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Abstract 
 
Recent development in sequencing technologies has greatly advanced our 
understandings of structure and function of microbial communities in various 
ecosystems. In microbial communities, a metabolic function is often performed by a 
group of multiple species (i.e., a functional group) at the same time. However, 
identifying these functional groups remains to be a major challenge for structure-
function mapping in microbiome studies. Instead of relying on annotation-based 
methods that are highly biased for a few model microorganisms, here I tackle this 
challenge by developing a novel annotation-free approach. In chapter two, I develop the 
mathematical framework behind the new approach – which we call EQO – and show its 
power by applying it to a few existing microbiome datasets. I show that, based solely on 
the patterns of statistical variation in species abundances, EQO identifies functional 
groups in soil, ocean and animal gut microbiome. The following two chapters discuss an 
application of this method, which has led to the discovery a potential new form of 
interaction between bacteria in animal guts, and an unexpected finding in the lab 
regarding the ecological dynamics of phage-plasmids in marine bacterial populations. In 
chapter three, I show how applying EQO to an aquaculture dataset leads us to identify 
potential pathogen-inhibiting groups of bacteria in an animal-associated microbiome. 
Guided by the computational prediction, I successfully isolate a member of this group 
that is a novel species with a broad spectrum of interaction against various Vibrio 
pathogens. By synthesizing and secreting polysaccharides, the novel species causes 
limited dispersion and reduced virulence of Vibrio. My efforts to understand the ecology 
of marine bacteria also lead me to study the role of widely distributed phage-plasmids. 
Combining mathematical models and experimental evidence, I show that loss-of-
function mutations and segregational drift recurrently drive productive infections of 
phage-plasmids within marine bacterial populations. Together, this thesis provides a 
simple yet powerful approach to abstract functional groups from taxonomic composition 
in complex microbiome. As a useful hypothesis generating tool, this approach will pave 
the way for more mechanistic studies of microbiome in the future.  
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Chapter 1 Introduction 

 

This chapter is part of the following perspective paper in preparation.  

 

Finding the right variables in microbial communities. Xiaoyu Shan*, Akshit Goyal*, 

Mikhail Tikhonov, Otto X. Cordero. In preparation. (* equal contribution) 

 

1.1 Background  

One of the main goals in microbial ecology is to gain a predictive understanding of how 

changes in community composition, or structure, relate to changes in metabolic 

processes (e.g., rates of organic matter degradation, concentrations of fermentation 

byproducts, etc.)1,2. Doing so requires mapping community structure to function, which 

would convert DNA sequencing into an environmental sensor and enable rational 

design of synthetic communities3,4. Without predictive structure-function maps, 

microbiome engineering remains a slow grind due to the high dimensionality of 

microbial communities.  

But we are still far from having well-established, general strategies to predict a 

microbiome’s function from data about its (metagenomic) structure. For instance, we 

cannot currently predict whether a soil community will release or capture net CO2 solely 

from its metagenome, let alone estimating the flux5. Such predictions may never be 

perfect, as there are many features, such as phenotypic plasticity dependent on 

environmental context, that determine community function besides species composition 

and genetic makeup. However, there is reason to believe, as explained below, that the 
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genomic structure of communities, and even just its species composition, holds a 

significant amount of information that could be used to predict metabolic fluxes.  

 

Figure 1.1 Solving the microbiome structure-function problem using mesoscopic 
variables. Solving the structure-function problem in microbial communities requires 
mapping community structure (i.e., composition) with some aspect of its function (e.g., 
metabolic fluxes). However, we can describe community structure either in microscopic 
detail (strains, genes, etc.) or in coarser, mesoscopic detail (guilds or functional groups). 
To predict function from structure, we argue that mesoscopic approaches in microbial 
ecology have lost traction in the age of ‘omics, and ought to be reinvigorated. We 
identify two big challenges facing such approaches: the lack of data on community 
function, and the paucity of algorithms, methods and theory, to coarse-grain 
communities and detect functional groups. 
 

Given the obvious importance of being able to predict ecosystem function from 

microbiome structure, why haven’t we been able to solve this problem? We argue in this 

perspective that there are at least two barriers, stemming from historical contingencies 

in the field: the focus on microscopic variables and the lack of data on community 
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function (Fig 1.1). To overcome the first barrier, we advocate a change in approach — 

to coarsen the level of description of both structure and function, from microscopic to 

mesoscopic. To overcome the second one, we provide a few concrete suggestions on 

how to enrich microbiome surveys with functional data. 

 

1.2 Microscopic variables and their limitation in microbial ecology 

The structure of microbial communities can be quantified using a variety of descriptors, 

implicitly defined at specific levels of biological organization. For instance, genomic 

descriptors range from genes and strains6,7 at the lowest level of biological organization, 

to metabolic pathways, whole genomes or phylogenetic groups at a level higher. 

Likewise, the activity of communities can be studied at the level of single cells8, or at the 

level of the whole biome9. Although there is no single level of organization that is an 

intrinsically ‘better’ than the others for quantifying structure, the focus on molecular 

processes has driven the development of new technologies primarily towards the lowest 

levels of biological organization (molecules, genes, strain variants), or what we refer 

here to as microscopic variables. Accordingly, quantitative approaches to map structure 

to function also tend to be quite microscopic. For instance, genome-scale metabolic 

models require a detailed description of an organism’s genomic structure to predict 

fluxes10–12, while ecological models, such as those based on consumer-resource 

interactions require a metabolite consumption and excretion network to infer community 

dynamics13–15. These approaches have been successful in predicting growth rates in 

organisms like E. coli under different environments16 or explaining how multiple species 

can coexist17–19, to name a few. However, when it comes to the highly diverse 
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communities found in nature, we claim that it would be challenging to only use 

microscopic approaches to build a predictive understanding.  

To a reader who is familiar with the enormous power that molecular tools offer to 

learn about the life of microorganisms in-situ and in-vitro, this criticism of pure 

microscopic approaches may seem misplaced. If anything, one may think, what we 

need is to ‘see’ biological processes at even lower levels of biological organization (e.g., 

single molecules) to understand the inner workings of complex microbial communities. 

To be clear, high-resolution measurements can indeed lead to exciting and fundamental 

discoveries; we share the enthusiasm – and even partake in the effort. However, when 

it comes to the specific and key challenge of learning how to map structure to 

community function, the bottom-up strategy is likely to fail because it requires tracking 

an enormous number of variables and an even larger number of parameters. 

To illustrate this point more precisely, let us focus on the case of genomic data. 

Microscopic approaches that attempt to use genomic data to predict metabolic function 

rely on gene annotations to build models of the chemical reactions a cell performs. In a 

few key cases, those models focus on specialized forms of metabolism for which 

qualitative predictions are clear. For example, the presence of methanogenic archaea in 

a community, or amoA genes in a genome, suggests that methanogenesis and 

ammonia oxidation take place, respectively, and so on and so forth. In many other 

cases, however, qualitative predictions are less obvious (e.g., whether an organism 

would ferment, and if so, what are the fermentation end-products) and quantitative 

predictions demand well-parameterized metabolic reaction networks, which are bound 

to be incomplete for most taxa across the tree of life. 
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Figure 1.2 Annotation quality deteriorates with increasing phylogenetic distance 
from Escherichia coli. We annotated 3943 genomes from NCBI RefSeq (one genome 
per genus) using eggNOG-mapper. Pathway completeness decreases as phylogenetic 
distance with Escherichia coli increases, after controlling the covariation introduced by 
genome size. For each genome, pathway completeness is calculated as the number of 
genes annotated as part of a KEGG pathway over the total number of genes in that 
pathway, which is further averaged across all pathways identified in that genome. As 
pathway completeness covaries with genome size, we calculate “de-trended pathway 
completeness” as the residual of pathway completeness after a polynomial fitting 
against genome size. Shaded grey area indicates 95% confidence intervals for the 
slope of linear fitting are shown in both panels. Linear regression is performed with all 
3943 genomes, whereas only 300 genomes randomly chosen are visualized in the 
figure panel to avoid an overcrowded dot cloud. Eight genomes with clinical or 
environmental relevance are separately annotated in the figure as examples.  
 

For what is probably the best studied organism, Escherichia coli, the fraction of 

genes with unknown function is around 17%, and likely to contain mostly phage defense 

genes rather than metabolic enzymes20. However, for the typical bacterium, which is not 

necessarily closely related to E. coli, the situation is different, with an average of 45% ± 

9% of genes with no known function. The bias towards model organisms is systemic 

and clear: across ~ 4000 publicly available bacterial genomes from across the tree of 
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bacterial life21, the level of pathway completeness increases with phylogenetic distance 

to E. coli, the canonical model organism. (Fig. 1.2). This means that either enzymes 

have diverged beyond recognition from their common ancestor with an E. coli or, 

perhaps more likely, that the farther an organism is from our laboratory model systems 

the less we know about its biology. This is a testament to the incredible genomic 

diversity manifested in natural environments. This issue may be solved, in theory, with 

more and better efforts to cultivate and biochemically characterize poorly studied 

organisms. However, in reality, this is likely to remain a slow process compared to the 

rate of genome sequencing, especially for the many slow growing bacteria that are 

relevant for ecosystem processes. As a result, methods based on current versions of 

functional annotations are bound to remain biased towards a very small fraction of 

cultivable strains, especially regarding functions that expand beyond energy generation 

or anabolism.  

But beyond these technical limitations discussed for genomic studies, there is a 

broader point to make: bottom-up approaches, whereby one tries to explain complex 

phenomena from microscopic measurements, are typically inefficient in generating a 

predictive understanding of the system. While this limitation is well-recognized in other 

disciplines, like physics or ecosystem ecology, it is a hard sell for biology, given the 

enormous world of discovery that still lies within the (microscopic) molecular world. 

However, we argue that to gain a predictive understanding of microbial communities, 

and more broadly, to develop a theory of microbiomes, it is necessary to zoom out and 

identified coarser, mesoscopic variables (like groups of functionally similar species) that 

are more directly linked to community dynamics and functional outputs.  
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1.3 Towards mesoscopic variables: the promise and challenge of functional 

groups 

In our context, a mesoscopic variable is one that describes a higher level of biological 

organization, averaging out microscopic variation and providing additional predictive 

power. In classical ecology, a prime example of a mesoscopic variable is the concept of 

guild, or functional group, which has long been recognized as a way to construct more 

compact and interpretable descriptions of communities or ecosystems. Indeed, 

encapsulating several species into functional groups can reveal “convergent emergent 

properties” at the ecosystem level22,23, e.g., reproducible predator-prey ratios and 

trophic structures24.  

The problem, both for classical ecology and for microbiology, is that we do not have 

a general methodology for discovering such functional groups in a systematic manner. 

Instead, we rely on hypotheses that impute function on organisms based on expert 

knowledge (by definition subjective). This approach may fail and lead to incongruencies 

between studies. As said earlier, in the case of microbes, the imputation of function 

based on gene annotation and taxonomy may work well for specialized forms of 

metabolism like methanogenesis, but it is not a generally reliable strategy. More 

importantly, we need a way to group taxa that improves our ability to make quantitative 

predictions about microbiome functions.  

How to solve this problem? Encouraged by recent progress, we advocate here for a 

data-driven, as opposed to an expert driven approach, whereby functional groups can 

be discovered from controlled, high-throughput community assembly experiments that 
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pair functional readouts with community composition. We argue that data-driven 

approaches may provide more principled, intuition-free ways of inferring guilds (Fig. 

1.1). 

The potential for such approaches is illustrated in a recent study, where we reported 

an algorithm called EQO, that aims to identify functional groups solely based on 

patterns of covariation in taxa abundances and environmental measurements, without 

the need for gene annotations or phylogenetic information25. The algorithm exploits 

ecological patterns in species abundance to identify minimal assemblages of taxa that, 

when grouped together, maximize the correlation with a chosen functional readout of 

the whole community. This technique was used to show that the abundance of aerobic 

and anaerobic ammonia oxidizers, when combined, is the best biological predictor of 

nitrate concentration in the ocean’s water column (as measured in the TARA oceans 

dataset), and to identify butyrate producing groups of microbes in animal guts as well as 

groups of cross-feeding microbes in laboratory microcosms. In many contexts, this type 

of analysis can also serve as a powerful hypothesis generation tool regarding the 

function of poorly studied taxa. 

Despite these encouraging results, the problem of finding functional groups in a 

data-driven manner is still wide-open. Approaches such as EQO are only a scratch on 

the surface. For example, EQO identifies a single group per measured function, leaving 

untouched the main question of how to partition the complete system into functional 

groups. There is also space for data-driven methods to include some biological 

guidance, e.g., in the form of statistical priors (e.g., phylogenetically-guided 

regression26). Further, pursuing theory may help us understand how predictive 
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functional groups emerge, and help suggest new methods to directly learn them from 

data27. It should be also noted that coarse-graining species into guilds does not mean 

species does not matter. In contrast, it remains to be better understood how is within-

guild variation is shaped by species-level or strain level interactions.  

However, the main limitation impeding the discovery of better structure-function 

relations is not computation but rather the lack of appropriate datasets. This may seem 

a priori surprising, because there is an enormous wealth of rapidly expanding genomic 

datasets easily available. However, for any data-driven guild discovery method to work, 

genomic or community data needs to be paired with parallel measurements of the 

shared community function. Unfortunately, most microbiome surveys (16S rRNA or 

metagenomic) lack any meaningful metadata, and when available, they focus primarily 

on abiotic parameters that describe the environmental context, more than microbiome 

function. The fact that most microbial community surveys lack a systematic, quantitative 

tracking of the metabolic processes mediated by microbial communities is the second 

major barrier to solving the structure-function problem. 

 

1.4 New datasets to discover functional groups 

We argue that to partition microbiome composition into ecological guilds in a data-driven 

manner, we need datasets that pair microbiome data with measurements of the inputs 

and outputs of metabolism, such as electron donors and acceptors, nutrients, end-

products like CH4, CO2, SO4, fermentation products, etc. To illustrate this idea, in the 

case of marine and soil microbiomes, where there is a large diversity of taxa involved in 

the processing of high-molecular weight organic matter, there is a strong need to 
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identify functional guilds that help us predict carbon turnover and fluxes. However, 

ocean or soil microbiome datasets are rarely, if ever, paired with a description of the 

type of organic matter digested by the system, at least in terms of broad classes of 

compounds like proteins, sugars or lipids, and the metabolic responses of the 

community (type and rate of respiration, fermentation products, biomass production). 

Instead, microbiome surveys are paired with chemical and physical descriptions of the 

environment, like pH, salinity or water depth. Although this context is obviously 

important, it is knowledge of substrates and metabolic responses what is needed to 

infer structure-function relations. 

It is not for lack of awareness that such input / output measurements are absent 

from microbiome surveys. Abiotic measurements are low-throughput or require 

specialized equipment that increases costs and labor, making it difficult to justify their 

deployment across ambitious sampling projects. Moreover, it is unclear how to measure 

what a microbiome consumes and produces in situ. Instead, it is much easier to collect 

a sample, extract DNA, sequence and run through the analysis pipelines that output 

community diversity or taxonomy. However, we argue that is time to develop new 

strategies to study microbiome function in a systematic, high-throughput manner that 

would allow us to tackle the structure-function problem. 

Below we suggest three elements that we think are key to redefine microbiome 

surveys: 

1. Ecological replicates. Traditionally, microbiome surveys have been structured to 

compare different but related environments, such as body sites in the human body28, 

water depths in the ocean29, or different soil types30, to name a few. However, data-



 21 

 

driven guild discovery works best when comparing many samples from the same 

environment that differ only in a small number of dimensions due to small biological or 

chemical fluctuations around some mean values. We refer to these as ecological 

replicates. For example, there can be samples from the same body site under similar 

health conditions and physiological states. With sufficient replication of samples whose 

composition and function vary around a mean, one should be able to learn how to 

predict function from structure in a systematic manner.  

An important and frequently asked question is, how many ecological replicates are 

enough to be able to learn structure from function? The answer can unfortunately be 

complicated, depending on species richness, covariance between species, sparsity, etc. 

However, in our experience with EQO, the order of 100 samples has allowed us to 

obtain results in a variety of environments, although this should be considered a lower 

bound25. 

2. We propose a perturbation approach to probe microbiome responses to variation 

in the chemical environment and substrate supply. The basic strategy consists in 

creating replicate enrichments with a small variation in chemical composition (e.g., a 

shift in carbon or nitrogen source). Microbiome responses can be measured for each 

enrichment by sequencing the community before and after the perturbation, and by 

measuring metabolite production or consumption. All these measurements need to be 

compared against a baseline control that accounts for the changes that occur in the 

unperturbed enrichment. 

An example of this strategy, although in relatively low throughput, was recently 

reported for human microbiome samples31. By growing natural microbial inocula from 
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the human gut in media with various carbohydrates and fermentation intermediates, 

functional niche of different taxa abundant was identified in the human microbiome. For 

instance, an organism could be identified as a consumer of a given dietary fiber, like 

pectin, and producer of a particular fermentation product, like succinate, and so on and 

so forth along the fermentation cascades of the human gut microbiome. 

3. Development of standards. A more widespread consensus and measurement of a 

certain set of core functions would significantly benefit the scientific community and 

facilitate the development of data-driven methods. This is because such data could then 

be aggregated across many microbial studies, greatly improving statistical power.  

An example in this regard is probably microbial studies in wastewater treatment 

plants32. Most studies of these systems have chemical measurements of carbon, 

nitrogen and phosphorous concentrations in the influent and effluent, as well as 

operational estimates for microbial growth traits such as mixed liquid volatile suspended 

solids (MLVSS) and sludge retention time (SRT). These measurements are often 

carried out under standard protocols to evaluate and monitor process performance. 

When combined together, data from different plants or different time can form an 

extensive dataset to address important ecological questions.  

 

1.5 Summary 

In summary, we advocate the use of mesoscopic approaches to quantitatively study 

microbial community function. Such approaches have proven useful and predictive in 

classical ecosystems33–35, but also in complex systems in several other disciplines such 

as sociology (e.g., “status groups” by Marx Weber36). In the microbial context, however, 
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they have been almost entirely displaced by the advent of omics technologies. Yet for 

microbiology, the need for mesoscopic descriptions to tame the microscopic complexity 

is even greater, especially since the microscopic approaches like consumer-resource 

models and FBA are data-limited and struggle to scale to the complexity of natural 

communities.  

To find the right mesoscopic variables, we argue that the field should prioritize data-

driven approaches over subjective, experience-based ones. The ongoing efforts in this 

regard, based on statistical approaches, feature selection and machine learning, would 

be aided by a better theoretical understanding of when and why certain microscopic 

details can be ignored, but also and most importantly, by a more systematic effort 

towards collecting data on community function. To this end, we urge the field to build 

consensus on a set of relevant “model community functions” and suggest experimental 

design principles for choosing and measuring such functions, including their dynamics 

in response to perturbations. 

The successful deployment of methods that can learn the “right” mesoscopic 

community variables from data would revolutionize the microbial sciences. It would 

enable mapping community structure with collective metabolic processes, facilitating 

rational community design and environmental inference. Additionally, it would have a 

broader impact on ecology and microbiology, providing objective, data-driven methods 

for deriving guilds and functional groups without relying on intuition. This could lead to 

new biological interpretations of data-derived guilds, and hypotheses about possible 

interactions between them. Ultimately, we may arrive at a unified understanding of 
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microbial communities as modular interacting systems consisting of functionally 

cohesive groups of taxa. 
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Chapter 2 Annotation-free discovery of functional groups in 

microbial communities 

 

This chapter illustrates the mathematical framework of EQO and demonstrates its 

application in several existing microbiome datasets from soil, ocean and animal gut. 

This chapter has been published as the following research article. 

 

Xiaoyu Shan, Akshit Goyal, Rachel Gregor, Otto X. Cordero. (2023). Annotation-free 

discovery of functional groups in microbial communities. Nature Ecology & Evolution, 

7,716–724. 

