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Abstract

Neural networks automate the process of representing objects and their relations on a
computer, including everything from household items to molecules. New representa-
tions are obtained by transforming different instances into a shared representation
space, where variations in data can be measured using simple geometric quantities
such as Euclidean distances. This thesis studies the geometric structure of this space
and its influence on key properties of the learning process, including how much data
is needed to acquire new skills, when predictions will fail, and the computational cost
of learning. We examine two foundational aspects of the geometry of neural network
representations.

Part I designs and studies learning algorithms that take into account the location
of data in representation space. Focusing on contrastive self-supervised learning,
we design a) hard instance sampling strategies and b) methods for controlling what
features models learn. Each produces improvements in key characteristics, such as
training speed, generalization, and model reliability.

Part II studies how to use non-Euclidean geometries to build network architectures
that respect symmetries and structures arising in physical data, providing a powerful
inductive bias for learning. Specifically, we use geometric spaces such as the real
projective plane and the spectraplex to build a) provably powerful neural networks that
respect the symmetries of eigenvectors, which is important for building Transformers
on graph structured data, and b) neural networks that solve combinatorial optimization
problems on graphs such as finding big cliques or small cuts, which arise in molecular
engineering and network science.
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Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Suvrit Sra
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

How observations from the world are described on a computer influences all parts of

the computational problem solving process. For this reason, discovering descriptions,

or representations, that are more amenable to simple computational processes has been

a key and consistent driver of advances in computational science for many decades.

As with all other computational process, what representation of data an AI system

extracts and uses critically affects its behavior, such as how much data is needed to

acquire new skills, when predictions will fail, and the speed at which it can learn.

However, one of the most important strengths of modern AI systems driven by deep

learning is their ability to operate on basic perceptual inputs such as individual pixels

of an image, and determine internally what information from the pixel-level features

to keep, and what to discard.

Besides automating representation acquisition, another key strength of deep learn-

ing systems is the ability to represent different data points in a single, coherent space.

For instance, images living in extremely large, high-dimensional spaces (for instance,

immunohistochemistry images are commonly of size 1024× 1024× 3 or larger) and

converted into comparatively small, compact spaces of a few thousand dimensions.

This space of representations allows comparisons between data, and geometric proper-

ties of this space such as distances, directions, and angles capture not only individual

objects, but how objects relate to one another.

However, this geometry is often emergent. That is, it is not directly learned, and
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instead learned as an intermediate step in an end-to-end system using low-granularity

supervision such as class labels. The objective of this thesis is to explore ideas, methods,

and new directions for more explicitly programming this geometry. Through explicit

handling, the hope is to develop a greater control over the properties of representation

space, making it easier to use this space to reason about the world.

1.1 Neural Network Representation Space

The central promise of deep learning is to learn a map

𝑓 : 𝒳 → R𝑑 (1.1)

from the space of objects 𝒳 expressed in a basic form in which we are able to perceive

them (as images, molecular strings, etc.) to a representation space R𝑑 where everything

that is hard to do with raw perceptual data becomes easy. For instance, quantifying the

similarity between two objects expressed as tensors 𝑥1, 𝑥2 ∈ Rℎ×𝑤×3 of pixel intensities

is non-trivial, but becomes easy if 𝑓 maps image data into a space where simple

Euclidean distances ‖𝑓(𝑥1)− 𝑓(𝑥2)‖2 constitute a meaningful measure of similarity.

Just as learning 𝑓 is the central promise of deep learning, how to learn 𝑓 is the

central question. It is challenging not least because it is hard to precisely specify what

properties the ideal representation has in order to be useful for unknown downstream

tasks. In this thesis we address both how to learn 𝑓 , and what should 𝑓 encode from

the point of view of the geometric structure of representation space.

1.2 Part I: Learning a Representation Geometry

Part I begins with the question of how to learn Euclidean structured representation

space. This question covers a huge breadth of work in general, and a large part of this

thesis in particular. The more precise goal of this section is to design learning algorithms

that explicitly depend on the location of data in embedding space. This is in contrast,

for instance, with supervised pretrained models, which do learn representations, but
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only implicitly—there is no loss function on the embeddings themselves, the loss

only depends on embedding via their connection to the output class logits. This also

holds from more contemporary self-supervised learning methods such as the masked

autoencoder [He et al., 2022], which likewise does not directly optimize the learned

embeddings themselves, but computes the loss after a Transformer decoder. Our

approach differs by focusing on learning algorithms that not only use the locations of

embeddings, but the location of embeddings relative to one another to design better

sampling procedures and objective functions.

1.3 Part II: Programming Special Geometries to

Reflect Problem Structure

In Part I of this thesis, and typically in deep learning, it is assumed that the neural

network feature extractor 𝑓 : 𝒳 → R𝑑 has Euclidean output space. There are good

reasons for this, and it is often not necessary to look further. Indeed, Euclidean

space is unique among finite dimensional vector spaces. A linear space that 1) finite-

dimensional (i.e., tractable for storing on a computer), and 2) to have the basic

geometry needed to compare data—i.e., distances and angles—and 3) to be complete,

so that it is possible to define derivatives for gradient-based training, then Euclidean

space is in fact the only option as this standard result in functional analysis states.

Theorem 1. Every finite dimensional Hilbert space over real numbers is isometrically

isomorphic to Euclidean space.

In other words, the basic properties required for learning representations with

neural networks are possessed by Euclidean space, and moreover Euclidean space is

the only space with these properties. For these reasons and more, Euclidean space is

rightfully the default for deep learning. In the absence of strong prior knowledge to

lead the engineer to believe that another geometry is required, there is no reason to

look beyond Euclidean space.

That said, the goal of Part II of this thesis is to demonstrate that there are
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systematic cases in which non-Euclidean geometries are not only useful but essential

to the model’s ability to learn new skills. Why this is the case is non-obvious, and

one of the key contributions of this thesis is to simply understand when geometries

beyond Euclidean space are desirable. We explore two key problem classes which call

for a different choice of geometry:

1. When there are symmetries in input space 𝒳 (Section 1.3.1, Chapter 7).

2. When 𝑓 is representing combinatorial objects such as paths and cliques in a

graph (Section 1.3.2, Chapter 8).

1.3.1 Encoding Symmetries of Data as Specialized Represen-

tation Geometry

Symmetries of input space 𝒳 can be formalized as the existence of a group 𝐺 acting

on 𝒳 . That is, there is a map · : 𝐺 × 𝒳 → 𝒳 that a) respects the group identity

operation: 𝑒 · 𝑥 = 𝑥 for the identity 𝑒 ∈ 𝐺 and any 𝑥 ∈ 𝒳 , and b) is consistent under

compositions: 𝑔1 · (𝑔2 ·𝑥) = (𝑔1𝑔2) ·𝑥 for all 𝑔1, 𝑔2 ∈ 𝐺 and 𝑥 ∈ 𝒳 . In this formalism, 𝑥

and 𝑔 · 𝑥 are considered equivalent for all 𝑥 ∈ 𝒳 and 𝑔 ∈ 𝐺—that is, all points in the

same orbit—and therefore we wish 𝑓(𝑥) = 𝑓(𝑔 · 𝑥) to be invariant to the action of 𝐺.

For instance, 𝒳 could be the space of images, and 𝐺 translations and rotations of

Euclidean space. A translated or rotated object is still the same object, so a model

identifying objects should be invariant to translations. Caution is advised, however,

since incorrectly enforced invariances reduce the expressive power of models in a way

that can be severely limiting. For instance, a translation and rotation invariant model

will be completely unable to solve certain tasks, for instance distinguishing the digits

6 and 9.

What approaches are there for encoding 𝑓 to be invariant to 𝐺? We explore several

options considering their advantages and disadvantages.

Group Averaging. One natural option is to parameterize 𝑓 using a secondary
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model ℎ : 𝒳 → R𝑑 and defining

𝑓(𝑥) =
1

|𝐺|
∑︁
𝑔∈𝐺

ℎ(𝑔 · 𝑥) for all 𝑥 ∈ 𝒳 . (1.2)

This addresses the group symmetry in output space though an average. In certain

circumstances this approach works well, and it is always worth considering this strategy

since it is simple. However, it has severe limitations for many applications. The most

significant limitation is that this approach only works for relatively small finite groups.

Exponentially large groups and continuous groups do not permit efficient computation

of the average over 𝐺 in general. A second reason is that the parameterization of ℎ

has an effect on the gradient dynamics of 𝑓 . Specifically, although a function class

may appear expressive, the fact that the function is parameterized as a sum can lead

to “degenerate” gradients that make it impossible to learn a good model via gradient

descent. An example is the following: 𝐺 = 𝑆𝑛, the permutation group on 𝑛 elements,

and ℎ(𝑥) = 𝑊𝑥 for 𝑥 ∈ R𝑛 and 𝑊 ∈ R𝑛×𝑑 is the family of linear models. Then:

𝑓(𝑥) =
1

𝑛!

∑︁
𝜎∈𝑆𝑛

𝑊 (𝜎 · 𝑥) = 𝑊

𝑛!

∑︁
𝜎∈𝑆𝑛

(𝜎 · 𝑥) = 𝑊
(︀∑︁

𝑖

𝑥𝑖
)︀
1 (1.3)

where 1 ∈ R𝑛 is the all-ones vector. In other words, the only linear functions that

are also permutation invariant can be written as a function of
∑︀

𝑖 𝑥𝑖 alone. That is,

the function 𝑓 we have parameterized with ℎ is now considerably less expressive than

ℎ—the number of free parameters is only 𝑑, not 𝑛× 𝑑. The takeaway is that it is not

a given that the group average 𝑓 is an expressive model just because ℎ is, and careful

checking is called for.

Canonicalization. Group averaging deals with the group symmetry in the output

space of ℎ. It is also possible to deal with symmetry in the input space of ℎ via

canonicalization. Letting [𝑥] = {𝑔 · 𝑥 : 𝑔 ∈ 𝐺} denote the orbit of 𝑥 in 𝐺, one option

is to define a hardcoded canonicalizing map 𝜑 : 𝒳 → 𝒳 such that 𝜑(𝑥) = 𝜑(𝑥′) for all

𝑥′ ∈ [𝑥], then the model

𝑓(𝑥) = ℎ(𝜑(𝑥)) (1.4)
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is invariant to 𝐺. Furthermore, if ℎ is universally expressive then so is 𝑓 . This situation

appears good. However, not all canonicalizing maps are created equal, and different

choices lead to subtle differences in behavior. The smoothness of the canonicalizing

map 𝜑 critically affects the generalization of 𝑓(𝑥) = ℎ(𝜑(𝑥)). For instance, consider

again the case of 𝐺 = {+1,−1} and 𝒳 = R, and ℎ𝑎(𝑥) = 𝑎𝑥 parameterized by 𝑎 ∈ R,

leading to an overall hypothesis family 𝑓(𝑥) = ℎ𝑎(𝜑(𝑥)) = 𝑎𝜑(𝑥) = 𝑎|𝑥|. Now suppose

also that the ground truth target function is 𝐹 (𝑥) = 4|𝑥|, so our hypothesis class

is aligned well to the task at hand, but that we only observe training data pairs

(𝑥𝑖, 𝐹 (𝑥𝑖)) with 𝑥𝑖 in the interval [−1,+1]. In this case the limited coverage of the

input space is no issue, since the empirical loss minimizer is

𝑎* = argmin
𝑎∈R

∑︁
𝑖

(︀
ℎ𝑎((𝜑(𝑥𝑖))− 𝐹 (𝑥𝑖)

)︀2 (1.5)

= argmin
𝑎∈R

∑︁
𝑖

(︀
𝑎|𝑥𝑖| − 4|𝑥𝑖|

)︀2 (1.6)

= argmin
𝑎∈R

(𝑎− 4)2
∑︁
𝑖

𝑥2𝑖 (1.7)

= 4 (1.8)

and the empirically optimal model 𝑓(𝑥) = 𝑎𝜑(𝑥) = 4|𝑥| generalizes perfectly to all of

the real line.

However, another valid choice of canonicalizing function is:

𝜑(𝑥) =

⎧⎪⎨⎪⎩|𝑥| if |𝑥| ≤ 1

−|𝑥| otherwise.
(1.9)

If again we assume that ℎ𝑎(𝑥) = 𝑎𝑥, and we only observe data data pairs (𝑥𝑖, 𝐹 (𝑥𝑖))

with 𝑥𝑖 in the interval [−1,+1], then as before we find that the empirical minimizer of

the loss is 𝑎* = 4. However, in this case the learned function is 𝑓(𝑥) = 4|𝑥| ·sign(1−|𝑥|)

which approximates 𝐹 (𝑥) = 4|𝑥| well within the training distribution, but completely

fails to generalize when |𝑥| > 1.

The takeaway from this example is that different canonicalizations 𝜑 can have very
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different generalization properties. One reason is that the overall family 𝑓(𝑥) = ℎ(𝜑(𝑥))

may change—indeed the families 𝑓(𝑥) = 𝑎|𝑥| and 𝑓(𝑥) = 4|𝑥| · sign(1 − |𝑥|) are

different, and therefore are able to learn different target functions. However, changing

the hypothesis class is not the only way different canonicalization can affect learning.

Suppose that instead of ℎ(𝑥) = 𝑎𝑥 we took ℎ(𝑥) = MLP(𝑥) where MLP is a feed-

forward neural network that is allowed to be any width and depth and so is a universal

approximator of continuous functions. In this case, the hypothesis classes induced by

the two different cannonicalizations are:

𝑓(𝑥) = MLP(|𝑥|) and 𝑓(𝑥) = MLP(|𝑥| · sign(1− |𝑥|)). (1.10)

Both of these models universally approximate continuous functions R → R𝑑 (more

precisely, functions with compact domains 𝐶 ⊆ R) that are invariant to the sign group

𝐺 = {−1,+1}. But, whilst their expressive power is the same, their generalization

out-of-distribution will be very different. It is known that feed-forward neural networks

extrapolate linearly [Xu et al., 2021], so the model MLP(|𝑥|) trained on input data

from [−1, 1] and tested on data from all of R should still approximate 𝐹 (𝑥) = 4|𝑥|

well, but MLP(|𝑥| · sign(1− |𝑥|)) will fail outside of the training interval [−1, 1].

A guiding principle for selecting a suitable 𝜑 is to find the simplest—e.g., smoothest—

canonicalization possible. However, a precise formulation for how to do this, when it

is even possible, and the precise implications for generalization remain unexplored.

Specialized Representation Space Geometry. In this thesis we take a different

approach. The key mathematical insight is that the underlying object of interest in

this setting is the quotient space 𝒳/𝐺, and that defining a function 𝑓 : 𝒳 → R𝑑

that is invariant to 𝐺 is the same as defining an arbitrary function 𝑓 : 𝒳/𝐺 → R𝑑.

More specifically, every 𝐺 invariant function 𝑓 can be written as 𝑓 = 𝑓 ∘ 𝜋 where

𝜋 : 𝒳 → 𝒳/𝐺 is the quotient map, which maps each 𝑥 to its equivalent class under

𝐺. If our intention is to parameterize both 𝜋 and 𝑓 with neural networks, this means

that one of the internal representation spaces of our network is 𝒳/𝐺, a space with

interesting and potentially non-Euclidean geometry. For instance, if we are interested
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in building a permutation invariant model, then 𝒳 = R𝑛 is Euclidean space, and

𝐺 = 𝑆𝑛, the permutation group on 𝑛 elements. Then the quotient R𝑛/𝑆𝑛 is an

Orbifold, a generalization of a manifold.

Note also that both maps 𝜋 and 𝑓 are continuous whenever 𝑓 is continuous. This

relation can be expressed in terms of the following commutative diagram:

𝒳/𝐺

𝒳 R𝑑

𝑓𝜋

𝑓

The key property of 𝜋 is that it is injective up to equivalences. That is, if 𝑥′ /∈ [𝑥]

then 𝜋(𝑥) ̸= 𝜋(𝑥′). This suggests a general recipe for designing a 𝐺-invariant neural

network: 1) Show that 𝒳/𝐺 is homeomorphic to some subspace of a Euclidean space

R𝑑′ for some 𝑑′, 2) parameterize a function 𝜑 : 𝒳 → R𝑑′ that is 𝐺-invariant and

injective up to 𝐺-equivalence, and 3) parameterize 𝑓 : R𝑑′ → R𝑑 to be any universal

approximator, such as an MLP. If all steps are completed, then the resulting model is

guaranteed to be universally expressive and 𝐺 invariant.

The first step requires use of geometric properties of the quotient space 𝒳/𝐺. For

instance, in Chapter 7 on eigenvector symmetries we have S𝑛−1 (the unit sphere in

R𝑛), and 𝐺 = {+1,−1}. In this case S𝑛−1/{+1,−1} = RP𝑛−1, the real projective

plane. The well-known fact that RP𝑛−1 is a smooth manifold implies that 1) is true

by the Whitney Embedding theorem [Whitney, 1944]. Of the second and third steps,

which still remain, the third is trivial, leaving only the second. The second step is the

point where the designer must inject knowledge of the symmetry group 𝐺 into the

network architecture. Currently this step largely relies on the cunning of the designer,

but it is an interesting and important future direction to develop general processes for

construction architectures that work for larger classes of symmetry groups.
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1.3.2 Representations that Encode Combinatorial Structure

Problems with combinatorial structure are notoriously hard for neural networks to learn

to solve. This is unsurprising for several reasons, not least that many combinatorial

problems are provably hard in the sense of complexity theory. Furthermore, there

appears a natural, fundamental, divide between the discrete, algebraic, nature of

many combinatorial tasks, and the differentiable—or at least continuous—structure of

neural network loss landscapes and representation spaces. Indeed, as noted earlier,

one key reason that Euclidean space is the default representation space is that it is a

continuous and complete space, allowing gradients to be defined and computed. The

mathematical field of representation theory [Curtis and Reiner, 1966] is well placed to

design differentiable expressions of combinatorial structures, since it provides many

tools for embedding discrete combinatorial objects as matrices. Chapters 5 and 8 both

explore this theme, in two very different contexts.

1.4 Thesis Outline

This thesis has two main parts. Part I studies contrastive representation learning, a

general framework for learning Euclidean structured representations. This part begins

with Chapter 2 which outlines a general introduction to contrastive learning that

is of use throughout the thesis. Then, Chapter 3 asks the following question: how

should negative samples be produced for contrastive learning? Negative samples are

one of the two key design choices in contrastive learning, but most prior negative

sampling approaches are naive, e.g., sampling uniformly at random. We introduce

techniques for sampling negatives according to their location representation space.

By sampling negatives in a location-dependent way we are able to generate more

informative samples that accelerate learning and improve the quality of the final

representation space for downstream tasks.

In Chapter 4 we examine more carefully which input data features—out of the

many possibilities—do contrastive learning models actually encode? Unsurprisingly,

we show that how positive and negative samples are generated affects feature learning
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and sketch an intuitive approach to understanding this relation. More surprisingly,

we also find that obvious ways to adjust sampling—e.g., by adjusting the hardness of

negatives—does not lead to a clear winner. Different sampling methods do better on

some downstream tasks and worse on others. In response to this we explore a new

principle for modifying samples using the representation space geometry. Our implicit

feature modification method perturbs embeddings to remove whatever features are

being used to solve the contrastive task, then asks the model to re-solve the contrastive

task using the new features. This forces the model to look for new and different

features to use, thereby encouraging the model not to ignore aspects of the input data

that it previously might have.

Chapter 5 takes a step back to reconsider what structure representation space

should have. As well as encoding similarities between data, Chapter 5 argues that

it is also valuable to encode complex transformations of data as predictable, simple

transformations of embedding space. Specifically, we introduce a training method that

forces augmentations of data—cropping, rotation etc.—to correspond to orthogonal

transformations of the spherical embedding space. We find that our approach leads to

improved downstream performance, as well as increased sensitivity to data features

that other contrastive methods do not.

The final chapter of this section, Chapter 6, explores contrastive learning at scale.

As model parameters and dataset size are scaled into the hundreds of millions and

billions it is important to consider not only how the performance of models scales, but

also the cost of training them. Training methods whose performance scales reliably, but

whose cost grows excessively will ultimately lose out to methods whose performance

scales more slowly, but whose cost grows even slower. Contrastive learning is relatively

costly at scale since it uses two entire copies of each batch sample. Another re-emerging

training method—the masked autoencoder (MAE)—is highly efficient since it uses only

25% of one copy of each batch sample, but has relatively poor performance, especially

for few-shot downstream tasks. Our contribution is to introduce CAN, a hybrid of

contrastive learning and MAE that enjoys better efficiency-performance trade-offs. It

is 70% less costly than contrastive learning, whilst outperforming both contrastive
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learning and MAE. An important interpretation of CAN is geometric: MAE learns

powerful embeddings, but fails to arrange their geometry in a linearly separable way

since it has a non-linear Vision Transformer decoder, which can easily undo non-linear

transforms. By adding a contrastive component to the embedding space of MAE (i.e.,

before the decoder), CAN forces the Euclidean distances between embeddings to be

meaningful, leading to much improved few-shot performance.

Part II of this thesis explores the relation between representation space geometry

and problem structure. Chapter 7 considers symmetry, specifically the symmetries of

eigenvectors (e.g., sign symmetry: if 𝑣 is an eigenvector then so is −𝑣). Eigenvectors

are widely used in machine learning. This is especially the case for learning on graphs,

for which spectral theory has provided a firm mathematical foundation for many

years. This continues in the present day, where eigenvectors of the graph Laplacian

are widely used as node positional encodings for building Tranformers on graphs.

However, the sign symmetry (and a more general basis symmetry which occurs when

eigenvalues have multiplicity greater than 1) is a problem since neural networks are

not invariant to changes in sign, and therefore make predictions that change unreliably

under irrelevant changes to input data.

To address this we introduce a sign invariant architecture SignNet—and a basis

invariant BasisNet—which have the symmetries of eigenvectors built in. Our models

considerably improve the performance when using Laplacian positional encodings, and

are mathematically powerful: SignNet can approximate all sign invariant functions.

The expressive power of SignNet is based on the geometry of its embedding space. We

show that the ideal space for eigenvectors is the space R𝑛/{−1,+1} that quotients

out the sign ambiguity by gluing 𝑣 and −𝑣 together into a single point. Critically, this

quotient space is a well studied manifold known as the real projective plane. Using

geometric properties of the real projective plane—specifically, that it can be rendered

in a 2𝑛-dimensional Euclidean space—we are able to design the pieces of SignNet so

that they are processing vectors in Euclidean space at all times, but these Euclidean

spaces are connected up in such a way as to mirror the real projective plane, from which

we derive the universal expressivity result. The analysis for BasisNet also proceeds in
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the same way, but using the corresponding quotient space, the Grassmanian.

The final chapter of this thesis, Chapter 8, designs representation geometries that

make neural networks more suitable for solving combinatorial optimization problems

such as finding large cliques and small cuts in a graph. Combinatorial tasks such as

these can be formulated as searching for a set of items—such as a set of nodes—which

can be described as a Boolean vector 𝑆 ∈ {0, 1}𝑛 with 1 in coordinate 𝑖 denotes the

inclusion of object 𝑖 in the set, and 0 non-inclusion. However, this choice of space

immediately runs into difficulties since it is discrete, interfering with gradient based

training of neural networks. A natural step to avoid this is to extend the space to

the cube [0, 1]𝑛, and decode set solutions at inference time using heuristics such as

thresholding. However, the key insight of our work is that this choice of space is still

sub-optimal for neural network training. The reason is that each item—e.g., each

node—is now described by a single scalar value between [0, 1]. This misses out on one

of the key strengths of neural networks: representation of objects as high-dimensional

vectors. But it is non-obvious what high-dimensional space is suitable and viable.

Our contribution was to identify the spectraplex, the space of positive-semidefinite

matrices with trace equal to 1, as a suitable choice. With this choice of space each

object is represented by a high-dimensional vector, and so is better suited to neural

network training. The reasoning that led us to choose the spectraplex is to start from

the cube extension, and so that it can be re-expressed as the solution to a certain

linear program (LP—linear optimization over vectors). We then move to matrices

by specifying a semi-definite program (SDPs are linear optimization problems over

matrices with non-negative eigenvalues) that is a counterpart to the LP, which is an

optimization problem over vectors. We then specify our high-dimensional extension as

the solution to this SDP.

1.5 Additional Related Publications

The author also published several other works during the PhD program. These

cover mathematical foundations of learning, including Monte Carlo methods, discrete

36



probability, symmetry, and statistical learning theory. They have been omitted from

this thesis in order to maintain focus, and keep to a reasonable length. Here we very

briefly discuss each work.

1. Flexible Modeling of Diversity with Strongly Log-Concave Distri-

butions, Joshua Robinson, Suvrit Sra, and Stefanie Jegelka. NeurIPS 2019

[Robinson et al., 2019]. This work studies the class of strongly log-concave (SLC)

distributions on subsets of the set {1, , . . . , 𝑛} of 𝑛 elements. SLC distributions

subsume the well-known determinantal point process (DPPs). SLC distributions,

like DPPs, model objects with a repulsive, or negative dependence. Arising in

particle physics, these distributions have found applications in machine learning

where it is desirable to encourage a diverse set of samples or outcomes. In this

work we study foundational statistcial algorithms such as MCMC sampling and

finding the mode of a distribution.

2. Strength from Weakness: Fast Learning Using Weak Supervision,

Joshua Robinson, Stefanie Jegelka, and Suvrit Sra. ICML 2020 [Robinson et al.,

2020]. This paper studies the following fundamental question in statistical

learning theory: when can pretraining on a large dataset, followed by finetuning

on a small amount 𝑛 of labeled data, achieve an excess risk that decreases at the

fast rate of 𝑂(1/𝑛), as opposed to the typical rate of 𝑂(1/
√
𝑛). In this paper

we show that fast rates are achieved when the pretranining task is related to

the downstream task in the following intuitive way: there exists an embedding

𝑧 of data such that there is a linear model 𝑊1𝑧 that achieves zero population

risk on the pretraining task, and another linear model 𝑊2𝑧 that achieves zero

downstream population risk.

3. Optimal Batch Variance with Second-Order Marginals, Zelda Mariet,

Joshua Robinson, Jamie Smith, Suvrit Sra, Stefanie Jegelka. ICML 2020 Work-

shop on Real World Experiment Design and Active Learning [Mariet et al., 2020].

This paper considers a problem at the core of learning: which minibatch of data

to select to compute stochastic gradients on? We formulate this problem as
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searching for the distribution over minibatches of 𝑘 for which the variance of

the stochastic gradient is minimized. We show that this implies specific linear

and quadratic constraints on the distribution, and optimize over a parametric

class (DPPs) for the distribution most closely matching these conditions. We

find that this can lead to faster convergence on small-scale problems.

4. Expressive Sign Equivariant Networks for Spectral Geometric Learn-

ing, Derek Lim, Joshua Robinson, Stefanie Jegelka, Yaron Lipman, Haggai

Maron. ICLR 2023 Workshop Physics4ML [Lim et al., 2023a]. This work

directly extends Chapter 7. The work begins by exploring a previously not

understood property of the sign invariant networks we introduce in Chapter 7.

We show that if two nodes in a graph are automorphic, then a sign invariant

network will give both nodes the same embedding. This is a problem for tasks

that require distinguishing automorphic nodes—such as link prediction tasks

and certain node classification tasks. We show that sign equivariant networks

overcome this issue, and design powerful classes of sign equivariant models.

Additionally, we show that orthogonal equivariance—which is of high interest in

the physical sciences since particle systems have this symmetry—can be reduced

to sign equivariance. This is especially remarkable since the orthogonal group is

continuous, whilst the sign group is finite.
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Part I

Contrastive Learning
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Chapter 2

The Basics of Contrastive Learning

Given access only to samples from a distribution 𝑝(𝑥) on input space 𝒳 (e.g., images),

the goal of contrastive self-supervised learning is to train a feature extracting model

𝑓 : 𝒳 → S𝑑−1 mapping to the unit sphere S𝑑−1 = {𝑧 ∈ R𝑑 : ‖𝑧‖2 = 1}. Contrastive

learning achieves this by automatically generating supervision from the data in the

form of a space of augmentations 𝒜, containing maps 𝑎 : 𝒳 → 𝒳 which slightly

perturb inputs �̄� (blurring, cropping, jittering, etc.) in such as way that the perceptual

meaning of the input does not change much. For instance, a cropped image of a dog is

still a dog. This enables the generation of similar datapoints 𝑥 = 𝑎(�̄�) and 𝑥+ = 𝑎+(�̄�),

with �̄� ∼ 𝑝(𝑥) and 𝑎 ∼ 𝒜.

How can the similarity between 𝑥 and 𝑥+ be used to guide neural network training?

Siamese self-supervised learning methods cover the spectrum of all methods that

train 𝑓 by computing 𝑓(𝑥) and 𝑓(𝑥+) in parallel (hence the name Siamese, after

Siamese twins), and then designing training criteria based on comparisons between

the embeddings.

One of the most natural principles is invariance: train 𝑓 to embed 𝑥 and 𝑥+

nearby—i.e., so that 𝑓(𝑥) = 𝑓(𝑥+). A loss that achieves this is to simply optimize

ℒinv(𝑓) = ‖𝑓(𝑥)− 𝑓(𝑥+)‖2. However this loss alone is insufficient since it immediately

leads to trivial solutions which fail to extract useful features such as 𝑓(𝑥) = constant.

In order to avoid trivial solutions, many self-supervised methods have been proposed

that can be formulated as adding a second loss term alongside ℒinv that rules out
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trivial solutions. Contrastive learning achieves this by adding a term ℒunif(𝑓) that

is zero if and only if 𝑧 = 𝑓(𝑥) is uniformly distributed on the sphere S𝑑−1 [Wang

and Isola, 2020b]. By minimizing the sum ℒinv(𝑓) + ℒunif(𝑓), 𝑓 has to balance two

competing but not contradictory goals: enforcing 𝑓(𝑥) ≈ 𝑓(𝑥+) whilst ensuring 𝑓(𝑥)

and 𝑓(𝑥′) are approximately orthogonal for two independent samples.

The InfoNCE loss [van den Oord et al., 2018, Gutmann and Hyvärinen, 2010] used

in contrastive learning achieves precisely this:

ℒInfoNCE(𝑓) = E𝑥,𝑥+,{𝑥−𝑖 }𝑁𝑖=1

[︂
− log

𝑒𝑓(𝑥)
⊤𝑓(𝑥+)/𝜏

𝑒𝑓(𝑥)⊤𝑓(𝑥+)/𝜏 +
∑︀𝑁

𝑖=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥−𝑖 )/𝜏

]︂
, (2.1)

where 𝜏 > 0 is a temperature hyperparameter, and 𝑥−𝑖 ∼ 𝑝 are negative samples from

the marginal distribution on 𝒳 .

The formal connection between the InfoNCE loss and uniformity was first estab-

lished by Wang and Isola [2020b], who shows that in the limit as the number 𝑁 of

negative pairs goes to infinity,

lim
𝑁→∞

{︀
ℒInfoNCE − log𝑁

}︀
= E𝑥,𝑥+‖𝑓(𝑥)− 𝑓(𝑥+)‖2 + E𝑥 logE𝑥−𝑒𝑓(𝑥)

⊤𝑓(𝑥−) (2.2)

up to a constant, where 𝑥, 𝑥− are independent samples from the marginal 𝑝(𝑥) (we

also set 𝜏 = 1 for simplicity). Critically they analyze,

ℒunif = E𝑥 logE𝑥−𝑒𝑓(𝑥)
⊤𝑓(𝑥−) (2.3)

and show that it is minimizied when 𝑓(𝑥) is uniformly distributed on the sphere, so

this loss is indeed a uniformity-promoting loss, ruling out trivial solutions such as

constant functions.

Finally, the InfoNCE loss can also be interpreted as a classification task with

cross-entropy loss [van den Oord et al., 2018]. The task is as follows: given 𝑥 and a

bag of candidates 𝒩 ⊆ 𝒳 with |𝒩 | = 𝑁 + 1, exactly one of which is similar to 𝑥,

identify the unique similar sample (i.e., positive) 𝑥+ ∈ 𝒩 . This task can be connected

to the InfoNCE loss by computing a similarity score for each 𝑥′ ∈ 𝒩 as 𝑓(𝑥)⊤𝑓(𝑥′)
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and simply taking {𝑓(𝑥)⊤𝑓(𝑥′)}𝑥′∈𝒩 to be the logits that are passed to the standard

cross-entropy loss.

The considerable number of interpretations of the contrastive learning mechanism

is a good thing, suggesting many connections to prior ideas that has and will continue

to come in use when adapting the contrastive learning setup to new problem settings.

Finally, whilst there have been a number of interesting and high profile non-contrastive

Siamese methods that suggest alternative non-collapse loss terms ℒinv + ℒnon-collapse,

recent works have shown that both empirically and theoretically the differences are

less significant than they first appeared. For instance, Tao et al. [2022a] show that

although the loss functions may look different, their gradients are nonetheless similar,

all taking the form of decorrelation of embeddings, either across different samples

as in the InfoNCE loss, or across different coordinates of the embedding vector, as

in Barlow Twins [Zbontar et al., 2021]. Additionally, Garrido et al. [2022] formally

demonstrate an equivalence between contrastive and non-contrastive objectives. As

a consequence, we do not lose any generality by exclusively considering contrastive

learning as our prototypical Siamese self-supervised learning approach.

43



44



Chapter 3

Negative Sampling in Contrastive

Learning

Which samples make good negatives for contrastive learning? The goal of this chapter

is to argue that, as with metric learning, contrastive learning benefits from samples

that a) are hard negatives (i.e., points that are difficult to distinguish from an anchor

point) but b) are not false negatives. This is in contrast to the primary existing

paradigm for negative sampling, which is to draw them uniformly at random from the

training dataset. The key challenge toward sampling more informative hard negatives

is that contrastive methods must remain unsupervised, making it infeasible to adopt

existing negative sampling strategies that use true similarity information. In this

chapter we develop a new family of unsupervised sampling methods for selecting

hard negative samples where the user can control the hardness. A limiting case of

this sampling results in a representation that tightly clusters each class, and pushes

different classes as far apart as possible. The proposed method improves downstream

performance across multiple modalities, requires only few additional lines of code to

implement, and introduces no computational overhead.

Acknowledgements. This work is in collaboration with Ching-Yao Chuang,

Yen-Chen Lin, Antonio Torralba, Suvrit Sra and Stefanie Jegelka. In particular,

Ching-Yao led the initial exploration of false negative samples [Chuang et al., 2020],

which we include in this chapter as Robinson et al. [2021a] extends these results.
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3.1 Background and Motivation

Contrastive learning recipes involve two key ingredients: notions of similar (positive)

(𝑥, 𝑥+) and dissimilar (negative) (𝑥, 𝑥−) pairs of data points. The training dynamics

guide the learned representation 𝑓 to balance to conflicting objectives: mapping

positive pairs to nearby locations, and negative pairs far apart. The success of the

associated methods depends on the design of informative of the positive and negative

pairs, but the challenge is the lack of ground truth similarity information since we are

in the self-supervised setting.

Much research effort has addressed sampling strategies for positive pairs, and has

been a key driver of recent progress in multi-view and contrastive learning [Blum and

Mitchell, 1998, Xu et al., 2013, Bachman et al., 2019, Chen et al., 2020b, Tian et al.,

2020b]. For image data, positive sampling strategies often apply transformations that

preserve semantic content, e.g., jittering, random cropping, separating color channels,

etc. [Chen et al., 2020b,e, Tian et al., 2019]. Such transformations have also been

effective in learning control policies from raw pixel data [Srinivas et al., 2020]. Positive

sampling techniques have also been proposed for sentence, audio, and video data

[Logeswaran and Lee, 2018, van den Oord et al., 2018, Purushwalkam and Gupta,

2020, Sermanet et al., 2018].

Surprisingly, the choice of negative pairs has drawn much less attention in con-

trastive learning. Often, given an “anchor” point 𝑥, a “negative” 𝑥− is simply sampled

uniformly from the training data, independent of how informative it may be for

the learned representation. In supervised and metric learning settings, “hard” (true

negative) examples can help guide a learning method to correct its mistakes more

quickly [Schroff et al., 2015, Song et al., 2016]. For representation learning, informative

negative examples are intuitively those pairs that are mapped nearby but should be

far apart. This idea is successfully applied in metric learning, where true pairs of

dissimilar points are available, as opposed to unsupervised contrastive learning.

With this motivation, we address the challenge of selecting informative negatives

for contrastive representation learning. In response, we propose a solution that builds
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a tunable sampling distribution that prefers negative pairs whose representations are

currently very similar. This solution faces two challenges: (1) we do not have access

to any true similarity or dissimilarity information; (2) we need an efficient sampling

strategy for this tunable distribution. We overcome (1) by building on ideas from

positive-unlabeled learning [Elkan and Noto, 2008, Du Plessis et al., 2014], and (2) by

designing an efficient, easy to implement importance sampling technique that incurs

no computational overhead.

Our theoretical analysis shows that, as a function of the tuning parameter, the

optimal representations for our new method place similar inputs in tight clusters,

whilst spacing the clusters as far apart as possible. Empirically, our hard negative

sampling strategy improves the downstream task performance for image, graph and

text data, supporting that indeed, our negative examples are more informative.

Contributions. In summary, we make the following contributions:

1. We propose a simple distribution over hard negative pairs for contrastive repre-

sentation learning, and derive a practical importance sampling strategy with

zero computational overhead that takes into account the lack of true dissimilarity

information;

2. We theoretically analyze the hard negatives objective and optimal representations,

showing that they capture desirable generalization properties;

3. We empirically observe that the proposed sampling method improves the down-

stream task performance on image, graph and text data.

Next we move onto the problem formulation and our approach.

We begin with the setup and the idea of contrastive representation learning. We

wish to learn an embedding 𝑓 : 𝒳 → S𝑑−1/𝑡 that maps an observation 𝑥 to a point

on a hypersphere S𝑑−1/𝑡 in R𝑑 of radius 1/𝑡, where 𝑡 is the “temperature” scaling

hyperparameter.
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3.2 Mathematical Problem Formulation

Following the setup of Arora et al. [2019], we assume an underlying set of discrete

latent classes 𝒞 that represent semantic content, so that similar pairs (𝑥, 𝑥+) have the

same latent class. Denoting the distribution over latent classes by 𝜌(𝑐) for 𝑐 ∈ 𝒞, we

define the joint distribution 𝑝𝑥,𝑐(𝑥, 𝑐) = 𝑝(𝑥|𝑐)𝜌(𝑐) whose marginal 𝑝(𝑥) we refer to

simply as 𝑝, and assume supp(𝑝) = 𝒳 . For simplicity, we assume 𝜌(𝑐) = 𝜏+ is uniform,

and let 𝜏− = 1− 𝜏+ be the probability of another class. Since the class-prior 𝜏+ is

unknown in practice, it must either be treated as a hyperparameter, or estimated

[Christoffel et al., 2016, Jain et al., 2016].

Let ℎ : 𝒳 → 𝒞 be the true underlying hypothesis that assigns class labels to inputs.

We write 𝑥 ∼ 𝑥′ to denote the label equivalence relation ℎ(𝑥) = ℎ(𝑥′). We denote by

𝑝+𝑥 (𝑥
′) = 𝑝(𝑥′|ℎ(𝑥′) = ℎ(𝑥)), the distribution over points with same label as 𝑥, and by

𝑝−𝑥 (𝑥
′) = 𝑝(𝑥′|ℎ(𝑥′) ̸= ℎ(𝑥)), the distribution over points with labels different from 𝑥.

We drop the subscript 𝑥 when the context is clear. Following the usual convention,

we overload ‘∼’ and also write 𝑥 ∼ 𝑝 to denote a point sampled from 𝑝.

For each data point 𝑥 ∼ 𝑝, the noise-contrastive estimation (NCE) objective

[Gutmann and Hyvärinen, 2010] for learning the representation 𝑓 uses a positive

example 𝑥+ with the same label as 𝑥, and negative examples {𝑥−𝑖 }𝑁𝑖=1 with (supposedly)

different labels, ℎ(𝑥−𝑖 ) ̸= ℎ(𝑥), sampled from 𝑞:

E𝑥∼𝑝, 𝑥+∼𝑝+𝑥
{𝑥−𝑖 }𝑁𝑖=1∼𝑞

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝑁

∑︀𝑁
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃
. (3.1)

The weighting parameter 𝑄 is introduced for the purpose of analysis. When 𝑁 is finite

we take 𝑄 = 𝑁 , yielding the usual form of the contrastive objective. The negative

sample distribution 𝑞 is frequently chosen to be the marginal distribution 𝑝, or, in

practice, an empirical approximation of it [Tian et al., 2019, Chen et al., 2020b,e, He

et al., 2020b, Chen et al., 2020e, van den Oord et al., 2018, Henaff, 2020]. In this

chapter we ask: is there a better way to choose 𝑞?
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3.3 Principles for Negative Sampling

In this section we describe our approach for hard negative sampling. We begin by

asking what makes a good negative sample? To answer this question we adopt the

following two guiding principles:

Principle 1. 𝑞 should only sample “true negatives” 𝑥−𝑖 whose labels differ from that

of the anchor 𝑥.

Principle 2. The most useful negative samples are ones that the embedding currently

believes to be similar to the anchor.

In short, negative samples that have different label from the anchor, but that

are embedded nearby are likely to be most useful and provide significant gradient

information during training. In metric learning there is access to true negative pairs,

automatically fulfilling the first principle.

In unsupervised contrastive learning there is no supervision, so upholding Principle

1 is impossible to do exactly. In this paper we propose a method that upholds Principle

1 approximately, and simultaneously combines this idea with the key additional con-

ceptual ingredient of “hardness” (encapsulated in Principle 2). The level of “hardness”

in our method can be smoothly adjusted, allowing the user to select the hardness that

best trades-off between an improved learning signal from hard negatives, and the harm

due to the correction of false negatives being only approximate. This important since

the hardest points are those closest to the anchor, and are expected to have a high

propensity to have the same label. Therefore the damage from the approximation not

removing all false negatives becomes larger for harder samples, creating the trade-off.

As a special case our our method, when the hardness level is tuned fully down, we

obtain the method proposed in [Chuang et al., 2020] that only upholds Principle

1 (approximately) but not Principle 2. Finally, beyond Principles 1 and 2, we wish

to design an efficient sampling method that does not add additional computational

overhead during training.
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Figure 3-1: Sampling bias. The common
practice of drawing negative examples 𝑥−𝑖
from the data distribution 𝑝(𝑥) may result
in 𝑥−𝑖 that are actually similar to 𝑥.
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Figure 3-2: Sampling bias leads
to performance drop. Results on
CIFAR-10 for drawing 𝑥−𝑖 from 𝑝(𝑥)
(biased) and from data with different
labels, i.e., truly semantically differ-
ent data (unbiased).

3.3.1 Principle I: Avoid Sampling False Negatives

Intuitively, the ideal contrastive loss will use positive and negative pairs correspond to

the desired latent classes. In other words, negative samples 𝑥− will not belong to the

same class as 𝑥. Hence, the ideal loss to optimize would be

𝐿𝑁Unbiased(𝑓) = E𝑥∼𝑝,𝑥+∼𝑝+𝑥
𝑥−𝑖 ∼𝑝−𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝑁

∑︀𝑁
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃
, (3.2)

which we will refer to as the unbiased loss. Here, we introduce a weighting parameter

𝑄 for the analysis. When the number 𝑁 of negative examples is finite, we set

𝑄 = 𝑁 , in agreement with the standard contrastive loss. In practice, however,

𝑝−𝑥 (𝑥
−
𝑖 ) = 𝑝(𝑥−𝑖 |ℎ(𝑥−𝑖 ) ̸= ℎ(𝑥)) is not accessible. The standard approach is thus to

sample negative examples 𝑥−𝑖 from the (unlabeled) 𝑝(𝑥) instead. We refer to the

resulting loss as the biased loss 𝐿𝑁Biased. When drawn from 𝑝(𝑥), the sample 𝑥−𝑖 will

come from the same class as 𝑥 with probability 𝜏+.

Lemma 1 shows that in the limit, the standard InfoNCE loss ℒInfoNCE = 𝐿𝑁Biased—

which for the purposes of this section we denote using new notation emphasizing the

possibility for false negatives—we upper bounds the ideal, unbiased loss.
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Lemma 1. For any embedding 𝑓 and finite 𝑁 , we have

𝐿𝑁Biased(𝑓) ≥ 𝐿𝑁Unbiased(𝑓) + E𝑥∼𝑝

[︃
0 ∧ log

E𝑥+∼𝑝+𝑥 exp 𝑓(𝑥)⊤𝑓(𝑥+)

E𝑥−∼𝑝−𝑥 exp 𝑓(𝑥)⊤𝑓(𝑥−)

]︃
− 𝑒3/2

√︂
𝜋

2𝑁
.

(3.3)

where 𝑎 ∧ 𝑏 denotes the minimum of two real numbers 𝑎 and 𝑏.

Recent works often use large 𝑁 , e.g., 𝑁 = 65536 in He et al. [2020a], making

the last term negligible. While, in general, minimizing an upper bound on a target

objective is a reasonable idea, two issues arise here: (1) the smaller the unbiased

loss, the larger is the second term, widening the gap; and (2) the empirical results in

Figure 3-2 show that minimizing the upper bound 𝐿𝑁Biased and minimizing the ideal

loss 𝐿𝑁Unbiased can result in very different learned representations.

Debiased Contrastive Loss Next, we derive a loss that is closer to the ideal

𝐿𝑁Unbiased, while only having access to positive samples and samples from 𝑝. Figure 3-2

shows that the resulting embeddings are closer to those learned with 𝐿𝑁Unbiased. We

begin by decomposing the data distribution as

𝑝(𝑥′) = 𝜏+𝑝+𝑥 (𝑥
′) + 𝜏−𝑝−𝑥 (𝑥

′).

An immediate approach would be to replace 𝑝−𝑥 in 𝐿𝑁Unbiased with 𝑝−𝑥 (𝑥
′) = (𝑝(𝑥′) −

𝜏+𝑝+𝑥 (𝑥
′))/𝜏− and then use the empirical counterparts for 𝑝 and 𝑝+𝑥 . The resulting

objective can be estimated with samples from only 𝑝 and 𝑝+𝑥 , but is computationally

expensive for large 𝑁 :

1

(𝜏−)𝑁

𝑁∑︁
𝑘=0

(︂
𝑁

𝑘

)︂
(−𝜏+)𝑘E 𝑥∼𝑝,𝑥+∼𝑝+𝑥

{𝑥−𝑖 }𝑘𝑖=1∼𝑝
+
𝑥

{𝑥−𝑖 }𝑁𝑖=𝑘+1∼𝑝

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +
∑︀𝑁

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃
, (3.4)

where {𝑥−𝑖 }
𝑗
𝑖=𝑘 = ∅ if 𝑘 > 𝑗. It also demands at least 𝑁 positive samples. To obtain

a more practical form, we consider the asymptotic form as the number 𝑁 of negative

examples goes to infinity.
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Lemma 2. For fixed 𝑄 and 𝑁 →∞, it holds that

E 𝑥∼𝑝,𝑥+∼𝑝+𝑥
{𝑥−𝑖 }𝑁𝑖=1∼𝑝

−
𝑥

𝑁

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝑁

∑︀𝑁
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃
(3.5)

−→ E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝜏−

(︀
E𝑥−∼𝑝[𝑒𝑓(𝑥)

𝑇 𝑓(𝑥−)]− 𝜏+E𝑣∼𝑝+𝑥 [𝑒𝑓(𝑥)
𝑇 𝑓(𝑣)]

)︀]︃ . (3.6)

The limiting objective (3.6), which we denote by ̃︀𝐿𝑄Debiased, still samples examples

𝑥− from 𝑝, but corrects for that with additional positive samples 𝑣. This essentially

reweights positive and negative terms in the denominator.

The empirical estimate of ̃︀𝐿𝑄Debiased is much easier to compute than the straightfor-

ward objective (3.5). With 𝑁 samples {𝑢𝑖}𝑁𝑖=1 from 𝑝 and 𝑀 samples {𝑣𝑖}𝑀𝑖=1 from

𝑝+𝑥 , we estimate the expectation of the second term in the denominator as

𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1) = max
{︁ 1

𝜏−

(︁ 1

𝑁

𝑁∑︁
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑢𝑖) − 𝜏+ 1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑣𝑖)

)︁
, 𝑒−1/𝑡

}︁
.

(3.7)

We constrain the estimator 𝑔 to be greater than its theoretical minimum 𝑒−1/𝑡 ≤

E𝑥−∼𝑝−𝑥 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 ) to prevent calculating the logarithm of a negative number. The

resulting population loss with fixed 𝑁 and 𝑀 per data point is

𝐿𝑁,𝑀Debiased(𝑓) = E 𝑥∼𝑝;𝑥+∼𝑝+𝑥
{𝑢𝑖}𝑁𝑖=1∼𝑝𝑁

{𝑣𝑖}𝑁𝑖=1∼𝑝
+
𝑥

𝑀

⎡⎣− log
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝑔
(︁
𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1

)︁
⎤⎦ , (3.8)

where, for simplicity, we set 𝑄 to the finite 𝑁 . The class prior 𝜏+ can be estimated

from data [Jain et al., 2016, Christoffel et al., 2016] or treated as a hyperparameter.

Theorem 2 bounds the error due to finite 𝑁 and 𝑀 as decreasing with rate 𝒪(𝑁−1/2+

𝑀−1/2).

Theorem 2. For any embedding 𝑓 and finite 𝑁 and 𝑀 , we have

⃒⃒⃒̃︀𝐿𝑁Debiased(𝑓)− 𝐿
𝑁,𝑀
Debiased(𝑓)

⃒⃒⃒
≤ 𝑒3/2

𝜏−

√︂
𝜋

2𝑁
+
𝑒3/2𝜏+

𝜏−

√︂
𝜋

2𝑀
. (3.9)
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Sample Negatives  
Uniformly from 
Dataset  
(typical method)

Sample Hard 
Negatives  
(our method)

Anchor: Negative Batch: 
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Figure 3-3: Schematic illustration of negative sampling methods for the example of
classifying species of tree. Top row: uniformly samples negative examples (red rings);
mostly focuses on very different data points from the anchor (yellow triangle), and
may even sample examples from the same class (triangles, vs. circles). Bottom row:
Hard negative sampling prefers examples that are (incorrectly) close to the anchor.

Empirically, the experiments in Section 3.5 also show that larger 𝑁 and 𝑀

consistently lead to better performance. In the implementations, we use a full empirical

estimate for 𝐿𝑁,𝑀Debiased that averages the loss over 𝑇 points 𝑥, for finite 𝑁 and 𝑀 .

3.3.2 Principle II: Sample Hard, Informative Negatives

Next we move on to incorporating the idea of hardness into the debiased loss. Our

goal is to design a distribution 𝑞 on 𝒳 that is allowed to depend on the embedding

𝑓 and the anchor 𝑥. From 𝑞 we sample a batch of negatives {𝑥−𝑖 }𝑁𝑖=1 according to

the principles noted above. We propose sampling negatives from the distribution 𝑞−𝛽
defined as

𝑞−𝛽 (𝑥
−) := 𝑞𝛽(𝑥

−|ℎ(𝑥) ̸= ℎ(𝑥−)), where 𝑞𝛽(𝑥
−) ∝ 𝑒𝛽𝑓(𝑥)

⊤𝑓(𝑥−) · 𝑝(𝑥−),

for 𝛽 ≥ 0. Note that 𝑞−𝛽 and 𝑞𝛽 both depend on 𝑥, but we suppress the dependance

from the notation. The exponential term in 𝑞𝛽 is an unnormalized von Mises–Fisher

distribution with mean direction 𝑓(𝑥) and “concentration parameter” 𝛽 [Mardia and

Jupp, 2000]. There are two key components to 𝑞−𝛽 , corresponding to each principle: 1)

conditioning on the event {ℎ(𝑥) ̸= ℎ(𝑥−)} which guarantees that (𝑥, 𝑥−) correspond

to different latent classes (Principle 1); 2) the concentration parameter 𝛽 term controls
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the degree by which 𝑞𝛽 up-weights points 𝑥− that have large inner product (similarity)

to the anchor 𝑥 (Principle 2). Since 𝑓 lies on the surface of a hypersphere of radius

1/𝑡, we have ‖𝑓(𝑥) − 𝑓(𝑥′)‖2 = 2/𝑡2 − 2𝑓(𝑥)⊤𝑓(𝑥′) so preferring points with large

inner product is equivalent to preferring points with small squared Euclidean distance.

Geometric Intuition. The hard negatives distribution 𝑞𝛽 can be interpreted

geometrically. The debiasing, which addresses false negatives, down-weights negative

samples that are very close to the anchor embedding 𝑓(𝑥), and the hard negative

reweighting term down-weights samples that are very far from 𝑓(𝑥). The result is that

𝑞𝛽 targets samples in a ring surrounding 𝑓(𝑥).

Although we have designed 𝑞−𝛽 to have all of the desired components, it is not clear

how to sample efficiently from it. To work towards a practical method, note that we

can rewrite this distribution by adopting a PU-learning viewpoint [Elkan and Noto,

2008, Du Plessis et al., 2014, Chuang et al., 2020]. That is, by conditioning on the

event {ℎ(𝑥) = ℎ(𝑥−)} we can split 𝑞𝛽(𝑥−) as

𝑞𝛽(𝑥
−) = 𝜏−𝑞−𝛽 (𝑥

−) + 𝜏+𝑞+𝛽 (𝑥
−), (3.10)

where 𝑞+𝛽 (𝑥
−) = 𝑞𝛽(𝑥

−|ℎ(𝑥) = ℎ(𝑥−)) ∝ 𝑒𝛽𝑓(𝑥)
⊤𝑓(𝑥−)·𝑝+(𝑥−). Rearranging (3.10) yields

a formula 𝑞−𝛽 (𝑥
−) =

(︀
𝑞𝛽(𝑥

−)− 𝜏+𝑞+𝛽 (𝑥−)
)︀
/𝜏− for the negative sampling distribution

𝑞−𝛽 in terms of two distributions that are tractable since we have samples from 𝑝 and

can approximate samples from 𝑝+ using a set of semantics-preserving transformations,

as is typical in contrastive learning methods.

It is possible to generate samples from 𝑞𝛽 and approximately from 𝑞+𝛽 using rejection

sampling and data augmentations to generate positives. However, rejection sampling

involves an algorithmic complication since the procedure for sampling batches must

be modified. To avoid this, we instead take an importance sampling approach. To

obtain this, first note that fixing the number 𝑄 and taking the limit 𝑁 →∞ in the

objective (3.1) yields,

ℒ(𝑓, 𝑞) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞[𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)]

]︃
. (3.11)
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The original objective (3.1) can be viewed as a finite negative sample approximation

to ℒ(𝑓, 𝑞) (note implicitly ℒ(𝑓, 𝑞) depends on 𝑄) . Inserting 𝑞 = 𝑞−𝛽 and using the

rearrangement of equation (3.10) we obtain the following hardness-biased objective:

E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝜏−

(E𝑥−∼𝑞𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]− 𝜏+E𝑣∼𝑞+𝛽 [𝑒

𝑓(𝑥)𝑇 𝑓(𝑣)])

]︃
. (3.12)

This objective suggests that we need only to approximate expectations E𝑥−∼𝑞𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]

and E𝑣∼𝑞+𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑣)] over 𝑞𝛽 and 𝑞+𝛽 (rather than explicily sampling). This can be

achieved using classical Monte-Carlo importance sampling techniques using samples

from 𝑝 and 𝑝+ as follows:

E𝑥−∼𝑞𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)] = E𝑥−∼𝑝[𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−)𝑞𝛽/𝑝] = E𝑥−∼𝑝[𝑒
(𝛽+1)𝑓(𝑥)𝑇 𝑓(𝑥−)/𝑍𝛽],

E𝑣∼𝑞+𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑣)] = E𝑣∼𝑝+ [𝑒𝑓(𝑥)

𝑇 𝑓(𝑣)𝑞+𝛽 /𝑝
+] = E𝑣∼𝑝+ [𝑒(𝛽+1)𝑓(𝑥)𝑇 𝑓(𝑣)/𝑍+

𝛽 ],

where 𝑍𝛽, 𝑍+
𝛽 are the partition functions of 𝑞𝛽 and 𝑞+𝛽 respectively. The right hand

terms readily admit empirical approximations by replacing 𝑝 and 𝑝+ with 𝑝(𝑥) =

1
𝑁

∑︀𝑁
𝑖=1 𝛿𝑥−𝑖 (𝑥) and 𝑝+(𝑥) = 1

𝑀

∑︀𝑀
𝑖=1 𝛿𝑥+𝑖 (𝑥) respectively (𝛿𝑤 denotes the Dirac delta

function centered at 𝑤). The only unknowns left are the partition functions, 𝑍𝛽 =

E𝑥−∼𝑝[𝑒
𝛽𝑓(𝑥)𝑇 𝑓(𝑥−)] and 𝑍+

𝛽 = E𝑥+∼𝑝+ [𝑒
𝛽𝑓(𝑥)𝑇 𝑓(𝑥+)] which themselves are expectations

over 𝑝 and 𝑝+ and therefore admit empirical estimates,

̂︀𝑍𝛽 =
1

𝑁

𝑁∑︁
𝑖=1

𝑒𝛽𝑓(𝑥)
⊤𝑓(𝑥−𝑖 ), ̂︀𝑍+

𝛽 =
1

𝑀

𝑀∑︁
𝑖=1

𝑒𝛽𝑓(𝑥)
⊤𝑓(𝑥+𝑖 ).

It is important to emphasize the simplicity of the implementation of our proposed

approach. Since we propose to reweight the objective instead of modifying the sampling

procedure, only two extra lines of code are needed to implement our approach, with

no additional computational overhead.
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3.4 Theoretical Analysis of Hard Negative Sampling

3.4.1 Hard Sampling Interpolates Between Marginal and Worst-

Case Negatives

Intuitively, the concentration parameter 𝛽 in our proposed negative sample distribution

𝑞−𝛽 controls the level of “hardness” of the negative samples. As discussed earlier, the

debiasing method of Chuang et al. [2020] can be recovered as a special case: taking

𝛽 = 0 to obtain the distribution 𝑞−0 . This case amounts to correcting for the fact

that some samples in a negative batch sampled from 𝑝 will have the same label as

the anchor. But what interpretation does large 𝛽 admit? Specifically, what does the

distribution 𝑞−𝛽 converge to in the limit 𝛽 → ∞, if anything? We show that in the

limit 𝑞−𝛽 approximates an inner solution to the following zero-sum two player game.

inf
𝑓
sup
𝑞∈Π

{︂
ℒ(𝑓, 𝑞) = E 𝑥∼𝑝

𝑥+∼𝑝+𝑥

[︂
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞[𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)]

]︁}︂
. (3.13)

where Π = {𝑞 = 𝑞(·;𝑥, 𝑓) : supp (𝑞(·;𝑥, 𝑓)) ⊆ {𝑥′ ∈ 𝒳 : 𝑥′ ̸∼ 𝑥},∀𝑥 ∈ 𝒳} is the

set of distributions with support that is disjoint from points with the same class as

𝑥 (without loss of generality we assume {𝑥′ ∈ 𝒳 : 𝑥′ ̸∼ 𝑥} is non-empty). Since

𝑞 = 𝑞(·;𝑥, 𝑓) depends on 𝑥 and 𝑓 it can be thought of as a family of distributions.

The formal statement is as follows.

Proposition 1. Let ℒ*(𝑓) = sup𝑞∈Π ℒ(𝑓, 𝑞). Then for any 𝑡 > 0 and 𝑓 : 𝒳 → S𝑑−1/𝑡

we observe the convergence ℒ(𝑓, 𝑞−𝛽 ) −→ ℒ*(𝑓) as 𝛽 →∞.

Proof. See Appendix A.1.1.

To develop a better intuitive understanding of the worst case negative distribution

objective ℒ*(𝑓) = sup𝑞∈Π ℒ(𝑓, 𝑞), we note that the supremum can be characterized

analytically. Indeed,
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sup
𝑞∈Π
ℒ(𝑓, 𝑞) = −E 𝑥∼𝑝

𝑥+∼𝑝+𝑥
𝑓(𝑥)𝑇𝑓(𝑥+) + sup

𝑞∈Π
E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

log
{︁
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞[𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]

}︁
= −E 𝑥∼𝑝

𝑥+∼𝑝+𝑥
𝑓(𝑥)𝑇𝑓(𝑥+) + E 𝑥∼𝑝

𝑥+∼𝑝+𝑥
log
{︁
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+) +𝑄 · sup
𝑞∈Π

E𝑥−∼𝑞[𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]

}︁
.

The supremum over 𝑞 can be pushed inside the expectation since 𝑞 is a family

of distribution indexed by 𝑥, reducing the problem to maximizing E𝑥−∼𝑞[𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)],

which is solved by any 𝑞* whose support is a subset of arg sup𝑥−:𝑥− ̸∼𝑥 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−) if the

supremum is attained. However, computing such points involves maximizing a neural

network. Instead of taking this challenging route, using 𝑞−𝛽 defines a lower bound by

placing higher probability on 𝑥− for which 𝑓(𝑥)𝑇𝑓(𝑥−) is large. This lower bound

becomes tight as 𝛽 →∞ (Proposition 1).

3.4.2 Optimal Embeddings on the Hypersphere for Worst-Case

Negative Samples

What desirable properties does an optimal contrastive embedding (global minimizer

of ℒ) possess that make the representation generalizable? To study this question,

we first analyze the distribution of an optimal embedding 𝑓 * on the hypersphere

when negatives are sampled from the adversarial worst-case distribution. We consider

a different limiting viewpoint of objective (3.1) as the number of negative samples

𝑁 →∞. Following the formulation of Wang and Isola [2020a] we take 𝑄 = 𝑁 in (3.1),

and subtract log𝑁 . This changes neither the set of minimizers, nor the geometry of

the loss surface. Taking the number of negative samples 𝑁 →∞ yields the limiting

objective,

ℒ∞(𝑓, 𝑞) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︂
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

E𝑥−∼𝑞[𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)]

]︂
. (3.14)

Theorem 3. Suppose the downstream task is classification (i.e. 𝒞 is finite), and let

ℒ*
∞(𝑓) = sup𝑞∈Π ℒ∞(𝑓, 𝑞) . The infimum inf𝑓 : measurable ℒ*

∞(𝑓) is attained, and any 𝑓 *

achieving the global minimum is such that 𝑓 *(𝑥) = 𝑓 *(𝑥+) almost surely. Furthermore,
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letting v𝑐 = 𝑓 *(𝑥) for any 𝑥 such that ℎ(𝑥) = 𝑐 (so v𝑐 is well defined up to a set of 𝑥

of measure zero), 𝑓 * is characterized as being any solution to the following ball-packing

problem,

max
{v𝑐∈S𝑑−1/𝑡}𝑐∈𝒞

∑︁
𝑐∈𝒞

𝜌(𝑐) ·min
𝑐′ ̸=𝑐
‖v𝑐 − v𝑐′‖2. (3.15)

Proof. See Appendix A.1.2.

Interpretation. The first component of the result is that 𝑓 *(𝑥) = 𝑓 *(𝑥+) almost

surely for an optimal 𝑓 *. That is, an optimal embedding 𝑓 * must be invariant across

pairs of similar inputs 𝑥, 𝑥+. The second component is characterizing solutions via

the classical geometrical Ball-Packing Problem of Tammes [1930] (Eq. 3.15) that has

only been solved exactly for uniform 𝜌, for specific of |𝒞| and typically for S2 [Schütte

and Van der Waerden, 1951, Musin and Tarasov, 2015, Tammes, 1930]. When the

distribution 𝜌 over classes is uniform this problem is solved by a set of |𝒞| points

on the hypersphere such that the average squared-ℓ2 distance from a point to the

nearest other point is as large as possible. In other words, suppose we wish to place

|𝒞| number of balls1 on S𝑑−1 so that they do not intersect. Then solutions to Tammes’

Problem (3.15) expresses (twice) the largest possible average squared radius that the

balls can have. So, we have a ball-packing problem where instead of trying to pack as

many balls as possible of a fixed size, we aim to pack a fixed number of balls (one for

each class) to have as big radii as possible. Non-uniform 𝜌 adds importance weights

to each fixed ball. In summary, solutions of the problem min𝑓 ℒ*
∞(𝑓) are a maximum

margin clustering.

This understanding of global minimizers of ℒ*
∞(𝑓) = sup𝑞∈Π ℒ∞(𝑓, 𝑞) can further

developed into a better understanding of generalization on downstream tasks. The

next result shows that representations that achieve small excess risk on the objective

ℒ*
∞ still separate clusters well in the sense that a simple 1-nearest neighbor classifier

achieves low classification error.
1For a manifold ℳ⊆ R𝑑, we say 𝐶 ⊂ℳ is a ball if it is connected, and there exists a Euclidean

ball ℬ = {𝑥 ∈ R𝑑 : ‖𝑥‖2 ≤ 𝑅} for which 𝐶 =ℳ∩ℬ.
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Theorem 4. Suppose 𝜌 is uniform on 𝒞 and 𝑓 is such that ℒ*
∞(𝑓)−inf𝑓 measurable ℒ*

∞(𝑓) ≤

𝜀 with 𝜀 ≤ 1. Let {v*
𝑐 ∈ S𝑑−1/𝑡}𝑐∈𝒞 be a solution to Problem 3.15, and define the

constant 𝜉 = min𝑐,𝑐−:𝑐 ̸=𝑐−‖v*
𝑐 − v*

𝑐−‖ > 0. Then there exists a set of vectors {v𝑐 ∈

S𝑑−1/𝑡}𝑐∈𝒞 such that the 1-nearest neighbor classifier ℎ̂(𝑥) = argmin𝑐∈𝒞‖𝑓(𝑥) − v𝑐‖

(ties broken arbitrarily) achieves misclassification risk,

P𝑥,𝑐(ℎ̂(𝑥) ̸= 𝑐) ≤ 8𝜀

(𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2)2

Proof. See Appendix A.1.3.

In particular, P(ℎ̂(𝑥) ̸= 𝑐) = 𝒪(𝜀) as 𝜀 → 0, and in the limit 𝜀 → 0 we recover

the invariance claim of Theorem 3 as a special case. The result can be generalized

to arbitrary 𝜌 by replacing |𝒞| in the bound by 1/min𝑐 𝜌(𝑐). The result also implies

that it is possible to build simple classifiers for tasks that involve only a subset of

classes from 𝒞, or classes that are a union of classes from 𝒞. The constant 𝜉 =

min𝑐,𝑐−:𝑐 ̸=𝑐−‖v*
𝑐 − v*

𝑐−‖ > 0 is a purely geometrical property of spheres, and describes

the minimum separation distance between a set of points that solves the Tammes’

ball-packing problem.

3.4.3 Generalization Bounds for False Negatives Loss (Princi-

ple I)

For the final part of this theoretical section we return to the debiased contrastive

objective, without hard negatives. We connect this loss to a corresponding supervised

loss, and show how our contrastive learning approach leads to a generalization bound

for downstream supervised learning tasks.

We consider a supervised classification task 𝒯 with 𝐾 classes {𝑐1, . . . , 𝑐𝐾} ⊆ 𝒞.

After contrastive representation learning, we fix the representations 𝑓(𝑥) and then

train a linear classifier 𝑞(𝑥) = 𝑊𝑓(𝑥) on task 𝒯 with the standard multiclass softmax
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cross entropy loss 𝐿Softmax(𝒯 , 𝑞). Hence, we define the supervised loss for 𝑓 as

𝐿Sup(𝒯 , 𝑓) = inf
𝑊∈R𝐾×𝑑

𝐿Softmax(𝒯 ,𝑊𝑓). (3.16)

In line with the approach of Arora et al. [2019] we analyze the supervised loss of a

mean classifier [Snell et al., 2017], where for each class 𝑐, the rows of 𝑊 are set to the

mean of the representations 𝜇𝑐 = E𝑥∼𝑝(·|𝑐)[𝑓(𝑥)]. We will use 𝐿𝜇Sup(𝒯 , 𝑓) as shorthand

for its loss. Note that 𝐿𝜇Sup(𝒯 , 𝑓) is always an upper bound on 𝐿Sup(𝒯 , 𝑓). To allow

for uncertainty about the task 𝒯 , we will bound the average supervised loss for a

uniform distribution 𝒟 over 𝐾-way classification tasks with classes in 𝒞.

𝐿Sup(𝑓) = E𝒯 ∼𝒟𝐿Sup(𝒯 , 𝑓). (3.17)

We begin by showing that the asymptotic unbiased contrastive loss is an upper

bound on the supervised loss of the mean classifier.

Lemma 3. For any embedding 𝑓 , whenever 𝑁 ≥ 𝐾 − 1 we have

𝐿Sup(𝑓) ≤ 𝐿𝜇Sup(𝑓) ≤ ̃︀𝐿𝑁Debiased(𝑓).

Lemma 3 uses the asymptotic version of the debiased loss. Together with Theorem

2 and a concentration of measure result, it leads to a generalization bound for debiased

contrastive learning, as we show next.

Generalization Bound. In practice, we use an empirical estimate ̂︀𝐿𝑁,𝑀Debiased, i.e.,

an average over 𝑇 data points 𝑥, with 𝑀 positive and 𝑁 negative samples for each 𝑥.

Our algorithm learns an empirical risk minimizer 𝑓 ∈ argmin𝑓∈ℱ ̂︀𝐿𝑁,𝑀Debiased(𝑓) from a

function class ℱ . The generalization depends on the empirical Rademacher complexity

ℛ𝒮(ℱ) of ℱ with respect to our data sample 𝒮 = {𝑥𝑗, 𝑥+𝑗 , {𝑢𝑖,𝑗}𝑁𝑖=1, {𝑣𝑖,𝑗}𝑀𝑖=1}𝑇𝑗=1.

Let 𝑓|𝒮 = (𝑓𝑘(𝑥𝑗), 𝑓𝑘(𝑥
+
𝑗 ), {𝑓𝑘(𝑢𝑖,𝑗)}𝑁𝑖=1, {𝑓𝑘(𝑣𝑖,𝑗)}𝑀𝑖=1)𝑗∈[𝑇 ],𝑘∈[𝑑] ∈ R(𝑁+𝑀+2)𝑑𝑇 be the
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restriction of 𝑓 onto 𝒮, using [𝑇 ] = {1, . . . , 𝑇}. Then ℛ𝒮(ℱ) is defined as

ℛ𝒮(ℱ) := E𝜎 sup
𝑓∈ℱ
⟨𝜎, 𝑓|𝒮⟩ (3.18)

where 𝜎 ∼ {±1}(𝑁+𝑀+1)𝑑𝑇 are Rademacher random variables. Combining Theorem 2

and Lemma 3 with a concentration of measure argument yields the final generalization

bound for debiased contrastive learning.

Theorem 5. With probability at least 1− 𝛿, for all 𝑓 ∈ ℱ and 𝑁 ≥ 𝐾 − 1,

𝐿Sup(𝑓) ≤ 𝐿𝑁,𝑀Debiased(𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑁
+
𝜏+

𝜏−

√︂
1

𝑀
+
𝜆ℛ𝒮(ℱ)

𝑇
+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠ (3.19)

where 𝜆 =
√︁

1
(𝜏−)2

(𝑀
𝑁

+ 1) + (𝜏+)2(𝑁
𝑀

+ 1) and 𝐵 = log𝑁
(︀

1
𝜏−

+ 𝜏+
)︀
.

The bound states that if the function class ℱ is sufficiently rich to contain some

embedding for which 𝐿𝑁,𝑀Debiased is small, then the representation encoder 𝑓 , learned

from a large enough dataset, will perform well on the downstream classification task.

The bound also highlights the role of the positive and unlabeled sample sizes 𝑀 and

𝑁 in the objective function, in line with the observation that a larger number of

negative/positive examples in the objective leads to better results [He et al., 2020a,

Chen et al., 2020b]. The last two terms in the bound grow slowly with 𝑁 , but the effect

of this on the generalization error is small if the dataset size 𝑇 is much larger than 𝑁

and 𝑀 , as is commonly the case. The dependence on on 𝑁 and 𝑇 in Theorem 5 is

roughly equivalent to the result in [Arora et al., 2019], but the two bounds are not

directly comparable since the proof strategies differ.

3.5 Empirical Results

Next, we evaluate our hard negative sampling method empirically, and apply it as a

modification to state-of-the-art contrastive methods on image, graph, and text data.

For all experiments 𝛽 is treated as a hyper-parameter (see ablations in Fig. 3-4 for
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more understanding of how to pick 𝛽). Values for 𝑀 and 𝜏+ must also be determined.

We fix 𝑀 = 1 for all experiments, since taking 𝑀 > 1 would increase the number of

inputs for the forward-backward pass. Lemma 7 in the appendix gives a theoretical

justification for the choice of 𝑀 = 1. Choosing the class-prior 𝜏+ can be done in two

ways: estimating it from data [Christoffel et al., 2016, Jain et al., 2016], or treating it

as a hyper-parameter. The first option requires the possession of labeled data before

contrastive training.

3.5.1 Image Representations

We begin by testing the hard sampling method on vision tasks using the STL10,

CIFAR100 and CIFAR10 data. We use SimCLR [Chen et al., 2020b] as the baseline

method, and all models are trained for 400 epochs. The results in Fig. 3-4 show

consistent improvement over SimCLR (𝑞 = 𝑝) and the particular case of our method

with 𝛽 = 0 proposed in [Chuang et al., 2020] (called debiasing) on STL10 and

CIFAR100. For 𝑁 = 510 negative examples per data point we observe absolute

improvements of 3% and 7.3% over SimCLR on CIFAR100 and STL10 respectively,

and absolute improvements over the best debiased baseline of 1.9% and 3.2%. On

tinyImageNet (Tab. 3.1) we observe an absolute improvement of 3.6% over SimCLR,

while on CIFAR10 there is a slight improvement for smaller 𝑁 , which disappears at

larger 𝑁 . See Appendix A.3.1 results using MoCo-v2 for large negative batch size,

and Appendix A.4.1 for full setup details.
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Figure 3-4: Classification accuracy on downstream tasks. Embeddings trained
using hard, debiased, and standard (𝛽 = 0, 𝜏+ = 0) versions of SimCLR, and evaluated
using linear readout accuracy.
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SimCLR Debiased Hard (𝛽 = 1)

53.4% 53.7% 57.0%

Table 3.1: Top-1 linear readout on tinyImageNet. Class prior is set to 𝜏+ = 0.01.

3.5.2 Graph Representations

Second, we consider hard negative sampling in the context of learning graph repre-

sentations. We use the state-of-the-art InfoGraph method introduced by Sun et al.

[2020] as the baseline, which is suitable for downstream graph-level classification. The

objective is of a slightly different form from the NCE loss. Because of this we use

a generalization of the formulation presented in Section 3.3 (See Appendix A.2 for

details). In doing so, we illustrate that it is easy to adapt our hard sampling method

to other contrastive frameworks.

Fig. 3-5 shows the results of fine-tuning an SVM [Boser et al., 1992, Cortes and

Vapnik, 1995] on the fixed, learned embedding for a range of different values of 𝛽.

Hard sampling does as well as InfoGraph in all cases, and better in 6 out of 8 cases.

For ENZYMES and REDDIT, hard negative samples improve the accuracy by 3.2%

and 2.4%, respectively, for DD and PTC by 1− 2%, and for IMDB-B and MUTAG

by at least 0.5%. Usually, multiple different choices of 𝛽 > 0 were competitive with

the InfoGraph baseline: 17 out of the 24 values of 𝛽 > 0 tried (across all 8 datasets)

achieve accuracy as high or better than InfoGraph (𝛽 = 0).

3.5.3 Sentence Representations

Third, we test hard negative sampling on learning representations of sentences using

the quick-thoughts (QT) vectors framework introduced by Logeswaran and Lee [2018],

which uses adjacent sentences (before/after) as positive samples. Embeddings are

trained using the unlabeled BookCorpus dataset [Kiros et al., 2015], and evaluated

following the protocol of Logeswaran and Lee [2018] on six downstream tasks. The

results are reported in Table 3.2. Hard sampling outperforms or equals the QT baseline

in 5 out of 6 cases, the debiased baseline [Chuang et al., 2020] in 4 out of 6, and both
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Figure 3-5: Classification accuracy on downstream tasks. We compare graph
representations on four classification tasks. Accuracies are obtained by fine-tuning
an SVM readout function, and are the average of 10 runs, each using 10-fold cross
validation. Results in bold indicate best performer.

in 3 out of 6 cases. Setting 𝜏+ > 0 led to numerical issues in optimization for hard

sampling.

Objective MR CR SUBJ MPQA TREC MSRP
(Acc) (F1)

QT (𝛽 = 0, 𝜏+ = 0) 76.8 81.3 86.6 93.4 89.8 73.6 81.8
Debiased (𝜏+ = 0.01) 76.2 82.9 86.9 93.7 89.1 74.7 82.7
Hard (𝛽 = 1, 𝜏+ = 0) 77.1 82.5 87.0 92.9 89.2 73.9 82.2
Hard (𝛽 = 2, 𝜏+ = 0) 77.4 83.6 86.8 93.4 88.7 73.5 82.0

Table 3.2: Classification accuracy on downstream tasks. Sentence representa-
tions are learned using quick-thoughts (QT) vectors on the BookCorpus dataset and
evaluated on six classification tasks. Evaluation of binary classification tasks (MR,
CR, SUBJ, MPQA) uses 10-fold cross validation.

