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Abstract

Precision oncology promises personalized care for each patient based on a holistic view
of their data. However, several methodological and translational advances are required
for successful implementation of this vision in the clinic. These include building
temporal models to predict a patient’s survival outcomes in response to therapy,
validating these methods with experimental data from Randomized Controlled Trials
(RCTs), quantifying the uncertainty in the predictions, and finally, exploring how these
elements can be woven together into a clinical decision support tool. In this thesis,
I explore each of these aspects in turn: i) first, I build different models of clinical
time-series data, with a focus on prediction of survival outcomes and forecasting of
core biomarkers, ii) next, I design methods to give additional “context” for these
models, including uncertainty quantification of causal estimates and validation of these
estimates using RCT data, and iii) finally, I study how these elements affect treatment
decision-making via a controlled user study of a decision support tool prototype.

Thesis Supervisor: David Sontag
Title: Professor of Electrical Engineering and Computer Science

5



6



Acknowledgments

I began my doctoral studies within the broader structure of the MD-PhD program,

with the goal of developing a robust technical toolset through which I could think

meaningfully about clinical problems. There have been numerous mentors, friends,

and family members who have played a pivotal role in this journey and to them I am

eternally grateful.

I would like to begin by thanking my thesis supervisor and PhD advisor, David

Sontag, whose boundless energy, intellectual rigor, and unbending support has moti-

vated and inspired me in my work. His questions forced me to elevate my research

and made me think deeply about why something did (or did not) work. He cultivated

a lab environment that was collaborative and supportive, and it was because of this

environment that I met and worked with some of the most brilliant researchers. I was

lucky to have him as my advisor.

I would also like to thank the rest of my thesis committee for their helpful

mentorship throughout the latter half of my PhD. Rahul Krishnan, now a Professor

at the University of Toronto, was my first mentor when he was a senior PhD student

in David’s lab. It is no exaggeration to say that one of the reasons I pursued a PhD

in the first place was to eventually be a researcher like Rahul. I admired his immense

technical skill and ability to explain difficult concepts in accessible ways. Next, I would

like to thank Marzyeh Ghassemi, whose knowledge of the literature, especially in

Human-AI interaction, helped contextualize many aspects of this dissertation. Finally,

I am indebted to Eli Van-Allen, whose experience as a physician-scientist in oncology

was and will continue to be immensely helpful in my own career aspirations.

I have been blessed with many mentors and collaborators with whom I have

worked over the past 4+ years who have both published papers with me and expanded

my knowledge of machine learning, causal inference, and statistics. These esteemed

individuals include: Ming-Chieh Shih, Michael Oberst, Fredrik Johansson, Rickard

Karlsson, Martin Willbo, Ahmed Alaa, Ilker Demirel, Edward De Brouwer, Rebecca

Boiarsky, Andrew Yee, Barbara Lam, and Maia Jacobs. Thank you for the many

7



all-nighters, coffee runs, endless whiteboarding, and innumerable research discussions.

I would also like to thank Fernando Acosta Perez, whom I mentored, though he taught

me more than I taught him.

I was also honored to have worked with immensely intelligent and kind labmates

in the clinical ML group: Chandler Squires, Hunter Lang, Monica Agrawal, Christina

Ji, Hussein Mozannar, Shannon Shen, Liz Bondi-Kelly, Alejandro Buendia, Niklas

Mannhardt, Sharon Jiang, and Penny Brant. I am grateful for their insights and

companionship and have fond memories of our lab hikes, dinners, and all-important

tennis match viewings.

I would like to thank my many friends who have supported me throughout my

academic career, starting in high school and then in Stanford and now finally in

Longwood and Cambridge. Our weekly gatherings of remembrance, basketball games,

dinner outings, and musings on the subtleties of life have been instrumental in helping

me stay positive throughout this incredibly long academic path.

I am incredibly grateful to my two brothers, Naumaan and Imraan, as well my sister,

Hafsa, for their unwavering friendship. I would like to thank Naumaan, especially, for

his support during my lowest points. I am grateful for my in-laws for their support

and optimism. Most of all, I would like to thank my parents, without whom I could

not be where I am. It is their sacrifice, having come to this country with nothing, as

well as their constant love and support that has kept me going. Finally, I would like to

thank my wife, Juvaria, who has been nothing short of a shining light in my life and

my best friend. I could not have completed this dissertation without her devotion and

love. May God preserve each and every person who has played a role in my journey.

Wa-l-H. amdu li-l-Lāhi Rabb al-’Ālamı̄n
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(static) data typically consists of genomics, demographics, and initial

labs. Longitudinal data typically includes laboratory values (e.g. serum

IgG) and treatments (e.g. lenalidomide). Baseline data is usually

complete, but longitudinal measurements are frequently missing at

various time points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3-2 Unsupervised Models of Sequential Data (Left): We show a State

Space Model (SSM) of X (the longitudinal biomarkers) conditioned on 𝐵

(genetics, demographics) and U (binary indicators of treatment and line of

therapy). The rectangle depicts 𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵). Neural Architecture

for PKPDNeural (Middle): Illustration of the neural architecture we design;

we use a soft-attention mechanism over the neural PK/PD effects using

the current patient representation as a query to decide how the masks

should be distributed. Modeling relapse with the neural treatment

exponential response (Right): The curve depicts a single dimension

of the representation and vertical lines denote a single treatment. After

maintaining the response with treatments, a regression towards baseline (in

blue; depicting what would have happened had no treatment been prescribed)

occurs when treatment is stopped. . . . . . . . . . . . . . . . . . . . . 65

3-3 Synthetic: Forward samples (conditioned only on 𝐵) from SSMPK-PD (o),

SSMLinear (x), SSMPK-PD without local clocks (△), for a single patient.

Y-axis shows biomarker values. . . . . . . . . . . . . . . . . . . . . . . . 74

3-4 ML-MMRF : (Left two) We visualize the TSNE representations of each test

patient’s latent state, 𝑍𝑡, at the start of treatment and three years in. (Right)

For SSMPK-PD, we visualize the attention weights, averaged over all time

steps and all patients, on each of the neural effect functions across state space

dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3-5 ML-MMRF : Each column is a different biomarker containing forward samples

(conditioned on approximately the first 2 years of a patient’s data) from

SSMPK-PD (o) and SSMlinear (x) of a single test patient. Blue circles denote

ground truth, and the markers above the trajectories represent treatments

prescribed across time. Y-axis shows biomarker levels, with the dotted

green[gray] line representing the maximum[minimum] healthy value. Car,

Cyc, Dex, and Len shown in legend to maintain consistency with plots in

Appendix, but are not given in the treatment regimen. . . . . . . . . . . . 77
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4-1 Diagram of Transformer-CPH architecture, indicating input variables,

transformer layers, the number of which can be tuned, as well as the

prediction heads. Additional architectural details can be found in the

Methods section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4-2 (A): The training workflow consists of two steps: pre-training and
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objective, and then fine-tune on the event prediction task, keeping the

rest of the model parameters frozen. (B): A schematic of a canonical

scenario that our model might see during inference. Namely, a patient

may have data that is observed for some length of time, the observation

window 𝑡cond, at which point we are interested in predicting both the

survival outcome of the patient as well as how their biomarkers will

evolve. We denote the length of the time window on over which we

forecast the biomarkers, the forecasting window, as 𝑡horizon. We evaluate

our model architecture over various combinations of 𝑡cond and 𝑡horizon. 83

4-3 Diagram of a proof-of-concept subgroup discovery analysis. . . . . . . 91

4-4 We train our model on MM2, which consists of newly diagnosed multiple

myeloma patients (NDMM), and evaluate on a held-out portion of MM2.

We further evaluate on MM1, which consists of relapsed and refractory

multiple myeloma patients (RRMM). We report concordance index

based on inverse probability of censoring weights (C-index IPCW)

averaged across three time quantiles (25th, 50th, and 75th quantiles)

at different observation windows (1 month, 6 months, and 12 months).

Looking at both MM2 and MM1 together, we find that the Transformer-

CPH has largely comparable performance to the RSF and CPH models,

and significantly better performance than CPH-ISS. We note the added

benefit of having to train Transformer-CPH only once, compared to

the two other model architectures, which require a separate model for

each observation window and each event outcome. . . . . . . . . . . . 96
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4-5 We report average concordance index for multiple adverse events (fil-

tering down to only ≥ Grade 2 non-hematalogic events and ≥ Grade

3 hematologic events) at the 6 month observation window (we refer

to Appendix B for results at other time points). The adverse events
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ae-1: Cardiac Arrhythmias, ae-2: Diarrhea, ae-3: Heart Failure, ae-4:

Hypotension, ae-5: Liver Impairment, ae-6: Nausea, ae-7: Neutropenia,

ae-8: Peripheral Neuropathies, ae-9: Rash, ae-10: Thrombocytopenia,

and ae-11: Vomiting. We find that for those adverse events that were

predictable from the data (i.e., heart failure, hypotension, acute renal

failure, neutropenia, and thrombocytopenia), Transformer-CPH is com-

petitive with highly-tuned, task-specific CPH and RSF models trained

separately on each adverse event. . . . . . . . . . . . . . . . . . . . . 97

4-6 Finally, we plot the mean squared error (MSE) of each model on forecast-

ing different sets of variables, chemistry labs, serum immunoglobulins,

and all lab values, over two forecasting horizons, 6 months and 12

months. Evaluation is done after having observed all of the patient’s

data at three different time points (𝑡cond): 1 month, 6 months, and

12 months. We found that Transformer-CPH outperformed the other

methods in all cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4-7 We compute a UMAP embedding of the transformer hidden state at the

first time point and then color each patient by their myeloma subtype.

We find that the hidden state captures the underlying myeloma subtype
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dominate the disease process. . . . . . . . . . . . . . . . . . . . . . . 99
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4-8 At five different time points, we compute the correlation between the

hidden state for all patients and the risk of progression (predicted

value), serum M-protein level (feature), and hemoglobin level (feature),

respectively. The number of hidden dimensions is 64, but only the

dimensions that have at least one time point above 0.4 are shown. Red

indicates a positive association between the hidden state value and the

feature or prediction, whereas blue indicates a negative association. We

see that in dimensions where there is a growing risk of progression, a

sensible change in the forecasts is noted, i.e., serum M-protein level

tends to go up, and hemoglobin tends to go down, indicating anemia. 100

4-9 We generate samples of several biomarkers, including immunoglobulins

and chemistry labs, from the model at three different conditional time

points (one month, six months, and twelve months) for a test patient.

The solid dots denote the ground truth values, and the dotted lines

are the predictions. At each time point, we also report a risk score

for disease progression, and two adverse events: acute renal failure

and thrombocytopenia. How we compute these risk scores from the

predictions is defined in Section 4.2.3. These predictions enable a

clinical assessment of individual patients that can be summarized into

a clinical vignette for the physician, which we do manually. . . . . . . 101

4-10 We plot the predictions from baseline of a single patient’s serum im-

munoglobulins over both the factual treatment (here IRd) and the
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ity to model counterfactuals. . . . . . . . . . . . . . . . . . . . . . . . 102
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each column represents a different biomarker for that patient. a): We
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We condition on a patient’s baseline data and forward sample 2 years.
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• ML: machine learning

• OBS: observational data

• RCT: randomized controlled trial

• RNN: Recurrent Neural Network

• UI: user interface
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Chapter 1

Introduction

1.1 A Vision of Precision Oncology

Patient data, including biomarkers, genetics, labs, and demographics, have become

increasingly available through Electronic Health Records (EHRs) and other obser-

vational datasets [158]. The advent of powerful data-driven models trained on such

datasets has opened the doors for precision medicine, where clinicians can tailor their

treatment decisions to the patient at hand [292, 2, 133]. The promise of personalized

care is relevant for oncology, where a plethora of possible treatments exists for each

cancer and the uniqueness of each patient often leads to significant heterogeneity in

treatment response [95].

The workflow of an oncologist who has access to tools that enable precision medicine

will look radically different than workflows in current clinical practice. Imagine an

oncologist seeing a patient who has been newly diagnosed with multiple myeloma.

Suppose that the oncologist has access to a clinical decision support system (CDSS)

of the kind shown in Figure 1-1. In trying to determine the best treatment for their

patient, the oncologist can select two or more treatments to consider. A holistic view of

what the patient’s disease progression might look like under each potential treatment

would be given. For example, the CDSS would show the projected progression free and

overall survival as well as the adverse event profile under each treatment. Additionally,

the predicted evolution of important biomarkers, such as the serum immunoglobulins
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Figure 1-1: A vision for a clinical decision support system for oncologists.

in the case of multiple myeloma, over several months might be shown. While these

predictions are given by underlying machine learning models tailored to the patient,

the oncologist also has access to population-level estimates given by Randomized

Controlled Trials (RCTs), which comprise the current gold-standard evidence for

establishing efficacy of a therapy [39]. Importantly, the CDSS could also give the

oncologist “sanity checks” of the predictions that they see. For example, confidence

intervals for the survival curves and the adverse event estimates could be given to

quantify the uncertainty in the predictions. “Contextual information”, such as details

of the model training cohort, what covariates were included as input, internal and

external validation results of the model, as well as other statistical considerations

such as whether the patient was well-represented in the training data, could also be

included.

This vision stands in contrast to current clinical practice, where clinicians and

committees that form treatment guidelines rely on RCTs to make treatment decisions.

RCTs, though seen as the highest calibre of evidence, often only give unbiased estimates

of treatment effect averaged across a narrow population. RCT results may not always

apply to every patient, and concerns about the generalizability of some clinical trials

have been posited [230]. Thus, allowing a physician to leverage both RCTs and

ML-based systems that provide personalized predictions has the potential to better
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meet the goal of managing cancer, which is to maximize the survival of the patient

while maintaining their quality of life.

1.2 Challenges

However, the path to reaching the vision described above is difficult. The first challenge

is with respect to the underlying clinical data and how one models it. The data can be

very sparse, containing many missing values depending on the nature of the patient’s

disease state [158]. For example, in multiple myeloma, getting a complete blood count

for the patient may not be necessary at each visit, especially if they are in remission.

Underlying relationships between treatments and biomarkers can be highly nonlinear

and may differ across patient subgroups. Finally, sample sizes may be small, i.e. on the

order of a few thousand patients, especially for rare diseases. All of these properties

motivate the need for data-efficient, expressive modeling architectures that can both

handle the nature of clinical temporal data and are clinically useful.

A second challenge is the need for contextualizing and giving meaningful “sanity

checks” of any ML-based system to a clinician. There are several technical problems

that arise when attempting to do this assessment, which motivates a portion of the

methods found in this thesis. For one, a prediction shown in a CDSS should have

confidence intervals that give a lens into the uncertainty of that prediction. Although

uncertainty quantification is straightforward when reporting a population-level result

from an RCT, it is less so for a prediction from an ML model. Ideally, a confidence

interval for the latter would be interpretable not just in an average sense with respect

to the entire population but would also be valid for the specific patient for whom

the prediction has been made. This type of conditional validity may be difficult

to achieve without further assumptions on the data distribution or the modeling

architecture. A second technical issue involves using a small amount of experimental

data to verify causal estimates derived from ML models trained on observational data.

Such an approach is inspired by the medical community’s acknowledgment of the

strength of sound RCT-based evidence. Consequently, employing RCT estimates as a
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benchmark to validate estimates derived from observational data on a cohort with

similar attributes can prove to be effective.

Still, in spite of any methodological advancements we might make to overcome the

above challenges, what remains unclear is how physicians may interact with a CDSS

that uses these methods, especially in the context of their current clinical workflows.

This challenge motivates conducting studies of physician-AI interaction, particularly

in the oncology setting, to understand better how the decision-making of a clinician is

affected.

1.3 Contributions
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Figure 1-2: Annotation of clinical decision support system according to thesis chapters.

In this thesis, I present machine learning and statistical methods that can form

the underlying machinery for a CDSS in clinical oncology. I also provide an initial,

simulated exploration of how physicians might engage with such a tool. In the chapters

that follow, I address the challenges listed above by focusing on the following themes:

building better models of clinical temporal data, which will enable prediction of

important clinical outcomes over time in response to treatment, developing statistical
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methods that provide additional “context” to these models, and studying how physicians

interact with an ML-based CDSS. The chapters in this thesis are organized as follows

and connect back to the CDSS as shown in Figure 1-2.

Building predictive models of clinical temporal data: Oncologists approach

treatment decision making for their patients multifactorially, aiming to maximize

survival of the patient while limiting any adverse events. Over time, they will look at

the progression of clinical biomarkers to keep track of how their patient is doing. I

develop models that can do each of these tasks for the clinician, from prediction of

survival outcomes to forecasting of biomarkers.

• Chapter 2 (originally published at ICML 2021 as [122]) focuses on the problem of

forecasting clinically-relevant biomarkers conditioned on a patient’s labs, genetics,

demographics, and treatment regimen. We demonstrate how to incorporate

known or conjectured responses of disease biomarkers to treatment as inductive

biases in state space models. The proposed model shows strong improvements

in generalization compared to several baselines and prior state of the art. We

show how the model can provide insights into multiple myeloma progression.

• Chapter 3 (submitting as a journal article titled “Joint attention-based event

prediction and longitudinal modeling in newly diagnosed and relapsed multiple

myeloma”) turns to attention-based architectures instead of sequential state space

models and looks at how to provide a more holistic view of a patient’s disease

progression. We propose a deep-learning approach that jointly models several

important tasks for the clinical management of multiple myeloma. These include

(1) predicting progression-free survival (PFS), overall survival (OS), and adverse

events (AE), (2) forecasting key disease biomarkers, and (3) estimating the effect

of using different treatment strategies. Importantly, our model dynamically

adapts to newly collected clinical data and performs the above tasks with

observed clinical history of arbitrary lengths.
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Developing statistical methods as “sanity checks” for predictive and causal

estimates: I develop methods that provide additional context for predictions from

ML models. One approach is through uncertainty quantification, where we show how

to give valid confidence intervals for ML model predictions. The second is through

using RCT data as a means of assessing the reliability of causal estimates from

observational data.

• Chapter 4 (published as a part of [4] at AISTATS 2023) builds on the framework

of conformal prediction to develop a method that communicates model uncer-

tainty for specific prediction instances in an adaptive and transparent manner.

Specifically, we construct a predictive inference procedure that adapts the length

of its issued confidence intervals based on the varying level of uncertainty across

different prediction instances, and reports a coverage guarantee that is “relevant”

to each specific instance.

• Chapter 5 (originally published as [120] at NeurIPS 2022) proposes a meta-

algorithm that attempts to reject, or falsify, observational estimates that are

biased. We do so using validation effects, causal effects that can be inferred

from both RCT and observational data. After rejecting estimators (e.g. from

multiple observational studies) that do not pass this test, the algorithm generates

conservative confidence intervals on the extrapolated causal effects for subgroups

not observed in the RCT. Under the assumption that at least one observational

estimator is asymptotically normal and consistent for both the validation and

extrapolated effects, guarantees are provided on the coverage probability of the

intervals output by our algorithm. We illustrate the properties of this approach

on semi-synthetic and real world datasets, and show that it compares favorably

to standard meta-analysis techniques.

• Chapter 6 (originally published as [121] at AISTATS 2023) continues to study the

problem of falsification, or using limited RCT data to “falsify” causal assumptions

made in observational studies. Our method can be applied even when the RCT

data does not cover the entire observational population, and hence cannot be
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used on its own to estimate causal effects. Assuming that the RCT can yield

unbiased treatment effects, we show that certain causal assumptions of the

observational study have a testable implication in the form of a set of conditional

moment restrictions (CMRs). We propose a falsification algorithm that tests

whether or not these CMRs hold, thereby providing an opportunity to reject

these assumptions when they fail to hold. This procedure allows us to take

advantage of approaches developed in the econometrics literature for testing

CMRs. We use a Maximum Moment Restriction (MMR)-based test [185] for

this purpose.

Physician-AI interaction for oncology: Finally, I build a CDSS prototype with

which I run a user study to assess how physicians interact with synthetic versions of

several of the aforementioned ML-based components.

• Chapter 7 (submitting as a journal article titled “Evaluating Physician-AI Inter-

action for Cancer Management: Paving the Path towards Precision Oncology”)

seeks to understand how physicians interact with an ML-based system while also

having access to accepted evidence on which current clinical practice is based,

e.g. findings from an RCT, via a user study of 32 physicians. Our findings

suggest that future ML-based CDSS systems do have the potential to change

treatment decisions in cancer management, but that meticulous development

and validation of these systems before deployment is crucial.
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Chapter 2

Background

In this chapter, we introduce core concepts in Bayesian networks, probability theory,

and causal inference that will be important background material for the rest of this

thesis. For a more rigorous treatment of causal inference, we refer the reader to [112].

We use some of the background material on probability and Bayesian networks from [97].

Finally, some of the background material in the causal inference section (Section 2.3)

is based on [186].

2.1 Basic Probability Theory

Probability theory forms the basis for statistical analysis and decision-making. It is a

framework used to model uncertain events and quantify their likelihood. We begin

with the definition of key concepts. A sample space is the set of all possible outcomes

of a random experiment, denoted by Ω. An event is a subset of the sample space,

representing a particular outcome or combination of outcomes. Events are denoted by

capital letters, such as 𝑋, 𝑌 , or 𝑍. A probability measure assigns a numerical value

between 0 and 1 to each event in the sample space. It captures the likelihood of an

event occurring. The probability of an event 𝐴 is denoted as 𝑃 (𝐴).

A random variable is a variable whose value, corresponding to some event of

interest, is unknown but may be one of many values. The domain of a random variable

may be discrete (e.g. the side of a die) or continuous (e.g. diastolic blood pressure
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after an intervention). Thus, a probability distribution describes the likelihood of

different values occurring for a random variable. For discrete random variables, it is

represented by a probability mass function (PMF). For continuous random variables,

it is represented by a probability density function (PDF). Notationally, 𝑃 (𝑌 = 2)

denotes the chances that the random variable 𝑌 takes on an assignment of 2.

Conditional probability measures the likelihood of an event occurring given that

another event has already occurred. It is denoted by 𝑃 (𝐴|𝐵), where 𝐴 and 𝐵 are events.

Two random variables 𝑋 and 𝑌 are independent if and only if their joint probability

distribution is equal to the product of their individual probability distributions.

Mathematically, for independent random variables 𝑋 and 𝑌 , 𝑃 (𝑋, 𝑌 ) = 𝑃 (𝑋)𝑃 (𝑌 ).

Similarly, two random variables 𝑋 and 𝑌 are conditionally independent given a third

random variable if they are independent in their conditional probability distributions

given this random variable, i.e. 𝑋 ⊥⊥ 𝑌 |𝑍 if and only if 𝑃 (𝑋, 𝑌 |𝑍) = 𝑃 (𝑋|𝑍)𝑃 (𝑌 |𝑍).
Now, we can introduce a few basic probability rules based on the definitions above.

• Sum Rule – For two random variables 𝑋 and 𝑌 , the sum rule states that

𝑃 (𝑋 ∪𝑌 ) = 𝑃 (𝑋)+𝑃 (𝑌 )−𝑃 (𝑋 ∩𝑌 ), where ∪ denotes the union of the events

spanned by the random variables 𝑋, 𝑌 and ∩ denotes the intersection of the

events.

• Chain Rule – The chain rule enables us to calculate the joint probability dis-

tribution of multiple random variables. It states that the joint probability

distribution of a sequence of random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 can be obtained

by multiplying the conditional probability distributions of each random vari-

able given the occurrence of the previous random variables. For example, we have

𝑃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑃 (𝑋1)𝑃 (𝑋2|𝑋1)𝑃 (𝑋3|𝑋1, 𝑋2) . . . 𝑃 (𝑋𝑛|𝑋1, 𝑋2, . . . , 𝑋𝑛−1)

• Bayes’ Rule – An immediate consequence of the Chain Rule is Bayes’ Rule,

which states, 𝑃 (𝑋|𝑌 ) = 𝑃 (𝑌 |𝑋)𝑃 (𝑋)
𝑃 (𝑌 )

.

These basic rules of probability provide a solid foundation for analyzing and solving

problems involving uncertain events.
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2.2 Bayesian Networks

2.2.1 Preliminaries

Probabilistic graphical models (PGMs) [146] use graphs, which consist of nodes and

edges between them, to represent the complex relationships among potentially many

random variables. A Bayesian network, or directed graphical model, is a type of PGM

that represents a set of variables and their probabilistic dependencies using a directed

acyclic graph (DAG). The nodes of the graph represent random variables, and the

edges capture the conditional dependencies among the variables. Namely, an edge

pointing from node 𝐴 to node 𝐵 in a Bayesian network indicates that 𝐴 is a direct

parent of 𝐵 and that 𝐵 depends on 𝐴. PGMs may also be undirected, i.e. undirected

graphical models, but we will be only dealing with directed graphical models in this

thesis. We will interchangeably use the terms Bayesian network, directed graphical

model, and directed graph in this section.

One distinct advantage of using the language of graphical models is that it allows

the practitioner to encode dependencies between random variables that imply a certain

factorization over the joint distribution of the random variables. This follows from an

assumption that we will now introduce, and an example illustrating factorization of a

Bayesian network that follows from this assumption. The development that follows is

taken from [186].

Assumption 2.2.1 (Local Markov Assumption). Given its parents in a directed

acyclic graph (DAG), a node 𝑋 is independent of all its non-descendants.

One of the main consequences of Assumption 2.2.1 is Bayesian network factorization,

which we define below:

Definition 2.2.1 (Bayesian Network Factorization). Given a probability distribution,

𝑃 , and a DAG, 𝐺, 𝑃 factorizes according to 𝐺 if,

𝑃 (𝑋1, . . . , 𝑋𝑛) =
∏︁

𝑖

𝑃 (𝑋𝑖|pa(𝑋𝑖)), (2.1)
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where pa(·) refers to the parents of a node.

𝑋1 𝑋2

𝑋4𝑋3

Figure 2-1: Four node directed graph

Given the above definition and assumption, we can factorize the example in

Figure 2-1, as follows,

𝑃 (𝑋1, . . . , 𝑋4) = 𝑃 (𝑋1)𝑃 (𝑋2)𝑃 (𝑋3|𝑋1)𝑃 (𝑋4|𝑋3) (2.2)

Note that we are able to more efficiently model the joint distribution of these four

binary random variables when taking into account the local dependencies between

them. Namely, instead of needing 2𝑛−1 parameters to model the joint distribution of 𝑛

variables, we need only the number of parameters necessary to model each conditional

probability in the factorization. As 𝑛 grows larger, this idea becomes increasingly

important.

Another advantage of using this framework is that it allows a domain expert

to specify which local dependencies exist between variables and which ones do not.

For example, when modeling the relationship between random variables representing

cardiac markers and other physiologic parameters such as blood pressure, stroke

volume, and pulse, a cardiologist would be well equipped to construct a directed

graphical model mapping out the relationship between these variables.

2.2.2 Independence in Directed Graphical Models

Depending on the structure of the directed graphical model, we are able to glean which

variables are independent of each other in the graph. These notions of independence

will prove useful when thinking about causal graphs and causal inference more generally,

which we introduce later on.
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𝑋1 𝑋2 𝑋2

Figure 2-2: 3-node chain graph

Two variables are marginally independent in a directed graph if there is no directed

path between the two variables. The simplest case is with two disconnected nodes,

𝑋1 and 𝑋2. Under Assumption 2.2.1, we can factorize the joint distribution of these

random variables as follows, 𝑃 (𝑋1, 𝑋2) = 𝑃 (𝑋1)𝑃 (𝑋2), which immediately gives us

independence.

Conditioning on a variable in a directed graph may also result in two other

variables becoming conditionally independent given the variable that was conditioned

on. An example is given in Figure 2-2, where 𝑋1 ⊥⊥ 𝑋3|𝑋2. This can be easily

proven by factorizing the directed graph under Assumption 2.2.1 and showing that

𝑃 (𝑋1, 𝑋3|𝑋2) = 𝑃 (𝑋1|𝑋2)𝑃 (𝑋3|𝑋2).

There are instances where conditioning on a variable may not result in conditional

independence, but rather induces dependence between two other variables. This

phenomenon occurs most prominently in “v-structures” or “colliders”, where a child

node has two parents that are not connected. In fact, not conditioning on the chid

renders the parents independent. The following example gives intuition as to why two

variables become dependent when conditioning on their child: let 𝑋1 denote whether a

sprinkler is on or not, 𝑋2 denotes whether it is raining or not, and 𝑋3 denotes whether

the grass is wet or not. Knowing 𝑋3, i.e. the grass is wet, implies that either it rained,

meaning that it is less likely that the sprinkler was on, or that the sprinkler was on,

implying that it is less likely that it rained.

2.2.3 Parameterizations of Bayesian Networks

There are various ways of parameterizing Bayesian networks, which all result in

different models that can be learned from data. We discuss two different settings

below.
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𝑋 𝑌

Figure 2-3: 2-node graph.

Supervised Learning In supervised learning, we are given a dataset, 𝒟 = {(𝑋1, 𝑌1)

, . . . , (𝑋𝑛, 𝑌𝑛)}, where 𝑋𝑖 represents a set of potentially multi-dimensional covariates

and 𝑌𝑖 represents the corresponding label, which can be discrete, binary, or continuous.

The goal of supervised learning is to learn a model that, when given a new instance, 𝑋𝑘,

can predict the correct outcome, 𝑌𝑘. One example of a supervised learning problem is

to predict whether a patient has pneumonia or not from a chest X-ray.

Figure 2-3 depicts the Bayesian network that corresponds to several common

models used for supervised learning. We let 𝜃 denote the parameters of the model for

the conditional distribution, 𝑃 (𝑌 |𝑋; 𝜃). Two common choices for parameterization

are linear regression, where 𝑃 (𝑌 |𝑋) = 𝒩 (𝑊 𝑇𝑋 + 𝑏, I), and logistic regression, where

𝑃 (𝑌 |𝑋) = 1
1+exp𝑊𝑇𝑋+𝑏

. In both of these cases, the parameters of the model are

𝑊 and 𝑏, i.e. 𝜃 = {𝑊, 𝑏}. We may also parameterize the conditional distribution

with nonlinear functions, which we do often throughout this thesis, e.g. 𝑃 (𝑌 |𝑋) =

𝒩 (𝑓(𝑋; 𝜃), I), where 𝑓(·) can be a neural network.

Unsupervised Learning Unsupervised learning encompasses a range of methods

designed to model the likelihood of the data, given samples, (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛),

from a dataset, 𝒟. The objective is to construct a model that approximates the true

distribution of the data, 𝑃 (𝑋). This process is commonly known as density estimation.

The fundamental principle of unsupervised learning is that a successful model for

density estimation captures the essential characteristics of the dataset, identifying the

key patterns and structures within the data.

2.2.4 Causal Graphs

So far, we have interpreted the relationships implied by directed graphs as one of

statistical dependencies or independencies. If we assume that each edge in the graph

takes a causal meaning, whereby a parent node is the direct cause of its children (see
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Causal Edges Assumption in [186]), then the directed graph becomes a causal directed

graph.

This interpretation becomes important when we want to understand the causal

relationships between variables, beyond the associational or statistical relationship

between them. The type of independence statements made in Section 2.2.2 will be

relevant when discussing how to estimate the causal effect of an intervention, 𝐴, on an

outcome, 𝑌 , while controlling for other paths between 𝐴 and 𝑌 in the directed graph.

In the next section, we will discuss important concepts in causal inference, which give

us the tools to determine if such causal effects are even identifiable (e.g. there is only

one path from 𝐴 to 𝑌 and we can “block” all other paths) from data.

2.3 Causal Inference from Observational Data

In this section, we cover the basics of causal inference via the potential outcomes

framework proposed by Rubin in the late 1970s [232]. However, these same concepts

can be made via the framework based on causal graphs, which we will briefly discuss

at the end of this section.

2.3.1 Neyman-Rubin Potential Outcomes Framework

In this framework, we assume that there are multiple treatments or interventions

available. For example, we may have two treatments, represented by the random

variable 𝐴 ∈ {0, 1}. Each patient has a potential outcome under each treatment 𝐴 = 𝑎,

which is the outcome that a patient would have if they potentially receive treatment

𝑎. In reality, we observe only one of these potential outcomes, called the observed

outcome, since a patient would only have been given either 𝐴 = 0 or 𝐴 = 1. The other

potential outcome would be referred to as the counterfactual outcome. Thus, letting 𝑌𝑎

be the random variable denoting the potential outcome under 𝐴 = 𝑎, we never actually

observe the treatment effect for the individual patient, i.e. individual treatment effect:

𝑌1 − 𝑌0. Similarly, we could also try and find the average treatment effect (ATE) for

the population, where we are essentially trying to compute the difference in average
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outcome of the patient population had they all been given 𝐴 = 1 and the average

outcome of the patient population had they all been given 𝐴 = 0. Mathematically,

this would be,

ATE := E[𝑌1 − 𝑌0], (2.3)

where the expectation is with respect to population distribution. Importantly, the

notion of assigning a single intervention to the entire population is counterfactual

since it is not done in reality but rather imagined by the researcher. As such, both the

ITE and the ATE are impossible to compute without additional assumptions, since

we do not observe both potential outcomes of the patients in the real world.

The assumptions that are required to make the estimation of the ATE possible

are required identifiability assumptions. We formalize these assumptions now. In

addition to our binary random variable 𝐴 denoting the treatment and the random

variable 𝑌𝑎 denoting the potential outcome had the patient received treatment 𝑎, we

also introduce 𝑋, which denotes a vector of potential confounders. A confounder is

defined as a variable that affects both the treatment assignment and the outcome.

The ATE is identifiable if the following assumptions are satisfied [112],

• (Conditional Exchangeability between Treatments) 𝑌𝑎 ⊥⊥ 𝐴|𝑋, ∀𝑎 ∈ {0, 1}

• (Consistency) 𝑌 = 𝑌 𝐴

• (Positivity of Treatment Assignment) 𝑃 (𝑋) > 0 =⇒ 𝑃 (𝐴 = 𝑎|𝑋)) > 0,∀𝑎 ∈
{0, 1}

The first assumption implies that there are no unobserved confounders, i.e. we include

all confounders in 𝑋. This assumption is important because it allows us to control for

any confounding effects that may mask the true causal effect. The second assumption

states that when a patient is given a treatment 𝑎, the outcome is the same as the

potential outcome under 𝑎. In other words, the way of assigning the treatment is

consistent and results in the same outcome. Finally, the third assumption assumption

states that within any covariate strata in the patient population, each individual has

a nonzero chance of receiving either treatment.
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Similar assumptions need to be made in order to estimate the ATE for a particular

subgroup of patients, who have covariates 𝑋 = 𝑥. This quantity is also referred to as

the conditional average treatment effect (CATE) and can be written as,

CATE := E[𝑌1 − 𝑌0|𝑋 = 𝑥] (2.4)

2.3.2 Estimators of Causal Effects

Under the identifiability assumptions introduced in the prior section, numerous estima-

tors have been proposed to provide asyptotically unbiased estimates of the ATE and

CATE. One approach is to model the average outcome, conditioned on the treatment

and covariates, 𝐸[𝑌 |𝐴 = 𝑎,𝑋 = 𝑥], termed the response function. Let �̂�𝑎(𝑥) be an

asymptotically unbiased estimator of 𝐸[𝑌 |𝐴 = 𝑎,𝑋 = 𝑥]. We could use any model

for the response surface, such as a regression model, random forest, or neural network.

Then, an asymptotically unbiased estimator for the ATE is,

E𝑛[�̂�1(𝑋)− �̂�0(𝑋)], (2.5)

where E is the empirical average of the computed treatment effects for each patient.

This estimation procedure goes by many names, including response surface modeling,

conditional outcome modeling, and g-computation.

Another estimation approach is weighting by estimates of the propensity score,

which is the probability that a patient receives a specific treatment given their

covariates: 𝑃 (𝐴 = 𝑎|𝑋 = 𝑥). We refer to an estimate of the propensity score as 𝑒𝑎(𝑋).

When 𝑋 is low-dimensional, logistic regression is often used as the model of choice for

propensity score estimation. The propensity score estimates are then plugged into an

inverse probability of treatment weighting (IPTW) estimator,

E𝑛
[︂(︂

1(𝐴 = 1)

𝑒1(𝑋)
− 1(𝐴 = 0)

𝑒0(𝑋)

)︂
𝑌

]︂
, (2.6)

which gives an asymptotically unbiased estimate of the ATE, as long as the estimate
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of the propensity score function is also asymptotically unbiased. Intuitively, we are

weighting all those who receive 𝐴 = 1 inversely proportionally to the probability of

their receiving 𝐴 = 1, and similarly for 𝐴 = 0.

Although the response surface modeling estimator and the IPTW estimator are both

valid estimators, they only yield asymptotically unbiased estimates if the underlying

response functions and propensity score functions are estimated in an asymptotically

unbiased fashion. Thus, for the response surface modelling estimator, the functional

form of the response surface must be correctly specified, and the same holds for

the propensity score function in the IPTW estimator. As a result, a doubly robust

estimator that combines both the response surface and IPTW estimators has been

proposed,

E𝑛
[︂
�̂�1(𝑋)− �̂�0(𝑋) +

(︂
1(𝐴 = 1)

𝑒1(𝑋)
− 1(𝐴 = 0)

𝑒0(𝑋)

)︂
(𝑌 − �̂�𝐴(𝑋)

]︂
, (2.7)

The main advantage of a doubly robust estimator is that it yields a valid, asymptotically

unbiased estimator if either the the estimated response surface functions or the

estimated propensity scores are asymptotically unbiased [112]. However, it is not

required for both estimated functions to be correctly specified.

Finally, we denote the propensity score functions and response surface functions

as nuisance functions, in that they need to be estimated to get a final estimate of the

causal effect, but they themselves are not the targets of estimation.

2.3.3 Causal Graph Perspective: Backdoor and Frontdoor

Adjustment

Identification of the causal effect, which required the assumptions introduced in the

beginning of this section, can also be thought about from the perspective of causal

graphs. The following development is taken from [186]. As before, let 𝐴 denote

treatment and 𝑌 denote the outcome. Suppose we have the causal graph shown in

Figure 2-4. First, we have the following definitions,
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𝑋

𝐴 𝑌

Figure 2-4: Canonical causal graph

Definition 2.3.1 (Blocked Path). A path between nodes 𝐴 and 𝑌 is blocked by a

(potentially empty) conditioning set 𝑋 if either of the following is true: 1. Along the

path, there is a chain . . .→ 𝑊 → or a fork . . .← 𝑊 →, where W is conditioned on

(𝑊 ∈ 𝑋). 2. There is a collider 𝑊 on the path that is not conditioned on (𝑊 /∈ 𝑋)

and none of its descendants are conditioned on.

Definition 2.3.2 (Backdoor Criterion). A set of variables 𝑋 satisfies the backdoor

criterion relative to 𝐴 and 𝑌 if the following are true:

• 𝑋 blocks all backdoor paths from 𝐴 to 𝑌 .

• 𝑋 does not contain any descendants of 𝐴.

Now, in the context of the causal graph in Figure 2-4, where 𝑋 fulfills the backdoor

criterion given in Definition 2.3.2, one can prove that the causal effect of 𝐴 on 𝑌

can be identified as long as 𝑋 is conditioned on. Graphically, conditioning on 𝑋

amounts to blocking the flow of association from 𝐴 to 𝑌 through 𝑋. As long as 𝑋

contains all variables such that there are no other backdoor paths, which is equivalent

to there being no unobserved confounders, then we can identify the causal effect. This

procedure is famously known as backdoor adjustment.
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Chapter 3

Incorporating Structure of

Longitudinal Clinical Data in

Sequential Models

Acknowledgement of Co-authors I would like to acknowledge Rahul Krishnan,
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his guidance and mentorship.

In this chapter, I begin with an initial foray into building a model of structured,

longitudinal clinical data, with a focus on biomarker forecasting. I study how to

incorporate known or conjectured responses of disease biomarkers to treatment as

inductive biases in state space models. This chapter provides one methodological

approach to modeling clinical data temporally.

3.1 Introduction

Clinical biomarkers capture snapshots of a patient’s evolving disease state as well as

their response to treatment. However, these data can be high-dimensional, exhibit

missingness, and display complex nonlinear behaviour over time as a function of time-

varying interventions. Good unsupervised models of such data are key to discovering

new clinical insights. This task is commonly referred to as disease progression modeling
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[283, 273, 239, 75, 172, 3, 246].

Reliable unsupervised models of time-varying clinical data find several uses in

healthcare. One use case is enabling practitioners to ask and answer counterfactuals

using observational data [231, 205, 30]. Other use cases include guiding early treatment

decisions based on a patient’s biomarker trajectory, detecting drug effects in clinical

trials [183], and clustering patterns in biomarkers that correlate with disease sub-type

[300]. To do these tasks well, understanding how a patient’s biomarkers evolve over

time given a prescribed treatment regimen is vital, since a person’s biomarker profile is

often the only observed proxy to their true disease state. Like prior work [3, 246, 148],

we frame this problem as a conditional density estimation task, where our goal is to

model the density of complex multivariate time-series conditional on time-varying

treatments.

Representation learning exposes a variety of techniques for good conditional density

estimation [44, 181, 55, 260]. For sequential data, a popular approach has been to

leverage black-box, sequential models (e.g. Recurrent Neural Networks (RNNs)), where

a time-varying representation is used to predict clinical biomarkers. Such models

are prone to overfitting, particularly on smaller clinical datasets. More importantly,

such models often make simplistic assumptions on how time-varying treatments affect

downstream clinical biomarkers; for example, one choice is to concatenate treatments

to the model’s hidden representations [3, 148]. The assumption here is that the neural

network learns how treatments influence the representation. We argue that this choice

is a missed opportunity and better choices exist. Concretely, we aim to encourage

neural models to learn representations that encode a patient’s underlying disease

burden by specifying how these representations evolve due to treatment. We develop

a new disease progression model that captures such insights by using inductive biases

rooted in the biological mechanisms of treatment effect.

Inductive biases have been integral to the success of deep learning in other domains

such as vision, text and audio. For example, convolutional neural networks explicitly

learn representations invariant to translation or rotation of image data [157, 131, 272],

transformers leverage attention modules [16, 271] that mimic how human vision pays

58



attention to various aspects of an image, and modified graph neural networks can

explicitly incorporate laws of physics to generalize better [243]. For some learning

problems, the physics underlying the domain are often known, e.g. the laws of motion,

and may be leveraged in the design of inductive biases [169, 8, 282]. The same does

not hold true in healthcare, since exact disease and treatment response mechanisms

are not known. However, physicians often have multiple hypotheses of how the disease

behaves during treatment. To capture this intuition, we develop inductive biases that

allow for a data-driven selection over multiple neural mechanistic models that dictate

how treatments affect representations over time.

3.1.1 Contributions

In this chapter, we present a new attention-based neural architecture, PKPDNeural,

that captures the effect of drug combinations in representation space (Figure 3-1 [top]).

It learns to attend over multiple competing mechanistic explanations of how a patient’s

genetics, past treatment history, and prior disease state influence the representation

to predict the next outcome. The architecture is instantiated in a state space model,

SSMPK-PD, and shows strong improvements in generalization compared to several

baselines and prior state of the art. We demonstrate the model can provide insights

into multiple myeloma progression. Finally, we release a disease progression benchmark

dataset called ML-MMRF, comprising a curated, pre-processed subset of data from

the Multiple Myeloma Research Foundation CoMMpass study [188]. Our model code

can be found at https://github.com/clinicalml/ief, and the data processing code

can be found at https://github.com/clinicalml/ml_mmrf.

3.2 Related Work

Much work has been done across machine learning, pharmacology, statistics and

biomedical informatics on building models to characterize the progression of chronic

diseases. Gaussian Processes (GPs) have been used to model patient biomarkers

over time and estimate counterfactuals over a single intervention [90, 240, 248, 251].
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Figure 3-1: Inductive Bias Concept (Top): A clinician often has multiple mechanistic
hypotheses as to how the latent tumor burden evolves. Our approach formalizes these
hypotheses as neural architectures that specify how representations respond to treatments.
Patient Data (Bottom): Illustration of data from a chronic disease patient. Baseline
(static) data typically consists of genomics, demographics, and initial labs. Longitudinal data
typically includes laboratory values (e.g. serum IgG) and treatments (e.g. lenalidomide).
Baseline data is usually complete, but longitudinal measurements are frequently missing at
various time points.

In each of these cases, the focus is either on a single intervention per time point

or on continuous-valued interventions given continuously, both strong assumptions

for chronic diseases. To adjust for biases that exist in longitudinal data, Lim et al.

[168], Bica et al. [30] use propensity weighting to adjust for time-dependent confounders.

However, they concatenate multi-variate treatments to patient biomarkers as input to

RNNs; when data is scarce, such approaches have difficulty capturing how the hidden

representations respond to treatment.

State space models and other Markov models have been used to model the pro-
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gression of a variety of chronic diseases. [3] use an attention mechanism over an

auto-regressive state space model to build a model of progression for Cystic Fibrosis,

and [239] model the predicted forced vital capacity of individuals with scleroderma. In

addition, [261] use multi-state Markov models to characterize the progression among

breast cancer patients. [283] model the progression of COPD using continuous time

Markov jump processes. [259] model clinical observations from patients suffering

from Huntington’s disease. There has also been much research in characterizing

disease trajectories, subtypes, and correlations between risk factors and progression

for patients suffering from Alzheimer’s Disease [141, 98, 297, 177]. Like us, the above

studies pose disease progression as density estimation but in contrast, many of the

above models do not condition on time-varying interventions.

Further, [148] use neural networks to parameterize the transition function in

nonlinear state space models of diabetic patients. However, this approach, as we

study, is susceptible to overfitting. [207] use linear dynamical systems to model the

progression of patients suffering from Chronic Kidney Disease. This approach suffers

when the biomarkers vary non-linearly.

3.3 Preliminaries & Background

SSMs are a popular model for sequential data and have a rich history in modeling

disease progression. They admit flexible parametric forms in their transition and

emission distributions, which is a distinct advantage over other common model families

such as RNNs, and allow for the latent state to be continuous. Additionally, many

prior works have studied Hidden Markov Models (HMMs), and SSMs provide a natural

continuous-variable analogue of the same.

Notation: 𝐵 ∈ R𝐽 denotes baseline data that are static, i.e. individual-specific

covariates. For chronic diseases, these data comprise a 𝐽-dimensional vector, including

patients’ age, gender, genetics, race, and ethnicity. Let U = {𝑈0, . . . , 𝑈𝑇−1}; 𝑈𝑡 ∈ R𝐿

be a sequence of 𝐿-dimensional interventions for an individual. An element of 𝑈𝑡

may be binary, to denote prescription of a drug, or real-valued, to denote dosage.
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X = {𝑋1, . . . , 𝑋𝑇}; 𝑋𝑡 ∈ R𝑀 denotes the sequence of real-valued, 𝑀 -dimensional

clinical biomarkers. An element of 𝑋𝑡 may denote a serum lab value or blood

count, which is used by clinicians to measure organ function as a proxy for disease

severity. 𝑋𝑡 frequently contains missing data. We assume access to a dataset 𝒟 =

{(X1,U1, 𝐵1), . . . , (X𝑁 ,U𝑁 , 𝐵𝑁)}. For a visual depiction of the data, we refer the

reader to Figure 3-1. Unless required, we ignore the superscript denoting the index of

the datapoint and denote concatenation with [].

Model: SSMs capture dependencies in sequential data via a time-varying latent

state. When this latent state is discrete, SSMs are also known as Hidden Markov

Models (HMM). In our setting, we deal with a continuous latent state. The generative

process is:

𝑝(X|U, 𝐵) =

∫︁

𝑍

𝑇∏︁

𝑡=1

𝑝𝜃(𝑍𝑡|𝑍𝑡−1, 𝑈𝑡−1, 𝐵)𝑝𝜃(𝑋𝑡|𝑍𝑡)𝑑𝑍

𝑍𝑡|· ∼𝒩 (𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵),Σ𝑡
𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵)),

𝑋𝑡|· ∼𝒩 (𝜅𝜃(𝑍𝑡),Σ
𝑒
𝜃(𝑍𝑡)) (3.1)

We denote the parameters of a model by 𝜃, which may comprise weight matrices or

the parameters of functions that index 𝜃. SSMs make the Markov assumption on the

latent variables, 𝑍𝑡, and we assume that relevant information about past medications

are captured by the state or contained in 𝑈𝑡−1. We set Σ𝑡𝜃,Σ𝑒𝜃, 𝜅𝜃(𝑍𝑡) to be functions of

a concatenation of their inputs, e.g. Σ𝑡
𝜃(·) = softplus(W[𝑍𝑡−1, 𝑈𝑡−1, 𝐵] + b). Σ𝑡

𝜃,Σ
𝑒
𝜃

are diagonal matrices where the softplus function is used to ensure positivity. When

𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) is a nonlinear function, as is the case in our work, the model is an

instance of a Deep Markov Model [148].

Learning: We maximize
∑︀𝑁

𝑖=1 log 𝑝(X
𝑖|U𝑖, 𝐵𝑖) with respect to 𝜃. For a nonlinear

SSM, this function is intractable, so we learn via maximizing a variational lower

bound on it. To evaluate the bound, we perform probabilistic inference using a struc-

tured inference network [148]. The learning algorithm alternates between predicting

variational parameters using a bi-directional recurrent neural network, evaluating a
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variational upper bound, and making gradient updates jointly with respect to the

parameters of the generative model and the inference network. When evaluating the

likelihood of data under the model, if 𝑋𝑡 is missing, it is marginalized out. Since

the inference network also conditions on sequences of observed data to predict the

variational parameters, we use forward fill imputation where data are missing.

3.4 Attentive Pharmacodynamic State Space Model

To make the shift from black-box models to those that capture useful structure for

modeling clinical data, we begin with a discussion of PK-PD models and some of the

key limitations that practitioners may face when directly applying them to modern

clinical datasets.

3.4.1 Limitations of Pharmacokinetic-Pharmacodynamic Mod-

eling

Pharmacology is a natural store of domain expertise for reasoning about how treatments

affect disease. We look specifically at pharmacokinetics (PK), which deals with how

drugs move in the body, and pharmacodynamics (PD), which studies the body’s

response to drugs. Consider a classical pharmacokinetic-pharmacodynamic (PK-PD)

model used to characterize variation in tumor volume due to chemotherapy [189, 286].

Known as the log-cell kill model, it is based on the hypothesis that a given dose

of chemotherapy results in killing a constant fraction of tumor cells rather than a

constant number of cells. The original model is an ordinary differential equation but

an equivalent expression is:

𝑆(𝑡) = 𝑆(𝑡− 1) · (1 + 𝜌 log(𝐾/𝑆(𝑡− 1))− 𝛽𝑐𝐶(𝑡)), (3.2)

𝑆(𝑡) is the (scalar) tumor volume, 𝐶(𝑡) is the (scalar) concentration of a chemothera-

peutic drug over time, 𝐾 is the maximum tumor volume possible, 𝜌 is the growth rate,

and 𝛽𝑐 represents the drug effect on tumor size. Besides its bespoke nature, there are
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some key limitations of this model that hinder its broad applicability for unsupervised

learning:

Single intervention, single biomarker: The model parameterizes the effect of

a single, scalar intervention on a single, scalar, time-varying biomarker making it

impossible to apply directly to high-dimensional clinical data. Furthermore, the

quantity it models, tumor volume, is unobserved for non-solid cancers.

Misspecified in functional form: The log-cell-kill hypothesis, by itself, is not an

accurate description of the drug mechanism in most non-cancerous chronic diseases.

Misspecified in time: Patients go through cycles of recovery and relapse during a

disease. Even if the hypothesis holds when the patient is sick, it may not hold when

the patient is in recovery.

In what follows, we aim to mitigate these limitations to build a practical, scalable

model of disease progression.

3.4.2 Latent Representations of Disease State

Tackling the first limitation, we use nonlinear SSMs in order to model longitudinal, high-

dimensional data. Even though tumor volume may not be observed in observational

clinical datasets, various proxies (e.g. lab values, blood counts) of the unobserved

disease burden often are. We conjecture that the time-varying latent representation,

𝑍𝑡, implicitly captures such clinical phenotypes from the observations.

To ensure that the phenotypes captured by 𝑍𝑡 vary over time in a manner akin

to clinical intuition, we focus the efforts of our design on the transition function,

𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵), of the state space model. This function controls the way in which

the latent state 𝑍𝑡 in an SSM evolves over time (and through it, the data) when

exposed to interventions, 𝑈𝑡; this makes the transition function a good starting point

for incorporating clinical domain knowledge.

64



𝐵

𝑍1

𝑈1

𝑍2

𝑈2

𝑍3

𝑋1 𝑋2 𝑋3
0 5 10 15

Time

−5

0

5

10

15

20

Z

baseline

baseline+trt resp

treatment

<latexit sha1_base64="Oef/FjKWwshqnrYHz/dcSo5rJBk=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqWykoMeiF48VrS20S8mm2W1oNrskWaEs/QlePCiIV/+QN/+NabsHbX0w8Hhvhpl5QSqFsZ73jUpr6xubW+Xtys7u3v5B9fDo0SSZZrzNEpnobkANl0LxthVW8m6qOY0DyTvB+Gbmd564NiJRD3aScj+mkRKhYNQ66T4akEG15tW9OfAqIQWpQYHWoPrVHyYsi7myTFJjesRLrZ9TbQWTfFrpZ4anlI1pxHuOKhpz4+fzU6f4zClDHCbalbJ4rv6eyGlszCQOXGdM7cgsezPxP6+X2fDKz4VKM8sVWywKM4ltgmd/46HQnFk5cYQyLdytmI2opsy6dCouBLL88irpXNRJo07IXaPWvC7yKMMJnMI5ELiEJtxCC9rAIIJneIU3JNELekcfi9YSKmaO4Q/Q5w+IXI3I</latexit>g1

<latexit sha1_base64="WxqJN44P8s8dBjDIEAb2abmW4fk=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6LHoxWNFawttKJvtJF262YTdjVBCf4IXDwri1T/kzX/jts1BWx8MPN6bYWZekAqujet+O2vrG5tb26Wd8u7e/sFh5ej4USeZYthmiUhUN6AaBZfYNtwI7KYKaRwI7ATjm5nfeUKleSIfzCRFP6aR5CFn1FjpPhrUB5WqW3PnIKvEK0gVCrQGla/+MGFZjNIwQbXueW5q/Jwqw5nAabmfaUwpG9MIe5ZKGqP28/mpU3JulSEJE2VLGjJXf0/kNNZ6Ege2M6ZmpJe9mfif18tMeOXnXKaZQckWi8JMEJOQ2d9kyBUyIyaWUKa4vZWwEVWUGZtO2YbgLb+8Sjr1mteoed5do9q8LvIowSmcwQV4cAlNuIUWtIFBBM/wCm+OcF6cd+dj0brmFDMn8AfO5w+J4Y3J</latexit>g2

<latexit sha1_base64="FqUE6OHD2HTHeEtqqFJdkg6DnIY=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KokW9Fj04rGitYU2lM12ki7dbMLuRiihP8GLBwXx6h/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/nZXVtfWNzdJWeXtnd2+/cnD4qJNMMWyxRCSqE1CNgktsGW4EdlKFNA4EtoPRzdRvP6HSPJEPZpyiH9NI8pAzaqx0H/Uv+pWqW3NnIMvEK0gVCjT7la/eIGFZjNIwQbXuem5q/Jwqw5nASbmXaUwpG9EIu5ZKGqP289mpE3JqlQEJE2VLGjJTf0/kNNZ6HAe2M6ZmqBe9qfif181MeOXnXKaZQcnmi8JMEJOQ6d9kwBUyI8aWUKa4vZWwIVWUGZtO2YbgLb68TNrnNa9e87y7erVxXeRRgmM4gTPw4BIacAtNaAGDCJ7hFd4c4bw4787HvHXFKWaO4A+czx+LZo3K</latexit>g3

<latexit sha1_base64="xtL9EUv0NcMPdQfLhYpvEpBd43Y=">AAAB8HicbVBNS8NAEJ34WetX1aOXYBG8WLJS0GPRi8cKxhbaUDbbbbt0s4m7E6GE/gkvHhTEqz/Hm//GTZuDtj4YeLw3w8y8MJHCoOd9Oyura+sbm6Wt8vbO7t5+5eDwwcSpZtxnsYx1O6SGS6G4jwIlbyea0yiUvBWOb3K/9cS1EbG6x0nCg4gOlRgIRtFKbb+X4TmZlnuVqlfzZnCXCSlIFQo0e5Wvbj9macQVMkmN6RAvwSCjGgWTfFrupoYnlI3pkHcsVTTiJshm907dU6v03UGsbSl0Z+rviYxGxkyi0HZGFEdm0cvF/7xOioOrIBMqSZErNl80SKWLsZs/7/aF5gzlxBLKtLC3umxENWVoI8pDIIsvL5PWRY3Ua4Tc1auN6yKPEhzDCZwBgUtowC00wQcGEp7hFd6cR+fFeXc+5q0rTjFzBH/gfP4Aq3yPiw==</latexit>

Ut�1
<latexit sha1_base64="rx5bIEDW4/tdfvKRULhIYddIb28=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK1hTaUDbbTbt0swm7E6GE/ggvHhTEq3/Hm//GTZuDtj4YeLw3w8y8MJXCoOt+O5W19Y3Nrep2bWd3b/+gfnj0aJJMM95hiUx0N6SGS6F4BwVK3k01p3EouR9Obgvff+LaiEQ94DTlQUxHSkSCUbSS30cRc1Mb1Btu052DrBKvJA0o0R7Uv/rDhGUxV8gkNabnuSkGOdUomOSzWj8zPKVsQke8Z6midkuQz8+dkTOrDEmUaFsKyVz9PZHT2JhpHNrOmOLYLHuF+J/XyzC6DnKh0gy5YotFUSYJJqT4nQyF5gzl1BLKtLC3EjammjK0CRUheMsvrxL/ouldNj3v/rLRuinzqMIJnMI5eHAFLbiDNnSAwQSe4RXenNR5cd6dj0VrxSlnjuEPnM8fhPWPgQ==</latexit>⇥

Key, Value 

Query  

Intervention  
Effect 

<latexit sha1_base64="hEgX9Xe2RZr2TlAkdD8ZT8iK82g=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBZBEEoiBT0WvXhswdpCG8pmO2nXbjZhdyOU0F/gxYOCePUfefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8ePeg4VQxbLBax6gRUo+ASW4YbgZ1EIY0Cge1gfDvz20+oNI/lvZkk6Ed0KHnIGTVWal70yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqaV9WvVrV85q1Sv0mz6MIJ3AK5+DBFdThDhrQAgYIz/AKb86j8+K8Ox+L1oKTzxzDHzifPwdYjOg=</latexit>

+

PK� PDNeural
<latexit sha1_base64="mE4uADJ4CUWKjOk4G7PKZ9g4tHo=">AAACGHicbVDJSgNBEO2JW4zbqEdBBoPgxTAjgh6DehAEiWAWSELo7lSSJj0L3TViGObmV/gJXvUDvIlXb579ETvLwSQ+KHi8V0VVPRZJodF1v63MwuLS8kp2Nbe2vrG5ZW/vVHQYKw5lHspQ1RjVIEUAZRQooRYpoD6TUGX9y6FffQClRRjc4yCCpk+7gegITtFILXu/4VPsMZaUbo5LV2kraSA8YnILsaIyTVt23i24IzjzxJuQPJmg1LJ/Gu2Qxz4EyCXVuu65ETYTqlBwCWmuEWuIKO/TLtQNDagPupmM/kidQ6O0nU6oTAXojNS/Ewn1tR74zHQOr9az3lD8z6vH2DlvJiKIYoSAjxd1Yulg6AxDcdpCAUc5MIRyJcytDu9RRTma6Ka2MOanOZOKN5vBPKmcFDy34N2d5osXk3yyZI8ckCPikTNSJNekRMqEkyfyQl7Jm/VsvVsf1ue4NWNNZnbJFKyvX02OoNo=</latexit><latexit sha1_base64="mE4uADJ4CUWKjOk4G7PKZ9g4tHo=">AAACGHicbVDJSgNBEO2JW4zbqEdBBoPgxTAjgh6DehAEiWAWSELo7lSSJj0L3TViGObmV/gJXvUDvIlXb579ETvLwSQ+KHi8V0VVPRZJodF1v63MwuLS8kp2Nbe2vrG5ZW/vVHQYKw5lHspQ1RjVIEUAZRQooRYpoD6TUGX9y6FffQClRRjc4yCCpk+7gegITtFILXu/4VPsMZaUbo5LV2kraSA8YnILsaIyTVt23i24IzjzxJuQPJmg1LJ/Gu2Qxz4EyCXVuu65ETYTqlBwCWmuEWuIKO/TLtQNDagPupmM/kidQ6O0nU6oTAXojNS/Ewn1tR74zHQOr9az3lD8z6vH2DlvJiKIYoSAjxd1Yulg6AxDcdpCAUc5MIRyJcytDu9RRTma6Ka2MOanOZOKN5vBPKmcFDy34N2d5osXk3yyZI8ckCPikTNSJNekRMqEkyfyQl7Jm/VsvVsf1ue4NWNNZnbJFKyvX02OoNo=</latexit><latexit sha1_base64="mE4uADJ4CUWKjOk4G7PKZ9g4tHo=">AAACGHicbVDJSgNBEO2JW4zbqEdBBoPgxTAjgh6DehAEiWAWSELo7lSSJj0L3TViGObmV/gJXvUDvIlXb579ETvLwSQ+KHi8V0VVPRZJodF1v63MwuLS8kp2Nbe2vrG5ZW/vVHQYKw5lHspQ1RjVIEUAZRQooRYpoD6TUGX9y6FffQClRRjc4yCCpk+7gegITtFILXu/4VPsMZaUbo5LV2kraSA8YnILsaIyTVt23i24IzjzxJuQPJmg1LJ/Gu2Qxz4EyCXVuu65ETYTqlBwCWmuEWuIKO/TLtQNDagPupmM/kidQ6O0nU6oTAXojNS/Ewn1tR74zHQOr9az3lD8z6vH2DlvJiKIYoSAjxd1Yulg6AxDcdpCAUc5MIRyJcytDu9RRTma6Ka2MOanOZOKN5vBPKmcFDy34N2d5osXk3yyZI8ckCPikTNSJNekRMqEkyfyQl7Jm/VsvVsf1ue4NWNNZnbJFKyvX02OoNo=</latexit><latexit sha1_base64="mE4uADJ4CUWKjOk4G7PKZ9g4tHo=">AAACGHicbVDJSgNBEO2JW4zbqEdBBoPgxTAjgh6DehAEiWAWSELo7lSSJj0L3TViGObmV/gJXvUDvIlXb579ETvLwSQ+KHi8V0VVPRZJodF1v63MwuLS8kp2Nbe2vrG5ZW/vVHQYKw5lHspQ1RjVIEUAZRQooRYpoD6TUGX9y6FffQClRRjc4yCCpk+7gegITtFILXu/4VPsMZaUbo5LV2kraSA8YnILsaIyTVt23i24IzjzxJuQPJmg1LJ/Gu2Qxz4EyCXVuu65ETYTqlBwCWmuEWuIKO/TLtQNDagPupmM/kidQ6O0nU6oTAXojNS/Ewn1tR74zHQOr9az3lD8z6vH2DlvJiKIYoSAjxd1Yulg6AxDcdpCAUc5MIRyJcytDu9RRTma6Ka2MOanOZOKN5vBPKmcFDy34N2d5osXk3yyZI8ckCPikTNSJNekRMqEkyfyQl7Jm/VsvVsf1ue4NWNNZnbJFKyvX02OoNo=</latexit>

Zt�1 Zt�1

Zt

Figure 3-2: Unsupervised Models of Sequential Data (Left): We show a State
Space Model (SSM) of X (the longitudinal biomarkers) conditioned on 𝐵 (genetics, demo-
graphics) and U (binary indicators of treatment and line of therapy). The rectangle depicts
𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵). Neural Architecture for PKPDNeural (Middle): Illustration of the
neural architecture we design; we use a soft-attention mechanism over the neural PK/PD
effects using the current patient representation as a query to decide how the masks should
be distributed. Modeling relapse with the neural treatment exponential response
(Right): The curve depicts a single dimension of the representation and vertical lines denote
a single treatment. After maintaining the response with treatments, a regression towards
baseline (in blue; depicting what would have happened had no treatment been prescribed)
occurs when treatment is stopped.

3.4.3 Neural Attention over Treatment Effect Mechanisms

In order to design a good transition function, we first need to address the second

limitation that we may not know the exact mechanism by which drugs affect the disease

state. However, we often have a set of reasonable hypotheses about the mechanisms

that underlie how we expect the dynamics of the latent disease state to behave.

Putting aside the specifics of what mechanisms we should use for the moment,

suppose we are given 𝑑 mechanism functions, 𝑔1, . . . , 𝑔𝑑, each of which is a neural

architecture that we believe captures aspects of how a representation should vary as a

response to treatment. How a patient’s representation should vary will depend on what
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state the patient is in. e.g. sicker patients may respond less well to treatment than

healthier ones. To operationalize this insight, we make use of an attention mechanism

[16] to attend to which choice of function is most appropriate.

Attending over mechanisms of effect Attention mechanisms operate by using a

"query" to index into a set of "keys" to compute a set of attention weights, which

are a distribution over the "values". We propose a soft-attention mechanism to select

between 𝑔1, . . . , 𝑔𝑑. At each 𝑡, for the query, we have 𝑞 = 𝑍𝑡−1𝑊𝑞. For the key and

value, we have,

�̃� = [𝑔1(𝑍𝑡−1, 𝑈𝑡−1, 𝐵); . . . ; 𝑔𝑑(𝑍𝑡−1, 𝑈𝑡−1, 𝐵)]⊤𝑊𝑘

𝑉 = [𝑔1(𝑍𝑡−1, 𝑈𝑡−1, 𝐵); . . . ; 𝑔𝑑(𝑍𝑡−1, 𝑈𝑡−1, 𝐵)]⊤𝑊𝑣.

Note that 𝑊𝑞,𝑊𝑘,𝑊𝑣 ∈ R𝑄×𝑄 and that 𝑞 ∈ R𝑄, �̃� ∈ R𝑄×𝑑, and 𝑉 ∈ R𝑄×𝑑. Then,

we have the following,

𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) =

(︂ 𝑑∑︁

𝑖=1

softmax
(︂
𝑞 ⊙ �̃�√

𝑄

)︂

𝑖

⊙ 𝑉𝑖
)︂
𝑊𝑜 (3.3)

We compute the attention weights using the latent representation at a particular

time point as a "query" and the output of each of 𝑔1, . . . , 𝑔𝑑 as "keys"; see Figure

3-2 (middle). This choice of neural architecture for 𝜇𝜃 allows us to parameterize

heterogeneous SSMs, where the function characterizing latent dynamics changes over

time.

3.4.4 Lines of Therapy with Local and Global Clocks

Here, we address a third limitation of classical PK-PD models: a proposed drug

mechanism’s validity may depend on how long the patient has been treated and what

stage of therapy they are in. Such stages, or lines of therapy, refer to contiguous plans

of multiple treatments prescribed to a patient. They are often a unique structure

of clinical data from individuals suffering from chronic diseases. For example, first

line therapies often represent combinations prioritized due to their efficacy in clinical
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trials; subsequent lines may be decided by clinician preference. Lines of therapy index

treatment plans that span multiple time-steps and are often laid out by clinicians at

first diagnosis. We show how to make use of this information within a mechanism

function.

To capture the clinician’s intention when prescribing treatment, we incorporate

line of therapy as a one-hot vector in 𝑈𝑡[: 𝐾] ∀𝑡 (𝐾 is the maximal line of therapy).

Lines of therapy typically change when a drug combination fails or causes adverse

side effects. By conditioning on line of therapy, a transition function (of the SSM)

parameterized by a neural network can, in theory, infer the length of time a patient has

been on that line. However, although architectures such as Neural Turing Machines

[99] can learn to count occurrences, they would need a substantial amount of data to

do so.

To enforce the specified drug mechanism functions to capture time since change in

line of therapy, we use clocks to track the time elapsed since an event. This strategy

has precedent in RNNs, where Che et al. [44] use time since the last observation to

help RNNs learn well when data is missing. Koutnik et al. [147] partition the hidden

states in RNNs so they are updated at different time-scales. Here, we augment our

interventional vector, 𝑈𝑡, with two more dimensions. A global clock, 𝑔𝑐, captures time

elapsed since 𝑇 = 0, i.e. 𝑈𝑡[𝐾] = gc𝑡 = 𝑡. A local clock, 𝑙𝑐, captures time elapsed

since a line of therapy began; i.e. 𝑈𝑡[𝐾 + 1] = lc𝑡 = 𝑡− 𝑝𝑡 where 𝑝𝑡 denotes the index

of time when the line last changed. By using the local clock, 𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) can

modulate 𝑍𝑡 to capture patterns such as: the longer a line of therapy is deployed, the

less or (more) effective it may be.

For the patient in Figure 3-1, we can see that the first dimension of U denoting line

of therapy would be [0, 0, 0, 0, 1, 1, 2, 2, 2]. Line 0 was used four times, line 1 used twice,

line 2 used thrice. Then, 𝑝 = [0, 0, 0, 0, 4, 4, 6, 6, 6, 6], 𝑔𝑐 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

and 𝑙𝑐 = [0, 1, 2, 3, 0, 1, 0, 1, 2, 3]. To the best of our knowledge, we are the first to

make use of lines-of-therapy information and clocks concurrently to capture temporal

information when modeling clinical data.
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3.4.5 Neural PK-PD Functions for Chronic Diseases

Having developed solutions to tackle some of the limitations of PK-PD models, we

turn to the design of three new mechanism functions, each of which captures different

hypotheses a clinician may have about how the underlying disease burden of a patient

changes (as manifested in their latent states).

Modeling baseline conditional variation: Biomarkers of chronic diseases can

increase, decrease, or stay the same. Such patterns may be found in the dose-response

to chemotherapy used in solid cancerous tumors [144]. In reality, clinicians find that

these changes are often modulated by patient specific features such as age, genetic

mutations, and history of illness. Patients who have been in therapy for a long time

may find decreased sensitivity to treatments. To capture this variation:

𝑔1(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) = 𝑍𝑡−1 · tanh(𝑏lin +𝑊lin[𝑈𝑡−1, 𝐵]) (3.4)

where 𝑏lin ∈ R𝑄,𝑊lin ∈ R𝑄×(𝐿+𝐽). Here, the effects on the representation are bounded

(via the tanh function) but depend on the combination of drugs prescribed and the

patient’s baseline data, including genetics.

Modeling slow, gradual relapse after treatment: One of the defining

features of many chronic diseases is the possibility of a relapse during active therapy.