 

Abstract 

Recent studies have shown that microbial communities are composed of groups of 

functionally cohesive taxa, whose abundance is more stable and better associated with 

metabolic fluxes than that of any individual taxon. However, identifying these functional 

groups in a manner that is independent from error-prone functional gene annotations 

remains a major open problem. Here, we tackle this structure-function problem by 

developing a novel unsupervised approach that coarse-grains taxa into functional 

groups, solely based on the patterns of statistical variation in species abundances and 

functional read-outs. We demonstrate the power of this approach on three distinct data 

sets. On data of replicate microcosm with heterotrophic soil bacteria, our unsupervised 

algorithm recovered experimentally validated functional groups that divide metabolic 

labor and remain stable despite large variation in species composition. When leveraged 
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against the ocean microbiome data, our approach discovered a functional group that 

combines aerobic and anaerobic ammonia oxidizers, whose summed abundance tracks 

closely with nitrate concentrations in the water column. Finally, we show that our 

framework can enable the detection of species groups that are likely responsible for the 

production or consumption of metabolites abundant in animal gut microbiomes, serving 

as a hypothesis generating tool for mechanistic studies. Overall, this work advances our 

understanding of structure-function relationships in complex microbiomes and provides 

a powerful approach to discover functional groups in an objective and systematic 

manner.  

 

2.1 Introduction 

Microbial communities often involve thousands of different taxa (e.g., 16S rRNA 

ribotypes, strains, etc.) despite their sharing of many metabolic functions37,38. This 

observation has led to the notion that the major metabolic fluxes in a community of 

microbes are better captured not by the overall taxa composition, but by the abundance 

of a much smaller set of so-called ‘functional groups’ or guilds18,39,40, akin to those 

defined for plant and animal communities41–43. Members of the same group can 

fluctuate widely in abundance, replacing each other across space and time due to (often 

stochastic) ecological interactions, like predation, which can also be highly strain 

specific7,20. In contrast, the abundance of the group as a whole and its combined 

metabolic output – i.e. the ecosystem service provided by the group, remains stable and 

is better-associated with the environmental parameters (pH, nutrient concentration, etc.) 

that control metabolism39,40. Thus, as in the case of financial portfolios in which 



 27 

 

diversification stabilizes returns44, functional groups buffer microbial ecosystems from 

the intrinsic volatility of species dynamics. Moreover, functional groups also provide a 

more interpretable and simpler description of microbial ecosystems – in terms of key 

metabolic functions and the groups performing them – than the more readily accessible 

taxa and gene catalogs. 

Despite consensus about the importance of functional groups in microbial ecology, 

identifying and discovering them is still a major challenge. This is a problem that is not 

specific to microbial ecosystems. For animals and plants, functional groups are defined 

based on shared traits, i.e. morphological or physiological differences that impact an 

organism’s role in the ecosystem, but more often than not it is unclear what the relevant 

traits are and how to measure them in a systematic manner45. As a result, there can be 

a large degree of subjectivity in how functional groups are defined, compromising the 

value of the approach. In the case of microbes, morphological or physiological traits are 

much harder to define, and the best way we have to infer phenotypic differences is 

based on functional gene annotations and taxonomy. However, these functional 

annotations can carry a high degree of uncertainty46–48, especially when considered in 

the context of a community. At the core of the problem is that most microbial taxa have 

not been cultured, let alone phenotypically characterized. Therefore, functional gene 

annotations rely on what is known for only a handful of model organisms, like E. coli and 

B. subtilis. The less related the organism of interest is to these well-studied model 

systems, the lower the quality of annotations49. To complicate matters further, the 

presence of a pathway in a genome, even if uncontroversial, does not mean that it is 

expressed by the organism under the conditions in which the community exists50,51. This 
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implies that the power of annotation-based approaches to identify groups of functionally 

redundant taxa is limited to special cases in which there is a clear, unambiguous 

relation between taxa identity and function, e.g., oxygenic photosynthesis and 

cyanobacteria39. 

 To address this challenge, here we present an unsupervised, annotation-free 

approach that identifies functional groups of taxa based on the patterns of statistical 

variation in microbiome composition and environmental variables. The approach shares 

similarities with microbiome-wide association studies (MWAS)52, which use statistical 

correlations in microbiome datasets to identify biomarkers of phenomena like disease. 

Here too, we leverage the correlations between microbiome composition and functional 

read-outs, but in contrast to MWAS, our main interest is to find groups of functionally 

redundant taxa, which when combined improve our ability to predict functional read-

outs, like the concentration of a relevant metabolic byproduct. To solve this problem, we 

developed a new algorithm that builds on two assumptions: i) groups of functionally 

redundant taxa are better correlated with functional read-outs than individual species, 

and ii) functional redundancy leaves a statistical footprint in microbiome data that can 

be leveraged to reconstruct the structure-function mapping of the system. Below, we 

present ample evidence showing that this approach succeeds in identifying groups of 

functionally redundant species. We start by providing a detailed explanation of the 

methodology before showing how it can be applied across various data sets, ranging 

from replicate microcosms18 to the Tara Oceans microbiome29 to metabolomic profiles 

of animal gut microbiomes53. 
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2.2 Results 

2.2.1 Theory of extracting functional groups from microbiome data 

We interpret the challenge of finding functional groups as an optimization problem, i.e. 

finding the smallest group of taxa that maximize the correlation between their combined 

abundance and a given environmental variable. To gain intuition into how to solve this 

problem, consider a group of two taxa and one variable, y, representing, for instance, 

the concentration of a metabolite. From a statistical standpoint, what would make the 

group a better predictor of y than individual taxa (Figure 2.1A-B)? The answer depends 

on how the two species covary with y, as well as with each other. It is straightforward to 

show that, for the coefficient of determination to increase when the two taxa are counted 

as one, their individual abundances should not be strongly positively correlated (Figure 

2.1C-D). By contrast, if the two species are anticorrelated or uncorrelated in abundance, 

they may complement each other – the species may be good predictors of y in non-

overlapping subsets of samples, thus increasing the overall value of the correlation 

between the group and y. At the same time, if one species has a positive covariance 

with y and the other a negative covariance, their individual effects may cancel out. As 

shown below, these intuitions can be generalized: the best functional group is one in 

which members’ abundances tend to be correlated with the external variable in a 

consistent manner (same sign), while at the same time complementing each other 
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(uncorrelated or anticorrelated). Solving this tension between consistency and 

complementarity is the optimization challenge.  

Figure 2.1 Schematic illustration of Ensemble Quotient Optimization (EQO). (A) A 
typical microbiome is composed of a diversity of taxa, of which individual taxa are only 
poorly coupled with the measured phenotypic readout. (B) With EQO, species 1 (red) 
species 2 (blue) are selected to be grouped into an assemblage, whose relative 
abundance is strongly correlated with the phenotypic readout. Species 1 and species 2 
are both positively correlated, though not strongly, with the phenotype (r1,y = 0.41, r2,y = 
0.53), while they are anti-correlated with each other (r1,2 = - 0.54). They are both 
consistent and complementary. (C) Consistency implies that two species “add up” in the 
direction of the phenotype axis while complementarity implies that two species “cancel 
out” each other with their residuals orthogonal to the phenotype axis. Black vertical axis 
marks the phenotypic variable. Gray horizontal axis marks the residual of species after 
projecting onto the phenotypic variable axis. 
 

We derived a simple mathematical expression that captures this tension and that 

can be used to find functional groups of taxa, as here defined. Consider a community 

matrix with the abundances of n species abundances over m samples, and an 

environmental variable y. A group of taxa is defined by a vector of 𝒙 ∈ (0,1)𝑛, where the 

ith position is 1 if the corresponding species belongs to group, or 0 otherwise. The 

correlation between the group abundance and y can be expressed in a compact form, 
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which we term the Ensemble Quotient, 𝐸𝑄 =  
𝒙𝑇𝑸𝒙

𝒙𝑇𝑷𝒙
, where 𝑃 and 𝑄 are algebraic 

transformation of the community matrix that capture the covariance between species 

(complementarity), and the covariance between species and y (consistency), 

respectively (Methods and Supplementary Notes). The exact form of these algebraic 

transformations depends on whether y is a continuous variable (e.g., a metabolite 

concentration), a categorical variable (e.g. healthy or disease states) or a constant (in 

cases when we want to identify stable groups from biological replicates) (Figure A.1). 

Independently of the type of variable y represents, the 𝐸𝑄 is the objective function we 

want to maximize over 𝒙.  

 Two problems that arise when searching for a group that maximizes 𝐸𝑄 are the 

large number of possible solutions and the risk of overfitting. With only 100 species, 

there are over 75 million groups of size 5, and this number increases exponentially with 

species richness. As described in Methods, we circumvent this problem using a genetic 

algorithm that allows us to efficiently search functional groups in communities with 

hundreds of taxa. The risk of overfitting appears because, the larger the group, the 

easier it should be to find a species combination that produces a good fit. We solve this 

problem by putting a penalty on group size (regularization) when appropriate and by 

assessing the statistical significance of out-of-bag predictions. 

We named the functional group discovery approach EQO, for Ensemble Quotient 

Optimization. Below, we illustrate its power on three distinct datasets: a set of 

communities assembled through controlled laboratory microcosms18 in which amplicon 

sequence variants (ASVs) fall into two, phylogenetically constrained, functional groups; 

the Tara oceans microbiome data29 coupled with environmental parameters such as the 
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nitrate or oxygen concentration in the water column, and an animal microbiome 

dataset53 in which taxa composition data is paired with detailed metabolomic profiling. 

 

2.2.2 Stable functional groups in replicate microcosms 

We start by applying EQO to a data set developed from laboratory scale enrichments of 

soil communities under controlled conditions. The communities were assembled by 

serial passaging in minimal media with glucose as the limiting resource until they 

reached a stable composition18. Despite identical environmental conditions among 

replicates, at the fine-grained level of genetic resolution (ASVs), replicate microcosms 

stabilized into communities with very different compositions. However, the communities 

were much more similar to each other at the level of major taxonomic families, with two 

families (Enterobacterales and Pseudomonadales) dominating the assemblage. It was 

later confirmed that these two families constituted bona fide functional groups, with one 

group (Enterobacterales) performing partial glycolysis, and the other 

(Pseudomonadales) performing organic acid utilization to complete the full respiration of 

carbon. Because this is a small scale, controlled experiment, with experimentally 

validated functional groups, it serves an ideal case to test whether out approach can 

reproduce results based on taxonomic annotations.  
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Importantly, this is a case in which we do not have an external signal to guide the 

functional group search, since all replicate communities were assembled from the same 

inoculum and under the same environmental conditions. Instead, we want to find the 

partitioning of the community that is most stable across replicates. To this end, we 

define y, the environmental variable, as a constant across all replicate microcosms. By 

finding the group of taxa that best correlates with this constant value, we identify the 

most stable bi-partition of the community. The EQ formulation for a constant y is 

described in Methods. 

Figure 2.2 Coarse-graining functional groups in replicate microcosms. (A) original 
ASV-level composition of the replicate microcosms assembled with glucose as carbon 
source. (B) Supervised coarse-graining into Family-level groups based on taxonomic 
annotation. (C) Unsupervised coarse-graining by EQO for groups with stable relative 
abundances across samples, 94.0% ± 2.2% of the ASV reads were co-classified in both 
approaches, highlighting the power of the unsupervised method. 

 

Remarkably, our unsupervised approach was able to reproduce the bipartition of the 

community into sugar specialists (represented by Enterobacterales ASVs) and acid 

specialists (represented by Pseudomonadales ASVs), but without any prior information 

about taxonomy, purely from the statistical patterns of ASV variation in the data (Figure 

2.2, 94.0% ± 2.2% of the reads correctly mapped; Pearson’s r = 0.97 between the 
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supervised and unsupervised groups). Interestingly, in this specific case we did not 

need to penalize group size. The optimal group, without constraining for size, is the one 

that partitions the community into the two, experimentally validated functional groups. 

Overall, these results show that the approach here developed is capable of identifying 

functional groups. Our next step is to test its value on real world, environmental data. 

 

2.2.3 Nitrogen cycling in the ocean microbiome 

To study EQO’s performance in a complex, environmental datasets, we applied it on the 

Tara oceans dataset29,39. Samples in this data set originate from depths ranging from 

5.3 to 792 meters and contain a total of 2451 taxa classified at the genus level. Of 

those, 97 are over 1% abundance in at least one sample. Besides depth, other 

environmental variables are pH, temperature, nitrate, phosphate, silicate and oxygen, 

with most of them systematically changing as a function of depth. Of these, we chose to 

focus on nitrate because of its importance in nutrient cycling, and because it is a direct 

intermediate of microbial metabolism – a product of nitrification and a substrate for 

denitrification.  

EQO was able to discover a functional group of genera involved in nitrogen cycling 

in the ocean. Using the Akaike Information Criterion (AIC), calculated as −2𝑘 –  ln(𝐿𝑘), 

where 𝐿𝑘, is the regression likelihood and k the group size, we established an optimal 

group size of 11 members (Figure A.2). To estimate the relative contribution of each 

individual member, or member-member pairs to the group’s performance, we took 

advantage of the large number of samples in Tara to apply cross-validation (Figure 

2.3A). We perform cross-validation by dividing the data in training and test (50-50) sets 
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and iterating 1000 times, resulting in an equal number of potentially different groups. 

We estimated the relative importance of a group member, i, by summing the R2 of all 

groups in which i was present (∑𝑥𝑖𝑅
2), and similarly for pairs of members (∑𝑥𝑖𝑥𝑗𝑅

2).   

Figure 2.3 Functional guilds of nitrogen cycling in the ocean microbiome. (A) A 
cross-validation--based algorithm to construct the aggregation network for functional 
grouping (Methods). The microbiome dataset with the accompanying metadata is 
randomly split into a training set and a test set. The EQO was applied to the training set 
to generate a best assemblage, which was then validated with the test set for cross-
validated R2. After iterating 100 times with the cross-validation process, the cumulative 
cross-validated R2 for assemblages where a single taxon was present or a pair of taxa 
was co-present were calculated to indicate the node size and edge width in the 
aggregation network. (B) Aggregation network for nitrate concentration of the Tara 
Oceans microbiome. Nitrosopumilaceae, the ammonium oxidizing archaea (highlighted 
in red) and Candidatus Scalindua, the anaerobic ammonium oxidizing bacteria 
(highlighted in blue) tended to be always co-selected by the algorithm, which led to 
strong cross-validated R2 with nitrate concentration, suggesting these two taxa together 
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formed a functional guild. (C) Nitrosopumilaceae and Candidatus Scalindua showed 
opposite trend of variation in response to dissolved oxygen in the water column, 
indicating that they are alternating based on the level of oxygen availability. Shade area 
indicates 95% confidence interval based on linear regression. 
 

Out of the 11 members, two taxa, Nitrosopumilaceae and Candidatus Scalindua, had 

the highest relative contribution to group’s ability to predict nitrate concentrations. 

Nitrosopumilaceae is a well-known clade of ammonia oxidizing archaea54, while 

Candidatus Scalindua is the most abundant anaerobic ammonia oxidizing (annamox) 

bacteria in marine environment55. These two taxa are always co-selected by EQO 

during cross-validations, as shown in the network of relative pair importance (Figure 

2.3B). This is because these two taxa alternate across sampling stations as a function 

of oxygen concentration (across samples where both taxa are >1% relative abundance, 

their correlation is Pearson’s r = - 0.64), in complete agreement with their predicted 

roles as aerobic and anaerobic ammonia oxidizers (Figure 2.3C). Because conditions 

with low oxygen concentration are rare in the Tara samples, the correlation between 

Candidatus Scalindua alone and nitrate is weak (r = 0.31). However, when combined 

with Nitrosopumilaceae, these two taxa complement each other and the correlation was 

enhanced to r = 0.82 (r = 0.89 for the whole group of 11 taxa), illustrating the power of 

grouping functionally relevant taxa in association studies. These results show that 

nitrate concentration in the water column is tightly controlled by the abundance of 

ammonia oxidizing archaea and bacteria, to the extent that nitrate measurements are a 

good proxy for the overall abundance of this functional group. However, in addition to 

the ammonia oxidizing Nitrosopumilaceae and Candidatus Scalindua, there are other 

nine taxa selected by the algorithm but with lower relative importance as shown in the 
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aggregation network. Among them, Nitrincolaceae is known to oxidize nitrite to nitrate56 

and Microtrichaceae found to be abundant in partial nitrification bioreactors, suggesting 

its close relation with nitrogen cycling57, Overall, these results illustrates the power of 

EQO as a hypothesis generating tool.  

 

2.2.4 Mapping metabolites to functional groups in gut microbiome 

One of the most compelling potential applications of EQO is the identification of 

functional groups responsible for the production or consumption of metabolites in gut 

microbiome data. We leveraged an animal gut microbiome dataset with 101 fecal 

samples from a wide range of 25 mammalian species, accompanied by 74 peak 

features that are detected by gas chromatography-mass spectrometry (GC-MS) in 

>80% samples53. Unlike the case of nitrate discussed above, which has been a major 

focus of research in since the early days of environmental microbiology, the metabolic 

processes that drive the production or consumption of metabolites in animal guts are 

much less understood. This makes interpreting the results of the algorithm much harder 

and demands that we focus only on those predictions that are well-above any 

significance threshold. 

 We took a two-fold approach to make sure we focus on statistically significant 

functional group predictions (Fig. A.3). As before, we use cross-validation to assess out-

of-bag predictions. Of all the AIC-based optimal groups, 77% of groups with cross-

validated R2 (xvR2) below 20% were filtered from further analysis (e.g., most small 

groups (1-3 taxa) have xvR2 ~ 0). Groups with xvR2 > 20% were composed of 7 ± 1 

taxa. For these groups, we asked whether their xvR2 was statistically significant relative 
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to random groups of the same size. We used an p-value adjustment, multiplying the p-

values by a factor (
𝑛
𝑘
), where 𝑛 is the total number of taxa in the microbiome and 𝑘 is 

the number of taxa in the group, to account for the fact that the number of hypotheses to 

test increases rapidly with group size. After accepting groups with adjusted p-values 

below 0.01, we ended with 12 (16.2%) metabolites with a significant functional group 

prediction (Figure 2.4A).  

Figure 2.4 Predicting the level of metabolites with minimal assemblages in gut 
microbiome. (A) Linear regression R2 of the best single ASV compared to the linear 
regression R2 of the best minimal assemblages for 74 metabolites prevalent in > 80% 
samples. Metabolites that passed significance tests were highlighted as dark black dots 
(Methods). (B) Putrescine is among the metabolites that passed the stringent 
significance test, whose level can be strongly predicted by a minimal assemblage of 9 
ASVs, which are alternating across different host animals. Host animals are ranked 
based on descending order of putrescine detected.  
 

 The best predicted metabolite was putrescine (1,4-di-amino-butane), a common 

polyamine molecule derived from amino acids such as arginine58. Polyamines such as 

spermidine and putrescine have been found with remarkable importance in aging59, 

cognitive function60, inflammation suppression61 and cancer development62. Putrescine 

is mainly enriched in carnivores such as leopards, lions and tigers, as well as the 

omnivorous bears and coatis, compared to herbivores such as elephants, rhinos and 
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zebras, consistent with the idea that it is a derivative of protein metabolism (Figure 

2.4B). Of the different group members selected by EQO, an ASV of the genus 

Fusobacteria had the highest relative importance (Figure 2.4B). Fusobacteria have 

been experimentally found to be enriched in animal systems with high production of 

putrescine and is known to be able to synthesize it both in vitro and in vivo63,64. 

However, this ASV alone only explains 29% total variance in putrescine, as compared 

to 85% total variance explained by the group identified by EQO, suggesting roles of 

other taxa in the group in putrescine metabolism. Other taxa in the group such as 

Clostridium might also play a role in putrescine production through anaerobic 

fermentation of proteins. Interestingly, a previous study has found that Fusobacteria and 

Clostridia species together dominate the gut microbiome of New World vultures that 

scavenge dead animals, suggesting their potential functional coupling in protein 

metabolism65. Given the diversity of polyamine biosynthesis pathways and microbes 

that carry them, the production of putrescine is a good example of a function that is 

better understood as the result of the collective action of multiple species66,67. Our 

framework allows us to deal with this scenario and generates hypotheses regarding the 

processes and players involved in polyamine production. 

