(𝑡) is the output per unit of effective labor, 𝑘(𝑡) is the capital intensity (capital

stock per unit of effective labor), and 𝛼 is the elasticity of output with respect to

capital. The central differential equation in the Solow model describes the dynamics

of 𝑘(𝑡),
𝑑𝑘

𝑑𝑡
= 𝑠𝑦 − (𝑛+ 𝑔 + 𝛿)𝑘, (4.15)

where 𝑠 is the savings rate, 𝑛 is the population growth rate, 𝑔 is the technological

growth rate, and 𝛿 is the capital stock depreciation rate. This equation states that

the rate of change of capital stock is equal to the difference between the rate of

investment and the rate of depreciation. The key result of the Solow growth model is

that a greater amount of savings and investments do not affect the rate of economic

growth in the long run.

While the Solow model was originally derived to describe U.S. economic growth,

it has also been applied to other countries. If the model were perfectly universal, we

would expect to see every country’s capital grow according to equation equation 4.15,

with varying hidden parameters. We thus generate a synthetic example of country

panel data for economic growth by simulating the Solow equations for 𝑘(𝑡) and 𝑦(𝑡),

with the goal of rediscovering equation equation 4.15. As an additional level of com-

plexity, we model the savings rate 𝑠 and population growth rate 𝑛 as time-dependent

variables that grow according to the equations 𝑑𝑠
𝑑𝑡

= 0.05 and 𝑑𝑛
𝑑𝑡

= 0.05𝑛. Each panel

dataset is generated by randomly sampling initial conditions and parameters 𝑔 and

𝛿 from uniform distributions. The resulting cross-country time series is displayed in

Fig. 4-14. As demonstrated in the figure, OccamNet is able to recover the exact

equation for 𝑑𝑘
𝑑𝑡

(denoted as Output 1) with varying parameter 𝑐0 for each of the 20

synthetic panels.

We then attempt to fit the Solow model of capital growth to real-world, noisy

country data. In particular, we select macro-economics data from 18 of the origi-

nal 20 countries in the Organisation for Economic Co-operation and Development

(OECD) for which data was available. The input to our symbolic regression includes

data on capital per capita, income per capita, savings rate, and population growth

193

Figure 4-16: Ensemble learning of longitudinal (panel) macroeconomic data. (a)
Country-level macroeconomic data on capital and income per capita, savings rates,
and population growth for 18 OECD member countries. (b) Ensemble learning of
the Solow economic growth model. The error distribution of the differential equation,
applied to each country, is shown for three expressions generated with increasing levels
of complexity regularization. The identification of outliers may inform alternative
explanations, hidden parameters, or higher-order corrections to the economic model.

194

compiled by Khoo et al. [Khoo et al., 2021], where it was utilized for regression under

the Green Solow model – a variant of Solow-Swan for modeling sustainable growth

[Brock and Taylor, 2004]. The 𝑘(𝑡) data is originally sourced from the Penn World

Tables [Feenstra et al., 2015], 𝑦(𝑡) and 𝑛(𝑡) are from the Maddison Project database

[Maddison, 2017], and 𝑠(𝑡) is from the World Development Indicators [wor]. There is

no available data for the remaining parameters 𝑔 and 𝛿, so they are instead treated

as learnable constants. We also apply Savitzky-Golay filtering to smooth the data

before running the regression.

In Fig. 4-16 (b), we compare the Solow-Swan model baseline to three expressions

produced by OccamNet under increasing levels of complexity regularization. The

Solow baseline is generated by finding the best-fit parameter 𝑐0 = 𝑔 + 𝛿 in a least-

squares of fit of equation equation 4.15. The expression with no regularization is given

by 𝑑𝑘
𝑑𝑡

= 𝑐1

(︁
𝑘2

𝑦
+ 𝑘
)︁
− 𝑐2 with constants 𝑐1 and 𝑐2 that vary across countries. While

this expression has a lower weighted mean-squared error (WMSE) than the baseline,

its functional form does not carry immediate economic intuition like the Solow model.

We then add Constant Regularization as described in 4.2.6, which results in the

equation 𝑑𝑘
𝑑𝑡

= 𝑠𝑦 − 𝑘𝑛 closely matching the functional form of equation 4.15. This

suggests that the Solow model has strong external validity as it can be discovered

without any strong human priors. Finally, we apply Activation Regularization in

addition to Constant Regularization, resulting in the output 𝑑𝑘
𝑑𝑡

= 𝑠𝑦. The learned

expression contains only one term from the Solow model and has the highest WMSE.

The example in Fig. 4-16 (b) concretely demonstrates the tradeoff between accuracy

and simplicity in the discovery of symbolic models. A researcher would thus benefit

from running OccamNet with several specifications of regularization to select a result

with the desired level of precision and complexity.

Outlook. The fundamental limitation of the discoveries in this section is that we

are focused on reconstructing the dynamics that govern the system. Reconstructing

the exact dynamics in the real world is a challenging task due to the presence of

noise and the lack of understanding of the ground truth. Given that it is hard to

195

hypothesize and reconstruct the exact dynamics of a system without knowing them,

we could still infer useful properties about the dynamics and thus understand the

system at a more fundamental level. This knowledge can comprise understanding the

invariants of a system or the states of the system that are related to distinguishable

properties. This direction of research is the focus of the following work.

Outlook. In this section we explored how we can use OccamNet to uncover the

symbolic expression of dynamics in the observed data. However, in many real-world

data the dynamics is unknown, and even unnecessary, if we want to disover conserved

quantities, as we demonstrate in our work by using optimal transport and manifold

learning [Lu et al., 2022]. Contrastive learning is a manifold learning method that

attempts to extract the manifold of the original data in a latent space, similarly

to [Lu et al., 2022]. It is natural to attempt to understand the latent-space dynamics

of contrastive learning, which is the focus of the following section.

4.4 Phase Transitions and Representation Geometry

in Contrastive Learning

One of the key problems in modern machine learning is crafting effective representa-

tions of data without human-generated labels. Contrastive learning and other self-

supervised learning methods are among the most popular and effective methods to

date for tackling this problem [Chen et al., 2020b, Chen and He, 2021a, Grill et al.,

2020a, Bardes et al., 2022]. In contrastive learning, positive examples, consisting of

two augmented version of a single image, have their representations pushed together

in the output space; negative examples, which are augmented versions of different

images, have their representations pushed apart.

The training dynamics behind contrastive learning and other self-supervised learn-

ing methods remain mysterious. We focus on studying the augmentations necessary

for contrastive learning. The exact choice and strength of augmentations is criti-

cal for contrastive learning [Chen et al., 2020b, Tian et al., 2020a, Luo et al., 2023].

196

Robustness

D
es

tr
uc

tiv
en

es
s

removing noise

re
m

ov
in

g
si

gn
al

1 2 3

4

self-

su
perv

ise
d tr

ad
eo

�

non-destructive setting

training time

4
3 2

1

collapse

well-learned

underlearned

phase transition

Δ
 g

eo
m

et
ry

robustness speedup

Figure 4-17: Main result. Augmentations used in contrastive learning typically ex-
hibit a tradeoff between robustness (how much noise is removed) and destructiveness
(how much signal is removed). In order to explore the effect of robustness alone, we
study non-destructive augmentations which preserve all relevant data. We observe
in multiple settings that increased robustness speeds up training by speeding up the
occurrence of phase transitions, points in training at which representation geometry
changes suddenly and significantly. Each numbered point in the first plot corresponds
to the augmentations of the idealized training curve on the right.

Augmentations that are too strong destroy meaningful information and encourage col-

lapse, where all data points are pushed together. On the other hand, it is commonly

understood that augmentations that are too weak preserve too much extraneous in-

formation, which lowers the quality of the representations [Tian et al., 2020a].

With an ideal representation in mind, we propose refining our understanding of

data augmentations based on the kind of information that augmentations remove.

If they are destroying noise or meaningless information, they are robust ; if they are

destroying signal or meaningful information, they are destructive. We stress that ro-

bustness and destructiveness are both defined in relation to an ideal representation.

Typically, strong augmentations are both robust and destructive, while weak aug-

mentations are neither. Generally, we seek to find augmentations that are maximally

robust but minimally destructive. The tradeoff between robustness and destructive-

ness was explored extensively in [Tian et al., 2020a].

Can we study the robustness of augmentations—and their effect on training dynamics—

disentangled from their destructiveness? Moreover, can we understand how improving

augmentations past the current state-of-the-art will impact training dynamics? We

197

explore these questions by varying the robustness of non-destructive augmentations,

that is, augmentations that completely preserve meaningful information. We do this

in two settings: first, we generate artificial datasets from physics simulations and in-

troduce a non-destructive temporal augmentation; and second, we perform supervised

contrastive learning [Khosla et al., 2020] on common computer vision benchmarks in-

cluding CIFAR-10 [Krizhevsky and Hinton, 2009] and ImageNet [Deng et al., 2009b].

In the supervised contrastive learning setting, positive examples are two different

examples of the same class, so augmentations are non-destructive.

The self-supervised nature of contrastive models, where representations are learned

without a source of ground truth, means that there possibly are multiple stable repre-

sentations corresponding to alternate interpretations of the input data. As contrastive

models typically need long training times, when training they may be converting

between these local optima. Understanding the timing and nature of such phase

transitions between local optima can help further our understanding of contrastive

learning dynamics. Phase transitions have been previously observed in simple con-

trastive learning experiments (e.g. those by [Tian, 2022]), but have not yet been

documented in detail.

We observe that the timing of phase transitions is highly dependent on the ro-

bustness of augmentations. That is, strongly robust augmentations lead to phase

transitions occurring early in training, and as augmentations are made less robust,

phase transitions occur later and later in training before not occurring at all. As

well as quantitative metrics, we use direct, low-dimensional embeddings to directly

observe phase transitions. In particular, we aim to study the geometric features of

representations as models train, and aim to design metrics that describe these geo-

metric features in order to track phase transitions, as opposed to performance metrics

such as loss or downstream accuracy.

Contributions. By utilizing an empiral perspective, our study reveals important

insights about contrastive learning. As illustrated in Figure 4-17, our contributions

include the following:

198

Latent Space

Numerical

Image

(conserved quantity space)

Positives

Negatives

Inputs

Positives
Negative

conserved
varying

Figure 4-18: How the data generation for our Kepler dataset works. Images on bottom
right are real examples sourced from the dataset.

