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Abstract
Probabilistic graphical models combine probability and graph theory into a powerful
multivariate statistical modeling approach. While there is an extraordinary range of
types of graphical models in the broader literature, we focus on Hidden Markov Model
(HMM) and Linear Dynamical System (LDS). These two models are ubiquitous in ap-
plications including Kalman filtering, and the decoding of LDPC codes which is what
all cellular wireless systems run on these days. Message passing algorithms exploit
the independence and factorization structure within these graphical models to develop
analytically tractable, computationally efficient, and exact inference algorithms. Pos-
terior inference using message-passing algorithm depends heavily on the information
exchange between the nodes of the graph and having unconstrained sized messages,
results in the exact inference of the posterior distribution. Despite its usefulness and
ubiquitous applications, the unconstrained information exchange message-passing al-
gorithm has numerous shortcomings, including prohibitive computational complexity,
and unaffordable communication complexity. These shortcomings can limit the effec-
tiveness and practicality of the algorithm in the era of big data.

This thesis presents a comprehensive analysis of a novel constrained information
exchange message-passing algorithm. A cornerstone of this algorithm is the modified
sum product algorithm, an innovative approach that identifies and prioritizes critical
information fragments for particular inference tasks.

The thesis further delves into the algorithm’s utility in various posterior inference
scenarios, encompassing index-specific and index-free posterior inferences. While the
former scrutinizes either singular or multiple posterior inferences at designated in-
dexes, the latter ensures that all nodes use identical compression matrices, catering
to both single and multi-step posterior inferences.

The algorithm elucidates the balance between algorithmic performance and re-
source utilization in data-driven applications. By reducing computational and com-
munication complexities, it proposes an efficient solution for high-dimensional data
handling, particularly when resources are constrained. In essence, the proposed al-
gorithm enhances the scalability, practicality, and efficiency of probabilistic graphical

3



models, propelling advancements in data-driven research and decision-making across
a multitude of domains.

Thesis Supervisor: Lizhong Zheng
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Raed Shubair
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Navigating Uncertainty

To achieve their goals, intelligent agents, whether natural or artificial, must choose

from numerous possible courses of action. They must make decisions based on infor-

mation obtained from their environment, prior knowledge, and objectives. In many

cases, this information and knowledge may be incomplete or unreliable, necessitating

decision-making under uncertainty. For example, in an emergency, a medical doctor

must act quickly despite having limited information about the patient’s condition;

an autonomous vehicle detecting a potential obstacle must decide whether to turn or

stop without being certain of the obstacle’s distance, size, and speed.

A goal of artificial intelligence is to create systems capable of reasoning and making

decisions under uncertain conditions. Early intelligent systems faced challenges in

handling uncertainty, as traditional paradigms were ill-equipped to manage it.

Classical logic-based early artificial intelligence systems represented knowledge

as sets of logical clauses or rules. These systems exhibited two crucial properties

modularity and monotonicity which simplified knowledge acquisition and inference [1].

A system is considered modular if each piece of knowledge can independently lead

to conclusions. In other words, if the premises of any logical clause or rule are true, its

conclusion can be asserted without considering other elements in the knowledge base.

A system exhibits monotonicity if its knowledge consistently increases monotonically,
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meaning any deduced fact or conclusion is maintained even when new facts become

known to the system.

However, when uncertainty is involved, these properties generally do not hold

true. The absence of these properties makes reasoning more complex for a system. In

principle, the system must consider all available knowledge and facts when drawing a

conclusion and be prepared to revise its conclusions as new data emerges. To address

this challenge, modern artificial intelligence systems employ probabilistic reasoning,

machine learning algorithms, and other approaches to better manage uncertainty,

adapt to changing conditions, and make more informed decisions.

1.2 Probability Theory

Probability theory offers a well-established foundation for managing uncertainty, mak-

ing it a natural choice for reasoning under uncertain conditions. However, naively

applying probability to complex problems quickly results in overwhelming computa-

tional complexity.

Consider a collection of random variables x = (x1, ..., x𝑁) and let the observations

about them be represented by random variables y = (y1, ..., y𝑁). Let each of these

random variables x𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , take on a value in 𝒳 (e.g., 𝒳 = {0, 1} or R) and each

observation variable y𝑖 , 1 ≤ 𝑖 ≤ 𝑁 take on a value in 𝒴 . Given observation y, the

goal is to say something meaningful about possible realizations of x for x ∈ 𝒳 𝑁 . One

can consider there to be effectively two primary computation problems of interest, as

we now describe.

Calculating (Posterior) Beliefs and Marginalization. Here the goal is to

perform computations of the form

𝑝x|y(𝑥𝑛
1 |𝑦𝑛

1 ) = 𝑝x,y(𝑥𝑛
1 , 𝑦

𝑛
1 )

𝑝y(𝑦𝑛
1 ) = 𝑝x,y(𝑥𝑛

1 , 𝑦
𝑛
1 )∑︀

x1,··· ,x𝑛∈𝒳 𝑝x,y(𝑥𝑛
1 , 𝑦

𝑛
1 ) (1.1)

The denominator (i.e., normalization) is referred to as the partition function.

Evidently, calculating the partition function corresponds to executing marginal-
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ization, which can be excessively costly for larger alphabets, as commonly seen in

high-dimensional situations, unless there is a specific structure that can be utilized.

Assuming the objective is to marginalize 𝑀 components out of the 𝑁 elements of

x, producing a marginal of (𝑁−𝑀) dimensions, it is observed that each summation in

this process requires about |𝒳 |𝑀 computations. Moreover, this has to be executed for

each of the |𝒳 |(𝑁−𝑀) potential values of the remaining variables. The total complexity

hence amounts to approximately |𝒳 |𝑁 , which is exponential in the number of variables

𝑁 . This typically becomes unmanageable for even moderately large values of 𝑁 .

It’s worth noting that this outcome is not unexpected. In the absence of a structure

that can be leveraged, the joint distribution of a set of 𝑁 variables, each over the

alphabet |𝒳 |, would necessitate a table of |𝒳 |𝑁 . Hence, even merely accessing all the

values of the joint distribution would involve exponential complexity.

Calculating Most Probable Configurations (MPC). The goal is to perform

the following computation:

x̂ ∈ arg max
x∈𝒳 𝑁

𝑝x|y(𝑥𝑛
1 |𝑦𝑛

1 ) (1.2)

x̂ ∈ arg max
x∈𝒳 𝑁

𝑝x|y(𝑥𝑛
1 |𝑦𝑛

1 ) = arg max
x∈𝒳 𝑁

𝑝x,y(𝑥𝑛
1 , 𝑦

𝑛
1 )

𝑝y(𝑦𝑛
1 ) = arg max

x∈𝒳 𝑁

𝑝x,y(𝑥𝑛
1 , 𝑦

𝑛
1 ) (1.3)

Without any additional structure, the above optimization problem obviously re-

quires searching over all 𝒳 𝑁 entries in the table representing the joint distribution

𝑝x|y(.|𝑦𝑛
1 ), so has complexity that is exponential in 𝑁 .

To overcome the computational complexity associated with probability-based rea-

soning, probabilistic graphical models have been introduced to exploit the structure

in joint distributions, reducing complexity. These models enable more efficient rep-

resentation and manipulation of probability distributions by utilizing graphs to il-

lustrate the conditional dependencies between variables, which simplifies calculations

and makes it possible to reason under uncertainty in a computationally feasible man-

ner.
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1.3 Probabilistic Graphical Models

Probabilistic Graphical Models (PGM) are robust statistical modeling techniques that

blend the principles of probability and graph theory. They offer a strategic frame-

work for handling uncertainty, grounded in probability theory, and enable efficient

computational processes [2]. The core concept involves recognizing and focusing on

the independence relations pertinent to a specific problem, integrating these into the

probabilistic model to curtail complexity, and thus minimizing memory needs and

computational time.

A PGM serves as a concise depiction of a joint probability distribution, from

which we can derive both marginal and conditional probabilities. Its power lies in

representing the dependencies and independencies among a group of variables using

graphs. In these graphs, variables exhibiting direct dependence are linked, while the

independence relations are subtly embedded within this dependency graph.

Essentially, PGMs efficiently capture and represent complex probabilistic relation-

ships, providing a simplified yet comprehensive view of the problem at hand. This

clarity and reduction in complexity make PGMs an extremely valuable tool for various

fields requiring probabilistic inference and decision-making under uncertainty.

To illustrate the dramatic impact structure can have, consider the following exam-

ple. Specifically, suppose now that the 𝑁 random variables of interest are mutually

independent, so that

𝑝x1,··· ,x𝑁
(𝑥1, · · · , 𝑥𝑁) = 𝑝x1(𝑥1)𝑝x2(𝑥2) · · · 𝑝x𝑁

(𝑥𝑁) (1.4)

When computing posterior beliefs, the marginalization can be performed individ-

ually for each variable. Each of these computations has a complexity of |𝒳 |, leading

to a total complexity on the order of 𝑁 |𝒳 |, which is linear in 𝑁 . In a similar vein,

the most probable configurations can be determined by independently identifying the

assignment of each variable that maximizes its own probability. Given that there are

𝑁 variables, the overall computational complexity is also linear in 𝑁 , i.e., of order

𝑁 |𝒳 |.

20



Clearly, the presence of an independence structure can significantly reduce the

complexity of inference tasks. More broadly, more intricate forms of independence and

related structures in distributions can be leveraged to similarly reduce the complexity

of these foundational inference tasks, often to a surprisingly high degree.

1.4 Limitations of Probabilistic Graphical Models

Message-passing algorithm depends heavily on the information exchange between the

nodes of the graph and having unconstrained sized messages, results in the exact infer-

ence of the posterior distribution. Despite its usefulness and ubiquitous applications,

the unconstrained information exchange message-passing algorithm has numerous

shortcomings, including (1) prohibitive computational complexity, and (2) unafford-

able communication complexity. These shortcomings can limit the effectiveness and

practicality of the algorithm in modern applications:

• High-dimensional data: The random variable involved is no longer the out-

put of an individual sensor or a sample of a waveform but more often an image

or a sentence in natural language represented in a vector space with multiple

thousands of dimensions.

• Limited Communication Bandwidth: The sensors used to capture the data

in a wide range of applications such as smart cities [3], environment monitoring

[4], security and surveillance [5], industrial monitoring [6, 7], and many more

have limited communication capability.

In these problems, on top of the savings by the graphical models, we also need

additional savings by using the dependence between a single pair of random variables.

In this thesis, we address these new challenges with very high-dimensional data or

limited communication bandwidth by introducing and analyzing the constrained

information exchange message passing algorithm.

Constraints are placed on the messages one can pass along in the algorithm and

deliberately sets it to be less than what is needed to carry sufficient statistics. This
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formulation forces us to look for "insufficient statistics," which we expect to be the

key new concept in the era of big data as it will result in lower computational and

communication complexity. We will have to learn how to compromise by dropping

the less important parts of our information, which requires a better understanding of

quantitative metrics of how important fragments of information are and how much

they can be helpful with specific inference tasks.

The restrictive nature of the constraints, which limit the exchange of sufficient

statistics, inherently complicates the process of posterior inference. This complexity

arises from the unique dynamics of the process, where a distinct insufficient statistic is

forwarded as a message, depending on the specific scenario of the posterior inference.

Consequently, this intricate issue not only amplifies the complexity of the problem

but also necessitates the crafting of diverse messages tailored to each unique posterior

inference scenario. In order to address these challenges, it becomes crucial to develop

and rigorously analyze the algorithm under a broad range of scenarios. By doing so,

one can ensure the algorithm’s robustness and adaptability, allowing it to effectively

handle a multitude of posterior inference conditions, regardless of the constraints

imposed on the information exchange.

1.5 Outline of the Thesis

The purpose of this thesis is to propose and analyze constrained information exchange

message passing algorithm and this is where insufficient statistic messages are used

in the algorithm. This formulation will be of crucial importance to deal with the new

challenges introduced with the high-dimensional data.

Chapter 2 gives an overview of the hidden markov model and then discusses the

message passing algorithm for posterior inference. Then, a modified sum product al-

gorithm will be introduced in terms of the information vector and Divergence Transfer

Matrix (DTM). This modification allows for the determination of which fragments

of information are most important for specific inference tasks. By identifying these
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important pieces of information, informed decisions can be made about which parts

of the data to prioritize and which parts can be safely dropped or simplified.

Chapter 3 introduces the index-specific posterior inference using constrained in-

formation exchange message passing algorithm. This sub-category of posterior infer-

ence provides a critical examination of specific scenarios where the interest lies either

in a singular posterior inference at a specific index (referred to as single index-specific

posterior inference) or in multiple posterior inferences at specific indexes (referred to

as multiple index-specific posterior inference) as shown in Fig. 1-1.

Figure 1-1: Index-Specific Posterior Inference Using Constrained Information Ex-
change Message-Passing Algorithm

Chapter 4 introduces the index-free posterior inference using constrained in-

formation exchange message passing algorithm. Unlike the index-specific approach,

where nodes may have different compression matrices, the index-free approach ensures

that all nodes employ identical compression matrices. This sub-category of posterior

inference provides a critical examination of specific scenarios where the interest lies

either in a single step posterior inference (referred to as single step index-free posterior

inference) or in multi-step posterior inferences (referred to as multi-step index-free

posterior inference) as shown in Fig. 1-2.
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Figure 1-2: Index-Free Posterior Inference Using Constrained Information Exchange
Message-Passing Algorithm

Chapter 5 concludes the presented work and outlines future directions.
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Chapter 2

Hidden Markov Model

2.1 Overview of HMM

Markov chains as shown in Fig. 2-1a, are a type of mathematical model used to

describe systems that transition between different states over time [8]. The key feature

of a Markov chain is that the probability of transitioning from one state to another

only depends on the current state of the system, and not on any previous states. This

property is known as the Markov property, and it allows us to model complex systems

in a simple and efficient way [8].

In a Markov chain, the transition probabilities between states are typically rep-

resented as a transition matrix. The transition matrix describes the probability of

transitioning from one state to another, given the current state of the system. These

probabilities are often estimated from data, or from expert knowledge about the sys-

tem being modeled.

One interesting application of Markov chains is in the field of latent variable

models, which are models that involve variables that are not directly observable.

Hidden Markov models (HMMs) as shown in Fig. 2-1b are one example of a latent

variable model that is widely used in many different fields.

In an HMM, the system is modeled as a Markov chain, where the hidden state of

the system is represented by a set of states that are not directly observable [9]. Instead,

the system generates observations that are dependent on the current hidden state,
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according to a set of emission probabilities. These emission probabilities describe

the probability of observing a particular observation, given the current hidden state

of the system. The transition probability matrix will be defined as Px𝑖+1|x𝑖
and the

emission probability matrix will be defined as Py𝑖|x𝑖
.

HMMs are a type of probabilistic model, meaning that they represent the uncer-

tainty inherent in many real-world systems. By modeling the system in this way,

HMMs can be used to infer the underlying state of the system based on observed

data, and to predict future states.

(a) Markov Model (b) Hidden Markov Model

2.1.1 Applications

2.1.1.1 Automatic Speech Recognition

Hidden Markov Models (HMMs) are extensively utilized in automatic speech recogni-

tion, a technology integral to numerous applications like digital assistants on smart-

phones, transcription services, and assistive technologies for the hearing impaired [10].

The process of automatic speech recognition involves breaking down the audio input

into time intervals, typically within a range of 10 to 30 milliseconds. Each of these

segments is analyzed to capture its unique acoustic features. HMMs excel in this task

due to their ability to model the temporal structure of speech sounds, thereby ac-

commodating for variations in pronunciation, intonation, rhythm, and other acoustic

nuances that characterize individual speech patterns [11].

In an automatic speech recognition system powered by HMMs, the audio wave-

form serves as the observed data, while the hidden states correspond to the phonemes,

which are the smallest units of sound that make up the words in the spoken lan-

guage [12]. The transition probabilities between these hidden states encapsulate the
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likelihood of one phoneme following another in the language, thereby reflecting lin-

guistic rules and common patterns of the language. On the other hand, the emission

probabilities depict the probability of observing a specific acoustic feature given a

particular phoneme [13].

This application of HMMs in automatic speech recognition underpins the trans-

formation of human-computer interaction, providing a more intuitive and accessible

way for users to engage with technology [14].

2.1.1.2 Natural Language Processing

Hidden Markov Models (HMMs) play an instrumental role in Natural Language Pro-

cessing (NLP), a subfield of artificial intelligence concerned with the interaction be-

tween computers and human language. Tasks like part-of-speech tagging, and named

entity recognition are areas where HMMs have been successfully deployed [15].

Part-of-Speech (POS) tagging is the process of assigning a grammatical category,

such as noun, verb, adjective, etc., to each word in a sentence. HMMs are often

used in POS tagging, where the hidden states represent the grammatical categories,

and the observed states represent the words. The transition probabilities between

the hidden states capture the grammatical rules of the language, while the emission

probabilities capture the likelihood of a word belonging to a particular grammatical

category [16–18].

Named Entity Recognition (NER) is another NLP task that involves identifying

and classifying named entities in a text into predefined categories such as person

names, organizations, locations, etc. HMMs have been used for NER by modeling

the dependencies between neighboring words and their corresponding entity labels.

In this case, the hidden states represent the entity labels, and the observed states

represent the words [19].

2.1.1.3 Genetics and Bioinformatics

Hidden Markov Models (HMMs) have emerged as a crucial tool in genetic sequence

analysis and bioinformatics, particularly in protein family characterization, gene pre-
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diction, and sequence alignment [20]. This relevance of HMMs is largely due to the

inherently sequential nature of genetic data, which bears a striking resemblance to

the temporal structure modeled by HMMs [21].

In the realm of bioinformatics, the observed data corresponds to the genetic se-

quence, typically represented as a string of nucleotides or amino acids. The hidden

states, on the other hand, represent biological structures or functional regions, such

as exons, introns, intergenic regions, or different structural motifs in proteins [22].

The transition probabilities in these HMMs signify the likelihood of moving from

one biological structure to another in the genome or protein, thereby embodying the

underlying biological processes and mechanisms [23].

Emission probabilities in this context denote the likelihood of observing a par-

ticular nucleotide or amino acid given a specific biological structure or functional

region [24]. Hence, these probabilities encompass the inherent variability within each

biological structure, enabling HMMs to model the biological complexity and variation

in genetic sequences effectively.

HMMs have been instrumental in transforming our understanding of genomics and

proteomics, fostering the development of algorithms and databases that enhance the

prediction and classification of genes and proteins [25,26]. The application of HMMs

in bioinformatics also fosters the identification of potential therapeutic targets and the

development of personalized medicine, providing a more detailed and comprehensive

understanding of genetic mechanisms underlying disease [27].

