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Abstract

In this thesis, we study the optimization of general information freshness metrics
in wireless networks, with the goal of applying our theoretical results to problems
in real-time monitoring and control. We make contributions in three directions.

First, we consider the optimization of general cost functions of Age of Infor-
mation (AoI). Here, we develop computationally efficient scheduling algorithms
for optimizing information freshness in both single-hop and multi-hop wireless
networks. We further develop an online learning formulation when the cost func-
tions of AoI are unknown and propose a new online learning algorithm for this
setting called Follow-the-Perturbed-Whittle-Index.

Second, we consider weighted-sum AoI minimization. In this setting, we study
how correlation impacts information freshness. We also propose a near-optimal
distributed scheduling protocol called Fresh-CSMA for AoI minimization, that
has provable performance guarantees.

Third, we apply our theoretical results to problems in multi-agent robotics
and monitoring – both via simulations and practical system implementations.
We use simulations to demonstrate significant performance improvements in
the collection of time-varying occupancy grid maps using multiple robots via the
Whittle Index framework. Further, to demonstrate the benefits of our theoreti-
cal contributions, we built a real system (WiSwarm) for mobility tracking using
a swarm of UAVs, communicating with a central controller over WiFi. Our ex-
perimental results show that, when compared to the standard IEEE 802.11 MAC
layer + TCP/UDP, our system can reduce AoI by a factor of 109x/48x and improve
tracking accuracy by a factor of 4x/6x, respectively.

Thesis Supervisor: Eytan H. Modiano
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Monitoring and control of dynamical systems are fundamental and well-studied

problems. Many emerging applications involve performing these tasks over com-

munication networks. Examples include: sensing for IoT, control of robot swarms,

real-time surveillance, and environmental monitoring by sensor networks. Such

systems typically involve multiple agents collecting and sending information to a

central entity where data is stored, aggregated, analyzed, and then possibly used

to send back control commands. Due to the dramatic improvements both in on-

device and edge computing, and in wireless communication over the past two

decades, there has been a rapid growth in the size and scale of such networked

systems.

Age of Information (AoI) is a metric that captures timeliness of received in-

formation at a destination [9, 10, 11]. Unlike packet delay, AoI measures the lag

in obtaining information at a destination node, and is therefore suited for appli-

cations involving time sensitive updates. Age of information, at a destination, is

defined as the time that has elapsed since the last received information update

was generated at the source. AoI, upon reception of a new update, drops to the

time elapsed since generation of the update, and grows linearly otherwise. Over

the past decade, there has been a rapidly growing body of work on analyzing AoI
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for queuing systems [9, 10, 11, 12, 13, 14], using AoI as a metric for scheduling

policies in networks [15, 16, 17, 18, 19, 1, 20, 21] and for monitoring or controlling

systems over networks [22, 23, 24, 25, 26]. For detailed surveys of AoI literature,

we point the reader to [27] and [28].

Figure 1-1: Illustration of the AoI evolution for sample generation and delivery
processes. The first update is generated at the source at time 𝑡1 and is delivered to
the destination at time 𝑡′1. The destination now has information about the source
that is 𝑡′1 − 𝑡1 old, so AoI drops to 𝐴(𝑡′1) = 𝑡

′
1 − 𝑡1. The second update is generated at

time 𝑡2 and delivered at 𝑡′2. So, 𝐴(𝑡) increases linearly until time 𝑡′2 and then drops
to 𝐴(𝑡′2) = 𝑡

′
2 − 𝑡2.

Age-of-Information (AoI) is an end-to-end metric that characterizes how old

the information is from the perspective of the destination. Consider a destination

receiving time-stamped updates from a source over a network. Let 𝜏(𝑡) be the

time-stamp of the latest update received at the destination by time 𝑡. The AoI

associated with this source-destination pair is then defined as 𝐴(𝑡) := 𝑡 − 𝜏(𝑡).

The AoI increases linearly with time when no updates are delivered, representing

the information getting older. At the moment a fresher update from the source

is received at the destination, the value of 𝜏(𝑡) increases and the AoI reduces to

the delay of the received update. This evolution of the AoI metric with time is

illustrated in Fig. 1-1.
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Typically, AoI represents a measure of distortion between the state of the sys-

tem that is expected at the monitor based on past updates and the actual current

state of the system. Thus, a larger age corresponds to the monitor having a higher

uncertainty about the current state of the system being observed. This, in turn,

means that ensuring a low average AoI can lead to higher monitoring accuracy or

better control performance. While AoI is a proxy for measuring the cost of having

out-of-date information, it may not properly reflect the impact of stale informa-

tion on system performance.

Illustrative example: Consider a mobility tracking application where a mon-

itor wants to keep track of the location of multiple nodes. If the AoI associated

with the last known position of a moving object is 1.5 seconds, this means that

the object has been moving around for 1.5 seconds without the monitor knowing

about it. Clearly, a larger AoI corresponds to the monitor having a higher uncer-

tainty about the current position of the object. Similarly, a larger average object

velocity also corresponds to the monitor having a higher position uncertainty.

Therefore, to support mobility tracking applications, the underlying communi-

cation network should strive to keep the AoI associated with the position of every

moving object as low as possible, further prioritizing objects with higher veloci-

ties.

When multiple systems or sources are being observed at the same time, there

arises a need to differentiate between them based on their relative importance.

Namely, if a system evolves slowly, then a higher AoI does not necessarily mean

higher uncertainty or cost. Conversely, if a system has fast dynamics, then even a

small AoI might mean higher distortion and poor performance. Further, certain

sources might be more critical to the system performance than others. Many

works on AoI-based scheduling for multiple sources consider weighted-sum AoI

minimization [15, 16, 17], where weights represent the relative importance of

each source. Typical assumptions involve the weights being fixed and known in
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advance, based on the underlying application or systems being monitored.

Further, recent works on networked control systems [25, 26] and remote esti-

mation [22, 23, 24] emphasize that even for very simple systems, linear AoI is not

a sufficiently accurate metric to track accuracy or overall system performance.

This has motivated interest in using general, possibly non-linear cost functions

of AoI that reflect the cost of delayed information more accurately [29, 30, 1, 25].

Next, we discuss a simple example that motivates why non-linear functions of

AoI are key to performing monitoring tasks over wireless networks.

1.1 Motivating Example

Consider a linear dynamical system that is being observed over a costly wireless

channel (see Fig. 1-2). The source to be monitored evolves as follows:

𝑥(𝑡 + 1) = 𝐺𝑥(𝑡) +𝑤(𝑡), (1.1)

where 𝐺 describes the source dynamics and 𝑤(𝑡) ∼ N (0, Σ) is i.i.d. Gaussian

noise in every time-slot.

Source Monitor/Controller

Channel	with
cost	C

Figure 1-2: Single source monitoring over a costly wireless channel.

The monitor can, in every time-slot, decided to observe the state of the source

exactly and pay an observation cost 𝐶 or estimate the current state of the source

based on prior observations. The goal of the monitor is to minimize the sum of

the monitoring error and observation cost, averaged over time.
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Suppose that the monitor last observer the state of the source 𝜏 time-slots ago.

Then, the MMSE estimate of the state in the current time-slot is given by:

�̂�(𝑡) ≜ E
[
𝑥(𝑡) |𝑥(𝑡 − 𝜏) = 𝑥

]
= 𝐺𝜏𝑥. (1.2)

The last equality above follows from the linearity of expectation and the fact that

the noise is zero-mean in every time-slot.

Now consider a scheduling policy 𝜋 that specifies whether the monitor should

sample the source at time-slot 𝑡 or not, for every time-slot. This decision is rep-

resented by the indicator variable 𝑢(𝑡). The optimization problem faced by the

monitor can then be formulated as:

arg min
𝜋

(
lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

(
E

[
| |𝑥(𝑡) − �̂�(𝑡) | |2

]
+ 𝐶𝑢(𝑡)

))
. (1.3)

Interestingly, this problem can be converted to an equivalent problem of the

form

arg min
𝜋

(
lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

(
𝑓 (𝐴(𝑡)) + 𝐶𝑢(𝑡)

))
, (1.4)

where 𝐴(𝑡) is the AoI at the monitor of information regarding the source and 𝑓 (·)

is a monotone increasing function given by 𝑓 (ℎ) =
ℎ∑
𝑘=0

𝑇𝑟 (𝐺𝑘𝑇𝐺𝑘Σ) [25, 26]. We

will derive this result in detail in Chapter 2.

Similar results can be derived for monitoring discrete Markov chains and con-

trolling Linear systems with Quadratic costs and Gaussian noise (LQG) over a

wireless channel. Thus, the design of policies that achieve optimal monitor-

ing and control of linear systems over constrained communication networks

requires optimization of general AoI cost functions. These AoI cost functions

will be one of the main focuses of this thesis.
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1.2 Contributions and Prior Work

At a high level, our contributions in this thesis can be split into three parts -

1. Cost Functions of AoI. A large portion of this thesis is dedicated to optimiz-

ing general AoI cost functions. In Chapter 2 we optimize AoI cost functions

in single-hop networks. In Chapter 3, we consider the setting where AoI

cost functions are not known in advance, time-varying and possibly adver-

sarial. In Chapter 4, we extend the single-hop framework with cost func-

tions to consider computation-communication tradeoffs, and sources that

generate updates of different sizes and at different rates. In Chapter 5, we

consider the optimization of general AoI cost functions for multi-hop net-

works.

2. Weighted-Sum AoI. We study two specific aspects of the weighted-sum AoI

minimization problem in this thesis that haven’t been looked at in great

depth in AoI literature before. In Chapter 6, we explore how to design a

distributed scheduling policy that replicates the performance of centralized

policies proposed in [15, 16, 17] and in Chapter 7, we explore how to model

correlation between sources in this setting.

3. Applications and Implementation. A crucial part of this thesis is the fo-

cus on applying ideas from AoI optimization to problems in monitoring,

control, and robotics. We demonstrate the equivalence between monitor-

ing of LTI systems and monitoring of Markov chains to minimizing AoI cost

funtions in Chapter 2. We apply the Whittle framework to two problems

in robotics - multi-agent occupancy grid mapping, and ride-sharing with

computational offloading - in Chapter 4. Finally, in Chapter 8, we describe

the implementation of an application layer scheduling system that utilizes

key results from AoI literature over the past decade to deliver significant

performance and scalability gains in a multi-UAV mobility tracking task.
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Next, we provide a detailed literature review of prior works.

1.2.A Single-Hop Networks

The problem of minimizing age of information in single-hop networks was first

considered in [31] and [15]. In these works, the authors considered a base sta-

tion collecting time-sensitive information from a number of sources over a wire-

less broadcast network, where only one source can send an update at any given

time. They looked at weighted linear combinations of AoI of all sources as the

metric to be optimized. This prompted the design of low complexity scheduling

policies that provably minimize weighted sum AoI at the base station, up to a

constant multiplicative factor. These results crucially depend on the fact that for

linear AoI, one can find a stationary randomized policy that is factor-2 optimal.

As we will see in Chapter 2, this observation does not hold for general functions of

AoI. In fact, stationary randomized policies can be arbitrarily worse than simple

heuristic policies.

Scheduling problems with weighted linear combinations of age have also been

considered with throughput constraints in [16] and with general interference con-

straints in [17]. AoI-based scheduling with stochastic arrivals was considered in

[20], where a Whittle Index policy was shown to have good performance. In [21],

the authors extended prior results to different sampling behaviors, update sizes

and transmission times in the same weighted-sum AoI context.

On the other hand, nonlinear cost functions of age were introduced as a nat-

ural extension to the AoI metric in [11] for characterizing how the level of dissat-

isfaction depends on data staleness in a more general manner. Nonlinear func-

tions of age of information were also discussed in the context of queuing systems

in [27] and [32]. These papers develop the notion of value of information and use

nonlinear cost of update delays, which correspond to nonlinear age cost func-

tions.
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Nonlinear functions of age have also been discussed in the context of net-

worked control systems in [25],[26] and [33]. In [25], the authors discuss a real

time networked control system and show that the cost function is characterized

as a non-decreasing, possibly nonlinear, function of AoI. In [26], the authors for-

mulated the state estimation problem for an LTI system, where the state of a

discrete-time LTI system can be observed in any time-slot by paying a fixed trans-

mission cost. The problem of minimizing the time-average of the sum of the

estimation error and transmission cost reduces to minimizing a non-decreasing

age-cost function for a single source with a fixed transmission cost (our moti-

vating example from Section 1.1). We explore this relationship more closely in

Section 2.6, where we derive a similar equivalence for monitoring multiple LTI

systems or Markov chains.

Scheduling to minimize functions of age has also been considered in [18]

and [30]. In [18], the authors deals with minimizing symmetric functions of age

of sources over multiple orthogonal unreliable channels and show that simple

greedy schemes are asymptotically optimal. In [30], the authors formulate the

general functions of age problem with reliable channels and develop a high com-

plexity algorithm that achieves minimum age. They also derive a key structural

property of the optimal policy in this setting - the optimal policy is always pe-

riodic. However, their approach does not extend to the setting with unreliable

channels. In Chapter 2, we consider unreliable channels and also build upon re-

sults from [30] and [20] to derive stronger structural properties for optimal poli-

cies. These properties hint at why the performance of the heuristic Whittle index

policy may be close to optimal. In more recent work [34], published subsequent

to our original conference paper [1], it has been shown that the Whittle policy is

indeed asymptotically optimal for linear functions of AoI.
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1.2.B Online Learning of AoI Cost Functions

Many works on AoI-based scheduling for multiple sources consider weighted-

sum AoI minimization [15, 16, 17], where weights represent the relative impor-

tance of each source. Typical assumptions involve the weights being fixed and

known in advance, based on the underlying application or systems being moni-

tored.

Recent works on networked control systems [25, 26] and remote estimation

[22, 23, 24] emphasize that linear AoI is not a sufficiently accurate metric to track

accuracy or overall system performance. This has motivated interest in using

general, possibly non-linear cost functions of AoI that reflect the cost of delayed

information more accurately [29, 30, 1, 25]. Typical assumptions in works study-

ing non-linear AoI include knowing the cost functions in advance [27, 30, 1, 26],

assuming that cost functions increase monotonically with AoI [27, 18, 23, 26] and

decoupled costs across multiple systems [1, 26]. Importantly, we observe that

all of these works assume there is some fixed and known cost function mapping

the AoI to system performance and that the source dynamics are stationary. In

Chapter 3, we ask the following question - what happens when the AoI cost func-

tions are time-varying, not known in advance, and possibly adversarial? Related

to this, a context-aware notion of AoI was proposed in [35], where the authors

considered sources with known time-varying context that influences the AoI cost

function.

There has been some recent work at the intersection of AoI and learning to

sample or schedule sources. Learning how to sample a source through a network

with an unknown delay profile while minimizing AoI has been considered in [36].

Minimizing AoI with unknown and adversarial channel processes has also been

considered in [37] and [38], respectively. However, these works do not look at

learning of the AoI cost functions themselves.
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1.2.C Computation Communication Trade-Offs

Two key directions of innovation in multi-agent networked systems involve a)

pushing the computation to be distributed across the network, such that all agents

perform local processing of the collected measurements, and b) designing schedul-

ing algorithms that efficiently share limited communication resources across all

devices and ensure timely delivery of information. However, existing work on

communication scheduling [9, 11, 15, 17, 1] disregards distributed processing,

while related work on sensor fusion [39, 40, 41] focuses on designing distributed

algorithms, rather than allocating computational resources at each node.

Our processing and scheduling co-design problem in Chapter 4 is motivated

by recent advances in embedded electronics, as well as the development of ef-

ficient estimation and inference algorithms for real-time applications on low-

powered devices [42, 43, 44, 45]. The output accuracy of such algorithms in-

creases with the runtime, in line with the delay-accuracy trade-off we consider in

this chapter. Another application of such a trade-off involves deciding on com-

putation offloading in cloud robotics, which has been the focus of recent works

on real-time inference by resource-constrained robots [46, 47]. In this context,

sending raw data can induce long transmission delays, but allow better inference

by shifting the computational burden the cloud.

Our main theoretical contribution involves extending the Whittle frame work

from Chapter 2 to sources with different update generation rates and update

sizes, and solving a joint optimization problem involving wireless scheduling and

distributed processing. We apply this framework to two practical problems in

robotics via simulations to demonstrate the benefits of our approach.
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1.2.D Multi-Hop Networks

While there has been significant work on minimizing AoI in single-hop wireless

networks, optimizing AoI or its cost functions over multi-hop networks has re-

ceived limited attention in the literature so far. In [48], a switch type network was

considered under physical interference constraints, and the problem of schedul-

ing finitely many update packets was shown to be NP-hard for this network. AoI

in multi-hop networks of queues was studied in [49], where LIFO queue service

was shown to reduce age. AoI minimization in multihop wireless networks with

all-to-all broadcast flows was considered in [50, 51]. Scaling of AoI in multihop

multicast networks was studied in [52].

Finding low complexity near optimal scheduling and routing schemes for AoI

minimization which handle general network topologies, interference constraints,

cost functions, different types of flows and link reliabilities has remained an open

problem. We target this problem in Chapter 5.

1.2.E Distributed Scheduling

A large majority of the works on weighted-sum AoI minimization [31, 15, 16, 17,

20, 21] focus on the design of centralized scheduling algorithms. Specifically, at

the beginning of each time-slot, the base station looks at the AoI values for each

node in the network and then decides which node to poll for an update. This

requires support for polling protocols, which might not be available at the MAC

layer and might involve excessive overhead for networks with many nodes. This

has motivated the need to study distributed schemes for information freshness

in wireless networks.

In [53], the authors consider a simple class of distributed algorithms - each

node transmits using a fixed attempt probability in each time-slot, and they de-

sign a scheme to find the attempt probabilities that minimize weighted sum AoI.
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In [54], the authors consider a single-hop setting with stochastic arrivals and

solve the AoI minimization problem by deriving a Whittle index and propose

a heuristic ALOHA-like scheme called Index-Prioritized-Random-Access (IPRA)

where a node is active with a fixed probability but only when its AoI exceeds a

specified threshold. The idea of ALOHA with thresholds has been explored in fur-

ther detail in subsequent works. In [55, 56], the authors study the performance of

ALOHA style random access protocols for information freshness and propose the

idea of “thinning", where only nodes with AoI greater than a specified threshold

remain active. Along similar lines, the performance of threshold-ALOHA for AoI

minimization is also analyzed in [57, 58] with performance bounds derived in a

symmetric setting.

Another class of distributed protocols commonly used in wireless networks

for medium access is Carrier Sense Multiple Access with Collision Avoidance, also

known as CSMA/CA. Throughout this thesis, when we use the term CSMA, we use

it to denote CSMA/CA style protocols. Age of information has also been analyzed

in settings where nodes employ CSMA [59, 60, 61, 55, 62, 63]. In [59], the authors

analyze an idealized version of IEEE 802.11 CSMA and optimize the backoff timer

parameters to minimize AoI. They show that this version of CSMA has poor de-

lay and freshness performance in certain settings and suggest the need for new

distributed scheduling schemes for AoI. In [61, 60], the authors analyze AoI un-

der standard CSMA in broadcast environments. In [62, 63], the authors study

sleep-wake carrier sensing based scheduling with the goal of minimizing energy

consumption together with AoI.

The CSMA protocol has been well studied in wireless networks for a long time,

especially for optimizing throughput and utility. It was shown in [64] that CSMA

tends to outperform ALOHA in terms of both throughput and delay. In [65], the

author developed an approximation that allows closed-form analysis for the IEEE

802.11 implementation of CSMA. More recently, there has been work on through-
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put and utility optimization by trying to replicate centralized scheduling policies’

behavior using CSMA style schemes [66, 67, 68, 69]. Typically, these works in-

volve modifying the way CSMA backoff timers work by adding dependence on

the current network state (e.g. queue lengths) and then analyzing performance

guarantees by comparing to a centralized scheduling scheme. Our analysis and

approach in Chapter 6 are motivated by this line of work, in particular the Fast-

CSMA protocol proposed in [69].

1.2.F Correlated Sources

Most AoI optimization works assume that information and updates from differ-

ent sources are uncorrelated, i.e. different sources do not provide information

about each other. In Chapter 7, we explore how to model information freshness

in the presence of correlated sources.

There has been some prior work in trying to understand how correlation influ-

ences information freshness. In [70], the authors consider updates from a single

source that are temporally correlated. In [71, 72], the authors consider a network

of cameras with overlapping fields of view and formulate a joint optimization

problem that looks at processing and scheduling. In [73], the authors consider a

setting with multiple sensors partially monitoring a single source, where updates

from at least 𝑀 sensors are required to reconstruct the state of the source. In [74],

the authors consider spatially correlated updates from a random field and study

the optimal density at which to place sensors. In [75], the authors consider a two

hop setting where sources can send updates to multiple sensors.

1.2.G System Design

WiFi is a common choice for deploying time-sensitive applications. Some ex-

amples include: automated fulfilment warehouses at Amazon [76], vehicle-to-
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everything communication in New York City [77, 78, 79], and various multi-agent

systems using teams of UAVs [80, 81, 82, 83, 84, 85, 86, 87] and/or ground robots

[88, 89, 90, 80]. WiFi is attractive for deploying such systems because it is inexpen-

sive, tried-and-true, and readily available in sensors, cameras, UAVs, and robotic

platforms. However, it is well-known that WiFi’s performance degrades sharply

as the network size scales and traffic load increases. This is due to WiFi’s Carrier-

Sense Multiple Access (CSMA) distributed random access mechanism that works

well for small-scale underloaded networks, but not for large-scale systems with

stringent latency or freshness requirements. When a larger number of sources

attempt to transmit using distributed random access, the higher probability of

packet collisions leads to lower throughput and higher latency, which can result

in degraded performance (or even failure) of the time-sensitive application. This

motivates our work on designing an application layer system for efficient AoI-

based scheduling in Chapter 8.

Cellular networks employ a centralized resource allocation mechanism [91]

that prevents packet collisions and prioritizes traffic according to its preassigned

Quality-of-Service (QoS) level. Major drawbacks of cellular networks include their

high cost and the fact that the technology is proprietary and vendor specific,

meaning that customizing resource allocation to the needs of distinct applica-

tions is prohibitively complex. An effort to make cellular networks open, vir-

tualized, and programmable is underway by the O-RAN Alliance [92, 93]. Pro-

grammability is seen as key to enabling the deployment of custom solutions that

satisfy application-specific performance requirements [94]. However, this is a long-

term approach that requires substantial efforts and negotiations with vendors,

network operators, and hardware/software developers. Moreover, it is limited to

environments with cellular infrastructure. Applications such as search and res-

cue following a disaster and automated exploration of remote environments may

not be able to use such infrastructure.
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1.3 Outline

We describe a detailed the outline of the rest of the thesis below.

• Chapter 2 is organized as follows. In Section 2.1, we describe the general

system model for minimizing functions of AoI over single-hop wireless net-

works. In Section 2.2, we describe the equivalent restless multi-armed ban-

dit formulation and discuss why we use the Whittle Index approach to solve

the problem. In Section 2.3, we discuss the functions of age problem with

reliable channels, develop the Whittle Index solution for this setting, and

also prove key structural properties that an optimal policy must satisfy. In

Section 2.4, we find the Whittle Index policy for the functions of age prob-

lem with unreliable channels. In Section 2.5, we provide simulation results

that verify our theoretical results. In Section 2.6, we show that the prob-

lem of minimizing monitoring error for linear time-invariant systems when

observing them over a wireless channel is equivalent to minimizing func-

tions of AoI. We also show a similar result for monitoring symmetric Markov

chains over a wireless channel. This shows the direct applicability of our

Whittle framework to a large class of wireless monitoring problems.

• In Chapter 3 we consider online learning of AoI cost functions. In Sec-

tion 3.1 we formulate a problem that involves monitoring a single non-

stationary source over a costly communication channel. We design an epoch

based framework in which the AoI cost functions change across epochs in

an unknown time-varying manner, but remain fixed within an epoch. At

the end of each epoch, the scheduler receives feedback (either partial or

full) regarding the cost in the previous epoch and uses it to decide a pol-

icy for the next epoch. We provide simple scheduling algorithms that have

sublinear worst-case regret compared to the best fixed policy in hindsight.

Our main contribution here is formulating the problem in such a way that
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we can apply techniques from online optimization. In Section 3.2, we use

insights from the single source model to develop an epoch based frame-

work for online scheduling of multiple sources. In each epoch, the sched-

uler needs to decide on a scheduling policy that specifies which source gets

to send an update in every time-slot. The goal is to dynamically adapt the

scheduling policy to optimize for overall monitoring cost, as the AoI cost

functions change across epochs in an unknown manner. Since the number

of scheduling policies of a given length grows exponentially in the number

of sources, it becomes computationally infeasible to implement traditional

online learning algorithms directly in the multiple source setting. We design

a new online learning algorithm called Follow the Perturbed Whittle Leader

(FPWL) for this setting that is computationally feasible while also achieving

low regret. Here, analyzing regret is especially challenging due to the com-

binatorial nature of the scheduling problem and since the Whittle index is

only an approximately optimal solution for the offline problem. Our algo-

rithm and its regret analysis are novel and of independent interest to the

study of online learning for restless multi-armed bandits with time-varying

costs. In Section 3.3, we apply the algorithms that we develop to a mobil-

ity tracking problem and illustrate the performance benefits of using online

learning for scheduling.

• In Chapter 4, we explore the joint optimization of computation and com-

munication resources for monitoring and control tasks. In Section 4.1, we

develop a general framework to jointly optimize computation and commu-

nication for real-time monitoring and decision-making. This framework

extends existing work by a) considering joint optimization of scheduling in

addition to processing, and b) addressing a general model that goes beyond

linear systems. In Sections 4.2-4.3, we develop low-complexity scheduling

and processing allocation schemes that perform well in practice. The co-
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design problem is a multi-period resource allocation problem and is hard

to solve in general due to its combinatorial nature. To solve the scheduling

problem, we generalize the Whittle index framework proposed in Chap-

ter 2 for sources that generate updates at different rates and of different

sizes. Finally, in Section 4.4, we demonstrate the benefits of using our meth-

ods in two practical applications from robotics and autonomous systems:

multi-agent occupancy grid mapping in time-varying environments and

ride-sharing systems with local route optimization. Our simulations show

that we can achieve performance improvements of 18 − 35% in the map-

ping application and 75 − 82% in the ride-sharing application with respect

to baseline approaches.

• In Chapter 5, we consider minimization of AoI costs in general multihop

networks. In Section 5.2, we provide a recipe to transform AoI optimization

problems into network stability problems. Instead of trying to solve for the

best scheduling and routing policies directly, we assume that we have ac-

cess to a set of target values which represent the average age cost for every

flow in the network. We introduce the notion of Age Debt and set up a virtual

queuing network that is stable if and only if there exists a feasible network

control policy that can achieve the specified target costs. In Section 5.3, we

use Lyapunov drift based methods to stabilize this system of virtual queues

and achieve the desired target age costs. In Section 5.4, we further discuss

how to choose the right age cost targets, when there is no access to either

an optimization oracle or a system administrator specifying requirements

for each flow. Finally, in Section 5.5, we provide detailed simulation results

that compare our proposed AoI optimization methods with prior works. We

find that Age Debt and its variants perform as well as or better than the best

known scheduling and routing schemes in a wide variety of network set-

tings.
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• In Chapter 6, we propose Fresh-CSMA to replicate the behavior of central-

ized scheduling schemes that minimize AoI. In Section 6.1 we discuss our

system model and set up the single-hop weighted age minimization prob-

lem. In Section 6.2 we introduce the Fresh-CSMA protocol in an idealized

setting and provide performance guarantees that show that it can closely

match the centralized max-weight scheduling policy both per time-slot and

over the entire time horizon. In Section 6.3, we relax some of the assump-

tions from our idealized model and study the Fresh-CSMA protocol under

a more realistic setting. We analyze two keys aspects - the probability of

collision and the total time lost due to the backoff timers during which the

channel remains idle. In Section 6.4, we consider the recently proposed in-

formation freshness metric called Age of Incorrect Information (AoII) and

extend our CSMA design to incorporate this metric. In Section 6.5, we pro-

vide simulations that support our theoretical results.

• The focus of Chapter 7 is to understand to role of correlation in design-

ing scheduling policies for information freshness in wireless networks. In

Section 7.1, we formulate a simple model to analyze weighted-sum aver-

age AoI in the presence of correlated sources under wireless interference

constraints. In Section 7.2, we use this model to design scheduling policies

that can utilize the correlation structure between sources. We formulate a

convex problem that solves for the optimal stationary randomized policy

and show that it is factor-2 optimal in general. We then develop a Lyapunov

drift-based max-weight policy that works well in practice and show that it is

also constant factor optimal. In Section 7.3, we provide scaling results that

allow us to understand how the degree of correlation affects information

freshness. In Section 7.4, we discuss some alternate ways to model corre-

lation and show that the average AoI for these models remains the same

as our proposed model under randomized policies. This highlights the ro-
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bustness of our results to the way in which correlation is modeled. In Sec-

tion 7.5, we consider the setting where correlation parameters are unknown

and possibly time-varying. Here, we propose a heuristic algorithm called

EMA-max-weight based on exponential moving averages. This algorithm

attempts to both keep track of the correlation parameters and adjust the

scheduling decisions in an online manner so as to keep information fresh

at the base station. Finally, in Section 7.6, we show numerically that our

proposed policies outperform scheduling schemes that ignore the correla-

tion structure inherent in the problem and verify our theoretical results.

• In Chapter 8, we describe the design of an application layer networking

middleware that customizes WiFi to the needs of time-sensitive applica-

tions that rely on multi-agent systems. In Section 8.2, we describe the de-

sign and implementation of WiSwarm which is an instantiation of the net-

working middleware for information freshness tailored to a mobility track-

ing application. In Section 8.3, we evaluate the performance of both WiFi

and WiSwarm for the mobility tracking application. We perform our exper-

iments in a dynamic indoor campus space with multiple external sources of

interference such as WiFi base stations, mobile phones, and laptops. Through

stationary and flight experiments involving multiple sources, we demon-

strate significant performance gains of WiSwarm over traditional WiFi.
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Chapter 2

Information Freshness in Single-Hop

Networks

In this chapter, we consider a wireless broadcast network with 𝑁 sources gener-

ating real-time updates that need to be sent to a monitoring station. In any time-

slot, only one source can attempt a transmission to the base station. Instead of

weighted sum AoI, we are interested in minimizing the time-average of general

non-decreasing cost functions of AoI, summed over all sources. Examples of such

functions include 𝑓 (𝑥) = 2𝑥, 𝑓 (𝑥) = log(𝑥), 𝑓 (𝑥) = 1{𝑥≥10}, etc. See Fig.2-1 for

examples. We develop a restless mutli-armed bandit formulation for the prob-

lem and use a Whittle Index based approach to find low complexity scheduling

policies that have good performance.

The rest of the chapter is organized as follows. In Section 2.1, we describe the

general system model. In Section 2.2, we describe the equivalent restless multi-

armed bandit formulation and discuss why we use the Whittle Index approach to

solve the problem. In Section 2.3, we discuss the functions of age problem with

reliable channels, develop the Whittle Index solution for this setting, and also

prove key structural properties that an optimal policy must satisfy. In Section 2.4,

we find the Whittle Index policy for the functions of age problem with unreliable
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Figure 2-1: Linear, quadratic, logarithmic and indicator cost functions for a sam-
ple age process. The linear process tracks the actual values of AoI.

channels. In Section 2.5, we provide simulation results that verify our theoretical

results. In Section 2.6, we show that the problem of minimizing monitoring error

for linear time-invariant systems when observing them over a wireless channel

is equivalent to minimizing functions of AoI. We also show a similar result for

monitoring symmetric Markov chains over a wireless channel. This shows the di-

rect applicability of our Whittle framework to a large class of wireless monitoring

problems.

2.1 Model

Consider a single-hop wireless network with 𝑁 active sources generating real-

time status updates that need to be sent to a base station. We consider a slotted

system in which each source takes a single time-slot to transmit an update to the

base station. Due to interference, only one of the sources can transmit in any

given time-slot.

For every source 𝑖, the age of information at the base station 𝐴𝑖 (𝑡) measures
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Figure 2-2: 𝑁 sources transmitting updates to a base station over a wireless chan-
nel, with different reliabilities.

the time elapsed since it received a fresh information update from the source. We

assume active sources, i.e. in any time-slot, sources can generate fresh updates at

will. Let 𝑠(𝑡) be the source activated in time-slot 𝑡 and 𝑢𝑖 (𝑡) be a Bernoulli random

variable with parameter 𝑝𝑖 that denotes channel reliability between the 𝑖𝑡ℎ source

and the base station. Then, we have

𝐴𝑖 (𝑡 + 1) =


𝐴𝑖 (𝑡) + 1, if 𝑠(𝑡) ≠ 𝑖 or 𝑢𝑖 (𝑡) = 0,

1, if 𝑠(𝑡) = 𝑖 and 𝑢𝑖 (𝑡) = 1.
(2.1)

We consider general cost functions of age as our metric of interest. For each

source 𝑖, let 𝑓𝑖 (·) denote a positive non-decreasing cost function.

Let 𝜋 be a scheduling scheme that decides which sources to schedule in every

time-slot. The age process 𝐴𝑖 (𝑡) depends on 𝜋 and the channel processes. Then,

the expected average cost of age for source 𝑖 is given by
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𝐶ave
𝑖 (𝜋) ≜ lim sup

𝑇→∞

1
𝑇
E

[ 𝑇∑︁
𝑡=1

𝑓𝑖 (𝐴𝜋𝑖 (𝑡))
]
, (2.2)

where 𝐴𝜋
𝑖
(𝑡) is age process for the 𝑖th source under policy 𝜋.

Our goal is find a schedule 𝜋 that minimizes the sum of average costs of age of

sources. Let Π denote the set of causal scheduling policies, then we want to solve

the following optimization problem

𝐶∗ = min
𝜋∈Π

𝑁∑︁
𝑖=1

𝐶ave
𝑖 (𝜋), (2.3)

where 𝐶∗ is minimum average cost and 𝜋∗ is an optimal scheduling policy.

2.2 Restless Multi-Armed Bandit Formulation

In this section, we show that scheduling to minimize such a metric can be refor-

mulated as a restless multi-armed bandit (RMAB).

Consider a restless multi-armed bandit problem with 𝑁 arms. The state space

for every arm 𝑖 is the set of positive integers Z+. The state evolution of the arm

depends on whether it is currently active or not. Let the state of arm 𝑖 at time 𝑡 be

denoted by 𝐴𝑖 (𝑡). If arm 𝑖 is active in time-slot 𝑡 then the state evolution is given

by

𝐴𝑖 (𝑡 + 1) =


𝐴𝑖 (𝑡) + 1, w.p. 1 − 𝑝𝑖

1, w.p. 𝑝𝑖 .
(2.4)

If the arm is not active in time-slot 𝑡, then the state evolution is given by

𝐴𝑖 (𝑡 + 1) = 𝐴𝑖 (𝑡) + 1. (2.5)
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For every arm 𝑖, there is a cost function 𝑓𝑖 : Z+ → R+ which maps the states

of the arm to their associated costs. Thus, the cost of a state 𝑥 ∈ Z+𝑁 is given by∑𝑁
𝑖=1 𝑓𝑖 (𝑥𝑖), where 𝑥 is a vector of ages and 𝑥𝑖 is the age (state) of the 𝑖th source.

Given that only one arm can be activated in any time-slot, the goal of the RMAB

framework is to find a scheduling policy that minimizes the total time average

cost of running this system.

This establishes the equivalence between the functions of age problem dis-

cussed earlier and a corresponding restless multi-armed bandit. Observe that

the “restless” part of our construction cannot be dropped, since the states of the

arms do not freeze when they are not active and there is no way to reformulate

our problem as a simple (non-restless) multi-armed bandit problem. If that were

the case, we could have found an optimal policy by solving for the Gittins index

[95]. However, finding optimal policies for restless bandits is much harder. The

usual approach is to find the Whittle Index policy which provides good perfor-

mance under certain conditions, namely indexability of the RMAB problem.

In [31] and [15], the authors develop three methods to solve the minimum age

scheduling problem. First, they look at stationary randomized policies, where a

source 𝑖 is scheduled at random with a fixed probability 𝑝𝑖. They find a stationary

randomized policy that is factor-2 optimal for weighted sum AoI. However, this

result does not hold for general functions: even the best stationary randomized

policies in our setting can lead to an unbounded overall cost, despite there being

very simple policies that have bounded cost. We demonstrate this with a simple

example.

Consider two identical sources with cost functions given by 𝑓 (𝑥) = 3𝑥 and re-

liable channels, i.e 𝑝1 = 𝑝2 = 1. Any stationary randomized policy schedules at

least one of the sources with probability less than or equal to 0.5. For this source,

the average cost is lower bounded by lim
𝑇→∞

∑𝑇
𝑡=1(3𝑡) 0.5𝑇

𝑇
since with probability at

least 0.5, it does not get to transmit and its age increases by 1 in every time-slot.
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Observe that this lower bound goes to ∞ and hence the average cost also goes

to ∞ for all stationary randomized policies. On the other hand, a simple round-

robin scheme that schedules the two sources in alternating time-slots guarantees

bounded cost for both sensors. Thus, stationary randomized policies can be in-

finitely worse than the optimal policy for the functions of age problem.

The second method developed for age-based scheduling in [31, 15] uses a

Max-Weight approach. The authors design a quadratic Lyapunov function for

the weighted sum of linear functions of AoI and find the max-weight policy - the

policy that maximizes the amount of negative drift in the Lyapunov function in

every time-slot. Performance guarantees for the max-weight policy crucially rely

on the fact that there exists a stationary randomized policy that is factor-2 opti-

mal for linear functions of age. Since this is not the case for general functions of

age, we cannot develop similar performance bounds using the Max-Weight pol-

icy for the general functions of age problem.

This finally leaves us with the third method - using a Whittle Index based ap-

proach. In the following two sections, we use the RMAB formulation to establish

indexability for the functions of age problem and derive a Whittle Index policy.

We also show that for the case with 2 sources and reliable channels, the Whittle

index policy is exactly optimal. This is a novel result since the optimality of Whit-

tle Index policies is typically shown either only asymptotically, or in symmetric

settings for finite systems. On the other hand, our optimality result holds for two

asymmetric sources.

2.3 Reliable Channels

We first look at the problem with reliable channels between the sources and the

base station. This leads to simpler analysis and a better understanding of the

problem. Consider the setup described in Section I with channel reliability 𝑢𝑖 (𝑡) =



2.3. Reliable Channels 49

1, for all 𝑖 and 𝑡. In other words, the probability of success 𝑝𝑖 = 1,∀𝑖.

In Section 2.2, we showed that the functions of age minimization problem

is equivalent to a restless multi-armed bandit problem. Next, we use a Whittle

Index based approach to try and solve the problem.

The first step in the Whittle Index approach is to formulate the decoupled

problem, where we consider a single arm in isolation with a fixed charge required

to activate the arm.

Definition Decoupled Problem

Consider a single arm with the state space Z+ and an associated non-

decreasing cost function 𝑓 : Z+ → R+. Let the state of the arm be 𝐴(𝑡). Its

evolution is given by

𝐴(𝑡 + 1) =


𝐴(𝑡) + 1, if not active at time t

1, otherwise.

There is a strictly positive activation charge 𝐶 to be paid in every time-slot

that the arm is pulled.

Our goal is to find a scheduling policy that minimizes the time-average cost

of running this system. Assuming that the cost function 𝑓 (·) is non-negative and

non-decreasing, we solve the decoupled problem using dynamic programming.

The case when the activation charge is set to zero is trivial. The optimal policy is

to always activate the arm. So, we consider 𝐶 to be strictly positive. The single

source decoupled problem has also been solved in a slightly different setting in

[26].
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Theorem 1. The optimal policy for the decoupled problem is a stationary

threshold policy. Let 𝐻 satisfy

𝑓 (𝐻) ≤
∑𝐻
𝑗=1 𝑓 ( 𝑗) + 𝐶

𝐻
≤ 𝑓 (𝐻 + 1). (2.6)

Then, the optimal policy is to activate the arm at time-slot 𝑡 if 𝐴(𝑡) ≥ 𝐻 and to

let it rest otherwise. If no such 𝐻 exists, the optimal policy is to never activate

the arm.

Proof. See Appendix 2.8.A. □

Theorem 1 establishes that the optimal policy for the decoupled problem has

a threshold structure. We now want to show that the indexability property also

holds for the decoupled problem. The indexability property states that as the

activation charge 𝐶 increases from 0 to∞, the set of states for which it is optimal

to activate the arm decreases monotonically from the entire set Z+ to the empty

set {𝜙}.

Theorem 2. The indexability property holds for the decoupled problem.

Proof. See Appendix 2.8.B. □

The Whittle index approach states that if the decoupled problem satisfies the

indexability property, we can formulate a heuristic index policy called the Whittle

Index Policy that has good performance.
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Definition Whittle Index

Consider the decoupled problem and denote by 𝑊 (ℎ) the Whittle index in

state ℎ. Given indexability, 𝑊 (ℎ) is the infimum charge 𝐶 that makes both

decisions (activate, not activate) equally desirable in state ℎ. The expression

for𝑊 (ℎ) is given by

𝑊 (ℎ) = ℎ 𝑓
(
ℎ + 1

)
−

ℎ∑︁
𝑗=1

𝑓 ( 𝑗). (2.7)

Observe that using (2.6), 𝐶 = 𝑊 (ℎ) is the minimum value of the activation

charge that makes both actions equally desirable in state ℎ. This gives us the

expression for the Whittle index.

Let 𝑊𝑖 (𝑥) := 𝑥 𝑓𝑖
(
𝑥 + 1

)
− ∑𝑥

𝑗=1 𝑓𝑖 ( 𝑗) represent the index function for the 𝑖th de-

coupled problem. By the monotonicity of 𝑓𝑖 (·), it is easy to see that the functions

𝑊𝑖 (·) are also monotonically non-decreasing. This is because𝑊𝑖 (ℎ) −𝑊𝑖 (ℎ − 1) =

ℎ
(
𝑓𝑖 (ℎ + 1) − 𝑓𝑖 (ℎ)

)
≥ 0,∀ℎ since 𝑓𝑖 (·) is non-decreasing. Using these functions, we

define the Whittle Index Policy.

Definition Whittle Index Policy

Let 𝜋𝑊 (𝑡) be the action taken by the Whittle Index Policy at time 𝑡. Then 𝜋𝑊 (𝑡)

is given by

𝜋𝑊 (𝑡) = arg max
1≤𝑖≤𝑁

{
𝑊𝑖

(
𝐴𝑖 (𝑡)

)}
= arg max

1≤𝑖≤𝑁

{
𝐴𝑖 (𝑡) 𝑓𝑖

(
𝐴𝑖 (𝑡) + 1

)
−
𝐴𝑖 (𝑡)∑︁
𝑗=1

𝑓𝑖 ( 𝑗)
}
.

(2.8)

Consider the case when cost functions are weighted linear functions of AoI,
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i.e let 𝑓𝑖 (𝐴𝑖 (𝑡)) = 𝑤𝑖𝐴𝑖 (𝑡), with positive weights 𝑤𝑖. This is the setting consid-

ered in [31] and [15]. The Whittle Index for source 𝑖 is then given by 𝑊𝑖 (𝐴𝑖 (𝑡)) =

𝑤𝑖 (𝐴2
𝑖
(𝑡) + 𝐴𝑖 (𝑡))/2. This is the same as the Whittle index found in [31], where the

authors showed that the Whittle policy is optimal for symmetric settings when all

the weights are equal. We also establish that for 𝑁 = 2, the Whittle index policy is

optimal even for asymmetric settings.

Theorem 3. For the functions of age problem with reliable channels and two

sources, the Whittle index policy is exactly optimal.

Proof. See Appendix 2.8.F. □

This is an atypical result for restless multi-armed bandit problems which typi-

cally only have optimality results for symmetric or asymptotic settings. Our result

is valid for finite (𝑁 = 2) asymmetric settings. To the best of our knowledge, ours

was the first work to prove such a result for a restless multi-armed bandit prob-

lem. Next, we discuss some general properties that an optimal policy satisfies

even for larger size systems. These properties help us establish the optimality of

the Whittle index policy for 𝑁 = 2 and provide insight as to why the Whittle index

policy has good performance in general.

2.3.A Properties of an Optimal Policy

For the functions of age problem, a policy is stationary if it depends only on the

current values of age. A cyclic policy is one that repeats a finite sequence of ac-

tions in a fixed order. We define the space of policies that are stationary and pe-

riodic.
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Definition Stationary Cyclic Policies

A stationary cyclic policy is a stationary policy that cycles through a finite sub-

set of points in the state space, repeating a fixed sequence of actions in a par-

ticular order.

In [30], the authors show that for reliable channels there exists an optimal

policy that is stationary, cyclic and can be found by solving the minimum average

cost cycle problem over a large graph.

We look at this cyclic policy and analyze its properties. If there are multiple

such cycles, we consider a cycle with the shortest length. We denote the length of

the cycle by𝑇 and age vectors on the cycle to be𝑥1, . . . ,𝑥𝑇 . Let the corresponding

scheduling decisions be 𝑑1, . . . , 𝑑𝑇 . This implies that for state 𝑥𝑘, taking action 𝑑𝑘

leads to the state 𝑥𝒌+1, where the subscripts cycle back to 1, 2, . . . after 𝑇 .

We establish an important structural property that such an optimal policy

must satisfy, which we call the strong-switch-type property. We call the policies

that satisfy this property strong-switch-type policies.

Definition Strong-switch-type Policies

Consider a stationary policy 𝜋 that maps every point in the state space Z+
𝑁

to

the set of arms {1, . . . , 𝑁}. We say that such a policy is strong-switch-type if

𝜋(𝑥1, . . . , 𝑥𝑁 ) = 𝑖

implies

𝜋(𝑥′1, . . . , 𝑥
′
𝑁 ) = 𝑖,

for all 𝑥 and 𝑥′ such that 𝑥′
𝑖
≥ 𝑥𝑖 and 𝑥′

𝑗
≤ 𝑥 𝑗 ,∀ 𝑗 ≠ 𝑖.
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In words, the strong-switch-type property implies that if a policy decides to

activate arm 𝑖 for a state vector 𝑥, then for a state vector 𝑥′ with a higher age for

the 𝑖th source and lower ages for all the other sources, it still decides to activate

source 𝑖. Note that our definition of strong-switch-type policies is a stronger ver-

sion of the switch-type policies introduced in [20].

Theorem 4. For the functions of age problem with reliable channels, no state-

action pairs that are a part of the shortest length optimal cyclic policy can vio-

late the strong-switch-type property.

Proof. See Appendix 2.8.C. □

We can prove this result for general values of 𝑁 . However, to extend the strong-

switch-type property over the entire state-space, we consider systems with up to

three sources.

Theorem 5. There exists an optimal stationary policy for the functions of age

problem with reliable channels and up to three sources that has the strong-

switch-type property over the entire state-space.

Proof. We have already established that points on the minimum average cost cy-

cle satisfy the strong-switch-type property. In Appendix 2.8.D, we extend this

policy over the entire state space while maintaining the strong-switch property

to obtain a well defined stationary policy. □

While we prove this result for up to three source and reliable channels, we

believe that the strong-switch-type property is a natural property that an optimal

policy must have in general, due to monotonicity of cost functions.
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We now define the space of policies that can be found as a result of the Whittle

Index based approach.

Definition Index Policies

Consider a stationary policy 𝜋 that maps every point in the state space Z+
𝑁

to the set of arms {1, . . . , 𝑁}. We say that such a policy is an index policy if

∃ 𝐹1(·), ...., 𝐹𝑁 (·) such that

𝜋(𝑥1, . . . , 𝑥𝑁 ) = arg max
1≤𝑖≤𝑁

{
𝐹𝑖 (𝑥𝑖)

}
for all 𝑥, where 𝐹𝑖 : Z+ → R are monotonically non-decreasing functions for

all 𝑖.

Observe that if 𝐹𝑖 are the same as 𝑊𝑖 in the above definition, then we get

back the Whittle Index Policy. Also, note that an index policy always satisfies the

strong-switch-type property by definition. This is because the index functions

𝐹𝑖 (·) are monotonically non-decreasing. We now show that index policies are in

fact the same as strong-switch-type policies.

Theorem 6. For the functions of age problem, every policy that is strong-

switch-type is also an index policy.

Proof. The proof is based on induction on the number of sources. We assume

that every strong-switch-type policy can be represented as an index policy for

systems with 𝑁 sources. Using this fact, we show that strong-switch-type policies

can also be represented as index policies for systems with 𝑁 + 1 sources. We also



56 Chapter 2. Information Freshness in Single-Hop Networks

show that the two types of policies are equivalent for the single source decoupled

problem, thus completing the proof. The details are in Appendix 2.8.E. □

An important point to notice is that while we use the reliability of channels

in the proof of Theorem 5, we do not use any such condition for the proof of

Theorem 6. Thus, strong-switch-type policies are equivalent to index policies

regardless of channel connectivity.

Theorems 5 and 6 together imply the following corollary.

Corollary 1. For the functions of age problem with reliable channels and up to

three source, there exists a stationary optimal policy that is an index policy.

In other words, there exists an optimal policy that looks like the Whittle Index

policy in that the arm to be activated has the maximum value among monotone

index functions that take as arguments only the states of individual arms. This

hints at why the performance of Whittle Index policies may be close to optimal.

Observe that the Whittle Index policy would be optimal in general if we could

show that it achieves a cost that is the minimum cost among the space of index

policies and that the strong-switch-type property holds for some optimal policy.

We show that this is indeed the case for 𝑁 = 2. However, we later provide an ex-

ample that shows that the Whittle policy is not optimal, but only close to optimal,

for 𝑁 = 4.

We leave the question of whether the Whittle index policy is at most a con-

stant factor away from optimal in general to future work. We believe that the

structural properties introduced here provide a recipe to proving constant fac-

tor optimality of the Whittle index policy, even for general bandit problems with

similar underlying structure.
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2.4 Unreliable Channels

We now consider independent Bernoulli channels between every source and the

base station, with probability of success 𝑝𝑖 for source 𝑖. We derive a Whittle in-

dex in this setting and establish indexability of the RMAB problem by enforcing a

bounded cost condition on the functions 𝑓𝑖 (·).

An important fact to notice is that monotonicity in itself is not sufficient to

ensure that the system has finite average cost even for 𝑁 = 1, in the case of unre-

liable channels. Consider a single source case where 𝑓 (𝑎) = 3𝑎 and the probability

of success 𝑝 = 0.5. If the source attempts a transmission in every time-slot, the

expected average cost satisfies

lim sup
𝑇→∞

𝑇∑︁
𝑡=1

(3𝑡)0.5
𝑇

𝑇
≤ lim sup

𝑇→∞

1
𝑇
E

[ 𝑇∑︁
𝑡=1

3𝐴(𝑡)
]
, (2.9)

since with probability 0.5, the transmission fails and age increases by 1 in ev-

ery time-slot. However, observe that the summation on the left goes to infinity

and thus the expected average cost goes to infinity. This happens despite the

source attempting a transmission in every time-slot. To prevent such a situation

from happening we enforce the following bounded cost condition on the age cost

functions 𝑓𝑖 in addition to monotonicity

∞∑︁
ℎ=1

𝑓𝑖 (ℎ) (1 − 𝑝𝑖)ℎ < ∞. (2.10)

It can be shown that this condition ensures that the single source case has bounded

cost. We define the decoupled problem in this case as follows:

Definition Decoupled Problem

Consider a single arm with the state space Z+, probability of success 𝑝 and
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an associated non-decreasing cost function 𝑓 : Z+ → R+ that satisfies the

bounded cost condition. Let the state of the arm be 𝐴(𝑡). If the arm is active

at time 𝑡, its evolution is given by

𝐴(𝑡 + 1) =


𝐴(𝑡) + 1, w.p. 1 − 𝑝

1, w.p. 𝑝.

If the arm is not active in time-slot 𝑡, then the state evolution is given by

𝐴(𝑡 + 1) = 𝐴(𝑡) + 1.

There is a strictly positive activation charge 𝐶 to be paid in every time-slot

that the arm is pulled.

As before, our goal is to find a scheduling policy that minimizes the time-

average cost of running this system.

Theorem 7. The optimal policy for the decoupled problem is a stationary

threshold policy. Let 𝐻 satisfy

𝑝2(𝐻 − 1)
( ∞∑︁
𝑘=𝐻

𝑓 (𝑘) (1 − 𝑝)𝑘−𝐻
)
− 𝑝

( 𝐻−1∑︁
𝑗=1

𝑓 ( 𝑗)
)

≤ 𝐶

≤ 𝑝2𝐻

( ∞∑︁
𝑘=𝐻+1

𝑓 (𝑘) (1 − 𝑝)𝑘−𝐻−1
)
− 𝑝

( 𝐻∑︁
𝑗=1

𝑓 ( 𝑗)
) (2.11)

Then, the optimal policy is to activate the arm at time-slot 𝑡 if 𝐴(𝑡) ≥ 𝐻 and to

let it rest otherwise. If no such 𝐻 exists, the optimal policy is to never activate



2.4. Unreliable Channels 59

the arm.

Proof. See Appendix 2.8.G. □

Observe that taking the limit as 𝑝 → 1 in Theorem 7, we get back the threshold

policy for reliable channels derived in Theorem 1. We now establish indexability

and derive the functional form of the Whittle Index.

Theorem 8. The indexability property holds for the decoupled problem. De-

note by 𝑊 (ℎ) the Whittle index in state ℎ. Given indexability, 𝑊 (ℎ) is the infi-

mum charge𝐶 that makes both decisions (activate, not activate) equally desir-

able in state ℎ. The expression for𝑊 (ℎ) is given by

𝑊 (ℎ) = 𝑝2ℎ
( ∞∑︁
𝑘=1

𝑓 (𝑘 + ℎ) (1 − 𝑝)𝑘−1) − 𝑝 ( ℎ∑︁
𝑗=1

𝑓 ( 𝑗)
)
. (2.12)

Proof. See Appendix 2.8.H. □

Again, observe that taking the limit as 𝑝 → 1, we get back the Whittle In-

dex derived in Section 2.3. Further, if we assume that the cost functions are

weighted linear functions of AoI, i.e. 𝑓𝑖 (𝐴𝑖 (𝑡)) = 𝑤𝑖𝐴𝑖 (𝑡) where all the weights are

positive, then the index functions for the Whittle policy are given by 𝑊𝑖 (𝐴𝑖 (𝑡)) =

𝑤𝑖𝑝𝑖𝐴𝑖 (𝑡) (𝐴𝑖 (𝑡) + 1+(1−𝑝𝑖)
1−(1−𝑝𝑖) )/2. This corresponds to the index policy developed in

[31], where the authors showed that for symmetric settings when all the weights

and channels probabilities are equal, the Whittle index policy is optimal.
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2.5 Simulations

First, we compare the optimal policy, found using dynamic programming, with

the Whittle index policy for two sources. We consider six different settings in total

- 3 sets of functions, each with reliable and unreliable channels.

For settings 𝐴1 and 𝐴2, the cost functions are chosen to be 𝑓1(𝑥) = 13𝑥 and

𝑓2(𝑥) = 𝑥2. In 𝐴1, we consider reliable channels, i.e. 𝑝1 = 𝑝2 = 1. In 𝐴2, we con-

sider unreliable channels, specifically 𝑝1 = 0.9 and 𝑝2 = 0.5. For settings 𝐵1 and

𝐵2, the cost functions are chosen to be 𝑓1(𝑥) = 𝑥2 and 𝑓2(𝑥) = 3𝑥. In 𝐵1, we con-

sider reliable channels, i.e. 𝑝1 = 𝑝2 = 1. In 𝐵2, we consider unreliable channels,

specifically 𝑝1 = 0.65 and 𝑝2 = 0.8. For settings 𝐶1 and 𝐶2, the cost functions

are chosen to be 𝑓1(𝑥) = 𝑥3/2 and 𝑓2(𝑥) = 10 log(𝑥). In 𝐶1, we consider reliable

channels, i.e. 𝑝1 = 𝑝2 = 1. In 𝐶2, we consider unreliable channels, specifically

𝑝1 = 0.55 and 𝑝2 = 0.75. Simulation results are presented in Table 2.1.

Setting Optimal Cost Whittle Index Cost

𝐴1 (reliable) 21.95 21.95
𝐴2 (unreliable) 36.12 36.28
𝐵1 (reliable) 8.48 8.48
𝐵2 (unreliable) 23.16 23.37
𝐶1 (reliable) 5.69 5.69
𝐶2 (unreliable) 21.54 21.54

Table 2.1: Cost of the Whittle index policy and the optimal dynamic programming
policy for 2 sources.

We find the optimal cost for each setting using finite horizon dynamic pro-

gramming over a horizon of 500 time-slots. For reliable channels, we find the

cost of the Whittle index policy by simply implementing it once over 500 time-

slots. For unreliable channels, we estimate the expected Whittle index cost by

averaging the performance of the Whittle policy over 500 independent runs.

Observe that the Whittle index policy is exactly optimal when the channels

are reliable, as expected from our theoretical results. The expected cost for the
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Whittle index policy is very close to the optimal cost for unreliable channels as

well. Also, for the same set of functions, having unreliable channels increases the

cost compared to reliable channels, as expected.

Next, we compare the optimal policy with the Whittle index policy for more

than two sources. Simulation results are presented in Table 2.2.

For settings 𝐷1 and 𝐷2, we consider 3 sources. The cost functions are chosen

to be 𝑓1(𝑥) = 𝑥2, 𝑓2(𝑥) = 3𝑥 and 𝑓3(𝑥) = 𝑥4. In 𝐷1, we consider reliable channels, i.e.

𝑝1 = 𝑝2 = 𝑝3 = 1. In 𝐷2, we consider unreliable channels, specifically 𝑝1 = 0.66,

𝑝2 = 0.8 and 𝑝3 = 0.75.

For settings 𝐸1 and 𝐸2, we consider 4 sources. The cost functions are chosen

to be 𝑓1(𝑥) = 𝑥3, 𝑓2(𝑥) = 2𝑥, 𝑓3(𝑥) = 15𝑥 and 𝑓4(𝑥) = 𝑥2. In 𝐸1, we consider re-

liable channels, i.e. 𝑝1 = 𝑝2 = 𝑝3 = 1. In 𝐸2, we consider unreliable channels,

specifically 𝑝1 = 0.7, 𝑝2 = 0.9, 𝑝3 = 0.67 and 𝑝4 = 0.8.

No. of Sources Setting Optimal Cost Whittle
Index
Cost

3
𝐷1 (reliable) 44.23 44.23
𝐷2 (unreliable) 161.19 161.39

4
𝐸1 (reliable) 73.36 73.36
𝐸2 (unreliable) 129.02 130.94

4
𝐹1 (reliable) 87.66 88.27
𝐹2 (unreliable) 158.35 159.81

Table 2.2: Cost of the Whittle index policy and the optimal policy for more than 2
sources.

For settings 𝐹1 and 𝐹2, we consider 4 sources. The cost functions are chosen

to be 𝑓1(𝑥) = 𝑥3, 𝑓2(𝑥) = 𝑒𝑥, 𝑓3(𝑥) = 15𝑥 and 𝑓4(𝑥) = 𝑥2. In 𝐹1, we consider re-

liable channels, i.e. 𝑝1 = 𝑝2 = 𝑝3 = 1. In 𝐹2, we consider unreliable channels,

specifically 𝑝1 = 0.8, 𝑝2 = 0.85, 𝑝3 = 0.75 and 𝑝4 = 0.66.

We observe that the cost of the Whittle index policy is the same as that ob-

tained using dynamic programming for settings 𝐷1 and 𝐸1. However, for setting
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𝐹1, we observe a small gap in performance between the two policies, thus giving

us an example that shows that the Whittle index policy need not be optimal, in

general. We also verify that the optimal policy found using dynamic program-

ming follows a cyclic pattern that satisfies the strong-switch-type property and is

distinct from the Whittle index policy. This is also in line with our discussion on

structural properties.

We also note that computing the optimal policy using dynamic programming

becomes progressively harder in terms of space and time complexity for larger

values of 𝑁 , as the state-space to be considered grows exponentially with 𝑁 . The

Whittle index policy, on the other hand, is very easy to compute and implement

with only a linear increase in space and time complexity with the number of

sources. Also, as is evident from simulations, the performance of the Whittle pol-

icy is close to optimal in every setting considered, thus making it a very good low

complexity heuristic.

2.6 Applications

In this section, we will apply the framework we have developed to two problems

in remote monitoring and control to show that optimizing general functions of

AoI arise naturally in many practical settings.

2.6.A Monitoring LTI systems

First, we consider the remote monitoring of linear time-invariant (LTI) systems

over a wireless channel. Suppose that there are 𝑁 such systems, where the 𝑖th

system evolves over time as follows

𝑥𝑖 (𝑡 + 1) = 𝐺𝑖𝑥𝑖 (𝑡) + 𝑤𝑖 (𝑡), (2.13)
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where 𝑥𝑖 (𝑡) ∈ R𝑑𝑖 , 𝐺𝑖 ∈ R𝑑𝑖×𝑑𝑖 is the system matrix and 𝑤𝑖 (𝑡) ∼ N (0, Σ𝑖) is multi-

variate zero-mean Gaussian noise, i.i.d. across time. We further assume that the

noise increments 𝑤𝑖 (𝑡) are independent across sources, so their evolution is de-

coupled.

Suppose that a central agent wants to monitor the state of each of the 𝑁 sys-

tems with as little monitoring error as possible. However, due to wireless inter-

ference constraints, it can only observe the state of one system at any given time-

slot. How should the agent design a wireless scheduling policy that minimizes

expected monitoring error?

Let 𝑥𝑖 (𝑡) represent the maximum likelihood estimate of the state of the 𝑖th sys-

tem at the monitor at any given time-slot 𝑡, given past observations. We define

monitoring error for the 𝑖th system as

𝑒𝑖 (𝑡) ≜ E
[����𝑥𝑖 (𝑡) − 𝑥𝑖 (𝑡)����22] . (2.14)

The following theorem relates the expected monitoring error of the 𝑖th system

to its AoI. Specifically, we compute the expected error if the 𝑖th system has not

been observed for the last Δ time-slots.

Theorem 9. Suppose that the 𝑖th system evolves according to (2.13). Further

suppose that the monitor last observed the state of the system at time 𝑡 = 𝜏.

Then, the expected monitoring error for the 𝑖th system at time 𝑡 = 𝜏 + Δ is given

by

𝑒𝑖 (𝜏 + Δ) = E
[����𝑥𝑖 (𝜏 + Δ) − 𝑥𝑖 (𝜏 + Δ)����22]

=

Δ−1∑︁
𝑘=0

𝑇𝑟
(
(𝐺𝑘

𝑖 )𝑇 (𝐺𝑘
𝑖 )Σ𝑖

)
≜ 𝑓𝑖 (Δ).