3.6 Ablations: A Closer Look at Hard Negatives

3.6.1 Are Harder Samples Necessarily Better?

By setting 𝛽 to large values, one can focus on only the hardest samples in a training

batch. But is this desirable? Fig. 3-6 (left, middle) shows that for vision problems,

taking larger 𝛽 does not necessarily lead to better representations. In contrast, when

one uses true positive pairs during training (green curve, uses label information for
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positive but not negative pairs), the downstream performance monotonically increases

with 𝛽 until convergence (Fig. 3-6 , middle). Interestingly, this is achieved without

using label information for the negative pairs. This observation suggests an explanation

for why bigger 𝛽 hurts performance in practice. Debiasing (conditioning on the event

{ℎ(𝑥) ̸= ℎ(𝑥−)}) using the true 𝑝+ corrects for sampling 𝑥− with the same label as

𝑥. However, since in practice we approximate 𝑝+ using a set of data transformations,

we can only partially correct. This is harmful for large 𝛽 since this regime strongly

prefers 𝑥− for which 𝑓(𝑥−) is close to 𝑓(𝑥), many of whom will have the same label as

𝑥 if not corrected for. We note also that by annealing 𝛽 (gradually decreasing 𝛽 to 0

throughout training; see Appendix A.4.1 for details) it is possible to be more robust

to the choice of initial 𝛽, with marginal impact on downstream accuracy compared to

the best fixed value of 𝛽.

3.6.2 Does Avoiding False Negatives Improve Hard Sampling?

Our proposed hard negative sampling method conditions on the event {ℎ(𝑥) ̸= ℎ(𝑥−)}

in order to avoid false negatives (termed “debiasing” [Chuang et al., 2020]). But does

this help? To test this, we train four embeddings: hard sampling with and without

debiasing, and uniform sampling (𝛽 = 0) with and without debiasing. The results in

Fig. 3-6 (right) show that hard sampling with debiasing obtains the highest linear

readout accuracy on STL10, only using hard sampling or only debiasing yields (in

this case) similar accuracy. All improve over the SimCLR baseline.

Fig. 3-7 compares the histograms of cosine similarities of positive and negative

pairs for the four learned representations. The representation trained with hard

negatives and debiasing assigns much lower similarity score to a pair of negative

samples than other methods. On the other hand, the SimCLR baseline assigns higher

cosine similarity scores to pairs of positive samples. However, to discriminate positive

and negative pairs, a key property is the amount of overlap of positive and negative

histograms. Our hard sampling method achieves less overlap than SimCLR, by better

trading off higher dissimilarity of negative pairs with less similarity of positive pairs.

Similar tradeoffs are observed for the debiased objective, and hard sampling without
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Figure 3-6: Left: the effect of varying concentration parameter 𝛽 on linear readout
accuracy. Middle: linear readout accuracy as concentration parameter 𝛽 varyies, in
the case of contrastive learning (fully unsupervised), using true positive samples (uses
label information), and an annealing method that improves robustness to the choice
of 𝛽 (see Appendix A.4.1 for details). Right: STL10 linear readout accuracy for
hard sampling with and without debiasing, and non-hard sampling (𝛽 = 0) with and
without debiasing. Best results come from using both simultaneously.
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Figure 3-7: Histograms of cosine similarity of pairs of points with the same label (top)
and different labels (bottom) for embeddings trained on STL10 with four different
objectives. H=Hard Sampling, D=Debiasing. Histograms overlaid pairwise to allow
for convenient comparison.

debiasing.

3.6.3 Qualitative Study of Hard Negatives

We compare hard negative samples to uniformly samples negatives in Fig. 3-11. The

top row selects the 10 images with highest inner product with anchor in latent space

from a batch of 128 inputs. The bottom row displays a set of random samples from the

same batch. Hard negatives are semantically much more similar to the anchor than

uniformly sampled negatives - hard negatives possess many similar characteristics to

the anchor, including texture, colors, animals vs machinery.
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Figure 3-9: Histograms of cosine similarity of pairs of points with the same label (top)
and different labels (bottom) for embeddings trained on CIFAR10 with four different
objectives. H=Hard Sampling, D=Debiasing. Histograms overlaid pairwise to allow
for convenient comparison.

3.6.4 How do Hard Negatives Affect Optimization?

Fig. 3-12 shows the performance on STL10 and CIFAR100 of SimCLR versus using

hard negatives throughout training. We use weighted 𝑘-nearest neighbors with 𝑘 = 200

as the classifier and evaluate each model once every five epochs. Hard sampling with

𝛽 = 1 leads to much faster training: on STL10 hard sampling takes only 60 epochs

to reach the same performance as SimCLR does in 400 epochs. On CIFAR100 hard

sampling takes only 125 epochs to reach the same performance as SimCLR does in 400

epochs. We speculate that the speedup is, in part, due to hard negatives providing

non-negligible gradient information during training.
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Figure 3-10: Histograms of cosine similarity of pairs of points with the same label
(top) and different labels (bottom) for embeddings trained on CIFAR100 with four
different objectives. H=Hard Sampling, D=Debiasing. Histograms overlaid pairwise
to allow for convenient comparison.
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Figure 3-11: Qualitative comparison of hard negatives and uniformly sampled negatives
for embedding trained on STL10 for 400 epochs using SimCLR.

3.6.5 Visualizing Embedding Space for Debiased Loss

We consider the debiasing method alone, without hard negatives. Figure 3-13 shows t-

SNE visualizations of the representations learned by the biased and debiased objectives

(𝑁 = 256) on CIFAR10. The debiased contrastive loss leads to better class separation

than the contrastive loss, and the result is closer to that of the ideal, unbiased loss.

3.7 Discussion of Related Work

Contrastive Representation Learning. Various frameworks for contrastive learn-

ing of visual representations have been proposed, including SimCLR [Chen et al.,

2020b,d], which uses augmented views of other items in a minibatch as negative

samples, and MoCo [He et al., 2020b, Chen et al., 2020e], which uses a momentum

updated memory bank of old negative representations to enable the use of very large

batches of negative samples. Most contrastive methods are unsupervised, however

there exist some that use label information [Sylvain et al., 2020, Khosla et al., 2020].
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Figure 3-12: Hard sampling takes much fewer epochs to reach the same accuracy as
SimCLR does in 400 epochs; for STL10 with 𝛽 = 1 it takes only 60 epochs, and on
CIFAR100 it takes 125 epochs (also with 𝛽 = 1).
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Figure 3-13: t-SNE visualization of learned representations on CIFAR10.
Classes are indicated by colors. The debiased objective (𝜏+ = 0.1) leads to better
data clustering than the (standard) biased loss; its effect is closer to the supervised
unbiased objective.

Many works study the role of positive pairs, and, e.g., propose to apply large pertur-

bations for images Chen et al. [2020b,e], or argue to minimize the mutual information

within positive pairs, apart from relevant information for the ultimate prediction task

[Tian et al., 2020b]. Beyond visual data, contrastive methods have been developed

for sentence embeddings [Logeswaran and Lee, 2018], sequential data [van den Oord

et al., 2018, Henaff, 2020], graph [Sun et al., 2020, Hassani and Khasahmadi, 2020, Li

et al., 2019b] and node representation learning [Velickovic et al., 2019], and learning

representations from raw images for off-policy control [Srinivas et al., 2020]. The role

of negative pairs has been much less studied. Recent work by Kalantidis et al. [2020]

consider applying Mixup [Zhang et al., 2018a] to generate hard negatives in latent

space, and Jin et al. [2018] exploit the specific temporal structure of video to generate
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negatives for object detection.

Negative Mining in Deep Metric Learning. As opposed to the contrastive

representation learning literature, selection strategies for negative samples have been

thoroughly studied in (deep) metric learning [Schroff et al., 2015, Song et al., 2016,

Harwood et al., 2017, Wu et al., 2017, Ge, 2018, Suh et al., 2019]. Most of these works

observe that it is helpful to use negative samples that are difficult for the current

embedding to discriminate. Schroff et al. [2015] qualify this, observing that some

examples are simply too hard, and propose selecting “semi-hard” negative samples.

The well known importance of negative samples in metric learning, where (partial)

true dissimilarity information is available, raises the question of negative samples in

contrastive learning, the subject of this paper.

Positive-unlabeled Learning. For the debiased loss, we approximate the con-

trastive loss with only unlabeled data from 𝑝(𝑥) and positive examples, our work

is also related to Positive-Unlabeled (PU) learning, i.e., learning from only positive

(P) and unlabeled (U) data. Common applications of PU learning are retrieval or

outlier detection [Elkan and Noto, 2008, Du Plessis et al., 2014, 2015]. Our approach

is related to unbiased PU learning, where the unlabeled data is used as negative

examples, but down-weighted appropriately Kiryo et al. [2017], Du Plessis et al. [2014,

2015]. While these works focus on zero-one losses, we here address the contrastive

loss, where existing PU estimators are not directly applicable.
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Chapter 4

Understanding Shortcuts in

Contrastive Learning

How do we know if a contrastive-trained model will learn features that are able to

solve a newly encountered tasks of interest? Since contrastive leanrning does not

directly train for extracting features suited to a particularly downstream task it is

non-obvious what these models actually learn. In this chapter we explore the factors

driving which features contrastive models learn.

To begin, we observe that the contrastive loss does not always sufficiently guide

which features are extracted, a behavior that can negatively impact the performance

on downstream tasks via “shortcuts”, i.e., by inadvertently suppressing important

predictive features. We find that feature extraction is influenced by the difficulty of

the so-called instance discrimination task (i.e., the task of discriminating pairs of

similar points from pairs of dissimilar ones).

Although harder pairs improve the representation of some features, the improvement

comes at the cost of suppressing previously well represented features. In response,

we propose implicit feature modification (IFM), a method for altering positive and

negative samples in order to guide contrastive models towards capturing a wider

variety of predictive features. The principle underlying IFM is the following: for an

embeddings, and identify the direction in embedding space that would most hurt the

pretraining, and move the point in this direction. In doing so we rforbit the model
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from using the features currently being used to solve the contrastive task, and ask it

to learn different features instead. By leveraging the geometry of representation space

to change which data features the model can use, we observe that IFM reduces feature

suppression, and as a result improves performance on vision and medical imaging

tasks.

Acknowledgements. This chapter is based on [Robinson et al., 2021b], which is

in collaboration with Li Sun, Ke Yu, Kayhan Batmanghelich, Stefanie Jegelka, and

Suvrit Sra. Many of the experimental result in this work were developed in close

collaboration with Li and Ke.

4.1 Background and Motivation

The contrastive learning pretraining task forces the learned mode to extract features

capable of distinguishing a pair of data augmented inputs from random samples fro

the trainign data.

In other words, learning features that are discriminative during training does not

guarantee a model will generalize. Many studies find inductive biases in supervised

learning toward simple “shortcut” features and decision rules [Hermann and Lampinen,

2020, Huh et al., 2021, Nguyen et al., 2021] which result in unpredictable model

behavior under perturbations [Ilyas et al., 2019, Szegedy et al., 2014] and failure

outside the training distribution [Beery et al., 2018, Recht et al., 2019]. Simplicity

bias has various potential sources [Geirhos et al., 2020] including training methods

[Chizat and Bach, 2020, Lyu and Li, 2020, Soudry et al., 2018] and architecture design

[Geirhos et al., 2019, Hermann et al., 2019]. Bias towards shortcut decision rules

also hampers transferability in contrastive learning [Chen and Li, 2020], where it is

in addition influenced by the instance discrimination task. These difficulties lead us

to ask: can the contrastive instance discrimination task itself be modified to avoid

learning shortcut solutions?

We approach this question by studying the relation between contrastive instance

discrimination and feature learning. First, we theoretically explain why optimizing
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the InfoNCE loss alone does not guarantee avoidance of shortcut solutions that

suppress (i.e., discard) certain input features [Chen and Li, 2020, Geirhos et al.,

2020]. Second, despite this negative result, we show that it is still possible to trade

off representation of one feature for another using simple methods for adjusting the

difficulty of instance discrimination. However, these methods have an important

drawback: improved learning of one feature often comes at the cost of harming

another. That is, feature suppression is still prevalent. In response, we propose

implicit feature modification, a technique that encourages encoders to discriminate

instances using multiple input features. Our method introduces no computational

overhead, reduces feature suppression (without trade-offs), and improves generalization

on various downstream tasks.

Contributions. In summary, this chapter makes the following main contributions:

1. It analyzes feature suppression in contrastive learning, and explains why feature

suppression can occur when optimizing the InfoNCE loss.

2. It studies the relation between instance discrimination tasks and feature learning;

concretely, adjustments to instance discrimination difficulty leads to different

features being learned.

3. It proposes implicit feature modification, a simple and efficient method that

reduces the tendency to use feature suppressing shortcut solutions and improves

generalization.

4.2 Feature Suppression in Contrastive Learning

Feature suppression refers to the phenomenon where, in the presence of multiple

predictive input features, a model uses only a subset of them and ignores the others.

The selected subset often corresponds to intuitively “simpler” features, e.g., color as

opposed to shape. Such features lead to “shortcut” decision rules that might perform

well on training data, but can harm generalization and lead to poor robustness to data

shifts. Feature suppression has been identified as a common problem in deep learning
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Figure 4-1: An ideal encoder would discriminate between instances using multiple
distinguishing features instead of finding simple shortcuts that suppress features. We
show that InfoNCE-trained encoders can suppress features (Sec. 4.2.2). However,
making instance discrimination harder during training can trade off representation of
different features (Sec. 4.2.3). To avoid the need for trade-offs we propose implicit
feature modification (Sec. 4.3), which reduces suppression in general, and improves
generalization (Sec. 4.4).

[Geirhos et al., 2020], and both supervised and contrastive learning suffer from biases

induced by the choice of optimizer and architecture. However, contrastive learning

bears an additional potential source of bias: the choice of instance discrimination

task. Which positive and negative pairs are presented critically affects which features

are discriminative, and hence which features are learned. In this work we study the

relation between feature suppression and instance discrimination.

First, we explain why optimizing the InfoNCE loss is insufficient in general to

avoid feature suppression, and show how it can lead to counter-intuitive generalization

(Sec. 4.2.2). Given this negative result, we then ask if it is at least possible to control

which features a contrastive encoder learns? We find that this is indeed the case, and

that adjustments to the instance discrimination task lead to different features being

learned (Sec. 4.2.3). However, the primary drawback of these adjustments is that

improving one feature often comes at the cost of harming representation of another.

That is, feature suppression is still prevalent. Addressing this drawback is the focus of

Sec. 4.3.

4.2.1 A Formal Definition of Feature Suppression

Formally, we assume that the data has underlying feature spaces 𝒵1, . . . ,𝒵𝑛 with a

distribution 𝑝𝑗 on each 𝒵𝑗 . Each 𝑗 ∈ [𝑛], corresponding to a latent space 𝒵𝑗 , models a

distinct feature. We write the product as 𝒵𝑆 =
∏︀

𝑗∈𝑆 𝒵𝑗, and simply write 𝒵 instead
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of 𝒵 [𝑛] where [𝑛] = {1, . . . , 𝑛}. A set of features 𝑧 = (𝑧𝑗)𝑗∈[𝑛] ∈ 𝒵 is generated by

sampling each coordinate 𝑧𝑗 ∈ 𝒵𝑗 independently, and we denote the measure on 𝒵

induced by 𝑧 by 𝜆. Further, let 𝜆(·|𝑧𝑆) denote the conditional measure on 𝒵 for fixed

𝑧𝑆. For 𝑆 ⊆ [𝑛] we use 𝑧𝑆 to denote the projection of 𝑧 onto 𝒵𝑆. Finally, an injective

map 𝑔 : 𝒵 → 𝒳 produces observations 𝑥 = 𝑔(𝑧).

Our aim is to train an encoder 𝑓 : 𝒳 → S𝑑−1 to map input data 𝑥 to the surface

of the unit sphere S𝑑−1 = {𝑢 ∈ R𝑑 : ‖𝑢‖2 = 1} in such a way that 𝑓 extracts

useful information. To formally define feature suppression, we need the pushforward

ℎ#𝜈(𝑉 ) = 𝜈(ℎ−1(𝑉 )) of a measure 𝜈 on a space 𝒰 for a measurable map ℎ : 𝒰 → 𝒱

and measurable 𝑉 ⊆ 𝒱 , where ℎ−1(𝑉 ) denotes the preimage.

Definition 1. Consider an encoder 𝑓 : 𝒳 → S𝑑−1 and features 𝑆 ⊆ [𝑛]. For each

𝑧𝑆 ∈ 𝒵𝑆, let 𝜇(·|𝑧𝑆) = (𝑓 ∘ 𝑔)#𝜆(·|𝑧𝑆) be the pushforward measure on S𝑑−1 by 𝑓 ∘ 𝑔

of the conditional 𝜆(·|𝑧𝑆).

1. 𝑓 suppresses 𝑆 if for any pair 𝑧𝑆, 𝑧𝑆 ∈ 𝒵𝑆, we have 𝜇(·|𝑧𝑆) = 𝜇(·|𝑧𝑆).

2. 𝑓 distinguishes 𝑆 if for any pair of distinct 𝑧𝑆, 𝑧𝑆 ∈ 𝒵𝑆, measures 𝜇(·|𝑧𝑆), 𝜇(·|𝑧𝑆)

have disjoint support.

Feature suppression is thus captured in a distributional manner, stating that 𝑆 is

suppressed if the encoder distributes inputs in a way that is invariant to the value

𝑧𝑆. Distinguishing features, meanwhile, asks that the encoder 𝑓 separates points

with different features 𝑧𝑆 into disjoint regions. We consider training an encoder

𝑓 : 𝒳 → S𝑑−1 to optimize the InfoNCE loss [van den Oord et al., 2018, Gutmann and

Hyvärinen, 2010],

ℒ𝑚(𝑓) = E𝑥,𝑥+,{𝑥−𝑖 }𝑚𝑖=1

[︂
− log

𝑒𝑓(𝑥)
⊤𝑓(𝑥+)/𝜏

𝑒𝑓(𝑥)⊤𝑓(𝑥+)/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥−𝑖 )/𝜏

]︂
, (4.1)

where 𝜏 is known as the temperature. Positive pairs 𝑥, 𝑥+ are generated by first

sampling 𝑧 ∼ 𝜆, then independently sampling two random augmentations 𝑎, 𝑎+ ∼ 𝒜,

𝑎 : 𝒳 → 𝒳 from a distribution 𝒜, and setting 𝑥 = 𝑎(𝑔(𝑧)) and 𝑥+ = 𝑎+(𝑔(𝑧)). We

assume 𝒜 samples the identity function 𝑎(𝑥) = 𝑥 with non-zero probability (“𝑥 is
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similar to itself”), and that there are no collisions: 𝑎(𝑥) ̸= 𝑎′(𝑥′) for all 𝑎, 𝑎′, and all

𝑥 ≠ 𝑥′. Each negative example 𝑥−𝑖 is generated as 𝑥−𝑖 = 𝑎𝑖(𝑔(𝑧𝑖)), by independently

sampling features 𝑧𝑖 ∼ 𝜆 and an augmentation 𝑎𝑖 ∼ 𝒜.

4.2.2 Why Feature Suppression Occurs in Contrastive Learning

Do optimal solutions to the InfoNCE loss automatically avoid shortcut solutions?

Unfortunately, as we show in this section, this is not the case in general; there exist

both optimal solutions of the InfoNCE loss that do and solutions that do not suppress

a given feature. Following previous work [Robinson et al., 2021a, Wang and Isola,

2020b, Zimmermann et al., 2021], we analyze the loss as the number of negatives goes

to infinity,

ℒ = lim
𝑚→∞

{︀
ℒ𝑚(𝑓)−log𝑚− 2

𝜏

}︀
= 1

2𝜏
E𝑥,𝑥+‖𝑓(𝑥)−𝑓(𝑥+)‖2+E𝑥+ log

[︀
E𝑥−𝑒𝑓(𝑥

+)⊤𝑓(𝑥−)/𝜏
]︀
.

We subtract log𝑚 to ensure the limit is finite, and use 𝑥− to denote a random sample

with the same distribution as 𝑥−𝑖 . Prop. 2 shows that, assuming the marginals 𝑝𝑗 are

uniform, the InfoNCE loss is optimized both by encoders that suppress feature 𝑗, and

by encoders that distinguish 𝑗.

Proposition 2. Suppose that 𝑝𝑗 is uniform on 𝒵𝑗 = S𝑑−1 for all 𝑗 ∈ [𝑛]. Then for

any feature 𝑗 ∈ [𝑛] there exists an encoder 𝑓supp that suppresses feature 𝑗 and encoder

𝑓disc that discriminates 𝑗 but both attain min𝑓 : measurable ℒ(𝑓).

Proof. The existence of the encoders 𝑓supp and 𝑓disc is demonstrated by constructing

explicit examples. Before defining 𝑓supp and 𝑓disc themselves, we begin by constructing

a family {𝑓𝑘}𝑘∈[𝑛] of optimal encoders.

Since 𝑔 is injective, we know there exists a left inverse ℎ : 𝒳 → 𝒵 such that

ℎ ∘ 𝑔(𝑧) = 𝑧 for all 𝑧 ∈ 𝒵. For any 𝑘 ∈ [𝑛] let Π𝑘 : 𝒵 → S𝑑−1 denote the projection

Π𝑘(𝑧) = 𝑧𝑘. Since 𝑝𝑘 is uniform on the sphere S𝑑−1, we know that Π𝑘 ∘ ℎ ∘ 𝑔(𝑧) = 𝑧𝑗 is

uniformly distributed on S𝑑−1. Next we partition the space 𝒳 . Since we assume that

for all 𝑎 ̸= 𝑎′ and 𝑧 ̸= 𝑧′ that 𝑎(𝑧) ̸= 𝑎′(𝑧′), the family {𝒳𝑧}𝑧∈𝒵 where 𝒳𝑧 = {𝑎 ∘ 𝑔(𝑧) :

𝑧 ∈ 𝒵} is guaranteed to be a partition (and in particular, disjoint). We may therefore
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define an encoder 𝑓𝑘 : 𝒳 → S𝑑−1 to be equal to 𝑓𝑘(𝑥) = Π𝑘 ∘ ℎ ∘ 𝑔(𝑧) = 𝑧𝑘 for all

𝑥 ∈ 𝒳𝑧.

First we check that this 𝑓𝑘 is optimal. Since for any 𝑧, and any 𝑎 ∼ 𝒜, by definition

we have 𝑎∘ 𝑔(𝑧) ∈ 𝒳𝑧, we have that 𝑓𝑘(𝑥) = 𝑓𝑘(𝑎(𝑥)) almost surely, so ℒalign(𝑓𝑘) = 0 is

minimized. To show 𝑓𝑘 minimizes ℒunif note that the uniformity loss can be re-written

as

ℒunif(𝑓𝑘) =

∫︁
𝑎

∫︁
𝑧

log

∫︁
𝑎−

∫︁
𝑧−
𝑒𝑓𝑘∘𝑎(𝑔(𝑧))

⊤𝑓𝑘∘𝑎−(𝑔(𝑧−))/𝜏𝜆(d𝑧)𝜆(d𝑧−)𝒜(d𝑎)𝒜(d𝑎−)

=

∫︁
𝑧

log

∫︁
𝑧−
𝑒𝑓𝑘∘𝑔(𝑧)

⊤𝑓𝑘∘𝑔(𝑧−)/𝜏𝜆(d𝑧)𝜆(d𝑧−)

=

∫︁
S𝑑−1

log

∫︁
S𝑑−1

𝑒𝑢
⊤𝑣/𝜏𝜇(d𝑢)𝜇(d𝑣)

where 𝜇 = 𝑓𝑘 ∘ 𝑔#𝜆 is the pushforward measure on S𝑑−1, and the second equality

follows from the fact that ℒalign(𝑓𝑘) = 0. Theorem 1 of [Wang and Isola, 2020b]

establishes that the operator,

𝜇 ↦→
∫︁
S𝑑−1

log

∫︁
S𝑑−1

𝑒𝑢
⊤𝑣/𝜏𝜇(d𝑢)𝜇(d𝑣)

is minimized over the space of Borel measures on S𝑑−1 if and only if 𝜇 = 𝜎𝑑,

the uniform distribution on S𝑑−1, as long as such an 𝑓 exists. However, since by

construction 𝑓𝑘(𝑥) = Π𝑘 ∘ ℎ ∘ 𝑔(𝑧) = 𝑧𝑘 is uniformly distributed on S𝑑−1, we know

that (𝑓𝑘 ∘ 𝑔)#𝜆 = 𝜎𝑑, and hence that 𝑓𝑘 minimizes ℒalign and ℒunif and hence also the

sum ℒ = ℒalign + ℒunif.

Recall that we seek encoder 𝑓supp that suppress feature 𝑗, and 𝑓disc that distinguishes

feature 𝑗. We have a family {𝑓𝑘}𝑘∈[𝑛] that are optimal, and select the two encoders

we seen from this collection. First, for 𝑓supp define 𝑓supp = 𝑓𝑘 for any 𝑘 ̸= 𝑗. Then by

construction 𝑓supp(𝑥) = 𝑧𝑘 (where 𝑥 ∈ 𝒳𝑧) depends only on 𝑧𝑘, which is independent

of 𝑧𝑗. Due to independence, we therefore know that for any pair 𝑧𝑗, 𝑧𝑗 ∈ 𝒵𝑗, we have

𝜇(·|𝑧𝑗) = 𝜇(·|𝑧𝑗), i.e., that 𝑓supp is optimal but suppresses feature 𝑗. Similarly, simply

define 𝑓disc = 𝑓 𝑗. So 𝑓disc(𝑥) = 𝑧𝑗 where 𝑥 ∈ 𝒳𝑧, and for any 𝑧𝑗, 𝑧𝑗 ∈ 𝒵𝑗 with 𝑧𝑗 ̸= 𝑧𝑗
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the pushforwards 𝜇(·|𝑧𝑗), 𝜇(·|𝑧𝑗) are the Dirac measures 𝛿𝑧𝑗 , 𝛿𝑧𝑗 , which are disjoint.

The condition that 𝑝𝑗 is uniformly distributed on 𝒵𝑗 = S𝑑−1 is similar to conditions

used in previous work [Zimmermann et al., 2021]. Prop. 2 shows that empirical

observations of feature suppression [Chen and Li, 2020] (see also Fig. 4-3) are not

simply due to a failure to sufficiently optimize the loss, but that the possibility of

feature suppression is built into the loss. What does Prop. 2 imply for the generalization

behavior of encoders? Besides explaining why feature suppression can occur, Prop. 2

also suggests another counter-intuitive possibility: lower InfoNCE loss may actually

lead to worse performance on some tasks.
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Figure 4-2: Linear readout error on different
downstream tasks can be negatively correlated.
Further, lower InfoNCE loss does not always
yield not lower error: error rates on texture,
shape and STL10 prediction are negatively cor-
related with InfoNCE loss.

To empirically study whether this

possibility manifests in practice, we

use two datasets with known semantic

features: (1) In the Trifeature data,

[Hermann and Lampinen, 2020] each

image is 128× 128 and has three fea-

tures: color, shape, and texture, each

taking possible 10 values. See Fig. B-

1, App. B.2 for sample images. (2) In

the STL-digits data, samples combine

MNIST digits and STL10 objects by

placing copies of a randomly selected

MNIST digit on top of an STL10 image. See Fig. B-2 App. B.2 for sample images.

We train encoders with ResNet-18 backbone using SimCLR [Chen et al., 2020b].

To study correlations between the loss value and error on downstream tasks, we train

33 encoders on Trifeature and 7 encoders on STL-digits with different hyperparameter

settings (see App. B.2.2 for full details on training and hyperparameters). For

Trifeature, we compute the Pearson correlation between InfoNCE loss and linear

readout error when predicting {color, shape, texture}. Likewise, for STL-digits we

compute correlations between the InfoNCE loss and MNIST and STL10 prediction

error.
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Fig. 4-2 shows that performance on different downstream tasks is not always

positively correlated. For Trifeature, color error is negatively correlated with shape

and texture, while for STL-digits there is a strong negative correlation between MNIST

digit error and STL10 error. Importantly, lower InfoNCE loss is correlated with lower

prediction error for color and MNIST-digit, but with larger error for shape, texture

and STL10. Hence, lower InfoNCE loss can improve representation of some features

(color, MNIST digit), but may actually hurt others. This conflict is likely due to the

simpler color and MNIST digit features being used as shortcuts. Our observation is an

important addition to the statement of [Wang and Isola, 2020b] that lower InfoNCE

loss improves generalization: the situation is more subtle – whether lower InfoNCE

helps generalization on a task depends on the use of shortcuts.

4.2.3 Controlling Feature Learning via the Difficulty of In-

stance Discrimination

The previous section showed that the InfoNCE objective has solutions that suppress

features. Next, we ask what factors determine which features are suppressed? Is there

a way to target specific features and ensure they are encoded? One idea is to use

harder positive and negative examples. Hard examples are precisely those that are

not easily distinguishable using the currently extracted features. So, a focus on hard

examples may change the scope of the captured features. To test this hypothesis, we

consider two methods for adjusting the difficulty of positive and negative samples:

1. Temperature 𝜏 in the InfoNCE loss (Eqn. 4.1). Smaller 𝜏 places higher im-

portance on positive an negative pairs with high similarity [Wang and Liu,

2021].

2. Hard negative sampling method of Robinson et al. [Robinson et al., 2021a], which

uses importance sampling to sample harder negatives. The method introduces

a hardness concentration parameter 𝛽, with larger 𝛽 corresponding to harder

negatives (see [Robinson et al., 2021a] for full details).

Results reported in Fig. 4-3 (also Fig. B-4 in App. B.2.2) show that varying instance
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discrimination difficulty—i.e., varying temperature 𝜏 or hardness concentration 𝛽—

enables trade-offs between which features are represented. On Trifeature, easier

instance discrimination (large 𝜏 , small 𝛽) yields good performance on ‘color’—an

“easy” feature for which a randomly initialized encoder already has high linear readout

accuracy—while generalization on the harder texture and shape features is poor. The

situation reverses for harder instance discrimination (small 𝜏 , large 𝛽). We hypothesize

that the use of “easy” features with easy instance discrimination is analogous to

simplicity biases in supervised deep networks [Hermann et al., 2019, Huh et al., 2021].

As with supervised learning [Geirhos et al., 2019, Hermann et al., 2019], we observe a

bias for texture over shape in convolutional networks, with texture prediction always

outperforming shape.

That there are simple levers for controlling which features are learned already

distinguishes contrastive learning from supervised learning, where attaining such

control is less easy (though efforts have been made [Jacobsen et al., 2018]). However,

these results show that representation of one feature must be sacrificed in exchange

for learning another one better. To understand how to develop methods for improving

feature representation without suppressing others, the next result examines more

closely why there is a relationship between (hard) instance discrimination tasks and

feature learning.

Proposition 3 (Informal). Suppose that 𝑝𝑗 is uniform on 𝒵𝑗 = S𝑑−1 for all 𝑗 ∈ [𝑛].

Further, for 𝑆 ⊆ [𝑛] suppose that 𝑥, 𝑥+, {𝑥−𝑖 }𝑖 are conditioned on the event that they

have the same features 𝑆. Then any 𝑓 that minimizes the (limiting) InfoNCE loss

suppresses features 𝑆.

The formal version of the result is as follows.

Proposition 4. For a set 𝑆 ⊆ [𝑛] of features let

ℒ𝑆(𝑓) = ℒalign(𝑓) + E𝑥+
[︀
− logE𝑥− [𝑒𝑓(𝑥

+)⊤𝑓(𝑥−)|𝑧𝑆 = 𝑧𝑆−]
]︀

denote the (limiting) InfoNCE conditioned on 𝑥+, 𝑥− having the same features 𝑆.
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Suppose that 𝑝𝑗 is uniform on 𝒵𝑗 = S𝑑−1 for all 𝑗 ∈ [𝑛]. Then the infimum inf ℒ𝑆 is

attained, and every 𝑓 ∈ min𝑓 ′ ℒ𝑆(𝑓 ′) suppresses features 𝑆 almost surely.

Proof. By Prop 3, we know that for each 𝑧𝑆 there is a measurable 𝑓 such that

ℒalign(𝑓) = 0 and 𝑓 achieves perfect uniformity (𝑓 ∘ 𝑔)#𝜆(·|𝑧𝑆) = 𝜎𝑑 conditioned on

𝑧𝑆. So consider such an 𝑓 . Since ℒalign(𝑓) = 0 we may write,

ℒ𝑆(𝑓) = E𝑥+
[︀
− logE𝑥− [𝑒𝑓(𝑥

+)⊤𝑓(𝑥−)|𝑧𝑆 = 𝑧𝑆−]
]︀

= E𝑧𝑆E𝑧𝑆−
[︀
− logE𝑧− [𝑒𝑓∘𝑔(𝑧)

⊤𝑓∘𝑔(𝑧−)|𝑧𝑆 = 𝑧𝑆−]
]︀

= E𝑧𝑆ℒ(𝑓 ; 𝑧𝑆).

Where we have introduced the conditional loss function

ℒ(𝑓 ; 𝑧𝑆) = E𝑧𝑆−
[︀
− logE𝑧− [𝑒𝑓∘𝑔(𝑧)

⊤𝑓∘𝑔(𝑧−)|𝑧𝑆 = 𝑧𝑆−]
]︀

We shall show that any minimizer 𝑓 of ℒ𝑆 is such that 𝑓 minimizes ℒ(𝑓 ; 𝑧𝑆) for all values

of 𝑧𝑆. To show this notice that min𝑓 ℒ𝑆(𝑓) = min𝑓 E𝑧𝑆ℒ(𝑓 ; 𝑧𝑆) ≥ E𝑧𝑆 min𝑓 ℒ(𝑓 ; 𝑧𝑆)

and if there is an 𝑓 such that 𝑓 minimizes ℒ(𝑓 ; 𝑧𝑆) for each 𝑧𝑆 then the inequality

is tight. So we make it our goal to show that there is an 𝑓 such that 𝑓 minimizes

ℒ(𝑓 ; 𝑧𝑆) for each 𝑧𝑆.

For fixed 𝑧𝑆, by assumption there is an 𝑓𝑧𝑆 such that (𝑓𝑧𝑆 ∘ 𝑔)#𝜆(·|𝑧𝑆) = 𝜎𝑑. That

is, 𝑓𝑧𝑆 achieves perfect uniformity given 𝑧𝑆. Theorem 1 of Wang and Isola [Wang and

Isola, 2020b] implies that 𝑓𝑧𝑆 must minimize ℒ(𝑓 ; 𝑧𝑆). Given {𝑓𝑧𝑆}𝑧𝑆 we construct an

𝑓 : 𝒳 → S𝑑−1
𝜏 that minimizes ℒ(𝑓 ; 𝑧𝑆) for all 𝑧𝑆. By injectivity of 𝑔 we may partition

𝒳 into pieces
⋃︀
𝑧𝑆∈𝒵𝑆 𝒳𝑧𝑆 where 𝒳𝑧𝑆 = {𝑥 : 𝑥 = 𝑔((𝑧𝑆, 𝑧𝑆

𝑐
)) for some 𝑧𝑆𝑐 ∈ 𝒵𝑆𝑐}. So

we may simply define 𝑓 on domain 𝒳 as follows: 𝑓(𝑥) = 𝑓𝑧𝑆(𝑥) if 𝑥 ∈ 𝒳𝑧𝑆 .

This construction allows us to conclude that the minimum of ℒ𝑆 is attained, and

any minimizer 𝑓 of ℒ𝑆 also minimizes ℒ(𝑓 ; 𝑧𝑆) for each 𝑧𝑆. By Theorem 1 of Wang

and Isola [Wang and Isola, 2020b] any such 𝑓 is such that (𝑓𝑧𝑆 ∘ 𝑔)#𝜆(·|𝑧𝑆) = 𝜎𝑑 for

all 𝑧𝑆, which immediately implies that 𝑓 suppresses features 𝑆.

The positive and negative instances in Prop. 3 must be distinguished with features
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Figure 4-3: Trifeature dataset [Hermann and Lampinen, 2020]. The difficulty of
instance discrimination affects which features are learned (Sec. 4.2.3). When instance
discrimination is easy (big 𝜏 , small 𝛽), encoders represent color well and other features
badly. When instance discrimination is hard (small 𝜏 , big 𝛽), encoders represent more
challenging shape and texture features well, at the expense of color.

in 𝑆𝑐. Relating this point to the above observations, assume that an encoder exclusively

uses features 𝑆. Any positives and negatives that do not (much) differ in features 𝑆 are

difficult for the encoder. By Prop. 3, focusing the training on these difficult examples

pushes the encoder to instead use features in 𝑆𝑐, i.e., to learn new features. But at

the same time, the proposition also says that a strong focus on such hard negative

pairs leads to suppressing the originally used features 𝑆, explaining the results in

Fig. 4-3. While the two techniques for adjusting instance difficulty we studied were

unable to avoid feature suppression, this insight forms the motivation for implicit

feature modification, which we introduce next.

4.3 Implicit Feature Modification: A Method for

Reducing Feature Suppression

The previous section found that simple adjustments to instance discrimination difficulty

could significantly alter which features a model learns. Prop. 3 suggests that this

ability to modify which features are learned stems from holding features constant

across positive and negative samples. However, these methods were unable to avoid

trade-offs in feature representation (Fig. 4-3) since features that are held constant are
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themselves suppressed (Prop. 3).

To avoid this effect, we develop a technique that adaptively modifies samples to

remove whichever features are used to discriminate a particular positive pair from

negatives, then trains an encoder to discriminate instances using both the original

features, and the features left over after modification. While a natural method for

modifying features is to directly transform raw input data, it is very challenging

to modify the semantics of an input in this way. So instead we propose modifying

features by applying transformations to encoded samples 𝑣 = 𝑓(𝑥). Since we modify

the encoded samples, instead of raw inputs 𝑥, we describe our method as implicit.

We set up our notation. Given batch 𝑥, 𝑥+, {𝑥−𝑖 }𝑚𝑖=1 we write 𝑣 = 𝑓(𝑥), 𝑣+ = 𝑓(𝑥+),

and 𝑣−𝑖 = 𝑓(𝑥−𝑖 ) to denote the corresponding embeddings. As in Eqn. 4.1, the point-

wise InfoNCE loss is,

ℓ(𝑣, 𝑣+, {𝑣−𝑖 }𝑚𝑖=1) = − log
𝑒𝑣

⊤𝑣+/𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

.

Definition 2 (Implicit feature modification). Given budget 𝜀 ∈ R𝑚
+ , and encoder 𝑓 :

𝒳 → S𝑑, an adversary removes features from 𝑓 that discriminates batch 𝑥, 𝑥+, {𝑥−𝑖 }𝑚𝑖=1

by maximizing the point-wise InfoNCE loss, ℓ𝜀(𝑣, 𝑣+, {𝑣−𝑖 }𝑚𝑖=1) = max𝛿+∈ℬ𝜀+ ,{𝛿
−
𝑖 ∈ℬ𝜀𝑖}

𝑚
𝑖=1
ℓ(𝑣, 𝑣++

𝛿+, {𝑣−𝑖 + 𝛿−𝑖 }𝑚𝑖=1).

Here ℬ𝜀 denotes the ℓ2-ball of radius 𝜀. Implicit feature modification (IFM)

removes components of the current representations that are used to discriminate

positive and negative pairs. In other words, the embeddings of positive and negative

samples are modified to remove well represented features. So, if the encoder is

currently using a simple shortcut solution, IFM removes the features used, thereby

encouraging the encoder to also discriminate instances using other features. By

applying perturbations in the embedding space IFM can modify high level semantic

features (see Fig. 4-4), which is extremely challenging when applying perturbations

in input space. In order to learn new features using the perturbed loss while still

learning potentially complementary information using the original InfoNCE objective,
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we propose optimizing the the multi-task objective min𝑓{ℒ(𝑓) + 𝛼ℒ𝜀(𝑓)}/2 where

ℒ𝜀 = Eℓ𝜀 is the adversarial perturbed loss, and ℒ the standard InfoNCE loss. For

simplicity, all experiments set the balancing parameter 𝛼 = 1 unless explicitly noted,

and all take 𝜀+, 𝜀−𝑖 to be equal, and denote this single value by 𝜀. Crucially, ℓ𝜀 can be

computed analytically and efficiently.

Lemma 4. For any 𝑣, 𝑣+, {𝑣−𝑖 }𝑚𝑖=1 ∈ R𝑑 we have,

∇𝑣−𝑗
ℓ =

𝑒𝑣
⊤𝑣−𝑗 /𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

· 𝑣
𝜏

and ∇𝑣+ℓ =

(︂
𝑒𝑣

⊤𝑣+/𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

−1

)︂
· 𝑣
𝜏
.

In particular, ∇𝑣−𝑗
ℓ ∝ 𝑣 and ∇𝑣+ℓ ∝ −𝑣.

This expression shows that the adversary perturbs 𝑣−𝑗 (resp. 𝑣+) in the direction

of the anchor 𝑣 (resp −𝑣). Since the derivative directions are independent of {𝑣−𝑖 }𝑚𝑖=1

and 𝑣+, we can analytically compute optimal perturbations in ℬ𝜀. Indeed, following

the constant ascent direction shows the optimal updates are simply 𝑣−𝑖 ← 𝑣−𝑖 + 𝜀𝑖𝑣

and 𝑣+ ← 𝑣+ − 𝜀+𝑣. The positive (resp. negative) perturbations increase (resp.

decrease) cosine similarity to the anchor sim(𝑣, 𝑣−𝑖 + 𝜀𝑖𝑣) → 1 as 𝜀𝑖 → ∞ (resp.

sim(𝑣, 𝑣+ − 𝜀+𝑣)→ −1 as 𝜀+ →∞). In Fig. 4-4 we visualize the newly synthesized

𝑣−𝑖 , 𝑣
+ and find meaningful interpolation of semantics. Plugging the update rules for

𝑣+ and 𝑣−𝑖 into the point-wise InfoNCE loss yields,

ℓ𝜀(𝑣, 𝑣
+, {𝑣−𝑖 }𝑚𝑖=1) = − log

𝑒(𝑣
⊤𝑣+−𝜀+)/𝜏

𝑒(𝑣⊤𝑣+−𝜀+)/𝜏 +
∑︀𝑚

𝑖=1 𝑒
(𝑣⊤𝑣−𝑖 +𝜀𝑖)/𝜏

. (4.2)

In other words, IFM amounts to simply perturbing the logits – reduce the positive logit

by 𝜀+/𝜏 and increase negative logits by 𝜀𝑖/𝜏 . From this we see that ℓ𝜀 is automatically

symmetrized in the positive samples: perturbing 𝑣 instead of 𝑣+ results in the exact

same objective. Eqn. 4.2 shows that IFM re-weights each negative sample by a factor

𝑒𝜀𝑖/𝜏 and positive samples by 𝑒−𝜀+/𝜏 .
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4.3.1 Visualizing Implicit Feature Modification

With implicit feature modification, newly synthesized data points do not directly

correspond to any “true” input data point. However it is still possible to visualize the

effects of implicit feature modification. To do this, assume access to a memory bank of

input dataℳ = {𝑥𝑖}𝑖. A newly synthesized sample 𝑠 can be approximately visualized

by retrieving the 1-nearest neighbour using cosine similarity argmin𝑥∈ℳ sim(𝑠, 𝑓(𝑥))

and viewing the image 𝑥 as an approximation to 𝑠.

Fig. 4-4 shows results using a ResNet-50 encoder trained using MoCo-v2 on

ImageNet1K using the training set as the memory bank. For positive pair 𝑣, 𝑣+

increasing 𝜀 causes the semantics of 𝑣 and 𝑣+ to diverge. For 𝜀 = 0.1 a different car

with similar pose and color is generated, for 𝜀 = 0.2 the pose and color then changes,

and finally for 𝜀 = 1 the pose, color and type of vehicle changes. For negative pair 𝑣, 𝑣−

the reverse occurs. For 𝜀 = 0.1, 𝑣− is a vehicle with similar characteristics (number

of windows, color etc.), and with 𝜀 = 0.2, the pose of the vehicle 𝑣+ aligns with 𝑣.

Finally for 𝜀 = 1 the pose and color of the perturbed negative sample become aligned

to the anchor 𝑣. In summary, implicit feature modification successfully modifies the

feature content in positive and negative samples, thereby altering which features can

be used to discriminate instances.

Related Work. Several works consider adversarial contrastive learning [Ho and

Nvasconcelos, 2020, Jiang et al., 2020, Kim et al., 2020] using PGD (e.g. FGSM)

attacks to alter samples in input space. Unlike our approach, PGD-based attacks

require costly inner-loop optimization. Other work takes an adversarial viewpoint

in input space for other self-supervised tasks e.g., rotations and jigsaws but uses

an image-to-image network to simulate FGSM/PGD attacks [Minderer et al., 2020],

introducing comparable computation overheads. They note that low-level (i.e., pixel-

level) shortcuts can be avoided using their method. All of these works differ from ours

by applying attacks in input space, thereby focusing on lower-level features, whereas

ours aims to modify high-level features. Fig. 4-5 compares IFM to this family of

input-space adversarial methods by comparing to a top performing method ACL(DS)

85



[Jiang et al., 2020]. We find that ACL improves robust accuracy under ℓ∞-attack

on input space (see [Jiang et al., 2020] for protocol details), whereas IFM improves

standard accuracy (full details and discussion in Appdx. B.2.3). Synthesizing harder

negatives in latent space using Mixup [Zhang et al., 2018a] has also been considered

[Kalantidis et al., 2020] but does not take an adversarial perspective. Other work,

AdCo [Hu et al., 2020a], also takes an adversarial viewpoint in latent space. There

are several differences to our approach. AdCo perturbs all negatives using the same

weighted combination of all the queries, whereas IFM perturbations are query specific.

In other words, IFM makes instance discrimination harder point-wise, whereas AdCo

perturbation makes the InfoNCE loss larger on average (see Fig. 4-4 for visualizations

of instance dependent perturbation using IFM). AdCo also treats the negatives as

learnable parameters, introducing ∼ 1𝑀 more parameters and ∼ 7% computational

overhead, while IFM has no computational overhead and is implemented with only two

lines of code (see Tab. 4.1 for empirical comparison). Finally, no previous work makes

the connection between suppression of semantic features and adversarial methods in

contrastive learning (see Fig. 4-6).

4.4 Experimental results
Implicit feature modification (IFM) can be used with any InfoNCE-based contrastive

framework, and we write IFM-SimCLR, IFM-MoCo-v2 etc. to denote IFM applied

within a specific framework. Code for IFM will be released publicly, and is also

available in the supplementary material.

4.4.1 Does Implicit Feature Modification Actually Help Avoid

Feature Suppression?

We study the effect IFM has on feature suppression by training ResNet-18 encoders for

200 epochs with 𝜏 ∈ {0.05, 0.2, 0.5} on the Trifeature dataset [Hermann and Lampinen,

2020]. Results are averaged over three seeds, with IFM using 𝜀 = 0.1 for simplicity.

Fig. 4-6 shows that IFM improves the linear readout accuracy across all three features
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larger perturbations
anchor �v negative �v− ε = 0.1 ε = 0.2 ε = 1

ε = 0.1 ε = 0.2 ε =  1anchor �v positive �v+

Figure 4-4: Visualizing implicit feature modification. Top
row: progressively moving positive sample away from
anchor. Bottom row: progressively moving negative
sample towards anchor. In both cases, semantics such as
color, orientation, and vehicle type are modified, showing
the suitability of implicit feature modification for altering
instance discrimination tasks.
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Figure 4-5: Comparison be-
tween IFM and ACL(DS).
Under standard linear eval-
uation IFM performs best.
ACL is suited to adversarial
evaluation.
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Figure 4-6: Trifeature dataset. Implicit feature modification reduces feature suppres-
sion, enhancing the representation of texture, shape and color features simultaneously.
All results are average linear readout accuracy over three seeds and use a fixed value
𝜀 = 0.1 to illustrate robustness to 𝜀.

for all temperature settings. The capability of IFM to enhance the representation of

all features – i.e. reduce reliance on shortcut solutions – is an important contrast with

tuning temperature 𝜏 or using hard negatives, which Fig. 4-3 shows only trades-off

which features are learned.

4.4.2 Performance on Downstream Tasks

Sec. 4.3.1 and Sec. 4.4.1 demonstrate that implicit feature modification is adept

at altering high-level features of an input, and combats feature suppression. This

section shows that these desirable traits translate into improved performance on object
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– MoCo-v2 AdCo [Hu et al., 2020a] IFM-MoCo-v2

𝜀 N/A N/A 0.05 0.1 0.2

top-1 80.4±0.11 78.9±0.21 81.1±0.02 80.9±0.25 80.7±0.13

Table 4.1: Linear readout (%) on ImageNet100, averaged over five seeds. IFM improves
over MoCo-v2 for all settings of 𝜀.

classification and medical imaging tasks.

Experimental setup for classification tasks. Having observed the positive effect

IFM has on feature suppression, we next test if this feeds through to improved

performance on real tasks of interest. We benchmark using both SimCLR and MoCo-

v2 [Chen et al., 2020b,f] with standard data augmentation [Chen et al., 2020b]. All

encoders have ResNet-50 backbones and are trained for 400 epochs (with the exception

of on ImageNet100, which is trained for 200 epochs). All encoders are evaluated using

the test accuracy of a linear classifier trained on the full training dataset (see Appdx.

B.2.4 for full setup details).

Classification tasks. Results given in Fig. 4-7 and Tab. 4.1 find that every value

of 0 < 𝜀 ≤ 0.2 improves performance across all datasets using both MoCo-v2 and

SimCLR frameworks. We find that optimizing ℒ𝜀 (76.0% average score across all eight

runs in Fig. 4-7) performs similarly to the standard contrastive loss (75.9% average

score), and does worse than the IFM loss (ℒ+ ℒ𝜀)/2. This suggests that ℒ and ℒ𝜀
learn complementary features. Tab. 4.1 benchmarks IFM on ImageNet100 [Tian et al.,

2019] using MoCo-v2, observing improvements of 0.9%. We also compare results on

ImageNet100 to AdCo [Hu et al., 2020a], another adversarial method for contrastive

learning. We adopt the official code and use the exact same training and finetuning

hyperparameters as for MoCo-v2 and IFM. For the AdCo-specific hyperparamters –

negatives learning rate 𝑙𝑟neg and negatives temperature 𝜏neg – we use a grid search over

all combinations 𝑙𝑟neg ∈ {1, 2, 3, 4} and 𝜏neg ∈ {0.02, 0.1}, which includes the AdCo

default ImageNet1K recommendations 𝑙𝑟neg = 3 and 𝜏neg = 0.02 [Hu et al., 2020a].

The resulting AdCo performance of 78.9% is slightly below MoCo-v2. However using
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Figure 4-7: IFM improves linear readout performance on all datasets for all 𝜀 ∈
{0.05, 0.1, 0.2} compared to baselines. Protocol uses 400 epochs of training with
ResNet-50 backbone.

their respective ImageNet1K default parameters AdCo and MoCo-v2 achieve 72.4%

and 71.8% respectively, suggesting that the discrepancy between AdCo and MoCo-v2

may in part be due to the use of improved hyperparameters tuned on MoCo-v2. Note

importantly, IFM is robust to the choice of 𝜀: all values 𝜀 ∈ {0.05, 0.1, 0.2} were

found to boost performance across all datasets and all frameworks. We emphasize

that the MoCo-v2 baseline performance of 80.5% on ImageNet100 is strong. Our

hyperparameters, which we detail in Appdx. B.2.4, may be of interest to other works

benchmarking MoCo-v2 on ImageNet100.

Medical images. To evaluate our method on a modality differing significantly

from object-based images we consider the task of learning representations of medical

images. We benchmark using the approach proposed by [Sun et al., 2021] which is a

variant of MoCo-v2 that incorporates the anatomical context in the medical images.

We evaluate our method on the COPDGene dataset [Regan et al., 2011], which is

a multi-center observational study focused on the genetic epidemiology of Chronic

obstructive pulmonary disease (COPD). See Appdx. B.2.5 for full background details

on the COPDGene dataset, the five COPD related outcomes we use for evaluation,

and our implementation. We perform regression analysis for continuous outcomes

in terms of coefficient of determination (R-square), and logistic regression to predict

ordinal outcomes and report the classification accuracy and the 1-off accuracy, i.e.,

the probability of the predicted category is within one class of true value.

Tab. 4.2 reports results. For fair comparison we use same experimental configuration

for the baseline approach [Sun et al., 2021] and our method. We find that IFM yields
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Method logFEV1pp logFEV1FVC CLE CLE 1-off Para-septal Para-septal 1-off mMRC mMRC 1-off

Loss R-Square Accuracy (%)

ℒ (baseline) 0.566±.005 0.661±.005 49.6±0.4 81.8±0.5 55.7±0.3 84.4±0.2 50.4±0.5 72.5±0.3

ℒ𝜀, 𝜀 = 0.1 0.591±.008 0.681±.008 49.4±0.4 81.9±0.3 55.6±0.3 85.1±0.2 50.3±0.8 72.7±0.4

IFM, 𝜀 = 0.1 0.615±.005 0.691±.006 48.2±0.8 80.6±0.4 55.3±0.4 84.7±0.3 50.4±0.5 72.8±0.2

IFM, 𝜀 = 0.2 0.595±.006 0.683±.006 48.5±0.6 80.5±0.6 55.3±0.3 85.1±0.1 49.8±0.8 72.0±0.3

IFM, 𝜀 = 0.5 0.607±.006 0.683±.005 49.6±0.4 82.0±0.3 54.9±0.2 84.7±0.2 50.6±0.4 73.1±0.2

IFM, 𝜀 = 1.0 0.583±.005 0.675±.006 50.0±0.5 82.9±0.4 56.3±0.6 85.7±0.2 50.3±0.6 71.9±0.3

Table 4.2: Linear readout performance on COPDGene dataset. The values are the
average of 5-fold cross validation with standard deviations. The bold face indicates
the best average performance. IFM yields improvements on all phenotype predictions.

R NR
STL10

To
p-

1 
ac

cu
ra

cy 87.4

70.1
73.1

89.1

73.7
77.1

SimCLR
IFM-SimCLR

R NR
tinyImageNet

53.4
42.8

19.2

56.3
45.2

16.1

R NR
CIFAR100

65.5

56.9
52.4

66.5

58.1

48.4

R NR
CIFAR10

89.6

83.3 84.1

90.1

85.6
84.0

Figure 4-8: Label {𝒟,𝒟R,𝒟NR} indicates which dataset was used to train the linear
readout function. Improved performance of IFM on standard data 𝒟 can be attributed
to improved representation of robust features 𝒟R. See Sec. 4.4.3 for construction of
robust (𝒟R) and non-robust (𝒟NR) datasets.

improvements on all outcome predictions. The gain is largest on spirometry outcome

prediction, particularly logFEV1pp with improvement of 8.7% with 𝜀 = 0.1. We found

that at least 𝜀 = 0.5 and 1.0 improve performance on all tasks. However, we note that

not all features yield a statistically significant improvement with IFM.

4.4.3 Further study on the impact of IFM on feature learning

This section further studies the effect implicit feature modification has on what type

of features are extracted. Specifically, we consider the impact on learning of robust

(higher-level) vs. non-robust features (pixel-level features). Our methodology, which is

similar to that of Ilyas et al. [Ilyas et al., 2019] for deep supervised learning, involves

carefully perturbing inputs to obtain non-robust features.

Constructing non-robust features. Given encoder 𝑓 we finetune a linear probe

(classifier) ℎ on-top of 𝑓 using training data (to avoid smoothing effects we do

not use data augmentation). Once ℎ is trained, we consider each labeled example

(𝑥, 𝑦) from training data 𝒟train ∈ {tinyImageNet, STL10, CIFAR10, CIFAR100}. A
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hallucinated target label 𝑡 is sampled uniformly at random, and we perturb 𝑥 = 𝑥0

until ℎ ∘ 𝑓 predicts 𝑡 using repeated FGSM attacks [Goodfellow et al., 2015] 𝑥𝑘 ←

𝑥𝑘−1− 𝜀sign(∇𝑥ℓ(ℎ ∘ 𝑓(𝑥𝑘−1), 𝑡)). At each step we check if argmax𝑖 ℎ ∘ 𝑓(𝑥𝑘)𝑖 = 𝑡 (we

use the maximum of logits for inference) and stop iterating and set 𝑥adv = 𝑥𝑘 for the

first 𝑘 for which the prediction is 𝑡. This usually takes no more than a few FGSM

steps with 𝜀 = 0.01. We form a dataset of “robust” features by adding (𝑥adv, 𝑦) to 𝒟𝑅,

and a dataset of “non-robust” features by adding (𝑥adv, 𝑡) to 𝒟𝑁𝑅. To a human the

pair (𝑥adv, 𝑡) will look mislabeled, but for the encoder 𝑥adv contains features predictive

of 𝑡. Finally, we re-finetune (i.e. re-train) linear classifier 𝑔 using 𝒟𝑅 (resp. 𝒟𝑁𝑅) as

training data.

Fig. 4-8 compares accuracy of the re-finetuned models on a test set of standard

𝒟test examples (no perturbations are applied to the test set). Note that 𝒟𝑅, 𝒟𝑁𝑅
depend on the original encoder 𝑓 . When re-finetuning 𝑓 we always use datasets 𝒟𝑅,

𝒟𝑁𝑅 formed via FGSM attacks on 𝑓 itself. So there is one set 𝒟𝑅,𝒟𝑁𝑅 for SimCLR,

and another set for IFM. Fig. 4-8 shows that IFM achieves superior generalization (𝒟)

compared to SimCLR by better representing robust features (𝒟𝑅). Representation of

non-robust features (𝒟𝑁𝑅) is similar for IFM (55.5% average across all datasets) and

SimCLR (56.7% average). IFM is juxtaposed to the supervised adversarial training of

Madry et al., which sacrifices standard supervised performance in exchange for not

using non-robust features [Madry et al., 2018, Tsipras et al., 2018].

4.5 Discussion

This chapter studies the relation between contrastive instance discrimination and

feature learning. While we focus specifically on contrastive learning, it would be of

interest to also study any possible differences in feature learning for other empirically

successful self-supervised methods [Bardes et al., 2021, Chen and He, 2021a, Grill

et al., 2020, Zbontar et al., 2021]. Understanding differences in feature learning biases

between different methods may inform which methods are best suited for a given task,

as well as point the way to further improved self-supervised techniques.
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Chapter 5

Contrastive Learning with Rotational

Equivariance

So far this thesis has focused on the processes by which contrast learning produces a

representation space where simple Euclidean distances measure meaningful variations in

data. In this chapter, we extend this formulation adding additional geometric structure

to the embedding space so that as well as distances being meaningful, transformations

of input space to correspond to simple (i.e., linear) transformations of embedding

space. Specifically, in the contrastive learning setting, we introduce an equivariance-

promoting objective and theoretically prove that its minima forces augmentations

on input space to correspond to rotations on the spherical embedding space. We

show that merely combining our equivariant loss with a non-collapse term results

in non-trivial representations, without requiring invariance to data augmentations.

Optimal performance is achieved by also encouraging approximate invariance, where

input augmentations correspond to small rotations. Our method, Care: Contrastive

Augmentation-induced Rotational Equivariance, leads to improved performance on

downstream tasks, and ensures sensitivity in embedding space to important variations

in data (e.g., color) that standard contrastive methods do not achieve.

Acknolwedgements. This work is in collaboration with Sharut Gupta, Derek

Lim, Soledad Villar, and Stefanie Jegelka. In particular, the entire project involved a

highly collaborative effort with Sharut, with both parties making equal contributions.
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5.1 Background and Motivation

What structure do neural network representation spaces need to possess in order to

enable intelligent behavior to efficiently emerge [Ma et al., 2022]? One known key

ingredient is to learn low-dimensional spaces in which simple Euclidean distances

effectively measure the similarity between data. A standout success of recent years has

been the development of powerful methods for achieving this at web-scale using self-

supervision [Chen et al., 2020c, Schneider et al., 2021, Radford et al., 2021]. However,

many use cases require the use of richer structural relationships that similarities

between data cannot capture. One example that has enjoyed considerable success

is the encoding of relations between objects (X is a parent of Y, A is a treatment

for B) as simple transformations of embeddings (e.g., translations), which has driven

learning with knowledge graphs [Bordes et al., 2013, Sun et al., 2019, Yasunaga et al.,

2022]. But similar capabilities have been notably absent from existing self-supervised

learning recipes.

Recent contrastive self-supervised learning approaches have explored ways to close

this gap by ensuring representation spaces are sensitive to certain transformations

of input data (e.g., variations in color) [Dangovski et al., 2022, Devillers and Lefort,

2023, Garrido et al., 2023, Bhardwaj et al., 2023]. Encouraging sensitivity is especially

important in contrastive learning, as it is known to learn shortcuts that forget features

that are not needed to solve the pretraining task [Robinson et al., 2021b]. This line of

work formalizes sensitivity in terms of equivariance: transformations of input data

correspond to predictable transformations in representation space. Equivariance re-

quires specifying a family of transformations 𝑎 ∈ 𝒜 in the input space, a corresponding

transformation 𝑇𝑎 in representation space and training 𝑓 so that 𝑓(𝑎(𝑥)) ≈ 𝑇𝑎𝑓(𝑥).

A typical choice of 𝑇𝑎 is a learnable feed-forward network, which acts non-linearly

on embeddings [Devillers and Lefort, 2023, Garrido et al., 2023]. This approach has

the disadvantage of encoding the relation between the embeddings of 𝑥 and 𝑎(𝑥) in

a complex and hard to interpret manner. It also suffers from geometric pathologies,

such as inconsistency under compositions: 𝑇𝑎2∘𝑎1𝑓(𝑥) ̸= 𝑇𝑎2𝑇𝑎1𝑓(𝑥).
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To address these concerns we propose Care, an equivariant contrastive learning

framework that learns to translate augmentations in the input space (such as cropping,

blurring, and jittering) into simple linear transformations in feature space. Here, we

use the sphere as our feature space (the standard space for contrastive learning), so

we specifically consider transformations that are isometries of the sphere: rotations

and reflections, i.e., orthogonal transformations. As orthogonal transformations are

(intentionally) less expressive than prior non-linear formulations, our learning problem

is more constrained and prior approaches for learning non-linear transforms do not

apply (see Section 5.3). Care trains 𝑓 to preserve angles, i.e., 𝑓(𝑎(𝑥))⊤𝑓(𝑎(𝑥′)) ≈

𝑓(𝑥)⊤𝑓(𝑥′), a property that must hold if 𝑓 is orthogonally equivariant. We show

that achieving low error on this seemingly weaker property also implies approximate

equivariance and enjoys consistency under compositions. Critically, we can easily

integrate Care into contrastive learning workflows since both operate by comparing

pairs of data.

The key contributions of this chapter include:

1. Introducing Care, a novel equivariant contrastive learning framework that

trains transformations (cropping, jittering, blurring, etc.) in input space to

approximately correspond to local orthogonal transformations in representation

space.

2. Theoretically proving and empirically demonstrating that Care places an or-

thogonally equivariant structure on the embedding space.

3. Showing that Care increases sensitivity to features (e.g., color) compared to

invariance-based contrastive methods, and also improves performance on image

recognition tasks.
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Figure 5-1: Care is an equivariant contrastive learning approach that trains aug-
mentations (cropping, blurring, etc.) of input data to correspond to orthogonal
transformations of embedding space.

5.2 Rethinking how Augmentations are used in Con-

trastive Learning

Given access only to samples from a marginal distribution 𝑝(𝑥) on some input space

𝒳 such as images, the goal of representation learning is commonly to train a feature

extracting model 𝑓 : 𝒳 → S𝑑−1 mapping to the unit sphere S𝑑−1 = {𝑧 ∈ R𝑑 : ‖𝑧‖2 =

1}. A common strategy to automatically generate supervision from the data is to

additionally introduce a space of augmentations 𝒜, containing maps 𝑎 : 𝒳 → 𝒳

which slightly perturb inputs �̄� (blurring, cropping, jittering, etc.). Siamese self-

supervised methods learn representation spaces that reflect the relationship between

the embeddings of 𝑥 = 𝑎(�̄�) and 𝑥+ = 𝑎+(�̄�), commonly by training 𝑓 to be invariant

or equivariant to the augmentations in the input space [Chen and He, 2021b].

Invariance to augmentation. The approach considered thusfar in this thesis is

to train 𝑓 to embed 𝑥 and 𝑥+ nearby—i.e., so that 𝑓(𝑥) = 𝑓(𝑥+) is invariant to

augmentations. The InfoNCE loss [van den Oord et al., 2018, Gutmann and Hyvärinen,

2010] used in contrastive learning achieves precisely this:

ℒInfoNCE(𝑓) = E𝑥,𝑥+,{𝑥−𝑖 }𝑁𝑖=1

[︂
− log

𝑒𝑓(𝑥)
⊤𝑓(𝑥+)/𝜏

𝑒𝑓(𝑥)⊤𝑓(𝑥+)/𝜏 +
∑︀𝑁

𝑖=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥−𝑖 )/𝜏

]︂
, (5.1)

where 𝜏 > 0 is a temperature hyperparameter, and 𝑥−𝑖 ∼ 𝑝 are negative samples from

the marginal distribution on 𝒳 . As noted by Wang and Isola [2020b], the contrastive
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training mechanism balances invariance to augmentations with a competing objective:

uniformly distributing embeddings over the sphere, which rules out trivial solutions

such as constant functions.

Whilst contrastive learning has produced considerable advances in large-scale

learning [Radford et al., 2021], several lines of work have begun to probe the fun-

damental role of invariance in contrastive learning. Two key conclusions of recent

investigations include: 1) invariance limits the expressive power of features learned by

𝑓 , as it removes information about features or transformations that may be relevant

in fine-grained tasks [Lee et al., 2021, Xie et al., 2022a], and 2) contrastive learning

actually benefits from not having exact invariance. For instance, a critical role of the

projection head is to expand the feature space so that 𝑓 is not fully invariant [Jing

et al., 2022], suggesting that it is preferable for the embeddings of 𝑥 and 𝑥+ to be

close, but not identical.

Equivariance to augmentation. To address the limitations of invariance, recent

work has additionally proposed to control equivariance (i.e., sensitivity) of 𝑓 to data

transformations [Dangovski et al., 2022, Devillers and Lefort, 2023, Garrido et al., 2023].

Prior works can broadly be viewed as training a set of features 𝑓 (sometimes alongside

the usual invariant features) so that 𝑓(𝑎(𝑥)) ≈ 𝑇𝑎𝑓(𝑥) for samples 𝑥 ∼ 𝑝 from the data

distribution where 𝑇𝑎 is some transformation of the embedding space. A common choice

is to take 𝑇𝑎𝑓(𝑥) = MLP(𝑓(𝑥), 𝑎), a learnable feed-forward network, and optimize a

loss ‖MLP(𝑓(𝑥), 𝑎) − 𝑓(𝑎(𝑥))‖2. Whilst a learnable MLP ensures that information

about 𝑎 is encoded into the embedding of 𝑎(𝑥), it permits complex non-linear relations

between embeddings and hence does not necessarily encode relations in a linearly

separable way. Furthermore, it does not enjoy the beneficial properties of equivariance

in the formal group-theoretic sense, such as consistency under compositions in general:

𝑇𝑎2∘𝑎1𝑓(𝑥) ̸= 𝑇𝑎2𝑇𝑎1𝑓(𝑥).

Instead, this work introduces Care, an equivariant contrastive learning approach

respecting two key design principles:

Principle 3. The map 𝑇𝑎 satisfying 𝑓(𝑎(𝑥)) = 𝑇𝑎𝑓(𝑥) should be linear.
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Principle 4. Equivariance should be learned from pairs of data, as in invariant

contrastive learning.

The first principle asks that 𝑓 converts complex perturbations 𝑎 of input data

into much simpler (i.e., linear) transformations in embedding space. Specifically, we

constrain the complexity of 𝑇𝑎 by considering isometries of the sphere, 𝑂(𝑑) = {𝑄 ∈

R𝑑×𝑑 : 𝑄𝑄𝑇 = 𝑄𝑇𝑄 = 𝐼}, containing all rotations and reflections. Throughout this

paper we define 𝑓(𝑎(𝑥)) = 𝑇𝑎𝑓(𝑥) for 𝑇𝑎 ∈ 𝑂(𝑑) to be orthogonal equivariance. This

approach draws heavily from ideas in linear representation theory [Curtis and Reiner,

1966, Serre et al., 1977], which studies how to convert abstract group structures into

matrix spaces equipped with standard matrix multiplication as the group operation.

The second principle stipulates how we want to learn orthogonal equivariance.

Naively following previous non-linear approaches is challenging as our learning problem

is more constrained, requiring learning a mapping 𝑎 ↦→ 𝑅𝑎 to orthogonal matrices.

Furthermore, for a single (𝑎, 𝑥) pair, the orthogonal matrix 𝑅𝑎 such that 𝑓(𝑎(𝑥)) =

𝑅𝑎𝑓(𝑥) is not unique, making it hard to directly learn 𝑅𝑎. We sidestep these challenges

by, instead of explicitly learning 𝑅𝑎, training 𝑓 so that an augmentation 𝑎 applied to

two different inputs 𝑥, 𝑥+ produces the same change in embedding space.

Our method, Care, encodes data augmentations (cropping, blurring, jittering, etc.)

as 𝑂(𝑑) transformations of embeddings using an equivariance-promoting objective

function. Care can be viewed as an instance of symmetry regularization, a term

introduced by Shakerinava et al. [2022].

5.3 Care: Contrastive Augmentation-induced Rotational

Equivariance

This section introduces a simple and practical approach for training a model 𝑓 : 𝒳 →

S𝑑−1 so that 𝑓 is orthogonally equivariant: i.e., a data augmentation 𝑎 ∼ 𝒜 (cropping,

blurring, jittering, etc.) applied to any input 𝑥 ∈ 𝒳 causes the embedding 𝑓(𝑥) to

transformed by the same 𝑅𝑎 ∈ 𝑂(𝑑) for all 𝑥 ∈ 𝒳 : 𝑓(𝑎(𝑥)) = 𝑅𝑎𝑓(𝑥).
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Figure 5-3: Care learns a repre-
sentation space with better rota-
tional equivariance. We compare
the models by the error of opti-
mally rotating a set of embeddings
to match the embeddings of aug-
mented inputs, known as Wahba’s
problem (Section 5.4).

To achieve this, we consider the following loss:

ℒequi(𝑓) = E𝑎∼𝒜E𝑥,𝑥′∼𝒳
[︀
𝑓(𝑎(𝑥′))⊤𝑓(𝑎(𝑥))− 𝑓(𝑥)⊤𝑓(𝑥′)

]︀2 (5.2)

Since inner products describe angles on the sphere, this objective enforces the

angles between the embeddings of independent samples 𝑥 and 𝑥′ to be the same as

those between their transformed counterparts 𝑎(𝑥) and 𝑎(𝑥′). This is necessarily true

if 𝑓 is orthogonally equivariant or, more generally, 𝑅𝑎 ∈ 𝑂(𝑑) exists. But the converse—

that ℒequi = 0 implies orthogonal equivariance—is non-obvious. In Section 5.3.1 we

theoretically analyze ℒequi, demonstrating that it does indeed enforce mapping input

augmentations to orthogonal transformations of embeddings. In practice, we replace

the 𝑓(𝑥)⊤𝑓(𝑥′) term with 𝑓(𝑎′(𝑥))⊤𝑓(𝑎′(𝑥′)) for a freshly sampled 𝑎′ ∼ 𝒜, noting

that minimizing this variant also minimizes ℒequi, if we assume 𝑎′ can be the identity

function with non-zero probability. A trivial but undesirable solution that minimizes

ℒequi is to collapse the embeddings of all points to be the same (see Figure 5-2). One

natural approach to avoiding trivial solutions is to combine the equivariance loss with

a non-collapse term such as the uniformity ℒunif(𝑓) = logE𝑥,𝑥′∼𝒳 exp
(︀
𝑓(𝑥)⊤𝑓(𝑥′)

)︀
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[Wang and Isola, 2020b] whose optima 𝑓 distribute points uniformly over the sphere:

ℒ(𝑓) = ℒequi(𝑓) + ℒunif(𝑓). (5.3)

This is directly comparable to the InfoNCE loss, which can similarly be decomposed

into two terms:

ℒInfoNCE(𝑓) = ℒinv(𝑓) + ℒunif(𝑓) (5.4)

where ℒinv(𝑓) = E𝑎,𝑎′∼𝒜‖𝑓(𝑎(𝑥)) − 𝑓(𝑎′(𝑥))‖ is minimized when 𝑓 is invariant to

𝒜—i.e., 𝑓(𝑎(𝑥)) = 𝑓(𝑥). Figure 5-2 shows that training using ℒequi + ℒunif yields

non-trivial representations. However, the performance is below that of invariance-

based contrastive learning approaches. We hypothesize that this is because data

augmentations—which make small perceptual changes to data—should correspond to

small perturbations of embeddings, which ℒequi does not enforce.

To rule out this possibility, we introduce Care: Contrastive Augmentation-induced

Rotational Equivariance. Care additionally enforces the orthogonal transformations

in embedding space to be localized by reintroducing an invariance loss term ℒinv to

encourage 𝑓 to be approximately invariant. Doing so breaks the indifference of ℒequi

between large and small rotations, biasing towards small. Specifically, we propose the

following objective that combines our equivariant loss with InfoNCE:

ℒCare(𝑓) = ℒinv(𝑓) + ℒunif(𝑓) + 𝜆ℒequi(𝑓) (5.5)

where 𝜆 weights the equivariant loss. We note that many variations of this approach

are possible. For instance, the equivariant loss and InfoNCE loss could use different

augmentations, resulting in invariance to specific transformations while maintaining

rotational equivariance to others, similar to Dangovski et al. [2022]. The InfoNCE

loss can also be replaced by other Siamese self-supervised losses. We leave further

exploration of these possibilities to future work. In all, Care consists of three

components: (i) a term to induce orthogonal equivariance; (ii) a non-collapse term;

and (iii) an invariance term to enforce localized transformations on the embedding
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space.

5.3.1 Theoretical Properties of the Orthogonally Equivariant

loss

In this section, we establish that matching angles via ℒequi leads to a seemingly

stronger property. Specifically, ℒequi = 0 implies the existence of an orthogonal matrix

𝑅𝑎 ∈ 𝑂(𝑑) for any augmentation 𝑎, such that 𝑓(𝑎(𝑥)) = 𝑅𝑎𝑓(𝑥) holds for all 𝑥. The

converse also holds and is easy to see. Indeed, suppose such an 𝑅𝑎 ∈ 𝑂(𝑑) exists.

Then, 𝑓(𝑎(𝑥′))⊤𝑓(𝑎(𝑥)) = 𝑓(𝑥′)⊤𝑅⊤
𝑎 𝑅𝑎𝑓(𝑥) = 𝑓(𝑥)⊤𝑓(𝑥′), which implies ℒequi(𝑓) = 0.

We formulate the first direction as a proposition.

Proposition 5. Suppose ℒequi(𝑓) = 0. Then for almost every 𝑎 ∈ 𝒜, there is an

orthogonal matrix 𝑅𝑎 ∈ 𝑂(𝑑) such that 𝑓(𝑎(𝑥)) = 𝑅𝑎𝑓(𝑥) for almost all 𝑥 ∈ 𝒳 .
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Figure 5-4: When ℒequi = 0, com-
positions of augmentations corre-
spond to compositions of rotations.

Figure 5-1 illustrates this result. Crucially 𝑅𝑎

is independent of 𝑥, without which the Proposi-

tion 5 would be trivial. That is, a single orthog-

onal transformation 𝑅𝑎 captures the impact of

applying 𝑎 across the entire input space 𝒳 . Con-

sequently, low ℒequi loss converts “unstructured”

augmentations in input space to have a structured

geometric interpretation as rotations in the em-

bedding space.

This result can be expressed as the existence of a mapping 𝜌 : 𝒜 → 𝑂(𝑑) that

encodes the space of augmentations within 𝑂(𝑑). This raises a natural question: how

much of the structure of 𝒜 does this encoding preserve? For instance, assuming 𝒜 is

a semi-group (i.e., closed under compositions 𝑎′ ∘ 𝑎 ∈ 𝒜), does this transformation

respect compositions: 𝑓(𝑎′(𝑎(𝑥)) = 𝑅𝑎′𝑅𝑎𝑓(𝑥)? This property does not hold for

non-linear actions [Devillers and Lefort, 2023], but does for orthogonal equivariance:
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Corollary 1. If ℒequi(𝑓) = 0, then 𝜌 : 𝒜 → 𝑂(𝑑) given by 𝜌(𝑎) = 𝑅𝑎 satisfies

𝜌(𝑎′ ∘ 𝑎) = 𝜌(𝑎′)𝜌(𝑎) for almost all 𝑎, 𝑎′. That is, 𝜌 defines a group action on S𝑑−1 up

to a set of measure zero.

Formally, this result states that if 𝒜 is a semi-group, then 𝜌 : 𝒜 → 𝑂(𝑑) defines

a group homomorphism (or linear representation of 𝒜 in the sense of representation

theory [Curtis and Reiner, 1966, Serre et al., 1977], a branch of mathematics that

studies the encoding of abstract groups as spaces of linear maps).

To exactly attain ℒequi(𝑓) = 0, the space of augmentations𝒜 needs to have a certain

structure, but this becomes less restrictive if 𝑑 is large. Assuming for simplicity that

𝒜 is a group, the first isomorphism theorem for groups states that 𝜌(𝒜) ≃ 𝒜/ ker(𝜌).

