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Abstract

This thesis studies the problem of drawing samples from a probability dis-
tribution. Despite the prevalence of sampling problems in applications, the
quantitative behavior of sampling algorithms remains poorly understood. This
thesis contributes to the theoretical understanding of sampling by giving upper
bounds and more importantly lower bounds for various sampling algorithms
and problem classes. On the upper bound side, we propose new sampling
algorithms, motivated by the perspective of sampling as optimization [JKO98],
and give convergence guarantees for them. We also obtain state-of-the-art
convergence results for the popular Metopolis-Adjusted Langevin Algorithm.
On the lower bound side, we establish the query complexity for strongly log-
concave sampling in all constant dimensions. Our lower bounds rely on simple
geometric constructions, which can hopefully be of aid to similar results in
high dimensions.
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Chapter 1

Introduction

The standard setting of sampling is as follows. We have a target distribution π,
often supported on Rd. The density of the target is given by π(x) = exp(−V (x)),
where V : Rd → R is the potential function. We are given access to V and its
derivatives, often only up to an additive constant, and we want to generate
samples in Rd whose distribution is close to π in some measure, for instance in
total variation distance.

Sampling algorithms are widely used in many different areas, such as
scientific computing, statistics, machine learning, and generative modelling.
Yet our understanding of sampling algorithms remains limited. There are many
algorithms that run faster in practice than what theory guarantees, and many
heuristics among practitioners that we cannot justify rigorously (e.g. “increase
the movement of the Markov chain”). There is also a complete lack of lower
bounds, which means that we can’t tell for a given class of target distributions
which algorithm will perform the best. These are the questions that motivated
this thesis.

Another motivation comes from a beautiful connection, first introduced
in the seminal paper of Jordan, Kinderlehrer and Otto [JKO98], that the
marginal distributions of a Langevin diffusion (LD) evolves as a gradient
flow of the Kullback-Leibler (KL) divergence over the Wasserstein space of
probability measures (a review of the theory is given in 2.1). This perspective
of sampling as optimization naturally leads one to wonder whether we can use
the extensive optimization toolkit to develop new sampling algorithms and fill
in the aforementioned gaps in our understanding of sampling.

This thesis is organized in two parts. The first part is focused on new
sampling algorithms and upper bound guarantees, and the second part is
focused on sampling lower bounds. We now give a summary of the thesis that
provides context and motivation and outlines the main contributions.
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1.1 Summary of contributions

In Part I of the thesis, consisting of Chapters 3 to 5, we start with the connec-
tion between sampling and optimization and ask: can we borrow ideas from
optimization to propose new sampling algorithms? Can we use optimization
techniques to obtain sharper convergence guarantees for existing algorithms?
Since Langevin dynamics is the analogue of gradient descent in sampling, are
there sampling analogues of the other optimization algorithms as well, such as
proximal/splitting methods, mirror descent, Nesterov’s accelerated gradient
descent, and Newton methods?

Chapter 3 deals with mirror-Langevin diffusions, or the sampling analogue
of mirror descent. These stochastic processes were introduced in [Zha+20b].
We give a clean non-asymptotic convergence analysis of the continuous time
mirror-Langevin diffusion. As a special case of such processes, we propose
the Newton-Langevin diffusion and prove that it converges to stationarity
exponentially with a rate which has no dependence on the target distribution.
We give an application of this result to the problem of sampling from the
uniform distribution on a convex body, using a strategy inspired by interior-
point methods. Our techniques also yield new results on the convergence of
the Langevin diffusion in Wasserstein distance.

The investigation of Langevin and mirror-Langevin diffusions lead to two
natural questions. First, both these diffusion processes are flows that minimize
the KL divergence, but are there sampling algorithms that minimize different
functionals in Wasserstein space? Second, sampling algorithms based on
diffusions are random, but there is no randomness in the evolution of the
marginal distributions along a Wasserstein gradient flow. Is there a way to
discretize Wasserstein gradient flows that avoids the randomness by directly
evolving approximations of the marginal distributions?

In Chapter 4, we study Stein Variational Gradient Descent (SVGD), pro-
posed by [LW16], which is a major advance that gives a deterministic sampling
algorithm. SVGD is often described as the kernelized gradient flow for the KL
divergence. We introduce a new perspective on SVGD that instead views it
as a kernelized gradient flow of a different functional: the chi-squared diver-
gence. We show that the gradient flow of the chi-squared divergence converges
exponentially under conditions as weak as a Poincaré inequality. This perspec-
tive leads us to propose an alternative to SVGD, called Laplacian Adjusted
Wasserstein Gradient Descent (LAWGD), that can be implemented from the
spectral decomposition of the Laplacian operator of the target distribution. We
obtain strong convergence guarantees for the continuous version of LAWGD,
and demonstrate that it has good practical performance when the Laplacian
operator is computationally tractable.

The prior two chapters only analyse the continuous Wasserstein gradient
flows without getting into the details of discretization. In Chapter 5, we tackle

12



the problem of discretization head on, and analyze the most practical and widely
used discretization of the Langevin diffusion, the Metropolis-Adjusted Langevin
Algorithm (MALA). Conventional wisdom in the sampling literature, backed by
a popular diffusion scaling limit [RS02], suggests that the mixing time of MALA
scales as O(d1/3), where d is the dimension. However, the scaling limit requires
stringent assumptions on the target distribution and is asymptotic in nature. In
contrast, prior to our work the best known non-asymptotic mixing time bound
for MALA on the class of log-smooth and strongly log-concave distributions is
O(d). We establish that the mixing time of MALA on this class is Θ̃(d1/2) under
a warm start. Our upper bound proof introduces a new technique based on a
projection characterization of the Metropolis adjustment [BD01], which reduces
the analysis of MALA to the well-studied unadjusted Langevin discretization,
and bypasses direct computation of the acceptance probability.

Our lower bound for MALA is obtained by constructing a specific class
log-smooth and strongly log-concave distributions, and upper bounding the
spectral gap for MALA on them. While it shows that our analysis of MALA
is tight, it does not tell us anything about what the lower bound should
be for general sampling algorithms. It is then natural to wonder about the
more general questions: for some given class of distributions, what is the
fundamental limit on the sampling performance that can be achieved by any
sampling algorithm? What is the best algorithm that matches that limit for
that given class? Such questions will be the focus for Part II. There has been
no work done on the question of general sampling lower bounds prior to the
works in this thesis. Chapter 6 gives an overview of the context and ideas that
motivate the assumptions made and the techniques used in obtaining the lower
bounds.

In Chapter 7, we explore the simplest idea for proving a sampling lower
bound: reduce sampling to optimization. As we will discuss in Chapter 6, this
reduction to optimization does not give very interesting results for log-concave
sampling. But for non log-concave sampling, when we measure the sampling
progress by the Fisher information to the target distribution, we are able to
obtain non-trivial results. When the desired accuracy level is low, we prove a
lower bound that is matched by the performance of averaged Langevin Monte
Carlo, proposed by [Bal+22]. When the desired accuracy level is high, we show
that sampling from Fisher information at most ε from the target distribution
requires poly(1/ε) queries, which is surprising as it rules out the existence of
high-accuracy algorithms (e.g., algorithms using Metropolis–Hastings filters)
in this context.

Chapter 8 investigates the lower bound question in a toy setting, where
we prove sampling lower bounds for rejection sampling algorithms only, and
only on discrete distributions. We show that for discrete distributions with
structural constraints, such as being monotone or discrete log-concave, the
rejection sampling complexity is sublinear in the alphabet size of the support.

13



The results we obtain are simple, but the main insights, that we should use an
information theoretic argument, and that we should construct distributions
that are hard to distinguish with queries but easy to distinguish with samples,
turn out to be fruitful for proving stronger sampling lower bounds.

In Chapter 9, using the ideas mentioned, we give the first general sampling
lower bound of Ω(log log κ) on the query complexity of sampling from strongly
log-concave and log-smooth distributions with condition number κ in one
dimension. The lower bound is tight and achieved by rejection sampling. In
Chapter 10, we use the same framework to prove that sampling from strongly
log-concave and log-smooth distributions in dimension d = 2 requires Ω(log κ)
queries. This lower bound is tight in all fixed d ≥ 2 dimensions, and it is also
achieved by rejection sampling. Compared to the one dimensional case, the
two dimensional construction is much more involved, and is inspired by work
on the Kakeya conjecture in harmonic analysis.

The goal of general sampling lower bounds in high dimensions remains
out of reach in this thesis. But for the subclass of Gaussian distributions, we
are able to obtain dimension dependent lower bounds, which are presented in
Chapter 11. We show that sampling from Gaussians with condition number
κ in dimension d requires Ω̃(min(

√
κ log d, d)) queries. We also give an upper

bound algorithm that achieves a rate of O(min(
√
κ log d/ε, d)), which shows

that the lower bounds are nearly tight. The algorithm samples by taking
linear combinations of a standard Gaussian vector with past query points
and gradient queries. Since Gaussians are strongly log-concave, this implies
that sampling from strongly log-concave distributions will have dimension
dependence, which is notable in contrast to optimization, where optimizing
strongly convex functions have dimension free rates. Our results suggest that
similar to optimization, log-concave sampling separates into two regimes: the
low dimensional and high dimensional. In the low dimensional regime, the
optimal log-concave sampling algorithm is rejection sampling, which can be
thought of as the analogue of the ellipsoid method in optimization. In the
high dimensional regime, our results for Gaussian sampling suggests that the
optimal algorithm is likely to be a gradient-based algorithm, similar in form to
the Langevin algorithm or Hamiltonian Monte Carlo, which is analogous to
gradient descent and accelerated gradient descent in optimization.

14



Chapter 2

Background

2.1 Sampling and optimization

Throughout this thesis, we will consider the following sampling problem: Let
π be a log-concave probability measure over Rd so that π has density equal
to e−V . Often we will consider the case where the potential V : Rd → R is
convex. In practical sampling scenarios, the case where the potential V is
non-convex is the more challenging and prevalent one. But the difficulty in non-
convex sampling is inherently tied to the difficulty of non-convex optimization,
specifically the difficulty of locating the modes of the distribution, which makes
analysis complicated. By studying the cases where the potential is convex, we
are often able to isolate the difficulty that comes from sampling alone.

There is a deep connection between sampling and optimization that can be
seen by considering the Langevin diffusion (LD), that is the solution (Xt)t≥0

to the stochastic differential equation (SDE)

dXt = −∇V (Xt) dt+
√

2 dBt, (LD)

with (Bt)t≥0 a standard Brownian motion in Rd. This gives rise to a sampling
algorithm for π, because π is the unique invariant distribution of (LD), and
suitable discretizations result in algorithms that can be implemented when V
is known only up to an additive constant, which is crucial for applications in
Bayesian statistics and machine learning.

Looking at (LD), we see that if we drop the Brownian motion term on the
right hand side, we are left with the dynamics ẋt = −∇V (xt), known as the
gradient flow. When the function V is convex, the gradient flow will converge to
the unique minimizer of V , and a suitable time discretization of this dynamics
yields the well-known gradient descent (GD) algorithm for optimization.

But the connection with optimization goes deeper. If we consider the
marginal distribution µt of Xt, then it turns out that µt evolves according
to a gradient flow over the Wasserstein space of probability measures that
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minimizes the Kullback-Leibler (KL) divergence KL(· ∥ π). This perspective
was introduced in the seminal paper of Jordan, Kinderlehrer and Otto[JKO98],
and it is now commonly known as the JKO scheme. This point of view has not
only led to a better theoretical understanding of sampling algorithms based on
the Langevin diffusion [Ber18; CB18; Wib18; DMM19; VW19], but also fueled
the discovery of new MCMC algorithms inspired by the diverse and powerful
optimization toolbox [wibisonowibisono2019proximal; Mar+12; Sim+16;
Che+18b; Ber18; Hsi+18; Wib18; Ma+19; Che+20b; DR20; Zha+20b]. We
will now give some background on the theory of Wasserstein gradient flows and
explain what we mean more precisely.

Wasserstein gradient flows

Let P2,ac(Rd) of probability measures absolutely continuous w.r.t. Lebesgue mea-
sure and possessing a finite second moment, equipped with the 2-Wasserstein
metric W2. We refer readers to [Vil03; San15; San17] for introductory treat-
ments of optimal transport, and to [AGS08; Vil09] for detailed treatments of
Wasserstein gradient flows.

Let F : P2,ac(Rd)→ R ∪ {∞} be a functional defined on Wasserstein space.
We say that a curve (µt)t≥0 of probability measures is a Wasserstein gradient
flow for the functional F if it satisfies

∂tµt = div
(
µt∇W2F (µt)

)
(2.1)

in a weak sense. Here, ∇W2F (µ) := ∇δF (µ) is the Wasserstein gradient of
the functional F at µ, where δF (µ) : Rd → R is the first variation of F at µ,
defined by

lim
ε→0

F (µ+ εξ)− F (µ)

ε
=

∫
δF (µ) dξ, for all ξ with

∫
dξ = 0,

and ∇ denotes the usual (Euclidean) gradient. Hence, the Wasserstein gradient,
at each µ ∈ P2,ac(Rd), is a map from Rd to Rd.

Using the continuity equation, we can give an Eulerian interpretation to
the evolution equation (2.1) (see [San15, §4] and [AGS08, §8]). Given a family
of vector fields (vt)t≥0, let (Xt)t≥0 be a curve in Rd with random initial point
X0 ∼ µ0, and such that (Xt)t≥0 is an integral curve of the vector fields (vt)t≥0,

that is, Ẋt = vt(Xt). If we let µt denote the law of Xt, then (µt)t≥0 evolves
according to the continuity equation

∂tµt = − div(µtvt). (2.2)

Comparing (2.1) and (2.2), we see that (2.1) describes the evolution of the
marginal law (µt)t≥0 of the curve (Xt)t≥0 withX0 ∼ µ0 and Ẋt = −[∇W2F (µt)](Xt).
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Wasserstein calculus provides the following (formal) calculation rule: the
Wasserstein gradient flow (µt)t≥0 for the functional F dissipates F at the rate
∂tF (µt) = −Eµt [∥∇W2F (µt)∥2]. More generally, for a curve (µt)t≥0 evolving
according to the continuity equation (2.2), the time-derivative of F is given by
∂tF (µt) = Eµt⟨∇W2F (µt), vt⟩.

It turns out that Langevin dynamics is precisely the gradient flow where the
functional is the Kullback-Leibler (KL) divergence KL(· ∥ π) [JKO98; AGS08;
Vil09]. This can be checked by showing that the Wasserstein gradient of the
KL divergence [AGS08; San15] is given by

(
∇W2DKL(· ∥ π)

)
(µ) = ∇ ln

dµ

dπ
. (2.3)

Substituting the gradient expression into the continuity equation (2.2), and
the resulting PDE will be the distributional form of the Langevin dynamics.

Upper bound techniques

The techniques for obtaining convergence guarantees in sampling also closely
resemble those used in optimization. Consider first the gradient flow for f :
ẋt = −∇f(xt). We get ∂t[f(xt)− f(x∗)] = −∥∇f(xt)∥2 from a straightforward
computation. From this identity, it is natural to assume a Polyak- Lojasiewicz
(PL) inequality, which is well-known in the optimization literature [KNS16]
and can be employed even when f is not convex [Che+20c]. Indeed, if there
exists a constant CPL > 0 with

f(x)− f(x∗) ≤ CPL

2
∥∇f(x)∥2 ∀x ∈ Rd , (PL)

then ∂t[f(xt) − f(x∗)] ≤ − 2
CPL

[f(xt) − f(x∗)]. Together with Grönwall’s
inequality, it readily yields exponentially fast convergence in objective value:
f(xt) ≤ f(x0) e

−2t/CPL .
If we consider the Langevin dynamics, since it is the gradient flow of the

KL divergence, using the expression for the gradient in (2.3) we obtain [Vil03,
§9.1.5]

∂tDKL(µt ∥ π) = −
∫ ∥∥∇ ln

dµt

dπ

∥∥2
dµt = −4

∫ ∥∥∇√dµt

dπ

∥∥2
dπ. (2.4)

In this setup, the role of the PL inequality (PL) is played by a log-Sobolev
inequality of the form

entπ(g2) :=

∫
g2 ln(g2) dπ −

( ∫
g2 dπ

)
ln
( ∫

g2 dπ
)
≤ 2CLSI

∫
∥∇g∥2 dπ.

(LSI)
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When g =
√

dµt/dπ, (LSI) reads DKL(µt ∥ π) ≤ 2CLSI

∫ ∥∥∇√dµt/dπ
∥∥2

dπ ,

which implies exponentially fast convergence: DKL(µt∥π) ≤ DKL(µ0∥π) e−2t/CLSI

by Grönwall’s inequality.

2.2 Information theory and lower bounds

The connections mentioned between sampling and optimization leads one to
wonder whether techniques for proving optimization lower bounds can also
translate to sampling lower bounds, but as we will discuss in Chapter 6, this
approach did not yeild results for us. Instead, the main technique we use in our
lower bounds will be the well known Fano’s inequality from information theory,
which we review below. For background on information theory, see [CT06, §2].

The mutual information between two discrete random variables X and Y
is defined as

I(X;Y ) = KL(PX,Y ∥ PX ⊗ PY ) ,

where PX,Y is the joint distribution of X and PX and PY are the marginal
distributions. The mutual information is also the difference between the
marginal entropy and the conditional entropy:

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X) .

Fano’s inequality is used in the setting where we have a discrete random variable
X, we observe some random variable ξ that is correlated to X, and we come
up with an estimator X̂ for X using only the data ξ. Specifically, we assume
that X → ξ → X̂ forms a Markov chain. Then we have the following.

Theorem 1 (Fano’s inequality, [CT06, Theorem 2.10.1]). Suppose that S is a

finite set and X ∼ uniform(S). Suppose that X̂ is any estimator which is based

on some data ξ, such that X → ξ → X̂. Then,

P{X̂ ̸= X} ≥ 1− I(ξ;X) + log 2

log |S| .
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Chapter 3

Mirror Langevin

3.1 Introduction

This chapter focuses on the sampling analogue of mirror descent. Specifically, we
analyse the class of stochastic processes called mirror-Langevin diffusions (MLD)
introduced in [Zha+20b]. In contrast to the Langevin diffusion(LD), these
processes correspond to alternative optimization schemes that minimize the KL
divergence over the Wasserstein space by changing its geometry. They show
better dependence in key parameters such as the condition number and the
dimension.

A surprising aspect of our analysis is that we track the progress of these
schemes not by measuring the objective function itself, the KL divergence, but
rather by measuring the chi-squared divergence to the target distribution π
as a surrogate. This perspective highlights the central role of mirror Poincaré
inequalities (MP) as sufficient conditions for exponentially fast convergence of
the mirror-Langevin diffusion to stationarity in chi-squared divergence, which
readily yields convergence in other well-known information divergences, such as
the Kullback-Leibler divergence, the Hellinger distance, and the total variation
distance [Tsy09, §2.4].

We also specialize our results to the case when the mirror map equals the
potential V . This can be understood as the sampling analogue of Newton’s
method, and we therefore call it the Newton-Langevin diffusion (NLD). In
this case, the mirror Poincaré inequality translates into the Brascamp-Lieb
inequality which automatically holds when V is twice-differentiable and strictly
convex. In turn, it readily implies exponential convergence of the Newton-
Langevin diffusion (Corollary 1) and can be used for approximate sampling even
when the second derivative of V vanishes (Corollary 2). Strikingly, the rate of
convergence has no dependence on π or on the dimension d and, in particular,
is robust to cases where ∇2V is arbitrarily close to zero. This scale-invariant
convergence parallels that of Newton’s method in convex optimization and is
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the first result of this kind for sampling.

This invariance property is useful for approximately sampling from the
uniform distribution over a convex body C, which has been well-studied in
the computer science literature [FKP94; KLS95; LV07]. By taking the target
distribution π ∝ exp(−βV ), where V is any strictly convex barrier function,
and β, the inverse temperature parameter, is taken to be small (depending on
the target accuracy), we can use the Newton-Langevin diffusion, much in the
spirit of interior point methods (as promoted by [LTV20]), to output a sample
which is approximately uniformly distributed on C; see Corollary 3.

Throughout this chapter, we work exclusively in the setting of continuous-
time diffusions such as (LD). We refer to the works [DM15; Dal17a; Dal17b;
RRT17; CB18; Wib18; DK19; DMM19; DRK19; Mou+19; VW19] for dis-
cretization error bounds for Langevin diffusion, and to [AC21] for discretization
bounds for the mirror-Langevin diffusion.

This chapter is based on the joint work [Che+20b], with Sinho Chewi,
Thibaut Le Gouic, Tyler Maunu, Philippe Rigollet, and Austin J. Stromme.

Related works. The discretized Langevin algorithm, and the Metropolis-
Hastings adjusted version, have been well-studied when used to sample from
strongly log-concave distributions, or distributions satisfying a log-Sobolev
inequality [Dal17b; DM17; CB18; Che+19; DK19; DM+19; Dwi+19; Mou+19;
VW19]. Moreover, various ways of adapting Langevin diffusion to sample
from bounded domains have been proposed [BEL18; Hsi+18; Zha+20b]; in
particular, [Zha+20b] studied the discretized mirror-Langevin diffusion.

While our analysis and methods are inspired by the optimization perspective
on sampling, it connects to a more traditional analysis based on coupling
stochastic processes. Quantitative analysis of the continuous Langevin diffusion
process associated to SDE (LD) has been performed with Poincaré and log-
Sobolev inequalities [BGG12; BGL14; VW19], and with couplings of stochastic
processes [CL89; Ebe16].

Notation. The Euclidean norm over Rd is denoted by ∥ · ∥. Throughout, we
simply write

∫
g to denote the integral with respect to the Lebesgue measure:∫

g(x) dx. When the integral is with respect to a different measure µ, we
explicitly write

∫
g dµ. The expectation and variance of g(X) when X ∼ µ are

respectively denoted Eµ g =
∫
g dµ and varµ g :=

∫
(g − Eµ g)2 dµ. When clear

from context, we sometimes abuse notation by identifying a measure µ with
its Lebesgue density.
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3.2 Mirror-Langevin diffusions

Before introducing mirror-Langevin diffusions, our main objects of interest, we
provide some intuition for their construction by drawing a parallel with convex
optimization.

Gradient flows, mirror flows, and Newton’s method

We briefly recall some background on mirror flows; we refer readers to the
monograph [Bub15] for the convergence analysis of the corresponding discrete-
time algorithms.

Suppose we want to minimize a differentiable function f : Rd → R. The
gradient flow of f is the curve (xt)t≥0 on Rd solving ẋt = −∇f(xt). A suitable
time discretization of this curve yields the well-known gradient descent (GD).

Although the gradient flow typically works well for optimization over Eu-
clidean spaces, it may suffer from poor dimension scaling in more general
cases such as Banach space optimization; a notable example is the case when
f is defined over the probability simplex equipped with the ℓ1 norm. This
observation led Nemirovskii and Yudin [NJ79] to introduce the mirror flow,
which is defined as follows. Let ϕ : Rd → R ∪ {∞} be a mirror map, that
is a strictly convex twice continuously differentiable function of Legendre
type1. The mirror flow (xt)t≥0 satisfies ∂t∇ϕ(xt) = −∇f(xt), or equivalently,

ẋt = −[∇2ϕ(xt)]
−1∇f(xt). The corresponding discrete-time algorithms, called

mirror descent (MD) algorithms, have been successfully employed in varied
tasks of machine learning [Bub15] and online optimization [BC12] where the
entropic mirror map plays an important role. In this chapter, we are primarily
concerned with the following choices for the mirror map:

1. When ϕ = ∥ · ∥2/2, then the mirror flow reduces to the gradient flow.

2. Taking ϕ = f and the discretization xk+1 = xk − hk [∇2f(xk)]
−1∇f(xk)

yields another popular optimization algorithm known as (damped) New-
ton’s method. Newton’s method has the important property of being
invariant under affine transformations of the problem, and its local con-
vergence is known to be much faster than that of GD; see [Bub15, §5.3].

Mirror-Langevin diffusions

We now introduce the mirror-Langevin diffusion (MLD) of [Zha+20b]. Just as
LD corresponds to the gradient flow, the MLD is the sampling analogue of the
mirror flow. To describe it, let ϕ : Rd → R be a mirror map as in the previous

1This ensures that ∇ϕ is invertible, c.f. [Roc97, §26].
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section. Then, the mirror-Langevin diffusion satisfies the SDE

Xt = ∇ϕ⋆(Yt), dYt = −∇V (Xt) dt+
√

2 [∇2ϕ(Xt)]
1/2

dBt , (MLD)

where ϕ⋆ denotes the convex conjugate of ϕ [BL06, §3.3]. In particular, if we
choose the mirror map ϕ to equal the potential V , then we arrive at a sampling
analogue of Newton’s method, which we call the Newton-Langevin diffusion
(NLD),

Xt = ∇V ⋆(Yt), dYt = −∇V (Xt) dt+
√

2 [∇2V (Xt)]
1/2

dBt. (NLD)

From our intuition gained from optimization, we expect that NLD has special
properties, such as affine invariance and faster convergence. We validate this
intuition in Corollary 1 below by showing that, provided π is strictly log-concave,
the NLD converges to stationarity exponentially fast, with no dependence on π.
This should be contrasted with the vanilla Langevin diffusion (LD), for which
the convergence rate depends on the Poincaré constant of π, as we discuss in
the next section.

We end this section by comparing MLD and NLD with similar sampling
algorithms proposed in the literature inspired by mirror descent and Newton’s
method.

Mirrored Langevin dynamics. A variant of MLD, called “mirrored Langevin
dynamics”, was introduced in [Hsi+18]. The mirrored Langevin dynamics is
motivated by constrained sampling and corresponds to the vanilla Langevin
algorithm applied to the new target measure (∇ϕ)#π. In contrast, MLD can be
understood as a Riemannian diffusion w.r.t. the Riemannian metric induced by
the mirror map ϕ. Thus, the motivations and properties of the two algorithms
are different, and we refer to [Zha+20b] for further comparison of the two
algorithms.

An earlier draft of [Hsi+18] also introduced MLD, along with a continuous-
time analysis of the diffusion. Their convergence analysis is based on the
classical Bakry-Émery criterion (see [BGL14]), which is generally harder to
check than the mirror Poincaré inequality (MP) that we introduce below; in
particular, when ϕ = V , we show that the mirror Poincaré inequality holds
automatically.

Quasi-Newton diffusion. The paper [Sim+16] proposes a quasi-Newton sampling
algorithm, based on L-BFGS, which is partly motivated by the desire to avoid
computation of the third derivative ∇3V while implementing the Newton-
Langevin diffusion. We remark, however, that the form of NLD employed above,
which treats V as a mirror map, does not in fact require the computation of
∇3V , and thus can be implemented practically; see Section 3.6. Moreover,
since we analyse the full NLD, rather than a quasi-Newton implementation, we
are able to give a clean convergence result.
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Information Newton’s flow . Inspired by the perspective of [JKO98], which
views the Langevin diffusion as a gradient flow in the Wasserstein space
of probability measures, the paper [WL20] proposes an approach termed
“information Newton’s flow” that applies Newton’s method directly on the space
of probability measures equipped with either the Fisher-Rao or the Wasserstein
metric. However, unlike LD and NLD that both operate at the level of particles,
information Newton’s flow faces significant challenges at the level of both
implementation and analysis.

3.3 Convergence analysis

Convergence of gradient flows and mirror flows

We provide a brief reminder about the convergence analysis of gradient flows
and mirror flows defined in Section 3.2 to provide intuition for the next section.
Throughout, let f be a differentiable function with minimizer x∗.

Recall from Section 2.1 that the gradient flow for f , ẋt = −∇f(xt), is
analysed as follows: we start from the identity ∂t[f(xt)− f(x∗)] = −∥∇f(xt)∥2,
then apply the PL inequality (PL) to control the norm of the gradient on the
right.

A similar analysis may be carried out for the mirror flow. Fix a mirror
map ϕ and consider the mirror flow: ẋt = −[∇2ϕ(xt)]

−1∇f(xt). It holds
∂t[f(xt) − f(x∗)] = −⟨∇f(xt), [∇2ϕ(xt)]

−1∇f(xt)⟩. Therefore, the analogue
of (PL) which guarantees exponential decay in the objective value is the
following inequality, which we call a mirror PL inequality :

f(x)− f(x∗) ≤ CMPL

2
⟨∇f(x), [∇2ϕ(x)]

−1∇f(x)⟩ ∀x ∈ Rd. (MPL)

Next, we describe analogues of (PL) and (MPL) that guarantee convergence of
LD and MLD.

Convergence of mirror-Langevin diffusions

The above analysis employs the objective function f to measure the progress of
both the gradient and mirror flows. While this is the most natural choice, our
approach below crucially relies on measuring progress via a different functional
F . What should we use as F? To answer this question, we first consider the
simpler case of the vanilla Langevin diffusion (LD), which is a special case
of MLD when the mirror map is ϕ = ∥·∥2/2.

As discussion in Section 2.1, the Langevin dynamics (LD) is a gradient
from the the KL divergence with respect to the 2-Wasserstein distance. Hence
the decay in the KL divergence along (LD) is also given by the norm of the
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Wasserstein gradient, as in (2.4). In this setup, the role of the PL inequality (PL)
is played by a log-Sobolev inequality (LSI).

A disadvantage of this approach, however, is that the log-Sobolev inequal-
ity (LSI) does not hold for any log-concave measure π, or it may hold with
a poor constant CLSI. For example, it is known that the log-Sobolev con-
stant of an isotropic log-concave distribution must in general depend on the
diameter of its support [LV18b]. In contrast, we work below with a Poincaré
inequality, which is conjecturally satisfied by such distributions with a universal
constant [KLS95].

Motivated by [BCG08; CG09], we instead consider the chi-squared diver-
gence

F (µ) = χ2(µ ∥ π) := varπ
dµ

dπ
=

∫ (dµ

dπ

)2

dπ − 1, if µ≪ π ,

and F (µ) =∞ otherwise. It is well-known that the law (µt)t≥0 of LD satisfies
the Fokker-Planck equation in the weak sense [KS91, §5.7]:

∂tµt = div
(
µt∇ ln

µt

π

)
.

Using this, we can compute the derivative of the chi-squared divergence:

1

2
∂tF (µt) =

∫
µt

π
∂tµt =

∫
µt

π
div

(
µt∇ ln

µt

π

)
= −

∫ 〈
∇ ln

µt

π
,∇µt

π

〉
µt = −

∫ ∥∥∇µt

π

∥∥2
π ,

and exponential convergence of the chi-squared divergence follows if π satisfies
a Poincaré inequality:

varπ g ≤ CP Eπ[∥∇g∥2] for all locally Lipschitz g ∈ L2(π). (P)

Thus, when using the chi-squared divergence to track progress, the role of the
PL inequality is played by a Poincaré inequality. As we discuss in Sections 3.4
and 3.4 below, the Poincaré inequality is significantly weaker than the log-
Sobolev inequality.

A similar analysis may be carried out for MLD using an appropriate variation
of Poincaré inequalities.

Definition 1 (Mirror Poincaré inequality). Given a mirror map ϕ, we say that
the distribution π satisfies a mirror Poincaré inequality with constant CMP if

varπ g ≤ CMP Eπ⟨∇g, (∇2ϕ)
−1∇g⟩ for all locally Lipschitz g ∈ L2(π).

(MP)

When ϕ = ∥ · ∥2/2, (MP) is simply called a Poincaré inequality and the smallest
CMP for which the inequality holds is the Poincaré constant of π, denoted CP.
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Using a similar argument as the one above, we show exponential conver-
gence of MLD in χ2(· ∥ π) under (MP). Together with standard comparison
inequalities between information divergences [Tsy09, §2.4], it implies exponen-
tial convergence in a variety of commonly used divergences, including the total
variation (TV) distance ∥· − π∥TV, the Hellinger distance H(·, π), and the KL
divergence DKL(· ∥ π).

Theorem 2. For each t ≥ 0, let µt be the marginal distribution of MLD
with target distribution π at time t. Then if π satisfies the mirror Poincaré
inequality (MP) with constant CMP, it holds

2∥µt−π∥2TV, H
2(µt, π), DKL(µt ∥π), χ2(µt ∥π) ≤ e

− 2t
CMPχ2(µ0 ∥π), ∀ t ≥ 0 .

We give two proofs of this result below. Recall the law (µt)t≥0 of MLD
satisfies the Fokker-Planck equation

∂tµt = div
(
µt (∇2ϕ)

−1∇ ln
µt

π

)
. (3.1)

A unique solution to this equation, with enough regularity to justify our
computations below, exists under fairly benign conditions on ϕ and V , see [LL08,
Proposition 6].

Proof of Theorem 2. Using the Fokker-Planck equation (3.1), we may compute

∂tχ
2(µt ∥ π) = ∂t

∫
µ2
t

π
= 2

∫
µt

π
∂tµt = 2

∫
µt

π
div

(
µt (∇2ϕ)

−1∇ ln
µt

π

)
= −2

∫ 〈
∇µt

π
, (∇2ϕ)

−1∇ ln
µt

π

〉
µt = −2

∫ 〈
∇µt

π
, (∇2ϕ)

−1∇µt

π

〉
π.

The mirror Poincaré inequality (MP) implies that this quantity is at most
−2C−1

MPχ
2(µt ∥ π), which completes the proof via Grönwall’s inequality.

We may reinterpret this proof within Markov semigroup theory.

Proof of Theorem 2 from a Markov semigroup perspective. We denote by (Pt)t≥0

the semigroup of MLD; we refer readers to [BGL14; Han16] for background on
Markov semigroup theory. The Dirichlet form E is given by

E(f, g) =

∫
⟨∇f, (∇2ϕ)

−1∇g⟩ dπ.

Since it is a self-adjoint semigroup, we get for all f ∈ L2(π),∫
Pt

(dµ0

dπ

)
f dπ =

∫ (dµ0

dπ

)
Ptf dπ =

∫
Ptf dµ0 =

∫
f dµt =

∫
dµt

dπ
f dπ ,
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so that
Pt

(µ0

π

)
=
µt

π
.

Therefore,

χ2(µt ∥ π) := varπ
(dµt

dπ

)
= varπ Pt

(dµ0

dπ

)
.

Using a classical result of Markov semigroup theory (see for instance [CG09,
Theorem 2.1] or [BGL14, Theorem 4.2.5])

χ2(µt ∥ π) = varπ Pt

(dµ0

dπ

)
≤ e−

2t
C varπ

(dµ0

dπ

)
= e−

2t
C χ2(µ0 ∥ π)

if and only if the semigroup (Pt)t≥0 satisfies

varπ(f) ≤ CE(g, g), for all g ∈ D(E), (3.2)

where E is the Dirichlet form of (Pt)t≥0 with domain D(E). To conclude the
proof, it suffices to note that (3.2) is precisely our assumption (MP) with
C = CMP.

Recall that LD can be understood as a gradient flow for the KL divergence
on the 2-Wasserstein space. In light of this interpretation, the above bound for
the KL divergence yields a convergence rate in objective value, and it is natural
to wonder whether a similar rate holds for the iterates themselves in terms
of 2-Wasserstein distance. From the works [Din15; Led18; Liu20], it is known
that a Poincaré inequality (P) implies the transportation-cost inequality

W 2
2 (µ, π) ≤ 2CPχ

2(µ ∥ π), ∀µ≪ π. (3.3)

We thank Jon Niles-Weed for bringing the above to our attention.

The inequality (3.3) implies that if π has a finite Poincaré constant CP then
Theorem 2 also yields exponential convergence in Wasserstein distance. In the
rest of the paper, we write this result as

1

2CP
W 2

2 (µt, π) ≤ e
− 2t

CMPχ2(µ0 ∥ π) ,

for any target measure π that satisfies a mirror Poincaré inequality, with the
convention that CP =∞ when π fails to satisfy a Poincaré inequality. In this
case, the above inequality is simply vacuous.

3.4 Applications

We specialize Theorem 2 to the following important applications.
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Newton-Langevin diffusion

For NLD, we assume that V is strictly convex and twice continuously differen-
tiable; take ϕ = V . In this case, the mirror Poincaré inequality (MP) reduces
to the Brascamp-Lieb inequality, which is known to hold with constant CMP = 1
for any strictly log-concave distribution π [BL76; BL00; Gen08]. It yields
the following remarkable result where the exponential contraction rate has no
dependence on π nor on the dimension d.

Corollary 1. Suppose that V is strictly convex and twice continuously differ-
entiable. Then, the law (µt)t≥0 of NLD satisfies

2∥µt − π∥2TV, H
2(µt, π), DKL(µt ∥ π), χ2(µt ∥ µ),

1

2CP
W 2

2 (µt, π) ≤ e−2tχ2(µ0 ∥ π).

If π is log-concave, then it satisfies a Poincaré inequality [AB15; LV17] so
that the result in Wasserstein distance holds. In fact, contingent on the famous
Kannan-Lovász-Simonovitz (KLS) conjecture ([KLS95]), the Poincaré constant
of any log-concave distribution π is upper bounded by a constant, independent
of the dimension, times the largest eigenvalue of the covariance matrix of π.

At this point, one may wonder, under the same assumptions as the Brascamp-
Lieb inequality, whether a mirror version of the log-Sobolev inequality (LSI)
holds. This question was answered negatively in [BL00], thus reinforcing our
use of the chi-squared divergence as a surrogate for the KL divergence.

If the potential V is convex, but degenerate (i.e., not strictly convex) we
cannot use NLD directly with π as the target distribution. Instead, we perturb
π slightly to a new measure πβ, which is strongly log-concave, and for which
we can use NLD. Crucially, due to the scale invariance of NLD, the time it
takes for NLD to mix does not depend on β, the parameter which governs the
approximation error.

Corollary 2. Fix a target accuracy ε > 0. Suppose π = e−V is log-concave
and set πβ ∝ e−V−β∥·∥2, where β ≤ ε2/(2

∫
∥ · ∥2 dπ). Then, the law (µt)t≥0

of NLD with target distribution πβ satisfies ∥µt − π∥TV ≤ ε by time t =
1
2

ln[2χ2(µ0 ∥ πβ)] + ln(1/ε).

Proof. From our assumption, it holds

DKL(π ∥ πβ) =

∫
ln

dπ

dπβ
dπ = β

∫
∥ · ∥2 dπ + ln

∫
e−β∥·∥2 dπ ≤ β

∫
∥ · ∥2 dπ ≤ ε2

2
.

Moreover, Theorem 2 with the above choice of t yields DKL(µt ∥πβ) ≤ ε2/2. To
conclude, we use Pinsker’s inequality and the triangle inequality for ∥ · ∥TV.

Extensions for the other cases where ϕ is only a proxy for V can be found
in the original paper ??.
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Sampling from the uniform distribution on a convex
body

Next, we consider an application of NLD to the problem of sampling from the
uniform distribution π on a convex body C. A natural method of outputting
an approximate sample from π is to take a strictly convex function Ṽ : Rd →
R ∪ {∞} such that dom Ṽ = C and Ṽ (x) → ∞ as x → ∂C, and to run NLD

with target distribution πβ ∝ e−βṼ , where the inverse temperature β is taken

to be small (so that πβ ≈ π). The function Ṽ is known as a barrier function.

Although we can take any choice of barrier function Ṽ , we obtain a clean
theoretical result if we assume that Ṽ is ν−1-exp-concave, that is, the mapping
exp(−ν−1Ṽ ) is concave. Interestingly, this assumption further deepens the rich
analogy between sampling and optimization, since such barriers are widely
studied in the optimization literature. There, the property of exp-concavity is
typically paired with the property of self-concordance, and barrier functions
satisfying these two properties are a cornerstone of the theory of interior point
algorithms (see [Bub15, §5.3] and [Nes04, §4]).

We now formulate our sampling result. In our continuous framework, it
does not require self-concordance of the barrier function.

Corollary 3. Fix a target accuracy ε > 0. Let π be the uniform distribution
over a convex body C and let Ṽ be a ν−1-exp-concave barrier for C. Then, the
law (µt)t≥0 of NLD with target density πβ ∝ e−βṼ for β ≤ ε2/(2ν) satisfies

∥µt − π∥TV ≤ ε by time t = 1
2

ln[2χ2(µ0 ∥ πβ)] + ln(1/ε).

Proof. Lemma 1 in Section 3.5 ensures that DKL(πβ ∥ π) ≤ ε2/2. We conclude
as in the proof of Corollary 2, by using Theorem 2, Pinsker’s inequality, and
the triangle inequality for ∥ · ∥TV.

Langevin diffusion under a Poincaré inequality

We conclude this section by giving some implications of Theorem 2 to the
classical Langevin diffusion (LD) when ϕ = ∥ · ∥2/2. In this case, the mirror
Poincaré inequality (MP) reduces to the classical Poincaré inequality (P) as in
Section 3.3.

Corollary 4. Suppose that π satisfies a Poincaré inequality (P) with constant
CP > 0. Then, the law (µt)t≥0 of the Langevin diffusion (LD) satisfies

2∥µt − π∥2TV, H
2(µt, π), DKL(µt ∥ π), χ2(µt ∥ µ),

1

2CP
W 2

2 (µt, π) ≤ e
− 2t

CPχ2(µ0 ∥ π).

The convergence in TV distance recovers results of [Dal17b; DM17]. Bounds
for the stronger error metric χ2(·∥π) have appeared explicitly in [CLL19; VW19]
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and is implicit in the work of [BCG08; CG09] on which the TV bound of [DM17]
is based.

Moreover, it is classical that if π satisfies a log-Sobolev inequality (LSI) with
constant CLSI then it has Poincaré constant CP ≤ CLSI. Thus, the choice of
the chi-squared divergence as a surrogate for the KL divergence when tracking
progress indeed requires weaker assumptions on π.

3.5 Stability in KL with respect to

exp-concave perturbations

The following lemma quantifies the approximation error of replacing π by πβ
in Section 3.4 and, more generally provides a simple bound to control the
KL divergence between a log-concave distribution and its perturbation by a
ν-exp-concave barrier function. Its proof uses crucially displacement convexity
of the KL divergence to a log-concave measure [Vil03, §5], and it can be viewed
as the sampling analogue of [Nes04, (4.2.17)].

Recall that b is ν-exp-concave if the mapping exp(−ν−1b) is concave.

Lemma 1. Let π be a log-concave distribution on a convex set K ⊂ Rd. Fix
ν > 0, and let π̃ have density exp(−b) with respect to π, where b : K→ R is
ν-exp-concave. Then it holds that

DKL(π̃ ∥ π) ≤ ν .

Proof. On intK, we have

−∇ ln
dπ̃

dπ
= ∇b. (3.4)

The measure π is log-concave, so by displacement convexity of entropy [AGS08,
Theorem 9.4.11] and the “above-tangent” formulation of convexity [Vil03,
Proposition 5.29], we have

0 = DKL(π ∥ π) ≥ DKL(π̃ ∥ π) + E
〈
∇ ln

dπ̃

dπ
(X̃), X − X̃

〉
,

where (X, X̃) are optimally coupled for π and π̃. If we rearrange this inequality
and use the identities in (3.4), we get

DKL(π̃ ∥ π) ≤ −E
〈
∇ ln

dπ̃

dπ
(X̃), X − X̃

〉
= E⟨∇b(X̃), X − X̃⟩ . (3.5)

We now use the fact that b is ν-exp-concave. To that end, define the convex
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function

φ(t) = − exp
(
−1

ν
b(X̃ + t (X − X̃))

)
, t ∈ [0, 1] .

By convexity, we have

φ′(0) · (1− 0) ≤ φ(1)− φ(0) ≤ −φ(0) = exp
(
−1

ν
b(X̃)

)
.

Since

φ′(0) =
1

ν
exp

(
−1

ν
b(X̃)

)
⟨∇b(X̃), X − X̃⟩ ,

the above inequality reads ⟨∇b(X̃), X − X̃⟩ ≤ ν, which completes the proof
together with (3.5).

Remark 1. It is known that given any convex body C ⊂ Rd, there exists a
standard self-concordant ν−1-exp-concave barrier with ν ≤ d [NN94; BE15;
TY18].

3.6 Numerical experiments

In this section, we examine the numerical performance of the Newton-Langevin
Algorithm (NLA), which is given by the following Euler discretization of NLD:

∇V (Xk+1) = (1− h)∇V (Xk) +
√

2h [∇2V (Xk)]
1/2
ξk, (NLA)

where (ξk)k∈N is a sequence of i.i.d. N (0, Id) variables.

Generalized Gaussian distribution

We first demonstrate the scale invariance of NLD established in Corollary 1,
by sampling from an ill-conditioned generalized Gaussian distribution on R100

with V (x) = ⟨x,Σ−1x⟩γ/2 for γ = 3/4.

Figure 3-1 compares the performance of NLA to that of the Unadjusted
Langevin Algorithm (ULA) [DM+19] and of the Tamed Unadjusted Langevin
Algorithm (TULA) [Bro+19]. We run the algorithms 50 times and compute run-
ning estimates for the mean and scatter matrix of the family following [ZWG13].
Convergence is measured in terms of squared distance between means and
relative squared distance between scatter matrices, ∥Σ̂− Σ∥2/∥Σ∥2. NLA gen-
erates samples that rapidly approximate the true distribution and also displays
stability to the choice of the step size h.
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Figure 3-1: V (x) = ⟨x,Σ−1x⟩3/4/2, Σ = diag(1, 2, . . . , 100). Left: absolute
squared error of the mean 0. Right: relative squared error for the scatter
matrix Σ.

Gaussian distribution

We repeat the example in Figure 3-1 for the simpler case of the Gaussian distri-
bution (γ = 1) on R100 with the same scatter matrix Σ = diag(1, 2, . . . , 100) in
Figure 3-2. We again see the superiority of NLA over the Unadjusted Langevin
Algorithm (ULA) [DM+19] and the Tamed Unadjusted Langevin Algorithm
(TULA) [Bro+19]. Here and in Section 3.6 the additional parameter of TULA
(denoted γ in [Bro+19]) is chosen equal to .1.
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Figure 3-2: We display convergence of the various algorithms for an ill-
conditioned Gaussian distribution, with d = 100 and Σ = diag(1, 2, . . . , 100).
Left: error is the squared distance from 0. Right: error is the relative distance
between scatter matrices. As in the experiment displayed in Figure 3-1, NLA
rapidly converges both in terms of location and scale for large step sizes.

We also display some samples from the Gaussian experiment of Figure 3-2
in Figure 3-3. NLA maintains good performance for a wide range of step-size
choices, while ULA and TULA require a small step size to accurately sample
from the target distribution. In fact, even with a small step size, ULA and
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TULA often jump to small probability regions, while NLA avoids these regions
even for large step sizes.

Figure 3-3: Samples from NLA, ULA, and TULA for the ill-conditioned Gaus-
sian example of Figure 3-2, with Σ = diag(1, 2, . . . , 100). We display the
projection onto the first (least spread) and last (most spread) population
principal components, along with the projection of a 95% confidence region.
Top: the step size for all algorithms is h = 0.7, Bottom: the step size for all
algorithms is h = 0.05.

Uniform sampling on a convex body

We demonstrate the efficacy of NLD established in Corollary 3 in a simple
simulation: sampling uniformly from the ill-conditioned rectangle [−a, a] ×
[−1, 1] with a = 0.01 (Figure 3-4). We compare NLA with the Projected
Langevin Algorithm (PLA) [BEL18], both with 200 iterations and h = 10−4.

For NLA, we take Ṽ (x) = − log(1 − x21) − log(a2 − x22) and β = 10−4. PLA
and MALA target the uniform distribution directly. NLA samples from an
approximate distribution, given in Section 3.4. The step sizes are chosen as
h = 10−5 for NLA and PLA and h = 0.01 for MALA. The step sizes for PLA
and MALA are tuned to allow the algorithm to reach approximate stationarity
in the fewest number of iterations. MALA can use a larger step size because it
is unbiased (its stationary distribution coincides with the target distribution,
due to the Metropolis-Hastings adjustment). On the other hand, samples from
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Figure 3-4: Uniform sampling from the set [−0.01, 0.01]× [−1, 1]: PLA (blue)
vs. NLA (orange). See Section 3.6.
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Figure 3-5: W2 distance (on logarithmic scale) between the uniform distribution
on the rectangle [−0.01, 0.01]× [−1, 1], and samples produced by NLA, PLA,
and MALA.

PLA tend to cluster around the boundary for larger step sizes, so we use a
smaller step size for both PLA (and NLA for fair comparison).

To evaluate the performance of the algorithms, we estimate the 2-Wasserstein
distance between the samples drawn by the algorithms and samples drawn
from the uniform distribution on the rectangle; see Figure 3-5. We use the
Sinkhorn distance (ε = 0.01) as an approximation for the 2-Wasserstein dis-
tance [Cut13; AWR17]. Specifically, we sample 1000 points in parallel, using
the three algorithms of interest. At each iteration, we also draw 1000 points
from the uniform distribution on the rectangle, and we compute the Sinkhorn
distance between these points and the samples produced by the algorithms.
The convergence estimates are averaged over 30 runs.
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3.7 Conclusion

We conclude this chapter by discussing several intriguing directions for future
research. In this chapter, we focused on giving clean convergence results for
the continuous-time diffusions MLD and NLD, and we leave open the problem
of obtaining discretization error bounds. In discrete time, Newton’s method
can be unstable, and one uses methods such as damped Newton, Levenburg-
Marquardt, or cubic-regularized Newton [CGT00; NP06]; it is an interesting
question to develop sampling analogues of these optimization methods. In a
different direction, we ask the following question: are there appropriate variants
of other popular sampling methods, such as accelerated Langevin [Ma+19]
or Hamiltonian Monte Carlo [Nea12], which also enjoy the scale invariance of
NLD?
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Chapter 4

Particle based methods: SVGD

4.1 Introduction

As we have seen in Chapter 3, the perspective of sampling as a Wasserstein
gradient flow is fruitful both for analysing and proposing sampling algorithms.
In order to arrive at a practical sampling algorithm, one must discretize the
Wasserstein gradient flow. This chapter focuses on a novel discretized sampling
algorithm, Stein Variational Gradient Descent.

The most common discretization is to discretize the Langevin diffusion,
resulting in the Unadjusted Langevin Algorithm (ULA) [Dal17b; DM17]. How-
ever, it is unclear whether this diffusion based discretization is the most effective
one. In fact, ULA is asymptotically biased, which results in slow convergence
and often requires ad-hoc adjustments [Dwi+19]. To overcome this limitation,
various methods that track the Wasserstein gradient flow more closely have
been recently developed [Ber18; Wib18; SKL20].

An alternative sampling approach that avoids diffusions is to construct
a sequence of deterministic mappings that approximately pushes forward
an initial distribution to the target distribution. Let F denote a functional
over the Wasserstein space of distributions. The Wasserstein gradient flow
of F may be described as the deterministic and time-inhomogeneous Markov
process (Xt)t≥0 started at a random variable X0 ∼ µ0 and evolving according

to Ẋt = −[∇W2F (µt)](Xt), where µt denotes the distribution of Xt. Here
[∇W2F (µ)](·) : Rd → Rd is the Wasserstein gradient of F at µ. If F (µ) =
KL(·∥µ), where π ∝ e−V is a given target distribution on Rd, it is known [AGS08;
Vil09; San17] that∇W2F (µ) = ∇ ln(dµ/dπ). Therefore, a natural discretization
of the Wasserstein gradient flow with step size h > 0, albeit one that cannot
be implemented since it depends on the distribution µt of Xt, is:

Xt+1 = Xt − h∇ ln
(dµt

dπ
(Xt)

)
, t = 0, 1, 2, . . . .
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While µt can, in principle, be estimated by evolving a large number of
particles X

[1]
t , . . . , X

[N ]
t , estimation of µt is hindered by the curse of dimension-

ality and this approach still faces significant computational challenges despite
attempts to improve the original JKO scheme [SKL20; WL20].

A major advance in this direction was achieved by allowing for approximate
Wasserstein gradients, which makes the push forward maps tractable. More
specifically, Stein Variational Gradient Descent (SVGD), recently proposed
by [LW16] (see Section 4.2 for more details), consists in replacing ∇W2F (µ)
by its image Kµ∇W2F (µ) under the integral operator Kµ : L2(µ) → L2(µ)
associated to a chosen kernel K : Rd × Rd → R and defined by Kµf(x) :=∫
K(x, y)f(y) dµ(y) for f ∈ L2(µ). This leads to the following process:

Xt+1 = Xt − h[Kµt∇W2F (µt)](Xt) , t = 0, 1, 2, . . . . (SVGDp)

where we apply the integral operator Kµt individually to each coordinate of
the Wasserstein gradient. In turn, this kernelization trick overcomes most of
the above computational bottleneck. Building on this perspective, [DNS19]
introduced a new geometry, different from the Wasserstein geometry and which
they call the Stein geometry, in which the continuous limit of (SVGDp) becomes
the gradient flow of the KL divergence.

However, despite this recent advance, the theoretical properties of SVGD
are still largely unexplored, resulting in little understanding of SVGD’s known
problems, such as mode collapse or a lack of guidance on how to choose an
appropriate kernel K. Consequently diffusion-based algorithms remain the
dominant choice for applications. In this chapter, we we provide a new and
stronger theoretical footing for the development of such deterministic mappings.

This chapter is based on the joint work [Che+20d], with Sinho Chewi,
Thibaut Le Gouic, Tyler Maunu, and Philippe Rigollet.

Our contributions . We introduce, in Section 4.2, a new perspective on
SVGD by viewing it as kernelized gradient flow of the chi-squared divergence
rather than the KL divergence. This perspective is fruitful in two ways. First,
it uses a single integral operator Kπ—as opposed to (SVGDp), which requires a
family of integral operatorsKµ, µ≪ π—providing a conceptually clear guideline
for choosing K, namely: K should be chosen to make Kπ approximately equal
to the identity operator. Second, under the idealized choice Kπ = id, we show
that this gradient flow converges exponentially fast in KL divergence as soon
as the target distribution π satisfies a Poincaré inequality. In fact, our results
are stronger than exponential convergence and they highlight strong uniform
ergodicity : the gradient flow forgets the initial distribution after a finite time
that is at most half of the Poincaré constant. To establish this exponential
convergence under a relatively weak condition (Poincaré inequality), we employ
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the following technique. While the gradient flow aims at minimizing the chi-
squared divergence by following the curve in Wasserstein space with steepest
descent, we do not track its progress with the objective function itself, the
chi-squared divergence, but instead we track it with the KL divergence. This
is in a sense dual to argument employed in [Che+20b], where the chi-squared
divergence is used to track the progress of a gradient flow on the KL divergence.
A more standard analysis relying on  Lojasiewicz inequalities also yields rates
of convergence on the chi-squared divergence under stronger assumptions such
as a log-Sobolev inequality, and log-concavity. These results establish the first
finite-time theoretical guarantees for SVGD in an idealized setting.

Beyond providing a better understanding of SVGD, our novel perspective
is instrumental in the development of a new sampling algorithm, which we
call Laplacian Adjusted Wasserstein Gradient Descent (LAWGD) and present
in Section 4.4. We show that it possesses a striking theoretical property:
assuming that the target distribution π satisfies a Poincaré inequality, LAWGD
converges exponentially fast, with no dependence on the Poincaré constant.
This scale invariance has been recently demonstrated for the Newton-Langevin
diffusion [Che+20b], but under the additional assumption that π is log-concave.
A successful implementation of LAWGD hinges on the spectral decomposition
of a certain differential operator which is within reach of modern PDE solvers.
As a proof of concept, we show that LAWGD, implemented using a näıve
finite differences method, performs well on mixtures of Gaussians in one or
two dimensions, whereas SVGD fails. This is an indication that our novel
perspective could be the correct one to further advance the state-of-the-art
for sampling via deterministic mappings. Implementing LAWGD in high
dimensions is challenging, and we are not advocating for it as the definitive
solution of the sampling problem. Instead, LAWGD serves as the start of a
family of interacting particle systems with an interacting potential that depends
strongly and non-trivially on the target distribution and furthermore comes
with strong theoretical guarantees. We hope this chapter can encourage further
research in the application of numerical PDEs for sampling.

Related works . Since its introduction in [LW16], a number of variants
of SVGD have been considered. They include a stochastic version [Li+20], a
version that approximates the Newton direction in Wasserstein space [Det+18],
a version that uses matrix kernels [Wan+19], an accelerated version [Liu+19],
and a hybrid with Langevin [Zha+20a]. Several works have studied theoretical
properties of SVGD, including its interpretation as a gradient flow under a
modified geometry [Liu17; DNS19], and its asymptotic convergence [LLN19].

Notation . In this chapter, all probability measures are assumed to have
densities w.r.t. Lebesgue measure; therefore, we frequently abuse notation by
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identifying a probability measure with its Lebesgue density. For a differentiable
kernel K : Rd × Rd → R, we denote by ∇1K : Rd × Rd → Rd (resp. ∇2K) the
gradient of the kernel w.r.t. the first (resp. second) argument. When describing
particle algorithms, we use a subscript to denote the time index and brackets
to denote the particle index, i.e., X

[i]
t refers to the ith particle at time (or

iteration number) t.

4.2 SVGD as a kernelized Wasserstein

gradient flow

An introduction to the theory of gradient flows was given in Section 2.1. In this
chapter, we are primarily concerned with two functionals on the 2-Wasserstein
space: the Kullback-Leibler (KL) divergence DKL(· ∥ π), and the chi-squared
divergence χ2(· ∥ π) (see, e.g., [Tsy09]). We recall [AGS08; San15] that the
gradients of these functionals are, respectively,(

∇W2DKL(· ∥ π)
)
(µ) = ∇ ln

dµ

dπ
,

(
∇W2χ

2(· ∥ π)
)
(µ) = 2∇dµ

dπ
. (4.1)

SVGD as a kernelized gradient flow of the KL divergence

SVGD1 is achieved by replacing the Wasserstein gradient ∇ ln(dµt/dπ) of
the KL divergence with Kµt∇ ln(dµt/dπ), leading to the particle evolution
equation (SVGDp).

