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Abstract

Accurate numerical models are essential to predict the complex evolution of rapidly
changing sea ice conditions and study impacts on climate and navigation. However,
sea ice models contain uncertainties associated with initial conditions and forcing
(wind, ocean), as well as with parameter values, functional forms of the constitutive
relations, and state variables themselves, all of which limit predictive capabilities. Due
to the multiple types and scales of sea ice and the complex nonlinear mechanics and
high dimensionality of differential equations, efficient ocean and sea ice probabilistic
modeling, Bayesian inversion, and machine learning are challenging. In this work, we
implement a deterministic 2D viscoplastic sea ice solver and derive and implement
new sea ice probabilistic models based on the dynamically orthogonal (DO) equations.

We focus on the stochastic two-dimensional sea ice momentum equations with
nonlinear viscoplastic constitutive law. We first implement and verify a determin-
istic 2D viscoplastic sea ice solver. Next, we derive the new stochastic Sea Ice Dy-
namically Orthogonal equations and develop numerical schemes for their solution.
These equations and schemes preserve nonlinearities in the underlying spatiotem-
poral dynamics and evolve the non-Gaussianity of the statistics. We evaluate and
illustrate the new stochastic sea ice modeling and schemes using idealized stochastic
test cases. We employ two stochastic test cases with different types of sea ice: ice
sheets and frozen ice cover with uncertain initial velocities. We showcase the ability
to evolve non-Gaussian statistics and capture complex nonlinear dynamics efficiently.
We study the convergence to the physical discretization, and stochastic convergence
to the stochastic subspace size and coefficient samples. Finally, we assess and show
significant computational and memory efficiency compared to the direct Monte Carlo
method.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

In recent years, the need for accurate simulation and prediction of rapidly evolving

sea ice conditions has become increasingly apparent, and has quickly become one

of the "grand challenges of climate science" [49]. Sea ice extent in the Arctic has

been drastically reducing since continuous satellite observations began in November

1978 [77]. Satellite data indicates summer ice melting at an increasing rate year after

year, with new ice forming at slower rates in the winter to compensate for the losses.

There is also growing consensus towards the possibility of an "ice-free" summer in

the Arctic sometime in the next half-century, with significant loss in the ice thickness

and concentration [89].

Sea ice conditions have a great impact on our oceans, climate, wildlife, and society.

The ice layer acts as an important physical barrier and regulates heat, momentum,

and water vapor exchange between the ocean and the atmosphere [98]. It reduces

the amount of sunlight absorbed by the ocean, and depending on the thickness, acts

as an insulator between the air and the ocean [54]. Sea ice decline has various local

and global effects on the ocean, weather, and climate [121]. The local effects in-

clude an increase in evaporation, moisture, cloud cover, and precipitation, and new

variability in ocean flows and mixing. Globally, there is a significant probability for

major changes in the ocean circulation patterns with warmer winters in mid-latitude

continents [48, 121]. Sea ice also affects local biodiversity. Summer melting along the

ice edges releases trapped nutrients into the ocean, which increases the concentra-

15



tion of phytoplankton and attracts predators such as whales to the ice edge [52, 25].

The rapidly changing sea ice conditions also affect the migratory patterns of land

mammals such as polar bears, increasing the frequency of long-distance swimming

[91]. There are also major economic and security implications of the changing ice

conditions [7]. Decreasing ice extent has led to improved access near the Arctic for

oil and gas exploration [4]. Another impact is the possible opening up of the North-

ern Sea Route (NSR), Northeast Passage (NEP), and Northwest Passage (NWP) for

shorter Arctic shipping between Canada, the United States, Northern Europe and

Asia [39, 40].

Hence, it is abundantly clear that there is a need to accurately simulate the sea

ice velocities, thickness, and concentration, over multiple scales in time and space.

However, this is challenging since sea ice exhibits complex nonlinear material behavior

and can exist in forms such as pancakes, floes, and sheets, each with vastly different

dynamics [107, 24]. At the scales of today’s regional models to Earth Systems Models

(ESMs), the numerical resolution ranges from about 10 to 100 km, and sea ice is

treated as a continuum [45]. Sea ice was first modeled as a viscous fluid, but these

models failed to capture the irreversible formations of leads and ridges under tensile

and compressive stresses, respectively [38]. This led to a shift to modeling ice as an

elastic-plastic material [85]. Hibler further refined this model using an elliptic yield

curve and a normal flow rule, coming up with the Viscous-Plastic (VP) constitutive

law, which is now used as the predominant model of choice for various ESMs [37, 45].

This choice was motivated by the observation that collections of plastic sea ice floes

behave in an averaged viscous behavior at large length- and time-scales [38]. Other

simpler models based on the cavitating fluid approximation have been proposed but

do not lead to realistic behavior except when averaged wind forcing is used [22].

The VP model was first solved using a modified Euler time step with successive

overrelaxation [37]. This method was refined by [124] to include multiple pseudo-

timesteps. This led to the widely used standard semi-implicit solver. Another ap-

proach proposed by [43, 42] added an additional artificial elastic term to the VP

model to create the Elastic-Viscous-Plastic (EVP) model. This allowed for fully ex-
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plicit numerical schemes, which weren’t possible for the original VP model due to

restrictions on the time step to be of the order of seconds for grid resolutions of 10-

100 km for numerical stability [74]. However, it was shown that the EVP model could

also result in significantly different solutions from the original VP model, due to the

usage of smaller viscosities [81, 79]. More recently, fully implicit solvers utilizing the

Jacobian-Free Newton-Krylov method have been proposed for modeling sea ice [57]

with parallel implementations [80]. This approach leads to more accurate solutions

but is not guaranteed to numerically converge, which has led to efforts to improve

the convergence of solutions [58, 106, 86, 74]. Other methods for solving differential

equations governing sea ice have also been recently proposed based on Lagrangian

approaches [95] and using the Least Squares Finite Element Method [104, 105].

Despite advances in numerical models and methods, there is still significant un-

certainty in sea ice predictions [49, 122]. As described earlier, current numerical

models use various constitutive formulations and heuristic parameters depending on

the modeling length scales, time scales, geographical region, and external conditions

[84]. There is also uncertainty associated with initial conditions and external forcing

from the wind and ocean fields [6, 62, 65]. Quantifying and predicting the uncertainty

of sea ice fields, parameters, and models themselves is thus needed. Such stochastic

modeling extends deterministic field estimates to stochastic field and probability den-

sity estimates. When uncertainties and nonlinear dynamics are significant, the result

is richer and more complete as it predicts the different possibilities and likelihoods.

This allows Bayesian data assimilation [97, 26], quantitative risk assessment [3, 114],

and Bayesian learning of dynamical models [82, 31]. Therefore, developing proba-

bilistic modeling and uncertainty quantification for sea ice is useful but also crucial

for various stakeholders including local populations, forecasters, scientists, and policy

and decision-makers [41, 110, 5].

Probabilistic modeling of sea ice is an emerging field, with ensemble methods

being used to study the sensitivity of numerical models to specific uncertainties [16].

Various studies have compared and contrasted the effect of model rheology [18] on

sea ice forecasts [125, 46, 51]. Many studies have focused on parametric sensitivity
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analysis for global sea ice models [94, 119, 90, 120] using ensemble-based methods.

The quantification of the sensitivity and uncertainty of ice sheet thickness to initial

conditions has also been studied [9]. Some works have focused on the impact of

uncertainty in parameters and external forcing such as ice cohesion and wind forcing

on sea ice forecasts [93, 14].

1.1 Present Research

Although these ensemble-based methods have shown promise, they require a large

number of expensive Monte Carlo simulations to handle the complex nonlinear sea

ice dynamics and non-Gaussian statistics, which can quickly become computationally

intractable. The limited ensemble size of these methods reduces the accuracy of tail

estimates for risk and extreme event predictions. These prior advances and limitations

lead to several key questions that motivate the present research. They include: How

do we handle the complex nonlinear viscoplastic mechanics of sea ice in a stochastic

context? Can we obtain stochastic formulations that represent the dominant uncer-

tainties in sea ice modeling in a rigorous probabilistic setting? How can we perform

efficient, accurate, and adaptive stochastic reduction, providing rich probabilistic sea

ice predictions at a much-reduced cost? Considering these challenges and questions,

the Dynamically Orthogonal (DO) equations [102, 19, 20] and Dynamical Low-Rank

Approximations [50, 12] offer a principled approach for dynamic model-order reduc-

tion and uncertainty quantification. These equations preserve the nonlinearity of the

underlying partial differential equations (PDEs), providing a powerful tool for un-

certainty prediction. They can also be employed with the Gaussian Mixture Model

filter (GMM-DO) [108, 109] and allow for Bayesian data assimilation and learning of

parameters, states, and even model formulations themselves [82].