2.1.1.4 Wireless Communication

Hidden Markov Models (HMMs) have found significant application in wireless com-

munication systems, playing a crucial role in tasks like channel equalization, and

signal decoding [28]. These applications leverage the temporal modelling capabilities

of HMMs, which excellently suit the dynamic and sequential nature of wireless signal

transmission.

In the context of wireless communication, the observed data typically corresponds

to the received signal, which is generally a noisy version of the transmitted signal.
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The hidden states can represent the transmitted data symbols or the different states

of the communication channel [29]. The transition probabilities between the hidden

states capture the dynamics of the channel or the correlation structure of the data

symbols. On the other hand, the emission probabilities encapsulate the statistical

relationship between the transmitted symbols and the received signals [30].

Channel equalization is one significant application of HMMs in wireless commu-

nication, where the goal is to mitigate the adverse effects of channel impairments

such as multipath fading and inter-symbol interference [31]. By modeling the com-

munication channel as a hidden Markov process, HMMs enable effective equalization

strategies that outperform traditional linear equalization techniques [32].

In signal decoding, HMMs are used to estimate the most likely sequence of trans-

mitted data symbols given the received signals, helping to recover the original data

in the presence of noise and channel errors [33]. This has been pivotal in enhancing

the reliability and robustness of wireless communication systems.

Through these applications, HMMs have proven to be instrumental in advanc-

ing wireless communication technology, fostering improvements in data transmission

quality, speed, and reliability.

2.1.1.5 Wireless Sensor Networks

Hidden Markov Models (HMMs) are instrumental in optimizing the performance of

wireless sensor networks (WSNs), a technology critical to various applications such as

environmental monitoring, healthcare, smart homes, and industrial automation [34].

These networks consist of spatially distributed sensors that cooperatively monitor

physical or environmental conditions and communicate their data through the net-

work to a main location. The role of HMMs in this context includes but not limited

to tasks such as sensor data fusion, anomaly detection, prediction and network state

estimation [35–37].

In WSNs employing HMMs, the observed data can correspond to sensor readings

while the hidden states can represent the underlying physical phenomena or the status

of the network nodes. Transition probabilities between these hidden states capture the
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temporal dynamics of the environment or the state changes in the network, and the

emission probabilities capture the likelihood of obtaining a particular sensor reading

given the underlying state [38].

Moreover, HMMs are utilized in WSNs for detecting anomalies or unusual events.

By learning the normal patterns of sensor readings and their transitions, HMMs can

identify deviations from these patterns as potential anomalies, thereby contributing

to the robustness and security of these networks [39].

2.2 Sum-Product Algorithm

The sum-product algorithm is a message passing algorithm that is used to compute

optimally the posterior probabilities of the hidden states in a hidden Markov model

(HMM). The sum-product algorithm works by computing and forwarding sufficient

statistics at each step as messages. These sufficient statistics are the transition and

emission probabilities, given the observations and the current estimates of the model

parameters.

The sum-product algorithm is optimal in the sense that it computes the exact

posterior probabilities of the hidden states, given the available observations and the

model parameters.

For a hidden markov model, we define the node potential and the edge potential

as

𝜂x𝑖
(𝑥𝑖) ≜ 𝑝xi(𝑥𝑖) (2.1)

𝜂y𝑖
(𝑦𝑖) ≜ 𝑝yi(𝑦𝑖) (2.2)

𝜉x𝑖,x𝑗
(𝑥𝑖, 𝑥𝑗) ≜

𝑝xi,xj(𝑥𝑖, 𝑥𝑗)
𝑝xi(𝑥𝑖)𝑝xj(𝑥𝑗)

(2.3)

𝜉x𝑖,y𝑖
(𝑥𝑖, 𝑦𝑖) ≜

𝑝xi,yi(𝑥𝑖, 𝑦𝑖)
𝑝xi(𝑥𝑖)𝑝yi(𝑦𝑖)

(2.4)

This setup works for HMM, in the sense that the normal definition of the joint

distribution over the HMM is consistent with the product of all potentials.
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Suppose with observation of y1, . . . , yn−1 = 𝑦1, . . . , 𝑦𝑛−1, and we would like to

predict the value of x𝑛. The forward message from the observation node to the

hidden node 𝑚y𝑖→x𝑖
(𝑥𝑖) is:

𝑚y𝑖→x𝑖
(𝑥𝑖) =

∑︁
𝑦𝑖

𝜂y𝑖
(𝑦𝑖)𝜉x𝑖,y𝑖

(𝑥𝑖, 𝑦𝑖)1(𝑦𝑖 = 𝑦𝑖) = 𝑝y𝑖|x𝑖
(𝑦𝑖|𝑥𝑖) (2.5)

The first forward message between the hidden nodes𝑚x1→x2(𝑥2) depends on𝑚y1→x1(𝑥1),

𝜂x1(𝑥1) , and 𝜉x1,x2(𝑥1, 𝑥2).

𝑚x1→x2(𝑥2) =
∑︁
𝑥1

𝜂x1(𝑥1)𝑚y1→x1(𝑥1)𝜉x1,x2(𝑥1, 𝑥2)

=
∑︁
𝑥1

𝑝x1(𝑥1)𝑝y1|x1(𝑦1|𝑥1)
𝑝x1,x2(𝑥1, 𝑥2)
𝑝x1(𝑥1)𝑝x2(𝑥2)

= 𝑝y1|x2(𝑦1|𝑥2) (2.6)

The general forward message 𝑚x𝑖→x𝑖+1(𝑥𝑖+1) depends on 𝑚y𝑖→x𝑖
(𝑥𝑖) ,𝑚x𝑖−1→x𝑖

(𝑥𝑖),

𝜂x𝑖
(𝑥𝑖), and 𝜉x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1).

𝑚x𝑖→x𝑖+1(𝑥𝑖+1) =
∑︁
𝑥𝑖

𝜂x𝑖
(𝑥𝑖)𝑚y𝑖→x𝑖

(𝑥𝑖)𝑚x𝑖−1→x𝑖
(𝑥𝑖)𝜉x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)

=
∑︁
𝑥𝑖

𝑝x𝑖
(𝑥𝑖)𝑝y𝑖|x𝑖

(𝑦𝑖|𝑥𝑖)𝑝y𝑖−1
1 |x𝑖

(𝑦1, . . . , 𝑦𝑖−1|𝑥𝑖)
𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)
𝑝x𝑖

(𝑥𝑖)𝑝x𝑖+1(𝑥𝑖+1)

= 𝑝y𝑖
1|x𝑖+1(𝑦𝑖

1|𝑥𝑖+1) (2.7)

Using these forward message we will infer the posterior:

𝑝x𝑛|y𝑛−1
1

(𝑥𝑛|𝑦𝑛−1
1 ) ∝ 𝑝x𝑛,y𝑛−1

1
(𝑥𝑛, 𝑦

𝑛−1
1 )

= 𝑚x𝑛−1→x𝑛(𝑥𝑛)𝜂x𝑛(𝑥𝑛) (2.8)

The computational complexity of the forward messages (𝑚x𝑖→x𝑖+1(𝑥𝑖+1)), is 𝒪(|𝒳 |2),

where |𝒳 | is the size of the state space. Since we are calculating 𝑛− 1 forward mes-

sages to infer the posterior, then the computational complexity of the sum-product

algorithm is 𝒪(𝑛|𝒳 |2). Therefore, the computational complexity of the sum-product

algorithm is proportional to the size of the state space and the number of time steps.
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In terms of communication complexity, the messages in the sum-product algo-

rithm consist of the sufficient statistics, which are either the emission or transition

probabilities. Therefore, the communication complexity is 𝒪(|𝒳 |) for each message.

However, an alternative approach can be used at the observation node by sending the

observation directly to the hidden node, instead of the emission probability. In this

case, the communication complexity for this message is 𝒪(|𝒴|), where |𝒴| is the size

of the observation space. Therefore, the communication complexity is proportional

to the size of the state or observation space, depending on the message format used.

As high-dimensional data becomes increasingly prevalent in modern applications,

the size of both observation and state spaces can become prohibitively large. This

can pose significant challenges for inference algorithms, leading to issues with both

computational and communication complexity that can limit their effectiveness and

efficiency.

To address these challenges, it is essential to develop a better understanding of

quantitative metrics that can help us determine which fragments of information are

most important for specific inference tasks. By identifying these important pieces of

information, we can make more informed decisions about which parts of the data to

prioritize, and which parts can be safely dropped or simplified.

This approach can help to reduce the computational and communication com-

plexity of inference algorithms, while still maintaining a high degree of accuracy and

effectiveness. By striking the right balance between information content and compu-

tational/communication cost, we can ensure that our models are both efficient and

effective, even in the face of high-dimensional data and complex inference tasks.

In the next section, we will introduce the Divergence Transfer Matrix (DTM) [40],

which characterizes the modal decomposition of the joint distribution of two discrete

random variables.
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2.3 Joint Distribution Modal Decomposition

DTM characterizes the modal decomposition of the joint distribution of two discrete

random variables. This decomposition can be used to identify the most relevant and

informative features of the data, allowing us to focus our attention on the parts of

the data that are most important for specific inference tasks. The DTM is defined

as:

𝐵x1,x2(𝑥1, 𝑥2) ≜
𝑝x1,x2(𝑥1, 𝑥2)√︁
𝑝x1(𝑥1)

√︁
𝑝x2(𝑥2)

(2.9)

where 𝑝x1(𝑥1) > 0 and 𝑝x2(𝑥2) > 0 for all 𝑥1, 𝑥2 ∈ 𝒳 . The Bx1,x2 matrix can also be

expressed using matrix notation as:

Bx1,x2 =
[︂√︁

Px2

]︂−1
Px2,x1

[︂√︁
Px1

]︂−1
(2.10)

where [
√

Px1 ]−1 denotes a |𝒳 | × |𝒳 | diagonal matrix whose 𝑥th diagonal entry is√︁
𝑝𝑥1(𝑥1), where [

√
Px2 ]−1 denotes a |𝒳 | × |𝒳 | diagonal matrix whose 𝑥th diagonal

entry is
√︁
𝑝𝑥2(𝑥2), and where Px2,x1 denotes a |𝒳 | × |𝒳 | matrix whose (𝑥2, 𝑥1)th entry

is 𝑝x2,x1(𝑥2, 𝑥1).

The Singular Value Decomposition (SVD) of the Bx1,x2 takes the form:

Bx1,x2 =
|𝒳 |−1∑︁

𝑖=0
𝜎𝑖𝜓

x2
𝑖 (𝜓x1

𝑖 )T (2.11)

where 𝜎𝑖 denotes the 𝑖th singular values and where 𝜓x2
𝑖 and 𝜓x1

𝑖 are the corresponding

left and right singular vectors. The singular values are ordered according to

𝜎0 ≥ 𝜎1 ≥ · · · ≥ 𝜎|𝒳 | (2.12)

The following proposition establishes that B is a contractive operator.

Proposition 2.1. For Bx1,x2 defined via (2.10) we have

‖Bx1,x2‖𝑠 = 1 (2.13)
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where ||.||𝑠 denotes the spectral norm. Moreover, the left and right singular vectors

𝜓x2
0 and 𝜓x1

0 associated with singular value 𝜎0 = 1 have elements

𝜓x1
0 (𝑥1) ≜

√︁
𝑝x1(𝑥1) (2.14)

𝜓x2
0 (𝑥2) ≜

√︁
𝑝x2(𝑥2) (2.15)

Proof. A proof is provided in Appendix II-A in [40]

Using the second part of Proposition 2.1, it follows immediately that Bx1,x2 is an

equivalent representation of Px2,x1 . Indeed, given Bx1,x2 , we can compute the singular

vectors 𝜓X1
0 and 𝜓X2

0 , from which we obtain the marginal probabilities px1 and px2 .

In addition we can find the joint distribution:

[︂√︁
Px2

]︂
Bx1,x2

[︂√︁
Px1

]︂
=
[︂√︁

Px2

]︂ [︂√︁
Px2

]︂−1
Px2,x1

[︂√︁
Px1

]︂−1 [︂√︁
Px1

]︂
= Px2,x1

The SVD of (2.11) provides a key expansion of the joint distribution 𝑝x1,x2(𝑥1, 𝑥2)

as shown in the following result.

Proposition 2.2. Let 𝒳 denotes a finite alphabet. Then for any joint distribution

Px1,x2, there exist features 𝑓 *
𝑖 : 𝒳 → R and 𝑔*

𝑖 : 𝒳 → R, for 𝑖 = 1, · · · , |𝒳 | − 1, such

that

𝑝x1,x2(𝑥1, 𝑥2) = 𝑝𝑥1(𝑥1)𝑝𝑥2(𝑥2)
⎡⎣1 +

|𝒳 |−1∑︁
𝑖=1

𝜎𝑖𝑓
*
𝑖 (𝑥1)𝑔*

𝑖 (𝑥2)
⎤⎦ (2.16)

where 𝜎1, · · · , 𝜎|𝒳 |−1 are defined as in (2.11) and where

E[𝑓 *
𝑖 (𝑋1)] = 0, 𝑖 ∈ {1, · · · , |𝒳 | − 1} (2.17a)

E[𝑔*
𝑖 (𝑋2)] = 0, 𝑖 ∈ {1, · · · , |𝒳 | − 1} (2.17b)

E[𝑓 *
𝑖 (𝑋1)𝑓 *

𝑗 (𝑋1)] = 1𝑖=𝑗, 𝑖, 𝑗 ∈ 1, · · · , |𝒳 | − 1} (2.17c)

E[𝑔*
𝑖 (𝑋2)𝑔*

𝑗 (𝑋2)] = 1𝑖=𝑗, 𝑖, 𝑗 ∈ 1, · · · , |𝒳 | − 1} (2.17d)
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Moreover, 𝑓 *
𝑖 and 𝑔*

𝑖 are related to the singular vector in (2.11) according to

𝑓 *
𝑖 (𝑥1) ≜

𝜓x1
𝑖 (𝑥1)√︁
𝑝x1(𝑥1)

(2.18)

𝑔*
𝑖 (𝑥2) ≜

𝜓x2
𝑖 (𝑥2)√︁
𝑝x2(𝑥2)

(2.19)

Proof.

𝐵x1,x2(𝑥1, 𝑥2) = 𝑝x1,x2(𝑥1, 𝑥2)√︁
𝑝x1(𝑥1)

√︁
𝑝x2(𝑥2)

=
√︁
𝑝𝑥1(𝑥1)

√︁
𝑝𝑥2(𝑥2) +

|𝒳 |−1∑︁
𝑖=1

𝜎𝑖𝜓
x1
𝑖 (𝑥1)𝜓x2

𝑖 (𝑥2)

=
√︁
𝑝𝑥1(𝑥1)

√︁
𝑝𝑥2(𝑥2) +

|𝒳 |−1∑︁
𝑖=1

𝜎𝑖

√︁
𝑝𝑥1(𝑥1)𝑓 *

𝑖 (𝑥1)
√︁
𝑝𝑥1(𝑥1)𝑔*

𝑖 (𝑥2)

=
√︁
𝑝𝑥1(𝑥1)

√︁
𝑝𝑥2(𝑥2)

⎡⎣1 +
|𝒳 |−1∑︁

𝑖=1
𝜎𝑖𝑓

*
𝑖 (𝑥1)𝑔*

𝑖 (𝑥2)
⎤⎦

=⇒ 𝑝x1,x2(𝑥1, 𝑥2) = 𝑝𝑥1(𝑥1)𝑝𝑥2(𝑥2)
⎡⎣1 +

|𝒳 |−1∑︁
𝑖=1

𝜎𝑖𝑓
*
𝑖 (𝑥1)𝑔*

𝑖 (𝑥2)
⎤⎦

Proposition 2.2 demonstrates a method of decomposing the joint distribution of

two discrete random variables through the use of the singular values and singular

vectors of the Bx1,x2 . This decomposition provides a level of flexibility in determining

the amount of information we wish to capture about the joint distribution. The

ability to control the level of information can be particularly useful in scenarios where

computational and communication complexity is a concern. For instance, in cases

where the size of 𝒳 is small, all of the singular values and their associated singular

vectors can be utilized. However, when 𝒳 is large, fewer singular values and their

associated singular vectors will need to be employed to stay within computational

and communication limitations.

In addition to its usefulness in dealing with joint distributions, Proposition 2.2
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can also be extended to address conditional distributions. By applying the same

decomposition technique, the results can be extended to this case as well.

𝑝x1|x2(𝑥1|𝑥2) = 𝑝𝑥1(𝑥1)
⎡⎣1 +

|𝒳 |−1∑︁
𝑖=1

𝜎𝑖𝑓
*
𝑖 (𝑥1)𝑔*

𝑖 (𝑥2)
⎤⎦ (2.20)

𝑝x2|x1(𝑥2|𝑥1) = 𝑝𝑥2(𝑥2)
⎡⎣1 +

|𝒳 |−1∑︁
𝑖=1

𝜎𝑖𝑓
*
𝑖 (𝑥1)𝑔*

𝑖 (𝑥2)
⎤⎦ (2.21)

The Canonical Dependence Matrix (CDM) is defined at the DTM matrix without

the zeroth mode. Therefore, the CDM is defined as

𝐵̂x1,x2(𝑥1, 𝑥2) ≜
𝑝x1,x2(𝑥1, 𝑥2) − 𝑝x1(𝑥1)𝑝x2(𝑥2)√︁

𝑝x1(𝑥1)
√︁
𝑝x2(𝑥2)

(2.22)

The significance of the CDM lies in its characteristic of having the largest singular

value (𝜎1 ≤ 1), a feature that differs from the DTM, which consistently has the leading

singular value at 1. The benefits of this distinction become apparent as we delve into

the discussion of the computational complexity constrained information exchange

message passing algorithm in Chapter 3.

In the upcoming section, we aim to introduce the KL divergence under the weakly

dependent regime. This measure can be utilized to assess the effect of either limiting

the exchange of information between nodes or in other words discarding a portion

of the available information. By leveraging the KL divergence, we can quantify the

degree of deviation that arises due to the constraints imposed on the system.

2.4 Kullback-Leibler (KL) Divergence under Weakly

Dependent Regime

Kullback-Leibler (KL) divergence, also known as relative entropy, is a fundamental

concept in information theory and statistics. It quantifies the difference between two
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probability distributions. The KL divergence is defined as [41]

𝐷(p||q) =
∑︁
𝑥∈𝒳

𝑝(𝑥) log
(︃
𝑝(𝑥)
𝑞(𝑥)

)︃
(2.23)

where p,q are discrete probability distribution.

KL divergence is non-negative and asymmetric, meaning that 𝐷(p||q) ̸= 𝐷(q||p).