• We emphasize that augmentations have both robustness, the amount they are

able to remove meaningless information, and destructiveness, the amount they

remove meaningful information. We study robustness disentangled from de-

structiveness.

• We provide novel observations of phase transitions wherein representation ge-

ometry drastically transforms between locally metastable conformations in a

relatively short period of training time on synthetic physics datasets (Kepler

and double pendulum) as well as on standard vision benchmarks (CIFAR-10

and ImageNet). The double pendulum and CIFAR-10 results will be included

in the supplemental materials.

• We identify that a large factor in the timing of phase transitions is augmentation

robustness. In particular, robust augmentations speed up phase transitions, and

thus training.

Next, we demonstrate how we understand the contrastive learning dynamics for

the Kepler problem. We limit the discussion for the Kepler problem, for brevity.

Kepler problem. We demonstrate the dataset in Figure 4-18. The trajectory of

a planet orbiting around a central star constrained in two dimensions can be rigor-

ously parameterized by Kepler’s equations. The resulting elliptical orbit shape can

be uniquely defined by fixing 3 conserved scalar quantities in the system’s equations;

for example, energy 𝐻, angular momentum ‖L‖, and the angle of the Laplace-Runge-

Lenz vector 𝜑0. These conserved quantites can be calculated from the position r and

199

momentum p with

𝐻 =
‖p‖2

2
− 1

‖r‖
L = r× p 𝜑0 = arg(p× L− r̂)

where arg(v) is the angle of vector v with respect to the positive 𝑥-axis.

Generating partial trajectories The amount of a trajectory that is sampled to

produce positive examples is directly related to augmentation robustness. Two points

sampled from distant points within the trajectory have much greater differences in

position and momentum compared to points in close proximity within the trajectory.

Sampling from a partial trajectory corresponds to a less robust augmentation.

Similar to the supervised contrastive learning setup, we use a hyperparameter 𝛼

to quantify the augmentation robustness. In this case, we sample positives from a

proportion of 𝛼 of the trajectory. If 𝑇 be the period of the trajectory, we randomly

sample a starting time 𝑡 from [0, 𝑇] uniformly where 𝑇 is the period of the orbit.

Then we sample positive examples uniformly from the range [𝑡, 𝑡 + 𝛼𝑇]. Note that

𝛼 = 1 corresponds to full trajectories.

𝑅2 metric for phase transitions in non-categorical datasets All of our physics

datasets are non-categorical. Theoretically, the optimal representation is an affine

transform of the latent space [Zimmermann et al., 2021]. Thus, given that we know

the latent space and the parameterization used to generate our data, the quality of a

linear regression from our learned representations to the latent variable(s) reflects the

quality of our representation. We use the 𝑅2 of this linear regression to track phase

transitions; typically, we calculate the 𝑅2 of a linear regression from the representation

to the last-learned linear latent variable, as the order of learning for latents tends to

be stable across initializations.

Phase Transitions in the Kepler problem: “Twisted Disk” to “The Bowl.”

When 𝛼 = 1.0 on the Kepler dataset, all three conserved quantities are present in the

representation, and moreover, the representation correctly represents the geometry

200

Figure 4-19: Phase transition from Twisted Disk to Bowl showing transitory inter-
mediate embedding geometry.

of the latent space (𝜑0, 𝐻, 𝐿) in nontrivial ways. We have nicknamed this particular

representation The Bowl because of its shape. A more detailed discussion of this

representation is the Supplemental Materials. We can weaken the robustness 𝛼 down

to around 0.02 and the representation, other than degrading somewhat in quality,

remains roughly the same.

However, when we set 𝛼 ≤ 0.01, the shape of the representations looks radically

different. The representations remain stuck at a shape that we call the Twisted Disk,

which embeds position directly and has a twist at the center at which orbits with

𝐿 ≈ 0, 1 are embedded close together (Figure 4-20). Despite being able to achieve

low loss with partial trajectories, the disk is misleading about the global structure

of the data, and tends to have worse than random loss when re-evaluated on full

trajectories. Visually, orbits maintain their elliptical shape; the disk is essentially a

direct embedding of the input space.

When training with 𝛼 between 0.02 and 0.15, we can directly observe a phase

transition between the twisted disk, which is reached first, and the bowl, which is

reached after some number of epochs. Visually, transitional forms between the two

phases can be seen in Figure 4-19. By using the linear 𝑅2 metric, we can track when

the phase transition occurs and how this depends on the robustness 𝛼 in Figure 4-21.

Within an individual training run, we can observe how the 𝑅2 metric suddenly and

surprisingly increases rapidly at the phase transition time Figure 4-22, corresponding

to the visual changes.

Kepler Image domain. We created a version of the Kepler dataset that has

56 × 56 image inputs where the planet’s trajectory is displayed as a trail of dark

201

Figure 4-20: Visual comparison
showing poor alignment in Twisted
Disk, but not in the Bowl. Black out-
line is embedding of a single orbit.

03 04 05 06 07 08 09 10 20 40 60 80 100
Percent of trajectory (alpha) seen while training

0

100

200

300

400

N
um

be
r o

f e
po

ch
s

ta
ke

n

Figure 4-21: Number of epochs needed un-
til the phase transition for Kepler charted
against percentage of trajectory seen during
training. 16 trials for each 𝛼 plotted, with a
95% confidence interval shown.

points, and we use a ResNet-18 encoder to extract conserved quantities. The bowl is

recovered with 𝛼 as little as 0.05. The same phenomenon occurs in the image domain,

except there are multiple phases and generally more complicated training dynamics.

A detailed treatment of this dataset, as well as the impact of missing data, can be

found in the Supplemental Materials.

0 25 50 75 100 125 150 175 200
Number of epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Tr
ai

ni
ng

 L
os

s

0 25 50 75 100 125 150 175 200
Number of epochs

0.0

0.2

0.4

0.6

0.8

C
oe

ffi
ci

en
t o

f d
et

er
m

in
at

io
n

fo
r l

in
ea

r f
it

of
 L

Figure 4-22: The phase transition in this run on the Kepler dataset can be observed
from epochs 65-85 where there is a sudden and surprising increase in the 𝑅2 metric.
At the same time, loss does not sharply decrease.

202

4.5 Conclusion

Chronologically, in this chapter, we presented a novel method for symbolic regression

based on the inductive bias of neural networks and Occam’s razor [Costa et al., 2021].

We then presented an application of this method to the discovery of quantitative and

formal models in the social sciences [Balla et al., 2022]. Then we shifted gears to

discover phase transitions in the representations dynamics of contrastive learning [Cy

et al., 2023]. Additionally, in a parallel study, we also make a contribution to under-

standing how representations from separate architectures can be connected, and we

help interpret the compositionality of intermediate representations in neural network

architectures [Hernandez et al., 2023]. Furthermore, in [Lu et al., 2022] we use mani-

fold learning to obtain representations that reveal conserved quantities of a variety of

dynamical systems, without requiring knowledge about the equations governing the

system.

For future work, we are developing a series of modifications to OccamNet and

are exploring the method for a wider range of real-world data and scenarios. We

have focused on the domain of discovering learning algorithms in the brain, in the

style of an “automated neuroscientist.” The challenges of OccamNet are multiple:

OccamNet needs to discover laws on stateful environments, has to handle discovering

high-dimensional operations, and is able to evaluate likelihoods when working in

probabilistic environments. We elaborate more on this topic in Chapter 5.

203

204

Chapter 5

Beyond the Limitations of

Representation Learning Through

the Lens of Science. Promising

Directions of Future Work.

In this thesis, we explored representation learning, particularly the challenges posed

by its conventional method: supervised learning. In Chapter 2, we tackled data

limitations using the symmetry inductive bias. In Chapter 3, we discussed enhancing

transferability through the language inductive bias. Chapter 4 delved into improving

interpretability with the symbolic inductive bias. While our Representation Learning

Through the Lens of Science methodology addresses key challenges, there remain

unexplored areas and potential improvements. This chapter aims to outline and

design extensions to our established approach.

In the following sections, we explore the three inductive biases central to our work:

symmetry, language, and symbolic.

205

5.1 Future Work on the Symmetry Inductive Bias:

Multimodality

Our work on symmetry explored how to embed the learned representations of data

with structure so that the transformations in the input are accurately reflected in

the representations. Invariant representations, representations that do not change

when the transformations are varied, are useful for downstream tasks and overcome

many challenges with supervised learning. On the Internet, and in the real world, we

perceive the same phenomenon from many different modalities—image, text, audio,

etc. The invariance of the representations to the modality becomes an important

property and a useful training signal. The abundance of multimodal data makes it

an obvious canditate for creating the next generation of representation learning.

Helen Keller was an American author, political activist, and lecturer who, despite

being deaf and blind from a young age, became a symbol of courage and persever-

ance [Keller, 1903]. Helen Keller’s understanding of the world was profoundly shaped

by two key modalities. The first, tactile sensation, allowed her initial perceptions,

while the second, symbolic representation, introduced by her teacher Anne Sullivan,

connected these sensations to tangible objects and ideas. This multi-faceted approach

to learning echoes the principles of multimodal learning in machine learning. In this

field, algorithms process multiple modalities synchronously, akin to Keller’s synthesis

of touch and symbolism, to learn better representations.

Recent advances in multimodal representation learning embed visual, text, and

audio in a common space, enabling state-of-the-art downstream performances and

novel capabilities such as zero-shot learning. We propose a similar approach to learn-

ing a common embedding space for different modalities of scientific data. A popular

approach (CLIP [Radford et al., 2021]; LiT [Zhai et al., 2022]) is based on contrastive

learning, which trains neural network encoders for each modality and connects the

embedding spaces of each modality by minimizing the distance between aligned em-

beddings and maximizing the distance between embeddings that are unaligned (here,

an aligned pair is constructed by joining descriptions of a single material using multi-

206

Figure 5-1: Multimodal representation learning for crystaline materials.

ple different modalities—for example, the crystal structure and dielectric properties of

graphene). Unfortunately, the prevalent studies on multimodal learning are limited

and unexplored in two notable ways: i) they are often conducted on a lot of aligned

pairs (about 100’s of M) and (ii) they are limited to connecting only a few modalities

— about 2-3.

We argue that the field of materials science offers an ideal experimental testing

ground for addressing the above limitations. Moreover, multimodal learning could

lead to dramatically improved AI models for crystalline materials science, enabling

improved analysis and discoveries of new crystalline materials, like new semiconduc-

tors (for enhanced computers, solar-cells, lasers), superconductors, and much more.