In cancer, a relapse can happen due to cancerous cells escaping the treatment or a

variety of other bio-chemical processes, such as increased resistance to treatment due

to mutations. The relapse can result in bio-markers reverting to values that they held

prior to the start of treatment; for an example of this, see Figure 3-2 (right). We design

the following neural architectures to capture such patterns in a latent representation.

Neural Log-Cell Kill: This architecture is inspired by the classical log cell kill

model of tumor volume in solid cell tumors [286] but unlike the original model, scales

to high-dimensional representations and takes into account lines of therapy via the

local clock. This allows the model to effectively reset every time a new line of therapy
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begins. The functional form of the model is,

𝑔2(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) = 𝑍𝑡−1 · (1− 𝜌 log(𝑍2
𝑡−1) (3.5)

− 𝛽 exp(−𝛿 · lc𝑡−1)),

where 𝛽 = tanh(𝑊𝑙𝑐𝑈𝑡−1 + 𝑏𝑙𝑐). 𝑊𝑙𝑐 ∈ R𝑄×𝐿, 𝑏𝑙𝑐 ∈ R𝑄, 𝛿 ∈ R𝑄 and 𝜌 ∈ R𝑄 are learned.

While diseases may not have a single observation that characterizes the state of the

organ system (akin to tumor volume), we hypothesize that representations, 𝑍𝑡, of

the observed clinical biomarkers may benefit from mimicking the dynamics exhibited

by tumor volume when exposed to chemotherapeutic agents. We emphasize that

unlike Equation 3.2, the function in Equation 3.5 operates over a vector valued set of

representations that can be modulated by the patient’s genetic markers.

Neural Treatment Exponential: Xu et al. [294] develop a Bayesian nonparameteric

model to explain variation in creatinine, a single biomarker, due to treatment. We

design an architecture inspired by their model that scales to high dimensional repre-

sentations, allows for the representation to vary as a function of the patient’s genetics,

and makes use of information in the lines of therapy via the clocks.

𝑔3(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) (3.6)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏0 + 𝛼1,𝑡−1/[1 + exp(−𝛼2,𝑡−1(lc𝑡−1 − 𝛾𝑙
2
))],

if 0 ≤ lc𝑡−1 < 𝛾𝑙

𝑏𝑙 + 𝛼0,𝑡−1/[1 + exp(𝛼3,𝑡−1(lc𝑡−1 − 3𝛾𝑙
2
))],

if lc𝑡−1 ≥ 𝛾𝑙

Despite its complexity, the intermediate representations learned within this ar-

chitecture have simple intuitive meanings. 𝛼1,𝑡−1 = 𝑊𝑑[𝑍𝑡−1, 𝑈𝑡−1, 𝐵] + 𝑏𝑑, where

𝑊𝑑 ∈ R𝑄×(𝑄+𝐿+𝐽), 𝑏𝑑 ∈ R𝑄 is used to control whether each dimension in 𝑍𝑡−1 increases

or decreases as a function of the treatment and baseline data. 𝛼2,𝑡−1, 𝛼3,𝑡−1, and

𝛾𝑙 control the steepness and duration of the intervention effect. We restrict these

characteristics to be similar for drugs administered under the same line of therapy.
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Thus, we parameterize: [𝛼2, 𝛼3, 𝛾𝑙]𝑡−1 = 𝜎(𝑊𝑒 · 𝑈𝑡−1[0] + 𝑏𝑒). If there are three lines of

therapy, 𝑊𝑒 ∈ R3×3, 𝑏𝑒 ∈ R3 and the biases, 𝑏0 ∈ R𝑄 and 𝑏𝑙 ∈ R𝑄, are learned. Finally,

𝛼0,𝑡−1 = (𝛼1,𝑡−1 + 2𝑏0 − 𝑏𝑙)/(1 + exp(−𝛼3,𝑡−1𝛾𝑙/2)) ensures that the effect peaks at

𝑡 = lc𝑡 + 𝛾𝑙. Figure 3-2 (right) depicts how a single latent dimension may vary over

time for a single line of therapy using this neural architecture.

From PKPDNeural to the SSMPK-PD: When 𝑔1, 𝑔2, 𝑔3, as described in Equations

3.4, 3.5, 3.6, are used in the transition function 𝜇𝜃 (as defined in Equation 3.3), we

refer to the resulting function as PKPDNeural. Moreover, when PKPDNeural is used as

the transition function in an SSM, we refer to the resulting model as SSMPK-PD, a

heterogeneous state space model designed to model the progression of diseases.

3.5 Evaluation of SSMPK-PD

3.5.1 Datasets

We study SSMPK-PD on three different datasets – two here, and on a third semi-

synthetic dataset in the appendix.

Synthetic Data: We begin with a synthetic disease progression dataset where

each patient is assigned baseline covariates 𝐵 ∈ R6. 𝐵 determines how the biomarkers,

𝑋𝑡 ∈ R2, behave in the absence of treatment. 𝑈𝑡 ∈ R4 comprises the line of therapy

(𝐾 = 2), the local clock, and a single binary variable indicating when treatment is

prescribed. To mimic the data dynamics described in Figure 3-1, the biomarkers follow

second-order polynomial trajectories over time with the underlying treatment effect

being determined by the Neural Treatment Exponential (see Equation 3.6). Biomarker

1 can be thought of as a marker of disease burden, while biomarker 2 can be thought

of as a marker of biological function. The full generative process for the data is in

the supplementary material. To understand generalization of the model as a function

of sample complexity, we train on 100 samples and 1000 samples, respectively, and

evaluate on five held-out sets of size 50000.

ML-MMRF: The Multiple Myeloma Research Foundation (MMRF) CoMMpass
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study releases de-identified clinical data for 1143 patients suffering from multiple

myeloma, an incurable plasma cell cancer. All patients are aligned to the start

of treatment, which is made according to current standard of care (not random

assignment). With an oncologist, we curate demographic and genomic markers,

𝐵 ∈ R16, clinical biomarkers, 𝑋𝑡 ∈ R16, and interventions, 𝑈𝑡 ∈ R9, with one

local clock, a three dimensional one-hot encoding for line of therapy, and binary

markers of 5 drugs. Our results are obtained using a 75/25 train/test split. To select

hyperparameters, we perform 5-fold cross validation on the training set. Finally, there

is missingness in the biomarkers, with 66% of the observations missing. We refer the

reader to the appendix for more details on the dataset.

3.5.2 Setup

We learn via: (argmin𝜃− log 𝑝(X|U, 𝐵; 𝜃)) using ADAM [142] with a learning rate of

0.001 for 15000 epochs. L1 or L2 regularization is applied in one of two ways: either

we regularize all model parameters (including parameters of inference network), or we

regularize all weight matrices except those associated with the attention mechanism.

We search over regularization strengths of 0.01, 0.1, 1, 10 and latent dimensions of

16, 48, 64 and 128. We do model selection using the negative evidence lower bound

(NELBO); Appendix B contains details on the derivation of this bound. We use a

single copy of 𝑔1, 𝑔2, and 𝑔3 in the transition function. Multiple copies of each function

as well as other "mechanistic" functions can be used, highlighting the flexibility of

our approach. However, this must be balanced with potentially overfitting on small

datasets.

3.5.3 Baselines

SSMLinear parametrizes 𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵) with a linear function. This model is a

strong, linear baseline whose variants have been used for modeling data of patients

suffering from Chronic Kidney Disease [207].

SSMNL: Krishnan et al. [148] use a nonlinear SSM to capture variation in the
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clinical biomarkers of diabetic patients. We compare to their model, parameterizing

the transition function with a 2-layer MLP.

SSMMOE: We use an SSM whose transition function is parameterized via a

Mixture-of-Experts (MoE) architecture [130, 135]; i.e. 𝑔1, 𝑔2, 𝑔3 are each replaced with

a multi-layer perceptron. This baseline does not incorporate any domain knowledge

and tests the relative benefits of prescribing the functional forms via mechanisms

versus learning them from data.

SSMAttn.Hist.: We implement a variant of the SSM in Alaa and van der Schaar

[3], a state-of-the-art model for disease progression trained via conditional density

estimation. The authors use a discrete state space for disease progression modeling

making a direct comparison difficult. However, SSMAttn.Hist. preserves the structural

modeling assumptions they make. Namely, the transition function of the model attends

to a concatenation of previous states and interventions at each point in time. We

defer specifics to Appendix A.

In addition, we run two simpler baselines, a First Order Markov Model (FOMM)

and Gated Recurrent Unit (GRU) [54], on the synthetic data and ML-MMRF but

defer those results to Appendix A.

3.5.4 Evaluation Metrics

NELBO On both the synthetic data and ML-MMRF data, we quantify generalization

via the negative evidence lower bound (NELBO), which is a variational upper bound on

the negative log-likelihood of the data. A lower NELBO indicates better generalization.

Pairwise Comparisons For a fine-grain evaluation of our models on ML-MMRF,

we compare held-out NELBO under SSMPK-PD versus the corresponding baseline for

each patient. For each held-out point, ∆𝑖 = 1 when the NELBO of that datapoint is

lower under SSMPK-PD and ∆𝑖 = 0 when it is not. In Table 3.1 (bottom), we report
1
𝑁

∑︀𝑁
𝑖=1 ∆𝑖, the proportion of data for which SSMPK-PD yields better results.

Counts To get a sense for the number of patients on whom SSMPK-PD does

much better, we count the number of held-out patients for whom the held-out negative

log likelihood (computed via importance sampling) is more than 10 nats lower under
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Training Set Size SSM
Linear

SSM
NL

SSM
MOE

SSM
Attn. Hist.

SSM
PK-PD

SSM PK-PD
(w/o TExp)

100 58.57 +/- .06 69.04 +/- .11 60.98 +/- .04 76.94 +/- .02 55.34 +/- .03 58.39 +/- .05

1000 53.84 +/- .02 44.75 +/- .02 51.57 +/- .03 73.80 +/- .03 39.84 +/- .02 38.93 +/- .01

Evaluation Metric SSM
PK-PD vs. SSM

Linear
SSM

PK-PD vs.SSM
NL

SSM
PK-PD vs. SSM

MOE
SSM

PK-PD vs. SSM
Attn. Hist.

Pairwise Comparison (↑) 0.796 (0.400) 0.760 (0.426) 0.714 (0.450) 0.934 (0.247)
Counts (↑) PK-PD: 158, LIN: 6 130, 12 94, 8 272, 0
NELBO (↓) PK-PD: 61.54, LIN: 74.22 61.54, 79.10 61.54, 73.44 61.54, 105.04

# of Model Parameters PK-PD: 23K, LIN: 7K 23K, 51K 23K, 77K 23K, 17K

Table 3.1: Top: Synthetic data: Lower is better. We report the test NELBO with std. dev.
for each SSM model to study generalization in the synthetic setting. Bottom: ML-MMRF:
Pairwise Comparison: each number is the fraction (with std. dev.) of test patients for
which SSMPK-PD has a lower NELBO than an SSM that uses a different transition function.
Counts : We report the number of test patients (out of 282) for which an SSM model (PK-PD
or otherwise) has a greater than 10 nats difference in negative log likelihood compared to the
alternative model. NELBO : We report the test NELBO of each model. Note that we label
the metrics associated with SSMPK-PD and SSMLinear in the first column, but drop these
labels in subsequent columns.

SSMPK-PD than the corresponding baseline (and vice versa for the baselines).

3.5.5 Results

We investigate three broad categories of questions.

Generalization under different conditions

SSMPK-PD generalizes better in setting with few (∼ 100) samples. Table 3.1 (top)

depicts NELBOs on held-out synthetic data across different models, where a lower

number implies better generalization. We see a statistically significant gain in gener-

alization for SSMPK-PD compared to all other baselines. SSMNL, SSMMOE overfit

quickly on 100 samples but recover their performance when learning with 1000 samples.

SSMPK-PD generalizes well when it is misspecified. Because we often lack prior

knowledge about the true underlying dynamics in the data, we study how SSMPK-PD

performs when it is misspecified. We replace the Neural Treatment Exponential

function, 𝑔3, from PKPDNeural with another instance of 𝑔1. The resulting model is now

misspecified since 𝑔3 is used to generate the data but no longer lies within the model

family. We denote this model as (SSM PK-PD w/o TExp). In Table 3.1 (top), when
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Figure 3-3: Synthetic: Forward samples (conditioned only on 𝐵) from SSMPK-PD (o),
SSMLinear (x), SSMPK-PD without local clocks (△), for a single patient. Y-axis shows
biomarker values.

comparing the sixth column to the others, we find that we outperform all baselines and

get comparable generalization to SSMPK-PD with the Neural Treatment Exponential

function. This result emphasizes our architecture’s flexibility and its ability to learn

the underlying (unknown) intervention effect through a combination of other, related

mechanism functions.

SSMPK-PD generalizes well on real-world patient data. A substantially harder

test of model misspecification is on the ML-MMRF data where we have unknown

dynamics that drive the high-dimensional (often missing) biomarkers in addition to

combinations of drugs prescribed over time. To rigorously validate whether we improve

generalization on ML-MMRF data with SSMPK-PD, we study model performance

with respect to the three metrics introduced in Section 3.5.4. We report our results in

Table 3.1 (bottom). First, we consistently observe that a high fraction of patient data

in the test set are explained better by SSMPK-PD than the corresponding baseline

(pairwise comparisons). We also note that out of 282 patients in the test set, across all

the baselines, we find that the SSMPK-PD generalizes better for many more patients

(counts). Finally, SSMPK-PD has lower NELBO averaged across the entire test set

compared to all baselines.
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Model complexity & generalization

The improvements of SSMPK-PD are consistent taking model sizes into account. We

show in Table 3.1 (bottom) the number of parameters used in each model. We find that

more parameters do not imply better performance. Models with the most parameters

(e.g. SSMNL) overfit while those with the lowest number of parameters underfit (e.g.

SSMLinear) suggesting that the gains in generalization that we observe are coming

from our parameterization. We experimented with increasing the size of the SSMLinear

model (via the latent variable dimension) to match the size of the best PK-PD model.

We found that doing so did not outperform the held-out likelihood of SSMPK-PD.

When data are scarce, a Mixture of Experts architecture is difficult to learn: How

effective are the functional forms of the neural architectures we develop? To answer

this question, we compare the held-out log-likelihood of SSMPK-PD vs SSMMOE in

the third column of Table 3.1 (bottom). In the ML-MMRF data, we find that the

SSMPK-PD outperforms the SSMMOE. We suspect this is due to the fact that learning

diverse "experts" is hard when data is scarce and supports the hypothesis that the

judicious choice of neural architectures plays a vital role in capturing biomarker

dynamics.

Can PKPDNeural be used in other model families? In the supplement, we imple-

ment PKPDNeural in a first-order Markov model and find similar improvements in

generalization on the ML-MMRF dataset. This result suggests that the principle we

propose of leveraging domain knowledge from pharmacology to design mechanism

functions can allow other kinds of deep generative models (beyond SSMs) to also

generalize better when data are scarce.

Visualizing Patient Dynamics

In Figure 3-4 (right), to further validate our initial hypothesis that the model is using

the various neural PK-PD effect functions, we visualize the attention weights from

SSMPK-PD trained on ML-MMRF averaged across time and all patients. The highest

weighted component is the treatment exponential model 𝑔3, followed by the bounded
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Figure 3-4: ML-MMRF : (Left two) We visualize the TSNE representations of each test
patient’s latent state, 𝑍𝑡, at the start of treatment and three years in. (Right) For SSMPK-PD,
we visualize the attention weights, averaged over all time steps and all patients, on each of
the neural effect functions across state space dimensions.

linear model 𝑔1 for many of the latent state dimensions. We also see that several of

the latent state dimensions make exclusive use of the neural log-cell kill model 𝑔2.

How do the clocks help model patient dynamics? Figure 3-3 shows samples

from three SSMs trained on synthetic data. SSMPK-PD captures treatment response

accurately while SSMLinear does not register that the effect of treatment can persist

over time. To study the impact of clocks on the learned model, we perform an ablation

study on SSMs where the local clock in 𝑈𝑡, used by PKPDNeural, is set to a constant.

Without clocks (PK-PD w/o lc), the model does not capture the onset or persistence

of treatment response.

SSMPK-PD learns latent representations that reflect the patient’s disease state: In

ML-MMRF, we restrict the patient population to those with at least 𝑇 = 36 months

of data. At two different points during their treatment of the disease, we visualize the

result of TSNE [176] applied to their latent representations in Figure 3-4 (left).

Early in their treatment, the latent representations of these patients appear to

have no apparent structure. As time progresses, we find that the dimensions split into

two groups. One group, for the most part, is still being treated, while the other is not

being treated. A deeper dive into the untreated patients reveals that this cohort has

a less severe subtype of myeloma (via a common risk assessment method known as
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Figure 3-5: ML-MMRF : Each column is a different biomarker containing forward samples
(conditioned on approximately the first 2 years of a patient’s data) from SSMPK-PD (o) and
SSMlinear (x) of a single test patient. Blue circles denote ground truth, and the markers
above the trajectories represent treatments prescribed across time. Y-axis shows biomarker
levels, with the dotted green[gray] line representing the maximum[minimum] healthy value.
Car, Cyc, Dex, and Len shown in legend to maintain consistency with plots in Appendix,
but are not given in the treatment regimen.

ISS staging). This result suggests that the latent state of SSMPK-PD has successfully

captured the coarse disease severity of patients at particular time points.

Visualizing patient samples from SSMPK-PD: Figure 3-5 shows the average of

three samples from SSMLinear and SSMPK-PD trained on ML-MMRF. We track

two biomarkers used by clinicians to map myeloma progression. SSMPK-PD better

captures the evolution of these biomarkers conditioned on treatment. For serum IgG,

SSMPK-PD correctly predicts the relapse of disease after stopping first line therapy,

while SSMLinear does not. On the other hand, for serum lambda, SSMPK-PD correctly

predicts it will remain steady.

3.6 Discussion

PKPDNeural leverages domain knowledge from pharmacology in the form of treat-

ment effect mechanisms to quantitatively and qualitatively improve performance of

a representation-learning based disease progression model. Bica et al. [31] note the
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potential for blending ideas from pharmacology with machine learning: our work is

among the first to do so.

We highlight several avenues for future work. For example, in machine learning for

healthcare, the model we develop can find use in practical problems such as forecasting

high-dimensional clinical biomarkers and learning useful representations of patients

that are predictive of outcomes. Doing so can aid in the development of tools for

risk stratification or in software to aid in clinical trial design. Applying the model to

data from other chronic diseases such as diabetes, congestive heart failure, small cell

lung cancer and rheumatoid arthritis, brings opportunities to augment PKPDNeural

with new neural PK-PD functions tailored to capture the unique biomaker dynamics

exhibited by patients suffering from these diseases.

Finally, we believe PKPDNeural can find use in the design of parameteric environment

simulators for different domains. In pharmacology, such simulation based pipelines can

help determine effective drug doses [123]. Our idea of attending over multiple dynamics

functions can find use in the design of simulators in domains such as economics, where

multiple hypothesized mechanisms are used to explain observed market phenomena

[96].

In this chapter, I focused on using the structure of clinical temporal data to

improve forecasting of biomarkers via state space models, a type of sequential model.

In Chapter 4, I will shift gears to developing attention-based architectures, as opposed

to sequential architectures, that can jointly predict clinical outcomes and forecast

relevant biomarkers.
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Chapter 4

Case Study – Investigating

Performance of a Transformer-based

Architecture trained on the

TOURMALINE trial

Acknowledgement of Co-authors I would like to acknowledge Edward De

Brouwer, who was integral in the software development for this chapter. Our daily

brainstorming sessions were also instrumental in bringing the ideas in this work to

maturity.

In this chapter, I continue building out the methods that can serve as the foundation

for a CDSS in oncology, as shown in the Introduction of this thesis in Figure 1-2. In

particular, I move towards a more general modeling architecture that can both predict

important clinical outcomes, e.g. progression free survival and adverse events, and

forecast patient labs. I explore a different approach to modeling compared to the

last chapter, where I now develop an attention-based architecture and apply it on a

clinical trial dataset of multiple myeloma patients.
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4.1 Introduction

Multiple myeloma, the second most common blood cancer, has a global incidence of

approximately 120,000 cases per year [174]. Clinical management of multiple myeloma

patients is complex, both in terms of the factors that impact physician decision-making

as well as the overall goals of care. Several factors, including the stage of the disease,

transplant status, functional status, and genetic profile, are considered in the initial

treatment decision [252, 70]. Furthermore, effective care aims to maximize patient

survival and time to disease progression while minimizing adverse events from therapy.

When deciding on a treatment, striking an appropriate balance between optimizing

patient survival while maintaining quality of life by limiting adverse events is intricate

and requires frequent follow-up with patients. Indeed, the International Myeloma

Working Group (IMWG) recommends monthly (or bimonthly, depending on the

therapy given as part of follow-up or maintenance regimen) monitoring of patients

receiving initial chemotherapy for response to treatment, disease complications, and

toxic sequelae of therapy [174].

In recent years, the availability of structured clinical data has led to the development

of data-driven predictive models aimed at facilitating clinical diagnosis, prognostication,

and decision-making. Examples include risk-score development for prostate cancer [21],

improved detection of chronic kidney disease from retinal imaging [233], and survival

outcome prediction in colorectal cancer [249]. However, previous works in multiple

myeloma and other cancers have focused only on individual predictive or prognostic

tasks, such as overall survival (OS) [105, 149], progression free survival (PFS) [14], and

adverse event (AE) [87] prediction, using genomic, demographic, and lab covariates

from structured clinical data as inputs. Despite existing literature on forecasting

biomarkers in cancer and other chronic diseases [3, 294], no data-driven models for

biomarker forecasting have been developed for multiple myeloma [6]. More generally,

to our knowledge, there is a lack of existing literature on data-driven models that

provide a comprehensive view of a patient’s current and future disease course by jointly

inferring a patient’s risk of progression, death, and adverse events, as well as clinical
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trajectory reflected by labs and biomarkers. We argue that such a model is crucial

for building decision support tools that effectively assist physicians in balancing the

multiple facets of oncologic care when treating a patient.

To address this gap, we propose a deep-learning approach that jointly models the

patient’s current and future disease course by (1) predicting survival outcomes such as

progression-free survival PFS, OS, and AEs, (2) forecasting key disease biomarkers, and

(3) estimating the effect of using different treatment strategies. Importantly, our model

dynamically adapts to newly collected clinical data and performs the above tasks with

observed clinical history of arbitrary lengths. We call our model Transformer-CPH,

which uses a transformer as the backbone, coupled with Cox proportional hazards

(CPH) prediction heads. Transformer architectures [271] are attention-based models

that have emerged as a powerful approach for capturing long-range dependencies and

modeling temporal relationships in sequential data. With their ability to dynamically

weigh the importance of different elements in a sequence, attention-based models

excel at capturing complex patterns and dependencies in longitudinal data. The

CPH prediction head additionally affords us with a straightforward parametrization

for predicting survival outcomes in the presence of censored data. Transformer-

CPH leverages all of these strengths.

To train and evaluate our model, we use data from two randomized controlled

TOURMALINE trials, MM1 and MM2. The randomized controlled trials (RCTs)

investigated the effect of an ixazomib, lenalidomide, and dexamethasone (IRd) combi-

nation regimen on survival outcomes, compared to lenalidomide and dexamethasone

(Rd). MM2, comprising newly diagnosed multiple myeloma patients (NDMM), was

used for training and internal validation, while MM1, comprising relapsed and refrac-

tory multiple myeloma patients (RRMM), was used for external validation in a setting

where the patient population was at a different stage in their disease process and

was enrolled according to different inclusion criteria. Notably, the randomization of

treatment assignment in both datasets provides a unique opportunity to reliably infer

treatment effects from our model, which can be used for downstream personalized

treatment recommendations.
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In addition to assessing predictive performance, we perform introspection of our

model and demonstrate how our joint modeling approach automatically segments

patients by myeloma subtype and reveals relationships between predicted biomarker

trajectories and the risk of progression. Leveraging the individualized treatment effect

prediction capabilities of Transformer-CPH, we show that our method can be used as

a tool to retrospectively identify patient subgroups that would benefit most from a

particular treatment regimen. As a proof of concept, we uncover a subgroup from the

MM2 dataset, characterized by an IgA-dominant myeloma subtype and high involved

free light chain level, that appears to result in a statistically significant lower hazard

ratio for IRd compared to Rd with respect to PFS.
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Figure 4-1: Diagram of Transformer-CPH architecture, indicating input variables, trans-
former layers, the number of which can be tuned, as well as the prediction heads. Additional
architectural details can be found in the Methods section.

4.2 Methods

We begin by outlining the baseline methods used in this chapter for event prediction

and forecasting followed by more details on the Transformer-CPH architecture. We

also include details on the analyses that we discuss later on. For information on

data preprocessing, including data normalization, imputation, sample splitting, and

covariates used as input, please see Appendix B.
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Figure 4-2: (A): The training workflow consists of two steps: pre-training and fine-tuning.
We pre-train the transformer model on the forecasting objective, and then fine-tune on the
event prediction task, keeping the rest of the model parameters frozen. (B): A schematic of
a canonical scenario that our model might see during inference. Namely, a patient may have
data that is observed for some length of time, the observation window 𝑡cond, at which point
we are interested in predicting both the survival outcome of the patient as well as how their
biomarkers will evolve. We denote the length of the time window on over which we forecast
the biomarkers, the forecasting window, as 𝑡horizon. We evaluate our model architecture over
various combinations of 𝑡cond and 𝑡horizon.

4.2.1 Baseline Approaches for Event Prediction and Forecast-

ing

Event Prediction Baselines

We use two standard survival models, a Cox Proportional Hazards (CPH) model

and a Random Survival Forest (RSF) as baseline approaches for survival prediction

(PFS, OS) as well as adverse event prediction. These are standard survival models

that have been widely used in a wide variety of risk prediction tasks across several

chronic diseases [132, 182, 21, 105]. Additionally, we use a CPH model where the only

covariate we add to the model is the ISS stage of a patient, a common risk score used

in multiple myeloma that is computed from a patient’s serum beta-2 microglobulin and

serum albumin values and ranges from one to three [194]. This model is denoted as

CPH-ISS. CPH-ISS can be seen as the “standard of care” approach used by oncologists
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to stratify myeloma patients according to their risk.

A different baseline model is trained for each observation window length. For an

observation window of 𝑡 time steps, we concatenate the observations at the last time

step (𝑋(𝑡)), the observations at the first time step (𝑋(0)), and the baseline variables

(𝐵), to form the input vector of these methods. Feeding both 𝑋(𝑡) and 𝑋(0) to the

model provides information about the trajectory of the patient.

Forecasting Baselines

We compare the performance of our method against two state-of-the-art time series

forecasting methods (recurrent neural networks and deep markov models) and a

standard imputation method (last observation carried forward). Except for the last

observation carried forward method, the models use the same inputs and are trained

on the same reconstruction task as Transformer-CPH. However, these models do not

predict the risk of future events.

Recurrent Neural Networks Recurrent neural networks (RNNs) are a widely used

class of neural networks for time series processing [54]. They operate by maintaining

an internal memory state that is updated as the network processes each input in the

sequence. The memory state is passed from one step of the sequence to the next,

allowing the network to “remember” previous inputs and use them to inform the

processing of future inputs. At each step of the sequence, the RNN takes in an input

and combines it with the current memory state to generate a new memory state and

an output. Unlike our approach, which relies on attention based models, RNN process

the time series sequentially. This restricts their ability to efficiently capture long-term

dependencies.

Deep Markov Models Deep Markov Models (DMMs) are a class of probabilistic

models dedicated to time series modeling [148]. DMMs take their name from the

Markov assumption, which states that the current state of a system depends only

on its previous state, and not on the entire history. DMMs extend this idea to deep
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architectures by adding multiple hidden layers, allowing them to capture complex

dependencies between inputs. Unlike RNNs, which process sequences in a deterministic

manner, DMMs are stochastic models that can generate multiple possible outputs for

a given input. This makes them well-suited for modeling noisy time series data. Akin

to RNNs, DMMs process the temporal observation sequentially, which limits their

ability to capture long-term dependencies.

Last Observation Carried Forward Last Observation Carried Forward (LOCF)

is a simple imputation method used in time series forecasting. LOCF replaces

missing values in a time series with the most recent available observation. LOCF is a

straightforward and computationally inexpensive approach, making it a popular choice

in many applications. However, LOCF does not consider the temporal dependencies

between observations and may not capture the underlying patterns and dynamics

in the time series data. In contrast, RNNs, DMMs, or attention-based models like

Transformer-CPH are designed to work with sequential data and can capture complex

temporal dependencies.

4.2.2 Transformer-CPH Architecture and Optimization Details

The transformer architecture in our experiments is built around a transformer encoder

with continuous temporal embeddings. For a graphical depiction of the architecture,

see Figure 4-1. Notationally, at some time point 𝑡, 𝑋(𝑡) denotes the longitudinal

covariates (e.g., lab values, serum immunoglobulins, etc.), 𝑀(𝑡) denotes the mask of

observed longitudinal covariates, where 𝑀(𝑡) = 1 indicates the value is observed and

𝑀(𝑡) = 0 indicates the value is missing, and 𝐴(𝑡) denotes the treatment administered

as well as dosages of each drug in the combination regimen. 𝐵 denotes baseline

covariates (e.g., age, sex, ISS stage, etc.). We assume 𝐵 does not change with time.

The dimensions of each vector are as follows: 𝑋(𝑡) ∈ R𝑁×𝐷lab , 𝑀(𝑡) ∈ R𝑁×𝐷lab ,

𝐴(𝑡) ∈ R𝑁×𝐷treat , and 𝐵 ∈ R𝑁×𝐷base , where 𝑁 is the number of patients in the dataset,

𝐷lab is the number of lab covariates, 𝐷treat is the number of treatment covariates (e.g.,

dosage of each drug), and 𝐷base is the number of baseline covariates. We let 𝑇max be
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the maximum follow-up time for any patient, such that 𝑡 ≤ 𝑇max.

Input Sequence

Let 𝐸(𝑡) be a 𝜏 -dimensional time embedding of the following form: 𝐸2𝑘(𝑡) :=

sin
(︁

𝑡

𝑇
2𝑘/𝜏
max

)︁
, 𝐸2𝑘+1(𝑡) := cos

(︁
𝑡

𝑇
(2𝑘+1)/𝜏
max

)︁
, where 0 ≤ 𝑘 ≤ 𝜏/2 − 1 indexes the 𝐸(𝑡)

vector. Then, the input embedding to the Transformer-CPH is simply a concatenation

of [𝐵,𝑋(𝑡),𝑀(𝑡), 𝐴(𝑡), 𝐸(𝑡)] taken through a linear layer. Both the time embedding

dimension, 𝜏 , and the input embedding dimension are tuned on the validation set. See

Table 4.1 for a full set of hyperparameters and what values we search over for each.

Name Description Values

Hidden dimension (𝐷𝑧) Dimension of the hidden vectors [16, 32]
in the transformer layers.

Dropout Probability of dropout [0.1, 0.2]
in the transformer layers.

Rollout-window (𝐾) Number of future hidden used as [0, 1]
inputs to the event prediction modules.

Number of layers Number of transformer layers 2
in the architecture.

Non-linearity Whether to use [True,False]
a linear or non-linear prediction function
for the event prediction.

Table 4.1: Hyperparameters used for training Transformer-CPH

Temporal Self-attention

We refer to 𝑧
(0)
𝑡 = 𝑒𝑚𝑏([𝐵,𝑋(𝑡),𝑀(𝑡), 𝐴(𝑡), 𝐸(𝑡)]) as the input embedding of our

model for the observations at time 𝑡. The transformer encoder layer performs the

following computation. For a temporal embedding at layer 𝑙, 𝑧(𝑙)𝑡 , we compute query

(𝑞), key (𝑘), and value (𝑣) vectors as follows,

𝑞
(𝑙)
𝑡 = 𝑊𝑞𝑧

(𝑙)
𝑡 (4.1)

𝑘
(𝑙)
𝑡 = 𝑊𝑘𝑧

(𝑙)
𝑡 (4.2)

𝑣
(𝑙)
𝑡 = 𝑊𝑣𝑧

(𝑙)
𝑡 (4.3)
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These vectors are then concatenated into their respective matrices 𝑄(𝑙), 𝐾(𝑙), and 𝑉 (𝑙).

The output embedding for time 𝑡, 𝑧(𝑙+1)
𝑡 , is given by

𝑧
(𝑙+1)
𝑡 = 𝑓𝑙

(︂
softmax

(︂
𝑞
(𝑙)
𝑡 (𝐾(𝑙))𝑇√

𝑑𝑘

)︂
𝑉 (𝑙)

)︂
, (4.4)

where 𝑓𝑙(·) is a multi-layer perceptron (MLP), and 𝑑𝐾 is the dimension of the input

embedding vector. In the next few sections, we formalize how to do forecasting and

event prediction via separate “prediction heads”.

Forecasting Heads

We perform forecasting based on the sequence of embeddings after the last transformer

layer, 𝑧(𝐿)𝑡 . In our experiments, we set 𝐿 = 2. We use 𝐷𝑧 to refer to the dimension of

the hidden vectors. We predict the future values of biomarkers by using a dedicated

MLP (𝑓𝑝𝑟𝑒𝑑(·)) with the last embeddings as input:

̂︀𝑋𝑡+1 = 𝑓pred(𝑧
(𝐿)
𝑡 ) (4.5)

Long-Range Forecasting

The forecasting prediction heads predict the next values of biomarkers conditioned on

the clinical trajectory until time 𝑡. To predict over horizons longer than a single step

ahead, we re-use the prediction at the previous time step in the next input vector.

Writing 𝑧(𝐿)𝑡 (𝐵,𝑋(𝑡), 𝐴(𝑡), 𝐸(𝑡)) as the output embedding for time 𝑡, where we make

the dependence on the inputs explicit, we compute the next embedding as follows,

𝑧
(𝐿)
𝑡+1 = 𝑧

(𝐿)
𝑡+1(𝐵, ̂︀𝑋𝑡+1, 𝐴(𝑡), 𝐸(𝑡)) (4.6)

̂︀𝑋𝑡+2 = 𝑓pred(𝑧
(𝐿)
𝑡+1) (4.7)

where �̂�𝑡+1 is obtained with Eq. 4.5. This procedure can be repeated to produce

forecasts over arbitrary prediction horizons. The forecasts therefore only depend on

𝑋 until time 𝑡. We still use the future treatment assignments, which allow one to
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generate the trajectories conditioned on a prospective treatment strategy.

Event-prediction Heads

In contrast to state space models such as recurrent neural networks, attention-based

models like Transformer-CPH do not readily provide a hidden state vector that acts

as a sufficient representation for the entire trajectory. Rather, the hidden vector

produced at each time step is trained to predict the values of the clinical variables at

the next time step. To circumvent this limitation, we condition our event predictions

on several predicted hidden states.

We predict the score for a particular event, conditioned on history up to time 𝑡 as

𝑦𝑡 = 𝑓event([𝑧
(𝐿)
𝑡 , 𝑧

(𝐿)
𝑡+1, ..., 𝑧

(𝐿)
𝑡+𝐾 ]), (4.8)

where 𝐾 refers to the number of future hidden variables we are conditioning on in

the event predictions. We found that using 𝐾 = 1 leads to the best results in our

experiments. Importantly, the prediction at time 𝑡 does not use future values of the

time series, since 𝑧(𝐿)𝑡+𝑘 only uses information up until 𝑡, as defined in Eq. 4.6. We use a

different head for each type of event: disease progression, overall survival, and adverse

events, corresponding to different functions 𝑓event ∈ {𝑓PFS : R𝐷𝑧 → R, 𝑓OS : R𝐷𝑧 →
R, 𝑓AE : R𝐷𝑧 → R12}. These functions are all parametrized by neural networks.

Model Training

The training of Transformer-CPH consists of two steps – the first is pre-training the

entire architecture on the forecasting task, whose objective function we specify below.

The second step consists of fine-tuning the model on only the event prediction tasks,

which practically entails training the final non-linear head that does the prediction of

the event and freezing the remaining weights. We list the loss function for each step.

For the forecasting task, we train the model autoregressively, minimizing the

discrepancy between the predicted values ̂︀𝑋𝑡+1 and true values 𝑋𝑡+1. We use the

observation mask 𝑀 to only include the observed values in the loss function. Formally,
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the loss function for the forecasting objective is,

ℒforecast =
1

𝑁

∑︁

𝑖

∑︀
𝑡𝑀𝑖(𝑡)⊙ (𝑋𝑖(𝑡)− ̂︀𝑋𝑖(𝑡))

2

∑︀
𝑡

∑︀
𝑀𝑖(𝑡)

.

For the fine-tuning step, we train a linear head (or alternatively an MLP) for

event prediction while freezing the remaining weights of the model. We use a Cox

proportional hazards loss of the following form for training,

ℒevent =
𝑇max∑︁

𝑡=1

1∑︀
𝑖 1(𝑦𝑖 ≤ 𝑡)1(∆𝑖 = 1)

∑︁

𝑖:Δ𝑖=1

1(𝑦𝑖 ≤ 𝑡)

(︂
𝑦𝑖 − log

∑︁

𝑗∈ℛ(𝑦𝑖)

exp(𝑦𝑗)

)︂
, (4.9)

where ∆𝑖 is the event indicator variable for patient 𝑖. ∆𝑖 = 1 indicates that the event

was observed for patient 𝑖 and ∆𝑖 = 0 indicates that the patient was censored. 𝑦𝑖,𝑡

is the predicted hazard rate outputted by the model for patient 𝑖 at time 𝑡, and ℛ
is the set of patients still at risk for failure at time 𝑡. The event loss function can

be defined for any event type: ℒevent ∈ {ℒPFS,ℒOS,ℒAE}. We fine-tune the survival

outcome (i.e. PFS or OS) and adverse event prediction heads independently with

their corresponding loss functions. Both the forecasting and event prediction losses

are minimized using the Adam optimizer [142].

Bootstrap Aggregation

To reduce the variance of our estimator and to provide reliable uncertainty predictions,

we use bootstrap aggregation (also known as bagging), a gold standard machine

learning technique for uncertainty estimation [36]. In practice, for each fold, we train

five different Transformer-CPH models where the training set is composed of a random

selection of the original training set (with replacement) sampled to 1.5 times the

original size. The validation and test sets are left unchanged.

4.2.3 Transformer introspection

We perform introspection of the transformer hidden states. The hidden states are

“joint” representations that are used to predict adverse events, survival, and biomarkers
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longitudinally. The hidden representations at each time 𝑡 are denoted as 𝑧(𝐿)𝑡 . The

predictions for disease progression and biomarker forecasting are referred to as 𝑦𝑡,pfs ∈ R

and ̂︀𝑋𝑡, respectively. We obtain the UMAP plot in Figure 4-7 by using the the 𝑧(𝐿)1

vectors (at the first time step) of each patient.

The experiment reported in Figure 4-8 consists of computing the Pearson correla-

tion (𝜌) between the different dimensions of the hidden states 𝑧(𝐿)𝑡 and the various

predictions:

• For PFS, we have 𝜌(𝑧(𝐿)𝑡,𝑑 , 𝑦𝑡,pfs),∀𝑑 ∈ {1, . . . , 𝐷𝑧}.

• For each biomarker variable 𝑗, we have 𝜌(𝑧𝑡,𝑑, ̂︀𝑋𝑡,𝑗),∀𝑑 ∈ {1, . . . , 𝐷𝑧}.

These correlations are computed for 𝑡 equal to one, three, six, nine, and twelve months.

We also compute a more interpretable risk score for each patient that represents

the risk of their experiencing an event. Although the output of the event-prediction

head represents such a score in theory, these scores are not limited in range and are

only informative relative to the scores of other patients. Indeed, the semi-parametric

nature of proportional hazards models only enforces a consistent ordering of the scores

across the dataset. The absolute value of the score is not meaningful. Thus, to improve

the interpretability of the event prediction scores, we compute a normalized score 𝑦:

𝑦𝑡 =
𝑦𝑡 − 𝑦𝑚𝑖𝑛
𝑦𝑚𝑖𝑛 − 𝑦𝑚𝑎𝑥

, (4.10)

where 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 are the minimum and maximum values of the score across patients

and time in the training set. This normalized score can directly be interpreted as

a quantile of the risk of a particular patient with respect to the whole cohort. For

instance, 𝑦𝑡 = 0.7 suggests that 70% of patients in the cohort have a lower risk score.

We used these normalized scores in Figure 4-9.

4.2.4 Counterfactuals and subgroup analysis

We use a trained Transformer-CPH model to impute the counterfactuals on the entire

MM2 dataset. Counterfactuals are obtained by using our model to perform predictions,
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Figure 4-3: Diagram of a proof-of-concept subgroup discovery analysis.

with modified treatment input vectors. Information about the treatment appears both

in vector 𝐵 and in the longitudinal treatment vector 𝐴. We thus change both the

treatment arm covariate in 𝐵 as well as the dosages in 𝐴 to the desired treatment

regimen, i.e. either Rd or IRd, before doing inference. We perform predictions of

potential outcomes at baseline only (as this is the only time step where randomization

occurs). We write the potential outcomes, i.e. the predicted PFS risk score, under

IRd and Rd, respectively:

𝑦1PFS = 𝑓𝑃𝐹𝑆(𝑧
(𝐿)
0 (𝑋0, 𝐵

1, 𝐴1))

𝑦0PFS = 𝑓𝑃𝐹𝑆(𝑧
(𝐿)
0 (𝑋0, 𝐵

0, 𝐴0)).

𝐵1 and 𝐵0 refer to the baseline vectors where the treatment indicator is set to 1 or

0. Similarly, 𝐴1 and 𝐴0 refer to the IRd and Rd treatment strategies, respectively.

Finally, we define potential biomarker trajectories under the two treatment regimens:

̂︀𝑋1
𝑡,PFS = 𝑓pred(𝑧

(𝐿)
0+𝑡(𝑋0, 𝐵

1, 𝐴1))

̂︀𝑋0
𝑡,PFS = 𝑓pred(𝑧

(𝐿)
0+𝑡(𝑋0, 𝐵

0, 𝐴0)),
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where we make explicit that the trajectories are only conditioned on information

available at baseline. Examples of biomarkers trajectories conditioned on different

treatments are presented in Figure 4-10.

Given 𝑦1PFS and 𝑦0PFS, we can define a conditional average treatment effect (CATE)

on risk of disease progression for each patient as follows,

CATE = 𝑦1PFS − 𝑦1PFS.

p-values in subgroup analysis is highly impacted by the sample size. To provide more

reliable estimates, we create an even split of the MM2 cohort into a train and test set.

This new train set consists fully of the original train set minus a random selection

patients to reach 50% of the cohort. The rest of the patients then comprise the test set.

All model training and policy learning are done on the train set, and all Kaplan-Meier

curves shown are computed on the test set.

Using this training cohort from MM2, we then learn a policy to assign treatment;

specifically, we use the median conditional average treatment effect (CATE) over the

training patients as a threshold to determine whether a patient would be assigned to

a subgroup for whom IRd would be most efficacious. Because 𝑦 represents the risk

of disease progression, a positive CATE indicates a negative effect of IRd (the risk

of disease progression is higher) while a negative CATE indicates a positive effect of

IRd. We then define the subgroup threshold as the median of all CATE values in the

training set (𝛿 = CATE 1
2
). We obtain the initial subgroup assignment strategy, 𝜋*, to

determine if someone is included in the subgroup or not, as follows, for each patient 𝑖:

𝜋*
𝑖 =

⎧
⎪⎨
⎪⎩
0 if CATE𝑖 > 𝛿

1 if CATE𝑖 ≤ 𝛿

Intuitively, a patient is in the subgroup, i.e., 𝜋* = 1, if IRd is effective at decreasing

their risk of progression.

To improve the interpretability of this subgroup assignment strategy, we learn a

shallow decision tree where we used 𝜋*
𝑖 ,∀𝑖 as the labels. We train the decision tree on
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the training cohort using the baseline clinical variables, 𝐵, as covariates. The output

of this decision tree is then used as another, more interpretable, subgroup strategy,

𝜋. Kaplan-Meier curves are estimated for the discovered subgroups (found via both

subgroup assignment strategies, 𝜋* and 𝜋) by looking at the actual treatment and

control groups in the subgroup (Figure 4-11. This procedure is depicted graphically

at a high level in Figure 4-3.

4.3 Results

Our results section is structured as follows. Firstly, we present the statistics of the

two patient cohorts, namely MM1 and MM2. Secondly, we provide a comprehensive

evaluation of Transformer-CPH and its ability to jointly predict disease progression,

overall survival, adverse events, and forecast biomarkers. Thirdly, we conduct an

introspective analysis of the hidden states of Transformer-CPH over time, which reveals

a strong correlation between the trajectories of clinical biomarkers and the risk of

disease progression. This enables us to gain insights into the underlying signals detected

by the transformer model. Fourthly, we showcase the usefulness of Transformer-CPH as

a response-surface model that can generate factual and counterfactual predictions,

facilitating the computation of conditional average treatment effects (CATEs) and the

identification of subgroups with heterogeneous treatment effects. Finally, we externally

validate the model on a distinct dataset of multiple myeloma patients who are in a

different stage of their disease progression, namely relapsed and refractory patients, as

opposed to newly diagnosed ones.

4.3.1 Cohort Statistics

Table 4.2 presents a breakdown of the cohort statistics for both MM1 and MM2. The

MM2 cohort consists of 703 patients, while the MM1 cohort consists of 722 patients.

The inclusion criteria were autologous stem cell transplant (ASCT) ineligibility as well

as a new symptomatic myeloma diagnosis for MM2, whereas the inclusion criteria for

MM1 included relapse from previously controlled disease. We perform a random 80/20
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split of the data into a training set and test set. We further do five random 75/25 splits

of the training set: each split consisted of a smaller training set that is used to train

the model and a validation set that is used to tune the hyperparameters of the model.

All metrics in the subsequent sections are reported on the test set, averaged over the

five trained models. The error bars correspond to standard deviation, computed over

the five model predictions.

4.3.2 Joint-modeling for multiple myeloma

Transformer-CPH uses a patient’s past clinical history and future treatment plan to

jointly predict the risk of disease progression and adverse events as well as forecast

clinical markers. Notably, it supports an arbitrary duration for the available clinical

history (𝑡𝑐𝑜𝑛𝑑). Our method can thus use the entirety of the available clinical history

of a patient, regardless of its specific duration. For each individual prediction task

(forecasting and the various event prediction tasks), we compare the performance of

Transformer-CPH against methods trained specifically to that particular task and to a

particular duration of the clinical history. Despite this experimental setup apparently

advantaging the task-specialized methods, we show that Transformer-CPH compares

favorably and sometimes outperforms the other approaches.

We first assess our model’s event prediction performance, focusing on progression-

free survival (PFS), overall survival (OS) and adverse events (AE) as the clinical

outcomes of interest. We consider the performance of our model for different durations

of clinical history (𝑡cond) and for different forecasting horizons (𝑡horizon). We consider

three observation windows and forecasting horizons, one month, six months, and

twelve months, since most patients had already experienced the event or were censored

after two years. Each unit of time in our results is measured as a “treatment period”,

corresponding to 28 days, or approximately one month. We evaluate the ability of

our model to predict the onset of disease progression using the concordance index

for right-censored data based on inverse probability of censoring weights (C-index

IPCW)1 [268]. We compare our approach against the international scoring system for
1C-index is 0.5 for random performance
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Variable MM2 Cohort MM1 Cohort
Patients 703 720
Sex n(%)

Female 351 (49.9%) 312 (43.3%)
Male 352 (50.1%) 408 (56.7%)

Race n(%)
White 575 (81.8%) 614 (85.3%)
Asian 96 (13.7%) 64 (8.9%)
Native Hawaiian or other Pacific islander 1 (0.1%) 4 (0.6%)
Black or African American 23 (3.3%) 13 (1.8%)
American Indian or Alaska native 3 (0.4%) 1 (0.1%)
Other 5 (0.7%) 7 (1.0%)
Not reported 0 (0.0%) 17 (2.4%)

IG Type n(%)
IGG 403 (57.3 %) 389 (54.0%)
IGA 142 (20.2 %) 123 (17.1 %)
IGD 10 (1.4 %) 7 (1.0 %)
IGE 3 (0.4 %) 15 (2.1 %)
IGM 3 (0.4 %) 1 (0.1 %)
Biclonal 23 (3.3 %) 30 (4.2 %)
No Heavy Chain 119 (16.9 %) 155 (21.5 %)

Age [years] median(range) 73 (48,90) 66 (30,91)
Time from diagnosis [months] median(range) 1.11 (0.3,52.9) 42.8 (3.0,306)
ISS Stage at study entry n(%)

I 324 (46.1%) 458 (63.6%)
II 263 (37.4%) 176 (24.0 %)
III 115 (16.4%) 86 (12.0 %)

Actual Treatment n(%)
Rd 349 (49.6%) 359 (49.9%)
IRd 354 (50.4%) 361 (50.1%)

Planned Treatment n(%)
Rd 353 (50.2%) 362 (50.3%)
IRd 350 (49.8%) 358 (49.7%)

Table 4.2: Summary statistics of the MM1 and MM2 patient cohorts

multiple myeloma [101] (CPH-ISS) and two machine learning models: Cox proportional

hazards models (CPH) and a random survival forest (RSF). As these methods cannot

incorporate varying lengths of clinical history, a different Cox and RSF model is

trained for each clinical history duration. This contrasts with Transformer-CPH,

which relies on a single model to predict progression for any clinical history duration.
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Figure 4-4: We train our model on MM2, which consists of newly diagnosed multiple
myeloma patients (NDMM), and evaluate on a held-out portion of MM2. We further evaluate
on MM1, which consists of relapsed and refractory multiple myeloma patients (RRMM). We
report concordance index based on inverse probability of censoring weights (C-index IPCW)
averaged across three time quantiles (25th, 50th, and 75th quantiles) at different observation
windows (1 month, 6 months, and 12 months). Looking at both MM2 and MM1 together,
we find that the Transformer-CPH has largely comparable performance to the RSF and CPH
models, and significantly better performance than CPH-ISS. We note the added benefit of
having to train Transformer-CPH only once, compared to the two other model architectures,
which require a separate model for each observation window and each event outcome.

Figure 4-4 shows a graphical representation of these results. We find that our model

is competitive with the machine learning baselines. Importantly, it outperforms the

CPH-ISS clinical baseline, which is based on a version of the risk score used in current

clinical practice. For example, for 𝑡cond = 6, we have a C-index IPCW of 0.67 (+/–

0.02) for Transformer-CPH, 0.60 (+/– 0.01) for CPH-ISS, 0.68 (+/– 0.04) for the Cox

model, and 0.69 (+/– 0.02) for RSF. We note that this trend persists across patient
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Figure 4-5: We report average concordance index for multiple adverse events (filtering
down to only ≥ Grade 2 non-hematalogic events and ≥ Grade 3 hematologic events) at
the 6 month observation window (we refer to Appendix B for results at other time points).
The adverse events are mapped to shortened names as follows – ae-0: Acute Renal Failure,
ae-1: Cardiac Arrhythmias, ae-2: Diarrhea, ae-3: Heart Failure, ae-4: Hypotension, ae-5:
Liver Impairment, ae-6: Nausea, ae-7: Neutropenia, ae-8: Peripheral Neuropathies, ae-9:
Rash, ae-10: Thrombocytopenia, and ae-11: Vomiting. We find that for those adverse events
that were predictable from the data (i.e., heart failure, hypotension, acute renal failure,
neutropenia, and thrombocytopenia), Transformer-CPH is competitive with highly-tuned,
task-specific CPH and RSF models trained separately on each adverse event.

subgroups with a different dominant immunoglobulin heavy chain (see Appendix B).

For overall survival (OS) prediction, we observed a similar result, where Transformer-

CPH outperforms CPH-ISS, except for the first time point. The OS results are given

in Appendix B. Results for all observation windows and detailed per patient subgroups

are also available in Appendix B.

Concurrently, we measure the ability of our model to forecast future clinical

trajectories by computing the mean squared error (MSE) over the forecasting horizon.

We compare against a recurrent neural network (RNN) and a deep Markov model

(DMM), two state-of-the-art time series forecasting models, and a last observation
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Figure 4-6: Finally, we plot the mean squared error (MSE) of each model on forecasting
different sets of variables, chemistry labs, serum immunoglobulins, and all lab values, over
two forecasting horizons, 6 months and 12 months. Evaluation is done after having observed
all of the patient’s data at three different time points (𝑡cond): 1 month, 6 months, and 12
months. We found that Transformer-CPH outperformed the other methods in all cases.

carried forward mechanism (LOCF). The results are shown in Figure 4-6. For an

observation window of 1 month (i.e. conditioning on all of the patient’s data at 1

month) (𝑡cond = 1) and a horizon of 6 months (𝑡horizon = 6), our method outperforms

all other methods, with a MSE of 0.31 (+/– 0.01) for Transformer-CPH, 0.37 (+/–

0.02) for the RNN, 0.92 (+/– 0.03) for the DMM, and 0.93 (+/– 0.0) for LOCF. We

note that the performance gap decreases with an increasing length of the observation

window. This result may be due to the decreasing variance of the clinical trajectories

over time.

In addition to forecasting clinical trajectories and predicting disease progression

and overall survival, Transformer-CPH is able to predict the onset of particular adverse

events, as shown in Figure 4-5. We find that our model can predict the occurrence

of acute renal failure (C-index IPCW 0.62 (+/– 0.07)), hypotension 0.66 (+/– 0.14),

neutropenia 0.59 (+/– 0.07), and thrombocytopenia 0.85 (+/– 0.10).
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Figure 4-7: We compute a UMAP embedding of the transformer hidden state at the first
time point and then color each patient by their myeloma subtype. We find that the hidden
state captures the underlying myeloma subtype structure, including subtypes delineated by
which heavy and light chains dominate the disease process.

4.3.3 Introspection into Transformer-CPH

We conduct analyses to interpret the learnt hidden states of Transformer-CPH. All

analyses are performed with a single model trained on the MM2 training cohort. In

Figure 4-7, we show a UMAP visualization of the hidden state vector at 𝑡 = 1 month

for each patient. Each point represents a single patient in the test set. We find that

the hidden state captures the canonical myeloma subtypes, which are determined by

the involved heavy chain and light chain.

We then proceed with a finer analysis of each individual dimension of the hidden

state over time. In particular, we investigate what dimensions of the hidden state

are associated with a higher event/progression risk and how this relates to trends in

the biomarker predictions. For each dimension of the hidden state, and for each time

step, we compute the Pearson correlation (1) between the value of the hidden state at

said dimension and the predicted risk of progression, and (2) between the value of the

hidden state at said dimension and the predicted value at the next time step for all
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Figure 4-8: At five different time points, we compute the correlation between the hidden
state for all patients and the risk of progression (predicted value), serum M-protein level
(feature), and hemoglobin level (feature), respectively. The number of hidden dimensions
is 64, but only the dimensions that have at least one time point above 0.4 are shown. Red
indicates a positive association between the hidden state value and the feature or prediction,
whereas blue indicates a negative association. We see that in dimensions where there is a
growing risk of progression, a sensible change in the forecasts is noted, i.e., serum M-protein
level tends to go up, and hemoglobin tends to go down, indicating anemia.

biomarkers. The resulting correlations for risk of progression, serum M-protein, and

hemoglobin are presented in Figure 4-8, for five observation windows (one month, three
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Figure 4-9: We generate samples of several biomarkers, including immunoglobulins and
chemistry labs, from the model at three different conditional time points (one month, six
months, and twelve months) for a test patient. The solid dots denote the ground truth values,
and the dotted lines are the predictions. At each time point, we also report a risk score
for disease progression, and two adverse events: acute renal failure and thrombocytopenia.
How we compute these risk scores from the predictions is defined in Section 4.2.3. These
predictions enable a clinical assessment of individual patients that can be summarized into a
clinical vignette for the physician, which we do manually.

months, six months, nine months, and twelve months). Each cell is colored according

to the correlation strength. For clarity, we remove the hidden dimensions that had low

correlation (below a threshold of 0.4). We find that for hidden dimensions indicating

a higher risk of progression, sensible correlations with M-protein and hemoglobin

predictions are appreciated. Namely, serum M-protein level is predicted to go up,
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given the hidden state as input, and hemoglobin is predicted to go down, indicating

anemia, which agrees with basic clinical reasoning. This demonstrates the ability of

our model to recover associations between longitudinal biomarkers and clinical events.

Finally, in Figure 4-9, we demonstrate the granularity of the model’s predictive

capabilities by reporting the predictions for disease progression and forecasts for

several biomarkers over multiple horizons and observation windows, for an individual

patient. We further show that these predictions can be used to create individual

clinical summaries that may assist physicians in care management. We find that our

model generally predicts the correct trends for both immunoglobulins and biomarkers

related to “CRAB”-like symptoms, e.g. calcium, hemoglobin, and creatinine. Figure 4-9

depicts an example for a patient with IgA-dominant multiple myeloma.

Figure 4-10: We plot the predictions from baseline of a single patient’s serum immunoglob-
ulins over both the factual treatment (here IRd) and the counterfactual treatment (Rd),
demonstrating Transformer-CPH’s ability to model counterfactuals.
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4.3.4 Assessing the effect of treatment and uncovering hetero-

geneous subgroups

Our architecture uses the planned treatment assignments to provide forecasts of clinical

trajectories and survival predictions for individual patients. Because the MM2 dataset

was collected in the context of a randomized clinical trial, our model can be used

to investigate the impact of counterfactual treatments on individual patients as well.

Furthermore, due to its ability to forecast clinical trajectories and to predict survival,

Transformer-CPH can provide a comprehensive clinical assessment of the impact of a

treatment on individual patients. An example of forecasting with different treatment

assignments for an individual patient is presented in Figure 4-10. For this patient,

Transformer-CPH assigns a lower risk score when treated with IRd than with Rd.

Projections with Rd predict a marked increase in serum kappa light chain, serum

M-protein, and IgG over time compared to a scenario where the patient would be

treated with IRd.

By producing individual predictions with different treatment assignments, our

model can also serve as a useful tool to discover sub-populations of the initial patient

cohort that have heterogeneous treatment effects. To demonstrate this ability, we

computed the individual treatment effects on risk of disease progression for each

patient and identified the subgroup of patients that would benefit the most from the

treatment using a simple treatment policy learned from the MM2 training data. We

additionally produced a more interpretable view of the identified subgroup using a

shallow decision tree. See the "Counterfactuals and subgroup analysis" section under

Methods for more details on the procedure. This treatment assignment policy resulted

in a subgroup for which the statistical significance in favor of the treatment was vastly

improved.

Following the original clinical trial analysis [79], we evaluated the significance of

treatment by performing a stratified Cox regression on a held out set of MM2 patients.

This analysis resulted in a barely non-significant treatment effect (𝑁 = 351, 𝑝 = 0.093),

which was slightly higher than the significance level obtained on the whole MM2 cohort
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(𝑁 = 703, 𝑝 = 0.073). In contrast, in the subgroup identified with our approach, the

effect of treatment was strongly significant (𝑁 = 182, 𝑝 = 0.014), using the same

strata in the stratified Cox regression. A shallow decision tree trained to replicate

the subgroup assignment strategy of our model resulted in a subgroup with similar

significance with respect to treatment efficacy (𝑁 = 153, 𝑝 = 0.016). The inclusion

criteria for the discovered subgroup, as reflected by the learned decision tree, are

presented in Figure 4-12. The relevant clinical variables are the subtype of multiple

myeloma, characterized by the dominant heavy chain and light chain, the free light

chain concentration, serum creatinine, CG and GG polymorphisms, and the Durie-

Salmon stage. Notably, the learned subgroup suggests that IgA patients are more

likely to benefit from IRd than IgG and IgM patients.

A B
IRd PFS Rd PFS

21

16 

42 

32

12 

44 

1] Impute 
Counterfactuals

2] Assign IRd or Rd 
using simple policy 

3] Learn 
Decision Tree

4] Compute 
Kaplan-Meier curves for 

learned subgroup

Figure 4-11: On the left, we show the Kaplan-Meier curves for the original treatment and
control groups in a left out set of MM2 patients. In the middle, we show the Kaplan-Meier
curves for the treatment and control groups in a learned subgroup of MM2 that suggest
greater differential survival between IRd and Rd for this patient subgroup. On the right,
we show the Kaplan-Meier curves for the interpretable subgroup learned to replicate the
subgroup found with our model. The p-values were computed with a log-rank test.

4.3.5 Generalizability to relapsed and refractory multiple myeloma

patients

We evaluate our model on the MM1 trial data, which consists of patients with relapsed

myeloma who had received prior lines of therapy. This cohort is distinct from the

MM2 trial, where patients had newly diagnosed myeloma. The evaluation of our model

104



Figure 4-12: Visualization of the learned decision tree, which is trained using the CATEs as
labels and patient baseline data as features. Each node contains the number of patients, and
the proportion of the samples who are labeled as getting Rd (𝑃0) or IRd (𝑃1), respectively.
A node is colored red if 𝑃0 > 𝑃1, green if 𝑃0 < 𝑃1, and blue if 𝑃0 ≈ 𝑃1.

on an external cohort with different disease characteristics compared to the training

population serves as external validation and measures the model’s ability to generalize.

In the PFS prediction task (Figure 4-4), we observe a decrease in performance across all

models, as expected due to the change in cohort characteristics. However, Transformer-

CPH has the lowest average decrease in concordance index (0.077) compared to RSF

(0.083) and CPH (0.11). CPH-ISS has a comparable decrease (0.076 vs 0.077) to

Transformer-CPH, but with poor absolute performance. Additionally, we find that our

model outperforms all other models in forecasting performance on the MM1 cohort

(see Appendix B), despite a slight increase in mean squared error across each 𝑡cond. Our

results suggest that Transformer-CPH has better generalizability than the baselines,

but caution should be exercised when applying the model to a cohort with different

inclusion criteria than the training cohort.

4.4 Discussion & Related Work

In this chapter, we proposed a transformer-based architecture, Transformer-CPH, that

jointly forecasts core myeloma biomarkers and predicts risk of events, including disease

progression, overall survival, and adverse events. In recent years, there has been a
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rich line of work leveraging purely attention-based architectures, i.e., transformers, for

tasks involving temporal data. For example, several prior papers detail architectural-

level and module-level variants of the transformer, including incorporating causal

convolutions as well as introducing sparse bias into the attention module, to perform

better forecasting [171, 165, 303, 304, 46, 290]. With respect to event prediction, prior

work has included adapting transformers for electronic health record (EHR) data to do

risk prediction. Examples include BEHRT, Med-BERT, CEHR-BERT, and Hi-BERT

[166, 167, 195, 217].

In contrast to these prior approaches, our method is deeply motivated by the

clinical management of multiple myeloma, as outlined by the International Myeloma

Working Group. Managing multiple myeloma involves a crucial balance between

maximizing survival, minimizing adverse events, and keeping track of core biomarkers,

which largely serve as a sufficient proxy for disease burden, over time [70]. These

principles hold true in a wide range of malignancies and inform oncologic management

more generally [134, 235, 179]. Our model reflects these clinical management objectives

by jointly modeling time to event and longitudinal biomarkers. Joint modeling of

time to event and longitudinal data has a long history in the biostatistics literature,

where it has been used to improve the efficiency of estimators [125]. Most approaches

for joint modeling have relied on linear mixed effect models and classical survival

models, such as Cox regression and Accelerated Failure Time models [220, 267]. For

example, Proust-Lima et al. developed and validated a dynamic prognostic tool

for prostate cancer recurrence using repeated measures of post-treatment prostate

specific antigen (PSA) [214]. However, these prior approaches largely focus on a

single event and univariate biomarker predictions, in contrast to our work, where

we consider multivariate forecasting and prediction of multiple events. In general,

previous literature has predominantly employed less expressive models, such as linear

models, in contrast to the transformer architecture that underlies our model.

On the joint modeling tasks, our experiments showed that Transformer-CPH out-

performs other state-of-the-art longitudinal models for biomarker forecasting, over all

observation windows and prediction horizons. Additionally, our model was compa-
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rable to tailored event prediction models, and superior to CPH-ISS, both in terms

of prediction of disease progression and overall survival. Unlike these approaches,

our model can do inference given data over any observation window. We further

showed that our model can accurately predict the occurrence of serious adverse events

such as heart failure, hypotension, acute renal failure, neutropenia, and thrombo-

cytopenia. The ability of our model to jointly predict these aspects of the disease

presents significant potential for achieving more personalized clinical care. Indeed,

with our approach, clinicians are afforded a more holistic picture of a patient’s disease

progression. Current approaches either have to be trained separately at each time

point or are not as expressive, e.g. the linear mixed effect models used in current joint

modeling approaches.

In our introspection experiments, we demonstrated the potential of our model

towards personalized care by showing how generated predictions for an individual

patient can be summarized into a concise, tailored clinical assessment over time.

Though we did this summarization manually by looking at the model predictions,

recent advances in generative artificial intelligence may enable training of an end-to-end

model that can generate predictions and summarize these samples into a clinically

meaningful note [302].

A typical limitation to the deployment of machine learning models in clinical

practice is their black box nature. We performed an in-depth investigation of the

model by studying the hidden representations used in our architecture. First, we

showed that the hidden representations tended to cluster by myeloma subtype. We

further studied the learnt associations between biomarkers and event predictions,

conditioned on the hidden representations. While the model recovered clinically

sensible correlations (e.g., higher serum M-protein being positively correlated with

higher risk of disease progression), this introspection can also potentially serve as the

basis for discovery of novel associations. This can be especially pertinent in the case

of genomic marker discovery.

We established the potential of Transformer-CPH as a response-surface model with

which we can estimate counterfactual outcomes and thereby estimate personalized
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treatment effects, i.e. in this case, the effect of IRd compared to Rd for individual

patients. Providing counterfactual predictions can both help clinicians make more

informed treatment decisions and serve as a tool for uncovering heterogeneous patient

subgroups. As a demonstration of the latter, we propose an algorithm that uncovers a

patient subgroup, i.e., IgA and biclonal myeloma patients with high baseline kappa light

chain levels, for whom IRd leads to statistically significantly better PFS than Rd. In the

original pre-specified subgroup analysis done in [79] for the TOURMALINE-MM2 trial,

median PFS was statistically significantly higher for patients who had certain high-risk

cytogenetics, which included del(17p), t(4;14), t(14;16), and amp(1q21) abnormalities,

as well as patients who had low creatinine clearance (≤ 60 mL/min). Subgroups based

on the nature of the monoclonal protein (e.g. IgA-dominant, IgG-dominant, etc.) were

not assessed. However, we also find, in our learned decision tree, that patients with

high serum creatinine, due to potentially low creatinine clearance, were more likely to

be assigned to the “IRd subgroup”, where IRd would be more efficacious. We emphasize

that this proof-of-concept analysis is hypothesis-generating and that further work is

necessary to validate this result. Past work in the treatment effect estimation literature

had extensively explored using various models, including Bayesian regression trees

and neural networks, as response-surface models, to estimate the expected outcome of

interest conditioned on a treatment and patient covariates [247, 152, 118, 110]. We

see our approach as an important step towards using transformer-based models for

heterogeneous treatment effect estimation in real-world data.

Data driven models are by definition highly dependent on the input data they

were trained on. This can lead to poor performance when these models are evaluated

on a patient cohort with different characteristics. In an attempt to quantify the

generalization ability of our approach, we evaluated our model on an external patient

cohort (MM1) consisting of relapsed and refractory multiple myeloma patients. While

Transformer-CPH did incur an expected loss of performance, the results suggested

that our model is more robust than other state-of-the-art baselines. Still, caution

should be exercised when using our approach (or any other approach) on other patient

cohorts not included in the training data. Developing better techniques to improve
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the out-of-distibrution generalization of our model is an important direction for future

work.

The design of our model was motivated by providing clinicians with the most

holistic and personalized view of the disease state of multiple myeloma patients.

Our model represents a step in that direction, though many hurdles towards clinical

deployment remain. While we attempted to mitigate and quantify these limitations,

prospective evaluation of the model in a clinical trial will be crucial for an eventual

translation to clinical practice.

Independent censoring in the TOURMALINE trial A central assumption of

the subgroup analyses done in this chapter is independent censoring, which is defined

as the time-to-event being independent of the censoring time conditioned on some set

of covariates [145]. In the table below, we show the distribution of reasons for why

patients were censored.

Description 𝑛
Progressive Disease (PD) 314
Death 64
No documented death or disease progression 165
Alternate therapy 107
Withdrawal of consent 24
Death or PD after more than 1 missed visit 22
Lost to follow-up 5
No Baseline/No Post-baseline 4

Table 4.3: Reasons for censorship in the TOURMALINE-MM2 Trial

The top two rows of Table 4.3 are descriptions for patients who were observed to

have the event. The following: “withdrawal of consent”, “death or PD after more than

1 missed visit”, “lost to follow-up” are due to study termination or end of treatment.

Under these conditions, independent censoring is reasonable [159]. Of the remaining

descriptions, only two are substantial: “No documented death or disease progression”

and “Alternate therapy”. We condition on age, ISS, and a pain score in our analysis,

and in subgroups stratified by these covariates, it may be reasonable to assume

independent censoring for the “Alternate therapy” group. Specifically, patients may be
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put on another therapy due to intolerability of the original treatment. This may be

controlled for by conditioning on the pain score, which indicates how the patient may

be tolerating the treatment, or the staging risk score, i.e. ISS. The former is much

harder to assess without further information or further assumptions. To go beyond

the original analysis done for the trial [79], we may condition on the entire set of

covariates (beyond the the three strata described above) via a weighted log-rank test,

where the weights are inverse probability of censoring weights (IPCW). This strategy

would effectively control for any dependencies between the event times and censoring

times through observed covariates.