For instance, if ker(𝜌) is trivial, the equivariant loss can be exactly zero when the

group of augmentations is a subgroup of the orthogonal group. Examples include

orthogonal transformations or rotations that fix a subspace—i.e., 𝑂(𝑑′) or 𝑆𝑂(𝑑′)

with 𝑑′ ≤ 𝑑—or subgroups of the permutation group on 𝑑 elements. Furthermore, the

Peter-Weyl theorem implies that any compact Lie group can be realized as a closed

subgroup of 𝑂(𝑑) for some 𝑑 [Peter and Weyl, 1927]. In practice, we are learning

equivariance, so do not expect to achieve exactly zero loss. Instead, the primary focus

is on achieving better approximate equivariance (see Figure 5-7), while enforcing small

transformations that remain local.

5.3.2 Extensions to Other Groups

Proposition 5 states that perfectly optimizing ℒequi = 0 produces an 𝑓 that is equiv-

ariant, encoding augmentations in the input space as orthogonal transformation in

the embedding space. Notably, since the computation of ℒequi solely relies on pairwise

data instances 𝑥, 𝑥′ ∈ 𝒳 , it naturally aligns with the contrastive learning paradigm

that already works with pairs of data. However, this alignment does not hold in cases

where orthogonal transformations in the embedding space are replaced by arbitrary

group actions.

Mathematically, invariants of the action of 𝑂(𝑑) on 𝑛 points—seen in (R𝑑)𝑛 as
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𝑄 (𝑥1, . . . 𝑥𝑛) = (𝑄𝑥1, . . . , 𝑄 𝑥𝑛)—can be expressed as a function of pairs of objects

(𝑥⊤𝑖 𝑥𝑗)𝑖,𝑗=1...𝑛. This is because the orthogonal group is defined as the stabilizer of

a bilinear form. In other words, letting 𝐵(𝑥, 𝑥′) = 𝑥⊤𝑥′ denote the standard inner

product, we have

𝑂(𝑑) = {𝐴 ∈ 𝐺𝐿(𝑑) : 𝐵(𝐴𝑥,𝐴𝑥′) = 𝐵(𝑥, 𝑥′) for all 𝑥, 𝑥′ ∈ R𝑑}. (5.6)

This argument applies more generally to other groups that are defined as stabilizers

of bilinear forms. For instance, the Lorentz group, which has applications in the

context of special relativity, can be defined as the stabilizer of the Minkowski inner

product. Additionally, the symplectic group, which is used to characterize Hamiltonian

dynamical systems, can be defined in a similar manner.

Such extensions to other groups allow us to use Care for different embedding

space geometries. For instance, several recent works have used a hyperbolic space as

an embedding space for self-supervised learners [Ge et al., 2022, Yue et al., 2023, Desai

et al., 2023]. If we constrain our embedding to a hyperboloid model of hyperbolic

space, then linear isometries of this space are precisely the Lorentz group. Hence,

using our equivariance loss with the Minkowski inner product replacing the Euclidean

inner product would allow us to learn hyperbolic representations that transform the

embeddings according to the action of the Lorentz group when an augmentation is

applied to the input space. Further discussions on extensions to other groups are

given in Appendix C.3.

5.4 Measuring Orthogonal Action on Embedding Space

To probe the geometric properties of Care, we consider two efficiently computable

metrics for empirically measuring the orthogonal equivariance in the embedding space.

We report empirical results with these measures in Section 5.5.2.

Wahba’s problem. Proposition 5 states that a single orthogonal matrix 𝑅𝑎 ∈ 𝑂(𝑑)

describes the effect of augmentation 𝑎 for all input points 𝑥—i.e., 𝑅𝑎 does not depend
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on 𝑥. Hence, a natural way to assess the equivariance of 𝑓 is to sample a batch of data

{𝑥𝑖}𝑛𝑖=1 and an augmentation 𝑎 and test to what extent applying 𝑎 transforms the

embeddings of each 𝑥𝑖 the same way. To measure this we compute a single rotation

that approximates the map from 𝑓(𝑥𝑖) to 𝑓(𝑎(𝑥𝑖)) for all 𝑖. Let 𝐹 and 𝐹𝑎 ∈ R𝑑×𝑛

have 𝑖th columns 𝑓(𝑥𝑖) and 𝑓(𝑎(𝑥𝑖)) respectively, then we compute the error

𝒲𝑓 = min𝑅∈𝑆𝑂(𝑑) ‖𝑅𝐹 − 𝐹𝑎‖Fro, (5.7)

where ‖ · ‖Fro denotes the Frobenius norm. If 𝒲𝑓 = 0, then 𝑓(𝑎(𝑥𝑖)) = 𝑅𝑎𝑓(𝑥𝑖)

for all 𝑖. Problem (5.7) is a well-studied problem known as Wahba’s problem. The

analytic solution to Wahba’s problem is easily computed. It is nearly 𝑅* = 𝑈𝑉 ⊤ where

𝑈Σ𝑉 ⊤ is a singular value decomposition of 𝐹𝑎𝐹⊤. However, a slight modification

is required as this 𝑅* could have determinant ±1, and therefore may not belong to

𝑆𝑂(𝑑). Fortunately, the only modification needed is to re-scale so that the determinant

is one: 𝑅* = 𝑈 · diag
{︀
1(𝑛−1), det(𝑈)det(𝑉 )

}︀
· 𝑉 ⊤ where 1𝑛 denotes the vector in R𝑛

of all ones. This method of computing the solution 𝑅* to Wahba’s problem is known

as Kabsch’s algorithm [Kabsch, 1976], and has been used for aligning point clouds to,

e.g., compare molecular and protein structures and spacecraft attitude determination

[Markley and Crassidis, 2014, Kneller, 1991]. We use this algorithm to compute the

optimal solution 𝑅* and further compare the error of interest as 𝒲𝑓 = ‖𝑅*𝐹 − 𝐹𝑎‖.

Relative rotational equivariance. Optimizing for the Care objective may

potentially result in learning invariance rather than equivariance. Specifically, for input

image 𝑥, 𝑓(𝑎(𝑥)) = 𝑓(𝑥) for 𝑎 ∈ 𝒜 is a trivial optimal solution of argmin𝑓 ℒequi(𝑓).

To check that our model is learning non-trivial equivariance, we consider a metric

similar to one proposed by Bhardwaj et al. [2023] for measuring the equivariance

relative to the invariance of 𝑓 :

𝛾𝑓 = E𝑎∼𝒜E𝑥,𝑥′∼𝒳

{︃
(‖𝑓(𝑎(𝑥′))− 𝑓(𝑎(𝑥))‖2 − ‖𝑓(𝑥′)− 𝑓(𝑥)‖2)2

(‖𝑓(𝑎(𝑥′))− 𝑓(𝑥′)‖2 + ‖𝑓(𝑎(𝑥))− 𝑓(𝑥)‖2)2

}︃
. (5.8)

Here, the denominator measures the invariance of the representation, with smaller
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values corresponding to greater invariance to the augmentations. The numerator, on

the other hand, measures equivariance and can be simplified to [𝑓(𝑎(𝑥′))⊤𝑓(𝑎(𝑥))−

𝑓(𝑥)⊤𝑓(𝑥′)
]︀2 (i.e., ℒequi(𝑓)) up to a constant, because 𝑓 maps to the unit sphere. The

ratio 𝛾𝑓 of these two terms measures the non-trivial equivariance, with a lower value

implying greater non-trivial orthogonal equivariance.

5.5 Experiments

We examine the representations learned by Care, as well as those obtained from

purely invariance-based contrastive approaches. We study three aspects of our model:

1) quantitative measures of orthogonal equivariance, 2) qualitative evaluation of

the effect of equivariance on sensitivity to data transforms, and 3) performance of

features learned by Care on image classification tasks. We describe our experiment

configurations in detail in Appendix C.4.

5.5.1 Qualitative assessment of equivariance

Figure 5-5: Histogram of the cosine of
angles between data pairs for Care and
SimCLR. Care exhibits a significantly
lower variance of cosine similarity values
compared to SimCLR.

A key property promised by equivariant con-

trastive models is sensitivity to specific aug-

mentations. To qualitatively evaluate the

sensitivity, or equivariance, of our models,

we consider an image retrieval task on the

Flowers-102 dataset [Nilsback and Zisser-

man, 2008], as considered by Bhardwaj et al.

[2023]. Specifically, when presented with an

input image 𝑥, we extract the top 5 nearest

neighbors based on the Euclidean distance

of 𝑓(𝑥) and 𝑓(𝑎(𝑥)), where 𝑎 ∈ 𝒜. We re-

port the results of using color jitter as a

transformation of the input, comparing the invariant (SimCLR) and our equivariant

(Care) models in Figure 5-6. We see that retrieved results for the Care model exhibit
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CARE (ours) SimCLRInput Query

Figure 5-6: Care exhibits sensitivity to features that invariance-based contrastive
methods (e.g., SimCLR) do not. For each input we apply color jitter to produce the
query image. We then retrieve the 5 nearest neighbors in the embedding space of
Care and SimCLR.

greater variability in response to a change in query color compared to the SimCLR

model. Notably, the color of the retrieved results for all queries in the SimCLR model

remains largely invariant, thereby confirming its robustness to color changes.

5.5.2 Quantitative Measures for Orthogonal Equivariance

Wahba’s Problem We compare ResNet-18 models pretrained with Care and with

SimCLR on CIFAR10. For each model, we compute the optimal value 𝒲𝑓 of Wahba’s

problem, as introduced in Section 5.4, over repeated trials. In each trial, we sample a

single augmentation 𝑎 ∼ 𝒜 at random and compute𝒲𝑓 for 𝑓 = 𝑓Care and 𝑓 = 𝑓SimCLR

over the test data. We repeat this process 20 times and plot the results in Figure 5-3,

where the colors of dots indicate the sampled augmentation. Results show that Care

has a lower average error and worst-case error. Furthermore, comparing point-wise for

a single augmentation, Care achieves lower error in nearly all cases.

Relative rotational equivariance. We measure the relative rotational equiv-

ariance for both Care and SimCLR over the course of pretraining by following the

approach outlined in Section 5.4. Specifically, we compare ResNet-18 models trained

using Care and SimCLR on CIFAR10. From Figure 5-7, we observe that both the
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Figure 5-7: Relative rotational equivariance (lower is more equivariant). Both
Care and invariance-based contrastive methods (e.g., SimCLR) produce approxi-
mately invariant embeddings. However, they differ in their residual sensitivity to
augmentations. Care learns a considerably more rotationally structured embedding
space. We note that this is in part because Care is less invariant to augmentations
(higher invariance loss).

models produce embeddings with comparable non-zero invariance loss ℒinv, indicating

approximate invariance. However, they differ in their sensitivity to augmentations,

with Care attaining a much lower relative equivariance error. Importantly, this shows

that Care is not achieving lower equivariance error ℒequi by collapsing to invariance,

a trivial form of equivariance.

Analyzing Structure on a 2D manifold.

To further study ℒequi, we train an encoder 𝑓 that projects the input onto S1, the

unit circle in the 2D plane. In this case, orthogonal transformations are characterized

by angles. We sample an augmentation 𝑎 ∼ 𝒜 and measure the cosine of the angle

between pairs 𝑓(𝑥) and 𝑓(𝑎(𝑥)) for all 𝑥 in the test set. This process is repeated for 20

distinct sampled augmentations, and the density of all recorded cosine angles is recorded

in Figure 5-5. Both Care and SimCLR exhibit high density close to 1, demonstrating

approximate invariance. However, unlike Care, SimCLR exhibits non-zero density in

the region −0.5 to −1.0, indicating that the application of augmentations significantly

displaces the embeddings. Additionally, Care consistently exhibits lower variance 𝜎2

of the cosine angles between 𝑓(𝑥) and 𝑓(𝑎(𝑥)) for a fixed augmentation, as expected

given that it is supposed to transform all embeddings in the same way.
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Figure 5-8: Top-1 linear readout accuracy (%) on CIFAR10, CIFAR100, STL10 and
ImageNet100. All results are from 5 independent seed runs for the linear probe.

5.5.3 Linear Probe for Image Classification

Next, we examine the quality of features learned by Care for solving image classi-

fication tasks. We train ResNet-50 models on four datasets: CIFAR10, CIFAR100,

STL10, and ImageNet100 using Care and SimCLR. To illustrate that Care can

also be integrated into other self-supervised frameworks, we train MoCo-v2 models on

ImageNet100 (with and without Care). We refer to the model trained using Care

with SimCLR or MoCo-v2 backbone as CareSimCLR and CareMoCo-v2 respectively.

For each method and dataset, we evaluate the quality of the learned features by

training a linear classifier (i.e., probe [Alain and Bengio, 2017]) on the frozen features

of 𝑓 and report the test set performances in Figure 5-8. In all cases, we run the

linear probe training for five random seeds and report averages. We find consistent

improvements in performance using Care, showing the benefits of our structured

embedding approach for image recognition tasks.

5.5.4 Ablation of Loss Terms

The Care loss ℒCare is a weighted sum of the InfoNCE loss ℒInfoNCE and the orthogonal

equivariance loss ℒequi. Furthermore, as outlined in Section 5.3, the InfoNCE loss

is itself a combination of an invariance inducing loss ℒinv and a non-collapse term

ℒunif. To study each loss component, we pretrain ResNet-50 models on CIFAR10

using different combinations of the three losses. The results in Figure 5-2 suggest

that simply optimizing for ℒinv and ℒequi leads to collapse, while optimizing ℒunif

alone prevents collapse but performs similar to random initialization. Interestingly,

ℒunif + ℒequi yields non-trivial representations without directly enforcing invariance.

But the performance falls below that of invariance-based contrastive baselines. In
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combination with the invariance term ℒinv—which biases rotations to be small—we

achieve superior performance to the invariance-only counterpart.

5.6 Related work

Equivariance is a key tool for encoding geometric structure—e.g., symmetries—into

neural network representations [Cohen and Welling, 2016, Bronstein et al., 2021].

Whilst hard-coding equivariance into model architectures is very successful, approxi-

mate learned equivariance [Kaba et al., 2022, Shakerinava et al., 2022], has certain

advantages: 1) when the symmetry is provided only by data, with no closed-form

expression, 2) can still be used when it is unclear how to hard code equivariance into

the architecture, and 3) can exploit standard high capacity architectures [He et al.,

2016, Dosovitskiy et al., 2021a], benefiting from considerable engineering efforts to

optimize their performance. Shakerinava et al. [2022] also consider learning orthogonal

equivariance, but consider problems where both input and embedding space are acted

on by 𝑂(𝑑). Our setting differs from this in two key ways: 1) we consider a very

different set of transforms of input space—jitter, crops, etc.—and 2) can be naturally

integrated into contrastive learning, and 3) theoretically study the minima of the

angle-preserving loss. A related line of work, mechanistic interpretability, hypothesizes

that algorithmic structure—possibly including group symmetries—emerge naturally

within network connections during training [Chughtai et al., 2023]. Our approach

is very different from this as we directly train models to have the desired structure

without relying on implicit processes. Finally, the geometry of representation space

has been used in a very different sense in prior contrastive learning approaches, for

instance bootstrapping useful negatives Chuang et al. [2020], Robinson et al. [2021a]

based on their location in embedding space during training.
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Chapter 6

A Simple, Efficient and Scalable

Contrastive Masked Autoencoder

This chapter introduces CAN, a simple, efficient and scalable method for self-supervised

learning of visual representations. The framework is a minimal and conceptually

clean synthesis of (C) contrastive learning, (A) masked autoencoders, and (N) the

noise prediction approach used in diffusion models. The learning mechanisms are

complementary to one another: contrastive learning shapes the embedding space across

a batch of images; masked autoencoders reconstruct low-frequency spatial correlations

in a single image; and noise prediction reconstructs high-frequency components of

an image. The combined approach outperforms its MAE and SimCLR constituent

parts on an extensive set of downstream transfer learning and robustness tasks under

both linear probe and finetune protocols, and pre-training on large datasets such as

JFT-300M and ImageNet-21K. Importantly, CAN masks 50% of patches in both views,

meaning that the overall FLOPs load of SimCLR is 70% higher than CAN for ViT-L

backbones. Code can be found at https://github.com/shlokk/mae-contrastive.

Acknowledgements. This chapter is based on [Mishra* et al., 2023], which is

work is in collaboration with Shlok Mishra, Huiwen Chang, David Jacobs, Aaron

Sarna, Aaron Maschinot, Dilip Krishnan. In particular, Shlok, Aaron Machinot and

Dilip all made significant contributions.
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6.1 Background and Motivation

Self-supervised learning promises continued advances in the state of the art by en-

abling the use of increasingly large models and datasets without reliance on human

annotations. However, interest in larger datasets has precipitated an increased reliance

on web-scraped data collection processes, which result in heterogeneous, uncurated

datasets [Yu et al., 2022, Radford et al., 2021, Jia et al., 2021]. Extreme image

heterogeneity has made scaling vision models to large uncurated datasets a non-trivial

challenge [Tian et al., 2021, Cole et al., 2022]. There are two families of self-supervised

methods for images which have both proven highly effective on curated datasets (e.g.,

ImageNet), and are therefore natural candidates for scaling to large, uncurated data.

First, masked image models such as the masked autoencoder (MAE) [He et al., 2022]

are a nascent approach based on a mask-and-reconstruct training mechanism. This

classical idea [Ballard, 1987] is enjoying a rejuvenation thanks to favourable efficiency

when combined with the vision transformer architecture [Dosovitskiy et al., 2021c].

Second, contrastive learning [van den Oord et al., 2018, Chen et al., 2020c, He et al.,

2020b] trains an encoder to distinguish between pairs of positive samples generated

with data augmentations and negative pairs sampled at random. Both approaches

have proven to be very powerful self-supervised methods.

Contrastive learning and masked autoencoders (MAE) employ very different learn-

ing mechanisms: the former trains the encoder to be invariant to semantics-preserving

data variations, while MAE learns spatial statistical correlations. Furthermore, MAE

methods treat each sample independently in the loss function, while contrastive meth-

ods explicitly look at the relationship between all samples in the batch, by either

reducing or increasing embedding distance. Given this, we hypothesize that these two

approaches are complementary, extracting different discriminative features. If this

hypothesis holds, then combining the two approaches presents itself as a promising

way to build a reinforced training mechanism.

Advances in diffusion models [Ho et al., 2020, Song et al., 2021] have been driven

by denoising models that predict the noise added to an input image. While denoising
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Figure 6-1: Left: CAN scales better than SimCLR since it uses masked inputs.
Middle and right: CAN outperforms SimCLR and MAE on ImageNet linear probe
and finetune evaluations for ViT-L models when pre-training on uncurated data such
as JFT-300M.

has not yet enjoyed wide adoption for self-supervised learning on its own, we believe it

offers a promising third complementary learning mechanism to contrastive learning and

masked autoencoding. Specifically, denoising forces the model to learn high-frequency

information, whereas autoencoder reconstructions focus on low-frequency information

[Hou et al., 2017].

This chapter presents CAN, a minimal fusion of contrastive learning, masked au-

toencoders, and the diffusion denoising loss. Our method enjoys stronger performance

than its constituent parts on their own, especially when pre-training on large datasets

such as JFT-300M and ImageNet-21K, which consist of 300M and 14M images, respec-

tively. For instance, evaluating JFT-trained ViT-L models using the top-1 accuracy of

an ImageNet-trained linear probe, MAE achieves 64.1% and SimCLR achieves 73.4%,

while CAN achieves 75.4%. The advantages of CAN are:

1. Simplicity. CAN is a minimal synthesis of three powerful self-supervised

learning methods.

2. Efficiency. CAN enjoys a favourable efficiency-performance trade-off (Figure

6-1), e.g., SimCLR uses 70% more FLOPs than CAN with ViT-L backbones.

3. Scalability. CAN scales well to training on large image datasets, such as

JFT-300M and ImageNet-21K.

CAN is more efficient than SimCLR since it masks 50% of patches in each view.
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Figure 6-2: The CAN framework: Two views of an image are generated,
50% of patches randomly masked in each, and noise is added to patches.
An encoder is trained to solve three tasks: 1) Reconstruction: encoded
patches are passed to a decoder that reconstructs missing patches, 2) Denoise:
reconstructs the noise added to unmasked patches, and 3) Contrast: pooled
patches are passed to a contrastive loss, using in-batch samples as negatives
[Chen et al., 2020c].

This also translates to faster run-times, with our largest training (ViT-L 5000 epochs)

taking 2 weeks for SimCLR, and 1 week for CAN on our hardware.

6.2 A Simple Contrastive Masked Autoencoder

Our approach is a minimal synthesis of contrastive learning, the masked autoencoder

(MAE) [He et al., 2022], and the denoising loss used in the training of diffusion models.

We focus on simplicity and scalability, aiming to design a hybrid with as few complex

or costly components as possible. We also aim to minimize wasted computation: in

particular, the MAE decoder requires reconstructions of all patches, but only those of

masked patches are used in the loss, a fact that CAN exploits. Below, first we detail

the basic pipeline of generating views and passing masked inputs through the encoder

and decoder, then explain the three objectives we use: contrastive, reconstruction,

and denoising. The penultimate section describes the combined objective, and the

final section discusses scalability.
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6.2.1 Overview of Method

Given a batch of 𝑛 images {x}𝑛𝑖=1, we generate two views x1
𝑖 ,x

2
𝑖 ∈ Rℎ×𝑤×3 of each

image without supervision using the same data augmentations as Chen et al. [2020c].

Each image is then split into 𝑇 = (ℎ/𝑝)× (𝑤/𝑝) non-overlapping patches of size 𝑝× 𝑝:

x1
𝑖,patch,x

2
𝑖,patch ∈ R𝑇×𝑝×𝑝×3 in preparation for input to the ViT encoder. We always

assume that 𝑝 divides ℎ and 𝑤. Two masks M1
𝑖 ,M

2
𝑖 ∈ {0, 1}𝑇 are independently

generated, with a 1 in coordinate 𝑡 ∈ {1, . . . 𝑇} indicating that the 𝑡-th patch is masked.

Each patch is masked independently with probability 𝑟, conditioned on always having

exactly 𝑇 ′ = 𝑟 · 𝑇 patches masked, which we assume is an integer. In all CAN

experiments our default masking rate is 𝑟 = 50% unless explicitly stated otherwise

(note that for all MAE results we follow the exact settings as in [He et al., 2022] using

the default 𝑟 = 75%). Following He et al. [2022], only the 𝑇 − 𝑇 ′ unmasked patches

are passed to the ViT encoder, which processes the two views in parallel. Masking

a large fraction of patches from both views makes our method much more efficient

(see Table 6-1) than contrastive methods that use two full views and recent works

that use one full view and one masked view [Assran et al., 2022, Huang et al., 2022].

Finally, we collect the embeddings of unmasked tokens z1𝑖 , z
2
𝑖 ∈ R(𝑇−𝑇 ′)×𝑑 and reshape

into 𝑇 × 𝑑 tensors by adding a learned [M] embedding to positions corresponding to

masked tokens. The result is passed through a comparatively lightweight ViT decoder

to produce outputs x̂1
𝑖 , x̂

2
𝑖 in image space Rℎ×𝑤×3.

6.2.2 Contrastive Learning Objective

The embeddings z1𝑖 , z2𝑖 ∈ R(𝑇−𝑇 ′)×𝑑 returned by the encoder are pooled via a simple

mean along the first dimension to form 𝑑-dimensional embeddings, which are passed

through a lightweight MLP projection head that maps into a lower dimension space

R𝑟, 𝑟 < 𝑑, and normalized to unit length to produce embeddings u1
𝑖 ,u

2
𝑖 ∈ R𝑟 for

𝑖 = 1, . . . 𝑛. For the 𝑖th batch item we collect the other 2𝑛 − 2 samples in-batch
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𝒩𝑖 = {u1
𝑗 ,u

2
𝑗}𝑗 ̸=𝑖 to use as negatives, and compute the ℒInfoNCE loss:

1

2𝑛

∑︁
𝑣=1,2

𝑛∑︁
𝑖=1

− log
𝑒u

1
𝑖
⊤
u2
𝑖 /𝜏

𝑒u
1
𝑖
⊤
u2
𝑖 /𝜏 +

∑︀
u−∈𝒩𝑖

𝑒u
𝑣
𝑖
⊤u−/𝜏

where 𝜏 > 0 is a temperature parameter, defaulting to 0.1. Our choice of InfoNCE

objective is justified by recent work [Koppula et al., 2022] that found that a simple

InfoNCE objective as in SimCLR scales to large dataset better than methods such as

BYOL [Grill et al., 2020] or DINO [Caron et al., 2020].

6.2.3 Patch Reconstruction Objective

The outputs x̂1
𝑖 , x̂

2
𝑖 , 𝑖 = 1, . . . , 𝑛 of the ViT decoder are trained to reconstruct the

missing patches of each image. As in He et al. [2022], we find it best to only compute

the reconstruction loss on masked patches:

ℒrec =
1

2𝑛

∑︁
𝑣=1,2

𝑛∑︁
𝑖=1

‖M𝑣
𝑖 ∘ (x𝑣𝑖 − x̂𝑣𝑖 )‖22

where ∘ multiplies all pixels in the 𝑡th patch of the residual image x𝑣𝑖 − x̂𝑣𝑖 by

(M𝑣
𝑖 )𝑡 ∈ {0, 1}.

Whilst computing the loss only on masked patches gives better performance, it

indicates wasted computation since the decoder also produces reconstructions for

unmasked patches. To avoid waste we propose an alternative objective specifically for

unmasked patches, which we discuss next.

6.2.4 Denoising Objective

Inspired by the significant advances in diffusion modelling using denoising training

objectives [Ho et al., 2020, Kingma et al., 2021] and their equivalent score-based

counterparts [Song et al., 2021, Vincent, 2011] we revisit the suitability of denoising

for self-supervised learning. We add independent isotropic Gaussian noise to each

image x𝑣𝑖 ← x𝑣𝑖 + 𝜎𝑣𝑖 e
𝑣
𝑖 with e𝑣𝑖 ∼ 𝒩 (0, 𝐼) and 𝜎𝑣𝑖 uniformly sampled from an interval
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Figure 6-3: Denoising: Both the encoded patches and the noise level 𝜎 are passed to
the decoder by passing 𝜎 through an MLP, and adding the result to each embedded
token.

[0, 𝜎max]. This noisy input is masked and passed to the encoder as described in Section

6.2.1. When passing encoded patches to the decoder we make a small addition to

the method in Section 6.2.1 to provide the decoder with information on the noise

level 𝜎𝑣𝑖 to help it separate noise from the ground truth image. This is motivated

by denoising diffusion methods, which pass both the noisy image and the noise level

as inputs to the denoising model [Ho et al., 2020]. We approach this by using 𝜎𝑣𝑖 as

a positional encoding in the decoder, similarly to Vaswani et al. [2017a]. First we

produce a sinusoidal embedding of 𝜎𝑣𝑖 ∈ R𝑑, which is passed through a lightweight

2 layer MLP with ReLU activations of constant width 𝑑 to produce a (learnable)

embedding p𝑣𝑖 ∈ R𝑑, whose dimension matches the latent dimension of z𝑣𝑖 ∈ R𝑇×𝑑.

We add the result to each embedded token (including missing tokens [M]) to provide

noise-level information: (z𝑣𝑖 )𝑡 ← (z𝑣𝑖 )𝑡 + p𝑣𝑖 for 𝑡 = 1 . . . , 𝑇 , and pass the result to the

decoder producing x̂𝑣𝑖 . We define our denoising loss function, which is computed only

on unmasked pixels:

ℒdenoise =
1

2𝑛

∑︁
𝑣=1,2

𝑛∑︁
𝑖=1

‖(1−M𝑣
𝑖 ) ∘ (𝜎𝑣𝑖 e𝑣𝑖 − x̂𝑣𝑖 )‖22

where, ∘ multiplies pixels by the patch-level masking as in Section 6.2.3. Note that

the reconstruction loss ℒrec still uses the clean input x as its target, with no noise

added. The denoising loss is extremely lightweight, introducing only a very small

overhead due to the MLP. We emphasize that the reconstruction of noise patches

comes at zero additional cost since the decoder produces reconstructions of all patches,

both masked and unmasked, but only reconstructions of masked patches are used in

ℒrec. Finally, it has been observed in the diffusion modelling literature that although
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it is equivalent to train a denoising model to estimate the noise e, or to estimate the

clean input x [Vincent, 2011], there is an empirical gap, with noise target faring better.

While we do not pursue it further, our testing corroborates this.

6.2.5 The Combined Objective Function

The overall CAN objective trains the encoder and decoder to optimize three losses

combined:

ℒCAN = 𝜆InfoNCEℒInfoNCE + 𝜆recℒrec + 𝜆denoiseℒdenoise

where 0 ≤ 𝜆InfoNCE, 𝜆rec, 𝜆denoise, and 𝜆InfoNCE+𝜆rec+𝜆denoise = 1 weight the objectives.

In practice we parameterize the weights by eliminating one variable using the equality

constraint, taking: 𝜆rec = (1− 𝜆InfoNCE) · 𝜆 and 𝜆denoise = (1− 𝜆InfoNCE) · (1− 𝜆) where

0 ≤ 𝜆 ≤ 1. This parameterization makes it easy to control the weighting between

the two reconstruction losses ℒrec,ℒdenoise on the one hand, and the contrastive loss

ℒInfoNCE on the other. We find that performance is robust to the choice of 𝜆, and

many choices of 𝜆InfoNCE also work well (see Section 6.4).

6.2.6 Discussion on Efficiency

The efficiency of CAN arises from masking 50% of both views. We also omit certain

design choices in the interests of efficiency: we do not use a momentum encoder or

multiple views (multi-crop). Each of these components tends to add significant (2×

or more) expense to training. Even without these components CAN achieves strong

performance, outperforming its key constituent parts SimCLR and MAE.

6.3 Experimental Results

6.3.1 Pre-training on Uncurated Data: JFT-300M

A key promise of self-supervised learning is to allow models to be trained on extremely

large scale image datasets collected from the Web. Not only is such data likely to be
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Architecture Epochs IN-1K top-1

MoCLR [Tian et al., 2021] R50 5000 67.6
BYOL [Grill et al., 2020] R50 5000 67.9
DnC [Tian et al., 2021] R50 1000 67.9
DnC [Tian et al., 2021] R50 4500 70.7
MoCLR [Tian et al., 2021] R200×2 5000 74.2
DnC [Tian et al., 2021] R200×2 3000 77.3

MAE† [He et al., 2022] ViT-L 1600 50.5
MAE† [He et al., 2022] ViT-L 5000 64.1
SimCLR† [Chen et al., 2020c] ViT-B 800 65.8
SimCLR† [Chen et al., 2020c] ViT-L 800 72.6
SimCLR† [Chen et al., 2020c] ViT-L 1600 73.1
SimCLR† [Chen et al., 2020c] ViT-L 5000 73.4

CAN (ours) ViT-B 800 67.1
CAN (ours) ViT-L 800 72.8
CAN (ours) ViT-L 1600 74.3
CAN (ours) ViT-L 3000 75.3
CAN (ours) ViT-L 5000 75.4

Table 6.1: JFT-300M pre-training: Comparison to the state of the art on ImageNet
linear probe. CAN outperforms all methods except DnC, which uses a complicated
multi-stage training process. Computation is measured as ImageNet-equivalent epochs.
†Our implementation of [Chen et al., 2020c] and [He et al., 2022].
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unannotated, but also uncurated : images containing many objects, variable lighting,

artifacts (e.g., watermarks) and so on. The large variation in images found online

presents a major challenge to self-supervised learning, and it is not guaranteed that

methods that work well on curated (and comparatively smaller) datasets such as

ImageNet will work equally well on less curated data. To study how CAN scales to

large datasets we use JFT-300M [Sun et al., 2017], a dataset of around 300 million

images.

Setup. Training time is measured in ImageNet-equivalent epochs: 1 epoch equals

1281167/[batch size] steps, the number of steps in one IN-1K epoch. Models are

evaluated using linear probe and finetuning on IN-1K. All hyperparameers were tuned

on IN-1K, besides learning rate and weight decay which we cut by a factor of 4 and 2

respectively to stabilize training on JFT-300M. See Appendix D.3 and Section 6.4 for

details.

Results. Figure 6-1 compares CAN to SimCLR and MAE baselines using ViT-

L models. CAN achieves a much better trade-off between efficiency (measured in

FLOPs) and performance using ViT-L models for all three methods: SimCLR uses

70% more FLOPs than CAN, which consistently outperforms both SimCLR and

MAE: for training ViT-L models for 5000 epochs, CAN achieves an IN-1K linear

probe performance of 75.4%, compared to 73.4% for SimCLR and 64.1% for MAE.

The relatively poorer linear probe performance of MAE on JFT-300M highlights

the non-triviality of scaling from IN-1K to larger datasets and suggests that while

MAE is scalable for model size, scalability to larger datasets requires further study.

Figure 6-1 (right) gives finetuning results. CAN performs favourably: for a 5000 epoch

pre-training schedule, CAN achieves an IN-1K linear probe performance of 86.1%,

compared to 85.5% for SimCLR and 85.4% for MAE. CAN also enjoys better scaling

with training schedule length than either MAE or SimCLR, with the difference in

performance becoming larger for longer schedules. We hypothesize that this is not

coincidental, and that strong pre-training tasks like CAN play an important role in

scalability.

We also compare CAN to the current state of the art on JFT-300M pre-training in
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Table 6.1. Our best performance, 75.4% with ViT-L outperforms all methods besides

DnC, with 77.3% [Tian et al., 2021] with R200×2. However we note that CAN is

considerably simpler than DnC, which involves training 10 separate “expert” models

(each as large as the final model), and then using MoCLR (an improvement of SimCLR

that adds a momentum encoder and more), using distillation to produce a single final

model. Our calculations suggest that training a ViT-L with CAN is about 3× faster

than training the considerably smaller ResNet50 with DnC in terms of wall clock

time (see Appendix D.2 for explanation). CAN on ViT-L outperforms MoCLR with

R200×2 backbone (similar parameter counts), where we note that MoCLR performs

as well or better than BYOL and MoCo-v3 on IN-1K [Tian et al., 2021].

6.3.2 Pre-training on ImageNet-21K

We also consider the performance of CAN on pre-training on ImageNet-21K (IN-21K),

a publicly available dataset of 14.2 million images Deng et al. [2009]. We use the

same hyperparameter settings as JFT-300M. We run a full set of evaluations on linear

probe (Table D.1), robustness (Figure D-8), and few-shot learning (Figure D-9) (see

Sections 6.3.4 and 6.3.5 for details on few-shot and robustness evaluations). Results

are reported in Appendix D.1.1. CAN also performs well with IN-21K pre-training,

with CAN finetuned on IN-1K showing better robustness than MAE and SimCLR in

8 out of 8 cases, and CAN achieving best 25-shot performance on 6 out of 9 datasets.

6.3.3 Pre-training on ImageNet-1K

Next we evaluate our method using ImageNet (IN-1K) pre-training to verify that it is

also competitive in this setting. Results in Table 6.2 record the top-1 accuracy on IN-1K

classification of finetuned models and linear probes. Finetuning CAN achieves 83.6%

with ViT-B, outperforming other contrastive approaches such as MoCo-v3 (83.0%),

and is competitive with other state-of-the-art approaches such as CAE (83.9%). The

linear probe performance of CAN is 74.8% using ViT-B, beating all masked image

modelling methods, the best of which is CAE with 70.4% [Chen et al., 2022]. CAN
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Method Pre-training epochs Encoder No Additional params. Masked image Finetune Linear probe

from scratch 100 ViT-B ✓ ✗ 79.1 —
MoCo-v3 [Chen et al., 2021b] 300 ViT-B ✗ ✗ 83.0 76.7
DINO [Caron et al., 2021] 1600 ViT-B ✗ ✗ 82.8 78.2

CIM [Fang et al., 2022] 300 ViT-B ✗ ✗ 83.1 —
CAE [Chen et al., 2022] 800 ViT-B ✗ ✗ 83.8 68.6
CAE [Chen et al., 2022] 1600 ViT-B ✗ ✗ 83.9 70.4
BEiT [Bao et al., 2022] 800 ViT-B ✗ ✗ 83.2 37.6*

SimMIM [Xie et al., 2022b] 800 ViT-B ✓ ✗ 83.8 56.7
MAE [He et al., 2022] 800 ViT-B ✓ ✓ 83.1 —
MAE [He et al., 2022] 1600 ViT-B ✓ ✓ 83.6 68.0
CAN (ours) 800 ViT-B ✓ ✓ 83.4 74.0
CAN (ours) 1600 ViT-B ✓ ✓ 83.6 74.8

SimCLR† [Chen et al., 2020c] 800 ViT-L ✓ ✗ 83.4 73.9
MAE [He et al., 2022] 800 ViT-L ✓ ✓ 84.9 73.5
MAE† [He et al., 2022] 800 ViT-L ✓ ✓ 83.7 71.4
CAN (ours) 800 ViT-L ✓ ✓ 84.7 76.2

Table 6.2: Finetune and linear probe results with pre-training on ImageNet-
1K. Note that CAN does not use multi-crop augmentation or momentum encoder.
†Our implementation of [Chen et al., 2020c] and [He et al., 2022]. *Quoted from Chen
et al. [2022].

is only outperformed by MoCo-v3 and DINO, which use momentum encoders and

two full image views, and in the case of DINO 10 multi-crop views. Note that the

masked image column indicates whether a method uses one or more full image views

as input to the model, and the no additional parameters column indicates whether a

method relies on other parameters besides the main encoder, e.g., from a pre-trained

tokenizer, or a momentum updated target encoder. We also report results for our

MAE implementation, which approximately matches the numbers reported in He et al.

[2022], validating our MAE results on JFT-300M.

6.3.4 Few-shot Learning

We use linear probes to evaluate suitability of CAN for few-shot learning, following the

protocol of Dosovitskiy et al. [2021b]. We use the models pre-trained on JFT-300M

for 5000 epochs whose ImageNet performance is recorded in Figure 6-1. Results in

Figure 6-4 for few-shot transfer learning on 9 other datasets show that the superior

performance on IN-1K translates to strong performance on other tasks. We also note

that our 25-shot ViT-L models beat full-shot both DnC and BYOL ResNet50 models
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Figure 6-4: Few-shot: ViT-L models pre-trained on JFT-300M for 5000
epochs are evaluated on 9 datasets in few-shot setting (10-shot and 25-shot).
CAN outperforms MAE and SimCLR.

(also trained for 5000 epochs on JFT-300M) on 6 out of 8 datasets [Tian et al., 2021].

See Appendix D.1 for many additional results, including pre-training on IN-21K.

6.3.5 Robustness to Distribution Shift

Finally, we consider the robustness of CAN to distribution shifts. We use ViT-L

backbones trained for 5000 epochs on JFT-300M, which have been finetuned on IN-1K.

Model performance is evaluated on a number of different validation sets with the same

1000 classes as IN-1K Mao et al. [2022]. Figure 6-5 reports results on the following 7

validation sets, which cover a large variety of distribution shifts: original IN-1K [Deng

et al., 2009], IN-v2 [Recht et al., 2019], IN-ReaL [Beyer et al., 2020], IN-Adversarial

[Hendrycks et al., 2021b], IN-Rendition [Hendrycks et al., 2021a], ObjectNet [Barbu

et al., 2019]. CAN performs favourably under both JFT-300M, IN-21K and IN-1K

pre-training, beating SimCLR and MAE baselines in nearly all cases. See Appendix

D.1 for additional results.

6.4 Hyperparameter Analysis

We study the different components of CAN to better understand the effect of the

different mechanisms, and to determine optimal parameter configurations. All ablations

use ViT-B models trained for 100 epochs on IN-1K and evaluated with a linear probe
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Figure 6-5: Robustness: Evaluating performance under distribution shifts
with respect to models finetuned on IN-1K. Validation performance of ViT-L
models is reported on 7 different datasets.
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Figure 6-6: CAN and SimCLR with different masking rates. ViT-B models
are pre-trained for 100 epochs on IN-1K (left), and 800 epochs on JFT-300M
(right).
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Figure 6-7: ViT-B models pre-trained on IN-1K for 100 epochs. Left: The
best contrastive loss weight is small but non-negative. Middle: A wide range
of 𝜎max values improve over no-noise. Right: Performance is not sensitive to
the denoising loss weight.
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Method Contrastive loss ↓ Reconstruction loss ↓

SimCLR 9.157 —
MAE — 0.1658
CAN (ours) 9.143 0.1633

Table 6.3: Loss complementarity. CAN training achieves lower training loss for
both contrastive and reconstruction than individual training. All methods use 50%
masking for fair comparison.

on IN-1K unless explicitly said otherwise. We use the best loss weights and noise level

in these experiments for experiments in Section 6.3.

Complementarity of contrastive and reconstruction losses. A key hy-

pothesis motivating our work is that contrastive learning and masked autoencoder

reconstruction may not only be compatible training objectives, but are complementary

ones. Table 6.3 compares the final training value of the contrastive ℒInfoNCE and

reconstruction ℒrec when jointly trained (i.e., CAN) compared to only optimizing

ℒInfoNCE (SimCLR) or only ℒrec (MAE). The results support the hypothesis: joint

training achieves a lower loss on both objectives compared to individual training.

Ablating CAN loss terms. CAN is comprised of three components: (C)

contrastive, (A) masked autoencoder, and (N) denoising losses. We ablate each of the

three components in Table 6.5, setting the loss weight to zero to “remove” a component.

We use ViT-B models pre-trained for 100 epochs. Removing any component leads to

worse performance, with contrastive loss hurting the most.

Denoising method. Table 6.4 studies the effect of each of the components of

the denoising method. We use ViT-B models trained for 100 epochs on ImageNet,

and consider four settings, each adding in more parts of the method: 1) CAN with no

denoising, 2) adding noise to the input only, 3) adding noise and using the denoising

loss, and 4) the full method with all of the described components, including using 𝜎𝑣𝑖
as a positional encoding in the decoder. Results show that simply adding noise as a

data augmentation improves performance by 0.7%, which can be improved to 1% by

adding a reconstruction loss with noise level passed as an argument. The noise level
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argument is necessary: the reconstruction loss without noise level argument performs

worse (68.4%) than noise with no reconstruction at all (68.6%). We emphasize that

the improvement from denoising comes at minimal run time and memory cost, since

it uses reconstructions produced by the decoder, which in the case of MAE are simply

thrown away unused. We also tried predicting the clean patches instead of noise, and

found it worked poorly, corroborating similar findings in the diffusion literature.

Masking rate. Figure 6-6 reports the behavior of CAN and SimCLR under

different masking rates on IN-1K and JFT-300M pre-training (for JFT-300M we use

800 epochs). The performance of SimCLR decreases as the masking rate increases,

suggesting that masking is not an effective data augmentation. In contrast, performance

of CAN peaks at a non-zero masking rate, but at a much lower rate than the 75%

used by MAE on IN-1K. This occurs since very low masking rates are preferred by

the contrastive part of CAN, but severely damage the autoencoder part as it can

learn trivial solutions. The considerable efficiency improvement from masking 50% of

patches more than compensates for the small drop in performance for a fixed number

of epochs.

None +noise +noise, +loss Full

67.9 68.6 68.4 68.9

Table 6.4: Denoising objective.
“Full” denotes the entire method as
described in Section 6.2.4

AN CN CA CAN (full)

42.8 68.5 67.9 68.9

Table 6.5: CAN loss terms. We
remove each of the three loss terms
in CAN one by one.

Contrastive loss weight. We vary the

weighting 𝜆InfoNCE used to weight the contribu-

tion of the contrastive and reconstruction losses.

Recall that larger 𝜆InfoNCE places higher weight on

the contrastive loss. Results in Figure 6-7 show

that the best weight is 𝜆InfoNCE = 0.03, which ap-

proximately balances the magnitudes of the two

terms (see Table 6.3).

Denoising loss weight and noise level. We

study the noise level interval [0, 𝜎max] from which

to sample input noise, and the weight 𝜆 balancing

the denoising and reconstruction losses. Results

in Fig. 6-7 show that the best maximum noise

level is 𝜎max = 0.05, and that similar performance
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is attained for different weights on the denoising loss.

6.5 Related Work

Masked image models with Vision Transformers. The advent of the Vision

Transformer (ViT) [Dosovitskiy et al., 2021c] provoked a focused effort to develop

strong self-supervised learning frameworks for ViT backbones. Works such as DINO

[Caron et al., 2021] and MoCo-v3 [Chen et al., 2021b] demonstrated that techniques

developed with ConvNet backbones in mind could also perform competitively using

ViTs after proper tuning to suit the new architecture. ViT-specific methods have

emerged since then, particularly masked image modelling [Bao et al., 2022, Chen et al.,

2022, Xie et al., 2022b], which use a mask-and-reconstruct training mechanism, taking

inspiration from pre-training methods used in NLP [Devlin et al., 2018]. This classical

idea [Ballard, 1987] is enjoying a rejuvenation thanks to favourable efficiency when

combined with the vision transformer architecture [Dosovitskiy et al., 2021c]. Most

notably MAE [He et al., 2022] showed that classical masked autoencoding approaches

could be used to pre-train ViTs without passing masked tokens through the encoder.

This provides a significant efficiency boost; our method similarly takes advantage of

this.

Contrastive learning in computer vision. Self-supervision has received

significant attention in computer vision as it offers a way to extract general purpose

features without supervision. In particular, contrastive learning [van den Oord et al.,

2018, Hénaff et al., 2020, Chen et al., 2020c, He et al., 2020b, Tian et al., 2020a,

Chuang et al., 2020, Hénaff et al., 2021] has achieved state of the art performance

by enforcing invariance to augmentations, whilst using negative samples [Robinson

et al., 2021a, Ge et al., 2021] to avoid trivial solutions by spreading the embedding out

uniformly on the sphere [Wang and Isola, 2020b]. The contrastive pre-training task

is conceptually very different from masked image models such as MAE, which learn

spatial statistical dependencies. Another distinction is that autoencoders encourage

information preservation in latent representations, whilst contrastive learning could
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suppress features [Chen et al., 2021a, Robinson et al., 2021b]. This leads us to

hypothesize that the two approaches learn different, complementary data features.

This motivates us to combine contrastive learning and masked image modelling so as

to develop a reinforced pre-training task that enjoys the merits of each.

Denoising diffusion models. Denoising autoencoders (DAE) [Vincent et al.,

2010] learn to reconstruct clean data given a noisy input. By learning to map low-

density data regions to high-density regions, DAE learns the shape of the data manifold.

This connection was made precise by Vincent [2011], who showed that DAEs learn

the score-function 𝑠(x) = ∇x log 𝑝(x). This key observation underpins the significant

recent advances in generative diffusion models, which use an estimate of the score-

function to generate samples [Ho et al., 2020, Song et al., 2021]. The recent success of

DAEs in generative modelling has not yet translated to representation learning, with

some exceptions [Asiedu et al., 2022, Zaidi et al., 2022]. In this work we exploit a

denoising autoencoder to eliminate the MAE inefficiency of reconstructing unmasked

patches but never using them.

Siamese masked image modelling. Several recent works propose approaches

that combine ideas from masked image modelling and Siamese self-supervised learning.

For instance, Huang et al. [2022] propose a combination of contrastive and masked

reconstruction objectives using one masked view, and one full (unmasked) view. Other

recent works [Tao et al., 2022b, Chen et al., 2022, Assran et al., 2022] use similar

asymmetric designs. The key distinction between CAN and these works is that we

strike a different balance, focusing on developing a simple, and efficient method. For

instance we use two masked views and no momentum encoder. We hope the simplicity

and efficiency of CAN, and our experiments showing it’s scalability, will make it easy

to adapt and modify in future work.

128



Part II

Encoding Problem Structure into

Representation Geometry
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Chapter 7

Neural Networks for Eigenvector Data

Numerous machine learning models process eigenvectors, which arise in various set-

tings including principal component analysis, matrix factorizations, and operators

associated to graphs or manifolds. An important example is the use of Laplacian

eigenvectors to encode information about the structure of a graph or manifold [Belkin

and Niyogi, 2003, Von Luxburg, 2007, Lévy, 2006]. Positional encodings that involve

Laplacian eigenvectors have recently been used to generalize Transformers to graphs

[Kreuzer et al., 2021, Dwivedi and Bresson, 2021], and to improve the expressive power

and empirical performance of graph neural networks (GNNs) [Dwivedi et al., 2022].

Furthermore, these eigenvectors are crucial for defining spectral operations on graphs

that are foundational to graph signal processing and spectral GNNs [Ortega et al.,

2018, Bruna et al., 2014].

However, there are nontrivial symmetries that should be accounted for when

processing eigenvectors, as has been noted in many fields [Eastment and Krzanowski,

1982, Rustamov et al., 2007, Bro et al., 2008, Ovsjanikov et al., 2008]. For instance,

if 𝑣 is an eigenvector, then so is −𝑣, with the same eigenvalue. More generally,

if an eigenvalue has higher multiplicity, then there are infinitely many unit-norm

eigenvectors that can be chosen. Indeed, a full set of linearly independent eigenvectors

is only defined up to a change of basis in each eigenspace. In the case of sign invariance,

for any 𝑘 eigenvectors there are 2𝑘 possible choices of sign. Accordingly, prior works

on graph positional encodings randomly flip eigenvector signs during training in order
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to approximately learn sign invariance [Kreuzer et al., 2021, Dwivedi et al., 2020,

Kim et al., 2022]. However, learning all 2𝑘 invariances is challenging and limits

the effectiveness of Laplacian eigenvectors for encoding positional information. Sign

invariance is a special case of basis invariance when all eigenvalues are distinct, but

general basis invariance is even more difficult to deal with. In Appendix E.3.2, we

show that higher dimensional eigenspaces are abundant in real datasets; for instance,

64% of molecule graphs in the ZINC dataset have a higher dimensional eigenspace.

In this chapter, we address the sign and basis ambiguity problems by developing

new neural networks—SignNet and BasisNet. Under certain conditions, our networks

are universal and can approximate any continuous function of eigenvectors with the

proper invariances. Moreover, our networks are theoretically powerful for graph

representation learning—they can provably approximate and go beyond both spectral

graph convolutions and powerful spectral invariants, which allows our networks to

express graph properties like subgraph counts that message passing neural networks

cannot. Laplacian eigenvectors with SignNet and BasisNet can provably approximate

many previously proposed graph positional encodings, so our networks are general

and remove the need for choosing one of the many positional encodings in the

literature. Experiments on molecular graph regression tasks, learning expressive graph

representations, and texture reconstruction on triangle meshes illustrate the empirical

benefits of our models’ approximation power and invariances.

Acknowledgements. This chapter is based on [Lim et al., 2023b], which is

work is in collaboration with Derek Lim, Lingxiao Zhao, Tess Smidt, Suvrit Sra,

Haggai Maron, and Stefanie Jegelka. In particular Derek Lim made very significant

contributions to this work, and it was a joy working with him.

7.1 Sign and Basis Invariant Networks

For an 𝑛× 𝑛 symmetric matrix, let 𝜆1 ≤ . . . ≤ 𝜆𝑛 be the eigenvalues and 𝑣1, . . . , 𝑣𝑛

the corresponding eigenvectors, which we may assume to form an orthonormal basis.

For instance, we could consider the normalized graph Laplacian 𝐿 = 𝐼−𝐷−1/2𝐴𝐷−1/2,
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Figure 7-1: Symmetries of eigenvectors of a symmetric matrix with permutation invari-
ances (e.g. a graph Laplacian). A neural network applied to the eigenvectors matrix
(middle) should be invariant or equivariant to permutation of the rows (left product
with a permutation matrix 𝑃 ) and invariant to the choice of eigenvectors in each
eigenbasis (right product with a block diagonal orthogonal matrix Diag(𝑄1, 𝑄2, 𝑄3)).

where 𝐴 ∈ R𝑛×𝑛 is the adjacency matrix and 𝐷 is the diagonal degree matrix of some

underlying graph. For undirected graphs, 𝐿 is symmetric. Nonsymmetric matrices

can be handled very similarly, as we show in Appendix E.2.1.

Motivation. Our goal is to parameterize a class of models 𝑓(𝑣1, . . . , 𝑣𝑘) taking 𝑘

eigenvectors as input in a manner that respects the eigenvector symmetries. This is

because eigenvectors capture much information about data; for instance, Laplacian

eigenvectors of a graph capture clusters, subgraph frequencies, connectivity, and many

other useful properties [Von Luxburg, 2007, Cvetković et al., 1997].

A major motivation for processing eigenvector input is for graph positional en-

codings, which are additional features appended to each node in a graph that give

information about the position of that node in the graph. These additional features are

crucial for generalizing Transformers to graphs, and also have been found to improve

performance of GNNs [Dwivedi et al., 2020, 2022]. Figure 7-2 illustrates a standard

pipeline and the use of our SignNet within it: the input adjacency, node features, and

eigenvectors of a graph are used to compute a prediction about the graph. Laplacian

eigenvectors are processed before being fed into this prediction model. Laplacian

eigenvectors have been widely used as positional encodings, and many works have

noted that sign and/or basis invariance should be addressed in this case [Dwivedi and

Bresson, 2021, Beaini et al., 2021, Dwivedi et al., 2020, Kreuzer et al., 2021, Mialon

et al., 2021, Dwivedi et al., 2022, Kim et al., 2022].
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Sign invariance. For any eigenvector 𝑣𝑖, the sign flipped −𝑣𝑖 is also an eigenvector,

so a function 𝑓 : R𝑛×𝑘 → R𝑑out (where 𝑑out is an arbitrary output dimension) should

be sign invariant :

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝑓(𝑠1𝑣1, . . . , 𝑠𝑘𝑣𝑘) (7.1)

for all sign choices 𝑠𝑖 ∈ {−1, 1}. That is, we want 𝑓 to be invariant to the product

group {−1, 1}𝑘. This captures all eigenvector symmetries if the eigenvalues 𝜆𝑖 are

distinct and the eigenvectors are unit-norm.

Basis invariance. If the eigenvalues have higher multiplicity, then there are further

symmetries. Let 𝑉1, . . . , 𝑉𝑙 be bases of eigenspaces—i.e., 𝑉𝑖 =
[︂
𝑣𝑖1 . . . 𝑣𝑖𝑑𝑖

]︂
∈ R𝑛×𝑑𝑖

has orthonormal columns and spans the eigenspace associated with the shared eigen-

value 𝜇𝑖 = 𝜆𝑖1 = . . . = 𝜆𝑖𝑑𝑖 . Any other orthonormal basis that spans the eigenspace

is of the form 𝑉𝑖𝑄 for some orthogonal 𝑄 ∈ 𝑂(𝑑𝑖) ⊆ R𝑑𝑖×𝑑𝑖 (see Appendix E.6.2).

Thus, a function 𝑓 : R𝑛×
∑︀𝑙

𝑖=1 𝑑𝑖 → R𝑑out that is invariant to changes of basis in each

eigenspace satisfies

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝑓(𝑉1𝑄1, . . . , 𝑉𝑙𝑄𝑙), 𝑄𝑖 ∈ 𝑂(𝑑𝑖). (7.2)

In other words, 𝑓 is invariant to the product group 𝑂(𝑑1)× . . .×𝑂(𝑑𝑙). The number
of eigenspaces 𝑙 and the dimensions 𝑑𝑖 may vary between matrices; we account for

this in Section 7.1.2. As 𝑂(1) = {−1, 1}, sign invariance is a special case of basis

invariance when all eigenvalues are distinct.

Permutation equivariance. For GNN models that output node features or

node predictions, one typically further desires 𝑓 to be invariant or equivariant to

permutations of nodes, i.e., along the rows of each vector. Thus, for 𝑓 : R𝑛×𝑑 → R𝑛×𝑑out ,

we typically require 𝑓(𝑃𝑉1, . . . , 𝑃𝑉𝑙) = 𝑃𝑓(𝑉1, . . . , 𝑉𝑙) for any permutation matrix

𝑃 ∈ R𝑛×𝑛. Figure 7-1 illustrates all of the symmetries.

Universal Approximation. We desire universal models, which can approximate

any function in a target class. Formally, we say that a class of functions ℱmodel of

domain 𝒳 and output space 𝒴 universally approximates a class of functions ℱtarget if

for any 𝜖 > 0, any compact Ω ⊆ 𝒳 , and any target function 𝑓 ∈ ℱtarget, there exists
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an 𝑓 ∈ ℱmodel such that ‖𝑓(𝑥)− 𝑓(𝑥)‖ < 𝜖 for all 𝑥 ∈ Ω.

Adjacency 
Matrix

Node 
Features

Laplacian 
Eigenvectors SignNet

Prediction 
Model 

(e.g. GNN,
Transformer) 

Compute
Eigvecs

Input Graph Model

Figure 7-2: Pipeline for using node positional encodings. After processing by our
SignNet, the learned positional encodings from the Laplacian eigenvectors are added
as additional node features of an input graph ([𝑋, SignNet(𝑉 )] denotes concatenation).
These positional encodings along with the graph adjacency and original node features
are passed to a prediction model (e.g. a GNN). Not shown here, SignNet can also
take in eigenvalues, node features and adjacency information if desired.

7.1.1 Warmup: Neural Networks on One Eigenspace

Before considering the general setting, we design neural networks that take a single

eigenvector or eigenspace as input and are sign or basis invariant. These single

subspace architectures will become building blocks for the general architectures. For

one subspace, a sign invariant function is merely an even function, and is easily

parameterized.

Proposition 6. A continuous function ℎ : R𝑛 → R𝑑out is sign invariant if and only if

ℎ(𝑣) = 𝜑(𝑣) + 𝜑(−𝑣) (7.3)

for some continuous 𝜑 : R𝑛 → R𝑑out. A continuous ℎ : R𝑛 → R𝑛 is sign invariant

and permutation equivariant if and only if (7.3) holds for a continuous permutation

equivariant 𝜑 : R𝑛 → R𝑛.

In practice, we parameterize 𝜑 by a neural network. Any architecture choice

will ensure sign invariance, while permutation equivariance can be achieved using
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elementwise MLPs, DeepSets [Zaheer et al., 2017], Transformers [Vaswani et al., 2017b],

or most GNNs [Gilmer et al., 2017].

Next, we address basis invariance for a single 𝑑-dimensional subspace, i.e., we aim

to parameterize maps ℎ : R𝑛×𝑑 → R𝑛 that are (a) invariant to right multiplication by

𝑄 ∈ 𝑂(𝑑), and (b) equivariant to permutations along the row axis. For (a), we use the

mapping 𝑉 ↦→ 𝑉 𝑉 ⊤ from 𝑉 to the orthogonal projector of its column space, which

is 𝑂(𝑑) invariant. Mapping 𝑉 ↦→ 𝑉 𝑉 ⊤ does not lose information if we treat 𝑉 as

equivalent to 𝑉 𝑄 for any 𝑄 ∈ 𝑂(𝑑). This is justified by the classical first fundamental

theorem of 𝑂(𝑑) [Kraft and Procesi, 1996], which has recently been applied in machine

learning by Villar et al. [2021].

Regarding (b), permuting the rows of 𝑉 permutes rows and columns of 𝑉 𝑉 ⊤ ∈

R𝑛×𝑛. Hence, we desire the function 𝜑 : R𝑛×𝑛 → R𝑛 on 𝑉 𝑉 ⊤ to be equivariant

to simultaneous row and column permutations: 𝜑(𝑃𝑉 𝑉 ⊤𝑃⊤) = 𝑃𝜑(𝑉 𝑉 ⊤). To

parameterize such a mapping from matrices to vectors, we use an invariant graph

network (IGN) [Maron et al., 2018]—a neural network mapping to and from tensors

of arbitrary order R𝑛𝑑1 → R𝑛𝑑2 that has the desired permutation equivariance. We

thus parameterize a family with the requisite invariance and equivariance as follows:

ℎ(𝑉 ) = IGN(𝑉 𝑉 ⊤). (7.4)

Proposition 7 states that this architecture universally approximates 𝑂(𝑑) invariant

and permutation equivariant functions. The full approximation power requires high

order tensors to be used for the IGN; in practice, we restrict the tensor dimensions for

efficiency, as discussed in the next section.

Proposition 7. Any continuous, 𝑂(𝑑) invariant ℎ : R𝑛×𝑑 → R𝑑out is of the form

ℎ(𝑉 ) = 𝜑(𝑉 𝑉 ⊤) for a continuous 𝜑. For a compact 𝒵 ⊆ R𝑛×𝑑, maps of the form

𝑉 ↦→ IGN(𝑉 𝑉 ⊤) universally approximate continuous ℎ : 𝒵 ⊆ R𝑛×𝑑 → R𝑛 that are

𝑂(𝑑) invariant and permutation equivariant.
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7.1.2 Neural Networks on Multiple Eigenspaces

To develop a method for processing multiple eigenvectors (or eigenspaces), we first

prove a general decomposition theorem (see Appendix E.1 for more details). Our

result reduces invariance for a large product group 𝐺1 × . . .×𝐺𝑘 to the much simpler

invariances for the smaller constituent groups 𝐺𝑖.

Theorem 6 (Informal). Let a product of groups 𝐺 = 𝐺1× . . .×𝐺𝑘 act on 𝒳1× . . .×

𝒳𝑘. Under mild conditions, any continuous 𝐺-invariant function 𝑓 can be written

𝑓(𝑥1, . . . , 𝑥𝑘) = 𝜌(𝜑1(𝑥1), . . . , 𝜑𝑘(𝑥𝑘)), where 𝜑𝑖 is 𝐺𝑖 invariant, and 𝜑𝑖 and 𝜌 are

continuous If 𝒳𝑖 = 𝒳𝑗 and 𝐺𝑖 = 𝐺𝑗, then we can take 𝜑𝑖 = 𝜑𝑗.

The key consequence of this result is that if we know how to design invariant

models for the smaller groups 𝐺𝑖 (of size 2 for sign invariance), then we can combine

them in a simple way to get invariant models for the larger and more complex 𝐺 (of

size 2𝑘 for sign invariance), without losing any expressive power. For eigenvector data,

the 𝑖th eigenvector (or eigenspace) is in 𝒳𝑖, and its symmetries are described by 𝐺𝑖.

Thus, we can reduce the multiple-eigenspace case to the single-eigenspace case, and

leverage the models we developed in the previous section.

SignNet. We parameterize our sign invariant network 𝑓 : R𝑛×𝑘 → R𝑑out on

eigenvectors 𝑣1, . . . , 𝑣𝑘 as:

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝜌
(︀
[𝜑(𝑣𝑖) + 𝜑(−𝑣𝑖)]𝑘𝑖=1

)︀
, (7.5)

where 𝜑 and 𝜌 are unrestricted neural networks, and [·]𝑖 denotes concatenation of

vectors. The form 𝜑(𝑣𝑖)+𝜑(−𝑣𝑖) induces sign invariance for each eigenvector. Since we

do not yet impose permutation equivariance here, we term this model Unconstrained-

SignNet.

To obtain a sign invariant and permutation equivariant 𝑓 that outputs vectors

in R𝑛×𝑑out , we restrict 𝜑 and 𝜌 to be permutation equivariant networks from vectors

to vectors, such as elementwise MLPs, DeepSets [Zaheer et al., 2017], Transform-

ers [Vaswani et al., 2017b], or most standard GNNs. We name this permutation
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equivariant version SignNet. If desired, we can use eigenvalues 𝜆𝑖, an adjacency matrix

𝐴 ∈ R𝑛×𝑛, and node features 𝑋 ∈ R𝑛×𝑑feat by adding them as arguments to 𝜑:

𝑓(𝑣1, . . . , 𝑣𝑘, 𝜆1, . . . , 𝜆𝑘, 𝑋) = 𝜌
(︀
[𝜑(𝑣𝑖, 𝜆𝑖, 𝐴,𝑋, ) + 𝜑(−𝑣𝑖, 𝜆𝑖, 𝐴,𝑋)]𝑘𝑖=1

)︀
. (7.6)

BasisNet. For basis invariance, let 𝑉𝑖 ∈ R𝑛×𝑑𝑖 be an orthonormal basis of a 𝑑𝑖

dimensional eigenspace. Then we parameterize our Unconstrained-BasisNet 𝑓 by

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝜌
(︀
[𝜑𝑑𝑖(𝑉𝑖𝑉

⊤
𝑖 )]𝑙𝑖=1

)︀
, (7.7)

where each 𝜑𝑑𝑖 is shared amongst all subspaces of the same dimension 𝑑𝑖, and 𝑙 is

the number of eigenspaces (i.e., number of distinct eigenvalues, which can differ from

the number of eigenvectors 𝑘). As 𝑙 differs between graphs, we may use zero-padding

or a sequence model like a Transformer to parameterize 𝜌. Again, 𝜑𝑑𝑖 and 𝜌 are

generally unrestricted neural networks. To obtain permutation equivariance, we make

𝜌 permutation equivariant and let 𝜑𝑑𝑖 = IGN𝑑𝑖 : R𝑛2 → R𝑛 be IGNs from matrices

to vectors. For efficiency, we will only use matrices and vectors in the IGNs (that is,

no tensors in R𝑛𝑝 for 𝑝 > 2), i.e., we use 2-IGN [Maron et al., 2018]. Our resulting

BasisNet is

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝜌
(︀
[IGN𝑑𝑖(𝑉𝑖𝑉

⊤
𝑖 )]𝑙𝑖=1

)︀
. (7.8)

Expressive-BasisNet. While we restrict SignNet to only use vectors and BasisNet

to only use vectors and matrices, higher order tensors are generally required for

universally approximating permutation equivariant or invariant functions [Keriven

and Peyré, 2019, Maron et al., 2019, Maehara and NT, 2019]. Thus, we will consider

a theoretically powerful but computationally impractical variant of our model, in

which we replace 𝜌 and IGN𝑑𝑖 in BasisNet with IGNs of arbitrary tensor order. We

call this variant Expressive-BasisNet. Universal approximation requires 𝒪(𝑛𝑛) sized

intermediate tensors [Ravanbakhsh, 2020]. We study Expressive-BasisNet due to its

theoretical interest, and to juxtapose with the computational efficiency and strong

expressive power of SignNet and BasisNet.
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In the multiple subspace case, we can prove universality for some instances of

our models through our decomposition theorem—see Section E.1 for details. For a

summary of properties and more details about our models, see Appendix E.2.

7.2 Theoretical Power for Graph Representation

Learning

Next, we establish that our SignNet and BasisNet can go beyond useful basis invariant

and permutation equivariant functions on Laplacian eigenvectors for graph repre-

sentation learning, including: spectral graph convolutions, spectral invariants, and

existing graph positional encodings. Expressive-BasisNet can of course compute these

functions, but this section shows that the practical invariant architectures SignNet

and BasisNet can compute them as well.

7.2.1 SignNet and BasisNet strictly Generalize Spectral Graph

Convolution

For node features 𝑋 ∈ R𝑛×𝑑feat and an eigendecomposition 𝑉 Λ𝑉 ⊤, a spectral graph

convolution takes the form 𝑓(𝑉,Λ, 𝑋) =
∑︀𝑛

𝑖=1 𝜃𝑖𝑣𝑖𝑣
⊤
𝑖 𝑋 = 𝑉Diag(𝜃)𝑉 ⊤𝑋, for some

parameters 𝜃𝑖, that may optionally be continuous functions ℎ(𝜆𝑖) = 𝜃𝑖 of the eigen-

values [Bruna et al., 2014, Defferrard et al., 2016]. This family includes important

functions like heat kernels and generalized PageRanks on graphs [Li et al., 2019a]. A

spectral GNN is defined as multiple layers of spectral graph convolutions and node-wise

linear maps, e.g. 𝑉Diag(𝜃2)𝑉
⊤𝜎
(︀
𝑉Diag(𝜃1)𝑉

⊤𝑋𝑊1

)︀
𝑊2 is a two layer spectral GNN.

It can be seen (in Appendix E.8.1) that spectral graph convolutions are permutation

equivariant and sign invariant, and if 𝜃𝑖 = ℎ(𝜆𝑖) (i.e. the transformation applied to

the diagonal elements is parametric) they are additionally invariant to a change of

bases in each eigenspace.

Our SignNet and BasisNet can be viewed as generalizations of spectral graph

convolutions, as our networks universally approximate all spectral graph convolutions of
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the above form. For instance, SignNet with 𝜌(𝑎1, . . . , 𝑎𝑘) =
∑︀𝑘

𝑖=1 𝑎𝑘 and 𝜑(𝑣𝑖, 𝜆𝑖, 𝑋) =

1
2
𝜃𝑖𝑣𝑖𝑣

⊤
𝑖 𝑋 directly yields the spectral graph convolution. This is captured in Theorem 7,

which we prove in Appendix E.8.1. In fact, we may expect SignNet to learn spectral

graph convolutions well, according to the principle of algorithmic alignment [Xu

et al., 2020] (see Appendix E.8.1); this is supported by numerical experiments in

Appendix E.10.3, in which our networks outperform baselines in learning spectral

graph convolutions.

Theorem 7. SignNet universally approximates all spectral graph convolutions. Basis-

Net universally approximates all parametric spectral graph convolutions.

In fact, SignNet and BasisNet are strictly stronger than spectral graph convolutions;

there are functions computable by SignNet and BasisNet that cannot be approximated

by spectral graph convolutions or spectral GNNs. This is captured in Proposition 8:

our networks can distinguish bipartite graphs from non-bipartite graphs, but spectral

GNNs cannot for certain choices of graphs and node signals.1

Proposition 8. There exist infinitely many pairs of non-isomorphic graphs that

SignNet and BasisNet can distinguish, but spectral graph convolutions or spectral

GNNs cannot distinguish.

7.2.2 BasisNet can Compute Spectral Invariants

Many works measure the expressive power of graph neural networks by comparing their

power for testing graph isomorphism [Xu et al., 2019, Sato, 2020], or by comparing

their ability to compute certain functions on graphs like subgraph counts [Chen et al.,

2020g, Tahmasebi et al., 2020]. These works often compare GNNs to combinato-

rial invariants on graphs, especially the 𝑘-Weisfeiler-Leman (𝑘-WL) tests of graph

isomorphism [Morris et al., 2021].

While we may also compare with these combinatorial invariants, as other GNN

works that use spectral information have done [Beaini et al., 2021], we argue that
1A function class ℱmodel distinguishes graphs 𝐺1, 𝐺2 if there is an 𝑓 ∈ ℱmodel such that 𝑓(𝐺1) ̸=

𝑓(𝐺2).
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it is more natural to analyze our networks in terms of spectral invariants, which

are computed from the eigenvalues and eigenvectors of graphs. There is a rich

literature of spectral invariants from the fields of spectral graph theory and complexity

theory [Cvetković et al., 1997]. For a spectral invariant to be well-defined, it must be

invariant to permutations and changes of basis in each eigenspace, a characteristic

shared by our networks.

The simplest spectral invariant is the multiset of eigenvalues, which we give as

input to our networks. Another widely studied, powerful spectral invariant is the

collection of graph angles, which are defined as the values 𝛼𝑖𝑗 = ‖𝑉𝑖𝑉 ⊤
𝑖 𝑒𝑗‖2, where

𝑉𝑖 ∈ R𝑛×𝑑𝑖 is an orthonormal basis for the 𝑖th adjacency matrix eigenspace, and 𝑒𝑗

is the 𝑗th standard basis vector, which is zero besides a one in the 𝑗th component.

These are easily computed by our networks (Appendix E.8.3), so our networks inherit

the strength of these invariants. We capture these results in the following theorem,

which also lists a few properties that graph angles determine [Cvetković, 1991].

Theorem 8. BasisNet universally approximates the graph angles 𝛼𝑖𝑗. The eigenvalues

and graph angles (and thus BasisNet) can determine the number of length 3, 4, or 5

cycles, whether a graph is connected, and the number of length 𝑘 closed walks from

any vertex to itself.

Relation to WL and message passing. In contrast to this result, message

passing GNNs are not able to express any of these properties (see [Arvind et al.,

2020, Garg et al., 2020] and Appendix E.8.3). Although spectral invariants are strong,

Fürer [2010] shows that the eigenvalues and graph angles—as well as some strictly

stronger spectral invariants—are not stronger than the 3-WL test (or, equivalently,

the 2-Folklore-WL test). Using our networks for node positional encodings in message

passing GNNs allows us to go beyond graph angles, as message passing can distinguish

all trees, but there exist non-isomorphic trees with the same eigenvalues and graph

angles [Fürer, 2010, Cvetković, 1988].
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7.2.3 SignNet and BasisNet Generalize Existing Graph Posi-

tional Encodings

Many graph positional encodings have been proposed, without any clear criteria

on which to choose for a particular task. We prove (in Appendix E.8.2) that our

efficient SignNet and BasisNet can approximate many previously used graph positional

encodings, as we unify these positional encodings by expressing them as either a

spectral graph convolution matrix or the diagonal of a spectral graph convolution

matrix.

Proposition 9. SignNet and BasisNet can approximate node positional encodings

based on heat kernels [Feldman et al., 2022] and random walks [Dwivedi et al., 2022].

BasisNet can approximate diffusion and 𝑝-step random walk relative positional encod-

ings [Mialon et al., 2021], and generalized PageRank and landing probability distance

encodings [Li et al., 2020].

7.3 Experiments

We demonstrate the strength of our networks in various experiments. Appendix E.2

shows simple pseudo-code and Figure 7-2 is a diagram detailing the use of SignNet as

a node positional encoding.

7.3.1 Graph Regression

We study the effectiveness of SignNet for learning positional encodings (PEs) from the

eigenvectors of the graph Laplacian on the ZINC dataset of molecule graphs [Irwin

et al., 2012] (using the subset of 12,000 graphs from Dwivedi et al. [2020]). We primarily

consider three settings: 1) No positional encoding, 2) Laplacian PE (LapPE)—the

𝑘 eigenvectors of the graph Laplacian with smallest eigenvalues are concatenated

with existing node features, 3) SignNet positional features—passing the eigenvectors

through a SignNet and concatenating the output with node features. We parameterize

SignNet by taking 𝜑 to be a GIN [Xu et al., 2019] and 𝜌 to be an MLP. We sum over
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Table 7.1: Results on the ZINC dataset with a 500k parameter budget. All models use
edge features besides the Sparse Transformer. Numbers are the mean and standard
deviation over 4 runs, each with different seeds.

Base model Positional encoding 𝑘 #param Test MAE (↓)

GatedGCN

No PE N/A 492k 0.252±0.007

LapPE (flip) 8 492k 0.198±0.011

LapPE (abs.) 8 492k 0.204±0.009

LapPE (can.) 8 505k 0.298±0.019

SignNet (𝜑(𝑣) only) 8 495k 0.148±0.007

SignNet 8 495k 0.121±0.005

SignNet All 491k 0.100±0.007

Sparse Transformer

No PE N/A 473k 0.283±0.030

LapPE (flip) 16 487k 0.223±0.007

SignNet 16 479k 0.115±0.008

SignNet All 486k 0.102±0.005

GINE

No PE N/A 470k 0.170±0.002

LapPE (flip) 16 470k 0.178±0.004

SignNet 16 470k 0.147±0.005

SignNet All 417k 0.102±0.002

PNA

No PE N/A 474k 0.133±0.011

LapPE (flip) 8 474k 0.132±0.010

SignNet 8 476k 0.105±0.007

SignNet All 487k 0.084±0.006

𝜑 outputs before the MLP when handling variable numbers of eigenvectors, so the

SignNet is of the form MLP
(︁∑︀𝑙

𝑖=1 𝜑(𝑣𝑖) + 𝜑(−𝑣𝑖)
)︁

(see Appendix E.11.2 for further

details). We consider four different base models that process the graph data and

positional encodings: GatedGCN [Bresson and Laurent, 2017], a Transformer with

sparse attention only over neighbours [Kreuzer et al., 2021], PNA [Corso et al., 2020],

and GIN [Xu et al., 2019] with edge features (i.e. GINE) [Hu et al., 2020c]. The total

number of parameters of the SignNet and the base model is kept within a 500k budget.

Table 7.1 shows the results. For all 4 base models, the PE learned with SignNet

yields the best test MAE (mean absolute error)—lower MAE is better. This includes
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Table 7.2: Comparison with SOTA methods on graph-level regression tasks. Numbers
are test MAE, so lower is better. Best models within a standard deviation are bolded.

ZINC (10K) ↓ ZINC-full ↓ Alchemy (10k) ↓

GIN [Xu et al., 2019] .170±.002 .088±.002 .180±.006
𝛿-2-GNN [Morris et al., 2020b] .374±.022 .042±.003 .118±.001
𝛿-2-LGNN [Morris et al., 2020b] .306±.044 .045±.006 .122±.003
SpeqNet [Morris et al., 2022] — — .115±.001

GNN-IR [Dupty and Lee, 2022] .137±.010 — .119±.002
PF-GNN [Dupty et al., 2021] .122±.01 — .111±.01

Recon-GNN [Cotta et al., 2021] .170±.006 — .125±.001

SignNet (ours) .084±.006 .024±.003 .113±.002

the cases of PNA and GINE, for which Laplacian PE with random sign flipping

was unable to improve performance over using no PE. Our best model is a PNA

model combined with SignNet, which achieves 0.084 test MAE. Besides SignNet, we

consider two non-learned approaches to resolving eigenvector sign ambiguity—sign

canonicalization and element-wise absolute values (see Appendix E.11.2 for details).

Results with GatedGCN show that these alternatives are not more effective than

random sign flipping. We also consider an ablation of our SignNet architecture where

we remove the sign invariance, using simply MLP([𝜑(𝑣𝑖)]
𝑘
𝑖=1). Although the resulting

architecture is no longer sign invariant, 𝜑 still processes eigenvectors independently,

meaning that only two invariances (±1) need be learned, significantly fewer than the

2𝑘 total sign flip configurations. Accordingly, this non-sign-invariant learned positional

encoding achieves a test MAE of 0.148, improving over the Laplacian PE (0.198) but

falling short of the fully sign invariant SignNet (0.121). In all cases, using all available

eigenvectors in SignNet significantly improves performance over using a fixed number

of eigenvectors; this is notable as other works typically truncate to a fixed number of

eigenvectors.