KL divergence finds various applications in fields such as machine learning, informa-

tion theory, and natural language processing. However, there no systematic approach

for finding the optimum solution in general. The main source of difficulty is that the

KL divergence is not a metric in the space of probability distributions [42]. In fact, the

collection of distributions in general, form a manifold, which invalidates interpreting

the KL divergence as a distance between distributions. A natural way to simplify this

general scenario is to restrict our attention to a local neighborhood of distributions,

in which the manifold behaves like a Euclidean space and the KL divergence behaves

like the Euclidean metric [42]. This lead us to define the weakly dependent random

variables.

Definition 2.3. Let x and y be defined over alphabet 𝒳 and 𝒴, respectively, and

distributed according to Px,y ∈ 𝒫𝒳 ×𝒴 is the usual restriction of the simplex to distri-

bution with strictly positive marginals. Then x and y are 𝜖-dependent if there exists

an 𝜖 > 0 such that

Px,y ∈ 𝒩 𝒳 ×𝒴
𝜖 (pxpy) = {𝐷𝒳 2(Px,y||pxpy) =

∑︁
𝑥,𝑦

(𝑝x,y(𝑥, 𝑦) − 𝑝x(𝑥)𝑝y(𝑦))2

𝑝x(𝑥)𝑝y(𝑦) ≤ 𝜖2} (2.24)

where px and py are the marginal distributions. This definition also implies

px|y(.|𝑦) ∈ 𝒩 𝒳
𝜖 (px) = {𝐷𝒳 2(px|y(.|𝑦)||px) =

∑︁
𝑥

(𝑝x|y(𝑥|𝑦) − 𝑝x(𝑥))2

𝑝x(𝑥) ≤ 𝜖2} (2.25)

Another way to define the 𝜖-dependence is by defining the information vector

𝜑(x|y)(𝑥|𝑦) = 𝑝x|y(𝑥|𝑦) − 𝑝x(𝑥)
𝜖
√︁
𝑝x(𝑥)

; ||𝜑(x|y)||22 ≤ 1 (2.26)
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Lemma 2.4. For a given px and 𝜖 > 0, let p1,p2 ∈ 𝒩 𝒳
𝜖 (px) be arbitrary, and let 𝜑1

and 𝜑2 denote the corresponding information vectors, respectively. Then

𝐷(p1||p2) ≜
∑︁
𝑥∈𝒳

𝑝1(𝑥) log 𝑝1(𝑥)
𝑝2(𝑥) = 𝜖2

2 ||𝜑1 − 𝜑2||22 + 𝑜(𝜖2) (2.27)

Proof: A proof is provided in A.1

Leveraging the mathematical result presented in lemma 2.4, we can reduce the

computational complexity involved in calculating the KL divergence. Specifically, we

can simplify the computation to the evaluation of the Euclidean norm between two

information vectors. This simplification can be highly beneficial when optimizing

the KL divergence. This approximation is commonly employed in practical scenarios

where the output shows weak dependency on the input [43,44]. This occurs in situa-

tions of weak supervised learning where the training data is assigned more generalized

labels instead of precise ones. The adoption of weak supervised learning is gaining

popularity due to the substantial costs tied to labeling large training datasets [45].

Fig. 2-2 illustrates the 𝜖 value as a function of the number of tags in penn treebank

dataset [46]. As it can seen in Fig. 2-2, as the number of tags decreases due to

grouping the different tags together the epsilon value gets smaller and this is because

the data and labels become weakly dependent.

0 5 10 15 20 25 30 35 40 45 50

Number of tags

100

101

Figure 2-2: 𝜖 value as a function of the number of tags of the penn treebank dataset

38



In the next section, we plan to explore the concept of weakly correlated variables

and the DTM/CDM matrix in the context of Hidden Markov Models (HMMs). By

incorporating these ideas, we aim to establish a relationship between the observation

and hidden nodes of an HMM.

2.5 Local Geometry of Attribute Variables in Hid-

den Markov Model

The development and analysis of the constrained information exchange message pass-

ing algorithm involve the integration of two important concepts: weakly correlated

variables and the DTM/CDM. These elements are instrumental in understanding the

underlying system’s dynamics and are crucial in designing and analyzing the algo-

rithm.

When designing the algorithm, it is essential to consider the local geometries

present among the attributes of the Hidden Markov Model (HMM). These local ge-

ometries reflect the relationships and dependencies between different attributes such

as observation variables and hidden states. By taking into account these local geome-

tries, the algorithm can effectively propagate and exchange information, constrained

by the structure of the HMM. This ensures that the algorithm accurately captures

the intricate dynamics and dependencies within the system.

Specifically, in the context of the algorithm, the variables x𝑖 and y𝑖 are considered

weakly correlated and this implies we will have the following information vector

𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖) = 𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖) − 𝑝x𝑖

(𝑥𝑖)
𝜖
√︁
𝑝x𝑖

(𝑥𝑖)
(2.28)

This will only characterize the relationship between x𝑖 and y𝑖 but lays the foun-

dation for the relationship between x𝑖+1 and y𝑖 as shown in the following lemma.

Lemma 2.5. For a given Bx𝑖,x𝑖+1,px𝑖
,px𝑖+1 and 𝜖 > 0, let p𝑥𝑖|𝑦𝑖

(.|𝑦𝑖) ∈ 𝒩 𝒳
𝜖 (px𝑖

) and
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p𝑥𝑖+1|𝑦𝑖
(.|𝑦𝑖) ∈ 𝒩 𝒳

𝜖 (px𝑖+1) be arbitrary, and let 𝜑(x𝑖|y𝑖)(.|𝑦𝑖) and 𝜑(x𝑖+1|y𝑖)(.|𝑦𝑖) denote

the corresponding information vectors, respectively. Then

Bx𝑖,x𝑖+1𝜑
(x𝑖|y𝑖)(.|𝑦𝑖) = 𝜑(x𝑖+1|y𝑖)(.|𝑦𝑖) (2.29)

Proof.

Bx𝑖,x𝑖+1𝜑
(x𝑖|y𝑖)(.|𝑦𝑖)

=
∑︁

x𝑖∈𝒳

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)√︁
𝑝x𝑖

(𝑥𝑖)
√︁
𝑝x𝑖+1(𝑥𝑖+1)

𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖) − 𝑝x𝑖

(𝑥𝑖)
𝜖
√︁
𝑝x𝑖

(𝑥𝑖)

= 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

∑︁
x𝑖∈𝒳

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖)

𝑝x𝑖
(𝑥𝑖)

−
𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)𝑝x𝑖

(𝑥𝑖)
x𝑖

(𝑥𝑖)

= 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

∑︁
x𝑖∈𝒳

𝑝x𝑖+1|x𝑖
(𝑥𝑖+1|𝑥𝑖)𝑝x𝑖|y𝑖

(𝑥𝑖|𝑦𝑖) − 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

∑︁
x𝑖∈𝒳

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)

= 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

(︁
𝑝x𝑖+1|y𝑖

(𝑥𝑖+1|𝑦𝑖) − 𝑝x𝑖+1(𝑥𝑖+1)
)︁

= 𝜑(x𝑖+1|y𝑖)(.|𝑦𝑖)

By looking at lemma 2.5 we can see that we can relate the local geometry of 𝑝𝑥𝑖|𝑦𝑖

and 𝑝𝑥𝑖+1|𝑦𝑖
using the DTM matrix. This result can be extended to the CDM as shown

in the following lemma.

Lemma 2.6. For a given B̂x𝑖,x𝑖+1,px𝑖
,px𝑖+1 and 𝜖 > 0, let p𝑥𝑖|𝑦𝑖

(.|𝑦𝑖) ∈ 𝒩 𝒳
𝜖 (px𝑖

) and

p𝑥𝑖+1|𝑦𝑖
(.|𝑦𝑖) ∈ 𝒩 𝒳

𝜖 (px𝑖+1) be arbitrary, and let 𝜑(x𝑖|y𝑖)(.|𝑦𝑖) and 𝜑(x𝑖+1|y𝑖)(.|𝑦𝑖) denote

the corresponding information vectors, respectively. Then

B̂x𝑖,x𝑖+1𝜑
(x𝑖|y𝑖)(.|𝑦𝑖) = 𝜑(x𝑖+1|y𝑖)(.|𝑦𝑖) (2.30)
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Proof.

B̂x𝑖,x𝑖+1𝜑
(x𝑖|y𝑖)(.|𝑦𝑖)

=
∑︁

x𝑖∈𝒳

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1) − 𝑝x𝑖
(𝑥𝑖)𝑝x𝑖+1(𝑥𝑖+1)√︁

𝑝x𝑖
(𝑥𝑖)

√︁
𝑝x𝑖+1(𝑥𝑖+1)

𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖) − 𝑝x𝑖

(𝑥𝑖)
𝜖
√︁
𝑝x𝑖

(𝑥𝑖)

= 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

∑︁
x𝑖∈𝒳

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖)

𝑝x𝑖
(𝑥𝑖)

−
𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)𝑝x𝑖

(𝑥𝑖)
𝑝x𝑖

(𝑥𝑖)

−

√︁
𝑝x𝑖+1(𝑥𝑖+1)

𝜖

∑︁
x𝑖∈𝒳

𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖) − 𝑝x𝑖

(𝑥𝑖)

= 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

∑︁
x𝑖∈𝒳

𝑝x𝑖+1|x𝑖
(𝑥𝑖+1|𝑥𝑖)𝑝x𝑖|y𝑖

(𝑥𝑖|𝑦𝑖) − 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

∑︁
x𝑖∈𝒳

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)

= 1
𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)

(︁
𝑝x𝑖+1|y𝑖

(𝑥𝑖+1|𝑦𝑖) − 𝑝x𝑖+1(𝑥𝑖+1)
)︁

= 𝜑(x𝑖+1|y𝑖)(.|𝑦𝑖)

This pave the way to for a more general lemma which relates different attribute

variables of the HMM.

Lemma 2.7. For a given Bx1,x2 , · · · ,Bx𝑖,x𝑖+1, px1 , · · · ,px𝑖
, and 𝜖 > 0, let p𝑥𝑗 |𝑦𝑗

(.|𝑦𝑗) ∈

𝒩 𝒳
𝜖 (px𝑗

) and let 𝜑(x𝑗 |y𝑗)(.|𝑦𝑗) be the corresponding information vector for 𝑗 ∈ {1, · · · , 𝑖}

then

𝜑(x𝑖|y𝑖
1)(.|𝑦𝑖

1) =
𝑖∑︁

𝑗=1
𝜑(x𝑖|y𝑗)(.|𝑦𝑗) + 𝑜(𝜖) (2.31)

Proof. A proof is provided in A.2

By looking at Lemma 2.7 we can see that the information vector 𝜑(x𝑖|y𝑖
1) is a

superposition of other information vectors with different observation. This result can

be extended to the case of the CDM matrix. This property will be used to modify

the sum-product algorithm in terms of the information vector and the DTM/CDM

matrix.
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2.6 Sum-Product Algorithm under Weakly Depen-

dent Regime

The modified sum-product algorithm in terms of the information vector and the

DTM/CDM matrix is of great importance because it will give us the flexibility of

varying the computational and communication complexity of the inference algorithm

and striking the right balance between information content and computational cost,

we can ensure that our models are both efficient and effective, even in the face of

high-dimensional data and complex inference tasks.

2.6.1 Modified Sum Product Algorithm Using DTM

The modified sum-product algorithm forward message 𝑚y𝑖→x𝑖
(𝑥𝑖) is the information

vector associated with these two nodes:

𝑚y𝑖→x𝑖
(𝑥𝑖) = 𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖)

The forward message 𝑚x1→x2(𝑥2) is the message from my1→x1 multiplied by the DTM

matrix Bx1,x2 utilizing lemma 2.5

𝑚x1→x2(𝑥2) =
∑︁
𝑥1

𝑝x1,x2(𝑥1, 𝑥2)√︁
𝑝x1(𝑥1)

√︁
𝑝x2(𝑥2)

𝑚y1→x1(𝑥1)

=
∑︁
𝑥1

𝑝x1,x2(𝑥1, 𝑥2)√︁
𝑝x1(𝑥1)

√︁
𝑝x2(𝑥2)

𝜑(x1|y1)(𝑥1|𝑦1)

= 𝜑(x2|y1)(𝑥2|𝑦1)

The forward message 𝑚x2→x3(𝑥3) is the message from 𝑚x1→x2(𝑥2) and 𝑚y1→x1(𝑥1) and

multiplied by the DTM matrix Bx2,x3 utilizing lemma 2.7

𝑚x2→x3(𝑥3) =
∑︁
𝑥2

𝑝x2,x3(𝑥2, 𝑥3)√︁
𝑝x2(𝑥2)

√︁
𝑝x3(𝑥3)

(𝑚y2→x2(𝑥2) +𝑚x1→x2(𝑥2))

=
∑︁
𝑥2

𝑝x2,x3(𝑥2, 𝑥3)√︁
𝑝x2(𝑥2)

√︁
𝑝x3(𝑥3)

(𝜑(x2|y1)(𝑥2|𝑦1) + 𝜑(x2|y2)(𝑥2|𝑦2))
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=
∑︁
𝑥2

𝑝x2,x3(𝑥2, 𝑥3)√︁
𝑝x2(𝑥2)

√︁
𝑝x3(𝑥3)

(𝜑(x2|y2
1)(𝑥2|𝑦2

1))

= 𝜑(x3|y2
1)(𝑥3|𝑦2

1)

Therefore, the general forward message 𝑚x𝑖→x𝑖+1(𝑥𝑖+1) is

𝑚x𝑖→x𝑖+1(𝑥𝑖+1) =
∑︁
𝑥𝑖

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)√︁
𝑝x𝑖

(𝑥𝑖)
√︁
𝑝x𝑖+1(𝑥𝑖+1)

(𝑚y𝑖→x𝑖
(𝑥𝑖) +𝑚x𝑖−1→x𝑖

(𝑥𝑖))

=
∑︁
𝑥𝑖

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1)√︁
𝑝x𝑖

(𝑥𝑖)
√︁
𝑝x𝑖+1(𝑥𝑖+1)

(𝜑x𝑖|y𝑖(𝑥𝑖|𝑦𝑖) + 𝜑x𝑖|y𝑖−1
1 (𝑥𝑖|𝑦𝑖−1

1 ))

= 𝜑(x𝑖+1|y𝑖
1)(𝑥𝑖+1|𝑦𝑖

1)

Using these forward messages we will infer the posterior:

𝑝x𝑖+1|𝑦𝑖
1
(𝑥𝑖+1|𝑦𝑖

1) = 𝑝x𝑖+1(𝑥𝑖+1) + 𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)𝑚x𝑖→x𝑖+1(𝑥𝑖+1)

2.6.2 Modified Sum Product Algorithm Using CDM

The modified sum-product algorithm forward message 𝑚y𝑖→x𝑖
(𝑥𝑖) is the information

vector associated with these two nodes:

𝑚y𝑖→x𝑖
(𝑥𝑖) = 𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖)

The forward message 𝑚x1→x2(𝑥2) is the message from my1→x1 multiplied by the CDM

matrix B̂x1,x2 utilizing lemma 2.6

𝑚x1→x2(𝑥2) =
∑︁
𝑥1

𝑝x1,x2(𝑥1, 𝑥2) − 𝑝x1(𝑥1)𝑝x2(𝑥2)√︁
𝑝x1(𝑥1)

√︁
𝑝x2(𝑥2)

𝑚y1→x1(𝑥1)

=
∑︁
𝑥1

𝑝x1,x2(𝑥1, 𝑥2) − 𝑝x1(𝑥1)𝑝x2(𝑥2)√︁
𝑝x1(𝑥1)

√︁
𝑝x2(𝑥2)

𝜑(x1|y1)(𝑥1|𝑦1)

= 𝜑(x2|y1)(𝑥2|𝑦1)
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The forward message 𝑚x2→x3(𝑥3) is the message from 𝑚x1→x2(𝑥2) and 𝑚y1→x1(𝑥1) and

multiplied by the CDM matrix B̂x2,x3 utilizing lemma 2.7

𝑚x2→x3(𝑥3) =
∑︁
𝑥2

𝑝x2,x3(𝑥2, 𝑥3) − 𝑝x2(𝑥2)𝑝x3(𝑥3)√︁
𝑝x2(𝑥2)

√︁
𝑝x3(𝑥3)

(𝑚y2→x2(𝑥2) +𝑚x1→x2(𝑥2))

=
∑︁
𝑥2

𝑝x2,x3(𝑥2, 𝑥3) − 𝑝x2(𝑥2)𝑝x3(𝑥3)√︁
𝑝x2(𝑥2)

√︁
𝑝x3(𝑥3)

(𝜑(x2|y1)(𝑥2|𝑦1) + 𝜑(x2|y2)(𝑥2|𝑦2))

=
∑︁
𝑥2

𝑝x2,x3(𝑥2, 𝑥3) − 𝑝x2(𝑥2)𝑝x3(𝑥3)√︁
𝑝x2(𝑥2)

√︁
𝑝x3(𝑥3)

(𝜑(x2|y2
1)(𝑥2|𝑦2

1))

= 𝜑(x3|y2
1)(𝑥3|𝑦2

1)

Therefore, the general forward message 𝑚x𝑖→x𝑖+1(𝑥𝑖+1) is

𝑚x𝑖→x𝑖+1(𝑥𝑖+1) =
∑︁
𝑥𝑖

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1) − 𝑝x𝑖
(𝑥𝑖)𝑝x𝑖+1(𝑥𝑖+1)√︁

𝑝x𝑖
(𝑥𝑖)

√︁
𝑝x𝑖+1(𝑥𝑖+1)

(𝑚y𝑖→x𝑖
(𝑥𝑖) +𝑚x𝑖−1→x𝑖

(𝑥𝑖))

=
∑︁
𝑥𝑖

𝑝x𝑖,x𝑖+1(𝑥𝑖, 𝑥𝑖+1) − 𝑝x𝑖
(𝑥𝑖)𝑝x𝑖+1(𝑥𝑖+1)√︁

𝑝x𝑖
(𝑥𝑖)

√︁
𝑝x𝑖+1(𝑥𝑖+1)

(𝜑x𝑖|y𝑖(𝑥𝑖|𝑦𝑖) + 𝜑x𝑖|y𝑖−1
1 (𝑥𝑖|𝑦𝑖−1

1 ))

= 𝜑(x𝑖+1|y𝑖
1)(𝑥𝑖+1|𝑦𝑖

1)

Using these forward messages we will infer the posterior:

𝑝x𝑖+1|𝑦𝑖
1
(𝑥𝑖+1|𝑦𝑖

1) = 𝑝x𝑖+1(𝑥𝑖+1) + 𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)𝑚x𝑖→x𝑖+1(𝑥𝑖+1)

These forward messages in both cases are not constrained (sufficient statistics) and

in the next chapter we will discuss the case of a constrained information exchange

message passing algorithm in different posterior inference scenarios.
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Chapter 3

Index-Specific Posterior Inference

The sum product algorithm depends heavily on the information exchange between

the nodes of the graph and having unconstrained sized messages, resulting in the

exact inference of the posterior distribution. Despite its usefulness and ubiquitous

applications, high-dimensional data is becoming increasingly prevalent in modern

applications, where the size of both observation and state spaces can become pro-

hibitively large. This poses significant challenges for inference algorithms, leading to

issues with both computational and communication complexity that can limit their

effectiveness and efficiency.