Latent variable models vs attention-based architectures Finally, it is worth

noting an interesting tradeoff uncovered by the results of this chapter and the prior

one. In the prior chapter, we found that not encoding inductive biases into the latent

variable model in the form of the treatment mechanism resulted in worse generalization

and performance. Generally speaking, non-latent variable models tended to perform

worse than the latent variable models. However, in this chapter, we see the opposite

trend, where non-latent variable models, in this case an attention-based architecture,

performed best. This paradoxical result is likely due to the differences in the data

used in both chapters to train the respective models. In the previous chapter, we used

an observational dataset, where greater diversity in the possible treatment regimens

assigned resulted in fewer samples available per therapy (<100). In this chapter,

we used trial data, where there were only two possible treatment regimens, allowing

for >3x more samples (≈ 350). Thus, in settings where there are fewer samples per

treatment regimen and more heterogeneity exists in the data, as is the case for the

observational dataset, encoding inductive biases into the model and using a latent

variable model, which has intrinsic stochasticity to capture the noise in the data, would

be appropriate. On the other hand, in cases where the data is more homogeneous

and the practitioner has more samples per treatment regimen, larger models for

representation learning, such as RNNs or transformer architectures, will likely perform

better.
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Understanding how one can bolster the performance of large attention-based

architectures even with highly heterogeneous observational datasets is an interesting

direction for future work. One idea is to explore how the PK-PD mechanisms can

be encoded into transformers. Another is to consider rigorous and statistically valid

methods of pooling observational datasets together to improve sample efficiency and

training. Such an approach would require standardizing the metadata across the

datasets as well as improved imputation techniques, both of which are explored in [33].
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Chapter 5

Uncertainty Quantification of Model

Predictions using Conformal Inference

Acknowledgement of Co-authors I am the second author on the paper making

up the bulk of this chapter, following first author Ahmed Alaa. While Ahmed and I

had weekly meetings about the work described in this chapter, Ahmed took the lead in

developing the initial method (for uncensored data) and the writing. I contributed the

bulk of the experimental evaluation. As such, I do not include one of the theoretical

results of the method in this chapter.

In the previous chapters, I focused on the theme of building predictive models of

longitudinal clinical data with the vision of using these methods as the underlying

workhorses for a CDSS assisting management of cancer patients. These models are

meant to be clinically applicable, enabling prediction of survival outcomes, adverse

events, and clinical biomarkers, three facets that are the cornerstones of cancer

management. In the next three chapters, I shift to the theme of assessing the

reliability of model predictions as well as building “sanity checks” for causal estimates

derived from real world data. These methods might manifest in the CDSS, shown

in Figure 5-1, as confidence intervals around the survival predictions and additional

contextual information, respectively.
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Figure 5-1: Recap of clinical decision support system

5.1 Introduction

Consider a training data set (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛), and a test point (𝑋𝑛+1, 𝑌𝑛+1), with

the training and test data all drawn independently from the same distribution, i.e.,

(𝑋𝑖, 𝑌𝑖)
𝑖.𝑖.𝑑∼ 𝑃 = 𝑃𝑋 × 𝑃𝑌 |𝑋 , 𝑖 = 1, . . . , 𝑛+ 1. (5.1)

Here, each 𝑋𝑖 ∈ R𝑑 is a covariate vector, while 𝑌𝑖 ∈ R is a response variable. The joint

distribution over covariates and responses, 𝑃 , is unknown. In this paper, we tackle

the problem of predictive inference, where given the covariate vector 𝑋𝑛+1 for a new

test point, the goal is to construct a predictive interval that is likely to contain the

true response 𝑌𝑛+1 with probability at least 1− 𝛼, for some 𝛼 ∈ (0, 1). More precisely,

our goal is to use the 𝑛 training sample points to construct a set-valued function:

̂︀𝐶𝑛(𝑥) := ̂︀𝐶𝑛((𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛), 𝑥) ⊆ R, (5.2)

such that for a new test point (𝑋𝑛+1, 𝑌𝑛+1) ∼ 𝑃 , the response 𝑌𝑛+1 falls in ̂︀𝐶𝑛(𝑋𝑛+1)

with probability 1− 𝛼. Intervals satisfying this coverage condition are said to be valid.
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The sense in which predictive inferences are valid determines the relevance of

the corresponding coverage guarantees to specific prediction instances. The weakest

form of validity is when predictive intervals cover the true response on average—such

intervals are said to be marginally valid. Formally, marginal validity is satisfied when

P
[︁
𝑌𝑛+1 ∈ ̂︀𝐶𝑛(𝑋𝑛+1)

]︁
≥ 1− 𝛼, (5.3)

where the probability is defined with respect to randomness of both training and

testing data. The coverage condition in (5.3) is said to be distribution-free if it holds

for all 𝑃 . Conformal prediction (CP), described formally in Section 5.2, is a popular

framework for predictive inference that guarantees distribution-free marginal validity

in finite samples [278, 277, 196, 161, 160, 162, 223]. In its most basic form, CP achieves

marginal validity by issuing a fixed-length interval for all prediction instances.

In many applications, it is important to ensure transparency in communicating

uncertainty in predictions issued for individual users. For instance, suppose that 𝑋𝑖 is

a set of risk factors for patient 𝑖 (e.g., age, blood pressure, etc.), and 𝑌𝑖 is a measure

of kidney function (e.g., eGFR). For a new patient, our goal would be to predict a

range of values for their future eGFR with a predetermined degree of confidence, i.e.,

we would like to be able to make a statement along the lines of: “Based on your risk

factors, there is a 95% chance that your eGFR will decline by 1.8–5.2 mL/min over

the next 3 years”. Marginal coverage guarantees that predicted ranges are accurate

for 95% of the patients on average, but can be arbitrarily inaccurate for specific

prediction instances. Since marginal coverage is defined with respect to 𝑃𝑋 , we expect

coverage to be violated in regions with few training examples in covariate-space, i.e.,

instances for which the predictive model has high epistemic uncertainty. Hence, the

marginally-valid fixed-length intervals issued by vanilla CP may not be informative

for prediction instances to which uncertainty quantification matters the most.

Adaptive and transparent CP. In this paper, we address the following question:

how can we communicate model uncertainty in specific prediction instances in an

adaptive and transparent manner? That is, we would like to construct a predictive
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inference procedure that adapts the length of its issued intervals based on the varying

level of uncertainty across different prediction instances, and reports a coverage

guarantee that is “relevant” to each specific instance. Ideally, we would like to develop

a predictive inference procedure that achieves the following conditional coverage

guarantee:

P
[︁
𝑌𝑛+1 ∈ ̂︀𝐶𝑛(𝑋𝑛+1)

⃒⃒
𝑋𝑛+1 = 𝑥

]︁
≥ 1− 𝛼, (5.4)

for almost all1 𝑥 ∈ R𝑑. Predictive intervals that satisfy (5.4) are said to be conditionally

valid. A procedure that satisfies (5.4) is transparent as its guarantee holds for each

prediction instance, and is adaptive if the length of ̂︀𝐶𝑛 for a given 𝑥 reflects the relative

level of uncertainty in this specific instance. It is known that distribution-free validity

in the sense of (5.4) is impossible to achieve for non-trivial predictions [276, 160, 88].

Hence, we build on the CP framework to develop an adaptive predictive inference

procedure that satisfies an approximate version of (5.4), and transparently reports the

granularity of coverage for each prediction instance.

For each new test point, our procedure reports an instance-specific predictive

interval and identifies a local region containing the instance 𝑋𝑛+1 = 𝑥, over which the

procedure is marginally valid, i.e., the inference is reported as follows:

For 𝑋𝑛+1 = 𝑥, report ̂︀𝐶𝑛(𝑥), ̂︀𝒮𝑛(𝑥) such that:

P
[︁
𝑌 ∈ ̂︀𝐶𝑛(𝑋)

⃒⃒
𝑋 ∈ ̂︀𝒮𝑛(𝑥)

]︁
≥ 1− 𝛼, ∀𝑥 ∈ R𝑑,

where ̂︀𝒮𝑛(𝑥) ⊆ R𝑑, which we call a relevance subgroup, is a local region containing

𝑥.

In the clinical example discussed earlier, our procedure would communicate un-

certainty with an individual patient as follows: “The model predicts that your eGFR

will decline by 1.8–5.2 mL/min over the next 3 years. The predictions of the model

tend to be accurate 95% of the time for patients similar to you defined by the patient
1We write “almost all 𝑥” to mean that the set of points where the bound fails has measure zero

under 𝑃𝑋 .
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subgroup ̂︀𝒮𝑛(𝑥), but the accuracy will vary from one patient to another within this

group”. By communicating uncertainty in this more transparent form, the clinician

can reason about the relevance of this prediction to the patient at hand by inspecting

the reported subgroup, e.g., checking if the relevance subgroup includes patients with

different disease phenotypes.

The key idea behind our method is to view localized predictive inference as

a marginal CP problem under a “hypothetical” covariate distribution 𝐺𝑥 local-

ized around the test point 𝑥 instead of the true distribution 𝑃𝑋 . This is implemented

through a commonly used approach in econometrics, known as unconditional quan-

tile regression (UQR), which estimates the marginal quantiles of outcomes within

arbitrary local subsets (i.e., relevance subgroups) of the covariate space [84]. It does

so by regressing the recentered influence function (RIF) of the quantile functional

over covariates, and marginalizing the predicted RIFs within relevance subgroups.

This is different from conditional quantile regression [223], for which the regression

targets do not recover marginal quantiles when averaged over subgroups.

Our procedure involves two steps. First, we use the UQR model to generate a

nested sequence of predictive bands for each relevance subgroup. Next, we select the

tightest band that achieves coverage within each subgroup using a held-out calibration

set. In the rest of the paper, we explain the two steps of our procedure; we first start

by providing a brief background on the standard CP method in the next Section.

5.2 Conformal Prediction

The standard split CP procedure relies on sample splitting for constructing predictive

intervals that satisfy finite-sample coverage guarantees [278, 277, 196]. Assuming

that all data points are exchangeable, the procedure splits the data set into two

disjoint subsets: a proper training set {(𝑋𝑖, 𝑌𝑖) : 𝑖 ∈ 𝒟𝑡}, and a calibration set

{(𝑋𝑖, 𝑌𝑖) : 𝑖 ∈ 𝒟𝑐}. Then, a machine learning model ̂︀𝜇(𝑥) is fit to the training data set

𝒟𝑡, and a conformity score 𝑉 (.) is computed for all samples in 𝒟𝑐—this score measures

how unusual the prediction looks relative to previous examples. A typical choice of 𝑉 (.)
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is the absolute residual, i.e., 𝑉 (𝑥, 𝑦) := | ̂︀𝜇(𝑥)−𝑦 |. The conformity scores are evaluated

as follows:

𝑉𝑖 := 𝑉 (𝑋𝑖, 𝑌𝑖) = | ̂︀𝜇(𝑋𝑖)− 𝑌𝑖 |, ∀𝑖 ∈ 𝒟𝑐. (5.5)

For a given miss-coverage level 𝛼, we then compute a quantile of the empirical

distribution of the absolute residuals,

𝑄𝒱(1− 𝛼) := (1− 𝛼)(1 + 1/|𝒟𝑐|)-th quantile of 𝒱 , (5.6)

where 𝒱 = {𝑉𝑖 : 𝑖 ∈ 𝒟𝑐}. Finally, the prediction interval at a new point 𝑋𝑛+1 = 𝑥 is

given by
̂︀𝐶𝑛(𝑥) = [ ̂︀𝜇(𝑥)−𝑄𝒱(1− 𝛼), ̂︀𝜇(𝑥) +𝑄𝒱(1− 𝛼) ]. (5.7)

The CP intervals have a fixed length of 2𝑄𝒱(1− 𝛼), independent of 𝑋𝑛+1, which is

sufficient for satisfying marginal validity but does not adapt to the varying degrees of

uncertainty across different prediction instances.

5.3 Conformalized Unconditional Quantile Regres-

sion (CUQR)

In this Section, we describe the two steps involved in our procedure, which we call

conformalized unconditional quantile regression (CUQR). Indeed, ours is not the first

adaptive variant of CP—we compare our method with existing approaches to adaptive

uncertainty quantification in Section 5.4.

5.3.1 Step 1: Unconditional Quantile Regression (UQR)

Consider the true populational counterpart of ̂︀𝐶𝑛 in (5.4), i.e.,

𝐶*(𝑥) := [𝑄 (𝛼/2, 𝑥) , 𝑄 (1− 𝛼/2, 𝑥)] , (5.8)
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where 𝐶* is the predictive interval given oracle knowledge of 𝑃 , 𝑄(𝛼, 𝑥) is the level-𝛼

quantile of 𝑌 |𝑋 = 𝑥, i.e., 𝑄(𝛼, 𝑥) := inf{𝑦 ∈ R : 𝐹 (𝑦 |𝑋 = 𝑥) ≥ 𝛼}, and 𝐹 (.) is the

conditional cumulative density function (CDF), 𝐹 (𝑦 |𝑋 = 𝑥) := P(𝑌 ≤ 𝑦 |𝑋 = 𝑥). By

definition, the oracle band in (5.8) is conditionally valid in the sense of (5.4). Hence,

a sensible guess of an uncertainty band that is both adaptive and transparent can be

obtained by directly estimating the conditional quantile 𝑄(., 𝑥).

Nested sequence of plug-in estimates.

We use a plug-in approach for estimating 𝐶* by replacing the conditional quantile

in (5.8) with a consistent estimate ̂︀𝑄, i.e., ̂︀𝐶𝑛(𝑥) = [ ̂︀𝑄(𝛼/2, 𝑥), ̂︀𝑄 (1− 𝛼/2, 𝑥) ]. While

plug-in models can learn accurate estimates of 𝐶*, they do not provide finite-sample

coverage guarantees. To take advantage of both the adaptivity of plug-in estimates and

the finite-sample coverage of the CP framework, a typical approach is to “conformalize”

these plug-in estimates [223]. In what follows, we explain how our procedure creates

conformity scores based on plug-in estimates of 𝐶*.

Instead of constructing predictive intervals using a point estimate of 𝑄(𝛼, .) ob-

tained from a single plug-in model ̂︀𝑄(𝛼, .), we generate a set of “candidate” estimates

of the conditional quantile function and use the calibration set 𝒟𝑐 to pick the narrowest

candidate band that achieves the desired coverage. More precisely, we define a set of

predictive intervals for covariate 𝑥, ̂︀𝒞(𝑥), as follows:

̂︀𝒞(𝑥) := {̂︀𝒞�̃�(𝑥) = ̂︀𝜇(𝑥)± ̂︀𝑄(�̃�, 𝑥)}�̃�∈(0,1), (5.9)

where ̂︀𝑄(�̃�, 𝑥) is a plug-in estimate of the level-�̃� conditional quantile of the model

residual at 𝑥. We require that the plug-in estimates are monotonic: ̂︀𝑄(�̃�, 𝑥) ≤ ̂︀𝑄(�̃�′, 𝑥)

for �̃� ≤ �̃�′, i.e., no quantile crossing. Thus, ̂︀𝒞(𝑥) comprises a nested sequence of

candidate intervals, through which we define the following conformity score:

𝑉 (𝑋𝑖, 𝑌𝑖) = inf{�̃� ∈ (0, 1) : 𝑌𝑖 ∈ ̂︀𝒞�̃�(𝑋𝑖)}, (5.10)

for all 𝑖 ∈ 𝒟𝑐. The conformity score in (5.10) checks for the smallest value of �̃� for

which the corresponding interval ̂︀𝒞�̃�(𝑋𝑖) in ̂︀𝒞 covers the response 𝑌𝑖. We compute
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the empirical quantile of conformity scores 𝑄𝒱(1 − 𝛼) as in (5.6), and construct a

predictive interval for 𝑋𝑛+1 = 𝑥 as:

̂︀𝐶𝑛(𝑥) := {̂︀𝜇(𝑥)± ̂︀𝑄(�̃�*, 𝑥)}, �̃�* = 𝑄𝒱(1− 𝛼). (5.11)

We drop the dependence of ̂︀𝐶𝑛 on 𝛼 to reduce notational clutter. Note that the proce-

dure in (5.11) produces predictive intervals that vary across prediction instances since

it picks an entire conditional quantile function from the nested set. The intervals

in (5.11) still follow the CP construction: hence, they satisfy the following marginal

coverage guarantee.

Proposition 1. Consider a sequence of plug-in estimates { ̂︀𝑄(�̃�, .)}�̃� obtained from

a sample 𝒟𝑐,1, and the corresponding conformity scores 𝒱 = {𝑉 (𝑋𝑖, 𝑌𝑖) : 𝑖 ∈ 𝒟𝑐,2}
obtained from another sample 𝒟𝑐,2, where 𝒟𝑐,1 and 𝒟𝑐,2 are two disjoint subsets of 𝒟𝑐.
If {(𝑋𝑖, 𝑌𝑖) : 1 ≤ 𝑖 ≤ 𝑛+ 1} are exchangeable, then the interval in (5.11) satisfies

P(𝑌𝑛+1 ∈ ̂︀𝐶𝑛(𝑋𝑛+1)) ≥ 1− 𝛼.

Proof is given in Appendix A. Variants of this result appear in the literature [162, 107].

Proposition 1 indicates that, by defining conformity scores over a sequence of bands

rather than intervals, we can construct adaptive predictive intervals while retaining

the marginal coverage guarantees of CP. Plug-in estimation via UQR. We use

UQR [84] to fit the nested sequence of plug-in estimates in (5.9). In what follows, we

explain how UQR works from a Taylor approximation perspective. UQR approximates

the conditional quantiles of 𝑌 |𝑋 = 𝑥, 𝑄(𝛼, 𝑥), under the true distribution 𝑃 as the

marginal quantile of 𝑌 , 𝑄(𝛼), under an alternative distribution 𝐺𝑥 that is “localized”

around 𝑥. Since the quantile is a statistical functional of the underlying distribution,

we can estimate the marginal quantile under 𝐺𝑥 given the marginal quantile under 𝑃

using a von Mises linear approximation (VOM), i.e., a distributional analog of Taylor

series of the following form [83]:

𝑄𝐺𝑥(𝛼) ≈ 𝑄𝑃 (𝛼) +

∫︁
IF(𝑦;𝑄(𝛼), 𝑃 ) · 𝑑𝐺𝑥(𝑦), (5.12)
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where IF is the influence function of the functional 𝑄(𝛼) at 𝑃 for a given point (𝑥, 𝑦)

in the direction of the localized distribution 𝐺𝑥, which is defined as follows:

IF(𝑦;𝑄(𝛼), 𝑃 ) = lim
𝜖→0

𝑄𝑃 𝑦(𝛼)−𝑄𝑃 (𝛼)

𝜖
, (5.13)

where 𝑃 𝑦 = (1 − 𝜖)𝑃 + 𝜖 𝛿𝑦. The influence function of the quantile measures the

contribution of the outcome value 𝑦 on the marginal quantile statistic 𝑄𝑃 (𝛼). By

weighting the contributions of observations sampled from 𝑃 using the localized density

𝐺𝑥 as in (5.12), we obtain a first-order approximation of the marginal quantile

functional under 𝐺𝑥. The influence function of the quantile functional is:

IF(𝑦;𝑄(𝛼), 𝑃 ) =
𝛼− 1{𝑦 ≤ 𝑄𝑃 (𝛼)}

𝑓𝑌 (𝑄𝑃 (𝛼))
. (5.14)

Here, 𝑓𝑌 (.) is the (one-dimensional) marginal density of 𝑌 . The derivation of the

formula in (5.14) is standard, and is provided in Appendix B for completeness. The

re-centered influence function (RIF) is defined as:

RIF(𝑦;𝑄(𝛼), 𝑃 ) = 𝑄𝑃 (𝛼) + IF(𝑦;𝑄(𝛼), 𝑃 ), (5.15)

UQR involves regressing RIF over𝑋 to obtain a model for E[RIF(𝑌 ;𝑄(𝛼), 𝑃 ) |𝑋 = 𝑥 ].

Note that the influence function in (5.14) is a dichotomous variable as 1{𝑦 ≤ 𝑄𝑃 (𝛼)}
is the only term that changes across covariates. Thus, UQR involves fitting a one-

dimensional density estimate for 𝑓𝑌 and a binary classifier for the dichotomous variable.

UQR is typically used to study the effect of changing the covariate distribution on the

marginal quantiles of outcomes, e.g., the effect of unionization on wages [210]. In our

setup, we use (5.12) to obtain a plug-in estimate for the predictive band at the test

point 𝑥 as follows:

𝑄𝐺𝑥(𝛼) ≈
∫︁

E[RIF(𝑌 ;𝑄(𝛼), 𝑃 ) |𝑋 = 𝑥 ] · 𝑑𝐺𝑥. (5.16)

Constructing the nested sequence using UQR. The approximation in (5.16)
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inspires a simple regression procedure for constructing the nested sequence in (5.9)

while avoiding quantile crossing. Let RIF𝛼(𝑋𝑖) be the RIF of the level-𝛼 quantile

associated with the 𝑖-th data point. For a test point 𝑋𝑛+1 = 𝑥, we can predict the

value of 𝑄𝐺𝑥(𝛼) by fitting an ML model on the data set {(𝑋𝑖,RIF𝛼(𝑋𝑖))}𝑖∈𝒟𝑐 . Let the

RIF values predicted by the ML model be ̂︂RIF𝛼(𝑥). Then, by repeating this process

𝐾 > 0 times for all values of �̃� in 𝛼 = [1/𝐾, . . . , (𝐾 − 1)/𝐾], we can construct the

nested sequence as follows:2

̂︀𝒞(𝑥) = {̂︀𝒞𝑘(𝑥) = ̂︀𝜇(𝑥)± |̂︂RIF�̃�𝑘
(𝑥)|}𝐾−1

𝑘=1 . (5.17)

where �̃�𝑘 = 1/𝑘. Here, the RIF is defined with respect to quantiles of the model

residual 𝐸 = | ̂︀𝜇(𝑋) − 𝑌 | rather than the outcome 𝑌 . Note that, combining (5.14)

and (5.15), the RIF for the level �̃�𝑘 quantile can be written as:

RIF�̃�𝑘
(𝑥) = 𝑄𝑃 (�̃�𝑘) +

�̃�𝑘 − 1{𝑒 ≤ 𝑄𝑃 (�̃�𝑘)}
𝑓𝐸(𝑄𝑃 (�̃�𝑘))

. (5.18)

The 1-D density 𝑓𝐸(.) can be estimated using kernel density estimation (KDE), and

𝑄𝑃 (𝛼) can be estimated as the empirical level-�̃�𝑘 quantile of the residuals. The only

term that we need to predict for each test point is 1{𝑒 ≤ 𝑄𝑃 (�̃�𝑘)},∀𝑘 ∈ {1, . . . , 𝐾−1}.
This can be achieved with a single ML model as follows: for each data point (𝑋𝑖, 𝐸𝑖),

define a target 𝑘*𝑖 := min 𝑘, s.t. 𝐸𝑖 ≤ ̂︀𝑄𝑃 (�̃�𝑘), then fit a model 𝑔𝜃(.) (e.g., a regression

model or a multi-class classifier) on the data set {(𝑋𝑖, 𝑘
*
𝑖 )}𝑖. For a new test point

𝑋𝑛+1 = 𝑥, we predict the RIF at 𝑋𝑛+1 = 𝑥 by plugging in the predictions of 𝑔𝜃 into

(5.18) as follows:
̂︂RIF�̃�𝑘

(𝑥) = ̂︀𝑄𝑃 (�̃�𝑘) +
�̃�𝑘 − 1{𝑔𝜃(𝑥) ≤ 𝑘}

̂︀𝑓𝐸( ̂︀𝑄𝑃 (�̃�𝑘))
, (5.19)

∀𝑘 ∈ {1, . . . , 𝐾− 1}. The nested set in (5.17) can thus be constructed using the 𝐾− 1

predictions in (5.19). Note that for any 𝑘 < 𝑘′, it is sufficient that 𝜕 ̂︀𝑓𝐸( ̂︀𝐹−1
𝐸 (𝛼))/𝜕𝛼 < 0

for the monotonicity of the nested intervals to be preserved, i.e., ̂︂RIF�̃�𝑘
(𝑥) < ̂︂RIF�̃�𝑘′

(𝑥).

This condition is met by various typical probability distributions (i.e., the exponential

2We take the absolute value of ̂︂RIF to account for erroneously negative predictions.

122



distribution). When this condition is violated for any two consecutive intervals in our

empirical estimate, we replace ̂︀𝑓𝐸( ̂︀𝑄𝑃 (�̃�𝑘)) with ̂︀𝑓𝐸( ̂︀𝑄𝑃 (�̃�𝑘−1)) to enforce monotonicity.

Alternative approaches to constructing the set { ̂︀𝑄(𝛼, .)}𝛼 include fitting 𝐾 indepen-

dent quantile regression models or a single distributional model (e.g., a Bayesian non-

parameteric regression [53]). The RIF-based construction of the nested set { ̂︀𝑄(𝛼, .)}𝛼
is more computationally and statistically efficient than either approach as it requires

training a single ML model with labels that condense information about the conditional

quantiles at levels [1/𝐾, . . . , (𝐾 − 1)/𝐾].

Algorithm 1 Conformalized UQR
Input: Dataset {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1, test covariate 𝑋𝑛+1, model 𝜇, parameters 𝛼, 𝐺 and
𝐾.
Output: ̂︀𝐶𝑛(𝑋𝑛+1) and ̂︀𝒮𝑛(𝑋𝑛+1)

Split the data set into a proper training set 𝒟𝑡 and 2 disjoint calibra-
tion sets 𝒟𝑐 = 𝒟𝑐,1 ∪ 𝒟𝑐,2
Using the training set 𝒟𝑡, do the following:

Fit the predictive model ̂︀𝜇 : 𝒳 → R using 𝒟𝑡
Partition 𝒳 into relevance subgroups { ̂︀𝒮𝑔}𝐺𝑔=1

Using the calibration set 𝒟𝑐,1, do the following:
Fit ̂︀𝑓𝐸(.), ̂︀𝑄𝑃 (�̃�𝑘) & 𝑔𝜃. Plug the estimates in (5.19)
Construct a nested sequence of intervals ̂︀𝒞(𝑥) = {̂︀𝒞𝑘(𝑥) = ̂︀𝜇(𝑥)± |̂︂RIF�̃�𝑘

(𝑥)|}𝐾𝑘=1

Using the calibration set 𝒟𝑐,2, do the following:
For all calibration data within each subgroup in { ̂︀𝒮𝑔}𝐺𝑔=1, compute the confor-

mity scores in (5.10)
For each subgroup, select the tightest band in ̂︀𝒞 that achieves the target coverage

as in (5.11). Let ̂︀𝒞𝑘(𝑔)(𝑥) be the band selected for the 𝑔-th subgroup

For a new test covariate 𝑋𝑛+1, do the following:
Identify subgroup 𝑔𝑛+1 for which 𝑋𝑛+1 ∈ ̂︀𝒮𝑔𝑛+1

̂︀𝐶𝑛(𝑋𝑛+1)← ̂︀𝒞𝑘(𝑔𝑛+1)(𝑋𝑛+1), ̂︀𝒮𝑛(𝑋𝑛+1)← ̂︀𝒮𝑔𝑛+1

Return ̂︀𝐶𝑛(𝑋𝑛+1) and ̂︀𝒮𝑛(𝑋𝑛+1).

5.3.2 Step 2: Conformalizing UQR within subgroups

In Section 5.3.1, we developed a procedure that fulfills the adaptivity requirement

while retaining the marginal validity of the non-adaptive CP method (Proposition 1).

123



These marginal guarantees, however, do not meet the criteria for being transparent

as they do not reflect the accuracy of the issued intervals for any given prediction.

To provide more transparent guarantees, the second step selects an interval from the

nested set by applying the conformal procedure within local regions in covariate-space

as follows:

• Partition the covariate space into 𝐺 subsets { ̂︀𝒮𝑔}𝐺𝑔=1.

• Apply the conformal procedure in Section 5.3.1 locally within each subgroup 𝑔

by picking a subgroup-specific band ̂︀𝒞𝑘(𝑔)(𝑥) from the set {̂︀𝒞𝑘(𝑥)}𝐾−1
𝑘=1 .

• For a test point 𝑋𝑛+1 = 𝑥, identify the relevance subgroup 𝑔𝑛+1 in which it be-

longs and report the subgroup ̂︀𝒮𝑔𝑛+1 and the corresponding interval ̂︀𝒞𝑘(𝑔𝑛+1)(𝑋𝑛+1).

The steps involved in our conformalized UQR (CUQR) procedure are given in Al-

gorithm 1. The procedure reports both a predictive interval that is specific to each

instance, and a subgroup for which a desired level of accuracy is achieved. The

relevance subgroups can either be learned from training data (e.g., using a clustering

algorithm) or predetermined using application-specific knowledge (e.g., disease sub-

types or protected attributes). The subgroup can be reported in the form of a cluster

with a “representative” covariate value that is typical for this subgroup. In the clinical

example discussed earlier, our algorithm’s output can represent the relevance subgroup

in terms of a set of “representative” patients.

Increasing the number of subgroups 𝐺 increases the granularity of the achieved

average coverage at the cost of higher variance in realized coverage. 𝐺 can be set

to larger values for larger sample sizes, e.g., 𝐺 = 𝑂(𝑛), so that conditional coverage

is achieved asymptotically. In the other extreme case when 𝐺 = 1, we recover the

standard marginal coverage guarantee.

5.4 Related Work

Distributional regression models that directly estimate the conditional density

𝑃𝑌 |𝑋=𝑥 provide adaptive estimates of uncertainty. Broad classes of methods fall under
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this category; a non-exhaustive list includes: Bayesian non-parametric regression

(e.g., using Gaussan processes [250] or regression trees [53]), Bayesian neural nets

[143, 116, 219], and deep ensembles [153, 86]. Many of these models can provide

accurate pragmatic estimates of predictive variance, but without the finite-sample

coverage guarantees enabled by CP. The achieved coverage of distributional regression

can be very sensitive to modeling choices (e.g., hyper-parameters or prior distributions).

For instance, in Bayesian regression, the frequentist coverage achieved by posterior

credible intervals with exact inference depends on the choice of the prior [23]. With

the more commonly used approximate inference methods (e.g., dropout or variational

inference [91]), the induced posterior distributions may not concentrate asymptotically,

resulting in poor coverage behavior [192, 119]. Distributional models are often used in

conjunction with CP approaches to satisfy finite-sample coverage while maintaining

adaptivity [51].

Conformal prediction in its most basic form achieves finite-sample marginal

coverage at the expense of adaptivity [278, 277, 196]. Various approaches to CP-based

adaptive predictive inference have been recently proposed [162, 223, 103, 82, 245, 107,

104, 88, 17]. The idea of “conformalizing” a plug-in estimate of the conditional quantile

function originated in [223]. In this work, a single quantile regression model ̂︀𝑄(𝛼, 𝑥) is

fit to the training data, and a conformity score that measures the accuracy of ̂︀𝑄(𝛼, 𝑥)

is used to derive an adjustment for these intervals. Conformalized quantile regression

provides marginal coverage guarantees, but its empirical conditional coverage depends

on the quality of the underlying quantile regression model. Refinements of this

approach were later proposed through two different lines of work: the first uses a

re-weighting technique to “localize” CP at new test points [103, 104], and the second

conformlizes a distributional regression model from which conditional quantiles can

be derived [245, 51]. In both lines of work, conditional validity is achieved in an

asymptotic sense.

Our work holds subtle connections to these two approaches. In terms of the

construction of conformity scores, [245, 51] define the scores based on conditional

ranks rather than error residuals—our procedure constructs predictive intervals by
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selecting among “candidate” estimates of conditional quantiles generated by varying

the quantile level 𝛼. This is equivalent to constructing the predictive intervals by

selecting among estimates of conditional ranks of the full conditional distribution

𝑃𝑌 |𝑋 , but unlike the procedures in [245, 51], ours does not require access to consistent

estimates of 𝑃𝑌 |𝑋 . Similar to the localized CP methods in [103, 104], our procedure is

effectively a localized version of the marginal CP method. But unlike localized CP

(LCP), our procedure can utilize any ML model for obtaining the localized quantile

estimates (i.e., Equation (5.19)), whereas LCP is limited to re-weighting estimators

(e.g., based on Nadarya-Watson kernel). Additionally, because our procedure selects

among multiple quantile functions within each subgroup, it can achieve finite-sample

(rather than asymptotic) coverage within local regions. The nested construction of our

plug-in estimates falls within the general nested CP formulation developed in [107].

Unlike the formulation in this work, we construct our nested sets by parametrizing a

functional form for the predictive band rather than directly parametrizing intervals,

which enables selecting a different interval for each instance within a subgroup.

Re-centered influence functions (RIF) are typically used as targets for unconditional

quantile regression models, a common modeling tool in econometric studies [84]. To

the best of our knowledge, RIF- based regression has not been operationalized as a

conformity score prior to this work.

5.5 Experiments

We compare CUQR with various conformal and quantile regression baselines across

multiple benchmark data sets. We start by describing our experimental setup below.

Baselines. We consider standard split conformal prediction (CP), the locally

adaptive CP (LACP) method in [197], conformalized quantile regression (CQR) [223],

and conformal conditional histograms (CCH) [245]. We also consider two variants

of the standard quantile regression (QR) model for estimating conditional quantiles:

QR with an underlying random forest model (QR-RF), and QR implemented using

a neural network (QR-NN). We consider two ablated versions of CUQR that apply
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a conformalization procedure within the same relevance subgroups of CUQR. The

first baseline, dubbed CQ, constructs the nested set 𝒞(.) using the empirical quantiles

of residuals within the relevance subgroups, assigning the same intervals to all units

within a subgroup without using the UQR-based plug-in estimates. The second

baseline, which we call CQR-S, applies the adaptive CQR method [223] within the

relevance subgroups.

Finally, we consider two variants of our method: CUQR which applies conformal-

ization based on the empirical (1− 𝛼)-th quantiles, and CUQR-PAC, which corrects

for the slack term in Theorem 1 to provide a high probability (PAC-style) coverage

per subgroup. We select the value of 𝜆 in Theorem 1 so that the probability that

coverage holds (conditional on training data) is 90%, i.e., 1− 2 exp(−2𝜆2) = 0.9. We

implement our method using an XGBoost regression model for 𝑔𝜃. In all experiments,

we create the relevance subgroups using the 𝐾-means clustering algorithms. Further

experimental details are provided in Appendix D.

Evaluation metrics. We evaluate all baselines with respect to their achieved

marginal coverage 𝐶𝑎𝑣, efficiency quantified via average interval length 𝐿𝑎𝑣 and

subgroup-level coverage denoted as 𝐶𝑎𝑣( ̂︀𝒮𝑔) for all subgroups { ̂︀𝒮𝑔}𝐺𝑔=1. We also evaluate

the worst-case subgroup-level coverage, defined as 𝐶𝑤.𝑐.
𝐺 = min𝑔 𝐶𝑎𝑣(̂︀𝑆𝑔). All metrics

are evaluated on testing data and averaged over 10 runs. Unless otherwise stated, we

set the target coverage level to 1− 𝛼 = 0.9.

Data sets. We evaluate all baselines on 9 benchmark data sets that are

commonly used to evaluate CP methods: MEPS-19, MEPS-20, MEPS-21, Facebook-1,

Facebook-2, Bio, Kin8nm, Naval, and Blog [82, 223, 82, 57]. Due to space limitations,

we highlight results for four data sets (MEPS-19, Facebook-1, Blog and Kin8nm) in

this Section and defer further results to the Appendix. Details of all data sets are

provided in the Appendix. For each run, we randomly split each data set into

disjoint training 𝒟𝑡 (42.5%), calibration 𝒟𝑐 (42.5%) and testing 𝒟𝑡𝑒𝑠𝑡 (15%) samples.

For the LACP, CCH, CQR, CQR-S, CQ and CUQR baselines, we further split the

calibration set 𝒟𝑐 in half to obtain plug-in estimates and conformity scores from

different splits. In all experiments, we fit a Gradient Boosting regression model ̂︀𝜇
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MEPS-19 Facebook-1 Blog Kin8nm

𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.

𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.

𝐺

QR methods
QR-RF 0.90 1.00 0.54 0.93 0.85 0.78 0.79 0.73 0.76 0.93 1.36 0.89
QR-NN 0.79 0.54 0.67 0.81 0.55 0.68 0.79 0.73 0.76 0.79 0.94 0.74

CP methods
CP 0.89 1.28 0.19 0.90 1.39 0.72 0.89 1.89 0.57 0.90 2.17 0.83
LACP 0.89 0.61 0.20 0.90 0.69 0.76 0.89 1.06 0.63 0.90 1.09 0.84
CQR 0.89 1.12 0.46 0.90 0.83 0.77 0.90 1.34 0.82 0.90 1.33 0.85
CCH 0.96 5.37 0.79 0.89 0.72 0.65 0.98 5.58 0.96 0.89 1.14 0.86
CQ 0.87 2.02 0.76 0.89 1.34 0.79 0.87 1.81 0.76 0.89 2.16 0.85
CQR-S 0.89 1.54 0.67 0.90 0.77 0.87 0.90 1.37 0.80 0.90 1.33 0.85

CUQR 0.89 1.25 0.73 0.90 1.36 0.87 0.87 1.82 0.67 0.89 2.19 0.85
CUQR-PAC 0.89 2.90 0.88 0.92 1.61 0.90 0.90 2.23 0.82 0.96 3.27 0.93

Table 5.1: Marginal coverage, efficiency and conditional coverage of all baselines on
benchmark data sets.

using the training set 𝒟𝑡 and apply the predictive inference baselines on top of the

predictions issued by the model ̂︀𝜇.

5.5.1 Results

Evaluating transparency. All baselines are calibrated to have a target marginal

coverage of 90%, but what does this notion of coverage mean to individual users of

the model? In this experiment, we assess the transparency of different baselines by

evaluating the worst-case conditional coverage within typical “subgroups” of individuals

or prediction instances. We use 𝐾-means clustering to identify 𝐺 = 10 relevance

subgroups using training samples. Note that the subgroups are not arbitrary—they

represent a clustering of the population into “typical” subgroups of similar individuals.

In Table 1, we show the marginal coverage and average lengths of predictive

intervals for all baselines across the three data sets. First, we observe that while

all conformal methods achieve the target (marginal) coverage levels, the coverage

of the QR baselines vary depending on the underlying model specification, which is

expected as these baselines do not provide any coverage guarantees. On the contrary,
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Figure 5-2: Adaptivity of predictive inference baselines on the MEPS-19 dataset.

all CP-based methods achieve their promised model-agnostic coverage guarantees, but

how well do the different CP variants perform when examined on a subgroup level?

As we can see in Table 1, CP baselines that only guarantee marginal coverage

(CP and CQR) have a very poor worst-case coverage conditional on a subgroup, i.e.,

their declared guarantees do not reflect their performance among a large subgroup of

“similar” individuals in a given population. Similary, CP methods with asymptotic

conditional coverage guarantees can exhibit severe under-coverage in finite samples

(LACP), or maintain reasonable conditional coverage but with poor efficiency (CCH),

which highlights the importance of controlling for finite-sample conditional coverage.

While CUQR achieves subgroup-specific coverage marginally, the worst-case subgroup-

level coverage can be significantly lower than the desired target coverage for some

data sets (e.g., MEPS-19 and Blog).

The CQ variant of our method, which picks a fixed interval per subgroup rather

than a full RIF-based predictive band, achieves better worst-case coverage at the

expense of within-subgroup adaptivity and average efficiency. Because the subgroup-

specific coverage guarantees for CUQR hold on average with respect to the randomness

of calibration data, the variance of the empirically achieved coverage on test data

increases as the number of subgroups 𝐺 increases (i.e., smaller calibration sample

per subgroup). Consequently, the worst case subgroup-level coverage achieved by

CUQR decreases (in expectation) as the number of relevance subgroups increases.

129



Evaluating adaptivity. Next, we assess the extent to which baselines are

adaptive, i.e., the lengths of their intervals vary according to the true uncertainty of

the base model ̂︀𝜇. Among the data sets under study, the MEPS-19 data exhibited

significant heteroscedasticity, i.e., the average error of the predictive model varies

significantly across the subgroups. Hence, we expect the average lengths of intervals

issued by adaptive procedures to be greater for subgroups where the model errors

are high. In Figure 5-2, we plot the achieved subgroup-level coverage (left) and

the corresponding average interval length per subgroup (middle) in the MEPS-19

dataset. In both Figures, the subgroup indexes on the 𝑥-axis are ordered ascendingly

according to the model’s subgroup-level average error on testing data (i.e., larger

indexes correspond to higher model uncertainty). (In Figure 5-2, we exclude baselines

that were under-performing to avoid clutter.) As we can see, CUQR maintains the

target coverage approximately for all subgroups, and adjusts the lengths of its issued

intervals withing each subgroup according to the model uncertainty. On the contrary,

competing baselines either fail to recognize the varying uncertainty across subgroups

(LACP and CP), or do not adequately adapt the interval length to maintain target

coverage (QR-RF and CQR). Finally, to evaluate the adaptivity of CUQR beyond the

subgroups on which it was calibrated, we run a 𝐾-means clustering algorithm with a

different random seed and different number of clusters 𝐺 = 50, and order the subgroup

indexes ascendingly according to the base model’s uncertainty as before. We evaluate

the average interval lengths of CUQR (previously fitted on the 𝐺 = 10 subgroups),

along with the other baselines, on the new and more granular 50 subgroups. As we can

see in Figure 5-2 (right), CUQR outperforms other baselines in adapting its intervals to

subgroup-level uncertainty, indicating better conditional adaptivity properties beyond

what is implied by the theoretical guarantees.

5.6 Conclusion

We developed a conformal prediction method that adapts its issued intervals to

the level of uncertainty in each prediction instance, while reporting a local region
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in covariate-space that contains the queried covariate instance and over which the

procedure is guaranteed to be accurate on average. Our procedure partitions the

covariate space into subgroups, and leverages the re-centered influence function of the

quantile functional to construct a nested sequence of predictive bands, from which

it selects one band per subgroup. By reporting instance-specific predictive intervals

and subgroup-specific coverage guarantees to end-users, our method enables a more

transparent approach to communicating uncertainty in the predictions of ML models.

One important direction for future work is to extend our method to give valid

intervals that are not just valid in a pointwise sense, but can be uniformly valid over

e.g. the entire survival curve, which is more directly applicable in our vision of a

CDSS for oncology. Furthermore, more clever ways of dealing with censored data,

beyond simply utilizing our approach on the uncensored patients, would also be an

interesting direction for future work. Possible avenues include only excluding censored

patients whose censored times are below some threshold, with the intuition being that

patients with large censored times are close to experiencing the event of interest and

can be included in the analysis. However, the covariate shift induced by excluding

such patients would have to be accounted for, as is done in [42, 106]. Finally, a

straightforward extension of our method that could handle censored data is to use a

Cox regression model as the underlying regression model trained in the first step of

the procedure.
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Chapter 6

Falsification: Assessing Reliability of

Causal Estimates with Experimental

Data

Acknowledgement of Co-authors For this chapter and the next chapter, I

would like to acknowledge Ming-Chieh Shih and Michael Oberst, who were integral

in developing the underlying theory for this framework, and additionally for their

immense guidance and mentorship. I would also like to acknowledge Ilker Demirel,

who assisted with the writing and theoretical framing of the next chapter.

In the previous chapter, I explored how to provide uncertainty quantification of

these predictions using conformal inference, giving one assessment of the “reliability”

of these predictions. In this chapter, I further explore the theme of “reliability” by

introducing the principle of falsification, i.e. using RCT (experimental) data to

validate estimates inferred from observational studies whereby an observational study

is “falsified” if it fails to replicate the results of a corresponding RCT. Whereas the

prior chapters took a predictive lens, I use tools in causal inference to build out the

framework of falsification in this chapter. I introduce falsification as a paradigm of

building trust in causal estimates from an observational study, particularly in the

setting where the study can provide causal effects of subgroups for whom we do

not have RCTs. In Chapter 7, I delve more deeply into developing more powerful
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falsification methods via the framework of conditional moment restrictions. This

framework can serve as an additional “sanity check” of causal estimates that will be

presented in the running example of the CDSS in this thesis.

6.1 Introduction

Policy guidelines often rely on conclusions from Randomized Controlled Trials (RCTs),

whether considering treatment decisions in healthcare, classroom interventions in

education, or social programs in economics [140, 58, 212]. In healthcare, when a

target population has reasonable overlap with the inclusion criteria of RCTs, current

clinical treatment guidelines rely primarily on RCTs [109, 108]. For target populations

not well-represented in RCTs, observational studies are often used to infer treatment

effects. However, different observational estimates can give conflicting conclusions.

We give an example of this tension when looking at a new chemotherapy for multiple

myeloma.

Example 6.1.1 (Carfilzomib-based Therapy for Multiple Myeloma). Until 2020, the

effect of Carfilzomib-based combination therapy in the NDMM subpopulation had not

been studied via an RCT. However, a trial (ASPIRE) in 2015 measured the effect of

Carfilzomib-based therapy on survival in Relapsed & Refractory Multiple Myeloma

(RRMM) patients [257]. The CoMMpass trial, an observational dataset, was also

available in which the Carfilzomib regimen was given to both NDMM and RRMM

patients [188]. Several analyses on the CoMMpass dataset to estimate the effect of

Carfilzomib-based therapy on NDMM patients led to different, sometimes opposing,

conclusions on the benefit of the therapy in this subpopulation [164, 155].

A traditional meta-analysis approach would combine observational estimates un-

der the assumption that differences arise only due to random variation, and not

e.g., differences in confounding bias [117, Section 10.10.4.1]. This is unlikely to be

true in practice. For instance, in Example 6.1.1, the two studies in question made

different choices in e.g., how to adjust for confounders. In this paper, we relax the
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assumption that all observational estimates are valid. Instead, we assume that at

least one observational estimate is valid across all subpopulations. In the context

of Example 6.1.1, we might assume that at least one of the candidate observational

studies yields consistent and asymptotically normal estimates of the effects in both the

NDMM and RRMM populations. While we cannot verify that any given estimator

is valid for all subpopulations, we can falsify this claim of validity if an estimator

is inconsistent for the causal effects identified by the RCT (e.g., RRMM). Hence,

we use the term validation effects to refer to causal effects in subpopulations that

overlap between the observational and randomized datasets (e.g., RRMM), and use

the term extrapolated effects to refer to those only covered by observational datasets

(e.g., NDMM).

We propose a meta-algorithm that combines two key ideas: falsification of esti-

mators, and pessimistic combination of confidence intervals. We first aim to falsify

candidate estimators using hypothesis testing, rejecting those that fail to replicate the

RCT estimates of validation effects.1 In Section 6.2.2, we motivate this approach with

examples of observational estimates based on different causal assumptions, showing

that hypothesis tests based on asymptotic normality can be applied even when causal

assumptions fail to hold. Then, we combine accepted estimators to get confidence

intervals on the extrapolated effects. Since failure to reject does not imply validity,2 we

return an interval that contains every confidence interval of the accepted estimators.

We demonstrate theoretically that if at least one candidate estimator is consistent

for both the validation and extrapolated effects, then the intervals returned by our

algorithm provide valid asymptotic coverage of the true effects.

In scenarios where the covariate distribution differs across datasets, estimators

that “transport” the causal effect should be used [204, 61, 64]. Furthermore, in the

case of high-dimensional covariates, flexible machine learning methods are required to

estimate nuisance functions, which can affect the hypothesis tests due to their slower

1These can be the average treatment effect for the entire population, or multiple group average
treatment effects for stratified subgroups, as frequently reported in clinical trials, e.g. stratification
by sex and age in [257].

2For instance, we could fail to reject due to low power, or because falsification is impossible, due
to differences in causal structure across subpopulations, as discussed in Appendix D.1.
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convergence rates. In light of this, we adapt estimators of the average treatment

effect in this setting to provide estimates of group-wise treatment effects, and show

(via the framework of double machine learning [50, 241]) that this estimator enjoys

asymptotic normality under mild conditions on convergence rates of the nuisance

function estimators. Our conclusions are supported by semi-synthetic experiments,

based on the IHDP dataset, as well as real-world experiments, based on clinical trial

and observational data from the Women’s Health Initiative (WHI), that demonstrate

various characteristics of our meta-algorithm.

6.2 Setup and Motivating Examples

6.2.1 Notation and Assumptions

Let 𝑌 ∈ 𝒴 denote an outcome of interest, and 𝐴 ∈ {0, 1} denote a binary treatment.

We use 𝑌𝑎 to denote the potential outcome of an individual under treatment 𝐴 = 𝑎. We

use 𝑋 ∈ 𝒳 to denote all other covariates. To distinguish between different sampling

distributions (i.e., datasets), we use the random variable 𝐷 ∈ {0, . . . 𝐽}, where 𝐽 ≥ 1

is the number of observational datasets, and 𝐷 = 0 is reserved for the sampling

distribution of the randomized trial. We let P(𝑌1, 𝑌0, 𝑌, 𝐴,𝑋,𝐷) denote the joint

distribution over all variables, including unobserved potential outcomes. For instance,

P(𝑌1, 𝑌0, 𝑋 | 𝐷 = 0) denotes the distribution of potential outcomes and covariates in

the RCT.

We seek to estimate conditional average treatment effects for a finite set of 𝐼

subgroups {𝒢𝑖}𝐼𝑖=1. We assume subgroups are defined a-priori by a function 𝐺 : 𝒳 ↦→
{1, . . . , 𝐼}, such that 𝐺 = 𝑖 indicates that 𝑋 ∈ 𝒢𝑖. We use observational data precisely

because not all groups are supported on the RCT dataset. To this end, we use

ℐ𝑅 = {𝑖 : P(𝐺 = 𝑖 | 𝐷 = 0) > 0} to denote the set of subgroups supported on the RCT

dataset, and we let ℐ𝑂 denote the complement {1, . . . , 𝐼} ∖ ℐ𝑅. We use |ℐ𝑅| to denote

the cardinality of a set, and assume that every observational dataset has support for

all groups.
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Assumption 6.2.1 (Support). We assume that P(𝐺 = 𝑖,𝐷 = 𝑗) > 0 for all 𝑖 ∈
{1, . . . , 𝐼} and 𝑗 ∈ {1, . . . , 𝐽}, i.e., all observational datasets (𝐷 ≥ 1) have support

for all groups.

Definition 6.2.1 (Validation and Extrapolated Effects). We define the group average

treatment effect (GATE)3 as

𝜏𝑖 :=

⎧
⎪⎨
⎪⎩
E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 0], if 𝑖 ∈ ℐ𝑅

E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 1], if 𝑖 ∈ ℐ𝑂
(6.1)

and refer to 𝜏𝑖 for 𝑖 ∈ ℐ𝑅 as a validation effect, and 𝜏𝑖 for 𝑖 ∈ ℐ𝑂 as an extrapolated

effect.

Here, we focus on discrete subgroups, in part to reflect the practical reality of

comparing RCTs to observational studies, where we may have large observational

datasets with rich covariates but only have access to the published results of the RCT,

which often provides estimates (with confidence intervals) for subgroup effects but

not the raw data itself [254, Figure 4, for example]. In Def. 6.2.1, we allow for the

fact that different datasets may have different distributions of effect modifiers. To

have a well-defined effect of interest, we have chosen the reference dataset 𝐷 = 1

arbitrarily, but in principle we could choose any of the observational datasets. We

discuss further nuances of this definition under Assumption 6.2.3. By Def. 6.2.1, we

often write these effects as a vector 𝜏 ∈ R𝐼 . We use 𝜏(𝑘) ∈ R𝐼 to denote an estimator,

where 𝑘 ∈ {0, . . . , 𝐾}, with 𝜏(0) reserved to denote the estimator derived from the

RCT data. The remainder are observational estimators.4 In general, we use “hat”

notation to refer to estimators, and refer to their population quantities without a hat.

We use 𝑁𝑘 to denote the number of samples used by each estimator. Throughout, we

will assume that the RCT estimator is consistent.

3We use this term in line with the literature [49, 128, 199, 241] and to distinguish it from the
CATE function.

4We define 𝜏(0) as a vector in R𝐼 for simplicity of notation, allowing the entries 𝜏𝑖(0), 𝑖 ∈ ℐ𝑂 to
be arbitrary.
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Assumption 6.2.2. The RCT estimator 𝜏(0) is a consistent estimator of the (sup-

ported) dimensions of 𝜏 , such that for each 𝑖 ∈ ℐ𝑅, 𝜏𝑖(0) is consistent for 𝜏𝑖.

Below, our central assumption states that at least one observational estimator

also enjoys consistency. We discuss examples of specific observational estimators in

Section 6.2.2.

Assumption 6.2.3. There exists at least one observational estimator 𝜏(𝑘) ∈ R𝐼 ,

𝑘 ≥ 1 that is a consistent estimator of 𝜏 ∈ R𝐼 , such that for each 𝑖 ∈ {1, . . . , 𝐼}, 𝜏𝑖(𝑘)
is consistent for 𝜏𝑖.

Remark 6.2.1. Assumption 6.2.3 is our primary non-trivial assumption, and in Ap-

pendix D.2, we give one example of causal assumptions (for a given observational

study) under which the entire GATE vector 𝜏 is identifiable from observational data,

and give an estimator of the resulting observational quantity which is asymptotically

normal [203, 204, 202, 64, 66]. In order to compare observational estimates with exper-

imental ones, Assumption 6.2.3 requires not only that the observational data is free of

confounding, but also that the causal effect can be transported to the RCT population.

This can be done so long as relevant effect modifiers are observed in both the RCT

and observational study, but the latter requirement is satisfied automatically (without

requiring RCT data) if e.g., treatment effects are constant within each subgroup 𝐺,

or if the distribution of effect modifiers is the same between the RCT and observa-

tional study, in which case E[𝑌1 − 𝑌0 | 𝐷,𝐺] = E[𝑌1 − 𝑌0 | 𝐺]. This represents one

(conservative) failure mode of our approach, in which we may reject an observational

estimator due to failures in transportability, even if it yields unbiased estimates of the

extrapolated effects. Additionally, as we note in Appendix D.1, adversarial cases exist

where an observational estimator produces correct estimates of the validation effects,

but yields incorrect estimates of the extrapolated effects, an inevitable limitation of

any approach that seeks to use RCT data to validate observational effects.

Assumptions 6.2.2 and 6.2.3 imply that there exists an observational estimator

𝜏(𝑘) such that both 𝜏𝑖(𝑘) and the RCT estimate 𝜏𝑖(0) are both consistent for the

validation effects 𝜏𝑖, ∀𝑖 ∈ ℐ𝑅. To validate this implication in finite samples, we will
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construct a statistical test to compare 𝜏𝑖(𝑘) and 𝜏𝑖(0). Our general approach could

be modified to use any valid test, but to facilitate further analysis, as well as explicit

construction of confidence intervals, we additionally assume the following:

Assumption 6.2.4. All GATE estimators are pointwise5 asymptotically normally

distributed.
√︀
𝑁𝑘(𝜏𝑖(𝑘)− 𝜏𝑖(𝑘))/�̂�𝑖(𝑘) 𝑑→ 𝒩 (0, 1) (6.2)

for all 𝑘 ∈ {0, , ..., 𝐾}, and for all 𝑖 in ℐ𝑅 if 𝑘 = 0 (the RCT estimator), and otherwise

for all 𝑖 ∈ ℐ𝑅 ∪ ℐ𝑂. Here, 𝑑→ denotes convergence in distribution, and �̂�2
𝑖 (𝑘) is an

estimate of the variance that converges in probability to 𝜎2
𝑖 (𝑘), the asymptotic variance

of
√
𝑁𝑘(𝜏𝑖(𝑘)− 𝜏𝑖(𝑘)).

Assumption E.7.1 requires each estimator 𝜏(𝑘) to be consistent and asymptotically

normal for some 𝜏(𝑘), which may not be equal to 𝜏 . This is not a particularly strong

assumption, as we discuss below.

6.2.2 Asymptotic Normality of Biased Estimators

In this section, we give two simple examples to illustrate the principle that multiple

estimators 𝜏(𝑘) may be asymptotically normal, even if they are asymptotically biased

(i.e., 𝜏(𝑘) ≠ 𝜏). In both cases, there is a distinction between the statistical assumptions

required to obtain asymptotic normality, and the causal assumptions required for 𝜏(𝑘)

to identify the causal effect 𝜏 . For simplicity in both examples, we restrict to the

setting of comparing one-dimensional estimates 𝜏(𝑘) ∈ R, which estimate the GATE,

𝜏 , in a single group 𝐺 = 1 covered by all datasets. The statistical claims here also

extend to GATE estimation with multiple groups [241].

Example 6.2.1 (Variation in confounding across datasets). Suppose that there is one

estimator of the GATE per observational dataset, and each estimator seeks to estimate

the population quantity, 𝜏(𝑘) = E[𝑔𝑘(1, 𝑋𝑘) − 𝑔𝑘(0, 𝑋𝑘) | 𝐺 = 1, 𝐷 = 𝑘], where 𝑋𝑘

denotes the controls used in each study, and 𝑔𝑘(𝐴,𝑋𝑘) := E[𝑌 | 𝐴,𝑋𝑘, 𝐷 = 𝑘] and

5Here, “pointwise” refers to the fact that each subgroup effect estimate is asymptotically normal.
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𝑚𝑘(𝑋𝑘) := P(𝐴 = 1 | 𝑋𝑘, 𝐷 = 𝑘). We assume that 𝜂 < 𝑚𝑘(𝑥) < 1− 𝜂 for some 𝜂 > 0

for all 𝑥, 𝑘. Note that 𝜏(𝑘) is only a statistical quantity: identifying this with the

causal quantity (the GATE) requires additional assumptions like unconfoundedness,

that 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋𝑘 for the given dataset 𝐷. This assumption may hold for some

datasets, but not others, particularly if the set of observed confounders 𝑋𝑘 differs

across datasets.

Regardless of the interpretation of 𝜏(𝑘), one can construct estimators of it that are

consistent and asymptotically normal using flexible machine learning estimators.6 One

approach, given in Chernozhukov et al. [50], is to use double machine learning (DML),

which employs cross-fitting to produce estimates 𝜏(𝑘) based on the doubly-robust

score [221], while using plug-in estimates 𝑔𝑘, �̂�𝑘 based on machine learning models.

This approach achieves asymptotic normality,
√
𝑁𝑘(𝜏(𝑘) − 𝜏(𝑘))/�̂�2(𝑘)

𝑑→ 𝒩 (0, 1),

under regularity conditions that allow for flexible machine learning estimators that

converge at slower than parametric rates, and where �̂�2(𝑘) converges in probability to

the variance of the doubly robust score [See Theorem 5.1 of 50, for additional details].

These results hold whether or not 𝜏(𝑘) = 𝜏 , as discussed in Footnote 9 of Chernozhukov

et al. [50]. For simplicity, we have focused on the case where E[𝑌1 − 𝑌0 | 𝐺 = 1] is

constant across datasets. When this does not hold, certain conditions enable valid

transportation of treatment effects across datasets [66] with the use of transported

estimators [64] (see Appendix D.2 for details).

Example 6.2.2 (Selection of Adjustment Strategy). Consider the two causal graphs

given in Figure 6-3, and assume that all variables are binary. Each graph suggests

a different identification strategy for the causal effect, E[𝑌 | 𝑑𝑜(𝐴 = 𝑎), 𝐺 = 1]. In

Figure 6-1, this is identified by the (observational) quantity E[𝑌 | 𝐴 = 𝑎,𝐺 = 1],

and in Figure 6-2, by front-door adjustment [201] as
∑︀

𝑀 𝑃 (𝑀 | 𝑎,𝐺 = 1)
∑︀

𝐴′ P(𝑌 |
𝑀,𝐴′, 𝐺 = 1)P(𝐴′ | 𝐺 = 1).

These observational quantities will typically differ: the one that represents the

true interventional effect depends on which graph reflects the true causal structure.
6A rich literature focuses on establishing such results, beyond the approach in this example

[10, 80, 279, 191, 11].
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However, in the case where all variables are discrete and low-dimensional, we can

still construct asymptotically normal estimators for both observational quantities.7

For more complex settings (e.g., requiring regularized ML models for estimating

conditional distributions) asymptotic normality has been established under certain

conditions for general graphs [29, 136]

Remark 6.2.2. In each example, there are multiple estimators available, each asymptot-

ically normal under basic statistical assumptions, but potentially biased in the sense

that 𝜏(𝑘) ̸= 𝜏 . In the first example, this bias occurs if 𝑋 is not sufficient to control

for confounding in all observational datasets. In the second, this bias arises in a given

estimator if the causal graph is incorrectly specified. Assumption 6.2.3 corresponds to

assuming that both the statistical assumptions and causal assumptions hold for one of

the candidate estimators, e.g., 𝑋 is sufficient to control for confounding in at least one

study (Example 6.2.1), or that one of the causal graphs is correct (Example 6.2.2).

6.2.3 Asymptotic Normality of GATE Estimators with Trans-

portation

Example 6.2.1 assumes that E[𝑌1−𝑌0 | 𝐺 = 𝑖] is constant across datasets. In practice, it

may be necessary to correct for differences (not captured by group indicators) between

the observational and RCT populations. There exist estimators for the ATE in this

setting under mild additional assumptions [64, 61]. These extend in a straightforward

way to estimators of the GATE, but proving asymptotic normality is nuanced in

high-dimensional settings when using flexible machine learning methods to estimate

nuisance functions. For completeness, inspired by Semenova and Chernozhukov [241],

we demonstrate that a doubly-robust GATE estimator for this setting is asymptotically

normal under reasonable conditions (Assumption D.3.1 to D.3.5 in Appendix D.3).

Details on the estimator, and the corresponding proof of normality, are given in

Appendix D.3, and may be of independent interest.

7This follows from the use of maximum likelihood (i.e., empirical counts) for estimating each
conditional distribution, and applying the delta method to the front-door estimator.
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6.2.4 Testing for Bias under Asymptotic Normality

𝐴 𝑀

𝐺

𝑌

Figure 6-1

𝐴 𝑀

𝐺

𝑌

Figure 6-2

Figure 6-3: (Ex. 6.2.2) In (6-1), 𝑀 and 𝑌 are
confounded by unobservables (bi-directional dotted
arrow). In (6-2), 𝐴 and 𝑌 are confounded, but the
causal effect is identified via front-door adjustment.

Under Assumption E.7.1, each obser-

vational estimate 𝜏𝑖(𝑘) can be com-

pared to the estimate from the ran-

domized trial 𝜏𝑖(0) for 𝑖 ∈ ℐ𝑅, the

groups with common support. Since

the observational and randomized

datasets are distinct, we can con-

clude that each 𝜏𝑖(𝑘) is independent

of 𝜏𝑖(0), and use this to test for the

hypothesis that 𝜏𝑖(𝑘) = 𝜏𝑖.

Proposition 6.2.1. For an obser-

vational estimator 𝜏(𝑘), assume As-

sumptions 6.2.2 and E.7.1 hold. Fur-

thermore, let 𝑁 = 𝑁𝑘 +𝑁0 with fixed proportions, where 𝑁𝑘 = 𝜌𝑁,𝑁0 = (1− 𝜌)𝑁 for

𝜌 ∈ (0, 1). Define the test statistic

𝑇𝑁(𝑘, 𝑖) :=
𝜏𝑖(𝑘)− 𝜏𝑖(0)− 𝜇𝑖(𝑘)

𝑠
(6.3)

where 𝑠2 := �̂�2
𝑖 (𝑘)

𝑁𝑘
+

�̂�2
𝑖 (0)

𝑁0
is the estimated variance, and 𝜇𝑖(𝑘) := 𝜏𝑖(𝑘)− 𝜏𝑖. This test

statistic converges in distribution to a normal distribution as 𝑁 → ∞, 𝑇𝑁(𝑘, 𝑖)
𝑑→

𝒩 (0, 1).

We present the proof for Proposition 6.2.1 in Appendix D.4. This asymptotic

normality allows for the construction of simple hypothesis tests. For instance, one

can construct a Wald test for 𝐻0 : 𝜏𝑖(𝑘) = 𝜏𝑖, with asymptotic level 𝛼 by setting

𝜇𝑖(𝑘) = 0 in Equation (6.3) and rejecting 𝐻0 whenever, |𝑇𝑁(𝑘, 𝑖)| > 𝑧𝛼/2, where 𝑧𝛼/2

is the 1− 𝛼/2 quantile of the normal CDF. Moreover, the asymptotic power of this
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Algorithm 2 Extrapolated Pessimistic Confidence Sets
Input: Desired coverage 1− 𝛼. For each 𝑖 ∈ ℐ𝑅, RCT estimate 𝜏𝑖(0) and variance
�̂�2
𝑖 (0). For each 𝑖 ∈ ℐ𝑅 ∪ ℐ𝑂, 𝐾 candidate estimators 𝜏𝑖(𝑘) and variances �̂�2

𝑖 (𝑘).
Sample sizes 𝑁0, . . . , 𝑁𝐾 .
Initialize: Empty candidate set 𝒞 ← ∅
for 𝑘 = 1 to 𝐾 do

Compute 𝑇𝑁(𝑘, 𝑖),∀𝑖 ∈ ℐ𝑅, with 𝜇𝑖(𝑘) = 0 (Eq. 6.3)
if ∀𝑖 ∈ ℐ𝑅,

⃒⃒
⃒𝑇𝑁(𝑘, 𝑖)

⃒⃒
⃒ ≤ 𝑧𝛼/4|ℐ𝑅|, then 𝒞 ← 𝒞 ∪ {𝑘}

end for
for 𝑖 ∈ ℐ𝑂 do
�̂�𝑖 ← min𝑘∈𝒞 �̂�𝑖(𝑘)(𝛼/2) and �̂�𝑖 ← max𝑘∈𝒞 �̂�𝑖(𝑘)(𝛼/2) (Eq. 6.5)

end for
Return: �̂�𝑖, �̂�𝑖 for each 𝑖 ∈ ℐ𝑂.

test (the probability of correctly rejecting 𝐻0) is given by

1− Φ

(︂
𝜇𝑖(𝑘)

𝜎𝑘,0
+ 𝑧𝛼/2

)︂
+ Φ

(︂
𝜇𝑖(𝑘)

𝜎𝑘,0
− 𝑧𝛼/2

)︂
(6.4)

where 𝜎2
𝑘,0 :=

𝜎2(𝑘)𝑖
𝑁𝑘

+
𝜎2
𝑖 (0)

𝑁0
[see Theorems 10.4, 10.6 of 284]. Likewise, Assumption E.7.1

implies an asymptotic 1− 𝛼 confidence interval for 𝜏𝑖(𝑘) as

[�̂�𝑖(𝑘)(𝛼), �̂�𝑖(𝑘)(𝛼)] :=

[︂
𝜏𝑖(𝑘)−

𝑧𝛼/2 · �̂�𝑖(𝑘)√
𝑁𝑘

, 𝜏𝑖(𝑘) +
𝑧𝛼/2 · �̂�𝑖(𝑘)√

𝑁𝑘

]︂
(6.5)

6.3 Meta-Algorithm for Conservative Extrapolation

In this section, we more formally introduce our algorithm (Algorithm 2). There are

two primary steps: falsification of estimators, and combination of confidence intervals.

First, we attempt to falsify candidate estimators via hypothesis testing, rejecting

estimator 𝑘 whenever we are able to reject the null hypothesis 𝐻0 : 𝜏𝑖(𝑘) = 𝜏𝑖,∀𝑖 ∈ ℐ𝑅.

We use Bonferroni correction to control the false positive rate of the test. For the

combination of confidence intervals, while we are unlikely to reject the “correct”

estimator if one exists (Assumption 6.2.3), we may be unable to reject all “incorrect”

(i.e., biased) estimators. This motivates the combination of confidence intervals (for

the extrapolated effects) of the accepted estimators by taking the maximum and
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minimum bounds over all such intervals. Our main result characterizes the properties

of our procedure, with proof in Appendix D.4.

Theorem 6.3.1 (Properties of Algorithm 2). Under Assumptions 7.2.1 and 6.2.2,

the output of Algorithm 2 has the following asymptotic properties as 𝑁 →∞, where

𝑁 denotes the total sample size, and the samples used for all estimators are of the

same order 𝑁𝑘 = 𝜌𝑘𝑁0,∀𝑘 ≥ 1, for some 𝜌𝑘 > 0.

1. Under Assumptions 6.2.3 and E.7.1, for each 𝑖 ∈ ℐ𝑂,

lim
𝑁→∞

P(𝜏𝑖 ∈ [�̂�𝑖, �̂�𝑖]) ≥ 1− 𝛼 (6.6)

2. Under Assumption E.7.1, for each estimator where 𝜏𝑖(𝑘) ̸= 𝜏𝑖 for some 𝑖 ∈ ℐ𝑅,

lim
𝑁→∞

P(𝑘 ∈ 𝒞) = 0 (6.7)

The first point says that for each extrapolated effect 𝜏𝑖, the coverage of the final

confidence interval [�̂�𝑖, �̂�𝑖] is at least 1−𝛼 in the limit. It follows from Assumption 6.2.3

and E.7.1 that at least one estimator provides intervals [�̂�𝑖(𝑘)(𝛼/2), �̂�𝑖(𝑘)(𝛼/2)] that

achieve asymptotic coverage of 1−𝛼/2. The result follows from our choice of threshold

for the significance test as well as application of union bounds. The second point says

that we will reject estimators that are not consistent for the validation effects, in the

limit. Assumption E.7.1 ensures that Proposition 6.2.1 holds for all estimators, so

that this rejection is a consequence of the asymptotic power in Equation (6.4), going

to 1 for a fixed bias as 𝑁 →∞.

Remark 6.3.1. Equations (6.4) and (6.5) are useful for building further intuition. All

of the candidate confidence intervals shrink at a rate of 𝑂(1/
√
𝑁) as the overall sample

size increases. For sufficiently large 𝑁 , the width of our generated intervals will depend

largely on our power to reject biased estimators, which will be higher for observational

estimates with larger biases for validation effects.
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6.4 Semi-Synthetic Experiments

6.4.1 Setup of Simulation

We generate semi-synthetic RCTs and observational datasets with covariates from

the Infant Health and Development Program (IHDP), a randomized experiment on

premature infants assessing the effect of home visits from a trained provider on the

future cognitive performance [37]. The outcomes are simulated. Our data generation is

based on the partial IHDP dataset used in [118], which includes 𝑛0 = 985 observation,

28 covariates, and a binary treatment variable. We construct a scenario where there are

four subgroups, defined by the infant’s birth weight and maternal marital status: (high

[≥ 2000g], married), (low [< 2000g], married), (high, single) and (low, single), which

we shorthand as HM, LM, HS and LS. We include all subgroups in the observational

studies, but exclude the latter two subgroups for the simulated RCT (i.e. only infants

with married mothers are in the RCT). This mimics a scenario where only infants

with married mothers are recruited into the RCT.

For each simulated dataset, we generate 1 RCT and 𝐾 observational studies. For

the observational studies, we resample the rows of the IHDP dataset to the desired

sample size 𝑛 = 𝑟 ·𝑛0. We performed weighted sampling to induce a different covariate

distribution for observational studies, such that male infants, infants whose mothers

smoked, and infants whose mothers worked during pregnancy are less prevalent.