(2.15)

Proof. See Appendix 2.8.I. □
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Using this observation, we can establish an equivalence between minimizing

monitoring error and minimizing functions of AoI. To find the scheduling policy

𝜋 that minimizes expected time-average monitoring error, we need to solve the

following optimization problem

min
𝜋∈Π

lim sup
𝑇→∞

1
𝑇
E

[ 𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑒𝑖 (𝑡)
]
, (2.16)

where 𝑒𝑖 (𝑡) is defined as in (2.14). This optimization problem is equivalent to

solving the following functions of AoI problem

min
𝜋∈Π

lim sup
𝑇→∞

1
𝑇

[ 𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑓𝑖 (𝐴𝑖 (𝑡))
]
, (2.17)

where 𝐴𝑖 (𝑡) is the AoI of the 𝑖th system and the functions 𝑓𝑖 (·) are as defined in

(2.15).

We also show in Appendix 2.8.I that the functions 𝑓𝑖 (·) are monotonically in-

creasing, so we can indeed apply our Whittle index approach to solve this prob-

lem. The rate at which the functions 𝑓𝑖 (·) increase depends on the eigenvalues

of the system matrices 𝐺𝑖. If the largest eigenvalue of 𝐺𝑖 lies inside (outside) the

unit circle, then 𝑓𝑖 (·) increases slower (faster) than a linear function. If the largest

eigenvalue of 𝐺𝑖 lies on the unit circle, then 𝑓𝑖 (·) increases linearly.

2.6.B Monitoring Markov Chains

Consider 𝑁 symmetric two state Markov chains of the form drawn in Fig. 2-3 run-

ning in discrete-time. As for the previous example, we assume that only one sys-

tem out of the 𝑁 can be observed in any given time-slot. We denote the distri-

bution of the 𝑖th Markov chain at time 𝑡 by 𝑥𝑖 (𝑡) ∈ R2, where 𝑥𝑖 (𝑡) = [1 0] if the

Markov chain is in state 0 and 𝑥𝑖 (𝑡) = [0 1] if the Markov chain is in state 1.

We assume that the base station knows the transition probability 𝑞𝑖 and the
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Figure 2-3: Symmetric two-state Markov chain, representing the state of the 𝑖th
process.

transition matrix

𝑄𝑖 =


1 − 𝑞𝑖 𝑞𝑖

𝑞𝑖 1 − 𝑞𝑖


associated with the 𝑖th Markov chain and uses this to maintain the estimated

distribution of the 𝑖th chain, based on the most recent observation. Suppose that

the base station knew that the 𝑖th Markov chain had the distribution 𝑥𝑖 (𝜏) at time

𝜏. Using the transition matrix 𝑄𝑖 for the 𝑖th chain, the base station can compute

the distribution of the Markov chain at time 𝜏 + Δ given the information at time

𝜏. We denote this estimated distribution of the actual state by 𝑥𝑖 (𝜏 + Δ) and it is

given by

𝑥𝑖 (𝜏 + Δ) = 𝑥𝑖 (𝜏)

1 − 𝑞𝑖 𝑞𝑖

𝑞𝑖 1 − 𝑞𝑖


Δ

= 𝑥𝑖 (𝜏)𝑄Δ
𝑖 . (2.18)

We are interested in minimizing the monitoring error, defined as a notion of

distance between the estimated distribution and the actual state of the Markov

chain. We define error for the 𝑖th system as follows -

𝑒𝑖 (𝑡) = E
[
𝐷

(
𝑥𝑖 (𝑡) | |𝑥𝑖 (𝑡)

) ]
, (2.19)

where 𝐷 is a notion of divergence between the two probability distributions. In

this work, we will discuss our results for Kullback-Liebler (KL) divergence and

total variation (TV) distance, however, the general ideas should work for other
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divergences as well. The KL divergence for discrete distributions is defined as

𝐷𝐾𝐿 (𝑃 | |𝑄) = −
∑︁
𝑥∈X

𝑃(𝑥) log( 𝑃(𝑥)
𝑄(𝑥) ).

The total variation (TV) distance for discrete distributions is defined as

𝐷𝑇𝑉 (𝑃 | |𝑄) =
∑︁
𝑥∈X

1
2

��𝑃(𝑥) −𝑄(𝑥)��.
The following theorem relates the expected monitoring error of the 𝑖th system

to its AoI. Specifically, we compute the expected error if the 𝑖th system has not

been observed for the last Δ time-slots.

Theorem 10. Suppose that the 𝑖th system evolves according to Markov chain in

Fig. 2-3. Further suppose that the monitor last observed the state of the system

at time 𝑡 = 𝜏. Then, the expected monitoring error for the 𝑖th system at time

𝑡 = 𝜏 + Δ is given by

𝑒𝑖 (𝜏 + Δ) = E
[
𝐷

(
𝑥𝑖 (𝜏 + Δ) | |𝑥𝑖 (𝜏 + Δ)

) ]
=


𝐻

(
[𝑄Δ

𝑖
]00

)
, if 𝐷 is KL Divergence,

2[𝑄Δ
𝑖
]00

(
1 − [𝑄Δ

𝑖
]00

)
, if 𝐷 is TV Distance.

= 𝑓𝑖 (Δ).

(2.20)

Here [𝑄Δ
𝑖
]00 is the top diagonal element of the transition matrix raised to the

power Δ, i.e. 𝑄Δ
𝑖

and 𝐻 (𝑞) ≜ −𝑞 log(𝑞) − (1 − 𝑞) log(1 − 𝑞) is the binary entropy

function.

Proof. See Appendix 2.8.J. □
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Using the result above, it is straightforward to establish an equivalence be-

tween minimizing monitoring error for Markov chains and minimizing functions

of AoI. As for the case with the LTI systems, we further show in Appendix 2.8.J

that the functions 𝑓𝑖 (·) are monotonically increasing, so we can indeed apply our

Whittle index approach to solve this problem.

An interesting observation for the KL divergence case is that the monitoring

error cost ends up being the entropy of the estimated distribution of the Markov

chain. This can be interpreted as the amount of uncertainty that the base station

has about the Markov chain, which increases with the number of time-slots that

the chain remains unobserved. We use this Markov model and our Whittle frame-

work to solve a robotics problem involving time-varying multi-agent occupancy

grid mapping in Chapter 4.

2.7 Summary

In this chapter, we presented the problem of minimizing functions of age of in-

formation over a wireless broadcast network. We used a restless multi-armed

bandit approach to establish indexability of the problem and found the Whittle

index policy. For the case with two sources and reliable channels, we were able to

show that the Whittle index policy is exactly optimal. We also established struc-

tural properties of an optimal policy, for the case with reliable channels. These

properties hint at why the performance of the Whittle index policy is close to op-

timal in general.

In Chapter 3, we extend our framework to consider unknown, possibly time-

varying functions of Age of Information using ideas from online learning. In

Chapter 4, we further extend our Whittle framework to consider computation

communication trade-offs and apply our results to problems in multi-agent robotics.

An interesting direction of future work involves proving constant factor optimal-
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ity of the Whittle index policy in general, using the structural properties devel-

oped in this chapter.

2.8 Appendix

2.8.A Proof of Theorem 1

Consider the decoupled problem described in Section 2.3. Let 𝑢(𝑡) be an indi-

cator variable that denotes whether the arm is pulled or not at time 𝑡. Under

a scheduling policy 𝜋 that specifies the value of 𝑢(𝑡) for all instants of time, the

average cost is given by

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

[
𝑓
(
𝐴𝜋 (𝑡)

)
+ 𝐶𝑢𝜋 (𝑡)

]
. (2.21)

We want to find a policy that minimizes this cost over the space of all policies.

Let 𝑆 : Z+ → R denote the differential cost-to-go function for this problem, let

𝑢 : Z+ → {1, 0} be the stationary optimal policy and let 𝜆 denote the optimal cost.

Then, the Bellman equations are given by

𝑆(ℎ) = 𝑓 (ℎ) + min
𝑢(ℎ)∈{1,0}

{𝐶, 𝑆(ℎ + 1)} − 𝜆,∀ℎ ∈ Z+. (2.22)

Without loss of generality we set 𝑆(1) = 0. Assume that the optimal policy has

a threshold structure, i.e. there exists 𝐻 such that it is optimal to pull the arm

(𝑢(ℎ) = 1) for all states ℎ ≥ 𝐻 and let it rest otherwise (𝑢(ℎ) = 0). If this the case,

then the Bellman equations reduce to

𝑆(ℎ) = 𝑓 (ℎ) + 𝐶 − 𝜆,∀ℎ ≥ 𝐻. (2.23)
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Using the monotonicity of 𝑓 (·), we conclude that 𝑆(ℎ + 1) ≥ 𝑆(ℎ),∀ℎ ≥ 𝐻. We will

use this fact later. For the state 𝐻 − 1, we get

𝑆(𝐻 − 1) = 𝑓
(
𝐻 − 1

)
− 𝜆 + 𝑆(𝐻)

= 𝑓
(
𝐻 − 1

)
− 𝜆 + 𝑓 (𝐻) − 𝜆 + 𝐶.

(2.24)

Repeating this 𝑘 times, we get

𝑆(𝐻 − 𝑘) =
𝑘∑︁
𝑗=0

𝑓
(
𝐻 − 𝑗

)
− (𝑘 + 1)𝜆 + 𝐶, (2.25)

for all 𝑘 in {1, . . . , 𝐻 − 1}. Observe that since we set 𝑆(1) = 0, we get

𝜆 =

∑𝐻
𝑗=1 𝑓 ( 𝑗) + 𝐶

𝐻
, (2.26)

by putting 𝑘 = 𝐻 − 1 in (2.25). Now assume that 𝐻 further satisfies the relation

given in Theorem 1, i.e.

𝑓 (𝐻) ≤
∑𝐻
𝑗=1 𝑓 ( 𝑗) + 𝐶

𝐻
≤ 𝑓 (𝐻 + 1). (2.27)

Using (2.26), we can simplify (2.27) as

𝑓 (𝐻) ≤ 𝜆 ≤ 𝑓 (𝐻 + 1). (2.28)

Adding 𝐶 − 𝜆 to every term above, we get

𝑓 (𝐻) + 𝐶 − 𝜆 ≤ 𝐶 ≤ 𝑓 (𝐻 + 1) + 𝐶 − 𝜆

=⇒ 𝑆(𝐻) ≤ 𝐶 ≤ 𝑆(𝐻 + 1).
(2.29)

Observe that we assumed 𝑓 (·) to be non-decreasing. This combined with (2.28)

and the Bellman equations (2.23) and (2.25) ensures that 𝑆(·) is also non-decreasing.
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Thus, if there exists a state 𝐻 that satisfies (2.27), then the threshold policy with

threshold 𝐻 satisfies the Bellman equations and is hence optimal.

The one thing that remains to be shown is the case in which we cannot find

some 𝐻 that satisfies (2.27). Consider the function𝑊 : Z+ → R given by

𝑊 (ℎ) = ℎ 𝑓 (ℎ) −
ℎ∑︁
𝑗=1

𝑓 ( 𝑗). (2.30)

Observe that𝑊 (ℎ+1) −𝑊 (ℎ) = ℎ( 𝑓 (ℎ+1) − 𝑓 (ℎ)) ≥ 0 since 𝑓 (·) is non-decreasing.

Thus, 𝑊 (·) is also non-decreasing. Also, by definition, 𝑊 (1) = 0, while we had

assumed that 𝐶 > 0. Thus, 𝑊 (1) < 𝐶. Now, if there exists some ℎ > 1 such that

𝑊 (ℎ) ≥ 𝐶, then we know that there also exists some 𝐻 such that 𝑊 (𝐻) ≤ 𝐶 ≤

𝑊 (𝐻 + 1) using monotonicity of 𝑊 (·). Observe that this implies that there exists

some 𝐻 satisfying

𝐻 𝑓
(
𝐻

)
−

𝐻∑︁
𝑗=1

𝑓 ( 𝑗) ≤ 𝐶 ≤ (𝐻 + 1) 𝑓
(
𝐻 + 1

)
−
𝐻+1∑︁
𝑗=1

𝑓 ( 𝑗).

Rearranging and dividing by 𝐻, we get back (2.27). Thus, if there exists no 𝐻

satisfying (2.27), then𝑊 (ℎ) < 𝐶,∀ℎ.

Since𝑊 (·) is a bounded monotone sequence, it converges to a finite value. It

is easy to see that this implies that 𝑓 (·) is also bounded and hence converges. We

set 𝜆 = limℎ→∞ 𝑓 (ℎ) and the cost-to-go function 𝑆(ℎ) to be

𝑆(ℎ) =
∞∑︁
𝑗=ℎ

(
𝑓 ( 𝑗) − 𝜆

)
+ 𝐶. (2.31)

Clearly, 𝑆(ℎ) satisfies the recurrence relation

𝑆(ℎ) = 𝑓 (ℎ) − 𝜆 + 𝑆(ℎ + 1),∀ℎ. (2.32)



2.8. Appendix 71

By the monotonicity of 𝑓 (·), we know that 𝑓 (ℎ) ≤ 𝜆,∀ℎ. Thus, using (2.31) we

conclude that 𝑆(ℎ) ≤ 𝐶,∀ℎ. This implies that 𝑆(·) satisfies the Bellman equa-

tions, with the optimal policy being to never activate the arm. This completes

our proof.

2.8.B Proof of Theorem 2

For 𝐶 = 0, it is obvious that the optimal policy is to always activate the arm since

there is no charge for activating it and the cost function is monotone and positive.

For larger values of 𝐶, consider the function𝑊 : Z+ → R+ given by

𝑊 (ℎ) = ℎ 𝑓 (ℎ) −
ℎ∑︁
𝑗=1

𝑓 ( 𝑗). (2.33)

Observe that since 𝑓 (·) is non-decreasing, 𝑊 (·) is also non-decreasing. This is

because𝑊 (ℎ + 1) −𝑊 (ℎ) = ℎ
(
𝑓 (ℎ + 1) − 𝑓 (ℎ)

)
≥ 0,∀ℎ since 𝑓 (·) is non-decreasing.

Also, by definition,𝑊 (1) = 0, while we had assumed that 𝐶 > 0. Thus,𝑊 (1) < 𝐶.

Now, if there exists some ℎ > 1 such that 𝑊 (ℎ) ≥ 𝐶, then we know that there

also exists some 𝐻 such that 𝑊 (𝐻) ≤ 𝐶 ≤ 𝑊 (𝐻 + 1) using monotonicity of 𝑊 (·).

Observe that this implies that there exists some 𝐻 satisfying

𝐻 𝑓
(
𝐻

)
−

𝐻∑︁
𝑗=1

𝑓 ( 𝑗) ≤ 𝐶 ≤ (𝐻 + 1) 𝑓
(
𝐻 + 1

)
−
𝐻+1∑︁
𝑗=1

𝑓 ( 𝑗). (2.34)

Rearranging and dividing by 𝐻, we get back (2.27).

Using this, we can relate the optimal threshold values to values of activation

charge. Let𝐶 be such that it lies in the interval
[
𝑊 (ℎ),𝑊 (ℎ + 1)

)
, then the optimal

policy is of threshold type with the threshold at ℎ. Observe that if 𝑊 is strictly

increasing then there can only be one such interval in which 𝐶 can lie. If 𝑊 (·) is

non-decreasing, then there could be multiple such intervals in which𝐶 could lie.

In this case, we choose the smallest ℎ such that the condition holds.



72 Chapter 2. Information Freshness in Single-Hop Networks

The monotonicity of 𝑊 (·) ensures that the the threshold value is also mono-

tone non-decreasing with increasing values of 𝐶. When𝑊 (ℎ) < 𝐶,∀ℎ, we choose

ℎ to be∞, as done in Appendix 2.8.A. This completes the proof of indexability for

the decoupled problem. Observe that 𝐶 = 𝑊 (ℎ + 1) is the minimum value of the

activation charge that makes both actions equally desirable in state ℎ. This gives

us the expression for the Whittle index.

2.8.C Proof of Theorem 4

We look at the optimal cyclical policy and analyze its properties. If there are mul-

tiple such cycles, we consider the cycle with the shortest length. We denote the

length of the cycle by 𝑇 , points on the cycle to be 𝑥1, . . . ,𝑥𝑇 , and the average cost

of this cycle to be𝐶∗. The point𝑥𝑖 is an age vector inZ+
𝑁

, where 𝑥 ( 𝑗)
𝑖

represents the

age of the 𝑗 th source. Let the corresponding scheduling decisions be 𝑑1, . . . , 𝑑𝑇 .

This implies that for age vector 𝑥𝑘, taking action 𝑑𝑘 leads to the age vector 𝑥𝒌+1,

where the subscripts cycle back to 1, 2, . . . after 𝑇 . Assume that there exists some

pair of states in this cycle that violate the strong-switch-type property. If not, then

our claim that the cycle satisfies the strong-switch-type property is true.

Without loss of generality, we assume that the pair of states that violates strong-

switch is given by 𝑥1 and 𝑥𝑘 for some 𝑘 ∈ {2, . . . , 𝑇}. This is because the cycli-

cal policy is same up to cyclical permutations, so we can always ensure that one

member of the violating pairs is at the front of the cycle. Also without loss of gen-

erality, we assume that 𝑑1 = 1 and 𝑑𝑘 = 2, since we can always relabel the sources.

Observe that 𝑑1 and 𝑑𝑘 cannot be the same since they violate the strong-switch

property. In fact, we know that 𝑥 ( 𝑗)
𝑘
≤ 𝑥 ( 𝑗)1 ,∀ 𝑗 ≠ 1 and 𝑥

(1)
𝑘
≥ 𝑥 (1)1 . If the strong-

switch property was satisfied, 𝑑𝑘 must have been 1 since 𝑑1 is 1.

We now construct two new cyclical policies out of which at least one has a

better cost or the same cost but a smaller length compared to the original optimal

policy. This contradicts our original assumption that the cycle we had started
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with was the shortest policy with the lowest average cost. Starting with the state

𝑥1, we take the action 𝑑1, following the original cycle up to 𝑥𝑘. At 𝑥𝑘, instead

of taking action 𝑑𝑘 , we take the action 𝑑1 leading to the state 𝑦𝒌+1. Observe that

𝑦𝒌+1 ≤ 𝑥2, where the inequality is element-wise. Since 𝑑1 = 1, we schedule source

1 at both 𝑥1 and 𝑥𝑘, which guarantees that its age goes to 1. Thus, 𝑥 (1)2 = 𝑦
(1)
𝑘+1 = 1.

Also, since 𝑥 ( 𝑗)
𝑘
+ 1 ≤ 𝑥 ( 𝑗)1 + 1,∀ 𝑗 ≠ 1 and none of the other sources are scheduled,

so 𝑦 ( 𝑗)
𝑘+1 ≤ 𝑥

( 𝑗)
2 ,∀ 𝑗 ≠ 1. Together, this implies 𝑦𝒌+1 ≤ 𝑥2.

Now, we follow the original cycle starting from 𝑑2, . . . , 𝑑𝑇 . Action 𝑑2 at state

𝑦𝒌+1 leads to state 𝑦𝒌+2 and so on, up to action 𝑑𝑇 at state 𝑦𝒌+𝑻−1. Since the chan-

nels are reliable and 𝑦𝒌+1 ≤ 𝑥2, it is easy to see that 𝑦𝒌+𝒊 ≤ 𝑥𝒊+1,∀𝑖 ∈ {1, . . . , 𝑇 − 1}.

Also, observe that starting at 𝑥𝑘, we have repeated an entire period of the orig-

inal cycle, i.e. 𝑑1, . . . , 𝑑𝑇 . Every source gets activated at least once during the orig-

inal cycle, otherwise, its age goes to infinity, and we might as well remove it from

the system. Starting at any age vector and following the actions 𝑑1, . . . , 𝑑𝑇 in se-

quence ensures that the state reached after these 𝑇 steps equals 𝑥1. Thus, the

actions {𝑑1, . . . , 𝑑𝑘−1, 𝑑1, . . . , 𝑑𝑇 } and the age vectors {𝑦1, . . . , 𝑦𝑘, 𝑦𝒌+1, . . . , 𝑦𝒌+𝑻−1}

form a cycle of length 𝑘 + 𝑇 − 1. Here 𝑦𝑖 = 𝑥𝑖,∀𝑖 ∈ 1, . . . , 𝑘 and 𝑦𝒌+𝒊 ≤ 𝑥𝒊+1,∀𝑖 ≥ 1.

We denote the average cost of this cycle by 𝐶1.

Now, we perform a cyclic permutation of the original optimal policy to get a

new optimal policy with the actions {𝑑𝑘 , . . . , 𝑑𝑇 , 𝑑1, . . . , 𝑑𝑘−1} and the correspond-

ing states {𝑥𝒌 , . . . ,𝑥𝑇 ,𝑥1, . . . ,𝑥𝒌−1}. We repeat the process of constructing a new

cyclical policy of length 2𝑇 − 𝑘 + 1 as done above, but using the new cyclic per-

mutation of the optimal policy. That is, instead of choosing action 𝑑1 at 𝑥𝑘, we

choose action 𝑑𝑘 at 𝑥1.

This new cyclical policy consists of actions {𝑑𝑘 , . . . , 𝑑𝑇 , 𝑑𝑘 , . . . , 𝑑𝑇 , 𝑑1, . . . , 𝑑𝑘−1}

and the corresponding age vectors {𝑧1, . . . , 𝑧2𝑻−𝒌+1}, forming a cycle of length

2𝑇 − 𝑘 + 1. Using exactly the same argument as earlier, it is easy to see that 𝑧 𝒋 =

𝑥 𝒋+𝒌−1,∀ 𝑗 ∈ {1, . . . , 𝑇 − 𝑘 + 1} and 𝑧 𝒋 ≤ 𝑥 𝒋 ,∀ 𝑗 ∈ {𝑇 − 𝑘 + 2, . . . , 2𝑇 − 𝑘 + 1}. We
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denote the average cost of this cycle by 𝐶2.

We know that the cost of the optimal policy 𝐶∗ is minimum over the space of

all policies, and hence less than or equal to cost of the first cyclical policy that we

created 𝐶1. Thus,

𝐶∗ ≤ 𝐶1

=⇒ 1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) ≤
1

𝑘 + 𝑇 − 1

𝑘+𝑇−1∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑦 ( 𝑗)𝑡 )

≤ 1
𝑘 + 𝑇 − 1

( 𝑘∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) +
𝑘+𝑇−1∑︁
𝑡=𝑘+1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑦 ( 𝑗)𝑡 )
)

≤ 1
𝑘 + 𝑇 − 1

( 𝑘∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) +
𝑇∑︁
𝑡=2

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 )
)

Simplifying this inequality, we get

1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) ≤
1

𝑘 − 1

𝑘∑︁
𝑡=2

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ). (2.35)

Similarly, the average cost of the optimal cycle ∗ is also less than or equal to the

average cost of the second cycle 𝐶2. Thus,

𝐶∗ ≤ 𝐶2

=⇒ 1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) ≤
1

2𝑇 − 𝑘 + 1

2𝑇−𝑘+1∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑧( 𝑗)𝑡 )

≤ 1
2𝑇 − 𝑘 + 1

( 𝑇∑︁
𝑡=𝑘

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) +
𝑁∑︁
𝑗=1

𝑓1(𝑥 ( 𝑗)1 ) +
2𝑇−𝑘+1∑︁
𝑡=𝑇−𝑘+3

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑧( 𝑗)𝑡 )
)

≤ 1
2𝑇 − 𝑘 + 1

( 𝑇∑︁
𝑡=𝑘+1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) +
𝑁∑︁
𝑗=1

𝑓1(𝑥 ( 𝑗)1 ) +
𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 )
)
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Simplifying this inequality, we get

1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) ≤
1

𝑇 − 𝑘 + 1

( 𝑇∑︁
𝑡=𝑘+1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) +
𝑁∑︁
𝑗=1

𝑓1(𝑥 ( 𝑗)1 )
)
.

Rearranging and simplifying again, we get

1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ) ≥
1

𝑘 − 1

𝑘∑︁
𝑡=2

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ). (2.36)

From the analysis above, we observe that (2.35) and (2.36) must hold simul-

taneously. However, if that’s the case then the inequalities cannot be strict. Also,

observe that the cyclical policy given by actions {𝑑2, ..., 𝑑𝑘 } has average cost 𝐶3

that satisfies

𝐶3 ≤
1

𝑘 − 1

𝑘∑︁
𝑡=2

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ).

This is because starting at state 𝑥2 and following the policy we end up at state

𝑥𝑘, where using the exact same argument as earlier, taking action 𝑑𝑘 leads us to

a state 𝑦𝒌+1 such that 𝑦𝒌+1 ≤ 𝑥2. The upper bound follows directly. Also, since

(2.35) is tight, we get that

𝐶3 ≤
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑓 𝑗 (𝑥 ( 𝑗)𝑡 ).

This is a contradiction, since if the above inequality is strict, our original policy

is no longer optimal and if the inequality is tight, we have a smaller length cy-

cle with the same cost, which still contradicts our original assumption that we

started with an optimal cost cycle with minimum length.
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2.8.D Proof of Theorem 5

We have shown that the points on the optimal cycle satisfy the strong-switch-

type property. We need to show that we can assign actions to states that are not

on the optimal cycle while maintaining the strong-switch property, for 𝑁 ≤ 3.

This can be done in an iterative manner. Consider the set of points in the

state-space that have been assigned an action, and which satisfy the strong-switch

property to be 𝐷. Let 𝑥 ∉ 𝐷, be a new point that we want to assign an action to.

There are three possible scenarios - 1) there exists 𝑦 ∈ 𝐷 such that the strong-

switch-type property implies a unique action to be taken at 𝑥, 2) there exists no

such 𝑦 ∈ 𝐷 and so an arbitrary action can be chosen at 𝑥, and 3) there exist mul-

tiple such points in 𝐷, which suggest different actions to be taken at 𝑥.

Clearly, for scenarios 1 and 2 above, we can assign an action to the point 𝑥,

increase our set to 𝐷 ∪ {𝑥} and repeat the procedure for a new point. We claim

that if 𝑁 ≤ 3 then scenario 3 never occurs. This is sufficient to prove that we can

extend the strong-switch-type property over the entire state-space.

To prove that scenario 3 doesn’t happen, we start by assuming the contrary.

Let 𝑦1 and 𝑦2 ∈ 𝐷 and without loss of generality, assume that the action taken at

𝑦1 is 1 and the action taken at 𝑦2 is 2. Also, to satisfy our assumption of scenario 3

for 𝑥, we require that 𝑥 (1) ≥ 𝑦 (1)1 , 𝑥 (2) ≥ 𝑦 (2)2 , 𝑥 ( 𝑗) ≤ 𝑦 ( 𝑗)1 ,∀ 𝑗 ≠ 1 and 𝑥 (𝑘) ≤ 𝑦 (𝑘)1 ,∀𝑘 ≠

2. For these inequalities to be feasible simultaneously, we need 𝑦
(1)
2 ≥ 𝑦

(1)
1 and

𝑦
(2)
1 ≥ 𝑦 (2)2 .

Now, if there are only two sources, i.e. 𝑁 = 2, then the fact that 𝑦 (1)2 ≥ 𝑦 (1)1 and

𝑦
(2)
1 ≥ 𝑦

(2)
2 together with the assumption that the action taken at 𝑦1 is 1 and the

action taken at 𝑦2 is 2, we get that 𝑦1 and 𝑦2 violate the strong-switch property,

despite being in the set 𝐷. This is a contradiction and completes our proof.

Similarly, consider the setting with three sources (N=3). Now, there are two

possibilities - either 𝑦 (3)1 ≤ 𝑦
(3)
2 or 𝑦 (3)1 > 𝑦

(3)
2 . If 𝑦 (3)1 ≤ 𝑦

(3)
2 , then using the fact

that 𝑦 (1)1 ≤ 𝑦
(1)
2 and 𝑦

(2)
1 ≥ 𝑦

(2)
2 , the strong-switch-type property implies that the
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action taken at 𝑦1 must be 2. However, we assumed that the action taken at state

𝑦1 is 1. Thus, this violates the strong-switch-type property. Similarly, if 𝑦 (3)1 > 𝑦
(3)
2 ,

then using the fact that 𝑦 (1)1 ≤ 𝑦 (1)2 and 𝑦 (2)1 ≥ 𝑦 (2)2 , the strong-switch-type property

implies that the action taken at 𝑦2 must be 1. This again violates our assumption

that 𝑦1 and 𝑦2 satisfy the strong-switch-type property.

Thus, we have proved that for 𝑁 ≤ 3, if the optimal cycle is strong-switch-type

then we can find a stationary optimal policy that is strong-switch-type over the

entire state-space.

2.8.E Proof of Theorem 6

We use an inductive argument to prove this result. Assume that for a scheduling

setup with 𝑁−1 sources, every strong-switch type policy can also be written as an

index policy. Now, consider a functions of age setup with 𝑁 sources and reliable

channels. Using Theorem 5 we know that there exists an optimal policy that is

strong-switch-type. Let this policy be 𝜋 : Z+
𝑁 → {1, . . . , 𝑁}.

Let 𝑥𝑖 denote the age of the 𝑖th source when the current state is𝑥 and let𝑥−𝒊 de-

note the vector comprising of ages of all sources except 𝑖. Consider the minimum

age 𝑥1 at source 1 such that 𝜋(𝑥1,𝑥−1) = 1, for any fixed 𝑥−1. That is, for any fixed

value of ages for all other sources, consider the age at source 1 for which the opti-

mal policy schedules the first source. This value of 𝑥1 may depend on 𝑥−1, so we

denote it by 𝑥th(𝑥−1). Observe that for all values of 𝑥1 such that 𝑥1 ≥ 𝑥th(𝑥−1), the

strong-switch-type property implies that 𝜋(𝑥1,𝑥−1) = 1. In other words, 𝑥th(𝑥−1)

acts like a threshold value such that for all values of age at source 1 above it,

the optimal policy schedules the first source. If no such threshold exists, we let

𝑥th(𝑥−1) → ∞.

We append the state space of the first arm by zero, i.e. let the state space of

source 1 be Z0 = Z+ ∪ {0}. Zero is the minimum age that this source can have

and without loss of generality, we can set 𝑓1(0) = 0. If at any time-slot the age
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of this source is zero, we let it increases to one in the next time-slot. Scheduling

this source when its age is zero gives us no benefit, as the age increases by one

no matter what our scheduling decision is. We extend the policy 𝜋 over this new

state space as follows. Let 𝜋′ : Z0 × Z+
𝑁−1 → {1, . . . , 𝑁} be a mapping that satisfies

• 𝜋′(𝑥) = 𝜋(𝑥),∀𝑥 s.t. 𝑥1 ≠ 0.

• if 𝑥th(𝑥−1) > 1, 𝜋′(0,𝑥−1) = 𝜋(𝑥th(𝑥−1) − 1,𝑥−1)

• if 𝑥th(𝑥−1) = 1, 𝜋′(0,𝑥−1) = 𝜋𝑁−1(𝑥−1),

where 𝜋𝑁−1(𝑥−1) is an optimal strong-switch-type policy for the functions of age

problem with just the sources 2, . . . , 𝑁 . It is easy to see that this new extended

policy still satisfies the strong-switch-type property and is still optimal for the

original problem with all 𝑁 sources over the extended state space.

Now, we project this new optimal policy 𝜋′ on to Z+
𝑁−1

to get a new policy

𝜋′′ : Z+
𝑁−1 → {2, . . . , 𝑁} such that 𝜋′′(𝑥−1) = 𝜋′(𝑥th(𝑥−1) − 1,𝑥−1). This is well

defined since 𝑥th(𝑥−1) ≥ 1 and 𝜋′(𝑥th(𝑥−1) − 1,𝑥−1) ∈ {2, . . . , 𝑁}, by construction.

Also, 𝜋′′ is strong-switch-type by construction, since it is a projection of a strong-

switch-type policy onto a lower dimensional space. If not, then 𝜋′ would also

violate the strong-switch-type property.

Now, using our induction assumption, we can find index functions such that

𝜋′′(𝑥2, . . . , 𝑥𝑁 ) = arg max
2≤𝑖≤𝑁

{
𝐹𝑖 (𝑥𝑖)

}
for all 𝑥, where 𝐹𝑖 : Z+ → R are monotonically non-decreasing functions for all 𝑖.

We partition the 𝑁 − 1 dimensional state space of policy 𝜋′′ into a countable

number of sets. Let

𝑆𝑘 ≜ {𝑥 : 𝑥 ∈ Z+𝑁−1
, 𝑥th(𝑥) = 𝑘},∀𝑘 ∈ Z+.
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Then, Z+
𝑁−1

= ∪∞
𝑘=1𝑆𝑘 and 𝑆𝑘 ∩ 𝑆 𝑗 = {𝜙},∀𝑘, 𝑗 . Consider 𝑥 ∈ 𝑆 𝑗 and 𝑦 ∈ 𝑆𝑘 such

that 𝑘 > 𝑗 . Then,

max
2≤𝑖≤𝑁

{
𝐹𝑖 (𝑥𝑖)

}
≤ max

2≤𝑖≤𝑁

{
𝐹𝑖 (𝑦𝑖)

}
. (2.37)

Suppose the opposite is true, i.e. max
2≤𝑖≤𝑁

{
𝐹𝑖 (𝑥𝑖)

}
> max

2≤𝑖≤𝑁

{
𝐹𝑖 (𝑦𝑖)

}
. Let𝑚 = arg max

2≤𝑖≤𝑁

{
𝐹𝑖 (𝑥𝑖)

}
.

Clearly, for the opposite of (2.37) to hold we need 𝑥𝑚 > 𝑦𝑚. If we define 𝑧 such

that 𝑧𝑖 ≜ max{𝑥𝑖, 𝑦𝑖},∀𝑖 ∈ 2, . . . , 𝑁 , then using the index property of 𝜋′′(·) we get

𝜋′′(𝑧) = 𝑚.

Also, 𝑥th(𝑧) ≥ 𝑘 . If not, then since 𝑧 ≥ 𝑦, the strong-switch property implies

𝜋′(𝑥th(𝑧), 𝑦) = 1, where 𝑥th(𝑧) < 𝑘 . This violates our assumption that 𝑦 ∈ 𝑆𝑘 .

Now, observe that 𝜋′(𝑥th(𝑧)−1, 𝑧) = 𝑚, since 𝜋′′(𝑧) = 𝑚. Also ( 𝑗 , 𝑥2, . . . , 𝑥𝑚, . . . , 𝑥𝑁 ) ≤

(𝑥th(𝑧) −1, 𝑧2, . . . , 𝑥𝑚, . . . , 𝑧𝑁 ) where the inequality holds element-wise. This is be-

cause 𝑧𝑖 = max{𝑥𝑖, 𝑦𝑖}, and 𝑗 ≤ 𝑘 − 1 ≤ 𝑥th(𝑧) − 1, and 𝑥𝑚 > 𝑦𝑚. Thus, using the

strong-switch-type property of 𝜋′(·), we get

𝜋′( 𝑗 ,𝑥) = 𝑚.

This contradicts our initial assumption that 𝑥 ∈ 𝑆 𝑗 , since that would imply 𝜋′( 𝑗 ,𝑥) =

1. Thus, we conclude that (2.37) must be satisfied.

We now construct a monotone function based on the above discussion. Let

𝐹1( 𝑗) ≜ sup
𝑧∈𝑆 𝑗

max
2≤𝑖≤𝑁

{
𝐹𝑖 (𝑧𝑖)

}
,∀ 𝑗 ∈ Z+. (2.38)

Clearly, since the condition (2.37) is satisfied, the function 𝐹1(·) is monotone.

Also, let

𝜋′′′(𝑥) = arg max
1≤𝑖≤𝑁

{
𝐹𝑖 (𝑥𝑖)

}
,∀𝑥 ∈ Z+𝑁 ,

where we break ties in lexicographic order. Then 𝜋′′′ is the same our original pol-
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icy 𝜋. This is because for every state 𝑥 ∈ 𝑆 𝑗 , the construction of 𝐹1 forces us to

schedule source 1 for values of 𝑥1 ≥ 𝑗 and not schedule source 1 for values below

𝑗 . This holds for all values of 𝑗 , which means we replicate the original scheduling

policy 𝜋(·). Thus, if we assume strong-switch-type policies can be written as in-

dex policies for a problem with 𝑁 − 1 sources, we can also prove the same fact for

𝑁 sources.

It is trivial to see that strong-switch-type policies and index policies are equiv-

alent for the single source decoupled problem. This is because strong-switch-

type policies and index policies both correspond to monotone threshold policies

for the decoupled problem. Hence, using the principle of induction, we have the

required result.

2.8.F Proof of Theorem 3

Using Corollary 1, we know that there exists some index policy which is opti-

mal.We observe that for 𝑁 = 2 index policies have a specific structure.

Let 𝐹1(·) and 𝐹2(·) represent the index functions for the optimal index policy.

We set the ages of the two sources to (1, 1) at time 𝑡 = 1 and assume that the

optimal index functions are such that 𝐹1(1) ≥ 𝐹2(1). Then, the policy schedules

source 1 at time 𝑡 = 1. The new state at time 𝑡 = 2 is given by (1, 2). Again, assume

that 𝐹1(1) ≥ 𝐹2(2). Then, the policy schedules source 1 at time 𝑡 = 2. The new

state at time 𝑡 = 3 is given by (1, 3). We keep repeating this process until we reach

state (1, 𝑘) at time 𝑡 = 𝑘 for which 𝐹1(1) < 𝐹2(𝑘). The policy then schedules source

2 and reaches state (2, 1) at time 𝑘 +1. Now, since we assumed that 𝐹1(1) ≥ 𝐹2(1),

then using monotonicity we get 𝐹1(2) ≥ 𝐹2(1). Thus, the policy schedules source

1 again and we reach state (1, 2) at time 𝑡 = 𝑘 + 2.

From the above discussion, we see that any index policy for 𝑁 = 2 has a cyclic

form and the cycle consists one of the sources being scheduled repeatedly fol-

lowed by the second source once. To find the best index policy, which is also the
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best policy overall, we just need to find the best policy with this specific structure.

Without loss of generality, assume that an optimal cyclical policy is given by

scheduling source 1 𝑘 times followed by source 2 once, and repeating this se-

quence of actions. Now, consider two cases.

Case 1

(𝑘 > 1) We compare the cost of the optimal cycle with a cycle that schedules

source 1 𝑘 − 1 times followed by source 2 once.∑𝑘
𝑗=1 𝑓2( 𝑗) + (𝑘 − 1) 𝑓1(1) + 𝑓 (2)

𝑘
≥

∑𝑘+1
𝑗=1 𝑓2( 𝑗) + 𝑘 𝑓1(1) + 𝑓 (2)

𝑘 + 1

Simplifying, we get

𝑓1(2) − 𝑓1(1) ≥ 𝑘 𝑓2(𝑘 + 1) −
𝑘∑︁
𝑗=1

𝑓2( 𝑗),

i.e. 𝑊1(1) ≥ 𝑊2(𝑘). The Whittle index policy follows the optimal policy till the

state (1, 𝑘).

We then compare the cost of the optimal cycle with a cycle that schedules

source 1 𝑘 + 1 times followed by source 2 once.∑𝑘+2
𝑗=1 𝑓2( 𝑗) + (𝑘 + 1) 𝑓1(1) + 𝑓 (2)

𝑘 + 2
>

∑𝑘+1
𝑗=1 𝑓2( 𝑗) + 𝑘 𝑓1(1) + 𝑓 (2)

𝑘 + 1

Simplifying, we get

(𝑘 + 1) 𝑓2(𝑘 + 2) −
𝑘+1∑︁
𝑗=1

𝑓2( 𝑗) > 𝑓1(2) − 𝑓1(1),

i.e. 𝑊2(𝑘 + 1) > 𝑊1(1).

Together, this implies that the Whittle Index policy must also schedule source
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1 𝑘 times followed by source 2 once, and repeat this sequence of actions. Hence,

the Whittle index policy is optimal.

Case 2

(𝑘 = 1)We compare the optimal policy with a cycle that schedules source 1 twice

and source 2 once. Then, we get

2 𝑓1(1) + 𝑓1(2) + 𝑓2(1) + 𝑓2(2) + 𝑓2(3)
3

>
𝑓1(1) + 𝑓2(1) + 𝑓1(2) + 𝑓2(2)

2

Simplifying, we get

2 𝑓2(3) − 𝑓2(1) − 𝑓2(2) > 𝑓1(2) − 𝑓1(1),

i.e. 𝑊2(2) > 𝑊1(1). Using a symmetrical argument, it is easy to see that 𝑊1(2) >

𝑊2(1). Thus, the Whittle Index policy also schedules each source exactly once,

and repeats this sequence of actions.

Combining the two cases, we conclude that for 𝑁 = 2 and reliable channels,

the Whittle Index policy is exactly optimal.

2.8.G Proof of Theorem 7

Let 𝑆 : Z+ → R denote the differential cost-to-go function for this problem, let

𝑢 : Z+ → {1, 0} be the stationary optimal policy and let 𝜆 denote the optimal cost.

Then, the Bellman equations are given by

𝑆(ℎ) = 𝑓 (ℎ) + min
𝑢(ℎ)∈{1,0}

{𝐶 + (1 − 𝑝)𝑆(ℎ + 1), 𝑆(ℎ + 1)}

−𝜆,∀ℎ ∈ Z+.
(2.39)
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Without loss of generality we set 𝑆(1) = 0. Assume that the optimal policy has

a threshold structure, i.e. there exists 𝐻 such that it is optimal to pull the arm

(𝑢(ℎ) = 1) for all states ℎ ≥ 𝐻 and let it rest otherwise (𝑢(ℎ) = 0). If this the case,

then the Bellman equations for values above the threshold 𝐻 reduce to

𝑆(ℎ) = 𝑓 (ℎ) + 𝐶 + (1 − 𝑝)𝑆(ℎ + 1) − 𝜆,∀ℎ ≥ 𝐻. (2.40)

Solving this recursion and assuming limℎ→∞(1 − 𝑝)ℎ𝑆(ℎ) = 0, we get

𝑆(𝐻 + 𝑗) =
∞∑︁
𝑘= 𝑗

𝑓 (𝑘 + 𝐻) (1 − 𝑝)𝑘− 𝑗 + 𝐶 − 𝜆
𝑝

,∀ 𝑗 ≥ 0. (2.41)

Since 𝑓 (·) is non-decreasing, it is easy to see that 𝑆(ℎ) is also non-decreasing for

all values of ℎ above the threshold 𝐻, using (2.41). We will use this fact later. Now,

observe that

lim
ℎ→∞
(1 − 𝑝)ℎ𝑆(ℎ) = lim

ℎ→∞

∞∑︁
𝑗=ℎ

𝑓𝑖 ( 𝑗) (1 − 𝑝𝑖) 𝑗 + lim
ℎ→∞

𝐶 − 𝜆
ℎ
(1 − 𝑝𝑖)ℎ,∀ℎ ≥ 𝐻. (2.42)

By the bounded cost assumption, the first term is the limit of the partial sums of

a convergent series, thus it goes to zero. The second term also goes to zero since

𝑝 < 1 and 𝜆 is finite, again using the bounded cost assumption. This confirms

that our assumption limℎ→∞(1 − 𝑝)ℎ𝑆(ℎ) = 0 was indeed correct.

For ℎ = 𝐻 − 1, the Bellman equation is given by

𝑆(𝐻 − 1) = 𝑓
(
𝐻 − 1

)
− 𝜆 + 𝑆(𝐻) = 𝑓

(
𝐻 − 1

)
− 𝜆 +

∞∑︁
𝑘=0

𝑓 (𝑘 + 𝐻) (1 − 𝑝)𝑘 + 𝐶 − 𝜆
𝑝

.

(2.43)
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Repeating this 𝑘 times, we get

𝑆(𝐻 − 𝑘) =
𝐻−1∑︁
𝑗=𝐻−𝑘

( 𝑓 ( 𝑗) − 𝜆) +
∞∑︁
𝑗=0

𝑓 ( 𝑗 + 𝐻) (1 − 𝑝) 𝑗 + 𝐶 − 𝜆
𝑝

,∀𝑘 ∈ {1, . . . , 𝐻 − 1}.

(2.44)

Now, putting 𝑘 = 𝐻 − 1 in the above equation and using the fact that 𝑆(1) = 0, we

get

𝜆 =
𝑝
( ∑𝐻

𝑗=1 𝑓 ( 𝑗) +
∑∞
𝑘=1 𝑓 (𝑘 + 𝐻) (1 − 𝑝)𝑘

)
+ 𝐶

1 + 𝑝(𝐻 − 1) . (2.45)

If we further assume that the threshold value𝐻 satisfies the condition (2.11) given

in Theorem 7, then we get that

𝑝2(𝐻 − 1)
( ∞∑︁
𝑘=𝐻

𝑓 (𝑘) (1 − 𝑝)𝑘−𝐻
)
− 𝑝

( 𝐻−1∑︁
𝑗=1

𝑓 ( 𝑗)
)

≤ 𝐶

≤ 𝑝2𝐻

( ∞∑︁
𝑘=𝐻+1

𝑓 (𝑘) (1 − 𝑝)𝑘−𝐻−1
)
− 𝑝

( 𝐻∑︁
𝑗=1

𝑓 ( 𝑗)
)
.

(2.46)

Rearranging terms, dividing by 1 + 𝑝(𝐻 − 1) and using the expression for 𝜆 from

(2.45), we get

𝑝

( ∞∑︁
𝑘=0

𝑓 (𝐻 + 𝑘) (1 − 𝑝)𝑘
)
≤ 𝜆 ≤ 𝑝

( ∞∑︁
𝑘=1

𝑓 (𝐻 + 𝑘) (1 − 𝑝)𝑘−1
)
. (2.47)

Simplifying the inequalities in (2.47), the expression for 𝜆 from (2.45) and the Bell-

man solutions (2.41), we get

𝑆(𝐻) ≤ 𝐶
𝑝
≤ 𝑆(𝐻 + 1). (2.48)

Using (2.44), we note that for ℎ < 𝐻, 𝑆(ℎ) − 𝑆(ℎ − 1) = 𝜆 − 𝑓 (ℎ − 1). Also, using the
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monotonicity of 𝑓 (·) and (2.47), we get

𝜆 ≥ 𝑝
( ∞∑︁
𝑘=0

𝑓 (𝐻 + 𝑘) (1 − 𝑝)𝑘
)
≥ 𝑝

( ∞∑︁
𝑘=0

𝑓 (𝐻) (1 − 𝑝)𝑘
)

≥ 𝑓 (𝐻) ≥ 𝑓 (ℎ),∀ℎ < 𝐻.
(2.49)

Thus, 𝑆(ℎ) − 𝑆(ℎ − 1) ≥ 0,∀ℎ since we already established monotonocity for

ℎ ≥ 𝐻. Since 𝑆(·) is non-decreasing, (2.48) implies that

𝑆(ℎ) ≤ 𝐶 + (1 − 𝑝)𝑆(ℎ),∀ℎ ≤ 𝐻, and

𝑆(ℎ) ≥ 𝐶 + (1 − 𝑝)𝑆(ℎ),∀ℎ > 𝐻.
(2.50)

Thus, if we find an 𝐻 that satisfies (2.11), the threshold policy using 𝐻 as a thresh-

old satisfies the Bellman equations and is optimal.

The one thing that remains to be shown is the case in which we cannot find

some 𝐻 that satisfies (2.27). As done earlier, we define a function 𝑊 : Z+ → R

given by

𝑊 (ℎ) = 𝑝2(ℎ − 1)
( ∞∑︁
𝑘=ℎ

𝑓 (𝑘) (1 − 𝑝)𝑘−ℎ
)
− 𝑝

( ℎ−1∑︁
𝑗=1

𝑓 ( 𝑗)
)
. (2.51)

Observe that

𝑊 (ℎ + 1) −𝑊 (ℎ) =𝑝2ℎ

[ ∞∑︁
𝑘=0

(
𝑓 (ℎ + 1 + 𝑘) − 𝑓 (ℎ + 𝑘)

)
(1 − 𝑝)𝑘

]
+ 𝑝2

[ ∞∑︁
𝑘=0

𝑓 (ℎ + 𝑘) (1 − 𝑝)𝑘
]
− 𝑝 𝑓 (ℎ)

≥ 0,∀ℎ

(2.52)

since 𝑓 (·) is non-decreasing. Thus, 𝑊 (·) is also non-decreasing. Also, putting

ℎ = 1 in the definition of𝑊 (ℎ) we get𝑊 (1) = 0, while we had assumed that𝐶 > 0.

Thus,𝑊 (1) < 𝐶. Now, if there exists some ℎ > 1 such that𝑊 (ℎ) ≥ 𝐶, then we know

that there also exists some 𝐻 such that𝑊 (𝐻) ≤ 𝐶 ≤ 𝑊 (𝐻 + 1) using monotonicity
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of 𝑊 (·). Observe that this implies that there exists some 𝐻 satisfying (2.11) and

hence the threshold policy is optimal. If there exists no 𝐻 satisfying (2.11), then

𝑊 (ℎ) < 𝐶,∀ℎ.

Since𝑊 (·) is a bounded monotone sequence, it converges to a finite value. It

is easy to see that this implies that 𝑓 (·) is also bounded and hence converges. We

set 𝜆 = limℎ→∞ 𝑓 (ℎ) and the cost-to-go function 𝑆(ℎ) to be

𝑆(ℎ) =
∞∑︁
𝑗=ℎ

(
𝑓 ( 𝑗) − 𝜆

)
+ 𝐶. (2.53)

Clearly, 𝑆(ℎ) satisfies the recurrence relation

𝑆(ℎ) = 𝑓 (ℎ) − 𝜆 + 𝑆(ℎ + 1),∀ℎ. (2.54)

By the monotonicity of 𝑓 (·), we know that 𝑓 (ℎ) ≤ 𝜆,∀ℎ. Thus, using (2.53) we

conclude that 𝑆(ℎ) ≤ 𝐶,∀ℎ. This implies that 𝑆(·) satisfies the Bellman equa-

tions, with the optimal policy being to never activate the arm. This completes

our proof.

2.8.H Proof of Theorem 8

This proof is very similar to the indexability proof for the reliable channels case.

For 𝐶 = 0, it is obvious that the optimal policy is to always activate the arm since

there is no charge for activating it and the cost function is monotone and positive.

For larger values of 𝐶, consider the function𝑊 : Z+ → R+ given by

𝑊 (ℎ) = 𝑝2(ℎ − 1)
( ∞∑︁
𝑘=ℎ

𝑓 (𝑘) (1 − 𝑝)𝑘−ℎ
)
− 𝑝

( ℎ−1∑︁
𝑗=1

𝑓 ( 𝑗)
)
.

Observe that since 𝑓 (·) is non-decreasing, 𝑊 (·) is also non-decreasing, as dis-

cussed in Appendix 2.8.G. Also, by definition, 𝑊 (1) = 0, while we had assumed
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that 𝐶 > 0. Thus, 𝑊 (1) < 𝐶. Now, if there exists some ℎ > 1 such that 𝑊 (ℎ) ≥ 𝐶,

then we know that there also exists some 𝐻 such that 𝑊 (𝐻) ≤ 𝐶 ≤ 𝑊 (𝐻 + 1)

using monotonicity of 𝑊 (·). Observe that this implies that there exists some 𝐻

satisfying (2.11).

Using this, we can relate the optimal threshold values to values of activation

charge. Let𝐶 be such that it lies in the interval
[
𝑊 (ℎ),𝑊 (ℎ + 1)

)
, then the optimal

policy is of threshold type with the threshold at ℎ. Observe that if 𝑊 is strictly

increasing then there can only be one such interval in which 𝐶 can lie. If 𝑊 (·) is

non-decreasing, then there could be multiple such intervals in which𝐶 could lie.

In this case, we choose the smallest ℎ such that the condition holds.

The monotonicity of 𝑊 (·) ensures that the the threshold value is also mono-

tone non-decreasing with increasing values of 𝐶. When𝑊 (ℎ) < 𝐶,∀ℎ, we choose

ℎ to be∞, as done in Appendix 2.8.G. This completes the proof of indexability for

the decoupled problem. Observe that 𝐶 = 𝑊 (ℎ + 1) is the minimum value of the

activation charge that makes both actions equally desirable in state ℎ. This gives

us the expression for the Whittle index.

2.8.I Proof of Theorem 9

Suppose that the base station knows that the 𝑖th process was at state 𝑥𝑖 (𝜏) = 𝑥0 at

time 𝜏. Further, suppose that it received no additional updates regarding the 𝑖th

process up to time-slot 𝜏 + Δ. Without loss of generality, we can set 𝜏 = 0, since

we can always offset the time-slots by a fixed constant.
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Then, using the state evolution equation 2.13, we know that

𝑥𝑖 (1) = 𝐺𝑖𝑥0 + 𝑤𝑖 (0)

𝑥𝑖 (2) = 𝐺2
𝑖 𝑥0 + 𝐺𝑖𝑤𝑖 (0) + 𝑤𝑖 (1)

...

𝑥𝑖 (Δ) = 𝐺Δ
𝑖 𝑥0 +

Δ−1∑︁
𝑘=0

𝐺Δ−𝑘−1
𝑖 𝑤𝑖 (𝑘).

(2.55)

The base station does not have access to the increments 𝑤𝑖 (0), ..., 𝑤𝑖 (Δ − 1).

However, it knows that each of them is i.i.d. and N(0, Σ𝑖). Thus, the maximum

likelihood of the state at time Δ is given by

𝑥𝑖 (Δ) = E[𝑥𝑖 (Δ) |𝑥𝑖 (0) = 𝑥0] = 𝐺Δ
𝑖 𝑥0. (2.56)

Using this, we can now compute the difference between the actual state and the

estimate at the base station

𝑥𝑖 (Δ) − 𝑥𝑖 (Δ) =
Δ−1∑︁
𝑘=0

𝐺Δ−𝑘−1
𝑖 𝑤𝑖 (𝑘). (2.57)

Observe that this is simply a sum of zero-mean independent multi-variate nor-

mal random variables. Thus, 𝑥𝑖 (Δ) − 𝑥𝑖 (Δ) is also a zero-mean multi-variate nor-

mal random variable. Recall the following standard properties of multivariate

normal random variables. If 𝑋 ∼ N(0, Σ) and 𝑌 = 𝐺𝑋 is some linear transforma-

tion of 𝑋, then𝑌 ∼ N(0, 𝐺Σ𝐺𝑇 ). Further, if 𝑋1 ∼ N(0, Σ1) and 𝑋2 ∼ N(0, Σ2) are in-

dependent, then 𝑍 = 𝑋1 + 𝑋2 is distributed asN(0, Σ1 +Σ2). Finally, if 𝑋 ∼ N(0, Σ),

then E[𝑋𝑇𝑋] = 𝑇𝑟 (Σ). Putting the first two properties together, we observe that

𝑥𝑖 (Δ) − 𝑥𝑖 (Δ) ∼ N
(
0,

Δ−1∑︁
𝑘=0

𝐺𝑘
𝑖 Σ𝑖 (𝐺𝑘

𝑖 )𝑇
)
. (2.58)
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Using the last property, we get

𝑒𝑖 (Δ) = E
[
(𝑥𝑖 (Δ) − 𝑥𝑖 (Δ))𝑇 (𝑥𝑖 (Δ) − 𝑥𝑖 (Δ))

]
= E

[
| |𝑥𝑖 (Δ) − 𝑥𝑖 (Δ) | |22

]
= 𝑇𝑟

( Δ−1∑︁
𝑘=0

𝐺𝑘
𝑖 Σ𝑖 (𝐺𝑘

𝑖 )𝑇
)

=

Δ−1∑︁
𝑘=0

𝑇𝑟
(
(𝐺𝑘

𝑖 )Σ𝑖 (𝐺𝑘
𝑖 )𝑇

)
=

Δ−1∑︁
𝑘=0

𝑇𝑟
(
(𝐺𝑘

𝑖 )𝑇 (𝐺𝑘
𝑖 )Σ𝑖

)
≜ 𝑓𝑖 (Δ).

(2.59)

The last two equalities follow from the linearity of the trace operator and the fact

that 𝑇𝑟 (𝐴𝐵) = 𝑇𝑟 (𝐵𝐴). This completes the proof of Theorem 9.

We also want to show that 𝑓𝑖 (Δ) increases monotonically in Δ. This is straight-

forward to show, since 𝐺𝑘
𝑖
Σ𝑖 (𝐺𝑘

𝑖
)𝑇 is a covariance matrix for any 𝑘 ∈ Z+. This im-

plies that it must be positive semi-definite, and in turn, must have a non-negative

trace. Now, we consider the difference

𝑓𝑖 (Δ + 1) − 𝑓𝑖 (Δ) = 𝑇𝑟
(
(𝐺Δ

𝑖 )Σ𝑖 (𝐺Δ
𝑖 )𝑇

)
≥ 0. (2.60)

The last inequality follows due to the non-negativity of trace for a positive semi-

definite matrix. This shows that 𝑓𝑖 (Δ + 1) ≥ 𝑓𝑖 (Δ), which allows us to conclude

monotonicity of the AoI cost functions.

2.8.J Proof of Theorem 10

As we discussed earlier, the estimate distribution at time 𝜏 + Δ, given the last ob-

servation at time 𝜏 is 𝑥𝑖 (𝜏), is given by

𝑥𝑖 (𝜏 + Δ) = 𝑥𝑖 (𝜏)𝑄Δ
𝑖 .
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Without loss of generality, we can assume that 𝑥𝑖 (𝜏) = [1 0], i.e. the chain at

time 𝜏 is in state 0. This is because the chain is symmetric, so it does not matter

which state we start from. Using this, we get the estimate distribution to be

𝑥𝑖 (𝜏 + Δ) =
[
[𝑄Δ

𝑖 ]00 1 − [𝑄Δ
𝑖 ]00

]
. (2.61)

Further, at time 𝜏 + Δ the actual state of the chain is 0 with probability [𝑄Δ
𝑖
]00

and 1 with probability 1− [𝑄Δ
𝑖
]00. Thus, the distribution of the actual state at time

𝜏 + Δ is given by

𝑥𝑖 (𝜏 + Δ) =


[1 0], with probability [𝑄Δ

𝑖
]00

[0 1], with probability 1 − [𝑄Δ
𝑖
]00.

(2.62)

Now, suppose that the distance between the actual and estimate distributions

is measured using the Kullback-Leibler (KL) divergence. Then,

E

[
𝐷𝐾𝐿

(
𝑥𝑖 (𝜏 + Δ) | |𝑥𝑖 (𝜏 + Δ)

) ]
= [𝑄Δ

𝑖 ]00𝐷𝐾𝐿

(
[1 0]

�������� [[𝑄Δ
𝑖 ]00 1 − [𝑄Δ

𝑖 ]00
] )

+ (1 − [𝑄Δ
𝑖 ]00)𝐷𝐾𝐿

(
[0 1]

�������� [[𝑄Δ
𝑖 ]00 1 − [𝑄Δ

𝑖 ]00
] )

= −[𝑄Δ
𝑖 ]00 log

(
[𝑄Δ

𝑖 ]00
)
− (1 − [𝑄Δ

𝑖 ]00) log
(
1 − [𝑄Δ

𝑖 ]00
)

= 𝐻
(
[𝑄Δ

𝑖 ]00
)
.

(2.63)

Here 𝐻 (𝑞) ≜ −𝑞 log(𝑞) − (1 − 𝑞) log(1 − 𝑞) is the binary entropy function.

Now, suppose that the distance between the actual and estimate distributions
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is measured using the total variation (TV) distance. Then,

E

[
𝐷𝑇𝑉

(
𝑥𝑖 (𝜏 + Δ) | |𝑥𝑖 (𝜏 + Δ)

) ]
= [𝑄Δ

𝑖 ]00𝐷𝑇𝑉

(
[1 0]

�������� [[𝑄Δ
𝑖 ]00 1 − [𝑄Δ

𝑖 ]00
] )

+ (1 − [𝑄Δ
𝑖 ]00)𝐷𝑇𝑉

(
[0 1]

�������� [[𝑄Δ
𝑖 ]00 1 − [𝑄Δ

𝑖 ]00
] )

= [𝑄Δ
𝑖 ]00

(
1 − [𝑄Δ

𝑖 ]00
)
+ (1 − [𝑄Δ

𝑖 ]00) [𝑄Δ
𝑖 ]00

= 2[𝑄Δ
𝑖 ]00

(
1 − [𝑄Δ

𝑖 ]00
)

≜ 𝑔
(
[𝑄Δ

𝑖 ]00
)
.

(2.64)

Here 𝑔(𝑥) = 2𝑥(1 − 𝑥). This completes the proof of Theorem 10.

In addition, we also need to show that the two functions derived above are

monotonically increasing. To do so, we will simplify our notation a bit. Let 𝜇0 =

[𝑄Δ
𝑖
]00 by 𝜇0 and 𝜇1 = 1 − 𝜇0 = [𝑄Δ

𝑖
]01. Further, let 𝜈0 = [𝑄Δ+1

𝑖
]00 = 𝜇0(1 − 𝑞𝑖) + (1 −

𝜇0)𝑞𝑖 and 𝜈1 = [𝑄Δ+1
𝑖
]01 = 1 − 𝜈0 = 𝜇1(1 − 𝑞𝑖) + (1 − 𝜇1)𝑞𝑖. We will split the proof

into two cases.

Case 1 (KL Divergence): Note that the function 𝑥 log(𝑥) is convex for all 𝑥 > 0,

since 𝑑2

𝑑𝑥2 (𝑥 log(𝑥)) = 1
𝑥
> 0,∀𝑥 > 0. Using this fact and the definitions of 𝜈0 and 𝜈1,

we obtain the following inequalities:

(1 − 𝑞𝑖)𝜇0 log(𝜇0) + 𝑞𝑖𝜇1 log(𝜇1) ≥ 𝜈0 log(𝜈0), (2.65)

(1 − 𝑞𝑖)𝜇1 log(𝜇1) + 𝑞𝑖𝜇0 log(𝜇0) ≥ 𝜈1 log(𝜈1), (2.66)
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Now, we look at the difference:

𝐻
(
[𝑄Δ+1

𝑖 ]00
)
− 𝐻

(
[𝑄Δ

𝑖 ]00
)
=(

(1 − 𝑞𝑖)𝜇0 log(𝜇0) + 𝑞𝑖𝜇1 log(𝜇1) − 𝜈0 log(𝜈0)
)

+
(
(1 − 𝑞𝑖)𝜇1 log(𝜇1) + 𝑞𝑖𝜇0 log(𝜇0) − 𝜈1 log(𝜈1)

)
≥ 0. (2.67)

The inequality above follows by applying (2.65) and (2.66). This proves that the

monitoring error grows monotonically with the AoI for KL divergence.

