
Identification of Atomic Propositions in English
Instructions for Flexible Translation to Robot

Planning Representations
by

Rujul Gandhi
S.B. Linguistics & Philosophy and Electrical Engineering & Computer

Science, Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Scienc

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Rujul Gandhi. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Rujul Gandhi
Department of Electrical Engineering and Computer Science
August 11, 2023

Certified by: Chuchu Fan
Assistant Professor
Thesis Supervisor

Certified by: Yang Zhang
Research Scientist, MIT-IBM Watson AI Lab
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Identification of Atomic Propositions in English Instructions

for Flexible Translation to Robot Planning Representations

by

Rujul Gandhi

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Scienc

Abstract

Creating human-interactive problem-solving robots involves interfacing natural-language
instructions into formal representations. This formal representation should contain all
the verifiable constituent units (ideally atomic propositions) which are present in the
natural language instruction. However, the format and vocabulary of atomic propo-
sitions may vary substantially across formal representations and their application
domains. Hence, extracting the correct atomic propositions from natural language
has been a bottleneck in converting language to formal representations. In this thesis,
we propose and implement a two-step method for identifying atomic propositions in a
representation-agnostic way. Given an instruction in natural English, we first identify
the spans of that instruction that may potentially be atomic propositions, and then
carry out a finer-grained translation into the chosen formalization language. In eval-
uating this approach, we demonstrate the ability of the span identification method
to generalize to two common domains of robot planning tasks, navigation and ma-
nipulation, as well as three additional domains of household robot tasks. Finally, we
discuss, implement, and evaluate methods to incorporate span identification into the
process of parsing English into three formal representations: Temporal Logic, PDDL,
and a custom style of atomic propositions. Using pretrained language models and
naturalistic parallel data, we build a system that enables flexible formalization of
natural language across chosen intermediate representations.

Thesis Supervisor: Chuchu Fan
Title: Assistant Professor

Thesis Supervisor: Yang Zhang
Title: Research Scientist, MIT-IBM Watson AI Lab

3

4

Acknowledgments

The past year has been both tumultuous and rewarding. I’ve been fortunate to have

so many sources of support that made this journey lighter.

I’m grateful to my thesis supervisor, Chuchu Fan, for valuable advice about how

to approach research, as well as the rest of the Realm lab for always being welcoming

and available. Thank you to my industry supervisor Yang Zhang for helping me

problem-solve and being a voice of reason as I tried to untangle my freshly tossed

thoughts every now and then. I’m grateful to Jake Arkin for insightful advice and

being willing to step in when I most needed guidance.

There is a world outside of my academic life, without which my academic life would

not be the same. I am grateful to the MIT Lightweight Women for being an inspiring

community and unwavering presence to come back to every day. In particular, thank

you to Nicole for thesis-writing solidarity, and Coach Amelia Patton for being overall

awesome. I’m grateful to every single member of my living community, pika, for

listening patiently and being my greatest source of joy. Never have I appreciated my

friends more than I do now. Thank you to Shardul for endless discussions, laughs,

listening, and believing in me every step of the way. Thank you to friends who I could

always rely on at MIT - Shinjini, Sualeh, Shriya, Stuti, Shreya - and those who lent

timely support during the past year, particularly Aalok, Vikram, and Siddhartha.

This and everything else I do is due to my family: Dada, Aai, and Sanmay, who

have always been there on the days when I needed it the most. Thank you for

reminding me what truly matters.

5

6

Contents

1 Introduction 15

1.1 Motivation . 16

1.2 Problem Statement . 17

1.3 Project . 18

1.3.1 Goals . 18

1.4 Contributions . 19

1.5 Thesis Overview . 19

2 Technical Background 21

2.1 Atomic Propositions . 21

2.2 Temporal Logic . 21

2.3 PDDL . 22

3 Literature Review 23

3.1 The Language-Robot Interface . 23

3.1.1 Early NLP for Robotics - Defining the Problem 23

3.1.2 Statistical Methods - Towards a Data-Centric Approach . . . 24

3.1.3 Pretrained Language Models - The State of NLP Today 24

3.2 Parsing Language into Logical Intermediates 25

3.2.1 Language to Temporal Logic 26

3.2.2 Language to PDDL . 26

4 Methods: Span Identification 27

7

4.1 Technical Implementation . 27

4.1.1 Dataset . 27

4.1.2 Data Augmentation . 28

4.1.3 Dataset Characteristics . 30

4.1.4 Fine-Tuning . 31

4.1.5 Postprocessing . 32

4.2 Performance Evaluation . 32

4.2.1 Experimental Methods . 32

4.2.2 Evaluation Setup . 33

4.2.3 Results . 34

4.3 Cross-Domain Generalization . 35

4.3.1 Experimental Methods . 35

4.3.2 Evaluation Setup . 35

4.3.3 Results . 35

4.4 Conclusions . 37

5 Converting Spans into Atomic Propositions 41

5.1 Technical Approaches . 42

5.1.1 Converting Lifted NL to Temporal Logic 42

5.1.2 AP Formalizations Using LLM In-Context Learning 42

5.2 Matching to a Custom AP Style . 43

5.2.1 Experimental Setup . 43

5.2.2 Results . 44

5.3 Translating to PDDL Goals . 45

5.3.1 Experimental Setup . 45

5.3.2 Results . 46

5.4 Conclusions . 48

6 Discussion 49

6.1 Span Identification Performance . 49

6.1.1 Qualitative Evaluation . 49

8

6.1.2 Generalization to Synthetic Data 50

6.2 AP Formalization Performance . 50

6.3 Contributions in the Context of Contemporary Literature 51

6.4 Limitations and Future Work . 52

6.5 Conclusions . 52

A Experimental Materials 55

A.1 Matching to Custom AP Style . 55

A.2 PDDL Goal Generation . 56

9

10

List of Figures

1-1 An example of breaking down a natural language instruction into

atomic propositions. The APs, highlighted in the instruction on top

left, are treated as individual logical units (bottom left) in order to

evaluate whether the robot needs to be holding the flashlight at the

given point of time. 17

4-1 (a) The format of dataset items and conversion into a text-to-text task.

(b) An example of data augmentation through vocabulary expansion.

(c) A schematic of data augmentation through frame expansion. . . . 30

4-2 (a) Performance of the T5-Tuned model on the test set, compared

against few-shot performance of GPT-3 on the seed data. (b) Perfor-

mance of the T5-Tuned model and GPT-3 on the ‘Wrong AP Similar-

ity’ metric. (c) Changing the number of examples in GPT-3 few-shot

prompting had little effect on accuracy metrics, although it was always

better than zero-shot. 34

4-3 Accuracy-based metrics for novel domain generalization performance

of T5-Tuned models with certain domains withheld. Compared against

baseline performance of 3-shot prompted GPT-3 on the same test sets. 38

4-4 Similarity-based metrics for novel domain generalization performance

of T5-Tuned models with certain domains withheld. Compared against

baseline performance of 3-shot prompted GPT-3 on the same test sets. 39

11

12

List of Tables

4.1 Statistics of the number of APs and number of total words per instruc-

tion in the dataset. 31

4.2 Statistics of corpus richness. Compared to previously released large

datasets on data diversity metrics [5], our dataset creation method

generates a higher ratio of unique frames to total sentences and vocab-

ulary items to total sentences. 31

4.3 Accuracy comparison of two span identification approaches, a fine-

tuned t5-small model (T5-Tuned) and few-shot GPT-3. 34

4.4 Accuracy metrics across domains for the T5-Tuned span identification

model. The test domain was withheld during training. 36

5.1 The accuracy percentage for four different approaches to formalizing

identified spans into a custom style of APs, along with the total APs

evaluated. 44

5.2 The validity percentage for four different approaches to formalizing

identified spans into a custom style of APs, along with the total APs

evaluated. 44

5.3 The number of unique out-of-domain predicates or objects generated

by each approach. 45

5.4 Mean scores, across questions, of model responses judged as ‘reason-

able’ for both the AP-Split and Full-NL approaches. 47

5.5 Mean scores, across questions, of model responses judged as ‘within

domain’ for both the AP-Split and Full-NL approaches. 47

13

5.6 The average across users of how their mean transparency ratings for ei-

ther the AP-Split or the Full-NL approaches differed from their overall

mean transparency rating. 48

14

Chapter 1

Introduction

The ability of humans to interact with robotic machines using language is at a stage

of rapid development. Phones come equipped with virtual assistants that ‘listen’ to

natural language queries and instructions, and smart-home devices turn appliances

on and off with just a verbal command. But a lot of nuance is missing, and it becomes

important as we start using language to describe more complex tasks and problems.