Then, we introduce confounding in the observational data, generating 𝑚𝑐 continuous

confounders and 𝑚𝑏 binary confounders. Finally, we simulate outcomes in each

dataset, modifying the response surface given in Hill [118]. In our experiments,

we may choose to conceal some confounders in each observational study to mimic

unobserved confounding, denoting the number of concealed variables across the

𝐾 studies as cz = (𝑐𝑧1, 𝑐𝑧2, ..., 𝑐𝑧𝐾). For further details on confounder generation,

outcome simulation, and confounder concealment, see Appendix D.6. Data generation

parameters include 𝐾, 𝑟, 𝑚𝑐, 𝑚𝑏, cz, and the significance level 𝛼. By default, we

set 𝐾 = 5, 𝑟 = 10, 𝑚𝑐 = 4, 𝑚𝑏 = 3, cz = (0, 0, 2, 4, 6), and 𝛼 = 0.05. The full

hyperparameter search is provided in Appendix D.6, and details of hyperparameter
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tuning can be found in Appendix D.3.

6.4.2 Implementation and Evaluation of Meta-Algorithm

To implement Algorithm 2, we first obtain GATE estimates for the four subgroups

and their estimated variances in each observational study, combining techniques from

the DML and trasportability literature [241, 64]. Estimation details are shown in

Appendices D.2 and D.3. For the RCT, we stratify the data into the subgroups HM,

LM and estimate the GATEs as the difference of mean outcomes between the treated

and untreated. The 𝑧 tests in Algorithm 2 are applied to both GATE estimates in the

HM and LM subgroups (|ℐ𝑅| = 2), and the significance level of the tests is set at 𝛼/4.

We evaluate performance using two main metrics: (1) the coverage probability of the

output confidence intervals (ideally at least 1−𝛼), and (2) the width of the confidence

intervals (narrower is better). In addition to assessing the intervals produced by

Algorithm 2, which we call Extrapolated Pessimistic Confidence Sets (ExPCS), we will

evaluate intervals produced by a variant of our algorithm, called Extrapolated Optimistic

Confidence Sets (ExOCS). In ExOCS, after falsifying estimators, we combine confidence

intervals using a random-effects meta-analysis on the non-falsified observational studies.

We compare ExPCS and ExOCS against two baselines. Meta-Analysis is a random-

effects meta-analysis on all observational studies, as described in Section 6.6, with

heterogeneity variance estimated via the DerSimonian-Laird moment method [68].

This baseline is the current standard for aggregating observational study results. The

second baseline, Simple Union, uses the maximum upper bound and minimum lower

bound of the 1 − 𝛼 confidence intervals across all observational studies, with no

falsification procedure.8

8Note that Simple Union combines 1−𝛼 confidence intervals, while our approach combines 1−𝛼/2
confidence intervals to account for the probability of rejecting the “correct” estimator, if one exists.
As a result, Simple Union intervals do not always strictly cover the intervals produced by ExPCS.
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6.4.3 Results

We perform three semi-synthetic experiments to assess the performance of our proposed

meta-algorithm under different scenarios. The first experiment applies our algorithm

under the default settings given in Section 6.4.1. In the second experiment, we vary the

sample size ratio between the observational studies and the original RCT, 𝑟, from 1 to

10. In the third experiment, we vary the proportion of biased observational studies by

setting cz to be (0, 0, 0, 0, 0), (0, 0, 0, 0, 3), (0, 0, 0, 3, 3) or (0, 3, 3, 3, 3), corresponding

to 0, 1, 2, 4 studies being biased out of a total of 5 observational studies. Results for

the latter two experiments are shown over 100 simulations of the datasets. Results

for all experiments are shown in Figures 6-4, 6-5, and Figure D-4 in Appendix D.7,

respectively. We observe the following:

Meta-algorithm produces confidence intervals that cover the true GATE with nomi-

nal probability : We demonstrate in Figure 6-4 the application of our meta-algorithm

(ExPCS ), a variant of it (ExOCS ), and two other baselines on one dataset. Our

goal is to produce narrow confidence intervals that still cover the true GATEs in the

extrapolated subgroups. The confidence intervals of ExPCS cover the true GATEs in

the extrapolated subgroups with reasonable widths. In contrast, intervals produced

by Meta-Analysis fail to cover the true GATE in both extrapolated subgroups due

to the false assumption of unbiasedness across all studies. The ExOCS approach

produces narrow intervals for the extrapolated effects, though it barely covers the true

effect in the HS subgroup. This hints at the need for a conservative combination of

non-falsified studies. However, an overly conservative approach (e.g. Simple Union)

produces wide intervals that may be of little use for meaningful inference.

Although Meta-Analysis produces confidence intervals with inadequate coverage,

its intervals for the married subgroups still have considerable overlap with the intervals

produced by the RCT. This suggests that testing the meta-analyzed GATE estimates

against the RCT GATE estimates may not be enough to demonstrate their validity.

Compared to our ExPCS intervals, the lower bounds of the Simple Union intervals are

higher in several subgroups, since we use a higher confidence level for the candidate
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Figure 6-4: The confidence intervals for group average treatment effects (GATE) within
the four subgroups output by our algorithm (ExPCS ), our algorithm variant (ExOCS ),
random-effects meta-analysis on all observational studies (Meta-Analysis), simple union
bound on all observational studies (Simple), and RCT, for one dataset generated using
the default parameter settings laid out in Section 6.4.1. LM, HM, LS, HS represent four
subgroups defined in Section 6.4.1

intervals corresponding to each study to account for probable error in study falsification.
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Figure 6-5: Coverage probabilities of confidence intervals shown as a function of the size
of the observational studies relative to the RCT. Dotted red lines stand for 95% coverage.
Vertical bars are the 95% confidence intervals of the coverage probabilities.

An analysis of increasing observational study size: In Figure 6-5, we find that
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Mean width of 95% confidence intervals

Upsampling ratio

Group Estimator 1 3 5 10

LS
ExPCS 21.00 9.51 5.53 3.58

Simple 21.00 10.20 6.95 5.69

HS
ExPCS 25.00 8.29 5.36 4.34

Simple 26.00 9.15 6.90 6.33

Table 6.1: Note that this table should be interpreted in conjunction with Figure 6-5,
which shows the coverage probabilities of confidence intervals as a function of the size of
the observational studies relative to the RCT. LS / HS stand for groups with low / high
birth weight and single mother. Between ExPCS and Simple, both of which have adequate
coverage, ExPCS generally has narrower intervals.

the coverage of the Meta-Analysis intervals is quite low across all sample sizes and

particularly decreases at higher sample sizes. This result is intuitive, as three out of

five studies are biased, meaning that meta-analysis will converge to a biased estimate

as the amount of data increases. One could attempt to fix this issue through ExOCS,

which does meta-analysis after falsification. However, ExOCS has poor coverage

when the sample size of the observational studies is small, since the falsification tests

are underpowered (evidenced by the high probability of selecting biased studies in

Appendix D.7, Table D.2). Both ExPCS and the Simple Union intervals have adequate

coverage across all sample sizes. However, the widths of the intervals reported at the

bottom of Table 6.1 show that ExPCS intervals are narrower when there is adequate

power, i.e. at higher sample sizes. Ultimately, ExPCS will tend to provide intervals

that cover the true effect regardless of sample size, and in the case we have sufficient

power, these intervals will both have good coverage and narrower width, allowing for

more meaningful inference.
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6.5 Women’s Health Initiative (WHI) Experiments

In order to assess our approach in a real-world setting, we use clinical trial and

observational data available from the WHI. Each subgroup is supported in both RCT

and observational data, which proves useful for evaluation. At a high level, we “hide”

some number of subgroups from the RCT, estimate a confidence interval of the effect

estimate using our algorithm on the remaining data, and compare the result to the

hidden RCT estimate. We do this over a large set of possible “held-out” subgroups,

yielding >2000 different scenarios on which to test our approach. Because the original

observational datasets replicate the RCT results fairly well using standard methods, we

create additional “biased” datasets by sub-selecting the original observational dataset

in a way that induces selection bias. We evaluate each method, for each held-out

subgroup, according to the length of the intervals as well as coverage of the RCT point

estimates. Below, we describe the specifics of the data, the experimental setup, and

the main results of the analysis. For additional details on data preprocessing, setup,

and evaluation, see Appendix D.5.

6.5.1 Setup

The Postmenopausal Hormone Therapy (PHT) trial, i.e. the RCT used in this

analysis, was run on postmenopausal women aged 50-79 years who had an intact

uterus. It studied the effect of hormone combination therapy on several types of

cancers, cardiovascular events, and fractures. The observational study (OS) was run

in parallel, had a similar follow-up time to the RCT, and tracked similar outcomes.

In our analysis, we use a composite outcome, where 𝑌 = 1 if any of the following

events are observed to occur in the first 7 years of follow-up, and 𝑌 = 0 otherwise:

coronary heart disease, stroke, pulmonary embolism, endometrial cancer, colorectal

cancer, hip fracture, and death due to other causes. This represents a binarization of

the “global index” time-to-event outcome from the original study, where 𝑌 = 0 could

also occur due to censoring. We establish treatment and control groups in the OS

based on explicit confirmation or denial of usage of both estrogen and progesterone in
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the first three years. We use only covariates measured in both the RCT and OS to

simplify analysis.

6.5.2 Evaluation

Our empirical evaluation consists of several steps. In the first step, we replicate the

principal results from the PHT trial, given in Table 2 of [229], by fitting a doubly

robust estimator (of the style given in Appendix D.3) on the WHI OS data. Then,

while treating the WHI OS dataset as the “unbiased” observational dataset, we simulate

additional “biased” observational datasets by inducing selection bias into the WHI OS.

The exact mechanism of selection bias and its clinical intuition is given in Appendix

D.5. Importantly, this is the only part of the evaluation that involves any simulation.

The second step is to construct a large suite of tasks on which to evaluate our

method, by considering different sets of validation-extrapolation subgroups. To

construct the subgroups, we consider all pairs of a selected set of binary covariates (see

Appendix D.5.6), where each pair defines four subgroups. For example, one covariate

pair is (“current smoker”, “currently drinks alcohol”). We treat two of the subgroups

as validation subgroups and two as extrapolated subgroups. For the latter groups, we

apply our algorithm without access to the RCT data, and only use the RCT data for

final evaluation. The total number of covariate pairs is 592, leading to 1184 distinct

“tasks” (i.e., extrapolated groups). For each task, we evaluate ExPCS (our method),

ExOCS, Simple, and Meta-Analysis (described in Section 6.4.2). Additionally, we

evaluate an “oracle” method, which is identical to ExPCS, except that it always

selects only the original observational study (i.e. the base WHI OS to which we have

not added any selection bias). For each method, we compute the following metrics,

averaged across all tasks:

• Length: length of the confidence interval

• Coverage: percentage of tasks where the interval covers the RCT point estimate

• Unbiased OS Percentage: the percentage of tasks where the ExPCS approach

retains the unbiased study after the falsification step.
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Coverage Length OS %

Simple 0.39 0.416 –
Meta-Analysis 0.03 0.260 –
ExOCS 0.28 0.058 –
ExPCS (ours) 0.45 0.081 0.99

Oracle 0.44 0.068 –

Table 6.2: Coverage, length, and unbiased OS % of ExPCS and baselines. ExPCS achieves
comparable coverage to the oracle method with highly efficient intervals. Additionally, we do
not reject the unbiased OS in 99% of the tasks.

6.5.3 Results

Table 7.1 reports the metrics above, averaged across all extrapolated subgroups.

Compared to the “simple” baseline, our approach has better coverage with much

shorter confidence intervals. Our falsification procedure retains the unbiased obser-

vational study 99% of the time, yielding near-oracle coverage rates, but produces

substantially shorter intervals than the “simple” baseline. Recall that the simple

baseline takes a union over all 1 − 𝛼 intervals estimated from each observational

dataset, while ExPCS takes a union of a smaller number of slightly wider (1− 𝛼/2)
confidence intervals.

Compared to the Meta-Analysis and ExOCS baselines, we achieve comparable (or

much better) length with substantially better coverage. In particular, compared to

meta-analysis, we achieve tighter intervals and also cover the RCT estimate with

higher frequency. This result is intuitive, since one will get a biased estimate if biased

observational studies are included in the meta-analysis. Additionally, conservatively

combining the non-falsified estimates (as opposed to ExOCS, which does a meta-

analysis on the non-falsified estimates) is important to achieve good coverage (0.45 vs

0.28).

We get comparable coverage and interval lengths to the oracle method. Our coverage

rate is nearly identical (0.45) to that of the oracle method (0.44), with intervals that

are marginally wider (0.081 vs. 0.068). Our slightly improved coverage is possible

due to the wider intervals. Note that our measure of “coverage” may be pessimistic,

because we track coverage of the RCT point estimate, as opposed to the true causal

effect (which is unknown), and the confidence intervals are designed to cover the latter.
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Indeed, we report the oracle method precisely as a means of providing a more suitable

comparison. Overall, our real-world results suggest that our method of falsification

followed by a conservative combination of intervals may be useful for biostatisticians

and clinicians when doing meta-analyses.

6.6 Related Work

Meta-analysis for combining observational estimates Among the quantitative

approaches for meta-analysis to account for potential bias, our Meta-Analysis baseline

is standard for meta-analysis of observational data [117] to account for heterogeneity.

Allowing for heterogeneity of treatment effects among studies produces wider confidence

intervals and thus more conservative inference. If additional study-level covariates

are available (e.g. study designs, drop-out rate), several approaches aim to adjust for

potential bias, either by modeling the bias magnitude [74, 289, 9, 100], down-weighting

studies with higher risk of bias [124, 187], or using Bayesian hierarchical regression

to account for difference between subgroups of studies [213, 285]. Our work differs

from these approaches, in that (1) we use information from outside the population of

interest to assess bias, and (2) we do not place any assumptions on the patterns of

bias across studies.

Partial identification and sensitivity analysis These methods seek to place

bounds on causal effects when they cannot be point-identified. Our method can be seen

as an alternative way of doing so, with a fundamentally different type of assumption.

Methods for partial identification rely on having discrete variables and a known causal

graph (typically including unobserved confounders) [72, Section 9]. Methods for

sensitivity analysis, on the other hand, translate assumptions about the strength and

nature of unobserved confounding into bounds on causal effects [224, 225, 295]. In

contrast, we do not make any such assumptions, e.g., we allow for continuous variables,

and when some candidate estimators are biased due to unmeasured confounding, we

do not place any limit a-priori on the bias.

Combining observational and experimental data Prior work has sought to
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combine RCTs and observational studies for the purpose of more precise estimation

of treatment effects [226, 227], or for the purpose of generalizing or transporting

estimates from RCTs to observational populations when overlap holds between the

two (see Degtiar and Rose [66] for a recent review). In contrast, our work is motivated

by settings where there are populations in the observational studies who are not at all

represented in trials, e.g., due to a lack of eligibility. Kallus et al. [137] also seek to

combine observational and experimental data to extrapolate beyond tfhe support of

an RCT. They propose to learn a CATE function on observational data, and then

learn a parametric additive correction term on the sample that overlaps between the

RCT and observational data. In contrast to this approach, we do not assume that

confounding can be corrected for, and instead seek to choose an observational estimate

(if one exists) that is already consistent for each sub-population.

Calibrating observational confidence intervals An alternative method for

calibration of confidence intervals for observational studies makes use of negative con-

trols [170], such as drug-outcome pairs known to have no causal relationship. Methods

range using uses these negative controls to form an empirical null distribution for

callibrated 𝑝-values[237], and Schuemie et al. [238] extend this approach to calibration

of confidence intervals. These techniques have been used in several large-scale observa-

tional studies such as the LEGEND-HTN study for comparing antihypertensive drugs

[258]. By contrast, our method does not assume the existence of negative controls,

but instead uses a form of positive control (i.e., validation effects), one that is based

on the same underlying treatment as the extrapolated effect.

6.7 Discussion and Limitations

We have presented a meta-algorithm that constructs conservative confidence intervals

for group average treatment effects of subgroups that are not represented in RCTs,

but are represented in observational studies. Under the assumption that there exists

at least one candidate estimator that is asymptotically normal and consistent for

both the validation and extrapolated effects, these intervals will achieve the correct
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asymptotic coverage of the true effect. However, our method is not without limitations.

Most notably, we may fail to reject the null hypothesis due to low power, e.g., when an

observational estimate 𝜏(𝑘) has high variance. In practice, we expect that our approach

will be most useful when the observational studies in question have large sample sizes,

leading to higher-precision estimates of potential bias, and smaller confidence intervals

on the extrapolated effects. Second, we may reject the null for reasons that are

unrelated to violations of causal assumptions; For instance, it may be the case that

𝑋 includes all relevant confounders, but that the distribution of 𝑋 differs between

the RCT and an observational study, such that both estimate the ATE correctly, but

for different populations. The latter issue could be addressed via a finer partition of

subgroups for the construction of validation effects, or via re-weighting approaches for

comparing effects from observational and randomized studies, as outlined in [62]. As

long as the resulting estimators are asymptotically normal, then our results would

still apply under re-weighting. Our hope is that methods such as ours will lead to

higher confidence in observational estimates when RCT data is available to falsify

observational studies that do not replicate known causal relationships. Finally, great

care should be taken to appropriately validate and soundly interpret the results of

our method in practice, especially with more sensitive subgroups (e.g. with respect to

race or gender).
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Chapter 7

Towards More Powerful Falsification

via Maximum Moment

Restriction-based Hypothesis Tests

Having introduced the paradigm of falsification in the prior chapter, it is worth showing

how such a procedure might be applicable in a CDSS. Whenever an oncologist selects

more than one treatment in the tool, we may use an ML model trained on observational

data to compute a causal effect estimate, e.g. difference in expected survival between

treatment A and treatment D, by simply inputing a different treatment in the model.

The result of our falsification procedure on these causal estimates can serve as an

additional sanity check or contextual information in the CDSS. In this chapter, we

build on this theme by exploring more powerful methods of falsification, enabling

more meaningful checks.

7.1 Introduction

Observational studies, prevalent in healthcare, economics, and other fields, are an

important source of real-world data used to derive granular treatment effect estimates

[60, 115, 127, 293]. Indeed, there has been a rich literature in building estimators of

heterogeneous treatment effects from observational data, particularly using modern
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machine learning methods [280, 152, 242]. However, observational studies may lack

internal validity in that estimates of causal effects (in the observational population) may

be biased or inconsistent, e.g., due to unobserved differences between the treatment and

control groups, such as in the setting of unobserved confounding. On the other hand,

observational studies are representative of more diverse populations, leading to more

plausible external validity, i.e., ability to generalize estimates across wider populations.

In contrast, Randomized Controlled Trials (RCTs) have strong internal validity,

assuming sound design (e.g. a prospective trial, a-priori definition of hypotheses to

be tested) and appropriate randomization. However, RCTs often have restrictive

inclusion criteria, which can call their external validity into question [67], and are of

limited size, limiting their ability to detect differences in treatment effect for specific

sub-populations, or detect differences in adverse event rates (if e.g., the adverse event

is rare) [266, 5, 208]. Intuitively, we would like to leverage observational data for

estimating treatment effects that cannot be reliably estimated using RCTs, whether

due to a lack of statistical power or a lack of patient diversity in the RCT. At the

same time, we would like to take advantage of the strong internal validity of the RCT

to increase confidence in our observational estimates.

With these considerations in mind, we study the problem of using limited RCT data

to “falsify” assumptions of internal and external validity for observational studies. Our

method can be applied even when the RCT data does not cover the entire observational

population, and hence cannot be used on its own to estimate causal effects. Assuming

that the RCT has internal validity, we show that assumptions of internal/external

validity of the observational study have a testable implication in the form of a set

of conditional moment restrictions (CMRs). We propose a falsification algorithm

that tests whether or not these CMRs hold, thereby providing an opportunity to

reject these assumptions when they fail to hold. This allows us to take advantage of

approaches developed in the econometrics literature for testing CMRs, and we use a

Maximum Moment Restriction (MMR)-based test [185] for this purpose.

Compared to prior work, the benefits of our approach are two-fold. First, we

implicitly check across all subpopulations of covariates 𝑋 for disagreement between the
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conditional average treatment effect (CATE) functions as estimated in the RCT versus

in the observational study. Second, as an additional benefit, our approach provides

an explanation for rejection, in the form of a “witness function”, which describes

subpopulations where these estimates diverge.

Importantly, in constructing the test for our problem, we use the insight that

not all differences between observational and experimental distributions matter. For

instance, there may be differences in unobserved baseline risk factors, which cause

estimates of individual potential outcomes to differ, but do not impact the causal

effect (the difference between control and treated outcomes). A naive MMR-based

test would asymptotically reject in this scenario, but we demonstrate that, by careful

construction of the MMR test statistic, we can avoid this failure case.

Our method can be compared to prior approaches to falsification of observational

studies. One such approach is to check for a statistically significant difference between

estimates of the average treatment effect (ATE) from the RCT and from the observa-

tional study [89, 60, 15]. Unfortunately, this approach can lead to false negatives, e.g.,

if the ATE from the observational study replicates the RCT ATE, despite biases on

finer-grained subpopulations. Furthermore, even if an observational study is correctly

“rejected”, the approach does not provide an explanation for why the observational

study was rejected, which is an important practical consideration for both statisticians

and policymakers. Another approach is to compare subgroup-level effects instead of

the ATE. Hussain et al. [120] adopt this approach in the context of testing (multiple)

observational estimates against RCT estimates, essentially testing for differences in

group-wise treatment effects. However, this approach requires correction for multiple

hypothesis testing across subgroups, and a-priori specification of these subgroups,

which can limit its ability to uncover areas of disagreement.

Contributions: We have the following desiderata for our falsification algorithm:

(i) rejecting observational studies when their underlying causal assumptions fail

(high power),

(ii) accepting in cases where these causal assumptions hold (controlled type I error),
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and

(iii) providing an explanation of why an observational study is rejected.

With these desiderata in mind, our main contributions are as follows:

(i) First, we show how to convert causal assumptions on internal and external validity

into a set of CMRs, violations of which can be detected using observational and

RCT data using existing techniques with theoretical guarantees.

(ii) Second, we demonstrate that our construction of these CMRs avoids a potential

failure mode: rejecting observational studies due to differences in unobserved

covariates that influence baseline outcomes, but not treatment effects.

(iii) Third, on semi-synthetic and real-world datasets, we show favorable performance

of our method with respect to power and type I error, and showcase its ability

to produce informative explanations of rejections.

7.2 Setup and Motivating Examples

7.2.1 Notation & Assumptions

Let 𝑌 ∈ 𝒴 be the outcome of interest, and 𝐴 ∈ {0, 1} denote a binary treatment

variable. We let 𝑌𝑎 denote the potential outcome under treatment 𝐴 = 𝑎, and we

use 𝑋 ∈ 𝒳 to denote the full set of covariates. Note that, in our development, we

operate in the setting where there is a single observational study and RCT. We use

an indicator variable, 𝑆 = {0, 1}, where 𝑆 = 1 denotes data from the observational

study and 𝑆 = 0 from the RCT.

To further characterize the observational study and RCT, we let ℐ0 and ℐ1 be

the observed indices for the RCT and observational study, respectively. Furthermore,

we let ℐ = ℐ0 ∪ ℐ1 be the total set of observed indices. We use |ℐ| to denote the

cardinality of a set, and let |ℐ0| = 𝑛0, |ℐ1| = 𝑛1, and |ℐ| = 𝑛. Finally, E[.] and P[.] are

expectations and probabilities taken with respect to the joint distribution P(𝑌,𝐴,𝑋, 𝑆)

of the observational study and RCT.
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Our goal is to discover violations of causal assumptions that underlie the validity of

conditional average treatment effect (CATE) estimates derived from the observational

study. To that end, we first state these assumptions formally.

Assumption 7.2.1 (Internal Validity of Observational Data). We assume the following

in the observational study:

• Ignorability — 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋, (𝑆 = 1), ∀𝑎 ∈ {0, 1}.

• Consistency — 𝐴 = 𝑎, 𝑆 = 1 =⇒ 𝑌𝑎 = 𝑌 , ∀𝑎 ∈ {0, 1}.

• Positivity of Treatment — P(𝑋 = 𝑥, 𝑆 = 1) > 0 =⇒ P(𝐴 = 𝑎|𝑋 = 𝑥, 𝑆 = 1) >

0, ∀𝑎 ∈ {0, 1} and ∀𝑥 ∈ 𝒳 .

Assumption 7.2.1 gives a standard set of assumptions under which the CATE

conditioned on 𝑋, E[𝑌1−𝑌0|𝑋 = 𝑥, 𝑆 = 1] can be identified. However, this assumption

is not testable in isolation. In order to compare observational estimates with those of

the RCT to discover flaws, we will first need to assume that the RCT itself provides

valid estimates.

Assumption 7.2.2 (Internal Validity of RCT ). We assume the following in the RCT:

• Ignorability — 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋, (𝑆 = 0), ∀𝑎 ∈ {0, 1}.

• Consistency — 𝐴 = 𝑎, 𝑆 = 0 =⇒ 𝑌𝑎 = 𝑌 , ∀𝑎 ∈ {0, 1}.

• Fixed probability of assignment — 𝑃 (𝐴 = 1|𝑋 = 𝑥, 𝑆 = 0) = 𝑝, for some 𝑝 ∈ (0, 1),

∀𝑥 ∈ 𝒳 .

Assumption 7.2.2 is a generally defensible (and standard) set of assumptions on

the validity of the RCT. However, even if both assumptions 7.2.1 and 7.2.2 hold, the

corresponding CATE functions are not necessarily comparable. For instance, there

may be unmeasured effect modifiers that have different distributions between the RCT

and observational study. Under the following additional assumption, the CATE in the

RCT (i.e., E[𝑌1 − 𝑌0 | 𝑋 = 𝑥, 𝑆 = 0]) can be identified using observational data.
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Assumption 7.2.3 (External Validity: Observational Study to RCT Transportability

of CATE ). We assume the following:

• Mean Exchangeability of Contrast — E[𝑌1 − 𝑌0|𝑋 = 𝑥] = E[𝑌1 − 𝑌0|𝑋 = 𝑥, 𝑆 = 𝑠],

∀𝑥 ∈ 𝒳 and ∀𝑠 ∈ {0, 1}.

• Positivity of Selection — P(𝑋 = 𝑥|𝑆 = 0) > 0 =⇒ P(𝑋 = 𝑥|𝑆 = 1) > 0, ∀𝑥 ∈ 𝒳 .

The first part of this assumption is sometimes referred to as “generalizability in

effect measure” [63] or “conditional exchangeability in measure” [65]. This assumption

is weaker than (and implied by) transportability of counterfactual means (e.g., E[𝑌𝑎 |
𝑋,𝑆] = E[𝑌𝑎 | 𝑋])1. It is simple to show that this assumption (along with our other

assumptions) is sufficient to identify the CATE in the RCT population using the

observational distribution alone.

Proposition 7.2.1. Under assumptions 7.2.1 and 7.2.3, the CATE of the RCT given

𝑋, E[𝑌1 − 𝑌0|𝑋,𝑆 = 0], is identifiable in the observational data by

E[𝑌 | 𝑋,𝐴 = 1, 𝑆 = 1]− E[𝑌 | 𝑋,𝐴 = 0, 𝑆 = 1] (7.1)

Proposition 7.2.1 follows from substantially the same arguments used by Dahabreh

et al. [63] for identification of average treatment effects under similar assumptions,

but we include a short proof in Appendix E.1 for completeness, alongside all other

proofs for this paper.

Remark 7.2.1. As we demonstrate later on, our statistical test does not distinguish

between violations of assumption 7.2.1 or assumption 7.2.3. However, violation of

either assumption is a meaningful finding when considering the credibility of causal

effects learned from observational data. For instance, even if the observational study

is free of unmeasured confounding (i.e., assumption 7.2.1 holds), there may exist

unmeasured effect modifiers whose distributions differ substantially across populations,

leading to a violation of assumption 7.2.3. In other words, if the true CATE function
1Equality relations including random variables are to be understood as “almost sure” (a.s.) relations

throughout the manuscript.
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varies substantially for individuals with the same covariates 𝑋 across the observational

and RCT populations, then it may not reliably generalize to future patients.

7.2.2 Motivation: Testing for Differences in Causal Contrasts,

rather than Counterfactual Means

When it is possible to identify a causal effect from an observational study, we would

prefer to avoid rejecting that study unnecessarily. This motivates assumption 7.2.3,

which holds even in the scenarios where counterfactual means in the RCT (e.g.,

the expected outcome under treatment E[𝑌1 | 𝑋,𝑆 = 0]) are not identifiable from

observational data, but where the causal contrast is identified.

This assumption is central to our testing methodology, as we test for a null

hypothesis that is satisfied under assumption 7.2.3, even when counterfactual means

are not transportable. We build intuition for this assumption in two ways. First, we

give a structural causal model that formalizes a sufficient condition for this assumption

to hold. Second, we give concrete examples of where this assumption appears to

(approximately) hold in practice.

Example 7.2.1. Let 𝑈 be a set of variables that are unobserved in both the RCT

and observational data. Suppose 𝑌 is generated according to the following structural

equation, with binary treatment 𝐴 and observed covariates 𝑋

𝑌 = 𝑔(𝑋,𝑈) + 𝜏(𝑋) · 𝐴+ 𝜖0, (7.2)

where 𝜖0 is an independent mean-zero random variable (E[𝜖0] = 0 and 𝜖0 ⊥⊥ 𝑋,𝑈,𝐴, 𝑆)

and where 𝑃 (𝑈 | 𝑋,𝑆 = 1) ̸= 𝑃 (𝑈 | 𝑋,𝑆 = 0).

In example 7.2.1, 𝑌0 = 𝑔(𝑋,𝑈)+𝜖0 is influenced by both 𝑋 and a set of unobserved

baseline characteristics 𝑈 . As a result, the conditional counterfactual mean E[𝑌0 |
𝑋,𝑆] = E[𝑔(𝑋,𝑈) | 𝑋,𝑆] will generally differ across studies, due to the fact that the

distribution of 𝑈 varies across studies. The conditional average treatment effect, on

the other hand, is independent of 𝑈 and 𝑆, as E[𝑌1 − 𝑌0 | 𝑋] = 𝜏(𝑋). This quantity

163



is purely a function of 𝑋, satisfying our assumption that the CATE does not depend

on 𝑆.2

This scenario is plausible in real-world settings, where the treatment effect is a

function of a subset of variables that influence the outcome 𝑌 . For a real-world

example, consider the SPRINT Trial [253], which studies the impact of intensive blood

pressure control (𝐴) on a composite outcome (𝑌 ) that includes heart failure and death.

Here, previous chronic kidney disease (CKD) is a variable, like 𝑈 , that has a substantial

impact on the outcome 𝑌0 under no treatment (as reported in Figure 4 of SPRINT

Research Group [253]), but does not have a (statistically) significant influence on the

treatment effect itself (i.e., 𝜏(𝑋) in the example above). We discuss this example and

other examples of real-world motivation in more detail in Appendix E.2.

7.3 MMR-based Falsification Tests

Next, we observe that assumptions 7.2.1 to 7.2.3 have observable implications on

the joint RCT and observational data in the form of a (set of) conditional moment

restrictions. As a result, if these restrictions fail to hold, then this implies a violation

of the underlying causal assumptions. This suggests a hypothesis-testing approach

for detecting violations, which we develop in this section. Notably, the resulting

hypothesis test looks for differences between the CATE functions estimated from the

RCT and observational studies, but does not test for equality of conditional potential

outcomes themselves. This is motivated from our prior discussion, that conditional

means of potential outcomes (e.g., E[𝑌0 | 𝑋]) could differ between the RCT and

observational data, even when the CATE function itself is identified.

7.3.1 CATE Estimation

The crux of our methodology is to use the CATE estimate from the RCT as a proxy for

the true CATE function to falsify or validate an observational estimate. To that end,
2The constant treatment effect for individuals with the same 𝑋 is not necessary, and merely helps

simplify notation. One could make a similar observation with 𝜏(𝑋, 𝜖𝜏 ) for an additional noise variable
𝜖𝜏 that is independent of 𝑈, 𝑆.
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we first construct an unbiased CATE estimator from RCT data. Since the probability

of assignment to each treatment is known by design in RCTs, we can use an IPW-style

estimator for the CATE. Similar estimators can be found in standard causal inference

textbooks (e.g. Ch. 2 of [114]). A “doubly robust” variant can be used, but if the

outcome model is misspecified, this may result in higher variance and a loss of power

in our test. Thus, we first define the following “signal” function,

𝜓0 =
1 {𝑆 = 0}

𝑃 (𝑆 = 0 | 𝑋)
𝑌

×
(︂

1 {𝐴 = 1}
𝑃 (𝐴 = 1 | 𝑆 = 0)

− 1 {𝐴 = 0}
𝑃 (𝐴 = 0 | 𝑆 = 0)

)︂
, (7.3)

and then observe that the conditional expectation of this signal E[𝜓0 | 𝑋] is equal to

the CATE in the RCT population, using data from the RCT alone.3

Proposition 7.3.1 (CATE signal from the RCT ). Under assumption 7.2.2, the

instance-wise CATE signal 𝜓0 in Equation (7.3), which uses the outcome information

from the RCT, is unbiased, i.e., E[𝜓0|𝑋] = E[𝑌1 − 𝑌0|𝑋,𝑆 = 0].

Next, we wish to develop a distinct estimate of the CATE in the RCT population,

but one which makes use of the observational data. The first step in building such an

estimator is to identify, under our causal assumptions, the corresponding statistical

estimand, i.e. Equation (7.1) in Proposition 7.2.1. Our goal is to check the validity of

this estimand, which amounts to challenging assumptions 7.2.1 and 7.2.3. Drawing

from existing literature [63, 65, 67], we employ the following doubly robust signal,

3Note the use of the indicator 1 {𝑆 = 0}, such that 𝜓0 only depends on data from the RCT itself,
even though we take the conditional expectation over the combined sample.
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which combines response surface modeling and inverse probability weighting (IPW):

𝜓1 =
1

𝑃 (𝑆 = 0 | 𝑋)

[︂
1 {𝑆 = 0}

(︀
𝜇1(𝑋)− 𝜇0(𝑋)

)︀
⏟  ⏞  
Response Surface Signal

+ 1 {𝑆 = 1} 𝑃 (𝑆 = 0 | 𝑋)

𝑃 (𝑆 = 1 | 𝑋)

(︂
1 {𝐴 = 1} (𝑌 − 𝜇1(𝑋))

𝑃 (𝐴 = 1 | 𝑆 = 1, 𝑋)⏟  ⏞  
IPW Signal

− 1 {𝐴 = 0} (𝑌 − 𝜇0(𝑋))

𝑃 (𝐴 = 0 | 𝑆 = 1, 𝑋)⏟  ⏞  
IPW Signal

)︂]︂
, (7.4)

where 𝜇𝑎(𝑋) := E[𝑌 | 𝐴 = 𝑎,𝑋, 𝑆 = 1].

Proposition 7.3.2 (CATE signal from the observational data). Under Assump-

tions 7.2.1 and 7.2.3, the instance-wise CATE signal 𝜓1 in Eq. 7.4, which uses the

outcome information from the observational data, is unbiased for the CATE in the

RCT population, i.e., E[𝜓1|𝑋] = E[𝑌1 − 𝑌0|𝑋,𝑆 = 0].

We are now ready to give the core result of this section, connecting our causal

assumptions to the null hypothesis of the statistical test that we will develop in the

next section.

Corollary 7.3.1 (Null Hypothesis on Signal Difference). Define 𝜓 = 𝜓1 − 𝜓0 as the

instance-wise signal difference between the observational and RCT CATE estimates.

Then, under the null hypothesis, i.e. under assumptions 7.2.1 to 7.2.3, we have it that

E[𝜓|𝑋] = 0.

Proof. If assumptions 7.2.1 to 7.2.3 hold, then Propositions 7.3.1 and 7.3.2 imply that

E[𝜓0|𝑋] = E[𝜓1|𝑋] = E[𝑌1 − 𝑌0|𝑋,𝑆 = 0].

Remark 7.3.1. Note that by Corollary 7.3.1, violation of the conditional moment

restrictions imply that one or more of our assumptions is incorrect, including the

internal validity assumptions on the RCT. If we are willing to independently assume

that the RCT is internally valid, then violation of the CMRs implies a violation of one

or both of the internal and external validity assumptions on the observational data.

166



7.3.2 Conditional Moment Restriction (CMR) Formulation

and Maximum Moment Restriction-based (MMR) Tests

For a practical approach to testing, we leverage the rich literature on conditional

moment restriction (CMR) tests. Several examples exist of CMRs being used to

express restrictions on functions of the data. One such example is using CMRs to

reformulate instrumental variable (IV) regression [298]. However, to our knowledge,

using CMRs to compare RCT and observational data as described in this paper has

not been previously explored. We present the CMR-version of the null hypothesis in

the following proposition:

Proposition 7.3.3 (Null Hypothesis, CMR). Under Assumptions 7.2.1 to 7.2.3, we

have a set of conditional moment restrictions (CMRs) on the signal difference, 𝜓:

𝐻0 : E[𝜓|𝑋] = 0 𝑃𝑋-almost surely, (7.5)

where 𝑃𝑋 is the distribution of 𝑋 on the joint distribution of the RCT and observational

study. Equation (7.5) implies an infinite set of unconditional moment restrictions,

E[𝜓𝑓(𝑋)] = 0,∀𝑓 ∈ ℱ , where ℱ is the set of measurable functions on 𝒳 .

The core part of Proposition 7.3.3 is in showing how we can formulate the CMR

given our assumptions, while the second part of the statement is straightforward and

follows directly from the law of iterated expectation. Testing CMRs is challenging

because an infinite number of equivalent unconditional moment restrictions (UMR)

must be considered. Thus, we follow a method proposed by Muandet et al. [185],

where ℱ in Proposition 7.3.3 is set to be a reproducing kernel Hilbert space (RKHS).

They further show that using the maximum moment restriction (MMR) within the

unit ball of the RKHS as the test statistic fully captures the original set of CMRs and

also has a closed-form expression that can be easily implemented. However, note that

here we are directly testing the CMRs, while Muandet et al. [185] consider testing

hypotheses on statistical parameters that imply CMRs, which leads to a larger set of

assumptions on the parameters. Therefore, in the following, we state the hypothesis
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test with respect to the MMR test statistic and the assumptions required for our use

case. A proof showing that these assumptions suffice for the properties of the test to

hold is provided in Appendix E.1. This main result will hold for a particular class of

kernels, which we define here:

Definition 7.3.1 (Integrally strictly positive definite (ISPD)). A kernel 𝑘(·, ·) :𝒲 ×
𝒲 → R is integrally strictly positive definite if for all 𝑓 : 𝒲 → R satisfying 0 <

‖𝑓‖22 <∞, ∫︁

𝒲×𝒲
𝑓(𝑤)𝑘(𝑤,𝑤′)𝑓(𝑤′)𝑑𝑤𝑑𝑤′ > 0

Now, we are ready to give an MMR-based hypothesis test that tests the null

hypothesis given in Proposition 7.3.3:

Theorem 7.3.1 (Maximum Moment Restriction-based test for CATE function). Let

ℱ be a RKHS with reproducing kernel 𝑘(·, ·) : 𝒳 × 𝒳 → R that is ISPD, continuous

and bounded. Suppose |E[𝜓|𝑋]| <∞ almost surely in 𝑃𝑋 , and E[[𝜓𝑘(𝑋,𝑋 ′)𝜓′]2] <∞
where (𝜓′, 𝑋 ′) is an independent copy of (𝜓,𝑋). Let M2 = sup𝑓∈ℱ ,||𝑓 ||≤1(E[𝜓𝑓(𝑋)])2.

Then,

1. The conditional moment testing problem in Eq. 7.5 can be reformulated in terms

of the MMR as 𝐻 ′:M2=0
0 , 𝐻

′:M2 ̸=0
1 .

Further, let the test statistic be the empirical estimate of M2,

M̂2
𝑛 =

1

𝑛(𝑛− 1)

∑︁

𝑖,𝑗∈ℐ,𝑖 ̸=𝑗

𝜓𝑖𝑘(𝑥𝑖, 𝑥𝑗)𝜓𝑗

2. Then, under 𝐻 ′
0,

𝑛M̂2
𝑛

𝑑−→
∞∑︁

𝑗=1

𝜆𝑗(𝑍
2
𝑗 − 1)

where 𝑍𝑗 are independent standard normal variables and 𝜆𝑗 are the eigenvalues

for 𝜓𝑘(𝑥, 𝑥′)𝜓′.

3. Under 𝐻 ′
1,

√
𝑛(M̂2

𝑛 −M2)
𝑑−→ 𝒩 (0, 4𝜎2)
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where 𝜎2 = 𝑣𝑎𝑟(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′]]

Remark 7.3.2. Intuitively, the MMR test statistic is trying to find regions in 𝑋

where the signal difference (i.e. the difference in the CATE estimates between the

observational study and RCT) is maximized. Thus, the larger the signal difference

is, the larger the test statistic will be, and the more likely we will be to reject the

null hypothesis. This is exactly the behavior that we want from such a test statistic.

Note as well that the test statistic is computed using the signal difference directly and

not separately for each potential outcome mean. This theoretically-grounded choice

follows directly from our discussion in Section 7.2.2.

Remark 7.3.3. Note that these asymptotic distributions imply that 𝑛M̂2
𝑛 converges to

a distribution with finite variance under the null, but diverges at a rate of
√
𝑛 under

the alternative hypothesis, which implies that the MMR test has asymptotic power of

one. In addition, since the null distribution does not have a closed form, to obtain the

critical value for rejection, we follow Algorithm 1 in [185], which uses bootstrap to

simulate the null distribution.

Remark 7.3.4. Proposition 7.3.3 states that the true signal difference, 𝜓 = 𝜓1 − 𝜓0,

satisfies a set of CMRs. However, in practice, we perform testing using an estimate of

the signal difference, ̂︀𝜓, where we plug-in estimates of the underlying nuisance functions,

such as the propensity score, 𝑃 (𝐴 = 𝑎|𝑆 = 1, 𝑋). As a result, we might expect our

statistical test, all else being equal, to be more likely to reject an observational study,

as there are two sources of variation in the test statistic: first, in the signals themselves

through the estimated nuisance functions, and second, through variation in the data

that exists even when the signals are perfectly estimated. In our semi-synthetic

experiments, we find that the difference in the type I error (between using 𝜓 and ̂︀𝜓)

is minimal for moderately large sample sizes and converges to zero as the sample size

increases.
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7.3.3 Explainability of MMR-based Falsification Test

Another appealing feature of using the MMR-based approach is that we may express

the maximizer,

𝑓 * = arg sup
𝑓∈ℱ ,||𝑓 ||≤1

(E[𝜓𝑓(𝑋)])2, (7.6)

in closed form (see the proof of corollary 7.3.2 for details). In turn, we may determine

where the CATE function estimated by the RCT and the observational study is the

most discrepant by looking at regions of 𝒳 with large magnitudes of 𝑓 *. The function

𝑓 *, known as the “witness function”, can be found by the following corollary:

Corollary 7.3.2. The witness function in Equation (7.6) can be estimated as

𝑓 *(𝑥) = 𝐶
1

𝑛

∑︁

𝑖

𝜓𝑖𝑘(𝑥𝑖, 𝑥)

where 𝐶 is an unrelated constant so that
∫︀
𝒳 𝑓

*2(𝑥)𝑑𝑥 = 1.

Remark 7.3.5. Consider the following example where having a witness function could

be beneficial: suppose an endocrinologist wants to determine whether to prescribe

SGLT2-inhibitors (𝐴 = 1) or not (𝐴 = 0) for diabetic patients. Further assume that

there is an RCT and an observational study that studies the effect of SGLT2-inhibitors

on HbA1c levels (𝑌 ). If our MMR-based approach were to falsify the observational

study, the witness function would enable the clinician to understand what types of

patients (e.g. people who are ≥ 60 years old and have history of heart disease) have

conflicting conclusions in the RCT versus observational study with respect to drug

benefit.

With this information, they may seek to understand and do follow-up analyses on

what violations of the causal assumptions led to the discrepancy in the “older with

prior heart disease” patient population. For example, there may be a violation of

internal validity of the observational data (e.g. ignorability), where there are still some

unmeasured confounders in the observational study for this particular patient group.

Alternatively, there could be an external validity violation (e.g. mean exchangeability

of contrast), whereby the causal effects themselves are unbiased, but the standard
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of care of this patient population may be different between the two studies (i.e.

unmeasured effect modifiers). Overall, the witness function can provide a window for

clinicians to look for possible violations in a specific patient population, allowing for a

richer view into observational study results.

Remark 7.3.6. A practitioner may interpret or visualize the witness function in a

couple of different ways, which we outline here. A simple method, appropriate for

domain experts (e.g. clinicians), is to use domain knowledge to pre-select a subset of

covariates on which one can do low-dimensional projections for each pair. We provide

an example of this method in our experimental results. Another method is to take the

top or bottom 10% of witness function values over 𝑋 and then look at characteristics of

these populations. This approach can guide the choice of low-dimensional parameters

to examine (e.g., for major differences across age, the witness function projected onto

age can be plotted).

The MMR-based testing framework is useful both because it affords a closed-form

expression of the test statistic used to test the CMR in Proposition 7.3.3 and gives an

explainable view into the rejections of the test via the witness function. We argue that

both are crucial for our problem of falsification of causal assumptions in observational

studies, specifically internal and external validity. Several other approaches exist in

the literature for testing CMRs, and we point the reader to Muandet et al. [185] for

an overview. In the following two sections, we will tease out empirically the benefits

of our testing approach against several baselines and provide an example of how the

witness function can be used in practice on a real-world dataset.

7.4 Semi-Synthetic Experiments

7.4.1 Setup

For this set of experiments, we use covariates from the Infant Health and Development

Program (IHDP), an RCT run on premature infants assessing the treatment effect of

professional home visits on future cognitive function [37]. We generate an RCT and
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observational dataset (with simulated outcomes) from the partial IHDP dataset used

in Hill [118], which contains 985 observations, 28 covariates, and one binary treatment

variable.

A “simulated” dataset in our experiments consists of a single RCT and a single

observational dataset. Our simulation strategy for the data draws largely on the

approach taken by Hussain et al. [120]. In particular, to generate the RCT, we

resample the rows of the IHDP dataset to 𝑛0 = 2955. For the observational dataset,

we first resample the rows of the IHDP dataset to the desired sample size, 𝑛 = 𝑠 · 𝑛0.

Then, we induce a difference in the covariate distribution between the observational

component and the RCT by doing weighted resampling in the observational data, such

that male infants, infants whose mothers smoked, and infants with working mothers are

less prevalent. To introduce explicit violations of our assumptions in the observational

data, we generate 𝑚 confounders so that we can later conceal some of them to simulate

unmeasured confounding. Then, in both the RCT and the observational dataset, we

simulate outcomes according to a response surface detailed in Appendix E.3. Finally,

we conceal 𝑐𝑧 confounders in order of “confounding strength”, which is determined by a

vector, 𝛾 ∈ R𝑚. For more information on confounder generation, outcome simulation,

and bias simulation via confounder concealment, see Appendix E.3. For parameters

𝑚, 𝑐𝑧, and 𝛼 (significance level), we default to 𝑚 = 7, 𝑐𝑧 = 0, and 𝛼 = 0.05 unless

otherwise specified.

7.4.2 Evaluation

We evaluate our algorithm based on our original desiderata. Namely, we measure

power, i.e. the rate of rejecting the null hypothesis when the CATE function estimates

from the RCT and observational study do not converge to the same function and type

I error : rate of rejecting the null hypothesis given that they do converge to the same

function.

We use the following two baselines. Average Treatment Effect (ATE) – in the

RCT, we compute the difference of mean outcomes between the treatment and control

groups; in the observational data, we obtain an ATE estimate by leveraging recent
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techniques in the double machine learning (DML) and transportability literature,

akin to the estimator in Dahabreh et al. [65]. Group Average Treatment Effect

(GATE) – in the RCT, we compute the difference of mean outcomes between the

treatment and control groups in pre-specified subgroups defined by the infant’s birth

weight and maternal marital status4; in the observational data, we use a transportable,

doubly-robust estimator (see Appendix C in Hussain et al. [120]), to estimate the

GATE for each subgroup. Both baselines use hypothesis testing based on asymptotic

normality of ATE or subgroup estimates. Note that this approach requires pre-

specification of the subgroups.

Both baselines reflect the idea of “falsifying” the observational study by looking

at a pre-specified group (subgroups, in the GATE case) to detect differences in the

causal effect estimates. Our method, labeled as MMR-Contrast, requires no pre-

specification and automatically finds “highly-discrepant” regions where the causal

effect estimate is different between the RCT and the observational study.

7.4.3 Results

MMR-Contrast largely maintains the desired type I error of 0.05 while having more

power compared to baselines. As conjectured in remark 7.3.4, MMR-Contrast tends to

slightly over-reject, which is reflected in Figure 7-3 by the marginally elevated type

I error. Furthermore, MMR-Contrast enjoys greater power than GATE and ATE,

particularly in settings where the confounding bias is more subtle. We conjecture that

the gain in power is due to MMR-Contrast implicitly checking across all subpopulations

of 𝑋 for disagreements in CATE estimates. Indeed, we see that when the concealed

confounder has a weight of 1 (as opposed to 2.75), the difference in power between

MMR and ATE is much larger.

When computing MMR-Contrast with 𝜓 versus ̂︀𝜓, the empirical gap in type I

error shrinks with increasing sample size of the observational study (see Figure 7-4).

Reassuringly, we see that the level of the test is maintained at 𝛼 = 0.05 when the true

4We specify the following four subgroups: (≥ 2000g, married), (< 2000g, married), (≥ 2000g,
single), (< 2000g, single)
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Selection Bias MMR-Contrast ATE GATE

𝑝 = 0 0.29 0.32 0.17
𝑝 = 0.05 0.67 0.58 0.40
𝑝 = 0.10 0.94 0.88 0.67
𝑝 = 0.15 1.0 0.98 0.91

Table 7.1: Rejection rate when introducing different amounts of selection bias into the
observational data in WHI study. 𝑝 stands for the strength of selection introduced in the the
data (refer to Section 7.5 for details).

signal difference, 𝜓, is used, which supports our theoretical results. Secondly, using

the estimated signal difference, ̂︀𝜓, achieves the appropriate type I error when the

observational study size at least matches the RCT, i.e. sample size ratio is 1, which

one might expect in practice.

Visualizing the witness function in Figure 7-5 demonstrates the covariate regions

in which the observational effect estimates are increased or decreased compared to the

RCT. We largely see that the witness function yields positive values, implying that the

observational study is generally estimating a larger treatment effect (i.e. professional

visits benefit child cognitive development) than the RCT. However, there are certain

subgroups, e.g. children with high birth order whose mothers do not drink and children

with high neonatal health index, for which the observational study estimates lower

treatment effects than the RCT. The MMR test is able to discover these subgroup

differences, leading to better power than testing for ATE or GATE. Another potential

use case of the witness function is for development of treatment guidelines, where

subgroups with high witness function values may be “flagged” as having conflicting

evidence.

7.5 Women’s Health Initiative (WHI) Experiments

To assess our method in a practical setting, we use observational and clinical trial

data from the Women’s Health Initiative (WHI). These studies broadly investigate

the impact of hormone therapy and vitamin D supplementation on several clinical

outcomes. Conceptually, our analysis consists of first taking 𝐵 bootstrapped datasets
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Figure 7-1: Low confounder strength (max(𝛾) = 1.). (left) no unobserved confounders;
(right): one confounder concealed
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Figure 7-2: High confounder strength (max(𝛾) = 2.75). (left) no unobserved confounders;
(right): one confounder concealed

Figure 7-3: Type I error and power of MMR-Contrast, GATE and ATE under different
confounder strengths. The left panels in 7-1) and (7-2) show that the level of all three
approaches generally retains the nominal level of 0.05. The right panels show the superior
power of MMR-Contrast. Particularly, when the confounder strength is lower (as in (7-1)),
the difference of CATE estimates between the observational study and the RCT is more
difficult to detect, leading to a larger difference of power between MMR-Contrast and ATE.
The GATE approach, since it is based on random subgroups, has minimal power, even under
the high confounder strength scenario.

from either the original WHI observational study or a “biased” version, then selecting

a subset of covariates (to generate subgroups for the GATE baseline), and finally

running GATE, ATE, and MMR-Contrast on each bootstrap iteration. We evaluate
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Figure 7-6: Panel (7-4) demonstrates the relative performance of tests using test statistics
computed with true signals (𝜓) and estimated signals ( ̂︀𝜓). The sample size of the RCT
study is fixed (𝑛0 = 2955) and the sample size ratio between the observational study and
the original IHDP data ranges from 0.01 to 3.33. The blue line shows that the test using 𝜓
achieves the nominal level (0.05). The red line shows that under small sample sizes of the
observational study, the test using 𝜓 over-rejects due to errors in nuisance function estimation,
which is consistent with our conjecture. Nevertheless, its level promptly converges to 0.05 as
the number of samples in the observational study matches or exceeds the RCT. Panel (7-5)
demonstrates the witness functions produced as a byproduct of our test, which show mostly
positive values and certain negative regions.

the methods by reporting the rejection rate in each “bias” setting. To induce different

amounts of selection bias into the observational study, we drop patients who were not
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exposed to the intervention and did not experience the event with some probability 𝑝.

For further details on data preprocessing, setup, and evaluation, see Appendix E.4.

7.5.1 Setup

We use the Postmenopausal Hormone Therapy (PHT) trial as the RCT in our analysis,

which was run on postmenopausal women aged 50-79 years with an intact uterus.

The trial investigated the effect of hormone therapy on several types of cancers,

cardiovascular events, and fractures, measuring the “time-to-event” for each outcome.

In the WHI setup, the observational study component was run in parallel and tracked

similar outcomes to the RCT. Our processing of this dataset follows closely to the

pre-processing steps taken by Hussain et al. [120]. We binarize a composite outcome,

called the “global index”, in our analysis, where 𝑌 = 1 if coronary heart disease, stroke,

pulmonary embolism, endometrial cancer, colorectal cancer, hip fracture, or death due

to other causes was observed in the first seven years of follow-up, and 𝑌 = 0 otherwise.

Note that 𝑌 = 0 could also occur from censoring. To establish treatment and control

groups in the observational study, we use questionnaire data in which participants

confirm or deny usage of combination hormones (i.e. both estrogen and progesterone)

in the first three years. For other covariates, we use only those measured in both the

RCT and observational study to simplify the analysis.

7.5.2 Results

MMR-Contrast has superior power compared to the baselines in real-world data. As

shown in Table 7.1, MMR-Contrast has the best ability to reject studies that have

selection bias. Note, as well, that GATE always has lower rejection probability

compared to ATE. This result implies that using the GATE approach without prior

knowledge on which subgroups lead to different effect estimates using observational

versus RCT data is highly disadvantageous in terms of statistical power. Though the

MMR approach is conceptually similar to GATE, it finds discrepant covariate regions

in a data-driven fashion instead of requiring pre-specified groups, thus achieving better
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power.

7.6 Related Work

Transportability of causal effects: A long line of work gives assumptions under

which causal effect estimates can be transported from one population to another. This

includes work in statistics on generalizing average effects from one or more RCTs to

broader target populations [59, 111, 63, 65], and work in computer science on giving

graphical criteria for determining when effects can be transported in more general

scenarios [203, 204, 202]. Hartman et al. [111] similarly consider hypothesis testing

as a “placebo” test to check assumptions, though their assumptions differ from the

ones we consider here. They focus on transporting effects from RCTs to a target

population, and do not assume internal validity on observational data. In particular,

their assumptions have a testable implication, that the average treated outcome in

the target population will match the average treated outcome under a reweighting

of the RCT population. Meanwhile, our focus is on testing assumptions of both

transportability / external validity, as well as internal validity of observational studies.

Combining experimental and observational data for improved estimation:

There is a recent line of work on combining observational and experimental data to

yield more precise estimates of causal effects, even when the observational data may

be biased [226, 296, 48, 45]. We focus on hypothesis testing as a means of falsification

as our primary goal rather than merging data. While Yang et al. [296] use hypothesis

testing as a part of their approach, their test depends on the parametric form of the

CATE function that they seek to estimate, while our test is nonparametric in nature.

Minimax and variational methods for parameter estimation via CMRs:

In addition, there is a growing literature of minimax algorithms that aim to find a

well-specified set of model parameters that fulfill a set of CMRs. For example, one

line of work looks at constructing a minimax formulation of the generalized method of

moments (GMM) framework that aims to estimate highly non-linear model parameters

that are also solutions to the moment conditions implied by the problem at hand, e.g.
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IV regression [163, 69, 27, 26]. Metzger [180] also gives asymptotic theory for minimax

estimators of functionals in CMRs. Another line of work tackles the case where a set of

CMRs may only weakly identify the nuisance functions, though the target parameter

may still be efficiently and uniquely estimable under some conditions on the estimator

[138, 28].This literature focuses on the problem of parameter estimation, while we use

the CMR formulation for hypothesis testing of transportability and internal validity

assumptions.

7.7 Discussion & Limitations

We have proposed a novel approach for falsifying the assumptions of observational

studies using experimental data. These causal assumptions, stating the internal and

external validity of observational and experimental data, imply that the conditional

average treatment effect is equivalent across all observed subpopulations of 𝑋 in both

the observational and experimental data. This in turn gives rise to testable restrictions

on the combined data distribution, implying, as we show, that the difference between

two functions of the data is zero-mean for any subset of 𝑋. Recent advances in the

econometrics literature allow us to test such restrictions. Our approach implicitly

searches for regions of 𝑋 where the CATE estimates disagree between the observa-

tional and experimental data, without the need for pre-specifying these subpopulations.

Moreover, this approach yields a function that characterizes the regions where disagree-

ment is large. Finally, we design our test to avoid rejecting studies due to differences

in baseline factors that do not influence the treatment effect.

However, our approach shares certain limitations with some methods in the

literature on testing for violation of causal assumptions. In particular, while violations

of the CMRs imply violations of causal assumptions, this does not directly tell us

which assumptions are violated (e.g., whether the observational study is subject to

hidden confounding, or whether there is simply an unobserved difference between the

RCT and observational populations). Finally, due to the fact that policy guidelines

can be formed from such RCTs and observational studies in society, it is important for
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practitioners to consider the biases in the data as well as the aforementioned limitation

of our method.
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Chapter 8

Evaluating Physician-AI Interaction

for Precision Oncology via a Clinical

Decision Support System Prototype

Acknowledgement of Co-authors I would like to acknowledge Fernando Acosta

Perez, who was integral in the software development for this chapter, and Barbara

Lam, who I had weekly brainstorming sessions with to flesh out the ideas in this

chapter. Finally, I would like to acknowledge Dr. Andrew Yee who gave insightful

clinical guidance throughout the duration of this project.

In this thesis, so far, I have looked at the various methodological and statistical

components, both from a predictive and causal perspective, necessary for a CDSS in

oncology. Now, in this chapter, I try and understand how physicians might interact

with such a system, especially when having to integrate it with types of evidence that

they use in their current clinical practice.

8.1 Introduction

Cancer treatment has changed dramatically over the past decade. Historically, the field

was driven forward by landmark clinical trials demonstrating the efficacy of various

cancer-directed therapies and surgical interventions [92, 85, 151, 150, 73, 12, 52, 13].
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Over the past decade, however, advances in molecular sequencing and innovative

therapies such as immune checkpoint inhibitors, bispecific antibodies, and CAR T-cells

have rapidly evolved the treatment landscape [78, 256, 175]. The highly personalized

characterization of each patient’s disease coupled with the explosion in treatment

options has made it increasingly difficult to capture every patient scenario in a clinical

trial setting.

Multiple myeloma (MM) is often highlighted as an area where the rapid development

of new therapies has outpaced our ability to conduct clinical trials [216, 262]. The

FDA approved over a dozen new agents for MM in the last 10 years [81] and registry

studies have demonstrated that approximately 40% of real-world patients with MM do

not meet inclusion criteria for the phase 3 trials that led to treatment approvals [262].

While randomized controlled trials (RCTs) are considered to produce the highest

caliber of evidence in medicine [39], the reality is that they cannot account for every

patient scenario. The gap between clinical trial and real-world settings is exacerbated

in the field of MM, where patients are expected to need multiple lines of therapy and

clinicians prefer to treat with multi-drug combinations [216].

Clinical decision support systems (CDSSs) offer an alternate path to the realization

of precision oncology. Modern CDSSs can leverage machine learning (ML) models

that have been trained on vast amounts of data in order to provide personalized

treatment recommendations. While several models for MM and other cancers have

been proposed and published in the literature [6, 41, 193, 299, 215], few models in

general make it to the bedside due to challenges in clinical validation and implementa-

tion [265]. Surveys of clinicians have shown that they believe ML has a role to play

in clinical care [76, 198, 234]. Studies have gone on to explore how clinicians use ML

recommendations for treatment selection in depression [129], how clinicians perceive

ML recommendations in terms of trust, interpretability, and diagnostic accuracy [94],

and how ML recommendations might influence decisions [1]. However, little work has

been done to understand how clinicians might interact with AI or ML-based systems

in conjunction with current standard-of-care evidence used in clinical practice, which

are often data from RCTs.
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Currently, clinicians are tasked with synthesizing all available evidence to maximize

patient survival and quality of life while minimizing adverse events. As ML systems

proliferate, clinicians will be forced to reconcile findings from RCTs and ML models. If

an ML model produces similar outcomes as an RCT, a clinician may feel more confident

in their decision. Inevitably, however, an ML model will produce personalized evidence

that contradicts RCT data. Understanding how clinicians navigate these complex

scenarios when selecting treatments can better prepare us for the implementation of

an ML-based CDSS in real-world clinical settings.

In this study, we design a CDSS that displays survival and adverse event data from

a synthetic RCT and ML model and evaluate how clinicians synthesize the available

data to make treatment decisions for twelve patients diagnosed with multiple myeloma.

8.2 Methods

8.2.1 Study Design

We created a survey study to evaluate how clinicians synthesize evidence from an RCT

and ML model. Participants were presented with survival curves and adverse event

outcomes from an RCT and an ML model for 12 different patient scenarios (A-L).

They were then asked to select a treatment (“red pill” or “blue pill”), to rate their

confidence in their treatment choice on a Likert scale from 1-10, and when ML data

was available, to rate their perceived reliability of the model on a Likert scale from

1-10. This study was deemed exempt by the Massachusetts Institute of Technology

Institutional Review Board (E-4559, Decision Support Tool for Treatment Selection

in Multiple Myeloma).

8.2.2 Patient Scenarios and RCT/ML Combinations

Each patient scenario was based on the same “synthetic” clinical vignette of a patient

with multiple myeloma. However, there were four changing variables: history of CKD

(or not), history of COPD (or not), cytogenetic risk profile (normal risk versus high-
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Figure 8-1: Possible values for the baseline variables in the patient scenarios

risk), and ECOG status (0 versus 3). These variables determined whether the patient

met the inclusion criteria of the RCT and influenced the ML model’s predictions of

the patient’s survival and adverse event outcomes (Figures 8-1 & 8-2). We generated

and presented all possible combinations of variables as patient scenarios. We excluded

scenarios in which the patient 1) met RCT inclusion criteria and 2) the ML model was

not trained on any similar patients in an attempt to shorten the survey and remove

less compelling scenarios. Eight of the twelve scenarios were constructed so that the

patient did not meet the inclusion criteria of the RCT in order to mimic this common

experience in clinical practice. All RCT and ML combinations are shown in Figure 8-3

and were presented in a randomized fashion to participants.

8.2.3 Tiered Information Approach

Each patient scenario was associated with three to four “tiers” of information (Figure 8-

3). With each subsequent tier, the participant received increasing amounts of data

to synthesize and interpret. Tier 1 provided RCT (population-level) outcomes only.
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Figure 8-2: Patient scenario text

Tier 2 provided ML (patient-level outcomes). Tier 3 provided information about

how the ML model was trained, i.e. whether the patient was represented in the

training cohort, and external validation results (Figure 8-4). Tier 3 is described as

“ML model with context” moving forward. Three patient scenarios (C, E, I) included

tier 4 data, which described the result of using the ML model to replicate RCT results

by running a pseudo-experiment on an observational cohort that matches the RCT

cohort (Figure 8-4).

All survival outcomes were presented as progression free survival curves. Adverse

event data was presented as the frequency of different symptoms. Cytopenias, upper
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Tier I: Randomized Controlled Trial (RCT) / Population Level Data

Tier II: Machine Learning (ML) / Patient Level Data

Tier III: some information on the Machine Learning model

Tier IV: more information on the Machine Learning model

Figure 8-3: Top: Combinations of RCT and ML outcomes presented to survey participants.
Note that the RCT results indicate survival benefit with the red pill and largely similar
adverse events compared to the blue pill. Bottom: Each patient scenario was associated
with one ot four tiers of data.

respiratory tract infections, and infusion-related reactions varied most significantly.

At tier 1, participants were told whether their patient met RCT inclusion criteria.

Subsequently, they were asked to prescribe a treatment and rate their confidence in

treatment choice. At tiers 2 and 3, participants were asked to prescribe a treatment,
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rate their confidence in treatment choice, and their perceived reliability of the ML

model. At tier 4, participants were asked to rate their confidence in treatment choice

and their perceived reliability of the model if the ML model results were concordant

with the RCT results (“tier 4C”) and if they were not (“tier 4NC”).

A

B

Tier 4C Tier 4NC

Figure 8-4: Top: Tier 3 information about the machine learning model, Bottom: Tier 4
information about the machine learning model.

8.2.4 Study Tools

Participants used a web-based CDSS we created for the study called the “Multiple

Myeloma Decision Support Tool” (MM-DST) to view the RCT and ML outcomes

(Figure 8-5). All outcomes were synthetic in nature so as not to bias participants who

may have opinions about existing RCTs and ML models. Participants used a Qualtrics

survey to review the patient scenarios and rank their confidence and reliability scores

(Figure 8-6). Links to both tools are provided in the supplementary materials.
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Figure 8-5: View of the CDSS tool. The decision support tool displays survival curves and
adverse event estimates from the synthetic RCT study and the ML model.

8.2.5 Data Collection

The survey was piloted with two Hematology-Oncology fellows for clarity, length, and

clinical relevance. Participants completed the survey remotely on their own computers.

A 5-minute introductory video was provided at the start of the survey explaining

how to interact with the survey tools. All participants were asked basic demographic

information including age and level of training, and asked to rate on a Likert scale

of 1-5 their comfort managing patients with multiple myeloma, interpreting survival

curves and adverse event information in RCTs, comfort with machine learning, and

with causal inference. At the end of the survey, participants were asked how they

evaluated adverse event data, how they approached treatment selection when their

patients did not meet inclusion criteria, how they believe ML-driven estimates impact

clinical decision making, and how they interpreted the tier 4 replication procedure.
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Figure 8-6: View of the Qualtrics survey.

For these end-of-survey questions, we provided free text boxes for their responses.

8.2.6 Recruitment

Between January 2023 and April 2023, we recruited physicians in Internal Medicine

and Hematology and Oncology from academic institutions via email to participate

in our study. Additional participants were recruited through snowball sampling;

i.e. participants were asked to recommend additional physicians for recruitment.

Participants received up to two email reminders to participate and were offered a $50

Amazon gift card as incentive.

8.2.7 Follow-up Qualitative Interview

A qualitative assessment of one patient scenario, K, was done after survey results

were analyzed and the scenario results were found to not fit our initial hypothesis. All

participants were invited to participate in a follow up exit interview during which they
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were asked to “think aloud” as they worked through scenario K. Afterwards, participants

were shown how others had responded to scenario K and asked to comment on those

results. At least one researcher (BDL or ZH) was present during the interview and

took field notes. The interview protocol is provided in the supplementary materials.

Demographic 𝑁 = 32, 𝑛(%)
Age

21-30 y.o. 16 (50%)
31-40 y.o. 16 (50%)

Sex
Male 23 (72%)
Female 9 (28%)

Race
White Caucasian 22 (69%)
Asian 7 (22%)
Hispanic 2 (6%)
Black or African American 1 (3%)

Clinical Role
Internal Medicine Resident 16 (50%)
Hematology Oncology Fellow 13 (41%)
Hematology Oncology Attending 3 (9%)

Clinical Specialty*
General Medicine 15 (47%)
Hematology 11 (34%)
Oncology 10 (31%)
Other 2 (6%)

Table 8.1: Descriptive Statistics of the User Study Cohort, *Participants could select more
than one, thus totals may sum to greater than 100%

8.2.8 Data Analysis

We used descriptive statistics to analyze respondent characteristics (Table 8.1). For

each scenario, we ran two-sample paired t-tests to compare the changes in confidence

and reliability between tier 2 versus tier 1 (ML versus RCT data), and tier 3 versus

tier 2 (ML model with context versus without). For all t-tests, the null hypothesis

was that there would be no difference. Because t-tests have a loose requirement for

the data to be normally distributed, we utilized Shapiro-Wilk tests to assess normality
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of the confidences and the reliability measurements. A power analysis for the paired

t-tests with continuous outcomes revealed a requirement of 34 physicians to detect

a mean difference of 1 with a standard deviation of 2 (given that the range of the

outcomes is 1-10)1. Due to the number of statistical tests we ran, all p-values are

reported after adjustment via the Holm-Bonferroni correction. We also ran McNemar’s

tests with Holm-Bonferroni correction to assess the difference in proportions of blue

pill selections at different tiers such that the extent of treatment switching can be

characterized.

Two researchers (BDL, ZH) analyzed the end-of-survey free text responses and

exit interview field notes using Braun and Clarke’s methods for thematic analysis [34].

They first reviewed all responses and independently created a list of themes to reflect

the data. They then discussed the themes and iteratively developed a final codebook

by consensus. The two researchers used this codebook to independently code the

responses, assigning up to two codes per responses. The researchers compared their

coding assignments and reached consensus for every response.

8.3 Results

A total of 284 physicians were invited to participate in the study. 32 ultimately

participated, for a response rate of 11.3%. Half were Internal Medicine residents

(physicians in training) and half were Hematology and Oncology fellows and attendings

(Table 8.1).

8.3.1 Quantitative Analysis

Patient meets inclusion criteria for RCT and ML model (scenarios A, B,

C, D) Average confidence at tier 1 across these four scenarios was 7.24, higher than

the average confidence at tier 1 across the other eight scenarios (5.99). In scenario

A, the ML model results were concordant with the RCT results, showing that the

1With 32 physicians recruited, we are able to detect a mean difference of 1 with a standard
deviation slightly under 2: ≈ 1.9.
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Figure 8-7: In these scenarios, the patient meets inclusion criteria for RCT and is well
represented in training data of ML model. We measured confidence and perceived reliability
at the different tiers as well as selected treatment counts.

red pill results in improved outcomes with similar adverse event outcomes. After

being shown tier 3 results (RCT data, ML data, and ML context), physicians had the

highest confidence across all scenarios at 7.84 (+/- 1.18) in selecting red pill as their

treatment option.