Recalling that π ∝ e−V , we get

Kµt∇ ln
dµt

dπ
(x) :=

∫
K(x, ·)∇ ln

dµt

dπ
dµt =

∫
K(x, ·)∇V dµt −

∫
∇2K(x, ·) dµt ,

(4.2)

where, in the second identity, we used integration by parts. This expression
shows that rather than having to estimate the distribution µt, it is sufficient to
estimate the expectation

∫
∇2K(x, ·) dµt. This is the key to the computational

tractability of SVGD. Indeed, the kernelized gradient flow can implemented by

drawing N particles X
[1]
0 , . . . , X

[N ]
0

i.i.d.∼ µ0 and following the coupled dynamics

Ẋ
[i]
t = −Kµt∇ ln

dµt

dπ
(X

[i]
t ) = −

∫
K(X

[i]
t , ·)∇V dµt +

∫
∇2K(X

[i]
t , ·) dµt, i ∈ [N ].

With this, we can simply estimate the expectation with respect to µt with an

1Throughout this chapter, we call SVGD the generalization of the original method
of [LW16; Liu17] that was introduced in [Wan+19].
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average over all particles, which yeilds the SVGD algorithm:

X
[i]
t+1 = X

[i]
t −

h

N

N∑
j=1

K(X
[i]
t , X

[j]
t )∇V (X

[j]
t ) +

h

N

N∑
j=1

∇2K(X
[i]
t , X

[j]
t ), i ∈ [N ].

(4.3)

SVGD as a kernelized gradient flow of the chi-squared
divergence

Recall from Section 4.2 that by the continuity equation, the continuous limit
of the particle evolution equation (SVGDp) translates into the following PDE
that describes the evolution of the distribution µt of Xt:

∂tµt = div
(
µtKµt∇ ln

dµt

dπ

)
. (SVGDd)

We make the simple observation that

Kµt∇ ln
dµt

dπ
(x) =

∫
K(x, y)∇ ln

dµt

dπ
(y) dµt(y) =

∫
K(x, y)∇dµt

dπ
(y) dπ(y) = Kπ∇

dµt

dπ
(x).

Thus, the continuous-dynamics of SVGD, as given in (SVGDd), can equivalently
be expressed as

∂tµt = div
(
µtKπ∇

dµt

dπ

)
. (SVGD)

To interpret this equation, we recall that the Wasserstein gradient of the
chi-squared divergence χ2(· ∥ π) at µ is 2∇(dµ/dπ) (by (4.1)), so the gradient
flow for the chi-squared divergence is

∂tµt = 2 div
(
µt∇

dµt

dπ

)
. (CSF)

Comparing (SVGD) and (CSF), we see that (up to a factor of 2), SVGD can be
understood as the flow obtained by replacing the gradient of the chi-squared
divergence, ∇(dµ/dπ), by Kπ∇(dµ/dπ).

Although (SVGDd) and (SVGD) are equivalent ways of expressing the same
dynamics, the formulation of (SVGD) presents a significant advantage: it
involves a kernel integral operator Kπ that does not change with time and
depends only on the target distribution π.
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4.3 Chi-squared gradient flow

In this section, we study the idealized case where Kπ taken to be the identity
operator. In this case, (SVGD) reduces to the gradient flow CSF. The existence,
uniqueness, and regularity of this flow are studied in [OT11; OT13] and [AGS08,
Theorem 11.2.1].

The rate of convergence of the gradient flow of the KL divergence is closely
related to two functional inequalities: the Poincaré inequality controls the rate
of exponential convergence in chi-squared divergence ([Pav14, Theorem 4.4],
[Che+20b]) while a log-Sobolev inequality characterizes the rate of exponential
convergence of the KL divergence [BGL14, Theorem 5.2.1]. In this section, we
show that these inequalities also guarantee exponential rates of convergence of
CSF.

Recall that π satisfies a Poincaré inequality with constant CP if

varπ f ≤ CP Eπ[∥∇f∥2], for all locally Lipschitz f ∈ L2(π), (P)

while π satisfies a log-Sobolev inequality (LSI) with constant CLSI

entπ(f 2) := Eπ[f 2 ln(f 2)]− Eπ[f 2] lnEπ[f 2] ≤ 2CLSI Eπ[∥∇f∥2] (LSI)

for all locally Lipschitz f for which entπ(f 2) <∞.
We briefly review some facts regarding the strength of these assumptions.

It is standard that the log-Sobolev inequality is stronger than the Poincaré
inequality: (LSI) implies (P) with constant CP ≤ CLSI. In turn, if π is α-
strongly log-concave, i.e. ∇2V ⪰ αId, then it implies the validity of (LSI) with
CLSI ≤ 1/α, and thus a Poincaré inequality holds too. However, a Poincaré
inequality is in general much weaker than strong log-concavity. For instance,
if λ2π denotes the largest eigenvalue of the covariance matrix of π, then it is
currently known that π satisfies a Poincaré inequality as soon as it is log-concave,
with CP ≤ C(d)λ2π, where C(d) is a dimensional constant [Bob99; AB15; LV17],
and the well-known Kannan-Lovász-Simonovitz (KLS) conjecture [KLS95]
asserts that C(d) does not actually depend on the dimension.

Our first result shows that a Poincaré inequality suffices to establish expo-
nential decay of the KL divergence along CSF. In fact, we establish a remarkable
property, which we call strong uniform ergodicity : under a Poincaré inequality,
CSF forgets its initial distribution after a time of no more than CP/2. Uniform
ergodicity is central in the theory of Markov processes [MT09, Ch. 16] but is
often limited to compact state spaces. Moreover, this theory largely focuses
on total variation, so the distance from the initial distribution to the target
distribution is trivially bounded by 1.

Theorem 3. Assume that π satisfies a Poincaré inequality (P) with constant
CP > 0 and let (µt)t≥0 denote the law of CSF. Assume that χ2(µ0 ∥ π) < ∞.
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Then,

DKL(µt ∥ π) ≤ DKL(µ0 ∥ π) e
− 2t

CP , ∀ t ≥ 0. (4.4)

In fact, a stronger convergence result holds:

DKL(µt ∥ π) ≤
(
DKL(µ0 ∥ π) ∧ 2

)
e
− 2t

CP , ∀ t ≥ CP

2
. (4.5)

Proof. Given the Wasserstein gradients (4.1) in Section 2.1, we get that (µt)t≥0

satisfies

∂tDKL(µt ∥ π) = −2Eµt

〈
∇ ln

dµt

dπ
,∇dµt

dπ

〉
= −2Eπ

[∥∥∇dµt

dπ

∥∥2]
.

Applying the Poincaré inequality (P) with f = dµt/dπ − 1, we get

∂tDKL(µt ∥ π) ≤ − 2

CP
χ2(µt ∥ π) ≤ − 2

CP
DKL(µt ∥ π) ,

where, in the last inequality, we use the fact that DKL(· ∥ π) ≤ χ2(· ∥ π)
(see [Tsy09, §2.4]). The bound (4.4) follows by applying Grönwall’s inequality.

To prove (4.5), we use the stronger inequality DKL(· ∥ π) ≤ ln[1 + χ2(· ∥ π)]
(see [Tsy09, §2.4]). Our differential inequality now reads:

∂tDKL(µt ∥ π) ≤ − 2

CP

(
eDKL(µt∥π) − 1

)
⇐⇒ ∂tψ

(
DKL(µt ∥ π)

)
≤ − 2

CP
ψ
(
DKL(µt ∥ π)

)
,

where ψ(x) = 1− e−x ≤ 1. Grönwall’s inequality now yields

ψ
(
DKL(µt ∥ π)

)
≤ e

− 2t
CPψ

(
DKL(µ0 ∥ π)

)
≤ e

− 2t
CP .

Note that x ≤ 2ψ(x) whenever ψ(x) ≤ 1/e. Thus, if t ≥ CP/2, we get
ψ
(
DKL(µt ∥ π)

)
≤ e−1 so

DKL(µt ∥ π) ≤ 2ψ
(
DKL(µt ∥ π)

)
≤ e

− 2t
CP ,

which, together with (4.4), completes the proof of (4.5).

Remark 2. In [Che+20b], it was observed that the chi-squared divergence
decays exponentially fast along the gradient flow (µt)t≥0 for the KL divergence,
provided that π satisfies a Poincaré inequality. This observation is made precise
and more general in [MMS09] where it is noted that the gradient flow of
a functional U dissipates a different functional V at the same rate that the
gradient flow of V dissipates the functional U. A similar method is used to
study the thin film equation in [CT02] and [Car11, §5].
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Since we are studying the gradient flow of the chi-squared divergence, it is
natural to ask whether CSF converges to π in chi-squared divergence as well.
In the next results, we show quantitative decay of the chi-squared divergence
along the gradient flow under a Poincaré inequality (P), but we obtain only a
polynomial rate of decay. However, if we additionally assume either that π is
log-concave or that it satisfies a log-Sobolev inequality (LSI), then we obtain
exponential decay of the chi-squared divergence along CSF.

Theorem 4. Suppose that π satisfies a Poincaré inequality (P). Then, provided
χ2(µ0 ∥ π) <∞, the law (µt)t≥0 of CSF satisfies

χ2(µt ∥ π) ≤ χ2(µ0 ∥ π) ∧
(9CP

8t

)2
.

If we further assume that π is log-concave, then

χ2(µt ∥ π) ≤ χ2(µ0 ∥ π) e
− t

2CP .

Under the stronger assumption (LSI), we can show strong uniform ergodicity
as in Theorem 3.

Theorem 5. Assume that π satisfies a log-Sobolev inequality (LSI). Let (µt)t≥0

denote the law of CSF, and assume that χ2(µ0∥π) <∞. Then, for all t ≥ 7CLSI,

χ2(µt ∥ π) ≤
(
χ2(µ0 ∥ π) ∧ 2

)
e
− t

9CLSI .

Remark 3. Convergence in chi-squared divergence was studied in recent works
such as [CLL19; VW19; Che+20b]. From standard comparisons between infor-
mation divergences (see [Tsy09, §2.4]), it implies convergence in total variation
distance, Hellinger distance, and KL divergence. Moreover, recent works have
shown that the Poincaré inequality (P) yields transportation-cost inequali-
ties which bound the 2-Wasserstein distance by powers of the chi-squared
divergence [Din15; Led18; Che+20b; Liu20], so we obtain convergence in the
2-Wasserstein distance as well. In particular, we mention that [Che+20b] uses
the chi-squared gradient flow (CSF) to prove a transportation-cost inequality.

Proof of Theorem 4 (non-log-concave case). According to [Che+20b, Proposi-
tion 1], the Poincaré inequality implies the following inequality for the chi-
squared divergence:

χ2(µ ∥ π)
3/2 ≤ 9CP

4
Eµ

[∥∥∇dµ

dπ

∥∥2]
, ∀µ≪ π. (4.6)

Since the Wasserstein gradient of χ2(· ∥ π) at µ is given by 2∇(dµ/dπ) (see
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Section 4.2), it yields

∂tχ
2(µt ∥ π) = −4Eµt

[∥∥∇dµt

dπ

∥∥2
] ≤ − 16

9CP
χ2(µt ∥ π)

3/2

Solving the above differential inequality yields

χ2(µt ∥ π) ≤ χ2(µ0 ∥ π)

{1 + 8t
√
χ2(µ0 ∥ π)/(9CP)}2

,

which implies the desired result.

We now prepare for the proof of exponentially fast convergence in chi-
squared divergence for log-concave measures. The key to proving such results
lies in differential inequalities of the form

χ2(µ ∥ π) ≤ CPL Eµ

[∥∥∇dµ

dπ

∥∥2]
, ∀µ≪ π, (4.7)

which may be interpreted as a Polyak- Lojasiewicz (PL) inequality [KNS16] for
the functional χ2(· ∥ π). PL inequalities are well-known in the optimization
literature, and can be even used when the objective is not convex [Che+20c].
In contrast, the preceding proof uses the weaker inequality (4.6), which may
be interpreted as a  Lojasiewicz inequality [Loj63].

To see that a PL inequality readily yields exponential convergence, observe
that

∂tχ
2(µt ∥ π) = −4Eµt

[∥∥∇dµt

dπ

∥∥2
] ≤ − 4

CPL
χ2(µt ∥ π) .

Together with Grönwall’s inequality, the differential inequality yields χ2(µt ∥
π) ≤ χ2(µ0 ∥ π) e

− 4t
CPL .

In order to prove a PL inequality of the type (4.7), we require two ingredients.
The first one is a transportation-cost inequality for the chi-squared divergence
proven in [Liu20], building on the works [Din15; Led18]. It asserts that if π
satisfies a Poincaré inequality (P), then the following inequality holds:

W 2
2 (µ, π) ≤ 2CPχ

2(µ ∥ π), ∀µ≪ π. (4.8)

For the second ingredient, we use an argument of [OV00] to show that if
π satisfies a chi-squared transportation-cost inequality such as (4.8), and in
addition is log-concave, then it satisfies an inequality of the type (4.7). We
remark that the converse statement, that is, if π satisfies a PL inequality (4.7)
then it satisfies an appropriate chi-squared transportation-cost inequality, was
proven in [Che+20b] without the additional assumption of log-concavity. It

45



implies that for log-concave distributions, the PL inequality (4.7) and the
chi-squared transportation-cost inequality (4.8) are, in fact, equivalent.

Theorem 6. Let π be log-concave, and assume that for some q ∈ (1,∞) and a
constant C > 0,

W 2
2 (µ, π) ≤ Cχ2(µ ∥ π)

2/q
, ∀ µ≪ π.

Then,

χ2(µ ∥ π)
2/p ≤ 4CEµ

[∥∥∇dµ

dπ

∥∥2]
, ∀ µ≪ π, (4.9)

where p satisfies 1/p+ 1/q = 1.

Proof. Following [OV00], let T be the optimal transport map from µ to π.
Since χ2(· ∥ π) is displacement convex [OT11; OT13] and has Wasserstein
gradient 2∇(dµ/dπ) at µ (c.f. Section ??), the “above-tangent” formulation of
displacement convexity ([Vil03, Proposition 5.29]) yields

0 = χ2(π ∥ π) ≥ χ2(µ ∥ π) + 2Eµ

〈
∇dµ

dπ
, T − id

〉
≥ χ2(µ ∥ π)− 2W2(µ, π)

√
Eµ

[∥∥∇dµ

dπ

∥∥2]
,

where we used the Cauchy-Schwarz inequality for the last inequality. Rearrang-
ing the above display and using the transportation-cost inequality assumed in
the statement of theorem, we get

χ2(µ ∥ π) ≤ 2W2(µ, π)

√
Eµ

[∥∥∇dµ

dπ

∥∥2] ≤ 2

√
CEµ

[∥∥∇dµ

dπ

∥∥2]
χ2(µ ∥ π)

1/q
.

The result follows by rearranging the terms.

Proof of Theorem 4 (log-concave case). From the transportation-cost inequal-
ity (4.8) and Theorem 6 with p = q = 2, we obtain

χ2(µ ∥ π) ≤ 8CP Eµ

[∥∥∇dµ

dπ

∥∥2
].

This PL inequality together with Grönwall’s inequality readily yields the
result.

We conclude this section with the proof of Theorem 5, which shows expo-
nential convergence of CSF in chi-squared divergence under the assumption of
a log-Sobolev inequality (LSI) (but without the assumption of log-concavity).

Proof of Theorem 5. We first claim that

∂tχ
2(µt ∥ π) ≤ − 4

9CLSI
[χ2(µt ∥ π) + 1]

3/2
ln[χ2(µt ∥ π) + 1]. (4.10)
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Indeed, applying (LSI), we obtain

∂tχ
2(µt ∥ π) = −4

∫ ∥∥∇dµt

dπ

∥∥2
dµt = −16

9

∫ ∥∥∇∣∣dµt

dπ

∣∣3/2∥∥2
dπ ≤ − 8

9CLSI
entπ

(∣∣dµt

dπ

∣∣3).
Next, the variational formula for the entropy gives

entπ f = sup{Eπ(fg) : g satisfies Eπ exp g = 1},

see [Han16, Lemma 3.15] or [BLM13, Theorem 4.13]. Choosing g = ln(dµt/dπ)
yields

entπ
(∣∣dµt

dπ

∣∣3) ≥ Eπ

[∣∣dµt

dπ

∣∣3 ln
dµt

dπ

]
=

1

3
Eπ

[∣∣dµt

dπ

∣∣3 ln
(∣∣dµt

dπ

∣∣3)]
≥ 1

3
Eπ

[∣∣dµt

dπ

∣∣3] lnEπ

[∣∣dµt

dπ

∣∣3]
≥ 1

2
Eπ

[∣∣dµt

dπ

∣∣2]3/2 lnEπ

[∣∣dµt

dπ

∣∣2]
=

1

2
[χ2(µt ∥ π) + 1]

3/2
ln[χ2(µt ∥ π) + 1],

where in the second inequality, we used that x 7→ x lnx is convex on R+ and
in the third, we used that it increasing when x ≥ 1 together with

Eπ

[∣∣dµt

dπ

∣∣2] = 1 + χ2(µt ∥ π) ≥ 1.

This proves (4.10).

To simplify the inequality (4.10), we use the crude bounds

ln[χ2(µt ∥ π) + 1] ≥
{

1, if χ2(µt ∥ π) ≥ e− 1

χ2(µt ∥ π)/2, otherwise.

It yields respectively

∂tχ
2(µt ∥ π) ≤ − 2

9CLSI

{
2χ2(µt ∥ π)

3/2
, if χ2(µt ∥ π) ≥ e− 1,

χ2(µt ∥ π), otherwise.
(4.11)

Solving the differential inequality in the first case yields

e− 1 ≤ χ2(µt ∥ π) ≤
[ 9CLSI

√
χ2(µ0 ∥ π)

9CLSI + 2t
√
χ2(µ0 ∥ π)

]2
≤

[9CLSI

2t

]2
,
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so that in this first case, it must holds that

t ≤ 9CLSI

2
√
e− 1

< 3.5CLSI =: t0.

Therefore, if t ≥ t0, we are in the second case. In particular, χ2(µt0 ∥ π) ≤
e− 1 ≤ 2 and integrating the differential inequality between t0 and t we get

χ2(µt ∥ π) ≤ χ2(µt0 ∥ π) e
− 2(t−t0)

9CLSI ≤
(
χ2(µ0 ∥ π) ∧ 2

)
e
− 2(t−t0)

9CLSI ,

where in the last inequality, we used the fact that t 7→ χ2(µt∥π) is decreasing so
that it also holds χ2(µt0 ∥π) ≤ χ2(µ0 ∥π). In particular, taking t ≥ 2t0 = 7CLSI

yields the desired result.

4.4 Laplacian Adjusted Wasserstein Gradient

Descent (LAWGD)

While the previous section leads to a better understanding of the convergence
properties of SVGD in the case that Kπ is the identity operator, it is still
unclear how to choose the kernel K to approach this idealized setup. For SVGD
with a general kernel K, the calculation rules of Section 4.2 together with the
method of the previous section yield the formula

∂tDKL(µt ∥ π) = −Eπ

〈
∇dµt

dπ
,Kπ∇

dµt

dπ

〉
,

for the dissipation of the KL divergence along SVGD. From this, a natural way
to proceed is to seek an inequality of the form

Eπ⟨f,Kπf⟩ ≳ Eπ[f 2], for all locally Lipschitz f ∈ L2(π). (4.12)

Applying this inequality to each coordinate of ∇(dµt/dπ) separately and using
a Poincaré inequality would then allow us to conclude as in the proof of
Theorem 3. The inequality (4.12) can be interpreted as a positive lower bound
on the smallest eigenvalue of the operator Kπ. However, this approach is
doomed to fail; under mild conditions on the kernel K, it is a standard fact
that the eigenvalues of Kπ form a sequence converging to 0, so no such spectral
gap can hold.2

This suggests that any approach which seeks to prove finite-time convergence
results for SVGD in the spirit of Theorem 3 must exploit finer properties of the
eigenspaces of the operator Kπ. Motivated by this observation, we develop a new

2It is enough that K is a symmetric kernel with K ∈ L2(π⊗π), and that π is not discrete
(so that L2(π) is infinite-dimensional); see [BGL14, Section A.6].
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algorithm called Laplacian Adjusted Wasserstein Gradient Descent (LAWGD)
in which the kernel K is chosen carefully so that Kπ = L −1 is the inverse of
the generator of the Langevin diffusion that has π as invariant measure.

More precisely, the starting point for our approach is the following integration-
by-parts formula, which is a crucial component of the theory of Markov semi-
groups [BGL14]:

Eπ⟨∇f,∇g⟩ = Eπ[fL g], for all locally Lipschitz f, g ∈ L2(π), (4.13)

where L := −∆ + ⟨∇V,∇·⟩. The operator L is the (negative) generator of
the standard Langevin diffusion with stationary distribution π [Pav14, §4.5].
We refer readers to Section 4.5 for background on the spectral theory of L .

In order to use (4.13), we replace the vector field −Kπ∇(dµt/dπ) by the
vector field −∇Kπ(dµt/dπ). The new dynamics follow the evolution equation

∂tµt = div
(
µt∇Kπ

dµt

dπ

)
. (LAWGD)

The vector field in the above continuity equation may also be written

−∇Kπ
dµt

dπ
(x) = −

∫
∇1K(x, ·) dµt

dπ
dπ = −

∫
∇1K(x, ·) dµt.

Replacing µt by an empirical average over particles and discretizing the
process in time, we again obtain an implementable algorithm, which we give as
Algorithm 1.

Algorithm 1 LAWGD (KL , µ0)

1: draw N particles X
[1]
0 , . . . , X

[N ]
0

i.i.d.∼ µ0

2: for t = 1, . . . , T − 1 do
3: for i = 1, . . . , N do
4: X

[i]
t+1 ← X

[i]
t − h

N

∑N
j=1∇1KL (X

[i]
t , X

[j]
t )

5: end for
6: end for
7: return X

[1]
T , . . . , X

[N ]
T

A careful inspection of Algorithm 1 reveals that the update equation for
the particles in Algorithm 1 does not involve the potential V directly, unlike
the SVGD algorithm (4.3); thus, the kernel for LAWGD must contain all the
information about V .

Our choice for the kernel K is guided by the following observation (based
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on (4.13)):

∂tDKL(µt ∥ π) = −Eπ

〈
∇dµt

dπ
,∇Kπ

dµt

dπ

〉
= −Eπ

[dµt

dπ
LKπ

dµt

dπ

]
.

As a result, we choose K to ensure that Kπ = L −1. This choice yields

∂tDKL(µt ∥ π) = −Eπ

[(dµt

dπ
− 1

)2]
= −χ2(µt ∥ π). (4.14)

It remains to see which kernel K implements Kπ = L −1. To that end,
assume that L has a discrete spectrum and let (λi, ϕi), i = 0, 1, 2, . . . be its
eigenvalue-eigenfunction pairs where λjs are arranged in nondecreasing order.
Assume further that λ1 > 0 (which amounts to a Poincaré inequality; see
Section 4.5) and define the following spectral kernel :

KL (x, y) =
∞∑
i=1

ϕi(x)ϕi(y)

λi
(4.15)

We now show that this choice of kernel endows LAWGD with a remarkable
property: it converges to the target distribution exponentially fast, with a
rate which has no dependence on the Poincaré constant. Moreover, akin to
CSF—see (4.5)—it also also exhibit strong uniform ergodicity.

Theorem 7. Assume that L has a discrete spectrum and that π satisfies a
Poincaré inequality (P) with some finite constant. Let (µt)t≥0 be the law of
LAWGD with the kernel described above. Then,

DKL(µt ∥ π) ≤
(
DKL(µ0 ∥ π) ∧ 2

)
e−t, ∀ t ≥ 1.

Proof. In light of (4.14), the proof is identical to that of Theorem 3.

The convergence rate in Theorem 7 has no dependence on the target measure.
This scale-invariant convergence also appears in [Che+20b], where it is shown
for the Newton-Langevin diffusion with a strictly log-concave target measure π.
In Theorem 7, we obtain similar guarantees under the much weaker assumption
of a Poincaré inequality; indeed, there are many examples of non-log-concave
distributions which satisfy a Poincaré inequality [VW19].

4.5 Review of spectral theory

In this chapter, we consider elliptic differential operators of the form L =
−∆ + ⟨∇V,∇·⟩, where V is a continuously differentiable potential. In this
section, we provide a brief review of the spectral theory of these operators, and
we refer to [Eva10, §6.5] for a standard treatment.
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The operator L (when suitably interpreted) is a linear operator defined on
a domain D ⊂ L2(π). For any locally Lipschitz function f ∈ L2(π), integration
by parts shows that

Eπ[fL f ] = Eπ[∥∇f∥2].

Therefore, L has a non-negative spectrum. Also, we have L 1 = 0, so that
0 is always an eigenvalue of L . We say that L has a discrete spectrum
if it has a countable sequence of eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤
· · · and corresponding eigenfunctions (ϕi)

∞
i=1 which form a basis of D . The

eigenfunctions can be chosen to be orthogonal and normalized such that
∥ϕi∥L2(π) = 1; we always assume this is the case. Then, L can be expressed as

L =
∞∑
i=1

λi ⟨ϕi, ·⟩L2(π) ϕi.

The operator L has a discrete spectrum under the following condition
([Fri34], [RS78, Theorem XIII.67], [BGL14, Corollary 4.10.9]):

VS ∈ L1
loc(Rd), inf VS > −∞, and lim

∥x∥→∞
VS(x) = +∞,

where VS := −∆V + 1
2
∥∇V ∥2. Moreover, under this condition we also have

λi →∞ as i→ +∞. For example, this condition is satisfied for V (x) = ∥x∥α
for α > 1, but not for α = 1. In fact, for α = 1, the spectrum of L is not
discrete [BGL14, §4.1.1].

The Poincaré inequality (P) is interpreted as a spectral gap inequality,
since it asserts that λ1 = 1/CP > 0. Thus, under a Poincaré inequality,
L : D ∩ {f ∈ L2(π) | Eπ f = 0} → L2(π) is bijective. Moreover, if it has a
discrete spectrum, its inverse satisfies

L −1 =
∞∑
i=1

λ−1
i ⟨ϕi, ·⟩L2(π) ϕi.

4.6 Numerical experiments

We compared the performances of LAWGD with SVGD in some experiments.
All methods were implemented in Python. Since the Schrödinger operator
requires the Laplacian and gradient of the potential V , we employ automatic
differentiation to avoid laborious calculations of these derivatives.

To implement Algorithm 1, we numerically approximate the kernel K = KL

given in (4.15). When π is the standard Gaussian distribution on R, the
eigendecomposition of the operator L in (4.13) is known explicitly [BGL14,
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Figure 4-1: Samples from the standard Gaussian distribution generated by
LAWGD, with kernel approximated by Hermite polynomials.

§2.7.1]. Specifically, the probabilists’ Hermite polynomials are well-known to be
eigenfunctions of the 1D Ornstein-Uhlenbeck operator L given by L f(x) :=
−f ′′(x)+xf ′(x), and they satisfy the recursive relationshipHn+1(x) = xHn(x)−
nHn−1(x), with H0(x) = 1 and H1(x) = x. It also holds that H ′

n(x) =
nHn−1(x). With these equations, it is easy to check that the eigenvalue
corresponding to Hn is λn = n. These are used as the eigenfunctions and
eigenvalues, and we approximate the kernel via a truncated sum: K̂(x, y) =∑k

i=1 λ
−1
i ϕi(x)ϕi(y) (Figure 4-1) involving the smallest eigenvalues of L . In

Figure 4-1 we use the first k = 150 Hermite polynomials, and we run LAWGD
for 2000 iterations with a constant step size, with initial points drawn uniformly
from the interval [2.5, 4.5].

In the general case, we implement a basic finite difference (FD) method
to approximate the eigenvalues and eigenfunctions of L . We obtain better
numerical results by first transforming the operator L into the Schrödinger
operator LS := −∆+VS, where VS := 1

4
∥∇V ∥2− 1

2
∆V . If ϕS is an eigenfunction

of LS with eigenvalue λ (normalized such that
∫
ϕ2
S = 1), then ϕ := eV/2ϕS

is an eigenfunction of L also with eigenvalue λ (and normalized such that∫
ϕ2 dπ = 1); see [BGL14, §1.15.7].

On a grid of points (with spacing ε), if we replace the Laplacian with the
FD operator ∆εf(x) := {f(x − ε) + f(x + ε) − 2f(x)}/ε2 (in 1D), then the
FD Schrödinger operator LS,ε := −∆ε + VS can be represented as a sparse
matrix, and its eigenvalues and (unit) eigenvectors are found with standard
linear algebra solvers.

When the potential V is known only up to an additive constant, then
the approximate eigenfunctions produced by this method are not normalized
correctly; instead, they satisfy ∥ϕ∥L2(π) = C for some constant C (which is the
same for each eigenfunction). In turn, this causes the kernel K in LAWGD to
be off by a multiplicative constant. For implementation purposes, however,
this constant is absorbed in the step size of Algorithm 1. We also note that
the eigenfunctions are differentiated using a FD approximation.

To demonstrate, we sample from a mixture of three Gaussians: 2
5
N (−3, 1)+

1
5
N (0, 1) + 2

5
N (4, 2). We compare LAWGD with SVGD using the RBF kernel
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Figure 4-2: LAWGD and SVGD run with constant step size for a mixture of
three Gaussians. Both kernel density estimators use the same bandwidth.

and median-based bandwidth as in [LW16]. We approximate the eigenfunctions
and eigenvalues using a finite difference scheme, on 256 grid points evenly
spaced between −14 and 14. Constant step sizes for LAWGD and SVGD are
tuned and the algorithms are run for 5000 iterations, and the samples are
initialized to be uniform on [1, 4]. The results are displayed in Figure 4-2. All
256 discrete eigenfunctions and eigenvalues are used.

In Figure 4-3, we display an example of sampling 50 particles from a mixture
of two 2-dimensional Gaussian distributions given by π = 1

2
N ((−1,−1)⊺, I2) +

1
2
N ((1, 1)⊺, I2), using LAWGD and SVGD. To run this experiment, we use a

2-dimensional FD method, which approximates the Laplacian as

∆εf(x, y) :=
f(x− ε, y) + f(x+ ε, y) + f(x, y − ε) + f(x, y + ε)− 4f(x)

ε2
.

We again use the Schrödinger operator for stability and use FD again to
compute the gradients of the eigenfunctions. We use a 128× 128 grid of evenly
spaced x and y values between −6 and 6. We calculate only the bottom 100
eigenvalues and eigenfunctions, since the other eigenfunctions incur additional
computational cost without noticeably changing the result. Any negative
eigenvalues (which arise from numerical errors) are discarded.

SVGD is run with the RBF kernel and median-based bandwith. True
samples from π are displayed for comparison. Both LAWGD and SVGD are
run for 20000 iterations with a constant step size. The samples from LAWGD
tend to move very fast from their initial positions and then tend to settle into
their final positions as seen in Figure 4-3. On the other hand, with constant
step size, the samples of SVGD do not seem to converge, and one must use a
decreasing step size scheme in order for the particles to stabilize. We also note
that many of the samples generated by SVGD tend to blow up with a constant
step size.

In Figure 4-4, we plot the particles of LAWGD and SVGD at iterations 100,
200, 1000, and 2000 to compare the speed of convergence.
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Figure 4-3: Left: 50 particles and trajectories generated from
1
2
N ((−1,−1)⊺, I2) + 1

2
N ((1, 1)⊺, I2) with LAWGD. Middle: 50 particles and

trajectories generated by SVGD. Right: true samples from the distribution.
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Figure 4-4: Top: LAWGD after 100, 200, 1000, and 2000 iterations. Bottom:
SVGD after 100, 200, 1000, and 2000 iterations.

4.7 Conclusion

We conclude this chapter with some interesting open questions. The intro-
duction of the chi-squared divergence as an objective function allows us to
obtain both theoretical insights about SVGD and a new algorithm, LAWGD.
This perspective opens the possibility of identifying other functionals defined
over Wasserstein space and that yield gradient flows which are amenable to
mathematical analysis and efficient computation. Towards this goal, an intrigu-
ing direction is to develop alternative methods, besides kernelization, which
provide effective implementations of Wasserstein gradient flows. Finally, we
note that LAWGD provides a hitherto unexplored connection between sampling
and computing the spectral decomposition of the Schrödinger operator, the
latter of which has been intensively studied in numerical PDEs. We hope our
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work further stimulates research at the intersection of these communities.
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Chapter 5

MALA

5.1 Introduction

In this chapter we will analyse a widely used, practical implementation of the
Langevin diffusion. A popular trick used to discretize continuous stochastic
processes is Metropolis-Hastings (MH) adjustment [Met+53; Has70], which cor-
rects for the bias in the naive discretization. The class of Metropolis-Hastings
(MH) adjusted algorithms [Met+53; Has70], which includes the Random Walk
Metropolis algorithm (RWM), the Metropolis-Adjusted Langevin Algorithm
(MALA), and Hamiltonian Monte Carlo (HMC), is particularly popular in prac-
tice. Yet their convergence properties are still not well understood, especially
their dependence on the problem dimension, a parameter of particular interest
in modern applications. Using tools introduced in previous chapters, we will
focus on the analysis of MALA and its dimension dependence.

Formally, we consider the task of sampling from a target distribution π
supported on Rd, with density π(x) ∝ exp(−V (x)), where V : Rd → R is
a strongly convex and smooth potential. [RGG+97] initiated the study of
dimension dependence of RWM by means of an asymptotic framework: namely,
when π is a product distribution, a scaling limit exists for RWM as the dimension
tends to infinity with a dimension-dependent step size h ≈ d−1, thereby
suggesting that the number of steps needed for RWM to reach stationarity is
on the order of d. Subsequently, [RR98] [see also PST12] extended the scaling
limit approach to MALA, suggesting that the dimension dependence for MALA
is d1/3 for sufficiently regular potentials and step size h ≈ d−1/3. Beyond its
theoretical implications, this result has had a tremendous practical impact by
guiding the choice of step size for MALA even for distributions far beyond the
scope of their seminal paper. Understanding the applicability of this result,
and ultimately the optimal rate of convergence of MALA, requires a careful
inspection of the framework laid out in [RR98]. It turns out that it is rather
limited in several aspects. Perhaps most notably, it requires π to be a product
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distribution, which excludes distributions with complex dependence structures
that are now routinely encountered in high-dimensional statistics. Moreover, it
applies only to potentials V with higher-order derivatives; this is not a mere
technical artefact since the limit acceptance probability of MALA as d→∞
involves the third derivative of V . Finally, the asymptotic nature of the scaling
limit result only suggests dimension dependence in the asymptotic limit as
d → ∞, so it potentially washes away important effects that may arise for
finite d.

Thus it is natural to investigate the rate of convergence of MALA from a
perspective that is now customary in the machine learning and optimization
literature: by establishing non-asymptotic rates of convergence that hold
uniformly over natural classes of target distributions which go beyond product
distributions. We begin with the simplest and most natural setting and ask:

What is the optimal dimension dependence of the mixing time of
MALA uniformly over the class of α-strongly convex and β-smooth
potentials?

Interestingly, and somewhat surprisingly, we show that while the rate d1/3

originally established by [RR98] is indeed optimal for some product distributions
such as the standard Gaussian, it is not optimal uniformly over the class of
smooth and strongly convex potentials of interest in this chapter. In fact, for
any choice of d, we exhibit a product distribution with infinitely differentiable
potential on which MALA requires a stepsize much smaller than d−1/3, thus
resulting in a worse mixing time. This construction confirms the limitations of
the scaling limit approach to establishing optimal dimension dependence.

This chapter is based on the joint work [chewietal2020mala], with Sinho
Chewi, Kwangjun Ahn, Xiang Cheng, Thibaut Let Gouic, and Philippe Rigollet.

Related works. The non-asymptotic performance of sampling algorithms
uniformly over the class of smooth and strongly convex potentials has been the
object of intense research activity recently. For example, [Dwi+19; Che+20a]
show that on this class of potentials, RWM can draw samples with at most
ε error in chi-squared divergence with O(d log 1

ε
) steps, thereby providing a

non-asymptotic affirmation of the scaling limit of [RGG+97]. However, far less
is known about optimal rates for MALA. The current best result for MALA
on the class of smooth and strongly convex potentials is the paper [Che+20a],
which proves a complexity of O(d log 1

ε
) steps to achieve ε error in chi-squared

divergence. They also raise the question of whether there is a gap between the
complexities of RWH and MALA.

[MV19] took a direct aim at improving the dimension dependence of mixing
time bounds for MALA. They succeeded in obtaining a bound of O(d2/3) albeit
at the cost of stringent hypotheses. More specifically, they assume bounds on
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the third and fourth derivatives of the potential V ; when these bounds are O(1)
(which is true for the standard Gaussian) then their mixing time is O(d2/3);
see the discussion in [Che+20a].

Our contributions. In this chapter, we show that the mixing time in chi-
squared divergence for MALA on the class of smooth and strongly convex
potentials with a warm start is Θ̃(d1/2). Our result consists of two parts: an
upper bound on the mixing time which improves to optimality prior results
such as [Dwi+19; Che+20a], as well as the construction of smooth and strongly
convex potentials on which the mixing time of MALA is no better than d1/2.

In addition to establishing the optimal dimension dependence for MALA, our
result is also one of the strongest guarantees for sampling with a warm start to-
date, irrespective of the algorithm. Indeed, the algorithms which achieve similar
or better dimension dependence compared to our result are: the underdamped
Langevin algorithm [Che+18c, O(d1/2)], the higher-order Langevin algorithm
[Mou+20, O(d1/2)], the randomized midpoint discretization of underdamped
Langevin [SL19, O(d1/3)], and Hamiltonian Monte Carlo [MV18, O(d1/4)].
However, the dependence of these results on 1/ε is polynomial, whereas our
dependence on 1/ε is polylogarithmic. Therefore, for a wide range of accuracy
values which are inverse polynomial in the dimension (e.g., ε = 1/d), our result
attains the best-known dependence on the dimension.

In order to prove our upper bound on the mixing time, we introduce new
techniques based on the characterization of the Metropolis filter as a projection
of the Markov transition kernel in expected L1 distance [BD01]. Our techniques
effectively reduce the problem of bounding the mixing time to controlling the
discretization error between the continuous-time and discretized Langevin
processes, which has been extensively studied in the sampling literature. We
do not aim to give a comprehensive bibliography here, but we note that our
discretization analysis is closest to the papers [DT12; Dal17c]. In this way, our
upper bound has the potential to connect the vast literature on discretization
of SDEs with the more difficult analysis of Metropolised algorithms, although
it is likely that further innovations are necessary before the study of the latter
is completely reduced to the former.

Notation. We use the symbol x to denote a d-dimensional vector, and the
plain symbol x to denote a scalar variable. We abuse notation by identifying
measures with their densities (w.r.t. Lebesgue measure); thus, for instance,
π represents the stationary distribution (a measure), and the notation π(x)
refers to the corresponding density evaluated at x.
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5.2 Preliminaries

Assumptions

We consider the problem of sampling from a distribution π supported on Rd.
The density of the distribution is given by π(x) ∝ exp(−V (x)), and we refer
to V : Rd → R as the potential. Throughout the paper, we will assume that V
is twice continuously differentiable, α-strongly convex, and β-smooth, meaning

αId ⪯ ∇2V (x) ⪯ βId, ∀x ∈ Rd.

We assume that β ≥ 1 ≥ α, and we denote by κ := β/α the condition number.

For the sake of normalization, we assume that V (0) = minV = 0, so that
∇V (0) = 0.

Metropolis-Adjusted Langevin Algorithm (MALA)

Before stating our main results, we give some background on MALA and tools
for establishing convergence rates of Markov chains.

Given a step size h > 0, MALA produces a sequence (xn)n≥0 of random

points in Rd as follows. First, MALA is initialized at x0 ∼ µ0. Then, for n ≥ 0,
repeat the following two-step procedure:

1. Proposal step: sample yn+1 ∼ Q(xn, ·), where

Q(x, ·) :=
1

(4πh)d/2
exp

(
−∥ · − x + h∇V (x)∥2

4h

)
.

This proposal density corresponds to one step of the unadjusted Langevin
algorithm.

2. Accept-reject step: set

xn+1 =

{
yn+1 with probability A(xn,yn+1)
xn with probability 1− A(xn,yn+1)

where the acceptance probability is given by

A(x,y) := 1 ∧ a(x,y) , a(x,y) :=
π(y)Q(y,x)

π(x)Q(x,y)
. (5.1)

It is well-known that MALA outputs a sequence of random variables (xn)n≥0

that forms a reversible Markov chain with stationary distribution π and Markov
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transition kernel given by

T (x,y) = [1− A(x)] δx(y) +Q(x,y)A(x,y),

A(x) =

∫
Q(x,y)A(x,y) dy ≥ 0.

(5.2)

For the rest of the paper, it is important to note that A, Q, etc. depend on the
step size h.

There are many choices to measure proximity of the MALA output with the
target distribution. In this chapter, we focus on the Total Variation distance
(TV), the Kullback-Leibler divergence (KL), the chi-squared divergence (χ2),
and the 2-Wasserstein distance (W2). Given a measure of discrepancy d between
probability measures, we define the mixing time, with initial distribution µ0,
as follows:

τmix(ε, µ0; d) := inf{n ∈ N : x0 ∼ µ0, d(µn, π) ≤ ε} .

Extensions to other discrepancies, such as the p-Wasserstein distance for
p ≤ 2 or the Hellinger distance, are straightforward and omitted for brevity.

The mixing time of a Markov chain is governed by its spectral gap, which
we now introduce. To that end, recall that the Dirichlet form associated with
the MALA kernel T is the quadratic form

E(f, g) = Eπ[f (id− T )g], f, g ∈ L2(π),

where (Tg)(x) :=
∫
g(y)T (x, dy). The spectral gap is defined as

λ := inf
{E(f, f)

var f
: f ∈ L2(π), var f > 0

}
. (λ)

Since it is often difficult to control the spectral gap directly, it is also convenient
to introduce the conductance, defined as

C := inf
{∫

S
T (x, Sc) π(dx)

π(S)
: S ⊆ Rd, π(S) ≤ 1

2

}
. (C)

By Cheeger’s inequality [LS88], it holds that

C2 ≲ λ ≲ C. (5.3)

5.3 The Gaussian case

As our work is motivated by the diffusion scaling limit of [RR98], which predicts
a d1/3 mixing time for MALA, it is natural to begin our investigations by asking
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whether this is indeed the correct order of the mixing time in the simplest
possible setting: namely, when π is the standard Gaussian distribution. Our
first contribution is to establish that it is indeed the case even for finite d.
We formulate here an informal result and postpone a more detailed statement
together with a proof to Section 5.8. Though it is expected, this result appears
to be new.

Theorem 8 (informal). If the target distribution π is the standard Gaussian
distribution, then the mixing time of MALA under a warm start is Θ(d1/3),
and is achieved with step size h ≈ d−1/3.

The proof of this result is based on explicit calculations. While limited to
the Gaussian case, its inspection is instructive for potential extensions to other
distributions.

On the one hand, the upper bound on the mixing time relies on fine cancel-
lations in the acceptance probability using the explicit form of the Gaussian
distribution, which is unavailable for more general potentials. In general, it is
difficult to control the acceptance probability directly, and this seems to be
the main obstacle to sharpening the mixing time bound in [Dwi+19]. This
observation motivates us to seek an indirect way of controlling the acceptance
probability in the next section.

On the other hand, while the Gaussian target distribution readily yields
a lower bound over the class of potentials with smooth and strongly convex
potentials, it turns out to be too loose to address the optimality of MALA.
In Section 5.5, we show that a tighter lower bound may be achieved using a
carefully chosen perturbation of the Gaussian distribution.

5.4 Upper bound

In order to prove an upper bound on the mixing time of MALA, we assume
that we have access to a warm start. This is a common assumption which has
been employed in previous works on MALA, e.g. [Dwi+19; MV19; Che+20a].

Definition 2 (warm start). We say that the initial distribution µ0 is M0-warm
with respect to π if for any Borel set E ⊆ Rd, it holds that µ0(E) ≤M0π(E).
When clear from the context, we simply say that an algorithm has a M0-warm
start to indicate that it is initialized at an M0-warm distribution and omit
reference to the target distribution.

We now state our upper bound on the mixing time of MALA, which shows
that under a warm start the mixing time of MALA is Õ(

√
d).
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Theorem 9. Fix ε > 0 and consider a target distribution π satisfying the
assumptions of Section 5.2. Then MALA with a M0-warm start and step size

h =
cα1/2

β4/3d1/2 log(dκM0/ε)

for a sufficiently small absolute constant c > 0, has mixing time given by

τmix(ε, µ0; d) ≲
β4/3d1/2

α3/2
log

(M0

ε

)
log

(
dκ+

M0

ε

)
.

for each of the distances

d ∈ {TV,
√
KL,

√
χ2,
√
αW2} .

The main properties of strongly log-concave distributions that we use in
the proof are summarized in Lemma 10. As long as π satisfies these properties,
the upper bound technique may be applied under weaker assumptions, e.g.,
a log-Sobolev inequality. We do not pursue these extensions further in this
chapter.

We primarily work with the total variation distance to establish the above
upper bound on the mixing time and translate this result to the chi-squared
divergence by leveraging M0-warmness of all the iterates of the MALA chain.
In turn, this result extends to the KL divergence using a standard comparison
inequality [see, e.g., Tsy09, Chapter 2] and ultimately to the Wasserstein
distance using Talagrand’s transportation inequality for strongly log-concave
distributions.

The bound above is likely not sharp in terms of the accuracy parameter
ε and the warm start parameter M0. Indeed, we expect the dependency on
the accuracy parameter to be log(1/ε), and the paper [Che+20a] develops a
method, based on the conductance profile, to reduce the warm start dependence
to log logM0. Since the quantity logM0 can introduce additional dimensional
factors under a feasible start [Dwi+19], it is important to improve the depen-
dency on M0. We leave open the question of refining our techniques to achieve
these improvements.

Since our upper bound proof may be of interest for analyzing other sampling
algorithms based on Metropolis-Hastings filters, we now proceed to give a
technical overview of the ideas involved in the upper bound. Throughout,
we use the notation Qx(·), Tx(·), etc. as a shorthand for the kernels Q(x, ·),
T (x, ·), etc.

We begin by describing the approach of [Dwi+19], which will serve as a
reference. The standard technique for bounding the conductance of geometric
random walks is the following lemma [see, e.g., LV18a, Lemma 13].
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Lemma 1. Suppose that for all x,y ∈ Rd with ∥x − y∥ ≤ r, it holds that
∥Tx − Ty∥TV ≤ 3/4. Then, the conductance of the MALA chain satisfies
C ≳
√
αr.

In light of this lemma, [Dwi+19] considers the following decomposition:

∥Tx − Ty∥TV ≤ ∥Tx −Qx∥TV + ∥Qx −Qy∥TV + ∥Ty −Qy∥TV. (5.4)

The middle term is the TV distance between two Gaussian distributions, and
using Pinsker’s inequality it is straightforward to show that

∥Qx −Qy∥TV ≤
∥x− y∥√

2h
, provided h ≤ 2

β
,

see [Dwi+19, Lemma 3]. On the other hand, bounding the first and third
terms in the decomposition (5.4) requires carefully controlling the acceptance
probability of MALA. [Dwi+19] show that these terms can be controlled when
the step size is of order h ≈ 1/d. An application of Lemma 1 with r ≈

√
h

yields a conductance bound of C = Ω(1/
√
d) and in turn, a spectral gap bound

of λ = Ω(1/d) by Cheeger’s inequality (5.3). Overall, this approach yields a
mixing time bound is O(d).

In order to prove a stronger mixing time bound of Õ(
√
d), we must consider

much larger step sizes (of order h ≈ 1/
√
d), and in this regime, controlling the

acceptance probabilities by hand requires a daunting computational effort. In
fact, [RR98] already resort to a computer-aided proof to study the asymptotics
of the acceptance probability. Our first main idea is to use the well-known
fact [BD01] that for any proposal Q, the corresponding Metropolis-adjusted
kernel T is the closest Markov kernel to Q, among all reversible Markov kernels
with stationary distribution π.

Lemma 2. Let Q be an atomless proposal kernel, and let T be the kernel
obtained from Q by Metropolis adjustment (defined by (5.1) and (5.2)). Let Q̄
be any kernel that is reversible with respect to π and has no atoms. Then, for
x ∼ π, it holds that

E∥Tx −Qx∥TV ≤ 2E∥Q̄x −Qx∥TV .

Proof. See Section 5.6.

We apply this result by comparing the MALA kernel T with the transi-
tion kernel Q̄ of the continuous-time Langevin diffusion run for time h. In
other words, Q̄(x, ·) is the law of X̄h, where (X̄ t)t≥0 evolves according to the
stochastic differential equation (LD), which we restate here for convenience:

dX̄ t = −∇V (X̄ t) dt+
√

2 dBt, X̄0 = x, (5.5)
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and (Bt)t≥0 is a standard Brownian motion. Using standard arguments from

stochastic calculus (see (5.11)), we show that E∥Q̄x − Qx∥TV = O(h
√
d)

(see (5.11)). This suggests that we can take the step size to be h ≍ 1/
√
d.

However, since the lemma only controls the first and third terms of the de-
composition (5.4) in expectation, it is not enough to yield a good lower bound
on the conductance via Lemma 1. To remedy this, we prove a new pointwise
version of the projection characterization of Metropolis adjustment.

Theorem 10. Let Q be an atomless proposal kernel, and let T be the kernel
obtained from Q by Metropolis adjustment (defined by (5.1) and (5.2)). Let Q̄
be any kernel that is reversible with respect to π and has no atoms. Then, for
every x ∈ Rd,

∥Tx −Qx∥TV ≤ 2 ∥Q̄x −Qx∥TV +

∫
π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy. (5.6)

Consequently, for any convex increasing function Φ : R+ → R+ and x ∼ π,
y ∼ Q̄(x, ·),

EΦ(∥Tx −Qx∥TV) ≤ 1

2
EΦ(4 ∥Q̄x −Qx∥TV) +

1

2
EΦ

(
2
∣∣Q(x,y)

Q̄(x,y)
− 1

∣∣). (5.7)

Proof. See Section 5.6.

Remark 4. If we take the expectation of (5.6) when x ∼ π, we obtain

E∥Tx −Qx∥TV ≤ 4E∥Q̄x −Qx∥TV ,

which qualitatively recovers Lemma 2.

The second inequality in Theorem 10 can be used in the usual way to
deduce concentration bounds for ∥Tx − Qx∥TV when x ∼ π. A key feature
of this approach is that both terms on the right-hand side of (5.7), in the
case of MALA, involve only quantities which measure the discrepancy between
the continuous-time Langevin kernel Q̄ and the discretized Langevin proposal
Q. Therefore, to control the quantity ∥Tx −Qx∥TV, it suffices to apply well-
established techniques for studying the discretization of SDEs.

Once we show that ∥Tx−Qx∥TV is controlled with high probability, we are
then able to apply a conductance argument, similar to Lemma 1, in order to
prove our mixing time bound. We give an in-depth overview of the proof and
provide proofs of technical details in Section 5.6.
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5.5 Lower bound

It is a standard fact that the mixing time is governed by the inverse of the
spectral gap1. Hence, an upper bound on the spectral gap λ yields a lower
bound on the mixing time. In addition, we know from Cheeger inequality (5.3)
that λ ≲ C, where C denotes the conductance of the Markov chain. For these
reasons, we identify a lower bound on the mixing time with an upper bound
on either the conductance C or the spectral gap λ.

To complement our upper bound on the mixing time of MALA, we provide
a nearly matching lower bound, thereby settling the question of the dimension
dependence of MALA for log-smooth and strongly log-concave targets. To that
end, we exhibit a target distribution (in fact a family of distributions) such
that the MALA chain with step size h has exponentially small conductance
whenever h≫ d−1/2. More precisely, fix η ∈ (0, 1/4) and define the adversarial
target distribution πη as a product distribution with potential Vη defined by

Vη(x) =
∥x∥2

2
− 1

2d2η

d∑
i=1

cos(dηxi) (5.8)

It is not hard to see that Vη is 1/2-strongly convex and 3/2-smooth. To motivate
this choice, recall from [RR98, Theorem 1] that the acceptance probability of
MALA tends to a positive constant as d→∞ whenever the second moment
of the third derivative of the potential is finite and the step size is chosen as
h = Θ(d−1/3). The choice Vη in (5.8) is an example of a smooth and strongly
convex potential where this condition is violated asymptotically, therefore
suggesting that h = Θ(d−1/3) is too large to prevent the acceptance probability
to vanish for large d. Our first result below indicates that h should be taken
significantly smaller than d−1/3; in fact nearly as small as d−1/2 when η ≈ 1/4.

In the following theorem, we set η = 1/4− δ, for some small δ > 0.

Theorem 11. Fix δ ∈ (0, 1/18), let η = 1/4 − δ, and let C denote the
conductance of the MALA chain with target distribution πη and step size h.

Then, C ≲ exp[−Ω(d4δ)] for any h ∈ [d−
1
2
+3δ, d−

1
3 ].

Note that as δ ↘ 0, the above theorem shows that MALA must take step
sizes which are (essentially) at most of order d−1/2.

The next result shows that the spectral gap of MALA is no better than
h. Together with our upper bound, it implies in particular that the choice
h ≈ d−1/2 is the optimal step size for MALA for a target distribution πη and

1By definition, the spectral gap corresponds to the smallest eigenvalue of the Dirichlet form.
Hence, for an initial distribution µ0 that is correlated with the eigenfunction corresponding
to λ, it follows that τmix(ε, µ0;

√
χ2) = Ω̃(λ−1). See, e.g., [BGL14, Chapter 4] for a rigorous

treatment of spectral theory.
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hence, cannot be improved uniformly over the class of distributions with smooth
and strongly convex potentials.

Theorem 12. The spectral gap λ of MALA with target distribution πη and
step size 0 < h ≤ 1 satisfies λ ≲ h.

We give the proofs of these theorems in Section 5.7.

5.6 Proof of the upper bound

This section presents the proof of Theorem 9.

High-level overview of the proof

The bulk of the proof controls the mixing time in total variation and we use
results from Section 5.6 to extend it to the other distances.

For the proof, it is technically convenient to work with a refinement of the
conductance known as the s-conductance: for 0 < s < 1/2, define

Cs := inf
{∫

S
T (x, Sc) π(dx)

π(S)− s
∣∣∣ S ⊆ Rd, s < π(S) ≤ 1

2

}
. (5.9)

A lower bound on the s-conductance translates into an upper bound on the
mixing time in total variation distance, via the following lemma.

Lemma 3 ([LS93, Corollary 1.6]). For any n ∈ N and 0 < s < 1/2, the
distribution of the n-th iterate µn of the MALA satisfies

∥µn − π∥TV ≤M0s+M0 exp
(
−C2

sn

2

)
,

where M0 is the warm start parameter of µ0.

Corollary 5. Taking s = ε/(2M0), it follows that

∥µn − π∥TV ≤ ε provided that n ≥ 2

C2
s

ln
2M0

ε
.

Motivated by the standard conductance lemma (Lemma 1) and the decom-
position (5.4), in order to bound the s-conductance from below we will first
bound ∥Tx −Qx∥TV, as in Section 5.4. The outline of the proof is as follows:

1. In Section 5.6, we prove the projection properties of MALA (Lemma 2
and Theorem 10).

2. In Section 5.6, we use the projection property (Lemma 2) along with
stochastic calculus to bound the expectation E ∥Tx −Qx∥TV when x ∼ π.

67



3. In Section 5.6, we use the pointwise projection property, together with
more stochastic calculus, in order to prove a concentration inequality for
∥Tx −Qx∥TV when x ∼ π.

4. In Section 5.6, we use the concentration bound of Section 5.6, together
with ideas from the proof of the standard conductance lemma (Lemma 1),
in order to lower bound the s-conductance. Together with Corollary 5, it
yields the mixing time bound of Theorem 9 in total variation distance.

5. Finally in Section 5.6, we explain how the mixing time bound in total
variation distance implies mixing time bounds in other distances between
probability measures.

Proof of the projection properties

We start with a basic fact about MALA.

Proposition 1. Let Q be the proposal kernel and let T be the MALA kernel
with proposal Q. Then,

∥Tx −Qx∥TV =

∫
Rd\{x}

|T (x,y)−Q(x,y)| dy = 1−
∫
Rd

Q(x,y)A(x,y) dy.

Proof. First, since Tx has an atom at x and Qx does not, we have

∥Qx − Tx∥TV =
1

2

(
Tx({x}) +

∫
Rd\{x}

|T (x,y)−Q(x,y)| dy
)
.

By the definition of the accept-reject step,

Tx({x}) = 1−
∫
Rd\{x}

T (x,y) dy = 1−
∫
Rd

Q(x,y)A(x,y) dy ,

whereas ∫
Rd\{x}

|T (x,y)−Q(x,y)| dy = 1−
∫
Rd

Q(x,y)A(x,y) dy .

The result follows.

We now prove the projection properties (Lemma 2 and Theorem 10).

Proof of Lemma 2. Since the transition kernel Q̄ corresponding to the continuous-
time Langevin diffusion is reversible with stationary distribution π, it follows
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from [BD01] that∫∫
(Rd×Rd)\∆

|T (x,y)−Q(x,y)|π(dx) dy ≤
∫∫

(Rd×Rd)\∆

|Q̄(x,y)−Q(x,y)|π(dx) dy ,

where ∆ = {(x,y) ∈ Rd × Rd : x = y}. Since Qx and Q̄x have no atoms,
the right-hand side is equal to 2Ex∼π∥Q̄x −Qx∥TV. On the other hand, the
left-hand side is equal to Ex∼π∥Tx −Qx∥TV due to Proposition 1.

Proof of Theorem 10. For any x, we have

∥Tx −Qx∥TV =

∫
{1− A(x,y)}Q(x,y) dy

=

∫ [
1−

(
1 ∧ π(y)Q(y,x)

π(x)Q(x,y)

)]
Q(x,y) dy

≤
∫ ∣∣∣1− π(y)Q(y,x)

π(x)Q(x,y)

∣∣∣Q(x,y) dy

≤
∫ ∣∣∣1− π(y)Q̄(y,x)

π(x)Q(x,y)

∣∣∣Q(x,y) dy +

∫
π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy.

Observe that the first term is given by∫ ∣∣∣1−π(y)Q̄(y,x)

π(x)Q(x,y)

∣∣∣Q(x,y) dy =

∫ ∣∣∣Q(x,y)−π(y)Q̄(y,x)

π(x)

∣∣∣ dy = 2 ∥Qx−Q̄x∥TV ,

where in the second identity, we used the reversibility of Q̄. This concludes the
proof of the first inequality.