To further validate our methodology in the context of gut-associated microbiomes, we 

asked whether EQO could identify well-known fermenters based on the abundance of 

fermentation products in the metabolomics data. To this end, we examined levels of 

butyrate and lactate quantified across the animal gut microbiome samples. Remarkably, 

we found that the functional groups EQO was able to identify contained taxa well-known 

to perform the corresponding fermentation reactions (Figure A.4). For instance, in the 
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butyrate producing group, EQO found Ruminococcaceae, Faecalibacterium 

prausnitzii68, Blautia producta69 as well as other Lachnospiraceae species68, all of which 

have been reported to be butyrate producers in the literature. In contrast, in the lactate 

producing group, EQO identified lactic acid bacteria, and in particular two variants of 

Streptococcus luteciae which when combined are strongly correlated with lactate 

concentration70. Together with the previous cases, the congruence between the 

functional groups found by EQO and findings in previous experimental studies illustrate 

the power of this approach.  

 

2.3 Discussion 

Over the last couple of decades, DNA sequencing technologies revolutionized the study 

of microbial communities, by allowing us to construct catalogs of genes and taxonomic 

markers in a rapid, high-throughput and inexpensive manner. However, rarely are 

species and gene catalogs themselves the direct subject of a research question, but 

rather the variables at our disposal to address questions that relate to what functions 

microbes mediate: anaerobic respiration, digesting organic matter, producing a toxin, 

etc., are examples of the functions that microbes mediate. Finding a way to map from 

the variables we can measure (taxa and genes) to the ones we care about (function), or 

in other words, solving the structure-function mapping, is a primary intellectual 

challenge in the field of microbial ecology. Current approaches are bottom-up in nature, 

building a picture of the community based on functional gene annotations or taxonomic 

descriptions. We argued that this approach is limited. Instead, here we proposed a 

framework to coarse-grain communities into functional groups in an unsupervised 
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manner by exploiting the statistical patterns of taxonomic abundance microbial 

communities and the metadata associated with it. We showed that this approach is 

surprisingly effective at identifying functional groups without the need for functional or 

taxonomic annotation in synthetic and natural datasets. The apparent success of EQO 

suggests that high-throughput surveys of microbial environments in which microbial 

composition data is paired with metadata (e.g. nutrient levels) can be systematically 

leveraged to study the structure-function mapping of microbial ecosystems.  

EQO builds on the assumption that members of a functional group covary weakly or 

negatively with one another – a basic tenet of portfolio theory44. However, this is not 

always the case. During early stages of community assembly, e.g. during the 

colonization of a new environment, environmental filters couple the dynamics of 

functionally equivalent species71. In contrast, as community composition approaches a 

steady state, functional group members can be decoupled by various factors, including 

historical contingencies, different sensitivities to environmental parameters (O2 

concentration), and biotic interactions, to name a few72. It is in this scenario, where the 

community composition is not undergoing early successional changes, that approaches 

such as ours can be applied. 

Microbial communities can be composed of many thousands of taxa, especially if 

defined at high levels of genetic resolution, like strains. If diversity is too high (e.g., 1000 

taxa or more) the unsupervised identification of functional groups may become too 

impractical due the explosion of the search space size. However, as shown in this 

paper, even in systems with high natural diversity, like oceans or gut microbiomes, we 

have been able to constrain the search space to less than 100 taxa. This reduction in 
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complexity relied on two inherent aspects of microbiome data. The first one is that rank 

abundance curves have very long tails, meaning that although total species counts are 

large (tens of thousands), the vast majority of taxa appear in very few (e.g., only one) 

samples. Since those extremely rare taxa do not carry any useful information in the 

statistical sense, we discard them from the analysis, drastically reducing search space 

dimensions. Second, taxa can be collapsed at the different levels of phylogenetic 

resolution (strains, species, genera, families, etc.). For instance, with the Tara Oceans 

dataset we chose to collapse taxa at the level of genera (e.g., 97% similarity cutoff in 

16S rRNA), a common practice in the field, before applying EQO. Although this choice 

proved effective, it is partly ad-hoc and more systematic approaches to reduce 

phylogenetic dimensions should be explored. 

Naturally, the approach has limitations that are important to discuss. First the 

statistical association between a functional group and the relevant functional variable 

might be complicated when responses are decoupled from microbial abundances – e.g. 

the production of a metabolite does not correlate with an increase in biomass41. In such 

a case, only transcriptomics or proteomics data could reveal the association. Second, 

the current version of EQO identifies groups by finding associations with single 

environmental or functional variables, while in some cases a functional group might be 

strongly coupled with a combination of read-outs. While it is technically possible to deal 

with these problems, the explosion in the number of possible combinations would 

demand much larger datasets than currently available. Third, handling large-scale 

problem efficiently is a major computational challenge for not only EQO but for the field 

of combinatorial optimization in general. When we attempted to reduce the scale of the 
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datasets by filtering rare species, we are making a compromise which may not always 

be acceptable. Finally, and perhaps most importantly, EQO requires relevant functional 

variables (e.g., metabolic inputs and outputs) to be available across samples. This 

information is absent from most datasets and requires measurements that are much 

harder and expensive to generate than sequencing data. Moreover, even the 

measurements were available, metabolites that are rapidly produced and consumed by 

microbes may not be measurable unless the system is perturbed. Notwithstanding 

these limitations, we expect EQO to be a useful hypothesis generating tool to solve 

structure-function problems in the context of microbial communities.  

We have presented the first systematic and unsupervised approach to resolve the 

structure function mapping of microbial communities. The approach relies on study 

designs that measure microbiome composition and environmental measurements 

across multiple sampling stations (ideally hundred or more). Yet, most metagenomic 

datasets typically lack this structure, either because of the low number of samples or the 

lack of functional measurements. As we continue to develop the approach, we hope our 

work clarifies the critical importance of designing microbiome surveys in suitable for the 

discovery of structure-function relations. 

 

2.4 Methods  

Microbiome datasets 

Analyses of replicate microbial microcosms4 and gut microbial communities53 were 

based on Amplicon Sequence Variants (ASVs) of 16S rRNA gene amplicon sequencing 

generated by the original authors. Analysis on the Tara Oceans microbiome was based 
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on closed-reference taxonomic clustering of metagenome-extracted 16S miTAGs29,39. 

Briefly, 16S rRNA short reads extracted from metagenomes by the original authors were 

mapped to SILVA 138 reference database75,76 at 99% similarity with vsearch v2.2177. 

Considering the large number of sequence clusters (~ 40,000) generated from short 

reads (~100 bp), we used taxonomic composition resolved at the genus level as the 

input for our algorithm. Reads that cannot be classified at the genus level are binned to 

the closest taxonomic level possible. Environmental metadata for the Tara Oceans 

microbiome including nitrate concentration and dissolved oxygen level as well as 

targeted and untargeted measurements of metabolites by gas chromatography for the 

animal gut microbiome were requested from the original authors of the previous 

studies39,53. The dimensions (sample × taxa) of the soil, ocean and gut microbiome 

datasets on which we applied EQO were 8 × 23, 136 × 97 and 101 × 232, respectively.  

Formulation of the Ensemble Quotient 

Microbiome coarse-graining using uniform, continuous or categorical phenotypic 

variables can be generalized into an optimization problem as follows 

𝑚𝑎𝑥 
𝒙𝑇𝑸𝒙

𝒙𝑇𝑷𝒙
 

where 𝒙 is a Boolean vector of length 𝑛 to be solved from the optimization, for which 1 

or 0 represent presence or absence of a species in the ensemble. The number 𝑛 

indicates the dimension of the microbiome, e.g., the number of species in an OTU table. 

For instance, 𝒙 = [1,1,0,1,0] indicates that there are in total 5 species in the 

microbiome, in which the 1st, 2nd and 4th species should be coarse-grained into the 

ensemble. Matrices 𝑷 and 𝑸 are given by the algebraic transformation of the taxa and 

phenotype, with slightly different forms for uniform, continuous or categorical phenotypic 
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variables detailed as follows. Derivation of the whole mathematical framework is 

detailed in Supplementary Notes. 

(a) uniform phenotypic variable (i.e., composition of the assemblage is stable) 

𝑸 = 𝑴𝑇𝟏𝟏𝑇𝑴 

𝑷 = 𝑴𝑇𝑴 −
2

𝑛
𝑴𝑇𝟏𝟏𝑇𝑴 +

1

𝑛2
𝑴𝑇𝟏𝟏𝑇𝟏𝟏𝑇𝑴 

𝑴 denotes the community composition matrix with 𝑚 rows of samples and 𝑛 columns 

of species, where the element in i-th row and j-th column 𝑀𝑖𝑗 is the relative abundance 

of species j in sample i. 𝟏 is a unit vector with length 𝑚 whose elements are all ones.  

In addition, two simple linear constrains are required to avoid ending up with an empty 

group or a group with all taxa that is numerically stable but ecologically trivial 

(Supplementary Notes).  

(b) continuous phenotypic variable 

𝑸 = 𝑴𝟎
𝑇𝒚𝟎𝒚𝟎

𝑇𝑴𝟎 

𝑷 = 𝑴𝟎
𝑇𝑴𝟎 

𝑴𝟎 is the centered community matrix 𝑴 whose column means are zero (i.e., relative 

abundance of each taxon is scaled by subtracting the mean abundance of that taxon 

across samples). The phenotypic vector 𝒚 denotes that the level of phenotype at each 

sample is also centered to 𝒚𝟎 but subtracting the mean. 

(c) categorical phenotypic variable 

𝑸 = 𝑴𝟎
𝑇𝒀𝑳𝑳𝑻𝒀𝑇𝑴𝟎 

𝑷 = 𝑴𝟎
𝑇𝑴𝟎 

𝒀 is an augmented categorical matrix with 𝑚 rows and 𝑐 columns. The row number 

𝑚 is the same as the number of total samples in the microbiome and the column 
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number 𝑐 is the same as the number of categories. 𝑳 is a diagonal matrix whose 

diagonal elements are given by the inverse square root of the number of samples in 

each category.  

Optimization of the Ensemble Quotient can be achieved either by reformulating into an 

equivalent mixed integer linear programming problem (for small-scale problems) or by 

Markov-chain based heuristics like genetic algorithms (for large-scale problems). Full 

details of algorithms are in Supplementary Notes.  

Cross-validation and aggregation network 

Cross-validation consists of the following four steps. (a) Randomly splitting the dataset 

into a training subset and a test subset (e.g. 50-50 with the Tara oceans data). (b) 

Finding the best group with EQO on the training subset generated from each time of 

splitting. We regularized the model by finding the group that minimizes the Akaike 

Information Criterion (AIC) (Fig. S2A). (c) Evaluating the performance of the best 

assemblage generated from the training subset by calculating the cross-validation R2 

with the corresponding test subset in each random splitting. (d) Computing the 

importance each single taxon as cumulative cross-validation R2 for assemblages where 

that taxon is present 

𝐼𝑖 = ∑𝑥𝑖(𝑡)

𝑡

𝑅𝑥𝑣
2 (𝑡) 

and importance of taxa pairs as cumulative cross-validation R2 for assemblages where 

the two taxa are present 

𝐼𝑖,𝑗 = ∑𝑥𝑖(𝑡)𝑥𝑗(𝑡)

𝑡

𝑅𝑥𝑣
2 (𝑡) 
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In the above expressions, 𝑡 is the split number (1~100). 𝑅𝑥𝑣
2 (𝑡) is the cross-validated 

R2 for the test subset in the 𝑡-th splitting. 𝑥𝑖(𝑡) and 𝑥𝑗(𝑡) are 0/1 numbers denoting 

whether species 𝑖 and j, respectively, are present (1) or absent (0) in the group 

generated from the training subset in the 𝑡-th split. The importance calculated above is 

normalized to the maximal importance, in order to obtain a value between 0 and 1. A 

taxon with high relative importance means that if this taxon is included in a group the 

cross-validated R2 is likely to be high, and likewise for pairs of taxa. The relative 

importance of single taxon and relative importance of taxa pairs are indicated by the 

size of nodes and the width of edges in an aggregation network. The aggregation 

network in Fig. 3B showed 11 taxa with relative importance larger than 0.5.  

Predicting gut metabolites with minimal microbiome assemblages 

We ran EQO for each of the 74 metabolites that are detected in > 80% samples, for 

which the best group size was determined by minimizing AIC value as previously 

detailed. To assess the significance of metabolite prediction with minimal assemblages, 

we generated a null model to calculate the expected linear regression R2, by creating 

999 random groups of he same size for each metabolite. A significance value (P-value) 

was evaluated from a Gaussian probability density function with the mean and standard 

deviation inferred from the linear regression R2 of random groups. Then we 

implemented stringent multiple hypotheses testing correction by multiplying the 

calculated P-value by a factor (
𝑛
𝑘
) to account for the fact that the number of 

hypotheses to test increases rapidly with group size, where 𝑛 is the total number of 

taxa in the microbiome and 𝑘 is the number of taxa in the minimal group. For 

metabolites whose minimal group prediction has an adjusted P-value smaller than 0.01, 
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we applied a second filter by only keeping metabolites whose minimal group predictions 

have a cross-validated R2 higher than 0.2.  

Other statistical analysis 

All the other statistical analyses were performed in R version 4.1.378. Aggregation 

network visualization was performed with Cytoscape version 3.9.1. Solution of the 

reformulated mixed integer programming problems were performed by Gurobi optimizer 

(https://www.gurobi.com) version 8.1.1 (MIT licensed) with an R 3.5.3 interface on a 

high-performance computing cluster at MIT. Genetic algorithm was implemented by R 

package GA79,80 version 3.2.2, with parallel computing enabled by R package doParallel 

1.0.17. Fast numerical multiplication of matrices was executed by a customized C++ 

script, which was integrated into R script by R packages Rcpp 1.0.8 and RcppEigen 

0.3.3. Visualization of other plots are performed by R package ggplot2 version 3.3.5. 
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Chapter 3 Inhibiting aquaculture pathogens: from statistical 

patterns to biological mechanism 

 

In this chapter we leveraged EQO to identify a group of species inhibitory of a pathogen 

in marine aquaculture microbiome. This effort led to the isolation of novel bacterial 

species secreting putative polysaccharides with promising biological effects. We are 

performing more experiments with our collaborators to further understand this novel 

species (see future perspective in chapter 5). This chapter is part of the following 

research paper in preparation. 

 

Xiaoyu Shan, Patrizia Stadler, Rachel Gregor, Gabriel Vercelli, Andreas Sichert, Otto 

Cordero. Inhibiting aquaculture pathogens: from statistical patterns to biological 

mechanism. In preparation.  

 

Abstract 

Pathogen infections in aquaculture pose significant threats to food security and 

ecological health. Recent advancements in microbiome analysis offer promising 

avenues for understanding pathogen control from a microbial ecology perspective. 

However, moving beyond statistical descriptions to uncovering biological mechanisms 

remains a major challenge in microbiome studies. In this study, we tackle this challenge 

by investigating the potential of microbiomes associated with shrimp larvae to inhibit 

Vibrio parahaemolyticus (Vp), a pathogen responsible for massive production losses 

around the globe. To this end, we analyze the relationship between animal microbiome 
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composition and survival rates of shrimp larvae across 130 production tanks, revealing 

a core assemblage of key species whose abundance is inversely correlated with that of 

Vp. Guided by our computational predictions, we successfully isolated a new species 

within the marine Roseobacter clade and experimentally validated its inhibitory effects 

on Vp. Intriguingly, we find that the novel species leads to hindered dispersion and 

reduced virulence of Vp by secreting putative polysaccharides. Overall, these findings 

advance our understandings of pathogen inhibition in the shrimp larvae microbiome. 

More broadly, our work also highlights the power of a pipeline involving computational 

and experimental approaches in addressing real-world environmental challenges with 

microbiome studies. 

 

3.1 Introduction 

Aquaculture farming has experienced remarkable growth over the past a few decades, 

serving as an important solution to the increasing demand for high-quality food proteins 

in the modern society81,82. However, the expansion of aquaculture systems has also 

brought about various challenges, in particular the emergence and spread of bacterial 

pathogens that pose significant threat to food security and ecological health81,83. One of 

the most notable bacterial pathogens in marine aquaculture is Vibrio parahaemolyticus 

(Vp), a microorganism responsible for acute hepatopancreatic necrosis disease 

(AHPND). AHPND, formerly known as early mortality syndrome, can lead to massive 

mortalities up to 100% of shrimps and has caused huge economic losses of farmers 

across the globe84,85. 
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Traditional approaches to pathogen control such as antibiotic treatment are facing 

growing concerns due to the rise of antibiotic resistance and its implications for food 

security86,87. In recent years, the development of high-throughput sequencing has 

inspired a growing trend to link the health of hosts with the composition of their 

associated microbiomes88,89. Despite the promising vision of advancing pathogen 

control from a microbial ecology perspective, efforts in this direction still faces major 

obstacles. Firstly, host-associated microbiomes often comprise of hundreds or 

thousands of species with highly variable dynamics, few of which is strongly correlated 

with host survival or pathogen abundance88. The statistical power for individual species 

is questionable, particularly considering that multiple species can fulfill similar ecological 

roles or perform the same metabolic functions at the same time (i.e., functional 

redundancy)37,39,90. Therefore, it is crucial to employ appropriate algorithms capable of 

extracting robust functional groups from noisy species distributions25. Secondly, most 

studies on host-associated microbiomes, especially in the context of aquaculture 

animals, have mainly focused on statistical patterns of microbiome composition88. 

However, more important than calculated coefficients or fitted parameters are 

fundamental questions such as confirming responsible species and understanding 

relevant mechanisms. Addressing these questions would require experimental 

validation of the hypotheses generated from microbiome-based computations. 

Here, we address these challenges by studying the shrimp larvae-associated 

microbiome in a marine aquaculture farm located in Ecuador. We extensively sampled 

130 tanks for shrimp larvae microbiome composition profiling via high-throughput 

amplicon sequencing and records of shrimp larvae survival rate. Moreover, we sampled 
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4 tanks throughout the developmental stages of shrimp larvae from the fifth day of 

nauplius (N5) to the eighth day of postlarvae (PL8) to track the introduction of potential 

pathogens. By combining computational and experimental efforts, we successfully 

identified and isolated a novel species in the marine Roseobacter clade inhibiting Vp. 

We find that the inhibition is likely to be mediated by secretion of a soluble, high-

molecular-weight compound which limits dispersal and reduces virulence of Vp. 

Altogether, this work provides new insights into the potential of biological control and 

treatment of aquaculture bacterial pathogens.  

 

3.2 Results 

3.2.1 Microbiome composition predicts survival rate of shrimp larvae 

To characterize the composition of the larvae-associated microbiome, we sampled 130 

tanks of 11 m3 volume with white-leg shrimp larvae (Litopenaeus vannamei) from a 

hatchery in San Pablo, Ecuador. A total of 3907 amplicon sequence variants (ASVs) 

were generated from high-throughput amplicon sequencing, where the most abundant 

taxa include Vibrionales (25.2% of total relative abundance), Rhodobacterales (21.4%) 

and Flavobacteriales (14.6%, Figure 3.1A). Interestingly, these taxa were also among 

the most abundant taxa in microbial communities assembled on marine particles made 

of polysaccharides such as chitin71,91. In those microbial communities assembled on 

nutrient patches in marine ecosystems, Flavobacteriales and Vibrionales species often 

act as primary degraders of high molecular weight compounds such as polysaccharides 

or proteins, while Rhodobacterales and Pseudomonadales species often act as 

scavengers of intermediate metabolites such as amino acids or organic acids92,93.  
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We further sought to understand the relationship between shrimp larvae health and 

shrimp larvae-associated microbiome composition. We find that the microbiome 

composition is significantly correlated with the survival rate of shrimp larvae (Mantel test 

P = 0.001). The significant correlation raises an intriguing question regarding the 

potential of using machine learning to predict shrimp larvae survival based on 

microbiome composition. Indeed, leveraging a gradient boosting tree regressor, we find 

that ~ 60% of the total variance in shrimp larvae survival rate can be correctly predicted 

solely with the microbiome composition (Figure 3.1C). This indicates a potential to 

leverage rapid microbiome sequencing as a tool to forecast shrimp larvae health in 

aquaculture farms in practice. 