To address these challenges, in the previous chapter, a modified sum product

algorithm was introduced in terms of the information vector and DTM/CDM matrix.

This modification allows for the determination of which fragments of information are

most important for specific inference tasks. By identifying these important pieces

of information, informed decisions can be made about which parts of the data to

prioritize and which parts can be safely dropped or simplified.

In this chapter, the constrained information exchange message passing algorithm

is introduced. The constrained information exchange message passing algorithm con-

strains the messages one can pass along in the algorithm and deliberately sets them

to be less than what is needed to carry sufficient statistics. This formulation forced

us to look for "insufficient statistics," which are expected to be the key new concept in

the era of big data as it will result in lower computational and communication com-
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plexity. This formulation allows for the study of the tradeoff between information

content and computational/communication cost, enabling the development of models

that are both efficient and effective, even in the face of high-dimensional data and

complex inference tasks.

The restrictive nature of the constraints, which limit the exchange of sufficient

statistics, inherently complicates the process of posterior inference. This complexity

arises from the unique dynamics of the process, where a distinct insufficient statistic is

forwarded as a message, depending on the specific scenario of the posterior inference.

Consequently, this intricate issue not only amplifies the complexity of the problem

but also necessitates the crafting of diverse messages tailored to each unique posterior

inference scenario. In order to address these challenges, it becomes crucial to develop

and rigorously analyze the algorithm under a broad range of scenarios. By doing so,

one can ensure the algorithm’s robustness and adaptability, allowing it to effectively

handle a multitude of posterior inference conditions, regardless of the constraints

imposed on the information exchange.

Posterior inference scenarios are broadly categorized into two types: index-specific

and index-free posteriors. This chapter will primarily focus on the introduction of

index-specific posterior inference. This sub-category of posterior inference provides

a critical examination of specific scenarios where the interest lies either in a singular

posterior inference at a specific index (referred to as single index-specific posterior

inference) or in multiple posterior inferences at specific indexes (referred to as multiple

index-specific posterior inference).

• Single Index-Specific Posterior Inference: In this particular scenario, character-

ized as one of the simplest scenarios due to the absence of a tradeoff between

different objectives, the primary emphasis lies in the posterior inference at a

specific index. The objective is to solve a single objective optimization prob-

lem, aimed at finding the optimal matrices at each specific node for effectively

compressing the messages.

• Multiple Index-Specific Posterior Inference: In this scenario, the primary em-
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phasis lies in performing posterior inference at multiple indexes, which unveils

the inherent tradeoff nature of the problem. The optimization plays a vital

role in achieving a delicate balance between the different posterior inference

objectives. Through careful optimization, the optimal compression matrices at

each specific node is obtained and effectively used to compress the messages.

This approach enables efficient handling of the tradeoff between the competing

objectives, leading to the optimal inference across multiple indexes.

In all these cases, the messages my𝑖→x𝑖
will be constrained. This constraint is

motivated by the fact that observation nodes typically possess low power and limited

communication bandwidth compared to the hidden nodes. One can envision the

observation nodes as sensor nodes in a wireless sensor network, while the hidden node

can be regarded as the central unit (server) responsible for receiving and processing

all the data. This discrepancy in power and communication capabilities necessitates

the imposition of constraints on the messages my𝑖→x𝑖
.

The KL divergence loss function is optimized to find the matrix compression that

results in a minimal error. However, the task of finding the optimal matrix compres-

sion for different observations or information vectors can be challenging, particularly

when the prediction task is unknown or when there are multiple tasks involved. To ad-

dress this challenge, the information vectors is defined as rotation-invariant ensemble

(RIE) assigning a uniform prior to unknown attributes. This enables the formulation

of the problem as a universal matrix selection problem, seeking to identify the opti-

mal compression matrix by minimizing the average KL divergence over the RIE in

a weakly dependent regime. This objective is equivalent to minimizing the average

mean squared error (MSE) over the RIE. The use of this universal optimal matrix en-

sures optimal performance on average, without prior knowledge of the prediction task

or in the case of multiple tasks. Before delving into discussions regarding different

posterior inference scenarios, it is important to define the following lemma:
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Lemma 3.1. Let Z be a 𝑘1 × 𝑘2 spherically symmetric random matrix. Then if A1

and A2 are any fixed matrices of compatible dimensions, then

E
[︁
||A𝑇

1 ZA2||2𝐹
]︁

= 1
𝑘1𝑘2

||A1||2𝐹 ||A2||2𝐹E
[︁
||Z||2𝐹

]︁

Proof. The proof is provide in Appendix V-C in [40]

3.1 Single Index-Specific Posterior Inference

This scenario involves estimating the posterior distribution at a specific index, where

a single objective optimization problem is solved to determine the most effective

matrices for compressing messages my𝑖→x𝑖
(as show in Fig. 3-1). Two cases will be

studied in this scenario, varying and fixed DTM matrix.

Figure 3-1: Constrained Information Exchange Message-Passing Algorithm in Single
Index-Specific Posterior Inference

3.1.1 Varying Divergence Transfer Matrix

In this section Bx𝑖,x𝑖+1 ∈ R|𝒳 |×|𝒳 | is known exactly and the messages are constrained

m̂y𝑖→x𝑖
∈ R𝑟, where 𝑟 < |𝒳 |.

• at node y𝑖, pick a matrix H𝑖 ∈ R𝑟×|𝒳 |, to reduce the size of the message (my𝑖→x𝑖
)

to 𝑟-dimensional message (m̂y𝑖→x𝑖
) since there is a constrained link between y𝑖

and x𝑖.

m̂y𝑖→x𝑖
= H𝑖my𝑖→x𝑖

= H𝑖𝜑
(x𝑖|y𝑖)
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• at node x𝑖, pick a matrix G𝑖 ∈ R|𝒳 |×𝑟 and F ∈ R|𝒳 |×|𝒳 | to calculate the forward

message

m̂x𝑖→x𝑖+1 = G𝑖m̂y𝑖→x𝑖
+ Fm̂x𝑖−1→x𝑖

= G𝑖H𝑖𝜑
(x𝑖|y𝑖) + F𝜑̂

(x𝑖|y𝑖−1
1 )

= 𝜑̂
(x𝑖+1|y𝑖) + 𝜑̂(x𝑖+1|y𝑖−1

1 )

= 𝜑̂
(x𝑖+1|y𝑖

1)

• Optimization:

min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︁
𝐷(px𝑖+1|y𝑖

1
(.|y̌𝑖

1)||p̂x𝑖+1|y𝑖
1
(.|y̌𝑖

1))
]︁

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︃
𝜖2

2

⃦⃦⃦⃦
𝜑(x𝑖+1|y𝑖

1) − 𝜑̂
(x𝑖+1|y𝑖

1)
⃦⃦⃦⃦2

2

]︃
(Using lemma 2.7)

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

⎡⎢⎣𝜖2

2

⃦⃦⃦⃦
⃦⃦ 𝑖∑︁

𝑗=1

⎛⎝ 𝑖∏︁
𝑘=𝑗

Bx𝑘,x𝑘+1

⎞⎠𝜑(x𝑗 |y𝑗) −
𝑖∑︁

𝑗=1
F𝑖−𝑗G𝑗H𝑗𝜑

(x𝑗 |y𝑗)

⃦⃦⃦⃦
⃦⃦

2

𝐹

⎤⎥⎦

Using lemma 3.1 and assuming 𝜑(x1|y1), · · · ,𝜑(x𝑖|y𝑖) are independent and spherical symmetric

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

𝑖∑︁
𝑗=1

⎡⎢⎣ 𝜖2

2|𝒳 |

⃦⃦⃦⃦
⃦⃦
⎛⎝ 𝑖∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

E
𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂⎤⎥⎦
Since each objective have a unique H𝑗 and G𝑗 matrix

= min
F

𝑖∑︁
𝑗=1

min
H𝑗 ,G𝑗

⎡⎢⎣ 𝜖2

2|𝒳 |

⃦⃦⃦⃦
⃦⃦
⎛⎝ 𝑖∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

E
𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂⎤⎥⎦
= 𝛼𝜖2

2|𝒳 |
min

F

𝑖∑︁
𝑗=1

min
H𝑗 ,G𝑗

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦
⎛⎝ 𝑖∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

⎤⎥⎦ ; E
𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂
= 𝛼

To solve this optimization problem we will use the Eckart-Young-Mirsky theo-

rem
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Theorem 3.2. (Eckart-Young-Mirsky Theorem [47]) Let B ∈ R|𝒳 |×|𝒳 | have

the SVD B = USV𝑇 and we define B(𝑟) = U(𝑟)S(𝑟)(V(𝑟))𝑇 as rank 𝑟 of B

associated with the 𝑟 largest singular values and their corresponding singular

vectors. B(𝑟) is the optimal solution to the following optimization problem:

min ||B − B̂||

s.t. rank(B̂) ≤ 𝑟

=⇒ B̂ = B(𝑟) = U(𝑟)S(𝑟)(V(𝑟))𝑇

By using theorem 3.2, the optimal G𝑗,H𝑗,F matrices are

B𝑗 =
𝑖∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 = U𝑗S𝑗V𝑇
𝑗 =⇒ G𝑗 = U(𝑟)

𝑗 ; H𝑗 = S(𝑟)
𝑗 (V(𝑟)

𝑗 )𝑇 ; F = I

• at node x𝑖+1, we will calculate the posterior distribution

𝑝x𝑖+1|y𝑖
1

(︁
𝑥𝑖+1|𝑦𝑖

1

)︁
= 𝑝x𝑖+1(𝑥𝑖+1) + 𝜖

√︁
𝑝x𝑖+1(𝑥𝑖+1)𝑚̂x𝑖→x𝑖+1(𝑥𝑖+1)

Based on the optimal matrices, the error due to the constrain in the message is

𝑖∑︁
𝑗=1

⃦⃦⃦
B𝑗 − F𝑖−𝑗G𝑗H𝑗

⃦⃦⃦2

𝐹
=

𝑖∑︁
𝑗=1

|𝒳 |∑︁
𝑡=𝑟+1

𝑠2
𝑡 (B𝑗)

In the case of having B𝑗 as rank 𝑟, the error associated with the constrained message

will be zero.

3.1.2 Fixed Divergence Transfer Matrix

In this section B ∈ R|𝒳 |×|𝒳 | is known exactly and is fixed. The messages are con-

strained m̂y𝑖→x𝑖
∈ R𝑟, where 𝑟 < |𝒳 |.

B𝑥𝑖,𝑥𝑖+1 = B ; ∀𝑖
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• at node y𝑖, pick a matrix H𝑖 ∈ R𝑟×|𝒳 |, to reduce the size of the message (my𝑖→x𝑖
)

to 𝑟-dimensional message (m̂y𝑖→x𝑖
) since there is a constrained link between y𝑖

and x𝑖.

m̂y𝑖→x𝑖
= H𝑖my𝑖→x𝑖

= H𝑖𝜑
(x𝑖|y𝑖)

• at node x𝑖, pick a matrix G𝑖 ∈ R|𝒳 |×𝑟 and F ∈ R|𝒳 |×|𝒳 | to calculate the forward

message

m̂x𝑖→x𝑖+1 = G𝑖m̂y𝑖→x𝑖
+ Fm̂x𝑖−1→x𝑖

= G𝑖H𝑖𝜑
(x𝑖|y𝑖) + F𝜑̂

(x𝑖|y𝑖−1
1 )

= 𝜑̂
(x𝑖+1|y𝑖) + 𝜑̂(x𝑖+1|y𝑖−1

1 )

= 𝜑̂
(x𝑖+1|y𝑖

1)

• Optimization:

min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︁
𝐷(px𝑖+1|y𝑖

1
(.|y̌𝑖

1)||p̂x𝑖+1|y𝑖
1
(.|y̌𝑖

1))
]︁

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︃
𝜖2

2

⃦⃦⃦⃦
𝜑(x𝑖+1|y𝑖

1) − 𝜑̂
(x𝑖+1|y𝑖

1)
⃦⃦⃦⃦2

2

]︃
(Using lemma 2.7)

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

⎡⎢⎣𝜖2

2

⃦⃦⃦⃦
⃦⃦ 𝑖∑︁

𝑗=1
B𝑖+1−𝑗𝜑(x𝑗 |y𝑗) −

𝑖∑︁
𝑗=1

F𝑖−𝑗G𝑗H𝑗𝜑
(x𝑗 |y𝑗)

⃦⃦⃦⃦
⃦⃦

2

𝐹

⎤⎥⎦

Using lemma 3.1 and assuming 𝜑(x1|y1), · · · ,𝜑(x𝑖|y𝑖) are independent and spherical symmetric

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

𝑖∑︁
𝑗=1

[︃
𝜖2

2|𝒳 |
⃦⃦⃦(︁

B𝑖+1−𝑗 − F𝑖−𝑗G𝑗H𝑗

)︁⃦⃦⃦2

𝐹
E
𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂]︃

Since each objective have a unique H𝑗 and G𝑗 matrix

= min
F

𝑖∑︁
𝑗=1

min
H𝑗 ,G𝑗

[︃
𝜖2

2|𝒳 |
⃦⃦⃦(︁

B𝑖+1−𝑗 − F𝑖−𝑗G𝑗H𝑗

)︁⃦⃦⃦2

𝐹
E
𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂]︃

= 𝛼𝜖2

2|𝒳 |
min

F

𝑖∑︁
𝑗=1

min
H𝑗 ,G𝑗

[︂⃦⃦⃦(︁
B𝑖+1−𝑗 − F𝑖−𝑗G𝑗H𝑗

)︁⃦⃦⃦2

𝐹

]︂
; E

𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂
= 𝛼
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By using theorem 3.2, the optimal G𝑗,H𝑗,F matrices

B𝑗 = B𝑖+1−𝑗 = U𝑗S𝑗V𝑇
𝑗 =⇒ G𝑗 = U(𝑟)

𝑗 ; H𝑗 = S(𝑟)
𝑗 (V(𝑟)

𝑗 )𝑇 ; F = I

• at node x𝑖+1, we will calculate the posterior distribution

𝑝x𝑖+1|y𝑖
1

(︁
𝑥𝑖+1|𝑦𝑖

1

)︁
= 𝑝x𝑖+1(𝑥𝑖+1) + 𝜖

√︁
𝑝x𝑖+1(𝑥𝑖+1)𝑚̂x𝑖→x𝑖+1(𝑥𝑖+1)

To derive a sharp upper bound of the error we will define the following theorem

Theorem 3.3. [48]: Let A and C be 𝑚×𝑛 matrices with singular values {𝑠𝑖(A)}𝑞
𝑖=1

and {𝑠𝑖(C)}𝑞
𝑖=1, 𝑞 = min{𝑚,𝑛} and left singular vectors {u𝑖(C)}𝑛

𝑖=1 and right singular

vectors {v𝑖(A)}𝑛
𝑖=1. If for some 𝑟 and 𝑠, 0 ≤ 𝑟, 𝑠 ≤ 𝑞 − 1,

dim(⟨𝑢1, · · · , 𝑢𝑟⟩ ∩ ⟨𝑣1, · · · , 𝑣𝑠⟩) ≥ 𝑘, 𝑘 ≥ 0

then

𝑠𝑖+𝑗−𝑘−1(AC) ≤ 𝑠𝑖(A)𝑠𝑗(C), 𝑟 + 1 ≤ 𝑖 ≤ 𝑞, 𝑠+ 1 ≤ 𝑗 ≤ 𝑞, 𝑖+ 𝑗 − 𝑘 − 1 ≤ 𝑞

Since B is fixed, the first left singular vector 𝑢1(B) and first right singular vector

𝑣1(B) are equal and so 𝑘 = 1. Therefore, based on the optimal matrices the error due

to the constrain in the message is

𝑖∑︁
𝑗=1

||B𝑗 − F𝑖−𝑗G𝑗H𝑗||2𝐹 =
𝑖∑︁

𝑗=1

|𝒳 |∑︁
𝑡=𝑟+1

𝑠2
𝑡 (B𝑗)

=
𝑖∑︁

𝑗=1

|𝒳 |∑︁
𝑡=𝑟+1

𝑠2
𝑡 (B𝑖+1−𝑗)

≤
𝑖∑︁

𝑗=1

|𝒳 |∑︁
𝑡=𝑟+1

𝑠
2(𝑖−𝑗)
2 (B)𝑠2

𝑡 (B) Using Theorem 3.3
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Since 𝑠2(B) < 1, this means that the error associated with older observation will

decay at an exponential rate faster than 𝑠2
2(B).

3.1.3 Computation and Communication Complexity

The performance of the algorithm is expected to be sub-optimal due to the constrained

messages and the insufficient statistics. However, these constraints have the advantage

of reducing computational and communication complexity, which is particularly useful

in modern applications where high-dimensional data is prevalent.

Table 3.2 provides a comparison of computational and communication complexity

for the constrained and unconstrained message passing algorithms. As shown in

the table, the computational complexity is reduced from 𝑂(|𝒳 |2) to 𝑂(𝑟|𝒳 |), where

𝑟 < |𝒳 |. This reduction in complexity is significant, particularly for models with

large states, such as language or vision models.

In the preceding algorithm, the DTM is utilized within the context of single index-

specific posterior inference. As a defining characteristic of the DTM model, the

largest singular value is 1. This implies the necessity to incorporate all the previous

observations (𝑛), yielding a total computational complexity of 𝑂(𝑛𝑟|𝒳 |).

Conversely, as described in the prior chapter, there exists an alternative approach

through the use of CDM. In the CDM, the largest singular value is less than or equal

to 1. This property substantiates the possibility of dismissing the observations from

earlier stages as the singular values associated with the CDM product matrix will

diminish towards an extremely small magnitude.

To elucidate further, in contrast to the DTM inherent requirement to consider all

preceding data points (as a direct result of its leading singular value of 1), the CDM

leading singular value being less than or equal to 1 implies that it does not attribute

significant weight to the older observations. This particular attribute of the CDM

can be of substantial advantage in scenarios where computational efficiency is crucial.