We now deduce the second inequality from the first. Using monotonicity
and convexity of Φ respectively, we get,

EΦ(∥Tx −Qx∥TV) ≤ EΦ
(

2 ∥Q̄x −Qx∥TV +

∫
π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)

≤ 1

2
EΦ(4 ∥Q̄x −Qx∥TV) +

1

2
EΦ

(
2

∫
π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)
,

where we take expectation with respect to x ∼ π. Next, nothing that∫
π(y)Q̄(y,x) dy = π(x), we apply Jensen’s inequality to yield

EΦ
(

2

∫
π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)

=

∫
Φ
(

2

∫
π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
)
π(x) dx
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≤
∫∫

Φ
(
2
∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣) π(y)Q̄(y,x) dx dy

=

∫∫
Φ
(
2
∣∣Q(x,y)

Q̄(x,y)
− 1

∣∣) π(x)Q̄(x,y) dx dy ,

where we switched x and y in the notation of the last line.

Expectation of the total variation

We now bound E∥Tx − Qx∥TV when x ∼ π using the projection property
(Lemma 2). Akin to prior work such as [DT12], our primary tool to analyse the
discretization of the Langevin diffusion is the Girsanov theorem from stochastic
calculus [see, e.g. Le 16; SV06, for classical treatments].

Lemma 4 (Girsanov theorem). Let Q̄x denote the probability measure on path
space induced by the solution (X̄ t)t∈[0,h] of the continuous-Langevin diffusion
SDE (5.5) started at x and run for time h > 0. Moreover, let Qx denote the
probability measure on path space induced by the solution of the following SDE
with constant drift

dX t = −∇V (x) dt+
√

2 dBt, X0 = x.

Then, Qx is absolutely continuous with respect to Q̄x and has density given by
Radon-Nikodym derivative:

dQx

dQ̄x

(
(X̄ t)t

)
= exp

[ 1√
2

∫ h

0

⟨∇V (X̄ t)−∇V (x), dBt⟩ −
1

4

∫ h

0

∥∇V (X̄ t)−∇V (x)∥2 dt
]
.

Proof. See the proof of Proposition 2 in [DT12].

In the following lemma, we use Lemma 11.

Lemma 5. Assume h ≤ 1/(3β4/3). For any x ∈ Rd,

∥Q̄x −Qx∥TV ≤
1

2
βh

√
d+ β2/3 ∥x∥2 .

Proof. Let end denote the function that maps a continuous curve (yt)t∈[0,h] in

Rd to its endpoint: end((yt)t∈[0,h]) := yh. Then, it is clear that

Qx = end#Qx and Q̄x = end#Q̄x ,

where the notation f#µ denotes the pushforward of a measure µ under the
mapping f . On the one hand, it follows from the data processing inequality
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that

KL(Q̄x ∥ Qx) = KL(end#Q̄x ∥ end#Qx) ≤ KL(Q̄x ∥ Qx) .

On the other hand, the Girsanov theorem (in the form of Lemma 4) implies
that

KL(Q̄x ∥ Qx) = −E ln
dQx

dQ̄x

(X̄ t) =
1

4

∫ h

0

E[∥∇V (X̄ t)−∇V (x)∥2] dt

≤ β2

4

∫ h

0

E[∥X̄ t − x∥2] dt ≤ 3β2h2 (d+ β2/3 ∥x∥2)
8

,

where we used the β-smoothness of V and Lemma 11. Now applying Pinsker’s
inequality, we obtain the desired inequality.

It follows from Lemma 5 that when x ∼ π, we get

E∥Q̄x −Qx∥TV ≤
1

2
βhE

√
d+ β2/3 ∥x∥2 ≤ 1

2
βh

√
d+ β2/3 E[∥x∥2] ≲ β4/3h

√
d

α
,

(5.10)

where we used the second moment bound of Lemma 10. Together with Lemma 2,
it yields

E∥Tx −Qx∥TV ≤ 2E∥Q̄x −Qx∥TV ≲ β4/3h

√
d

α
. (5.11)

We conclude this section with a concentration inequality which we use later
in the argument.

Lemma 6. Assume h ≤ 1/(3β4/3) and let x ∼ π. For any δ > 0, with
probability at least 1− δ,

∥Q̄x −Qx∥TV ≲ β4/3h

√
d+ log(1/δ)

α
.

Proof. Let f(x) := 1
2
β4/3h

√
d+ ∥x∥2. Then,

∥∇f(x)∥ =
β4/3h ∥x∥

2
√
d+ ∥x∥2

≤ 1

2
β4/3h.

Thus, f(x) is 1
2
β4/3h-Lipschitz, and it follows from sub-Gaussian concentration

(Lemma 10) that with probability at least 1− δ,

f(x) ≤ E f(x) + β4/3h

√
1

2α
ln

1

δ
.

71



We have calculated E f(x) ≲ β4/3h
√
d/α in (5.10), and the result now follows

from the pointwise bound in Lemma 5.

Concentration of the total variation

Equation (5.11) provides a control the total variation distance between the
MALA kernel and the proposal in expectation. The main result of this section
is an extension of this result to a control with high probability captured in the
following proposition.

Proposition 2. Fix c0 > 0 and 0 < s < 1/2. Then, there exists a constant
c1 > 0, depending only on c0, such that with step size

h =
c1α

1/2

β4/3d1/2 log(dκ/s)
,

the following holds with probability at least 1− c0s
√
h,

∥Tx −Qx∥TV ≤
1

6
.

The idea of the proof is to use the pointwise projection of Theorem 10, and
to obtain high probability bounds for each of the two terms in (5.6). An upper
bound for the first term follows directly from Lemma 6. To control the second
term, we will first obtain a bound on its moments.

Lemma 7. Let k ≥ 1 be any integer. Suppose that

h ≤ α1/2

Cβ4/3d1/2k
, for a sufficiently large absolute constant C > 0 .

Then, it holds that{
Ex∼π

[∣∣∣∫ π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
∣∣∣k]}1/k

≲ α−1/4βh
√
k (
√
d+
√
k) .

The proof, given in Section 5.6, uses extensively tools from stochastic
calculus. We remark that the quantity in Lemma 7 can be interpreted as
a bound on the Rényi divergence between the discretized and continuous
Langevin processes. A similar result has appeared as [GT20, Corollary 11].

We are now in a position to prove Proposition 2.

Proof of Proposition 2. Assume that the step size h is small enough so that
Lemmas 6 and 7 both hold. More specifically, since the requirement of Lemma 7
is more stringent than that of Lemma 6, so we can simply impose h ≤ α1/2

Cβ4/3d1/2k
for a sufficiently large absolute constant C > 0.
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From Lemma 6 with δ = c0s
√
h/2, there exists a constant C1 > 0 such that

with probability at least 1− c0s
√
h/2,

∥Q̄x −Qx∥TV ≤
C1β

4/3h

2
√
α

√
d+ ln

2

c0s
√
h
.

From Lemma 7 and Markov’s inequality, there exists a constant C2 > 0 such
that for any δ > 0, with probability at least 1− δ,∫

π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy ≤ C2α
−1/4βh

√
k (
√
d+
√
k) δ−1/k .

Taking k ∼ ln 2
c0s

√
h

and δ = c0s
√
h/2, we have δ−1/k = Θ(1) and hence

∫
π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy ≤ C2α
−1/4βh

√
ln

2

c0s
√
h

(√
d+

√
ln

2

c0s
√
h

)
.

Combining these two inequalities with the pointwise projection property (The-
orem 10), it follows that with probability at least 1− c0s

√
h,

∥Tx −Qx∥TV ≤
C1β

4/3h√
α

√
d+ ln

2

c0s
√
h

+ C2α
−1/4βh

√
ln

2

c0s
√
h

(√
d+

√
ln

2

c0s
√
h

)
.

(5.12)

If we choose the constant c1 > 0 small enough, then choosing the step size
as in the statement of Proposition 2, i.e., h = c1α1/2

β4/3d1/2 log(dκ/s)
, makes the both

terms in the left-hand side of (5.12) less than 1/12. This completes the proof
of Proposition 2.

Proof of Lemma 7

We now prove the moment upper bound (Lemma 7). Since
∫
π(y)Q̄(y,x) dy =

π(x), we can apply Jensen’s inequality to get∫
π(x)

∣∣∣∫ π(y)Q̄(y,x)

π(x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣ dy
∣∣∣k dx ≤

∫∫
π(y)Q̄(y,x)

∣∣Q(y,x)

Q̄(y,x)
− 1

∣∣k dx dy

=

∫ (∫ ∣∣Q(x,y)

Q̄(x,y)
− 1

∣∣k Q̄(x, dy)
)
π(dx) ,

where we switched x and y in the last line. The inner integral equals the
f -divergence Df (Qx ∥ Q̄x), with f(x) := |x− 1|k. Recall the definitions of Q̄x

and Qx in Lemma 4. Hence we may apply the data processing inequality and
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bound the above by

Fk :=

∫ (∫ ∣∣dQx

dQ̄x

− 1
∣∣k dQ̄x

)
π(dx) . (5.13)

Recall from Lemma 4 that

dQx

dQ̄x

(X̄) = expHh ,

where for t ≥ 0,

Ht :=
1√
2

∫ t

0

⟨∇V (X̄s)−∇V (x), dBs⟩ −
1

4

∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds .

Applying Itô’s formula to (Ht)t≥0 and the function exp, we deduce that

expHh − 1 =
1√
2

∫ h

0

(expHt) ⟨∇V (X̄ t)−∇V (x), dBt⟩.

In what follows, Ēx denotes the expectation under Q̄x (the measure under
which X̄ is a continuous-time Langevin diffusion). Also, we will use the letter
C to denote a numerical constant which may change from line to line. Based
on the upper bound (5.13) on the k-th moment, we wish to estimate

Fk = Ēx[|expHh − 1|k] =
1

2k/2
Ēx

[∣∣∣∫ h

0

(expHt) ⟨∇V (X̄ t)−∇V (x), dBt⟩
∣∣∣k]

≤ (Ck)k/2 Ēx

[∣∣∣∫ h

0

exp(2Ht) ∥∇V (X̄ t)−∇V (x)∥2 dt
∣∣∣k/2]

where the last line is the Burkholder-Davis-Gundy inequality with optimal
constants [Bur73; Dav76]. Together with the Cauchy-Schwarz inequality and
Hölder’s inequality, it yields

Fk ≤ (Cβ2k)
k/2

Ēx

[∣∣∣∫ h

0

exp(4Ht) dt
∣∣∣k/4 ∣∣∣∫ h

0

∥X̄ t − x∥4 dt
∣∣∣k/4]

≤ (Cβ2k)
k/2

√
Ēx

[∣∣∣∫ h

0

exp(4Ht) dt
∣∣∣k/2] Ēx

[∣∣∣∫ h

0

∥X̄ t − x∥4 dt
∣∣∣k/2]

≤ (Cβ2k)
k/2

hk/2−1

√(
Ēx

∫ h

0

exp(2kHt) dt
)

︸ ︷︷ ︸
A

√(
Ēx

∫ h

0

∥X̄ t − x∥2k dt
)

︸ ︷︷ ︸
B

.
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We will control the two terms separately, starting with the first term A .

Lemma 8. Let 0 ≤ t ≤ h ≤ 1/(20βk). Then,

Ēx exp(2kHt) ≤ exp(96β4h3k2 ∥x∥2 + 576β2dh2k2).

Proof. Recall the following fact, which follows from Itô’s lemma [Le 16, Theorem
5.10]: for any adapted process (Zs)s≥0, we have

Ēx exp(

∫ t

0

⟨Zs, dBs⟩ −
1

2

∫ t

0

∥Zs∥2 ds) = 1 .

Together with the Cauchy-Schwarz inequality, it yields

Ēx exp(2kHt)

= Ēx exp
[√

2k

∫ t

0

⟨∇V (X̄s)−∇V (x), dBs⟩ −
k

2

∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds
]

= Ēx exp
[√

2k

∫ t

0

⟨∇V (X̄s)−∇V (x), dBs⟩

+
(
−4k2 + 4k2 − k

2

) ∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds
]

≤
√
Ēx exp

[
8k2

∫ t

0

∥∇V (X̄s)−∇V (x)∥2 ds
]

≤
√
Ēx exp

[
8β2k2

∫ t

0

∥X̄s − x∥2 ds
]
≤

√
Ēx exp

[
8β2hk2 sup

s∈[0,h]
∥X̄s − x∥2

]
.

In order to upper bound the above quantity, we develop the following bound
on the moment generating function of sups∈[0,h]∥X̄s − x∥2.
Lemma 9. Assume h ≤ 1/(2β). For 0 < λ < 1/(24h),

Ēx exp
(
λ sup

t∈[0,h]
∥X̄ t − x∥2

)
≤ exp

(
12β2λh2 ∥x∥2 + d ln

1 + 24hλ

1− 24hλ

)
.

Proof. The proof is deferred to §5.6.

We use Lemma 9 with λ := 8β2hk2. In order to satisfy the preconditions of
Lemma 9, we impose the restriction h ≤ 1

14βk
. Then, it follows that

Ēx exp(2kHt) ≤ exp
(
96β4h3k2 ∥x∥2 + d ln

1 + 192β2h2k2

1− 192β2h2k2
)

≤ exp(96β4h3k2 ∥x∥2 + 576β2dh2k2) ,
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where the last inequality is ln 1+x
1−x
≤ 3x, which holds provided x ≤ 1/2; this is

valid provided h ≤ 1
20βk

. This is our desired bound.

Hence, from Lemma 8, we obtain

A ≤
√
h exp(96β4h3k2 ∥x∥2 + 576β2dh2k2) .

Next, we estimate B . In fact, Lemma 9 together with standard moment
bounds under sub-exponential concentration (e.g. [Ver18, Proposition 2.7.1])
gives

Ēx sup
t∈[0,h]

∥X̄ t − x∥2k ≤ Ck (βkh2k ∥x∥2k + dkhk + hkkk) ,

where C > 0 is a numerical constant. See Corollary 6 in §5.6 for details. Hence,
it holds that

B =

∫ h

0

Ēx[∥X̄ t − x∥2k] dt ≤ Ckh (βkh2k ∥x∥2k + dkhk + hkkk).

Hence,

(5.13) ≤ (Cβ2k)
k/2
hk/2−1 × A × B

≤ (Cβ2k)
k/2
hk/2−1 × h1/2 exp(48β4h3k2 ∥x∥2 + 288β2dh2k2)

×
√
Ckh (βkh2k ∥x∥2k + dkhk + hkkk)

≤ (C2β2hk)
k/2

exp(288β2dh2k2)

× exp(48β4h3k2 ∥x∥2)
√
Ckh (βkh2k ∥x∥2k + dkhk + hkkk).

Next, we take the expectation w.r.t. x ∼ π and use Cauchy-Schwarz:

Ex∼π Ēx[|expHh − 1|k]

≤ (Cβ2hk)
k/2

exp(288β2dh2k2)

×
√
Ex∼π exp(96β4h3k2 ∥x∥2)Ex∼π[βkh2k ∥x∥2k + dkhk + hkkk] .

For the two terms involving exponentials: the first will be bounded by a
numerical constant provided that h ≤ 1

Cβk
√
d
, and using concentration properties

of π (see e.g. Lemma 10), the second will be bounded provided h ≤ α1/3

Cβ4/3d1/3k2/3
.

Taking this to be the case, the moment bounds in Lemma 10 now imply the
bound

Ex∼π Ēx[|expHh − 1|k]

≤ (Cβ2hk)
k/2 × (α−k/2βk/2dk/2hk + α−k/2βk/2hkkk/2 + dk/2hk/2 + hk/2kk/2) .
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Taking k-th roots,

(Ex∼π Ēx[|expHh − 1|k])
1/k

≲ β
√
hk × (α−1/2β1/2d1/2h+ α−1/2β1/2hk1/2 + d1/2h1/2 + h1/2k1/2)

≲ α−1/4βh
√
k (
√
d+
√
k),

provided that h ≤ α1/2/β. This concludes the proof.

Conductance argument

In this section, we use the results from the previous sections in order to prove
a lower bound on the s-conductance. The argument is similar to the proof of
the standard conductance lemma (Lemma 1).

Towards the goal of applying the bound on the mixing time via s-conductance
given in Corollary 5, we take s := ε/(2M0), and we choose the step size

h =
c1α

1/2

β4/3d1/2 log(dκ/s)
(5.14)

as in Proposition 2. Then, Proposition 2 guarantees the existence of an event
E with probability π(E) ≥ 1− c0s

√
h such that

x ∈ E =⇒ ∥Tx −Qx∥TV ≤
1

6
.

Let S be a measurable subset of Rd with s ≤ π(S) ≤ 1/2. Define the
following subsets:

S1 :=
{
x ∈ S

∣∣ T (x, Sc) ≤ 1

4

}
, bad set 1

S2 :=
{
x ∈ Sc

∣∣ T (x, S) ≤ 1

4

}
, bad set 2

S3 := (S1 ∪ S2)
c. good set

If π(S1) < π(S)/2 or π(S2) < π(Sc)/2, then may conclude from reversibility
of the MALA kernel T that∫
S

T (x, Sc) π(dx) =
1

2

(∫
S

T (x, Sc) π(dx) +

∫
Sc

T (x, S) π(dx)
)
≥ 1

2
· π(S)

2
· 1

4
=
π(S)

16
.

Therefore, for the purpose of proving a lower bound on the s-conductance, we
may assume that π(S1) ∧ π(S2) ≥ π(S)/2.

Now we consider x ∈ E ∩ S1 and y ∈ E ∩ S2. From the definitions of S1
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and S2, it follows that

∥Tx − Ty∥TV ≥
1

2
.

Since x,y ∈ E, we also have

∥Tx −Qx∥TV ∧ ∥Ty −Qy∥TV ≤
1

6
.

Thus, using the decomposition (5.4),

1

2
≤ ∥Tx − Ty∥TV ≤ ∥Tx −Qx∥TV + ∥Qx −Qy∥TV + ∥Ty −Qy∥TV

≤ 1

6
+
∥x− y∥√

2h
+

1

6
,

where the middle term is controlled via

∥Qx −Qy∥TV ≤
∥x− y∥√

2h
, if h ≤ 2

β
,

see [Dwi+19, Lemma 3]. Hence, we obtain:

√
2h

6
≤ ∥x− y∥ ,

which implies that dist(E∩S1, E∩S2) ≥
√

2h/6. By the isoperimetric inequality
(see Lemma 10), there is an absolute constant c > 0 such that

π
(
[(E ∩ S1) ∪ (E ∩ S2)]

c) ≥ c
√

2

6

√
αhπ(E ∩ S1) .

Since S1, S2, and S3 partition Rd, we see that ((E ∩ S1) ∪ (E ∩ S2))
c = Ec∩S3.

As a result,

π(S3) + c0s
√
αh ≥ π(S3) + π(Ec) ≥ c

√
2

6

√
αhπ(E ∩ S1)

≥ c
√

2

6

√
αh {π(S1)− π(Ec)}

≥ c
√

2

6

√
αh

{π(S)

2
− π(Ec)

}
≥ c
√

2

12

√
αhπ(S) , (5.15)

where (5.15) follows since π(S)/2 ≥ s/2 ≥ 2c0s
√
h ≥ 2π(Ec) provided that

c0
√
h ≤ 1/4.
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Since π(S) ≥ s, it follows that, provided we choose c0 small enough (and
thus, the constant c1 in the step size (5.14) small enough), we obtain

π(S3) ≥
c
√

2

24

√
αhπ(S) .

From this,∫
S

T (x, Sc) π(dx) =
1

2

(∫
S

T (x, Sc) π(dx) +

∫
Sc

T (x, S) π(dx)
)

≥ 1

2
· 1

4
· π(S3) ≥

c
√

2

192

√
αhπ(S) .

Collecting the arguments, we obtain a lower bound on the s-conductance.

Proposition 3. If the step size h is chosen as (5.14) for a sufficiently small
constant c1, then the s-conductance of the MALA chain satisfies

Cs ≳
√
αh .

Together with the mixing time bound in Corollary 5, we have proven
Theorem 9.

Auxiliary lemmas

Standard facts about strongly log-concave measures

The following properties of strongly log-concave measures are well-known.

Lemma 10. The α-strong convexity of V implies the following properties:

1. (moment and tail bounds) For x ∼ π, it holds that E∥x∥2 ≤ d/α.

In fact, for all k ≥ 2,

E∥x∥k ≤ 3k (dk/2 + kk/2)

αk/2
.

Consequently, E exp(λ ∥x∥2) is bounded above by a universal constant,
provided that 0 ≤ λ ≤ α/(40d).

2. (isoperimetry) For any S ⊆ Rd with π(A) ≤ 1/2, it holds that π(Sε \S) ≳
ε
√
απ(S), where

Sε := {x ∈ Rd | ∃y ∈ S with ∥x− y∥ ≤ ε}.
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3. (sub-Gaussian concentration) For any 1-Lipschitz function f : Rd → R
and δ > 0, with probability at least 1− δ it holds that

f(x)− Eπ f ≤
√

2

α
ln

1

δ
,

when x ∼ π.

Proof. The first statement is a simplification of [DKR19, Lemma 2]. For the
second statement, in fact strongly log-concave measures satisfy a stronger
isoperimetric inequality (sometimes called a Gaussian isoperimetric inequality,
or a log-isoperimetric inequality in [Che+20a]); we refer to [BGL14, §8.5.2] and
the paper [BH97] which explains the relationship between integral form of the
isoperimetric inequality employed here and the more traditional differential
version. Finally, for the third statement, see e.g. [BGL14, §5.4.2, Corollary
5.7.2].

Alternatively, these facts all follow from the corresponding facts about
standard Gaussians, as a consequence of Caffarelli’s contraction theorem [Caf00;
FGP20]; see also the discussion in [Vil03, §9.2.3].

Stochastic calculus results

Below, we also collect together some inequalities proven via stochastic calculus.
In what follows, (X̄ t)t≥0 is the Langevin diffusion (5.5), started at x. We start

with a bound on the mean squared displacement E[∥X̄ t−x∥2] of the Langevin
diffusion.

Lemma 11. If (X̄ t)t≥0 denotes the continuous-time Langevin process (5.5)

started at x, then for all t ≤ 1/(3β4/3), we have

E[∥X̄ t − x∥2] ≤ 3t (d+ β2/3 ∥x∥2) .

Proof. Fix s ∈ [0, t]. From Itô’s lemma [Le 16, Theorem 5.10], we have

E[∥X̄s − x∥2] = E
∫ s

0

{
−2 ⟨∇V (X̄u), X̄u − x⟩+

1

2
· 2d

}
du

= E
∫ s

0

{−2 ⟨∇V (X̄u), X̄u − x⟩} du+ sd .

To upper bound the first term on the right-hand side, we could conclude easily
using a convexity of V with slightly different dependence on β in the final result.
Instead, we take somewhat of a detour to show that this results hinges solely
on the smoothness of V and can therefore be extended beyond the log-concave
case.
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Note that

|⟨∇V (X̄u), X̄u − x⟩| ≤ |⟨∇V (X̄u)−∇V (x), X̄u − x⟩|+ |⟨∇V (x), X̄u − x⟩|

≤ β ∥X̄u − x∥2 +
1

2β4/3
∥∇V (x)∥2 +

β4/3

2
∥X̄u − x∥2

≤ 3β4/3

2
∥X̄u − x∥2 +

β2/3

2
∥x∥2 ,

where the last two inequalities follow from β-smoothness of V (see e.g. [Nes18,
Theorem 2.1.5]), and our assumption arg minV = 0. Thus, letting a(u) :=
E[∥X̄u − x∥2], we obtain the following integral inequality:

a(s) ≤ (d+ β2/3 ∥x∥2) s+ 3β4/3

∫ s

0

a(u) du , ∀s ∈ [0, t] .

Applying a version of Grönwall’s inequality (e.g. [Str18, Lemma 1.2.4]), we
obtain:

a(t) ≤ t (d+ β2/3 ∥x∥2) exp(3β4/3t) ≤ 3t (d+ β2/3 ∥x∥2) ,

where the last line uses the hypothesis t ≤ 1/(3β4/3).

In addition, we will also need a concentration inequality for ∥X̄ t−x∥2. We
first present a bound on the moment generating function of the supremum of a
one-dimensional Brownian motion using the reflection principle.

Lemma 12. Let (Bs)s≥0 be a standard one-dimensional Brownian motion. For

h, λ > 0, such that λ < 1
2h

the following holds:

E exp
(
λ sup

s∈[0,h]
|Bs|2

)
≤ 1 + 2hλ

1− 2hλ
.

Proof. The reflection principle [KS98, Proposition 6.19, 2.2.6] states that for
every t > 0,

P
(

sup
s∈[0,h]

Bs > t
)

= 2P(Bh > t).

As a result, we have that

P
(

sup
s∈[0,h]

|Bs|2 > t
)

= P
(

sup
s∈[0,h]

|Bs| >
√
t
)

≤ P
(

sup
s∈[0,h]

Bs >
√
t
)

+ P
(

inf
s∈[0,h]

Bs < −
√
t
)

= 4P(Bh >
√
t) ≤ 2 exp

(
− t

2h

)
.
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Thus,

E exp
(
λ sup

s∈[0,h]
|Bs|2

)
= 1 + λ

∫ ∞

0

exp(λt)P
(

sup
s∈[0,h]

|Bs|2 > t
)

dt

≤ 1 + 2λ

∫ ∞

0

exp
(
−1− 2hλ

2h
t
)

dt = 1 +
4hλ

1− 2hλ
.

The above argument is relevant for Lemma 9, which is restated and proved
below.

Lemma 9. Assume h ≤ 1/(2β). For 0 < λ < 1/(24h),

Ēx exp
(
λ sup

t∈[0,h]
∥X̄ t − x∥2

)
≤ exp

(
12β2λh2 ∥x∥2 + d ln

1 + 24hλ

1− 24hλ

)
.

Proof. For a fixed realization of the sample path (X̄ t)t∈[0,h] and 0 ≤ t ≤ h,

define the function f(t) := sups∈[0,t] ∥X̄s − x∥2. Then, for all s ∈ [0, t],

∥X̄s − x∥2 =
∥∥∥−∫ s

0

∇V (X̄r) dr +
√

2Bs

∥∥∥2

≤ 2
∥∥∥−∫ s

0

∇V (X̄r) dr
∥∥∥2

+ 4 ∥Bs∥2

≤ 2h

∫ s

0

∥∇V (X̄r)∥2 dr + 4 ∥Bs∥2 ≤ 2β2h

∫ s

0

∥X̄r∥2 dr + 4 ∥Bs∥2

≤ 4β2h

∫ s

0

∥X̄r − x∥2 dr + 4β2h2 ∥x∥2 + 4 ∥Bs∥2

≤ 4β2h

∫ s

0

f(r) dr + 4β2h2 ∥x∥2 + 4 ∥Bs∥2

which yields

f(t) = sup
s∈[0,t]

∥X̄s − x∥2 ≤ 4β2h

∫ t

0

f(r) dr + 4β2h2 ∥x∥2 + 4 sup
s∈[0,h]

∥Bs∥2 .

Applying Grönwall’s inequality [Str18, Lemma 1.2.4], we see that

f(h) = sup
s∈[0,h]

∥X̄s − x∥2 ≤
(
4β2h2 ∥x∥2 + 4 sup

s∈[0,h]
∥Bs∥2

)
exp(4β2h2)

≤ 12β2h2 ∥x∥2 + 12 sup
s∈[0,h]

∥Bs∥2 .

Hence,

E exp
(
λ sup

t∈[0,h]
∥X̄ t − x∥2

)
≤ exp(12β2λh2 ∥x∥2)E exp

(
12λ sup

s∈[0,h]
∥Bs∥2

)
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≤ exp(12β2λh2 ∥x∥2)
{
E exp

(
12λ sup

s∈[0,h]
|Bs|2

)}d

≤ exp(12β2λh2 ∥x∥2)
(1 + 24hλ

1− 24hλ

)d
,

by Lemma 12 and the assumption λ < 1/(24h).

Corollary 6. Assume h ≤ 1/(2β). There exists a numerical constant C > 0
such that for all k ≥ 1,

E sup
t∈[0,h]

∥X̄ t − x∥2k ≤ Ck (βkh2k ∥x∥2k + dkhk + hkkk).

Proof. In Lemma 9, take λ := 1/(48h) to yield

E exp
(
λ sup

t∈[0,h]
∥X̄ t − x∥2

)
≤ exp

(1

4
β2h ∥x∥2 + d ln 3

)
.

It follows from Markov’s inequality that for all x ≥ 0,

P
(

sup
t∈[0,h]

∥X̄ t − x∥2 ≥ 12h2β ∥x∥2 + (48 ln 3)hd+ x
)
≤ exp

(
− x

48h

)
.

The result now follows from standard moment bounds under sub-exponential
concentration [see, e.g., Ver18, Proposition 2.7.1].

Remark 5. Bounds such as the one in Corollary 6 are standard and have
appeared in the literature before, e.g., [Mou+19, Lemma 11].

From total variation to other distances

In this section, we deduce the mixing time results of Theorem 9 for the KL
divergence, the chi-squared divergence, and the 2-Wasserstein distance.

We begin with the following lemma which shows that the warmness param-
eter (defined in Definition 2) is preserved by the iterations of MALA. In fact,
this is true for all reversible Markov chains.

Lemma 13. Let (µn)n∈N denote the iterates of a Markov chain whose kernel
T is reversible with respect ot π, and assume that µ0 is M0-warm with respect
to π. Then, for all n ∈ N, the iterate µn is also M0-warm with respect to π.

Proof. The proof is by induction. For any y ∈ Rd,

µn+1(y)

π(y)
=

∫
µn(x)

π(y)
T (x,y) dx =

∫
µn(x)

π(x)

π(x)T (x,y)

π(y)
dx ≤M0

∫
T (y,x) dx = M0 ,

where we use the inductive assumption and the reversibility of T .
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Under a warmness condition, the total variation distance controls the
chi-squared divergence.

Lemma 14. Let µ be M0-warm with respect to π. Then,

χ2(µ ∥ π) ≤ 2M0 ∥µ− π∥TV .

Proof. From the definition of the chi-squared divergence,

χ2(µ ∥ π) =

∫ ∣∣µ
π
− 1

∣∣2 dπ ≤M0

∫ ∣∣µ
π
− 1

∣∣ dπ = 2M0 ∥µ− π∥TV .

Here we use the fact that pointwise, |µ/π − 1| ≤ max{1,M0 − 1} ≤M0.

It immediately implies the following result on mixing times.

Corollary 7. Fix ε > 0. Then, MALA initialized with a distribution µ0 which
is M0-warm with respect to π satisfies the following mixing time bounds:

τmix(ε, µ0; d) ≤ τmix

( ε2

2M0

, µ0;TV
)

for each of the distances

d ∈
{√

KL,
√
χ2,

√
α

2
W2

}
.

Proof. The mixing time in the chi-squared distance is a straightforward conse-
quence of Lemmas 13 and 14. The result for the KL divergence now follows
since KL ≤ χ2 [Tsy09, Lemma 2.7]. Finally, for the result in 2-Wasserstein
distance we can use Talagrand’s transportation inequality

α

2
W 2

2 (µ, π) ≤ KL(µ ∥ π), for all probability measures µ≪ π ,

which is a consequence of the strong convexity of V [in fact it is a consequence
of the weaker assumption of a log-Sobolev inequality, see BGL14, Theorem
9.6.1].

Corollary 7 implies the remaining mixing time results in Theorem 9.

5.7 Proof of the lower bound

This section presents the proofs of Theorems 11 and 12. The majority of this
section is devoted to the proof of the upper bound on the conductance when
h≫ d−1/2 (Theorem 11). The proof of the upper bound on the spectral gap
(Theorem 12) is given in Section 5.7.
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High-level overview of the proof

Recall that we take η = 1/4−δ, where δ > 0 is fixed throughout. As mentioned
in Section 5.5, we consider the potential

V (x) =
∥x∥2

2
− 1

2d2η

d∑
i=1

cos(dηxi) (5.16)

=: VG(x) + VP(x). (5.17)

From the construction, it immediately follows that V is 1/2-strongly convex
and 3/2-smooth.

We begin with some intuition for the above construction. At a high level,
our construction can be seen as a “perturbed” Gaussian distribution; VG is
the potential corresponding to a standard Gaussian and VP corresponds to a
perturbation. Having this interpretation, we are interested in constructing a
distribution (i) that is significantly different from the standard Gaussian, yet
(ii) the difference is not noticed by each step of MALA.

(i) A quick calculation (see Lemma 20) shows that KL(N (0, 1)∥π) = O(d1−4η).
So, we must take η ≤ 1/4 to ensure that π is significantly different from
the standard Gaussian.

(ii) On the other hand, VP is an oscillatory perturbation. Hence, MALA
would not see the contribution from VP as long as its movement due
to the Langevin proposal is at least as long as the length scale of the
fluctuations of VP.

With this in mind, note that the fluctuations of VP is of order d−η, while
the movement of a single coordinate under the Langevin proposal is of
order

√
h (due to the Gaussian part). Hence, MALA would essentially

ignore VP as long as h≫ d−2η.

We formalize the above heuristic in the rest of this section.
To prove the upper bound on the conductance in Theorem 11, we use the

following proposition.

Proposition 4. Let E be an event such that π(E) ≥ 1/2. Then,

C ≤ 2 sup
x∈E

∫
Rd

Q(x,y)A(x,y) dy .

Proof. Let E0 be a subset of E with π(E0) = 1/2. From the definition of the
conductance (C),

C = inf
S⊆Rd

π(S)≤1/2

∫
S
T (x, Sc) π(dx)

π(S)
≤ 2

∫
E0

T (x, Ec
0) π(dx)
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≤ 2

∫
E0

(∫
Ec

0

Q(x,y)A(x,y) dy
)
π(x) dx ≤ 2

∫
E0

(∫
Rd

Q(x,y)A(x,y) dy
)
π(x) dx

≤ 2 sup
x∈E0

∫
Rd

Q(x,y)A(x,y) dy ≤ 2 sup
x∈E

∫
Rd

Q(x,y)A(x,y) dy.

From Proposition 4, it therefore suffices to show that there is an event
E ⊆ Rd with probability π(E) ≥ 1/2 such that

sup
x∈E

∫
Rd

Q(x,y)A(x,y) dy ≤ exp[−Ω(d4δ)] .

By definition of the Metropolis-Hasting accept-reject step (5.1), we have

Q(x,y)A(x,y) = Q(x,y) min
{

1,
π(y)Q(y,x)

π(x)Q(x,y)

}
≤ π(y)Q(y,x)

π(x)

=
1

(4πh)d/2
exp

[
V (x)− V (y)− ∥y − x− h∇V (y)∥2

4h

]
.

(5.18)

We substitute in the definition of our potential (5.16) and expand out the terms
in (5.18), grouping them according to whether they involve VP or not:

(5.18) =
1

(4πh)d/2
exp

[1

2
∥x∥2 − 1

2
∥y∥2 − 1

4h
∥(1− h)y − x∥2

]
(5.19)

× exp
[
VP(x)− VP(y) +

1

2
⟨(1− h)y − x,∇VP(y)⟩ − h

4
∥∇VP(y)∥2

]
.

(5.20)

Some algebra yields that (5.19) is equal to

(1 + h2

4πh

)d/2
exp

[
−1 + h2

4h

∥∥y − 1− h
1 + h2

x
∥∥2
]

︸ ︷︷ ︸
=:µx(y)

1

(1 + h2)d/2
exp

[ h2 ∥x∥2
2 (1 + h2)

]
.

The first term, which we denote by µx(y), is the probability density function
of the distribution N ( 1−h

1+h2 x,
2h

1+h2 Id) evaluated at y. Using this observation,
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the quantity
∫
Rd Q(x,y)A(x,y) dy is upper bounded by

exp
[

h2 ∥x∥2
2 (1+h2)

+ VP(x)
]

(1 + h2)d/2︸ ︷︷ ︸
1

× E
y∼µx

exp
[
−VP(y) +

1

2
⟨(1− h)y − x,∇VP(y)⟩ − h

4
∥∇VP(y)∥2

]
︸ ︷︷ ︸

2

.

Having this upper bound, we will prove that there is a set E ⊆ Rd with
π(E) ≥ 1/2 such that the following bounds hold for all x ∈ E:

1. (Lemma 18)

1 ≤ exp
[
−1

8
d1−4η + o(d1−4η)

]
.

2. (Lemma 19)

2 ≤ exp
[ 1

16
d1−4η + o(d1−4η)

]
.

From these bounds and the preceding calculations, we have

sup
x∈E

∫
Q(x,y)A(x,y) dy ≤ exp

[
−1

8
d1−4η + o(d1−4η)

]
.

This completes the proof of Theorem 11.

The next section is devoted to proving the two main bounds (Lemmas 18
and 19).

Proofs of technical statements

Notation and technical lemmas

We use the following notation:
V1(x) := 1

2
x2 − 1

2
d−2η cos(dηx) ,

V (x) :=
∑d

i=1 V1(xi) = 1
2
∥x∥2 − 1

2
d−2η

∑d
i=1 cos(dηxi) ,

π1(x) ∝ exp(−V1(x)) ,

π(x) ∝ exp(−V (x)) .

(5.21)

Thus, π1 is the marginal distribution of π. We first list useful technical lemmas
for proving Lemmas 18 and 19. First, the following trigonometric inequality
will be used several times.

Lemma 15. Let ξ ∼ N (0, 1), let p be a polynomial, and let a, b ∈ R, γ > 0 be
constants. Then, there exists a constant C (depending on p, a, b, and γ) such
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that

|E[p(ξ) sin(a+ bdγξ)]| ≤ C

d
.

Proof. The key fact we use is that the characteristic function E[eitξ] of a

Gaussian is equal to e−
1
2
t2 . First consider the case p ≡ 1. Let im(·) denote the

imaginary part. Then, we have

E[sin(a+ bdγξ)] = E[im(ei (a+bdγξ))]

= im(eia E[eibd
γξ])

= im
(

exp
(
ia− b2d2γ

2

))
= sin(a) exp

(
−b

2d2γ

2

)
.

It is then clear that the result holds for p = 1. Next, when p(x) = xℓ for some
ℓ ∈ N+,

E[ξℓ sin(a+ bdγξ)] = im(eia E[ξℓeibd
γξ])

= im
(
eia i−ℓ E

[ dℓ

dtℓ
eitξ

∣∣∣
t=bdγ

])
= im

(
eia i−ℓ dℓ

dtℓ
e−

t2

2

∣∣∣
t=bdγ

)
.

Thus, it is clear that the lemma holds for this choice of p too. The case of a
general polynomial follows from linearity.

Clearly, the statement of the previous lemma can be substantially strength-
ened, but this will not be necessary for the MALA lower bound.

Now we list some useful facts about the adversarial target distribution.

Lemma 16. Assume η < 1/4. The following hold for π1 and π defined in
(5.21):

(a) Let Z :=
∫
R exp(−V1(x)) dx be the one-dimensional normalizing constant.

Then, we have Z =
√

2π +O(d−4η).

(b) Ex∼π1 [x
2] ≤ 1 +O(d−4η). Consequently, Ex∼π[∥x∥2] ≤ d+O(d1−4η).

(c) Ex∼π1 [cos(dηx)] ≤ 1
4
d−2η +O(d−6η).

Proof. (a) Letting ξ ∼ N (0, 1), then

Z −
√

2π =

∫
R

exp
(
−1

2
x2 +

1

2d2η
cos(dηx)

)
dx−

√
2π
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=
√

2π

∫
R

exp
( 1

2d2η
cos(dηx)

) exp(−1
2
x2)√

2π
dx−

√
2π

=
√

2π

(
E exp

( 1

2d2η
cos(dηξ)

)
− 1

)
=

√
2π

2d2η
E cos(dηξ) +O(d−4η).

By Lemma 15, we have |E cos(dηξ)| = O(d−1) = o(d−4η), since η < 1/4.
The proof of (a) then follows.

(b) Similarly, letting ξ ∼ N (0, 1),

Ex∼π1 [x
2] =

∫
x2

exp(−V1(x))

Z
dx

=

√
2π

Z
E
[
ξ2 exp

( 1

2d2η
cos(dηξ)

)]
=

(
1 +O(d−4η)

)
E
[
ξ2 exp

( 1

2d2η
cos(dηξ)

)]
.

By Taylor expansion,

E
[
ξ2 exp

( 1

2d2η
cos(dηξ)

)]
= 1 +

1

2d2η
E[ξ2 cos(dηξ)] +O(d−4η).

Again by Lemma 15, the second term is O(d−(2η+1)) = o(d−6η). Hence,
the result follows.

(c) Similarly, it holds that

Ex∼π1 cos(dηx) =

√
2π

Z
E
[
cos(dηξ) exp

( 1

2d2η
cos(dηξ)

)]
=

(
1 +O(d−4η)

) [
E cos(dηξ) +

1

2d2η
E cos2(dηξ) +O(d−4η)

]
.

By Lemma 15, the first term is E cos(dηξ) = o(d−4η). Next, the second
term is

1

2d2η
E cos2(dηξ) =

1

4d2η
+

1

4d2η
E cos(2dηξ).

From Lemma 15, E cos(2dηξ) = o(d−4η). Therefore, the result follows.

Lemma 17. For x ∼ π, the following holds with probability at least 1− 1/(4d):

∥x∥∞ < 4
√

ln(8d).
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Proof. By symmetry, we just need to show that with probability at least
1− 1/(8d),

max
i∈[d]

xi < 4
√

ln d .

Since V ′′
1 ≥ 1/2, each |xi| will be stochastically dominated by |ξ|, where

ξ ∼ N (0, 2). Hence, if ξ1, . . . , ξd are i.i.d. copies of ξ, we just need to show that

max
i∈[d]

ξi < 4
√

ln d

with probability at least 1−1/d. The standard argument based on the moment
generating function (e.g. [Han16, Lemma 5.1]) tells us that E[maxi∈[d] ξi] ≤
2
√

ln d, and Gaussian concentration (e.g. [Han16, Theorem 3.25]) implies

P
(
max
i∈[d]

ξi > Emax
i∈[d]

ξi + t
)
≤ exp

(
−t

2

4

)
.

Plug in t = 2
√

ln(8d) and we get the lemma as claimed.

Now let us state and prove the technical statements in order.

Proof of Lemma 18

Lemma 18. Assume that 0 < h ≤ d−1/3. Then there exists an event E1 with
π(E1) ≥ 3/4 such that for x ∈ E1,

exp
[

h2 ∥x∥2
2 (1+h2)

+ VP(x)
]

(1 + h2)d/2
≤ exp

[
−1

8
d1−4η + o(d1−4η)

]
.

Proof. We decompose the left-hand side as

exp
[

h2 ∥x∥2
2 (1+h2)

+ VP(x)
]

(1 + h2)d/2
=

1

(1 + h2)d/2
exp

[ h2 ∥x∥2
2 (1 + h2)

]
× exp[VP(x)]

and bound each term separately.

We begin with the first term. By Lemma 16-(b), we know that the second
moment of π is d+O(d1−4η). Since π is 1/2-strongly log concave, a standard
concentration argument (see e.g. Lemma 10) shows that there exists a subset
E ′

1 with π(E ′
1) ≥ 7/8 such that for x ∈ E ′

1,

∥x∥2 ≤ d+O(d1−4η) +O(d1/2) .
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Now, using the fact that ln(1 + x) ≥ x− x2/2 for x ≥ 0,

1

(1 + h2)d/2
exp

[ h2 ∥x∥2
2 (1 + h2)

]
≤ exp

[h2 (d+O(d1−4η) +O(d1/2))

2 (1 + h2)
− d

2
ln(1 + h2)

]
≤ exp

[h2 (d+O(d1−4η) +O(d1/2))

2 (1 + h2)
− dh2

2
+
dh4

4

]
= exp

[h2 (O(d1−4η) +O(d1/2))

2 (1 + h2)
− dh4

2 (1 + h2)
+
dh4

4

]
= exp

[h2 (O(d1−4η) +O(d1/2))

2 (1 + h2)
+
−dh4 + 2dh6

4 (1 + h2)

]
≤ exp[O(d1−4ηh2) +O(d1/2h2)] .

where the last line follows since h2 ≤ 1/2. In order to show that the exponent
of the above term is o(d1−4η), we must check that d1/2h2 = o(d1−4η), which
holds if h = o(d1/4−2η) = o(d−1/4+2δ). This indeed follows from our assumption
that h ≤ d−1/3.

Next, we move on to the second term. Recall from the calculation in
Lemma 16-(c) that Ex∼π1 [cos(dηx)] ≤ 1

4
d−2η +O(d−6η). Hence, it follows that

E
x∼π

[VP(x)] = − 1

2d2η

d∑
i=1

Exi∼π1 cos(dηxi) = −1

8
d1−4η +O(d1−8η).

Since π is 1/2-strongly log-concave, another sub-Gaussian concentration argu-
ment (Lemma 10) shows that there exists a subset E ′′

1 with π(E ′′
1 ) ≥ 7/8 such

that for x ∈ E ′′
1 ,

exp[VP(x)] ≤ exp
[
−1

8
d1−4η +O(d1−8η) +O(d1/2−2η)

]
≤ exp

[
−1

8
d1−4η + o(d1−4η)

]
,

since 1− 4η > 0 by the hypothesis.

Now taking E1 := E ′
1 ∩ E ′′

1 , the above calculations show that for x ∈ E1,

exp
[

h2 ∥x∥2
2 (1+h2)

+ VP(x)
]

(1 + h2)d/2
≤ exp

[
−1

8
d1−4η + o(d1−4η)

]
,

which completes the proof.
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Proof of Lemma 19

Lemma 19. Assume that h ∈ [d−
1
2
+3δ, d−

1
3 ]. Then there exists an event E2

with π(E2) ≥ 3/4 such that for x ∈ E2,

E
y∼µx

exp
[
−VP(y) +

1

2
⟨(1− h)y − x,∇VP(y)⟩ − h

4
∥∇VP(y)∥2

]
≤ exp

[ 1

16
d1−4η + o(d1−4η)

]
.

Proof. Recall the definition VP(x) = −1
2
d−2η

∑d
i=1 cos(dηxi). Since VP is sepa-

rable, it suffices to consider the following quantity: for µxi
:= N ( 1−h

1+h2 xi,
2h

1+h2 ),

max
i∈[d]

E
yi∼µxi

exp
(cos(dηyi)

2d2η
+

((1− h)yi − xi) sin(dηyi)

4dη
− h sin2(dηyi)

16d2η

)
. (5.22)

Indeed, the lemma is proved as soon as we show

(5.22) ≤ exp
[ 1

16
d−4η + o(d−4η)

]
. (5.23)

For the proof, we will therefore work with a single coordinate; for simplicity of
notation, we will use the first coordinate.

To prove the inequality (5.23), let us first simplify the expression (5.22).

Letting ξ ∼ N (0, 1), we can equivalently write y1 = 1−h
1+h2 x1 +

√
2h

1+h2 ξ. From

this, we get

(1− h)y1 − x1 = − 2h

1 + h2
x1 + (1− h)

√
2h

1 + h2
ξ.

Since our regime of interest is h = o(1), we simplify the notation by defining

h̄ :=
h

1 + h2
and h̃ :=

(1− h)2

1 + h2
h ,

and treat them as being on the same order as h. Using these simplifying
notations and rearranging, we are left to consider

E exp
(cos(dηy1)

2d2η︸ ︷︷ ︸
=:∆1

− h sin2(dηy1)

16d2η︸ ︷︷ ︸
=:∆2

− 2h̄x1 sin(dηy1)

4dη︸ ︷︷ ︸
=:∆3

+

√
2h̃ξ sin(dηy1)

4dη︸ ︷︷ ︸
=:∆4

)
, (5.24)

where y1 = 1−h
1+h2 x1 +

√
2h

1+h2 ξ. Now we will estimate (5.24) by a Taylor

expansion.
Throughout, we will assume ∥x∥∞ ≤ 4

√
ln(8d). By Lemma 17, this holds
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on an event E2 of probability π(E2) ≥ 3/4. From this, we note the immediate
bounds

|∆1| = O(d−2η), |∆2| = O(d−2ηh), |∆3| = Õ(d−ηh), |∆4| = Op(d
−η
√
h).

Here, Op denotes probabilistic big-O notation. Using h = O(d−1/3) = o(d−4η/3),
we have

|∆1| = O(d−2η), |∆2| = o(d−(3+1/3)η), |∆3| = o(d−(2+1/3)η), |∆4| = op(d
−(1+2/3)η).

(5.25)

From, this, we see that the third- or higher-order terms in the Taylor expan-
sion, after taking the expectation, are o(d−5η). Indeed, the dominant term is
E[|∆4|3] = o(d−5η).

We also note that the common argument of the trigonometric terms is

dηy1 = dη
1− h
1 + h2

x1 + dη
√

2h

1 + h2
ξ ,

so the coefficient in front of ξ is of order dη
√
h = Ω(dδ/2) by the assumption

h ≥ d−
1
2
+3δ. Thus, the trigonometric terms precisely fit into the setting of

Lemma 15, and we will apply Lemma 15 to estimate these terms.
Now let us estimate the terms of order one and two.

• First- and lower-order terms. We have

(≤ 1st order) = 1 + E∆1 − E∆2 − E∆3 + E∆4 .

By Lemma 15, we know E∆1 = O(d−1−2η) = o(d−6η). For E∆2, we have

−E∆2 = − h

32d2η
+

h

32d2η
E cos(2dηy1) = − h

32d2η
+ o(d−6η),

where we use Lemma 15 again. For E∆3, we have

−E∆3 = −E
2h̄x1 sin(dηy1)

4dη
= Õ(d−(1+η)h) = o(d−5η),

where the last line is due to Lemmas 15 and 17. For E∆4, we have

E∆4 = E

√
2h̃ξ sin(dηy1)

4dη
= O(d−(1+η)

√
h) = o(d−5η),

where we use Lemma 15. Collecting together the terms, we have

(≤ 1st order) = 1− h

32d2η
+ o(d−5η). (5.26)
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• Second-order terms. For the reader’s convenience, we have organized the
terms which appear in the second-order Taylor expansion as Table 5.1.

O(d−2η) o(d−(3+1/3)η) o(d−(2+1/3)η) op(d
−(1+2/3)η)

O(d−2η) (5.27) o(d−4η) o(d−4η) (5.28)
o(d−(3+1/3)η) o(d−4η) o(d−4η) op(d

−4η)
o(d−(2+1/3)η) o(d−4η) op(d

−4η)
op(d

−(1+2/3)η) (5.29)

Table 5.1: Terms which appear in the second-order Taylor expansion. The
rows and columns are indexed by the terms ∆1, ∆2, ∆3, ∆4; refer to (5.25).

We now estimate the terms which are not covered by the table. Let us
estimate the remaining terms one by one. First, by Lemma 15,

1

2
E[∆2

1] = E
cos2(dηy1)

8d4η
=

1

16d4η
+ E

cos(2dηy1)

16d4η
=

1

16d4η
+ o(d−8η) .

(5.27)

Next, by Lemma 15,

E[∆1∆4] = E
[√2h̃ξ

8d3η
cos(dηy1) sin(dηy1)

]
=

√
2h̃

16d3η
E[ξ sin(2dηy1)] = o(d−7η).

(5.28)

Lastly, invoking Lemma 15 yet again,

1

2
E[∆2

4] = E
h̃ξ2 sin2(dηy1)

16d2η
= E

h̃ξ2

32d2η
− E

h̃ξ2 cos(2dηy1)

32d2η
=

h̃

32d2η
+ o(d−6η).

(5.29)

Combining all together, we obtain,

(2nd order) =
1

16d4η
+

h̃

32d2η
+ o(d−4η) . (5.30)

Therefore, we combine (5.26) and (5.30) to conclude

(5.24) ≤ exp
[ 1

16
d−4η − h

32d2η
+

h̃

32d2η
+ o(d−4η)

]
= exp

[ 1

16
d−4η + o(d−4η)

]
,

where the last line follows from the fact h̃− h = (1−h)2

1+h2 h− h ≤ 0. This implies
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(5.23), and hence the proof is complete.

Upper bound on the spectral gap

Note that when η < 1/4, the adversarial potential defined in (5.21) satisfies
the assumptions of the following theorem, as a consequence of our computation
in Lemma 16.

Theorem 13. Consider a potential V : Rd → R which is separable: V (x) =∑d
i=1 v(xi) for a function v : R→ R. Assume that:

• V is symmetric about the origin, and V (0) = minV .

• V is O(1)-smooth.

• For the distribution π1 ∝ exp(−v), we have Ex∼π1 [x
2] ≍ 1.

Then, spectral gap of MALA with target distribution π ∝ exp(−V ) and step
size h ≤ 1 satisfies

λ ≲ h .

Proof. Consider the function f : Rd → R given by f(x) := x1. Since V is
symmetric about the origin, we have Eπ f = 0.

From the definition the spectral gap (λ),

λ ≤ Eπ[f (id− T )f ]

Eπ[f 2]
≲ E

x∼π
y∼T (x,·)

[(x1 − y1)2] .

Next, using the definition of the MALA kernel T , if ξ is a standard Gaussian
random variable, then

E
x∼π

y∼T (x,·)
[(x1 − y1)2] = E

x∼π
y∼Q(x,·)

[(x1 − y1)2 1proposal x→y is accepted]

≤ E
x∼π

y∼Q(x,·)
[(x1 − y1)2] = E

x∼π
[{hv′(x1)−

√
2hξ}2]

≤ 2h2 E
x∼π

[v′(x1)
2
] + 4hE[ξ2] ≲ h2 E

x∼π
[x21] + h ≲ h ,

by our assumptions. This completes the proof.

Auxiliary lemmas

Lemma 20. Let γ := N (0, Id) and let π be the adversarial target distribution
defined in (5.21). Then,

KL(γ ∥ π) ≤ O(d1−4η).
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Proof. From the definition of the KL divergence, if ξ1, . . . , ξd are i.i.d. random
variables drawn according to γ, then

KL(γ ∥ π) =

∫
γ(x) ln

( Zd

(2π)d/2
expVP(x)

)
dx = d ln

Z√
2π
− 1

2d2η

d∑
i=1

E cos(dηξi).

From our estimate of the normalizing constant in Lemma 16,

d ln
Z√
2π

= d ln
(
1 +O(d−4η)

)
= O(d1−4η).

On the other hand, from the proof of Lemma 15,

− 1

2d2η

d∑
i=1

E cos(dηξi) = o(d1−4η).

The result follows.

5.8 Calculations for a Gaussian target

distribution

In this section, we provide calculations for MALA when the target distribution
π is the standard Gaussian. Since MALA applied to the Gaussian distribution
has a scaling limit in the sense of [RR98], one would expect the mixing time of
the Gaussian distribution to be of order d1/3, and that is indeed what we show
below.

Upper bound

First, we show that, under a warm start, the mixing time of MALA applied to
the standard Gaussian mixes at O(d1/3) rate.

Proposition 5. Let ε > 0, and let the target distribution π be the standard
Gaussian on Rd. For a step size h = cd−1/3, where c > 0 is a small constant,
and an initial distribution µ0 that is M0-warm with respect to π such that
log M0

εh
= O(d1/3), the mixing time of MALA satisfies

τmix(ε, µ0; TV) ≲ d1/3 log
(M0

ε

)
.

Using the results of Section 5.6, the mixing time bounds can then be ex-
tended to the KL divergence, the chi-squared divergence, and the 2-Wasserstein
distance.
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The proof crucially relies on the fact that when h ≈ d−1/3, the acceptance
probability A(x) (see (5.2)) when x ∼ π is of order Ω(1) with high probability,
which is formalized below.

Lemma 21. Let π be the standard Gaussian. For h = c0d
−1/3, where c0 > 0 is

sufficiently small, and x ∼ π, there exists c1 > 0 such that with probability at
least 1− 2 exp(−c1d1/3), it holds that A(x) ≥ 5/6.

Proof of Proposition 5. We sketch the proof, following the s-conductance mix-
ing time strategy outlined in Section 5.6. Let E := {x ∈ Rd | A(x) ≥ 5/6}.
Lemma 21 guarantees that π(E) ≥ 1− 2 exp(−c1d1/3). By our assumption, we
have log(εh/M0) = Ω(d−1/3), so π(E) ≥ 1 − c′

√
hs for some constant c′ > 0,

where s := ε/(2M0). Moreover, on the event E we have (by Proposition 1) that

∥Tx −Qx∥TV = 1− A(x) ≤ 1

6
.

Then the argument in the proof of Proposition 3 implies that the s-conductance,
defined in (5.9), is lower bounded by Cs ≳

√
h, and Corollary 5 gives the desired

mixing time bound.

Proof of Lemma 21. Let x ∼ π and y ∼ Q(x, ·). We will use c to denote
universal constants, which can change from line to line. First note that by
concentration of the norm [Ver18, Theorem 3.1.1], we have that for all t > 0,

P
(∣∣ ∥x∥ − √d ∣∣ > t

)
≤ 2 exp(−ct2) .

As a result, the event

E1 :=
{∣∣ ∥x∥ − √d ∣∣ ≤ t1

}
holds with probability at least 1− 2 exp(−ct21).

By the radial symmetry of the standard Gaussian, we can assume that the
only non-zero coordinate of x is the first coordinate: x = (x1, 0, . . . , 0). Given
x, we draw y by:

y = (1− h)x +
√

2h ξ, ξ ∼ N (0, Id) .

We can write ξ = (ξ1, ξ−1), where ξ1 ∼ N (0, 1), and ξ−1 ∼ N (0, Id−1). By
Gaussian concentration, the event

E2 := {|ξ1| ≤ t2}

holds with probability at least 1− 2 exp(−ct22), and the event

E3 :=
{∣∣ ∥ξ−1∥ −

√
d
∣∣ ≤ t3}
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hold with probability at least 1− 2 exp(−ct23). Define the quantities

ε1 := ∥x∥ −
√
d , ε2 := ξ1 , ε3 := ∥ξ−1∥ −

√
d .