In this work, we focus on probabilistic sea ice predictions and develop new stochas-

tic sea ice models and schemes using the Dynamically Orthogonal (DO) equations.

We first implement and verify a deterministic 2D viscoplastic sea ice solver. Next, we

derive and implement the new stochastic Sea Ice Dynamically Orthogonal equations.
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We illustrate and evaluate our new stochastic sea ice modeling and schemes using

a set of idealized test cases. We study the convergence to the physical discretiza-

tion, stochastic subspace size, and coefficient samples, and asses the computational

costs. Finally, we showcase the ability to evolve uncertainties and capture nonlinear

spatiotemporal dynamics and non-Gaussian statistics efficiently.

1.2 Thesis Outline

The thesis is organized as follows:

• Chapter 2: Provides an overview of the deterministic and stochastic sea ice

equations, and the problem statement.

• Chapter 3 : Provides the derivation and implementation of the new stochastic

Sea Ice-Dynamic Orthogonal (DO) equations.

• Chapter 4: Details the results and discussion of application to idealized test

cases of sea ice blocks surrounded by the ocean.

• Chapter 5: Highlights the summary of the results and possible extensions of the

work.
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Chapter 2

Background and Problem Statement

In this chapter, we describe the deterministic sea ice governing equations. Next, the

stochastic sea ice equations are introduced, and the problem statement is posed.

2.1 Deterministic Sea Ice Equations

We consider sea ice blocks surrounded by land or ocean in two-dimensional space.

Cartesian coordinates are used with x = (𝑥, 𝑦) ∈ 𝒟 denoting the spatial coordinates

in the horizontal plane with î , ĵ , k̂ as the Cartesian unit vectors. We are interested

in evolving the sea ice velocities u = 𝑢i + 𝑣ĵ , the height of the sea ice column ℎ, and

the sea ice concentration or volume fraction 𝐴 over time 𝑡 [59, 44, 37]. Figure 2-1

illustrates a generic model domain and sea ice variables and parameters.

Given the large ratio between the horizontal and vertical scales for typical sea ice

problems [15], the momentum equations are posed in 2D as follows [37]:

𝜌ℎ
𝐷𝑢

𝐷𝑡
= −𝜌ℎ𝑓(�̂� × 𝑢)− 𝜏𝑜𝑐𝑒𝑎𝑛 + 𝜏𝑤𝑖𝑛𝑑 +∇ · 𝜎 − 𝜌ℎ𝑔∇𝐻𝑑 (2.1)

where 𝜌 is the density of ice, 𝑓 is the Coriolis parameter, 𝜏𝑜𝑐𝑒𝑎𝑛 and 𝜏𝑤𝑖𝑛𝑑 are ocean

drag and wind stress forcings, 𝜎 is the Cauchy stress (internal stress) of the sea

ice which depends on the rheology, and 𝐻𝑑 is the sea surface height. The 𝐷
𝐷𝑡

term

is the total material derivative which accounts for temporal changes and advection.
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Figure 2-1: Illustration of the model domain and sea ice variables considered in the
deterministic setting. The 2D 𝑥 = (𝑥, 𝑦) domain contains sea ice blocks surrounded
by land or ocean. We are interested in modeling the sea ice velocities 𝑢(𝑥, 𝑡), sea ice
height ℎ(𝑥, 𝑡), and sea ice concentration 𝐴(𝑥, 𝑡). The set of model parameters are
denoted by 𝜃.

However, due to the relatively low velocities of pack ice, the advective terms are orders

of magnitude smaller compared to the nonlinear diffusion and forcing [88, 43].

There are many models for the wind and ocean drag forcing. One of then uses an

empirical quadratic law with a constant turning angle [85]:

𝜏𝑜𝑐𝑒𝑎𝑛 = 𝜌𝑤𝐶𝑑𝑤|𝑢− 𝑢𝑤|
(︀
(𝑢− 𝑢𝑤) cos 𝜃𝑤 + (�̂� × (𝑢− 𝑢𝑤)) sin 𝜃𝑤

)︀
(2.2)

𝜏𝑎𝑖𝑟 = 𝜌𝑎𝐶𝑑𝑎|𝑢𝑎|
(︀
(𝑢𝑎) cos 𝜃𝑎 + (�̂� × (𝑢𝑎)) sin 𝜃𝑎

)︀
(2.3)

where 𝜌𝑎 and 𝜌𝑤 are the densities of air and water respectively, ua and uw are

wind and ocean velocities (in some cases, they are set to their geostrophic component

[57]), k̂ is the Cartesian co-ordinate in the vertical direction, 𝐶𝑑𝑎 and 𝐶𝑑𝑤 are the

drag coefficients of wind and water, respectively. It should be noted that in typical

problems of interest, the wind velocity is orders of magnitude greater than the sea ice

velocity.

While various rheologies have been proposed for modeling sea ice dynamics, the

viscoplastic (VP) rheology provided by Hibler [37] is the most widely used in practice
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and is summarized below. The internal stress of sea ice is modeled as

𝜎𝑖𝑗 = 2𝜂�̇�𝑖𝑗 + (𝜁 − 𝜂)�̇�𝑘𝑘 𝛿𝑖𝑗 −
𝑃𝛿𝑖𝑗
2

(2.4)

where 𝑃 is the internal ice strength or pressure, �̇� is the symmetric velocity gradient,

and 𝜁 and 𝜂 are the non-linear bulk and shear viscosities.

Since sea ice is a compressible material, the internal ice strength or pressure 𝑃 is

characterized using an equation of state that depends on the sea ice height ℎ and sea

ice concentration 𝐴 as follows [37]:

𝑃 = ℎ𝑃 *𝑒𝑥𝑝[−𝐶(1− 𝐴𝑖𝑐𝑒)] (2.5)

where 𝐶 and 𝑃 * are empirical constants (with typical values of 𝐶 = 20 and 𝑃 * =

27.5× 103𝑁𝑚−2).

To account for the nonlinear viscoplastic behavior of sea ice, Hibler’s model related

the viscosities to the velocity gradients and to the internal pressure using an elliptical

yield curve with a normal flow rule, i.e.,

𝜁 =
𝑃

2∆

𝜂 =
𝜁

𝑒2

(2.6)

where 𝑒 = 2 is the principal axis ratio of the elliptic yield curve used in the plastic

law and ∆ is a viscosity factor defined as follows,

∆ =

[︂
(1 +

1

𝑒2
)(�̇�211 + �̇�222) + (

4

𝑒2
)�̇�212 + 2(1− 1

𝑒2
)(�̇�11�̇�22)

]︂ 1
2

(2.7)

It can be seen that lim
�̇�→0

𝜁 = ∞ and lim
�̇�→0

𝜂 = ∞, hence to prevent numerical blow-up,

the viscosities are capped explicitly as follows:

𝜁 = 𝑚𝑖𝑛

(︂
𝑃

2∆
, 𝑘𝑃

)︂
(2.8)
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where 𝑘 = 2.5× 108 is a capping parameter [37]. Although this capping prevents sin-

gularities, it is not continuously differentiable. Hence, an alternate capping proposed

by [57] using a hyperbolic function is used instead,

𝜁 = 𝑘𝑃 tanh

(︂
1

2∆𝑘

)︂
(2.9)

Finally, the continuity equations for sea ice height and sea ice concentration are

given by,
𝜕𝐴

𝜕𝑡
+∇ · (𝐴𝑢) = 𝑆𝑎 (2.10)

𝜕ℎ

𝜕𝑡
+∇ · (ℎ𝑢) = 𝑆ℎ (2.11)

where 𝑆𝑎 and 𝑆ℎ are forcing terms that incorporate the effects of thermodynamics

such as freezing, melting, and redistribution or convergence and divergence of mass

that leads to the formation of leads and ridges.

For compact notation, we concatenate all the state variables and denote the re-

sulting vector by

𝜓(𝑥, 𝑡) =

⎡⎢⎢⎢⎣
𝑢(𝑥, 𝑡)

𝐴(𝑥, 𝑡)

ℎ(𝑥, 𝑡)

⎤⎥⎥⎥⎦ (2.12)

where x is the position vector in the 2D domain.

The complete governing partial differential equations (PDEs) are thus

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) =

⎡⎢⎢⎢⎢⎣
1
𝜌ℎ

(︂
− 𝜌ℎ𝑓(�̂� × 𝑢)− 𝜏𝑜𝑐𝑒𝑎𝑛 + 𝜏𝑤𝑖𝑛𝑑 +∇ · 𝜎 − 𝜌ℎ𝑔∇𝐻𝑑

)︂
−∇ · (𝐴𝑢) + 𝑆𝑎

−∇ · (ℎ𝑢) + 𝑆ℎ

⎤⎥⎥⎥⎥⎦ (2.13)

The result 2.13 is a coupled system of stiff PDEs that govern the sea ice dynamics.