Figure 3.1 Shrimp larvae microbiome composition is coupled with shrimp survival 
rate. (A) Overview of shrimp larvae microbiome composition sampled from 130 tanks - 
the horizontal axis indicates the average relative abundance of each ASV across all 
tanks and the vertical axis indicates the fraction of tanks where each ASV is present. 
Vibrionales, Rhodobacterales and Flavobacteriales are among the most abundant and 
common taxa in the shrimp larvae-associated microbiome. (B) Principal coordinate 
analysis for shrimp larvae microbiome composition, where each tank is also colored 
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according to its shrimp larvae survival rate. A cluster of tanks colored in yellow are 
those suffered from an outbreak of AHPND. Microbiome composition of those tanks 
diverged from the rest of healthy tanks because of high relative abundance of ASV1 Vp. 
Inset table indicates that microbiome composition and shrimp larvae survival rate are 
significantly correlated with each other, even when the collapsed tanks were excluded 
from the test. (C) With machine learning techniques, microbiome composition can 
predict ~ 60% of the total variance of the shrimp larvae survival rate.  

 

 We found among all ASVs that ASV1, classified as Vp, shows the strongest 

negative correlation with the survival rate (Pearson’s r = - 0.70, Figure B.1). The relative 

abundance of this ASV was significantly higher in the 12 tanks where the whole shrimp 

larvae population collapsed as a result of a severe outbreak of AHPND (50.3% ± 6.6% 

in these tanks vs. 2.8% ± 0.5% in the rest of tanks, Mann Whitney U test P = 2.0 × 10-7, 

Figure 3.1B). We managed to isolate a Vp strain from the larval samples with 100% 

identity 16S sequence with this ASV. Further whole-genome sequencing confirms the 

presence of plasmid-borne pirA and pirB in its genome, which are the virulence factors 

responsible for AHPND94. In addition to this Vp ASV, there is also a Flavobacteriaceae 

ASV showing strong negative correlation with shrimp larvae survival (Pearson’s r = - 

0.54, Figure B.1). However, this ASV is only classifiable at the family level, whose 

ecophysiology and potential pathogenicity remains to be better studied in future studies. 
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In this work, we focus primarily on Vp as it shows the strongest statistical signal as a 

threat to shrimp larvae survival.  

Figure 3.2 Interplay between shrimp larvae microbiome and environmental/food 
microbiome. (A) Similarity between shrimp larvae microbiome (vertical axis) sampled 
across developmental stages from Nauplius (N), zoea (Z), mysis (M) to postlarvae (PL), 
and microbiome from environmental or food samples (horizontal axis) at different 
timepoints. A strong diagonal indicates an interplay between shrimp larvae microbiome 
and environmental/food microbiome as the shrimp larvae develops. (B) ASV richness of 
shrimp larvae microbiome across developmental stages, where a steady increase is 
interrupted by a sharp reduction at PL6 stage. (C) The sharp reduction in richness 
coincides with a burst of Vp in the shrimp larvae microbiome. Vp was found to be 
persistently abundant in the feeding Artemia, suggesting that feeding Artemia might be 
a potential source for pathogen infections of the shrimp larvae. 
 

3.2.2 Artemia as a potential source for Vp infections 

To better understand the potential source of the shrimp larvae microbiome, we focused 

on one larval tank where we temporally tracked microbiome composition of 

environmental samples (e.g., seawater, tank water, tank biofilm) and food samples 

(e.g., microalgae, Artemia) at different developmental stages, from nauplii (N), zoea (Z), 

mysis (M) to postlarvae (PL). In general, we found a close and dynamic interplay 

between the shrimp larvae microbiome and the microbiome from environmental or food 
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samples along developmental stages (Figure 3.2A). For instance, the seawater 

microbiome is most similar to the shrimp larvae microbiome at the early Nauplius stage 

(46.5% shared ASVs at N5, Figure 3.2A top left cell), while the dissimilarity increases as 

the shrimp larvae continues to develop into the postlarvae stage (only 21.6% shared 

ASVs at PL8, Figure 3.2A bottom left column). In contrast, as the shrimps approach 

later postlarvae stage, their microbiome composition becomes more similar to the tank 

biofilm sampled after harvest (from 28.6% shared ASVs at N5 to 46.7% shared ASVs at 

PL8, Figure 3.2A rightmost column). The shift from a seawater-related microbes to a 

tank-related microbes suggests potential environmental influences on the temporal 

succession of shrimp larvae microbiome.  

We then focus on Vp and sought to identify potential source of Vp infections. 

Tracking shrimp larvae-associated microbiome along different developmental stages, 

we found a surge of Vp from 0.5% at PL4 to 22.0% at PL6 in the shrimp microbiome 

(Figure 3.2C). The surge of Vp corresponds to an abrupt decline of species richness of 

shrimp larvae microbiome at PL6 (Figure 3.2B). Examining the tank water as well as the 

microbiome of the microalgae or Artemia that is fed to larvae, we found that Artemia 

persistently carries a high abundance of Vp from M3 to PL6 (13.1% ± 2.8% relative 

abundance, Figure 3.2C). Analysis of the other three tanks we temporally tracked also 

illustrated the similar pattern (Figure B.2), suggesting that feeding Artemia might be a 

potentially important source for Vp. Interestingly, in some cases the abundance of Vp 

decreases rapidly after its surge (Figure 3.2C, Figure B.2), begging the question of 

whether certain variable host factors, such as its internal microbiome, may protect it 



 57 

 

from Vp infections. Therefore, we next try to identify species in the shrimp larvae 

microbiome possibly inhibiting Vp.  

Figure 3.3 Computational prediction of a core inhibitory assemblage for Vp leads 
to the isolation of novel, cosmopolitan Sedimentitalea species. (A) A core 
assemblage of seven ASVs were predicted by the Boolean least square coarse-graining 
(methods). The size of nodes in the aggregation network indicates the relative 
importance of each ASV in inhibiting Vp while the size of edges indicates the relative 
importance of coarse-graining the connected nodes. (B) Rhodobacterales ASV28 
predicted in the core assemblage was isolated in the lab, which is a novel species in the 
genus of Sedimentitalea within the marine Roseobacter clade. (C) Although this species 
has not been isolated before, it has been detected in amplicon sequencing efforts 
throughout the globe in previous surveys from various marine host-associated 
ecosystems.  
 

3.2.3 Identifying a minimal assemblage Vp-inhibiting species 

We employ a data-driven approach to identify microbiome features that can potentially 

protect the host from Vp. Correlating individual ASVs with Vp does not yield any strong 

statistical signal, with the distribution of Pearson’s correlation coefficients densely 

centered around zero (Figure B.3). The weak correlations suggest that there might be 

multiple species capable of inhibiting Vp via different mechanisms, such as antibiotic 

production, contact-dependent killing, resource competition or anti-colonization. 
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Therefore, we shifted our efforts to look for a minimal assemblage of species that 

together showing the strongest anti-correlation with Vp. To that end, we leveraged a 

Boolean least square algorithm to coarse-grain individual species to functional groups, 

guided by the patterns of statistical variation of species across samples to optimize the 

performance of the group as a whole25. The outcome of the algorithm is visualized as an 

aggregation network, where the size of nodes indicates the relative importance of the 

individual species and the size of edges indicate the relative importance of coarse-

graining the pair of species (Figure 3.3A). We find that seven species are finally 

selected by the algorithm, including three Rhodobacterales species. Rhodobacterales is 

a clade widely distributed in aquaculture ecosystems with a well-understood ecological 

role as scavengers of small-molecule metabolites95,96. Previous studies have found 

several members in this clade with positive effects on pathogen inhibition and aquatic 

animal health, such as Phaeobacter inhibens97 and Tritonibacter mobilis98. However, 

the three Rhodobacterales species predicted here are neither Phaeobacter nor 

Tritonibacter. 

We isolated one of the predicted Rhodobacterales species (ASV28) by designing a 

customized growth media with organic acids as the only carbon source. Phylogenetic 

placement indicates that the isolates whose 16S sequences are 100% identical to 

ASV28 are in the genus of Sedimentitalea99. However, the whole genome average 

nucleotide identity (ANI) between these isolates and their closest relative 

Sedimentitalea nanhaiensis DSM24252 is only 78%~79%, despite a 96%~97% 

similarity in their 16S sequences. This indicates that the ASV28 isolate represents a 

novel species within the genus of Sedimentitalea (Figure 3.3B). Although this species 
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has not been isolated before, we found in publicly available amplicon sequencing 

datasets that 16S rRNA gene sequences 100% identical to ASV28 were wide-spread 

throughout the globe from previous environmental surveys, especially in marine aquatic 

creature-associated microbiome. In addition to the South American Litopenaeus 

vannamei microbiome in our study, 100% identical rRNA gene sequences are also 

present in Litopenaeus vannamei microbiome in China, Tripneustes gratilla microbiome 

in Africa, as well as coral reef microbiome in the Caribbean region (Figure 3.3C).  

 

3.2.4 Sedimentitalea sp. inhibits Vp by secreting putative polysaccharides  

We leveraged several experimental assays to test the hypothesis that the isolates of the 

novel Sedimentitalea sp. inhibits Vp. With a halo assay, we found that Sedimentitalea 

sp. produced a halo zone on a lawn of Vp in an agar plate. The halo zone can be either 

resulted from a contact-dependent mechanism or a compound secreted by 

Sedimentitalea sp. To further distinguish between these alternative possibilities, we 

repeated the halo assay with cell-free supernatant of Sedimentitalea sp. We found that 

the halo zone was still produced by the supernatant (Figure 3.4B), indicating that the 

halo zone was resulted from a secretant of Sedimentitalea sp. Moreover, we found that 

the halo zone emerged from morphological differences of Vp colonies when they were 

affected by the Sedimentitalea sp. secretant (Figure B.4). The Vp colonies unaffected 

by Sedimentitalea sp. supernatant are opaque, with Vp cells dispersing beyond the 

boundary of the colonies. In contrast, Vp colonies affected by Sedimentitalea sp. 

supernatant are translucent with smooth boundaries, without beyond-boundary 

dispersion of cells. To better understand if there is any other phenotypic difference 
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associated with the two distinct colony morphologies, we extracted mRNA from the 

affected and unaffected Vp colonies and performed RNA sequencing. Further analysis 

with transcriptomics showed that the gene encoding quorum sensing signal synthase 

(luxM) and the gene encoding virulence factor (pirA) were significantly down-regulated 

in Vp colonies affected by Sedimentitalea sp. supernatant (Figure 3.4D).  

Figure 3.4 The Sedimentitalea species caused limited dispersion and reduced 
virulence of Vp by secreting extracellular polysaccharides. (A) Schematic 
illustration of the inhibition of Sedimentitalea species on Vp. Induced by citrate, 
Sedimentitalea species highly produces the extracellular polysaccharides, which has 
inhibitory effects on Vp. (B) The excreted extracellular polysaccharides form a halo zone 
on the lawn of Vp on an agar plate. (C) Monosaccharide composition of secreted 
extracellular polysaccharides. (D) The secreted extracellular polysaccharides lead to 
significant downregulation of quorum sensing synthase luxM and virulence factor pirA in 
Vp. 
 

Interestingly, the active part of the Sedimentitalea sp. supernatant triggering the 

aforementioned phenotypic changes of Vp is a high-molecular-weight compound. To 

identify the size range of the compound, we fractionated the cell-free supernatant of 

Sedimentitalea sp. with centrifugal filtering and found that the active compound was 

highly enriched in the >10K Dalton fraction. A biomolecule with >10K Dalton molecular 

weight is mostly likely to be a high molecular weight polymer such as nucleic acid, 
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protein, or polysaccharide. To determine the identity of the active compound, we treated 

the >10K Dalton fraction with DNase, RNase, proteinase K, or 95℃ incubation, as 

nucleic acids and proteins should be deactivated after these treatments. Surprisingly, 

the activity of the post-treatment fraction remained unaffected, suggesting the active 

compound was neither a protein nor a nucleic acid. To test if polysaccharides were 

present in the fraction, we performed a phenol-sulfuric acid assay for carbohydrate 

detection as well as SDS-PAGE staining for carbohydrate-characteristic cis-diol groups. 

Both assays gave positive signals, confirming the presence of polysaccharides in the 

>10K Dalton fraction. Indeed, we found with acid-hydrolysis-based monosaccharide 

analysis that the secreted polysaccharides of Sedimentitalea sp. were composed of 

fucose (44.8%), galactose (14.1%), glucosamine (11.7%), mannose (11.8%), rhamnose 

(7.5%), glucose (7.5%) and xylose (2.2%, Figure 3.4C). Interestingly, we further found 

that the extracellular polysaccharides were only highly produced and secreted when 

citrate was present, indicating that citrate acted as an environmental cue to trigger the 

polysaccharide-mediated interspecies interactions (Figure 3.4A).   

 We are continuing to better understand the chemical structure and ecological 

relevance of the secreted compound. Ideas and plans are detailed in chapter 5 as future 

perspectives.  

 

3.3 Discussion 

In this work, we identified and isolated a novel Sedimentitalea species from the shrimp-

larvae associated microbiome capable of inhibiting aquaculture pathogen Vp. We 

started from the microbiome data by computationally mapping taxonomic composition to 
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functional roles, i.e., pathogen exclusion, with an unsupervised, ecology-guided coarse-

graining algorithm. Then we moved from statistical patterns to biological mechanism by 

experimentally confirming and characterizing the inhibitory effects of the predicted 

Sedimentitalea species on Vp. Overall, our work illustrated a powerful workflow in 

microbiome studies, where structure-function mapping algorithms serve as hypothesis-

generating tools to guide experimental follow-ups to gain mechanistic insights. While 

our study here mainly focuses on analyzing a microbiome dataset from aquaculture 

shrimp larvae, the workflow itself is highly applicable to various ecosystems. This 

approach has the potential to revolutionize microbiome research, enabling us to 

transcend descriptive patterns in microbiome surveys and to advance deeper 

understandings into ecology and biology. 

Our results suggest that the novel Sedimentitalea species might inhibit Vp by 

synthesizing and secreting extracellular polysaccharides. The secreted extracellular 

polysaccharides trigger phenotypic changes of Vp including limited dispersion, 

suppressed quorum sensing and reduced expression of virulence factor. We are still 

working to better elucidate the chemical nature of the active compound, as well as its 

ecological relevance (chapter 5). Some recent studies have underscored the important 

role of human mucin glycans in controlling the quorum sensing, toxigenicity or 

pathogenicity for various human pathogens such as Candida albicans100, Vibrio 

cholerae101 and Streptococcus mutans102. If our hypothesis of polysaccharides-

mediated inhibition is true, then our results would suggest that, in addition to host-

derived glycans, glycans derived from bacteria also play a role in modulating 

phenotypes of other bacteria. Our hypothesis can be partially supported by some 
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previous works illustrating anti-biofilm effects of some bacterial extracellular 

polysaccharides103, especially considering that regulations of biofilm formation, quorum 

sensing and virulence are often tightly coupled104,105. Interestingly, the Sedimentitalea 

species only highly produces and secretes the inhibitory polysaccharides in the 

presence of citrate, which is likely an intermediate metabolite from the host shrimp 

larvae or some other bacteria. Therefore, the interaction we suggested here between 

Sedimentitalea species and Vp might be part of a larger interaction network in the 

complex microbiome. Furthermore, citrate has been reported to affect bacterial 

physiology as a strong chelator of divalent ions such as iron106,107, suggesting the 

importance of chemical context in shaping interspecies interactions.  

The rapid advancement in microbiome studies provide us with enormous 

opportunities to tackle the challenges of pathogen control from an ecological 

perspective, which is especially invaluable given the growing concern of antibiotic 

resistance. Here we present in this aquaculture shrimp larvae system how we can gain 

interesting biological insights from data-mining of the host-associated microbiome 

composition. As the volume of accessible and available microbiome data continues to 

increase each year, the crucial mission lies in effectively harnessing and extracting 

biological underpinnings from it, so as to pave the way for microbiome engineering in 

the future to address more real-world challenges.  

 

3.4 Methods 

Sampling  
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Microbiome sampling was performed within Biogemar hatchery at San Pablo, Santa 

Elena province, Ecuador (2°15'S, 80°56'W). A total of 144 tanks distributed in 11 rooms 

with Penaeus vannamei was sampled at the end of the production cycle, when the 

survival rate of shrimp larvae was also recorded. All tanks of room 12 presented an 

outbreak disease and samples of larvae of these tanks were collected before population 

has been discarded. Furthermore, Penaeus vannamei larvae and water from four tanks 

(two from room 9 and two from room 11) were sampled every two days during the entire 

production cycle from January 27 to February 19, 2021. Possible sources of introduction 

of bacteria to the larva digestive tract were also sampled, such as seawater, tank 

biofilm, microalgae culture and Artemia as the shrimp food. During the production cycle, 

shrimp developed by passing through four stages: Nauplius (N), zoea (Z), mysis (M) 

and postlarvae (PL).  

DNA extraction and amplicon sequencing 

DNA extraction was performed with Gentra Puregene Tissue Kit (QIAGEN) following the 

protocol provided by the manufacturer, except that bead beating was used to increase 

the extraction efficiency for 60 seconds at 5000 rpm. In brief, the extraction procedure 

includes cell lysis (1:1 cell lysis solution), RNA removal (4μL of RNAse A), protein 

precipitation (250 μL Protein Precipitation Solution), DNA precipitation (100% 

isopropanol) and purification (70% ethanol). Purified DNA was shipped to Argonne 

National Laboratory (Lemont, IL) for amplicon sequencing on a MiSeq targeting the V4 

region of 16S rRNA using the 515F and 806R primers. Sequence-specific Peptide 

nucleic acid (PNA) clamps were used to block the amplification of host-derived 

mitochondrial 16S sequences at V4 region. Amplicon sequences analyses were 
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performed on the MIT Engaging computing cluster, where we used QIIME2 v2019.2108 

to demultiplex the raw reads, and DADA2 plugin109 to generate Amplicon Sequence 

Variants (ASVs) of ~250 base pairs. Taxonomy of representative ASVs were assigned 

with the classify-sklearn method by QIIME2 v2019.2.   

Boolean least square coarse-graining of microbiome composition 

We leveraged a Boolean least square algorithm to coarse-grain individual species into 

minimal core assemblages25. Briefly, the algorithm looks for a linear combination of 

species with strictly binary coefficients (either zero or one), to maximize the least square 

error with the targeted variable.  

𝒆𝟐 = ‖𝑨𝒛 − 𝒚‖𝟐 = 𝒛𝑇𝑨𝑇𝑨𝒛 − 𝟐𝒚𝑇𝑨𝒛 + 𝒚𝑇𝒚 

where 𝑨𝑚×(𝑛+1) is the augmented microbiome matrix [𝟏𝑚 ⋮ 𝑴𝑚×𝑛] since we need an 

additional column of 1 to map the linear intercept 𝑏. 𝒛 is the augmented vector for 

unknown variable [𝑏 ⋮ 𝑘𝒙], where 𝑥𝑗 is the binary variable denoting whether species 𝑗 

should be included in the assemblage. This mixed integer quadratic programming 

problem is then solved by a commercial optimizer Gurobi v8.0 for the optimal core 

assemblage of species mostly anticorrelated with Vp. Cross-validation with 50-50 

random split of the 130 tanks was repeated 100 times to construct the aggregation 

network. The size of nodes shows the cumulative cross-validation R2 when the node is 

selected into the optimal assemblage, while the size of edges shows the cumulative 

cross-validation R2 with both of the connecting nodes selected into the optimal 

assemblages.  