Note that when π is the standard Gaussian, a brief calculation using the
definition (5.1) shows that a(x,y) = exp(h

4
(∥x∥2−∥y∥2)). Then, on the event

E1 ∩ E2 ∩ E3, we have that

h

4

∣∣ ∥x∥2 − ∥y∥2 ∣∣ =
h

4
|x21 − [(1− h)x1 +

√
2h ξ1]

2 − 2h ∥ξ−1∥2|

=
h

4
|(
√
d+ ε1)

2 − [(1− h) (
√
d+ ε1) +

√
2h ε2]

2 − 2h (
√
d+ ε3)

2|
= O(dh3 + d1/2h2t1 + h3/2d1/2t2 + d1/2h2t3) ,

assuming that t1 = O(d1/2). In fact, we take t1, t3 = d1/6. If we take t2 to
be a sufficiently large constant (and the dimension d is large), then we can
ensure that the event E2∩E3 holds with probability at least 10/11. With these
choices,

h

4

∣∣ ∥x∥2 − ∥y∥2 ∣∣ = O(dh3 + d2/3h2 + d1/2h3/2) .

Taking h ≤ c/d1/3 for a sufficiently small constant c > 0, we can ensure that
a(x,y) ≥ 11/12. Thus, on the event E1, we have

A(x) = E[A(x,y) | x] ≥ E[A(x,y)1E2∩E2 | x] ≥ 11

12
· 10

11
=

5

6
.

This completes the proof.

Lower bound

We show that when the step size is chosen as h≫ d−1/3, then the conductance
of the MALA chain with Gaussian target is exponentially small.

Proposition 6. For every θ < 1/3, if we take step size h = d−θ, then the
conductance of the MALA chain is exponentially small:

∃δ > 0 such that C ≲ exp[−Ω(dδ)] .

Proof. We want to upper bound the conductance, defined in (C). It suffices to
show that there exists an event E ⊆ Rd with π(E) ≥ 1/2 such that

sup
x∈E

∫
Q(x,y)A(x,y) dy = exp[−Ω(dδ)] ,
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see Proposition 4. Specifically, we will take E := {x ∈ Rd | ∥x∥ ≤
√
d}; note

that

π(E) =
Γ(d

2
, 0)− Γ(d

2
, d
2
)

Γ(d
2
)

>
1

2
.

From the definition (5.1), we have A(x,y) = a(x,y) ∧ 1 ≤
√
a(x,y).† Since

V (x) = 1
2
∥x∥2, a little algebra using the definition (5.1) shows that

a(x,y) = exp
(h

4
(∥x∥2 − ∥y∥2)

)
.

Further calculations show that∫
Rd

Q(x,y)A(x,y) dy ≤
∫
Rd

Q(x,y)a(x,y)1/2 dy

=

∫
Rd

1

(4πh)d/2
exp

(
− 1

4h
∥y − (1− h)x∥2

)
exp

(h
2

(∥x∥2 − ∥y∥2)
)

dy

=
1

(4πh)d/2

∫
Rd

exp
(
−1 + h2/2

4h

∥∥y − 1− h
1 + h2/2

x
∥∥2
)

dy

× exp
(h2 (1− h/4)

1 + h2/2
∥x∥2

)
= exp

(h2 (1− h/4)

4 (1 + h2/2)
∥x∥2 − d

2
ln
(
1 +

h2

2

))
.

For x ∈ E, we can bound this via∫
Rd

Q(x,y)A(x,y) dy ≤ exp
(h2 (1− h/4)d

4 (1 + h2/2)
− d

2
ln
(
1 +

h2

2

))
= exp

(
−h

3d

16

(
1 +O(h)

))
which completes the proof.

The next result shows that the spectral gap of the MALA chain is always
upper bounded by the step size. Together with the preceding result, it implies
that the mixing time of the MALA chain with Gaussian target is no better
than O(d1/3).

Proposition 7. The spectral gap of MALA with Gaussian target distribution
and step size h satisfies

λ ≲ h .

Proof. This is a special case of Theorem 13.
†One can check that the simple bound A(x,y) ≤ a(x,y) is not enough for the proof to go

through. A similar argument to upper bound the acceptance probability is made in [HSV14].
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5.9 Conclusion

By establishing the sharp dimension dependence of MALA for smooth and
strongly convex potentials, our work parallels well-known trends in optimiza-
tion [Bub15; Nes18] and high-dimensional statistics [Tsy09; Wai19] which seek
to characterize the complexity of various learning tasks uniformly over a given
function class. It is an interesting open question to extend our results on
MALA to other natural function classes, such as smooth and weakly convex
potentials, as well as to other sampling algorithms.

Since the work in this chapter appeared, there have been newer works that
improve our understanding of MALA. In [LST21a], Lee, Shen and Tian show
that there exist initializations with the warm start parameter M0 ∼ exp(d), such
that the mixing time of MALA is lower bounded by Ω(d), which shows that the
warm start assumption in our upper bound in Theorem 9 is actually neccessary.
In [WSC22], Wu, Schmidler and Chen refined our analysis, and showed that the

mixing time of MALA under a warm start is Θ̃(κd1/2). In [AC23], Altschuler
and Chewi show that one can obtain a warm start from a feasible start in Õ(d1/2)
using the discretized underdamped Langevin diffusion, which combining with
our results on MALA gives a high accuracy sampling algorithm for log-concave
distributions.

An interesting future direction is to extend our analysis to other Metropolis-
Hastings Markov chains. An feature of Theorem 9 is that the majority of the
computations involve controlling the discretization error between the continuous-
time and discretized Langevin processes, leading to the hope that the vast
literature on discretization of SDEs can be leveraged to obtain mixing time
bounds for the corresponding Metropolis-Hastings chains. However, a critical
component of this program is the choice of a reversible Markov diffusion to which
the MALA kernel can be compared via the projection property (Theorem 10).
As an example, consider the following two settings:

1. Under higher-order smoothness, the diffusion scaling limit of [RR98]
suggests that the mixing time of MALA should scale as d1/3, using step
size h ≈ d−1/3. Indeed, our computations in Section 5.8 confirm this
prediction for a Gaussian target distribution. However, in this regime,
the discretized Langevin proposal is too far from the continuous-time
Langevin diffusion for our upper bound strategy to succeed. Thus, in
this example, the natural choice of reversible Markov diffusion fails to
yield the correct mixing time for MALA.

2. The underdamped Langevin SDE [Che+18c] is an example of a Markov
diffusion which is not reversible. We can consider adding a Metropolis
adjustment after a proposal which consists of one step of the discretized
underdamped Langevin process. It is not clear that our techniques apply
to this example because there does not appear to be a natural reversible
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Markov diffusion with which to compare the resulting Metropolis-adjusted
kernel.
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Part II

Lower bounds
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Chapter 6

Overview of lower bound ideas

Our results in Chapter 5, together with the subsequent papers mentioned in
Section 5.9, completely characterizes the behavior of MALA on log-smooth and
strongly log-concave distributions. But it has long been empirically observed
that there are algorithms, such as the Hamiltonian Monte Carlo, that are
expected to outperform MALA. So if we fix a class of distributions, can we
determine which sampling algorithm is optimal over that class? To answer
such a question, we would need to prove a general sampling lower bound, and
that is the focus of the second part of this thesis.

Examples of what we might hope for are lower bound results in convex
optimization, where there are lower bounds for entire classes of convex func-
tions. There are two regimes in convex optimization. The first is the low
dimensional regime, where the ellipsoid algorithm has linear dependence on
the dimension, but has logarithmic dependence on the error ε. The second
is the high dimensional regime, where algorithms such as gradient descent
and accelerated gradient descent have dimension independent rates. There
are corresponding lower bounds for the two regimes. In the low dimensional
case, Nemirovski [Nem94] showed general convex optimization problems in a
bounded domain in Rd requires Ω(d log 1

ε
) iterations, which is achieved by the

ellipsoid method. In the high dimensional case, Nesterov [Nes18] proved that

convex optimization requires at least Ω(
√

L
ε
) iterations for smooth functions,

and at least Ω(
√
κ log 1

ε
) iterations for smooth and strongly convex functions,

and these rates are achieved by the accelerated gradient descent algorithm.

In contrast, for sampling there has essentially been no work on general lower
bounds. It is natural to wonder what such lower bounds might look like for
sampling, and whether sampling also exhibit two separate regimes depending
on dimension. Such questions are the focus of the remainder of this thesis.

Two choices have to be made before we prove any lower bound: first we
need to choose the computational model of the algorithms; second we need to
choose the class of distributions. For the first choice, we decided to focus on
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query complexity, meaning that an algorithm will be allowed to make queries
to the target distribution, then it is allowed to do whatever computations it
chooses based on the queries, and we only lower bound the total number of
queries needed. We thought about more fine-grained computational models as
well. For example, some of Nesterov’s lower bounds assume that the algorithm
will only take linear combinations of its previous queries. It turns out that
many sampling algorithms (Unadjusted Langevin dynamics and Hamiltonian
Monte Carlo) only output points that are linear combinations of past queries
and standard Gaussian vectors, so such computational models also make sense
for sampling. But more restricted computational model turned out to introduce
further complexity, so query complexity was easier to work with.

For the query model, we allow algorithms to make point-wise queries to the
potential V (x) up to an additive constant (which is equivalent to queries to
the unnormalized density values of π(x)), as well as one or more derivatives of
the potential, ∇V (x),∇2V (x), . . . . This is the most common query framework
in continuous space sampling, where it is often hard to know the normalizing
constant of the target distribution.

For the choice of target distributions, it quickly becomes obvious that
the distributions have to have some smoothness (otherwise the mass of the
distribution can be concentrated arbitrarily closely around anywhere in space,
so sampling will be trivially hard), and they have to be bounded (otherwise
the mass can be arbitrarily far from the origin, so again sampling is trivially
hard). If we allow for the target distributions π to be non log-concave, in most
cases sampling will be trivially hard. We are able to obtain some non-trivial
sampling lower bounds for non log-concave distributions, which are given in
Chapter 7. But in the most part, to isolate out the sampling difficulty, we will
mainly be focused on lower bounds specifically for log-concave distributions.

So what methods might one try to prove a sampling lower bound? The
simplest idea is to reduce the sampling problem to an optimization problem. We
can construct distributions whose mass are concentrated around their modes,
which are the minimizers of their potential functions. Then if we can sample
well from these distributions, we can locate the minimizer of the potential, so
a lower bound on optimization directly leads to a sampling lower bound. Such
an approach was taken in in [GLL22] But this approach is unsatisfying for
log-concave sampling for two reasons. First, this reduction only captures the
difficulty of finding where the mass of the target is, but it does not capture
the difficulty of finding how the mass is spread out near the minimizer of
the potantial. Specifically, we could consider classes of distributions whose
potentials are all globally minimized at the origin. The optimization difficulty
for this class of potentials would be trivial, but the sampling difficulty remains
non-trivial. Second, this approach is likely give very loose lower bound for
sampling. For instance, in the high dimensional setting, the convex optimization
lower bounds are dimension independent, so a sampling lower bound that is

104



directly deduced from optimization will be dimension independent as well.
However, this is contrary to existing evidence, where all known sampling
algorithms seem to depend polynomially on the dimension.

Another idea is to mimic the proof technique of optimization lower bounds
for sampling. Most optimization lower bounds hold against deterministic
algorithms, and they construct specific adversarial functions [Bub15; Nes18]
such that each step of the algorithm only learns a limited amount of information
about the location of the minimizer. In contrast, lower bounds for randomized
algorithms are relatively recent and still not fully understood [WS17], which
poses a major challenge for sampling algorithms, since they are inherently
randomized. Second, whereas optimization constructions can employ local
perturbations to hide the minima, sampling constructions need to hide the
bulk of the mass of the target distribution, making them surprisingly delicate.

A different approach for lower bounds is to use an information theoretic
argument. For sampling, it would go something like this. Say we want to
prove a lower bound for sampling over some class of distributions. We would
then pick a subset of distributions in that class, such that if we are given
samples from any distribution in this subset, we would be able to identify which
one in the subset it is. This means that the sampling task is easier than the
identification task, because if we can sample then we can use those samples to
identify the target. Then if we could prove a lower bound of on the difficulty
of identifying a distribution that is randomly chosen from the subset, that
would imply a lower bound for the sampling task. It turns out that this is the
approach that we will use. The key step is to construct distributions that can
be distinguished only with samples. One might think that we can use samples
to estimate some statistic of the distribution, which is then used to identify
the target, but if we need too many samples to estimate the statistic, then the
resulting lower bound would be vacuous. For example, [GLL20] proves a lower
bound of Ω̃(d) for the number of queries needed to estimate the normalizing
constant of log-smooth and strongly-log-concave distributions, but this does not
translate into a meaningful sampling lower bound because we cannot estimate
the normalizing constant accurately with o(d) number of samples. Constructing
the right distributions that can be distinguished with samples turns out to be
the main difficulty and contribution of many of our lower bounds.

105



106



Chapter 7

Fisher information lower bounds

In this chapter, we explore the simplest idea for proving sampling lower bounds:
by reducing sampling to optimization. To obtain non-trivial results, we will
allow the target distribution to be non log-concave, and hence the results in
this chapter are orthogonal to the log-concave lower bounds that we pursue
in the rest of Part II. We will also measure the progress of sampling by the
Fisher information, which is an unusual measure of divergence that behaves
quite differently from standard measures such as KL or total variation. Our
results have two interesting implications. The first is that in the low accuracy
(large Fisher information from the target) sampling regime, an averaged version
of unadjusted Langevin algorithm is optimal. The second is that in the high
accuracy (small Fisher information from the target) regime, sampling algorithms
must have polynomial dependence on the accuracy ε.

This chapter is based on the joint work [Che+23a], with Sinho Chewi,
Patrik Gerber, and Holden Lee.

7.1 Introduction

What is the query complexity of sampling from a β-log-smooth but possibly non-
log-concave target distribution π on Rd? Until recently, this question was only
investigated from an upper bound perspective, and only for restricted classes
of distributions, such as distributions satisfying functional inequalities [VW19;
Wib19; Ma+21; Che+22b], distributions with tail decay conditions [DM17;
Che+18a; Xu+18; Li+19; MMS20; EH21; ZXG21; HBE22], or mixtures of
log-concave distributions [LRG18].

Recently [Bal+22] developed a general framework to investigate non-log-
concave sampling. Motivated by stationary point analysis in non-convex
optimization [see, e.g., Nes18] and the interpretation of sampling as optimization
over the space of probability measures [JKO98; Wib18], Balasubramanian et
al. proposed to call any measure µ satisfying

√
FI(µ ∥ π) ≤ ε an ε-stationary
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point for sampling, where FI(µ ∥π) := Eµ[∥∇ ln µ
π
∥2] denotes the relative Fisher

information of µ from π. They explained the interpretation of this condition
via the classical phenomenon of metastability [Bov+02; Bov+04; BGK05];
in particular, for a multimodal distribution, small Fisher information means
that the distribution locally approximates the shape at each mode, but not
necessarily the relative weights between the modes. They further showed
that averaged Langevin Monte Carlo (LMC) can find an ε-stationary point in
O(β2dK0/ε

4) iterations, where K0 := KL(µ0 ∥ π) is the initial Kullback–Leibler
(KL) divergence to the target π.

In this chapter, we establish the first lower bounds for Fisher information
guarantees for sampling, resolving an open question posed in [Bal+22]. As we
discuss further below, our results also reveal a surprising equivalence between
the task of obtaining a sample which has moderate Fisher information relative
to a target distribution and the task of finding an approximate stationary point
of a smooth function, thereby strengthening the connection between the fields
of non-convex optimization and non-log-concave sampling.

Our contributions. We now informally describe our main results. Details
on notation, our oracle model, and the definition query complexity for sampling
(Definition 4) are given in Section 7.2. Precise statements of our results are given
in Sections 7.3 and 7.4. For a density π ∝ exp(−U) the function U : Rd → R
is called the potential. Throughout, our notion of complexity is the number
of queries made to an oracle that returns the value of U (up to an additive
constant) and its gradients. For a 1-smooth function V : Rd → R and β > 0
let us define the density πβ ∝ exp(−βV ), assuming it is well-defined (i.e.∫

exp(−βV ) <∞).
Our first result connects the task of obtaining Fisher information guarantees

with finding stationary points in non-convex optimization, for a particular
regime of large smoothness β.

Theorem 14 (equivalence, informal). The following two problems are equiva-
lent.

1. Output an ε-stationary point of V .

2. Output a sample from a measure µ such that FI(µ ∥ πβ) ≲ βd, where
β ≍ d/ε2.

By combining this equivalence with the lower bound of [Car+20] for finding
ε-stationary points, we obtain:

Theorem 15 (first lower bound, informal). The number of queries required
to obtain a sample from a measure µ satisfying

√
FI(µ ∥ πβ) ≲

√
βd, starting

from an initial distribution µ0 with KL divergence K0 := KL(µ0 ∥ πβ), is at

108



least Ω(K0/d). The lower bound is attained by averaged LMC (Langevin Monte
Carlo) as given in [Bal+22].

To our knowledge an optimality result for LMC was not previously known
in any setting.

The first lower bound addresses the regime of large Fisher information,
FI(µ ∥ πβ) ≲ βd. In order to target the regime of small Fisher information,
we give a construction based on hiding a bump of large mass and prove the
following:

Theorem 16 (second lower bound, informal). The number of queries required
to obtain a sample from a measure µ satisfying

√
FI(µ ∥ πβ) ≤ ε, starting from

an initial distribution µ0 with KL divergence K0 := KL(µ0 ∥ πβ) ≤ 1, is at least

(
√
β/ε)

2d/(d+2)−o(1)
as ε→ 0.

We give a more precise form of our lower bound in Section 7.4. In infinite
dimension (actually, d ≥ Ω̃(

√
log(β/ε2)) suffices, see Section 7.4), the lower

bound reads Ω̃(β/ε2), which can be compared to the averaged LMC upper
bound of O(β2d/ε4). It is an open question to close this gap.

In terms of technical novelty, we note that the difficulty of showing the first
lower bound lies mainly in establishing the equivalence between optimization
and sampling, after which lower bounds from optimization apply; on the other
hand, the second lower bound requires significant technical work to establish.

We next discuss implications of our results.

• Towards a theory of lower bounds for sampling. The problem
of obtaining sampling lower bounds is a notorious open problem raised
in many prior works [see, e.g., Che+18c; GLL20; CBL22; LST21b]. So
far, unconditional lower bounds have only been obtained in restricted
settings such as in dimension 1; see [Che+22d] and the discussion therein,
as well as the reduction to optimization in [GLL22]. Our lower bounds
are the first of their kind for Fisher information guarantees, and are
some of the only lower bounds for sampling in general. Hence, our work
takes a significant step towards a better understanding of the complexity
of sampling. In particular, our first lower bound identifies a regime in
which (averaged) LMC is optimal, which was not previously known in
any setting.

• Stronger connections between non-convex optimization and
non-log-concave sampling. The equivalence in Theorem 14 provides
compelling evidence that Fisher information guarantees are the correct
analogue of stationary point guarantees in non-convex optimization,
thereby supporting the framework of [Bal+22].
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• Obtaining an approximate stationary point in sampling is strictly
harder for non-log-concave targets. Ignoring the dependence on
other parameters besides the accuracy, our second lower bound yields a
poly(1/ε) lower bound for the Fisher information task for non-log-concave
targets. In contrast, it is morally possible to solve this task in polylog(1/ε)
queries for log-concave targets; see Section 7.5 for justification. This
exhibits a stark separation between log-concave and non-log-concave
sampling. Note that the analogous separation does not exist in the
context of optimization, because there is a poly(1/ε) lower bound for
finding an ε-stationary point of a convex and smooth function [Car+21].

• A separation between optimization and sampling. Finally, our
second lower bound yields a poly(1/ε) lower bound, even in dimension
one. In contrast, for the analogous question in optimization of finding an
ε-stationary point of a univariate function, the recent work of [CBS22]
exhibits an algorithm with O(log(1/ε)) complexity. To our knowledge,
this is one of the first instances in which sampling is provably harder
than optimization.

7.2 Notation and setting

Notation. Given a probability measure π on Rd which admits a density w.r.t.
the Lebesgue measure, we abuse notation by identifying π with its density.

The class of distributions that we wish to sample from are the β-log-smooth
distributions on Rd, defined as follows:

Definition 3 (log-smooth distributions). The class of β-log-smooth distri-
butions consists of distributions πβ supported on Rd whose densities are of
the form π ∝ exp(−Uβ), for potential functions Uβ : Rd → R that are twice
continuously differentiable, and satisfy

∥∇Uβ(x)−∇Uβ(y)∥ ≤ β ∥x− y∥ , ∀x, y ∈ Rd .

Oracle model. We work under the following oracle model. The algorithm is
given access to a target distribution π in our class via two oracles: initialization
and local information. The initialization oracle outputs samples from some
distribution µ0 for which KL(µ0 ∥ π) ≤ K0. The local oracle for π, given a
query point x ∈ Rd, returns the value of the potential (up to an additive
constant) and its gradient at the query point x, i.e., the tuple (Uβ(x),∇Uβ(x)).
Algorithms can access samples from µ0 for free, and we care about the number
of local information queries needed. The query complexity is defined as follows.

Definition 4 (query complexity). Let C (d,K0, ε; β) be the largest number
n ∈ N such that any algorithm which works in the oracle model described above
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and outputs a sample from a measure µβ satisfying
√
FI(µβ ∥ πβ) ≤ ε, for any

β-log-smooth target πβ and any valid initialization oracle for πβ, requires at
least n queries to the local oracle for πβ.

The upper bound of [Bal+22] shows that using averaged LMC,

C (d,K0, ε; β) ≲ 1 ∨ β
2dK0

ε4
. (7.1)

We also note the following rescaling lemma.

Lemma 22 (rescaling). It holds that

C (d,K0, ε; β) = C
(
d,K0,

ε√
β

; 1
)
.

Proof. Suppose that Uβ : Rd → R is β-smooth and that πβ ∝ exp(−Uβ) is a
density. Define the rescaled potential U : Rd → R via U(x) := Uβ(x/

√
β), and

let π ∝ exp(−U). (Note that the relationship between π and πβ is different
from that in Section 7.1.) Note that U is 1-smooth; moreover, if Z ∼ πβ
then

√
β Z ∼ π. Suppose KL(µβ ∥ πβ) = K0 and that Xβ ∼ µβ is a sample

from µβ, and let µ := law(
√
β Xβ). Since the KL divergence is invariant

under bijective transformations, we have KL(µ ∥ π) = K0, which shows that
we can simulate an initialization oracle for π given an initialization oracle
for πβ. We can also simulate the local oracle for π given a local oracle for

πβ, as ∇U(x) = 1√
β
∇Uβ(x/

√
β). Finally, let µ̂ satisfy

√
FI(µ̂ ∥ π) ≤ ε/

√
β

and write µ̂β := law(X̂/
√
β) where X̂ ∼ µ̂. A straightforward calculation

shows that
√

FI(µ̂β ∥ πβ) ≤ ε. This proves the upper bound C (d,K0, ε; β) ≤
C (d,K0, ε/

√
β; 1), and the reverse bound follows because this reduction is

reversible.

From here on, we abbreviate C (d,K0, ε) := C (d,K0, ε; 1).

7.3 Reduction to optimization and the first

lower bound

In this section, we show a perhaps surprising equivalence between obtaining
Fisher information guarantees in sampling and finding stationary points of
smooth functions in optimization. The formal statement of the equivalence is
as follows.

Theorem 17 (equivalence). Let V : Rd → R be a 1-smooth function such that
for any β > 0, the function exp(−βV ) is integrable. Let πβ be the probability
measure with density πβ ∝ exp(−βV ), where β = d/ε2.
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1. Suppose that x ∈ Rd is a point with ∥∇V (x)∥ ≤ ε. Then, for µβ :=
N (x, β−1Id), it holds that FI(µβ ∥ πβ) ≤ 10βd.

2. Conversely, suppose that µ is a probability measure on Rd such that
FI(µ ∥ πβ) ≤ βd. Let X ∼ µ be a sample. Then, ∥∇V (X)∥ ≤ 3ε with
probability at least 1/2.

Proof. See Section 7.6.

Note that an oracle for βV can be simulated from an oracle for V , so
that the above theorem provides an exact equivalence between a sampling
problem and an optimization problem within the oracle model, up to universal
constants.

As a first application of this equivalence, we observe that averaged LMC
yields an nearly optimal algorithm for finding stationary points of smooth
functions. We recall the LMC algorithm for sampling from a density π ∝
exp(−U). We fix a step size h > 0, initialize at X0 ∼ µ0, and for t ∈
[kh, (k + 1)h], we set

Xt = Xkh − (t− kh)∇U(Xkh) +
√

2 (Bt −Bkh) , (7.2)

where (Bt)t≥0 is a standard Brownian motion in Rd. Let µt := law(Xt) denote
the law of the algorithm at time t. Then, the averaged LMC algorithm at
iteration N outputs a sample from the law of µ̄Nh := (Nh)−1 ∫ Nh

0
µt dt. This is

obtained algorithmically as follows: first, we sample a time t ∈ [0, Nh] uniformly
at random (independently of all other random variables). Let k denote the
largest integer such that kh ≤ t. We then compute X0, Xh, X2h, . . . , Xkh using
the LMC recursion, and then output Xt which is obtained via the partial LMC
update (7.2).

Corollary 8 (averaged LMC is nearly optimal for finding stationary points).
Let V : Rd → R be 1-smooth and satisfy V (0) − inf V ≤ ∆. Let ε > 0 be
such that ∆/ε2 ≥ 1. Assume that for β = d/ε2, the probability measure with
density πβ ∝ exp(−βV ) is well-defined and that

∫
∥·∥2 dπβ ≤ poly(∆, d, 1/ε).

Consider running averaged LMC with step size h = Θ̃(1/β), initial distribution
µ0 = N (0, β−1Id), and target πβ, with

N ≥ Ω̃
(∆

ε2

)
iterations .

Then, we obtain a sample X such that with probability at least 1/2, it holds
that ∥∇V (X)∥ ≲ ε.

Proof. We combine Theorem 17 with the analysis of averaged LMC in [Bal+22];
see Section 7.6.
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This matches the usual O(∆/ε2) complexity for the standard gradient
descent algorithm to find an ε-stationary point [see, e.g., Bub15; Nes18]. On
its own, this observation is not terribly surprising because as β → ∞, the
LMC iteration (7.2) recovers the gradient descent algorithm. However, it is
remarkable that the analysis of [Bal+22] of averaged LMC in Fisher information
nearly recovers the gradient descent guarantee.

This observation also suggests that the lower bound of [Car+20], which
establishes optimality of gradient descent for finding stationary points in high
dimension, also implies optimality of averaged LMC in a certain regime. We
obtain the following theorem.

Theorem 18 (first lower bound). Suppose that the dimension d satisfies

Õ(K0) ≥ d ≥ Ω̃(K
2/3
0 ). Then, it holds that

C
(
d,K0, ε =

√
βd; β

)
≳
K0

d
.

Proof. In the lower bound of [Car+20], the authors construct a family of
functions F such that each f ∈ F is β-smooth and satisfies f(0)− inf f ≤ ∆.
Moreover, any randomized algorithm which, for any f ∈ F , makes queries to
a local oracle for f and outputs an δ-stationary point of f with probability at
least 1/2, requires at least Ω(β∆/δ2) queries. The dimension of the functions in

the construction is d = Θ̃(β2∆2/δ4). Setting βV = f and using the equivalence
from Theorem 17 completes the proof. Details are given in Section 7.6.

The lower bound of Theorem 18 is matched by averaged LMC, see (7.1).

In the theorem, the restriction d ≥ Ω̃(K
2/3
0 ) arises because the lower bound

construction of [Car+20] for finding a ε-stationary point of a smooth function re-

quires a large dimension d ≥ Ω̃(1/ε4). If, as conjectured in [BM20] and [CBS22],
the lower bound construction can be embedded in dimension d ≳ log(1/ε),
then the restriction in Theorem 18 would instead become d ≳ logK0.

7.4 Bump construction and the second lower

bound

The main drawback of the first lower bound (Theorem 18) is that it only
provides a lower bound on the Fisher information for a specific value of the
target accuracy, ε =

√
βd. To complement this result, we provide the following

lower bound for the query complexity of sampling to high accuracy in Fisher
information; recall that it suffices to consider β = 1 by the rescaling lemma
(Lemma 22).
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Theorem 19 (second lower bound). For the class of 1-log-smooth distributions
on Rd, there exist universal constants c, c′ > 0, such that for all ε < exp(−c′d),
we have

C (d,K0 = 1, ε) ≳
( cd

log(1/ε)

)d/2 1

ε2d/(d+2)
. (7.3)

Proof. Here we sketch the main ideas of the proof. We construct a family
of distributions in our class which put a constant fraction of their mass on
disjoint bumps. Specifically, let Br denote the ball of radius r in Rd, and let
P2r,R be a maximal 2r-packing of BR−r. For any ω ∈P2r,R, let π̃ω denote the
unnormalized density

π̃ω(x) := exp

(
r2ϕ

(∥x− ω∥
r

)
− 1

2
(∥x∥ −R)2+

)
=: exp

(
−Vω(x)

)
, (7.4)

where ϕ : R+ → R+ is a decreasing, twice continuously differentiable function
supported on [0, 1] with bounded second derivative, chosen such that π̃ω is
1-log-smooth. We see that the mass of the distribution πω will be concentrated
on BR. Moreover, by a careful choice of r we can ensure that exactly half of
the mass of πω is in the set ω +Br.

The key idea is the following reduction: being able to sample from πω
within small Fisher information means that we can estimate ω ∈ P2r,R. To
make this reduction work, note that if we make a query within ω +Br, then
we can immediately identify ω. Because πω puts half of its mass on ω + Br

by construction, if we can sample from a distribution within total variation
distance less than 1/2 from πω then we will sample a point in ω + Br with
constant probability. The last ingredient is to note that sampling close to πω in
Fisher information implies that we are close in total variation distance due to
the following functional inequality (see [Gui+09]): for any probability measure
µ,

TV(µ, πω)2 ≤ 1

4
CPI(πω)FI(µ ∥ πω) ,

where CPI(πω) is the Poincaré constant of πω.
As a result, a query complexity lower bound on sampling in Fisher informa-

tion directly follows from a lower bound on the query complexity of estimating
ω, which by standard information-theoretic arguments takes Ω(|P2r,R|) queries.

Although the scheme of the argument is straightforward, the actual proof
requires careful balancing of the parameters r, R, d and ε and some delicate
calculations to satisfy all of the desired properties. The full details are given in
Section 7.7.

The lower bound in Theorem 19 deteriorates in high dimension; note that
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due to the restriction ε ≤ exp(−c′d), the first factor in (7.3) is exponentially
small in d. However, we can remedy this by noting that a d-dimensional
construction can be embedded into Rd′ for any d′ ≥ d, and hence

C (d,K0 = 1, ε) ≳ max
d⋆≤d

[( cd⋆
log(1/ε)

)d⋆/2

ε4/(d⋆+2)
] 1

ε2
.

By optimizing over d⋆, we show (Section 7.7) that if ε ≤ 1/C, then

C (d, 1, ε) ≳


1

ε2d/(d+2) exp(C
√

log(1/ε) log log(1/ε))
, for all d ≲

√
log(1/ε)

log log(1/ε)
,

1

ε2 exp(C
√

log(1/ε) log log(1/ε))
, for all d ≳

√
log(1/ε)

log log(1/ε)
,

=
1

εmin{2d/(d+2),2}−o(1)
, for all d ≥ 1 ,

as ε → 0, where C > 0 is universal. Noting 2d/(d + 2) < 2, this yields the
simplified bound in Theorem 16.

For d = 1, the lower bound of Theorem 19 reads C (1, 1, ε) ≳ 1/(ε2/3
√

log(1/ε)).
However, for the one-dimensional case we can in fact obtain better bounds
on the Poincaré constants of the measures in our lower bound construction,
leading to an improvement of the exponent from 2/3 to 1. This result is stated
below.

Theorem 20 (second lower bound, univariate case). For the class of 1-log-
smooth distributions on R, there exists a universal constant c > 0, such that
for all ε < c, we have

C (d = 1, K0 = 1, ε) ≳
1

ε
√

log(1/ε)
.

Proof. See Section 7.7.

The univariate setting also provides a convenient setting in order to compare
our lower bounds with algorithms such as rejection sampling, so we include a
detailed discussion in Section 7.8. We highlight a few interesting conclusions
of the discussion here.

• Although rejection sampling can indeed obtain Fisher information guar-
antees with complexity O(log(1/ε)) (Proposition 9), this does not con-
tradict our lower bounds because rejection sampling cannot be directly
implemented within our oracle model. Instead of an initialization µ0

satisfying KL(µ0 ∥ π) ≤ K0, rejection sampling requires the stronger
assumption max{sup ln(µ0/π), sup ln(π/µ0)} ≤M0. Under this stronger
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initialization oracle, the complexity guarantee for rejection sampling is
O(exp(3M0) log(1/ε)).

• In the model with the stronger initialization oracle (i.e., bounded M0),
any algorithm which has polylog(1/ε) dependence on the accuracy ε
necessarily incurs exponential dependence on M0 (Corollary 11). This
demonstrates a fundamental trade-off between high accuracy (e.g., re-
jection sampling) and polynomial dependence on M0 (e.g., averaged
LMC).

• The initialization oracle with bounded M0 is strictly stronger than the
one with bounded K0. In other words, sampling is strictly easier in the
presence of an initialization with bounded density ratio to the target
(i.e., a warm start) than an initialization with bounded KL divergence.
This is consistent with intuition from prior work on the complexity of the
Metropolis-adjusted Langevin algorithm [see Che+21; LST21b; WSC22].

• The effective radius R of our lower bound construction scales with 1/ε.
This is in fact necessary: if R is fixed then there is an algorithm with
O(log(1/ε)) complexity (Proposition 10).

7.5 Separation between log-concave and non

log-concave sampling

We show that O(log 1
ε
) Fisher information query complexity is attainable for

log-concave densities, by giving a generic post-processing method to turn
χ2-error guarantees into Fisher information guarantees.

Post-processing lemma

Let Qt denote heat flow for time t (i.e., convolution with a Gaussian of variance
t). We aim to bound FI(µQt ∥ π), where π is the distribution that we wish to
sample from, and µ is the output of a sampling algorithm with chi-squared
error guarantees.

Lemma 23 (Fisher information guarantee from a chi-squared guarantee).
Suppose that µ and π are two probability measures on Rd, that π is β-log-
smooth, and that χ2(µ ∥ π) ≤ ε2χ ≤ 1. Then, if t ≲ 1/β for a small enough
implied constant, it holds that

FI(µQt ∥ π) ≲
εχ (d+ log(1/εχ))

t
+ β2dt .
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To prove Lemma 23, we start with

FI(µQt ∥ π) :=

∫
∥∇ ln(µQt)(x)−∇ ln π(x)∥2 µQt(dx)

≤ 2FI(µQt ∥ πQt) + 2

∫
Rd

∥∇ log(πQt)(x)−∇ log π(x)∥2 µQt(dx) .

(7.5)

For the first term in (7.5), we use the following lemma on error in the score
function (gradient of the log-density).

Lemma 24 (score error under heat flow, [LLT23, Lemma 6.2]). Let µ and π
be probability measures on Rd, and let Qt denote the heat semigroup at time t.
In addition, we assume that χ2(µ ∥ π) ≤ ε2χ ≤ 1. Then,

FI(µQt ∥ πQt) =

∫
Rd

∥∇ ln(µQt)(x)−∇ ln(πQt)(x)∥2 µQt(dx) ≲
εχ

(
d+ ln 1

εχ

)
t

.

For the second term in (7.5), we use the following score perturbation lemma.

Lemma 25 ([LLT22, Lemma C.11]). Suppose that π ∝ exp(−V ) is a probability
density on Rd, where V is β-smooth. Then for β ≤ 1

2t
,∥∥∥∇ ln

π(x)

(πQt)(x)

∥∥∥ ≤ 6βd1/2t1/2 + 2βt∥∇V (x)∥.

We are now ready to prove Lemma 23.

Proof of Lemma 23. For the second term in (7.5), Lemma 25 yields

EµQt [∥∇ ln(πQt)−∇ ln π∥2] ≲ β2dt+ β2t2 EµQt [∥∇V ∥2] .

On the other hand, Lemma 26 below yields

EµQt [∥∇V ∥2] ≲ FI(µQt ∥ π) + βd .

Hence, from (7.5) and Lemma 24,

FI(µQt ∥ π) ≲ FI(µQt ∥ πQt) + EµQt [∥∇ ln(πQt)−∇ lnπ∥2]

≲
εχ (d+ log(1/εχ))

t
+ β2dt+ β2t2 FI(µQt ∥ π) .

If t ≲ 1/β for a small enough implied constant, it implies

FI(µQt ∥ π) ≲
εχ (d+ log(1/εχ))

t
+ β2dt
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as desired.

High-accuracy Fisher information guarantees for
log-concave targets

We now apply the post-processing lemma (Lemma 23). We recall the following
high-accuracy guarantee for sampling from log-concave targets in chi-squared
divergence, based on the proximal sampler.

Theorem 21 ([Che+22a, Corollary 7]). Suppose that the target distribution
π ∝ exp(−V ) is β-log-smooth and satisfies a Poincaré inequality with constant
CPI. Then, the proximal sampler, with rejection sampling implementation of
the restricted Gaussian oracle (RGO) and initialized at µ0, outputs a sample
from a measure µ with χ2(µ ∥ π) ≤ ε2χ using N queries to π in expectation,
where N satisfies

N ≤ Õ
(
CPIβd

(
log(1 + χ2(µ0 ∥ π)) ∨ log

1

εχ

))
.

We now briefly justify why this morally leads to an O(log(1/ε)) complexity
guarantee in Fisher information, omitting details for brevity. Assume that
β = 1 and that π is log-concave. If we set t ≍ ε2/d in Lemma 23, then we can
ensure that FI(µQt ∥ π) ≤ ε2, where µ is the output of the proximal sampler,

provided that εχ ≤ Õ(ε4/d2). Applying Theorem 21, this can be achieved
using

N = Õ
(
CPId

(
log(1 + χ2(µ0 ∥ π)) ∨ log

√
d

ε

))
queries in expectation. Let us give crude bounds for these terms. First,
let m2

2 := Eπ[∥·∥2] denote the second moment of π. Then, we know that
the Poincaré constant of π is bounded because π is log-concave, and in fact
CPI ≲ m2

2 [see, e.g., Bob99]. Also, if ∇V (0) = 0, then we can initialize with

log(1 + χ2(µ0 ∥ π)) ≤ Õ(d) [see Che+22b, Lemma 29]. Putting this together,
we see that N = poly(d,m2, log(

√
d/ε)) queries suffice in expectation in order

to obtain the guarantee
√

FI(µQt ∥ π) ≤ ε. This is in contrast with our lower
bound in Theorem 19, which shows that poly(1/ε) queries are necessary to
obtain Fisher information guarantees for non-log-concave targets, thereby
establishing a separation between log-concave and non-log-concave sampling in
this context.

The astute reader will observe that there are some holes in this argument
when comparing the lower and upper bounds. Namely, the upper bound uses
further properties about the target distribution (e.g., ∇V (0) = 0) and does
not strictly hold in the oracle model that we describe in Section 7.2; the upper
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bound is in terms of the expected number of queries made, because the number
of queries made by the algorithm is random; and the upper bound depends
on other parameters such as m2 which do not appear in the lower bound. In
particular, the third point requires some consideration because in our lower
bound construction for Theorem 19, the effective radius R of the distributions
depends on 1/ε. We claim, however, that if we set d,R = polylog(1/ε), then
the upper bound for log-concave targets is polylog(1/ε) (with the caveats just
discussed) and the lower bound for non-log-concave targets is poly(1/ε). As
this is not the focus of our work, we do not attempt to make this reasoning more
rigorous; rather, we leave it as the sketch of an argument showing that non-log-
concave sampling is fundamentally harder than log-concave sampling. We also
note that our argument in fact shows that polylog(1/ε) query complexity is
possible for distributions satisfying a Poincaré inequality, which form a strict
superclass of log-concave distributions.

7.6 Proofs for the first lower bound

Proof of the equivalence

In order to prove the equivalence in Theorem 17, we recall the following useful
lemma from [Che+22b].

Lemma 26 ([Che+22b, Lemma 16]). Let π ∝ exp(−V ) be a β-log-smooth
density on Rd. Then, for any probability measure µ,

Eµ[∥∇V ∥2] ≤ FI(µ ∥ π) + 2βd .

With the lemma in hand, we are ready to prove Theorem 17.

Proof of Theorem 17. 1. We can explicitly compute

FI(µβ ∥ πβ) =

∫
∥∇ lnµβ −∇ lnπβ∥2 dµβ

=

∫
∥β (z − x)− β∇V (z)∥2 dµβ(z)

≤ 2β2

∫
∥z − x∥2 dµβ(z) + 2β2

∫
∥∇V (z)∥2 dµβ(z)

≤ 2β2

∫
∥z − x∥2 dµβ(z) + 4β2

∫
{∥z − x∥2 + ∥∇V (x)∥2} dµβ(z)

≤ 6β2

∫
∥z − x∥2 dµβ(z) + 4β2 ∥∇V (x)∥2︸ ︷︷ ︸

≤ε2

,
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where we used that ∇V is Lipschitz. Also,
∫
∥z − x∥2 dµβ(z) = d/β.

Hence,

FI(µβ ∥ πβ) ≤ 6βd+ 4β2ε2 = 10βd ,

provided β = d/ε2.

2. Conversely, since ∇ ln(1/πβ) = β∇V is β-Lipschitz, then Lemma 26
yields

Eµ[∥∇V ∥2] =
1

β2
Eµ[∥∇(βV )∥2] ≤ 1

β2
{FI(µ ∥ πβ) + 2βd} ≤ 3d

β
.

If we take β = d/ε2, then Eµ[∥∇V ∥2] ≤ 3ε2. By Chebyshev’s inequality,
X ∼ µ satisfies ∥∇V (X)∥ ≤

√
6 ε with probability at least 1/2.

Proof of the averaged LMC guarantee

In order to apply [Bal+22, Theorem 4], we need a bound on the KL divergence
at initialization. Such bounds are standard; however, since [Che+22b, Lemma
30] assumes that we start at a stationary point of V (contrary to the present
setting), we present an adapted version.

Lemma 27 (KL divergence at initialization). Suppose that U : Rd → R is a
function such that U(0)−inf U ≤ ∆, ∇U is β-Lipschitz, and m :=

∫
∥·∥ dπ <∞

where π ∝ exp(−U). Then, for µ0 = N (0, β−1Id), we have the bound

KL(µ0 ∥ π) ≲ ∆ + d
(
1 ∨ ln(βm2)

)
.

Proof. Write

µ0

π
= exp

(
U − β

2
∥·∥2

) ∫
exp(−U)∫

exp(−U − δ ∥·∥2)

∫
exp(−U − δ ∥·∥2)

(2π/β)d/2
,

where δ > 0 is chosen later.
For the first term, by smoothness and Young’s inequality,

U(x)− β

2
∥x∥2 ≤ U(0) + ⟨∇U(0), x⟩ ≤ U(0) +

∥∇U(0)∥2
2β

+
β ∥x∥2

2
.

Plugging in x = − 1
β
∇U(0),

U
(
− 1

β
∇U(0)

)
− U(0) ≤ − 1

2β
∥∇U(0)∥2
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or

∥∇U(0)∥2 ≤ 2β
(
U(0)− U

(
− 1

β
∇U(0)

))
≤ 2β

(
U(0)− inf U

)
≤ 2β∆ .

Hence, for any x,

U(x)− β

2
∥x∥2 ≤ U(0) + ∆ +

β ∥x∥2
2

.

For the second term, Markov’s inequality yields∫
exp(−U − δ ∥·∥2)∫

exp(−U)
=

∫
exp(−δ ∥·∥2) dπ ≥ exp(−4δm2) π{∥·∥ ≤ 2m}

≥ 1

2
exp(−4δm2) .

For the third term,∫
exp(−U − δ ∥·∥2)

(2π/β)d/2
≤ exp(− inf U)

∫
exp(−δ ∥·∥2)

(2π/β)d/2
= exp(− inf U)

( β
2δ

)d/2
.

Combining these bounds,

KL(µ0 ∥ π) = Eµ0 ln
µ0

π
≤ U(0)− inf U + ∆ +

β

2
Eµ0 [∥·∥2] + ln 2 + 4δm2 +

d

2
ln
β

2δ
.

Now we set δ = 1
4m2 to obtain

KL(µ0 ∥ π) ≲ ∆ + d
(
1 ∨ ln(βm2)

)
as claimed.

Proof of Corollary 8. Let V be 1-smooth and apply the above lemma to U =
βV , which is β-smooth and satisfies U(0)− inf U ≤ β∆, so that

K0 := KL(µ0 ∥ πβ) ≲ β∆ + d
(
1 ∨ ln(β Eπβ

[∥·∥2])
)

= Õ(β∆ + d) . (7.6)

The main result of [Bal+22] says that after N steps of averaged LMC, with an
appropriate choice of step size h, we output a sample from µ satisfying

FI(µ ∥ πβ) ≲
β
√
K0d√
N

.

To apply this result, we find N such that this inequality implies FI(µ∥πβ) ≤ βd,
where we recall that β = d/ε2; this requires N ≳ K0/d. From (7.6), it suffices

to have N ≥ Ω̃(∆/ε2), provided ∆/ε2 ≥ 1. The result for finding stationary
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points via averaged LMC now follows from the equivalence in Theorem 17.

Proof of the first lower bound

Proof of Theorem 18. Let F be the family of functions constructed in the
lower bound of [Car+20], and let f ∈ F . Recall that F satisfies the following
properties: each f ∈ F is β-smooth and satisfies f(0) − inf f ≤ ∆, any
randomized algorithm which, for any f ∈ F , makes queries to a local oracle for
f and outputs an δ-stationary point of f with probability at least 1/2, requires
at least Ω(β∆/δ2) queries.

We set δ := 4
√
βd. From the Fisher information lemma (Lemma 26), if we

can obtain a sample from a measure µ such that for πf ∝ exp(−f), it holds
that FI(µ ∥ πf) ≤ βd, then a sample from µ is a δ-stationary point of f with
probability at least 1/2.

We set the initialization oracle to simply output samples from µ0 :=
N (0, β−1Id). We need to compute the value of K0 := supf∈F KL(µ0 ∥ πf),
and for this we use Lemma 27. First, we must bound the second moment
Eπf

[∥·∥2]. Since we only care about polynomial dependencies for this calcula-
tion, let poly denote any positive quantity for which both the quantity and its
inverse are bounded above by polynomials in β, ∆, d, and 1/δ. Inspecting the
proof of [Car+20] and using the notation therein, each f ∈ F is of the form

f(x) = poly · f̃T,U
(
ρ(x/poly)

)
+

1

2τ 2
∥x∥2 , where τ = poly .

Also, f̃T,U is bounded; thus, πf ∝ exp(−f) is well-defined. To bound the second
moment of πf , we can use the Donsker–Varadhan variational principle to write,
for any λ > 0,

Eπf
[∥·∥2] ≤ 1

λ
{KL(πf ∥ ν) + lnEν exp(λ ∥·∥2)} ,

where ν := N (0, τId). By choosing λ = 1/poly, we can ensure that lnEν exp(λ ∥·∥2) ≤
1. Next, since ν satisfies a log-Sobolev inequality with constant poly, we obtain

Eπf
[∥·∥2] ≤ poly ·

(
1 + FI(πf ∥ ν)

)
.

The Fisher information is computed to be

FI(πf ∥ ν) = poly · Eπf

[∥∥∇(f̃T,U(ρ(·/poly)
))∥∥2]

.

Here, f̃T,U : Rd → R and ρ : Rd → Rd are poly-Lipschitz, and hence∥∥∇(f̃T,U(ρ(·/poly)
))∥∥ ≤ poly .
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Putting everything together, we deduce that Eπf
[∥·∥2] ≤ poly.

From Lemma 27, we can take K0 ≲ ∆ + Õ(d). If K0 ≥ Ω̃(d), then this
shows that ∆ ≳ K0. From the lower bound of [Car+20], we obtain

C (d,K0,
√
βd; β) ≳

β∆

δ2
≳
βK0

βd
=
K0

d
.

Finally, in order for the construction of [Car+20] to be valid, the functions

must be defined in dimension d ≥ Ω̃((K0/d)2), which is satisfied provided

d ≥ Ω̃(K
2/3
0 ).

7.7 Proofs for the second lower bound

Proof of Theorem 19

Throughout the proof, we will often work with unnormalized densities. For
a distribution π, which we identify with its density, we denote by π̃ an un-
normalized density, where π = π̃

Z
and the normalizing constant is given by

Z :=
∫
Rd π̃(x) dx.

We reduce the task of estimating the distribution from queries to the task
of sampling. Namely, we construct a set of distributions π that are 1-log-
smooth, such that if we can sample well from π in Fisher information, then
we can estimate its identity. Let Br denote the ball of radius r in Rd; let
Vd := π

d/2/Γ(d
2

+ 1) denote the volume of B1, and let Ad−1 = dVd denote
the surface area of ∂B1. Let P2r,R be a maximal 2r-packing of BR−r, for
some R ≥ r to be specified. By standard volume arguments [see, e.g., Ver18,

§4.2], we know that |P2r,R| ≥
(
R−r
2r

)d
. For any ω ∈P2r,R, let π̃ω denote the

unnormalized density

π̃ω(x) := exp

(
r2ϕ

(∥x− ω∥
r

)
− 1

2
(∥x∥ −R)2+

)
=: exp

(
−Vω(x)

)
, (7.7)

where (x)+ := max(0, x), and ϕ : R+ → R+ is a bump function with the
following properties1 :

(ϕ.1) ϕ is continuous, decreasing, supported on [0, 1], and twice continuously
differentiable on the open interval (0,∞).

(ϕ.2) ϕ(x) = ϕ(0)− 1
2
x2 for all x ∈ [0, α] for some α > 0.

1One such function is ϕ(x) =


11
64 − 1

2x
2 , for x ∈ [0, 1/4] ,

1
27

(
4 + 8x− 48x2 + 56x3 − 20x4

)
, for x ∈ [1/4, 1] ,

0 , otherwise .
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(ϕ.3) supx>0 |ϕ′′(x)| ≤ 1.

The above implies that on Rd, x 7→ ϕ(∥x∥) is 1-smooth (see Lemma 32), and
hence π̃ω is 1-log-smooth. For a measurable set A, we will write π̃ω(A) :=∫
A
π̃ω(x) dx and we let Zω := π̃ω(Rd) denote the normalizing constant for π̃ω.
We also define the null probability measure πinit to have unnormalized

density

π̃init(x) := exp
(
−1

2
(∥x∥ −R)2+

)
,

with normalizing constant Zinit := π̃init(Rd).
The distribution πω is the combination of a flat, uniform distribution on

BR, fast decaying tails outside of BR, and a bump of radius r around the point
ω ∈P2r,R. The following lemma summarizes the properties that we need for
the lower bound construction. Together, Properties (P.1) and (P.2) imply
that if an algorithm outputs a sample X from a distribution which is close in
Fisher information to πω, then X is likely to lie in the set ω +Br. Hence, an
algorithm for sampling from πω can be used to estimate ω. Property (P.4)
is then used to prove a lower bound on the number of queries to solve the
estimation task. Finally, Property (P.3) is needed in order to ensure that there
is a valid initialization oracle with K0 = 1.

Lemma 28 (lower bound construction). There exist universal constants cε, c >
0 such that for every d ≥ 1 and ε ≤ exp(−cεd) we can choose r, R such that
the following properties hold.

(P.1) (most of the mass lies in the bump) For any ω ∈P2r,R,

πω(ω +Br) =
1

2
.

(P.2) (FI guarantees imply TV guarantees) For any ω ∈ P2r,R and any proba-
bility measure µ,√

FI(µ ∥ πω) ≤ ε =⇒ TV(µ, πω) ≤ 1

3
.

(P.3) (initial KL divergence) There exists a probability measure πinit that satisfies

max
ω∈P2r,R

KL(πinit ∥ πω) ≤ log 2 .

(P.4) (lower bound on the packing number) It holds that

|P2r,R| ≥
( cd

log(1/ε)

)d/2 1

ε2d/(d+2)
.
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Proof. Property (P.1) holds by the definition of the parameters r and R,
see (7.15) and Lemma 30. We prove Property (P.2) in Section 7.7, Prop-
erty (P.3) in Section 7.7, and Property (P.4) in Section 7.7.

Remark 6. In order for the bound in Property (P.4) to be non-trivial, i.e.,
|P2r,R| ≳ 1, we require ε−2d/(d+2) ≳ (

√
log(1/ε)/(cd))d. Taking logarithms, we

want

2d

d+ 2
log

1

ε

!

≥ d

2
log log

1

ε
− d

2
log d+ Ω(d) .

Let γ be such that log(1/ε) = γd. Substituting this in, we require

2γd2

d+ 2

!

≥ d

2
log γ + Ω(d) .

This holds as long as γ is larger than a universal constant, which is equivalent
to ε ≤ exp(−cεd) for a sufficiently large absolute constant cε > 0.

Using the lemma, we can now prove Theorem 19 by applying a standard
information theoretic argument with Fano’s inequality (Theorem 1).

Proof of Theorem 19. Let ω ∼ uniform(P2r,R) and consider the task of estimat-
ing ω with randomized algorithms that have query access to πω. We first show
that a sampling algorithm can solve this estimation task. Suppose that there is
an algorithm that works under the oracle model specified in Section 7.2, with
initialization oracle outputting samples from µ0 = πinit given in Property (P.3),
which guarantees that KL(µ0 ∥ πω) ≤ log 2. For any ω ∈ P2r,R and target
πω, the algorithm makes at most N queries to the local oracle, and outputs a
sample from the measure µN with

√
FI(µN ∥ πω) ≤ ε. We can then estimate ω

as follows: let X ∼ µN , and set

ω̂ := arg min
ω∈P2r,R

∥X − ω∥ .

Because the initialization oracle µ0 is independent of the choice of ω, the
estimator ω̂ is the output of a randomized algorithm that only uses the query
information to πω to estimate ω.

The probability that ω̂ succeeds can be calculated as follows. By Prop-
erty (P.2), we have TV(µN , πω) ≤ 1/3. Let X ∼ µN ; then,

P{X ∈ ω +Br} = µN(ω +Br) ≥ πω(ω +Br)− TV(µN , πω) ≥ 1

2
− 1

3
=

1

6
,

where we used Property (P.1). Hence we see that

P{ω̂ = ω} ≥ 1

6
. (7.8)
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Now we prove a lower bound for the estimation task for any algorithm
that succeeds with probability at least 1

6
. Let x1, . . . , xN denote the query

points made by the algorithm. We first prove a lower bound for deterministic
algorithms, where each query point xi is a deterministic function of the previous
queries and oracle outputs (xi′ , Vω(xi′),∇Vω(xi′) : i′ = 1, . . . , i− 1). Since the
initialization oracle is independent of ω, the data available to the algorithm is

ξN :=
(
xi, Vω(xi),∇Vω(xi) : i = 1, . . . , N

)
.

We assume that the algorithm has made at most N ≤ M/2 queries where
M := |P2r,R| (otherwise, N ≥M/2 and this is our desired lower bound).

Applying Fano’s inequality (Theorem 1):, we therefore have

P{ω̂ ̸= ω} ≥ 1− I(ξN ;ω) + ln 2

lnM
. (7.9)

Applying the chain rule for the mutual information,

I(ξN ;ω) ≤
N∑
i=1

I
(
xi, Vω(xi),∇Vω(xi); ω

∣∣ ξi−1

)
.

Given ξi−1, the query point xi is deterministic. We can bound the mutual
information via the conditional entropy,

I
(
xi, Vω(xi),∇Vω(xi); ω

∣∣ ξi−1

)
≤ H

(
Vω(xi),∇Vω(xi)

∣∣ ξi−1

)
.

If one of the query points x1, . . . , xi−1 landed in the ball ω +Br, then ω is
fully known and the conditional entropy is zero. Otherwise, given the history
ξi−1, the random variable ω is uniformly distributed on the set

P2r,R(i) := {ω′ ∈P2r,R | xi′ /∈ ω′ +Br for i = 1, . . . , i− 1} .

If xi does not belong to ω′ +Br for some ω′ ∈P2r,R(i), then the query point is
useless and the conditional entropy is again zero. Otherwise, conditionally on
ξi−1, the tuple (Vω(xi),∇Vω(xi)) can take on two possible values with probability
1/|P2r,R(i)| and 1 − 1/|P2r,R(i)| respectively, depending on whether or not
xi ∈ ω +Br. The conditional entropy is thus bounded by

H
(
Vω(xi),∇Vω(xi)

∣∣ ξi−1

)
≤ h

( 1

|P2r,R(i)|
)
≤ h

( 2

M

)
,

where h(p) := p ln 1
p

+ (1− p) ln 1
1−p

is the binary entropy function. Assuming
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that M ≥ 4 (which can be ensured thanks to Remark 6),

h
( 2

M

)
≤ 4

M
ln
M

2
.

Substituting this into (7.9),

P{ω̂ ̸= ω} ≥ 1−
4N
M

ln(M/2) + ln 2

lnM
. (7.10)

If M ≥ 4, and N ≤ 1
12
M , we would obtain P{ω̂ ≠ ω} > 5/6, contradicting (7.8).

Hence, we deduce that N ≳M .

In general, if the algorithm is randomized, it can depend on a random seed
ζ that is independent of ω. Then we can apply (7.10) conditional on ζ, and
obtain

P{ω̂ ̸= ω | ζ} ≥ 1−
4N
M

ln(M/2) + ln 2

lnM
.

Taking expectation over ζ, we see that the lower bound (7.10), and hence
N ≳M , holds for randomized algorithms as well.

The proof of Theorem 19 is concluded by noting that the estimation lower
bound gives a lower bound on sampling, and that Property (P.4) provides us
with a lower bound on M .

In the remaining sections, we focus on establishing Lemma 28.

