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Abstract

Shape changes are some of the most visually striking features of biological devel-
opment at all scales of living matter. With recent advances in high-resolution mi-
croscopy, it becomes possible to track the morphology and motion of systems ranging
from organelles to every single cell within specific tissues or even whole organisms.
This enables quantitative physical modeling to understand the phenomena driving
and controlling the emergence of spatial patterns and organization in development.

In the first half of this thesis, we consider two problems arising in Drosophila
melanogaster oogenesis. In a small organ known as the egg chamber, we apply ideas
from continuum and statistical mechanics to explain the nonlinear dynamics and
regulation of nuclear envelope shape and of a cytoplasmic transport event known as
‘nurse cell dumping’. In particular, these results show how biological and physical
mechanisms can cooperate to enable or regulate developmental processes.

In the second half of this thesis, we consider zebrafish embryogenesis, during which
thousands of cells collectively migrate to lay out the organism’s body plan. Here, a
direct physical modeling approach is hampered by the exploding complexity of a
three-dimensional many-body dynamic which obfuscates the identification of relevant
degrees of freedom. In this context, we investigate ways to translate cell trajectories
into lower-dimensional representations and to capture the essential ordering principles
of collective cell organization. By leveraging model inference techniques, the resulting
representation of the collective cell dynamics enables a compact characterization of
developmental symmetry breaking.
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Title: Professor of Physics
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Time proxy values for each nucleus are included above the recon-
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farther away from the oocyte; Fig. 3-2). Hashed area indicates
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∑︀

𝑙≥3(2𝑙 + 1)𝑃𝑙 for the same nuclei as in E increases

exponentially with time proxy (see also Fig. 3-2). G, Snapshots

of the same nucleus at four different time points illustrate that
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proxy, as in Fig. 3-1E. B,E,H Roughness as in Fig. 3-1F. C,F,I

Binned average of “old” nuclei as in Fig. 3-5C reveals the same

scaling behavior. “Young” nuclei have time proxy between 80 −
140; “Old” nuclei have time proxy between 160 − 220. Intervals

in panels C,F,I represent extremal values. 𝑁 = 115 nuclei for

𝑑 = 2 (29 young and 72 old), from 41 egg chambers, 𝑁 = 86

nuclei for 𝑑 = 3 (17 young and 59 old), from 39 egg chambers,

𝑁 = 23 nuclei for 𝑑 = 4 (4 young and 16 old), from 23 egg chambers. 71

3-3 3D high-resolution imaging reveals the fluctuating nature of NE

wrinkles. Power spectrum 𝑃𝑙 of different frames of a time series of

nuclei 3d snapshots do not overlap, indicating that NE morphol-
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ogy is fluctuating in time. Each color corresponds to a different

nucleus, with identically-colored points corresponding to different

frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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structions. Representative examples of reconstructed surfaces

(bottom row) from segmented point clouds (top row) obtained

from 3D imaging. Numbers indicate time proxy, while color in-
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those in Fig. 3-1C,D; other nuclei appear in order of ascending

time proxy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3-5 Fluctuating elastic shell theory predicts a scaling law with ex-

ponent ≈ 3 for the wrinkle power spectrum, in agreement with

experiments. A, Equilibrium simulation snapshots of nuclei at

temperature 𝑇eff = 10𝑇𝑒𝑞, undeformed radius 𝑅 = 25 𝜇m and

𝑅𝑐/𝑅 = 20, at fixed FvK number 𝛾 = 3 × 104 for varying elas-

tic moduli controlled by 𝑘𝑇eff/𝜅. Color indicates the normalized

deviation of the surface from the mean shell radius. B, Time-

averaged spectra of simulated NEs of undeformed radius 𝑅 = 25

𝜇m, 𝑅𝑐/𝑅 = 20, 𝑇eff = 10𝑇eq for different moduli 𝜅, 𝑌 at fixed

𝛾 = 3 × 104, showing the transition from weak nonlinearity

to strong nonlinearity as bending rigidity decreases. Color bar

matches the dots from A. C, Binned averages of spectra from

nuclei in nurse cells directly connected to the oocyte reveal that

shape fluctuations follow a scaling law with an exponent between

−3.2 and −8/3 that is obeyed throughout development. ‘Young’

nuclei have a time proxy between 80−140, 𝑁 = 29 nuclei, from 12

egg chambers; ‘Old’ nuclei have a time proxy between 160− 220,

𝑁 = 40 nuclei, from 22 egg chambers. Bars show extremal val-

ues. Hashed area indicates approximate noise threshold for young
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nuclei. (See Fig. 3-2 for comparison between nuclei at different

positions in the egg chamber) D, Fixed egg chambers expressing

Nup107::RFP and stained for Lamin C, showing a decrease in

Lamin C intensity in nurse cell nuclei as egg chambers increase

in age. In contrast, Nup107::RFP intensity stays relatively con-

stant. The same trend is observed in live imaging of ex vivo egg

chambers expressing LamC::GFP and Nup107::RFP [1]. Wrin-

kling of nuclei in younger egg chambers (all but the rightmost) is

a result of fixation and is not observed in live imaging until later

stages. Arrows indicate increasing age; egg chamber boundaries

are shown in dashed outlines. Scale bar: 50 𝜇m. E, Normalized

Lamin C fluorescence intensity decreases by approximately 5-fold

over time. Normalization details are specified in [1]. 𝑁 = 337

nuclei from 23 egg chambers. . . . . . . . . . . . . . . . . . . . . . . . 76

3-6 Perturbation experiments confirm robustness of observed scaling

laws and reveal reversal mechanisms for NE wrinkling. A, MIP

of one egg chamber before (top) and after (bottom) inhibition

of microtubule polymerization by colchicine, showing that mi-

crotubule disruption can reverse wrinkling. B, MIPs before and

after hypertonic shock using an external culture medium of 1.5x

osmolarity, showing an increase in wrinkling. C, MIPs before and

after hypotonic shock using an external culture medium of 0.5x

osmolarity, showing a decrease in wrinkling. Egg chambers in A,

B, and C have time proxies of 171, 174, and 171, respectively.

D, The power spectrum after microtubule inhibition by colchicine

still follows a power law with roughly the same exponent, with

a reduction of roughness by a factor of 2 (inset). 𝑁 = 49 pre-

colchicine and post-colchicine nuclei, from 6 egg chambers. For

box plots, plus signs denote mean, middle line is the median, top

and bottom edges of the box are the upper and lower quartiles,
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and whiskers span from 9% to 91% of the data range. E, In the

presence of increased inwards (hypertonic) or outwards (hypo-

tonic) pressure, the overall shape of the power spectrum remains

approximately conserved. Hypotonic shock treatment reduces

the wrinkle amplitudes, providing a reversal mechanism for NE

wrinkling. Spectra were computed using 49 control, 15 hyper-

tonic, and 30 hypotonic nuclei in the time proxy range 165−185,

from 6, 3, and 6 egg chambers, respectively, using nuclei from

all nurse cells rather than only those directly connected to the

oocyte. Scale bars: 20 𝜇m. . . . . . . . . . . . . . . . . . . . . . . . 85

4-1 Nurse cell (NC) dumping occurs in two phases. A. 3D-rendered

confocal image of an egg chamber showing 15 anterior (A) NCs

(gray: Nuclear pore complex, NPC ) and one posterior (P) oocyte

(black: NPC ) connected through ring canals (red: Pavarotti,

Pav). B. Schematic illustration of NC dumping: NCs shrink as

their cytoplasm flows into the oocyte through ring canals. C.

3D-rendered time-lapse confocal images of an egg chamber ex-

pressing Clip170::GFP undergoing NC dumping. Blowups show

a nurse cell first shrinking uniformly (cyan arrowheads; Phase I)

before undergoing spatially nonuniform shape deformations and

bleb-like protrusions (orange arrowheads; Phase II) that imply

increased actomyosin contractility. Scale bar in A and C: 40 𝜇m.

D. Quantification of changes in cell size (gray) and shape (i.e.

fractional deviation from a circle; Fig. S2, C and D) prior to

NC dumping (Pre-), and during Phases I and II. Onset of non-

uniform deformations (dashed cyan line) occurs ∼40 minutes into

NC dumping (𝑁 = 4). E. Coefficient of variation of cortical Sqh

intensity during NC dumping, showing a transition (dashed red

line) from uniform (𝑁 = 412; Phase I) to non-uniform (𝑁 = 122;
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Phase II) distribution at ∼40 minutes, concomitant with the on-

set of dynamic cell shape deformations. . . . . . . . . . . . . . . . . . 91

4-2 NC dumping dynamics are explained by a pressure-driven networked-

flow model. A. 3D-reconstruction of a germline cyst showing the

NCs’ arrangement into four layers relative to the oocyte (Oo).

During NC dumping, cytoplasm flows in the direction of increas-

ing cell size, from anterior (A) to posterior (P). B. Kymograph

of Sqh intensity in WT along the dashed line shown in A, illus-

trating hierarchical onset of NC dumping across the 4 NC layers

(L1-L4); arrow indicates direction of flow. Scale bars: 30 min,

50 𝜇m; black indicates highest intensity. C. Plot of normalized

NC volumes (𝑉/𝑉0) during NC dumping for each layer from live

imaging; 𝑡 = 0 is onset of NC dumping; solid line indicates av-

erage; envelopes show standard error (𝑁 = 15, 12, 9, 5 cells for

layers 1, 2, 3, and 4, respectively). D. Plots of Young-Laplace’s

law and the corrected pressure law for elastic balloons. Pres-

sure is at its maximum, 𝑝max, at radius 𝑅𝑝; 𝑅0 is the uninflated

balloon radius; 𝑟12 is the radius of the pipe connecting balloons

1 and 2. Schematic illustrates the two-balloon problem, where

the smaller balloon (cyan) empties into the larger balloon (gray).

E. Network representation of the germline cyst in A showing

cells’ relative sizes and connections; cells are shown as nodes and

ring canals as edges. F. Plot of normalized NC volumes from

simulations of fluid flow in the germline cyst using the best fit

parameter set (solid line); envelopes show standard error con-

structed from the ten nearest sets in parameter space (𝑁 = 11).

Time is scaled by the physical constants of the model. G. sqh1

germline mutant showing NCs in the first (blue arrowhead) and

second (red arrowhead) layers emptying into the oocyte. H. Ky-

mograph of intensity of CellMask (a membrane marker) in sqh1
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mutants, showing transport of cytoplasm from the first two lay-

ers. Scale bars: 30 min; 70 𝜇m. I. Plot as in C of normalized NC

volumes over time in sqh1 germline clones; (𝑁 = 14, 17, 7, 6 cells

for layers 1, 2, 3, and 4, respectively); inset shows WT cell volume

trajectories from C (solid lines), re-scaled in time and overlaid

with sqh1 mutant data (dashed lines), demonstrating slower yet

hierarchical intercellular transport. . . . . . . . . . . . . . . . . . . . 104

4-3 Grid search through parameter space and effects of input param-

eters of the model. A. Two-dimensional slices of the simulation

error as defined in Eq. (4.15) measured on the 5-dimensional grid

space spanned by the sampled parameter ranges (𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝜌).

For a given pair of parameters, the remaining parameters are

at their best-fit values. Color bar refers to simulation error

(𝜎 = 0.1). B. Normalized NC volume (𝑉/𝑉𝑜) from simulations

for varying values of 𝑛, the exponent in the correction term to

the Young-Laplace law, showing that intercellular transport hi-

erarchy and qualitative behaviors are maintained for the values

of 𝑛 tested. C. Results from simulations averaged over 5,000

trials, where surface tension of each cell is sampled from a nor-

mal distribution; envelope reflects half a standard deviation of

the fluctuations. As seen in the envelope for L4, in several of

these simulations the L4 cell increases in size due to backflow

from its downstream L3 cell - a feature of NC dumping that

has been reported in previous studies [2]. D. Results from sim-

ulations showing layer-wise averaged cell volumes over time, in

which all NCs and ring canal radii are equal for all cells, showing

qualitative differences in the intercellular pattern and time scale

of transport. E. Results from simulations for three values of 𝜌

and all ring canal sizes at their best-fit values. Smaller values

of 𝜌 show transient increases in layer size indicative of backflow,
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while larger values result in less backflow and smoother curves. . . . . 105

4-4 Complete NC dumping requires Rho-regulated wave-like acto-

myosin dynamics. A. Heat map of an egg chamber expressing

sqh::mCh; blowups show NCs with dynamic actomyosin corti-

cal waves as colliding fronts (top) and rotating bands (bottom)

in adjacent NCs, with respective kymographs of Sqh intensity

around NCs’ perimeter (B, C). D. Heat map of an egg chamber

expressing sqh::mCh and Clip170::GFP (cyan); blowups show a

NC with an actomyosin ring (arrowhead) traversing the cell’s

opposing poles and deforming cell shape, with E showing a ky-

mograph of Sqh intensity. F. Box-and-whisker plot of time at

which nonuniform and persistent cell deformations are first ob-

served following onset of NC dumping in each layer (center line

= median; edges = upper and lower quartiles; whiskers extend to

extrema; 𝑁 = 20, 22, 16, 5 cells for layers 1, 2, 3, and 4). G. The

Rho/ROCK signaling pathway regulates phosphorylation of the

myosin regulatory light chain (MRLC) and actomyosin contractil-

ity. H. Comparison between wild-type (WT; top) and dumpless,

RhoGAP15B-depleted (bottom) egg chambers. Scale bar: 50 𝜇m.

I. Plot of normalized NC volumes during NC dumping for each

layer from live imaging of RhoGAP15B knockdowns; 𝑡 = 0 is

onset of NC dumping; solid line indicates average and envelopes

show standard error (𝑁 = 7, 6, 3, 2 cells for layers 1, 2, 3, and

4, respectively). The trajectory for the L4 cells stops at 𝑡 ∼ 50

minutes due to membrane breakdown. J. RhoGAP15B-depleted

germline expressing sqh::mCh and Clip170::GFP ; blowup shows

smaller short-lived cell protrusions as opposed to the cell-scale

dynamic deformations observed in WT. K. Kymograph of Sqh

intensity along the perimeter of a cell in a RhoGAP15B knock-

down at a comparable time to B, C, and E, illustrating disrupted
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wave dynamics; black indicates highest intensity. The time scale

bar is 5 minutes, while the horizontal axis represents fractional

distance along cell perimeter. Scale bar in A, D, and J: 40 𝜇m;

scale bar in blowups: 20 𝜇m; kymograph scale bars in B, C, and

E: 5 min; 10 𝜇m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4-5 Actomyosin contractions promote intracellular flow in shrunken

NCs. A. Time-lapse images from reflection-mode microscopy

showing cytoplasm (cyan) flowing around a NC nucleus (H2A,

white) as persistent actomyosin waves deform cell shape. B. Il-

lustration of cytoplasmic flow observed in A, where arrows point

in the direction of flow. C. Erratic and transient intracellular cy-

toplasmic flow in a germline RhoGAP15B knockdown, illustrated

in D, highlighting the lack of persistent revolutionary motions

observed in WT. Scale bars in A and C: 20 𝜇m. E. Histogram

of the duration of observed intracellular cytoplasmic flow events

in WT and RhoGAP15B knockdowns (WT: 𝑁 = 28 events;

RhoGAP15B-RNAi: 𝑁 = 82). F. Bar plot of the proportion

of time anterior-to-posterior (A-P) versus posterior-to-anterior

(P-A) flows were observed through ring canals in WT and in

RhoGAP15B-RNAi egg chambers (WT: 6 events of intercellular

flow spanning 30 minutes total; RhoGAP15B knockdowns: 29

events spanning 54 minutes). . . . . . . . . . . . . . . . . . . . . . . 112

4-6 Physical and biochemical mechanisms cooperate to enable NC

dumping. Schematic of the proposed model for the contribu-

tion of pressure-driven flow with baseline cortical tension and

actomyosin-dependent flows to directional and complete NC dump-

ing. Arrows show direction of intercellular flow; dashed arrow in-

dicates interrupted flow; arrowheads point to actomyosin-mediated

cell deformations that permit continued intercellular flow in shrunken

NCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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5-1 From single-cell tracking data to sparse mode amplitude represen-

tations A: Microscopic imaging data of early zebrafish develop-

ment (adapted from [3]) shows cell migration from an initially ho-

mogeneous pole of cells (left) towards an elongated structure that

indicates the head-tail axis of the fully developed organism. Scale

bar, 100𝜇𝑚. B: Experimental single-cell tracking data from [4]

(blue dots) during similar developmental time points (±20min)

as in A. 𝑡 = 0min for the indicated time points in B corresponds

to a developmental time of 4 hours post fertilization. The 𝑧-

axis points from the ventral pole (VP) to the animal pole (AP).

C: Coarse-grained relative cell density 𝜌(r, 𝑡) (color) and asso-

ciated coarse-grained flux J(r, 𝑡) (streamlines) determined from

single cell positions and velocities from data in B via Eqs. (5.2).

Thickness of streamlines is proportional to the logarithm of the

spatial average of |J|. D: Dynamic harmonic mode representa-

tion of the relative density 𝜌(r, 𝑡) (Eq. (5.4), left panel) and of the

flux J(r, 𝑡) (Eq. (5.5), middle and right panel) for fields shown

in C. The modes 𝑗
(1)
𝑙𝑚 correspond to compressible, divergent cell

motion, the modes 𝑗
(2)
𝑙𝑚 describe incompressible, rotational cell

motion. Mode amplitudes become negligible for 𝑙 ≥ 5 (Fig. 5-2).

For all panels, horizontal black lines delineate blocks of constant

harmonic mode number 𝑙 and black triangles denote the end of

epiboly phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5-2 Convergence of spectral representation. Rotationally invariant

spatial power spectra as a function of the mode 𝑙 index were com-

puted for the density field 𝜌 as 𝑃𝜌,𝑙 =
∑︀𝑙

𝑚=−𝑙 𝜌
2
𝑙𝑚 and for modes

contributing to cell fluxes (𝑗(1) and 𝑗(2)) as 𝑃𝑗𝑘,𝑙 =
∑︀𝑙

𝑚=−𝑙[𝑗
(𝑘)
𝑙𝑚 ]2

for 𝑘 = 1, 2. Spectra were computed at representative time-

points 𝑡 = 40 , 240 , 400 , 830min and normalized by their maxi-

mum value. The observed decay indicates that a spectral repre-
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sentations of the coarse-grained fields is meaningful, and shows

that the mode cut-off chosen for the learning (𝑙 ≤ 4) amounts to

discarding approximately 1% of spectral power in each field. . . . . . 119

5-3 Sequentially adding vector spherical harmonics Ψ𝑙𝑚 and Φ𝑙𝑚 –

equivalent to increasing 𝑙max in Eq. (5.5) – resolves increasing

levels of details present in experimental flux fields ("Data"). Main

features of the data are captured already by a relatively small

number of modes (𝑙max = 4 used throughout this work). . . . . . . . . 125

5-4 Normalized spectral entropy as a function of the coarse-graining

kernel width (top) computed for density 𝜌 and flux field J using

Eq. (5.11). To evaluate the spectral entropy for the vector-valued

flux, we define 𝑆(J) := 𝑆(𝐽𝑥) + 𝑆(𝐽𝑦) + 𝑆(𝐽𝑧) ("Flux sum").

The coarse-graining width – the half-width at half-maximum

(HWHM) of the coarse-graining kernels Eqs. (B.8) with weight

functions Eqs. (B.12) – is varied by varying the kernel index 𝑘,

where HWHM = arccos(2−1/𝑘) (see Appendix B–B-2). The fields

𝜌 and |J| are shown in the two bottom rows for different values of

𝑘. i. 𝑘 = 5000 (blue, data used to compute the reference spectral

entropies 𝑆0(𝜌) and 𝑆0(J)) ii. 𝑘 = 60 (brown) iii. 𝑘 = 6 (yellow,

and used for the main analysis) iv. 𝑘 = 2 (purple). . . . . . . . . . . 128

5-5 Mode signatures of developmental symmetry breaking and topo-

logical defects in cellular flux A: Two-dimensional Mollweide pro-

jection of the compressed coarse-grained density field 𝜌(r, 𝑡) (col-

ormap) and of the coarse-grained cell flux J(r, 𝑡) (streamlines) at

different time points of zebrafish gastrulation. White circles de-

pict topological defects of charge +1 in the flux vector field, red

circles depict defects with charge −1. The total defect charge is

2 at all times. Defects are seen to ‘lead’ the large-scale motion

of cells and later localize mostly along the curve defined by the

forming spine. Animal pole (AP) and ventral pole (VP) are lo-
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cated at top and bottom, respectively. B: Density fluctuations as

a function of developmental time [see Eq. (5.13)], broken down in

contributions from different harmonic modes 𝑙. The underlying

symmetry breaking is highlighted prominently by this represen-

tation: During the first 75% of epiboly (0–280min) cells migrate

away from, but are still mostly located near the animal pole, pre-

senting a density pattern with polar symmetry (𝑙 = 1). During

the following convergent extension phase cells converge towards a

confined elongated region that is ‘wrapped’ around the yolk, cor-

responding to a density pattern with nematic symmetry (𝑙 = 2).

Black triangles indicate transition from epiboly to convergent ex-

tension. C: Comparison of surface averaged divergence∇𝒮 ·J and

curl ∇𝒮×J of the cellular flux computed via Eqs. (5.14) (top). A

relative curl amplitude 𝑆𝑐𝑢𝑟𝑙 computed from these quantities via

Eq. (5.15) correlates with the appearance of an increased number

of topological defects in the cell flux (bottom), suggesting that in-

compressible, rotational cell flux is associated with the formation

of defects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5-6 Analysis of the harmonic mode representation for a second exper-

imental dataset. A–C: Analysis presented in Fig. 5-5A–C of the

main sample performed on a second cell-tracking dataset (‘Sam-

ple 2’). In C, solid lines indicate results for Sample 2, dashed

lines correspond to the results for the main dataset (‘Sample 1’).

D: Contributions to density fluctuations from both samples, bro-

ken down into contributions from different modes with harmonic

mode number 𝑙 and normalized at each time point by the total

fluctuation intensity. Black triangles indicate the completion of

epiboly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5-7 Learning active Brownian particle (ABP) dynamics on a sphere.

A: ABPs move on a unit sphere (radius 𝑅0 = 1) with angular
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speed 𝑣0 = 1 along a tangential unit vector u(𝑡) that is subject

to stochastic in-plane fluctuations (see Appendix C for further

details). Example single-particle trajectories are shown in the

high-noise (orange, 𝐷𝑟 = 10 in units of 𝑅0𝑣0) and in the low-noise

regime (blue, 𝐷𝑟 = 0.5). Time 𝑡 is measured in units of 𝑅0/𝑣0 in

all panels. B: Position correlation function ⟨x(𝑡) ·x(0)⟩ averaged

over 3× 104 independent ABP trajectories show distinct oscilla-

tions of period ≈ 2𝜋 in the low-noise regime, as ABPs orbit the

spherical surface more persistently. Standard error of the mean

is smaller than symbol size. C: Analytically predicted (left) and

inferred (right) dynamical matrices 𝑀 [see Eq. (5.16)] describing

the mean-field dynamics of a large collection of non-interacting

ABPs (see Eqs. (5.17) and Appendix C) show good quantita-

tive agreement. D: Mollweide projections of coarse-grained ABP

simulations with 𝑣0 = 1 and 𝐷𝑟 = 0.5 using cell positions from

the first time point in the zebrafish data (Fig. 5-1) as the initial

condition: At each position 60 particles with random orientation

were generated and their ABP dynamics simulated, amounting

to approximately 1.2 × 105 particles in total. The density fields

homogenize over time, where the maximum density at 𝑡 = 12.3

has decayed to about 5% of the maximum density at 𝑡 = 1.02.

Blue lines and arrows indicate streamlines of the cell flux J(r, 𝑡).

E: Simulation of the learned linear model, Eq. (5.16) with 𝑀

shown in 5-7C (right), for the same initial condition as in D.

Marked time points indicate intervals of learning, validation and

prediction phases of the model inference. . . . . . . . . . . . . . . . . 135

5-8 Model learning for experimental data of collective cell motion

during early zebrafish development. A: Visualization of the con-

stant mode coupling matrix 𝑀 that was learned from exper-

imental data and describes the dynamics of the mode vector
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a = [𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]𝑇 via Eq. (5.16). Dimensionless fields

are defined by �̂�𝑙𝑚 = 𝑅2
𝑠𝜌𝑙𝑚 and �̂�

(𝑖)

𝑙𝑚 = 𝑅𝑠∆𝑡𝑗
(𝑖)
𝑙𝑚 (𝑖 = 1, 2) with

𝑅𝑠 = 300𝜇m and ∆𝑡 = 2min. B: Scaling the learned matrix

𝑀 by the Mean Absolute Deviation (MAD) of the modes reveals

structures reminiscent of the mode coupling matrix learned for

ABPs (Fig. 5-7C). C: The learned model recovers mass conserva-

tion in mode space [Eq. (5.6)]. D: Comparison of theoretical and

inferred real-space kernels (see Eq. (5.18)) for the ABP dynam-

ics and for the experimental data of collective cell motion. The

trace of the non-dimensional kernel �̂�
𝐽
(r, r′) (the only non-zero

eigenvalue) indicates a localized flux-flux coupling with a sim-

ilar profile among both systems. The oscillating magnitude of

the non-dimensionalized density-flux kernel |m̂𝜌(r, r′)| (insets) in

the ABP system indicates a gradient-like coupling and is conse-

quence of the persistent ABP motion. In the experimental data,

a first peak around 𝜔 = 𝜋/4 is also visible, but less pronounced.

All kernel properties were computed by averaging over pairs of

positions r, r′ that are separated by the same angular distance

𝜔 = arccos(r · r′) ∈ [0, 𝜋]. Solid lines indicate mean, shaded ar-

eas indicate standard deviation. E: Comparison of experimental

mode dynamics (circles) with numerical solution (solid line) of

the minimal model Eq. (5.16) for learned matrix 𝑀 visualized

in Fig. 5-8A. For clarity, the comparison is shown for the two

dominant modes of each set of harmonic modes 𝜌𝑙𝑚, 𝑗
(1)
𝑙𝑚 and 𝑗

(2)
𝑙𝑚 .

F, G: Mollweide projections of the experimental data (F) and

of the numerical solution of the learned model (F) show very

good agreement. Blue lines and arrows illustrate streamlines de-

fined by the cell flux J(r, 𝑡), circles depict defects with topological

charge +1 (white) and −1 (red). . . . . . . . . . . . . . . . . . . . . . 141
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A-1 Scalar (𝑌𝑙𝑚) and vector Ψ𝑙𝑚, Φ𝑙𝑚 real spherical harmonics for

𝑙 = 0, 1, 2 and 𝑚 ≥ 0. Functions with 𝑚 < 0 are found by

rotating the pattern around the vertical axis by 𝜋/2. . . . . . . . . . 153

B-1 Illustration of the action of the coarse-graining tensor kernel

𝒦(r, r′)𝑖𝑗′ [Eq. (B.5)]. Left: 𝒦𝑖𝑗′ acts in the two tangent space

at points r and r′ that are separated by an angular distance

𝜔 = acos(r · r′). Each tangent plane has corresponding basis vec-

tors e𝑖, e𝑖′ for 𝑖 = 1, 2. Right: The tensor kernel 𝒦𝑖𝑗′ ∼ e𝑖 · e𝑗′
projects vectors u in the tangent space of r′ and generates a vec-

tor v tangent at r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B-2 Family of kernel functions 𝑓𝑘(𝜔) and 𝑔𝑘(𝜔) given in Eqs. (B.12).

These functions represent weights of the coarse-graining kernels

defined in Eqs. (B.8) and are defined such that the kernels satisfy

the consistency relation Eq. (B.5). 𝜔 = acos(r · r′) denotes an-

gular distances between r and r′. Coarse-graining of a conserved

number of particles on a sphere to determine a density field 𝜌

(Eq. (2a), main text) requires a different weighting – 𝑓𝑘(𝜔) – than

the coarse-graining of an associated flux J (Eq. (2b), main text),

which requires a weighting 𝑔𝑘(𝜔) instead to ensure that coarse-

grained fields obey mass conservation Eq. (B.4). A characteristic

coarse-graining length scale associated with these kernels is the

half-width at half-maximum (HWHM), which is related to 𝑘 by

HWHM= arccos(2−1/𝑘). . . . . . . . . . . . . . . . . . . . . . . . . . 166

D-1 Demonstration of the defect tracking on two example tangential

vector fields on a spherical surface. A: Vector field defined by

J = Φ(2,2). B: Vector field defined by J = Ψ(2,−1) + 0.1Φ(2,2).

Black lines depict the streamlines defined by these vector fields.

White circles depict topological defects of charge +1, red circles

depict defects with charge −1. . . . . . . . . . . . . . . . . . . . . . . 177
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Chapter 1

Introduction

Physicists have long speculated on the nature of the mechanisms underlying the

formidably complex and robust organization of biological systems. Indeed, as recog-

nized perhaps most famously early on by D’Arcy Thompson in his twentieth-century

treatise On growth and form and Erwin Schrödinger’s What is Life? lectures, Biology

happens in space and time, and as such the structures of living matter are constrained

by physical laws as much as ordinary non-living matter.

That biological matter must follow physical constraints leads to two possible re-

search directions. A first course of action would ask how could Physics help Biology.

While over the course of the twentieth century, molecular biology has been able to

uncover the molecular and genetic bases of biological function, it is still an open sci-

entific question to understand the mapping between genes and physical organization

of biological systems, whether organelles, organs or organisms [5]. Examples of the

importance of physical organization abound at all scales of biology: Within cells, the

spatial organization of organelles is essential to cell division [6], contributes to cellu-

lar sensing [7, 8], and is instrumental for carbon processing in plants [9]. Collective

motion of cells is essential for embryo development, wound healing, or tumour pro-

gression [10, 11], while mechanical properties of tissues are essential to the immune

response [12] or to suppress tumour growth [13, 14].

A second course of action involves finding new Physics in Biology. Indeed, biolog-

ical systems are a natural playground for exotic physical phenomena emerging from
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the complexity and scales of the systems involved. At sub-cellular scales, thermal and

non-thermal fluctuations are significant with respect to the energy scales involved in

the chemical and mechanical processes at play in cells’ interior [15, 16]; at larger

scales, the ubiquity of low symmetry order or disorder lead to the relevance of ex-

otic order parameters fields that are rarely on the forefront in traditional condensed

matter physics [17, 18]; at all scales, phenomena are out of equilibrium and multiple

species of discrete objects and fields may interact and couple together through com-

plex, nonlinear or non-reciprocal interactions [19, 20]. The phenomena arising from

the resulting dynamics have formed the basis for the field of active matter, a vibrant

subject of study in the physics community [21, 22, 23, 24].

Whether one seeks to achieve a quantitative understanding of the ordering princi-

ples of Biology or understand the novel physical phenomena that underlie them, it is

essential to have means to probe, perturb, and measure biological systems. Indeed,

without access to such experimental capacities, D’Arcy Thompson had to admit of his

On growth and form that "This book of mine has little need of preface, for indeed it

is ‘all preface’ from beginning to end" [25]. To the excitement of the biophysical com-

munity, recent advances on the imaging and genetic engineering fronts has enabled

direct observations of the dynamics and morphology of systems at scales ranging from

ribosomes [26] to every cell in entire fish larvae [3, 27]. With such data, it becomes

possible to match theory to experiment, but to do so it also becomes necessary to

develop methods to interpret data using the methods of physics.

This thesis considers the use of physical methods to interpret the emergence and

dynamics of structure during development. Biological development covers the pro-

cesses through which multicellular organisms arise, including perhaps the most visu-

ally striking feature of biology: morphogenesis - the emergence of shape and form.

That shape and form is connected to function is a well-grounded idea in everyday

life, with architecture and design embracing the motto that ‘form follows function’

[28]. In development, however, the practical consequences of this statement are far

from obvious. How does form enable function, and how does form come to be, turning

genetic information into tangible structures or flowing materials? To answer these
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questions in experimentally-relevant settings, we will need to quantify geometry and

connect the shape of biological objects to their function, exemplified by their mechan-

ical properties and dynamical transport processes. Conversely, we will also need to

understand how transport processes shape the geometry of the developing embryo.

In the first half of this thesis, we consider two problems arising in Drosophila

melanogaster oogenesis, the events leading to the formation of an unfertilized egg

cell known as an oocyte. From insects to mice, oocytes develop alongside nurse-like

sister cells within cell clusters known as ‘germline cysts’, which we study in two joint

theoretical and experimental projects with Adam C. Martin’s lab.

In chapters 2 and 3, we study geometric nonlinearities in fluctuating elastic mem-

branes, and find that they are essential to describe the surface statistics of cell nuclei.

Together with Jonathan Jackson, we build an image processing and spectral shape

analysis pipeline to analyze three-dimensional high-resolution data from several hun-

dreds of cell nuclei. This reveals a robust power-law scaling of the radial fluctuation

power spectrum as a function of length scale. To explain this power law, we con-

sider a nonlinear surface elasticity model of fluctuating shells, and theoretically show

that the experimentally observed exponent is consistent with a regime in which the

shell response is dominated by nonlinear contributions [29]. Using pseudo-spectral

numerical simulations, we solve the corresponding Langevin equation with hydro-

dynamic damping, which quantitatively reproduces experimental observations. A

scaling argument predicts that osmotic pressure or activity influence the amplitude

but only weakly affects the scaling behavior of the wrinkles. This is confirmed by

perturbation experiments using osmotic shocks or chemical inhibition of microtubule

polymerisation. Together with the theoretical results, this suggests that non-linear

surface elasticity effectively sets the response of nuclear envelopes independently of

the precise driving forces, providing an example of robust spatial organization through

physical constraints. Chapter 2 details the construction and phenomenology of the

mechanical model, while chapter 3 is dedicated to its application to nuclear envelope

wrinkling. Parts of both chapters have been previously published as a preprint ‘Dy-

namics, scaling behavior and control of nuclear envelope wrinkling’, J. A. Jackson,
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N. Romeo, A. Mietke, K. J. Burns, J. F. Totz, A. C. Martin, J. Dunkel and J. Imran

Alsous. (2023).

Chapter 4, with experiments performed by Jasmin Imran Alsous and Jonathan

Jackson, investigates the process known as ‘nurse cell dumping’ happening in the fruit

fly germline cyst: prior to fertilization, the nurse cells’ (NC) cytoplasm is transported

into the oocyte, which grows as its sister cells regress and die [30]. The cells are

connected in a reproducible way by ∼10 𝜇m wide channels known as ring canals,

allowing for cytoplasm to be exchanged between cells. We discover that, during

dumping, most cytoplasm is transported into the oocyte independently of cell surface

contractility mediated by the motor protein myosin, before a second phase of transport

requires contractility. To explain this observation, we construct a minimal hydraulic

network-flow model in which fluid exchange between cells (represented by network

nodes) is driven by pressure differences between them. Each cell’s pressure is set

by a Young–Laplace law involving the effective cell surface tension and inverse cell

radius. Long thought to trigger transport through ‘squeezing’, we fiind that changes

in actomyosin contractility are required only once NC volume has become comparable

to nuclear volume, in the form of surface contractile waves that drive NC dumping to

completion. By showing how development can rely on the physical energy landscape

to robustly drive dumping, this work provides an example of biological and physical

mechanisms cooperating to enable a critical developmental process that, until now,

was thought to be mainly biochemically regulated. The contents of chapter 4 have

been in parts previously published as Ref. [30], J. Imran Alsous, N. Romeo, J. A.

Jackson, F. M. Mason, J. Dunkel and A. C. Martin, Proc. Natl. Acad. Sci. U.S.A.

118 (10) e2019749118 (2021).

In the second half of this thesis, we investigate ways to leverage model inference

to capture the essential ordering principles of collective cell organization. As we con-

sider biological systems of larger sizes, the exploding complexity of these many-body

systems makes identification of relevant degrees of freedom harder, and hinders tradi-

tional modeling approaches. As recent advances in high-resolution live-cell microscopy

now enable tracking cellular motions in tissue at the single-cell level [31, 4, 32, 33, 34]
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or at the organelle level [26, 35], the challenge becomes to translate high-dimensional

imaging data into low-dimensional representations that lend themselves to quantita-

tive analysis.

Chapter 5 uses experimental single-cell trajectory data of early zebrafish embryo-

genesis from [4] as an illustrative example to develop a coarse-graining and inference

framework to convert trajectories on a curved surface into coarse-grained hydrody-

namic fields and compress the latter further by representing them in terms of suitable

harmonic basis functions. By properly accounting for covariance constraints in kernel-

based coarse-graining, the resulting low-dimensional representation of the collective

cell dynamics enables a compact characterization of developmental symmetry break-

ing. We are then able to directly infer an interpretable linear hydrodynamic model,

which reveals similarities between pan-embryo cell migration and active Brownian

particle dynamics on curved surfaces. Chapter 5 and parts of the corresponding ap-

pendices B,C have been previously published in Ref. [36], N. Romeo, A. D. Hastewell,

A. Mietke and J. Dunkel, Learning developmental mode dynamics from single-cell tra-

jectories, eLife 10:e68679 (2021).

Finally, we summarize our results and present possible extension of the ideas

developed in this thesis in chapter 6.
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Chapter 2

Scaling behavior of fluctuating

spherical elastic shells

Parts of this chapter has been previously published as a preprint ‘Dynamics, scaling

behavior and control of nuclear envelope wrinkling’, J. A. Jackson, N. Romeo, A.

Mietke, K. J. Burns, J. F. Totz, A. C. Martin, J. Dunkel and J. Imran Alsous. (2023)

Membranes are essential to biological systems: without surfaces defining an in-

side and an outside, it is impossible to realize the compartments which harbor the

machinery of life. Even within a cell, membranes range from very small (60-80 nm)

cargo-carrying lipid vesicles [37] to very large complexes surrounding organelles such

as the Endoplasmic reticulum or the cell nucleus [38]. The variety of shapes mem-

brane take on inside a cell reflects the diversity of functions they fulfill. To make this

idea quantitative, we will see in this chapter that the geometry of a membrane also

essentially determines its mechanical response.

Biological membranes such as lipid bilayers are commonly described as fluid mem-

branes which are approximately incompressible but have no shear rigidity [39]. How-

ever, composite membranes such as lipid bilayers supported by a network of semi-

flexible polymers can show an emergent non-zero shear modulus [40]. Those mem-

branes will be the main subjects of interest in this chapter.

At large enough scales that the microscopic details of a molecular description can

be safely ignored, one can use the framework of classical elasticity to describe the

33



mechanical properties of these elastic membranes. While elastic theories of plates

and shells have a rich history and have been studied since the nineteenth century

[41], using those theories at biological scales presents novel challenges. On one hand,

with the large deformations allowed by the relative softness of biological materials

comes nonlinear behavior and instabilities; understanding and controlling this ‘ex-

treme mechanics’ regime where membranes snap, buckle or grow has been the source

of a renewed interest in elastic theories in recent years [42, 43, 44, 45]. On the other

hand, the energy scales associated with deformations of the membranes are of the

order of the thermal energy 𝑘𝐵𝑇 , where 𝑘𝐵 is the Boltzmann constant and 𝑇 = 300

K the room temperature. As such, in the cell interior teeming with thousands of

molecular motors, fluctuations driven by temperature or the mechanical activity of

the cytoplasm are necessary to describe the mechanics of biological surfaces [46]. It

is hence essential for sub-cellular biological applications to understand the dynamics

of fluctuating nonlinear elasticity.