Strain isolation and genotyping  
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Vp was isolated by the CHROMagar Vibrio (CaV) selective media, where the mauve 

colonies are picked for genotyping. A total of 190 Rhodobacterales strains were isolated 

with a customized media recipe favoring growth of Rhodobacterales species among 

other marine copiotrophic heterotrophs such as Flavobacteriales, Vibrionales and 

Alteromonadales. The media is adapted from a MBL minimal media, containing 10 mM 

NH4Cl, 10 mM Na2HPO4, 1 mM Na2SO4, 50 mM HEPES buffer (pH 8.2), NaCl (20 

g/liter), MgCl2*6H2O (3 g/liter), CaCl2*2H2O (0.15 g/liter), and KCl (0.5 g/liter). Trace 

metals and vitamins were added by 1:1000 of the following stock solution. Trace metals 

stock solution included FeSO4*7H2O (2100 mg/liter), H3BO3 (30 mg/liter), MnCl2*4H2O 

(100 mg/liter), CoCl2*6H2O (190 mg/liter), NiCl2*6H2O (24 mg/liter), CuCl2*2H2O (2 

mg/liter), ZnSO4*7H2O (144 mg/liter), Na2MoO4*2H2O (36 mg/liter), NaVO3 (25 mg/liter), 

NaWO4*2H2O (25 mg/liter), and Na2SeO3*5H2O (6 mg/liter). Vitamins, which were 

dissolved in 10 mM MOPS (pH 7.2), contained riboflavin (100 mg/liter), D-biotin (30 

mg/liter), thiamine hydrochloride (100 mg/liter), L-ascorbic acid (100 mg/liter), Ca-D-

pantothenate (100 mg/liter), folate (100 mg/liter), nicotinate (100 mg/liter), 4-

aminobenzoic acid (100 mg/liter), pyridoxine HCl (100 mg/liter), lipoic acid (100 

mg/liter), NAD (100 mg/liter), thiamine pyrophosphate (100 mg/liter), and 

cyanocobalamin (10 mg/liter). Sodium succinate of 40mM is added as the carbon 

source. Marine Broth 2216 was spiked into the media with a dilution factor of 1:80 to 

facilitate bacterial growth. Genotyping of all isolates were performed by full-length 16S 

Sanger sequencing (GENEWIZ at Azenta Life Sciences). 16S sequences of isolates 

were aligned to that of ASV1 and ASV28 with blastn in the blast suite v2.12.0. A 
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maximal-likelihood phylogenetic tree of representative 16S sequences was constructed 

with MEGA v11.  

Whole genome sequencing and genomic data processing 

Shotgun whole genome sequencing for Vp and five representative Rhodobacterales 

isolates were performed at the SeqCenter (Pittsburgh, PA), on an Illumina NextSeq 

2000 platform (2x151bp pair-ended). Raw reads were trimmed to remove adaptors and 

low-quality bases (-m pe -q 20) with Skewer v0.2.2110. The remaining paired reads were 

checked for quality with FastQC v0.11.9. Quality-filtered reads were assembled into 

contigs with MEGAHIT v1.2.9111.  

Nanopore long-read sequencing was also performed at the SeqCenter (Pittsburgh, PA) 

to close the genome of Vp. Closed genome was assembled using Unicycler v0.4.9112 by 

combining Illumina short reads and Nanopore long reads, resulting in two chromosomes 

and three circular plasmids. The assembly graph in gfa format was visualized by 

Bandage v0.8.1113. Coding sequences are predicted by prodigal v2.6.3, followed by 

functional annotation by eggnog-mapper v2114 (--go_evidence non-electronic --

target_orthologs all --seed_ortholog_evalue 0.001 --seed_ortholog_score 60). 

Agar plate-based screening of Vp inhibition 

We screened for inhibitory effects on pathogens with agar plate-based halo assays. A 

lawn of the target species (e.g., Vp) was prepared by spreading 50 μL overnight Vp 

culture on top of Marine Broth 2216 agar with 5~10 glass beads. Rhodobacterales 

species are allowed to grow in Marine Broth rich media or MBL minimal media with 

citrate as carbon source for 48 hours, before transferring to the lawn of Vp. 

Rhodobacterales culture is centrifuged at 5,000g for 5 minutes before being filtered with 
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0.22 μm filter units for cell-free supernatant. A hole is punched on the center of the agar 

plate with the lawn of Vp with the opposite end of a 1mL pipette tip, in which 100 μL of 

cell-free supernatant of Rhodobacterales culture was spiked. The agar plates were left 

at room temperature for 24 hours before a halo zone becomes visible.  

Extraction of Sedimentitalea species extracellular polysaccharides 

Sedimentitalea species was growing in 100mL of MBL minimal media with 27 mM 

citrate as carbon source for 48 hours in Innova 42R incubator shaking at 220 RPM 

25°C. Cells were removed by first being spined down at 5000 RPM at 4°C for 5 minutes 

and then being filtered through 0.22 μm filter units. Cell-free flow-through was 

concentrated by centrifugal filtering units (MilliporeSigma Amicon) with 10K Dalton 

molecular weight cutoff membrane. A 2.5 volume of 100% ethanol was added into the > 

10K Da fraction for ethanol precipitation at 4°C overnight. The precipitated material was 

spined down at 4500 RPM for 10 minutes and dried in a speed vacuum for 4 hours at 

room temperature to remove the remaining ethanol. Phenol-sulfuric acid assay and 

SDS-PAGE-based polysaccharides staining were both performed to confirm the 

presence of carbohydrates. The biological activity of the purified material was also 

tested after treatment with DNase, RNase, proteinase K or high temperature (95°C for 

20 minutes) to rule out the possibility of being nucleic acids or peptides/proteins.  

Determination of extracellular polysaccharide composition 

Monosaccharide composition of extracellular polysaccharides were determined using 

acid hydrolysis and mass spectrometry analysis115,116. Dry pellets of extracted 

extracellular polysaccharides from Sedimentitalea species was resuspended into Milli-Q 

water, where 5 μL of sample were diluted with 45 μL of ddH2O and mixed with 50 uL of 
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2 M HCl. Samples were hydrolyzed in a thermocycler for 24 hours at 100°C and 

afterwards neutralized by addition of 4 M NaOH. Samples containing released 

monosaccharides after acid hydrolysis (25 μL) were derivatized with 0.1M PMP in 2:1 

Methanol:ddH2O with 0.4 Ammonium hydroxide (75 μL) for 100 minutes at 70°C 

following a previously published protocol . For quantification, we derivatized a serial 

dilution of a standard mix containing Galacturonic acid, D-Glucuronic acid, Mannuronic 

Acid, Guluronic Acid, Xylose, Arabinose, D-Glucosamine, Fucose, Glucose, Galactose, 

Mannose, N-Acetyl-D-glucosamine, Ribose, Rhamnose and D-galactosamine. PMP-

derivatives were measured on a SCIEX qTRAP5500 and an Agilent 1290 Infinity II LC 

system equipped with an Agilent Poroshell 120 EC-C18, 2.1x50mm,1.9um reversed 

phase column with guard column. The mobile phase consisted of Buffer A (25 mM 

NH4Acetate in ddH2O, 5% acetonitrile, pH=5.6 adjusted with formic acid) and Buffer B 

(5% ddH2O and 95% acetonitrile). PMP-derivatives were separated in a gradient from 9 

% to 23% Buffer B in 2 minutes with a flow of 1 mL/min. The ESI source settings were 

625°C, with curtain gas set to 30 (arbitrary units), collision gas to medium, ion spray 

voltage 5500, temperature to 625, Ion source Gas 1 to 90 and Ion Source Gas 2 to 90. 

PMP-derivatives were measured by multiple reaction monitoring (MRM) with previously 

optimized transitions and collision energies. For example, a glucose derivative has a Q1 

mass of 511 and was fragmented with a collision energy of 35V to yield the quantifier 

ion of 175Da and the diagnostic fragment of 217Da. Different PMP-derivatives were 

identified by their mass and retention in comparison to known standards and their peak 

areas (175Da fragment) was used for normalized by the amount of internal standard. 

RNA isolation and transcriptomics 
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To isolate RNA from Vp colonies affected or unaffected by the Rhodobacterales 

supernatant, we sampled colonies within or beyond the halo zone in triplicates. To 

ensure sufficient amount of RNA for sequencing, we picked 10 colonies per sample. 

The picked colonies are vortexed in RNA Protect Bacterial Reagent (Qiagen, Hilden, 

Germany) for mixing. RNA isolation was performed with a Qiagen RNeasy kit following 

the manufacturer’s protocol except that cells were resuspended in 15 mg/mL lysozyme 

in TE buffer and incubated for 30 min at room temperature before adding buffer RLT. 

RNA library preparation, rRNA depletion, and pair-ended Illumina sequencing were all 

performed at the SeqCenter (Pittsburgh, PA). We trimmed paired-end RNA reads by 

Skewer v0.2.2110 to remove sequencing adapters and low-quality reads (-m pe -q 20). 

The remaining paired reads were mapped to Vp closed genome using Bowtie2 

v2.2.6117. We leverage HTSeq v0.11.3118 to obtain count table of transcripts and use 

DeSeq2 R package119 for differential gene expression analysis. Normalized transcript 

abundance was generated from count tables by transcripts per kilobase million (TPM) 

calculations.  

Other statistical analysis 

Gradient boosting-based prediction of shrimp larvae survival rate was performed by R 

package xgboost v1.7.5.1, for which 90 tanks are randomly selected as the training set 

and the remaining 40 tanks are used as the test set. All other statistical analyses are 

implemented with R v4.1.3. World map is visualized using the default world map in R 

package ggmap v3.0.0. 
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Chapter 4 Mutation-induced infections of phage-plasmids 

 

In this chapter I report a serendipitous finding regarding phage-plasmids. When I 

studied the metabolic functions of a marine strain, I noticed that its liquid culture 

became clumpy every week. At the beginning I thought it was because I did something 

wrong in my experiments. Then I repeated the experiments, but always ended up with 

the same observation. Later, supported by Professor Otto Cordero and Professor Tami 

Lieberman, I was able to demystify the “doomed fate” of the that bacteria strain. It 

gradually became clear that behind the scene were mutation-induced infections of 

phage-plasmids.  

 

This work has been published as the following research article. 

 

Xiaoyu Shan, Rachel Szabo, Otto Cordero. (2023). Mutation-induced infections of 

phage-plasmids. Nature Communications, 14(1), 2049. 

 

Abstract 

Phage-plasmids are extra-chromosomal elements that act both as plasmids and as 

phages, whose eco-evolutionary dynamics remain poorly constrained. Here, we show 

that segregational drift and loss-of-function mutations play key roles in the infection 

dynamics of a cosmopolitan phage-plasmid, allowing it to create continuous productive 

infections in a population of marine Roseobacter. Recurrent loss-of-function mutations 

in the phage repressor that controls prophage induction leads to constitutively lytic 
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phage-plasmids that spread rapidly throughout the population. The entire phage-

plasmid genome is packaged into virions, which were horizontally transferred by re-

infecting lysogenized cells, leading to an increase in phage-plasmid copy number and to 

heterozygosity in a phage repressor locus in re-infected cells. However, the uneven 

distribution of phage-plasmids after cell division (i.e., segregational drift) leads to the 

production of offspring carrying only the constitutively lytic phage-plasmid, thus 

restarting the lysis-reinfection-segregation life-cycle. Mathematical models and 

experiments show that these dynamics lead to a continuous productive infection of the 

bacterial population, in which lytic and lysogenic phage-plasmids coexist. Furthermore, 

analyses of marine bacterial genome sequences indicate that the plasmid backbone 

here can carry different phages and disseminates trans-continentally. Our study 

highlights how the interplay between phage infection and plasmid genetics provides a 

unique eco-evolutionary strategy for phage-plasmids.  

 

4.1 Introduction 

A key distinction among temperate phages is whether they integrate into the host 

chromosome (e.g., the well-known Escherichia coli’s phage lambda) or replicate as an 

extrachromosomal element. In this latter group are phage-plasmids, circular elements 

that appear to have evolved by the fusion of a plasmid and phage. Although a few 

examples such as phage P1120 infecting Escherichia coli and phage VP882121 infecting 

Vibrio cholerae have been extensively-studied, it is only very recently that we have 

become aware of the prevalence and relevance of these hybrid elements122. Recent 

surveys have found that phage-plasmids are abundant122,123 and carry a large diversity 
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of clinically relevant antibiotic resistant genes across bacteria124. Despite their 

significance, however, most of these elements have not been experimentally 

characterized and their ecology and evolution as not only phages but also plasmids 

remain poorly understood.  

As most other plasmids, phage-plasmids can also be found in multiple copies per 

cell (polyploidy). This fact has surprising implications for the population genetics of 

these elements and their dynamics of infection. Polyploidy makes it possible for cells to 

be heterozygous at any phage-plasmid encoded locus125–127, including key genes such 

as the transcriptional repressor that maintains the phage in its lysogenic state. This 

intra-cell genetic variation can have a significant impact on phage-plasmid dynamics. If 

the prophage was chromosomally integrated, loss of function mutations in the phage 

repressor would be effectively suicide mutations, committing the phage to a lytic phage. 

However, in theory, such defective allele variants could be recessive in a polyploid 

phage-plasmid. Polyploidy also implies that the intergenerational dynamics of phage-

plasmids are affected by segregational drift – i.e., the random assortment of plasmid 

copies among daughter cells after cell division. Segregational drift can lead to large 

fluctuations in the degree of heterozygosity (including the production of homozygous 

offspring) in subsequent generations128–130. As shown below, the interplay between 

heterozygosity and segregational drift in phage-plasmids can lead to a type of eco-

evolutionary dynamics unique for phage-plasmids.  

We explore these dynamics focusing on a cosmopolitan type of phage-plasmid 

widespread among marine Roseobacter – an abundant copiotroph in the ocean98. Using 

a combination of experiments and mathematical models we show that the hybrid nature 
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of phage-plasmids allows loss-of-function mutations in the phage repressor gene to be 

maintained in the population, leading to continuous productive infections. We show that 

phage-plasmid variants transmit rapidly throughout the population via horizontal 

transfer, increasing ploidy and producing heterozygous cells. This force is 

counterbalanced by segregational drift, which restores homozygosity. The combination 

of these forces leads to the continuous production of phages and the stable coexistence 

of infected and resistant cells. We continue to show that the phage-plasmids such as 

this are formed frequently in the environment via fusion of plasmid backbones and 

phages and widespread across disparate geographic regions, suggesting a successful 

life-style strategy for these parasitic elements. 

 

4.2 Results 

4.2.1 Recurrent productive infection of a phage-plasmid in T. mobilis after ~40 

generations 

Tritonibacter mobilis (previously known as Ruegeria mobilis) is a member of the 

Roseobacter clade98, which collectively represents one of the most ubiquitous groups of 

marine heterotrophic bacteria131. Tritonibacter mobilis A3R06, carrying a temperate 

phage-plasmid, was isolated from an agarose particle inoculated with coastal seawater 

bacterial communities. Its genome has 4.65 million base pairs (Mbp), with a 

chromosome of 3.2 Mbp plus four (mega)plasmids of 1.2 Mbp, 0.1 Mbp, 78 thousand 

base pairs (Kbp) and 42 (Kbp), respectively (Figure C.1). The 42 Kbp plasmid is also a 

circular phage with 51 predicted genes. These include genes encoding a phage head, 

tail, capsid and portal proteins, lysozyme, cell wall hydrolases as well as a C1-type 
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phage repressor. The rest of the genes are involved in plasmid stability, replication and 

segregation, such as the yoeB-yefM toxin-antitoxin system, the parAB plasmid 

segregation system and P4-family plasmid primase (Figure C.2).  

When growing Tritonibacter mobilis A3R06 under serial dilution cycles of 

approximately 6 generations per transfer in minimal media, we observed a reproducible, 

sharp decline in optical density (OD600) after approximately 40 generations (Figure 4.1, 

Figure C.3). The decline in OD600 was due to the formation of cell clumps containing 

extracellular DNA (eDNA) (Figure S5), consistent with the idea that cell lysis promoted 

clump formation132. By sequencing the time courses and analyzing differences in 

genome coverage, we confirmed the induction of the phage-plasmid in all of the 15 

independent biological replicates after 30-50 generations (Figure 4.1A, Table C.1 and 

Figure C.4). To further validate the lysogeny-lysis switch of the phage-plasmid, we did 

transmission electron microscopic imaging of the 0.22 μm filtered supernatant from the 

clumpy bacterial culture, confirming the production of virion particles. The phage particle 

has Siphoviride-type morphology, with an isometric head of ~50 nm diameter and a long 

tail of ~ 180 nm length (Figure 4.1B).  
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Figure 4.1 Mutations in a phage repressor region recurrently drives productive 
infection of the phage-plasmid. (a) Productive switch of a phage-plasmid in 
Tritonibacter mobilis A3R06 was observed after ~ 40 generations of serial-dilution 
growth (red). A deletion mutation (11736: GA→G, purple bar) rapidly increased to ~50% 
relative genotypic frequency within one dilution cycle, before the increase slowed down 
in the next dilution cycle. A second mutation (11853: C→T, yellow bar) was observed in 
the last dilution cycle. Planktonic bacterial culture became highly clumpy after the 
productive switch, as indicated by the sharp decrease in OD600 (blue). For eco-
evolutionary trajectories for the other 8 populations temporally-tracked with genomic 
sequencing, see Figure S4 and Table S1. (b) Transmission electron microscope image 
of the phage-plasmid particle. Imaging was performed for seven times with biological 
triplicates, all yielding similar results. (c) Differential expression of phage-plasmid genes 
before and after observing the mutation. Genes related to phage production were 
significantly upregulated after the productive switch, in particular the phage structural 
genes and the phage lysozyme gene. Expression of genes that are housekeeping for 
plasmid replication and stability were only increased because of copy-number increase 
of genes. P values are calculated based on Wald test and are adjusted by the 
Benjamin-Hochberg (BH) procedure. (d) All 21 mutations identified in 15 independent 
lines of populations were within a short ~1,000 bp region encoding a C1-type phage 
repressor (orange arrow). Most of mutations are insertions or deletions (purple 
diamond).  
 

4.2.2 Productive infection of the phage-plasmid is driven by mutations in a phage 

repressor region  

The observed 30-50 generation lag before the productive infection suggested that the 

lysogenic-lytic switch was less likely to be driven by metabolite accumulation or 

physiological signaling. Alternatively, we hypothesized that the prophage induction was 
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driven by genotypic changes. To test this hypothesis, we did genomic sequencing for 9 

independent bacterial populations at the end of each dilution cycle. We found that only a 

short, ~1000 bp region in the phage genome encoding a C1-type phage repressor, 

consistently contained mutations across all the independent lines (Figure 4.1D, Table 

C.1). A large fraction (15/19, 78.9%) of the mutations were insertion/deletion mutations 

leading to frame-shift within either the helix-turn-helix DNA binding domain of the C1-

type repressor or the putative upstream promoter region as inferred from the level of 

transcripts (Figure 4.1D), suggesting that the mutations resulted in a loss of repressor 

function. Interestingly, a majority of these insertion/deletion mutations (9/15, 60.0%) 

were related to tandem repeats sequences in the genome (e.g., nucleotide position 

11897: from GAAAAA to GAAAA, Table C.1), which act as mutational hotspots due to 

replication slippage133–135, suggesting that these mutations occurred faster than the 

background rate. Interestingly, several previous studies have found that mutations of 

tandem repeats can be often reversed136–138, which might enable an evolutionary switch 

between lysis and lysogeny. 

In order to learn more about the consequences of the repressor mutations, we 

performed RNA-seq experiments for 3 independent populations, which allowed us to 

quantify the transcription of phage coding sequences before and after the mutation was 

observed. We found that the expression of genes related to a lytic phage lifestyle in the 

phage-plasmid were highly up-regulated after the observation of mutations in the 

repressor sequence, such as the phage capsid, phage tail and lysozyme (128~256 

folds, Figure 4.1C), showing these genes related to phage production were indeed de-

repressed after the loss-of-function mutations. In contrast, those genes related to 
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plasmid replication and stability such as the yoeB-yefM toxin-antitoxin system and the 

parAB plasmid segregation system were only increased similarly with the copy-number 

increase of the phage-plasmid (2~4 folds, Figure 4.1C). These genes were actively 

expressed even before the mutation was observed (Figure C.6), suggesting that they 

were functioning for a lysogenic lifestyle.  

DNA sequencing across different timepoints during dilution cycles showed that, after 

repressor mutations appeared, their frequency in the population increased at an 

extremely rapid rate. e.g., jumping to ~50% within one dilution cycle of 6 generations in 

a population of ~10^8 cells. Despite this rapid increase, the mutant genotype never 

reached fixation, stabilizing at around 60% (Figure 4.1A and Figure C.4). This pattern of 

evolutionary dynamics was intriguing in two respects. First, if transmission was only 

vertical, the drastic increase in the mutant genotype frequency would imply 

unrealistically high relative fitness coefficients (s ~ 100). Therefore, the evolutionary 

dynamics can only be explained by the infection spreading horizontally throughout the 

population. This presents an apparent conundrum, as we expected a host population 

lysogenized with the wild-type phage-plasmid to be immune to the same type of 

phage139,140. Second, if the mutated phage genotype was able to spread so rapidly 

throughout the population, why did not it reach fixation?  