In recent years, materials databases have witnessed unprecedented growth, and a

key feature of these databases is that they contain a variety of properties - and thus

modalities - for each material. These properties are labeled via either ab-initio com-

putational tools (e.g. DFT) or through experimental data; some notable examples

include crystal and electronic structures, thermodynamic and magnetic properties,

and beyond. Many of these modalities are very rich in structure, i.e. they cannot

be represented by single numerical values, and are thus amenable to representation

learning. Furthermore, data for each modality appear in varying numbers and are

often limited in size, making them a good fit to study (i) and (ii) above.

207

Proposed Outcomes

• Universal Representations for Material Science

The main goal of this proposal is to build effective representations for materials,

aided by the availability of a variety of properties or modalities (see Figure 5-1

for a sketch of the concept). This would enable accelerated property prediction

for new scientific tasks of interest (e.g. predicting a new property not previ-

ously used for training), potentially using only a small number of labels. Rep-

resentation learning for materials inherits challenges unique to the structures

of materials. While there have been significant efforts towards representation

learning for molecules, efforts towards crystalline materials have been relatively

limited. Unlike molecules, many materials (ionic and metallic) lack well-defined

bonds and have periodic structures which render graph neural networks, typ-

ically used for molecules, not well suitable. We can leverage our advances in

contrastive learning for materials science [Loh et al., 2021, Dangovski et al.,

2021a] to encourage periodicity into neural network encoders, and thus make

them more suitable to the domain of materials. Furthermore, crystalline mate-

rials have modalities rich in structure; designing new architectures/ frameworks

to capture the necessary inductive biases to effectively encode all of the modal-

ities is an open problem and will be studied in this proposal. Our universal

representations also resemble a Foundation Model for materials science, albeit

foundation models typically use orders of magnitude more data than what is

available to us.

• Materials Discovery: Examples in High Critical-Temperature (High-

Tc) Superconductivity

Combining these effective representations with a generative process would fur-

ther enable rapid inverse design, where new materials of desired properties can

be more rapidly discovered or optimized for. However, inverse design of mate-

rials is challenging because generative models trained to output crystal struc-

tures with certain properties need to satisfy several constraints; for example,

208

the AI-proposed structure needs to be thermally stable and experimentally vi-

able. Progress toward generative modeling of crystalline materials (and not

molecules) remains limited. While there are many properties of interest to ma-

chine learning for crystalline materials which we intend to explore, there is a

particularly strong impetus towards the discovery of high-Tc superconductors

(those that stay superconductive even at as high temperatures as possible).

Discovering materials that are superconducting at room temperature has been

one of the most important problems in physics and would potentially trigger an

industrial revolution in fields as diverse as lossless electricity delivery over long

distances, transportation (very efficient magnetically levitating trains), quan-

tum computers, etc. Effective representations from materials can be used in

conjunction (e.g. through further fine-tuning) with existing superconductivity

datasets to accelerate superconductivity discovery. While discovering high-Tc

superconductors may be an ambitious goal, we believe the tools we build in our

work can contribute large strides toward solving this problem.

• Advancing Multimodal Learning in Other Domains

Most existing work in multimodal learning has focused on visual, text, and audio

modalities. Due to the growing ubiquity of such modalities on the Internet,

advances in multimodal learning are promising avenues for developing training

methods of deep neural network models. In handling multiple modalities, an

alternative approach to contrastive learning (i.e. aligning embedding spaces

of all modalities) is an “end-to-end” approach, which predicts one modality

from another using an encoder-decoder neural network architecture. There is

currently an insufficient understanding of which method - contrastive or end-

to-end - is preferred. Most of our understanding is limited to empirical studies,

e.g. (CLIP [Radford et al., 2021]; LiT [Zhai et al., 2022]), so it is imperative to

deepen our understanding of multimodal learning. By leveraging our domain

expertise in materials science and the availability of multimodal datasets in the

domain, we aim to increase our understanding of the effectiveness of contrastive

209

vs. end-to-end training, as well as to address research directions (i) and (ii). We

also plan to study multimodal learning beyond materials science by exploring

medical imaging and radio reports, as well as various weather data in the domain

of stormy events and tornado observations.

5.2 Future Work on the Language Inductive Bias:

Large Language Models for Science Educa-

tion and Research.

The power of language for transfer learning is manifested by the recent revolution of

Large Language Models (LLMs) [Brown et al., 2020, OpenAI, 2023, Chowdhery et al.,

2022, Anil et al., 2023]. LLMs are increasingly general in that they can respond to

a wide range of tasks, formulated in language. Increasing the size of the model and

training data yields an increasing number of capabilities, termed emergent, as they

could hardly be predicted as a function of the described hyperparameters (data and

model sizes) [Wei et al., 2022].

However, certain languages remain elusive for LLMs. While programming and

natural language instructions are well-followed by LLMs, the language of natural

sciences is less so. The development of LLMs for science is of primary importance for

scaling scientific efforts to novel discoveries in the natural sciences.

Can we create our own LLM that is as general as the leading LLMs, yet fine-tuned

on a well-curated curriculum from the natural sciences? Our goal is to investigate the

capabilities of such custom LLMs. Could they become “tutor-helpers” in the class-

room?

In Figure 5-2 we present the result of our preliminary experiments that research

the above questions. We fine-tuned our own LLaMA [Touvron et al., 2023], an open-

source LLM that is close to the state-of-the-art proprietary LLMs. The fine-tuning

was conducted on a customized dataset including concept and technical questions that

are publicly available on the Internet, and ones that are curated from the physics

210

Figure 5-2: Our fine-tuning of LLaMA on an example question. The LLM can un-
derstand the question and remember the correct formula for the hydrostatic pressure
exerted on the submarine.

curriculum at MIT. While the capabilities of the model are still low on Bloom’s

taxonomy, there is a lot of room for improvement, and we are currently scaling up

our efforts.

The flexibility of the tutor-helpers that we develop will determine their usefulness

in the classroom, and the student-tutor interactions will generate data that can fur-

ther increase the usefulness of our custom-trained LLMs by continual training. Our

proposal and experiments have the potential to rethink the way we approach transfer

learning and education in the physical sciences. Furthermore, having a tutor-helper

may potentially be extended to a “research advisor,” which may revolutionize the way

we approach scientific research.

5.3 Future Work on the Symbolic Inductive Bias:

OccamNet as Representation in Novel Do-

mains

In Chapter 4 we presented OccamNet [Costa et al., 2020] a neural network with

symbolic representations that allows us to explore the combinatorially large space of

211

expressions that describe phenomena that can be expressed with symbolic laws. There

is one major limitation of OccamNet that presents an opportunity for importing the

method and its applications to novel real-world tasks of symbolic regression.

OccamNet is an on-policy method. More specifically, all of the equations that

the model explores are generated by the model’s own distribution, which may be

suboptimal, leading the model to focus on the exploitation of its own distribution

and get stuck in local optima. To address that, we propose two directions for future

work:

1. Adding exploration to OccamNet. This could be as simple as having a small

probably (a hyperparameter) to sample connections from a uniform distribution

in order to sample paths from OccamNet. This exploration trick is widespread

in the reinforcement learning literature [Sutton and Barto, 2018]. In our prelim-

inary experiments with OccamNet, we found that exploration is crucial in being

able to discover theories of how the brain works (in synthetic environments).

That is, we were able to rediscover the classical Rescorla-Wagner [Rescorla and

Wagner, 1972], TD- and Q-learning [Sutton and Barto, 2018] theories of the

brain [Sutton and Barto, 2018].

2. Using an LLM to configure OccamNet. Our proposal is to have LLMs configure

the weights of OccamNet by using a special token representation as the weights

at each layer of the LLM. This will ensure that a (potentially) different Occam-

Net can be utilized at each layer of the LLM, and the outputs of the OccamNet

can be used as additional representations to the LLM. OccamNet will provide

a symbolic representation of the LLM that could be useful in solving problems

that require mathematical manipulation of the input.

In Figure 5-3 we present a design of how OccamNet can be used to address the

issues that LLMs face with the parsing, using, and transforming of numerical

representations. There are three main points of this design. In point a. we

demonstrate that we preserve the representational power of Transformers. In

particular, we could explore fine-tuning a pre-trained LLM. Point b. demon-

212

Figure 5-3: OccamNet as a representation for LLMs. a. The standard information
flow for Transformers where the encoder layers updates the representations of each
token in the input sequence. b. Extracting the numerical tokens from the tokenized
input. c. A special token representation from the LLM is used to configure the
weights of an OccamNet that receives the numerical tokens as input and produces a
numerical output that is used by the following encoder layer. The process is repeated
for all the layers of the Transformer.

strates how we can parse the input to extract the numerical inputs. Point c.

demonstrates how the LLM can use special representations from its interme-

diate layer to configure the weights of OccamNet and thus have OccamNet to

implement a symbolic expression. The output of that expression is used back

in the intermediate representations of the LLM. Thus, not only may we be able

to address the issues of exploitation in OccamNet, but also we may be able to

help LLMs have more useful mathematical representations.

5.4 Final Remarks

We have identified three directions for future work on representation learning through

the lens of science: multimodal learning, for the symmetry inductive bias; LLMs for

213

science, for the language inductive bias; OccamNet representations for LLMs, for the

symbolic inductive bias. There are certain similarities between the three directions,

which we will discuss next.

Firstly, all of the above benefit from or manifest multimodal learning. In the

natural sciences, such as classical mechanics in physics, diagrammatic representations

are crucial for procedural problem solving. Hence, multimodal learning can be very

impactful in building LLMs for science. Likewise, the numerical tokens represented

by OccamNet is a novel modality for the OccamNet representations for LLMs.

Secondly, experimentation on scientific environments and tasks is crucial to de-

velop the novel representation learning methods that we proposed above. For exam-

ple, without experimenting with the automating neuroscience task, we may not have

identified the need for exploration (vs. exploitation) in OccamNet as clearly as our

proposal suggests.

Finally, the language representation of the data may be a crucial component in the

development of all proposals. Multimodal learning can be formulated as all modal-

ities, expressed in language representation being processed by a single Transformer

architecture. Furthermore, OccamNet’s discrete symbolic representation may inter-

face with the symbolic discrete representation of language, and help us develop better

inference algrithms for LLMs by directly augmenting the input of the LLM with sym-

bolic mathematical representations during the inference stage.