Estimates for integrals

In this section we provide useful estimates for integrals that appear in the
normalizing constants for our lower bound construction. Notice that since
π̃ω = 1 on BR \ (ω +Br),

Zω = π̃ω(Rd \BR) + π̃ω(BR)

= π̃ω(Rd \BR) + (Rd − rd)Vd +

∫
Br

exp
(
r2ϕ

(∥x∥
r

))
dx

= π̃ω(Rd \BR) + (Rd − rd)Vd + rd Ir ,

where we define Ir :=
∫
B1

exp(r2ϕ(∥x∥)) dx. We record some useful properties
of the quantities defined thus far that will be used throughout the proof of
Lemma 28.

Lemma 29 (main estimates). For any number c > 0 there exists cr(c) > 0
depending only on c such that for all r ≥ cr(c)

√
d, the following hold:
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1. (asymptotics of Ir)

1

2
≤ rd Ir

(2π)d/2 exp(r2ϕ(0))
≤ 2 . (7.11)

2. (mass outside BR) There is a universal constant c0 > 2, independent of
c, such that√

π

2
VddR

d−1 ≤ π̃ω(Rd \BR) ≤ Vdc
d
0 (dRd−1 + d(d+1)/2) . (7.12)

3. (mass on the bump)

ln
Ir
Vd
≥ cd . (7.13)

Proof. Because we have chosen ϕ to be a quadratic function on the range [0, α]
(see (ϕ.2)), we can decompose Ir as follows:

Ir :=

∫
B1

exp
(
r2ϕ(∥x∥)

)
dx

=

∫
B1\Bα

exp
(
r2ϕ(∥x∥)

)
dx︸ ︷︷ ︸

A

+ exp
(
r2ϕ(0)

) ∫
Bα

exp
(
−r

2 ∥x∥2
2

)
dx︸ ︷︷ ︸

B

.

As ϕ is decreasing by (ϕ.1), clearly A ≤ Vd exp(r2ϕ(α)), and the second term
is given by

B =
(2π)d/2

rd
exp

(
r2ϕ(0)

)
P(∥X∥ ≤ αr) ,

where X is a standard Gaussian in Rd. By standard concentration inequalities
(e.g., Markov’s inequality suffices), there exists a universal constant c1 such
that the above probability is at least 1/2 provided r ≥ c1

√
d. Recall that

log Γ(d
2

+ 1) = d
2

log d+O(d). Thus, for r ≥ c1
√
d we have

log
A

B
≤ log

2Vd exp(r2ϕ(α))

(2π)d/2 r−d exp(r2ϕ(0))
= log

2 exp(r2ϕ(α))

2d/2 r−d exp(r2ϕ(0)) Γ(d
2

+ 1)

= O(d)− r2 (ϕ(0)− ϕ(α)) + d log r − d

2
log d

= O(d)− d
(( r√

d

)2
(ϕ(0)− ϕ(α))− log

( r√
d

))
.

From the above it is clear that there is a universal constant c2 such that

128



r ≥ c2
√
d implies that A ≤ B. Thus, for r ≥ (c1 ∨ c2)

√
d the following holds:

B ≤ Ir ≤ 2B , (7.14)

proving (7.11). We now turn to the proof of (7.12). By integrating in polar
coordinates, and taking X to be a standard Gaussian on R,

π̃ω(Rd \BR) = Ad−1

∫ ∞

R

sd−1 exp
(
−1

2
(s−R)2

)
ds

= Ad−1

∫ ∞

0

(s+R)d−1 exp
(
−s

2

2

)
ds

≤
√

2πAd−1 E[|X +R|d−1]

≤
√

2πAd−12
d (Rd−1 + E[|X|d−1])

≤ Ad−1c
d
0 (Rd−1 + (d− 1)(d−1)/2)

≤ Vdc
d
0 (dRd−1 + d(d+1)/2)

for some universal constant c0 > 2. For the other direction we can simply write

π̃ω(Rd \BR) = Ad−1

∫ ∞

0

(s+R)d−1 exp
(
−s

2

2

)
ds

≥
√

π

2
Ad−1R

d−1 .

Finally, we prove (7.13). We again use the fact log Γ(d
2

+1) = d
2

log d+O(d).

Therefore, for r ≥ (c1 ∨ c2)
√
d and using (7.11) we obtain

log
Ir
Vd
≥ log

(2π)d/2 r−d exp(r2ϕ(0))/2

πd/2/Γ(d
2

+ 1)

= d
(( r√

d

)2
ϕ(0)− log

( r√
d

))
+O(d) .

Clearly, there exists a constant c3 (depending only on c) such that r ≥ c3
√
d

implies that the RHS is at least linear in d with a positive constant. Taking
cr = c1 ∨ c2 ∨ c3 concludes the proof.

Proof of Property (P.1)

We choose r, R such that (P.1) holds, i.e., πω(ω + Br) = 1/2. This holds
provided that

f(r) := (Ir + Vd) r
d !

= π̃ω(Rd \BR) + VdR
d =: g(R) . (7.15)
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Lemma 30 (choice of r, R). For any value of d ≥ 1 and R ≥ 0, there exists a
corresponding value of r such that (7.15) holds. Moreover, there is a universal
constant cR ≥ 1 such that for any R ≥ cR

√
d, the corresponding r solving (7.15)

satisfies

r ≥ cr
(
log(6c0)

)√
d , (7.16)

R/r ≥ 2 , (7.17)

where cr(·) is the function defined in Lemma 29.

The argument log(6c0) to cr(·) in Lemma 30 is chosen for later convenience.

Proof. Notice that f and g are continuous and increasing in r, R respectively.
Moreover, we check that f(0) = 0, g(0) = (2π)d/2, and f(∞) = g(∞) = ∞.
This tells us that for any value of d ≥ 1 and R ≥ 0, there exists a value of
r ≥ 0 for which f(r) = g(R).

For the rest of the proof, we abbreviate cr := cr(log(6c0)).
First, we prove (7.16). Note that since (7.16) is a hypothesis of Lemma 29,

we cannot invoke Lemma 29 during the proof of (7.16) in order to avoid a
circular argument.

By the definitions of r and R,

(Ir + Vd) r
d ≥ VdR

d .

Taking logarithms and using the definition of Ir, this rewrites as

d log
R

r
≤ log

(
1 +

Ir
Vd

)
= log

(
1 +

∫
B1

exp(r2ϕ(∥x∥)) dx

Vd

)
≤ log

(
1 + exp

(
r2ϕ(0)

))
.

Suppose, for the sake of contradiction, that r < cr
√
d. Then, we have

d log
R

r
≤ c2rdϕ(0) + log 2 .

Rearranging,

R ≤ exp
(
c2rϕ(0) +

log 2

d

)
r ≤ exp

(
c2rϕ(0) +

log 2

d

)
cr
√
d .

Hence, if R ≥ cR
√
d for a large enough universal constant cR, then we arrive

at the desired contradiction. For later convenience we choose cR to always be
at least 1. This proves (7.16).

Next, we prove (7.17). We use the fact that R ≥ cR
√
d; so that in particular

cR ≥ 1 and thus
√
d ≤ R. Then, using (7.12) from Lemma 29,

(Ir + Vd) r
d ≤ Vd (cd0dR

d−1 + cd0d
(d+1)/2 +Rd) ≤ Vd (cd0

√
dRd + cd0

√
dRd +Rd)
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≤ Vd · 3cd0
√
dRd .

Taking logarithms, rearranging, and using (7.13) from Lemma 29,

d log
R

r
≥ log

(
1 +

Ir
Vd

)
− d log c0 − log(3

√
d) ≥

(
c− log c0 −

log(3
√
d)

d︸ ︷︷ ︸
≤log 3

)
d .

Taking c = log c0 + log 3 + log 2 = log(6c0), this implies R/r ≥ 2 as desired.

Proof of Property (P.2)

The proof of Property (P.2) requires an upper bound on the Poincaré constant
of πω. We recall that the Poincaré constant of a probability measure π is
the smallest constant CPI(π) > 0 such that for all smooth and bounded test
functions f : Rd → R, it holds that

varπ(f) ≤ CPI(π)Eπ[∥∇f∥2] .

We begin with a Poincaré inequality for πinit.

Lemma 31 (Poincaré inequality for πinit). If R ≥
√
d, then the probability

measure πinit has Poincaré constant at most cPIR
2/d for a universal constant

cPI.

Proof. From [Bob03] and the fact that πinit is a radially symmetric log-concave
measure, the Poincaré constant of πinit is bounded by

CPI(πinit) ≤
13Eπinit

[∥·∥2]
d

.

The second moment is

Eπinit
[∥·∥2] =

∫
BR
∥·∥2

Zinit
+

∫
Rd\BR

∥·∥2 exp(−1
2

(∥·∥ −R)2)

Zinit

≤
∫
BR
∥·∥2

VdRd
+
Ad−1

∫∞
0

(r +R)d+1 exp(−r2/2) dr

Ad−1

∫∞
0

(r +R)d−1 exp(−r2/2) dr

≤ R2 +

∫
(r +R)2 ν(dr) ,

where ν is the probability measure on R+ with density

ν(r) ∝ (r +R)d−1 exp
(
−r

2

2

)
. (7.18)
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Note that ν is 1-strongly-log-concave. Hence, by [DM+19, Proposition 1],∫
(r +R)2 ν(dr) ≲ R2 +

∫
r2 ν(dr) ≲ R2 + r2⋆ +

∫
(r − r⋆)2 ν(dr) ≤ R2 + r2⋆ + 1 ,

where r⋆ is the mode of ν. To find the mode, (7.18) and elementary calculus
show that r⋆ satisfies r⋆ (r⋆ + R) = d − 1, which implies r⋆ ≤ (d − 1)/R. If
R ≥

√
d, then r⋆ ≲ R. Combining the bounds, we obtain CPI(πinit) ≲ R2/d.

Next, we recall the statement of the Holley–Stroock perturbation principle.

Theorem 22 (Holley–Stroock perturbation principle, [HS86]). Let π be a
probability measure which satisfies a Poincaré inequality. Suppose that µ is
another probability measure such that

0 < c ≤ dµ

dπ
≤ C <∞ .

Then, µ also satisfies a Poincaré inequality, with

CPI(µ) ≤ C

c
CPI(π) .

Proof. See [BGL14, Lemma 5.1.7].

Corollary 9 (Poincaré inequality for πω). Assume that R ≥
√
d. Then, for

each ω ∈P2r,R,

CPI(πω) ≤ 2cPIR
2

d
exp

(
r2ϕ(0)

)
.

Proof. By (ϕ.1), we know that π̃ω ≥ π̃init and hence Zω ≥ Zinit. It follows that

Zinit

Zω

≤ πω
πinit

=
π̃ω
π̃init

Zinit

Zω

≤ π̃ω
π̃init
≤ exp

(
r2ϕ(0)

)
.

Also, by (7.15),

Zω = π̃ω(Rd \BR) + VdR
d + (Ir − Vd) rd ≤ π̃ω(Rd \BR) + VdR

d + (Ir + Vd) r
d

= 2
(
π̃ω(Rd \BR) + VdR

d
)

= 2Zinit .

Hence, Zinit/Zω ≥ 1/2. The result now follows from Lemma 31 and the
Holley–Stroock perturbation principle (Theorem 22).

To translate Fisher information guarantees into total variation guarantees,
we use the following consequence of the Poincaré inequality.
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Proposition 8 (Fisher information controls total variation). Suppose that a
probability measure π satisfies a Poincaré inequality. Then, for any probability
measure µ,

TV(µ, π)2 ≤ CPI(π)

4
FI(µ ∥ π) .

Proof. See [Gui+09].

We are finally ready to prove Property (P.2). More specifically, we will
show that there is a universal constant cε > 0 such that if ε ≤ exp(−cεd), then
we can choose r and R (depending on ε) such that: (i) r and R are related
according to (7.15), which is necessary for Property (P.1); (ii) R ≥ cR

√
d,

which is necessary for Lemma 30; and (iii) Property (P.2) holds.

Proof of Property (P.2). For any ω ∈P2r,R, suppose that µ satisfies√
FI(µ ∥ πω) ≤ ε. Then, by Corollary 9 and Proposition 8, we have

TV2(µ, πω) ≤ CPI(πω)

4
FI(µ ∥ π) ≤ cPIR

2 exp(r2ϕ(0))

2d
ε2 . (7.19)

Hence, if we choose

R2 =
2d

9cPIε2 exp(r2ϕ(0))
(7.20)

then
√

FI(µ ∥ πω) ≤ ε implies TV(µ, πω) ≤ 1/3, i.e., Property (P.2) holds.
To justify (7.20), note that thus far we have shown that for any choice of

R, there exists a choice of r which depends on R, which we temporarily denote
by r(R), such that (7.15) holds. Also, r(·) is an increasing function. In order
for (7.20) to hold, it is equivalent to require

R2 exp
(
r(R)2 ϕ(0)

)
=

2d

9cPIε2
(7.21)

where the left-hand side is an increasing function of R. We also want R to
satisfy R ≥ cR

√
d, where cR is the universal constant in Lemma 30. From

Lemma 30, for the choice of R = cR
√
d,

r(cR
√
d) ≤ cR

√
d

2
.

Therefore, for this choice of R, the left-hand side of (7.21) is bounded by

c2Rd exp
(c2Rd

4
ϕ(0)

)
.
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If it holds that

ε2 ≤ 2

9cPIc2R exp(c2Rdϕ(0)/4)
(7.22)

then the R satisfying (7.20) necessarily satisfies R ≥ cR
√
d. In turn, (7.22)

holds if ε ≤ exp(−cεd) for a universal constant cε > 0.

Proof of Property (P.3)

Proof of Property (P.3). In the proof of Corollary 9, we showed that Zω ≤
2Zinit. The KL divergence is bounded by

KL(πinit ∥ πω) = Eπinit
ln
( π̃init
π̃ω︸︷︷︸
≤1

Zω

Zinit︸︷︷︸
≤2

)
≤ log 2 ,

which is what we wanted to show.

Proof of Property (P.4)

Proof of Property (P.4). We choose r and R to satisfy (7.15) and (7.20). If
ε ≤ exp(−cεd), then we showed in the proof of Property (P.2) that R ≥ cR

√
d

and hence Lemmas 29 and 30 apply.

As in the proof of (7.17) in Lemma 30, R ≥
√
d implies

(Ir + Vd) r
d ≤ Vd · 3cd0

√
dRd .

Taking logarithms in (7.11) from Lemma 29 and using the above inequality,
we obtain

r2ϕ(0) ≤ log
2rdIr

(2π)d/2
≤ O(d) + log Vd + d logR .

From (7.20), we have

logR =
1

2
log d+ log

1

ε
− 1

2
r2ϕ(0) +O(1) .

Substituting this in and using log Vd = −d
2

log d+O(d),

r2ϕ(0) ≤ d log
1

ε
− d

2
r2ϕ(0) +O(d)
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which is rearranged to yield

r2ϕ(0) ≤ 2d

d+ 2
log

1

ε
+O(1) .

Then, the packing number is lower bounded by

|P2r,R| ≥
(R− r

2r

)d

≥
(R

4r

)d

≥
(
c

√
d exp(− d

d+2
log(1/ε))

ε
√

log(1/ε)

)d

≥
(
c

√
d

log(1/ε)

)d 1

ε2d/(d+2)
,

for some universal constant c.

Auxiliary lemmas

Lemma 32. Suppose that ϕ : R+ → R+ satisfies (ϕ.1), (ϕ.2), and (ϕ.3).
Then, the map x 7→ ϕ(∥x∥) is 1-smooth on Rd.

Proof. First, we claim that |ϕ′(x)|/x ≤ 1 for all x > 0. This follows from (ϕ.3)
because (ϕ.2) implies that the right derivative ϕ′(0+) exists and equals 0.

Next, we have for x ̸= 0

∂2ϕ(∥x∥)
∂xj ∂xi

=
∂

∂xj
ϕ′(∥x∥) xi

∥x∥
= ϕ′′(∥x∥) xixj∥x∥2 − ϕ

′(∥x∥) xixj∥x∥3 + δi,j ϕ
′(∥x∥) 1

∥x∥ .

Thus, in matrix form we have

∇2
xϕ(∥x∥) =

ϕ′(∥x∥)
∥x∥ Id +

(ϕ′′(∥x∥)
∥x∥2 − ϕ′(∥x∥)

∥x∥3
)
xxT.

In particular, the eigenvalues are always ϕ′(∥x∥)
∥x∥ with multiplicity d − 1 and

ϕ′′(∥x∥) with multiplicity 1. The fact that ϕ(∥·∥) is 1-smooth follows.

Optimization of the bound

We wish to find d which maximizes( cd

log(1/ε)

)d/2

ε4/(d+2) ,
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or after taking logarithms, we wish to maximize

f(d) :=
d

2
log d− 4

d+ 2
log

1

ε
− d

2
log log

1

ε
− d

2
log

1

c
.

Rather than maximizing this expression exactly, we shall ignore the last two
terms and pick d to be the smallest integer such that the sum of the first two
terms is non-negative, i.e.,

d (d+ 2) log d

8
≥ log

1

ε
.

It suffices to find d such that g(d) := d2 log d ≥ 8 log(1/ε). In order to invert g,
let y be sufficiently large and consider finding x such that g(x) = y. We make
the choice x = α

√
y/(log y) and plug this into the expression for g in order to

obtain

log g
(
α

√
y

log y

)
= 2 logα + log y − log log y + log log

(
α

√
y

log y

)
= 2 logα + log y + log

1
2

log y − 1
2

log log y + logα

log y︸ ︷︷ ︸
→log(1/2) as y→∞

.

From this expression, we see that provided y is sufficiently large, this expression
is less than log y for α = 0 and greater than log y for α = 3. We conclude that
g−1(y) ≍

√
y/(log y), and therefore that our choice of d satisfies

d ≍
√

log(1/ε)

log log(1/ε)
.

In particular, since d = o(log(1/ε)), then the condition ε ≤ exp(−cεd) holds
for all sufficiently small ε, and Theorem 19 holds. Then,

f(d) ≥ −d
2

log log
1

ε
− d

2
log

1

c
≍ −

√(
log

1

ε

) (
log log

1

ε

)
.

This verifies the expression in Section 7.4.

To justify the simplified expression of the bound that we gave in the informal
statement of Theorem 16, note that in dimension

d ≲

√
log(1/ε)

log log(1/ε)
(7.23)
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we have

log
(( cd

log(1/ε)

)d/2)
=
d

2

(
log d− log log

1

ε
− log

1

c

)
︸ ︷︷ ︸

negative as ε↘0

≳ −
√(

log
1

ε

) (
log log

1

ε

)
.

In other words, we can simplify our bound as follows. For all d ≥ 1 and all ε
smaller than a universal constant, if the condition (7.23) holds, then we have
the lower bound

C (d, 1, ε) ≳
1

ε2d/(d+2) exp(C
√

log(1/ε) log log(1/ε))
.

Otherwise, if the condition (7.23) fails, then we instead have the bound

C (d, 1, ε) ≳
1

ε2 exp(C
√

log(1/ε) log log(1/ε))
≥ 1

ε2d/(d+2) exp(C
√

log(1/ε) log log(1/ε))
.

In either case, we have C (d, 1, ε) ≥ (1/ε)2d/(d+2)−o(1). Together with Theorem 20
on the univarate case and Lemma 22 on rescaling, it yields Theorem 16.

Proof of Theorem 20

In the univarate case, we can sharpen Theorem 19 by obtaining a better bound
on the Poincaré constant of πω. We use the following result.

Theorem 23 (Muckenhoupt’s criterion). Let π be a probability density on R
and let m be a median of π. Then,

CPI(π) ≍ max
{

sup
x<m

π
(
(−∞, x]

) ∫ m

x

1

π
, sup

x>m
π
(
[x,+∞)

) ∫ x

m

1

π

}
.

Proof. See [BGL14, Theorem 4.5.1].

Lemma 33 (improved Poincaré inequality for πω). Suppose that d = 1 and
R ≥ 1. Then, for all ω ∈P2r,R,

CPI(πω) ≲ R2 .

Proof. We use Muckenhoupt’s criterion (Theorem 23). First, we note that by
Property (P.1), it holds that πω(ω +Br) = 1

2
which implies that ω − r ≤ m ≤

ω + r. We proceed to check that

sup
x>m

πω
(
[x,+∞)

) ∫ x

m

1

πω
≲ R2 .
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The other condition is verified in the same way due to symmetry.
We split into three cases. First, suppose that m < x < ω + r. Then, as

in the proof of Corollary 9, we have Zω ≤ 2Zinit = 2 π̃init(R \ BR) + 4R ≤
2
√

2π + 4R ≲ R. Then,

πω
(
[x,+∞)

) ∫ x

m

1

πω
≤ Zω (x−m) ≲ Rr ≤ R2 .

Next, suppose that ω + r < x < R. Then,

πω
(
[x,+∞)

) ∫ x

m

1

πω
= π̃ω

(
[x,+∞)

) ∫ x

m

1

π̃ω
≤

(
R− x+

√
π

2

)
(x−m) ≲ R2 .

Finally, suppose that x > R. Then, using standard Gaussian tail bounds,

πω
(
[x,+∞)

) ∫ x

m

1

πω
= π̃ω

(
[x,+∞)

) ∫ x

m

1

π̃ω

≤
[√

2π
(1

2
∧ 1

x−R
)

exp
(
−(x−R)2

2

)] [
R−m+ (x−R) exp

((x−R)2

2

)]
.

If x−R ≤ 1, then this yields

πω
(
[x,+∞)

) ∫ x

m

1

πω
≲ R .

Otherwise, if x−R ≥ 1, then we obtain

πω
(
[x,+∞)

) ∫ x

m

1

πω
≲

1

x−R exp
(
−(x−R)2

2

) [
R + (x−R) exp

((x−R)2

2

)]
≲ R .

This completes the proof.

We now use the improved Poincaré inequality in order to establish Theo-
rem 20.

Proof of Theorem 20. We follow the proof of Theorem 19. The proofs of
Properties (P.1) and (P.3) remain unchanged.

In the proof of Property (P.2), the equation (7.19) is replaced by

TV2(µ, πω) ≤ cPIR
2ε2

for a different universal constant cPI > 0, using Lemma 33. Hence, we choose
R2 = 1/(9cPIε

2) in order to verify Property (P.2). Since we require R ≥ cR for
a universal constant cR ≥ 1, this requires ε ≤ exp(−cε) for a universal constant
cε > 0.
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Next, we turn towards the sharpened statement of Property (P.4). From (7.15),
r is chosen so that

(Ir + 2) r = π̃ω(R \BR) + 2R .

Using (7.11) from Lemma 29, we have

rIr ≍ exp
(
r2ϕ(0)

)
≳ r .

This implies that

exp
(
r2ϕ(0)

)
≳ (Ir + 2) r ≳ R ,

or r ≳
√

logR ≍
√

log(1/ε). Hence,

|P2r,R| ≥
R

4r
≳

1

ε
√

log(1/ε)
.

By substituting this new bound on the packing number into the information
theoretic argument of Theorem 19 (see (7.10), where M = |P2r,R|), we obtain
Theorem 20.

7.8 Further discussion of the univariate case

In this section, we provide further discussion of algorithms for the univariate
case.

Rejection sampling. First of all, we note that the poly(1/ε) lower bounds
of Theorems 19 and 20 may come as a surprise due to the existence of the
rejection sampling algorithm. We briefly recall rejection sampling here. Let
π̃ be an unnormalized density, let Zπ :=

∫
π̃ denote the normalizing constant,

and let π := π̃/Z denote the target distribution. Rejection sampling requires
knowledge of an upper envelope µ̃ for π̃, i.e., a function µ̃ satisfying µ̃ ≥ π̃
pointwise. The algorithm proceeds by repeatedly drawing samples from the
density µ := µ̃/Zµ, where Zµ :=

∫
µ̃; each sample X is accepted with probability

π̃(X)/µ̃(X).
It is standard to show [see, e.g., Che+22d] that the accepted samples are

drawn exactly from the target π, and that the number of queries made to π̃
until the first accepted sample is geometrically distributed with mean Zµ/Zπ.
To translate this into a total variation guarantee, we run the algorithm for N
iterations and output “FAIL” if we have not accepted a sample by iteration N .
The probability of failure is at most (1− Zπ/Zµ)N , so the number of iterations
required for the output of the algorithm to be ε-close to the target π in total
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variation distance is N ≥ log(1/ε)/ log(1− Zπ/Zµ).
Although this is a total variation guarantee, rather than a Fisher information

guarantee, it suggests (similarly to Section 7.5) that log(1/ε) rates are attainable
using rejection sampling. The reason why this does not contradict our lower
bounds in Theorems 19 and 20 is that the initialization oracle we consider,
which provides a measure µ0 such that KL(µ0 ∥ π) ≤ K0, is not sufficient to
construct an upper envelope of the unnormalized density π̃.

Indeed, consider instead a stronger initialization oracle which outputs a
measure µ0 such that

max
{

sup ln
µ0

π
, sup ln

π

µ0

}
≤M0 <∞ .

Denote the complexity of obtaining
√
FI(µ ∥ π) ≤ ε over the class of 1-

log-smooth distributions on Rd with this stronger initialization oracle by
C∞(d,M0, ε). Then, the rejection sampling algorithm can be implemented
within this new oracle model. It yields the following.

Proposition 9 (Fisher information guarantees via rejection sampling). It holds
that

C∞(d,M0, ε) ≤ Õ
(

exp(3M0) log

√
d

ε

)
.

Proof. For the algorithm, we use rejection sampling, which requires producing
an upper envelope. Recall that in our oracle model, we can query the value of
an unnormalized version π̃ of π. By replacing π̃ with π̃/π̃(0), we can assume
that π̃(0) = 1. Then,

π̃ =
π̃

π̃(0)
=

π

π(0)
≤ exp(M0)µ0

exp(−M0)µ0(0)
=

exp(2M0)

µ0(0)︸ ︷︷ ︸
:=Zµ0

µ0 .

This shows that µ̃0 := Zµ0 µ0 is an upper envelope for π̃. Also, using π(0) =
1/Zπ,

Zµ0

Zπ

= exp(2M0)
π(0)

µ0(0)
≤ exp(3M0) .

Hence, we can run rejection sampling, where we output a sample from µ0 if the
algorithm exceeds N iterations. Therefore, the law of the output of rejection
sampling is µ = (1− p) π + p µ0, where p = (1− Zπ/Zµ0)

N ≤ exp(−NZπ/Zµ0)
is the probability of failure. We calculate

1 + χ2(µ ∥ π) = Eµ

(µ
π

)
= 1− p+ pEµ

(µ0

π

)
≤ 1 + p exp(M0) .
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Applying Lemma 23 with ε2χ = p exp(M0) (assuming that p ≤ exp(−M0)) and
t ≲ 1, we obtain

FI(µQt ∥ π) ≲
p exp(M0) (d+ log(1/p)−M0)

t
+ dt .

We set t ≲ ε2/d so that

FI(µQt ∥ π) ≲
d2 exp(M0) p log(1/p)

ε2
+ ε2 .

In order to make the first term at most ε2/2, we take p = Θ̃(ε4/(d2 exp(M0))).
In turn, this is satisfied provided

N ≥ Zµ0

Zπ

log
1

p
≍ exp(3M0) log

d2 exp(M0)

ε4
,

which proves the desired result.

Hence, under the stronger oracle model, log(1/ε) rates are indeed possible
(albeit with exponential dependence on M0). To see why this does not contradict
the lower bound construction of Theorem 20, observe that if we take the
initialization oracle to be πinit, then our construction satisfies M0 = r2ϕ(0). By
inspecting the proof of Theorem 20, one sees that r ≍

√
log(1/ε). Hence, our

construction does not provide a lower bound for C∞(1,M0, ε) for constant M0.
Instead, we obtain the following lower bound.

Corollary 10 (lower bound for the stronger initialization oracle). There exists
a universal constant c > 0 such that for all ε ≤ 1/c, it holds that

C∞
(
1, c log(1/ε), ε

)
≳

1

ε
√

log(1/ε)
.

Note also the following corollary.

Corollary 11 (high-accuracy Fisher information requires exponential depen-
dence on M0). Suppose that there exists an algorithm which works within the
stronger oracle model and which, for any 1-log-smooth distribution π on R,
outputs a measure µ with

√
FI(µ ∥ π) ≤ ε using N queries, where the query

complexity satisfies

N ≤ f(M0) polylog
(1

ε

)
for some increasing function f : [1,∞) → R+. Then, there is a universal
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constant c′ > 0 such that

f(M0) ≥ Ω̃
(
exp(c′M0)

)
.

Proof. Using Corollary 10 with M0 = c log(1/ε), we have

f
(
c log

1

ε

)
polylog

(1

ε

)
≥ N ≳

1

ε
√

log(1/ε)
,

or

f
(
c log

1

ε

)
≥ 1

ε polylog(1/ε)
.

Writing this in terms of M0 = c log(1/ε), or ε = exp(−M0/c),

f(M0) ≥
exp(M0/c)

(M0/c)
O(1)

= Ω̃
(

exp
(M0

c

))
which establishes the result.

Hence, we see that there is a fundamental trade-off in the stronger oracle
model: any algorithm must either incur polynomial dependence on 1/ε (e.g.,
averaged LMC), or exponential dependence on M0 (e.g., rejection sampling,
see Proposition 9).

The stronger oracle model is strictly stronger. We also observe the
following consequence of these observations. On one hand, our lower bound in
Thoerem 20 shows that

C (1, K0 = 1, ε) ≥ Ω
( 1

ε
√

log(1/ε)

)
.

On the other hand, for constant M0, rejection sampling (Proposition 9) yields

C∞(1,M0, ε) ≤ Õ
(

exp(3M0) log
1

ε

)
.

Hence, the stronger oracle model is indeed stronger: obtaining Fisher infor-
mation guarantees is strictly easier with access to an oracle with bounded M0,
rather than an oracle with bounded K0.

On the effect of the radius of the effective support. In our lower
bound construction, the distributions are “effectively” supported on a ball of
radius R, where R scales with 1/ε. Here, we show that this is in fact necessary,
by showing that for any fixed d and R, it is possible to sample from such a
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distribution in Fisher information using O(log(1/ε)) queries. The algorithm
involves uses a simple grid search.

Proposition 10 (sampling from bounded effective support). Suppose that the
target distribution π ∝ exp(−V ) on Rd has the following properties:

1. V (0) = 0.

2. V (x) = 1
2

(∥x∥ −R)2+, for ∥x∥ ≥ R.

3. V is 1-smooth.

Then, there is an algorithm which outputs µ with
√

FI(µ ∥ π) ≤ ε using N
queries to (V,∇V ), where the number of queries satisfies

N ≲ (cR)d + log

√
d

ε
,

where c > 0 is a universal constant.

Proof. We use function approximation to build an upper envelope for π̃ :=
exp(−V ), and then apply rejection sampling. Namely, let N be a 1-net of
BR, and for each x ∈ BR let xN denote a closest point of N to x. Define the
approximation

V̂ (x) :=

{
1
2

(∥x∥ −R)2+ , ∥x∥ ≥ R ,

V (xN ) + ⟨∇V (xN ), x− xN ⟩ − 1
2
∥x− xN ∥2 , ∥x∥ < R .

By 1-smoothness of V , we have V ≥ V̂ , so that if we let µ̃0 := exp(−V̂ ), then
µ̃0 ≥ π̃. Also, for ∥x∥ < R, we have the bound

µ̃0(x) = exp
(
−V (xN )− ⟨∇V (xN ), x− xN ⟩+

1

2
∥x− xN ∥2

)
≤ exp

(
−V (x) + ∥x− xN ∥2

)
= π̃(x) exp(∥x− xN ∥2) ≤ exp(1) π̃(x) ,

so that Zµ0/Zπ ≲ 1. We now perform rejection sampling using N ′ iterations
with upper envelope µ̃0, outputting a sample from µ0 if N ′ iterations are
exceeded. Tracing through the proof of Proposition 9, one can show that
for the output µ of rejection sampling, it holds that FI(µQt ∥ π) ≤ ε2 for an
appropriate choice of t. Moreover, the number of iterations of rejection sampling
required to achieve this satisfies N ′ ≲ log(

√
d/ε). Finally, since |N | ≤ (cR)d

for a universal constant c > 0, it requires O((cR)d) queries in order to build
the upper envelope µ̃0, which proves the result.

To summarize the situation, if the effective radius R is known and fixed,
then it is possible to obtain O(log(1/ε)) complexity. However, if there is no a
priori upper bound on the radius R, then the lower bounds of Theorem 20 and
Corollary 10 apply.
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7.9 Conclusion

In this chapter, we have provided the first lower bounds for the query complexity
of obtaining Fisher information guarantees for sampling. Our results have a
number of interesting implications, which we discussed thoroughly in previous
sections, and they advance our understanding of the fundamental task of
non-log-concave sampling.

To conclude, we highlight a few problems left open in our work. Most
notably, our lower bound in Theorem 19 does not match the upper bound of
averaged LMC, and it is an important question to close this gap. We also note
that our lower bounds in Theorems 19 and 20 do not capture the dependence
of K0, and this is also left for future work.
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Chapter 8

Rejection sampling lower bounds

8.1 Introduction

We begin our general sampling lower bound investigations by looking at a toy
example: discrete distributions supported on a finite alphabet. Formally, let
p be a probability distribution on the set of integers [N ] := {1, . . . , N}. Our
algorithms will be given query access to p̃ := Zp, with an unknown constant Z,
and we wish to lower bound the number of queries needed to draw a sample
that is close in total variation distance (TV) to p.

It is clear that if we impose no assumptions on the distribution, then the
mass of the target can be concentrated on any point in the support, and
hence the lower bound would be Ω(n), which will be tight [BP17]. Instead, we
consider various classes of shape-constrained discrete distributions that exploit
the ordering of the set [N ] (monotone, strictly unimodal, discrete log-concave).
We also consider a class of distributions on the complete binary tree of size N ,
where only a partial ordering of the alphabet is required.

Despite the simplicity of the distribution class, we were unable to obtain
lower bounds that hold for all possible sampling algorithms, so we restricted the
class of algorithms to rejection sampling algorithms only. Rejection sampling,
along with Monte Carlo simulation and importance sampling, can be traced
back to the work of Stan Ulam and John von Neumann [Neu51; Eck87]. As the
name suggests, rejection sampling is an algorithm which proposes candidate
samples, which are then accepted with a probability carefully chosen to ensure
that accepted samples have distribution p. Specifically, we seek to characterize
the number of queries needed to obtain rejection sampling algorithms with
constant acceptance probability (e.g. at least 1/2), uniformly over the classes
of target distributions. This still gives the algorithm total freedom in how to
construct its proposal distribution.

For the shape-constrained classes of discrete distributions, we show that the
rejection sampling complexity scales sublinearly in the alphabet size N , and
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we provide rejection sampling algorithms with matching upper bounds that
show our bounds are tight. The results can be compared with the literature
on sublinear algorithms [Gol10; Gol17]. This body of work is largely focused
on statistical questions such as estimation or testing and the present paper
extends it in another statistical direction, namely sampling from a distribution
known only up to normalizing constant, which is a standard step of Bayesian
inference.

Our results in this chapter are fairly simple, but the key idea in the
construction, that of hiding probability mass at different length scales away
from the origin, turns out to be useful for the general sampling lower bound
that we obtain in Chapter 9.

This chapter is based on the joint work [Che+22c], with Sinho Chewi, Patrik
Gerber, Thibaut Le Gouic, and Philippe Rigollet.

8.2 Background on rejection sampling

complexity

Classical setting with exact density queries

To illustrate the idea of rejection sampling, we first consider the classical setting
where we can make queries to the exact target distribution p. Given a proposal
distribution q and an upper bound M on the ratio maxx∈[N ] p(x)/q(x), rejection
sampling proceeds by drawing a sample X ∼ q and a uniform random variable
U ∼ uniform(0, 1). If U ≤ p(X)/(Mq(X)), the sample X is returned; otherwise,
the whole process is repeated. Note that the rejection step is equivalent to
flipping a biased coin: conditionally on X, the sample X is accepted with
probability p(X)/(Mq(X)) and rejected otherwise. We refer to this procedure
as rejection sampling with acceptance probability p/(Mq).

It is easy to check that the output of this algorithm is indeed distributed
according to p. Since Mq forms an upper bound on p, the region Gq = {(x, y) :
x ∈ [N ], y ∈ [0,Mq(x)]} is a superset of Gp = {(x, y) : x ∈ [N ], y ∈ [0, p(x)]}.
Then, a uniformly random point from Gq conditioned on lying in Gp is in turn
uniform on Gp, and so its x-coordinate has distribution p. A good rejection
sampling scheme hinges on the design of a good proposal q that leads to few
rejections.

If q = p, then the first sample X is accepted. More generally, the number of
iterations required before a variable is accepted follows a geometric distribution
with parameter 1/M (and thus has expectation M). In other words, the bound
M characterizes the quality of the rejection sampling proposal q, and the task of
designing an efficient rejection sampling algorithm is equivalent to determining
a strategy for building the proposal q which guarantees a small value of the
ratio M using few queries.
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Density queries up to normalization

In this chapter, we instead work in the setting where we can only query
the target distribution up to normalization, which is natural for Bayesian
statistics, randomized algorithms, and online learning. Formally, let P be a
class of probability distributions over a finite alphabet X , and consider a
target distribution p ∈ P. We assume that the algorithm A has access to an
oracle which, given x ∈X , outputs the value Zp(x), where Z is an unknown
constant. The value of Z does not change between queries. Equivalently, we
can think of the oracle as returning the value p(x)/p(x0), where x0 ∈X is a
fixed point with p(x0) > 0.

To implement rejection sampling in this query model, the algorithm must
construct an upper envelope for p̃, i.e., a function q̃ satisfying q̃ ≥ p̃. We can
then normalize q̃ to obtain a probability distribution q. To draw new samples
from p, we first draw samples X ∼ q, which are then accepted with probability
p̃(X)/q̃(X). The following theorem shows that the well-known guarantees for
rejection sampling also extend to our query model.

Theorem 24. Suppose we have query access to the unnormalized target p̃ = pZp

supported on X , and that we have an upper envelope q̃ ≥ p̃. Let q denote
the corresponding normalized probability distribution, and let Zq denote the
normalizing constant, i.e., q̃ = qZq. Then, rejection sampling with acceptance
probability p̃/q̃ outputs a point distributed according to p, and the number of
samples drawn from q until a sample is accepted follows a geometric distribution
with mean Zq/Zp.

Proof. Since q̃ is an upper envelope for p̃, then p̃(X)/q̃(X) ≤ 1 is a valid
acceptance probability. Clearly, the number of rejections follows a geometric
distribution. The probability of accepting a sample is given by

P(accept) =

∫
X

p̃(x)

q̃(x)
q(dx) =

Zp

Zq

∫
X

p(dx) =
Zp

Zq

.

Let X1, X2, X3 . . . be a sequence of i.i.d. samples from q and let U1, U2, U3 . . .
be i.i.d. uniform[0, 1]. Let A ⊆X be a measurable set, and let X be the output
of the rejection sampling algorithm. Partitioning by the number of rejections,
we may write

P(X ∈ A) =
∞∑
n=0

P
(
Xn+1 ∈ A, Ui >

p̃(Xi)

q̃(Xi)
∀ i ∈ [n], Un+1 ≤

p̃(Xn+1)

q̃(Xn+1)

)
=

∞∑
n=0

P
(
Xn+1 ∈ A, Un+1 ≤

p̃(Xn+1)

q̃(Xn+1)

)
P
(
U1 >

p̃(X1)

q̃(X1)

)n

=
∞∑
n=0

(∫
A

p̃(x)

q̃(x)
q(dx)

)(∫
X

(
1− p̃(x)

q̃(x)

)
q(dx)

)n
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= p(A)
Zp

Zq

∞∑
n=0

(
1− Zp

Zq

)n
= p(A) .

After n queries to the oracle for p (up to normalization), the output A(n, p̃)
of the algorithm is an upper envelope q̃ ≥ p̃, and in light of the above theorem
it is natural to define the ratio

r(A, n, p̃) :=
Zq

Zp

=

∑
x∈X q̃(x)∑
x∈X p̃(x)

.

The ratio achieved by the algorithm determines the expected number of queries
to p̃ needed to generate each new additional sample from p.

As discussed in the introduction, our goal when designing a rejection
sampling algorithm is to minimize this ratio uniformly over the choice of target
p ∈ P . We therefore define the rejection sampling complexity of the class P as
follows.

Definition 5. For a class of distributions P, the rejection sampling complexity
of P is the minimum number n ∈ N of queries needed, such that there exists
and algorithm A that satisfies

sup
p̃∈P̃

r(A, n, p̃) ≤ 2 ,

where P̃ := {p̃ = Zp : Z > 0} is the set of all positive rescalings of distributions
in P.

The constant 2 in Definition 5 is arbitrary and could be replaced by any
number strictly greater than 1, but we fix this choice at 2 for simplicity. With
this choice of constant, and once the upper envelope is constructed, new samples
from the target can be generated with a constant (≤ 2) expected number of
queries per sample.

Note that when the alphabet X is finite and of size N , then N is a trivial
upper bound for the complexity of P , simply by querying all of the values of p̃
and then returning the exact upper envelope A(N, p̃) = p̃. Therefore, for the
discrete setting, our interest lies in exhibiting natural classes of distributions
whose complexity scales sublinearly in N .

In this chapter, we specifically focus on deterministic algorithms A. In fact,
we believe that adding internal randomness to the algorithm does not signifi-
cantly reduce the query complexity. Using Yao’s minimax principle [Yao77],
it seems likely that our lower bounds can extended to hold for randomized
algorithms. We leave this extension for future work.
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Table 8.1: Rejection sampling complexities for classes of discrete distributions.
Here, N always denotes the alphabet size, X = {1, . . . , N}.

Class Definition Complexity Theorem Algorithm

monotone Definition 6 Θ(logN) Theorem 25 Algorithm 2
strictly unimodal Definition 7 Θ(logN) Theorem 26 Algorithm 3

cliff-like Definition 8 Θ(log logN) Theorem 27 Algorithm 4
discrete log-concave Definition 9 Θ(log logN) Theorem 28 Algorithm 4

monotone on a binary tree Definition 10 Θ(N/ logN) Theorem 29 Algorithm 5

8.3 Results for shape-constrained discrete

distributions

In order to improve on the trivial rate of O(N) on an alphabet of size N ,
we need to assume some structure of the target distributions. A well-known
set of structural assumptions are shape constraints [GJ14; SS11], which have
been extensively studied in the setting of estimation and inference. When the
alphabet is [N ], shape constraints are built on top of the linear ordering of
the support. We show that such assumptions indeed significantly reduce the
complexity of the restricted classes of distributions to sublinear rates. We also
consider the setting where the linear ordering of the support is relaxed to a
partial ordering, and show it also results in sublinear complexity

Our complexity results for various classes of discrete distributions are
summarized in Table 8.1. We define the various classes below, and give the
sublinear complexity algorithms that construct the upper envelopes in Figure 8-
1.

Structured distributions on a linearly ordered set

A natural class of discrete distributions which exploits the linear ordering of
the set [N ] is the class of monotone distributions, defined below.

Definition 6. The class of monotone distributions on [N ] is the class of
probability distributions p on [N ] with p(1) ≥ p(2) ≥ p(3) ≥ · · · ≥ p(N).

We show in Theorem 25 that the rejection sampling complexity of the class
of monotone distributions is Θ(logN), achieved via Algorithm 2. It is also
straightforward to extend Algorithm 2 to handle the class of strictly unimodal
distributions defined next (see Theorem 26 and Algorithm 3).

Definition 7. The class of strictly unimodal distributions on [N ] is the class
of probability distributions p on [N ] such that: there exists a point x ∈ [N ] with
p(1) < p(2) < · · · < p(x) and p(x) > p(x+ 1) > · · · > p(N).
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Algorithm 2 Construct upper envelope for monotone distributions on [N ]

1: Query the values p̃(2i), 0 ≤ i ≤ ⌈log2N⌉ − 1.
2: Construct the upper envelope q̃ as follows: set q̃(1) := p̃(1), and

q̃(x) := p̃(2i) , for x ∈ (2i, 2i+1] .

Algorithm 3 Construct upper envelope for strictly unimodal distributions on
[N ]

1: Use binary search to find the mode of p̃.
2: Use Algorithm 2 to construct an upper envelope on each side of the mode.

Algorithm 4 Construct upper envelope for discrete log-concave distributions
on [N ]

1: Use binary search to find the first index 1 ≤ i ≤ ⌈log2N⌉ such that
p̃(2i) ≤ p̃(1)/2, or else determine that i does not exist.

2: If i does not exist, output the constant upper envelope q̃ ≡ p̃(1).
3: Otherwise, output

q̃(x) :=


p̃(1) , x < 2i ,

p̃(2i) exp
[
− log(p̃(1)/p̃(2i))

2i − 1
(x− 2i)

]
, x ≥ 2i .

Algorithm 5 Construct upper envelope for monotone distributions on binary
trees of size [N ]

1: Query p̃(x) for all vertices x which are at depth at most ℓ0 := ℓ−⌊log2 ℓ⌋+1,
where ℓ is the maximum depth of the tree.

2: Output

q̃(x) :=


p̃(x) , if depth(x) ≤ ℓ0 ,

p̃(y) , if depth(x) > ℓ0 , depth(y) = ℓ0 ,

and x is a descendant of y .

Figure 8-1: Algorithms for constructing rejection sampling upper envelopes
which attain the minimax rates described in Table 8.1.
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It is natural to ask whether further structural properties can yield even faster
algorithms for sampling. This is indeed the case, and we start by illustrating
this on a simple toy class of distributions.

Definition 8. The class of cliff-like distributions on [N ] is the class of proba-
bility distributions uniform([N0]) for N0 ∈ [N ].

Since the class of cliff-like distributions is contained in the class of monotone
distributions, Algorithm 2 yields a simple upper bound of O(logN) for this
class. However, we can do better by observing that in order to construct a
good rejection sampling upper envelope for this class, we do not need to locate
the index N0 of the cliff exactly; it suffices to find it approximately, which in
this context means finding an index N ′

0 such that N ′
0 ≤ N0 ≤ 2N ′

0. Since we
only need to search over O(logN) possible values for N ′

0, binary search can
accomplish this using only O(log logN) queries. We prove in Theorem 27 that
this rate is tight.

Remark 7. The class of cliff-like distributions provides a simple example of a
class for which obtaining queries to the exact distribution is not equivalent to
obtaining queries for the distribution up to a normalizing constant. Indeed,
in the former model, the value of p(1) = 1/N0 reveals the distribution in one
query, implying a complexity of Θ(1), whereas we prove in Theorem 27 that
the complexity under the second model is Θ(log logN).

Instead of formally describing the algorithm for sampling from cliff-like
distributions, we generalize the algorithm to cover a larger class of structured
distributions: the class of discrete log-concave distributions (see [SW14, §4]).

Definition 9. The class of discrete log-concave distributions on [N ] is the
class of probability distributions p on [N ] such that for all x ∈ {2, . . . , N − 1},
we have p(x)2 ≥ p(x− 1)p(x+ 1). Equivalently it is the class of distributions p
on [N ] for which there exists a convex function V : R → R ∪ {∞} such that
p(x) = exp(−V (x)) for all x ∈ [N ]. In addition, we assume that the common
mode of all of the distributions is at 1.1

We prove in Theorem 28 that the rejection sampling complexity of discrete
log-concave distributions is Θ(log logN), achieved by Algorithm 4 (note that
this algorithm also applies for cliff-like distributions, since cliff-like distributions
are discrete log-concave).

Remark 8. The class of discrete log-concave distributions is another case for
which rejection sampling with exact density queries is much easier than with
queries up to a normalizing constant. In the former model, [Dev87] requires
only a single query to construct a rejection sampling upper envelope with ratio
≤ 5. In contrast, we show in Theorem 28 that the complexity under the second
model is Θ(log logN).

1Without this condition, the class of discrete log-concave distributions includes the family
of all Dirac measures on [N ], and the rejection sampling complexity is then trivially Θ(N).
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Monotone on a binary tree

The previous examples of structured classes all rely on the linear ordering of
[N ]. We now show that it is possible to develop sublinear algorithms when
the linear ordering is relaxed to a partial ordering. Specifically, we consider
a structured class of distributions on balanced binary trees (note that the
previously considered distributions can be viewed as distributions on a path
graph).

Definition 10. The class of monotone distributions on a binary tree with
N vertices is the class of probability distributions p on a binary tree with N
vertices, with maximum depth ⌈log2(N +1)⌉, such that for every non-leaf vertex
x with children x1 and x2, one has p(x) ≥ p(x1) + p(x2).

We prove in Theorem 29 that the rejection sampling complexity of this
class is Θ(N/ logN); the corresponding algorithm is given as Algorithm 5.

In a sense, Definition 10 reduces to the class of monotone distributions
when the underlying graph is a path, since each vertex in the (rooted) path
graph has one “child”.The reader may wonder whether replacing the condition
p(x) ≥ p(x1) + p(x2) with p(x) ≥ p(x1)∨ p(x2) is more natural. In Theorem 30,
we show that rejection sampling cannot achieve sublinear complexity under
the latter definition.

8.4 Proofs of the complexity bounds

We begin with a few general comments on the lower bounds. Recall that the
rejection sampling task, given query access to the unnormalized distribution p̃,
is to construct an upper envelope q̃ ≥ p̃ satisfying Zq ≤ 2Zp. We in fact prove
lower bounds for an easier task, namely, the task of constructing a proposal
distribution q such that ∥p/q∥∞ ≤ 2. Note that if we have an upper envelope
q̃ ≥ p̃ with Zq ≤ 2Zp, then the corresponding normalized distribution q satisfies

∥∥p
q

∥∥
∞ := sup

x∈X

p(x)

q(x)
= sup

x∈X

p̃(x)

q̃(x)︸︷︷︸
≤1

Zq

Zp︸︷︷︸
≤2

≤ 2 , (8.1)

so the latter task is indeed easier.
The proofs of the lower bounds are to an extent situational, but we outline

here a fairly generic strategy that seems useful for many (but not all) classes
of distributions. First, we fix a reference distribution p⋆ ∈ P and assume that
the algorithm has access to queries to an oracle for p⋆ (up to normalization).
Also, suppose that the algorithm makes queries at the points x1, . . . , xn. Since
we assume that the algorithm is deterministic, if p ∈ P is another distribution
which agrees with p⋆ at the queries x1, . . . , xn (up to normalization), then the

152



algorithm produces the same output regardless of whether it is run on p or p⋆.
In particular, the output q of the algorithm must satisfy both ∥p/q∥∞ ≤ 2 and
∥p⋆/q∥∞ ≤ 2.

More generally, for each y ∈ [N ] we can construct an adversarial pertur-
bation py ∈ P of p⋆ which maximizes the probability of y, subject to being
consistent with the queried values. Then the rejection sampling guarantee of
the algorithm ensures that

2 ≥
∥∥py
q

∥∥
∞ ≥

py(y)

q(y)
=

1

q(y)
sup

{
p(y) : p ∈ P , p(xi)

p(xj)
=
p⋆(xi)

p⋆(xj)
for all i, j ∈ [n]

}
.

Since q is a probability distribution, this yields the inequality

1 =
∑
y∈[N ]

q(y) ≥ 1

2

∑
y∈[N ]

sup
{
p(y) : p ∈ P , p(xi)

p(xj)
=
p⋆(xi)

p⋆(xj)
for all i, j ∈ [n]

}
.

(8.2)

By analyzing this inequality for the various classes of interest, it is seen to
furnish a lower bound on the number of queries n. Thus, the lower bound
strategy consists of choosing a judicious reference distribution p⋆, constructing
the adversarial perturbations py, and using the inequality (8.2) to produce a
lower bound on n.

Monotone distributions

Theorem 25. Let P be the class of monotone distributions supported on [N ], as
given in Definition 6. Then the rejection sampling complexity of P is Θ(logN).

Upper bound

In the proof, let p denote the target distribution and assume that we can query
the values of p̃ = pZp. Also, by rounding N up to the nearest power of 2, and
considering p to be supported on this larger alphabet, we can assume that N
is a power of 2; this will not affect the complexity bound.

Proof. We construct the upper envelope q̃ as follows: first query the values of
p̃(2i), 0 ≤ i ≤ log2N − 1, which requires O(logN) queries; then q̃ is given as
follows: set q̃(1) := p̃(1) and

q̃(x) := p̃(2i) , for x ∈ (2i, 2i+1] .

Note that q̃ is an upper envelope of p̃ because p is assumed to be monotone.

To complete the proof of the upper bound in Theorem 25, we just have to
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check that Zq/Zp ≤ 2. We use the definitions of the normalizing constants:

Zp = p̃(1) +

log2 N−1∑
i=0

2i+1∑
x=2i+1

p̃(x) ≥ p̃(1) +

log2 N−1∑
i=0

2ip̃(2i+1)

≥ p̃(1) +
1

2

log2 N−2∑
i=0

2i+2∑
x=2i+1+1

q̃(x) = p̃(1)︸︷︷︸
=(q̃(1)+q̃(2))/2

+
1

2

N∑
x=3

q̃(x) =
1

2

N∑
x=1

q̃(x) =
1

2
Zq .

The bound above shows that Zq/Zp ≤ 2, which concludes the proof.

Lower bound

In this proof, we follow the lower bound strategy encapsulated in (8.2).

Proof. Let x1 < . . . < xn denote the queries; to simplify the proof, we will also
assume that 1 and N are part of the queries. This can be interpreted as giving
the algorithm two free queries, and the rest of the proof can be understood as
a lower bound on the number of queries that the algorithm made, minus two.

We choose our reference distribution to be p⋆(x) ∝ 1/x, i.e., we take

p⋆(x) =
cN

x logN
, for x ∈ [N ] ,

where cN is used to normalize the distribution, and it satisfies cN ≍ 1. To
construct the adversarial perturbation py, suppose that y lies strictly between
the queries xi and xi+1. Let α := (y − xi)−1∑

xi<x≤y p
⋆(x) denote the average

of p⋆ on (xi, y]. Then, we define

py(x) :=

{
α , xi < x ≤ y ,

p⋆(x) , otherwise .

Since we replace the part of p⋆ on (xi, y] with its average value on this interval,
then py is also a probability distribution:∑

x∈[N ]

py(x) =
∑
x∈[N ]

p⋆(x) +
∑

xi<x≤y

{α− p⋆(x)} = 1 .

Since p⋆ is decreasing, it is clear that py is too. Also, we can lower bound α via

α =
1

y − xi
∑

xi<x≤y

cN
x logN

≥ cN
logN

log y+1
xi+1

y − xi
.
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Since py agrees with the queries, we can substitute this into (8.2) to obtain

2 logN

cN
≥

n−1∑
i=1

∑
xi<y<xi+1

log y+1
xi+1

y − xi
.

In what follows, let ∆i := xi+1/xi. We will only focus on the terms with
∆i ≥ 8, so assume now that ∆i ≥ 8. Let us evaluate the inner term via dyadic
summation:∑

xi<y<xi+1

log y+1
xi+1

y − xi
=

∑
0<y<xi+1−xi

log(1 + y
xi+1

)

y

≥
∑

0≤j≤log2
xi+1−xi−1

xi+1
−1

∑
2j(xi+1)≤y<2j+1(xi+1)

log(1 + y
xi+1

)

y

≳
∑

0≤j≤log2
xi+1−xi−1

xi+1
−1

∑
2j(xi+1)≤y<2j+1(xi+1)

j

2j+1 (xi + 1)

≳
∑

0≤j≤log2(∆i/4)

j ≳ (log ∆i)
2 .

Let A := {i ∈ [n− 1] : ∆i ≥ 8}. Our calculations above yield

logN ≳
∑
i∈A

(log ∆i)
2 .

Observe now that
∏n−1

i=1 ∆i = N and
∏

i∈Ac ∆i ≤ 8|A
c| ≤ 8n, so that

∏
i∈A ∆i ≥

N/8n. Hence, applying the Cauchy-Schwarz inequality,

logN ≳
1

|A|
∣∣∣∑
i∈A

log ∆i

∣∣∣2 ≥ [(logN − n log 8)+]2

|A| .

We can now conclude as follows: either n ≥ (logN)/(2 log 8), in which case we
are done, or else n ≤ (logN)/(2 log 8). In the latter case, the above inequality
can be rearranged to yield n − 1 ≥ |A| ≳ logN , which proves the desired
statement in this case as well.

Strictly unimodal distributions

Theorem 26. Let P be the class of strictly unimodal distributions supported
on [N ], as given in Definition 7. Then the rejection sampling complexity of P
is Θ(logN).
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Upper bound

Proof. Since the strategy is very similar to the upper bound for the class of
monotone distributions (Theorem 25), we briefly outline the procedure here.
Using binary search, we can locate the mode of the distribution using O(logN)
queries. Once the mode is located, the strategy for constructing an upper
envelope for monotone distributions can be employed on each side of the
mode.

Lower bound

Proof. We again refer to the class of monotone distributions (Theorem 25), for
which the lower bound is given in 8.4. Essentially the same proof goes through
for this setting as well, and we make two brief remarks on the modifications.
First, the reference distribution p⋆ in that proof is also strictly unimodal.
Second, although the adversarial perturbations py constructed in that proof
are not strictly unimodal, they can be made strictly unimodal via infinitesimal
perturbations, so it is clear that the proof continues to hold.

Cliff-like distributions

Theorem 27. Let P be the class of cliff-like distributions supported on [N ],
as given in Definition 8. Then the rejection sampling complexity of P is
Θ(log logN).

Upper bound

Proof. Since the class of cliff-like distributions is contained in the class of
discrete log-concave distributions, the upper bound for the former class is
subsumed by Theorem 28 on the latter class.

Lower bound

In this proof, we reduce the task of building a rejection sampling proposal q
for the class of cliff-like distributions to the computational task of finding the
cliff in an array. Formally, the latter task is defined as follows.

Task 1 (finding the cliff in an array). There is an unknown array of the form
a = [1, . . . , 1, 0, . . . , 0], of size N . Let k be the largest index such that a[i] = 1.
Given query access to the array, what is the minimum number of queries needed
to determine the value of k?

The number of queries needed to solve Task 1 is Θ(logN) (achieved via
binary search). We now give the reduction.
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Proof. Suppose that the algorithm makes queries to p̃. Let x− be the largest
query point with p̃(x−) > 0, and let x+ be the smallest query point with
p̃(x+) = 0. Given x− ≤ y < x+, the adversarial perturbation py is the uniform
distribution on [y]. Substituting this into (8.2), and replacing ratios between
p⋆ with ratios between p̃, we obtain

2 ≥
∑

x−≤y<x+

py(y) =
∑

x−≤y<x+

1

y
≥ log

x+
x−

.