In scenarios B, C, and D, the ML model results were discordant with the RCT

results. In scenario B, despite the ML model showing worse adverse events with red

pill, the majority of participants chose to treat with red pill though their confidence

decreased (𝑝 = .05). In scenario C, the ML model showed no benefit with red pill

and an increasing proportion of participants switched to blue pill (McNemar’s test :

𝑝 = 5.1× 10−4). In scenario D, the ML model showed no benefit with red pill and

worse adverse events with red pill, with even more participants switching to blue

pill (McNemar’s test : 𝑝 = 1.5 × 10−5) (Figure 8-7). Across scenarios B, C, and D,
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confidence tended to decrease after seeing tier 2 ML data (B: 𝑝 = 0.05, C: 𝑝 = 0.05, D:

𝑝 = 0.36), but tended to increase after participants reviewed tier 3 ML with context

data (B: 𝑝 = 0.002, C: 𝑝 = 0.17, D: 𝑝 = 0.06), which stated that the ML model had

been trained on patients like the one in the scenario.

Figure 8-8: In these scenarios, the patient does not met inclusion criteria for RCT but
is well represented in the training data of the ML model. We measured confidence and
perceived reliability at the different tiers as well as selected treatment counts.

Patient does not meet inclusion criteria for RCT but ML model was trained

on data that represents the patient well (scenarios E, F, G, H) Similar

to scenario A, in scenario E when the ML model results were concordant with the

RCT results, confidence and perceived reliability increased across tiers. The starting

confidence was lower however, at 5.97 (+/- 2.10). In scenario F, when the ML model

showed benefit with red pill but worse adverse events, about half of the participants

chose to treat with blue pill instead. Confidence and reliability at first remained stable

with tier 2 ML data (𝑝 = 0.43), then increased with tier 3 ML with context data
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(𝑝 = 0.01). In scenarios G and H when the ML model showed no benefit with red pill,

the majority of participants chose to treat with blue pill, with a statistically significant

change in the proportion of participants choosing the blue treatment (McNemar’s

test – G:𝑝 = 0.002, H:1.9× 10−4). As in scenario F, no statistically significant change

in confidence was noted at tier 2 (G: 𝑝 = 1., H: 𝑝 = .43), but there was an increase

in confidence and perceived reliability when shown tier 3 ML with context data (G:

𝑝 = .18 [confidence], 𝑝 = 0.006 [reliability]; H: 𝑝 = 0.002 [confidence], 𝑝 = 2.2× 10−5

[reliability]). These results are shown in Figure 8-8.

Figure 8-9: In these scenarios, the patient does not met inclusion criteria for RCT and is
not well represented in the training data of the ML model. We measured confidence and
perceived reliability at the different tiers as well as selected treatment counts.

Patient does not meet inclusion criteria for RCT and ML model was not

trained on data that represents the patient well (scenarios I, J, K, L) In

these scenarios, confidence was low and both confidence and reliability decreased when

194



participants were told that the ML model was not trained on patients like theirs.

In scenario I, when the RCT and ML model results were concordant but neither

represented the patient well, most participants chose to treat with red pill. In scenario

J, the ML model showed worse adverse events with blue pill and most participants

maintained their choice of treating with red pill. In scenario K, the ML model showed

no benefit with red pill and the majority of participants switched treatment to blue

pill (McNemar’s test, 𝑝 = 1.9× 10−4) and maintained their choice even after being

told that the ML model had not been trained on patients like theirs. In scenario L, the

ML model showed fully discordant results and by tier 3 about half of the participants

chose to treat with blue pill and half chose to treat with red pill.

Four of the 32 participants elected to participate in an exit interview where they

were asked to “think aloud” as they worked through scenario K. Three participants

opted to start with treatment red when they only had tier 1 RCT data. All participants

used treatment blue when they were provided with tier 2 ML data. However, when

provided tier 3 ML with context data, all participants except one switched back

to the red treatment. Four major themes were identified in analysis: (1) there is

variability in what clinical factors participants use in their decision-making, (2) there

are perceived advantages to an ML model over RCT data, (3) uncertainty and unease

around decision-making when participants learned that the ML model had not been

trained on similar patients, and (4) the perception that these types of studies are

important thought exercises.

Participants described evaluating ECOG status and its potential reversibility,

comorbidities and how they might affect drug metabolism, and the perceived impact

of adverse events on quality of life to make treatment decisions. They described advan-

tages of an ML model over an RCT including expressivity, training on real-world data,

improved external validity, and the ability to give individualized recommendations.

When shown tier 3 ML with context data, one participant said, “Now I have no idea!”

and another stated, “There’s no good, right answer.” When shown the finding that

most of the 32 participants had remained with treatment blue despite learning that

the ML model had not been trained on patients like theirs, none of the participants
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expressed surprise. Several shared that they also felt conflicted in their treatment

choice, and some thought that physicians may be less likely to identify weaknesses

in an ML model because they are not trained to critically appraise them, whereas

they are more trained to critically think about RCT data. One participant noted,

“ML models in general do not seem to do as well extrapolating to things outside

their training sets,” and explained that they would rather a human extrapolate RCT

findings than use an ML model. In contrast, another participant appreciated being

told the lack of support in the ML training data: “I thought of it as a disclaimer and

not a big deal since [the model] had good performance,” and went on to say, “It gives

me more confidence because it’s being honest about it.” All participants reported that

the survey study was a helpful thought exercise. In the words of one participant: “It

forced me to think through data, how it applies to my patient, and how to maximize

benefit.”

8.3.2 Qualitative Analysis of Open-ended Questions

When asked about how they evaluate adverse event data, the majority of participants

described looking for specific organ side effects and some discussed evaluating that in

the context of their patient’s comorbidities. One participant reported that the total

number of adverse events was important in decision-making. When asked how they

approach treatment selection when their patients do not meet inclusion criteria, the

majority of participants reported that adverse events became more important. Several

also described working to balance the benefits of survival outcomes with adverse event

data.

When asked how machine learning-driven results impact clinical decision-making,

the majority of participants reported that they find this type of data helpful and

that they would incorporate it into their decision-making. “[RCT] results are much

harder to generalize for patients who don’t nicely meet the inclusion criteria, and

we usually have to rely more on anecdote and clinical gestalt. With support from

machine-learning datasets, we could feel more confident in making more personalized

treatment plans and decisions with our patients,” one participant wrote. Several
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emphasized that concordant results between the RCT and ML model were especially

appreciated and could increase confidence: “When they were in agreement, it was a

nice confirmation. When there was discrepancy, it was easy to throw out.” A few

reported that ML model estimates are not helpful with one participant stating, “they

may bias towards increasing confidence but [they] rarely changed my mind.”

Participants were also asked to describe the replication procedure (tier 4) in their

own words. Several participants were not sure or provided an incorrect definition, but

the majority were able to do so at a superficial level: “Confirming the ML model was

reliable” or “Verifying reproducibility.” Several also correctly described the procedure

as “simulating” an RCT using observational data.

8.3.3 Replication Experiment

Participants were presented with tier 4 data in three scenarios (C, E, I). When told

that the replication experiment was successful (ML model results concordant with RCT

results), confidence in treatment increased in scenario E (𝑝 = 5.5×10−4) and perceived

model reliability tended to increase in all three scenarios (C: 𝑝 = 0.22, E: 𝑝 = 0.02, I:

𝑝 = 0.17), though not with statistical significance in scenarios C and I. When told that

the replication experiment failed (ML model results discordant with RCT results),

confidence in treatment and perceived reliability decreased, particularly for scenario E

(confidence: 𝑝 = 5.5×10−4, reliability: 𝑝 = 5×10−5). Participants were presented with

tier 4 data in three scenarios (C, E, I). When told that the replication experiment was

successful (ML model results concordant with RCT results), confidence in treatment

and perceived model reliability increased in scenario E (𝑝 = 5.5× 10−4 [confidence],

𝑝 = .02 [reliability]). In scenarios C and I, neither confidence nor reliability changed

with statistical significance (𝑝 > 0.05). When told that the replication experiment

failed (ML model results discordant with RCT results), confidence in treatment and

perceived reliability decreased for scenario E (𝑝 = 1.3×10−5 [confidence], 𝑝 = 1.1×10−6

[reliability]). The full set of results and results of hypothesis testing are shown in

Appendix F.
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8.4 Discussion

In our study, several key themes were revealed throughout the different scenarios.

First, physician confidence is highest when RCT and ML findings are concordant.

Second, physicians favor treatments that lead to better survival outcomes, whether

that survival benefit is suggested by an RCT or an ML model. Third, participants are

likely to follow ML model estimates even before any context around how the model

was trained or validated is given.

In scenario A, where the patient meets inclusion criteria for the RCT, is well

represented by the ML model training data, and the RCT and ML model estimates are

concordant, participant confidence was at its highest. This finding was also reflected in

the open-ended answers at the end of the survey when participants described increased

confidence with concordant data. In scenarios where the results are discordant, a large

proportion of participants switched to the treatment supported by the ML model.

This suggests physicians prefer to prioritize survival outcomes, which is consistent

with prior reports in the cancer literature [269]. Of note, this prioritization took place

whether the survival benefit was estimated by an RCT or an ML model, and before

participants received additional information about how the model was trained and

validated. It also often occurred with no statistically significant change in confidence

(𝛼 = 0.05).

In scenarios where the patient did not meet inclusion criteria for the RCT but was

represented in the ML training data—a clinical situation that may be increasingly

common in the future—participants were more likely to adhere to ML model estimates.

Interestingly, in scenarios where the patient did not meet inclusion criteria for the

RCT and was not represented in the ML training data, the majority of participants

continued to rely on ML-generated data to make treatment decisions. In contrast,

in our qualitative assessment of scenario K, the majority of participants favored

the RCT-supported treatment when they were told that the ML model was not

trained on patients like theirs. This contradiction to what we found in the survey

suggests there may have been potential biases at play. Participants may make different
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decisions when being evaluated by a researcher. Our survey was voluntary, and

the majority of participants may be more likely to view ML favorably. Regardless,

our contradictory finding raises questions of how clinicians will interact with ML

models when they are not being observed. The interviewees expressed uncertainty

and decreased confidence when their patient was not represented in either the RCT

or ML model, though they were “not surprised” that most survey respondents had

relied on the ML estimates regardless. They suggested there may be overreliance

on ML estimates because clinicians are not trained to interpret ML models the way

they are trained to interpret RCTs, implying a consistent mental model about how to

think about RCT data, whereas the same does not exist for ML models. As validated

and unvalidated ML models enter the clinical realm, it may become inevitable that

clinicians need to learn to critically appraise them. Indeed, national organizations

such as the American Medical Association (AMA) have called for increasing physician

education on artificial intelligence (AI) so that physicians can better understand and

interpret models [173].

Taken together, the above results suggest physicians may incorporate ML estimates

into their clinical decision-making without appropriately evaluating the quality of the

model, making it critically important to filter which models make it to the bedside

or determine novel ways to calibrate a clinician’s mental model about ML. One

approach is to run prospective clinical trials assessing the efficacy of ML models

in improving clinical outcomes. Though there are calls to make RCTs the gold

standard for evaluating algorithms [139], few clinical ML models are evaluated with

RCTs [154, 209], due to cost and time required to run them. Similar to what has

happened with the proliferation of cancer-directed therapies, the development of ML

models will likely outpace our ability to conduct robust trials.

Research evaluating other ways to sanity check ML models is needed, and our

study findings suggest that benchmarking ML models trained on observational data

against experimental data may be meaningful for clinicians, especially when the RCT

does not apply to the patient (e.g. scenario E). Three scenarios had “tier 4” data

where participants were provided information about the ability to replicate the results
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of the RCT using the ML model trained on observational data. In scenario E, while

confidence in treatment and perceived reliability of the model did increase when

the model results were concordant with the RCT (successful replication), an even

more significant change in confidence and perceived reliability occurred when the

model results were not concordant (unsuccessful replication). This type of replication

procedure may be useful for calibrating a clinician’s mental model of the ML data.

We based tier 4 information on the work from Chapters 6 and 7, which formalize how

one can assess the reliability of estimates from an observational study using RCT

data, thereby casting doubt on ML models trained on observational data to make

predictions about survival or adverse events. Other work has explored how to emulate

a clinical trial from observational data [113, 89, 93].

One suggestion for improving model safety is to make models more explainable so

that users can more readily spot errors [71]. On the other hand, one study showed that

an explainable model may make it more difficult for users to detect errors, perhaps due

to information overload [211]. Methods to improve explainability can hide biases [18]

and may be interpreted differently across users, as demonstrated by our exit interviews.

After learning that the ML model was not trained on representative patients, one

participant reported, “Now I would put less weight on the model,” whereas another

stated that they appreciated the “disclaimer” and this transparency increased their

trust in the model.

How the ML model results are displayed may also influence users. We chose to

design a CDSS where the ML model provided outcomes without making recommenda-

tions, based on a prior study showing that ML models that give prescriptive advice

rather than descriptive evidence are more likely to bias users [1]. Further research to

explore how user interfaces and wording of recommendations might influence clinicians

is needed before ML models can be safely deployed in the clinical setting.

Calibrating clinicians’ mental model of AI As we have alluded to above, our

results indicate a need to develop methods and strategies through which a clinician’s

mental model of ML techniques can be calibrated before they engage with ML-based
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systems. One approach found in existing literature is to artificially alter the confidence

of the ML model based on how miscalibrated the human is on a certain task to maximize

overall human-AI performance [274]. In a clinical setting, this approach might be

equivalent to increasing the confidence of the ML model’s treatment recommendation

when the clinician is also very confident about selecting the same treatment, so as

not to sway the clinician. However, intentional miscalibration of the AI might not

be appropriate in high-stakes settings like healthcare and would require substantial

regulatory checks.

Other approaches to improving a clinician’s mental model of the AI could be

through teaching strategies, which explicitly form a person’s mental model through

representative case studies and examples. It may be possible to do this teaching in a

more optimal, algorithmically-driven way, as done by [184], who give a parameterization

of the human’s mental model of the AI and propose an algorithm to near-optimally

select a set of teaching examples for the human. At a more institutional level, programs

such as the Collaborative Institutional Training Initiative (CITI) program [35], which

is used for training students and clinicians in human subjects protection and the

responsible conduct of research, may also be adapted to training clinicians about

proper interpretation and use of ML-based systems. A specific example that could

be integrated into the training is one that some participants struggled with in our

study, which is how to think about the ML model estimates when their patient is not

supported in the model training data. We could further build a clinician’s intuition

of the generalization of the model by allowing them to change some of the patient’s

attributes and seeing how that would affect the model predictions. Building out such

a training program and assessing its impact on clinician decision-making is a ripe

avenue for future work.

Limitations There are several limitations to our study. We had a low response

rate, though not dissimilar to other reported web-based survey response rates among

physicians [22]. This may be because of the time burden of the survey; we stated in our

recruitment email that the study would take 30-60 minutes to complete. Participation
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was voluntary, which may have introduced self-selection bias into our data. All of our

participants were younger than 40 years old and 91% were still in training; in residency

or fellowship. Younger physicians may be more likely to view ML favorably [190]. On

the other hand, difficulty in interpretation of the ML model estimates that trainees had

would also likely occur in attending physicians. Finally, in order to reduce participant

burden and maximize participation, we designed the instrument as predominantly

multiple-choice. This limited the depth of understanding the physicians’ treatment

decisions. We tried to partially alleviate this shortcoming by providing options for free-

text responses at the end of the survey and conducting a qualitative interview for the

patient scenario whose results did not fit our hypothesis, but interview participation

was limited. Further qualitative studies that include a more heterogenous group of

physicians as well as other clinicians can help us better understand how RCT and ML

data are used.

8.5 Conclusion

Our study reveals important patterns of physician-AI interaction when confronted with

standard-of-care evidence, i.e. RCT data, and personalized ML evidence. We found

that physicians relied more frequently on the ML model when RCT evidence was not

applicable and when the ML model revealed a difference in survival benefit compared

to the RCT for the patient under consideration. Notably, physicians sometimes trusted

ML findings even when the considered patient was not well represented in the model’s

training data. Follow-up qualitative interviews suggested that this inclination may

stem from a lack of an appropriate mental model regarding the limitations of ML

models, in contrast to familiarity with RCTs. However, providing additional “sanity

checks” that validate the results from an ML-based system against accepted RCT

results was helpful in helping clinicians detect problems with the ML model. Our

findings suggest that future ML-based CDSS systems do have the potential to change

treatment decisions in cancer management, but that meticulous development and

validation of these systems before deployment is crucial.
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Chapter 9

Conclusion

The promise of precision medicine, particularly in oncology, stems from the increasing

availability of observational datasets as well as the multitude of available and potentially

effective treatments. Each of these treatments may well result in heterogeneous

treatment responses that may not get captured when only looking at the average

treatment response. As artificial intelligence becomes more integrated into society

more generally, the practice of oncology in the future may be assisted by clinical

decision support systems that utilize powerful AI and ML models.

This dissertation has explored the various methodological and statistical compo-

nents that are necessary for a CDSS in oncology. Chapters 3 & 4 built out the core

models that can be used to take in a patient’s structured data and output predictions

of their survival, proclivity for certain adverse events, as well as their overall disease

trajectory. Of course, the reliability of these predictions should be reflected to clini-

cians in multiple ways, paving the way for Chapter 5, where we explored uncertainty

quantification of ML model predictions using conformal inference. Importantly, such

predictions can be made for more than one treatment, allowing clinicians to compare

and contrast two treatment regimens. This naturally lends itself to a causal framing,

which in turn motivated the falsification framework introduced and formalized in

Chapters 6 & 7. Finally, in Chapter 8, we studied physician interaction with a

synthetic version of the envisioned CDSS to begin understanding the effect of such an

instrument on physician decision-making.
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Although we have made progress in the technical problems underlying the de-

velopment of ML-based decision support systems for precision oncology, there are

several other aspects of this venture that we have not addressed in this thesis. One

important element is the use of unstructured data, e.g. clinical notes, imaging reads,

pathology reports, etc., that are important sources of information for understanding

how to manage a patient’s cancer. One path forward is to begin to look at large

multimodal models such as foundation models that are trained on large datasets of

numerous modalities, e.g. text, structured data, speech, etc, and to fine-tune these

models on disease-specific tasks [32]. However, the ideas and framing towards clinically

useful training objectives in the beginning chapters of this thesis will be relevant for

the fine-tuning of foundation models for downstream disease-specific tasks. Another

element to consider is the use of -omic data, such as single-cell RNA sequencing data,

proteomics, metabolomics, and cell-free DNA sequencing data, to improve the quality

of the signal that can be captured by our models [301, 264, 20]. For example, there

is a rich literature of building rich representations of single-cell RNA-seq data using

deep learning [43]. These representations can also serve as additional inputs to the

models introduced in this thesis. Finally, although we began to explore the interaction

and behavior of physicians when engaging with a synthetic AI-based system, there

are further societal and legal elements to explore in the deployment of such a system

in the clinic.

While there is much excitement about the prospect of moving towards personalized

care, there are also concerns about whether the promise of precision medicine is

premature. A recent article by Wilkinson et al. in The Lancet Digital Health discusses

the limitations of using machine learning for improving accurate diagnosis and tailoring

treatments for individual patients [287]. They mention several issues, including lack

of clinically useful framing and over-reliance on simple predictive metrics, lack of

generalizability to other environments, and the inability of standard machine learning

models to do causal inference. Another critique that they and others make is that

current attempts at precision medicine too often focus on very high-dimensional

genomic data, at the expense of including simple clinical variables that may account
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for a large amount of the variance [275].

We have attempted to address each of these concerns in this thesis, including

building models that are grounded in a clinical problem (e.g. multiple myeloma) and

evaluated with respect to clinically relevant management of the disease, assessing the

generalizability of our models to patients at a different disease stage, and coming up

with “sanity checks” rooted in a causal framing of the problem, where well-specified

ML models are important. We have also focused on common clinical variables in lieu

of genomic data, leaving incorporation of the latter for future work. Still, this thesis

does not attempt to provide complete solutions, and there are several avenues of future

work hinted at above and discussed in more detail below. We hope that the ideas in

this thesis provide an initial roadmap for building a CDSS in clinical oncology.

Incorporating Genomic Data The heterogeneity in treatment response that

makes personalized medicine reasonable is conjectured to be due in large part to the

differences in genetic make-up between individuals. The explosion of next generation

sequencing technologies enabling collection of rich genomic and proteomic data make

it possible to potentially capture the genetic signal leading to differences in treatment

response and allow for improved prediction of clinical outcomes. In the past several

years, prior work has largely involved learning representations of e.g. single-cell

RNA seq data using deep learning and applying clustering methods to discover novel

subtypes or associations [264, 301]. However, there has been recent work using

transcriptomic data to learn better patient representations and improve prediction of

clinical outcomes [291]. These data could also be longitudinal, i.e. captured over time,

and may require development of new methods to capture signal found therein. For

example, a recent platform aimed to decompose sources of variations within longitudinal

bulk and single-cell mutli-omics data as well as identify up- or down-regulated markers

across timepoints for individual patients [270]. Other work has applied similar methods

on longitudinal -omics data to specific diseases, such as Irritable Bowel Syndrome

(IBS), in order to better characterize underlying physiology [178]. Moreover, an

important avenue for future work is to continue building methods that best capture
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the signal in these high-dimensional data, especially if they change over time, and

incorporate them into the models presented in this thesis. Doing so would ideally

provide better predictions of clinical outcomes and give a more complete picture of

the progression of a patient’s disease trajectory.

Expanding studies of Physician-AI Interaction in Precision Oncology Our

study of physician-AI interaction was limited to a simulated setting, where both the

patient scenarios and the machine learning model outputs were synthetic. One avenue

for future work would be to make the patient scenarios real and use an ML model

trained on real-world data and then conduct the study. In the long term, a prospective

clinical trial looking at the effect of an ML-based system on physician decision making

as well as studying the nature of physician-AI interaction in these scenarios would be

necessary. Existing prospective trials have been predominantly in radiology and do

not give a deep view into physician behavior and decision-making [288, 77]. This line

of work is crucial for measured and thoughtful translation of ML-based systems into

clinical settings.

Leveraging Large Pre-trained Foundation Models An important part of

building a decision support system for oncologists is generalizing it to other cancers

beyond the ones studied in this thesis. One approach for doing this is through the

general paradigm of large-scale pretraining on a set of cancer datasets (e.g. SEER,

datasets from the YODA initiative [7, 228]) and then finetuning on downstream tasks,

as done for current large language models (e.g. ChatGPT, GPT-4, etc.). Indeed,

we take this approach in Chapter 4, where we first pretrain the transformer on a

forecasting objective and then finetune on downstream event prediction tasks. One can

imagine increasing the scale of this pretraining process many times and also including

other data modalities in the training, such as imaging, genomics, and even video data

such as echocardiograms.

However, such an endeavor is non-trivial in healthcare and potentially leads to

many harms. From a technical perspective, pretraining on the number of data
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modalities required for generalized precision oncology is difficult, and new “feature-

level and semantic-level” fusion strategies in the training of foundation models are

necessary [32]. There are also a number of legal and ethical regulations that must

be met in order for these technologies to be deployed: patient safety, privacy, and

fairness are paramount [263]. Finally, the data sources themselves may be biased due

to misrepresentation of certain groups or societal stereotypes being baked into the

data [263].
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Appendix A

Supplementary Material for Chapter 3

The supplementary material for Chapter 3 contains the following sections. For each

section, we highlight the key findings about the experiments we conduct.

1. Learning Algorithms: This section expands upon the learning algorithm for

SSMPK-PD in the main paper. We also describe two additional sequential models

– a First Order Markov Model (FOMM) and a Gated Recurrent Neural Network

(GRU).

2. Synthetic Dataset: This section provides an in-depth description of the

generative process that underlies the synthetic dataset used in the experimental

section.

3. The Multiple Myeloma Research Foundation CoMMpass Study: This

section provides details on data extraction, pre-processing and construction of

the ML-MMRF dataset.

4. FOMM and GRU Experiments: We study how incorporating a variant of

PKPDNeural into a FOMM and GRU improves model generalization. The key

take-away from this section, with supporting evidence in Table A.1, is that

SSMPK-PD improves generalization not just in state space models, but also

in other popular choices of neural network based models of sequences such as

FOMMs and GRUs.
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5. Semi-synthetic Experiments: We introduce a semi-synthetic dataset that we

use to further evaluate SSMPK-PD. The key take-away from this section, with

supporting evidence in Table A.2, is that SSMPK-PD improves generalization on

a new dataset whose sequential patterns mimic real-world multiple myeloma

data. These improvements are confirmed in a model misspecification scenario.

6. Additional Experiments: This section details additional experiments to

interpret the model we develop and understand the relative utility of its various

parts.

i. Patient Forecasting - We explore different ways in which SSMPK-PD

may be used to forecast patient trajectories given some initial data. When

conditioning on different lengths of patient history and then sampling for-

ward in time, we see a qualitative improvement in samples from SSMPK-PD

compared to one of the best performing baselines.

ii. Visualizing Disease Progression - We extend our analysis of the

SSMPK-PD’s latent states to studying how they evolve over the entire

disease course. We find that clustering patients based on the latent state

reveals subgroups that, due to differences in disease severity, have been

assigned different treatment regimens. This result suggests that the latent

representation has encoded the patient’s underlying disease state.

iii. Per-feature Breakdown - We perform a per-feature analysis of how well

SSMPK-PD and SSMLinear model different clinical biomarkers, finding that

SSMPK-PD does particularly well for important markers of progression,

such as serum IgA.

iv. Ablation Analysis - We study which treatment mechanism function

yields the most benefit for modeling the ML-MMRF dataset. Our analysis

finds that the Neural Treatment Exponential function provides the most

differential gains in NELBO and that the time-varying treatments are

crucial for accurately modeling the dynamics of serums IgA, IgG, and

Lambda.
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A.1 Learning Algorithms

We implement all the models that we experiment with in PyTorch [200].

State Space Models Recall that the generative process is:

𝑝(X|U, 𝐵) =

∫︁

𝑍

𝑇∏︁

𝑡=1

𝑝(𝑍𝑡|𝑍𝑡−1, 𝑈𝑡−1, 𝐵; 𝜃)𝑝(𝑋𝑡|𝑍𝑡; 𝜃)𝑑𝑍

𝑍𝑡|· ∼ 𝒩 (𝜇𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵),Σ𝑡
𝜃(𝑍𝑡−1, 𝑈𝑡−1, 𝐵)),

𝑋𝑡|· ∼ 𝒩 (𝜅𝜃(𝑍𝑡),Σ
𝑒
𝜃(𝑍𝑡))

where the transition function, 𝜇𝜃, differs as described in the main paper for SSMLinear,

SSMNL, SSMPK-PD, &SSMMOE.

Maximum Likelihood Estimation of 𝜃: Since the log likelihood 𝑝(X|U, 𝐵) is difficult

to evaluate and maximize directly due to the high-dimensional integral, we resort

to a variational learning algorithm that instead maximizes a lower bound on the

log-likelihood to learn the model parameters, 𝜃. We make use of a structured inference

network [148] that amortizes the variational approximation, 𝑞𝜑(Z|X), to the posterior

distribution, 𝑝𝜃(Z|X), of each datapoint.

log 𝑝(X|U, 𝐵; 𝜃) ≥ ℒ(X; (𝜃, 𝜑)) (A.1)

=
𝑇∑︁

𝑡=1

E𝑞𝜑(𝑍𝑡|X,U,𝐵)[log 𝑝𝜃(𝑋𝑡|𝑍𝑡)]

−KL(𝑞𝜑(𝑍1|X,U, 𝐵)||𝑝𝜃(𝑍1|𝐵))

−
𝑇∑︁

𝑡=2

E𝑞𝜑(𝑍𝑡−1|X,U,𝐵)[

KL(𝑞𝜑(𝑍𝑡|𝑍𝑡−1,X,U)||𝑝𝜃(𝑍𝑡|𝑍𝑡−1, 𝑈𝑡−1, 𝐵))]

The lower bound on the log-likelihood of data, ℒ(X; (𝜃, 𝜑)), is a differentiable

function of the parameters 𝜃, 𝜑 [148], so we jointly learn them via gradient ascent.
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As mentioned in the main paper, if 𝑋𝑡 is missing, then it is marginalized out when

evaluating the likelihood of the data under the model. Since the inference network

also conditions on sequences of observed data to predict the variational parameters,

we use forward fill imputation where data are missing.

Hyperparameters: We present the results of the hyperparameter search on the

datasets that we study. Please see the evaluation section of the main paper for the

specific ranges that we searched over.

• SSMLinear

1. Synthetic: State space dimension 48, L2 regularization on all parameters

with strength 0.01

2. ML-MMRF: State space dimension 16, L2 regularization on all parameters

with strength 0.01

• SSMNL

1. Synthetic: State space dimension 48, hidden layer dimension 300, L2

regularization on all parameters with strength 0.1

2. ML-MMRF: State space dimension 48, hidden layer dimension 300, L2

regularization on all parameters with strength 0.1

• SSMPK-PD

1. Synthetic: State space dimension 48, L1 regularization on subset of param-

eters with strength 0.01

2. ML-MMRF: State space dimension 48, L1 regularization on all parameters

with strength 0.01

• SSMMOE

1. Synthetic: State space dimension 16, hidden layer dimension 300, L1

regularization on all parameters with strength 0.01
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2. ML-MMRF: State space dimension 48, hidden layer dimension 300, L1

regularization on all parameters with strength 0.01

• SSM Attn. Hist.

1. Synthetic: State space dimension 16, hidden layer dimension 100, L1

regularization on all parameters with strength 0.01

2. ML-MMRF: State space dimension 48, hidden layer dimension 300, L1

regularization on all parameters with strength 0.01

SSM Attn. Hist. Baseline: We provide details on the SSM architecture proposed

by [3] for disease progression modeling. The generative process of their architecture

differs from a normal state space model in that the transition function, 𝜇𝜃, assumes

that the patient’s latent state at time 𝑡 depends on their entire history of latent states

and interventions. Thus, we have,

𝑝(X|U, 𝐵) = (A.2)
∫︁

𝑍

𝑇∏︁

𝑡=1

𝑝(𝑍𝑡|𝑍1:𝑡−1, 𝑈1:𝑡−1, 𝐵; 𝜃)𝑝(𝑋𝑡|𝑍𝑡; 𝜃)𝑑𝑍

𝑍𝑡|· ∼ 𝒩 (𝜇𝜃(𝑍1:𝑡−1, 𝑈1:𝑡−1, 𝐵),Σ𝑡
𝜃(𝑍1:𝑡−1, 𝑈1:𝑡−1, 𝐵)),

𝑋𝑡|· ∼ 𝒩 (𝜅𝜃(𝑍𝑡),Σ
𝑒
𝜃(𝑍𝑡))

Note that we adapt the authors’ model to work with a continuous latent state, whereas

they utilize a discrete latent state. The crux of their method is to parameterize the

transition distribution as an attention-weighted sum of the previous latent states to

compute the current latent state. These attention weights are a function of a patient’s

entire clinical lab and treatment history. Therefore, the transition function that we

use to capture their modeling assumptions is as follows:

𝜇𝜃(𝑍1:𝑡−1,𝛼1:𝑡−1) = 𝑊ℎ(
𝑡−1∑︁

𝑖=1

𝛼𝑖 ⊙ 𝑍𝑖) + 𝑏ℎ, (A.3)
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where 𝛼1:𝑡−1 = 𝐴𝑡([𝑋1:𝑡−1, 𝑈1:𝑡−1]) via an attention mechanism, 𝐴𝑡. We use a bi-

directional recurrent neural network for the inference network, as opposed to the

authors’ proposed attentive inference network. We argue that the bi-RNN is just

as expressive, since the variational parameters are a function of all past and future

observations. Moreover, our goal is to study the effect of altering the generative model

in this work.

We also experiment with First Order Markov Models (FOMM) and Gated Recur-

rent Units (GRU) [56], which we detail below.

First Order Markov Models FOMMs assume observations are conditionally

independent of the past given the previous observation, intervention and baseline

covariates. The generative process is:

𝑝(X|U, 𝐵) =
𝑇∏︁

𝑡=1

𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵);

𝑋𝑡|· ∼ 𝒩 (𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵),Σ𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵)),

where the transition function, 𝜇𝜃, differs akin to the transition function of SSM

models, as described in the main paper. Here, we will experiment with FOMMLinear,

FOMMNL, FOMMMOE, &FOMMPK-PD.

PKPDNeural for FOMMPK-PD: We will use a simpler variant of the PKPDNeural

formulation introduced in the main paper as a proof of concept. Namely, we have,

𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵) =
𝑑∑︁

𝑖=1

𝜎(𝛿)𝑖 ⊙ 𝑔𝑖(𝑆𝑡−1, 𝑈𝑡−1, 𝐵), (A.4)

where each 𝛿 is a learned vector of weights and 𝜎 refers to a softmax on the weights.

Note that the PKPDNeural introduced in the main paper is a generalization of Equation

A.4; the primary difference is that the attention mechanism allows the weights to be a

function of the prior state, which enables the weights to change over time.

Maximum Likelihood Estimation of 𝜃: We learn the model by maximizing max𝜃 log 𝑝(X|U, 𝐵).

Using the factorization structure in the joint distribution of the generative model, we
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obtain: log 𝑝(X|U, 𝐵) =
∑︀𝑇

𝑡=1 log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵). Each log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵) is

estimable as the log-likelihood of the observed multi-variate 𝑋𝑡 under a Gaussian dis-

tribution whose (diagonal) variance is a function Σ𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵) and whose mean is

given by the transition function, 𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵). Since each log 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑈𝑡−1, 𝐵)

is a differentiable function of 𝜃, its sum is differentiable as well, and we may use auto-

matic differentiation to derive gradients of the log-likelihood with respect to 𝜃 in order

to perform gradient ascent. When any dimension of 𝑋𝑡 is missing, that dimension’s

log-likelihood is ignored (corresponding to marginalization over that random variable)

during learning.

Hyperparameters: We present the results of the hyperparameter search on the

datasets that we study.

• FOMMLinear

1. Synthetic: L1 regularization on all parameters with strength 0.1

2. ML-MMRF: L1 regularization on all parameters with strength 0.1

• FOMMNL

1. Synthetic: Hidden layer dimension 200, L1 regularization on all parameters

with strength 0.1

2. ML-MMRF: Hidden layer dimension 300, L1 regularization on all parame-

ters with strength 0.1

• FOMMPK-PD

1. Synthetic: L1 regularization on subset of parameters with strength 0.1

2. ML-MMRF: L1 regularization on subset of parameters with strength 0.1

Gated Recurrent Neural Network (GRUs): GRUs [54] are auto-regressive

models of sequential observations i.e. 𝑝(X|U, 𝐵) = ∏︀𝑇
𝑡=1 𝑝(𝑋𝑡|𝑋<𝑡, 𝑈<𝑡, 𝐵)). GRUs

use an intermediate hidden state ℎ𝑡 ∈ R𝐻 at each time-step as a proxy for what the
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model has inferred about the sequence of data until 𝑡. The GRU dynamics govern

how ℎ𝑡 evolves via an update gate 𝐹𝑡, and a reset gate 𝑅𝑡:

𝐹𝑡 = 𝜎(𝑊𝑧 · [𝑋𝑡, 𝑈𝑡, 𝐵] + 𝑉𝑧ℎ𝑡−1 + 𝑏𝑧), (A.5)

𝑅𝑡 = 𝜎(𝑊𝑟 · [𝑋𝑡, 𝑈𝑡, 𝐵] + 𝑉𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ𝑡 = 𝐹𝑡 ⊙ ℎ𝑡−1 + (1− 𝐹𝑡)⊙

tanh(𝑊ℎ · [𝑋𝑡, 𝑈𝑡, 𝐵] + 𝑉ℎ(𝑅𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)

𝜃 = { 𝑊𝑧,𝑊𝑟,𝑊ℎ ∈ R𝐻×(𝑀+𝐿+𝐽);𝑉𝑧, 𝑉𝑟, 𝑉ℎ ∈ R𝐻×𝐻 ; 𝑏𝑧, 𝑏𝑟, 𝑏ℎ ∈ R𝐻} are learned

parameters and 𝜎 is the sigmoid function. The effect of interventions may be felt

in any of the above time-varying representations and so the "transition function" in

the GRU is distributed across the computation of the forget gate, reset gate and the

hidden state, i.e. 𝑆𝑡 = [𝐹𝑡, 𝑅𝑡, ℎ𝑡]. We refer to this model as GRU.

PKPDNeural for GRUPK-PD: We take the output of Equation A.4, 𝑜𝑡 = 𝜇𝜃(𝑋𝑡−1, 𝑈𝑡−1, 𝐵),

and divide it into three equally sized vectors: 𝑜𝑓𝑡 , 𝑜𝑟𝑡 , 𝑜ℎ𝑡 . Then,

𝐹𝑡 = 𝜎(𝑜𝑓𝑡 + 𝑉𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑅𝑡 = 𝜎(𝑜𝑟𝑡 + 𝑉𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ𝑡 = 𝐹𝑡 ⊙ ℎ𝑡−1

+ (1− 𝐹𝑡)⊙ tanh(𝑜ℎ𝑡 + 𝑉ℎ(𝑅𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ)

Maximum Likelihood Estimation of 𝜃: We learn the model by maximizing max𝜃 log 𝑝(X|U, 𝐵).

Using the factorization structure in the joint distribution of the generative model,

we obtain: log 𝑝(X|U, 𝐵) = ∑︀𝑇
𝑡=1 log 𝑝(𝑋𝑡|𝑋<𝑡, 𝑈<𝑡, 𝐵). At each point in time the

hidden state of the GRU, ℎ𝑡, summarizes 𝑋<𝑡, 𝑈<𝑡, 𝐵. Thus, the model assumes

𝑋𝑡 ∼ 𝒩 (𝜇𝜃(ℎ𝑡),Σ𝜃(ℎ𝑡)).

At each point in time, log 𝑝(𝑋𝑡|𝑋<𝑡, 𝑈<𝑡, 𝐵) is the log-likelihood of a multi-variate

Gaussian distribution which depends on 𝜃. As before, we use automatic differentiation

to derive gradients of the log-likelihood with respect to 𝜃 in order to perform gradient

ascent. When any dimension of 𝑋𝑡 is missing, that dimension’s log-likelihood is ignored

216



(corresponding to marginalization over that random variable) during learning.

Hyperparameters: We present the results of the hyperameter search on the datasets

that we study.

• GRU

1. Synthetic: Hidden layer dimension 500, L2 regularization on all parameters

with strength 0.1

2. ML-MMRF: Hidden layer dimension 250, L2 regularization on all parame-

ters with strength 0.1

• GRUPK-PD

1. Synthetic: Hidden layer dimension 500, L2 regularization on subset of

parameters with strength 0.01

2. ML-MMRF: Hidden layer dimension 500, L2 regularization on subset of

parameters with strength 0.01

A.2 Synthetic Dataset

Below, we outline the general principles that the synthetic data we design is based on:

• We sample six random baseline values from a standard normal distribution.

• Two of the six baseline values determine the natural (untreated) progression of

the two-dimensional longitudinal trajectories. They do so as follows: depending

on which quadrant the baseline data lie in, we assume that the patient has one

of four subtypes.

• Each of the four subtypes typifies different patterns by which the biomarkers

behave such as whether they both go up, both go down, one goes up, one goes

down etc. To see a visual example of this, we refer the reader to Figure A-1

(left).
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Baseline The generative process for the baseline covariates is 𝐵 ∼ 𝒩 (0; I);𝐵 ∈ R6.

Treatments (Interventions): There is a single drug (denoted by a binary

random variable) that may be withheld (in the first line of therapy) or prescribed

in the second line of therapy. For each patient 𝑑𝑖 ∼ Unif.[0, 18] denotes when the

single drug is administered (and the second line of treatment begins). 𝑑𝑖 is the point

at which the local clock resets. We can summarize the generative process for the

treatments as follows:

𝑑 ∼ Unif.[0, 18]

𝑈𝑡 = 0 if 𝑡 < 𝑑 and 1 otherwise

line𝑡[0] = 1 if 𝑡 < 𝑑 and 0 otherwise

line𝑡[1] = 0 if 𝑡 < 𝑑 and 1 otherwise (A.6)

where line𝑡[0], line𝑡[1] denote the one-hot encoding for line of therapy. Next, we use

the Neural Treatment Exponential (Equation 3.6 in the main paper) to generate a

treatment response in the data. The functional form of the Treatment Exponential

function (TE) is re-stated below for convenience,

TE(lc𝑡) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏0 + 𝛼1/[1 + exp(−𝛼2(lc𝑡 − 𝛾𝑙
2
))],

if 0 ≤ lc𝑡 < 𝛾𝑙

𝑏𝑙 + 𝛼0/[1 + exp(𝛼3(lc𝑡 − 3𝛾𝑙
2
))],

if lc𝑡 ≥ 𝛾𝑙

(A.7)

The parameters that we use to generate the data are: 𝛼2 = 0.6, 𝛼3 = 0.6, 𝛾𝑙 =

2, 𝑏𝑙 = 3, and 𝛼1 = [10, 5,−5,−10], which we vary based on patient subtype. We set

𝛼0 = (𝛼1 + 2𝑏0 − 𝑏𝑙)/(1 + exp(−𝛼3𝛾𝑙)/2) to ensure that the treatment effect peaks at

𝑡 = lc𝑡 + 𝛾𝑙 and 𝑏0 = −𝛼1/(1 + exp(𝛼2 · 𝛾𝑙/2)) for attaining TE(0) = 0.

Biomarkers: We are now ready to describe the full generative process of the

longitudinal biomarkers.
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Figure A-1: Visualization of synthetic data: Left: A visualization of "patient"’s baseline
data (colored and marked by patient subtype). Right four plots: Examples of patient’s
longitudinal trajectories along with treatment response. The blue and green longitudinal
data denote two different patient biomarkers. The solid blue and green lines are what the
trajectories would be with no intervention whereas the dotted blue and green lines are what
the trajectories are with an intervention. Gray-dotted line represents an intervention. The
subtypes may, optionally, be correlated with patient outcomes as highlighted using the values
of 𝑦.

𝐵1...,6 ∼ 𝒩 (0; 𝐼),

𝑓𝑑(𝑡) = 2− 0.05𝑡− 0.005𝑡2, (A.8)

𝑓𝑢(𝑡) = −1 + 0.0001𝑡+ 0.005𝑡2,

𝑋1(𝑡);𝑋2(𝑡) = (A.9)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓𝑑(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑑(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 ≥ 0, 𝐵2 ≥ 0 if subtype 1

𝑓𝑑(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑢(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 ≥ 0, 𝐵2 < 0 if subtype 2

𝑓𝑢(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑑(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 < 0, 𝐵2 ≥ 0 if subtype 3

𝑓𝑢(𝑡) + TE(lc𝑡) +𝒩 (0, 0.25); 𝑓𝑢(𝑡) + TE(lc𝑡)

+𝒩 (0, 0.25), 𝐵1 < 0, 𝐵2 < 0 if subtype 4,

Intuitively, the above generative process captures the idea that without any effect

of treatment, the biomarkers follow the patterns implied by the subtype (encoded in
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the first two dimensions of the baseline data). However the effect of interventions is

felt more prominently after 𝑑, the random variable denoting time at which treatment

was prescribed.

A.3 The Multiple Myeloma Research Foundation

CoMMpass Study

Here, we elaborate upon the data made available by the Multiple Myeloma Research

Foundation in the IA13 release of data. We will make code available to go from the

files released by the MMRF study to numpy tensors that may be used in any machine

learning framework.

Inclusion Criteria: To enroll in the CoMMpass study, patients must be newly

diagnosed with symptomatic multiple myeloma, which coincides with the start of

treatment. Patients must be eligible for treatment with an immunomodulator or a

proteasome inhibitor, two of the most common first line drugs, and they must begin

treatment within 30 days of the baseline bone marrow evaluation [188].

A.3.1 Features

Genomic Data: RNA-sequencing of CD38+ bone marrow cells was available for 769

patients. Samples were collected at initiation into the study, pre-treatment. For these

patients, we used the Seurat package version 2.3.4 [40] in R to identify variable genes,

and we then limit downstream analyses to these genes. We use principal component

analysis (PCA) to further reduce the dimensionality of the data. The projection of

each patient’s gene expression on to the first 40 principal components serves as the

genetic features used in our model.

Baseline Data: Baseline data includes PCA scores, lab values at the patient’s first

visit, gender, age, and the revised ISS stage. The baseline data also includes binary

variables detailing the patient’s myeloma subtype, including whether or not they have

heavy chain myeloma, are IgG type, IgA type, IgM type, kappa type, or lambda
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type. Additionally, several labs are measured at baseline, as well as longitudinally

at subsequent visits. We detail these labs in the next sub-section. The genetic and

baseline data jointly comprise 𝐵.

Longitudinal Data: Longitudinal data is measured approximately every 2 months

and includes lab values and treatment information. The lab values are real-valued

numbers whose values evolve over time. They include: absolute neutrophil count

(x109/l), albumin (g/l), blood urea nitrogen (mmol/l), calcium (mmol/l), serum

creatinine (umol/l), glucose (mmol/l), hemoglobin (mmol/l), serum kappa (mg/dl),

serum m protein (g/dl), platelet count x109/l, total protein (g/dl), white blood count

x109/l, serum IgA (g/l), serum IgG (g/l), serum IgM (g/l), serum lambda (mg/dl).

Treatment information includes the line of therapy (we group all lines beyond line

3 as line 3+) the patient is on at a given point in time, and the local clock denoting the

time elapsed since the last line of therapy. We also include the following treatments as

(binary, indicating prescription) features in our model: lenalidomide, dexamethasone,

cyclophosphamide, carfilzomib, bortezomib. The aforementioned are the top five drugs

by frequency in the MMRF dataset. This dataset has significant missingness, with

∼ 66% of the longitudinal markers missing. In addition, there is right censorship in

the dataset, with around 25% of patients getting censored over time.

A.3.2 Data Processing

Longitudinal biomarkers X: Labs are first clipped to five times the median value

to correct for outliers or data errors in the registry. They are then normalized to

their healthy ranges (obtained via a literature search) as (unnormalized labs - healthy

maximum value), and then multiplied by a lab-dependent scaling factor to ensure that

most values lie within the range [−8, 8]. Missing values are represented as zeros, but

a separate mask tensor, where 1 denotes observed and 0 denotes missing, is used to

marginalize out missing variables during learning.

Baseline 𝐵: The biomarkers in the baseline are clipped to five times their median

values. Patients without gene expression data (in the PCA features) are assigned the

average normalized PCA score of their five nearest neighbors, using the Minkowski
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Dataset Held-out Neg
Log Likelihood

FOMM
Linear

FOMM
Nonlinear

FOMM
PK-PD

FOMM
MOE GRU GRU

PK-PD

SSM
PK-PD
(NELBO)

ML-MMRF 92.80 97.53 90.26 97.26 89.89 99.98 61.54

Dataset FOMM
PK-PD vs. FOMM

Linear
FOMM
PK-PD vs.FOMM

NL
FOMM
PK-PD vs. FOMM

MOE
GRU

PK-PD vs. GRU —–

ML-MMRF 0.792 (0.405) 0.668 (0.457) 0.510 (0.490) 0.406 (0.489) —–

FOMM
Linear

FOMM
NL

FOMM
PK-PD GRU GRU

PK-PD

Synthetic (50 samples) 71.06 +/- .03 58.80 +/- .03 56.81 +/- .04 56.65 +/- .11 53.49 +/- .04

Synthetic (1000 samples) 62.93 +/- .03 57.16 +/- .03 57.81 +/- .02 31.09 +/- .02 29.27 +/- .01

Table A.1: Generalization of FOMM and GRU models on ML-MMRF and
Synthetic Data: Top: Lower is better. We report negative log-likelihood averaged across
five folds of held-out data. Bottom: ML-MMRF : We report pairwise comparisons of models
trained on ML-MMRF. Higher is better. Each number is the fraction (with std. dev.) of
held-out patients for which the model that uses PKPDNeural has a lower negative log-likelihood
than a model in the same family that uses a different transition function. Synthetic: Lower
is better. We report held-out negative log likelihood with std. dev. on FOMM and GRU to
study generalization in the synthetic setting.

distance metric calculated on FISH features, ISS stage, and age.

A.4 FOMM and GRU Experiments

PKPDNeural improves generalization in both FOMM and GRU models on synthetic

data: Table A.1 (bottom) depicts negative log-likelihoods on held-out synthetic data

across different models, where a lower number implies better generalization. The non-

linearity of the synthetic data makes unsupervised learning a challenge for FOMMLinear

at 50 samples, allowing FOMMPK-PD to easily outperform it. In contrast, FOMMNL

can capture non-linearities in the data, making it a strong baseline even at 50 samples.

Yet, FOMMPK-PD outperforms it, emphasizing the utility of PKPDNeural in when data

is scarce. At 1000 samples, FOMMNL is able to learn enough about the dynamics to

improve its performance relative to FOMMPK-PD. GRU is a strong model on this

dataset, but at both sample sizes, the GRUPK-PD improves generalization.

FOMM and GRU generalization performance on ML-MMRF : We observe

improvements in generalization across FOMMs with the use of PKPDNeural. However,

we do not see discernible gains from GRUPK-PD, perhaps due to missingness in the
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data, which also results in the GRUs generalizing worse than SSM models based on

negative log likelihood (Table A.1 (top)). Overall, the GRU, due to the distributed

nature of its "transition function", is a harder model to use PKPDNeural in, although

figuring how to do so effectively is a valuable direction for future work.

A.5 Experiments on Semi-synthetic Dataset

In this section, we cover how to generate the semi-synthetic dataset. We then provide

experimental results on generalization performance as well as a result in a model

misspecification scenario.

Semi-synthetic data: We train the SSMPK-PD model on the ML-MMRF dataset

and generate samples from the model. For each sequence of treatments, we generate

30 random samples per training data point resulting in a dataset of size 14000. Then

we uniformly at random sample 1000 samples from that pool to form our training set.

We perform a similar procedure to generate several held-out sets (size 87000 samples

each). This semi-synthetic dataset allows us to ask questions about generalization on

data with statistics similar to ML-MMRF.

Generalization and Model Misspecification SSMPK-PD generalizes well with

fewer samples: At 1000 samples, we find that the SSMPK-PD models generalize better

than the baselines, where a lower, more negative number implies better generalization.

We see that with few samples, SSMNL and SSMMOE overfit. However, when sharply

increasing the number of samples to 20000, both models recover their performance and

even begin to outperform SSMPK-PD. This result further solidifies the generalization

capability of our proposed SSMPK-PD model in a data-scarce setting as well as the

difficulty of learning a nonlinear model that does not overfit.

SSMPK-PD continues to generalize well even when it is mis-specified: We run a

similar experiment to what we ran on ML-MMRF, where we take out the Neural

Treatment Exponential mechanism function from 𝜇𝜃 and instead opt for using a linear

function. We see that SSMPK-PD w/o TExp performs comparably to a SSMPK-PD

with the Neural Treatment Exponential mechanism, providing further evidence that our
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architecture can recover the unknown intervention effect in the data via a combination

of related mechanism functions.

Table A.2: Held-out NELBO on semi-synthetic data: Trained on 1K or 20K samples
and evaluated on 87K samples, we show the mean test NELBO and standard deviation
across five test sets.

Sample Size SSM Linear SSM NL SSM MOE

1000 -211.54 +/- 49.61 -192.86 +/- 25.77 -266.37 +/- 10.42

SSM PK-PD SSM PK-PD
(w/o TExp) ——

1000 -294.00 +/- 10.25 -295.44 +/- 8.18 ——

SSM Linear SSM NL SSM MOE

20000 -322.36 +/- 0.30 -316.09 +/- 0.18 -322.22 +/- 0.22

SSM PK-PD SSM PK-PD
(w/o TExp) ——

20000 -319.57 +/- 0.23 -315.60 +/- 0.40 ——

Hyperparameters: We present the best hyperparameters for each model at each

sample size. We search over the ranges as described in the main paper; however, at

20000 samples, we train for 1000 epochs instead of 15000 epochs, which we found to

be a more stable training configuration.

• SSMLinear

1. 1000 samples: State space dimension 64, L2 regularization on all parameters

with strength 0.01

2. 20000 samples: State space dimension 128, L2 regularization on all param-

eters with strength 0.01

• SSMNL

1. 1000 samples: State space dimension 48, hidden layer dimension on neural

network: 300, L2 regularization on all parameters with strength 0.1

2. 20000 samples: State space dimension 128, hidden layer dimension on

neural network: 300, L2 regularization on all parameters with strength 0.01
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• SSMMOE

1. 1000 samples: State space dimension 48, hidden layer dimension on each

MLP expert: 300, L2 regularization on all parameters with strength 0.01

2. 20000 samples: State space dimension 128, hidden layer dimension on each

MLP expert: 300, L2 regularization on all parameters with strength 0.01

• SSMPK-PD

1. 1000 samples: State space dimension 64, L2 regularization on subset of

parameters with strength 0.01

2. 20000 samples: State space dimension 128, L2 regularization on subset of

parameters with strength 0.01

A.6 Additional Analyses

This section presents experimental results that provide an additional qualitative lens

onto the PKPDNeural.

A.6.1 Exploring different strategies of sampling patient data

using SSMPK-PD on ML-MMRF

In the main paper (Figure 3-5), we show samples from SSM models trained on

ML-MMRF, conditioned on a patient’s first two years of data and the sequence of

interventions they were prescribed. In each case, we additionally condition on the

patient’s baseline covariates.

Here, we experiment with different conditioning strategies. Let 𝐶 denote the point

in time until which we condition on patient data and 𝐹 denote the number of timesteps

that we sample forward into the future. We limit our analysis to the subset of patients

for which 𝐶 + 𝐹 <= 𝑇 where 𝑇 is the maximum number of time steps for which we

observe patient data.
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Figure A-2: Forward samples from learned SSM models with differing condition-
ing strategies: We visualize samples from SSMPK-PD (o) and SSMlinear (x). Each row
corresponds to a single patient, whereas each column represents a different biomarker for
that patient. a): We condition on 6 months of patient data and forward sample 2 years. b):
We condition on 1 year of patient data and forward sample 1 year. c): We condition on a
patient’s baseline data and forward sample 2 years. As in the main paper, blue circles denote
ground truth, and the markers above the trajectories represent treatments prescribed across
time.
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Figure A-3: 𝑍𝑡 Visualizations: We visualize the TSNE representations of each held-out
patient’s latent state, 𝑍𝑡, over multiple time points, extending the analysis done in the main
paper.

The samples we display are obtained as a consequence of averaging over three

different samples, each of which is generated (for the SSM) as follows:

𝑍 ∼ 𝑞𝜑(𝑍𝐶 |𝑍𝐶−1, 𝑋1:𝐶 , 𝑈0:𝐶−1)

𝑍𝑘 ∼ 𝑝𝜃(𝑍𝑘|𝑍𝑘−1, 𝑈𝑘−1, 𝐵) 𝑘 = 𝐶 + 1, . . . , 𝐶 + 𝐹

𝑋𝑘 ∼ 𝑝𝜃(𝑋𝑘|𝑍𝑘) 𝑘 = 𝐶 + 1, . . . , 𝐶 + 𝐹 (A.10)

We study the following strategies for simulating patient data from the models.

1. Condition on 6 months of patient data, and then sample forward 2 years,

2. Condition on 1 year of a patient data and then sample forward 1 year,

3. Condition on the baseline data of the patient and then sample forward 2 years.

In Supp. Figure A-2, we show additional samples from SSMPK-PD when condi-

tioning on differing amounts of data. Overall, in all three cases, SSMPK-PD models

capture treatment response better than one of the best performing baselines (i.e.

SSMLinear). For 1. (Figure A-2a)), we see that SSMPK-PD correctly captures that
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the serum IgA value goes up, while SSMLinear predicts that it will stay steady. For 2.

(Figure A-2b)), SSMPK-PD does well in modeling down-trends, as in serum IgA and

serum lambda. For 3. (Figure A-2c)), we similarly see that SSMPK-PD captures the

up-trending serum IgG and serum lambda.

A.6.2 Analyzing the Latent State learned by SSMPK-PD over

Time

In Supp Figure A-3, we show the latent state of each held-out patient (reduced down

to two dimensions via TSNE [176]) over multiple time points, expanding on the two

time points that were shown in Figure 3-4 of the main paper. As we saw before, early

in the treatment course, the latent representations of the patients have no apparent

structure. However, as time goes on, we find that the latent representations separate

based on whether treatment is administered or not.

A.6.3 Deep Dive into SSMPK-PD vs SSMLinear on ML-MMRF

We are also interested in the absolute negative log likelihood measures and predictive

capacity of the models at a per-feature level. In Supp. Figure A-6a), we use importance

sampling to estimate the marginal negative log likelihood of SSMLinear and SSMPK-PD

for each covariate across all time points. Namely, we utilize the following estimator,

𝑝(X) ≈ 1

𝑆

𝑆∑︁

𝑠=1

𝑝(X|Z(𝑠))𝑝(Z(𝑠))

𝑞(Z(𝑠)|X)
, (A.11)

akin to what is used in [218]. SSMPK-PD has lower negative log likelihood compared to

SSMLinear for several covariates, including neutrophil count, albumin, BUN, calcium,

and serum IgA. This result is corroborated with the generated samples in Supp. Figure

A-2, which often show that the PK-PD model qualitatively does better at capturing

IgA dynamics compared to the Linear model. In general, although there is a some

overlap in the estimates of the likelihood under the two models for some features, it is

reassuring to see that SSMPK-PD does model the probability density of vital markers
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Dataset Held-out
NELBO Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

ML-MMRF linear 85.26 73.25 70.61 59.86 71.11
linear + log-cell 84.42 68.11 66.69 58.83 71.48

linear + log-cell + te 65.06 57.20 66.73 53.37 58.12

Table A.3: Ablation Experiment on ML-MMRF Dataset: We study the effect of
adding each mechanism function to SSMPK-PD. We report held-out bounds on negative log
likelihood.

like serum IgA (which is often used by doctors to measure progression for specific

kinds of patients), better than the baseline.

In Supp. Figure A-6b), c), and d), we show the L1 error of SSMPK-PD and

SSMLinear when predicting future values of each covariate. We do so under three

different conditioning strategies: 1) condition on 6 months of patient data, and predict

1 year into the future; 2) condition on 6 months of patient data, and predict 2 years into

the future; 3) condition on 2 years of patient data, and predict 1 year into the future.

Observing 1) and 2) (Supp. Figure A-6b) and c)), we see that prediction quality

expectedly degrades when trying to forecast longer into the future. Additionally, we

find that when increasing the amount of data we condition on to two years (i.e. forward

sampling later on in a patient’s disease course) (Supp. Figure A-6d)), the prediction

quality is similar to that of conditioning only on six months of data (Supp. Figure

A-6b)) [barring serum M-protein and glucose]. This result reflects the ability of our

model to generate accurate samples at multiple stages of a patient’s disease. Finally,

we also report L1 error for forward samples taken from SSMPK-PD and SSMLinear

over 6-month time windows in Supp. Figure A-4. We see that for some biomarkers,

such as serum IgA, the PK-PD model has lower L1 error, while for others, such as

Calcium, both models do very well.

A.6.4 Ablation Studies for SSMPK-PD

We report an ablation experiment in Supp. Table A.3, where we assess the effect of

adding each mechanism function to SSMPK-PD on held-out NELBO. We see that the
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Figure A-4: L1 error for 6-month forward samples from PK-PD and Linear
models: We report L1 error for forward samples over a 6-month time window conditioned
only on baseline data.
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Figure A-5: Feature ablation of conditioning set for subset of biomarkers: We
report the per-biomarker mean-squared error (MSE), averaged over all patients and all time
points, of SSMPK-PD models trained on an increasing subset of baseline and treatment
features.

Neural Log-Cill Kill function gives a modest improvement, while the addition of the

Neural Treatment Exponential function gives most of the improvements.

Secondly, in Figure A-5, we show a feature ablation experiment to determine the

importance of baseline and treatment features in forecasting several multiple myeloma

markers. We train SSMPK-PD models on subsets of features, while tuning the latent

variable size ([16, 48, 64, 128]) on a validation set for each subset. Then, we evaluate

the mean-squared error (MSE), averaged over all examples and time points, of each

trained model on a separate held-out set. Our results are shown in Figure A-5. We

focus on serums IgA, IgG, and lambda, three biomarkers that are commonly tracked

in multiple myeloma to evaluate response to treatment and overall progression of

disease [156, 102].

We find that for serums IgA and Lambda, adding the treatment signal intuitively

leads to a reduction in the MSE. For serum IgG, while the treatment signal helps with

predictive performance, the baseline features, such as the genomic and myeloma type

features, also seem to play a role.
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Figure A-6: a) NLL estimates via Importance Sampling [top left]: We estimate the
NLL of SSMPK-PD and SSMLinear for each feature, summed over all time points and averaged
over all patients. b) Condition on 6 months, forward sample 1 year [top right]: We
show L1 Prediction Error for forward samples over a 1 year time window conditioned on 6
months of patient data. At each time point, we compute the L1 error with the observed
biomarker and sum these errors (excluding predictions for missing biomarker values) over
the prediction window. We employ this procedure for each patient. c) Condition on 6
months, forward sample 2 years [bottom left]: We report L1 error for forward samples
over a 2 year window conditioned on 6 months of patient data. d) Condition on 2 years,
forward sample 1 year [bottom right]: Finally, we report L1 error for forward samples
over a 1 year time window conditioned on 2 years of patient data.
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Appendix B

Supplementary Material for Chapter 4

B.1 Data Preprocessing

B.1.1 Sample Splitting

On the MM2 data, we perform a random 80/20 split of the data into training and

test sets. We create five additional random 75/25 splits of the training set into a

smaller training set that is used for model training and a validation set used for

hyperparameter tuning. For the generalizability experiments, we evaluate the model

on all MM1 patients.

B.1.2 Included Variables

We include the following variables for our analysis, filtering out any covariates that were

below a missingness threshold of 15% for the baseline covariates and 70% (computed

over the entire follow-up time) for the longitudinal covariates.

Baseline Variables, 𝐵

• Age, Race, Sex

• Time since diagnosis (months)

• Plasma cell (%), Bone marrow plasma cells (%)
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• Baseline involved free light chain level (mg/L), Baseline creatinine (mg/dL),

Baseline creatinine clearance (mL/min), Baseline albumin (g/dL)

• Any polymorphisms? (Separate binary covariates for presence of CC, CG, GG

specific changes are included as well.)

• Cytogenetics result (abnormal, normal, or indeterminate)

• Baseline plasmacytoma observed

• History of bone lesions

• Extramedullary disease at study entry

• Measurable disease flag (Serum M-protein, Urine M-protein, Both SPEP and

UPEP, Serum FLC)

• Liver function based on baseline tests

• ISS at baseline

• Myeloma type

• L-chain type at baseline (kappa, lambda, biclonal)

• Durie-Salmon Stage at initial diagnosis

• Lytic bone disease at initial diagnosis

• ISS stage at initial diagnosis

• ISS stage at study entry

• ECOG

• Beta-2 microglobulin (categorical)

• Free light chain ratio (categorical)

• Cytogenetics abnormality (categorical, high risk vs standard)
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• Skeletal survey done at baseline

• Lytic bone lesion present at baseline

• del17 present

• t(4;14) present alone

• 1q amplification status

• Treatment arm

Longitudinal Variables, 𝑋

• Albumin (g/L)

• Alkaline Phosphatase (U/L)

• Alanine Aminotransferase (U/L), Aspartate Aminotransferase (U/L), Bilirubin

(umol/L), Blood Urea Nitrogen (mmol/L)

• Calcium (mmol/L), Chloride (mmol/L), Corrected Calcium (mmol/L), Glucose

(mmol/L), Potassium (mmol/L), Magnesium (mmol/L), Phosphate (mmol/L)

• Carbon Dioxide (mmol/L)

• Creatinine (umol/L), Glomerular Filtration Rate Adj for BSA via CKD-EPI

(mL/min/1.73m2)

• Hematocrit, Hemoglobin (g/L), Lymphocytes (109/L), Monocytes (109/L), Neu-

trophils (109/L), Platelets (109/L), Leukocytes (109/L)

• Lactate Dehydrogenase (U/L)

• Protein (g/L), Serum Globulin (g/L), Sodium (mmol/L), SPEP Gamma Globulin

(g/L), Free SPEP Kappa Light Chain (mg/L), Free SPEP Kappa Lt Chain/Free

Lambda Lt Chain, Free SPEP Lambda Light Chain (mg/L), SPEP Mono-

clonal Protein (g/L), Serum TM Albumin/Globulin, Immunoglobulin A (g/L),

Immunoglobulin G (g/L), Immunoglobulin M (g/L)
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• Urine Albumin (%), UPEP Monoclonal Protein (mg/day), Urate (umol/L)

Treatment Variables, 𝐴

Dosages of lenalidomide, ixazomib, and dexamethasone are included in the longitudinal

treatment information if the patient was assigned to the treatment group. Otherwise, if

the patient was assigned to the control group, dosages of lenalidomide, dexamethasone,

and a placebo pill are given.

B.1.3 Normalization

Our model relies on a wide range of clinical and biological signals that have different

scales and variability. We normalize the baseline variables, 𝐵, by subtracting the

mean of each variable and scaling by the inverse of the standard deviation. For each

fold, the mean and standard deviations are computed on the training set alone.

For the longitudinal variables, 𝑋, we use a normalization strategy aimed at

being clinically informative while still enforcing an informative variance over time.

Immunoglobulin markers tend to be very large at baseline and quickly decrease over

time. A typical standard scaling of this variable would then tend to mask the variability

in the immunoglobulin levels after the first decrease. Yet, to predict progression, the

ability to read the future trajectories of immunoglobulins is crucial.

Our normalization strategy uses normal clinical ranges for each variable. Letting

(𝛼𝑗, 𝛽𝑗) be the lower and upper bounds of the normal range of a variable 𝑗, we first

compute

𝑋𝑗,* =
4 * (𝑋𝑗 − 𝛼𝑗)
𝛽𝑗 − 𝛼𝑗

− 2 (B.1)

For SPEP light chains, UPEP proteins, and urate, we further scale the variable by

a factor 1
5
, to accommodate their values being significantly higher than the normal

range. We then incorporate an invertible non-linearity to retain variability of the

signal in the lower ranges. The final normalization for a longitudinal variable 𝑗 is
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obtained using the following formula,

𝑋𝑗,† =
7

1 + 𝑒−0.25·𝑋𝑗,* − 3.5. (B.2)

B.2 Additional Quantitative Results

A

B

Figure B-1: (A): Results for PFS prediction (B): Results for OS prediction

B.2.1 Additional PFS Prediction Results

We report PFS prediction results for all values of 𝑡cond as well as patient subgroups by

myeloma type (IgG-dominant and IgA-dominant).
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MM2 MM1

1 6 12 1 6 12

RSF 0.636± 0.013 0.689± 0.016 0.713± 0.027 0.571± 0.019 0.622± 0.013 0.599± 0.019
CPH 0.652± 0.015 0.68± 0.038 0.749± 0.019 0.559± 0.033 0.583± 0.024 0.6± 0.013
CPH-ISS 0.595± 0.014 0.601± 0.003 0.592± 0.007 0.536± 0.014 0.525± 0.012 0.531± 0.017
Transformer-CPH 0.614± 0.025 0.669± 0.02 0.712± 0.023 0.538± 0.017 0.592± 0.006 0.633± 0.013

Table B.1: PFS prediction results for all patients, 𝑡cond in the columns

MM2 MM1

1 6 12 1 6 12

RSF 0.673± 0.05 0.685± 0.058 0.676± 0.037 0.536± 0.014 0.576± 0.024 0.627± 0.031
CPH 0.632± 0.031 0.71± 0.041 0.639± 0.045 0.569± 0.022 0.572± 0.022 0.632± 0.023
CPH-ISS 0.583± 0.027 0.6± 0.006 0.592± 0.009 0.55± 0.024 0.498± 0.021 0.561± 0.016
Transformer-CPH 0.616± 0.029 0.589± 0.025 0.654± 0.039 0.55± 0.026 0.565± 0.012 0.681± 0.017

Table B.2: PFS prediction results for IgA-dominant myeloma subgroup, 𝑡cond in the columns

MM2 MM1

1 6 12 1 6 12

RSF 0.637± 0.021 0.699± 0.019 0.76± 0.033 0.592± 0.015 0.629± 0.017 0.614± 0.018
CPH 0.654± 0.017 0.693± 0.04 0.801± 0.025 0.564± 0.056 0.587± 0.03 0.608± 0.014
CPH-ISS 0.592± 0.009 0.596± 0.001 0.593± 0.007 0.55± 0.019 0.55± 0.009 0.536± 0.015
Transformer-CPH 0.639± 0.018 0.709± 0.025 0.746± 0.028 0.618± 0.006 0.621± 0.005 0.623± 0.018

Table B.3: PFS prediction results for IgG-dominant myeloma subgroup, 𝑡cond in the columns

B.2.2 Additional OS Prediction Results

We report OS prediction results for all values of 𝑡cond as well as patient subgroups by

myeloma type (IgG-dominant and IgA-dominant).

MM2 MM1
1 6 12 1 6 12

RSF 0.679± 0.032 0.663± 0.029 0.688± 0.049 0.582± 0.009 0.559± 0.013 0.569± 0.023
CPH 0.714± 0.017 0.694± 0.019 0.738± 0.018 0.567± 0.009 0.565± 0.011 0.604± 0.019
CPH-ISS 0.595± 0.014 0.601± 0.003 0.592± 0.007 0.536± 0.014 0.525± 0.012 0.531± 0.017
Transformer-CPH 0.601± 0.023 0.651± 0.006 0.683± 0.016 0.521± 0.037 0.545± 0.043 0.564± 0.025

Table B.4: OS prediction results for all patients, 𝑡cond in the columns

B.2.3 Additional Adverse Event Prediction Results

We report adverse event prediction results for 𝑡cond = 1, 6. We do not report 𝑡cond = 12,

since the number of events experienced by patients beyond 𝑡 = 12 is too small to allow

for meaningful prediction.
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MM2 MM1

1 6 12 1 6 12

RSF 0.656± 0.062 0.574± 0.056 0.664± 0.084 0.549± 0.024 0.504± 0.015 0.577± 0.023
CPH 0.674± 0.04 0.588± 0.06 0.573± 0.104 0.561± 0.011 0.54± 0.015 0.678± 0.026
CPH-ISS 0.583± 0.027 0.6± 0.006 0.592± 0.009 0.55± 0.024 0.498± 0.021 0.561± 0.016
Transformer-CPH 0.63± 0.028 0.562± 0.029 0.615± 0.027 0.503± 0.042 0.499± 0.064 0.604± 0.054

Table B.5: OS prediction results for IgA-dominant myeloma subgroup, 𝑡cond in the columns

MM2 MM1

1 6 12 1 6 12

RSF 0.641± 0.04 0.688± 0.029 0.701± 0.057 0.579± 0.015 0.557± 0.015 0.557± 0.034
CPH 0.67± 0.024 0.681± 0.029 0.749± 0.014 0.593± 0.008 0.57± 0.01 0.571± 0.021
CPH-ISS 0.592± 0.009 0.596± 0.001 0.593± 0.007 0.55± 0.019 0.55± 0.009 0.536± 0.015
Transformer-CPH 0.58± 0.021 0.67± 0.005 0.685± 0.011 0.54± 0.062 0.552± 0.05 0.546± 0.015

Table B.6: OS prediction results for IgG-dominant myeloma subgroup, 𝑡cond in the columns

AE-0 AE-1 AE-2 AE-3 AE-4 AE-5

RSF 0.59± 0.08 0.616± 0.048 0.499± 0.062 0.484± 0.118 0.568± 0.092 0.386± 0.262
CPH 0.626± 0.021 0.505± 0.106 0.468± 0.036 0.452± 0.069 0.631± 0.063 0.471± 0.149

Transformer-CPH 0.607± 0.03 0.533± 0.132 0.501± 0.054 0.371± 0.134 0.55± 0.121 0.463± 0.223

Table B.7: Prediction of Adverse Events at 𝑡cond = 1 month. AE 0-5.