This equation can be represented in a compact manner as

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = ℒ[𝜓(𝑥, 𝑡), 𝜃] (2.14)
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where the vector 𝜃 contains all the parameters used in the model equations ℒ.

2.2 Stochastic Sea Ice Equations

We now consider the problem of modeling sea ice under uncertainty as a stochastic

dynamical system. Such a system can have multiple sources of uncertainty including

uncertain initial conditions, uncertain boundary conditions, uncertain forcing, uncer-

tain model parameters, and uncertain model formulations themselves [65, 63, 82, 31].

As described in Chapter 1, all of these types of uncertainties play a role in sea ice fore-

casts. There is indeed significant uncertainty in the predictions of sea ice models due

to unknown initial conditions [6], boundary conditions and external forcing [14, 93],

parameters values [92, 120], and competing model formulations [84] and rheologies

[125, 46, 51]. Figure 2-2 illustrates a generic model domain with uncertain states and

parameters.

Figure 2-2: Illustration of the model domain and sea ice variables considered in the
stochastic setting. The 2D model domain contains uncertain sea ice blocks surrounded
by land or ocean. We model the stochastic sea ice velocities 𝑢(𝑥, 𝑡;𝜔), stochastic
sea ice height ℎ(𝑥, 𝑡;𝜔), and stochastic sea ice concentration 𝐴(𝑥, 𝑡;𝜔). The set of
uncertain model parameters are denoted by 𝜃(𝜔).

The sea ice state (Eq. 2.12) is then uncertain and represented as a stochastic

field 𝜓(𝑥, 𝑡;𝜔) where 𝜔 ∈ Ξ, where Ξ is a measurable sample space equipped with an

appropriate 𝜎-algebra ℱ and probability measure 𝜇. The deterministic PDEs (2.14)
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then become a stochastic PDEs (SPDEs) as follows,

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡;𝜔) = ℒ[𝜓(𝑥, 𝑡;𝜔), 𝜃(𝜔);𝜔] (2.15)

Modifying equation (2.13) to incorporate uncertainties in the states 𝜓(𝑥, 𝑡;𝜔) and

parameters 𝜃(𝜔), we obtain,

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡;𝜔) =

⎡⎢⎢⎢⎣
−𝑓(�̂� × 𝑢(𝑥, 𝑡;𝜔))− 1

𝜌ℎ(𝑥,𝑡;𝜔)

(︀
𝜏𝑜𝑐𝑒𝑎𝑛(𝜃(𝜔)) + 𝜏𝑤𝑖𝑛𝑑(𝜃(𝜔)) +∇ · 𝜎(𝜃(𝜔))

)︀
− 𝑔∇𝐻𝑑

−∇ · (𝐴(𝑥, 𝑡;𝜔)𝑢(𝑥, 𝑡;𝜔)) + 𝑆𝑎(𝜃(𝜔))

−∇ · (ℎ(𝑥, 𝑡;𝜔)𝑢(𝑥, 𝑡;𝜔)) + 𝑆ℎ(𝜃(𝜔))

⎤⎥⎥⎥⎦
(2.16)

Uncertainties in the model equations could also be incorporated in a similar fashion

and have been performed for fluid dynamics and biogeochemical models [82, 31]. We

refer to these papers and to [83, 27] for more details.

2.3 Problem Statement

In this work, we start by considering the case where the sea ice height and concentra-

tions are known, and the uncertainty is purely in the sea ice velocities and parameters.

This is in part because we focus on the specific challenges of sea ice dynamics and we

know how to deal with classic advection equations with uncertainties [117, 112, 19].

Solving the momentum equations of sea ice with their nonlinear viscous-plastic behav-

iors is considered more challenging due to their stiffness than the advection equations

for evolving the sea ice height and concentration [106]. We also don’t consider the

effects of Coriolis forcing and the sea surface tilt [42] as this is also more standard

[113, 115]. The first goal is to predict the stochastic sea ice velocity 𝑢(𝑥, 𝑡;𝜔) and

its probability density distribution in a principled fashion, at higher accuracy and

reduced computational cost compared to direct ensemble methods.

Hence, the problem statement for this thesis is to evolve the uncertain sea ice
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velocities and their probabilities in space and time, using their governing SPDEs

𝜌ℎ
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡;𝜔) = −𝜏𝑜𝑐𝑒𝑎𝑛(𝜃(𝜔)) + 𝜏𝑤𝑖𝑛𝑑(𝜃(𝜔)) +∇ · 𝜎(𝜃(𝜔)) (2.17)

Again, while these SPDEs may appear simple to handle, the divergence of stress

tensor term is highly nonlinear from Equations 2.4, 2.6 and 2.7, and requires special

treatment. In general, the boundary conditions for Equation 2.17 would be stochastic

and we refer to [28] for related schemes.
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Chapter 3

Methodology

In this chapter, we provide an overview of the Dynamically Orthogonal equations and

derive the Dynamically Orthogonal-Sea Ice equations for stochastic sea ice modeling.

3.1 Overview of Dynamically Orthogonal Equations

The Dynamically Orthogonal (DO) equations [102, 103, 117] are dynamic instantaneously-

optimal reduced-order equations to evolve the dominant uncertainty in high-dimensional

stochastic dynamical systems [20, 19, 21]. For a generic stochastic field 𝑢(𝑥, 𝑡;𝜔) gov-

erned by a stochastic PDE

𝜕𝑢(𝑥, 𝑡;𝜔)

𝜕𝑡
= ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔] (3.1)

with initial condition

𝑢(𝑥, 0;𝜔) = 𝑢0(𝑥;𝜔) (3.2)

where 𝑥 ∈ 𝒟, 𝑡 ∈ 𝒯 and 𝜔 ∈ Ξ. The DO decomposition is a dynamic extension of

the truncated Karhunen-Loeve decomposition [1, 55, 78]:

𝑢(𝑥, 𝑡;𝜔) = 𝑢(𝑥, 𝑡) +

𝑛𝑠,𝑢∑︁
𝑖=1

�̃�𝑖(𝑥, 𝑡)𝑌𝑖(𝑡;𝜔) (3.3)

29



where 𝑢(𝑥, 𝑡) is the mean field, �̃�𝑖(𝑥, 𝑡) are orthonormal modes for the stochastic

subspace of size 𝑛𝑠,𝑢, and 𝑌𝑖(𝑡;𝜔) are zero-mean stochastic coefficients. It can be

shown that other methods such as polynomial chaos expansion [23, 123] are a subset

of DO equations with additional constraints [102]. A significant advantage of the DO

equations for stochastic dynamical systems is that both the orthonormal modes as

well as the stochastic coefficients are evolved over time.

Next, the DO decomposition (3.3) is inserted into Equation 3.1, and a gauge

condition of dynamical orthogonality is enforced on the modes for all times:

⟨
𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
, �̃�𝑗(𝑥, 𝑡)

⟩
= 0 (3.4)

∀𝑖, 𝑗 = 1, 2, ...𝑛𝑠,𝑢. The mean, mode, and stochastic coefficient evolution equations

can then be derived following [101, 102],

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= E

[︀
ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔]

]︀
(3.5a)

𝜕�̃�𝑖(𝑥, 𝑡)

𝜕𝑡
=

𝑛𝑠,𝑢∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

𝜋⊥
𝑢

[︀
E[𝑌𝑗(𝑡, 𝜔)ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔]

]︀]︀
, 𝑖 ∈ {1, 2, ...𝑛𝑠,𝑢} (3.5b)

𝑑𝑌𝑖(𝑡;𝜔)

𝑑𝑡
= ⟨ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔]−E

[︀
ℒ[𝑢(𝑥, 𝑡;𝜔);𝜔]

]︀
, �̃�𝑖(𝑥, 𝑡)⟩, 𝑖 ∈ {1, 2, ...𝑛𝑠,𝑢}

(3.5c)

where

𝐶𝑌𝑖𝑌𝑗 = E[𝑌𝑖(𝑡;𝜔)𝑌𝑗(𝑡;𝜔)] (3.6)

and

𝜋⊥
𝑢 (𝑥) = 𝑥− 𝜋𝑢(𝑥) = 𝑥−

𝑛𝑠,𝑢∑︁
𝑖=1

⟨𝑥, �̃�𝑖(𝑥, 𝑡)⟩�̃�𝑖(𝑥, 𝑡) (3.7)

are the covariance of the coefficients, and the projection operator respectively.