Efficiency. These significant performance improvements from SignNet come with

only a slightly higher computational cost. For example, GatedGCN with no PE

takes about 8.2 seconds per training iteration on ZINC, while GatedGCN with 8
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eigenvectors and SignNet takes about 10.6 seconds; this is only a 29% increase in

time, for a reduction of test MAE by over 50%. Also, eigenvector computation time

is neglible, as we need only precompute and save the eigenvectors once, and it only

takes 15 seconds to do this for the 12,000 graphs of ZINC.

Comparison with SOTA. In Table 7.2, we compare SignNet with other domain-

agnostic state-of-the-art methods on graph-level molecular regression tasks on ZINC

(10,000 training graphs), ZINC-full (about 250,000 graphs), and Alchemy [Chen et al.,

2019a] (10,000 training graphs). SignNet outperforms all methods on ZINC and

ZINC-full. Our mean score is the second best on Alchemy, and is within a standard

deviation of the best. We perform much better on ZINC (.084) than other state-of-

the-art positional encoding methods, like GNN-LSPE (.090) [Dwivedi et al., 2022],

SAN (.139) [Kreuzer et al., 2021], and Graphormer (.122) [Ying et al., 2021].

7.3.2 Counting Substructures and Regressing Graph Proper-

ties

Triangle Tailed Tri. 4-Cycle Star
Counting Substructures

0.0

0.1

0.2

0.3

Te
st

 M
AE

NoPE
LapPE
SignNet

IsConnected Diameter Radius
Graph properties

−4

−2

0

lo
g 1

0(
Te

st
 M

SE
)

Figure 7-3: Counting substructures and regressing graph properties (lower is better).
With Laplacian PEs, SignNet improves performance, while sign flip data augmentation
(LapPE) is less consistent. Mean and standard deviations are reported on 3 runs. All
runs use the same 4-layer GIN base model.

Substructure counts (e.g. of cycles) and global graph properties (e.g. connectedness,

diameter, radius) are important graph features that are known to be informative

for problems in biology, chemistry, and social networks [Chen et al., 2020g, Holland

and Leinhardt, 1977]. Following the setting of Zhao et al. [2022], we show that

SignNet with Laplacian positional encodings boosts the ability of simple GNNs to

count substructures and regress graph properties. We take a 4-layer GIN as the base

model for all settings, and for SignNet we use GIN as 𝜑 and a Transformer as 𝜌 to
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Table 7.3: Test results for texture reconstruction experiment on cat and human models,
following the experimental setting of [Koestler et al., 2022]. We use 1023 eigenvectors
of the cotangent Laplacian.

Cat Human

Method Params PSNR ↑ DSSIM ↓ LPIPS ↓ PSNR ↑ DSSIM ↓ LPIPS ↓

Intrinsic NF 329k 34.25 .099 .189 32.29 .119 .330

Absolute value 329k 34.67 .106 .252 32.42 .132 .363

Sign flip 329k 23.15 1.28 2.35 21.52 1.05 2.71

SignNet 324k 34.91 .090 .147 32.43 .125 .316

handle variable numbers of eigenvectors (see Appendix E.11.4 for details). As shown

in Figure 7-3, Laplacian PEs with sign-flip data augmentation improve performance

for counting substructures but not for regressing graph properties, while Laplacian

PEs processed by SignNet significantly boost performance on all tasks.

7.3.3 Neural Fields on Manifolds

Discrete approximations to the Laplace-Beltrami operator on manifolds have proven

useful for processing data on surfaces, such as triangle meshes [Lévy, 2006]. Recently,

Koestler et al. [2022] propose intrinsic neural fields, which use eigenfunctions of

the Laplace-Beltrami operator as positional encodings for learning neural fields on

manifolds. For generalized eigenfunctions 𝑣1, . . . , 𝑣𝑘, at a point 𝑝 on the surface,

they parameterize functions 𝑓(𝑝) = MLP(𝑣1(𝑝), . . . , 𝑣𝑘(𝑝)). As these eigenfunctions

have sign ambiguity, we use our SignNet to parameterize 𝑓(𝑝) = MLP( 𝜌( [𝜑(𝑣𝑖(𝑝)) +

𝜑(−𝑣𝑖(𝑝))]𝑖=1,...,𝑘 ) ), with 𝜌 and 𝜑 being MLPs.

Table 7.3 shows our results for texture reconstruction experiments on all models

from Koestler et al. [2022]. The total number of parameters in our SignNet-based model

is kept below that of the original model. We see that the SignNet architecture improves

over the original Intrinsic NF model and over other baselines — especially in the

LPIPS metric, which is often a better perceptual metric than PSNR or DSSIM [Zhang

et al., 2018b]. While we have not yet tested this, we believe that SignNet would allow

even more improvement when learning over eigenfunctions of different models, as it
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could improve transfer and generalization. See Appendix E.4.1 for visualizations and

Appendix E.11.5 for more details.

7.3.4 Visualization of Learned Positional Encodings

Eigvec 11 𝜑(𝑣11) + 𝜑(−𝑣11) Eigvec 14 𝜑(𝑣14) + 𝜑(−𝑣14)

Figure 7-4: Cotangent Laplacian eigenvectors of the cat model and first principal
component of 𝜑(𝑣) + 𝜑(−𝑣) from our trained SignNet. Our SignNet encodes bilateral
symmetry, which is useful for reconstruction of the bilaterally symmetric texture.

To better understand SignNet, we plot the first principal component of 𝜑(𝑣)+𝜑(−𝑣)

for two eigenvectors on the cat model in Figure 7-4. We see that SignNet encodes

bilateral symmetry and structural information on the cat model. See Appendix E.4

for more visualizations and further details.

7.4 Related Work

In this section, we review selected related work. A more thorough review is deferred

to Appendix E.5.

Laplacian eigenvectors in GNNs. Various recently proposed methods in graph

deep learning have directly used Laplacian eigenvectors as node positional encodings

that are input to a message passing GNN [Dwivedi et al., 2020, 2022], or some variant

of a Transformer that is adapted to graphs [Dwivedi and Bresson, 2021, Kreuzer

et al., 2021, Mialon et al., 2021, Dwivedi et al., 2022, Kim et al., 2022]. None of these

methods address basis invariance, and they only partially address sign invariance for

node positional encodings by randomly flipping eigenvector signs during training.

Graph positional encodings. Other recent methods use positional encodings

besides Laplacian eigenvectors. These include positional encodings based on random
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walks [Dwivedi et al., 2022, Mialon et al., 2021, Li et al., 2020], diffusion kernels

on graphs [Mialon et al., 2021, Feldman et al., 2022], shortest paths [Ying et al.,

2021, Li et al., 2020], and unsupervised node embedding methods [Wang et al., 2022].

In particular, Wang et al. [2022] use Laplacian eigenvectors for relative positional

encodings in an invariant way, but they focus on robustness, so they have stricter

invariances that significantly reduce expressivity (see Appendix E.5.2 for more details).

These previously used positional encodings are mostly ad-hoc, less general since they

can be provably expressed by SignNet and BasisNet (see Section 7.2.3), and/or are

expensive to compute (e.g., all pairs shortest paths).

7.5 Conclusion and Discussion

SignNet and BasisNet are novel architectures for processing eigenvectors that are

invariant to sign flips and choices of eigenspace bases, respectively. Both architectures

are provably universal under certain conditions. When used with Laplacian eigenvectors

as inputs they provably go beyond spectral graph convolutions, spectral invariants,

and a number of other graph positional encodings. These theoretical results are

supported by experiments showing that SignNet and BasisNet are highly expressive in

practice, and learn effective graph positional encodings that improve the performance

of message passing graph neural networks. Initial explorations show that SignNet

and BasisNet can be useful beyond graph representation learning, as eigenvectors are

ubiquitous in machine learning.
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Chapter 8

Learning with Discrete Functions in

High Dimensions

This final chapter considers the following problem: given a discrete space—for instance

sets of nodes in a graph—how might we design a neural network representations that

describe this discrete space? Answering this question is important, since it would

allow design of end-to-end differentiable architectures capable of learning to perform

discrete computations and reason about discrete objects. But a solution is non-obvious

since discrete domains are (I) not naturally differentiable, and so not immediately

amenable to gradient-based optimization, and (II) incompatible with deep learning

architectures that rely on representations in high-dimensional vector spaces. In this

section, we address both difficulties for set functions, which capture many important

discrete problems. First, we develop a framework for extending set functions onto low-

dimensional continuous domains, where many extensions are naturally defined. Our

framework subsumes many well-known extensions as special cases. Second, to avoid

undesirable low-dimensional neural network bottlenecks, we convert low-dimensional

extensions into representations in high-dimensional spaces, taking inspiration from

the success of semidefinite programs for combinatorial optimization. Empirically, we

observe benefits of our extensions for unsupervised neural combinatorial optimization,

in particular, with high-dimensional representations.

Acknowledgements. This chapter is based on [Karalias et al., 2022], which is
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work is in collaboration with Nikolaos Karalias, Andreas Loukas, and Stefanie Jegelka.

In particular this work was completed in close and constant collaboration with Nikos.

8.1 Background and Motivation

Although neural networks are highly effective in solving tasks grounded in basic

perception [Chen et al., 2020b, Vaswani et al., 2017b], discrete algorithmic and

combinatorial tasks such as partitioning graphs, and finding optimal routes or shortest

paths have proven to be more challenging. This is, in part, due to the difficulty of

integrating discrete operations into neural network architectures [Battaglia et al., 2018,

Bengio et al., 2021, Cappart et al., 2021a]. One immediate difficulty with functions

on discrete spaces is that they are not amenable to standard gradient-based training.

Another is that discrete functions are typically expressed in terms of scalar (e.g.,

Boolean) variables for each item (e.g., node, edge to be selected), in contrast to the

high-dimensional and continuous nature of neural networks’ internal representations.

A natural approach to addressing these challenges is to carefully choose a function on

a continuous domain that extends the discrete function and can be used as a drop-in

replacement.

There are several important desiderata that such an extension should satisfy in order

to be suited to neural network training. First, an extension should be valid, i.e., agree

with the discrete function on discrete points. It should also be amenable to gradient-

based optimization, and should avoid introducing spurious minima. Beyond these

requirements, there is one additional critical consideration. In both machine learning

and optimization, it has been observed that high-dimensional representations can make

problems “easier”. For example, neural networks rely on high-dimensional internal

representations for representational power and to allow information to flow through

gradients, and performance suffers considerably when undesirable low-dimensional

bottlenecks are introduced into network architectures [Belkin et al., 2019, Veličković

and Blundell, 2021]. In optimization, lifting to higher-dimensional spaces can make

the problem more well behaved [Goemans and Williamson, 1995, Shawe-Taylor et al.,
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2004, Du et al., 2018]. Therefore, extending discrete functions to high-dimensional

domains may be critical to the effectiveness of the resulting learning process, yet it

remains a relatively open problem.

With those considerations in mind, we propose a framework for constructing

extensions of discrete set functions onto high-dimensional continuous spaces. The core

idea is to view a continuous point x in space as an expectation over a distribution (that

depends on x) supported on a few carefully chosen discrete points, to retain tractability.

To evaluate the discrete function at x, we compute the expected value of the set

function over this distribution. The method resulting from a principled formalization

of this idea is computationally efficient and addresses the key challenges of building

continuous extensions. Namely, our extensions allow gradient-based optimization and

address the dimensionality concerns, allowing any function on sets to be used as a

computation step in a neural network.

First, to enable gradient computations, we present a method based on a linear

programming (LP) relaxation for constructing extensions on continuous domains

where exact gradients can be computed using standard automatic differentiation

software [Abadi et al., 2016, Bastien et al., 2012, Paszke et al., 2019]. Our approach

allows task-specific considerations (e.g., a cardinalilty constraint) to be built into the

extension design. While our initial LP formulation handles gradients, and is a natural

formulation for explicitly building extensions, it replaces discrete Booleans with scalars

in the unit interval [0, 1], and hence does not yet address potential dimensionality

bottlenecks. Second, to enable higher-dimensional representations, we take inspiration

from classical SDP relaxations, such as the celebrated Goemans-Williamson maximum

cut algorithm [Goemans and Williamson, 1995], which recast low-dimensional problems

in high-dimensions. Specifically, our key contribution is to develop an SDP analog

of our original LP formulation, and show how to lift LP-based extensions into a

corresponding high-dimensional SDP-based extensions. Our general procedure for

lifting low-dimensional representations into higher dimensions aligns with the neural

algorithmic reasoning blueprint [Veličković and Blundell, 2021], and suggests that

classical techniques such as SDPs may be effective tools for combining deep learning
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with algorithmic processes more generally.

8.2 Problem Setup

Consider a ground set [𝑛] = {1, . . . , 𝑛} and an arbitrary function 𝑓 : 2[𝑛] → R ∪ {∞}

defined on subsets of [𝑛]. For instance, 𝑓 could determine if a set of nodes or edges in a

graph has some structural property, such as being a path, tree, clique, or independent

set [Bello et al., 2016, Cappart et al., 2021a]. Our aim is to build neural networks that

use such discrete functions 𝑓 as an intermediate layer or loss. In order to produce

a model that is trainable using standard auto-differentiation software, we consider

a continuous domain 𝒳 onto which we would like to extend 𝑓 , with sets embedded

into 𝒳 via an injective map 𝑒 : 2[𝑛] → 𝒳 . For instance, when 𝒳 = [0, 1]𝑛 we may take

𝑒(𝑆) = 1𝑆, the Boolean vector whose 𝑖th entry is 1 if 𝑖 ∈ 𝑆, and 0 otherwise. Our

approach is to design an extension

F : 𝒳 → R (8.1)

of 𝑓 and consider the neural network NN2 ∘ F ∘ NN1 (if 𝑓 is used as a loss, NN2

is simply the identity). To ensure that the extension is valid and amenable to

automatic differentiation, we require that 1) it agrees with 𝑓 on all discrete points:

F(𝑒(𝑆)) = 𝑓(𝑆) for all 𝑆 ⊆ [𝑛] with 𝑓(𝑆) <∞, and 2) F is continuous.

There is a rich existing literature on extensions of functions on discrete domains,

particularly in the context of discrete optimization [Lovász, 1983, Grötschel et al.,

1981, Calinescu et al., 2011, Vondrák, 2008, Bach, 2019, Obozinski and Bach, 2012,

Tawarmalani and Sahinidis, 2002]. These works provide promising tools to reach

our goal of neural network training. Building on these, our method is the first to

use semi-definite programming (SDP) to combine neural networks with set functions.

There are, however, different considerations in the neural network setting as compared

to optimization. The optimization literature often focuses on a class of set functions

and aims to build extensions with desirable optimization properties, particularly
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Figure 8-1: SFEs: Fractional points x are reinterpreted as expectations
x = E𝑆∼𝑝x [1𝑆] over the distribution 𝑝x(𝑆) on sets. A value is assigned at x by
exchanging the order of 𝑓 and the expectation: F(x)𝑆∼𝑝x [𝑓(𝑆)]. Unlike 𝑓 , the
extension F is amenable to gradient-based optimization.

convexity. We do not focus on convexity, aiming instead to develop a formalism that

is as flexible as possible. Doing so maximizes the applicability of our method, and

allows extensions adapted to task-specific desiderata (see Section 8.3.1).

8.3 Scalar Set Function Extensions

We start by presenting a general framework for extending set functions onto 𝒳 = [0, 1]𝑛,

where a set 𝑆 ⊆ [𝑛] is viewed as the Boolean indicator vector 𝑒(𝑆) = 1𝑆 ∈ {0, 1}𝑛

whose 𝑖th entry is 1 if 𝑖 ∈ 𝑆 and 0 otherwise. We call extensions onto [0, 1]𝑛 scalar since

each item 𝑖 is represented by a single scalar value—the 𝑖th coordinate of x ∈ 𝒳 . These

scalar extensions will become the core building blocks in developing high-dimensional

extensions in Section 8.4.

A classical approach to extending discrete functions on sets represented as Boolean

indicator vectors 1𝑆 is by computing the convex-envelope, i.e., the point-wise supremum

over linear functions that lower bound 𝑓 [Falk and Hoffman, 1976, Bach, 2019]. Doing

so yields a convex function whose value at a point x ∈ [0, 1]𝑛 is the solution of the
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following linear program (LP):

̃︀F(x) = max
z,𝑏∈R𝑛×R

{x⊤z+ 𝑏} subject to 1⊤
𝑆 z+ 𝑏 ≤ 𝑓(𝑆) for all 𝑆 ⊆ [𝑛]. (primal LP)

The set 𝒫𝑓 of all feasible solutions (z, 𝑏) is known as the (canonical) polyhedron of 𝑓

[Obozinski and Bach, 2012] and can be seen to be non-empty by taking the coordinates

of z to be sufficiently small (possibly negative). Variants of this optimization program

are frequently encountered in the theory of matroids and submodular functions

[Edmonds, 2003] where 𝒫𝑓 is commonly known as the submodular polyhedron (see

Appendix F.1 for an extended discussion). By strong duality, we may solve the primal

LP by instead solving its dual:

̃︀F(x) = min
{𝑦𝑆≥0}𝑆⊆[𝑛]

∑︁
𝑆⊆[𝑛]

𝑦𝑆𝑓(𝑆) subject to
∑︁
𝑆⊆[𝑛]

𝑦𝑆1𝑆 = x,
∑︁
𝑆⊆[𝑛]

𝑦𝑆 = 1, for all 𝑆 ⊆ [𝑛],

(dual LP)

whose optimal value is the same as the primal LP. The dual LP is always feasible (see

e.g., the Lovász extension in Section 8.3.1). However, ̃︀F does not necessarily agree

with 𝑓 on discrete points in general, unless the function is convex-extensible [Murota,

1998].

To address this important missing piece, we relax our goal from solving the dual LP

to instead seeking a feasible solution to the dual LP that is an extension of 𝑓 . Since the

dual LP is defined for a fixed x, a feasible solution must be a function 𝑦𝑆 = 𝑝x(𝑆) of x.

If 𝑝x were to be continuous and a.e. differentiable in x then the value
∑︀

𝑆 𝑝x(𝑆)𝑓(𝑆)

attained by the dual LP would also be continuous and a.e. differentiable in x since

gradients flow through the coefficients 𝑦𝑆 = 𝑝x(𝑆), while 𝑓(𝑆) is treated as a constant

in x. This leads us to the following definition:

Definition 3 (Scalar SFE). A scalar SFE F of 𝑓 is defined at a point x ∈ [0, 1]𝑛

by coefficients 𝑝x(𝑆) such that 𝑦𝑆 = 𝑝x(𝑆) is a feasible solution to the dual LP. The
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extension value is given by

F(x) =
∑︁
𝑆⊆[𝑛]

𝑝x(𝑆)𝑓(𝑆) (8.2)

and we require the following properties to hold for all 𝑆 ⊆ [𝑛]: 1) 𝑝x(𝑆) is a continuous

function of x and 2) F(1𝑆) = 𝑓(𝑆) for all 𝑆 ⊆ [𝑛].

Efficient evaluation of F requires that 𝑝x(𝑆) is supported on a small collection

of carefully chosen sets 𝑆. This choice is a key inductive bias of the extension, and

Section 8.3.1 gives many examples with only 𝑂(𝑛) non-zero coefficients. Examples

include well-known extensions, such as the Lovász extension, as well as a number of

novel extensions, illustrating the versatility of the SFE framework.

Thanks to the constraint
∑︀

𝑆 𝑦𝑆 = 1 in the dual LP, scalar SFEs have a natural

probabilistic interpretation. An SFE is defined by a probability distribution 𝑝x such

that fractional points x can be written as an expectation E𝑆∼𝑝x [1𝑆] = x over discrete

points using 𝑝x. The extension itself can be viewed as arising from exchanging 𝑓 and

the expectation operation: F(x) = E𝑆∼𝑝x [𝑓(𝑆)]. This interpretation is summarized in

Figure 8-1.

Scalar SFEs also enjoy the property of not introducing any spurious minima. That

is, the minima of F coincide with the minima of 𝑓 up to convex combinations. This

property is especially important when training models of the form 𝑓 ∘NN1 (i.e., 𝑓 is a

loss function) since F will guide the network NN1 towards the same solutions as 𝑓 .

Proposition 10 (Scalar SFEs have no bad minima). If F is a scalar SFE of 𝑓 then:

1. minx∈𝒳 F(x) = min𝑆⊆[𝑛] 𝑓(𝑆)

2. argminx∈𝒳 F(x) ⊆ Hull
(︀
argmin1𝑆 :𝑆⊆[𝑛] 𝑓(𝑆)

)︀
See Appendix F.2 for proofs.

Obtaining set solutions. Given an architecture F ∘ NN1 and input problem

instance 𝐺, we often wish to produce sets as outputs at inference time. To do this, we

simply compute x = NN1(𝐺), and select the set 𝑆 in supp𝑆{𝑝x(𝑆)} with the smallest
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value 𝑓(𝑆). This can be done efficiently if, as is typically the case, the cardinality of

supp𝑆{𝑝x(𝑆)} is small.

8.3.1 Constructing Scalar Set Function Extensions

A key characteristic of scalar SFEs is that there are many potential extensions of

any given 𝑓 . In this section, we provide examples of scalar SFEs, illustrating the

capacity of the SFE framework for building knowledge about 𝑓 into the extension.

See Appendix F.3 for all proofs and further discussion.

Lovász extension. Re-indexing the coordinates of x so that 𝑥1 ≥ 𝑥2 . . . ≥ 𝑥𝑛, we

define 𝑝x to be supported on the sets 𝑆1 ⊆ 𝑆2 ⊆ · · · ⊆ 𝑆𝑛 with 𝑆𝑖 = {1, 2, . . . , 𝑖} for

𝑖 = 1, 2, . . . , 𝑛. The coefficient are defined as 𝑦𝑆𝑖
= 𝑝x(𝑆𝑖) := 𝑥𝑖 − 𝑥𝑖+1 and 𝑝x(𝑆) = 0

for all other sets. The resulting Lovász extension—known as the Choquet integral

in decision theory [Choquet, 1954, Marichal, 2000]—is a key tool in combinatorial

optimization due to a seminal result: the Lovász extension is convex if and only if 𝑓 is

submodular [Lovász, 1983], implying that submodular minimization can be solved in

polynomial-time [Grötschel et al., 1981].

Bounded cardinality Lovász extension. A collection {𝑆𝑖}𝑛𝑖=1 of subsets of [𝑛]

can be encoded in an 𝑛 × 𝑛 matrix S ∈ {0, 1}𝑛×𝑛 whose 𝑖th column is 1𝑆𝑖
. In this

notation, the dual LP constraint
∑︀

𝑆⊆[𝑛] 𝑦𝑆1𝑆 = x can be written as Sp = x, where

the 𝑖th coordinate of p defines 𝑝x(𝑆𝑖). The bounded cardinality extension generalizes

the Lovász extension to focus only on sets of cardinality at most 𝑘 ≤ 𝑛. Again,

re-index x so that 𝑥1 ≥ 𝑥2 . . . ≥ 𝑥𝑛. Use the first 𝑘 sets 𝑆1 ⊆ 𝑆2 ⊆ · · · ⊆ 𝑆𝑘, where

𝑆𝑖 = {1, 2, . . . , 𝑖}, to populate the first 𝑘 columns of matrix S. We add further 𝑛− 𝑘

sets: 𝑆𝑘+𝑖 = {𝑗+𝑖 | 𝑗 ∈ 𝑆𝑘} for 𝑖 = 1, . . . , 𝑛−𝑘, to fill the rest of S. Finally, 𝑝x(𝑆𝑖) can

be analytically calculated from p = S−1x, where S is invertible since it is a Toeplitz

banded upper triangular matrix.

Permutations and involutory extensions. We use the same S,p notation.

Let S be an elementary permutation matrix. Then it is involutory, i.e., SS = I, and

we may easily determine p = Sx given S and x. Note that 𝑝x(𝑆𝑖) = p𝑖 must be

non-negative since x and S are non-negative entry-wise. Finally, restricting x to the
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𝑛-dimensional Simplex guarantees that ‖p‖1 ≤ 1, which ensures 𝑝x is a probability

distribution (any remaining mass is placed on the empty set). The extension property

can be guaranteed on singleton sets as long as the chosen permutation admits a fixed

point at the argmax of x. Any elementary permutation matrix S with such a fixed

point yields a valid SFE.

Singleton extension. Consider a set function 𝑓 for which 𝑓(𝑆) =∞ unless 𝑆

has cardinality one. To ensure F is finite valued, 𝑝x must be supported only on the

sets 𝑆𝑖 = {𝑖}, 𝑖 = 1, . . . , 𝑛. Assuming x is sorted so that 𝑥1 ≥ 𝑥2 . . . ≥ 𝑥𝑛, define

𝑝x(𝑆𝑖) = 𝑥𝑖 − 𝑥𝑖+1. It is shown in Appendix F.3 that this defines a scalar SFE, except

for the dual LP feasibility. However, when using F as a loss function, minimization

drives x towards the minima minx F(x) which are dual feasible. So dual infeasibility

is benign in this instance and we approach the feasible set from the outside.

Multilinear extension. The multilinear extension, widely used in combinatorial

optimization [Calinescu et al., 2011], is supported on all sets with coefficients 𝑝x(𝑆) =∏︀
𝑖∈𝑆 𝑥𝑖

∏︀
𝑖/∈𝑆(1− 𝑥𝑖), the product distribution. In general, evaluating the multilinear

extension exactly requires 2𝑛 calls to 𝑓 , but for several interesting set functions, e.g.,

graph cut, set cover, and facility location, it can be computed efficiently in ̃︀𝒪(𝑛2)

time [Iyer et al., 2014].

8.4 Neural Set Function Extensions

This section builds on the scalar SFE framework—where each item 𝑖 in the ground set

[𝑛] is represented by a single scalar—to develop extensions that use high-dimensional

embeddings to avoid introducing low-dimensional bottlenecks into neural network

architectures. The core motivation that lifting problems into higher dimensions can

make them easier is not unique to deep learning. For instance, it also underlies

kernel methods [Shawe-Taylor et al., 2004] and the lift-and-project method for integer

programming [Lovász and Schrijver, 1991].

Our method takes inspiration from prior successes of semi-definite programming

for combinatorial optimization [Goemans and Williamson, 1995] by extending onto
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𝒳 = S𝑛+, the set of 𝑛× 𝑛 positive semi-definite (PSD) matrices. With this domain,

each item is represented by a vector, not a scalar.

8.4.1 Lifting Set Function Extensions to Higher Dimensions

We embed sets into S𝑛+ via the map 𝑒(𝑆) = 1𝑆1
⊤
𝑆 . To define extensions on this matrix

domain, we translate the linear programming approach of Section 8.3 into an analogous

SDP formulation:

max
Z⪰0,𝑏∈R

{Tr(X⊤Z) + 𝑏} subject to
1

2
Tr((1𝑆1⊤

𝑇 + 1𝑇1
⊤
𝑆 )Z) + 𝑏 ≤ 𝑓(𝑆 ∩ 𝑇 ) for 𝑆, 𝑇 ⊆ [𝑛],

(primal SDP)

where we switch from lower case letters to upper case since we are now using matrices.

Next, we show that this choice of primal SDP is a natural analog of the original LP

that provides the right correspondences between vectors and matrices by proving that

primal LP feasible solutions correspond to primal SDP feasible solutions with the

same objective value (see Appendix F.1 for a discussion on the SDP and its dual).

To state the result, note that the embedding 𝑒(𝑆) = 1𝑆1
⊤
𝑆 is a particular case of the

correspondence x ∈ [0, 1]𝑛 ↦→
√
x
√
x
⊤.

Proposition 11. (Containment of LP in SDP) For any x ∈ [0, 1]𝑛, define X =
√
x
√
x
⊤ with the square-root taken entry-wise. Then, for any (z, 𝑏) ∈ R𝑛

+ × R that is

primal LP feasible, the pair (Z, 𝑏) where Z = diag(z), is primal SDP feasible and the

objective values agree: Tr(X⊤Z) = z⊤x.

Proposition 11 establishes that the primal SDP feasible set is a spectrahedral lift

of the positive primal LP feasible set, i.e., feasible solutions of the primal LP lead to

feasible solutions of the primal SDP. As with scalar SFEs, to define neural SFEs we

consider the dual SDP:

min
{𝑦𝑆,𝑇≥0}

∑︁
𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇𝑓(𝑆 ∩ 𝑇 ) subject to X ⪯
∑︁

𝑆,𝑇⊆[𝑛]

1

2
𝑦𝑆,𝑇 (1𝑆1

⊤
𝑇 + 1𝑇1

⊤
𝑆 ) and

∑︁
𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇 = 1

(dual SDP)
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We demonstrate that for suitable X this SDP has feasible solutions via an explicit

construction in Section 8.4.2. This leads us to define a neural SFE which, as with

scalar SFEs, is given by a feasible solution to the dual SDP that satisfies the extension

property whose coefficients are continuous in X:

Definition 4 (Neural SFE). A neural set function extension of 𝑓 at a point X ∈ S𝑛+
is defined as

F(X) ≜
∑︁

𝑆,𝑇⊆[𝑛]

𝑝X(𝑆, 𝑇 )𝑓(𝑆 ∩ 𝑇 ),

where 𝑦𝑆,𝑇 = 𝑝X(𝑆, 𝑇 ) is a feasible solution to the dual SDP and for all 𝑆, 𝑇 ⊆ [𝑛]: 1)

𝑝X(𝑆, 𝑇 ) is continuous at X and 2) it is valid, i.e., F(1𝑆1⊤
𝑆 ) = 𝑓(𝑆) for all 𝑆 ⊆ [𝑛].

8.4.2 Constructing Neural Set Function Extensions

We constructed a number of explicit examples of scalar SFEs in Section 8.3.1. For

neural SFEs we employ a different strategy. Instead of providing individual examples

of neural SFEs, we develop a single recipe for converting any scalar SFE into a

corresponding neural SFE. Doing so allows us to build on the variety of scalar SFEs

and provides an additional connection between scalar and neural SFEs. In Section 8.5

we show the empirical superiority of neural SFEs over their scalar counterparts. Our

construction is given in the following proposition:

Proposition 12. Let 𝑝x induce a scalar SFE of 𝑓 . For X ∈ S𝑛+, consider a decompo-

sition X =
∑︀𝑛

𝑖=1 𝜆𝑖x𝑖x
⊤
𝑖 and fix

𝑝X(𝑆, 𝑇 ) =
𝑛∑︁
𝑖=1

𝜆𝑖 𝑝x𝑖
(𝑆)𝑝x𝑖

(𝑇 ) for all 𝑆, 𝑇 ⊆ [𝑛]. (8.3)

Then, 𝑝X defines a neural SFE F at X.

See Appendix F.4 for proof. The choice of decomposition will give rise to different

extensions. Here, we instantiate our neural extensions using the eigendecomposition

of X. Since eigenvectors may not belong to [0, 1]𝑛 we reparameterize by first applying

a sigmoid function before computing the scalar extension distribution 𝑝x. In practice
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we found that neural SFEs work just as well even without this sigmoid function—i.e.,

allowing scalar SFEs to be evaluated outside of [0, 1]𝑛. The continuity of the neural

SFE F when using the eigendecomposition follows from a variant of the Davis–Kahan

theorem [Yu et al., 2015], which requires the additional assumption that the eigenvalues

of x are distinct. For efficiency, in practice we do not use all 𝑛 eigenvectors, and use

only the 𝑘 with largest eigenvalue. This is justified by Figure 8-3, which shows that in

practical applications X often has a rapidly decaying spectrum.

Evaluating a neural SFE requires an accessible closed-form expression, the precise

form of which depends on the underlying scalar SFE. Further, from the definition of

Neural SFEs we see that if a scalar SFE is supported on sets with a property that is

closed under intersection (e.g., bounded cardinality), then the supporting sets of the

corresponding neural SFE will also inherit that property. This implies that the neural

counterparts of the Lovász, bounded cardinality Lovász, and singleton/permutation

extensions have the same support as their scalar counterparts. An immediate corollary

is that we can easily compute the neural counterpart of the Lovász extension which

has a simple closed form:

Corollary 2. For X ∈ S𝑛+ consider the eigendecomposition X =
∑︀𝑛

𝑖=1 𝜆𝑖x𝑖x
⊤
𝑖 . Let 𝑝x𝑖

be as in the Lovász extension: 𝑝x𝑖
(𝑆𝑖𝑗) = 𝜎(𝑥𝑖,𝑗)− 𝜎(𝑥𝑖,𝑗+1), where 𝜎 is the sigmoid

function, and x𝑖 is sorted so 𝑥𝑖,1 ≥ . . . ≥ 𝑥𝑖,𝑛 and 𝑆𝑖𝑗 = {1, . . . , 𝑗}, with 𝑝x𝑖
(𝑆) = 0

for all other sets. Then, the neural Lovász extension is:

F(X) =
𝑛∑︁

𝑖,𝑗=1

𝜆𝑖𝑝x𝑖
(𝑆𝑖𝑗) ·

(︂
𝑝x𝑖

(𝑆𝑖𝑗) + 2
∑︁
ℓ:ℓ>𝑗

𝑝x𝑖
(𝑆𝑖ℓ)

)︂
· 𝑓(𝑆𝑖𝑗). (8.4)

Complexity and obtaining sets as solutions. In general, the neural SFE relies

on all pairwise intersections 𝑆 ∩ 𝑇 of the scalar SFE sets, requiring 𝑂(𝑚2) evaluations

of 𝑓 when the scalar SFE is supported on 𝑚 sets. However, when the scalar SFE

is supported on a family of sets that is closed under intersection—e.g., the Lovász

and singleton extensions—the corresponding neural SFE requires only 𝑂(𝑚) function

evaluations. Discrete solutions can be obtained efficiently by returning the best set

out of all scalar SFEs 𝑝x𝑖
.
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Maximum Clique

ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through [Bengio et al., 2013] 0.725±0.268 0.722±0.26 0.917±0.253 0.965±0.162 0.856±0.221

Erdős [Karalias and Loukas, 2020] 0.883±0.156 0.905±0.133 0.936±0.175 1.000±0.000 0.852±0.212

REINFORCE [Williams, 1992] 0.751±0.301 0.725±0.285 0.881±0.240 1.000±0.000 0.781±0.316

Lovász scalar SFE 0.723±0.272 0.778±0.270 0.975±0.125 0.977±0.125 0.855±0.225

Lovász neural SFE 0.933±0.148 0.926±0.165 0.961±0.143 1.000±0.000 0.864±0.205

Maximum Independent Set

ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB

Straight-through [Bengio et al., 2013] 0.505±0.244 0.430±0.252 0.701±0.252 0.721±0.257 0.331±0.260

Erdős [Karalias and Loukas, 2020] 0.821±0.124 0.903±0.114 0.515±0.310 0.939±0.069 0.886±0.198

REINFORCE [Williams, 1992] 0.617±0.214 0.579±0.340 0.899±0.275 0.744±0.121 0.053±0.164

Lovász scalar SFE 0.311±0.289 0.462±0.260 0.716±0.269 0.737±0.154 0.302±0.238

Lovász neural SFE 0.775±0.155 0.729±0.205 0.679±0.287 0.854±0.132 0.392±0.253

Table 8.1: Unsupervised neural combinatorial optimization: Approximation
ratios for combinatorial problems. Values closer to 1 are better (↑). Neural SFEs are
competitive with other methods, and consistently improve over vector SFEs.

8.5 Experiments

We experiment with SFEs as loss functions in neural network pipelines on discrete

objectives arising in combinatorial and vision tasks. For combinatorial optimization,

SFEs network training with a continuous version of the objective without supervision.

For supervised image classification, they allow us to directly relax the training error

instead of optimizing a proxy like cross entropy.

8.5.1 Unsupervised Neural Combinatorial Optimization

We begin by evaluating the suitability of neural SFEs for unsupervised learning of

neural solvers for combinatorial optimization problems on graphs. We use the EN-

ZYMES, PROTEINS, IMDB, MUTAG, and COLLAB datasets from the TUDatasets

benchmark [Morris et al., 2020a], using a 60/30/10 split for train/test/val. We test on

two problems: finding maximum cliques, and maximum independent sets. We compare

with three neural network based methods. We compare to two common approaches for
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backpropogating through discrete functions: the REINFORCE algorithm [Williams,

1992], and the Straight-Through estimator [Bengio et al., 2013]. The third is the

recently proposed probabilistic penalty relaxation [Karalias and Loukas, 2020] for

combinatorial optimization objectives. All methods use the same GNN backbone,

comprising a single GAT layer [Veličković et al., 2018] followed by multiple gated

graph convolution layers [Li et al., 2015].

In all cases, given an input graph 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛 nodes, a GNN produces

an embedding for each node: X ∈ R𝑛×𝑑. For scalar SFEs 𝑑 = 1, while for neural SFEs

we consider XX⊤ in order to produce an 𝑛× 𝑛 PSD matrix, which is passed as input

to the SFE F. The set function 𝑓 used is problem dependent, which we discuss below.

Finally, see Appendix F.6 for training and hyper-parameter optimization details.

Maximum Clique. A set 𝑆 ⊆ 𝑉 is a clique of 𝐺 = (𝑉,𝐸) if (𝑖, 𝑗) ∈ 𝐸 for all

𝑖, 𝑗 ∈ 𝑆. The MaxClique problem is to find the largest set 𝑆 that is a clique: i.e.,

𝑓(𝑆) = |𝑆| · 1{𝑆 a clique}.

Maximum Independent Set (MIS). A set 𝑆 ⊆ 𝑉 is an independent set of

𝐺 = (𝑉,𝐸) if (𝑖, 𝑗) /∈ 𝐸 for all 𝑖, 𝑗 ∈ 𝑆. The goal is to find the largest 𝑆 in the graph

that is independent, i.e., 𝑓(𝑆) = |𝑆| · 1{𝑆 an ind. set}. MIS differs significantly from

MaxClique due to its high heterophily.

Results. Table 8.1 displays the mean and standard deviation of the approximation

ratio 𝑓(𝑆)/𝑓(𝑆*) of the solver solution 𝑆 and an optimal 𝑆* on the test set graphs.

The neural Lovaśz extension outperforms its scalar counterpart in 8 out of 10 cases,

often by significant margins, for instance improving a score of 0.778 on PROTEINS

MaxClique to 0.926. The neural SFE proved effective at boosting poor scalar SFE

performance, e.g., 0.311 on ENZYMES MIS, to the competitive performance of 0.775.

Neural Lovaśz outperformed or equalled and straight-through in 9 out of 10 cases, and

the method of Karalias and Loukas [2020] in 6 out of 10.

8.5.2 Constraint Satisfaction Problems

Constraint satisfaction problems ask if there exists a set satisfying a given set of

conditions [Kumar, 1992, Cappart et al., 2021b]. In this section, we apply SFEs to the
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Figure 8-2: 𝑘-clique constraint satisfaction: higher F1-score is better. The 𝑘-
bounded cardinality Lovasz extension is better aligned with the task and significantly
improves over the Lovász extension.
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Figure 8-3: Left: Runtime and performance of neural SFEs on MaxClique using
different numbers of eigenvectors. Right: Histogram of spectrum of matrix X,
outputted by a GNN trained on MaxClique.

𝑘-clique problem: given a graph, determine if it contains a clique of size 𝑘 or more.

We test on the ENZYMES and PROTEINS datasets. Since satisfiability is a binary

classification problem we evaluate using F1 score.

Results. Figure 8-2 shows that by specifically searching over sets of size 𝑘 using the

cardinality constrained Lovász extension from Section 8.3.1, we significantly improve

performance compared to the Lovász extension, and REINFORCE. This illustrates

the value of SFEs in allowing task-dependent considerations (in this case a cardinality

constraint) to be built into extension design.

8.5.3 Training Error as a Classification Objective

During training the performance of a classifier ℎ is typically assessed using the training

error 1
𝑛

∑︀𝑛
𝑖=1 1{𝑦𝑖 ≠ ℎ(𝑥𝑖)}. Since training error itself is non-differentiable, it is

standard to train ℎ to optimize a differentiable surrogate such as the cross-entropy

loss. Here we offer an alternative training method by continuously extending the

non-differentiable mapping 𝑦 ↦→ 1{𝑦𝑖 ̸= 𝑦}. This map is a set function defined on single

item sets, so we use the singleton extension (definition in Section 8.3.1). Our goal is to

demonstrate that the resulting differentiable loss function closely tracks the training
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Figure 8-4: Top: CIFAR10. Bottom: SVHN. The singleton extension loss (left) is
the only loss that approximates the true non-differentiable training error at the same
numerical scale.

error, and can be used to minimize it. We do not focus on test time generalization.

Figure 8-4 shows the results. The singleton extension loss (left plot) closely tracks the

true training error at the same numerical scale, unlike other common loss functions

(see Appendix F.7 for setup details). While we leave further consideration to future

work, training error extensions may be useful for model calibration [Kennedy and

O’Hagan, 2001] and uncertainty estimation [Abdar et al., 2021].

8.5.4 Ablations

Number of Eigenvectors. Figure 8-3 compares the runtime and performance of

neural SFEs using only the top-𝑘 eigenvectors from the eigendecomposition X =∑︀𝑛
𝑖=1 𝜆𝑖x𝑖x

⊤
𝑖 with 𝑘 ∈ {1, 2, 3, 4, 5, 6} on the maximum clique problem. For both

ENZYMES and PROTEINS, performance increases with 𝑘—easily outperforming

scalar SFEs and REINFORCE—until saturation around 𝑘 = 4, while runtime grows

linearly with 𝑘. Histograms of eigenvalues produced by trained networks show a rapid

decay in the spectrum, suggesting that smaller eigenvalues have little effect on F.

Comparison to Naive High-Dimensional Extension. We compare neural

SFEs to a naive high-dimensional alternative which, given an 𝑛× 𝑑 matrix X simply

computes a scalar SFE on each column independently and sums them up. This naive

function design is not an extension, and the dependence on the 𝑑 dimensions is linearly
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Figure 8-5: Neural SFEs outperform a naive alternative high-dimensional extension.

separable, in contrast to the complex non-linear interactions between columns of X

in neural SFEs. Figure 8-5 shows that this naive extension, whilst improving over

one-dimensional extensions, performs considerably worse than neural SFEs.

8.6 Related Work

Neural combinatorial optimization Our experimental setup largely follows recent

work on unsupervised neural combinatorial optimization [Karalias and Loukas, 2020,

Schuetz et al., 2022, Toenshoff et al., 2021, Amizadeh et al., 2018], where continuous

relaxations of discrete objectives are utilized. In that context, it is important to take

into account the key conceptual and methodological differences of our approach. For

instance, in the unsupervised Erdős goes neural (EGN) framework from Karalias and

Loukas [2020], the probabilistic relaxation and the proposed choice of distribution can

be viewed as instantiating a multilinear extension. As explained earlier, this extension

is costly in the general case (since 𝑓 must be evaluated 2𝑛 times, and summed) but

can be computed efficiently in closed form in certain cases. On the other hand, our

extension framework offers multiple options for efficiently computable extensions

without imposing any further conditions on the set function. For example, one could

efficiently (linear time in 𝑛) compute the scalar and neural Lovász extensions of any

set function with only black-box access to the function. This renders our framework

more broadly applicable. Furthermore, EGN incorporates the problem constraints

additively in the loss function. In contrast to that, our extension framework does not
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require any commitment to a specific formulation in order to obtain a differentiable

loss. For general background on neural combinatorial optimization, we refer the reader

to the surveys [Bengio et al., 2021, Cappart et al., 2021a, Mazyavkina et al., 2021].
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Chapter 9

Conclusion

This thesis explores the relationship between problem structure and the internal

geometry of neural network representations. Along the way, we encountered close

connections to a number of core considerations in AI system development, including

learning speed, data efficiency, model reliability, and discrete reasoning capabilities.

Due to the centrality of representation geometry in learning, there are necessarily

many directions and open questions that this thesis did not cover in detail. The goal

of this final chapter is to layout several interesting features of this wider landscape by

revisiting some threads that were not picked up earlier in the thesis.

9.1 What is the Full Potential of Hard Negatives?

The first major part of this thesis studies ways to generate hard negative samples in

contrastive learning. Hard negatives were largely motivated from the point of view of

training efficiency, namely that harder negatives are more “informative”, and therefore

more useful to focus on the model during training.

But efficiency is not the only reason why hard negatives may be useful. A completely

different viewpoint is that judicious selection of negatives can be used to control which

features of the data the model does and does not learn. This was explored in a

preliminary way in Chapter 4, however the full potential of this idea remains largely

untapped.
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Concretely, a common problem in many machine learning contexts is that there

are too many features that spuriously correlate with the target of interest. Careful

selection of negatives may offer a tool for pruning the space of spuriously correlating

features by providing signal to the model on which correlated features are spurious

and which are not. Indeed, by selecting negative pairs 𝑥, and 𝑥− that have certain

overlapping features, the model is forced to not use these features to distinguish

samples, guiding the learning process to search for other features that the designed

does want the model to learn.

But how to obtain such carefully drawn negatives in the first place? This may be

a significant challenge, since necessarily certain prior knowledge is required. However,

there are guiding examples in the literature. One example is provided by Murphy et al.

[2022], who seek to learn representations of immunohistochemical images in order to

identify the cell type specificity of certain protein markers. In this setting, there are

multiple images per donor—i.e., the same section of tissue—but stained with different

antibodies so that different cells are highlighted for different stains. A natural, but

spurious, positive-pair correlation arises when using images from the same donor as

positive pairs for contrastive learning, namely that the pattern of cells in the common

underlying tissue can be used to identify the similarity of the positive pair. This is a

spurious correlation since it is independent of the downstream question of interest:

which antibodies stain which types of cell? In order to address this, Murphy et al.

[2022] notice that it is possible to draw negative pairs from the same donor. This

approach produces negative pairs share the exact same pattern of cells, thereby forcing

the models to look for features that account for the similarity of positive pairs to look

beyond the spurious pattern of cells.

How can the success of this approach be extended to other settings? One option,

as in the case of Murphy et al. [2022], is to keep an eye out for useful structure in the

data that is available—in their case, the presence of multiple stains for the same donor

tissue. Another option may be to create synthetic negatives. Indeed suppose you

could design an augmentation 𝑎 : 𝒳 → 𝒳 such that 𝑥 and 𝑎(𝑥) do not share the same

underlying semantics. Note, this is the exact opposite role that augmentations usually
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perform in contrastive learning—the production of pairs of semantically matching

samples. This means that 𝑥 and 𝑎(𝑥) should be treated as a negative pair. So long

as the augmentation 𝑎 is small, so that 𝑥 and 𝑎(𝑥) still share many features, then

the slight differences in the pair (𝑥, 𝑎(𝑥)) pinpoints features that are relevant to the

task of interest. A concrete example of this is in contrastive learning of SAT formula

embeddings, as considered by Duan et al. [2022]. The ultimate goal in this setting

is to determine whether a Boolean formula is satisfiable—i.e., whether there exists

a true/false assignment for the variables such that the entire formula evaluates to

true—or not. SAT formulas can be represented as graphs. Importantly small local

changes in the graph, such as adding and removing nodes and edges, may change the

satisfiability of the formula, and whats more, whether the satisfiabilitiy has changed can

be efficiently computed from the original problem. More broadly, many combinatorial

problems enjoy efficient re-computation of solutions under local modifications of a

problem instance. Local re-computation makes combinatorial problems an especially

promising setting for testing this hard negatives approach.

9.2 Nuances in Understanding of Neural Networks

for Eigenvector Data

Chapter 7 introduced provably powerful architectures for processing eigenvector

data. Although our proposed design makes significant progress in characterizing and

designing neural networks for eigenvectors, there are remain a number of interesting

questions worth further study in this area that we were not able to address.

Robustness. How robust are our models to errors or perturbations to input eigen-

vectors, and do we even want robustness? One setting in which robust models are

desirable is in learning on noisy networks, whose connectivity structure is not to be

trusted entirely. In this setting it is desirable to know whether or not our SignNet more,

or another sign invariant architecture is likely to produce wildly different outputs as

nodes or edges are modified slightly. Wang et al. [2022] design PEG, an (non-universal)
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eigenvector architecture that is guaranteed to be Lipschitz with respect to perturbation

of both the eigenvectors and the underlying node features.

However, two questions remain. First, what guarantees does PEG yield on stability

with respect to pertubations of edges and nodes of the underlying graph, as opposed to

pertubations of the Laplacian as the current analysis considers. This can be understood

by directly drawing from existing spectral graph theory under graph perturbations.

Second, there are settings in which robustness is the opposite of what is needed.

A salient example arises in molecular chemistry, where certain molecules are highly

similar in their structure, but have very significant differences in potency [van Tilborg

et al., 2022]. These rapid variations in the landscape of molecules are known as

activity cliffs. Activity cliffs pose a major challenge in computational chemistry—

especially deep learning approaches—as predicting activity cliffs requires fitting a

highly non-smooth target function. This raises an interesting question for neural

network design—how to design neural networks that are suited to learning such cliffs.

9.3 Laplacian Eigenvectors as Universal Descriptions

of Positions

We used our eigenvector networks, such as SignNet, to learn positional encodings for

graph data. Is this a specialist positional encoding that fundamentally from positional

encodings used for words and images?

In fact there is a close connection between Laplacian eigenvectors and sinusoidal

positional encodings, that are often used in language modeling as their cyclical

nature enables extrapolation to sequences during inference that are longer than the

sequences seen during training [Vaswani et al., 2017b]. Sinusoidal positional encodings

𝑝𝑛 = sin(𝜔𝑛) constitute the terms of the solution of Laplace’s equation

∇2𝑓 = 0

Laplace’s equation is in turn intimately tied to the Laplacian matrix, which can be
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thought of as the negative of the discretization of the Laplace operator ∇2. By making

this connection more precise, it appears that eigenvector positional encodings may also

generalize to structures beyond graphs, including sequences and images (2D lattices

of patches).

This connection points to a possible consolidation of machine learning method-

ologies across data modalities. Indeed considerable consolidation has already oc-

curred, with many divers problems solvable using the same network architecture—the

Transformer—combined with a domain specific positional encoding.

9.4 Broad Outlook

Where does representation geometry fit into the wider landscape of machine learning

methods? This question is especially pertinent in an era of methodological consolidation

into a few key architectures and training pipleines that dominate due to favorable

scaling laws. Here I suggest three paths through which geometric thinking can play a

part.

1. Pre-training objective. Underlying a broad scope of pre-training approaches

is a Goldilocks principle: pre-training tasks must be hard enough that it requires

extraction of complex and rich data features, but not too hard that it is not possible

to learn. One key knob that controls difficulty is the amount of redundancy between

between parts of an input. Redundancy arises from multiple sources, one important

example of which is geometric structure of data. For instance, predicting masked nodes

in a homophilous graph is easier, potentially too easy, if many of its neighbours are

known. In the setting of data with complex structure, pre-training objectives that take

advantage of the problem structure remain underdeveloped, but promising directions

for integrating domain knowledge into otherwise largely generic Transformer-based

training pipelines.

2. Positional encoding. Our sign invariant networks (Chapter 7) provide one

perspective on how to integrate geometric structure, in this case symmetry, into

positional encodings, and Section 9.3 elaborates on the potential broader impact of

171



such methods. But this is not the only possibility. Generally speaking, a Transformer

with positional encoding decomposes the learning task into two parts: processing

structure or location of data (the positional encoding) and processing the substance

of different parts of data (self-attention). I believe that the positional encoding is

much more amenable to geometric thinking than self-attention. Indeed, positional

encodings are a general framework for describing the structure of data, and in cases

that data has non-trivial structure (as in the case of graphs) the question of how to

design positional encodings becomes both interesting and important.

3. Tokenizers. Most existing Transformer tokenizers identify commonly co-

occurring pairs and tuples of letters to form tokens (for instance, the popular byte

pair encoding, or BPE, used in GPT-3). Whilst BPE and its variations are without

doubt well suited to natural language, as GPT-style models are developed across

increasingly broad problem settings more domain specific alternatives appear likely

to emerge. Indeed, whilst the tokenizer may seem a low-level detail, it is empirically

vitally important. Furthermore it is an opportunity to inject domain knowledge into

the training pipeline, since choosing tokens amounts to deciding what constitutes a

semantically meaningful chunk of information. Situations in which sequence data

has structure—for instance the many equivalent SMILES descriptions of a molecule—

are prime candidates for specialized tokenizers that better reflect their structure.

Furthermore, tokenization interacts with positional encoding approaches—if one token

describes multiple atoms, how can the spatial position of atoms be included as input to

the model? Integrating complex positional encodings with complex tokenizers remains

largely unexplored.
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Appendix A

Further Discussion and Proofs for

Negative Sampling in Contrastive

Learning

A.1 Analysis of Hard Sampling

A.1.1 Hard Sampling Interpolates Between Marginal and Worst-

Case Negatives

We begin by proving Proposition 1. Recall that the proposition stated the following.

Proposition 13. Let ℒ*(𝑓) = sup𝑞∈Π ℒ(𝑓, 𝑞). Then for any 𝑡 > 0 and measurable

𝑓 : 𝒳 → S𝑑−1/𝑡 we observe the convergence ℒ(𝑓, 𝑞−𝛽 ) −→ ℒ*(𝑓) as 𝛽 →∞.

Proof. Consider the following essential supremum,

𝑀(𝑥) = ess sup
𝑥−∈𝒳 :𝑥− ̸∼𝑥

𝑓(𝑥)𝑇𝑓(𝑥−) = sup{𝑚 > 0 : 𝑚 ≥ 𝑓(𝑥)𝑇𝑓(𝑥−) a.s. for 𝑥− ∼ 𝑝−}.

The second inequality holds since supp(𝑝) = 𝒳 . We may rewrite
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ℒ*(𝑓) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑄𝑒𝑀(𝑥)

]︃
,

ℒ(𝑓, 𝑞−𝛽 ) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞−𝛽
[𝑒𝑓(𝑥)𝑇 𝑓(𝑥−)]

]︃
.

The difference between these two terms can be bounded as follows,

⃒⃒
ℒ*(𝑓)− ℒ(𝑓, 𝑞−𝛽 )

⃒⃒
≤ E 𝑥∼𝑝

𝑥+∼𝑝+𝑥

⃒⃒⃒⃒
⃒− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑄𝑒𝑀(𝑥)
+ log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞−𝛽
[𝑒𝑓(𝑥)𝑇 𝑓(𝑥−)]

⃒⃒⃒⃒
⃒

= E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

⃒⃒⃒
log
(︁
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞−𝛽
[𝑒𝑓(𝑥)

𝑇 𝑓(𝑥−)]
)︁
− log

(︁
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+) +𝑄𝑒𝑀(𝑥)
)︁⃒⃒⃒

≤ 𝑒1/𝑡

𝑄+ 1
· E 𝑥∼𝑝

𝑥+∼𝑝+𝑥

⃒⃒⃒
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞−𝛽
[𝑒𝑓(𝑥)

𝑇 𝑓(𝑥−)]− 𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) −𝑄𝑒𝑀(𝑥)
⃒⃒⃒

=
𝑒1/𝑡𝑄

𝑄+ 1
· E𝑥∼𝑝

⃒⃒⃒
E𝑥−∼𝑞−𝛽

[𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)]− 𝑒𝑀(𝑥)

⃒⃒⃒
≤ 𝑒1/𝑡 · E𝑥∼𝑝E𝑥−∼𝑞−𝛽

⃒⃒⃒
𝑒𝑀(𝑥) − 𝑒𝑓(𝑥)𝑇 𝑓(𝑥−)

⃒⃒⃒
where for the second inequality we have used the fact that 𝑓 lies on the hypersphere

of radius 1/𝑡 to restrict the domain of the logarithm to values greater than (𝑄+1)𝑒−1/𝑡.

Because of this the logarithm is Lipschitz with parameter 𝑒1/𝑡/(𝑄+ 1). Using again

the fact that 𝑓 lies on the hypersphere we know that
⃒⃒
𝑓(𝑥)𝑇𝑓(𝑥−)

⃒⃒
≤ 1/𝑡2 and hence

have the following inequality,

E𝑥∼𝑝E𝑞−𝛽
⃒⃒⃒
𝑒𝑀(𝑥) − 𝑒𝑓(𝑥)𝑇 𝑓(𝑥−)

⃒⃒⃒
≤ 𝑒1/𝑡

2E𝑥∼𝑝E𝑞−𝛽
⃒⃒
𝑀(𝑥)− 𝑓(𝑥)𝑇𝑓(𝑥−)

⃒⃒
Let us consider the inner expectation 𝐸𝛽(𝑥) = E𝑞−𝛽

⃒⃒
𝑀(𝑥)− 𝑓(𝑥)𝑇𝑓(𝑥−)

⃒⃒
. Note

that since 𝑓 is bounded, 𝐸𝛽(𝑥) is uniformly bounded in 𝑥. Therefore, in order to show

the convergence ℒ(𝑓, 𝑞−𝛽 )→ ℒ*(𝑓) as 𝛽 →∞, it suffices by the dominated convergence

theorem to show that 𝐸𝛽(𝑥)→ 0 pointwise as 𝛽 →∞ for arbitrary fixed 𝑥 ∈ 𝒳 .

From now on we denote 𝑀 =𝑀(𝑥) for brevity, and consider a fixed 𝑥 ∈ 𝒳 . From
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the definition of 𝑞−𝛽 it is clear that 𝑞−𝛽 ≪ 𝑝−. That is, since 𝑞−𝛽 = 𝑐 · 𝑝− for some (non-

constant) 𝑐, it is absolutely continuous with respect to 𝑝−. So 𝑀(𝑥) ≥ 𝑓(𝑥)𝑇𝑓(𝑥−)

almost surely for 𝑥− ∼ 𝑞−𝛽 , and we may therefore drop the absolute value signs from

our expectation. Define the following event 𝒢𝜀 = {𝑥− : 𝑓(𝑥)⊤𝑓(𝑥−) ≥𝑀 − 𝜀} where

𝒢 is refers to a “good” event. Define its complement ℬ𝜀 = 𝒢𝑐𝜀 where ℬ is for “bad”. For

a fixed 𝑥 ∈ 𝒳 and 𝜀 > 0 consider,

𝐸𝛽(𝑥) = E𝑥−∼𝑞−𝛽

⃒⃒
𝑀(𝑥)− 𝑓(𝑥)𝑇𝑓(𝑥−)

⃒⃒
= P𝑥−∼𝑞−𝛽

(𝒢𝜀) · E𝑥−∼𝑞−𝛽

[︀⃒⃒
𝑀(𝑥)− 𝑓(𝑥)𝑇𝑓(𝑥−)

⃒⃒
|𝒢𝜀
]︀

+ P𝑥−∼𝑞−𝛽
(ℬ𝜀) · E𝑥−∼𝑞−𝛽

[︀⃒⃒
𝑀(𝑥)− 𝑓(𝑥)𝑇𝑓(𝑥−)

⃒⃒
|ℬ𝜀
]︀

≤ P𝑥−∼𝑞−𝛽
(𝒢𝜀) · 𝜀+ 2P𝑥−∼𝑞−𝛽

(ℬ𝜀)

≤ 𝜀+ 2P𝑥−∼𝑞−𝛽
(ℬ𝜀).

We need to control P𝑥−∼𝑞−𝛽
(ℬ𝜀). Expanding,

P𝑥−∼𝑞−𝛽
(ℬ𝜀) =

∫︁
𝒳
1
{︀
𝑓(𝑥)𝑇𝑓(𝑥−) < 𝑀(𝑥)− 𝜀

}︀ 𝑒𝛽𝑓(𝑥)𝑇 𝑓(𝑥−) · 𝑝−(𝑥−)
𝑍𝛽

d𝑥−

where 𝑍𝛽 =
∫︀
𝒳 𝑒

𝛽𝑓(𝑥)𝑇 𝑓(𝑥−)𝑝−(𝑥−)d𝑥− is the partition function of 𝑞−𝛽 . We may

bound this expression by,

∫︁
𝒳
1
{︀
𝑓(𝑥)𝑇𝑓(𝑥−) < 𝑀 − 𝜀

}︀ 𝑒𝛽(𝑀−𝜀) · 𝑝−(𝑥−)
𝑍𝛽

d𝑥− ≤ 𝑒𝛽(𝑀−𝜀)

𝑍𝛽

∫︁
𝒳
1
{︀
𝑓(𝑥)𝑇𝑓(𝑥−) < 𝑀 − 𝜀

}︀
𝑝−(𝑥−)d𝑥−

=
𝑒𝛽(𝑀−𝜀)

𝑍𝛽
P𝑥−∼𝑝−(ℬ𝜀)

≤ 𝑒𝛽(𝑀−𝜀)

𝑍𝛽

Note that

𝑍𝛽 =

∫︁
𝒳
𝑒𝛽𝑓(𝑥)

𝑇 𝑓(𝑥−)𝑝−(𝑥−)d𝑥− ≥ 𝑒𝛽(𝑀−𝜀/2)P𝑥−∼𝑝−(𝑓(𝑥)
𝑇𝑓(𝑥−) ≥𝑀 − 𝜀/2).
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By the definition of 𝑀 = 𝑀(𝑥) the probability 𝜌𝜀 = P𝑥−∼𝑝−(𝑓(𝑥)
𝑇𝑓(𝑥−) ≥

𝑀 − 𝜀/2) > 0, and we may therefore bound,

P𝑥−∼𝑞−𝛽
(ℬ𝜀) =

𝑒𝛽(𝑀−𝜀)

𝑒𝛽(𝑀−𝜀/2)𝜌𝜀

= 𝑒−𝛽𝜀/2/𝜌𝜀

−→ 0 as 𝛽 →∞.

We may therefore take 𝛽 to be sufficiently big so as to make P𝑥−∼𝑞−𝛽
(ℬ𝜀) ≤ 𝜀 and

therefore 𝐸𝛽(𝑥) ≤ 3𝜀. In other words, 𝐸𝛽(𝑥) −→ 0 as 𝛽 →∞.

A.1.2 Optimal Embeddings on the Hypersphere for Worst-

Case Negative Samples

In order to study properties of global optima of the contrastive objective using the

adversarial worst case hard sampling distribution recall that we have the following

limiting objective,

ℒ∞(𝑓, 𝑞) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

E𝑥−∼𝑞𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]

]︃
. (A.1)

We may separate the logarithm of a quotient into the sum of two terms plus a

constant,

ℒ∞(𝑓, 𝑞) = ℒalign(𝑓) + ℒunif(𝑓, 𝑞)− 1/𝑡2

where ℒalign(𝑓) = E𝑥,𝑥+‖𝑓(𝑥)−𝑓(𝑥+)‖2/2 and ℒunif(𝑓, 𝑞) = E𝑥∼𝑝 logE𝑥−∼𝑞𝑒
𝑓(𝑥)⊤𝑓(𝑥−).

Here we have used the fact that 𝑓 lies on the boundary of the hypersphere of radius

1/𝑡, which gives us the following equivalence between inner products and squared

Euclidean norm,

2/𝑡2− 2𝑓(𝑥)⊤𝑓(𝑥+) = ‖𝑓(𝑥)‖2 + ‖𝑓(𝑥+)‖2− 2𝑓(𝑥)⊤𝑓(𝑥+) = ‖𝑓(𝑥)− 𝑓(𝑥+)‖2. (A.2)

216



Taking supremum to obtain ℒ*
∞(𝑓) = sup𝑞∈Π ℒ∞(𝑓, 𝑞) we find that the second

expression simplifies to,

ℒ*
unif(𝑓) = sup

𝑞∈Π
ℒunif(𝑓, 𝑞) = E𝑥∼𝑝 log sup

𝑥− ̸∼𝑥
𝑒𝑓(𝑥)

⊤𝑓(𝑥−) = E𝑥∼𝑝 sup
𝑥− ̸∼𝑥

𝑓(𝑥)⊤𝑓(𝑥−).

Using Eqn. (A.2), this can be re-expressed as,

E𝑥∼𝑝 sup
𝑥− ̸∼𝑥

𝑓(𝑥)⊤𝑓(𝑥−) = −E𝑥∼𝑝 inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2/2 + 1/𝑡2. (A.3)

The forthcoming theorem exactly characterizes the global optima of min𝑓 ℒ*
∞(𝑓)

Theorem 9. Suppose the downstream task is classification (i.e. 𝒞 is finite), and let

ℒ*
∞(𝑓) = sup𝑞∈Π ℒ∞(𝑓, 𝑞) . The infimum inf𝑓 : measurable ℒ*

∞(𝑓) is attained, and any 𝑓 *

achieving the global minimum is such that 𝑓 *(𝑥) = 𝑓 *(𝑥+) almost surely. Furthermore,

letting v𝑐 = 𝑓 *(𝑥) for any 𝑥 such that ℎ(𝑥) = 𝑐 (so v𝑐 is well defined up to a set of 𝑥

of measure zero), 𝑓 * is characterized as being any solution to the following ball-packing

problem,

max
{v𝑐∈S𝑑−1/𝑡}𝑐∈𝒞

∑︁
𝑐∈𝒞

𝜌(𝑐) ·min
𝑐′ ̸=𝑐
‖v𝑐 − v𝑐′‖2. (A.4)

Proof. Any minimizer of ℒalign(𝑓) has the property that 𝑓(𝑥) = 𝑓(𝑥+) almost surely.

So, in order to prove the first claim, it suffices to show that there exist functions

𝑓 ∈ arg inf𝑓 ℒ*
unif(𝑓) for which 𝑓(𝑥) = 𝑓(𝑥+) almost surely. This is because, at

that point, we have shown that argmin𝑓 ℒalign(𝑓) and argmin𝑓 ℒ*
unif(𝑓) intersect, and

therefore any solution of ℒ*
∞(𝑓) = ℒalign(𝑓) + ℒ*

unif(𝑓) must lie in this intersection.

To this end, suppose that 𝑓 ∈ argmin𝑓 ℒ*
unif(𝑓) but that 𝑓(𝑥) ̸= 𝑓(𝑥+) with non-

zero probability. We shall show that we can construct a new embedding 𝑓 such that

𝑓(𝑥) = 𝑓(𝑥+) almost surely, and ℒ*
unif(𝑓) ≤ ℒ*

unif(𝑓). Due to Eqn. (A.3) this last

condition is equivalent to showing,
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E𝑥∼𝑝 inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2 ≥ E𝑥∼𝑝 inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2. (A.5)

Fix a 𝑐 ∈ 𝒞, and let 𝑥𝑐 ∈ argmax𝑥:ℎ(𝑥)=𝑐 inf𝑥− ̸∼𝑥 ‖𝑓(𝑥)− 𝑓(𝑥−)‖2. The maximum

is guaranteed to be attained, as we explain now. Indeed we know the maximum is

attained at some point in the closure 𝜕{𝑥 : ℎ(𝑥) = 𝑐} ∪ {𝑥 : ℎ(𝑥) = 𝑐}. Since 𝒳 is

compact and connected, any point �̄� ∈ 𝜕{𝑥 : ℎ(𝑥) = 𝑐} ∖ {𝑥 : ℎ(𝑥) = 𝑐} is such that

inf𝑥− ̸∼�̄� ‖𝑓(�̄�)− 𝑓(𝑥−)‖2 = 0 since �̄� must belong to {𝑥 : ℎ(𝑥) = 𝑐′} for some other 𝑐′.

Such an �̄� cannot be a solution unless all points in {𝑥 : ℎ(𝑥) = 𝑐} also achieve 0, in

which case we can simply take 𝑥𝑐 to be a point in the interior of {𝑥 : ℎ(𝑥) = 𝑐}.

Now, define 𝑓(𝑥) = 𝑓(𝑥𝑐) for any 𝑥 such that ℎ(𝑥) = 𝑐 and 𝑓(𝑥) = 𝑓(𝑥) otherwise.

Let us first aim to show that Eqn. (A.5) holds for this 𝑓 . Let us begin to expand the

left hand side of Eqn. (A.5),

E𝑥∼𝑝 inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

= E𝑐∼𝜌E𝑥∼𝑝(·|𝑐) inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

= 𝜌(𝑐)E𝑥∼𝑝(·|𝑐) inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

+ (1− 𝜌(𝑐))E𝑐∼𝜌(·|𝑐 ̸=𝑐)E𝑥∼𝑝(·|𝑐) inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

= 𝜌(𝑐)E𝑥∼𝑝(·|𝑐) inf
𝑥− ̸∼𝑥

‖𝑓(𝑥𝑐)− 𝑓(𝑥−)‖2

+ (1− 𝜌(𝑐))E𝑐∼𝜌(·|𝑐 ̸=𝑐)E𝑥∼𝑝(·|𝑐) inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

= 𝜌(𝑐) inf
𝑥− ̸∼𝑥𝑐

‖𝑓(𝑥𝑐)− 𝑓(𝑥−)‖2

+ (1− 𝜌(𝑐))E𝑐∼𝜌(·|𝑐 ̸=𝑐)E𝑥∼𝑝(·|𝑐) inf
ℎ(𝑥− )̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2 (A.6)

By construction, the first term can be lower bounded by inf𝑥− ̸∼𝑥𝑐 ‖𝑓(𝑥𝑐)−𝑓(𝑥−)‖2 ≥

E𝑥∼𝑝(·|𝑐) infℎ(𝑥− )̸=𝑐 ‖𝑓(𝑥)− 𝑓(𝑥−)‖2 for any 𝑥 such that ℎ(𝑥) = 𝑐. To lower bound the

second term, consider any fixed 𝑐 ̸= 𝑐 and 𝑥 ∼ 𝑝(·|𝑐) (so ℎ(𝑥) = 𝑐). Define the

following two subsets of the input space 𝒳
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𝒜 = {𝑓(𝑥−) : 𝑓(𝑥−) ̸= 𝑐 for 𝑥− ∈ 𝒳} ̂︀𝒜 = {𝑓(𝑥−) ∈ 𝒳 : 𝑓(𝑥−) ̸= 𝑐 for 𝑥− ∈ 𝒳}.

Since by construction the range of 𝑓 is a subset of the range of 𝑓 , we know that̂︀𝒜 ⊆ 𝒜. Combining this with the fact that 𝑓(𝑥) = 𝑓(𝑥) whenever ℎ(𝑥) = 𝑐 ̸= 𝑐 we see,

inf
ℎ(𝑥−) ̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2 = inf
ℎ(𝑥−) ̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

= inf
𝑢∈ ̂︀𝒜 ‖𝑓(𝑥)− 𝑢‖2

≥ inf
𝑢∈𝒜
‖𝑓(𝑥)− 𝑢‖2

= inf
ℎ(𝑥−) ̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

Using these two lower bounds we may conclude that Eqn. (A.6) can be lower

bounded by,

𝜌(𝑐)E𝑥∼𝑝(·|𝑐) inf
ℎ(𝑥−) ̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2 + (1− 𝜌(𝑐))E𝑐∼𝜌(·|�̸�=𝑐)E𝑥∼𝑝(·|𝑐) inf
ℎ(𝑥−) ̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

which equals E𝑥∼𝑝 inf𝑥− ̸∼𝑥 ‖𝑓(𝑥)− 𝑓(𝑥−)‖2. We have therefore proved Eqn. (A.5).

To summarize the current progress; given an embedding 𝑓 we have constructed a new

embedding 𝑓 that attains lower ℒunif loss and which is constant on 𝑥 such that 𝑓 is

constant on {𝑥 : ℎ(𝑥) = 𝑐}. Enumerating 𝒞 = {𝑐1, 𝑐2 . . . , 𝑐|𝒞|}, we may repeatedly

apply the same argument to construct a sequence of embeddings 𝑓1, 𝑓2, . . . , 𝑓|𝒞| such

that 𝑓𝑖 is constant on each of the following sets {𝑥 : ℎ(𝑥) = 𝑐𝑗} for 𝑗 ≤ 𝑖 . The

final embedding in the sequence 𝑓 * = 𝑓|𝒞| is such that ℒ*
unif(𝑓

*) ≤ ℒ*
unif(𝑓) and

therefore 𝑓 * is a minimizer. This embedding is constant on each of {𝑥 : ℎ(𝑥) = 𝑐𝑗} for

𝑗 = 1, 2, . . . , |𝒞|. In other words, 𝑓 *(𝑥) = 𝑓 *(𝑥+) almost surely. We have proved the

first claim.
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Obtaining the second claim is a matter of manipulating ℒ*
∞(𝑓 *). Indeed, we know

that ℒ*
∞(𝑓 *) = ℒ*

unif(𝑓
*)− 1/𝑡2 and defining v𝑐 = 𝑓 *(𝑥) = 𝑓(𝑥𝑐) for each 𝑐 ∈ 𝒞, this

expression is minimized if and only if 𝑓 * attains,

max
𝑓

E𝑥∼𝑝 inf
𝑥− ̸∼𝑥

‖𝑓(𝑥)− 𝑓(𝑥−)‖2 = max
𝑓

E𝑐∼𝜌E𝑥∼𝑝(·|𝑐) inf
ℎ(𝑥−) ̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

= max
𝑓

∑︁
𝑐∈𝒞

𝜌(𝑐) · inf
ℎ(𝑥− )̸=𝑐

‖𝑓(𝑥)− 𝑓(𝑥−)‖2

= max
{v𝑐∈S𝑑−1/𝑡}𝑐∈𝒞

∑︁
𝑐∈𝒞

𝜌(𝑐) ·min
𝑐′ ̸=𝑐
‖v𝑐 − v𝑐′‖2

where the final equality inserts 𝑓 * as an optimal 𝑓 and reparameterizes the maxi-

mum to be over the set of vectors {v𝑐 ∈ S𝑑−1/𝑡}𝑐∈𝒞.

A.1.3 Downstream Generalization

Theorem 1. Suppose 𝜌 is uniform on 𝒞 and 𝑓 is such that ℒ*
∞(𝑓)−inf𝑓 measurable ℒ*

∞(𝑓) ≤

𝜀 with 𝜀 ≤ 1. Let {v*
𝑐 ∈ S𝑑−1/𝑡}𝑐∈𝒞 be a solution to Problem 3.15, and define

𝜉 = min𝑐,𝑐−:�̸�=𝑐−‖v*
𝑐 − v*

𝑐−‖ > 0. Then there exists a set of vectors {v𝑐 ∈ S𝑑−1/𝑡}𝑐∈𝒞
such that the following 1-nearest neighbor classifier,

ℎ̂(𝑥) = 𝑐, where 𝑐 = argmin
𝑐∈𝒞
‖𝑓(𝑥)− v𝑐‖ (ties broken arbitrarily)

achieves misclassification risk,

P(ℎ̂(𝑥) ̸= 𝑐) ≤ 8𝜀

(𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2)2

Proof. To begin, using the definition of ℎ̂ we know that for any 0 < 𝛿 < 𝜉,

220



P𝑥,𝑐(ℎ̂(𝑥) = 𝑐) = P𝑥,𝑐
(︂
‖𝑓(𝑥)− v𝑐‖ ≤ min

𝑐−:𝑐− ̸=𝑐
‖𝑓(𝑥)− v𝑐−‖

)︂
≥ P𝑥,𝑐

(︂
‖𝑓(𝑥)− v𝑐‖ ≤ 𝛿, and 𝛿 ≤ min

𝑐−:𝑐− ̸=𝑐
‖𝑓(𝑥)− v𝑐−‖

)︂
≥ 1− P𝑥,𝑐 (‖𝑓(𝑥)− v𝑐‖ > 𝛿)− P𝑥,𝑐

(︀
min

𝑐−:𝑐− ̸=𝑐
‖𝑓(𝑥)− v𝑐−‖ < 𝛿

)︀
So to prove the result, our goal is now to bound these two probabilities. To

do so, we use the bound on the excess risk. Indeed, combining the fact ℒ*
∞(𝑓) −

inf𝑓 measurable ℒ*
∞(𝑓) ≤ 𝜀 with the notational rearrangements before Theorem 9 we

observe that E𝑥,𝑥+‖𝑓(𝑥)− 𝑓(𝑥+)‖2 ≤ 2𝜀.

We have,

2𝜀 ≥ E𝑥,𝑥+‖𝑓(𝑥)− 𝑓(𝑥+)‖2 = E𝑐∼𝜌E𝑥+∼𝑝(·|𝑐)E𝑥∼𝑝(·|𝑐)‖𝑓(𝑥)− 𝑓(𝑥+)‖2.

For fixed 𝑐, 𝑥+, let 𝑥𝑐 ∈ argmin{𝑥+:ℎ(𝑥+)=𝑐} E𝑥∼𝑝(·|𝑐)‖𝑓(𝑥)− 𝑓(𝑥+)‖2 where we extend

the minimum to be over the closure, a compact set, to guarantee it is attained. Then

we have

2𝜀 ≥ E𝑐∼𝜌E𝑥+∼𝑝(·|𝑐)E𝑥∼𝑝(·|𝑐)‖𝑓(𝑥)− 𝑓(𝑥+)‖2 ≥ E𝑐∼𝜌E𝑥∼𝑝(·|𝑐)‖𝑓(𝑥)− v𝑐‖2

where we have now defined v𝑐 = 𝑓(𝑥𝑐) for each 𝑐 ∈ 𝒞. Note in particular that v𝑐 lies

on the surface of the hypersphere S𝑑−1/𝑡. This enables us to obtain the follow bound

using Markov’s inequality,

P𝑥,𝑐 (‖𝑓(𝑥)− v𝑐‖ > 𝛿) = P𝑥,𝑐
(︀
‖𝑓(𝑥)− v𝑐‖2 > 𝛿2

)︀
≤ E𝑥,𝑐‖𝑓(𝑥)− v𝑐‖2

𝛿2

≤ 2𝜀

𝛿2
.

so it remains still to bound P𝑥,𝑐
(︀
min𝑐−:𝑐− ̸=𝑐‖𝑓(𝑥) − v𝑐−‖ < 𝛿

)︀
. Defining 𝜉′ =
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min𝑐,𝑐−:𝑐 ̸=𝑐−‖v𝑐 − v𝑐−‖, we have the following fact (proven later).