Hence, an algorithm which can achieve the desired rejection sampling guarantee
can guarantee that x+ ≤ cx−, where c = e2 is a constant.

This reduces the lower bound for the rejection sampling complexity to the
following question: what is the minimum number of queries to ensure that
x+ ≤ cx−?

At this point we can reduce to Task 1. Suppose after n queries we can
indeed ensure that x+ ≤ cx−. Consider an array a of size logcN , which has a
cliff at index k. (We may round c up to the nearest integer, and N up to the
nearest multiple of c in order to avoid ceilings and floors.) From this array we
construct the unnormalized distribution p̃ on [N ] via

p̃(x) := 1{x ≤ ck} , x ∈ [N ] .

The rejection sampling algorithm provides us with x+ ≤ cx− such that p̃(x−) =
1 and p̃(x+) = 0, i.e., x− ≤ ck < x+ ≤ cx−. Taking logarithms, we see that

logc x− ≤ k < logc x− + 1 .

Hence, taking logc x− and rounding to the nearest integer (possibly doing
a constant number of extra queries to the array afterwards for verification)
locates the cliff k in n queries. Using the lower bound for Task 1, we see that
n = Ω(log logN) as claimed.

Discrete log-concave distributions

Theorem 28. Let P be the class of discrete log-concave distributions on [N ],
as in Definition 9, and recall that the modes of the distributions are assumed
to be 1. Then the rejection sampling complexity of P is Θ(log logN).

Upper bound

We make a few simplifying assumptions just as in the upper bound proof for
Theorem 25. Let p denote the target distribution, assume that the queries are
made to p̃ = pZp, and let V : R → R ∪ {∞} be a convex function such that
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p̃(x) = exp(−V (x)) for x ∈ [N ]. Also, we round N up to the nearest power of
2, which does not change the complexity bound.

Proof. First we make one query to obtain the value of p̃(1). Then we find the
integer 0 ≤ i0 ≤ log2N − 1 (if it exists) such that

2p̃(2i0) ≥ p̃(1) , 2p̃(2i0+1) ≤ p̃(1) .

To do this, observe that the values p̃(2i), 0 ≤ i ≤ log2N are decreasing, and
by performing binary search over these O(logN) values we can find the integer
i0 or else conclude that it does not exist using O(log logN) queries.

If i0 does not exist, then the target satisfies 2p̃(x) ≥ p̃(1) for all x ∈ [N ], so
the constant upper envelope q̃ = p̃(1) suffices.

If i0 exists, denote x0 = 2i0+1, and construct the upper envelope q̃ as follows:
query p̃(x0), and let

q̃(x) =

{
p̃(1) , x < x0 ,

p̃(x0) e
−λ (x−x0) , x ≥ x0 ,

λ =
log p̃(1)

p̃(x0)

x0 − 1
=
V (x0)− V (1)

x0 − 1
.

We check that q̃ is a valid upper envelope of p̃. If we take logarithms and
denote Vq(x) = − log q̃(x), then we see that

Vq(x) =

{
V (1) , x < x0 ,

V (x0) + λ (x− x0) , x ≥ x0 .

Because V is convex, we see that Vq is a lower bound of V , so q̃ is an upper
bound of p̃.

To finish the proof, we just have to bound Zq/Zp. Let Zq,1 =
∑

x<x0
q̃(x),

and Zq,2 =
∑

x≥x0
q̃(x), so Zq = Zq,1 + Zq,2. We will bound these two terms

separately. For the first term, by the definition of x0 we can bound

Zq,1 =
∑
x<x0

p̃(1) ≤ 2
∑

x<x0/2

p̃(1) ≤ 4
∑

x<x0/2

p̃(x) .

For the second term,

Zq,2 ≤ p̃(x0)
∞∑
z=0

e−λz = p̃(x0) (1− e−λ)
−1

= p̃(x0)
(

1−
( p̃(x0)
p̃(1)

)x0−1
)−1

≤ 2p̃(x0) .
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Putting this together,

Zq = Zq,1 + Zq,2 ≤ 4Zp .

For clarity, we have presented the proof with the bound Zq/Zp ≤ 4. At the
cost of more cumbersome proof, the above strategy can be modified to yield
the guarantee Zq/Zp ≤ 2.

Lower bound

Proof. Since the class of cliff-like distributions is contained in the class of dis-
crete log-concave distributions, the lower bound for the latter class is subsumed
by Theorem 27 on the former class.

Monotone on a binary tree

Theorem 29. Let P be the class of monotone distributions on a binary tree
with N vertices, as in Definition 10. Then the rejection sampling complexity of
P is Θ(N/(logN)).

Let T denote the binary tree. For the upper bound, we may embed T into
a slightly larger tree, and for the lower bound we can perform the construction
on a slightly smaller tree. In this way, we may assume that T is a complete
binary tree of depth ℓ, and hence N =

∑ℓ
j=0 2j = 2ℓ+1 − 1; this does not affect

the complexity results. Throughout the proofs, we write |x| for the depth of
the vertex x in the tree, where the root is considered to be at depth 0.

Upper bound

Proof. Let c be a constant to be chosen later. The algorithm is to query the
value of p̃ at all vertices at depth at most ℓ0 := ℓ− log2 ℓ+ c. Then the upper
envelope is constructed as follows,

q̃(x) :=

{
p̃(x) , if |x| ≤ ℓ0 ,

p̃(y) , if |x| > ℓ0 , |y| = ℓ0 , and x is a descendant of y .

Clearly q̃ ≥ p̃. Also, the number of queries we made is

ℓ0∑
j=0

2j = 2ℓ0+1 − 1 ≲
2ℓ

ℓ
≲

N

logN
.
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Finally, we bound the ratio Zq/Zp. By definition,

Zq =
∑
x∈T

q̃(x) =
∑

x∈T, |x|≤ℓ0

p̃(x) +
∑

x∈T, |x|>ℓ0

q̃(x) .

For the second sum, we can write∑
x∈T, |x|>ℓ0

q̃(x) =
∑

y∈T, |y|=ℓ0

p̃(y) (2ℓ−ℓ0+1 − 1) =
∑

y∈T, |y|=ℓ0

p̃(y) (2log2 ℓ−c+1 − 1)

≤ ℓ 2−c+1
∑

y∈T, |y|=ℓ0

p̃(y) .

On the other hand, if x denotes any vertex, let x1, x2 denote its two children;
then, for any level j,∑

x∈T, |x|=j+1

p̃(x) =
∑

x∈T, |x|=j

{p̃(x1) + p̃(x2)} ≤
∑

x∈T, |x|=j

p̃(x) .

Hence, ∑
x∈T, |x|≤ℓ0

p̃(x) ≥ (ℓ0 + 1)
∑

x∈T, |x|=ℓ0

p̃(x)

which yields

Zq ≤
(
1 +

ℓ 2−c+1

ℓ0 + 1

) ∑
x∈T, |x|≤ℓ0

p̃(x) ≤ 2Zp ,

if ℓ and c are sufficiently large.

Lower bound

The proof of the lower bound follows the strategy encapsulated in (8.2).

Proof. Suppose that an algorithm achieves rejection sampling ratio 2 with n
queries. Again let ℓ0 := ℓ − log2 ℓ + c, where the constant c will possibly be
different from the one in the upper bound. The reference distribution will be

p̃(x) :=

{
2−|x| , |x| ≤ ℓ0 ,

0 , |x| > ℓ0 .

Note that p ∈ P. The normalizing constant is Zp = ℓ0 + 1, since there are 2j

vertices at level j. For each |y| > ℓ0, we will create a perturbation distribution
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py in the following way:

p̃y(x) :=


2−|x| , |x| ≤ ℓ0 ,

2−ℓ0 , |x| > ℓ0 and y is a descendant of x (or equal to x) ,

0, otherwise .

Thus, p̃y places extra mass on the path leading to y; note also that py ∈ P.
The normalizing constant for py is

Zpy = Zp +

|y|∑
j=ℓ0+1

2−ℓ0 ≤ ℓ0 + 1 + (ℓ− ℓ0) 2−ℓ0 = ℓ0 {1 + o(1)} ,

where o(1) tends to 0 as ℓ→∞.

Next, let Q denote the set of vertices x at level ℓ0 for which at least one of
the descendants of x (not including x itself) is queried by the algorithm, and
let Qc denote the vertices at level ℓ0 which do not belong to Q. Note if x ∈ Qc

and y is a descendant of x, then py is consistent with the queries made by the
algorithm. Let D(x) denote the descendants of x. Now, applying (8.2) with
p⋆ = p,

2 ≥
∑

x∈T, |x|≤ℓ0

p(x) +
∑
x∈Qc

∑
y∈D(x)

py(y) = 1 +
∑
x∈Qc

∑
y∈D(x)

py(y)

which yields

1 ≥
∑
x∈Qc

∑
y∈D(x)

py(y) ≥
∑
x∈Qc

2−ℓ0

ℓ0 (1 + o(1))
(2ℓ−ℓ0+1 − 2) ≳

2ℓ−2ℓ0+1

ℓ0 (1 + o(1))
{2ℓ0 − |Q|} .

It then yields

n ≥ |Q| ≳ 2ℓ0 − ℓ0 (1 + o(1))

2ℓ−2ℓ0+1
= 2ℓ0

(
1− ℓ0 (1 + o(1))

2ℓ−ℓ0+1

)
= 2ℓ0

(
1− ℓ0 (1 + o(1))

2log2 ℓ−c+1

)
= 2ℓ0

(
1− ℓ0 (1 + o(1))

ℓ 2−c+1

)
.

If we now choose c≪ 0 to be a negative constant, we can verify

n ≳ 2ℓ0 = 2ℓ−log2 ℓ+c ≳
N

logN
,

completing the proof.
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An alternate definition of monotone

In this section, we show that if we adopt an alternative definition of monotone
on a binary tree, then the rejection sampling complexity is trivial.

Theorem 30. Let P be the class of probability distributions p on a binary tree
with N vertices, with maximum depth ⌈log2(N + 1)⌉, such that if for every
non-leaf vertex x, if the children of x are x1 and x2, then p(x) ≥ p(x1) ∨ p(x2).
Then, the rejection sampling complexity of P is Θ(N).

Proof. It suffices to show the lower bound, and the proof will be similar to the
one in Section 8.4. We may assume that the binary tree is a complete binary
tree with depth ℓ. Suppose that an algorithm achieves a rejection sampling
ratio 2 after n queries. We define the reference distribution p⋆ via

p̃⋆(x) :=

{
1 , |x| ≤ ℓ− 2 ,

0 , |x| > ℓ− 2 .

The normalizing constant is Zp⋆ = 2ℓ−1 − 1. For each leaf vertex y, we define
the perturbation distribution py via

p̃y(x) :=

{
1 , |x| ≤ ℓ− 2 or x is an ancestor of y (including if x = y) ,

0 , |x| > ℓ− 2 .

The normalizing constant of py is Zpy = 2ℓ−1 + 1.

Let Q denote the set of leaf vertices which are queried by the algorithm,
and let Qc denote the set of leaf vertices not in Q. Then, from (8.2),

2 ≥
∑

x∈T, |x|≤ℓ−2

p⋆(x) +
∑
y∈Qc

py(y) = 1 +
∑
y∈Qc

py(y)

and rearranging this yields

1 ≥
∑
y∈Qc

1

2ℓ−1 + 1
=

1

2ℓ−1 + 1
{2ℓ − |Q|} .

This is further rearranged to yield

n ≥ |Q| ≥ 2ℓ−1
(
2− 1− 1

2ℓ−1

)
≳ 2ℓ = N ,

where the last inequality holds if ℓ > 1.

162



8.5 Conclusion

We studied the query complexity of rejection sampling within a minimax frame-
work, and we showed that for various natural classes of discrete distributions,
rejection sampling can obtain exact samples with an expected number of queries
which is sublinear in the size of the support of the distribution. Our algorithms
can also be run in sublinear time, which make them substantially faster than
the baseline of multinomial sampling.

A natural direction for future work is to investigate the complexity of
rejection sampling on other structured classes of distributions, such as distri-
butions on graphs, or distributions on continuous spaces. In many of these
other settings, the complexity of algorithms based on Markov chains has been
studied extensively, but the complexity of rejection sampling remains to be
understood.

For the goal of general sampling lower bounds, the results in this chapter
suggests the following insight: we want to construct distributions that are
hard to distinguish from queries, but whose mass are supported at different
places. The clearest example of this idea is our lower bound for the cliff-like
distributions in Seciton 8.4.
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Chapter 9

General lower bound in
dimension one

9.1 Introduction

In this chapter, we build on the ideas from Chapter 8, and prove the first
general sampling lower bound for log-concave distributions in one dimension.
Specifically, the class of target distributions will be the strongly log-concave
and log-smooth distributions on R, i.e., the class of distributions with a
density p ∝ exp(−V ), where the potential V : R → R is twice continuously
differentiable, α-strongly convex, and β-smooth. The relevant parameter of
this class is the condition number κ := β/α, and we seek to understand the
number of queries to V (and its derivatives) necessary to generate a sample
close in total variation distance to p.

This chapter is based on the joint work [Che+22d], with Sinho Chewi,
Patrik Gerber, Thibaut Le Gouic, and Philippe Rigollet.

Related works. Despite several attempts at establishing query complexity
lower bounds for sampling, we are not aware of a general sampling lower bound.
Whereas sampling upper bounds are derived using techniques that are close to
those employed in optimization [Dal17c; DMM19], as mentioned in Chapted 6 it
is unclear how to use lower bound techniques for optimization [Nes13] to derive
general sampling lower bounds. Note that sampling upper bounds typically
assume that the minimizer of V is known a priori; thus, a direct reduction of
the sampling task to apply existing optimization lower bounds would likely
capture the complexity of finding the mode of V rather than the intrinsic
difficulty of the sampling task itself.

Other prior work on sampling lower bounds has fallen largely into one of
several categories. One line of work studies lower bounds against a specific
class of algorithm such as underdamped Langevin [CLW21] or MALA [Che+21;
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LST21a; WSC22]. However, these lower bounds techniques are tailored to the
restricted class of algorithms that they consider and are not suitable for proving
general query lower bounds. Another line of work considers lower bounds
against computing normalizing constants [RV08; GLL20]. The work [Tal19]
also investigates the computational complexity of sampling.

We mention two further lower bounds in different settings. The work
of [CBL22] proves a lower bound against stochastic gradient oracles, and the
work of [GLL22] proves a lower bound on the number of individual function
value (i.e., zeroth-order) queries needed to sample from a density of the form
exp(−∑

i∈I fi + µ ∥·∥2), where each fi is convex, Lipschitz, and whose domain
is the unit ball. In contrast, we consider deterministic, first-order oracle access.
Moreover, their considerations are somewhat orthogonal to ours: [CBL22]
focuses more on the role of noise, whereas we consider exact gradient access;
and the lower bound of [GLL22] applies a direct reduction from optimization,
which is also not in the spirit of the present work (in particular, we explicitly
set the mode of the target distribution to zero).

A lower complexity bound in one dimension. Recall that for convex
optimization, there are two relevant regimes [see, e.g., Bub15]: (1) the low-
dimension regime, in which algorithms such as the cutting plane method
achieve the rate O(d log(1/ε)) (where ε is the accuracy parameter), and (2)
the high-dimensional regime, in which algorithms such as gradient descent
achieve dimension-free rates at the cost of inverse polynomial dependency
on the accuracy. In this chapter, we study the low-dimensional regime for
sampling; in particular, we consider d = 1.

We prove that for the class of α-strongly log-concave and β-log-smooth
distributions in one dimension (with mode at 0), any algorithm, which can
produce a sample that is at total variation distance at most 1

64
from the target

distribution p (uniformly over p belonging to the class), must make at least
Ω(log log κ) queries to V or any of its derivatives. To our knowledge, this is
the first lower complexity bound for this problem class.

Achievability of the lower bound. The lower bound of Ω(log log κ) is
surprisingly small, and existing guarantees for standard algorithms such as
the Langevin algorithm (or its variants), the Metropolis-Adjusted Langevin
Algorithm, or Hamiltonian Monte Carlo, all have a dependence that scales
polynomially with the condition number κ [see for instance the comparison in
SL19].

To provide an algorithm which matches the lower bound, we return to the
fundamental idea of rejection sampling, developed by Stan Ulam and John von
Neumann [Neu51; Eck87]. We develop an algorithm which uses O(log log κ)
queries in order to build a proposal distribution. Once the proposal distribution
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is constructed, new samples which are ε-close to p in total variation distance
can be generated using O(log(1/ε)) additional queries per sample.

Although our algorithm is tailored to distributions in one dimension, the
task of sampling from a one-dimensional log-concave distribution is an impor-
tant subroutine for higher dimensional algorithms, such as the Hit-and-Run
algorithm. We describe the application of our algorithm to Hit-and-Run in
Section ??.

9.2 Lower bound

We begin by formally defining the class of strongly log-concave and log-smooth
distributions in one dimension, which is the focus of this chapter.

Definition 11. The class of univariate α-strongly log-concave and β-log-
smooth distributions, for constants 0 < α ≤ β, is the class of continuous distri-
butions p supported on R, whose density is of the form p(x) = exp(−V (x)), for
a potential function V : R→ R∪{∞} which is twice continuously differentiable
and satisfies

α ≤ V ′′(x) ≤ β , ∀x ∈ R . (9.1)

In addition, we always assume1 that the mode of the distribution is at 0, or
equivalently V ′(0) = 0.

We study the query complexity of sampling from this class. Formally,
suppose that the target distribution is p = exp(−V ). The sampling algorithm
is allowed to make queries to the following oracle: given a point x ∈ R, the
oracle returns some or all of (1) the evaluation of the potential V (x) +C up to
a constant C, which is unknown to the algorithm but does not change from
query to query; (2) the evaluation of the gradient V ′(x); or (3) the evaluation
of the Hessian V ′′(x). Depending on what information the oracle returns, it
may be described as providing 0th-, 1st-, or 2nd-order information. For instance,
the Langevin algorithm uses 1st-order information, whereas the Metropolis-
Adjusted Langevin Algorithm uses both 0th-order and 1st-order information.
Our lower bound will in fact apply to the strongest of these oracles, namely
the one that returns all three pieces of information.

We now state our lower bound.

Theorem 31. Consider the class P of univariate α-strongly log-concave and β-
log-smooth distributions as defined in Definition 11, and let κ := β/α denote the

1This localization assumption is common in the sampling literature; without some knowl-
edge of the mode (e.g. that the mode is contained in an interval) it is impossible to even find
the mode in the query model.
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condition number. Suppose that an algorithm satisfies the following guarantee:
for any p ∈ P, the algorithm makes n queries to the oracle providing 0th-, 1st-,
and 2nd-order information for p, and outputs a random variable whose law is
at most 1

64
away from p in total variation distance. Then, n ≳ log log κ.

We now give some intuition for the lower bound construction, and defer
the proof to Section 9.4. The strategy is to construct a family of distributions
{p1. . . . , pm} which forms a packing of the class P in total variation distance.
Because the family is well-separated, if an algorithm can accurately sample
from each pi, it can also identify pi. We construct the family {pi}mi=1 in such
a way that identifying pi from queries to low-order oracles requires at least
Ω(logm) queries, e.g., via bisection.

With the strategy in place, we now describe motivation for the construction
of the family {pi}mi=1. Suppose that we have a distribution p ∝ exp(−V ) which
is rescaled to satisfy 1 ≤ V ′′ ≤ κ. The bound V ′′ ≥ 1 implies that a substantial
fraction of the mass of p is supported on the interval [−1, 1]. On the other
hand, the bound V ′′ ≤ κ allows for the density p to suddenly drop from ≈ 1
to nearly 0 over an interval of much smaller length, ≍ 1/

√
κ. Hence, as a first

approximation, we can imagine dividing the interval [−1, 1] into ≍ √κ bins,
and thinking of each pi as piecewise constant on each bin. While keeping the
log-concavity constraint in mind, for the purpose of this heuristic discussion
we will consider the family {pi}mi=1 of m ≍ √κ distributions, where pi is the
uniform distribution on [−i/√κ, i/√κ]; see Figure 9-1.

Figure 9-1: A family of uniform distributions.

However, this family is not well-separated in total variation distance. Indeed,
it can be checked that for i < j, in order for the total variation distance between
pi and pj to be appreciable, we require j ≥ 2i. This motivates us to consider
the subfamily {p2i , 1 ≤ i ≤ log2

√
κ}, of which there are O(log κ) elements.

For this subfamily, we can hope to reduce the task of sampling to that of
identifying p2i via queries, and binary search for this problem requires only
O(log log κ) queries. This is the basis for our somewhat unusual lower bound.

The uniform distributions involved in this informal discussion do not belong
to the class P, as they are neither strongly log-concave nor log-smooth. The
main technical challenge in our lower bound is to produce distributions which
lie in P but still behaves similarly to uniform distributions, in the sense of
requiring Ω(log log κ) oracle queries to identify a distribution via queries. We
defer these details to the appendix.
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9.3 Upper bound

In this section, we show that the Ω(log log κ) lower bound in the previous
section is achievable. Note that the existing guarantees for standard sampling
algorithms (c.f. the comparison in [SL19]) usually scale polynomially in the
condition number κ, so they are not optimal for our setting.

Moreover, the heuristic discussion of the lower bound construction motivates
choosing the query points according to a binary search strategy. In order to
implement this idea, we turn towards the classical idea of rejection sampling:
first, we make queries in order to construct a proposal distribution q. To
generate new samples from p, we repeatedly draw samples from q, and each
sample is accepted with a carefully chosen acceptance probability (which
can be computed via additional queries to the oracle for the density up to
normalization).

Algorithm 6 Envelope

1: Use binary search to find the first index i+ ∈ {0, 1, . . . , ⌈12 log2 κ⌉} with

V (2i+/
√
κ) ≥ 1

2
.

2: Use binary search to find the first index i− ∈ {0, 1, . . . , ⌈12 log2 κ⌉} with

V (−2i−/
√
κ) ≥ 1

2
.

3: Set x− := −2i−/
√
κ and x+ := 2i+/

√
κ.

4: return

q̃(x) :=


exp

[
− x− x−

2x−
− (x− x−)2

2

]
, x ≤ x− ,

1 , x− ≤ x ≤ x+ ,

exp
[
− x− x+

2x+
− (x− x+)2

2

]
, x ≥ x+ .

We give the high-level pseudocode for building an upper envelope in Algo-
rithm 6, and for generating new samples in Algorithm 7. Note that while our
lower bound applies to algorithms using 0th-, 1st-, and 2nd-order information,
our upper bound algorithm in fact only requires 0th-order information. We
next proceed to discuss details of the algorithms.
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Algorithm 7 Sample

1: Normalize q̃ to form q.
2: while sample is not accepted do
3: Sample X ∼ q.
4: Accept X w.p. p̃(X)/q̃(X).
5: end while
6: return X

Before implementing Algorithm 6, we first perform several preprocessing
steps. Recall that the mode of the distribution p is assumed to be at 0, and
that p ∝ exp(−V ). We also assume that 1 ≤ V ′′ ≤ κ. To reduce to this case,
say we start with α ≤ V ′′ ≤ β, and the bounds α, β are known. Then, observe
that the rescaled potential V̄ (x) := V (x/

√
α) satisfies 1 ≤ V̄ ′′ ≤ κ = β/α.

Given access to an oracle for V (up to additive constant), we can simulate an
oracle to V̄ (up to additive constant) and apply our algorithm to generate a
sample X̄ from the density p̄ ∝ exp(−V̄ ); it can be checked that X̄/

√
α is a

sample from p. Finally, we assume that the oracle, when given a query point
x, returns V (x), where V is normalized to satisfy V (0) = 0; this is achieved by
replacing the output V (x) of the oracle by V (x)− V (0).

Implementing the first step of Algorithm 6 requires performing binary search
over an array of size O(log κ), which requires only O(log log κ) queries; similar
comments apply to the second step. We prove in Section 9.5 that the indices i−
and i+ always exist under our assumptions. We prove in Section 9.5 that the
output q̃ of Algorithm 6 is an upper envelope for the oracle, i.e., q̃ ≥ exp(−V ).
The upper envelope q̃ constructed in Algorithm 6 is the input to Algorithm 7;
see Figure 9-2.

x

q̃(x)

0x− x+

Figure 9-2: The upper envelope q̃ constructed in Algorithm 6.

In Algorithm 7, we normalize q̃ to a probability distribution q, which requires
computing a one-dimensional integral for the normalizing constant:

∫
R q̃. Once

normalized, we must also be able to draw samples from the distribution q.
These steps can be implemented with low computational burden, but we do
not dwell on this point here because we are primarily interested in the query
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complexity in this chapter. Note that the steps of normalizing q and drawing
new samples from q do not require additional queries to the oracle.

The framework of rejection sampling provides a flexible guarantee: if we
desire an exact sample from p, then we can continue drawing samples from q
until one is accepted, yielding an exact sample with a guarantee on the expected
total number of queries. On the other hand, if we are content with producing
a sample whose law is at a fixed distance ε away from p in total variation
distance, then we can force the algorithm to stop after a prespecified number
of iterations, declaring failure if no sample from q is accepted, and achieve
the total variation guarantee. We describe both of these guarantees in the
following theorem, which summarizes the query complexity of our algorithm.

Theorem 32. Suppose that the target distribution p belongs to the class of
univariate strongly log-concave and log-smooth distributions (Definition 11).
Algorithm 6 uses O(log log κ) queries to build the upper envelope q̃. Once q̃ is
constructed, we can use it for either of the following tasks.

1. (exact sampling) Algorithm 7 returns an exact sample from p after an
additional O(1) expected queries to the oracle.

2. (approximate sampling) Fix an accuracy parameter 0 < ε < 1. If we
limit Algorithm 7 to use at most O(log(1/ε)) queries, then the output
of Algorithm 7 (or ‘FAILURE’, if Algorithm 7 fails to accept a sample
within the allowed number of queries) has a distribution which is at total
variation distance at most ε away from p.

We give the proof in Section 9.5.

9.4 Proof of the lower bound

The construction

Let m be the largest integer such that

exp
(
−22m−2

2κ

)
≥ 1

2
. (9.2)

Define two auxiliary functions

ϕ(x) :=


κ , 1/2 ≤ x < 1 ,

1 , 1 ≤ x < 2 ,

κ , 2 ≤ x < 5/2 ,

0 otherwise ,

ψ(x) :=


1 , 5/2 ≤ x < 4 ,

κ , 4 ≤ x < 5 ,

0 , otherwise .
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x

V ′′
i (x/

√
κ)

1

κ

2i−1 2i 2i+1 5
4
2i+1 2i+2 5

4
2i+2 . . . 5

4
2m+2

Figure 9-3: The dashed lines correspond to ϕ and the dotted lines correspond
to ψ.

We define a family (Vi)
m
i=1 of 1-strongly convex and κ-smooth potentials as

follows. We require that Vi(0) = V ′
i (0) = 0 and that Vi be an even function, so

it suffices to specify V ′′
i on R+. The second derivative is given by

V ′′
i (x) := 1{x ≤ κ−

1
2 2i−1}+ ϕ

( x

κ−
1
2 2i

)
+

m−1∑
j=i

ψ
( x

κ−
1
2 2j

)
+ 1{x ≥ 5κ−

1
2 2m−1} , x ≥ 0 .

Observe that all of the terms in the above summation have disjoint supports,
see Figure 9-3.

x

1

κ

2i−1 2i 2i+1 5
4
2i+1 2i+2 5

4
2i+2

Figure 9-4: We plot V ′′
i (in blue) and V ′′

i+1 (in orange). In this figure, we do
not distort the horizontal axis lengths to make it easier to visually compare
the relative lengths of intervals on which the second derivatives are constant.

The following lemma provides intuition for the construction.
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Lemma 34. We have the equalities

Vi = Vi+1 ,

V ′
i = V ′

i+1 ,

V ′′
i = V ′′

i+1 ,

outside of the set {x ∈ R : κ−
1
2 2i−1 ≤ |x| ≤ 5

4
κ−

1
2 2i+1}.

Proof. Refer to Figure 9-4 for a visual aid for the proof.
Clearly the potentials and derivatives match when |x| ≤ κ−

1
2 2i−1. Since

the second derivatives match when |x| ≥ 5
4
κ−

1
2 2i+1, it suffices to show that

V ′
i (5

4
κ−

1
2 2i+1) = V ′

i+1(
5
4
κ−

1
2 2i+1) and Vi(

5
4
κ−

1
2 2i+1) = Vi+1(

5
4
κ−

1
2 2i+1).

To that end, note that for x ≥ 0,

V ′′
i+1(x)− V ′′

i (x) = 1{κ− 1
2 2i−1 < x ≤ κ−

1
2 2i} − ϕ

( x

κ−
1
2 2i

)
+ ϕ

( x

κ−
1
2 2i+1

)
− ψ

( x

κ−
1
2 2i

)

=


−(κ− 1) , κ−

1
2 2i−1 ≤ x ≤ κ−

1
2 2i ,

+(κ− 1) , κ−
1
2 2i ≤ x ≤ κ−

1
2 2i+1 ,

−(κ− 1) , κ−
1
2 2i+1 ≤ x ≤ 5

4
κ−

1
2 2i+1 ,

0 , otherwise .

A little algebra shows that the above expression integrates to zero, hence we
deduce the equality V ′

i (5
4
κ−

1
2 2i+1) = V ′

i+1(
5
4
κ−

1
2 2i+1). Also, by integrating this

expression twice, we see that

Vi+1

(5

4
κ−

1
2 2i+1

)
− Vi

(5

4
κ−

1
2 2i+1

)
= −κ− 1

2
(κ−

1
2 2i−1)

2︸ ︷︷ ︸
integral on [κ− 1

2 2i−1,κ− 1
2 2i]

−(κ− 1)κ−
1
2 2i−1 κ−

1
2 2i +

κ− 1

2
(κ−

1
2 2i)

2︸ ︷︷ ︸
integral on [κ− 1

2 2i,κ− 1
2 2i+1]

+(κ− 1)κ−
1
2 2i−1 1

4
κ−

1
2 2i+1 − κ− 1

2

(1

4
κ−

1
2 2i+1

)2︸ ︷︷ ︸
integral on [κ− 1

2 2i+1, 5
4
κ− 1

2 2i+1]

=
κ− 1

κ
{−22i−3 − 22i−1 + 22i−1 + 22i−2 − 22i−3}

= 0 ,

as desired.

We also need a lemma showing that each probability distribution pi ∝
exp(−Vi) places a substantial amount of mass on the interval (κ−

1
2 2i−2, κ−

1
2 2i−1].
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Lemma 35. For each i ∈ [m],

pi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
≥ 1

32
.

Proof. According to the definition of pi, we have

pi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
=

∫ κ− 1
2 2i−1

κ− 1
2 2i−2

exp(−x2/2) dx

Zpi

, Zpi :=

∫
R

exp(−Vi) .

Recalling that m is chosen so that exp(−x2/2) ≥ 1/2 whenever |x| ≤ κ−
1
2 2m−1

(see (9.2)), we can conclude that

∫ κ− 1
2 2i−1

κ− 1
2 2i−2

exp
(
−x

2

2

)
dx ≥ 1

2
κ−

1
2 2i−2 .

For the normalizing constant, observe that∫ ∞

0

exp(−Vi) =

∫ κ− 1
2 2i

0

exp(−Vi) +

∫ ∞

κ− 1
2 2i

exp(−Vi) ≤ κ−
1
2 2i +

∫ ∞

κ− 1
2 2i

exp(−Vi) .

Since V ′′
i = κ on [κ−

1
2 2i−1, κ−

1
2 2i], it follows that V ′

i (κ−
1
2 2i) ≥ κ

1
2 2i−1, and so

Vi(x) ≥ κ
1
2 2i−1 (x− κ− 1

2 2i) +
(x− κ− 1

2 2i)
2

2
, x ≥ κ−

1
2 2i .

Therefore,∫ ∞

κ− 1
2 2i

exp(−Vi) ≤
∫ ∞

κ− 1
2 2i

exp
(
−κ 1

2 2i−1 (x− κ− 1
2 2i)− (x− κ− 1

2 2i)
2

2

)
dx

≤ 1

κ
1
2 2i−1

≤ 1√
κ
,

where we applied a standard tail estimate for Gaussian densities (Lemma 36).
Putting it together,

pi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
≥ 2i−3

2 (2i + 1)
≥ 1

32
,

which proves the result.
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Lower bound via Fano’s inequality

In this section, we use the densities {pi}mi=1 constructed in the previous section
together with Fano’s inequality from information theory in order to prove the
lower bound.

Proof of Theorem 31. Let Z ∼ uniform([m]) be an index chosen uniformly at
random. Suppose that an algorithm makes n queries to the oracle for pZ , and
given Z = i, outputs a sample Y whose law qi is at total variation distance at
most 1

64
from pi. In light of Lemma 35, a good candidate estimator for Z from

the observation of Y is given by

Ẑ := {k ∈ N : Y ∈ (κ−
1
2 2k−2, κ−

1
2 2k−1]} .

On the one hand, the probability that the estimator is correct is bounded by

P{Ẑ = Z} =
1

m

m∑
i=1

P{Ẑ = i | Z = i}

=
1

m

m∑
i=1

P{Y ∈ (κ−
1
2 2i−2, κ−

1
2 2i−1] | Z = i}

=
1

m

m∑
i=1

qi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
≥ 1

m

m∑
i=1

pi
(
(κ−

1
2 2i−2, κ−

1
2 2i−1]

)
− 1

64

≥ 1

64
,

where the last inequality uses Lemma 35.

On the other hand, we can lower bound P{Ẑ ̸= Z} using Fano’s inequality.
Let x1, . . . , xn denote the query points of the algorithm, and let Wi be a
shorthand for the triple (Vi, V

′
i , V

′′
i ). We will first prove the lower bound

for deterministic algorithms, i.e., assuming that each query point xj is a
deterministic function of the previous query points and query values. Since

Z → {xj,WZ(xj), j ∈ [n]} → Ẑ

forms a Markov chain, Fano’s inequality [CT06] yields

P{Ẑ ̸= Z} ≥ 1−
I({xj,WZ(xj)}j∈[n];Z) + log 2

logm
,

where I denotes the mutual information. By the chain rule for mutual infor-

175



mation [CT06],

I
(
{xj,WZ(xj)}j∈[n];Z

)
=

n∑
j=1

I
(
xj,WZ(xj);Z

∣∣ x1,WZ(x1), . . . , xj−1,WZ(xj−1)
)
.

Observe that, conditioned on {xi,WZ(xi)}j−1
i=1 , the query point xj is determin-

istic. Also, from the construction of the family of potentials, we know that
WZ(xj) = W1(xj) if xj ≤ κ−

1
2 2Z−1, and WZ(xj) = Wm(xj) if xj ≥ 5

4
κ−

1
2 2Z+1.

It yields that:

• for Z ≤ log2(
4
5

√
κxj)− 1, WZ(xj) takes a unique value given by Wm(xj),

• for Z ≥ log2(
√
κxj) + 1, WZ(xj) takes a unique value given by W1(xj),

and otherwise, Z lives in an interval of size at most log2(
√
κxj)+1−(log2(

4
5

√
κxj)−

1) ≤ 2 + log2(5/4) which covers at most three integers, say z0 − 1, z0, z0 + 1.
Hence, the conditional distribution of WZ(xj) can be supported on at most 5
points given respectively by

W1(xj),Wm(xj),Wz0−1(xj),Wz0(xj), and Wz0+1(xj) .

Since the mutual information is upper bounded by the conditional entropy of
WZ(xj), we can conclude

I
(
{xj,WZ(xj)}j∈[n];Z

)
≤ n log 5 .

Substituting this into Fano’s inequality yields

P{Ẑ ̸= Z} ≥ 1− n log 5 + log 2

logm
. (9.3)

In general, if the algorithm is randomized, then we can apply the in-
equality (9.3) conditioned on the random seed ξ of the algorithm, since ξ is
independent of Z. It yields

P{Ẑ ̸= Z | ξ} ≥ 1− n log 5 + log 2

logm
,

and upon taking expectations we see that (9.3) holds for randomized algorithms
as well.

Combined with (??), we obtain n ≳ logm ≳ log log κ as desired.

9.5 Proof of the upper bound

Let p be the target distribution and let p̃ = pZp denote the unnormalized
distribution which we access via oracle queries. We recall our preprocessing

176



steps: we assume that the query values take the form p̃(x) = exp(−V (x)), with
V (0) = V ′(0) = 0 and V satisfying (9.1). This is without loss of generality
because we can query p̃(0) and replace subsequent queries p̃(x) with p̃(x)/p̃(0),
thereby normalizing V to satisfy V (0) = 0. By rescaling the distribution, we
can assume that 1 ≤ V ′′ ≤ κ. Also, we can assume that the target distribution
is only supported on the positive reals R+, because we can then construct an
upper envelope on all of R by repeating our algorithm on the negative reals,
which only doubles the number of queries and does not change the complexity.

Proof of Theorem 32. Our goal is to use the oracle queries to construct an
upper envelope q̃ that satisfies q̃ ≥ p̃, and Zq ≲ Zp, where

Zp :=

∫
R
p̃ , Zq :=

∫
R
q̃

are the normalizing constants. The guarantees of Theorem 32 will then follow
from standard result on rejection sampling, which we had proved in Theorem 24.

Let i0 denote the smallest integer such that V (2i0/
√
κ) ≥ 1/2. Note that

x2/2 ≤ V (x) ≤ κx2/2 implies that 0 ≤ i0 ≤ (log2 κ)/2. Using binary search
over an array of size O(log κ), we can find i0 using only O(log log κ) queries to
p̃.

Let x0 := 2i0/
√
κ. We first claim that∫ x0

0

p̃ ≳ x0 . (9.4)

When i0 = 0, this holds because∫ x0

0

p̃ =

∫ 1/
√
κ

0

exp(−V ) ≥
∫ 1/

√
κ

0

exp
(
−κx

2

2

)
dx ≥ 1

3
√
κ

=
x0
3
.

When i0 > 0, this holds because, by definition of i0, we have V (x0/2) ≤ 1/2,
and so ∫ x0

0

p̃ ≥
∫ x0/2

0

exp(−V ) ≳ x0 .

Next, define the upper envelope as follows:

q̃(x) =

{
1 , x ≤ x0 ,

exp{−(x− x0)/(2x0)− (x− x0)2/2} , x > x0 .

To see that q̃ ≥ p̃ and hence that q̃ is a valid upper envelope, observe first
that since p̃(0) = 1, and p̃ is decreasing, we get that p̃(x) ≤ 1 = q̃(x) for all
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x ∈ [0, x0].
Next, if x > x0, using the fact that V is convex and V (x0) ≥ 1/2 by the

definition of x0,

V ′(x0) ≥
V (x0)− V (0)

x0
≥ 1

2x0
.

Hence, for any x > x0 we have

V (x) ≥ V (x0) + V ′(x0) (x− x0) +
1

2
(x− x0)2

≥ 1

2x0
(x− x0) +

1

2
(x− x0)2 .

It implies that p̃(x) ≤ q̃(x) also for the tail x > x0.
To complete the proof, we show that Zq ≲ Zp. In light of (9.4) it is sufficient

to show that Zq ≲ x0. To see this, observe that by Lemma 36, we have

Zq =

∫ x0

0

q̃ +

∫ ∞

x0

q̃ ≤ x0 +

∫ ∞

x0

exp
(
− 1

2x0
(x− x0)−

1

2
(x− x0)2

)
dx ≤ 3x0 .

This completes the proof.

We finish by proving an elementary lemma about Gaussian integrals.

Lemma 36. Let a, x0 > 0. Then,∫ ∞

x0

exp
(
−a (x− x0)−

1

2
(x− x0)2

)
dx ≤ 1

a
.

Proof. Completing the square,∫ ∞

x0

exp
(
−a (x− x0)−

1

2
(x− x0)2

)
dx =

∫ ∞

0

exp
(
−ax− 1

2
x2
)

dx

=
√

2π exp
(a2

2

)
P(Z > a) ,

where Z ∼ N (0, 1). The result follows from the Mills ratio inequality [Gor41].

9.6 Conclusion

In this chapter, we established the oracle complexity of sampling from the class
of univariate strongly log-concave and log-smooth distributions, in analogy with
the now pervasive oracle lower bounds for optimization initiated by Nemirovsky
and Yudin [NY83]. A clear future direction suggested by this chapter is to
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extend this result to higher dimensions, and to ultimately develop a theory
of lower complexity bounds and optimal algorithms for sampling. The high
dimensional question is particularly interesting because sampling complexity is
expected to scale polynomially with the dimension, so determining the optimal
dimension dependence of sampling from log-concave distributions is of great
theoretical and practical importance. We make partial progress towards this
question in Chapters 10 and 11.

Recently, an intense amount of research has been devoted to the use of
Markov chain Monte Carlo-based methods for sampling, and it may come as
a surprise that the complexity lower bound we have proven in this chapter is
attained by an entirely different type of algorithm, namely rejection sampling.
Our result highlights that standard algorithms may not be optimal, and
that the search for optimal algorithms goes hand-in-hand with lower bound
constructions.

In particular, our work motivates revisiting the idea of rejection sampling
through the modern lens of minimax optimality.
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Chapter 10

General lower bound in fixed
dimension

10.1 Introduction

This chapter extends the result of Chapter 9 to a tight lower bound that holds
in all constant dimensions. To recap, the class of target distributions are π on
Rd is α-strongly log-concave and β-log-smooth, with its mode located at the
origin. Since the dimension d is considered fixed, the the main parameter of
interest is the condition number, given by κ := β/α. Sampling algorithms are
given query access to V and ∇V , and the goal is to produce a sample whose
law is close to π in total variation distance. The complexity of the algorithm is
measured by the number of queries made.

This chapter is based on the joint work [Che+23b], with Sinho Chewi,
Jaume de Dois Pont, Jerry Li, and Shyam Narayanan.

Our contributions. We give a tight characterization of the complexity of
log-sampling in any constant dimension d ≥ 2:

Theorem 33 (informal, see Theorem 34). For any dimension d ≥ 2, any
sampler for d-dimensional log-concave distributions with condition number κ
requires Ω(log κ) queries.

Note that this result is exponentially stronger than the Ω(log log κ) lower
bound in the univariate case [Che+22d]. Moreover, when the dimension d
is held fixed, we obtain a matching O(log κ) algorithmic upper bound, based
on folklore ideas from the classical literature on sampling from convex bodies
(Theorem 35). Together with the result of [Che+22d] for d = 1, this settles the
complexity of log-concave sampling in constant dimension.

On a technical level, the lower bound is based on a novel construction
inspired by work on the Kakeya conjecture in harmonic analysis, which we
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believe may be of independent interest. We give a detailed description of the
construction in Section 10.3.

10.2 Technical overview

Here we summarize the main technical ideas used to prove our lower bounds.
For details, see Section 10.3 for Theorem 33, Section 11.3 for Theorem 36, and
Section 11.4 for Theorem 37.

Theorem 33 is proved with a construction in dimension two. For convenience,
in this section we use radial coordinates to denote points in R2, so ω := (x, y) =
(r, θ), where r ∈ R+ and θ ∈ [0, 2π). We denote sectors of R2 enclosed by
angles θ1 and θ2 as S(θ1, θ2) := {(r, θ) ∈ R2 : θ ∈ [θ1, θ2]}, and denote bounded
sectors as Sbdd(θ1, θ2, r) := {(r′, θ) ∈ R2 : θ ∈ [θ1, θ2], r

′ ≤ r}.
The argument is information-theoretic in nature. We will construct a family

of strongly log-concave and log-smooth distributions {π1, . . . , πm}, where each
πb ∝ exp(−Vb), which satisfies two key properties. First, different distributions
πb and πb′ are well separated in total variation distance; and second, if b is chosen
uniformly at random from [m], then querying the potential (Vb(ω),∇Vb(ω)) at
any ω ∈ R2 will reveal O(1) bits of information about b. The lower bound in
Theorem 33 follows readily from the existence of such a family, provided that m
and κ are polynomially related. On the one hand, because the distributions are
well-separated in total variation, if we can sample well from the distribution πb
using queries, we can identify the index b with high probability. On the other
hand, because there are m distributions and every query reveals O(1) bits of
information about b, we need at least Ω(logm) = Ω(log κ) queries to identify b,
which results in a Ω(log κ) query lower bound for log-concave sampling.

How do we construct such a family? A first attempt is to consider distribu-
tions supported on thin convex sets that have no overlap. For b = 1

κ
, 2
κ
, . . . , 1,

let πb = uniform(Zb), where Zb = Sbdd(
π
2
b, π

2
(b + 1

2κ
), 1), and the size of the

family is m = ⌊κ⌋. The potential Vb is the convex indicator of Zb, i.e., it is
0 on Zb and +∞ outside. Morally, the distributions πb can be thought of as
having condition number κ.

This family does satisfy the two properties needed for the lower bound:
different distributions are certainly well-separated because they have disjoint
supports; and when we query any potential Vb at a point ω ∈ R2, we always
receive one bit of information: whether or not ω lies in the support of πb.
However, the distributions in this family are neither strongly log-concave nor
log-smooth. It is easy to make them strongly log-concave while still satisfying
the desired properties: we can adjust the distributions by adding the same

quadratic function ∥·∥2
2

to all of the potentials Vb. But it is much harder to
make this family log-smooth.

One way to make this construction log-smooth is to let the potentials Vb
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grow slowly (linearly) to infinity outside of the their zero sets Zb, which leads to
a modified second attempt: for m = κΩ(1), b = 1

m
, . . . , 1, let πb have potential

Vb = Ṽb + ∥·∥2
2κO(1) , where Zb = S(π

2
b, π

2
(b+ 1

2m
)), and Ṽb(ω) = κ dist(ω,Zb). Note

that the potentials Vb are in fact still not smooth at the boundaries of the sets
Zb, but this can be fixed by mollifying Vb. The distributions in this family
will be well-separated, because an Ω(1) fraction of the mass of πb will lie in
Zb, and the sets Zb are disjoint for different b. Unfortunately, this family no
longer reveals O(1) bits per query: for any ω ∈ R2, we can identify b with a
single query to (Vb(ω),∇Vb(ω)), because either ω ∈ Zb, or ∇Vb(ω) reveals the
direction of Zb, and in both cases the index b itself is identified.

We can reduce the information revealed by queries by more carefully con-
trolling the growth of Ṽb, so that the further away a point ω lies from Zb, the
fewer the number of bits will be revealed by (Ṽb(ω),∇Ṽb(ω)). This motivates
a third attempt at the construction. For m = 2N = κΩ(1), b = 1

m
, . . . , 1 − 1

m
,

let b = 0.b1 . . . bN be the binary expansion of b, and let [b]k = 0.b1 . . . bk
be the truncation of b up to the k-th bit. For k = 1, . . . , N , let Zradial

k,b =

S(π
2

[b]k,
π
2

([b]k + 2−k)), and let ϕradial
k,b (x) = κO(1) 2−k dist(x,Zradial

k,b ). Finally, let

V radial
b = ∥·∥2

2κO(1) + Ṽ radial
b , where

Ṽ radial
b = max

k=1,...,N
ϕradial
k,b .

The potentials V radial
b will again have to be mollified to be made smooth. It

turns out that the potentials Ṽ radial
b will grow fast enough outside Zradial

N,b such
that the distributions will be well-separated. It also turns out that queries
indeed reveal O(1) bits of information on average. This can be seen as follows:
note that the sets Zradial

k,b are sectors such that Zradial
k,b ⊃ Zradial

k+1,b , and as k

increases, Zradial
k,b becomes thinner around the ray {θ = π

2
b}; also note that as

k increases, the growth rate of ϕradial
k,b outside its zero set Zradial

k,b is decreasing;
these two properties imply that if we query a point ω = (r, θ) that is far from
the sector Zradial

i,b (in the sense that θ ̸∈ [π
2

[b]i − 100 · 2−i, π
2

[b]i + 100 · 2−i]),

then the value of Ṽ radial
b (ω) will not depend on any ϕradial

k,b for k > i, and hence

querying Ṽ radial
b (ω) will only reveal b up to the i-th bit. As a result, if b

is chosen uniformly, then for a fixed query ω with high probability we will
have ω ̸∈ Zradial

k,b for any k = O(1), so the query will only reveal O(1) bits of
information about b.

Yet this construction fails because of the mollification step, which we
have so far ignored. To make the potentials Vb smooth, we will instead take

Vb = χδ ∗ Ṽ radial
b + ∥·∥2

2κO(1) , where χδ is supported on a ball of radius δ < 2−2N .

We would hope that the potential χδ ∗ Ṽ radial
b still satisfies the property that

querying a point ω = (r, θ) that is far from Zradial
i,b only reveals b up to the

i-th bit. When r is not too close to the origin (say r > 100 · 2−i), this is
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indeed still true: if ω satisfies θ ̸∈ [π
2

[b]i − 200 · 2−i, π
2

[b]i + 200 · 2−i], then the
entire δ-neighbourhood of ω will satisfy θ ̸∈ [π

2
[b]i − 100 · 2−i, π

2
[b]i + 100 · 2−i],

so the value of Ṽ radial
b on the δ-neighbourhood of ω will not depend on any

ϕradial
k,b for k > i, hence the value of (χδ ∗ Ṽ radial

b )(ω) will also not reveal any
information of b beyond the i-th bit. But when ω is very close to the origin
(r < δ), the δ-neighbourhood of ω will intersect Zradial

N,b , which means that the

value of (χδ ∗ Ṽ radial
b )(ω) will depend on ϕradial

k,b for all k and hence on all bits
of b. In other words, mollification leaks information around the origin. As a
result, if we query points δ-close to the origin, we will again identify b in a
single query.

The way to resolve the leakage at the origin is to create a branching structure,
such that all Vb are equal near the origin so that no information is leaked at
small scales, and such that far away from the origin Vb is small around the ray
{θ = π

2
b} so that πb still concentrates around different sectors. We keep the

choices of m and b from the previous construction. The potentials will be Vb =

χδ∗Ṽb+ ∥·∥2
2κO(1) , where Ṽb = maxk=1,...,N ϕk,b, and ϕk,b(ω) = κO(1) 2−k dist(ω,Zk,b).

The zero set Zk,b, instead of being a radial sector like Zradial
k,b , is now thickened

adaptively.

We intuitively describe how to generate Zk,b. Each Zk,b will be a thickening
of Zradial

k,b , by simply including all points within some distance dk of Zradial
k,b .

We define Z≤k,b :=
⋂

k′≤k Zk′,b: note that each Z≤k,b is getting smaller as k

increases, and Z≤N,b is the zero set of Ṽb.

Consider some radii r0 < r1 < r2 < . . . . To generate Z1,b, we thicken
Zradial

1,b (corresponding to the radial sector matching on the first bit), so that it
contains Sbdd(0, π/2, r0) (corresponding to the quarter-circle near the origin).
This avoids leaking information near the origin, as every x within radius r will
be in Z1,b, which means ϕ1,b will also be 0. Indeed, we can thicken Zradial

1,b just
the right amount so that it contains Sbdd(0, π/2, r0). For the concrete example
where N = 4, and b = 0.1010, we show a description of Z1,b in Figure 10-1a:
we shade Sbdd(0, π/2, r0) in dark blue, Zradial

1,b = S(π/4, π/2) in medium blue,
and the additional thickening required in light blue.

To generate Zk,b for k ≥ 2, we thicken a much thinner angular sector. This
ensures that at large radii, the arc of Zk,b is not too big. We will inductively
thicken Zk,b by some amount dk just enough to contain Zk−1,b∩Sbdd(0, π/2, rk−1).
Consider one more example for k = 2 (again for N = 4, and b = 0.1010), in
Figure 10-1b. Note that Zradial

2,b is the sector S(π
4
, 3π

8
) (shaded in medium blue),

and the thickened region (in light blue emanating from both sides of the sector)
is just enough to capture all of Z1,b that was within radius r1. However, for
larger radii, Z2,b is much thinner than Z1,b. In addition, if we know the first bit
b1 = 1, then querying Vb anywhere in {r ≤ r1} will not reveal any information
about the second bit b2. This is because either we were in Z1,b which only
depends on b1 (in which case ϕ1,b = ϕ2,b = 0 as we thickened to make sure
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Z2,b ⊃ Z1,b ∩ Sbdd(0, π/2, r1)), or we weren’t, in which case ϕ1,b grows much
more quickly than ϕ2,b.

We can also continue this process inductively for k = 3, 4 (Figures 10-1c
and 10-1d): we show Z≤k,b. The intuition for why this prevents leaking of
information near the origin is that even if k is large, Zk,b in the smaller-radius
regions is decided by Zk′,b for k′ ≪ k, so we cannot learn any later bits.

The comparisons of Zradial
k,b and Z≤k,b for b = 0.1010 and for all k ≤ 4 are

shown together in Figure 10-1. The picture is not to scale, and the radial arcs
represent the radii ri = 2ir0, for i = 0, . . . , 4.

(a) k = 1 (b) k = 2 (c) k = 3 (d) k = 4

Figure 10-1: Comparison of Zradial
≤k,b (the sector in medium blue) with Zk,b

(union of dark, medium, and light blue), for k = 1, 2, 3, 4, and b = 0.1010.
Dark blue represents the larger angular sectors closer to the origin, and light
blue represents the additional fattening from taking sumsets. Each Zk,b is
constructed by thickening Zradial

k,b enough (illustrated by the red arrows) such
that no information about the k-th bit is revealed close to the origin, but Zk,b

continues to get thinner at large radii.

The construction of Z≤k,b means that for k > 1, querying ϕk,b within {r ≤
2k−1r0} will not reveal the k-th bit, and so even querying the mollified χδ ∗ ϕk,b

within {r ≤ 2k−2r0} will not reveal the k-th bit, which stops information leaking
near the origin.

Since Ṽb = maxk=1,...,N ϕk,b, the zero set of Ṽb coincides with Z≤N,b, and for
the choice of b = 0.1010, this is shown in the first panel of Figure 10-2. It
turns out that each πb will concentrate around the zero set of Ṽb, and the other
panels of Figure 10-2 show these zero sets for seven different values of b in the
set { 1

16
, . . . , 15

16
} at larger scales. We can see that far out from the origin the

zero sets become well-separated, and hence the distributions are well-separated
in total variation.

We already discussed how the thickening of Zk,b means that querying ϕk,b,
and hence Ṽb, near the origin will not reveal the higher bits of b. For query
points ω = (r, θ) where r is large, the same analysis on Ṽ radial

b tells us that
Ṽb(x) (even after mollification) will reveal O(1) bits of information about b
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when b is chosen uniformly. As mentioned earlier, such a family of distributions
readily leads to a sampling lower bound of Ω(logm), where m is the size of the
family. Since we can choose m = κΩ(1), this leads to the Ω(log κ) lower bound.
Details of the proof can be found in Section 10.3.

Figure 10-2: Zeros sets of Ṽb. The first panel shows the zero set for b = 0.1010.
The other panels show the zeros sets for different values of b at different scales.
Note that far away from the origin the zero sets become well-separated, which
leads to the distributions being well-separated in total variation. Note that if
b, b′ match in the first ℓ bits, then they will agree up to the ℓ-th circle, as those
circles only depend on Z≤ℓ,b even for ℓ much less than K.

Connections to Kakeya constructions. The construction outlined above
is related to Perron’s construction [Per28] of Besicovich (Kakeya) sets known as
Perron trees. Kakeya sets are sets with area zero that contain the translation
of a unit segment in any direction. While Kakeya sets over finite fields have
been investigated before in theoretical computer science, e.g., [SS08; Dvi09;
Juk11], our construction is inspired by Kakeya sets over continuous domains,
namely R2. To our knowledge, this is one of the first applications of these
geometric ideas to theoretical computer science.

There are many similarities between our construction and that of Perron.
Perron’s construction proceeds by the method of sprouting. Sprouting is an
iterative process in which, at each step, one adds further and further smaller
triangles to the pre-existing construction. The figure is then rescaled in order
to have height 1. The construction after n steps contains 2n triangles of small
aperture Ω(2−n), and has area O(n−1). We do a similar process in the definition
of our sets Zk,b, and indeed, ultimately our hard instance has a very similar
tree-like structure.

While we were inspired by the construction of Perron trees, there are also
key differences between our hard instance and Perron’s construction. Indeed, in
our setting, we need to minimize overlap (so that the resulting distributions are
well-separated) while simultaneously ensuring that information is not leaked by
queries. In contrast, Kakeya sets are explicitly designed to maximize overlap.
Secondly, the iterates of Perron trees are convex sets, not convex functions.
One must turn these convex sets into convex functions somehow. This is
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additionally complicated by the fact that these iterates are not nested. In our
construction, we must take great care to create nested convex sets, so that the
resulting functions are convex and still maintain the structure of the sets.

10.3 Proof of the lower bound

Overview

Our goal is to show the following theorem:

Theorem 34 (lower bound in dimension two). There is a universal constant
ε0 > 0 such that the following holds. The query complexity of sampling from
the class of distributions π ∝ exp(−V ) on R2 such that V is 1-strongly convex,
κ-smooth, and minimized at 0, with accuracy ε0 in total variation distance, is
at least Ω(log κ).

The strategy to do so will be to construct a finite family S of potentials in
the given class which satisfies the following two properties:

• The potentials are hard to identify via queries (in the sense of Definition 16
below), and therefore any algorithm must query V at Ω(log κ) points in
order to identify which V ∈ S the algorithm is querying.

• The potentials are well-separated (in the sense of Definition 17 below),
which loosely means that they have mostly non-overlapping support and
hence (by Proposition 11) a single sample from π ∝ exp(−V ) suffices to
identify V ∈ S with constant probability.

Before describing the potentials S in more detail, we note some basic
definitions.

Definition 12. Given two functions f, g : Rd → R, the convolution f ∗ g is
the function defined as (f ∗ g)(x) :=

∫
Rd f(y)g(x− y)dy, for all x ∈ Rd.

Definition 13. For δ > 0, we define χδ to be the indicator function of the ball
Bδ of radius δ around the origin. By this, we mean χδ(x) = 1 if ∥x∥2 ≤ δ, and
χδ(x) = 0 otherwise.