AE-6 AE-7 AE-8 AE-9 AE-10 AE-11

RSF 0.534± 0.078 0.531± 0.055 0.729± 0.099 0.474± 0.047 0.589± 0.111 0.454± 0.096
CPH 0.616± 0.112 0.564± 0.022 0.756± 0.09 0.495± 0.046 0.694± 0.092 0.504± 0.066

Transformer-CPH 0.658± 0.098 0.473± 0.097 0.594± 0.102 0.521± 0.073 0.623± 0.114 0.459± 0.132

Table B.8: Prediction of Adverse Events at 𝑡cond = 1 month. AE 6-11.

AE-0 AE-1 AE-2 AE-3 AE-4 AE-5

RSF 0.584± 0.092 0.586± 0.124 0.436± 0.047 0.661± 0.157 0.483± 0.134 0.429± 0.169
CPH 0.663± 0.042 0.52± 0.106 0.472± 0.029 0.629± 0.111 0.36± 0.212 0.31± 0.19

Transformer-CPH 0.653± 0.092 0.544± 0.19 0.468± 0.056 0.58± 0.106 0.596± 0.191 0.369± 0.335

Table B.9: Prediction of Adverse Events at 𝑡cond = 6 months. AE 0-5.

AE-6 AE-7 AE-8 AE-9 AE-10 AE-11

RSF 0.471± 0.247 0.644± 0.036 0.437± 0.23 0.454± 0.107 0.676± 0.109 0.563± 0.127
CPH 0.441± 0.161 0.636± 0.054 0.229± 0.197 0.415± 0.048 0.929± 0.037 0.621± 0.121

Transformer-CPH 0.523± 0.165 0.57± 0.067 0.56± 0.367 0.483± 0.047 0.861± 0.13 0.431± 0.208

Table B.10: Prediction of Adverse Events at 𝑡cond = 6 months. AE 6-11.
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B.2.4 Forecasting Results & Hypothesis Testing

We report forecasting results for all covariates in addition to looking specifically at

chemistry lab values (“chem”) as well as serum immunoglobulins (“serum”). We find

that the the latter are harder to predict than the former. In both cases, Transformer-

CPH does markedly better in forecasting. We verify this result by running pairwise

t-tests comparing all methods effdover all observation windows (see Table B.12).

1 6 12

all LOCF 1.189± 0.0 0.245± 0.0 0.22± 0.0
DMM 0.804± 0.038 0.614± 0.013 0.533± 0.019
RNN 0.429± 0.038 0.263± 0.007 0.231± 0.01
Tran-CPH 0.341± 0.011 0.208± 0.002 0.181± 0.003

chem LOCF 0.392± 0.0 0.287± 0.0 0.26± 0.0
DMM 0.676± 0.018 0.649± 0.015 0.588± 0.006
RNN 0.338± 0.01 0.285± 0.004 0.254± 0.01
Tran-CPH 0.278± 0.005 0.241± 0.003 0.207± 0.003

serum LOCF 2.975± 0.0 0.209± 0.0 0.124± 0.0
DMM 1.784± 0.192 0.949± 0.113 0.75± 0.067
RNN 0.879± 0.157 0.312± 0.027 0.267± 0.044
Tran-CPH 0.66± 0.038 0.193± 0.004 0.166± 0.008

Table B.11: Forecasting results

1 6 12
LOCF DMM RNN Tran-CPH LOCF DMM RNN Tran-CPH LOCF DMM RNN Tran-CPH

all LOCF 1.0 <1e-4 <1e-4 <1e-4 1.0 <1e-4 0.0045 <1e-4 1.0 <1e-4 0.0697 <1e-4
DMM <1e-4 1.0 0.0001 <1e-4 <1e-4 1.0 <1e-4 <1e-4 <1e-4 1.0 <1e-4 <1e-4
RNN <1e-4 0.0001 1.0 0.0076 0.0045 <1e-4 1.0 0.0001 0.0697 <1e-4 1.0 0.0004
Tran-CPH <1e-4 <1e-4 0.0076 1.0 <1e-4 <1e-4 0.0001 1.0 <1e-4 <1e-4 0.0004 1.0

chem LOCF 1.0 <1e-4 0.0003 <1e-4 1.0 <1e-4 0.3262 <1e-4 1.0 <1e-4 0.2508 <1e-4
DMM <1e-4 1.0 <1e-4 <1e-4 <1e-4 1.0 <1e-4 <1e-4 <1e-4 1.0 <1e-4 <1e-4
RNN 0.0003 <1e-4 1.0 0.0003 0.3262 <1e-4 1.0 <1e-4 0.2508 <1e-4 1.0 0.0005
Tran-CPH <1e-4 <1e-4 0.0003 1.0 <1e-4 <1e-4 <1e-4 1.0 <1e-4 <1e-4 0.0005 1.0

serum LOCF 1.0 0.0002 <1e-4 <1e-4 1.0 0.0001 0.001 0.0009 1.0 <1e-4 0.0019 0.0003
DMM 0.0002 1.0 0.0012 0.0002 0.0001 1.0 0.0003 0.0001 <1e-4 1.0 0.0002 <1e-4
RNN <1e-4 0.0012 1.0 0.0387 0.001 0.0003 1.0 0.0006 0.0019 0.0002 1.0 0.0072
Tran-CPH <1e-4 0.0002 0.0387 1.0 0.0009 0.0001 0.0006 1.0 0.0003 <1e-4 0.0072 1.0

Table B.12: Forecasting p-values
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Appendix C

Supplementary Material for Chapter 5

C.1 Proof of Proposition 1

Proposition 1. Consider a sequence of plug-in estimates { ̂︀𝑄(�̃�, .)}�̃� obtained from a cal-

ibration sample 𝒟𝑐,1, and the corresponding conformity scores 𝒱 = {𝑉 (𝑋𝑖, 𝑌𝑖) : 𝑖 ∈
𝒟𝑐,2} obtained from another sample 𝒟𝑐,2, where 𝒟𝑐,1 and 𝒟𝑐,2 are two disjoint subsets

of 𝒟𝑐. If {(𝑋𝑖, 𝑌𝑖) : 1 ≤ 𝑖 ≤ 𝑛 + 1} are exchangeable, then the interval in (5.11)

satisfies

P(𝑌𝑛+1 ∈ ̂︀𝐶𝑛(𝑋𝑛+1)) ≥ 1− 𝛼.

Proof. The construction of the interval in (5.11) implies that, conditioned on 𝒟𝑐,1, we

have

𝑌𝑛+1 ∈ ̂︀𝐶𝑛(𝑋𝑛+1) ⇐⇒ 𝑉 (𝑋𝑛+1, 𝑌𝑛+1) ≤ 𝑄𝒱(1− 𝛼),

hence it follows that P(𝑌𝑛+1 ∈ ̂︀𝐶𝑛(𝑋𝑛+1) | 𝒟𝑐,1)) = P(𝑉 (𝑋𝑛+1, 𝑌𝑛+1 ≤ 𝑄𝒱(1− 𝛼) | 𝒟𝑐,1)).

Since all training and calibration samples (𝑋𝑖, 𝑌𝑖) are exchangeable, then conditioned

on 𝒟𝑐,1, the calibration conformity scores in 𝒱 and the conformity score on the

test point 𝑉 (𝑋𝑛+1, 𝑌𝑛+1) are exchangeable. By exchangeability of calibration and
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testing conformity scores, it follows from Lemma 2 in [223] that:

P(𝑉 (𝑋𝑛+1, 𝑌𝑛+1) ≤ 𝑄𝒱(1− 𝛼) | 𝒟𝑐,1) ≥ 1− 𝛼,

which concludes the statement after marginalizing over the randomness of 𝒟𝑐,1.

C.2 Influence function of the quantile functional

Recall that 𝑄(𝛼, 𝑥) is the level-𝛼 quantile of 𝑌 |𝑋 = 𝑥, i.e.,

𝑄(𝛼, 𝑥) = 𝐹−1(𝛼) := inf{𝑦 ∈ R : 𝐹 (𝑦 |𝑋 = 𝑥) ≥ 𝛼},

where 𝐹 (.) is the conditional cumulative density function (CDF), 𝐹 (𝑦 |𝑋 = 𝑥) :=

P(𝑌 ≤ 𝑦 |𝑋 = 𝑥). Throughout this Section, we assume that 𝛼 = 𝐹 (𝐹−1(𝛼)). Recall

that the influence function of the functional 𝑄(𝛼) at the distribution 𝑃 for a given

point (𝑥, 𝑦) in the direction of the localized distribution 𝐺𝑥 is defined as follows:

IF(𝑦;𝑄(𝛼), 𝑃 ) = lim
𝜀→0

𝑄𝑃 𝑦(𝛼)−𝑄𝑃 (𝛼)

𝜀
, (C.1)

where 𝑃𝜀 = (1− 𝜀)𝑃 + 𝜖 𝛿𝑦. Let 𝐹𝜀 = (1− 𝜀)𝐹 + 𝜀 · 𝛿𝑦 be the CDF of the perturbed

distribution, then we have

𝛼 = 𝐹𝜀 ∘ 𝐹−1
𝜀 (𝛼)

= (1− 𝜀) · 𝐹 (𝐹−1
𝜀 (𝛼)) + 𝜀 · 𝛿𝑦(𝐹−1

𝜀 (𝛼)). (C.2)

By differentiating both sides with respect to 𝜀, we have the following

𝜕𝛼

𝜕𝜀
= 0 =

𝜕

𝜕𝜀

(︀
𝐹𝜀 ∘ 𝐹−1

𝜀 (𝛼)
)︀

=
𝜕

𝜕𝜀

(︀
(1− 𝜀) · 𝐹 (𝐹−1

𝜀 (𝛼)) + 𝜀 · 𝛿𝑦(𝐹−1
𝜀 (𝛼))

)︀

= −𝐹 (𝐹−1
𝜀 (𝛼)) + (1− 𝜀)𝑓(𝐹−1

𝜀 (𝛼)) · 𝜕𝐹
−1
𝜀 (𝛼)

𝜕𝜀
+ 𝛿𝑦(𝐹

−1
𝜀 (𝛼)) + 𝜀 · 𝜕

𝜕𝜀
𝛿𝑦(𝐹

−1
𝜀 (𝛼)).

(C.3)
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Note that the influence function definition in (C.1) can be rewritten as follows:

IF(𝑦;𝑄(𝛼), 𝑃 ) = lim
𝜀→0

𝑄𝑃 𝑦(𝛼)−𝑄𝑃 (𝛼)

𝜀
=

(︂
𝜕

𝜕𝜀
𝐹−1
𝜀 (𝛼)

)︂

𝜀=0

. (C.4)

By setting 𝜀 = 0 in (C.3), we have the following:

0 =

(︂
−𝐹 (𝐹−1

𝜀 (𝛼)) + (1− 𝜀)𝑓(𝐹−1
𝜀 (𝛼)) · 𝜕𝐹

−1
𝜀 (𝛼)

𝜕𝜀
+ 𝛿𝑦(𝐹

−1
𝜀 (𝛼)) + 𝜀 · 𝜕

𝜕𝜀
𝛿𝑦(𝐹

−1
𝜀 (𝛼))

)︂

𝜀=0

= −𝐹 (𝐹−1(𝛼)) + 𝑓(𝐹−1(𝛼)) ·
(︂
𝜕𝐹−1

𝜀 (𝛼)

𝜕𝜀

)︂

𝜀=0

+ 𝛿𝑦(𝐹
−1(𝛼)). (C.5)

By rearranging the terms in (C.5), we have

(︂
𝜕𝐹−1

𝜀 (𝛼)

𝜕𝜀

)︂

𝜀=0

=
𝐹 (𝐹−1(𝛼))− 𝛿𝑦(𝐹−1(𝛼))

𝑓(𝐹−1(𝛼))
. (C.6)

Hence, the influence function of the quantile is given by:

IF(𝑦;𝑄(𝛼), 𝑃 ) =
(︂
𝜕𝐹−1

𝜀 (𝛼)

𝜕𝜀

)︂

𝜀=0

=
𝛼− 1{𝐹−1(𝛼)≥𝑦}

𝑓(𝐹−1(𝛼))
. (C.7)

C.3 Additional Experiments

We test our method on 9 datasets: MEPS-19, MEPS-20, MEPS-21, Facebook-1,

Facebook-2, Bio, Kin8nm, Naval and Blog. The MEPS (medical expenditure panel

survey) datasets comprise surveys of families and individuals, their medical providers,

and employers across the United States collected over three years [223, 82, 57]. The

facebook datasets contain features extracted from facebook posts, and the task is to

predict how many comments the post will receive. The difference between Facebook-1

and Facebook-2 are the features that are included. The Bio dataset consists of

features describing the physiochemical properties of protein tertiary structure, including

fractional areas of different regions of the protein, distances between particular amino

acids, and other spacial distribution constraints. The task is to predict the size of the

residue. The remaining data sets are available in the UCI repository.

Evaluating Transparency In Table C.1, we show the marginal coverage, worst-
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MEPS-19 MEPS-20 MEPS-21

𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.

𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺

QR methods
QR-RF 0.90 1.00 0.54 0.91 1.06 0.55 0.93 1.29 0.65
QR-NN 0.79 0.54 0.67 0.81 0.56 0.64 0.79 0.53 0.64

CP methods
CP 0.89 1.28 0.19 0.90 1.24 0.15 0.90 1.29 0.16
LACP 0.89 0.61 0.20 0.89 0.59 0.20 0.90 0.62 0.26
CQR 0.89 1.12 0.46 0.89 1.05 0.50 0.89 1.27 0.62
CCH 0.96 5.37 0.79 0.97 5.35 0.75 0.97 5.35 0.78
CQ 0.87 2.02 0.76 0.88 2.01 0.87 0.88 2.10 0.88

CUQR 0.89 1.25 0.73 0.89 1.21 0.76 0.90 1.26 0.81

Facebook-1 Facebook-2 Bio

𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.

𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺

QR methods
QR-RF 0.93 0.85 0.78 0.92 0.81 0.86 0.92 1.33 0.84
QR-NN 0.81 0.55 0.68 0.80 0.52 0.64 0.81 0.94 0.56

CP methods
CP 0.90 1.39 0.72 0.90 1.39 0.82 0.90 2.42 0.85
LACP 0.90 0.69 0.76 0.90 0.69 0.84 0.90 1.15 0.83
CQR 0.90 0.83 0.77 0.90 0.83 0.87 0.90 1.36 0.83
CCH 0.89 0.72 0.65 0.89 0.64 0.67 0.90 1.07 0.85
CQ 0.89 1.34 0.79 0.89 1.35 0.87 0.90 2.41 0.80

CUQR 0.90 1.36 0.87 0.89 1.36 0.87 0.90 2.40 0.88

Kin8nm Naval Blog

𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.

𝐺 𝐶𝑎𝑣 𝐿𝑎𝑣 𝐶𝑤.𝑐.
𝐺

QR methods
QR-RF 0.93 1.36 0.89 0.90 0.63 0.87 0.79 0.73 0.76
QR-NN 0.79 0.94 0.74 0.78 0.55 0.73 0.79 0.73 0.76

CP methods
CP 0.90 2.17 0.83 0.89 1.31 0.78 0.89 1.89 0.57
LACP 0.90 1.09 0.84 0.89 0.60 0.85 0.89 1.06 0.63
CQR 0.90 1.33 0.85 0.89 0.70 0.85 0.90 1.34 0.82
CCH 0.89 1.14 0.86 0.89 0.48 0.83 0.98 5.58 0.96
CQ 0.89 2.16 0.85 0.87 1.27 0.87 0.87 1.81 0.76

CUQR 0.89 2.19 0.85 0.86 1.26 0.85 0.87 1.82 0.67

Table C.1: Marginal coverage, efficiency and conditional coverage of all baselines on
benchmark data sets.
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Figure C-1: Adaptivity of predictive inference baselines on the Facebook-1 and MEPS-20
dataset.

case subgroup coverage, and average interval length for all baselines as well as our

CUQR approach on the three additional datasets. In general, we recapitulate the

observations that we discuss in the main paper, though we will take care to provide

additional analysis for some of the more competitive baselines. Regarding the QR-RF

baseline, we find that although it is superior in terms of efficiency, it does not have

theoretical guarantees in terms of marginal or conditional coverage. Indeed, the

conditional coverage is worse than the worst-case conditional coverage achieved by

CUQR in all three datasets. With respect to CQR, although it is competitive in

the Facebook-2 dataset, it does not have any theoretical guarantees for coverage at

the subgroup level (only marginal coverage is guaranteed). Consequently, we see for

Facebook-1 and Bio inferior conditional coverage compared to CUQR.

Evaluating Adaptivity Similar to the experiment described in the main paper,

we continue to evaluate the extent to which baselines are adaptive, i.e. how congruent
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the lengths of the intervals are with the true uncertainty of the base model, as reflected

by the model error. We run this experiment on the Facebook-1 and MEPS-20

datasets. We see, as before, that either the baseline is not adaptive (e.g. CP or

LACP) or has limited adaptiveness, but not enough to maintain the target coverage

in the subgroup (e.g. QR-RF, CQR). QR-RF and CP, in particular, have a steep

dropoff in coverage for the subgroups in which the model is more uncertain (i.e. higher

indexed subgroups). On the other hand, we see CUQR both maintaining coverage in

all subgroups and adapting the interval lengths given the uncertainty in the subgroup.

246



Appendix D

Supplementary Material for Chapter 6

D.1 When can biased estimators be falsified?

As discussed in Examples 6.2.1 and 6.2.2, we imagine that observational estimators

differ in a few possible ways. They may represent the same identification strategy

applied to different datasets, different identification strategies applied to the same

dataset (e.g., different choices of confounders), or some combination of the two.

Assumption 6.2.3 states that there exists a consistent and asymptotically normal

observational estimator for 𝜏 , as defined in Def. E.17. This is a fundamental assumption

in our work, and so we build additional intuition for when we might expect this

condition to hold, and when we might be able to falsify this assumption. In this

section, we give basic intuition regarding patterns of confounding, and in Section D.2,

we discuss issues of transportability.

In Example D.1.1, we give a simple example where the causal graph is consistent

across two subgroups, and where an estimator must control for all confounders to get

consistent estimates of the GATE in either subgroup. In this setting, falsification is

possible. On the other hand, in Example D.1.2, we give a counterexample, where there

are multiple estimators that can deliver consistent estimates of the GATE on the RCT

subpopulation, but only one provides consistent estimates across all subpopulations.

Example D.1.1 (Consistent confounding across subgroups). In the causal graph

247



𝐴 𝑌

𝑍1𝑍2

𝑋

Figure D-1

𝐴𝑋 = 0 𝑌

𝑍

𝐴𝑋 = 1 𝑌

𝑍

Figure D-2

Figure D-3: Example D.1.1 is depicted in (D-1), and Example D.1.2 in (D-2)

shown in Figure D-1, there are two sets of confounders, 𝑍1, 𝑍2, a binary treatment

variable 𝐴, a binary subgroup variable 𝑋, and the outcome 𝑌 . We assume a linear

outcome model, whereby 𝐸[𝑌 |𝑋,𝑍1, 𝑍2, 𝐴] = 𝛼+𝛽𝑋+𝛾1𝐴𝑋+𝛾2𝐴(1−𝑋)+𝛿1𝑍1+𝛿2𝑍2.

Note that the true group average treatment effect (GATE) for the two subgroups

are, GATE(𝑋 = 0) = 𝛾2;GATE(𝑋 = 1) = 𝛾1. It is straightforward to show that

not conditioning on the full set of confounders will lead to biased GATE estimates

for both subgroups, whereas conditioning on both 𝑍1 and 𝑍2 will lead to consistent

estimates for both subgroups.

Example D.1.2 (Selective confounding by subgroup). Let there be two subgroups,

𝑋 = 0 and 𝑋 = 1, with the former having support in both RCT and observational

studies and the latter having support in only observational data. Now, suppose we

had the following treatment assignment mechanism, 𝑝(𝐴 = 1|𝑋,𝑍) = 𝑓(𝑍) · 1(𝑋 =

1) + 𝑐 · 1(𝑋 = 0), where 𝑍 is a set of confounders, 𝑓 is a nonlinear function of 𝑍, and

𝑐 is a constant. A candidate estimator that does not condition on 𝑍 would be able

to get consistent estimates for the validation effect but not the extrapolated effect.

On the other hand, conditioning on 𝑍 would allow for consistent estimates on both

validation and extrapolated effects.
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D.2 Conditions for valid observational / randomized

comparisons

Recall that we had defined the group average treatment effect (GATE) as follows in

Equation (E.17)

𝜏𝑖 :=

⎧
⎪⎨
⎪⎩
E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 0], if 𝑖 ∈ ℐ𝑅

E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 1], if 𝑖 ∈ ℐ𝑂
, (D.1)

and refer to 𝜏𝑖 for 𝑖 ∈ ℐ𝑅 as a validation effect, and 𝜏𝑖 for 𝑖 ∈ ℐ𝑂 as an extrapolated

effect. In this section, we discuss sufficient conditions under which these causal

effects are identifiable from observational data drawn from a distribution 𝐷 = 𝑘, and

give examples of doubly-robust estimators of these quantities. These assumptions

cover both comparisons of the observational studies to the randomized trial (used for

validation), as well as the normalization of observational estimates (used for confidence

intervals on the extrapolated effects).

Our goal in presenting these results is to build intuition in this setting for when we

might expect a consistent observational estimator to exist across all groups. This is a

well-studied topic, often in the context of generalizing effect estimates from randomized

trials to other supported populations (e.g., all trial-eligible individuals). We primarily

make use of results in that literature to build intuition here, pointing the reader to

Degtiar and Rose [66] for a recent review whose presentation we largely mirror, with

modifications to account for our notation.

D.2.1 Identification

First, we state standard assumptions under which the GATE in the observational

population for 𝐷 = 𝑘,

E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 𝑘], (D.2)

is identifiable from data in the dataset 𝐷 = 𝑘, with notation adapted to our setting.
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Assumption D.2.1. The following conditions hold for the distribution P(· | 𝐷 = 𝑘):

1. Conditional Exchangeability over 𝐴: 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋,𝐷 = 𝑘 for all treatments 𝑎.

2. Positivity of Treatment Assignment : P(𝑋 = 𝑥 | 𝐷 = 𝑘) > 0 =⇒ P(𝐴 = 𝑎 |
𝑋 = 𝑥,𝐷 = 𝑘) > 0 for all 𝑎.

3. Consistency : 𝐴 = 𝑎 =⇒ 𝑌𝑎 = 𝑌

These causal assumptions ensure that the ATE and CATE can be identified from

observational data for the observational population and are standard in the causal

inference literature [126]. In order to transport these estimates to the RCT population

(or from one observational dataset to another), we require additional assumptions.

Next, we give assumptions under which these estimates can be transported to another

population 𝐷 = 𝑘′, where in our case 𝑘′ ∈ {0, 1}.

Assumption D.2.2. Let 𝑘 correspond to a source population, and 𝑘′ correspond

to the target population. Conditioned on the event 𝐷 ∈ {𝑘, 𝑘′}, define the random

variable 𝑆 = 1 if 𝐷 = 𝑘 and 𝑆 = 0 otherwise. Then let the following hold, on the

distribution P(· | 𝐷 ∈ {𝑘, 𝑘′}).

1. Conditional Exchangeability over 𝑆: 𝑌𝑎 ⊥⊥ 𝑆 | 𝑋 for all treatments 𝑎.

2. Positivity of Selection: P(𝑋 = 𝑥) > 0 =⇒ P(𝑆 = 1 | 𝑋 = 𝑥) > 0 almost surely

over 𝑋 for all 𝑎.

3. Consistency : 𝑆 = 𝑠 and 𝐴 = 𝑎 =⇒ 𝑌𝑎 = 𝑌

Here, we note that this introduces non-trivial additional assumptions. Most notably,

we require that the potential outcomes are independent of the dataset, given 𝑋. This

would be violated, for instance, if the distribution of unobservable effect modifiers

differs between different observational studies. As a result, we note that it is possible

for an observational study to fail to replicate the RCT results due to failures of

transportability (failure of Assumption D.2.2) even if it has “internal validity”, allowing

for identification of the causal effect in the population 𝐷 = 𝑘. There also exists
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a large body of work on identifying transportable causal effects via causal graphs

[203, 204, 202].

D.2.2 Estimation of the ATE in the target population

Regarding estimation, Dahabreh et al. [64] consider the problem of transporting

average treatment effects from randomized trials to observational studies, under

Assumption D.2.1 with 𝑘 = 0 and Assumption D.2.2 with 𝑘 = 0, 𝑘′ = 1. These

assumptions admit identification of the potential outcomes means as follows (see

Section 4.2 of Dahabreh et al. [64])

E[𝑌𝑎 | 𝑆 = 0] = E[E[𝑌 | 𝑋,𝑆 = 1, 𝐴 = 𝑎] | 𝑆 = 0] (D.3)

where the outer expectations are over P(𝑋 | 𝑆 = 0), i.e., the covariate distribution

of the target population. Dahabreh et al. [61] give a doubly robust estimator for the

statistical quantity on the right-hand side as the empirical expectation of the following

pseudo-outcome (see Equation A.13 of Dahabreh et al. [64])

�̂�(𝑎) =
1

𝑛

𝑛∑︁

𝑖=1

𝑌 𝑎
𝑖 (𝜂, �̂�) (D.4)

where 𝑛 is the total samples in both the source 𝑆 = 1 and target 𝑆 = 0 samples, and

where

𝑌 𝑎
𝑖 (𝜂, �̂�) :=

1

�̂�

(︂
1 {𝑆𝑖 = 1, 𝐴𝑖 = 𝑎} · 1− 𝑝(𝑋𝑖)

𝑝(𝑋𝑖)𝑒𝑎(𝑋𝑖)
· {𝑌𝑖 − 𝑔𝑎(𝑋𝑖)}+ (1− 𝑆𝑖)𝑔𝑎(𝑋𝑖)

)︂
.

(D.5)

In Equation (D.5), 𝜂 := (𝑔𝑎, 𝑒𝑎, 𝑝), and �̂� := 𝑛−1
∑︀𝑛

𝑖=1 1 {𝑆𝑖 = 0} is an estimate of

P(𝑆 = 0), 𝑔𝑎(𝑋) is an estimate of the mean conditional outcome E[𝑌 | 𝐴 = 𝑎, 𝑆 =

1, 𝑋], 𝑝(𝑋) is an estimate of the selection probability P(𝑆 = 1 | 𝑋), and 𝑒𝑎(𝑋) is an

estimate of the propensity score P(𝐴 = 𝑎 | 𝑆 = 1, 𝑋). Dahabreh et al. [61] derives

precise asymptotic properties of this estimator, which is asymptotically normal and
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consistent for the observational quantity on the right-hand side of Equation (D.3). In

particular, this estimator is doubly-robust in the sense that it is consistent if either

𝑝(𝑋) or 𝑔𝑎(𝑋) is consistent, but requires consistency of 𝑒𝑎(𝑋). It also enjoys the rate

double-robustness property, retaining consistency and asymptotic normality even if

the estimators for 𝑝, 𝑔 converge at slower than parametric rates, and allows for the

same cross-fitting schemes used in the Double ML [50] literature for relaxing Donsker

conditions.

Note that the average treatment effect in this setting can be estimated by the

following contrast, which is similarly an empirical expectation of a pseudo-outcome

�̂�(1)− �̂�(0) = 1

𝑛

𝑛∑︁

𝑖=1

𝑌 1
𝑖 (𝜂, �̂�)− 𝑌 0

𝑖 (𝜂, �̂�) =
1

𝑛

𝑛∑︁

𝑖=1

𝑌𝑖(𝜂, �̂�), (D.6)

where 𝑌𝑖(𝜂, �̂�) := 𝑌 1
𝑖 (𝜂, �̂�)− 𝑌 0

𝑖 (𝜂, �̂�). Furthermore, the variance of these estimates

can be estimated using either sandwich estimators from M-estimation theory [255], or

via bootstrap methods. We refer the reader to Sections 5.3, 5.4 and Appendix A.4 of

[64] for more details.

D.3 Estimation and comparison of GATE in semi-

synthetic experiments

In Sections 6.2.2 and D.2, we discuss several estimators for average treatment effects

(ATEs) that are known to be asymptotically normal, such as the double ML estimator

discussed in Example 6.2.1 or the doubly-robust estimator in Section D.2.

Given a fixed set of discrete subgroups, one could analyze each subgroup inde-

pendently and apply such estimators directly, since the ATE in each subgroup is

precisely the GATE. This would be a straightforward way to ensure that the same

formal guarantees hold regarding asymptotic normality. While this approach would

be feasible in our experimental setting, due to the small number of groups, it is less

practical in general, especially with a larger number of groups, since information

cannot be shared across nuisance models such as 𝑔𝑎, 𝑒𝑎, 𝑝 discussed in Section D.2.
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In an effort to emulate a more realistic setting, we take a slightly different approach

in the semi-synthetic experiments. We draw inspiration from the double ML approach

given in Semenova and Chernozhukov [241] for GATE estimation, while taking into

consideration the transportation of causal effects in the sense of Section D.2. Note

that in Semenova and Chernozhukov [241], the required assumptions and proofs for

asymptotic normality of estimators are provided on a case-by-case basis, which does

not include our case with transportation. Therefore, in the following we will briefly

describe their approach, then show how we construct our GATE estimators and provide

the required assumptions for their asymptotic normality.

Semenova and Chernozhukov [241] focuses on the setting where there exists some

pseudo-outcome / signal, 𝑌 (𝜂), and where one is interested in summarizing the

function, 𝜏(𝑥) = E[𝑌 (𝜂) | 𝑋 = 𝑥], with a linear regression function (in the simplest

case, a set of group indicators). When 𝑌 (𝜂) is the doubly-robust score [222, 221] (see

Equation (D.11)), 𝜏(𝑥) is equal to the CATE function, and the best approximation

by group indicators gives the GATE.

Our general procedure is as follows: for estimation of 𝜏(𝑘) and the respective

variances, we construct a score function / pseudo-outcome, 𝑌 , whose empirical con-

ditional expectation (in each group) provides an estimate of the GATE, and whose

empirical variance we use as an estimate of the variance. We describe this procedure

in more detail below. Throughout, 𝑋 should be taken to refer to the covariates that

are observed in a given observational study.

Comparing Validation Effect Estimates In our simulation setup, all of the

observational datasets are drawn from a common distribution, which differs from the

RCT distribution, requiring the use of the techniques and assumptions discussed in

Section D.2 to estimate the GATE, 𝜏𝑖 = E[𝑌1 − 𝑌0 | 𝐺 = 𝑖,𝐷 = 0], using data from

the observational distributions.

To generate the observational estimates 𝜏𝑖(𝑘), �̂�2
𝑖 (𝑘) in this setting, we cannot

simply take empirical conditional expectation / variance of the score function given in

Equation D.6. Rather, the GATE is identified under Assumptions D.2.1 and D.2.2 as
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a conditional expectation of the score times a correction factor, as discussed in the

following proposition.

Proposition D.3.1. In the setting of Section D.2, under Assumptions D.2.1 and D.2.2,

the conditional mean potential outcome in the target distribution is identified as

E[𝑌𝑎 | 𝑆 = 0, 𝐺 = 𝑖] =
P(𝑆 = 0)

P(𝑆 = 0 | 𝐺 = 𝑖)
E[𝑌 𝑎(𝜂0, 𝜋0) | 𝐺 = 𝑖], (D.7)

where 𝑌 𝑎(𝜂, 𝜋) is defined as in Equation D.8.

𝑌 𝑎(𝜂, 𝜋) :=
1

𝜋

(︂
1 {𝑆 = 1, 𝐴 = 𝑎} · 1− 𝑝(𝑋)

𝑝(𝑋)𝑒𝑎(𝑋)
· {𝑌 − 𝑔𝑎(𝑋)}+ (1− 𝑆)𝑔𝑎(𝑋)

)︂

(D.8)

where 𝜂 := (𝑔𝑎, 𝑒𝑎, 𝑝) with true underlying parameters 𝜂0 = (𝑔𝑎0, 𝑒𝑎0, 𝑝0), 𝜋 := P(𝑆 = 0)

with true value 𝜋0, 𝑔𝑎(𝑋) := E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑋], 𝑝(𝑋) := P(𝑆 = 1 | 𝑋), and

𝑒𝑎(𝑋) := P(𝐴 = 𝑎 | 𝑆 = 1, 𝑋].

A proof is provided in Appendix D.4. Note that this is equivalent to replacing the

estimate of 1/P(𝑆 = 0) in the score with an estimate of 1/P(𝑆 = 0 | 𝐺 = 𝑖), before

computing the empirical conditional expectations of the score.

Now, for each observational dataset, we construct estimates 𝜏𝑖(𝑘), �̂�2
𝑖 (𝑘) for 𝑖 ∈ ℐ𝑅

as follows:

1. We collect observational samples from the two validation groups {lbw, married}

and {hbw, married}, which we denote as 𝐺 = 0, 𝐺 = 1 respectively. We combine

these observational samples with the samples from the RCT, using 𝑆 = 0 to

denote RCT samples (the target distribution) and 𝑆 = 1 to denote observational

samples.

2. We define our signal for each sample as

𝑌𝑖(𝜂, �̂�𝑔) := 𝑌 1
𝑖 (𝜂, �̂�𝑔)− 𝑌 0

𝑖 (𝜂, �̂�𝑔) (D.9)
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where we define the modified score 𝑌 𝑎
𝑖 , in light of Proposition D.3.1, as

𝑌 𝑎
𝑖 (𝜂, �̂�𝑔) :=

1

�̂�𝑔(𝐺𝑖)

(︂
1 {𝑆𝑖 = 1, 𝐴𝑖 = 𝑎} · 1− 𝑝(𝑋𝑖)

𝑝(𝑋𝑖)𝑒𝑎(𝑋𝑖)
· {𝑌𝑖 − 𝑔𝑎(𝑋𝑖)}

+ (1− 𝑆𝑖)𝑔𝑎(𝑋𝑖)

)︂
,

(D.10)

where �̂�𝑔(𝐺𝑖) is defined as an estimate of 𝜋𝑔(𝐺𝑖) := P(𝑆 = 0 | 𝐺𝑖), computed

using empirical averages.

3. We use 3-fold cross-fitting as described in Semenova and Chernozhukov [241] to

generate the signals for each sample, such that for the 𝑖-th datapoint, the score

𝑌𝑖(𝜂, �̂�) uses plug-in estimates 𝜂 = (𝑔1, 𝑔0, 𝑒1, 𝑝) that are learned on the folds that

do not include the 𝑖-th datapoint, and �̂� is estimated using empirical averages.

In practice, we use a multi-layer perceptron (MLP) regressor for estimating 𝑔𝑎,

and ℓ2-regularized logistic regression for estimating 𝑒1, 𝑝, with hyperparameters

described in Section D.6. For each model, we reserve 20% of the current fold in

the cross fitting procedure as a validation set to do hyperparameter selection.

4. Finally, we estimate 𝜏𝑖(𝑘) as the empirical average E[𝑌 (𝜂, �̂�𝑔) | 𝐺 = 𝑖], and we

use the empirical conditional variance of this score to estimate the variance

�̂�2
𝑖 (𝑘).

We construct the RCT estimate 𝜏𝑖(0) (using the RCT sample alone) as the difference

of the empirical conditional means E𝑁0 [𝑌
(︁

1{𝐴=1}
𝑃 (𝐴=1)

− 1{𝐴=0}
1−𝑃 (𝐴=1)

)︁
| 𝐺 = 𝑖], where 𝑃 (𝐴 =

1) is an empirical average. We compute �̂�2
𝑖 (0) as the empirical conditional variance of

this quantity. We then conduct testing, as described in Algorithm 2.

Asymptotic normality of transported estimators We herein provide sufficient

assumptions that guarantee the asymptotic normality of our transported GATE

estimators, i.e. the empirical average E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖]:
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Assumption D.3.1 (Observational dataset covers the whole support of covariates).

inf
𝑥∈𝒳

𝑝0(𝑥) = 𝜀𝑝 > 0

Note that Assumption D.3.1 is implied by Assumption 7.2.1.

Assumption D.3.2 (Bounded within-subgroup variance of conditional treatment

effects in the RCT).

sup
𝑥∈𝒳

𝑣𝑎𝑟[𝑔10(𝑥)− 𝑔00(𝑥)|𝐺 = 𝑖, 𝑆 = 0] = 𝜎2
𝜏𝑖 <∞

Assumption D.3.3 (Overlap between treatments in the observational dataset).

inf
𝑥∈𝒳

min(𝑒00(𝑥), 𝑒10(𝑥)) = 𝜀𝑒 > 0

Assumption D.3.4 (Finite outcome conditional variance in the observational dataset).

max
𝑎∈{0,1}

sup
𝑥∈𝒳

E[(𝑌 − 𝑔𝑎0(𝑥))2|𝑋 = 𝑥, 𝑆 = 1, 𝐴 = 𝑎] = �̄�2 <∞

Assumption D.3.5 (Properties of the nuisance function estimators). Let 𝜂(𝑛) be a

sequence of estimators for 𝜂 indexed by the size of the cross-fitting training fold 𝑛.

We assume that there exists

• 𝜖𝑛 = 𝑜𝑃 (1), a sequence of positive numbers

• 𝒯𝑛, a sequence of nuisance function vector sets in the neighborhood of 𝜂0 =

(𝑔10, 𝑔00, 𝑒10, 𝑝0) satisfying P(𝜂(𝑛) ∈ 𝒯𝑛) ≥ 1− 𝜖𝑛

• g𝑛, e𝑛,p𝑛, sequences of worst root mean square errors for the nuisance functions
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𝑔1, 𝑔0, 𝑒1, 𝑝, defined as follows:

g𝑛 := max
𝑎∈{0,1}

sup
𝜂∈𝒯𝑛

√︀
E[𝑔𝑎(𝑋)− 𝑔𝑎0(𝑋)]2

e𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑒1(𝑋)− 𝑒10(𝑋)]2

p𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑝(𝑋)− 𝑝0(𝑋)]2

so that the following assumptions hold:

Assumption A: (Rate of nuisance error)

g𝑛 ∨ e𝑛 ∨ p𝑛 = 𝑜𝑃 (1)

Assumption B: (Rate of nuisance error product)

√
𝑛g𝑛(e𝑛 ∨ p𝑛) = 𝑜𝑃 (1)

Assumption C: (Bounded nuisance estimates)

sup
𝜂∈∪∞

𝑛=1𝒯𝑛

(︂
max
𝑎∈{0,1}

sup
𝑥∈𝒳
|𝑔𝑎(𝑥)| ∨ sup

𝑥∈𝒳

⃒⃒
⃒⃒ 1

𝑝(𝑥)

⃒⃒
⃒⃒ ∨ sup

𝑥∈𝒳

⃒⃒
⃒⃒ 1

𝑒1(𝑥)

⃒⃒
⃒⃒ ∨ sup

𝑥∈𝒳

⃒⃒
⃒⃒ 1

𝑒0(𝑥)

⃒⃒
⃒⃒
)︂

= 𝒞 <∞

Theorem D.3.1. Suppose Assumptions D.3.1 to D.3.5 hold. Then, the empirical

average, E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖], where 𝑌 is defined in Equation D.9 and 𝜂 is estimated

with cross-fitting, is asymptotically normal.

Remark : As we will prove later in section D.4.2, Assumptions D.3.1 to D.3.4

guarantee that when the nuisance function vector (𝑔10, 𝑔00, 𝑒10, 𝑝0)⊤ is known (i.e. need

not be estimated), the transported GATE estimator is asymptotically normal. In

practice, (𝑔10, 𝑔00, 𝑒10, 𝑝0)⊤ is not known and has to be estimated, so Assumption D.3.5

lays out sufficient properties the nuisance function vector estimator needs to satisfy.

In particular, Assumptions D.3.5.A and D.3.5.B permit that the convergence rate of

257



estimators can be slower than 𝑜𝑃 (𝑛−1/2), which is useful when 𝑋 is high-dimensional

and machine learning models are required to estimate the nuisance functions. To

date, a variety of commonly-used machine learning models have been shown to enjoy

a convergence rate of at least 𝑜𝑃 (𝑛−1/4), e.g. [38, 25, 24] for certain ℓ1 penalized

models, [281] for a class of regression trees and random forests, and [47] for a class

of neural nets. This implies when these models are applied to the estimation of

(𝑔10, 𝑔00, 𝑒10, 𝑝0)
⊤, Assumptions D.3.5.A and D.3.5.B hold, so our transported GATE

estimator is asymptotically normal and Assumption E.7.1 is satisfied.

Constructing Confidence Intervals for the Extrapolated Effects In our

experimental setup, the data generating distribution for all observational studies is

identical, so no transportation of effects is required, which enables the application

of existing results. We use the doubly-robust score [222, 221] as the signal for the

conditional average treatment effect,

𝑌 (𝜂) = 𝜇(1, 𝑋)− 𝜇(0, 𝑋) +
𝐴(𝑌 − 𝜇(1, 𝑋))

𝑠(𝑋)
− (1− 𝐴)(𝑌 − 𝜇(0, 𝑋))

1− 𝑠(𝑋)
, (D.11)

where 𝜂 := (𝜇, 𝑠), and 𝜇(𝐴,𝑋) := E[𝑌 |𝐴,𝑋], and 𝑠(𝑋) := P(𝐴 = 1 | 𝑋). We use a

multi-layer perceptron (MLP) regressor as a plug-in estimate �̂� of 𝜇, and ℓ2-regularized

logistic regression as a plug-in estimate 𝑠 of 𝑠, with hyperparameters described in

Section D.6.

Following example 2.2 from Semenova and Chernozhukov [241], we approximate the

conditional treatment effect with a linear combination of subgroup dummy variables

𝐺 = (𝐺0, 𝐺1, 𝐺2, 𝐺3)
⊤, so the combination weights correspond to the GATEs 𝜏(𝑘) =

(𝜏(𝑘)0, 𝜏(𝑘)1, 𝜏(𝑘)2, 𝜏(𝑘)3). This amounts to regressing the estimated signal 𝑌𝑖(𝜂) with

𝐺. As long as the propensity score is bounded above and below away from 0 and 1

(Assumption 4.10(a) of Semenova and Chernozhukov [241]), and the convergence rates

of the response surface and propensity score estimates are sufficiently fast (Assumption

4.11), Corollary 4.1 and a set of mild technical conditions justify Theorem 3.1 in

Semenova and Chernozhukov [241], which gives a result on pointwise asymptotic
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normality for the regression coeffcients 𝜏(𝑘) = (𝜏(𝑘)0, 𝜏(𝑘)1, 𝜏(𝑘)2, 𝜏(𝑘)3) ∈ R4, so

that for any unit vector 𝛾 ∈ R4 where ‖𝛾‖ = 1,

lim
𝑁𝑘→∞

sup
𝑡∈R

⃒⃒
⃒⃒
⃒P
(︃√

𝑁𝑘𝛾
⊤(𝜏(𝑘)− 𝜏(𝑘))√︀
𝛾⊤Ω𝛾

< 𝑡

)︃
− Φ(𝑡)

⃒⃒
⃒⃒
⃒ = 0

where Ω can be consistently estimated with Equation 2.5 in Semenova and Cher-

nozhukov [241]

Ω̂ =

(︃
1

𝑁𝑘

∑︁

𝑗

𝐺𝑗𝐺
⊤
𝑗

)︃−1(︃
1

𝑁𝑘

∑︁

𝑗

𝐺𝑗𝐺
⊤
𝑗 (𝑌𝑗(𝜂)−𝐺⊤

𝑗 𝜏(𝑘))
2

)︃(︃
1

𝑁𝑘

∑︁

𝑗

𝐺𝑗𝐺
⊤
𝑗

)︃−1

Setting 𝛾 as 1 in the (𝑖+ 1)th element and 0 elsewhere thus yields

lim
𝑁𝑘→∞

sup
𝑡∈R

⃒⃒
⃒⃒P
(︂√

𝑁𝑘(𝜏𝑖(𝑘)− 𝜏𝑖(𝑘))√
Ω𝑖𝑖

< 𝑡

)︂
− Φ(𝑡)

⃒⃒
⃒⃒ = 0

We therefore estimate �̂�2
𝑖 (𝑘), the variance of 𝜏𝑖(𝑘), with Ω̂𝑖𝑖, and as this converges

in probability to Ω𝑖𝑖, the asymptotic normality of the above follows via Slutsky’s

theorem.

D.4 Proofs

D.4.1 Proofs for propositions and theorems

Proposition 6.2.1. For an observational estimator 𝜏(𝑘), assume Assumptions 6.2.2

and E.7.1 hold. Furthermore, let 𝑁 = 𝑁𝑘 + 𝑁0 with fixed proportions, where 𝑁𝑘 =

𝜌𝑁,𝑁0 = (1− 𝜌)𝑁 for 𝜌 ∈ (0, 1). Define the test statistic

𝑇𝑁(𝑘, 𝑖) :=
𝜏𝑖(𝑘)− 𝜏𝑖(0)− 𝜇𝑖(𝑘)

𝑠
(6.3)

where 𝑠2 := �̂�2
𝑖 (𝑘)

𝑁𝑘
+

�̂�2
𝑖 (0)

𝑁0
is the estimated variance, and 𝜇𝑖(𝑘) := 𝜏𝑖(𝑘)− 𝜏𝑖. This test

statistic converges in distribution to a normal distribution as 𝑁 → ∞, 𝑇𝑁(𝑘, 𝑖)
𝑑→

𝒩 (0, 1).
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Proof. As 𝑁 →∞, we have it that

√︀
𝜌𝑁(𝜏𝑖(𝑘)− 𝜏𝑖(𝑘)) 𝑑→ 𝒩 (0, 𝜎2

𝑖 (𝑘))
√︀

(1− 𝜌)𝑁(𝜏𝑖(0)− 𝜏𝑖) 𝑑→ 𝒩 (0, 𝜎2
𝑖 (0))

where we have written 𝜌𝑁 in place of 𝑁𝑘, and similarly for 𝑁0. By Slutsky’s theorem,

we can multiply by the constants 𝜌−1/2 and (1− 𝜌)−1/2 to get both results in terms of
√
𝑁 . We can then use independence of 𝜏(𝑘), 𝜏(0) to write that

√
𝑁

⎛
⎝𝜏𝑖(𝑘)− 𝜏𝑖(𝑘)

𝜏𝑖(0)− 𝜏𝑖

⎞
⎠

⏟  ⏞  
𝑍−𝜃

𝑑→ 𝒩

⎛
⎝
⎛
⎝0

0

⎞
⎠ ,

⎡
⎣𝜎

2
𝑖 (𝑘)/𝜌 0

0 𝜎2
𝑖 (0)/(1− 𝜌)

⎤
⎦
⎞
⎠ .

We now apply the Delta method. Let 𝑍 = (𝜏𝑖(𝑘), 𝜏𝑖(0)) denote the (column) vector

of estimates, and similarly let 𝜃 = (𝜏𝑖(𝑘), 𝜏𝑖). Letting 𝑓(𝑋) = 𝑋1 −𝑋2, we can argue

that

√
𝑁(𝑍 − 𝜃) 𝑑→ 𝒩 (0,Σ) =⇒

√
𝑁(𝑓(𝑍)− 𝑓(𝜃)) 𝑑→ 𝒩

(︁
0,∇𝑓(𝜃)⊤Σ ∇𝑓(𝜃)

)︁
,

where the resulting variance is given by

∇𝑓(𝜃)⊤Σ ∇𝑓(𝜃) = 𝜎2
𝑖 (𝑘)

𝜌
+
𝜎2
𝑖 (0)

1− 𝜌,

and 𝑓(𝑍)− 𝑓(𝜃) = 𝜏𝑖(𝑘)− 𝜏𝑖 − 𝜇𝑖(𝑘).

√
𝑁(𝜏𝑖(𝑘)− 𝜏𝑖 − 𝜇𝑖(𝑘)) 𝑑→ 𝒩

(︂
0,
𝜎2
𝑖 (𝑘)

𝜌
+
𝜎2
𝑖 (0)

1− 𝜌

)︂
,

and accordingly that

𝜏(𝑘)𝑖 − 𝜏𝑖 − 𝜇𝑖(𝑘)√︁
𝜎2
𝑖 (𝑘)

𝑁𝑘
+

𝜎2
𝑖 (0)

𝑁0

𝑑→ 𝒩 (0, 1),

where this also holds (by Slutsky’s theorem) with 𝜎2(𝑘)𝑖 and 𝜎2
𝑖 (0) replaced by their
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empirical estimates, which converge in probability.

Theorem 6.3.1 (Properties of Algorithm 2). Under Assumptions 7.2.1 and 6.2.2,

the output of Algorithm 2 has the following asymptotic properties as 𝑁 →∞, where

𝑁 denotes the total sample size, and the samples used for all estimators are of the

same order 𝑁𝑘 = 𝜌𝑘𝑁0,∀𝑘 ≥ 1, for some 𝜌𝑘 > 0.

1. Under Assumptions 6.2.3 and E.7.1, for each 𝑖 ∈ ℐ𝑂,

lim
𝑁→∞

P(𝜏𝑖 ∈ [�̂�𝑖, �̂�𝑖]) ≥ 1− 𝛼 (6.6)

2. Under Assumption E.7.1, for each estimator where 𝜏𝑖(𝑘) ̸= 𝜏𝑖 for some 𝑖 ∈ ℐ𝑅,

lim
𝑁→∞

P(𝑘 ∈ 𝒞) = 0 (6.7)

Proof. (1) By asymptotic normality and consistency of each dimension of 𝜏(𝑘), the

test statistic 𝑇𝑁 (𝑘, 𝑖) converges in distribution to 𝒩 (0, 1). As a result, for each 𝑖 ∈ ℐ𝑅,

the probability that
⃒⃒
⃒𝑇𝑁(𝑘, 𝑖)

⃒⃒
⃒ > 𝑧𝛼/(4|ℐ𝑅|) converges to 𝛼/(2 |ℐ𝑅|). By an application

of the union bound, the probability that this occurs for any 𝑖 ∈ ℐ𝑅 is bounded by

𝛼/2. Similarly, by the assumed properties of 𝜏(𝑘), the probability that the confidence

interval [�̂�𝑖(𝑘)(𝛼/2), �̂�𝑖(𝑘)(𝛼/2)] fails to capture the true value of 𝜏𝑖 converges to 𝛼/2.

By another application of the union bound, for each 𝑖 ∈ ℐ𝑂, the probability that either

𝜏(𝑘) is not selected or 𝜏𝑖 is not contained in the interval is upper bounded by 𝛼. The

result follows.

(2) By asymptotic normality of each 𝜏(𝑘), the power calculation in Equation (6.4)

holds, and as 𝑁 →∞, the probability of rejecting the null hypothesis converges to

zero as 𝜎2
𝑘,0 becomes arbitrarily large, which occurs as both 𝑁𝑘, 𝑁0 →∞.

Proposition D.3.1. In the setting of Section D.2, under Assumptions D.2.1 and D.2.2,

the conditional mean potential outcome in the target distribution is identified as

E[𝑌𝑎 | 𝑆 = 0, 𝐺 = 𝑖] =
P(𝑆 = 0)

P(𝑆 = 0 | 𝐺 = 𝑖)
E[𝑌 𝑎(𝜂0, 𝜋0) | 𝐺 = 𝑖], (D.7)
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where 𝑌 𝑎(𝜂, 𝜋) is defined as in Equation D.8.

𝑌 𝑎(𝜂, 𝜋) :=
1

𝜋

(︂
1 {𝑆 = 1, 𝐴 = 𝑎} · 1− 𝑝(𝑋)

𝑝(𝑋)𝑒𝑎(𝑋)
· {𝑌 − 𝑔𝑎(𝑋)}+ (1− 𝑆)𝑔𝑎(𝑋)

)︂

(D.8)

where 𝜂 := (𝑔𝑎, 𝑒𝑎, 𝑝) with true underlying parameters 𝜂0 = (𝑔𝑎0, 𝑒𝑎0, 𝑝0), 𝜋 := P(𝑆 = 0)

with true value 𝜋0, 𝑔𝑎(𝑋) := E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑋], 𝑝(𝑋) := P(𝑆 = 1 | 𝑋), and

𝑒𝑎(𝑋) := P(𝐴 = 𝑎 | 𝑆 = 1, 𝑋].

Proof. First, we can observe by standard arguments that the conditional expectation

of 𝑌 𝑎(𝜂0, 𝜋0) given 𝑋 is given by the following

E[𝑌 𝑎(𝜂0, 𝜋0) | 𝑋 = 𝑥] = E
[︂

1− 𝑆
P(𝑆 = 0)

𝑔𝑎0(𝑋)

⃒⃒
⃒⃒𝑋 = 𝑥

]︂
,

because the first term in Equation (D.8) is mean-zero conditioned on 𝑋 = 𝑥. This

follows by the law of total expectation: for any event where 𝑆 = 1, 𝐴 = 𝑎 does not hold,

the first term is zero due to the indicator, and for any other event 𝑆 = 1, 𝐴 = 𝑎,𝑋 = 𝑥,

the first term is mean-zero, since the first term becomes a constant (determined by

𝑆 = 1, 𝐴 = 𝑎,𝑋 = 𝑥) times a mean-zero random variable 𝑌 − E[𝑌 | 𝐴 = 𝑎, 𝑆 =

1, 𝑋 = 𝑥].

As a result, we can write that

E[𝑌 𝑎(𝜂0, 𝜋0) | 𝐺 = 𝑖]

= E
[︂

1− 𝑆
P(𝑆 = 0)

E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑋]

⃒⃒
⃒⃒𝐺 = 𝑖

]︂

=
1

P(𝑆 = 0)

∫︁

𝑥

∑︁

𝑠

1 {𝑠 = 0}E[𝑌 | 𝐴 = 𝑎, 𝑆 = 1, 𝑥]𝑝(𝑠, 𝑥 | 𝐺 = 𝑖)𝑑𝑥

=
1

P(𝑆 = 0)

∫︁

𝑥

∑︁

𝑠

1 {𝑠 = 0}E[𝑌𝑎 | 𝑆 = 1, 𝑥]𝑝(𝑠, 𝑥 | 𝐺 = 𝑖)𝑑𝑥

Assumption D.2.1, 𝑌𝑎 ⊥⊥ 𝐴 | 𝑋,𝑆 = 1

=
1

P(𝑆 = 0)

∫︁

𝑥

∑︁

𝑠

1 {𝑠 = 0}E[𝑌𝑎 | 𝑆 = 0, 𝑥]𝑝(𝑠, 𝑥 | 𝐺 = 𝑖)𝑑𝑥

Assumption D.2.2, 𝑌𝑎 ⊥⊥ 𝑆 | 𝑋
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=
1

P(𝑆 = 0)

∫︁

𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0]𝑝(𝑆 = 0, 𝑥 | 𝐺 = 𝑖)𝑑𝑥

=
1

P(𝑆 = 0)

∫︁

𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0]𝑝(𝑥 | 𝑆 = 0, 𝐺 = 𝑖)P(𝑆 = 0 | 𝐺 = 𝑖)𝑑𝑥

=
P(𝑆 = 0 | 𝐺 = 𝑖)

P(𝑆 = 0)

∫︁

𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0]𝑝(𝑥 | 𝑆 = 0, 𝐺 = 𝑖)𝑑𝑥

=
P(𝑆 = 0 | 𝐺 = 𝑖)

P(𝑆 = 0)

∫︁

𝑥

E[𝑌𝑎 | 𝑥, 𝑆 = 0, 𝐺 = 𝑖]𝑝(𝑥 | 𝑆 = 0, 𝐺 = 𝑖)𝑑𝑥

𝑋 = 𝑥⇒ 𝐺 = 𝑖, ∀𝑥 : 𝑝(𝑥 | 𝐺 = 𝑖) > 0

=
P(𝑆 = 0 | 𝐺 = 𝑖)

P(𝑆 = 0)
E[𝑌𝑎 | 𝑆 = 0, 𝐺 = 𝑖]

and the result follows from dividing both sides by the first term on the right-hand

side, which we can observe is equivalent to multiplying both sides by

P(𝑆 = 0)

P(𝑆 = 0 | 𝐺 = 𝑖)
=

P(𝑆 = 0)P(𝐺 = 𝑖)

P(𝑆 = 0, 𝐺 = 𝑖)
=

P(𝐺 = 𝑖)

P(𝐺 = 𝑖 | 𝑆 = 0)
(D.12)

D.4.2 Asymptotic normality of cross-fitted transported GATE

estimators

Theorem D.3.1. Suppose Assumptions D.3.1 to D.3.5 hold. Then, the empirical

average, E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖], where 𝑌 is defined in Equation D.9 and 𝜂 is estimated

with cross-fitting, is asymptotically normal.

Proof sketch: Our strategy for the proof consists of two stages. First, we show

that if the nuisance function is known to be 𝜂0 and plugged into the estimator as

E[𝑌 (𝜂0, �̂�𝑔)|𝐺 = 𝑖], the resulting estimator, which we later refer to as the oracle

estimator, is asymptotically normal. Second, we show that even if the true nuisance

function is not known, as long as we have an estimator, 𝜂, of the nuisance function

that follows certain properties, the resulting estimator E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖] converges

to the oracle estimator in probability. Then, by Slutsky’s Theorem, the resulting

estimator is also asymptotically normal.
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Before diving into the first stage of the proof, we introduce additional notation to

reflect the cross-fitting nature of our GATE estimator. Let the combined sample size

of the observational study and RCT be 𝑁 with sample indices [𝑁 ] := {1, 2, ..., 𝑁}.
We denote (𝐼𝑚)

𝑀
𝑚=1 as a 𝑀 -fold random partition of [𝑁 ], so that each fold has size

𝑁𝑀 = 𝑁/𝑀 . The plug-in nuisance function estimate for the 𝑚th fold, 𝜂𝑚, is then

estimated from the rest of the folds 𝐼𝑐𝑚 := [𝑁 ]∖𝐼𝑚. For brevity, we denote the size of

the rest of the folds as 𝑁 𝑐
𝑀 = 𝑁 −𝑁/𝑀 .

We now restate the definition of the treatment effect signal 𝑌𝑗(𝜂, 𝜋𝑔) = 𝑌𝑗((𝑔1, 𝑔0, 𝑒1, 𝑝)
⊤, 𝜋𝑔):

𝑌𝑗(𝜂, 𝜋𝑔) := 𝑌 1
𝑗 (𝜂, 𝜋𝑔)− 𝑌 0

𝑗 (𝜂, 𝜋𝑔)

𝑌 𝑎
𝑗 (𝜂, 𝜋𝑔) :=

1

𝜋𝑔(𝐺𝑖)

(︂
1 {𝑆𝑗 = 1, 𝐴𝑗 = 𝑎} · 1− 𝑝(𝑋𝑗)

𝑝(𝑋𝑗)𝑒𝑎(𝑋𝑗)
· {𝑌𝑗 − 𝑔𝑎(𝑋𝑗)}+ (1− 𝑆𝑗)𝑔𝑎(𝑋𝑗)

)︂

In the remainder of the development, we will drop the subscript 𝑗, which represents

one of the 𝑁 samples, for conciseness.

Stage 1 — Proving the asymptotic normality of the oracle estimator

For brevity, we define the following unweighted signal:

Definition D.4.1 (Unweighted signal functional).

𝒴(𝜂) = 𝜋𝑔(𝐺)𝑌 (𝜂, 𝜋𝑔)

= 𝜋𝑔(𝐺)(𝑌
1(𝜂, 𝜋𝑔)− 𝑌 0(𝜂, 𝜋𝑔))

= (1− 𝑆)(𝑔1(𝑋)− 𝑔0(𝑋)) + 𝑆
1− 𝑝(𝑋)

𝑝(𝑋)

(𝐴− 𝑒1(𝑋))(𝑌 − 𝑔𝐴(𝑋))

𝑒1(𝑋)𝑒0(𝑋)

From the proof of Proposition D.3.1, we have the following identities for the

unweighted signals:

Lemma D.4.1 (Conditional mean of unweighted (oracle) signal). The conditional

mean of the unweighted (oracle) signal is equivalent to the following:

E[𝒴(𝜂0)|𝐺 = 𝑖] = 𝜏𝑖𝜋𝑔(𝑖)

E[𝒴(𝜂0)|𝐺 = 𝑖, 𝑆 = 0] = 𝜏𝑖
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.

Proof. First, we have,

E[𝒴(𝜂0)|𝐺 = 𝑖] = E[𝜋𝑔(𝐺)𝑌 (𝜂0, 𝜋𝑔)|𝐺 = 𝑖]

= E[𝜋𝑔(𝑖)𝑌 (𝜂0, 𝜋𝑔)|𝐺 = 𝑖]

= 𝜋𝑔(𝑖)E[𝑌 (𝜂0, 𝜋𝑔)|𝐺 = 𝑖]

= 𝜏𝑖𝜋𝑔(𝑖)

Next, using Definition D.1 of the unweighted signal functional and the fact that

we condition on 𝑆 = 0, we have,

E[𝒴(𝜂0)|𝐺 = 𝑖, 𝑆 = 0] = E [𝑔10(𝑋)− 𝑔00(𝑋)|𝐺 = 𝑖, 𝑆 = 0] ,

which is 𝜏𝑖 as desired.

In addition, we can rewrite our estimator 𝜏𝑖 := E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖] with the un-

weighted signals:

𝜏𝑖 = E[𝑌 (𝜂, �̂�𝑔)|𝐺 = 𝑖] =

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝑌 (𝜂𝑚, �̂�𝑔)∑︀

𝑗 1(𝐺𝑗 = 𝑖)

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖) 1

�̂�𝑔(𝐺𝑗)
𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 𝑖)
, from Def. D.1

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖) 1

�̂�𝑔(𝑖)
𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 𝑖)

=
1

�̂�𝑔(𝑖)

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 𝑖)

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗=1,𝑆𝑗=0)∑︀
𝑗 1(𝐺𝑗=𝑖)

∑︀
𝑗 1(𝐺𝑗 = 𝑖)

=

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)𝒴(𝜂𝑚)∑︀

𝑗 1(𝐺𝑗 = 1, 𝑆𝑗 = 0)

Now, using the above expression, we can define the oracle estimator, where we

know the true value of 𝜂, which is 𝜂0:
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Definition D.4.2 (Oracle GATE Estimator).

𝜏𝑖0 :=

∑︀
𝑗 1(𝐺𝑗 = 𝑖)𝒴𝑗(𝜂0)∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

To show the asymptotic distribution of the oracle GATE estimator, we restate

several assumptions:

Assumption D.3.1 (Observational dataset covers the whole support of covariates).

inf
𝑥∈𝒳

𝑝0(𝑥) = 𝜀𝑝 > 0

Assumption D.3.2 (Bounded within-subgroup variance of conditional treatment

effects in the RCT).

sup
𝑥∈𝒳

𝑣𝑎𝑟[𝑔10(𝑥)− 𝑔00(𝑥)|𝐺 = 𝑖, 𝑆 = 0] = 𝜎2
𝜏𝑖 <∞

Assumption D.3.3 (Overlap between treatments in the observational dataset).

inf
𝑥∈𝒳

min(𝑒00(𝑥), 𝑒10(𝑥)) = 𝜀𝑒 > 0

Assumption D.3.4 (Finite outcome conditional variance in the observational dataset).

max
𝑎∈{0,1}

sup
𝑥∈𝒳

E[(𝑌 − 𝑔𝑎0(𝑥))2|𝑋 = 𝑥, 𝑆 = 1, 𝐴 = 𝑎] = �̄�2 <∞

These assumptions ensure that the oracle signals have finite conditional variance,

which we prove in the following lemma.

Lemma D.4.2 (Finite conditional variance of unweighted oracle signal). Under

Assumptions D.3.1 - D.3.4, we have that,

𝑣𝑎𝑟[𝒴(𝜂0)|𝐺 = 𝑖] := 𝜎2
𝑖 <∞, ∀𝑖 ∈ [𝑑]
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Proof.

𝑣𝑎𝑟[𝒴(𝜂0)|𝐺 = 𝑖]

=E[𝒴2(𝜂0)|𝐺 = 𝑖]− [E[𝒴(𝜂0)|𝐺 = 𝑖]]2

=E
[︂(︂

(1− 𝑆)(𝑔10(𝑋)− 𝑔00(𝑋)) +

𝑆
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒
⃒⃒
⃒𝐺 = 𝑖

]︃
− 𝜋𝑔(𝑖)2𝜏 2𝑖

Lem. 𝐷.4.1

=

{︂
E
[︀
(1− 𝑆)(𝑔10(𝑋)− 𝑔00(𝑋))2

⃒⃒
𝐺 = 𝑖

]︀
+

E

[︃
𝑆

(︂
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒
⃒⃒
⃒𝐺 = 𝑖

]︃}︃
− 𝜋𝑔(𝑖)2𝜏 2𝑖

since 𝑆 ∈ {0, 1}

=

{︂
E
[︀
(𝑔10(𝑋)− 𝑔00(𝑋))2

⃒⃒
𝐺 = 𝑖, 𝑆 = 0

]︀
𝜋𝑔(𝑖) +

E

[︃(︂
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒
⃒⃒
⃒𝐺 = 𝑖, 𝑆 = 1

]︃
(1− 𝜋𝑔(𝑖))

}︃
− 𝜋𝑔(𝑖)2𝜏 2𝑖

=

{︂[︀
𝑣𝑎𝑟 [𝑔10(𝑋)− 𝑔00(𝑋)|𝐺 = 𝑖, 𝑆 = 0] + 𝜏 2𝑖

]︀
𝜋𝑔(𝑖) +

E

[︃(︂
1− 𝑝0(𝑋)

𝑝0(𝑋)

(𝐴− 𝑒10(𝑋))(𝑌 − 𝑔𝐴0(𝑋))

𝑒10(𝑋)𝑒00(𝑋)

)︂2
⃒⃒
⃒⃒
⃒𝐺 = 𝑖, 𝑆 = 1

]︃
(1− 𝜋𝑔(𝑖))

}︃
− 𝜋𝑔(𝑖)2𝜏 2𝑖

<

{︂[︀
𝜎2
𝜏𝑖 + 𝜏 2𝑖

]︀
𝜋𝑔(𝑖) +

E[(𝑌 − 𝑔𝐴0(𝑋))2|𝐺 = 𝑖, 𝑆 = 1]

𝜀2𝜋𝜀
2
𝑒(1− 𝜀𝑒)2

(1− 𝜋𝑔(𝑖))
}︂
− 𝜋𝑔(𝑖)2𝜏 2𝑖

Asmp. 𝐷.3.1−𝐷.3.3

≤
{︂[︀
𝜎2
𝜏𝑖 + 𝜏 2𝑖

]︀
𝜋𝑔(𝑖) +

�̄�2

𝜀2𝜋𝜀
2
𝑒(1− 𝜀𝑒)2

(1− 𝜋𝑔(𝑖))
}︂
− 𝜋𝑔(𝑖)2𝜏 2𝑖 <∞

Asmp. 𝐷.3.4

Now, using the above lemmas, we are ready to prove the main result of stage 1 of

the proof, stated below.
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Proposition D.4.1 (Asymptotic normality of oracle GATE estimator). Under As-

sumptions D.3.1 - D.3.4,

√
𝑁(𝜏𝑖0 − 𝜏𝑖) 𝑑−→ 𝒩

(︂
0,
𝜎2
𝑖 − 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))𝜏 2𝑖
𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂

Proof. We have that,

√
𝑁(𝜏𝑖0 − 𝜏𝑖)

=
√
𝑁

(︃ ∑︀
𝑗 1(𝐺𝑗 = 𝑖)𝒴𝑗(𝜂0)∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

− 𝜏𝑖
)︃

=
√
𝑁

(︃ ∑︀
𝑗 1(𝐺𝑗 = 𝑖)𝒴𝑗(𝜂0)∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

−
∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)𝜏𝑖∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

)︃

=
√
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂0)− 𝜏𝑖1(𝑆𝑗 = 0))∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

=

√
𝑁 1

𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂0)− 𝜏𝑖1(𝑆𝑗 = 0))
1
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

𝑑−→ 𝒩 (0, (𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖)))P(𝐺 = 𝑖))

𝑝−→ P(𝐺 = 𝑖, 𝑆 = 0) = P(𝐺 = 𝑖)𝜋𝑔(𝑖)

Proven below
From WLLN

𝑑−→𝒩
(︂
0,
𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))
𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂

Slutsky’s lemma

In the above, we used the fact that,

√
𝑁

[︃
1

𝑁

∑︁

𝑗

1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))

]︃
𝑑−→ 𝒩 (0, (𝜎2

𝑖−𝜏 2𝑖 𝜋𝑔(𝑖)(1−𝜋𝑔(𝑖)))P(𝐺 = 𝑖))
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To show this, we observe that

E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]

=E[𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0)|𝐺 = 𝑖]P(𝐺 = 𝑖)

=(E[𝒴(𝜂0)|𝐺 = 𝑖]− 𝜏𝑖E[1(𝑆 = 0)|𝐺 = 𝑖])P(𝐺 = 𝑖)

=(E[𝒴(𝜂0)|𝐺 = 𝑖]− 𝜏𝑖𝜋𝑔(𝑖))P(𝐺 = 𝑖) = 0

Lem. 𝐷.4.1

𝑣𝑎𝑟[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]

=E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]2 − (E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))])2

=E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))]2

=E[1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))2]

since 1(𝐺 = 𝑖) ∈ {0, 1}

=E[(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))2|𝐺 = 𝑖]P(𝐺 = 𝑖)

=
{︀
E[𝒴2(𝜂0)|𝐺 = 𝑖] + 𝜏 2𝑖 E[1(𝑆 = 0)|𝐺 = 𝑖]− 2𝜏𝑖E[𝒴(𝜂0)1(𝑆 = 0)|𝐺 = 𝑖]

}︀
P(𝐺 = 𝑖)

since 1(𝑆 = 0) ∈ {0, 1}

=
{︀
𝑣𝑎𝑟[𝒴(𝜂0)|𝐺 = 𝑖] + (E[𝒴(𝜂0)|𝐺 = 𝑖])2 + 𝜏 2𝑖 𝜋𝑔(𝑖)

−2𝜏𝑖𝜋𝑔(𝑖)E[𝒴(𝜂0)|𝐺 = 𝑖, 𝑆 = 0]}P(𝐺 = 𝑖)

=
{︀
𝜎2
𝑖 + 𝜏 2𝑖 𝜋𝑔(𝑖)

2 + 𝜏 2𝑖 𝜋𝑔(𝑖)− 2𝜏 2𝑖 𝜋𝑔(𝑖)
}︀
P(𝐺 = 𝑖)

Asmp. 𝐷.4.2, Lem. 𝐷.4.1

=(𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖)))P(𝐺 = 𝑖) <∞

Therefore, from central limit theorem,

√
𝑁

[︃
1

𝑁

∑︁

𝑗

1(𝐺 = 𝑖)(𝒴(𝜂0)− 𝜏𝑖1(𝑆 = 0))

]︃
𝑑−→ 𝒩 (0, (𝜎2

𝑖−𝜏 2𝑖 𝜋𝑔(𝑖)(1−𝜋𝑔(𝑖)))P(𝐺 = 𝑖))

Stage 2 — Proving the asymptotic normality of the cross-fitted estimator, 𝑌 (𝜂, �̂�𝑔)

With asymptotic normality of the oracle estimator shown above in Stage 1, we can
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show the asymptotic normality of the cross-fitted estimator (i.e. our estimator) by

decomposing its error into the error of the oracle estimator and the difference between

our estimator and the oracle estimator:

√
𝑁(𝜏𝑖 − 𝜏𝑖) =

√
𝑁(𝜏𝑖0 − 𝜏𝑖) +

√
𝑁(𝜏𝑖 − 𝜏𝑖0)

=
√
𝑁(𝜏𝑖0 − 𝜏𝑖) +

√
𝑁

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

=
√
𝑁(𝜏𝑖0 − 𝜏𝑖) +

∑︀
𝑚

1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
1
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

The asymptotic distribution of the cross-fitted estimator therefore hinges on the

asymptotic property of 1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0)), which in turn depends

on the convergence property of the nuisance function estimate 𝜂𝑚 and its influence

on the signal 𝒴. We therefore restate the last required assumption governing the

convergence properties of 𝜂𝑚:

Assumption D.3.5 (Properties of the nuisance function estimators). Let 𝜂(𝑛) be a

sequence of estimators for 𝜂 indexed by the size of the cross-fitting training fold 𝑛.