Case 2 (TV distance): Note that the function 2𝑥(1 − 𝑥) is concave for all 𝑥,

since 𝑑2

𝑑𝑥2 (2𝑥(1 − 𝑥)) = −2 < 0,∀𝑥. Using this fact and the definitions of 𝜈0 and 𝜈1,

we obtain the following inequalities:

(1 − 𝑞𝑖)2𝜇0(1 − 𝜇0) + 𝑞𝑖2𝜇1(1 − 𝜇1) ≤ 2𝜈0(1 − 𝜈0), (2.68)

(1 − 𝑞𝑖)2𝜇1(1 − 𝜇1) + 𝑞𝑖2𝜇0(1 − 𝜇0) ≤ 2𝜈1(1 − 𝜈1), (2.69)

Now, we look at the difference:

𝑔
(
[𝑄Δ+1

𝑖 ]00
)
− 𝑔

(
[𝑄Δ

𝑖 ]00
)
=(

2𝜈0(1 − 𝜈0) − (1 − 𝑞𝑖)2𝜇0(1 − 𝜇0) − 𝑞𝑖2𝜇1(1 − 𝜇1)
)

+
(
2𝜈1(1 − 𝜈1) − (1 − 𝑞𝑖)2𝜇1(1 − 𝜇1) − 𝑞𝑖2𝜇0(1 − 𝜇0)

)
≥ 0. (2.70)

The inequality above follows by applying (2.68) and (2.69). This proves that the

monitoring error grows monotonically with the AoI for TV distance as well.
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Chapter 3

Online Learning of AoI Cost

Functions

In this chapter, we ask the question: what if the AoI cost functions are not known

in advance, time-varying and possibly adversarial? How does one go about de-

signing scheduling policies that lead to good monitoring accuracy or control?

Our goal is to model applications where delivering timely information is of

essence but the costs for delayed information are not completely known before-

hand and hard to model, including non-stationary settings and adversarial dy-

namics. A broad range of networked control and monitoring applications fit this

description. An example is designing scheduling schemes for real-time monitor-

ing of power grids which have nonlinear and complicated dynamics that cannot

be easily modeled. Another example is scheduling for mobility tracking. Mobility

traces in the real world are often highly non-stationary and hard to explain via

models. A third example is monitoring queue length information in data centers

for load balancing, where only a small number of queues are sampled every few

time-steps, and traffic flows, server outages and job sizes may be non-stationary

and possibly adversarial. All of the above problems require optimization of un-

known time-varying cost functions of AoI in an online fashion.
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Source Monitor/Controller

Channel	with
cost	C

Figure 3-1: Single source monitoring

3.1 Single Source Monitoring

We start by discussing the single source setting with a known AoI cost function

that remains fixed throughout. This will provide important insight and reveal key

technical issues while formulating an online version of the problem.

Consider a single source sending updates to a monitoring station over a costly

wireless channel as in Figure 3-1. In every time-slot, the scheduler decides whether

the source sends a new update to the monitor. If it does, the monitor receives a

new update in the next time-slot. The monitor maintains an age of information

𝐴(𝑡) which tracks how long it has been since it received a new update from the

source. The evolution of 𝐴(𝑡) can be written as:

𝐴(𝑡 + 1) =


𝐴(𝑡) + 1, if 𝑢(𝑡) = 0

1, if 𝑢(𝑡) = 1,
(3.1)

where 𝑢(𝑡) indicates whether a new update was sent in time-slot 𝑡.

There is a known cost function of AoI 𝑓 (·) which models the cost of having

stale information at the monitor. Thus, the cost at any time-slot is:

Cost(𝑡) = 𝑓 (𝐴(𝑡)) + 𝐶𝑢(𝑡), (3.2)

where 𝐶 > 0 is the cost of sending a new update from the source. Our goal is

to design a monitoring policy that minimizes the long term average cost. The
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average cost under a policy 𝜋 is:

Costave.(𝜋) ≜ lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝑓 (𝐴𝜋 (𝑡)) + 𝐶𝑢𝜋 (𝑡). (3.3)

This problem and the optimal policy have been analyzed in [1] and [26]. We de-

scribe the key result from these works below.

Lemma 1. The optimal policy for the single source monitoring problem is a

stationary threshold policy. Let 𝐻 satisfy

𝑓 (𝐻) ≤
∑𝐻
𝑗=1 𝑓 ( 𝑗) + 𝐶

𝐻
≤ 𝑓 (𝐻 + 1). (3.4)

Then, the optimal policy is to send an update at time-slot 𝑡 only if 𝐴(𝑡) ≥ 𝐻. If

no such 𝐻 exists, the optimal policy is to never send an update.

Proof. See Chapter 2. □

Lemma 1 implies that the optimal monitoring policy is to send an update only

if the current AoI gets above a threshold𝐻. Similar threshold based schemes have

appeared in many different settings for online sampling and remote estimation

[22, 23, 24, 96].

Now consider a naive reformulation of the problem where the cost function

𝑓 (·) is time-varying and unknown. We represent it by 𝑓𝑡 (·) where the subscript

indicates its time varying nature. If the function were fixed and unknown, we

could have used reinforcement learning to solve the problem as done in [36].

However, this cannot be done directly for settings with time-varying costs.

On the other hand, there is a large amount of literature on online learning

and optimization where the goal is to solve a sequence of optimization problems
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which vary in an unknown, possibly adversarial manner (see [97] and [98] for a

detailed introduction to the field). In these problems there is no system state

or history, so decisions in the current time-slot do not affect the optimization

problem or decisions in a future time-slot. This is not true of our monitoring

problem which has a system state (AoI), and where the state evolution depends

on decisions taken in the past.

To overcome these difficulties, we reformulate the single source monitoring

problem in an epoch based setting.

3.1.A An Epoch Based Formulation

We observe that the AoI of the source resets to 1 after every new update delivery.

Thus, AoI evolution within an update inter-delivery period does not depend on

the AoI evolution in any other period. We use this observation to formulate an

epoch based problem.

We divide time into 𝑇 epochs, where each epoch further consists of 𝑀 time-

slots. As before, when a new update is sent it gets delivered in the next time-

slot. At the beginning of epoch 𝑘 , we choose an AoI threshold 𝑥𝑘 ∈ {1, ..., 𝑀}.

Within the epoch, the source generates a new sample and sends it to the monitor

whenever the AoI reaches the threshold 𝑥𝑘 . In the last time-slot of the epoch, a

new sample is sent regardless of the AoI. This ensures that the next epoch begins

with AoI at 1. A cost is observed for sending samples every 𝑥𝑘 time-slots based on

the current system dynamics and communication costs. Then, epoch 𝑘 +1 starts.

Using cost information about previous decisions, a new sampling threshold 𝑥𝑘+1

is chosen for epoch 𝑘 + 1 and the process repeats itself.

In each epoch 𝑘 there is a function 𝑓𝑘 (·) that represents the current cost for

age of information and remains fixed for the duration of the epoch. So, for any

time-slot 𝑡 in epoch 𝑘 , the current cost is given by 𝑓𝑘 (𝐴(𝑡)) + 𝐶𝑢(𝑡). The total

cost incurred in epoch 𝑘 denoted by 𝐶𝑘 (𝑥) is simply the sum of the cost in the
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individual time-slots.

Lemma 2. If a sampling threshold of 𝑥 is chosen in epoch 𝑘 and the AoI cost func-

tion is 𝑓𝑘 (·) then the loss function 𝐶𝑘 (𝑥) is given by:

𝐶𝑘 (𝑥) =
⌊
𝑀

𝑥

⌋ ( 𝑥∑︁
𝑗=1

𝑓𝑘 ( 𝑗) + 𝐶
)
+ 𝟙𝑟>0

( 𝑟∑︁
𝑗=1

𝑓𝑘 ( 𝑗) + 𝐶
)
, (3.5)

where 𝑟 = 𝑀 mod 𝑥. This is the sum total AoI cost of monitoring over the epoch 𝑘 .

Proof. See Appendix 3.5.A. □

If we knew 𝑓𝑘 (·) at the beginning of epoch 𝑘 , we could use (3.5) to find the

optimal sampling threshold 𝑥∗
𝑘
. In our online framework, the goal is to learn the

best sampling thresholds without knowing any information about the sequence

of cost functions that we are going to face.

While we have motivated the setting above using cost that splits into a sum

of AoI cost and communication cost, our setup allows for general cost functions

𝐶𝑘 (𝑥𝑘 ) that map the choice of sampling threshold 𝑥𝑘 to a cost in epoch 𝑘 . For the

remainder of this section, we will deal with these general cost functions 𝐶𝑘 (·).

In our online setting, an unconstrained adversary chooses the sequence of

bounded cost functions 𝐶𝑘 (·) for each epoch 𝑘 . The designer does not have

access to the sequence of cost functions beforehand and must learn a suitable

transmission/sampling policy in an online manner. We make no assumptions on

how the underlying system dynamics or resulting cost functions change across

epochs.

Note that the cost function 𝐶𝑘 (·) in epoch 𝑘 can be seen as an 𝑀 dimensional

vector where the cost for choosing the sampling threshold 𝑥 is represented by the

𝐶𝑘 (𝑥) which is the 𝑥th element of the vector. Going forward, when we use the

notation 𝐶𝑘 , we refer to the 𝑀 dimensional vector of costs for each threshold in

epoch 𝑡, while 𝐶𝑘 (𝑥) represents its 𝑥th element.
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The boundedness of the cost functions𝐶𝑘 is crucial to proving any meaningful

results in this setting and is standard in online learning literature. Without loss

of generality, we further assume that the cost functions are normalized such that

𝐶𝑘 (𝑥) ∈ [0, 1] for all sampling thresholds 𝑥 and epochs 𝑘 .

Feedback Structure

For the setup described above, we will look at two kinds of feedback structure for

observing the costs. Note that 𝑥𝑘 represents the decision made at the beginning

of epoch 𝑘 .

• Full Feedback - the scheduler observes the entire cost function 𝐶𝑘 (𝑥),∀𝑥 ∈

{1, ..., 𝑀} at the end of epoch 𝑘 .

• Bandit Feedback - the scheduler observes only𝐶𝑘 (𝑥𝑘 ) at the end of epoch 𝑘 .

Objective (Regret Minimization)

: For any sequence of cost functions 𝐶1(·), 𝐶2(·), ..., 𝐶𝑇 (·), 𝑥∗ is defined as the best

fixed sampling threshold that minimizes sum AoI cost. It is given by the following

equation.

𝑥∗ ≜ arg min
𝑥∈{1,...,𝑀}

𝑇∑︁
𝑘=1

𝐶𝑘 (𝑥). (3.6)

Our goal is to find an online policy that achieves sublinear regret compared to

the best fixed sampling threshold 𝑥∗ for any sequence. This is known as worst-

case static regret. For any policy 𝜋, it is defined as follows:

Regret𝑇 (𝜋) = sup
𝐶1,...,𝐶𝑇

{ 𝑇∑︁
𝑘=1

𝐶𝑘 (𝑥𝜋𝑘 ) − min
𝑥∈{1,...,𝑀}

𝑇∑︁
𝑘=1

𝐶𝑘 (𝑥)
}
. (3.7)

Note that regret is defined over epochs rather than time-slots since we assume

that cost functions can change only across epochs.
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We will now show that our online sampling problem formulation is equivalent

to the prediction with expert advice setting that is well studied in online learning

literature. This will allow us to apply policies and regret bounds derived for this

setting to our problem.

Prediction With Expert Advice:

A decision maker has to choose among the advice of 𝑛 given experts. After making

a choice, a bounded loss is incurred. This scenario is repeated iteratively, and at

each iteration the costs of choosing the various experts are arbitrary (possibly

even adversarial, trying to mislead the decision maker). The goal of the decision

maker is to do as well as the best expert in hindsight.

In our setting, the role of experts is played by the AoI thresholds 𝑥 ∈ {1, ..., 𝑀}.

In each epoch, the scheduler decides an AoI sampling threshold 𝑥 and observes

an associated cost. This process repeats iteratively with time-varying, possibly

adversarial changes to costs. Thus, our setting corresponds with the expert ad-

vice setting with 𝑀 experts.

Sublinear Regret

We now discuss in detail a policy that achieves sublinear static regret for the full

feedback setting. This will illustrate how regret bounds from online learning lit-

erature can be applied to our single source online monitoring setup.

The full feedback assumption in our setting means that we observe costs for

all possible sampling thresholds in every epoch. This makes sense when the

scheduler has information about the current source dynamics and communica-

tion costs by the end of an epoch. Knowing this information is often sufficient to

construct the current cost function for any possible sampling threshold.

We describe an online monitoring policy based on Follow the Perturbed Leader

(FTPL) style algorithms. The FTPL method was first analyzed in the online set-



100 Chapter 3. Online Learning of AoI Cost Functions

ting in [99] and is based on an algorithm first proposed in [100]. The key idea of

the FTPL algorithm is to maintain the sum of cost functions observed until now

and perturb it slightly. Choosing the best AoI threshold based on this perturbed

history is sufficient to get sublinear regret.

Algorithm 1: FTPL for Online Monitoring
Input : parameter 𝜂 > 0, number of thresholds 𝑀

1 Set Θ1 ← 0
2 while 𝑡 ∈ 1, ..., 𝑇 do
3 Sample 𝛾𝑡 ∼ N(0, 𝐼)
4 Choose sampling threshold 𝑥𝑡 ∈ arg min

𝑥∈{1,...,𝑀}
Θ𝑡 (𝑥) + 𝜂𝛾𝑡 (𝑥)

5 Incur loss 𝐶𝑡 (𝑥𝑡) and update Θ𝑡+1 = Θ𝑡 + 𝐶𝑡
6 end

Theorem 11. FTPL online monitoring described by Algorithm 1 with 𝜂 =
√
𝑇

achieves the following upper bound for expected regret:

E[Regret𝑇 (FTPL)] ≤ 2
√︃

2𝑇 log𝑀,

where the expectation is taken over the random perturbations.

Proof. The proof is based on [101]. A lower bound of the form Ω(
√︁
𝑇 log𝑀) is also

available in [97]. □

Bandit Feedback

The bandit feedback assumption implies that we only observe the cost associ-

ated with the chosen sampling threshold. This is a realistic assumption espe-

cially when no other information about the system dynamics and communica-
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tion costs is available to the scheduler. However, the single point feedback means

learning happens slowly and regret bounds are worse in this setting.

The online bandit setting has also been well studied in literature. Notably, the

EXP3 algorithm was first proposed in the seminal paper [102] and is known to

have near optimal expected regret under bandit feedback. We describe online

monitoring based on EXP3 below.

Algorithm 2: EXP3 for Online Monitoring
Input : parameter 𝜖 > 0, distribution 𝑝1 = 1/𝑀

1 while 𝑡 ∈ 1, ..., 𝑇 do
2 Choose sampling threshold 𝑥𝑡 ∼ 𝑝𝑡
3 Incur loss 𝐶𝑡 (𝑥𝑡) and observe 𝐶𝑡 (𝑥𝑡)
4 Let

𝐶𝑡 (𝑖) =
{
𝐶𝑡 (𝑖)/𝑝𝑡 (𝑖), if 𝑖 = 𝑥𝑡
0, otherwise.

5 Update 𝑦𝑡+1(𝑖) = 𝑝𝑡 (𝑖)𝑒−𝜖𝐶𝑡 (𝑖), 𝑝𝑡+1 =
𝑦𝑡+1
| |𝑦𝑡+1 | |1

6 end

The key idea of Algorithm 2 is to maintain an unbiased estimate of the cost

𝐶𝑡 via importance sampling (line 4). In every epoch, the algorithm samples a

threshold 𝑥𝑡 from a probability distribution 𝑝𝑡 over the 𝑀 thresholds. At the end

of the epoch, 𝑝𝑡 is updated with the current cost function estimate using expo-

nential weights. It can be shown that the expected regret of EXP3 is sublinear and

near optimal. Theorem 12 provides an upper bound on the expected regret in the

bandit feedback setting.

Theorem 12. The EXP3 online sampling policy described by Algorithm 2 with

𝜖 =

√︃
log𝑀
𝑇𝑀

achieves the following upper bound for expected regret:

E[Regret𝑇 (EXP3)] ≤ 2
√︃
𝑇𝑀 log𝑀.



102 Chapter 3. Online Learning of AoI Cost Functions

The expectation is taken over the random sampling decisions made in each

epoch.

Proof. The proof and a lower bound of the form Ω(
√
𝑇𝑀) follow from discussion

in [102]. □

Next, we discuss what sublinear epoch regret means for AoI cost averaged over

time-slots. To do so, we note that the sum total AoI cost over all time-slots equals

the cost summed over individual epochs, by definition. Let 𝜋 denote an online

algorithm which specifies threshold 𝑥𝜋
𝑘

to be chosen in epoch 𝑘 and let 𝐸𝑘 be the

set of times-slots in epoch 𝑘 . Then,

𝑇∑︁
𝑘=1

𝐶𝑘 (𝑥𝜋𝑘 ) =
𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋 (𝑡)) + 𝐶𝑢𝜋 (𝑡). (3.8)

The relation above immediately implies that epoch regret also equals regret over

time-slots. We describe this in the lemma below.

Lemma 3. Suppose an online algorithm 𝜋 has an upper bound on its expected

static epoch regret of the form 𝑓 (𝑀,𝑇). Let 𝜋∗ denote the policy corresponding

to the best fixed AoI threshold 𝑥∗ given the entire sequence of AoI cost functions

𝑓1, ..., 𝑓𝑇 and the sampling cost 𝐶. Then for any bounded sequence of cost func-

tions, the same upper bound holds for regret over time-slots, i.e.

E

[
sup
𝑓1,..., 𝑓𝑇

{ 𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋 (𝑡)) + 𝐶𝑢𝜋 (𝑡)−

𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋
∗ (𝑡)) + 𝐶𝑢𝜋∗ (𝑡)

}]
≤ 𝑓 (𝑀,𝑇),

(3.9)

Proof. Substituting
∑𝑇
𝑘=1𝐶𝑘 (𝑥𝜋𝑘 ) in (3.7) using (3.8) gives us the required result. □
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If 𝑓 (𝑀,𝑇) is sublinear in the number of epochs 𝑇 , then it is also sublinear

in the number of time-slots 𝑀𝑇 since we assume that 𝑀 is fixed to be a large

constant. Thus, using Lemma 3, sublinear epoch regret implies sublinear time-

slot regret. As a direct corollary of this, any online algorithm with sublinear static

epoch regret achieves an expected time-average AoI cost which is at least as good

as that under the best fixed sampling threshold.

Corollary 2. Suppose an online algorithm 𝜋 has an upper bound on its expected

static regret that grows sublinearly in 𝑇 . Let 𝜋∗ denote the policy corresponding

to the best fixed AoI threshold 𝑥∗ given the entire sequence of AoI cost functions

𝑓1, ..., 𝑓𝑇 . Then for any sequence of bounded cost functions the following holds:

lim sup
𝑇→∞

1
𝑀𝑇
E

[ 𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋 (𝑡)) + 𝐶𝑢𝜋 (𝑡)
]
≤

lim sup
𝑇→∞

1
𝑀𝑇
E

[ 𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋
∗ (𝑡)) + 𝐶𝑢𝜋∗ (𝑡)

]
.

(3.10)

Proof. See Appendix 3.5.B. □

Note that the relation in Corollary 1 is an inequality and not an equality be-

cause we are comparing to the best static threshold policy across epochs and it is

possible that our online monitoring policy performs better.

3.2 Multiple Sources

Motivated by the single-source discussion, we study a more challenging prob-

lem. Now, multiple sources are sending information to a monitoring station over

a network as in Figure 3-2. In this setting, the scheduler needs to decide which

source gets to send an update in every time-slot to optimize for overall monitor-

ing accuracy and performance, and the goal is to learn good scheduling policies.
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Figure 3-2: Multiple source monitoring

Consider a system with 𝑁 sources sending updates over a network such that

only one source can transmit at any given time-slot (due to interference/capacity

constraints). We assume reliable channels, i.e. when a source is chosen to trans-

mit an update, it is delivered to the monitor without fail in the next time-slot.

Freshness aware scheduling in such single-hop wireless networks has been the

focus of a lot of recent work in the AoI community [15, 16, 17, 18, 19, 1, 30].

We now create an epoch-based structure and set up an online learning for-

mulation for multiple sources as we did in the single source setting. As before,

we divide the time horizon into 𝑇 epochs, where each epoch is of length 𝑀 time-

slots. At the beginning of epoch 𝑘 , the scheduler needs to decide a scheduling

policy 𝜋𝑘 which specifies when to schedule each sensor. Once the epoch is over,

a cost of the form 𝐶𝑘 (𝜋𝑘 ) is incurred and a new epoch begins. Using cost infor-

mation about previous decisions, we again choose a scheduling policy 𝜋𝑘+1 for

epoch 𝑘 + 1 and the process repeats itself.

We maintain variables 𝐴(1) , ..., 𝐴(𝑁) which track the evolution of AoI for each
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source within an epoch. The evolution of AoI for source 𝑖 in epoch 𝑘 is described

by the following equation:

𝐴(𝑖) ( 𝑗 + 1) =


𝐴(𝑖) ( 𝑗) + 1, if 𝑖 ∉ 𝜋𝑘 ( 𝑗)

1, if 𝑖 ∈ 𝜋𝑘 ( 𝑗),
(3.11)

where 𝑗 is an index denoting the current time-slot within the epoch and 𝜋𝑘 ( 𝑗) is

the scheduling decision set in time-slot 𝑗 of epoch 𝑘 .

Similar to the single-source formulation, we relax the interference constraint

in the last time-slot of every epoch. This ensures that the AoI of every source

is set to 1 at the beginning of each epoch and we do not need to maintain his-

tory of AoI across different epochs. Practically, we justify this as a two time-scale

assumption. A scheduling policy remains fixed over an epoch (the longer time-

scale) and specifies how to take decisions over time-slots (the shorter time-scale).

Once the epoch ends, the system resets. The system designer observes the perfor-

mance of the scheduling policy that was chosen and specifies a new scheduling

policy for the next epoch.

We consider scheduling policies as a sequence of 𝑀 scheduling decisions,

specifying which source gets to transmit in each time-slot within an epoch. We

denote this space of scheduling policies by Π𝑀 .

We assume that the cost for delayed information in any time-slot can be rep-

resented as a general function of the current AoIs. Let 𝑓𝑘 (𝐴(1) , ..., 𝐴(𝑁)) represent

this AoI cost function in epoch 𝑘 , where 𝑓𝑘 : Z+𝑁 → [0, 𝐷] is a bounded mapping

from the set of AoI vectors to costs. The total cost of choosing a policy 𝜋 in epoch

𝑘 is given by
𝑀∑︁
𝑗=1

𝑓𝑘 (𝐴(1) ( 𝑗), ..., 𝐴(𝑁) ( 𝑗)), (3.12)

where the AoIs evolve under policy 𝜋 according to (3.11).
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We have an unconstrained adversary who chooses the sequence of bounded

cost functions 𝑓𝑘 (·) for each epoch 𝑘 and we need to learn the best scheduling

policy in response to any sequence of cost functions. Without loss of generality

we assume that 𝑓𝑘 (·) are normalized such that the total cost of any policy 𝐶𝑘 (·),

given by (3.12), lies in the set [0, 1].

At the end of every epoch, the scheduler receives feedback in terms of 𝐶𝑘 (·).

In the case of full feedback, the entire function 𝐶𝑘 (·) is revealed, meaning cost

for all scheduling policies is known when the epoch ends. For the case of bandit

feedback, only the cost for the chosen scheduling policy 𝐶𝑘 (𝜋𝑘 ) is revealed.

Observe that the multiple source problem with the feedback structure as set

up above can also be viewed as prediction with expert advice. Now, instead of

AoI thresholds as experts, we have scheduling policies as experts and our goal is

to compete with the best scheduling policy in hindsight.

Thus, we can directly apply online learning algorithms as done in Section 3.1

to the multiple source setting. The regret bounds, however, are not the same.

This is because the number of scheduling policies of length 𝑀 time-slots scales

as Θ(𝑁𝑀).

Lemma 4. Consider the multiple source online scheduling problem with 𝑁 ≥ 2.

If an online algorithm Alg. has an upper bound 𝑓 (𝑀,𝑇) on its expected regret in

the single source setting, then the same algorithm run using scheduling policies as

experts for the multiple source problem has the following regret bound:

E[Regret𝑇 (Alg.)] ≤ 𝐶 𝑓 (𝑁𝑀 , 𝑇),

where 𝐶 > 0 is a constant that does not depend on any other parameters.

We observe that while the dependence of regret on 𝑇 remains the same, it be-

comes exponentially worse in 𝑀 for the multiple source setting. This also high-

lights a key computational challenge in the multiple source setting. The number
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of policies scales exponentially with 𝑀, the length of an epoch. Thus the opti-

mization step in FTPL (Algorithm 1) has computational complexity that scales

exponentially with 𝑀. Similar computational challenges are faced in implement-

ing exponential weight algorithms like EXP3 for the bandit feedback case of the

multiple source setting. This makes it hard to implement these online scheduling

schemes in practice.

This is not surprising, given that the offline problem of finding the best schedul-

ing policy of length 𝑀 time-slots in the setting with cost functions known be-

forehand also requires computation that scales as 𝑂 (𝑁𝑀) (see [30]). In [1], the

authors analyzed the setting where cost functions can be represented as sums

of separate cost functions that depend only on the AoI of each source individu-

ally. If the individual cost functions of AoI for each source are monotone increas-

ing, then a low complexity heuristic based on the Whittle index approach can be

found which is nearly optimal. We will use this observation to design low com-

plexity online policies that keep track of the best scheduling policy in hindsight.

3.2.A Online Whittle-Index Scheduling

We modify the general multiple source setting so as to solve the computational

challenge discussed above.

First, we consider scheduling policies as mappings from the set of AoI vectors

𝐴(1) , ..., 𝐴(𝑁) to the set of sources, i.e. 𝜋 : Z+𝑁 → {1, ..𝑁}. Given the AoIs of all

sources at time-slot 𝑗 within an epoch, a policy 𝜋 specifies which source gets to

transmit. We denote this space of scheduling policies by Π.

Second, we assume that the cost function splits as a sum of individual cost

functions of AoI, where 𝑓
(1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

represent individual AoI cost functions for

each source in epoch 𝑘 . Then, the total cost of choosing a policy 𝜋 in epoch 𝑘 is
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given by

𝐶𝑘 (𝜋) =
1
𝑁𝑀

𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑓
(𝑖)
𝑘
(𝐴(𝑖) ( 𝑗)), (3.13)

where the AoIs evolve under policy 𝜋 according to (3.11). We multiply a normal-

izing constant 1
𝑁𝑀

to the sum AoI cost to make regret analysis neater.

We assume that the cost functions 𝑓
(𝑖)
𝑘

: Z+ → R+ are fixed during an epoch

and bounded monotone increasing functions of AoI, i.e. if 𝑥 > 𝑦 then 𝑓
(𝑖)
𝑘
(𝑥) ≥

𝑓
(𝑖)
𝑘
(𝑦) and 𝑓

(𝑖)
𝑘
(·) ≤ 𝐷. An unconstrained adversary is free to change these bounded

cost functions arbitrarily across epochs.

Finally, instead of receiving feedback directly in terms of cost of scheduling

policies 𝐶𝑘 : Π𝑀 → [0, 1], we consider feedback in terms of individual cost func-

tions of AoI. So, at the end of epoch 𝑘 , a cost𝐶𝑘 (𝜋) is incurred (given by (3.13)) and

AoI cost functions 𝑓 (1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

are revealed to the scheduler, either completely or

partially. In the case of bandit feedback, we will construct estimates of the entire

cost functions 𝑓 (1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

.

Note that within an epoch, the scheduling problem that we want to solve is an

instantiation of the functions of age problem described in [1].

We briefly review the multiple source setting with fixed AoI cost functions

studied in [1]. Consider 𝑁 sources and a given set of increasing AoI cost functions

𝑓 (1) , ..., 𝑓 (𝑁). Our goal is to minimize average age cost over an infinite horizon.

The Whittle index policy maps the current vector of source AoIs to a scheduling

decision. If the current AoI for source 𝑖 is 𝐴(𝑖) then the Whittle policy is given by

𝜋Whittle(𝐴(1) , ..., 𝐴(𝑁)) ≜ arg max
𝑖∈{1,...,𝑁}

{𝑊 (𝑖) (𝐴(𝑖))}, (3.14)

where

𝑊 (𝑖) (𝑥) ≜ 𝑥 𝑓 (𝑖) (𝑥 + 1) −
𝑥∑︁
𝑘=1

𝑓 (𝑖) (𝑘)

are Whittle index functions. It was shown in [1] that this Whittle policy is optimal
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for 𝑁 = 2 and near optimal in general. For cost functions 𝑓 (1) , ..., 𝑓 (𝑁), we denote

the Whittle policy given by (3.14) as Whittle
(
𝑓 (1) , ..., 𝑓 (𝑁)

)
. Next, we describe how

to design a low-complexity online algorithm using Whittle index policies.

Full Feedback

In this setting, we assume that the entire 𝑀 dimensional AoI cost function 𝑓
(𝑖)
𝑘

for each source 𝑖 is revealed to the scheduler at the end of the epoch. Instead of

looking for the best schedule in every epoch which is computationally expensive,

we will use the Whittle index policy as an approximate minimizer. This leads to

Algorithm 3, which we call Follow the Perturbed Whittle Leader (FPWL).

Algorithm 3: Follow the Perturbed Whittle Leader
Input : parameter 𝜖 > 0

1 Set 𝐹 (𝑖)1 ( 𝑗) = 𝑗 ,∀𝑖 ∈ {1, ..., 𝑁},∀ 𝑗 ∈ {1, ..., 𝑀}
2 while 𝑡 ∈ 1, ..., 𝑇 do
3 Set 𝐴(1) , ..., 𝐴(𝑁) = 1
4 Sample

𝛿
(𝑖)
𝑡 ( 𝑗) ∼ uniform in [0, 1/𝜖], i.i.d. ∀𝑖 ∈ {1, ..., 𝑁} and ∀ 𝑗 ∈ {1, ..., 𝑀}

5 Compute 𝛾 (𝑖)𝑡 ( 𝑗) =
∑ 𝑗

𝑘=1 𝛿
(𝑖)
𝑡 ( 𝑗),∀𝑖, 𝑗

6 Choose scheduling policy 𝜋𝑡 = Whittle
(
𝐹
(1)
𝑡 + 𝛾

(1)
𝑡 , ..., 𝐹

(𝑁)
𝑡 + 𝛾 (𝑁)𝑡

)
7 Incur loss = 𝐶𝑡 (𝜋𝑡) over epoch 𝑡 and observe feedback on 𝑓

(1)
𝑡 , ..., 𝑓

(𝑁)
𝑡

8 In case of bandit feedback, construct cost estimates 𝑓 (𝑖)𝑡 ,∀𝑖 ∈ {1, ..., 𝑁}
using linear interpolation

9 Update

𝐹
(𝑖)
𝑡+1 =

{
𝐹
(𝑖)
𝑡 + 𝑓

(𝑖)
𝑡 ,∀𝑖 ∈ {1, ..., 𝑁}, if full feedback

𝐹
(𝑖)
𝑡 + 𝑓

(𝑖)
𝑡 ,∀𝑖 ∈ {1, ..., 𝑁}, if bandit feedback.

10 end

FPWL can be divided into three major steps. First, accumulate the entire

history of cost functions that the scheduler has seen until the current epoch in

𝐹
(1)
𝑡 , ..., 𝐹

(𝑁)
𝑡 . Since cost functions in each epoch are increasing in terms of AoI,
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their sums 𝐹 (𝑖)𝑡 are also increasing. Second, perturb these accumulated cost func-

tions in a manner such that they remain increasing functions of AoI but are still

amenable for FTPL style analysis. Third, instead of computing the best possible

scheduling policy for these accumulated and perturbed cost functions, use the

Whittle index policy as an approximate minimizer.

Computing the Whittle policy has complexity 𝑂 (𝑁𝑀) since it involves a max-

imization over 𝑁 quantities for at most 𝑀 steps. Further, generating the ran-

dom perturbations 𝛾𝑡 in steps 4 and 5 also takes at most 𝑂 (𝑁𝑀) computation.

Thus, the algorithm above resolves the computational challenge involved in im-

plementing FTPL directly for the online scheduling problem.

Proving regret bounds our proposed algorithm is much harder than in the

single or multiple source settings studied earlier. We overcome three significant

problems: 1) perturbations in Algorithm 3 are made to the AoI cost functions

rather than policies, unlike regular FTPL; 2) because of this, cost perturbations

are not i.i.d. across policies; 3) the Whittle index policy is only an approximate

minimizer rather than an exact minimizer of the average AoI cost. Despite these

challenges, we are able to show that FPWL achieves low regret compared to any

fixed scheduling policy, if the Whittle policy is “close" to the actual optimal pol-

icy. Theorem 13 describes an upper bound on the regret of FPWL when compared

to the best fixed scheduling policy in hindsight. The parameter 𝛼 measures the

closeness between the Whittle policy and an optimal policy. For a detailed defi-

nition of 𝛼 see Appendix 3.5.C.

Theorem 13. Follow the perturbed Whittle leader (FPWL) based scheduling

described by Algorithm 3 with 𝜖 =

√︃
2𝑀
𝑁𝐷2𝑇

achieves the following upper bound

on expected regret:

E[Regret𝑇 (FPWL)] ≤ 𝛼𝑇 + 2𝐷
√

2𝑀𝑁𝑇,
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where the expectation is taken over the random perturbations.

Proof. See Appendix 3.5.D. □

We proved in Chapter 2 that the Whittle index policy is optimal for 𝑁 = 2,

meaning 𝛼 = 0 and so we can achieve sublinear regret with respect to the best

fixed scheduling policy when there are 2 sources. Further, recent work in [34]

suggests that 𝛼 → 0 as 𝑁 → ∞meaning that FPWL can achieve sublinear regret

for large system sizes. Simulations in both [1] and [34] indicate that 𝛼 is very small

for most problems of practical interest.

Importantly, note that there is no way to get sublinear static regret by using

FPWL if the Whittle solution is not exactly optimal for the offline problem. In

this case, even if the cost functions are the same in every epoch, there would be a

small gap 𝛼 > 0 between the cost of the Whittle policy and the optimal policy in

every epoch. The small constant gap will add up to give linear regret. Thus, the

term 𝛼𝑇 in the regret bound above accounts for this cost of using an approximate

optimization oracle rather than an exact one, and cannot be eliminated.

Dynamic Regret

A drawback of the online learning formulation is that sublinear regret is only pos-

sible when comparing to a simple class of policies since there are no constraints

on the adversary choosing the cost functions. A more general notion of regret is

dynamic regret where cost is compared to an algorithm which chooses the best

scheduling policy in each epoch rather than the best fixed policy across epochs.

Dynamic regret of an algorithm that chooses scheduling policy 𝜋𝑘 in epoch 𝑘 is

defined as follows:

D-Regret𝑇 (Alg., C) ≜ sup
𝐶1,..,𝑇∈C

{ 𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋𝑘 ) −
𝑇∑︁
𝑘=1

min
𝜋∈Π

𝐶𝑘 (𝜋)
}
, (3.15)
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where C incorporates constraints on the adversary. It is easy to show that if there

are no constraints on how an adversary is allowed to choose the cost functions

𝐶1, ..., 𝐶𝑇 then achieving sublinear dynamic regret is not possible. Thus, the defi-

nition of dynamic regret includes C which is the class of cost function sequences

over which the regret is being considered and incorporates constraints on the

adversary.

A number of recent works on online learning consider the problem of mini-

mizing dynamic regret by constraining how the sequence of cost functions change

over time (see [103, 104, 105, 106]). We follow the approach of [103] and [105] by

defining the quantity𝑉𝑇 which measures the variation of a given sequence of cost

functions as follows:
𝑇∑︁
𝑘=2

max
𝜋

��𝐶𝑘−1(𝜋) − 𝐶𝑘 (𝜋)
�� ≤ 𝑉𝑇 . (3.16)

Suppose we know that any sequence of cost functions chosen by the adversary

is going to satisfy the inequality (3.16). Then, we denote the set of allowable se-

quence of cost functions by C(𝑉𝑇 ) and define the quantity𝑉𝑇 as the variation bud-

get given to the adversary.

We can also use the Whittle index approach to achieve low dynamic regret. If

𝑉𝑇 is known to be sublinear in 𝑇 beforehand, then simply using the Whittle index

policy for the cost functions revealed in the previous epoch is sufficient to get

low dynamic regret. Specifically, set 𝑓 (𝑖)0 = {1, ..., 𝑀},∀𝑖 ∈ {1, ..., 𝑁} and let the

scheduling policy in epochs 𝑘 be given by:

𝜋𝑘 = Whittle
(
𝑓
(1)
𝑘−1, ..., 𝑓

(𝑁)
𝑘−1

)
. (3.17)

We call this algorithm Follow the Dynamic Whittle Leader (FDWL).

Lemma 5. The dynamic regret of FDWL satisfies

D-Regret𝑇 (FDWL, C(𝑉𝑇 )) ≤ 𝛼𝑇 +𝑉𝑇 + 𝐷,
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where 𝑉𝑇 is the variation budget as defined in (3.16) and 𝐷 is the upper-bound on

AoI cost functions.

Proof. See Appendix 3.5.E. □

An important point to note here is that FDWL should only be used when an

upper bound on 𝑉𝑇 that grows sublinearly with 𝑇 is known a priori. If no such

upper bound is known and 𝑉𝑇 grows linearly with 𝑇 , then it can be shown that

FDWL incurs static regret that is linear in𝑇 meaning it performs worse than FPWL

(Algorithm 3). This neatly splits the full feedback setting into two regimes. If𝑉𝑇 is

known to be sublinear use FDWL to get sublinear dynamic regret. Otherwise, use

the entire history of cost functions as in FPWL to get sublinear static regret.

Algorithm 3 also highlights the strength of follow-the-leader style algorithms

in solving online optimization problems with combinatorial structure. If a low

complexity solution is known to the offline problem as with the Whittle index

then it can be incorporated into FTPL as an optimization oracle. On the other

hand, exponential weight update based algorithms like EXP3 [102] or EXP3.S [105]

are standard in the bandit feedback case. Incorporating a Whittle index solution

directly in these algorithms is not possible. This makes designing computation-

ally efficient online learning algorithms for bandit feedback harder in the multi-

ple source setting. We develop a heuristic solution for this below.

Bandit Feedback

For bandit feedback, the cost function of AoI associated with source 𝑖 is only re-

vealed during the time-slots in which it sends an update.Specifically, if at time-

slot 𝑗 within epoch 𝑘 the policy 𝜋𝑘 schedules sensor 𝑖, then 𝑓
(𝑖)
𝑘
(𝐴(𝑖) ( 𝑗)) is revealed

to the scheduler. This happens for every time-slot in the epoch.

To run FPWL and FDWL on this incomplete feedback we need to construct

estimates of the cost functions denoted by 𝑓
(1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

. We do this by linearly
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interpolating between the revealed values of 𝑓 (𝑖)
𝑘

for each source 𝑖. Algorithm 4

describes the details. Importantly, constructing the linear interpolating cost es-

timates for a single source requires a single pass over 1, ..., 𝑀. Thus, constructing

𝑓
(1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

has a computational complexity 𝑂 (𝑁𝑀). So, our modified versions

of FPWL and FDWL for bandit feedback remain computationally efficient. How-

ever, since these estimates are not guaranteed to be unbiased, regret analysis in

the bandit feedback case becomes challenging.

Algorithm 4: Linearly Interpolating Cost Function Estimate for source 𝑖

Input : 𝑋 ⊆ {1, ..., 𝑀} for which 𝑓
(𝑖)
𝑘

is known, 𝐷 known upper bound on

𝑓
(𝑖)
𝑘

Output: Estimate 𝑓
(𝑖)
𝑘

that is an increasing AoI cost function

1 Add 0 to 𝑋 and set 𝑓 (𝑖)
𝑘
(0) = 0

2 if 𝑀 ∉ 𝑋 then
3 set 𝑓 (𝑖)

𝑘
(𝑀) = 𝐷 and add 𝑀 to 𝑋

4 end
5 Sort 𝑋 in increasing order {0, 𝑥1, ..., 𝑥𝑙 , 𝑀}
6 while ℎ ∈ 1, ..., 𝑀 do
7 if ℎ ∉ 𝑋 then
8 Find 𝑘 such that 𝑥𝑘 < ℎ < 𝑥𝑘+1 and 𝑥𝑘 , 𝑥𝑘+1 ∈ 𝑋

9 Set 𝑓 (𝑖)
𝑘
(ℎ) = 𝑓

(𝑖)
𝑘
(𝑥𝑘 ) + (ℎ − 𝑥𝑘 )

𝑓
(𝑖)
𝑘
(𝑥𝑘+1)− 𝑓 (𝑖)𝑘

(𝑥𝑘)
𝑥𝑘+1−𝑥𝑘

10 else
11 Set 𝑓 (𝑖)

𝑘
(ℎ) = 𝑓

(𝑖)
𝑘
(ℎ).

12 end
13 end

3.3 Mobility Tracking

We now apply the results we have developed to a mobility tracking problem.

Consider 𝑁 nodes moving around in the two dimensional plane whose positions

needs to be tracked by a central base station (BS). At any given time, only one

of these nodes can send an update about its current location and velocity to the
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BS. The BS keeps track of the location of the nodes by storing the most recently

received update from each node. Our goal is to design a scheduling policy that

minimizes total tracking error between the location estimates at the BS and the

actual locations of the nodes.

Observe that if the current velocity of a node 𝑖 is 𝑣𝑖, then its tracking error

grows linearly with its AoI. That is, if the BS hasn’t received an update from node

𝑖 for time 𝐴𝑖, then the tracking error is 𝑣𝑖𝐴𝑖. In practical scenarios, node mobil-

ity patterns and velocities are often unknown beforehand, non-stationary, and

possibly adversarial. Thus, our mobility tracking problem can be viewed as a

weighted-AoI minimization problem with time-varying velocities acting as weights.

Since a new update from a node only contains information about its current lo-

cation and velocity, this fits into the multiple source bandit feedback setting.

We will discuss two specific mobility models and apply our online algorithms

to show that they outperform static AoI based scheduling. Note that while cost

functions being static within an epoch and resetting of AoIs at the beginning of

every epoch are necessary for regret analysis, these assumptions are not required

to implement our algorithms in practice.

3.3.A Levy Mobility

In this scenario, we simulate the nodes’ motion using Levy mobility. This is a

realistic mobility model that closely matches human mobility in practice [107].

A node’s motion is described in a series of steps. A step is represented by the

tuple (𝑣, 𝜃, 𝑡 𝑓 , 𝑡𝑝) - a velocity 𝑣 picked randomly in the interval [0, 𝑣max], an angle 𝜃

picked uniformly from the interval [0, 2𝜋], a flight time 𝑡 𝑓 picked at random from

{1, ..., 𝑇 𝑓 max} and a pause time 𝑡𝑝 picked at random from {1, ..., 𝑇𝑝max}. The node

then moves with the velocity 𝑣, in the direction 𝜃 for 𝑡 𝑓 time-slots and then pauses

at its location for 𝑡𝑝 time-slots. This leads to a bursty random walk pattern with

time-varying velocities.
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Figure 3-3: Levy Mobility: Average Tracking Error v/s number of nodes

We consider 𝑁 nodes executing Levy mobility. An adversary sets the values of

𝑣max for each node from the set {0.1, 0.5, 5} designating it as a slow, medium or

fast node. Overall, 𝑁/3 nodes each are designated as fast, medium and slow, but

the scheduler doesn’t know which. We set𝑇 𝑓 max = 50 and𝑇𝑝max = 30 for all nodes.

The scheduler does not know beforehand that there is inherent asymmetry in

the motion of the nodes. An oblivious static scheduling policy is max-AoI: let the

node with the maximum AoI transmit in every time-slot. From Figure 3-3, we ob-

serve that using FPWL in this setting outperforms the max-AoI scheduling policy

(by about 25%). Further, FDWL outperforms both max-AoI (by about 33%) and

FPWL (by about 10%). This is because velocities under Levy mobility are slowly

varying in time and not adversarial, allowing a dynamic regret based algorithm

such as FDWL to work better than FPWL. We set the epoch length 𝑀 to 200 time-

slots for both FPWL and FDWL, and the number of epochs 𝑇 to 500, thus running

the simulation for 100000 time-slots.
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3.3.B Adversarial Mobility

In this scenario, we assume that the nodes execute a mobility pattern that is cho-

sen by a reactive adversary in response to the scheduling policies. In every epoch,

the nodes execute Brownian motion (moving in random directions at a fixed ve-

locity). An adversary assigns velocities to nodes such that they are inversely pro-

portional to their scheduling priorities.

For FPWL, the scheduling policy in epoch 𝑡 is given by 𝜋𝑡 = Whittle
(
𝐹
(1)
𝑡 +

𝛾
(1)
𝑡 , ..., 𝐹

(𝑁)
𝑡 + 𝛾 (𝑁)𝑡

)
. So, the velocity 𝑣 (𝑖)𝑡 of node 𝑖 in epoch 𝑡 is chosen to satisfy

𝑣
(𝑖)
𝑘
∝ 𝑐(𝑖) | |𝐹 (𝑖)𝑡 | |

−2
. Similarly, for FDWL, the scheduling policy in epoch 𝑡 is given

by 𝜋𝑡 = Whittle
(
𝑓
(1)
𝑡−1 , ..., 𝑓

(𝑁)
𝑡−1

)
, where we use estimated cost functions since our

setting involves bandit feedback. So, 𝑣 (𝑖)𝑡 is chosen to satisfy 𝑣 (𝑖)
𝑘
∝ 𝑐(𝑖) | | 𝑓 (𝑖)

𝑡−1 | |
−2
.

For the max-AoI policy, the velocity 𝑣 (𝑖)𝑡 is chosen to satisfy 𝑣 (𝑖)
𝑘
∝ 𝑐(𝑖) . Here 𝑐(𝑖) are

parameters which are fixed across epochs and also chosen by the adversary to

ensure that the motion of nodes has inherent asymmetry unknown to the sched-

uler. Overall, 𝑁/3 nodes each are assigned 𝑐(𝑖) = 0.1, 𝑐(𝑖) = 0.4 and 𝑐(𝑖) = 40. If the

scheduler observes a node was moving fast in the previous epochs and assigns it

a larger cost, then the adversary assigns it a low velocity in the next epoch so as

to confuse the scheduler. The sum total of velocities is normalized and remains

fixed in every time-slot ensuring that the adversary is equally powerful irrespec-

tive of scheduling policies.

Under this adversarial model, we observe in Figure 3-4 that while FPWL still

outperforms max-AoI (by about 8%), FDWL performs significantly worse than

both FPWL and max-AoI (about 50% worse). This is consistent with our results

from theory - when cost functions are quickly varying and adversaries are uncon-

strained and reactive, dynamic regret based algorithms like FDWL perform worse

than static regret algorithms like FPWL.
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Figure 3-4: Adversarial Mobility: Average Tracking Error v/s number of nodes

3.4 Summary

In this chapter, we have formulated a general framework for online monitoring

and scheduling for non-stationary sources. Specifically, we handle unknown,

time-varying, and possibly adversarial cost functions of AoI and design algo-

rithms that attempt to learn the best scheduling policies in an online fashion. We

apply our results to a mobility tracking problem and show that our online learn-

ing algorithms outperform oblivious AoI based schemes and are able to learn

information about the underlying source dynamics.

Possible directions of future work involve applying our online scheduling frame-

work to different problems of practical interest, and incorporating unreliable chan-

nels and noisy feedback about the costs into our framework.
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3.5 Appendix

3.5.A Proof of Lemma 2

Let the AoI cost function in epoch 𝑘 be 𝑓𝑘 (·), let the transmission cost be𝐶 and let

the chosen sampling threshold be 𝑥. We set 𝑡 = 1 at the beginning of the epoch.

Then,

𝐶𝑘 (𝑥) =
𝑀∑︁
𝑡=1

𝑓𝑘 (𝐴(𝑡)) + 𝐶𝑢(𝑡). (3.18)

Note that the AoI at time 𝑡 = 1 is 𝐴(1) = 1, since each epoch begins after a new

transmission. Since the threshold is set to 𝑥, no new update is sent till time-slot 𝑥

at which point the AoI reaches 𝑥. Now, a new sample is generated and sent, so the

AoI drops to 1 in the next time-slot. This process repeats in cycles of 𝑥 time-slots.

Since the epoch consists of 𝑀 time-slots, there are ⌊𝑀
𝑥
⌋ complete cycles of length

𝑥. The sum of costs over each of these cycles is
( ∑𝑥

𝑗=1 𝑓𝑘 ( 𝑗) +𝐶
)

since the AoI goes

from 1 to 𝑥 and there is a transmission at the end.

The final cycle is of length 𝑟 = 𝑀 mod 𝑥 where 𝑎 mod 𝑏 is the remainder

when 𝑎 is divided by 𝑏. There is a mandatory transmission in the final time-slot

regardless of the AoI exceeding the threshold to finish the epoch. Thus,

𝐶𝑘 (𝑥) =
⌊
𝑀

𝑥

⌋ ( 𝑥∑︁
𝑗=1

𝑓𝑘 ( 𝑗) + 𝐶
)
+ 𝟙𝑟>0

( 𝑟∑︁
𝑗=1

𝑓𝑘 ( 𝑗) + 𝐶
)
. (3.19)

This completes the proof.
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3.5.B Proof of Corollary 2

Let the regret of algorithm 𝜋 be 𝑓 (𝑀,𝑇). From Lemma 3, we know that for any

bounded sequence 𝑓1, ..., 𝑓𝑇

E

[{ 𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋 (𝑡)) + 𝐶𝑢𝜋 (𝑡) −
𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋
∗ (𝑡)) + 𝐶𝑢𝜋∗ (𝑡)

}]
≤ 𝑓 (𝑀,𝑇).

Dividing the equation about by 𝑀𝑇 , we get

1
𝑀𝑇
E

[ 𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋 (𝑡))+𝐶𝑢𝜋 (𝑡)
]
≤ 1
𝑀𝑇
E

[ 𝑇∑︁
𝑘=1

∑︁
𝑡∈𝐸𝑘

𝑓𝑘 (𝐴𝜋
∗ (𝑡))+𝐶𝑢𝜋∗ (𝑡)

]
+ 𝑓 (𝑀,𝑇)

𝑀𝑇
.

Taking the limit supremum as 𝑇 goes to infinity and using the fact that 𝑓 (𝑀,𝑇)

grows sublinearly in 𝑇 , we get the required result.

3.5.C Closeness of Whittle and Optimal Policies

Here, we define 𝛼, the parameter that measures the closeness of the Whittle index

policy to an optimal policy within an epoch.

Consider a set of monotone and bounded AoI cost functions 𝑓 (1) , ..., 𝑓 (𝑁) such

that for all 𝑖, if 𝑥 > 𝑦 then 𝑓 (𝑖) (𝑥) ≥ 𝑓 (𝑖) (𝑦) and 𝑓 (𝑖) (𝑀) ≤ 𝐷. Let Whittle( 𝑓 ) denote

the Whittle policy for this set of cost functions, as defined in (3.14). Let Opt( 𝑓 )

denote an optimal policy for this set of cost functions.

Now consider another set of monotone bounded AoI cost functions 𝑔(1) , ..., 𝑔(𝑁)

with the same upper bound 𝐷. Given a scheduling policy 𝜋, let

𝐶𝑔 (𝜋) ≜
1
𝑁𝑀

𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑔(𝑖) (𝐴(𝑖) ( 𝑗)), (3.20)

where the AoIs evolve under policy 𝜋. This is the total sum cost of policy 𝜋 under

the cost functions 𝑔(1) , ..., 𝑔(𝑁). We make the following assumption on the struc-
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ture of Whittle index and optimal policies when the epoch length 𝑀 is long.

Assumption 1. For any two sets of bounded monotone sets of cost functions 𝑓 (1) , ..., 𝑓 (𝑁)

and 𝑔(1) , ..., 𝑔(𝑁) with a fixed known upper bound 𝐷, the following holds:����𝐶𝑔 (Whittle( 𝑓 )
)
− 𝐶𝑔

(
Opt( 𝑓 )

) ���� ≤ 𝛼, (3.21)

where 𝛼 is a small constant that can depend on 𝑁 , 𝑀 and 𝐷.

Note that this assumption is stronger than just assuming that the Whittle in-

dex policy has near optimal performance over long epochs. We assume that

the Whittle policy is also close to the optimal policy in its sequence of schedul-

ing decisions. Thus, given arbitrary bounded cost functions, the two policies

𝐶𝑔
(
Whittle( 𝑓 )

)
and 𝐶𝑔

(
Opt( 𝑓 )

)
have average costs that are close to each other.

This is a Lipschitz like assumption on the policy space and cost functions for the

scheduling problem. The motivation for this comes from results in [1], where

it was shown that the Whittle policy is exactly optimal for 𝑁 = 2 as 𝑀 → ∞,

meaning that we can set 𝛼 = 0. It was also observed via simulations that the

Whittle policies are structurally similar to optimal policies for general 𝑁 . Results

on asymptotic optimality of the Whittle policy [34] further suggest that 𝛼 → 0 as

𝑁 →∞.

3.5.D Proof of Theorem 13

Suppose 𝑓
(1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

are the AoI cost functions during epoch 𝑘 . In each epoch,

the cost functions 𝑓 (𝑖)
𝑘

: {1, ..., 𝑀} → R+ are bounded monotone increasing func-

tions of AoI, i.e. if 𝑥 > 𝑦 then 𝑓
(𝑖)
𝑘
(𝑥) ≥ 𝑓

(𝑖)
𝑘
(𝑦) and 𝑓

(𝑖)
𝑘
(·) ≤ 𝐷. 𝐷 is fixed and

known beforehand. Let 𝐶𝑘 (𝜋) be the cost incurred in epoch 𝑘 by using schedul-

ing policy 𝜋, given by (3.13). For a set of cost functions 𝑓 (1) , ..., 𝑓 (𝑁), the Whittle

scheduling policy is represented by Whittle( 𝑓 (1) , ..., 𝑓 (𝑁)). For the same set of cost
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functions, an optimal scheduling policy is represented by Opt( 𝑓 (1) , ..., 𝑓 (𝑁)). We

will use these notations throughout the proof.

Similar to [99], we will divide our proof into three steps.

Be-the-Whittle-Leader has low regret

First, we define a hypothetical algorithm called Be-the-Whittle-Leader (BWL). In

epoch 𝑘 , a scheduling policy 𝜋BWL
𝑘

is chosen as follows:

𝜋BWL
𝑘 = Whittle

( 𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

)
. (3.22)

BWL applies the Whittle procedure to the sum of cost functions seen from epoch

1 through 𝑘 and uses this as the scheduling policy in epoch 𝑘 . Clearly, this re-

quires knowledge of the cost functions in the current epoch 𝑘 and hence, it is not

an online learning algorithm. In this step, we will show that this algorithm, which

looks ahead one epoch into the future, achieves low regret. In the next two steps,

we will show that the gap between FPWL and BWL increases only sublinearly in

𝑇 , completing the proof.

Note from (3.14) that if all cost functions are multiplied by a fixed positive

constant, the Whittle and optimal policies remain unchanged. So, we rewrite

BWL as:

𝜋BWL
𝑘 = Whittle

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

)
. (3.23)

Since AoI cost functions in each epoch are upper-bounded by 𝐷, their averages

are also upper-bounded by 𝐷. Thus, we can apply Assumption 1 to the BWL pol-

icy. This results in the following inequality ∀𝑘 ∈ 1, ..., 𝑇

𝐶𝑘 (𝜋BWL
𝑘 ) ≤ 𝐶𝑘

(
Opt

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
+ 𝛼. (3.24)
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Summing the equation above for 𝑘 = 1, ..., 𝑇 , we get

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BWL
𝑘 ) ≤

𝑇∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
+ 𝛼𝑇. (3.25)

Now, we claim that

𝑇∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
≤ min

𝜋∈Π

𝑇∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
. (3.26)

To prove this, we use induction. For the base case, observe that the following

holds by the definition of Opt(·).

𝐶1

(
Opt( 𝑓 (1)1 , ..., 𝑓

(1)
𝑁
)
)
= min

𝜋∈Π
𝐶1(𝜋) (3.27)

Further, since costs across epochs are additive, we have the following for any 𝑙 ∈

1, ..., 𝑇 :
𝑙∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1
𝑙

𝑙∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑙

𝑙∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
= min

𝜋∈Π

𝑙∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
. (3.28)

The above equation simply states that a policy that is optimal for the sum of cost

functions from 1, ..., 𝑙 is also the best fixed scheduling policy to be used over the

epochs 1, ..., 𝑙.

Let’s assume the following for some 𝑙:

𝑙∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
≤ min

𝜋∈Π

𝑙∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
. (3.29)
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Then, adding the term 𝐶𝑙+1

(
Opt

(
1
𝑙+1

𝑙+1∑
𝑡=1

𝑓
(1)
𝑡 , ..., 1

𝑙+1

𝑙+1∑
𝑡=1

𝑓
(𝑁)
𝑡

))
to both sides we get:

𝑙+1∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
≤ min

𝜋∈Π

{ 𝑙∑︁
𝑘=1

𝐶𝑘
(
𝜋
)}
+

𝐶𝑙+1

(
Opt

(
1

𝑙 + 1

𝑙+1∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑙 + 1

𝑙+1∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
. (3.30)

Note that the first term in the RHS is a minimum over all policies, so it can be

upper bounded by replacing 𝜋 with any policy. This implies:

𝑙+1∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
≤

𝑙+1∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1

𝑙 + 1

𝑙+1∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑙 + 1

𝑙+1∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
. (3.31)

Using (3.28) we can rewrite this as:

𝑙+1∑︁
𝑘=1

𝐶𝑘

(
Opt

(
1
𝑘

𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

1
𝑘

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
≤ min

𝜋∈Π

𝑙+1∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
. (3.32)

Thus, assuming (3.29), we were able to prove (3.32). By induction on 𝑙, this proves

(3.26). Combining (3.26) with (3.25), we get:

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BWL
𝑘 ) ≤ min

𝜋∈Π

𝑇∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
+ 𝛼𝑇. (3.33)

Finally, (3.33) together with the definition of static regret (3.7) implies that:

Regret𝑇 (BWL) ≤ 𝛼𝑇. (3.34)



3.5. Appendix 125

Be-the-Perturbed-Whittle-Leader has low regret

Now, we consider a policy called Be-the-Perturbed-Whittle-Leader (BPWL). This

is similar to the BWL policy, but it involves adding an extra perturbation to the

cost functions before computing the Whittle index.

We first describe how the perturbation is generated. First, we generate 𝑁𝑀

i.i.d. random variables 𝛿(𝑖) ( 𝑗) ∼ Uniform
(
[0, 1/𝜖]

)
,∀𝑖 ∈ 1, ..., 𝑁 and ∀ 𝑗 ∈ 1, ..., 𝑀.

We collect these random variables into 𝑁 vectors 𝛿(1) , ..., 𝛿(𝑁), where each vec-

tor 𝛿(𝑖) ∈ R𝑀 . Using these, we create monotonically increasing random vectors

𝛾 (1) , ..., 𝛾 (𝑁) as follows:

𝛾 (𝑖) ( 𝑗) =
𝑗∑︁

𝑘=1

𝛿(𝑖) (𝑘),∀𝑖 ∈ 1, ..., 𝑁 and ∀ 𝑗 ∈ 1, ..., 𝑀. (3.35)

Now, we have 𝑁 𝑀-dimensional random vectors that are monotonically increas-

ing. Given any set of AoI cost functions 𝑓 (1) , ..., 𝑓 (𝑁), the perturbation procedure

is given by:

Perturb
(
𝑓 (1) , ..., 𝑓 (𝑁)

)
=

(
𝑓 (1) + 𝛾 (1) , ..., 𝑓 (𝑁) + 𝛾 (𝑁)

)
. (3.36)

Now, we can describe the hypothetical algorithm called Be-the-Perturbed-

Whittle-Leader (BPWL). In epoch 𝑘 , a scheduling policy 𝜋BPWL
𝑘

is chosen as fol-

lows:

𝜋BPWL
𝑘 = Whittle

(
Perturb

( 𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
, (3.37)

where the perturbations are generated i.i.d. for every epoch 𝑘 . We denote the

the perturbations in epoch 𝑘 by 𝛾 (1)
𝑘
, ..., 𝛾

(𝑁)
𝑘

. Since 𝛾 (1)
𝑘
, ..., 𝛾

(𝑁)
𝑘

are monotone in-

creasing functions, they can themselves be viewed as AoI costs. The cost of a

policy 𝜋 with the AoI cost functions 𝛾 (1)
𝑘
, ..., 𝛾

(𝑁)
𝑘

is denoted by 𝐶𝛾𝑘 (𝜋). We will use

this notation later.
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Now, consider a sequence such that in epoch 𝑘 , the AoI cost functions are

given by: (
𝑓
(1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

)
=

(
𝑓
(1)
𝑘
+ 𝛾 (1)

𝑘
− 𝛾 (1)

𝑘−1, ..., 𝑓
(𝑁)
𝑘
+ 𝛾 (𝑁)

𝑘
− 𝛾 (𝑁)

𝑘−1

)
, (3.38)

where 𝛾 (𝑖)0 = 0 for all 𝑖. Let 𝐶𝑘 (𝜋) denote the cost of using scheduling policy 𝜋 in

epoch 𝑘 where the AoI cost functions are 𝑓
(1)
𝑘
, ..., 𝑓

(𝑁)
𝑘

.

Observe that the cumulative cost functions in epoch 𝑘 for this hypothetical

sequence are given by:

( 𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

)
=

( 𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 + 𝛾 (1)

𝑘
, ...,

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡 + 𝛾 (𝑁)

𝑘

)
= Perturb

( 𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

)
.

(3.39)

Because of the way the perturbations are created the cumulative cost functions( ∑𝑘
𝑡=1 𝑓

(1)
𝑡 , ...,

∑𝑘
𝑡=1 𝑓

(𝑁)
𝑡

)
are monotone increasing functions of AoI in every epoch

𝑘 . Thus, we can apply (3.33) to this sequence of cost functions to get:

𝑇∑︁
𝑘=1

𝐶𝑘

(
Whittle

( 𝑘∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
≤ min

𝜋∈Π

𝑇∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
+ 𝛼𝑇. (3.40)

Now using (3.39) and the definition of BPWL (3.37), we get:

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BPWL
𝑘 ) ≤ min

𝜋∈Π

𝑇∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
+ 𝛼𝑇. (3.41)

Observe that the first term in the RHS is a minimization over all policies 𝜋, so we

can replace 𝜋 with Opt
( ∑𝑇

𝑡=1 𝑓
(1)
𝑡 , ...,

∑𝑇
𝑡=1 𝑓

(𝑁)
𝑡

)
. This is the best fixed scheduling
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policy for the original sequence of cost functions.