The family S of potentials will have cardinality κΩ(1), so that identification
of the potential requires Ω(log κ) bits of information. Actually, by rescaling the
potentials, it suffices for each potential V to be κ−O(1)-convex and κO(1)-smooth.
Our eventual construction also satisfies the following properties.

• Each V ∈ S is of the form V = Ṽ ∗χδ +∥·∥2/(2κO(1)), where Ṽ : R2 → R
is a convex, non-negative, and piecewise linear potential, and δ will have
scale δ = κ−Θ(1).
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• Each V ∈ S is zero in a small neighbourhood of a ray ℓ emanating from
the origin, and grows fast outside of this ray; hence, the potentials are
well-separated.

• Suppose that ℓ, ℓ′ are the rays corresponding to two potentials V, V ′ ∈ S.
At distances from ℓ and ℓ′ that are much larger than the angle ∠(ℓ, ℓ′),
the potentials V , V ′ are exactly equal. This is the property makes the
potentials hard to identify via queries.

Throughout the proof, we assume that κ is sufficiently large, κ ≥ Ω(1).

Definitions and the information-theoretic argument

Definition 14 (density and normalizing constant). Given a strictly convex
function V : Rd → R, we denote by PV the probability distribution with
density Z−1 exp(−V ) w.r.t. Lebesgue measure, where Z :=

∫
exp(−V ) is the

normalizing constant. In an abuse of notation, we also use PV to refer to the
density itself.

Definition 15 (queries and extended oracle). For a fixed potential V , and
given a query x ∈ Rd, the extended oracle responds with V (Bδ(x1)), which
consists of the value of V for all points in the ball of radius δ centered at x.
For a sequence of (possibly adaptive and randomized) queries x1, . . . , xn and
observations V (Bδ(x1)), . . . , V (Bδ(xn)), we denote the information from the
i-th query by ξi := {xi, V (Bδ(xi))}, and the information from all the queries by

ξ1:n := {ξ1, . . . , ξn} .

Note that the extended oracle in Definition 15 provides more information
(the set of values of the potential in some ball around the query point x) to the
algorithm than our original first-order query model, from which the algorithm
only observes (V (x),∇V (x)) at the query x. A lower bound for sampling in
this stronger query model clearly implies a lower bound in the original query
model. We consider the stronger model out of technical convenience, as this
notion is robust to the mollification in the construction of the potentials.

Definition 16 (hard to identify via queries). A finite set S of potentials in
Rd is called I-hard to identify with queries at scale δ if the following holds:
for V ∼ uniform(S), any sequence of queries x1, . . . , xn to the extended oracle
made by a deterministic adaptive algorithm satisfies

I(ξ1:n;V ) ≤ In ,

where I denotes the mutual information.
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Definition 17 (well-separated set). A set S of potentials is well-separated if
there is a family of measurable sets (ΩV )V ∈S where the sets ΩV are disjoint,
and a universal constant c > 0 such that

PV (ΩV ) ≥ c , for all V ∈ S .

The motivation for this definition is the following fact:

Proposition 11 (one sample identifies well-separated distributions). Let S be
a well-separated set of potentials and conditionally on V ∼ uniform(S), suppose

that X is a sample from a probability measure P̂V which is at most c
2

away
from PV in total variation distance. Then,

P{X ∈ ΩV } ≥
c

2
.

Proof. By conditioning on V ,

P{X ∈ ΩV } = EP{X ∈ ΩV | V } = E P̂V (ΩV ) ≥ E
[
PV (ΩV )− ∥PV − P̂V ∥TV

]
≥ c

2
,

which is what we wanted to show.

This shows that the minimum-distance estimator

V̂ := arg min
V ∈S

inf
z∈ΩV

∥X − z∥ (10.1)

succeeds at estimating the randomly drawn V with constant probability. On
the other hand, using Fano’s inequality (Theorem 1) we can reduce Theorem 34
to the following proposition:

Proposition 12 (well-separated set which is hard to identify via queries). Let
κ ≥ Ω(1). Then, there is a set S of potentials such that:

1. All elements of S are κ−O(1)-convex and κO(1)-smooth, and have their
minimum at zero.

2. S has cardinality κΩ(1).

3. S is well-separated with c = Ω(1).

4. S is hard to identify via queries at scale δ = κ−Θ(1), and with I = O(1).

Proof of Theorem 34. Suppose that there is a sampling algorithm which, given
any target distribution π ∝ exp(−V ) on R2 such that V is 1-strongly convex,
κ̄-smooth, and minimized at 0, outputs a sample X whose law is ε0 close in

189



total variation distance to π using n(κ̄) queries to the extended oracle. Let S
be the family in Proposition 12. By choosing ε0 = c/2 = Ω(1) and rescaling the
potentials accordingly, then Proposition 11 implies that the sampling algorithm
can identify V ∼ uniform(S) using n(κ̄) queries with constant probability,

where κ̄ = κO(1). Namely, for the estimator V̂ in (10.1),

P{V̂ = V } ≥ c

2
= Ω(1) . (10.2)

On the other hand, we can prove a lower bound for the error probability of
any estimator V̂ constructed using adaptive queries. First we assume that the
estimator is deterministic given previous queries. Because the set S is hard to
identify, by Fano’s inequality (Theorem 1) we have

P{V̂ ̸= V } ≥ 1− I(ξ1:n(κ̄);V ) + log 2

log |S| ≥ 1− In(κ̄) + log 2

log |S| = 1− Ω
(n(κ̄)

log κ

)
,

(10.3)

for all n(κ̄) ≤ c |S| = O(log κ). If the estimator is instead randomized, it
depend on a random seed ζ that is independent of V . In this case, the same
argument as above conditional on ζ gives

P{V̂ ̸= V | ζ} ≥ 1− Ω
(n(κ̄)

log κ

)
.

Taking expectation over ζ, we see that (10.3) holds also for randomized algo-
rithms. Combined with (10.2), we see that n(κ̄) ≥ Ω(log κ) = Ω(log κ̄).

Reductions and properties of the construction

Recall from Section 10.3 that each V ∈ S is of the form V = Ṽ ∗ χδ +
∥·∥2/(2κO(1)). In this section, we reduce the desired properties of S, namely
that S is well-separated and hard to identify via queries, to geometric properties
of the potentials summarized in Proposition 13 below.

By increasing κ by a factor of at most two, which will not harm the final
lower bound, we can assume that κ = 2N for some positive integer N . We also
set δ := κ−5. Let BN denote the set of binary strengths of length N . For each
b ∈ BN and ℓ ∈ [N ], we let [b]ℓ := 0.00b1 . . . bℓ in binary representation, and set
[b] := [b]N .

Proposition 13 (geometric properties). There are functions Ṽb, for b ∈ BN ,
such that:

(P0) Ṽb is convex and κO(1)-smooth on average at scale δ = κ−5, i.e., Ṽb ∗ χδ

is κO(1)-smooth, and attains its minimum Vb(0) = 0 at zero.
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(P1) The zero set Zb := {Ṽb = 0} contains the 103δ-neighborhood of the set

Z̃b := {(x, βx) ∈ R2 | x ≥ 0, [b]− 2−N ≤ β ≤ [b] + 2−N} , (10.4)

and is contained in the 1-neighbourhood of Z̃b.

(P2) Moreover, for all x, y ∈ R2,

Ṽb(x, y) ≥ κ4
(
dist((x, y), Z̃b)− 1

)
+
.

(P3) If b, b′ coincide in the first ℓ bits then Ṽb and Ṽb′ coincide in the set{
(x, y) ∈ R2

∣∣ x < 1

4
2−3N or |y − [b]ℓ x| > 100 · 2−ℓx

}
.

We check that these properties imply that Proposition 12 holds.

Proof of Proposition 12. Let S be the collection of potentials Vb := Ṽb ∗ χδ +
∥·∥2/(2κ16) for b ∈ BN , where {Ṽb : b ∈ BN} are the functions from Proposi-
tion 13. We now verify the four properties of Proposition 12.

Proof of 1. By (P0), we know that Ṽb is convex, which implies that Ṽb ∗χδ

is also convex. Therefore, Vb is κ−16-strongly convex. In addition, by (P0),
Ṽb ∗ χδ is κO(1)-smooth, which means that Vb is κO(1) + κ−16 ≤ κO(1)-smooth.

Proof of 2. By construction, |S| = κ.
Proof of 3. We now show that S is c-separated. For any string b, recall

the definition of Z̃b from (10.4). Define the set

Ωb := {(x, βx) ∈ R2 | x ≥ 2−3N , [b]− 0.4 · 2−N ≤ β ≤ [b] + 0.4 · 2−N} .

It is clear that {Ωb : b ∈ BN} is a family of disjoint sets. By (P1) we know
that the zero set Zb of Ṽb contains a 103δ-neighborhood of Z̃b. Since Ωb ⊂ Z̃b,
it follows that Ṽb ∗ χδ = 0 on Ωb.

Let Ω̃b := {(x, y) ∈ Ωb : ∥(x, y)∥ ≤ κ8}. Note that the full set of points
(x, y) with ∥(x, y)∥ ≤ κ8 has volume πκ16, and Ωb is a sector of the plane
with arc Θ(2−N), minus a small set of points (specifically, the points in the
sector with x ≤ 2−3N , which also means y ≤ O(2−3N)). Therefore, the volume
of Ω̃b is Θ(κ16 · 2−N) = Θ(κ15). In addition, all points (x, y) ∈ Ω̃ have
Vb(x, y) = −∥(x, y)∥2/(2κ16) ≥ −1/2. Hence,∫

Ωb

exp(−Vb) ≥
∫
Ω̃b

exp(−Vb) ≥ Ω(κ15) . (10.5)

Next, we bound the full integral of exp(−Vb) across Rd by splitting Rd into
four regions Rd = Z̃b ∪Ψ1,b ∪Ψ2,b ∪Ψ3,b, defined as follows:
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• Ψ1,b := {(x, y) ∈ R2 \ Z̃b : dist((x, y), Z̃b) ≤ 2, ∥(x, y)∥ ≤ κ9}.

• Ψ2,b := {(x, y) ∈ R2 \ (Z̃b ∪Ψ1,b) : ∥(x, y)∥ ≤ κ9}.

• Ψ3,b = R2 \ (Z̃b ∪Ψ1,b ∪Ψ2,b).

Note that all points Ψ3,b have norm at least κ9. To show that most of the mass
of PVb

is concentrated on Z̃b, we must show that the integrals over Ψ1,b, Ψ2,b,
and Ψ3,b are small. In a nutshell, the integral over Ψ1,b is small because the
2-neighborhood of Z̃b is small (relative to the size of Z̃b itself); the integral
over Ψ2,b is small because Ṽb increases rapidly outside Z̃b; and the integral over
Ψ3,b is small because the Gaussian part of Vb is small over this region.

On these four regions, we have the following bounds. First,
∫
R2 exp(−∥·∥2/(2κ16)) =

2πκ16. Therefore, since the sector Z̃b has arc Θ(2−N), by rotational symmetry∫
Z̃b

exp(−Vb) ≤
∫
Z̃b

exp
(
−∥·∥

2

2κ16
)
≤ O(2−N)

∫
R2

exp
(
−∥·∥

2

2κ16
)
≤ O(κ15) .

Note that Ψ1,b consists of two strips adjacent to Z̃b, where each strip has width
2 and length O(κ9), together with a piece of area O(1) near the origin. Thus,
vol(Ψ1,b) ≤ O(κ9), yielding∫

Ψ1,b

exp(−Vb) ≤ vol(Ψ1,b) ≤ O(κ9) .

Next, for (x, y) ∈ R2 such that dist((x, y), Z̃b) ≥ 3/2, by (P2) we have Ṽb(x, y) ≥
κ4. After mollification at scale δ ≤ 1/2, we conclude that Ṽb ∗ χδ ≥ κ4 on Ψ2,b.
In addition, Ψ2,b is contained in the ball of radius κ9, so the volume of Ψ2,b is
at most πκ18. Therefore,∫

Ψ2,b

exp(−Vb) ≤ πκ18 exp(−κ4) .

Finally, all points in Ψ3,b have ℓ2 norm at least κ9, so∫
Ψ3,b

exp(−Vb) ≤
∫∫

∥(x,y)∥≥κ9

exp
(
−∥(x, y)∥2

2κ16
)
≤ O(κ8) exp

(
−Ω(κ2)

)
,

by standard Gaussian tail estimates. Therefore,∫
R2

exp(−Vb) ≤ O
(
κ15 + κ9 + exp

(
−Ω(κ4)

)
+ exp

(
−Ω(κ2)

))
≤ O(κ15) .

(10.6)

Overall, (10.5) and (10.6) together imply that PVb
(Ωb) ≥ Ω(1), i.e., S is
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Ω(1)-well-separated.

Proof of 4. Finally, we show that S is hard to identify via queries at scale
δ = κ−Θ(1) with I = O(1). We consider b drawn uniformly at random from
BN .

First, however, we need to extend (P3) to Vb (i.e., taking into account the
mollification at scale δ). We claim that if b, b′ coincide in the first ℓ bits, then
Vb and Vb′ coincide in the set{

(x, y) ∈ R2
∣∣ x < 1

8
2−3N or |y − [b]ℓ x| > 200 · 2−ℓx

}
. (10.7)

In light of (P3), it suffices to show that if (x, y) lies in this set and ∥(x′, y′)−
(x, y)∥ ≤ δ, then x′ < 1

4
2−3N or |y′ − [b]ℓ x

′| > 100 · 2−ℓ x′. In other words,
the δ-neighborhood of (10.7) is contained in the set in (P3). In the first case,
x′ < 1

4
2−3N follows if δ < 1

8
2−3N , but since δ = κ−5 = 2−5N this holds for large

κ. In the second case,

|y′ − [b]ℓ x
′| ≥ |y − [b]ℓ x| − δ − [b]ℓ δ ≥ 200 · 2−ℓ x− 2δ .

This is greater than 100 · 2−ℓ x provided that 2δ ≤ 100 · 2−ℓ x, but this follows
because δ = 2−5N and x ≥ 1

8
2−3N (as we are in the negation of the first case).

In fact, by replacing δ with 2δ, the same argument shows that for all (x, y) lying
in the set (10.7), we have Vb(Bδ(x, y)) = Vb′(Bδ(x, y)). Note also that (10.7)
shows that it is useless to query any points (x, y) with x < 1

8
2−3N , so for the

remainder of the proof we assume that the algorithm does not do so.

We now move to a stronger oracle model. Namely, given a query point
(x, y) ∈ R2, let ℓ be the largest integer such that |y− [b]ℓ x| ≤ 200 · 2−ℓ x. Then,
the oracle outputs ξ̂ := [b]ℓ+1, i.e., the oracle reveals the first ℓ+ 1 bits of b. To
see that this new oracle is indeed stronger, observe that we can simulate the
previous oracle using the revealed bits [b]ℓ+1; namely, pick any bit string b′ which
is consistent, in the sense that [b′]ℓ+1 = [b]ℓ+1. Then, by the choice of ℓ, we have
|y− [b]ℓ+1 x| > 200 ·2−(ℓ+1) x, so that Vb(Bδ(x, y)) = Vb′(Bδ(x, y)), and hence we
can output Vb(Bδ(x, y)) given knowledge of [b]ℓ+1. It therefore suffices to bound
the mutual information I(ξ̂1:n; b) where ξ̂1:n denotes the output of the stronger
oracle on a sequence of adaptive but deterministic queries (x1, y1), . . . , (xn, yn).

We can then write

I(ξ̂1:n; b) =
n∑

i=1

I(ξ̂i; b | ξ̂1:i−1) (10.8)

=
n∑

i=1

{H(ξ̂i | ξ̂1:i−1)−H(ξ̂i, | ξ̂1:i−1, b)} (10.9)
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≤
n∑

i=1

H(ξ̂i | ξ̂1:i−1) , (10.10)

where H(· | ·) denotes the conditional entropy. The first line follows from the
chain rule for mutual information, the second line follows from definition of
mutual information, and third line follows from non-negativity of conditional
entropy. Thus, we are done if we can show that H(ξ̂i | ξ̂1:i−1) ≤ O(1), for all
i ≤ c |S|.

Conditionally on any particular realization of ξ̂1:i−1, let ℓ0 denote the number
of bits of b revealed thus far and let [b0]ℓ0 denote the revealed bits. Clearly
the bit string b is uniformly distributed on the set B′

N of bit strings b′ with
[b′]ℓ0 = [b0]ℓ0 . Also, since we have assumed that the algorithm’s queries are
deterministic given the past history, the next query point (xi, yi) is deterministic.
Then, the conditional probability that ℓ ≥ ℓ0 bits are revealed by the next
query is

P{200 · 2−ℓ xi < |yi − [b]ℓ xi| ≤ 200 · 2−(ℓ−1) xi | ξ̂1:i−1}
≤ P

{yi
xi
− 200 · 2−(ℓ−1) ≤ [b]ℓ ≤

yi
xi

+ 200 · 2−(ℓ−1)
∣∣ ξ̂1:i−1

}
.

This is the probability that a uniformly chosen element of B′
N belongs to an

interval of length Θ(2−ℓ). Since there are 2N−ℓ0 elements of B′
N , and Θ(2N−ℓ)

of them belong to any fixed interval of length Θ(2−ℓ), we conclude that the
above probability is O(2−(ℓ−ℓ0)).

We then have

H(ξ̂i | ξ̂1:i−1) ≤ E
∑
ℓ≥ℓ0

(ℓ− ℓ0)O(2−(ℓ−ℓ0)) ≤ O(1) , (10.11)

where the expectation is taken over ℓ0 (which depends on the realization of
ξ̂1:i−1). Substituting the above bound into (10.10), we conclude that I(ξ1:n; b) =
O(n), which implies that S is indeed hard to identify via queries.

Construction of the distributions

This section contains the proof of Proposition 13.

For integers 1 ≤ k ≤ N , let [b]k be the number 0.00b1b2 . . . bk in binary
representation, and let [b]k := [b] := [b]N for k ≥ N . Define

ϕk,b(x, y) :=
(
|y − [b]k x| − (2−k x+ 2−(3N−k))

)
+
. (10.12)

We also write ϕk := ϕk,b when b is clear from context. For x ≥ 0, the function
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ϕk essentially measures the distance to the set

{(x, [b]k x+ ξk) ∈ R2 : x ≥ 0, |ξk| ≤ 2−k x+ 2−(3N−k)} .

Finally, we define the potential

Ṽb(x, y) := 27N max
k=1,...,N

2−kϕk(x, y) . (10.13)

Proof of Proposition 13. We prove that the construction (10.13) satisfies each
of the four properties in turn.

Proof of Property (P0). The convexity of Ṽb follows because each ϕk is

convex. To check that Ṽb is κO(1)-smooth on average, using the compositionality
of the maximum (i.e., max(a,max(b, c)) = max(a, b, c)) we see that that Ṽb can
be written as a maximum of affine functions, each of slope κO(1); hence, Ṽb is
κO(1)-Lipschitz. Differentiating under the integral,

∇(Ṽb ∗ χδ)(x, y) =

∫∫
Bδ

∇Ṽb(x+ u, y + v) du dv =

∫∫
∇Ṽb 1Bδ(x,y) ,

where the expression makes sense because Ṽb is Lipschitz and hence differentiable
a.e. by Rademacher’s theorem, and the absolute continuity of Ṽb ensures the
validity of the fundamental theorem of calculus. Then, by Hölder’s inequality,

∥∇(Ṽb ∗ χδ)(x, y)−∇(Ṽb ∗ χδ)(x
′, y′)∥ ≤

(
sup ∥∇Ṽb∥

)
∥1Bδ(x,y)−1Bδ(x′,y′)∥L1

≤ κO(1) vol
(
Bδ(x, y)△Bδ(x

′, y′)
)
.

By elementary considerations, the volume of the symmetric difference between
the balls is bounded by O(κO(1) ∥(x, y)− (x′, y′)∥), and therefore ∇(Ṽb ∗ χδ) is
κO(1)-Lipschitz.

Finally, it is obvious that Ṽb ≥ 0 and Ṽb = 0 at the origin.

Proof of Property (P1). We only need to verify that any point (x, y)

which is 103δ-close to Z̃b satisfies Ṽb(x, y) = 0, as the second part of Prop-
erty (P1) is automatically implied by Property (P2). For such a point (x, y),
there exists (x′, y′) such that

x′ ≥ 0 , |x′ − x| ∧ |y′ − y| ≤ 103δ , and |y′ − [b]x′| ≤ 2−Nx′ .

This also implies |y′ − [b]k x
′| ≤ 2−k x′ for all 1 ≤ k ≤ N , since |[b]k − [b]| ≤

2−k−2−N . Therefore, for all 1 ≤ k ≤ N , |y− [b]k x| ≤ 2−k (x+103δ)+2 ·103δ ≤
2−kx + 2−(3N−k), since δ = 2−5N . By the definition (10.13) of Ṽb and the
definition of ϕk in (10.12), it follows that Ṽb(x, y) = 0.
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Proof of Property (P2). We just need to check that

26NϕN(x, y) ≥ κ4
(
dist((x, y), Z̃b)− 1

)
+
,

or equivalently, 22NϕN(x, y) ≥ (dist((x, y), Z̃b) − 1)+. We first consider the
case when x ≥ 0, and we may assume that (x, y) ̸∈ Z̃b as otherwise the claim
is obvious. If (x, y) has distance ∆ to its closest point in Z̃b, then any y′ such
that (x, y′) ∈ Z̃b must satisfy |y − y′| ≥ ∆. Applying this to y′ = [b]x± 2−N x,
we obtain

dist
(
(x, y), Z̃b

)
≤ |y − [b]x+ 2−Nx| ∧ |y − [b]x− 2−N x| = |y − [b]x| − 2−N x .

In turn, it implies that ϕN (x, y) ≥ (dist((x, y), Z̃b)−2−(3N−k))+ ≥ (dist((x, y), Z̃b)−
1)+.

If x < 0, then dist((x, y), Z̃b) ≤ ∥(x, y)∥ ≤
√

2 max(|x|, |y|). Then, for N
large,

22NϕN(x, y) = 22N
(
|y − [b]x| − 2−N x− 2−(3N−k)

)
+

= 2N−1/2
(
2N+1/2 |y − [b]x|+

√
2 |x| − 2−(2N−k)+1/2

)
+

≥ 2N−1/2
(

23/2 max
(
0, |y| − 1

2
|x|

)
+
√

2 |x| − 1
)
+

≥ 2N−1/2
(√

2 max(|x|, |y|)− 1
)
+
≥

(
dist((x, y), Z̃b)− 1

)
+
.

Proof of Property (P3). The last property follows from Proposition 14
below, because if b, b′ agree on the first ℓ bits, then on the set in the statement
of Property (P3),

Ṽb = 27N max
k=1,...,N

2−kϕk,b = 27N max
k=1,...,ℓ

2−kϕk,b = 27N max
k=1,...,ℓ

2−kϕk,b′

= 27N max
k=1,...,N

2−kϕk,b′

= Ṽb′ .

The second and fourth equalities invoke Proposition 14, and the third equality
uses the fact that ϕk,b only depends on b through [b]k. This completes the
proof.

Proposition 14 (potentials agree if bits agree). Let Sℓ(b) be the set

Sℓ(b) :=
{

(x, y) ∈ R2 : x <
1

4
2−3N or |y − [b]ℓ x| ≥ 100 · 2−ℓx

}
.
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Then, for x, y ∈ Sℓ(b),

max
k=1,...,N

2−kϕk(x, y) = max
k=1,...,ℓ

2−kϕk(x, y) .

In turn, Proposition 14 follows by induction from:

Proposition 15 (induction). If (x, y) ∈ Sℓ(b), and for some k > ℓ we have
ϕk(x, y) > 0, then ϕk(x, y) ≤ 2ϕk−1(x, y).

Proof. First, we may assume that x > 0. This is because if x ≤ 0,

ϕk−1(x, y) ≥ |y − [b]k x| − |[b]k−1 − [b]k| |x| − 2−(k−1) x− 2−(3N−k+1)

≥ |y − [b]k x|+ 2−kx− 2−(k−1)x− 2−(3N−k+1)

= |y − [b]k x| − 2−kx− 2−(3N−k+1)

≥ ϕk(x, y) ,

since we are assuming ϕk(x, y) > 0.
Now, since x > 0, we start by estimating

ϕk−1(x, y) ≥ |y − [b]k x| − |[b]k−1 − [b]k|x− 2−(k−1)x− 2−(3N−k+1)

≥ |y − [b]k x| − 3 · 2−kx− 2−(3N−k+1)

= ϕk(x, y)− 2 · 2−kx+ 2−(3N−k+1)

and
ϕk(x, y) = |y − [b]k x| − (2−kx+ 2−(3N−k)) .

First, suppose that x ≤ 1
4

2−3N . Then, 2−(3N−k+1) ≥ 2 · 2−kx, so in fact
ϕk−1(x, y) ≥ ϕk(x, y). Alternatively, if x ≥ 1

4
2−3N and |y − [b]ℓ x| ≥ 100 · 2−ℓx,

then

2ϕk−1(x, y) ≥ 2 |y − [b]ℓ x| − 2 |[b]ℓ − [b]k−1|x− 4 · 2−kx− 2−(3N−k)

≥ 2 |y − [b]ℓ x| − 6 · 2−ℓx− 2−(3N−k) ,

ϕk(x, y) ≤ |y − [b]ℓ x|+ |[b]ℓ − [b]k|x− 2−kx− 2−(3N−k)

≤ |y − [b]ℓ x|+ 2−ℓx− 2−(3N−k) .

As a result, when |y−[b]ℓ x| ≥ 100·2−ℓx, we see that ϕk−1(x, y) ≥ 1
2
ϕk(x, y).

10.4 Upper bound in constant dimension

In this section we give a simple proof that in constant dimension, one can
approximately generate a sample from a log-concave distribution with condition
number κ, in O(log κ) queries. Our query dependence also has a polylogarithmic
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dependence on 1
ε
, if we wish to generate a sample that is ε-close in TV distance

to the true distribution. (We do not attempt to optimize the dependence on
dimension d or the polylogarithmic dependence on 1

ε
.)

Let V be a convex function that is 1-strongly convex and κ-smooth, such
that V is minimized at the origin and V (0) = 0. For any real value y ≥ 0,
define BV (y) to be the set of points x such that V (x) ≤ y.

First, we note the following basic facts that follow immediately from our
convexity assumptions.

Proposition 16 (basic facts about log-concavity). 1. BV (y) is a convex body
for any y > 0, and contains 0.

2. BV (y) is contained in the ball of radius
√

2y and contains the ball of
radius

√
2y/κ.

3. For any 0 < y < y′, BV (y′) ⊂ y′

y
BV (y).

Next, we show how to obtain a crude dO(1)-approximation for BV (1) using
dO(1) log κ first-order queries. The proof is essentially folklore and follows from
the ellipsoid method.

Proposition 17 (ellipsoid method). Let B be a convex body that contains
B(0, r) and is contained in B(0, R), along with a membership and separation
oracle. Using dO(1) log R

r
adaptive queries to the membership and separation

oracle, we can find an ellipsoid E centered around some point z such that
E ⊂ B ⊂ E ′, where E ′ is E dilated by an O(d3/2) factor about z.

We can apply the above proposition to the convex body BV (1).

Corollary 12 (sublevel set approximation). Using dO(1) log κ adaptive queries
to V and ∇V , we can find an ellipsoid E centered around some point z such
that E ⊂ BV (1) ⊂ E ′, where E ′ is E dilated by an O(d3/2) factor about z.

Proof. It suffices to show that from a single first-order query at a point x,
we can generate a membership and separation oracle for BV (1). Indeed,
the membership part is straightforward as we just check whether V (x) ≤ 1
(which is equivalent to x ∈ BV (1)). The separation oracle is also simple, and
can be done using the gradient. Specifically, suppose that V (x) > 1; then,
V (x′) ≥ V (x)+ ⟨∇V (x), x′−x⟩, which means that every x′ with ⟨∇V (x), x′⟩ ≥
⟨∇V (x), x⟩ is such that V (x′) ≥ V (x) > 1, i.e., ∇V (x) is a separation oracle
for BV (1) at x.

We are able to prove our sampling upper bound, using a rejection sampling
approach.
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Theorem 35 (upper bound for log-concave sampling). For any constant d ≥ 2
and any 1-strongly convex and κ-smooth function V with minimum at 0, we
can approximately sample from π ∝ exp(−V ) to total variation error at most ε
using O(log κ+logO(1)(1/ε)) adaptive queries to V and ∇V (here we emphasize
that the asymptotic notation treats d as constant).

Proof. Given V and any integer t ≥ 1, let pt be the probability that a sample
from π lies in tBV (1). The normalizing constant is Z ≥

∫
BV (1)

exp(−V ) ≥
e−1 vol(BV (1)), but integral over (t+ 1)BV (1)\tBV (1) is∫

(t+1)BV (1)\tBV (1)

exp(−V ) ≤ exp(−t) vol
(
(t+ 1)BV (1)

)
= exp(−t) (t+ 1)d vol

(
BV (1)

)
,

using Proposition 16 which implies that V (x) ≥ t for any x ̸∈ tBV (1). Therefore,
the probability of (t+ 1)BV (1)\tBV (1) under π is at most

π
(
(t+ 1)BV (1)\tBV (1)

)
≤ exp(−t) (t+ 1)d vol(BV (1))

e−1 vol(BV (1))
= exp(−(t− 1)) (t+ 1)d .

By summing this quantity for all integers greater than t, the probability of the
complement of tBV (1) is at most

∑
u≥t exp(−(u−1)) (u+1)d =

∑
u≥t exp(−u+

d log(u + 1) + 1). Note that for t ≥ Ω(d log d), this quantity is at most
O(exp(−t/2)). Taking t = C (d log d + log(1/ε)) for a large constant C, we
obtain π(Rd\tBV (1)) ≤ ε/2.

The algorithm now works as follows. We use Corollary 12 to find E ⊂
BV (1) ⊂ E ′. We pick a uniformly random point X in tE ′ for t = C (d log d+
log(1/ε)). We then accept the point X with probability exp(−V (X)), and
if we reject we restart the procedure. First, note that this algorithm, upon
termination, samples exactly from π conditioned on tE ′, which is at most ε

2
away

from π in total variation distance. In addition, each rejection sampling step
succeeds with probability at least vol(E)/(e vol(tE ′)), since with probability
vol(E)/ vol(tE ′) we choose a point in E in which case V (X) ≤ 1 so we accept
with probability at least e−1. This is equal to 1/(t O(d3/2))d = d−O(d) t−d =
d−O(d) (log 1

ε
)−d. So, after (d log 1

ε
)O(d) rounds of rejection sampling, each of

which only needs one query to V , we accept the sample with probability at
least 1 − ε

2
, which means that overall we have generated a sample which is

ε-close in distribution to π in total variation distance.
The overall query complexity is a combination of finding E,E ′ and then

running the rejection sampling, for a total complexity of dO(1) log κ+(d log 1
ε
)O(d).

So, for any fixed dimension d and error probability ε, the query complexity
for log-concave sampling is O(log κ). In addition, the dependence on the error
probability is polylogarithmic for any fixed d.
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Remark 9. We briefly note that the exponential dependence on d is not neces-
sary: using more sophisticated tools developed for sampling from convex bodies
one should be able to obtain a complexity of log(κ) (d log 1

ε
)O(1). However, we

choose to not optimize the dimension dependence in this result for the sake of
simplicity, and since we are focused on the setting of d = O(1).

10.5 Conclusion

The lower bound in Theorem 34 together with Theorem 31 in Chapter 9
completely characterize the complexity of log-concave sampling in constant
dimensions. We see that in low dimensions, the optimal sampling algorithm
is rejection sampling, which can thought of as the analogue of the ellipsoid
method in optimization. In fact, the rejection sampling algorithm that achieves
the rate from Theorem 34 even uses the ellipsoid method as a subroutine.

The next big question to answer is whether log-concave sampling in high
dimensions behaves differently, and whether the high dimensional lower bound
will be dimension dependent. We do not manage to obtain a complete answer
to this question in this thesis, but in the next chapter we make some partial
progress by studying lower bounds for Gaussian sampling.
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Chapter 11

General lower bounds in high
dimension: the Gaussian case

11.1 Introduction

In this final chapter, we give progress towards the goal of general sampling
lower bounds in high dimension. We restrict the class of target distributions
to the Gaussian distributions with mean 0, so the potential function is given
by V (x) = ⟨x,Σ−1x⟩, where Σ is the covariance matrix. The query oracle will
return the value V (x), as well as its gradient ∇V (x) = Σ−1x. We show that
under such a model, any sampling algorithm would require at least Ω(log d)
queries. Since the class of Gaussian distributions are a subset of the log-concave
and strongly log-smooth distributions, our results show that sampling on this
extended class will also have dimension dependent rates. The true dimension
dependence of log-concave sampling is more likely to be polynomial, and that
remains an interesting open problem.

We give two lower bounds that cover two regimes where the condition
number κ is large or small. We also give an upper bound of a sampling
algorithm that samples from a Gaussian using O(min(

√
κ log d, d)) queries, for

which our lower bounds are nearly tight. The techniques we use in this chapter
are quite distinct from those in the previous Chapters 9 and 10: instead of
explicitly constructing a set of hard-to-distinguish distributions, we reduce
the Gaussian sampling task to trace estimation of the covariance matrix. It
is interesting to see whether our explicit techniques from the previous two
chapters can work for Gaussians or general log-concave distributions in high
dimensions.

This chapter is based on the joint work [Che+23b], with Sinho Chewi,
Jaume de Dois Pont, Jerry Li, and Shyam Narayanan.
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Related works. Our upper bound for sampling from Gaussians (Theorem 41)
is closely related to the use of the conjugate gradient algorithm for sampling
from Gaussians [NS22]. Also, our O(log κ) upper bound algorithm is closely
related to rounding procedures which have been previously used in the convex
body sampling literature (see, e.g., [LV06]).

While matrix-vector queries have been studied in scientific computing for
decades (e.g., [BFG96]), they have only been studied in the theoretical computer
science literature recently, with a fully formalized model described in [Sun+19].
The most relevant works to ours are those that study the matrix-vector query
complexity of spectral properties, such as estimating top eigenvectors [SAR18;
Bra+20], trace and matrix norms [Hut90; WWZ14; RWZ20; DM21; Mey+21],
the full eigenspectrum [Coh+18; BKM22], and low-rank approximation [MM15;
BCW22]. We remark that the non-adaptive matrix-vector product model
is closely related to sketching, which has enjoyed a large body of work (see,
e.g., [Woo14] for a survey).

Our contributions. Our Gaussian lower bounds implies that when the
dimension is sufficiently large, a polynomial dependence on the condition
number κ is unavoidable (in contrast to Theorem 34, which only gives a
logarithmic dependence on κ in low dimension). In fact, our lower bounds hold
for the special case of sampling from Gaussians, for which they are nearly tight.
We first prove the following theorem.

Theorem 36 (informal, see Corollary 13). Any sampler for centered d-
dimensional Gaussians with condition number κ requires Ω(min(

√
κ, d)) queries.

We emphasize the fact that in our setting, the Gaussians are centered. Note
that if the Gaussians were allowed to have varying means, then one can deduce
a sampling lower bound by reducing the optimization task of minimizing a
convex quadratic function x 7→ ⟨(x− x⋆),Σ−1 (x− x⋆)⟩ to the task of sampling
from the corresponding Gaussian N (x⋆,Σ). However, as previously alluded to,
this does not address the inherent difficulty of the sampling problem.

The proof of Theorem 36 rests upon an elegant technique developed in
the literature on the matrix-vector query model in which the conditioning
properties and sharp characterizations of the eigenvalue distribution of Wishart
matrices are used to produce difficult lower bound instances for various tasks.
We adapt this method to our context by reducing the task of inverse trace
estimation to sampling (see Theorem 38).

As we show in Section 11.5, the lower bound is nearly tight over the class of
Gaussians, as it is possible to sample from a Gaussian using O(min(

√
κ log d, d))

queries using the block Krylov method. However, note that the lower bound
from Theorem 36 does not match the block Krylov upper bound, and the lower
bound of Theorem 36 is vacuous when κ is constant. In particular, it leaves
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open the possibility that the complexity of sampling from well-conditioned
Gaussians is dimension-free. While such dimension-free rates are possible in
convex optimization, our next result shows that the same is in fact not possible
for log-concave sampling:

Theorem 37. (informal, see Theorem 40) Let d be sufficiently large, and let
κ ≤ d1/5−δ. Then, any sampler for d-dimensional Gaussians with condition
number κ requires Ωδ(

√
κ log d) queries.

In the regime for which Theorem 37 is valid, the lower bound matches the
block Krylov upper bound up to constant factors, and hence we settle the
complexity of sampling from Gaussians in this regime. Moreover, Theorems 36
and 37 together imply the first dimension-dependent lower bounds for general
log-concave sampling. We conjecture that Theorem 37 holds for all κ for which√
κ log d ≤ d, and we leave this question for future work.

Although Theorem 37 may appear to only be a mild improvement over
Theorem 36, analyzing this regime is quite delicate, and we believe that the
tools based on Wishart matrices employed in the proof of Theorem 36 may
be insufficient to reach Theorem 37. Instead, we prove Theorem 37 by first
establishing sharp lower bounds on the performance of block Krylov algorithms
for the sampling task, and then providing a novel reduction (Lemma 44) which
shows that block Krylov algorithms are optimal for this task. This reduction is
quite general, and as the block Krylov algorithm and the matrix-vector query
model are of wide interest in scientific computing and numerical linear algebra,
we believe that our reduction may be broadly useful for tackling other problems
in this space.

We remark that a concise way of summarizing Theorems 36 and 37 if
we do not care about lower order terms is that sampling from Gaussians
requires Ω̃(min(

√
κ log d, d)) queries, where we write f = Ω̃(g) to mean f =

Ω(g log−O(1)(g)).

11.2 Technical overview

We summarize the main technical ideas in the proofs in this section. For setails,
see Section 11.3 for Theorem 36, and Section 11.4 for Theorem 37.

Recall that our goal is to provide a lower bound on sampling from a Gaussian
N (0,Σ), where Λ := Σ−1 has condition number κ. Note that the corresponding
potential is V (x) = 1

2
⟨x,Λx⟩, and we are allowed zeroth-order and first-order

queries, which means for a query x, we receive x⊺Λx and Λx. Hence, adaptive
queries are equivalent to adaptive matrix-vector product computations with Λ.

The first observation we make is that we can reduce the problem of sampling
from the Gaussian to estimating the trace of Σ. This is because if X is
a sample from a distribution which is close in total variation distance to
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N (0,Σ), then ∥X∥22 ≈ tr(Σ) with high probability. Therefore, it suffices to
demonstrate a lower bound for the following problem: given matrix-vector
product computations with Λ, approximately compute tr(Λ−1).

Lower bound via Wishart matrices

For any d, let W ∈ Rd×d have the Wishart(d) distribution. That is, W =
XX⊺, where X ∈ Rd×d has i.i.d. N (0, 1/d) entries. We take W to be the
precision matrix, Λ = W . Our first lower bound shows that Ω(d) matrix-vector
queries with W are necessary to estimate the trace of W−1 even to constant
multiplicative accuracy, with constant success probability (Theorem 39). Since
the condition number of W is Θ(d2) with high probability, we obtain one
extreme of the claimed lower bound Ω(min(

√
κ, d)). The general lower bound

for all κ then follows from a padding argument.

This lower bound approach is inspired by [Bra+20], which proved a query
lower bound for estimating the minimum eigenvalue of W . Their approach relies
on the fact that if we condition on any sequence of (1−Ω(1)) d adaptive queries,
the posterior distribution of the remaining eigenvalues behaves similarly to the
original distribution of the eigenvalues of W . In addition, while the smallest
eigenvalue of W is usually about 1/d2, its distribution has heavy tails: with
probability Θ(

√
ε), the smallest eigenvalue of W is below ε/d2. Consequently,

even conditioned on d/2 adaptive queries, we are unable to learn the minimum
eigenvalue up to a constant factor with high probability.

In our setting, we instead wish to show that learning the trace of W−1

is hard. However, the smallest eigenvalue of the Wishart matrix is so small
that with high probability, Tr(W−1) = Θ(λmin(W )−1). While most of the time
the trace is O(d2), with probability Θ(

√
ε) the posterior distribution of the

smallest eigenvalue of W after our adaptive queries may be ε/d2. Hence, we
will be unable to determine whether the trace is ≤ O(d2) or ≥ Ω(d2/ε) with
high probability.

This lower bound technique is clean and nearly optimal, but as previously
mentioned it is vacuous (of constant order) when κ = O(1), whereas we expect
the complexity of the problem to increase as d → ∞. To tackle this setting,
we introduce a second approach.

Lower bounds via reduction to block Krylov

Our second technique works in two parts. First, we show that for a specific
hard distribution over instances, any block Krylov-style algorithm requires
Ω(min(

√
κ log d, d)) queries to estimate tr(Σ). Then, we show a general purpose

reduction which demonstrates that for this hard instance (and indeed, any
rotationally invariant instance), block Krylov methods are actually optimal.
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Lower bound for block Krylov algorithms. Recall the block Krylov
technique: the algorithm chooses K i.i.d. random vectors v1, . . . , vK ∼ N (0, I),
and computes Λjvk for all j ≤ T, k ≤ K. This can be done using KT adaptive
queries, by querying Λjvk to learn Λj+1vk. For our purposes, it suffices to
consider block Krylov algorithms with K = T and to prove a lower bound on
the smallest number K needed to successfully estimate tr(Σ), for Σ = Λ−1.

We will construct two diagonal matrices D,D′ with all eigenvalues between 1
and κ, such that Tr(D−1) and Tr((D′)−1) are sufficiently different. In addition,
if Λ,Λ′ are random rotations of D,D′, respectively, then {Λjvk}j,k≤K and
{(Λ′)jvk}j,k≤K are hard to distinguish for K ≤ c

√
κ log d for a small constant c

(Lemma 40). Thus, unless K ≥ Ω(
√
κ log d), we cannot estimate the trace.

To explain the intuition behind Lemma 40, we first consider what happens
if we only have {Λjv}j≤K for a single random vector v (i.e., power method).

Letting λ1, . . . , λd be the eigenvalues of Λ, we have Λjv =
∑d

i=1 λ
j
iαiui, where

ui is the i-th eigenvector of Λ and v =
∑d

i=1 αiui. Intuitively, the only in-
formation we obtain from these vectors are their pairwise inner products,
since we could have randomly rotated Λ. Therefore, the only information
we have is ⟨Λjv,Λj′v⟩ =

∑d
i=1 λ

j+j′

i α2
i , which is the set {∑d

i=1 λ
j
iα

2
i }j≤2K .

Since v is random, we may think of all of the α2
i as 1 for simplicity, and

so we know {∑d
i=1 λ

j
i}j≤2K . Our goal is to use this information to learn

Tr(Λ−1) =
∑d

i=1 λ
−1
i .

We connect this to the problem of estimating 1/x as a linear combination of
1, x, x2, . . . , xK , a classic problem in approximation theory that is often tackled
with Chebyshev polynomials. Indeed, this relation to Chebyshev polynomials is
the main tool in the analysis of essentially all Krylov methods. In our setting,
as we desire lower bounds, we apply the fact that Chebyshev polynomials are
optimal in generating certain approximations. More concretely, suppose that
there are only K distinct eigenvalues λ1, . . . , λK , with each λi having some
multiplicity Ni. Since we want to show that estimating tr(Λ−1) is hard, this
amounts to showing that knowing

∑K
i=1Niλ

j
i for 0 ≤ j ≤ K is insufficient to

learn
∑K

i=1Ni/λi. We express this as a linear program (if we relax the Ni to be
reals), the dual of which precisely captures whether 1/x can be approximated
well by a degree-K polynomial at λ1, . . . , λK (Proposition 24). If we choose
the λi to be the local extrema of a degree-K Chebyshev polynomial, shifted so
that λ1 = 1 and λK = κ, then it is known that one cannot estimate 1/x up
to error d−Ω(1) at these points (which is needed for trace estimation), unless
K ≥ Ω(

√
κ log d). At a high level, this is the reason why we need Ω(

√
κ log d)

iterations of power method.

For general block Krylov algorithms, the algorithm obtains ⟨vℓ,Λj vk⟩, for
0 ≤ j ≤ K and 1 ≤ k, ℓ ≤ K. Now, the information that the algorithm sees is
captured by the matrices {⟨vℓ,Λj vk⟩}k,ℓ≤K , for j = 1, . . . , K. Here, we show
that provided K is sufficiently small compared to d, we can find choices of
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multiplicities N1, . . . , NK and N ′
1, . . . , N

′
K , such that the corresponding matrices

D,D′ have significantly different traces (i.e.,
∑K

i=1(Ni −N ′
i)/λi is large) but

the information from queries is not enough to distinguish between Λ and Λ′,
which we establish via a coupling argument.

Reduction to block Krylov algorithms. The argument outlined above
shows block Krylov algorithms with K = o(

√
κ log d) cannot distinguish be-

tween two families of randomly rotated matrices with difference traces (Λ
coming from D and Λ′ coming from D′), and hence cannot solve the trace
estimation task. Our next technical contribution is a reduction which allows us
to simulate the output of any adaptive algorithm with K queries on our hard
instance, given only the responses to a block Krylov algorithm. Thus, a lower
bound against block Krylov methods translates into a lower bound against any
query algorithm. We now give a high-level description of the reduction.

Since we prove lower bounds based on randomized constructions, it suffices to
consider adaptive deterministic algorithms, i.e., each query vk is a deterministic
function of the previous queries and oracle outputs. The difficulty of proving
such a lower bound against such an algorithm is the adaptivity of the queries,
which makes it difficult to reason about how much information the algorithm
has learned. However, since our lower bound construction for block Krylov
algorithms is rotationally invariant, intuitively the adaptivity does not help: the
algorithm may as well query a random direction which it has not yet explored.

However, this intuition is not entirely correct: if the algorithm has previously
queried a vector v and received the information Λv, then it may useful to query
Λv in order to receive the information Λ2v, instead of querying a completely
random new direction. Indeed, computing powers v,Λv,Λ2v, . . . is precisely the
essence of the power method, as discussed above. To account for this, we move
to the following stronger oracle model: if the algorithm has selected vectors
v1, . . . , vk, then at iteration k it receives all of the information (Λivj)i+j≤k for
free. Now, there is provably no benefit to querying vectors which lie in the
span of the previous queries and oracle outputs.

Recall that our goal is to argue that an adaptive deterministic algorithm
can be simulated by an algorithm which simply makes i.i.d. Gaussian queries
z1, z2, . . . , zK , in the following sense. In the stronger oracle model, at itera-
tion k, the adaptive algorithm has made queries (valg1 , . . . , valgk ) and received

information (Λivalgj )i+j≤k and it picks a new vector vk+1 which lies orthogonal
to its received information. Suppose that using only the Gaussian queries
z1, z2, . . . , zk, we have simulated queries vsim1 , vsim2 , . . . , vsimk which are equivalent
to the execution of the adaptive algorithm in the sense that the law of the
information (Λivsimj )i+j≤k is precisely the same as the law of the algorithm’s

information (Λivalgj )i+j≤k. Since the algorithm is deterministic, valgk is a func-

tion vk((Λivalgj )i+j<k) of algorithm’s accumulated information. Thus, in order
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to simulate the adaptive algorithm for one more step, it is natural to con-
sider taking vsimk := vk((Λivsimj )i+j<k). However, we will be unable to compute
Λivsimk for any i ≥ 1, because the simulation must be based on the Gaussian
queries z1, z2, . . . , zk, whereas this definition of vsimk requires making queries at
vsim1 , vsim2 , . . . , vsimk−1.

Thus far, we have not invoked the rotational invariance of Λ, which
is crucial to the argument. The key is that although we cannot directly
take vk((Λ

ivsimj )i+j<k) to be our next simulated point, we can rotate ṽk into
vk((Λ

ivsimj )i+j<k) via a unitary matrix Uk; moreover, we can arrange that Uk

fixes all of the previous information (Λivsimj )i+j<k, because vk((Λ
ivsimj )i+j<k)

lies orthogonal to this information (recall, we can assume that each deter-
ministic function vk(·) outputs a vector orthogonal to its inputs, due to our
choice of oracle model). The intuition is that due to the rotational invari-
ance of Λ, then conditioned on the data (Λivsimj )i+j<k, the distribution of Λ
is still rotationally invariant on the orthogonal subspace of the data; hence,
Ukṽk = vk((Λ

ivsimj )i+j<k) ought to have the same law as ṽk, i.e., querying the
completely random direction ṽk is just as good as querying according to what
the adaptive algorithm specifies.

Unfortunately there are further difficulties to overcome with this approach.
Namely, suppose that we define each simulated point vsimk to be the output
Ukṽk of a rotation matrix applied to ṽk. We would like to take Uk such that
Ukṽk = vk((Λivsimj )i+j<k) but this is no longer computable based on (Λiṽj)i+j<k.

However, we note that Λivsimj = ΛiUj ṽj = UjΛ̃
iṽj where Λ̃ := UT

j ΛUj. This
shows that Λivsimj is computed from the query of ṽj , not on the original matrix Λ

but on the modified matrix Λ̃, together with the matrix Uj . Since we hope that
Λ̃ has the same law as Λ, then this is good enough for the purposes of simulating
the adaptive algorithm. Actually, in order for the induction to work out, it
becomes clear that we need to define a sequence of matrices Λ1,Λ2, . . . ,Λk,
where each Λk is related to the previous Λk−1 via Λk = UT

k Λk−1Uk, and Uk is
chosen such that vsimk = Ukṽk = vk((Λi

k−1v
sim
j )i+j<k). Then, we must argue that

the simulated sequence vsim1 , vsim2 , . . . , vsimk has the same law as the algorithm’s
sequence valg1 , valg2 , . . . , valgk .

This last step, however, turns out to be delicate. Indeed, although it is
obvious that for a fixed orthogonal matrix U ′, the law of Λ is the same as the
law of (U ′)TΛU ′, the rotation matrices Uk we choose in the above argument are
dependent on the previous queries and oracle outputs, and are hence dependent
on Λ itself. In the presence of such dependence, it is not obvious why the
law of Λk should be the same as the law of Λ, and to address this we prove a
conditioning lemma in Section 11.4. Once the conditioning lemma is proved,
the remainder of the proof follows along the lines just described, and the details
of the induction are carried out in Section 11.4.
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11.3 A lower bound via Wishart matrices

We define W ∼ Wishart(d) to mean W = XX⊺ where each entry of X ∈ Rd×d

is N (0, 1
d
). We aim to prove the following two theorems, which together imply

a query complexity lower bound for sampling from Gaussians.

Theorem 38 (reducing inverse trace estimation to sampling). Let δ > 0. There
is a universal constant c > 0 (depending only on δ) such that the following hold.
Suppose that d ≥ c−1 and there exists a query algorithm such that, for any
Gaussian target distribution π := N (0,Σ) in Rd with cd−2 Id ⪯ Σ−1 ⪯ c−1 Id,
outputs a sample from a distribution π̂ such that either ∥π̂ − π∥TV ≤ c or√
cd−2W2(π̂, π) ≤ c, using n queries to π.

Then, given W ∼ Wishart(d), there exists an algorithm which makes at
most c−1n matrix-vector queries to W and outputs an estimator t̂r such that
1
2

tr(W−1) ≤ t̂r ≤ 2 tr(W−1) with probability at least 1− δ.

Theorem 39 (lower bound for inverse trace estimation). Let W ∼ Wishart(d)
for d ≥ 2. For any C > 0, there exists δ > 0 (depending only on C) such
that any algorithm which makes n matrix-vector queries to W and outputs an
estimator t̂r such that C−1 tr(W−1) ≤ t̂r ≤ C tr(W−1) with probability at least
1− δ must use n ≥ Ω(d) queries.

Remark 10. Suppose that we want to sample from a target distribution π which
is α-strongly log-concave. It is straightforward to check that total variation
guarantees are invariant under rescaling the target (replacing π with S#π,
where S : Rd → Rd is the scaling map Sx := ζx for some ζ > 0), whereas
Wasserstein guarantees are not. Instead, the scale-invariant quantity is

√
αW2,

which is what appears in Theorem 38.

Consider the class of centered Gaussian distributions on Rd which are
α-strongly log-concave and β-log-smooth; let κ := β/α denote the condition
number. Let CG,d(κ, d, ε) denote the query complexity of outputting a sample
which is ε-close in the metric d to a target distribution in this class, where d
is one of the scale-invariant distances d ∈ {TV,

√
αW2}. Then, Theorems 38

and 39 (with C = 2 and δ, c being universal constants) show that for d ≥ c−1,

CG,d(c
−2d2, d, c) ≥ Ω(d) . (11.1)

By embedding the construction into higher dimensions, we obtain the
following corollary.

Corollary 13 (query lower bound via Wishart matrices). For d ∈ {TV,
√
αW2},

there is a universal constant c > 0 such that

CG,d(κ, d, c) ≥ Ω
(√

κ ∧ d
)
.
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Proof. If κ ≥ c−2d2, then (11.1) yields

CG,d(κ, d, c) ≥ Ω(d) ≥ Ω
(√

κ ∧ d
)
.

Otherwise, if κ ≤ c−2d2, let d⋆ be the largest integer such that κ ≥ c−2d2⋆.
Then, by embedding the d⋆-dimensional construction into dimension d,

CG,d(κ, d, c) ≥ CG,d(κ, d⋆, c) ≥ Ω(d⋆) ≥ Ω
(√

κ ∧ d
)
,

which concludes the proof.

Reducing inverse trace estimation to sampling

In this section, we prove Theorem 38, which is based on the concentration of
the squared norm of a Gaussian. We recall the following identity:

Lemma 37 (concentration of the squared norm). Let Z ∼ N (0,Σ). Then,

var(∥Z∥2) = 2 ∥Σ∥2HS .

Proof. Note that since all quantities are rotationally invariant, we may assume
without loss of generality that Σ is diagonal. Then the equality claimed is just
the variance of a non-homogenous chi-squared random variable.

We now prove Theorem 38.

Proof of Theorem 38. Let W ∼ Wishart(d) and let Σ := W−1. By Proposi-
tion 20, there exists c > 0 (depending only on δ) such that with probability at
least 1− δ/3, it holds that

cd−2 Id ⪯ Σ−1 ⪯ c−1 Id .

We work on the event E that this holds.
Case 1: total variation distance. From Lemma 37 and Chebyshev’s

inequality, we deduce that if Z1, . . . , Zm
i.i.d.∼ N (0,Σ) and t̂r⋆ := m−1

∑m
i=1∥Zi∥2,

P
{∣∣t̂r⋆ − tr Σ

∣∣ ≥ 1

2
tr Σ

}
≤ var t̂r⋆

(tr Σ)2/4
=

8

m
· tr(Σ2)

tr(Σ)2
≤ 8

m
.

Take m ≥ 48/δ so that this probability is at most δ/3. Conditionally on W , let
π̂W denote the law of the sample X of the algorithm when run on the target
N (0,Σ). By running the sampling algorithm m times, we can obtain i.i.d.

samples X1, . . . , Xm
i.i.d.∼ π̂W . Then, for t̂r := m−1

∑m
i=1∥Xi∥2,

P
{∣∣t̂r− tr Σ

∣∣ ≥ 1

2
tr Σ

}
≤ P(Ec) + P

{∣∣t̂r− tr Σ
∣∣ ≥ 1

2
tr Σ, E

}
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≤ δ

3
+ E

[
P
{∣∣t̂r⋆ − tr Σ

∣∣ ≥ 1

2
tr Σ

∣∣ W}
1E

]
+ E

[
∥π̂⊗m

W −N (0,Σ)⊗m∥TV 1E
]

≤ δ

3
+
δ

3
+ cm .

If we choose c ≤ δ/(3m), then t̂r is an estimator of tr(W−1) with multiplicative
error at most 2 which succeeds with probability at least 1− δ. Note that both
c and m depend only on δ.

Case 2: Wasserstein distance. Consider a coupling of X and Z such
that, conditionally on W , we have E[∥X−Z∥2 | W ] = E[W 2

2 (π̂W ,N (0,Σ)) | W ].
Let (X1, Z1), . . . , (Xm, Zm) be i.i.d. copies of this coupling. Also, let E ′ denote
the event that λmin(W−1) ≥ c̄d2, where c̄ is a constant depending only on δ,
chosen so that P(E ′c) ≤ δ/3 using Proposition 20. Then, conditionally on W
in the event E ∩ E ′,

E
[
|t̂r− tr Σ|

∣∣ W ]
≤ E

[
|t̂r− t̂r⋆|

∣∣ W ]
+ E

[
|t̂r⋆ − tr Σ|

∣∣ W ]
≤ E

[
|t̂r− t̂r⋆|

∣∣ W ]
+

2 tr Σ√
m

,

where we used Lemma 37. Using ∥x∥2 − ∥y∥2 = ⟨x− y, x+ y⟩, for any λ > 0,

E
[
|t̂r− t̂r⋆|

∣∣ W ]
≤ E

[
| ∥X∥2 − ∥Z∥2 |

∣∣ W ]
≤ E

[
∥X − Z∥2

∣∣ W ]
+ 2E

[
|⟨X − Z,Z⟩|

∣∣ W ]
≤ (1 + λ)E

[
∥X − Z∥2

∣∣ W ]
+

1

λ
E
[
∥Z∥2

∣∣ W ]
≤ (1 + λ) c3d2 +

tr Σ

λ
≤ (1 + λ)

c3

c̄
tr Σ +

tr Σ

λ
.

If we take λ = 18/δ, m ≥ (36/δ)2, and if c is sufficiently small (depending only
on δ), we obtain

E
[
|t̂r− tr Σ|

∣∣ W ]
≤ δ tr Σ

6
.

By Markov’s inequality,

P
{∣∣t̂r− tr Σ

∣∣ ≥ 1

2
tr Σ

}
≤ P(Ec) + P(E ′c) + E

[
P
{∣∣t̂r− tr Σ

∣∣ ≥ 1

2
tr Σ

∣∣ W}
1E∩E ′

]
≤ δ

3
+
δ

3
+
δ

3
≤ δ .

We conclude as before.