‖B̂𝑛1‖2
𝐹 ≈ 0 ; ‖

𝑛1∏︁
𝑖=1

B̂xi,xi+1‖2
𝐹 ≈ 0
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Furthermore, the communication complexity for my𝑖→x𝑖
is reduced from 𝑂(|𝒳 |)

to 𝑂(𝑟), which is particularly useful in the case of observation nodes with limited

communication capabilities. These advantages come at the cost of a sub-optimal

algorithm performance when compared to the case of unconstrained messages.

Despite the sub-optimality of the algorithm, it remains a practical and useful

solution for high-dimensional data problems, particularly when computational and

communication resources are limited. This scenario highlights the importance of

considering the trade-off between algorithm performance and resource utilization in

modern data-driven applications.

Constrained

Message Passing

Unconstrained

Message Passing

Computational

Complexity

mx𝑖→x𝑖+1 𝑂 (𝑟|𝒳 |) 𝑂 (|𝒳 |2)

Total 𝑂 (𝑛2𝑟|𝒳 |) 𝑂 (𝑛|𝒳 |2)

Communication

Complexity

my𝑖→x𝑖
𝑂 (𝑟) 𝑂 (|𝒳 |)

mx𝑖→x𝑖+1 𝑂 (|𝒳 |) 𝑂 (|𝒳 |)

Table 3.1: Computational and communication complexity comparison between the
constrained and unconstrained message passing algorithm in single index-specific pos-
terior inference. 𝑛 is the number of observation used for the posterior predication and
𝑛2 = min{𝑛, 𝑛1}

54



3.1.4 Numerical Results

This section aims to explore the performance of the constrained information exchange

message passing algorithm in single index-specific posterior inference, using synthetic

dataset. The focus will be on the case 𝐷(px3|y2
1
||p̂x3|y2

1
) as illustrated in Fig. 3-2.

Figure 3-2: Constrained Information Exchange Message-Passing Algorithm in Single
Index-Specific Posterior Inference

3.1.4.1 Synthetic dataset

The synthetic dataset is strategically designed to possess a large state space (|𝒳 | =

200) and observation space (|𝒴| = 20𝑘), underscoring the critical role of the con-

strained information exchange message passing algorithm in managing high dimen-

sional datasets. The hidden node x𝑖 and the observation node y𝑖 in this synthetic

dataset is weakly correlated.

Dependency of Error on Link Size: Fig. 3-3 illustrates the dependency between

the error and the link size. As observed, there is a consistent decrease in error with an

increase in the link size. This trend is attributed to the larger amount of information

exchanged as the link size expands. Ultimately, the error drops to zero when the link

size equals the rank of the DTM matrix.
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Figure 3-3: Single Index-Specific Posterior Inference error as a function of link size

Determining Link Sizes: Guided by a Predetermined Error Threshold:

Fig. 3-4 examines a scenario in which the objective is to limit the error below a

preset threshold. This situation calls for a strategic choice of link size that aligns

with this error constraint. As illustrated in Figure 3-4, maintaining the error below

the 5 threshold demands a minimum link size of 151 (𝑟 ≥ 151). Therefore, while

maintaining the error threshold the reduction in the size of the link is by almost

25%. This emphasizes the significance of constrained information message passing

algorithm to deal with high-dimensional data.

Link Size Selection: Shaped by Error Threshold and Size Constraints: Fig.

3-5 illustrates the scenarios where the task is to maintain the error below a particular

threshold, whilst staying within specific link size constraints. Such circumstances call

for an intricate balance between these two defining parameters. As depicted in Fig.

3-5, if the target is to cap the error at less than 5, with the link size not surpassing

155, the suitable range for link size (151 ≤ 𝑟 ≤ 155). This underscores the significance

of precise link size selection, which is shaped by both the desired error threshold and

the maximum size limitations.
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Figure 3-4: Link Sizes Selection Based on Desired Error Threshold in the Single
Index-Specific Posterior Inference

Figure 3-5: Link Size Selection Based on Desired Error Threshold and Maximum Size
Constraint in the Single Index-Specific Posterior Inference



Error Threshold Impact on Minimum Link Size: Fig. 3-6 illustrate the trade-

off between the error threshold and the corresponding minimum link size. As ob-

served, there is a consistent decrease in the minimum link size with an increase in

the associated error. This trend is attributed to the smaller amount of information

exchanged as the link size decreases. Fig. 3-6 emphasizes the balance between opti-

mizing resource utilization and achieving the necessary precision. As the size of the

link decreases, the system becomes more efficient in terms of resource usage. However,

it also necessitates a higher error, potentially affecting the overall performance and

accuracy of the system. The figure presents a valuable perspective on system design

considerations in the constrained information exchange message passing algorithm in

high dimensional data.
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Figure 3-6: Error Threshold Impact on Minimum Link Size
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3.2 Multiple Index-Specific Posterior Inference

This scenario involves estimating the posterior distribution at a multiple specific in-

dices, where a multi-objective optimization problem is solved to determine the optimal

matrices for compressing messages my𝑖→x𝑖
(as show in Fig. 3-7). This scenario un-

veils the inherent tradeoff nature of the problem arising from the inability to transmit

sufficient statistics. Two cases will be studied in this scenario:

• Two index-specific posterior inference with varying DTM matrix.

• Multiple index-specific posterior inference with fixed DTM matrix

Figure 3-7: Constrained Information Exchange Message-Passing Algorithm in Two
Index-Specific Posterior Inference

3.2.1 Two Index-Specific Posterior Inference with Varying

DTM Matrix

In this section Bx𝑖,x𝑖+1 ∈ R|𝒳 |×|𝒳 | is known exactly and the messages are constrained

m̂y𝑖→x𝑖
∈ R𝑟, where 𝑟 < |𝒳 |.

• at node y𝑖, pick a matrix H𝑖 ∈ R𝑟×|𝒳 |, to reduce the size of the message (my𝑖→x𝑖
)

to 𝑟-dimensional message (m̂y𝑖→x𝑖
) since there is a constrained link between y𝑖

and x𝑖.

m̂y𝑖→x𝑖
= H𝑖my𝑖→x𝑖

= H𝑖𝜑
(x𝑖|y𝑖)
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• at node x𝑖, pick a matrix G𝑖 ∈ R|𝒳 |×𝑟 and F ∈ R|𝒳 |×|𝒳 | to calculate the forward

message

m̂x𝑖→x𝑖+1 = G𝑖m̂y𝑖→x𝑖
+ Fm̂x𝑖−1→x𝑖

= G𝑖H𝑖𝜑
(x𝑖|y𝑖) + F𝜑̂

(x𝑖|y𝑖−1
1 )

= 𝜑̂
(x𝑖+1|y𝑖) + 𝜑̂(x𝑖+1|y𝑖−1

1 )

= 𝜑̂
(x𝑖+1|y𝑖

1)

• First objective optimization:

min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︁
𝐷(px𝑖+1|y𝑖

1
(.|y̌𝑖

1)||p̂x𝑖+1|y𝑖
1
(.|y̌𝑖

1))
]︁

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︃
𝜖2

2

⃦⃦⃦⃦
𝜑(x𝑖+1|y𝑖

1) − 𝜑̂
(x𝑖+1|y𝑖

1)
⃦⃦⃦⃦2

2

]︃
(Using lemma 2.7)

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

⎡⎢⎣𝜖2

2

⃦⃦⃦⃦
⃦⃦ 𝑖∑︁

𝑗=1

⎛⎝ 𝑖∏︁
𝑘=𝑗

Bx𝑘,x𝑘+1

⎞⎠𝜑(x𝑗 |y𝑗) −
𝑖∑︁

𝑗=1
F𝑖−𝑗G𝑗H𝑗𝜑

(x𝑗 |y𝑗)

⃦⃦⃦⃦
⃦⃦

2

𝐹

⎤⎥⎦

Using lemma 3.1 and assuming 𝜑(x1|y1), · · · ,𝜑(x𝑖|y𝑖) are independent and spherical symmetric

= min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

𝑖∑︁
𝑗=1

⎡⎢⎣ 𝜖2

2|𝒳 |

⃦⃦⃦⃦
⃦⃦
⎛⎝ 𝑖∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

E
𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂⎤⎥⎦
= 𝛼𝜖2

2|𝒳 |
min

H1,··· ,H𝑖,G1,··· ,G𝑖,F

𝑖∑︁
𝑗=1

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦
⎛⎝ 𝑖∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

⎤⎥⎦

• Second objective optimization

min
H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F

E𝜑(x1|y1),··· ,𝜑(x𝑖−1|y𝑖−1)

[︁
𝐷(px𝑖|y𝑖−1

1
(.|y̌𝑖−1

1 )||p̂x𝑖|y𝑖−1
1

(.|y̌𝑖−1
1 ))

]︁
= min

H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F
E𝜑(x1|y1),··· ,𝜑(x𝑖−1|y𝑖−1)

[︃
𝜖2

2

⃦⃦⃦⃦
𝜑(x𝑖|y𝑖−1

1 ) − 𝜑̂
(x𝑖|y𝑖−1

1 )
⃦⃦⃦⃦2

2

]︃
(Using lemma 2.7)

= min
H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F

E𝜑(x1|y1),··· ,𝜑(x𝑖−1|y𝑖−1)

⎡⎢⎣𝜖2

2

⃦⃦⃦⃦
⃦⃦𝑖−1∑︁

𝑗=1

⎛⎝𝑖−1∏︁
𝑘=𝑗

Bx𝑘,x𝑘+1

⎞⎠𝜑(x𝑗 |y𝑗) −
𝑖−1∑︁
𝑗=1

F𝑖−1−𝑗G𝑗H𝑗𝜑
(x𝑗 |y𝑗)

⃦⃦⃦⃦
⃦⃦

2

𝐹

⎤⎥⎦
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Using lemma 3.1 and assuming 𝜑(x1|y1), · · · ,𝜑(x𝑖|y𝑖) are independent and spherical symmetric

= min
H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F

𝑖−1∑︁
𝑗=1

⎡⎢⎣ 𝜖2

2|𝒳 |

⃦⃦⃦⃦
⃦⃦
⎛⎝𝑖−1∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−1−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

E
𝜑(x𝑗 |y𝑗 )

[︂⃦⃦⃦
𝜑(x𝑗 |y𝑗)

⃦⃦⃦2

2

]︂⎤⎥⎦
= 𝛼𝜖2

2|𝒳 |
min

H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F

𝑖−1∑︁
𝑗=1

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦
⎛⎝𝑖−1∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−1−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

⎤⎥⎦

• There are several way to solve this multiobjective optimization. We will write

these objective functions as a weighted sum and then we will solve the weighted

sum for different values of 𝛾 [49].

min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

𝛾E𝜑(x1|y1),··· ,𝜑(x𝑖−1|y𝑖−1)

[︁
𝐷(px𝑖|y𝑖−1

1
(.|y̌𝑖−1

1 )||p̂x𝑖|y𝑖−1
1

(.|y̌𝑖−1
1 ))

]︁
+ (1 − 𝛾)E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︁
𝐷(px𝑖+1|y𝑖

1
(.|y̌𝑖

1)||p̂x𝑖+1|y𝑖
1
(.|y̌𝑖

1))
]︁

= 𝛼𝜖2

2|𝒳 |
min

H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F
𝛾

𝑖−1∑︁
𝑗=1

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦
⎛⎝𝑖−1∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−1−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

⎤⎥⎦
+ (1 − 𝛾)

𝑖−1∑︁
𝑗=1

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦
⎛⎝ 𝑖∏︁

𝑘=𝑗

Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐹

⎤⎥⎦
+ 𝛼𝜖2

2|𝒳 |
min
H𝑖,G𝑖

||Bx𝑖,x𝑖+1 − G𝑖H𝑖||2𝐹

= 𝛼𝜖2

2|𝒳 |
min

H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F

𝑖−1∑︁
𝑗=1

⃦⃦⃦⃦
⃦⃦⃦
⎡⎢⎣ √

𝛾(
(︁∏︀𝑖−1

𝑘=𝑗 Bx𝑘,x𝑘+1 − F𝑖−1−𝑗G𝑗H𝑗

)︁
)√︁

(1 − 𝛾)
(︁∏︀𝑖

𝑘=𝑗 Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

)︁
⎤⎥⎦
⃦⃦⃦⃦
⃦⃦⃦

2

𝐹

+ 𝛼𝜖2

2|𝒳 |
min
H𝑖,G𝑖

||Bx𝑖,x𝑖+1 − G𝑖H𝑖||2𝐹

The following optimization have two parts, the minimization with G𝑖 and H𝑖

can be solved using theorem 3.2. The other minimization is bit more complex

and can be solved using the following theorem
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Theorem 3.4. Let B𝑥𝑗 ,𝑥𝑗+1 ∈ R|𝒳 |×|𝒳 |, F ∈ R|𝒳 |×|𝒳 |,G𝑗 ∈ R|𝒳 |×𝑟, and H𝑗 ∈

R𝑟×|𝒳 | where 𝑗 ∈ {1, · · · , 𝑖}. The SVD of

⃦⃦⃦⃦
⃦⃦⃦
⎡⎢⎣ √

𝛾(
(︁∏︀𝑖−1

𝑘=𝑗 Bx𝑘,x𝑘+1

)︁
)√︁

(1 − 𝛾)
(︁∏︀𝑖

𝑘=𝑗 Bx𝑘,x𝑘+1

)︁
⎤⎥⎦
⃦⃦⃦⃦
⃦⃦⃦

2

𝐹

=

⎡⎢⎢⎢⎢⎢⎢⎣
U𝑗,1⏟  ⏞  

|𝒳 |×|𝒳 |

U𝑗,2⏟  ⏞  
|𝒳 |×|𝒳 |

G⏟ ⏞ 
2|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

S𝑗⏟ ⏞ 
|𝒳 |×|𝒳 |

0|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎦ V𝑇
𝑗⏟ ⏞ 

|𝒳 |×|𝒳 |

Therefore, the optimal matrices for

⃦⃦⃦⃦
⃦⃦⃦
⎡⎢⎣ √

𝛾(
(︁∏︀𝑖−1

𝑘=𝑗 Bx𝑘,x𝑘+1 − F𝑖−1−𝑗G𝑗H𝑗

)︁
)√︁

(1 − 𝛾)
(︁∏︀𝑖

𝑘=𝑗 Bx𝑘,x𝑘+1 − F𝑖−𝑗G𝑗H𝑗

)︁
⎤⎥⎦
⃦⃦⃦⃦
⃦⃦⃦

2

𝐹

are

H𝑗 = S(𝑟)
𝑗 V(𝑟)

𝑗
𝑇

G𝑗 = 1
√
𝛾

(B−1
x𝑖,x𝑖+1

)𝑖−1−𝑗U𝑗,1

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦

= 1
√
𝛾

(Bx𝑖,x𝑖+1)𝑗+1−𝑖U𝑗,1

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦
F = Bx𝑖,x𝑖+1

where S(𝑟)
𝑗 is 𝑟 × 𝑟 matrix with 𝑟 largest singular values, V(𝑟)

𝑗 is |𝒳 | × 𝑟 matrix

with the corresponding right singular vectors.

Proof. The eigenvalue decomposition of each of the concatenated matrices

√
𝛾

𝑖−1∏︁
𝑘=𝑗

B𝑥𝑘,𝑥𝑘+1 = √
𝛾

𝑖−1∏︁
𝑘=𝑗

Q𝑘Δ𝑘Q−1
𝑘

√
1 − 𝛾

𝑖∏︁
𝑘=𝑗

B𝑥𝑘,𝑥𝑘+1 =
√

1 − 𝛾
𝑖∏︁

𝑘=𝑗

Q𝑘Δ𝑘Q−1
𝑘
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The singular value decomposition of these two concatenated matrices

√
𝛾

𝑖−1∏︁
𝑘=𝑗

B𝑥𝑘,𝑥𝑘+1 = U𝑗,1S𝑗V𝑇
𝑗

√
1 − 𝛾

𝑖∏︁
𝑘=𝑗

B𝑥𝑘,𝑥𝑘+1 = U𝑗,2S𝑗V𝑇
𝑗

We will write the left singular vector in terms of the eigenvalue decomposition,

S𝑗, and V𝑇
𝑗

U𝑗,1 = √
𝛾

𝑖−1∏︁
𝑘=𝑗

Q𝑘Δ𝑘Q−1
𝑘 V𝑗S

−1
𝑗

U𝑗,2 =
√

1 − 𝛾
𝑖∏︁

𝑘=𝑗

Q𝑘Δ𝑘Q−1
𝑘 V𝑗S

−1
𝑗

U𝑗,2(U𝑗,1)−1 =
√︃

1 − 𝛾

𝛾
Q𝑖Δ𝑖Q−1

𝑖 =
√︃

1 − 𝛾

𝛾
Bx𝑖,x𝑖+1

Therefore, we realize that the left singular vectors are related in terms of a

scaling factor
√︁

1−𝛾
𝛾

and the matrix Bx𝑖,x𝑖+1 . Since, the difference between the

two concatenated matrices is just an F, then

F = Bx𝑖,x𝑖+1

The singular value decomposition we showed above of the concatenated matrices

is the optimal low rank approximation. The only issue is that the F might have

an effect and so we will incorporate the inverse of the F in the G𝑗 matrix as

the following

G𝑗 = 1
√
𝛾

(Bx𝑖,x𝑖+1)𝑗+1−𝑖U𝑗,1

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦
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H𝑗 = S(𝑟)
𝑗 V(𝑟)

𝑗
𝑇

In this scenario, a proof is presented that utilizes concepts from singular value

decomposition and eigenvalue decomposition to establish a relationship between

them in the case of a concatenated matrix. The relationship between these two

concepts is fundamental in understanding the underlying structure of matrices,

which has a significant impact on low rank approximation of matrices.

3.2.2 Multiple Index-Specific Posterior Inference with Fixed

DTM

In this section B ∈ R|𝒳 |×|𝒳 | is known exactly and is fixed. The messages are con-

strained m̂y𝑖→x𝑖
∈ R𝑟, where 𝑟 < |𝒳 |.