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BPWL
𝑘 ) ≤

𝑇∑︁
𝑘=1

𝐶𝑘

(
Opt

( 𝑇∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑇∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
+ 𝛼𝑇. (3.42)

Note that costs across epochs are additive. So, using (3.38) for any fixed policy 𝜋,

we get:
𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋) =
𝑇∑︁
𝑘=1

(
𝐶𝑘 (𝜋) + 𝐶𝛾𝑘 (𝜋) − 𝐶𝛾𝑘−1 (𝜋)

)
. (3.43)

This further simplifies to:

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋) =
𝑇∑︁
𝑘=1

(
𝐶𝑘 (𝜋)

)
+ 𝐶𝛾𝑇 (𝜋). (3.44)

Applying (3.44) to (3.42) and using the definition of Opt(·) we get:

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BPWL
𝑘 ) ≤ min

𝜋∈Π

𝑇∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
+max

𝜋∈Π
𝐶𝛾𝑇 (𝜋) + 𝛼𝑇. (3.45)

Using (3.38), we can also conclude that:

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BPWL
𝑘 ) ≤

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BPWL
𝑘 ) +

𝑇∑︁
𝑘=1

����𝐶𝛾𝑘 (𝜋BPWL
𝑘 ) − 𝐶𝛾𝑘−1 (𝜋BPWL

𝑘 )
���� (3.46)

Combining (3.45) and (3.46), we get:

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BPWL
𝑘 ) ≤ min

𝜋∈Π

𝑇∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
+

𝑇∑︁
𝑘=1

max
𝜋∈Π

����𝐶𝛾𝑘 (𝜋) − 𝐶𝛾𝑘−1 (𝜋)
���� +max

𝜋∈Π
𝐶𝛾𝑇 (𝜋) + 𝛼𝑇. (3.47)

Now, we will use a trick that is standard in online learning literature. We will

assume that the adversary choosing the sequence of bounded cost functions is



128 Chapter 3. Online Learning of AoI Cost Functions

non-reactive, i.e the sequence of cost functions is chosen in advance. Thus, for

the purposes of expected regret, it is sufficient to use the same perturbations

𝛾
(1)
1 , ..., 𝛾

(𝑁)
1 in every epoch (since the adversary cannot learn the perturbations).

For this choice of perturbations, (3.47) simplifies to:

E

[ 𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋BPWL
𝑘 )

]
≤ min

𝜋∈Π

𝑇∑︁
𝑘=1

𝐶𝑘
(
𝜋
)
+ 2 max

𝜋∈Π
𝐶𝛾1 (𝜋) + 𝛼𝑇. (3.48)

Observe that the maximum value that 𝛾 (𝑖)1 ( 𝑗) can have for any value of 𝑖 and 𝑗 is

𝑀/𝜖 . Thus, by the definition of average cost in an epoch (3.13), we know that:

max
𝜋∈Π

𝐶𝛾1 (𝜋) ≤
𝑀

𝜖
. (3.49)

Putting everything together, we have:

E
[
Regret𝑇 (BPWL)

]
≤ 2

𝑀

𝜖
+ 𝛼𝑇. (3.50)

While we proved this by assuming an oblivious adversary, the extension to a re-

active or non-oblivious adversary is straightforward from Lemma 4.1 in [97].

Follow-the-Perturbed-Whittle-Leader has low regret

In this step, we consider the regret of Follow-the-Perturbed-Whittle-Leader (FPWL)

described in Algorithm 3. In epoch 𝑘 , a scheduling policy is chosen as follows:

𝜋FPWL
𝑘 = Whittle

(
Perturb

( 𝑘−1∑︁
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘−1∑︁
𝑡=1

𝑓
(𝑁)
𝑡

))
, (3.51)

Unlike BWL and BPWL, this is a valid online learning algorithm in the full feed-

back setting since it does not require the cost functions in the current epoch

and only uses past information. Now, we will bound the gap between the per-
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formance of FPWL and BPWL.

To do this, we state the following Lemma from [99].

Lemma 6. For any 𝑣 ∈ R𝑛, the cubes
[
0, 1

𝜖

]𝑛
and

[
0, 1

𝜖

]𝑛 + 𝑣 overlap in at least a

(1 − 𝜖 |𝑣 |1) fraction.

We define the increment function 𝑓 ′(·) for an AoI cost function 𝑓 : {1, ..., 𝑀} →

R+ as follows:

𝑓 ′(𝑖) = 𝑓 (𝑖) − 𝑓 (𝑖 − 1),∀𝑖 ∈ 1, ..., 𝑀. (3.52)

𝑓 (0) is set to zero to have a valid definition for 𝑖 = 1. Now, we can rewrite the

Perturb(·) using increment functions rather than cost functions. Thus,

Perturb
(
𝑓 ′(1) , ..., 𝑓 ′(𝑁)

)
=

(
𝑓 ′(1) + 𝛿(1) , ..., 𝑓 ′(𝑁) + 𝛿(𝑁)

)
, (3.53)

where 𝛿(𝑖) ( 𝑗) ∼ Uniform
(
[0, 1/𝜖]

)
,∀𝑖 ∈ 1, ..., 𝑁 and ∀ 𝑗 ∈ 1, ..., 𝑀 are i.i.d. random

variables. This allows us to write the perturbation procedure as an addition of

i.i.d. uniform random vectors 𝛿(𝑖). The earlier definition had 𝛾 (𝑖) which were not

element-wise i.i.d.

Now applying Lemma 6 we observe that

Perturb
(
𝑘−1∑
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘−1∑
𝑡=1

𝑓
(𝑁)
𝑡

)
and Perturb

(
𝑘∑
𝑡=1

𝑓
(1)
𝑡 , ...,

𝑘∑
𝑡=1

𝑓
(𝑁)
𝑡

)
have the same ex-

pectation with probability

≥ (1 − 𝜖
𝑁∑︁
𝑖=1

| 𝑓 ′(𝑖)
𝑘
|1).

Using linearity of expectation and cost functions, E[𝐶𝑘 (𝜋FPWL
𝑘
)] and E[𝐶𝑘 (𝜋BPWL

𝑘
)]

are also the same with probability

≥ (1 − 𝜖
𝑁∑︁
𝑖=1

| 𝑓 ′(𝑖)
𝑘
|1).

On the non-overlapping fraction we assume the worst possible cost difference

between the algorithms, which can be upper bounded by 𝐷 since we assume that
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the AoI cost functions are upper bounded by 𝐷. Combining all of this together,

we get:

E[𝐶𝑘 (𝜋FPWL
𝑘 )] ≤ E[𝐶𝑘 (𝜋BPWL

𝑘 )] + 𝐷𝜖 max
𝑓
(1)
𝑘
,..., 𝑓

(𝑁 )
𝑘

𝑁∑︁
𝑖=1

| 𝑓 ′(𝑖)
𝑘
|1. (3.54)

Observe that since 𝑓
(𝑖)
𝑘
(·) ≤ 𝐷, so | 𝑓 ′(𝑖)

𝑘
|1 ≤ 𝐷, for all 𝑖. Thus,

E[𝐶𝑘 (𝜋FPWL
𝑘 )] ≤ E[𝐶𝑘 (𝜋BPWL

𝑘 )] + 𝜖𝑁𝐷2. (3.55)

Adding the above equation for all 𝑘 ∈ 1, ..., 𝑇 :

𝑇∑︁
𝑘=1

E[𝐶𝑘 (𝜋FPWL
𝑘 )] ≤

𝑇∑︁
𝑘=1

E[𝐶𝑘 (𝜋BPWL
𝑘 )] + 𝜖𝑁𝐷2𝑇. (3.56)

Using (3.50), we finally have regret of the FPWL algorithm:

E
[
Regret𝑇 (FPWL)

]
≤ 𝜖𝑁𝐷2𝑇 + 2

𝑀

𝜖
+ 𝛼𝑇. (3.57)

Setting 𝜖 =
√︃

2𝑀
𝑁𝐷2𝑇

, we get:

E
[
Regret𝑇 (FPWL)

]
≤ 𝛼𝑇 + 2𝐷

√
2𝑀𝑁𝑇. (3.58)

This completes our proof.

3.5.E Proof of Lemma 5

For any given sequence of cost functions 𝐶1, ..., 𝐶𝑇 that satisfy (3.16), the perfor-

mance gap between the decisions 𝜋𝑘 given by (3.17) and choosing the optimal

policy in each epoch is given by:

𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋𝑘 ) −
𝑇∑︁
𝑘=1

min
𝜋
𝐶𝑘 (𝜋) (3.59)
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We rewrite this as:

𝑇∑︁
𝑘=2

(
𝐶𝑘

(
arg min

𝜋∈Π
𝐶𝑘−1(𝜋)

)
− 𝐶𝑘−1

(
arg min

𝜋∈Π
𝐶𝑘−1(𝜋)

) )
+

𝐶1(𝜋1) −min
𝑥
𝐶𝑇 (𝜋) +

𝑇∑︁
𝑘=2

(
𝐶𝑘 (𝜋𝑘 ) − 𝐶𝑘

(
arg min

𝜋∈Π
𝐶𝑘−1(𝜋)

) )
(3.60)

Using Assumption 1 and the definition of 𝜋𝑘 , we get:

𝐶𝑘 (𝜋𝑘 ) − 𝐶𝑘
(

arg min
𝜋∈Π

𝐶𝑘−1(𝜋)
)
≤ 𝛼,∀𝑘 = 2, ..., 𝑇 . (3.61)

This is because

arg min
𝜋∈Π

𝐶𝑘−1(𝜋) = Opt( 𝑓 (1)
𝑘−1, ..., 𝑓

(𝑁)
𝑘−1 ),

while 𝜋𝑘 = Whittle( 𝑓 (1)
𝑘−1, ..., 𝑓

(𝑁)
𝑘−1 ).

Using the defintion of 𝑉𝑇 (3.16), the fact that 𝐶𝑘 (·) ∈ [0, 𝐷] and the inequality

(3.61), we get:
𝑇∑︁
𝑘=1

𝐶𝑘 (𝜋𝑘 ) −
𝑇∑︁
𝑘=1

min
𝜋
𝐶𝑘 (𝜋) ≤ 𝛼𝑇 +𝑉𝑇 + 𝐷. (3.62)

Since the above equation is true for any sequence of cost functions that satisfy

the 𝑉𝑇 constraint, it completes the proof.
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Chapter 4

Computation and Communication

Trade-offs

In this Chapter, we explore the joint optimization of computation and commu-

nication resources for monitoring and control tasks. We consider a multi-agent

system where each agent is in charge of monitoring a time-varying phenomenon

and sending information to a central base station. For instance, this setup can

model a team of robots mapping a dynamic environment and sending map up-

dates to a base station, which aggregates a global map for centralized decision-

making (Figure 4-1).

The agents are capable of local processing before transmitting the acquired

information. This could involve operations such as refining, denoising, or com-

pressing the data or simply gathering more informative updates. We assume that

the more time an agent spends in processing locally, the higher the quality of the

generated update. However, longer processing also induces a delay in between

subsequent updates. This yields a delay-accuracy trade-off : is it better to send

outdated but high-quality updates, or to reduce the overall latency by communi-

cating low-quality information?

We consider the realistic scenario where the total communication resources
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Figure 4-1: Example: four drones monitor different regions and send updates
to a base station over a wireless channel. Each agent spends time 𝜏𝑖 processing
the collected measurements before sending. A scheduling algorithm prioritizes
transmissions to the base station. This paper focuses on the co-design of the
processing times 𝜏𝑖 and the scheduling policy.

available are limited due to interference, limited bandwidth, and/or power con-

straints. Thus, in any given time-slot, only one of the agents is allowed to com-

municate with the base station. The communication constraints mean that, in

addition to optimizing the local processing times, a scheduling policy needs to

be designed to specify which agents can communicate in every time-slot.

Therefore, the goal of this chapter is to develop a general framework to de-

termine the optimal amount of local processing at each agent in the network and

design a scheduling policy to prioritize communication in order to maximize per-

formance.

Contributions. We address the computation and communication co-design

problem and develop a) a scheduling policy that ensures timely delivery of up-
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dates, and b) an algorithm to determine the optimal amount of local process-

ing at each agent. To do so, we use AoI to measure the lag in obtaining infor-

mation for monitoring and control of time-critical systems. Our contribution is

threefold. First, we develop a general framework to jointly optimize computation

and communication for real-time monitoring and decision-making (Section 4.1).

This framework extends existing work [108] by a) considering joint optimization

of scheduling in addition to processing, and b) addressing a general model that

goes beyond linear systems.

Second, we develop low-complexity scheduling and processing allocation schemes

that perform well in practice (Sections 4.2-4.3). The co-design problem is a multi-

period resource allocation problem and is hard to solve in general due to its com-

binatorial nature. We resolve this by considering a Lagrangian relaxation that de-

couples the problem into multiple single-agent problems, which can be solved

effectively. To solve the scheduling problem, we generalize the Whittle index

framework proposed in Chapter 2 for sources that generate updates at different

rates and of different sizes.

Finally, we demonstrate the benefits of using our methods in two practical

applications from robotics and autonomous systems: multi-agent occupancy

grid mapping in time-varying environments and ride-sharing systems with lo-

cal route optimization. Our simulations in Section 4.4 show that we can achieve

performance improvements of 18−35% in the mapping application and 75−82%

in the ride-sharing application with respect to baseline approaches.

4.1 Model

We consider a discrete-time setting with 𝑁 agents in a networked system, where

each agent is in charge of monitoring a time-varying phenomenon and sending

information updates to a base station. Each agent processes the collected mea-
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surements locally, before sending its updates. The 𝑖-th agent spends 𝜏𝑖 time slots

to process a new update. We refer to this quantity as the processing time associ-

ated with agent 𝑖.

We assume that sensing and processing happen sequentially at each agent.

Thus, agent 𝑖 acquires a new sample every 𝜏𝑖 time slots. Further, each agent stores

in a buffer the freshest processed measurement. We will assume that the process-

ing time allocations 𝜏𝑖,∀𝑖 are constant during operation.

To communicate the acquired and processed updates, the agents use a wire-

less communication channel. We assume that, due to interference and band-

width constraints, only one of the agents can transmit to the base station in any

given time-slot. At every transmission opportunity, the base station polls one of

the agents regarding the state of its system and receives the most recent measure-

ment that has been processed.

Scheduling decisions are modeled as indicator variables 𝑢𝑖 (𝑡) where 𝑢𝑖 (𝑡) = 1

if the 𝑖-th agent is scheduled at time 𝑡 and zero otherwise. We assume that a

transmission from the 𝑖-th agent takes 𝑟𝑖 (𝜏𝑖) time slots, with 𝑟𝑖 (·) a monotone se-

quence. This captures one aspect of the delay-accuracy trade-off, namely that the

size of the update depends on the amount of time spent in processing it. When

the agents spend local processing to collect more detailed information, e.g.in

exploration tasks, the measurements get larger overtime and 𝑟𝑖 (·) is increasing.

Conversely, when the agents compress the collected data, e.g.extracting visual

features from images, 𝑟𝑖 (·) is decreasing.

To measure the freshness of the information at the base station, we use a met-

ric called Age of Information (AoI). The AoI 𝐴𝑖 (𝑡) measures how old the informa-

tion at the base station is regarding agent 𝑖 at time 𝑡. Upon receiving a new update,

it drops to the age of the delivered update. Otherwise, it increases linearly. The
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Agent 

Time (slotted)

Age 

agent acquires sample
new update deliveredB.S. requests update

Channel

agent sends processed sample

Figure 4-2: AoI evolution for agent �. The agent acquires and processes new sam-
ples every �� time-slots. When the base station (B.S.) requests a new update, the
agent sends the most recent sample that has finished processing, taking �� (��)
time-slots for transmission. The variable �

(�)
�

represents the waiting time in the
buffer for update � . Upon a new update delivery, the AoI at the base station �� (�)
drops to the age of the delivered update.



138 Chapter 4. Computation and Communication Trade-offs

evolution is described below:

𝐴𝑖 (𝑡 + 1) =


𝜏𝑖 + 𝑟𝑖 (𝜏𝑖) + 𝛿(𝑘)𝑖 , if update 𝑘 is delivered,

𝐴𝑖 (𝑡) + 1, otherwise.
(4.1)

Here 𝛿(𝑘)
𝑖

is the waiting time spent by the 𝑘-th update from agent 𝑖 in the buffer,

i.e.the delay from the time the update was processed to the time it was actually

transmitted. Since a new processed update is generated every 𝜏𝑖 time-slots, the

waiting time 𝛿(𝑘)
𝑖

ranges from 0 to 𝜏𝑖 −1 time-slots. Figure 4-2 depicts the AoI pro-

cess for agent 𝑖. Observe that the lowest value that the AoI can drop to is 𝜏𝑖 + 𝑟𝑖 (𝜏𝑖),

since every update spends time 𝜏𝑖 in processing and time 𝑟𝑖 (𝜏𝑖) in communica-

tion.

The AoI evolution in (4.1) is involved since it requires analyzing waiting times

that vary with each update. To simplify the analysis, while still capturing the rele-

vant features of the AoI dynamics, we assume that the sequences 𝛿(𝑘)
𝑖

are constant

over time, i.e.𝛿(𝑘)
𝑖
≡ 𝛿𝑖 ∀𝑘, ∀𝑖 ∈ V. Each 𝛿𝑖 accounts for the average waiting time

accumulated by a processed measurement before it is sent by the 𝑖-th agent. We

are interested in the practical setting where processing times 𝜏𝑖 are small, and the

number of agents 𝑁 is large. Thus, our assumption of constant waiting times is

reasonable, since the waiting time’s contribution to the overall AoI is negligible

on average (being upper bounded by 𝜏𝑖) as compared to the time between sub-

sequent requests from the base station, which grows linearly with the number of

agents 𝑁 [15]. The smallest AoI for agent 𝑖 is defined as Δ𝑖 ≜ 𝜏𝑖 + 𝑟𝑖 (𝜏𝑖) + 𝛿𝑖, which

is the value that AoI resets to upon a new update delivery.

It has been shown in recent works [22, 24, 25, 26] that real-time monitoring

error for linear dynamical systems can be seen as an increasing function of the

AoI. Intuitively, fresher updates lead to higher monitoring accuracy and better

control performance. Motivated by this, we assume that each agent has an as-
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sociated cost function 𝐽𝑖 (𝜏𝑖, 𝐴𝑖 (𝑡)) that maps the processing time and the current

AoI to a cost that reflects how useful the current information at the base station

is for monitoring or control.

Assumption 1 (Delay-Accuracy Trade-off). The cost functions 𝐽𝑖 (𝜏𝑖, 𝐴𝑖 (𝑡)) are

increasing with the AoI 𝐴𝑖 (𝑡) and decreasing with the processing time 𝜏𝑖. Thus,

longer processing leads to more useful measurements (for a fixed age), while

fresher information induces a lower cost than outdated information.

Remark 1 (Task-related cost function). The functional form of 𝐽𝑖 (𝜏𝑖, 𝐴𝑖 (𝑡)) de-

pends on the underlying dynamics of the system 𝑖 and on the impact of agent

processing on the quality of updates. These functions are typically estimated us-

ing domain knowledge or learned from data offline. The approach in this paper

holds for any functions 𝐽𝑖 (𝜏𝑖, 𝐴𝑖 (𝑡)) that satisfy the above assumption. We discuss

numerical examples in section 3.3.

Our goal is to design a causal scheduling policy 𝜋 and find the processing

times 𝜏1, ..., 𝜏𝑁 for every agent so as to minimize the sum of the time-average

costs.

Problem 1 (Computation and Computation Co-design). Given the set of

agents V = {1, . . . , 𝑁}, cost functions {𝐽𝑖 (·, ·)}𝑖∈V , and AoI evolution (4.1),

find the processing times {𝜏𝑖}𝑖∈V and the scheduling policy 𝜋 that minimize the
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infinite-horizon time-averaged cost:

min
𝜏𝑖∈T𝑖 ∀𝑖∈V

𝜋∈Π

∑︁
𝑖∈V

lim sup
𝑇→+∞

E𝜋


1
𝑇

𝑇∑︁
𝑡=𝑡0

𝐽𝑖
(
𝜏𝑖, 𝐴

𝜋
𝑖 (𝑡)

)
s.t.

∑︁
𝑖∈V

𝑢𝜋𝑖 (𝑡) ≤ 1,∀𝑡
(P1)

where Π is the set of causal scheduling policies, 𝑢𝜋
𝑖
(𝑡) = 1 if policy 𝜋 schedules

agent 𝑖 at time 𝑡 and 𝑢𝜋
𝑖
(𝑡) = 0 otherwise. T𝑖 is the set of admissible processing

times for agent 𝑖, and 𝐴𝜋
𝑖
(𝑡) is the AoI of the 𝑖-th agent at time 𝑡 under policy 𝜋.

Finding the optimal processing times requires iterating over the combinato-

rial space T𝑖× ...×T𝑁 , while finding the optimal scheduling policy requires solving

a dynamic program which suffers from the curse of dimensionality.

4.2 A Lagrangian Relaxation

We now discuss a relaxation of (P1) that enables us to develop efficient algo-

rithms. This approach is motivated by the work of Whittle [109] and its applica-

tions to network scheduling, as we saw in Chapter 2. The relaxation will be useful

not only for finding a scheduling policy, but also in optimizing the processing

times.

We start by considering a relaxation of (P1) where the scheduling constraint is

to be satisfied on average, rather than at each time slot. The relaxed problem is
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given by

min
𝜏𝑖∈T𝑖 ∀𝑖∈V

𝜋∈Π

∑︁
𝑖∈V

lim sup
𝑇→+∞

E𝜋


1
𝑇

𝑇∑︁
𝑡=𝑡0

𝐽𝑖
(
𝜏𝑖, 𝐴

𝜋
𝑖 (𝑡)

)
s.t.

∑︁
𝑖∈V

lim sup
𝑇→+∞

∑𝑇
𝑡=𝑡0

𝑢𝜋
𝑖
(𝑡)

𝑇
≤ 1.

(4.2)

To solve (4.2), we introduce a Lagrange multiplier𝐶 > 0 for the average schedul-

ing constraint. The Lagrange optimization is given by the following equation:

max
𝐶>0

min
𝜏𝑖∈T𝑖 ∀𝑖∈V

𝜋∈Π

∑︁
𝑖∈V

𝐽𝑖 (𝜏𝑖, 𝐶) − 𝐶 (4.3)

𝐽𝑖 (𝜏𝑖, 𝐶) ≜ lim sup
𝑇→+∞

E𝜋


1
𝑇

𝑇∑︁
𝑡=𝑡0

(
𝐽𝑖

(
𝜏𝑖, 𝐴

𝜋
𝑖 (𝑡)

)
+ 𝐶𝑢𝜋𝑖 (𝑡)

)
Due to the Lagrangian relaxation, the inner minimization can be decoupled

as the sum of 𝑁 independent problems.

Problem 1 (Decoupled Problem 𝑖). Given a constant cost𝐶 > 0, find a schedul-

ing policy 𝜋𝑖 = {𝑢𝑖 (𝑡)}𝑡≥𝑡0 and a processing time 𝜏𝑖 ∈ T𝑖 that minimize the

infinite-horizon time-averaged cost of agent 𝑖:

min
𝜏𝑖∈T𝑖
𝜋𝑖∈Π

lim sup
𝑇→+∞

E𝜋𝑖


1
𝑇

𝑇∑︁
𝑡=𝑡0

(
𝐽𝑖

(
𝜏𝑖, 𝐴

𝜋𝑖
𝑖
(𝑡)

)
+ 𝐶𝑢𝑖 (𝑡)

) (P2)

In (P2), the multiplier 𝐶 can be interpreted as a transmission cost: whenever

𝑢𝑖 (𝑡) = 1, agent 𝑖 has to pay a cost of𝐶 for using the channel. Further, transmitting

an entire update costs 𝐶𝑟𝑖 (𝜏𝑖), since 𝑖 transmits for 𝑟𝑖 (𝜏𝑖) time-slots.

In the next section, we look at the single-agent problem (P2) in greater detail, and
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show how to solve it exactly. Since the problem involves a single agent, it is much

easier to solve than the original combinatorial formulation. The solution also

provides key insights in choosing both the scheduling policy and the processing

times for the original problem (P1).

4.2.A Solving the Decoupled Problem

We now solve (P2) for each agent separately. First, we characterize the structure

of the optimal scheduling policy 𝜋∗
𝑖

given a fixed value of 𝜏𝑖. Then, we optimize

over the latter.

Theorem 14. The solution to (P2), given a fixed value of 𝜏𝑖, is a stationary

threshold-based policy: let 𝐻𝑖 ≜ 𝐻𝑖 + 𝑟𝑖 (𝜏𝑖) and suppose there exists an age 𝐻𝑖

that satisfies

𝐽𝑖 (𝜏𝑖, 𝐻𝑖 − 1) ≤ 𝐽𝑊𝑖 (𝜏𝑖, 𝐻𝑖) ≤ 𝐽𝑖
(
𝜏𝑖, 𝐻𝑖) (4.4)

where

𝐽𝑊𝑖 (𝜏𝑖, 𝐻𝑖) ≜
∑𝐻𝑖−1
ℎ=Δ𝑖

𝐽𝑖 (𝜏𝑖, ℎ) + 𝐶𝑟𝑖 (𝜏𝑖)

𝐻𝑖 − Δ𝑖
. (4.5)

Then, an optimal scheduling policy 𝜋∗
𝑖

is to start sending an update whenever

𝐴𝑖 (𝑡) ≥ 𝐻𝑖 and to not transmit otherwise. If no such𝐻𝑖 exists, the optimal policy

is to never transmit. The quantity 𝐽𝑊
𝑖
(𝜏, 𝐻𝑖) represents the time-average cost of

using a threshold policy with the AoI threshold 𝐻𝑖.

Proof. See Appendix 4.6.A. □

The structure of the optimal scheduling policy 𝜋∗
𝑖

according to Theorem 14 is

intuitive, due to the monotonicity of the cost functions 𝐽𝑖 (𝜏𝑖, ·) in the AoI. If it is

optimal to transmit and pay the cost 𝐶 for 𝑟𝑖 (𝜏𝑖) time-slots at a particular AoI, it
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should be also be optimal to do so when the AoI is higher, since the gain from AoI

reduction would be even more. Given 𝜏𝑖 and 𝐶 , a way to compute the optimal

threshold is to start from 𝐻𝑖 = Δ𝑖 and increase 𝐻𝑖 until condition (4.4) is satisfied.

Let the value that this procedure terminates at be denoted by 𝐻𝑖 (𝜏𝑖). Then, 𝐻𝑖 (𝜏𝑖)

is an optimal threshold for agent 𝑖.

Next, we look at how to compute the optimal processing time 𝜏∗
𝑖

to solve Prob-

lem 1. To do so, given the admissible setT𝑖, we find the value of 𝜏𝑖 ∈ T𝑖 that induces

the lowest time-averaged cost for agent 𝑖 by enumerating over the set T𝑖:

𝜏∗𝑖 = arg min
𝜏𝑖∈T𝑖

𝐽𝑊𝑖 (𝜏𝑖). (4.6)

where 𝐽𝑊
𝑖
(𝜏𝑖) ≜ 𝐽𝑊

𝑖

(
𝜏𝑖, 𝐻𝑖 (𝜏𝑖)

)
. The optimal processing times 𝜏∗

𝑖
and policies 𝜋∗

𝑖
,

with thresholds 𝐻𝑖 (𝜏∗𝑖 ), computed for each decoupled problem provide an opti-

mal solution to the inner minimization of (4.3).

4.2.B Optimizing Processing Times

Leveraging the solution of the decoupled problems found in subsection 4.2.A, we

now design a procedure to optimize the processing times for the original multi-

agent problem (4.8).

Given a cost𝐶 > 0, we can use (4.4) and (4.6) to compute the optimal process-

ing times 𝜏∗
𝑖

and the corresponding AoI thresholds 𝐻𝑖 (𝜏∗𝑖 ) for the 𝑁 decoupled

problems in (4.3). Further, observe that, for the 𝑖-th decoupled problem, the op-

timal scheduling policy for agent 𝑖 chooses to send a new update every time the

AoI exceeds 𝐻𝑖 (𝜏∗𝑖 ) and the AoI drops to Δ𝑖 after each update delivery. Thus, the

fraction of time that agent 𝑖 occupies the channel (on average) is given by

𝑓𝑖 (𝜏∗𝑖 ) =
𝑟𝑖 (𝜏∗𝑖 )

𝐻𝑖 (𝜏∗𝑖 ) + 𝑟𝑖 (𝜏∗𝑖 ) − Δ𝑖
. (4.7)
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The total channel utilization given the Lagrange multiplier𝐶 is 𝑓 =
∑
𝑖∈V 𝑓𝑖 (𝜏∗𝑖 ).

From (4.2), 𝑓 must lie in the interval [0, 1] to represent a feasible allocation of

computation and communication resources. If not, then more than one agent

is transmitting in every time-slot on average, which is not possible given the (re-

laxed) interference constraint.

This suggests a natural way to optimize over both the Lagrange cost𝐶 and the

processing times 𝜏𝑖, which is presented in Algorithm 5. In particular, we optimize

the processing times 𝜏𝑖 by using (4.4) and (4.6) (line 4 in Algorithm 5), and update

𝐶 via a dual-ascent scheme (lines 6–7) using the average channel utilization 𝑓curr.

Algorithm 5: Optimizing Processing Times

Input : Costs 𝐽𝑊
𝑖
(·), set of admissible processing times T𝑖 for each agent

𝑖 ∈ V, stepsize 𝛼 > 0.
Output: Locally optimal processing times {𝜏∗

𝑖
}𝑖∈V .

1 Set 𝐶 ← 𝐶0

2 while 𝑓𝑐𝑢𝑟𝑟 > 1 do
3 for sensor 𝑖 ∈ V do
4 𝜏∗

𝑖
← arg min𝜏𝑖∈T𝑖 𝐽

𝑊
𝑖
(𝜏𝑖) ⊲ optimization (4.6)

5 end
6 𝑓curr ←

∑
𝑖∈V 𝑓𝑖 (𝜏∗𝑖 )

7 𝐶 ← 𝐶 + 𝛼( 𝑓curr − 1)
8 end
9 Return {𝜏∗

𝑖
}𝑖∈V

Intuitively, the algorithm keeps increasing the virtual communication cost

(quantified by the Lagrange multiplier 𝐶) until the processing times computed

in line 4 become compatible with the scheduling constraint. The decoupling re-

duces the complexity of finding the optimal processing times from combinatorial

𝑂
(∏

𝑖∈V |T𝑖 |
)

to linear search𝑂
(∑

𝑖∈V |T𝑖 |
)
.
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4.3 Whittle Index Scheduling

In the previous section, we established a threshold structure for the optimal schedul-

ing policy of the relaxed problem (4.2), where each agent transmits when its AoI

exceeds 𝐻𝑖 (𝜏∗𝑖 ). Next, we exploit this threshold structure to design an efficient

scheduling policy for the original optimization problem (1). Given the process-

ing times 𝜏∗
𝑖

computed via Algorithm 5, we need to solve:

min
𝜋∈Π

∑︁
𝑖∈V

lim sup
𝑇→+∞

E𝜋


1
𝑇

𝑇∑︁
𝑡=𝑡0

𝐽𝑖
(
𝜏∗𝑖 , 𝐴

𝜋
𝑖 (𝑡)

)
s.t.

∑︁
𝑖∈V

𝑢𝑖 (𝑡) ≤ 1,∀𝑡.
(4.8)

We considered minimizing the time-average of increasing functions of AoI in

Chapter 2. However, unlike the setting in Chapter 2, our agents generate updates

at different rates (every 𝜏𝑖 time-slots for agent 𝑖) and induce different communi-

cation delays (𝑟𝑖 (𝜏𝑖) time-slots). We now generalize the Whittle index approach

for our setting.

Recall that the Whittle index approach consists of four steps: 1) converting the

problem into an equivalent restless multi-armed bandit (RMAB) formulation, 2)

decoupling the problem via a Lagrange relaxation, 3) establishing a structural

property called indexability for the decoupled problems, and 4) using this struc-

ture to formulate a Whittle index policy for the original scheduling problem. We

go through these steps below.

Step 1. We first need to establish (4.8) can be equivalently formulated as a

restless multi-armed bandit problem.

Step 2. As we observed in section 4.2, the original scheduling problem can

be split into 𝑁 decoupled problems of the form (P2) via a Lagrange relaxation.

Further, through Theorem 14, we know that the optimal scheduling policy for

each decoupled problem has a threshold structure, i.e.agent 𝑖 should transmit
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only if its associated AoI 𝐴𝑖 (𝑡) exceeds the threshold 𝐻𝑖 (𝜏∗𝑖 ).

Step 3. Whittle showed in [109] that when there is added structure in the form

of a property called indexability for the decoupled problems, then the RMAB ad-

mits a low-complexity solution called the Whittle index, that is known to be near

optimal [110]. The indexability property for the 𝑖-th decoupled problem requires

that, as the transmission cost 𝐶 increases from 0 to ∞, the set of AoI values for

which it is optimal for agent 𝑖 to transmit must decrease monotonically from the

entire set (all ages 𝐴𝑖 (𝑡) ≥ Δ𝑖) to the empty set (never transmit). In other words,

the optimal threshold𝐻𝑖 (𝜏∗𝑖 ) should increase as the transmission cost𝐶 increases.

Next, we use Theorem 14 and the monotonicity of the cost functions 𝐽𝑖 (𝜏∗𝑖 , ·) to

establish that the decoupled problems are indeed indexable.

Lemma 7. The indexability property holds for the decoupled problems (P2),

given an allocation of processing times 𝜏𝑖.

Step 4. Having established indexability for the decoupled problem (P2), we

can derive a functional form for the Whittle index which solves the scheduling

for the original optimization problem (4.8).

Definition For the 𝑖-th decoupled problem, the Whittle index 𝑊𝑖 (𝐻) is de-

fined as the minimum cost𝐶 that makes both scheduling decisions (transmit,

not transmit) equally preferable at AoI 𝐻. Let 𝐻 ≜ 𝐻 + 𝑟𝑖 (𝜏𝑖). The expression

for𝑊𝑖 (𝐻), given a processing time 𝜏𝑖, is:

𝑊𝑖 (𝐻) ≜

(
𝐻 − Δ𝑖

)
𝐽
(
𝜏𝑖, 𝐻

)
−
𝐻−1∑
𝑘=Δ𝑖

𝐽 (𝜏𝑖, 𝑘)

𝑟𝑖 (𝜏𝑖)
. (4.9)
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Using (4.9), we can now design the Whittle index policy to solve (4.8). When-

ever the channel is unoccupied, the agent with the most critical update should be

asked for an update. This leads to the scheduling policy presented in Algorithm 6.

The Whittle index policy chooses the agent with the highest index (line 5), since

it represents the minimum cost each agent would be willing to pay to transmit

at the current time-slot. When the channel is occupied, no other transmission is

allowed (line 9). The variable 𝑧 keeps track of ongoing communication and drops

to zero when a new transmission can be scheduled.

Algorithm 6: Whittle Index Scheduling
Input : Processing time 𝜏𝑖, communication delay 𝑟𝑖 (·), and cost 𝐽𝑖 (·, ·) for

each agent 𝑖 ∈ V, time horizon 𝑇 .

1 𝑡 = 𝑡0, 𝑧 = 0
2 while 𝑡 ≤ 𝑇 do
3 if 𝑧 = 0 ⊲ schedule new transmission at time 𝑡
4 then
5 𝑖∗ ← arg max

𝑖∈V
𝑊𝑖 (𝐴𝑖 (𝑡)) ⊲ trigger agent 𝑖∗

6 𝑧 ← 𝑟𝑖∗ (𝜏𝑖∗) − 1
7 end
8 else
9 𝑧 ← 𝑧 − 1 ⊲ continue ongoing transmission

10 end
11 end

The Whittle index is known to be asymptotically optimal as 𝑁 → ∞, if a fluid

limit condition is satisfied [110, 34]. These results, suggest that the Whittle index

is a very good low-complexity heuristic for scheduling in real-time monitoring

and control applications. In the following section, we demonstrate our co-design

algorithms in two applications: multi-agent occupancy grid mapping in time-

varying environments and ride sharing in autonomous vehicle networks. The

results show that we can achieve performance improvements of 18−35% for grid

mapping and 75 − 82% for ride-sharing compared to baseline approaches.
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Figure 4-3: Multi-agent mapping over 9 regions: each agent monitors and builds
a local grid map of a region, and sends map updates to a base station. The occu-
pancy in the regions is time-varying. A scheduling policy specifies how to share
the communication channel among the agents. Processing times specify how
much time each agent spends in generating new map updates.

4.4 Applications

We demonstrate our co-design algorithms in two applications: multi-agent oc-

cupancy grid mapping in time-varying environments (Section 4.4.A), and ride

sharing in autonomous vehicle networks (Section 4.4.B). The results show that

we can achieve performance improvements of 18 − 35% for grid mapping and

75 − 82% for ride-sharing compared to baseline approaches. We also provide a

video briefly summarizing and visualizing our simulation results [111].

4.4.A Multi-agent Mapping of Time-Varying Environments

Setup We co-design computation and communication for a multi-agent map-

ping problem. We assume there are 𝑁 separate regions each of which is be-

ing mapped by an agent. The agents send updates —in the form of occupancy
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grid maps of their surroundings— to a base station over a single communication

channel, where the local maps are aggregated into a global map for centralized

monitoring (Figure 4-3).

In our tests, each region is 40m × 40m in size and is represented by an occu-

pancy grid map with 1m × 1m cells. The state of each cell can be either occupied

(1) or unoccupied (0). We consider a dynamic environment where the state of

each cell within region 𝑖 evolves according to a Markov chain, with cells remain-

ing in their original state with probability 1 − 𝑝𝑖 and switching from occupied to

unoccupied and vice-versa with probability 𝑝𝑖. This is a common model for grid

mapping in dynamic environments in the robotics community [112, 113].

Each agent is equipped with a range-bearing sensor (e.g.lidar), with a fixed

maximum scanning distance (25m) and angular range [−𝜋/2, 𝜋/2]. The agents

move around the regions randomly, taking scans of the area round them. Scan-

ning an entire region takes an agent multiple time-slots. We use the Navigation

toolbox in MATLAB to create sensors such that the resolution of the readings

𝜃min improves with the processing time. We set 𝜃min = 0.5/𝜏. We also set the

noise variance in angle and distance measurements to be inversely proportional

to 𝜏. These settings capture the delay-accuracy trade-off. We further set the up-

date communication times to increase linearly with the amount of processing,

i.e.𝑟 (𝜏) = 5 + ⌈𝜏/2⌉.

The base station maintains an estimate of the current map for each region

based on the most recent update it received and the Markov transition proba-

bilities {𝑝𝑖}𝑖∈V associated with each region. As is common in mapping literature

[114, 115], we measure uncertainty at the base station in terms of entropy of the

current estimated occupancy grid map for each region and set the cost functions

𝐽𝑖 (·, ·) to be the entropy of region 𝑖. In Section 4.6.D, we show that the entropy cost

increases monotonically with the AoI of a region and satisfies the assumptions

of our framework. It drops to a lower value if more time was spent in process-
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Figure 4-4: Transition probabilities and optimal processing time allocations plot-
ted for each region. The probabilities are plotted on a logarithmic scale while the
processing times are plotted in number of time-slots.

ing, since the base station is more certain about the quality of the received up-

date. Our goal is to minimize the time-average of the entropies summed across

each region through the joint optimization of processing times and the schedul-

ing policy.

Results. Figure 4-4 shows an example of transition probabilities 𝑝𝑖 (for each

of the 9 regions) and the corresponding optimal processing times 𝜏∗
𝑖

found us-

ing Algorithm 5. We observe that for regions that change quickly (i.e.have large

value of 𝑝𝑖), the corresponding processing time allocated is smaller. This is be-

cause there is not much benefit to spending large amounts of time generating

high quality updates if they become outdated very quickly. Conversely, for slowly

changing regions (with low values of 𝑝𝑖), Algorithm 5 assigns much longer pro-

cessing times. In this case, high quality useful updates can be created by taking

longer time since the regions don’t change quickly.

Further, we compare the performance of various scheduling algorithms in Fig-

ure 4-5. We consider the setting where the processing times 𝜏𝑖 are fixed to be the

same parameter 𝜏 for every region (uniform processing allocation). We then plot

the performance of three scheduling algorithms –a uniform stationary random-
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ized policy, a round-robin policy, and the proposed Whittle index-based policy–

for different values of 𝜏. We also plot the performance of the Whittle index pol-

icy and the stationary randomized policy under the optimized processing times,

computed using Algorithm 5, shown via dotted lines in Figure 4-5. We observe

that Algorithm 5 can find processing times that perform well in practice. We also

observe that the Whittle index policy outperforms the two “traditional” classes of

scheduling policies for every value of the parameter 𝜏.

Overall, choosing the processing times using Algorithm 5 and using the Whit-

tle schedule from Algorithm 6 together leads to a performance improvement of

28 − 35% over the baseline versions of randomized policies. Similarly, our pro-

posed approach leads to a performance improvement of 17 − 28% over the base-

line versions of round-robin policies.

4.4.B Smart Ride Sharing Control in Vehicle Networks

Setup. We consider the scenario in which a ride-sharing taxi fleet serves a city

coordinated by a central scheduler, which receives riding requests and assigns

them to the drivers. Assigned requests are enqueued into a FIFO-like queue for

each driver. In particular, a rider is matched to the driver whose predicted route

has the shortest distance to the pick-up location.

In our setup, routes are calculated locally by drivers and transmitted on de-

mand to the scheduler, which uses this information to match future requests.

Such distributed processing for route optimization is different from current ar-

chitectures, which are usually centralized. However, it allows for much greater

scalability and is envisioned as a key component in increasing efficiency and

scale of future ride-sharing systems [116, 117, 118].

Given communication constraints, only one driver can transmit at a time.

Drivers update their route periodically to embed real-time road conditions and

remove served requests from the queue. Routes are calculated via the Travelling
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Figure 4-5: Performance of different scheduling policies vs. processing times 𝜏.
Solid lines represent performance of different classes of scheduling policies as
the processing time 𝜏 varies. The dotted lines represent the scheduling perfor-
mance with processing times computed using Algorithm 5.
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Figure 4-6: Drivers calculate their route by processing the oldest 𝑅 requests
(green queue portion). The TSP solver starts from the current driver location and
involves pick ups (P) and drop offs (D) of the processed requests.

Figure 4-7: Left: long processing may cause large gaps between new routes cal-
culated by the driver (solid gray) and the outdated ones stored at the scheduler
(dashed gray), yielding bad matches (red dots). Right: with short processing, the
matched requests are close to the actual routes (green dots).

Salesman Problem (TSP) involving the first 𝑅 pick-up and drop-off locations in

the request queue (Figure 4-6). Processing many requests ensures more efficient

paths for enqueued riders, thus shortening their travel time from pick up to drop

off. Conversely, the complexity of the TSP (i.e.its processing time) increases with

the amount of processed requests 𝑅. As a consequence, the information collected

by the scheduler is usually older, inducing larger gaps with the actual route fol-

lowed by the driver (Figure 4-7). This leads to worse driver-request matching and

increases the waiting time experienced by riders before they are actually picked

up. Since the overall Quality of Service (QoS) is measured through the service

time, given by the sum of travel and waiting times of riders, the drivers face a

trade-off: processing many requests shortens the travels, while processing few

reduces the waiting time.

In our tests, we model the city as a 200-node graph where each driver travels
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one edge per time slot. Requests are randomly generated according to a Pois-

son process of unit intensity and assigned immediately to the matching driver by

the scheduler. Each request contributes one time slot to the processing time of

the TSP (e.g.𝜏 = 2 corresponds to processing two requests) and we set 𝑟 (𝜏) = 𝜏

(longer processing yields longer routes to transmit). To exploit the advantage of

the Whittle index, we simulate an heterogeneous fleet with five “myopic” drivers,

which can only process the oldest request (𝜏𝑚 = 1), and five “smart” drivers whose

processing can be designed: in particular, we assign the same processing time 𝜏𝑠

to all such “smart" drivers. The cost of each driver, given by its average service

time (AST), is modeled as

𝐽𝑖
(
𝜏𝑖, 𝐴𝑖 (𝑡)

)
= 𝑃𝑖 (𝜏𝑖) + 𝐴𝑖 (𝑡) (4.10)

where the estimated contribution of the local processing (TSPs)

𝑃𝑖 (𝜏𝑖) �
(
2 + 2e−0.2𝜏𝑖

)
𝑞𝑖 (𝑡) (4.11)

was fitted from simulations with an initial queue and no assignments. Because

the number of enqueued requests affects the AST but cannot be computed of-

fline, we modeled 𝑃𝑖 (𝜏𝑖) as linear with the queue length. The scheduler approxi-

mates the queue length at time 𝑡 with the latest received value 𝑞𝑖 (𝑡). The depen-

dence on 𝐴𝑖 (𝑡) is hard to assess and we let it linear.1

Results. We compute statistics over 1000 Monte Carlo runs. Figure 4-8 shows

the AST with 10000 requests assigned during the simulation for 𝜏𝑠 ∈ {1, ..., 7}.

The circles refer to the performance obtained with the Whittle index policy, while

the squares to Stationary Randomized which is used as a benchmark. Combin-

ing Whittle index-based scheduling with processing optimization (green circle)

1Other cost functions decreasing with 𝜏𝑖 and increasing with 𝐴𝑖 (𝑡) also yield good perfor-
mance, suggesting that our approach is indeed robust.
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Figure 4-8: Average service time with varying processing time 𝜏𝑠.

yields a striking improvement of the QoS (AST = 41) compared to the Stationary

Randomized with standards policies (red squares) such as FIFO request service

(𝜏𝑠 = 1, AST = 225), or back-to-back trips [119] (𝜏𝑠 = 2, AST = 165). In particular,

the minimum at 𝜏∗𝑠 = 5 indicates that it is optimal to process the five oldest re-

quests in the queue. Also, the Whittle index outperforms Stationary Randomized

for all values of the processing time, with a decrease at the optimum of 25%.

4.5 Summary

In this chapter, we developed a novel framework for computation and communi-

cation co-design for real-time multi-agent monitoring and control. We designed

efficient algorithms that jointly allocate the processing time for each agent and

schedule the available network communication resources. Through simulations,



156 Chapter 4. Computation and Communication Trade-offs

we further demonstrated that the proposed approach works well for two differ-

ent applications: multi-agent occupancy grid mapping in time-varying environ-

ments and distributed ride sharing in autonomous vehicle networks.

Possible directions of future work involve extending the theoretical frame-

work to consider more complex and realistic cost functions that are coupled across

multiple agents, time-varying or unknown, requiring learning-based approaches.

We consider a simple model for coupling/correlation in Chapter 7 and time-

varying cost functions in Chapter 3.

4.6 Appendix

4.6.A Proof of Theorem 14

We first establish that the decoupled (P2) is equivalent to a Markov decision pro-

cess (MDP). We then solve the MDP using dynamic programming. Since the anal-

ysis looks similar for each of the 𝑁 decoupled problems, we drop the subscript 𝑖

and solve the problem for a generic agent.

The state of the MDP describing (P2) consists of two non-negative integers(
𝐴(𝑡), 𝑧(𝑡)

)
. 𝐴(𝑡) denotes the AoI of the agent at time 𝑡 while 𝑧(𝑡) denotes how

much time is left in the ongoing transmission from this agent. When the agent is

not transmitting, 𝑧(𝑡) is set to be 0.

The variable 𝑢(𝑡) is an indicator variable that denotes the action of the agent:

whether it is transmitting in time-slot 𝑡 or not. Its value is chosen from the action

set {0, 1}, 0 meaning the agent is at rest and 1 meaning an ongoing transmission.

When 𝑧(𝑡) > 0, that means a transmission is ongoing and 𝑢(𝑡) can only be set to 1.

This ensures that an entire update must be finished by the agent before making

the next scheduling decision. Whenever 𝑧(𝑡) = 0, the scheduler can choose 𝑢(𝑡)

to be either 0 or 1, indicating the beginning of a new transmission.
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The MDP evolution can be split into 2 cases. When the agent is not transmit-

ting (𝑢(𝑡) = 0), AoI increases by 1 and 𝑧(𝑡) remains at 0.

(
𝐴(𝑡 + 1), 𝑧(𝑡 + 1)

)
𝑢=0 = (𝐴(𝑡) + 1, 0). (4.12)

When the agent is transmitting (𝑢(𝑡) = 1), the AoI drops when a new update com-

pletes delivery. Otherwise, it keeps increasing by 1. The variable 𝑧(𝑡) is set to

𝑟 (𝜏) − 1 at the beginning of a new transmission to indicate the time left in com-

pleting it. It decreases by 1 in every time-slot thereon, until the transmission

completes and 𝑧 becomes 0. Thus, the state evolution is given by:

(
𝑧(𝑡 + 1)

)
𝑢=1 =


𝑟 (𝜏) − 1, if 𝑧(𝑡) = 0

𝑧(𝑡) − 1, otherwise.
(4.13)

(
𝐴(𝑡 + 1)

)
𝑢=1 =


Δ, if 𝑧(𝑡 + 1) = 0.

𝐴(𝑡) + 1, otherwise.
(4.14)

Now that we have specified the state space, the action space and the evolution

equations; we also need to specify a cost function. We assume that in each time-

slot the scheduler pays a cost of the form𝐶𝑢(𝑡) + 𝐽 (𝜏, 𝐴(𝑡)). This maps the current

state and action to a cost, where 𝐶 acts like a transmission charge and 𝐽 (𝜏, 𝐴(𝑡))

is an increasing function of the AoI, given a fixed value of 𝜏.

Note that the decision process we have set up above is Markov since the state

evolution depends only on the states and the actions taken in the previous time-

slot. We wouldn’t have been able to make this conclusion without assuming a

fixed value of the waiting times 𝛿𝑖, since that would have required us to maintain

history per update.

Next, we aim to minimize the infinite horizon time-average cost for this MDP
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using dynamic programming. We follow the standard approach by first setting

up the Bellman recursions. The case when 𝑟 (𝜏) = 1 is a direct application of

Theorem 1 in [1], but with an adjusted minimum AoI value. For the discussion

that follows, we assume the more interesting case of 𝑟 (𝜏) > 1.

We start from a state where the AoI 𝐴(𝑡) = ℎ and there is no ongoing trans-

mission (𝑧 = 0), so a scheduling decision needs to be made. We denote the dif-

ferential cost-to-go function by 𝑆(ℎ, 𝑧) and the time-average cost by 𝜆. Then, the

Bellman equation is given by:

𝑆(ℎ, 0) = 𝐽 (𝜏, ℎ) + min
𝑢∈{0,1}

{
𝑆(ℎ + 1, 0), 𝐶 + 𝑆

(
ℎ + 1, 𝑟 (𝜏) − 1

)}
− 𝜆. (4.15)

Similarly, we write down the Bellman equation when there is an ongoing trans-

mission. In this case, no scheduling decision needs to be made. When 𝑧 > 1, the

AoI keeps increasing and the Bellman equation is given by:

𝑆(ℎ, 𝑧) = 𝐽 (𝜏, ℎ) + 𝐶 + 𝑆
(
ℎ + 1, 𝑧 − 1

)
− 𝜆. (4.16)

When 𝑧 = 1, the AoI drops in the next time-slot and the Bellman recursion is given

by:

𝑆(ℎ, 1) = 𝐽 (𝜏, ℎ) + 𝐶 + 𝑆
(
Δ, 0

)
− 𝜆. (4.17)

Using (4.16), we expand the term 𝑆
(
ℎ + 1, 𝑟 (𝜏) − 1

)
:

𝑆
(
ℎ + 1, 𝑟 (𝜏) − 1

)
= 𝐽 (𝜏, ℎ + 1) + 𝐶 + 𝑆

(
ℎ + 2, 𝑟 (𝜏) − 2

)
− 𝜆. (4.18)

Applying (4.16) recursively to the right-hand side till we reach 𝑆
(
Δ, 0), we get:

𝑆
(
ℎ + 1, 𝑟 (𝜏) − 1

)
=

𝑟 (𝜏)−1∑︁
𝑘=1

𝐽 (𝜏, ℎ + 𝑘) + 𝐶 (𝑟 (𝜏) − 1) + 𝑆
(
Δ, 0

)
− 𝜆

(
𝑟 (𝜏) − 1

)
. (4.19)
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Replacing 𝑆
(
ℎ + 1, 𝑟 (𝜏) − 1

)
in (4.15) with (4.19), we get:

𝑆(ℎ, 0) = 𝐽 (𝜏, ℎ) + min
𝑢∈{0,1}

{
𝑆(ℎ + 1, 0),

𝐶𝑟 (𝜏) + 𝑆
(
Δ, 0

)
− 𝜆

(
𝑟 (𝜏) − 1

)
+
𝑟 (𝜏)−1∑︁
𝑘=1

𝐽 (𝜏, ℎ + 𝑘)
}
− 𝜆. (4.20)

Note that now we can simplify the differential cost-to-go function to depend

on the AoI only. Let 𝑆′(ℎ) ≜ 𝑆(ℎ, 0). Then, we get the simplified Bellman equation

for our setting:

𝑆′(ℎ) = 𝐽 (𝜏, ℎ) + min
𝑢∈{0,1}

{
𝑆′(ℎ + 1), 𝐶𝑟 (𝜏) + 𝑆′

(
Δ
)

− 𝜆
(
𝑟 (𝜏) − 1

)
+
𝑟 (𝜏)−1∑︁
𝑘=1

𝐽 (𝜏, ℎ + 𝑘)
}
− 𝜆. (4.21)

Without loss of generality, we can set 𝑆′(Δ) = 0, since 𝑆′(·) is a differential

cost-to-go function.

Part 1. We consider the case when there exists a threshold 𝐻 that satisfies the

condition (4.4).

We start by looking at a policy with an arbitrary transmission threshold 𝐻, i.e.

transmit if and only if the AoI ℎ ≥ 𝐻. We will show that if 𝐻 satisfies (4.4) then this

policy’s differential cost-to-go function satisfies the optimal Bellman recursion

(4.21).

To do so, we first compute the differential cost-to-go function for this policy.

For all ℎ ≥ 𝐻, we set 𝑢 = 1 in (4.21) to get:

𝑆′(ℎ) = 𝐽 (𝜏, ℎ) + 𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(𝐽 (ℎ + 𝑘) − 𝜆) − 𝜆

= (𝐶 − 𝜆)𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=0

𝐽 (𝜏, ℎ + 𝑘)

(4.22)
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For ℎ = 𝐻 − 1 we again use (4.21) and set 𝑢 = 0 to get:

𝑆′(𝐻 − 1) = 𝐽 (𝜏, 𝐻 − 1) + 𝑆′(𝐻) − 𝜆

=

𝑟 (𝜏)−1∑︁
𝑘=−1

𝐽 (𝜏, 𝐻 + 𝑘) − 𝜆 + (𝐶 − 𝜆)𝑟 (𝜏)
(4.23)

where the second equality follows by expanding 𝑆′(𝐻) using (4.22). Repeating

this process 𝑗 times gives us:

𝑆′(𝐻 − 𝑗) =
𝐻+𝑟 (𝜏)−1∑︁
𝑘=𝐻− 𝑗

𝐽 (𝜏, 𝑘) − 𝑗𝜆 + (𝐶 − 𝜆)𝑟 (𝜏) (4.24)

Setting 𝐻 − 𝑗 = Δ in the equation above, we obtain the following equality:

𝐻+𝑟 (𝜏)−1∑︁
𝑘=Δ

𝐽 (𝜏, 𝑘) − (𝐻 − Δ)𝜆 + 𝐶𝑟 (𝜏) − 𝜆𝑟 (𝜏) = 0. (4.25)

Using this, we can compute 𝜆:

𝜆 =

𝐻+𝑟 (𝜏)−1∑
𝑘=Δ

𝐽 (𝜏, 𝑘) + 𝐶𝑟 (𝜏)

𝐻 + 𝑟 (𝜏) − Δ . (4.26)

For this threshold policy to be optimal, it has to satisfy the Bellman equation (4.21)

such that the minimization procedure over action 𝑢 computed for each value of

AoI ℎ matches the threshold structure.

Thus, for ℎ = 𝐻 − 1, the optimal decision must be to not transmit, i.e.

𝑆′(𝐻) ≤ 𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(
𝐽 (𝜏, 𝐻 − 1 + 𝑘) − 𝜆

)
(4.27)
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Plugging in the expression of 𝑆′(𝐻) using (4.22), we get:

(𝐶 − 𝜆)𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=0

𝐽 (𝜏, 𝐻 + 𝑘) ≤ 𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(
𝐽 (𝜏, 𝐻 − 1 + 𝑘) − 𝜆

)
(4.28)

Simplifying the above yields:

𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) − 1) ≤ 𝜆 (4.29)

Similarly, for ℎ = 𝐻 − 2, we get:

(𝐶 − 𝜆)𝑟 (𝜏) − 𝜆 +
𝑟 (𝜏)−1∑︁
𝑘=−1

𝐽 (𝜏, 𝐻 + 𝑘) ≤ 𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(
𝐽 (𝜏, 𝐻 − 2 + 𝑘) − 𝜆

)
. (4.30)

Simplifying, we get:

𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) − 1) + 𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) − 2) ≤ 2𝜆. (4.31)

Repeating the above procedure for any ℎ < 𝐻, we get:

𝑗∑︁
𝑘=1

𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) − 𝑘) ≤ 𝑗𝜆. (4.32)

Observe that due to the monotonicity of the cost function 𝐽 (𝜏, ·), the most restric-

tive of these conditions is (4.29), since 𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) −1) ≤ 𝜆 implies 𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) −

𝑘) ≤ 𝜆,∀𝑘 > 1 as well. Thus, for it to be optimal to not transmit at any AoI values

below the threshold 𝐻, it is sufficient for the following to hold:

𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) − 1) ≤ 𝜆 (4.33)

For AoI ℎ = 𝐻, we instead require that the optimal choice be to transmit, i.e.
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𝑢 = 1. Thus, the following must hold:

𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(𝐽 (𝜏, 𝐻 + 𝑘) − 𝜆) ≤ 𝑆′(𝐻 + 1) (4.34)

Using (4.22) to expand 𝑆(𝐻 + 1), we get:

𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(𝐽 (𝜏, 𝐻 + 𝑘) − 𝜆) ≤ (𝐶 − 𝜆)𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=0

𝐽 (𝜏, 𝐻 + 1 + 𝑘). (4.35)

Simplifying the above yields

𝜆 ≤ 𝐽 (𝜏, 𝐻 + 𝑟 (𝜏)). (4.36)

Similarly, for ℎ = 𝐻 + 1, we require the optimal decision to be transmit and get:

𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(𝐽 (𝐻 + 1 + 𝑘) − 𝜆) ≤ 𝑆′(𝐻 + 2) =

(𝐶 − 𝜆)𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=0

𝐽 (𝜏, 𝐻 + 2 + 𝑘). (4.37)

Simplifying the above yields

𝜆 ≤ 𝐽 (𝜏, 𝐻 + 𝑟 (𝜏) + 1). (4.38)

Repeating the above procedure for any value of ℎ ≥ 𝐻, we obtain similar inequal-

ities:

𝜆 ≤ 𝐽 (𝜏, ℎ + 𝑟 (𝜏)),∀ℎ ≥ 𝐻. (4.39)

Clearly, the most restrictive of these upper bounds is 𝜆 ≤ 𝐽 (𝐻 + 𝑟 (𝜏)). Thus, for it

to be optimal to transmit at all AoI values ≥ 𝐻, it is sufficient for the following to
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hold:

𝜆 ≤ 𝐽 (𝜏, 𝐻 + 𝑟 (𝜏)). (4.40)

The two conditions (4.33) and (4.40) together imply that if there exists a thresh-

old 𝐻 that satisfies (4.41), then an optimal policy is to transmit only when the AoI

is ≥ 𝐻.

𝐽
(
𝜏, 𝐻 + 𝑟 (𝜏) − 1

)
≤ 𝜆 ≤ 𝐽

(
𝜏, 𝐻 + 𝑟 (𝜏)

)
. (4.41)

Observe that this is identical to the optimal threshold condition (4.4) presented

in Theorem 14. This completes one part of the proof.

Part 2. It still remains to be shown that in case no such threshold can be

found, then the optimal policy is to never transmit. For ease of notation, we

denote ℎ + 𝑟 (𝜏) as ℎ̃. Consider the function 𝑉 : Z+ → R, for all AoI values ℎ ≥

Δ − 𝑟 (𝜏) + 1, given by:

𝑉 (ℎ) ≜ ( ℎ̃ − Δ)𝐽
(
𝜏, ℎ̃ − 1

)
−
ℎ̃−1∑︁
𝑘=Δ

𝐽 (𝜏, 𝑘),∀ℎ. (4.42)

Observe that for all values of ℎ ≥ Δ − 𝑟 (𝜏) + 1, we have 𝑉 (ℎ + 1) − 𝑉 (ℎ) = ( ℎ̃ +

1 − Δ) (𝐽 (𝜏, ℎ̃ + 1) − 𝐽 (𝜏, ℎ̃)) ≥ 0. Thus, 𝑉 (·) is an increasing function. Further,

𝑉 (Δ− 𝑟 (𝜏) + 1) = 𝐽 (𝜏,Δ) − 𝐽 (𝜏,Δ) = 0. Thus,𝑉 (ℎ) is a non-negative function for all

values of AoI ≥ Δ − 𝑟 (𝜏) + 1.

Using the function 𝑉 (·) and the expression for 𝜆 (4.26), we can rewrite the

condition (4.41) as follows:

𝑉 (𝐻) ≤ 𝐶𝑟 (𝜏) ≤ 𝑉 (𝐻 + 1). (4.43)

Suppose there exists some ℎ such that 𝐶𝑟 (𝜏) ≤ 𝑉 (ℎ + 1). Then, clearly (4.43)

has a solution at 𝐻 = ℎ, since 𝑉 (·) is a non-decreasing function. Since we are

interested in the case when (4.43) does not have a solution, we can safely assume
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𝐶𝑟 (𝜏) > 𝑉 (ℎ),∀ℎ.

Since 𝑉 (ℎ) ∈ [0, 𝐶𝑟 (𝜏)],∀ℎ ≥ Δ, so 𝑉 (ℎ) converges to a finite value (bounded

sequences always converge). The relation 𝑉 (ℎ + 1) − 𝑉 (ℎ) = ( ℎ̃ + 1 − Δ) (𝐽 (𝜏, ℎ̃ +

1) − 𝐽 (𝜏, ℎ̃)) ≥ 0 also ensures that the function 𝐽 (𝜏, ·) is bounded. This is because

𝐽 (𝜏, ℎ̃) is a non-decreasing sequence and has smaller increments than 𝑉 (ℎ) for

each value of ℎ. So, we can set 𝜆 = limℎ→∞ 𝐽 (𝜏, ℎ) and 𝜆 is well-defined.

We also set the differential cost-to-go function to be:

𝑆′(ℎ) =
∞∑︁
𝑘=ℎ

(𝐽 (𝜏, 𝑘) − 𝜆) + 𝐶𝑟 (𝜏),∀ℎ ≥ Δ. (4.44)

Clearly, 𝑆′(ℎ) satisfies the following Bellman recurrence for never transmitting,

i.e.

𝑆′(ℎ) = 𝐽 (𝜏, ℎ) + 𝑆′(ℎ + 1) − 𝜆,∀ℎ ≥ Δ. (4.45)

By the monotonicity of 𝐽 (𝜏, ·), we know that 𝐽 (𝜏, ℎ) ≤ 𝜆,∀ℎ ≥ Δ. This, together

with (4.44) implies

𝑆′(ℎ + 1) ≤ 𝐶𝑟 (𝜏) +
𝑟 (𝜏)−1∑︁
𝑘=1

(𝐽 (𝜏, ℎ + 𝑘) − 𝜆),∀ℎ ≥ Δ. (4.46)

The condition above implies that the minimization procedure to choose 𝑢 ∈ {0, 1}

will always select 0, i.e. never transmit. Thus, our choice of 𝜆 and 𝑆′(ℎ) satisfies

the Bellman equations and is optimal. This completes the proof of Theorem 14.