Although we use language seamlessly, our everyday utterances are full of ambiguity,

hidden implications, and complex structures that may be opaque to robotic systems.

In a world where any user can communicate their goals to a robotic machine with

ease, complete and scalable natural language understanding is a crucial part of the

human-robot interface.

Imagine a robot in a lab, carrying out an impressive demonstration of planning

based on a natural language instruction. A human says, “There is a red block on the

table. Grasp the block until the light turns on and then pick it up.” This instruction

is executed. Impressive! Now, imagine we want to scale this machine’s abilities into

a variety of domains, some wildly different. What ought to happen when a human

says, "There is a cat stuck in the stairwell of Building 36! Search the stairwell until

you see her and then send us a message."?

Although these sentences describe very different situations and potentially require

very different action repertoires from the robot, they are similar at the natural lan-

guage understanding level. If, instead of trying to parse language directly into a set

15

of actions, a robot was trying to first build up a formal definition of the desired task,

we would find that these two very different commands can be structured exactly the

same way in that intermediate representation. The specific actions from the robot’s

repertoire only need to be plugged in to the intermediate representation.

This thesis takes a step towards better constructing these intermediate represen-

tations from natural language. Specifically, we ask: how can a machine correctly

identify sub-tasks or sub-constraints from a complex utterance in natural language,

so that their interdependencies may be formally described? We hope that the result-

ing system makes it easier to leverage the structure of human language into making

machine-language interfaces more generalizable and interpretable.

1.1 Motivation

Communicating a task to a machine typically requires precisely defining the problem,

constraints, and goals in a formal representation. Formal representations of tasks and

goals facilitate algorithmic planning, increase the efficiency of verification methods,

and help us build robust and reliable systems as a result. In natural language, a person

can describe their desired tasks or goal states to a robot by giving it an instruction.

This instruction could be complicated or ambiguous. It could be composed of sub-

tasks or sub-states that interact. A formal representation of the same task would

consist of smaller verifiable units (ideally atomic propositions) corresponding to all of

the sub-tasks, linked together using the appropriate operators or syntax as defined by

the formalization language. Figure 1-1 shows an example of breaking down sub-tasks

in order to represent the complex logic of an instruction.

The task of identifying these atomic propositions in natural language instructions

has cross-domain applications. In the field of converting natural language to temporal

logic, difficulty in correctly identifying and grounding atomic propositions has been

cited as a factor that prevents or limits generalization to new domains [14]. Decom-

posing a user’s instruction into smaller, focused units is also a strategy for planning

from high-level instructions [1] and providing targeted feedback to the user in case of

16

Figure 1-1: An example of breaking down a natural language instruction into atomic
propositions. The APs, highlighted in the instruction on top left, are treated as
individual logical units (bottom left) in order to evaluate whether the robot needs to
be holding the flashlight at the given point of time.

system failure [25].

1.2 Problem Statement

We are given an instruction in natural language (NL). First, we assume that the

semantics of the instruction can be represented using a logical formula.

Such a formula consists of atomic propositions (APs) which evaluate to Boolean

values (T/F). These APs are put together by operators from a finite set, which might

be defined through a framework such as propositional logic or temporal logic.

If the NL instruction is a sequence of tokens 𝑤1, 𝑤2, 𝑤3...𝑤𝑛 then each token will

belong to one of two categories – either part of an operator, or part of an atomic

proposition.

At the end, we want to make an ordered list of non-overlapping subsets, such that

each subset can be parsed into an atomic proposition.

The remainder of the token sequence will be assumed to contain the operators.

We aim to identify the subsets of tokens that correspond to atomic propositions in a

way that is agnostic to the specific operators present in the formalization framework.

17

1.3 Project

The project of this thesis is building a modular system to identify atomic

propositions from a natural language instruction. First, we fine-tune a pre-

trained language model to identify the spans of an instruction corresponding to poten-

tial atomic propositions. Then, we use the identified spans as an input into whatever

formalization framework is desired. To demonstrate the use of the identified spans

as input to a formalization framework, we implement a conversion into Planning Do-

main Definition Language (PDDL) as well as a conversion into atomic propositions

represented in a custom style (e.g. predicate(object)).

1.3.1 Goals

Dataset creation Our methodological goal is to create a dataset for extracting

potential atomic propositions from English commands and release it for further use. In

creating the dataset, we use a Large Language Model (LLM) as a data augmentation

tool, saving hours of human annotation time. When releasing the dataset, we provide

a detailed description and evaluation of the data augmentation technique. We also

demonstrate that the dataset thus created is more diverse, natural, and complex than

existent algorithmically augmented datasets in this field.

Pretrained networks for language-to-TL conversion Our engineering goal is

to demonstrate the incorporation of pretrained networks into the task of identifying

atomic propositions. Building upon the idea that starting with some sort of abstract

knowledge representation can help us generalize better in a downstream task, we

demonstrate this for the identification of constraints from natural language sentences

spanning five different domains.

Multifaceted evaluation Our scientific goal is evaluation of every step of our

pipeline. Within each layer, we enumerate the design decisions and carry out tests

on a variety of metrics to identify the effects of that decision on the final usefulness

of the model. In addition to evaluating on test set accuracy, we identify past pain

18

points – generalization ability, validity of LLM generations, and interpretability –

and design experiments to evaluate our approach on these metrics. We hope that

this multi-pronged evaluation approach, going beyond benchmark accuracy, can be

adapted into other domains and highlight areas for dramatic improvement in the

current state of the art.

This project contributes to a broader research theme of parsing constraints ex-

pressed in natural language into a formal intermediate representation.

1.4 Contributions

To summarize, there are three key contributions in this thesis:

1. Demonstrate the incorporation of modern NLP techniques into the longstanding

problem of extracting atomic propositions from linguistic input.

2. Create a novel dataset for AP identification which is diverse, complex, and

natural.

3. Evaluate the system on accuracy and generalizability. Further, evaluate the

merit of the two-step system that breaks down NL instructions prior to formal-

ization.

1.5 Thesis Overview

The reminader of the thesis is structured as follows. Chapter 2 provides the technical

background of relevant topics such as atomic propositions, temporal logic, and PDDL.

Chapter 3 provides an overview of related work in the language-to-formalization field,

with a focus on temporal logic as a well-studied formalization.

Chapters 4 and 5 focus on the technical methods of building the system. In

Chapter 4, we focus on the span identification aspect of the model. In Chapter 5,

we focus on the LLM-assisted methods of actually grounding the actionable spans

to actions or propositions in the robot’s real-world environment. In both of these

19

chapters, we describe the experiments used to evaluate the technical approach and

share the results.

Finally, Chapter 6 provides a summary of findings and additional notes, along

with a discussion of limitations and future directions to this work.

20

Chapter 2

Technical Background

In this chapter, we review the logical representations that are relevant to this work.

2.1 Atomic Propositions

In logic, a proposition is a statement that can be evaluated as True or False, for

instance, 𝑝 → 𝑞 (p implies q). An atomic proposition is one where further decom-

position is not possible. In the above example, p and q would be considered atomic

propositions. In this paper, we use the term ‘atomic proposition’ to mean a mini-

mal unit that can be verified (it is either a checkable state, or an action that can be

completed or not completed) and further breakdown is not required.

2.2 Temporal Logic

In temporal logic, atomic propositions representing particular constraints or tasks

are linked together by temporal operators as well as standard propositional logic

operators [22]. It is used in situations where a robotic machine needs to satisfy

certain constraints that are interdependent and ordered in time. For instance, Linear

Temporal Logic (LTL) is a type of temporal logic which, in addition to propositional

logic operators, contains the additional operators F (at some point in the Future),

U (Until), and G (Globally). An example of an LTL statement is below. Each Φ𝑖 is

21

an atomic proposition.