 

4.2.3 Reinfection and segregational drift together explain the observed evolutionary 

dynamics  

We hypothesized that the observed evolutionary dynamics could be explained by the 

unique population genetic features of a phage-plasmid hybrid. If the mutated phage was 
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able to spread through the population via virion production and reinfection, then the 

infected cells would likely contain multiple plasmid copies and be heterozygous at the 

repressor locus (e.g., one copy of lysogenic wild-type phage plasmid and one copy of 

mutated phage plasmid). In that case, segregational drift during the stochastic 

partitioning of plasmids between daughter cells should impact the subsequent bacterial 

and phage population dynamics. Indeed, recent studies have shown that the evolution 

of multiple-copy plasmids is affected by segregational drift125,128,129, akin to the case of 

mitochondria in eukaryotes130, resulting in variation in intracellular frequencies of 

plasmid-encoded alleles between mother cells and daughter cells. In the simplest 

scenario where plasmids were randomly distributed into daughter cells with equal 

opportunity, while the copy number of plasmids per cell remained constant, cell division 

could result in the maintenance of repressor heterozygosity at the single cell level, or 

the production of two homozygote cells, one carrying only wild-type and one carrying 

only mutated phage (Figure C.7). In the latter case, the daughter cell with only mutated 

phages would be lysed, releasing more mutated phage particles and continuing the 

spread of the phage.  

Further experiments confirmed that the lytic phage-plasmid re-infected cells 

lysogenized with wild-type (Figure 4.2A-B). To show this, we spiked cell-free 

supernatant containing the mutant phage-plasmid into a culture of the host carrying only 

the wild-type variant. After an overnight incubation we observed the appearance of 

clumps, identical to those that appear spontaneously after 30-50 generations (Methods). 

Genome sequencing of clones streaked out of this culture showed that they carried the 

full mutant phage-plasmid, whose genotype were identical to the one of present in the 
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cell-free supernatant used in the re-infection experiment, and that they were 

heterozygous at the repressor locus (Figure 4.2B). In contrast, when we repeated the 

same experiment but with the cell-free supernatant 0.02 μm filtered to remove the 

phage particles, the victim host population remained planktonic, indicating no re-

infection. 

Figure 4.2 Experimental confirmation of reinfection and segregational drift. (a) 
Schematic illustration of reinfection, for which we hypothesize that mutated phages are 
able to infect hosts lysogenized by wild-type phages. Wild-type and mutated phage-
plasmids were showed as green circles and blue color circles. See Methods for full 
experimental details. (b) Mutated phages with the same genotype were observed 
across (I) the initial source host population carrying the mutated phage, (II) the victim 
host population re-infected by the mutated phage and (III) the descendant of (II), 
supporting our hypothesis of reinfection. Experiments were performed in biological 
duplicates with two source host populations carrying different genotypes of mutated 
phages (blue and purple). (c) Schematic illustration of segregational drift, for which we 
hypothesize that a host infected by mutated phages is able to generate offspring with 
only wild-type phages. See Methods for full experimental details. (d) Each of the 4 
single-cell mother colonies (M1~M4) carrying a mixture of mutated phages and wild-
type phages was able to generate descendants only carrying the wild-type phages, 
supporting our hypothesis of segregational drift.  
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As a result of re-infection, we observed an increase in phage-plasmid copy number, 

opening the possibility for segregational drift to impact its evolutionary dynamics (Figure 

4.2C-D). Starting with a single colony carrying both the wild-type and mutant phage-

plasmids, we questioned whether it was able to generate homozygous descendants, 

carrying only wild-type phages (Methods). As expected, we found that a heterozygous 

mother host cell was able to produce offspring that are free of the mutant phage. 

Genome sequencing of four post-segregation descendant populations confirmed that 

they only contained the wild-type phage-plasmid and its average copy number was 

significantly increased (Figure S8, Kruskal-Wallis test P = 0.02) as a consequence of 

segregational drift (Figure 4.2C).  

A higher dosage of wild-type repressor gene copies should in principle provide a 

stronger buffer against phage-plasmid induction, at least in part because the probability 

of generating zero wild-type repressor after segregational drift would be lower. To test 

this, we restarted the serial dilution cycles with the post-segregation populations 

carrying a higher copy number of wild-type phages. Indeed, we found that it took at 

least 66 generations to observe phage-plasmid induction (Figure C.9), which was 

significantly longer than the 30~50 generations observed for wild-type populations with 

single-copy repressor gene.  

 With reinfection and segregational drift as the only two basic components, we found 

that a minimal probabilistic model was sufficient to reproduce the observed evolutionary 

dynamics of the phage-plasmid mutations (Figure 4.3 and Methods for full details of 

simulation). We started with a population of one million host cells each carrying a single 

copy of wild-type phage-plasmid and doubling 6 times per serial passage exactly the 
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same as in the experimental condition (Method). A loss-of-mutation happened in a 

random phage-plasmid, leading to the lysis of host cell and release of mutated phage-

plasmid particles. Some of the released phage-plasmids managed to reinfect another 

randomly-encountered host based on an efficiency of re-infection (R), which is 

reminiscent of the production efficiency (R0) in epidemiology (Methods). The re-infected 

hosts carrying heterozygous repressor loci underwent segregational drift, after which 

descendants carrying only mutated phage-plasmids were lysed and re-entered the 

infection cycle. With these ingredients, our simulation displayed a rapid spread of the 

mutated phage infection before quickly saturating, which is consistent with experimental 

observations (Figure 4.3).  

Figure 4.3 A minimal model for phage-plasmid hybrid reproduces the observed 
eco-evolutionary dynamics. (a) Schematic illustration of the model simulation. A dice 
is drawn under a host cell when it carries more than one copies of phage-plasmids with 
different genotypes (a heterozygote). In those cases, the phage-plasmid genotype in 
descendants becomes stochastic due to segregational drift (e.g., cells 8, 10, 11 and 12). 
(b) With reinfection and segregational drift as the only two components, the simulated 
eco-evolutionary dynamics well matches the observed patterns in the experiment. For 
the experimentally observed eco-evolutionary dynamics, see Figure 4.1A and Figure 
C.4. See Methods for full details of the model simulation.  
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different continents (Figure 4.4). To better understand the ecological distribution of 

phage-plasmids, we leveraged 1,849 genomes available in the RefSeq database from 

the order of Rhodobacterales, to which the Tritonibacter mobilis was affiliated. With 

these genomes, we searched for homologs of the phage-related genes or plasmid-

related genes in our Tritonibacter mobilis phage-plasmid (isolated in Massachusetts, 

USA). Strikingly, we found clusters of nearly identical (~ 100%) homologs of plasmid-

related genes, such as parAB segregation system and P4-family plasmid primase, in 

another phage-plasmid of another Tritonibacter mobilis strain isolated in marine 

aquaculture in Denmark98 (Figure 4.4). These gene clusters were also found in perfect 

synteny, which strongly indicated a recombination event. However, the phage structural 

genes (e.g., phage head and tail) of these two phages were very different, both in terms 

of homology and synteny. The structural genes of our Tritonibacter mobilis phage-

plasmid was both homologous and syntenic to those found in another phage integrated 

in the genome of a Roseobacter strain, which was isolated from 2,500 m deep water in 

the Arabian Sea141 (Figure 4.4). Taking together, our results showed that the evolution 

of the plasmid-related genes and the phage-related genes for phage-plasmids could be 

decoupled. Different phages could become the genetic cargo of the same plasmid, 

which was able to transmit across continents carrying their phage components. This 

was consistent with recent findings showing that the core plasmid backbone could be 

recombined with different cargo genes in marine or human gut microbiome142,143, with 

our findings suggesting that this could be exploited by phages to disseminate across 

large geographic distances. Additionally, we identified a second example of nearly 

identical plasmid-related genes but very different phage-related genes between two 
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other phage-plasmids144,145 (Figure C.11). These two phages were found in two strains 

of different though related bacterial species (average nucleotide identity ~92%), 

suggesting that plasmid backbones were also able to transmit across phylogenetic 

distances. All those phage-plasmids resemble Tritonibacter mobilis A3R06’s phage-

plasmid: a 40K-50K genome size with the presence of independent replication systems 

(such as ParABS and RepABC) but absence of genes known for effective reinfection 

blockage (such as SieA of E.coli phage P1140), suggesting those phages can be also 

subject to mutation-driven induction in natural environment.  

Figure 4.4 The same plasmid backbone carrying different phages genes 
disseminate vast geographic distance. Tritonibacter mobilis M41-2.2, isolated in 
Denmark, contains a phage-plasmid (triangle) whose plasmid-related genes are 
homologous and syntenic to those of Tritonibacter mobilis A3R06 phage-plasmid 
(square). However, their phage structural genes are very different from each other. 
Phage structural genes of Tritonibacter mobilis A3R06 phage-plasmid is both 
homologous and syntenic to that of a chromosome-integrated phage found in 
Roseobacter sp. SK209-2-6 (circle), which was isolated from deep water column in the 
Arabian Sea. Background map is from R package ggmap.  
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bloom in California148. Further studies are required to get more complete sequence 

information of phage-plasmids and to capture and characterize their eco-evolutionary 

dynamics in natural environments. 

 

4.3 Discussion  

In this study, we found that mutation and segregational drift controlled the dynamics of 

transmission of a cosmopolitan phage-plasmid. First, we showed that a spontaneously 

mutated phage-plasmid was able to re-infect a host lysogenized with a wild-type phage, 

which prevented the mutant phage-plasmid from turning lytic. The occurrence of phage 

re-infection indicates that superinfection exclusion is not always effective, which is 

consistent with experimental observations for some other phages149,150 and models 

suggesting a short-term evolutionary benefit of allowing super-infection151,152. Second, 

we showed that segregational drift diversified the phenotypic outcomes of daughter 

cells, with cells carrying only mutant phage-plasmids lysing and releasing virions. This 

highlights the impact that multi-copy elements like plasmids can have on the 

evolutionary dynamics of bacteria. Taken together, these observations reflect a mixture 

of both phage and plasmid properties: the phage facet enables rapid horizontal 

proliferation through virion production while the plasmid facet enables heterozygosity 

and segregational drift. Consequently, the phage-plasmids proliferated rapidly through 

iterative reinfection and lysis of a stochastically selected proportion of host 

descendants, leading to the co-existence of mutant phages and wild-type phage-

plasmids. This strategy also reflects how genes and alleles can use viruses to rapidly 

propagate through a population without driving it to a sudden collapse. 
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The mutation-driven switch from lysogeny to lysis we observed in this study is 

distinct from the traditional model of prophage induction, in which lysis is triggered by a 

regulatory response to stress, chemical signals, etc. One important consequence of this 

difference is that the rate of mutation-driven induction becomes proportional to the rate 

of mutation accumulation in a population. Therefore, a rapidly growing host population 

with large population sizes can develop continuous productive infections, as observed in 

this study. This feature can be relevant for “opportunitrophs” like members of the 

Roseobacter clade153. Members of this clade are known to frequently switch between 

two types of ecological life-styles, i.e., a survival mode in low-nutrient regions, and rapid 

growth mode on transient nutrient hotspots such as the phycosphere of marine algae154. 

Thus, we hypothesize that the mutational switch is a phage-plasmid adaptation to 

rapidly propagate through those fast-growing population, without driving them to a 

collapse. 

 We found that phage plasmids such as the one here described evolve by the rapid 

mixing and matching of plasmid backbones and prophages. This is evident in the fact 

that the phage region of the phage-plasmid was homologous to a phage found in the 

Arabian Sea, while its plasmid backbone was homologous to another phage-plasmid 

found in Denmark. Considering that the element that is the focus of this paper was 

isolated from the coast of Massachusetts, our findings suggest that phage plasmids 

might be evolutionary chimeras that combine elements with disparate evolutionary 

histories and disseminate across vast geographic distances. The wide distribution of 

these elements in natural environment and their ability to maintain continuous 

productive infections with rapid transmission of new genetic variants, suggest that these 
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elements may be major vectors of horizontal transfer. Further work is needed to better-

understand the ecological relevance of this hybrid elements and their potential of 

mutation-driven induction to trigger continuous productive infections in natural and 

synthetic systems. 

 

4.4 Methods 

Media 

The minimal marine media, MBL media, was used for serial dilution growth of 

Tritonibacter mobilis A3R06. It contained 10 mM NH4Cl, 10 mM Na2HPO4, 1 mM 

Na2SO4, 50 mM HEPES buffer (pH 8.2), NaCl (20 g/liter), MgCl2*6H2O (3 g/liter), 

CaCl2*2H2O (0.15 g/liter), and KCl (0.5 g/liter). Glucose was added as the only carbon 

source at a concentration of 27 mM. Trace metals and vitamins were added by 1:1000 

of the following stock solution. Trace metals stock solution included FeSO4*7H2O (2100 

mg/liter), H3BO3 (30 mg/liter), MnCl2*4H2O (100 mg/liter), CoCl2*6H2O (190 mg/liter), 

NiCl2*6H2O (24 mg/liter), CuCl2*2H2O (2 mg/liter), ZnSO4*7H2O (144 mg/liter), 

Na2MoO4*2H2O (36 mg/liter), NaVO3 (25 mg/liter), NaWO4*2H2O (25 mg/liter), and 

Na2SeO3*5H2O (6 mg/liter). Vitamins, which were dissolved in 10 mM MOPS (pH 7.2), 

contained riboflavin (100 mg/liter), D-biotin (30 mg/liter), thiamine hydrochloride (100 

mg/liter), L-ascorbic acid (100 mg/liter), Ca-D-pantothenate (100 mg/liter), folate (100 

mg/liter), nicotinate (100 mg/liter), 4-aminobenzoic acid (100 mg/liter), pyridoxine HCl 

(100 mg/liter), lipoic acid (100 mg/liter), NAD (100 mg/liter), thiamine pyrophosphate 

(100 mg/liter), and cyanocobalamin (10 mg/liter). Marine Broth 2216, a rich media 
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commonly used for growing marine bacterial strains, was purchased from the Fisher 

Scientific (BD 279110).  

Culture growth 

Tritonibacter mobilis A3R06 was isolated from an agarose particle in coastal seawater 

from the Nahant Beach, Massachusetts, USA71. Single colonies of Tritonibacter mobilis 

A3R06 on Marine Broth agar plates were picked for enrichment in 2 mL liquid Marine 

Broth 2216 media for 6 hours. After that, 50 μL of enriched culture was transferred into 

4 mL MBL minimal media for pre-culture growth. Cells in the pre-culture was grown to 

mid-exponential phase before being diluted into 4 mL fresh MBL minimal media to an 

OD600 of roughly 0.01 to initiate the serial dilution cycles. Each cycle lasted for 24 

hours, corresponding to roughly 6 generations per cycle considering the doubling time 

of Tritonibacter mobilis A3R06 being ~ 4 hours in MBL minimal media with glucose 

(Figure S3). At the end of each cycle, cells were still within the exponential phase of 

growth (Figure S3), except for those very late cycles where cell clump formed following 

the productive switch of the phage-plasmid. All liquid culture growth was performed in 

Innova 42R incubator shaking at 220 rpm at 25℃.  

DNA extraction, Illumina sequencing and reads processing 

Prior to DNA extraction, the cell culture samples were centrifuged at 8000 g for 60 

seconds to remove the liquid. The cells were then resuspended into fresh MBL media 

by thoroughly pipetting for at least fifteen times. For each sample, the resuspension-

centrifuge procedure was repeated for three times so as to wash away free virion 

particles outside of the cells. For Illumina sequencing, DNA was extracted with the 

Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter). DNA 
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concentration was quantified with Quant-iT PicoGreen dsDNA Assay kit (Invitrogen) on 

a Tecan plate reader. Short-read sequencing was performed on an Illumina NextSeq 

2000 platform (2x151bp pair-ended). Library preparations and sequencing were 

performed at the Microbial Genome Sequencing Center (Pittsburgh, PA). Sequencing 

reads were trimmed to remove adaptors and low-quality bases (-m pe -q 20) with 

Skewer v0.2.2110. The remaining paired reads were checked for quality with FastQC 

v0.11.9. 

Closing the genome of Tritonibacter mobilis A3R06 

Nanopore long-read sequencing was used to close the genome of Tritonibacter mobilis 

A3R06. DNA was extracted with a Qiagen DNeasy kit for higher DNA yield following the 

manufacturer’s protocol. Long-read sequencing was performed on the Oxford Nanopore 

platform with a PCR-free ligation library preparation at the Microbial Genome 

Sequencing Center (Pittsburgh, PA). Closed genome of Tritonibacter mobilis A3R06 

was assembled using Unicycler v0.4.9112 by combining Illumina short reads and 

Nanopore long reads, resulting in one chromosome plus four circular plasmids. The 

assembly graph in gfa format was visualized by Bandage v0.8.1113. Coding sequences 

were predicted using prodigal v2.6.3155 and functionally annotated with eggnog-mapper 

v2114 (--go_evidence non-electronic --target_orthologs all --seed_ortholog_evalue 0.001 

--seed_ortholog_score 60). The phage genome map was visualized by SnapGene v6.0 

(Insightful Science; available at snapgene.com).  

Read mapping and variant calling 

The complete genome of Tritonibacter mobilis A3R06 was used as the reference 

genome. Quality-filtered pair-ended Illumina sequencing reads were mapped the 
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reference genome using Minimap2 v2.17 with stringent settings (-ax sr)156. Genetic 

variants were identified from the aligned reads using BCFtools v1.13 with only variants 

with quality score ≥ 20 and a local read depth ≥ 20 were remained157.  

RNA isolation and sequencing 

RNA Protect Bacterial Reagent (Qiagen, Hilden, Germany) was added to the cell culture 

samples at a 2:1 volume ratio. RNA was isolated with a Qiagen RNeasy kit following the 

manufacturer’s protocol except for the following changes158: cells were resuspended in 

15 mg/mL lysozyme in TE buffer and incubated for 30 min at room temperature before 

adding buffer RLT. Mechanical disruption of samples using lysing matrix B (MPBio, 

Santa Ana, CA) were performed by shaking in a homogenizer (MPBio) for 10X 30 

seconds intervals. Dry ice was added in the homogenizer to prevent overheating. 

Illumina Stranded RNA library preparation with RiboZero Plus rRNA depletion and pair-

ended Illumina sequencing (2x51bp) were performed at the Microbial Genome 

Sequencing Center (Pittsburgh, PA).  

Transcriptomic analysis 

Paired-end RNA reads were trimmed using Skewer v0.2.2 to remove sequencing 

adapters and low-quality reads (-m pe -q 20)110. The remaining paired reads were 

checked for quality with FastQC v0.11.9 and mapped to Tritonibacter mobilis A3R06 

genome using Bowtie2 v2.2.6117. The generated SAM files were sorted by position 

using SAMTools v1.3.1157. Count table of transcripts were obtained by HTSeq 

v0.11.3118 and differential gene expression was evaluated with DeSeq2 R package119. 

Normalized transcript abundance was generated from count tables by transcripts per 

kilobase million (TPM) calculations.  
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Fluorescence staining and light microscope 

Live cells were stained by 5 μM SYTO9 which emits green fluorescence when it is 

bound to DNA. Dead cells were stained by 20 μM propidium iodide which emits red 

fluorescence when it is bound to DNA but was unable to permeate the cell membrane. 

Fluorescence was visualized using an ImageXpress high content microscope equipped 

with Metamorph Software (Molecular devices, San Jose, CA), operating in widefield 

mode. Images were acquired in widefield mode at 40x with a Ph2 ELWD objective (0.6 

NA, Nikon) and filter sets: Ex 482/35 nm, Em: 536/40 nm, dichroic 506 nm to detect 

SYTO9 and Ex 562/40 nm, Em 624/40 nm, dichroic 593 nm to detect propidium iodide. 