Fact (see lemma 5): 𝜉′ ≥
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)

√
𝜀.

Using this fact we are able to get control over the tail probability as follows,

P𝑥,𝑐
(︂

min
𝑐−:𝑐− ̸=𝑐

‖𝑓(𝑥)− v𝑐−‖ < 𝛿

)︂
≤ P𝑥,𝑐 (‖𝑓(𝑥)− v𝑐‖ > 𝜉′ − 𝛿)

≤ P𝑥,𝑐
(︂
‖𝑓(𝑥)− v𝑐‖ > 𝜉 −

√︁
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2 − 𝛿

)︂
= P𝑥,𝑐

(︂
‖𝑓(𝑥)− v𝑐‖2 > (

√︁
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2 − 𝛿)2

)︂
≤ 2𝜀

(
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2 − 𝛿)2

.

where this inequality holds for for any 0 ≤ 𝛿 ≤
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2.

Gathering together our tail probability bounds we find that P𝑥,𝑐(ℎ̂(𝑥) = 𝑐) ≥

1− 2𝜀
𝛿2
− 2𝜀

(
√
𝜉2−2|𝒞|(1+1/𝑡)𝜀1/2−𝛿)2

for any 0 ≤ 𝛿 ≤
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2. That is,

P𝑥,𝑐(ℎ̂(𝑥) ̸= 𝑐) ≤ 2𝜀

𝛿2
+

2𝜀

(
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2 − 𝛿)2

Since this holds for any 0 ≤ 𝛿 ≤
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2,

P𝑥,𝑐(ℎ̂(𝑥) ̸= 𝑐) ≤ min
0≤𝛿≤
√
𝜉2−2|𝒞|𝜀

{︂
2𝜀

𝛿2
+

2𝜀

(
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2 − 𝛿)2

}︂
.

Elementary calculus shows that the minimum is attained at 𝛿 =
√
𝜉2−2|𝒞|(1+1/𝑡)𝜀1/2

2
.

Plugging this in yields the final bound,

P(ℎ̂(𝑥) ̸= 𝑐) ≤ 8𝜀

(𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2)2
.

Lemma 5. Consider the same setting as introduced in Theorem 4. In particular define
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𝜉′ = min
𝑐,𝑐−:𝑐 ̸=𝑐−

‖v𝑐 − v𝑐−‖, 𝜉 = min
𝑐,𝑐−:�̸�=𝑐−

‖v*
𝑐 − v*

𝑐−‖.

where {v*
𝑐 ∈ S𝑑−1/𝑡}𝑐∈𝒞 is a solution to Problem 3.15, and {v𝑐 ∈ S𝑑−1/𝑡}𝑐∈𝒞 is

defined via v𝑐 = 𝑓(𝑥𝑐) with 𝑥𝑐 ∈ argmin{𝑥+:ℎ(𝑥+)=𝑐} E𝑥∼𝑝(·|𝑐)‖𝑓(𝑥)− 𝑓(𝑥+)‖2 for each

𝑐 ∈ 𝒞. Then we have,

𝜉′ ≥
√︁
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2.

Proof. Define,

𝑋 = min
𝑐−:𝑐− ̸=𝑐

‖v𝑐 − v𝑐−‖2, 𝑋* = min
𝑐−:𝑐− ̸=𝑐

‖v*
𝑐 − v*

𝑐−‖2.

𝑋 and 𝑋* are random due to the randomness of 𝑐 ∼ 𝜌. We can split up the following

expectation by conditioning on the event {𝑋 ≤ 𝑋*} and its complement,

E |𝑋 −𝑋*| = P(𝑋 ≥ 𝑋*)E[𝑋 −𝑋*] + P(𝑋 ≤ 𝑋*)E[𝑋* −𝑋]. (A.7)

Using ℒ*
∞(𝑓) − inf𝑓 measurable ℒ*

∞(𝑓) ≤ 𝜀 and the notational re-writing of the

objective ℒ*
∞ introduced before Theorem 9, we observe the following fact, whose proof

we give in a separate lemma after the conclusion of this proof.

Fact (see lemma 6): E𝑋* − 2(1 + 1/𝑡)
√
𝜀 ≤ E𝑋 ≤ E𝑋*.

This fact implies in particular E[𝑋 − 𝑋*] ≤ 0 and E[𝑋* − 𝑋] ≤ 2(1 + 1/𝑡)
√
𝜀.

Inserting both inequalities into Eqn. A.7 we find that E |𝑋 −𝑋*| ≤ 2(1 + 1/𝑡)
√
𝜀. In

other words, since 𝜌 is uniform,

1

|𝒞|
∑︁
𝑐∈𝒞

⃒⃒⃒⃒
min

𝑐−:𝑐− ̸=𝑐
‖v𝑐 − v𝑐−‖2 − min

𝑐−:𝑐− ̸=𝑐
‖v*

𝑐 − v*
𝑐−‖2

⃒⃒⃒⃒
≤ 2(1 + 1/𝑡)

√
𝜀.
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From which we can say that for any 𝑐 ∈ 𝒞 ,

⃒⃒⃒⃒
min

𝑐−:𝑐− ̸=𝑐
‖v𝑐 − v𝑐−‖2 − min

𝑐−:𝑐− ̸=𝑐
‖v*

𝑐 − v*
𝑐−‖2

⃒⃒⃒⃒
≤ 2 |𝒞| (1 + 1/𝑡)

√
𝜀.

So

min
𝑐−:𝑐− ̸=𝑐

‖v𝑐 − v𝑐−‖ ≥
√︂

min
𝑐−:𝑐− ̸=𝑐

‖v*
𝑐 − v*

𝑐−‖2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2

≥
√︁
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2

Since this holds for any 𝑐 ∈ 𝒞 , we conclude that 𝜉′ ≥
√︀
𝜉2 − 2 |𝒞| (1 + 1/𝑡)𝜀1/2.

Lemma 6. Consider the same setting as introduced in Theorem 4. Define also,

𝑋 = min
𝑐−:𝑐− ̸=𝑐

‖v𝑐 − v𝑐−‖2, 𝑋* = min
𝑐−:𝑐− ̸=𝑐

‖v*
𝑐 − v*

𝑐−‖2,

where v𝑐 = 𝑓(𝑥𝑐) with 𝑥𝑐 ∈ argmin{𝑥+:ℎ(𝑥+)=𝑐} E𝑥∼𝑝(·|𝑐)‖𝑓(𝑥) − 𝑓(𝑥+)‖2 for each

𝑐 ∈ 𝒞. We have,

E𝑋* − 2(1 + 1/𝑡)
√
𝜀 ≤ E𝑋 ≤ E𝑋*.

Proof. By Theorem 3.15 we know there is an 𝑓 * attaining the minimum inf𝑓 measurable ℒ*
∞(𝑓)

and that this 𝑓 * attains ℒ*
align(𝑓

*) = 0, and also minimizes the uniformity term ℒ*
unif(𝑓),

taking the value ℒ*
unif(𝑓

*) = E𝑐∼𝜌max𝑐−:𝑐− ̸=𝑐 v
*
c
⊤v*

𝑐− . Because of this we find,

ℒ*
unif(𝑓) ≤

(︀
ℒ*

∞(𝑓)− ℒ*
∞(𝑓 *)

)︀
+
(︀
ℒ*

align(𝑓
*)− ℒ*

align(𝑓)
)︀
+ ℒ*

unif(𝑓
*)

≤
(︀
ℒ*

∞(𝑓)− ℒ*
∞(𝑓 *)

)︀
+ ℒ*

unif(𝑓
*)

≤ 𝜀+ ℒ*
unif(𝑓

*)

= 𝜀+ E𝑐∼𝜌 max
𝑐−:𝑐− ̸=𝑐

v*
c
⊤v*

𝑐− .

Since we would like to bound E𝑐∼𝜌max𝑐−:𝑐− ̸=𝑐 vc
⊤v𝑐− in terms of E𝑐∼𝜌max𝑐−:𝑐− ̸=𝑐 v

*
c
⊤v*

𝑐− ,

this observation means that is suffices to bound E𝑐∼𝜌max𝑐−:𝑐− ̸=𝑐 vc
⊤v𝑐− in terms of
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ℒ*
unif(𝑓). To this end, note that for a fixed 𝑐, and 𝑥 such that ℎ(𝑥) = 𝑐 we have,

sup
𝑥− ̸∼𝑥

𝑓(𝑥)⊤𝑓(𝑥−) = sup
𝑥− ̸∼𝑥

{︀
v𝑐

⊤𝑓(𝑥−) + (𝑓(𝑥)− v𝑐)
⊤𝑓(𝑥−)

}︀
= sup

𝑥− ̸∼𝑥
v𝑐

⊤𝑓(𝑥−)− ‖𝑓(𝑥)− v𝑐‖/𝑡

≥ max
𝑥−∈{𝑥𝑐}𝑐∈𝒞

v𝑐
⊤𝑓(𝑥−)− ‖𝑓(𝑥)− v𝑐‖/𝑡

= max
𝑐− ̸=𝑐

v𝑐
⊤v𝑐− − ‖𝑓(𝑥)− v𝑐‖/𝑡

where the inequality follows since {𝑥𝑐}𝑐∈𝒞 is a subset of the closure of {𝑥− : 𝑥− ̸∼ 𝑥}.

Taking expectations over 𝑐, 𝑥,

ℒ*
unif(𝑓) = E𝑥,𝑐 sup

𝑥− ̸∼𝑥
𝑓(𝑥)⊤𝑓(𝑥−)

≥ E𝑐∼𝜌max
𝑐− ̸=𝑐

v𝑐
⊤v𝑐− − E𝑥,𝑐‖𝑓(𝑥)− v𝑐‖/𝑡

≥ E𝑐∼𝜌max
𝑐− ̸=𝑐

v𝑐
⊤v𝑐− −

√︁
E𝑥,𝑐‖𝑓(𝑥)− v𝑐‖2/𝑡

≥ E𝑐∼𝜌max
𝑐− ̸=𝑐

v𝑐
⊤v𝑐− −

√
𝜀/𝑡.

So since 𝜀 ≤
√
𝜀, we have found that

E𝑐∼𝜌max
𝑐− ̸=𝑐

v𝑐
⊤v𝑐− ≤

√
𝜀/𝑡+𝜀+E𝑐∼𝜌 max

𝑐−:𝑐− ̸=𝑐
v*
c
⊤v*

𝑐− ≤ (1+1/𝑡)
√
𝜀+E𝑐∼𝜌 max

𝑐−:𝑐− ̸=𝑐
v*
c
⊤v*

𝑐− .

Of course we also have,

E𝑐∼𝜌 max
𝑐−:𝑐− ̸=𝑐

v*
c
⊤v*

𝑐− = ℒ*
unif(𝑓

*) ≤ E𝑐∼𝜌 max
𝑐−:𝑐− ̸=𝑐

vc
⊤v𝑐−

since the embedding 𝑓(𝑥) = v𝑐 whenever ℎ(𝑥) = 𝑐 is also a feasible solution.
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Combining these two inequalities with the simple identity x⊤y = 1/𝑡2 − ‖x− y‖2/2

for all length 1/𝑡 vectors x,y, we find,

1/𝑡2 − E𝑐∼𝜌 max
𝑐−:𝑐− ̸=𝑐

‖v*
c − v*

𝑐−‖2/2 ≤ 1/𝑡2 − E𝑐∼𝜌 max
𝑐−:𝑐− ̸=𝑐

‖vc − v𝑐−‖2/2

≤ 1/𝑡2 − E𝑐∼𝜌 max
𝑐−:𝑐− ̸=𝑐

‖v*
c − v*

𝑐−‖2/2 + (1 + 1/𝑡)
√
𝜀.

Subtracting 1/𝑡2 and multiplying by −2 yields the result.

A.1.4 Proofs of Theoretical Results on Debiased Contratstive

Loss

A.1.5 Proof of Lemma 1

The first result we give shows the relation between the unbiased, and conventional

(sample biased) objective.

Lemma 1. 1 For any embedding 𝑓 and finite 𝑁 , we have

𝐿𝑁Biased(𝑓) ≥ 𝐿𝑁Unbiased(𝑓) + E𝑥∼𝑝

[︃
0 ∧ log

E𝑥+∼𝑝+𝑥 exp 𝑓(𝑥)⊤𝑓(𝑥+)

E𝑥−∼𝑝−𝑥 exp 𝑓(𝑥)⊤𝑓(𝑥−)

]︃
− 𝑒3/2

√︂
𝜋

2𝑁
.

where 𝑎 ∧ 𝑏 denotes the minimum of two real numbers 𝑎 and 𝑏.

Proof. We use the notation ℎ(𝑥, �̄�) = exp𝑓(𝑥)
⊤𝑓(�̄�) for the critic. We will use Theorem

3 to prove this lemma. Setting 𝜏+ = 0, Theorem 3 states that

E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︂
− log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +𝑁E𝑥−∼𝑝ℎ(𝑥, 𝑥
−
𝑖 )

]︂
− E 𝑥∼𝑝

𝑥+∼𝑝+𝑥
{𝑥−𝑖 }𝑁𝑖=1∼𝑝𝑁

[︂
− log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +
∑︀𝑁

𝑖=1 ℎ(𝑥, 𝑥
−
𝑖 )

]︂
≤ 𝑒3/2

√︂
𝜋

2𝑁
.

Equipped with this inequality, the biased objective can be decomposed into the
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sum of the debiased objective and a second term as follows:

𝐿𝑁Biased(𝑓) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

{𝑥−𝑖 }𝑁𝑖=1∼𝑝𝑁

[︂
− log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +
∑︀𝑁

𝑖=1 ℎ(𝑥, 𝑥
−
𝑖 )

]︂

≥ E𝑥∼𝑝,𝑥+∼𝑝+𝑥

[︂
− log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +𝑁E𝑥−∼𝑝𝑥ℎ(𝑥, 𝑥
−)

]︂
− 𝑒3/2

√︂
𝜋

2𝑁

= E𝑥∼𝑝,𝑥+∼𝑝+𝑥

[︂
− log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +𝑁E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

]︂
+ E𝑥∼𝑝,𝑥+∼𝑝+𝑥

[︂
log

ℎ(𝑥, 𝑥+) +𝑁E𝑥−∼𝑝𝑥ℎ(𝑥, 𝑥
−)

ℎ(𝑥, 𝑥+) +𝑁E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

]︂
− 𝑒3/2

√︂
𝜋

2𝑁

= 𝐿𝑁Debiased(𝑓) + E𝑥∼𝑝,𝑥+∼𝑝+𝑥

[︂
log

ℎ(𝑥, 𝑥+) +𝑁E𝑥−∼𝑝𝑥ℎ(𝑥, 𝑥
−)

ℎ(𝑥, 𝑥+) +𝑁E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

]︂
− 𝑒3/2

√︂
𝜋

2𝑁

= 𝐿𝑁Debiased(𝑓) + E𝑥∼𝑝,𝑥+∼𝑝+𝑥

[︂
log

ℎ(𝑥, 𝑥+) + 𝜏−𝑁E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−) + 𝜏+𝑁E𝑥−∼𝑝+𝑥 ℎ(𝑥, 𝑥

−)

ℎ(𝑥, 𝑥+) + 𝜏−𝑁E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−) + 𝜏+𝑁E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)

]︂
− 𝑒3/2

√︂
𝜋

2𝑁
.

If E𝑥−∼𝑝+𝑥 ℎ(𝑥, 𝑥
−) ≥ E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−), then this expression can be lower bounded

by 𝐿𝑁Debiased(𝑓) + log 1 = 𝐿𝑁Debiased(𝑓). Otherwise, if E𝑥−∼𝑝+𝑥 ℎ(𝑥, 𝑥
−) ≤ E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−),

we can use the elementary fact that 𝑎+𝑐
𝑏+𝑐
≥ 𝑎

𝑏
for 𝑎 ≤ 𝑏 and 𝑎, 𝑏, 𝑐 ≥ 0. Combining

these two cases, we conclude that

𝐿𝑁Biased(𝑓) ≥ 𝐿𝑁Unbiased(𝑓) + E𝑥∼𝑝

[︃
0 ∧ log

E𝑥+∼𝑝+𝑥 exp 𝑓(𝑥)⊤𝑓(𝑥+)

E𝑥−∼𝑝−𝑥 exp 𝑓(𝑥)⊤𝑓(𝑥−)

]︃
− 𝑒3/2

√︂
𝜋

2𝑁
,

where we replaced the dummy variable 𝑥− in the numerator by 𝑥+.

A.1.6 Proof of Lemma 2

The next result is a consequence of the dominated convergence theorem.
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Lemma 2. 2 For fixed 𝑄 and 𝑁 →∞, it holds that

E 𝑥∼𝑝,𝑥+∼𝑝+𝑥
{𝑥−𝑖 }𝑁𝑖=1∼𝑝

−
𝑥

𝑁

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝑁

∑︀𝑁
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃

−→ E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝜏−

(E𝑥−∼𝑝[𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)]− 𝜏+E𝑣∼𝑝+𝑥 [𝑒𝑓(𝑥)

𝑇 𝑓(𝑣)])

]︃
.

Proof. Since the contrastive loss is bounded, applying the Dominated Convergence

Theorem completes the proof:

lim
𝑁→∞

E

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝑁

∑︀𝑁
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃

=E

[︃
lim
𝑁→∞

− log
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝑁

∑︀𝑁
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃
(Dominated Convergence Theorem)

=E

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑝−𝑥 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)

]︃
.

Since 𝑝−𝑥 (𝑥′) = (𝑝(𝑥′)− 𝜏+𝑝+𝑥 (𝑥′))/𝜏− and by the linearity of the expectation, we have

E𝑥−∼𝑝−𝑥 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−) = 𝜏−(E𝑥−∼𝑝[𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−)]− 𝜏+E𝑥−∼𝑝+𝑥 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]),

which completes the proof.

A.1.7 Proof of Theorem 3

In order to prove Theorem 3, which shows that the empirical estimate of the asymptotic

debiased objective is a good estimate, we first seek a bound on the tail probability

that the difference between the integrands of the asymptotic and non-asymptotic

objective functions i slarge. That is, we wish to bound the probability that the

following quantity is greater than 𝜀:

∆ =

⃒⃒⃒⃒
− log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)
+ log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

⃒⃒⃒⃒
,

228



where we again write ℎ(𝑥, �̄�) = exp𝑓(𝑥)
⊤𝑓(�̄�) for the critic. Note that implicitly, ∆

depends on 𝑥, 𝑥+ and the collections {𝑢𝑖}𝑁𝑖=1 and {𝑣𝑖}𝑀𝑖=1. We achieve control over the

tail via the following lemma.

Lemma 3. A.2 Let 𝑥 and 𝑥+ in 𝒳 be fixed. Further, let {𝑢𝑖}𝑁𝑖=1 and {𝑣𝑖}𝑀𝑖=1 be

collections of i.i.d. random variables sampled from 𝑝 and 𝑝+𝑥 respectively. Then for all

𝜀 > 0,

P(∆ ≥ 𝜀) ≤ 2 exp

(︂
−𝑁𝜀

2(𝜏−)2

2𝑒3

)︂
+ 2 exp

(︂
−𝑀𝜀2(𝜏−/𝜏+)2

2𝑒3

)︂
.

We delay the proof until after we prove Theorem 3, which we are ready to prove

with this fact in hand.

Theorem 1. 3 For any embedding 𝑓 and finite 𝑁 and 𝑀 , we have

⃒⃒⃒̃︀𝐿𝑁Debiased(𝑓)− 𝐿
𝑁,𝑀
Debiased(𝑓)

⃒⃒⃒
≤ 𝑒3/2

𝜏−

√︂
𝜋

2𝑁
+
𝑒3/2𝜏+

𝜏−

√︂
𝜋

2𝑀
.

Proof. By Jensen’s inequality, we may push the absolute value inside the expectation

to see that |̃︀𝐿𝑁Unbiased(𝑓) − 𝐿𝑁,𝑀Debiased(𝑓)| ≤ E∆. All that remains is to exploit the

exponential tail bound of Lemma 𝐴.2.

To do this we write the expectation of ∆ for fixed 𝑥, 𝑥+ as the integral of its tail

probability,

E ∆ = E𝑥,𝑥+
[︀
E[∆|𝑥, 𝑥+]

]︀
= E𝑥,𝑥+

[︂∫︁ ∞

0

P(∆ ≥ 𝜀|𝑥, 𝑥+)d𝜀
]︂

≤
∫︁ ∞

0

2 exp

(︂
−𝑁𝜀

2(𝜏−)2

2𝑒3

)︂
d𝜀+

∫︁ ∞

0

2 exp

(︂
−𝑀𝜀2(𝜏−/𝜏+)2

2𝑒3

)︂
d𝜀.

The outer expectation disappears since the tail probably bound of Theorem 3 holds

uniformly for all fixed 𝑥, 𝑥+. Both integrals can be computed analytically using the

classical identity

∫︁ ∞

0

𝑒−𝑐𝑧
2

d𝑧 =
1

2

√︂
𝜋

𝑐
.
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Applying the identity to each integral we finally obtain the claimed bound,√︃
2𝑒3𝜋

(𝜏−)2𝑁
+

√︃
2𝑒3𝜋

(𝜏−/𝜏+)2𝑀
=
𝑒3/2

𝜏−

√︂
2𝜋

𝑁
+
𝑒3/2𝜏+

𝜏−

√︂
2𝜋

𝑀
.

We still owe the reader a proof of Lemma 3, which we give now.

Proof of Lemma 3. We first decompose the probability as

P
(︂⃒⃒⃒⃒
− log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)
+ log

ℎ(𝑥, 𝑥+)

ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

⃒⃒⃒⃒
≥ 𝜀

)︂
= P

(︂⃒⃒⃒⃒
log
{︀
ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

}︀
− log

{︀
ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
}︀⃒⃒⃒⃒
≥ 𝜀

)︂
= P

(︂
log
{︀
ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

}︀
− log

{︀
ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
}︀
≥ 𝜀

)︂
+ P

(︂
− log

{︀
ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

}︀
+ log

{︀
ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
}︀
≥ 𝜀

)︂

where the final equality holds simply because |𝑋| ≥ 𝜀 if and only if 𝑋 ≥ 𝜀 or

−𝑋 ≥ 𝜀. The first term can be bounded as

P
(︂
log
{︀
ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

}︀
− log

{︀
ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
}︀
≥ 𝜀

)︂
= P

(︂
log

ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

≥ 𝜀

)︂
≤ P

(︂
𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)−𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)

ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

≥ 𝜀

)︂
= P

(︂
𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)− E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−) ≥ 𝜀

{︂
1

𝑄
ℎ(𝑥, 𝑥+) + E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)

}︂)︂
≤ P

(︂
𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)− E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−) ≥ 𝜀𝑒−1

)︂
. (A.8)

The first inequality follows by applying the fact that log 𝑥 ≤ 𝑥 − 1 for 𝑥 > 0. The

second inequality holds since 1
𝑄
ℎ(𝑥, 𝑥+) + E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−) ≥ 1/𝑒. Next, we move on
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to bounding the second term, which proceeds similarly, using the same two bounds.

P
{︂
− log

(︀
ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

}︀
+ log

{︀
ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
}︀
≥ 𝜀

)︂
= P

(︂
log

ℎ(𝑥, 𝑥+) +𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥
−)

ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)
≥ 𝜀

)︂
≤ P

(︂
𝑄E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)−𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

ℎ(𝑥, 𝑥+) +𝑄𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)
≥ 𝜀

)︂
= P

(︂
E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)− 𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1) ≥ 𝜀

{︂
1

𝑄
ℎ(𝑥, 𝑥+) + 𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

}︂)︂
≤ P

(︂
E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)− 𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1) ≥ 𝜀𝑒−1

)︂
. (A.9)

Combining equation (A.8) and equation (A.9), we have

P(∆ ≥ 𝜀) ≤ P
(︂⃒⃒
𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)− E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
⃒⃒
≥ 𝜀𝑒−1

)︂
.

It therefore suffices to bound the right hand tail probability. We are bounding the tail of

a difference of the form |max(𝑎, 𝑏)−𝑐| where 𝑐 ≥ 𝑏. Notice that |max(𝑎, 𝑏)−𝑐| ≤ |𝑎−𝑐|.

If 𝑎 > 𝑏 then this relation is obvious, while if 𝑎 ≤ 𝑏 we have |max(𝑎, 𝑏)− 𝑐| = |𝑏− 𝑐| =

𝑐 − 𝑏 ≤ 𝑐 − 𝑎 ≤ |𝑎 − 𝑐|. Using this elementary observation, we can decompose the

random variable whose tail we wish to control as follows:

⃒⃒
𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)− E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
⃒⃒

≤ 1

𝜏−

⃒⃒⃒⃒
1

𝑁

𝑁∑︁
𝑖=1

E𝑥∼𝑝ℎ(𝑥, 𝑢𝑖)− E𝑥−∼𝑝
𝑥∼𝑝

ℎ(𝑥, 𝑥−)

⃒⃒⃒⃒
+
𝜏+

𝜏−

⃒⃒⃒⃒
1

𝑀

𝑀∑︁
𝑖=1

E𝑥∼𝑝ℎ(𝑥, 𝑣𝑖)− E𝑥−∼𝑝+𝑥
𝑥∼𝑝

ℎ(𝑥, 𝑥−)

⃒⃒⃒⃒

Using this observation, we find that

P
(︂⃒⃒
𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)− E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
⃒⃒
≥ 𝜀𝑒−1

)︂
≤ P

(︂⃒⃒ 1
𝜏−

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑢𝑖) − 𝜏+ 1

𝑀

𝑀∑︁
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑣𝑖)

)︃
− E𝑥−∼𝑝−𝑥 ℎ(𝑥, 𝑥

−)
⃒⃒
≥ 𝜀𝑒−1

)︂
≤ I(𝜀) + II(𝜀).
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where

I(𝜀) = P

(︃
1

𝜏−

⃒⃒⃒⃒
1

𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥, 𝑢𝑖)− E𝑥−∼𝑝ℎ(𝑥, 𝑥
−)

⃒⃒⃒⃒
≥ 𝜀𝑒−1

2

)︃

II(𝜀) = P

(︃
𝜏+

𝜏−

⃒⃒⃒⃒
1

𝑀

𝑀∑︁
𝑖=1

ℎ(𝑥, 𝑣𝑖)− E𝑥−∼𝑝+𝑥 ℎ(𝑥, 𝑥
−)

⃒⃒⃒⃒
≥ 𝜀𝑒−1

2

)︃
.

Hoeffding’s inequality states that if 𝑋,𝑋1, . . . , 𝑋𝑁 are i.i.d random variables

bounded in the range [𝑎, 𝑏], then

P

(︃⃒⃒⃒⃒
⃒ 1𝑛

𝑁∑︁
𝑖=1

𝑋𝑖 − E𝑋

⃒⃒⃒⃒
⃒ ≥ 𝜀

)︃
≤ 2 exp

(︂
−2𝑁𝜀2

𝑏− 𝑎

)︂
.

In our particular case, 𝑒−1 ≤ ℎ(𝑥, �̄�) ≤ 𝑒, yielding the following bound on the tails of
both terms:

I(𝜀) ≤ 2 exp

(︂
−𝑁𝜀

2(𝜏−)2

2𝑒3

)︂
and II(𝜀) ≤ 2 exp

(︂
−𝑀𝜀2(𝜏−/𝜏+)2

2𝑒3

)︂
.

A.1.8 Proof of Lemma 4

Lemma 4. 4 For any embedding 𝑓 , whenever 𝑁 ≥ 𝐾 − 1 we have

𝐿Sup(𝑓) ≤ 𝐿𝜇Sup(𝑓) ≤ ̃︀𝐿𝑁Debiased(𝑓).

Proof. We first show that 𝑁 = 𝐾 − 1 gives the smallest loss:

̃︀𝐿𝑁Unbiased(𝑓) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁E𝑥−∼𝑝−𝑥 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)

]︃

≥ E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + (𝐾 − 1)E𝑥−∼𝑝−𝑥 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)

]︃
= 𝐿𝐾−1

Unbiased(𝑓)

To show that 𝐿𝐾−1
Unbiased(𝑓) is an upper bound on the supervised loss 𝐿sup(𝑓), we addi-

232



tionally introduce a task specific class distribution 𝜌𝒯 which is a uniform distribution

over the classes in task 𝒯 .

𝐿𝐾−1
Unbiased(𝑓)

= E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + (𝐾 − 1)E𝑥−∼𝑝−𝑥 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)

]︃

= E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)
𝑥+∼𝑝(·|𝑐)

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + (𝐾 − 1)E𝒯 ∼𝒟E𝜌𝒯 (𝑐−∼|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)

]︃

≥ E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

⎡⎣− log
𝑒𝑓(𝑥)

𝑇E𝑥+∼𝑝(·|𝑐)𝑓(𝑥
+)

𝑒
𝑓(𝑥)𝑇E

𝑥+∼𝑝+
𝑥,𝒯

𝑓(𝑥+)
+ (𝐾 − 1)E𝒯 ∼𝒟E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒𝑓(𝑥)

𝑇 𝑓(𝑥−)

⎤⎦
≥ E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

[︃
− log

𝑒𝑓(𝑥)
𝑇E𝑥+∼𝑝(·|𝑐)𝑓(𝑥

+)

𝑒𝑓(𝑥)
𝑇E𝑥+∼𝑝(·|𝑐)𝑓(𝑥

+) + (𝐾 − 1)E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)

]︃

= E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

[︃
− log

𝑒𝑓(𝑥)
𝑇E𝑥+∼𝑝(·|𝑐)𝑓(𝑥

+)

𝑒𝑓(𝑥)
𝑇E𝑥+∼𝑝(·|𝑐)𝑓(𝑥

+) + (𝐾 − 1)E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)

]︃

≥ E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

[︃
− log

𝑒𝑓(𝑥)
𝑇E𝑥+∼𝑝(·|𝑐)𝑓(𝑥

+)

𝑒𝑓(𝑥)
𝑇E𝑥+∼𝑝(·|𝑐)𝑓(𝑥

+) + (𝐾 − 1)E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))𝑒
𝑓(𝑥)𝑇E𝑥−∼𝑝(·|𝑐−)𝑓(𝑥

−)

]︃

= E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

[︃
− log

exp(𝑓(𝑥)𝑇𝜇𝑐)

exp(𝑓(𝑥)𝑇𝜇𝑐) +
∑︀

𝑐−∈𝒯 ,𝑐− ̸=𝑐 exp(𝑓(𝑥)
𝑇𝜇𝑐−)

]︃
= E𝒯 ∼𝒟𝐿

𝜇
Sup(𝒯 , 𝑓)

= �̄�𝜇Sup(𝑓)

where the three inequalities follow from Jensen’s inequality. The first and third

inequality shift the expectations E𝑥+∼𝑝+𝑥,𝒯
and E𝑥−∼𝑝(·|𝑐−), respectively, via the convexity

of the functions and the second moves the expectation E𝒯 ∼𝒟 out using concavity. Note

that �̄�Sup(𝑓) ≤ �̄�𝜇Sup(𝑓) holds trivially.

A.1.9 Proof of Theorem 5

We wish to derive a data dependent bound on the downstream supervised generalization

error of the debiased contrastive objective. Recall that a sample (𝑥, 𝑥+, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

233



yields loss

− log

{︃
𝑒𝑓(𝑥)

⊤𝑓(𝑥+)

𝑒𝑓(𝑥)⊤𝑓(𝑥+) +𝑁𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

}︃
= log

{︂
1 +𝑁

𝑔(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

𝑒𝑓(𝑥)⊤𝑓(𝑥+)

}︂

which is equal to ℓ
(︁{︀
𝑓(𝑥)⊤

(︀
𝑓(𝑢𝑖)− 𝑓(𝑥+)

)︀}︀𝑁
𝑖=1

,
{︀
𝑓(𝑥)⊤

(︀
𝑓(𝑣𝑖)− 𝑓(𝑥+)

)︀}︀𝑀
𝑖=1

)︁
, where

we define

ℓ({𝑎𝑖}𝑁𝑖=1, {𝑏𝑖}𝑀𝑖=1) = log

{︃
1 +𝑁 max

(︃
1

𝜏−
1

𝑁

𝑁∑︁
𝑖=1

𝑎𝑖 − 𝜏+
1

𝑀

𝑀∑︁
𝑖=1

𝑏𝑖, 𝑒
−1

)︃}︃
.

To derive our bound, we will exploit a concentration of measure result due to

Arora et al. [2019]. They consider an objective of the form

𝐿𝑢𝑛(𝑓) = E
[︀
ℓ({𝑓(𝑥)⊤

(︀
𝑓(𝑥𝑖)− 𝑓(𝑥+)

)︀
}𝑘𝑖=1)

]︀
,

where (𝑥, 𝑥+, 𝑥−1 , . . . , 𝑥
−
𝑘 ) are sampled from any fixed distribution on 𝒳 𝑘+2 (they were

particularly focused on the case where 𝑥−𝑖 ∼ 𝑝, but the proof holds for arbitrary

distributions). Let ℱ be a class of representation functions 𝒳 → R𝑑 such that

‖𝑓(·)‖ ≤ 𝑅 for 𝑅 > 0. The corresponding empirical risk minimizer is

𝑓 ∈ argmin
𝑓∈ℱ

1

𝑇

𝑇∑︁
𝑗=1

ℓ
(︀
{𝑓(𝑥𝑗)⊤

(︀
𝑓(𝑥𝑗𝑖)− 𝑓(𝑥+)

)︀
}𝑘𝑖=1

)︀
over a training set 𝒮 = {(𝑥𝑗, 𝑥+𝑗 , 𝑥−𝑗1, . . . , 𝑥−𝑗𝑘)}𝑇𝑗=1 of i.i.d. samples. Their result bounds

the loss of the empirical risk minimizer as follows.

Lemma 5. A.3 [Arora et al., 2019] Let ℓ : R𝑘 → R be 𝜂-Lipschitz and bounded by 𝐵.

Then with probability at least 1− 𝛿 over the training set 𝒮 = {(𝑥𝑗, 𝑥+𝑗 , 𝑥−𝑗1, . . . , 𝑥−𝑗𝑘)}𝑇𝑗=1,

for all 𝑓 ∈ ℱ

𝐿𝑢𝑛(𝑓) ≤ 𝐿𝑢𝑛(𝑓) +𝒪

⎛⎝𝜂𝑅√𝑘ℛ𝒮(ℱ)
𝑇

+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠
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where

ℛ𝒮(ℱ) = E𝜎∼{±1}(𝑘+2)𝑑𝑇

[︂
sup
𝑓∈ℱ
⟨𝜎, 𝑓|𝒮⟩

]︂
,

and 𝑓|𝒮 =
(︀
𝑓𝑡(𝑥𝑗), 𝑓𝑡(𝑥

+
𝑗 ), 𝑓𝑡(𝑥

−
𝑗1), . . . , , 𝑓𝑡(𝑥

−
𝑗𝑘)
)︀
𝑗∈[𝑇 ]
𝑡∈[𝑑]

.

In our context, we have 𝑘 = 𝑁 +𝑀 and 𝑅 = 𝑒. So, it remains to obtain constants

𝜂 and 𝐵 such that ℓ({𝑎𝑖}𝑁𝑖=1, {𝑏𝑖}𝑀𝑖=1) is 𝜂-Lipschitz, and bounded by 𝐵. Note that

since we consider normalized embeddings 𝑓 , we have ‖𝑓(·)‖ ≤ 1 and therefore only

need to consider the domain where 𝑒−1 ≤ 𝑎𝑖, 𝑏𝑖 ≤ 𝑒.

Lemma 6. A.4 Suppose that 𝑒−1 ≤ 𝑎𝑖, 𝑏𝑖 ≤ 𝑒. The function ℓ({𝑎𝑖}𝑁𝑖=1, {𝑏𝑖}𝑀𝑖=1) is

𝜂-Lipschitz, and bounded by 𝐵 for

𝜂 = 𝑒 ·

√︃
1

(𝜏−)2𝑁
+

(𝜏+)2

𝑀
, 𝐵 = 𝒪

(︂
log𝑁

(︂
1

𝜏−
+ 𝜏+

)︂)︂
.

Proof. First, it is easily observed that ℓ is upper bounded by plugging in 𝑎𝑖 = 𝑒 and

𝑏𝑖 = 𝑒−1, yielding a bound of

log

{︂
1 +𝑁 max

(︂
1

𝜏−
𝑒− 𝜏+𝑒−1, 𝑒−1

)︂}︂
= 𝒪

(︂
log𝑁

(︂
1

𝜏−
+ 𝜏+

)︂)︂
.

To bound the Lipschitz constant we view ℓ as a composition ℓ({𝑎𝑖}𝑁𝑖=1, {𝑏𝑖}𝑀𝑖=1) =

𝜑
(︀
𝑔
(︀
ℓ({𝑎𝑖}𝑁𝑖=1, {𝑏𝑖}𝑀𝑖=1

)︀)︀
where1,

𝜑(𝑧) = log
(︀
1 +𝑁 max(𝑧, 𝑒−1

)︀
𝑔({𝑎𝑖}𝑁𝑖=1, {𝑏𝑖}𝑀𝑖=1) =

1

𝜏−
1

𝑁

𝑁∑︁
𝑖=1

𝑎𝑖 − 𝜏+
1

𝑀

𝑀∑︁
𝑖=1

𝑏𝑖.

If 𝑧 < 𝑒−1 then 𝜕𝑧𝜑(𝑧) = 0, while if 𝑧 ≥ 𝑒−1 then 𝜕𝑧𝜑(𝑧) =
𝑁

1+𝑁𝑧
≤ 𝑁

1+𝑁𝑒−1 ≤ 𝑒.

We therefore conclude that 𝜑 is 𝑒-Lipschitz. Meanwhile, 𝜕𝑎𝑖𝑔 = 1
𝜏−𝑁

and 𝜕𝑏𝑖𝑔 = 𝜏+

𝑀
.

The Lipschitz constant of 𝑔 is bounded by the Forbenius norm of the Jacobian of 𝑔,

1Note the definition of 𝑔 is slightly modified in this context.
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which equals ⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

1

(𝜏−𝑁)2
+

𝑀∑︁
𝑗=1

(𝜏+)2

𝑀2
=

√︃
1

(𝜏−)2𝑁
+

(𝜏+)2

𝑀
.

Now we have control on the bound on ℓ and its Lipschitz constant, we are ready

to prove Theorem 5 by combining several of our previous results with Lemma A.3.

Theorem 2. 5 With probability at least 1− 𝛿, for all 𝑓 ∈ ℱ and 𝑁 ≥ 𝐾 − 1,

𝐿Sup(𝑓) ≤ 𝐿𝜇Sup(𝑓) ≤ 𝐿𝑁,𝑀Debiased(𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑁
+
𝜏+

𝜏−

√︂
1

𝑀
+
𝜆ℛ𝒮(ℱ)

𝑇
+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠
where 𝜆 =

√︁
1
𝜏−2 (

𝑀
𝑁

+ 1) + 𝜏+2(𝑁
𝑀

+ 1) and 𝐵 = log𝑁
(︀

1
𝜏−

+ 𝜏+
)︀
.

Proof. By Lemma 4 and Theorem 3 we have

𝐿sup(𝑓) ≤ ̃︀𝐿𝑁Unbiased(𝑓) ≤ 𝐿𝑁,𝑀Debiased(𝑓) +
𝑒3/2

𝜏−

√︂
𝜋

2𝑁
+
𝑒3/2𝜏+

𝜏−

√︂
𝜋

2𝑀
.

Combining Lemma A.3 and Lemma A.4, with probability at least 1− 𝛿, for all 𝑓 ∈ ℱ ,

we have

𝐿𝑁,𝑀Debiased(𝑓) ≤ 𝐿𝑁,𝑀Debiased(𝑓) +𝒪

⎛⎝𝜆ℛ𝒮(ℱ)
𝑇

+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠ ,

where 𝜆 = 𝜂
√
𝑘 =

√︁
1
𝜏−2 (

𝑀
𝑁

+ 1) + 𝜏+2(𝑁
𝑀

+ 1) and 𝐵 = log𝑁
(︀

1
𝜏−

+ 𝜏+
)︀
.

A.1.10 Derivation of Equation 4

In Section 3.3.1, we mentioned that the obvious way to approximate the unbiased

objective is to replace 𝑝−𝑥 with 𝑝−𝑥 (𝑥
′) = (𝑝(𝑥′) − 𝜏+𝑝+𝑥 (𝑥

′))/𝜏− and then use the

empirical counterparts for 𝑝 and 𝑝+𝑥 , and that this yields an objective that is a sum of
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𝑁 + 1 expectations. To give the derivation of this claim, let

ℓ(𝑥, 𝑥+, {𝑥−𝑖 }𝑁𝑖=1, 𝑓) = − log
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +
∑︀𝑁

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

.

We plug in the decomposition as follows:

E 𝑥∼𝑝,𝑥+∼𝑝+𝑥
{𝑥−𝑖 }𝑁𝑖=1∼𝑝

−
𝑥

[ℓ(𝑥, 𝑥+, {𝑥−𝑖 }𝑁𝑖=1, 𝑓)]

=

∫︁
𝑝(𝑥)𝑝+𝑥 (𝑥

+)
𝑁∏︁
𝑖=1

𝑝−𝑥 (𝑥
−
𝑖 )ℓ(𝑥, 𝑥

+, {𝑥−𝑖 }𝑁𝑖=1, 𝑓)d𝑥d𝑥
+

𝑁∏︁
𝑖=1

d𝑥−𝑖

=

∫︁
𝑝(𝑥)𝑝+𝑥 (𝑥

+)
𝑁∏︁
𝑖=1

𝑝(𝑥−𝑖 )− 𝜏+𝑝+𝑥 (𝑥−𝑖 )
𝜏−

ℓ(𝑥, 𝑥+, {𝑥−𝑖 }𝑁𝑖=1, 𝑓)d𝑥d𝑥
+

𝑁∏︁
𝑖=1

d𝑥−𝑖

=
1

(𝜏−)𝑁

∫︁
𝑝(𝑥)𝑝+𝑥 (𝑥

+)
𝑁∏︁
𝑖=1

(︀
𝑝(𝑥−𝑖 )− 𝜏+𝑝+𝑥 (𝑥−𝑖 )

)︀
ℓ(𝑥, 𝑥+, {𝑥−𝑖 }𝑁𝑖=1, 𝑓)d𝑥d𝑥

+

𝑁∏︁
𝑖=1

d𝑥−𝑖 .

By the Binomial Theorem, the product can be separated into 𝑁 + 1 groups corre-

sponding to how many 𝑥−𝑖 are sampled from 𝑝.

(1)
𝑁∏︁
𝑖=1

𝑝(𝑥−𝑖 )

(2)
(︂
𝑁

1

)︂
(−𝜏+)𝑝+𝑥 (𝑥−1 )

𝑁∏︁
𝑖=2

𝑝(𝑥−𝑖 )

(3)
(︂
𝑁

2

)︂ 2∏︁
𝑗=1

(−𝜏+)𝑝+𝑥 (𝑥−𝑗 )
𝑁∏︁
𝑖=3

𝑝(𝑥−𝑖 )

· · ·

(𝑘 + 1)
(︂
𝑁

𝑘

)︂ 𝑘∏︁
𝑗=1

(−𝜏+)𝑝+𝑥 (𝑥−𝑗 )
𝑁∏︁

𝑖=𝑘+1

𝑝(𝑥−𝑖 )

· · ·

(𝑁 + 1)
𝑁∏︁
𝑖=1

(−𝜏+)𝑝+𝑥 (𝑥−𝑖 )
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In particular, the objective becomes

1

(𝜏−)𝑁

𝑁∑︁
𝑘=0

(︂
𝑁

𝑘

)︂
(−𝜏+)𝑘E 𝑥∼𝑝,𝑥+∼𝑝+𝑥

{𝑥−𝑖 }𝑘𝑖=1∼𝑝
+
𝑥

{𝑥−𝑖 }𝑁𝑖=𝑘+1∼𝑝

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +
∑︀𝑁

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−𝑖 )

]︃
,

where {𝑥−𝑖 }
𝑗
𝑖=𝑘 = ∅ if 𝑘 > 𝑗. Note that this is exactly the Inclusion–exclusion principle.

The numerical value of this objective is extremely small when 𝑁 is large. We tried

various approaches to optimize this objective, but none of them worked.

A.2 Graph Representation Learning

We describe in detail the hard sampling method for graphs whose results are reported

in Section 3.5.2. Before getting that point, in the interests of completeness we cover

some required background details on the InfoGraph method of Sun et al. [2020]. For

further information see the original paper [Sun et al., 2020].

A.2.1 Background on Graph Representations

We observe a set of graphs G = {𝐺𝑗 ∈ G}𝑛𝑗=1 sampled according to a distribution 𝑝

over an ambient graph space G. Each node 𝑢 in a graph 𝐺 is assumed to have features

ℎ
(0)
𝑢 living in some Euclidean space. We consider a 𝐾-layer graph neural network,

whose 𝑘-th layer iteratively computes updated embeddings for each node 𝑣 ∈ 𝐺 in the

following way,

ℎ(𝑘)𝑣 = COMBINE(𝑘)
(︁
ℎ(𝑘−1)
𝑣 ,AGGREGATE(𝑘)

(︀{︀(︀
ℎ(𝑘−1)
𝑣 , ℎ(𝑘−1)

𝑢 , 𝑒𝑢𝑣
)︀
: 𝑢 ∈ 𝒩 (𝑣)

}︀)︀)︁
where COMBINE(𝑘) and AGGREGATE(𝑘) are parameterized learnable functions

and𝒩 (𝑣) denotes the set of neighboring nodes of 𝑣. The𝐾 embeddings for a node 𝑢 are

collected together to obtain a single final summary embedding for 𝑢. As recommended

by Xu et al. [2019] we use concatenation, ℎ𝑢 = ℎ𝑢(𝐺) = CONCAT
(︁
{ℎ(𝑘)𝑢 }𝐾𝑘=1

)︁
to
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obtain an embedding in R𝑑. Finally, the node representations are combined together

into a length 𝑑 graph level embedding using a readout function,

𝐻(𝐺) = READOUT ({ℎ𝑢}𝑢∈𝐺)

which is typically taken to be a simple permutation invariant function such as

the sum or mean. The InfoGraph method aims to maximize the mutual information

between the graph level embedding 𝐻(𝐺) and patch-level embeddings ℎ𝑢(𝐺) using

the following objective,

max
ℎ

E𝐺∼𝑝
1

|𝐺|
∑︁
𝑢∈𝐺

𝐼 (ℎ𝑢(𝐺);𝐻(𝐺))

In practice the population distribution 𝑝 is replaced by its empirical counterpart,

and the mutual information 𝐼 is replaced by a variational approximation 𝐼𝑇 . In line

with Sun et al. [2020] we use the Jensen-Shannon mutual information estimator as

formulated by Nowozin et al. [2016]. It is defined using a neural network discriminator

𝑇 : R2𝑑 → R as,

𝐼𝑇 (ℎ
𝑢(𝐺);𝐻(𝐺)) = E𝐺∼𝑝 [−sp(−𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺)))]−E(𝐺,𝐺′)∼𝑝×𝑝 [sp(𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺′)))]

where sp(𝑧) = log(1 + 𝑒𝑧) denotes the softplus function. The finial objective is the

joint maximization over ℎ and 𝑇 ,

max
𝜃,𝜓

E𝐺∼𝑝
1

|𝐺|
∑︁
𝑢∈𝐺

𝐼𝑇 (ℎ
𝑢(𝐺);𝐻(𝐺))

A.2.2 Hard Negative Sampling for Learning Graph Represen-

tations

In order to derive a simple modification of the NCE hard sampling technique that

is appropriate for use with InfoGraph, we first provide a mildly generalized view of

hard sampling. Recall that the NCE contrastive objective can be decomposed into
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two constituent pieces,

ℒ(𝑓, 𝑞) = ℒalign(𝑓) + ℒunif(𝑓, 𝑞)

where 𝑞 is in fact a family of distributions 𝑞(𝑥−;𝑥) over 𝑥− that is indexed by the

possible values of the anchor 𝑥. ℒalign performs the role of “aligning” positive pairs

(embedding near to one-another), while ℒunif repels negative pairs. The hard sampling

framework aims to solve,

inf
𝑓
sup
𝑞
ℒ(𝑓, 𝑞).

In the case of NCE loss we take,

ℒalign(𝑓) = −E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

𝑓(𝑥)𝑇𝑓(𝑥+),

ℒunif(𝑓, 𝑞) = E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

log
{︁
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+) +𝑄E𝑥−∼𝑞[𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]

}︁
.

View this view, we can easily adapt to the InfoGraph framework, taking

ℒalign(ℎ, 𝑇 ) = −E𝐺∼𝑝
1

|𝐺|
∑︁
𝑢∈𝐺

sp(−𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺))),

ℒunif(ℎ, 𝑇, 𝑞) = −E𝐺∼𝑝
1

|𝐺|
∑︁
𝑢∈𝐺

E𝐺′∼𝑞sp(𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺′)))

Denote by 𝑝 the distribution over nodes 𝑢 ∈ R𝑠 defined by first sampling 𝐺 ∼ 𝑝,

then sampling 𝑢 ∈ 𝐺 uniformly over all nodes of 𝐺. Then these two terms can be

simplified to

ℒalign(ℎ, 𝑇 ) = −E𝑢∼𝑝sp(−𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺))),

ℒunif(ℎ, 𝑇, 𝑞) = −E(𝑢,𝐺′)∼𝑝×𝑞sp(𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺′)))

At this point it becomes clear that, just as with NCE, a distribution 𝑞* ∈
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Figure A-1: Hard negative sampling using MoCo-v2 framework. Results show that
hard negative samples can still be useful when the negative memory bank is very large
(in this case 𝑁 = 65536).

argmax𝑞 ℒ(𝑓, 𝑞) in the InfoGraph framework if it is supported on argmax𝐺′∈G sp(𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺′))).

Although this is still hard to compute exactly, it can be approximated by,

𝑞𝛽𝑢(𝐺
′) ∝ exp (𝛽𝑇 (ℎ𝑢(𝐺), 𝐻(𝐺))) · 𝑝(𝐺′).

A.3 Additional Experiments

A.3.1 Hard negatives with large batch sizes

The vision experiments in the main body of the paper are all based off the SimCLR

framework [Chen et al., 2020b]. They use a relatively small batch size (up to 512). In

order to test whether our hard negatives sampling method can help when the negative

batch size is very large, we also run experiments using MoCo-v2 with standard negative

memory bank size 𝑁 = 65536 [He et al., 2020b, Chen et al., 2020e]. We adopt the

official MoCo-v2 code2. Embeddings are trained for 200 epochs, with batch size 128.

Figure A-1 summarizes the results. We find that hard negative sampling can still

improve the generalization of embeddings trained on CIFAR10: MoCo-v2 attains

linear readout accuracy of 88.08%, and MoCo-v2 with hard negatives (𝛽 = 0.2, 𝜏+ = 0)

attains 88.47%.

2https://github.com/facebookresearch/moco
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Figure A-2: The effect of varying concentration parameter 𝛽 on linear readout accuracy
for CIFAR10. (Complements the left and middle plot from Figure 3-6.)

A.3.2 Ablations

To study the affect of varying the concentration parameter 𝛽 on the learned embeddings

Figure 3-10 plots cosine similarity histograms of pairs of similar and dissimilar points.

The results show that for 𝛽 moving from 0 through 0.5 to 2 causes both the positive

and negative similarities to gradually skew left. In terms of downstream classification,

an important property is the relative difference in similarity between positive and

negative pairs. In this case 𝛽 = 0.5 find the best balance (since it achieves the highest

downstream accuracy). When 𝛽 is taken very large (𝛽 = 6), we see a change in

conditions. Both positive and negative pairs are assigned higher similarities in general.

Visually it seems that the positive and negative histograms for 𝛽 = 6 overlap a lot

more than for smaller values, which helps explain why the linear readout accuracy is

lower for 𝛽 = 6 .

Figure 3-11 gives real examples of hard vs. uniformly sampled negatives. Given

an anchor 𝑥 (a monkey) and trained embedding 𝑓 (trained on STL10 using standard

SimCLR for 400 epochs), we sample a batch of 128 images. The top row shows the

ten negatives 𝑥− that have the largest inner product 𝑓(𝑥)⊤𝑓(𝑥−), while the bottom

row is a random sample from from the same batch. Negatives with the largest inner

product with the anchor correspond to the items in the batch are the most important

terms in the objective since they are given the highest weighting by 𝑞−𝛽 . Figure 3-11

shows that “real” hard negatives are conceptually similar to the idea as proposed in

Figure 1: hard negatives are semantically similar to the anchor, possessing various
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similarities, including color (browns and greens), texture (fur), and objects (animals

vs machinery).

A.4 Experimental Details

A.4.1 Visual Representations

We implement SimCLR in PyTorch. We use a ResNet-50 [He et al., 2016] as the

backbone with embedding dimension 2048 (the representation used for linear readout),

and projection head into the lower 128-dimensional space (the embedding used in

the contrastive objective). We use the Adam optimizer [Kingma and Ba, 2014]

with learning rate 0.001 and weight decay 10−6. Code available at https://github.

com/joshr17/HCL. Since we adopt the SimCLR framework, the number of negative

samples 𝑁 = 2(batch size − 1). Since we always take the batch size to be a power

of 2 (16, 32, 64, 128, 256) the negative batch sizes are 30, 62, 126, 254, 510 respectively.

Unless otherwise stated, all models are trained for 400 epochs.

Annealing 𝛽 Method: We detail the annealing method whose results are given in

Figure 3-6. The idea is to reduce the concentration parameter down to zero as training

progresses. Specifically, suppose we have 𝑒 number of total training epochs. We also

specify a number ℓ of “changes” to the concentration parameter we shall make. We

initialize the concentration parameter 𝛽1 = 𝛽 (where this 𝛽 is the number reported

in Figure 3-6), then once every 𝑒/ℓ epochs we reduce 𝛽𝑖 by 𝛽/ℓ. In other words, if

we are currently on 𝛽𝑖, then 𝛽𝑖+1 = 𝛽𝑖 − 𝛽/ℓ, and we switch from 𝛽𝑖 to 𝛽𝑖+1 in epoch

number 𝑖 · 𝑒/ℓ. The idea of this method is to select particularly difficult negative

samples early on order to obtain useful gradient information early on, but later (once

the embedding is already quite good) we reduce the “hardness” level so as to reduce

the harmful effect of only approximately correcting for false negatives (negatives with

the same labels as the anchor).

We also found the annealing in the opposite direction (“down”) achieved similar

performance.
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Bias-variance of empirical estimates in hard-negative objective: Recall the

final hard negative samples objective we derive is,

E 𝑥∼𝑝
𝑥+∼𝑝+𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) + 𝑄
𝜏−

(E𝑥−∼𝑞𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)]− 𝜏+E𝑣∼𝑞+𝛽 [𝑒

𝑓(𝑥)𝑇 𝑓(𝑣)])

]︃
. (A.10)

This objective admits a practical counterpart by using empirical approximations

to E𝑥−∼𝑞𝛽 [𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)] and E𝑣∼𝑞+𝛽 [𝑒

𝑓(𝑥)𝑇 𝑓(𝑣)]. In practice we use a fairly large number

of samples (e.g. 𝑁 = 510) to approximate the first expectation, and only 𝑀 = 1

samples to approximate the second. Clearly in both cases the resulting estimator is

unbiased. Further, since the first expectation is approximated using many samples,

and the integrand is bounded, the resulting estimator is well concentrated (e.g. apply

Hoeffding’s inequality out-of-the-box). But what about the second expectation? This

might seem uncontrolled since we use only one sample, however it turns out that the

random variable 𝑋 = 𝑒𝑓(𝑥)
𝑇 𝑓(𝑣) where 𝑥 ∼ 𝑝 and 𝑣 ∼ 𝑞+𝛽 has variance that is bounded

by ℒalign(𝑓).

Lemma 7. Consider the random variable 𝑋 = 𝑒𝑓(𝑥)
𝑇 𝑓(𝑣) where 𝑥 ∼ 𝑝 and 𝑣 ∼ 𝑞+𝛽 .

Then Var(𝑋) ≤ 𝒪
(︀
ℒalign(𝑓)

)︀
.

Recall that ℒalign(𝑓) = E𝑥,𝑥+‖𝑓(𝑥) − 𝑓(𝑥+)‖2/2 is termed alignment, and Wang

and Isola [2020a] show that the contrastive objective jointly optimize alignment and

uniformity. Lemma 7 therefore shows that as training evolves, the variance of the

𝑋 = 𝑒𝑓(𝑥)
𝑇 𝑓(𝑣) where 𝑥 ∼ 𝑝 and 𝑣 ∼ 𝑞+𝛽 is bounded by a term that we expect to see

becoming small, suggesting that using a single sample (𝑀 = 1) to approximate this

expectation is not unreasonable. We cannot, however, say more than this since we

have no guarantee that ℒalign(𝑓) goes to zero.

Proof. Fix an 𝑥 and recall that we are considering 𝑞+𝛽 (·) = 𝑞+𝛽 (·;𝑥). First let 𝑋 ′

be an i.i.d. copy of 𝑋, and note that, conditioning on 𝑥, we have 2Var(𝑋|𝑥) =

Var(𝑋|𝑥) + Var(𝑋 ′|𝑥) = Var(𝑋 −𝑋 ′|𝑥) ≤ E
[︀
(𝑋 −𝑋 ′)2|𝑥

]︀
. Bounding this difference,
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E
[︀
(𝑋 −𝑋 ′)2|𝑥

]︀
= E𝑣,𝑣′∼𝑞+𝛽

(︂
𝑒𝑓(𝑥)

⊤𝑓(𝑣) − 𝑒𝑓(𝑥)⊤𝑓(𝑣′)
)︂2

≤ E𝑣,𝑣′∼𝑞+𝛽

(︂
𝑒1/𝑡

2[︀
𝑓(𝑥)⊤𝑓(𝑣)− 𝑓(𝑥)⊤𝑓(𝑣′)

]︀)︂2

≤ 𝑒1/𝑡
4E𝑣,𝑣′∼𝑞+𝛽

(︂[︀
‖𝑓(𝑥)‖‖𝑓(𝑣)− 𝑓(𝑣′)‖

]︀)︂2

=
𝑒1/𝑡

4

𝑡2
E𝑣,𝑣′∼𝑞+𝛽 ‖𝑓(𝑣)− 𝑓(𝑣

′)‖2

≤ 𝒪
(︂
E𝑣,𝑣′∼𝑝+‖𝑓(𝑣)− 𝑓(𝑣′)‖2

)︂

where the first inequality follows since 𝑓 lies on the sphere of radius 1/𝑡, the second

inequality by Cauchy–Schwarz, the third again since 𝑓 lies on the sphere of radius

1/𝑡, and the fourth since 𝑞+𝛽 is absolutely continuous with respect to 𝑝+ with bounded

ratio.

Since 𝑝+(𝑥+) = 𝑝(𝑥+|ℎ(𝑥)) only depends on 𝑐 = ℎ(𝑥), rather than 𝑥 itself, taking

expectations over 𝑥 ∼ 𝑝 is equivalent to taking expectations over 𝑐 ∼ 𝜌. Fur-

ther, 𝜌(𝑐)𝑝(𝑣|𝑐)𝑝(𝑣′|𝑐) = 𝑝(𝑣)𝑝(𝑣′|𝑐) = 𝑝(𝑣)𝑝+𝑣 (𝑣
′). So E𝑐∼𝜌E𝑣,𝑣′∼𝑝+‖𝑓(𝑣) − 𝑓(𝑣′)‖2 =

E𝑥,𝑥+‖𝑓(𝑥) − 𝑓(𝑥+)‖2 = 2ℒalign(𝑓), where 𝑥 ∼ 𝑝 and 𝑥+ ∼ 𝑝+𝑥 . Thus we obtain the

lemma.

A.4.2 Graph Representations

All datasets we benchmark on can be downloaded at www.graphlearning.io from

the TUDataset repository of graph classification problems [Morris et al., 2020a].

Information on basic statistics of the datasets is included in Tables A.1 and A.2. For

fair comparison to the original InfoGraph method, we adopt the official code, which

can be found at https://github.com/fanyun-sun/InfoGraph. We modify only the

gan_losses.py script, adding in our proposed hard sampling via reweighting. For

simplicity we trained all models using the same set of hyperparameters: we used the
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GIN architecture [Xu et al., 2019] with 𝐾 = 3 layers and embedding dimension 𝑑 = 32.

Each model is trained for 200 epochs with batch size 128 using the Adam optimizer

[Kingma and Ba, 2014]. with learning rate 0.001, and weight decay of 10−6. Each

embedding is evaluated using the average accuracy 10-fold cross-validation using an

SVM as the classifier (in line with the approach taken by Morris et al. [2020a]). Each

experiment is repeated from scratch 10 times, and the distribution of results from

these 10 runs is plotted in Figure 3-5.

Since the graph embeddings are not constrained to lie on a hypersphere, for a

batch we clip all the inner products to live in the interval [−2, 2] while computing the

reweighting. We found this to be important for stabilizing optimization.

Dataset DD PTC REDDIT-B PROTEINS

No. graphs 1178 344 2000 1113

No. classes 2 2 2 2

Avg. nodes 284.32 14.29 429.63 39.06

Avg. Edges 715.66 14.69 497.75 72.82

Table A.1: Basic statistics for graph datasets.

Dataset ENZYMES MUTAG IMDB-B IMDB-M

No. graphs 600 188 1000 1500

No. classes 6 2 2 3

Avg. nodes 32.63 17.93 19.77 13.00

Avg. Edges 62.14 19.79 96.53 65.94

Table A.2: Basic statistics for graph datasets.

A.4.3 Sentence Representations

We adopt the official quick-thoughts vectors experimental settings, which can be found

at https://github.com/lajanugen/S2V. We keep all hyperparameters at the default

values and change only the s2v-model.py script. Since the official BookCorpus dataset
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Kiros et al. [2015] is not available, we use an unofficial version obtained using the

following repository: https://github.com/soskek/bookcorpus. Since the sentence

embeddings are also not constrained to lie on a hypersphere, we use the same clipping

trick as for the graph embeddings.

After training on the BookCorpus dataset, we evaluate the embeddings on six

different classification tasks: paraphrase identification (MSRP) [Dolan et al., 2004],

question type classification (TREC) [Voorhees and Harman, 2002], opinion polarity

(MPQA) [Wiebe et al., 2005], subjectivity classification (SUBJ) [Pang and Lee, 2004],

product reviews (CR) [Hu and Liu, 2004], and sentiment of movie reviews (MR) [Pang

and Lee, 2005].
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Appendix B

Further Discussion of Shortcuts in

Contrastive Learning

B.1 Computation of implicit feature modification up-

dates

This section gives detailed derivations of two simple but key facts used in the develop-

ment of IFM. The first result derives an analytic expression for the gradient of the

InfoNCE loss with respect to positive sample in latent space, and the second result

computes the gradient with respect to an arbitrary negative sample. The analysis

is very simple, only requiring the use of elementary tools from calculus. Despite

its simplicity, this result is very important, and forms the core of our approach. It

is thanks to the analytic expressions for the gradients of the InfoNCE loss that we

are able to implement our adversarial method without introducing any memory or

run-time overheads. This is a key distinction from previous adversarial methods for

contrastive learning, which introduce significant overheads (see Fig. 4-5).

Recall the statement of the lemma.

Lemma 8. For any 𝑣, 𝑣+, {𝑣−𝑖 }𝑚𝑖=1 ∈ R𝑑 we have,

∇𝑣−𝑗
ℓ =

𝑒𝑣
⊤𝑣−𝑗

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

· 𝑣
𝜏

and ∇𝑣+ℓ =

(︂
𝑒𝑣

⊤𝑣+/𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

−1

)︂
· 𝑣
𝜏
.
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In particular, ∇𝑣−𝑗
ℓ ∝ 𝑣 and ∇𝑣+ℓ ∝ −𝑣.

Proof. Both results follow from direct computation. First we compute∇𝑣−𝑗
ℓ(𝑣, 𝑣+, {𝑣−𝑖 }𝑚𝑖=1).

Indeed, for any 𝑗 ∈ {1, 2, . . . ,𝑚} we have,

∇𝑣−𝑗

{︂
− log

𝑒𝑣
⊤𝑣+/𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

}︂
= ∇𝑣−𝑗

log

{︂
𝑒𝑣

⊤𝑣+/𝜏 +
𝑚∑︁
𝑖=1

𝑒𝑣
⊤𝑣−𝑖 /𝜏

}︂

=

∇𝑣−𝑗

{︂
𝑒𝑣

⊤𝑣+ +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

}︂
𝑒𝑣⊤𝑣+/𝜏 +

∑︀𝑚
𝑖=1 𝑒

𝑣⊤𝑣−𝑖 /𝜏

=
𝑒𝑣

⊤𝑣−𝑗 /𝜏 · 𝑣/𝜏
𝑒𝑣⊤𝑣+/𝜏 +

∑︀𝑚
𝑖=1 𝑒

𝑣⊤𝑣−𝑖 /𝜏

the quantity 𝑒
𝑣⊤𝑣−

𝑗
/𝜏

𝑒𝑣
⊤𝑣+/𝜏+

∑︀𝑚
𝑖=1 𝑒

𝑣⊤𝑣−
𝑖

/𝜏
> 0 is a strictly positive scalar, allowing us to con-

clude the derivative ∇𝑣−𝑗
ℓ is proportional to 𝑣. We also compute ∇𝑣+ℓ(𝑣, 𝑣

+, {𝑣−𝑖 }𝑚𝑖=1)

in a similar fashion,

∇𝑣+

{︂
− log

𝑒𝑣
⊤𝑣+/𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

}︂
= ∇𝑣+

{︀
− log 𝑒𝑣

⊤𝑣+/𝜏
}︀
+∇𝑣+ log

{︂
𝑒𝑣

⊤𝑣+/𝜏 +
𝑚∑︁
𝑖=1

𝑒𝑣
⊤𝑣−𝑖 /𝜏

}︂

= −𝑣
𝜏
+

∇𝑣+

{︂
𝑒𝑣

⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

}︂
𝑒𝑣⊤𝑣+/𝜏 +

∑︀𝑚
𝑖=1 𝑒

𝑣⊤𝑣−𝑖 /𝜏

= −𝑣
𝜏
+

𝑒𝑣
⊤𝑣+/𝜏 · 𝑣/𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

=

(︂
𝑒𝑣

⊤𝑣+/𝜏

𝑒𝑣⊤𝑣+/𝜏 +
∑︀𝑚

𝑖=1 𝑒
𝑣⊤𝑣−𝑖 /𝜏

− 1

)︂
· 𝑣
𝜏
.

Since 0 < 𝑒𝑣
⊤𝑣+/𝜏

𝑒𝑣
⊤𝑣+/𝜏+

∑︀𝑚
𝑖=1 𝑒

𝑣⊤𝑣−
𝑖

/𝜏
< 1 we conclude in this case that the derivative

∇𝑣+ℓ points in the direction −𝑣.
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B.1.1 Alternative formulations of implicit feature modification

This section contemplates two simple modifications to the IFM method with the aim

of confirming that these modifications do not yield superior performance to the default

proposed method. The two alternate methods focus around the following observation:

IFM perturbs embeddings of unit length, and returns a modified version that will no

longer be of unit length in general. We consider two alternative variations of IFM

that yield normalized embeddings. The first is the most simple solution possible:

simply re-normalize perturbed embeddings to have unit length. The second is slightly

more involved, and involves instead applying perturbations before normalizing the

embeddings. Perturbing unnormalized embeddings, then normalizing, guarantees the

final embeddings have unit length. The key property we observed in the original

formulation was the existence of an analytic, easily computable closed form expressions

for the derivatives. This property enables efficient computation of newly synthesized

“adversarial” samples in latent space. Here we derive corresponding formulae for the

pre-normalization attack.

For clarity, we introduce the slightly modified setting in full detail. We are given

positive pair 𝑥, 𝑥+ and a batch of negative samples {𝑥−𝑖 }𝑚𝑖=1 and denote their encodings

via 𝑓 as 𝑣 = 𝑓(𝑥), 𝑣+ = 𝑓(𝑥+), and 𝑣−𝑖 = 𝑓(𝑥−𝑖 ) for 𝑖 = 1, . . .𝑚 where we do not

assume that 𝑓 returns normalized vectors. That is, 𝑓 is allowed to map to anywhere

in the ambient latent space R𝑑. The re-parameterized point-wise contrastive loss for

this batch of samples is

ℓ(𝑣, 𝑣+, {𝑣−𝑖 }𝑚𝑖=1) = − log
𝑒sim(𝑣,𝑣+)/𝜏

𝑒sim(𝑣,𝑣+)/𝜏 +
∑︀𝑚

𝑖=1 𝑒
sim(𝑣,𝑣−𝑖 )/𝜏

,

where sim(𝑢, 𝑣) = 𝑢 ·𝑣/‖𝑢‖‖𝑣‖ denotes the cosine similarity measure. As before we

wish to perturb 𝑣+ and negative encodings 𝑣−𝑗 to increase the loss, thereby making the

negatives harder. Specifically we wish to solve max𝛿+∈ℬ𝜀+ ,{𝛿
−
𝑖 ∈ℬ𝜀𝑖}

𝑚
𝑖=1
ℓ(𝑣, 𝑣++ 𝛿+, {𝑣−𝑖 +

𝛿−𝑖 }𝑚𝑖=1). The following lemma provides the corresponding gradient directions.
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Lemma 9. For any 𝑣, 𝑣+, {𝑣−𝑖 }𝑚𝑖=1 ∈ R𝑑 we have

∇𝑣−𝑗
ℓ ∝ 𝑣

‖𝑣‖
− sim(𝑣−𝑗 , 𝑣)

𝑣−𝑗
‖𝑣−𝑗 ‖

and ∇𝑣+ℓ ∝
𝑣

‖𝑣‖
− sim(𝑣+, 𝑣)

𝑣+

‖𝑣+‖
.

To prove this lemma we rely on the following well-known closed form expression

for the derivative of the cosine similarity, whose proof we omit.

Lemma 10. ∇𝑣sim(𝑣, 𝑢) = 𝑢
‖𝑣‖‖𝑢‖ − sim(𝑣, 𝑢) 𝑣

‖𝑣‖2 .

Proof of Lemma 9. We compute,

∇𝑣−𝑗
ℓ = ∇𝑣−𝑗

log

(︂
𝑒sim(𝑣,𝑣+) +

𝑚∑︁
𝑖=1

𝑒sim(𝑣,𝑣−𝑖 )

)︂

=
𝑒sim(𝑣,𝑣−𝑗 )

𝑒sim(𝑣,𝑣+) +
∑︀𝑚

𝑖=1 𝑒
sim(𝑣,𝑣−𝑖 )

· ∇𝑣−𝑗
sim(𝑣, 𝑣−𝑗 )

Using the formula for the derivative of the cosine similarity, we arrive at a closed

form formula,

∇𝑣−𝑗
ℓ =

𝑒sim(𝑣,𝑣−𝑗 )

𝑒sim(𝑣,𝑣+) +
∑︀𝑚

𝑖=1 𝑒
sim(𝑣,𝑣−𝑖 )

·
(︂

𝑣

‖𝑣−𝑗 ‖‖𝑣‖
− sim(𝑣−𝑗 , 𝑣)

𝑣−𝑗
‖𝑣−𝑗 ‖2

)

)︂
.

∝ 𝑣

‖𝑣‖
− sim(𝑣−𝑗 , 𝑣)

𝑣−𝑗
‖𝑣−𝑗 ‖

Similar computations yield

∇𝑣+ℓ = −∇𝑣+ log
𝑒sim(𝑣,𝑣+)

𝑒sim(𝑣,𝑣+) +
∑︀𝑚

𝑖=1 𝑒
sim(𝑣,𝑣−𝑗 )

= ∇𝑣+

(︂
− sim(𝑣, 𝑣+) + log

(︀
𝑒sim(𝑣,𝑣+) +

𝑚∑︁
𝑖=1

𝑒sim(𝑣,𝑣−𝑖 )
)︀)︂

=

(︂
𝑒sim(𝑣,𝑣+)

𝑒sim(𝑣,𝑣+) +
∑︀𝑚

𝑖=1 𝑒
sim(𝑣,𝑣−𝑖 )

− 1

)︂
· ∇𝑣+sim(𝑣, 𝑣+)

=

(︂
𝑒sim(𝑣,𝑣+)

𝑒sim(𝑣,𝑣+) +
∑︀𝑚

𝑖=1 𝑒
sim(𝑣,𝑣−𝑖 )

− 1

)︂
·
(︂

𝑣

‖𝑣+‖‖𝑣‖
− sim(𝑣+, 𝑣)

𝑣+

‖𝑣+‖2
)

)︂
∝ 𝑣

‖𝑣‖
− sim(𝑣+, 𝑣)

𝑣+

‖𝑣+‖
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Lemma 9 provides precisely the efficiently computable formulae for the derivatives

we seek. One important difference between this pre-normalization case and the original

setting is that the direction vector depends on 𝑣−𝑗 and 𝑣+ respectively. In the original

(unnormalized) setting the derivatives depend only on 𝑣, which allowed the immediate

and exact discovery of the worst case perturbations in an 𝜀-ball. Due to these additional

dependencies in the pre-normalized case the optimization is more complex, and must

be approximated iteratively. Although only approximate, it is still computationally

cheap since we have simple analytic expressions for gradients.

It is possible give an interpretation to the pre-normalization derivatives ∇𝑣−𝑗
ℓ by

considering the ℓ2 norm,

‖∇𝑣−𝑗
‖2 =

√︃(︀ 𝑣

‖𝑣‖
−

𝑣⊤𝑣−𝑗
‖𝑣‖‖𝑣−𝑗 ‖

𝑣−𝑗
‖𝑣−𝑗 ‖

)︀
·
(︀ 𝑣

‖𝑣‖
−

𝑣⊤𝑣−𝑗
‖𝑣‖‖𝑣−𝑗 ‖

𝑣−𝑗
‖𝑣−𝑗 ‖

)︀
=
√︁
1 + sim(𝑣, 𝑣−𝑖 )

2 − 2sim(𝑣, 𝑣−𝑖 )
2

=
√︁

1− sim(𝑣, 𝑣−𝑖 )
2

So, samples 𝑣−𝑖 with higher cosine similarity with anchor 𝑣 receive smaller updates.

Similar calculations for 𝑣+ show that higher cosine similarity with anchor 𝑣 leads

to larger updates. In other words, the pre-normalization version of the method

automatically adopts an adaptive step size based on sample importance.

Experimental results using alternative formulations

In this section we test the two alternative implementations to confirm that these

simple alternatives do not obtain superior performance to IFM. We consider only

object-based images, so it remains possible that other modalities may benefit from

alternate formulations. First note that 𝑓 encodes all points to the boundary of

the same hypersphere, while perturbing 𝑣−𝑖 ← 𝑣−𝑖 + 𝜀𝑖𝑣 and 𝑣+ ← 𝑣+ − 𝜀+𝑣 moves

adversarial samples off this hypersphere. We therefore consider normalizing all points
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Dataset MoCo-v2 IFM-MoCo-v2

– – default + norm + pre-norm

STL10 92.4% 92.9% 92.9% 93.0%

CIFAR10 91.8% 92.4% 92.2% 92.0%
CIFAR100 69.0% 70.3% 70.1% 70.2%

Table B.1: Linear readout performance of alternative latent space adversarial methods.
We report the best performance over runs for 𝜀 ∈ {0.05, 0.1, 0.2, 0.5}. We find that
the two modifications to IFM we considered do not improve performance compared to
the default version of IFM.

again after perturbing (+ norm). The second method considers applying attacks

before normalization (+ pre-norm), whose gradients were computed in the Lem. 9.

It is still possible to compute analytic gradient expressions in this setting; we refer

the reader to Appendix B.1.1 for full details and derivations. Results reported in Tab.

B.1, suggest that all versions improve over MoCov2, and both alternatives perform

comparably to the default implementation based on Eqn. 4.2.

B.2 Supplementary experimental results and details

B.2.1 Hardware and setup

Experiments were run on two internal servers. The first consists of 8 NVIDIA GeForce

RTX 2080 Ti GPUs (11GB). The second consists of 8 NVIDIA Tesla V100 GPUs

(32GB). All experiments use the PyTorch deep learning framework Paszke et al. [2019].

Specific references to pre-existing code bases used are given in the relevant sections

below.

B.2.2 Feature suppression experiments

This section gives experimental details for all experiments in Sec. 4.2 in the main

manuscript, the section studying the relation between feature suppression and instance

discrimination.
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Figure B-1: Sample images from the Trifeature dataset Hermann and Lampinen [2020].
There are three features: shape, color, and texture. Each feature has 10 different
possible values. We show exactly one example of each feature.

Figure B-2: Sample images from the STL-digits dataset. There are two features:
object class, and MNIST digit. Both features have 10 different possible values.

Datasets

Trifeature Hermann and Lampinen [2020] Introduced by Hermann and Lampinen,

each image is 128× 128 and has three features: color, shape, and texture each taking

10 values. For each (color, shape, texture) triplet (1000 in total) Trifeature contains

100 examples, forming a dataset of 100K examples in total. Train/val sets are obtained

by a random 90/10 split. See Fig. B-1, Appdx. B.2 for sample images.