4.6.B Restless Multi-Armed Bandit Formulation

We establish that the scheduling optimization described by (4.8) is equivalent

to a restless multi-armed bandit problem (RMAB). A restless multi-armed bandit

problem [109] consists of 𝑁 “arms”. Each arm is a Markov decision process (MDP)

with two actions (activate, rest). There are two transition matrices per arm, one
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describing how the states evolve when the arm is active and one describing how

the states evolve when the arm is at rest. Each arm has a cost function mapping

states to costs. In the classic RMAB formulation, only one arm can be activated

in each time-slot, similar to our scheduling constraint and the goal is to find the

schedule that minimizes the long-term time-average cost.

To create a RMAB from (4.8), we first define the arms to represent each agent

in the network. The state of every arm 𝑖 consists of two non-negative integers

(𝐴𝑖 (𝑡), 𝑧𝑖 (𝑡)) ∈ Z2. Here, 𝐴𝑖 (𝑡) is the AoI of the 𝑖-th agent while 𝑧𝑖 (𝑡) is variable

that tracks the number of remaining time-slots to finish an ongoing transmission

from agent 𝑖. Thus, 𝑧𝑖 (𝑡) is set to 𝑟𝑖 (𝜏𝑖) − 1 at the start of a new transmission.

It decreases by 1 in each time-slot as the transmission proceeds and is set to 0

when agent 𝑖 is not transmitting.

The state evolution of the arm (agent) depends on whether it is currently ac-

tive (transmitting) or not. If agent 𝑖 is transmitting in time-slot 𝑡, then it either

initiates a new transmission; or the time remaining to finish sending the current

update decreases by 1. Under this condition, 𝑧𝑖 (𝑡) evolves as follows:

(𝑧𝑖 (𝑡 + 1))𝑢𝑖 (𝑡)=1 =


𝑟𝑖 (𝜏𝑖) − 1, if 𝑧𝑖 (𝑡) = 0

𝑧𝑖 (𝑡) − 1, otherwise.
(4.47)

If the agent is transmitting in time-slot 𝑡 and a new update finished delivery at

time-slot 𝑡 + 1, i.e. 𝑧𝑖 (𝑡 + 1) = 0, then the AoI drops to the age of the delivered

packet. Otherwise, the AoI increases by 1 in every time-slot.

(𝐴𝑖 (𝑡 + 1))𝑢𝑖 (𝑡)=1 =


Δ𝑖, if 𝑧𝑖 (𝑡 + 1) = 0,

𝐴𝑖 (𝑡) + 1, otherwise.
(4.48)

If the agent is not transmitting in time-slot 𝑡, then there is no update to be
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delivered and the state evolution is simply given by

(
𝐴𝑖 (𝑡 + 1), 𝑧𝑖 (𝑡 + 1)

)
𝑢𝑖 (𝑡)=0 =

(
𝐴𝑖 (𝑡) + 1, 0

)
. (4.49)

For every arm 𝑖, there is a cost function 𝐽𝑖 (𝜏𝑖, 𝐴𝑖 (𝑡)) which maps the state of the

arm (𝐴𝑖 (𝑡), 𝑧𝑖 (𝑡)) to its associated costs, given the processing time allocations 𝜏𝑖.

This completes the MDP specification for each arm.

Since only one arm (agent) can be activated in any time-slot, the goal of the

RMAB framework is to find a scheduling policy that minimizes the total time-

averaged cost of running the system. Clearly, Markov decision processes evolving

as above along with the associated cost functions and activation constraint are

equivalent to the scheduling problem (4.8).

4.6.C Proof of Lemma 7

As in Appendix 4.6.A, we drop the subscript 𝑖 and establish indexability for a

generic agent, since the analysis looks similar for each of the 𝑁 decoupled prob-

lems.

The indexability property for the decoupled problem requires that, as the

transmission cost 𝐶 increases from 0 to ∞, the set of AoI values for which it is

optimal to transmit must decrease monotonically from the entire set (all ages

𝐴(𝑡) ≥ Δ) to the empty set (never transmit). In other words, the optimal thresh-

old 𝐻 should increase as the transmission cost 𝐶 increases.

We start with the case when 𝐶 = 0. Clearly, since there is no cost for transmis-

sion and the AoI cost function 𝐽 (𝜏, ·) is a non-negative increasing function, it is

optimal to transmit at every value of AoI (∀𝐴(𝑡) ≥ Δ).

Let ℎ̃ = ℎ + 𝑟 (𝜏), as we have used throughout the paper. For 𝐶 > 0, we start by
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defining the function 𝑉 : Z+ → R, for all AoI values ℎ ≥ Δ − 𝑟 (𝜏) + 1, as follows:

𝑉 (ℎ) ≜ ( ℎ̃ − Δ)𝐽
(
𝜏, ℎ̃ − 1

)
−
ℎ̃−1∑︁
𝑘=Δ

𝐽 (𝜏, 𝑘). (4.50)

Observe that for all values of ℎ ≥ Δ − 𝑟 (𝜏) + 1, we have 𝑉 (ℎ + 1) − 𝑉 (ℎ) = ( ℎ̃ +

1 − Δ) (𝐽 (𝜏, ℎ̃ + 1) − 𝐽 (𝜏, ℎ̃)) ≥ 0. Thus, 𝑉 (·) is an increasing function. Further,

𝑉 (Δ− 𝑟 (𝜏) + 1) = 𝐽 (𝜏,Δ) − 𝐽 (𝜏,Δ) = 0. Thus,𝑉 (ℎ) is a non-negative function for all

values of AoI ≥ Δ − 𝑟 (𝜏) + 1.

Since 𝐶 > 0, there are two possible scenarios - a) there exists 𝐻 such that

𝑉 (𝐻) ≤ 𝐶𝑟 (𝜏) ≤ 𝑉 (𝐻 + 1) or b) 𝑉 (ℎ) ≤ 𝐶𝑟 (𝜏),∀ℎ. As proved in Appendix 4.6.A,

if 𝐶𝑟 (𝜏) ∈
[
𝑉 (𝐻), 𝑉 (𝐻 + 1)

)
, then the optimal policy is of threshold type with the

threshold being𝐻. To map the transmission cost𝐶 to a unique optimal threshold,

we choose the minimum value of AoI 𝐻 for which the relation 𝑉 (𝐻) ≤ 𝐶𝑟 (𝜏) <

𝑉 (𝐻 + 1) holds. We call this value 𝐻∗(𝐶). When there is no such value of 𝐻, i.e.

𝑉 (ℎ) ≤ 𝐶𝑟 (𝜏),∀ℎ then we set 𝐻∗(𝐶) = ∞.

Clearly, since the function 𝑉 (·) is monotone, the optimal threshold 𝐻∗(𝐶) is

also a non-decreasing function of the transmission cost 𝐶. This completes the

proof of indexability, since we have shown that the set of states for which it is

optimal to activate the arm (transmit an update) decreases monotonically as the

transmission cost 𝐶 increases.

The last part of the proof is to derive an expression for the Whittle index. Ob-

serve that when 𝐶 < 𝑉 (𝐻 + 1)/𝑟 (𝜏), the optimal threshold is at 𝐻 or lower and

scheduling decision at 𝐻 is to always transmit. 𝐶 = 𝑉 (𝐻 + 1)/𝑟 (𝜏) is the mini-

mum value of the transmission cost that makes both 𝐻 and 𝐻 + 1 be the optimal

threshold, or in other words, makes the transmit and not transmit decisions at
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AoI 𝐻 look equally favorable. Thus, the Whittle index is given by:

𝑊 (𝐻) ≜ 𝑉 (𝐻 + 1)
𝑟 (𝜏)

=

(
𝐻 + 1 − Δ

)
𝐽
(
𝜏, 𝐻

)
−

𝐻∑
𝑘=Δ

𝐽 (𝜏, 𝑘)

𝑟 (𝜏)

=

(
𝐻 − Δ

)
𝐽
(
𝜏, 𝐻

)
−
𝐻−1∑
𝑘=Δ

𝐽 (𝜏, 𝑘)

𝑟 (𝜏) .

(4.51)

This completes our derivation of the Whittle index.

4.6.D Entropy Cost as Function of AoI

In this section, we derive the entropy cost used for the mapping application as a

function of the AoI and also establish that it is a monotone increasing function.

Consider the Markov chain describing the occupancy of a cell 𝑐 in region 𝑖. Its

transition matrix has the following form:

𝑃𝑖 =


1 − 𝑝𝑖 𝑝𝑖

𝑝𝑖 1 − 𝑝𝑖

 (4.52)

The stationary distribution of this Markov chain is 𝜇 = [0.5, 0.5], since 𝜇𝑃𝑖 = 𝜇.

When the base station does not have any update regarding the state of the cell,

it sets the probability of occupancy to be 0.5. The corresponding entropy cost is

given by − log2(0.5) = 1.

Suppose that the base station believes that the cell 𝑐 is occupied at time 𝑡 with

probability 𝑞. At time 𝑡 + 1 it does not receive any new update and needs to up-

date its belief about the occupancy of the cell. Using the transition matrix 𝑃𝑖, it

updates the distribution to [𝑞 1 − 𝑞]𝑃𝑖. This distribution simply reflects the fact

that one time-slot has passed and the base station needs to multiply the original
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distribution by the state transition matrix to find the current estimated state dis-

tribution of the cell. This corresponds to the prediction step of a standard Bayes

filter.

In fact, this same process is repeated for any general value of AoI. If the last

received update about region 𝑖 says that cell 𝑐’s state distribution was [𝑞 1 − 𝑞],

and the current AoI for the region is 𝐴𝑖, then the current estimated distribution

for cell 𝑐 at the base station is 𝜇 = [𝜇1 𝜇2] ≜ [𝑞 1− 𝑞]𝑃𝐴𝑖
𝑖

. The entropy cost for cell

𝑐 is defined as:

𝐽𝑐 (𝐴𝑖) ≜ −𝜇1 log2(𝜇1) − 𝜇2 log2(𝜇2). (4.53)

We will show that 𝐽𝑐 (·) is an increasing function of the AoI 𝐴𝑖, given a fixed value

of 𝑞. Let 𝜈1 ≜ 𝜇1(1 − 𝑝𝑖) + 𝜇2𝑝𝑖, and 𝜈2 ≜ 𝜇2(1 − 𝑝𝑖) + 𝜇1𝑝𝑖. Then, it is easy to see

that:

𝐽𝑐 (𝐴𝑖 + 1) = −𝜈1 log2(𝜈1) − 𝜈2 log2(𝜈2). (4.54)

Note that the function 𝑥 log2(𝑥) is convex for all 𝑥 > 0, since 𝑑2

𝑑𝑥2 (𝑥 log2(𝑥)) =
1
𝑥
> 0,∀𝑥 > 0. Using this fact and the definitions of 𝜈1 and 𝜈2, we obtain the

following inequalities:

(1 − 𝑝𝑖)𝜇1 log2(𝜇1) + 𝑝𝑖𝜇2 log2(𝜇2) ≥ 𝜈1 log2(𝜈1), (4.55)

(1 − 𝑝𝑖)𝜇2 log2(𝜇2) + 𝑝𝑖𝜇1 log2(𝜇1) ≥ 𝜈2 log2(𝜈2), (4.56)

Now, we look at the difference:

𝐽𝑐 (𝐴𝑖 + 1) − 𝐽𝑐 (𝐴𝑖) =(
(1 − 𝑝𝑖)𝜇1 log2(𝜇1) + 𝑝𝑖𝜇2 log2(𝜇2) − 𝜈1 log2(𝜈1)

)
+

(
𝑝𝑖𝜇1 log2(𝜇1) + (1 − 𝑝𝑖)𝜇2 log2(𝜇2) − 𝜈2 log2(𝜈2)

)
≥ 0. (4.57)
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Figure 4-9: The average entropy of a region v/s AoI. Solid lines represent 𝑝 =

0.0005 and dashed lines represent 𝑝 = 0.001

The inequality above follows by applying (4.55) and (4.56). Since 𝐽𝑐 (𝐴𝑖 + 1) ≥

𝐽𝑐 (𝐴𝑖),∀𝐴𝑖, so 𝐽𝑐 (·) is a monotonic function of the AoI.

While we established this for a single cell in region 𝑖, the entropy cost of the

entire region 𝐽𝑖 (𝐴𝑖) is simply the sum of the entropies of each cell in the region.

Thus, the entropy cost functions 𝐽𝑖 (·) also grow monotonically with the AoI.

Another point to note is that the probability 𝑞 reflects the quality of the sent

update. If 𝑞 is close to 0.5, the update doesn’t convey much information about a

cell and the entropy cost doesn’t drop much on a new update. On the other hand,

if 𝑞 is close to 0 or 1, the update contains useful information and the entropy cost

drops by a large amount. Since we use sensors that have a limited range and

resolutions that improve with the processing time 𝜏𝑖, the quality of updates also

improves for a region with larger 𝜏𝑖. This ensures that the entropy costs 𝐽𝑖 (𝜏𝑖, 𝐴𝑖)

satisfy the assumptions required in our co-design framework.

In Figure 4-9, we plot the entropy cost as a function of the AoI. We do so by
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using our sensor for mapping a 40m× 40m region for different values of process-

ing time 𝜏 and Markov transition probabilities 𝑝. We observe that the cost grows

much more rapidly for the higher value of transition probability 𝑝. We also ob-

serve that for both values of 𝑝, the entropy cost function starts from a lower value

for larger 𝜏, denoting more useful updates for longer processing.
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Chapter 5

Information Freshness in Multi-Hop

Networks

In the previous chapters, we have looked at the minimization of general AoI cost

functions for single-hop wireless networks. However, minimizing AoI or its cost

functions over multi-hop networks has received limited attention in the litera-

ture. Finding low complexity near optimal scheduling and routing schemes for

AoI minimization which handle general network topologies, interference con-

straints, cost functions, different types of flows and link reliabilities has remained

an open problem.

In this chapter, we develop a unifying framework for making routing and schedul-

ing decisions that minimize AoI cost in general multihop networks. In Section 5.1,

we introduce the multihop problem in full generality - 1) with non-linear AoI

cost functions; 2) unicast, multicast and broadcast flows and 3) considering both

scheduling and routing decisions for optimization. In Section 5.2, we provide a

recipe to transform AoI optimization problems into network stability problems.

Instead of trying to solve for the best scheduling and routing policies directly, we

assume that we have access to a set of target values which represent the aver-

age age cost for every flow in the network. These target values could be appli-
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cation specific freshness requirements provided by a network administrator, or

they could be the solution to an optimization program that optimizes some util-

ity function of the average age costs.

In Section 5.2, we introduce the notion of Age Debt and set up a virtual queu-

ing network that is stable if and only if there exists a feasible network control pol-

icy that can achieve the specified target costs. In Section 5.3, we use Lyapunov

drift based methods to stabilize this system of virtual queues and achieve the de-

sired target age costs. In Section 5.4, we further discuss how to choose the right

age cost targets, when there is no access to either an optimization oracle or a sys-

tem administrator specifying requirements for each flow. Finally, in Section 5.5,

we provide detailed simulation results that compare our proposed AoI optimiza-

tion methods with prior works. We find that Age Debt and its variants perform as

well as or better than the best known scheduling and routing schemes in a wide

variety of network settings.

5.1 Model

Consider a network with 𝑁 nodes connected by a fixed undirected graph𝐺 (𝑉, 𝐸).

An edge (𝑖, 𝑗) means that nodes 𝑖 and 𝑗 can send packets to one another directly.

We assume that at most one update can be sent over an edge in any given time-

slot and takes exactly one time-slot to get delivered. We normalize the time-slot

duration to unity.

Flows. The network consists of 𝐾 (≤ 𝑁) source nodes that generate informa-

tion updates. All the sources are active, i.e. they generate fresh updates on de-

mand. A source node 𝑘 has to send these updates to a set of 𝐷𝑘 ⊂ 𝑁 destination

nodes in the network. We assume that a set of nodes 𝐶𝑘 ⊂ 𝑁 is commissioned

for each flow 𝑘 to forward its update packets to destination nodes. For example,

a network administrator could restrict the paths over which certain flows are al-
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lowed. A flow is characterized by the triplet of source node, its commissioned

nodes, and the destination nodes, namely (𝑘, 𝐶𝑘 , 𝐷𝑘 ). For simplicity, we use 𝑘

to denote both the source node 𝑘 and the flow corresponding to source node 𝑘 .

Note that a node could be both a destination node and also a commissioned node

forwarding packets for flow 𝑘 , i.e. 𝐶𝑘 ∩ 𝐷𝑘 is not necessarily empty.

Flows can be of three types depending on the number of destination nodes:

(1) unicast: the flow has a single destination node. (2) multicast: the flow has

multiple destination nodes, which are a strict subset of the remaining nodes. (3)

broadcast: every node other than the source itself is a destination node. The

commissioned nodes can be either a small subset of nodes in the network needed

to reach all the destination nodes, or the entire network. We assume there to be

no queuing at any node and that each node maintains a single packet buffer for

the freshest packet of each flow. 1

Interference and Link States. We consider unreliable links as well as general

interference constraints, i.e., transmission on all the links cannot happen simul-

taneously. We enumerate the set of all possible interference free choices of links

and corresponding flow transmissions in the set A. Thus, a member of set A

contains a subset of links and corresponding flows which can be sent on these

links in a single time-slot without interference. A valid network control policy

must choose an action that is a member of the set A in every time-slot. Note

that this description of A is very general and allows for interference constraints

that depend on flow assignments. For example, consider a setting where a node

is allowed to broadcast updates of a single flow to all of its neighbors in a single

timestep but not send updates regarding different flows to each neighbor simul-

taneously.

For link (𝑖, 𝑗) ∈ 𝐸 , we use 𝑈𝑘
𝑖 𝑗
(𝑡) and 𝑆𝑖 𝑗 (𝑡) (both ∈ {0, 1}) to denote the trans-

mission decision and link state of the link (𝑖, 𝑗) at time 𝑡. 𝑈𝑘
𝑖 𝑗
(𝑡) is 1 if a trans-

1Discarding older packets, or equivalently, preemptive LCFS (last come first serve) is known to
be the optimal queuing discipline for AoI minimization [120].
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mission of a flow-𝑘 update is scheduled on the link, at time 𝑡, and is 0 other-

wise. Whereas, 𝑆𝑖 𝑗 (𝑡) is 1 if a scheduled transmission on the link, at time 𝑡, will

succeed; provided there is no interference. We assume {𝑆𝑖 𝑗 (𝑡)}𝑡,(𝑖, 𝑗) to be inde-

pendent and identically distributed processes across time 𝑡 and links (𝑖, 𝑗), with

𝛾𝑖 𝑗 = P
[
𝑆𝑖 𝑗 (𝑡) = 1

]
.

Age Evolution. For a flow 𝑘 , each commissioned and destination node keeps

track of the age of the freshest packet it has received. For a node 𝑗 ∈ 𝐶𝑘 ∪ 𝐷𝑘 , we

denote its age for the 𝑘th flow by 𝐴𝑘
𝑗
(t) and it evolves as:

𝐴𝑘𝑗 (𝑡 + 1) =


min(𝐴𝑘
𝑗
(𝑡), 𝐴𝑘

𝑖
(𝑡)) + 1 if𝑈𝑘

𝑖 𝑗
(𝑡)𝑆𝑖 𝑗 (𝑡) = 1

𝐴𝑘
𝑗
(𝑡) + 1, if𝑈𝑘

𝑖 𝑗
(𝑡)𝑆𝑖 𝑗 (𝑡) = 0

, (5.1)

for all 𝑖 ∈ {𝑘} ∪ 𝐶𝑘 , 𝑗 ∈ 𝐶𝑘 ∪ 𝐷𝑘 , and link (𝑖, 𝑗) ∈ 𝐸 . Note that for any flow, the

source node and the commissioned nodes transmit the update packets, while

other commissioned nodes and the destination nodes receive them.

Information Freshness. We consider two metrics of information freshness.

The first is the average weighted sum AoI at the destination nodes:

𝐴ave = lim
𝑇→∞

E


1
𝑇

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

∑︁
𝑗∈𝐷𝑘

𝑤𝑘𝑗 𝐴
𝑘
𝑗 (𝑡)

 , (5.2)

where 𝑤𝑘
𝑗

denote constant weights, which determines the relative importance of

a destination 𝑗 and flow 𝑘 , with respect to others. For the second metric, we

consider general possibly non-linear functions of age. We associate a monotone

increasing age cost function for each source-destination pair (𝑘, 𝑗), where 𝑗 ∈ 𝐷𝑘 ,

denoted by 𝑔𝑘
𝑗
(·). We define the non-linear, effective age process to be:

𝐵𝑘𝑗 (𝑡) ≜ 𝑔𝑘𝑗 (𝐴𝑘𝑗 (𝑡)), (5.3)
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for all 𝑡 ≥ 1. The non-linear age metric is defined as:

𝐵ave = lim
𝑇→∞

E


1
𝑇

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

∑︁
𝑗∈𝐷𝑘

𝐵𝑘𝑗 (𝑡)
 , (5.4)

which is a generalized version of 𝐴ave in (5.2).

Our goal is to minimize either 𝐴ave or 𝐵ave for a general, multi-hop network,

by determining a policy that controls the link transmissions. A control policy

needs to specify not only which links should be scheduled in each time-slot but

also which flows should be transmitted along each link. We assume a centralized

controller.

5.2 Age Debt

In this section, we introduce the notions of age-achievability and age debt virtual

queues. We will then show how stabilizing this network of virtual queues leads

to minimization of AoI. Finally, we will use quadratic Lyapunov drift to propose a

heuristic scheme to achieve this stabilization in general multi-hop networks.

We consider settings with a) general increasing cost functions of AoI, b) no

knowledge of fixed routing paths, i.e. the scheduler also needs to make routing

decisions and c) unicast, multicast and broadcast flows in the same network. The

general AoI optimization problem can be formulated as:

𝜋∗ = argmin
𝜋

(
lim
𝑇→∞

E

[
1
𝑇

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

∑︁
𝑗∈𝐷𝑘

𝐵𝑘𝑗 (𝑡)
] )
, (5.5)

where 𝐵𝑘
𝑗
(𝑡) are the effective age processes and 𝜋(𝑡) ∈ A,∀𝑡.

We start by assuming that we have been given a target value of time average

age cost for each source-destination pair; denoted by 𝛼𝑘
𝑗

for the source-destination

pair (𝑘, 𝑗). We aggregate the target values associated with each source-destination
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pair in the vector 𝛼. For any such target vector 𝛼, we define the notion of age-

achievability below.

Definition A vector 𝛼 is age-achievable if there exists a feasible network con-

trol policy 𝜋 such that

lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐵𝑘𝑗 (𝑡) ≤ 𝛼𝑘𝑗 ,∀ 𝑗 ∈ 𝐷𝑘 ,∀𝑘 w.p. 1. (5.6)

In other words, a vector 𝛼 is age-achievable if the time-average of the effective

age process for every source-destination pair (𝑘, 𝑗) is upper bounded by the target

value 𝛼𝑘 𝑗 , under some feasible network control policy.

Note that the combination of general cost functions and achievability targets

allows us to capture very general freshness requirements which might be useful

in practical system specifications. For example, if an application requires that

the empirical distribution of the age process 𝐴𝑘
𝑗
(𝑡) should satisfy P(𝐴𝑘

𝑗
(𝑡) ≥ 𝑀) ≤

𝜖 , then we can capture this by setting the cost function 𝑔𝑘
𝑗
(ℎ) = 1{ℎ≥𝑀} and the

corresponding target to be 𝛼𝑘
𝑗
= 𝜖 .

We now define a set of virtual queues called age-debt queues for every source-

destination pair (𝑘, 𝑗). These queues measure how much the effective age pro-

cess exceeds its target value 𝛼𝑘 𝑗 , summed over time. Our definition of debt is

inspired by the notion of throughput debt as introduced in [121].

Definition Given a target vector𝛼, the age debt queue for source-destination
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pair (𝑘, 𝑗) at time 𝑡, given by𝑄𝑘
𝑗
(𝑡), evolves as

𝑄𝑘
𝑗 (𝑡 + 1) =

[
𝑄𝑘
𝑗 (𝑡) + 𝐵𝑘𝑗 (𝑡 + 1) − 𝛼𝑘𝑗

]+
,∀ 𝑗 ∈ 𝐷𝑘 ,

and ∀𝑘 ∈ {1, ..., 𝐾}.
(5.7)

To complete the definition, each age debt queue starts at zero, i.e. 𝑄𝑘
𝑗
(0) =

0,∀ 𝑗 , 𝑘 .

We now introduce a notion of stability for these age debt queues. This is sim-

ilar to how rate stability is typically defined in queueing networks [122].

Definition We say that the network of age debt queues is stable under a pol-

icy 𝜋 and a given target vector 𝛼 if the following condition holds:

lim
𝑇→∞

E

[ 𝐾∑︁
𝑘=1

∑︁
𝑗∈𝐷𝑘

𝑄𝑘
𝑗
(𝑇)
𝑇

]
= 0, (5.8)

where the expectation is taken over the randomness in the channel processes

and the scheduling policy 𝜋.

We also establish an equivalence relationship between age-achievability of a

vector 𝛼 and the stability of the corresponding network of age debt queues.

Lemma 8. A target vector 𝛼 is age-achievable if and only if there exists a net-

work control policy 𝜋, that stabilizes the network of source-destination age debt

queues.
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Proof. See Appendix 5.7.A. □

Next, we define a debt-stable scheduling policy. Such a policy takes a target

vector𝛼 as an input and stabilizes the network of corresponding age debt queues.

Definition A debt-stable scheduling policy 𝜋 stabilizes the set of age-debt

queues for any given target vector 𝛼 that is age-achievable.

The notions introduced until now effectively allow us to convert the minimum

age cost problem described by (5.5) into a network stability problem. Suppose 𝜋∗

is a solution to the optimization problem (5.5). Further, suppose that the time

average of the effective age process for pair (𝑘, 𝑗) under 𝜋∗ is given by

lim
𝑇→∞

E

[
1
𝑇

𝑇∑︁
𝑡=1

𝐵𝑘
∗
𝑗 (𝑡)

]
= 𝛼𝑘

∗
𝑗 ,∀(𝑘, 𝑗). (5.9)

Clearly, if we have oracle access to an optimal age cost vector 𝛼∗ = {𝛼𝑘∗
𝑗
}(𝑘, 𝑗) and

know how to design a debt-stable policy then we can perform minimum age cost

scheduling. If the debt-stable policy is much lower in computational complexity

than solving (5.5) directly, then we can also solve (5.5) at the same lower com-

plexity (assuming oracle access to 𝛼∗).

5.3 Lyapunov Drift Approach

Next, we discuss a heuristic approach to designing debt-stable policies.

5.3.A Single-Hop Broadcast

We first consider the special case of single-hop broadcast networks. This setting

is easier to analyze since it only requires scheduling and no routing and it also
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highlights key structural properties of our proposed policy.

Consider a 𝑁 node star network where each of the nodes 1, ..., 𝑁 − 1 has an

edge to node 𝑁 . These nodes wish to send packets to the central node 𝑁 . The

edges are numbered 𝑒1, ..., 𝑒𝑁−1. Due to broadcast interference constraints, only

one node can transmit in any given time-slot. Since the destination for every flow

is 𝑁 , we can drop the destination in our notation. The age evolution is given by

𝐴𝑖 (𝑡 + 1) =


𝐴𝑖 (𝑡) + 1, if𝑈𝑒𝑖 (𝑡)𝑆𝑒𝑖 (𝑡) = 0

1, if𝑈𝑒𝑖 (𝑡)𝑆𝑒𝑖 (𝑡) = 1.
(5.10)

Given an age-cost function 𝑔𝑖 (𝐴𝑖 (𝑡)) and a corresponding target value 𝛼𝑖, the debt

queue evolution for node 𝑖 is given by:

𝑄𝑖 (𝑡 + 1) =
[
𝑄𝑖 (𝑡) + 𝑔𝑖 (𝐴𝑖 (𝑡 + 1)) − 𝛼𝑖

]+
. (5.11)

Given a target vector 𝛼, we will use a Lyapunov drift based scheduling scheme

to try and achieve debt stability. To do so, we first define a Lyapunov function for

our system of virtual queues:

𝐿 (𝑡) ≜
𝑁−1∑︁
𝑖=1

𝑄2
𝑖 (𝑡). (5.12)

Using this Lyapunov function, we then define the age debt scheduling policy

𝜋AD as:

𝜋AD(𝑡) = argmin
𝑎∈A

(
E
[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

] )
, (5.13)

where the expectation is taken over the randomness in channel reliabilities 𝑆 (𝑡).

In the following remark, we consider a variant of the age-debt policy that min-

imizes an upper-bound on the Lyapunov drift instead of the actual Lyapunov drift

as in (5.13). This is similar to the upper-bound drift minimization used in policies
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such as the classical max-weight for throughput optimization [123] and allows us

to compare the structure of age-debt to preivously proposed policies in literature.

Remark 1. Suppose that the links between each source 𝑖 and the destination

𝑁 are i.i.d. Bernoulli w.p. 𝛾𝑖 in every time-slot. Further, if each age cost func-

tion 𝑔𝑖 (·) is upper bounded by a large constant 𝐷, then the policy 𝜋(𝑡) below

minimizes an upper bound on the Lyapunov drift in every time-slot.

𝜋(𝑡) = argmax
𝑖∈1,...,𝑁−1

(
𝛾𝑖𝑄𝑖 (𝑡)

(
𝑔𝑖 (𝐴𝑖 (𝑡) + 1) − 𝑔𝑖 (1)

) )
. (5.14)

Proof. See Appendix 5.7.B. □

In other words, an approximate drift minimizing policy chooses the source

with the largest product of link reliability, current age debt and current age cost.

This structure of the age-debt policy can be contrasted with the max-weight pol-

icy proposed in [124] which chooses the source with the largest value of 𝛾𝑖𝑤𝑖𝐴𝑖 (𝑡) (𝐴𝑖 (𝑡)+

2) given weights 𝑤𝑖. Similarly, the Whittle index policy proposed in Chapter 2,

chooses the source with the largest value of𝑊𝑖 (𝐴𝑖 (𝑡)), where𝑊𝑖 (·) is Whittle-index

corresponding to the age cost 𝑓𝑖 (·).

Note that to compute 𝜋AD(𝑡), the scheduler needs to iterate over the set of

sources only once. So the per slot computational complexity of this policy grows

linearly in 𝑁 . This is similar to the complexity of the Whittle index policy we pro-

posed in Chapter 2 and the max-weight policies proposed in [15, 17]. By contrast,

a dynamic programming approach to solve (5.5) directly has per slot computa-

tional complexity that grows exponentially in 𝑁 . This highlights the key strength

of our approach. If the scheduler has some way to set the targets for each source
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1 2 3
a b

Figure 5-1: Example of a line network with a unicast flow from node 1 to node 3

optimally, then the age debt policy is a good low complexity heuristic for age min-

imization.

5.3.B General Networks

The general multihop setting is more challenging. Simply using one-slot Lya-

punov drift to try and achieve debt stability does not work directly in the multi-

hop setting. We highlight this with a simple example.

Consider the three node network described in Figure 5-1 with a single unicast

flow from node 1 to node 3. The interference constraint enforces that only one

of the two edges 𝑎 and 𝑏 can be activated in any time-slot. Suppose that we are

interested in minimizing the time average of the age process 𝐴1
3(𝑡). Given a target

value 𝛼1
3, we set up the age debt queue as follows:

𝑄1
3(𝑡 + 1) =

[
𝑄1

3(𝑡) + 𝐴
1
3(𝑡 + 1) − 𝛼1

3

]+
. (5.15)

We will try to use the one slot Lyapunov drift minimizing policy to stabilize

𝑄1
3(𝑡) in this network. To do so, we solve the following optimization in every time-

slot:

𝜋AD(𝑡) = argmin
𝑥∈{𝑎,𝑏}

(
E
[
(𝑄1

3(𝑡 + 1))2 − (𝑄1
3(𝑡))

2] ) . (5.16)

At 𝑡 = 1, activating either edge 𝑎 or edge 𝑏 has no effect on the debt𝑄1
3(2) since

node 2 does not have any packet from node 1. If we break ties in favour of edge 𝑏,

then it is activated but no new packet is delivered to node 3. At 𝑡 = 2, since node

2 still does not have any new update from node 1, no action taken can affect the
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debt 𝑄1
3(3). Using the same tie-break rule, we would again schedule edge 𝑏. This

process keeps on repeating and the age debt queue 𝑄1
3 blows up irrespective of

the value of 𝛼1
3, even though the age optimal policy in this setting is to simply

alternate between 𝑎 and 𝑏 in every time-slot.

The example above illustrates why one-slot Lyapunov drift based techniques

fail in stabilizing debt queues in multihop networks. The policy designer using

Lyapunov drift is constrained to optimizing only one time-step into the future,

similar to a greedy policy. So, if every possible scheduling and routing action has

no effect on the age debt queues in the immediate next time-slot, the one step

drift minimizing procedure does not provide any information on which action

should be chosen to stabilize the debt queues.

This suggests that to be able to use one-slot drift minimizing techniques for

stability, there should be a virtual queue for every intermediate node that tracks

both the current age debt at the destination and the potential reduction in debt

at the destination upon forwarding a fresh packet. If we can set up such queues,

then large values of debt at intermediate nodes would lead to fresh packets being

sent to the next hops via one-slot drift minimizing actions, eventually reaching

the destination and stabilizing the age debt queues.

Let𝑄𝑘→𝑖
𝑗
(𝑡) denote such a debt queue corresponding to flow (𝑘, 𝑗) at an inter-

mediate node 𝑖. These additional queues at every intermediate node combined

with the original debt queues form our virtual network. The Lyapunov function

that we use for scheduling and routing is given by:

𝐿 (𝑡) ≜
𝐾∑︁
𝑘=1

∑︁
𝑗∈𝐷𝑘

(
(𝑄𝑘

𝑗 (𝑡))2 +
∑︁

𝑖∉𝐷𝑘 ,𝑖≠𝑘

(𝑄𝑘→𝑖
𝑗 (𝑡))2

)
(5.17)

The Age Debt scheduling and routing policy is to choose the activation set and
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corresponding flows that minimizes the expected Lyapunov drift.

𝜋AD(𝑡) = argmin
𝑎∈A

(
E
[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

] )
, (5.18)

where the expectation is taken over the randomness in channel reliabilities 𝑆 (𝑡).

5.3.C Intermediate Debt Queues

We now discuss how to set up the age debt queues𝑄𝑘→𝑖
𝑗
(𝑡) for intermediate nodes

to augment the original network of queues. Note that there are no intermediate

nodes for broadcast flows since every node other than the source is a destination.

Consider a source-destination pair (𝑘, 𝑗) for a unicast/multicast flow 𝑘 and

an intermediate node 𝑖 that is not a destination for the flow originating at 𝑘 . We

want to set up the age debt queue 𝑄𝑘→𝑖
𝑗
(𝑡) at 𝑖 for the pair (𝑘, 𝑗). We maintain an

age process for flow 𝑘 at node 𝑖, even though there is no associated cost or target

value for this age process.

𝐴𝑘𝑖 (𝑡 + 1) =


min(𝐴𝑘𝑖 (𝑡), 𝑡 − 𝑡𝑔) + 1, if update generated

at time 𝑡𝑔 is delivered at time 𝑡.

𝐴𝑘
𝑖
(𝑡) + 1, if no new delivery at time 𝑡.

(5.19)

Here 𝐴𝑘
𝑖
(𝑡) measures how old the information at node 𝑖 is regarding node 𝑘 . We

split the debt queue’s evolution into two cases.

Case 1: When node 𝑖 forwards a flow 𝑘 packet on a set of adjacent links 𝐿. Let

ℎ𝐿
𝑖 𝑗

be the minimum number of hops it takes to reach node 𝑗 from node 𝑖, where

the first hop can only include edges in the set 𝐿. Here, ℎ𝐿
𝑖 𝑗

measures the minimum

delay with which the packet that was forwarded by 𝑖 gets delivered at 𝑗 . The age

debt queue 𝑄𝑘→𝑖
𝑗
(𝑡), when node 𝑖 is forwarding a flow 𝑘 packet along the link set



186 Chapter 5. Information Freshness in Multi-Hop Networks

𝐿, evolves as:

𝑄𝑘→𝑖
𝑗 (𝑡 + 1) =

[
𝑄𝑘→𝑖
𝑗 (𝑡) + 𝑔𝑘𝑗

(
min{𝐴𝑘𝑖 (𝑡), 𝐴𝑘𝑗 (𝑡)} + ℎ𝐿𝑖 𝑗

)
− 𝛼𝑘𝑗

]+
. (5.20)

This measures the most optimistic change in age debt possible at the destination

using the current packet transmission from node 𝑖.

Case 2: When node 𝑖 does not forward a packet from node 𝑘 along any of its

adjacent edges, then the age debt queue evolves as below.

𝑄𝑘→𝑖
𝑗 (𝑡 + 1) =

[
𝑄𝑘→𝑖
𝑗 (𝑡) + 𝐵𝑘𝑗 (𝑡 + 1) − 𝛼𝑘𝑗

]+
. (5.21)

This means that the intermediate queue simply tracks the change in debt at the

destination when it is not forwarding a relevant packet. If the destination is not

receiving fresh packets from anywhere in the network then this would increase

the intermediate debt queue.

Thus, the debt at an intermediate node 𝑖 for a source-destination pair (𝑘, 𝑗)

blows up if (a) either the destination has not received fresh packets for a long

time and node 𝑖 did not forward any packets from 𝑘 (i.e. (5.21)) or if (b) node

𝑖 keeps forwarding stale packets from 𝑘 (i.e. (5.20)). A drift minimizing policy

will then try to ensure that either the destination debt queue is small, or node 𝑖

forwards fresh packets of flow 𝑘 towards the destination.

5.3.D An Example

Consider the five node network depicted in Fig. 5-2. We consider two flows in this

network - a multicast flow from source 1 to destination nodes 3 and 5 and a uni-

cast flow from source 4 to destination node 1. We further consider interference

constraints such that every node interferes with every other node, so in any given

time-slot only one node can transmit successfully. Further, the transmitting node
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Figure 5-2: Example of a five node multihop network with two competing flows.

can only transmit a single flow’s packet on all of it links, i.e. it cannot choose to

send different flow packets on different links. Thus, the available choice of ac-

tions in each time-slot is to decide which node gets to transmit and regarding

which flow.

Given average AoI targets 𝛼1
3, 𝛼

1
5 and 𝛼4

1, we will use our proposed age debt

scheme to achieve them. Observe that edge 𝑎 between nodes 1 and 2 must be

used by both flows and hence acts like a bottleneck link. One possible schedule

that we might want to replicate is to send packets for the first flow, and then send

packets for the second flow, and keep alternating. If we represent actions as a

tuple (𝑖, 𝑗) denoting that node 𝑖 forwards an update regarding node 𝑗 , then this

scheduling policy looks like (1, 1) → (2, 1) → (4, 4) → (5, 4) → (2, 4). It is easy

to see that the average AoIs achieved by this policy are 𝛼1
3 = 4.0, 𝛼1

5 = 4.0 and

𝛼4
1 = 5.0.

Providing these targets to the age debt queues, we confirm via simulation that

our one slot Lyapunov drift minimization method does indeed achieve the re-

quired average AoIs. To understand how age debt makes scheduling decisions,

we will focus on the bottleneck link 𝑎. Recall that 𝑄𝑘→𝑖
𝑗

is the intermediate debt

queue at a forwarding node 𝑖 for the source 𝑘 and destination 𝑗 . The debt queues

that primarily influence which flow gets transmitted on link 𝑎 are𝑄1→1
3 (𝑡),𝑄1→1

5 (𝑡),
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Figure 5-3: Evolution of three debt queue quantities with time, along with
scheduling decisions involving link 𝑎.

𝑄1→2
3 (𝑡), 𝑄1→2

5 (𝑡), and𝑄4→2
1 (𝑡).

Given 𝛼1
3 = 4.0, 𝛼1

5 = 4.0 and 𝛼4
1 = 5.0, we will plot three debt queue quantities

once the age debt policy has reached steady state. Specifically, we plot 𝑄1→1
3 (𝑡) +

𝑄1→1
5 (𝑡), 𝑄1→2

3 (𝑡) +𝑄1→2
5 (𝑡), and𝑄4→2

1 (𝑡).

There are three competing actions that the scheduling policy can take for the

link 𝑎. These are (1, 1) - node 1 broadcasts an update about itself along link 𝑎;

(2, 1) - node 2 broadcasts an update about node 1 along links 𝑎, 𝑏 and 𝑒; and (2, 4)

- node 2 broadcasts an update about node 4 along links 𝑎, 𝑏 and 𝑒. In Fig. 5-3,

we plot the three debt queue quantities of interest along with timeslots in which

scheduling decisions involving link 𝑎 were made.

We observe that the relative ordering of the three debt quantities explains why

each scheduling decision is made. When 𝑄1→1
3 (𝑡) + 𝑄1→1

5 (𝑡) is the largest, it sug-

gests that sending an update from node 1 to node 2 along link 𝑎 is the most valu-

able action. Similarly, when 𝑄1→2
3 (𝑡) + 𝑄1→2

5 (𝑡) is the largest, it suggest that send-

ing an update regarding node 1 from node 2 to nodes 3 and 5 is the most valuable

action (and due to the interference constraint, it blocks any other node from us-
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ing the link 𝑎). When 𝑄4→2
1 (𝑡) is the largest, it suggests that sending an update

regarding node 4 from node 2 to node 1 along link 𝑎 is the most valuable action.

Note that scheduling decisions are not explicitly made based on relative or-

dering of the debt queues, but by finding the action that has the largest negative

Lyapunov drift. We use the relative ordering to provide an intuitive explanation

of age debt. Importantly, the evolution of the debt queues and the Lyapunov drift

approach together lead to a scheduling policy that achieves the desired AoI tar-

gets. Adjusting the targets and/or AoI cost functions, the system designer can

tradeoff the freshness of one flow against another.

5.4 Choosing Target Vectors

In the preceding sections, we have developed a general framework of age achiev-

ability where given a target average age cost for every source-destination pair, we

formulate a corresponding network stability problem and attempt to solve it via

one slot Lyapunov drift minimization. In this section, we discuss how to choose

the right target vectors, such that they lead to minimum sum age cost.

In the absence of an optimization oracle that provides access to 𝛼∗ or a sys-

tem administrator who specifies average age cost targets based on the underlying

application requirements, we develop a simple heuristic to dynamically update

𝛼 in order to optimize utility based on the state of the underlying debt queues.

The following optimization problem needs to be solved to find the best target

vector 𝛼∗.

argmin
𝛼

( 𝐾∑︁
𝑘=1

∑︁
𝑗∈𝐷𝑘

𝛼𝑘𝑗

)
,

s.t. 𝛼 is age-achievable.

(5.22)

Note that this problem has the same optimal value as (5.5).
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5.4.A Gradient Descent

We want to use a gradient descent like approach to solve (5.22) and find 𝛼∗. The

problem with doing so is that we do not have a simple characterization of the

age-achievability region or a low complexity method to test whether a vector is

achievable or not.

To resolve this, we use Lemma 8. If the network of source-destination age debt

queues is unstable for a given value of 𝛼, then 𝛼 lies outside the age-achievability

region. This immediately suggests the gradient descent like approach described

in Algorithm 7.

Algorithm 7: Age Debt - Gradient Descent
Input : epoch size𝑊 , number of epochs 𝐸 , step-size 𝜂 > 0, threshold

𝜖 > 0, initialization 𝛼(1)
1 while 𝑒 ∈ 1, ..., 𝐸 do
2 Set up age debt queues using 𝛼(𝑒) and initialize each queue to 0
3 while 𝑡 ∈ 1, ...,𝑊 do
4 Schedule and route using age debt

𝜋AD(𝑡) = argmin
𝑎∈A

(
E
[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

] )
,

5 end
6 if ∃ flow 𝑘 and 𝑗 ∈ 𝐷𝑘 s.t. 𝑄𝑘

𝑗
(𝑊) > 𝜖𝑊 then

7 Increase target values for unstable queues:
8 𝛼𝑘

𝑗
(𝑒 + 1) = 𝛼𝑘

𝑗
(𝑒) + 𝜂, ∀(𝑘, 𝑗) s.t. 𝑄𝑘

𝑗
(𝑊) > 𝜖𝑊

9 Other targets remain unchanged:
10 𝛼𝑘

𝑗
(𝑒 + 1) = 𝛼𝑘

𝑗
(𝑒), ∀(𝑘, 𝑗) s.t. 𝑄𝑘 𝑗 (𝑊) ≤ 𝜖𝑊

11 end
12 else
13 Update all target values using gradients: 𝛼𝑘

𝑗
(𝑒 + 1) = 𝛼𝑘

𝑗
(𝑒) − 𝜂,

∀(𝑘, 𝑗).
14 end
15 end

The algorithm above runs the age debt policy for epochs of length 𝑊 time-

slots. Within an epoch, the target vector 𝛼 remains fixed. At the end of the epoch,
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we use the value of the source-destination age debt queues 𝑄𝑘
𝑗
(·) to update the

corresponding targets. If the network has at least one queue with debt larger

than a threshold, it suggests that the current vector is not achievable. So, we

increase the values of 𝛼 for the source-destination pairs with large values of debt.

If the network has all queues with debt below a threshold, the current vector is

likely achievable. So, we update the entire target vector using gradient descent.

Note that this approach takes a large number of time-slots to converge to a good

candidate target vector 𝛼.

5.4.B Flow Control

Another way to dynamically set the target vectors is to take a flow control ap-

proach for solving the optimization problem (5.22), similar to [123]. Algorithm 8

describes the details.

Algorithm 8: Age Debt - Flow Control
Input : parameter 𝑉 > 0, upper bound 𝛼max, initialization 𝛼(1)

1 while 𝑡 ∈ 1, ..., 𝑇 do
2 Use 𝛼(𝑡) to update debt queue values at time 𝑡
3 Update 𝛼 by solving the optimization below:
4

𝛼(𝑡 + 1) =
argmin

𝛼

( 𝐾∑︁
𝑘=1

∑︁
𝑗∈𝐷𝑘

𝑉𝛼𝑘𝑗 − 𝛼𝑘𝑗𝑄𝑘
𝑗 (𝑡)

)
,

s.t. 𝛼 ≥ 1,𝛼 ≤ 𝛼max.

5 Use 𝛼(𝑡 + 1) to compute the scheduling and routing decision that

minimizes drift: 𝜋(𝑡) = argmin
𝑎∈A

(
E
[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

] )
6 end

The flow control based age debt policy tries to tradeoff between the stability of

the queueing network and the optimization of targets using a parameter𝑉 > 0. In
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every time-slot, the flow control optimization sets the target 𝛼 for the next time-

slot and then the scheduling and routing decisions are computed by minimizing

Lyapunov drift.

The update optimization in step 4 of Algorithm 8 can be simplified to the rule

below:

𝛼𝑘𝑗 (𝑡 + 1) =


𝛼max, if𝑄𝑘

𝑗
(𝑡) > 𝑉

1, if𝑄𝑘
𝑗
(𝑡) ≤ 𝑉,

∀(𝑘, 𝑗). (5.23)

Thus, instead of converging to a target vector as in the case with gradient de-

scent, the flow control approach dynamically switches the value of targets in ev-

ery time-slot. This means we do not need to wait a long period of time for conver-

gence. When current debts are high, future targets are set to be high pushing the

debts lower. Similarly, when the current debts are low, future targets are also set

low, pushing the debts higher. The parameter 𝑉 decides the threshold between

high and low values of the debt queues.

5.5 Numerical Results

First, we consider the weighted-sum AoI problem in single-hop broadcast net-

works with unreliable channels. There are 𝑁 nodes in the network and the weight

of the 𝑖th node 𝑤𝑖 is set to 𝑖/𝑁 . Link connection probabilities are chosen uni-

formly from the set [0.6, 1]. Figure 5-4 plots the performance of the age debt pol-

icy, the age difference policy proposed in [5], the optimal stationary randomized

policy proposed in [15], and the max-weight and Whittle index policies proposed

in [15]. The last two are known to be close to optimal for this setting.

First, we observe that the optimal stationary randomized policy performs much

worse than the other classes of policies. Age difference performs better than the

randomized policy but not as well as the Whittle-index or max-weight policies.
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Figure 5-4: Weighted-sum AoI minimization in broadcast networks with unreli-
able channels

We further observe that when the age debt policy is provided the max-weight av-

erage cost as the target vector, it replicates near optimal performance. Also, the

flow control and gradient descent versions of age debt have a small gap to the

max-weight/Whittle policies despite not having access to 𝛼 beforehand and per-

form as well as the age-difference policy.

Next, we consider general functions of age minimization in the single-hop

wireless broadcast setting. There are 𝑁 nodes in the network and the cost of AoI

for each node is chosen from the set of functions {15𝐴(𝑡), 𝑒𝐴(𝑡) , (𝐴(𝑡))2 and (𝐴(𝑡))3}.

Figure 5-5 plots the performance of the age-debt policy and its variants along

with the age difference policy proposed in [7] and the Whittle index policy pro-

posed in [125]. As for the linear AoI case, we observe that age debt is able to

replicate the Whittle policy’s performance when provided its average cost as the

target vector. The flow control and gradient descent variants are also only a small

gap away in performance without knowing 𝛼 beforehand. On the other hand,
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Figure 5-5: Functions of Age minimization in broadcast networks with reliable
channels

the age difference policy performs much worse and the AoI cost rapidly grows

very large even for moderate 𝑁 . This is because the age difference policy is not

designed to handle general AoI cost functions, so even though it tries to keep

the AoIs small for all nodes, their actual impact to cost can become very large.

We also showed in Chapter 2 that even the optimal stationary randomized policy

can have unbounded AoI cost for systems as small as 𝑁 = 2, given nonlinear AoI

cost functions. So, we do not plot its performance in this scenario.

We also look at the functions of age problem with 𝑁 = 4 in more detail. The

age cost functions for each node are as follows 𝑓1(𝐴1(𝑡)) = 15𝐴1(𝑡), 𝑓2(𝐴2(𝑡)) =

𝑒𝐴2 (𝑡), 𝑓3(𝐴3(𝑡)) = (𝐴3(𝑡))2 and 𝑓4(𝐴4(𝑡)) = (𝐴4(𝑡))3. First, we use dynamic pro-

gramming to compute the optimal policy 𝜋∗ which minimizes average age cost.

The time average age costs under this policy are given by 𝛼∗1 = 45.0, 𝛼∗2 = 14.52, 𝛼∗3 =

17.20, and 𝛼∗4 = 11.0, while the total sum cost is 87.72. Using these as target val-

ues, we set up debt queues and implement the age-debt policy.
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Figure 5-6: Sum of virtual debt queues vs time

Figure 5-6 plots the sum of the 4 age debt queues
∑4
𝑖=1𝑄𝑖 (𝑡) under the age-

debt policy implemented using the optimal 𝛼∗ from above. We observe that the

age debt policy indeed stabilizes the debt queues since queue lengths don’t grow

with time. As a corollary, it also achieves age cost optimality in this setting. On

the other hand, our Whittle index policy from Chapter 2 achieves a total sum cost

of 88.34, a fixed but small distance away from the optimal cost of 87.72. This

suggests that age-debt might be a way to achieve exact optimality instead of near

optimality when access to 𝛼∗ is available.

Next, we consider scheduling for a single unicast flow on the line network.

Consider 𝑁 nodes arranged in a line network from 1 to 𝑁 . Node 1 wants to sent

packets to node 𝑁 , however not all nodes can transmit simultaneously. We con-

sider a simple interference constraint - in any given time-slot either all even num-

bered nodes or all odd numbered nodes can forward packets. This ensures that

no two adjacent nodes send interfering transmissions. Figure 5-7 plots the per-

formance of age-debt and its flow-control and gradient-descent variations along
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Figure 5-7: A single unicast flow on a line network (neighboring nodes interfere)

with the optimal stationary randomized policy and the age difference policy, both

derived for this setting in [5]. We observe that age-debt outperforms the station-

ary randomized policy despite using its average cost 𝛼𝑆𝑅 as the target vector. The

dynamic variants of age-debt significantly outperform the stationary random-

ized policy and match the performance of the age-difference policy. We also note

that the gap in performance would increase in settings with multiple flows and

paths available which age-debt can utilize for routing, unlike the stationary ran-

domized and age difference approaches.

We also consider a different kind of interference constraint in the same line

network example. Now, all nodes interfere with one another, and only one node

can transmit successfully in any given time-slot. We plot the performance of

the optimal stationary randomized policy, the age-debt policy (provided 𝛼𝑆𝑅),

our age-debt variants without any knowledge of 𝛼 and the age difference policy

against the number of nodes in the system in Figure 5-8. We again observe a large
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Figure 5-8: A single unicast flow on a line network (all nodes interfere)

gap in performance between the optimal randomized policy and our proposed

methods. This is consistent with the line network AoI analysis from [7], where we

showed that the best stationary randomized policy has performance that is𝑂 (𝑁2)

while the age difference policy has performance 𝑂 (𝑁). We also observe that the

age-debt variants match the performance of the age difference policy, which can

be shown to be exactly optimal in this single source line network setting.

Finally, we consider average age minimization for all-to-all broadcast flows

in multihop networks similar to [50]. Note that this is a broadcast setting that

requires both scheduling and routing decisions to be made, so we cannot use

the stationary randomized or age difference policies developed in [7]. We con-

sider all possible connected network topologies with 5 or 6 nodes (a total of 133

graphs). Figure 5-9 plots the performance of the age-debt policy and its vari-

ants along with the near optimal minimum connected dominating set (MCDS)

based scheme proposed in [50] for each of these networks. The x-axis represents

the graph labels numbered from 1 to 133, sorted according to the average age
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Figure 5-9: Broadcast flows in multihop networks with 5 and 6 nodes

achieved by the MCDS scheme.

We observe that age-debt achieves the same performance as the MCDS scheme

when provided its average cost as the target vector. Further, age-debt with flow

control achieves performance that is very close to that of the MCDS scheme with-

out requiring knowledge of 𝛼. Importantly, the MCDS scheme can only be ap-

plied to this setting of all-to-all broadcast with one node transmitting at a time.

Further, computing the optimal schedule using the MCDS scheme requires find-

ing minimum size connected dominating sets, the complexity of which grows

exponentially in the number of nodes.

We also consider the same broadcast setting but now with weighted-sum AoI

as the minimization objective instead of just AoI. We consider all possible con-

nected graphs with 5 nodes (21 in total). We set the importance weight of one

node to 15 (giving it a higher priority) and the rest of the 4 nodes to 1. Figure 5-10

plots the performance of the MCDS scheme along with age-debt and its variants.

As expected, age-debt policy replicates the performance of the MCDS scheme
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Figure 5-10: Weighted Age minimization of broadcast flows in multihop networks
with 5 nodes

since it is provided the average age-cost realized by MCDS as the target. Inter-

estingly, flow-control outperforms MCDS since it is able to adapt to a better tar-

get 𝛼 in the presence of weights and asymmetry. This is consistent with the fact

that the MCDS scheme is not designed for minimizing weighted-sum AoI. It also

highlights the relative ease with which age-debt can be adapted to weights and

general AoI cost functions.

Note that the complexity of implementing the flow-control scheme is polyno-

mial in the network size per time-slot. This suggests that age-debt and its variants

are a good candidate for low complexity near optimal age scheduling in general

networks.

We also observe that the flow control variant of age-debt is the method of

choice in the absence of known 𝛼. During our experiments, we found that the

gradient descent variant has parameters that are hard to configure for networks

of different sizes and takes a long time to converge. The flow-control method has



200 Chapter 5. Information Freshness in Multi-Hop Networks

just two parameters 𝑉 and 𝛼max that are relatively easy to configure and do not

require any time for convergence.

5.6 Summary

Evidence from simulations suggests that Age-Debt and its variants that we pro-

pose in this chapter are good candidates to optimize AoI costs over general multi-

hop networks. A natural next question to ask is whether there are performance

guarantees for this class of policies. We believe that standard Lyapunov analysis

is not sufficient to answer this question, and more work needs to be done in the

multi-hop setting.

5.7 Appendix

5.7.A Proof of Lemma 8

We will prove this under the assumption that the AoI cost functions 𝑔𝑘
𝑗
(·) are

upper-bounded by a fixed constant 𝐷 for every source-destination pair (𝑘, 𝑗).

This is a mild assumption because 𝐷 can be set to a very high value (in the order

of years) which will never be attained in practical systems under any reasonable

policy.

We note that the arrival process to the debt queue 𝑄𝑘
𝑗
(𝑡) is given by the effec-

tive age process 𝐵𝑘
𝑗
(𝑡), while the departures in every time-slot are just 𝛼𝑘

𝑗
. Using

the boundedness assumption, both arrivals and departures are strictly upper-

bounded by 𝐷. The result immediately follows from Theorem 2(c) in [122] which

relates mean-rate stability of a queue to time-averages of the arrival and depar-

ture processes.
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5.7.B Proof of Remark 1

The debt queues in this setting evolve as follows:

𝑄𝑖 (𝑡 + 1) =
[
𝑄𝑖 (𝑡) + 𝑔𝑖 (𝐴𝑖 (𝑡 + 1)) − 𝛼𝑖

]+
,∀𝑖. (5.24)

The AoI evolves as:

𝐴𝑖 (𝑡 + 1)


𝐴𝑖 (𝑡) + 1, if𝑈𝑒𝑖 (𝑡)𝑆𝑒𝑖 (𝑡) = 0

1, if𝑈𝑒𝑖 (𝑡)𝑆𝑒𝑖 (𝑡) = 1.
(5.25)

Here 𝑆𝑒𝑖 (𝑡) = 1 i.i.d. with probability 𝛾𝑖 in every time-slot.

Let Δ(𝑡) ≜ 𝐿 (𝑡 + 1) − 𝐿 (𝑡). Then,

E[Δ(𝑡)] =
∑︁
𝑖

E

[
(𝑄𝑖 (𝑡 + 1))2 − (𝑄𝑖 (𝑡))2

]
≤

∑︁
𝑖

E

[
𝛼2
𝑖 − 2𝛼𝑖𝑄𝑖 (𝑡) + (𝑔𝑖 (𝐴𝑖 (𝑡 + 1)))2 + 2𝑄𝑖 (𝑡)𝑔𝑖 (𝐴𝑖 (𝑡 + 1)) − 2𝛼𝑖𝑔𝑖 (𝐴𝑖 (𝑡 + 1))

]
≤

∑︁
𝑖

[
𝐷2 + 2𝑄𝑖 (𝑡) (E[𝑔𝑖 (𝐴𝑖 (𝑡 + 1))] − 𝛼𝑖)

]
(5.26)

The first inequality follows from the evolution of debt queues. The second

inequality follows from the boundedness assumption on 𝑔𝑖 (·), i.e. 𝑔𝑖 (ℎ) ≤ 𝐷,∀ℎ.

Now, we will minimize the RHS of the expression above. We can drop the term
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𝐷2 since it is a constant.

argmin
𝜋(𝑡)∈1,...,𝑁−1

∑︁
𝑖

𝑄𝑖 (𝑡)
(
E[𝑔𝑖 (𝐴𝑖 (𝑡 + 1))] − 𝛼𝑖

)
= argmin
𝜋(𝑡)∈1,...,𝑁−1

∑︁
𝑖

𝑄𝑖 (𝑡)E[𝑔𝑖 (𝐴𝑖 (𝑡 + 1))]

= argmin
𝑗∈1,...,𝑁−1

[∑︁
𝑖

(
𝑄𝑖 (𝑡)𝑔𝑖 (𝐴𝑖 (𝑡) + 1)

)
+ 𝛾 𝑗𝑄 𝑗 (𝑡) (𝑔 𝑗 (1) − 𝑔 𝑗 (𝐴 𝑗 (𝑡) + 1))

]
=argmax
𝑗∈1,...,𝑁−1

[
𝛾 𝑗𝑄 𝑗 (𝑡)

(
𝑔 𝑗 (𝐴 𝑗 (𝑡) + 1) − 𝑔 𝑗 (1)

) ]
(5.27)

The first equality follows since 𝑄𝑖 (𝑡)𝛼𝑖 does not depend on the scheduling deci-

sion 𝜋(𝑡). The second equality follows from the evolution of AoI given 𝜋(𝑡) = 𝑗 .

The third equality follows since the summation term does not depend on the

scheduling choice 𝑗 . This completes the proof.
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Chapter 6

Fresh-CSMA: A Distributed Protocol

for AoI

In this chapter, we propose Fresh-CSMA to replicate the behavior of centralized

scheduling schemes that minimize AoI. In Section 6.1 we discuss our system

model and set up the single-hop weighted age minimization problem. In Sec-

tion 6.2 we introduce the Fresh-CSMA protocol in an idealized setting and pro-

vide performance guarantees that show that it can closely match the centralized

max-weight scheduling policy both per time-slot and over the entire time hori-

zon. In Section 6.3, we relax some of the assumptions from our idealized model

and study the Fresh-CSMA protocol under a more realistic setting. We analyze

two keys aspects - the probability of collision and the total time lost due to the

backoff timers during which the channel remains idle. In Section 6.4, we con-

sider the recently proposed information freshness metric called Age of Incorrect

Information (AoII) and extend our CSMA design to incorporate this metric. In

Section 6.5, we provide simulations that support our theoretical results.
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Figure 6-1: Single-hop broadcast network with 𝑁 sources sending updates to a
base station over a shared channel.

6.1 System Model

Consider a single-hop wireless network with 𝑁 sources generating real-time sta-

tus updates that need to be sent to a monitoring base station (see Fig. 6-1). We

consider a slotted system in which each source takes a single time-slot to trans-

mit an update to the base station. Due to interference, only one of the sources

can transmit successfully in any given time-slot. If multiple sources decide to

transmit, a collision occurs and the transmitted updates are lost.

For every source 𝑖, the age of information at the base station 𝐴𝑖 (𝑡) measures

the time elapsed since it received a fresh information update from the source. We

assume active sources, i.e. in any time-slot, sources can generate fresh updates

at will. Let 𝑠(𝑡) be the set of sources transmitting in time-slot 𝑡. Then, the age of
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information 𝐴𝑖 (𝑡) evolves as:

𝐴𝑖 (𝑡 + 1) =


1, if 𝑠(𝑡) = {𝑖},

𝐴𝑖 (𝑡) + 1, otherwise.
(6.1)

The metric of interest in this chapter will be average AoI, which is simply the

long-term time-average of the AoI process. Specifically,

�̄�𝑖 ≜ lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡). (6.2)

Our goal in this chapter is to design a distributed wireless scheduling policy

that minimizes the weighted sum of average AoI across all sources:

argmin
𝜋

(
lim sup
𝑇→∞

[
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑤𝑖𝐴𝑖 (𝑡)
] )
. (6.3)

Here, the weights {𝑤1, 𝑤2, ..., 𝑤𝑁 } are positive integers that denote the relative im-

portance of each source to the overall monitoring or control application.