Images were collected with exposure times of 100 ms and processed with ImageJ 

v1.53159.  

Transmission electron microscopic imaging 

Transmission electron microscopic imaging was performed at Koch Institute's Robert A. 

Swanson (1969) Biotechnology Center Nanotechnology Materials Core (Cambridge, 

MA). Samples were negatively stained with 2% uranyl acetate and were imaged on an 

JEOL 2100 FEG microscope. The microscope was operated at 200 kV and with a 

magnification in the ranges of 10,000~60,000 for assessing particle size and 

distribution. All images were recorded on a Gatan 2kx2k UltraScan CCD camera. 

Comparative genomics of Rhodobacterales phages 

A total of 1,849 genomes in the Family of Rhodobacterales were downloaded from 

NCBI RefSeq database on Jan 1st 2022. Coding sequences were annotated by 

eggnog-mapper v2 (--go_evidence non-electronic --target_orthologs all --

seed_ortholog_evalue 0.001 --seed_ortholog_score 60)114. Phage sequences were 
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predicted with VIBRANT v.1.2.0160. MMseqs2161 was used to search for  homologs of 

Tritonibacter mobilis A3R06 phage genes, with high sensitivity parameters (-s 7.5 -c 

0.8). The search output of MMseqs2 were sorted for the most significant hits as well as 

the highest number of hits, leading to the finding of Tritonibacter mobilis M41-2.2 phage 

and Roseobacter sp. SK209-2-6 phage. Alignment map was visualized with clinker 

clinker v0.0.23162. Map is visualized using the default world map in R package ggmap 

v3.0.0163. 

Model simulation of eco-evolutionary dynamics 

In order to simulate the evolutionary dynamics of the phage-plasmid, we developed a 

minimal model combining the population genetics of a plasmid as well as infection 

dynamics of a phage.  

Our model in part resembles a classical Wright-Fisher model, which assumes non-

overlapping generations in a discrete Markov process. However, we considered 

dynamic population size in our model, which incorporates cell doubling within a serial 

dilution cycle as well as cell lysis due to phage production. To start with, we have a 

population of 𝑁0 host cells. When there is no phage-plasmid productive infection, all 

cells divide into two daughter cells thus the population size doubled every generation 

following 𝑁𝑡 = 𝑁02
𝑡, which reaches 26 × 𝑁 at the end of each serial dilution cycle. 

Then a bottleneck indicated by the dilution factor 𝑑 was applied to the population so 

that 1/𝑑 cells were randomly sampled from the current population to enter the next 

serial dilution cycle. In our simulation, we use 𝑁 = 106 at the beginning of each dilution 

cycle and dilution factor 𝑑 = 64 as we did in experiment. Each host cell carries one 
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copy of wild-type lysogenic phage-plasmid, replicating and segregating into two 

daughter cells as the host cell divides.  

Loss of function mutations in the phage repressor gene result in this lysogenic phage 

becoming constitutively lytic. The host cell carrying the mutated phage-plasmid is then 

killed, releasing virion particles with the mutated phage genome to randomly infect other 

host cells. Previous studies have reported burst size of marine prokaryotic phages 

ranging from 4 to more than 100164. In our model, what matters in population genetics is 

the average number of released mutated phage-plasmids that successfully re-infect a 

host cell per host cell lysed. This parameter, termed as re-infection efficiency 𝑅, is 

similar to the parameter 𝑅0 in epidemiology and should be lower than the empirical 

burst sizes165, especially considering that the other host cells have been already 

lysogenized with a wild-type phage-plasmid larger than 40KB. We found that the 

saturating frequency of the mutated genotype was affected by 𝑅, for which 𝑅 = 5 best 

fitted the experimentally observation (Figure C.10).  

The host cells re-infected by the mutated phage-plasmids become heterozygote with 

more than one copies of phage-plasmids. Segregation of multiple copies of phage-

plasmids with different genotypes can lead to genetic heterogeneity among daughter 

cells. In our minimal model, we assume a simplest scenario where phage-plasmids 

were randomly distributed into daughter cells with equal opportunity, while the copy 

number of plasmids per cell remained constant. For a cell host with 𝑎 copies of wild-

type phage-plasmids and 𝑏 copies of mutated phage-plasmids, the segregation can be 

described using a Binomial distribution 𝐵(2𝑎 + 2𝑏, 𝑎 + 𝑏). For instance, the probability 

of having 𝑎1 copies of wild-type phage-plasmids in the first daughter cell follows 
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𝑃(𝑎1) = 𝐶2𝑎
𝑎1𝐶2𝑏

𝑎+𝑏−𝑎1/𝐶2𝑎+2𝑏
𝑎+𝑏   (1) 

To simulate segregational drift at cell division, we performed Binomial sampling for all 

heterozygotic cell hosts containing more than one copies of phage-plasmids at each 

generation, generating daughter cells with stochastically different genotypes. Cells 

carrying at least one copy of wild-type phage-plasmid are prevented from lysis since the 

repressor gene is normally functioning. Host cells carrying only mutated phage-plasmids 

after segregational drift will be killed since the lytic genes on the phage-plasmids are no 

longer repressed. These lysed cells will be used to produce more virion particles to re-

infect more host cells in the next cycle.  

We implemented the simulation in R 4.1.0. The script simulates the life cycle of the 

phage-plasmid as detailed above, with the following parameters: initial population size 

(𝑁 = 106), re-infection efficiency (𝑅 = 5) and dilution factor (𝐷 = 64). 

Experimental confirmation of reinfection 

To verify re-infection, mutated phage-plasmids were used to infect the host population 

carrying the wild-type phage-plasmid. Mutated phage-plasmids were separated from the 

source host population cells by filtering through a 0.22 μm pore size membrane. The 

supernatant was then spiked into a victim host population carrying only wild-type phage-

plasmids growing in fresh MBL minimal media. The planktonic culture became highly 

clumpy after overnight growth, indicative of phage-plasmid induction. The infected 

population was then used to streak an agar plate for descendant single colonies. 

Colonies considered to harbor the mutated phage through re-infection, as indicated by 

the clump formation after re-growing in liquid media, were sequenced for phage-plasmid 
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genotyping. The experiment was performed in biological duplicates with two source host 

populations carrying different mutated genotypes (11366: A→AT and 11853: C→T).  

Experimental confirmation of segregational drift 

To verify segregational drift, host populations carrying both wild-type phages and 

mutated phages were tested for whether they were able to generate offspring with only 

wild-type phages. To ensure the host population really came from a heterozygote single 

cell rather than a clump of cells with mixed genotypes, we filtered the host population 

carrying mutated phages with 1 μm cell strainer (Pluriselect 437000103) to remove the 

multicellular clumpy aggregates. The filtered planktonic subpopulation was carefully 

examined under the microscope to ensure it contained planktonic cells clearly 

separated from each other. We then streaked this planktonic subpopulation on an agar 

plate for single colonies, of which 4 single colonies carrying both wild-type and mutated 

phages were picked as mother colonies. For each mother colony, liquid culture after 

overnight growth was then used to streak agar plates for daughter colonies, of which 12 

daughter colonies were picked per mother colony. All the 48 daughter colonies were 

screened in liquid culture for whether they were planktonic, which is indicative of 

carrying only wild-type phage-plasmids, or clumpy, which is indicative of induction of 

mutated phage-plasmids. Further, we performed whole-genome sequencing of four 

daughter colonies that are planktonic in liquid culture, confirming that 1) they were 

indeed free of any mutated phage-plasmids and only contained wild-type phage-

plasmids and 2) the copy number of phage-plasmid in their genomes are significantly 

increased.  

Phage susceptibility of other Rhodobacterales strains 
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The yoeB-yefM toxin-antitoxin system encoded by the phage-plasmid makes it difficult 

to cure the plasmid for the Tritonibacter mobilis A3R06 host. We therefore tried to test 

whether this phage-plasmid is able to infect any other bacterial host with a plaque 

assay, including Tritonibacter mobilis F1926 which is the model strain for the 

Tritonibacter genus98 and other 28 Rhodobacterales isolates in the Cordero lab strain 

collection. However, none of those isolates were subject to infection. Recent studies 

suggested that specificity of phage infection may be related to the structure of bacterial 

capsule150,166,167. This may be the case for our phage-plasmid since Tritonibacter 

mobilis A3R06 harbors another 78Kb plasmid encoding a capsule, which was not found 

in the genome of other strains we tested for susceptibility. 
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Chapter 5 Conclusion and Perspective 

How to map taxonomic composition to metabolic function is one of most fundamental 

questions in microbial ecology. In this thesis, I developed Ensemble Quotient 

Optimization (EQO) to infer functional groups based on ecological patterns and 

demonstrated the biological insights we gained by applying EQO. In chapter 2, I 

proposed a generalized mathematical framework for EQO and illustrated its power with 

a few existing microbiome datasets. In chapter 3, I isolated a novel marine bacterial 

species guided by the computational predictions of EQO, whose secreted 

polysaccharides seemed to be inhibitory of Vibrio pathogens. In chapter 4, I deciphered 

unique eco-evolutionary dynamics of a phage-plasmid driven by mutation-induced 

infections.  

However, EQO is just a baby step towards structure-function mapping in microbial 

communities. Both computational and experimental efforts are needed to tackle the 

challenges of depicting a complete structure-function landscape. On the experimental 

side, as argued earlier in chapter 1, experimental datasets with sufficient ecological 

replicates, perturbed environmental conditions and comprehensive functional 

measurements will be particularly needed. On the computational side, further efforts 

should be made to enable identification of multiple functional groups within the same 

community, or functional groups based on partial a priori knowledge. Furthermore, 

computational speed of EQO as a combinatorial optimization problem remains to be 

improved. For instance, semidefinite relaxation for integer programming might play a 

promising role in this direction, especially for microbiome datasets that are too large for 

EQO to solve efficiently. Finally, EQO infers functional groups based on a statistical 
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interpretation of functional redundancy. However, there can be cases where the 

metabolic function a species is highly dependent on specific interactions with other 

species, or even phages. In these cases, additional computational tools need to be 

developed to map species to function. 

 Experimental results of the novel Sedimentitalea species raise an interesting 

hypothesis that its interaction with Vibrio pathogens might be mediated by extracellular 

polysaccharides. To me, this is reminiscent of personal communications with Professor 

Jan-Hendrik Hehemann during the PriME annual conference in New York in 2022. 

Professor Hehemann has an interesting theory that polysaccharides are antimicrobial in 

nature, which impressed me a lot (personal conversation, 2022). However, in our story 

of chapter 3, ecological relevance and chemical structure of the putative secreted 

polysaccharides still remain to be better understood. Regarding its ecological relevance, 

we have a hypothesis that the translucent Vp colonies affected by the putative 

polysaccharides might be more susceptible to macrophage ingestion, probably because 

of changes in cell wall composition. To test this hypothesis, we are collaborating with 

Professor Salvador Almagro-Moreno to perform macrophage assay. Furthermore, 

changes in cell wall might also lead to differences in susceptibility to phage infections. 

To test this hypothesis, we are isolating lytic phages of Vp for plague assay-based 

studies. Finally, solving the structure of the putative polysaccharide requires separation 

and purification for a pure compound. To that end, we are also working closely with our 

colleagues in chemistry.  

 Mutation-induced infections of phage-plasmid provides novel insights into 

productive switch of prophages. Most previous studies have focused on physiological 
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state or ecological signals in productive switch, while here evolutionary forces such as 

mutations and drift play a critical role. However, what still remains elusive is how 

common such mutation-driven productive infections are in natural environment across 

different ecosystems. Addressing this question would require deeply sequenced 

environmental metagenome or virome, where one can be provided with sufficient 

coverage to examine genetic variation in phage repressor regions. With this type of 

analysis, one can investigate when mutation-driven productive infections tend to be 

favored (e.g., high density of hosts, rich nutrient, strong environmental fluctuations, 

etc.). A systematic investigation into this question will greatly advance our 

understandings of ecology and evolution of phage-host interactions.  
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Appendix 

Appendix A Supplementary material for chapter 2 

 

A.1 Formulation of Ensemble Quotient 

In this section, we will prove that microbiome coarse-graining guided by a uniform 

phenotypic variable, a continuous phenotypic variable or a categorical phenotypic 

variable (Figure S1) can be generalized into a unified and simple mathematical 

framework featuring Ensembled Quotient 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 ≔  
𝒙𝑇𝑸𝒙

𝒙𝑇𝑷𝒙
, 𝒙 ∈ (0,1)𝑛 

where 𝑛 is the dimension of the microbiome, e.g., the number of OTUs in a 

microbiome. The 𝒙 is a Boolean vector of length 𝑛, for which 1 or 0 represent 

presence or absence of a species in the ensemble. For instance, 𝒙 = [1,1,0,1,0] 

indicates that there are in total 5 species in the microbiome, in which the 1st, 2nd and 

4th species are coarse-grained into the ensemble. Clearly, Ensemble Quotient has a 

quadratic fractional form. 

 

A.1.1 Continuous phenotypic variable  

For a continuous phenotypic variable, we need to determine which individuals should be 

taken into the ensemble and which ones not, so that the ensemble is strongly correlated 

with the external phenotypic variable of interest. 

Let us start by considering a microbiome matrix 𝑴 with 𝑚 rows of samples and 𝑛 

columns of species, where the element in i-th row and j-th column 𝑀𝑖𝑗 is the relative 

abundance of species j in sample i. Then the product of 𝑴 and 𝒙  
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𝒔 = 𝑴𝒙 

gives us a new vector 𝒔 of length 𝑚 whose k-th element is the relative abundance of 

the assemblage in the k-th sample. As for the external phenotypic variable (e.g., 

concentration of a metabolite), let us denote it as a vector 𝒚 of length 𝑚, so that the l-

th element of 𝒚 becomes the concentration readout in sample #l. We then need to 

examine the correlation between the assemblage vector 𝒔 and the external variable 𝒚. 

Note that vectors 𝒔, 𝒚, and all the column vectors in matrix 𝑴 representing each 

species can be scaled by subtracting their means without affecting correlations. Let us 

denote the scaled microbiome matrix, assemblage vector and phenotypic vector as 𝑴𝟎, 

𝒔𝟎 and 𝒚𝟎, respectively, since the scaling can greatly simplify the algebra below. 

However, note that for a uniform phenotypic variable to be discussed in section 1.3, 

vector scaling will not be allowed as a zero in the denominator will ruin the analytics.  

Still, we have  

𝒔𝟎 = 𝑴𝟎𝒙 (𝐸𝑞. 𝑆1) 

For linear regression with continuous variables, the goodness of prediction is often 

quantified as coefficient of determination, which is statistically defined as the ratio of 

explained sum of squares (ESS) over the total sum of squares (TSS) 

𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
=

(𝒚𝟎̂ − 𝒚𝟎̅̅ ̅)𝑇(𝒚𝟎̂ − 𝒚𝟎̅̅ ̅)

(𝒚𝟎 − 𝒚𝟎̅̅ ̅)𝑇(𝒚𝟎 − 𝒚𝟎̅̅ ̅)
 

For scaled 𝒚𝟎 we have the mean 𝒚𝟎̅̅ ̅ = 𝟎. Combining the projection formulation in linear 

algebra 

𝒚𝟎̂ =
𝒔𝟎

𝑇𝒚𝟎

𝒔𝟎
𝑇𝒔𝟎

𝒔𝟎 

we have 
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𝑅2 =
𝒔𝟎

𝑇𝒚𝟎𝒚𝟎
𝑇𝒔𝟎

𝒔𝟎
𝑇𝒔𝟎 ⋅ 𝒚𝟎

𝑇𝒚𝟎
 

in which 𝒚𝟎
𝑇𝒚𝟎 can be neglected in the optimization since it is just comprised of known 

constants.  

Plugging in (Eq. S1), the problem of maximizing 𝑅2 can be reformulated as the 

following integer programming with an objective function in the form of quadratic 

quotient 

𝑚𝑎𝑥 
𝒙𝑇𝑸𝒙

𝒙𝑇𝑷𝒙
 

𝑠. 𝑡. 𝒙 ∈ (0,1)𝑛 

where  

𝑸 = 𝑴𝟎
𝑇𝒚𝟎𝒚𝟎

𝑇𝑴𝟎 

𝑷 = 𝑴𝟎
𝑇𝑴𝟎 

Note that the coefficient of determination (𝑅2) for linear regression is numerically 

equivalent to Pearson’s correlation coefficient in its square form (𝑟2), although they are 

based on slightly different statistical contexts. In theory, it is possible that maximizing 

𝑅2 might lead to an assemblage with very strong negative correlation with the 

phenotype. This is in fact not an issue for microbiome datasets due to its 

compositionality, since the remaining set of species will automatically have strong 

positive correlation with the phenotype (same correlation strength but just with the 

opposite sign). In a few cases where the sign of the optimized assemblage indeed 

matters, we can adopt a modified formulation to maximize Pearson’s correlation 

coefficient, but not in its square form 
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𝑟2 =
𝐶𝑜𝑣(𝒔𝟎, 𝒚𝟎)

𝜎(𝒔𝟎)𝜎(𝒚𝟎)
=

𝒔𝟎
𝑇𝒚𝟎

√𝒔𝟎
𝑇𝒔𝟎 ⋅ 𝒚𝟎

𝑇𝒚𝟎

 

which can be also rewritten with 𝒙 as the unknown variable as 

𝑚𝑎𝑥
𝒙𝑇𝑴𝟎

𝑇𝒚𝟎

√𝒙𝑇𝑴𝟎
𝑇𝑴𝟎𝒙

 

 

A.1.2 Categorical phenotypic variable  

The case with categorical phenotypic variable (healthy vs. disease, or several different 

sub-types of diseases) is conceptually the same as the case with continuous phenotypic 

variable. For a categorical phenotypic variable, an equivalent statistical metric to the 

coefficient of determination can be also constructed by the sum of square 

between/among treatments against the total of sum of square  

𝑅2 =
𝑆𝑆𝑏𝑒𝑤𝑡𝑒𝑒𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
=

(𝒔𝟎
𝑇𝒀𝑳)2

𝒔𝟎
𝑇𝒔𝟎

 

where 𝒀 is an augmented categorical matrix with 𝑚 rows and 𝑐 columns. The row 

number 𝑚 is the same as the number of total samples and the column number 𝑐 is the 

same as the number of categories. For instance, if there are altogether 5 samples in the 

microbiome dataset where samples 1, 2, 4 are from healthy hosts and samples 3,5 from 

hosts with a disease, then the matrix 𝒀 will be 

𝒀 =

[
 
 
 
 
1 0
1 0
0 1
1 0
0 1]

 
 
 
 

 

𝑳 is a diagonal matrix whose diagonal elements are given by the inverse square root of 

the number of samples in each category. 
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Combining (Eq. S1) again, we get 

𝑅2 =
𝒙𝑇𝑴𝟎

𝑇𝒀𝑳𝑳𝑻𝒀𝑇𝑴𝟎𝒙

𝒙𝑇𝑴𝟎
𝑇𝑴𝟎𝒙

 

Clearly, we again reach the same quadratic quotient form of  

𝑚𝑖𝑛 
𝒙𝑇𝑸𝒙

𝒙𝑇𝑷𝒙
 

𝑠. 𝑡. 𝒙 ∈ (0,1)𝑛 

where  

𝑸 = 𝑴𝟎
𝑇𝒀𝑳𝑳𝑻𝒀𝑇𝑴𝟎 

𝑷 = 𝑴𝟎
𝑇𝑴𝟎 

 

A.1.3 Uniform phenotypic variable 

With a uniform phenotypic variable, we are not allowed to directly construct a 

correlation/regression-type of R2 although in spirit it can be also regarded as special 

correlation/regression problem with a constant number across all samples. Doing so 

implies that the variance of the phenotypic variable is zero, which becomes illegal as a 

denominator.  