210



Lower bound for inverse trace estimation

In this section, we prove Theorem 39. The idea is that due to the heavy tails of
λmin(W−1) implied by Proposition 20, with some small probability δ, tr(W−1)
will be very large. An algorithm for inverse trace estimation which succeeds
with probability at least 1− δ must be able to detect this event, and we show
that this requires making Ω(d) queries.

The key technical tools are the following propositions, due to [Bra+20].

Proposition 18 ([Bra+20, Lemma 3.4]). Let W ∼ Wishart(d). Then, for
any sequence of n < d (possibly adaptive) queries v1, . . . , vn and responses
w1 = Wv1, . . . , wn = Wvn, there exists an orthogonal matrix V ∈ Rd×d and
matrices Y1 ∈ Rn×n, Y2 ∈ R(d−n)×n that only depend on v1, . . . , vn, w1, . . . , wn,
such that VWV ⊺ has the block form

VWV ⊺ =

[
Y1Y

⊺
1 Y1Y

⊺
2

Y2Y
⊺
1 Y2Y

⊺
2 + W̃

]
.

Here, conditionally on v1, . . . , vn, w1, . . . , wn, the matrix W̃ has the Wishart(d−
n) distribution.

Proposition 19 ([Bra+20, Lemma 3.5]). For any matrices Y1 ∈ Rn×n, Y2 ∈
R(d−n)×n, and any symmetric matrix W̃ ∈ R(d−n)×(d−n), it holds that

λmin

([Y1Y ⊺
1 Y1Y

⊺
2

Y2Y
⊺
1 Y2Y

⊺
2 + W̃

])
≤ λmin(W̃ ) .

We are now ready to prove Theorem 39. Note that this result is very similar
to that of [Bra+20], except that we work with the inverse trace rather than
the minimum eigenvalue.

Proof of Theorem 39. Let δ > 0 be chosen later. We first argue that t̂r must
not be too large. Applying Proposition 21, we conclude that there is a universal
constant C ′ > 0 such that tr(W−1) ≤ C ′d2 with probability at least 1/2. Hence,

P
{

t̂r ≤ CC ′d2
}
≥ P

{
tr(W−1) ≤ C ′d2 and t̂r ≤ C tr(W−1)

}
≥ P{tr(W−1) ≤ C ′d2} − P{t̂r > C tr(W−1)} ≥ 1

2
− δ .

Next, suppose for the sake of contradiction that n ≤ d/2. Let Fn denote the σ-
algebra generated by the information available to the algorithm up to iteration
n, that is, the queries v1, . . . , vn, the responses w1, . . . , wn, and any external
randomness used by the algorithm (which is independent of W ). Applying
Propositions 18 and 19,

P
{

t̂r < C−1 tr(W−1)
}
≥ P

{
t̂r ≤ CC ′d2 and λmin(W−1) > C2C ′d2

}
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≥ P
{

t̂r ≤ CC ′d2 and λmin(W̃−1) > C2C ′ d2
}

= E
[
1{t̂r ≤ CC ′d2}P{λmin(W̃−1) ≥ C2C ′d2 | Fn}

]
.

According to Proposition 18, conditionally on Fn, W̃ has the Wishart(d− n)
distribution. By applying Proposition 20,

P{λmin(W̃−1) ≥ C2C ′d2 | Fn} ≥ P{λmin(W̃−1) ≥ 4C2C ′ (d− n)2 | Fn} ≳
1

C
√
C ′

.

Therefore,

P
{

t̂r < C−1 tr(W−1)
}
≳ P

{
t̂r ≤ CC ′d2

} 1

C
√
C ′
≥ 1/2− δ

C
√
C ′

,

which is larger than δ provided that δ is chosen sufficiently small (depending
only on C). This contradicts the success probability of the algorithm, and
hence we deduce that n ≥ d/2.

Useful facts about Wishart matrices

We collect together useful facts about Wishart matrices which are used in the
proofs.

Proposition 20 (extreme singular values of a Gaussian matrix). Let W ∼
Wishart(d). For any x ∈ [0, 1],

P
{
λmin(W ) ≤ x

d2
}
≍ √x .

Also, there is a universal constant C > 0 such that

P{λmax(W ) ≥ C (1 + t)} ≤ 2 exp(−dt) .

Proof. See, e.g., [Ede89, Theorem 5.1] and [Ver18, Theorem 4.4.5].

Proposition 21 (bound on the inverse trace). Let W ∼ Wishart(d). Then, for
any δ > 0, with probability at least 1− δ, it holds that tr(W−1) ≤ Cδd

2 where
Cδ is a constant depending only on δ.

Proof. According to [Sza91, Theorem 1.2], there is a universal constant C > 0
such that for each j = 1, . . . , d and α ≥ 0,

P
{ 1

λj(W )
≥ d2

α2j2

}
≤ (Cα)j

2

.
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Let α < 1/C and let Eα := {1/λj(W ) ≥ d2/(α2j2) for some j = 1, . . . , d}. By
the union bound,

P(Eα) ≤
d∑

j=1

(Cα)j
2

≲
1√

log(1/(Cα))
.

On the event Ec
α,

tr(W−1) ≤
d∑

j=1

d2

α2j2
=

π
2d2

6α2
,

which is the claimed result upon taking α sufficiently small.

Remark 11. The proof only shows that P{tr(W−1) ≥ ηd2} ≲ 1/
√

log η for
η ≫ 1, which is not enough to conclude that E tr(W−1) is finite. In fact, it
holds that E tr(W−1) =∞, which can already be seen from Proposition 20.

11.4 A lower bound via reduction to block

Krylov

In this section, we prove Theorem 37. Our proof procedes in two parts: we first
show a lower bound against the block Krylov method, and then a reduction
showing that an arbitrary adaptive algorithm can be simulated via a block
Krylov method.

Preliminaries

We first record some important facts that we will use later on. The following
is a standard approximation-theoretic result:

Proposition 22 ([SV14, Proposition 2.4, rephrased]). Let TK be the degree-K
Chebyshev polynomial, and let 1 = β1 > · · · > βK+1 = −1 be the set of real
values β such that TK(β) ∈ {−1, 1}. Then, for any real degree-K polynomial p

such that |p(βi)| ≤ 1 for all βi, we have |p(x)| ≤ |TK(x)| ≤ (|x|+
√
x2 − 1)

K

for all |x| > 1.

Let c0 > 0 be a constant to be chosen later. The above proposition immediately
implies:

Corollary 14 (approximation error). Suppose that K ≤ c0
√
κ log d. Then,

there exist κ = λ1 > · · · > λK+2 = 1 (that only depend on K and κ) such that for
any real degree-K polynomial P , max1≤i≤K+2 | 1λi

− P (λi)| ≥ d−2c0−O(1/
√
κ)/κ.
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Proof. Set β1, . . . , βK+2 to be the solutions of TK+1 ∈ {−1, 1}, and for each

1 ≤ i ≤ K + 2, set λi := (κ−1)
2

(βi + 1) + 1; by construction, κ = λ1 > · · · >
λK+2 = 1. Given any polynomial Q of degree at most K + 1, note that if
|Q(λi)| ≤ 1 for all i, then the polynomial p given by p(x) := Q(κ−1

2
(x+ 1) + 1)

satisfies |p(βi)| ≤ 1 for all i. By Proposition 22, for x0 := −(1 + 2
κ−1

),

|Q(0)| = |p(x0)| ≤
(
|x0|+

√
x20 − 1

)K+1 ≤
(

1 +
2√
κ

+O
(1

κ

))K+1

< exp
(( 2√

κ
+O

(1

κ

)) (
c0
√
κ log d+ 1

))
= d2c0+O(1/

√
κ) .

Next, for a degree-K polynomial P , consider Q(x) := d2c0+O(1/
√
κ) (1 −

xP (x)). Note that Q has degree K + 1 and |Q(0)| = d2c0+O(1/
√
κ), which

implies that |Q(λi)| > 1 for some i, which in turn shows that | 1
λi
− P (λi)| ≥

d−2c0−O(1/
√
κ)/κ.

We also introduce random matrix ensembles that are used in the proof,
together with basic facts and properties.

Interestingly, as in the previous section, Wishart matrices are also useful for
understanding block Krylov algorithms, but for a completely different reason.
This time, we will study inner products between random vectors, which is
also captured by a Wishart matrix. We denote by Wishart(K,N) the law of
the random matrix XX⊺ ∈ RK×K , where the entries of X ∈ RK×N are i.i.d.
standard Gaussians. Note that this is a different convention from the previous
section, in which each entry of X was i.i.d. N (0, 1

d
).

We also define the Gaussian orthogonal ensemble (GOE) of size K, denoted
GOE(K). This is the law of a random symmetric matrix G ∈ RK×K where
each diagonal entry Gi,i is distributed as N (0, 1), and each off-diagonal entry
Gi,j = Gj,i is distributed as N (0, 1

2
). Also, the entries {Gi,j : 1 ≤ i ≤ K, j ≤ i}

are independent.

A long line of work (see, e.g., [JL15; Bub+16; BG18; RR19; BBH21; Mik22])
shows that when N ≫ K3, the Wishart ensemble is well-approximated by a
scaled and shifted GOE, a fact which we shall invoke in the sequel.

Lemma 38 (equivalence of Wishart and GOE). Let W ∼ Wishart(K,N) be
drawn from the Wishart distribution, and let W0 be drawn from the distri-
bution of symmetric matrices where the diagonal and above-diagonal entries
are mutually independent, each diagonal entry is drawn as N (N, 2N), and
each above-diagonal entry is drawn as N (0, N). (Equivalently, we can write
W0 = NI +

√
2N G, where G ∼ GOE(K).) Then,

∥law(W )− law(W0)∥TV ≤ O
(K3/2

N1/2

)
.
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Finally, we also require the following basic linear algebraic fact:

Proposition 23 (rotating the right singular vectors). Let V, V ′ ∈ RK×N be
such that V V ⊺ = (V ′)(V ′)⊺. Then, there exists an orthogonal matrix U ∈ RN×N

such that V U = V ′.

Lower bound against block Krylov algorithms

We start with the following proposition, which will be useful in establishing the
existence of matrices with different inverse traces but which generate similar
power method iterates.

Proposition 24 (polynomial approximation and duality). Suppose that K ≤
c0
√
κ log d. Then, there exist κ = λ1 > λ2 > · · · > λK+2 = 1 and non-negative

real numbers x1, . . . , xK+2;x
′
1, . . . , x

′
K+2, such that:

1. For all 0 ≤ j ≤ K,
∑K+2

i=1 xiλ
j
i =

∑K+2
i=1 x′iλ

j
i .

2.
∑K+2

i=1 xi =
∑K+2

i=1 x′i = d.

3.
∑K+2

i=1 xi/λi −
∑K+2

i=1 x′i/λi ≥ 2d1−2c0−O(1/
√
κ)/κ.

Proof. If we fix the values of the λi to be the choices in Corollary 14, this
becomes a linear program in the variables {xi}K+2

i=1 , {x′i}K+2
i=1 . By writing x =

(x1, . . . , xK+2, x
′
1, . . . , x

′
K+2), our goal is to maximize c⊺x over x ≥ 0 subject to

Ax = b. In our case, we set

c :=



λ−1
1
...

λ−1
K+2

−λ−1
1

...
−λ−1

K+2


, A :=


1 · · · 1 1 · · · 1
1 · · · 1 −1 · · · −1
λ1 · · · λK+2 −λ1 · · · −λK+2
...

. . .
...

...
. . .

...
λK1 · · · λKK+2 −λK1 · · · −λKK+2

 , b =


2d
0
...
0

 .

We can consider the dual linear program, and by strong duality this max-
imization is equivalent to minimizing b⊺y over y such that A⊺y ≥ c. By
writing y = (z, y0, y1, . . . , yK), this means we wish to minimize 2dz subject to
z + (y0 + y1λi + · · · + yKλ

K
i ) ≥ 1

λi
and z − (y0 + y1λi + · · · + yKλ

K
i ) ≥ − 1

λi

for all 1 ≤ i ≤ K + 2. Equivalently, we wish to minimize 2dz subject to the
existence of a polynomial P of degree at most K (with coefficients y0, . . . , yK)
such that z ≥ | 1

λi
− P (λi)| for all i ≤ K + 2.

The minimum for the dual linear program (and thus the maximum for the
primal linear program), is 2d infP∈PK

max1≤i≤K+2 | 1λi
− P (λi)|, where PK is the

set of polynomials of degree at most K with real coefficients. By Corollary 14,
this quantity is at least 2d1−2c0−O(1/

√
κ)/κ.
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We note that a slightly strengthened version of Proposition 24 holds. Let
0 < c1 < 1.

Corollary 15 (existence of good solutions). Proposition 24 holds, where we

also ensure that each xi and x′i is at least d
2 (K+2)

and
|xi−x′

i|
xi
≤ 2c1

1−c1
, though the

right-hand side of the third condition becomes c1d
1−2c0−O(1/

√
κ)/κ.

Proof. First, replace every xi with 1
2

(xi + d
K+2

) and x′i with 1
2

(x′i + d
K+2

).

Then, we have that the replaced xi, x
′
i are at least d

2 (K+2)
, and the remaining

statements in Proposition 24 hold, except the third which has the right-hand
side replaced with d1−2c0−O(1/

√
κ)/κ.

Next, replace every xi with x̃i := 1+c1
2
xi + 1−c1

2
x′i, and every x′i with

x̃′i := 1+c1
2
x′i + 1−c1

2
xi. We still have that every x̃i, x̃

′
i is at least d

2 (K+2)
, the

first two conditions still hold, and the right-hand side of third condition is
now c1d

1−2c0−O(1/
√
κ)/κ. Finally, note that |x̃i − x̃′i| ≤ c1 |xi − x′i|, whereas

x̃i ≥ 1−c1
2

(xi + x′i). This implies that
|x̃i−x̃′

i|
x̃i
≤ 2c1

1−c1
.

We now have the necessary tools to prove our lower bound against block
Krylov algorithms. Before doing so, we establish that there exist diagonal
matrices D,D′ which have substantially different inverse traces, but block
Krylov algorithms cannot distinguish between them. To prove our actual lower
bound, we show the same claim holds even if D,D′ are randomly rotated, and
the inverse trace difference is enough for a single sample to distinguish between
them.

Lemma 39 (construction of diagonal matrices). Suppose that K ≤ c0
√
κ log d

and K ≤ O(d). Then, there exist diagonal matrices D,D′ ∈ Rd×d with all
diagonal entries between 1 and κ with the following properties.

1. |Tr(D−1)− Tr(D′−1)| ≥ c1d
1−2c0−O(1/

√
κ)/κ− 2 (K + 2).

2. Consider sampling K d-dimensional random vectors

v(1), . . . , v(K) i.i.d.∼ N (0, Id). Then, the distributions of {⟨v(k), Dj v(ℓ)⟩}j≤K+2; k,ℓ≤K

and {⟨v(k), D′j v(ℓ)⟩}j≤K+2; k,ℓ≤K differ in total variation distance by at
most O(c1K

3 +K3/d1/2).

Proof. Choose {xi}K+2
i=1 , {x′i}K+2

i=1 , and {λi}K=2
i=1 satisfying Corollary 15. Define

integers {Ni}K+2
i=1 such that each Ni is either ⌊xi⌋ or ⌈xi⌉ and

∑K+2
i=1 Ni = d;

define {N ′
i}K+2

i=1 similarly in terms of {x′i}K+2
i=1 . We let D,D′ be diagonal matrices

such that for all i, D has Ni diagonal entries equal λi, and D′ has N ′
i diagonal

entries equal to λi. Now, let v(1), . . . , v(K) ∈ Rd be K random vectors drawn
i.i.d. from N (0, Id) (and define v(1)′, . . . , v(K)′ similarly). For 1 ≤ i ≤ K + 2,
we define v(k,i) to be the projection of v(k) onto the dimensions corresponding
to the diagonal entry λi for D. Note that {v(k,i)}i≤K+2, k≤K are independent,
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and v(k,i) ∼ N (0, INi
). Likewise, define {v(k,i)′}i≤K+2, k≤K accordingly in terms

of D′.

Note that Tr(D−1)− Tr(D′−1) =
∑K+2

i=1 Ni/λi −
∑K+2

i=1 N ′
i/λi. Since |Ni −

xi|, |N ′
i − x′i| ≤ 1, and since each λi ≥ 1, it implies

tr(D−1)− tr(D′−1) ≥ c1 d
1−2c0−O(1/

√
κ)

κ
− 2 (K + 2) .

Next, we letW (i) represent theK×K matrix with entriesW
(i)
k,ℓ = ⟨v(k,i), v(ℓ,i)⟩

and define W (i)′ similarly. Note that the matrices W (i),W (i)′ over all i are
independent. In addition, W (i) has the Wishart(K,Ni) distribution, and W (i)′

has the Wishart(K,N ′
i) distribution. In addition, for any k, ℓ ≤ K and j ≤ T ,

we have that ⟨v(k), Dj v(ℓ)⟩ =
∑K+2

i=1 λjiW
(i)
k,ℓ .

Now, we attempt to design a coupling between the matrices {W (i)}K+2
i=1 and

{W (i)′}K+2
i=1 such that W (i) −W (i)′ = (xi − x′i) IK for all i ≤ K + 2, with high

probability. Note that this implies our claim, due to Corollary 15. To design this
coupling, first note that by Lemma 38, if we draw Z(i) ∼ Ni IK +

√
2Ni GOE(K),

then ∥law(W (i))− law(Z(i))∥TV ≤ O(K3/2/N
1/2
i ), and a similar statement holds

if we define Z(i)′ and compare its law to that of W (i)′.

Note that the entries of Z(i) and Z(i)′ are independent (apart from the
requirement of symmetry), so we will attempt a coupling between the entries

Z
(i)
k,ℓ and Z

(i)′
k,ℓ . For k < ℓ, since Z

(i)
k,ℓ ∼ N (0, Ni) and Z

(i)′
k,ℓ ∼ N (0, N ′

i), the total
variation distance between their distributions is bounded up to a constant,
using Corollary 15, by∣∣N ′

i

Ni

− 1
∣∣ ≤ ∣∣x′i

xi
− 1

∣∣ +
∣∣N ′

i − x′i
Ni

∣∣ +
∣∣x′i (Ni − xi)

Nixi

∣∣ ≤ O
(
c1 +

K

d

)
under our assumptions. Therefore, we can couple Z

(i)
k,ℓ and Z

(i)′

k,ℓ such that they

fail to coincide with this probability. For k = ℓ, we have Z
(i)
k,k ∼ N (Ni, 2Ni)

and Z
(i)′
k,k +xi−x′i ∼ N (N ′

i +xi−x′i, 2N ′
i). The total variation distance between

their distributions is bounded by a constant times

∣∣N ′
i

Ni

− 1
∣∣ +
|N ′

i − x′i + xi −Ni|√
Ni

≤ O
(
c1 +

K1/2

d1/2
)
.

Therefore, we can couple the two random variables together so that Z
(i)
k,k =

Z
(i)′
k,k + xi − x′i fails with the above probability.

By a union bound, the coupling Z(i) = Z(i)′ + (xi−x′i) IK for all i fails with
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probability at most

O
(
K3

(
c1 +

K

d

)
+K2

(
c1 +

K1/2

d1/2
))

= O
(
c1K

3 +
K5/2

d1/2
)
.

Combining this with comparison between the Wishart and GOE ensembles
and another union bound, we obtain the result.

Finally, we are able to prove our main lower bound against block Krylov
algorithms.

Lemma 40 (lower bound against block Krylov algorithms). Let κ,K,D,D′ be
as in Lemma 39. Then, let U be a uniformly random orthogonal matrix in Rd×d,

and let Λ = U⊺DU and Λ′ = U⊺D′U . Let v(1), . . . , v(K) i.i.d.∼ N (0, Id). Then,
for any δ > 0, provided K ≤ Oδ(

√
κ log d) and κ ≤ d1/5−δ, the distributions

of {Λjv(k)}j≤(K+2)/2, k≤K and {Λ′jv(k)}j≤(K+2)/2; k≤K differ in total variation
distance by at most o(1). On the other hand, drawing a sample either from
N (0,Λ−1) or N (0,Λ′−1) can, with probability 1− o(1), distinguish between the
two cases.

Proof. From Lemma 39, there is a coupling such that the tuples {⟨v(k), Dj v(ℓ)⟩}j≤K+2, k,ℓ≤K

and {⟨v(k)′, D′j v(ℓ)′⟩}j≤K+2, k,ℓ≤K are equal with high probability. In particular,
it holds that ⟨Di v(k), Dj v(ℓ)⟩ = ⟨D′i v(k)′, D′j v(ℓ)′⟩ for all i, j ≤ (K + 2)/2 and
k ≤ K with high probability. By Proposition 23, there is a unitary matrix
U0 such that D′j v(k)′ = U0D

j v(k) for all j ≤ (K + 2)/2 and all k ≤ K with
high probability. Note then that the tuples {UTDjU UTv(k)}j≤(K+2)/2, k≤K

and {UTUT
0 D

′jU0U U
TUT

0 v
(k)′}j≤(K+2)/2, k≤K are equal with high probability,

and this is a coupling which witnesses the fact that the distributions of
{Λjv(k)}j≤(K+2)/2, k≤K and {Λ′jv(k)}j≤(K+2)/2, k≤K are at mostO(c1K

3+K3/d1/2)
apart in total variation distance.

Finally, we note that from a single sample it is easy to distinguish between
N (0,Λ−1) and N (0,Λ′−1). This is because if X ∼ N (0,Λ−1), then E[∥X∥2] =
Tr(Λ−1) = Tr(D−1) =

∑K+2
i=1 Ni/λi, but one checks that var(∥X∥2) = O(

∑K+2
i=1 Ni/λ

2
i ) ≤

O(d). Likewise, if X ′ ∼ N (0,Λ′−1), then we have E[∥X ′∥2] =
∑K+2

i=1 N ′
i/λi

but var(∥X ′∥2) = O(d). So, the difference in their expectations at least
c1d

1−2c0−O(1/
√
κ)/κ− 2 (K + 2), whereas the standard deviations are bounded

by O(d1/2).
To finish the proof, we must choose the values of c0 and c1. We require the

following conditions:

1. c1K
3 = o(1).

2. K3/d1/2 = o(1).

3. d1/2 = o(c1d
1−2c0−O(1/

√
κ)/κ− 2 (K + 2)).
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For the second condition, we can assume κ ≤ d1/3/ log4(d). To satisfy the
first condition, we can set c1 = 1/(κ3/2 log4(d)). Finally, if κ is sufficiently
large and if c0 is chosen depending on δ, then the third condition requires√
κ log d+ d1/2 = o(d1−δ/κ5/2), and it suffices for κ ≤ d1/5−δ.

Remark 12. We did not attempt to optimize the exponent in the condition
κ ≤ d1/5−δ. Indeed, by using the chain rule for the KL divergence rather than
a union bound in the proof of Lemma 39, we believe that the total variation
bound can be improved to O(c1K

3/2 +K5/2/d1/2), and a back-of-the-envelope
calculation suggests that this could improve the condition to κ ≤ d2/7−δ.
Nevertheless, this falls short of capturing the full regime

√
κ log d ≤ O(d), and

we leave this as an open question.

Reduction to block Krylov algorithms

In this section, we show that in order to prove a lower bound for sampling
from Gaussians against any query algorithm, it suffices to prove a lower bound
against block Krylov algorithms.

Setup

Let Λ = U⊺DU , where D is a (possibly random) diagonal matrix, U is a
Haar-random orthogonal matrix, and U and D are independent. We consider
the following model, which is a strengthening of the matrix-vector product
model:

Definition 18 (extended oracle model). Given K ∈ N, for all k ∈ [K],
the algorithm chooses a new query point vk, and receives the information
{Λivj}(i,j)∈Hk

, where Hk := {(i, j) : i+ j ≤ k + 1, i ≥ 0, 1 ≤ j ≤ k} is a set of
ordered pairs of nonnegative integers. We use the following notation {Λivj}S
for any set S to denote {Λivj}(i,j)∈S.

This is clearly a stronger oracle model than before, so a lower bound
against algorithms in the extended oracle model implies a lower bound against
algorithms in the original matrix-vector model.

Definition 19 (adaptive deterministic algorithm). An adaptive deterministic
algorithm A that makes K extended oracle queries (see Definition 18) is given by
a deterministic collection of functions v1, v2(·), . . . , vK(·), where v1 is constant

and each vk(·) is a function of k (k+1)
2
−1 inputs. This corresponds to a sequence

of queries where the k-th query vk({Λivj}Hk−1
) is chosen adaptively based on

the information available to the algorithm at the start of iteration k. (Note that
v1 has no inputs.) When the choice of the inputs is clear from context, we may
simply write vk = vk({Λivj}Hk−1

).
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In the extended oracle model, the next lemma shows that we can assume
that each vk is a unit vector orthogonal to its inputs.

Lemma 41 (extended oracle and orthogonal queries). For k ∈ [2, K], let vk
be as stated in Definition 19 and let {Λivj}Hk−1

be as stated in Definition 18.
Then, vk is orthogonal to the subspace spanned by the vectors in {Λivj}Hk−1

.

Proof. Assume for sake of contradiction that this were not the case. Then,
we can decompose vk =

∑
(i,j)∈Hk−1

ci,jΛ
ivj + c⊥v⊥k where v⊥k is a unit vector

orthogonal to {Λivj}Hk−1
and each ci,j and c⊥ is a scalar. At the end of

iteration k, the new information obtained by the algorithm is {Λivj}i+j=k+1,j≤k.
For all (i, j) ̸= (1, k), the new information does not depend on vk. Also,
Λvk =

∑
(i,j)∈Hk−1

ci,jΛ
i+1vj +c⊥Λv⊥k , where each Λi+1vj is information obtained

by the algorithm at the end of iteration k + 1 regardless (due to our extended
query model). Since (i + 1, j) ∈ Hk if (i, j) ∈ Hk−1, and since (1, k) ∈ Hk,
this expression shows that the algorithm would receive the same amount of
information (or more, if c⊥ = 0) if it queries v⊥k instead of vk. Applying this
reasoning inductively proves the claim.

We compare to a block Krylov algorithm, which makes i.i.d. standard
Gaussian queries z1, . . . , zK and then receives {Λizj} for all i, j ≤ K. Recall
that a block Krylov algorithm does not make adaptive queries, so it is easier to
prove lower bounds against block Krylov algorithms. Our goal is to now show
that block Krylov algorithms can simulate an adaptive deterministic algorithm.

Conditioning lemma

We start by proving a general conditioning lemma which will be invoked repeat-
edly in the reduction to block Krylov algorithms. This lemma roughly shows
that if the adaptive algorithm knows {Λivj}Hk

, the posterior distribution of Λ
given {Λivj}Hk

is indeed rotationally symmetric on the orthogonal complement
{Λivj}Hk

.

We will use the notation
d
= to denote that two random variables are equal

in probability distribution (possibly conditioned on other information).

Lemma 42 (conditioning lemma, preliminary version). Let U be a Haar-
random orthogonal matrix, and Λ = U⊺DU , where D is a (possibly random)
positive diagonal matrix. Suppose that A is an adaptive deterministic algorithm
that generates extended oracle queries v1, . . . , vK, and after the k-th query
knows Λivj for all (i, j) ∈ Hk. For any integer m ≥ 1, let k be the integer

such that k(k+1)
2
≤ m < (k+1)(k+2)

2
, i.e., m is at least the k-th triangular

number but less than the (k + 1)-th triangular number. Consider the order
of vectors v1,Λv1, v2,Λ

2v1,Λv2, v3,Λ
3v1, . . . (this enumerates Λivj in order of

i + j, breaking ties with smaller values of j first). Let Wm be the set of first
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m of these vectors and Xk be the set {v1, . . . , vk}. Let V be a Haar-random
orthogonal matrix fixing Wm and acting on the orthogonal complement W⊥

m .

Then, (Xk, U)
d
= (Xk, UV ).

Before proving this lemma, we note that since the algorithm is deterministic
and D is fixed, Wm and Xk are deterministic functions of Λ, and thus of U .
Hence, we can write vk(U ′),Wm(U ′), Xk(U ′) to be the vk,Wm, Xk that would
have been generated if we started with Λ′ = (U ′)⊺DU ′. (If no argument is
given, vk,Wm, Xk are assumed to mean vk(U),Wm(U), Xk(U), respectively.)
We note the following proposition.

Proposition 25 (fixing the first m queries and responses). Suppose that V is
any orthogonal matrix fixing Wm(U). Then, Wm(U) = Wm(UV ).

Proof. We prove Wm′(U) = Wm′(UV ) for all m′ ≤ m. The base case of k = 1
is trivial, since v1 is fixed. We now prove the induction step for m′.

If m′ ≤ m is a triangular number, m′ = k(k+1)
2

, then the m′-th vector in Wm

is vk. But note that vk(U) is a deterministic function of Wm′−1(U), and vk(UV )
is the same deterministic function of Wm′−1(UV ). Hence, if the induction
hypothesis holds for m′ − 1, it also holds for m.

If m′ ≤ m is not a triangular number, then the m′-th number in Wm(U) is
Λivj for some i ≥ 1. Likewise, the m′-th number in Wm(UV ) is V ⊺ΛiV vj(UV ).
Since i ≥ 1, we know that vj(U) = vj(UV ), by the induction hypothesis on
j(j+1)

2
< m′. But, we know that V fixes Wm, which means it fixes vj and Λivj.

Thus, V ⊺ΛiV vj(UV ) = V ⊺ΛiV vj = Λivj.

We are now ready to prove Lemma 42.

Proof of Lemma 42. We prove this by induction on m. For the base case m = 1,
U is a random matrix and V is a random matrix that fixes v1. Note that v1 is
chosen independently of Λ (and thus of U), so U and V are independent. Even
for any fixed V , the distribution UV is a uniformly random orthogonal matrix,

so overall U
d
= UV . Also, v1 is deterministic, so (v1, U)

d
= (v1, UV ).

For the induction step, we split the proof into 2 cases. The proofs in both
cases will be very similar, but with minor differences.

Case 1: m is a triangular number. This means that the m-th vector
added is vk, where m = k(k+1)

2
. Let V1 be a random orthogonal matrix fixing

Wm−1 and V2 be a random orthogonal matrix fixing Wm. Our goal is then to

show (Xk, U)
d
= (Xk, UV2).

To make this rigorous, we note an order of generating the random variables.
First, we generate U randomly: Wm and Xk are deterministic in terms of U .
Next, we define V1 to be a random rotation fixing Wm−1. Finally, we define V2
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to be a random rotation fixing Wm, where V1, V2 are conditionally independent
on U .

First, we prove that (Xk, U)
d
= (Xk, UV1). Note that U

d
= UV1 by our induc-

tive hypothesis. In addition, since V1 fixes Wm−1(U), Wm−1(U) = Wm−1(UV1)

by Proposition 25. Since m = k(k+1)
2

is a triangular number, Xk(·) is a de-
terministic function of Wm−1(·), which means Xk(U) = Xk(UV1). Hence,

(Xk, U)
d
= (Xk(UV1), UV1) = (Xk, UV1).

Next, we prove that (Xk, UV2)
d
= (Xk, UV1V2). It suffices to prove that

(Xk, U, V2)
d
= (Xk, UV1, V2) .

To do so, we first show that V2 = f(U,R), where f is a deterministic function
and R represents a random orthogonal matrix over d− dim(Wm) dimensions
that is independent of U . (Recall that Wm is a deterministic function of U .)
To define f(U,R), we consider some deterministic map that sends each Wm

to a set of d− dim(Wm) basis vectors in W⊥
m . We then define V2 = f(U,R) to

act on W⊥
m using R and the correspondence of basis vectors. Since Wm and

Xk are deterministic in terms of U , this means f(U,R) is well-defined. We will
now show that

V2 = f(U,R) = f(UV1, R) and Xk = Xk(UV1) .

Since U
d
= UV1 by our inductive hypothesis,

(Xk, U, V2)
d
= (Xk(UV1), UV1, f(UV1, R)) = (Xk, UV1, V2) .

By Proposition 25, Wm−1(U) = Wm−1(UV1), and since Xk(·) is deterministic

given Wm−1(·) for m = k(k+1)
2

, Xk(U) = Xk(UV1). This implies Wm(U) =
Wm(UV1), which means f(UV1, R) = f(U,R), since f(·, R) only depends on
Wm(·) and R. This completes the proof.

Next, we show that (Xk, UV1V2)
d
= (Xk, UV1). Since we chose the order

with U being defined first, we are allowed to condition on U . Since Xk is

deterministic in terms of U , it suffices to show that V1V2 | U d
= V1 | U . Since

Wm−1,Wm are also deterministic given U , note that V1 is a uniformly random
orthogonal matrix fixing Wm−1, and V2 is a random orthogonal matrix fixing
Wm ⊃ Wm−1. Since V1 and V2 are conditionally independent given U , this
means V1V2 | U is a uniformly random orthogonal matrix fixing Wm−1, so

V1V2 | U d
= V1 | U .

In summary, we have that

(Xk, U)
d
= (Xk, UV1)
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d
= (Xk, UV1V2)

d
= (Xk, UV2) .

Case 2: m is not a triangular number. Again, let V1 be a random
orthogonal matrix fixing Wm−1 and V2 be a random orthogonal matrix fixing

Wm. Our goal is again to show that (Xk, U)
d
= (Xk, UV2).

First, we again have (Xk, UV1)
d
= (Xk, U) by our inductive hypothesis.

Next, we show that (Xk, UV2)
d
= (Xk, UV2V1). It suffices to prove that

(Xk, U, V2)
d
= (Xk, UV1, V

⊺
1 V2V1) ,

since (UV1)(V
⊺
1 V2V1) = UV2V1. We recall the random variable R and use the

same function V2 = f(U,R). Since we have already shown that U
d
= UV1,

this implies that (Xk, U, V2)
d
= (Xk(UV1), UV1, f(UV1, R)). Since m is not

triangular, Xk(·) is contained in Wm−1(·), so by Proposition 25, Xk(U) =
Xk(UV1). So, we have

(Xk, U, V2)
d
= (Xk(UV1), UV1, f(UV1, R)) = (Xk, UV1, f(UV1, R)) .

Now, if we fix U and V1, Wm−1(UV1) = Wm−1(U) by Proposition 25. However,
since the m-th (i, j) pair has i ≥ 1 when m is not triangular, the final vector in
Wm(UV1) will be V ⊺

1 ΛiV1vj = V ⊺
1 (Λivj). For fixed U, V1, f(U,R) is a random

rotation fixing Wm−1 and Λivj , but f(UV1, R) is a random rotation fixing Wm−1

and V ⊺
1 (Λivj). Since V ⊺

1 fixes Wm−1 by how we defined V1, this means that
for fixed U, V1, f(U,R) is a random rotation fixing Wm but f(UV1, R) is a
random rotation fixing V ⊺

1 Wm. Therefore, conditioned on U, V1, f(UV1, R) has
the same distribution as V ⊺

1 f(U,R)V1. Since Xk is deterministic in terms of U ,
this means

(Xk, UV1, f(UV1, R)) | U, V1 d
= (Xk, UV1, V

⊺
1 f(U,R)V1) | U, V1 .

We can remove the conditioning to establish that (Xk, UV1, f(UV1, R))
d
=

(Xk, UV1, V
⊺
1 f(U,R)V1) = (Xk, UV1, V

⊺
1 V2V1), which completes the proof.

Next, we show that (Xk, UV2V1)
d
= (Xk, UV1). The proof is essentially the

same as in the case when m is triangular. We again condition on U , and we

have that V2V1 | U d
= V1 | U have the same distribution as uniform orthogonal

matrices fixing Wm−1(U). Since Xk is a deterministic function of U , this means

(Xk, UV2V1) | U d
= (Xk, UV1) | U, and removing the conditioning finishes the

proof.
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In summary,

(Xk, U)
d
= (Xk, UV1)

d
= (Xk, UV2V1)

d
= (Xk, UV2) .

We now prove our main conditioning lemma, which will be a modification
of Lemma 42.

Lemma 43 (conditioning lemma). Let all notation be as in Lemma 42, and let
V0 be a fixed orthogonal matrix fixing Wm. Importantly, V0 is a deterministic

function only depending on Wm (and not directly on U). Then, (Xk, U)
d
=

(Xk, UV0).

Proof. First, note that since V0 is a deterministic function of Wm, it is also a
deterministic function of U . We can write V0(·) as this function, and V0 = V0(U).

Now, Lemma 42 proves that (Xk, U)
d
= (Xk, UV ). Note that conditioned on

U , V is a random matrix fixing Wm and V0 is a fixed matrix fixing Wm, which

means that V V0 | U d
= V | U . Hence, (Xk, UV )

d
= (Xk, UV V0). But from

Proposition 25, Xk(UV ) = Xk(U) and Wm(UV ) = Wm(U), which means that
V0(·), which only depends on Wm(·), satisfies V0(UV ) = V0(U). Hence, because

U
d
= UV , we have (Xk, UV V0) = (Xk(UV ), UV · V0(UV ))

d
= (Xk(U), U ·

V0(U)) = (Xk, UV0).

In summary, we have that (Xk, U)
d
= (Xk, UV )

d
= (Xk, UV V0)

d
= (Xk, UV0),

which completes the proof.

From query algorithms to block Krylov algorithms

In this section, we carry out the high-level outline from Section 11.2. We aim
to prove the following result, which implies that any adaptive deterministic
algorithm in the extended oracle model can be simulated by rotating the output
of a block Krylov algorithm.

Lemma 44 (reduction to block Krylov). Suppose Λ = U⊺DU , where U is a
Haar-random orthogonal matrix and D is a diagonal matrix drawn from some
(possibly unknown) distribution. Let v1, v2(·), . . . , vK(·) be an adaptive deter-
ministic algorithm that makes K queries, where K2 < d. Let valg1 , valg2 , . . . , valgK

be recursively defined as follows: valg1 = v1, and valgk = vk({Λivalgj }Hk−1
) for

k ≥ 2. Let z1, . . . , zK be i.i.d. standard Gaussian vectors. Then, from the
collection {Λizj}HK

(without knowledge of D or Λ), we can construct a set of
unit vectors ṽ1, ṽ2, . . . , ṽK, and a set of rotation matrices U sim

1 , U sim
2 , . . . , U sim

K ,
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where ṽk and U sim
k only depend on {Λizj}Hk−1

and zk, and such that

{(U sim
1:K)⊺Λiṽj}HK

d
= {Λivalgj }HK

,

where U sim
1:K := U sim

1 · · ·U sim
K , and the equivalence in distribution is over the ran-

domness of Λ and {zi}i≤K . Moreover, {Λiṽj}HK
is deterministically determined

by {Λizj}HK
.

Lemma 44 says that the knowledge of Λizj alone is sufficient to reconstruct
the distribution of any adaptive algorithm’s queries and responses. The proof of
the lemma requires introducing a hefty amount of notation, but we emphasize
that it follows along the lines of Section 11.2.

First, we describe how to construct ṽk. Let ṽ1 = z1
∥z1∥ , and for k ≥ 2, let ṽk

be the unit vector parallel to the component of zk that is orthogonal to the
span of {Λizj}Hk−1

. (With probability 1, this is well-defined.)

Because each ṽk is a linear combination of {Λizj}Hk−1
and zk, we can

construct the set {Λiṽj}HK
from the set {Λizj}HK

.

We now construct the rotation matrices U sim
k . First, we define matrix-valued

functions Uk(·), for k = 1, . . . , K, as follows.

Definition 20 (rotations fixing previous queries and responses). For 1 ≤ k ≤
K, the function Uk(·) takes arguments {xi,j}Hk−1

, yk, zk, where the vectors yk
and zk have unit norm and are both orthogonal to the collection {xi,j}Hk−1

.

To define U1(·): since H0 is empty, the first function U1 only takes arguments
y1, z1, and is such that U1(y1, z1) is a deterministic orthogonal matrix that
satisfies U1(y1, z1)

⊺y1 = z1. Note that U1(·) exists because y1 and z1 both have
unit norm; for example, we can complete y1 and z1 to orthonormal bases
(y1, y2, . . . , yd), (z1, z2, . . . , zd) and take U1(y1, z1) =

∑d
i=1 yiz

⊺
i .

To define Uk(·): Uk({xi,j}Hk−1
, yk, zk) is a deterministic orthogonal matrix

that satisfies

U⊺
kxi,j = xi,j , for all (i, j) ∈ Hk−1 ,

U⊺
k yk = zk .

(11.2)

Such a choice of Uk is always possible, because k2 < d, and because yk and zk
are orthogonal to xi,j; for example, we can start with the identity matrix on the
subspace spanned by {xi,j}Hk−1

and add to it a sum of outer products formed by
completing yk and zk to two orthonormal bases of the orthogonal complement.

Next, we describe how to construct U sim
k . We will define U sim

k along with an
auxiliary sequence {vsimk }k=1,2,...,K−1.
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Definition 21 (simulated sequences). We let vsim1 = v1, and U sim
1 = U1(ṽ1, v

sim
1 ).

For k ≥ 2, vsimk and U sim
k are defined recursively as follows:

vsimk = vk
(
{(U sim

1:(k−1))
⊺Λiṽj}Hk−1

)
U sim
k = Uk

(
{(U sim

1:(k−1))
⊺Λiṽj}Hk−1

, (U sim
1:(k−1))

⊺ṽk, v
sim
k

)
.

(11.3)

Intuitively, one can think of vsimk as the kth vector the simulator thinks
the algorithm is querying, and U sim

k as a rotation that corresponds vsimk to the
random unit vector known by block Krylov.

Proposition 26 (existence of rotations). Each U sim
k is well-defined.

Proof. To show that this choice of U sim
k is possible, we need to check that

(U sim
1:(k−1))

⊺ṽk, v
sim
k both have unit norm and are orthogonal to the subspace

Sk spanned by (U sim
1:(k−1))

⊺Λiṽj for (i, j) ∈ Hk−1. They both have unit norm

because ṽk and vsimk are constructed to have unit norm, and inductively we
can assume U sim

1:(k−1) is orthogonal. Note that vsimk is orthogonal to Sk by our

assumption on the function vk(·), and (U sim
1:(k−1))

⊺ṽk is also orthogonal to Sk

because

⟨(U sim
1:(k−1))

⊺Λiṽj, (U
sim
1:(k−1))

⊺ṽk⟩ = ⟨Λiṽj, ṽk⟩ = 0 ,

where the second line follows from the definition of ṽk.

We summarize some additional properties of vsimk and U sim
k in the following

lemma.

Lemma 45 (properties of the simulated sequences). The variables U sim
k and

vsimk for k = 1, . . . , K defined above satisfy the following properties:

(P1) vsimk depends only on {Λiṽj}Hk−1
, and U sim

k depends only on {Λiṽj}i+j≤k.

(P2) For any k ≥ j, we have

ṽj = U sim
1:k v

sim
j .

(P3) For k ≥ 2, vsimk satisfies

vsimk = vk
(
{(U sim

1:(k−1))
⊺ΛiU sim

1:(k−1)v
sim
j }Hk−1

)
.

(P4) For k ≥ 2, U sim
k satisfies

U sim
k = Uk

(
{(U sim

1:(k−1))
⊺ΛiU sim

1:(k−1)v
sim
j }Hk−1

, (U sim
1:(k−1))

⊺ṽk, v
sim
k

)
.
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Proof. (P1) is immediate from the definitions, since {(i, j) : i + j ≤ k} =
Hk−1 ∪ {(0, k)}.

To show (P2), note that the second property of the function Uk from (11.2)
implies that

vsimj = (U sim
j )⊺(U sim

1:(j−1))
⊺ṽj = (U sim

1:j )⊺ṽj . (11.4)

This proves (P2) for k = j. To prove (P2) for k > j, we use induction on k.
If (P2) holds for k − 1 ≥ j, then

(U sim
1:k )⊺ṽj = (U sim

k )⊺(U sim
1:(k−1))

⊺ṽj = (U sim
1:(k−1))

⊺ṽj = vsimj . (11.5)

Above, the middle equality holds by the first property of (11.2), since U sim
k

fixes (U sim
1:(k−1))

⊺ṽj because j ≤ k − 1. The final equality holds by our inductive

hypothesis. So, (P2) holds for k.
Finally, (P3) and (P4) then follow from (P2), since k−1 ≥ j if j ∈ Hk−1.

We highlight the importance of (P2) for k = K, which roughly states that
(U sim

1:K)⊺ actually sends each block Krylov-generated vector ṽj to the simulated
vector vsimj .

Before proving Lemma 44, we must make one more basic definition.

Definition 22 (queries and data). For k ≥ 2, given the matrix Λ and a
set {vj}1≤j≤k−1, define Ck as the function that satisfies Ck(Λ, {vj}1≤j≤k−1) =
{Λivj}Hk−1

. In addition, define Dk = vk ◦ Ck.

We are now ready to prove Lemma 44. Although the proof is notationally
burdensome, the message is that we can show the equality of distributions
inductively by repeatedly invoking the conditioning lemma (Lemma 43), which
is designed precisely for the present situation.

Proof of Lemma 44. For 1 ≤ k ≤ K, let Λk := (U sim
1:k )⊺ΛU sim

1:k . Since we can
write (U sim

1:k )⊺Λiṽj = (U sim
1:k )⊺Λi(U sim

1:k )vsimj = Λi
kv

sim
j for any k ≥ j by (P2) of

Lemma 45, it suffices to inductively prove that for all 1 ≤ k ≤ K,

(Λk, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k) . (11.6)

For the base case of k = 1, it suffices to show that (Λ1, v
sim
1 )

d
= (Λ, valg1 ). Note,

however, that vsim1 = valg1 = v1, and Λ1 = (U sim
1 )⊺Λ(U sim

1 ) = U1(ṽ1, v1)
⊺ΛU1(ṽ1, v1).

Since v1 is a deterministic vector, ṽ1 is independent of Λ, and the distribution
of Λ is rotationally invariant, the claim follows.

For the inductive step, assume we know (Λk, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k).

Then, note that valgk+1 = vk+1({Λivalgj }Hk
) and vsimk+1 = vk+1({Λi

kv
sim
j }Hk

). Thus,

we have valgk+1 = Dk+1(Λ, {valgj }1≤j≤k) and vsimk+1 = Dk+1(Λk, {vsimj }1≤j≤k). In
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addition, because U sim
k+1 fixes Λi

kv
sim
j for all (i, j) ∈ Hk by (P4), we also have that

Λi
k+1v

sim
j = Λi

kv
sim
j for all (i, j) ∈ Hk, which means vsimk+1 = Dk+1(Λk+1, {vsimj }1≤j≤k).

Therefore, it suffices to show

(Λk+1, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k) , (11.7)

as this implies (Λk+1, {vsimj }1≤j≤k+1)
d
= (Λ, {valgj }1≤j≤k+1), which completes the

inductive step.

Next, we show that U sim
k+1 sends ṽk+1 to a random unit vector orthogonal

to the simulated queries so far. Note that Λk+1 = (U sim
k+1)

⊺Λk(U
sim
k+1), where,

by (P4),
U sim
k+1 = Uk+1({Λi

kv
sim
j }Hk

, (U sim
1:k )⊺ṽk+1, v

sim
k+1) . (11.8)

Note that ṽk+1 is a random unit vector orthogonal to {Λizj}Hk
, or equiva-

lently, it is a random unit vector orthogonal to {Λiṽj}Hk
. Since (U sim

1:k )⊺Λiṽj =
(U sim

1:k )⊺Λi(U sim
1:k )vsimj = Λi

kv
sim
j for all (i, j) ∈ Hk (by (P2)), this means that

(U sim
1:k )⊺ṽk+1 is orthogonal to {Λi

kv
sim
j }Hk

. The random direction of ṽk+1 has
no dependence on {Λiṽj}Hk

apart from being orthogonal to them, which
means by (P1), (U sim

1:k )⊺ṽk+1 is a uniformly random unit vector orthogonal to
{Λi

kv
sim
j }Hk

.

Recalling that vsimk+1 = Dk+1(Λk, {vsimj }1≤j≤k), this means that we can rewrite
(11.8) as

U sim
k+1 = Uk+1

(
{Λi

kv
sim
j }Hk

, v̂sim,Dk+1(Λk, {vsimj }1≤j≤k)
)
, (11.9)

where v̂sim is a random unit vector orthogonal to {Λi
kv

sim
j }Hk

. As a result, if we
define

U alg
k+1 := Uk+1

(
{Λivalgj }Hk

, v̂alg,Dk+1(Λ, {valgj }1≤j≤k)
)
, (11.10)

where v̂alg is a random unit vector orthogonal to {Λivalgj }Hk
, then

(Λk+1, {vsimj }1≤j≤k) =
(
(U sim

k+1)
⊺Λk(U sim

k+1), {vsimj }1≤j≤k

)
d
=

(
(U alg

k+1)
⊺Λ(U alg

k+1), {valgj }1≤j≤k

)
.

Above, the first equality follows by definition, and the second follows from

our inductive hypothesis that (Λk, {vsimj }1≤j≤k)
d
= (Λ, {valgj }1≤j≤k), along with

(11.9) and (11.10).

We are now in a position to apply the conditioning lemma (Lemma 43).
Note that U alg

k+1 only depends on {Λivalgj }Hk
(as well as some randomness in

v̂alg, but the randomness is independent of everything else given {Λivalgj }Hk
, so

we can safely condition on it). Hence, we can apply the conditioning lemma
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with U alg
k+1, to obtain that

(Λk+1, {vsimj }1≤j≤k)
d
=

(
(U alg

k+1)
⊺Λ(U alg

k+1), {valgj }1≤j≤k

) d
=

(
Λ, {valgj }1≤j≤k

)
,

which establishes (11.7) and thereby concludes the proof.

With the block Krylov reduction in hand, we can now establish our second
lower bound for sampling from Gaussians.

Theorem 40 (second lower bound for sampling from Gaussians). There is
a universal constant ε0 > 0 such that the query complexity of sampling from
Gaussian distributions N (0,Σ) in Rd, where the condition number κ of Σ
satisfies κ ≤ d1/5−δ, with accuracy ε0 in total variation distance is at least
Ωδ(
√
κ log d).

Proof. Let U be a random orthogonal matrix, and let Λ = U⊺DU , Λ′ = U⊺D′U
be as in Lemma 40. We first show that if κ ≤ d1/5−δ and c is a sufficiently
small constant, no adaptive algorithm that makes less than cδ

√
κ log d queries

to the extended oracle can distinguish between Λ and Λ′, with Ω(1) probability.

First we assume that the algorithm is deterministic, so its behavior is
characterized by functions v1, v2(·), . . . , vK(·), as in Lemma 44. The algorithm
then proceeds to make queries valg1 , valg2 , . . . , valgK , where valgk = vk({Λivalgj }Hk−1

).

Lemma 44 shows that the output of the algorithm {Λivalgj }HK
can be en-

tirely simulated by a block Krylov algorithm, which receives {Λizk}HK
, where

z1, . . . , zK are i.i.d. standard Gaussians. Lemma 40 says that a block Krylov
algorithm that makes K = cδ

√
κ log d queries, where cδ is a small constant

depending on δ and κ ≤ d1/5−δ, cannot distinguish between Λ and Λ′ with Ω(1)
advantage, which then implies the same for any deterministic algorithm.

If the algorithm is randomized, then it uses a random seed ξ that is
independent of Λ and Λ′. So conditional on the random seed, the algorithm
will not be able to distinguish Λ and Λ′ with Ω(1) advantage, so the overall
probability that the randomized algorithm successfully distinguishes Λ and Λ′

also cannot be Ω(1).

Finally, we note that a sample from N (0,Λ−1) versus N (0,Λ′−1) can distin-
guish between the two cases. This means that even if we were able to draw a
sample that was 1

3
-far in total variation distance, we could output the correct

answer with probability at least 2
3
. This implies that any sampling algorithm

must require at least Ωδ(
√
κ log d) queries to the extended oracle, and hence at

least same number of queries to the standard oracle.
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11.5 Upper bound for sampling from

Gaussians

Finally, we show a simple proof that, using only O(min(
√
κ log d, d)) gradient

queries, one can generate an approximate sample from a Gaussian N (0,Σ) in
d dimensions. Note that the density evaluated at x, up to an additive constant,
equals −1

2
x⊺Λx for Λ = Σ−1, which means that a gradient query at x amounts

to receiving the matrix-vector product Λx.
First, we require a well-known proposition from approximation theory.

Proposition 27 ([SV14, Theorem 3.3]). For any positive integer s and 0 < δ <
1, there exists a polynomial ps,δ of degree ⌈

√
2s ln(2/δ)⌉ such that |ps,δ(x)−xs| ≤

δ for all x ∈ [−1, 1].

As a corollary, we have the following result.

Proposition 28 (polynomial approximation of inverse square root). For any
κ ≥ 2 and δ < 1

2
, there exists a polynomial qκ,δ of degree O(

√
κ log κ

δ
) such that

|qκ,δ(x)− x−1/2| ≤ δ/
√
κ for all 1 ≤ x ≤ κ.

Proof. First, consider the function (1 + x)−1/2. For |x| ≤ 1 − 1
κ
< 1, we can

use the Taylor series to write

(1 + x)−1/2 = 1 +
∞∑
t=1

(1
2
− 1) (1

2
− 2) (1

2
− 3) · · · (1

2
− t)

t!
xt = 1 +

∞∑
i=1

ctx
t ,

where |ct| ≤ 1 for all t ≥ 1.

Note that for |x| ≤ 1 − 1
κ
,
∣∣∑

t>T ctx
t
∣∣ ≤ ∑

t>T |x|t ≤ |x|T
1−|x| . For T =

O(κ log κ
δ
), we can bound this by (1−1/κ)T

1/κ
≤ δ

2
. Therefore, for all such x,

∣∣∣(1 + x)−1/2 −
T∑
t=0

ctx
t
∣∣∣ ≤ δ

2
,

where we have set c0 := 1.
Next, using Proposition 27, we can replace each xt with pt,δ(x) where pt,δ is

a polynomial of degree O(
√
t log(t/δ)) such that |pt,δ(x)− xt| ≤ δ/(4t2) for all

|x| ≤ 1. (We also let p0,δ simply be the constant function 1.) Therefore,

∣∣∣(1 + x)−1/2 −
T∑
t=0

ctpt,δ(x)
∣∣∣ ≤ δ

2
+

T∑
t=1

|ct|
δ

4t2
≤ δ .

In addition, the polynomial p̂ :=
∑T

t=0 ctpt,δ has degree at mostO(
√
T log(T/δ)) =

O(
√
κ log κ

δ
).
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To finish, |p̂(x− 1)− x−1/2| ≤ δ
κ

for all 1
κ
≤ x ≤ 1, which means that∣∣∣p̂(x

κ
− 1

) 1√
κ
− x−1/2

∣∣∣ ≤ δ√
κ

for all 1 ≤ x ≤ κ .

So, there exists a polynomial qκ,δ with qk,δ(x) = p̂(x
κ
− 1) 1√

κ
, such that qκ,δ has

degree O(
√
κ log κ

δ
) and |qκ,δ(x)− x−1/2| ≤ δ/

√
κ for all 1 ≤ x ≤ κ.

We are now ready to prove our query complexity upper bound.

Theorem 41 (optimal algorithm for sampling from Gaussians). Let Λ = Σ−1

be an unknown positive definite matrix with all eigenvalues between 1 and κ.
Then, using O(min(

√
κ log d

ε
, d)) adaptive matrix-vector queries to Λ, we can

produce a sample from a distribution π̂ such that KL(π̂ ∥ N (0,Σ)) ≤ ε2.

Proof. Choose X ∼ N (0, Id), define R = O(
√
κ log κ

δ
) be the degree of qκ,δ, and

for simplicity write q(x) := qκ,δ(x) :=
∑R

i=0 aix
i. The algorithm works as fol-

lows. Using the power method, we compute X,ΛX,Λ2X, . . . ,ΛRX. We output
Y =

∑R
i=0 ai ΛiX. Note that Y ∼ N (0, Σ̂), where we set Σ̂ := (

∑R
i=0 aiΛ

i)2.

If λ1, . . . , λd denote the eigenvalues of Λ, then the eigenvalues of Σ̂ are
q(λ1), . . . , q(λd). The KL divergence is given by

KL
(
N (0, Σ̂)

∥∥ N (0,Σ)
)
≲

d∑
k=1

|q(λk)2 λk − 1|2

≲
d∑

k=1

|q(λk)λ
1/2
k − 1|2

≲
d∑

k=1

λk |q(λk)− λ−1/2
k |2

≲ dκ
δ2

κ
.

If we set δ ≍ log(ε/d), then we obtain a KL divergence of at most ε2.

Finally, we can also learn Λ by querying Λei for each unit basis vector
e1, . . . , ed. So, we can thus learn Σ, and then generate a perfect random sample
fromN (0,Σ). Hence, the query complexity of generating a sample from N (0,Σ)
is at most O(min(

√
κ log κd

ε
, d)) = O(min(

√
κ log d

ε
, d)).

Remark 13. If π is an α-strongly log-concave distribution, then from Pinsker’s
inequality and Talagrand’s transport inequality,

max{∥µ− π∥2TV, αW
2
2 (µ, π)} ≲ KL(µ ∥ π) .
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Hence, this algorithmic result for Gaussians complements the two lower bounds
in Corollary 13.

11.6 Conclusion

We proved lower bounds for Gaussian sampling in high dimensions that com-
bine to give a Ω̃(min(

√
κ log d, d)) rate, which is nearly tight. There are two

interesting consequences of this result.
First, our lower bound shows that log-concave sampling in high dimensions

indeed will have dimension dependence. This shows a difference between
sampling and convex optimization in high dimensions, where the latter has
dimension independent rates.

Second, we see a similarity between sampling and optimization, in that
the optimal algorithms for low dimensional and high dimensional settings are
qualitatively different. In contrast to the low dimensional setting, where the
sampling lower bounds were achieved by rejection sampling, the nearly tight
upper bound algorithm given in Theorem 41 produces a sample by taking a
linear combination of a standard Gaussian vector, as well as past query points
and past gradient queries. This mechanism is more similar to the gradient based
sampling algorithms, such as the Langevin algorithm or Hamiltonian Monte
Carlo. It will be interesting to see whether such gradient-based algorithms
are optimal for high dimensional log-concave sampling in general, and what
the optimal dimension dependence will be. We hope that this question can be
resolved in future works.
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