STL10-digits dataset We artificially combine MNIST digits and STL10 object to

produce data with two controllable semantic features. We split the STL10 image into

a 3 × 3 grid, placing a copy of the MNIST digit in the center of each sector. This

is done by masking all MNIST pixels with intensity lower than 100, and updating

non-masked pixels in the STL10 image with the corresponding MNIST pixel value.
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Experimental protocols

Training We train ResNet-18 encoders using SimCLR with batch size 512. We use

standard data SimCLR augmentations Chen et al. [2020b], but remove grayscaling and

color jittering when training on Trifeature in order to avoid corrupting color features.

We use Adam optimizer, learning rate 1× 10−3 and weight decay 1× 10−6. Unless

stated otherwise, the temperature 𝜏 is set to 0.5.

Linear evaluation For fast linear evaluation we first extract features from the

trained encoder (applying the same augmentations to inputs as used during pre-

training) then use the LogisticRegression function in scikit-learn Pedregosa et al.

[2011] to train a linear classifier. We use the Limited-memory Broyden–Fletcher–Goldfarb–Shanno

algorithm with a maximum iteration of 500 for training.

Details on results

Correlations Fig. 4-2 For the Trifeature heatmap 33 encoders are used to compute

correlations. The encoders are precisely encoders used to plot Fig. 4-3. Similarly,

the 7 encoders used to generate the STL-digits heatmap are precisely the encoders

whose training is shown in Fig. B-4. When computing the InfoNCE loss for Fig. 4-2,

for fair comparison all losses are computed using temperature normalization value

𝜏 = 0.5. This is independent of training, and is necessary only in evaluation to ensure

loss values are comparable across different temperatures.

Fig. B-4 displays results for varying instance discrimination difficult on the STL-

digits dataset. These results are complementing the Trifeature results in Fig. 4-3

in Sec. 4.2 in the main manuscript. For STL-digits we report only a single training

run per hyperparameter setting since performance is much more stable on STL-digits

compared to Trifeature (see Fig. B-3). See Sec. 4.2 for discussion of STL-digits results,

which are qualitatively the same as on Trifeature. Finally, Fig. B-5 shows the effect

of IFM on encoders trained on STL-digits. As with Trifeature, we find that IFM

improves the performance on suppressed features (STL10), but only slightly. Unlike

hard instance discrimination methods, IFM does not harm MNIST performance in
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target: texturetarget: shapetarget: color

Figure B-3: Single run experiments showing training dynamics of Trifeature contrastive
training. Linear readout performance on color prediction is particularly noisy.

the process.

B.2.3 Comparing IFM and ACL(DS)

We give details for Fig 4-5. Similarly to concurrent work Ho and Nvasconcelos [2020],

Kim et al. [2020], ACL Jiang et al. [2020] directly performs PGD attacks in input

space. We compare to the top performing version ACL(DS) – which uses a duel

stream structure and combines standard and adversarial loss terms. We use the official

ACL implementation1 and for fair comparison run IFM by changing only the loss

function. All hyperparameters are kept the same for both runs, and follow the ACL

recommendations.

Training We use the SimCLR framework with a ResNet-18 backbone and train for

1000 epochs. We use a base learning rate of 5 with cosine annealing scheduling and

batch size 512. LARS optimizer is used. For ACL(DS), we run the PGD for 5 steps

in the pre-training stage following the practice of Jiang et al. [2020].

1https://github.com/VITA-Group/Adversarial-Contrastive-Learning
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Figure B-4: STL-digits dataset. Left: performance on STL10 and MNIST linear
readout for different temperature 𝜏 values. Right: performance on STL10 and MNIST
linear readout for different hardness concentration 𝛽 values Robinson et al. [2021a].
In both cases harder instance discrimination (smaller 𝜏 , bigger 𝛽) improves STL10
performance at the expense of MNIST. When instance discrimination is too easy
(big 𝜏 , small 𝛽) STL10 features are suppressed : achieving worse linear readout after
training than at initialization.
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Figure B-5: STL-digits dataset. Implicit feature modification reduces feature suppres-
sion, enhancing the representation of both MNIST and STL10 features simultaneously.
All IFM runs use a fixed value 𝜀 = 0.1, and loss ℒ+ 0.5 · ℒ𝜀 (i.e. weighting parameter
𝛼 = 0.5) to illustrate robustness to the choice of parameters.

Linear evaluation We use two schemes to evaluate the quality of learnt representa-

tion: standard accuracy and robust accuracy. Robust accuracy reports the accuracy

in the setting where an adversary is allowed to apply an ℓ∞ attack to each input. For

standard accuracy, we only finetune the last layer and test on clean images following

the practice of MoCo-v2 Chen et al. [2020f]. The initial learning rate is set as 0.1

and we tune for 100 epochs for CIFAR10, 25 epochs for CIFAR100 respectively. An

SGD optimizer is used to finetune the model. We use a step scheduler that decreases

the learning rate by a factor of 10 after epochs: 40, 60 for CIFAR10; 15, 20 for CI-

FAR100 respectively. For robust accuracy, we finetune the model using the loss in

TRADE Zhang et al. [2019], and evaluate classification accuracy on adversarially

perturbed testing images. We use the same hyperparameters as ACL Jiang et al.

[2020] for adversarial finetuning. We perform experiments on CIFAR10 and CIFAR100
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and the results are shown in Fig. 4-5.

Results See Fig. 4-5 in the main manuscript for the results. There are significant

qualitative differences between the behaviour of IFM and ACL(DS). IFM improves

(standard) linear readout accuracy with zero memory or compute time cost increase,

whereas ACL(DS) has improved adversarial linear readout performance, but at the

cost of worse standard linear readout and 2× memory and 6× time per epoch. This

shows that these two method are addressing two distinct problems. ACL(DS) is

suitable for improving the adversarial robustness of a model, whereas IFM improves

the generalization of a representation.

B.2.4 Object classification experiments

We first describe the protocol used for evaluating IFM on the following datasets:

CIFAR10, CIFAR100, STL10, tinyImageNet. For simplicity, the objective weighting

parameter is fixed at 𝛼 = 1. For MoCo-v2, we performed 5-fold cross validation for

CIFAR10/CIFAR100 datasets, and 3 replicated runs on official train/val data splits

for tinyImageNet and STL10 datasets.

Training All encoders have ResNet-50 backbones and are trained for 400 epochs

with temperature 𝜏 = 0.5 for SimCLR and 𝜏 = 0.1 for MoCo-v2. Encoded features

have dimension 2048 and are followed by a two layer MLP projection head with

output dimension 128. Batch size is taken to be 256, yielding negative batches of

size 𝑚 = 510 for SimCLR. For MoCo-v2, we use a queue size of 𝑘 = 4096 (except

for STL10 dataset we use 𝑘 = 8192), and we use batch size of 256 for CIFAR10,

CIFAR100 and tinyImageNet, 128 for STL10. For both SimCLR and MoCo-v2 we

use the Adam optimizer.

SimCLR uses initial learning rate 1×10−3 and weight decay 1×10−6 for CIFAR10,

CIFAR100 and tinyImageNet, while STL10 uses 1× 10−1 learning rate, and weight

decay 5× 10−4 (since we found these settings boosted performance by around 5% in

absolute terms). MoCo-v2 training uses weight decay 5× 10−4, and an initial learning
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rate 3× 10−2 for CIFAR10 and CIFAR100; and learning rate 1× 10−1 for STL10 and

tinyImageNet. Cosine learning rate schedule is used for MoCo-v2.

Linear evaluation Evaluation uses test performance of a linear classifier trained

ontop of the learned embedding (with embedding model parameters kept fixed) trained

for 100 epochs.

For SimCLR, the batch size is set as 512, and the linear classifier is trained using

the Adam optimizer with learning rate 1 × 10−3 and weight decay 1 × 10−6, and

default PyTorch settings for other hyperparameters. For CIFAR10 and CIFAR100

the same augmentations as SimCLR are used for linear classifier training, while for

STL10 and tinyImageNet no augmentations were used (since we found this improves

performance).

For MoCo-v2, the batch size is set as 256. Training uses SGD with initial learning

rate set to 30, momentum is set as 0.9 and a scheduler that reduces the learning rate

by a factor of 10% at epoch 30 and 60. The weight decay is 0. For CIFAR10 and

CIFAR100, we normalize images with mean of [0.4914, 0.4822, 0.4465] and standard

deviation of [0.2023, 0.1994, 0.2010]. For STL10 and tinyImageNet, we normalize

images with mean of [0.485, 0.456, 0.406] and standard deviation of [0.229, 0.224, 0.225].

The same augmentations as the official MoCo-v2 implementation are used for linear

classifier training.

ImageNet100

We adopt the official MoCo-v2 code2 (CC-BY-NC 4.0 license), modifying only the

loss function. For comparison with AdCo method, we adopt the official code3 (MIT

license) and use the exact same hyperparmeters as for MoCo-v2. For the AdCo specific

parameters we perform a simple grid search for the following two hyperparameters:

negatives learning rate 𝑙𝑟neg and negatives temperature 𝜏neg. We search over all

combinations 𝑙𝑟neg ∈ {1, 2, 3, 4} and 𝜏neg ∈ {0.02, 0.1}, which includes the AdCo

2https://github.com/facebookresearch/moco
3https://github.com/maple-research-lab/AdCo
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default ImageNet1K recommendations 𝑙𝑟neg = 3 and 𝜏neg = 0.02 Hu et al. [2020a].

The result reported for AdCo in Tab. 4.1 is the best performance over all 8 runs.

Training We use ResNet-50 backbones, and train for 200 epochs. We use a base

learning rate of 0.8 with cosine annealing scheduling and batch size 512. The MoCo

momentum is set to 0.99, and temperature to 𝜏 = 0.2. All other hyperparameters are

kept the same as the official defaults.

Linear evaluation We train for 60 epochs with batch size 128. We use initial

learning rate of 30.0 and a step scheduler that decreases the learning rate by a factor

of 10 after epochs: 30, 40, 50. All other hyperparameters are kept the same as the

official MoCo-v2 defaults.

As noted in the manuscript, our combination of training and linear evaluation

parameters leads to 80.5% top-1 linear readout for standard MoCo-v2, and 81.4% with

IFM-MoCo-v2. The standard MoCo-v2 performance of 80.5% is, to the best of our

knowledge, state-of-the-art performance on ImageNet100 using 200 epoch training with

MoCo-v2. For comparison, we found that using the default recommended MoCo-v2

ImageNet1k parameters (both training and linear evaluation) achieves ImageNet100

performance of 71.8%. This choice of parameters maybe useful for other researchers

using MoCo-v2 as a baseline on ImageNet100.

B.2.5 COPDGene dataset

The dataset Regan et al. [2011] in our experiments includes 9,180 subjects. Each

subject has a high-resolution inspiratory CT scan and five COPD related outcomes,

including two continuous spirometry measures: (1) FEV1pp: the forced expiratory

volume in one second, (2) FEV1/FVC: the FEV1pp and forced vital capacity (FVC)

ratio, and three ordinal variables: (1) six-grade centrilobular emphysema (CLE) visual

score, (2) three-grade paraseptal emphysema (Para-septal) visual score, (3) five-grade

dyspnea symptom (mMRC) scale. The dataset is publicly available.

For fair comparison, we use the same encoder and data augmentation described in

the baseline approach Sun et al. [2021]. We set the representation dimension to 128 in
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all experiments. For simplicity, instead of using a GNN, we use average pooling to

aggregate patch representations into image representation. The learning rate is set as

0.01. We use Adam optimizer and set momentum as 0.9 and weight decay as 1× 10−4.

The batch size is set as 128, and the model is trained for 10 epochs.

B.2.6 Further discussion of feature robustness experiments

(Sec. 4.4.3)

Ilyas et al. Ilyas et al. [2019] showed that deep networks richly represent so-called

“non-robust” features, but that adversarial training can be used to avoid extracting

non-robust features at a modest cost to downstream performance. Although in-

distribution performance is harmed, Ilyas et al. argue that the reduction in use of

non-robust features – which are highly likely to be statistical coincidences due to the

high dimensionality of input data in computer vision – may be desirable from the

point of view of trustworthiness of a model under input distribution shifts. In this

section we consider similar questions on the effect implicit feature modification on

learning of robust vs. non-robust features during self-supervised pre-training.

Compared to supervised adversarial training Ilyas et al. [2019], Madry et al. [2018]

our approach has the key conceptual difference of being applied in feature space. As

well as improved computation efficiency (no PGD attacks required) Fig. 4-8 shows

that this difference translates into different behavior when using implicit feature

modification. Instead of suppressing non-robust features as Ilyas et al. observe

for supervised representations, IFM enhances the representation of robust features.

This suggests that the improved generalization of encoders trained with IFM can be

attributed to improved extraction of features aligned with human semantics (robust

features). However, we also note that IFM has no significant effect on learning of

non-robust features.
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Appendix C

Further Discussion of Contrastive

Learning with Rotational Equivariance

C.1 Proofs of Theoretical Results

The aim of this section is to detail the proofs of the theoretical results presented in

the main manuscript. The key theoretical tools driving our analysis are prepared

separately in Section C.2.

Throughout our analysis, we assume that all spaces (e.g., 𝒜 and 𝒳 ) are subspaces

of Euclidean space and therefore admit a Lebesgue measure. We also assume that all

distributions (e.g., 𝑎 ∼ 𝒜 and 𝑥 ∼ 𝒳 ) admit a density with respect to the Lebesgue

measure. With these conditions in mind, we recall the loss function that is the main

object of study:

ℒequi(𝑓) = E𝑎∼𝒜E𝑥,𝑥′∼𝒳
[︀
𝑓(𝑎(𝑥′))⊤𝑓(𝑎(𝑥))− 𝑓(𝑥)⊤𝑓(𝑥′)

]︀2 (C.1)

Next, we re-state and prove Proposition 5, our first key result.

Proposition 5. Suppose ℒequi(𝑓) = 0. Then for almost every 𝑎 ∈ 𝒜, there is an

orthogonal matrix 𝑅𝑎 ∈ 𝑂(𝑑) such that 𝑓(𝑎(𝑥)) = 𝑅𝑎𝑓(𝑥) for almost all 𝑥 ∈ 𝒳 .

Proof. Suppose that ℒequi(𝑓) = 0. This means that 𝑓(𝑎(𝑥′))⊤𝑓(𝑎(𝑥)) = 𝑓(𝑥)⊤𝑓(𝑥′) for

almost all 𝑎 ∈ 𝐺, and 𝑥, 𝑥′ ∈ 𝒳 . Setting 𝑔𝑎(𝑥) = 𝑓(𝑎(𝑥)), we have that 𝑔𝑎(𝑥′)⊤𝑔𝑎(𝑥) =
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𝑓(𝑥)⊤𝑓(𝑥′). The continuous version of the First Fundamental Theorem of invariant

theory for the orthogonal group (see Proposition 15) implies that there is an 𝑅𝑎 ∈ 𝑂(𝑑)

such that 𝑓(𝑎(𝑥)) = 𝑔𝑎(𝑥) = 𝑅𝑎𝑓(𝑥).

As discussed in greater detail in the main manuscript, these results show that

minimizing ℒequi produces a model where an augmentation 𝑎 corresponds to a single

orthogonal transformation of embeddings 𝑅𝑎, independent of the input. This result is

continuous in flavor as it studies the loss over the full data distribution 𝑝(𝑥). There

exists a corresponding result for the finite sample loss

ℒequi,𝑛(𝑓) = E𝑎∼𝒜

𝑛∑︁
𝑖,𝑗=1

[︀
𝑓(𝑎(𝑥𝑗))

⊤𝑓(𝑎(𝑥𝑖))− 𝑓(𝑥𝑖)⊤𝑓(𝑥𝑗)
]︀2
.

Proposition 14. Suppose ℒequi,𝑛(𝑓) = 0. Then for almost every 𝑎 ∈ 𝒜, there is an

orthogonal matrix 𝑅𝑎 ∈ 𝑂(𝑑) such that 𝑓(𝑎(𝑥𝑖)) = 𝑅𝑎𝑓(𝑥𝑖) for all 𝑖 = 1, . . . , 𝑛.

As for the population counterpart, the proof of this result directly follows from the

application of the First Fundamental Theorem of invariant theory for the orthogonal

group.

Proof of Proposition 14. Suppose that ℒequi(𝑓) = 0. This means that for almost every

𝑎 ∈ 𝐺, and every 𝑖, 𝑗 = 1, . . . , 𝑛 we have 𝑓(𝑎(𝑥𝑗))⊤𝑓(𝑎(𝑥𝑖)) = 𝑓(𝑥𝑖)
⊤𝑓(𝑥𝑗). In other

words 𝐴𝐴𝑇 = 𝐵𝐵𝑇 where 𝐴,𝐵 ∈ R𝑛×𝑑 are matrices whose 𝑖th rows are 𝐴𝑖 = 𝑓(𝑎(𝑥𝑖))
⊤

and 𝐵𝑖 = 𝑓(𝑥𝑖)
⊤ respectively. This implies, by the First Fundamental Theorem of

invariant theory for the orthogonal group (see Corollary 3), that there is an 𝑅𝑎 ∈ 𝑂(𝑑)

such that 𝐴 = 𝐵𝑅𝑎. Considering only the 𝑖th rows of 𝐴 and 𝐵 leads us to conclude

that 𝑓(𝑎(𝑥𝑖)) = 𝑅𝑎𝑓(𝑥𝑖).

A corollary of Proposition 5 is that compositions of augmentations correspond to

compositions of rotations.

Corollary 1. If ℒequi(𝑓) = 0, then 𝜌 : 𝒜 → 𝑂(𝑑) given by 𝜌(𝑎) = 𝑅𝑎 satisfies

𝜌(𝑎′ ∘ 𝑎) = 𝜌(𝑎′)𝜌(𝑎) for almost all 𝑎, 𝑎′. That is, 𝜌 defines a group action on S𝑑−1 up

to a set of measure zero.
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Proof. Applying Proposition 5 on 𝑎′ ∘ 𝑎 as the sampled augmentation, we have

that 𝑓(𝑎′ ∘ 𝑎(𝑥𝑖)) = 𝑅𝑎′∘𝑎𝑓(𝑥𝑖) = 𝜌(𝑎′ ∘ 𝑎)𝑓(𝑥𝑖). However, taking �̄� = 𝑎(𝑥𝑖) and

applying Proposition 5 twice we also know that 𝑓(𝑎′ ∘ 𝑎(𝑥𝑖)) = 𝑓(𝑎′(�̄�)) = 𝑅𝑎𝑓(�̄�) =

𝑅𝑎′𝑓(𝑎(𝑥𝑖)) = 𝑅𝑎′𝑅𝑎𝑓(𝑥) = 𝜌(𝑎′)𝜌(𝑎)𝑓(𝑥𝑖). That is, 𝜌(𝑎′ ∘ 𝑎)𝑓(𝑥𝑖) = 𝑓(𝑎′ ∘ 𝑎(𝑥𝑖)) =

𝜌(𝑎′)𝜌(𝑎)𝑓(𝑥𝑖). Since this holds for all 𝑖, we have that 𝜌(𝑎′ ∘ 𝑎) = 𝜌(𝑎′)𝜌(𝑎).

This corollary requires us to assume that 𝒜 is a semi-group. That is, 𝒜 is closed

under compositions, but group elements do not necessarily have inverses and it does

not need to include an identity element.

C.2 Background on Invariance Theory for the Or-

thogonal Group

This section recalls some classical theory on orthogonal groups and an extension that

we use for proving results over continuous data distributions.

A function 𝑓 : (R𝑑)𝑛 → R is said to be 𝑂(𝑑)-invariant if 𝑓(𝑅𝑣1, . . . , 𝑅𝑣𝑛) =

𝑓(𝑣1, . . . , 𝑣𝑛) for all 𝑅 ∈ 𝑂(𝑑). Throughout this section, we are especially interested

in determining easily computed statistics that characterize an 𝑂(𝑑) invariant function

𝑓 . In other words, we would like to write 𝑓 as a function of these statistics. The

following theorem was first proved by Hermann Weyl using Capelli’s identity [Weyl,

1946] and shows that the inner products 𝑣⊤𝑖 𝑣𝑗 suffice.

Theorem 2 (First fundamental theorem of invariant theory for the orthogonal

group). Suppose that 𝑓 : (R𝑑)𝑛 → R is 𝑂(𝑑)-invariant. Then there exists a function

𝑔 : R𝑛×𝑛 → R for which

𝑓(𝑣1, . . . , 𝑣𝑛) = 𝑔
(︀
[𝑣⊤𝑖 𝑣𝑗]

𝑛
𝑖,𝑗=1

)︀
.

In other words, to compute 𝑓 at a given input, it is not necessary to know all of

𝑣1, . . . , 𝑣𝑛. Computing the value of 𝑓 at a point can be done using only the inner

products 𝑣⊤𝑖 𝑣𝑗 , which are invariant to 𝑂(𝑑). Letting 𝑉 be the 𝑛× 𝑑 matrix whose 𝑖th
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row is 𝑣⊤𝑖 , we may also write 𝑓(𝑣1, . . . , 𝑛𝑛) = 𝑔(𝑉 𝑉 ⊤). The map 𝑉 ↦→ 𝑉 𝑉 ⊤ is known

as the orthogonal projection of 𝑉 .

A corollary of this result has recently been used to develop 𝑂(𝑑) equivariant

architectures in machine learning [Villar et al., 2021].

Corollary 3. Suppose that 𝐴,𝐵 are 𝑛× 𝑑 matrices and 𝐴𝐴⊤ = 𝐵𝐵⊤. Then 𝐴 = 𝐵𝑅

for some 𝑅 ∈ 𝑂(𝑑).

Villar et al. [2021] use this characterization of orthogonally equivariant functions

to parameterize function classes of neural networks that have the same equivariance.

This result is also useful in our context; However, we put it to use for a very different

purpose: studying ℒequi.

Intuitively this result says the following: given two point clouds 𝐴,𝐵 of unit length

vectors with some fixed correspondence (bijection) between each point in 𝐴 and a

point in 𝐵, if the angles between the 𝑖th and 𝑗th points in cloud 𝐴 always equal the

angle between the 𝑖th and 𝑗th point in cloud 𝐵, then 𝐴 and 𝐵 are the same up to an

orthogonal transformation.

This is the main tool we use to prove the finite sample version of the main result for

our equivariant loss (Proposition 14). However, to analyze the population sample loss

ℒequi (Proposition 5), we require an extended version of this result to the continuous

limit as 𝑛→∞. To this end, we develop a simple but novel extension to Theorem

2 to the case of continuous data distributions. This result may be useful in other

contexts independent of our setting.

Proposition 15. Let 𝒳 be any set and 𝑓, ℎ : 𝒳 → R𝑑 be functions on 𝒳 . If

𝑓(𝑥)⊤𝑓(𝑦) = ℎ(𝑥)⊤ℎ(𝑦) for all 𝑥, 𝑦 ∈ 𝒳 , then there exists 𝑅 ∈ 𝑂(𝑑) such that

𝑅𝑓(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝒳 .

The proof of this result directly builds on the finite sample version. The key idea

of the proof is that since the embedding space R𝑑 is finite-dimensional we may select

a set of points {𝑓(𝑥𝑖)}𝑖 whose span has maximal rank in the linear space spanned by

the outputs of 𝑓 . This means that any arbitrary point 𝑓(𝑥) can be written as a linear

combination of the 𝑓(𝑥𝑖). This observation allows us to apply the finite sample result
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on each 𝑓(𝑥𝑖) term in the sum to conclude that 𝑓(𝑥) is also a rotation of a sum of

ℎ(𝑥𝑖) terms. Next, we give the formal proof.

Proof of Proposition 15. Choose 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 such that 𝐹 = [𝑓(𝑥1) | . . . | 𝑓(𝑥𝑛)]⊤ ∈

R𝑛×𝑑 and ℎ = [ℎ(𝑥1) | . . . | ℎ(𝑥𝑛)]⊤ ∈ R𝑛×𝑑 have maximal rank. Note we use “|” to

denote the column-wise concatenation of vectors. Note that such 𝑥𝑖 can always be

chosen. Since we have 𝐹𝐹⊤ = 𝐻𝐻⊤, we know by Corollary 3 that 𝐹 = 𝐻𝑅 for some

𝑅 ∈ 𝑂(𝑑).

Now consider an arbitrary 𝑥 ∈ 𝒳 and define 𝐹 = [𝐹 | 𝑓(𝑥)]⊤ and �̃� = [𝐻 | ℎ(𝑥)]⊤,

both of which belong to R(𝑛+1)×𝑑. Note that again we have 𝐹𝐹⊤ = �̃��̃�⊤ so also

know that 𝐹 = �̃��̃� for some �̃� ∈ 𝑂(𝑑). Since 𝑥𝑖 were chosen so that 𝐹 and 𝐻 are of

maximal rank, we know that ℎ(𝑥) =
∑︀𝑛

𝑖=1 𝑐𝑖ℎ(𝑥𝑖) for some coefficients 𝑐𝑖 ∈ R, since if

this were not the case then we would have rank(�̃�) = rank(𝐻) + 1.

From this, we know that

𝑅⊤ℎ(𝑥) =
𝑛∑︁
𝑖=1

𝑐𝑖𝑅
⊤ℎ(𝑥𝑖)

=
𝑛∑︁
𝑖=1

𝑐𝑖𝑓(𝑥𝑖)

=
𝑛∑︁
𝑖=1

𝑐𝑖�̃�
⊤ℎ(𝑥𝑖)

= �̃�⊤
𝑛∑︁
𝑖=1

𝑐𝑖ℎ(𝑥𝑖)

= �̃�⊤ℎ(𝑥)

= 𝑓(𝑥).

So we have that 𝑅𝑓(𝑥) = 𝑅𝑅⊤ℎ(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝒳 .
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C.3 Extensions to Other Groups: Further Discussion

In Section 5.3.2, we explore the possibility of formulating an equivariant loss ℒequi

for pairs of points that fully captures equivariance by requiring the group to be

the stabilizer of a bilinear form. In this context, the invariants are generated by

polynomials of degree two in two variables, and the equivariant functions can be

obtained by computing gradients of these invariants [Blum-Smith and Villar, 2022].

Section 5.3.2 notes that this holds true not only for the orthogonal group, which is

the primary focus of our research but also for the Lorentz group and the symplectic

group, suggesting natural extensions of our approach.

It is worth noting that the group of rotations 𝑆𝑂(𝑑) does not fall into this framework.

It can be defined as the set of transformations that preserve both inner products

(a 2-form) and determinants (a 𝑑-form). Consequently, some of its generators have

degree 2 while others have degree 𝑑 (see [Weyl, 1946], Section II.A.9).

Weyl’s theorem states that if a group acts on 𝑛 copies of a vector space (in our

case, (R𝑑)𝑛 for consistency with the rest of the paper), its action can be characterized

by examining how it acts on 𝑘 copies (i.e., (R𝑑)𝑘) when the maximum degree of its

irreducible components is 𝑘 (refer to Section 6 of [Schmid, 2006] for a precise statement

of the theorem). Since our interest lies in understanding equivariance in terms of pairs

of objects, we desire invariants that act on pairs of points. One way to guarantee

this is to restrict ourselves to groups that act through representations where the

irreducible components have degrees of at most two (though this is not necessary in

all cases, such as the orthogonal group 𝑂(𝑑) that we consider in the main paper).

An example of such groups is the product of finite subgroups of the unitary group

𝑈(2), which holds relevance in particle physics. According to Weyl’s theorem, the

corresponding invariants can be expressed as polarizations of degree-2 polynomials

on two variables. Polarizations represent an algebraic construction that enables the

expression of homogeneous polynomials in multiple variables by introducing additional

variables to polynomials with fewer variables. In our case, the base polynomials consist

of degree-2 polynomials in two variables, while the polarizations incorporate additional
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variables. Notably, an interesting open problem lies in leveraging this formulation for

contrastive learning.

C.3.1 Experimental Protocols

We first outline the training protocol adopted for training our proposed approach on

a variety of datasets, namely CIFAR10, CIFAR100, STL10, and ImageNet100.

CIFAR10, CIFAR100 and STL10 All encoders have ResNet-50 backbones

and are trained for 400 epochs with temperature 𝜏 = 0.5 for SimCLR and 𝜏 = 0.1 for

MoCo-v2 1. The encoded features have a dimension of 2048 and are further processed

by a two-layer MLP projection head, producing an output dimension of 128. A batch

size of 256 was used for all datasets. For CIFAR10 and CIFAR100, we employed the

Adam optimizer with a learning rate of 1𝑒−3 and weight decay of 1𝑒−6. For STL10, we

employed the SGD optimizer with a learning rate of 0.06, utilizing cosine annealing and

a weight decay of 5𝑒−4, with 10 warmup steps. We use the same set of augmentations

as in SimCLR [Chen et al., 2020c]. To train the encoder using ℒCare-SimCLR, we use

the same hyper-parameters for InfoNCE loss. Additionally, we use 4, 8 and 16 batch

splits for CIFAR100, STL10 and CIFAR10, respectively. This allows us to sample

multiple augmentations per batch, effectively reducing the batch size of equivariance

loss whilst retaining the same for InfoNCE loss. Furthermore, for the equivariant

term, we find it optimal to use a weight of 𝜆 = 0.01, 0.001, and 0.01 for CIFAR10,

CIFAR100, and STL10, respectively.

ImageNet100 We use ResNet-50 as the encoder architecture and pretrain the

model for 200 epochs. A base learning rate of 0.8 is used in combination with cosine

annealing scheduling and a batch size of 512. For MoCo-v2, we use 0.99 as the

momentum and 𝜏 = 0.2 as the temperature. All remaining hyperparameters were

maintained at their respective official defaults as in the official MoCo-v2 code. While

training with ℒCare-SimCLR and ℒCare-MoCo, we find it optimal to use splits of 4 and 8

and weight of 𝜆 = 0.005 and 0.01 respectively on the equivariant term.
1https://github.com/facebookresearch/moco
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Linear evaluation We train a linear classifier on frozen features for 100 epochs

with a batch size of 512 for CIFAR10, CIFAR100, and STL10 datasets. To optimize

the classifier, we employ the Adam optimizer with a learning rate of 1𝑒−3 and a weight

decay of 1𝑒−6. In the case of ImageNet100, we train the linear classifier for 60 epochs

using a batch size of 128. We initialize the learning rate to 30.0 and apply a step

scheduler with an annealing rate of 0.1 at epochs 30, 40, and 50. The remaining

hyper-parameters are retained from the official code.

C.4 Additional experiments

Histogram for loss ablation. To accompany Figure 5-2, this section plots the

cosine similarity between positive pairs. We provide two plots for each experiment:

the first plots the histogram of similarities of positive pairs drawn from the test set; the

second plots the average positive cosine similarity throughout training. The results

are reported in Figures C-1, C-2, C-3, C-4, C-5, C-6.
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Figure C-1: (left) Histogram of positive cosine similarity values at the end of pre-
training using the invariance loss; (right) Evolution of positive cosine similarity values
over pre-training epochs using the invariance loss
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Figure C-2: (left) Histogram of positive cosine similarity values at the end of pre-
training using the orthogonal equivariance loss; (right) Evolution of positive cosine
similarity values over pre-training epochs using the orthogonal equivariance loss
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Figure C-3: (left) Histogram of positive cosine similarity values at the end of pre-
training using the uniformity loss; (right) Evolution of positive cosine similarity values
over pre-training epochs using the uniformity loss
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Figure C-4: (left) Histogram of positive cosine similarity values at the end of pre-
training using the Uniformity + Equivariance loss; (right) Evolution of positive cosine
similarity values over pre-training epochs using the Uniformity + Equivariance loss
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Figure C-5: (left) Histogram of positive cosine similarity values at the end of pre-
training using the InfoNCE (invariance + uniformity) loss; (right) Evolution of positive
cosine similarity values over pre-training epochs using the InfoNCE loss
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Figure C-6: (left) Histogram of positive cosine similarity values at the end of pre-
training using the Care (InfoNCE + orthogonal equivariance) loss; (right) Evolution
of positive cosine similarity values over pre-training epochs using the Care loss
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Appendix D

Further Discussion for Contrastive

Masked Auotencoders

D.1 Additional Transfer Learning Results

We report additional results for few-shot learning and robustness.

Robustness: Section 6.3.5 reports robustness results for ViT-L models pre-trained

on JFT-300M for 5000 epochs, and ViT-L models pre-trained on IN-1K for 800 epochs.

In both cases we report the performance of the models after finetuning on IN-1K.

Here we report the same robustness results for ViT-L models trained on JFT-300M

for 1600 and 800 epochs (Figure D-1), and ViT-B models pre-trained for 800 epochs

(Figure D-2). Figure D-2 also compares our ViT-B model to ViT-B models trained

from scratch on ImageNet. We find that our model is considerably more robust than

training with cross-entropy and Mixup from scratch, and also outperforms PyramidAT

[Herrmann et al., 2022], an adversarial training method that introduces significant

overheads compared to standard cross-entropy training. We emphasize that here there

are two differences in the training: a) the training algorithm itself, and b) the data

seen by the model. Our model sees extra JFT-300M data not seen by the other two

approaches. This means that the methods are not exactly comparable. It is, however,

a realistic setting showing the benefits to robustness of pre-training on large datasets.

Few shot: Section 6.3.4 reports 10- and 25-shot results for ViT-L models pre-

273



IN-A ObjectNet IN-Sketch IN-Rendition IN-v2 IN-1K IN-Real
0

25

50

75

100
to

p-
1 

(%
)

29.3
38.0 45.1

53.0

73.9
84.4 88.8

35.1
42.5 41.4

54.4

74.1
84.7 88.6

38.0 42.6 43.7
57.0

74.5
84.8 88.4

JFT-300M: 800 epochs
MAE
SimCLR
CAN (ours)

IN-A ObjectNet IN-Sketch IN-Rendition IN-v2 IN-1K IN-Real
0

25

50

75

100

to
p-

1 
(%

)

34.3 40.3 45.8
55.5

76.1
85.1 89.0

39.2 44.7 45.9
60.1

75.2
85.1 89.0

43.5 45.2 44.6
58.2

75.1
85.3 88.5

JFT-300M: 1600 epochs
MAE
SimCLR
CAN (ours)

Figure D-1: ViT-L models pre-trained on JFT-300M for 800 and
1600 epochs respectively, evaluated on 7 datasets with distribution
shifts from IN-1K.
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Figure D-2: Top: ViT-B models pre-trained on JFT-300M for 800
epochs, evaluated on 7 datasets with distribution shifts from IN-1K.
Bottom: Comparison of our JFT-300M pre-trained ViT-B model
to training ViT-B from scratch on IN-1K. We compare to standard
supervised cross-entropy training with Mixup, and to PyramidAT
[Herrmann et al., 2022], which uses an adversarial training method.
CAN considerably outperforms supervised training, and beats Pyra-
midAT in 6 out of 7 cases without requiring adversarial training.
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Figure D-3: Few shot: ViT-L models pre-trained on JFT-300M
for 5000 epochs evaluated on 9 few-shot learning tasks. Results
accompany the 10- and 25-shot results in Figure 6-4.

trained on JFT-300M for 5000 epochs. Here we report 1- and 5-shot results for the

same models in Figure D-3. We additionally show the full set of {1, 5, 10, 25}-shot

results for ViT-L models pre-trained on JFT-300M for 800 and 1600 epochs (Figures

D-4 and D-5 respectively), ViT-B models pre-trained on JFT-300M for 800 epochs

(Figure D-6), and ViT-L models pre-trained on IN-1K for 800 epochs (Figure D-7).

We make a number of observations.

1. JFT-300M pre-training often outperforms IN-1K pre-training. Comparing Fig-

ures D-4 and D-7, JFT-300M yields better 25-shot CAN performance on 6 out

of 9 datasets.

2. Model scale helps. Comparing Figures D-6 and D-4, ViT-L models perform best

in nearly all cases.

3. Across all settings CAN generally performs the best on JFT-300M pre-training.

4. The situation is less consistent on IN-1K pre-training. For instance, although

MAE has comparatively poor few-shot performance on IN-1K, it is competitive

on others for 25-shot evaluation: in this setting CAN only beats MAE on 5 out

of 9 datasets. However, on 10-shot CAN outperforms MAE and SimCLR in 7

out of 9 cases, showing a subtle picture.
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Figure D-4: Few shot: ViT-L models pre-trained on JFT-300M for
800 epochs are evaluated on 9 few-shot learning tasks.
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Figure D-5: Few shot: ViT-L models pre-trained on JFT-300M for
1600 epochs are evaluated on 9 few-shot learning tasks.
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Figure D-6: Few shot: ViT-B models pre-trained on JFT-300M for
800 epochs are evaluated on 9 few-shot learning tasks.
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Figure D-7: Few shot: ViT-L models pre-trained on IN-1K for 800
epochs are evaluated on 9 few-shot learning tasks.
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Figure D-8: Robustness: ViT-L models pre-trained on IN-21K
for 800 (IN-1K equivalent) epochs are first finetuned on IN-1K. The
models are then evaluated on 7 test datasets with different distribution
shifts from IN-1K.

MAE SimCLR CAN

57.8 76.5 76.5

Table D.1: IN-21K pre-training. Linear probe performance on IN-1K. ViT-B
models pre-trained for 800 IN-1K equivalent epochs.

D.1.1 ImageNet-21K pre-training.

We also consider the performance of CAN on pre-training on ImageNet-21K (IN-21K),

a publicly available dataset of 14.2 million images, grouped into 21,000 different classes

Deng et al. [2009]. We use the same hyperparamter settings as JFT-300M training to

train ViT-L models on IN-21K for 800 (IN-1K equivalent) epochs.

We run a full set of evaluations on finetuning, linear probe, robustness (Figure

D-8), and few-shot learning (Figure D-9), and linear probe in Table D.1. We note

that while CAN and SimCLR achieve similar linear probe performance, CAN remains

much more efficient (see Figure 6-1). Furthermore, we only ran IN-21K training for

800 epochs. This is a training schedule which also led to similar linear probe for CAN

and SimCLR when pre-training on JFT-300M. The difference in linear probe between

CAN and SimCLR emerged on JFT-300M with longer training runs. Despite this,

CAN pre-training on IN-21K with 800 epoch schedule still performs favourably on

other downstream robustness and few-show evaluations.
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Figure D-9: Few shot: ViT-L models pre-trained on IN-21K for 800
(IN-1K equivalent) epochs are evaluated on 9 few-shot learning tasks.

D.2 Runtime of CAN compared to DnC

In the main paper we estimate our method is significantly faster than DnC [Tian et al.,

2021]. We determined this approximate comparison from the following two pieces of

information: 1) DnC reports that 3000 ImageNet epochs takes 29 hours on 512 TPUs

for a ResNet-50 model (∼25M parameters), and 2) 3000 ImageNet epochs of CAN

take 78 hours on 64 TPUs for a ViT-L model (∼300M parameters). We assume a

linear relationship between number of TPUs and runtime. Under this assumption,

we estimate that CAN would take approximately 10 hours to train with 512 TPUs,

compared to the 29 hours reported by Tian et al. [2021] for a model with 1/10th the

number of parameters. We emphasize that this is far from an exact comparison and is

only intended as a very approximate guide.
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D.3 Hyperparameter settings

We list hyperparameters used for CAN pre-training in Table D.2 and Table D.3.

For preprocessing we closely follow SimCLR Chen et al. [2020c]. We use the same

hyperparameters for SimCLR pre-training. For MAE pre-training, we use the same

hyperparameters as listed in He et al. [2022], except for the use of Glorot uniform

initialization instead of LeCun initialization as done in He et al. [2022]. We found that

this provided better performance for our JAX-based MAE implementation. Table

D.6 lists the hyperparameters for finetuning evaluations. We use the same set of

hyperparameters for each finetuning each pre-training method, and for both ViT-B

and ViT-L model sizes. For linear probing we list the hyperparameters in Table D.7

for which we followed the settings in He et al. [2022]. We use global average pool of

the final representation instead of the cls token.

MAE longer training: MAE pre-training for longer training (5000 epochs) on

JFT becomes unstable after about 500k steps (training loss oscillates); this results in

poorer fine-tuning performance. To overcome this, we decrease the base learning rate

by 75% as shown in Table D.5. However our model CAN is more stable and we use

the same hyperparameters across different numbers of epochs.

Few shot training: For few-shot learning we use the same hyperparameters and

pipeline as Dosovitskiy et al. [2021b]. We use the same pre-processing as was done in

[Kolesnikov et al., 2020]. We use a base learning rate of 0.01 and train for 2500 steps,

using an input resolution of 384× 384.

Hardware details: We use TPU-v4 for all of our experiments. CAN on ViT-B uses

64 TPUs for a batch size of 4096. SimCLR, on the other hand, uses 128 TPUs for the

same batch size, and is more compute intensive than CAN.

Decoder architecture: Our decoder architecture is the same as He et al. [2022].

We use standard ViT with a decoder depth of 8 and decoder width of 512. We use 16
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heads and 2048 as the dimension of the MLP.

Projection head architecture: We use 2 hidden layers in our projection heads.

Each layer has a Fully-Connected (FC) layer (dim 4096) followed by BatchNorm

(momentum=0.9) followed by ReLU. After these 2 layers we have a FC layer which

transforms the features to 128 dimensions. We apply contrastive learning on top of

these 128 dimensional features.

Noise positional encoding architecture: We use a 1 hidden layer MLP with

ReLU activations of hidden width and output dimension of 768, equal to the input

dimensions of the decoder. During testing we tried different depths and widths, finding

performance to be robust to these variations. The input dimension is 256 sinusoidal

features, exactly as in Vaswani et al. [2017a].

JFT-300M and IN-21K hyperparameters: All hyperparameters were determined

by training on IN-1K, and directly transferred to JFT-300M and IN-21K pre-training,

with the exception of learning rate and weight decay, which found needed to be at a

lower level for JFT-300M and IN-21K. For all methods we divided the learning rate

by a factor of 4, and the weight decay by a factor of 2, except for MAE where we

found that the original weight decay tuned on ImageNet worked better. We also tried

dividing the learning rate by factors of 2 and 8, but found that 4 worked best for all

methods. Specifically, for CAN and SimCLR we used following parameter choices:

𝑤𝑑 = 0.1/2 = 0.05 and 𝑙𝑟 = 1.25 × 10−4/4 = 3.125 × 10−5 and for MAE we used

𝑙𝑟 = 1.5× 10−4/4 = 3.75× 10−5 , and tried 𝑤𝑑 = 0.05/2 = 0.025, but found that the

original 𝑤𝑑 = 0.05 worked better, so kept this value.

D.3.1 Pre-training hyperparameters
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Config Value
optimizer AdamW [Loshchilov and

Hutter, 2017a]
base learning rate(ViT-B) 2.5e-4
base learning rate (ViT-L) 1.25e-4
weight decay (ViT-B) 0.05
weight decay (ViT-L) 0.1
optimizer momentum 𝛽1, 𝛽2=0.9, 0.95 [Chen

et al., 2020a]
batch size 4096
learning rate schedule cosine decay [Loshchilov

and Hutter, 2017b]
warmup epochs [Goyal et al.,
2017]

40

augmentation RandomResizedCrop,
Color
Jittering(strength=1.0),
GrayScale(probability=0.2),
Gaussian Blurring
(probability=0.5)

masking rate 0.5

Table D.2: Hyperparameters for CAN pre-training on ImageNet. Note that we use
lower learning rate for ViT-L as compared to ViT-B, following Steiner et al. [2021].
We use the same hyper-parameters for SimCLR pre-training, except for masking rate
that is set to 0.

Config Value
optimizer AdamW [Loshchilov and

Hutter, 2017a]
base learning rate (ViT-B) 2.5e-4
base learning rate (ViT-L) 3.125e-5
weight decay 0.05
optimizer momentum 𝛽1, 𝛽2=0.9, 0.95 [Chen

et al., 2020a]
batch size 4096
learning rate schedule cosine decay [Loshchilov

and Hutter, 2017b]
warmup epochs [Goyal et al.,
2017]

40

augmentation RandomResizedCrop,
Color
Jittering(strength=1.0),
GrayScale(probability=0.2),
Gaussian Blurring
(probability=0.5)

masking rate 0.5

Table D.3: Hyperparameters for CAN pre-training on JFT-300M and IN-21K. Note
that we use lower learning rate for ViT-L as compared to ViT-B, following Steiner
et al. [2021]. We use the same hyper-parameters for SimCLR pre-training, except for
masking rate that is set to 0.

D.3.2 Finetuning and linear probe hyperparameters

Table D.6 shows the finetuning recipie we use for CAN and SimCLR. This is the same

as the recipe reported for MAE, except for the learning rate, which we found beneficial

to lower, and the augmentations, which we found marginally beneficial to strengthen
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Config Value
optimizer AdamW [Loshchilov and

Hutter, 2017a]
base learning rate (ViT-L) 1.5e-4
weight decay 0.05
optimizer momentum 𝛽1, 𝛽2=0.9, 0.95 [Chen

et al., 2020a]
batch size 4096
learning rate schedule cosine decay [Loshchilov

and Hutter, 2017b]
warmup epochs [Goyal et al.,
2017]

40

augmentation RandomResizedCrop
masking rate 0.75

Table D.4: Hyperparameters for MAE pre-training on IN-1K. These parameters are
exactly the same as in He et al. [2022].

Config Value
optimizer AdamW [Loshchilov and

Hutter, 2017a]
base learning rate (ViT-L) 3.75e-5
weight decay 0.05
optimizer momentum 𝛽1, 𝛽2=0.9, 0.95 [Chen

et al., 2020a]
batch size 4096
learning rate schedule cosine decay [Loshchilov

and Hutter, 2017b]
warmup epochs [Goyal et al.,
2017]

40

augmentation RandomResizedCrop
masking rate 0.75

Table D.5: Hyperparameters for MAE pre-training on JFT-300M and IN-21K with
ViT-L models. The only difference from the IN-1K configuration is the learning rate,
which we reduced to stabilize training.

(He et al. [2022] uses only RandAug). The only other difference is that we always

use layer-wise learning rate decay of 0.65, whereas MAE uses 0.65 for ViT-B, and

0.75 for ViT-L. For 5000 epochs of JFT-300M, and 800 epochs of IN-21K pre-training

we noticed that CAN and SimCLR finetunne was over-fitting, so we reduced the

finetuning from 100 epochs to 40 epochs. For all MAE finetuning runs we follow the

recipe of the original paper He et al. [2022] as we found adjusting the learning rate

and augmentations not to help for MAE. We did not observe any over-fitting in MAE,

so kept the schedule fixed.

For linear probe training we follow the exact same recipe of He et al. [2022] for all

models (see Table D.7 for details).
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Config Value
optimizer AdamW [Loshchilov and

Hutter, 2017a]
base learning rate 5e-4
weight decay 0.005
optimizer momentum 𝛽1, 𝛽2=0.9, 0.999 [Chen

et al., 2020a]
batch size 1024
learning rate schedule cosine decay [Loshchilov

and Hutter, 2017b]
warmup epochs [Goyal et al.,
2017]

5

training epochs 100
label smoothing 0.1
drop path 0.1
layer-wise lr decay 0.65
augmentation RandomResizedCrop, Flip,

RandAug(layers=2,
magnitude=9) [Cubuk
et al., 2020], Random
Erase [Zhong et al.,
2020](probability=0.25)

Table D.6: Hyperparameters for finetuning CAN and SimCLR pre-trained models on
ImageNet. We use the same hyperparameters for ViT-B and ViT-L, for JFT-300M,
IN-21K and IN-1K pre-trainined models. For MAE, we use the settings from Table 9
of [He et al., 2022].

.

Config Value
optimizer LARS [You et al., 2017]
base learning rate 0.1
weight decay 0
optimizer momentum 0.9
batch size 16384
learning rate schedule cosine decay [Loshchilov

and Hutter, 2017b]
warmup epochs [Goyal et al.,
2017]

10

training epochs 100
batch norm momentum 0.9
label smoothing 0
augmentation RandomResizedCrop

Table D.7: Hyperparameters for linear probing pre-trained models on ImageNet. We
use the same hyperparameters for ViT-B and ViT-L, and for JFT-300M, IN-21K and
IN-1K pre-trainined models. Note that these hyperparamters are same as reported in
He et al. [2022].
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Appendix E

Further Discussion For Neural

Networks for Eigenvector Data

E.1 Universality for Multiple Spaces

While the networks introduced in the Section 7.1.2 possess the desired invariances, it

is not immediately obvious whether they are powerful enough to express all functions

with these invariances. Under certain conditions, the universality of our architectures

follows as a corollary of the following general decomposition result, which may enable

construction of universal architectures for other invariances as well.

Theorem 10 (Decomposition Theorem). Let 𝒳1, . . . ,𝒳𝑘 be topological spaces, and

let 𝐺𝑖 be a group acting on 𝒳𝑖 for each 𝑖. We assume mild topological conditions on

𝒳𝑖 and 𝐺𝑖 hold. For any continuous 𝑓 : 𝒳 = 𝒳1 × . . .×𝒳𝑘 → R𝑑out that is invariant

to the action of 𝐺 = 𝐺1 × . . . × 𝐺𝑘, there exists continuous 𝜑𝑖 and a continuous

𝜌 : 𝒵 ⊆ R𝑎 → R𝑑out such that

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝜌(𝜑1(𝑣1), . . . , 𝜑𝑘(𝑣𝑘)). (E.1)

Furthermore: (1) each 𝜑𝑖 can be taken to be invariant to 𝐺𝑖, (2) the domain 𝒵 of 𝜌 is

compact if each 𝒳𝑖 is compact, (3) if 𝒳𝑖 = 𝒳𝑗 and 𝐺𝑖 = 𝐺𝑗, then 𝜑𝑖 can be taken to be

equal to 𝜑𝑗.
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This result says that when a product of groups 𝐺 acts on a product of spaces 𝒳 , for

invariance to the product group 𝐺 it suffices to individually process each smaller group

𝐺𝑖 on 𝒳𝑖 and then aggregate the results. Along with the proof of Theorem 10, the

mild topological assumptions are explained in Appendix E.7.1. The assumptions hold

for sign invariance and basis invariance, when not enforcing permutation equivariance.

By applying this theorem, we can prove universality of some instances of our networks:

Corollary 4. Unconstrained-SignNet can represent any sign invariant function

and Unconstrained-BasisNet can represent any basis invariant function. Expressive-

BasisNet is a universal approximator of functions that are both basis invariant and

permutation equivariant.

This result shows that Unconstrained-SignNet, Unconstrained-BasisNet, and

Expressive-BasisNet take the correct functional form for their respective invariances

(proofs in Appendix E.7.2). Note that Expressive-BasisNet approximates all sign invari-

ant functions as a special case, by treating all inputs as one dimensional eigenspaces.

Further, note that we require Expressive-BasisNet’s high order tensors to achieve

universality when enforcing permutation equivariance. Universality under permuta-

tion equivariance is generally difficult to achieve when dealing with matrices with

permutation symmetries [Maron et al., 2019, Keriven and Peyré, 2019], but it may be

possible that more efficient architectures can achieve it in our setting.

Accompanying the decomposition result, we show a corresponding universal ap-

proximation result (proof in Appendix E.7.3). Similarly to Theorem 10, the problem

of approximating 𝐺 = 𝐺1 × . . .×𝐺𝑘 invariant functions is reduced to approximating

several 𝐺𝑖-invariant functions.

E.2 More Details on SignNet and BasisNet

In Figure 7-2, we show a diagram that describes how SignNet is used as a node

positional encoding for a graph machine learning task. In Table E.1, we compare

and contrast properties of the neural architectures that we introduce. In Figure E-1,
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Table E.1: Properties of our architectures: Unconstrained-SignNet, SignNet,
Unconstrained-BasisNet, and Expressive-BasisNet. The properties are: permuta-
tion equivariance, universality (for the proper class of continuous invariant functions),
and computational tractability.

Unconstr.-SignNet SignNet Unconstr.-BasisNet BasisNet Expr.-BasisNet

Perm. equivariant × ✓ × ✓ ✓

Universal ✓ × ✓ × ✓

Tractable ✓ ✓ ✓ ✓ ×

PyTorch-like pseudo-code for SignNet
class SignNetGNN(nn.Module):

def __init__(self, d, k, D1, D2, out_dim):
self.phi = GIN(1, D1) # in dim=1, out dim=D1
self.rho = MLP(k∗D1, D2)
self.base_model = GNN(d+D2, out_dim)

def forward(self, g, x, eigvecs):
# g contains graph information
# x shape: n x d
# eigvecs shape: n x k

n, k = eigvecs.shape
eigvecs = eigvecs.reshape(n, k, 1)
pe = self.phi(g, eigvecs) + self.phi(g, −eigvecs)
pe = pe.reshape(n, −1) # n x k x D1 −> n x k∗D1
pe = self.rho(pe)

return self.base_model(g, x, pe)

Figure E-1: PyTorch-like pseudo-code for using SignNet with a GNN prediction model,
where 𝜑 = GIN and 𝜌 = MLP as in the ZINC molecular graph regression experiments.
Reshaping eigenvectors from 𝑛× 𝑘 to 𝑛× 𝑘 × 1 allows 𝜑 to process each eigenvector
(and its negation) independently in PyTorch-like deep learning libraries.

we give pseudo-code of SignNet for learning node positional encodings with a GNN

prediction model.

E.2.1 Generalization Beyond Symmetric Matrices

In the main paper, we assume that the eigenspaces come from a symmetric matrix.

This holds for many cases of practical interest, as e.g. the Laplacian matrix of an

undirected graph is symmetric. However, we may also want to process directed

graphs, or other data that have associated nonsymmetric matrices. Our SignNet and

BasisNet generalize in a straightforward way to handle nonsymmetric diagonalizable

matrices, as we detail here. Let 𝐴 ∈ R𝑛×𝑛 be a matrix with a diagonalization
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𝐴 = 𝑉 Λ𝑉 −1, where Λ = Diag(𝜆1, . . . , 𝜆𝑛) contains the eigenvalues 𝜆𝑖, and the columns

of 𝑉 =

[︂
𝑣1 . . . 𝑣𝑛

]︂
are eigenvectors. Suppose we want to learn a function on the

eigenvectors 𝑣1, . . . , 𝑣𝑘. Unlike in the symmetric matrix case, the eigenvectors are not

necessarily orthonormal, and both the eigenvalues and eigenvectors can be complex.

Real eigenvectors. First, we assume the eigenvectors 𝑣𝑖 are all real vectors

in R𝑛. We can take the eigenvectors to be real if 𝐴 is symmetric, or if 𝐴 has real

eigenvalues (see Horn and Johnson [2012] Theorem 1.3.29). Also, suppose that we

choose the real numbers R as our base field for the vector space in which eigenvectors

lie. Note that for any scaling factor 𝑐 ∈ R ∖ {0} and eigenvector 𝑣, we have that 𝑐𝑣

is an eigenvector of the same eigenvalue. If the eigenvalues are distinct, then the

eigenvectors of the form 𝑐𝑣 are the only other eigenvectors in the same eigenspace as

𝑣. Thus, we want a function to be invariant to scalings:

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝑓(𝑐1𝑣1, . . . , 𝑐𝑘𝑣𝑘) 𝑐𝑖 ∈ R ∖ {0}. (E.2)

This can be handled by SignNet, by giving unit normalized vector inputs:

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝜌
(︁
[𝜑(𝑣𝑖/‖𝑣𝑖‖) + 𝜑(−𝑣𝑖/‖𝑣𝑖‖)]𝑖=1,...,𝑘

)︁
. (E.3)

Now, say have bases of eigenspaces 𝑉1, . . . , 𝑉𝑙 with dimensions 𝑑1, . . . , 𝑑𝑙. For a basis

𝑉𝑖, we have that any other basis of the same space can be obtained as 𝑉𝑖𝑊 for some

𝑊 ∈ GLR(𝑑𝑖), the set of real invertible matrices in R𝑑𝑖×𝑑𝑖 . Indeed, the orthonormal

projector for the space spanned by the columns of 𝑉𝑖 is given by 𝑉𝑖(𝑉 ⊤
𝑖 𝑉𝑖)

−1𝑉 ⊤
𝑖 . Thus,

if 𝑍 ∈ R𝑛×𝑑𝑖 is another basis for the column space of 𝑉𝑖, we have that 𝑉𝑖(𝑉 ⊤
𝑖 𝑉𝑖)

−1𝑉 ⊤
𝑖 =

𝑍(𝑍⊤𝑍)−1𝑍⊤, so

𝑉𝑖(𝑉
⊤
𝑖 𝑉𝑖)

−1𝑉 ⊤
𝑖 𝑍 = 𝑍(𝑍⊤𝑍)−1𝑍⊤𝑍 = 𝑍, (E.4)

so let 𝑊 = (𝑉 ⊤
𝑖 𝑉𝑖)

−1𝑉 ⊤
𝑖 𝑍 ∈ R𝑑𝑖×𝑑𝑖 . Note that 𝑊 is invertible, because it has inverse

(𝑍⊤𝑍)−1𝑍⊤𝑉𝑖, so indeed 𝑉𝑖𝑊 = 𝑍 for 𝑊 ∈ GLR(𝑑𝑖). Thus, basis invariance in this
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case is of the form

𝑓(𝑉1 . . . , 𝑉𝑙) = 𝑓(𝑉1𝑊1, . . . , 𝑉𝑙𝑊𝑙) 𝑊𝑖 ∈ GLR(𝑑𝑖). (E.5)

Note that the distinct eigenvalue invariance is a special case of this invariance, as

GR(1) = R ∖ {0}. We can again achieve this basis invariance by using a BasisNet,

where the inputs to the 𝜑𝑑𝑖 are orthogonal projectors of the corresponding eigenspace:

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝜌
(︁[︀
𝜑𝑑𝑖(𝑉𝑖(𝑉

⊤
𝑖 𝑉𝑖)

−1𝑉 ⊤
𝑖 )
]︀
𝑖=1,...,𝑙

)︁
. (E.6)

Recall that if 𝑉𝑖 is an orthonormal basis, then the orthogonal projector is just 𝑉𝑖𝑉 ⊤
𝑖 ,

so this is a direct generalization of BasisNet in the symmetric case.

Complex eigenvectors. More generally, suppose 𝑉 ∈ C𝑛×𝑛 are complex eigen-

vectors, and we take the base field of the vector space to be C. The above arguments

generalize to the complex case; in the case of distinct eigenvalues, we want

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝑓(𝑐1𝑣1, . . . , 𝑐𝑘𝑣𝑘) 𝑐𝑖 ∈ C ∖ {0}. (E.7)

However, this symmetry can not be as easily reduced to a unit normalization and a

discrete sign invariance, as it can be in the real case. Nonetheless, the basis invariant

architecture directly generalizes, so we can handle the case of distinct eigenvalues by

a more general basis invariant architecture as well. The basis invariance is

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝑓(𝑉1𝑊1, . . . , 𝑉𝑙𝑊𝑙) 𝑊𝑖 ∈ GLC(𝑑𝑖). (E.8)

The orthogonal projector of the image of 𝑉𝑖 is 𝑉𝑖(𝑉 *
𝑖 𝑉𝑖)

−1𝑉 *
𝑖 , where there are now

conjugate transposes replacing the transposes. Thus, BasisNet takes the form:

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝜌
(︁[︀
𝜑𝑑𝑖(𝑉𝑖(𝑉

*
𝑖 𝑉𝑖)

−1𝑉 *
𝑖 )
]︀
𝑖=1,...,𝑙

)︁
. (E.9)
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E.2.2 Complexity of SignNet and BasisNet

Here, we give a simplified but intuitive analysis of the complexity of SignNet and

BasisNet. Suppose we have a graph of 𝑛 nodes, with 𝑘 eigenvectors 𝑣1, . . . , 𝑣𝑘. A

standard GNN that naively inputs the eigenvectors as node features forms tensors

of size 𝒪(𝑛𝑘 + 𝑛𝑑), where 𝑑 is the hidden dimension of the learned node features.

SignNet forms tensors of size 𝒪(𝑛𝑘𝑑), where 𝑑 is the hidden dimension or output

dimension of 𝜑. This is because for each of the 2𝑘 eigenvectors 𝑣𝑖 and −𝑣𝑖, we must

put it through our 𝜑 network. Similarly, BasisNet forms tensors of size 𝒪(𝑛2𝑙𝑑), where

𝑙 is the number of eigenspaces and 𝑑 is the hidden dimension or output dimension

of the 𝜑𝑑𝑖 . Thus, there is an extra multiplicative factor of 𝑛 when compared with

SignNet. If we instead use 𝑝-IGNs with order 𝑝 tensors, then the complexity is 𝒪(𝑛𝑝𝑙𝑑).

Moreover, note that a naive version of BasisNet requires a separate IGN to be learned

for each multiplicity 𝑑𝑖. This may be intractable for datasets with eigenspaces of many

sizes. One way to get around this would be to parameterize a single IGN, and define

𝜑𝑑𝑖(𝑉𝑖𝑉
⊤
𝑖 ) = IGN(𝑉𝑖𝑉

⊤
𝑖 , 𝑑𝑖); in other words, we simply input the dimension to the

shared IGN. We have not tested the learning capabilities of this more efficient model

in this work, but it could be promising for future work.

E.2.3 Other Architectural Notes

There are several alternatives available in the design of SignNet and BasisNet that

we now discuss. Our approach, as outlined in Figure 7-2, processes the eigenvectors

independently to compute learned positional encodings and then uses these learned

positional encodings along with the node features 𝑋 in a final base model (say, a

GNN) to get a prediction. Another possibility is to process eigenvectors and node

features jointly. One way to do this is to add 𝑋 as input to 𝜑, so for instance SignNet

would include 𝜑(𝑣𝑖, 𝑋) + 𝜑(−𝑣𝑖, 𝑋). However, this requires processing 𝑋 2𝑘 times

with 𝜑, which may be inefficient.

Another possibility to parameterize a sign invariant architecture is through taking

elementwise absolute values of eigenvectors, and then composing with arbitrary
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functions, e.g. MLP(|𝑣1|, . . . , |𝑣𝑘|), where the MLP acts independently on each node.

Empirically, this often does not work well (see our results on ZINC as well as those of

Dwivedi et al. [2020]). Intuitively, these elementwise absolute values remove distance

information, since for instance nodes 𝑖 and 𝑗 in which 𝑣(𝑖)2 = −𝑣(𝑗)2 are typically far in

the graph, but they will have the same value in this eigenvector under the absolute

value mapping. Nonetheless, if the 𝜑 in SignNet is taken to be an elementwise function,

meaning 𝜑 : R𝑛 → R𝑛×𝑑 satisfies 𝜑(𝑣)𝑖 = 𝜓(𝑣𝑖) for some 𝜓 applied independently to

each node, then SignNet is equivalent in expressiveness to MLP(|𝑣1|, . . . , |𝑣𝑘|), where

the MLP acts independently on each node.

E.3 More on Eigenvalue Multiplicities

In this section, we study the properties of eigenvalues and eigenvectors computed by

numerical algorithms on real-world data.

E.3.1 Sign and Basis Ambiguities in Numerical Eigensolvers

When processing real-world data, we use eigenvectors that are computed by numerical

algorithms. These algorithms return specific eigenvectors for each eigenspace, so there

is some choice of sign or basis of each eigenspace. The general symmetric matrix

eigensolvers numpy.linalg.eigh and scipy.linalg.eigh both call LAPACK rou-

tines. They both proceed as follows: for a symmetric matrix 𝐴, they first decompose

it as 𝐴 = 𝑄𝑇𝑄⊤ for orthogonal 𝑄 and tridiagonal 𝑇 , then they compute the eigende-

composition of 𝑇 = 𝑊Λ𝑊⊤, so the eigendecomposition of 𝐴 is 𝐴 = (𝑄𝑊 )Λ(𝑊⊤𝑄⊤).

There are multiple ambiguities here: for diagonal sign matrices 𝑆 = Diag(𝑠1, . . . , 𝑠𝑛)

and 𝑆 ′ = Diag(𝑠′1, . . . , 𝑠
′
𝑛), where 𝑠𝑖, 𝑠′𝑖 ∈ {−1, 1}, we have that 𝐴 = 𝑄𝑆(𝑆𝑇𝑆)𝑆𝑄⊤

is also a valid tridiagonalization, as 𝑄𝑆 is still orthogonal, 𝑆𝑆 = 𝐼, and 𝑆𝑇𝑆 is still

tridiagonal. Also, 𝑇 = (𝑊𝑆 ′)Λ(𝑆 ′𝑊⊤) is a valid eigendecomposition of 𝑇 , as 𝑊𝑆 ′ is

still orthogonal.

In practice, we find that the general symmetric matrix eigensolvers numpy.linalg.eigh

and scipy.linalg.eigh differ between frameworks but are consistent with the same
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framework. More specifically, for a symmetric matrix 𝐴, we find that the eigenvectors

computed with the default settings in numpy tend to differ by a choice of sign or basis

from those that are computed with the default settings in scipy. On the other hand,

the called LAPACK routines are deterministic, so the eigenvectors returned by numpy

are the same in each call, and the eigenvectors returned by scipy are likewise the same

in each call.

Eigensolvers for sparse symmetric matrices like scipy.linalg.eigsh are required

for large scale problems. This function calls ARPACK, which uses an iterative method

that starts with a randomly sampled initial vector. Due to this stochasticity, the sign

and basis of eigenvectors returned differs between each call.

Bro et al. [2008] develop a data-dependent method to choose signs for each singular

vector of a singular value decomposition. Still, in the worst case the signs chosen

will be arbitrary, and they do not handle basis ambiguities in higher dimensional

eigenspaces. Other works have made choices of sign, such as by picking the sign so

that the eigenvector’s entries are in the largest lexicographic order [Tam and Dunson,

2022]. This choice of sign may work poorly for learning on graphs, as it is sensitive to

permutations on nodes. For some graph regression experiments in Section 7.3.1, we

try a choice of sign that is permutation invariant, but we find it to work poorly.

E.3.2 Higher Dimensional Eigenspaces in Real Graphs

Here, we investigate the normalized Laplacian eigenspace statistics of real-world graph

data. For any graph that has distinct Laplacian eigenvalues, only sign invariance

is required in processing eigenvectors. However, we find that graph data tends to

have higher multiplicity eigenvalues, so basis invariance would be required for learning

symmetry-respecting functions on eigenvectors.

Indeed, we show statistics for multi-graph datasets in Table E.2 and for single-

graph datasets with more nodes per graph in Table E.3. For multi-graph datasets, we

consider :

• Molecule graphs: ZINC [Irwin et al., 2012, Dwivedi et al., 2020], ogbg-molhiv [Wu
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et al., 2018, Hu et al., 2020b]

• Social networks: IMDB-M, COLLAB [Yanardag and Vishwanathan, 2015, Morris

et al., 2020a],

• Bioinformatics graphs: PROTEINS [Morris et al., 2020a]

• Computer vision graphs: COIL-DEL [Riesen and Bunke, 2008, Morris et al.,

2020a].

For single-graph datasets, we consider:

• The 32× 32 image grid as in Section E.10.3

• Citation networks: Cora, Citeseer [Sen et al., 2008]

• Co-purchasing graphs with Amazon Photo [McAuley et al., 2015, Shchur et al.,

2018].

We see that these datasets all contain higher multiplicity eigenspaces, so sign

invariance is insufficient for fully respecting symmetries. The majority of graphs in

each multi-graph dataset besides COIL-DEL contain higher multiplicity eigenspaces.

Also, the dimension of these eigenspaces can be quite large compared to the size of

the graphs in the dataset. The single-graph datasets have a large proportion of their

eigenvectors belonging to higher dimensional eigenspaces. Thus, basis invariance may

play a large role in processing spectral information from these graph datasets.

E.3.3 Relationship to Graph Automorphisms

Higher multiplicity eigenspaces are related to automorphism symmetries in graphs. For

an adjacency matrix 𝐴, the permutation matrix 𝑃 is an automorphism of the graph

associated to 𝐴 if 𝑃𝐴𝑃⊤ = 𝐴. If 𝑃 is an automorphism, then for any eigenvector 𝑣 of

𝐴 with eigenvalue 𝜆, we have

𝐴𝑃𝑣 = 𝑃𝐴𝑃⊤𝑃𝑣 = 𝑃𝐴𝑣 = 𝑃𝜆𝑣 = 𝜆𝑃𝑣, (E.10)
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Table E.2: Eigenspace statistics for datasets of multiple graphs. From left to right, the
columns are: dataset name, number of graphs, range of number of nodes per graph,
largest multiplicity, and percent of graphs with an eigenspace of dimension > 1.

Dataset Graphs # Nodes Max. Mult % Graphs mult. > 1

ZINC 12,000 9-37 9 64.1
ZINC-full 249,456 6-38 10 63.8
ogbg-molhiv 41,127 2 - 222 42 68.0
IMDB-M 1,500 7 - 89 37 99.9
COLLAB 5,000 32 - 492 238 99.1
PROTEINS 1,113 4 - 620 20 77.3
COIL-DEL 3,900 3 - 77 4 4.00

Table E.3: Eigenspace statistics for single graphs. From left to right, the columns are:
dataset name, number of nodes, distinct eigenvalues (i.e. distinct eigenspaces), number
of unique multiplicities, largest multiplicity, and percent of eigenvectors belonging to
an eigenspace of dimension > 1.

Dataset Nodes Distinct 𝜆 # Mult. Max Mult. % Vecs mult. > 1

32× 32 image 1,024 513 3 32 96.9
Cora 2,708 2,187 11 300 19.7
Citeseer 3,327 1,861 12 491 44.8
Amazon Photo 7,650 7,416 8 136 3.71
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so 𝑃𝑣 is an eigenvector of 𝐴 with the same eigenvalue 𝜆. If 𝑃𝑣 and 𝑣 are linearly inde-

pendent, then 𝜆 has a higher dimensional eigenspace. Thus, under certain additional

conditions, automorphism symmetries of graphs lead to repeated eigenvalues [Sachs

and Stiebitz, 1983, Teranishi, 2009].

E.3.4 Multiplicities in Random Graphs

It is known that almost all random graphs under the Erdős-Renyi model have no

repeated eigenvalues in the infinite number of nodes limit [Tao and Vu, 2017]. Likewise,

almost all random graphs under the Erdős-Renyi model are asymmetric in the sense of

having no nontrivial automorphism symmetries [Erdos and Rényi, 1963]. These results

contrast sharply with the high eigenvalue multiplicities that we see in real-world data

in Section E.3.2. Likewise, many types of real-world graph data have been found

to possess nontrivial automorphism symmetries [Ball and Geyer-Schulz, 2018]. This

demonstrates a potential downside of using random graph models to study real-world

data: the eigenspace dimensions and automorphism symmetries of random graphs

may not agree with those of real-world data.
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E.4 Visualization of SignNet output

E.4.1 Cat Model Visualization

In Figure E-2, we plot the eigenvectors of the cotangent Laplacian on a cat model, as

well as the first principal component of the corresponding learned 𝜑(𝑣) + 𝜑(−𝑣) from

our SignNet model that was trained on the texture reconstruction task. Interestingly,

this portion of our SignNet encodes bilateral symmetry; for instance, while some

eigenvectors differ between left feet and right feet, this portion of our SignNet gives

similar values for the left and right feet. This is useful for the texture reconstruction

task, as the texture regression target has bilateral symmetry.

We also show principal components of outputs for the full SignNet model in

Figure E-3. This is not as interpretable, as the outputs are high frequency and appear

to be close to the texture that is the regression target. If instead we trained the

network on a task involving eigenvectors of multiple models, then we may expect

the SignNet to learn more structurally interpretable mappings (as in the case of the

molecule tasks).

E.4.2 Molecule visualization

To better understand SignNet, in Figure E-5 we visualize the learned positional

encodings of a SignNet with 𝜑 = GIN, 𝜌 = MLP (with a summation to handle variable

eigenvector numbers) trained on ZINC as in Section 7.3.1. SignNet learns interesting

structural information such as cut nodes (PC 3) and appendage atoms (PC 2) that

qualitatively differ from any single eigenvector of the graph.

For this visualization we use a SignNet trained with a GatedGCN base model on

ZINC, as in Section 7.3.1. This SignNet uses GIN as 𝜑 and 𝜌 as an MLP (with a sum

before it to handle variable numbers of eigenvectors), and takes in all eigenvectors of

each graph. See Figure E-4 for all of the eigenvectors of fluorescein.
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E.5 More Related Work

E.5.1 Graph Positional Encodings

Various graph positional encodings have been proposed, which have been motivated

for increasing expressive power or practical performance of graph neural networks,

and for generalizing Transformers to graphs. Positional encodings are related to

so-called position-aware network embeddings [Chami et al., 2020], which capture

distances between nodes in graphs. These include network embedding methods like

Deepwalk [Perozzi et al., 2014] and node2vec [Grover and Leskovec, 2016], which have

been recently integrated into GNNs that respect their invariances by Wang et al. [2022].

Further, Li et al. [2020] studies the theoretical and practical benefits of incorporating

distance features into graph neural networks. Dwivedi et al. [2022] proposes a method

to inject learnable positional encodings into each layer of a graph neural network, and

uses a simple random walk based node positional encoding. You et al. [2021] proposes

a node positional encoding diag(𝐴𝑘), which captures the number of closed walks from a

node to itself. Dwivedi et al. [2020] propose to use Laplacian eigenvectors as positional

encodings in graph neural networks, with sign ambiguities alleviated by sign flipping

data augmentation. Srinivasan and Ribeiro [2019] theoretically analyze node positional

embeddings and structural representations in graphs, and show that most-expressive

structural representations contain the information of any node positional embedding.

While positional encodings in sequences as used for Transformers [Vaswani et al.,

2017b] are able to leverage the canonical order in sequences, there is no such useful

canonical order for nodes in a graph, due in part to permutation symmetries. Thus,

different permutation equivariant positional encodings have been proposed to help

generalize Transformers to graphs. Dwivedi and Bresson [2021] directly add in linearly

projected Laplacian eigenvectors to node features before processing these features

with a graph Transformer. Kreuzer et al. [2021] propose an architecture that uses

attention over Laplacian eigenvectors and eigenvalues to learn node or edge positional

encodings. Mialon et al. [2021] uses spectral kernels such as the diffusion kernel to

define relative positional encodings that modulate the attention matrix. Ying et al.
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[2021] achieve state-of-the-art empirical performance with simple Transformers that

incorporate shortest-path based relative positional encodings. Zhang et al. [2020] also

utilize shortest-path distances for positional encodings in their graph Transformer.

Kim et al. [2021] develop higher-order transformers (that generalize invariant graph

networks), which interestingly perform well on graph regression using sparse higher-

order transformers without positional encodings.

E.5.2 Eigenvector Symmetries in Graph Representation Learn-

ing

Many works that attempt to respect the invariances of eigenvectors solely focus on

sign invariance (by using data augmentation) [Dwivedi et al., 2020, Dwivedi and

Bresson, 2021, Dwivedi et al., 2022, Kreuzer et al., 2021]. This may be reasonable

for continuous data, where eigenvalues of associated matrices may be usually distinct

and separated (e.g. Puny et al. [2022] finds that this empirically holds for covariance

matrices of 𝑛-body problems). However, discrete graph Laplacians are known to

have higher multiplicity eigenvalues in many cases, and in Appendix E.3.2 we find

this to be true in various types of real-world graph data. Graphs without higher

multiplicity eigenspaces are easier to deal with; in fact, graph isomorphism can be

tested in polynomial time on graphs of bounded multiplicity for adjacency matrix

eigenvalues [Babai et al., 1982, Leighton and l. Miller, 1979], with a time complexity

that is lower for graphs with lower maximum multiplicities.

A recent work of Wang et al. [2022] proposes full orthogonal group invariance for

functions that process positional encodings. In particular, for positional encodings

𝑍 ∈ R𝑛×𝑘, they parameterize functions 𝑓(𝑍) such that 𝑓(𝑍) = 𝑓(𝑍𝑄) for all 𝑄 ∈ 𝑂(𝑘).

This indeed makes sense for network embeddings like node2vec [Grover and Leskovec,

2016], as their objective functions are based on inner products and are thus orthogonally

invariant. While they prove stability results when enforcing full orthogonal invariance

for eigenvectors, this is a very strict constraint compared to our basis invariance. For

instance, when 𝑘 = 𝑛 and all eigenvectors are used in 𝑉 , the condition 𝑓(𝑉 ) = 𝑓(𝑉 𝑄)
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implies that 𝑓 is a constant function on orthogonal matrices, since any orthogonal

matrix𝑊 can be obtained as𝑊 = 𝑉 𝑄 for𝑄 = 𝑉 ⊤𝑊 ∈ 𝑂(𝑛). In other words, for bases

of eigenspaces 𝑉1, . . . , 𝑉𝑙 and 𝑉 =

[︂
𝑉1 . . . 𝑉𝑙

]︂
, Wang et al. [2022] enforces 𝑉 𝑄 ∼= 𝑉 ,

while we enforce 𝑉Diag(𝑄1, . . . , 𝑄𝑙) ∼= 𝑉 . While the columns of 𝑉Diag(𝑄1, . . . , 𝑄𝑙)

are still eigenvectors, the columns of 𝑉 𝑄 generally are not.

E.5.3 Graph Spectra and Learning on Graphs

More generally, graph spectra are widely used in analyzing graphs, and spectral

graph theory [Chung, 1997] studies the connection between graph properties and

graph spectra. Different graph kernels have been defined based on graph spectra,

which use robust and discriminative notions of generalized spectral distance [Verma

and Zhang, 2017], the spectral density of states [Huang et al., 2021], random walk

return probabilities [Zhang et al., 2018c], or the trace of the heat kernel [Tsitsulin

et al., 2018]. Graph signal processing relies on spectral operations to define Fourier

transforms, frequencies, convolutions, and other useful concepts for processing data on

graphs [Ortega et al., 2018]. The closely related spectral graph neural networks [Wu

et al., 2020, Balcilar et al., 2020] parameterize neural architectures that are based on

similar spectral operations.