𝐹 (𝜙1 𝑈 (𝜙2 & 𝜙3))

At some point in the Future, Φ1 must be true Until (Φ2 And Φ3 are true).

e.g. “(hold on to the flashlight)1 until (you reach the flag)2 and (light #2

turns red)3”

2.3 PDDL

The Planning Domain Definition Language [20], or PDDL, is a Lisp-based framework

for describing a problem to a robotic planner. Specifically, in PDDL the user describes

the problem domain by describing available actions, predicates, and object types. The

user then can describe any problem in this domain by describing the specific objects,

initial conditions, and goal conditions that have to be met. Some robotics simulators

automatically detect objects and initial conditions from a scene [17]. What remains to

complete a problem definition is to provide the goal conditions. The goal conditions,

like the initial conditions, have to be defined in terms of the objects, predicates, and

actions which are present in the domain definition. So, if something similar to atomic

propositions are extracted from a natural language instruction, a PDDL formalization

could be constructed by converting each AP into a clause within the goal statement.

22

Chapter 3

Literature Review

3.1 The Language-Robot Interface

3.1.1 Early NLP for Robotics - Defining the Problem

Early exploration of the language-computer interface, much like the bulk of current

research, focused on simulating human-to-human conversation. However, there were

some attempts to create natural language understanding in order to interact with

machines and have them carry out tasks. A demonstrative example developed in the

60s is the SHRDLU system [32]. SHRDLU operated in a limited toy setting called

‘blocksworld’, and its demonstrated abilities included understanding what objects

were being referred to in a natural language instruction. It gave feedback to the

user if a particular object was not understood, not existent in the environment, or a

particular action was not in its repertoire.

Through six decades of work since then, the underlying desiderata of SHRDLU

are not very different from what we want from our systems today. When we say that

we want our systems to ‘understand’ natural language instructions, we often mean

that we would like our system to interface between the instruction we have provided

and a concrete instruction that it is able to carry out in its own environment –

while communicating back to us if such a mapping is not possible. This highlights

interpretability as an important and longstanding concern for the natural language

23

understanding space.

Surprisingly, even SHRDLU’s shortcomings were not too different from the key

challenges with NLU for robotics today. SHRDLU was constrained to the rudimentary

blocksworld environment, and only responded with reasonable success to a few well-

tested structures of instructions. Today, robotics NLU systems are often tested on a

single domain and fail to generalize to others [14]. This highlights another concern –

generalizability of a natural language understanding solution.

3.1.2 Statistical Methods - Towards a Data-Centric Approach

In the 1980s, the rise of statistical methods in language processing reduced the reliance

on painstakingly crafted dictionaries and grammatical rules. These methods used data

to learn the particular values of a set of parameters in a pre-defined model. Use of

data began to show promise as a reliable way to improve model performance [19].

A drawback of statistical methods was that as the models grew more complicated,

complex feature engineering was required in order to define all the correct features to

capture the different aspects of language. This is where neural networks came in.

Neural network models are nonparametric – meaning that there isn’t a fixed set

of parameters or features. Instead, over the course of the training phase, a neural

network defines and tunes its own set of features. While this makes neural networks

much more generalizable, it also makes them opaque to a user. This underscores the

importance of an explainable intermediate representation in case of failure in

these systems.

3.1.3 Pretrained Language Models - The State of NLP Today

A class of neural network models are commonly referred to as Large Language Models

(LLMs). An LLM is pre-trained on a large amount - terabytes - of unlabeled data. The

LLM learns patterns of language use that are then encoded into billions of parameters,

enabling much finer-grained responses over a larger set of domains than ever possible

before.

24

Pretrained language models may be trained on objectives such as next-word pre-

diction or masked language modeling. Masked language modeling, introduced with

BERT [7], makes use of unlabeled data by randomly ‘masking’ spans of tokens1. The

model’s objective is to choose the highest probability sequence of tokens to fill in

the masked region. Loss is calculated based on the similarity of the model’s out-

put to the original sentence. The model we use in our system, T5, uses a similar

masked-language-modeling method for pretraining. Pretraining for T5 is done us-

ing the Colossal Clean Crawled Corpus [24], a large corpus of cleaned English text

scraped from the internet using Common Crawl (https://commoncrawl.org/).

T5 introduced the idea of treating any NLP problem as a text-to-text problem.

After pretraining on a large unlabeled corpus, T5 could be fine-tuned on multiple

specific NLP tasks, converted to a format in which the input was a string and the

output was a string as well. The method of pre-training a model and then fine-

tuning on a specific task with fewer labeled examples is called transfer learning, and

originating in the field of Computer Vision, it is very common in NLP today. We will

refer to transfer learning in the context of our model in later chapters.

3.2 Parsing Language into Logical Intermediates

Work from the early 2000s addressing the language-robot-interface recognizes the

need for a domain-independent logical intermediate between a natural language in-

struction and the robot’s semantic representation of the task [16]. Both prior to and

following this, much natural-language-understanding work focused on predicate logic

[31] or temporal logic [15] as potential intermediates due to a structure that allowed

for easier rule-based translation from structured English sentences.

TL is not the only option for a logical intermediate, however. Algorithmic plan-

ners were developed to solve problems defined in PDDL, and so it provides a useful

intermediate representation.

1A finer-grained representation than ‘words’, a word may consist of multiple tokens.

25

3.2.1 Language to Temporal Logic

[4] provides a recent (2019) survey of approaches to convert natural language, usu-

ally English, into Linear Temporal Logic (LTL) specifications. This survey identifies

some of the challenges that arise in converting language, with potential ambiguities,

into Temporal Logic. It divides approaches up to 2019 into two broad categories -

rule-based approaches and statistical approaches - and finds that overall, statistical

approaches are capable of outperforming rule-based approaches, but only when there

is an abundance of data used to train the model.

3.2.2 Language to PDDL

The Planning Domain Definition Language (PDDL) is a commonly used problem

definition language for robotics. Although pretrained large language models do not

necessarily produce reasonable plans from natural language instructions, they can

be used as translators between natural language and PDDL goal statements, and

combined with algorithmic planners which rely on goals defined in PDDL [11, 33].

This approach is a current area of research.

26

Chapter 4

Methods: Span Identification

The first step in the two-step process to identify atomic propositions is identifying

spans of the natural language instruction that might potentially contain the APs. In

this section, we detail the technical implementation of this step. Then, we carry out

evaluation of the span identification model on metrics of accuracy and cross-domain

generalization.

4.1 Technical Implementation

The technical implementation of the span identification model involved creating a

dataset and fine-tuning a T5 model on the task. The following sections describe the

dataset, including the creation process and an analysis of the data distribution. Then,

we talk about fine-tuning and postprocessing.

4.1.1 Dataset

A goal of the language-to-formalization effort is making formal descriptions available

to a layperson. But existent datasets often lack examples of the way that a layperson

might speak to a robot. Prior work in text-to-TL has relied on synthetically generating

English sentences from randomly generated Temporal Logic using hard-coded rules

[12, 30]. Although some randomness can be added, this approach limits the flexibility

27

and diversity of data, thus highly limiting the generalization potential of the model

trained on it [10]. Instead, we propose starting with manually annotated human-

generated sentences and then augmenting this data using a large language model.

We collected about 600 labeled examples and doubled that through augmentation

to build a dataset of 1.3K. We incorporate common robot toy environments in the

navigation and manipulation domain as well as relatable and applicable household

tasks. For our natural data, we use Wikihow1 as the primary source. Some data is

compiled from other works on robotics [27] as well as from a crowd-sourcing effort

with collaborators familiar with logical representations. This initial dataset is referred

to as the ‘seed data’ in the following section.

In terms of format, our dataset consisted of English instructions as the input and

the AP-lifted instruction as well as a list of APs as the label. This allowed for a

supervised training approach, in which the ‘ground truth’ labels are provided to the

model at training time. Testing is then done on a subset of the dataset that has

been withheld completely during test time. Following from work that shows that

most tasks can be represented in a text-to-text format with good performance [24],

we converted our dataset into a text-to-text format as shown in Figure 4-1.