• at node y𝑖, pick a matrix H𝑖 ∈ R𝑟×|𝒳 |, to reduce the size of the message (my𝑖→x𝑖
)

to 𝑟-dimensional message (m̂y𝑖→x𝑖
) since there is a constrained link between y𝑖

and x𝑖.

m̂y𝑖→x𝑖
= H𝑖my𝑖→x𝑖

= H𝑖𝜑
(x𝑖|y𝑖)

• at node x𝑖, pick a matrix G𝑖 ∈ R|𝒳 |×𝑟 and F ∈ R|𝒳 |×|𝒳 | to calculate the forward

message

m̂x𝑖→x𝑖+1 = G𝑖m̂y𝑖→x𝑖
+ Fm̂x𝑖−1→x𝑖

= G𝑖H𝑖𝜑
(x𝑖|y𝑖) + F𝜑̂

(x𝑖|y𝑖−1
1 )

= 𝜑̂
(x𝑖+1|y𝑖) + 𝜑̂(x𝑖+1|y𝑖−1

1 )

= 𝜑̂
(x𝑖+1|y𝑖

1)

• Optimization objectives

min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︁
𝐷(px𝑖+1|y𝑖

1
(.|y̌𝑖

1)||p̂x𝑖+1|y𝑖
1
(.|y̌𝑖

1))
]︁
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min
H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F

E𝜑(x1|y1),··· ,𝜑(x𝑖−1|y𝑖−1)

[︁
𝐷(px𝑖|y𝑖−1

1
(.|y̌𝑖−1

1 )||p̂x𝑖|y𝑖−1
1

(.|y̌𝑖−1
1 ))

]︁
...

min
H1,G1

E𝜑(x1|y1)

[︁
𝐷(px2|y1(.|y̌1)||p̂x2|y1(.|y̌1))

]︁

• Using lemma 2.7 and 3.1, and assuming that the information vectors are spher-

ical symmetric and independent

min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

𝛼𝜖2

2𝑚

𝑖∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗+1 − F𝑖−𝑗G𝑗H𝑗

⃦⃦⃦2

𝐹

min
H1,··· ,H𝑖−1,G1,··· ,G𝑖−1,F

𝛼𝜖2

2𝑚

𝑖−1∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗 − F𝑖−𝑗−1G𝑗H𝑗

⃦⃦⃦2

𝐹

...

min
H1,G1

𝛼𝜖2

2𝑚 ‖B − G1H1‖2
𝐹

• We will write these objective functions as a weighted sum and then we will solve

the weighted sum

𝛼𝜖2

2𝑚 min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

[︃
𝛾1

𝑖∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗+1 − F𝑖−𝑗G𝑗H𝑗

⃦⃦⃦2

𝐹
+ 𝛾2

𝑖−1∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗 − F𝑖−𝑗−1G𝑗H𝑗

⃦⃦⃦2

𝐹

+ · · · + 𝛾𝑖 ‖B − G1H1‖2
𝐹

]︃

s.t
∑︁

𝑖

𝛾𝑖 = 1

• The summation will be rearranged so that objectives with the same matrices

G𝑗 and H𝑗 will be grouped together.

𝛼𝜖2

2𝑚 min
H1,··· ,H𝑖,G1,··· ,G𝑖,F

𝑖∑︁
𝑗=1

𝑖−𝑗+1∑︁
𝑘=1

𝛾𝑘

⃦⃦⃦
B𝑖−𝑗−𝑘+2 − F𝑖−𝑗−𝑘+1G𝑗H𝑗

⃦⃦⃦2

𝐹

• The objectives with the same matrices G𝑗 and H𝑗 will be concatenated together.
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Without loss of generality, the concatenated matrix will be shown for 𝑗 = 1, 2, 𝑖

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

√
𝛾1(B𝑖 − F𝑖−1G1H1)

√
𝛾2(B𝑖−1 − F𝑖−2G1H1)

...
√
𝛾𝑖(B − G1H1)

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

(3.1)

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

√
𝛾1(B𝑖−1 − F𝑖−2G2H2)

√
𝛾2(B𝑖−2 − F𝑖−3G2H2)

...
√
𝛾𝑖−1(B − G2H2)

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

(3.2)

⃦⃦⃦⃦
√
𝛾1(B − G𝑖H𝑖)

⃦⃦⃦⃦2

𝐹
(3.3)

where the size of the concatenated matrix depends on the value of 𝑗. More

precisely, the size of the matrix is (𝑖+ 1 − 𝑗)|𝒳 | × |𝒳 |.

• The optimization problem can be solved using the following theorem which is

very similar to theorem 3.4.

Theorem 3.5. Let B ∈ R|𝒳 |×|𝒳 |, F ∈ R|𝒳 |×|𝒳 |,G𝑗 ∈ R|𝒳 |×𝑟, and H𝑗 ∈ R𝑟×|𝒳 |

where 𝑗 ∈ {1, · · · , 𝑖}. Without loss of generality, the SVD of the concatenated

matrix at 𝑗 = 1

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

√
𝛾1B𝑖

√
𝛾2B𝑖−1

...
√
𝛾𝑖B

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1⏟  ⏞  
|𝒳 |×|𝒳 |

U1,2⏟  ⏞  
|𝒳 |×|𝒳 |

...

U1,𝑖⏟ ⏞ 
|𝒳 |×|𝒳 |

G⏟ ⏞ 
(𝑖)|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
S1⏟ ⏞ 

|𝒳 |×|𝒳 |

0(𝑖−1)|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎦ V𝑇
1⏟ ⏞ 

|𝒳 |×|𝒳 |
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where U1,𝑡 and V1 are the left and right singular vectors, and S1 are the singular

values. The optimal matrices for

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

√
𝛾1(B𝑖 − F𝑖−1G1H1)

√
𝛾2(B𝑖−1 − F𝑖−2G1H1)

...
√
𝛾𝑖(B − G1H1)

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

are

H1 = S(𝑟)
1 V(𝑟)

1
𝑇 ; G1 = 1

√
𝛾𝑖

U1,𝑖

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦ ; F = B

where S(𝑟)
1 is 𝑟 × 𝑟 matrix with 𝑟 largest singular values, and V(𝑟)

1 is |𝒳 | × 𝑟

matrix with the corresponding right singular vectors. The same will be done for

the other concatenated matrices for different 𝑗 values and the optimal matrices

are

H𝑗 = S(𝑟)
𝑗 V(𝑟)

𝑗
𝑇 ; G𝑗 = 1

√
𝛾𝑖−𝑗+1

U𝑗,𝑖−𝑗+1

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦

Theorem 3.5 is a powerful theorem where it shows how to solve a multiobjec-

tive low rank approximation problem which is of crucial importance for our

constrained information exchange problem.

Proof. Without loss of generality, we will use the case where 𝑗 = 1. The eigen-

value decomposition of the concatenated matrices in ??

√
𝛾𝑖−𝑗+1B𝑗 = √

𝛾𝑖−𝑗+1Q𝐵Δ𝑗
𝐵Q−1

𝐵 ; 𝑗 ∈ {1, · · · , 𝑖}
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The singular value decomposition based on the concatenated matrices

√
𝛾1B𝑖 = U1,1S1V𝑇

1

...
√
𝛾𝑖B = U1,𝑖S1V𝑇

1

Then we will write the left singular vectors in terms of the B, S1, and V𝑇
1 .

U1,1 = √
𝛾1B𝑖V1S

−1
1

...

U1,𝑖 = √
𝛾𝑖BV1S

−1
1

U1,𝑗−1(U1,𝑗)−1 =
√︃
𝛾𝑗−1

𝛾𝑗

BV1S
−1
1

Therefore, we realize that the left singular vectors are related in terms of a

scaling factor and the B matrix. Therefore,

F = B

The G1,H1 will be equal to the low rank approximation of the concatenated

matrix since it is the optimal approximation.

H1 = S(𝑟)
1 V(𝑟)

1
𝑇

G1 = 1
√
𝛾𝑖

U1,𝑖

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦

Using the same singular value decomposition of the concatenated matrix for

different 𝑗 values, G𝑗, and H𝑗 will be derived.
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3.2.3 Computational and Communication Complexity

The performance of the multiple index-specific posterior inference algorithm is ex-

pected to be sub-optimal due to the constrained messages and the insufficient statis-

tics. However, these constraints have the advantage of reducing communication com-

plexity, which is particularly useful in modern applications where high-dimensional

data is prevalent.

Table 3.2 provides a comparison of computational and communication complexity

for the constrained and unconstrained message passing algorithms. As shown in the

table, the computational complexity of the messages 𝑂(|𝒳 |2).

In the preceding algorithm, the DTM is utilized within the context of multiple

index-specific posterior inference. As a defining characteristic of the DTM model, the

largest singular value is 1. This implies the necessity to incorporate all the previous

observations (𝑛), yielding a total computational complexity of 𝑂(𝑛|𝒳 |2).

Conversely, there exists an alternative approach through the use of CDM. In the

CDM, the largest singular value is less than or equal to 1. This property substantiates

the possibility of dismissing the observations from earlier stages as the singular values

associated with the CDM product matrix will diminish towards an extremely small

magnitude. The theorems, namely Theorem 3.4, and 3.5, cannot be applied due

to the singularity of the CDM matrix. To utilize these theorems, it is necessary to

perturb the matrix so that it becomes non-singular. Additional details are provided

in Appendix B.

Therefore, to find the total computational complexity a set (𝒮) is constructed that

includes the observation nodes utilized in each objective, taking into consideration

that older observations might be dismissed due to the extremely small magnitude of

the singular values. The cardinality of the set is (|𝒮| = 𝑛3).

The communication complexity for my𝑖→x𝑖
is reduced from |𝒳 | to 𝑟, which is

particularly useful in the case of observation nodes with limited communication ca-

pabilities or in the case of high-dimensional data. These advantages come at the cost

of a sub-optimal algorithm performance when compared to the case of unconstrained
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messages.

Despite the sub-optimality of the algorithm, it remains a practical and useful

solution for high-dimensional data problems, particularly when communication re-

sources are limited. This scenario highlights the importance of considering the trade-

off between algorithm performance and resource utilization in modern data-driven

applications.

Constrained

Message Passing

Unconstrained

Message Passing

Computational

Complexity

mx𝑖→x𝑖+1 𝑂(|𝒳 |2) 𝑂(|𝒳 |2)

Total 𝑂(𝑛2|𝒳 |2) 𝑂(𝑛|𝒳 |2)

Communication

Complexity

my𝑖→x𝑖
𝑂(𝑟) 𝑂(|𝒳 |)

mx𝑖→x𝑖+1 𝑂(|𝒳 |) 𝑂(|𝒳 |)

Table 3.2: Computational and communication complexity comparison between the
constrained and unconstrained message passing algorithm in multiple index-specific
posterior inference. 𝑛 is the number of observation used for the posterior predication
and 𝑛2 = min{𝑛, 𝑛3}
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3.2.4 Numerical Results

This section aims to explore the performance of the constrained information exchange

message passing algorithm in multiple index-specific posterior inference, using syn-

thetic dataset. The focus will be on the case 𝐷(px3|y2
1
||p̂x3|y2

1
) and 𝐷(px4|y3

1
||p̂x4|y3

1
) as

illustrated in Fig. 3-8.

Figure 3-8: Constrained Information Exchange Message-Passing Algorithm in Multi-
ple Index-Specific Posterior Inference

3.2.4.1 Synthetic Dataset

Multiobjective Optimization Tradeoff: Fig. 3-9 exhibits the intrinsic trade-

off encountered in multiple index-specific posterior inference due to the challenge of

transmitting sufficient statistics. The fundamental issue at hand is that the optimal

solution for one objective does not invariably equate to the optimal solution for the

weighted sum. The optimal solution for the combined objectives aligns with the first

objective when the weighting coefficient, 𝛾, is assigned a value of 1, thereby fully

prioritizing the first objective. In contrast, a 𝛾 value of 0 ensures that the optimal

solution for the weighted sum adheres to the second objective, thereby focusing ex-

clusively on this latter objective. This interplay of weight assignment, as determined

by 𝛾, shows the inherent tradeoff between the two different objectives. Adjusting 𝛾

provides a method to explore the array of potential optimal solutions, and its value

must be precisely selected, considering the particular requirements and constraints of

the specific problem scenario.
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Figure 3-9: Multiobjective Optimization Tradeoff

Dependency of Error on Link Size: Fig. 3-10 illustrates the dependency be-

tween the error and the link size. As observed, there is a consistent decrease in error

with an increase in the link size. This trend is attributed to the larger volume of

information exchanged as the link size expands. Ultimately, the error drops to zero

when the link size equals the rank of the DTM matrix.

Determining Link Sizes: Guided by a Predetermined Error Threshold:

Fig. 3-11 Fig. 3-11 examines a scenario in which the objective is to limit the error

below a preset threshold. This situation calls for a strategic choice of link size that

aligns with this error constraint. As illustrated in Figure 3-11, maintaining the error

below the 5 threshold demands a minimum link size of 154 (𝑟 ≥ 154). Therefore,

while maintaining the error threshold the reduction in the size of the link is by almost

25%. This emphasizes the significance of constrained information message passing

algorithm to deal with high-dimensional data.
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Figure 3-10: Multiple Index-Specific Posterior Inference error as a function of link
size

Figure 3-11: Link Sizes Selection Based on Desired Error Threshold in the Multiple
Index-Specific Posterior Inference



Link Size Selection: Shaped by Error Threshold and Maximum Size Con-

straints: Fig. 3-12 illustrates the scenarios where the task is to maintain the error

below a particular threshold, whilst staying within specific link size constraints. Such

circumstances call for an intricate balance between these two defining parameters. As

depicted in Fig. 3-12, if the target is to cap the error at less than 5, with the link

size not surpassing 155, the suitable range for link size should fall within 154 and 155

(154 ≤ 𝑟 ≤ 155). This underscores the significance of precise link size selection, which

is shaped by both the desired error threshold and the maximum size limitations.

Figure 3-12: Link Size Selection Based on Desired Error Threshold and Maximum
Size Constraint in the Multiple Index-Specific Posterior Inference

Error Threshold Impact on Minimum Link Size: Fig. 3-13 illustrate the

trade-off between the error threshold and the corresponding minimum link size. As

observed, there is a consistent decrease in the minimum link size with an increase in

the associated error. This trend is attributed to the smaller amount of information

exchanged as the link size decreases. Fig. 3-13 emphasizes the balance between opti-

mizing resource utilization and achieving the necessary precision. As the size of the

link decreases, the system becomes more efficient in terms of resource usage. However,

it also necessitates a higher error, potentially affecting the overall performance and

accuracy of the system. The figure presents a valuable perspective on system design
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considerations in the constrained information exchange message passing algorithm in

high dimensional data.
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Figure 3-13: Error Threshold Impact on Minimum Link Size
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Chapter 4

Index-Free Posterior Inference

This chapter delves into the domain of posterior inference, specifically focusing on

index-free posteriors. In the preceding chapter, we explored index-specific posterior

inference, where nodes were examined in scenarios involving varying compression

matrices. Now, our attention turns to index-free posterior inference, which ensures a

crucial element of uniformity by employing identical compression matrices across all

nodes. This unique characteristic adds a captivating dimension to posterior inference,

unveiling new insights and opening doors to diverse opportunities for analysis.

The primary objective of this chapter is to unravel the intricacies associated with

index-free posterior inference, providing a comprehensive understanding of its under-

lying principles, practical applications, and potential benefits in the realm of statis-

tical inference. Throughout our exploration, we will navigate the theoretical founda-

tions and delve into the complexities of index-free posterior inference, shedding light

on its various aspects.

• Single-Step Index-Free Posterior Inference: In this scenario, the primary empha-

sis lies in performing posterior inference based on the most recent observation.

The goal is to identify the optimal matrices for compressing messages. Unlike

the index-specific approach, where nodes may have different compression matri-

ces, the index-free approach ensures that all nodes employ identical compression

matrices.
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• Multi-Step Index-Free Posterior Inference: In this scenario, the primary em-

phasis lies in performing posterior inference at multiple indexes, revealing the

inherent tradeoff nature of the problem. Optimization plays a crucial role in

achieving a delicate balance between various posterior inference objectives. By

solving the optimization problem, optimal compression matrices are obtained

and effectively utilized for message compression. Unlike the multiple index-

specific posterior inference approach, the multi-step index-free posterior infer-

ence employs identical compression matrices across all nodes, making it more

feasible and applicable in real-world scenarios.

4.1 Single Step Index-Free Posterior Inference

This scenario involves estimation the posterior distribution using the last observation.

In the index-free approach, the compression matrices will be the same among all

nodes, which is not the case in index-specific, as depicted in Fig. 4-1.

Figure 4-1: Constrained Information Exchange Message-Passing Algorithm in Single-
Step Index-Free Posterior Inference

4.1.1 Fixed Divergence Transfer Matrix

In this section B ∈ R|𝒳 |×|𝒳 | is known exactly and is fixed. The messages are con-

strained m̂y𝑖→x𝑖
∈ R𝑟, where 𝑟 < |𝒳 |.

B𝑥𝑖,𝑥𝑖+1 = B ; ∀𝑖
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• at node y𝑖, pick a matrix H ∈ R𝑟×|𝒳 |, to reduce the size of the message (my𝑖→x𝑖
)

to 𝑟-dimensional message (m̂y𝑖→x𝑖
) since there is a constrained link between y𝑖

and x𝑖.

m̂y𝑖→x𝑖
= Hmy𝑖→x𝑖

= H𝜑(x𝑖|y𝑖)

• at node x𝑖, pick a matrix G ∈ R|𝒳 |×𝑟 and F ∈ R|𝒳 |×|𝒳 | to calculate the forward

message

m̂x𝑖→x𝑖+1 = Gm̂y𝑖→x𝑖
= GH𝜑(x𝑖|y𝑖) = 𝜑̂

(x𝑖+1|y𝑖) = 𝜑̂
(x𝑖+1|y𝑖)

• Optimization:

min
H,G

E𝜑(x𝑖|y𝑖)

[︁
𝐷(px𝑖+1|y𝑖

(.|y̌𝑖)||p̂x𝑖+1|y𝑖
(.|y̌𝑖))

]︁
= min

H,G
E𝜑(x𝑖|y𝑖)

[︃
𝜖2

2

⃦⃦⃦⃦
𝜑(x𝑖+1|y𝑖) − 𝜑̂

(x𝑖+1|y𝑖)
⃦⃦⃦⃦2

2

]︃
(Using lemma 2.7)

= min
H,G

E𝜑(x𝑖|y𝑖)

[︃
𝜖2

2
⃦⃦⃦
B𝜑(x𝑖|y𝑖) − GH𝜑(x𝑖|y𝑖)

⃦⃦⃦2

𝐹

]︃

Using lemma 3.1 and assuming 𝜑(x𝑖|y𝑖) are spherical symmetric

= min
H,G

[︃
𝜖2

2|𝒳 |
‖(B − GH)‖2

𝐹 E𝜑(x𝑖|y𝑖)

[︂⃦⃦⃦
𝜑(x𝑖|y𝑖)

⃦⃦⃦2

2

]︂]︃

= 𝛼𝜖2

2|𝒳 |
min
H,G

[︁
‖(B − GH)‖2

𝐹

]︁
; E𝜑(x𝑖|y𝑖)

[︂⃦⃦⃦
𝜑(x𝑖|y𝑖)

⃦⃦⃦2

2

]︂
= 𝛼

By using theorem 3.2, the optimal G,H matrices

B = USV𝑇 =⇒ G = U(𝑟) ; H = S(𝑟)
𝑗 (V(𝑟)

𝑗 )𝑇 .