In this chapter, we build on previous works [46, 47, 29] to provide a theory of

fluctuating spherical elastic shells, starting in Sec. 2.1 from shell kinematics to build

an effective free energy described in Sec. 2.2 and simulated by methods explained

in Sec. 2.3 that will allow us to provide estimates in Sec. 2.4 for the scaling behav-

ior of fluctuating shells. Taken together, those results will be essential to explain

experimental observations that will be presented in chapter 3.

2.1 Deformations of surfaces and shallow shell ap-

proximation

The starting point of our theory will be to construct the kinematics of deformed

surfaces that we will use to describe our elastic shells.

A shell will be represented by a two-dimensional surface Γ ⊂ R3 with an unde-

formed reference shape parameterized by r(𝑠1, 𝑠2), where 𝑠1, 𝑠2 are curvilinear co-

ordinates. On this surface, tangent and normal vectors are defined by e𝑖 = 𝜕𝑖X
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(𝜕𝑖 := 𝜕/𝜕𝑠𝑖, 𝑖 = 1, 2) and n = e1 × e2/|e1 × e2|, respectively. The metric tensor and

the curvature tensor (also known as the first and second fundamental forms) of the

reference surface are given by 𝑔𝑖𝑗 = e𝑖 · e𝑗 and 𝐶𝑖𝑗 = n · 𝜕𝑖𝜕𝑗r.

When the surface continuously deforms, a point r(𝑠1, 𝑠2) moves to a new position

r′ = r(𝑠1, 𝑠2) + 𝜉(𝑠1, 𝑠2, 𝑡), where 𝜉(𝑠1, 𝑠2, 𝑡) describes the displacement and we drop

the arguments in the following for brevity. The general strain tensor 𝑢𝑖𝑗 describing the

relative deformations of the surface is defined by (𝑑r′)2 − (𝑑r)2 = 2𝑢𝑖𝑗𝑑𝑠
𝑖𝑑𝑠𝑗. Using

𝑑r′ = (e𝑖 + 𝜕𝑖𝜉)𝑑𝑠
𝑖 and 𝑑r2 = 𝑔𝑖𝑗𝑑𝑠

𝑖𝑑𝑠𝑗, the strain tensor takes the form

𝑢𝑖𝑗 =
1

2
[e𝑗 · 𝜕𝑖𝜉 + e𝑖 · 𝜕𝑗𝜉 + (𝜕𝑖𝜉) · (𝜕𝑗𝜉)]

=
1

2
(∇𝑖𝑢𝑗 +∇𝑗𝑢𝑖)− 𝐶𝑖𝑗𝑓 +

1

2
(∇𝑖𝑢𝑘 − 𝐶𝑖𝑘𝑓)(∇𝑗𝑢

𝑘 − 𝐶 𝑘
𝑗 𝑓)

+
1

2
(𝐶 𝑘

𝑖 𝑢𝑘 + 𝜕𝑖𝑓)(𝐶
𝑙
𝑗𝑢𝑙 + 𝜕𝑗𝑓), (2.1)

where we have split the deformation field 𝜉 = u + 𝑓n into tangential u = 𝑢𝑖e𝑖 and

normal 𝑓n contributions.

To capture the geometric effects of bending deformations, we additionally discuss

how surface deformations 𝜉 change the mean curvature 𝐻 = 𝐶 𝑖
𝑖 of an arbitrary

surface. The mean curvature 𝐻 ′ of a general deformed surface, parameterized on the

reference surface with curvature 𝐻, is to first order in the deformation field given

by [48]:

𝐻 ′ = 𝐻 +∇2𝑓 + 𝐶𝑖𝑗𝐶
𝑖𝑗𝑓 + 𝑢𝑘∇𝑘𝐻 +𝒪(𝜉2), (2.2)

where ∇2𝑓 := 𝑔𝑖𝑗∇𝑖∇𝑗𝑓 denotes the Laplace-Beltrami operator on the surface.

The strain tensor in Eq. (2.1) and changes of mean curvature Eq. (2.2) can be

further simplified by taking into account the slenderness of the nuclear envelope.

First, for envelope thickness ℎ and deformation length scale 𝐿, plate and shell theory

predict in-plane deformations 𝑢𝑖 to be of order 𝒪(𝑓 ℎ
𝐿
) [49]. As a second simplifying

assumption, we consider a shell with small and slowly varying curvature, such that

ℎ𝐶𝑖𝑗 ≪ 1. Thus, in thin shells with ℎ/𝐿≪ 1, in-plane deformations are expected to
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be significantly smaller than out-of-plane deformations 𝑓 and all higher order terms

involving 𝑢𝑖 and/or the curvature 𝐶𝑖𝑗 in Eq. (2.1) are subdominant. In this shallow-

shell approximation, we describe the undeformed reference shape as a spherical surface

of radius 𝑅, which is oriented such that the normal n points towards the inside of

the sphere. In this case, 𝐶𝑖𝑗 = 𝑔s
𝑖𝑗/𝑅, where 𝑔s

𝑖𝑗 denotes the metric tensor on the unit

sphere and [49, 47, 50]

𝑢𝑖𝑗 ≈
1

2
[∇𝑖𝑢𝑗 +∇𝑗𝑢𝑖 + (𝜕𝑖𝑓)(𝜕𝑗𝑓)]− 𝑔s

𝑖𝑗

𝑓

𝑅
. (2.3)

Similarly, changes in the mean curvature up to linear order in curvature and

deformations follow from Eq. (2.2) as

𝐻 ′ ≈ 𝐻 +∇2𝑓. (2.4)

For a spherical reference surface of radius 𝑅, we have 𝐻 = 2/𝑅.

2.1.1 Spherical harmonic representation of quasi-spherical sur-

faces

To characterize the deformations of a quasi-spherical surface, in the sense that the sur-

face remains star-convex with respect to the center of the coordinate system, we will

throughout this chapter and chapter 3 use a representation of the radial displacement

field in spherical harmonics.

The radial displacement field 𝑓(𝜃, 𝜑) for quasi-spherical surface is a scalar field

on the sphere, and as such under light regularity conditions can be represented as a

linear combination of spherical harmonics (Appendix A)

𝑓(𝜃, 𝜑) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑓𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑). (2.5)

The surface of the shell whose undeformed shape is a sphere of radius 𝑅 is then

located at 𝑅(𝜃, 𝜑) = 𝑅+ 𝑓𝑙𝑚. The angular number 𝑙 characterizes the angular size of
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the deformation such that 𝐿 ∼ 𝑅/𝑙 is a characteristic lengthscale, while the number

𝑚 indicates the deformation’s orientation. To build a rotation-invariant measure of

the intensity of deformations at angular scale 𝑙, we will frequently consider the power

spectrum

𝑃𝑙 =
1

(2𝑙 + 1)

𝑙∑︁
𝑚=−𝑙

(︂
𝑓𝑙𝑚
𝑅

)︂2

(2.6)

which gives the average power per mode of angular number 𝑙. 𝑃𝑙, by rotational

invariance, is independent of the choice of coordinates used to define the spherical

harmonic transform.

2.2 Free energy of shallow elastic shells

Previous work investigating the mechanical properties of nuclear envelopes has demon-

strated that their main structural constituents – the double lipid bilayer and the as-

sociated lamin filament meshwork – collectively give rise to an effective elasticity and

bending rigidity [51, 52]. We thus describe the nuclear envelope in this work as a thin

elastic membrane whose elasticity and bending rigidity lead to a resistance against

stretching and bending, respectively. Such properties are captured by the free energy

𝐹 =

∫︁
dr2
[︂
𝜅

2
(𝐻 ′ −𝐻0)

2 +
1

2
𝐶𝑖𝑗𝑘𝑙(𝑢

𝑖𝑗 − 𝑢 𝑖𝑗
0 )(𝑢𝑘𝑙 − 𝑢 𝑘𝑙

0 )− 𝑝𝑓

]︂
, (2.7)

where 𝜅 denotes the bending rigidity and we use an elastic modulus tensor 𝐶𝑖𝑗𝑘𝑙 =

𝜆𝑔𝑖𝑗𝑔𝑘𝑙 + 𝜇(𝑔𝑖𝑘𝑔𝑗𝑙 + 𝑔𝑗𝑘𝑔𝑖𝑙) with Lamé parameters 𝜆, 𝜇 to describe an isotropic elastic

response of the surface. For a 2D material, these parameters are related to the 2D

Young modulus 𝑌 and the Poisson ratio 𝜈 by 𝜆 = 𝜈𝑌/(1 + 𝜈) and 2𝜇 = 𝑌/(1 + 𝜈).

Additionally, we have introduced a spontaneous curvature 𝐻0. We note that the

spontaneous curvature 𝐻0 adds an effective surface tension to the spherical reference

surface that vanishes for 𝐻0 = 2/𝑅. As we will show below (SI Sec. 2.5) the spectral

response of the shell is for sufficiently small curvature variations and mean radius

changes equivalently affected by pressure and surface tension. Without loss of gener-

ality, we therefore only consider the effects of pressure and set 𝐻0 = 2/𝑅 in the free
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energy Eq. (2.7). The spontaneous strain (𝑢0)𝑖𝑗 in the energy Eq. (2.7) will be spec-

ified below. Furthermore, we have introduced in Eq. (2.7) an external normal load

that is dimensionally equivalent to a pressure 𝑝(x, 𝑡), where 𝑝 > 0 (𝑝 < 0) correspond

to normal forces pointing inwards (outwards). This pressure collects any contribution

from thermodynamic and osmotic pressure differences across the surface, as well as

from other mechanical interactions with its environment. The effects of a non-zero

mean pressure are discussed in Sec. 2.5 below.

We also note that in the case of our application to cells’ nuclear envelope, sur-

face area is constantly increasing as development progresses: for our experimental

situation [1], we find an area growth rate of about 0.35 to 0.6 percent per minute

on average. However, this growth rate is very slow compared to the shape fluctua-

tion timescale, which is on the order of minutes. We therefore consider a quasistatic

approximation and neglect area growth.

We additionally allow for material properties that are described by the framework

of non-Euclidean shells [53]. Specifically, the effective reference surface, with respect

to which the energetic cost of stretching deformations is determined, may not actually

be physically realizable in 3D Euclidean space. Such incompatibilities can arise from

inelastic effects in the microscopic structure, such as growth, shrinkage or plastic

cross-linking [54], but they can also be thought of as a way to effectively account for

the presence of metastable states with low energy barriers in the free energy landscape.

In this work, we found that an isotropic preferred strain of the form

(𝑢0)𝑖𝑗 = 𝑔s
𝑖𝑗

(︂
1

𝑅𝑐

− 1

𝑅

)︂
𝑓, (2.8)

is required to explain the experimental observations. The spontaneous strain given

in Eq. (2.8) gives rise to incompatibilities, which can be seen as follows: If 𝑅𝑐 = 𝑅,

the energetic cost of surface stretching is entirely determined by deformations away

from a spherical surface of radius 𝑅, compatible with the mean curvature 𝐻0 = 2/𝑅.

If instead 𝑅𝑐 ̸= 𝑅, the effective reference surface for evaluating the energetic cost

of out-of-plane deformations becomes instead a spherical surface of radius 𝑅 with
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preferred principal curvatures 1/𝑅𝑐 everywhere.

With the spontaneous curvature and strain discussed above, and taking into ac-

count the shallow shell approximations for strains and curvature changes given in

Eqs. (2.3) and (2.4), we arrive at the final free energy. Specifically, Eq. (2.7) becomes

𝐹 =

∫︁
dr2
[︂
𝜅

2
(∇2𝑓)2 +

𝜆

2
𝜖 𝑖
𝑖 𝜖

𝑗
𝑗 + 𝜇 𝜖𝑖𝑗𝜖

𝑖𝑗 − 𝑝𝑓

]︂
, (2.9)

where 𝜖𝑖𝑗 = 𝑢𝑖𝑗 − (𝑢0)𝑖𝑗 denotes the effective strain tensor with components

𝜖𝑖𝑗 =
1

2
[∇𝑖𝑢𝑗 +∇𝑗𝑢𝑖 + (𝜕𝑖𝑓)(𝜕𝑗𝑓)]− 𝑔s

𝑖𝑗

𝑓

𝑅𝑐

. (2.10)

From the strain given in Eq. (2.10), we see that in the limit of 𝑅𝑐 → ∞ the shell

equations reduce to the conventional plate theory.

For vanishing pressure 𝑝 = 0, three non-dimensional numbers govern the behavior

of a shell described by Eq. (2.9) [47, 29]: the Föppl-von Kármán (FvK) number

𝛾 = 𝑌 𝑅2/𝜅 ≈ 104−106 as discussed in Sec. 3.2.1 [52, 51], the bending rigidity relative

to fluctuation intensity 𝜅/𝑘𝑇eff, and the curvature incompatibility 𝑅/𝑅𝑐. If 𝑝 ̸= 0, a

natural characteristic pressure is the critical buckling pressure 𝑝𝑐 = 4
√
𝜅𝑌 /𝑅2, above

which a spherical shell with 𝑅𝑐 = 𝑅 classically buckles; a fourth non-dimensional

number 𝑝/𝑝𝑐 then becomes relevant to characterize the dynamics of the shell [47].

Finally, we note that by construction, the quality of the small-strain and shallow-

shell approximation considered here degrades when used to describe large deforma-

tions. Specifically, the geometric approximations made to arrive at Eq. (2.9) will not

capture the increasing importance of nonlinear contributions when deviations from

the mean radius ≈ |𝑓 |/𝑅, become large. We also note that this free energy does

not account for metastable states which commonly arise in shells; we however expect

those metastable states to be less relevant when 𝑅𝑐 > 𝑅 and the shell behaves closer

to a ‘spherical plate’.
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2.3 Numerical simulations

To study fluctuating shells into regimes where nonlinear contributions are dominant,

we here detail our simulation approach to directly simulate the overdamped stochastic

PDE derived from the elastic energy 𝐹 in Eq. (2.9) using a spherical harmonic variant

of Fourier space Brownian dynamics [55]. This method will used for the results shown

in Figs. 2-1, 2-2, and in comparison with experimental data in Chapter 3 to generate

Fig. 3-5A,B.

In the absence of more detailed noise data, we assume that the fluctuations follow

the fluctuation-dissipation theorem, with Gaussian fluctuations at an effective tem-

perature 𝑇eff. With this assumption, our results for the steady-state power spectra do

not depend on the choice of damping function; to be consistent with the experimental

setting of Chapter 3 we consider the shell to be immersed in a viscous fluid, with the

fluid free to flow through the membrane. With our quasi-equilibrium assumption,

we can authorize ourselves a simplified description of the fluid environment of the

nucleus. For simplicity, we assume that both the inner and outer surroundings of

the nuclear envelope can be described as a viscous low-Reynolds number fluid [30].

To keep the computational cost feasible, we approximate the corresponding non-local

hydrodynamic coupling of the shell with the surrounding. To this end, we neglect

radial shape variations and follow Refs. [56, 57] by considering the first order effect

of viscous damping experienced by a spherical surface that pushes via a deformation

into the surrounding fluid. In harmonic mode space, such a damping is described

by [58] Λ̃
−1

𝑙𝑚 = 𝜂(2𝑙 + 1)(2𝑙2 + 2𝑙 − 1 + 2𝛿𝑙,0)/[𝑙(𝑙 + 1)𝑅] ∼ 𝜂𝑙/𝑅. For simplicity, we

additionally assume that the damping of tangential modes is the same as for the nor-

mal modes. We then find Langevin equations for the displacement fields 𝑓(r, 𝑡) and

u(r, 𝑡) in terms of the harmonic modes 𝑓𝑙𝑚 and u𝑙𝑚 = [𝑢
(1)
𝑙𝑚 , 𝑢

(2)
𝑙𝑚 ]⊤ as

𝜕𝑡𝑓𝑙𝑚(𝑡) = Λ̃𝑙𝑚

(︂
−
[︂
𝛿𝐹

𝛿𝑓

]︂
𝑙𝑚

(𝑡) + 𝜁𝑓,𝑙𝑚(𝑡)

)︂
(2.11a)

𝜕𝑡u𝑙𝑚 = Λ̃𝑙𝑚

(︂
−
[︂
𝛿𝐹

𝛿u

]︂
𝑙𝑚

(𝑡) + 𝜁𝑢,𝑙𝑚(𝑡)

)︂
. (2.11b)
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The Gaussian white noise components 𝜁𝑓,𝑙𝑚(𝑡) and 𝜁𝑢,𝑙𝑚(𝑡) have zero mean and

satisfy ⟨𝜁𝑓,𝑙𝑚(𝑡)𝜁𝑓,𝑙′𝑚′(𝑡′)⟩ = 2𝑘𝑇eff𝑅
−2Λ̃

−1

𝑙𝑚𝛿𝑚𝑚′𝛿𝑙𝑙′𝛿(𝑡 − 𝑡′) and ⟨𝜁𝛼
𝑢,𝑙𝑚(𝑡)𝜁

𝛽
𝑢,𝑙′𝑚′(𝑡′)⟩ =

2𝑘𝑇eff𝑅
−2Λ̃

−1

𝑙𝑚𝛿𝑚𝑚′𝛿𝑙𝑙′𝛿(𝑡 − 𝑡′)𝛿𝛼𝛽, where 𝛼 = 1, 2 labels the two tangential compo-

nents. As noted above, this noise satisfies the fluctuation-dissipation theorem. The

functional derivatives of the free energy Eq. (2.9) used in the Langevin Eqs. (2.11a),

(2.11b) are given in real space by

𝛿𝐹

𝛿𝑓
=𝜅∇2∇2𝑓 − 𝑝+ 4

𝜆+ 𝜇

𝑅2
𝑐

𝑓 − 2

𝑅𝑐

(𝜆+ 𝜇)∇ · u+
1

𝑅𝑐

(𝜆+ 𝜇)
[︀
(∇𝑓)2 + 2𝑓∇2𝑓

]︀
− 𝜇∇ · ([∇u+∇u⊤] · ∇𝑓)−

(︂
𝜆

2
+ 𝜇

)︂
∇ · [(∇𝑓)2∇𝑓 ]− 𝜆∇ · [(∇ · u)∇𝑓 ]

(2.12a)
𝛿𝐹

𝛿u
=− (𝜆+ 𝜇)∇(∇ · u)− 𝜇∇2u+ (𝜆+ 𝜇)

2

𝑅𝑐

∇𝑓 − 𝜆

2
∇[(∇𝑓)2]

− 𝜇
[︀
∇2𝑓∇𝑓 +∇∇𝑓 · ∇𝑓

]︀
. (2.12b)

We assume for all simulations that the Poisson modulus is constant with an inter-

mediate value of 𝜈 = 0.3, as is typical for isotropic 2D materials. The 2D Lamé

parameters are then related to the 2D Young modulus 𝑌 by [59]

𝜆 =
𝜈𝑌

1− 𝜈2
𝜇 =

𝑌

2(1 + 𝜈)
. (2.13)

All simulations are performed using 𝜂 = 4Pa·s. For simulations with fixed FvK

number 𝛾, we set 𝑅, 𝑅𝑐 and 𝑘𝑇eff ≥ 𝑘𝑇eq, and vary 𝜅 and 𝑌 = 𝛾𝜅/𝑅2. To stay

within reasonable physical regimes (𝜅 ∼ 25𝑘𝑇eq ∼ 10−19 J for lipid bilayers), and

𝛾 ∼ 104 − 106 using 𝑇eff = 10𝑇eq, we vary 𝜅/𝑘𝑇eff in the range 2− 20. In the absence

of structural information on the preferred curvature of the nuclear envelope, and

motivated by the experimental observation that the qualitative response of the shell

does not depend on the size of the nuclei, we choose 𝑅𝑐 = 20𝑅, such that the crossover

lengthscale 𝐿el = 𝑅𝛾−1/4
√︀

𝑅𝑐/𝑅 where the linear response function ‘falls off’ into the

bending-dominated regime is approximately equal to 𝑅/2 for 𝛾 = 104. This choice

both suppresses the appearance of a plateau region in 𝑃𝑙 (Sec. 2.4.1, Fig. 2-1), and
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lowers the energy barrier to larger deformations which, while allowed by the non-

convex elastic free energy in finite deformation regimes, are not allowed in our free

energy based on a shallow-shell assumption.

We use the pseudo-spectral solver Dedalus 3 [60] to solve the Langevin equation

on the surface of the sphere. The equation is spatially discretized with spherical

harmonics up to degree 𝐿max = 𝑁 − 1, resolving scales down to 𝛿 = 𝜋𝑅/𝑁 on the

surface of the sphere. The nonlinear terms are computed on the Gaussian quadra-

ture grid using a dealiasing factor of 2. The system is temporally integrated using

the Euler-Mayurama stochastic integrator. We choose a resolution of 𝑁 = 256 to

ensure we sufficiently resolve the elastic scale 𝐿el = 𝑅𝛾−1/4 for FvK number 𝛾 = 106.

We rescale all lengths by the radius 𝑅 and time by 𝜏 = 4𝜂𝑅/𝑌 , which is the char-

acteristic timescale of the dynamics induced by the cubic terms in the PDEs. The

simulations are performed for a duration of 3000𝜏 with time steps of ∆𝑡 = 10−2𝜏 ,

where each simulation ran on 32 Intel Xeon Platinum 8260 cores on the MIT Super-

cloud cluster [61], totalling approximately 360 hours of CPU time per simulation for

the parameter values considered.

A posteriori checks for convergence are performed by monitoring the dynamics of

the mean shell radius. We also verify that the shallow-shell approximation remains

valid throughout simulations by monitoring the average norm of the in-plane displace-

ments ⟨|u|⟩. Specifically, we check that in-plane displacements remain small relative

to the shell radius and relative to radial deformations, i.e. ⟨|u|⟩ < 10−2𝑅 < ⟨|𝑓 |⟩
for results in Fig. 3-5A,B. We note that the mean radius variation can reach large

fractions of the radius for very soft nuclei, limiting the validity of the free energy in

Eq. (2.9).
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2.4 Scaling behavior of fluctuating elastic shells

In this section we establish a range of linear and nonlinear results that can be obtained

from the energy Eq. (2.9) for a fluctuating thin shell. After discussing the basic linear

response, we describe how to obtain a free energy written only in terms of the radial

displacement, and use this effective free energy to obtain asymptotic scaling behavior

results that build on insights from previous renormalization analysis of similar models.

Throughout this section, we consider Gaussian fluctuations with an effective tem-

perature 𝑇eff to account for both passive and active fluctuations.

2.4.1 Linear response to fluctuations

We first derive the equilibrium power spectrum 𝑃𝑙 of shells described by Eq. (2.9)

in the linear response regime by extending a result from reference [47] to the case of

𝑅𝑐 ̸= 𝑅. For an external uniform pressure 𝑝 = 0, when shell fluctuations are small

enough for the system to be in the linear regime, the free energy Eq. (2.9) is given to

quadratic order in the fields by

𝐹 lin =
1

2

∫︁
d2r

[︂
𝜅(∇2

𝒮𝑓)
2 +

4(𝜆+ 𝜇)

𝑅2
𝑐

𝑓 2 + 𝜆(∇𝒮 · u)2

+
𝜇

4
(∇𝑖𝑢𝑗 +∇𝑗𝑢𝑖)

(︀
∇𝑖𝑢𝑗 +∇𝑗𝑢𝑖

)︀
+

2(𝜆+ 𝜇)

𝑅𝑐

𝑓(∇𝒮 · u)
]︂
, (2.14)

where we have introduced the spherical in-plane gradient∇𝒮 = 𝑅−1(e𝜃𝜕𝜃+e𝜑 sin 𝜃
−1𝜕𝜑).

We expand the components 𝑓 of normal displacements and in-plane displacements

u = 𝑢𝑖e𝑖 using real scalar and vector spherical harmonics, respectively, such that

(Appendix A)

𝑓(r) =
∞∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝑓𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑) (2.15a)

u(r) =
∞∑︁
𝑙=1

𝑚=𝑙∑︁
𝑚=−𝑙

(︁
𝑢
(1)
𝑙𝑚Ψ𝑙𝑚(𝜃, 𝜑) + 𝑢

(2)
𝑙𝑚Φ𝑙𝑚(𝜃, 𝜑)

)︁
, (2.15b)
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where Ψ𝑙𝑚 = ∇𝒮𝑌𝑙𝑚 and Φ𝑙𝑚 = e𝑟 × ∇𝒮𝑌𝑙𝑚. Note that with this convention, 𝑢(1)
𝑙𝑚

and 𝑢
(2)
𝑙𝑚 have dimensions of (length)2. Using the identities

∫︁
d2r𝑓(∇𝒮 · u) = −

1

𝑅

∑︁
𝑙,𝑚

𝑙(𝑙 + 1)𝑢
(1)
𝑙𝑚𝑓𝑙𝑚 (2.16a)∫︁

d2r(∇𝒮 · u)2 =
1

𝑅2

∑︁
𝑙,𝑚

𝑙2(𝑙 + 1)2
(︁
𝑢
(1)
𝑙𝑚

)︁2
(2.16b)

1

4

∫︁
d2r (∇𝑖𝑢𝑗 +∇𝑗𝑢𝑖)

(︀
∇𝑖𝑢𝑗 +∇𝑗𝑢𝑖

)︀
=

1

𝑅2

∑︁
𝑙,𝑚

𝑙(𝑙 + 1) (𝑙(𝑙 + 1)− 1)
(︁
𝑢
(1)
𝑙𝑚

)︁2
+

1

2𝑅2

∑︁
𝑙,𝑚

𝑙(𝑙 + 1) (𝑙(𝑙 + 1)− 2)
(︁
𝑢
(2)
𝑙𝑚

)︁2
,

(2.16c)

which follow from standard properties of scalar and vector-valued spherical harmonics

(Appendix A, [62]), we can expand the linearized free energy Eq. (2.14) in terms of

the spherical harmonic basis as

𝐹 lin =
∑︁
𝑙,𝑚

1

2

[︃
𝜅(𝑙 − 1)2(𝑙 + 2)2 + 4(𝜆+ 𝜇)

(︂
𝑅

𝑅𝑐

)︂2

𝑅2

]︃(︂
𝑓𝑙𝑚
𝑅

)︂2

+
1

2
𝑙(𝑙 + 1) [(𝜆+ 2𝜇)𝑙(𝑙 + 1)− 2𝜇]

(︁
𝑢
(1)
𝑙𝑚

)︁2
+

𝜇

2
𝑙(𝑙 + 1) (𝑙(𝑙 + 1)− 2)

(︁
𝑢
(2)
𝑙𝑚

)︁2
(2.17)

− 2
𝜆+ 𝜇

𝑅𝑐

𝑅𝑙(𝑙 + 1)𝑢
(1)
𝑙𝑚𝑓𝑙𝑚.

Within our Gaussian fluctuation assumption, we can functionally integrate out the

𝑢
(1)
𝑙𝑚 fields to obtain an effective free energy in terms of 𝑓𝑙𝑚 only

𝐹 lin
eff =

∑︁
𝑙𝑚

1

2

[︃
𝜅(𝑙 − 1)2(𝑙 + 2)2 + 4(𝜆+ 𝜇)

(︂
𝑅

𝑅𝑐

)︂2

𝑅2

(︂
1− (𝜆+ 𝜇)𝑙(𝑙 + 1)

(𝜆+ 2𝜇)𝑙(𝑙 + 1)− 2𝜇

)︂]︃(︂
𝑓𝑙𝑚
𝑅

)︂2

(2.18)

This quadratic free energy then lends itself to the equipartition theorem, and we

finally find that the spherical harmonic power spectrum 𝑃𝑙 = (2𝑙+ 1)−1
∑︀

𝑚(𝑓𝑙𝑚/𝑅)2
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follows

𝑘𝑇eff𝑃
−1
𝑙 = 𝜅(𝑙 + 2)2(𝑙 − 1)2 + 4𝜇

(︂
𝑅

𝑅𝑐

)︂2

𝑅2 (𝜆+ 𝜇)(𝑙2 + 𝑙 − 2)

(𝜆+ 2𝜇)𝑙(𝑙 + 1)− 2𝜇
. (2.19)

This result agrees with Ref. [47] for 𝑅 = 𝑅𝑐 and serves as a benchmark to validate

our numerical simulations (Fig. 2-1A,B, see Sec. 2.3). From Eq. (2.19) it follows that

𝑃𝑙 is dominated by the effects of bending at high angular number, where it behaves as

𝑃𝑙 ∝ 𝑙−4. At low angular number 𝑃𝑙 is dominated by the harmonic ‘confining’ elastic

term and approaches a constant of the order 𝑃𝑙 ∼ 1/𝑌 with the 2D Young modulus

𝑌 ∼ 𝜆, 𝜇 [59]. The crossover between those two regimes is expected to happen at

angular number 𝑙 = 𝑙el ≡ 𝛾1/4
√︀

𝑅/𝑅𝑐, where 𝛾 = 𝑌 𝑅2/𝜅 is the FvK number.

A criterion that strictly ensures the validity of conclusions drawn from this linear

analysis is given by (𝑘𝑇eff/𝜅)
√
𝛾 ≪ 1 [47, 29]. For FvK number values of 𝛾 > 104

considered here, this criterion then approximately yields the condition 𝑘𝑇eff/𝜅 ≪
10−2. However, even for a typical lipid bilayer bending rigidity 𝜅 ∼ 10𝑘𝑇eq with

room temperature 𝑇eq this condition is not expected to be satisfied. Hence, while this

linear analysis provides important insights into the effects of the curvature mismatch

𝑅/𝑅𝑐 and helps validate the numerical approach, further analysis presented below is

needed the explain the scaling observed in experiments and in numerical simulations

for strong fluctuations.

Effective radial free energy

In the next step, we explain how to obtain the scaling form for the free energy

presented in Eq. (2.39). Assuming Gaussian fluctuations of an elastic shell described

by Eq. (2.9), it is possible to integrate out the in-plane displacements u = 𝑢𝑖e𝑖 and

the mean radial displacement 𝑓0 = (4𝜋𝑅2)−1
∫︀
d2x 𝑓 [63, 46, 47, 29]. This procedure

yields an effective free energy written purely in terms of the normal displacements.

For convenience, we collect in the following several results distributed across the above

references into a single explicit derivation.

We start from the elastic free energy in Eq. (2.9), rewritten in terms of the isotropic
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elastic tensor 𝐶𝑖𝑗𝑘𝑙 = 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙+𝛿𝑖𝑙𝛿𝑗𝑘)+𝜆𝛿𝑖𝑗𝛿𝑘𝑙 and dropping the explicit pressure term

for now. We write

𝐹 = 𝐹 bend + 𝐹 stretch :=

∫︁
d2x

[︂
𝜅

2
(∇2𝑓)2 +

1

2
𝐶𝑖𝑗𝑘𝑙𝜖𝑖𝑗𝜖𝑘𝑙

]︂
. (2.20)

To use the shallow-shell approach, we consider here a portion of a shallow shell of

area 𝐴, such that we can use a two-dimensional Cartesian coordinate system and

Fourier transforms to describe our fields. As found in Eq. (2.10) by considering

in the shallow-shell regime a Cartesian metric 𝑔𝑖𝑗 = 𝛿𝑖𝑗, the strain tensor is 𝜖𝑖𝑗 =

𝑢𝑖𝑗 +
1
2
𝜕𝑖𝑓𝜕𝑗𝑓 − 𝛿𝑖𝑗𝑓/𝑅𝑐, where we denote in this section by 𝑢𝑖𝑗 =

1
2
[𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖] only

the in-plane contributions of the strain tensor. To simplify the integration procedure,

we decompose the symmetric tensor 𝐴𝑖𝑗 =
1
2
𝜕𝑖𝑓𝜕𝑗𝑓 into a longitudinal and transverse

part [63, 46]
1

2
𝜕𝑖𝑓𝜕𝑗𝑓 =

1

2
[𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖] + 𝑃 𝑇

𝑖𝑗ℎ, (2.21)

with a vector field 𝑣𝑖, a scalar field ℎ, and the transverse projection operator 𝑃 𝑇
𝑖𝑗 =

(𝛿𝑖𝑗 − 𝜕𝑖𝜕𝑗/∇2). Applying the latter to both sides of this equation, we find ℎ(x) =

1
2
𝑃 𝑇
𝑖𝑗 𝜕𝑖𝑓𝜕𝑗𝑓 . We will also separate the radial displacement 𝑓(x) = 𝑓0 + 𝑓 ′(x) into its

uniform and spatially-dependent parts 𝑓0 and 𝑓 ′(x), respectively.

Here, we use the Fourier convention of the Supplementary Information of Ref. [47],

where the direct transform is 𝑓(q) = (1/𝐴)
∫︀
d2x 𝑓(x)𝑒𝑖q·x and the inverse is given by

𝑓(x) =
∑︀

q 𝑓(q)𝑒
−𝑖q·x. To keep the notation compact, we use the same symbols for

functions in real and Fourier space and indicate their dependence by explicitly writ-

ing the argument. Finally, we note that by reality of the displacements fields, each

field 𝑓(x), ℎ(x) and u(x) satisfies 𝑓(q) = 𝑓(−q)*, with 𝑓(q)* denoting the complex

conjugate of 𝑓(q).

Fourier representation of the free energy: We can now rewrite the free energy

in terms of the displacement fields mode amplitudes. The bending energy can be

expressed as 𝐹 bend = (𝜅/2)
∑︀

q 𝑞
4|𝑓(q)|2. In the following, we focus on the stretching
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part 𝐹 stretch = (1/2)
∫︀
d2x𝐶𝑖𝑗𝑘𝑙𝜖𝑖𝑗𝜖𝑘𝑙 of the free energy. By defining the shifted variable

�̃�𝑖(q) = 𝑢𝑖(q) + 𝑣𝑖(q), (2.22)

we can express the contributions from 𝑢𝑖(q) and 𝑣𝑖(q) in terms of the quadratic form

𝐶𝑖𝑗(q) = 𝜇𝑞2(𝛿𝑖𝑗−𝑞𝑖𝑞𝑗/𝑞
2)+(𝜆+2𝜇)𝑞𝑖𝑞𝑗. We then find a free energy that is quadratic

in �̃�𝑖(q), ℎ(q) and 𝑓(q), and given by

𝐹 stretch = 𝐴𝐶𝑖𝑗𝑘𝑙

(︀
𝑢0
𝑖𝑗 + 𝐴0

𝑖𝑗 − 𝛿𝑖𝑗𝑓0/𝑅𝑐

)︀ (︀
𝑢0
𝑘𝑙 + 𝐴0

𝑘𝑙 − 𝛿𝑘𝑙𝑓0/𝑅𝑐

)︀
+
∑︁
q ̸=0

�̃�𝑖(q)𝐶𝑖𝑗(q)�̃�𝑗(−q) + �̃�𝑖(q)𝐵𝑖(−q) +𝐵𝑖(q)�̃�𝑖(−q)

+
∑︁
q ̸=0

(𝜆+ 2𝜇)|ℎ(q)|2 + 4(𝜆+ 𝜇)
|𝑓(q)|2
𝑅2

𝑐

− 2

𝑅𝑐

(𝜆+ 𝜇) [𝑓(q)ℎ(−q) + 𝑓(−q)ℎ(q)] .

(2.23)

Here, we denoted for convenience the uniform modes by

𝑢0
𝑖𝑗 := 𝑢𝑖𝑗(q = 0) and 𝐴0

𝑖𝑗 := 𝐴𝑖𝑗(q = 0), (2.24)

and introduced ℎ(q) = (𝛿𝑖𝑗 − 𝑞𝑖𝑞𝑗/𝑞
2)𝐴𝑖𝑗(q), as well as

𝐵𝑖(q) = −𝑖𝜆𝑞𝑖ℎ(q) + 𝑖
2

𝑅𝑐

(𝜆+ 𝜇)𝑞𝑖𝑓(q). (2.25)

To proceed, we distinguish between the spatially uniform modes (q = 0) and spatially

non-uniform modes (q ̸= 0).

Spatially non-uniform modes (q ̸= 0): We can observe from Eq. (2.23) that spa-

tially non-uniform modes contribute quadratically in ũ(q ̸= 0). These modes can

therefore be integrated out using the Gaussian Path integral [64]

𝐹eff[𝑓0, 𝑓
′] = −𝑘𝑇eff ln

(︃∫︁ ∏︁
𝒟𝑢0

𝑖𝑗

∏︁
q ̸=0

𝒟ũ(q) exp (−𝐹/(𝑘𝑇eff))

)︃
. (2.26)
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The contributions from the in-plane degrees of freedom given in the second line of

Eq. (2.23), once integrated out, yield a contribution to the effective free energy that

is given by

∑︁
q ̸=0

−𝐶−1
𝑖𝑗 (q)𝐵𝑖(q)𝐵𝑗(−q), (2.27)

with the inverse of the elastic quadratic form 𝐶−1
𝑖𝑗 (q) = (𝛿𝑖𝑗 − 𝑞𝑖𝑞𝑗/𝑞

2) /(𝜇𝑞2) + (𝜆 +

2𝜇)−1(𝑞𝑖𝑞𝑗/𝑞
4). Taken together, the spatially non-uniform contributions in the free

energy Eq. (2.23) yield an effective free energy

𝐹 stretch,q ̸=0
eff =

1

2

∑︁
q ̸=0

1

𝜆+ 2𝜇

(︂
−𝜆2|ℎ(q)|2 − 4(𝜆+ 𝜇)2

𝑓 2

𝑅2
𝑐

+ 2
𝜆

𝑅𝑐

(𝜆+ 𝜇) (𝑓(q)ℎ(−q) + 𝑓(−q)ℎ(q))
)︂

+ (𝜆+ 2𝜇)|ℎ(q)|2 + 4(𝜆+ 𝜇)
𝑓 2

𝑅2
𝑐

− 2

𝑅𝑐

(𝜆+ 𝜇) (𝑓(q)ℎ(−q) + 𝑓(−q)ℎ(q)) .

This expression can be simplified using that ℎ(x) and 𝑓(x) are real: Defining the 2D

Young modulus 𝑌 = 4𝜇(𝜆+𝜇)/(𝜆+2𝜇), the contributions from the spatially-varying

modes can be written as

𝐹 stretch,q ̸=0
eff =

1

2

∑︁
q ̸=0

𝑌 |ℎ(q)|2 + 𝑌
|𝑓(q)|2
𝑅2

𝑐

− 𝑌

𝑅𝑐

(𝑓(q)ℎ(−q) + 𝑓(−q)ℎ(q))

=
∑︁
q̸=0

𝑌

2

⃒⃒⃒⃒
ℎ(q)− 𝑓(q)

𝑅𝑐

⃒⃒⃒⃒2
=

∫︁
d2x

𝑌

2

(︂
1

2
𝑃 𝑇
𝑖𝑗 (𝜕𝑖𝑓𝜕𝑗𝑓)−

𝑓 ′

𝑅

)︂2

, (2.28)

where the last line follows from Parseval’s theorem. In the case of a flat sheet with

𝑅 = ∞, we recover the classical result presented in Ref. [46]. In particular, one can

understand the role of the term 1
2
𝑃 𝑇
𝑖𝑗 (𝜕𝑖𝑓𝜕𝑗𝑓) through the geometric identity [46]

∇2

[︂
1

2
𝑃 𝑇
𝑖𝑗 (𝜕𝑖𝑓𝜕𝑗𝑓)

]︂
= −𝐾(x), (2.29)
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where 𝐾(x) is the Gaussian curvature of the deformed sheet: In a similar fashion

as for the Airy stress function formalism of plate mechanics [49], the integration of

in-plane degrees of freedom leads to a situation in which Gaussian curvature acts as

a charge density for a stress-generating ‘curvature potential’ [65].