Here, we examine the coefficient of variation of the ensemble, which is commonly 

adopted to quantify the level of variation across samples. In statistics, the coefficient of 

variation is defined as standard deviation divided by mean, 

𝐶𝑉 =
𝜎

𝜇
 (𝐸𝑞. 𝑆2) 

As aforementioned, here we are no longer able to simply the expression of variance by 

scaling the vectors as 𝜇(𝒔) = 0 is not acceptable as a denominator. To derive the full 
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expression of the variance of 𝒔, we need an auxiliary unit vector 𝟏 with length 𝑚 

whose elements are all ones. Then we have  

𝑛𝑉𝑎𝑟(𝒔) = (𝒔 − 𝜇𝟏)𝑇(𝒔 − 𝜇𝟏) (𝐸𝑞. 𝑆3) 

Where 𝜇, a scalar, denotes the mean of the ensemble 𝒔, which can be at the same 

time expressed as 

𝑛 ∙ 𝜇 = 𝟏𝑇𝒔 = 𝒔𝑇𝟏 (𝐸𝑞. 𝑆4) 

Combining (Eq. S1~S4), we can derive that  

𝐶𝑉2~
𝒙𝑇 (𝑴𝑇𝑴 −

2
𝑛

𝑴𝑇𝟏𝟏𝑇𝑴 +
1
𝑛2 𝑴𝑇𝟏𝟏𝑇𝟏𝟏𝑇𝑴)𝒙

𝒙𝑇(𝑴𝑇𝟏𝟏𝑇𝑴)𝒙
 

Again, we arrive at the form of the microbiome ensemble quotient. Similarly, we are able 

to reformulate coarse-graining problem into the following integer programming format 

 

𝑚𝑎𝑥 
𝒙𝑇𝑸𝒙

𝒙𝑇𝑷𝒙
 

𝑠. 𝑡. 𝒙 ∈ (0,1)𝑛 

where  

𝑸 = 𝑴𝑇𝟏𝟏𝑇𝑴 

𝑷 = 𝑴𝑇𝑴 −
2

𝑛
𝑴𝑇𝟏𝟏𝑇𝑴 +

1

𝑛2
𝑴𝑇𝟏𝟏𝑇𝟏𝟏𝑇𝑴 

 

Conceptually, the efforts to minimize the coefficient of variation is analogous to 

maximize the “correlation” with a uniform vector (e.g., 𝒚 = [1,1,1,1,1]) although it is 

illegal in practice since such uniform vectors have zero variance. Nevertheless, this 
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analogy can be helpful for understanding the generalization of stabilizing grouping and 

associating grouping into the same formulation.  

In addition, two simple linear constrains are required to avoid generating an empty 

group or a group with all taxa that are numerically stable but ecologically trivial 

 

(𝑴𝑇𝟏𝑚)𝑇𝒙 ≥ 𝑚𝑒 

(𝑴𝑇𝟏𝑚)𝑇𝒙 ≤ 𝑚(1 − 𝑒) 

 

In those constraints, 𝟏𝑚 is a unit vector with length 𝑚 whose elements are all ones. 

These constraints imply that the average abundance of the aggregated group across all 

the samples should be no smaller than a threshold given by 𝑒 (for instance 5%) and no 

larger than a threshold given by 1 − 𝑒 (for instance 95%).  

 

A.2 Optimization of Ensemble Quotient 

A.2.1 Reformulation into a mixed integer linear programming (MILP) problem 

The binary nature of coarse-graining provides the ensemble quotient with inherent 

mathematical simplicity. It has been shown in integer programming studies that 

quadratic fractional optimization, when the variables are integers, can be reduced to an 

equivalent mixed integer linear programming problem (Gaur and Arora, 2008). The 

method includes Charnes-Cooper transformation incorporated with Glover’s 

linearization, which has been widely used in solving fractional programming problems 

(Yue et al., 2013). Briefly, the reformulation-linearization algorithm works by introducing 
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new variables with linear constrainwts. In this sense, the above quadratic fractional 

programming problem can be reformulated into 

 

𝑚𝑖𝑛  𝟏𝑻𝜶 − 𝑚𝑝𝒌 

 

𝑠. 𝑡.  𝜶 + 𝜷 − 𝑷𝒌 − 𝑚𝑝𝑢𝟏 = 𝟎 (𝐶1) 

𝛂 − 2𝑚𝑝𝑢𝟏 + 2𝑚𝑝𝒌 ≤ 𝟎 (𝐶2) 

𝜷 − 2𝑚𝑝𝒌 ≤ 𝟎 (𝐶3) 

𝜸 + 𝜹 − 𝑸𝒌 − 𝑚𝑞𝑢𝟏 = 𝟎 (𝐶4) 

𝜸 − 2𝑚𝑞𝑢𝟏 + 2𝑚𝑞𝒌 ≤ 𝟎 (𝐶5) 

𝜹 − 2𝑚𝑞𝒌 ≤ 𝟎 (𝐶6) 

𝟏𝑇𝜹 − 𝑚𝑞𝒌 = 𝟏 (𝐶7) 

𝒌 − 𝑢𝟏 − 𝑅𝒙 ≥ −𝑅𝟏 (𝐶8) 

𝒌 − 𝑢𝟏 ≤ 𝟎 (𝐶9) 

𝒌 − 𝑅𝒙 ≤ 𝟎 (𝐶10) 

𝑢 − 𝑅 ≤ 0 (𝐶11) 

 

Where 𝜶, 𝜷, 𝜸, 𝜹, 𝒌 ≥ 𝟎 are vectors of length 𝑛, 𝒙 ∈ (0,1)𝑛 is the binary variable to be 

solved through optimization, 𝑅 is a sufficiently large number, 𝑚𝑝 and 𝑚𝑞 are defined 

as an upper bound of row sums of 𝑷 and 𝑸, respectively. 

 

𝑚𝑝 = max
𝑖

(∑|𝑃𝑖𝑗|

𝑗

)   
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𝑚𝑞 = max
𝑖

(∑|𝑄𝑖𝑗|

𝑗

)   

In this way, the binary quadratic fraction programming problem with 𝑛 unknown 

variables is reformulated into an MILP with 6𝑛 + 1 unknown variables embedded with 

9𝑛 + 2 linear constraints. The reformulated MILP is directly accessible by commercially 

available integer optimizers such as Gurobi and Cplex. However, MILP itself is still NP-

hard in nature, making this only applicable to small-scale problems.  

 

A.2.2 Genetic algorithm and Aggregation Network 

An alternative approach to optimize the Ensemble Quotient to leverage heuristic 

algorithms. In particular, the binary nature of the unknown variable 𝑥 in the formulation 

makes Genetic Algorithm an ideal candidate. Briefly, the presence or absence of a 

species in the assemblage is to be regarded as dominance or recessive of a loci in a 

genetic algorithm. Then a Markov-chain based stochastic search is implemented to 

simulate the mutation, recombination and selection of the “genotype” based on its 

fitness given by the object function for optimization. In our case, the fitness function is 

the Ensemble Quotient. In this way, the optimal assemblage given by the genetic 

algorithm is analogous to a genotype “evolved” towards the peak in the fitness 

landscape.  

A potential shortcoming of genetic algorithm lies in the fact that it only converges in 

probability as heuristics. However, for microbiome studies we are more interested in 

gaining biological insights from the most robust statistical patterns than recovering the 

very exact optimal solutions in complex high-dimensional datasets. In light of that, we 

have developed a cross-validation-based algorithm to capture and characterize the 
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most important cohesive guilds. Briefly, the relative importance of single species and 

species pairs are evaluated as cumulative cross-validation R2 for assemblages where 

that single species or the species pair is present, which can be visualized as the node 

size and edge width in an Aggregation Network (Methods). One can then infer the most 

important species that should be grouped together by examining strongly connected big 

nodes in an Aggregation network, as in the Tara Oceans case (Figure 3B).   

 

A.2.3 Boolean least square regression for a continuous phenotypic variable 

Specifically, when the phenotypic variable is continuous, the Ensemble Quotient can be 

reformulated into the most ordinary least square format. In addition to the slope 𝑘 and 

intercept 𝑏, we also need Boolean variables to indicate the presence or absence of 

each species in the assemblage.  

 

𝒚 ~ 𝑘(∑𝑥𝑗𝒎𝒋

𝒋

) + 𝑏 

 

Where 𝒎𝒋 is column 𝑗 in microbiome matrix 𝑴 indicating the relative abundance of 

species 𝑗 in each sample. Again, 𝑥𝑗, the binary variable, denotes whether species 𝑗 

should be included in the assemblage. Then the least square error is  

 

𝒆𝟐 = ‖𝑨𝒛 − 𝒚‖𝟐 = 𝒛𝑇𝑨𝑇𝑨𝒛 − 𝟐𝒚𝑇𝑨𝒛 + 𝒚𝑇𝒚 
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Where 𝑨𝑚×(𝑛+1) is the augmented microbiome matrix [𝟏𝑚 ⋮ 𝑴𝑚×𝑛] since we need an 

additional column of 1 to map the linear intercept. 𝒛 is the augmented vector for 

unknown variable [𝑏 ⋮ 𝑘𝒙]. 

Also noting that 𝒚𝑇𝒚 can be neglected as a known term, we have  

 

𝑚𝑖𝑛 𝒛𝑇𝑸𝒛 + 𝑳𝒛 

where 𝑸 = 𝑨𝑇𝑨, 𝑳 = −𝟐𝒚𝑻𝑨. 

In this way, we are going to solve a mixed integer quadratic programming problem, 

which is also solvable by commercial optimizer such as Gurobi (later than v8.0). 

 

A.3 Interpretation of Ensemble Quotient 

Here we discuss the simplest case with a continuous phenotypic variable. It can be 

easily generalized since categorical/uniform phenotypic variables can be regarded as 

special forms of continuous phenotype cases as detailed in section 1. Recall the 

expression of 𝑅2 for a continuous phenotypic variable as  

𝑅2~𝐸𝑄 =
(𝒚𝟎

𝑇𝒔𝟎)
2

𝒔𝟎
𝑇𝒔𝟎

 

Which can be rewritten as  

𝐸𝑄 =
[𝒚𝑇(𝑺 ∙ 𝟏)]2

𝟏𝑇𝑺𝑇𝑺𝟏
 

Where 𝑺 is the assemblage matrix (the subset of the whole microbiome matrix 𝑴 but 

only with species included in the assemblage). Again, neglecting the constant term 𝒚𝑇𝒚, 

the expression above can be transformed into a form that is more statistically 

interpretable, 



 121 

 

𝐸𝑄 =
(𝑐𝑜𝑣(𝒙𝒊,𝒚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2

𝑐𝑜𝑣(𝒙𝒊,𝒙𝒋)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

Where 𝑐𝑜𝑣(𝒙𝒊,𝒚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  means the average covariance between each species and the 

phenotypic variable, 𝑐𝑜𝑣(𝒙𝒊,𝒙𝒋)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ means the average covariance between each species 

and each species. In the simplest scenario where all vectors have unit standard 

deviation, it can be further simplified as  

𝐸𝑄 =
(𝑟(𝒙𝒊,𝒚)̅̅ ̅̅ ̅̅ ̅)2

𝑟(𝒙𝒊,𝒙𝒋)
̅̅ ̅̅ ̅̅ ̅̅

 

Which basically reflects the ratio of average species-phenotype correlation and average 

species-species correlation. On one hand, if species within an assemblage have 

opposite signs of correlation with a phenotype, then their average would be nearly zero, 

resulting in small value of the nominator (i.e., poor consistency). On the other hand, if 

species within an assemblage tend to be strongly correlated with each other, then their 

average would lead to a large value of the denominator (i.e., poor complementarity). An 

optimal assemblage should be formed by species with strong and consistent 

correlations with the phenotype but weak or even negative correlations with each other.  
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A.4 Supplementary figures 

Figure A.1 Schematic illustration of three scenarios for EQO. Bar plots show relative 

abundance of different taxa. Appropriate grouping of taxa leads to strong coupling with 

the phenotypic variable. For a continuous phenotypic variable such as measured 

concentration of a metabolite across samples, the coupling can be captured by a strong 

correlation. For a uniform phenotypic variable, the coupling can be marked as high 

stability or low variability. For a categorical phenotypic variable, the coupling can be 

interpreted as significant discrimination between treatments. 
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Figure A.2 Details of EQO results on Tara Oceans microbiome. (A) The best group size 

for EQO was determined to be 11 based on an AIC minimization criterion. (B) Relative 

abundance distribution of the 11 taxa selected by the algorithm across all sampling sites 

(left y-axis). Nitrate concentration measured at each sampling site was shown as black 

dots (right y-axis). 
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Figure A.3 Metabolite selection in the animal gut microbiome based on statistical 

tests. Metabolites with cross-validated R2 lower than 0.2 as well as adjusted P-value 

higher than 0.01 were filtered out from further analysis (Methods). 
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Figure A.4 Predicting lactate or butyrate producers in animal gut microbiome. Species 

that are confirmed to be lactate producers or butyrate producers in previous 

experimental studies are highlighted in red. The two Streptococcus luteciae species in 

the left panel are well-known lactate producers in the Lactobacillales clade. 

Faecalibacterium prausnitzii and Blautia producta as well as Lachnospiraceae species 

have been reported to be butyrate producers. 
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Appendix B Supplementary material for Chapter 3 

B.1 Supplementary figures 

 

 

Figure B.1 Pearson’s correlation coefficient between all ASVs and survival rate of 

shrimp larvae. Each dot represents an ASV colored according family-level taxonomy. 

Size of dots represents the average relative abundance across all tanks.  
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Figure B.2 Relative abundance of Vp in the other three temporally-tracked tanks. 
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Figure B.3 Distribution of Pearson’s correlation coefficient of Vp and all the other ASVs 
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Figure B.4 Morphological changes of Vp colonies affected or unaffected by the cell-free 

supernatant of Sedimentitalea sp. Colonies affected by the Sedimentitalea sp. are 

smooth with clear boundaries, while colonies unaffected have a lot of cells dispersed 

beyond the colony boundary.  
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Appendix C Supplementary material for Chapter 4 

C.1 Supplementary table 

 

Table C.1 Details of all 21 mutations identified in 15 independent lines of 

populations. These include 9 lines (populations a-i) of temporally-tracked populations 

with genomic sequencing, 3 lines with transcriptomic sequencing (populations j-l) and 3 

lines of populations that we only sequenced colonies at the end timepoint (populations 

m-o). Notably, some mutations happened in parallel in two independent lines, which are 

marked in red.  

 

 

position population source reference alteration

1 11211 j transcriptomics GTTTTTT GTTTTTTT

2 11345 m genomics T G

3 11345 e genomics T G

4 11363 g genomics AG AGG

5 11364 h genomics GT GTT

6 11366 n genomics A AT

7 11366 c genomics A T

8 11732 b genomics TGGTGAGGT TGGTGAGGTGAGGT

9 11736 i genomics GA G

10 11750 b genomics CAA CAAA

11 11750 d genomics CAA CAAAA

12 11771 d genomics CG CGG

13 11806 l transcriptomics TC T

14 11833 k transcriptomics G GC

15 11840 a genomics ATTT ATT

16 11853 i genomics C T

17 11887 a genomics CG C

18 11897 o genomics GAAAAA GAAAA

19 11897 b genomics GAAAAA GAAAA

20 11942 a genomics CTT CT

21 11942 f genomics CTT CT
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C.2 Supplementary figures 

Figure C.1 Assembly graph of Tritonibacter mobilis A3R06 complete genome. The 

whole genome has 4.65 million base pairs (Mbp), with a chromosome of 3.2 Mbp plus 

four (mega)plasmids of 1.2 Mbp, 0.1 Mbp, 78 thousand base pairs (Kbp) and 42 (Kbp).  
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Figure C.2 Genome map of Tritonibacter mobilis A3R06 phage-plasmid. The 

phage-plasmid has 51 predicted genes, including phage structural genes (e.g., a phage 

head, tail, capsid and portal proteins, purple), lysozyme (orange), cell wall hydrolases 

(orange) as well as a C1-type phage repressor (red). The rest of the genes are involved 

in plasmid stability, replication and segregation, such as the yoeB-yefM toxin-antitoxin 

system (pink), the parAB plasmid segregation system (blue), P4-family plasmid primase 

(yellow) as well as various methylases (green) for epigenetic modifications.  
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Figure C.3 Manually measured growth curve of Tritonibacter mobilis A3R06. 

Culture growth followed an experimental physiology protocol including appropriate pre-

culturing and temperature-controlled shaking conditions, as detailed in Methods. Guided 

by the measured doubling time of ~ 4h, we set the period of each serial dilution to be 24 

hours and dilution factor to be 1/64. This translated to ~6 generations per cycle and the 

cells are always in the exponential phase throughout the cycles. Source data are 

provided in the Source Data file. 
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Figure C.4 Eco-evolutionary dynamics of the other 8 independent lines of 

populations that were temporally-tracked with genomic sequencing. Each line of 

population (populations a-i) started from a different single colony. Bacterial culture was 

collected at the end of each dilution cycle, for which we did genome sequencing to 

determine the genotype frequencies of mutations (A) as well as the relative copy 

number of the phage-plasmid compared to the host chromosome (C). OD600 was also 

measured at the end of each dilution cycle (B). Source data are provided in the Source 

Data file. 
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Figure C.5 Images of Tritonibacter mobilis A3R06 culture. (a) Liquid culture was 

planktonic without phage-plasmid induction. (b) Culture became clumpy with cell 

aggregates when the mutated phage-plasmid was induced. (c) Fluorescent microscopic 

image of the cell aggregates. Green light by SYTO9 visualize live cells by binding to 

intracellular DNA while red light by propidium iodide visualize dead cells by binding to 

extracellular DNA. The same experiments were repeated for 4 times, all yielding similar 

results. 
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Figure C.6 Expression levels of phage-plasmid genes before and after the 

mutation was observed. Genes related to plasmid replication and stability were 

constituently expressed even when the phage is lysogenic. Genes that are related to 

phage production became highly up-regulated after productive switch.  Data are 

presented as mean ± SEM based on N=3 biologically independent replicates. Source 

data is provided in the Supplementary Data 1. 
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Figure C.7 Schematic illustration of segregational drift. Here we showed a simplest 

scenario where two copies of phage-plasmids were randomly distributed into daughter 

cells with equal opportunity, while the copy number of phage-plasmids per cell remained 

constant. Following a Binomial distribution, we have 1/3 probability of generating two 

homozygotic descendants and 2/3 probability of generating two heterozygotic 

descendants.  
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Figure C.8 Copy number of phage-plasmid per host cell. Post segregational drift 

descendant populations carrying only wild-type phage-plasmid harbored a significantly 

elevated copy number of the phage-plasmid compared to the original host population 

before mutation-driven phage-plasmid induction. Notably, the average copy number in 

post segregational drift descendant populations was not an integer but between one 

and two, suggesting that some individuals may lose some copies of phage-plasmids 

during cell division. Source data are provided in the Source Data file. 
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Figure C.9 Post segregational drift descendant populations carrying only wild-

type phage-plasmid but with a higher copy number became more resistant to 

mutation-driven phage-plasmid induction. Compared to the timing of 30~50 

generations for populations carrying single copy of phage-plasmid, these post 

segregational drift populations were resistant to phage induction for 66 generations or 

longer under the same experimental serial dilution regime. Each color represents an 

independent line of post-segregational drift population under serial dilution scheme. 

Source data are provided in the Source Data file. 
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Figure C.10 The relationship between reinfection efficiency and saturating 

genotypic frequency in model simulation. In our model, reinfection efficiency (R) 

indicates the average number of released mutated phages that successfully re-infect a 

host cell per host cell lysed. The resulting saturating frequency of the mutated genotype 

increases when reinfection efficiency increases, but the increase decelerates indicating 

the mutated genotype never reaches fixation. We found that 𝑅 = 5 best fitted the 

experimentally observation of the saturating genotypic frequency of roughly 0.5. Source 

data are provided in the Source Data file. 
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Figure C.11 A phage-plasmid in Phaeobacter gallaeciensis DSM26640 and 

Phaeobacter piscinae P18 also shares a highly homologous plasmid backbone 

but with very different phage structural genes. These two strains are isolated in 

geographically close locations but are phylogenetically distinct (different species, 

average nucleotide identity = 92%). Source data are provided in the Source Data file. 
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Figure C.12 Geographic distribution of phage repressors that are highly significant hits 

(P < 10-15) of Tritonibacter mobilis A3R06 phage-plasmid C1-type repressor gene, 

identified from currently available environmental metagenomic datasets. Background 

world map is from R package ggmap. 
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