4.1.2 Data Augmentation

We use GPT-3 [23], a pre-trained large language model, to augment our data. This

is a departure from the precedent of rule-based data augmentation [12, 30]. It is an

important one. By virtue of being pre-trrained on large amounts of human-generated

data, GPT-3 encodes finer patterns of naturalistic utterances than what can possibly

be hard-coded by a small team of researchers.

The data augmentation process consists of two techniques. First, we carried out

vocabulary expansion. This meant retaining the sentence structures from our seed

data but enhancing the vocabulary that they contain. In order to do this, we take the

AP-lifted version of each data point. Then, we use in-context learning with GPT-3

or GPT-3.5 to fill in the blank regions with novel APs. Optionally, we provide it with
1A website that contains articles about how to do various tasks. wikihow.com

28

nudges about domains to focus on.

The second aspect of augmentation was frame expansion. In this technique, we

used GPT-3.5 to generate new sentence structures altogether. We ask for commands

that can be provided to a robot, then we process those to get lifted versions and carry

out vocabulary expansion on each of the lifted versions. This allows us to get more

spontaneous sentence structures in our dataset.

Below is an example of an LLM prompt used for data augmentation through

vocabulary expansion. The sections in bold are the nudges meant to balance the

domains represented in the dataset, and were frequently changed or removed. The

higher-level data augmentation process is illustrated in Figure 4-1.

Example LLM Prompt for Data Augmentation

In the frame given below, fill the props with constraints that you might find

in an airplane or automotive design manual. You can also fill them

with commands that you might give a robot, in a domain such as navigation,

manipulation of objects, or signal detection. After each sentence, also

give me a list of what you used to fill in the props, separated by $$.

Here are some examples: For the frame "If {prop_1}, {prop_2} and {prop_3}

until {prop_4}.", an example sentence is "If the trash is full, take it out and

dump it until it is emptied." $$ the trash is full $$ take it out $$ dump it $$ it

is emptied $$

For the frame "It is equivalent to have {prop_1} and {prop_2} at the same

time or to have {prop_3} eventually .", an example sentence is "It is equivalent

to have the value of signal 2 be 5.0 and switch 6A to be on at the same time

or to have signal 3 become 20.5 eventually." $$ the value of signal 2 be 5.0 $$

switch 6A to be on $$ signal 3 become 20.5 $$

Here is a new frame: {prop_1} until {prop_2} and {prop_3}. Five different

example sentences for this can be:

29

Figure 4-1: (a) The format of dataset items and conversion into a text-to-text task.
(b) An example of data augmentation through vocabulary expansion. (c) A schematic
of data augmentation through frame expansion.

4.1.3 Dataset Characteristics

The complexity and diversity of our dataset were important design considerations,

especially since we are working with a small dataset (1.3K items). In this section we

analyze our data for complexity and diversity, alongside comparable language-to-TL

datasets.

To reflect complexity of instructions, we report the statistics of AP counts per

instruction and word counts per instruction in Table 4.1. While the number of APs

in the instructions tend to be low, the number of words tends to be high, with sizable

standard deviation. It reflects that the AP spans are of variable length.

Table 4.2 shows a comparison of our dataset with other comparable English-to-

Formalization datasets, focusing on Temporal Logic datasets. We report a high ratio

of unique frames to total sentences, as well as the highest total vocabulary count in

spite of having a fairly small dataset.

30

AP Counts
mean 2.275
median 2
max 6
std. dev. 0.905

Word Counts
mean 11.536
median 11
max 34
std. dev. 4.789

Table 4.1: Statistics of the number of APs and number of total words per instruction
in the dataset.

Dataset Total
Items

Unique
Frames

Unique : Total
Frames

Vocab Size

Our Data 1.3K 193 0.144 2178
NL2STL [5] 15K 14438 0.963 2121
DeepSTL [12] 120K 3653 0.030 265
GLTL [10] 11K 193 0.018 193
CW [28] 3.3K 39 0.012 188
Office email [9] 0.15K 23 0.153 143

Table 4.2: Statistics of corpus richness. Compared to previously released large
datasets on data diversity metrics [5], our dataset creation method generates a higher
ratio of unique frames to total sentences and vocabulary items to total sentences.

4.1.4 Fine-Tuning

Choice of Pretrained Model After preparing the dataset, we fine-tuned a pre-

trained language model on the span identification task. We chose the model T5, or

Text-to-Text-Transfer-Transformer [24]. T5 is based on the Transformer architecture

[29] and treats every task as a text-to-text task. We fine-tuned t5-small, the smallest

version of T5, in order to place a constraint on model size.

Task Defininition The specific task we are modeling here is identifying spans of

the sentence that correspond to potential atomic propositions. Henceforth we will

call this ‘Span Identification’. The conversion from dataset items to the prompt and

label for this task are shown in Figure 4-1. The input is an utterance containing

some atomic propositions as well as some operator words and fillers. It is a natural

English utterance that might describe a complex task, with temporally interdependent

subtasks. The output is a semicolon-separated list of the atomic propositions, in

order. Here, the ‘atomic propositions’ appear as spans of the original text, with no

additional modifications. This is done to avoid limiting the system to a particular

31

formal language or a particular representation of an atomic proposition.

4.1.5 Postprocessing

Coreference A potential challenge when breaking a larger instruction into separate

spans is the loss of coreference information such as the correct referents of pronouns.

To overcome this, we carry out coreference identification on the original instruction.

We carry out identification of coreference clusters using an existing external module,

wl-coref [8]. From there, our system can return coreference-annotated spans or

coreference-resolved spans. In the former case, coreference is marked on the entities

by marking every entity belonging to the same cluster with the same index. This

can be used as a check during grounding to ensure that each entity which shares an

index has been grounded to the same real-world object. In the latter case, coreference

resolution, the antecedent is identified and subsequent spans are edited to include a

reference to the main antecedent directly. Addressing coreference modularly with a

separate package allows us to incorporate coreference information into our system

without complicated re-annotation of our data.

We evaluated this model through multiple accuracy metrics, generalization exper-

iments, and qualitative evaluations to highlight common errors. We also compared

performance to few-shot learning using a large language model, here GPT-3. The

next two sections focus on the accuracy and generalization evaluations.

4.2 Performance Evaluation

4.2.1 Experimental Methods

Accuracy Metrics

We evaluated accuracy of the T5-based span identification model on four metrics:

• Command accuracy: The percentage of commands for which the full list of APs

was perfectly matched with the target

32

• AP accuracy: The percentage of APs which were perfectly matched with the

corresponding targets

• Wrong AP similarity: For all the predicted APs marked as incorrect, their

average similarity score with the targets.

• Above-threshold Similarity: The percentage of APs for which the cosine simi-

larity between the target & predicted AP exceeded the threshold of 0.8.

Similarity is on a scale of −1 to 1 and is calculated using the spacy library

[13] Since exact-match accuracy could be affected by things like verb conjugations,

punctuation, and even formatting, we did our best to standardize the output prior to

evaluation. However, it is not possible to hard-code all the possible exceptions, and

as a result, the similarity-based metrics are more stable.

4.2.2 Evaluation Setup

We evaluated on a test set that was a split of our original data, unseen during training.

While evaluating, we split the model’s generations into lists of spans. In order to

normalize the responses for better exact-match accuracy, punctuation was stripped,

unimportant words such as implicit ‘you’ (in imperatives) were dropped, and all verbs

were lemmatized. This is not a part of the post-processing of the model outputs, but

only a normalization applied for evaluation purposes.

Hyperparameters For the ‘T5-Tuned’ span identification model in the following

experiments, the model t5-small was fine-tuned with maximum sequence length of

256, a learning rate of 3e-4, using the ADAM optimizer with 𝜖 = 1𝑒 − 8, and batch

size 8 for both training and evaluation. It was trained on a subset of the data, with

train/validation/test split sizes of 432/107/179 data points respectively. Training was

for 20 epochs and it took less than thirty minutes on an NVIDIA GeForce RTX 2080

GPU. The results below are calculated from a single run of the algorithm.