Spatially uniform modes (q = 0): The zero-wavenumber contributions to the

strain tensor, 𝜖0𝑖𝑗 := 𝜖𝑖𝑗(q = 0), in Fourier space can be written as

𝜖011 = 𝑢0
11 + 𝐴0

11 − 𝑓0/𝑅𝑐 (2.30a)

𝜖022 = 𝑢0
22 + 𝐴0

22 − 𝑓0/𝑅𝑐 (2.30b)

𝜖012 = 𝑢0
12 + 𝐴0

12, (2.30c)

where we recall that 𝑢0
𝑖𝑗 refers to the modes corresponding to uniform in-plane strains.

Of the three of these, only two are independent since 𝑢0
11 + 𝑢0

22 = 0, as otherwise this

would indicate a uniform stretching of the shell which would lead to a variation in

mean radius. We can then define ∆𝑢0 = 𝑢0
11 − 𝑢0

22, and write 𝑢0
11 = −𝑢0

22 = ∆𝑢0/2.

We can thus rewrite the spatially uniform contributions to the free energy (first line

in Eq. (2.23)) as

𝐹 stretch
0 =

𝐴

2
𝐶𝑖𝑗𝑘𝑙𝜖

0
𝑖𝑗𝜖

0
𝑘𝑙 =

𝐴

2

[︃
𝜆

(︂
𝐴0

11 + 𝐴0
22 − 2

𝑓0
𝑅𝑐

)︂2

+ 4𝜇
(︀
𝑢0
12 + 𝐴0

12

)︀2 (2.31)

+2𝜇

(︂
∆𝑢0

2
+ 𝐴0

11 −
𝑓0
𝑅𝑐

)︂2

+ 2𝜇

(︂
−∆𝑢0

2
+ 𝐴0

22 −
𝑓0
𝑅𝑐

)︂2
]︃
.

We can now directly integrate out the 𝑢0
12 field, and by shifting ∆𝑢0 ← ∆𝑢0+𝐴0

11+𝐴0
22

and integrating the field ∆𝑢0, we finally find

𝐹 stretch
0,eff =

𝐴

2
(𝜆+ 𝜇)

(︂
𝐴0

11 + 𝐴0
22 − 2

𝑓0
𝑅𝑐

)︂2

. (2.32)

By using 𝐴0
11 + 𝐴0

22 =
1
𝐴

∫︀
d2x|∇𝑓 |2 and including the pressure term, we hence have
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the final, total effective free energy as

𝐹eff[𝑓
′, 𝑓0] =

∫︁
d2x

[︃
𝜅

2
(∇2𝑓)2 +

𝑌

2

(︂
1

2
𝑃 𝑇
𝑖𝑗 (𝜕𝑖𝑓𝜕𝑗𝑓)−

𝑓 ′

𝑅𝑐

)︂2

+
𝜆+ 𝜇

2

(︂
1

𝐴

∫︁
d2x|∇𝑓 |2 − 2

𝑓0
𝑅𝑐

)︂2
]︃

−
∫︁

d2x 𝑝(x, 𝑡)𝑓(x, 𝑡). (2.33)

Effect of pressure: If 𝑝(x, 𝑡) = 𝑝0, then
∫︀
d2x 𝑝(x, 𝑡)𝑓(x, 𝑡) =

∫︀
d2x 𝑝0𝑓0, and after

completing the square we can integrate out 𝑓0. We now find

𝐹eff[𝑓
′] =

∫︁
d2x

[︃
𝜅

2
(∇2𝑓)2 − 𝑝0𝑅𝑐

2
|∇𝑓 ′|2 + 𝑌

2

(︂
1

2
𝑃 𝑇
𝑖𝑗 (𝜕𝑖𝑓𝜕𝑗𝑓)−

𝑓 ′

𝑅𝑐

)︂2
]︃
. (2.34)

Denoting the spatial average by ⟨.⟩, the mean value of 𝑓0 is given by

𝑓0 =
𝑝0𝑅

2
𝑐

4(𝜆+ 𝜇)
+

𝑅𝑐

4
⟨|∇𝑓 ′|2⟩. (2.35)

If we now consider inhomogeneous contributions to the pressure and write 𝑝(x, 𝑡) =

𝑝0+𝑝′(x, 𝑡) with
∫︀
d2x 𝑝′(x, 𝑡) = 0, we find an effective free energy in terms of 𝑓 ′ that

reads

𝐹eff[𝑓
′, 𝑝′] =

∫︁
d2x

[︃
𝜅

2
(∇2𝑓)2 − 𝑝0𝑅𝑐

2
|∇𝑓 ′|2 + 𝑌

2

(︂
1

2
𝑃 𝑇
𝑖𝑗 (𝜕𝑖𝑓𝜕𝑗𝑓)−

𝑓 ′

𝑅𝑐

)︂2

− 𝑝′𝑓 ′
]︃
.

(2.36)

After expanding the square, this yields

𝐹eff =
1

2

∫︁
d2r

[︂
𝜅(∇2𝑓)2 − 𝑝0𝑅𝑐(∇𝑓)2 +

𝑌

𝑅2
𝑐

𝑓 2

]︂
+

1

2

∫︁
d2r

[︂
𝑌

𝑅𝑐

𝑓𝑃 𝑇
𝑖𝑗 𝜕𝑖𝑓𝜕𝑗𝑓

]︂
+

∫︁
d2r

[︂
𝑌

8
𝑃 𝑇
𝑖𝑗 𝜕𝑖𝑓𝜕𝑗𝑓𝑃

𝑇
𝑘𝑙𝜕𝑘𝑓𝜕𝑙𝑓 − 𝑝′𝑓 ′

]︂
. (2.37)

Dimensional scaling: If we can assume 𝑝0 = 0, we can consider shape variations
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on a length scale 𝐿, and read off from Eq. (2.37) the expected relative contributions

of the different terms to the free energy density

𝛿𝐹eff ∼ 𝜅

(︂
𝑓

𝐿2

)︂2

+ 𝑌

(︂
𝑓

𝑅𝑐

)︂2

+
𝑌

𝑅𝑐

(︂
𝑓 3

𝐿2

)︂
+ 𝑌

(︂
𝑓

𝐿

)︂4

− 𝑝𝑓, (2.38)

where 𝐹eff =
∫︀
d2r 𝛿𝐹eff. To obtain an analytical prediction for the scaling in the

larger-deformation regime ℎ ∼
√︀

𝜅/𝑌 ≪ 𝑓 ≪ 𝑅 < 𝑅𝑐, we rewrite Eq. (2.38) as

𝛿𝐹eff

𝑌
∼
(︂
ℎ

𝐿

)︂2(︂
𝑓

𝐿

)︂2

+

(︂
𝑓

𝑅𝑐

)︂2

+
𝑓

𝑅𝑐

(︂
𝑓

𝐿

)︂2

+

(︂
𝑓

𝐿

)︂4

− 𝑝𝑓

𝑌
. (2.39)

The first term corresponds to bending, and the second and third terms arise from

the non-zero curvature of the undeformed shell. The fourth term describes the non-

linear response associated with changes in the Gaussian curvature of the shells. For

deformed surfaces with 𝑓 ≫ ℎ, the first term can be neglected as it is smaller than

the fourth term. Considering deformation amplitudes 𝑓𝑙 at the spatial length scale

𝐿 ∼ 𝑅/𝑙, where 𝑙 is the angular wave number, the remaining terms can be recast as

𝛿𝐹𝑙

𝑌
∼
(︂

𝑓𝑙
𝑅𝑐

)︂2

+
𝑓𝑙
𝑅𝑐

(︂
𝑓𝑙
𝑅

)︂2

𝑙2 +

(︂
𝑓𝑙
𝑅

)︂4

𝑙4 − 𝑝

𝑌
𝑓𝑙. (2.40)

Since 𝑅𝑐 > 𝑅, the first two terms will be dominated by the 𝑙4-term implying that,

at steady-state, this quartic term and the pressure term must balance out, consistent

with a corresponding earlier result for flat plates with 𝑅𝑐 = ∞ [66]. We thus find

𝑓𝑙 ∼ (𝑝/𝑌 )1/3(𝑅/𝑙)4/3, and hence for the angular power spectrum 𝑃𝑙 ∼ (𝑓𝑙/𝑅)2 the

scaling law

𝑃𝑙 ∼
(︂
𝑝𝑅

𝑌

)︂2/3

𝑙−8/3. (2.41)

In this scaling regime, the surface deformation dynamics is dominated by the shell’s

resistance to stretching, which causes changes in its Gaussian curvature [67]. The

emergence of this regime is observed in our spherical shell simulations for soft shells

(Fig. 2-1). If 𝑝0 ̸= 0, we expect generically from Eq. (2.37) the presence of an

additional surface tension term ∼ ∇2𝑓 . However, we find that ‘crumpled’ shells have
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vanishing surface tension, under conditions detailed in Sec. 2.5. This scaling analysis

thus holds for the rough surfaces we consider in experiments, with 𝑝 replaced by an

effective pressure 𝑝eff to accommodate the effects of geometric confinement (Sec. 2.5).

2.4.2 Renormalization of mechanical surface properties and

comparison with simulations

We now refine Eq. (2.38) by adapting results from renormalization studies of curved

elastic surfaces [47, 29] in order to explain in more detail the observed deviations from

linear response in the simulations for soft shells (Fig. 2-1).

Generally, it is expected that thermal fluctuations at length scales 𝐿 ∼ 𝑅/𝑙

contribute most significantly to the effective mechanical properties of the surface if

𝐿 > 𝐿th, where 𝐿th =
√︀

𝜅2/(𝑘𝑇eff𝑌 ) is the characteristic thermal length scale of the

shell. Indeed, it was shown in Refs. [47, 29] that fluctuations in the presence of strong

geometrical nonlinearities give rise to length scale-dependent elastic constants and an

effective pressure. Specifically, the bending modulus 𝜅, the 2D Young modulus 𝑌 , as

well as a fluctuation-induced pressure behave in weakly nonlinear regimes as [29]

𝜅𝑅(𝐿) =𝜅(𝐿/𝐿th)
𝜂 (2.42a)

𝑌𝑅(𝐿) =𝑌 (𝐿/𝐿th)
−𝜂𝑢 (2.42b)

𝑝𝑅(𝐿)− 𝑝0 =𝑝𝑐(𝐿th/𝐿el)(𝐿/𝐿th)
2𝜂 (2.42c)

with exponents set by 𝜂 ≈ 0.8 and 𝜂𝑢 + 2𝜂 = 2 and 𝐿el = (𝜅𝑅2/𝑌 )1/4 = 𝑅𝛾−1/4

is the characteristic elastic length scale beyond which stretching effects dominate

over bending for 𝑅 = 𝑅𝑐. Note that except for 𝑝𝑐, all the quantities and scaling

exponents in Eqs. (2.42) are independent of the radius 𝑅 and hence do not depend

on the presence of the curvature mismatch 𝑅𝑐 > 𝑅. Far in the bending response-

dominated regime at high angular numbers, we then expect from Eqs. (2.42a) and

Eq. (2.38) 𝑃𝑙 ∼ (𝑘𝑇eff/𝜅𝑅)𝑙
−4 ∼ 𝑙−3.2. Thus, as observed in our simulations (Fig. 2-

1C), an increasing FvK number 𝛾 – corresponding to an increasing significance of
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nonlinear contributions to the surface mechanics – gradually changes angular number

power laws describing the shell response from 𝑙−4 to 𝑙−3.2, before reaching a 𝑙−8/3-

scaling [see Eq. (2.41)] in the strongly nonlinear regime.

To better understand the limits of the renormalization approach, it is helpful to

remember that the above scaling relations Eq. (2.42) are derived from the integration

of the RG flow equations: as contributions from rapidly-varying modes are integrated

during the renormalization procedure, the effective scale-dependent elastic parameters

are found to satisfy a set of ordinary differential equations in the the parameter

𝑠 = ln(𝐿/𝑎) known as the RG flow equations

d𝜅𝑅

d𝑠
= 𝛽𝜅(𝜅𝑅, 𝑝𝑅, 𝑌𝑅, 𝑅𝑅,Λ) (2.43a)

d𝑝𝑅
d𝑠

= 𝛽𝑝(𝜅𝑅, 𝑝𝑅, 𝑌𝑅, 𝑅𝑅,Λ) (2.43b)

d𝑌𝑅

d𝑠
= 𝛽𝑌 (𝜅𝑅, 𝑝𝑅, 𝑌𝑅, 𝑅𝑅,Λ) (2.43c)

d𝑅𝑅

d𝑠
= 𝛽𝑅(𝜅𝑅, 𝑝𝑅, 𝑌𝑅, 𝑅𝑅,Λ), (2.43d)

where 𝑎 = 1/Λ≪ 𝑅 is a microscopic lengthscale that does not affect the integration

results as long as it is chosen to be small compared to all other lengthscales involved.

The integration of these equations from initial conditions (𝜅, 𝑝0, 𝑌, 𝑅) then leads to

the scale-dependent parameters 𝜅𝑅(𝐿), 𝑝𝑅(𝐿), 𝑌𝑅(𝐿), where the lengthscale relates to

the wavenumber through 𝐿 = 𝜋/𝑞 (Fig. 2-2A,C). The precise form of the 𝛽-functions

is available in Appendix A of Ref. [29].

2.4.3 Power spectrum scaling for large fluctuations

A surprising result from renormalization analysis [29] indicated by Eq. (2.42c) is that

fluctuations induce an effective pressure acting on the surface which can cause shells

to spontaneously buckle. For the purpose of the following discussion, we consider the

renormalized pressure 𝑝𝑅 in Eq. (2.42c) at long wavelengths [47]. In this regime, the
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Figure 2-1 : Fluctuating elastic shells. A, Fluctuating elastic shell power spectra
for 𝑅𝑐 = 𝑅, 𝛾 = 3 × 104 for a variable elastic modulus controlled through 𝑘𝑇eff/𝜅.
B, Rescaled power spectra from panel A, show the validity of the linear regime for
stiff shells, and the departure of the shell response from linear response (Eq. (2.19),
red solid line) with decreasing rigidity. C, Fluctuating elastic shell power spectra
for 𝑅𝑐 = 20𝑅 and variable FvK number 𝛾 for constant bending modulus controlled
through 𝜅 = 20𝑘𝑇eff. With increasing 𝛾, nonlinear contributions to the shell elasticity
modulate the power spectrum of radial deformations, consistent with predictions from
renormalization and scaling arguments. D, Full power spectrum for the simulations
presented in Fig. 3-5A,B for fixed FvK number 𝛾 = 3×104 and 𝑅𝑐 = 20𝑅. E, Rescal-
ing the power spectra from D by (𝜅/𝑘𝑇eff)(⟨𝑅⟩/𝑅)2 shows the departure from linear
response Eq. (2.19) F, Rescaling the power spectra from D by (𝜅/𝑘𝑇eff)

2/3(⟨𝑅⟩/𝑅)2

shows a collapse to a master curve at intermediate wavenumbers, in accordance with
the scaling analysis Eq. (2.48). Inset: Rescaling by (𝜅/𝑘𝑇eff)

0.6(⟨𝑅⟩/𝑅)2 as suggested
by the RG scaling prediction Eq. (2.49) leads to a similar collapse, confirming the sim-
ilarity between both viewpoints. All simulations were performed using 𝑇eff = 10𝑇eq

with 𝑇eq = 300K.

54



renormalized pressure is given by

𝑝𝑅 ∼ 𝑝𝑐

(︂
𝑘𝑇eff

𝜅

)︂√︂
𝑌 𝑅2

𝜅
∼ 𝑌

𝑅

(︂
𝑘𝑇eff

𝜅

)︂
, (2.44)

where 𝑝𝑐 = 4
√
𝜅𝑌 /𝑅2 is the classical critical buckling pressure determined from a

linear stability analysis of an elastic shell [47, 29]. Consequently, the elastic shell is

expected to buckle when 𝑝eff = 𝑝𝑅 + 𝑝 > 𝑝𝑐. For 𝑝 = 0 and 𝑅𝑐 = 𝑅, Ref. [29] finds

from integrating the renormalization group flow that buckling should therefore occur

around 𝑝eff/𝑝𝑐 = (𝑘𝑇eff/𝜅)
√
𝛾 ⪆ 160. When 𝑅𝑐 > 𝑅, the added tendency for the

shell to locally flatten will further modify the buckling pressure, with a new rescaled

critical pressure given by �̄�𝑐 = (𝑅/𝑅𝑐)
2𝑝𝑐. In general, by showing the instability of

the ground state of the elastic free energy Eq. (2.37), this signals the breakdown of

the validity of the renormalization group analysis from Ref. [29]. However one could

expect the scaling form of 𝑝eff = 𝑝𝑅 to stay valid in the post-buckling regime of interest

to us. Under this assumption, and using the scaling result 𝑃𝑙 ∼ (𝑝𝑅/𝑌 )2/3𝑙−8/3 from

the large fluctuation regime with 𝑝→ 𝑝𝑅, we find

𝑃𝑙 ∼
(︂
𝑘𝑇eff

𝜅

)︂2/3

𝑙−8/3, (2.45)

independently of the stretching modulus. However, we remark that when the mean

radius of the shell ⟨𝑅⟩ = 𝑅 −
∫︀
(4𝜋)−1dΩ 𝑓 deviates from the undeformed radius 𝑅

(especially when we let 𝑅𝑐 > 𝑅) this scaling has to be corrected as follows.

In the asymptotic regime where we expect the 𝑙−8/3 scaling to hold, the balance of

the nonlinear contribution to surface elasticity with the pressure in Eqs. (2.39) and (2.40)

still leads to
𝑌

𝑅4
𝑙4𝑓 3

𝑙 ∼ 𝑝, (2.46)

where the spatial length scale 𝐿 = 𝑅/𝑙 is related to the undeformed sphere radius

𝑅 in our simulations. Letting ⟨𝑅⟩ ̸= 𝑅, our definition of 𝑃𝑙 ∼ (𝑓𝑙/⟨𝑅⟩)2 in Eq. (3.2)

corresponds to a normalization with respect to the deformed average shell radius, and

55



we have with Eq. (2.46) that

𝑃𝑙 ∼
(︂

𝑝𝑅4

𝑌 ⟨𝑅⟩3
)︂2/3

𝑙−8/3. (2.47)

We then observe that the result of the scaling of the pressure in Eq. (2.44) does not

depend on the mean radius ⟨𝑅⟩ of the shell, as the outcome of an analysis where the

radius of the shell 𝑅 only plays a role as a material parameter. With this observation,

we find from Eq. (2.47)

𝑃𝑙 ∼
(︂
𝑘𝑇eff

𝜅

)︂2/3(︂
𝑅

⟨𝑅⟩

)︂2

𝑙−8/3, (2.48)

which is equivalent to Eq. (2.45) for 𝑅/⟨𝑅⟩ ≈ 1.

A similar argument stands for comparisons to theoretical linear regime predictions

Eq. (2.19), where a rescaling of 𝑃𝑙 by (𝜅/𝑘𝑇eff)(⟨𝑅⟩/𝑅)2 should lead to a curve col-

lapse even when 𝑅𝑐 > 𝑅 and the mean radius deviates significantly from 𝑅. However,

we find that for the simulations presented in Fig. 3-5A,B and Fig. 2-1D, a rescaling

by (𝜅/𝑘𝑇eff)(⟨𝑅⟩/𝑅)2 does not lead to a curve collapse, confirming the departure from

linear response for those simulation parameters (Fig. 2-1E). Instead, rescaling 𝑃𝑙 by

(𝜅/𝑘𝑇 )2/3(⟨𝑅⟩/𝑅)2, as suggested by Eq. (2.48), does lead to a collapse of simulation

results onto a master curve for corresponding angular numbers 𝑙 (Fig. 2-1F), fur-

ther highlighting the importance of contributions from nonlinear surface elasticity for

explaining our observations in simulations and experiments.

We note that these scaling results are very similar to RG scaling predictions: in

a regime where the shell response is dominated by the renormalized bending rigidity,

then

𝑃𝑙 ∼
(︂
𝑘𝑇eff

𝜅

)︂1−𝜂/2

𝛾−𝜂/2

(︂
𝑅

⟨𝑅⟩

)︂2

𝑙−4+𝜂 ≈
(︂
𝑘𝑇eff

𝜅

)︂0.6

𝛾−0.4

(︂
𝑅

⟨𝑅⟩

)︂2

𝑙−3.2, (2.49)

with 𝜂 ≈ 0.8. The corresponding curve collapse is shown in the inset of Fig. 2-1F.

This result serves as confirmation that both approaches, either using perturbative

corrections to the linear response or using dimensional arguments to obtain a scaling
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form for the nonlinear response, lead to reasonable predictions [68].

2.5 Effects of non-zero uniform pressure

Our results above assumed that the system is in an environment where 𝑝0 = 0.

Here, we revisit this assumption on the basis of RG predictions and simulations,

and provide justification for an experimentally-relevant regime in which the effective

surface tension of the shell is 0. Integrating out the mean radial dynamics in Eq. (2.33)

leads to an effective surface tension in Eq. (2.36) with value 𝜎eff = −𝑝0𝑅. The physical

effects due to this tension strongly depend on the sign of 𝑝0:

When the pressure is oriented outwards (𝑝0 < 0) it tends to stabilize the shell, akin

to an inflated rubber balloon. Consequently, fluctuations are suppressed, leading to

the power spectrum scaling as 𝑙−2 due to the gradient-squared term in the free energy

Eq. (2.37). However, when the pressure forces are oriented inwards (𝑝0 > 0) they tend

to buckle the shell, with the shell eventually becoming unstable. Its stabilization can

then only be realized through higher-order geometric nonlinearities. The resulting

states are characterized by ‘ruffled surfaces’ with excess area available to compensate

for surface tension.

To make those physical ideas precise, we integrate the RG flow equations Eqs. (2.43)

and run numerical Langevin simulation for a range of different pressures (Fig. 2-2).

In a low-deformation regime (𝑅𝑐 = 𝑅), simulation results agree with RG predictions

(Fig. 2-2A,B): Negative pressure stabilizes the shell, while positive pressure leads to a

resonant wavelength. Note, however, that larger positive pressures lead to divergent

responses in the RG prediction: To 1-loop perturbative order, the RG flow equations

diverge as nonlinear contributions to the free energy dominate the linear effects [29].

In a high-deformation regime (𝑅𝑐 = 20𝑅), large negative pressure indeed leads to the

expected 𝑙−2, which corresponds to a tension-dominated regime. However, positive

pressure always leads to divergences; the corresponding simulations show a qualita-

tively similar response between 𝑝0 = 0 and 𝑝0 > 0 curves, with a scaling exponent

that corresponds to the effective bending response (Fig. 2-2C,D). It is interesting to
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note that even the 𝑝0 = 0 response diverges at long-wavelength (not shown), which

in the simulated system is limited by the infrared cutoff 1/𝑅.

Up to the limit where very large inward pressure forces lead to self-contact of

shells, our results suggest that ruffled surfaces with wrinkles available to provide

excess area have responses that are rather insensitive to pressure variation. This

finding complements previous work that has experimentally found that the mean

radius and volume of nuclear envelope in yeast cells are well-described by membranes

with vanishing surface tension, which is explained by the presence of excess area

buffering tension [69, 70]. This suggests that the dominant effect of osmotic pressure

changes is an increase or decrease in the amount of excess area, while surface tension

remains negligible. Therefore, we expect the 𝑃𝑙 ∼ 𝑙−8/3 scaling result or its RG

equivalent, which were obtained neglecting surface tension, still hold in our system

even when osmotic pressure differences 𝑝0 are non-zero.

To make the connection between 𝑝0 introduced in Eq. (2.36) with the pressure

𝑝eff appearing in Eq. (2.41) explicit, consider the scaling law obeyed by the deformed

nucleus in Eq. (2.47),

𝑃𝑙 =

(︂
𝑝′𝑅4

𝑌 ⟨𝑅⟩3
)︂2/3

𝑙−8/3 ≡
(︂
𝑝eff𝑅

𝑌

)︂2/3

𝑙−8/3, (2.50)

where the effective pressure is given by

𝑝eff = 𝑝′
(︂

𝑅

⟨𝑅⟩

)︂3

, (2.51)

with ⟨𝑝eff⟩ = 0. This equation holds in our system, assuming that the crumpled

surface leads to a vanishing surface tension. The effective pressure 𝑝eff captures the

effect of excess area in the power spectrum 𝑃𝑙, which in turn changes the mean radius

⟨𝑅⟩. To connect the osmotic pressure difference 𝑝0 to the crumpled shell’s mean

radius ⟨𝑅⟩, we rewrite Eq. (2.35) in terms of the power spectrum 𝑃𝑙 as

𝑓0 =
𝑝0𝑅𝑐

4(𝜆+ 𝜇)
+

𝑅𝑐

4

∑︁
𝑙

𝑃𝑙(2𝑙 + 1)𝑙(𝑙 + 1), (2.52)
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where ⟨𝑅⟩ = 𝑅 − ⟨𝑓0⟩ by construction of the Fourier transform in Sec. 2.4.1 (note

that 𝑓0 is distinct from the spherical harmonic 𝑓00). Note that as 𝑃𝑙 ∼ 𝑙−4 for

large 𝑙, the sum is logarithmically divergent. However, for a stabilizing outward

pressure 𝑝0 < 0, a 1-loop perturbative RG expansion reveals a well-defined nonlinear

relationship between ⟨𝑅⟩ and 𝑝0 [29]. For 𝑝0 > 0, we can use a similar approach to

the one in Ref. [56] to obtain an expression for the excess area by introducing a cut-off

angular number 𝑙𝜉 < 𝛾1/2 = 𝑅/ℎ. The resulting, cut-off-dependent estimate of ⟨𝑅⟩
then follows from Eqs. (2.47) and (2.52) as the solution of

⟨𝑅⟩3 +
(︂

𝑝0𝑅𝑐

4(𝜆+ 𝜇)
−𝑅

)︂
⟨𝑅⟩2 + 𝑅𝑐

4

(︂
𝑝′𝑅4

𝑌

)︂2/3

𝜉 = 0, (2.53)

where 𝜉 =
∑︀𝑙𝜉

𝑙=1(2𝑙+1)𝑙(𝑙+1)𝑙−8/3. Eq. (2.53) then leads to a nonlinear relationship

between 𝑝eff and 𝑝0 in the presence of inhomogeneous loads 𝑝′. Our previous scaling

results can thus be applied when 𝑝0 ̸= 0 by replacing 𝑝′ with the effective load 𝑝eff

given in Eq. (2.51).

2.6 Conclusion

In this chapter, we have studied the statistical mechanics of an elastic shallow shell,

which despite being made out of an isotropic linear elastic material, has a strongly

nonlinear behavior owing to the geometric nonlinearities arising in the thin shell

(large FvK number) limit. In chapter 3 we will find that the nuclear envelopes, the

membranes defining cell nuclei, display a mechanical behavior that is well described

by this nonlinear theory.

While the Föppl-von Kármán plate equation is valid even at large deformations,

as long as the coordinate description is valid, the presence of a non-zero preferred

curvature of the breaks down this validity by introducing metastable states that are

not captured by the convex free energy Eq. (2.9). Effectively, by introducing 𝑅𝑐 ̸= 𝑅,

we are using a ‘convex relaxation’ of the physical problem which ignores the non-

convexity of the physical energy landscape. Rationalizing the construction of 𝑅𝑐 and
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Figure 2-2 : The effects of non-zero pressure. A, Effective power spectrum obtained
by integrating the renormalization group (RG) flow near the linear regime for varying
pressure. High-enough positive pressures lead to a divergent RG flow, indicated by
interrupted lines. In these cases, RG predictions are unreliable. B, Simulation data
of a shell with 𝛾 = 3 · 104, 𝜅 = 5𝑘𝑇eff and 𝑅𝑐 = 𝑅 for varying pressure. In this
smaller-deformation regime, data qualitatively agrees with RG. C, RG flow for vary-
ing pressure for 𝑅𝑐 = 20𝑅. Negative pressures lead to a 𝑞−2 scaling response at long-
wavelengths, while even small positive pressures lead to divergent responses within
1-loop perturbative RG. D, Simulation data of a shell with 𝛾 = 3 ·104, 𝜅 = 5𝑘𝑇eff and
𝑅𝑐 = 20𝑅 for varying pressure. Negative pressures, which stabilize the shell, lead to
a 𝑙−2 response in accordance with RG. Positive pressures are stabilized by nonlinear
effects.

60



deriving equivalent scaling results for more general shell models would be interesting

problems in their own right.
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Chapter 3

Geometry and mechanics of nuclear

wrinkles

Parts of this chapter has been previously published as a preprint ‘Dynamics, scaling

behavior and control of nuclear envelope wrinkling’, J. A. Jackson, N. Romeo, A.

Mietke, K. J. Burns, J. F. Totz, A. C. Martin, J. Dunkel and J. Imran Alsous. (2023).

Experimental data and figures are courtesy of Jonathan A. Jackson and Jasmin Imran

Alsous.

Wrinkling and flickering of flexible sheet-like structures essentially determine me-

chanics and transport in a wide range of physical and biological systems, from graphene

[71, 66] and DNA origami [72] to nuclear envelopes (NEs) [73, 74, 8, 75] and cell mem-

branes [76, 77]. Over the last decade, much progress has been made through experi-

mental and theoretical work in understanding the effects of environmental fluctuations

on the bending behaviors of carbon-based monolayers [78] and the shape deforma-

tions of lipid bilayer membranes of vesicles [79, 80, 81] and cells [82, 57]. In contrast,

the emergence and dynamical evolution of surface deformations in NEs [83, 8, 75] at

different length- and timescales, to which we refer throughout this chapter simply as

‘wrinkling’, still pose fundamental open questions, as performing three-dimensional

(3D) observations at high spatio-temporal resolution remains challenging, especially

under natural physiological and developmental growth conditions. Specifically, it is

unclear how NE wrinkle formation proceeds during cellular development, which bio-
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physical processes govern wrinkle morphology, and whether there exist characteristic

scaling laws for NE surface fluctuations [74, 84, 8]. Addressing these questions through

quantitative measurements promises insights into the physics of complex membranes

and can clarify the biological and biomedical implications of NE deformations that

have been linked to gene expression [8], cellular aging [85], and disease like progeria

syndrome [86, 73].

In this chapter, we combine 3D confocal microscopy, theoretical analysis, and sim-

ulations to characterize the wrinkling morphology and dynamics of nuclear surfaces in

fruit fly egg chambers. A spectral analysis of over 300 nuclei provides evidence for an

asymptotic power-law scaling of the surface fluctuations, consistent with predictions

from renormalization calculations [46, 29] and scaling arguments based on a nonlin-

ear elasticity model for thin shells. Although the scaling is found to be highly robust

against physical and biological perturbations, its magnitude (prefactor) can be tuned

via osmotic pressure variation and microtubule disruption. These two different con-

trol mechanisms enable the tuning and probing of the NE’s spectral and mechanical

properties, and provide biophysical strategies for suppressing and reversing nuclear

wrinkling.

3.1 Characterizing the nuclear envelope geometry

The NE is a double membrane that separates the cell’s nuclear interior from the sur-

rounding cytoplasm. The two concentric ∼4 nm-thick lipid bilayers are ∼20-50 nm

apart and are supported by the nuclear lamina, a non-contractile meshwork of in-

termediate filaments that lie adjacent to the inner nuclear membrane, conferring

mechanical stability and affecting essential cellular processes through regulation of

chromatin organization and gene expression [87, 88]. Among other proteins, the NE

contains nuclear pore complexes, multi-protein channels that primarily regulate pas-

sage of macromolecules between the nucleus and the cytoplasm [89, 90]. Recent in

vitro studies have provided key insights into the role of lamins, cytoplasmic struc-

tures, and the physical environment in affecting NE morphology, as well as evidence
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Figure 3-1 (previous page): Dynamic wrinkling of nurse cell nuclear envelopes during
Drosophila egg development. A, Maximum-intensity projection (MIP) of a 3D image
of an egg chamber expressing GFP-labeled Nup107, a component of the nuclear pore
complex. The wrinkled nuclei of the 15 nurse cells are substantially larger than those
of the surrounding follicle cells. B, MIP of four egg chambers showing an increase in
nurse cell nuclear size and nuclear surface deformation as egg chambers age. Curved
arrows indicate developmental progression from youngest (i) to oldest (iv). E, MIPs
of individual nurse cell nuclei from six egg chambers spanning all ages included in
our dataset, showing an increase in nuclear radius and NE wrinkling with age. Note
that scale bar is the same size for each image; oldest nucleus shown is about 2.3 times
the diameter of youngest shown. D, Spectral reconstruction of NE surfaces shown
in C from 3D microscopy data using spherical harmonics with an angular number
up to 𝑙max = 25 (Eq. (3.1)). Time proxy values for each nucleus are included above
the reconstructions. E, Power spectra normalized by average radius for 𝑁 = 78
nuclei from 39 egg chambers in nurse cells directly connected to the oocyte (results
are qualitatively similar for nuclei farther away from the oocyte; Fig. 3-2). Hashed
area indicates approximate noise threshold for young nuclei; color indicates the time
proxy (corresponding to the color bar in D). F, NE roughness ℛ =

∑︀
𝑙≥3(2𝑙+1)𝑃𝑙 for

the same nuclei as in E increases exponentially with time proxy (see also Fig. 3-2).
G, Snapshots of the same nucleus at four different time points illustrate that NE
wrinkling is a dynamic process. Blue and orange arrowheads point to wrinkles that
disappear and appear, respectively, between subsequent frames. Scale bars: 50𝜇m
(A, B), 10𝜇m (C, G).
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for the critical importance of nuclear shape for many cellular and nuclear functions

[84, 73], including transcriptional dynamics [8]. Despite notable progress, a quanti-

tative understanding of how wrinkling phenomenology and 3D spectral properties of

nuclear surfaces evolve in time and during cellular development has remained elusive.

To investigate the biophysical dynamics, scaling behaviors, and reversibility of

nuclear wrinkling, we used the egg chamber of the fruit fly Drosophila melanogaster, a

powerful system amenable to 3D high-resolution live imaging and targeted biological

and physical perturbations [91]. The egg chamber contains 15 nurse cells and the

oocyte (the immature egg cell), all connected via cytoplasmic bridges and enclosed

by a thin layer of hundreds of follicle cells (Fig. 3-1A, [92]). For most of the ∼3

days of oogenesis, the nurse cells supply proteins, mRNAs, and organelles to the

oocyte through diffusion and microtubule-mediated directed transport [93, 94, 30,

95]. To provide the prodigious amount of material and nutrients that the oocyte

needs, each nurse cell replicates its DNA ∼10 times without undergoing cell division,

thereby notably increasing its nuclear and cell sizes [96]. In the ∼30-hour window

studied here, the diameter of nurse cell nuclei in cells directly connected to the oocyte

increases from approximately 16 to about 40 micrometers [97, 96], accompanied by

the progressive appearance of fold-like deformations in the NE, providing an ideal

test bed for studying the onset and evolution of NE wrinkling (Fig. 3-1B,C).

To compare nurse cell nuclei within the same egg chamber and across different

egg chambers, we defined a proxy measurement for developmental time (referred to

here as the ‘time proxy’) based on the geometric average of the egg chamber’s length

and width. Since egg chamber geometry correlates closely with developmental pro-

gression, adopting this continuous geometric characterization offers finer temporal

resolution than the traditional approach of distinguishing 14 discrete morphological

stages [93, 94] (for a comparison between the time proxy and developmental stage,

see [1]). By time-ordering nuclei according to this metric, we could more accurately

determine the time of emergence of nuclear wrinkling and reconstruct its evolution

(Fig. 3-1B,C). To track the NEs of the nurse cells in space and time, we used a

fluorescently-tagged version of the nuclear pore complex protein Nup107 that de-
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lineates the nucleus (qualitatively similar wrinkling patterns were observed using a

different labeled protein in the NE and via label-free imaging, [1]); note that this

label allows observation only of deformations that include both membranes of the

nuclear envelope, but is unlikely to label deformations that include only the inner

membrane, such as Type I nucleoplasmic reticula [98, 99]. Having acquired highly

resolved 3D imaging data (Fig. 3-1C, Fig. 3-4), we reconstructed the nuclear surface

radius 𝑅(𝜃, 𝜑) relative to the geometric center of the nucleus, where 𝜃 and 𝜑 are the

spherical polar angles.

3.1.1 Using egg chamber geometry as proxy for developmental

time

Egg chamber age, or progression through oogenesis, has traditionally been deter-

mined using broad morphological features, with chambers grouped into 14 stages,

each of which encompasses several hours [94, 93, 96]. However, these stages provide a

discrete time measurement with insufficient resolution for describing the continuous

process of wrinkling progression, which occurs over much smaller time scales. There-

fore, to determine if a readily-measurable and continuous-valued metric is suited for

age comparisons and ranking egg chambers’ progression through development, we

plotted manually-determined egg chamber stages against several different size and

morphological characteristics. One such metric, which we term the ‘time proxy’, is

the geometric average of the egg chamber width and anterior-posterior axis length.

This time proxy technically has units of distance (𝜇m), but is left unitless on plots as

the measure is used solely for arranging egg chambers in time relative to one another.

When egg chambers were aligned with their long axis horizontal to the objective

(their midplane aligned with the imaging plane), linear measurements were made

using maximum intensity projections; when egg chambers were tilted, axis measure-

ments were made in 3D space using the ‘3D_Distance_Tool’ FIJI macro. Stages

showed nearly monotonic increase with respect to the time proxy described above,

unlike with other metrics such as follicle cell height, egg chamber length or width, or
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oocyte length [1]. Notably, this time proxy is similar to egg chamber cross-sectional

area and to germline area, previously determined by others to be a good proxy for

age [100, 101].

Nuclei in nurse cells directly connected to the oocyte are larger than those in the

more anterior nurse cells during the egg chamber ages considered in this study [102].

Because of this size difference within a given egg chamber, plotting roughness against

effective nucleus radius reveals separate trends for the two populations of nurse cell

nuclei; nucleus radius is thus not an effective metric for comparing egg chambers

across time [1]. This size difference also means nurse cells nearer the anterior have

higher roughness values for the same nucleus radius than cells nearer the oocyte,

suggesting that age increase alone is unlikely to explain the patterns of wrinkling

observed in the data.

3.1.2 Spectral representation of nuclear envelope geometry

To obtain a compact 3D spectral representation of the nuclear surface deformations, in

a similar manner as in Sec. 2.1.1 we computed the real spherical harmonic coefficients

𝑓𝑙𝑚 defined by

𝑅(𝜃, 𝜑) =
𝑙max∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑓𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑), (3.1)

where 𝑌𝑙𝑚 is the spherical harmonic with angular number 𝑙 and order 𝑚 (See Ap-

pendix A). Equation (3.1) allows for a continuous reconstruction of the NEs (Fig

3-1D, Fig. 3-4), with the mode-cutoff 𝑙max setting the angular resolution of the spec-

tral representation. The coefficient values {𝑓𝑙𝑚} depend on the choice of coordinate

system, that is, the orientation of the nuclei. To obtain a rotation-invariant character-

ization of the surface wrinkles, we consider the power spectrum of radial out-of-plane

deformations

𝑃𝑙 =
4𝜋

(2𝑙 + 1)𝑓 2
00

𝑙∑︁
𝑚=−𝑙

𝑓 2
𝑙𝑚, (3.2)
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Figure 3-2 (previous page): The analyses used for Fig. 3-1E,F and Fig. 3-5C for
different sets of nurse cell nuclei yield qualitatively similar results. For nuclei 𝑑 cells
away from the oocyte, the same analysis as performed for cells directly connected to
the oocyte is repeated with the same color bar throughout. A,D,G Power spectra
𝑃𝑙 colored by time proxy, as in Fig. 3-1E. B,E,H Roughness as in Fig. 3-1F. C,F,I
Binned average of “old” nuclei as in Fig. 3-5C reveals the same scaling behavior.
“Young” nuclei have time proxy between 80 − 140; “Old” nuclei have time proxy
between 160 − 220. Intervals in panels C,F,I represent extremal values. 𝑁 = 115
nuclei for 𝑑 = 2 (29 young and 72 old), from 41 egg chambers, 𝑁 = 86 nuclei for
𝑑 = 3 (17 young and 59 old), from 39 egg chambers, 𝑁 = 23 nuclei for 𝑑 = 4 (4 young
and 16 old), from 23 egg chambers.
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Figure 3-3 : 3D high-resolution imaging reveals the fluctuating nature of NE wrin-
kles. Power spectrum 𝑃𝑙 of different frames of a time series of nuclei 3d snapshots
do not overlap, indicating that NE morphology is fluctuating in time. Each color
corresponds to a different nucleus, with identically-colored points corresponding to
different frames.
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normalized by the average radius of the shell ⟨𝑅⟩ = 𝑓00/
√
4𝜋 (note that this is a

slightly different normalization than used in Sec. 2.1.1). The non-negative numbers

𝑃𝑙 measure the average power in a mode of angular wavenumber 𝑙. A single-valued

summary statistic of surface wrinkling can be given in terms of the ‘roughness’ pa-

rameter ℛ =
∑︀

𝑙≥3(2𝑙 + 1)𝑃𝑙, the total power contained in angular numbers 𝑙 ≥ 3.