6.2 Distributed Scheduling Design

Before we introduce our distributed scheduling design, we briefly discuss key re-

sults from prior works that have looked at the same problem but from a central-

ized perspective.

In [15], the authors considered a similar single-hop network setting with the

goal of minimizing weighted-sum average AoI, i.e. solving (6.3). First, they con-

sidered the class of stationary randomized policies. Each policy within this class

is simply a probability distribution over the set of sources and the scheduling de-

cision is sampled from this distribution i.i.d. at the beginning of every time-slot.
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They showed that under the optimal stationary randomized policies that solve

(6.3), each source 𝑖 is scheduled with probability

𝜋∗𝑖 =

√
𝑤𝑖∑𝑁

𝑖=1
√
𝑤𝑖
,∀𝑖 ∈ [𝑁] . (6.4)

They further showed that the best stationary randomized policies can be at most

a factor of two away from the overall optimal policy.

They also proposed a centralized policy motivated by Lyapunov drift argu-

ments called the max-weight policy. This policy, under reliable channels, makes

scheduling decisions 𝜋𝑚𝑤 (𝑡) as follows:

𝜋𝑚𝑤 (𝑡) = argmax
𝑗∈[𝑁]

(
𝑤 𝑗 𝐴

2
𝑗 (𝑡)

)
. (6.5)

In [126], the authors showed that this policy is at most a factor of two away from

optimal using Lyapunov drift arguments. However, unlike stationary randomized

policies, this policy turns out to be nearly optimal in practice.

The goal of our distributed design is to replicate the decision making and per-

formance guarantees of max-weight policies of the form (6.5).

6.2.A Fresh-CSMA

In general, a CSMA/CA style protocol involves the following steps. First, a node

senses the channel to see if it is free. If the node determines the channel to be

available, it starts transmitting a packet. Otherwise, if the channel is occupied,

it generates a random backoff time and starts a timer counting down from this

value. During this period, the node continuously senses the channel and only

counts down when the channel is free. Once the timer hits zero, the node trans-

mits a frame. Note that the timer can only hit zero when the channel is known

to be free. Depending on whether an ACK is received or not from the receiving



6.2. Distributed Scheduling Design 207

station, the node updates its random backoff timer parameters for the next trans-

mission.

The details of how to sample the backoff times, how to update them in case of

a collision or re-transmission, and how to implement channel sensing determine

the exact flavor of CSMA being implemented. To develop our scheme and pro-

vide tractable analysis, we will consider an idealized channel sensing setup that

is commonly used in theoretical works addressing CSMA [66, 67, 68, 69]. This

involves making the following key assumptions.

Assumption 2. Backoff timers are implemented in continuous time.

Assumption 3. Carrier sensing happens instantly.

Assumption 4. There is a discrete slotted system and all nodes start their back-

off timers at the beginning of each time-slot.

Assumption 5. Backoff timers are implemented with arbitrary precision, and

can be made negligible in comparison to the duration of a time-slot.

Under these assumptions, a version of the classic CSMA protocol that uses

exponential backoff timers is described in Alg. 9. We use 𝑡 to denote the discrete

time-slots and 𝜏 to denote continuous time within each time-slot. We normalize

the time-slot length to be 1 so 𝜏 is a continuous timer that increases from 0 to 1

within each time-slot.

As a consequence of our idealized assumptions, note that a packet collision

happens only if two nodes choose the exact same backoff times. Since the prob-

ability that two exponential random variables take the exact same value is zero,

so the probability of packet collisions is also zero in this idealized setup.

The protocol above consists of two key ideas. First, each source 𝑖 generates
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Algorithm 9: Idealized CSMA
Input : parameter 𝛼 > 1

1 while 𝑡 ∈ 1, ..., 𝑇 do
2 for 𝑖 ∈ 1, ..., 𝑁 do
3 Generate a random timer 𝑍𝑖 (𝑡) ∼ exp(𝛼).
4 while 𝜏 < 𝑍𝑖 (𝑡) do
5 Stay silent
6 end
7 if Channel is free then
8 Transmit
9 end

10 end
11 end

a random timer 𝑍𝑖 (𝑡) that is i.i.d. exponentially distributed. Second, the source

with the timer that runs out first gets to transmit in the entire time-slot 𝑡, i.e.

𝜋(𝑡) = argmin
𝑖∈[𝑁]

𝑍𝑖 (𝑡). (6.6)

Due to Assumption 5, we can scale the backoff timers by a factor 𝛿 such that they

are negligible in comparison to the slot length, i.e. 𝛿𝑍𝑖 (𝑡) ≪ 1,∀𝑖 with high prob-

ability.

Next, we modify this CSMA protocol to create Fresh-CSMA, described in Alg. 10.

This is also an idealized distributed protocol, but with the goal of replicating the

behavior of the max-weight scheduling policy (6.5) for AoI minimization. This

style of CSMA is motivated by the fast-CSMA protocol proposed in [69].

Note that Fresh-CSMA consists of two key steps. First, each source 𝑖 generates

a random timer 𝛿𝑍𝑖 (𝑡) where 𝑍𝑖 (𝑡) is exponentially distributed with the parameter

𝛼𝑤𝑖𝐴
2
𝑖
(𝑡). Then, the source with the timer that runs out first gets to transmit in the

entire time-slot 𝑡, i.e. according to (6.6).

Importantly, each source only requires knowledge of its own AoI and schedul-

ing weight to compute the backoff timer, thus maintaining the distributed nature
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Algorithm 10: Idealized Fresh-CSMA
Input : parameters 𝛼 > 1, 𝛿 ≪ 1

1 while 𝑡 ∈ 1, ..., 𝑇 do
2 for 𝑖 ∈ 1, ..., 𝑁 do

3 Generate a random timer 𝑍𝑖 (𝑡) ∼ exp
(
𝛼𝑤𝑖𝐴

2
𝑖
(𝑡)

)
.

4 while 𝜏 < 𝛿𝑍𝑖 (𝑡) do
5 Stay silent
6 end
7 if Channel is free then
8 Transmit
9 end

10 end
11 end

of the protocol. The following lemma describes the structure of scheduling deci-

sions made by this scheduling scheme.

Lemma 9. For Fresh-CSMA at time-slot 𝑡, the probability that source 𝑖 is sched-

uled is given by:

𝑟𝑖 (𝑡) =
𝛼𝑤𝑖𝐴

2
𝑖
(𝑡)

𝑁∑
𝑗=1
𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)
. (6.7)

Proof. First, note that the scheduling decision at time-slot 𝑡 is given by (6.6) where

𝑍𝑖 (𝑡) are independent and exponentially distributed with the parameters 𝛼𝑤𝑖𝐴
2
𝑖
(𝑡).

Let 𝑍 (𝑡) ≜ min
𝑖∈[𝑁]

𝑍𝑖 (𝑡). Then, 𝑍 (𝑡) is the minimum of 𝑁 independent exponential

random variables. Thus, it is also exponentially distributed and with the param-
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eter
∑𝑁
𝑗=1 𝛼

𝑤 𝑗 𝐴
2
𝑗
(𝑡). Let 𝜆𝑖 ≜ 𝛼𝑤𝑖𝐴

2
𝑖
(𝑡). We are interested in calculating the probability

𝑟𝑖 (𝑡) = P
(
𝜋(𝑡) = 𝑖

)
= P

(
𝑍 (𝑡) = 𝑍𝑖 (𝑡)

)
=

∫ ∞

0
𝑓𝑍𝑖 (𝑡) (𝑥)

∏
𝑘≠𝑖

P
(
𝑍𝑘 (𝑡) > 𝑥

)
𝑑𝑥

=

∫ ∞

0
𝜆𝑖𝑒
−𝜆𝑖𝑥

∏
𝑘≠𝑖

𝑒−𝜆𝑘𝑥𝑑𝑥

=
𝜆𝑖∑𝑁
𝑘=1 𝜆𝑘

.

(6.8)

This completes the proof. □

Using Lemma 1, we next show that if the parameter 𝛼 is set to be large enough,

then in any particular time-slot, Fresh-CSMA will make the same scheduling de-

cision as the max-weight policy with high probability.

Theorem 15. Given any 𝛿 ∈ (0, 1) and 𝐴1(𝑡), ..., 𝐴𝑁 (𝑡); if we set 𝛼 ≥ (𝑁 − 1) 1−𝛿
𝛿

,

then the following holds

P

(
𝜋𝐹𝑟𝑒𝑠ℎ−𝐶𝑆𝑀𝐴 (𝑡) = 𝜋𝑚𝑤 (𝑡)

)
≥ 1 − 𝛿. (6.9)

Here, 𝜋𝑚𝑤 (𝑡) is the max-weight scheduling decision given by (6.5), while

𝜋𝐹𝑟𝑒𝑠ℎ−𝐶𝑆𝑀𝐴 (𝑡) is the scheduling decision made by Fresh-CSMA.

Proof. We divide the proof into two parts.

Case 1: The expression argmax
𝑗∈[𝑁]

(
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

)
has a unique maximum. Let this

maximum be the source 1 without loss of generality. Then, the max-weight de-

cision is to schedule source 1. Since we have assumed all the weights 𝑤𝑖 to be

positive integers and the AoIs 𝐴𝑖 (𝑡) are integers by definition, so the quantities
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𝑤𝑖𝐴
2
𝑖
(𝑡) are also positive integers and the following must hold:

𝑤1𝐴
2
1(𝑡) − 𝑤𝑖𝐴

2
𝑖 (𝑡) ≥ 1,∀𝑖 ≠ 1. (6.10)

Note that in the special case of 𝑤𝑖 = 1,∀𝑖, (6.10) holds when the AoIs across the

different sources are unique.

Now, applying Lemma 1, we can calculate the following probability

P

(
𝜋𝐹𝑟𝑒𝑠ℎ−𝐶𝑆𝑀𝐴 (𝑡) = 1

)
=

𝛼𝑤1𝐴
2
1 (𝑡)

𝑁∑
𝑗=1
𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

=
1

1 +∑𝑁
𝑖=2 𝛼

𝑤𝑖𝐴
2
𝑖
(𝑡)−𝑤1𝐴

2
1 (𝑡)

≥ 1
1 + (𝑁 − 1)𝛼−1

≥ 1 − 𝛿.

(6.11)

The first inequality follows by using (6.10) while the second inequality follows

due to the fact that 𝛼 ≥ (𝑁 − 1) 1−𝛿
𝛿

.

Case 2: The expression argmax
𝑗∈[𝑁]

(
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

)
has multiple maxima. Suppose that

the set of maxima is given by the nodes {1, ..., 𝑘}. Then, the max-weight policy

will choose one of these sources to be scheduled. We want to lower bound the

probability that Fresh-CSMA chooses a node from within this set. To do so, we

first make a similar observation as in the case above.

𝑤1𝐴
2
1(𝑡) − 𝑤 𝑗 𝐴

2
𝑗 (𝑡) ≥ 1,∀ 𝑗 = 𝑘 + 1, ..., 𝑁. (6.12)
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Using Lemma 1, we calculate the probability of interest

P

(
𝜋𝐹𝑟𝑒𝑠ℎ−𝐶𝑆𝑀𝐴 (𝑡) ∈ {1, ..., 𝑘}

)
=

𝑘𝛼𝑤1𝐴
2
1 (𝑡)

𝑁∑
𝑗=1
𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

=
𝑘

𝑘 +∑𝑁
𝑖=𝑘+1 𝛼

𝑤𝑖𝐴
2
𝑖
(𝑡)−𝑤1𝐴

2
1 (𝑡)

≥ 1
1 + (𝑁 − 𝑘)𝛼−1

≥ 1 − 𝛿.

(6.13)

As before, the first inequality follows by using (6.12) while the second inequality

follows due to the fact that 𝛼 ≥ (𝑁 − 1) 1−𝛿
𝛿

. This completes the proof. □

Next, we show that our idealized Fresh-CSMA protocol has the same theoret-

ical long-term performance guarantees as the max-weight policy.

Theorem 16. Given any set of integer weights 𝑤1, ..., 𝑤𝑁 , if we set 𝛼 >(
(𝑁−1)∑𝑁

𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

)
, then the following holds:

∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑐𝑠𝑚𝑎
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

≤ 2. (6.14)

Here, �̄�𝑐𝑠𝑚𝑎
𝑖

is the average AoI for source 𝑖 under the Fresh-CSMA policy while

�̄�
𝑜𝑝𝑡

𝑖
is the average AoI of source 𝑖 under an optimal policy 𝜋𝑜𝑝𝑡 that solves the

age minimization problem (6.3).

Proof. Consider the linear Lyapunov function as defined below:

𝐿 (𝑡) ≜
𝑁∑︁
𝑖=1

√
𝑤𝑖𝐴𝑖 (𝑡). (6.15)
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We can define the one-slot Lyapunov drift Δ(𝑡) ≜ 𝐿 (𝑡 + 1) − 𝐿 (𝑡). The main chal-

lenge in proving the performance bound above, is to first show an intermediate

result relating the Lyapunov drift of the Fresh-CSMA policy to that of the optimal

stationary randomized policy described by (6.4).

Lemma 10. Consider any 𝐴𝑡 = {𝐴1, ..., 𝐴𝑁 (𝑡)}. Let Δ𝑐𝑠𝑚𝑎 (𝑡) be the one-slot Lya-

punov drift of the Fresh-CSMA policy and Δ𝑠𝑟 (𝑡) be the one-slot Lyapunov drift of

the optimal stationary randomized policy. Then, the following holds:

E

[
Δ𝑐𝑠𝑚𝑎 (𝑡)

����𝐴𝑡

]
≤ E

[
Δ𝑠𝑟 (𝑡)

����𝐴𝑡

]
,∀𝐴𝑡. (6.16)

Proof. We first calculate an expression for the drift of the Fresh-CSMA policy. Re-

call that 𝑟 𝑗 (𝑡) ≜ P
(
𝜋𝐴𝑜𝐼−𝐶𝑀𝑆𝐴 (𝑡) = 𝑗

)
and is given by (6.7).

E

[
Δ𝑐𝑠𝑚𝑎 (𝑡)

����𝐴𝑡

]
=

𝑁∑︁
𝑗=1

𝑟 𝑗 (𝑡)
(
√
𝑤 𝑗 +

∑︁
𝑖≠ 𝑗

√
𝑤𝑖 (𝐴𝑖 (𝑡) + 1)

)
−

𝑁∑︁
𝑗=1

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

=

𝑁∑︁
𝑗=1

√
𝑤 𝑗 −

𝑁∑︁
𝑗=1

𝑟 𝑗 (𝑡)
√
𝑤 𝑗 𝐴 𝑗 (𝑡).

(6.17)

Repeating the above steps for the optimal stationary randomized policy, we

get:

E

[
Δ𝑠𝑟 (𝑡)

����𝐴𝑡

]
=

𝑁∑︁
𝑗=1

√
𝑤 𝑗 −

𝑁∑︁
𝑗=1

𝜋∗𝑗
√
𝑤 𝑗 𝐴 𝑗 (𝑡). (6.18)

Recall that 𝜋∗
𝑗

are scheduling probabilities for the optimal stationary randomized

policy, given by (6.4).

Consider the difference between (6.17) and (6.18)
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E

[
Δ𝑐𝑠𝑚𝑎 (𝑡)

����𝐴𝑡

]
− E

[
Δ𝑠𝑟 (𝑡)

����𝐴𝑡

]
=

𝑁∑︁
𝑗=1

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

(
𝜋∗𝑗 − 𝑟 𝑗 (𝑡)

)
=

𝑁∑︁
𝑗=1

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

( √
𝑤 𝑗

𝑁∑
𝑖=1

√
𝑤𝑖

− 𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

𝑁∑
𝑖=1
𝛼𝑤𝑖𝐴

2
𝑖
(𝑡)

) (6.19)

Note that we are only interested in the sign of (6.19), so we can instead look at

𝑁∑︁
𝑗=1

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

(
√
𝑤 𝑗 (

𝑁∑︁
𝑖=1

𝛼𝑤𝑖𝐴
2
𝑖
(𝑡)) − 𝛼𝑤 𝑗 𝐴

2
𝑗
(𝑡) (

𝑁∑︁
𝑖=1

√
𝑤𝑖)

)
=

𝑁∑︁
𝑗=1

𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

( 𝑁∑︁
𝑖=1

𝑤𝑖𝐴𝑖 (𝑡) −
√
𝑤 𝑗 𝐴 𝑗 (𝑡)

𝑁∑︁
𝑖=1

√
𝑤𝑖

)
=

𝑁∑︁
𝑗=1

𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

( 𝑁∑︁
𝑖=1

√
𝑤𝑖

(√
𝑤𝑖𝐴𝑖 (𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

) )
(6.20)

Consider without loss of generality that sources are numbered such that
√
𝑤1𝐴1(𝑡) ≥

√
𝑤2𝐴2(𝑡) ≥ ... ≥ √𝑤𝑁𝐴𝑁 (𝑡). This automatically implies that source 1 has the

largest value of
√
𝑤 𝑗 𝐴 𝑗 (𝑡) among all sources.

Case 1: First we consider the case when Source 1 is the unique max-weight

scheduling decision, i.e. 𝜋𝑚𝑤 (𝑡) = argmax
𝑗∈[𝑁]

(
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

)
= 1. Since we have assumed

weights 𝑤𝑖 ∈ Z+ and AoIs 𝐴𝑖 (𝑡) are also positive integers, the above equation im-

plies that

𝑤1𝐴
2
1(𝑡) − 𝑤𝑖𝐴

2
𝑖 (𝑡) ≥ 1,∀𝑖 ≠ 1. (6.21)

This is because 𝑤𝑖𝐴2
𝑖
(𝑡) ∈ Z+ for all sources 𝑖. Further, note that 𝑓 (𝑥) =

√
𝑥 is

Lipschitz for 𝑥 ∈ [1,∞)with the Lipschitz constant 0.5. Applying this fact to (6.21),

we get
√
𝑤1𝐴1(𝑡) −

√
𝑤𝑖𝐴𝑖 (𝑡) ≥ 0.5,∀𝑖 ≠ 1. (6.22)
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Next, we define the following quantities

𝛾 𝑗 ≜

( 𝑁∑︁
𝑖=1

√
𝑤𝑖

(√
𝑤𝑖𝐴𝑖 (𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

) )
. (6.23)

Using (6.22), it is easy to see that 𝛾1 ≤ −0.5
∑𝑁
𝑖=1
√
𝑤𝑖. We will bound the rest of the

values 𝛾𝑖 in comparison to 𝛾1.

𝛾 𝑗 =

( 𝑁∑︁
𝑖=1

√
𝑤𝑖

(√
𝑤𝑖𝐴𝑖 (𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

) )
≤

(
√
𝑤1(
√
𝑤1𝐴1(𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡))

+
𝑗−1∑︁
𝑖=2

√
𝑤𝑖

(√
𝑤1𝐴1(𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

)
+

𝑁∑︁
𝑖= 𝑗

√
𝑤𝑖

(√
𝑤𝑖𝐴𝑖 (𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

) )
≤

∑𝑁
𝑖=1
√
𝑤𝑖

√
𝑤 𝑗

(
√
𝑤 𝑗

(√
𝑤1𝐴1(𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

)
+

∑︁
𝑖≠ 𝑗

√
𝑤𝑖

(√
𝑤1𝐴1(𝑡) −

√
𝑤𝑖𝐴𝑖 (𝑡)

) )
≤

∑𝑁
𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

��𝛾1
��,∀ 𝑗 ≠ 1.

(6.24)

Using this result, (6.21) and the definition of 𝛾𝑖 we get

𝑁∑︁
𝑗=1

𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

( 𝑁∑︁
𝑖=1

√
𝑤𝑖

(√
𝑤𝑖𝐴𝑖 (𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

) )
≤ 𝛼𝑤1𝐴

2
1 (𝑡)

(
𝛾1

)
+

𝑁∑︁
𝑖=2

𝛼𝑤2𝐴
2
2 (𝑡)

∑𝑁
𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

��𝛾1
��

≤ 𝛼𝑤1𝐴
2
1 (𝑡)

��𝛾1
��( − 1 + 𝛼−1 (𝑁 − 1)∑𝑁

𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

)
.

(6.25)
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Clearly, choosing

𝛼 >

( (𝑁 − 1)∑𝑁
𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

)
(6.26)

is sufficient to guarantee that (6.25) is negative and hence (6.19) is negative. Thus,

for this choice of 𝛼, we observe that

E

[
Δ𝐶𝑆𝑀𝐴 (𝑡)

����𝐴𝑡

]
≤ E

[
Δ𝑆𝑅 (𝑡)

����𝐴𝑡

]
,∀𝐴𝑡. (6.27)

Case 2: Sources 1, ..., 𝑘 are all solutions to the following maximization

𝜋𝑚𝑤 (𝑡) = argmax
𝑗∈[𝑁]

(
𝑤 𝑗 𝐴

2
𝑗 (𝑡)

)
∈ {1, ..., 𝑘}. (6.28)

We can repeat the exact same analysis as Case 1, but starting with

𝑤1𝐴
2
1(𝑡) − 𝑤𝑖𝐴

2
𝑖 (𝑡) ≥ 1,∀𝑖 ∈ {𝑘 + 1, ..., 𝑁}. (6.29)

This is because 𝑤𝑖𝐴2
𝑖
(𝑡) ∈ Z+ for all sources 𝑖. Further, note that 𝑓 (𝑥) =

√
𝑥 is

Lipschitz for 𝑥 ∈ [1,∞)with the Lipschitz constant 0.5. Applying this fact to (6.21),

we get
√
𝑤1𝐴1(𝑡) −

√
𝑤𝑖𝐴𝑖 (𝑡) ≥ 0.5,∀𝑖 ∈ {𝑘 + 1, ..., 𝑁}. (6.30)

Using these inequalities above, we obtain

𝛾 𝑗 ≤
∑𝑁
𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

��𝛾1
��,∀ 𝑗 ∈ {𝑘 + 1, ..., 𝑁}. (6.31)
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Finally putting all of the inequalities together, we get

𝑁∑︁
𝑗=1

𝛼
𝑤 𝑗 𝐴

2
𝑗
(𝑡)

( 𝑁∑︁
𝑖=1

√
𝑤𝑖

(√
𝑤𝑖𝐴𝑖 (𝑡) −

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

) )
≤ 𝑘𝛼𝑤1𝐴

2
1 (𝑡)

(
𝛾1

)
+

𝑁∑︁
𝑖=𝑘+1

𝛼𝑤𝑘+1𝐴
2
𝑘+1 (𝑡)

∑𝑁
𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

��𝛾1
��

≤ 𝛼𝑤1𝐴
2
1 (𝑡)

��𝛾1
��( − 𝑘 + 𝛼−1 (𝑁 − 𝑘)

∑𝑁
𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

)
.

(6.32)

Again, choosing

𝛼 >

( (𝑁 − 1)∑𝑁
𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

)
(6.33)

is sufficient to guarantee that (6.32) is negative and hence (6.19) is negative. This

completes the proof of Lemma 10. □

Next, we proceed to the proof of Theorem 16. The one-slot drift for the opti-

mal stationary randomized policy is given by -

E

[
Δ𝑠𝑟 (𝑡)

����𝐴𝑡

]
=

𝑁∑︁
𝑗=1

𝜋∗𝑗

(
√
𝑤 𝑗 +

∑︁
𝑖≠ 𝑗

√
𝑤𝑖 (𝐴𝑖 (𝑡) + 1)

)
−

𝑁∑︁
𝑗=1

√
𝑤 𝑗 𝐴 𝑗 (𝑡)

=

𝑁∑︁
𝑗=1

√
𝑤 𝑗 −

𝑁∑︁
𝑗=1

𝜋∗𝑗
√
𝑤 𝑗 𝐴 𝑗 (𝑡).

(6.34)

Putting together (6.16) and (6.34), we get

E

[
Δ𝑐𝑠𝑚𝑎 (𝑡)

����𝐴𝑡

]
≤

𝑁∑︁
𝑗=1

√
𝑤 𝑗 −

𝑁∑︁
𝑗=1

𝜋∗𝑗
√
𝑤 𝑗 𝐴 𝑗 (𝑡). (6.35)
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Summing (6.35) for 𝑡 = 1, ..., 𝑇 and taking expectation, we get

E

[
𝐿 (𝑇 + 1) − 𝐿 (1)

]
≤

𝑇

𝑁∑︁
𝑗=1

√
𝑤 𝑗 −

𝑁∑︁
𝑗=1

E

[ 𝑇∑︁
𝑡=1

√
𝑤 𝑗𝜋

∗
𝑗 𝐴 𝑗 (𝑡)

]
.

(6.36)

Substituting the expression for 𝜋∗
𝑗

from (6.4), rearranging and dividing by 𝑇 , we

get

1

𝑇
( ∑𝑁

𝑗=1
√
𝑤 𝑗

)E[ 𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑤 𝑗 𝐴 𝑗 (𝑡)
]
≤

𝑁∑︁
𝑗=1

√
𝑤 𝑗 −

1
𝑇
E

[
𝐿 (𝑇 + 1) − 𝐿 (1)

]
.

(6.37)

Since 𝐿 (𝑇 + 1) ≥ 0 and 𝑤 𝑗

𝜋∗
𝑗
=
√
𝑤 𝑗 (

∑𝑁
𝑗=1
√
𝑤 𝑗 ), we can further simplify the equaiton

above to
1
𝑇
E

[ 𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝑤 𝑗 𝐴 𝑗 (𝑡)
]
≤

𝑁∑︁
𝑗=1

𝑤 𝑗

𝜋∗
𝑗

+ E[𝐿 (1)]
𝑇

. (6.38)

Now, we observe that the average AoI of a source 𝑗 under the optimal stationary

randomized policy is given by �̄�𝑠𝑟
𝑗

= 1
𝜋∗
𝑗
, as shown in [15]. Using this fact and

taking limsup as 𝑇 goes to infinity in the equation above, we get

𝑁∑︁
𝑗=1

𝑤 𝑗 �̄�
𝑐𝑠𝑚𝑎
𝑗 (𝑡) ≤

𝑁∑︁
𝑗=1

𝑤 𝑗 �̄�
𝑠𝑟
𝑗 . (6.39)

We also know from [15] that stationary randomized policies can be at most a fac-

tor of two away from optimal. Thus, we get∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑐𝑠𝑚𝑎
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

≤
∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑠𝑟
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

≤ 2. (6.40)

This completes the proof.
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□

The factor of two optimality guarantee that we have derived is the same per-

formance guarantee as the one shown for the max-weight policy in [126] and

better than the factor of four bound derived in [15, 53]. Viewing Theorems 15

and 16 together, we conclude that the idealized Fresh-CSMA policy can replicate

the behavior of the max-weight policy, both at each time-slot with high proba-

bility and in terms of long-term average AoI over the entire time-horizon if 𝛼 >

max
(
(𝑁 − 1) 1−𝛿

𝛿
,
(𝑁−1)∑𝑁

𝑖=1
√
𝑤𝑖

min 𝑗
√
𝑤 𝑗

)
. In Section 6.5, we will see via simulations that this

holds true even for small values of 𝛼, i.e. 𝛼 doesn’t need to be very large for Fresh-

CSMA to be able to mimic the max-weight policy.

6.3 Near-Realistic Multiple Access Model

Until now, we have looked at distributed multiple access with idealized assump-

tions. In this section, we discuss the Fresh-CSMA protocol under a more realistic

version of multiple access.

Our discussion is based on the IEEE 802.11 standard for wireless LAN [127].

This standard defines a distributed coordination function (DCF) for sharing ac-

cess to the wireless medium based on a CSMA/CA style protocol. The 802.11

standard divides time into the basic units of mini-slots, where each mini-slot is

the duration of time needed by a source to detect packet transmission from any

another source, i.e. perform channel sensing. A typical value for the mini-slot

duration in IEEE 802.11 g/n/ac protocols is 9𝜇𝑠.

Fig. 6-2 describes the key elements of our near-realistic model. First, we con-

sider that the backoff timers for source 𝑖 at frame 𝑡, denoted by 𝐷𝑖 (𝑡), can only

run in multiples of minislot durations. This relaxes Assumptions 2 and 3, since

the timers are now discrete, with finite precision and limited by the amount of

time required to do channel sensing. Further, since timers are no longer contin-
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Figure 6-2: Events within frame 𝑡 in the near-realistic multiple access model. Four
sources choose backoff timers 𝐷1(𝑡), ..., 𝐷4(𝑡). Source 1’s timer runs out first, after
which it transmits its update for 𝑀 minislots.

uous, the probability of collision is also non-zero and has an effect on the average

age.

As before, we assume that backoff timers for each source begin at the begin-

ning of each frame and the source/sources whose timers run out first get to trans-

mit an entire application layer update. Thus, we have not relaxed Assumption 4

in this model. We assume that a mini-slot takes 1
𝑀

units of time. So, transmitting

an entire update takes 𝑀 mini-slots. We will discuss in Section 6.5 that for typical

values of update sizes and transmission rates 𝑀 tends to be large (around 10000).

Finally, we also relax Assumption 5 and consider the amount of time that the

channel remains idle in each frame. Consider the example frame depicted in

Fig. 6-2 with four backoff timers𝐷1(𝑡), ..., 𝐷4(𝑡). The timer of source 1, denoted by

𝐷1(𝑡), runs out first. Then, source 1 transmits its update for 𝑀 minislots. Thus the

total duration of frame 𝑡 is 𝐷1(𝑡) + 𝑀 minislots or alternatively 1 + 𝐷1 (𝑡)
𝑀

. However,

for the first 𝐷1(𝑡) minislots in frame 𝑡, the channel remained idle. We term this
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the backoff overhead. In general, given 𝐷 (𝑡) ≜ min
𝑖∈[𝑁]

𝐷𝑖 (𝑡), frame 𝑡 takes 𝑀 + 𝐷 (𝑡)

mini-slots or alternatively 1 + 𝐷 (𝑡)
𝑀

units of time to complete. Compared to the

idealized setting, the time 𝐷 (𝑡)
𝑀

is the backoff overhead of the protocol, since it is

the time that the channel must remain idle before any source starts transmitting.

We take this overhead into account while calculating AoIs.

Our new model thus relaxes Assumptions 2, 3 and 5, while allowing us to study

the effect of collision probabilities and backoff overheads on the AoI. For this

near-realistic multiple access model, we provide a modified version of the Fresh-

CSMA protocol below. As before, We use 𝑡 to denote the discrete frames and 𝜏

to denote time within each frame, denoting the number of minislots that have

passed within this frame.

Algorithm 11: Near-Realistic Fresh-CSMA
Input : parameters 𝛼 > 1, 𝛽 > 1, 𝐵 ∈ Z+

1 while 𝑡 ∈ 1, ..., 𝑇 do
2 for 𝑖 ∈ 1, ..., 𝑁 do

3 Generate a random variable 𝑍𝑖 (𝑡) ∼ exp
(
𝛼𝑤𝑖𝐴

2
𝑖
(𝑡)

)
.

4 Map it to a non-negative integer timer,

𝐷𝑖 (𝑡) = max
(
𝐵 +

⌊
log𝛽

(
𝑍𝑖 (𝑡)

) ⌋
, 0

)
.

5 while 𝜏 < 𝐷𝑖 (𝑡) do
6 Stay silent
7 end
8 if Channel is free then
9 Transmit

10 end
11 end
12 end

The key difference between the protocol described in Alg. 11 and Alg. 10 is

mapping the continuous random variables 𝑍𝑖 (𝑡) to the discrete variables 𝐷𝑖 (𝑡) ∈

{0 ∪ Z+}, which denote the number of mini-slots source 𝑖 should count down

before transmitting.
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6.3.A Collisions

Note that when using the protocol above, a packet collision happens if two sources

𝑖 and 𝑗 choose the same discrete backoff timers 𝐷𝑖 (𝑡) and 𝐷 𝑗 (𝑡) at frame 𝑡 while

also being the first timers to count down to zero, i.e. argmin
𝑗∈[𝑁]

(
𝐷 𝑗 (𝑡)

)
is not unique.

When a collision happens, we assume that the base station fails to receive an up-

date from any of the transmitting sources and the entire frame is wasted. The

following theorem analyzes the probability of the event that two sources 𝑖 and 𝑗

choose different backoff timers at time 𝑡.

Theorem 17. Let the AoIs at time 𝑡 be given by 𝐴1(𝑡), ..., 𝐴𝑁 (𝑡) and 𝜆𝑖 ≜ 𝛼𝑤𝑖𝐴
2
𝑖
(𝑡).

Then probability that any two sources 𝑖 and 𝑗 choose different backoff timers

𝐷𝑖 (𝑡) and 𝐷 𝑗 (𝑡) can be lower bounded as follows

P

(
𝐷𝑖 (𝑡) ≠ 𝐷 𝑗 (𝑡)

)
≥ 𝜓

(
𝐵, 𝛽, 𝜆𝑖, 𝜆 𝑗

)
+ 𝜓

(
𝐵, 𝛽, 𝜆 𝑗 , 𝜆𝑖

)
(6.41)

where, the function 𝜓(·) is given by:

𝜓
(
𝐵, 𝛽, 𝜆𝑖, 𝜆 𝑗

)
=
𝜆𝑖𝑒
−𝛽−𝐵 (𝜆𝑖+𝛽𝜆 𝑗 )

𝜆𝑖 + 𝛽𝜆 𝑗

+
(
𝑒𝜆𝑖𝛽

−𝐵 − 1
)
𝑒−𝛽

−𝐵 (𝜆𝑖+𝛽𝜆 𝑗 ) .

Proof. Consider the exponential random variables generated by the two sources

𝑍𝑖 (𝑡) ∼ exp(𝜆𝑖) and 𝑍 𝑗 (𝑡) ∼ exp(𝜆 𝑗 ), where 𝜆𝑖 = 𝛼𝑤𝑖𝐴
2
𝑖
(𝑡) ,∀𝑖. Suppose that the

following inequality holds:

𝑍 𝑗 (𝑡) >


𝛽𝑍𝑖 (𝑡), if 𝑍𝑖 (𝑡) > 𝛽−𝐵

𝛽−𝐵+1, otherwise.
(6.42)
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Then it is easy to see that

max
(
𝐵 +

⌊
log𝛽

(
𝑍𝑖 (𝑡)

) ⌋
, 0

)
< max

(
𝐵 +

⌊
log𝛽

(
𝑍 𝑗 (𝑡)

) ⌋
, 0

)
which in turn implies that 𝐷𝑖 (𝑡) < 𝐷 𝑗 (𝑡). Switching 𝑖 and 𝑗 in the inequality (6.42),

we get 𝐷𝑖 (𝑡) > 𝐷 𝑗 (𝑡). Note that the two events are disjoint.

Thus, we can lower-bound our probability of interest as follows:

P(𝐷𝑖 (𝑡) ≠ 𝐷 𝑗 (𝑡)) ≥ P
(
𝑍 𝑗 (𝑡) > min{𝛽𝑍𝑖 (𝑡), 𝛽−𝐵+1}

)
+ P

(
𝑍𝑖 (𝑡) > min{𝛽𝑍 𝑗 (𝑡), 𝛽−𝐵+1}

) (6.43)

Simplifying the first term on the RHS, we get

P

(
𝑍 𝑗 (𝑡) > min{𝛽𝑍𝑖 (𝑡), 𝛽−𝐵+1}

)
=

∫ 𝛽−𝐵

0
𝜆𝑖𝑒
−𝜆𝑖𝑥𝑒−𝜆 𝑗 𝛽

−𝐵+1
𝑑𝑥 +

∫ ∞

𝛽−𝐵
𝜆𝑖𝑒
−𝜆𝑖𝑥𝑒−𝜆 𝑗 𝛽𝑥𝑑𝑥

=
𝜆𝑖𝑒
−𝛽−𝐵 (𝜆𝑖+𝛽𝜆 𝑗 )

𝜆𝑖 + 𝛽𝜆 𝑗
+

(
𝑒𝜆𝑖𝛽

−𝐵 − 1
)
𝑒−𝛽

−𝐵 (𝜆𝑖+𝛽𝜆 𝑗 ) ≜ 𝜓
(
𝐵, 𝛽, 𝜆𝑖, 𝜆 𝑗

)
.

(6.44)

By the same argument, the second term on the RHS of (6.43) is equal to𝜓
(
𝐵, 𝛽, 𝜆 𝑗 , 𝜆𝑖

)
.

Thus, we get

P(𝐷𝑖 (𝑡) ≠ 𝐷 𝑗 (𝑡)) ≥ 𝜓
(
𝐵, 𝛽, 𝜆𝑖, 𝜆 𝑗

)
+ 𝜓

(
𝐵, 𝛽, 𝜆 𝑗 , 𝜆𝑖

)
. (6.45)

This completes the proof. □

As a corollary of this proof, note that

𝜕

𝜕𝐵
𝜓
(
𝐵, 𝛽, 𝜆𝑖, 𝜆 𝑗

)
= 𝜆 𝑗 𝛽

−𝐵+1 log(𝛽)
(
𝑒𝜆𝑖𝛽

−𝐵 − 1
)
𝑒−𝛽

−𝐵 (𝜆𝑖+𝛽𝜆 𝑗 ) ≥ 0.
(6.46)
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The last inequality follows since 𝛽 > 1 and 𝜆𝑖 > 0. Thus, the probability that two

sources choose different backoff timers increases with the parameter 𝐵. In the

limit as 𝐵→∞, we get

lim
𝐵→∞

P(𝐷𝑖 (𝑡) ≠ 𝐷 𝑗 (𝑡)) ≥
𝜆𝑖

𝜆𝑖 + 𝛽𝜆 𝑗
+

𝜆 𝑗

𝜆 𝑗 + 𝛽𝜆𝑖
. (6.47)

Thus, when 𝐵 is large, the probability that two sources occupy different mini-

slots decreases with 𝛽. Putting the two observations together, we should choose a

large value for 𝐵 and a small value for 𝛽 (close to 1) to reduce collisions. However,

for finite 𝐵, (6.47) does not hold and the value of 𝛽 cannot be too small, since in

that case, all the discrete timers will map to the first minislot leading to collisions

in almost every frame.

In the analysis above, we used the probability of two sources occupying differ-

ent backoff timers as a proxy for analyzing the collision probability directly, since

a tight bound for the actual collision probability is too involved to compute. In

Section 6.5, we will see via simulations how the actual collision probability varies

with the parameters 𝐵 and 𝛽.

6.3.B Backoff Timer Overhead

Next, we analyze the overhead of the backoff timers in the Fresh-CSMA protocol

in the near-realistic model. This is unlike the idealized setting where we ignored

the time taken by the backoff timers to count down, during which the channel

remains idle.

Recall that the quantity 𝐷 (𝑡)
𝑀

is what we defined as the backoff overhead of a

protocol at time 𝑡, since it is the time that the channel must remain idle before

any source starts transmitting. The following theorem provides an upper-bound

on the expected backoff overhead in frame 𝑡.
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Theorem 18. Let the AoIs at time 𝑡 be 𝐴1(𝑡), ..., 𝐴𝑁 (𝑡) and 𝜆𝑖 ≜ 𝛼𝑤𝑖𝐴
2
𝑖
(𝑡). Then,

the expected idle-time of the Fresh-CSMA protocol at time 𝑡 can be upper-

bounded by
1
𝑀
E
[
𝐷 (𝑡)

]
≤ 1
𝑀
+
Γ
(
0, 𝜆𝛽−𝐵

)
𝑀 log(𝛽) . (6.48)

Here Γ(·, ·) is the upper incomplete gamma function and 𝜆 ≜
∑
𝑖∈[𝑁] 𝜆𝑖.

Proof. Let 𝑍 (𝑡) = min𝑖∈[𝑁] 𝑍𝑖 (𝑡). Since 𝑍 (𝑡) is the minimum of 𝑁 independent ex-

ponential random variables, it is also exponentially distributed with the parame-

ter 𝜆 =
∑
𝑖∈[𝑁] 𝜆𝑖. Using this, we provide an upper bound for E[𝐷 (𝑡)] below.

E
[
𝐷 (𝑡)

]
= E

[
min
𝑖∈[𝑁]

(
𝐷𝑖 (𝑡)

) ]
= E

[
min
𝑖∈[𝑁]

(
max

(
𝐵 +

⌊
log𝛽

(
𝑍𝑖 (𝑡)

) ⌋
, 0

) )]
≤ 𝐵 + 1 + E

[
max

(
log𝛽

(
min
𝑖∈[𝑁]

𝑍𝑖 (𝑡)
)
,−𝐵

)]
≤ 𝐵 + 1 + E

[
max

(
log𝛽

(
𝑍 (𝑡)

)
,−𝐵

)]
≤ 1 +

Γ
(
0, 𝜆𝛽−𝐵

)
log(𝛽) .

(6.49)

The last inequality follows from the fact thatE
[

max(log(𝑍 (𝑡)),−𝐵)
]
= −𝐵+Γ

(
0, 𝜆𝛽−𝐵

)
,

where Γ(·, ·) is the upper incomplete gamma function given by

Γ(𝑠, 𝑥) =
∫ ∞

𝑥

𝑡𝑠−1𝑒−𝑡𝑑𝑡. (6.50)

□
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Note that the function Γ(0, 𝑥) is given by

Γ(0, 𝑥) =
∫ ∞

𝑥

𝑡−1𝑒−𝑡𝑑𝑡. (6.51)

From (6.51), note that Γ(0, 𝑥) is decreasing in 𝑥. Thus, for a fixed value of 𝛽, the

expected idle time increases as 𝐵 increases. The exact dependence on 𝛽 is more

tricky to evaluate, so we again consider the case of large 𝐵 as an alternative. First,

we make the following observation for the gamma function of large values of 𝐵

Γ(0, 𝜆𝛽−𝐵) ≈ 𝐵 log(𝛽) − 𝑙𝑜𝑔(𝜆) − 𝛾, (6.52)

where 𝛾 ≈ 0.58 is the Euler-Mascheroni constant. Using this, it is easy to see that

for large values of 𝐵, the expected idle time upper bound is approximately equal

to 1 + 𝐵 − log𝛽 (𝜆). Thus, the backoff overhead also increases with 𝛽, given a fixed

large value of 𝐵.

Together this implies that we need to choose a relatively small value of 𝐵 and

a small value of 𝛽 (close to 1) to reduce idle time. Importantly, there is a trade-

off between the collision probability and the backoff overhead depending on the

choice of the parameter 𝐵. A larger value of 𝐵 reduces the probability of collision

but at the cost of higher backoff overhead.

Theorem 18 also allows us to compute an approximate upper-bound for the

average idle time over the entire horizon. Suppose the average AoI of source 𝑖

under the Fresh-CSMA policy in the near-realistic model is denoted by �̄�𝑖. Us-

ing the average AoIs, we define the following quantity: 𝜆 ≜
∑𝑁
𝑖=1 𝛼

𝑤𝑖 �̄�
2
𝑖 . Then, an

approximate upper-bound of the average backoff overhead per frame over the

entire time-horizon �̄�𝑢𝑏 can be obtained as follows:

�̄�𝑢𝑏 ≈ 1
𝑀
+
Γ
(
0, 𝜆𝛽−𝐵

)
𝑀 log(𝛽) . (6.53)
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In Section 6.5, we will see via simulations that this is a good bound for the average

backoff overhead in the near-realistic setting.

6.4 Going Beyond Age of Information

While Age of Information has been used as a proxy for optimizing monitoring

and control costs in real-time settings over the past decade, a recent line of work

starting with [128] has proposed a new and more general metric to measure the

impact of stale information on underlying real-time monitoring tasks. This met-

ric is called the Age of Incorrect Information (AoII), and it has been used to study

the monitoring of Markov sources in various kinds of settings [128, 129, 130, 131].

The key idea behind the AoII metric is that takes into account the actual error

or distortion between the estimate of the process being monitored at the remote

monitor and the actual value of the process at present. More precisely, suppose

that 𝑋 (𝑡) represents the state of the process that needs to be monitored and let

�̂� (𝑡) be the estimate of the process at time 𝑡 at the remote monitor. Let the func-

tion 𝑔(𝑋 (𝑡), �̂� (𝑡))measure the distortion or error between the actual process and

its remote estimate and let 𝑓 (·) be a monotone increasing function. Let 𝑉 (𝑡) rep-

resent the most recent time instant up to the current time 𝑡 at which this distor-

tion was zero. The AoII is then defined as

𝐴𝑜𝐼𝐼 (𝑡) ≜ 𝑓
(
𝑡 −𝑉 (𝑡)

)
𝑔(𝑋 (𝑡), �̂� (𝑡)). (6.54)

Note that if the actual process and its estimate stay the same for some time

despite no new updates being delivered to the monitor, the AoII remains zero

while the AoI keeps increasing. Thus, the AoII can be viewed as a more accurate

metric to measure information uncertainty at the monitor.

Now, consider a setting with 𝑁 sources, sending updates to the base station,
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where only one source can talk to the base station at any given time. Unlike the

setting we have analyzed until now, we will now look at minimizing the sum

of AoIIs instead of weighted AoIs. Each source is tracking a process 𝑋𝑖 (𝑡), 𝑖 ∈

{1, ..., 𝑁} and the base station maintains estimates for each process �̂�𝑖 (𝑡), 𝑖 ∈ {1, ..., 𝑁}.

Using these estimates and 6.54, we can compute the AoIIs for each source, de-

noted by 𝐴𝑜𝐼𝐼𝑖 (𝑡), 𝑖 ∈ {1, ..., 𝑁}. We want to design a scheduling policy that mini-

mizes the long term time-average of the AoIIs, i.e.

argmin
𝜋

(
lim sup
𝑇→∞

[
1
𝑇

1
𝑁

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝐴𝑜𝐼𝐼𝑖 (𝑡)
] )
. (6.55)

A good candidate policy to solve this problem would be to schedule the source

with the highest AoII at each time-slot.

𝜋𝑚𝑎𝑥−𝐴𝑜𝐼𝐼 (𝑡) = argmax
𝑗∈[𝑁]

(
𝐴𝑜𝐼𝐼 𝑗 (𝑡)

)
. (6.56)

However, a crucial drawback of the AoII metric is the fact that its computation

requires knowledge of the actual current state of the process 𝑋 (𝑡). Thus, AoIIs

cannot be computed at the base station beforehand and a centralized multiple

source scheduling policy like (6.56) cannot be implemented in reality, since the

base station does not know the actual current states of each process. The CSMA

based protocols we develop in this chapter provide a way out of this dilemma.

Sources can compute their own AoIIs, since they have access to 𝑋 (𝑡), �̂� (𝑡), 𝑡 and

𝑉 (𝑡). Then, a CSMA style policy that uses AoIIs instead of the AoIs can be im-

plemented to pick the source that has the highest AoII and get better monitor-

ing performance. We illustrate how to incorporate AoII into a CSMA style policy

using the idealized version of Fresh-CSMA in Alg. 12. The near-realistic version

follows immediately, by replacing the weighted AoI with the AoII.

For the setting involving monitoring Markov sources, the following choice of
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Algorithm 12: Idealized Fresh-CSMA with AoIIs
Input : parameters 𝛼 > 1, 𝛿 ≪ 1

1 while 𝑡 ∈ 1, ..., 𝑇 do
2 for 𝑖 ∈ 1, ..., 𝑁 do

3 Generate a random timer 𝑍𝑖 (𝑡) ∼ exp
(
𝛼𝐴𝑜𝐼𝐼𝑖 (𝑡)

)
.

4 while 𝜏 < 𝛿𝑍𝑖 (𝑡) do
5 Stay silent
6 end
7 if Channel is free then
8 Transmit
9 end

10 end
11 end

the functions 𝑓 (·) and 𝑔(·) is typically considered in literature

𝐴𝑜𝐼𝐼 (𝑡) =
(
𝑡 −𝑉 (𝑡)

)
1{𝑋 (𝑡)≠�̂� (𝑡)} . (6.57)

For this specific AoII metric, we can show a result similar to Theorem 15 in the

case of weighted AoI.

Theorem 19. Given any 𝛿 ∈ (0, 1) and 𝐴𝑜𝐼𝐼1(𝑡), ..., 𝐴𝑜𝐼 𝐼𝑁 (𝑡) evolving according

to 6.57; if we set 𝛼 ≥ (𝑁 − 1) 1−𝛿
𝛿

, then the following holds

P

(
𝜋𝐶𝑆𝑀𝐴−𝐴𝑜𝐼𝐼 (𝑡) = 𝜋𝑚𝑎𝑥−𝐴𝑜𝐼𝐼 (𝑡)

)
≥ 1 − 𝛿. (6.58)

Here, 𝜋𝑚𝑎𝑥−𝐴𝑜𝐼𝐼 (𝑡) is the scheduling decision given by (6.56), while 𝜋𝐶𝑆𝑀𝐴−𝐴𝑜𝐼𝐼 (𝑡)

is the scheduling decision made by the idealized Fresh-CSMA policy that uti-

lizes AoIIs (Alg. 12)

Proof. The proof is identical to that of Theorem 15 - all we need to do is replace
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the weighted AoIs with the AoIIs. The evolution of AoII according to 6.57 ensures

that all the AoII values are integers. As before, we divide the proof into two parts.

Case 1: The expression argmax
𝑗∈[𝑁]

(
𝐴𝑜𝐼𝐼 𝑗 (𝑡)

)
has a unique maximum. Let this

maximum be the source 1 without loss of generality. Then, the max-AoII decision

is to schedule source 1. Since we know that AoIIs are integers by (6.57), so the

following must hold:

𝐴𝑜𝐼𝐼1(𝑡) − 𝐴𝑜𝐼𝐼𝑖 (𝑡) ≥ 1,∀𝑖 ≠ 1. (6.59)

Now, applying Lemma 1, we can calculate the following probability

P

(
𝜋𝐶𝑆𝑀𝐴−𝐴𝑜𝐼𝐼 (𝑡) = 1

)
=

𝛼𝐴𝑜𝐼𝐼1 (𝑡)

𝑁∑
𝑗=1
𝛼𝐴𝑜𝐼𝐼 𝑗 (𝑡)

=
1

1 +∑𝑁
𝑖=2 𝛼

𝐴𝑜𝐼𝐼𝑖 (𝑡)−𝐴𝑜𝐼𝐼1 (𝑡)

≥ 1
1 + (𝑁 − 1)𝛼−1

≥ 1 − 𝛿.

(6.60)

The first inequality follows by using (6.59) while the second inequality follows

due to the fact that 𝛼 ≥ (𝑁 − 1) 1−𝛿
𝛿

.

Case 2: The expression argmax
𝑗∈[𝑁]

(
𝐴𝑜𝐼𝐼 𝑗 (𝑡)

)
has multiple maxima. Suppose that

the set of maxima is given by the nodes {1, ..., 𝑘}. Then, the max-AoII policy will

choose one of these sources to be scheduled. We want to lower bound the prob-

ability that Fresh-CSMA with AoIIs chooses a node from within this set. To do so,

we first make a similar observation as in the case above.

𝐴𝑜𝐼𝐼1(𝑡) − 𝐴𝑜𝐼𝐼 𝑗 (𝑡) ≥ 1,∀ 𝑗 = 𝑘 + 1, ..., 𝑁. (6.61)
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Using Lemma 1, we calculate the probability of interest

P

(
𝜋𝐶𝑆𝑀𝐴−𝐴𝑜𝐼𝐼 (𝑡) ∈ {1, ..., 𝑘}

)
=

𝑘𝛼𝐴𝑜𝐼𝐼1 (𝑡)

𝑁∑
𝑗=1
𝛼𝐴𝑜𝐼𝐼 𝑗 (𝑡)

=
𝑘

𝑘 +∑𝑁
𝑖=𝑘+1 𝛼

𝐴𝑜𝐼𝐼𝑖 (𝑡)−𝐴𝑜𝐼𝐼1 (𝑡)

≥ 1
1 + (𝑁 − 𝑘)𝛼−1

≥ 1 − 𝛿.

(6.62)

As before, the first inequality follows by using (6.61) while the second inequality

follows due to the fact that 𝛼 ≥ (𝑁 − 1) 1−𝛿
𝛿

. This completes the proof. □

Theorem 19 shows that on a per-time-slot basis, Fresh-CSMA based on AoII

matches the scheduling decisions made by the hypothetical centralized max-AoII

policy (6.56), which cannot be implemented in reality. In Section 6.5, we will

show via simulations that the Fresh-CSMA policy based on AoII can achieve lower

time-average AoII across the network than even the centralized max-weight pol-

icy that utilizes only AoIs. This suggests that in certain settings distributed poli-

cies that utilize monitoring error can outperform centralized policies that have

to make scheduling decisions while being oblivious to the actual processes.

6.5 Numerical Results

To verify the theoretical results developed in earlier sections, we now provide nu-

merical results from packet level simulations of all the policies. Throughout this

section, we assume that the minislot is 9𝜇𝑠 long (a typical value in IEEE 802.11

implementations [127]) and an update packet from a each source is roughly 600

kB.

Thus, at a data rate of 54 Mbps (which is the highest data rate for IEEE 802.11g
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Figure 6-3: Normalized average AoI vs system size (𝑁) for symmetric weights.

Figure 6-4: Normalized average AoI vs system size (𝑁) for unequal weights.
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in the 2.4 GHz band [127]), it takes 10000 minislots to finish sending an update.

This, in turn, implies that we set 𝑀 = 10000 for our simulations, i.e. each packet

takes 10000 minislots to transmit.

Each experiment involves calculating the time-average of AoI, AoII, collision

probabilities or backoff timer overheads. All of these time-averages are reported

for experiments that involve 100000 application layer update packets being trans-

mitted. Unless otherwise specified, we set𝛼 = 1+ 1∑
𝑖 𝑤𝑖

, 𝛽 = 1.1+max(log(log(𝑁)), 0),

and 𝐵 = 250 + 𝑁 for the near-realistic CSMA implementation.

First, we consider the weighted sum average age minimization problem in

the setting with equal weights, i.e. 𝑤𝑖 = 1,∀𝑖. Fig. 6-3 plots the performance of

two centralized policies - the optimal stationary randomized policy and the max-

weight policy, as well as two distributed policies - the idealized Fresh-CSMA pro-

tocol and the near-realistic Fresh-CSMA protocol, as the the number of sources

in the system 𝑁 increases. We plot the normalized weighted sum average age,

i.e. 1
𝑁

∑
𝑖 𝑤𝑖 �̄�𝑖 for each policy. We observe that the idealized Fresh-CSMA protocol

matches the performance of the max-weight policy almost exactly, as expected

from Theorems 15 and 16. Further, the near-realistic Fresh-CSMA protocol has

only a small performance gap to the max-weight policy (due to collisions and

backoff overheads) but still significantly outperforms the optimal stationary ran-

domized policy.

Next, we consider the same setting but with asymmetric weights. We set the

weight for source 𝑘 to be
√
𝑘 , i.e. 𝑤𝑘 =

√
𝑘 , and plot the normalized average age

as the system size 𝑁 increases in Fig. 6-4. We make the same observations re-

garding the performance of the policies as in the case of symmetric weights and

further note that while our theoretical results needed weights 𝑤𝑖 to be integers,

that assumption is not required to get good performance in practice.

Next, we consider how the performance of our proposed protocols depends

on the parameter 𝛼. Theorems 15 and 16 suggest that 𝛼 needs to be very large
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Figure 6-5: Normalized average AoI vs 𝛼.
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to guarantee performance of Fresh-CSMA close to max-weight. However, we

find that Fresh-CSMA starts performing very similarly to max-weight even at very

small values of 𝛼, as show in Fig. 6-5 for a symmetric system with 𝑁 = 10 sources.

This is important in practice since large values of 𝛼 could lead to integer over-

flows. As expected, the performance gap narrows as 𝛼 increases.

Next, we look at the near-realistic Fresh-CSMA protocol in detail. In Fig. 6-

6, we plot the collision probability for this protocol in a symmetric system with

𝑁 = 10 sources as 𝛽 is varied, while fixing all other parameters. We observe that

for 𝛽 < 1.05, the collision probability is 1 since all timers map to the first mini-

slot. However, as we increase 𝛽 beyond 1.05, we observe that the collision prob-

ability first drops to 0.01 and then gradually increases to 0.06. In Fig. 6-7, we

plot the collision probability as 𝐵 is varied, while fixing all other parameters. For

small values of 𝐵, the collision probability is almost 1, but as 𝐵 increases beyond a

threshold, the collision probability stays roughly constant at around 0.015. These

results are in line with what we expected from Theorem 17.

Next, we look at the average overhead of near-realistic Fresh-CSMA. Fig. 6-8

and Fig. 6-9 plot the average overhead (in number of minislots) as the parame-

ters 𝛽 and 𝐵 are varied, respectively. As expected from Theorem 18, the overhead

increases with both 𝛽 and 𝐵. We note that our approximate expression for the

overhead (6.53) is a good upper-bound that can be used in practice for system

design. Also, we observe that the overhead remains relatively small (2-3%) com-

pared to the update size, which takes 10000 minislots.

Finally, we consider the AoII metric discussed in Section 6.4. In this context,

we look at the setting where each source is a symmetric two-state Markov chain,

evolving independently over time (see Fig. 6-10). We set the transition probability

𝑞𝑖 for each source to be 0.05 and implement the following three policies - central-

ized max-weight that uses AoI, distributed idealized Fresh-CSMA that uses AoII

and distributed near-realistic Fresh-CSMA that uses AoII. For the CSMA imple-
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Figure 6-6: Probability of collisions vs 𝛽

Figure 6-7: Probability of collisions vs 𝐵
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Figure 6-8: Average backoff overhead vs 𝛽

Figure 6-9: Average backoff overhead vs 𝐵
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Figure 6-10: Symmetric two-state Markov chain representing the 𝑖th source.

Figure 6-11: Normalized average AoII vs system size 𝑁 when symmetric Markov
sources
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Figure 6-12: Normalized average AoI vs system size 𝑁 when monitoring symmet-
ric Markov sources

mentations, we set the parameters as follows 𝛼 = 2.1, 𝛽 = 1.05 + log(log(𝑁)) and

𝐵 = 250 + ⌊𝑁/4⌋.

Fig. 6-11 plots the time-average AoII performance of the three policies as we

increase the number of sources in the system 𝑁 . Here AoII is computed using

(6.57). Clearly, the distributed CSMA versions deliver much better AoII perfor-

mance than the centralized policy that is only able to utilize AoIs. Specifically, for

93 source, the idealized Fresh-CSMA with AoII performs about 45% better than

AoI max-weight and the near-realistic version of Fresh-CSMA with AoII performs

about 35% better than AoI max-weight. This suggests that our CSMA based de-

sign is general and can easily accommodate other kinds of information freshness

and distortion metrics.

Interestingly, the gain in AoII performance comes at the cost of higher AoIs.

In Fig. 6-12, we plot the long-term time-average AoIs for the same three policies

while monitoring Markov sources as the number of source 𝑁 is increased. We
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observe that the distributed CSMA versions have higher AoIs than the central-

ized AoI max-weight. So, Fresh-CSMA based on AoII trades off better monitoring

performance/error measured in terms of AoII with worse performance in terms

of standard AoI.

6.6 Summary

In this chapter, we designed a distributed CSMA protocol to minimize weighted

sum Age of Information in single-hop wireless networks. We showed that under

idealized assumptions, our proposed protocol can closely replicate the behavior

of centralized policies known to be nearly optimal. We also analyzed our protocol

under a near-realistic medium access model and showed how system parameter

choices affect packet collisions and overhead. Our simulation results confirm

that our protocol works well in practice and that the performance gap between

the idealized version and the near-realistic version of Fresh-CSMA is small. We

have also extended some of our results to AoII, a more general information fresh-

ness metric. Two important directions of work involve further analysis of our

protocols beyond AoI and AoII to metrics such as monitoring error or real-time

control costs, and implementing the protocol in real systems to compare perfor-

mance against standard WiFi, as done in Chapter 8.
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Chapter 7

Optimizing Age of Information with

Correlated Sources

While AoI is a proxy for measuring the cost of having out-of-date information, it

may not properly reflect the impact of stale information on system performance.

For example, a source might have a high AoI but the monitor might have a good

estimate of its state because another source monitoring phenomena nearby sent

updates very recently.

Many prior works have looked at optimizing information freshness metrics

under different assumptions on the interference constraints [15, 17], arrival pro-

cesses [132, 21], costs of AoI [16, 1], and update sizes [21, 3]. However, all of these

works assume that the information across different sources is decoupled or un-

correlated, i.e. update deliveries from one source only influence the AoI evolu-

tion for that source. This is not strictly true in practice. Many monitoring and

control applications involve observing information from correlated or coupled

sources. Examples include: vehicular networks where vehicles communicate

with their neighbors, multi-agent robotics tasks such as mapping where robots

sense overlapping information, and wireless sensor networks where sensors col-

lect spatially correlated updates or exchange information locally.
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In such applications, updates from one source often contain information about

the current state of other sources. The focus of this chapter is to understand to

role of correlation in designing scheduling policies for information freshness in

wireless networks. In Sec. 7.1, we formulate a simple model to analyze weighted-

sum average AoI in the presence of correlated sources under wireless interference

constraints. In Sec. 7.2, we use this model to design scheduling policies that can

utilize the correlation structure between sources. We formulate a convex prob-

lem that solves for the optimal stationary randomized policy and show that it is

factor-2 optimal in general. We then develop a Lyapunov drift-based max-weight

policy that works well in practice and show that it is also constant factor optimal.

In Sec. 7.3, we provide scaling results that allow us to understand how the degree

of correlation affects information freshness. In Sec. 7.4, we discuss some alter-

nate ways to model correlation and show that the average AoI for these models

remains the same as our proposed model under randomized policies. This high-

lights the robustness of our results to the way in which correlation is modeled. In

Sec. 7.5, we consider the setting where correlation parameters are unknown and

possibly time-varying. Here, we propose a heuristic algorithm called EMA-max-

weight based on exponential moving averages. This algorithm attempts to both

keep track of the correlation parameters and adjust the scheduling decisions in

an online manner so as to keep information fresh at the base station. Finally, in

Sec. 7.6, we show numerically that our proposed policies outperform scheduling

schemes that ignore the correlation structure inherent in the problem and verify

our theoretical results.

To the best of our knowledge, our paper [7] on which this chapter is based,

was the first one to consider coupled AoI evolution. In our model, the AoI of other

sources can drop whenever a source that is correlated with them transmits, since

a correlated update can reduce uncertainty about the state of other sources. This

couples the AoI evolution of sources and leads to fundamentally new scheduling
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Figure 7-1: Sources share information locally and send updates to a base station.

design and scaling results.

7.1 System Model

Consider 𝑁 sources monitoring phenomena of interest and sending updates to a

base station. We assume discrete slotted time and assume that only one source

can transmit to the base station successfully in any given time-slot.