E.6 Definitions, Notation, and Background

E.6.1 Basic Topology and Algebra Definitions

We will use some basic topology and algebra for our theoretical results. A topological

space (𝒳 , 𝜏) is a set 𝒳 along with a family of subsets 𝜏 ⊆ 2𝒳 satisfying certain

properties, which gives useful notions like continuity and compactness. From now on,

we will omit mention of 𝜏 , and refer to a topological space as the set 𝒳 itself. For

topological spaces 𝒳 and 𝒴, we write 𝒳 ∼= 𝒴 and say that 𝒳 is homeomorphic to

𝒴 if there exists a continuous bijection with continuous inverse from 𝒳 to 𝒴. We

will say 𝒳 = 𝒴 if the underlying sets and topologies are equal as sets (we will often
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use this notion of equality for simplicity, even though it can generally be substituted

with homeomorphism). For a function 𝑓 : 𝒳 → 𝒴 between topological spaces 𝒳 and

𝒴, the image im𝑓 is the set of values that 𝑓 takes, im𝑓 = {𝑓(𝑥) : 𝑥 ∈ 𝒳}. This is

also denoted 𝑓(𝒳 ). A function 𝑓 : 𝒳 → 𝒴 is called a topological embedding if it is a

homeomorphism from 𝒳 to its image.

A group 𝐺 is a set along with a multiplication operation 𝐺 × 𝐺 → 𝐺, such

that multiplication is associative, there is a multiplicative identity 𝑒 ∈ 𝐺, and each

𝑔 ∈ 𝐺 has a multiplicative inverse 𝑔−1. A topological group is a group that is also a

topological space such that the multiplication and inverse operations are continuous.

A group 𝐺 may act on a set 𝒳 by a function · : 𝐺×𝒳 → 𝒳 . We usually denote

𝑔 · 𝑥 as 𝑔𝑥. A topological group is said to act continuously on a topological space

𝒳 if · is continuous. For any group 𝐺 and topological space 𝒳 , we define the coset

𝐺𝑥 = {𝑔𝑥 : 𝑔 ∈ 𝐺}, which can be viewed as an equivalance class of elements that

can be transformed from one to another by a group element. The quotient space

𝒳/𝐺 = {𝐺𝑥 : 𝑥 ∈ 𝒳} is the set of all such equivalence classes, with a topology

induced by that of 𝒳 . The quotient map 𝜋 : 𝒳 → 𝒳/𝐺 is a surjective continuous

map that sends 𝑥 to its coset, 𝜋(𝑥) = 𝐺𝑥.

For 𝑥 ∈ R𝑑, ‖𝑥‖2 denotes the standard Euclidean norm. By the ∞ norm of

functions 𝑓 : 𝒵 → R𝑑 from a compact 𝒵 to a Euclidean space R𝑑, we mean ‖𝑓‖∞ =

sup𝑧∈𝒵‖𝑓(𝑧)‖2.

E.6.2 Background on Eigenspace Invariances

Let 𝑉 =

[︂
𝑣1 . . . 𝑣𝑑

]︂
and 𝑊 =

[︂
𝑤1 . . . 𝑤𝑑

]︂
∈ R𝑛×𝑑 be two orthonormal bases for

the same 𝑑 dimensional subspace of R𝑛. Since 𝑉 and 𝑊 span the same space, their

orthogonal projectors are the same, so 𝑉 𝑉 ⊤ = 𝑊𝑊⊤. Also, since 𝑉 and 𝑊 have

orthonormal columns, we have 𝑉 ⊤𝑉 = 𝑊⊤𝑊 = 𝐼 ∈ R𝑑×𝑑. Define 𝑄 = 𝑉 ⊤𝑊 . Then

𝑄 is orthogonal because

𝑄⊤𝑄 = 𝑊⊤𝑉 𝑉 ⊤𝑊 = 𝑊⊤𝑊𝑊⊤𝑊 = 𝐼 (E.11)
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Moreover, we have that

𝑉 𝑄 = 𝑉 𝑉 ⊤𝑊 = 𝑊𝑊⊤𝑊 = 𝑊 (E.12)

Thus, for any orthonormal bases 𝑉 and 𝑊 of the same subspace, there exists an

orthogonal 𝑄 ∈ 𝑂(𝑑) such that 𝑉 𝑄 = 𝑊 .

For another perspective on this, define the Grassmannian Gr(𝑑, 𝑛) as the smooth

manifold consisting of all 𝑑 dimensional subspaces of R𝑛. Further define the Stiefel

manifold St(𝑑, 𝑛) as the set of all orthonormal tuples
[︂
𝑣1 . . . 𝑣𝑑

]︂
∈ R𝑛×𝑑 of 𝑑 vectors

in R𝑛. Letting 𝑂(𝑑) act by right multiplication, it holds that St(𝑑, 𝑛)/𝑂(𝑑) ∼= Gr(𝑑, 𝑛).

This implies that any 𝑂(𝑑) invariant function on St(𝑑, 𝑛) can be viewed as a function

on subspaces. See e.g. Gallier and Quaintance [2020] Chapter 5 for more information

on this. We will use this relationship in our proofs of universal representation.

When we consider permutation invariance or equivariance, the permutation acts

on dimensions of size 𝑛. Then a tensor 𝑋 ∈ R𝑛𝑘×𝑑 is called an order 𝑘 tensor with

respect to this permutation symmetry, where order 0 are called scalars, order 1 tensors

are called vectors, and order 2 tensors are called matrices. Note that this does not

depend on 𝑑; in this work, we only ever consider vectors and scalars with respect to

the 𝑂(𝑑) action.

E.7 Proofs of Universality

We begin by proving the two propositions for the single subspace case from Section

7.1.1.

. A continuous function ℎ : R𝑛 → R𝑑out is sign invariant if and only if

ℎ(𝑣) = 𝜑(𝑣) + 𝜑(−𝑣) (7.3)

for some continuous 𝜑 : R𝑛 → R𝑑out. A continuous ℎ : R𝑛 → R𝑛 is sign invariant

and permutation equivariant if and only if (7.3) holds for a continuous permutation

equivariant 𝜑 : R𝑛 → R𝑛.
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Proof. If ℎ(𝑣) = 𝜑(𝑣) + 𝜑(−𝑣), then ℎ is obviously sign invariant. On the other hand,

if ℎ is sign invariant, then letting 𝜑(𝑣) = ℎ(𝑣)/2 gives that ℎ(𝑣) = 𝜑(𝑣) + 𝜑(−𝑣), and

𝜑 is of course continuous.

If ℎ(𝑣) = 𝜑(𝑣) +𝜑(−𝑣) for a permutation equivariant 𝜑, then ℎ(−𝑃𝑣) = 𝜑(−𝑃𝑣) +

𝜑(𝑃𝑣) = 𝑃𝜑(−𝑣)+𝑃𝜑(𝑣) = 𝑃 (𝜑(𝑣)+𝜑(−𝑣)) = 𝑃ℎ(𝑣), so ℎ is permutation equivariant

and sign invariant. If ℎ is permutation equivariant and sign invariant, then define

𝜑(𝑣) = ℎ(𝑣)/2 again; it is clear that 𝜑 is continuous and permutation equivariant.

. Any continuous, 𝑂(𝑑) invariant ℎ : R𝑛×𝑑 → R𝑑out is of the form ℎ(𝑉 ) = 𝜑(𝑉 𝑉 ⊤) for

a continuous 𝜑. For a compact domain 𝒵 ⊆ R𝑛×𝑑, maps of the form 𝑉 ↦→ IGN(𝑉 𝑉 ⊤)

universally approximate continuous functions ℎ : 𝒵 ⊆ R𝑛×𝑑 → R𝑛 that are 𝑂(𝑑)

invariant and permutation equivariant.

Proof. The case without permutation equivariance holds by the First Fundamental

Theorem of 𝑂(𝑑) (Lemma 12).

For the permutation equivariant case, let 𝒵 ′ = {𝑉 𝑉 ⊤ : 𝑉 ∈ 𝒵} and let 𝜖 > 0. Note

that 𝒵 ′ is compact, as it is the continuous image of a compact set. Since ℎ is 𝑂(𝑑)

invariant, the first fundamental theorem of 𝑂(𝑑) shows that there exists a continuous

function 𝜑 : 𝒵 ′ ⊆ R𝑛×𝑛 → R𝑛 such that ℎ(𝑉 ) = 𝜑(𝑉 𝑉 ⊤). Since ℎ is permutation

equivariant, for any permutation matrix 𝑃 we have that

ℎ(𝑃𝑉 ) = 𝑃 · ℎ(𝑉 ) (E.13)

𝜑(𝑃𝑉 𝑉 ⊤𝑃⊤) = 𝑃 · 𝜑(𝑉 𝑉 ⊤), (E.14)

so 𝜑 is a continuous permutation equivariant function from matrices to vectors. Then

note that Keriven and Peyré [2019] show that invariant graph networks (of generally

high tensor order in hidden layers) universally approximate continuous permutation

equivariant functions from matrices to vectors on compact sets of matrices. Thus, an

IGN can 𝜖-approximate 𝜑, and hence 𝑉 ↦→ IGN(𝑉 𝑉 ⊤) can 𝜖-approximate ℎ.
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E.7.1 Proof of Decomposition Theorem

Here, we give the formal statement of Theorem 10, which provides the necessary

topological assumptions for the theorem to hold. In particular, we only require the 𝐺𝑖

be a topological group that acts continuously on 𝒳𝑖 for each 𝑖, and that there exists a

topological embedding of each quotient space into some Euclidean space. That the

group action is continuous is a very mild assumption, and it holds for any finite or

compact matrix group, which all of the invariances we consider in this paper can be

represented as.

A topological embedding of the quotient space into a Euclidean space is desired,

as we know how to parameterize neural networks with Euclidean outputs and inputs,

whereas dealing with a quotient space is generally difficult. Many different conditions

can guarantee existence of such an embedding. For instance, if the quotient space is

a smooth manifold, then the Whitney Embedding Theorem (Lemma 15) guarantees

such an embedding. Also, if the base space 𝒳𝑖 is a Euclidean space and 𝐺𝑖 is a finite

or compact matrix Lie group, then a map built from 𝐺-invariant polynomials gives

such an embedding (González and de Salas [2003] Lemma 11.13).

Figure E-6 provides a commutative diagram representing the constructions in our

proof.

Theorem 10 (Decomposition Theorem). Let 𝒳1, . . . ,𝒳𝑘 be topological spaces, and let

𝐺𝑖 be a topological group acting continuously on 𝒳𝑖 for each 𝑖. Assume that there is a

topological embedding 𝜓𝑖 : 𝒳𝑖/𝐺𝑖 → R𝑎𝑖 of each quotient space into a Euclidean space

R𝑎𝑖 for some dimension 𝑎𝑖. Then, for any continuous function 𝑓 : 𝒳 = 𝒳1×. . .×𝒳𝑘 →

R𝑑out that is invariant to the action of 𝐺 = 𝐺1 × . . . × 𝐺𝑘, there exists continuous

functions 𝜑𝑖 : 𝒳𝑖 → R𝑎𝑖 and a continuous function 𝜌 : 𝒵 ⊆ R𝑎 → R𝑑out, where

𝑎 =
∑︀

𝑖 𝑎𝑖 such that

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝜌(𝜑1(𝑣1), . . . , 𝜑𝑘(𝑣𝑘)). (E.15)

Furthermore: (1) each 𝜑𝑖 can be taken to be invariant to 𝐺𝑖, (2) the domain 𝒵 is

compact if each 𝒳𝑖 is compact, (3) if 𝒳𝑖 = 𝒳𝑗 and 𝐺𝑖 = 𝐺𝑗, then 𝜑𝑖 can be taken to be
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equal to 𝜑𝑗.

Proof. Let 𝜋𝑖 : 𝒳𝑖 → 𝒳𝑖/𝐺𝑖 denote the quotient map for 𝒳𝑖/𝐺𝑖. Since each 𝐺𝑖 acts

continuously, Lemma 13 gives that the quotient of the product space is the product of

the quotient spaces, i.e. that

(𝒳1 × . . .×𝒳𝑘)/(𝐺1 × . . . 𝐺𝑘) ∼= (𝒳1/𝐺1)× . . .× (𝒳𝑘/𝐺𝑘), (E.16)

and the corresponding quotient map 𝜋 : 𝒳/𝐺 is given by

𝜋 = 𝜋1 × . . .× 𝜋𝑘, 𝜋(𝑥1, . . . , 𝑥𝑘) = (𝜋1(𝑥1), . . . , 𝜋𝑘(𝑥𝑘)). (E.17)

By passing to the quotient (Lemma 11), there exists a continuous 𝑓 : 𝒳/𝐺→ R𝑑out

on the quotient space such that 𝑓 = 𝑓 ∘ 𝜋. By Lemma 14, each 𝒳𝑖/𝐺𝑖 is compact if

𝒳𝑖 is compact. Defining the image 𝒵𝑖 = 𝜓𝑖(𝒳𝑖/𝐺𝑖) ⊆ R𝑎𝑖 , we thus know that 𝒵𝑖 is

compact if 𝒳𝑖 is compact.

Moreover, as 𝜓𝑖 is a topological embedding, it has a continuous inverse 𝜓−1
𝑖 on its

image 𝒵𝑖. Further, we have a topological embedding 𝜓 : 𝒳/𝐺→ 𝒵 = 𝒵1 × . . .×𝒵𝑘
given by 𝜓 = 𝜓1 × . . .× 𝜓𝑘, with continuous inverse 𝜓−1 = 𝜓−1

1 × . . .× 𝜓−1
𝑘 .

Note that

𝑓 = 𝑓 ∘ 𝜋 = (𝑓 ∘ 𝜓−1) ∘ (𝜓 ∘ 𝜋). (E.18)

So we define

𝜌 = 𝑓 ∘ 𝜓−1 𝜌 : 𝒵 → R𝑑out (E.19)

𝜑𝑖 = 𝜓𝑖 ∘ 𝜋𝑖 𝜑𝑖 : 𝒳𝑖 → 𝒵𝑖 (E.20)

𝜑 = 𝜓 ∘ 𝜋 = 𝜑1 × . . .× 𝜑𝑘 𝜑 : 𝒳 → 𝒵 (E.21)

Thus, 𝑓 = 𝜌 ∘ 𝜑 = 𝜌 ∘ (𝜑1 × . . .× 𝜑𝑘), so equation (E.1) holds. Moreover, the 𝜌 and 𝜑𝑖

are continuous, as they are compositions of continuous functions. Furthermore, (1)

holds as each 𝜑𝑖 is invariant to 𝐺𝑖 because each 𝜋𝑖 is invariant to 𝐺𝑖. Since each 𝒵𝑖
is compact if 𝒳𝑖 is compact, the product 𝒵 = 𝒵1 × . . .×𝒵𝑘 is compact if each 𝒳𝑖 is
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compact, thus proving (2).

To show the last statement (3), note simply that if 𝒳𝑖 = 𝒳𝑗 and 𝐺𝑖 = 𝐺𝑗 , then the

quotient maps are equal, i.e. 𝜋𝑖 = 𝜋𝑗. Moreover, we can choose the embeddings to be

equal, so say 𝜓𝑖 = 𝜓𝑗. Then, 𝜑𝑖 = 𝜓𝑖 ∘ 𝜋𝑖 = 𝜓𝑗 ∘ 𝜋𝑗 = 𝜑𝑗, so we are done.

E.7.2 Universality of SignNet and BasisNet

Here, we prove Corollary 4 on the universal representation and approximation ca-

pabilities of our Unconstrained-SignNets, Unconstrained-BasisNets, and Expressive-

BasisNets. We proceed in several steps, first proving universal representation of

continuous functions when we do not require permutation equivariance, then proving

universal approximation when we do require permutation equivariance.

Sign Invariant Universal Representation

Recall that S𝑛−1 denotes the unit sphere in R𝑛. As we normalize eigenvectors to unit

norm, the domain of our functions on 𝑘 eigenvectors are on the compact space (S𝑛−1)𝑘.

Corollary 5 (Universal Representation for SignNet). A continuous function 𝑓 :

(S𝑛−1)𝑘 → R𝑑out is sign invariant, i.e. 𝑓(𝑠1𝑣1, . . . , 𝑠𝑘𝑣𝑘) = 𝑓(𝑣1, . . . , 𝑣𝑘) for any

𝑠𝑖 ∈ {−1, 1}, if and only if there exists a continuous 𝜑 : R𝑛 → R2𝑛−2 and a continuous

𝜌 : R(2𝑛−2)𝑘 → R𝑑out such that

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝜌
(︀
[𝜑(𝑣𝑖) + 𝜑(−𝑣𝑖)]𝑘𝑖=1

)︀
. (E.22)

Proof. It can be directly seen that any 𝑓 of the above form is sign invariant.

Thus, we show that any sign invariant 𝑓 can be expressed in the above form.

First, we show that we can apply the general Theorem 10. The group 𝐺𝑖 = {1,−1}

acts continuously and satisfies that S𝑛−1/{1,−1} = RP𝑛−1, where RP𝑛−1 is the real

projective space of dimension 𝑛− 1. Since RP𝑛−1 is a smooth manifold of dimension

𝑛− 1, Whitney’s embedding theorem states that there exists a (smooth) topological

embedding 𝜓𝑖 : RP𝑛−1 → R2𝑛−2 (Lemma 15).
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Thus, we can apply the general theorem to see that 𝑓 = 𝜌 ∘ 𝜑𝑘 for some continuous

𝜌 and 𝜑𝑘. Note that each 𝜑𝑖 = 𝜑 is the same, as each 𝒳𝑖 = S𝑛−1 and 𝐺𝑖 = {1,−1}

is the same. Also, Theorem 10 says that we may assume that 𝜑 is sign invariant, so

𝜑(𝑥) = 𝜑(−𝑥). Letting 𝜑(𝑥) = 𝜑(𝑥)/2, we are done with the proof.

Sign Invariant Universal Representation with Extra Features

Recall that we may want our sign invariant functions to process other data besides

eigenvectors, such as eigenvalues or node features associated to a graph. Here, we

show universal representation for when we have this other data that does not possess

sign symmetry. The proof is a simple extension of Corollary 5, but we provide the

technical details for completeness.

Corollary 6 (Universal Representation for SignNet with features). For a compact

space of features Ω ⊆ R𝑑, let 𝑓(𝑣1, . . . , 𝑣𝑘, 𝑥1, . . . , 𝑥𝑘) be a continuous function 𝑓 :

(S𝑛−1 × Ω)𝑘 → R𝑑out.

Then 𝑓 is sign invariant for the inputs on the sphere, i.e.

𝑓(𝑠1𝑣1, . . . , 𝑠𝑘𝑣𝑘, 𝑥1, . . . , 𝑥𝑘) = 𝑓(𝑣1, . . . , 𝑣𝑘, 𝑥1, . . . , 𝑥𝑘) 𝑠𝑖 ∈ {1,−1}, (E.23)

if and only if there exists a continuous 𝜓 : R𝑛+𝑑 → R2𝑛−2+𝑑 and a continuous

𝜌 : R(2𝑛−2+𝑑)𝑘 → R𝑑out such that

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝜌 (𝜑(𝑣1, 𝑥1) + 𝜑(−𝑣1, 𝑥1), . . . , 𝜑(𝑣𝑘, 𝑥𝑘) + 𝜑(−𝑣𝑘, 𝑥𝑘)) . (E.24)

Proof. Once again, the sign invariance of any 𝑓 in the above form is clear.

We follow very similar steps to the proof of Corollary 5 to show that we may apply

Theorem 10. We can view Ω as a quotient space, after quotienting by the trivial group

that does nothing, Ω ∼= Ω/{1}. The corresponding quotient map is idΩ, the identity

map. Also, Ω trivially topologically embeds in R𝑑 by the inclusion map.
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As 𝐺𝑖 = {−1, 1} × {1} acts continuously, by Lemma 13 we have that

(S𝑛−1 × Ω)/({1,−1} × {1}) ∼= (S𝑛−1/{1,−1})× (Ω/{1}) ∼= RP𝑛−1 × Ω, (E.25)

with corresponding quotient map 𝜋 × idΩ, where 𝜋 is the quotient map to RP𝑛−1.

Letting 𝜓 be the embedding of RP𝑛−1 → R2𝑛−2 guaranteed by Whitney’s embedding

theorem (Lemma 15), we have that 𝜓 = 𝜓 × idΩ is an embedding of RP𝑛−1 × Ω →

R2𝑛−2+𝑑. Thus, we can apply Theorem 10 to write 𝑓 = 𝜌∘𝜑𝑘 for 𝜑 = (𝜓×idΩ)∘(𝜋×idΩ),

so

𝜑(𝑣𝑖, 𝑥𝑖) = (𝜓(𝑣𝑖), 𝑥𝑖), (E.26)

where 𝜑(𝑣𝑖, 𝑥𝑖) = 𝜑(−𝑣𝑖, 𝑥𝑖). Letting 𝜑(𝑣𝑖, 𝑥𝑖) = 𝜑(𝑣𝑖, 𝑥𝑖)/2, we are done.

Basis Invariant Universal Representation

Recall that St(𝑑, 𝑛) is the Stiefel manifold of 𝑑-tuples of vectors (𝑣1, . . . , 𝑣𝑑) where

𝑣𝑖 ∈ R𝑛 and 𝑣1, . . . , 𝑣𝑑 are orthonormal. This is where our inputs lie, as our eigenvectors

are unit norm and orthogonal. We will also make use of the Grassmannian Gr(𝑑, 𝑛),

which consists of all 𝑑-dimensional subspaces in R𝑛. This is because the Grassmannian

is the quotient space for the group action we want, Gr(𝑑, 𝑛) ∼= St(𝑑, 𝑛)/𝑂(𝑑), where

𝑄 ∈ 𝑂(𝑑) acts on 𝑉 ∈ St(𝑑, 𝑛) ⊆ R𝑛×𝑑 by mapping 𝑉 to 𝑉 𝑄 [Gallier and Quaintance,

2020].

Corollary 7 (Universal Representation for BasisNet). For dimensions 𝑑1, . . . , 𝑑𝑙 ≤ 𝑛

let 𝑓 be a continuous function on St(𝑑1, 𝑛)× . . .× St(𝑑𝑙, 𝑛). Further assume that 𝑓 is

invariant to 𝑂(𝑑1)× . . .× 𝑂(𝑑𝑙), where 𝑂(𝑑𝑖) acts on St(𝑑𝑖, 𝑛) by multiplication on

the right.

Then there exist continuous 𝜌 : R
∑︀𝑙

𝑖=1 2𝑑𝑖(𝑛−𝑑𝑖) → R𝑑out and continuous 𝜑𝑖 :

St(𝑑𝑖, 𝑛)→ R2𝑑𝑖(𝑛−𝑑𝑖) such that

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝜌 (𝜑1(𝑉1), . . . , 𝜑𝑙(𝑉𝑙)) , (E.27)

where the 𝜑𝑖 are 𝑂(𝑑𝑖) invariant functions, and we can take 𝜑𝑖 = 𝜑𝑗 if 𝑑𝑖 = 𝑑𝑗.
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Proof. Letting 𝒳𝑖 = St(𝑑𝑖, 𝑛) and 𝐺𝑖 = 𝑂(𝑑𝑖), it can be seen that 𝐺𝑖 acts continuously

on 𝒳𝑖. Also, we have that the quotient space St(𝑑𝑖, 𝑛)/𝑂(𝑑𝑖) = Gr(𝑑𝑖, 𝑛) is the

Grassmannian of 𝑑𝑖 dimensional subspaces in R𝑛, which is a smooth manifold of

dimension 𝑑𝑖(𝑛 − 𝑑𝑖). Thus, the Whitney embedding theorem (Lemma 15) gives a

topological embedding 𝜓𝑖 : Gr(𝑑𝑖, 𝑛)→ R2𝑑𝑖(𝑛−𝑑𝑖).

Hence, we may apply Theorem 10 to obtain continuous 𝑂(𝑑𝑖) invariant 𝜑𝑖 :

St(𝑑𝑖, 𝑛) → R2𝑑𝑖(𝑛−𝑑𝑖) and continuous 𝜌 : R
∑︀𝑙

𝑖=1 2𝑑𝑖(𝑛−𝑑𝑖) → R𝑑out , such that 𝑓 =

𝜌 ∘ (𝜑1× . . .×𝜑𝑙). Also, if 𝑑𝑖 = 𝑑𝑗 , then 𝒳𝑖 = 𝒳𝑗 and 𝐺𝑖 = 𝐺𝑗 , so we can take 𝜑𝑖 = 𝜑𝑗 .

Basis Invariant and Permutation Equivariant Universal Approximation

With the restriction that 𝑓(𝑉1, . . . , 𝑉𝑙) : R𝑛×
∑︀

𝑖 𝑑𝑖 → R𝑛 be permutation equivariant

and basis invariant, we need to use the impractically expensive Expressive-BasisNet

to approximate 𝑓 . Universality of permutation invariant or equivariant functions from

matrices to scalars or matrices to vectors is difficult to achieve in a computationally

tractable manner [Maron et al., 2019, Keriven and Peyré, 2019, Maehara and NT,

2019]. One intuitive reason to expect this is that universally approximating such

functions allows solution of the graph isomorphism problem [Chen et al., 2019b], which

is a computationally difficult problem. While we have exact representation of basis

invariant functions by continuous 𝜌 and 𝜑𝑖 when there is no permutation equivariance

constraint, we can only achieve approximation up to an arbitrary 𝜖 > 0 when we

require permutation equivariance.

Corollary 8 (Universal Approximation for Expressive-BasisNets). Let 𝑓(𝑉1, . . . , 𝑉𝑙) :

St(𝑑1, 𝑛) × . . . × St(𝑑𝑙, 𝑛) → R𝑛 be continuous, 𝑂(𝑑1) × . . . × 𝑂(𝑑𝑙) invariant, and

permutation equivariant. Then 𝑓 can be 𝜖-approximated by an Expressive-BasisNet.

Proof. By invariance, Corollary 7 of the decomposition theorem shows that 𝑓 can be

written as

𝑓(𝑉1, . . . , 𝑉𝑙) = 𝜌 (𝜙𝑑1(𝑉1), . . . , 𝜙𝑑𝑙(𝑉𝑙)) (E.28)

for some continuous 𝑂(𝑑𝑖) invariant 𝜙𝑑𝑖 and continuous 𝜌. By the first fundamental
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theorem of 𝑂(𝑑) (Lemma 12), each 𝜙𝑑𝑖 can be written as 𝜙𝑑𝑖(𝑉𝑖) = 𝜑𝑑𝑖(𝑉𝑖𝑉
⊤
𝑖 ) for some

continuous 𝜑𝑑𝑖 . Let

𝒵 = {(𝑉1𝑉 ⊤
1 , . . . , 𝑉𝑙𝑉

⊤
𝑙 ) : 𝑉𝑖 ∈ St(𝑑𝑖, 𝑛)} ⊆ R𝑛2×𝑙, (E.29)

which is compact as it is the image of the compact space St(𝑑1, 𝑛) × . . . × St(𝑑𝑙, 𝑛)

under a continuous function. Define ℎ : 𝒵 ⊆ R𝑛2×𝑙 → R𝑛 by

ℎ(𝑉1𝑉
⊤
1 , . . . , 𝑉𝑙𝑉

⊤
𝑙 ) = 𝜌

(︀
𝜑𝑑1(𝑉1𝑉

⊤
1 ), . . . , 𝜑𝑑𝑙(𝑉𝑙𝑉

⊤
𝑙 )
)︀
. (E.30)

Then note that ℎ is continuous and permutation equivariant from matrices to vectors,

so it can be 𝜖-approximated by an invariant graph network [Keriven and Peyré, 2019],

call it ̃︂IGN. If we define 𝜌 = ̃︂IGN and IGN𝑑𝑖(𝑉𝑖𝑉
⊤
𝑖 ) = 𝑉𝑖𝑉

⊤
𝑖 (this identity operation is

linear and permutation equivariant, so it can be exactly expressed by an IGN), then

we have 𝜖-approximation of 𝑓 by

̃︂IGN(𝑉1𝑉
⊤
1 , . . . , 𝑉𝑙𝑉

⊤
𝑙 ) = 𝜌

(︀
IGN𝑑1(𝑉1𝑉

⊤
1 ), . . . , IGN𝑑𝑙(𝑉𝑙𝑉

⊤
𝑙 )
)︀
. (E.31)

E.7.3 Proof of Universal Approximation for General Decom-

positions

Theorem 11. Consider the same setup as Theorem 10, where 𝒳𝑖 are also compact.

Let Φ𝑖 be a family of 𝐺𝑖-invariant functions that universally approximate 𝐺𝑖-invariant

continuous functions 𝒳𝑖 → R𝑎𝑖, and let ℛ be a set of continuous function that

universally approximate continuous functions 𝒵 ⊆ R𝑎 → R𝑑out for every compact 𝒵,

where 𝑎 =
∑︀

𝑖 𝑎𝑖. Then for any 𝜀 > 0 and any 𝐺-invariant continuous function 𝑓 :

𝒳1×. . .×𝒳𝑘 → R𝑑out there exists 𝜑 ∈ Φ and 𝜌 ∈ ℛ such that ‖𝑓−𝜌(𝜑1, . . . , 𝜑𝑘)‖∞ < 𝜀.

Proof. Consider a particular 𝐺-invariant continuous function 𝑓 : 𝒳1× . . .×𝒳𝑘 → R𝑑out .

By Theorem 10 there exists 𝐺𝑖-invariant continuous functions 𝜑′
𝑖 : 𝒳𝑖 → R𝑎𝑖 and a
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continuous function 𝜌′ : 𝒵 ⊆ R𝑎 → R𝑑out (where 𝑎 =
∑︀

𝑖 𝑎𝑖) such that

𝑓(𝑣1, . . . , 𝑣𝑘) = 𝜌′(𝜑′
1(𝑣1), . . . , 𝜑

′
𝑘(𝑣𝑘)).

Now fix an 𝜀 > 0. For any 𝜌 ∈ ℛ and any 𝜑𝑖 ∈ Φ𝑖 (𝑖 = 1, . . . 𝑘) we may bound the

difference from 𝑓 as follows (suppressing the 𝑣𝑖’s for brevity),

‖𝑓 − 𝜌(𝜑1, . . . , 𝜑𝑘)‖∞

= ‖𝜌′(𝜑′
1, . . . , 𝜑

′
𝑘)− 𝜌(𝜑1, . . . , 𝜑𝑘)‖∞

= ‖𝜌′(𝜑′
1, . . . , 𝜑

′
𝑘)− 𝜌(𝜑′

1, . . . , 𝜑
′
𝑘) + 𝜌(𝜑′

1, . . . , 𝜑
′
𝑘)− 𝜌(𝜑1, . . . , 𝜑𝑘)‖∞

≤ ‖𝜌′(𝜑′
1, . . . , 𝜑

′
𝑘)− 𝜌(𝜑′

1, . . . , 𝜑
′
𝑘)‖∞ + ‖𝜌(𝜑′

1, . . . , 𝜑
′
𝑘)− 𝜌(𝜑1, . . . , 𝜑𝑘)‖∞

= I + II

Now let 𝐾 ′ =
∏︀𝑘

𝑖=1 im𝜑′
𝑖. Since each 𝜑′

𝑖 is continuous and defined on a compact set 𝒳𝑖
we know that im𝜑′

𝑖 is compact, and so the product 𝐾 is also compact. Since 𝐾 ′ is

compact, it is contained in a closed ball 𝐵(𝑟) of radius 𝑟 > 0 centered at the origin.

Let 𝐾 be the closed ball 𝐵(𝑟+1) of radius 𝑟+1 centered at the origin, so 𝐾 contains

𝐾 ′ and a ball of radius 1 around each point of 𝐾 ′. We may extend 𝜌′ continuously to

𝐾 as needed, so assume 𝜌′ : 𝐾 → R𝑑out . By universality of ℛ we may pick a particular

𝜌 : 𝐾 → R𝑑out , 𝜌 ∈ ℛ such that

I = sup
{𝑣𝑖∈𝒳𝑖}𝑘𝑖=1

‖𝜌′(𝜑′
1, . . . , 𝜑

′
𝑘)− 𝜌(𝜑′

1, . . . , 𝜑
′
𝑘)‖∞ ≤ sup

𝑧∈𝐾
‖𝜌′(𝑧)− 𝜌(𝑧)‖2 < 𝜀/2.

Keeping this choice of 𝜌, it remains only to bound II. As 𝜌 is continuous on a compact

domain, it is in fact uniformly continuous. Thus, we can choose a 𝛿′ > 0 such that if

‖𝑦 − 𝑧‖2 ≤ 𝛿′, then ‖𝜌(𝑦)− 𝜌(𝑧)‖∞ < 𝜖/2, and then we define 𝛿 = min(𝛿′, 1).

Since Φ𝑖 universally approximates 𝜑′
𝑖 we may pick 𝜑𝑖 ∈ Φ𝑖 such that ‖𝜑𝑖 − 𝜑′

𝑖‖∞ <

𝛿/
√
𝑘, and thus ‖(𝜑1, . . . , 𝜑𝑘) − (𝜑′

1, . . . 𝜑
′
𝑘)‖∞ ≤ 𝛿. With this choice of 𝜑𝑖, we know

that
∏︀𝑘

𝑖=1 im𝜑𝑖 ⊆ 𝐾 (because each 𝜑𝑖(𝑥𝑖) is within distance 1 of 𝜑′
𝑖(𝑥𝑖)). Thus,
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𝜌(𝜑1(𝑥1), . . . , 𝜑𝑘(𝑥𝑘)) is well-defined, and we have

II = ‖𝜌(𝜑′
1, . . . , 𝜑

′
𝑘)− 𝜌(𝜑1, . . . , 𝜑𝑘)‖∞

= sup
{𝑥𝑖∈𝒳𝑖}𝑘𝑖=1

‖𝜌(𝜑′
1(𝑥1), . . . , 𝜑

′
𝑘(𝑥𝑘))− 𝜌(𝜑1(𝑥1), . . . , 𝜑𝑘(𝑥𝑘))‖2

< 𝜀/2

due to our choice of 𝛿, which completes the proof.

E.8 Basis Invariance for Graph Representation Learn-

ing

E.8.1 Spectral Graph Convolution

In this section, we consider spectral graph convolutions, which for node features

𝑋 ∈ R𝑛×𝑑feat take the form 𝑓(𝑉,Λ, 𝑋) =
∑︀𝑛

𝑖=1 𝜃𝑖𝑣𝑖𝑣
⊤
𝑖 𝑋 for some parameters 𝜃𝑖. We

can optionally take 𝜃𝑖 = ℎ(𝜆𝑖) for some continuous function ℎ : R → R of the

eigenvalues. This form captures most popular spectral graph convolutions in the

literature [Bruna et al., 2014, Hamilton, 2020, Bronstein et al., 2017]; often, such

convolutions are parameterized by taking ℎ to be some analytic function such as a

simple affine function [Kipf and Welling, 2017], a linear combination in a polynomial

basis [Defferrard et al., 2016, Chien et al., 2021], or a parameterization of rational

functions [Levie et al., 2018, Bianchi et al., 2021].

First, it is well known and easy to see that spectral graph convolutions are

permutation equivariant, as for a permutation matrix 𝑃 we have

𝑓(𝑃𝑉,Λ, 𝑃𝑋) =
∑︁
𝑖

𝜃𝑖𝑃𝑣𝑖𝑣
⊤
𝑖 𝑃

⊤𝑃𝑋 =
∑︁
𝑖

𝜃𝑖𝑃𝑣𝑖𝑣
⊤
𝑖 𝑋 = 𝑃𝑓(𝑉,Λ, 𝑋). (E.32)

Also, it is easy to see that they are sign invariant, as (−𝑣𝑖)(−𝑣𝑖)⊤ = 𝑣𝑖𝑣
⊤
𝑖 . However, if

the 𝜃𝑖 do not depend on the eigenvalues, then the spectral graph convolution is not

necessarily basis invariant. For instance, if 𝑣1 and 𝑣2 are in the same eigenspace, and
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we change basis by permuting 𝑣′1 = 𝑣2 and 𝑣′2 = 𝑣1, then if 𝜃1 ̸= 𝜃2 the spectral graph

convolution will generally change as well.

On the other hand, if 𝜃𝑖 = ℎ(𝜆𝑖) for some function ℎ : R→ R, then the spectral

graph convolution is basis invariant. This is because if 𝑣𝑖 and 𝑣𝑗 belong to the same

eigenspace, then 𝜆𝑖 = 𝜆𝑗 so ℎ(𝜆𝑖) = ℎ(𝜆𝑗). Thus, if 𝑣𝑖1 , . . . , 𝑣𝑖𝑑 are eigenvectors of the

same eigenspace with eigenvalue 𝜆, we have that
∑︀𝑑

𝑙=1 ℎ(𝜆𝑖𝑙)𝑣𝑖𝑙𝑣
⊤
𝑖𝑙
= ℎ(𝜆)

∑︀𝑑
𝑙=1 𝑣𝑖𝑙𝑣

⊤
𝑖𝑙
.

Now, note that
∑︀𝑑

𝑙=1 𝑣𝑖𝑙𝑣
⊤
𝑖𝑙

is the orthogonal projector onto the eigenspace [Trefethen

and Bau III, 1997]. A change of basis does not change this orthogonal projector, so

such spectral graph convolutions are basis invariant.

Another way to see this basis invariance is with a simple computation. Let 𝑉1, . . . , 𝑉𝑙

be the eigenspaces of dimension 𝑑1, . . . , 𝑑𝑙, where 𝑉𝑖 ∈ R𝑛×𝑑𝑖 . Let the corresponding

eigenvalues be 𝜇1, . . . , 𝜇𝑙. Then for any orthogonal matrices 𝑄𝑖 ∈ 𝑂(𝑑𝑖), we have

𝑛∑︁
𝑖=1

ℎ(𝜆𝑖)𝑣𝑖𝑣
⊤
𝑖 =

𝑙∑︁
𝑗=1

𝑉𝑗ℎ(𝜇𝑗)𝐼𝑑𝑗𝑉
⊤
𝑗 (E.33)

=
𝑙∑︁

𝑗=1

𝑉𝑗ℎ(𝜇𝑗)𝐼𝑑𝑗𝑄𝑗𝑄
⊤
𝑗 𝑉

⊤
𝑗 (E.34)

=
𝑙∑︁

𝑗=1

(𝑉𝑗𝑄𝑗)ℎ(𝜇𝑗)𝐼𝑑𝑗(𝑉𝑗𝑄𝑗)
⊤, (E.35)

so the spectral graph convolution is invariant to substituting 𝑉𝑗𝑄𝑗 for 𝑉𝑗.

Now, we give the proof that shows SignNet and BasisNet can universally approxi-

mate spectral graph convolutions.

Theorem 7 (Learning Spectral Graph Convolutions). Suppose the node features 𝑋 ∈

R𝑛×𝑑feat take values in compact sets. Then SignNet can universally approximate any

spectral graph convolution, and both BasisNet and Expressive-BasisNet can universally

approximate any parametric spectral graph convolution.

Proof. Note that eigenvectors and eigenvalues of normalized Laplacian matrices take

values in compact sets, since the eigenvalues are in [0, 2] and we take eigenvectors to

have unit-norm. Thus, the whole domain of the spectral graph convolution is compact.
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Let 𝜀 > 0. First, consider a spectral graph convolution 𝑓(𝑉,Λ, 𝑋) =
∑︀𝑛

𝑖=1 𝜃𝑖𝑣𝑖𝑣
⊤
𝑖 𝑋.

For SignNet, let 𝜑(𝑣𝑖, 𝜆𝑖, 𝑋) approximate the function 𝜑(𝑣𝑖, 𝜆𝑖, 𝑋) = 𝜃𝑖𝑣𝑖𝑣
⊤
𝑖 𝑋 to within

𝜀/𝑛 error, which DeepSets can do since this is a continuous permutation equivariant

function from vectors to vectors [Segol and Lipman, 2019] (note that we can pass

𝜆𝑖 as a vector in R𝑛 by instead passing 𝜆𝑖1, where 1 is the all ones vector). Then

𝜌 =
∑︀𝑛

𝑖=1 is a linear permutation equivariant operation that can be exactly expressed

by DeepSets, so the total error is within 𝜀. The same argument applies when 𝜃𝑖 = ℎ(𝜆𝑖)

for some continuous function ℎ.

For the basis invariant case, consider a parametric spectral graph convolution

𝑓(𝑉,Λ, 𝑋) =
∑︀𝑛

𝑖=1 ℎ(𝜆𝑖)𝑣𝑖𝑣
⊤
𝑖 𝑋. Note that if the eigenspace bases are 𝑉1, . . . , 𝑉𝑙 with

eigenvalues 𝜇1, . . . , 𝜇𝑙, we can write the 𝑓(𝑉,Λ, 𝑋) =
∑︀𝑙

𝑖=1 ℎ(𝜇𝑗)𝑉𝑗𝑉
⊤
𝑗 𝑋. Again, we

will let 𝜌 =
∑︀𝑙

𝑖=1 be a sum function, which can be expressed exactly by DeepSets.

Thus, it suffices to show that ℎ(𝜇𝑗)𝑉𝑗𝑉 ⊤
𝑗 𝑋 can be 𝜖/𝑛 approximated by a 2-IGN (i.e.

an IGN that only uses vectors and matrices).

Note that since ℎ is continuous, we can use an elementwise MLP (which IGNs can

learn) to approximate 𝑓1(𝜇11⊤, 𝑉 𝑉 ⊤, 𝑋) = (ℎ(𝜇)11⊤, 𝑉 𝑉 ⊤, 𝑋) to arbitrary precision

(note that we represent the eigenvalue 𝜇 as a constant matrix 𝜇11⊤). Also, since

a 2-IGN can learn matrix vector multiplication (Cai and Wang [2022] Lemma 10),

we can approximate 𝑓2(ℎ(𝜇)11⊤, 𝑉 𝑉 ⊤, 𝑋) = (ℎ(𝜇)11⊤, 𝑉 𝑉 ⊤𝑋), as 𝑉𝑖𝑉 ⊤
𝑖 ∈ R𝑛2 is

a matrix and 𝑋 ∈ R𝑛×𝑑feat is a vector with respect to permutation symmetries.

Finally, we use an elementwise MLP to approximate the scalar-vector multiplication

𝑓3(ℎ(𝜇)11
⊤, 𝑉 𝑉 ⊤, 𝑋) = ℎ(𝜇)𝑉 𝑉 ⊤𝑋. Since 𝑓3 ∘𝑓2 ∘𝑓1(𝜇11⊤, 𝑉 𝑉 ⊤, 𝑋) = ℎ(𝜇)𝑉 𝑉 ⊤𝑋,

and since 2-IGNs universally approximate each 𝑓𝑖, applying Lemma 16 shows that a

2-IGN can approximate ℎ(𝜇)𝑉 𝑉 ⊤𝑋 to 𝜖/𝑛 accuracy, so we are done. Since Expressive-

BasisNet is stronger than BasisNet, it can also universally approximate these functions.

From the proof, we can see that SignNet and BasisNet need only learn simple

functions for the 𝜌 and 𝜑 when ℎ is simple, or when the filter is non-parametric and

we need only learn 𝜃𝑖. Xu et al. [2020] propose the principle of algorithmic alignment,

and show that if separate modules of a neural network each need only learn simple
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functions (that is, functions that are well-approximated by low-order polynomials with

small coefficients), then the network may be more sample efficient. If we do not require

permutation equivariance, and parameterize SignNet and BasisNet with simple MLPs,

then algorithmic alignment may suggest that our models are sample efficient. Indeed,

𝜌 =
∑︀

is a simple linear function with coefficients 1, and 𝜑(𝑉, 𝜆,𝑋) = ℎ(𝜆)𝑉 𝑉 ⊤𝑋 is

quadratic in 𝑉 and linear in 𝑋, so it is simple if ℎ is simple.

. There exist infinitely many pairs of non-isomorphic graphs that SignNet and BasisNet

can distinguish, but spectral graph convolutions or spectral GNNs cannot distinguish.

Proof. The idea is as follows: we will take graphs 𝐺 and give them the node feature

matrix 𝑋𝐺 = 𝐷1/21, i.e. each node has as feature the square root of its degree. Then

any spectral graph convolution (or, the first layer of any spectral GNN) will map

𝑉Diag(𝜃)𝑉 ⊤𝑋 to something that only depends on the degree sequence and number

of nodes. Thus, any spectral graph convolution or spectral GNN will have the same

output (up to permutation) for any such graphs 𝐺 with node features 𝑋𝐺 and the

same number of nodes and same degree sequence. On the other hand, SignNet and

BasisNet can distinguish between infinitely many pairs of graphs (𝐺(1), 𝐺(2)) with

node features (𝑋𝐺(1) , 𝑋𝐺(2)) and the same number of nodes and degree sequence; this

is because SignNet and BasisNet can tell when a graph is bipartite.

For each 𝑛 ≥ 5, we will define 𝐺(1) and 𝐺(2) as connected graphs with 𝑛 nodes, with

the same degree sequence. Also, we define 𝐺(1) to have node features 𝑋(1)
𝑖 =

√︁
𝑑
(1)
𝑖 ,

where 𝑑
(1)
𝑖 is the degree of node 𝑖 in 𝐺(1), and similarly 𝐺(2) has node features

𝑋
(2)
𝑖 =

√︁
𝑑
(2)
𝑖 . Now, note that 𝑋(1) is an eigenvector of the normalized Laplacian of

𝐺(1), and it has eigenvalue 0. As we take the eigenvectors to be orthonormal (since the

normalized Laplacian is symmetric), for any spectral graph convolution we have that

𝑛∑︁
𝑖=1

𝜃𝑖𝑣𝑖𝑣
⊤
𝑖 𝑋

(1) = 𝜃1𝑣1𝑣
⊤
1 𝑋

(1) = 𝜃1𝐷
1/2
1 1(𝐷

1/2
1 1)⊤𝐷

1/2
1 1 = 𝜃1

𝑛∑︁
𝑗=1

(𝑑
(1)
𝑗 )𝐷

1/2
1 1. (E.36)

Where 𝐷1 is the diagonal degree matrix of 𝐺(1). Likewise, any spectral graph con-

volution outputs 𝜃1
∑︀

𝑗(𝑑
(2)
𝑗 )𝐷

1/2
2 1 for 𝐺(2). Since 𝐷1 and 𝐷2 are the same up to a
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permutation, we have that any spectral graph convolution has the same output for

𝐺(1) and 𝐺(2), up to a permutation. In fact, this also holds for spectral GNNs, as the

first layer will always have the same output (up to a permutation) on 𝐺(1) and 𝐺(2),

so the latter layers will also have the same output up to a permutation.

Now, we concretely define 𝐺(1) and 𝐺(2). This is illustrated in Figure E-7 and

Figure E-8. For 𝑛 = 5, let 𝐺(1) contain a triangle with nodes 𝑤1, 𝑤2, 𝑤3, and have

a path of length 2 coming out of one of the nodes in the triangle, say 𝑤1 connects

to 𝑤4, and 𝑤4 connects to 𝑤5. This is not bipartite, as there is a triangle. Let 𝐺(2)

be a bipartite graph that has 2 nodes on the left (𝑣1, 𝑣2) and 3 nodes on the right

(𝑣3, 𝑣4, 𝑣5). Connect 𝑣1 with all nodes on the right, and connect 𝑣2 with 𝑣3 and 𝑣4.

Note that both 𝐺(1) and 𝐺(2) have the same number of nodes and the same degree

sequence {3, 2, 2, 2, 1}. Thus, spectral graph convolutions or spectral GNNs cannot

distinguish them. However, SignNet and BasisNet can distinguish them, as they can

tell whether a graph is bipartite by checking the highest eigenvalue of the normalized

Laplacian. This is because the multiplicity of the eigenvalue 2 is the number of bipartite

components. In particular, SignNet can approximate the function 𝜑(𝑣𝑖, 𝜆𝑖, 𝑋) = 𝜆𝑖

and 𝜌 ≈ max𝑛𝑖=1. Likewise, BasisNet can approximate the function 𝜑𝑑𝑖(𝑉𝑖𝑉 ⊤
𝑖 , 𝜆𝑖) = 𝜆𝑖

and 𝜌 ≈ max𝑙𝑖=1.

This in fact gives an infinite family of graphs that SignNet / BasisNet can distin-

guish, but spectral graph convolutions or spectral graph GNNs cannot. To see why,

suppose we have 𝐺(1) and 𝐺(2) for some 𝑛 ≥ 5. Then we construct a pair of graphs

on 𝑛+ 1 nodes with the same degree sequence. To do this, we add another node to

the path of 𝐺(1), thus giving it degree sequence {3, 2, . . . , 2, 1}. For 𝐺(2), we add a

node 𝑣𝑛+1 to the side that 𝑣𝑛 is not contained on (e.g. for 𝑛 = 5, we add 𝑣6 to the left

side, as 𝑣5 was on the right), then connect 𝑣𝑛 to 𝑣𝑛+1 to also give a degree sequence

{3, 2, . . . , 2, 1}. Note that the non-bipartiteness of 𝐺(1) and bipartiteness of 𝐺(2) are

preserved.
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E.8.2 Existing Positional Encodings

Here, we show that our SignNets and BasisNets universally approximate various

types of existing graph positional encodings. The key is to show that these positional

encodings are related to spectral graph convolution matrices and the diagonals of

these matrices, and to show that our networks can approximate these matrices and

diagonals.

Proposition 16. If the eigenvalues take values in a compact set, SignNets and

BasisNets universally approximate the diagonal of any spectral graph convolution matrix

𝑓(𝑉,Λ) = diag
(︀∑︀𝑛

𝑖=1 ℎ(𝜆𝑖)𝑣𝑖𝑣
⊤
𝑖

)︀
. BasisNets can additionally universally approximate

any spectral graph convolution matrix 𝑓(𝑉,Λ) =
∑︀𝑛

𝑖=1 ℎ(𝜆𝑖)𝑣𝑖𝑣
⊤
𝑖 .

Proof. Note that the 𝑣𝑖 come from a compact set as they are of unit norm. The 𝜆𝑖 are

from a compact set by assumption; this assumption holds for the normalized Laplacian,

as 𝜆𝑖 ∈ [0, 2]. Also, as diag is linear, the spectral graph convolution diagonal can be

written
∑︀𝑛

𝑖=1 ℎ(𝜆𝑖)diag(𝑣𝑖𝑣
⊤
𝑖 ).

Let 𝜖 > 0. For SignNet, let 𝜌 =
∑︀𝑛

𝑖=1, which can be exactly expressed as it is a

permutation equivariant linear operation from vectors to vectors. Then 𝜑(𝑣𝑖, 𝜆𝑖) can

approximate the function 𝜆𝑖diag(𝑣𝑖𝑣⊤𝑖 ) to arbitrary precision, as it is a permutation

equivariant function from vectors to vectors [Segol and Lipman, 2019]. Thus, letting 𝜑

approximate the function to 𝜖/𝑛 accuracy, SignNet can approximate 𝑓 to 𝜖 accuracy.

Let 𝑙 be the number of eigenspaces 𝑉1, . . . , 𝑉𝑙, so 𝑓(𝑉,Λ) =
∑︀𝑙

𝑖=1 ℎ(𝜇𝑖)𝑉𝑖𝑉
⊤
𝑖 . For

BasisNet, we need only show that it can approximate the spectral graph convolution

matrix to 𝜖/𝑙 accuracy, as a 2-IGN can exactly express the diag function in each

𝜑𝑑𝑖 , since it is a linear permutation equivariant function from matrices to vectors. A

2-IGN can universally approximate the function 𝑓1(𝜇𝑖, 𝑉𝑖𝑉
⊤
𝑖 ) = (ℎ(𝜇𝑖), 𝑉𝑖𝑉

⊤
𝑖 ), as it

can express any elementwise MLP. Also, a 2-IGN can universally approximate the

scalar-matrix multiplication 𝑓2(ℎ(𝜇𝑖), 𝑉𝑖𝑉
⊤
𝑖 ) = ℎ(𝜇𝑖)𝑉𝑖𝑉

⊤
𝑖 by another elementwise

MLP. Since ℎ(𝜇𝑖)𝑉𝑖𝑉 ⊤
𝑖 = 𝑓2 ∘ 𝑓1(𝜇𝑖, 𝑉𝑖𝑉 ⊤

𝑖 ), Lemma 16 shows that a single 2-IGN can

approximate this composition to 𝜖/𝑙 accuracy, so we are done.
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. SignNet and BasisNet can approximate node positional encodings based on heat

kernels [Feldman et al., 2022] and random walks [Dwivedi et al., 2022]. BasisNet can

approximate diffusion and 𝑝-step random walk relative positional encodings [Mialon

et al., 2021], and generalized PageRank and landing probability distance encodings [Li

et al., 2020].

Proof. We will show that we can apply the above Proposition 16, by showing that all of

these positional encodings are spectral graph convolutions. The heat kernel embeddings

are of the form diag
(︀∑︀𝑛

𝑖=1 exp(−𝑡𝜆𝑖)𝑣𝑖𝑣⊤𝑖
)︀

for some choices of the parameter 𝑡, so they

can be approximated by SignNets or BasisNets. Also, the diffusion kernel [Mialon

et al., 2021] is just the matrix of this heat kernel, and the 𝑝-step random walk kernel is∑︀𝑛
𝑖=1(1− 𝛾𝜆𝑖)𝑝𝑣𝑖𝑣⊤𝑖 for some parameter 𝛾, so BasisNets can universally approximate

both of these.

For the other positional encodings, we let 𝑣𝑖 be the eigenvectors of the random

walk Laplacian 𝐼 −𝐷−1𝐴 instead of the normalized Laplacian 𝐼 −𝐷−1/2𝐴𝐷−1/2. The

eigenvalues of these two Laplacians are the same, and if 𝑣𝑖 is an eigenvector of the

normalized Laplacian then 𝐷−1/2𝑣𝑖 is an eigenvector of the random walk Laplacian

with the same eigenvalue [Von Luxburg, 2007].

Then with 𝑣𝑖 as the eigenvectors of the random walk Laplacian, the random walk

positional encodings (RWPE) in Dwivedi et al. [2022] take the form

diag
(︀
(𝐷−1𝐴)𝑘

)︀
= diag

(︃
𝑛∑︁
𝑖=1

(1− 𝜆𝑖)𝑘𝑣𝑖𝑣⊤𝑖

)︃
, (E.37)

for any choices of integer 𝑘.

The distance encodings proposed in Li et al. [2020] take the form

𝑓3(𝐴𝐷
−1, (𝐴𝐷−1)2, (𝐴𝐷−1)3, . . .), (E.38)

for some function 𝑓3. We restrict to continuous 𝑓3 here; shortest path distances can

be obtained by a discontinuous 𝑓3 that we discuss below. Their generalized PageRank
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based distance encodings can be obtained by

𝑛∑︁
𝑖=1

(︃∑︁
𝑘≥1

𝛾𝑘(1− 𝜆𝑖)𝑘
)︃
𝑣𝑖𝑣

⊤
𝑖 (E.39)

for some 𝛾𝑘 ∈ R, so this is a spectral graph convolution. They also define so-called

landing probability based positional encodings, which take the form

𝑛∑︁
𝑖=1

(1− 𝜆𝑖)𝑘𝑣𝑖𝑣⊤𝑖 , (E.40)

for some choices of integer 𝑘. Thus, BasisNets can approximate these distance encoding

matrices.

Another powerful class of positional encodings is based on shortest path distances

between nodes in the graph [Ying et al., 2021, Li et al., 2020]. Shortest path distances

can be expressed in a form similar to the spectral graph convolution, but require a

highly discontinuous function. If we define 𝑓3(𝑥1, . . . , 𝑥𝑛) = min𝑖:𝑥𝑖 ̸=0 𝑖 to be the lowest

index such that 𝑥𝑖 is nonzero, then we can write the shortest path distance matrix as

𝑓3(𝐷
−1𝐴, (𝐷−1𝐴)2, . . . , (𝐷−1𝐴)𝑛), where 𝑓3 is applied elementwise to return an 𝑛× 𝑛

matrix. As (𝐷−1𝐴)𝑘 =
∑︀𝑛

𝑖=1(1− 𝜆𝑖)𝑘𝑣𝑖𝑣⊤𝑖 , BasisNets can learn the inside arguments,

but cannot learn the discontinuous function 𝑓3.

E.8.3 Spectral Invariants

Here, we consider the graph angles 𝛼𝑖𝑗 = ‖𝑉𝑖𝑉 ⊤
𝑖 𝑒𝑗‖2, for 𝑖 = 1, . . . , 𝑙 where 𝑙 is the

number of eigenspaces, and 𝑗 = 1, . . . , 𝑛. It is clear that graph angles are permutation

equivariant and basis invariant. These graph angles have been extensively studied,

so we cite a number of interesting properties of them. That graph angles determine

the number of length 3, 4 and 5 cycles, the connectivity of a graph, and the number

of length 𝑘 closed walks is all shown in Chapter 4 of Cvetković et al. [1997]. Other

properties may be of use for graph representation learning as well. For instance, the

eigenvalues of node-deleted subgraphs of a graph 𝒢 are determined by the eigenvalues
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and graph angles of 𝒢; this may be useful in extending recent graph neural networks

that are motivated by node deletion and the reconstruction conjecture [Cotta et al.,

2021, Bevilacqua et al., 2022, Papp et al., 2021, Tahmasebi et al., 2020].

Now, we prove that BasisNet can universally approximate the graph angles. The

graph properties we consider in the theorem are all integer valued (e.g. the number of

cycles of length 3 in a graph is an integer). Thus, any two graphs that differ in these

properties will differ by at least 1, so as long as we have approximation to 𝜀 < 1/2, we

can distinguish any two graphs that differ in these properties. Recall the statement of

Theorem 8.

Theorem 8. BasisNet can universally approximate the graph angles 𝛼𝑖𝑗. The eigen-

values and graph angles (and thus BasisNets) can determine the number of length 3,

4, and 5 cycles, whether a graph is connected, and the number of length 𝑘 closed walks

from any vertex to itself.

Proof. Note that the graph angles satisfy

𝛼𝑖𝑗 = ‖𝑉𝑖𝑉 ⊤
𝑖 𝑒𝑗‖2 =

√︁
𝑒⊤𝑗 𝑉𝑖𝑉

⊤
𝑖 𝑉𝑖𝑉

⊤
𝑖 𝑒𝑗 =

√︁
𝑒⊤𝑗 𝑉𝑖𝑉

⊤
𝑖 𝑒𝑗, (E.41)

where 𝑉𝑖 is a basis for the 𝑖th adjacency matrix eigenspace, and 𝑒⊤𝑗 𝑉𝑖𝑉 ⊤
𝑖 𝑒𝑗 is the (𝑗, 𝑗)-

entry of 𝑉𝑖𝑉 ⊤
𝑖 . These graph angles are just the elementwise square roots of the diagonals

of the matrices 𝑉𝑖𝑉 ⊤
𝑖 . As 𝑓1(𝑉𝑖𝑉 ⊤

𝑖 ) = diag(𝑉𝑖𝑉
⊤
𝑖 ) is a permutation equivariant linear

function from matrices to vectors, 2-IGN on 𝑉𝑖𝑉
⊤
𝑖 can exactly compute this with 0

error. Then a 2-IGN can learn an elementwise MLP to approximate the elementwise

square root 𝑓2(diag(𝑉𝑖𝑉 ⊤
𝑖 )) =

√︀
diag(𝑉𝑖𝑉 ⊤

𝑖 ) to arbitrary precision. Finally, there may

be remaining operations 𝑓3 that are permutation invariant or permutation equivariant

from vectors to vectors; for instance, the 𝛼𝑖𝑗 are typically gathered into a matrix

of size 𝑙 × 𝑛 where the columns are lexicographically sorted (𝑙 is the number of

eigenspaces) [Cvetković et al., 1997], or we may have a permutation invariant readout

to compute a subgraph count. A DeepSets can approximate 𝑓3 without any higher

order tensors besides vectors [Zaheer et al., 2017, Segol and Lipman, 2019].

As 2-IGNs can approximate each 𝑓𝑖 individually, a single 2-IGN can approximate
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𝑓3 ∘ 𝑓2 ∘ 𝑓1 by Lemma 16. Also, since the graph properties considered in the theorem

are integer-valued, BasisNet can distinguish any two graphs that differ in one of these

properties.

To see that message passing graph neural networks (MPNNs) cannot determine

these quantities, we use the fact that MPNNs cannot distinguish between two graphs

that have the same number of nodes and where each node (in both graphs) has the

same degree. For 𝑘 ≥ 3, let 𝐶𝑘 denote the cycle graph of size 𝑘, and 𝐶𝑘 + 𝐶𝑘 denote

the graph that is the union of two disjoint cycle graphs of size 𝑘. MPNNs cannot

distinguish between 𝐶2𝑘 and 𝐶𝑘 + 𝐶𝑘 for 𝑘 ≥ 3, because they have the same number

of nodes, and each node has degree 2. Thus, MPNNs cannot tell whether a graph is

connected, as 𝐶2𝑘 is but 𝐶𝑘 + 𝐶𝑘 is not. Also, it cannot count the number of 3, 4, or

5 cycles, as 𝐶𝑘 +𝐶𝑘 has two 𝑘 cycles while 𝐶2𝑘 has no 𝑘 cycles. Likewise, any node in

𝐶𝑘 + 𝐶𝑘 has more length 𝑘 closed walks than any node in 𝐶2𝑘. This is because any

length 𝑘 closed walk in 𝐶2𝑘 has an analogous closed walk in 𝐶𝑘 +𝐶𝑘, but the nodes in

𝐶𝑘 + 𝐶𝑘 also have a closed walk that completely goes around a cycle.

E.9 Useful Lemmas

In this section, we collect useful lemmas for our proofs. These lemmas generally only

require basic tools to prove. Our first lemma is a crucial property of quotient spaces.

Lemma 11 (Passing to the quotient). Let 𝒳 and 𝒴 be topological spaces, and let 𝒳/𝐺

be a quotient space, with corresponding quotient map 𝜋. Then for every continuous

𝐺-invariant function 𝑓 : 𝒳 → 𝒴, there is a unique continuous 𝑓 : 𝒳/𝐺 → 𝒴 such

that 𝑓 = 𝑓 ∘ 𝜋.

Proof. For 𝑧 ∈ 𝒳/𝐺, by surjectivity of 𝜋 we can choose an 𝑥𝑧 ∈ 𝒳 such that 𝜋(𝑥𝑧) = 𝑧.

Define 𝑓 : 𝒳/𝐺→ 𝒴 by 𝑓(𝑧) = 𝑓(𝑥𝑧). This is well-defined, since if 𝜋(𝑥𝑧) = 𝜋(𝑥) for

any other 𝑥 ∈ 𝒳 , then 𝑔𝑥𝑧 = 𝑥 for some 𝑔 ∈ 𝐺, so

𝑓(𝑥) = 𝑓(𝑔𝑥𝑧) = 𝑓(𝑥𝑧) = 𝑓(𝑧), (E.42)
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where the second equality uses the 𝐺-invariance of 𝑓 . Note that 𝑓 is continuous by

the universal property of quotient spaces. Also, 𝑓 is the unique function such that

𝑓 = 𝑓 ∘ 𝜋; if there were another function ℎ : 𝒳/𝐺 → 𝒴 with ℎ(𝑧) ̸= 𝑓(𝑧), then

ℎ(𝑧) ̸= 𝑓(𝑥𝑧), so ℎ(𝜋(𝑥𝑧)) = ℎ(𝑧) ̸= 𝑓(𝑥𝑧).

Next, we give the First Fundamental Theorem of 𝑂(𝑑), a classical result that has

been recently used for machine learning by Villar et al. [2021]. This result shows that

an orthogonally invariant 𝑓(𝑉 ) can be expressed as a function ℎ(𝑉 𝑉 ⊤). We give a

proof that if 𝑓 is continuous, then ℎ is also continuous.

Lemma 12 (First Fundamental Theorem of 𝑂(𝑑)). A continuous function 𝑓 : R𝑛×𝑑 →

R𝑑out is orthogonally invariant, i.e. 𝑓(𝑉 𝑄) = 𝑓(𝑉 ) for all 𝑄 ∈ 𝑂(𝑑), if and only if

𝑓(𝑉 ) = ℎ(𝑉 𝑉 ⊤) for some continuous ℎ.

Proof. If 𝑓(𝑉 ) = ℎ(𝑉 𝑉 ⊤), then we have 𝑓(𝑉 𝑄) = ℎ(𝑉 𝑄𝑄⊤𝑉 ⊤) = ℎ(𝑉 𝑉 ⊤) so 𝑓 is

orthogonally invariant.

For the other direction, invariant theory shows that the 𝑂(𝑑) invariant polynomials

are generated by the inner products 𝑣⊤𝑖 𝑣𝑗 , where 𝑣𝑖 ∈ R𝑑 are the rows of 𝑉 [Kraft and

Procesi, 1996]. Let 𝑝 : R𝑛×𝑑 → R𝑛×𝑛 be the map 𝑝(𝑉 ) = 𝑉 𝑉 ⊤. Then González and

de Salas [2003] Lemma 11.13 shows that the quotient space R𝑛×𝑑/𝑂(𝑑) is homeomorphic

to a closed subset 𝑝(R𝑛×𝑑) = 𝒵 ⊆ R𝑛×𝑛. Let 𝑝 refer to this homeomorphism, and

note that 𝑝 ∘ 𝜋 = 𝑝 by passing to the quotient (Lemma 11). Then any continuous

𝑂(𝑑) invariant 𝑓 passes to a unique continuous 𝑓 : R𝑛×𝑑/𝑂(𝑑)→ R𝑑out (Lemma 11),

so 𝑓 = 𝑓 ∘ 𝜋 where 𝜋 is the quotient map. Define ℎ : 𝒵 → R𝑑out by ℎ = 𝑓 ∘ 𝑝−1, and

note that ℎ is a composition of continuous functions and hence continuous. Finally,

we have that ℎ(𝑉 𝑉 ⊤) = ℎ(𝑝 ∘ 𝜋(𝑉 )) = 𝑓 ∘ 𝜋(𝑉 ) = 𝑓(𝑉 ), so we are done.

The next lemma allows us to decompose a quotient of a product space into a

product of smaller quotient spaces.

Lemma 13. Let 𝒳1, . . . ,𝒳𝑘 be topological spaces and 𝐺1, . . . , 𝐺𝑘 be topological groups

such that each 𝐺𝑖 acts continuously on 𝒳𝑖. Denote the quotient maps by 𝜋𝑖 : 𝒳𝑖 →
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𝒳𝑖/𝐺𝑖. Then the quotient of the product is the product of the quotient, i.e.

(𝒳1 × . . .×𝒳𝑘)/(𝐺1 × . . .×𝐺𝑘) ∼= (𝒳1/𝐺1)× . . .× (𝒳𝑘/𝐺𝑘), (E.43)

and 𝜋1 × . . .× 𝜋𝑘 : 𝒳1 × . . .𝒳𝑘 → (𝒳1/𝐺1)× . . .× (𝒳𝑘/𝐺𝑘) is quotient map.

Proof. First, we show that 𝜋1 × . . . × 𝜋𝑘 is a quotient map. This is because 1. the

quotient map of any continuous group action is an open map, so each 𝜋𝑖 is an open

map, 2. the product of open maps is an open map, so 𝜋1 × . . .× 𝜋𝑘 is an open map

and 3. a continuous surjective open map is a quotient map, so 𝜋1 × . . .× 𝜋𝑘, which is

continuous and surjective, is a quotient map.

Now, we need only apply the theorem of uniqueness of quotient spaces to show

(E.43) (see e.g. Lee [2013], Theorem A.31). Letting 𝑞 : 𝒳1 × . . . × 𝒳𝑘 → (𝒳1 ×

. . . × 𝒳𝑘)/(𝐺1 × . . . × 𝐺𝑘) denote the quotient map for this space, it is easily seen

that 𝑞(𝑥1, . . . , 𝑥𝑘) = 𝑞(𝑦1 . . . , 𝑦𝑘) if and only if 𝜋1 × . . .× 𝜋𝑘(𝑥1, . . . , 𝑥𝑘) = 𝜋1 × . . .×

𝜋𝑘(𝑦1, . . . , 𝑦𝑘), since either of these is true if and only if there exist 𝑔𝑖 ∈ 𝐺𝑖 such that

𝑥𝑖 = 𝑔𝑖𝑦𝑖 for each 𝑖. Thus, we have an isomorphism of these quotient spaces.

The following lemma shows that quotients of compact spaces are also compact,

which is useful for universal approximation on quotient spaces.

Lemma 14 (Compactness of quotients of compact spaces). Let 𝒳 be a compact space.

Then the quotient space 𝒳/𝐺 is compact.

Proof. Denoting the quotient map by 𝜋 : 𝒳 → 𝒳/𝐺 and letting {𝑈𝛼}𝛼 be an open cover

of 𝒳/𝐺, we have that {𝜋−1(𝑈𝛼)}𝛼 is an open cover of 𝒳 . By compactness of 𝒳 , we can

choose a finite subcover {𝜋−1(𝑈𝛼𝑖
)}𝑖=1,...,𝑛. Then {𝜋(𝜋−1(𝑈𝛼𝑖

))}𝑖=1,...,𝑛 = {𝑈𝛼𝑖
}𝑖=1,...,𝑛

by surjectivity, and {𝑈𝛼𝑖
}𝑖=1,...,𝑛 is thus an open cover of 𝒳/𝐺.

The Whitney embedding theorem gives a nice condition that we apply to show

that the quotient spaces 𝒳/𝐺 that we deal with embed into Euclidean space. It says

that when 𝒳/𝐺 is a smooth manifold, then it can be embedded into a Euclidean space

of double the dimension of the manifold. The proof is outside the scope of this paper.
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Lemma 15 (Whitney Embedding Theorem [Whitney, 1944]). Every smooth manifold

ℳ of dimension 𝑛 > 0 can be smoothly embedded in R2𝑛.

Finally, we give a lemma that helps prove universal approximation results. It

says that if functions 𝑓 that we want to approximate can be written as compositions

𝑓 = 𝑓𝐿 ∘ . . . ∘ 𝑓1, then it suffices to universally approximate each 𝑓𝑖 and compose

the results to universally approximate the 𝑓 . This is especially useful for proving

universality of neural networks, as we may use some layers to approximate each 𝑓𝑖,

then compose these layers to approximate the target function 𝑓 .

Lemma 16 (Layer-wise universality implies universality). Let 𝒵 ⊆ R𝑑0 be a com-

pact domain, let ℱ1, . . . ,ℱ𝐿 be families of continuous functions where ℱ𝑖 consists of

functions from R𝑑𝑖−1 → R𝑑𝑖 for some 𝑑1, . . . , 𝑑𝐿. Let ℱ be the family of functions

{𝑓𝐿 ∘ . . . 𝑓1 : 𝒵 → R𝑑𝐿 , 𝑓𝑖 ∈ ℱ𝑖} that are compositions of functions 𝑓𝑖 ∈ ℱ𝑖.

For each 𝑖, let Φ𝑖 be a family of continuous functions that universally approximates

ℱ𝑖. Then the family of compositions Φ = {𝜑𝐿 ∘ . . . ∘ 𝜑1 : 𝜑𝑖 ∈ Φ𝑖} universally

approximates ℱ .

Proof. Let 𝑓 = 𝑓𝐿 ∘ . . . ∘ 𝑓1 ∈ ℱ . Let 𝒵1 = 𝒵, and then for 𝑖 ≥ 2 let 𝒵𝑖 = 𝑓𝑖−1(𝒵𝑖−1).

Then each 𝒵𝑖 is compact by continuity of the 𝑓𝑖. For 1 ≤ 𝑖 < 𝐿, let 𝒵𝑖 = 𝒵𝑖, and

for 𝑖 = 𝐿 let 𝒵𝐿 be a compact set containing 𝒵𝐿 such that every ball of radius one

centered at a point in 𝒵𝐿 is still contained in 𝒵𝐿.

Let 𝜖 > 0. We will show that there is a 𝜑 ∈ Φ such that ‖𝑓 −𝜑‖∞ < 𝜖 by induction

on 𝐿. This holds trivially for 𝐿 = 1, as then Φ = Φ1.

Now, let 𝐿 ≥ 2, and suppose it holds for 𝐿 − 1. By universality of Φ𝐿, we can

choose a 𝜑𝐿 : 𝒵𝐿 → R𝑑𝐿 ∈ Φ𝐿 such that ‖𝜑𝐿 − 𝑓𝐿‖∞ < 𝜖/2. As 𝜑𝐿 is continuous on a

compact domain, it is also uniformly continuous, so we can choose a 𝛿 > 0 such that

‖𝑦 − 𝑧‖2 < 𝛿 =⇒ ‖𝜑𝐿(𝑦)− 𝜑𝐿(𝑧)‖2 < 𝜖/2.

Let 𝛿 = min(𝛿, 1). By induction, we can choose 𝜑𝐿−1 ∘ . . . ∘ 𝜑1, 𝜑𝑖 ∈ Φ𝑖 such that

‖𝜑𝐿−1 ∘ . . . ∘ 𝜑1 − 𝑓𝐿−1 ∘ . . . ∘ 𝑓1‖∞ < 𝛿. (E.44)

Note that 𝜑𝐿−1 ∘ . . . ∘ 𝜑1(𝒵) ⊆ 𝒵𝐿, because for each 𝑥 ∈ 𝒵, 𝜑𝐿−1 ∘ . . . ∘ 𝜑1(𝑥) is
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within 𝛿 ≤ 1 Euclidean distance to 𝑓𝐿−1 ∘ . . . ∘ 𝑓1(𝑥) ∈ 𝒵𝐿, so it is contained in 𝒵𝐿 by

construction. Thus, we may define 𝜑 = 𝜑𝐿 ∘ . . . ∘ 𝜑1 : 𝒵 → R𝑑𝐿 , and compute that

‖𝜑− 𝑓‖∞ ≤ ‖𝜑− 𝜑𝐿 ∘ 𝑓𝐿−1 ∘ . . . ∘ 𝑓1‖∞ + ‖𝜑𝐿 ∘ 𝑓𝐿−1 ∘ . . . ∘ 𝑓1 − 𝑓‖∞ (E.45)

< ‖𝜑− 𝜑𝐿 ∘ 𝑓𝐿−1 ∘ . . . ∘ 𝑓1‖∞ + 𝜖/2, (E.46)

since ‖𝜑𝐿− 𝑓𝐿‖∞ < 𝜖/2. To bound this other term, let 𝑥 ∈ 𝒵, and for 𝑦 = 𝜑𝐿−1 ∘ . . . ∘

𝜑1(𝑥) and 𝑧 = 𝑓𝐿−1 ∘ . . .∘𝑓1(𝑥), we know that ‖𝑦−𝑧‖2 < 𝛿, so ‖𝜑𝐿(𝑦)−𝜑𝐿(𝑧)‖2 < 𝜖/2

by uniform continuity. As this holds for all 𝑥, we have ‖𝜑−𝜑𝐿 ∘𝑓𝐿−1 ∘ . . .∘𝑓1‖∞ ≤ 𝜖/2,

so ‖𝜑− 𝑓‖∞ < 𝜖 and we are done.

E.10 Further Experiments

E.10.1 Graph Regression with no Edge Features

Table E.4: Results on the ZINC dataset with 500k parameter budget and no edge
features. Numbers are the mean and standard deviation over 4 runs each with different
seeds.

Base model Positional encoding 𝑘 #params Test MAE (↓)

GIN
No PE 16 497k 0.348±0.014

LapPE (flip) 16 498k 0.341±0.011

SignNet 16 500k 0.238±0.012

GAT
No PE 16 501k 0.464±0.011

LapPE (flip) 16 502k 0.462±0.013

SignNet 16 499k 0.243±0.008

All graph regression models in Table 7.1 use edge features for learning and inference.

To show that SignNet is also useful when no edge features are available, we ran ZINC

experiments without edge features as well. The results are displayed in Table E.4. In

this setting, SignNet still significantly improves the performance over message passing
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networks without positional encodings, and over Laplacian positional encodings with

sign flipping data augmentation.

E.10.2 Comparison with Domain Specific Molecular Graph

Regression Models

Table E.5: Comparison with domain specific methods on graph-level regression tasks.
Numbers are test MAE, so lower is better. Best models within a standard deviation
are bolded.

ZINC (10K) ↓ ZINC-full ↓

HIMP † [Fey et al., 2020] .151±.006 .036±.002
CIN-small † [Bodnar et al., 2021] .094±.004 .044±.003
CIN † [Bodnar et al., 2021] .079±.006 .022±.002

SignNet (ours) .084±.006 .024±.003

In Table E.5, we compare our model against methods that have domain-specific

information about molecules built into them: HIMP [Fey et al., 2020] and CIN [Bodnar

et al., 2021]. We see that SignNet is better than HIMP and CIN-small on these tasks,

and is within a standard deviation of CIN. The SignNet models are the same as the

ones reported in Table 7.2. Once again, we emphasize that SignNet is domain-agnostic.

E.10.3 Learning Spectral Graph Convolutions

To numerically test the ability of our basis invariant networks for learning spectral

graph convolutions, we follow the experimental setups of Balcilar et al. [2020], He

et al. [2021]. We take the dataset of 50 images in He et al. [2021] (originally from

the Image Processing Toolbox of Matlab), and resize them from 100×100 to 32×32.

Then we apply the same spectral graph convolutions on them as in He et al. [2021],

and train neural networks to learn these as regression targets. As in prior work, we

report sum of squared errors on the training set to measure expressivity.