By ignoring the long-wavelength modes 𝑙 < 3, ℛ measures the contribution of finer-

scale wrinkles to NE deformations. Our analysis of over 300 nurse cell nuclei shows

that the power spectrum of NEs maintains an approximately constant shape as de-

velopment progresses, but with a steadily-increasing amplitude (Fig. 3-1E; Fig. 3-2),

reflecting the fact that wrinkling becomes more pronounced as nuclei increase in size.

ℛ increases exponentially with the time proxy (Fig. 3-1F), suggesting that nurse cell

nuclei transition smoothly from an unwrinkled to a wrinkled state.

Extraction of nuclear membrane coordinates

Nuclear envelopes were segmented and their coordinates extracted using FIJI and the

MorphoLibJ plugin [103, 104]. Custom-built Matlab code [62] was used to perform

least-square fits to determine spherical harmonic coefficients up-to the cutoff mode

number 𝑙max = 25, which corresponds to an angular scale of roughly 7 ∘, as well as to

measure the LamC:Nup107 ratio over developmental time.

Images of Nup107::GFP nuclei were preprocessed using FIJI’s built-in rolling-ball

background subtraction method with a radius of 50 pixels, followed by applying a

Gaussian blur with a width of 2 pixels. Segmentation was performed for still images

using the ‘Interactive Marker-controlled Watershed’ algorithm of the MorphoLibJ

library [104], and live images were segmented using the ’Marker-controlled Watershed’

algorithm in a custom-built FIJI macro. In both cases, one seed point was used for

each nucleus and another was used for the background. Individual nuclei were then

isolated in FIJI, if necessary, and 3D coordinates saved for import to Matlab.

After segmentation, the NE surface has a multiple-pixel thickness that leads to

an absolute standard deviation error of ∼200 nm on the membrane position. This

noise appears in 𝑃𝑙 as a constant value that can become dominant at high angular
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numbers 𝑙. For NEs of radius 5𝜇m, the absolute error translates to a 5% relative

standard deviation, which gives an error on 𝑃𝑙 of about 10−6, setting the approximate

level of the noise floor shown in figures as a shaded gray area. For larger nuclei, the

noise is less of a concern as the relative error diminishes; indeed, we do not observe a

‘flattening’ of power spectra for older nuclei at larger 𝑙.

3.1.3 Fluctuating wrinkles

Nuclear surface wrinkling is a highly dynamic process [8]. By imaging individual nurse

cells at ∼40 s intervals, we observed that NE surface shapes fluctuate substantially,

with smaller features appearing and disappearing faster than larger ones (Fig. 3-1G).

Specifically, power spectra 𝑃𝑙 of repeatedly imaged nuclei changed on timescales of

minutes or faster (Fig. 3-2 and Fig. 3-3). The rotational invariance of spectra implies

that these fluctuations are not the result of whole body rotations, but instead reflect

a rapid shape dynamics of NE surfaces. Experimental limitations prevented quantifi-

cation of timescales for the entire 3D surface, but our observations are qualitatively

consistent with findings that smaller wrinkles typically decay faster [105, 57]. Further-

more, the fact that the deformation spectrum is monotonically decreasing (Fig. 3-1E)

implies that there is no preferred wavelength, suggesting that the observed NE shapes

do not correspond to fluctuations about the steady-states of buckled shells, but in-

stead reflect dynamic wrinkling across all experimentally resolved angular scales.

3.2 Elastic modeling of the nuclear envelope

Both maximum-intensity projections and spectral reconstructions show that NE wrin-

kles and creases are sharp, with narrow bent regions separated by flatter areas (Fig. 3-

1). This morphology is reminiscent of the nonlinear stress-focusing characteristic of

crumpled elastic sheets and shells such as ordinary paper sheets, which are much more

easily bent than stretched [106, 71, 107]. In particular, these geometric nonlinearities

lead to anisotropic responses when point forces are applied to the shell [107].

To rationalize the experimentally observed wrinkle morphology, we will first detail
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Figure 3-4 (previous page): Additional examples of nurse cell NE segmentation and
reconstructions. Representative examples of reconstructed surfaces (bottom row)
from segmented point clouds (top row) obtained from 3D imaging. Numbers indicate
time proxy, while color indicates deviation ∆𝑅 from the mean radius, normalized
to maximum absolute value max |∆𝑅|. The first two rows of nuclei are those in
Fig. 3-1C,D; other nuclei appear in order of ascending time proxy.
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Figure 3-5 (previous page): Fluctuating elastic shell theory predicts a scaling law
with exponent ≈ 3 for the wrinkle power spectrum, in agreement with experiments.
A, Equilibrium simulation snapshots of nuclei at temperature 𝑇eff = 10𝑇𝑒𝑞, unde-
formed radius 𝑅 = 25 𝜇m and 𝑅𝑐/𝑅 = 20, at fixed FvK number 𝛾 = 3 × 104 for
varying elastic moduli controlled by 𝑘𝑇eff/𝜅. Color indicates the normalized devia-
tion of the surface from the mean shell radius. B, Time-averaged spectra of simulated
NEs of undeformed radius 𝑅 = 25 𝜇m, 𝑅𝑐/𝑅 = 20, 𝑇eff = 10𝑇eq for different moduli
𝜅, 𝑌 at fixed 𝛾 = 3×104, showing the transition from weak nonlinearity to strong non-
linearity as bending rigidity decreases. Color bar matches the dots from A. C, Binned
averages of spectra from nuclei in nurse cells directly connected to the oocyte reveal
that shape fluctuations follow a scaling law with an exponent between −3.2 and −8/3
that is obeyed throughout development. ‘Young’ nuclei have a time proxy between
80 − 140, 𝑁 = 29 nuclei, from 12 egg chambers; ‘Old’ nuclei have a time proxy be-
tween 160 − 220, 𝑁 = 40 nuclei, from 22 egg chambers. Bars show extremal values.
Hashed area indicates approximate noise threshold for young nuclei. (See Fig. 3-2 for
comparison between nuclei at different positions in the egg chamber) D, Fixed egg
chambers expressing Nup107::RFP and stained for Lamin C, showing a decrease in
Lamin C intensity in nurse cell nuclei as egg chambers increase in age. In contrast,
Nup107::RFP intensity stays relatively constant. The same trend is observed in live
imaging of ex vivo egg chambers expressing LamC::GFP and Nup107::RFP [1]. Wrin-
kling of nuclei in younger egg chambers (all but the rightmost) is a result of fixation
and is not observed in live imaging until later stages. Arrows indicate increasing age;
egg chamber boundaries are shown in dashed outlines. Scale bar: 50 𝜇m. E, Nor-
malized Lamin C fluorescence intensity decreases by approximately 5-fold over time.
Normalization details are specified in [1]. 𝑁 = 337 nuclei from 23 egg chambers.
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in Sec. 3.2.1 the limitations of fluid membrane models that are commonly used to de-

scribe lipid bilayer membranes. We will then use the effective elastic model described

and simulated in Chapter 2 to describe the NE as a deformed spherical shell (with

undeformed radius 𝑅) parameterized by spherical coordinates r = (𝜃, 𝜑). The shell

has an isotropic elastic free energy [47, 29]

𝐹shell =

∫︁
d2r

[︂
𝜅

2
(∇2𝑓)2 +

𝜆

2
𝜖2𝑖𝑖 + 𝜇𝜖2𝑖𝑗

]︂
, (3.3)

where 𝑖, 𝑗 ∈ {𝜃, 𝜑} and using the Einstein summation convention. The energy

functional (3.3) accounts for bending stiffness through a Helfrich-like bending term

that penalizes out-of-plane deformation 𝑓 (positive when pointing inwards), and the

stretching of the membrane through the nonlinear strain tensor 𝜖𝑖𝑗. The 2D Lamé

parameters 𝜆, 𝜇 are proportional to the 2D Young’s modulus 𝑌 . The strain combines

contributions from 𝑓 and from the in-plane deformation u(r). We will also allow for

a preferred radius of curvature 𝑅𝑐 of the shell mismatched with the radius 𝑅 of the

shell 𝑅𝑐 ≥ 𝑅, which in the large-Föppl-von Kármán (FvK) regime leads to a strain

tensor 𝜖𝑖𝑗 =
1
2
(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑓𝜕𝑗𝑓)− 𝛿𝑖𝑗𝑓/𝑅𝑐.

3.2.1 Fluid membrane models are insufficient to describe nu-

clear envelopes

Fluid membrane models are commonly used to describe the mechanical behavior of

biological membranes. In this section, we discuss the linear response behaviour of

fluctuating fluid membranes. Specifically, we point out several discrepancies between

our experiments, estimates of material parameters from the literature and fluid mem-

brane theory. Together, these indicate the need for the more complex shell model

introduced above and studied in chapter 2.

Biological membranes are often modeled as fluid membranes with properties de-

scribed by the Helfrich-Canham Hamiltonian [39]

𝐻 =

∫︁
dr2

𝜅

2
(∇2𝑓)2 + 𝜎𝐴, (3.4)
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with bending modulus 𝜅, effective surface tension 𝜎 [108] and total surface area 𝐴.

Because under some small-deformations assumptions the Hamiltonian in Eq. (3.4) is

quadratic in normal displacements 𝑓 , the equipartition theorem can be readily applied

to determine the linear response power-spectrum of radial out-of-plane deformations.

For a fluctuating equilibrium steady state about a spherical surface, this well-known

power spectrum is given by [56, 108]

𝑃𝑙 =
𝑘𝑇

(𝑙 − 1)(𝑙 + 2)[𝜅𝑙(𝑙 + 1) + 𝜎𝑅2]
. (3.5)

The behavior of 𝑃𝑙 can be schematized as 𝑃𝑙 ∼ 𝑙−2 for 𝑙 ≪ 𝑙𝑐, where 𝑙𝑐 =
√︀
𝜎𝑅2/𝜅 is

the critical wave number, and 𝑃𝑙 ∼ 𝑙−4 for 𝑙≫ 𝑙𝑐. Using experimental measurements

of mechanical nuclear membranes properties (𝜅 ≈ 10−18 J and 𝜎 ≈ 0.1− 100mN/m,

[109, 52, 51]), we can estimate for a nucleus of radius 𝑅 = 5𝜇m a lower bound

𝑙*𝑐 ≈ 50 for the critical wave number. Under the reasonable assumption that the

experimentally observed reduction of lamin concentration reduces the rigidity of the

NE, the developmental progression of growing nuclei will most likely push 𝑙*𝑐 to even

larger values. For the length scale and wave number regime 𝑙 ∈ [2, 25] to which

we have experimental access, the fluid membrane model would therefore imply a

dominant 𝑙−2 scaling of the power spectrum, in stark contrast to our observations

(Fig. 3-5C, Fig. 3-2).

This contradiction, together with the experimental observation of sharp creases

that suggest nonlinear stress focusing, lends further support for the nonlinear elastic

surface model employed in this work.

The NE has been found to be stiffer than most biological membranes [109, 52, 51]

and to be well described as a thin membrane of a 3D isotropic elastic material with an

effective 3D Young’s modulus 𝐸 ≈ 1 kPa and thickness of ℎ ∼ 10−100nm. With those

parameters, the nuclear envelopes have a bending rigidity of 𝜅 = 100 − 300 𝑘𝑇eq ≈
10−18 J, where 𝑇eq is the room temperature, and a stretching rigidity, captured by

the 2D Young’s modulus, of 𝑌 ≈ 10−4 N/m [110]. Note that 𝑌 is a factor of 103

smaller than the stretching rigidity of a lipid bilayer, potentially explained by the
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presence of ‘area reservoirs’ in NEs and by transmembrane protein conformational

changes [111]. For a shell of radius 𝑅, one can define the Föppl-von Kármán (FvK)

number 𝛾 = 𝑌 𝑅2/𝜅 which describes the relative propensity of the material to bend

rather than to stretch; by construction, 𝜅 and 𝑌 are approximately related through

the effective thickness ℎ ∼
√︀

𝜅/𝑌 , which implies that a large 𝛾 ∼ (𝑅/ℎ)2 corresponds

to a thin-shell limit [29]. Using the above values, we find that the NE has a large

FvK number 𝛾 ∼ 104 − 106, comparable to that of a sheet of paper or graphene

[71]. Accordingly, the NE is more amenable to bending than to stretching, and

deformations are expected to appear as sharp wrinkles and creases, in agreement

with our observations (Fig. 3-1).

3.2.2 Langevin simulations of fluctuating shells

To compare the surface shapes and fluctuations predicted by Eq. (3.3) with our ex-

perimental data, we simulated the equilibrium Langevin PDE derived from this free

energy. The simulations account for hydrodynamic coupling and both passive and

active fluctuations, which are modeled by an effective temperature 𝑘𝑇eff . Despite the

model’s minimal character, the numerically obtained shapes (Fig. 3-5A) are qualita-

tively similar to those in the experiments (Fig. 3-1D). In the experimentally accessible

range of low-to-intermediate angular wave numbers 3 ≲ 𝑙 ≲ 11, the angular spectra

extracted from the simulations at different ratios of 𝑘𝑇eff/𝜅 ∈ [0.05, 0.5] (Fig. 3-5B)

and experimental data (Fig. 3-1E) also show an approximately similar decay, suggest-

ing that the minimal elastic shell model in Eq. (3.3) captures relevant features of the

NE, providing a basis for further analysis and predictions.

The fact that the power spectrum 𝑃𝑙 does not change qualitatively when the nu-

clear radius 𝑅 increases suggests that the preferred curvature radius 𝑅𝑐 is rather large.

In simulations, we thus set the preferred curvature radius to 𝑅𝑐 = 20𝑅 (Sec. 2.3).

Consistent with experiments (Fig. 3-5C) and with Sec. 2.4.1, the appearance of a

plateau region in the power spectrum 𝑃𝑙 at small angular numbers is suppressed

for this choice of 𝑅𝑐 (Fig. 2-1). Indeed, the typical length scale above which finite-

curvature effects become visible is 𝐿el = 𝑅𝛾−1/4
√︀
𝑅𝑐/𝑅, which is for FvK number
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𝛾 = 104 and 𝑅𝑐 = 20𝑅 approximately equal to 𝑅/2.

3.2.3 Scaling results for elastic thin shells

A main feature of the experimentally measured spectra is that both younger and

older nuclei exhibit a similar asymptotic power law decay in the limit of small angular

numbers 𝑙 ≤ 10 (Fig. 3-5C). To rationalize this observation, we first note that the

scaling behavior in our experiments deviates from the basic linear response theory

predictions, which is expected because, even for younger nuclei, the radial fluctuations

𝑓 typically exceed the NE thickness ℎ ∼ 10−3𝑅 (Fig. 3-1C-F). As we will derive in

Sec. 2.4, for small fluctuations 𝑓 ≪ ℎ ≪ 𝑅 and small thermodynamic pressure

𝑝 ≪ 𝑝𝑐 = 4
√
𝜅𝑌 /𝑅2

𝑐 , where 𝑝𝑐 is the critical buckling pressure of the sphere, linear

response theory predicts that the power spectrum 𝑃𝑙 exhibits a plateau for 𝑙 ≤ 𝑙𝑐 and

falls of as 𝑙−4 for 𝑙≫ 𝑙𝑐 with a crossover value 𝑙𝑐 ≈ 𝛾1/4
√︀

𝑅/𝑅𝑐 [29, 112], which is not

seen in our experiments (Figs. 3-1E and 3-5C). Indeed, classical shell theory [66] states

that nonlinear effects become important when the out-of-plane deformations 𝑓 become

comparable to or exceed the shell thickness ℎ, which is generally the case in our data

where ℎ ≪ 𝑓 ≪ 𝑅 (Fig. 3-1C,D,G). Nonlinear analysis of elastic plates and shells

has a long history [41, 46] and has seen major advances in the last decade [47, 29],

motivated in part by the discovery of graphene [113]. As demonstrated above, the

FvK number of the NE is comparable to that of graphene, so we can borrow and

apply recent theoretical results to understand the fluctuation spectra of the NE.

Specifically, a detailed renormalization group (RG) analysis [29, 114] of Eq. (3.3)

showed that, for sufficiently small plate fluctuations, elastic nonlinearities lead to

a modified asymptotic decay of 𝑃𝑙 ∝ 𝑙−3.2, consistent with our experimental and

simulated data (Figs. 3-1E and 3-5B,C) and with previous experiments in red blood

cell spectrin networks [115]. Notably, earlier studies [46, 29, 47] also predicted that the

interplay of elastic nonlinearities and fluctuations can cause the spontaneous collapse

of sufficiently large shells, suggesting a physical mechanism that could contribute to

the eventual breakdown of the nurse cell NE when these cells donate their contents

to the oocyte [116, 30].
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As we showed in Sec. 2.5, the previously mentioned RG methods can give rise to

divergences in large deformation regimes, where nonlinearities dominate the shell’s

response (Fig. 2-2). To obtain an analytical prediction for the scaling in the larger-

deformation regime ℎ≪ 𝑓 ≪ 𝑅 < 𝑅𝑐, relevant to older nuclei in our experiments, we

performed an asymptotic dimensional analysis on Eq. (2.38) that provides additional

insight into how NE wrinkling can be controlled. To that end, we added to the elastic

free energy 𝐹shell an effective pressure term 𝐹𝑝 = −
∫︀
d2r 𝑝eff𝑓 , where 𝑝eff accounts

for a normal load, which may arise from osmotic pressure differences or microtubule-

induced local stresses. Denoting by 𝐿 the characteristic surface variation length scale

and omitting numerical prefactors that depend on details of the adopted thin-shell

modeling approach (Sec. 2.4.1), one finds for shells of thickness ℎ ∼
√︀

𝜅/𝑌 that the

various free-energy components give scaling contributions of the form [29]

𝛿𝐹

𝑌
∼
(︂
ℎ

𝐿

)︂2(︂
𝑓

𝐿

)︂2

+

(︂
𝑓

𝑅𝑐

)︂2

+
𝑓

𝑅𝑐

(︂
𝑓

𝐿

)︂2

+

(︂
𝑓

𝐿

)︂4

− 𝑝eff𝑓

𝑌
. (3.6)

The first term corresponds to bending, and the second and third terms arise from the

non-zero curvature of the undeformed shell. The fourth term describes the nonlinear

response associated with changes in the Gaussian curvature of the shells. For well-

developed wrinkles with 𝑓 ≫ ℎ, the first term can be neglected as it is smaller than the

fourth term. Considering wrinkle amplitudes 𝑓𝑙 at the spatial length scale 𝐿 ∼ 𝑅/𝑙,

where 𝑙 is the angular wave number, the remaining terms can be recast as

𝛿𝐹𝑙

𝑌
∼
(︂

𝑓𝑙
𝑅𝑐

)︂2

+
𝑓𝑙
𝑅𝑐

(︂
𝑓𝑙
𝑅

)︂2

𝑙2 +

(︂
𝑓𝑙
𝑅

)︂4

𝑙4 − 𝑝eff

𝑌
𝑓𝑙. (3.7)

Since 𝑅𝑐 > 𝑅, the first two terms will be dominated by the 𝑙4-term implying that,

at steady-state, this quartic term and the pressure term must balance out, consistent

with a corresponding earlier result for flat plates with 𝑅𝑐 = ∞ [66]. We thus find

𝑓𝑙 ∼ (𝑝eff/𝑌 )1/3(𝑅/𝑙)4/3, and hence for the angular power spectrum 𝑃𝑙 ∼ (𝑓𝑙/𝑅)2 [see

Eq. (3.2)] the scaling law

𝑃𝑙 ∼
(︂
𝑝eff𝑅

𝑌

)︂2/3

𝑙−8/3. (3.8)
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In this scaling regime, the surface deformation dynamics is dominated by the shell’s

resistance to stretching, which causes changes in its Gaussian curvature [67]. Both our

experimental data (Fig. 3-5C, Fig. 3-2) and spherical shell simulations (Fig. 2-1) show

an asymptotic spectral decay 𝑃𝑙 ∝ 𝑙−𝛼 with an exponent 𝛼 in the range 8/3 < 𝛼 < 3.2,

predicted by this scaling analysis and renormalization group calculations.

3.3 Experimental validation of the nonlinear thin-

shell model

Both Eq. (2.41) and the robustness of the experimentally observed scaling behavior

in time (Fig. 3-5C, Fig. 3-2), and under different chemical and physical pertur-

bations (Fig. 3-6), suggests the emergence of NE wrinkling is primarily controlled

by the material properties and the effective pressure 𝑝 induced by thermal and by

active fluctuations. For Gaussian fluctuations with effective temperature 𝑇eff, previ-

ous theoretical work [47, 29] showed that 𝑝eff ∼ 𝑝𝑐(𝑘𝑇eff)
√
𝛾 ∼ (𝑌/𝑅)(𝑘𝑇eff/𝜅), with

𝑝𝑐 = 4
√
𝜅𝑌 /𝑅2 the critical buckling pressure for a homogeneous spherical shell. If in

addition to a fluctuating pressure 𝑝′, there are uniform loads, such as those caused

by osmotic pressure differences, we find 𝑝eff = 𝑝′(𝑅/⟨𝑅⟩)3 accounts for excess area

contributions to the amplitude (as long as the shell is not stretched taut; SI Sec. 2.5).

Inserting these results into Eq. (2.41), our scaling analysis predicts that wrinkle for-

mation can be tuned by changing the bending rigidity 𝜅, the activity 𝑘𝑇eff and the

osmotic pressure balance of the cell. To test these predictions, we performed three

complementary types of experiments that explored the effects of material changes

during nuclear development, as well as controlled perturbations.

To investigate the role of the NE’s material structure during wrinkle formation,

we performed live-imaging experiments in which we measured the concentration of

structural components that determine nuclear stiffness. Elastic properties of the

NE are known to depend strongly on the nuclear lamina [117], a roughly 10-100 nm

thick meshwork of intermediate filaments that abuts the NE’s inner membrane [87].
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Drosophila have two lamin proteins, Lamin C (a developmentally-regulated A-type

lamin similar to mammalian Lamin A/C, [118, 119]) and Lamin Dm0 (a B-type lamin

present in most cell types). Both through live imaging of egg chambers simultane-

ously expressing a fluorescently-labeled nuclear pore complex protein (Nup107) and

Lamin C, and through fixed imaging with an antibody against Lamin C, we found

that, as egg chambers age and nurse cells grow in size, the ratio of Lamin C to Nup107

decreases (Fig. 3-5D,E;) while the intensity of Nup107 remains roughly constant .

Nonetheless, Lamin C continues to appear alongside Nup107 at the sites of wrinkles

[1]. These observations suggest that reduction in Lamin C concentration causes soft-

ening of the NE, and that reduced bending rigidity 𝜅 increases wrinkle amplitudes

[117] as predicted by Eq. (2.41).

In addition to material properties, active fluctuations [120] or hydrodynamic ef-

fects [121, 79] can substantially affect buckling and pattern formation in shells and

membranes [122, 123, 80]. To explore how changes in cytoskeleton-mediated intra-

cellular activity [124] influence the spectrum of NE deformation, we performed ad-

ditional perturbation experiments targeting the cytoplasmic microtubule and actin

networks. Previous work showed that incoherent microtubule dynamics can cause

fluctuations of the NE during cellularization of the Drosophila embryo [125]. Con-

sistent with this earlier report and with the predictions of Eq. (2.41), we found that

inhibition of microtubule polymerization by the small-molecule inhibitor colchicine

notably reduces the amplitude of fluctuations (Fig. 3-6A). Colchicine treatment also

decreased nucleus volume by 5%-20%; however, as a sudden volume decrease for a

similar surface area would lead to a rougher NE in the absence of other factors rather

than a smoother NE, it is unlikely that volume reduction explains the effects seen

upon colchicine treatment. Furthermore, colchicine addition reduced the motion of

cytoplasmic contents of the cells, suggesting microtubule-mediated active fluctuations

contribute to NE wrinkling. In contrast, perturbation of actin by cytochalasin D did

not unwrinkle the NE [1], suggesting cytoplasmic F-actin is not a major contribu-

tor to NE wrinkling during the developmental stages studied here. The observation

that inhibition of microtubule polymerization reduces the wrinkle amplitude but does
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not change the spectral scaling behavior (Fig. 3-6D) suggests that, to leading order,

non-equilibrium contributions to NE fluctuations arising from microtubule dynamics

can be modeled through an effective temperature 𝑘𝑇eff [77, 57]. We also tested other

mechanisms known to contribute to NE deformation, such as impingement by cy-

toskeletal filaments or changes to chromatin structure, but found Lamin C decrease

to be the dominant factor correlating with NE wrinkle formation [1].

Eq. (2.41) also suggests that osmotic pressure variations, by tuning the available

excess area [70, 69], can be used to enhance or reverse wrinkle formation by up- or
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Figure 3-6 (previous page): Perturbation experiments confirm robustness of observed
scaling laws and reveal reversal mechanisms for NE wrinkling. A, MIP of one egg
chamber before (top) and after (bottom) inhibition of microtubule polymerization
by colchicine, showing that microtubule disruption can reverse wrinkling. B, MIPs
before and after hypertonic shock using an external culture medium of 1.5x osmolarity,
showing an increase in wrinkling. C, MIPs before and after hypotonic shock using
an external culture medium of 0.5x osmolarity, showing a decrease in wrinkling. Egg
chambers in A, B, and C have time proxies of 171, 174, and 171, respectively. D,
The power spectrum after microtubule inhibition by colchicine still follows a power
law with roughly the same exponent, with a reduction of roughness by a factor of 2
(inset). 𝑁 = 49 pre-colchicine and post-colchicine nuclei, from 6 egg chambers. For
box plots, plus signs denote mean, middle line is the median, top and bottom edges
of the box are the upper and lower quartiles, and whiskers span from 9% to 91% of
the data range. E, In the presence of increased inwards (hypertonic) or outwards
(hypotonic) pressure, the overall shape of the power spectrum remains approximately
conserved. Hypotonic shock treatment reduces the wrinkle amplitudes, providing a
reversal mechanism for NE wrinkling. Spectra were computed using 49 control, 15
hypertonic, and 30 hypotonic nuclei in the time proxy range 165−185, from 6, 3, and
6 egg chambers, respectively, using nuclei from all nurse cells rather than only those
directly connected to the oocyte. Scale bars: 20 𝜇m.

down-shifting the deformation spectrum without changing its characteristic decay. To

test this prediction, we performed osmotic shock experiments. Adding salt to the am-

bient culture medium (hypertonic shock) increases the total external pressure on the

NE, which drives fluid out of the nucleus and leads to visibly more wrinkled surfaces

(Fig. 3-6B,E). Conversely, reducing the salt concentration in the culture medium (hy-

potonic shock) decreases the external pressure and leads to a substantial smoothening

of wrinkled NE (Fig. 3-6C,E). In both cases, NEs maintained their altered morphol-

ogy for 15-30 minutes before cell regulatory mechanisms began to compensate for the

osmotic changes and nuclear shapes trended back towards their pre-shock state. In

agreement with Eq. (2.41), the spectral slopes remain approximately preserved for

both types of shocks. Taken together, these experimental results support the hypoth-

esis that wrinkle morphology and dynamics of deformation of the nurse cells’ NE are

dominated by a nonlinear elastic response rather than liquid-like behavior.

NE wrinkles have been associated with biological processes including nuclear posi-

tioning [8], and as a mechano-sensitive element of the cell, the NE can regulate chro-
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matin dynamics and force-induced transcription factor movement through nuclear

pore complexes [126, 127, 128, 83]. Here we observed an increase in NE wrinkling

during egg chamber growth that correlates with an increase in size of nuclei along

with a decay in Lamin C concentrations. Although NE wrinkling may have conse-

quences for the nurse cells’ chromatin organization and transcriptional states, NE

wrinkles could also simply result from concomitant nucleus growth and Lamin C den-

sity decrease in cells fated to die to enable egg development. It is however tempting

to propose that NE wrinkles could play the role of a tension buffer: tension applied

to the NE would initially unfold the wrinkles before leading to significant in-plane

strain that might cause NE rupture. This two-stage response to tension has indeed

been observed during cell spreading, in which a NE stretch-mediated response occurs

only after the initially-wrinkled nucleus flattens by a certain amount [74, 84].

3.4 Conclusion

Prior work has shown that nurse cells in stage 5-9 egg chambers often have a high level

of intranuclear actin and that this level is lower from stage 10 onwards (the wrinkles

studied here become obvious partway through stage 9) [129]. Additionally, in other

contexts such as the Drosophila larval muscle, Lamin C mutants can induce forma-

tion of intranuclear actin rods and potentially deform the nuclei [130], suggesting

changes in intranuclear actin levels or organization may also play a role in wrinkling.

However, whether they would increase or decrease wrinkling is not immediately clear;

characterizing the role of intranuclear actin in the observed NE wrinkling is therefore

a promising avenue of future research. Another future prospect is to perturb Lamin

C levels to investigate how NE wrinkling changes when Lamin C density is exoge-

nously modified, allowing further comparisons to theory and clarifying whether the

wrinkles have biological function. Due to complications with existing fly reagents for

perturbing Lamin C levels in the female germline, increasing or decreasing expression

of Lamin C in the nurse cell NEs proved challenging [1]. We further note that our

continuum model is by necessity a simplification of the complex NE biology and that
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our measurements cannot identify features that only include single NE membrane

layers or are below the resolution of confocal light microscopy.

To conclude, our experimental and theoretical results suggest that essential qual-

itative aspects of NE wrinkling can be understood within the framework of nonlinear

elastic thin-shell mechanics. As NEs have a Föppl-von Kármán number similar to

both graphene and paper [71], we expect our theoretical observations to be relevant

for these and other similar systems whenever fluctuations push membranes and shells

into larger deformation regimes. With the power-law exponent set by the elastic be-

havior of the shell, the amplitude of wrinkles is controlled by the effective pressure,

which we have manipulated here through osmotic shocks and microtubule inhibition.

Our findings therefore raise the question of whether cellular control over pressure

could be a generic biophysical mechanism for avoiding undesirable consequences of

nuclear wrinkling [86, 84, 73].
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Chapter 4

Hydraulic and active transport in

Drosophila oogenesis

The contents of this chapter have been previously published as J. Imran Alsous, N.

Romeo, J. A. Jackson, F. M. Mason, J. Dunkel and A. C. Martin, Proc. Natl. Acad.

Sci. U.S.A. 118 (10) e2019749118 (2021), Ref. [30]. Experimental data and figures

are courtesy of Jasmin Imran Alsous and Jonathan A. Jackson.

Fluid flows play an important role in biological development, from the definition

of an organism’s body plan [131] and vertebrate organogenesis [132] to cytoplasmic

streaming [133] and tissue morphogenesis [134]. In this chapter, we investigate the

dynamics of a robust fluid transport process which occurs during the development

and growth of the egg cell, also known as an oocyte. Across diverse species, oocytes

develop within germline cysts alongside nurse-like sister germ cells [135, 136]; a key

juncture in oogenesis occurs when these sister cells transport their cytoplasm to the

oocyte prior to fertilization. As a result, the oocyte grows as its sister cells regress

and die [135, 136, 137, 138]. Although critical for fertility and early embryonic life,

the biological and physical mechanisms underlying this transport process are poorly

understood. We will find here that the geometry of the nurse cells is a key component

of this important transport process.

In Drosophila melanogaster, the oocyte develops within an egg chamber, a mul-

ticellular structure comprising a germline cyst that is covered by an epithelium; the
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germline cyst itself comprises an oocyte and 15 nurse cells (NCs) that are intercon-

nected through intercellular bridges called ring canals (Fig. 4-1A) [94, 139, 140]. Once

the oocyte grows to ∼50% of the egg chamber’s volume, the NCs transport their cy-

toplasm into the oocyte in a process called NC dumping; with a diameter of ∼10

𝜇m, the ring canals are large enough to permit passage of most cytoplasmic contents

(Fig. 4-1B) [141]. It has been proposed that NC dumping is driven by global cor-

tical contractile forces generated through interactions of non-muscle myosin-II with

actin filaments, which together form a complex known as actomyosin. According to

this hypothesis, the increased contractility brings about an increase in pressure, caus-

ing cytoplasm to be ‘squeezed’ out of the NCs and into the oocyte [142, 143, 144].

Indeed, mutants in the myosin regulatory light chain (RLC), encoded for by the

spaghetti squash (sqh) gene, do not complete NC dumping [145, 146], suggesting a

critical role for actomyosin dynamics in this process. However, in the absence of

time-resolved quantitative data, actomyosin’s role in promoting the complete and

directional transport of cytoplasm has remained unclear.

To investigate this process, we used live imaging of egg chambers to reconstruct the

intercellular transport pattern within the 16-cell germline cluster and corresponding

actomyosin activity during NC dumping. We found that our experimental observa-

tions, namely the intercellular directional transport pattern and time scale of this

transport phenomenon, in both Wild-type (WT) and mutants, are best captured by

a networked flow model inspired by the famous two-balloon problem. Our results

also reveal a novel role for actomyosin dynamics during NC dumping: appearing as

surface contraction waves, which have been prominently observed in a variety of bi-

ological systems [147, 148, 149], changes in actomyosin activity in the latter phase

of NC dumping are required for enabling continuous, pressure-driven flow and com-

plete transport. Combined with other recent studies [150], our results demonstrate

the importance of both hydraulic transport and biological mechanisms in regulating

multicellular collective behavior during oocyte development in higher organisms.

90



Figure 4-1 : Nurse cell (NC) dumping
occurs in two phases. A. 3D-rendered
confocal image of an egg chamber show-
ing 15 anterior (A) NCs (gray: Nuclear
pore complex, NPC ) and one posterior (P)
oocyte (black: NPC ) connected through
ring canals (red: Pavarotti, Pav). B.
Schematic illustration of NC dumping:
NCs shrink as their cytoplasm flows into
the oocyte through ring canals. C. 3D-
rendered time-lapse confocal images of an
egg chamber expressing Clip170::GFP un-
dergoing NC dumping. Blowups show a
nurse cell first shrinking uniformly (cyan
arrowheads; Phase I) before undergoing
spatially nonuniform shape deformations
and bleb-like protrusions (orange arrow-
heads; Phase II) that imply increased acto-
myosin contractility. Scale bar in A and C:
40 𝜇m. D. Quantification of changes in cell
size (gray) and shape (i.e. fractional devi-
ation from a circle; Fig. S2, C and D) prior
to NC dumping (Pre-), and during Phases
I and II. Onset of non-uniform deforma-
tions (dashed cyan line) occurs ∼40 min-
utes into NC dumping (𝑁 = 4). E. Coeffi-
cient of variation of cortical Sqh intensity
during NC dumping, showing a transition
(dashed red line) from uniform (𝑁 = 412;
Phase I) to non-uniform (𝑁 = 122; Phase
II) distribution at ∼40 minutes, concomi-
tant with the onset of dynamic cell shape
deformations.
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4.1 Nurse cell dumping proceeds in two distinct phase

Using ex vivo live imaging of egg chambers with simultaneously labeled membranes

(Ecad::GFP or Resille::GFP), myosin-II (sqh::mCh), and cytoplasm (Clip170::GFP),

we determined the dynamics of NC dumping and corresponding patterns of acto-

myosin activity. First, through size measurements of the oocyte and the 15 NCs [30],

we found that NC dumping unfolds over the course of ∼100 minutes, a period ∼3-fold

longer than previously reported through indirect estimates [151, 96]. We also found

that NCs empty ∼75% of their volume into the oocyte through spatially uniform

shrinkage of the cells, in the absence of nonuniform cell shape changes and membrane

blebbing that imply contractile force generation (Phase I) [152, 153]. In contrast,

transport of the remaining cytoplasm (Phase II) is accompanied by dynamic and

persistent deformations of NC shape along with blebbing (Fig. 4-1, C and D).

Similarly, we found that NC dumping onset occurs without changes to the level

and localization pattern of cortical myosin as compared to the previous developmental

stage. NCs’ cortical myosin reorganizes from a uniform to a nonuniform dynamic

cortical pattern only ∼40 minutes into NC dumping, coincident with the onset of

dynamic NC shape deformations (Fig. 4-1E). Importantly, no such changes in cortical

distribution were observed in control membrane markers [30]. NC dumping therefore

occurs in two distinct phases, only the latter of which coincides with changes in

actomyosin distribution and hallmarks of increased contractility.

4.2 Phase I dynamics are captured by a flow-network

model

We therefore explored mechanisms whereby directional intercellular fluid flow can

occur in the absence of increased contractility and peristalsis-like cell deformations in

the NCs. To that end, we first determined the spatiotemporal pattern of intercellular

cytoplasmic transport in the 16-cell network. We found that NC dumping unfolds in

a hierarchical manner that mirrors the cells’ size and spatial arrangement. While the
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oocyte is the largest cell in the egg chamber, the NCs, which are arranged in four

layers (L1-L4; Fig. 4-2A), also exhibit a descending cell size order according to their

distance from the oocyte [154, 155, 156]. Our data show that NCs directly connected

to the oocyte (L1 cells) are first to transport their contents into the oocyte, followed

in order by smaller NCs in layers L2-L4 (Fig. 4-2, B and C). Therefore, smaller

cells in the network empty their contents into larger ones prior to changes in myosin

localization and corresponding cell shape deformations.

Driven by these experimental observations, we developed a networked fluid flow

model that was inspired by the two-balloon problem: if two identical balloons in-

flated to different volumes are allowed to exchange air, the smaller balloon will empty

its contents into the larger balloon (Fig. 4-2D). This seemingly counter-intuitive

phenomenon can be explained by the Young-Laplace law, which states an inverse

relationship between pressure 𝑝 and radius 𝑅 for a sufficiently large balloon. Tak-

ing into account the hyperelastic behavior of rubber, the pressure inside the inflated

balloon is then given by:

𝑝 =
2𝛾

𝑅

(︃
1−

(︂
𝑅0

𝑅

)︂6
)︃

(4.1)

where 𝑅0 is the radius of the uninflated balloon and 𝛾 is its surface tension (Fig.

4-2D) [157, 158].