The main advantage of the DO equations is its limited assumption (Equation

3.3) and computational efficiency (Equation 3.5). Up to the truncation to the DO
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subspace, the DO equations preserve the nonlinear dynamics and non-Gaussian statis-

tics. The computational efficiency is in part because the equations to be solved are

only 1 deterministic PDE for the mean, 𝑛𝑠,𝑢 deterministic PDEs for the modes, and,

if a Monte-Carlo approach is employed for the DO coefficients, 𝑛𝑟 × 𝑛𝑠,𝑢 stochastic

ODEs for the coefficients. This is in comparison to solving 𝑛𝑟 PDEs, one for each

realization, when a direct ensemble Monte-Carlo method is employed. In typical ap-

plications, 𝑛𝑠,𝑢 ≪ 𝑛𝑟, which makes the DO equations very efficient in evolving the

uncertainties of stochastic PDEs.

3.2 Stochastic Dynamically Orthogonal Sea Ice Equa-

tions

We follow the approach described above and derive the DO Sea Ice equations for

stochastic sea ice modeling. We begin from Equation 2.14 and restrict it to only

describe the evolution of the sea ice velocity field 𝑢(𝑥):

𝜓(𝑥, 𝑡) =

⎡⎣𝑢(𝑥, 𝑡)
𝑣(𝑥, 𝑡)

⎤⎦ (3.8)

where 𝑢(𝑥) = 𝑢(𝑥)̂𝑖+ 𝑣(𝑥)�̂�. The governing equations are then

𝜕𝑢

𝜕𝑡
=

1

𝜌ℎ

(︂
− 𝜕𝑃

2𝜕𝑥
+

𝜕

𝜕𝑥

[︂
(𝜂 + 𝜁)

𝜕𝑢

𝜕𝑥

]︂
+

𝜕

𝜕𝑥

[︂
(𝜁 − 𝜂)

𝜕𝑣

𝜕𝑦

]︂
(3.9a)

+
𝜕

𝜕𝑦

[︂
𝜂
𝜕𝑢

𝜕𝑦

]︂
+

𝜕

𝜕𝑦

[︂
𝜂
𝜕𝑣

𝜕𝑥

]︂
+ 𝜏𝑤𝑖𝑛𝑑

)︂
𝜕𝑣

𝜕𝑡
=

1

𝜌ℎ

(︂
− 𝜕𝑃

2𝜕𝑥
+

𝜕

𝜕𝑦

[︂
(𝜂 + 𝜁)

𝜕𝑣

𝜕𝑦

]︂
+

𝜕

𝜕𝑦

[︂
(𝜁 − 𝜂)

𝜕𝑢

𝜕𝑥

]︂
(3.9b)

+
𝜕

𝜕𝑥

[︂
𝜂
𝜕𝑢

𝜕𝑦

]︂
+

𝜕

𝜕𝑥

[︂
𝜂
𝜕𝑣

𝜕𝑥

]︂
+ 𝜏𝑤𝑖𝑛𝑑

)︂
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For compact notation, we define the following:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓1(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦, 𝑡)

𝑓2(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦, 𝑡)

𝑓3(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦, 𝑡)

𝑓4(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦, 𝑡)

𝑓5(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦, 𝑡)

𝑓6(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦, 𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝜂 + 𝜁)𝑢𝑥

(𝜁 − 𝜂)𝑣𝑦

𝜂𝑢𝑦

𝜂𝑣𝑥

(𝜂 + 𝜁)𝑣𝑦

(𝜁 − 𝜂)𝑢𝑥

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.10)

where 𝑥 and 𝑦 denote gradients in the x and y directions respectively, i.e, 𝑢𝑥 = 𝜕𝑢
𝜕𝑥

,

𝑢𝑦 =
𝜕𝑢
𝜕𝑦

, 𝑣𝑥 = 𝜕𝑣
𝜕𝑥

and 𝑣𝑦 = 𝜕𝑣
𝜕𝑦

. Hence,

𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

1

𝜌ℎ

⎡⎣− 𝜕𝑃
2𝜕𝑥

+ 𝜕𝑓1
𝜕𝑥

+ 𝜕𝑓2
𝜕𝑥

+ 𝜕𝑓3
𝜕𝑦

+ 𝜕𝑓4
𝜕𝑦

+ 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑜𝑐𝑒𝑎𝑛

− 𝜕𝑃
2𝜕𝑥

+ 𝜕𝑓5
𝜕𝑦

+ 𝜕𝑓6
𝜕𝑦

+ 𝜕𝑓3
𝜕𝑥

+ 𝜕𝑓4
𝜕𝑥

+ 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑜𝑐𝑒𝑎𝑛

⎤⎦ (3.11)

Note that in Equation (3.11), the functions 𝑓1 and 𝑓2 are only present in the 𝑢-

momentum equation while 𝑓5 and 𝑓6 are only present in the 𝑣-momentum equation.

The functions 𝑓3 and 𝑓4 appear in both 𝑢 and 𝑣 momentum equations but with

different spatial gradients ( 𝜕
𝜕𝑦

in the 𝑢-momentum and 𝜕
𝜕𝑥

in the 𝑣-momentum).

The DO decomposition is then applied to the stochastic sea ice velocity field

𝜓(𝑥, 𝑡;𝜔), using unique stochastic coefficients for the u and v velocities:

𝜓(𝑥, 𝑡;𝜔) = 𝜓(𝑥, 𝑡) +

𝑛𝑠,𝜓∑︁
𝑖=1

𝜓𝑖(𝑥, 𝑡)𝑌𝑖(𝑡;𝜔) (3.12)

For brevity, we rewrite this decomposition as

𝜓 = 𝜓 +𝜓𝑖𝑌𝑖 (3.13)
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i.e,

𝑢 = 𝑢+ �̃�𝑖𝑌𝑖 (3.14a)

𝑣 = 𝑣 + 𝑣𝑖𝑌𝑖 (3.14b)

We note that one can employ DO decompositions where the coefficients are not

shared for 𝑢 and 𝑣. The differences between the approaches are described in [75]. We

can also decompose the forcing terms,

𝜏𝑜𝑐𝑒𝑎𝑛 = 𝜏𝑜𝑐𝑒𝑎𝑛 + ̃︀𝜏𝑜𝑖𝛽𝑖 (3.15a)

𝜏𝑤𝑖𝑛𝑑 = 𝜏𝑤𝑖𝑛𝑑 + ̃︀𝜏𝑤𝑖𝛾𝑖 (3.15b)

where 𝛽𝑖 and ̃︀𝜏𝑜𝑖 are the stochastic coefficients and modes for the reduced order

representation of 𝜏𝑜𝑐𝑒𝑎𝑛 and 𝛾𝑖 and ̃︀𝜏𝑤𝑖 are the stochastic coefficients and modes for

the reduced order representation of 𝜏𝑤𝑖𝑛𝑑.

We now insert the DO decomposition (3.14) into (3.9) to derive the governing

DO sea ice equations for the evolution of the mean, the mode, and the stochastic

coefficients. However, we need to pay special attention to the nonlinear viscosities in

the diffusion terms. For now, we derive the DO evolution equations assuming each of

the six nonlinear functions 𝑓 has a reduced order representation of the form

𝑓 = 𝑓 + 𝑓𝑖𝛼𝑖 (3.16)

where 𝛼𝑖 and 𝑓𝑖 are the stochastic coefficients and modes for the reduced order rep-

resentation of 𝑓 . We will describe a local statistical linearization approach to do this

later in Section 3.2.1.

Using Equations 3.5, we obtain the evolution equations for the mean, mode, and

stochastic coefficients.

𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

⎡⎣− 𝜕𝑃
2𝜕𝑥

+ 𝜕𝑓1
𝜕𝑥

+ 𝜕𝑓2
𝜕𝑥

+ 𝜕𝑓3
𝜕𝑦

+ 𝜕𝑓4
𝜕𝑦

+ 𝜏𝑜𝑐𝑒𝑎𝑛 + 𝜏𝑤𝑖𝑛𝑑

− 𝜕𝑃
2𝜕𝑦

+ 𝜕𝑓5
𝜕𝑦

+ 𝜕𝑓6
𝜕𝑦

+ 𝜕𝑓3
𝜕𝑥

+ 𝜕𝑓4
𝜕𝑥

+ 𝜏𝑜𝑐𝑒𝑎𝑛 + 𝜏𝑤𝑖𝑛𝑑

⎤⎦ (3.17)
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𝜕𝜓𝑖(𝑥, 𝑡)