We assume that there exists

• 𝜖𝑛 = 𝑜𝑃 (1), a sequence of positive numbers

• 𝒯𝑛, a sequence of nuisance function vector sets in the neighborhood of 𝜂0 =

(𝑔10, 𝑔00, 𝑒10, 𝑝0) satisfying P(𝜂(𝑛) ∈ 𝒯𝑛) ≥ 1− 𝜖𝑛

• g𝑛, e𝑛,p𝑛, sequences of worst root mean square errors for the nuisance functions

𝑔1, 𝑔0, 𝑒1, 𝑝, defined as follows:

g𝑛 := max
𝑎∈{0,1}

sup
𝜂∈𝒯𝑛

√︀
E[𝑔𝑎(𝑋)− 𝑔𝑎0(𝑋)]2

e𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑒1(𝑋)− 𝑒10(𝑋)]2

p𝑛 := sup
𝜂∈𝒯𝑛

√︀
E[𝑝(𝑋)− 𝑝0(𝑋)]2
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so that the following assumptions hold:

Assumption A: (Rate of nuisance error)

g𝑛 ∨ e𝑛 ∨ p𝑛 = 𝑜𝑃 (1)

Assumption B: (Rate of nuisance error product)

√
𝑛g𝑛(e𝑛 ∨ p𝑛) = 𝑜𝑃 (1)

Assumption C: (Bounded nuisance estimates)

sup
𝜂∈∪∞

𝑛=1𝒯𝑛

(︂
max
𝑎∈{0,1}

sup
𝑥∈𝒳
|𝑔𝑎(𝑥)| ∨ sup

𝑥∈𝒳

⃒⃒
⃒⃒ 1

𝑝(𝑥)

⃒⃒
⃒⃒ ∨ sup

𝑥∈𝒳

⃒⃒
⃒⃒ 1

𝑒1(𝑥)

⃒⃒
⃒⃒ ∨ sup

𝑥∈𝒳

⃒⃒
⃒⃒ 1

𝑒0(𝑥)

⃒⃒
⃒⃒
)︂

= 𝒞 <∞

Based on the assumptions above, we have the following bounds on the convergence

rate of the signals when the nuisance function estimates are in the high-probability

neighborhood, 𝒯𝑛:

Lemma D.4.3 (Bounds on bias of signal). Under Assumptions D.3.5.B and D.3.5.C

√
𝑛 sup
𝜂∈𝒯𝑛
|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]| = 𝑜𝑃 (1)

Lemma D.4.4 (Bounds on MSE of signal). Under Assumptions D.3.1, D.3.3, D.3.4,

D.3.5.A and D.3.5.C

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|2 = 𝑜𝑃 (1)

which in turn implies that 1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)−𝒴𝑗(𝜂0)) converges to zero

in probability:

Lemma D.4.5 (Numerator of difference is 𝑜𝑃 (1)). Under Assumptions D.3.1, D.3.3,
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D.3.4 and D.3.5,

1√
𝑁

∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0)) = 𝑜𝑃 (1), ∀𝑚 ∈ {1, 2, ...,𝑀}

The proofs for Lemmas D.4.3 to D.4.5 are more labor-intensive and we defer these

proofs to later subsections. Based on these lemmas, we arrive at the main result of

Stage 2.

Theorem D.4.1 (Asymptotic normality of the cross-fitted transported GATE esti-

mator). Under Assumptions D.3.1 - D.3.5,

√
𝑁(𝜏𝑖 − 𝜏𝑖) 𝑑−→ 𝒩

(︂
0,
𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))
𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂

Proof.

√
𝑁(𝜏𝑖 − 𝜏𝑖)

=
√
𝑁(𝜏𝑖0 − 𝜏𝑖) +

√
𝑁(𝜏𝑖 − 𝜏𝑖0)

=
√
𝑁(𝜏𝑖0 − 𝜏𝑖) +

√
𝑁

∑︀
𝑚

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))∑︀

𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

=
√
𝑁(𝜏𝑖0 − 𝜏𝑖) +

∑︀
𝑚

1√
𝑁

∑︀
𝑗∈𝐼𝑚 1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
1
𝑁

∑︀
𝑗 1(𝐺𝑗 = 𝑖, 𝑆𝑗 = 0)

𝑝−→ 0
𝑝−→ P(𝐺 = 𝑖, 𝑆 = 0)

Lem. 𝐷.4.5
WLLN

𝑑−→𝒩
(︂
0,
𝜎2
𝑖 − 𝜏 2𝑖 𝜋𝑔(𝑖)(1− 𝜋𝑔(𝑖))
𝜋𝑔(𝑖)2P(𝐺 = 𝑖)

)︂

Prop. 𝐷.4.1, Slutsky’s lemma

Note that Theorem D.4.1 is simply Theorem D.3.1, which is the primary result of

this section, with the variance explicitly stated. Thus, Theorem D.3.1 is proven.
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D.4.3 Proof for Lemmas D.4.3 and D.4.4

First, we prove Lemmas D.4.3 and D.4.4, which will be necessary for Lemma D.4.5.

Recall that Lemma D.4.5 was essential for the proof of the asymptotic normality result

in Theorem D.4.1.

Lemma D.4.3 (Bounds on bias of signal). Under Assumptions D.3.5.B and D.3.5.C

√
𝑛 sup
𝜂∈𝒯𝑛
|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]| = 𝑜𝑃 (1)

Lemma D.4.4 (Bounds on MSE of signal). Under Assumptions D.3.1, D.3.3, D.3.4,

D.3.5.A and D.3.5.C

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|2 = 𝑜𝑃 (1)

Proof. We first define partial unweighted signal functionals for the two counterfactual

outcomes

Definition D.4.3 (Partial unweighted signal functionals).

𝒴1(𝜂) :=

[︂
(1− 𝑆)𝑔1(𝑋) + 𝑆

1− 𝑝(𝑋)

𝑝(𝑋)

𝐴(𝑌 − 𝑔1(𝑋))

𝑒1(𝑋)

]︂

𝒴0(𝜂) :=

[︂
(1− 𝑆)𝑔0(𝑋) + 𝑆

1− 𝑝(𝑋)

𝑝(𝑋)

(1− 𝐴)(𝑌 − 𝑔0(𝑋))

𝑒0(𝑋)

]︂

⇒ 𝒴(𝜂) = 𝒴1(𝜂)− 𝒴0(𝜂)

At a high level, we will prove the above lemmas by decomposing the errors of

signal functionals into simpler terms that can be bounded by standard concentration

inequalities. This idea will be repeated for both the bias and MSE of the signals.

To simplify the analysis, we can split up the unweighted signal into “partial signals”

(for the treatment and control groups). Therefore, we set out to show the following

lemmas:

Lemma D.4.6 (Bounds on bias of partial signal). Under Assumptions D.3.5.B and
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D.3.5.C

√
𝑛 sup
𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]

⃒⃒
= 𝑜𝑃 (1)

√
𝑛 sup
𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]

⃒⃒
= 𝑜𝑃 (1)

Lemma D.4.7 (Bounds on MSE of partial signal). Under Assumptions D.3.1, D.3.3,

D.3.4, D.3.5.A and D.3.5.C

sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
= 𝑜𝑃 (1)

sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
= 𝑜𝑃 (1)

In the following subsections, we prove the 𝒴1 part of Lemmas D.4.6 and D.4.7.

The 𝒴0 part will follow by symmetry. First, we further define 𝜂(𝑋) = 𝜂0(𝑋) + 𝛿𝜂(𝑋),

in detail:

𝑔1(𝑋) = 𝑔10(𝑋) + 𝛿𝑔1(𝑋)

𝑝(𝑋) = 𝑝0(𝑋) + 𝛿𝑝(𝑋)

𝑒(𝑍) = 𝑒0(𝑋) + 𝛿𝑒(𝑋)
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so that (omitting the parameter 𝑋 for brevity),

𝒴1(𝜂)− 𝒴1(𝜂0)

=

[︂
(1− 𝑆)(𝑔10 + 𝛿𝑔1) +

1− 𝑝0 − 𝛿𝑝
𝑝0 + 𝛿𝑝

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)
𝑒0 + 𝛿𝑒

]︂
−
[︂
(1− 𝑆)𝑔10 +

1− 𝑝0
𝑝0

𝑆𝐴(𝑌 − 𝑔10)
𝑒0

]︂

=(1− 𝑆)𝛿𝑔1 +
1− 𝑝0 − 𝛿𝑝
𝑝0 + 𝛿𝑝

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)
𝑒0 + 𝛿𝑒

− 1− 𝑝0
𝑝0

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)
𝑒0

− 1− 𝑝0
𝑝0

𝑆𝐴

𝑒0
𝛿𝑔1

=

(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1 +

(︂
1− 𝑝0 − 𝛿𝑝

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)
− 1− 𝑝0

𝑝0𝑒0

)︂
𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)

=

(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1 −

𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒
(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

𝑆𝐴(𝑌 − 𝑔10 − 𝛿𝑔1)

=

(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1

⏟  ⏞  
𝑆1

− 𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒
(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

𝑆𝐴(𝑌 − 𝑔10)
⏟  ⏞  

𝑆2

+
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴𝛿𝑔1

⏟  ⏞  
𝑆3

:=𝑆1 − 𝑆2 + 𝑆3

Proof for Lemma D.4.6

For Lemma D.4.6 we want to bound

⃒⃒
E
[︀
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

]︀⃒⃒
=
⃒⃒
E
[︀
E
[︀
1(𝐺 = 𝑖)

(︀
𝒴1(𝜂)− 𝒴1(𝜂0)

)︀⃒⃒
𝑋
]︀]︀⃒⃒

= |E [1(𝐺 = 𝑖)E [𝑆1 − 𝑆2 + 𝑆3|𝑋]]|

𝐺 is a function of 𝑋

= |E [1(𝐺 = 𝑖) (E [𝑆1|𝑋]− E [𝑆2|𝑋] + E [𝑆3|𝑋])]|
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For the term E[𝑆1|𝑋],

E[𝑆1|𝑋]

=E
[︂(︂

(1− 𝑆)− 1− 𝑝0
𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1

⃒⃒
⃒⃒𝑋
]︂

=

(︂
(1− E[𝑆|𝑋])− 1− 𝑝0

𝑝0

E[𝑆𝐴|𝑋]

𝑒0

)︂
𝛿𝑔1 𝜂0, 𝛿𝜂 are functions of 𝑋

=

(︂
(1− 𝑝0)−

1− 𝑝0
𝑝0

𝑝0𝑒0
𝑒0

)︂
𝛿𝑔1 = 0

𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

For the term E[𝑆2|𝑋]

E[𝑆2|𝑋]

=E
[︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴(𝑌 − 𝑔10)

⃒⃒
⃒⃒𝑋
]︂

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
E[𝑆𝐴(𝑌 − 𝑔10) | 𝑋] 𝜂0, 𝛿𝜂 are functions of 𝑋

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
· 0 = 0 𝑔10(𝑋) = E[𝑌 |𝑆 = 1, 𝐴 = 1, 𝑋]

For the term E[𝑆3|𝑋],

E[𝑆3|𝑋]

=E
[︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴𝛿𝑔1

⃒⃒
⃒⃒𝑋
]︂

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
E [𝑆𝐴|𝑋] 𝛿𝑔1 𝜂0, 𝛿𝜂 are functions of 𝑋

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑝0𝑒0𝛿𝑔1

𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

=
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒
𝛿𝑔1
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Therefore,

⃒⃒
E
[︀
1(𝐺 = 𝑖)[𝒴1(𝜂)− 𝒴1(𝜂0)]

]︀⃒⃒2

= |E [1(𝐺 = 𝑖) (E[𝑆1|𝑍]− E[𝑆2|𝑍] + E[𝑆3|𝑍])]|2

= |E [1(𝐺 = 𝑖)E[𝑆3|𝑍]]|2

≤ (E |1(𝐺 = 𝑖)E[𝑆3|𝑍]|)2 |𝐸𝐴| ≤ 𝐸|𝐴|

≤ (E |E[𝑆3|𝑍]|)2

=

(︂
E
⃒⃒
⃒⃒𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒
𝛿𝑔1

⃒⃒
⃒⃒
)︂2

≤
(︂
E
⃒⃒
⃒⃒𝑒0𝛿𝑝
𝑝𝑒

𝛿𝑔1

⃒⃒
⃒⃒+ E

⃒⃒
⃒⃒(1− 𝑝0)𝑝0𝛿𝑒

𝑝𝑒
𝛿𝑔1

⃒⃒
⃒⃒+ E

⃒⃒
⃒⃒(1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒
𝛿𝑔1

⃒⃒
⃒⃒
)︂2

Triangular ineq.

≤𝒞4 (E |𝛿𝑝𝛿𝑔1|+ E |𝛿𝑒𝛿𝑔1|+ E |𝛿𝑝𝛿𝑒𝛿𝑔1|)2 Assmp. 𝐷.3.5.𝐶

=𝒞4
(︂
E|𝛿𝑝𝛿𝑔1|+ E|𝛿𝑒𝛿𝑔1|+

1

2
E|𝛿𝑒||𝛿𝑝𝛿𝑔1|+

1

2
E|𝛿𝑝||𝛿𝑒𝛿𝑔1|

)︂2

≤𝒞4
(︂
E|𝛿𝑝𝛿𝑔1|+ E|𝛿𝑒𝛿𝑔1|+

1

2
E|𝛿𝑝𝛿𝑔1|+

1

2
E|𝛿𝑒𝛿𝑔1|

)︂2

|𝛿𝑝|, |𝛿𝑒| ≤ 1

=
9

4
𝒞4 (E|𝛿𝑝𝛿𝑔1|+ E|𝛿𝑒𝛿𝑔1|)2

≤9

4
𝒞4
(︁√︁

E𝛿2𝑝
√︁

E𝛿2𝑔1 +
√︀

E𝛿2𝑒
√︁

E𝛿2𝑔1
)︁2

Hölder’s ineq.

So we have,

√
𝑛 sup
𝜂∈𝒯𝑛

⃒⃒
E1(𝐺 = 𝑖)[𝑌 1(𝜂)− 𝑌 1(𝜂0)]

⃒⃒

≤√𝑛 sup
𝜂∈𝒯𝑛

3

2
𝒞2
(︁√︁

E𝛿2𝑝
√︁

E𝛿2𝑔1 +
√︀

E𝛿2𝑒
√︁
E𝛿2𝑔1

)︁

≤3

2
𝒞2√𝑛g𝑁 (p𝑁 + e𝑁) Assump. 𝐷.3.5

=𝑜𝑃 (1) Assump. 𝐷.3.5.𝐵
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Proof for Lemma D.4.7

Here we first place bounds on E𝑆2
1 ,E𝑆2

2 and E𝑆2
3 for future use. For the term E𝑆2

1 , we

have,

E𝑆2
1

=E

[︃
E

[︃(︂(︂
(1− 𝑆)− 1− 𝑝0

𝑝0

𝑆𝐴

𝑒0

)︂
𝛿𝑔1

)︂2
⃒⃒
⃒⃒
⃒𝑋
]︃]︃

=E

[︃
(1− 𝑝0)2 E

[︃(︂
1− 𝑆
1− 𝑝0

− 𝑆𝐴

𝑝0𝑒0

)︂2
⃒⃒
⃒⃒
⃒𝑋
]︃
𝛿2𝑔1

]︃
𝜂0, 𝛿𝜂 are functions of 𝑋

=E
[︂
(1− 𝑝0)2 E

[︂
(1− 𝑆)2
(1− 𝑝0)2

+
(𝑆𝐴)2

(𝑝0𝑒0)2

⃒⃒
⃒⃒𝑋
]︂
𝛿2𝑔1

]︂
𝑆 ∈ {0, 1}

=E
[︂
(1− 𝑝0)2 E

[︂
1− 𝑆

(1− 𝑝0)2
+

𝑆𝐴

(𝑝0𝑒0)2

⃒⃒
⃒⃒𝑋
]︂
𝛿2𝑔1

]︂
1− 𝑆, 𝑆𝐴 ∈ {0, 1}

=E
[︂
(1− 𝑝0)2

(︂
1

1− 𝑝0
+

1

𝑝0𝑒0

)︂
𝛿2𝑔1

]︂
𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

≤ 2

𝜀𝑝𝜀𝑒
E𝛿2𝑔1 Assmp. 𝐷.3.1, 𝐷.3.3

We can similarly bound E𝑆2
2 ,

E𝑆2
2

=E

[︃
E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴(𝑌 − 𝑔10)

)︂2
⃒⃒
⃒⃒
⃒𝑋
]︃]︃

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

)︂2

E
[︀
(𝑆𝐴(𝑌 − 𝑔10))2

⃒⃒
𝑋
]︀
]︃

𝜂0, 𝛿𝜂 are functions of 𝑋

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

)︂2

E
[︀
(𝑌 − 𝑔10)2

⃒⃒
𝑋,𝑆 = 1, 𝐴 = 1

]︀
P(𝑆 = 1, 𝐴 = 1|𝑋)

]︀

𝑆,𝐴 ∈ {0, 1}

≤𝐸
[︃(︂

𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒
(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0

)︂2

�̄�2P(𝑆 = 1, 𝐴 = 1|𝑋)

]︃

Assmp. 𝐷.3.4
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=𝐸

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒𝑝0𝑒0

)︂2

�̄�2𝑝0𝑒0

]︃

𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

≤ �̄�
2𝐶4

𝜀𝑝𝜀𝑒
E |𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒|2

Assmp. 𝐷.3.1, 𝐷.3.3, 𝐷.3.5.𝐶

≤ �̄�
2𝐶4

𝜀𝑝𝜀𝑒
E [𝑒0|𝛿𝑝|+ (1− 𝑝0)𝑝0|𝛿𝑒|+ (1− 𝑝0)|𝛿𝑝𝛿𝑒|]2

Triangular ineq.

≤ �̄�
2𝐶4

𝜀𝑝𝜀𝑒
E [|𝛿𝑝|+ |𝛿𝑒|+ |𝛿𝑝𝛿𝑒|]2

=
�̄�2𝐶4

𝜀𝑝𝜀𝑒
E
[︂
|𝛿𝑝|+ |𝛿𝑒|+

1

2
|𝛿𝑝||𝛿𝑒|+

1

2
|𝛿𝑝||𝛿𝑒|

]︂2

≤ �̄�
2𝐶4

𝜀𝑝𝜀𝑒
E
[︂
|𝛿𝑝|+ |𝛿𝑒|+

1

2
|𝛿𝑝|+

1

2
|𝛿𝑒|
]︂2

|𝛿𝑝|, |𝛿𝑒| ≤ 1

=
9

4

�̄�2𝐶4

𝜀𝑝𝜀𝑒
E [|𝛿𝑝|+ |𝛿𝑒|]2

=
9

4

�̄�2𝐶4

𝜀𝑝𝜀𝑒

[︀
E𝛿2𝑝 + E𝛿2𝑒 + 2E|𝛿𝑝||𝛿𝑒|

]︀

≤9

4

�̄�2𝐶4

𝜀𝑝𝜀𝑒

[︁
E𝛿2𝑝 + E𝛿2𝑒 + 2

√︁
E𝛿2𝑝
√︀

E𝛿2𝑒
]︁

Cauchy-Schwartz

=
9

4

�̄�2𝐶4

𝜀𝑝𝜀𝑒

(︁√︁
E𝛿2𝑝 +

√︀
E𝛿2𝑒
)︁2

Finally, we bound E𝑆2
3 ,

E𝑆2
3

=E

[︃
E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝑆𝐴𝛿𝑔1

)︂2
⃒⃒
⃒⃒
⃒𝑋
]︃]︃

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝛿𝑔1

)︂2

E
[︀
(𝑆𝐴)2

⃒⃒
𝑋
]︀
]︃

𝜂0, 𝛿𝜂 are functions of 𝑋

279



=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

(𝑝0 + 𝛿𝑝)(𝑒0 + 𝛿𝑒)𝑝0𝑒0
𝛿𝑔1

)︂2

E [𝑆𝐴|𝑋]

]︃
𝑆𝐴 ∈ {0, 1}

=E

[︃(︂
𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒

𝑝𝑒𝑝0𝑒0
𝛿𝑔1

)︂2

𝑝0𝑒0

]︃
𝑝0(𝑋) = P[𝑆 = 1|𝑋]

𝑒0(𝑋) = P[𝐴 = 1|𝑆 = 1, 𝑋]

≤ 𝐶4

𝜀𝑝𝜀𝑒
E |(𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒) 𝛿𝑔1|2 Assmp. 𝐷.3.1, 𝐷.3.3, 𝐷.3.5.𝐶

=
𝐶4

𝜀𝑝𝜀𝑒
E
[︀
|𝑒0𝛿𝑝 + (1− 𝑝0)𝑝0𝛿𝑒 + (1− 𝑝0)𝛿𝑝𝛿𝑒|2|𝛿𝑔1|2

]︀

≤ 𝐶4

𝜀𝑝𝜀𝑒
E
[︀
(|𝑒0𝛿𝑝|+ |(1− 𝑝0)𝑝0𝛿𝑒|+ |(1− 𝑝0)𝛿𝑝𝛿𝑒|)2 |𝛿𝑔1|2

]︀
Triangular ineq.

≤9𝐶4

𝜀𝑝𝜀𝑒
E𝛿2𝑔1 0 ≤ 𝑝0, 𝑒0, |𝛿𝑝|, |𝛿𝑒| ≤ 1

From the above, we have

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2

=E|1(𝐺 = 𝑖)||𝑆1 − 𝑆2 + 𝑆3|2

≤E|𝑆1 − 𝑆2 + 𝑆3|2

≤E(|𝑆1|+ |𝑆2|+ |𝑆3|)2

Triangular ineq.

=
[︀
E𝑆2

1 + E𝑆2
2 + E𝑆2

3 + 2E|𝑆1𝑆2|+ 2E|𝑆1𝑆3|+ 2E|𝑆2𝑆3|
]︀

≤
[︀
E𝑆2

1 + E𝑆2
2 + E𝑆2

3+

2
√︀
E|𝑆1|2

√︀
E|𝑆2|2 + 2

√︀
E|𝑆1|2

√︀
E|𝑆3|2 + 2

√︀
E|𝑆2|2

√︀
E|𝑆3|2

]︁

Cauchy-Schwartz

=

[︂√︁
E𝑆2

1 +
√︁

E𝑆2
1 +

√︁
E𝑆2

1

]︂2

≤
[︃√︃

2

𝜀𝑝𝜀𝑒

√︁
E𝛿2𝑔1 +

√︃
9

4

�̄�2𝐶4

𝜀𝑝𝜀𝑒

(︁√︁
E𝛿2𝑝 +

√︀
E𝛿2𝑒
)︁
+

√︃
9𝐶4

𝜀𝑝𝜀𝑒

√︁
E𝛿2𝑔1

]︃2

≤𝐶
[︁√︁

E𝛿2𝑔1 +
√︁

E𝛿2𝑝 +
√︀

E𝛿2𝑒
]︁2

letting 𝐶 :=

(︀
3𝐶2 +

√
2
)︀2

𝜀𝑝𝜀𝑒
∨ 9

4

�̄�2𝐶4

𝜀𝑝𝜀𝑒
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So we have,

sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2

≤𝐶 sup
𝜂∈𝒯𝑛

[︁√︁
E𝛿2𝑔1 +

√︁
E𝛿2𝑝 +

√︀
E𝛿2𝑒
]︁2

≤𝐶
[︂
sup
𝜂∈𝒯𝑛

√︁
E𝛿2𝑔1 + sup

𝜂∈𝒯𝑛

√︁
E𝛿2𝑝 + sup

𝜂∈𝒯𝑛

√︀
E𝛿2𝑒
]︂2

≤𝐶 [g𝑛 + p𝑛 + e𝑛]
2 Assmp. 𝐷.3.5

≤9𝐶 [g𝑛 ∨ p𝑛 ∨ e𝑛]
2 = 𝑜𝑃 (1) Assmp. 𝐷.3.5.𝐴

Assembling the proofs for Lemmas D.4.3 and D.4.4

For Lemma D.4.3:

√
𝑛 sup
𝜂∈𝒯𝑛
|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]|

=
√
𝑛 sup
𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]− E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]

⃒⃒

≤√𝑛 sup
𝜂∈𝒯𝑛

{︀⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]

⃒⃒
+
⃒⃒
E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]

⃒⃒}︀

Triangular ineq.

≤√𝑛 sup
𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))]

⃒⃒
+
√
𝑛 sup
𝜂∈𝒯𝑛

⃒⃒
E[1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))]

⃒⃒
= 𝑜𝑃 (1)

Lem. 𝐷.4.6

For Lemma D.4.4:

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|2

= sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))− 1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2

≤ sup
𝜂∈𝒯𝑛

E
{︀⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒
+
⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒}︀2

Triangular ineq.

= sup
𝜂∈𝒯𝑛

{︁
E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
+ E

⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
+
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2E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒ ⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒}︀

≤ sup
𝜂∈𝒯𝑛

{︁
E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
+ E

⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
+

2

√︁
E |1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))|2

√︁
E |1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))|2

}︂

Cauchy-Schwartz

≤ sup
𝜂∈𝒯𝑛

E
⃒⃒
1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))

⃒⃒2
+ sup

𝜂∈𝒯𝑛
E
⃒⃒
1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))

⃒⃒2
+

2
√︂

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴1(𝜂)− 𝒴1(𝜂0))|2
√︂

sup
𝜂∈𝒯𝑛

E |1(𝐺 = 𝑖)(𝒴0(𝜂)− 𝒴0(𝜂0))|2

=𝑜𝑃 (1) Lem. 𝐷.4.7

D.4.4 Proof for Lemma D.4.5

Now that we have shown Lemmas D.4.3 and D.4.4, it remains to show Lemma D.4.5.

Lemma D.4.5 (Numerator of difference is 𝑜𝑃 (1)). Under Assumptions D.3.1, D.3.3,

D.3.4 and D.3.5,

1√
𝑁

∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0)) = 𝑜𝑃 (1), ∀𝑚 ∈ {1, 2, ...,𝑀}

Proof. First we observe

1√
𝑁

∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))

=
1√
𝑁

[︃∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))− E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]
]︃
+

1√
𝑁

∑︁

𝑗∈𝐼𝑚

E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

=
𝑁𝑀√
𝑁

[︃(︃
1

𝑁𝑀

∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
)︃
− E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

]︃

⏟  ⏞  
𝑅1(𝑚)

+
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𝑁𝑀√
𝑁
E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

⏟  ⏞  
𝑅2(𝑚)

:=𝑅1(𝑚) +𝑅2(𝑚)

We define the event ℰ𝑁 as ∩𝑘
(︀
𝜂𝑚 ∈ 𝒯𝑁𝑐

𝑀

)︀
, i.e. all 𝑀 nuisance function estimates

falling into the high-probability neighborhood where Lemmas D.4.3 and D.4.4 apply.

From union bound,

1− P(ℰ𝑁) ≤
∑︁

𝑘

P(𝜂𝑚 /∈ 𝒯𝑁𝑐
𝑀
) ≤ 𝐾𝜖𝑁𝑐

𝑀
= 𝑜𝑃 (1) ∵ 𝜖𝑛 = 𝑜𝑃 (1)

Conditional on ℰ𝑁 and the data complementary to fold 𝑚, which we denote as 𝐷𝑚,

we have for any 𝜖 > 0,

P(|𝑅1(𝑚)| ≥ 𝜖|ℰ𝑁 , 𝐷𝑚)

=P

(︃⃒⃒
⃒⃒
⃒

(︃
1

𝑁𝑀

∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
)︃
−

E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]
⃒⃒
⃒⃒ ≥
√
𝑁

𝑁𝑀

𝜖

⃒⃒
⃒⃒
⃒ℰ𝑁 , 𝐷𝑚

)︃

≤𝑁
2
𝑀

𝑁𝜖2
𝑣𝑎𝑟

[︃
1

𝑁𝑀

∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
⃒⃒
⃒⃒
⃒ℰ𝑁 , 𝐷𝑚

]︃

Chebyshev ineq.

=
𝑁𝑀

𝑁𝜖2
𝑣𝑎𝑟 [1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))|ℰ𝑁 , 𝐷𝑚]

≤ 1

𝑀𝜖2
E
[︀
(1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0)))2

⃒⃒
ℰ𝑁 , 𝐷𝑚

]︀

≤ 1

𝑀𝜖2
sup

𝜂∈𝒯𝑁𝑀

E
[︀
(1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0)))2

⃒⃒
𝐷𝑚

]︀

𝜂𝑚 ∈ 𝒯𝑁𝑐
𝑀

under ℰ𝑁

≤ 1

𝑀𝜖2
sup

𝜂∈𝒯𝑁𝑀

E (1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0)))2

Fold 𝑚 is independent of 𝐷𝑚

=
1

𝑀𝜖2
𝑜𝑃 (1) = 𝑜𝑃 (1) Lem. 𝐷.4.4
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Also, conditional on ℰ𝑁 and 𝐷𝑚

|𝑅2(𝑚)| =
⃒⃒
⃒⃒
⃒

𝑁𝑀√
𝑁
√︀
𝑁 𝑐
𝑀

√︀
𝑁 𝑐
𝑀E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]

⃒⃒
⃒⃒
⃒ℰ𝑁 , 𝐷𝑚

⃒⃒
⃒⃒
⃒

=
1√

𝑀 − 1

√︀
𝑁 𝑐
𝑀 |E[1(𝐺 = 𝑖)(𝒴(𝜂𝑚)− 𝒴(𝜂0))]|ℰ𝑁 , 𝐷𝑚|

≤ 1√
𝑀 − 1

√︀
𝑁 𝑐
𝑀 sup

𝜂∈𝒯𝑁𝑐
𝑀

|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))|𝐷𝑚]|

𝜂𝑚 ∈ 𝒯𝑁𝑐
𝑀

under ℰ𝑁

=
1√

𝑀 − 1

√︀
𝑁 𝑐
𝑀 sup

𝜂∈𝒯𝑁𝑐
𝑀

|E[1(𝐺 = 𝑖)(𝒴(𝜂)− 𝒴(𝜂0))]|

Fold 𝑚 is independent of 𝐷𝑚

=
1√

𝑀 − 1
𝑜𝑃 (1) = 𝑜𝑃 (1) Lem. 𝐷.4.3

Which implies that, conditional on ℰ𝑁 and 𝐷𝑚, 𝑅1(𝑚) +𝑅2(𝑚) = 𝑜𝑃 (1). So for

any 𝜖 > 0:

P

(︃⃒⃒
⃒⃒
⃒

1√
𝑁

∑︁

𝑗∈𝐼𝑚

1(𝐺𝑗 = 𝑖)(𝒴𝑗(𝜂𝑚)− 𝒴𝑗(𝜂0))
⃒⃒
⃒⃒
⃒ > 𝜖

)︃

=P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖)

=P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ𝑁)P(ℰ𝑁) + P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ̄𝑁)(1− P(ℰ𝑁))

≤P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ𝑁) + (1− P(ℰ𝑁))

=

∫︁
P(|𝑅1(𝑚) +𝑅2(𝑚)| ≥ 𝜖|ℰ𝑁 , 𝐷𝑚)𝑑P(𝐷𝑚|ℰ𝑁) + (1− P(ℰ𝑁))

=𝑜𝑃 (1) + 𝑜𝑃 (1) = 𝑜𝑃 (1)

and the lemma is proven.

D.5 Details on WHI Experiments

We assess our algorithm on clinical trial data and observational data available from

the Women’s Health Initiative (WHI). The RCTs were run by the WHI via 40 US
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clinical centers from 1993-2005 (1993-1998: enrollment + randomization; 2005: end

of follow-up) on postmenopausal women aged 50-79 years, and the observational

dataset was designed and run in parallel on a similar population. Note that this data

is publicly available to researchers and requires only an application on BIOLINCC

(https://biolincc.nhlbi.nih.gov/studies/whi_ctos/).

D.5.1 Data

WHI RCT – There are three clinical trials associated with the WHI. The RCT that we

will be leveraging in this set of experiments is the Postmenopausal Hormone Therapy

(PHT) trial, which was run on postmenopausal women aged 50-79 years who had an

intact uterus. This trial included a total of 𝑁𝐻𝑇 = 16608 patients. The intervention of

interest was a hormone combination therapy of estrogen and progesterone. Specifically,

post-randomization, the treatment group was given 2.5 mg of medroxyprogesterone as

well as 0.625 mg of estrogen a day. The control group was given a placebo. Finally,

there are several outcomes that were tracked and studied in the principal analysis done

on this trial [229]. These outcomes are of three broad categories: a) cardiovascular

events, including coronary heart disease, which served as a primary endpoint b) cancer

(e.g. endometrial, breast, colorectal, etc.), and c) fractures.

WHI OS – The observational study component of the WHI tracked the medical

events and health habits of 𝑁 = 93676 women. Recruitment for the study began in

1994 and participants were followed until 2005, i.e. a similar follow-up to the RCT.

Follow-up was done in a similar fashion as in the RCT (i.e. patients would have annual

visits, in addition to a “screening” visit, where they would be given survey forms to

fill out to track any events/outcomes). Thus, the same outcomes, including cancers,

fractures, and cardiovascular events, are tracked in the observational study.

D.5.2 Outcome

The outcome of interest in our analysis is a “global index”, which is a summary

statistic of several outcomes, including coronary heart disease, stroke, pulmonary
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embolism, endometrial cancer, colorectal cancer, hip fracture, and death due to other

causes. Events or outcomes are tracked for each patient, and are recorded as “day of

event/outcome” in the data, where the initial time-point for follow-up is the same for

both the RCT and OS. At a high level, the “global index” is essentially the minimum

“event day” when considering all the previously mentioned events.

We binarize the “global index,” by choosing a time point, 𝑡, before the end of

follow-up and letting 𝑌 = 1 if the observed event day is before 𝑡 and 𝑌 = 0 otherwise.

Thus, we are looking at whether the patient will experience the event within some

particular period of time or not. We set 𝑡 = 7 years. Note that we sidestep censorship

of a patient before the threshold by defining the outcomes in the following way: 𝑌 = 1

indicates that a patient is observed to have the event before the threshold, and 𝑌 = 0

indicates that a patient is not observed to have the event before the threshold. We

apply this binarization in the same way for both the RCT and OS. Extending our

method to a survival analysis framing is beyond the scope of this paper, but an

interesting direction for future work.

D.5.3 Intervention

Recall from above that the intervention studied in the RCT was 2.5mg of medrox-

yprogesterone + 0.625 mg of estrogen and the control was a placebo pill. The RCT

was run as an “intention-to-treat” trial. To establish “treatment” and “control” groups

in the OS, we leverage the annual survey data collected from patients and assign a

patient to the treatment group if they confirm usage of both estrogen and progesterone

in the first three years. A patient is assigned to the control group if they deny usage

of both estrogen and progesterone in the first three years. We exclude a patient from

the analysis if she confirms usage of one and not the other OR if the field in the survey

is missing OR if they take some other hormone therapy. We end up with a total of

𝑁𝑜𝑏𝑠 = 33511 patients.
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D.5.4 Data Processing + Covariates

We use only covariates that are measured both in the RCT and OS to simplify the

analysis. Because this information is gathered via the same set of questionnaires,

they each indicate the same type of covariate. In other words, there is consistency of

meaning across the same covariates across the RCT and the OS. We end up with a

total of 1576 covariates.

D.5.5 Details of Experimental Setup

We give a more detailed exposition of the steps in our experimental workflow, which

were described in brief in the main paper.

• Step 0: Replicate the principal results from the PHT trial, given in Table 2 of

[229], using the WHI OS data. In this step, we fit a doubly robust estimator of

the style given in Appendix D.3.

• Step 1: While treating the WHI OS dataset as the “unbiased” observational

dataset (hence the need for Step 0), simulate additional “biased” observational

datasets by inducing bias into the WHI OS. We construct four additional “biased”

datasets (for a total of five observational datasets, including the WHI OS dataset),

where we use the following procedure to induce selection bias – of the people

who were not exposed to the treatment and did not end up getting the event,

we drop each person with some probability, 𝑝. We set 𝑝 = [0.1, 0.3, 0.5, 0.7] to

get the four additional observational datasets.

This type of selection bias may reflect the following clinical scenario: consider

a patient who is relatively healthy who does not end up taking any hormone

therapy. This patient might enroll initially in the OS, but may drop out or

stop responding to the surveys. If the committee running the study does not

explicitly account for this drop-out rate, then the resultant study will suffer from

selection bias. [19] detail additional examples of selection bias that can occur in

observational studies. Importantly, this part is the only part of our setup that
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involves any simulation. However, in order to properly evaluate our method, we

need to know which datasets are biased and unbiased in our set. Thus, we opt

to simulate the bias.

• Step 2: Run our procedure over “multiple tasks,” generating confidence intervals

on the treatment effect for different subgroups. To do so, we compile a list

of covariates, taking both from [236] as well as covariates with high feature

importance in both the propensity score model and response surface model from

the estimator in Step 0. We generate all pairs from this list and use each pair to

generate four subgroups. We treat two of the subgroups as validation subgroups

and two of them as extrapolated subgroups in that we “hide” the RCT data in

those subgroups when fitting our doubly robust transported estimator. (This

gives us the benefit of knowing the RCT result for the extrapolated subgroups,

which is useful in evaluation). Pairs that do not have enough support (threshold

of 400 observations) in each group are removed. The total number of “tasks” (or

covariate pairs) that we have is 592 (and therefore 2368 subgroups).

• Step 3: Evaluate ExPCS (our method), ExOCS, Simple, and Meta-Analysis for

each of the covariate pairs. Additionally, we evaluate an “oracle” method, which

always selects only the original observational study (i.e. the base WHI OS to

which we have not added any selection bias) and reports the interval estimate

computed on this study. To evaluate these methods, we will treat the RCT point

estimates as “correct.” For each, we compute the following metrics: Length –

length of the confidence interval for the subgroup; Coverage – percentage of

tasks for which the method’s interval covers the RCT point estimate; Unbiased

OS Percentage – across all tasks, the percentage at which our approach retains

the unbiased study after the falsification step.

Note that we utilize sample splitting when running the above procedure. Namely,

we use 50% of the data as a “training” set, where we experiment with different classes

of covariates and different types of bias, and then reserve 50% of the data as a “testing”

set, on which we do the final run of the analysis and report results. All nuisance
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functions in the doubly robust estimator are fit with a Gradient Boosting Classifier

with significant regularization. In practice, we found that any highly-regularized

tree-based model works well.

D.5.6 Covariate List for Task Generation

Below is the list of covariates used to generate the tasks in Step 2 of our experiment:

• ALCNOW (current alcohol user)

• BMI ≤ 30

• BLACK

• SMOKING (current smoker)

• DIAB (diabetes ever)

• HYPT (hypertension ever)

• BRSTFEED (breastfeeding)

• MSMINWK ≤ 106 (minutes of moderate to strenuous activity per week)

• BRSTBIOP (breast biopsy done)

• RETIRED

• EMPLOYED

• OC (oral contraceptive use ever)

• LIVPRT (live with husband or partner)

• MOMALIVE (natural mother still alive)

• LATREGION-Northern > 40 degrees north

• BKBONE (broke bone ever)
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• NUMFALLS

• GRAVID (gravidity)

• AGE ≤ 64

• ANYMENSA ≤ 51 (age at last bleeding)

• MENOPSEA ≤ 50 (age at last regular period)

• MENO ≤51 (age at menopause)

• LSTPAPDY (days from randomization to last pap smear)

• BMI ≤ 27.7

• TMINWK ≤ 191 (minutes of recreational exercise per week)

• HEIGHT ≤ 161

• WEIGHT ≤ 72

• WAIST ≤ 86

• HIP ≤ 105

• WHR ≤ 0.81 (waist to hip ratio)

• TOTHCAT (HRT duration by category)

• MEDICARE (on medicare)

• HEMOGLBN ≤ 13

• PLATELET ≤ 244

• WBC ≤ 6

• HEMATOCR ≤ 40
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D.6 Details on Semi-Synthetic Experiment (Data

Generation and Model Hyperparameters)

D.6.1 Data Generation

For each simulated dataset, we generate 1 RCT and 𝐾 observational studies. The RCT

is assumed to have covariate values identical to the IHDP dataset but is restricted to

infants with married mothers. For the observational studies, we resample the rows

of the IHDP dataset to the desired sample size 𝑛 = 𝑟𝑛0. The covariate distribution

of the observational studies are made different from the RCT by weighted sampling,

with the relative weights set as

𝑤 = 0.81(male infant)+1(mother smoked)+1(mother worked during pregnancy)

Then, to introduce confounding (in the observational data), we generate 𝑚𝑐 continuous

confounders and 𝑚𝑏 binary confounders. Each continuous confounder is drawn from a

mixture of 0.5𝒩 (0, 1) + 0.5𝒩 (3, 1) in the RCT and (0.25 + 0.5𝐴)𝒩 (3, 1) + (0.75 −
0.5𝐴)𝒩 (0, 1) in the observational studies, where 𝐴 is the treatment indicator. Similarly,

each binary confounder is drawn from Bern(0.5) in the RCT and Bern(0.25+ 0.5𝐴) in

the observational studies. In the following, we denote the covariate vector as 𝑋 ∈ R𝑚𝑥

where 𝑚𝑥 = 28 is the number of covariates in the IHDP dataset, and the generated

confounder vector as 𝑍 ∈ R(𝑚𝑐+𝑚𝑏). For brevity, we also denote the vector (𝐴,𝑋⊤)⊤

as �̃�.

For outcome simulation in the datasets, we modify response surface B from

Hill [118] to account for additional confounding variables. We set the following

counterfactual outcome distributions:

𝑌0 ∼ 𝒩
(︃
exp

[︃(︂
�̃� +

1

2
1

)︂⊤

𝛽

]︃
+ 𝑍⊤𝛾, 1

)︃

𝑌1 ∼ 𝒩 (�̃�⊤𝛽 + 𝑍⊤𝛾 + 𝜔, 1),
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where 1 ∈ R(𝑚𝑥+1) is vector of ones, 𝛽 ∈ R(𝑚𝑥+1) is a vector where each element is ran-

domly sampled from (0, 0.1, 0.2, 0.3, 0.4) with probabilities (0.6, 0.1, 0.1, 0.1, 0.1), 𝛾 ∈
R(𝑚𝑐+𝑚𝑏) is a vector where each element is randomly sampled from (0.1, 0.2, 0.5, 0.75, 1)

with uniform probability, and 𝜔 = 23 is a constant chosen to limit the size of the

GATEs. The observed outcome is then 𝑌 := 𝐴𝑌1 + (1 − 𝐴)𝑌0. We then conceal a

number of confounders, chosen in order from the highest to lowest weighted, from each

observational study to mimic the scenario of unobserved confounding. The number of

concealed confounders in each observational study is denoted as cz = (𝑐𝑧1, 𝑐𝑧2, ..., 𝑐𝑧𝐾).

D.6.2 Hyperparameters

Logistic regression

Hyperparametes Value set

Penalty type ℓ2

Penalty coefficient {1, 0.1, 0.01, 0.001}

Multilayer perceptron regression

Hyperparametes Value set

# of hidden layers

and # of perceptrons
[1, (100)], [2, (50, 50)], [2, (25, 25)]

Activation function ReLU, tanh

Solver Adam

Alpha (1, 0.1, 0.01, 0.001, 0.0001)

Learning rate 0.001

# of epochs (250, 500)

D.7 Additional Semi-Synthetic Experimental Results

An analysis of including biased observational studies: In Figure D-4 and

Table D.1, we study coverage probability and width of confidence intervals in the

presence of biased studies. Meta-Analysis intervals approach zero coverage probability
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Figure D-4: Coverage probabilities of confidence intervals shown as a function of the
number of biased observational datasets (out of five). In the 4/5 biased studies case, the
average interval widths for each approach is shown for two subgroups. We observe that
ExPCS achieves the best balance of interval width and coverage.

Mean width of 95% confidence intervals
(4 biased studies)

ExPCS ExOCS Meta Simple

LS 5.29 3.55 2.34 5.51
HS 5.84 3.76 2.48 6.15

Table D.1: This table should be interpreted in conjunction with Figure D-4. In the 4/5
biased studies case, the average interval widths for each approach is shown for two subgroups.
We observe that ExPCS achieves the best balance of interval width and coverage.

as the number of biased studies increases. Indeed, a fundamental assumption of this

approach is that differences between estimates are only due to random variation,

leading to poorer coverage probability when there are more biased studies. ExOCS

allows for elimination of biased studies in principle through falsification, resulting in

improved coverage. However, it does not maintain the desired threshold of coverage

(95%), since biased estimators may still be included after falsification either due to

chance or by being underpowered. Finally, ExPCS and Simple Union intervals have
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Upsampling ratio 1.0 3.0 5.0 10.0

𝑃 (selecting
biased study) 0.98 0.80 0.68 0.60

Table D.2: 𝑃 (selecting biased study) as a function of upsampling ratio

good coverage across the board, but as before, ExPCS results in narrower intervals.

Overall, we find that our method is robust to biased studies, yielding a good

balance between coverage and width. In the case where one has adequate power,

ExOCS could be a reasonable alternative to get narrower intervals for a sacrifice in

coverage (even in the presence of biased studies). However, this implicitly assumes that

an estimator consistent for the validation effects will be consistent for the extrapolated

effects. If this assumption does not hold, then ExOCS will have poor coverage.

Biased estimator selection: In Table D.2, we see that the probability of selecting

the biased estimator goes down with increasing sample size of the observational studies,

reflected by the increasing sample size ratio, 𝑟. This result validates our intuition that

our method is more useful and results in more precise estimates of bias as we obtain

more observational samples.
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Appendix E

Supplementary Material for Chapter 7

E.1 Proofs

E.1.1 Proof of Proposition 7.2.1

Proposition 7.2.1. Under assumptions 7.2.1 and 7.2.3, the CATE of the RCT given

𝑋, E[𝑌1 − 𝑌0|𝑋,𝑆 = 0], is identifiable in the observational data by

E[𝑌 | 𝑋,𝐴 = 1, 𝑆 = 1]− E[𝑌 | 𝑋,𝐴 = 0, 𝑆 = 1] (7.1)

Proof.

E[𝑌1 − 𝑌0 | 𝑋,𝑆 = 0]

= E[𝑌1 − 𝑌0 | 𝑋,𝑆 = 1]

= E[𝑌1 | 𝑋,𝑆 = 1]− E[𝑌0 | 𝑋,𝑆 = 1]

= E[𝑌 | 𝑋,𝐴 = 1, 𝑆 = 1]− E[𝑌 | 𝑋,𝐴 = 0, 𝑆 = 1]

The first equality follows from the mean exchangeability of the contrast (Assump-

tion 7.2.3) and the second from the linearity of the expectation operator. The final

equality follows from ignorability and consistency (Assumption 7.2.1).
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E.1.2 Proof of Proposition 7.3.1

Proposition 7.3.1 (CATE signal from the RCT ). Under assumption 7.2.2, the

instance-wise CATE signal 𝜓0 in Equation (7.3), which uses the outcome information

from the RCT, is unbiased, i.e., E[𝜓0|𝑋] = E[𝑌1 − 𝑌0|𝑋,𝑆 = 0].

Proof. Here, we show that the signal

𝜓0 =

(︂
1 {𝐴 = 1}

𝑃 (𝐴 = 1 | 𝑆 = 0)
− 1 {𝐴 = 0}
𝑃 (𝐴 = 0 | 𝑆 = 0)

)︂
· 1 {𝑆 = 0}
𝑃 (𝑆 = 0 | 𝑋)

𝑌

is an unbiased estimator of the CATE in RCT population under consistency and fully

randomized treatment assignment (i.e., 𝑃 (𝐴 | 𝑋,𝑆 = 0) = 𝑃 (𝐴 | 𝑆 = 0), and 𝑌𝑎 ⊥⊥ 𝐴

as in Assumption 7.2.2). In particular, we can observe that

E[𝜓0(𝐴, 𝑌, 𝑆,𝑋) | 𝑋] =
∑︁

𝐴,𝑌,𝑆

𝜓0(𝐴, 𝑌, 𝑆,𝑋) · 𝑃 (𝐴, 𝑌, 𝑆 | 𝑋)

=
∑︁

𝐴,𝑌,𝑆

1 {𝐴 = 1}
𝑃 (𝐴 = 1 | 𝑆 = 0)

· 1 {𝑆 = 0}
𝑃 (𝑆 = 0 | 𝑋)

𝑌 · 𝑃 (𝐴, 𝑌, 𝑆 | 𝑋)

−
∑︁

𝐴,𝑌,𝑆

1 {𝐴 = 0}
𝑃 (𝐴 = 0 | 𝑆 = 0)

· 1 {𝑆 = 0}
𝑃 (𝑆 = 0 | 𝑋)

𝑌 · 𝑃 (𝐴, 𝑌, 𝑆 | 𝑋)

(E.1)

We focus on the first term, observing that the second term can be handled similarly.

We first re-write the first term as

∑︁

𝐴,𝑌,𝑆

𝑃 (𝑌 | 𝑆,𝐴,𝑋)𝑃 (𝐴 | 𝑆,𝑋)𝑃 (𝑆 | 𝑋)

𝑃 (𝐴 = 1 | 𝑆 = 0)𝑃 (𝑆 = 0 | 𝑋)
· 1 {𝐴 = 1, 𝑆 = 0} · 𝑌

=
∑︁

𝑌

𝑌 · 𝑃 (𝑌 | 𝑆 = 0, 𝐴 = 1, 𝑋)
(((((((((((
𝑃 (𝐴 = 1 | 𝑆 = 0, 𝑋)((((((((

𝑃 (𝑆 = 0 | 𝑋)

((((((((((
𝑃 (𝐴 = 1 | 𝑆 = 0)((((((((

𝑃 (𝑆 = 0 | 𝑋)
(E.2)

= E[𝑌 | 𝑆 = 0, 𝐴 = 1, 𝑋]

= E[𝑌1 | 𝑆 = 0, 𝐴 = 1, 𝑋]

= E[𝑌1 | 𝑋,𝑆 = 0]

Repeating the similar arguments for the second term in Eq. E.1, we have E[𝜓0(𝐴, 𝑌, 𝑆,𝑋) |
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𝑋] = E[𝑌1 − 𝑌0 | 𝑋,𝑆 = 0], which completes the proof.

E.1.3 Proof of Proposition 7.3.2

Proposition 7.3.2 (CATE signal from the observational data). Under Assump-

tions 7.2.1 and 7.2.3, the instance-wise CATE signal 𝜓1 in Eq. 7.4, which uses the

outcome information from the observational data, is unbiased for the CATE in the

RCT population, i.e., E[𝜓1|𝑋] = E[𝑌1 − 𝑌0|𝑋,𝑆 = 0].

Proof. We have,

𝜓1 =
1

𝑃 (𝑆 = 0 | 𝑋)

[︂
1 {𝑆 = 0} (𝜇1(𝑋)− 𝜇0(𝑋))

+1 {𝑆 = 1} 𝑃 (𝑆 = 0 | 𝑋)

𝑃 (𝑆 = 1 | 𝑋)

(︂
1 {𝐴 = 1} (𝑌 − 𝜇1(𝑋))

𝑃 (𝐴 = 1 | 𝑆 = 1, 𝑋)

−1 {𝐴 = 0} (𝑌 − 𝜇0(𝑋))

𝑃 (𝐴 = 0 | 𝑆 = 1, 𝑋)

)︂]︂

E[𝜓1(𝐴, 𝑌, 𝑆,𝑋) | 𝑋] =
1

((((((((
𝑃 (𝑆 = 0 | 𝑋)

[︂∑︁

𝐴,𝑌

(𝜇1(𝑋)− 𝜇0(𝑋))

𝑃 (𝑌 | 𝑆 = 0, 𝐴,𝑋)𝑃 (𝐴 | 𝑆 = 0, 𝑋)((((((((
𝑃 (𝑆 = 0 | 𝑋)

+(((((((𝑃 (𝑆 = 0 | 𝑋)

((((((((
𝑃 (𝑆 = 1 | 𝑋)

(︂∑︁

𝑌

𝑌 − 𝜇1(𝑋)

(((((((((((
𝑃 (𝐴 = 1 | 𝑆 = 1, 𝑋)

𝑃 (𝑌 | 𝑆 = 1, 𝐴 = 1, 𝑋)

(((((((((((
𝑃 (𝐴 = 1 | 𝑆 = 1, 𝑋)((((((((

𝑃 (𝑆 = 1 | 𝑋)

−
∑︁

𝑌

𝑌 − 𝜇0(𝑋)

(((((((((((
𝑃 (𝐴 = 0 | 𝑆 = 1, 𝑋)

𝑃 (𝑌 | 𝑆 = 1, 𝐴 = 0, 𝑋)

(((((((((((
𝑃 (𝐴 = 0 | 𝑆 = 1, 𝑋)((((((((

𝑃 (𝑆 = 1 | 𝑋)

)︂]︂

=
∑︁

𝐴,𝑌

(𝜇1(𝑋)− 𝜇0(𝑋))𝑃 (𝑌 | 𝑆 = 0, 𝐴,𝑋)𝑃 (𝐴 | 𝑆 = 0, 𝑋)

+
∑︁

𝑌

(𝑌 − 𝜇1(𝑋))𝑃 (𝑌 | 𝑆 = 1, 𝐴 = 1, 𝑋)

−
∑︁

𝑌

(𝑌 − 𝜇0(𝑋))𝑃 (𝑌 | 𝑆 = 1, 𝐴 = 0, 𝑋)
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= (𝜇1(𝑋)− 𝜇0(𝑋))
∑︁

𝐴,𝑌

𝑃 (𝑌,𝐴 | 𝑆 = 0, 𝑋)

⏟  ⏞  
=1

+ E[𝑌 | 𝑆 = 1, 𝐴 = 1, 𝑋]− 𝜇1(𝑋) ·
∑︁

𝑌

𝑃 (𝑌 | 𝑆 = 1, 𝐴 = 1, 𝑋)

⏟  ⏞  
=1

− E[𝑌 | 𝑆 = 1, 𝐴 = 0, 𝑋]− 𝜇0(𝑋) ·
∑︁

𝑌

𝑃 (𝑌 | 𝑆 = 1, 𝐴 = 0, 𝑋)

⏟  ⏞  
=1

(E.3)

= E[𝑌 | 𝑆 = 1, 𝐴 = 1, 𝑋]− E[𝑌 | 𝑆 = 1, 𝐴 = 0, 𝑋] (E.4)

= E[𝑌1 − 𝑌0 | 𝑋,𝑆 = 0] (E.5)

Note that we have Eq. E.3 and Eq. E.4 since 𝜇𝑎(𝑋) = E[𝑌 | 𝑆 = 1, 𝐴 = 𝑎,𝑋]. Eq. E.5

follows from Proposition 7.2.1.

E.1.4 Proof of Proposition 7.3.3

We restate Proposition 7.3.3 here for convenience.

Proposition 7.3.3 (Null Hypothesis, CMR). Under Assumptions 7.2.1 to 7.2.3, we

have a set of conditional moment restrictions (CMRs) on the signal difference, 𝜓:

𝐻0 : E[𝜓|𝑋] = 0 𝑃𝑋-almost surely, (7.5)

where 𝑃𝑋 is the distribution of 𝑋 on the joint distribution of the RCT and observational

study. Equation (7.5) implies an infinite set of unconditional moment restrictions,

E[𝜓𝑓(𝑋)] = 0,∀𝑓 ∈ ℱ , where ℱ is the set of measurable functions on 𝒳 .

Proof. Under Assumptions 7.2.1 to 7.2.3, we have E[𝜓0|𝑋] = E[𝑌1 − 𝑌0|𝑋,𝑆 = 0]

and E[𝜓1|𝑋] = E[𝑌1 − 𝑌0|𝑋,𝑆 = 0] by Propositions 7.3.1 and 7.3.2 as discussed in

Section 7.3.1. That is, E[𝜓|𝑋] = 0 where 𝜓 = 𝜓1 = 𝜓0 is the signal difference given

two CATE signals. Let ℱ be the set of measurable functions on 𝒳 . Then, by the Law
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of Iterated Expectations we have

E[𝜓𝑓(𝑋)] = E𝑋 [E[𝜓𝑓(𝑋)|𝑋]] = E𝑋 [E[𝜓|𝑋]𝑓(𝑋)], 𝑃𝑋-a.s., ∀𝑓 ∈ ℱ

We see that Eq. 7.5 implies the following infinite set of unconditional moment restric-

tions,

E[𝜓𝑓(𝑋)] = 0, 𝑃𝑋-a.s., ∀𝑓 ∈ ℱ

Proof. First, to show how to express our null hypothesis as a CMR, we have that,

under ??, E[𝜓0|𝑋𝜏 ] = E[𝑌1 − 𝑌0|𝑋𝜏 , 𝑆 = 0], and under Assumptions 7.2.1 and 7.2.3

and ??, we have E[𝜓1|𝑋𝜏 ] = E[𝑌1− 𝑌0|𝑋𝜏 , 𝑆 = 0]. Under the null hypothesis, we have

it that the CATE inferred from the RCT and the CATE inferred from the observational

study transported to the RCT population are equivalent, i.e. E[𝜓0|𝑋𝜏 ] = E[𝜓1|𝑋𝜏 ].

Rearranging terms and from our definition of 𝜓, we arrive at the CMR formulation of

the null hypothesis.

Now, suppose we have a measurable set of functions, ℱ , on 𝒳𝜏 . Then, we have,

E[𝜓𝑓(𝑋𝜏 )] = E𝑋𝜏 [E[𝜓𝑓(𝑋𝜏 )|𝑋𝜏 ]] = E𝑋𝜏 [E[𝜓|𝑋𝜏 ]𝑓(𝑋𝜏 )] for any 𝑓 ∈ ℱ , which follows

from the Law of Iterated Expectation. We see that Eq. 7.5 implies the following

infinite set of unconditional moment restrictions,

E[𝜓𝑓(𝑋𝜏 )] = 0, ∀𝑓 ∈ ℱ

E.1.5 Proofs for Theorem 7.3.1 and Corollary 7.3.2

We restate the theorem and corollary here for convenience.

Theorem 7.3.1 (Maximum Moment Restriction-based test for CATE function). Let

ℱ be a RKHS with reproducing kernel 𝑘(·, ·) : 𝒳 × 𝒳 → R that is ISPD, continuous

and bounded. Suppose |E[𝜓|𝑋]| <∞ almost surely in 𝑃𝑋 , and E[[𝜓𝑘(𝑋,𝑋 ′)𝜓′]2] <∞
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where (𝜓′, 𝑋 ′) is an independent copy of (𝜓,𝑋). Let M2 = sup𝑓∈ℱ ,||𝑓 ||≤1(E[𝜓𝑓(𝑋)])2.

Then,

1. The conditional moment testing problem in Eq. 7.5 can be reformulated in terms

of the MMR as 𝐻 ′:M2=0
0 , 𝐻

′:M2 ̸=0
1 .

Further, let the test statistic be the empirical estimate of M2,

M̂2
𝑛 =

1

𝑛(𝑛− 1)

∑︁

𝑖,𝑗∈ℐ,𝑖 ̸=𝑗

𝜓𝑖𝑘(𝑥𝑖, 𝑥𝑗)𝜓𝑗

2. Then, under 𝐻 ′
0,

𝑛M̂2
𝑛

𝑑−→
∞∑︁

𝑗=1

𝜆𝑗(𝑍
2
𝑗 − 1)

where 𝑍𝑗 are independent standard normal variables and 𝜆𝑗 are the eigenvalues

for 𝜓𝑘(𝑥, 𝑥′)𝜓′.

3. Under 𝐻 ′
1,

√
𝑛(M̂2

𝑛 −M2)
𝑑−→ 𝒩 (0, 4𝜎2)

where 𝜎2 = 𝑣𝑎𝑟(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′]]

Corollary 7.3.2. The witness function in Equation (7.6) can be estimated as

𝑓 *(𝑥) = 𝐶
1

𝑛

∑︁

𝑖

𝜓𝑖𝑘(𝑥𝑖, 𝑥)

where 𝐶 is an unrelated constant so that
∫︀
𝒳 𝑓

*2(𝑥)𝑑𝑥 = 1.

The following proof follows [185]. Let us define the following operator,

𝑀𝑓 = E[𝜓𝑓(𝑋)] (E.6)

where 𝑓 ∈ ℱ . Since |E[𝜓|𝑋]| < ∞ almost surely in 𝑃𝑋 , 𝑀 is a bounded linear

operator. By Riesz representation theorem, there exists a unique 𝑔 ∈ ℱ such that

𝑀𝑓 = ⟨𝑓, 𝑔⟩
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where

𝑔 = E[𝜓𝑘(𝑋, ·)].

𝑔 is called the conditional moment embedding (CMME) of the CMR, E[𝜓|𝑋], in ℱ
w.r.t. 𝑃𝑋 . Therefore, it follows that

M2 = sup
𝑓∈ℱ ,‖𝑓‖≤1

(E[𝜓𝑓(𝑋)])2 = sup
𝑓∈ℱ ,‖𝑓‖≤1

⟨𝑓, 𝑔⟩2 =
⟨

𝑔

‖𝑔‖ , 𝑔
⟩2

= ‖𝑔‖2

Note that the above implies that the witness function 𝑓 * = arg sup𝑓∈ℱ ,‖𝑓‖≤1(E[𝜓𝑓(𝑋)])2 =

𝑔
‖𝑔‖ . Since 𝑔 is defined as E[𝜓𝑘(𝑋, .)], it can be empirically estimated as 1

𝑛

∑︀𝑛
𝑖=1 𝜓𝑖𝑘(𝑥𝑖, .),

which leads to Corollary 7.3.2.

Since M2 = ‖𝑔‖2, the first statement in Theorem 7.3.1 is essentially

E[𝜓|𝑋] = 0, 𝑃𝑋-almost surely⇔ ‖𝑔‖2 = 0

That is, 𝑔 ∈ ℱ fully captures the information of the CMR for all 𝑥 ∈ 𝒳 . This

equivalence, which we will now prove, is crucial since our statistical test is based on

‖𝑔‖2 and its estimates, while Proposition 7.3.3 is directed to the CMR:

(⇒) We note that since ℱ is a Hilbert space, it follows that 𝑔 ∈ ℱ , and ∀𝑓 ∈
ℱ , ⟨𝑓, 𝑔⟩ = E[𝜓𝑓(𝑋)] = 0 (Proposition 7.3.3). 𝑔 can now only be a zero vector.

Therefore, ‖𝑔‖2 = 0.

(⇐)

‖𝑔‖2 = 0

⇒ ‖E[𝜓𝑘(𝑋, .)]‖2 = 0

⇒ ‖E[E[𝜓|𝑋]𝑘(𝑋, .)]‖2 = 0

⇒
⃦⃦
⃦⃦
∫︁

𝒳
𝑘(𝑥, .)E[𝜓|𝑥]𝑝𝑋(𝑥)𝑑𝑥

⃦⃦
⃦⃦
2

= 0

⇒
∫︁∫︁

𝒳×𝒳
𝑝𝑋(𝑥)E[𝜓|𝑥]𝑘(𝑥, 𝑥

′)E[𝜓|𝑥′]𝑝𝑋(𝑥
′)𝑑𝑥𝑑𝑥′=0

⇒ ‖E[𝜓|𝑥]𝑝𝑋(𝑥)‖2 = 0 (∵ 𝑘(·, ·) is ISPD)
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⇒ E[𝜓|𝑥] = 0, 𝑃𝑋-almost surely

Finally, we move to the second and third statements of Theorem 7.3.1, which define

the estimator and its statistical properties. Since M2 = ‖𝑔‖2 = ‖E[𝜓𝑘(𝑋, .)]‖2 =

E[E[𝜓𝑘(𝑋,𝑋 ′)𝜓′]] where (𝑋,𝜓) and (𝑋 ′, 𝜓′) are independently and identically dis-

tributed, we may use a 𝑈 -statistic to estimate M2, which is exactly

M̂2
𝑛 =

1

𝑛(𝑛− 1)

∑︁

𝑖,𝑗∈ℐ,𝑖 ̸=𝑗

𝜓𝑖𝑘(𝑥𝑖, 𝑥𝑗)𝜓𝑗

The asymptotic distribution of 𝑈 -statistics has been investigated intensively in the

literature. Specifically, from Section 5.5 of Serfling [244], taking the special case of

kernels with two inputs, we have the following lemma:

Lemma E.1.1 ((Serfling)). Given a kernel ℎ(., .) :𝒲×𝒲 → R where E(𝑊,𝑊 ′)[ℎ(𝑊,𝑊
′)] =

𝜃 and E(𝑊,𝑊 ′)[ℎ
2(𝑊,𝑊 ′)] < ∞, the asymptotic distribution of the 𝑈-statistic 𝑈𝑛 =

1
𝑛(𝑛−1)

∑︀
𝑖 ̸=𝑗 ℎ(𝑤𝑖, 𝑤𝑗) can be categorized into two cases based on 𝜁1 = 𝑣𝑎𝑟𝑊 (E𝑊 ′ [ℎ(𝑊,𝑊 ′)]):⎧

⎨
⎩

√
𝑛(𝑈𝑛 − 𝜃) 𝑑−→ 𝑁(0, 4𝜁1), 𝜁1 > 0

𝑛(𝑈𝑛 − 𝜃) 𝑑−→∑︀∞
𝑗=1 𝜆𝑗(𝑍

2
𝑗 − 1), 𝜁1 = 0

where 𝑍𝑗 are independent standard normal

variables and 𝜆𝑗 are the eigenvalues of ℎ, i.e. the solutions for E𝑊 ′ [ℎ(𝑊 ′, 𝑤)𝑣(𝑤)]−
𝜆𝑣(𝑤) = 0

Note that if we set 𝑊 = (𝜓,𝑋), ℎ(𝑊,𝑊 ′) = 𝜓𝑘(𝑋,𝑋 ′)𝜓′, 𝜃 = M2, 𝜁1 = 𝜎2, the

second and third statements of Theorem 7.3.1 holds as long as M2 = 0 ⇔ 𝜎2 =

𝑣𝑎𝑟(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′]] = 0, which we will now show:

(⇒)

E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′] = ⟨𝜓𝑘(𝑋, .),E(𝜓′,𝑋′)[𝜓

′𝑘(𝑋 ′, .)]⟩ = ‖𝜓𝑘(𝑋, .)‖
⟨

𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖ , 𝑔
⟩

Now since
𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖ ∈ ℱ ,
⃦⃦
⃦⃦ 𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖

⃦⃦
⃦⃦ = 1
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and

M2 = 0⇒ sup
𝑓∈ℱ ,‖𝑓‖≤1

⟨𝑓, 𝑔⟩ = 0⇒ ⟨𝑓, 𝑔⟩ = 0, ∀𝑓 ∈ ℱ , ‖𝑓‖ ≤ 1

We conclude,

M2 = 0⇒
⟨

𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖ , 𝑔
⟩

= 0⇒ E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′] = 0

⇒ 𝑣𝑎𝑟(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′]] = 0

(⇐)

We first note that 𝑣𝑎𝑟(𝜓,𝑋)(E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′]) = 0 implies that E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋

′)𝜓′]

is a constant 𝑃(𝜓,𝑋)-almost surely. We denote this constant as 𝑐 so we have

E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′] = 𝑐, 𝑃(𝜓,𝑋)-almost surely (E.7)

From the definition of 𝜓, let 𝑋 = 𝑥* be in the support of the observational study, then

E[𝜓|𝑆 = 1, 𝑋 = 𝑥*] =
1

𝑃 (𝑆 = 1|𝑋 = 𝑥*)
E
[︂

1(𝐴 = 1)(𝑌 − 𝜇1(𝑥
*))

𝑃 (𝐴 = 1|𝑆 = 1, 𝑋 = 𝑥*)

− 1(𝐴 = 0)(𝑌 − 𝜇0(𝑥
*))

𝑃 (𝐴 = 0|𝑆 = 1, 𝑋 = 𝑥*)
|𝑆 = 1, 𝑋 = 𝑥*

]︂

=
1

𝑃 (𝑆 = 1|𝑋 = 𝑥*)

[︂
E[𝑌 − 𝜇1(𝑥

*)|𝐴 = 1, 𝑆 = 1, 𝑋 = 𝑥*]

− E[𝑌 − 𝜇0(𝑥
*)|𝐴 = 0, 𝑆 = 1, 𝑋 = 𝑥*]

]︂

= 0,

where the last equality stems from the definition of 𝜇1 and 𝜇0. Now note that

E𝜓[E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′|𝑆 = 1, 𝑋 = 𝑥*]] = E𝜓[E(𝜓′,𝑋′)[𝜓𝑘(𝑥

*, 𝑋 ′)𝜓′|𝑆 = 1, 𝑋 = 𝑥*]]

= E𝜓[𝜓|𝑆 = 1, 𝑋 = 𝑥*]E(𝜓′,𝑋′)[𝑘(𝑥
*, 𝑋 ′)𝜓′]

= 0 · E(𝜓′,𝑋′)[𝑘(𝑥
*, 𝑋 ′)𝜓′] = 0
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But also we have, from (E.7),

E𝜓[E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′|𝑆 = 1, 𝑋 = 𝑥*]] = E𝜓[𝑐] = 𝑐

Therefore, we have 𝑐 = 0 and thus

M2 = E(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓𝑘(𝑋,𝑋
′)𝜓′]] = E(𝜓,𝑋)[0] = 0

so this side of the arrow is also proven.