The core of our thesis and the proposals for future work in this chapter bridge

developments in representation learning and science to establish fruitful areas of re-

search in Representation Learning Through the Lens of Science.

214

Bibliography

World Development Indicators | DataBank. URL https://databank.worldbank.
org/source/world-development-indicators.

Harold Abelson and Andrea DiSessa. Turtle geometry: The computer as a medium
for exploring mathematics. MIT press, 1986.

Amjad Abu-Jbara and Dragomir Radev. Coherent citation-based summarization of
scientific paper. In ACL, 2011.

David Adger. Language unlimited: The science behind our most creative power. Ox-
ford University Press, USA, 2019.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada
Mihalcea, German Rigau, and Janyce Wiebe. SemEval-2016 task 1: Semantic
textual similarity, monolingual and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval-2016), pages 497–
511, San Diego, California, June 2016. Association for Computational Linguistics.
doi: 10.18653/v1/S16-1081. URL https://aclanthology.org/S16-1081.

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In
Proceedings of the IEEE International Conference on Computer Vision, pages 37–
45, 2015.

Roee Aharoni, Melvin Johnson, and Orhan Firat. Massively multilingual neural
machine translation. In NAACL-HLT, 2019.

P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that
constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5
(1):54–65, 1994.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-
Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebas-
tian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury,
Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry,
Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi

215

https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators
https://aclanthology.org/S16-1081

Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Dı́az, Nan Du, Ethan
Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi
Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz,
Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy,
Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric
Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhong-
tao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez,
Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew
Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope,
Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy,
Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov,
David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Ki-
ran Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting,
Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao
Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and
Yonghui Wu. Palm 2 technical report, 2023.

Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness.
Pseudo-labeling and confirmation bias in deep semi-supervised learning. In 2020
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE,
2020.

Dirk V. Arnold and Nikolaus Hansen. A (1+1)-CMA-ES for constrained optimisation.
In GECCO, 2012.

Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Kon-
stantinos Saitas Zarkias. learn2learn: A library for Meta-Learning research. August
2020. URL http://arxiv.org/abs/2008.12284.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. In
NeurIPS Deep Learning Symposium, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. In ICLR, 2015.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom
Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi
Schwarzschild, Andrew Gordon Wilson, Jonas Geiping, Quentin Garrido, Pierre
Fernandez, Amir Bar, Hamed Pirsiavash, Yann LeCun, and Micah Goldblum. A
cookbook of self-supervised learning. 2023.

Julia Balla, Sihao Huang, Owen Dugan, Rumen Dangovski, and Marin Soljacic. Ai-
assisted discovery of quantitative and formal models in social science. arXiv preprint
arXiv:2210.00563, 2022.

216

http://arxiv.org/abs/2008.12284

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. Deepcoder: Learning to write programs. In ICLR, 2016.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance
regularization for self-supervised learning. International Conference on Learning
Representations, 2022. URL https://arxiv.org/abs/2105.04906.

Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A pretrained language model for
scientific text. In EMNLP-IJCNLP, 2019.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150, 2020.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

Alan A. Berryman. The Orgins and Evolution of Predator-Prey Theory. Ecology,
73(5):1530–1535, 1992. ISSN 0012-9658. doi: 10.2307/1940005. URL https:
//www.jstor.org/stable/1940005. Publisher: Ecological Society of America.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambat-
tista Parascandolo. Neural Symbolic Regression that Scales. arXiv e-prints, art.
arXiv:2106.06427, June 2021. doi: 10.48550/arXiv.2106.06427.

Ottar N. Bjørnstad, Bärbel F. Finkenstädt, and Bryan T. Grenfell. Dynamics of
Measles Epidemics: Estimating Scaling of Transmission Rates Using a Time Se-
ries SIR Model. Ecological Monographs, 72(2):169–184, 2002. ISSN 0012-9615.
doi: 10.2307/3100023. URL https://www.jstor.org/stable/3100023. Pub-
lisher: Ecological Society of America.

Armand Borel and Jacques Tits. Groupes réductifs. Publications Mathématiques de
l’IHÉS, 27:55–151, 1965.

William A. Brock and M. Scott Taylor. The Green Solow Model. Working Paper
10557, National Bureau of Economic Research, June 2004. URL https://www.
nber.org/papers/w10557. Series: Working Paper Series.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geomet-
ric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:2104.13478, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners, 2020.

217

https://arxiv.org/abs/2105.04906
https://www.jstor.org/stable/1940005
https://www.jstor.org/stable/1940005
https://www.jstor.org/stable/3100023
https://www.nber.org/papers/w10557
https://www.nber.org/papers/w10557

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering gov-
erning equations from data by sparse identification of nonlinear dynamical sys-
tems. Proceedings of the National Academy of Sciences, 113(15):3932–3937, April
2016. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1517384113. URL https:
//pnas.org/doi/full/10.1073/pnas.1517384113.

Isabel Cachola, Kyle Lo, Arman Cohan, and Daniel S. Weld. Tldr: Extreme summa-
rization of scientific documents. arXiv preprint arXiv:2004.15011, 2020.

Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.

Fredrik Carlsson, Amaru Cuba Gyllensten, Evangelia Gogoulou, Erik Ylipää Hel-
lqvist, and Magnus Sahlgren. Semantic re-tuning with contrastive tension. 2021.
URL https://openreview.net/forum?id=Ov_sMNau-PF.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. arXiv preprint arXiv:2104.14294, 2021.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. Deep communi-
cating agents for abstractive summarization. In NAACL-HLT, 2018.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia.
SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual
focused evaluation. In Proceedings of the 11th International Workshop on Seman-
tic Evaluation (SemEval-2017), pages 1–14, Vancouver, Canada, August 2017.
Association for Computational Linguistics. doi: 10.18653/v1/S17-2001. URL
https://aclanthology.org/S17-2001.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal
sentence encoder for english. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 169–174,
2018.

Muthu Kumar Chandrasekaran, Michihiro Yasunaga, Dragomir Radev, Dayne Fre-
itag, and Min-Yen Kan. Overview and results: Cl-scisumm shared task 2019. In
BIRNDL 2019, 2019.

Muthu Kumar Chandrasekaran, Guy Feigenblat, Eduard Hovy, Abhilasha Ravichan-
der, Michal Shmueli-Scheuer, and Anita de Waard. Overview and insights from
the shared tasks at scholarly document processing 2020: CL-SciSumm, LaySumm
and LongSumm. In Proceedings of the First Workshop on Scholarly Document
Processing, 2020.

218

https://pnas.org/doi/full/10.1073/pnas.1517384113
https://pnas.org/doi/full/10.1073/pnas.1517384113
https://openreview.net/forum?id=Ov_sMNau-PF
https://aclanthology.org/S17-2001

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L. Boyd-graber, and David M.
Blei. Reading tea leaves: How humans interpret topic models. In NeurIPS. 2009.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. arXiv
e-prints, art. arXiv:1603.02754, March 2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. International Confer-
ence on Machine Learning, 2020b. URL https://arxiv.org/abs/2002.05709.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.
Conference on Computer Vision and Pattern Recognition, 2021a. URL https:
//arxiv.org/abs/2011.10566.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15750–15758, 2021b.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-
supervised visual transformers. arXiv e-prints, pages arXiv–2104, 2021.

Yen-Chun Chen and Mohit Bansal. Fast abstractive summarization with reinforce-
selected sentence rewriting. In ACL, 2018.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann
LeCun. The loss surfaces of multilayer networks. In AISTATS, 2015.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

Thomas Christensen, Charlotte Loh, Stjepan Picek, Domagoj Jakobović, Li Jing,
Sophie Fisher, Vladimir Ceperic, John D. Joannopoulos, and Marin Soljačić. Pre-
dictive and generative machine learning models for photonic crystals. Nanopho-
tonics, 9(13):4183–4192, October 2020. ISSN 2192-8614. doi: 10.1515/
nanoph-2020-0197. URL https://www.degruyter.com/document/doi/10.1515/
nanoph-2020-0197/html.

Thomas Christensen, Hoi Chun Po, John D. Joannopoulos, and Marin Soljačić. Lo-
cation and topology of the fundamental gap in photonic crystals, 2021.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang,
Marin Soljačić, Shang-Wen Li, Wen-tau Yih, Yoon Kim, and James Glass. Dif-
fcse: Difference-based contrastive learning for sentence embeddings. arXiv preprint
arXiv:2204.10298, 2022.

219

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2011.10566
https://arxiv.org/abs/2011.10566
https://www.degruyter.com/document/doi/10.1515/nanoph-2020-0197/html
https://www.degruyter.com/document/doi/10.1515/nanoph-2020-0197/html

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra:
Pre-training text encoders as discriminators rather than generators. arXiv preprint
arXiv:2003.10555, 2020.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Wal-
ter Chang, and Nazli Goharian. A discourse-aware attention model for abstractive
summarization of long documents. In NAACL-HLT, 2018.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In Inter-
national conference on machine learning, pages 2990–2999. PMLR, 2016.

Mark Collier and Joeran Beel. Implementing neural turing machines. In ICANN,
page 94–104, 2018.

Ed Collins, Isabelle Augenstein, and Sebastian Riedel. A supervised approach to
extractive summarization of scientific papers. In CoNLL, 2017.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bordes.
Supervised learning of universal sentence representations from natural language
inference data. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 670–680, 2017.

Ian Cooper, Argha Mondal, and Chris G. Antonopoulos. A SIR model assumption
for the spread of COVID-19 in different communities. Chaos, Solitons & Fractals,
139:110057, October 2020. ISSN 09600779. doi: 10.1016/j.chaos.2020.110057. URL
https://linkinghub.elsevier.com/retrieve/pii/S0960077920304549.

Allan Costa, Rumen Dangovski, Owen Dugan, Samuel Kim, Pawan Goyal, Marin
Soljačić, and Joseph Jacobson. Fast neural models for symbolic regression at scale.
arXiv preprint arXiv:2007.10784, 2020.

Allan Costa, Rumen Dangovski, Owen Dugan, Samuel Kim, Pawan Goyal, Marin
Soljačić, and Joseph Jacobson. Fast Neural Models for Symbolic Regression at
Scale. arXiv:2007.10784 [cs, stat], July 2021. URL http://arxiv.org/abs/2007.
10784. arXiv: 2007.10784.

John N Crossley, Anthony Wah-Cheung Lun, et al. The nine chapters on the math-
ematical art: Companion and commentary. Oxford University Press, USA, 1999.