𝜕𝑡
=

𝑛𝑠,𝜓∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

(︃⎡⎣𝐶𝛼1𝑖
𝑌𝑗
𝜕𝑓1𝑖
𝜕𝑥

+ 𝐶𝛼2𝑖
𝑌𝑗
𝜕𝑓2𝑖
𝜕𝑥

+ 𝐶𝛼3𝑖
𝑌𝑗
𝜕𝑓3𝑖
𝜕𝑦

+ 𝐶𝛼4𝑖
𝑌𝑗
𝜕𝑓4𝑖
𝜕𝑦

+ 𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖
𝐶𝛼5𝑖

𝑌𝑗
𝜕𝑓5𝑖
𝜕𝑦

+ 𝐶𝛼6𝑖
𝑌𝑗
𝜕𝑓6𝑖
𝜕𝑦

+ 𝐶𝛼3𝑖
𝑌𝑗
𝜕𝑓3𝑖
𝜕𝑥

+ 𝐶𝛼4𝑖
𝑌𝑗
𝜕𝑓4𝑖
𝜕𝑥

+ 𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖
⎤⎦

−

⟨⎡⎣𝐶𝛼1𝑖
𝑌𝑗
𝜕𝑓1𝑖
𝜕𝑥

+ 𝐶𝛼2𝑖
𝑌𝑗
𝜕𝑓2𝑖
𝜕𝑥

+ 𝐶𝛼3𝑖
𝑌𝑗
𝜕𝑓3𝑖
𝜕𝑦

+ 𝐶𝛼4𝑖
𝑌𝑗
𝜕𝑓4𝑖
𝜕𝑦

+ 𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖
𝐶𝛼5𝑖

𝑌𝑗
𝜕𝑓5𝑖
𝜕𝑦

+ 𝐶𝛼6𝑖
𝑌𝑗
𝜕𝑓6𝑖
𝜕𝑦

+ 𝐶𝛼3𝑖
𝑌𝑗
𝜕𝑓3𝑖
𝜕𝑥

+ 𝐶𝛼4𝑖
𝑌𝑗
𝜕𝑓4𝑖
𝜕𝑥

+ 𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖
⎤⎦ ,𝜓𝑘⟩𝜓𝑘))︃

(3.18)

𝑑𝑌𝑖(𝑡;𝜔)

𝑑𝑡
=

⟨⎡⎣𝛼1𝑗

𝜕𝑓1𝑗
𝜕𝑥

+ 𝛼2𝑗

𝜕𝑓2𝑗
𝜕𝑥

+ 𝛼3𝑗

𝜕𝑓3𝑗
𝜕𝑦

+ 𝛼4𝑗

𝜕𝑓4𝑗
𝜕𝑦

+ 𝛽𝑗 ̃︀𝜏𝑜𝑗 + 𝛾𝑗 ̃︀𝜏𝑤𝑗
𝛼5𝑗

𝜕𝑓5𝑗
𝜕𝑦

+ 𝛼6𝑗

𝜕𝑓6𝑗
𝜕𝑦

+ 𝛼3𝑗

𝑓3𝑗
𝜕𝑥

+ 𝛼4𝑗

𝜕𝑓4𝑗
𝜕𝑥

+ 𝛽𝑗 ̃︀𝜏𝑜𝑗 + 𝛾𝑗 ̃︀𝜏𝑤𝑗
⎤⎦ ,𝜓𝑖⟩ (3.19)

where 𝑖 ∈ 1, 2, ...𝑛𝑠,𝜓.

3.2.1 Local Statistical Linearization

Since the governing equations (Equation 3.9) contain complex nonlinear viscosities

in terms of spatial gradients of velocity, it is not straightforward to obtain their DO

expansion. Here, we use a local statistical linearization [72, 112, 31] of the nonlinear

terms (e.g., 𝜕
𝜕𝑥

[︀
(𝜂 + 𝜁)𝜕𝑢

𝜕𝑥

]︀
term) around the mean dynamic velocity. This efficiently

decomposes the nonlinear terms into their nonlinear mean and sums of stochastic

deviations.

For illustration, let us consider the term 𝑓3(𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦) = 𝜂 𝜕𝑢
𝜕𝑦

= 𝜂𝑢𝑦 where the

subscripts 𝑥 and 𝑦 again denote gradients in the 𝑥 and 𝑦 directions, respectively. We

are interested in deriving a decomposition of 𝑓3 such that

𝑓3 = 𝑓3 + 𝑓3𝑖𝛼3𝑖 (3.20)

where 𝛼𝑖 and 𝑓3𝑖 are the stochastic coefficients and modes for the reduced order

representation of 𝑓3. We perform a local first-order Taylor expansion of 𝑓3 around
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the mean dynamic velocity gradients to obtain,

𝑓3(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦) =𝑓3(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦) +
𝜕𝑓3
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑌𝑖𝑢𝑥𝑖 +
𝜕𝑓3
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑌𝑖𝑣𝑥𝑖

+
𝜕𝑓3
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑌𝑖𝑢𝑦𝑖 +
𝜕𝑓3
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑌𝑖𝑣𝑦𝑖

(3.21)

Hence, equating the above two equations yields,

𝑓3 = 𝑓3(𝑢𝑥, 𝑣𝑥, 𝑢𝑦, 𝑣𝑦) (3.22a)

𝑓3𝑖 =
𝜕𝑓3
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑢𝑥𝑖 +
𝜕𝑓3
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑣𝑥𝑖 (3.22b)

+
𝜕𝑓3
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑢𝑦𝑖 +
𝜕𝑓3
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢𝑥,𝑣𝑥,𝑢𝑦 ,𝑣𝑦)

𝑣𝑦𝑖

𝛼3𝑖 = 𝑌𝑖 (3.22c)

We note in the above that the terms 𝑓3𝑖 are not orthonormal in general.

Inserting the results from Equation (3.22) (and similar ones for the other nonlinear

terms) into Equations (3.18) and (3.19), we obtain

𝜕𝜓𝑖(𝑥, 𝑡)

𝜕𝑡
=

(︃⎡⎣𝜕𝑓1𝑖𝜕𝑥
+

𝜕𝑓2𝑖
𝜕𝑥

+
𝜕𝑓3𝑖
𝜕𝑦

+
𝜕𝑓4𝑖
𝜕𝑦

𝜕𝑓5𝑖
𝜕𝑦

+
𝜕𝑓6𝑖
𝜕𝑦

+
𝜕𝑓3𝑖
𝜕𝑥

+
𝜕𝑓4𝑖
𝜕𝑥

⎤⎦+

𝑛𝑠,𝜓∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

⎡⎣𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖
𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖

⎤⎦
−

⟨⎡⎣𝜕𝑓1𝑖𝜕𝑥
+

𝜕𝑓2𝑖
𝜕𝑥

+
𝜕𝑓3𝑖
𝜕𝑦

+
𝜕𝑓4𝑖
𝜕𝑦

𝜕𝑓5𝑖
𝜕𝑦

+
𝜕𝑓6𝑖
𝜕𝑦

+
𝜕𝑓3𝑖
𝜕𝑥

+
𝜕𝑓4𝑖
𝜕𝑥

⎤⎦+

𝑛𝑠,𝜓∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

⎡⎣𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖
𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖

⎤⎦ ,𝜓𝑘⟩𝜓𝑘)︃
(3.23a)

𝑑𝑌𝑖(𝑡;𝜔)

𝑑𝑡
=

⟨
𝑌𝑗

⎡⎣𝜕𝑓1𝑗𝜕𝑥
+

𝜕𝑓2𝑗
𝜕𝑥

+
𝜕𝑓3𝑗
𝜕𝑦

+
𝜕𝑓4𝑗
𝜕𝑦

𝜕𝑓5𝑗
𝜕𝑦

+
𝜕𝑓6𝑗
𝜕𝑦

+
𝑓3𝑗
𝜕𝑥

+
𝜕𝑓4𝑗
𝜕𝑥

⎤⎦+

⎡⎣𝛽𝑗 ̃︀𝜏𝑜𝑗 + 𝛾𝑗 ̃︀𝜏𝑤𝑗
𝛽𝑗 ̃︀𝜏𝑜𝑗 + 𝛾𝑗 ̃︀𝜏𝑤𝑗

⎤⎦ ,𝜓𝑖⟩ (3.23b)

where 𝑖 ∈ 1, 2, ...𝑛𝑠,𝜓.