To investigate whether an analogous model can explain the hierarchical transport

observed in Phase I, we approximated each cell by a sphere [159] with time-dependent

radius 𝑅𝑖(𝑡). The actomyosin cortex was assumed to be incompressible and described

as an effective neo-Hookean material under static loading. In this phenomenological

description, the effective cell surface tension 𝛾 arises from the contributions of both

in-plane tension of the plasma membrane and actomyosin cortical tension [160]. Ex-

tending the two-balloon model to the 16-cell network in the germline cyst (Fig. 4-2E),

the pressure-driven flux 𝐽𝑖𝑗 from cell 𝑗 to 𝑖 through an approximately cylindrical ring

canal with hydraulic conductance 𝐺𝑖𝑗 is

𝐽𝑖𝑗 = 𝐺𝑖𝑗(𝑝𝑗 − 𝑝𝑖). (4.2)
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Using experimentally determined cell sizes at onset of NC dumping as initial condi-

tions [155], we numerically solved the transport equations for the evolution of cell

volumes 𝑉𝑖 in the 16-cell tree,

d𝑉𝑖

d𝑡
=
∑︁
⟨𝑖,𝑗⟩

𝐽𝑖𝑗 =
∑︁
⟨𝑖,𝑗⟩

𝐺𝑖𝑗(𝑝𝑗 − 𝑝𝑖) (4.3)

where the sum runs over connected cell neighbors 𝑖 and 𝑗. Before discussing the

results of this model, we first detail the assumptions leading to the model defined

by Eqs (4.1) and (4.2), and the protocol used to simulate these equations and adjust

their parameters.

4.2.1 Details of the networked flow model

The Drosophila germline cyst forms a stereotypical 16-cell tree that are connected

by circular openings that let cytoplasm flow during the dumping stage. We will

approximate in first instance the ring canal connecting cells 𝑖 and 𝑗 by a small

cylindrical pipe of radius 𝑟𝑖𝑗 and length 𝐿. We will take the viscosity of cyto-

plasm in Drosophila to be everywhere equal to its in vivo estimate as 𝜇 ≈ 1 Pa·s
[161]. At the characteristic sizes of 𝑎 = 10−6 m and flow speeds 𝑈 = 10−6m/s

of this flow, we are safely in a low Reynolds number regime 𝑅𝑒 = (𝜌0𝑈𝑎)/𝜇 ≈
(103kg)/m3 × (10−6m/s) × (10−6𝑚)/(1𝑃𝑎 · 𝑠) = 10−9 ≪ 10−3, with 𝜌0 the density

of the cytoplasm. The fluid flow through the ring canals is hence assumed to be

an incompressible Poiseuille flow. In this case, the volume flux 𝐽𝑖𝑗 from cell 𝑗 to

𝑖 is proportional to the difference in their respective pressures (𝑝𝑗 − 𝑝𝑖), with the

proportionality constant given by the hydraulic conductance 𝐺𝑖𝑗.

The change in the volume of cell 𝑖 is then determined by the total fluxes in and

out of the cell:
d𝑉𝑖

d𝑡
=
∑︁
⟨𝑖,𝑗⟩

𝐽𝑖𝑗 =
∑︁
⟨𝑖,𝑗⟩

𝐺𝑖𝑗(𝑝𝑗 − 𝑝𝑖) (4.4)

Here, the sum runs over the set of cells 𝑗 connected to cell 𝑖 by ring canals. Sum-

ming over all the cells, one can verify that the total cytoplasmic volume is conserved
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throughout the germline cyst, i.e.
∑︀

𝑖
d𝑉𝑖

d𝑡
= 0 at all times.

As announced above, we model each cell 𝑖 as a spherical ‘balloon’, with interior

pressure 𝑝𝑖 relative to the homogeneous pressure outside given by the modified Laplace

pressure law due to Merritt and Weinhaus [157]:

𝑝𝑖 =
2𝛾

𝑅𝑖

(︃
1−

(︂
𝑅0,𝑖

𝑅𝑖

)︂6
)︃

(4.5)

Here, 𝑅𝑖 = 3𝑉
1/3
𝑖 /4𝜋 is the radius of the 𝑖-th balloon, and 𝛾 is the surface tension

of the shell. To gain intuition about the behavior of this pressure law, consider two

balloons (or two cells) that are connected by an open canal. There are two possible

equilibrium configurations for which the pressure in both balloons is equal. In the

first case, both balloons are of equal size and the system does not deviate from its

initial configuration. In the second case, the balloons assume unequal sizes; that

is, an initial size imbalance will be amplified until the pressures balance out. For

instance, assuming that initially both balloon radii are larger than 𝑅0, the initially

larger balloon will grow to a radius 𝑅large ≫ 𝑅𝑝, whereas the other will shrink down

to a radius 𝑅small < 𝑅𝑝 where 𝑅𝑝 = 71/6𝑅0 ≈ 1.38𝑅0 is the radius at maximum

pressure. Note that as 𝑅𝑖 grows relative to the zero-pressure radius 𝑅0,𝑖, one recovers

the usual Laplace pressure law, 𝑝𝑖 = 2𝛾/𝑅𝑖.

Alternative pressure laws While the microscopic nature of a nurse cell is much

more complex than a rubber balloon, cells can be considered effectively viscoelastic,

with a filamentous cytoskeleton bearing similarities to crosslinked semiflexible poly-

mer networks such as rubber [124]. Merritt and Weinhaus obtained the above pressure

law for the case of an isothermal spherical rubber balloon, using a constitutive equa-

tion [157], first derived by James and Guth for rubber in 1943 [162]. In fact, as shown

previously [158], one would obtain the same functional form for the pressure law for

a neo-Hookean material, which itself is a particular case of a Mooney-Rivlin material

for small enough extensions. Mooney-Rivlin materials are generally considered to be

appropriate models of incompressible rubber-like materials and have been widely used
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to describe biological tissues, including the cellular cortex [163]. If we were to relax

the assumption of incompressibility, another family of constitutive relations would

follow the Blatz-Ko model [158] and more complex variants. Since cells are usually

considered more fluid-like than solid [164], the assumption of incompressibility is rea-

sonable, rendering the Merritt and Weinhaus law an appropriate framework for this

problem.

From a more formal viewpoint, to illustrate how a different microscopic model

would provide a different power law correction to Young-Laplace’s law, consider for

instance a spherical shell of radius 𝑅 consisting of particles that interact according

to an repulsive short-range pair potential 𝑉 (x − y) = −𝑔𝛿2(x − y). Assuming the

particles’ surface density is uniform 𝜌(𝑥) = 𝜌 = 𝑁/(4𝜋𝑅2), the energy contribution

of this interaction is:

𝐹 =
1

2

∫︁
d2xd2y𝜌(x) 𝜌(y)𝑉 (x− y) = −𝑔

2
4𝜋𝑅2𝜌2 (4.6)

In the presence of a surface tension, the differential of free energy would be, at constant

temperature,

d𝐹 = −𝑝d𝑉 + 𝛾d𝐴 (4.7)

where d𝐴 is the variation in area. The pressure as a function of radius would then

be given by

𝑝 = −𝜕𝐹

𝜕𝑉
+ 𝛾

d𝐴

d𝑉
=

2𝛾

𝑅
− 𝑔𝑁2

8𝜋2

1

𝑅5
=

2𝛾

𝑅

(︃
1−

(︂
𝑅0

𝑅

)︂4
)︃

(4.8)

with 2𝛾𝑅4
0 = 𝑔𝑁2/(8𝜋2) . Here we see that the repulsive interaction potential ends

up contributing a 1/𝑅𝑛 correction to Laplace’s law.

Different microscopic models thus lead to different regularizations of Young-Laplace’s

law at small sizes. To investigate whether different ‘elastic’ 1/𝑅𝑛 terms provide qual-

itative agreement with the data, we ran different simulations with varying integer

values of 𝑛. While the slopes of curves varied, the directionality and layer-wise hier-

archy of dumping order was preserved, and we settled for 𝑛 = 6 corresponding to the
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‘balloon’ law Fig. 4-3B.

Hydraulic conductance and surface tension-driven flow feasibility Nurse

cells in the germline cyst are connected by ring canals. Assuming Poiseuille-type flow

[163], the hydraulic conductance 𝐺 of a cylinder of radius 𝑟 and length 𝐿 is given by:

𝐺 =
𝜋𝑟4

8𝜇𝐿
(4.9)

We use this formula as an initial guess for the hydraulic conductance 𝐺𝑖𝑗 between

cells 𝑖 and 𝑗 at the onset of NC dumping, adopting typical parameters 𝑟 ≈ 5 𝜇m

and 𝐿 ≈ 2 𝜇m inferred from our experimental imaging data. However, the Poiseuille

approximation is only valid for 𝐿 ≫ 𝑟, and we expect the Poiseuille approximation

to underestimate the actual conductance. In our simulations detailed in Sec. 4.2.2,

we therefore scanned conductance values in the vicinity of the Poiseuille value.

To test whether such a surface tension-driven flow model could capture the ob-

served dynamics of intercellular networked transport through ring canals, we first

estimated the minimal effective surface tension required for Laplace pressure-driven

flow at magnitudes comparable to those observed experimentally. The relative con-

tributions of cortical cytoskeleton versus plasma membrane to cell surface tension

are known to vary [164]. Here, we combine both contributions into a single effective

surface tension parameter 𝛾 that can be estimated from measurable quantities as

described below:

𝛾 =
4𝜇𝐿𝑅𝐽

𝜋𝑟4
(4.10)

To estimate an upper bound on 𝐽 , the magnitude of flux through a single ring canal,

we used the steepest rate of change in cell volume (Fig. 4-2C), multiplied it by the

average volume of a layer 1 cell at NC dumping onset and obtained 𝐽 = 40 𝜇m3/s.

Using 𝜇 ≈ 1 Pa·s, 𝐿 = 2 𝜇m, 𝑅 ≈ 30 𝜇m, 𝐽 = 40 𝜇m3/s, 𝑟 = 5 𝜇m, we find a value

of approximately 4 pN/𝜇m for 𝛾. This estimate for 𝛾 is at the lower end of literature

reported values [165], consistent with the known fact that the nurse cell cluster have a

relatively low basement membrane stiffness [166]. We therefore contend that surface
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tension is sufficient for driving the observed transport dynamics.

In our subsequent calculations, we assumed that cell surface tension is constant

in time for all cells as transport unfolds, which is supported by previous studies

showing that plasma membrane tension is actively buffered, for instance through

endocytosis [167, 168]. We also assume that cell surface tension is equal for all cells,

justified by the fact that the cortical cytoskeletal network is invariant across cells

within the germline cluster, and that it does not appear to be significantly altered

during the first phase of NC dumping, that is during the phase of surface tension-

driven flow.

Additionally, to account for cell-to-cell variability in effective cell surface tension,

we explored the effects of fluctuations of surface tension between cells in the model.

To this end, we first adjusted the model to the experimental data, and subsequently

allowed for approximately 10% surface tension fluctuations to account for variations

in shape, basement membrane stiffness and other factors of cell-to-cell variability

(Sec. 4.2.2).

Dimensionless equations Writing out Eq. (4.4) in full yields:

d𝑉𝑖

d𝑡
=
∑︁
⟨𝑖,𝑗⟩

𝜋𝛾𝑟4𝑖𝑗
4𝜇𝐿

[︃
1

𝑅𝑗

(︃
1−

(︂
𝑅0,𝑗

𝑅𝑗

)︂6
)︃
− 1

𝑅𝑖

(︃
1−

(︂
𝑅0,𝑖

𝑅𝑖

)︂6
)︃]︃

(4.11)

To rewrite this equation in nondimensionalized form we define the characteristic

time-scale 𝜏0 = 4𝜇𝐿/(𝜋𝛾) and length scale 𝑙0 such that the initial oocyte volume is

100𝑙30 = 106 𝜇m3, yielding 𝑙0 ≈ 20 𝜇m. Using our estimate for 𝛾 from above, we find

𝜏0 ≈ 0.6 s. Defining the dimensionless radius �̂�𝑖 = 𝑅𝑖/𝑙0, time �̂� = 𝑡/𝜏0, and volume

𝑉 𝑖 = 𝑉𝑖/𝑙
3
0, the dynamical equation takes the dimensionless form

d𝑉 𝑖

d�̂�
=
∑︁
⟨𝑖,𝑗⟩

(︂
𝑟𝑖𝑗
𝑙0

)︂4
⎡⎣ 1

�̂�𝑗

⎛⎝1−
(︃
�̂�0,𝑗

�̂�𝑗

)︃6
⎞⎠− 1

�̂�𝑖

⎛⎝1−
(︃
�̂�0,𝑖

�̂�𝑖

)︃6
⎞⎠⎤⎦ (4.12)

where the dimensionless pressure is given by �̂�𝑖 = 1/�̂�𝑖(1 − (�̂�(0, 𝑖)/�̂�𝑖)
6). To gen-

eralize the model beyond the Poiseuille approximation, we introduced in equation
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(4.12) the dimensionless conductances �̂�𝑖𝑗 = (𝑟𝑖𝑗/𝑙0)
4. Written in terms of �̂�𝑖𝑗, the

model does not depend on the precise scaling of 𝐺𝑖𝑗 with 𝑟𝑖𝑗, and adjusting �̂�𝑖𝑗 to

achieve the best-fit of the model solution to the experimental data provides a way of

measuring the hydraulic conductances.

Initial conditions and parameters. To simulate the model, one must provide

initial conditions and parameter values for the zero-pressure radii �̂�0,𝑖 and conduc-

tances �̂�𝑑. At 𝑡 = 0, the sixteen cells have a well-characterized cell size pattern, as

nurse cells further from the oocyte are smaller than those that are closer. The initial

size distribution is determined from empirical observatins as follows [155]:

1. the oocyte has a volume 𝑉0 equal to the sum of all the nurse cells’ volumes

combined

2. nurse cells at same distance 𝑑 = 1, 2, 3, 4 from the oocyte have the same cell

volume 𝑉𝑑 set by
𝑉𝑑+1

𝑉0

=

(︂
𝑉𝑑

𝑉0

)︂𝜈

(4.13)

with the exponent 𝜈 ≈ 0.84.

These properties completely determine the initial conditions. To fully determine our

equations, we then finally need to fix the values of the following parameters:

1. Dimensionless conductances �̂�𝑑: To compensate for the inaccuracy of the Poiseuille

formula, we adjusted the dimensionless conductance to obtain agreement with

our experimental observations. Assuming that all ring canals at edge distance

𝑑 from the oocyte have the same size 𝑟𝑑, all ring canals at edge distance 𝑑

also have the same dimensionless conductance �̂�𝑑. We then allow for varia-

tions of �̂�𝑑 by allowing the effective ring canals radii 𝑟𝑑 := 𝑙0�̂�
1/4

𝑑 to vary from

their corresponding average experimental values by up to plus or minus 60% as

described in Sec. 4.2.2. As expected, the best-fit effective ring canal radii are

larger than the directly measured ring canal radii, confirming that the Poiseuille

formula Eq. (4.9) underestimates the actual hydraulic conductance. Test simu-
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Fixed Optimized
Layer # of cells Initial volume* Parameter Parameter range† Best fit‡

Oocyte 1 100 𝜌 [0.22, 1] 0.60

1 4 9.00 �̂�1 [1.5 · 10−4, 3.4 · 10−2] 1.7 · 10−2

2 6 6.61 �̂�2 [1.5 · 10−4, 3.4 · 10−2] 2.3 · 10−2

3 4 5.07 �̂�3 [2.9 · 10−4, 2.6 · 10−2] 8.1 · 10−3

4 1 4.03 �̂�4 [1.0 · 10−4, 8.1 · 10−3] 4.6 · 10−3

Table 4.1 : Summary of initial conditions and parameters used in the hydraulic model.
*Given in units of ℓ30 = 8 ·103 𝜇m3. †The scanned range of the dimensionless hydraulic
conductances �̂�𝑑 corresponds to a range of effective ring canal radii 𝑟𝑑 := ℓ0�̂�

1/4

𝑑

within ±60% of the experimentally measured average ring canal size for each layer.
‡Best fit parameters minimize the error as defined in Sec. 4.2.2.

lations with equal ring canal sizes do not reproduce the experimentally observed

dumping hierarchy.

2. Zero-pressure radius: We assume all cells have a zero-pressure radius 𝑅(0, 𝑖) =

𝜌𝑅𝑖(𝑡 = 0), where 𝜌 is an adjustable parameter between 0 and 1.

Overall, this yields a total of five tunable parameters: the four hydraulic conduc-

tances �̂�𝑑 and the zero-pressure radius scale parameter 𝜌. A summary of the initial

conditions and adjustable parameters is given in Table 4.1.

4.2.2 Simulations and optimization

In this section, we explain how we integrate the differential equations Eq. (4.12) and

the procedure used to fit the model parameters.

Implementation. The simulations were implemented in Python 3 with the SciPy

libraries. The standard scipy.integrate.solve_ivp routine was used to solve the

system of ordinary differential equations defined by Eq. (4.12). Simulations were run

until the system reached steady state, which always converged to a solution where

all nurse cells have an equal small size and the oocyte is large. While we have not

conducted a full analysis of the stability of the fixed points, since our initial conditions

are hierarchical with the oocyte significantly larger than the next largest NCs, the
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dynamics for physically relevant parameters most likely lie in the basin of attraction of

the ‘1 large; 15 small’ solution. Furthermore, those dynamics do not lead to perfectly

empty balloons at steady state; indeed, as our experimental data show, completion

of the dumping process requires active contractions, which are not included in the

network flow model; we can therefore only reliably compare our simulation results

with experimental data before the effects of myosin activity become too important,

and the simulated steady-state has no direct biological relevance.

Fitting procedure. Experimental measurements provided us with the relative

cross-sectional areas of cells, which we averaged per layer of cells at distance 𝑑 from

the oocyte. We then estimated the relative experimental volumes

𝑉 exp
𝑑 (𝑡)/𝑉 exp

𝑑 (𝑡 = 0) = (𝐴exp
𝑑 (𝑡)/𝐴exp

𝑑 (𝑡 = 0))3/2, (4.14)

with time 𝑡 expressed in units of 𝜏0 ≈ 0.6 s. Our simulations then yield a set of

volume trajectories 𝑉 sim
𝑑 (𝑡) for the average volume of cells in layer 𝑑.

Since the model developed here describes the first phase of NC dumping, namely,

surface tension-driven flow, and does not include the effect of the actomyosin con-

tractility, we compared our trajectories to experimental data taken before onset of

actomyosin contractility only. Experiments show that this occurs when cells reach

a characteristic fraction of their initial volume 𝑉wave = 0.25𝑉 (𝑡 = 0) [30]. The sum

of squares error between the experimental and simulation data points was then com-

puted for each of the layer-averaged cross-sectional areas of cells, with a set of weights

𝑔𝑑 = (4/15, 6/15, 4/15, 1/15) reflecting the number of nurse cells in each layer nor-

malized such that
∑︀

𝑑 𝑔𝑑 = 1. The error is then given by:

𝐸 =
∑︁
𝑖

4∑︁
layers 𝑑=1

𝑔𝑑
(︀
𝑉 exp
𝑑 − 𝑉 sim

𝑑

)︀2
(𝑡𝑖) (4.15)

This procedure was repeated as we searched through a grid of possible parameter

values around their experimental averages, yielding the error plots shown in Fig. 4-3A

101



(the final grid search was over 3.2 million simulations). The scanned parameter ranges

and the best fit parameters that resulted in the smallest error 𝐸 are summarized in

Table 4.1.

Cell-to-cell variability. Once the parameters were determined through the method

described above, we introduced fluctuations between individual cells in the effec-

tive surface tension. To that end, we sampled surface tension for each cell as 𝛾𝑖 =

𝛾𝑐(1 + 𝜎𝜒𝑖), where 𝜒𝑖 is a random variable sampled from the standard normal distri-

bution with variance 𝜎 = 0.1. Results averaged over 𝑁 = 5000 trials are presented

Fig. 4-3C, where the envelope reflects one standard deviation of the fluctuation.

Ring canal fits. Measured ring canal diameters were averaged for each layer and

each stage [30]. Exponential functions of the form 𝑟(𝑡) = 𝑟0𝑒
𝑡/𝜏 were then fit to

the averages using the ‘fit’ function in Matlab. The fit parameters are as follows:

𝑟0 =0.82, 0.55, 0.44, and 0.67 𝜇m and 𝜏 = 34.8, 31.2, 29.1, and 38.0 hours for L1-L4,

respectively. Values of 𝑅2 are 0.93, 0.88, 0.85, and 0.83, respectively.

4.2.3 Model result interpretation

In the simulations, we used for all 16 cells the same effective tension value 𝛾 =

4 pN/𝜇m, estimated from earlier measurements of cytoplasmic viscosity [161] and our

own measurements of ring canal radii and volume flux [30]. This estimate is consistent

with previously reported cortical tension values [165]. The equilibrium radius 𝑅0

in (4.1) was chosen proportional to the initial cell radius, 𝑅0𝑖 = 𝜌𝑅𝑖(0), using the

same proportionality constant 𝜌 for all 𝑖 = 1, . . . , 16 cells. Since the initial NC

volume is also approximately proportional to the NC nuclear volume [155], this choice

is consistent with the fact that the nucleus sets a lower bound on the NC membrane

area at the end of Phase I transport. By comparing simulations and experiment, we

determined a best fit parameter 𝜌 ≈ 0.60; smaller values of 𝜌 favor backflow between

adjacent cell layers, in which more posterior NCs transport their cytoplasm into more

anterior ones, whereas larger values suppress such backflow. The best fit value for
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Figure 4-2 (Caption next page)

𝜌 yielded values 𝑅0𝑖 no more than 10% larger than the directly measured nuclear

radii (Table 4.1), suggesting that the presence of nuclei limits pressure-driven flow

once NC volumes become comparable to nuclear volumes. Finally, an initial guess

for the hydraulic conductances 𝐺𝑖𝑗 was obtained by assuming 𝐺𝑖𝑗 = 𝜋𝑟4𝑖𝑗/(8𝜇𝐿) for

Poiseuille-type flow (Eq. (4.9), [169]), where 𝑟𝑖𝑗 and 𝐿 are the measured ring canal

diameters and their average length, respectively, and 𝜇 denotes the fluid viscosity.

Since 𝑟𝑖𝑗 ∈ [4, 10]𝜇m and 𝐿 ≈ 2𝜇m are of the same order for the ring canals, the

Poiseuille conductance provides only an approximation, and we therefore explored a

range of values around the Poiseuille prediction in our simulations (Table 4.1).
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Figure 4-2 (previous page): NC dumping dynamics are explained by a pressure-driven
networked-flow model. A. 3D-reconstruction of a germline cyst showing the NCs’
arrangement into four layers relative to the oocyte (Oo). During NC dumping, cyto-
plasm flows in the direction of increasing cell size, from anterior (A) to posterior (P).
B. Kymograph of Sqh intensity in WT along the dashed line shown in A, illustrating
hierarchical onset of NC dumping across the 4 NC layers (L1-L4); arrow indicates
direction of flow. Scale bars: 30 min, 50 𝜇m; black indicates highest intensity. C.
Plot of normalized NC volumes (𝑉/𝑉0) during NC dumping for each layer from live
imaging; 𝑡 = 0 is onset of NC dumping; solid line indicates average; envelopes show
standard error (𝑁 = 15, 12, 9, 5 cells for layers 1, 2, 3, and 4, respectively). D. Plots
of Young-Laplace’s law and the corrected pressure law for elastic balloons. Pressure
is at its maximum, 𝑝max, at radius 𝑅𝑝; 𝑅0 is the uninflated balloon radius; 𝑟12 is the
radius of the pipe connecting balloons 1 and 2. Schematic illustrates the two-balloon
problem, where the smaller balloon (cyan) empties into the larger balloon (gray). E.
Network representation of the germline cyst in A showing cells’ relative sizes and
connections; cells are shown as nodes and ring canals as edges. F. Plot of normalized
NC volumes from simulations of fluid flow in the germline cyst using the best fit
parameter set (solid line); envelopes show standard error constructed from the ten
nearest sets in parameter space (𝑁 = 11). Time is scaled by the physical constants of
the model. G. sqh1 germline mutant showing NCs in the first (blue arrowhead) and
second (red arrowhead) layers emptying into the oocyte. H. Kymograph of intensity
of CellMask (a membrane marker) in sqh1 mutants, showing transport of cytoplasm
from the first two layers. Scale bars: 30 min; 70 𝜇m. I. Plot as in C of normalized
NC volumes over time in sqh1 germline clones; (𝑁 = 14, 17, 7, 6 cells for layers 1, 2,
3, and 4, respectively); inset shows WT cell volume trajectories from C (solid lines),
re-scaled in time and overlaid with sqh1 mutant data (dashed lines), demonstrating
slower yet hierarchical intercellular transport.
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Figure 4-3 : Grid search through parameter space and effects of input parameters of
the model. A. Two-dimensional slices of the simulation error as defined in Eq. (4.15)
measured on the 5-dimensional grid space spanned by the sampled parameter ranges
(𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝜌). For a given pair of parameters, the remaining parameters are at their
best-fit values. Color bar refers to simulation error (𝜎 = 0.1). B. Normalized NC vol-
ume (𝑉/𝑉𝑜) from simulations for varying values of 𝑛, the exponent in the correction
term to the Young-Laplace law, showing that intercellular transport hierarchy and
qualitative behaviors are maintained for the values of 𝑛 tested. C. Results from sim-
ulations averaged over 5,000 trials, where surface tension of each cell is sampled from
a normal distribution; envelope reflects half a standard deviation of the fluctuations.
As seen in the envelope for L4, in several of these simulations the L4 cell increases in
size due to backflow from its downstream L3 cell - a feature of NC dumping that has
been reported in previous studies [2]. D. Results from simulations showing layer-wise
averaged cell volumes over time, in which all NCs and ring canal radii are equal for
all cells, showing qualitative differences in the intercellular pattern and time scale of
transport. E. Results from simulations for three values of 𝜌 and all ring canal sizes
at their best-fit values. Smaller values of 𝜌 show transient increases in layer size in-
dicative of backflow, while larger values result in less backflow and smoother curves.
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Despite its minimal phenomenological character, the flow-network model captures

qualitatively essential features of the experimentally observed transport dynamics

(Fig. 4-3, A and C). Specifically, the best fit model correctly reproduces both the

hierarchical pattern of intercellular transport and time scale of NC dumping (Fig.

4-2F). The model can be expanded to account for natural cell-to-cell variability in

effective surface tension [170]; such extensions successfully capture experimentally

observed complex transport dynamics along the 16-cell tree. For example, our data

show the L4 NC transiently increasing in size during NC dumping, which can occur

if the L3 cell to which it is connected shrinks sufficiently such that it becomes smaller

than the L4 cell. Such transient backflow away from the oocyte is a feature of NC

dumping that has been observed and documented before [2] and is predicted by our

model (Fig. 4-3C). We also found that the gradient in NC and ring canal sizes, from

smallest at the anterior to largest at the posterior end, is critical for the timely,

directional, and hierarchical transport pattern observed experimentally; simulations

in which these size gradients were ignored displayed aberrant intercellular transport

patterns and dynamics (Fig. 4-3D).

An insight provided by the model is the high sensitivity of intercellular transport to

changes in ring canal size through the approximately quartic scaling of the hydraulic

conductances. During oogenesis, ring canal diameters increase in size by ∼10-fold

[141]. However, ring canal diameter increases most rapidly in the stages of oogenesis

prior to NC dumping [30], through the differential recruitment of F-actin towards

expansion of the cytoskeletal ring rather than increasing the thickness of the ring

canal [171]. Recent work has suggested a mechanosensory function for filamin in ring

canal expansion, as rapid growth of the ring canal coincides with rapid growth of the

egg chamber and increased tension on the cells’ plasma membrane [172]. While onset

of NC dumping is likely affected by factors such as interactions between the follicle

cells and the germline, or by external cues, here we propose that the increase in ring

canal size prior to NC dumping can also sharply accelerate cytoplasmic transport

from NCs into the oocyte [30].

Our model predicts that lowering of the effective NC surface tension will slow
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down the rate of intercellular transport, as the parameter 𝛾 sets the overall time

scale, but will not affect the hierarchical transport pattern. In a cell, surface tension

is affected by the actomyosin cortex and can be reduced by inhibiting myosin [173].

Therefore, to test how transport is affected by reducing surface tension, we quan-

tified the spatiotemporal pattern of NC dumping in a mutant in the myosin RLC,

encoded by spaghetti squash (sqh). In sqh1 mutant germline clones, sqh mRNA and

protein levels are reduced by ∼90% [174, 175]. We found that while Sqh-depleted

germline cysts are ‘dumpless’, i.e., do not complete NC dumping (Fig. 4-2G) [145],

the hierarchical transport pattern observed in WT is largely maintained (Fig. 4-2,

H and I). However, NC dumping in sqh1 mutants proceeded more slowly (Fig. 4-2I,

inset), which is consistent with myosin contributing to the baseline level of cortical

tension required for Phase I, but not to the onset, direction or pattern of intercellular

transport.

4.3 Phase II requires actomyosin contractile surface

waves

Although transport of cytoplasm is initiated in sqh1 mutant egg chambers, NC dump-

ing is not completed in these mutants, suggesting that actomyosin activity and its

regulation are important. Indeed, live imaging of egg chambers with labeled myosin

(sqh::mCh) and actin (F-tractin::TdTomato and Utr::GFP) demonstrates that acto-

myosin is highly dynamic during Phase II of NC dumping. Myosin exhibits a diversity

of spatiotemporally organized cortical waves, such as colliding myosin wave fronts,

rotating cortical bands, and myosin rings travelling between the cell’s poles, which

lead to local and dynamic NC shape deformations, as opposed to isotropic contrac-

tions of the entire cell (Fig. 4-4, A to E). We also found that actomyosin waves in the

NCs travel at ∼0.3 𝜇m/s, a speed comparable to that of Rho-actin contraction waves

observed in frog and starfish oocytes and embryos [147]. Notably, the intercellular

pattern of actomyosin wave onset mirrors that of cytoplasmic transport, starting in
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NCs closer to the oocyte, which shrink first, before appearing in NCs further away

(Fig. 4-4F).

Dynamic actomyosin behaviors like those observed here are regulated through

RhoA activation and inhibition [147, 176, 177]. RhoA is a small GTPase activated by

guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating pro-

teins (GAPs) [178, 179]. Binding to downstream effectors, such as the Rho-associated

and coiled-coil kinase (ROCK; Rok in Drosophila), results in increased contractility

through myosin RLC phosphorylation (Fig. 4-4G) [180, 181, 182]. We found that

while RhoGAP15B depletion in the germline cyst led to a ‘dumpless’ phenotype (Fig.

4-4H), onset of NC dumping and the time scale of Phase I transport were unaffected

(Fig. 4-4I). The hierarchical pattern of Phase I transport was also largely unchanged,

although there was greater variability between the timing of L1 and L2 in knockdown

egg chambers (Fig. 4-4I). Instead, RhoGAP15B depletion disrupted myosin wave

dynamics and concomitant cell-scale shape deformations otherwise observed during

Phase II: cells displayed erratic myosin activity associated with smaller and more

transient cell protrusions (Fig. 4-4, J and K). We confirmed that incomplete NC

dumping in RhoGAP15B knockdowns is not attributable to obstructed or diminished

ring canal sizes or disrupted actin cables that tether the NC nuclei [183, 144]. These

data therefore suggest that incomplete cytoplasmic transport in RhoGAP15B knock-

downs is due to disrupted actomyosin wave dynamics in Phase II of NC dumping.
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Figure 4-4 (Caption next page)

109



Figure 4-4 (previous page): Complete NC dumping requires Rho-regulated wave-
like actomyosin dynamics. A. Heat map of an egg chamber expressing sqh::mCh;
blowups show NCs with dynamic actomyosin cortical waves as colliding fronts (top)
and rotating bands (bottom) in adjacent NCs, with respective kymographs of Sqh
intensity around NCs’ perimeter (B, C). D. Heat map of an egg chamber expressing
sqh::mCh and Clip170::GFP (cyan); blowups show a NC with an actomyosin ring
(arrowhead) traversing the cell’s opposing poles and deforming cell shape, with E
showing a kymograph of Sqh intensity. F. Box-and-whisker plot of time at which
nonuniform and persistent cell deformations are first observed following onset of NC
dumping in each layer (center line = median; edges = upper and lower quartiles;
whiskers extend to extrema; 𝑁 = 20, 22, 16, 5 cells for layers 1, 2, 3, and 4). G. The
Rho/ROCK signaling pathway regulates phosphorylation of the myosin regulatory
light chain (MRLC) and actomyosin contractility. H. Comparison between wild-type
(WT; top) and dumpless, RhoGAP15B-depleted (bottom) egg chambers. Scale bar:
50 𝜇m. I. Plot of normalized NC volumes during NC dumping for each layer from
live imaging of RhoGAP15B knockdowns; 𝑡 = 0 is onset of NC dumping; solid line
indicates average and envelopes show standard error (𝑁 = 7, 6, 3, 2 cells for layers 1,
2, 3, and 4, respectively). The trajectory for the L4 cells stops at 𝑡 ∼ 50 minutes due
to membrane breakdown. J. RhoGAP15B-depleted germline expressing sqh::mCh
and Clip170::GFP ; blowup shows smaller short-lived cell protrusions as opposed to
the cell-scale dynamic deformations observed in WT. K. Kymograph of Sqh intensity
along the perimeter of a cell in a RhoGAP15B knockdown at a comparable time to B,
C, and E, illustrating disrupted wave dynamics; black indicates highest intensity. The
time scale bar is 5 minutes, while the horizontal axis represents fractional distance
along cell perimeter. Scale bar in A, D, and J: 40 𝜇m; scale bar in blowups: 20 𝜇m;
kymograph scale bars in B, C, and E: 5 min; 10 𝜇m.

110



4.4 Physical and biochemical mechanisms are required

for complete transport

A clue to how actomyosin surface waves enable complete NC dumping came from

directly visualizing inter- and intracellular cytoplasmic flow using reflection-mode mi-

croscopy. Following actomyosin wave onset and concomitant NC shape deformations,

cytoplasm was observed flowing through spaces between NC nuclei and membranes

and completing multiple revolutions around the large polyploid nuclei as intercellular

anterior-to-posterior transport continued (Fig. 4-5, A and B). In contrast, intracellu-

lar flow in RhoGAP15B knockdowns appeared erratic and lacked the persistent radial

motions around NC nuclei necessary for bringing cytoplasm in contact with a ring

canal (Fig. 4-5, C and D). As a result, RhoGAP15B knockdowns exhibited inter-

rupted anterior-to-posterior intercellular flow, repetitive and more frequent transport

of cytoplasm away from the oocyte (Fig. 4-5, E and F), a greater degree of layer 4 ex-

pansion (Fig. 4-4I), and incomplete NC dumping. Given that actomyosin waves first

appear in a nurse cell once it has emptied most of its cytoplasmic contents, we propose

that wave-mediated NC deformations enable continued pressure-driven transport by

creating spaces between plasma membranes and nuclei in shrunken NCs. Because

the oocyte is the largest cell in the germline cluster, it will always have the lowest

pressure and will therefore set the directionality of flow. As a result, wave-mediated

cell deformations could create a path that allows cytoplasm to flow past nuclei from

anterior to posterior ring canals and transport into the oocyte to run to completion

(Fig. 4-6).

4.5 Discussion and conclusion

The above analysis presents joint experimental and theoretical work that addresses a

longstanding question concerning the origin and regulation of multicellular collective

behavior during oocyte development: How do support sister cells in a germline cyst

directionally transport the entirety of their cytoplasm into the future egg cell? Our
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Figure 4-5 : Actomyosin contractions promote intracellular flow in shrunken NCs. A.
Time-lapse images from reflection-mode microscopy showing cytoplasm (cyan) flow-
ing around a NC nucleus (H2A, white) as persistent actomyosin waves deform cell
shape. B. Illustration of cytoplasmic flow observed in A, where arrows point in the
direction of flow. C. Erratic and transient intracellular cytoplasmic flow in a germline
RhoGAP15B knockdown, illustrated in D, highlighting the lack of persistent revolu-
tionary motions observed in WT. Scale bars in A and C: 20 𝜇m. E. Histogram of the
duration of observed intracellular cytoplasmic flow events in WT and RhoGAP15B
knockdowns (WT: 𝑁 = 28 events; RhoGAP15B-RNAi: 𝑁 = 82). F. Bar plot of the
proportion of time anterior-to-posterior (A-P) versus posterior-to-anterior (P-A) flows
were observed through ring canals in WT and in RhoGAP15B-RNAi egg chambers
(WT: 6 events of intercellular flow spanning 30 minutes total; RhoGAP15B knock-
downs: 29 events spanning 54 minutes).
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Figure 4-6 : Physical and biochemical mechanisms cooperate to enable NC dumping.
Schematic of the proposed model for the contribution of pressure-driven flow with
baseline cortical tension and actomyosin-dependent flows to directional and complete
NC dumping. Arrows show direction of intercellular flow; dashed arrow indicates
interrupted flow; arrowheads point to actomyosin-mediated cell deformations that
permit continued intercellular flow in shrunken NCs.

experiments and theory show that baseline surface tension and differential cell size

provide robust and highly tunable fluid-mechanical control over directional intercel-

lular cytoplasmic flow, and that subsequent wave-like actomyosin contractions are

essential to complete transport. These findings contrast with previous hypotheses

for NC dumping, which suggested that cytoplasm is driven out of the NCs through

a global increase in pressure mediated through upregulated cytoskeletal force gen-

eration, or squeezing [156, 144], requiring that actomyosin contractility increase at

the onset of NC dumping [142]. Such a model however does not mechanistically

explain the directionality and hierarchical flow pattern that is observed during NC

dumping; importantly, our data show that changes in actomyosin localization and

concomitant membrane blebbing do not occur until the NCs have emptied most of

their cytoplasmic contents into the oocyte.

4.5.1 Model limitations

While the hydrodynamic model presented here faithfully reproduces the hierarchical

dumping pattern, the interpretation of its parameters is limited by its partially phe-

nomenological nature. The Young-Laplace term is biophysically motivated, with 𝛾

playing the role of an effective surface tension reflecting the energetic cost of having

an interface of a certain area. However, the second term of Eq. (4.1) is a phenomeno-
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logical correction to the Young-Laplace pressure. For a rubber balloon, 𝑅0 is the

radius at which the pressure difference across the balloon’s surface is zero; however,

cells do not have a well-defined ‘empty’ size. Indeed, a cell’s cortex always generates

some baseline tension, such that even as the cell decreases in size, the cortex is remod-

eled so that this baseline tension is maintained [184]. Another important difference

between the classical balloon experiment and the NC tree is the presence of the cell

nuclei, which can hinder intra- and intercellular fluid transport once the cell volume

has become comparable to the nucleus size. Therefore, for a cell, the 𝑅0 parameter

can be thought of as an effective limiting radius below which cortical tension alone

no longer suffices to drive flux through the ring canals, defining the end of Phase I.

Identifying the biochemical and biophysical mechanisms that trigger the transition

from the hydraulic Phase I to the contractile wave-mediated Phase II, which may

be cell-size dependent or related to membrane-nucleus contact interactions, poses an

interesting open question for future research.

4.5.2 Conclusion

The above analysis highlights the complementary importance of physical and biolog-

ical mechanisms in achieving directed intercellular fluid transport during oogenesis

and adds to the growing list of examples where hydrodynamics plays a critical role in

development [131, 132, 133, 134]. This work has also revealed a diversity of myosin

wave-like behaviors and a previously unknown function for excitable actomyosin dy-

namics. Indeed, as one of the final facilitators of material transfer between sister

germ cells, this work expands the repertoire of roles played by surface cortical waves

in development [147, 148, 149, 185].
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Chapter 5

Characterizing developmental mode

dynamics from single-cell trajectories

The contents of this chapter, and parts of chaps..., have been previously published as

‘Learning developmental mode dynamics from single-cell trajectories’, N. Romeo, A.