Ali Cy, Anugrah Chemparathy, Michael Han, Rumen Dangovski, Peter Y. Lu, and
Marin Soljacic. Studying phase transitions in contrastive learning with physics-
inspired datasets. In ICLR 2023 Workshop on Physics for Machine Learning, 2023.
URL https://openreview.net/forum?id=djssHWljSA.

Rumen Dangovski, Li Jing, Preslav Nakov, Mićo Tatalović, and Marin Soljačić. Ro-
tational unit of memory: a novel representation unit for rnns with scalable appli-
cations. Transactions of the Association for Computational Linguistics, 7:121–138,
2019a.

220

https://linkinghub.elsevier.com/retrieve/pii/S0960077920304549
http://arxiv.org/abs/2007.10784
http://arxiv.org/abs/2007.10784
https://openreview.net/forum?id=djssHWljSA

Rumen Dangovski, Li Jing, Preslav Nakov, Mićo Tatalović, and Marin Soljačić. Ro-
tational unit of memory: a novel representation unit for RNNs with scalable appli-
cations. TACL, 7:121–138, 2019b.

Rumen Dangovski, Li Jing, Charlotte Loh, Seungwook Han, Akash Srivastava, Brian
Cheung, Pulkit Agrawal, and Marin Soljačić. Equivariant contrastive learning.
arXiv preprint arXiv:2111.00899, 2021a.

Rumen Dangovski, Michelle Shen, Dawson Byrd, Li Jing, Desislava Tsvetkova,
Preslav Nakov, and Marin Soljačić. We can explain your research in layman’s
terms: Towards automating science journalism at scale. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 12728–12737, 2021b.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling
with gated convolutional networks. In ICML, 2017.

Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad
Tomašev, Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász,
et al. Advancing mathematics by guiding human intuition with ai. Nature, 600
(7887):70–74, 2021.

Jacob Delvin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In NAACL-
HLT, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 2009a.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Anna Divoli, Preslav Nakov, and Marti Hearst. Do peers see more in a paper than
its authors? Adv. Bioinformatics, 2012:750214:1–750214:15, 2012.

221

https://aclanthology.org/N19-1423

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual represen-
tation learning by context prediction. In Proceedings of the IEEE international
conference on computer vision, pages 1422–1430, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Owen M Dugan, Peter Y Lu, Rumen Dangovski, Di Luo, and Marin Soljacic. Q-
flow: Generative modeling for differential equations of open quantum dynamics
with normalizing flows. In International Conference on Machine Learning, pages
8879–8901. PMLR, 2023.

Sergey Edunov, Alexei Baevski, and Michael Auli. Pre-trained language model rep-
resentations for language generation. In NAACL-HLT, 2019.

Albert Einstein. Die grundlage der allgemeinen relativitätstheorie, volume 49. JA
Barth, 1922.

Aaron Elkiss, Siwei Shen, Anthony Fader, Günes Erkan, David States, and Dragomir
Radev. Blind men and elephants: What do citation summaries tell us about a
research article? J. Am. Soc. Inf. Sci. Technol., 59:51–62, 2008.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh
Tenenbaum. Learning libraries of subroutines for neurally–guided bayesian program
induction. In NIPS. 2018a.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning
to infer graphics programs from hand-drawn images. In NIPS. 2018b.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando
Solar-Lezama. Write, execute, assess: Program synthesis with a REPL. In NeurIPS.
2019.

Katrina Evtimova, Andrew Drozdov, Douwe Kiela, and Kyunghyun Cho. Emer-
gent communication in a multi-modal, multi-step referential game. arXiv preprint
arXiv:1705.10369, 2017.

Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie Utama, Ido Dagan, and Iryna
Gurevych. Ranking generated summaries by correctness: An interesting but chal-
lenging application for natural language inference. In ACL, 2019.

Angela Fan, David Grangier, and Michael Auli. Controllable abstractive summariza-
tion. NMT at ACL, 2018a.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation.
In ACL, 2018b.

222

Angela Fan, Mike Lewis, and Yann Dauphin. Strategies for structuring story gener-
ation. In ACL, 2019.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-
Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz,
Julian Schrittwieser, Grzegorz Swirszcz, et al. Discovering faster matrix multipli-
cation algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022.

Robert C. Feenstra, Robert Inklaar, and Marcel P. Timmer. The next generation
of the penn world table. American Economic Review, 105(10):3150–82, October
2015. doi: 10.1257/aer.20130954. URL https://www.aeaweb.org/articles?id=
10.1257/aer.20130954.

Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Girshick, and Kaiming He. A
large-scale study on unsupervised spatiotemporal representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 3299–3309, 2021.

Zeyu Feng, Chang Xu, and Dacheng Tao. Self-supervised representation learning
by rotation feature decoupling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10364–10374, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In International conference on machine learning,
pages 1126–1135. PMLR, 2017.

Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Jour-
nal of Machine Learning Research, 13:2171–2175, 2012.

Adam Foster, Rattana Pukdee, and Tom Rainforth. Improving transformation
invariance in contrastive representation learning. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=
NomEDgIEBwE.

Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition,
2010.

Giancarlo Gandolfo. The Lotka-Volterra Equations in Economics: An Italian Precur-
sor. Economia Politica, XXIV:343–348, December 2007.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning
of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning. In ICML, 2017.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. In ICLR, 2018.

223

https://www.aeaweb.org/articles?id=10.1257/aer.20130954
https://www.aeaweb.org/articles?id=10.1257/aer.20130954
https://openreview.net/forum?id=NomEDgIEBwE
https://openreview.net/forum?id=NomEDgIEBwE

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu
Cord. Boosting few-shot visual learning with self-supervision. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 8059–8068,
2019.

Alexios Gidiotis and Grigorios Tsoumakas. A divide-and-conquer approach to the
summarization of academic articles. IEEE/ACM TASLP, 28:3029–3050, 2020.

John M Giorgi, Osvald Nitski, Gary D Bader, and Bo Wang. Declutr: Deep
contrastive learning for unsupervised textual representations. arXiv preprint
arXiv:2006.03659, 2020.

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou.
Efficient softmax approximation for GPUs. In ICML, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
Grabska-Barwinska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ra-
malho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori
Zwols, Georg Ostrovski, Adam Cain, Helen. King, C. Summerfield, Phil Blunsom,
Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural net-
work with dynamic external memory. Nature, 538:471–476, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,
Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to
self-supervised learning. CoRR, abs/2006.07733, 2020a. URL https://arxiv.
org/abs/2006.07733.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint arXiv:2006.07733, 2020b.

Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A dataset of 1.3 million
summaries with diverse extractive strategies. In NAACL-HLT, 2018.

Ligong Han, Seungwook Han, Shivchander Sudalairaj, Charlotte Loh, Rumen Dan-
govski, Fei Deng, Pulkit Agrawal, Dimitris Metaxas, Leonid Karlinsky, Tsui-Wei
Weng, et al. Constructive assimilation: Boosting contrastive learning performance
through view generation strategies. arXiv preprint arXiv:2304.00601, 2023.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and
connections for efficient neural networks. 2015.

224

https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.07733

Nikolaus Hansen. The CMA evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772, 2016.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Ŕio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016b.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9729–
9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

Danah Henriksen, Michael Henderson, Edwin Creely, Sona Ceretkova, Miroslava
Černochová, Evgenia Sendova, Erkko T Sointu, and Christopher H Tienken. Cre-
ativity and technology in education: An international perspective. Technology,
Knowledge and Learning, 23:409–424, 2018.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will
Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and com-
prehend. Advances in neural information processing systems, 28, 2015.

Adriano Hernandez, Rumen Dangovski, Peter Y Lu, and Marin Soljacic. Model
stitching: Looking for functional similarity between representations. arXiv preprint
arXiv:2303.11277, 2023.

Geoffrey E Hinton and Richard Zemel. Autoencoders, minimum description length
and helmholtz free energy. Advances in neural information processing systems, 6,
1993.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

225

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor
Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, et al. Training compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

Benjamin D Horne, William Dron, Sara Khedr, and Sibel Adali. Assessing the news
landscape: A multi-module toolkit for evaluating the credibility of news. In WWW,
2018.

Jonathan Horrocks and Chris T. Bauch. Algorithmic discovery of dynamic mod-
els from infectious disease data. Scientific Reports, 10(1):7061, December 2020.
ISSN 2045-2322. doi: 10.1038/s41598-020-63877-w. URL http://www.nature.
com/articles/s41598-020-63877-w.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for nlp. In International Conference on Machine Learning,
pages 2790–2799. PMLR, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In CVPR, 2017.

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for
transfer learning? arXiv preprint arXiv:1608.08614, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In ICML, 2015.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and
Joao Carreira. Perceiver: General perception with iterative attention. In Interna-
tional conference on machine learning, pages 4651–4664. PMLR, 2021.

Kokil Jaidka, Muthu Kumar Chandrasekaran, Sajal Rustagi, and Min-Yen Kan.
Overview of the CL-SciSumm 2016 shared task. In BIRNDL, 2016.

Kokil Jaidka, Muthu Kumar Chandrasekaran, Devanshu Jain, and Min-Yen Kan. The
CL-SciSumm shared task 2017: Results and key insights. In BIRNDL, 2017.

Kokil Jaidka, Michihiro Yasunaga, Muthu Kumar Chandrasekaran, Dragomir Radev,
and Min-Yen Kan. The CL-SciSumm shared task 2018: Results and key insights.
In BIRNDL at SIGIR, 2018.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson
Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand
Ceder, et al. Commentary: The materials project: A materials genome approach
to accelerating materials innovation. APL materials, 1(1):011002, 2013.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. In ICLR, 2017.

226

http://www.nature.com/articles/s41598-020-63877-w
http://www.nature.com/articles/s41598-020-63877-w

Dinesh Jayaraman and Kristen Grauman. Learning image representations tied to
ego-motion. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), December 2015.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max
Tegmark, and Marin Soljačić. Tunable efficient unitary neural networks (eunn) and
their application to rnns. In International Conference on Machine Learning, pages
1733–1741. PMLR, 2017.

Li Jing, Rumen Dangovski, and Marin Soljacic. Waveletnet: Logarithmic
scale efficient convolutional neural networks for edge devices. arXiv preprint
arXiv:1811.11644, 2018.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade. Photonic Crystals:
Molding the Flow of Light. Princeton University Press, 2 edition, 2008. URL
http://ab-initio.mit.edu/book/.