33

Figure 4-2: (a) Performance of the T5-Tuned model on the test set, compared against
few-shot performance of GPT-3 on the seed data. (b) Performance of the T5-Tuned
model and GPT-3 on the ‘Wrong AP Similarity’ metric. (c) Changing the number of
examples in GPT-3 few-shot prompting had little effect on accuracy metrics, although
it was always better than zero-shot.

4.2.3 Results

The results are shown in Figure 4-2. Our span identification model scores >91%

on accuracy metrics. This is compared with few-shot performance of GPT-3 on the

seed data. GPT-3 is tested specifically on the natural seed data, not the test data,

since the test data may contain examples generated by GPT-3. Numerically, the

performance on the accuracy metrics is given in Table 4.3. A qualitative evaluation

of the successes and errors is included in the Discussion (Chapter 6).

Metric T5-Tuned GPT-3
Command Accuracy 91.95 53.0
AP Accuracy 94.62 71.49
Wrong AP Similarity 0.82 0.76
Similarity > 0.8 99.43 89.79

Table 4.3: Accuracy comparison of two span identification approaches, a fine-tuned
t5-small model (T5-Tuned) and few-shot GPT-3.

34

4.3 Cross-Domain Generalization

We tested the ability of the span identification model to generalize to unseen do-

mains and sentence structures. For the experimental setup, we chose five domains

with distinct types of instructions: Gardening, Cooking, Cleaning, Navigation, and

Manipulation.

4.3.1 Experimental Methods

For each domain, we split our data into a domain-withheld training set that did not

contain instructions related to that domain, and a domain-specific test set which

contained those instructions. Filtering was based on vocabulary. Common words

were identified from each domain, and sentences containing those words were filtered

out.

Then, in each case, we freshly fine-tuned a T5-based span identification model on

the domain-withheld dataset. We evaluated each model on the domain-specific test

set, which contained at least keywords and likely multiple sentence structures that

were never encountered during fine-tuning.

4.3.2 Evaluation Setup

The vocabulary used for filtering the datasets for the span ID generalization experi-

ment are given in Table 4.3.2, along with the sizes of each training and testing dataset.

The evaluation metrics and T5-Tuning hyperparameters were the same as in section

4.2.

4.3.3 Results

As summarized in Figures 4-3 and 4-4, span identification with a finetuned T5 model

shows high generalization potential across domains. Numerical results are shown in

Table 4.4. Combined with prior results that show higher generalizability and accuracy

for TL translation when an AP-lifted version is used [5], this indicates that models

35

Task Words Withheld Train Size Test Size
Gardening plant, soil, water, dig, trim, cut,

weed, grass, yard, rake, lawn,
wheelbarrow, mow

1240 102

Cleaning clean, dirty, trash, scrub, dust,
sweep, garbage, stain, laundry,
dish, wash, organize, tidy

976 366

Manipulation red, blue, green, purple, arm,
robot, box, ball, grab, put, pick,
reach, lift, move

732 481

Navigation turn, walk, go, enter, reach, ap-
proach, bedroom, flag, kitchen,
navigate, move

751 459

Cooking stove, cook, pan, stir, boil, cook-
ing, pot, wash, oven, rice, water,
batter, meal, dish, sink, spoon,
simmer, cut

1085 257

Domain Command Accuracy (%) AP Accuracy (%) Wrong AP Similarity
Gardening 92.1568 95.6175 0.8948
Cooking 91.8287 94.8717 0.8617
Cleaning 93.9890 95.8950 0.8390
Navigation 91.7211 95.1992 0.7494
Manipulation 92.9313 95.9114 0.7703

Table 4.4: Accuracy metrics across domains for the T5-Tuned span identification
model. The test domain was withheld during training.

36

fine-tuned on naturalistic data show good generalization for both parts of the English-

to-TL process.

The results for GPT-3 in this experiment are for few-shot prompting, not fine-

tuning. The purpose of comparing the T5-Tuned model with few-shot GPT-3 is not

to contrast the quality of the two pretrained models, but rather the output from two

different training approaches – just pre-training on a large amount of data (GPT-3),

vs. pre-training a smaller model and fine-tuning it on a small amount of specific data

(T5-Tuned). Further, note in this comparison that since our dataset is augmented

by GPT-3, many of the test sentences are part of its distribution. Therefore, this

experiment does not test the novel domain generalization performance of GPT-3. It

visualizes the baseline AP identification performance of GPT-3 alongside the the novel

domain generalization performance of the T5-Tuned model. The performance of the

T5-Tuned model on unseen data is comparable or better than GPT-3 performance

on potentially self-generated data.

4.4 Conclusions

In this chapter, we implemented and evaluated a model for span identification, the

first step towards identifying formalization-agnostic atomic propositions from natu-

ral English instructions. We created a novel dataset, which is augmented through an

LLM-assisted framework that makes it more natural, complex, and diverse than exist-

ing language-to-formalization datasets. After training the span identification model,

we evaluated it on four measures of accuracy and generalization to five robot task

domains, finding promising cross-domain generalization.

In the next chapter, we discuss methods to convert the output of span iden-

tification into atomic propositions given a chosen formalization format as well as

experiments on the accuracy and interpretability of such an approach.

37

Figure 4-3: Accuracy-based metrics for novel domain generalization performance of
T5-Tuned models with certain domains withheld. Compared against baseline perfor-
mance of 3-shot prompted GPT-3 on the same test sets.

38

Figure 4-4: Similarity-based metrics for novel domain generalization performance of
T5-Tuned models with certain domains withheld. Compared against baseline perfor-
mance of 3-shot prompted GPT-3 on the same test sets.

39

40

Chapter 5

Converting Spans into Atomic

Propositions

After identifying spans of the sentence that potentially correspond to atomic propo-

sitions, the next step is actually converting these to the representation of APs in

the chosen formalization. The method looks different depending on the formalization

selected. We have two outputs: the spans, which we have been discussing so far, and

the remainder of the sentence (‘lifted’ sentence), which is presumed to contain the

operators. Below, we discuss existing technical approaches for converting the lifted

natural language sentence into the skeleton of a logical sentence. Then, we propose

a method for converting the identified spans into atomic propositions, in order to fill

in the gaps in the logical sentence skeleton.

In order to demonstrate converting the identified spans into atomic propositions,

we use two types of representations. One is a custom style where each AP is rep-

resented in the format predicate(object) using predicates and objects that are

existent within the domain. This format can be plugged into a temporal logic skele-

ton. The second is PDDL, where each AP is represented as a single proposition in the

goal condition. These two formalization styles have different syntax, but the approach

towards converting the spans into these styles is similar.

After discussing the technical approach to converting identified spans into atomic

propositions (either custom style or PDDL goals), we carry out evaluation experi-

41

ments to test the accuracy, validity, and interpretability of the two-step approach.

Sections 5.2 and 5.3 describe test suites designed for the evaluations as well as ex-

perimental methods and results. We find that for conversion to Custom-Style APs,

the two-step approach improves accuracy and validity of the generated atomic propo-

sitions. The results from the PDDL experiment on human-judged accuracy and in-

terpretability are inconclusive, but we present the initial findings and experimental

setup and discuss future directions for human user evaluation.

5.1 Technical Approaches

5.1.1 Converting Lifted NL to Temporal Logic

After the spans of interest are extracted, the remaining ‘lifted’ sentence an be con-

verted to Temporal Logic using existing text-to-text techniques [14, 5]. The APs

can be filled back in once the translation is complete. Recent work shows better

performance for this ‘lifted’ translation method than end-to-end translation between

English and STL [5]. Using the span identification model completes the pipeline by

creating reliable lifted sentences across a variety of domains.

5.1.2 AP Formalizations Using LLM In-Context Learning

We can use in-context learning with a pretrained LLM to match each identified span

to one or more APs as defined in the desired definition language. For example,

consider a language which has a set of predicates and a set of objects, and the desired

representation The prompt contains a domain description in the form of predicates

and objects as well as the initial conditions that define the problem. The prompt also

contains one unrelated example domain and potential instructions with their ideal

responses. APs from the English instruction are plugged into the prompt sequentially.