Even if we optimize over different 𝑖, the optimal matrices will be the same

and this is because all of the objectives are the same and have the same DTM

matrix.
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• at node x𝑖+1, we will calculate the posterior distribution

𝑝x𝑖+1|y𝑖
1
(𝑥𝑖+1|𝑦𝑖

1) = 𝑝x𝑖+1(𝑥𝑖+1) + 𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)𝑚̂x𝑖→x𝑖+1(𝑥𝑖+1)

4.1.2 Computation and Communication Complexity

The performance of the single step index-free posterior inference is expected to be sub-

optimal due to the constrained messages and the insufficient statistics. However, these

constraints have the advantage of reducing computational and communication com-

plexity, which is particularly useful in modern applications where high-dimensional

data is prevalent.

Table 4.1 provides a comparison of computational and communication complexity

for the constrained and unconstrained message passing algorithms. As shown in

the table, the computational complexity is reduced from 𝑂(|𝒳 |2) to 𝑂(𝑟|𝒳 |), where

𝑟 < |𝒳 |. This reduction in complexity is significant, particularly for models with

large states, such as language or vision models.

Furthermore, the communication complexity for my𝑖→x𝑖
is reduced from 𝑂(|𝒳 |)

to 𝑂(𝑟), which is particularly useful in the case of observation nodes with limited

communication capabilities. These advantages come at the cost of a sub-optimal

algorithm performance when compared to the case of unconstrained messages.

Despite the sub-optimality of the algorithm, it remains a practical and useful

solution for high-dimensional data problems, particularly when computational and

communication resources are limited. This scenario highlights the importance of

considering the trade-off between algorithm performance and resource utilization in

modern data-driven applications.
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Constrained

Message Passing

Unconstrained

Message Passing

Computational

Complexity

mx𝑖→x𝑖+1 𝑂(𝑟|𝒳 |) 𝑂(|𝒳 |2)

Total 𝑂(𝑛𝑟|𝒳 |) 𝑂(𝑛|𝒳 |2)

Communication

Complexity

my𝑖→x𝑖
𝑂(𝑟) 𝑂(|𝒳 |)

mx𝑖→x𝑖+1 𝑂(|𝒳 |) 𝑂(|𝒳 |)

Table 4.1: Computational and communication complexity comparison between the
constrained and unconstrained message passing algorithm in single step index-free
posterior inference. 𝑛 is the number of observation used for the posterior predication.

4.1.3 Numerical Results

This section aims to explore the performance of the constrained information exchange

message passing algorithm in single-step index-free posterior inference, using synthetic

dataset. The focus will be on the case ∑︀10
𝑗=1 𝐷(px𝑗 |y𝑗−1||p̂x𝑗 |y𝑗−1) as illustrated in Fig.

4-8.

Figure 4-2: Constrained Information Exchange Message-Passing Algorithm in Single-
Step Index-Free Posterior Inference

4.1.3.1 Synthetic Dataset

Dependency of Error on Link Size: Fig. 4-3 illustrates the dependency between

the error and the link size. As observed, there is a consistent decrease in error with an

increase in the link size. This trend is attributed to the larger volume of information

exchanged as the link size expands. Ultimately, the error drops to zero when the link

size equals the rank of the DTM matrix.
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Figure 4-3: Single Step Index-Free Posterior Inference error as a function of link size

Determining Link Sizes: Guided by a Predetermined Error Threshold:

Fig. 4-4 examines a scenario in which the objective is to limit the error below a

preset threshold. This situation calls for a strategic choice of link size that aligns

with this error constraint. As illustrated in Figure 4-4, maintaining the error below

the 5 threshold demands a minimum link size of 146 (𝑟 ≥ 146). Therefore, while

maintaining the error threshold the reduction in the size of the link is by almost

27%. This emphasizes the significance of constrained information message passing

algorithm to deal with high-dimensional data.

Link Size Selection: Shaped by Error Threshold and Maximum Size Con-

straints: Fig. 4-5 illustrates the scenarios where the task is to maintain the error

below a threshold, while staying within specific link size constraints. Such circum-

stances require balance between these two objectives. As depicted in Fig. 4-5, if the

target is to cap the error at less than 5, with the link size not surpassing 155, the

suitable range for link size (146 ≤ 𝑟 ≤ 155). This shows the significance of link size

selection, which is shaped by the error threshold and the maximum size limitations.
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Figure 4-4: Link Sizes Selection Based on Desired Error Threshold in the Single-Step
Index-Free Posterior Inference

Figure 4-5: Link Size Selection Based on Desired Error Threshold and Maximum Size
Constraint in the Single-Step Index-Free Posterior Inference



Error Threshold Impact on Minimum Link Size: Fig. 4-6 illustrate the trade-

off between the error threshold and the corresponding minimum link size. As ob-

served, there is a consistent decrease in the minimum link size with an increase in

the associated error. This trend is attributed to the smaller amount of information

exchanged as the link size decreases. Fig. 4-6 emphasizes the balance between opti-

mizing resource utilization and achieving the necessary precision. As the size of the

link decreases, the system becomes more efficient in terms of resource usage. However,

it also necessitates a higher error, potentially affecting the overall performance and

accuracy of the system. The figure presents a valuable perspective on system design

considerations in the constrained information exchange message passing algorithm in

high dimensional data.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

M
in

im
u
m

 l
in

k
 s

iz
e

Figure 4-6: Error Threshold Impact on Minimum Link Size
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4.2 Multi-Step Index-Free Posterior Inference

In this particular scenario, the task at hand is to estimate the posterior distribution

by utilizing past observations. Notably, all nodes within the system employ identical

compression matrices, which differentiates it from the index-specific approach. The

process involves solving a multi-objective optimization problem to identify the optimal

matrices for compressing messages, as depicted in Fig. 4-7. This scenario sheds light

on the inherent tradeoff nature of the problem, which stems from the challenge of

transmitting insufficient statistics.

Figure 4-7: Constrained Information Exchange Message-Passing Algorithm in Multi-
Step Index-Free Posterior Inference

4.2.1 Fixed Divergence Transfer Matrix

In this section B ∈ R|𝒳 |×|𝒳 | is known exactly and is fixed. The messages are con-

strained m̂y𝑖→x𝑖
∈ R𝑟, where 𝑟 < |𝒳 |.

• at node y𝑖, pick a matrix H ∈ R𝑟×|𝒳 |, to reduce the size of the message (my𝑖→x𝑖
)

to 𝑟-dimensional message (m̂y𝑖→x𝑖
) since there is a constrained link between y𝑖

and x𝑖.

m̂y𝑖→x𝑖
= Hmy𝑖→x𝑖

= H𝜑(x𝑖|y𝑖)

• at node x𝑖, pick a matrix G ∈ R|𝒳 |×𝑟 and F ∈ R|𝒳 |×|𝒳 | to calculate the forward

message

m̂x𝑖→x𝑖+1 = Gm̂y𝑖→x𝑖
+ Fm̂x𝑖−1→x𝑖
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= GH𝜑(x𝑖|y𝑖) + F𝜑̂
(x𝑖|y𝑖−1

1 )

= 𝜑̂
(x𝑖+1|y𝑖) + 𝜑̂(x𝑖+1|y𝑖−1

1 )

= 𝜑̂
(x𝑖+1|y𝑖

1)

• Optimization objectives

min
H,G,F

E𝜑(x1|y1),··· ,𝜑(x𝑖|y𝑖)

[︁
𝐷(px𝑖+1|y𝑖

1
(.|y̌𝑖

1)||p̂x𝑖+1|y𝑖
1
(.|y̌𝑖

1))
]︁

min
H,G,F

E𝜑(x1|y1),··· ,𝜑(x𝑖−1|y𝑖−1)

[︁
𝐷(px𝑖|y𝑖−1

1
(.|y̌𝑖−1

1 )||p̂x𝑖|y𝑖−1
1

(.|y̌𝑖−1
1 ))

]︁
...

min
H,G

E𝜑(x1|y1)

[︁
𝐷(px2|y1(.|y̌1)||p̂x2|y1(.|y̌1))

]︁

• Using lemma 2.7 and 3.1, and assuming that the information vectors are spher-

ical symmetric and independent

min
H,G,F

𝛼𝜖2

2𝑚

𝑖∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗+1 − F𝑖−𝑗GH

⃦⃦⃦2

𝐹

min
H,G,F

𝛼𝜖2

2𝑚

𝑖−1∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗 − F𝑖−𝑗−1GH

⃦⃦⃦2

𝐹

...

min
H,G

𝛼𝜖2

2𝑚 ‖B − GH‖2
𝐹

• We will write these objective functions as a weighted sum and then we will solve

the weighted sum

𝛼𝜖2

2𝑚 min
H,G,F

[︃
𝛾1

𝑖∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗+1 − F𝑖−𝑗GH

⃦⃦⃦2

𝐹
+ 𝛾2

𝑖−1∑︁
𝑗=1

⃦⃦⃦
B𝑖−𝑗 − F𝑖−𝑗−1GH

⃦⃦⃦2

𝐹

+ · · · + 𝛾𝑖 ‖B − GH‖2
𝐹

]︃

s.t
∑︁

𝑖

𝛾𝑖 = 1
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𝛼𝜖2

2𝑚 min
H,G,F

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
𝛾1 (B𝑖−𝑗+1 − F𝑖−𝑗GH)

√
𝛾1 + 𝛾2 (B𝑖−𝑗 − F𝑖−𝑗−1GH)

...
√∑︀

𝑖 𝛾𝑖 (B − GH)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

• To solve this multiobjective optimization we will use the following theorem:

Theorem 4.1. Let B ∈ R|𝒳 |×|𝒳 |, F ∈ R|𝒳 |×|𝒳 |,G ∈ R|𝒳 |×𝑟, and H ∈ R𝑟×|𝒳 |.

The SVD of the concatenated matrix

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
𝛾1B𝑖

√
𝛾1 + 𝛾2B𝑖−1

...
√∑︀

𝑖 𝛾𝑖B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1⏟  ⏞  
|𝒳 |×|𝒳 |

U1,2⏟  ⏞  
|𝒳 |×|𝒳 |

...

U1,𝑖⏟ ⏞ 
|𝒳 |×|𝒳 |

G⏟ ⏞ 
(𝑖)|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
S1⏟ ⏞ 

|𝒳 |×|𝒳 |

0(𝑖−1)|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎦ V𝑇
1⏟ ⏞ 

|𝒳 |×|𝒳 |

where U1,𝑡 and V1 are the left and right singular vectors, and S1 are the singular

values.

The optimal matrices of

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
𝛾1 (B𝑖 − F𝑖−1GH)

√
𝛾1 + 𝛾2 (B𝑖−1 − F𝑖−2GH)

...
√∑︀

𝑖 𝛾𝑖 (B − GH)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

are

H = S(𝑟)
1 V(𝑟)

1
𝑇 ; G = U1,𝑖

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦ ; F = B

where S(𝑟)
1 is 𝑟 × 𝑟 matrix with 𝑟 largest singular values, and V(𝑟)

1 is |𝒳 | × 𝑟

matrix with the corresponding right singular vectors.
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Proof. The eigenvalue decomposition of the concatenated matrices in B.1

√
𝛾1B𝑖−𝑗+1 = √

𝛾1Q𝐵Δ𝑖−𝑗+1
𝐵 Q−1

𝐵

...

B = Q𝐵Δ𝐵Q−1
𝐵

The singular value decomposition based on the concatenated matrices

√
𝛾1B𝑖 = U1,1S1V𝑇

1

...

B = U1,𝑖S1V𝑇
1

Then we will write the left singular vectors in terms of the B, S1, and V𝑇
1 .

U1,1 = √
𝛾1B𝑖V1S

−1
1

...

U1,𝑖 = BV1S
−1
1

U1,𝑗−1(U1,𝑗)−1 =

⎯⎸⎸⎷∑︀𝑗−1
𝑡=1 𝛾𝑡∑︀𝑗
𝑡=1 𝛾𝑡

BV1S
−1
1 =

⎯⎸⎸⎷𝑗−1∑︁
𝑡=1

𝛾𝑡BV1S
−1
1

Therefore, we realize that the left singular vectors are related in terms of a

scaling factor and the B matrix. Therefore,

F = B

The G,H will be equal to the low rank approximation of the concatenated

matrix since it is the optimal approximation.

H = S(𝑟)
1 V(𝑟)

1
𝑇
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G = U1,𝑖

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦

• at node x𝑖+1, we will calculate the posterior distribution

𝑝x𝑖+1|y𝑖
1
(𝑥𝑖+1|𝑦𝑖

1) = 𝑝x𝑖+1(𝑥𝑖+1) + 𝜖
√︁
𝑝x𝑖+1(𝑥𝑖+1)𝑚̂x𝑖→x𝑖+1(𝑥𝑖+1)

4.2.2 Computational and Communication Complexity

The performance of the multi-step index-free posterior inference algorithm is expected

to be sub-optimal due to the constrained messages and the insufficient statistics.

However, these constraints have the advantage of reducing communication complexity,

which is particularly useful in modern applications where high-dimensional data is

prevalent.

Table 4.2 provides a comparison of computational and communication complexity

for the constrained and unconstrained message passing algorithms. The communi-

cation complexity for my𝑖→x𝑖
is reduced from |𝒳 | to 𝑟, which is particularly useful

in the case of observation nodes with limited communication capabilities or in the

case of high-dimensional data. These advantages come at the cost of a sub-optimal

algorithm performance when compared to the case of unconstrained messages.

As shown in the table, the computational complexity is almost the same and this

is because there are no constraints on the messages mx𝑖→x𝑖+1 .

Despite the sub-optimality of the algorithm, it remains a practical and useful

solution for high-dimensional data problems, particularly when communication re-

sources are limited. This scenario highlights the importance of considering the trade-

off between algorithm performance and resource utilization in modern data-driven

applications.
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Constrained

Message Passing

Unconstrained

Message Passing

Computational

Complexity

mx𝑖→x𝑖+1 𝑂(|𝒳 |2) 𝑂(|𝒳 |2)

Total 𝑂(𝑛|𝒳 |2) 𝑂(𝑛|𝒳 |2)

Communication

Complexity

my𝑖→x𝑖
𝑂(𝑟) 𝑂(|𝒳 |)

mx𝑖→x𝑖+1 𝑂(|𝒳 |) 𝑂(|𝒳 |)

Table 4.2: Computational and communication complexity comparison between the
constrained and unconstrained message passing algorithm in multi-step index-free
posterior inference. 𝑛 is the number of observation used for the posterior predication.

4.2.3 Numerical Results

This section aims to explore the performance of the constrained information exchange

message passing algorithm in multi-step index-free posterior inference, using synthetic

dataset. The focus will be on the case ∑︀𝑖
𝑗=1 𝐷(px𝑗+1|y𝑗

1
||p̂x𝑗+1|y𝑗

1
) as illustrated in Fig.

4-8.

Figure 4-8: Constrained Information Exchange Message-Passing Algorithm in Single-
Step Index-Free Posterior Inference

4.2.3.1 Synthetic Dataset

Dependency of Error on Link Size: Fig. 4-9 illustrates the dependency between

the error and the link size. As observed, there is a consistent decrease in error with an

increase in the link size. This trend is attributed to the larger volume of information

exchanged as the link size expands. Ultimately, the error drops to zero when the link

size equals the rank of the DTM matrix.
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Figure 4-9: Multi-Step Index-Free Posterior Inference error as a function of link size

Determining Link Sizes: Guided by a Predetermined Error Threshold:

Fig. 4-10 examines a scenario in which the objective is to limit the error below a

preset threshold. This situation calls for a strategic choice of link size that aligns

with this error constraint. As illustrated in Figure 4-10, maintaining the error below

the 5 threshold demands a minimum link size of 156 (𝑟 ≥ 156). Therefore, while

maintaining the error threshold the reduction in the size of the link is by almost

22%. This emphasizes the significance of constrained information message passing

algorithm to deal with high-dimensional data.

Link Size Selection: Shaped by Error Threshold and Maximum Size Con-

straints: Fig. 4-11 illustrates the scenarios where the task is to maintain the error

below a threshold, while staying within specific link size constraints. Such circum-

stances require balance between these two objectives. As depicted in Fig. 4-11, if the

target is to cap the error at less than 5, with the link size not surpassing 160, the

suitable range for link size (156 ≤ 𝑟 ≤ 160). This shows the significance of link size

selection, which is shaped by the error threshold and the maximum size limitations.
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Figure 4-10: Link Sizes Selection Based on Desired Error Threshold in the Multi-Step
Index-Free Posterior Inference

Figure 4-11: Link Size Selection Based on Desired Error Threshold and Maximum
Size Constraint in the Multi-Step Index-Free Posterior Inference



Error Threshold Impact on Minimum Link Size: Fig. 4-12 illustrate the

trade-off between the error threshold and the corresponding minimum link size. As

observed, there is a consistent decrease in the minimum link size with an increase in

the associated error. This trend is attributed to the smaller amount of information

exchanged as the link size decreases. Fig. 4-12 emphasizes the balance between opti-

mizing resource utilization and achieving the necessary precision. As the size of the

link decreases, the system becomes more efficient in terms of resource usage. However,

it also necessitates a higher error, potentially affecting the overall performance and

accuracy of the system. The figure presents a valuable perspective on system design

considerations in the constrained information exchange message passing algorithm in

high dimensional data.
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Figure 4-12: Error Threshold Impact on Minimum Link Size
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Chapter 5

Conclusion

5.1 Summary of Work

In conclusion, this thesis has contributed to the advancement of algorithms for high-

dimensional data in probabilistic graphical models by proposing and analyzing a con-

strained information exchange message passing algorithm that leverages insufficient

statistics as messages.

Chapter 2 provided a comprehensive overview of the hidden Markov model and

introduced the modified sum product algorithm. This algorithm, formulated in terms

of the information vector and DTM/CDM matrix, enables the identification of critical

information fragments for specific inference tasks. By identifying these important

pieces of information, informed decisions can be made about which parts of the data

to prioritize and which parts can be safely dropped or simplified.

Building upon the foundations established in Chapter 2, Chapter 3 introduced the

constrained information exchange message passing algorithm. Chapter 3 introduced

the index-specific posterior inference using constrained information exchange mes-

sage passing algorithm. This sub-category of posterior inference provides a critical

examination of specific scenarios where the interest lies either in a singular posterior

inference at a specific index (referred to as single index-specific posterior inference)

or in multiple posterior inferences at specific indexes (referred to as multiple index-

specific posterior inference).

95



Chapter 4 introduced the index-free posterior inference using constrained informa-

tion exchange message passing algorithm. Unlike the index-specific approach, where

nodes may have different compression matrices, the index-free approach ensures that

all nodes employ identical compression matrices. This sub-category of posterior infer-

ence provides a critical examination of specific scenarios where the interest lies either

in a single step posterior inference (referred to as single step index-free posterior

inference) or in multi-step posterior inferences (referred to as multi-step index-free

posterior inference).