We consider a simple model for the correlation structure between sources. At

the beginning of every time-slot, each source 𝑖 collects information about its own

state. In addition, with probability 𝑝𝑖 𝑗 , the update collected by source 𝑖 also con-

tains information about the current state of source 𝑗 , for example due to over-

lapping fields of view between source 𝑖 and 𝑗 or due to spatial correlation be-

tween the processes being monitored. We assume that this information sharing

or overlap happens independently across each ordered pair of sources and over

time. Clearly, a value of 𝑝𝑖 𝑗 = 0 suggests that there is never any information at 𝑖

about 𝑗 , while a value of 𝑝𝑖 𝑗 = 1 suggests that 𝑖 has complete information about

𝑗 at all times. The overall correlation structure between the sources is described
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by a matrix P which contains the pairwise correlation probabilities. Figure 7-1

depicts an example of such a system, where sources have access to some local

information about their neighbors and send updates to a base station. Note that

𝑝𝑖𝑖 = 1 for all sources, since each source is assumed to have information about

itself. However, our model can also capture situations where a source fails to ob-

tain information about itself occasionally, by setting 𝑝𝑖𝑖 < 1.

When a particular source transmits to the base station, it sends information

about its own state to the base station. However, this update will also contain

shared information about some of its neighboring sources. Thus, updates sent

to the base station are correlated: they can contain information about multiple

sources at a time. For example, when source 4 transmits to the base station in

the setup depicted in Figure 7-1, it transmission will contain information not just

about itself but also about source 1 with probability 𝑝41, source 5 with probability

𝑝45 and source 8 with probability 𝑝48.

While we focus on the broadcast interference setting with reliable channels

to develop our results and insights, our work can be easily extended to general

interference constraints and unreliable channels.

7.1.A Correlated Age of Information

Let 𝑢𝑖 (𝑡) be an indicator variable that denotes whether source 𝑖 transmits to the

base station in time-slot 𝑡. Further let 𝑋𝑖 𝑗 (𝑡) be an indicator variable that denotes

whether the current update at source 𝑖 contains common information about source

𝑗 in time-slot 𝑡. From our discussion above, we know that 𝑋𝑖 𝑗 (𝑡) ∼ 𝐵𝑒𝑟𝑛(𝑝𝑖 𝑗 ) inde-

pendent across pairs (𝑖, 𝑗) and also over time.

Given this correlation structure, the Age of Information for source 𝑖 at the base
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Figure 7-2: Correlated AoI evolution.

station evolves as follows:

𝐴𝑖 (𝑡 + 1) =


1, if

∑𝑁
𝑗=1 𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡) = 1

𝐴𝑖 (𝑡) + 1, otherwise.
(7.1)

The equation (7.1) implies that the AoI of source 𝑖 at the base station drops to

1 whenever 𝑖 itself transmits a new update or 𝑗 transmits a new update contain-

ing information about 𝑖. Figure 7-2 depicts this AoI evolution. Note that (7.1) also

assumes that sources only transmit their freshest update, i.e. an older update

containing more information about neighbors might not be sent since it was re-

placed by a newer update with lesser information about neighbors in the next

time-slot.

As in the previous chapter, our metric of interest will be average AoI, which is

simply the long-term time-average of the AoI process. Specifically,

�̄�𝑖 ≜ lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡). (7.2)
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7.1.B Goal

Given the probabilistic correlation structure and the AoI evolution described above,

we want to design a wireless scheduling policy that minimizes the weighted sum

of average AoI across all sources:

argmin
𝜋

(
lim sup
𝑇→∞

[
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑤𝑖𝐴𝑖 (𝑡)
] )
. (7.3)

Here, the weights {𝑤1, 𝑤2, ..., 𝑤𝑁 } are positive real numbers that denote the

relative importance of each source to the overall monitoring or control applica-

tion.

7.2 Scheduling Policies

To solve the optimization problem (7.3), we first study stationary randomized

policies in Sec. 7.2.A. These policies are amenable to analysis and provide key

structural insights. Then, in Sec. 7.2.B, we develop a Lyapunov drift-based max-

weight policy and prove performance bounds for it using the structure of the op-

timal stationary randomized policy.

7.2.A Stationary Randomized Policies

A stationary randomized policy is described by a probability distribution 𝜋 over

the set of sources, where 𝜋𝑖 denotes the probability of choosing source 𝑖. In every

time-slot, the policy chooses which source gets to transmit by sampling from the

distribution 𝜋 and scheduling decisions are sampled independently across time-

slots.

The following theorem relates the average AoI to the scheduling distribution

𝜋.
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Theorem 20. Consider any stationary randomized policy with scheduling prob-

abilities 𝜋. If
∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖 > 0 for a source 𝑖, then the average AoI for this source is

given by:

�̄�𝑖 ≜ lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡) =
1∑𝑁

𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖
. (7.4)

If
∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖 = 0 for some source 𝑖, then the base station never receives any infor-

mation regarding this source and its average AoI �̄�𝑖 is unbounded.

Proof. See Appendix 7.8.A. □

Using the above theorem, we can formulate an optimization problem to find

optimal stationary randomized policies.

Lemma 11. Consider the space of stationary randomized policies Π𝑠𝑟 . Finding a

policy 𝜋∗ ∈ Π𝑠𝑟 that minimizes the weighted sum of average AoI is equivalent to

solving the following optimization problem:

argmin
𝜋

𝑁∑︁
𝑖=1

𝑤𝑖∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖

s.t.
𝑁∑︁
𝑖=1

𝜋𝑖 ≤ 1,

𝜋𝑖 ≥ 0,∀𝑖 ∈ [𝑁] .

(7.5)

Proof. Using the definition of average AoI (7.2) and the expression derived in

Theorem 20, we can simplify (7.3) to obtain (7.5). The constraints simply rep-

resent a valid stationary randomized policy given the assumption that only one

source can transmit in any given time-slot. □

Next, we discuss how to solve the optimization problem (7.5).

Theorem 21. The optimization problem (7.5) is convex in the probability distri-

bution 𝜋. Further, if the optimal solution 𝜋∗ to (7.5) is such that 𝜋∗
𝑖
> 0,∀𝑖 ∈ 𝑆
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where 𝑆 ⊆ [𝑁] is a subset of sources, then 𝜋∗ can be found by solving the following

system of nonlinear equations:

𝑁∑︁
𝑗=1

𝑝𝑖 𝑗𝑤 𝑗 �̄�
2
𝑗 = 𝜆,∀𝑖 ∈ 𝑆, and (7.6)∑︁

𝑖∈𝑆
𝜋∗𝑖 = 1. (7.7)

Here, 𝜆 > 0 is a constant and �̄�𝑖 denotes the average AoI for source 𝑖 under the policy

𝜋∗ computed using (7.4).

Proof. See Appendix 7.8.B. □

Theorem 21 establishes two key results. First, since the optimization problem

(7.5) is convex, it can be solved efficiently by using a standard solver such as cvx

[133]. Second, if the optimal policy involves scheduling some subset of sources

a positive fraction of the time, then the quantity
∑𝑁
𝑗=1 𝑝𝑖 𝑗𝑤 𝑗 �̄�

2
𝑗

is constant across

all sources in this subset. This can be contrasted with the equivalent result in the

uncorrelated case, where the quantity 𝑤 𝑗 �̄�
2
𝑗

is constant across all sources [15]. We

also recover the well known result from the uncorrelated case, i.e. 𝜋∗
𝑖
∝ √𝑤𝑖 if we

set P = I.

Until now, we have only discussed optimization within the space of station-

ary randomized policies. The following theorem shows that this class is not too

restrictive, i.e. the best stationary randomized policies are at-most a factor of two

away from the best possible scheduling policy in general.

Theorem 22. Consider an optimal stationary randomized policy 𝜋∗ that is a solu-

tion to (7.5) and an optimal policy 𝜋𝑜𝑝𝑡 that solves the general problem (7.3). Let

Ā∗ denote the average AoIs under 𝜋∗ and Ā𝑜𝑝𝑡 denote the average AoIs under 𝜋𝑜𝑝𝑡 .

Then, ∑𝑁
𝑖=1 𝑤𝑖 �̄�

∗
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

≤ 2. (7.8)
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Proof. See Appendix 7.8.C. □

7.2.B Max-Weight Policy

Motivated by the Lyapunov drift-based policies proposed in [15, 17, 28], we next

look at an alternative way to design scheduling policies that take correlation into

account. Consider the quadratic Lyapunov function given by:

𝐿 (𝑡) ≜
𝑁∑︁
𝑖=1

𝑤𝑖𝐴
2
𝑖 (𝑡). (7.9)

Then, the quadratic max-weight policy chooses a scheduling decision that mini-

mizes the one-slot Lyapuonv drift in every time-slot.

𝜋𝑞𝑚𝑤 (𝑡) = argmin
𝑖∈[𝑁]

E

[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

����A(𝑡)] . (7.10)

This simplifies to:

𝜋𝑞𝑚𝑤 (𝑡) = argmin
𝑖∈[𝑁]

𝑁∑︁
𝑗=1

𝑤 𝑗 𝑝𝑖 𝑗 𝐴 𝑗 (𝑡)
(
𝐴 𝑗 (𝑡) + 2

)
. (7.11)

The following theorem provides an upper-bound on the performance of the

quadratic max-weight policy.

Theorem 23. Consider the quadratic max-weight policy𝜋𝑞𝑚𝑤 and an optimal pol-

icy 𝜋𝑜𝑝𝑡 that solves the general problem (7.3). Let Ā𝑞𝑚𝑤 denote the average AoIs

under 𝜋𝑞𝑚𝑤 and Ā𝑜𝑝𝑡 denote the average AoIs under 𝜋𝑜𝑝𝑡 . Then,∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑞𝑚𝑤

𝑖∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑜𝑝𝑡

𝑖

≤ 4. (7.12)

Proof. See Appendix 7.8.D. □
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Observe that computing the decisions in the equation above does not require

us to explicitly solve for the optimal stationary randomized policy 𝜋∗. Next, we

will develop a max-weight policy that utilizes the optimal stationary randomized

policy 𝜋∗ to get even better performance guarantees.

Consider an optimal stationary randomized policy 𝜋∗ that solves the opti-

mization problem (7.5). Using 𝜋∗, we define the quantities:

𝛼𝑖 ≜
𝑤𝑖∑𝑁

𝑗=1 𝜋
∗
𝑗
𝑝 𝑗𝑖
,∀𝑖 ∈ [𝑁] . (7.13)

We use the quantities 𝛼𝑖 to construct the following linear Lyapunov function:

𝐿 (𝑡) ≜
𝑁∑︁
𝑖=1

𝛼𝑖𝐴𝑖 (𝑡). (7.14)

Then, our new max-weight policy chooses a scheduling decision that minimizes

the one-slot Lyapuonv drift in every time-slot.

𝜋𝑚𝑤 (𝑡) = argmin
𝑖∈[𝑁]

E

[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

����A(𝑡)] . (7.15)

The structure of the max-weight policy can be obtained by simplifying the

expression in (7.15) above:

𝜋𝑚𝑤 (𝑡) = argmin
𝑖∈[𝑁]

( 𝑁∑︁
𝑗=1

𝑝𝑖 𝑗𝛼 𝑗 𝐴 𝑗 (𝑡)
)

= argmin
𝑖∈[𝑁]

(
𝛼𝑖𝐴𝑖 (𝑡) +

∑︁
𝑗≠𝑖

𝑝𝑖 𝑗𝛼 𝑗 𝐴 𝑗 (𝑡)
)
.

(7.16)

Note that the max-weight policy proposed in [28, Sec. 3.2.4] for the uncorrelated

setting schedules the source 𝑖 with the highest value of
√
𝑤𝑖𝐴𝑖 (𝑡). On the other

hand, our correlated max-weight policy (7.16) adds up the “value” of each possi-

ble AoI reduction including correlated updates, weighted by the of probability of
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correlation.

The following theorem shows that the new max-weight policy defined in (7.16)

enjoys a similar factor-2 optimality guarantee as the optimal stationary random-

ized policy which is better than the factor-4 guarantee for the quadratic max-

weight policy described in (7.11).

Theorem 24. Consider the max-weight policy 𝜋𝑚𝑤 and an optimal policy 𝜋𝑜𝑝𝑡 that

solves the general problem (7.3). Let Ā𝑚𝑤 denote the average AoIs under 𝜋𝑚𝑤 and

Ā𝑜𝑝𝑡 denote the average AoIs under 𝜋𝑜𝑝𝑡 . Then,∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑚𝑤
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

≤ 2. (7.17)

Proof. See Appendix 7.8.E. □

While we show a factor of two optimality result above, we will show via simu-

lations in Sec. 7.6 that the max-weight policy performs almost as well as the theo-

retical lower bound derived in Appendix 7.8.C and also outperforms the optimal

stationary randomized policy in practice.

7.3 Scaling

In this section, we consider how correlation improves information freshness as

network sizes scale. For deriving our scaling results, we will focus on the equal

weights setting, i.e. 𝑤𝑖 = 1
𝑁
,∀𝑖 ∈ [𝑁]. However, similar scaling results will hold

qualitatively for general weight configurations.

The lemma below characterizes the minimum average AoI of a network with 𝑁

uncorrelated sources with equal weights. We will use this as a comparison base-

line to see how the degree of correlation improves AoI.
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Lemma 12. Consider 𝑁 uncorrelated sources sending updates to a base station. Let

the scheduling weights for all sources be equal, i.e. 𝑤𝑖 = 1
𝑁
,∀𝑖. Then, the optimal

weighted sum AoI satisfies the following:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖
=
𝑁 + 1

2
∼ Θ(𝑁). (7.18)

Proof. In the setting with symmetric weights, the greedy or the round-robin pol-

icy is known to be optimal [15]. It is easy to see that the average AoI under

the round-robin policy is simply the average of the sequence 1, 2, ..., 𝑁 which is
𝑁+1

2 . □

7.3.A An Upper Bound

We derive a general upper bound for the weighted-sum average AoI by repre-

senting information about the correlation matrix P for 𝑁 sources with a directed

graph.

Consider a correlation threshold 𝑝 ∈ (0, 1). We are interested in the entries

of the correlation matrix above this threshold, i.e the pairs of sources that are

significantly correlated. To do so, we construct a directed graph G(𝑉, 𝐸) on the

set of sources. For every ordered pair of sources (𝑖, 𝑗) such that 𝑝𝑖 𝑗 > 𝑝, we add

the edge (𝑖, 𝑗) to the graph G. Trivially, every node in G must have a self-loop,

since 𝑝𝑖𝑖 = 1,∀𝑖. We will show that the average AoI of the network can be upper-

bounded by analyzing the properties of these constructed graphs. To derive this

upper bound, we first need to define the notion of a vertex cover for a directed

graph.

Vertex Cover: Given a directed graph G(𝑉, 𝐸), a vertex cover is defined to be a

set of vertices 𝑆 ⊆ 𝑉 if for every vertex 𝑖 ∈ 𝑉 , there exists a vertex 𝑗 ∈ 𝑆 such that

the edge ( 𝑗 , 𝑖) is in the set 𝐸 .

The following theorem relates the average AoI to the size of the minimum ver-
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tex cover of the graph G constructed using the correlation threshold 𝑝.

Theorem 25. Consider 𝑁 sources with the correlation matrix P. Given a correla-

tion threshold 𝑝 > 0, construct a directed graph G that represents pairs of source

with correlation higher than the threshold. Assuming equal weights 𝑤𝑖 = 1
𝑁
,∀𝑖, the

optimal weighted sum average AoI satisfies:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖
≤ 𝑁𝑐𝑜𝑣

𝑝
, (7.19)

where 𝑁𝑐𝑜𝑣 is the size of a minimum vertex cover for the graph G and 𝑝 is the cor-

relation threshold.

Proof. See Appendix 7.8.F. □

This upper-bound allows us to relate the degree of correlation or information

sharing between the sources to the average AoI. If a small subset of sources, of say

size 𝑂 (log 𝑁), are highly correlated with all other sources in the network, then

average AoI with correlation is only 𝑂 (log 𝑁) as well. In this case, correlation

leads to a significant reduction in the average AoI compared to the uncorrelated

case, which is 𝑂 (𝑁) as shown in Lemma 12. If no such small vertex coverings

exist or if correlation probabilities are very small, then a scheduler likely needs to

communicate with a large fraction of all the sources and the average AoI would

grow as𝑂 (𝑁), similar to the uncorrelated case.

Further, we show that it is possible to construct a correlation matrix such that

the average AoI of the correlated max-weight given by (7.16) is 𝑂 (1) while the

average AoI of the uncorrelated max-weight policy from [15] is Θ(𝑁). This means

that the performance gap between policies that consider and ignore correlation

can grow linearly with the size of the network.

Theorem 26. Given any number of sources 𝑁 with equal weights 1
𝑁

, we consider

two policies - the correlated max-weight policy 𝜋𝑚𝑤 proposed in Sec. 7.2.B and the
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max-weight policy that does not take correlation into account 𝜋𝑢 which was pro-

posed in [15]. Let the average AoI of a source 𝑖 under 𝜋𝑚𝑤 be �̄�𝑚𝑤
𝑖

and under 𝜋𝑢 be

�̄�𝑢
𝑖

. Then, there exists a correlation matrix P ∈ [0, 1]𝑁×𝑁 such that the following

holds: ∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑢
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑚𝑤
𝑖

∼ Ω(𝑁). (7.20)

Proof. Consider 𝑁 sources with the following correlation matrix:

P =



1 𝑝 𝑝 · · · 𝑝

𝑝 1 0 · · · 0

𝑝 0 1 · · · 0
...

... · · · 1
...

𝑝 0 0 · · · 1


. (7.21)

The stationary randomized policy 𝜋 (1) that puts all scheduling weight on source

1 achieves a weighted-sum AoI of:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�𝑖 =
1
𝑁
+

𝑁∑︁
𝑖=2

1
𝑁

1
𝑝
≤ 1
𝑝
. (7.22)

Thus, the optimal stationary randomized policy 𝜋∗ also achieves weighted-sum

average AoI that is at-least as good as that of 𝜋 (1). This implies:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
∗
𝑖 ≤

1
𝑝
, (7.23)

where �̄�∗
𝑖

is the average AoI of source 𝑖 under the optimal stationary randomized

policy 𝜋∗. In Appendix 7.8.E, we show that the performance of the max-weight

policy is upper-bounded by the policy of the optimal stationary randomized pol-

icy. Thus, we get:
𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑚𝑤
𝑖 ≤

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
∗
𝑖 ≤

1
𝑝
, (7.24)
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where �̄�𝑚𝑤
𝑖

is the average AoI of source 𝑖 under the max-weight policy 𝜋𝑚𝑤 de-

scribed by (7.16).

Now consider the performance of the uncorrelated max-weight policy𝜋𝑢. Since

all the weights are symmetric, the optimal policy is greedy or max-AoI-first. In

Appendix 7.8.G, we show that the max-AoI-first policy behaves similar to a round-

robin policy on sources 2, ..., 𝑁 while occasionally scheduling source 1. Specifi-

cally, we derive a lower bound on the weighted-sum AoI under policy 𝜋𝑢:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑢
𝑖 ≥

(𝑁 − 1)2

2𝑁 − (𝑁 + 1) (1 − 𝑝)𝑁−1
. (7.25)

This bound holds under the assumtion that 𝑝 ≥ 1
𝑁−1 . Combining (7.24) and

(7.25), we get: ∑𝑁
𝑖=1 𝑤𝑖 �̄�

𝑢
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑚𝑤
𝑖

≥ 𝑝(𝑁 − 1)2

2𝑁 − (𝑁 + 1) (1 − 𝑝)𝑁−1
. (7.26)

Assuming 𝑝 to be a fixed constant that does not depend on 𝑁 completes the

proof. Note that a similar result also holds for 𝑝 scaling with 𝑁 , for example if

𝑝 ∼ 1
𝑁𝛽 , 𝛽 < 1 the performance gap is Ω(𝑁1−𝛽). □

The intuition behind this result is straightforward: if there is one source that

is correlated even by a small amount with all other sources then scheduling just

that source all the time should be sufficient. The gap in performance is achieved

by assuming that other sources are not correlated with each other.

Theorem 26 provides a key insight: the gain in performance cannot be ob-

tained by using policies that ignore correlation. It is necessary to design schedul-

ing policies that take the correlation structure into account, especially for corre-

lation graphs where the degree distribution is highly skewed. Next, we consider

scaling in the special case where the correlation matrix can be represented by

random geometric graphs. These graphs are commonly used to model wireless

sensors networks monitoring spatial phenomenon.
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7.3.B Random Geometric Graphs

Consider 𝑁 sources distributed uniformly at random on the unit square [0, 1]2.

Each source has information about itself, by definition. Thus 𝑝𝑖𝑖 = 1,∀𝑖. Further,

if the distance between sources 𝑖 and 𝑗 is less than a threshold 𝑟, then we set

𝑝𝑖 𝑗 = 𝑝 and 𝑝 𝑗𝑖 = 𝑝, otherwise we set 𝑝𝑖 𝑗 = 0 and 𝑝 𝑗𝑖 = 0. This leads to a symmetric

correlation matrix P. Constructing a graph that connects sources with correlation

leads to the random geometric graph G(𝑁, 𝑟).

The following theorem looks at the scaling of AoI under this geometric corre-

lation structure.

Theorem 27. Consider a symmetric correlation matrix generated by creating a

random geometric graph G(𝑁, 𝑟) on the two dimensional unit square and setting

correlation probabilities for neighbors to be 𝑝. Assuming equal weights 𝑤𝑖 = 1
𝑁
,∀𝑖,

the weighted sum average AoI satisfies:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖
≤ 2
𝑝𝑟2

. (7.27)

Proof. See Appendix 7.8.H. □

Note that the connectivity threshold of a random geometric graphs occurs at

𝑟 ∼ Θ

(√︃
log 𝑁
𝑁

)
. For this choice of 𝑟, we can see that the overall AoI of the network

is 𝑂
(

𝑁
𝑝 log 𝑁

)
. This leads to a factor of log 𝑁 reduction over the uncorrelated case

analyzed in Lemma 12, assuming 𝑝 is a constant. Further, if 𝑟 ∼ Θ(1), then the AoI

is also Θ(1) and there is an𝑂 (𝑁) reduction compared to the uncorrelated case.

7.4 Robustness

In this section, we consider a different way to model correlation between a set

of sources. We will show that for stationary randomized policies, this model is
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equivalent to our proposed model. Later, in Sec. 7.6, we will show via numerical

results that the scheduling policies designed in Sec. 7.2 also perform well for this

new correlation structure. This suggests that if the “amount of correlation” is the

same on average, then the AoI performance tends to be similar, regardless of how

correlation is modeled.

As before, consider a set of 𝑁 sources and a correlation matrix P with entries

𝑝𝑖 𝑗 ∈ [0, 1] that represent the amount of information shared at source 𝑖 about

source 𝑗 . However, instead of a Bernoulli random variable indicating whether 𝑖

either does or does not currently have information about 𝑗 , we now assume that

𝑖 always has a constant 𝑝𝑖 𝑗 fraction of information regarding the state of 𝑗 . In

other words, an update from 𝑖 can reduce the current uncertainty regarding 𝑗 by

a fraction of 𝑝𝑖 𝑗 . This correlation structure is convenient for modeling settings

where different sources are sensing information and have partially overlapping

ranges of sensing, for example cameras with overlapping fields of view as studied

in [71, 72]. Thus, 𝑝𝑖 𝑗 can be viewed as the fraction of source 𝑗 ’s range that source

𝑖 also covers.

Consequently, the evolution of AoI for this model differs from the one studied

in earlier sections. Let 𝑢𝑖 (𝑡) be indicator variables that denote whether source 𝑖

transmits in time-slot 𝑡 or not. Then, AoI for source 𝑖 evolves as follows:

𝐴𝑖 (𝑡 + 1) = (1 − 𝑝 𝑗𝑖)𝐴𝑖 (𝑡) + 1, if 𝑢 𝑗 (𝑡) = 1. (7.28)

The equation above formalizes the notion that uncertainty regarding source 𝑖

drops by a fraction 𝑝 𝑗𝑖, when 𝑗 sends an update.

The following theorem establishes the equivalence between this new model

and the one proposed in Sec. 7.1, under stationary randomized policies. In fact,

we prove the equivalence result for a much more general class of correlation

structures, where correlation is defined by i.i.d. random variables 𝑋𝑖 𝑗 (𝑡) ∈ [0, 1]
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such that E[𝑋𝑖 𝑗 (𝑡)] = 𝑝𝑖 𝑗 . Our original model assumes 𝑋𝑖 𝑗 (𝑡) ∼ 𝐵𝑒𝑟𝑛(𝑝𝑖 𝑗 ), while

the model proposed in this section assumes 𝑋𝑖 𝑗 (𝑡) = 𝑝𝑖 𝑗 and both of them belong

to this class of correlation structures.

Theorem 28. Consider 𝑁 sources and a correlation matrix P with the AoIs for each

source evolving according to:

𝐴𝑖 (𝑡 + 1) = 𝐴𝑖 (𝑡) + 1 −
( 𝑁∑︁
𝑗=1

𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡)
)
𝐴𝑖 (𝑡),∀𝑖, 𝑡. (7.29)

Here 𝑋 𝑗𝑖 (𝑡) are i.i.d random variables such that 𝑋 𝑗𝑖 (𝑡) ∈ [0, 1] and E[𝑋 𝑗𝑖 (𝑡)] =

𝑝 𝑗𝑖. Given any stationary randomized policy with scheduling probabilities 𝜋, if∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖 > 0 for a source 𝑖, then the average AoI for this source is given by:

�̄�𝑖 ≜ lim
𝑇→∞

E

[
1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡)
]
=

1∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖

. (7.30)

If
∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖 = 0 for some source 𝑖, then the base station never receives any infor-

mation regarding this source and its average AoI �̄�𝑖 is unbounded.

Proof. See Appendix 7.8.I. □

Observe that the expression for the average AoI is the same as the one derived

in Theorem 20. Thus the procedure to find the optimal stationary randomized

policy and the policy itself also remain the same. We will show later via simula-

tions that the performance of the max-weight policy is also similar for different

distributions of 𝑋 𝑗𝑖 (𝑡), which suggests that our analysis is fairly robust to the way

in which correlation is modeled.
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7.5 Learning The Correlation Matrix

Until now, we have focused on cases where the correlation structure is known in

advance and fixed over time, and we use this information to analyze and opti-

mize AoI. In this section, we consider the setting when the correlation matrix is

unknown and possibly varying with time.

7.5.A Online Setting

Learning the correlation matrix in an online setting where the P changes over

time, even slowly, is a challenging problem. This setting is of interest because

correlation between source tends to be time-varying in practice, especially in set-

tings involving mobility.

We want to implement a max-weight style policy that gradually updates its

policy parameters to be able to track changes in the environment. However, note

that the max-weight policy proposed in Sec. 7.2.B in (7.16) requires us to solve for

the optimal stationary randomized policy. Thus, whenever the correlation matrix

changes, we would have to recalculate 𝜋∗ and the Lyapunov function weights 𝛼𝑖.

To avoid this added computation, we will use the quadratic max-weight policy,

given by (7.11). Recall that this policy is based on a quadratic Lyapunov function

and does not require us to calculate the the optimal stationary randomized policy

𝜋∗ repeatedly as 𝑃 varies.

Algorithm 13 uses an exponential moving average to keep track of the correla-

tion probabilities and then runs the quadratic max-weight scheduler from (7.11)

using the estimated correlation matrix. We call this the EMA-max-weight policy.

Intuitively, if the probabilities change slowly over time, the exponential mov-

ing average estimate should be able to closely track the actual correlation matrix

and the EMA-max-weight policy would perform similar to a max-weight policy

that knows the entire sequence of correlation matrices in advance. We confirm
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Algorithm 13: Exponential Moving Average Max-Weight
Input : parameter 𝛼 > 0

1 Start by assuming no correlation, i.e. set

P̂(1) = I

2 while 𝑡 ∈ 1, ..., 𝑇 do
3 Run quadratic max-weight using P̂(𝑡):

𝑠 = argmin
𝑖∈[𝑁]

𝑁∑︁
𝑗=1

𝑤 𝑗 𝑝𝑖 𝑗 (𝑡)𝐴 𝑗 (𝑡)
(
𝐴 𝑗 (𝑡) + 2

)
.

4 Schedule source 𝑠 and receive correlated updates
5 Update AoIs for every source 𝑗 :

𝐴 𝑗 (𝑡 + 1) =
{

1, if 𝑠 sent an update about 𝑗 ,

𝐴 𝑗 (𝑡) + 1, otherwise.

6 Update the correlation matrix, for source 𝑠

𝑝𝑠 𝑗 (𝑡 + 1) =
{
(1 − 𝛼)𝑝𝑠 𝑗 (𝑡) + 𝛼, if 𝑠 sent an update about 𝑗 ,

(1 − 𝛼)𝑝𝑠 𝑗 (𝑡), otherwise.

For sources other than 𝑠:

𝑝𝑖 𝑗 (𝑡 + 1) = 𝑝𝑖 𝑗 (𝑡),∀𝑖 ≠ 𝑠.

7 end
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Figure 7-3: Average AoI vs network size 𝑁 for random geometric graphs.

that this is indeed the case via simulations in Sec. 7.6.

7.6 Numerical Results

First, we consider random geometric graphs and see how different scheduling

policies perform as the number of sources 𝑁 increases. In particular, we simulate

graphs G(𝑁, 𝑟) on the unit square [0, 1]2 where 𝑟 = 1.1
√︃

log 𝑁
𝑁

is slightly above the

connection threshold. For each pair of nodes (𝑖, 𝑗) in this graph, we set 𝑃𝑖 𝑗 = 𝑃 𝑗𝑖 =

0.7 if the nodes are closer than the distance 𝑟 and set 𝑃𝑖 𝑗 = 𝑃 𝑗𝑖 = 0 otherwise. We

fix all weights to be equal, i.e. 𝑤𝑖 = 1
𝑁

.

For each value of 𝑁 , we compare the performance of four different policies -

1) the uniform stationary randomized policy which would have been the optimal

stationary randomized policy if we ignore correlation, 2) our optimal stationary

randomized policy which solves (7.5), 3) the max-Age-first or greedy policy which
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Figure 7-4: Average AoI vs network size 𝑁 for hyperbolic geometric graphs.

would have been the optimal max-weight policy if we ignore correlation and 4)

our proposed max-weight policy from Sec. 7.2.B.

Figure 7-3 plots the performance of these four policies as 𝑁 increases. Each

data point is computed by averaging over 50 random graph instances and run-

ning the policy for 15000 time-slots for each such instance. We also plot a lower

bound for average AoI computed using (7.53) from Appendix 7.8.C. We observe

that our proposed methods clearly outperform policies that ignore the correla-

tion between sources for scheduling. In particular, our proposed max-weight

policy outperforms max-AoI-first by almost 33%.

Next, we perform the same exercise for hyperbolic geometric graphs. Hyper-

bolic geometric graphs are generated by choosing points on a two-dimensional

hyperbolic space and connecting vertices that are closer than the distance 𝑅where
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distance is measured along hyperbolic geodesics. The most important feature

of hyperbolic random graphs is that when their parameters are chosen appro-

priately, the degree distribution of nodes becomes scale-free [134, 135]. Impor-

tantly, for our simulation setup, we expect that scale-free degree distributions

lead to correlation matrices with lower vertex covering numbers. According to

Theorem 25, this should lead to larger performance gaps between policies that

consider correlation and policies that ignore it. Figure 7-4 confirms this: as the

number of sources increase, the gap in performance between our proposed poli-

cies and policies that ignore correlation also increases.

Next, we compare the performance of the optimal stationary randomized pol-

icy and our proposed max-weight policy for different correlation models. Specif-

ically, we consider three correlation models: 1) Bernoulli correlation: 𝑋𝑖 𝑗 (𝑡) ∼

𝐵𝑒𝑟𝑛(𝑝𝑖 𝑗 ), which is the main focus of this work, 2) Constant correlation: 𝑋𝑖 𝑗 (𝑡) =

𝑝𝑖 𝑗 as introduced in Sec. 7.4, and 3) Uniform correlation: 𝑋𝑖 𝑗 (𝑡) = 𝑝𝑖 𝑗+𝑈𝑛𝑖 𝑓
(
[−0.1, 0.1]

)
,

i.e. correlation is chosen uniformly at random from the interval [𝑝𝑖 𝑗−0.1, 𝑝𝑖 𝑗+0.1].

Figure 7-5 compares the performance of the two policies (optimal stationary

randomized and max-weight) on random geometric graphs G(𝑁 = 90, 𝑟 = 0.25)

while varying the correlation parameter 𝑝 from 0.1 to 0.9 for the three different

correlation models discussed above.

We observe that for the stationary randomized policy, the average AoI values

are the same across correlation models for each value of 𝑝. This is consistent

with the result we derived in Theorem 28. For the max-weight policy, the average

AoI values are close to one another for each value of 𝑝. Further, as the correla-

tion increases, the gap between the average AoI for different correlation models

decreases. Combined with our observation from Sec. 7.4, where we showed that

average AoI under stationary randomized policies is the same for a large class of

correlation models, this supports the claim that our results are fairly robust to

the way in which correlation is modeled. Another important observation from
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Figure 7-5: Average AoI vs correlation probability 𝑝.

Figure 7-5 is the inverse dependence of the average AoI on the correlation prob-

ability 𝑝, consistent with our upper-bound for random-geometric graphs from

Theorem 27.

Finally, we consider a setting with time-varying correlation probabilities. Specif-

ically, we consider a random geometric graph with 𝑁 = 90 sources and a connec-

tivity radius of 0.25 on the unit square [0, 1]2. However, unlike the previous sim-

ulations, we assume that these sources are mobile and move according to Brow-

nian motion on [0, 1]2 with a maximum velocity of 0.01. As the sources move

around randomly, the distances between them change and so does the corre-

sponding correlation matrix P. Figure 7-6 plots the performance of three differ-

ent scheduling policies in this time-varying setting. To measure the performance,

we consider a windowed time-average of the network AoI with a window size of

100. As the sources connectivity changes, we see the windowed time-average AoI

change in response for each scheduling policy.

The three policies we consider are as follows. First, we consider the max-
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Figure 7-6: Moving window average AoI vs time.

AoI-first policy which is completely oblivious of the correlation while making

scheduling decisions. Second, we consider the EMA-max-weight policy from

Sec. 7.5.A which has no information about correlation in the beginning but grad-

ually learns the matrix P and adapts to changes in it using an exponential moving

average. Specifically, we set the learning rate 𝛼 = 0.4. Third, we consider the hy-

pothetical oracle-max-weight policy. This is an omniscient policy that knows the

current correlation matrix exactly in each time-slot and uses this information to

run the quadratic max-weight scheduler (7.11).

We observe that EMA-max-weight is able to track the performance of the oracle-

max-weight policy with only a small gap, indicating that it is able to learn the cor-

relation structure and adapt in response to it. Further, max-AoI-first is not able

to do so and has a larger gap in performance compared to the oracle-max-weight

policy.
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7.7 Summary

In this chapter, we formulated a simple model to study the timely monitoring

of correlated sources over a wireless network. Using this model, we proposed

new scheduling policies that optimize weighted-sum average Age of Information

(AoI) in the presence of correlation. These policies have constant-factor opti-

mality guarantees. We derived scaling results that illustrate how AoI improves in

large networks in the presence of correlation and discussed how our model is rel-

atively robust to correlation modeling assumptions. Lastly, We also developed a

novel approach based on exponential moving averages that schedules correlated

sources in a time-varying setting.

Important directions of future work involve proving performance bounds on

EMA-max-weight under assumptions on how quickly the correlation matrices

change, and incorporating more general AoI cost functions. A drawback that is

worth mentioning is that we consider correlation to be a pairwise notion - infor-

mation sharing happens only between pairs of sources. However, modeling more

general notions of correlation and coupling between sources while still keeping

analysis tractable is a challenging open problem.

7.8 Appendix

7.8.A Proof of Theorem 20

Consider a stationary randomized policy with the scheduling probabilities given

by 𝜋. Then, the probability that the base station receives an update about source

𝑖 in any time-slot 𝑡 is given by

𝑁∑︁
𝑗=1

P
(
𝑗 has information about 𝑖

)
P
(
𝑗 transmits

)
=

𝑁∑︁
𝑗=1

𝑝 𝑗𝑖𝜋 𝑗 . (7.31)
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For simplicity, we will refer to the quantity
∑𝑁
𝑗=1 𝑝 𝑗𝑖𝜋 𝑗 as 𝑟𝑖. Clearly, if 𝑟𝑖 = 0, then

the base station never receives any information regarding source 𝑖 and the aver-

age AoI �̄�𝑖 grows to be unbounded. This proves one part of Theorem 20.

Next, we focus on the case when 𝑟𝑖 > 0. In each time-slot, the base station re-

ceives a new update about source 𝑖 with probability 𝑟𝑖, independent of events in

other time-slots. Thus, intervals between two consecutive update deliveries from

source 𝑖 to the base station are geometrically distributed i.i.d. random variables

with the parameter 𝑟𝑖. Let 𝐼1, 𝐼2, ..., be i.i.d. geometric random variables that de-

note update inter-arrival periods for source 𝑖. Further, let 𝐾 be the largest integer

such that
∑𝐾
𝑘=1 𝐼𝑘 ≤ 𝑇 , i.e. there are 𝐾 update deliveries over the first 𝑇 time-slots.

Note that 𝐾 itself is a random variable. Then, the average AoI of source 𝑖 is given

by:

�̄�𝑖 = lim sup
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡) = lim sup
𝑇→∞

1
𝑇

𝐾∑︁
𝑘=1

𝐼𝑘∑︁
𝑗=1

𝑗

= lim sup
𝑇→∞

1
𝑇

𝐾∑︁
𝑘=1

𝐼2
𝑘
+ 𝐼𝑘
2

=
E[𝐼2

1 + 𝐼1]
2E[𝐼1]

.

(7.32)

The last step above holds by applying the elementary renewal-reward theorem

and the law of large numbers. 𝐼1 is simply a geometric random variable with the

parameter 𝑟𝑖. Thus, the equation above can be further simplified to:

�̄�𝑖 =
1
2
+
E[𝐼2

1]
2E[𝐼1]

=
1
2
+
(2 − 𝑟𝑖)/𝑟2

𝑖

2/𝑟𝑖
=

1
𝑟𝑖
. (7.33)

We use the moments of geometric random variables to derive the expression

above. Since 𝑟𝑖 =
∑𝑁
𝑗=1 𝑝 𝑗𝑖𝜋 𝑗 , this completes the proof.
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7.8.B Proof of Theorem 21

We will first show that the objective function of the optimization problem (7.5) is

convex in the scheduling probabilities 𝜋. To do so, we compute the Hessian of

the average AoI of source 𝑖 (given by �̄�𝑖) with respect to 𝜋.

H( �̄�𝑖) ≜



𝜕2

𝜕𝜋2
1
�̄�𝑖

𝜕2

𝜕𝜋1𝜕𝜋2
�̄�𝑖 · · · 𝜕2

𝜕𝜋1𝜕𝜋𝑁
�̄�𝑖

𝜕2

𝜕𝜋2𝜕𝜋1
�̄�𝑖

𝜕2

𝜕𝜋2
2
�̄�𝑖 · · · 𝜕2

𝜕𝜋2𝜕𝜋𝑁
�̄�𝑖

...
...

. . .
...

𝜕2

𝜕𝜋𝑁 𝜕𝜋1
�̄�𝑖

𝜕2

𝜕𝜋𝑁 𝜕𝜋2
�̄�𝑖 · · · 𝜕2

𝜕𝜋2
𝑁

�̄�𝑖


= 2�̄�3

𝑖



𝑝2
1𝑖 𝑝1𝑖𝑝2𝑖 · · · 𝑝1𝑖𝑝𝑁𝑖

𝑝2𝑖𝑝1𝑖 𝑝2
2𝑖 · · · 𝑝2𝑖𝑝𝑁𝑖

...
...

. . .
...

𝑝𝑁𝑖𝑝1𝑖 𝑝𝑁𝑖𝑝2𝑖 · · · 𝑝2
𝑁𝑖


= 2�̄�3

𝑖



𝑝1𝑖

𝑝2𝑖
...

𝑝𝑁𝑖


[
𝑝1𝑖 𝑝2𝑖 · · · 𝑝𝑁𝑖

]

= 2�̄�3
𝑖 P𝑖P𝑇𝑖 .

(7.34)

Here, P𝑖 is the 𝑖-th column of the correlation matrix P. Note that any matrix of the

form vv𝑇 where v ∈ R𝑁 , is positive semi-definite since:

y𝑇 (vv𝑇 )y = (v𝑇y)2 ≥ 0,∀y ∈ R𝑁 .

Thus, the hessian H( �̄�𝑖) with respect to the scheduling probabilities 𝜋 is positive

semi-definite, which implies that �̄�𝑖 is a convex function of 𝜋. Since the objec-

tive function in (7.5) is simply a weighted sum of the average AoIs and the sum
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of convex functions is convex, it is also a convex function of 𝜋. Further, since the

constraints of (7.5) are linear in 𝜋, they are also trivially convex. Thus, the opti-

mization problem (7.5) is convex as well. This proves the first part of Theorem 21.

Next, we apply KKT conditions to learn more about the structure of the op-

timal stationary randomized policy. To do so, we first formulate the Lagrangian

function:

L(𝜋, 𝜆,𝜇) =
𝑁∑︁
𝑖=1

𝑤𝑖∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖

+ 𝜆
( 𝑁∑︁
𝑖=1

𝜋𝑖 − 1
)
−

𝑁∑︁
𝑖=1

𝜇𝑖𝜋𝑖 .

Applying first-order KKT conditions, we see that:

𝜕

𝜕𝜋𝑖
L(𝜋∗, 𝜆∗,𝜇∗) = −

𝑁∑︁
𝑗=1

𝑤 𝑗 𝑝𝑖 𝑗

(∑𝑁
𝑘=1 𝜋

∗
𝑘
𝑝𝑘 𝑗 )2

+ 𝜆∗ − 𝜇∗𝑖 = 0,∀𝑖. (7.35)

Now, assume that an optimal scheduling policy 𝜋∗ is one that only schedules

sources from the set 𝑆, where 𝑆 ⊆ [𝑁] and [𝑁] is the set of all sources. Then,

𝜋∗
𝑖
> 0,∀𝑖 ∈ 𝑆. Applying complementary slackness for this policy 𝜋∗, we get that

𝜇𝑖 = 0,∀𝑖 ∈ 𝑆. Combining this with the first order condition above, we get:

𝑁∑︁
𝑗=1

𝑤 𝑗 𝑝𝑖 𝑗

(∑𝑁
𝑘=1 𝜋

∗
𝑘
𝑝𝑘 𝑗 )2

= 𝜆,∀𝑖 ∈ 𝑆. (7.36)

However, from Theorem 20, we know that the average AoI of source 𝑖 under a

policy 𝜋 is given by 1∑𝑁
𝑘=1 𝜋𝑘 𝑝𝑘𝑖

. Thus, we can simplify the above equation to:

𝑁∑︁
𝑗=1

𝑝𝑖 𝑗𝑤 𝑗 �̄�
2
𝑗 = 𝜆,∀𝑖 ∈ 𝑆. (7.37)

Here, �̄�𝑖 denotes the average AoI of source 𝑖 under the policy 𝜋∗. Since 𝜋∗ is an

optimal policy, the total utilization of the channel should be 100%. Thus,

∑︁
𝑖∈𝑆

𝜋∗𝑖 = 1. (7.38)
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Observe that equations (7.37) and (7.38) together form a system of |𝑆 | + 1 equa-

tions in |𝑆 | + 1 variables. Solving this system gives us the values of 𝜋∗
𝑖
,∀𝑖 ∈ 𝑆. This

completes our proof.

7.8.C Proof of Theorem 22

Consider a general scheduling policy 𝜋, that is not necessarily stationary ran-

domized. We will restrict ourselves to policies that achieve finite average AoI for

each source 𝑖, since we are interested in minimizing AoI and can safely ignore

oplicies for which the average AoI is unbounded. Thus, we will assume that all

expressions involving limits are well-defined throughout the proof.

Let 𝐼𝑘,𝑖 denote the 𝑘-th inter-arrival time between update deliveries regarding

source 𝑖 to the base station. First, the average AoI of source 𝑖 under this policy is

given by:

�̄�𝑖 ≜ lim
𝑇→∞

[∑𝑇
𝑡=1 𝐴𝑖 (𝑡)
𝑇

]
= lim
𝐾→∞

[∑𝐾
𝑘=1 𝐼

2
𝑘,𝑖
+ 𝐼𝑘,𝑖

2(∑𝐾
𝑘=1 𝐼𝑘,𝑖)

]
. (7.39)

Next, define the following three three empirical average quantities:

𝐼𝑖 ≜

∑𝐾
𝑘=1 𝐼𝑘,𝑖

𝐾
,

𝐼
(2)
𝑖
≜

∑𝐾
𝑘=1 𝐼

2
𝑘,𝑖

𝐾
,

ˆ𝑉𝑎𝑟𝑖 ≜ 𝐼
(2)
𝑖
− (𝐼𝑖)2.

(7.40)

Then, using these definitions, we can simplify the expression for �̄�𝑖 as follows:

�̄�𝑖 = lim
𝐾→∞

[
1
2
+
𝐼
(2)
𝑖

2𝐼𝑖

]
= lim
𝐾→∞

[
1
2
+ (𝐼𝑖)

2 + ˆ𝑉𝑎𝑟𝑖
2𝐼𝑖

]
. (7.41)

Using the Cauchy-Schwarz inequality, it is easy to see that ˆ𝑉𝑎𝑟𝑖 ≥ 0. Thus, we can
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lower-bound the average AoI for source 𝑖 by:

�̄�𝑖 ≥
1
2
+ lim
𝐾→∞

𝐼𝑖

2
. (7.42)

Now, define 𝑓 𝑗 to be the fraction of time that the policy 𝜋 schedules a source

𝑗 on average. Further, define 𝑟 𝑗 to be the fraction of time that the base-station

received a delivery about source 𝑗 . Since there are correlated updates, 𝑟 𝑗 ≥ 𝑓 𝑗 .

Let 𝑢 𝑗 (𝑡) be an indicator variable that denotes whether policy 𝜋 chooses source 𝑗

in time-slot 𝑡 or not and 𝑋 𝑗𝑖 (𝑡) denote whether source 𝑗 has a correlated update

about source 𝑖 at time 𝑡. Then,

𝑟𝑖 ≜ lim
𝑇→∞

∑𝑇
𝑡=1

∑𝑁
𝑗=1 𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡)
𝑇

. (7.43)

Let the set of time-slots in which source 𝑗 is scheduled be 𝑇𝑗 = {𝑡 : 𝑢 𝑗 (𝑡) = 1}.

Using this definition, we rewrite the equation above as:

𝑟𝑖 = lim
𝑇→∞

𝑁∑︁
𝑗=1

∑
𝑡∈𝑇 𝑗 𝑋 𝑗𝑖 (𝑡)
𝑇

= lim
𝑇→∞

𝑁∑︁
𝑗=1

|𝑇𝑗 |
𝑇

∑
𝑡∈𝑇 𝑗 𝑋 𝑗𝑖 (𝑡)
|𝑇𝑗 |

. (7.44)

Note that lim
𝑇→∞

|𝑇 𝑗 |
𝑇

is simply 𝑓 𝑗 . Further, if 𝑓 𝑗 > 0, then as 𝑇 → ∞, |𝑇𝑗 | must also go

to infinity and we can apply the law of large numbers to get lim
𝑇→∞

∑
𝑡∈𝑇𝑗 𝑋 𝑗𝑖 (𝑡)
|𝑇 𝑗 | = 𝑝 𝑗𝑖.

If 𝑓 𝑗 = 0, the law of large numbers cannot be applied. However, it is easy to see

that lim
𝑇→∞

∑
𝑡∈𝑇𝑗 𝑋 𝑗𝑖 (𝑡)

𝑇
= 0 = 𝑓 𝑗 𝑝 𝑗𝑖. Thus, the expression for 𝑟𝑖 simplifies to:

𝑟𝑖 =

𝑁∑︁
𝑗=1

𝑓 𝑗 𝑝 𝑗𝑖 . (7.45)

Another way to calculate 𝑟𝑖 is to consider the following limit:

𝑟𝑖 = lim
𝐾→∞

𝐾∑𝐾
𝑘=1 𝐼𝑘,𝑖

. (7.46)
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Thus, if lim
𝐾→∞

𝐼𝑖 is well defined, then 𝑟𝑖 is also given by:

𝑟𝑖 =
1

lim
𝐾→∞

𝐼𝑖
. (7.47)

Combining (7.45) and (7.47), we get:

lim
𝐾→∞

𝐼𝑖 =
1∑𝑁

𝑗=1 𝑓 𝑗 𝑝 𝑗𝑖
. (7.48)

Combining (7.42) and (7.48), we get:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�𝑖 ≥
𝑁∑︁
𝑖=1

𝑤𝑖

2
+ 1

2

𝑁∑︁
𝑖=1

𝑤𝑖∑𝑁
𝑗=1 𝑓 𝑗 𝑝 𝑗𝑖

. (7.49)

Note that the frequencies of transmission for each source 𝑓 𝑗 satisfy the following

two constraints:
∑𝑁
𝑗=1 𝑓 𝑗 ≤ 1 and 𝑓 𝑗 ≥ 0,∀ 𝑗 . Thus, we can further lower-bound

the weighted-sum average AoI by minimizing the RHS in (7.49) over all choices

of transmission frequencies:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�𝑖 ≥
𝑁∑︁
𝑖=1

𝑤𝑖

2
+ 1

2

𝑁∑︁
𝑖=1

𝑤𝑖∑𝑁
𝑗=1 𝑓

∗
𝑗
𝑝 𝑗𝑖
. (7.50)

Here 𝑓 ∗ is the solution to the following optimization problem:

argmin
𝑓

𝑁∑︁
𝑖=1

𝑤𝑖∑𝑁
𝑗=1 𝑓 𝑗 𝑝 𝑗𝑖

s.t.
𝑁∑︁
𝑖=1

𝑓𝑖 ≤ 1, 𝑓𝑖 ≥ 0,∀𝑖 ∈ [𝑁] .
(7.51)

Observe that this optimization problem is identical to the (7.5) which solves for
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the optimal stationary randomized policy 𝜋∗. Thus, 𝑓 ∗ = 𝜋∗ and we get:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�𝑖 ≥
𝑁∑︁
𝑖=1

𝑤𝑖

2
+ 1

2

𝑁∑︁
𝑖=1

𝑤𝑖∑𝑁
𝑗=1 𝜋

∗
𝑗
𝑝 𝑗𝑖
. (7.52)

Note that (7.52) is true for any scheduling policy 𝜋 with finite average AoI

for each source. So, it is also true for the policy 𝜋𝑜𝑝𝑡 that achieves minimum

weighted-sum average AoI. This is because a simple round-robin policy achieves

finite AoI for each source, so the optimal policy which performs at least as well as

the round-robin policy, must also have well-defined and bounded average AoI for

each source. Let’s denote the average AoI for source 𝑖 under the overall optimal

policy 𝜋𝑜𝑝𝑡 by �̄�𝑜𝑝𝑡
𝑖

and the average AoI under the optimal stationary randomized

policy 𝜋∗ by �̄�∗
𝑖
. Then, we get:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖
≥

𝑁∑︁
𝑖=1

𝑤𝑖

2
+ 1

2

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
∗
𝑖 . (7.53)

Dividing, both sides in (7.53) by the LHS and multiplying by 2, we get:

2 −
∑𝑁
𝑖=1 𝑤𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

≥
∑𝑁
𝑖=1 𝑤𝑖 �̄�

∗
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

,

=⇒
∑𝑁
𝑖=1 𝑤𝑖 �̄�

∗
𝑖∑𝑁

𝑖=1 𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖

≤ 2

(7.54)

This completes our proof.
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7.8.D Proof of Theorem 23

Consider the one-slot Lyapunov drift for the quadratic Lyapunov function de-

scribed by (7.9):

E

[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

����A(𝑡)] = E

[ 𝑁∑︁
𝑖=1

𝑤𝑖
(
𝐴2
𝑖 (𝑡 + 1) − 𝐴2

𝑖 (𝑡 + 1)
) ]

=

𝑁∑︁
𝑖=1

𝑤𝑖

(
2𝐴𝑖 (𝑡) + 1 −

𝑁∑︁
𝑗=1

E

[
𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡)

��𝐴𝑖 (𝑡)]𝐴𝑖 (𝑡) (𝐴𝑖 (𝑡) + 2)
)

=

𝑁∑︁
𝑖=1

𝑤𝑖

(
2𝐴𝑖 (𝑡) + 1 −

𝑁∑︁
𝑗=1

𝑝 𝑗𝑖E

[
𝑢 𝑗 (𝑡)

��𝐴𝑖 (𝑡)]𝐴𝑖 (𝑡) (𝐴𝑖 (𝑡) + 2)
)
.

(7.55)

Since the quadratic max-weight policy minimizes the Lyapunov drift in every

time-slot, we can upper-bound its one-slot drift by that of any other scheduling

policy. In particular, we choose the optimal stationary randomized scheduling

policy 𝜋∗, for which we know that E[𝑢 𝑗 (𝑡) |𝐴𝑖 (𝑡)] = 𝜋∗𝑗 ,∀𝑖, 𝑗 , 𝑡. Using this we upper-

bound the one-slot Lyapunov drift as follows:

E

[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

����A(𝑡)]
≤

𝑁∑︁
𝑖=1

𝑤𝑖

(
2𝐴𝑖 (𝑡) + 1 −

𝑁∑︁
𝑗=1

𝑝 𝑗𝑖𝜋
∗
𝑗 𝐴𝑖 (𝑡) (𝐴𝑖 (𝑡) + 2)

)
=

𝑁∑︁
𝑖=1

𝑤𝑖

(
2𝐴𝑖 (𝑡) + 1 − 𝑟𝑖𝐴𝑖 (𝑡) (𝐴𝑖 (𝑡) + 2)

)
= −

𝑁∑︁
𝑖=1

𝑤𝑖𝑟𝑖

(
𝐴𝑖 (𝑡) −

1
𝑟𝑖
+ 1

)2

+
𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖

(
1
𝑟1
− 1

)2

+ 1

)
(7.56)

Here, 𝑟𝑖 ≜
∑𝑁
𝑗=1 𝑝 𝑗𝑖𝜋

∗
𝑗
, ad before. Next, using the Cauchy Schwarz inequality we

get: (
𝑁∑︁
𝑖=1

𝑤𝑖𝑟𝑖

(
𝐴𝑖 (𝑡) −

1
𝑟𝑖
+ 1

)2
) ( 𝑁∑︁

𝑖=1

𝑤𝑖

𝑟𝑖

)
≥

(
𝑁∑︁
𝑖=1

𝑤𝑖

����𝐴𝑖 (𝑡) − 1
𝑟𝑖
+ 1

����)2

. (7.57)
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Using the above inequality in (7.56), we get:

E

[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

����A(𝑡)] ≤ −( 𝑁∑︁
𝑖=1

𝑤𝑖

����𝐴𝑖 (𝑡) − 1
𝑟𝑖
+ 1

����)2 ( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

)−1

+
𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖

(
1
𝑟𝑖
− 1

)2

+ 1

)
.

(7.58)

Define Δ
(
A(𝑡)

)
≜ E[𝐿 (𝑡 + 1) − 𝐿 (𝑡) |A(𝑡)]. Rearranging, we get:(

𝑁∑︁
𝑖=1

𝑤𝑖

����𝐴𝑖 (𝑡) − 1
𝑟𝑖
+ 1

����)2

≤ −
( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

)
Δ
(
A(𝑡)

)
+

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖

(
1
𝑟𝑖
− 1

)2

+ 1

)
.

(7.59)

Taking the expectation and summing over time, we get:

𝑇∑︁
𝑡=1

E

[( 𝑁∑︁
𝑖=1

𝑤𝑖

����𝐴𝑖 (𝑡) − 1
𝑟𝑖
+ 1

����)2
]
≤ −

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑇∑︁
𝑡=1

E

[
Δ
(
A(𝑡)

) ]
+ 𝑇

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖

(
1
𝑟𝑖
− 1

)2

+ 1

)
.

(7.60)

Dividing by 𝑇 and applying Jensen’s inequality, we get:

1
𝑇

𝑇∑︁
𝑡=1

E

[( 𝑁∑︁
𝑖=1

𝑤𝑖

����𝐴𝑖 (𝑡) − 1
𝑟𝑖
+ 1

����) ]2

≤

−
( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑇∑︁
𝑡=1

E

[
𝐿 (𝑇 + 1) − 𝐿 (1)

𝑇

]
+

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖

(
1
𝑟𝑖
− 1

)2

+ 1

)
≤

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑇∑︁
𝑡=1

E

[
𝐿 (1)
𝑇

]
+

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖

(
1
𝑟𝑖
− 1

)2

+ 1

)
.

(7.61)
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Applying Jensen’s inequality again, and using the fact that 𝑟𝑖 ≤ 1∀𝑖, we get:

E

[
1
𝑇

𝑇∑︁
𝑡=1

( 𝑁∑︁
𝑖=1

𝑤𝑖

����𝐴𝑖 (𝑡) − 1
𝑟𝑖
+ 1

����) ]2

≤
( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑇∑︁
𝑡=1

E

[
𝐿 (1)
𝑇

]
+

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖

(
1
𝑟𝑖
− 1

)2

+ 1

)
≤

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑇∑︁
𝑡=1

E

[
𝐿 (1)
𝑇

]
+

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑁∑︁
𝑖=1

𝑤𝑖

(
𝑟𝑖 +

1
𝑟𝑖
− 1

)
≤

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑇∑︁
𝑡=1

E

[
𝐿 (1)
𝑇

]
+

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

) 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖
.

(7.62)

Taking the square-root of the inequality above and using the fact 𝐿 (1) is a con-

stant, we take the limit as 𝑇 goes to infinity to get:

lim
𝑇→∞

E

[
1
𝑇

𝑇∑︁
𝑡=1

( 𝑁∑︁
𝑖=1

𝑤𝑖

����𝐴𝑖 (𝑡) − 1
𝑟𝑖
+ 1

����) ] ≤ ( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

)
. (7.63)

This inequality can be further simplified to:

lim
𝑇→∞

E

[
1
𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑤𝑖𝐴𝑖 (𝑡)
]
≤ 2

( 𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖

)
. (7.64)

However, note that 𝑟𝑖 =
∑𝑁
𝑗=1 𝑝 𝑗𝑖𝜋

∗
𝑗
. Thus, we get:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑞𝑚𝑤

𝑖
≤ 2

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
∗
𝑖 , (7.65)

where �̄�∗
𝑖

is the average AoI of source 𝑖 under the optimal stationary random-

ized policy 𝜋∗. Since we have already shown factor-2 optimality of 𝜋∗ in Ap-

pendix 7.8.C, this completes the proof.
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7.8.E Proof of Theorem 24

We first rewrite the correlated AoI evolution (7.1) below:

𝐴𝑖 (𝑡 + 1) = 𝐴𝑖 (𝑡) + 1 − 𝐴𝑖 (𝑡)
𝑁∑︁
𝑗=1

𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡),∀𝑖, 𝑡. (7.66)

Here, 𝑢 𝑗 (𝑡) indicates whether source 𝑗 transmits in time-slot 𝑡 or not and 𝑋 𝑗𝑖 (𝑡)

denotes whether source 𝑗 receives information about source 𝑖 at time-stop 𝑡 or

not. Using this evolution and the definition of the Lyapunov function (7.14), we

calculate the one-slot Lyapunov drift:

E

[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

����A(𝑡)] = E

[ 𝑁∑︁
𝑖=1

𝛼𝑖 −
𝑁∑︁
𝑖=1

𝛼𝑖𝐴𝑖 (𝑡)
𝑁∑︁
𝑗=1

𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡)
����A(𝑡)]

=

𝑁∑︁
𝑖=1

𝛼𝑖 −
𝑁∑︁
𝑖=1

𝛼𝑖𝐴𝑖 (𝑡)
𝑁∑︁
𝑗=1

E
[
𝑢 𝑗 (𝑡) |A(𝑡)

]
𝑝 𝑗𝑖 .

(7.67)

Since the max-weight policy attempts to minimize the one-slot Lyapunov drift in

every time-slot, the corresponding drift of any other policy must be greater than

or equal to that of the max-weight policy. So, we can upper-bound the drift of

max-weight by the drift of the optimal stationary randomized policy. Note that

for the optimal randomized policy 𝜋∗, the following holds:

E
[
𝑢 𝑗 (𝑡) |A(𝑡)

]
= 𝜋∗𝑗 ,∀ 𝑗 , 𝑡

since scheduling decisions are independent of the AoI values and across time-

slots. Using this, we now upper-bound the one-slot drift of the max-weight policy

as follows:

E

[
𝐿 (𝑡 + 1) − 𝐿 (𝑡)

����A(𝑡)] ≤ 𝑁∑︁
𝑖=1

𝛼𝑖 −
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛼𝑖𝜋
∗
𝑗 𝑝 𝑗𝑖𝐴𝑖 (𝑡). (7.68)
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Taking expectations and summing (7.68) from 𝑡 = 1 to 𝑇 , we get:

E

[
𝐿 (𝑇 + 1) − 𝐿 (1)

]
≤ 𝑇

𝑁∑︁
𝑖=1

𝛼𝑖 −
𝑁∑︁
𝑖=1

(
E

[ 𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡)
] 𝑁∑︁
𝑗=1

𝛼𝑖𝜋
∗
𝑗 𝑝 𝑗𝑖

)
. (7.69)

Dividing (7.69) by 𝑇 , and re-arranging the terms, we get:

1
𝑇

𝑁∑︁
𝑖=1

(
E

[ 𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡)
] 𝑁∑︁
𝑗=1

𝛼𝑖𝜋
∗
𝑗 𝑝 𝑗𝑖

)
≤

𝑁∑︁
𝑖=1

𝛼𝑖 +
E[𝐿 (1) − 𝐿 (𝑇 + 1)]

𝑇
. (7.70)

Since 𝐿 (𝑇 + 1) ≥ 0 and 𝛼𝑖 =
𝑤𝑖∑𝑁

𝑗=1 𝜋
∗
𝑗
𝑝 𝑗𝑖

, we get:

1
𝑇

𝑁∑︁
𝑖=1

E

[ 𝑇∑︁
𝑡=1

𝑤𝑖𝐴𝑖 (𝑡)
]
≤

𝑁∑︁
𝑖=1

𝑤𝑖∑𝑁
𝑗=1 𝜋

∗
𝑗
𝑝 𝑗𝑖
+ E[𝐿 (1)]

𝑇
. (7.71)

Taking the limit as 𝑇 goes to infinity, we get the following:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑚𝑤
𝑖 ≤

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
∗
𝑖 . (7.72)

Here �̄�𝑚𝑤
𝑖

is the average AoI of source 𝑖 under the max-weight policy while �̄�∗
𝑖

is

the average AoI of source 𝑖 under the optimal stationary randomized policy 𝜋∗.

Note that we had already proved the factor-2 optimality of 𝜋∗. Thus, (7.72)

is sufficient to obtain the same factor-2 optimality for the max-weight policy as

well. This completes the proof.

7.8.F Proof of Theorem 25

Consider 𝑁 sources with the correlation matrix P. Given a correlation threshold

𝑝 > 0, construct a directed graph G that represents pairs of source with correla-

tion higher than the threshold.