For each one until completion or failure, the model generates either (a) goal conditions,

or (b) feedback to the user when an atomic proposition doesn’t fit the possibilities of

the domain. In our experiments, we find that the two-step method does a better job

42

of keeping the LLM outputs within-domain.

5.2 Matching to a Custom AP Style

5.2.1 Experimental Setup

In this experiment we evaluate the two-step method on identifying atomic propositions

of a particular custom style. For instance, the style we chose is predicate(object).

For demonstration, we designed a suite of 100 NL instructions with custom AP ground

truths. The natural language instructions were sourced from Wikihow as well as the

most complex parts of open robotics datasets [18, 2], while ground truths were anno-

tated manually. They covered five domains – traffic, cleanup, gardening, household,

and navigation. We implemented a pipeline that would take the identified spans from

the first step and use them as input to an LLM for AP generation.

After post-processing to remove irregularities, we evaluate the generated APs on

metrics of accuracy and validity. The metric for ‘Accuracy’ is the percentage of LLM-

generated APs which are contained in the ground truth set of APs for the problem.

‘Validity’ measures whether the predicates and objects referenced by the generated

APs are all contained within the domain definitions. We calculate the percentage

of valid APs as well as the number of unique out-of-domain predicates and objects

generated by each approach.

We tested two approaches – APs as List and APs as Loop. In the List approach,

the identified spans are presented as a list in the LLM prompt and it is only prompted

once with the entire list. In the Loop approach, the LLM is prompted multiple times,

with only one single span per prompt. The APs are expected to be generated one by

one in the Loop approach. We tested two LLMs, GPT-3 and GPT-3.5, with both AP-

List and AP-Loop. We compared performance with a Full-NL approach, in which the

full natural language instruction is given as input to the LLM instead of the identified

spans.

43

Approach Percentage Accurate Total APs
AP-List; GPT3.5 58.39 805
AP-Loop; GPT3.5 64.27 722
Full-NL; GPT3.5 52.53 1028
AP-List; GPT3 62.59 818
AP-Loop; GPT3 61.66 806
Full-NL; GPT3 57.49 1195

Table 5.1: The accuracy percentage for four different approaches to formalizing
identified spans into a custom style of APs, along with the total APs evaluated.

5.2.2 Results

Accuracy

Results for accuracy are given in Table 5.1. The two-step method works better overall,

with the AP-Loop approach on GPT3.5 showing the best result. We also note the

total number of generated APs as compared to accuracy percentages: for instance,

even though the Full-NL approaches generate a much higher number of APs, their

accuracy scores are low, hence the additional generated APs may not be relevant to

the problem.

Validity

For validity, the best results were from the Full-NL GPT-3 model. Among AP-

based models using the two-step approach, we found that using the AP-List approach

with GPT-3 gave the best validity results. The AP-based approaches are all mostly

comparable, as shown in Table 5.2.

Approach Percentage Valid Total APs
AP-List; GPT3.5 85.52 725
AP-Loop; GPT3.5 86.86 586
Full-NL; GPT3.5 86.58 774
AP-List; GPT3 88.67 768
AP-Loop; GPT3 87.05 664
Full-NL; GPT3 94.23 948

Table 5.2: The validity percentage for four different approaches to formalizing
identified spans into a custom style of APs, along with the total APs evaluated.

44

Approach ChatGPT GPT-3
AP-List 58 14
AP-Loop 26 33
Full-NL 62 26

Table 5.3: The number of unique out-of-domain predicates or objects generated by
each approach.

Further, we evaluate how much this validity score is affected by the same out-of-

domain APs being generated vs. unique out-of-domain APs being generated. We find

that the AP-Loop approach has the best performance (lowest number of unique out-

of-domain APs), as shown in Table 5.3. This is an interesting metric, because having

fewer unique out-of-domain APs may make it easier to carry out error correction and

improve system performance, leading to a large increase in validity percentage with

much less effort.

5.3 Translating to PDDL Goals

5.3.1 Experimental Setup

In order to test the two-step method for grounding English instructions to PDDL,

we designed a test suite of 40 English-to-PDDL goal generation prompts for an LLM.

For half of these, the model was prompted using the original full English instruction

(“Full-NL”). In the other half, we first used our span identification model to extract

potential APs and then prompted the model using each AP specifically (“AP-Split”).

This second approach is similar to the AP-Loop approach discussed in the previous

section.

As a pilot test of accuracy and interpretability of model responses, we surveyed a

group of users familiar with formal logic, who either had a background in PDDL or

were given an introduction to PDDL prior to completing the survey. Each subject

filled out a survey with ten model responses from the initial set of 40. The premise of

the survey was that the subject was interacting with and judging the performance of a

model which grounds natural language instructions to PDDL, and provides feedback

45

if such a grounding is impossible.

Each question started with a plain English instruction. The user attested that they

understood the instruction and found it well-formed. In case any user did not find

a particular instruction well-formed (5 out of 120 total cases), the user’s remaining

answers for that question were filtered out in the data processing stage.

After seeing the plain English instruction, the user saw the system’s feedback

response to the instruction, also in plain English. This response was generated by

prompting GPT-3.5 to generate PDDL goals from English. The user was asked to

comment on the transparency of the model state. Given the model’s feedback re-

sponse, the user rated how easily and clearly they were able to infer the state of the

model (i.e. success or failure at a particular stage). The description of the domain

was hidden from the user at this point.

Then, the domain description was shown. The model’s full response was also

shown. The full response consisted of not just the feedback, but also the generated

PDDL. The user was asked to judge the model’s generated PDDL (if any) for cor-

rectness and adherence to the constraints of the domain. This gives us an estimate

for accuracy of the generated PDDL.

Each user also rated the ease of answering the accuracy questions on a 5-point

scale. This, in addition to the model state transparency question, gives us an estimate

for the interpretability of the model’s repsonses.

An example of a full stimulus is given in the Appendix. It shows an example

instruction and its corresponding domain description, along with the model responses

from the AP-Split approach and the Full-NL approach.

5.3.2 Results

Accuracy

For PDDL and feedback generated by both methods, users judged reasonability and

adherence to the domains. For the analysis, each response (yes; no; can’t say) is

converted to a numerical score (1; -1; 0). The responses are then split by question ID

46

Reasonable
Input type Mean Score Std. Error
AP-Split -0.2425 ± 0.1446
Full-NL -0.2628 ± 0.1450

Table 5.4: Mean scores, across questions, of model responses judged as ‘reasonable’
for both the AP-Split and Full-NL approaches.

In-Domain
Input type Mean Score Std. Error
AP-Split 0.5651 ± 0.1453
Full-NL 0.5168 ± 0.1157

Table 5.5: Mean scores, across questions, of model responses judged as ‘within do-
main’ for both the AP-Split and Full-NL approaches.

since multiple annotators judged each question. Each question’s score is a weighted

average of its individual annotator scores, where the weights are their self-reported

PDDL comfort on a scale of 1-5. Results are in Tables 5.3.2 and 5.3.2.

In both reasonability and adherence to domain, we observe a slight advantage of

the AP-Split approach, but the difference is not significant. It is worth noting that

most questions are judged neutral-to-unreasonable and neutral-to-within-domain.

Interpretability

We were interested in transparency of model state as a measure of interpretability.

In order to study this, we separated the responses to this question by unique respon-

dents. We calculated the mean rating given by each user under both the Full-NL and

AP-Split conditions, and the difference between that and their overall mean rating.

The data suggests that on average, AP-Split responses may rated more transparent

than the overall mean and Full-NL responses were rated less transparent than the

overall mean, but the difference is not significant. The numerical results are given in

Table 5.3.2.

In this question as well, the average transparency score by user was fairly high

for almost every user. On a scale of 1-7, nearly every user’s average response across

questions was greater than or equal to 6 points. (Average transparency scores by user:

6.2, 6.2, 6.1, 7, 6, 5.7, 6.6, 6.9, 6, 5.375, 6.142857143, 6.)