On further simplifications, we derive the final DO mean evolution equations for

35



the 𝑢 and 𝑣 velocities:

𝜌ℎ
𝜕𝑢

𝜕𝑡
= − 𝜕𝑃

2𝜕𝑥
+

𝜕

𝜕𝑥

[︂
𝑓1(𝑢, 𝑣)

]︂
+

𝜕

𝜕𝑥

[︂
𝑓2(𝑢, 𝑣)

]︂
+

𝜕

𝜕𝑦

[︂
𝑓3(𝑢, 𝑣)

]︂
+

𝜕

𝜕𝑦

[︂
𝑓4(𝑢, 𝑣)

]︂
+ 𝜏𝑜𝑐𝑒𝑎𝑛 + 𝜏𝑤𝑖𝑛𝑑

(3.24a)

𝜌ℎ
𝜕𝑣

𝜕𝑡
= − 𝜕𝑃

2𝜕𝑦
+

𝜕

𝜕𝑦

[︂
𝑓5(𝑢, 𝑣)

]︂
+

𝜕

𝜕𝑦

[︂
𝑓6(𝑢, 𝑣)

]︂
+

𝜕

𝜕𝑥

[︂
𝑓3(𝑢, 𝑣)

]︂
+

𝜕

𝜕𝑥

[︂
𝑓4(𝑢, 𝑣)

]︂
+ 𝜏𝑜𝑐𝑒𝑎𝑛 + 𝜏𝑤𝑖𝑛𝑑

(3.24b)

The final DO mode evolution equations for the u and v velocities are:

𝜌ℎ
𝜕�̃�𝑖
𝜕𝑡

= 𝑄𝑢𝑖 +

𝑛𝑠,𝜓∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

[𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖]−⟨𝑄𝑢𝑖 +

𝑛𝑠,𝜓∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

[𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖], �̃�𝑗⟩�̃�𝑗
(3.25a)

𝜌ℎ
𝜕𝑣𝑖
𝜕𝑡

= 𝑄𝑣𝑖 +

𝑛𝑠,𝜓∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

[𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖]−⟨𝑄𝑣𝑖 +

𝑛𝑠,𝜓∑︁
𝑗=1

𝐶−1
𝑌𝑖𝑌𝑗

[𝐶𝛽𝑖𝑌𝑗 ̃︀𝜏𝑜𝑖 + 𝐶𝛾𝑖𝑌𝑗 ̃︀𝜏𝑤𝑖], 𝑣𝑗⟩𝑣𝑗
(3.25b)

The final DO stochastic coefficient evolution equations for the u and v velocities

are:

𝑑𝑌𝑖(𝑡;𝜔)

𝑑𝑡
=

⟨
𝑌𝑗

⎡⎣𝑄𝑢,𝑗

𝑄𝑣,𝑗

⎤⎦+

⎡⎣𝛽𝑗 ̃︀𝜏𝑜𝑗 + 𝛾𝑗 ̃︀𝜏𝑤𝑗
𝛽𝑗 ̃︀𝜏𝑜𝑗 + 𝛾𝑗 ̃︀𝜏𝑤𝑗

⎤⎦ ,
⎡⎣�̃�𝑖
𝑣𝑖

⎤⎦⟩ , 𝑖 ∈ {1, 2, ...𝑛𝑠,𝜓} (3.26)
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where, 𝑄𝑢𝑖 =
𝜕

𝜕𝑥

[︃
𝜕𝑓1
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓1
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓1
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓1
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
+

𝜕

𝜕𝑥

[︃
𝜕𝑓2
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓2
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓2
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓2
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
+

𝜕

𝜕𝑦

[︃
𝜕𝑓3
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓3
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓3
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓3
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
+

𝜕

𝜕𝑦

[︃
𝜕𝑓4
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓4
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓4
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓4
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
(3.27a)

where, 𝑄𝑣𝑖 =
𝜕

𝜕𝑦

[︃
𝜕𝑓5
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓5
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓5
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓5
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
+

𝜕

𝜕𝑦

[︃
𝜕𝑓6
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓6
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓6
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓6
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
+

𝜕

𝜕𝑥

[︃
𝜕𝑓3
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓3
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓3
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓3
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
+

𝜕

𝜕𝑥

[︃
𝜕𝑓4
𝜕𝑢𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑥𝑖 +
𝜕𝑓4
𝜕𝑢𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

�̃�𝑦𝑖 +
𝜕𝑓4
𝜕𝑣𝑥

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑥𝑖 +
𝜕𝑓4
𝜕𝑣𝑦

⃒⃒⃒⃒
(𝑢,𝑣)

𝑣𝑦𝑖

]︃
(3.27b)

3.3 Numerical Schemes

We now describe the schemes for solving the stochastic DO Sea Ice mean, mode, and

coefficient equations. We use the MIT-MSEAS 2.29 finite-volume (FV) framework

with staggered grids to solve the PDEs [69, 116]. Using staggered grids leads to easy

interpolation of the scalar variables such as ice strength 𝑃 , and nonlinear viscosities,

𝜁, 𝜂, to the velocity grids when required [8].

37



3.3.1 Initial Conditions

The initial probability distribution of sea ice fields, or initial stochastic sea ice con-

ditions, should be set according to the dominant initial uncertainties. If the initial

probability distribution of the sea ice state variable fields is Gaussian, the dominant

initial DO modes are the dominant eigenvectors of the initial covariance matrix. If it

is a Gaussian Mixture Model (GMM), dominant modes can be selected based on the

dominant eigenvectors of the covariance matrices of each GMM component in accor-

dance with their respective weights. For more on initialization for DO equations, we

refer to [64, 61, 103, 108, 109, 115, 27, 76, 75, 31].

One can also generate an ensemble of 𝑛𝑟 Monte Carlo initial conditions according

to the initial (complex) probability distribution and this is what we employ to initialize

the examples provided in Section 4.2 for DO sea ice momentum equations. The mean

of these ensembles is then set as the initial condition for the DO mean evolution

equation. The DO mode and coefficient initial conditions are obtained from the SVD

of the matrix of mean-removed realizations 𝑀 as follows:

𝑀 = 𝑈𝑆𝑉 𝑇 (3.28a)

𝑌 (𝑡 = 0;𝜔) = 𝑉 𝑆𝑇 (3.28b)

𝜓(𝑥, 𝑡 = 0) = 𝑈 (3.28c)

3.3.2 Spatial Discretization

We use a staggered grid, with separate grids for the 𝑢 and 𝑣 velocities and the scalar

fields such as ice strength and nonlinear viscosities. This decouples the 𝑢 and 𝑣

momentum, which aids the efficiency of the numerical solution [124]. A second-order

central difference scheme is used for the discretization of all the gradient operators.
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The discretization used for the 𝑢-momentum equations (Fig. 3-1) is

𝜕

𝜕𝑥

[︂
(𝜂 + 𝜁)

𝜕𝑢

𝜕𝑥

]︂
=

1

∆𝑥

(︂[︂
(𝜂 + 𝜁)

𝜕𝑢

𝜕𝑥

]︂
𝑒

−
[︂
(𝜂 + 𝜁)

𝜕𝑢

𝜕𝑥

]︂
𝑤

)︂
(3.29a)

𝜕

𝜕𝑥

[︂
(𝜁 − 𝜂)

𝜕𝑣

𝜕𝑦

]︂
=

1

∆𝑥

(︂[︂
(𝜁 − 𝜂)

𝜕𝑣

𝜕𝑦

]︂
𝑒

−
[︂
(𝜁 − 𝜂)

𝜕𝑣

𝜕𝑦

]︂
𝑤

)︂
(3.29b)

𝜕

𝜕𝑦

[︂
(𝜂)

𝜕𝑣

𝜕𝑥

]︂
=

1

∆𝑦

(︂[︂
(𝜂)

𝜕𝑣

𝜕𝑥

]︂
𝑛

−
[︂
(𝜂)

𝜕𝑣

𝜕𝑥

]︂
𝑠

)︂
(3.29c)

𝜕

𝜕𝑦

[︂
(𝜂)

𝜕𝑢

𝜕𝑦

]︂
=

1

∆𝑦

(︂[︂
(𝜂)

𝜕𝑢

𝜕𝑦

]︂
𝑛

−
[︂
(𝜂)

𝜕𝑢

𝜕𝑦

]︂
𝑠

)︂
(3.29d)

Figure 3-1: Horizontal spatial discretization: 𝑢-grid cell near the boundary with its
associated 𝑛, 𝑠, 𝑒 and 𝑤 faces.

The discretization used for the 𝑣-momentum equations (Fig. 3-2) is
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For the above discrete momentum PDEs, the discrete state variables are the values

of 𝑢 and 𝑣 at the center of the finite-volume cells. For each physical variable 𝑢 and

𝑣, we have 𝑛𝑥 cells. In what follows, we denote the total number of discrete state

variables as 𝑛𝑑,𝜓 which is here equal to 2× 𝑛𝑥.
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Figure 3-2: Horizontal spatial discretization: 𝑣-grid cell near the boundary with its
associated 𝑛, 𝑠, 𝑒 and 𝑤 faces.

3.3.3 Boundary Conditions

In this thesis, since we only deal with boundary conditions that are deterministic

and linear, the mean equation has the same boundary conditions as the realizations.

The mode equations have the same type of boundary conditions as the realizations,

but with zero values. The coefficient equations do not need boundary conditions

since they are just stochastic ODEs. More details on handling stochastic boundary

conditions can be found in [28, 27].