D. Hastewell, A. Mietke, J.Dunkel,eLife 10:e68679 (2021)

Embryogenesis, the development of a multicellular organism from a single fertil-

ized egg cell, requires coordinated collective motions of thousands of cells across a

wide range of length and time scales [186, 187]. Understanding how a highly repro-

ducible and robust tissue organization arises from the dynamics and interactions of

individual cells presents a major interdisciplinary challenge [5]. Recent advances in

high-resolution live imaging make it possible to track the internal biological states

and physical movements of many individual cells on pan-embryonic scales through-

out various stages of development [188, 189, 190, 4]. This unprecedented wealth of

data poses two intertwined compression problems of equal practical and conceptual

importance. The first concerns the efficient reduction of high-dimensional tracking

data without loss of relevant information; the second relates to inferring predictive

low-dimensional models for the developmental dynamics. Mathematical solutions to

the first problem are aided by taking into account the geometry and symmetries of

the developing embryo, which suggest suitable basis functions for a coarse-grained

and sparse mode representation of raw data [191]. Efficient algorithmic approaches
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tackling the second problem appear within reach thanks to recent advances in the di-

rect inference of dynamical systems equations from data [192, 193]. Building on these

ideas, we construct and demonstrate here a computational framework that translates

developmental single-cell trajectory data on curved surfaces into quantitative models

for the dominant hydrodynamic modes.

Widely applied in physics [194, 195, 196, 197], engineering [198, 199] and spectral

computing [200, 60, 201], mode representations [202, 203] provide a powerful tool

to decompose and study system dynamics at and across different energetic, spatial

and temporal scales. In quantum systems, for example, mode representations in the

form of carefully constructed eigenstates are used to characterize essential energetic

system properties [204, 205]. Similarly, turbulence theory has seen significant progress

by studying the coupling between Fourier modes that represent dynamics at different

length scales. This approach enabled a better understanding of energy cascades [206,

207] and provided insights into the nature of turbulence in non-living [208, 209] and

in living [210, 211, 212, 213] systems. Additionally, the multi-scale nature of many

biological processes make them particularly amenable to a representation in terms of

spatial and temporal modes [214]. Despite this fact, however, mode representations

are not yet widely used to characterize and compress cell tracking data, or to infer

dynamic models from such data.

To demonstrate the practical potential of mode representations for the description

of multicellular developmental processes, we develop here a computational framework

that takes cell tracking data as inputs, translates these data into a sparse mode

representation by exploiting symmetries of the biological system, and utilizes recently

developed ODE inference techniques [193] to infer a predictive dynamical model. The

model will be specified in terms of a learned Green’s function that propagates initial

cell density and flux data forward in time. To validate the approach, we demonstrate

that it correctly recovers the hydrodynamic equations for active Brownian particle

(ABP) dynamics on curved surfaces. Subsequently, as a first example application to

experimental single-cell tracking data, we consider the pan-embryonic cell migration

during early gastrulation in zebrafish [4], an important vertebrate model system for
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studying various morphogenetic events [187, 173, 215]. During gastrulation, complex

migratory cell movements organize several thousand initially undifferentiated cells

into different germlayers that lay out the primary body plan [216]. The underlying

high-dimensional single-cell data make this process a prototypical test problem for

illustrating how spatio-temporal information can be efficiently compressed to analyze

and model biological structure formation.

Broadly, our goal is to translate experimentally measured single-cell trajectories

on a curved surface into a quantitative model of collective cell migration dynamics.

As a specific example, we consider recently published lightsheet microscopy data that

captures the individual movements of thousands of cells during early zebrafish de-

velopment from epiboly onset at 4 hours post-fertilization (hpf) to about 18 hpf [4].

This developmental period is characterized by a collective symmetry breaking event

during which cells collectively migrate over the yolk cell surface [216]. Namely, they

rearrange from an initial localization around the animal pole (AP) (Fig. 5-1A, left)

into a more elongated configuration that already indicates the basic geometry of the

fully developed zebrafish larva (Fig. 5-1A, right). Working with a two-dimensional

(2D) sphere projection of the experimental data, we first describe a coarse-graining

approach that faithfully captures cell-mass transport on a curved surface. We then

construct a sparse mode representation of the resulting hydrodynamic fields in terms

of scalar and vector spherical harmonic basis functions, discuss mode signatures of

morphogenetic symmetry breaking events, and connect them to the dynamics of topo-

logical defects in the cellular flux. We validate this mode representation framework

and the subsequent model inference using synthetic data of ABPs on a sphere, for

which coarse-grained fields and learned models can be directly compared against an-

alytical predictions. Finally, we infer a linear model for the mode dynamics of the

experimental zebrafish data, which enables us to study the characteristics of cell inter-

actions through kernels that couple cell density and flux and compare their features

with the hydrodynamic mean-field signatures of ABPs on a sphere.
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Figure 5-1 : From single-cell tracking data to sparse mode amplitude representations
A: Microscopic imaging data of early zebrafish development (adapted from [3]) shows
cell migration from an initially homogeneous pole of cells (left) towards an elongated
structure that indicates the head-tail axis of the fully developed organism. Scale
bar, 100𝜇𝑚. B: Experimental single-cell tracking data from [4] (blue dots) during
similar developmental time points (±20min) as in A. 𝑡 = 0min for the indicated
time points in B corresponds to a developmental time of 4 hours post fertilization.
The 𝑧-axis points from the ventral pole (VP) to the animal pole (AP). C: Coarse-
grained relative cell density 𝜌(r, 𝑡) (color) and associated coarse-grained flux J(r, 𝑡)
(streamlines) determined from single cell positions and velocities from data in B via
Eqs. (5.2). Thickness of streamlines is proportional to the logarithm of the spatial
average of |J|. D: Dynamic harmonic mode representation of the relative density
𝜌(r, 𝑡) (Eq. (5.4), left panel) and of the flux J(r, 𝑡) (Eq. (5.5), middle and right
panel) for fields shown in C. The modes 𝑗

(1)
𝑙𝑚 correspond to compressible, divergent

cell motion, the modes 𝑗
(2)
𝑙𝑚 describe incompressible, rotational cell motion. Mode

amplitudes become negligible for 𝑙 ≥ 5 (Fig. 5-2). For all panels, horizontal black
lines delineate blocks of constant harmonic mode number 𝑙 and black triangles denote
the end of epiboly phase.
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Figure 5-2 : Convergence of spectral representation. Rotationally invariant spatial
power spectra as a function of the mode 𝑙 index were computed for the density field 𝜌
as 𝑃𝜌,𝑙 =

∑︀𝑙
𝑚=−𝑙 𝜌

2
𝑙𝑚 and for modes contributing to cell fluxes (𝑗(1) and 𝑗(2)) as 𝑃𝑗𝑘,𝑙 =∑︀𝑙

𝑚=−𝑙[𝑗
(𝑘)
𝑙𝑚 ]2 for 𝑘 = 1, 2. Spectra were computed at representative timepoints 𝑡 =

40 , 240 , 400 , 830min and normalized by their maximum value. The observed decay
indicates that a spectral representations of the coarse-grained fields is meaningful, and
shows that the mode cut-off chosen for the learning (𝑙 ≤ 4) amounts to discarding
approximately 1% of spectral power in each field.
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5.1 Coarse-graining of cellular dynamics on a spher-

ical surface

The experimentally observed cell motions are approximately two-dimensional (2D):

The radius of the yolk cell surface on which the dynamics takes place is much larger

than the average height changes of the evolving cell mass [4]. We therefore adopt a

thin film approximation, in which the cellular motion is represented on an effective

spherical mid-surface (gray surface in Fig. 5-1B); refined future models should aim to

account for the full 3D dynamics. Focusing here on the in-plane dynamics, we project

all cell positions and velocities onto a spherical mid-surface 𝒮 of radius 𝑅𝑠 = 300𝜇m.

On this spherical surface, each cell 𝛼 = 1, 2, ..., 𝑁 has a position r𝛼(𝑡) and in-plane

velocity v𝛼(𝑡) = dr𝛼/d𝑡.

As a second processing step, a coarse-grained representation of the single-cell dy-

namics on a spherical surface is determined. To facilitate the applicability of our

framework to a wide range of experimental inputs, we propose a coarse-graining

approach that can flexibly integrate cell number variations stemming from cell divi-

sions, but also those from experimental uncertainties in cell imaging and tracking.

Consequently, we first consider an idealized scenario in which the total cell number

is approximately constant. In this case, mass conservation informs the construction

of self-consistent coarse-graining kernels on a spherical surface. In a second step,

we describe how this approach generalizes when there are variations in the total cell

number.

5.1.1 Consistent coarse-graining of idealized microscopic data

Our specific aim is to translate microscopic cell positions r𝛼(𝑡) and velocities v𝛼(𝑡)

into a continuous cell surface density 𝜌(r, 𝑡) and an associated flux J(r, 𝑡) at any

point r of the spherical mid-surface. For an approximately constant total number of

cells, the fields 𝜌 and J are related by the mass conservation equation
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𝜕𝜌

𝜕𝑡
+∇𝒮 · J = 0. (5.1)

Here, ∇𝒮 · J denotes the in-plane divergence of the cell number flux. To convert

cell position r𝛼(𝑡) and velocities v𝛼(𝑡) into a normalized cell surface density 𝜌(r, 𝑡)

and an associated normalized flux J(r, 𝑡), we consider a kernel coarse-graining of the

form (Appendix B)

𝜌(r, 𝑡) =
1

𝑁

𝑁∑︁
𝛼=1

𝐾 [r, r𝛼(𝑡)] (5.2a)

J(r, 𝑡) =
1

𝑁

𝑁∑︁
𝛼=1

𝒦 [r, r𝛼(𝑡)] · v̄𝛼, (5.2b)

where 𝑁 is the total number of cells and v̄𝛼 = v𝛼/|r𝛼| is the angular velocity of a

given cell on a reference unit sphere (Appendix B). The kernels 𝐾(r, r′) and 𝒦(r, r′)
are given by a scalar and a matrix-valued function, respectively. The matrix kernel

𝒦(r, r′) takes into account contributions of a particle with velocity v𝛼 at r′ = r𝛼 to

nearby points r on the sphere, which involves an additional projection to ensure that

J(r, 𝑡) is everywhere tangent to the spherical surface (Appendix B). Importantly, the

mass conservation Eq. (5.1) implies a non-trivial consistency relation between the

kernels 𝐾(r, r′) and 𝒦(r, r′) in Eqs. (5.2). The kernels that obey this condition rep-

resent different coarse-graining length scales (Appendix B–Fig. B-2). Throughout,

we fix an intermediate coarse-graining length scale to enable a sparse representation

of the experimental data, while ensuring that spatial details of the dynamics remain

sufficiently well resolved. The final surface density 𝜌(r, 𝑡) and the associated normal-

ized flux J(r, 𝑡), computed from Eqs. (5.2) using a kernel with an effective great-circle

coarse-graining width of ∼ 70𝜇m, are shown in Fig. 5-1C.
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5.1.2 Consequences of cell number variations in experimental

data

Because cell divisions are essential to most developmental processes, total cell num-

bers will in many cases – including early zebrafish gastrulation [3] – vary over time.

True cell numbers and cell number changes are often difficult to measure due to ex-

perimental uncertainties arising from single-cell imaging and tracking within dense

cellular aggregates. We therefore merely assume here that single cells are tracked in a

representative fashion so that local relative surface densities found from Eq. (5.2a) re-

flect the probability that cells are present at a given point r. In the absence of further

information on cell deaths and cell divisions, we additionally make the more restric-

tive assumption that cell appearances or disappearances are everywhere proportional

to the local cell density. With these assumptions, we can define a cell number surface

density �̃�(r, 𝑡) = 𝑁(𝑡)𝜌(r, 𝑡), where 𝑁(𝑡) is the cell number at time 𝑡 and 𝜌(r, 𝑡) is the

normalized surface density given in Eq. (5.2a). Similarly, a cell number flux is given

by J̃(r, 𝑡) = 𝑁(𝑡)J(r, 𝑡), where the flux J(r, 𝑡) is computed from the data as described

by Eq. (5.2b). Using these definitions in Eq. (5.1), we find that the fields �̃�(r, 𝑡) and

J̃(r, 𝑡) obey a continuity equation

𝜕�̃�

𝜕𝑡
+∇𝒮 · J̃ = 𝑘(𝑡)�̃�, (5.3)

where 𝑘(𝑡) = �̇�(𝑡)/𝑁(𝑡) denotes a time-dependent effective growth rate. Importantly,

under the two above assumptions, Eq. (5.3) encodes for any time-dependent total cell

number 𝑁(𝑡) > 0 the same information as Eq. (5.1) for coarse-grained normalized

surface density 𝜌(r, 𝑡) and associated flux J(r, 𝑡) given by Eq. (5.2a) and (5.2b),

respectively. In the following analysis, we hence focus on these normalized fields.
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5.2 Spatio-temporal mode decomposition

5.2.1 Spatial mode representation on a spherical surface

To obtain a sparse mode representation of the hydrodynamic fields 𝜌(r, 𝑡) and J(r, 𝑡)

on the spherical surface, we expand them in terms of scalar and vector spherical

harmonics (SHs) [217, 218] (Appendix A). SHs are defined on points r̂ = r/𝑅𝑠 of the

unit sphere, where 𝑅𝑠 = 300𝜇m is the mid-surface radius. In this basis, the scalar

density field is represented as

𝜌(r, 𝑡) =
𝑙max∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝜌𝑙𝑚(𝑡)𝑌𝑙𝑚(r̂), (5.4)

which conveniently separates the time- and space-dependence of 𝜌(r, 𝑡) into mode

amplitudes 𝜌𝑙𝑚(𝑡) and scalar harmonic functions 𝑌𝑙𝑚(r̂), respectively. The maximal

mode number 𝑙max is a proxy for the maximal spatial resolution at which 𝜌(r, 𝑡)

is faithfully represented (Fig. 5-3). Similarly, the vector-valued flux J(r, 𝑡) can be

decomposed into time-dependent mode amplitudes 𝑗(1)𝑙𝑚 (𝑡) and 𝑗
(2)
𝑙𝑚 (𝑡), while its spatial

dependence is described by vector SHs Ψ𝑙𝑚(r̂) and Φ𝑙𝑚(r̂) [218] (Appendix A),

J(r, 𝑡) =
𝑙max∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

(︁
𝑗
(1)
𝑙𝑚 (𝑡)Ψ𝑙𝑚(r̂) + 𝑗

(2)
𝑙𝑚 (𝑡)Φ𝑙𝑚(r̂)

)︁
. (5.5)

Besides the in-plane divergence∇𝒮 ·J that leads to local density changes [see Eq. (5.1)],

the cell number flux J(r, 𝑡) also contains an in-plane curl component ∇𝒮 × J that is

associated with locally rotational cell flux. The two sets of vector SHs {Ψ𝑙𝑚} and

{Φ𝑙𝑚} conveniently decompose the flux into these contributions: Because ∇𝒮 ·Φ𝑙𝑚 =

∇𝒮 ×Ψ𝑙𝑚 = 0, and r̂ · (∇𝒮 ×Φ𝑙𝑚) = ∇𝒮 ·Ψ𝑙𝑚 = −𝑙(𝑙 + 1)𝑌𝑙𝑚/𝑅𝑠 [218], we see from

Eq. (5.5) that 𝑗
(1)
𝑙𝑚 (𝑡) corresponds to modes that drive density changes and 𝑗

(2)
𝑙𝑚 (𝑡)

represents modes of local rotational cell motion that change relative cell positions

but do not change local density. Indeed, using harmonic mode representations of

the cell number density Eq. (5.4) and the cell number flux Eq. (5.5) directly in the

123



continuity Eq. (5.1), we find a set of ordinary differential equation in mode space

d

d𝑡
𝜌𝑙𝑚(𝑡) =

𝑙(𝑙 + 1)

𝑅𝑠

𝑗
(1)
𝑙𝑚 (𝑡), (5.6)

where 𝑙 = 0, 1, ..., 𝑙max and for each value of 𝑙, 𝑚 = −𝑙,−𝑙+1, ..., 𝑙−1, 𝑙. Equation (5.6)

offers an alternative way of determining the modes 𝑗
(1)
𝑙𝑚 (𝑡) directly from the modes

𝜌𝑙𝑚(𝑡) of the coarse-grained cell number density [see Eqs. (5.2a) and (5.4)], while en-

suring that the resulting fields obey mass conservation exactly. In practice, the modes

𝑗
(1)
𝑙𝑚 (𝑡) found from a vector harmonic representation of the coarse-grained cell num-

ber flux Eq. (5.2b) will often deviate from modes 𝑗
(1)
𝑙𝑚 (𝑡) determined from Eq. (5.6),

even if cell numbers are expected to be conserved. This can be, for example, due

to limited accuracy in determining velocities v𝛼(𝑡) from noisy single-cell trajectories

r𝛼(𝑡), or due to spatially inhomogeneous appearances and disappearances of cells in

tracking data. Consistent with our simplifying assumption that cell number changes

in the data can be sufficiently well approximated by a globally homogeneous growth

rate [compare Eqs. (5.1) and (5.3)], the subsequent analysis uses the modes 𝑗(1)𝑙𝑚 (𝑡) as

determined from the density modes 𝜌𝑙𝑚(𝑡) via Eq. (5.6), together with modes 𝑗
(2)
𝑙𝑚 (𝑡)

from the explicit velocity coarse-graining Eq. (5.2b).

The representation of 𝜌(r, 𝑡) and J(r, 𝑡) in terms of spherical harmonic modes

with 𝑙 ≤ 𝑙max leads in total to 3(𝑙max + 1)2 mode amplitude trajectories, displaying

only a few dominant contributions (Fig. 5-1D) with almost no signal remaining for

𝑙 ≥ 5 (Fig. 5-2). This demonstrates that the underlying coarse-grained experimental

data is sufficiently smooth and implies that a spectral representations is indeed mean-

ingful. Thus, the coarse-graining approach outlined above provides a sparse spectral

representation of high-dimensional microscopic single-cell data. The associated har-

monic basis functions and vectors have an intuitive physical meaning, convenient

algebraic properties and, as we will see, encode information about the length scales

and symmetries of the collective dynamics.
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Figure 5-3 : Sequentially adding vector spherical harmonics Ψ𝑙𝑚 and Φ𝑙𝑚 – equiv-
alent to increasing 𝑙max in Eq. (5.5) – resolves increasing levels of details present in
experimental flux fields ("Data"). Main features of the data are captured already by
a relatively small number of modes (𝑙max = 4 used throughout this work).

5.2.2 Temporal mode representation

We further compress the dynamical information by representing the time series of

the modes onto basis functions made out of the Chebushev polynomials of the first

kind 𝑇𝑛(𝑡), which are defined by [217, 200, 219]

𝑇𝑛(cos𝑥) = cos(𝑛𝑥). (5.7)

These polynomials form an orthogonal basis of continuous functions on the interval

[−1, 1], such that an expansion

𝑓(𝑡) =
𝑛max∑︁
𝑛=0

𝑐𝑛𝑇𝑛(𝑡) (5.8)

uniformly converges as 𝑛max → ∞ [200]. This representation also allows computing

derivatives spectrally from

𝑓 ′(𝑡) =
𝑛max∑︁
𝑛=0

𝑐𝑛𝑇
′
𝑛(𝑡). (5.9)

To simplify notation, we define a dynamic mode vector a(𝑡) = [𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]⊤

that collects all the modes up to 𝑙 = 𝑙max determined in the previous section and con-
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sider an expansion

a(𝑡) =
𝑛max∑︁
𝑛=0

𝑇𝑛(𝑡) â𝑛 (5.10)

in terms of the spatio-temporal mode coefficients â𝑛 with temporal mode number

𝑛. This compression allows us to accurately evaluate time derivatives of the mode

amplitudes [220], an important step when using Eq. (5.6) to determine flux modes

𝑗
(1)
𝑙𝑚 (𝑡) directly from density modes 𝜌𝑙𝑚. Fixing 𝑙max = 4 and 𝑛max = 30 in the remain-

der, the initial single-cell data set of about 1.4 million recorded cell position entries,

or 4.2 million degrees of freedom, has thus been reduced to 2250 mode coefficients,

corresponding to a compression ratio ≳ 1800.

5.2.3 Information loss through coarse-graining and spectral

truncation

Coarse-graining microscopic data into smooth fields is an irreversible operation, dur-

ing which some of the original particle information is irretrievably lost. The choice of

coarse-graining scale is thus dictated by a trade-off between smoothness and informa-

tion content - choosing larger coarse-graining scales leads to smoother fields but blurs

finer scale structures which may be of interest. To inform our choice of coarse-graining

scale, we quantify the loss of information incurred by the coarse-graining operation.

Additionally, spectral representations are exact in the limit of an infinite number of

modes. In practice, we choose a maximal harmonic mode number 𝑙max and maximal

Chebyshev mode number 𝑛max. In Ref. [36], we additionally consider the tradeoff

between compression and reconstruction accuracy as 𝑙max and 𝑛max are varied. In

what follows, we only discuss the choice of coarse-graining length.

The measure we introduce to quantify information loss is based on the the well-

known relationship between the smoothness of functions in real space and Fourier

space [221]: A smooth function in real space should have a peaked, quickly decay-

ing spectrum in Fourier space while a collection of point-like objects such as delta

functions should have a uniform non-decaying spectrum. Specifically, we describe a

uniformly sampled field as a 𝑀 × 𝑁 matrix with components being the field values
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𝑋𝑖,𝑗 = 𝑋(𝜃𝑖, 𝜑𝑗). In our case, 𝑋𝑖,𝑗 represents either the density field 𝜌 or any of the

Cartesian components of the flux vector field J at a given time point. We find the

complex discrete Fourier spectrum �̂� 𝑖,𝑗 of this matrix using the two-dimensional fast

Fourier transform. We then calculate the power spectral density (PSD) of the Fourier

spectrum as 𝑅𝑖,𝑗 = |�̂� 𝑖,𝑗|2 and interpret the normalized PSD

𝑃𝑖,𝑗 =
𝑅𝑖,𝑗∑︀
𝑎,𝑏𝑅𝑎,𝑏

as a discrete probability distribution. The spectral entropy 𝑆 characterizing the

information content of the field 𝑋 is then defined by

𝑆(𝑋) = − 1

log2𝑁𝑀

∑︁
𝑖,𝑗

𝑃𝑖,𝑗 log2 𝑃𝑖,𝑗. (5.11)

Smooth fields are sharply peaked in Fourier space and have a low spectral entropy,

whereas fields that resolve discrete single particle information are rather flat in Fourier

space and have a large spectral entropy. The difference in entropy between particle

data and smoothed fields then measures the information eliminated by the coarse-

graining procedure. If we additionally normalize by the entropy of the spectral entropy

𝑆0(𝑋) of the raw particle data, we finally obtain a relative measure of the information

that is lost in the coarse-graining process. In general, a measure as given in Eq. (5.11)

can be defined for any transform with the property that smoothness in real space leads

to a fast decaying spectrum in transform space.

We compute the spectral entropy of density and flux component fields at a repre-

sentative time point and for varying coarse-graining length scales (Fig. 5-4). Specifi-

cally, we coarse-grain density and flux through the procedure described above and in

Appendix B for different values of the kernel parameter 𝑘 [see Eqs. (B.12)]. Large val-

ues of 𝑘 correspond to small coarse-graining length scales, with the effective half-width

at half-maximum (HWHM) of the kernels Eqs. (B.8) with weight functions Eqs. (B.12)

scaling as HWHM= arccos(2−1/𝑘). Normalized spectral entropies 𝑆(𝑋)/𝑆0(𝑋) with

𝑋 ∈ {𝜌,J} are then computed using Eq. (5.11). For the flux field, we define
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Figure 5-4 : Normalized spectral entropy as a function of the coarse-graining kernel
width (top) computed for density 𝜌 and flux field J using Eq. (5.11). To evaluate the
spectral entropy for the vector-valued flux, we define 𝑆(J) := 𝑆(𝐽𝑥) + 𝑆(𝐽𝑦) + 𝑆(𝐽𝑧)
("Flux sum"). The coarse-graining width – the half-width at half-maximum (HWHM)
of the coarse-graining kernels Eqs. (B.8) with weight functions Eqs. (B.12) – is varied
by varying the kernel index 𝑘, where HWHM = arccos(2−1/𝑘) (see Appendix B–B-
2). The fields 𝜌 and |J| are shown in the two bottom rows for different values of 𝑘.
i. 𝑘 = 5000 (blue, data used to compute the reference spectral entropies 𝑆0(𝜌) and
𝑆0(J)) ii. 𝑘 = 60 (brown) iii. 𝑘 = 6 (yellow, and used for the main analysis) iv. 𝑘 = 2
(purple).

𝑆(J) := 𝑆(𝐽𝑥) + 𝑆(𝐽𝑦) + 𝑆(𝐽𝑧) ("Flux sum" in Fig. 5-4) and interpret the sum

of these three contributions ("Flux x", "Flux y", "Flux z" in Fig. 5-4) as the total

information contained in the flux field. We find that the spectral entropies of all fields

show similar features. In particular, an increasing coarse-graining width first results

in a sharp loss of information as individual particle positions are blurred, followed by

less steep information loss as continuous fields progressively lose details of finer struc-

tures. In this work, we use an intermediate value of the coarse-graining parameter

𝑘 = 6 (yellow data in Fig. 5-4).
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5.2.4 Characterization of the developmental mode dynamics

A harmonic mode decomposition naturally integrates the geometry of the underlying

domain and simultaneously provides useful insights into spatial scales and symmetries

of the dynamics. For each mode (𝑙𝑚) in the sets of SHs {𝑌𝑙𝑚}, {Ψ𝑙𝑚} and {Φ𝑙𝑚},
the integer index 𝑙 indicates the spatial scale of the harmonic, with 𝑙 = 0 being a

constant and larger 𝑙 indicating progressively finer spatial scales. The second index

𝑚 ∈ {−𝑙,−𝑙 + 1, . . . , 𝑙} provides additional information about the orientation of the

harmonic scalar function or vector field. The modes 𝑙 = 1 and 𝑙 = 2 are particularly

useful for characterizing the symmetry of spatial patterns on a spherical surface [222,

223]: Modes with 𝑙 = 1 indicate patterns with a global polar symmetry, whereas

modes with 𝑙 = 2 represent spatial patterns with a global nematic symmetry. We

now exploit these features for a detailed characterization of the symmetry breaking

that takes place during cellular rearrangements and to study the properties of the

cellular flux in more detail. To this end, we discuss spatial averages

⟨𝑂⟩𝑠(𝑡) =
1

𝐴𝑠

∫︁
𝒮
𝑑𝐴𝑠 𝑂(r, 𝑡) (5.12)

of different real-space observables 𝑂(r, 𝑡) over the mid-surface 𝒮.

Mode signatures of developmental symmetry breaking

To study how different developmental stages and their associated symmetry breaking

events are reflected in the mode representation, we first consider the average cell

surface density fluctuations

⟨︀
(𝜌− ⟨𝜌⟩𝑠)

2⟩︀
𝑠
=

𝑙max∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

𝜌2𝑙𝑚(𝑡). (5.13)

For each mode 𝑙, the power spectrum 𝑃𝜌,𝑙(𝑡) =
∑︀𝑙

𝑚=−𝑙 𝜌
2
𝑙𝑚(𝑡) in Eq. (5.13) provides a

rotationally invariant quantity [224, 225] that can effectively serve as an order param-

eter to characterize the symmetry of cell density patterns on the spherical surface.

The dynamics of the density fluctuations [Eq. (5.13)] broken down into contributions
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𝑃𝜌,𝑙(𝑡) from each mode 𝑙 ≤ 𝑙max = 4 is shown in Fig. 5-5B. Several features of this

representation are particularly striking and can be directly related to specific devel-

opmental stages. First, patterns of cell surface density fluctuations evolve from a

dominantly polar symmetry (𝑙 = 1) into density patterns with a prominent nematic

symmetry (𝑙 = 2). These mode signatures intuitively reflect the essential symmetry

breaking that takes place when cells collectively reorganize from an initially localized

cell dome (Fig. 5-1B, 52min) into an elongated shape that wraps in an open ring-like

pattern around the yolk cell (Fig. 5-1B, 760 min). Second, during this transition at

around 300min (9 hpf) (black triangle in Fig. 5-5B), the cell surface density is most

homogeneous as fluctuations become minimal for all modes 𝑙. Interestingly, this time

point approximately marks the completion of epiboly, when the different cell layers

have fully engulfed the yolk. Finally, although in a less pronounced manner, the

power spectrum of the mode 𝑙 = 4 also exhibits an increased amplitude towards later

times, indicating the formation of structures at finer spatial scales as development

progresses. We find that mode signatures of the symmetry breaking and progression

through developmental stages are robust (Fig. 5-6B,D), illustrating that mode-based

analysis can provide a systematic and meaningful characterization of developmental

symmetry breaking events.

Mode signatures of emergent topological defects in cellular flux

The vectorial nature of the cell number flux J(r, 𝑡) on a spherical surface implies

the presence of topological defects (colored circles in Fig. 5-5A, see Methods) [226].

Several recent experimental results pertaining to the self-organization of multicellular

systems suggest an important role of such topological defects in organizing morpho-

genetic events [227, 228, 229, 230, 231, 232]. We therefore analyze how defects within

the cell number flux J(r, 𝑡) are dynamically organized during early zebrafish gastru-

lation and if signatures of defect formation and annihilation are present in the mode

representation Eq. (5.5). We first consider the average squared divergence and curl
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Figure 5-5 : Mode signatures of developmental symmetry breaking and topological
defects in cellular flux A: Two-dimensional Mollweide projection of the compressed
coarse-grained density field 𝜌(r, 𝑡) (colormap) and of the coarse-grained cell flux J(r, 𝑡)
(streamlines) at different time points of zebrafish gastrulation. White circles depict
topological defects of charge +1 in the flux vector field, red circles depict defects
with charge −1. The total defect charge is 2 at all times. Defects are seen to
‘lead’ the large-scale motion of cells and later localize mostly along the curve de-
fined by the forming spine. Animal pole (AP) and ventral pole (VP) are located at
top and bottom, respectively. B: Density fluctuations as a function of developmental
time [see Eq. (5.13)], broken down in contributions from different harmonic modes 𝑙.
The underlying symmetry breaking is highlighted prominently by this representation:
During the first 75% of epiboly (0–280 min) cells migrate away from, but are still
mostly located near the animal pole, presenting a density pattern with polar symme-
try (𝑙 = 1). During the following convergent extension phase cells converge towards
a confined elongated region that is ‘wrapped’ around the yolk, corresponding to a
density pattern with nematic symmetry (𝑙 = 2). Black triangles indicate transition
from epiboly to convergent extension. C: Comparison of surface averaged divergence
∇𝒮 ·J and curl ∇𝒮 ×J of the cellular flux computed via Eqs. (5.14) (top). A relative
curl amplitude 𝑆𝑐𝑢𝑟𝑙 computed from these quantities via Eq. (5.15) correlates with the
appearance of an increased number of topological defects in the cell flux (bottom),
suggesting that incompressible, rotational cell flux is associated with the formation
of defects.
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Figure 5-6 : Analysis of the harmonic mode representation for a second experimental
dataset. A–C: Analysis presented in Fig. 5-5A–C of the main sample performed
on a second cell-tracking dataset (‘Sample 2’). In C, solid lines indicate results
for Sample 2, dashed lines correspond to the results for the main dataset (‘Sample
1’). D: Contributions to density fluctuations from both samples, broken down into
contributions from different modes with harmonic mode number 𝑙 and normalized
at each time point by the total fluctuation intensity. Black triangles indicate the
completion of epiboly.
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of the cell number flux given by

⟨︀
(∇𝒮 · J)2

⟩︀
𝑠
=

𝑙max∑︁
𝑙=1

𝑚∑︁
𝑚=−𝑙

[︂
𝑙(𝑙 + 1)

𝑅𝑠

𝑗
(1)
𝑙𝑚 (𝑡)

]︂2
, (5.14a)

⟨︀
(∇𝒮 × J)2

⟩︀
𝑠
=

𝑙max∑︁
𝑙=1

𝑚∑︁
𝑚=−𝑙

[︂
𝑙(𝑙 + 1)

𝑅𝑠

𝑗
(2)
𝑙𝑚 (𝑡)

]︂2
, (5.14b)

which are shown in Fig. 5-5C (top). The two contributions to the collective cellular

dynamics – locally compressible, divergent flux quantified by the divergence ∇𝒮 · J
and locally incompressible, rotational cell motion characterized by the curl ∇𝒮 × J –

are independently determined by the modes 𝑗
(1)
𝑙𝑚 (𝑡) and 𝑗

(2)
𝑙𝑚 (𝑡). Therefore, each con-

tribution can be evaluated conveniently and with high accuracy from a representation

of J(r, 𝑡) in terms of vector SHs. From Fig. 5-5C (top), we see that the most signifi-

cant divergent flux (blue curve) occurs around 300min at the transition from epiboly

towards the convergence and extension stage. A quantification of the incompressible

rotational flux relative to the total cell number flux is shown in Fig. 5-5C (bottom),

where we plotted the relative curl amplitude

𝑆curl(𝑡) =

∑︀
𝑙,𝑚

[︁
𝑗
(2)
𝑙𝑚 (𝑡)

]︁2
∑︀

𝑙,𝑚

[︁
𝑗
(1)
𝑙,𝑚(𝑡)

]︁2
+
∑︀

𝑙,𝑚

[︁
𝑗
(2)
𝑙,𝑚(𝑡)

]︁2 . (5.15)

This measure suggests a correlation between incompressible rotational cell motion

and the occurrence of topological defects (circles in Fig. 5-5A) in the cell flux J(r, 𝑡).

The total number of topological defects present at any time point is depicted in Fig. 5-

5C (bottom, blue curve). Because the vector-valued flux is defined on a sphere, we

observe that the total topological charge always sums to +2 [226], while additional

defect pairs with opposite charge (red +1 and white −1 circles in Fig. 5-5A) can be

created, resulting in total defect numbers greater than two (see Fig. 5-5C, bottom).

Interestingly, the relative curl amplitude 𝑆curl defined in Eq. (5.15) indicates that

increased contributions from incompressible rotational flux are associated with the

formation of topological defects in the cell number flux, a feature that is robustly
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identified by our framework (See additional samples in [36]). The appearance of

additional defects at the end of epiboly, when the developing embryo begins to extrude

more significantly in the radial direction, suggests that topological defects in the 2D

projected cellular flux fields could signal the start of the formation of more complex

structures in three dimensions.

5.3 Learning a linear hydrodynamic model of the de-

velopmental mode dynamics

The results in Fig. 5-5 confirm that a low-dimensional mode representation can cap-

ture essential characteristics of developmental symmetry breaking processes. The

mode representation therefore provides a natural starting point for the inference

of hydrodynamic models from coarse-grained cell-tracking data. For a given time-

dependent mode vector a(𝑡) = [𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]⊤ that contains all modes up

to 𝑙 = 𝑙max, the simplest hydrodynamic model corresponds to the linear dynamical

equation
da(𝑡)

d𝑡
= 𝑀 · a(𝑡), (5.16)

where the constant coefficient matrix 𝑀 encodes the couplings between different

modes. Intuitively, Eq. (5.16) aims to describe an experimentally observed density

and flux dynamics in terms of a relaxation process, starting from inhomogeneous

initial conditions represented by a(0). The mathematical learning problem is then

to find a coefficient matrix 𝑀 such that the linear model Eq. (5.16) holds for the

mode vector time series a(𝑡) that was determined from the coarse-graining procedure

described in the previous sections.

134



Simulation
Theory

1

0.5

0

-0.5
0 10 20 30

x
(t

)
·x

(0
)

tTime

= 0.5Dr

= 10Dr

u(t)

Low noise High noise

D

CBA

0 ρmax(t)

t = 1.02 t = 4.2 t = 10.2 t = 12.3

E

Learned modelTheory
ρlm j

(1)
lm j

(2)
lm

dρlm
dt

dj2lm
dt

dj1lm
dt

ρlm j
(1)
lm j

(2)
lm

Pa
rtic

le-
ba

se
d

sim
ula

tio
n

Le
ar

ne
d

mo
de

l

Learning Validation Prediction
t = 9.9 t = 11.7t = 0.9

0 5 10 15 20

Figure 5-7 : Learning active Brownian particle (ABP) dynamics on a sphere. A: ABPs
move on a unit sphere (radius 𝑅0 = 1) with angular speed 𝑣0 = 1 along a tangential
unit vector u(𝑡) that is subject to stochastic in-plane fluctuations (see Appendix C
for further details). Example single-particle trajectories are shown in the high-noise
(orange, 𝐷𝑟 = 10 in units of 𝑅0𝑣0) and in the low-noise regime (blue, 𝐷𝑟 = 0.5). Time
𝑡 is measured in units of 𝑅0/𝑣0 in all panels. B: Position correlation function ⟨x(𝑡) ·
x(0)⟩ averaged over 3 × 104 independent ABP trajectories show distinct oscillations
of period ≈ 2𝜋 in the low-noise regime, as ABPs orbit the spherical surface more
persistently. Standard error of the mean is smaller than symbol size. C: Analytically
predicted (left) and inferred (right) dynamical matrices 𝑀 [see Eq. (5.16)] describing
the mean-field dynamics of a large collection of non-interacting ABPs (see Eqs. (5.17)
and Appendix C) show good quantitative agreement. D: Mollweide projections of
coarse-grained ABP simulations with 𝑣0 = 1 and 𝐷𝑟 = 0.5 using cell positions from
the first time point in the zebrafish data (Fig. 5-1) as the initial condition: At each
position 60 particles with random orientation were generated and their ABP dynamics
simulated, amounting to approximately 1.2×105 particles in total. The density fields
homogenize over time, where the maximum density at 𝑡 = 12.3 has decayed to about
5% of the maximum density at 𝑡 = 1.02. Blue lines and arrows indicate streamlines
of the cell flux J(r, 𝑡). E: Simulation of the learned linear model, Eq. (5.16) with
𝑀 shown in 5-7C (right), for the same initial condition as in D. Marked time points
indicate intervals of learning, validation and prediction phases of the model inference.
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5.3.1 Validation of the learning framework using active Brow-

nian particle dynamics

Before applying the combined coarse-graining and inference framework to experi-

mental data, we illustrate and validate the learning approach on synthetic data for

which coarse-graining results and hydrodynamic mean-field equations are analytically

tractable. To this end, we consider the stochastic dynamics of non-interacting active

Brownian particles (ABPs) on the unit sphere of radius 𝑅0 = 1 [233, 234, 235]. Sim-

ilar to a migrating cell, an ABP at position x(𝑡) moves across the unit sphere at

constant speed 𝑣0 in the direction of its fluctuating orientation unit vector u(𝑡). The

strength of the orientational Gaussian white noise is characterized by a rotational

diffusion constant 𝐷𝑟 (Fig. 5-7A, Appendix C).

Compared with conventional passive Brownian motion, self-propulsion of an ABP

along its orientation direction u introduces a persistence to the particle’s motion that

is reduced as rotational noise 𝐷𝑟 is increased. Additionally, the topology of the spher-

ical surface implies that in the low-noise regime, 𝑅0𝐷𝑟/𝑣0 < 1, particles are expected

to return to the vicinity of their starting points after a duration ∆𝑡 ≈ 2𝜋𝑅0/𝑣0.

The conjunction of persistent motion and topology then leads to oscillatory dynam-

ics in the positional correlation ⟨x(𝑡) · x(0)⟩ (blue dots in Fig. 5-7B, Appendix C).