Steven G. Johnson and J. D. Joannopoulos. Block-iterative frequency-domain meth-
ods for Maxwell’s equations in a planewave basis. Optics Express, 8(3):173–
190, January 2001. ISSN 1094-4087. doi: 10.1364/OE.8.000173. URL https:
//www.osapublishing.org/oe/abstract.cfm?uri=oe-8-3-173.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, et al. Highly accurate protein structure prediction with alphafold. Na-
ture, 596(7873):583–589, 2021.

Helen Keller. The Story of My Life. Doubleday, Page & Company, 1903.

William Ogilvy Kermack and Anderson G McKendrick. A contribution to the math-
ematical theory of epidemics. Proceedings of the royal society of london. Series
A, Containing papers of a mathematical and physical character, 115(772):700–721,
1927.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard
Socher. Ctrl: A conditional transformer language model for controllable generation.
arXiv preprint arXiv:1909.05858, 2019.

Zi-Yu Khoo, Kang Hao Lee, Zhibo Huang, and Stéphane Bressan. Neural Ordinary
Differential Equations for the Regression of Macroeconomics Data Under the Green
Solow Model. In Christine Strauss, Gabriele Kotsis, A. Min Tjoa, and Ismail Khalil,
editors, Database and Expert Systems Applications, Lecture Notes in Computer
Science, pages 78–90, Cham, 2021. Springer International Publishing. ISBN 978-3-
030-86472-9. doi: 10.1007/978-3-030-86472-9_7.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learn-
ing. Advances in neural information processing systems, 33:18661–18673, 2020.

227

http://ab-initio.mit.edu/book/
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-8-3-173
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-8-3-173

Matthew Khoury, Rumen Dangovski, Longwu Ou, Preslav Nakov, Yichen Shen, and
Li Jing. Vector-vector-matrix architecture: A novel hardware-aware framework for
low-latency inference in nlp applications. arXiv preprint arXiv:2010.08412, 2020.

Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir
Čeperić, and Marin Soljačić. Integration of neural network-based symbolic regres-
sion in deep learning for scientific discovery. IEEE transactions on neural networks
and learning systems, 32(9):4166–4177, 2020a.

Samuel Kim, Peter Y. Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir
Čeperić, and Marin Soljačić. Integration of neural network-based symbolic regres-
sion in deep learning for scientific discovery. IEEE Transactions on Neural Networks
and Learning Systems, pages 1–12, 2020b.

Samuel Kim, Peter Y. Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin
Soljačić. Scalable and Flexible Deep Bayesian Optimization with Auxiliary In-
formation for Scientific Problems. arXiv:2104.11667, April 2021a. URL http:
//arxiv.org/abs/2104.11667.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. Self-guided contrastive learning for
bert sentence representations. arXiv preprint arXiv:2106.07345, 2021b.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S Zemel, Anto-
nio Torralba, Raquel Urtasun, and Sanja Fidler. Skip-thought vectors.
pages 3294–3302, 2015. URL https://papers.nips.cc/paper/2015/hash/
f442d33fa06832082290ad8544a8da27-Abstract.html.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto, 2009.

Alex Krizhevsky. Learning multiple layers of features from tiny images. technical
report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing
systems, 25, 2012.

Pawan Kumar and Adwitiya Sinha. Information diffusion modeling and analysis
for socially interacting networks. Social Network Analysis and Mining, 11(1):11,
December 2021. ISSN 1869-5450, 1869-5469. doi: 10.1007/s13278-020-00719-7.
URL https://link.springer.com/10.1007/s13278-020-00719-7.

228

http://arxiv.org/abs/2104.11667
http://arxiv.org/abs/2104.11667
https://papers.nips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://papers.nips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://link.springer.com/10.1007/s13278-020-00719-7

Julian Kupiec, Jan Pedersen, and Francine Chen. A trainable document summarizer.
In SIGIR, 1995.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access ma-
chines. In ICLR, 2016.

William La Cava, Lee Spector, and Kourosh Danai. Epsilon-Lexicase Selection for
Regression. In GECCO, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles, 2016. URL
https://arxiv.org/abs/1612.01474.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics.
In ICLR, 2020.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining.
arXiv preprint arXiv:1901.07291, 2019.

Yann LeCun, L’eon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE 1998 com-
puter society conference on computer vision and pattern recognition, pages 586–591.
IEEE, 1998a.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In IEEE, 1998b.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015a.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015b.

Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsuper-
vised representation learning by sorting sequences. In Proceedings of the IEEE
International Conference on Computer Vision, pages 667–676, 2017.

Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak Lee.
i-mix: A domain-agnostic strategy for contrastive representation learning. In ICLR,
2021.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measur-
ing their equivariance and equivalence. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 991–999, 2015.

Guy Lev, Michal Shmueli-Scheuer, Jonathan Herzig, Achiya Jerbi, and David Konop-
nicki. Talksumm: A dataset and scalable annotation method for scientific paper
summarization based on conference talks. In ACL, 2019.

229

https://arxiv.org/abs/1612.01474

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In ACL, 2019.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the
sentence embeddings from pre-trained language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
9119–9130, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.733. URL https://aclanthology.org/2020.
emnlp-main.733.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. In ICLR, 2017.

Isaac Liao, Rumen R Dangovski, Jakob N Foerster, and Marin Soljačić. Learning to
optimize quasi-newton methods. arXiv preprint arXiv:2210.06171, 2022.

Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram
co-occurrence statistics. In HLT-NAACL, 2003.

Hui Lin and Vincent Ng. Abstractive summarization: A survey of the state of the
art. In AAAI, 2019.

Boyuan Liu, Steven G. Johnson, John D. Joannopoulos, and Ling Lu. Generalized
Gilat-Raubenheimer method for density-of-states calculation in photonic crystals.
Journal of Optics, 20(4):044005, April 2018a. ISSN 2040-8978, 2040-8986. doi:
10.1088/2040-8986/aaae52. URL http://arxiv.org/abs/1711.07993.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. Generating Wikipedia by summarizing long sequences.
In ICLR, 2018b.

Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. In
EMNLP-IJCNLP, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly
optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence
representations. 2018. URL https://openreview.net/forum?id=rJvJXZb0W.

Charlotte Loh, Thomas Christensen, Rumen Dangovski, Samuel Kim, and Marin
Soljacic. Surrogate- and invariance-boosted contrastive learning for data-scarce
applications in science, 2021. URL https://arxiv.org/abs/2110.08406.

230

https://aclanthology.org/2020.emnlp-main.733
https://aclanthology.org/2020.emnlp-main.733
http://arxiv.org/abs/1711.07993
https://openreview.net/forum?id=rJvJXZb0W
https://arxiv.org/abs/2110.08406

Charlotte Loh, Thomas Christensen, Rumen Dangovski, Samuel Kim, and Marin
Soljačić. Surrogate-and invariance-boosted contrastive learning for data-scarce ap-
plications in science. Nature Communications, 13(1):4223, 2022a.

Charlotte Loh, Rumen Dangovski, Shivchander Sudalairaj, Seungwook Han, Ligong
Han, Leonid Karlinsky, Marin Soljacic, and Akash Srivastava. On the importance
of calibration in semi-supervised learning. arXiv preprint arXiv:2210.04783, 2022b.

Charlotte Loh, Seungwook Han, Shivchander Sudalairaj, Rumen Dangovski, Kai Xu,
Florian Wenzel, Marin Soljacic, and Akash Srivastava. Multi-symmetry ensembles:
Improving diversity and generalization via opposing symmetries. arXiv preprint
arXiv:2303.02484, 2023.

Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter optimization of deep
neural networks. arXiv preprint arXiv:1604.07269, 2016.

Alfred J. Lotka. Contribution to the Theory of Periodic Reactions. The Jour-
nal of Physical Chemistry, 14(3):271–274, March 1910. ISSN 0092-7325, 1541-
5740. doi: 10.1021/j150111a004. URL https://pubs.acs.org/doi/abs/10.
1021/j150111a004.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural
networks through 𝐿0 regularization. In ICLR, 2018.

Peter Y Lu, Rumen Dangovski, and Marin Soljačić. Discovering conservation laws
using optimal transport and manifold learning. arXiv preprint arXiv:2208.14995,
2022.

Di Luo, Jiayu Shen, Rumen Dangovski, and Marin Soljačić. Koopman operator learn-
ing for accelerating quantum optimization and machine learning. arXiv preprint
arXiv:2211.01365, 2022.

Rundong Luo, Yifei Wang, and Yisen Wang. Rethinking the effect of data augmen-
tation in adversarial contrastive learning. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=0qmwFNJyxCL.
under review.

Kelvin Luu, Rik Koncel-Kedziorski, Kyle Lo, Isabel Cachola, and Noah A. Smith.
Citation text generation. arXiv preprint arXiv:2002.00317, 2020.

Andrew Ma, Yang Zhang, Thomas Christensen, Hoi Chun Po, Li Jing, Liang Fu,
and Marin Soljacic. Topogivity: A machine-learned chemical rule for discovering
topological materials. Nano Letters, 23(3):772–778, 2023.

D. A. MacLulich. Fluctuations in the Numbers of the Varying Hare (Lepus Amer-
icanus). University of Toronto Press, 1937. ISBN 978-1-4875-8178-7. URL
http://www.jstor.org/stable/10.3138/j.ctvfrxkmj.

231

https://pubs.acs.org/doi/abs/10.1021/j150111a004
https://pubs.acs.org/doi/abs/10.1021/j150111a004
https://openreview.net/forum?id=0qmwFNJyxCL
http://www.jstor.org/stable/10.3138/j.ctvfrxkmj

Angus Maddison. Maddison Database 2010, November 2017. URL
https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/
maddison-database-2010.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. In ICLR, 2017.

Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units. In
ICLR, 2020.

Ofer Malcai, Ofer Biham, Peter Richmond, and Sorin Solomon. Theoretical anal-
ysis and simulations of the generalized Lotka-Volterra model. Physical Review
E, 66(3):031102, September 2002. doi: 10.1103/PhysRevE.66.031102. URL
https://link.aps.org/doi/10.1103/PhysRevE.66.031102. Publisher: Ameri-
can Physical Society.

Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cos-
min Paduraru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern,
et al. Faster sorting algorithms discovered using deep reinforcement learning. Na-
ture, 618(7964):257–263, 2023.