Further, assume that the set 𝑆 ⊆ [𝑁] is a minimum size vertex covering of the
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graph G. Recall that we defined the notion of vertex covering for directed graphs

in Sec. 7.3. Let the size of this minimum vertex covering be denoted by 𝑁𝑐𝑜𝑣.

We will show that under a specific scheduling policy 𝜋, the average AoI of ev-

ery source is upper-bounded by 𝑁𝑐𝑜𝑣

𝑝
. Consequently, the weighted sum of av-

erage AoIs under an optimal policy will also be upper-bounded by 𝑁𝑐𝑜𝑣

𝑝
, since

we assumed equal weights. The scheduling policy 𝜋 we analyze is round-robin

scheduling of sources in the covering set 𝑆. This is a cyclic policy of length 𝑁𝑐𝑜𝑣

time-slots where each source in the covering set 𝑆 gets scheduled once, after

which the scheduling pattern repeats every 𝑁𝑐𝑜𝑣 time-slots.

Before we analyze the performance of this policy, we present a lemma that

discusses the monotonicity of AoI with the correlation parameters.

Lemma 13. Consider 𝑁 sources with two different correlation matrices P and P′.

If 𝑝𝑖 𝑗 ≥ 𝑝′𝑖 𝑗 ,∀𝑖, 𝑗 ∈ [𝑁] then under a fixed scheduling policy 𝜋, the following holds:

�̄�𝑖 ≤ �̄�′𝑖 ,∀𝑖 ∈ [𝑁] . (7.73)

Here, �̄�𝑖 is the average AoI of source 𝑖 under policy 𝜋 with the correlation matrix P,

while �̄�′
𝑖

is the average AoI of source 𝑖 under policy 𝜋 with the correlation matrix P′.

Proof. The proof is easy to see via a stochastic dominance argument. Let 𝑋 𝑗𝑖 (𝑡)

be an indicator variable denoting whether 𝑗 had information about 𝑖 at time-slot

𝑡 given the correlation matrix 𝑃 , and likewise 𝑋′
𝑗𝑖
(𝑡) for the matrix 𝑃 ′. Then, for all

pairs (𝑖, 𝑗) and for all time-slots 𝑡, 𝑋𝑖 𝑗 (𝑡) ∼ 𝐵𝑒𝑟𝑛(𝑝𝑖 𝑗 ) and 𝑋′
𝑖 𝑗
(𝑡) ∼ 𝐵𝑒𝑟𝑛(𝑝′

𝑖 𝑗
), where

𝑝𝑖 𝑗 ≥ 𝑝′𝑖 𝑗 . Thus, 𝑋𝑖 𝑗 (𝑡) ≥𝑠𝑡. 𝑋′𝑖 𝑗 (𝑡).
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Now, the AoI evolution (7.1) can be rewritten as:

𝐴𝑖 (𝑡 + 1) = 𝐴𝑖 (𝑡) + 1 − 𝐴𝑖 (𝑡)
𝑁∑︁
𝑗=1

𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡), and

𝐴′𝑖 (𝑡 + 1) = 𝐴′𝑖 (𝑡) + 1 − 𝐴′𝑖 (𝑡)
𝑁∑︁
𝑗=1

𝑢′𝑗 (𝑡)𝑋′𝑗𝑖 (𝑡),∀𝑖, 𝑡.
(7.74)

Since we have fixed the policy 𝜋, the scheduling decisions remain the same for

both correlation matrices, i.e. 𝑢 𝑗 (𝑡) = 𝑢′𝑗 (𝑡),∀𝑡. Setting 𝐴𝑖 (1) = 𝐴′𝑖 (1), (7.74) implies

that:

𝐴𝑖 (𝑡) ≤𝑠𝑡. 𝐴′𝑖 (𝑡). (7.75)

This, in turn, further implies that:

1
𝑇

𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡) ≤𝑠𝑡.
1
𝑇

𝑇∑︁
𝑡=1

𝐴′𝑖 (𝑡),∀𝑖, 𝑡. (7.76)

Using the equation above and the definition of average AoI (7.2), we can conclude

that:

�̄�𝑖 ≤𝑠𝑡. �̄�′𝑖 ,∀𝑖 ∈ [𝑁] . (7.77)

If the average AoI limits exist, then �̄�𝑖 and �̄�′
𝑖

are just constants and the stochastic

dominance becomes a simple inequality. This completes the proof. □

The lemma above shows a rather simple result: AoI improves with correla-

tion. To upper-bound the average AoI of sources under policy 𝜋, it is sufficient to

analyze AoI for a new correlation matrix P′, which is defined as:

𝑝′𝑖 𝑗 =


𝑝, if 𝑝𝑖 𝑗 ≥ 𝑝.

0, otherwise.
(7.78)

Clearly, P′ is element-wise smaller than P, so we can apply Lemma 13. Now, to
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analyze AoI of a source 𝑖 under the policy 𝜋 with the correlation matrix P′, we

consider two cases.

Case 1: Source 𝑖 is in the vertex covering set 𝑆. In this case, note that this

source is guaranteed to be scheduled at least once in every 𝑁𝑐𝑜𝑣 time-slots due

to way round-robin scheduling works. It is possible that the base station might

receive a correlated update about 𝑖 from some other source, even between two

consecutive updates from 𝑖 that are 𝑁𝑐𝑜𝑣 time-slots apart. However, since we are

trying to upper-bound the AoI, we can safely ignore these updates. Thus, the

average AoI of source 𝑖 can be upper-bounded by:

�̄�𝑖 ≤
∑𝑁𝑐𝑜𝑣

𝑘=1 𝑘

𝑁𝑐𝑜𝑣
≤ 𝑁𝑐𝑜𝑣 + 1

2
≤ 𝑁𝑐𝑜𝑣

𝑝
. (7.79)

The last inequality follows since 𝑝 ≤ 1 and 𝑁𝑐𝑜𝑣 ≥ 1.

Case 2: Source 𝑖 is not in the vertex covering set 𝑆. By the definition of a vertex

covering, there must be at least one source 𝑗 ∈ 𝑆 such that the edge ( 𝑗 , 𝑖) is in

the graph G or alternatively, that 𝑝′
𝑗𝑖
= 𝑝. This means that whenever the schedul-

ing policy schedules source 𝑗 , the base station also receives an update regarding

source 𝑖 with probability 𝑝. Note that the scheduling policy 𝜋 schedules source

𝑗 once every 𝑁𝑐𝑜𝑣 time-slots. Then, the time intervals between two successful cor-

related update deliveries regarding source 𝑖 by source 𝑗 are 𝑁𝑐𝑜𝑣 𝐼1, 𝑁𝑐𝑜𝑣 𝐼2, ..., 𝑁𝑐𝑜𝑣 𝐼𝐾

where 𝐼1, 𝐼2, ..., 𝐼𝐾 are i.i.d. geometrically distributed random variables with pa-

rameter 𝑝. It is possible that there are other sources also correlated with source 𝑖

that deliver correlated updates to the base-station between two consecutive cor-

related updates from source 𝑗 . For the sake of upper-bounding the AoI we can

safely ignore any such updates. Then, the average AoI of source 𝑖 can be upper-
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bounded by:

�̄�𝑖 ≤ lim
𝐾→∞

∑𝐾
𝑘=1(1 + 2 + ... + 𝑁𝑐𝑜𝑣 𝐼𝑘 )∑𝐾

𝑘=1 𝑁𝑐𝑜𝑣 𝐼𝑘

≤ lim
𝐾→∞

∑𝐾
𝑘=1 𝑁

2
𝑐𝑜𝑣 𝐼

2
𝑘
+ 𝑁𝑐𝑜𝑣 𝐼𝑘

2
∑𝐾
𝑘=1 𝑁𝑐𝑜𝑣 𝐼𝑘

≤ 1
2
+ 𝑁𝑐𝑜𝑣 lim

𝐾→∞

∑𝐾
𝑘=1 𝐼

2
𝑘

2
∑𝐾
𝑘=1 𝐼𝑘

.

(7.80)

Applying the law of large numbers and using the moments of a geometric random

variable, we get:

�̄�𝑖 ≤
1
2
+ 𝑁𝑐𝑜𝑣

(2 − 𝑝)/𝑝2

2/𝑝 ≤ 𝑁𝑐𝑜𝑣
𝑝
− 𝑁𝑐𝑜𝑣 − 1

2
≤ 𝑁𝑐𝑜𝑣

𝑝
. (7.81)

The last inequality follows since a vertex covering must have at least one vertex,

i.e. 𝑁𝑐𝑜𝑣 ≥ 1.

Together, (7.79) and (7.81) imply that the average AoI �̄�𝑖 for every source 𝑖

under the vertex cover round-robin policy 𝜋 is upper-bounded by 𝑁𝑐𝑜𝑣

𝑝
. Clearly,

the performance of the policy that achieves minimum weighted-sum average AoI

must be better than that of 𝜋. This implies:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖
≤

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�𝑖 ≤
𝑁𝑐𝑜𝑣

𝑝
. (7.82)

The last inequality follows since we have set all weights 𝑤𝑖 to be equal to 1
𝑁

. This

completes the proof.

7.8.G Proof of Theorem 26

We want to prove a lower bound on the performance of the max-AoI-first policy

𝜋𝑢. To do so, we start with 𝐴(1) such that 𝐴𝑖 (1) = 𝑖. Clearly, the policy does

not schedule source 1 at time 𝑡 = 1 since it does not have the maximum AoI.
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In fact, since sources 2, ..., 𝑁 are uncorrelated, source 1 only has a chance to get

scheduled once its AoI reaches 𝑁 . This is because max-AoI-first over the set of

uncorrelated sources {2, ...𝑁} is simply the round-robin policy and the round-

robin policy over 𝑁 − 1 sources always has at least one source with AoI 𝑁 − 1

in any time-slot. Suppose at some time-slot 𝑡 the AoI of source 1 hits 𝑁 and so

it gets scheduled, breaking the round-robin phase. Then, in the next time-slot,

the AoI of source 1 will go down to 1 while the AoI of all other sources will be at

least 1 and possibly greater (if 1 failed to send a correlated update). Assuming

a tie-breaking rule that always prefers sources with higher indices, max-AoI-first

again starts scheduling sources 2, ..., 𝑁 since source 1 has the smallest AoI. Again,

source 1 will only be scheduled once its AoI reaches 𝑁 and during this period 𝜋𝑢

will simply be round-robin.

Since all the sources 2, ..., 𝑁 are correlated with source 1 with probability 𝑝,

the AoI of source 1 during each round-robin phase grows as a geometric random

variable with parameter 𝑝. Define 𝑓𝑖 to be the fraction of time that the policy 𝜋𝑢

schedules a source 𝑖 on average. Then, we can upper-bound 𝑓1 by looking at how

often a geometric random variable with the parameter 𝑝 is smaller than 𝑁 .

𝑓1 ≤ 1 − P(𝐺𝑒𝑜(𝑝) ≤ 𝑁 − 1) = (1 − 𝑝)𝑁−1. (7.83)

Note that the policy 𝜋𝑢 is equivalent to round-robin over 2, ..., 𝑁 the rest of the

time, when 1 is not being scheduled. Thus, 𝑓𝑖 = 𝑓 ,∀𝑖 ≠ 1. Further, since the policy

𝜋𝑢 never idles, we know that:

𝑓1 + (𝑁 − 1) 𝑓 = 1 (7.84)

Together, (7.83) and (7.84) imply the following:

𝑓 ≥ 1 − (1 − 𝑝)𝑁−1

𝑁 − 1
≜ 𝑓𝑚𝑖𝑛. (7.85)
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Next, define 𝑟𝑖 to be the fraction of time that the base-station received a deliv-

ery about source 𝑖. In Appendix 7.8.C, we show the following for every policy with

well-defined average AoI:

𝑟𝑖 =

𝑁∑︁
𝑗=1

𝑓 𝑗 𝑝 𝑗𝑖,∀𝑖 ∈ [𝑁] . (7.86)

Putting in 𝑓𝑖 = 𝑓 ,∀𝑖 ≠ 1 and using the correlation matrix P, we get:

𝑟𝑖 =


1 − 𝑓 (𝑁 − 1) (1 − 𝑝), if 𝑖 = 1,

𝑓
(
1 − (𝑁 − 1)𝑝

)
+ 𝑝, otherwise .

(7.87)

We know from analysis in Appendix 7.8.C that for any scheduling policy 𝜋 the

following holds:
𝑁∑︁
𝑖=1

𝑤𝑖 �̄�𝑖 ≥
1
2

𝑁∑︁
𝑖=1

𝑤𝑖

𝑟𝑖
. (7.88)

Applying the inequality (7.88) to the uncorrelated max-weight policy 𝜋𝑢 and

putting in values of 𝑟𝑖 from (7.87), we get:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑢
𝑖 ≥

1
2𝑁

1
1 − 𝑓 (𝑁 − 1) (1 − 𝑝) +

𝑁 − 1
2𝑁

1
𝑓 (1 − (𝑁 − 1)𝑝) + 𝑝

≥ 𝑁 − 1
2𝑁

1
𝑓𝑚𝑖𝑛 (1 − (𝑁 − 1)𝑝) + 𝑝 .

(7.89)

The last inequality above follows by assuming 𝑝 ≥ 1
𝑁−1 and using the fact that 1

𝑟𝑖

become monotone increasing functions of 𝑓 so we can lower-bound the RHS by

choosing the smallest possible value of 𝑓 . Putting in the expression for 𝑓𝑚𝑖𝑛 from

(7.85), and simplifying we get:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑢
𝑖 ≥

(𝑁 − 1)2

2𝑁 − (𝑁 + 1) (1 − 𝑝)𝑁−1
. (7.90)
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Figure 7-7: Grid of size 𝑟√
2

on the unit square.

This lower bound combined with the upper bound for the correlated max-weight

policy completes the proof.

7.8.H Proof of Theorem 27

Consider a symmetric correlation matrix generated by creating a random geo-

metric graph G(𝑁, 𝑟) on the two dimensional unit square and setting correlation

probabilities for neighbors to be 𝑝. Assume equal weights 𝑤𝑖 = 1
𝑁
,∀𝑖.

We will apply the vertex covering result from Theorem 25 to this geometric

graph setting. Divide the unit square into square cells of size 𝑟/
√

2 × 𝑟/
√

2 (see

Figure 7-7). For each cell on this grid, choose one source within the cell to be a

member of the vertex covering set 𝑆. If there are no sources, ignore the cell and

if there are more than one sources, pick one at random. Note that every source

within one such cell is at most a distance 𝑟 away from any other source within

the same cell. Thus, all source pairs (𝑖, 𝑗) within the same cell are connected on

G(𝑁, 𝑟) and must have correlation probabilities 𝑝𝑖 𝑗 = 𝑝 𝑗𝑖 = 𝑝.

It is easy to see that the set 𝑆, which consists of at most one unique source from
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each cell, is a vertex covering onG(𝑁, 𝑟). The size of the set 𝑆 is upper-bounded by

the total number of cells. Since the area of each cell is 𝑟2

2 , the total number of cells

required to cover the unit square is 2
𝑟2 . Further, since all correlation probabilities

are equal to 𝑝, we can use Theorem 25 on the graph G(𝑁, 𝑟) with the correlation

threshold 𝑝. This gives us:

𝑁∑︁
𝑖=1

𝑤𝑖 �̄�
𝑜𝑝𝑡

𝑖
≤ 𝑁𝑐𝑜𝑣

𝑝
≤ 2
𝑝𝑟2

. (7.91)

The first part of the inequality is a direct application of Theorem 25 while the sec-

ond part holds since we have a found a vertex covering of size at-most 2
𝑟2 which

is an upper-bound on the size of the minimum vertex covering 𝑁𝑐𝑜𝑣. This com-

pletes our proof.

7.8.I Proof of Theorem 28

Consider the AoIs evolution:

𝐴𝑖 (𝑡 + 1) = 𝐴𝑖 (𝑡) + 1 −
( 𝑁∑︁
𝑗=1

𝑢 𝑗 (𝑡)𝑋 𝑗𝑖 (𝑡)
)
𝐴𝑖 (𝑡),∀𝑖, 𝑡. (7.92)

Taking conditional expectation with respect to 𝐴𝑖 (𝑡) we get:

E[𝐴𝑖 (𝑡 + 1) |𝐴𝑖 (𝑡)] = 𝐴𝑖 (𝑡) + 1 −
( 𝑁∑︁
𝑗=1

E[𝑢 𝑗 (𝑡) |𝐴𝑖 (𝑡)]𝑝 𝑗𝑖
)
𝐴𝑖 (𝑡),∀𝑖, 𝑡. (7.93)

Now, for a stationary randomized policy 𝜋 we know that

E[𝑢 𝑗 (𝑡) |𝐴𝑖 (𝑡)] = 𝜋 𝑗 ,∀ 𝑗 , 𝑖, 𝑡.
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Thus, we get:

E[𝐴𝑖 (𝑡 + 1) |𝐴𝑖 (𝑡)] = 𝐴𝑖 (𝑡) + 1 −
( 𝑁∑︁
𝑗=1

𝜋 𝑗 𝑝 𝑗𝑖

)
𝐴𝑖 (𝑡),∀𝑖, 𝑡. (7.94)

Denoting
∑𝑁
𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖 by 𝑟𝑖, we get:

E[𝐴𝑖 (𝑡 + 1) |𝐴𝑖 (𝑡)] = (1 − 𝑟𝑖)𝐴𝑖 (𝑡) + 1,∀𝑡 ∈ N. (7.95)

Observe that if 𝑟𝑖 = 0 then 𝐴𝑖 (𝑡) simply increases linearly with time and the av-

erage AoI is unbounded. This completes one part of the proof. For the remaining

part, assume 𝑟𝑖 > 0.

Taking expectation again, we get:

E
[
E[𝐴𝑖 (𝑡 + 1) |𝐴𝑖 (𝑡)]

]
= (1 − 𝑟𝑖)E

[
E[𝐴𝑖 (𝑡) |𝐴𝑖 (𝑡 − 1)]

]
+ 1,∀𝑡 ∈ N. (7.96)

Solving the recursion in the equation above we get:

E[𝐴𝑖 (𝑡 + 1)] = (1 − 𝑟𝑖)𝑡𝐴𝑖 (1) +
𝑡−1∑︁
𝜏=0

(1 − 𝑟𝑖)𝜏 . (7.97)

Summing up the above for 𝑡 = 0, ..., 𝑇 − 1 we get:

E

[ 𝑇∑︁
𝑡=1

𝐴𝑖 (𝑡)
]
=

1 − (1 − 𝑟𝑖)𝑇
𝑟𝑖

𝐴𝑖 (1) +
𝑇

𝑟𝑖
− 1 − (1 − 𝑟𝑖)𝑇

𝑟2
𝑖

. (7.98)

Dividing the equation above by 𝑇 and taking the limit as 𝑇 goes to infinity:

lim
𝑇→∞

E

[∑𝑇
𝑡=1 𝐴𝑖 (𝑡)
𝑇

]
=

1
𝑟𝑖
. (7.99)

If we consider a sequence of random variables
∑𝑇

𝑡=1 𝐴𝑖 (𝑡)
𝑇

, then (7.99) shows that this

sequence converges in expectation to 1
𝑟𝑖

. However, convergence in expectation
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implies convergence in probability. Thus, we get:

lim
𝑇→∞

∑𝑇
𝑡=1 𝐴𝑖 (𝑡)
𝑇

𝑝
=

1
𝑟𝑖
. (7.100)

Observe that the quantity on the LHS is the average AoI, so we have shown that:

�̄�𝑖 =
1∑𝑁

𝑗=1 𝜋 𝑗 𝑝 𝑗𝑖
. (7.101)

This completes our proof.
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Chapter 8

WiSwarm: A System for AoI-based

Scheduling

Emerging time-sensitive applications increasingly rely on collaborative multi-

agent systems. Examples include: search and rescue missions using a team of un-

manned aerial vehicles (UAVs), smart factories with connected automated ma-

chinery, and smart city intersections with connected self-driving cars. In such

application domains, it is essential that agents communicate in a timely manner

about changes in the environment and adapt their behavior accordingly. A ma-

jor roadblock in deploying these applications in the real-world is that traditional

communication networks were not designed to support large-scale multi-agent

system that need to share time-sensitive information to collaborate effectively.

Our contributions: (1) Middleware design. We develop a networking mid-

dleware that makes WiFi networks customizable, allowing system designers to

easily tailor WiFi to the needs of specific time-sensitive applications. Our net-

working middleware drives the underlying distributed WiFi network to behave

as a network with centralized resource allocation and with custom queues at the

sources. By controlling the storage and flow of information in the WiFi network,

the middleware can: (i) prevent packet collisions; (ii) dynamically prioritize the
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transmissions that are most valuable to the application; and (iii) discard stale

packets that are no longer useful to the application before they are ever transmit-

ted, thus alleviating congestion.

The networking middleware has two distinct features. First, it is implemented

at the application layer, without modifications to lower layers of the network-

ing protocol stack. The middleware runs over UDP/IP and standard 802.11 WiFi,

making it easy to customize and integrate to existing time-sensitive applications

that are already implemented using WiFi, such as [76, 77, 78, 79, 80, 81, 82, 83,

84, 85, 86, 88, 89, 90, 136]. Second, the middleware is designed around the idea

of information freshness, specifically the Age-of-Information (AoI) metric. As we

have seen, AoI captures the freshness of the information from the perspective of

the destination, in contrast to the long-established packet delay that represents

the latency of a particular packet. The resource allocation mechanism can lever-

age AoI to prioritize transmissions to destinations with stale information. Keep-

ing information fresh is critical for time-sensitive applications, especially those

that rely on cooperative multi-agent systems. To the best of our knowledge, [8]

was the first work to experimentally evaluate AoI-based resource allocation in

a real-world time-sensitive application.

Our contribution: (2) WiSwarm implementation. To demonstrate the per-

formance improvement that can be achieved by customizing the WiFi network,

we implement WiSwarm: an instantiation of the networking middleware for a

mobility tracking application that relies on a collaborative UAV swarm. Follow-

ing the recent growing interest in computational offloading to enhance the scale

of multi-agent robotics applications [137], we implement a mobility tracking ap-

plication composed of several small and inexpensive UAVs and one leader node

with high compute power. Each UAV senses the environment (e.g., collects video)

and transmits this contextual information to the leader node. The leader node

consolidates the information from the UAVs and transmits trajectory updates
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Figure 8-1: Setup for flight experiments with 5 UAVs.

that allow the UAVs to track the moving objects. Clearly, it is essential to keep

the contextual information at the leader node and the trajectory updates at every

UAV as fresh as possible, since outdated information loses its value and can lead

to system failures (e.g., UAV losing track of an object) and safety risks (e.g., UAV

collisions).

We evaluate WiSwarm in flight experiments [138] with up to five sensing-

UAVs (see Fig. 8-1) and in stationary experiments with up to fourteen Raspberry

Pis (RasPis) emulating UAVs. We collect data from nearly 4 hours of flight tests

and 400 hours of stationary tests. Our experimental results show that WiSwarm

significantly outperforms WiFi in terms of throughput, information freshness,

tracking performance, and scalability. The stationary experiments with fourteen

sources shows that WiSwarm improves information freshness by a factor of 50,

and tracking error by a factor of 4. The flight tests show that mobility tracking

with WiFi can support at most two sensing-UAVs while WiSwarm can support at

least five sensing-UAVs under similar conditions.
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Figure 8-2: Overview of the Networking Middleware that provides information
freshness for applications with a team of followers and a single leader.

8.1 Design

In this section, we describe the design of our networking middleware (illustrated

in Fig. 8-2) that customizes WiFi to the needs of the important and broad class

of time-sensitive applications that rely on multi-agent systems. In these applica-

tions, agents (also called followers) collect and transmit time-sensitive informa-

tion to a central compute node (also called leader).

8.1.A Rate Control and Queuing

The follower middleware architecture illustrated on the left in Fig. 8-2 receives

updates at rates that are determined by sensors/applications, then it time-stamps

and enqueues these updates. The time-stamping is necessary to calculate AoIs

at the leader from received updates. Upon receiving a polling request from the

leader, the follower middleware releases a single update via UDP/IP to lower lay-

ers of the network protocol stack. The system designer can employ different
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queueing disciplines to store/drop/prioritize updates aiming to satisfy the per-

formance requirements of the application.

First-In First-Out (FIFO) queues are widely deployed in communication net-

works. Consider a middleware implementation utilizing FIFO queues to store

information updates at the followers before transmitting them to the leader. If

updates are generated at a low rate, then the leader would receive information

updates too infrequently, resulting in outdated information and, thus, high AoI.

On the other hand, if updates are generated at a very high rate, then the FIFO

queue will often be backlogged and fresh updates will have to face large queue-

ing delays before reaching the leader. This queueing delay leads to outdated in-

formation and, thus, high AoI. When FIFO queues are employed, it is imperative

that the generation rate is carefully controlled to minimize AoI.

To adjust the update generation rate, the follower middleware employs a rate

control mechanism that only updates its queue at fixed intervals of time, drop-

ping any updates generated in between. This mechanism ensures that the mid-

dleware only accepts new updates at the desired rate and is crucial for controlling

AoI in applications that use FIFO queues. Note that finding the optimal genera-

tion rate for a given network setup is a nontrivial task, as the optimal rate depends

on the network’s topology, traffic load, link reliability, and Medium Access Con-

trol (MAC) mechanism.

Last-In First-Out (LIFO) queues transmit the most recently generated update

first, making them ideal for applications that rely on the knowledge of the current

state of the system, such as mobility tracking. Consider a middleware implemen-

tation utilizing a LIFO queue. When an update is generated, the LIFO queue sim-

ply replaces the old head-of-line update with the fresh update. A higher update

generation rate at the followers can only lead to fresher updates at the leader and,

hence, a lower AoI. For this reason, LIFO queues eliminate the need for adjusting

the update generation rate. LIFO queues have been shown to be optimal for min-
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imizing AoI in a wide variety of network settings [14, 139]. However, LIFO queues

are rarely implemented at the transport, MAC, or physical layers in practice.

In general, delivering older information updates to the leader after a fresher

update was successfully received does not improve information freshness. Hence,

discarding older updates when a fresh update arrives at the follower middle-

ware could save network resources, alleviating congestion. On the other hand,

older information may still be useful to the application. For example, in a mo-

bility tracking application, older position information can be useful in predicting

future movement. This trade-off should be considered by the system designer

when deciding whether or not to discard older updates at the follower middle-

ware.

The follower middleware receives updates from different sensors/applications

and enqueues them according to the rules set forth by the system designer. Specif-

ically, the system designer can choose between different queueing disciplines,

e.g., LIFO, FIFO, Priority Queueing, and Fair Queueing, and set the rate at which

this queue accepts new updates from the application. For example, encoded

video that needs frames to be delivered sequentially can be stored in a FIFO

queue, while raw video frames can be stored in a LIFO queue that keeps only

the freshest update.

8.1.B Scheduling

Consider a multi-agent system with several followers transmitting time-sensitive

information to the leader, while the leader coordinates the followers’ behavior by

transmitting control updates in a timely manner. The multiple access mecha-

nism controls the method by which followers and leader share information using

the limited communication resources. WiFi employs a distributed random ac-

cess mechanism that works well for small-scale underloaded networks, but not

for large-scale congested networks due to excess packet collisions that lead to



8.1. Design 295

lower throughput and higher latency, which can result in degraded information

freshness.

The design goals of the leader middleware are to: (i) prevent packet collisions;

(ii) enable dynamic prioritization of the transmissions that are most valuable to

the application; and (iii) facilitate integration with existing multi-agent systems

that use WiFi. To achieve these goals, we propose the leader middleware illus-

trated on the right in Fig. 8-2. The middleware drives the underlying distributed

WiFi network to behave as a centralized network with a polling multiple access

mechanism. Specifically, the leader middleware coordinates the flow of informa-

tion in the network by sending polling packets to the followers selected for trans-

mission. At every decision time 𝑡, the leader selects the next follower to poll based

on an application-centric transmission scheduling policy 𝜋, which can be a func-

tion of the current AoI of the followers 𝐴𝑖 (𝑡), the reliability of the WiFi links 𝑝𝑖 (𝑡),

where 𝑝𝑖 (𝑡) ∈ (0, 1] represents the probability of a successful transmission from

follower 𝑖 to the leader, and the application-defined priority weights 𝑤𝑖 (𝑡) ≥ 0,

which represent the relative importance of each follower’s information to the

overall application goal. For example, in a mobility tracking application, the es-

timated velocities of the moving objects can be assigned as application weights

𝑤𝑖 (𝑡), since faster objects may require more updates than slower objects in order

to achieve the same tracking performance.

To capture application priorities and information freshness, we define the ex-

pected time-average of the weighted sum of AoIs across the entire network as

1
𝑇
E


𝑁∑︁
𝑖=1

(∫ 𝑇

𝑡=0
𝑤𝑖 (𝑡)𝐴𝑖 (𝑡)𝑑𝑡

) , (8.1)

where 𝑁 is the number of followers, 𝑇 is the time-horizon, and the expectation is

with respect to the randomness in the link’s reliability 𝑝𝑖 (𝑡) and the policy 𝜋. To

minimize (8.1), the scheduling policy 𝜋 should attempt to improve information
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freshness, i.e. reduce 𝐴𝑖 (𝑡), where the application needs it the most, i.e. where

𝑤𝑖 (𝑡) is higher.

In the previous chapters, we have studied the structure of scheduling policies

that attempt to minimize objective functions of the form (8.1). A key take away

from there is that, given the knowledge of the application weights 𝑤𝑖 (𝑡), link re-

liabilities 𝑝𝑖 (𝑡), and information freshness 𝐴𝑖 (𝑡) of every follower 𝑖, the Whittle’s

Index Policy is a near-optimal solution to the problem of minimizing (8.1). The

Whittle’s Index Policy selects, at every decision time 𝑡, the follower 𝑖∗ that satis-

fies

𝑖∗ ∈ argmax𝑖
{
𝑤𝑖 (𝑡)𝑝𝑖 (𝑡)𝐴2

𝑖
(𝑡)

}
, (8.2)

with ties being broken arbitrarily. Intuitively, the Whittle’s Index Policy is polling

the followers associated with high application weights, reliable WiFi links, and

outdated information at the leader.

In Chapter 3, we considered network settings with time-varying, unknown

and even adversarial application weights 𝑤𝑖 (𝑡) and showed that an online version

of the Whittle’s Index policy is near optimal. This suggests that Whittle’s Index

Policies are remarkably robust and can be applied to a wide variety of applica-

tions. Moreover, the Whittle’s Index Policy has low computational complexity: it

only requires solving the maximization in (8.2) and computing estimates of 𝑤𝑖 (𝑡),

𝑝𝑖 (𝑡), and 𝐴𝑖 (𝑡).

8.1.C Middleware

We describe the networking middleware illustrated in Fig. 8-2, which incorpo-

rates both the application-centric queueing at the followers and transmission

scheduling at the leader.

Followers collect information updates about their immediate environment

(e.g., video, pictures, laser scans, and temperature) and about their own plat-
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forms (e.g., position, attitude, velocity, and battery level). These updates are sent

to the follower middleware to be prepared for transmission.

The rate control mechanism decides whether each update is discarded or en-

queued. The follower middleware time-stamps each update that is not discarded

at the time of collection and enqueues them. These time-stamps are used to

compute 𝐴𝑖 (𝑡) at the leader upon delivery. The queuing discipline, rate control

mechanism, and queue buffer size can be specified by the system designer to

satisfy the requirements of the application.

When the follower receives a polling packet, it releases a single information

update from its queue. Assuming that the update does not exceed the maximum

length of the UDP payload (or any threshold set by the system designer), upon

being released from the queue, the update can be simply forwarded via UDP/IP

to lower layers of the networking protocol stack. However, if the update is too

large, then the middleware divides the update into fragments.

Fragments are stored in a separate FIFO queue and then transmitted one-by-

one to the leader. Each fragment is transmitted via UDP/IP over standard WiFi.

Since the maximum WiFi frame length can be smaller than the UDP payload size,

it is possible that WiFi will require multiple successful over-the-air transmissions

to deliver a single fragment to the leader. If WiFi fails to deliver a fragment, the

middleware attempts to re-transmit the fragment using an error-control mecha-

nism based on acknowledgements at the fragment level.

Leader’s responsibilities include coordinating both the flow of information in

the WiFi network and the followers’ behavior. To do so, the leader manages the

generation and transmission of polling packets and control information. Since

follower’s updates are transmitted only upon reception of a polling packet, the

leader has almost full control of the flow of information in the WiFi network, ir-

respective of the number of followers and the amount of data they generate. This

control allows the leader to alleviate congestion and prevent excessive packet col-
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lisions in the WiFi network.

The leader uses the Whittle’s Index Policy (8.2) to decide the next follower to

poll. After transmitting a polling packet, the leader waits for the reception of a

fragment. If this waiting period exceeds a timeout interval (e.g., 300 milliseconds),

the attempt is assumed to have failed. Upon receiving a fragment or after a time-

out, the leader starts preparing for the transmission of the next polling packet.

Prior to transmitting the next polling packet, the leader takes a series of steps

that depend on whether the received fragment was the final fragment of an in-

formation update or not. If the received fragment from follower 𝑖 was not the

final, then the leader middleware simply updates 𝑝𝑖 (𝑡). On the other hand, if the

received fragment was the final, then the leader: (i) updates 𝑝𝑖 (𝑡); (ii) combines

fragments to obtain the original information update; (iii) extracts the associated

time-stamp and updates 𝐴𝑖 (𝑡); (iv) sends the information update to the applica-

tion for processing; and (v) updates both 𝑤𝑖 (𝑡) and the control information based

on the results of this processing.

To estimate 𝑝𝑖 (𝑡), the leader computes 𝑝𝑖 (𝑡) = 𝐷𝑖 (𝑡)/𝑊,where𝐷𝑖 (𝑡) is the num-

ber of polling packets which received a successful response from follower 𝑖 out of

the last𝑊 polling packets sent to it. To accurately compute 𝐴𝑖 (𝑡) = 𝑡 − 𝜏𝑖 (𝑡), where

𝑡 is the current time measured by the leader and 𝜏𝑖 (𝑡) is the largest time-stamp

received from follower 𝑖, the clock at follower 𝑖 should be synchronized with the

leader’s clock. The middleware performs periodic clock synchronization across

all followers and the leader, at every 120 seconds using NTP [140]. Note that 𝐴𝑖 (𝑡)

is typically on the order of tens or hundreds of milliseconds. Thus the synchro-

nization accuracy of NTP, which is around 1 millisecond for local area networks,

is sufficient for our experiments.

After performing the necessary updates, the leader middleware transmits a

polling packet to the selected follower. The latest control information is broad-

cast to all followers along with every polling packet.
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Figure 8-3: Mobility tracking using a swarm of sensor-UAVs and a leader compute
node.

8.2 Implementation

In this section, we describe the design and implementation of WiSwarm which

is an instantiation of the networking middleware for information freshness dis-

cussed in Sec. 8.1 tailored to a mobility tracking application.

8.2.A Mobility Tracking Application

Consider a setting where multiple UAVs are tracking moving objects on the ground.

Clearly, outdated information about the position of the objects has a direct im-

pact on the tracking capability of the UAVs. Ideally, the UAVs would like to receive

fresh information about the objects continuously. One simple system design that

achieves this goal consists of UAVs with high on-board computational power that

are able to process video frames acquired from their cameras to detect and track

objects. The continuous stream of images is processed locally, adding almost no

delay, which keeps the UAVs updated about the position of the objects. A critical

drawback of this approach is the prohibitively high cost of deploying numerous

UAVs with high on-board computational power.

The separation of computing and sensing allows for more scalable system de-
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sign - with one leader-node that has plenty of on-board computational power,

and numerous low-cost

sensing-UAVs that have little computational power but can effectively collect sen-

sor data and communicate over a wireless network. Figure 8-3 illustrates an ex-

ample of this system design approach. In general, the leader node could be a

drone with a powerful on-board computer such as a Jetson TX2, a compute node

located at the wireless edge, or even a cloud server performing high-speed infer-

ence and sending back control commands.

In our specific implementation of the mobility tracking application, the sensing-

UAVs capture video of the immediate environment below them and send the

captured video frames (without any pre-processing) to the leader compute node.

The leader processes the received frames, infers the position of the objects, and

sends trajectory updates to the sensing-UAVs via WiFi. The main challenge of this

design approach is to manage the limited wireless resources efficiently in order to

keep information at the UAVs as fresh as possible. WiSwarm, an instantiation of

our networking middleware, ensures information freshness and scalable tracking

performance by carefully controlling the flow of information over the network.

Next, we describe the different individual components involved in our appli-

cation - the mobile objects to be tracked, the sensing-UAVs, the leader compute

node. We also discuss how WiSwarm is implemented at the sensing-UAVs and

the leader compute node.

8.2.B Mobile Objects

We use small autonomous cars equipped with RasPis (3B) as the moving objects

whose mobility is tracked by the UAVs. Figure 8-4(b) shows one such car, with the

ArUco marker tag on top, which is used for uniquely identifying and tracking the

position of the cars by the leader compute node.
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(a) (b)

Figure 8-4: (a) Sensing-UAV. (b) Autonomous car with an identifying ArUco
marker on top.

8.2.C Follower Sensing-UAVs

The sensing-UAV consists of two subsystems: (i) a quadcopter drone; and (ii) a

RasPi (Zero W). Figure 8-4(a) shows a sensing-UAV with a RasPi on board the

quadcopter drone, along with the sensing and communication peripherals we

use for our application.

RasPi (Zero Ws) have very little computation capability (1 GHz single-core

CPU and 512 MB RAM), but can effectively interact with multiple sensors and

also communicate over WiFi. They are also extremely cost-efficient ($10). This

makes them ideal for use in the sensing-UAVs. Each UAV is also equipped with a

micro-controller unit (MCU) that runs state estimation and control algorithms.

The state estimator combines measurements from an on-board inertial mea-

surement unit (IMU) with global position and orientation measurements. These

global measurements are obtained from a motion capture system and received

by an Xbee WiFi module mounted on the vehicle. When motion capture data

is not available, the Xbee module can be replaced by an alternative data source,

such as a global navigation satellite system (GNSS) receiver.

The RasPi is connected to a camera that captures video of the area below the

drone. Along with each frame, the RasPi also collects the position and orientation
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at which the frame was collected by asking for this information from the MCU

using an asynchronous serial connection. Following the discussion in Sec. 8.1,

we know that fresh frames are the most useful for tracking, so we set the queuing

discipline at the sensing-UAVs to be LIFO and the buffer size to be such that it

can accommodate only one frame at a time.

The RasPi is connected to the leader compute node over 2.4 GHz WiFi using

a high gain (8 dBi) antenna. Whenever WiSwarm at the RasPi receives a polling

packet, it transmits the most recent update in its LIFO queue to the compute

node. WiSwarm at the RasPi also collects the control information transmitted by

the compute node. The control information contains the times and locations (in

global coordinates) where the drone should be in the future in order to track the

moving object. WiSwarm at the RasPi sends these waypoints over the serial con-

nection to the drone MCU. The drone MCU then plans and executes a trajectory

that reaches the specified waypoints at the specified future time instants. It does

this by interpolating the waypoints to obtain a continuous trajectory that is fol-

lowed using the flight control algorithm described in [141]. This completes the

control loop.

8.2.D Leader Compute Node

WiSwarm at the compute node collects video-frames received from sensing-UAVs

in response to polling requests. These video-frames are stored in separate LIFO

queues - one for each sensing-UAV. At the application layer, the leader compute

node runs an image processing thread. This processing thread goes over the

queues maintained by WiSwarm in a round-robin manner and processes the re-

ceived video-frames whenever it finds a non-empty queue.

For each sensing UAV, the thread attempts to locate the car that the UAV was

assigned to track. If the car is found, it uses the relative location of the tag in the

frame and the absolute position and orientation at which the frame was captured
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to compute the global coordinates of the car. The processing thread also keeps

a record of the last known locations of the car. Using the current location and

previous known location of the car, the application computes: (i) the relative ve-

locity between the car and the sensing UAV; and (ii) a list of future waypoints and

the time-stamps at which it expects the car to reach these coordinates. In our

implementation, we use a simple linear extrapolation scheme to predict future

waypoints.

The application layer sends the control waypoints and time-stamps to WiSwarm

along with information about the relative velocity between the car and the sensing-

UAV. WiSwarm uses the relative velocity information to update its application-

defined priority weights

𝑤𝑖 (𝑡) ← 𝛼𝑤𝑖 (𝑡−) + (1 − 𝛼)𝑣𝑖 (𝑡), (8.3)

where 𝑣𝑖 (𝑡) is the estimate of relative velocity between the car and the associated

sensing UAV, and 𝛼 = 0.8. Since velocity estimates are noisy and car velocities

are time-varying, we use an exponential moving average motivated by the adap-

tive AoI-based scheduling algorithms proposed in Chapter 3. WiSwarm updates

link reliabilities 𝑝𝑖 (𝑡) by using the number of successful fragment deliveries, as

described in Sec. 8.1.

With updated application weights 𝑤𝑖 (𝑡) and link reliabilities 𝑝𝑖 (𝑡), WiSwarm

uses Whittle’s Index Policy (8.2) to select the sensing-UAVs that need to be sched-

uled for transmission most urgently. Together with the unicast transmission of a

polling packet, WiSwarm broadcasts the most recent list of future waypoints and

time-stamps for every sensing-UAV. This repeated broadcast ensures redundancy

in the delivery of control information.
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8.3 Evaluation

In this section, we evaluate the performance of both WiFi and WiSwarm for the

mobility tracking application. We perform our experiments in a dynamic indoor

campus space with multiple external sources of interference such as WiFi base sta-

tions, mobile phones, and laptops. Throughout this section when we refer to

WiFi, we mean 2.4 GHz WiFi.

In our evaluation, we consider two experimental setups: (i) Stationary ex-

periments, which involve up to fourteen RasPis running an emulated version of

the mobility tracking application and sending video-frames to a central Com-

pute Node. These experiments involved hardware-in-the-loop and allowed us

to test a variety of network sizes, update generation rates, scheduling policies,

frame resolutions, packet sizes and interference conditions. (ii) Flight experi-

ments, which involve interfacing the RasPis with UAVs and conducting real mo-

bility tracking experiments. These allowed us to test how WiSwarm performs with

mobile agents, at longer distances, and in the presence of significant interfer-

ence. They also illustrate the drawbacks of using WiFi more clearly.

Baseline. To demonstrate the performance improvement of WiSwarm, we

compare it with two baseline WiFi systems, namely WiFi-TCP and WiFi-UDP.

Both systems collect video frames from the application layer at a fixed rate, pack-

etize them, store them in FIFO queues, and send these packets over standard

WiFi to the Compute Node. TCP uses its congestion control mechanism to adjust

the number of packets in flight, while UDP simply forwards packets. In all of our

stationary experiments, we found that accommodating the entire video frame

within a single UDP packet (i.e., with no fragmentation) was the best choice in

terms of tracking error.

For flight experiments, we consider an optimized version of WiFi-UDP as the

baseline. Our flight tests showed that mobility tracking with WiFi-UDP and WiFi-
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Figure 8-5: Screenshot from the videos used to simulate car movement during
stationary experiments. The tags are programmed to perform random walks with
time-varying velocities. The virtual UAVs need to keep track of the tags. On the
right, two examples of 224x224 frames sent to the Compute Node by the RasPis
based on their current virtual UAV locations.

TCP with fixed video frame rate (e.g., 50 fps) was not possible for more than a

single sensing-UAV. To get mobility tracking to work with two sensing-UAVs, we

had to carefully tune the frame generation rate (to 5 fps) and the UDP packet size

(to 6 kB per fragment). This is due to the high congestion and unreliability caused

by high generation rates and large packets, which caused tracking failures. Fur-

ther, we also had to tune RTS/CTS thresholds. Despite all of this optimization,

WiFi-UDP was only able to enable tracking for at most two UAVs at a time, as we

show in the discussion on flight experiments.

8.3.A Stationary Experiments

In this section, we discuss the performance improvements of WiSwarm over WiFi

for three different metrics: (i) AoI, (ii) throughput, and, most importantly, (iii)

tracking error. Each data-point in the following discussion represents 16 minutes

worth of experiments, split into 4 batches of 4 minutes each. We calculate the

time-average of the performance metric over the entire 4 minutes of each batch
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Figure 8-6: (a) AoI and (b) tracking error of baseline WiFi-TCP and WiFi-UDP
plotted against the update generation rate of each of the 𝑁 = 6 emulated UAVs.

and then the mean and standard deviation across batches.

Experimental Setup. The experiments involve multiple RasPis running an

emulated virtual UAV application. This application does two things. First, each

RasPi has a video simulating the movement of cars stored on it. Using this video,

the RasPis create cropped frames of size 224x224, based on the current location of

the virtual UAV, which capture the local Field-of-View (FoV). These video frames

are generated at a specified rate that can be set using the rate control mecha-

nism, and are forwarded to WiFi or WiSwarm for delivery. The frames are stored

as unencoded grayscale yuv images (1 byte per pixel), so each video frame is 49

kB in size. Second, the application decodes the control packets received from the

Compute Node and updates the virtual UAV’s location by moving between con-

trol waypoints at a specified speed. Figure 8-5 shows a frame from the video used

for simulating movement of the car tags, along with two examples of 224x224

frames that the RasPis send to the Compute Node for processing.

Figure 8-6 plots the mean AoI and tracking error per UAV for both WiFi-TCP

and WiFi-UDP as the frame generation rate at the RasPis increases. This plot is

for a system with 6 transmitting RasPis. Note that lower AoI and lower tracking
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error are preferred in terms of performance.

We make two important observations from Fig. 8-6. First, the performance of

both WiFi-TCP and WiFi-UDP degrades when the generation rate is high, since

the network becomes congested. Second, WiFi needs optimization of the gener-

ation rate at the application layer to be anywhere close to working in practice.

This optimization is challenging since it needs to be at the application layer and

also adjust quickly to changes in the traffic load and link reliability, which can

vary due to external interference. This is true for both TCP and UDP, i.e. TCP

congestion control was unable to adjust to the optimal rate on its own.

Next, we compare the performance of WiSwarm with both fixed-rate versions

of WiFi and rate-optimized versions of WiFi. We choose the frame generation

rates from the set {1, 3, 5, 7, 10, 15, 20, 25, 50, 100} fps and the number of RasPis

from the set 𝑁 ∈ {2, 4, 6, 8, 10, 12, 14}. We find the best performing rates for each

value of 𝑁 from the rate set (based on tracking error).

To the best of our knowledge, there are no general purpose systems that can

do application layer rate control for a wide variety of real-time applications, so

the rate-optimized WiFi systems are overly optimistic baselines. Despite this,

WiSwarm achieves significant performance gains over both fixed-rate and opti-

mized rate versions of WiFi-TCP and WiFi-UDP.

AoI. Figure 8-7 plots the mean AoI per UAV as the system size 𝑁 increases.

More sources in the system means more congestion, more packet collisions (in

WiFi) and hence poor performance and scalability. We see this clearly in Fig. 8-

7(a), where we compare the baseline versions of WiFi-UDP and WiFi-TCP to WiSwarm.

The baseline versions of WiFi have fixed update generation rate of 50 fps at each

source while WiSwarm uses the maximum generation rate of 100 fps. Mean AoI

improves by 16x for 𝑁 = 8 and by almost 50x for 𝑁 = 14 compared to fixed-rate

WiFi. A major cause of the poor performance of WiFi is buildup of FIFO queues

once the network becomes congested. Fixed-rate TCP eventually starts outper-
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Figure 8-7: Mean AoI per UAV plotted for (a) fixed-rate (50 fps) and (b) optimized
rate WiFi, as well as WiSwarm, as the number of UAVs increases.

forming fixed-rate UDP for larger 𝑁 , due to its congestion control mechanism.

WiSwarm does not suffer from the congestion problem due to the LIFO queues.

Figure 8-7(b) compares rate-optimized versions of WiFi-TCP and WiFi-UDP

with WiSwarm. We observe that mean AoI still improves by 1.5x for 𝑁 = 8 and

2.2x for 𝑁 = 14. While the FIFO queues in WiFi are no longer congested due to

careful tuning of the frame generation rates, there are still packet collisions due

to the distributed nature of the CSMA protocol and external interference sources.

WiSwarm avoids these collisions by centralizing medium access scheduling de-

cisions and prioritizing sources with higher AoI.

Since AoI combines the idea of service regularity with latency, we are also in-

terested in the tail of information freshness. Figure 8-8 plots the performance of

baseline WiFi systems and WiSwarm for the 95𝑡ℎ percentile of AoI, i.e. the value

of AoI which is only exceeded 5% of the time during an entire experiment. We

observe very similar gains as mean AoI. For fixed rate, we observe an 18x reduc-

tion at 𝑁 = 8 and 36x reduction at 𝑁 = 14. For rate-optimized, we observe a

1.2x reduction at 𝑁 = 8 and a 1.7𝑥 reduction for 𝑁 = 14. Note that the tail AoI

is important for our tracking application in addition to mean AoI, since a worse



8.3. Evaluation 309

4 6 8 10 12 14

Number of UAVs

0

20

40

60

80

T
a
il

 A
o
I 

(9
5
th

 %
il

e)

p
er

 U
A

V
 (

se
co

n
d

s)

WiFi-TCP (Fixed Rate)

WiFi-UDP (Fixed Rate)

WiSwarm

(a)

2 4 6 8 10 12 14

Number of UAVs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
a
il

 A
o
I 

(9
5
th

 %
il

e)

p
er

 U
A

V
 (

se
co

n
d

s)

WiFi-TCP (Optimized Rate)

WiFi-UDP (Optimized Rate)

WiSwarm

(b)

Figure 8-8: Tail (95𝑡ℎ percentile) AoI per UAV plotted for (a) fixed-rate (50 fps) and
(b) optimized rate WiFi, as well as WiSwarm, as the number of UAVs increases.

tail suggests a higher probability of the car going out of the UAV’s Field-of-View

leading to lost tracking.

Throughput. Figure 8-9 plots the mean throughput per UAV for each of the

considered systems as the number of UAVs increases. From Fig. 8-9(a), we ob-

serve that both fixed-rate WiFi-TCP and WiFi-UDP have higher per UAV through-

put than WiSwarm. However, this doesn’t help in getting better AoI (as we saw

earlier) or tracking performance (as we will see later). This supports the idea that

high throughput alone is not sufficient and AoI is the right metric to optimize

for in such real-time applications. For the rate-optimized versions of WiFi, we

see a performance improvement in mean throughput per-UAV since WiSwarm

can avoid packet collisions and deliver higher rates than the distributed CSMA

mechanism while also ensuring lower AoIs. For 𝑁 = 8, WiSwarm achieves 1.2x

higher throughput and for 𝑁 = 14, it achieves 2.7x higher throughput.

Tracking Error. This is where we see how all the pieces of our system de-

sign come together to deliver better application performance. Figure 8-10 plots

the mean tracking error (in pixels) per UAV as the number of UAVs increases,
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Figure 8-9: Mean Throughput per UAV plotted for (a) fixed-rate (50 fps) and (b)
optimized rate WiFi, as well as WiSwarm, as the number of UAVs increases.

for WiSwarm and WiFi implementations. From Fig. 8-10(a), which shows the

fixed-rate baselines, we observe that tracking performance improves by 12x for

𝑁 = 8 and 4x for 𝑁 = 14. From Fig. 8-10(b), with rate-optimized WiFi versions,

we observe that tracking error is reduced by 2x at 𝑁 = 10 and 4x at 𝑁 = 14 with

WiSwarm. We also note that the gap in performance between WiSwarm and the

WiFi baselines increases with the system size. In other words, the performance

of WiFi-TCP and WiFi-UDP degrades much more quickly with 𝑁 leading to poor

scalability.

8.3.B Flight Experiments

While the stationary experiments allowed us to test our system in great detail and

provide extensive comparisons, they did not involve implementing the applica-

tion on real UAVs tracking actual mobile targets in a dynamic environment. Our

flight experiments address exactly this setting. Broadly, we will observe that the

mobility of UAVs and higher degree of interference leads to worse wireless con-

nectivity and, in turn, more congestion and packet collisions for WiFi. This allows
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Figure 8-10: Mean Tracking Error per UAV plotted for (a) fixed-rate (50 fps) and
(b) optimized rate WiFi, as well as WiSwarm, as the number of UAVs increases.

us to bring the robustness of WiSwarm into focus. We provide a video describing

the setup and results from the flight experiments at [138].

Experimental Setup. In the flight tests, we replace the internal antenna of the

RasPis with an external high-gain (8 dBi) antenna to improve range and reliability

when the UAVs fly. We fly up to 5 UAVs at a time in our experiment space which

is roughly 20 meters x 10 meters in size. The mobile objects are autonomous cars

with RasPi 3Bs shown in Fig. 8-4(b). We program these cars to move in different

polygonal trajectories over time and also stop occasionally at random for a few

seconds. These trajectories are unknown to the UAVs and the Compute Node,

and the job of the UAVs is to track the cars as closely as possible. Figure 8-1 de-

picts the setup for an experiment involving 5 UAVs tracking the corresponding

cars.

We configure the Pi-Cameras at the UAVs to generate video frames at the max-

imum possible rate, which is 90 frames per second. For WiSwarm, we utilize this

full rate, while for WiFi, we choose the optimized rate by using rate control. The

video frames are 160x160 unencoded grayscale images in the yuv format (1 byte
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Figure 8-11: Two Examples of 160x160 grayscale video frames sent by the RasPis
during flight experiments.

per pixel), with a total size of 25 kB per frame. Figure 8-11 shows two examples of

frames sent to the Compute Node by RasPis from the flying UAVs during different

experiments.

The sensing-UAVs implement a controller that requires knowledge of their

own global position and orientation to be able to plan desired trajectories. A Mo-

tion Capture (MoCap) system provides this information to the UAVs (also via 2.4

GHz WiFi). These MoCap messages are sent to the UAVs in UDP messages at 30

messages/second and each message contains timestamp, position, and orienta-

tion of a single vehicle in 45 bytes. So the MoCap network usage is approximately

1.3 kB/s (or 11 kb/s) per UAV. Importantly, the MoCap system runs completely

independently from the WiSwarm and WiFi systems and causes a low level of

persistent interference in the channel. Thus, results from our flight experiments

are a good measure of robustness of WiSwarm and WiFi to external interference.

Results. Figure 8-12 plots the coordinates of the sensing-UAVs and the target

cars over time, for a two drone WiSwarm experiment, in both 2-D and 3-D. Simi-

larly, Fig. 8-13 plots the coordinates of the sensing-UAVs and the target cars over

time, for a two drone WiFi experiment. It is easy to see that WiSwarm allows for
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Figure 8-12: Coordinates of sensing-UAVs and target cars in 2-D and 3-D, for a
two drone flight experiment running WiSwarm.

far better tracking than WiFi even for just two UAVs. This is further supported

by the histograms of AoI and tracking error plotted in Fig. 8-14. The lower track-

ing error for WiSwarm is due to the fact that it can achieve lower AoI, and hence

deliver fresher information.

We summarize the results of all of our flight experiments in Tables 8.1 and

8.2. We average over 4 minutes of flight data for each experiment. Our main

observation is as follows: while WiFi allows tracking for up to two UAVs at a

time, WiSwarm can easily allow tracking for up to five UAVs at a time. In fact,

when there are more than two sources in the system, WiFi is unable to deliver

more than a handful of packets and essentially no UAV control is possible. The

main reason for this is the high level of packet collisions for WiFi. WiSwarm is

relatively robust to the unreliable wireless channels, interference and mobility

issues encountered in flight experiments, due to our scheduler design that avoids

packet collisions and prioritizes AoI.
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Figure 8-13: Coordinates of sensing-UAVs and target cars in 2-D and 3-D, for a
two drone flight experiment running optimized WiFi-UDP.

Number of Drones 1 2 3 4 5

WiFi-UDP (Optimized) 0.43 1.85 - - -
WiSwarm 0.39 0.30 0.39 0.35 0.36

Table 8.1: Average tracking error per sensing-UAV (in meters).

Number of Drones 1 2 3 4 5

WiFi-UDP (Optimized) 0.10 0.19 - - -
WiSwarm 0.08 0.09 0.11 0.12 0.16

Table 8.2: Average AoI per sensing-UAV (in seconds).

8.4 Summary

In this chapter, we propose an AoI-based networking middleware that enables

the customization of WiFi networks to the needs of time-sensitive applications

that rely on multi-agent systems. By controlling the storage and flow of infor-

mation in the underlying WiFi network, the middleware can prevent packet col-

lisions and dynamically prioritize transmissions aiming to optimize information

freshness. The middleware is implemented at the application layer, facilitating

customization and integration to existing systems To demonstrate the benefits of

our middleware, we implement a mobility tracking application using a swarm of
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(a) (b)

Figure 8-14: Histograms of (a) AoI and (b) tracking error for flight experiments
with two UAVs, comparing WiSwarm with WiFi.

sensing-UAVs communicating with a central controller via WiFi. Our experimen-

tal results show that our middleware can improve information freshness and, as

a result, tracking accuracy by more than one order of magnitude when compared

to an equivalent system that uses plain WiFi. Our flight tests also show that the

middleware improves scalability of the mobility tracking application. Interesting

extensions of our work include consideration of a distributed middleware archi-

tecture. We provide the theoretical underpinnings of a distributed protocol for

minimizing AoI in Chapter 6.
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Chapter 9

Concluding Remarks

Our work in this thesis looked at the optimization of general Age of Informa-

tion functions over single hop and multi-hop wireless networks. We further ad-

dressed open questions in AoI optimization literature on how to handle correla-

tion among sources, and how to design distributed scheduling policies. Finally,

we applied the insights gained from theoretical analysis to problems in robotics

both via simulations of multi-agent mapping and implementation of a real multi-

UAV wireless system (WiSwarm).

As we discussed in our literature review earlier, significant progress has been

made in AoI optimization over the past decade, with a growing community of re-

searchers around the world contributing to the topic. However, the task of apply-

ing theoretical insights from AoI literature to real-world problems and designing

communication systems with AoI as a priority are still in their preliminary stages.

Below, we list some open problems, challenges and future directions of work that

might interest the reader working on these topics. This is by no means a complete

list, and we invite suggestions on further topics of interest and collaboration.
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9.1 Open Questions

9.1.A Complexity of Age Optimal Scheduling

The problem of minimizing weighted-sum AoI and functions of AoI in single-

hop wireless networks has been well studied. We know of scheduling policies

that provide constant factor performance guarantees for different kinds of set-

tings. However, the only known solution providing exact optimality is dynamic

programming. Unfortunately, dynamic programming suffers from the curse of

dimensionality and is not a scalable method for networks with even a moderate

number of sources.

The following question remains open: Is there a computationally efficient

class of scheduling policies that guarantees exact optimality for single-hop AoI

optimization problems? This question is closely related to the existence of delay

optimal scheduling policies as well. Prior work on the complexity of delay opti-

mal scheduling already exists [142]. However, this only looks at order optimality

of delay rather than exact optimality.

If the answer to the previous question is in the negative, a natural question

that is raised is the following - What is the best approximation factor achievable

for a computationally efficient scheduling policy? We know of approximation

factors of 2 [15], 4 [17], and more recently 1.62 [143]. From simulations, we know

that max-weight and Whittle style policies are almost optimal. What is the closest

that such methods can go to optimality?

A third and related question (which was motivated by discussion with Prof.

Yury Polyanskiy) is the following - What kinds of performance can neural net-

work based approaches achieve for AoI optimization and can they lead to more

efficient/scalable design? Traditionally, deep learning and reinforcement learn-

ing based approaches have not worked as well as classical methods to optimize

performance in queuing networks. They require a lot of data and don’t general-
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ize well to different kinds of network conditions, cost functions, topologies and

channel settings. However, there is a possibility that these methods might be-

come more efficient at solving network optimization problems in the near future.

9.1.B Multi-Hop AoI Optimization

All of the questions in the section above were related to AoI optimization in single-

hop wireless networks. However, the problem of making scheduling and rout-

ing decisions to optimize AoI for unicast, multicast and broadcast flows in gen-

eral multi-hop wireless networks remains unsolved. Our Age Debt approach

provides one possible answer to this problem in Chapter 5. However, our ap-

proach is heuristic and does not provide performance guarantees. Solving the

multi-hop setting in a computationally efficient manner, while also providing

performance guarantees, is one of the main open questions in AoI literature at

present.

9.1.C Correlated or Coupled Sources

In Chapter 7, we describe a simple way to model correlated sources and analyze

how AoI optimization changes in the presence of such correlation. In recent on-

going work, we have realized that the way in which correlation influences moni-

toring and AoI is crucially controlled by how it is modeled. Changing the correla-

tion model can lead to very different conclusions regarding how to do scheduling

design and the benefits of correlation. A natural question to ask is - What’s the

best way to model correlation or coupling between sources in a remote mon-

itoring or networked control setting? How does this influence AoI optimiza-

tion?
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9.1.D From Freshness to Semantics

AoI is one particular way to measure the quality of information at a destination

compared to the quality at the source. More recent works have started looking

at newer metrics such as Age of Incorrect Information [128, 129, 130, 131] and

version Age of Information [144, 145]. There has been a growing push to move

beyond AoI to metrics that consider the semantics of information being trans-

mitted, as well as to consider contextual aspects. For example, in the mobility

tracking application, if we knew that the object to be tracked moves very slowly

in certain areas of the environment, then we would reduce its weight when it

enters those areas. Incorporating these kinds of notions in information freshness

optimization is an interesting area of future research.

This section was motivated by discussions with Prof. John Tsitsiklis, Prof.

Nikolaos Pappas and Prof. Roy Yates.

9.1.E Applications

The promise of AoI in the networking community has always been to impact real-

time applications, especially monitoring and control. Our work realizes some

of this promise for robotics applications. However, plenty of work remains. We

identify three specific areas where information freshness optimization might lead

to better systems design in practice. Again, this is not a complete list, but the

starting point for a reader looking for applications.

1) Multi Agent Robotics - This application domain has been the primary focus

of our applied work. We believe that AoI-based methods can lead to significantly

better ways to co-ordinate teams of robots. Offloading computing to the edge,

and using wireless networks that utilize AoI, can lead to more scalable and effi-

cient autonomous robots.

2) Federated Learning - Using the freshness of gradients to be collected might
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improve the speed of convergence or the quality of the aggregated model in fed-

erated learning contexts. It might also provide a way to figure out which subset

of users to poll at any given time for gradient information to ensure fairness, ad-

dress resource availability and time-varying datasets.

3) Software Defined Networking (SDN) - The typical way in which SDN con-

trollers work is that they require timely information about the entire network

state to be able to make network control decisions. A monitoring strategy that

utilizes information freshness can lead to more efficient and scalable monitoring

for very large networks.

9.1.F Hardware Implementations

Apart from different applications, an important direction for future research is

implementing AoI-based scheduling policies at the MAC layer in networking

hardware. Our WiSwarm implementation in Chapter 8 was at the application

layer, making it inefficient. Implementing protocols such as Fresh-CSMA at the

MAC layer and then comparing them to standard networking solutions would

further demonstrate the utility of AoI-based design.
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