47

Model Transparency
Input type Diff. from Overall Mean Std. Error
AP-Split 0.0624 ± 0.0809
Full-NL -0.0574 ± 0.0838

Table 5.6: The average across users of how their mean transparency ratings for either
the AP-Split or the Full-NL approaches differed from their overall mean transparency
rating.

Users also rated the ease of judging whether the model’s response was reasonable

and within-domain. There were no significant differences between Full-NL and AP-

Split responses.

5.4 Conclusions

In this section, we implemented two ways of formalizing identified spans from a nat-

ural English sentence into APs. In the first, we formalized the span into a custom

predicate(object) AP format. In the second, we converted each span into a PDDL

goal. For both, we used large language models with 1-3 examples provided in the

prompt.

From the Custom-Style AP generation, which was evaluated algorithmically, the

results indicate that the two-step method of splitting up the spans and using them as

input is a promising way to address some of the concerns that come up while using

LLMs for reasoning tasks – specifically, accuracy of the generations and adherence to

the defined domains.

From the PDDL-goal generation, which was evaluated by a small set of human

users, results were inconclusive. Generally, user responses showed very little vari-

ability at all. We are interested in running this experiment with other language

models, questions involving more complex tasks, and users from a wider variety of

backgrounds. Thus, we would like to investigate whether this result is robust or is

being influenced by factors external to the hypothesis.

48

Chapter 6

Discussion

In this chapter, we summarize the findings and contributions from previous chapters,

along with a discussion of limitations and future directions to this work.

6.1 Span Identification Performance

6.1.1 Qualitative Evaluation

We conducted a qualitative evaluation of span identification performance by studying

all the model predictions that had a similarity of less than 0.8 with the target spans.

Key Strengths Both the finetuned t5-small and GPT-3 prompting approaches

were able to identify generally accurate spans in a sentence, in sequential order. The

most interesting result from the evaluation of the span identification model is the

high accuracy and similarity scores from the smallest T5 model, fine-tuned on only a

few hundred sentences of parallel data. In addition to our model being made open to

use, researchers or engineers who wish to train their own span identification model

can do so with relatively little annotated seed data and computing power, using the

methodology outlined here.

Key Weaknesses The finetuned t5-small model struggled with completely differ-

ent sentence structures, such as complex circuit descriptions from a different dataset

49

[12] when they were not part of the training set. It’s worth pointing out that these sen-

tences were generated by algorithm and not scraped from natural-language sources.

For the GPT-3 prompting approach, it was constrained by the particular exam-

ples provided in the prompt. The predicted APs often missed important modifying

phrases, such as in the AP ‘sweep the floor using the broom’, it would miss ‘using

the broom.’

6.1.2 Generalization to Synthetic Data

In our experiments on generalization, we found good generalization to instructions

with natural sentence structures even when they were from unseen domains. This

is promising. At the same time, we wondered about performance on datasets with

highly different sentence structures. With further experimentation, we found that

synthetic sentence structures from a circuit-domain dataset [12] were not as well

resolved. We believe this is not an inability to generalize to the circuit domain, but

rather an unfamiliarity with the highly artificial sentence structures in that dataset.

Regardless, such sentence structures might come up in real-world problem definitions,

and it may be desirable for a span identification model to deal with them. We found

that including just 50 sentences from the circuit dataset (originally 120K sentences

in size) into the training data improved performance on the circuit test data from

18% AP accuracy to 58.5% AP accuracy, a gain of 40%. Thus, transfer learning

capabilities of T5 can be applied in to achieve large improvements in cross-domain

generalization with much less data.

6.2 AP Formalization Performance

For generating custom-styled APs or grounding to PDDL, we proposed using LLMs.

There is a tradeoff to consider here. On one hand, including the whole natural

language instruction without any breakdown incorporates all the necessary context

of the sentence. On the other hand, LLMs are prone to predicting text that is incorrect

in a particular context but may have been from an unrelated part of the prompt. By

50

carrying out the span identification chunking, we encourage the grounding done via

LLMs to be specific and relevant. This is particularly reflected in the low number of

out-of-domain actions and objects generated by the AP-Loop approach, as compared

to Full-NL (Table 5.3).

6.3 Contributions in the Context of Contemporary

Literature

One line of work in language-based-planning for robotics is grounding natural lan-

guage instructions directly to the robot’s environment or potential plans [21, 27]. Our

work is similar to the above in that it focuses on interpreting natural language com-

mands for a robot. It differs from the above by focusing on the language interpretation

and not planning, and by making intermediate representations an explicit concern.

Choosing the ideal intermediate representation between language and a robot’s plan

is a difficult question, so we aim to generalize across the choice of formalization.

Parallel data that maps language to formal representations or even atomic propo-

sitions is rare, creating a bottleneck for supervised learning. There are various

workarounds, largely from the field of language-to-temporal logic. Some work gen-

erates artificial data by using rule-based TL-to-language algorithms [12] or soliciting

human annotations for simulated robot actions [30]. Our work makes a contribution

to this field by creating a dataset and describing the methodology, enabling easier

access to parallel training data without the need to create unnatural synthetic sen-

tences.

We use pretrained, Transformer-based [29] neural language models at both stages.

With the advent of Large Language Models (LLMs), there is a lot of ongoing research

about carrying out tasks end-to-end using a language model. We take an alternative,

modular approach with the goal of building a targeted and transparent system.

51

6.4 Limitations and Future Work

One key limitation is that this work focuses on English data. While cross-lingual

transfer learning is an ongoing research problem [3], studies in cross-lingual transfer

learning have reported results that are of less quality than monolingual training [26].

As such, the authors think that a language-agnostic approach to the AP identification

task would be a valuable contribution. One way to do this could be starting not with

the base natural language instruction, but with its dependency tree that is parsed

using standard cross-lingual conventions [6].

A second limitation is that we limit this paper to commercially available LLMs

(GPT-3 and GPT-3.5). It may be worth evaluating this approach on other LLMs,

particularly open-sourced alternatives.

Finally, we carry out a pilot study evaluating the ways in which human users

interact with the two different approaches to formalization – our proposed system

vs. an end-to-end approach. The users in our study are not necessarily domain

experts, but they have a greater exposure to formal representations than the general

population. A larger-scale study with the general population would be an interesting

future direction of work to study whether this approach makes a difference in the

accessibility of formal representations to a non-expert.

6.5 Conclusions

In this thesis, we present a two-step method for identifying atomic propositions from

English language instructions. Our method goes from English to span identification

and then to the desired representation of atomic propositions, allowing generaliza-

tion across formalization types. For span identification, we find high cross-domain

generalization, suggesting that this may be a promising approach for generalizable

AP identification. We also carry out experiments with using span identification as

an intermediate for LLM-assisted formalization, finding that this approach increases

accuracy and relevance of the generated atomic propositions in a custom representa-

52

tion.

53

54

Appendix A

Experimental Materials

A.1 Matching to Custom AP Style

Following is an example of a domain descriptions used for the Custom AP style

experiments. There were five domains. We also include an example English language

instruction.

Domain Name: Traffic

Predicates:

decrease_speed, locate_object, not, turn_into, collide, enter,

aligned, engage_signal, check_sensor, exists, stop_at, approach,

yield

Objects:

traffic_sensor, car, traffic, exit, mirror_right, mirror_left,

curb, self, traffic_gap, parking_spot, turn_signal, object,

parking_line, roundabout

Example Instruction: Decrease your vehicle’s speed as you approach the circu-

lar roundabout. Check the left mirror before entering the roundabout and allow any

approaching traffic to pass. Enter only when you have a safe gap. If the roundabout

55

is vacant, you can enter without yielding. Turn on your signal as you approach your

desired exit.

A.2 PDDL Goal Generation

Below is an example of an instruction and domain description, along with the re-

sponses from the AP-split approach and Full-NL-Instruction approach.

Instruction: Start by vacuuming the rug to remove any visible dust, then fill the

bucket with water and mix in a scoop of detergent. Finally, take the rug off the floor

and put it in the bucket, please.