Simone Manti, Mark Kamper Svendsen, Nikolaj R Knøsgaard, Peder M Lyngby, and
Kristian S Thygesen. Exploring and machine learning structural instabilities in 2d
materials. npj Computational Materials, 9(1):33, 2023.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi,
Roberto Zamparelli, et al. A sick cure for the evaluation of compositional distribu-
tional semantic models. In Lrec, pages 216–223. Reykjavik, 2014.

Benjamin T. Martin, Stephan B. Munch, and Andrew M. Hein. Reverse-engineering
ecological theory from data. Proceedings of the Royal Society B: Biological Sciences,
285(1878):20180422, May 2018. ISSN 0962-8452. doi: 10.1098/rspb.2018.0422.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966606/.

Georg Martius and Christoph H. Lampert. Extrapolation and learning equations.
arXiv e-prints, art. arXiv:1610.02995, October 2016.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations.
arXiv preprint arXiv:1610.02995, 2016.

Robert I Mckay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and
Michael O’neill. Grammar-based genetic programming: a survey. Genetic Pro-
gramming and Evolvable Machines, 11(3-4):365–396, 2010.

Qiaozhu Mei and ChengXiang Zhai. Generating impact-based summaries for scientific
literature. In COLING, 2008.

Vinicius V. Melo, Danilo Vasconcellos Vargas, and Wolfgang Banzhaf. Batch Tour-
nament Selection for Genetic Programming. In GECCO, 2019.

232

https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-database-2010
https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-database-2010
https://link.aps.org/doi/10.1103/PhysRevE.66.031102
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966606/

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ik, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. SymPy:
symbolic computing in python. Peer J Computer Science, 3:103, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural
attentive meta-learner. arXiv preprint arXiv:1707.03141, 2017.

Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised
learning using temporal order verification. In European Conference on Computer
Vision, pages 527–544. Springer, 2016.

Tom M Mitchell. The need for biases in learning generalizations. Citeseer, 1980.

Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed Hassan, Pradeep Muthukrishan,
Vahed Qazvinian, and Dragomir Radev. Using citations to generate surveys of
scientific paradigms. In ACL-HLT, 2009.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout spar-
sifies deep neural networks. In ICML, 2017.

David J. Montana and Lawrence Davis. Training feedforward neural networks using
genetic algorithms. In IJCAI. Morgan Kaufmann Publishers Inc., 1989.

T. Nathan Mundhenk, Daniel Ho, and Barry Y. Chen. Improvements to context
based self-supervised learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Preslav Nakov, Ariel Schwartz, and Marti Hearst. Citances: Citation sentences for
semantic analysis of bioscience text. In SIGIR workshop: Search and Discovery in
Bioinformatics, 2004.

Ramesh Nallapati, Bowen Zhou, Ćıcero Nogueira dos Santos, Çaglar Gülçehre, and
Bing Xiang. Abstractive text summarization using sequence-to-sequence RNNs and
beyond. In CoNLL, 2016.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. SummaRuNNer: A recurrent neural
network based sequence model for extractive summarization of documents. In
AAAI, 2017.

Hidetsugu Nanba, Noriko Kando, and Manabu Okumura. Classification of research
papers using citation links and citation types: Towards automatic review article
generation. In ASIS SIG/CR, 2000.

233

Isaac Newton. Philosophiae Naturalis Principia Mathematica. Jossu Societatis Regiae
ac Typis Josephi Streater, 1687.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 427–436, 2015.

Nikola Nikolov, Michael Pfeiffer, and Richard Hahnloser. Data-driven summarization
of scientific articles. In LREC, 2018.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over
a large number of classes. In 2008 Sixth Indian Conference on Computer Vision,
Graphics & Image Processing, pages 722–729. IEEE, 2008.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by
solving jigsaw puzzles. In European conference on computer vision, pages 69–84.
Springer, 2016.

Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and
Jason H. Moore. PMLB: a large benchmark suite for machine learning evaluation
and comparison. BioData Mining, 10(1):36, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

OpenAI. Gpt-4 technical report, 2023.

Patryk Orzechowski, William La Cava, and Jason H. Moore. Where are we now? A
large benchmark study of recent symbolic regression methods. In GECCO, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, and Nathan Ng.
FAIRSEQ: A fast, extensible toolkit for sequence modeling. In NAACL-HLT, 2019.

Seymour A Papert. Mindstorms: Children, computers, and powerful ideas. Basic
books, 2020.

Giorgio Parisi. Toward a mean field theory for spin glasses. Physics Letters A, 73(3):
203–205, 1979.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages
1310–1318. Pmlr, 2013.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for
abstractive summarization. In ICLR, 2018.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

234

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
NAACL-HLT, 2018a.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.
2018b.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N. Mundhenk, Claudio Prata
Santiago, Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression:
Recovering mathematical expressions from data via risk-seeking policy gradients.
In ICLR, 2021.

John Peurifoy, Yichen Shen, Li Jing, Yi Yang, Fidel Cano-Renteria, Brendan G
DeLacy, John D Joannopoulos, Max Tegmark, and Marin Soljačić. Nanophotonic
particle simulation and inverse design using artificial neural networks. Science ad-
vances, 4(6):eaar4206, 2018.

Riccardo Poli, William B Langdon, Nicholas F McPhee, and John R Koza. A field
guide to genetic programming. lulu.com, 2008.

Vahed Qazvinian and Dragomir R. Radev. A supervised approach to extractive sum-
marization of scientific papers. In COLING, 2008.

Yurui Qu, Li Jing, Yichen Shen, Min Qiu, and Marin Soljacic. Migrating knowledge
between physical scenarios based on artificial neural networks. ACS Photonics, 6
(5):1168–1174, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hi-
erarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022.

Guillem Ramı́rez, Rumen Dangovski, Preslav Nakov, and Marin Soljačić. On a novel
application of wasserstein-procrustes for unsupervised cross-lingual learning. arXiv
e-prints, pages arXiv–2007, 2020.

235

Colorado Reed, Sean Metzger, Aravind Srinivas, Trevor Darrell, and Kurt Keutzer.
Evaluating self-supervised pretraining without using labels. In CVPR, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3982–3992, 2019.

Robert A Rescorla and Allan R Wagner. A theory of pavlovian conditioning: Vari-
ations in the effectiveness of reinforcement and nonreinforcement. Classical condi-
tioning II: Current research and theory, 2:64–99, 1972.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Ger-
many, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

Sebastian Ruder. Neural Transfer Learning for Natural Language Processing. PhD
thesis, National University of Ireland, Galway, 2019.

Ileana Rugina, Rumen Dangovski, Li Jing, Preslav Nakov, and Marin Soljačić. Data-
informed global sparseness in attention mechanisms for deep neural networks. arXiv
preprint arXiv:2012.02030, 2020.

Ileana Rugina, Rumen Dangovski, Mark Veillette, Pooya Khorrami, Brian Cheung,
Olga Simek, and Marin Soljačić. Meta-learning and self-supervised pretraining for
real world image translation. arXiv preprint arXiv:2112.11929, 2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. In EMNLP, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211–252, 2015.

B Russell, Antonio Torralba, K Murphy, and W Freeman. Labelme: a database and
web-based tool for image annotation. int. Journal of Computer Vision, 77, 2007.

Horacio Saggion, Ahmed AbuRa’ed, and Francesco Ronzano. Trainable citation-
enhanced summarization of scientific articles. In BIRNDL, 2016.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for ex-
trapolation and control. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings

236

of Machine Learning Research, pages 4442–4450, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018a. PMLR. URL http://proceedings.mlr.press/v80/
sahoo18a.html.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for
extrapolation and control. In International Conference on Machine Learning, pages
4442–4450. PMLR, 2018b.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolu-
tion strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864, 2017.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,
a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, 2009.

Michael Schmidt and Hod Lipson. Symbolic Regression of Implicit Equations, pages
73–85. Springer US, 2010.

Timothy J. Schmit, Paul Griffith, Mathew M. Gunshor, Jaime M. Daniels, Steven J.
Goodman, and William J. Lebair. A closer look at the abi on the goes-r se-
ries. Bulletin of the American Meteorological Society, 98(4):681 – 698, 2017.
doi: 10.1175/BAMS-D-15-00230.1. URL https://journals.ametsoc.org/view/
journals/bams/98/4/bams-d-15-00230.1.xml.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-
rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summa-
rization with pointer-generator networks. In ACL, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. In ACL, 2016.

Jean-Pierre Serre et al. Linear representations of finite groups, volume 42. Springer,
1977.

Eva Sharma, Chen Li, and Lu Wang. BIGPATENT: A large-scale datasetfor abstrac-
tive and coherent summarization. In ACL, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

237

http://proceedings.mlr.press/v80/sahoo18a.html
http://proceedings.mlr.press/v80/sahoo18a.html
https://journals.ametsoc.org/view/journals/bams/98/4/bams-d-15-00230.1.xml
https://journals.ametsoc.org/view/journals/bams/98/4/bams-d-15-00230.1.xml

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. nature, 550(7676):354–359,
2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, et al. A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362(6419):1140–1144, 2018.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won
Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al.
Large language models encode clinical knowledge. arXiv preprint arXiv:2212.13138,
2022.

Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS De-
partment, University of California, Berkeley, 2008.

Robert M. Solow. A Contribution to the Theory of Economic Growth. The Quarterly
Journal of Economics, 70(1):65, February 1956. ISSN 00335533. doi: 10.2307/
1884513. URL https://academic.oup.com/qje/article-lookup/doi/10.2307/
1884513.

Gary Stager. Twenty things to do with a computer, forward 50: future visions of
education inspired by seymour papert and cynthia solomon’s seminal work. (No
Title), 2021.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. Whitening sentence represen-
tations for better semantics and faster retrieval. arXiv preprint arXiv:2103.15316,
2021.

Sandeep Subramanian, Raymond Li, Jonathan Pilault, and Christopher Pal. On ex-
tractive and abstractive neural document summarization with transformer language
models. In EMNLP, 2020.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning. arXiv
preprint arXiv:1712.06567, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
The MIT Press, 2018.

Alex Tamkin, Mike Wu, and Noah Goodman. Viewmaker networks: Learning views
for unsupervised representation learning. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=enoVQWLsfyL.

Simone Teufel and Marc Moens. Summarizing scientific articles: Experiments with
relevance and rhetorical status. Comput. Linguist., 28(4):409–445, December 2002.