E.2 Motivating Empirical Examples of Generaliza-

tion of Treatment Effects rather than Counter-

factual Means

In Figure E-1, we plot data that is publicly available in SPRINT Research Group [253]

and Franklin et al. [89]. The former is a randomized trial that reports on outcomes

across subgroups, where we observe that subgroups often have larger differences in

their baseline outcomes than in their treatment effects. The latter is a study that

attempts to replicate ten RCTs using observational data. For each observational study

and trial, they report on not only the resulting differences in rates (between treatment

and control), but also the marginal rates under each of treatment and control. This is

done for both the observational studies and the original RCTs. We can observe that

the estimated “treatment effects” tend to be closer together (between the observational

studies and RCTs) than the estimated “counterfactual means”, such as the marginal

rate under control. We can view this empirical example as one where Assumption 7.2.3

approximately holds in practice, i.e. the treatment effect appears to generalize across

observational and RCT populations, but the counterfactual means do not.
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Figure E-1: Top: For each binary group indicator 𝐼 in the SPRINT Trial, we compare
the absolute difference between E[𝑌0 | 𝐼 = 1] versus E[𝑌0 | 𝐼 = 0], and similarly for 𝑌1 and
𝑌1 − 𝑌0, where 𝑌 is a binary variable indicating the observation of the primary composite
outcome. The data supporting this plot is taken from Figure 4 of SPRINT Research Group
[253]. Generally, the latter difference is smaller (sometimes by an order of magnitude) than
the differences for individual potential outcomes. Bottom: For each attempted replication of
an RCT by an Observational study, we compare the differences in the reported incidence
rates under treatment, under the control/comparator, and the difference between the two
(analogous to the treatment effect). The latter tends to be smaller than both of the differences
in counterfactual means in 6 / 10 replications, and smaller than at least one of the differences
in counterfactual means in all 10 replications. This data is taken from Table 2 of Franklin
et al. [89], where we use the reported statistics in Table 2.
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E.3 IHDP Experiment Details

For both the semi-synthetic and real-world experiments, we follow closely the setup

proposed by Hussain et al. [120], with a few differences highlighted below.

E.3.1 Confounder Generation & Outcome Simulation

We generate one RCT and one observational study in each of our 100 simulations, with

the randomness appearing in our confounder generation, simulation of the potential

outcomes, and the amount of noise in each. In the RCT, we retain the original IHDP

data, i.e. the covariates and the binary treatment variable, but resample the dataset

with equal probability to generate a final dataset of size, 𝑛0 = 2955. For generation

of the observational dataset, we first resample the rows of the IHDP dataset to the

desired sample size, 𝑛 = 𝑠 · 𝑛0, but do the resampling in a weighted fashion, such that

male infants, infants whose mothers smoked, and infants with working mothers are

less prevalent. The weights are set as,

𝑤 =
1

1 + exp(−0.2(1(male infant) + 1(mother smoked) + 1(mother worked during pregnancy)))

Note that this differs from the reweighting scheme used in Hussain et al. [120] in that

we use a non-linearity in the reweighting, since we wish for the covariates used in the

reweighting (i.e. sex, smoking status, working status) to be effect modifiers.

Next, we generate confounders for the observational dataset. Each confounder, 𝑧,

is a function of a subset of the covariates, 𝑋𝑠, and the treatment, 𝐴:

𝑧 = 𝑋⊤
𝑠 𝜉 +𝑋⊤

𝑠 𝛿 ⊙ 𝐴+𝒩 (0, 1),

where 𝑋𝑠 ∈ R4 and the coefficients 𝜉 and 𝛿 are set as: 𝜉 = (0.1,−0.1, 0.2,−0.3, 0.4)
and 𝛿 = (1.,−.1, .5,−3, 4). 𝑋𝑠 consists of the following covariates — (“neonatal health

index”, “birth order of infant”, “drinks alcohol or not”, “mother finished high school”).

Confounder generation for the RCT is similar but does not include any dependency

on the treatment: 𝑋⊤
𝑠 𝜉 + 𝒩 (0, 1). We repeat this procedure 𝑚 times to yield 𝑚
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confounders.

To detail the outcome simulation, we borrow notation from Hussain et al. [120],

where we let 𝑍 ∈ R𝑚 denote the generated confounder vector and 𝑋 ∈ R𝑚𝑥 denote

the covariate vector, where 𝑚𝑥 = 28 is the number of covariates in the original IHDP

dataset. Similarly, we let �̃� = (𝐴,𝑋⊤)⊤. Then, we set the following counterfactual

outcome distributions:

𝑌0 ∼ 𝒩
(︃(︂

�̃� +
1

2
1

)︂⊤

𝛽 + 𝑍⊤𝛾, 1

)︃

𝑌1 ∼ 𝒩 (�̃�⊤𝛽 + 𝑍⊤𝛿 + 𝜔, 1),

where 1 ∈ R𝑚𝑥+1 is a vector of ones, 𝛽 ∈ R𝑚𝑥+1 is a vector where each element is

randomly sampled from (0, 0.1, 0.2, 0.3, 0.4) with probabilities (0.6, 0.1, 0.1, 0.1, 0.1),

and 𝛾 ∈ R𝑚 is a vector where each element is randomly sampled from one of two

vectors with uniform probability depending on the strength of confounding desired:

(0.1, 0.2, .5, .75, 1.) or (1., 1.75, 2., 2.25, 2.75). In Figure 7-1, for example, we sample

from the first vector to generate the confounders, and in Figure 7-2, we sample from

the second vector. The observed outcome is then set as, 𝑌 := 𝐴𝑌1+(1−𝐴)𝑌0. Finally,

𝜔 = 23 to bound the magnitude of the counterfactual outcome under treatment. We

conceal confounders in order to simulate unobserved confounding, letting 𝑐𝑧 be the

number of confounders concealed. As alluded to in the main paper, the order of how

we conceal confounders is determined by their “confounding strength”, i.e. from highest

to lowest weighted.

E.4 Women’s Health Initiative (WHI) Experiment

Details

We follow substantially the same setup as in Hussain et al. [120], which we recounted

partially in the main paper (Section 7.5) but do so fully in this section. The WHI

conducted several clinical trials as well as an observational study in parallel to
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study the effect of various hormonal and dietary interventions on the health and

quality of life of postmenopausal women. As mentioned in the main paper, of the

three clinical trials run by WHI, we use the Postmenopausal Hormone Therapy

(PHT) trial for our analysis, which looked at the effect of combination hormone

therapy on postmenopausal women aged 50-79 years who had not undergone a

hysterectomy [229]. The data used in our analysis is publicly available on BIOLINCC

(https://biolincc.nhlbi.nih.gov/studies/whi_ctos).

E.4.1 Data

We briefly review the core characteristics of both the RCT and observational study

components of the WHI study. The RCT studies the effect of a combination of 2.5mg

of medoxyprogesterone and 0.625mg of estrogen on a population of 𝑁𝐻𝑇 = 16608

postmenopausal women. Each patient is randomly assigned to either the treatment

group (i.e. estrogen + progesterone combination is given) or the control group, in

which the placebo is given. The outcomes tracked in the RCT are of three categories: 1)

cardiovascular events, including coronary heart disease, 2) cancers (endometrial, breast,

etc.), and 3) fractures (e.g. hip, bone, etc.). The observational study component

studies similar outcomes in a cohort of 𝑁 = 93676 women. Women were recruited

for this component in 1996, and follow-up was done until 2005, which is a similar

timeframe as the RCT. Information about therapies that the patients were taking

across the follow-up were tracked via questionnaires, which were taken on a yearly

basis.

E.4.2 Outcome and Intervention

As mentioned in Section 7.5 of the main paper, we define a binary outcome based

on the “global index” score given to each patient, which is a composite index derived

from whether or not a patient experiences any one of the following events: coronary

heart disease, stroke, pulmonary embolism, endometrial cancer, colorectal cancer, hip

fracture, or death due to other causes. Furthermore, the we let 𝑌 = 1 if any one of
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these events is observed in the first seven years of follow-up and 𝑌 = 0 otherwise.

Notably, 𝑌 = 0 may also occur due to censoring.

In terms of the intervention, the RCT is run as an “intention-to-treat” trial. For

the observational study component, we determine treatment and control groups based

on explicit affirmation or denial of the use of estrogen and progesterone combination

therapy in the first three years, which we glean from the annual survey data. Using this

procedure, we end up with a total of 𝑁𝑂𝑆 = 33511 patients. Finally, we restrict the set

of covariates used to those that are measured in both the RCT and the observational

study. Each covariate indicates the same meaning, since the same set of questionnaires

are used to gather them. The resulting number of covariates is 1576.

E.4.3 Experimental Workflow

We detail our experimental setup in this section. We note the following algorithm

applies to one row of Table 7.1 in the main paper. Indeed, to get the remaining

results, we re-apply this algorithm after “introducing” some selection bias into the

observational dataset. We have the following experimental workflow:

• Step 1: Generate 𝐵 bootstrapped datasets of the base WHI observational

dataset.

• Step 2: Set list of 𝑟 covariate pairs 𝑋1, . . . , 𝑋𝑟. We use the same set of covariates

as used by Hussain et al. [120], which can be found in Appendix E of their paper,

to generate the 𝑟 covariate pairs.

• Step 3: For 𝑖 = 1→ 𝐵

– Apply MMR-Contrast (see Appendix E.5 for implementation details).

Set Λ𝑀𝑀𝑅[𝑖] = 1 if p-value is < 0.05, else let Λ𝑀𝑀𝑅[𝑖] = 0.

– Apply ATE. We use the same estimator as Hussain et al. [120], but average

over the entire population to get the ATE from the observational study

and RCT, respectively (i.e. set each patient to be part of the same group).
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Set Λ𝐴𝑇𝐸[𝑖] = 1 if the test rejects the null hypothesis and Λ𝐴𝑇𝐸[𝑖] = 0

otherwise.

– For 𝑗 = 1→ 𝑟

– Apply GATE using the four subgroups derived from 𝑋𝑗, as in Hussain

et al. [120]. Set Λ𝐺𝐴𝑇𝐸[𝑖][𝑗] = 1 if the test rejects the null hypothesis and

Λ𝐺𝐴𝑇𝐸[𝑖][𝑗] = 0 otherwise.

Thus, the rejection rates for MMR-Contrast, ATE, GATE are 1
𝐵

∑︀
𝑖 Λ𝑀𝑀𝑅[𝑖],

1
𝐵

∑︀
𝑖 Λ𝐴𝑇𝐸[𝑖],

1
𝐵·𝑟
∑︀

𝑖

∑︀
𝑗 Λ𝐺𝐴𝑇𝐸[𝑖][𝑗], respectively. We repeat the above workflow to

the WHI dataset that has induced selection bias. To add selection bias to the data,

with probability 𝑝, we drop patients who were not exposed to the intervention and did

not experience the event. To obtain the results for Table 7.1, we run our experimental

procedure for 𝑝 = (0., 0.05, 0.10, 0.15).

E.5 Details on Implementation of the MMR-Contrast

Method

The implementation of the MMR-Contrast method references the workflow illustrated

in [120] and [185]: the former for signal calculation and the latter for significance

testing.

E.5.1 Calculation of signal difference

As elaborated in the main text, in the combined data (combining the RCT and

observational study), for each observation 𝑖 producing data (𝑦𝑖, 𝑠𝑖, 𝑎𝑖, 𝑥𝑖), we define

the true signal difference as,

𝜓𝑖 =
1

𝑃 (𝑆 = 0|𝑋 = 𝑥𝑖)
{1(𝑠𝑖 = 0)

[︂
[𝜇1(𝑥𝑖)− 𝜇0(𝑥𝑖)]−

[︂
1(𝑎𝑖 = 1)

𝑃 (𝐴 = 1|𝑆 = 0)
− 1(𝑎𝑖 = 0)

𝑃 (𝐴 = 0|𝑆 = 0)

]︂
𝑦𝑖

]︂
+

1(𝑠𝑖 = 1)
𝑃 (𝑆 = 0|𝑋 = 𝑥𝑖)

𝑃 (𝑆 = 1|𝑋 = 𝑥𝑖)

[︂
1(𝑎𝑖 = 1)(𝑦𝑖 − 𝜇1(𝑥𝑖))

𝑃 (𝐴 = 1|𝑆 = 1, 𝑋 = 𝑥𝑖)
− 1(𝑎𝑖 = 0)(𝑦𝑖 − 𝜇0(𝑥𝑖))

𝑃 (𝐴 = 0|𝑆 = 1, 𝑋 = 𝑥𝑖)

]︂}︂
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where 𝜇1(𝑥𝑖) = E[𝑌 |𝑆 = 0, 𝐴 = 1, 𝑋 = 𝑥𝑖] and 𝜇0(𝑥𝑖) = E[𝑌 |𝑆 = 0, 𝐴 = 0, 𝑋 = 𝑥𝑖].

Note that the true signal difference includes several unknown nuisance functions that

need to be estimated:

• Response surface: 𝜇1(𝑋), 𝜇0(𝑋)

• Selection propensity: 𝑃 (𝑆 = 1|𝑋), 𝑃 (𝑆 = 0|𝑋)

• Treatment propensity in the observational study: 𝑃 (𝐴 = 1|𝑆 = 1, 𝑋), 𝑃 (𝐴 =

0|𝑆 = 1, 𝑋)

• Treatment propensity in the RCT: 𝑃 (𝐴 = 1|𝑆 = 0), 𝑃 (𝐴 = 0|𝑆 = 0)

The treatment propensity in the RCT is estimated with the empirical probability

of treatment within the RCT data. The response surface, selection propensity and

treatment propensity in the observational study are estimated using cross-fitting: the

combined data is randomly split into 𝐾 = 3 folds, and the nuisance functions used in

each fold are estimated with data out of that fold, using the following models with

grid search for hyperparameters. Default hyperparameters in scikit-learn for the linear

regression model were used. The best hyperparameters found for the gradient boosting

classifier, also in scikit-learn, were as follows: “learning-rate”: 0.01, “n-estimators”: 50,

“max-depth”: 2, “min-samples-leaf”: 50, “min-samples-split”: 50, “max-features”: “sqrt”

[206].

Response

Surface

Selection

Propensity

Treatment Propensity

(observational)

IDHP Linear regression
Gradient Boosting

Classifier

Gradient Boosting

Classifier

WHI
Gradient Boosting

Classifier

Gradient Boosting

Classifier

Gradient Boosting

Classifier

As an aside, in Figure 7-6(a) where we compare the performance of statistics

using estimated signals and true signals, we plug in the response surface and selection

propensity model implied by our simulation settings into 𝜓𝑖 to get the true signal

difference.
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E.5.2 Hypothesis testing

After obtaining the estimated signal difference 𝜓𝑖 by plugging in the estimated nuisance

functions into 𝜓𝑖, the test statistic is calculated as,

𝑛M̂2
𝑛 =

1

(𝑛− 1)

∑︁

𝑖,𝑗∈ℐ,𝑖 ̸=𝑗

𝜓𝑖𝑘(𝑥𝑖, 𝑥𝑗)𝜓𝑗

where 𝑘(., .) is set as a polynomial kernel of order 3. One may also use a laplacian kernel

or RBF kernel, although we found the polynomial and laplacian kernels to work best

in practice. To obtain the 𝑝-value for the test, we follow [185] and generate 𝐵 = 100

samples of multinomials w𝑘 = (𝑤𝑘1, 𝑤𝑘2, . . . , 𝑤𝑘𝑛)
⊤ ∼ Multinom(𝑛, ( 1

𝑛
, 1
𝑛
, . . . , 1

𝑛
)), 𝑘 =

1, 2, . . . , 𝐵. For each 𝑘, we define the bootstrap sample of the null distribution:

𝑛M̂2
𝑛(𝑘) = 𝑛

∑︁

𝑖,𝑗∈ℐ,𝑖 ̸=𝑗

𝑤𝑘𝑖 − 1

𝑛
𝜓𝑖𝑘(𝑥𝑖, 𝑥𝑗)𝜓𝑗

𝑤𝑘𝑗 − 1

𝑛

The 𝑝-value is then calculated as

[︁∑︀𝐵
𝑘=1 1(𝑛M̂2

𝑛 ≤ 𝑛M̂2
𝑛(𝑘))

]︁
+ 1

𝐵 + 1

Note that we do not re-estimate the propensity score function in each bootstrap

iteration.

E.6 Beyond Testing CATE Signals

In this section, we provide a different formulation of our falsification procedure that

tests the potential outcome signals for E[𝑌𝑎|𝑋], 𝑎 ∈ {0, 1}, individually, instead of the

signal for the contrast E[𝑌1 − 𝑌0|𝑋]. This demonstrates that our formulation can be

adapted to testing other functions of the potential outcome distribution, other than

the one we originally considered.

First, we modify our external validity assumption to accommodate testing individ-

ual potential outcomes:
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Assumption E.6.1 (External Validity: Observational Study to RCT Transportability

of Potential Outcomes). We assume the following:

• Mean Exchangeability — E[𝑌𝑎|𝑋 = 𝑥] = E[𝑌𝑎|𝑋 = 𝑥, 𝑆 = 𝑠], ∀𝑥 ∈ 𝒳 , ∀𝑠 ∈ {0, 1},
and ∀𝑎 ∈ {0, 1}.

• Positivity of Selection — P(𝑋 = 𝑥|𝑆 = 0) > 0 =⇒ P(𝑋 = 𝑥|𝑆 = 1) > 0, ∀𝑥 ∈ 𝒳 .

Now, we will introduce additional notation for our signal functions. Namely, we

have the outcome signal from the RCT as follows,

𝜓𝑎0 =
1{𝑆 = 0}
𝑃 (𝑆 = 0|𝑋)

· 𝑌 1{𝐴 = 𝑎}
𝑃 (𝐴 = 𝑎|𝑆 = 0)

, 𝑎 ∈ {0, 1}

𝜓0 = (𝜓0
0, 𝜓

1
0)

⊤ (E.8)

Similarly, we have the following outcome signal in the RCT population, but estimated

from observational data, as developed in the main paper,

𝜓𝑎1 =
1

𝑃 (𝑆 = 0|𝑋)

[︂
1{𝑆 = 0}𝜇𝑎(𝑋) + 1{𝑆 = 1}𝑃 (𝑆 = 0|𝑋)

𝑃 (𝑆 = 1|𝑋)

1{𝐴 = 𝑎}(𝑌 − 𝜇𝑎(𝑋))

𝑃 (𝐴 = 𝑎|𝑆 = 1, 𝑋)

]︂
, 𝑎 ∈ {0, 1}

𝜓1 = (𝜓0
1, 𝜓

1
1)

⊤ (E.9)

Note that the main difference here compared to the main paper is that we define

signal functions individually for each potential outcome and then let 𝜓0 and 𝜓1 be a

vector of signals. Now, we have the following proposition, which shows that the vector

signals are unbiased for the potential outcomes in the RCT population:

Proposition E.6.1 (Potential Outcome Signals from the RCT and Observational

Data). Under assumption 7.2.2 (internal validity of the RCT), the instance-wise

potential outcome vector 𝜓0 in Equation (E.8), which uses the outcome information

from the RCT, is unbiased, i.e., E[𝜓0|𝑋] = E[Y|𝑋,𝑆 = 0] = E[(𝑌0, 𝑌1)⊤|𝑋,𝑆 = 0].

Furthermore, under assumption 7.2.1 and assumption E.6.1, the instance-wise potential

outcome vector 𝜓1 in Equation (E.9), which uses the outcome information from the

observational data, is unbiased for the potential outcomes in the RCT population, i.e.

E[𝜓1|𝑋] = E[Y|𝑋,𝑆 = 0] = E[(𝑌0, 𝑌1)⊤|𝑋,𝑆 = 0].
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Proof. We first show E[𝜓0|𝑋] = E[(𝑌0, 𝑌1)⊤|𝑋,𝑆 = 0], i.e. E[𝜓𝑎0 |𝑋] = E[𝑌𝑎|𝑋,𝑆 =

0], 𝑎 ∈ {0, 1}

E[𝜓𝑎0 |𝑋] = E
[︁ 1{𝑆 = 0}
𝑃 (𝑆 = 0|𝑋)

𝑌 1{𝐴 = 𝑎}
𝑃 (𝐴 = 𝑎|𝑆 = 0)

⃒⃒
⃒𝑋
]︁

=
1

𝑃 (𝑆 = 0|𝑋)𝑃 (𝐴 = 𝑎|𝑆 = 0)
E[1{𝑆 = 0, 𝐴 = 𝑎}𝑌 |𝑋]

=
1

𝑃 (𝑆 = 0|𝑋)𝑃 (𝐴 = 𝑎|𝑆 = 0, 𝑋)
E[1{𝑆 = 0, 𝐴 = 𝑎}𝑌 |𝑋] (E.10)

=
𝑃 (𝑆 = 0, 𝐴 = 𝑎|𝑋)

𝑃 (𝑆 = 0|𝑋)𝑃 (𝐴 = 𝑎|𝑆 = 0, 𝑋)
E[𝑌 |𝑋,𝑆 = 0, 𝐴 = 𝑎]

= E[𝑌 |𝑋,𝑆 = 0, 𝐴 = 𝑎]

= E[𝑌𝑎|𝑋,𝑆 = 0], (E.11)

where (E.10) is from fixed probability of assignment in Assumption 7.2.2, and (E.11)

is from consistency and ignorability in Assumption 7.2.2.

We then show E[𝜓1|𝑋] = E[(𝑌0, 𝑌1)⊤|𝑋,𝑆 = 1], i.e. E[𝜓𝑎1 |𝑋] = E[𝑌𝑎|𝑋,𝑆 =

1], 𝑎 ∈ {0, 1}

E[𝜓𝑎1 |𝑋] = E

[︃
1

𝑃 (𝑆 = 0|𝑋)

[︂
1{𝑆 = 0}𝜇𝑎(𝑋) + 1{𝑆 = 1}𝑃 (𝑆 = 0|𝑋)

𝑃 (𝑆 = 1|𝑋)

1{𝐴 = 𝑎}(𝑌 − 𝜇𝑎(𝑋))

𝑃 (𝐴 = 𝑎|𝑆 = 1, 𝑋)

]︂⃒⃒
⃒⃒
⃒𝑋
]︃

=
E[1{𝑆 = 0}|𝑋]𝜇𝑎(𝑋)

𝑃 (𝑆 = 0|𝑋)
+

E[1{𝑆 = 1, 𝐴 = 𝑎}(𝑌 − 𝜇𝑎(𝑋))|𝑋]

𝑃 (𝑆 = 1|𝑋)𝑃 (𝐴 = 𝑎|𝑆 = 1, 𝑋)

=
𝑃 (𝑆 = 0|𝑋)𝜇𝑎(𝑋)

𝑃 (𝑆 = 0|𝑋)
+
𝑃 (𝑆 = 1, 𝐴 = 𝑎|𝑋)E[(𝑌 − 𝜇𝑎(𝑋))|𝑋,𝑆 = 1, 𝐴 = 𝑎]

𝑃 (𝑆 = 1|𝑋)𝑃 (𝐴 = 𝑎|𝑆 = 1, 𝑋)

= 𝜇𝑎(𝑋) + E[(𝑌 − 𝜇𝑎(𝑋))|𝑋,𝑆 = 1, 𝐴 = 𝑎]

= 𝜇𝑎(𝑋) + E[𝑌 |𝑋,𝑆 = 1, 𝐴 = 𝑎]− 𝜇𝑎(𝑋)

= 𝜇𝑎(𝑋) + E[𝑌𝑎|𝑋,𝑆 = 1]− 𝜇𝑎(𝑋) (E.12)

= E[𝑌𝑎|𝑋,𝑆 = 1],

where (E.12) is from consistency and ignorability in Assumption 7.2.1. The proposition

is now proven.

We can show a similar corollary to corollary 7.3.1 in the main paper, where we
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developed the null hypothesis on the CATE signals. Now, we do so for the potential

outcome vector signals. Namely, we have,

Corollary E.6.1 (Null Hypothesis on Potential Outcome Difference). Define 𝜓 = 𝜓1−
𝜓0 as the instance-wise signal difference between the observational and RCT potential

outcome estimates. Then, under the null hypothesis, i.e. under assumptions 7.2.1

and 7.2.2 and assumption E.6.1, we have it that E[𝜓|𝑋] = 0.

Proof. If assumptions 7.2.1 and 7.2.2 and assumption E.6.1 hold, then Proposition E.6.1

implies that E[𝜓0|𝑋] = E[𝜓1|𝑋] = E[Y|𝑋,𝑆 = 0] = E[(𝑌0, 𝑌1)⊤|𝑋,𝑆 = 0].

Our assumptions, i.e. assumption 7.2.2, assumption 7.2.1, and assumption E.6.1,

give us a set of conditional moment restrictions (CMRs) on the signal difference, 𝜓,

which is a difference of vector signals:

𝐻0 : E[𝜓|𝑋] = 0 𝑃𝑋-almost surely (E.13)

As before, 𝑃𝑋 is the distribution of 𝑋 on the joint distribution of the RCT and

observational study. By the law of iterated expectations, akin to the development in

Proposition 7.3.3, Equation (E.13) implies an infinite set of unconditional moment

restrictions,

E[𝜓⊤𝑓(𝑋)] = 0, ∀𝑓 ∈ ℱ × ℱ , (E.14)

where ℱ is the set of measurable functions on 𝒳 . Note that now, 𝑓 is a vector-valued

function, where 𝑓(𝑋) = (𝑓0(𝑋), 𝑓1(𝑋))⊤. Now, as in the main paper, we follow the

CMR testing procedure presented in Muandet et al. [185], where we let ℱ be a RKHS

and use the maximum moment restriction (MMR) within the unit ball of the RKHS

as our test statistic. Following this, we present the following theorem, which is a

modified version of Theorem 7.3.1.

Theorem E.6.1 (Maximum Moment Restriction-based test for Potential Outcomes).

Let ℱ be a RKHS with reproducing kernel 𝑘(·, ·) : 𝒳 × 𝒳 → R that is ISPD, con-

tinuous and bounded, equipped with inner product ⟨., .⟩ℱ . Denote ℱ2 as the prod-

uct RKHS ℱ × ℱ equipped with inner product ⟨𝑓 , 𝑔⟩ℱ2 = ⟨(𝑓1, 𝑓2)⊤, (𝑔1, 𝑔2)⊤⟩ℱ2 :=
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⟨𝑓1, 𝑔1⟩ℱ + ⟨𝑓2, 𝑔2⟩ℱ . Suppose the elements of |E[𝜓|𝑋]| < ∞ almost surely in 𝑃𝑋 ,

and E[[𝑘(𝑋,𝑋 ′)𝜓⊤𝜓′]2] < ∞ where (𝜓′, 𝑋 ′) is an independent copy of (𝜓, 𝑋). Let

M2 = sup𝑓∈ℱ2,||𝑓 ||≤1(E[𝜓⊤𝑓(𝑋)])2. Then,

1. The conditional moment testing problem in Eq. E.13 can be reformulated in

terms of the MMR as 𝐻 ′:M2=0
0 , 𝐻

′:M2 ̸=0
1 .

Further, let the test statistic be the empirical estimate of M2,

M̂2
𝑛 =

1

𝑛(𝑛− 1)

∑︁

𝑖,𝑗∈ℐ,𝑖 ̸=𝑗

𝑘(𝑥𝑖, 𝑥𝑗)𝜓
⊤
𝑖 𝜓𝑗

2. Then, under 𝐻 ′
0,

𝑛M̂2
𝑛

𝑑−→
∞∑︁

𝑗=1

𝜆𝑗(𝑍
2
𝑗 − 1)

where 𝑍𝑗 are independent standard normal variables and 𝜆𝑗 are the eigenvalues

for 𝑘(𝑥, 𝑥′)𝜓⊤𝜓′.

3. Under 𝐻 ′
1,

√
𝑛(M̂2

𝑛 −M2)
𝑑−→ 𝒩 (0, 4𝜎2)

where 𝜎2 = 𝑣𝑎𝑟(𝜓,𝑋)[E(𝜓′,𝑋′)[𝑘(𝑋,𝑋
′)𝜓⊤𝜓′]]

Proof. The proof is very similar to how we proved Therorem 7.3.1. Let us define the

following operator,

𝑀𝑓 = E[𝜓⊤𝑓(𝑋)] (E.15)

where 𝑓 ∈ ℱ2. Since the elements of |E[𝜓|𝑋]| < ∞ almost surely in 𝑃𝑋 , 𝑀 is a

bounded linear operator. By Riesz representation theorem, there exists a unique

𝑔 ∈ ℱ2 such that

𝑀𝑓 = ⟨𝑓 , 𝑔⟩ℱ2

where

𝑔 = E[𝜓𝑘(𝑋, ·)].
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Therefore, it follows that

M2 = sup
𝑓∈ℱ2,‖𝑓‖≤1

(︀
E[𝜓⊤𝑓(𝑋)]

)︀2
= sup
𝑓∈ℱ2,‖𝑓‖≤1

⟨𝑓 , 𝑔⟩2ℱ2 =

⟨
𝑔

‖𝑔‖ , 𝑔
⟩2

ℱ2

= ‖𝑔‖2

Since M2 = ‖𝑔‖2, the first statement in Theorem E.6.1 is essentially

E[𝜓|𝑋] = 0, 𝑃𝑋-almost surely⇔ ‖𝑔‖2 = 0

That is, 𝑔 ∈ ℱ2 fully captures the information of the CMR for all 𝑥 ∈ 𝒳 . This

equivalence, which we will now prove, is crucial since our statistical test is based on

‖𝑔‖2 and its estimates, while Corollary E.6.1 is directed to the CMR:

(⇒) We note that since ℱ2 is a Hilbert space, it follows that 𝑔 ∈ ℱ2, and from

(E.14), ∀𝑓 ∈ ℱ2, ⟨𝑓 , 𝑔⟩ℱ2 = E[𝜓⊤𝑓(𝑋)] = 0. 𝑔 can now only be a zero vector.

Therefore, ‖𝑔‖2 = 0.

(⇐)

‖𝑔‖2 = 0

⇒ ‖E[𝜓𝑘(𝑋, .)]‖2 = 0

⇒ ‖E[E[𝜓|𝑋]𝑘(𝑋, .)]‖2 = 0

⇒
⃦⃦
⃦⃦
∫︁

𝒳
𝑘(𝑥, .)E[𝜓|𝑥]𝑝𝑋(𝑥)𝑑𝑥

⃦⃦
⃦⃦
2

= 0

⇒
∫︁∫︁

𝒳×𝒳
𝑝𝑋(𝑥)E[𝜓⊤|𝑥]𝑘(𝑥, 𝑥′)E[𝜓|𝑥′]𝑝𝑋(𝑥

′)𝑑𝑥𝑑𝑥′=0

⇒ ‖E[𝜓|𝑥]𝑝𝑋(𝑥)‖2 = 0 (∵ 𝑘(·, ·) is ISPD)

⇒ E[𝜓|𝑥] = 0, 𝑃𝑋-almost surely

Finally, we move to the second and third statements of Theorem E.6.1, which define

the estimator and its statistical properties. Since M2 = ‖𝑔‖2 = ‖E[𝜓𝑘(𝑋, .)]‖2 =

E[E[𝜓⊤𝑘(𝑋,𝑋 ′)𝜓′]] where (𝑋,𝜓) and (𝑋 ′,𝜓′) are independently and identically
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distributed, we may use a 𝑈 -statistic to estimate M2, which is exactly

M̂2
𝑛 =

1

𝑛(𝑛− 1)

∑︁

𝑖,𝑗∈ℐ,𝑖 ̸=𝑗

𝜓⊤
𝑖 𝑘(𝑥𝑖, 𝑥𝑗)𝜓𝑗

Now note that in Lemma E.1.1, if we set 𝑊 = (𝜓, 𝑋), ℎ(𝑊,𝑊 ′) = 𝜓⊤𝑘(𝑋,𝑋 ′)𝜓′,

𝜃 = M2, 𝜁1 = 𝜎2, the second and third statements of Theorem 7.3.1 holds as long as

M2 = 0⇔ 𝜎2 = 𝑣𝑎𝑟(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′]] = 0, which we will now show:

(⇒)

E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′] = ⟨𝜓𝑘(𝑋, .),E(𝜓′,𝑋′)[𝜓

′𝑘(𝑋 ′, .)]⟩ℱ2 = ‖𝜓𝑘(𝑋, .)‖
⟨
𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖ , 𝑔
⟩

ℱ2

Now since
𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖ ∈ ℱ
2,

⃦⃦
⃦⃦ 𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖

⃦⃦
⃦⃦ = 1

and

M2 = 0⇒ sup
𝑓∈ℱ2,‖𝑓‖≤1

⟨𝑓 , 𝑔⟩ℱ2 = 0⇒ ⟨𝑓 , 𝑔⟩ℱ2 = 0,∀𝑓 ∈ ℱ2, ‖𝑓‖ ≤ 1

We conclude

M2 = 0⇒
⟨
𝜓𝑘(𝑋, .)

‖𝜓𝑘(𝑋, .)‖ , 𝑔
⟩

ℱ2

= 0⇒ E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′] = 0

⇒ 𝑣𝑎𝑟(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′]] = 0

(⇐)

We first note that 𝑣𝑎𝑟(𝜓,𝑋)(E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′]) = 0 implies that E(𝜓′,𝑋′)[𝜓

⊤𝑘(𝑋,𝑋 ′)𝜓′]

is a constant 𝑃(𝜓,𝑋)-almost surely. We denote this constant as 𝑐 so we have

E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′] = 𝑐, 𝑃(𝜓,𝑋)-almost surely (E.16)

From the definition of 𝜓, let 𝑋 = 𝑥* be in the support of the observational study,
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then

E[𝜓|𝑆 = 1, 𝑋 = 𝑥*] =
1

𝑃 (𝑆 = 1|𝑋 = 𝑥*)
E
[︂(︂

1(𝐴 = 1)(𝑌 − 𝜇1(𝑥
*))

𝑃 (𝐴 = 1|𝑆 = 1, 𝑋 = 𝑥*)
,

1(𝐴 = 0)(𝑌 − 𝜇0(𝑥
*))

𝑃 (𝐴 = 0|𝑆 = 1, 𝑋 = 𝑥*)

)︂⊤⃒⃒
⃒⃒𝑆 = 1, 𝑋 = 𝑥*

]︂

=
1

𝑃 (𝑆 = 1|𝑋 = 𝑥*)
(E[𝑌 − 𝜇1(𝑥

*)|𝐴 = 1, 𝑆 = 1, 𝑋 = 𝑥*],

E[𝑌 − 𝜇0(𝑥
*)|𝐴 = 0, 𝑆 = 1, 𝑋 = 𝑥*)])⊤

= 0,

where the last equality stems from the definition of 𝜇1 and 𝜇0. Now note that

E𝜓[E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′|𝑆 = 1, 𝑋 = 𝑥*]] = E𝜓[E(𝜓′,𝑋′)[𝜓

⊤𝑘(𝑥*, 𝑋 ′)𝜓′|𝑆 = 1, 𝑋 = 𝑥*]]

= (E𝜓[𝜓|𝑆 = 1, 𝑋 = 𝑥*])⊤E(𝜓′,𝑋′)[𝑘(𝑥
*, 𝑋 ′)𝜓′]

= 0⊤E(𝜓′,𝑋′)[𝑘(𝑥
*, 𝑋 ′)𝜓′] = 0

But also we have, from (E.16),

E𝜓[E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′|𝑆 = 1, 𝑋 = 𝑥*]] = E𝜓[𝑐] = 𝑐

Therefore, we have 𝑐 = 0 and thus

M2 = E(𝜓,𝑋)[E(𝜓′,𝑋′)[𝜓
⊤𝑘(𝑋,𝑋 ′)𝜓′]] = E(𝜓,𝑋)[0] = 0

so this side of the arrow is also proven.

We label this alternate formulation, where we test on the potential outcomes

directly instead of the contrast, as MMR-Absolute. We give the rejection rate

of MMR-Absolute under different amounts of selection bias induced in the WHI

dataset in Table E.1. We find that the MMR-Absolute approach vastly over-rejects,

indicating the utility of testing the causal contrast as opposed to the absolute potential
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outcomes.

Selection Bias MMR-Contrast MMR-Absolute ATE GATE

𝑝 = 0 0.29 1.0 0.32 0.17
𝑝 = 0.05 0.67 1.0 0.58 0.40
𝑝 = 0.10 0.94 1.0 0.88 0.67
𝑝 = 0.15 1.0 1.0 0.98 0.91

Table E.1: Rejection rate when introducing different amounts of selection bias into the
observational data in WHI study. 𝑝 stands for the strength of selection introduced in the the
data (refer to Section 7.5 for details).

E.7 When does testing for bias across subgroups

improve power?

In our experimental results, we find that the GATE approach has limited power

compared to the ATE approach. Indeed, the performance of GATE versus ATE

depends in part on the choice of subgroups used for GATE. In the extreme, if the

difference in effect is identical across all subgroups, testing for differences in ATE may

have higher power once multiple-testing corrections are applied. To build intuition, we

will provide a simple example for when a GATE-based test might have higher power

compared to an ATE-based test. We will then formalize this example and provably

show under what conditions a GATE-based test would have higher asymptotic power

compared to an ATE-based test. When referring to the test that tests differences of

GATEs or ATEs, we will use the bold form: GATE and ATE. When referring to the

causal quantity itself, we will simply use GATE and ATE.

Toy Example: To build intuition, we will use a toy example to construct three

scenarios in which the asymptotic power between GATE and ATE may differ.

Consider testing whether there is bias in a population, where the null hypothesis is

that the population mean is zero. Let there be two subgroups in the population, G1

and G2. Finally, let 𝛿 be a term denoting the asymptotic bias. Figure E-2 shows

three separate scenarios:
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G1 G2 G1

G2

G1 G2

Scenario 1 
Heterogeneous Effects

Scenario 2 
Heterogeneous Effects, 

Opposite Signs

Scenario 3 
Homogenous Effects 

Figure E-2: Barplot depiction of three toy scenarios, where we plot the asymptotic bias,
denoted by 𝛿 (see Equations (E.25) and (E.26)), of the observational estimator in each
subgroup. Our goal is to detect, from finite samples, whether or not this asymptotic bias
is non-zero for any subgroup. In scenario 3, pooling the data and testing for the overall
bias (the ATE approach) yields better power than testing for differences across subgroups.
Explicitly testing the bias in each subgroup (the GATE approach) is beneficial in scenarios
like 1 and 2 where heterogeneity exists. The x-axis contains the group name, and the y-axis
indicates the magnitude of 𝛿.

• In scenario 1, the bias in G1 is significantly higher than the bias in G2. As we

formalize below, GATE will have higher power than ATE as |𝛿| gets larger and

the sample size of G1 is reasonable. See below for precise conditions.

• In scenario 2, the bias in the two subgroups have the same magnitude but are in

opposite directions. Below, we show that GATE has better power than ATE

in this scenario, given a large enough |𝛿| to overcome the penalty of multiple

hypothesis testing. This result is intuitive since testing differences in ATE would

fail to reject the null since the average effect over the entire population would

be close to zero.

• In scenario 3, the bias is the same magnitude and direction in both subgroups.

We show below that the ATE has better power than GATE regardless of what

the magnitude of 𝛿 is. Intuitively, pooling together the two subgroups would

yield a larger sample to detect the bias.

In the subsequent paragraphs, we will formalize these three scenarios in the context of

321



our setting, where we have estimates from observational and RCT data. Note that

the theoretical framework that we introduce below covers these three scenarios as well

as others.

E.7.1 Notation and Assumptions

We recall some notation and definitions from [120].

Definition E.7.1 (GATE, Hussain et al. [120]). We define the group average treatment

effect (GATE) as

𝜏𝑖 := E[𝑌1 − 𝑌0 | 𝐺 = 𝑖, 𝑆 = 0] (E.17)

where 𝐺 is the group indicator variable taking values {1, 2}, and 𝑆 = 0 indicates the

RCT population.

The GATE estimator for subgroup 𝑖 using RCT data will be denoted, 𝜏𝑖(0), while

the estimator using observational data will be denoted, 𝜏𝑖(1).

Definition E.7.2 (ATE). We define the average treatment effect (ATE) as

𝜏 := E[𝑌1 − 𝑌0 | 𝑆 = 0] (E.18)

where 𝑆 = 0 indicates the RCT population.

Akin to the GATE estimators, the ATE estimator using RCT data will be denoted,

𝜏(0), while the estimator using observational data will be denoted, 𝜏(1). Writing

𝜌𝑖0 (𝜌𝑖1) as the proportion of observations in the RCT (the obserational study) that

belongs to subgroup 𝑖, we then modify Assumption 2.4 from Hussain et al. [120] as

follows, :

Assumption E.7.1. All GATE estimators are pointwise asymptotically normally

distributed and independent

√︀
𝜌𝑖0𝑁0(𝜏𝑖(0)− 𝜏𝑖(0))/�̂�𝑖(0) 𝑑→ 𝒩 (0, 1) (E.19)

√︀
𝜌𝑖1𝑁1(𝜏𝑖(1)− 𝜏𝑖(1))/�̂�𝑖(1) 𝑑→ 𝒩 (0, 1) (E.20)
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Here, 𝑑→ denotes convergence in distribution, and �̂�2
𝑖 (𝑘) is an estimate of the variance

that converges in probability to 𝜎2
𝑖 (𝑘), the asymptotic variance of

√
𝜌𝑖𝑘𝑁𝑘(𝜏𝑖(𝑘)−𝜏𝑖(𝑘)),

for 𝑘 = 0 and 𝑘 = 1.

In addition to assumptions on the GATE estimators, we also have assumptions on

the asymptotic distributions of the ATE estimators for both studies:

Assumption E.7.2. Both ATE estimators are asymptotically normally distributed

and independent

√︀
𝑁0(𝜏(0)− 𝜏(0))/�̂�(0) 𝑑→ 𝒩 (0, 1) (E.21)

√︀
𝑁1(𝜏(1)− 𝜏(1))/�̂�(1) 𝑑→ 𝒩 (0, 1) (E.22)

where �̂�2(𝑘) is an estimate of the variance that converges in probability to 𝜎2(𝑘), the

asymptotic variance of
√
𝑁𝑘(𝜏(𝑘)− 𝜏(𝑘)), for 𝑘 = 0 and 𝑘 = 1.

E.7.2 Theoretical Example

Given the assumptions and definitions, we present a formal example:

Example E.7.1. Suppose there are two subgroups in the RCT and observational

study. To reflect the consistency of the RCT GATE estimators and quantify the bias

of the GATE estimators from the observational study, we define

(𝑅𝐶𝑇, group 1) 𝜏1(0) = 𝜏1 (E.23)

(𝑅𝐶𝑇, group 2) 𝜏2(0) = 𝜏2 (E.24)

(𝑂𝐵𝑆, group 1) 𝜏1(1) = 𝜏1 + 𝛿1 (E.25)

(𝑂𝐵𝑆, group 2) 𝜏2(1) = 𝜏2 + 𝛿2 (E.26)

For simplicity, we assume that in both the RCT and observational study, half of the

population is in group 1 and half of the population is in group 2, i.e. 𝜌𝑖0 = 𝜌𝑖1 = 1/2
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for 𝑖 = 1, 2. Then we have

𝜏(0) =
𝜏1(0) + 𝜏2(0)

2
=
𝜏1 + 𝜏2

2
(E.27)

𝜏(1) =
𝜏1(1) + 𝜏2(1)

2
=
𝜏1 + 𝛿1 + 𝜏2 + 𝛿2

2
(E.28)

Lastly, we introduce the following shorthand notations, writing the total sample size

𝑁 = 𝑁0 +𝑁1 and letting 𝑁0 = 𝜌𝑁 , 𝑁1 = (1− 𝜌)𝑁 :

𝜎 =
√︀
𝑁0 +𝑁1

√︃
𝜎2(0)

𝑁0

+
𝜎2(1)

𝑁1

=

√︃
𝜎2(0)

𝜌
+
𝜎2(1)

1− 𝜌 (E.29)

𝜎1 =
√︀
𝜌10𝑁0 + 𝜌11𝑁1

√︃
𝜎2
1(0)

𝜌10𝑁0

+
𝜎2
1(1)

𝜌11𝑁1

=

√︃
𝜎2
1(0)

𝜌
+
𝜎2
1(1)

1− 𝜌 (E.30)

𝜎2 =
√︀
𝜌20𝑁0 + 𝜌21𝑁1

√︃
𝜎2
2(0)

𝜌20𝑁0

+
𝜎2
2(1)

𝜌21𝑁1

=

√︃
𝜎2
2(0)

𝜌
+
𝜎2
2(1)

1− 𝜌 (E.31)

To simplify the development, we will make the following assumption for this

example:

Assumption E.7.3. Assume that 𝜎2(0) = 𝜎2
1(0) = 𝜎2

2(0) and 𝜎2(1) = 𝜎2
1(1) = 𝜎2

2(1),

so that we can write Equations (E.29) to (E.31) as,

𝜎 = 𝜎1 = 𝜎2 =

√︃
𝜎2(0)

𝜌
+
𝜎2(1)

1− 𝜌 (E.32)

The asymptotic power of the ATE and GATE can then be given by the following

propositions:

Proposition E.7.1 (Asymptotic power of ATE). Under Assumption E.7.3, the

asymptotic power of ATE as 𝑁 →∞ (holding 𝜌 as constant) is given by

1−
[︃
Φ

(︃
| 𝛿1+𝛿2

2
|

𝜎/
√
𝑁

+ 𝑧𝛼/2

)︃
− Φ

(︃
| 𝛿1+𝛿2

2
|

𝜎/
√
𝑁
− 𝑧𝛼/2

)︃]︃

Proof. From Proposition 2.1 of [120], given the asymptotic distributions from As-

sumption E.7.2 and Equations (E.27), (E.28), we have 𝜏(1) − 𝜏(0) = 𝛿1+𝛿2
2

and

324



thus
𝜏(1)− 𝜏(0)− 𝛿1+𝛿2

2

�̂�/
√
𝑁

𝑑→ 𝒩 (0, 1) (E.33)

which allows us to construct a 𝑍-test on the null hypothesis 𝐻0 :
𝛿1+𝛿2

2
= 0 based on

the rejection region ⃒⃒
⃒⃒
⃒
𝜏(1)− 𝜏(0)
�̂�/
√
𝑁

⃒⃒
⃒⃒
⃒ > 𝑧𝛼/2

The asymptotic power of the 𝑍-test under the alternative hypothesis distribution

shown in (E.33) is then, from Theorems 10.4, 10.6 in [284]

1−Φ
(︃
| 𝛿1+𝛿2

2
|

𝜎/
√
𝑁
+𝑧𝛼/2

)︃
+Φ

(︃
| 𝛿1+𝛿2

2
|

𝜎/
√
𝑁
−𝑧𝛼/2

)︃
= 1−

[︃
Φ

(︃
| 𝛿1+𝛿2

2
|

𝜎/
√
𝑁

+ 𝑧𝛼/2

)︃
− Φ

(︃
| 𝛿1+𝛿2

2
|

𝜎/
√
𝑁
− 𝑧𝛼/2

)︃]︃

Proposition E.7.2 (Asymptotic power of GATE). Under Assumption E.7.3, the

asymptotic power of GATE is given by

1−
[︃
Φ

(︃
1√
2

|𝛿1|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿1|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃

[︃
Φ

(︃
1√
2

|𝛿2|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿2|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃

Proof. With arguments similar to Proposition E.7.1, since the total sample size for

subgroup 𝑖 is 𝜌𝑖0𝑁0 + 𝜌𝑖1𝑁1 = 𝑁/2, the asymptotic power of the 𝑍-test comparing

the GATE estimates for group 𝑖 would be (𝑖 ∈ {1, 2})

𝜉𝑖 = 1−
[︃
Φ

(︃
|𝛿𝑖|

𝜎𝑖/
√︀
𝑁/2

+ 𝑧𝛼/4

)︃
− Φ

(︃
|𝛿𝑖|

𝜎𝑖/
√︀
𝑁/2

− 𝑧𝛼/4
)︃]︃

= 1−
[︃
Φ

(︃
1√
2

|𝛿𝑖|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿𝑖|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃

where the last equality stems from Assumption E.7.3. Since we are rejecting the

null hypothesis of 𝐻0 : 𝛿1 = 0 and 𝛿0 = 0 when the test in either subgroup shows

325



significance, and the two tests are independent, the power of GATE is then

1− (1− 𝜉1)(1− 𝜉2)

=1−
[︃
Φ

(︃
1√
2

|𝛿1|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿1|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃

[︃
Φ

(︃
1√
2

|𝛿2|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿2|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃

We now investigate three scenarios regarding the pattern of bias for the GATE

estimators from the observational study:

Scenario 1: Only the GATE estimator for subgroup 1 is biased

This scenario can be depicted by letting 𝛿1 = 𝛿 ̸= 0 and 𝛿2 = 0, so that we have
𝛿1+𝛿2

2
= 𝛿

2
. The power of ATE and GATE in this scenario can be given by, based on

Propositions E.7.1 and E.7.2:

𝜉ATE = 1−
[︃
Φ

(︃
|𝛿/2|
𝜎/
√
𝑁

+ 𝑧𝛼/2

)︃
− Φ

(︃
|𝛿/2|
𝜎/
√
𝑁
− 𝑧𝛼/2

)︃]︃
(E.34)

𝜉GATE = 1− [Φ(𝑧𝛼/4)− Φ(−𝑧𝛼/4)]
[︃
Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃

= 1−
(︁
1− 𝛼

2

)︁[︃
Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃

= 1−
(︁
1− 𝛼

2

)︁[︃
Φ

(︃
√
2
|𝛿/2|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
√
2
|𝛿/2|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃
(E.35)

Denoting 𝛿* := |𝛿/2|
𝜎/

√
𝑁
≥ 0, we may simplify the expressions as,

𝜉ATE = 1−
[︀
Φ(𝛿* + 𝑧𝛼/2)− Φ(𝛿* − 𝑧𝛼/2)

]︀
(E.36)

𝜉GATE = 1−
(︁
1− 𝛼

2

)︁[︂
Φ
(︀√

2𝛿* + 𝑧𝛼/4
)︀
− Φ

(︀√
2𝛿* − 𝑧𝛼/4

)︀]︂
(E.37)
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Before we derive sufficient conditions for 𝜉GATE > 𝜉ATE, we state the following

lemma on the properties of Φ(.) and Φ−1(.):

Lemma E.7.1. ∀𝛼 ∈ (0, 1),
𝑧𝛼/4

𝑧𝛼/2
<

𝑧1/4
𝑧1/2
≈ 1.1185.

Lemma E.7.2. ∀𝑎 > 1, Φ(𝑎𝑥) − Φ(𝑥) is a strictly decreasing function in 𝑥 as

𝑥 >
√︁

2 log 𝑎
𝑎2−1

.

Proof. Taking the derivative of Φ(𝑎𝑥)− Φ(𝑥) with respect to 𝑥, we have

𝜕

𝜕𝑥

[︀
Φ(𝑎𝑥)−Φ(𝑥)

]︀
= 𝑎𝜑(𝑎𝑥)−𝜑(𝑥) = 𝑎

1√
2𝜋
𝑒−

𝑎2𝑥2

2 − 1√
2𝜋
𝑒−

𝑥2

2 =
1√
2𝜋
𝑒−

𝑥2

2

[︁
𝑎𝑒−

𝑎2−1
2

𝑥2−1
]︁

When 𝑥 >
√︁

2 log 𝑎
𝑎2−1

, we have, since 𝑎 > 1,

1√
2𝜋
𝑒−

𝑥2

2

[︁
𝑎𝑒−

𝑎2−1
2

𝑥2 − 1
]︁
<

1√
2𝜋
𝑒−

𝑥2

2

[︁
𝑎𝑒

−𝑎2−1
2

(︀
2 log 𝑎

𝑎2−1

)︀
− 1
]︁
=

1√
2𝜋
𝑒−

𝑥2

2

[︁
𝑎 · 1
𝑎
− 1
]︁
= 0

Therefore, at 𝑥 >
√︁

2 log 𝑎
𝑎2−1

, Φ(𝑎𝑥)−Φ(𝑥) has strictly negative derivatives which implies

it is strictly decreasing.

Now we may derive the sufficient condition for 𝜉GATE > 𝜉ATE,

𝜉GATE > 𝜉ATE

⇔ Φ(𝛿* + 𝑧𝛼/2)− Φ(𝛿* − 𝑧𝛼/2) >
(︁
1− 𝛼

2

)︁[︂
Φ
(︀√

2𝛿* + 𝑧𝛼/4
)︀
− Φ

(︀√
2𝛿* − 𝑧𝛼/4

)︀]︂

⇐ Φ(𝛿* + 𝑧𝛼/2)− Φ(𝛿* − 𝑧𝛼/2) > Φ
(︀√

2𝛿* + 𝑧𝛼/4
)︀
− Φ

(︀√
2𝛿* − 𝑧𝛼/4

)︀

⇔ Φ(
√
2𝛿* − 𝑧𝛼/4)− Φ(𝛿* − 𝑧𝛼/2) > Φ

(︀√
2𝛿* + 𝑧𝛼/4

)︀
− Φ

(︀
𝛿* + 𝑧𝛼/2

)︀

⇐ Φ(
√
2𝛿* −

√
2𝑧𝛼/2)− Φ(𝛿* − 𝑧𝛼/2) > Φ

(︀√
2𝛿* +

√
2𝑧𝛼/2

)︀
− Φ

(︀
𝛿* + 𝑧𝛼/2

)︀

(𝐿𝑒𝑚𝑚𝑎 𝐸.7.1)

⇔ Φ[
√
2(𝛿* − 𝑧𝛼/2)]− Φ[𝛿* − 𝑧𝛼/2] > Φ

[︀√
2(𝛿* + 𝑧𝛼/2)

]︀
− Φ

[︀
𝛿* + 𝑧𝛼/2

]︀

Since 𝛿* − 𝑧𝛼/2 < 𝛿* + 𝑧𝛼/2, from Lemma E.7.2, the last inequality holds as long as
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𝛿* − 𝑧𝛼/2 >
√︁

2 log(
√
2)

(
√
2)2−1

=
√
log 2. That is, a sufficient condition for 𝜉GATE > 𝜉ATE is

𝛿* >
√︀
log 2 + 𝑧𝛼/2

or, equivalently,

|𝛿| > 2𝜎√
𝑁

(︀√︀
log 2 + 𝑧𝛼/2

)︀
(E.38)

Intuitively, we see from the above condition that as the magnitude of the bias

in subgroup 1 increases or the sample size 𝑁 increases, GATE will eventually have

greater power than ATE.

Scenario 2: The GATE estimators for both subgroups are biased by the same

magnitude but opposite direction

This scenario can be depicted by letting 𝛿1 = 𝛿 and 𝛿2 = −𝛿, 𝛿 ̸= 0, so that we

have 𝛿1+𝛿2
2

= 0. Under which the power of ATE and GATE can be given by, based

on Propositions E.7.1 and E.7.2:

𝜉ATE = 1−
[︀
Φ(𝑧𝛼/2)− Φ(−𝑧𝛼/2)

]︀
= 𝛼 (E.39)

𝜉GATE = 1−
[︃
Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃2
(E.40)

We may give a lower bound for 𝜉GATE:

𝜉GATE = 1−
[︃
Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃2

> 1−
[︃
1− Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃2

Therefore, a sufficient condition for 𝜉GATE > 𝜉ATE, i.e. the power of GATE to be
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greater than ATE is,

|𝛿| > 𝜎√︀
𝑁/2

(𝑧𝛼/4 + Φ−1(1−
√
1− 𝛼)) (E.41)

which can be attained with a large enough bias magnitude |𝛿| or large enough sample

size 𝑁 that overcomes the penalty of multiple testing.

Scenario 3: The GATE estimators for both subgroups are biased by the same

magnitude and direction

This scenario can be depicted by letting 𝛿1 = 𝛿2 = 𝛿 ̸= 0, so that we have
𝛿1+𝛿2

2
= 𝛿. Under which the power of ATE and GATE can be given by, based on

Propositions E.7.1 and E.7.2:

𝜉ATE = 1−
[︃
Φ

(︃
|𝛿|

𝜎/
√
𝑁

+ 𝑧𝛼/2

)︃
− Φ

(︃
|𝛿|

𝜎/
√
𝑁
− 𝑧𝛼/2

)︃]︃
(E.42)

𝜉GATE = 1−
[︃
Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁

+ 𝑧𝛼/4

)︃
− Φ

(︃
1√
2

|𝛿|
𝜎/
√
𝑁
− 𝑧𝛼/4

)︃]︃2
(E.43)

Denoting 𝛿* := |𝛿|
𝜎/

√
𝑁
≥ 0, we may simplify the expressions as,

𝜉ATE = 1−
[︁
Φ
(︁
𝛿* + 𝑧𝛼/2

)︁
− Φ

(︁
𝛿* − 𝑧𝛼/2

)︁]︁
(E.44)

𝜉GATE = 1−
[︂
Φ
(︁ 1√

2
𝛿* + 𝑧𝛼/4

)︁
− Φ

(︁ 1√
2
𝛿* − 𝑧𝛼/4

)︁]︂2
(E.45)

Therefore, the condition for 𝜉ATE > 𝜉GATE is equivalent to

𝑔(𝛿*) :=
[︁
Φ
(︁ 1√

2
𝛿*+ 𝑧𝛼/4

)︁
−Φ

(︁ 1√
2
𝛿*− 𝑧𝛼/4

)︁]︁2
−
[︁
Φ
(︁
𝛿*+ 𝑧𝛼/2

)︁
−Φ

(︁
𝛿*− 𝑧𝛼/2

)︁]︁
> 0

(E.46)

A graph for 𝑔(𝛿*) with 𝛼 = 0.005, 0.01, 0.05, 0.1 is shown in Figure E-3, which

demonstrates that 𝑔(𝛿*) > 0 is satisfied for any 𝛿* > 0. Therefore, under the scenario

where a common bias is shared across subgroups, the power of ATE is greater than

GATE irrespective of the magnitude of bias.
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Figure E-3: Plot of function 𝑔(.) under 𝛼 = 0.005, 0.01, 0.05 and 0.1

Overall, we find that the relative asymptotic power of ATE and GATE depends

on the homogeneity of bias amongst the subgroups and the magnitude of the bias,

and should be analyzed on a case-by-case basis.
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Appendix F

Supplementary Material for Chapter 8

Full results for all scenarios are shown below. The statistical tests in the "red pill" row

are McNemar’s tests done to assess for significant change in proportion of treatment

blue selections. All other tests to detect statistically significant changes in confidence

and perceived reliability are two-sample paired 𝑡-tests. 𝑝-values are shown adjusted

for multiple hypothesis testing via the Holm-Bonferonni correction. Results of the

Shapiro-Wilks tests (done before conducting the 2-sample 𝑡-tests) for normality were

all non-significant after adjusting for multiple hypothesis testing via the Bonferroni

correction.
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Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

A Yes Yes Similar to RCT
Red pill 32 32
Blue pill 0 0

Confidence 7.34 (+/- 1.19) 7.53 (+/- 1.53)
(Tier 1 vs Tier 2: 𝑝 = 1.)

Reliability N/A 7.25 (+/- 1.30)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

A Yes N/A

Red pill 30
(Tier 1 vs Tier 3: 𝑝 = 1)

Blue pill 2

Confidence 7.84 (+/- 1.18)
(Tier 2 vs Tier 3: 𝑝 = .46)

Reliability 7.44 (+/- 1.43)
(Tier 2 vs Tier 3: 𝑝 = 1.)

Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

B Yes Yes Worse with red pill

Red pill 30 23
(Tier 1 vs Tier 2: 𝑝 = 0.83)

Blue pill 2 9

Confidence 7.12 (+/- 2.06) 6.03 (+/- 1.94)
(Tier 1 vs Tier 2: 𝑝 = 0.05)

Reliability N/A 5.88 (+/- 1.60)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

B Yes N/A

Red pill 24
(Tier 1 vs Tier 3: 𝑝 = 1)

Blue pill 8

Confidence 6.59 (+/- 1.89)
(Tier 2 vs Tier 3: 𝑝 = .002)

Reliability 6.69 (+/- 1.63)
(Tier 2 vs Tier 3: 𝑝 = .003)

Table F.1
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Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

C Yes No Similar to RCT

Red pill 32 11
(Tier 1 vs Tier 2: 𝑝 = 5𝑒−4)

Blue pill 0 21

Confidence 7.22 (+/- 1.69) 6.28 (+/- 1.55)
(Tier 1 vs Tier 2: 𝑝 = 0.05)

Reliability N/A 5.88 (+/- 1.45)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

C Yes Concordant N/A

Red pill 10
(Tier 1 vs Tier 3: 𝑝 = 3𝑒−4)

9
(Tier 3 vs Tier 4C: 𝑝 = 1.)

Blue pill 22 23

Confidence 6.78 (+/- 1.71)
(Tier 2 vs Tier 3: 𝑝 = .17)

7.00 (+/- 1.87)
(Tier 3 vs Tier 4C: 𝑝 = 1.)

Reliability 6.59 (+/- 1.56)
(Tier 2 vs Tier 3: 𝑝 = .004)

7.09 (+/- 1.81)
(Tier 3 vs Tier 4C: 𝑝 = .22)

Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

D Yes No Worse with red pill

Red pill 32 4
(Tier 1 vs Tier 2: 𝑝 = 1.5𝑒−5)

Blue pill 0 28

Confidence 7.28 (+/- 1.57) 6.28 (+/- 1.70)
(Tier 1 vs Tier 2: 𝑝 = 0.36)

Reliability N/A 6.03 (+/- 1.51)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

D Yes N/A

Red pill 3
(Tier 1 vs Tier 3: 𝑝 = 9𝑒−6)

Blue pill 29

Confidence 7.03 (+/- 1.86)
(Tier 2 vs Tier 3: 𝑝 = .06)

Reliability 6.59 (+/- 1.75)
(Tier 2 vs Tier 3: 𝑝 = .43)

Table F.2
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Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

E No Yes Similar to RCT

Red pill 27 28
(Tier 1 vs Tier 2: 𝑝 = 1.)

Blue pill 5 4

Confidence 5.97 (+/- 2.10) 6.50 (+/- 1.95)
(Tier 1 vs Tier 2: 𝑝 = 0.17)

Reliability N/A 6.00 (+/- 1.56)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

E Yes Concordant Non-Concordant

Red pill 27
(Tier 1 vs Tier 3: 𝑝 = 1)

27
(Tier 3 vs Tier 4C: 𝑝 = 1.)

26
(Tier 3 vs Tier 4NC: 𝑝 = 1.)

Blue pill 5 5 6

Confidence 7.16 (+/- 1.73)
(Tier 2 vs Tier 3: 𝑝 = .008)

7.56 (+/- 1.82)
(Tier 3 vs Tier 4C: 𝑝 = 6𝑒−4)

5.81 (+/- 1.74)
(Tier 3 vs Tier 4NC: 𝑝 = 6𝑒−4

Reliability 6.78 (+/- 1.63)
(Tier 2 vs Tier 3: 𝑝 = .001)

7.28 (+/- 1.72)
(Tier 3 vs Tier 4C: 𝑝 = 0.02)

5.06 (+/- 1.71)
(Tier 3 vs Tier 4NC: 𝑝 = 5𝑒−5)

Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

F No Yes Worse with red pill

Red pill 25 15
(Tier 1 vs Tier 2: 𝑝 = .27)

Blue pill 7 17

Confidence 6.34 (+/- 2.01) 5.66 (+/- 1.90)
(Tier 1 vs Tier 2: 𝑝 = 0.04)

Reliability N/A 5.75 (+/- 1.62)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

F Yes N/A

Red pill 14
(Tier 1 vs Tier 3: 𝑝 = .27)

Blue pill 28

Confidence 6.28 (+/- 1.64)
(Tier 2 vs Tier 3: 𝑝 = .01)

Reliability 6.50 (+/- 1.58)
(Tier 2 vs Tier 3: 𝑝 = .05)

Table F.3
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Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

G No No Similar to RCT

Red pill 25 7
(Tier 1 vs Tier 2: 𝑝 = .002)

Blue pill 7 25

Confidence 6.12 (+/- 1.75) 5.81 (+/- 1.84)
(Tier 1 vs Tier 2: 𝑝 = 1.)

Reliability N/A 5.66 (+/- 1.45)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

G Yes N/A

Red pill 5
(Tier 1 vs Tier 3: 𝑝 = 7𝑒−4)

Blue pill 27

Confidence 6.38 (+/- 1.73)
(Tier 2 vs Tier 3: 𝑝 = .18)

Reliability 6.53 (+/- 1.85)
(Tier 2 vs Tier 3: 𝑝 = .006)

Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

H No No Worse with red pill

Red pill 26 3
(Tier 1 vs Tier 2: 𝑝 = 2𝑒−4)

Blue pill 6 29

Confidence 5.75 (+/- 1.85) 6.38 (+/- 1.76)
(Tier 1 vs Tier 2: 𝑝 = 0.43)

Reliability N/A 5.91 (+/- 1.74)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

H Yes N/A

Red pill 1
(Tier 1 vs Tier 3: 𝑝 = 7𝑒−5)

Blue pill 31

Confidence 7.56 (+/- 1.14)
(Tier 2 vs Tier 3: 𝑝 = 2𝑒−3)

Reliability 6.97 (+/- 1.47)
(Tier 2 vs Tier 3: 𝑝 = 2𝑒−5)

Table F.4
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Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

I No Yes Similar to RCT

Red pill 27 29
(Tier 1 vs Tier 2: 𝑝 = 1)

Blue pill 5 3

Confidence 5.84 (+/- 1.97) 6.59 (+/- 1.87)
(Tier 1 vs Tier 2: 𝑝 = .06)

Reliability N/A 5.97 (+/- 1.86)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

I No Concordant Non-Concordant

Red pill 24
(Tier 1 vs Tier 3: 𝑝 = 1.)

25
(Tier 3 vs Tier 4C: 𝑝 = 1.)

21
(Tier 3 vs Tier 4NC: 𝑝 = 1.)

Blue pill 8 7 11

Confidence 5.88 (+/- 1.90)
(Tier 2 vs Tier 3: 𝑝 = .18)

5.97 (+/- 2.01)
(Tier 3 vs Tier 4C: 𝑝 = 1.)

4.94 (+/- 1.94)
(Tier 3 vs Tier 4NC: 𝑝 = .05)

Reliability 4.41 (+/- 2.18)
(Tier 2 vs Tier 3: 𝑝 = 4𝑒−4)

4.94 (+/- 2.28)
(Tier 3 vs Tier 4C: 𝑝 = .17)

3.91 (+/- 2.08)
(Tier 3 vs Tier 4NC: 𝑝 = .46)

Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

J No Yes Worse with blue pill

Red pill 21 28
(Tier 1 vs Tier 2: 𝑝 = .44)

Blue pill 11 4

Confidence 6.16 (+/- 2.03) 7.28 (+/- 2.07)
(Tier 1 vs Tier 2: 𝑝 = 2𝑒−3)

Reliability N/A 5.97 (+/- 2.11)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

J No N/A

Red pill 22
(Tier 1 vs Tier 3: 𝑝 = 1.)

Blue pill 10

Confidence 5.50 (+/- 1.97)
(Tier 2 vs Tier 3: 𝑝 = 3𝑒−4)

Reliability 4.47 (+/- 1.89)
(Tier 2 vs Tier 3: 𝑝 = 6𝑒−4)

Table F.5
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Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

K No No Similar to RCT

Red pill 25 2
(Tier 1 vs Tier 2: 𝑝 = 2𝑒− 4)

Blue pill 7 30

Confidence 5.88 (+/- 1.98) 6.38 (+/- 1.54)
(Tier 1 vs Tier 2: 𝑝 = 1.)

Reliability N/A 5.59 (+/- 1.67)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

K No N/A

Red pill 3
(Tier 1 vs Tier 3: 𝑝 = 3𝑒−4)

Blue pill 29

Confidence 5.53 (+/- 2.05)
(Tier 2 vs Tier 3: 𝑝 = .05)

Reliability 4.75 (+/- 2.12)
(Tier 2 vs Tier 3: 𝑝 = .26)

Tier 1 Tier 2

Scenario Inclusion criteria
for RCT met

ML model predicts
benefit with red pill

ML model’s predicted
adverse events

L No No Worse with blue pill

Red pill 21 27
(Tier 1 vs Tier 2: 𝑝 = 1.)

Blue pill 11 5

Confidence 5.88 (+/- 2.09) 6.78 (+/- 1.96)
(Tier 1 vs Tier 2: 𝑝 = 0.03)

Reliability N/A 5.50 (+/- 1.87)

Tier 3 Tier 4

ML model trained
on similar patients

Reproducibility
experiment

L No N/A

Red pill 18
(Tier 1 vs Tier 3: 𝑝 = 1.)

Blue pill 14

Confidence 5.50 (+/- 1.75)
(Tier 2 vs Tier 3: 𝑝 = .009)

Reliability 3.94 (+/- 1.94)
(Tier 2 vs Tier 3: 𝑝 = 7𝑒−4)

Table F.6
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