Comparing correlations from stochastic ABP simulations in different noise regimes

with theoretical predictions (solid lines in Fig. 5-7B) validates our numerical ABP

simulation scheme.

To generate a test data set for our coarse-graining and inference framework, we

simulated non-interacting ABPs in both the low-noise (𝑅0𝐷𝑟/𝑣0 < 1) and the high-

noise (𝑅0𝐷𝑟/𝑣0 > 1) regime with initial positions drawn from the experimental data

shown in Fig. 5-1. Specifically, at each cell position present in the data, we generated

60 particles with random orientation, amounting to approximately 1.2× 105 particles

in total, and simulated their dynamics on a unit sphere. The resulting trajectory

data were coarse-grained following the procedure outlined in the previous sections,

yielding dynamic density fields 𝜌(r, 𝑡) and fluxes J(r, 𝑡), together with their mode
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representations 𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡) and 𝑗

(2)
𝑙𝑚 (𝑡).

In the second ‘learning’ step, we infer a sparse mode coupling matrix 𝑀 that ap-

proximates the dynamics Eq. (5.16) for the dynamical mode vectors a(𝑡) = [𝜌𝑙𝑚, 𝑗
(1)
𝑙𝑚 ,

𝑗
(2)
𝑙𝑚 ]⊤ obtained from the coarse-grained simulated ABP data. Our inference algorithm

combines adjoint techniques [193] and a multi-step sequential thresholding approach

inspired by the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm in-

troduced by [192]. The full algorithm is detailed in [36].Importantly, we perform

the sparse regression using dynamical mode vectors a(𝑡) rescaled by their median

absolute deviation (MAD) to compensate for substantial scale variations between dif-

ferent modes. The final output matrix 𝑀 of this learning algorithm is shown in the

right panel of Fig. 5-7C and can be compared against the analytically coarse-grained

dynamics of ABPs on curved surfaces [234, 235]. Under suitable closure assump-

tions (Appendix C), the mean-field dynamics of ABPs on a unit sphere is given in

harmonic mode space by

d𝜌𝑙𝑚
d𝑡

=
𝑙(𝑙 + 1)

𝑅0

𝑗
(1)
𝑙𝑚 (5.17a)

d𝑗
(1)
𝑙𝑚

d𝑡
= − 𝑣20

2𝑅0

𝜌𝑙𝑚 −𝐷𝑟𝑗
(1)
𝑙𝑚 (5.17b)

d𝑗
(2)
𝑙𝑚

d𝑡
= −𝐷𝑟𝑗

(2)
𝑙𝑚 , (5.17c)

from which we can read off the mode coupling matrix 𝑀 shown in the left panel

of Fig. 5-7C. A direct comparison between the theoretical and the inferred matrices

shows that our framework recovers both the structure and the quantitative values

of 𝑀 with good accuracy. Due to the finite number of ABPs used to determine

the coarse-grained fields, we do not expect that the theoretically predicted coupling

matrix is recovered perfectly from the data. Instead, some mode couplings suggested

by Eqs. (5.17) may not be present or modified in the particular realization of the

ABP dynamics that was coarse-grained. Indeed, direct simulation of the learned

model projected in real space (Fig. 5-7E) reveals a density and flux dynamics that

agrees very well with the dynamics of the the coarse-grained input data (Fig. 5-7D).
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Altogether, these results demonstrate that the proposed inference framework enables

us to to faithfully recover expected mean-field dynamics from coarse-grained fields of

noisy particle-based data.

5.3.2 Learning developmental mode dynamics from experi-

mental data

The same inference framework can now be directly applied to the coarse-grained

experimental zebrafish embryo data shown in Fig. 5-1C and D, yielding a sparse coef-

ficient matrix 𝑀 (Fig. 5-8A,B) that encodes the dynamics of the developmental mode

vector a(𝑡) = [𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]⊤ according to Eq. (5.16). The inferred coupling

between the time derivative of density modes 𝜌𝑙𝑚 and flux modes 𝑗(1)𝑙𝑚 faithfully recov-

ers mass conservation [Fig. 5-8C; see Eq. (5.6)]. Overall, the learned matrix 𝑀 has

395 non-zero elements, effectively providing further compression of the experimen-

tal data, which required 2250 spatio-temporal mode coefficients collected in â𝑛 [see

Eq. (5.10)] for its representation. Using the mode vector a(𝑡 = 0) of the first experi-

mental time point as the initial condition, the inferred minimal model Eq. (5.16) with

𝑀 shown in (Fig. 5-8A,B) faithfully recovers both the mode and real-space dynamics

seen in the coarse-grained fields of the experimental input data (Fig. 5-8E–G).

It is instructive to analyze the inferred matrix 𝑀 and the linear model it encodes

in more detail. Comparing the MAD-rescaled matrix learned for the experimental

zebrafish data (Fig. 5-8B) with the non-dimensionalized matrix learned for the ac-

tive Brownian particle dynamics (Fig. 5-7C), we find similar patterns of prominent

diagonal and block-diagonal couplings. Consistent with the analysis of single cell

trajectories [4], this suggests that a random, but persistent movement of cells akin

to ABPs moving on a sphere partially contributes to the early gastrulation process

in zebrafish. This is complemented in the minimal model of the experimental dy-

namics by significant off-diagonal contributions (Fig. 5-8B), which are absent in the

non-interacting ABP model. Such off-diagonal contributions represent effective lin-

ear approximations of cell-cell interactions, environmental influences or other external
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stimuli reflected in the experimental time-series data. Ultimately, such contributions

to the mode coupling matrix 𝑀 help realize the symmetry breaking process observed

in the underlying experimental data (Fig. 5-5).

The inferred mode coupling matrix 𝑀 shown in Fig. 5-8B together with Eq. (5.16)

provides a highly robust minimal model. Specifically, despite being linear, it is nu-

merically stable over a period approximately four times as long as the input data

from which the matrix 𝑀 was learned. Furthermore, simulations with modified ini-

tial conditions [36] still exhibit a characteristic symmetry breaking and lead to the

emergence of density and flux patterns similar to those seen in Fig. 5-8F,G. For ex-

ample, simulating Eq. (5.16) using the initial condition of a different experimental

data set [36]leads to final patterns with the same symmetry as in the original training

data, further corroborating that the observed symmetry breaking is directly encoded

in the interactions represented by the matrix 𝑀 . A similar robustness is observed

under moderate perturbations of the initial condition, such as a rotation of initial cell

density patterns relative to the coordinate system in which 𝑀 was inferred, or a local

depletion of the initial density, emulating a partial removal of cells as experimentally

realized in [215]. Taken together, these numerical experiments demonstrate that the

inferred mode coupling matrix 𝑀 meaningfully captures the dynamics and interac-

tions of cells that facilitate the symmetry breaking observed during early zebrafish

development.

5.3.3 Green’s function representation of learned models in real

space

To characterize the inferred spatial interactions in more detail, we can analyze the

real-space representation of the learned mode coupling matrix 𝑀 . While the density

dynamics represented by 𝑀 (the first row in Fig. 5-8AB) simply reflects mass con-

servation Eq. (5.1) in real space, the dynamics of the flux (the second and third row
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Figure 5-8 (previous page): Model learning for experimental data of collective cell
motion during early zebrafish development. A: Visualization of the constant mode
coupling matrix 𝑀 that was learned from experimental data and describes the dy-
namics of the mode vector a = [𝜌𝑙𝑚(𝑡), 𝑗

(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]𝑇 via Eq. (5.16). Dimensionless

fields are defined by �̂�𝑙𝑚 = 𝑅2
𝑠𝜌𝑙𝑚 and �̂�

(𝑖)

𝑙𝑚 = 𝑅𝑠∆𝑡𝑗
(𝑖)
𝑙𝑚 (𝑖 = 1, 2) with 𝑅𝑠 = 300𝜇m

and ∆𝑡 = 2min. B: Scaling the learned matrix 𝑀 by the Mean Absolute Devia-
tion (MAD) of the modes reveals structures reminiscent of the mode coupling matrix
learned for ABPs (Fig. 5-7C). C: The learned model recovers mass conservation in
mode space [Eq. (5.6)]. D: Comparison of theoretical and inferred real-space ker-
nels (see Eq. (5.18)) for the ABP dynamics and for the experimental data of collec-
tive cell motion. The trace of the non-dimensional kernel �̂�

𝐽
(r, r′) (the only non-zero

eigenvalue) indicates a localized flux-flux coupling with a similar profile among both
systems. The oscillating magnitude of the non-dimensionalized density-flux kernel
|m̂𝜌(r, r′)| (insets) in the ABP system indicates a gradient-like coupling and is conse-
quence of the persistent ABP motion. In the experimental data, a first peak around
𝜔 = 𝜋/4 is also visible, but less pronounced. All kernel properties were computed by
averaging over pairs of positions r, r′ that are separated by the same angular distance
𝜔 = arccos(r · r′) ∈ [0, 𝜋]. Solid lines indicate mean, shaded areas indicate standard
deviation. E: Comparison of experimental mode dynamics (circles) with numerical
solution (solid line) of the minimal model Eq. (5.16) for learned matrix 𝑀 visualized
in Fig. 5-8A. For clarity, the comparison is shown for the two dominant modes of
each set of harmonic modes 𝜌𝑙𝑚, 𝑗

(1)
𝑙𝑚 and 𝑗

(2)
𝑙𝑚 . F, G: Mollweide projections of the

experimental data (F) and of the numerical solution of the learned model (F) show
very good agreement. Blue lines and arrows illustrate streamlines defined by the cell
flux J(r, 𝑡), circles depict defects with topological charge +1 (white) and −1 (red).
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in Fig. 5-8A,B) corresponds in real space to the integral equation [36]

𝜕

𝜕𝑡
J(r, 𝑡) =

∫︁
dΩ′ [︀m𝜌(r, r′)𝜌(r′, 𝑡) +𝑀𝐽(r, r′) · J(r′, 𝑡)

]︀
, (5.18)

where 𝑑Ω′ = sin 𝜃′𝑑𝜃′𝑑𝜑′ is the spherical surface area element. The vector-valued ker-

nel m𝜌(r, r′) in Eq. (5.18) connects the distribution of cell density 𝜌 across the surface

to dynamic changes of the flux J at a given point r. Similarly, the matrix-valued kernel

𝑀𝐽(r, r′) describes how the distribution of cell fluxes at r′ affects temporal changes

of the flux at r.

To analyze the spatial range of interactions between points r and r′, we use the

fact that the matrix-valued kernel 𝑀𝐽(r, r′) has only one non-zero eigenvalue [36].

Consequently, the trace tr(𝑀𝐽) serves as a proxy for the distance-dependent interac-

tion strength mediated by 𝑀𝐽 . Averages of tr(𝑀𝐽) over point-pairs with the same

angular distance 𝜔 = acos(r ·r′) are shown for the ABP dynamics and for the minimal

model inferred from experimental data in Fig. 5-8D. Note that to make the models

amenable to comparison, we compute 𝑀𝐽(r, r′) from the known mean-field model of

ABPs Eqs. (5.17) using the same finite number of modes as used to represent the

ABP and the zebrafish data (𝑙max = 4). In theory, one expects for the ABP dynamics

a highly localized, homogeneous kernel tr(𝑀𝐽) ∼ 𝛿(r− r′), so that an exact spectral

representation would require an infinite number of modes [36]. In practice, using a

finite number of modes leads to a wider kernel range (Fig. 5-8D ‘ABP theory’) and

introduces an apparent spatial inhomogeneity, as indicated by the non-zero standard

deviation of tr(𝑀𝐽) at fixed distance 𝜔 (blue shades). Both the quantitative profile of

tr(𝑀𝐽) and its variation are successfully recovered by applying the inference frame-

work to stochastic simulations of ABPs (Fig. 5-8D ‘ABP simulation’) where 𝑀𝐽(r, r′)

was computed from the learned mode coupling matrix 𝑀 shown in Fig. 5-7C. For

the inferred minimal model of the cell dynamics (Fig. 5-8D ‘Zebrafish experiment’),

we find a similar short-ranged flux-flux coupling mediated by 𝑀𝐽 . However, the in-

creased variability of tr(𝑀𝐽) at fixed distances 𝜔 indicates more substantial spatial

inhomogeneities of the corresponding interactions. These inhomogeneities are absent
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in a non-interacting system of ABPs and represent an interpretable real-space signa-

ture of the symmetry-breaking mechanisms built into the underlying mode coupling

matrix 𝑀 .

A similar analysis can be performed for the kernel m𝜌(r, r′) that couples the den-

sity at position r′ to dynamics of fluxes at position r [see Eq. (5.18)], where we average

the magnitude |m𝜌(r, r′)| over pairs (r, r′) with the same angular distance 𝜔 (Fig. 5-

8D insets). Using a finite number of modes to compute this kernel in the different

scenarios again introduces apparent spatial inhomogeneities in all cases. Additionally,

all kernel profiles exhibit a distinct maximum at short range, indicating a coupling

between density gradients and the flux dynamics that emerges microscopically from

a persistent ABP and cell motion (see Appendix C – an observations that is consis-

tent with the similar block-diagonal structure of both inferred matrices 𝑀 (compare

Fig. 5-7C and Fig. 5-8B).

In conclusion, the real-space analysis and comparison of inferred interaction ker-

nels further highlights potential ABP-like contributions to the collective cellular or-

ganization during early zebrafish development and reveals an effectively non-local

coupling between density and flux dynamics. The latter could result, for example,

from unresolved fast-evolving morphogens [236], through mechanical interactions with

the surrounding material [237] or due to other relevant degrees of freedom that are

not explicitly captured in this linear hydrodynamic model. More generally, a real-

space representation of kernels provides an alternative interpretable way to study the

interactions and symmetry-breaking mechanisms encoded by models directly learned

in mode space.

5.4 Conclusion

Leveraging a sparse mode representation of collective cellular dynamics on a curved

surface, we have presented a learning framework that translates single-cell trajecto-

ries into quantitative hydrodynamic models. This work complements traditional ap-

proaches to find quantitative continuum models of complex multicellular processes [238,
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239, 215, 240, 237] that match problem-specific constitutive relations of active mate-

rials in real-space with experimental observations. We have demonstrated here that

length scales and symmetries associated with a mode representation can directly in-

form about the character of symmetry breaking transitions and topological features

of collective cellular motion even before a model is specified. The successful appli-

cations to synthetic ABP simulation data and experimental zebrafish embryo data

show that model learning in mode space provides a promising and computationally

feasible approach to infer quantitative interpretable models in complex geometries.

The learned linear minimal model for cell migration during early zebrafish mor-

phogenesis quantitatively recapitulates the spatiotemporal dynamics of a complex

developmental process (Fig. 5-8F,G), and highlights similarities between collective

cell migration and analytically tractable ABP dynamics on a curved surface. An

extension to nonlinear mode-coupling models or an integration of additional, exper-

imentally measured degrees of freedom, such as concentration fields of morphogens

involved in mechanochemical feedbacks [236], is in principle straightforward by in-

cluding nonlinear terms in Eq. (5.16). Furthermore, the above framework could be

generalized to describe the dynamics within a spherical shell of finite height by com-

plementing the surface vector SHs used in this work by their radial counterpart [241].

To provide a concrete example, we focused here on applying the model learning

framework to single-cell tracking data of early zebrafish morphogenesis. However, the

essentially spherical organization of cells during gastrulation observed in zebrafish

is shared by many species whose early development occurs through a similar dis-

coidal cleavage [186], and the framework introduced here is directly applicable once

tracking data becomes available for these systems. More generally, as novel imag-

ing technologies are being developed [242, 243, 4], we expect that even larger and

more detailed imaging data will further facilitate the exploration of finer scales and

length-scale bridging processes [244] through learning approaches that directly built

on mode-based data representations.
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Chapter 6

Conclusions and outlook

Towards the goal of understanding the respective roles of physical and biological pro-

cesses during development, we strove in this thesis to bridge soft matter physics and

developmental biology by directly connecting biological data to physical descriptions.

Together, this work provides examples of the complex interplay between the geometry

of biological objects and their function. Geometric nonlinearities lead to robustness in

the response of elastic membranes to fluctuations and robust intercellular transport,

while transport by collective cell migration reshapes the emerging embryo.

In chapters 2 and 3, we show the importance of geometric nonlinearities in the

response of the nuclear envelope, the membrane which surrounds the cell nucleus.

However, between analytical and experimental challenges, our description is neces-

sarily incomplete: a better understanding of the interplay between geometry, material

laws and phenomenology could take on many forms:

• The free energy we used only has a limited applicable range as the amplitude of

deformations become comparable to the radius and the shallow-shell assump-

tion breaks down. Those effects would especially matter at long wavelengths;

would using different, more complex shell descriptions that better support large

deformations lead to qualitatively different results? Are such shell models still

amenable to analytical insights in fluctuating regimes?

• Our analysis pointed out a limiting regime where nonlinearities suppressing
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changes in Gaussian curvature are dominant. A canonical physical system that

is strongly nonlinear and spatially-extended is a fluid governed the Navier-Stokes

equations at large Reynolds number; can we adapt tools developed for the

study of turbulent fluid, such as triad expansions, to understand the nonlinear

cascades at play in fluctuating elastic plates and shells [67]?

• Experimental insights would also motivate a different viewpoint from the sta-

tistical ensemble averaging. With progress in biological imaging techniques or

novel artificial systems, it could be possible to characterize the dynamics and

structure of fluctuating shells at shorter timescales. This would require a dy-

namical description that would go beyond our statistical description. In this

dynamical regime, what are the effects of viscosity, plasticity, or surrounding

fluid medium on the observed patterns?

In chapter 4, we proposed a minimal model of intercellular transport mediated

by cell deformations in Drosophila oogenesis. We found that Phase I of intercellular

transport could be explained by simple hydraulic arguments. However, this descrip-

tion was purposefully minimal, neglecting for instance any mechanical or chemical

coupling between nurse cells, or did not provide any explanation of tension regulation

by endocytosis. Other effects that could contribute to cytoplasm transport would be

internal coherent flows, which lead to a phenomenon known as ‘cytoplasmic stream-

ing’ [245, 246]. Streaming has mostly been studied as a mechanism of intracellular

transport; what role it could play in intercellular transport is still unresolved. We

also did not provide a physical model of Phase II. Notably, how are the actomyosin

contractility waves initiated? What are the chemical interactions responsible for these

waves, and what are the mechanisms coupling those mechanical waves back to the

surface chemistry [247]?

In the second part of this thesis, we developed a symmetry-based framework to

characterize the emergent body structures and their time-evolution in zebrafish gas-

trulation. Because the approach described in chapter 5 relies on very general physical

mechanisms and is close to theoretical descriptions, we expect it to provide a way

146



to meaningfully characterize the complex dynamics of spatially-extended systems by

providing effective linear models as a novel class of observables [248]. In the same

vein as the first half of the thesis, one could hope to uncover geometric effects in

the self-organization of collective cell migration. Applying our framework to un-

derstand and discriminate between minimal symmetry breaking mechanisms such as

aligning interactions [233, 249] at play in zebrafish gastrulation would shed light on

the relative importance of biological and physical regulation for the robustness of

developmental processes. Extending this framework to arbitrary complex surfaces by

leveraging modern geometry processing tools [34, 250] could extend the reach of this

method to lower-symmetry systems such as later-stage embryos and organisms. Such

developments would be key to broadening the practical applicability of our ideas.
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Appendix A

Scalar and vector spherical harmonics

In this appendix, we present definitions and general properties of scalar and vector

spherical harmonics that are used extensively in Chapters 3 and 5. We then provide

for the reader’s reference a series of identities providing coupling integrals for possi-

ble cross terms involving scalar and vector spherical harmonics and their gradients,

relating them to canonical integrals that are expressible in terms of Wigner’s 3-𝑗

symbols.

A.1 Basic properties

A.1.1 Scalar spherical harmonics

We will define scalar spherical harmonics as eigenfunctions of the Laplace-Beltrami

operator on the unit sphere [217]

∆𝑌𝑙𝑚 = −𝑙(𝑙 + 1)𝑌𝑙𝑚. (A.1)

Spherical harmonics are important objects in the mathematical study of rotations,

as they form irreducible representations of SO(3). The spherical harmonics can be

represented in terms of complex functions, which is common in quantum mechanics,

or equivalently in terms of purely real functions, which are convenient for numerical

purposes and are the form used throughout this work. For completeness, and to
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help navigate formulas written in terms of either representation, we will define both

representations in this appendix. In what follows, we will use a standard spherical

coordinate representation of the sphere (𝜃, 𝜑) where 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋[.

The complex spherical harmonics 𝒴𝑙𝑚 are explicitly written in terms of associated

Legendre polynomials as

𝒴𝑙𝑚(𝜃, 𝜑) =

√︃
(2𝑙 + 1)

4𝜋

(𝑙 −𝑚)!

(𝑙 +𝑚)!
𝑃𝑚
𝑙 (cos 𝜃)𝑒𝑖𝑚𝜑 (A.2)

where the associated Legendre polynomials 𝑃𝑚
𝑙 (𝑥) are related to 𝑃𝑙(𝑥) the standard

Legendre polynomials of degree 𝑙 by 𝑃𝑚
𝑙 (𝑥) = (1 − 𝑥2)𝑚/2d𝑚𝑃𝑙(𝑥)/d𝑥

𝑚 for 𝑚 ≤ 0,

and 𝑃−𝑚
𝑙 (𝑥) = (−1)𝑚(𝑙−𝑚)!/(𝑙+𝑚)!𝑃𝑚

𝑙 (𝑥). With this normalization choice, we do

not account for the Condon-Shortley phase.

In chapters 2, 3 and 5 we use the real spherical harmonics defined in spherical

coordinates (𝜃, 𝜑) by [217]

𝑌𝑙𝑚(𝜃, 𝜑) =

√︃
2𝑙 + 1

4𝜋

(𝑙 − |𝑚|)!
(𝑙 + |𝑚|)!𝑃

|𝑚|
𝑙 (cos 𝜃)𝑁𝑚(𝜑) (A.3)

where 𝑃
|𝑚|
𝑙 (𝑥) is the associated Legendre polynomial of degree 𝑙 and order |𝑚|, and

𝑁𝑚(𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
2 cos(𝑚𝜑) if 𝑚 > 0

1 if 𝑚 = 0
√
2 sin(|𝑚|𝜑) if 𝑚 < 0

. (A.4)

Since 𝑁𝑚 = 0 for |𝑚| > 𝑙, there are 2𝑙+1 harmonics for each 𝑙 = 0, 1, 2 . . ., and there

are thus (𝑙max + 1)2 modes with 𝑙 ≤ 𝑙max. Example scalar spherical harmonics are

illustrated in Fig. A-1.
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Orthogonality relations

Complex spherical harmonics are orthonormal under the hermitian inner product

∫︁
dΩ𝒴*

𝑙𝑚𝒴𝑙′𝑚′ = 𝛿𝑙𝑙′𝛿𝑚𝑚′ , (A.5)

where dΩ = sin 𝜃 d𝜃d𝜑 while real spherical harmonics are orthonormal under the

standard 𝐿2 scalar product on 𝑆2

∫︁
dΩ𝑌𝑙𝑚𝑌𝑙′𝑚′ = 𝛿𝑙𝑙′𝛿𝑚𝑚′ . (A.6)

This orthonormality property, along with the completeness of the basis formed by

𝑌𝑙𝑚 for functions in 𝐿2 allows scalar functions 𝑓(𝜃, 𝜑) to be represented as

𝑓(𝜃, 𝜑) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑓𝑙𝑚𝑌𝑙𝑚(𝜃, 𝜑) (A.7)

with coefficients 𝑓𝑙𝑚 given by the projections

𝑓𝑙𝑚 =

∫︁
dΩ 𝑓𝑌𝑙𝑚. (A.8)

Converting between representations

One can switch between the real and complex representations by the unitary trans-

formations 𝑈
(𝑙)
𝑚𝜇 [251], which in our phase convention is given by

𝑈 (𝑙)
𝑚𝜇 =

1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑖 (−1)𝑙𝑖
. . . ...

−𝑖 (−1)1𝑖
√
2

1 (−1)1
... . . .

1 (−1)𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.9)

151



where 𝑚,𝜇 ∈ (−𝑙,−𝑙 + 1, . . . , 𝑙), such that 𝑌𝑙𝑚 =
∑︀𝑙

𝜇=−𝑙 𝑈
(𝑙)
𝑚𝜇 𝒴𝑙𝜇. For the correct

transformation with the Condon-Shortley phase convention, see Ref. [251].

A.1.2 Vector spherical harmonics

Real vector spherical harmonics can be defined and expressed as vector fields in 3D

or covariantly as [218, 222]

Ψ𝑙𝑚 = ∇𝑆𝑌𝑙𝑚 ⇔ Ψ𝑖
(𝑙𝑚) = 𝑔𝑖𝑗𝜕𝑗𝑌𝑙𝑚 (A.10a)

Φ𝑙𝑚 = r̂×Ψ𝑙𝑚 ⇔ Φ𝑖
(𝑙𝑚) = 𝜖𝑗𝑖𝜕𝑗𝑌𝑙𝑚 (A.10b)

where ∇𝑆 = e𝜃𝜕𝜃 + e𝜑 sin
−1 𝜃𝜕𝜑 denotes the gradient operator on the unit sphere,

𝜖𝑖𝑗 is the covariant Levi-Civita tensor, and 𝑔𝑖𝑗 the metric tensor. Note that since

𝑌00 = 1/
√
4𝜋, Ψ00 = Φ00 = 0. Projecting a vector field onto Ψ𝑖

(𝑙𝑚) and Φ𝑖
(𝑙𝑚) realizes

the Helmoltz-Hodge decomposition of the vector field, as

∇𝑆 ·Ψ𝑙𝑚 = −𝑙(𝑙 + 1)𝑌𝑙𝑚, ∇𝑆 ·Φ𝑙𝑚 = 0, (A.11a)

𝜖𝑗𝑖∇𝑖Φ𝑗
(𝑙𝑚) = −𝑙(𝑙 + 1)𝑌𝑙𝑚, 𝜖𝑗𝑖∇𝑖Ψ𝑗

(𝑙𝑚) = 0. (A.11b)

Finally, the vector spherical harmonics are, similarly to their scalar counterpart, eigen-

functions of the Laplace-Beltrami operator, with

∇𝑘∇𝑘Ψ𝑖
(𝑙𝑚) =(1− 𝑙(𝑙 + 1))Ψ𝑖

(𝑙𝑚) (A.12a)

∇𝑘∇𝑘Φ𝑖
(𝑙𝑚) =(1− 𝑙(𝑙 + 1))Φ𝑖

(𝑙𝑚). (A.12b)

(A.12c)
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Figure A-1 : Scalar (𝑌𝑙𝑚) and vector Ψ𝑙𝑚, Φ𝑙𝑚 real spherical harmonics for 𝑙 = 0, 1, 2
and 𝑚 ≥ 0. Functions with 𝑚 < 0 are found by rotating the pattern around the
vertical axis by 𝜋/2.

Orthogonality

Without further normalization, the vector harmonics are orthogonal within and be-

tween the Ψ and Φ families:

∫︁
dΩΨ𝑙𝑚 ·Ψ𝑙′𝑚′ = 𝑙(𝑙 + 1)𝛿𝑙𝑙′𝛿𝑚𝑚′ , (A.13a)∫︁
dΩΦ𝑙𝑚 ·Φ𝑙′𝑚′ = 𝑙(𝑙 + 1)𝛿𝑙𝑙′𝛿𝑚𝑚′ , (A.13b)∫︁
dΩΨ𝑙𝑚 ·Φ𝑙′𝑚′ = 0. (A.13c)

The increasing complexity of patterns with larger 𝑙 is illustrated in Fig. A-1. In a

similar fashion as Eq. (A.7), any vector field 𝑣𝑖(𝜃, 𝜑) tangent to the sphere can be

written as

𝑣𝑖(𝜃, 𝜑) =
∑︁
𝑙≥1

𝑙∑︁
𝑚=−𝑙

𝑣
(1)
𝑙𝑚Ψ𝑖

(𝑙𝑚)(𝜃, 𝜑) + 𝑣
(2)
𝑙𝑚Φ𝑖

(𝑙𝑚)(𝜃, 𝜑) (A.14)

with coefficients obtained by projections

𝑣
(1)
𝑙𝑚 =

1

𝑙(𝑙 + 1)

∫︁
dΩ 𝑔𝑖𝑗𝑣

𝑖Ψ𝑗
(𝑙𝑚), (A.15a)

𝑣
(2)
𝑙𝑚 =

1

𝑙(𝑙 + 1)

∫︁
dΩ 𝑔𝑖𝑗𝑣

𝑖Φ𝑗
(𝑙𝑚). (A.15b)
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A.2 Coupling integrals

In this section, we derive a series of identities relating coupling integrals projecting

nonlinear combinations of (vector) spherical harmonics onto single harmonic sub-

spaces. These identities appear in the construction of fully-spectral PDE solvers, and

can be used for analytic purposes, for instance in perturbative schemes for interacting

scalar and vector fields on the sphere to extend results such as ref. [252] to vector

fields living on a sphere.

These coupling integrals are reducible to combinations of selected integrals, the

Adams-Gaunt and Elsasser dynamo integrals which are known functions in the form

of Wigner 3-𝑗 symbols [253]. To lighten notation, we use greek letters to denote

multi-indices defining spherical harmonic degree 𝑙 and order 𝑚 as in 𝛼 = (𝑙,𝑚), and

we use latin letters for co- and contra-variant coordinate indices.

The (real) Adams-Gaunt integrals are defined by

𝑌𝛼,𝛽,𝛾 =

∫︁
dΩ𝑌𝛼𝑌𝛽𝑌𝛾 (A.16)

which satisfies 𝑌𝛼𝑌𝛽 =
∑︀

𝜈 𝑌𝛼,𝛽,𝜈𝑌𝜈 , and thus are the Clebsch-Gordan coefficients

associated with the algebra formed by the scalar spherical harmonics 𝑌𝑙𝑚.

The (real) Elsasser dynamo integrals are defined by

𝐸𝛼𝛽𝛾 =

∫︁
d2Ω𝑌𝛼Ψ

𝑖
𝛽Φ𝑖,𝛾 =

∫︁
dΩ

𝑌𝛼

sin 𝜃
(𝜕𝜃𝑌𝛾𝜕𝜑𝑌𝛽 − 𝜕𝜑𝑌𝛾𝜕𝜃𝑌𝛽). (A.17)

Note the order of the indices 𝛼, 𝛽, 𝛾 in the integrand.

Computing the Adams-Gaunt and Elsasser integrals

The complex Adams-Gaunt and Elsasser integrals are defined as

𝒴𝛼𝛽𝛾 =

∫︁
dΩ𝒴𝛼𝒴𝛽𝒴𝛾 (A.18)

ℰ𝛼𝛽𝛾 =

∫︁
dΩ
𝒴𝛼

sin 𝜃
(𝜕𝜃𝒴𝛾𝜕𝜑𝒴𝛽 − 𝜕𝜑𝒴𝛾𝜕𝜃𝒴𝛽) (A.19)
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The complex integrals have closed forms in terms of the Wigner 3-𝑗 symbols [253],

for which fast computational methods are available [254].

𝒴𝛼𝛽𝛾 =

√︂
(2𝑙𝛼 + 1)(2𝑙𝛽 + 1)(2𝑙𝛾 + 1)

4𝜋

⎛⎝ 2𝑙𝛼 2𝑙𝛽 2𝑙𝛾

2𝑚𝛼 2𝑚𝛽 2𝑚𝛾

⎞⎠⎛⎝2𝑙𝛼 2𝑙𝛽 2𝑙𝛾

0 0 0

⎞⎠ , (A.20)

ℰ𝛼𝛽𝛾 =− 𝑖

√︂
(2𝑙𝛼 + 1)(2𝑙𝛽 + 1)(2𝑙𝛾 + 1)

4𝜋

√︃
(𝑙𝛼 + 𝑙𝛽 + 𝑙𝛾 + 2)(𝑙𝛼 + 𝑙𝛽 + 𝑙𝛾 + 4)

4(𝑙𝛼 + 𝑙𝛽 + 𝑙𝛾 + 3)

×
√︁

(𝑙𝛼 − 𝑙𝛽 + 𝑙𝛾 + 1)(−𝑙𝛼 + 𝑙𝛽 + 𝑙𝛾 + 1)

×

⎛⎝ 2𝑙𝛼 2𝑙𝛽 2𝑙𝛾

2𝑚𝛼 2𝑚𝛽 2𝑚𝛾

⎞⎠⎛⎝2(𝑙𝛼 + 1) 2(𝑙𝛽 + 1) 2(𝑙𝛾 + 1)

0 0 0

⎞⎠ . (A.21)

It is important to note that only few terms in are non-zero: notably, the 3-𝑗 symbols⎛⎝ 𝑙 𝑙′ 𝑙′′

𝑚 𝑚′ 𝑚′′

⎞⎠ (A.22)

are zero unless a variety of selection rules are obeyed, which include 𝑚+𝑚′+𝑚′′ = 0,

|𝑙 − 𝑙′| < 𝑙′′ < 𝑙 + 𝑙′ and even permutations between columns.

The complex and real Adams-Gaunt integrals are related by the linear transfor-

mation

𝑌𝑙𝑚,𝑙′𝑚′,�̄��̄� =
𝑙∑︁

𝜇=−𝑙

𝑙′∑︁
𝜇′=−𝑙′

�̄�∑︁
�̄�=−�̄�

𝑈 (𝑙)
𝑚𝜇𝑈

(𝑙′)
𝑚′𝜇′𝑈

(�̄�)
�̄��̄� 𝒴𝑙𝜇,𝑙′𝜇′,�̄��̄� (A.23)

and similarly for the Elasser integrals. Faster multiplication methods leveraging the

sparsity patterns of the matrices 𝑈
(𝑙)
𝑚𝜇 are listed in [251].

A.2.1 Cubic terms

We consider the possible integrals obtained by combining scalar and vector spherical

harmonics that would appear for instance in deriving dynamical equations involving

quadratic nonlinearities.
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Psi-Psi-Y Integrating by parts [62]

∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽𝑌𝛾 =

∫︁
dΩ(∇𝑘𝑌𝛼)(∇𝑘𝑌𝛽)𝑌𝛾

=−
∫︁

𝑌𝛼∇𝑘

(︀
(∇𝑘𝑌𝛽)𝑌𝛾

)︀
=𝑙𝛽(𝑙𝛽 + 1)

∫︁
dΩ𝑌𝛼𝑌𝛽𝑌𝛾 −

∫︁
dΩ𝑌𝛼(∇𝑘𝑌𝛽)(∇𝑘𝑌𝛾)

=[𝑙𝛽(𝑙𝛽 + 1)− 𝑙𝛾(𝑙𝛾 + 1)]

∫︁
dΩ𝑌𝛼𝑌𝛽𝑌𝛾 +

∫︁
d2x(∇𝑘𝑌𝛼)𝑌𝛽(∇𝑘𝑌𝛾)

=[𝑙𝛼(𝑙𝛼 + 1) + 𝑙𝛽(𝑙𝛽 + 1)− 𝑙𝛾(𝑙𝛾 + 1)]

∫︁
dΩ𝑌𝛼𝑌𝛽𝑌𝛾 −

∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽𝑌𝛾

(A.24)

to finally obtain

∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽𝑌𝛾 =

1

2
(𝑙𝛼(𝑙𝛼 + 1) + 𝑙𝛽(𝑙𝛽 + 1)− 𝑙𝛾(𝑙𝛾 + 1))𝑌𝛼,𝛽,𝛾 (A.25)

Phi-Phi-Y We have by the identity 𝜖𝑖𝑗𝜖
𝑚𝑛 = 𝛿𝑚𝑖 𝛿

𝑛
𝑗 − 𝛿𝑛𝑖 𝛿

𝑚
𝑗 that

∫︁
dΩΦ𝛼

𝑘Φ
𝑘,𝛽𝑌𝛾 =

∫︁
dΩ 𝜖𝑘𝑖𝜖

𝑘𝑗(∇𝑖𝑌𝛼)(∇𝑗𝑌𝛽)𝑌𝛾

=

∫︁
dΩ(∇𝑘𝑌𝛼)(∇𝑘𝑌𝛽)𝑌𝛾

(A.26)

which is precisely the Psi-Psi-Y integral, which gives

∫︁
dΩΦ𝛼

𝑘Φ
𝑘,𝛽𝑌𝛾 =

1

2
(𝑙𝛼(𝑙𝛼 + 1) + 𝑙𝛽(𝑙𝛽 + 1)− 𝑙𝛾(𝑙𝛾 + 1))𝑌𝛼,𝛽,𝛾 (A.27)
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Psi-Psi-grad Psi We can again integrate by part

∫︁
dΩΨ𝛼

𝑖 Ψ𝑗,𝛽∇𝑖Ψ𝑗
𝛾 =

∫︁
dΩ∇𝑖𝑌𝛼∇𝑗𝑌𝛽∇𝑖∇𝑗𝑌𝛾

= 𝑙𝛼(𝑙𝛼 + 1)

∫︁
dΩΨ𝛽

𝑘Ψ
𝑘,𝛾𝑌𝛼 −

∫︁
dΩ∇𝑖𝑌𝛼∇𝑖∇𝑗𝑌𝛽∇𝑗𝑌𝛾

=
1

2

[︂
𝑙𝛼(𝑙𝛼 + 1)

∫︁
dΩΨ𝛽

𝑘Ψ
𝑘,𝛾𝑌𝛼

+𝑙𝛽(𝑙𝛽 + 1)

∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛾𝑌𝛽

−𝑙𝛾(𝑙𝛾 + 1)

∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽𝑌𝛾

]︂
(A.28)

which finally leads to

∫︁
dΩΨ𝛼

𝑖 Ψ𝑗,𝛽∇𝑖Ψ𝑗
𝛾 =

1

4

[︀
2𝑙𝛼(𝑙𝛼 + 1)𝑙𝛽(𝑙𝛽 + 1)− 𝑙2𝛼(𝑙𝛼 + 1)2 − 𝑙2𝛽(𝑙𝛽 + 1)2 + 𝑙2𝛾(𝑙𝛾 + 1)2

]︀
𝑌𝛼𝛽𝛾

(A.29)

Psi-Psi- tensor Phi Defining Φ
(𝑙𝑚)
𝑖𝑗 = 1

2
(∇𝑖Φ

(𝑙𝑚)
𝑗 + ∇𝑗Φ𝑖𝑖

(𝑙𝑚)), we consider the

integral ∫︁
dΩΨ𝛼

𝑖 Ψ𝑗,𝛽∇𝑖Φ𝑗
𝛾. (A.30)

To reduce this integral to Elsasser and Gaunt integrals, note that by integrating

by part and using that ∇𝑖Φ
𝑖
𝛾 = 0, 𝐸𝛼𝛽𝛾 = −𝐸𝛽𝛼𝛾. We also have 𝐸𝛼𝛽𝛾 = −𝐸𝛼𝛾𝛽.