238

https://academic.oup.com/qje/article-lookup/doi/10.2307/1884513
https://academic.oup.com/qje/article-lookup/doi/10.2307/1884513
https://openreview.net/forum?id=enoVQWLsfyL

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip
Isola. What makes for good views for contrastive learning. Neural Information
Processing Systems, 2020a. URL https://arxiv.org/abs/2005.10243.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip
Isola. What makes for good views for contrastive learning? arXiv preprint
arXiv:2005.10243, 2020b.

Yuandong Tian. Understanding deep contrastive learning via coordinate-wise opti-
mization. Neural Information Processing Systems, 2022. URL https://arxiv.
org/abs/2201.12680.

Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(11):1958–1970, 2008. doi: 10.
1109/TPAMI.2008.128.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom.
Neural arithmetic logic units. In NIPS. 2018a.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom.
Neural arithmetic logic units. Advances in neural information processing systems,
31, 2018b.

Vahe Tshitoya, John Dagdelen, and Leigh Weston. Unsupervised word embeddings
capture latent knowledge from materials science literature. Nature, 571:95–98, 2019.

George Tucker, Andriy Mnih, Chris J. Maddison, and Jascha Sohl-Dickstein. REBAR:
low-variance, unbiased gradient estimates for discrete latent variable models. In
NIPS, 2017.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method
for symbolic regression. Science Advances, 6(16), 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and
Max Tegmark. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting
graph modularity. 2020.

Raghuram Vadapalli, Bakhtiyar Syed, Nishant Prabhu, Balaji Vasan Srinivasan, and
Vasudeva Varma. When science journalism meets artificial intelligence: An inter-
active demonstration. In EMNLP, 2018.

239

https://arxiv.org/abs/2005.10243
https://arxiv.org/abs/2201.12680
https://arxiv.org/abs/2201.12680

Pauline van den Driessche. Reproduction numbers of infectious disease models.
Infectious Disease Modelling, 2(3):288–303, August 2017. ISSN 24680427. doi:
10.1016/j.idm.2017.06.002. URL https://linkinghub.elsevier.com/retrieve/
pii/S2468042717300209.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS,
2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017b.

Mark Veillette, Siddharth Samsi, and Chris Mattioli. Sevir : A storm event im-
agery dataset for deep learning applications in radar and satellite meteorology. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 22009–22019.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/fa78a16157fed00d7a80515818432169-Paper.pdf.

Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc Le. Towards
domain-agnostic contrastive learning. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 10530–10541. PMLR, 18–24
Jul 2021. URL https://proceedings.mlr.press/v139/verma21a.html.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching
networks for one shot learning. Advances in neural information processing systems,
29, 2016.

Evan Vogelbaum, Rumen Dangovski, Li Jing, and Marin Soljačić. Contextualizing
enhances gradient based meta learning. arXiv preprint arXiv:2007.10143, 2020.

Stefan Wagner, Gabriel Kronberger, Andreas Beham, Michael Kommenda, Andreas
Scheibenpflug, Erik Pitzer, Stefan Vonolfen, Monika Kofler, Stephan Winkler, Vik-
toria Dorfer, and Michael Affenzeller. Advanced Methods and Applications in Com-
putational Intelligence, volume 6, chapter Architecture and Design of the Heuristi-
cLab Optimization Environment, pages 197–261. Springer, 2014.

Qingyun Wang, Qi Zeng, Lifu Huang, Kevin Knight, Heng Ji, and Nazneen Fatema
Rajani. Reviewrobot: Explainable paper review generation based on knowledge
synthesis. In INLG, 2020.

Xiao Wang and Guo-Jun Qi. Contrastive learning with stronger augmentations. arXiv
preprint arXiv:2104.07713, 2021.

Yifei Wang, Zhengyang Geng, Feng Jiang, Chuming Li, Yisen Wang, Jiansheng Yang,
and Zhouchen Lin. Residual relaxation for multi-view representation learning. Ad-
vances in Neural Information Processing Systems, 34, 2021.

240

https://linkinghub.elsevier.com/retrieve/pii/S2468042717300209
https://linkinghub.elsevier.com/retrieve/pii/S2468042717300209
https://proceedings.neurips.cc/paper/2020/file/fa78a16157fed00d7a80515818432169-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fa78a16157fed00d7a80515818432169-Paper.pdf
https://proceedings.mlr.press/v139/verma21a.html

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent
abilities of large language models. arXiv preprint arXiv:2206.07682, 2022.

Maurice Weiler and Gabriele Cesa. General $E(2)$-Equivariant Steerable CNNs.
arXiv:1911.08251 [cs, eess], November 2019. URL http://arxiv.org/abs/1911.
08251. arXiv: 1911.08251.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn., 8(3–4):229–256, May 1992.

Jiyoung Woo and Hsinchun Chen. Epidemic model for information diffusion in web
forums: experiments in marketing exchange and political dialog. SpringerPlus, 5
(1):66, December 2016. ISSN 2193-1801. doi: 10.1186/s40064-016-1675-x. URL
http://www.springerplus.com/content/5/1/66.

Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised feature learning
via non-parametric instance-level discrimination. In CVPR, 2018.

Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. What should not be
contrastive in contrastive learning. arXiv preprint arXiv:2008.05659, 2020.

Eli Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Elec-
tronics. Physical Review Letters, 58(20):2059–2062, May 1987. doi: 10.1103/
PhysRevLett.58.2059. URL https://link.aps.org/doi/10.1103/PhysRevLett.
58.2059.

Shin’ya Yamaguchi, Sekitoshi Kanai, Tetsuya Shioda, and Shoichiro Takeda. Image
enhanced rotation prediction for self-supervised learning. In 2021 IEEE Interna-
tional Conference on Image Processing (ICIP), pages 489–493. IEEE, 2021.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu, and Weiran Xu.
Consert: A contrastive framework for self-supervised sentence representation trans-
fer. arXiv preprint arXiv:2105.11741, 2021.

Ziyi Yang, Yinfei Yang, Daniel Cer, Jax Law, and Eric Darve. Universal sentence
representation learning with conditional masked language model. arXiv preprint
arXiv:2012.14388, 2020.

Michihiro Yasunaga, Jungo Kasai, Rui Zhang, Alexander R. Fabbri, Irene Li, Dan
Friedman, and Dragomir R. Radev. ScisummNet: A large annotated corpus and
content-impact models for scientific paper summarization with citation networks.
In AAAI, 2019.

Weizhe Yuan, Pengfei Liu, and Graham Neubig. Can we automate scientific review-
ing? arXiv preprint arXiv:2102.00176, 2021.

241

http://arxiv.org/abs/1911.08251
http://arxiv.org/abs/1911.08251
http://www.springerplus.com/content/5/1/66
https://link.aps.org/doi/10.1103/PhysRevLett.58.2059
https://link.aps.org/doi/10.1103/PhysRevLett.58.2059

Amir R Zamir, Tilman Wekel, Pulkit Agrawal, Colin Wei, Jitendra Malik, and Silvio
Savarese. Generic 3d representation via pose estimation and matching. In European
Conference on Computer Vision, pages 535–553. Springer, 2016.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Bar-
low twins: Self-supervised learning via redundancy reduction. arXiv preprint
arXiv:2103.03230, 2021.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska
Roesner, and Yejin Choi. Defending against neural fake news. In NeurIPS, 2019.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander
Kolesnikov, and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18123–18133, 2022.

Liheng Zhang. Equivariance and invariance for robust unsupervised and semi-
supervised learning. 2020.

Liheng Zhang, Guo-Jun Qi, Liqiang Wang, and Jiebo Luo. Aet vs. aed: Unsuper-
vised representation learning by auto-encoding transformations rather than data.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2547–2555, 2019.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
European conference on computer vision, pages 649–666. Springer, 2016.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, and Lidong Bing. An un-
supervised sentence embedding method by mutual information maximization. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1601–1610, 2020.

Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and
Wieland Brendel. Contrastive learning inverts the data generating process. In-
ternational Conference on Machine Learning, 2021. URL https://arxiv.org/
abs/2102.08850.

242

https://arxiv.org/abs/2102.08850
https://arxiv.org/abs/2102.08850

	Introduction
	Big Question
	Goals
	Prior Art
	New Question
	Ideas
	Results

	Addressing the Need for Data with the Symmetry Inductive Bias
	Introduction
	Symmetry
	Need for Data

	Equivariant Contrastive Learning
	Introduction
	Related Work
	Method
	Experiments
	Discussion
	Appendix: Summary of Main Text and Layout of Appendix
	Appendix A: Proof of Proposition 1
	Appendix B: Rotation prediction and I-SSL benefit from similar data augmentation.
	Appendix C: CIFAR-10 Experiments
	Appendix E: ImageNet Experiments
	Appenix F: PhC Experiments

	Flowers-102 Experiments
	Appendix G: Relative Orientation Prediction

	Multi-Symmetry Ensembles
	DiffCSE: Difference-Based Contrastive Learning for Sentence Embeddings
	Surrogate- and Invariance-Boosted Contrastive Learning for Data-Scarce Applications in Science
	Contrastive Learning for Stormy Event Imagery
	Storm Event Imagery
	Benchmark Construction
	Methods
	Experimental Details
	Self-supervised Pre-training

	Conclusion

	Addressing the Ability to Transfer with the Language Inductive Bias
	Introduction
	Towards Automating Science Journalism at Scale
	Introduction
	Related Work
	The Science Daily Dataset
	Evaluation
	Experiments
	Discussion
	Conclusion and Future Work

	Conclusion

	Addressing the Lack of Interpretability with the Symbolic Inductive Bias
	Introduction
	OccamNet: A Fast Neural Model for Symbolic Regression at Scale
	Introduction
	Model Architecture
	Training
	Results
	Discussion
	Methods
	PMLB Experiment Results
	Analysis of Fits to PMLB Datasets
	Analysis of PMLB Scaling Tests
	Ablation Studies
	Neural Approaches to Benchmarks
	Small Experiments
	Related Work
	Symbolic Regression Benchmarks
	Code

	AI-Assisted Discovery of Quantitative and Formal Models in Social Science
	Phase Transitions and Representation Geometry in Contrastive Learning
	Conclusion

	Beyond the Limitations of Representation Learning Through the Lens of Science. Promising Directions of Future Work.
	Future Work on the Symmetry Inductive Bias: Multimodality
	Future Work on the Language Inductive Bias: Large Language Models for Science Education and Research.
	Future Work on the Symbolic Inductive Bias: OccamNet as Representation in Novel Domains
	Final Remarks