Special care must be taken when evaluating the boundary values for scalar vari-

ables such as the nonlinear viscosities since the boundary conditions for the problem

are only specified for the velocities. This could lead to incompatible boundary val-

ues between the viscosities and velocities which are related by Equation (2.6). Some

approaches to overcome this issue include utilizing first-order Taylor approximations

[56] or splitting the spatial discretization [106]. In this work, we use a second-order

Taylor approximation with ghost cells to preserve the spatial convergence.

3.3.4 Time Marching

Time integration for the mean equation (3.24) is similar to that of evolving the deter-

ministic sea ice equations. We use the semi-implicit method proposed by [124] where

a modified Euler time-step is used. The key advantage of this approach is that the

𝑢-velocities are treated implicitly, while the 𝑣-velocities explicitly when solving the

𝑢-momentum equation, and the 𝑣-velocities are treated implicitly, and the 𝑢-velocities
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explicitly when solving the 𝑣-momentum equation.

To integrate the stochastic DO modes using equation (3.25), the nonlinear terms

are treated explicitly, and linear terms are treated implicitly. We developed a semi-

implicit modified Euler time-step procedure similar to that of the mean equations

and this is what we employ in our examples.

Finally, for the stochastic ODEs (3.26), we use an implicit BDF2 (Backward Dif-

ferentiation Formula) scheme to integrate all the coefficients using a direct Monte

Carlo method. This is usually very efficient since there are only 𝑛𝑠,𝜓 scalar ODEs and

we have 𝑛𝑟 ≫ 𝑛𝑠,𝜓 and 𝑛𝑑,𝜓 ≫ 𝑛𝑠,𝜓.

Additional details and studies on numerical schemes for the DO equations can be

found in [117, 19, 112, 75, 12, 13, 10].
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Chapter 4

Applications and Discussions

In this section, we implement and validate the deterministic sea ice solver, and study

the convergence to spatial discretization. Next, test cases are devised for the stochas-

tic sea ice models with uncertainty in initial conditions and the DO-Sea Ice equations

and schemes are tested. We perform convergence analysis to the stochastic subspace

size, and coefficient samples, and assess the computational costs.

4.1 Deterministic Test Case

The 2D deterministic sea ice solver is implemented within the MSEAS finite volume

framework [69, 116]. We also verified the accuracy of the solver using unit tests and

the method of manufactured solutions (results not shown here) [96].

The solver is validated using the test case provided in [43]. The deterministic

test case is that of a large ice sheet surrounded by land. A constant forcing in space

and time acts on the domain, 𝜏 = 9 × 10−3 𝑘𝑔 𝑚𝑠−2. The total size of the domain

is 127 km × 127 km. A spatial grid resolution of 1.27 km × 1.27 km is used. The

concentration of the ice sheet is set to be 0.9. An implicit time step of ∆𝑡=6 hours is

used. The other material parameters used for the test case are the same as those in

[43] and are summarized in Table 4.1. Fig. 4-1 shows the 𝑢 velocity field for this test

case, and Fig. 4-2 shows the corresponding nonlinear viscosities. We can see that the

viscosities range from 10−8 to 1015, which makes stochastic sea ice modeling especially

43



challenging.

Spatial convergence analysis. Next, we perform a spatial convergence study by

reducing the grid size, i.e, by increasing the number of finite volume cells. The

results of this study are shown in Fig. 4-3. We only use interior points for the

convergence study to minimize boundary effects on the rate of convergence. We

observe second order spatial convergence, which is expected since we use a second-

order central difference scheme for the spatial discretization (Section 3.3.2).

Parameter Values
Deterministic Stochastic # 1 Stochastic # 2

Domain 127 km × 127 km 600 km × 600 km 600 km × 600 km
Spatial resolution 1.27 km × 1.27 km 5 km × 5 km 5 km × 5 km
Implicit time step 6 hours 0.5 hours 0.5 hours
Sea ice concentration 0.9 0.9 0.9, 0.65
Ellipse axis ratio (e) 2 2 2
Density of sea ice (𝜌)(𝑘𝑔𝑚−3) 910 910 910
P* (𝑁𝑚−2) 27.5 ×103 27.5 ×103 27.5 ×103

C 20 20 20
Height of thin ice (h) (cm) 10 10 10
Height of thick ice (H) (cm) 60 60 60
Viscosity capping (k) 2.5 ×108 2.5 ×108 2.5 ×108

Table 4.1: Summary of the parameter values used for the deterministic and stochastic
test cases. Values used are similar to those in [43] and [106]

4.2 Idealized Stochastic Test Cases

Now that we have a validated deterministic sea ice solver, we illustrate and evaluate

our new stochastic sea ice modeling and schemes using a set of idealized test cases

with initial velocity uncertainties. The uncertainty in initial velocities is of the form

𝑢(𝑥, 𝑡 = 0, 𝜔) = 𝑢𝑚𝑎𝑥(𝜔) exp

{︂
−(𝑥− 𝑥*(𝜔))2

𝐿2

}︂
(4.1)

where 𝑢𝑚𝑎𝑥 is the amplitude of the initial velocity, uniformly distributed between 2-10

cm/hr, and 𝑥* the location of the maximum initial velocity, also uniformly distributed

spatially across the 2D domain. This initialization is illustrated in Fig. 4-4 by three
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(a) (b)

(c) (d)

(e)

Figure 4-1: 𝑢 velocity (in cm/s) for the deterministic test case at a) t = 6 hours, b)
t = 12 hours, c) t = 18 hours, d) t = 24 hours, e) t = 30 hours
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(a) (b)

(c) (d)

(e)

Figure 4-2: Nonlinear viscosity 𝜁 (in Poise) for the deterministic test case at a) t =
6 hours, b) t = 12 hours, c) t = 18 hours, d) t = 24 hours, e) t = 30 hours
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Figure 4-3: Spatial convergence analysis for the deterministic 2D finite volume sea ice
solver. We observe second-order convergence which is in agreement with the spatial
discretization used (second-order central difference).

initial velocity realizations. The test case and parameters used are a stochastic version

Figure 4-4: Three realizations of the initial stochastic 𝑢-velocity field

of the test case used in [106] and [43], where a rectangular sheet of ice is surrounded

by an ocean and forced by atmospheric wind forcing. The DO-Sea Ice equations are

initialized using 𝑛𝑟 = 1000 realizations as described in Chapter 3.3.1 and evolved

numerically using the schemes described in Chapter 3.3.4.

Test Case 1: Large Ice Sheet Surrounded by Ocean. The first stochastic test case

is that of a large ice sheet surrounded by the ocean. A cyclonic atmospheric forcing
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acts on the domain as shown in 4-5. The total size of the domain is 600 km × 600 km.

A spatial grid resolution of 5 km × 5 km is used. The concentration of the ice sheet

is set to be 0.9. Other parameters used are summarized in table 4.1. An implicit time

step of ∆𝑡=30 minutes is used. We select 𝑛𝑠,𝜓 = 45, which is a considerable reduction

in size compared to 𝑛𝑟. This choice of 𝑛𝑠,𝜓 effectively captures 99% of the variance of

the system.

Figs. 4-6, 4-7, 4-8, 4-9 and 4-10 show the mean, first two modes and first two

stochastic coefficients. We can see that our methodology is able to capture the nonlin-

ear dynamics of sea ice and also capture non-Gaussian distributions of the coefficients

at all times.

Figure 4-5: Domain and forcing for test case 1 with large ice sheet surrounded by
ocean

Test Case 2: Disconnected Ice Sheets Surrounded by Ocean. We now use a test

case that consists of different types of sea ice. The second stochastic test case is that

of disconnected ice sheets surrounded by frozen ice cover and the ocean. A cyclonic

atmospheric forcing acts on the domain as shown in 4-11. The total size of the domain

is 600 km × 600 km. The disconnected ice blocks each cover 150 km × 150 km and

occupy the northeast and southwest corners of the domain. A spatial grid resolution

of 5 km × 5 km is used. The concentration of the ice sheet is set to be 0.9, and that of

frozen ice cover is set to be 0.65. Other parameters used are summarized in table 4.1.

An implicit time step of ∆𝑡=30 minutes is used. We again select 𝑛𝑠,𝜓 = 45, which is a
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Figure 4-6: DO mean, first two modes and first two stochastic coefficients for test
case with a large ice sheet surrounded by the ocean at t=2 hours.

Figure 4-7: DO mean, first two modes and first two stochastic coefficients for test
case with a large ice sheet surrounded by the ocean at t=4 hours.

Figure 4-8: DO mean, first two modes and first two stochastic coefficients for test
case with a large ice sheet surrounded by the ocean at t=6 hours.
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Figure 4-9: DO mean, first two modes and first two stochastic coefficients for test
case with a large ice sheet surrounded by the ocean at t=8 hours.