Integrating by part and using that ∇𝑗Φ
𝑗
𝛾 = 0,

∫︁
dΩΨ𝛼

𝑖 Ψ𝑗,𝛽∇𝑖Φ𝑗
𝛾 =𝑙𝛼(𝑙𝛼 + 1)𝐸𝛼𝛽𝛾 −

∫︁
dΩ∇𝑖𝑌𝛼∇𝑖∇𝑗𝑌𝛽𝜖

𝑗
𝑘∇𝑘𝑌𝛾

=𝑙𝛼(𝑙𝛼 + 1)𝐸𝛼𝛽𝛾 + 𝑙𝛽(𝑙𝛽 + 1)𝐸𝛽𝛼𝛾 −
∫︁

dΩΨ𝛼
𝑖 Ψ𝑗,𝛽∇𝑗Φ𝑖

𝛾 (A.31)

which implies

∫︁
dΩΨ𝛼

𝑖 Ψ𝑗,𝛽Φ
𝑖𝑗
𝛾 =

1

2
[𝑙𝛼(𝑙𝛼 + 1)𝐸𝛼𝛽𝛾 + 𝑙𝛽(𝑙𝛽 + 1)𝐸𝛽𝛼𝛾] (A.32)
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A.2.2 Selected quartic integrals

Y-Y-Y-Y We consider the integral

∫︁
dΩ𝑌𝛼𝑌𝛽𝑌𝛾𝑌𝛿 (A.33)

which appears for instance in 𝜑4 theory for fields on 𝑆2 [252]. By expanding the

products 𝑌𝛼𝑌𝛽 =
∑︀

𝜈 𝑌𝛼𝛽𝜈𝑌𝜈 and 𝑌𝛾𝑌𝛿 =
∑︀

𝜇 𝑌𝛾𝛿𝜇𝑌𝜇, one finds

∫︁
dΩ𝑌𝛼𝑌𝛽𝑌𝛾𝑌𝛿 =

∑︁
𝜈

∑︁
𝜇

∫︁
dΩ𝑌𝛼𝛽𝜈𝑌𝜈𝑌𝛾𝛿𝜇𝑌𝜇

=
∑︁
𝜈

∑︁
𝜇

𝑌𝛼𝛽𝜈𝑌𝛾𝛿𝜇

∫︁
dΩ𝑌𝜈𝑌𝜇

=
∑︁
𝜈

∑︁
𝜇

𝑌𝛼𝛽𝜈𝑌𝛾𝛿𝜇𝛿𝜇,𝜈

=
∑︁
𝜈

𝑌𝛼𝛽𝜈𝑌𝛾𝛿𝜈 (A.34)

where 𝜈 covers all multi-indices, but since 𝑌𝛼𝛽𝜈 = 0 if 𝑙𝜈 > 𝑙𝛼 + 𝑙𝛽, 𝜈 only needs to

cover indices such that 𝑙𝜈 ≤ 2𝑙max.

Psi-Psi-Psi-Psi The last identity involves the quartic integral

∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽Ψ𝛾

𝑗Ψ
𝑗,𝛿 (A.35)

which arises for example in the dynamics of free energies involving terms such as∫︀
dΩ (∇𝑓)4, where 𝑓 is a scalar field.
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∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽Ψ𝛾

𝑗Ψ
𝑗,𝛿 =

∑︁
𝜈

𝑙𝛽(𝑙𝛽 + 1)

(︂∫︁
dΩΨ𝛾

𝑗Ψ
𝑗,𝛿𝑌𝜈

)︂
−
∫︁

dΩ𝑌𝛼∇𝑗𝑌𝛽∇𝑗(Ψ𝛾
𝑘Ψ

𝑘,𝛿)

=
∑︁
𝜈

(𝑙𝛽(𝑙𝛽 + 1) + 𝑙𝛼(𝑙𝛼 + 1))𝑌𝛼𝛽𝜈

(︂∫︁
dΩΨ𝛾

𝑗Ψ
𝑗,𝛿𝑌𝜈

)︂
−
∫︁

dΩ𝑌𝛼𝑌𝛽∇𝑗∇𝑗(Ψ𝛾
𝑘Ψ

𝑘,𝛿)−
∫︁

dΩΨ𝛼
𝑘Ψ

𝑘,𝛽Ψ𝛾
𝑗Ψ

𝑗,𝛿

=
∑︁
𝜈

1

2
(𝑙𝛽(𝑙𝛽 + 1) + 𝑙𝛼(𝑙𝛼 + 1))𝑌𝛼𝛽𝜈

(︂∫︁
dΩΨ𝛾

𝑗Ψ
𝑗,𝛿𝑌𝜈

)︂
−
∑︁
𝜈

1

2
𝑌𝛼𝛽𝜈

∫︁
dΩ𝑌𝜈∇𝑗∇𝑗(Ψ𝛾

𝑘Ψ
𝑘,𝛿) (A.36)

To deal with the last term, we use ∇𝑖∇𝑖Ψ𝛼
𝑗 = (1 − 𝑙𝛼(𝑙𝛼 + 1))Ψ𝛼

𝑗 , and we can find

a nicer symmetric formula by summing the results of the integrations by parts with

respect to 𝛾 and 𝛿 terms respectively

∫︁
dΩ∇𝑖Ψ

𝛾
𝑘∇𝑖Ψ𝑘,𝛿𝑌𝜈 =− 1

2

[︂
(2− (𝑙𝛾(𝑙𝛾 + 1)− 𝑙𝛿(𝑙𝛿 + 1))

∫︁
dΩΨ𝛾

𝑗Ψ
𝑗,𝛿𝑌𝜈

+

∫︁
dΩ∇𝑖Ψ

𝛾
𝑘Ψ

𝑘,𝛿Ψ𝜈
𝑖 +

∫︁
dΩΨ𝛾

𝑘∇𝑖Ψ
𝑘,𝛿Ψ𝜈

𝑖

]︂
=− 1

2
[2− (𝑙𝛾(𝑙𝛾 + 1)− 𝑙𝛿(𝑙𝛿 + 1) + 𝑙𝜈(𝑙𝜈 + 1)]

∫︁
dΩΨ𝛾

𝑗Ψ
𝑗,𝛿𝑌𝜈

(A.37)

The final result is the compact formula

∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽Ψ𝛾

𝑗Ψ
𝑗,𝛿 =

2𝑙max∑︁
𝜈=0

(︂∫︁
dΩΨ𝛼

𝑘Ψ
𝑘,𝛽𝑌𝜈

)︂(︂∫︁
dΩΨ𝛾

𝑗Ψ
𝑗,𝛿𝑌𝜈

)︂
(A.38)

which explicitly connects the quartic integral to the previous coupling integrals.
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Appendix B

Consistent coarse-graining on curved

surfaces

In this appendix, we describe the derivation of self-consistent coarse-graining kernels

that are used in Chapter 5 to convert single cell information into a continuous density

field and its associated fluxes on a spherical surface. We first motivate this problem

for a flat surface and then proceed with a detailed derivation for the case of a spherical

surface.

B.1 Kernel consistency in Euclidean space

It is instructive to first consider a set of particles 𝛼 = 1, 2, 3, ... at positions X𝛼(𝑡)

moving with velocities V𝛼(𝑡) = dX𝛼/d𝑡, where capitalized vectors indicate position

and velocity in Euclidean space, e.g. particles move on a flat surface or within some

three-dimensional volume. A coarse-grained density 𝜌(X, 𝑡) and a mass flux J(X, 𝑡)

can be defined from this microscopic information by

𝜌(X, 𝑡) =
∑︁
𝛼

𝐾𝑒 [X,X𝛼(𝑡)] , (B.1a)

J(X, 𝑡) =
∑︁
𝛼

𝒦𝑒 [X,X𝛼(𝑡)] ·V𝛼(𝑡), (B.1b)
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where 𝐾𝑒 (X,X′) and 𝒦𝑒 (X,X′) represent a scalar-valued and a matrix-valued kernel

function, respectively. At the same time, in a system with a constant number of

particles, mass conservation implies, in general,

𝜕𝑡𝜌(X, 𝑡) +∇X · J(X, 𝑡) = 0, (B.2)

relating the density 𝜌(X, 𝑡) and the mass flux J(X, 𝑡) of particles. Using the coarse-

graining prescriptions Eqs. (B.1) directly in Eq. (B.2) and assuming the resulting

relation must hold for any set of particle trajectories, one finds a general kernel

consistency relation

∇X′𝐾𝑒(X,X′) +∇X · 𝒦𝑒(X,X′) = 0. (B.3)

This condition is automatically satisfied for any translationally invariant and isotropic

pair of kernels 𝐾𝑒(X,X′) = 𝐾𝑒(X −X′) and 𝒦𝑒(X,X′) = 𝐾𝑒(X −X′)I, where I is

the unit matrix. Coarse-graining with such kernels is frequently employed in prac-

tice: Positions and velocities can be, for example, simply convolved with a Gaussian

function of mean zero [220].

B.2 Kernel consistency on a curved surface

For a surface parameterized by r(𝑠1, 𝑠2) ∈ R3 with generalized coordinates 𝑠1, 𝑠2, two

tangential basis vectors are defined by e𝑖 = 𝜕r/𝜕𝑠𝑖 (𝑖 = 1, 2). Partial derivatives are,

in the following, denoted 𝜕𝑖 := 𝜕/𝜕𝑠𝑖. The metric tensor is given by 𝑔𝑖𝑗 = e𝑖 · e𝑗. The

mean curvature is defined by 𝐻n = −∇𝑖e
𝑖/2, where n = e1×e2/|e1×e2| denotes the

unit surface normal and the Einstein summation convention is used. The covariant

form of mass conservation Eq. 5.1 (main text) on a curved surface reads

𝜕𝑡𝜌+∇𝑖𝐽
𝑖 = 0, (B.4)
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with 𝐽 𝑖 = e𝑖 ·J and ∇𝑖 denotes the covariant derivative. In general, we are interested

in describing an effective dynamics for cell positions and velocities that are projected

onto a common reference sphere of radius 𝑅𝑠. Such a description can be found by

first formulating the coarse-graining approach for a unit sphere, on which particle

positions and velocities are fully determined by angular coordinates and corresponding

angular velocities, and finally rescaling the density and flux fields by suitable factors

of 𝑅𝑠. The corresponding coarse-graining Eq. (5.2b) (main text) of in-plane angular

velocities v̄𝛼(𝑡) = v𝛼(𝑡)/|r𝛼(𝑡)| for particles 𝛼 on a unit sphere reads covariantly

𝐽 𝑖 =
∑︁
𝛼

𝒦 (r, r𝛼)
𝑖
𝑗′ 𝑣

𝑗′

𝛼 , (B.5)

where 𝑣𝑖𝛼 = e𝑖 · v̄𝛼 and we drop the dependence on time to simplify the notation. The

two-point kernel tensor 𝒦 (r, r′)𝑖𝑗′ (a ‘bitensor’) is evaluated in the tangent space of r

for its first index and in the tangent space of r′ at the second, primed index (Ap-

pendix 1–Fig. B-1). Mass conservation on a curved surface, Eq. (B.4), together with

the coarse-graining prescriptions Eqs. (5.2a) (main text) and (B.5) then implies a

covariant kernel consistency relation

𝜕𝑗′𝐾(r, r′) +∇𝑖𝒦(r, r′)𝑖𝑗′ = 0. (B.6)

B.3 Solving the kernel consistency relation on a sphere

We solve Eq. (B.6) in the following on the unit sphere, such that r = n corresponds

to the surface normal. The final result can simply be rescaled to any spherical surface

of radius 𝑅𝑠. Furthermore, we note that the parameter

𝑥 = r · r′ (B.7)
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provides a measure for the great circle distance 𝜔(𝑥) = acos(𝑥) between two points

on a sphere. Hence, we consider an ansatz for the kernels in Eq. (B.6) of the form

𝐾(r, r′) = 𝑓(𝑥) (B.8a)

𝒦(r, r′)𝑖𝑗′ = 𝑔(𝑥)e𝑖 · e𝑗′ , (B.8b)

with two unknown scalar functions 𝑓(𝑥) and 𝑔(𝑥). The relevant derivatives of the

ansatz Eqs. (B.8) can readily be evaluated to

𝜕𝑗′𝐾(r, r′) =
d𝑓(𝑥)

d𝑥
r · e𝑗′ (B.9a)

∇𝑖𝒦(r, r′)𝑖𝑗′ =
d𝑔(𝑥)

d𝑥
r′ ·
(︀
e𝑖 ⊗ e𝑖

)︀
· e𝑗′ − 2𝑔(𝑥) r · e𝑗′ . (B.9b)

Here, ⊗ denotes a dyadic product and we use 𝜕𝑖𝑥 = r′ · e𝑖 and 𝜕𝑖′𝑥 = r · e𝑖′ , which

follows from Eq. (B.7), as well as ∇𝑖e
𝑖 = −2r in the second equation, which holds on

a unit sphere and follows from the definition of the mean curvature. We then use the

expansion of the identity matrix in R3 on the spherical basis I = e𝑖⊗e𝑖+n⊗n, such

that in our case with r = n we have e𝑖 ⊗ e𝑖 = I− r⊗ r. Hence, Eq. (B.9b) becomes

∇𝑖𝒦(r, r′)𝑖𝑗′ = −
d𝑔(𝑥)

d𝑥
(r′ · r)(r · e𝑗′)− 2𝑔(𝑥) r · e𝑗′ . (B.10)

Using Eqs. (B.9a) and (B.10) in the kernel consistency relation Eq. (B.6) and dividing

by r · e𝑗′ (at r = r′, for which r · e𝑗′ = 0, Eq. (B.6) is obeyed for any 𝑓(𝑥), 𝑔(𝑥)), we

find that the scalar functions in the kernel ansatz Eqs. (B.8) have to obey

𝑥
d𝑔(𝑥)

d𝑥
+ 2𝑔(𝑥) =

d𝑓(𝑥)

d𝑥
.

Hence, the general covariant consistency relation Eq. (B.6) implies for the kernel

ansatz Eqs. (B.8) that the weighting functions 𝑔(𝑥) and 𝑓(𝑥) must be related by

𝑔(𝑥) =
1

𝑥2

∫︁ 𝑥

0

d𝑢𝑢
d𝑓(𝑢)

d𝑢
. (B.11)
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B.4 Kernel functions with compact support

In the last step, we determine a family of kernel functions 𝑔(𝑥) and 𝑓(𝑥) defined on

the interval 𝑥 ∈ [−1, 1] that satisfy (B.11), along with the requirements:

1. 𝑓(𝑥) and 𝑔(𝑥) must be 𝐶1 regular on [−1, 1]

2. 𝑓 ≥ 0 on [−1, 1]

3. 𝑓 is normalized to 1 on the unit sphere.

Recalling 𝑥 = cos[𝜔(r, r′)] with angular distance 𝜔 between r and r′, a family of

functions fulfilling these conditions is given by

𝑓𝑘(𝜔) =
𝑘 + 1

2𝜋
(cos𝜔)𝑘1{cos𝜔>0} (B.12a)

𝑔𝑘(𝜔) =
𝑘

2𝜋
(cos𝜔)𝑘−11{cos𝜔>0}, (B.12b)

where 1{cos𝜔>0} is an indicator function that is 1 if cos𝜔 > 0 and vanishes other-

wise (Appendix 1–Fig. B-2). In this work, we have chosen the kernels Eqs. (B.8) with

𝑓 = 𝑓𝑘 and 𝑔 = 𝑔𝑘 for 𝑘 = 6. For these kernels derived here, densities 𝜌(r, 𝑡) and

associated fluxes J(r, 𝑡) that are coarse-grained on a unit sphere can be converted into

effective densities and fluxes on a spherical surface of radius 𝑅𝑠 through the rescaling

𝜌→ 𝜌/𝑅2
𝑠 and J→ J/𝑅𝑠. Equivalently, rescaled kernels 𝐾(r, r′)→ 𝐾(r, r′)/𝑅2

𝑠 and

𝒦(r, r′)𝑖𝑗′ → 𝒦(r, r′)𝑖𝑗′/𝑅𝑠 can be used directly, as was done in Eqs. (5.2) of the main

text to generate the data shown in Fig. 5-1 (main text).
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Figure B-1 : Illustration of the action of the coarse-graining tensor kernel 𝒦(r, r′)𝑖𝑗′
[Eq. (B.5)]. Left: 𝒦𝑖𝑗′ acts in the two tangent space at points r and r′ that are sepa-
rated by an angular distance 𝜔 = acos(r · r′). Each tangent plane has corresponding
basis vectors e𝑖, e𝑖′ for 𝑖 = 1, 2. Right: The tensor kernel 𝒦𝑖𝑗′ ∼ e𝑖 · e𝑗′ projects
vectors u in the tangent space of r′ and generates a vector v tangent at r.
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Figure B-2 : Family of kernel functions 𝑓𝑘(𝜔) and 𝑔𝑘(𝜔) given in Eqs. (B.12). These
functions represent weights of the coarse-graining kernels defined in Eqs. (B.8) and are
defined such that the kernels satisfy the consistency relation Eq. (B.5). 𝜔 = acos(r·r′)
denotes angular distances between r and r′. Coarse-graining of a conserved number
of particles on a sphere to determine a density field 𝜌 (Eq. (2a), main text) requires a
different weighting – 𝑓𝑘(𝜔) – than the coarse-graining of an associated flux J (Eq. (2b),
main text), which requires a weighting 𝑔𝑘(𝜔) instead to ensure that coarse-grained
fields obey mass conservation Eq. (B.4). A characteristic coarse-graining length scale
associated with these kernels is the half-width at half-maximum (HWHM), which is
related to 𝑘 by HWHM= arccos(2−1/𝑘).
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Appendix C

Active Brownian Particles on the

sphere

In this appendix, we describe the stochastic dynamics of non-interacting, active Brow-

nian particles (ABPs) [255] on curved surfaces and derive analytically coarse-grained

mean-field equations, as well as a kernel representation of ABP dynamics. These

results are used in chapter 5 to validate our coarse-graining and inference framework.

We consider active Brownian particles at position x ∈ R3 that move with speed 𝑣0

on the surface of a unit sphere (radius 𝑅0 = 1) in the direction of their unit orientation

vector u ∈ R3. Since |x| = 1 at all times, we can interpret 𝑣0 as the particle’s angular

speed on the unit sphere. The orientation vector is at all times tangential to the

surface, but is subject to random in-plane fluctuations characterized by a rotational

diffusion coefficient 𝐷𝑟. The corresponding dynamics of x(𝑡) and u(𝑡) is given by the

stochastic differential equations (in units 𝑅0 = 1)

dx = 𝑣0u d𝑡 (C.1a)

du = −𝑣0xd𝑡+ (x× u)
√︀

2𝐷𝑟 ∘ d𝜉, (C.1b)

where the stochastic differential equation (C.1b) is interpreted in the Stratonovich

sense, as denoted by the symbol "∘" [256]. It follows from Eqs. (C.1) that x(𝑡) and

u(𝑡) are normalized at all times. In the absence of rotational diffusion (𝐷𝑟 = 0), the
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vectors x and u rotate over time by an angle 𝑣0𝑡 around the axis u×x. Consequently,

particle trajectories in the absence of noise trace out great circles in the plane defined

by (u× x).

C.1 Spatial correlation of APBs on a sphere

To illustrate how ABPs on a sphere differ from ABPs in Euclidean space, we study

first the correlation function 𝐶(𝑡) = ⟨x(𝑡) · x(0)⟩, where the angled brackets denote a

Gaussian white-noise average. To this end, we rewrite the ABP dynamics Eqs. (C.1)

in their equivalent Itô form given by

dx = 𝑣0u d𝑡 (C.2a)

du = − (𝑣0x+𝐷𝑟u) d𝑡+
√︀

2𝐷𝑟 (x× u) d𝜉. (C.2b)

In the Itô formulation any smooth function 𝑓(x,u) obeys ⟨𝑓(x,u)d𝜉⟩ = 0, such

that [257]

d

d𝑡
⟨x(𝑡) · x(0)⟩ = 𝑣0⟨u(𝑡) · x(0)⟩

and

d

d𝑡
⟨u(𝑡) · x(0)⟩ = −𝑣0⟨x(𝑡) · x(0)⟩ −𝐷𝑟⟨u(𝑡) · x(0)⟩,

which yields a damped harmonic oscillator equation for the correlation function

d2

d𝑡2
𝐶(𝑡) +𝐷𝑟

d

d𝑡
𝐶(𝑡) + 𝑣20𝐶(𝑡) = 0. (C.3)

Normalization and orthogonality of x(𝑡) and u(𝑡) imply the initial conditions 𝐶 = 1

and d𝐶/d𝑡 = 0 at 𝑡 = 0. The behavior of solutions of Eq. (C.3) is a function of the ro-

tational Péclet number Pe𝑟 := 𝑣0/𝐷𝑟 that quantifies the ratio between active motion

and orientational diffusion. For Pe𝑟 < 1, (‘high-noise regime’), the position correla-
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tion function 𝐶(𝑡) = ⟨x(𝑡) ·x(0)⟩ decays according to Eq. (C.3) monotonically to zero.

For Pe𝑟 > 1, (‘low-noise regime’) position correlations exhibit damped oscillations.

To validate our simulation method (described in the following section), analytic pre-

dictions for 𝐶(𝑡) are in Fig. 5-7B (main text) compared against the ensemble average

⟨x(𝑡) · x(0)⟩ over 3× 104 simulated ABPs.

C.2 Stochastic simulation of active Brownian parti-

cles on the sphere

To ensure a numerically exact normalization of the particle’s position and orientation

vectors on the unit sphere, we simulated the dynamics

dx =
𝑣0
|u|

(︂
u− u · x

|x|2 x
)︂

d𝑡 (C.4a)

du = −𝑣0
x

|x|d𝑡+
(x× u)

|x× u|
√︀

2𝐷𝑟 ∘ d𝜉. (C.4b)

We numerically solve the Itô formulation of this system using the Euler-Mayurama

scheme [258], and confirm that this system reproduces the correlation dynamics pre-

dicted by Eq. (C.3) (Fig. 5-7B).

C.3 Fokker-Planck equation

To study the continuum dynamics of a large number of non-interacting ABPs on a

sphere, we determine the dynamics of the probability density 𝑝(x,u, 𝑡) of particle

positions x and orientations u at time 𝑡. To do so, it is convenient to express particle

positions in terms of a parameterisation x(𝑡) = x[𝑥1(𝑡), 𝑥2(𝑡)] that defines tangential

basis vectors by e𝑖 = 𝜕x/𝜕𝑥𝑖 (𝑖 = 1, 2) and a metric tensor 𝑔𝑖𝑗 = e𝑖 ·e𝑗. By definition,

we have dx = e𝑖d𝑥
𝑖 and Eq. (C.1a) can be rewritten as

d𝑥𝑖 = 𝑣0𝑢
𝑖d𝑡. (C.5)
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General tangential vectors on the surface can be written as u = 𝑢𝑖e𝑖 and on a unit

sphere the surface normal can be identified with particle positions n = e1 × e2/|e1 ×
e2| = x. Hence, on the unit sphere the Gauss-Weingarten relation reads 𝜕𝑖e𝑗 =

−𝐶𝑖𝑗x+ Γ𝑘
𝑖𝑗e𝑘, where Γ𝑘

𝑖𝑗 denote Christoffel symbols and 𝐶𝑖𝑗 is the curvature tensor.

This implies together with Eq. (C.5) the geometric relation

du = e𝑖d𝑢
𝑖 + 𝑢𝑖(𝜕𝑗e𝑖)d𝑥

𝑗

= e𝑖d𝑢
𝑖 − 𝐶𝑖𝑗𝑢

𝑖𝑢𝑗𝑣0xd𝑡+ 𝑣0𝑢
𝑖𝑢𝑗Γ𝑘

𝑖𝑗e𝑘d𝑡.

Comparing this identity with the stochastic dynamics du in Eq. (C.1b) and using

that 𝐶𝑖𝑗𝑢
𝑖𝑢𝑗 = 𝑔𝑖𝑗𝑢

𝑖𝑢𝑗 = |u|2 = 1 for unit vectors u on the unit sphere, we find the

covariant stochastic differential equation

d𝑢𝑖 = −𝑣0𝑢𝑗𝑢𝑘Γ𝑖
𝑗𝑘d𝑡+ 𝜖𝑖𝑘𝑢

𝑘
√︀

2𝐷𝑟 ∘ d𝜉. (C.6)

In Eq. (C.6), 𝜖𝑖𝑗 = x · (e𝑖 × e𝑗) denotes the Levi-Civita tensor on the unit sphere.

In this covariant basis, we define the scalar probability density

𝑝(x,u, 𝑡) =

⟨
1√︀
𝑔(x)

∏︁
𝑖

𝛿[𝑥𝑖 − 𝑥𝑖(𝑡)]𝛿[𝑢𝑖 − 𝑢𝑖(𝑡)]

⟩
, (C.7)

where 𝛿(𝑥) denotes a Dirac function. Combining Eqs. (C.5) and (C.6), standard

methods [234, 235] allow us to obtain the Fokker-Planck equation for 𝑝(x,u, 𝑡) as

𝜕

𝜕𝑡
𝑝(x,u, 𝑡) = 𝐷𝑟

𝜕

𝜕𝑢𝑖

[︂
𝜖𝑖𝑘𝑢

𝑘 𝜕

𝜕𝑢𝑗

(︀
𝜖𝑗𝑙𝑢

𝑙𝑝
)︀]︂
−∇𝑖(𝑣0𝑢

𝑖𝑝) +
𝜕

𝜕𝑢𝑖

(︀
𝑣0𝑢

𝑗𝑢𝑘Γ𝑖
𝑗𝑘𝑝
)︀

(C.8)

Using the identity 𝜖𝑖𝑘𝜖
𝑗
𝑙 = 𝑔𝑖𝑗𝑔𝑘𝑙 − 𝛿𝑖𝑙𝛿

𝑗
𝑘, the dynamics of the probability density is

finally given by

𝜕

𝜕𝑡
𝑝(x,u, 𝑡) = 𝐷𝑟

𝜕

𝜕𝑢𝑖

[︂
(𝑔𝑖𝑗 − 𝑢𝑖𝑢𝑗)

𝜕𝑝

𝜕𝑢𝑗

]︂
− 𝑣0𝑢

𝑖∇𝑖𝑝+
𝜕

𝜕𝑢𝑖

(︀
𝑣0𝑢

𝑗𝑢𝑘Γ𝑖
𝑗𝑘𝑝
)︀
, (C.9)

which agrees with the result in [235].
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C.4 Hydrodynamic expansion

To connect the Fokker-Planck dynamics given in Eq. (C.9) to hydrodynamic fields,

we define (probability) density and fluxes by 𝜌(x, 𝑡) =
∫︀
d2u 𝑝(x,u, 𝑡), and 𝐽 𝑖(x, 𝑡) =

𝑣0
∫︀
d2u𝑢𝑖𝑝(x,u, 𝑡). Their dynamics on the unit sphere is given by [235]

𝜕𝜌

𝜕𝑡
= −∇𝑖𝐽

𝑖 (C.10a)

𝜕𝐽 𝑖

𝜕𝑡
= −𝑣20

2
∇𝑖𝜌−𝐷𝑟𝐽

𝑖, (C.10b)

where couplings to higher order fields are neglected, as they vanish at shorter time-

scales due to the presence of rotational noise. Expressing Eqs. (C.10) in terms of scalar

and vector spherical harmonics (see Appendix A) for an arbitrary sphere radius 𝑅0

yields the mode dynamics given in Eqs. (5.17) of the main text.

C.5 Coarse-graining non-interacting ABPs on the sphere

In this section, we show that the kernel-based coarse-graining approach introduced in

Appendix B is compatible with the hydrodynamic expansion of the probability density

obtained by the Fokker-Planck equation. We again consider 𝑁 Active Brownian

particles on a sphere, with trajectories {x𝜇(𝑡)v𝜇(𝑡)}𝜇=1,...,𝑁 . Let us also consider

two spherical coarse-graining kernels 𝐾0(x,x
′) and [𝐾1(x,x

′)]𝑖𝑗′ such that ∇𝑗′𝐾0 +

∇𝑖[𝐾1]
𝑖
𝑗′ = 0.

In terms of these kernels, we define the density and flux

𝜌(x, 𝑡) =

⟨∑︁
𝜇

𝐾0(x,x𝜇(𝑡))

⟩
(C.11a)

𝐽𝑘(x, 𝑡) =

⟨∑︁
𝜇

[𝐾1(x,x𝜇(𝑡))]
𝑘
𝑗′𝑣0𝑢

𝑗′

𝜇 (𝑡)

⟩
(C.11b)

171



then we have

𝜕𝑡𝜌(x, 𝑡) =

⟨∑︁
𝜇

∇𝑗′𝐾0(x,x𝜇(𝑡))𝑣0𝑢
𝑗′

𝜇 (𝑡)

⟩

= −
⟨∑︁

𝜇

∇𝑘[𝐾1(x,x𝜇(𝑡))]
𝑘
𝑗′𝑣0𝑢

𝑗′

𝜇 (𝑡)

⟩

= −∇𝑘𝐽
𝑘

since the spatial derivative on unprimed coordinates commute with the averaging

over particle positions. Hence, by construction of our kernels we recover exactly mass

conservation 𝜕𝑡𝜌+∇𝑘𝐽
𝑘 = 0 with no further assumptions. What about the dynamical

equation for J? Averaging over the possible realizations of the ABP trajectories

(denoted by ⟨.⟩), we have

𝜕𝑡𝐽
𝑘(x, 𝑡) =

⟨
𝑣0
∑︁
𝜇

𝜕𝑡

(︁
[𝐾1(x,x

′
𝜇)]

𝑘
𝑗′𝑢

𝑗′

𝜇 (𝑡)
)︁⟩

=

⟨
𝑣0
∑︁
𝜇

𝜕𝑎′ [𝐾1(x,x
′
𝜇)]

𝑘
𝑗′𝑢

𝑎′

𝜇 𝑢
𝑗′

𝜇 + [𝐾1(x,x
′
𝜇)]

𝑘
𝑗′d𝑡𝑢

𝑗′

𝜇 (𝑡)

⟩
.

Moreover ABPs satisfy in the Itô calculus

d𝑡𝑢
𝑗′

𝜇 (𝑡) = −𝑣0𝑢𝑎′

𝜇 𝑢
𝑏′

𝜇Γ
𝑗′

𝑎′𝑏′ −𝐷𝑢𝑗′

𝜇 +
√
2𝐷𝑔𝑗

′𝑎′𝜖𝑎′𝑏′𝑢
𝑏′

𝜇

d𝜉

d𝑡
.

Now, by the property that the multiplicative noise term averages out to zero in the

Itô calculus, we have

𝜕𝑡𝐽
𝑘(x, 𝑡) =

⟨
𝑣0
∑︁
𝜇

𝜕𝑎′ [𝐾1(x,x
′
𝜇)]

𝑘
𝑗′𝑣0𝑢

𝑎′

𝜇 𝑢
𝑗′

𝜇 − [𝐾1(x,x
′
𝜇)]

𝑘
𝑗′𝑣

2
0𝑢

𝑎′

𝜇 𝑢
𝑏′

𝜇Γ
𝑗′

𝑎′𝑏′ −𝐷[𝐾1(x,x
′
𝜇)]

𝑘
𝑗′𝑢

𝑗′

𝜇

⟩

=

⟨
𝑣20
∑︁
𝜇

∇𝑎′ [𝐾1(x,x
′
𝜇)]

𝑘
𝑏′𝑢

𝑎′

𝜇 𝑢
𝑏′

𝜇

⟩
−𝐷𝐽𝑘

where we used the definition of the covariant derivative at point x′ ∇𝑎′𝐹𝑏′ = 𝜕𝑎′𝐹𝑏′ −
Γ𝑐′

𝑎′𝑏′𝐹𝑐′ and some index relabeling.
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Define now the microscopic nematic tensor of particle 𝜇 by 𝑛𝑎′𝑏′
𝜇 = 𝑢𝑎′

𝜇 𝑢
𝑏′
𝜇 − 1

2
𝛿𝑎

′𝑏′ .

Then

𝜕𝑡𝐽
𝑘(x, 𝑡) =

⟨
𝑣20
∑︁
𝜇

∇𝑎′ [𝐾1(x,x
′)]𝑘𝑏′

(︂
𝑛𝑎′𝑏′

𝜇 +
1

2
𝛿𝑎

′𝑏′
)︂⟩
−𝐷𝐽𝑘

=

⟨
𝑣20
∑︁
𝜇

∇𝑎′ [𝐾1(x,x
′
𝜇)]

𝑘
𝑏′𝑛

𝑎′𝑏′

𝜇

⟩
+

⟨
𝑣20
2

∑︁
𝜇

∇𝑏′ [𝐾1(x,x
′
𝜇)]

𝑘
𝑏′

⟩
−𝐷𝐽𝑘

To proceed, notice that our kernels satisfy 𝐾0(x,x
′) = 𝑓(x · x′) and [𝐾1(x,x

′)]𝑖𝑗′ =

𝑔(x ·x′)(𝑒𝑖 · 𝑒𝑗′) - given that ∇𝑗′𝐾0+∇𝑖[𝐾1]
𝑖
𝑗′ = 0, by symmetry between primed and

unprimed indices, we also have that ∇𝑘𝐾0 +∇𝑗′ [𝐾1]
𝑘
𝑗′ = 0. Hence now we have

𝜕𝑡𝐽
𝑘(x, 𝑡) =

⟨
𝑣20
∑︁
𝜇

∇𝑎′ [𝐾1(x,x
′
𝜇)]

𝑘
𝑏′𝑛

𝑎′𝑏′

𝜇

⟩
−∇𝑘

⟨
𝑣20
2

∑︁
𝜇

[𝐾0(x,x
′
𝜇)]

⟩
−𝐷𝐽𝑘

=

⟨
𝑣20
∑︁
𝜇

∇𝑎′ [𝐾1(x,x
′
𝜇)]

𝑘
𝑏′𝑛

𝑎′𝑏′

𝜇

⟩
− 𝑣20

2
∇𝑘𝜌−𝐷𝐽𝑘

= −𝑣20∇𝑖𝑄
𝑖𝑘 − 𝑣20

2
∇𝑘𝜌−𝐷𝐽𝑘 (C.12a)

where we defined a macroscopic nematic tensor 𝑄𝑖𝑘 =
⟨∑︀

𝜇[𝐾2(x,x
′
𝜇)]

𝑖𝑘
𝑎′𝑏′𝑛

𝑎′𝑏′
𝜇

⟩
, with

the kernel 𝐾2 chosen such that [𝐾2]
𝑖𝑘
𝑎′𝑏′ = [𝐾2]

𝑘𝑖
𝑎′𝑏′ , which by symmetry on primed

indices also satisfies ∇𝑎′ [𝐾1]
𝑖
𝑏′ + ∇𝑘[𝐾2]

𝑖𝑘
𝑎′𝑏′ = 0. Eq. (C.12a) is the same as the

one obtained through the Fokker-Planck approach in [235], and reduces to Eq. C.10b

under the same closure assumption that 𝑄𝑖𝑗 = 0.
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Appendix D

Tracking topological defects on a

sphere

In this appendix, we detail the geometric construction employed to numerically iden-

tify topological defects in vector fields on the sphere 𝑆2 embedded in R3, which is

used in chapter 5.

D.1 Topological charge

We consider a vector field v on the sphere 𝑆2. Let us consider a small Burgers circuit

Γ, an oriented closed curve circling point r.

Then the topological charge contained at point r is given by [259]

𝑞 =

∮︁
Γ

d𝜃 (D.1)

where 𝜃 is the angle formed by the vector field with an arbitrary direction. On

a sphere, one cannot simply use a fixed direction to define the angle 𝜃, and the

evaluation of the integral Eq. (D.1) requires a careful geometric construction. For our

application purposes, we consider a vector field defined on a discrete quasi-regular

grid on the sphere.
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D.2 Geometrical construction

Basis definition

We consider a quasi-regular grid on the unit sphere of points {r𝑗}𝑗=1,...,𝑁 ∈ R3. Let us

focus on a point r𝑖 on the sphere, with first neighbors {r𝑖𝑠}𝑠=1,...,𝑛. For each neighbor,

we define unit vectors n𝑠 ∝ r𝑖𝑠 − (r𝑖𝑠 · r𝑖)r𝑖 and t𝑖𝑠 = r𝑖 × n𝑖
𝑠 such that (n𝑖

𝑠, t
𝑖
𝑠, r

𝑖) is

orthonormal direct. Note that since we consider points on the unit sphere, the vectors

r𝑖 are all unitary. In what follows, we will drop the superscript 𝑖 for compactness.

Choosing a point at random in the neighborhood of r𝑖 and labeling it 𝑠 = 1,

we order the points {r𝑖𝑠}{𝑠 = 1, . . . , 𝑛} in the neighborhood of 𝑖 such as the angle

𝛼𝑠 = atan2(n𝑠 · t1,n𝑠 · n1) + 𝜋 ∈ [0, 2𝜋[ is increasing with 𝑠.

Computing the topological charge around a point 𝑟𝑖

Once the neighborhood of each point is identified and ordered, we create the tangent

vectors to the closed curve going through the neighbor points in order. We choose

the curve to be composed of the piece-wise geodesics {𝛾𝑠}𝑠=1,...,𝑛 connecting points

r𝑠 and r𝑠+1. To close the curve, we define r𝑛+1 = r1. Defining the unit vector

k𝑠 ∝ (r𝑠 × r𝑠+1), the tangents to 𝛾𝑠 are 𝑡0𝑠 = r𝑠 × k𝑠 and 𝑡1𝑠 = r𝑠+1 × k𝑠 at points r𝑠

and r𝑠+1 respectively, and are in the plane defined by k𝑠. We can then compute the

change in the angle of the vector field v𝑠 ∈ R3 with respect to the geodesic tangent

∆𝜃𝑠. Defining 𝑣
(𝑗)
𝑡,𝑠 = v𝑠+𝑗 · t(𝑗)𝑠 and 𝑣

(𝑗)
𝑛,𝑠 = v𝑠+𝑗 · k𝑠 for 𝑗 = 0, 1, the change in angle

∆𝜃𝑠 then comes out as

∆𝜃𝑠 = diff(𝜃(1)𝑠 , 𝜃(0)𝑠 ) (D.2)

where we define diff(𝑦, 𝑥) = mod(𝑦−𝑥+𝜋, 2𝜋)−𝜋 the function that takes two angles

in ]− 𝜋, 𝜋] and return the difference of their angles in ]− 𝜋, 𝜋], and

𝜃(𝑗)𝑠 = atan2

⎛⎝ 𝑣
(𝑗)
𝑡,𝑠√︁

[𝑣
(𝑗)
𝑡,𝑠 ]

2 + [𝑣
(𝑗)
𝑛,𝑠]2

,
𝑣
(𝑗)
𝑛,𝑠√︁

[𝑣
(𝑗)
𝑡,𝑠 ]

2 + [𝑣
(𝑗)
𝑛,𝑠]2

⎞⎠ . (D.3)
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A B

Figure D-1 : Demonstration of the defect tracking on two example tangential vector
fields on a spherical surface. A: Vector field defined by J = Φ(2,2). B: Vector field
defined by J = Ψ(2,−1)+0.1Φ(2,2). Black lines depict the streamlines defined by these
vector fields. White circles depict topological defects of charge +1, red circles depict
defects with charge −1.

We finally evaluate 𝑞 as

𝑞 =
1

2𝜋

𝑛∑︁
𝑠=1

∆𝜃𝑠 (D.4)

If |𝑞| > .1, we then count the center point as topological defect and record its charge

and position. For the polar vector fields that we consider, our flux vector field must

complete an integer number of turns around a Burgers circuit and thus all defects

must be integer-charged. We hence round 𝑞 to the nearest signed integer.

Additional processing

We use a hierarchical clustering method using a distance cutoff of the order of the grid

spacing to identify spurious clusters of defects arising from misalignment of the grid

points with the location of the continuous field singular points (MATLAB 2020b). We

then pick a single representative from each cluster as final result. Example results

are shown in Fig. D-1.

After locating defects at all time points, it is possible to additionally reconstruct

the defect tracks by using the Munkres (Hungarian) algorithm [260] to match defects

at times 𝑡 and 𝑡+ 1, distinguishing between defects of different charges.
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