Domain Description

Predicates:

(:predicates

(inside ?obj1 ?obj2)

(nextto ?obj1 ?obj2)

(ontop ?obj1 ?obj2)

(broken ?obj1)

(burnt ?obj1)

(cooked ?obj1)

(dusty ?obj1)

(frozen ?obj1)

(open ?obj1)

(perished ?obj1)

(screwed ?obj1)

(stained ?obj1)

(sliced ?obj1)

(timeset ?obj1)

)

Objects:

(:objects

56

vacuum.n.04_1 - vacuum.n.04

rug.n.01_1 - rug.n.01

floor.n.01_1 - floor.n.01

agent.n.01_1 - agent.n.01

bucket.n.02_1 - bucket.n.02

scoop.n.02_1 - scoop.n.02

)

Initial Conditions:

(:init

(ontop vacuum.n.04_1 rug.n.01_1)

(ontop agent.n.01_1 floor.n.0_1)

(dusty rug.n.01_1)

)

Model Response; Full-NL Approach

Attempting to ground ‘Start by vacuuming the rug to remove any visible dust,

then fill the bucket with water and mix in a scoop of detergent. Finally, take

the rug off the floor and put it in the bucket, please.’...

Feedback: Error, no predicate found for ‘fill’.

[No PDDL generated]

57

Model Response; AP-Loop Approach

Attempting to ground ‘vacuuming the rug.’...

Grounded successfully.

PDDL Goal:

(:goal

(and

(not (dusty rug.n.01_1))

)

)

Attempting to ground ‘remove any visible dust.’...

Grounded successfully.

PDDL Goal:

(:goal

(not (dusty ?obj1))

)

Attempting to ground ‘fill the bucket with water.’...

Grounded successfully.

PDDL Goal:

(:goal

(inside bucket.n.02_1 water)

)

Attempting to ground ‘mix in a scoop of detergent.’...

Feedback: Error, no object found for ‘detergent’. Would you like to add an

object called ‘detergent’?

58

Bibliography

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth,
Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei
Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet,
Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia,
Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng. Do as i can
and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

[2] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan, Lawson L. S. Wong,
and Stefanie Tellex. Accurately and efficiently interpreting human-robot instruc-
tions of varying granularities. CoRR, abs/1704.06616, 2017.

[3] Mihaela A. Bornea, Lin Pan, Sara Rosenthal, Radu Florian, and Avirup Sil.
Multilingual transfer learning for QA using translation as data augmentation.
CoRR, abs/2012.05958, 2020.

[4] Igor Buzhinsky. Formalization of natural language requirements into temporal
logics: a survey. 07 2019.

[5] Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. Nl2tl: Trans-
forming natural languages to temporal logics using large language models, 2023.

[6] Marie-Catherine de Marneffe, Christopher D. Manning, Joakim Nivre, and
Daniel Zeman. Universal Dependencies. Computational Linguistics, 47(2):255–
308, 07 2021.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

59

[8] Vladimir Dobrovolskii. Word-level coreference resolution. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pages
7670–7675, Online and Punta Cana, Dominican Republic, November 2021. As-
sociation for Computational Linguistics.

[9] Francesco Fuggitti and Tathagata Chakraborti. NL2LTL – a python package
for converting natural language (NL) instructions to linear temporal logic (LTL)
formulas. In AAAI, 2023. System Demonstration.

[10] Nakul Gopalan, Dilip Arumugam, Lawson L. S. Wong, and Stefanie Tellex.
Sequence-to-sequence language grounding of non-markovian task specifications.
In Robotics: Science and Systems, 2018.

[11] Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambham-
pati. Leveraging pre-trained large language models to construct and utilize world
models for model-based task planning, 2023.

[12] Jie He, Ezio Bartocci, Dejan Ničković, Haris Isakovic, and Radu Grosu. Deepstl
– from english requirements to signal temporal logic, 2021.

[13] Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental parsing.
To appear, 2017.

[14] Eric Hsiung, Hiloni Mehta, Junchi Chu, Xinyu Liu, Roma Patel, Stefanie Tellex,
and George Dimitri Konidaris. Generalizing to new domains by mapping natural
language to lifted ltl. 2022 International Conference on Robotics and Automation
(ICRA), pages 3624–3630, 2022.

[15] Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Translating
structured english to robot controllers. Advanced Robotics, 22(12):1343–1359,
2008.

[16] S. Lauria, T. Kyriacou, G. Bugmann, J. Bos, and E. Klein. Converting natural
language route instructions into robot-executable procedures. pages 223–228,
2002.

[17] Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Sri-
vastava, Bokui Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain,
Andrey Kurenkov, C. Karen Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, and
Silvio Savarese. igibson 2.0: Object-centric simulation for robot learning of ev-
eryday household tasks. CoRR, abs/2108.03272, 2021.

[18] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivas-
tava, Roberto Martín-Martín, Chen Wang, Gabrael Levine, Michael Lingelbach,
Jiankai Sun, Mona Anvari, Minjune Hwang, Manasi Sharma, Arman Aydin,
Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan Lou, Caleb R Matthews,
Ivan Villa-Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Silvio Savarese,

60

Hyowon Gweon, Karen Liu, Jiajun Wu, and Li Fei-Fei. BEHAVIOR-1k: A bench-
mark for embodied AI with 1,000 everyday activities and realistic simulation. In
6th Annual Conference on Robot Learning, 2022.

[19] Mark Y. Liberman. The trend towards statistical models in natural language
processing. 1991.

[20] Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin
Ram, Manuela M. Veloso, Daniel S. Weld, and David E. Wilkins. Pddl-the
planning domain definition language. 1998.

[21] Daniel Nyga, Subhro Roy, Rohan Paul, Daehyung Park, Mihai Pomarlan,
Michael Beetz, and Nicholas Roy. Grounding robot plans from natural language
instructions with incomplete world knowledge. In Aude Billard, Anca Dragan,
Jan Peters, and Jun Morimoto, editors, Proceedings of The 2nd Conference on
Robot Learning, volume 87 of Proceedings of Machine Learning Research, pages
714–723. PMLR, 29–31 Oct 2018.

[22] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57, 1977.

[23] Alec Radford and Karthik Narasimhan. Improving language understanding by
generative pre-training. 2018.

[24] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. CoRR, abs/1910.10683,
2019.

[25] Vasumathi Raman, Constantine Lignos, Cameron Finucane, Kenton C. T. Lee,
Mitchell P. Marcus, and Hadas Kress-Gazit. Sorry dave, i’m afraid i can’t do
that: Explaining unachievable robot tasks using natural language. In Robotics:
Science and Systems, 2013.

[26] Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. Cross-lingual
transfer learning for multilingual task oriented dialog. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 3795–3805, Minneapolis, Minnesota, June 2019. Association for Computa-
tional Linguistics.

[27] Pararth Shah, Marek Fiser, Aleksandra Faust, J. Chase Kew, and Dilek Hakkani-
Tür. Follownet: Robot navigation by following natural language directions with
deep reinforcement learning. CoRR, abs/1805.06150, 2018.

[28] Shawn Squire, Stefanie Tellex, Dilip Arumugam, and Lei Yang. Grounding en-
glish commands to reward functions. In Robotics: Science and Systems, 2015.

61

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
ArXiv, 2017.

[30] Christopher Wang, Candace Ross, Yen-Ling Kuo, Boris Katz, and Andrei Barbu.
Learning a natural-language to ltl executable semantic parser for grounded
robotics. In Jens Kober, Fabio Ramos, and Claire Tomlin, editors, Proceed-
ings of the 2020 Conference on Robot Learning, volume 155 of Proceedings of
Machine Learning Research, pages 1706–1718. PMLR, 16–18 Nov 2021.

[31] David HD Warren and Fernando CN Pereira. An efficient easily adaptable system
for interpreting natural language queries. American journal of computational
linguistics, 8(3-4):110–122, 1982.

[32] Terry Winograd et al. Shrdlu: A system for dialog. Ill and Diagrams Includes
Bibliography, 2:20–48, 1972.

[33] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Trans-
lating natural language to planning goals with large-language models. arXiv
preprint arXiv:2302.05128, 2023.

62