We compare against message passing GNNs [Kipf and Welling, 2017, Veličković

et al., 2018] and spectral GNNs [Chien et al., 2021, Bianchi et al., 2021, Defferrard et al.,
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Table E.6: Sum of squared errors for spectral graph convolution regression (with no
test set). Lower is better. Numbers are mean and standard deviation over 50 images
from He et al. [2021].

Low-pass High-pass Band-pass Band-rejection Comb

GCN .111±.068 3.092±5.11 1.720±3.15 1.418±1.03 1.753±1.17

GAT .113±.065 .954±.696 1.105±.964 .543±.340 .638±.446
GPR-GNN .033±.032 .012±.007 .137±.081 .256±.197 .369±.460
ARMA .053±.029 .042±.024 .107±.039 .148±.089 .202±.116
ChebNet .003±.002 .001±.001 .005±.003 .009±.006 .022±.016
BernNet .001±.002 .001±.001 .000±.000 .048±.042 .027±.019

Transformer 3.662±1.97 3.715±1.98 1.531±1.30 1.506±1.29 3.178±1.93

Transformer Eig Flip 4.454±2.32 4.425±2.38 1.651±1.53 2.567±1.73 3.720±1.94

Transformer Eig Abs 2.727±1.40 3.172±1.61 1.264±.788 1.445±.943 2.607±1.32

DeepSets SignNet .004±.013 .086±.405 .021±.115 .008±.037 .003±.016

Transformer SignNet .003±.016 .004±.025 .001±.004 .006±.023 .093±.641
DeepSets BasisNet .009±.018 .003±.015 .008±.030 .004±.011 .015±.060
Transformer BasisNet .079±.471 .014±.038 .005±.018 .006±.016 .014±.051

2016, He et al., 2021]. Also, we consider standard Transformers with only node features,

with eigenvectors and sign flip augmentation, and with absolute values of eigenvectors.

These models are all approximately sign invariant (they either use eigenvectors in

a sign invariant way or do not use eigenvectors). We use DeepSets [Zaheer et al.,

2017] in SignNet and 2-IGN [Maron et al., 2018] in BasisNet for 𝜑, use a DeepSets

for 𝜌 in both cases, and then feed the features into another DeepSets or a standard

Transformer [Vaswani et al., 2017b] to make the final predictions. That is, we are only

given graph information through the eigenvectors and eigenvalues, and we do not use

message passing.

Table E.6 displays the results, which validate our theoretical results in Section 7.2.1.

Without any message passing, SignNet and BasisNet allow DeepSets and Transformers

to perform strongly, beating the spectral GNNs GPR-GNN and ARMA on all tasks.

Also, our networks outperform all other methods on the band-rejection and comb

filters, and are mostly close to the best model on the other filters.
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Runtimes. In these experiments, for 100 epochs on the same machine, GCN

takes .435 seconds, ChebNet takes .675, DeepSets SignNet takes 3.741 seconds, and

DeepSets BasisNet takes 6.196 seconds. SignNet and BasisNet are significantly more

expensive than the GNN methods in this experiment, in large part because we use all

1024 eigenvectors of the 1024 node graph here. In contrast, recall that in Section 7.3.1,

SignNet does not have much overhead over base GNNs on the task with smaller

molecular graphs.

E.11 Further Experimental Details

E.11.1 Hardware, Software, and Data Details

All experiments could fit on one GPU at a time. Most experiments were run on a

server with 8 NVIDIA RTX 2080 Ti GPUs. We run all of our experiments in Python,

using the PyTorch [Paszke et al., 2019] framework (license URL). We also make use of

Deep Graph Library (DGL) [Wang et al., 2019] (Apache License 2.0), and PyTorch

Geometric (PyG) [Fey and Lenssen, 2019] (MIT License) for experiments with graph

data.

The data we use are all freely available online. The datasets we use are ZINC [Ir-

win et al., 2012], Alchemy [Chen et al., 2019a], the synthetic counting substructures

dataset [Chen et al., 2020g], the multi-task graph property regression synthetic

dataset [Corso et al., 2020] (MIT License), the images dataset used by Balcilar

et al. [2020] (GNU General Public License v3.0), the cat mesh from free3d.com/

3d-model/cat-v1--522281.html (Personal Use License), and the human mesh from

turbosquid.com/3d-models/water-park-slides-3d-max/1093267 (TurboSquid 3D

Model License). If no license is listed, this means that we cannot find a license for the

dataset. As they appear to be freely available with permissive licenses or no licenses,

we do not ask for permission from the creators or hosts of the data.

We do not believe that any of this data contains offensive content or personally

identifiable information. The 50 images used in the spectral graph convolution
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experiments are mostly images of objects, with a few low resolution images of humans

that do not appear to have offensive content. The only other human-related data

appears to be the human mesh, which appears to be from a 3D scan of a human.

E.11.2 Graph Regression Details

ZINC. In Section 7.3.1 we study the effectiveness of SignNet for learning positional

encodings to boost the expressive power, and thereby generalization, on the graph

regression problem ZINC. In all cases we take our 𝜑 encoder to be an 8 layer GIN

with ReLU activation. The input eigenvector 𝑣𝑖 ∈ R𝑛, where 𝑛 is the number of nodes

in the graph, is treated as a single scalar feature for each node. In the case of using a

fixed number of eigenvectors 𝑘, the aggregator 𝜌 is taken to be an 8 layer MLP with

batch normalization and ReLU activation. The aggregator 𝜌 is applied separately to

the concatenatation of the 𝑘 different embeddings for each node in a graph, resulting in

one single embedding per node. This embedding is concatenated to the node features

for that node, and the result passed as input to the base (predictor) model. We also

consider using all available eigenvectors in each graph instead of a fixed number 𝑘.

Since the total number of eigenvectors is a variable quantity, equal to the number of

nodes in the underlying graph, an MLP cannot be used for 𝜌. To handle the variable

sized input in this case, we take 𝜌 to be an MLP preceded by a sum over the 𝜑 outputs.

In other words, the SignNet is of the form MLP
(︁∑︀𝑘

𝑖=1 𝜑(𝑣𝑖) + 𝜑(−𝑣𝑖)
)︁

in this case.

As well as testing SignNet, we also checked whether simple transformations that

resolve the sign ambiguity of the Laplacian eigenvectors 𝑝 = (𝑣1, . . . , 𝑣𝑘) could serve

as effective positional encoding. We considered three options. First is to randomly

flip the sign of each ±𝑣𝑖 during training. This is a common heuristic used in prior

work on Laplacian positional encoding [Kreuzer et al., 2021, Dwivedi et al., 2020].

Second, take the element-wise absolute value |𝑣𝑖|. This is a non-injective map, creating

sign invariance at the cost of destroying positional information. Third is a different

canonicalization that avoids stochasticity and use of absolute values by selecting the

sign of each 𝑣𝑖 so that the majority of entries are non-negative, with ties broken by

comparing the ℓ1-norm of positive and negative parts. When the tie-break also fails,
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the sign is chosen randomly. Results for GatedGCN base model on ZINC in Table 7.1

show that all three of these approaches are significantly poorer positional encodings

compared to SignNet.

Our training pipeline largely follows that of Dwivedi et al. [2022], and we use

the GatedGCN and PNA base models from the accompanying implementation (see

https://github.com/vijaydwivedi75/gnn-lspe). The Sparse Transformer base

model architecture we use, which like GAT computes attention only across neighbouring

nodes, is introduced by Kreuzer et al. [2021]. Finally, the GINE implementation is

based on the PyTorch Geometric implementation [Fey and Lenssen, 2019]. For the

state-of-the-art comparison, all baseline results are from their respective papers, except

for GIN, which we run.

We used edge features for all models except the Sparse Transformer. For the

Sparse Transformer, we found our method of using edge features to somewhat increase

training instability, so standard deviation was higher, though mean test MAE was

mostly similar to the runs without edge features.

ZINC-full. We also run our method on the full ZINC dataset, termed ZINC-full.

The result we report for SignNet is a larger version of the GatedGCN base model

with a SignNet that takes in all eigenvectors. This model has 994,113 parameters in

total. All baseline results are from their respective papers, except for GIN, which is

from [Bodnar et al., 2021].

Alchemy. We run our method and compare with the state-of-the-art on Alchemy

(with 10,000 training graphs). We use the same data split as Morris et al. [2020b]. Our

base model is a GIN that takes in edge features (i.e. a GINE). The SignNet consists

of GIN for 𝜑 and a Transformer for 𝜌, as in the counting substructures and graph

property regression experiments in Section 7.3.2. The model has 907,371 parameters

in total. Our training setting is very similar to that of Morris et al. [2022], as we build

off of their code. We train with an Adam optimizer [Kingma and Ba, 2014] with a

starting learning rate of .001, and a minimum learning rate of .000001. The learning

rate schedule cuts the learning rate in half with a patience of 20 epochs, and training

ends when we reach the minimum learning rate. All baseline results are from their
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respective papers, except for GIN, which is from [Morris et al., 2022].

E.11.3 Spectral Graph Convolution Details

In Appendix E.10.3, we conduct node regression experiments for learning spectral

graph convolutions. The experimental setup is mostly taken from He et al. [2021].

However, we resize the 100× 100 images to 32× 32. Thus, each image is viewed as

a 1024-node graph. The node features 𝑋 ∈ R𝑛 are the grayscale pixel intensities of

each node. Just as in He et al. [2021], we only train and evaluate on nodes that are

not connected to the boundary of the grid (that is, we only evaluate on the 28× 28

middle section). For all experiments we limit each model to 50,000 parameters. We

use the Adam [Kingma and Ba, 2014] optimizer for all experiments. For each of the

GNN baselines (GCN, GAT, GPR-GNN, ARMA, ChebNet, BernNet), we select the

best performing out of 4 hyperparameter settings: either 2 or 4 convolution layers,

and a hidden dimension of size 32 or 𝐷, where 𝐷 is just large enough to stay with

50,000 parameters (for instance, 𝐷 = 128 for GCN, GPR-GNN, and BernNet).

We use DeepSets or standard Transformers as our prediction network. This takes

in the output of SignNet or BasisNet and concatenates it with the node features,

then outputs a scalar prediction for each node. We use a 3 layer output network

for DeepSets SignNet, and 2 layer output networks for all other configurations. All

networks use ReLU activations.

For SignNet, we use DeepSets for both 𝜑 and 𝜌. Our 𝜑 takes in eigenvectors only,

then our 𝜌 takes the outputs of 𝜑 and the eigenvalues. We use three layers for 𝜑 and 𝜌.

For BasisNet, we use the same DeepSets for 𝜌 as in SignNet, and 2-IGNs for the

𝜑𝑑𝑖 . There are three distinct multiplicities for the grid graph (1, 2, and 32), so we

only need 3 separate IGNs. Each IGN consists of an R𝑛2×1 → R𝑛×𝑑′ layer and two

R𝑛×𝑑′′ → R𝑛×𝑑′′′ layers, where the 𝑑′ are hidden dimensions. There are no matrix to

matrix operations used, as the memory requirements are intensive for these ≥ 1000

node graphs. The 𝜑𝑑𝑖 only take in 𝑉𝑖𝑉
⊤
𝑖 from the eigenspaces, and the 𝜌 takes the

output of the 𝜑𝑑𝑖 as well as the eigenvalues.

330



E.11.4 Substructures and Graph Properties Regression Details

We use the random graph dataset from Chen et al. [2020g] for counting substructures

and the synthetic dataset from Corso et al. [2020] for regressing graph properties. For

fair comparison we fix the base model as a 4-layer GIN model with hidden size 128.

We choose 𝜑 as a 4-layer GIN (independently applied to every eigenvector) and 𝜌 as a

1-layer Transformer (independently applied to every node). Combined with proper

batching and masking, we have a SignNet that takes Laplacian eigenvectors 𝑉 ∈ R𝑛×𝑛

and outputs fixed size sign-invariant encoding node features 𝑓(𝑉,Λ, 𝑋) ∈ R𝑛×𝑑, where

𝑛 varies between graphs but 𝑑 is fixed. We use this SignNet in our experiments and

compare with other methods of handling PEs.

E.11.5 Texture Reconstruction Details

Table E.7: Parameter settings for the texture reconstruction experiments.

Params Base MLP width Base MLP layers 𝜑 out dim 𝜌 out dim 𝜌, 𝜑 width

Intrinsic NF 328,579 128 6 — — —

SignNet 323,563 108 6 4 64 8

We closely follow the experimental setting of Koestler et al. [2022] for the texture

reconstruction experiments. In this work, we use the cotangent Laplacian [Rusta-

mov et al., 2007] of a triangle mesh with the lowest 1023 eigenvectors besides the

trivial eigenvector of eigenvalue 0. We implemented SignNet in the authors’ original

code, which was privately shared with us. Both 𝜌 and 𝜑 are taken to be MLPs.

Hyperparameter settings and number of parameters are given in Table E.7. We chose

hyperparameters so that the total number of parameters in the SignNet model was no

larger than that of the original model.

331



Eigenvector 1 𝜑(𝑣1) + 𝜑(−𝑣1)

s

Eigenvector 5 𝜑(𝑣9) + 𝜑(−𝑣9)

Eigenvector 11 𝜑(𝑣11) + 𝜑(−𝑣11)

Eigenvector 14 𝜑(𝑣14) + 𝜑(−𝑣14)

Eigenvector 1023 𝜑(𝑣1023) + 𝜑(−𝑣1023)

Figure E-2: (Left) Cotangent Laplacian eigenvectors of the cat model. (Right) First
principal component of 𝜑(𝑣) + 𝜑(−𝑣) from our trained SignNet.
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Figure E-3: First three principal components of the full SignNet output on the cat
model.
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Figure E-4: All normalized Laplacian eigenvectors of the fluorescein graph. The first
principal components of SignNet’s learned positional encodings do not exactly match
any eigenvectors.
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Figure E-5: Normalized Laplacian eigenvectors and learned positional encodings for
the graph of fluorescein. (Top row) From left to right: smallest and second smallest
nontrivial eigenvectors, then second largest and largest eigenvectors. (Bottom row)
From left to right: first four principal components of the output 𝜌([𝜑(𝑣𝑖)+𝜑(−𝑣𝑖)]𝑖=1,...,𝑛)
of SignNet.

𝒳1 × . . .×𝒳𝑘

(𝒳1/𝐺1)× . . .× (𝒳𝑘/𝐺𝑘) R𝑑out

𝒵 = im(𝜓) ⊆ R𝑎

𝜋 = 𝜋1 × . . . 𝜋𝑘 𝑓 = 𝑓 ∘ 𝜋𝜑 = 𝜓 ∘ 𝜋

𝜓 = 𝜓1 × . . .× 𝜓𝑘

𝑓𝜓−1

𝜌 = 𝑓 ∘ 𝜓−1

Figure E-6: Commutative diagram for our proof of Theorem 10. Black arrows denote
functions from topological constructions, and red dashed lines denote functions that
we parameterize by neural networks (𝜑 = 𝜑1 × . . .× 𝜑𝑘 and 𝜌).
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𝑣4

𝑣5

𝐺(2)

Figure E-7: Illustration of our constructed 𝐺(1) and 𝐺(2) for 𝑛 = 5, as used in the
proof of Proposition 8.

𝑤1

𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

𝐺(1)

𝑣1

𝑣2

𝑣3
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𝑣5𝑣6

𝐺(2)

Figure E-8: Illustration of our constructed 𝐺(1) and 𝐺(2) for 𝑛 = 6, as used in the
proof of Proposition 8.
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Appendix F

Learning with Discrete Functions in

High Dimensions: Further Discussion

F.1 Optimization programs: extended discussion

In this section, we provide an extended discussion of the key components of our LP

and SDP formulations and the relationships between them. Apart from supplying

derivations, another goal of this section is to illustrate that there is in fact flexibility

in the exact choice of formulation for the LP (and consequently the SDP). We provide

details on possible variations as part of this discussion as a guide to users who may

wish to adapt the SFE framework.

F.1.1 LP formulation: Derivation of the dual.

First, recall that our primal LP is defined as

max
z,𝑏∈R𝑛×R

{x⊤z+ 𝑏} subject to 1⊤
𝑆 z+ 𝑏 ≤ 𝑓(𝑆) for all 𝑆 ⊆ [𝑛].

The dual is

min
{𝑦𝑆≥0}𝑆⊆[𝑛]

∑︁
𝑆⊆[𝑛]

𝑦𝑆𝑓(𝑆) subject to
∑︁
𝑆⊆[𝑛]

𝑦𝑆1𝑆 = x,
∑︁
𝑆⊆[𝑛]

𝑦𝑆 = 1, for all 𝑆 ⊆ [𝑛].
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In order to standardize the derivation, we first convert the primal maximization

problem into minimization (this will be undone at the end of the derivation). We have

min
z,𝑏∈R𝑛×R

{−x⊤z− 𝑏} subject to 1⊤
𝑆 z+ 𝑏 ≤ 𝑓(𝑆) for all 𝑆 ⊆ [𝑛].

The Lagrangian is

ℒ(z, 𝑦𝑆, 𝑏)
𝑦𝑆≥0

= −x⊤z− 𝑏−
∑︁
𝑆⊆[𝑛]

𝑦𝑆(𝑓(𝑆)− 1⊤
𝑆 z− 𝑏)

= −
∑︁
𝑆⊆[𝑛]

𝑦𝑆𝑓(𝑆) + (
∑︁
𝑆⊆[𝑛]

𝑦𝑆1
⊤
𝑆 − x⊤)z+ 𝑏(

∑︁
𝑆⊆[𝑛]

𝑦𝑆 − 1)

The optimal solution p* to the primal problem is then

p* = min
z,𝑏

max
𝑦𝑆≥0
ℒ(z, 𝑦𝑆, 𝑏)

= max
𝑦𝑆≥0

min
z,𝑏
ℒ(z, 𝑦𝑆, 𝑏) (strong duality)

= d*,

where d* is the optimal solution to the dual. From the Lagrangian,

min
z,𝑏
ℒ(z, 𝑦𝑆, 𝑏) =

⎧⎪⎨⎪⎩−
∑︀

𝑆⊆[𝑛] 𝑦𝑆𝑓(𝑆), if
∑︀

𝑆⊆[𝑛] 𝑦𝑆1𝑆 = x and
∑︀

𝑆⊆[𝑛] 𝑦𝑆 = 1,

−∞, otherwise.

Thus, we can write the dual problem as

d* = max
𝑦𝑆≥0

−
∑︁
𝑆⊆[𝑛]

𝑦𝑆𝑓(𝑆) subject to
∑︁
𝑆⊆[𝑛]

𝑦𝑆1𝑆 = x and
∑︁
𝑆⊆[𝑛]

𝑦𝑆 = 1.

Our proposed dual formulation is then obtained by switching from maximization

to minimization and negating the objective. It can also be verified that by taking

the dual of our dual, the primal is recovered (see El Halabi [2018, Def. 20] for the

derivation).
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F.1.2 Connections to submodularity, related linear programs,

and possible alternatives.

Our LP formulation depends on a linear program known to correspond to the convex

closure [Murota, 1998, Eq. 3.57] (convex envelope) of a discrete function. Some readers

may recognize the formal similarities of this formulation with the one used to define

the Lovász extension [Bilmes, 2022]. Namely, for x ∈ R𝑛 we can define the Lovász

Extension as

F(x) = max
z∈ℬ𝑓

x⊤z,

where the feasible set, known as the base polytope of a submodular function, is defined

as ℬ𝑓 = {z ∈ R𝑛 : z⊤1𝑆 ≤ 𝑓(𝑆) 𝑆 ⊂ [𝑛], and z⊤1𝑆 = 𝑓(𝑆) when 𝑆 = [𝑛]}. Base

polytopes are also known as generalized permutahedra and have rich connections to

the theory of matroids, since matroid polytopes belong to the class of generalized

permutahedra Ardila et al. [2010].

An alternative option is to consider x ∈ R𝑛
+, then the Lovász extension is given by

F(x) = max
z∈𝒫𝑓

x⊤z,

where 𝒫𝑓 is the submodular polyhedron as defined in our original primal LP. The

subtle differences between those formulations lead to differences in the respective dual

formulations. In principle, those formulations can be just as easily used to define

set function extensions. Overall, there are three key considerations when defining a

suitable LP:

• The constraints of the primal.

• The domain of the primal variables z, 𝑏 and the cost x.

• The properties of the function being extended.

Below, we describe a few illustrative example cases for different choices of the above:
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• Adding the constraint z⊤1𝑆 = 𝑓(𝑆) when 𝑆 = [𝑛] leads to 𝑦[𝑛] ∈ R𝑛 for the dual.

This implies that the coefficients cannot be interpreted as probabilities in general

which is what provides the guarantee that the extension will not introduce any

spurious minima.
∑︀

𝑆⊆[𝑛] 𝑦𝑆 = 1 is just an affine hull constraint in that case.

• For 𝑏 = 0, the constraint
∑︀

𝑆⊆[𝑛] 𝑦𝑆 = 1 is not imposed in the dual and the

probabilistic interpretation of the extension cannot be guaranteed. Examples

that do not rely on this constraint include the homogeneous convex envelope

[El Halabi et al., 2018] and the Lovász extension as presented above. However,

even for 𝑏 = 0, from the definition of the Lovász extension it is easy to see that

it retains the probabilistic interpretation when x ∈ [0, 1].

• Consider a feasible set defined by 𝒫𝑓
⋂︀

R𝑛
+ and let x ∈ R𝑛

+. If the function 𝑓 is

submodular, non-decreasing and normalized so that 𝑓(∅) = 0 (e.g., the rank

function of a matroid), then the feasible set is called polymatroid and 𝑓 is a

polymatroid function. Again, in that case the Lovász extension achieves the

optimal objective value [Schrijver et al., 2003, Eq. 44.32]. In that case, the

constraint
∑︀

𝑆⊆[𝑛] 𝑦𝑆1𝑆 = x of the dual is relaxed to
∑︀

𝑆⊆[𝑛] 𝑦𝑆1𝑆 ≥ x. This

feasible set of the dual will allow for more flexible definitions of an extension

but it comes at the cost of generality. For instance, for a submodular function

that is not non-decreasing, one cannot obtain the Lovász extension as a feasible

solution to the primal LP, and the solutions to this LP will not be the convex

envelope in general.

F.1.3 SDP formulation: The geometric intuition of extensions

and deriving the dual.

In order to motivate the SDP formulation, first we have to identify the essential

ingredients of the LP formulation. First, the constraint
∑︀

𝑆⊆[𝑛] 𝑦𝑆1𝑆 = x captures

the simple idea that each continuous point is expressed as a combination of discrete

ones, each representing a different set, which is at the core of our extensions. Then,
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ensuring that the continuous point lies in the convex hull of those discrete points

confers additional benefits w.r.t. optimization and offers a probabilistic perspective.

Consider the following example. The Lovász extension identifies each continuous

point in the hypercube with a simplex. Then the continuous point is viewed as an

expectation over a distribution supported on the simplex corners. The value of the set

function at a continuous point is then the expected value of the function over those

corners under the same distribution, i.e., E𝑆∼𝑝x [1𝑆] = x leads to E𝑆∼𝑝x [𝑓(𝑆)] = F(x).

As long as the distribution 𝑝x can be differentiated w.r.t x, we obtain an extension

that can be used with gradient-based optimization. It is clear that the construction

depends on being able to identify a small convex set of discrete vectors that can

express the continuous one.

This can be formulated in higher dimensions, particularly in the space of PSD

matrices. A natural way to represent sets in high dimensions is through rank one

matrices that are outer products of the indicator vectors of the sets, i.e., 1𝑆1⊤
𝑆 is the

matrix representation of 𝑆 similar to how 1𝑆 is the vector representation. Hence, in

the space of matrices, our goal will be again to identify a set of discrete matrices that

represents sets that can express a matrix of continuous values.

The above considerations set the stage for a transition from linear programming

to semidefinite programming, where the feasible sets are spectrahedra. Our SDP

formulation attempts to capture the intuition described in the previous paragraphs

while also maintaining formal connections to the LP by showing that feasible LP

regions correspond to feasible SDP regions by simply projecting the LP regions on

the space of diagonal matrices (see Proposition 11).

Derivation of the dual. Recall that our primal SDP is defined as

max
Z⪰0,𝑏∈R

{Tr(X⊤Z) + 𝑏} subject to
1

2
Tr((1𝑆1⊤

𝑇 + 1𝑇1
⊤
𝑆 )Z) + 𝑏 ≤ 𝑓(𝑆 ∩ 𝑇 ) for 𝑆, 𝑇 ⊆ [𝑛].
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We will show that the dual is

min
{𝑦𝑆,𝑇≥0}

∑︁
𝑆,⊆[𝑛]

𝑦𝑆,𝑇𝑓(𝑆 ∩ 𝑇 ) subject to X ⪯
∑︁

𝑆,𝑇⊆[𝑛]

1

2
𝑦𝑆,𝑇 (1𝑆1

⊤
𝑇 + 1𝑇1

⊤
𝑆 ) and

∑︁
𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇 = 1.

As before, we convert the primal to a minimization problem:

max
Z⪰0,𝑏∈R

{−Tr(X⊤Z)− 𝑏} subject to
1

2
Tr((1𝑆1⊤

𝑇 + 1𝑇1
⊤
𝑆 )Z) + 𝑏 ≤ 𝑓(𝑆 ∩ 𝑇 ) for 𝑆, 𝑇 ⊆ [𝑛].

First, we will standardize the formulation by converting the inequality constraints

into equality constraints. This can be achieved by adding a positive slack variable

𝑑𝑆,𝑇 to each constraint such that

1

2
Tr((1𝑆1⊤

𝑇 + 1𝑇1
⊤
𝑆 )Z) + 𝑏+ 𝑑𝑆,𝑇 = 𝑓(𝑆 ∩ 𝑇 ).

In matrix notation this is done by introducing the positive diagonal slack matrix D to

the decision variable Z, and extending the symmetric matrices in each constraint

Z′ =

⎡⎢⎢⎣Z 0

0 D

⎤⎥⎥⎦ , X′ =

⎡⎢⎢⎣X 0

0 0

⎤⎥⎥⎦ , A′
𝑆,𝑇 =

⎡⎢⎢⎣1
2
(1𝑆1

⊤
𝑇 + 1𝑇1

⊤
𝑆 ) 0

0 diag(e𝑆,𝑇 )

⎤⎥⎥⎦ ,
where diag(e𝑆,𝑇 ) is a diagonal matrix where all diagonal entries are zero except at

the diagonal entry corresponding to the constraint on 𝑆, 𝑇 which has a 1. Using this

reformulation, we obtain an equivalent SDP in standard form:

max
Z′⪰0,𝑏∈R

{−Tr(X′⊤Z′)− 𝑏} subject to Tr(A′
𝑆,𝑇Z

′) + 𝑏 = 𝑓(𝑆 ∩ 𝑇 ) for 𝑆, 𝑇 ⊆ [𝑛].

342



Next, we form the Lagrangian which features a decision variable 𝑦𝑆,𝑇 for each inequality,

and a dual matrix variable Λ. We have

ℒ(Z′, 𝑏, 𝑦𝑆,𝑇 ,Λ) = −Tr(X′⊤Z′)− 𝑏−
∑︁

𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇
(︀
2𝑓(𝑆 ∩ 𝑇 )− Tr(A′

𝑆,𝑇Z
′)− 𝑏

)︀
− Tr(ΛZ′)

= Tr

⎛⎝((
∑︁

𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇A
′
𝑆,𝑇 )−X′ −Λ)Z′

⎞⎠+ 𝑏(
∑︁

𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇 − 1)−
∑︁

𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇𝑓(𝑆 ∩ 𝑇 )

For the solution to the primal p*, we have

p* = min
Z′,𝑏

max
Λ,𝑦𝑆,𝑇

ℒ(Z′, 𝑏, 𝑦𝑆,𝑇 ,Λ)

≥ max
Λ,𝑦𝑆,𝑇

min
Z′,𝑏
ℒ(Z′, 𝑏, 𝑦𝑆,𝑇 ,Λ) (weak duality)

= d*.

For our Lagrangian we have the dual function

min
Z′,𝑏
ℒ(Z′, 𝑏, 𝑦𝑆,𝑇 ,Λ) =

⎧⎪⎨⎪⎩0, if Λ ⪰ 0,

−∞, otherwise .

Thus, the dual function min
Z′,𝑏
ℒ(Z′, 𝑏, 𝑦𝑆,𝑇 ,Λ) takes non-infinite values under the condi-

tions

(
∑︁

𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇A
′
𝑆,𝑇 )−X′ −Λ = 0,

Λ ⪰ 0,

and
∑︁

𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇 − 1 = 0.
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The first two conditions imply the linear matrix inequality (LMI)

∑︁
𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇A
′
𝑆,𝑇 −X′ ⪰ 0. (Λ ⪰ 0)

From the definition of A′
𝑆,𝑇 we know that its additional diagonal entries will correspond

to the variables 𝑦𝑆,𝑇 . Combined with the conditions above, we arrive at the constraints

of the dual

𝑦𝑆,𝑇 ≥ 0,∑︁
𝑆,𝑇⊆[𝑛]

1

2
𝑦𝑆,𝑇 (1𝑆1

⊤
𝑇 + 1𝑇1

⊤
𝑆 ) ⪰ X,

∑︁
𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇 = 1.

This leads us to the dual formulation

max
𝑦𝑆,𝑇≥0

−
∑︁

𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇𝑓(𝑆 ∩ 𝑇 ) subject to
∑︁

𝑆,𝑇⊆[𝑛]

1

2
𝑦𝑆,𝑇 (1𝑆1

⊤
𝑇 + 1𝑇1

⊤
𝑆 ) ⪰ X and

∑︁
𝑆,𝑇⊆[𝑛]

𝑦𝑆,𝑇 = 1.

Then, we can obtain our original dual by switching to minimization and negating the

objective.

F.2 Scalar Set Function Extensions Have No Bad

Minima

In this section we re-state and prove the results from Section 8.3. The first result

concerns the minima of F, showing that the minimum value is the same as that of

𝑓 , and no additional minima are added (besides convex combinations of discrete

minimizers). These properties are especially desirable when using an extension F as a

loss function (see Section 4.4) since it is important that F drive the neural network

NN1 towards producing discrete 1𝑆 outputs.
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Proposition 17 (Scalar SFEs have no bad minima). If F is a scalar SFE of 𝑓 then:

1. minx∈𝒳 F(x) = min𝑆⊆[𝑛] 𝑓(𝑆)

2. argminx∈𝒳 F(x) ⊆ Hull
(︀
argmin1𝑆 :𝑆⊆[𝑛] 𝑓(𝑆)

)︀

Proof. The inequality minx∈𝒳 F(x) ≤ min𝑆⊆[𝑛] 𝑓(𝑆) automatically holds since min𝑆⊆[𝑛] 𝑓(𝑆) =

min1𝑆 :𝑆⊆[𝑛] F(1𝑆), and {1𝑆 : 𝑆 ⊆ [𝑛]} ⊆ 𝒳 . So it remains to show the reverse. Indeed,

letting x ∈ 𝒳 be an arbitrary point we have,

F(x) = E𝑆∼𝑝x [𝑓(𝑆)]

=
∑︁
𝑆⊆[𝑛]

𝑝x(𝑆) · 𝑓(𝑆)

≥
∑︁
𝑆⊆[𝑛]

𝑝x(𝑆) · min
𝑆⊆[𝑛]

𝑓(𝑆)

= min
𝑆⊆[𝑛]

𝑓(𝑆)

where the last equality simply uses the fact that
∑︀

𝑆⊆[𝑛] 𝑝x(𝑆) = 1. This proves the

first claim.

To prove the second claim, suppose that x minimizes F(x) over x ∈ 𝒳 . This

implies that the inequality in the above derivation must be tight, which is true if and

only if

𝑝x(𝑆) · 𝑓(𝑆) = 𝑝x(𝑆) · min
𝑆⊆[𝑛]

𝑓(𝑆) for all 𝑆 ⊆ [𝑛].

For a given 𝑆, this implies that either 𝑝x(𝑆) = 0 or 𝑓(𝑆) = min𝑆⊆[𝑛] 𝑓(𝑆). Since

x = E𝑝x [1𝑆] =
∑︀

𝑆⊆[𝑛] 𝑝x(𝑆) · 1𝑆 =
∑︀

𝑆:𝑝x(𝑆)>0 𝑝x(𝑆) · 1𝑆. This is precisely a convex

combination of points 1𝑆 for which 𝑓(𝑆) = min𝑆⊆[𝑛] 𝑓(𝑆). Since F is a convex

combination of exactly this set of points 1𝑆, we have the second claim.
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F.3 Examples of Vector Set Function Extensions

This section re-defines the vector SFEs given in Section 8.3.1, and prove that they satisfy

the definition of an SFEs. One of the conditions we must check is that F is continuous.

A sufficient condition for continuity (and almost everywhere differentiability) that

we shall use for a number of constructions is to show that F is Lipschitz. A very

simple computation shows that it suffices to show that x ∈ 𝒳 ↦→ 𝑝x(𝑆) is Lipschitz

continuous.

Lemma 17. If the mapping x ∈ [0, 1]𝑛 ↦→ 𝑝x(𝑆) is Lipschitz continuous and 𝑓(𝑆) is

finite for all 𝑆 in the support of 𝑝x, then F is also Lipschitz continuous. In particular,

F is continuous and almost everywhere differentiable.

Proof. The Lipschitz continuity of F(x) follows directly from definition:

⃒⃒
F(x)− F(x′)

⃒⃒
=

⃒⃒⃒⃒ ∑︁
𝑆⊆[𝑛]

𝑝x(𝑆) · 𝑓(𝑆)−
∑︁
𝑆⊆[𝑛]

𝑝x′(𝑆) · 𝑓(𝑆)
⃒⃒⃒⃒

=

⃒⃒⃒⃒ ∑︁
𝑆⊆[𝑛]

(︀
𝑝x(𝑆)− 𝑝x′(𝑆)

)︀
· 𝑓(𝑆)

⃒⃒⃒⃒
≤
(︂
2𝑘𝐿max

𝑆⊆[𝑛]
𝑓(𝑆)

)︂
· ‖x− x′‖,

where 𝐿 is the maximum Lipschitz constant of x ↦→ 𝑝x(𝑆) over any 𝑆 in the support

of 𝑝x, and 𝑘 is the maximal cardinality of the support of any 𝑝x.

In general 𝑘 can be trivially bounded by 2𝑛, so F is always Lipschitz. However in

may cases the cardinality of the support of any 𝑝x is much smaller than 2𝑛, leading too

a smaller Lipschitz constant. For instance, 𝑘 = 𝑛 in the case of the Lovász extension.

F.3.1 Lovász extension.

Recall the definition: x is sorted so that 𝑥1 ≥ 𝑥2 ≥ . . . ≥ 𝑥𝑑. Then the Lovász extension

corresponds to taking 𝑆𝑖 = {1, . . . , 𝑖}, and letting 𝑝x(𝑆𝑖) = 𝑥𝑖− 𝑥𝑖+1, the non-negative

increments of x (where recall we take 𝑥𝑛+1 = 0). All other sets have zero probability.

For convenience, we introduce the shorthand notation 𝑎𝑖 = 𝑝x(𝑆𝑖) = 𝑥𝑖 − 𝑥𝑖+1
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Feasibility. Clearly all 𝑎𝑖 = 𝑥𝑖− 𝑥𝑖+1 ≥ 0, and
∑︀𝑛

𝑖=1 𝑎𝑖 =
∑︀𝑛

𝑖=1(𝑥𝑖− 𝑥𝑖+1) = 𝑥1 ≤ 1.

Any remaining probability mass is assigned to the empty set: 𝑝x(∅) = 1− 𝑥1, which

contributes nothing to the extension F since 𝑓(∅) = 0 by assumption. All that remains

is to check that
𝑛∑︁
𝑖=1

𝑝x(𝑆𝑖) · 1𝑆𝑖
= x.

For a given 𝑘 ∈ [𝑛], note that the only sets 𝑆𝑖 with non-zero 𝑘th coordinate are

𝑆1, . . . , 𝑆𝑘, and in all cases (1𝑆𝑖
)𝑘 = 1. So the 𝑘th coordinate is precisely

∑︀𝑘
𝑖=1 𝑝x(𝑆𝑖) =∑︀𝑘

𝑖=1(𝑥𝑖 − 𝑥𝑖+1) = 𝑥𝑘, yielding the desired formula.

Extension. Consider an arbitrary 𝑆 ⊆ [𝑛]. Since we assume x = 1𝑆 is sorted,

it has the form 1𝑆 = (1, 1, . . . , 1⏟  ⏞  
𝑘 times

, 0, 0, . . . 0)⊤. Therefore, for each 𝑗 < 𝑘 we have

𝑎𝑗 = 𝑥𝑗 − 𝑥𝑗+1 = 1− 1 = 0 and for each 𝑗 > 𝑘 we have 𝑎𝑗 = 𝑥𝑗 − 𝑥𝑗+1 = 0− 0 = 0.

The only non-zero probability is 𝑎𝑘 = 𝑥𝑘 − 𝑥𝑘+1 = 1− 0 = 1. So,

F(1𝑆) =
𝑛∑︁
𝑖=1

𝑎𝑖𝑓(𝑆𝑖) =
∑︁
𝑖:𝑖 ̸=𝑘

𝑎𝑖𝑓(𝑆𝑖) + 𝑎𝑘𝑓(𝑆𝑘) = 0 + 1 · 𝑓(𝑆𝑘) = 𝑓(𝑆)

where the the final equality follows since by definition 𝑆𝑘 corresponds exactly to the

vector (1, 1, . . . , 1⏟  ⏞  
𝑘 times

, 0, 0, . . . 0)⊤ = 1𝑆 and so 𝑆𝑘 = 𝑆.

Continuity. The Lovász is a well-known extension, whose properties have been

carefully studied. In particular it is well known to be a Lipschitz function Bach [2019].

However, for completeness we provide a simple proof here nonetheless.

Lemma 18. Let 𝑝x be as defined for the Lovász extension. Then x ↦→ 𝑝x(𝑆) is

Lipschitz for all 𝑆 ⊆ [𝑛].

Proof. First note that 𝑝x is piecewise linear, with one piece per possible ordering

𝑥1 ≥ 𝑥2 ≥ . . . ≥ 𝑥𝑛 (so 𝑛! pieces in total). Within the interior of each piece 𝑝x is

linear, and therefore Lipschitz. So in order to prove global Lipschitzness, it suffices to

show that 𝑝x is continuous at the boundaries between pieces (the Lipschitz constant

is then the maximum of the Lipschitz constants for each linear piece).

347



Now consider a point x with 𝑥1 ≥ . . . ≥ 𝑥𝑖 = 𝑥𝑖+1 ≥ . . . ≥ 𝑥𝑛. Consider the

perturbed point x𝛿 = x − 𝛿e𝑖 with 𝛿 > 0, and e𝑖 denoting the 𝑖th standard basis

vector. To prove continuity of 𝑝x it suffices to show that for any 𝑆 ∈ Ω we have

𝑝x𝛿
(𝑆)→ 𝑝x(𝑆) as 𝛿 → 0+.

There are two sets in the support of 𝑝x whose probabilities are different under

𝑝x𝛿
, namely: 𝑆𝑖 = {1, . . . , 𝑖} and 𝑆𝑖+1 = {1, . . . , 𝑖, 𝑖 + 1}. Similarly, there are two

sets in the support of 𝑝x𝛿
whose probabilities are different under 𝑝x, namely: 𝑆 ′

𝑖 =

{1, . . . , 𝑖 − 1, 𝑖 + 1} and 𝑆 ′
𝑖+1 = {1, . . . , 𝑖, 𝑖 + 1} = 𝑆𝑖+1. So it suffices to show the

convergence 𝑝x𝛿
(𝑆)→ 𝑝x(𝑆) for these four 𝑆. Consider first 𝑆𝑖:

⃒⃒
𝑝x𝛿

(𝑆𝑖)− 𝑝x(𝑆𝑖)
⃒⃒
=
⃒⃒
0− (𝑥𝑖 − 𝑥𝑖+1)

⃒⃒
= 0

where the final equality uses the fact that 𝑥𝑖 = 𝑥𝑖+1. Next consider 𝑆𝑖+1 = 𝑆 ′
𝑖+1:

⃒⃒
𝑝x𝛿

(𝑆𝑖+1)−𝑝x(𝑆𝑖+1)
⃒⃒
=
⃒⃒
(𝑥′𝑖+1−𝑥′𝑖+2)−(𝑥𝑖+1−𝑥𝑖+2)

⃒⃒
=
⃒⃒
(𝑥′𝑖+1−𝑥𝑖+1)−(𝑥′𝑖+2−𝑥𝑖+2)

⃒⃒
= 0

Finally, we consider 𝑆 ′
𝑖:

⃒⃒
𝑝x𝛿

(𝑆 ′
𝑖)− 𝑝x(𝑆 ′

𝑖)
⃒⃒
=
⃒⃒
(𝑥′𝑖 − 𝑥′𝑖+1)− (𝑥𝑖 − 𝑥𝑖+1)

⃒⃒
=
⃒⃒
(𝑥′𝑖+1 − 𝑥𝑖+1)− (𝑥′𝑖+1 − 𝑥𝑖+1)

⃒⃒
=
⃒⃒
(𝑥𝑖+1 − 𝛿 − 𝑥𝑖+1)− (𝑥′𝑖+1 − 𝑥𝑖+1)

⃒⃒
= 𝛿 → 0

completing the proof.

F.3.2 Bounded cardinality Lovaśz extension.

The bounded cardinality extension considers 𝑛 sets 𝑆 of cardinality at most 𝑘, with

𝑛 ≥ 𝑘 ≥ 2. We collect {𝑆𝑖}𝑛𝑖=1 of subsets of [𝑛] in an 𝑛 × 𝑛 matrix S ∈ {0, 1}𝑛×𝑛
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whose 𝑖th column is 1𝑆𝑖
:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k⏞  ⏟  
1 . . . 1 0 0

0
. . . . . . . . . 0

0 0
. . . . . . 1

...
... . . . . . . ...

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix will contain 𝑘 sets of gradually increasing cardinality, from 1 up until

𝑘, and 𝑛− 𝑘 sets of cardinality exactly 𝑘. In this notation, the dual LP constraint∑︀
𝑆⊆[𝑛] 𝑦𝑆1𝑆 = x can be written as Sp = x, where the 𝑖th coordinate of p defines

𝑝x(𝑆𝑖). Then, the bounded cardinality extension coefficients 𝑝x(𝑆) are the coordinates

of the vector y, where y = S−1x. To calculate the inverse, we will leverage the fact

that S will be triangular Toeplitz by construction. Clearly, its inverse will also be

triangular.

Lemma 19. The entries (𝑖, 𝑗) of the inverse are

S−1(𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if (𝑗 − 𝑖) mod 𝑘 = 0 and 𝑖 ≤ 𝑗,

−1, if (𝑗 − 𝑖) mod 𝑘 = 1 and 𝑖 ≤ 𝑗,

0, otherwise,

for 𝑖 = 1, 2, . . . , 𝑛.

Proof. The proof relies on known results for banded Toeplitz matrices. A banded

Toeplitz matrix of bandwidth 𝑟 and superdiagonal 𝑠 is an 𝑛× 𝑛 matrix that has the

349



following form:

T𝑟,𝑠 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑠+1 𝑐𝑠 . . . 𝑐1 0

𝑐𝑠+2 𝑐𝑠+1 𝑐𝑠 . . .
. . .

... . . . . . . . . . 𝑐1

𝑐𝑟
. . . . . . ...

. . . . . . . . . ...

0 𝑐𝑟 . . . . . . 𝑐𝑠+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note here that the (𝑖, 𝑗) entry of T, due to its Toeplitz structure, is going to be T(𝑖, 𝑗) =

𝑐𝑖−𝑗+𝑠+1. For convenience, we are going to invert S⊤ and the result straightforwardly

transfers to S. For S⊤, we have superdiagonal 𝑠 = 0 and bandwidth 𝑟 = 𝑘. It is

known [Meek, 1983, Trench, 1974] that the entries 𝑔𝑖−𝑗+1 = (S⊤)−1(𝑖, 𝑗) of the inverse

will obey the following difference equation:

𝑐𝑘𝑔𝑙−𝑘 + 𝑐𝑘−1𝑔𝑙−𝑘+1 + · · · = 0, 𝑙 ≥ 3, 𝑔1 = 1,

with 𝑔0 = 𝑔−1 = · · · = 𝑔3−𝑘 = 0. Considering the conditions above and the fact that

𝑐1 = 𝑐2 = · · · = 𝑐𝑘 = 1, the difference equation simplifies to

𝑘−1∑︁
𝑡=0

𝑔𝑙−𝑘+𝑡 = 0.

As an example, let us compute the case for 𝑘 = 3, 𝑙 = 3. We obtain 𝑔0 + 𝑔1 + 𝑔2 = 0,

which implies 𝑔2 = −1. It is easy to see that for any 𝑘, computing the difference

equation for 𝑙 = 3 yields 𝑔2 = −1 since all the negative indices do not contribute to

the sum, reducing it to 𝑔1 + 𝑔2 = 0.

We continue with 𝑘 = 3, 𝑙 = 4 and obtain 𝑔1 + 𝑔2 + 𝑔3 = 0, which implies 𝑔3 = 0.

By incrementing 𝑙, observe that we are shifting the terms in the sum by one, so this

straightforwardly implies that 𝑙 = 5 yields 𝑔4 = 1 for 𝑘 = 3, and so on. Generalizing
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this observation, we obtain the following cases:

• 𝑔𝑡 = 1, for 𝑡 = 𝑚𝑘 + 1,

• 𝑔𝑡 = −1, for 𝑡 = 𝑚𝑘 + 2,

• 𝑔𝑡 = 0, otherwise.

Here, 𝑚 is a non-negative integer. The lemma follows straightforwardly from that

observation.

Equivalence to the Lovaśz extension. We want to show that the bounded

cardinality extension is equivalent to the Lovaśz extension when 𝑘 = 𝑛. Let 𝑇𝑖,𝑘 =

{𝑗 | (𝑗 − 𝑖) mod 𝑘 = 0, for 𝑖 ≤ 𝑗 ≤ 𝑛, }, i.e., 𝑇𝑖,𝑘 stores the indices where 𝑗 − 𝑖

is perfectly divided by 𝑘. From the analytic form of the inverse, observe that the

𝑖-th coordinate of y is 𝑝x(𝑆𝑖) =
∑︀

𝑗∈𝑇𝑖,𝑘(𝑥𝑗 − 𝑥𝑗+1). For 𝑘 = 𝑛, we have 𝑇𝑖,𝑛 =

{𝑗 | (𝑗 − 𝑖) mod 𝑛 = 0} = {𝑖}, and therefore 𝑝x(𝑆𝑖) = 𝑥𝑖 − 𝑥𝑖+1, which are the

coefficients of the Lovász extension.

Feasibility. The equation y = S−1x guarantees that the constraint x =
∑︀𝑛

𝑖=1 𝑦𝑆𝑖
1𝑆𝑖

is obeyed. Recall that x is sorted in descending order like in the case of the Lovász

extension. Then, it is easy to see that 𝑝x(𝑆𝑖) =
∑︀

𝑗∈𝑇𝑖,𝑘(𝑥𝑗 − 𝑥𝑗+1) ≤ 𝑥𝑖, because

𝑥𝑖−𝑥𝑖+1 is always contained in the summation for 𝑝x(𝑆𝑖). Therefore, by restricting x in

the probability simplex it is easy to see that
∑︀𝑛

𝑖=1 𝑝x(𝑆𝑖) ≤
∑︀𝑛

𝑖=1 𝑥𝑖 = 1. To secure tight

equality, we allocate the rest of the mass to the empty set, i.e., 𝑝x(∅) = 1−
∑︀𝑛

𝑖=1 𝑝x(𝑆𝑖),

which does not affect the value of the extension since the corresponding Boolean is

the zero vector.

Extension. To prove the extension property we need to show that F(1𝑆) = 𝑓(𝑆)

for all 𝑆 with |𝑆| ≤ 𝑘. Consider any such set 𝑆 and recall that we have sorted 1𝑆

with arbitrary tie breaks, such that 𝑥𝑖 = 1 for 𝑖 ≤ |𝑆| and 𝑥𝑖 = 0 otherwise. Due to

the equivalence with the Lovaśz extension, the extension property is guaranteed when

𝑘 = 𝑛 for all possible sets. For 𝑘 < 𝑛, consider the following three cases for 𝑇𝑖,𝑘.

351



• When 𝑖 > |𝑆|, 𝑇𝑖,𝑘 = ∅ because for sorted x of cardinality at most 𝑘, we know

for the coordinates that 𝑥𝑖 = 𝑥𝑖+1 = 0. For 𝑖 > 𝑘, this implies that 𝑝x(𝑆𝑖) = 0.

• When 𝑖 < |𝑆|,
∑︀

𝑗∈𝑇𝑖,𝑘(𝑥𝑗 − 𝑥𝑗+1) = 0 because 𝑥𝑗 = 𝑥𝑗+1 = 1 and we have again

𝑝x(𝑆𝑖) = 0.

• When 𝑖 = |𝑆|, observe that
∑︀

𝑗∈𝑇𝑖,𝑘(𝑥𝑗 − 𝑥𝑗+1) = 𝑥𝑖 − 𝑥𝑖+1 = 𝑥𝑖. Therefore,

𝑝x(𝑆𝑖) = 1. in that case.

Bringing it all together, F(1𝑆) =
∑︀𝑛

𝑖=1 𝑝x𝑓(𝑆𝑖) = 𝑝x(𝑆)𝑓(𝑆) = 𝑓(𝑆) since the sum

contains only one nonzero term, the one that corresponds to 𝑖 = |𝑆|.

Continuity. Similar to the Lovaśz extension, 𝑝x in the bounded cardinality extension

is piecewise linear and therefore a.e. differentiable with respect to x, where each piece

corresponds to an ordering of the coordinates of x. On the other hand, unlike the

Lovaśz extension, the mapping x ↦→ 𝑝x(𝑆) is not necessarily globally Lipschitz when

𝑘 < 𝑛, because it is not guaranteed to be Lipschitz continuous at the boundaries.

F.3.3 Singleton extension.

Feasibility. The singleton extension is not dual LP feasible. However, one of the key

reasons why feasibility is important is that it implies Proposition 10, which show that

optimizing F is a reasonable surrogate to 𝑓 . In the case of the singleton extension,

however, Proposition 10 still holds even without feasibility for 𝑓 . This includes the

case of the training accuracy loss, which can be viewed as minimizing the set function

𝑓({𝑦}) = −1{𝑦𝑖 = 𝑦}.

Here we give an alternative proof of Proposition 10 for the singleton extension.

Consider the same assumptions as Proposition 10 with the additional requirement

that min𝑆 𝑓(𝑆) < 0 (this merely asserts hat 𝑆 = ∅ is not a trivial solution to the

minimization problem, and that the minimizer of 𝑓 is unique. This is true, for example,

for the training accuracy objective we consider in Section 4.4.
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Proof of Proposition 10 for singleton extension. For x ∈ 𝒳 = [0, 1]𝑛,

F(x) =
𝑛∑︁
𝑖=1

𝑝x(𝑆𝑖)𝑓(𝑆𝑖)

=
𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝑖+1)𝑓(𝑆𝑖)

≥
𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥𝑖+1)min
𝑗∈[𝑛]

𝑓(𝑆𝑗)

≥ (𝑥1 − 𝑥𝑛+1)min
𝑗∈[𝑛]

𝑓(𝑆𝑗)

≥ 𝑥1 ·min
𝑗∈[𝑛]

𝑓(𝑆𝑗)

≥ min
𝑗∈[𝑛]

𝑓(𝑆𝑗)

where the final inequality follows since min𝑗∈[𝑛] 𝑓(𝑆𝑗) < 0. Taking x = (1, 0, 0, . . . , 0)⊤

shows that all the inequalities can be made tight, and the first statement of Proposition

10 holds. For the second statement, suppose that x ∈ 𝒳 = [0, 1]𝑛 minimizes F. Then

all the inequality in the preceding argument must be tight. In particular, tightness of

the final inequality implies that 𝑥1 = 1. Meanwhile, tightness of the first inequaliity

implies that 𝑥𝑖 − 𝑥𝑖+1 = 0 for all 𝑖 for which 𝑓(𝑆𝑖) ̸= min𝑗∈[𝑛] 𝑓(𝑆𝑗), and tightness of

the second inequality implies that 𝑥𝑛+1 = 0. These together imply that x = 1⊕ 0𝑛−1

where 1 is a 1 × 1 vector with entry equal to one, and 0𝑛−1 is an all zeros vectors

of length 𝑛 − 1, and ⊕ denotes concatenation. Since 𝑓(𝑆1) = min𝑗∈[𝑛] 𝑓(𝑆𝑗) is the

unique minimize we have that x = 1𝑆1 ∈ Hull
(︀
argmin1𝑆𝑖

:𝑖∈[𝑛] 𝑓(𝑆𝑖)
)︀
, completing the

proof.

Extension. Consider an arbitrary 𝑖 ∈ [𝑛]. Since we assume x = 1{𝑖} is sorted, we are

without loss of generality considering 1{1} = (1, 0, . . . , 0, 0, . . . 0)⊤. Therefore, we have

𝑝x(𝑆1) = 𝑥1−𝑥2 = 1−0 = 1 and for each 𝑗 > 1 we have 𝑝x(𝑆𝑗) = 𝑥𝑗−𝑥𝑗+1 = 0−0 = 0.
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The only non-zero probability is 𝑝x(𝑆1), and so

F(1{1}) =
𝑛∑︁
𝑗=1

𝑝x(𝑆𝑗)𝑓(𝑆𝑗) = 𝑓(𝑆1) = 𝑓({1}).

Continuity. The proof of continuity of the singleton extension is a simple adaptation

of the proof used for the Lovaśz extension, which we omit.

F.3.4 Permutations and Involutory Extension.

Feasibility. It is known that every elementary permutation matrix is involutory,

i.e., SS = I. Given such an elementary permutation matrix S, since S(Sx) = S𝑝x = x,

the constraint
∑︀

𝑆⊆[𝑛] 𝑦𝑆1𝑆 = x is satisfied. Furthermore,
∑︀

𝑆⊆[𝑛] 𝑦𝑆 = 1 can be

secured if x is in the simplex, since the sum of the elements of a vector is invariant to

permutations of the entries.

Extension. If the permutation has a fixed point at the maximum element of x, i.e.,

it maps the maximum element to itself, then any elementary permutation matrix with

such a fixed point yields an extension on singleton vectors. Without loss of generality,

let x = e1, where e1 is the standard basis vector in R𝑛. Then Se1 = e1 and therefore

𝑝x(e1) = 1. This in turn implies F(e1) = 1 ·𝑓(e1). This argument can be easily applied

to all singleton vectors.

Continuity. The permutation matrix S can be chosen in advance for each x in

the simplex. Since 𝑝x = Sx, the probabilities are piecewise-linear and each piece is

determined by the fixed point induced by the maximum element of x. Consequently,

𝑝x depends continuously on x.

F.3.5 Multilinear extension.

Recall that the multiliniear extension is defined via 𝑝x(𝑆) =
∏︀

𝑖∈𝑆 𝑥𝑖
∏︀

𝑖/∈𝑆(1 − 𝑥𝑖)

supported on all subsets 𝑆 ⊆ [𝑛] in general.
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Feasibility. The definition of 𝑝x(𝑆) is equivalent to:

𝑝x(𝑆) =
𝑛∏︁
𝑖=1

𝑥𝑦𝑖𝑖 (1− 𝑥𝑖)1−𝑦𝑖

where 𝑦𝑖 = 1 if 𝑖 ∈ 𝑆 and zero otherwise. That is, 𝑝x(𝑆) is the product of 𝑛 independent

Bernoulli distributions. So we clearly have 𝑝x(𝑆) ≥ 0 and
∑︀

𝑆⊆[𝑛] 𝑝x(𝑆) = 1. The

final feasibility condition, that
∑︀

𝑆⊆[𝑛] 𝑝x(𝑆) · 1𝑆 = x can be checked by induction

on 𝑛. For 𝑛 = 1 there are only two sets: {1} and the empty set. And clearly

𝑝x({1}) · 1{1} = 𝑥1(1− 𝑥1)0 = 𝑥1, so we have the base case.

Extension. For any 𝑆 ⊆ [𝑛] we have 𝑝1𝑆
(𝑆) =

∏︀
𝑖∈𝑆 𝑥𝑖

∏︀
𝑖/∈𝑆(1−𝑥𝑖) =

∏︀
𝑖∈𝑆 1

∏︀
𝑖/∈𝑆(1−

0) = 1. So F(1𝑆) = E𝑇∼𝑝x𝑓(𝑇 ) = 𝑓(𝑆).

Continuity. Fix and 𝑆 ⊆ [𝑛]. Again we check Lipschitzness. We use 𝜕𝑥𝑘 to denote

the derivative operator with respect to 𝑥𝑘. If 𝑘 ∈ 𝑆 we have

|𝜕𝑥𝑘𝑝1𝑆
(𝑆)| =

⃒⃒⃒⃒
⃒𝜕𝑥𝑘 ∏︁

𝑖∈𝑆

𝑥𝑖
∏︁
𝑖/∈𝑆

(1− 𝑥𝑖)

⃒⃒⃒⃒
⃒ = ∏︁

𝑖∈𝑆∖{𝑘}

𝑥𝑖
∏︁
𝑖/∈𝑆

(1− 𝑥𝑖) ≤ 1.

Similarly, if 𝑘 /∈ 𝑆 we have,

|𝜕𝑥𝑘𝑝1𝑆
(𝑆)| =

⃒⃒⃒⃒
⃒𝜕𝑥𝑘 ∏︁

𝑖∈𝑆

𝑥𝑖
∏︁
𝑖/∈𝑆

(1− 𝑥𝑖)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒−∏︁

𝑖∈𝑆

𝑥𝑖
∏︁

𝑖/∈𝑆∪{𝑘}

(1− 𝑥𝑖)

⃒⃒⃒⃒
⃒⃒ ≤ 1.

Hence the spectral norm of the Jacobian 𝐽𝑝x(𝑆) is bounded, and so x ↦→ 𝑝x(𝑆) is a

Lipschitz map.
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F.4 Neural Set Function Extensions

This section re-states and proves the results from Section 8.4. To start, recall the

definition of the primal LP:

max
z,𝑏
{x⊤z+ 𝑏}, where (z, 𝑏) ∈ R𝑛 × R and 1⊤

𝑆 z+ 𝑏 ≤ 𝑓(𝑆) for all 𝑆 ⊆ [𝑛].

and primal SDP:

max
Z⪰0,𝑏∈R

{Tr(X⊤Z) + 𝑏} subject to
1

2
Tr((1𝑆1⊤

𝑇 + 1𝑇1
⊤
𝑆 )Z) + 𝑏 ≤ 𝑓(𝑆 ∩ 𝑇 ) for 𝑆, 𝑇 ⊆ [𝑛].

Proposition 18. (Containment of LP in SDP) For any x ∈ [0, 1]𝑛, define X =
√
x
√
x
⊤ with the square-root taken entry-wise. Then, for any (z, 𝑏) ∈ R𝑛

+ × R that is

primal LP feasible, the pair (Z, 𝑏) where Z = diag(z), is primal SDP feasible and the

objective values agree: Tr(X⊤Z) = z⊤x.

Proof. We start with the feasibility claim. Suppose that (z, 𝑏) ∈ R𝑛
+ × R is a feasible

solution to the primal LP. We must show that (Z, 𝑏) is a feasible solution to the primal

SDP with X =
√
x
√
x
⊤ and where Z = diag(z).

Recall the general formula for the trace of a matrix product: Tr(AB) =
∑︀

𝑖,𝑗 𝐴𝑖𝑗𝐵𝑗𝑖.

With this in mind, and noting that the (𝑖, 𝑗) entry of 1𝑆1⊤
𝑇 is equal to 1 if 𝑖, 𝑗 ∈ 𝑆 ∩𝑇 ,
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and zero otherwise, we have for any 𝑆, 𝑇 ⊆ [𝑛] that

1

2
Tr((1𝑆1⊤

𝑇 + 1𝑇1
⊤
𝑆 )Z) + 𝑏 = Tr(1𝑆1⊤

𝑇Z) + 𝑏 =
𝑛∑︁

𝑖,𝑗=1

(1𝑆1
⊤
𝑇 )𝑖𝑗 · diag(z)𝑖𝑗 + 𝑏

=
∑︁

𝑖,𝑗∈𝑆∩𝑇

(1𝑆1
⊤
𝑇 )𝑖𝑗 · diag(z)𝑖𝑗 + 𝑏

=
∑︁

𝑖,𝑗∈𝑆∩𝑇

diag(z)𝑖𝑗 + 𝑏

=
∑︁
𝑖∈𝑆∩𝑇

𝑧𝑖 + 𝑏

= 1⊤
𝑆∩𝑇z+ 𝑏

≤ 𝑓(𝑆 ∩ 𝑇 )

showing SDP feasibility. That the objective values agree is easily seen since:

Tr(ZX) =
𝑛∑︁

𝑖,𝑗=1

diag(z)𝑖𝑗 ·
√
𝑥𝑖
√
𝑥𝑗 =

𝑛∑︁
𝑖=1

𝑧𝑖 ·
√
𝑥𝑖
√
𝑥𝑖 = x⊤z.

Next, we provide a proof for the construction of neural extensions. Recall the

statement of the main result.

Proposition 19. Let 𝑝x induce a scalar SFE of 𝑓 . For X ∈ S𝑛+ with distinct

eigenvalues, consider the decomposition X =
∑︀𝑛

𝑖=1 𝜆𝑖x𝑖x
⊤
𝑖 and fix

𝑝X(𝑆, 𝑇 ) =
𝑛∑︁
𝑖=1

𝜆𝑖 𝑝x𝑖
(𝑆)𝑝x𝑖

(𝑇 ) for all 𝑆, 𝑇 ⊆ [𝑛].

Then, 𝑝X defines a neural SFE F at X.

Proof. We begin by showing through the eigendecomposition of X that the F defined

by 𝑝X(𝑆, 𝑇 ) is dual SDP feasible. It is clear that
∑︀

𝑆,𝑇 𝑝X(𝑆, 𝑇 ) = 1 as long as∑︀𝑛
𝑖=1 𝜆𝑖 = 1, which can be easily enforced by appropriate normalization of X. Recall

from the eigendecomposition we have X =
∑︀𝑛

𝑖=1 𝜆𝑖v𝑖v
⊤
𝑖 where we have fixed each

v𝑖 ∈ [0, 1]𝑛 through a sigmoid. Using the scalar SFE 𝑝x we may write each v𝑖 as a
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convex combination v𝑖 =
∑︀

𝑆 𝑝v𝑖
(𝑆)1𝑆. For each 𝑖 we may use this representation to

re-express the outer product of v𝑖 with itself:

v𝑖v
⊤
𝑖 =

(︀∑︁
𝑆

𝑝v𝑖
(𝑆)1𝑆

)︀(︀∑︁
𝑇

𝑝v𝑖
(𝑇 )1𝑇

)︀⊤
=
∑︁
𝑆

𝑝v𝑖
(𝑆)21𝑆1

⊤
𝑆 +

∑︁
𝑆 ̸=𝑇

𝑝v𝑖
(𝑆)𝑝v𝑖

(𝑇 )(1𝑇1
⊤
𝑆 + 1𝑆1

⊤
𝑇 )

=
∑︁

𝑆,𝑇⊆[𝑛]

𝑝vi
(𝑆)𝑝vi

(𝑇 )(1𝑆1
⊤
𝑇 + 1𝑇1

⊤
𝑆 )

Summing over all eigenvectors v𝑖 yields the relation X =
∑︀

𝑆,𝑇⊆[𝑛] 𝑝X(𝑆, 𝑇 )(1𝑆1
⊤
𝑇 +

1𝑇1
⊤
𝑆 ), proving dual SDP feasibility.

Next, consider an input X = 1𝑆1
⊤
𝑆 . In this case, the only eigenvector is 1𝑆

with eigenvalue 𝜆 = |𝑆| since X1𝑆 = 1𝑆(1
⊤
𝑆1𝑆) = 1𝑆|𝑆|. That is, 𝑝X(𝑇 ′, 𝑇 ) =

𝑝1𝑆
(𝑇 ′)𝑝1𝑆

(𝑇 ).

For X = 1𝑆1
⊤
𝑆 , 1𝑆 is clearly an eigenvector with eigenvalue 𝜆 = |𝑆| because

X1𝑆 = 1𝑆(1
⊤
𝑆1𝑆) = 1𝑆|𝑆|. So, taking 1̄𝑆 = 1𝑆/

√︀
|𝑆| to be the normalized eigenvector

of X, we have X = |𝑆|1̄𝑆1̄⊤
𝑆 = |𝑆|

(︂
1𝑆√
|𝑆|

)︂(︂
1𝑆√
|𝑆|

)︂⊤

= 𝑝X(𝑆, 𝑆)1𝑆1
⊤
𝑆 for 𝑝X(𝑆, 𝑆) = 1.

Therefore, the corresponding neural SFE is

F(1𝑆1
⊤
𝑆 ) = 𝑝X(𝑆, 𝑆)𝑓(𝑆 ∩ 𝑆) = 𝑓(𝑆).

All that remains is to show continuity of neural SFEs. Since the scalar SFE 𝑝x

is continuous in x by assumption, all that remains is to show that the map sending

X to its eigenvector with 𝑖-th largest eigenvalue is continuous. We handle sign flip

invariance of eignevectors by assuming a standard choice for eigenvector signs—e.g., by

flipping the sign where necessary to ensure that the first non-zero coordinate is greater

than zero. The continuity of the mapping X ↦→ v𝑖 follows directly from Theorem 2

from Yu et al. [2015], which is a variant of the Davis–Kahan theorem. The result

shows that the angle between the 𝑖-th eigenspaces of two matrices X and X′ goes to

zero in the limit as X→ X′.
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F.5 General Experimental Background Information

F.5.1 Hardware and Software Setup

All training runs were done on a single GPU at a time. Experiments were either run

on 1) a server with 8 NVIDIA RTX 2080 Ti GPUs, or 2) 4 NVIDIA RTX 2080 Ti

GPUs. All experiments are run using Python, specifically the PyTorch [Paszke et al.,

2019] framework (see licence here). For GNN specific functionality, such as graph data

batching, use the PyTorch Geometric (PyG) [Fey and Lenssen, 2019] (MIT License).

F.5.2 Data Details

This paper uses five graph datasets: ENZYMES, PROTEINS, IMDB-BINARY, MU-

TAG, and COLLAB. All data is accessed via the standardized PyG API. In the case of

COLLAB, which has 5000 samples available, we subsample the first 1000 graphs only

for training efficiency. All experiments Use a train/val/test split ratio of 60/30/10,

which is done in exactly one consistent way across all experiments for each dataset.

F.6 Unsupervised Neural Combinatorial Optimiza-

tion Experiments

All methods use the same GNN backbone: a combination of GAT Veličković et al.

[2018] and Gated Graph Convolution layer [Yujia et al., 2016]. We use the Adam

optimizer Kingma and Ba [2014] with initial 𝑙𝑟 = 10−4 and default PyTorch settings

for other parameters Paszke et al. [2019]. We use grid search HPO over batch size

{4, 32, 64}, number of GNN layers {6, 10, 16} network width {64, 128, 256}. All models

are trained for 200 epochs. For the model with the best validation performance,

we report the test performance and the standard deviation of performance over test

graphs as a measure of method reliability.
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F.6.1 Discrete Objectives

Maximum Clique. For the maximum clique problem, we could simply take 𝑓 to

compute the clique size (with the size being zero if 𝑆 is not a clique). However, we

found that this objective led to poor results and unstable training dynamics. So,

instead, we select a discrete objective that yielded the much more stable results across

datasets. It is defined for a graph 𝐺 = ([𝑛], 𝐸) as,

𝑓MaxClique(𝑆;𝐺) = 𝑤(𝑆)𝑞𝑐(𝑆),

where 𝑤 is a measure of size of 𝑆 and 𝑞 measures the density of edges within 𝑆 (i.e.,

distance from being a clique). The scalar 𝑐 is a constant, taken to be 𝑐 = 2 in all

cases except REINFORCE for which 𝑐 = 2 proved ineffective, so we use 𝑐 = 4 instead.

Specifically, 𝑤(𝑆) =
∑︀

𝑖,𝑗∈𝑆 1{(𝑖, 𝑗) ∈ 𝐸} simply counts up all the edges between

nodes in 𝑆, and 𝑞(𝑆) = −2𝑤(𝑆)/(|𝑆|2− |𝑆|) is the ratio (with a sign flip) between the

number of edges in 𝑆, and the number of undirected edges (|𝑆|2 − |𝑆|)/2 there would

be in a clique of size |𝑆|. If 𝐺 were directed, simply remove the factor of 2. Note that

this 𝑓 is minimized when 𝑆 is a maximum clique.

Maximum Independent Set. Similarly for maximum independent set we use the

discrete objective,

𝑓MIS(𝑆;𝐺) = 𝑤(𝑆)𝑞𝑐(𝑆),

where 𝑤 is a measure of size of 𝑆 and 𝑞 measures the number of edges between nodes in

𝑆 (the number should be zero for an independent set), and 𝑐 = 2 as before. Specifically,

we take 𝑤(𝑆) = |𝑆|/𝑛, and 𝑞(𝑠) = 2
∑︀

𝑖,𝑗∈𝑆 1{(𝑖, 𝑗) ∈ 𝐸}/(|𝑆|2 − |𝑆|), as before.

F.6.2 Neural SFE details.

All Neural SFEs, unless otherwise stated, use the top 𝑘 = 4 eigenvectors corresponding

to the largest eigenvalues. This is an important efficiency saving step, since with
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𝑘 = 𝑛, i.e., using all eigenvectors, the resulting Neural Lovaśz extension requires 𝑂(𝑛2)

set function evaluations, compared to 𝑂(𝑛) for the scalar Lovaśz extension. By only

using the top 𝑘 we reduce the number of evaluations to 𝑂(𝑘𝑛). Wall clock runtime

experiments given in Figure 8-3 show that the runtime of the Neural Lovaśz extension

is around ×𝑘 its scalar counterpart, and that the performance of the neural extension

gradually increases then saturates when 𝑘 gets large. To minimize compute overheads

we pick the smallest 𝑘 at which performance saturation approximately occurs.

Instead of calling the pre-implemented PyTorch eigensolver torch.linalg.eigh,

which calls LAPACK routines, we use the power method to approximate the first 𝑘

eignevectors of X. This is because we found the PyTorch function to be too numerically

unstable in our case. In contrast, we found the power method, which approximates

eigenvectors using simple recursively defined polynomials of X, to be significantly

more reliable. In all cases we run the power method for 5 iterations, which we found

to be sufficient for convergence.

F.6.3 Baselines.

This section discusses various implementation details of the baseline methods we

used. The basic training pipeline is kept identical to SFEs, unless explicitly said

otherwise. Namely, we use nearly identical model architectures, identical data loading,

and identical HPO parameter grids.

REINFORCE. We compared with REINFORCE (Williams [1992]) which enables

backpropagation through (discrete) black-box functions. We opt for a simple instanti-

ation for the score estimator

𝑔REINFORCE = 𝑓(𝑆)
𝜕

𝜕𝜃
log 𝑝(𝑆|𝜃),

where 𝑝(𝑆|𝜃) =
∏︀

𝑖∈𝑆 𝑝𝑖
∏︀

𝑗 /∈𝑆(1− 𝑝𝑗), i.e., each node is selected independently with

probability 𝑝𝑖 = 𝑔𝜃(y) for 𝑖 = 1, 2, . . . , 𝑛, where 𝑔𝜃 is a neural network and y some
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input attributes. We maximize the expected reward, i.e.,

𝐿REINFORCE(𝜃) = E𝑆∼𝜃[𝑔REINFORCE].

For all experiments with REINFORCE, the expected reward is computed over 250

sampled actions 𝑆 which is approximately the number of function evaluations of

neural SFEs in most of the datasets. Here, 𝑓 is taken to be the corresponding discrete

objective of each problem (as described earlier in section F.6.1). For maximum

clique, we normalize rewards 𝑓(𝑆) by removing the mean and dividing by the standard

deviation. For the maximum independent set, the same strategy led to severe instability

during training. To alleviate the issue, we introduced an additional modification to

the rewards: among the sampled actions 𝑆, only the ones that achieved higher than

average reward were retained and the rewards of the rest were set to 0. This led to

more stable results in most datasets, with the exception of COLLAB were the trick

was not sufficient.

These issues highlight the instability of the score function estimator in this kind of

setting. Additionally, we experimented by including simple control variates (baselines).

These were: i) a simple greedy baseline obtained by running a greedy algorithm on each

input graph ii) a simple uniform distribution baseline, where actions 𝑆 were sampled

uniformly at random. Unfortunately, we were not able to obtain any consistent boost

in either performance or stability using those techniques. Finally, to improve stability,

the architectures employed with REINFORCE were slightly modified according to the

problem. For example, for the independent set we additionally applied a sigmoid to

the outputs of the final layer.

Erdos Goes Neural. We compare with recent work on unsupervised combinatorial

optimization [Karalias and Loukas, 2020]. We use the probabilistic methodology

described in the paper to obtain a loss function for each problem. For the MaxClique,

we use the loss provided in the paper, where for an input graph 𝐺 = ([𝑛], 𝐸) and
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learned probabilities p it is calculated by

𝐿Clique(p;𝐺) = (𝛽 + 1)
∑︁

(𝑖,𝑗)∈𝐸

𝑤𝑖𝑗𝑝𝑖𝑝𝑗 +
𝛽

2

∑︁
𝑣𝑖 ̸=𝑣𝑗

𝑝𝑖𝑝𝑗.

We omit additive constants as in practice they not affect the optimization. For the

maximum independent set, we follow the methodology from the paper to derive the

following loss:

𝐿IndepSet(p;𝐺) = 𝛽
∑︁

(𝑖,𝑗)∈𝐸

𝑤𝑖𝑗𝑝𝑖𝑝𝑗 −
∑︁
𝑣𝑖∈𝑉

𝑝𝑖.

𝛽 was tuned through a simple line search over a few possible values in each case.

Following the implementation of the original paper, we use the same simple decoding

algorithm to obtain a discrete solution from the learned probabilities.

Straight Through Estimator. We also compared with the Straight-Through

gradient estimator [Bengio et al., 2013]. This estimator can be used to pass gradients

through sampling and thresholding operations, by assuming in the backward pass

that the operation is the identity. In order to obtain a working baseline with the

straight-through estimator, we generate level sets according to the ranking of elements

in the output vector x of the neural network. Specifically, given x ∈ [0, 1]𝑛 outputs

from a neural network, we generate indicator vectors 1𝑆𝑘
, where 𝑆𝑘 = {𝑗| 𝑥𝑗 ≥ 𝑥𝑘}

for 𝑘 = 1, 2, . . . , 𝑛. Then our loss function was computed as

𝐿𝑆𝑇 (x;𝐺) =
1

𝑛

𝑛∑︁
𝑘=1

𝑓(1𝑆𝑘
),

where 𝑓 is the corresponding discrete objective from section F.6.1. At inference, we

select the set that achieves the best value in the objective while complying with the

constraints.

Ground truths. We obtain the maximum clique size and the maximum independent

set size 𝑠 for each graph by expressing it as a mixed integer program and using the
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Figure F-1: Top: Additional experimental results on the tinyImageNet dataset.
Bottom: test accuracies of different losses. The singleton extension performs broadly
comparably to other losses.

Gurobi solver [Gurobi Optimization, LLC, 2021].

F.6.4 k-Clique Constraint Satisfaction

Ground truths. As before, we obtain the maximum clique size 𝑠 for each graph

by expressing it as a mixed integer program and using the Gurobi solver [Gurobi

Optimization, LLC, 2021]. This is converted into a binary label 1{𝑠 ≥ 𝑘} indicating

if there is a clique of size 𝑘 or bigger.

Implementation details. The training pipeline, including HPO, is identical to the

MaxClique setup. The only difference comes in the evaluation—at test time the GNN

produces an embedding x, and the largest clique 𝑆 in the support of 𝑝x is selected. The

model prediction for the constraint satisfaction problem is then 1{|𝑆| ≥ 𝑘}, indicating

whether the GNN found a clique of size 𝑘 or more. Since this problem is. binary

classification problem we compute the F1-score on a validation set, and report as the

final result the F1-score of that same model on the test set.
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F.7 Training error as an objective

Recall that for a 𝐾-way classifier ℎ : 𝒳 → R𝐾 with 𝑦(𝑥) = argmax𝑘=1,...,𝐾 ℎ(𝑥)𝑘, we

consider the training error 1
𝑛

∑︀𝑛
𝑖=1 1{𝑦𝑖 ̸= 𝑦(𝑥𝑖)} calculated over a labeled training

dataset {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 to be a discrete non-differentiable loss. The set function in

question is 𝑦 ↦→ 1{𝑦𝑖 ̸= 𝑦}, which we relax using the singleton method described in

Section 8.3.1.

Training details. For all datasests we use a standard ResNet-18 backbone, with

a final layer to output a vector of the correct dimension depending on the number

of classes in the dataset. CIFAR10 and tinyImageNet models are trained for 200

epochs, while SVHN uses 100 (which is sufficient for convergence). We use SGD

with momentum 𝑚𝑜𝑚 = 0.9 and weight decay 𝑤𝑑 = 5× 10−4 and a cosine learning

rate schedule. We tune the learning rate for each loss via a simple grid search of the

values 𝑙𝑟 ∈ {0.01, 0.05, 0.1, 0.2}. For each loss we select the learning rate with highest

accuracy on a validation set, then display the training loss and accuracy for this run.
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