Figure 4-10: DO mean, first two modes and first two stochastic coefficients for test
case with a large ice sheet surrounded by the ocean at t=10 hours.
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considerable reduction in size compared to 𝑛𝑟. This choice of 𝑛𝑠,𝜓 effectively captures

99% of the variance of the system.

Figs. 4-12, 4-13, 4-14, 4-15 and 4-16 show the mean, first two modes and first

two stochastic coefficients. We can see that our methodology is able to capture the

complex nonlinear dynamics with different sea ice concentrations. We are also able

to capture the highly non-Gaussian distributions of the coefficients at all times.

Figure 4-11: Domain and forcing for test case 2 with disconnected ice sheets sur-
rounded by ocean.

Figure 4-12: DO mean, first two modes and first two stochastic coefficients for test
case with disconnected ice sheets surrounded by ocean at t=2 hours.
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Figure 4-13: DO mean, first two modes and first two stochastic coefficients test case
with disconnected ice sheets surrounded by ocean at t=4 hours.

Figure 4-14: DO mean, first two modes and first two stochastic coefficients for test
case with disconnected ice sheets surrounded by ocean at t=6 hours.

Figure 4-15: DO mean, first two modes and first two stochastic coefficients for test
case with disconnected ice sheets surrounded by ocean at t=8 hours.
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Figure 4-16: DO mean, first two modes and first two stochastic coefficients for test
case with disconnected ice sheets surrounded by ocean at t=10 hours.

4.3 Discussion

We have showcased that the developed methodology has the ability to evolve uncer-

tainties and capture nonlinear spatiotemporal dynamics and non-Gaussian statistics

efficiently. Next, we study the stochastic convergence of the Dynamically Orthogonal-

Sea Ice equations as 𝑛𝑠,𝜓 and 𝑛𝑟 are increased.

Convergence with stochastic subspace size. To study the convergence with stochas-

tic subspace size, we use 𝑛𝑟 = 1000 coefficient samples and compute the mean field for

increasing 𝑛𝑠,𝜓. We then compare the mean field with a true mean field obtained us-

ing a direct Monte Carlo method with 𝑛𝑟 = 1000 members. Figs. 4-17 and 4-18 show

that the RMSE of the mean field from the Dynamically Orthogonal-Sea Ice equations

decreases significantly as 𝑛𝑠,𝜓 increases for both the test cases. This indicates that the

mean field from the Dynamically Orthogonal-Sea Ice equations is indistinguishable

from those obtained using Monte Carlo simulations.

Convergence with number of coefficient samples. The convergence with number of

coefficient samples is also examined. Figs. 4-19 and 4-20 show that the RMSE of the

mean field from the Dynamically Orthogonal-Sea Ice equations decreases significantly

as 𝑛𝑟 increases for both the test cases.

Next, we analyze the computational costs of the Dynamically Orthogonal-Sea Ice

equations compared to the direct Monte Carlo method.
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Figure 4-17: Stochastic convergence analysis for the mean velocity field for stochastic
test case 1 with increasing stochastic subspace dimension.

Figure 4-18: Stochastic convergence analysis for the mean velocity field for stochastic
test case 2 with increasing stochastic subspace dimension.
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Figure 4-19: Stochastic convergence analysis for the mean velocity field for stochastic
test case 1 with increasing number of coefficient samples.

Figure 4-20: Stochastic convergence analysis for the mean velocity field for stochastic
test case 2 with increasing number of coefficient samples.

55



Computational and memory costs. The cost of solving the deterministic sea ice

equations is dominated by the linear solve for the momentum equations. For a system

of 𝑛𝑑,𝜓 discrete state variables, this requires solving a linear system of size 𝑛𝑑,𝜓×𝑛𝑑,𝜓.

Solving this system typically has a cost of 𝒪(𝑛𝜆𝑑,𝜓) where 1 ≤ 𝜆 < 2 depends on the

numerical scheme and algorithm used. Hence, using a direct Monte Carlo method

for 𝑛𝑟 realizations has a total cost of 𝒪(𝑛𝑟𝑛
𝜆
𝑑,𝜓). The cost of solving the DO mean

equation is similar to that of the deterministic equations and has cost 𝒪(𝑛𝜆𝑑,𝜓). The

cost of solving the DO mode equations is 𝒪(𝑛𝑠,𝜓𝑛
𝜆
𝑑,𝜓) for the linear system solve. For

typical sea ice applications where 𝑛𝑑,𝜓 ≫ 𝑛𝑠,𝜓, the cost of the linear system solve

dominates the cost of projections in the DO mode equations. The cost of solving the

DO coefficient equations is also negligible since they are just stochastic ODEs while

the DO mean and DO mode equations are PDEs. Hence, we get the ratio of costs of

the DO Sea Ice equations to the MC method as

Cost𝐷𝑂
Cost𝑀𝐶

→
(𝑛𝑠,𝜓 + 1)𝑛𝜆𝑑,𝜓

𝑛𝑟𝑛𝜆𝑑,𝜓
(4.2)

Cost𝐷𝑂
Cost𝑀𝐶

∼ (𝑛𝑠,𝜓 + 1)

𝑛𝑟
(4.3)

This showcases the significant increase in computational efficiency achieved by using

the DO Sea Ice equations since 𝑛𝑟 ≫ 𝑛𝑠,𝜓 for typical sea ice applications.

In terms of memory costs, the direct Monte Carlo method has memory costs of

𝒪(𝑛𝑟𝑛𝑑,𝜓). The DO mean has memory costs of 𝒪(𝑛𝑑,𝜓), while the modes have costs

of 𝒪(𝑛𝑠,𝜓𝑛𝑑,𝜓) and coefficients have cost of 𝒪(𝑛𝑟𝑛𝑠,𝜓). Hence, we get the ratio of

memory costs of the DO Sea Ice equations to the MC method as

Memory𝐷𝑂
Memory𝑀𝐶

→ (𝑛𝑠,𝜓 + 1)𝑛𝑑,𝜓 + 𝑛𝑟𝑛𝑠,𝜓
𝑛𝑟𝑛𝑑,𝜓

(4.4)

This again showcases the significant increase in memory efficiency achieved by us-

ing the DO Sea Ice equations since 𝑛𝑟 ≫ 𝑛𝑠,𝜓 and 𝑛𝑑,𝜓 ≫ 𝑛𝑠,𝜓 for typical sea ice

applications.
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Chapter 5

Conclusions and Future Work

In this work, we developed new stochastic sea ice models and schemes using the

Dynamically Orthogonal (DO) equations for probabilistic modeling. First, we im-

plemented and verified a deterministic 2D viscoplastic sea ice solver. We observed

second-order convergence to spatial discretization as expected. Next, we derived and

implemented the new stochastic Dynamically Orthogonal-Sea Ice equations and nu-

merical schemes. We illustrated and evaluated the ability of our new stochastic sea

ice modeling and schemes to evolve uncertainties and capture nonlinear spatiotempo-

ral dynamics and non-Gaussian statistics efficiently using two idealized test cases, 1)

large ice sheet surrounded by the ocean, 2) disconnected ice blocks surrounded by the

ocean. We studied the convergence to the stochastic subspace size, and number of

coefficient samples. We showcased the computational efficiency of the new stochastic

Dynamically Orthogonal-Sea Ice equations over the direct Monte Carlo method.

Since, the developed equations and schemes perform well for the sea ice momentum

equations, we are currently working on extending the method to capture sea ice height

and concentration uncertainties. We plan to evaluate our methodology using more

realistic stochastic sea ice test cases. We are also investigating numerical methods

with fully implicit time integration, such as schemes using the Jacobian-Free Newton-

Krylov method, which could provide additional computational and memory efficiency

[57, 58].

The DO Sea Ice equations can be combined with the Gaussian Mixture Model
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(GMM-DO) filter [108, 109] for Bayesian data assimilation of sparse, noisy data and

learning parameters, states and even model formulations themselves from data [31,

82]. Another research opportunity is to use neural closure models [32, 30, 47] to

capture missing sea ice features such as leads and ridges and other subgrid-scale

distributions [118].

The inclusion of sea ice dynamics would enhance the capabilities of the Multidis-

ciplinary Simulation, Estimation, and Assimilation Systems (MSEAS) [87, 35, 34, 33]

software, allowing for sea-ice-ocean-atmospheric coupling, and usage of realistic ocean

currents and atmospheric forcing. The software has been used for fundamental re-

search and realistic simulations in various parts of the world [73, 33, 68, 111, 53, 29, 70,

2]. Such coupled models would also help capitalize on other capabilities of the MSEAS

software including ensemble forecasting and data assimilation [64, 61, 60, 63, 71],

reduced-order modeling [19, 11, 36, 100, 99], and path planning and adaptive sam-

pling [67, 68, 66, 63, 17].
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