Notably, the algorithm sheds light on the trade-off between algorithm perfor-

mance and resource utilization in modern data-driven applications using synthetic

data. By reducing computational and communication complexity in various scenar-

ios, it provides a practical and valuable solution for high-dimensional data problems,

particularly when computational and communication resources are scarce.

In summary, this thesis has contributed to the field of probabilistic graphical

models through the proposal and analysis of the constrained information exchange

message passing algorithm. The algorithm’s ability to identify critical information

fragments and address the limitations of the unconstrained approach offers enhanced

scalability, practicality, and usefulness in handling high-dimensional data. These

advancements have the potential to drive advancements in data-driven research and

decision-making across various domains.

5.2 Future Work

5.2.1 Constrained Information Exchange Message Passing

Algorithm in Non-Linear Dynamical Systems

The constrained information exchange message passing algorithm has demonstrated

success in optimizing computational and communication complexity in hidden Markov

model and linear dynamical systems. This algorithm effectively identifies and trans-

mits important fragments of information, leading to improved efficiency.
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However, there remains a significant opportunity to explore the implementation

of the constrained information exchange message passing algorithm in the context of

non-linear dynamical systems. Non-linear systems are prevalent in numerous fields,

including engineering, biology, physics, mathematics, and more. Therefore, conduct-

ing an in-depth analysis of this algorithm’s performance in non-linear dynamical sys-

tems holds great significance for advancing research and applications in these domains.

By applying the constrained information exchange message passing algorithm to

non-linear dynamical systems, we aim to enhance our understanding of the complex

interactions and behaviors that arise in such systems. This exploration will enable us

to develop more efficient models, improve predictions, and optimize decision-making

processes in a wide range of practical scenarios.

Furthermore, the implications of successfully implementing this algorithm in non-

linear dynamical systems are substantial. It can potentially revolutionize various

fields by offering novel insights into intricate phenomena, aiding in the development

of more efficient systems, and facilitating advancements in diverse areas of science

and engineering.

5.2.2 Constrained Information Exchange Message Passing

Algorithm in Loopy Graphs

Real-world problems often involve complex structures represented by loopy graphs.

Effectively addressing these problems requires the development of efficient inference

algorithms that can handle the inherent challenges posed by loops. To overcome these

challenges, approximate inference algorithm is used.

In the future work, our objective is to analyze and design an innovative approx-

imate inference algorithm specifically tailored for loopy graphs. By imposing con-

straints on the information exchange process, we aim to improve the efficiency of the

inference procedure.

The utilization of constrained information exchange offers several advantages.

By selectively transmitting critical fragments of information between nodes, we can
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mitigate the computational and communication complexities associated with loopy

graphs. This approach allows us to strike a balance between accuracy and compu-

tational efficiency, making it particularly valuable for tackling large-scale, real-world

problems.

To accomplish our goals, we will employ advanced techniques from the field of

graphical models, inference algorithms, and information theory. By leveraging these

methodologies, we can optimize the information exchange process and overcome the

challenges presented by loopy graph structures.

Through extensive experimentation and analysis, we will evaluate the performance

of our proposed algorithm against benchmark datasets and established inference

methods. We will assess its accuracy, computational efficiency, and scalability in

handling different types and sizes of loopy graphs. Additionally, we will investigate

the impact of various constraints on the overall inference performance.

The findings from this research will contribute to the field of approximate inference

in graphical models, particularly in the context of loopy graphs. By uncovering

effective strategies for constrained information exchange, we can enhance our ability

to solve complex real-world problems. The implications of this study extend to diverse

domains such as computer vision, natural language processing, bioinformatics, and

social network analysis, where loopy graph structures are prevalent.

5.2.3 Constrained Information Exchange Viterbi Algorithm

The Viterbi algorithm holds immense significance in probabilistic graphical models as

it enables the identification of the most probable configuration. However, to further

enhance the algorithm’s capabilities, we propose exploring the concept of constrained

information exchange within the Viterbi framework.

In our future work, we will investigate the potential implications and benefits of

incorporating constrained information exchange into the Viterbi algorithm. By selec-

tively exchanging crucial fragments of information, we aim to improve the efficiency

and applicability of the algorithm in the case of high-dimensional data.

The introduction of constraints in the information exchange process can offer sev-
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eral advantages. By focusing on transmitting only the most relevant information

between nodes, we can significantly reduce computational and communication com-

plexity and improve overall runtime efficiency.

Our research will involve the development and analysis of the constrained infor-

mation exchange Viterbi algorithm. We will explore various techniques and method-

ologies to effectively integrate the constraints while preserving the core functionality

of the original algorithm. Additionally, we will evaluate the performance of the con-

strained information exchange Viterbi algorithm across different probabilistic graph-

ical models, assessing its impact on the quality of the final configuration.

The implications of this research extend to numerous domains where probabilistic

graphical models are widely employed, such as natural language processing, speech

recognition, and bioinformatics. By enhancing the Viterbi algorithm through con-

strained information exchange, we can improve the efficiency of model predictions,

enhance decision-making processes, and advance research in these fields.
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Appendix A

Mathematical Proofs

A.1 Proof of Lemma 2.4

log
(︃
𝑝1(𝑥)
𝑝0(𝑥)

)︃
= log

⎛⎝1 + 𝜖
𝜑1(𝑥)√︁
𝑝𝑜(𝑥)

⎞⎠
using second order taylor series

= 𝜖
𝜑1(𝑥)√︁
𝑝0(𝑥)

− 𝜖2

2
𝜑2

1(𝑥)
𝑝𝑜(𝑥) + 𝑜(𝜖2)

𝐷(p1||p2)

=
∑︁
x∈𝒳

𝑝1(x) log 𝑝1(x)
𝑝2(x)

=
∑︁
x∈𝒳

𝑝0(x) log 𝑝1(x)
𝑝2(x) +

∑︁
x∈𝒳

(𝑝1(x) − 𝑝0(x)) log 𝑝1(x)
𝑝2(x)

=
∑︁
x∈𝒳

𝑝0(x)
(︃

log 𝑝1(x)
𝑝0(x) − log 𝑝2(x)

𝑝0(x)

)︃
+
∑︁
x∈𝒳

(𝑝1(x) − 𝑝0(x))
(︃

log 𝑝1(x)
𝑝0(x) − log 𝑝2(x)

𝑝0(x)

)︃

=
∑︁
x∈𝒳

𝑝0(x)
(︃

log 𝑝1(x)
𝑝0(x) − log 𝑝2(x)

𝑝0(x)

)︃
+
∑︁
x∈𝒳

(𝜖𝜑1(𝑥)
√︁
𝑝0(𝑥))

(︃
log 𝑝1(x)

𝑝0(x) − log 𝑝2(x)
𝑝0(x)

)︃

= 𝜖
∑︁
x∈𝒳

𝑝0(x)
⎛⎝𝜑1(𝑥) − 𝜑2(𝑥)√︁

𝑝0(𝑥)

⎞⎠− 𝜖2

2
∑︁
x∈𝒳

𝑝0(x)
(︃
𝜑2

1(𝑥) − 𝜑2
2(𝑥)

𝑝0(𝑥)

)︃
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+ 𝜖2 ∑︁
x∈𝒳

(𝜑1(𝑥)
√︁
𝑝0(𝑥))

⎛⎝𝜑1(𝑥) − 𝜑2(𝑥)√︁
𝑝0(𝑥)

⎞⎠− 𝜖3

2
∑︁
x∈𝒳

(𝜑1(𝑥)
√︁
𝑝0(𝑥))

(︃
𝜑2

1(𝑥) − 𝜑2
2(𝑥)

𝑝0(𝑥)

)︃
+ 𝑜(𝜖2)

= 0 − 𝜖2

2
∑︁
x∈𝒳

(𝜑2
1(𝑥) − 𝜑2

2(𝑥)) + 𝜖2 ∑︁
x∈𝒳

𝜑1(𝑥) (𝜑1(𝑥) − 𝜑2(𝑥)) + 𝑜(𝜖2)

= 𝜖2

2 (||𝜑2||2 − ||𝜑1||2 + 2||𝜑1||2 − 2⟨𝜑1,𝜑2⟩) + 𝑜(𝜖2)

= 𝜖2

2 ||𝜑1 − 𝜑2||2 + 𝑜(𝜖2)

A.2 Proof of Lemma 2.7

𝑝x𝑖|y𝑖
1
(𝑥𝑖|𝑦𝑖

1) = 𝑝x𝑖
(𝑥𝑖)

𝑝y𝑖
1
(𝑦𝑖

1)
𝑝x𝑖|y𝑖−1

1
(𝑥𝑖|𝑦𝑖

1)𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖)𝑝y𝑖−1

1
(𝑦𝑖−1

1 )𝑝y𝑖
(𝑦𝑖)

𝑝x𝑖
(𝑥𝑖)2

= 𝑝x𝑖
(𝑥𝑖)

𝑝x𝑖|y𝑖−1
1

(𝑥𝑖|𝑦𝑖
1)𝑝x𝑖|y𝑖

(𝑥𝑖|𝑦𝑖)
𝑝x𝑖

(𝑥𝑖)2⏟  ⏞  
𝑎

𝑝y𝑖−1
1

(𝑦𝑖−1
1 )𝑝y𝑖

(𝑦𝑖)
𝑝y𝑖

1
(𝑦𝑖

1)⏟  ⏞  
𝑏−1

𝑎 = 𝑝x𝑖
(𝑥𝑖)

𝑝x𝑖|y𝑖−1
1

(𝑥𝑖|𝑦𝑖
1)𝑝x𝑖|y𝑖

(𝑥𝑖|𝑦𝑖)
𝑝x𝑖

(𝑥𝑖)2

= 𝑝x𝑖
(𝑥𝑖)

⎛⎝1 + 𝜖𝜑(x𝑖|y𝑖−1
1 )(𝑥𝑖|𝑦𝑖−1

1 )√︁
𝑝x𝑖

(𝑥𝑖)

⎞⎠⎛⎝1 + 𝜖𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖)√︁
𝑝x𝑖

(𝑥𝑖)

⎞⎠
= 𝑝x𝑖

(𝑥𝑖) + 𝜖
√︁
𝑝x𝑖

(𝑥𝑖)
[︁
𝜑(x𝑖|y𝑖−1

1 )(𝑥𝑖|𝑦𝑖−1
1 ) + 𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖)

]︁
+ 𝑜(𝜖)

𝑏 =
𝑝y𝑖−1

1
(𝑦𝑖−1

1 )𝑝y𝑖
(𝑦𝑖)

𝑝y𝑖
1
(𝑦𝑖

1)

=
∑︁

𝑥𝑖∈𝒳
𝑝x𝑖

(𝑥𝑖)
𝑝x𝑖|y𝑖−1

1
(𝑥𝑖|𝑦𝑖

1)𝑝x𝑖|y𝑖
(𝑥𝑖|𝑦𝑖)

𝑝x𝑖
(𝑥𝑖)2

=
∑︁

𝑥𝑖∈𝒳
𝑝x𝑖

(𝑥𝑖) + 𝜖
√︁
𝑝x𝑖

(𝑥𝑖)
[︁
𝜑(x𝑖|y𝑖−1

1 )(𝑥𝑖|𝑦𝑖−1
1 ) + 𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖)

]︁
+ 𝑜(𝜖)

= 1 + 𝑜(𝜖)

Combining 𝑎 and 𝑏

𝑝x𝑖|y𝑖
1
(𝑥𝑖|𝑦𝑖

1) = 𝑝x𝑖
(𝑥𝑖) + 𝜖

√︁
𝑝x𝑖

(𝑥𝑖)
[︁
𝜑(x𝑖|y𝑖−1

1 )(𝑥𝑖|𝑦𝑖−1
1 ) + 𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖)

]︁
+ 𝑜(𝜖)

𝑝x𝑖|y𝑖
1
(𝑥𝑖|𝑦𝑖

1) − 𝑝x𝑖
(𝑥𝑖)

𝜖
√︁
𝑝x𝑖

(𝑥𝑖)
= 𝜑(x𝑖|y𝑖−1

1 )(𝑥𝑖|𝑦𝑖−1
1 ) + 𝜑(x𝑖|y𝑖)(𝑥𝑖|𝑦𝑖) + 𝑜(𝜖)

102



=⇒ 𝜑(x𝑖|y𝑖
1)(.|𝑦𝑖

1) = 𝜑(x𝑖|y𝑖−1
1 )(.|𝑦𝑖−1

1 ) + 𝜑(x𝑖|y𝑖)(.|𝑦𝑖) + 𝑜(𝜖)

𝜑(x𝑖|y𝑖−1
1 )(.|𝑦𝑖−1

1 ) = Bx𝑖−1,x𝑖
𝜑(x𝑖−1|y𝑖−1

1 )(.|𝑦𝑖−1
1 )

= Bx𝑖−1,x𝑖
𝜑(x𝑖−1|y𝑖−2

1 )(.|𝑦𝑖−2
1 ) + Bx𝑖−1,x𝑖

𝜑(x𝑖−1|y𝑖−1)(.|𝑦𝑖−1) + 𝑜(𝜖)

𝜑(x𝑖|y𝑖
1)(.|𝑦𝑖

1) =
𝑖∑︁

𝑗=1

⎛⎝𝑖−1∏︁
𝑘=𝑗

Bx𝑘,x𝑘+1

⎞⎠𝜑(x𝑗 |y𝑗)(.|𝑦𝑗) + 𝑜(𝜖)

=
𝑖∑︁

𝑗=1
𝜑(x𝑖|y𝑗)(.|𝑦𝑗) + 𝑜(𝜖)
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Appendix B

Multiple Index-Specific Posterior

Inference Using CDM

Given the singularity of the CDM matrix, it is crucial to introduce perturbations in

order to transform it into a non-singular matrix. This perturbation process involves

making small adjustments to the elements of the matrix to ensure a non-zero determi-

nant. By perturbing the CDM matrix, we can guarantee that it attains full rank and

overcomes the singularity issue. These perturbations are essential for enabling the

application of relevant theorems, for the multiple index-specifc posterior inference.

B̃x𝑖,x𝑖+1 = B̂x𝑖,x𝑖+1 + 𝜖1I (B.1)

The Frobenius norm of the perturbed matrix

‖B̃x𝑖,x𝑖+1‖2
𝐹 = ‖B̂x𝑖,x𝑖+1‖2

𝐹 + 2𝜖1trace(B̂x𝑖,x𝑖+1) + 𝜖2
1|𝒳 | (B.2)

≈ ‖B̂x𝑖,x𝑖+1‖2
𝐹 (B.3)

Theorem B.1. Let B̃x𝑗 ,x𝑗+1 ∈ R|𝒳 |×|𝒳 |, F ∈ R|𝒳 |×|𝒳 |,G𝑗 ∈ R|𝒳 |×𝑟, and H𝑗 ∈ R𝑟×|𝒳 |
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where 𝑗 ∈ {1, · · · , 𝑖}. The SVD of

⃦⃦⃦⃦
⃦⃦⃦
⎡⎢⎣ √

𝛾(
(︁∏︀𝑖−1

𝑘=𝑗 B̃x𝑘,x𝑘+1

)︁
)√︁

(1 − 𝛾)
(︁∏︀𝑖

𝑘=𝑗 B̃x𝑘,x𝑘+1

)︁
⎤⎥⎦
⃦⃦⃦⃦
⃦⃦⃦

2

𝐹

=

⎡⎢⎢⎢⎢⎢⎢⎣
U𝑗,1⏟  ⏞  

|𝒳 |×|𝒳 |

U𝑗,2⏟  ⏞  
|𝒳 |×|𝒳 |

G⏟ ⏞ 
2|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

S𝑗⏟ ⏞ 
|𝒳 |×|𝒳 |

0|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎦ V𝑇
𝑗⏟ ⏞ 

|𝒳 |×|𝒳 |

Therefore, the optimal matrices are

H𝑗 = S(𝑟)
𝑗 V(𝑟)

𝑗
𝑇

G𝑗 = 1
√
𝛾

(B̃−1
x𝑖,x𝑖+1

)𝑖−1−𝑗U𝑗,1

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦

= 1
√
𝛾

(B̃x𝑖,x𝑖+1)𝑗+1−𝑖U𝑗,1

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦
F = B̃x𝑖,x𝑖+1

where S(𝑟)
𝑗 is 𝑟× 𝑟 matrix with 𝑟 largest singular values, V(𝑟)

𝑗 is |𝒳 | × 𝑟 matrix is the

corresponding right singular vectors.

Theorem B.2. Let B̃ ∈ R|𝒳 |×|𝒳 |, F ∈ R|𝒳 |×|𝒳 |,G𝑗 ∈ R|𝒳 |×𝑟, and H𝑗 ∈ R𝑟×|𝒳 | where

𝑗 ∈ {1, · · · , 𝑖}. Without loss of generality, the SVD of the concatenated matrix at

𝑗 = 1

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

√
𝛾1B̃𝑖

√
𝛾2B̃𝑖−1

...
√
𝛾𝑖B̃

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1⏟  ⏞  
|𝒳 |×|𝒳 |

U1,2⏟  ⏞  
|𝒳 |×|𝒳 |

...

U1,𝑖⏟ ⏞ 
|𝒳 |×|𝒳 |

G⏟ ⏞ 
(𝑖)|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
S1⏟ ⏞ 

|𝒳 |×|𝒳 |

0(𝑖−1)|𝒳 |×|𝒳 |

⎤⎥⎥⎥⎦ V𝑇
1⏟ ⏞ 

|𝒳 |×|𝒳 |

where U1,𝑡 and V1 are the left and right singular vectors, and S1 are the singular

106



values. The optimal matrices for

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

√
𝛾1(B̃𝑖 − F𝑖−1G1H1)

√
𝛾2(B̃𝑖−1 − F𝑖−2G1H1)

...
√
𝛾𝑖(B̃ − G1H1)

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦

2

𝐹

are

H1 = S(𝑟)
1 V(𝑟)

1
𝑇 ; G1 = 1

√
𝛾𝑖

U1,𝑖

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦ ; F = B̃

where S(𝑟)
1 is 𝑟 × 𝑟 matrix with 𝑟 largest singular values, and V(𝑟)

1 is |𝒳 | × 𝑟 matrix

with the corresponding right singular vectors. The same will be done for the other

concatenated matrices for different 𝑗 values and the optimal matrices are

H𝑗 = S(𝑟)
𝑗 V(𝑟)

𝑗
𝑇 ; G𝑗 = 1

√
𝛾𝑖−𝑗+1

U𝑗,𝑖−𝑗+1

⎡⎢⎣ I𝑟×𝑟

0|𝒳 |−𝑟×𝑟

⎤⎥⎦
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