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Abstract

One of the key challenges of Engineering Education is developing students’ ability to
navigate and solve problems that have multiple solution paths. In order to accomplish
this, the process of solving these moderately- and ill-structured problems needs to be
better understood. We used two approaches to achieve this.

First, we performed problem solving experiments with students (two preliminary
studies and a main study). One preliminary study found that expert problem solvers
tended to start solving problems with simpler methods compared to novices. The
other preliminary study found that students using reasoning and intuition had better
outcomes than students who “dived in” to detailed analysis. The main experiment was
conducted to illustrate the possibilities of student problem solving activity in a more
open-ended way. Here, the subject population consisted of 72 undergraduate and
graduate students recruited from the author’s institution. The participants were given
a problem with a well-defined goal but no well-defined method. After attempting to
solve the problem, the participant was given a short questionnaire. The results were
coded to extract the method used and the approximate time used for each method.
Student performance was compared against school year, the choice of method, and
the number of methods used. No significant differences in performance were found
between students in different years. However, it was found that students who either
1) used simpler methods (methods with lower solve time) or 2) used more than one
method tended to perform better than average, though the results are not statistically
significant. Additionally, survey results were analyzed to understand the reasons for
students’ method choices.

Second, we built a mathematical model to describe the behavior of a problem
solver with multiple methods at their disposal. Each solution method was modeled
with a fixed solve time, and the problem solver may switch between methods. We
start with a basic model with two solution methods, and additional complexities
are successively added. Next, we present two versions of the model: using Markov
and Poisson processes to describe the method transition behavior. Two optimization
problems are presented: one whose objective is to maximize the solve probability
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given a time limit, and one whose objective is to minimize the average solve time to
achieve problem solving success. We give analytic solutions for the solve probability
and average solve time for the case with two methods. We also present conditions
for which switching methods is beneficial. It was found that whenever there existed
sufficiently short methods for solving a problem, using multiple methods (i.e. switch-
ing methods) can improve the problem solving outcome. The model and experiment
are then matched, and the results are used to develop a framework of strategies for
teaching students to solve problems with multiple solution methods.

Thesis supervisor: Anette E. Hosoi
Title: Pappalardo Professor of Mechanical Engineering
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6-1 Examples of improving tools. (a) Introducing more low complexity

methods will improve probability of solve. The analytic model was

computed for three scenarios for a problem with four possible solution

methods and a time limit of 10 timesteps. In the first scenario (light

gray), the problem solver could solve the problem using one low com-

plexity method; the other solution methods cannot be used to solve

within the time limit. In the second scenario (dark gray), the problem

solver could solve using two low complexity methods. In the third sce-

nario (black), the problem solver could solve with three low complexity

methods. Note that as the number of usable low complexity methods

increases, 𝑃𝑠𝑜𝑙𝑣𝑒 significantly increases for every value of switching ten-

dency 𝛼 ∈ [0, 1). The optimal 𝛼 is similar for the three scenarios. (b)

Reducing solve times can improve the solve probability, given that the

student chooses the optimal switching tendency. The analytic model

was computed for three scenarios for a problem with three solution

methods and a time limit of 10 timesteps. Two of these three solu-

tion methods can be completed under the time limit. The scenarios

show the effect of reducing solve time on the two methods that can

be completed within the time limit. In the first scenario (light gray),

the solve times of these two “effective” methods were close to the time

limit. In the second scenario (dark gray), the solve times of the ef-

fective methods were approximately half the time limit. In the third

scenario (black), the solve time of one effective method was only one

fifth the time limit, while the solve time of the other was half the time

limit. As the solve times of the effective methods were reduced, 𝑃𝑠𝑜𝑙𝑣𝑒 is

increased for every switching strategy 𝛼 ∈ (0, 1). However, the benefit

for switching was significant for only the third scenario. . . . . . . . . 116
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6-2 Examples of improving strategies. (a) Switching methods with optimal

tendency can improve 𝑃𝑠𝑜𝑙𝑣𝑒. The analytic model was computed for a

problem with four solution methods and a time limit 𝑡𝑓 = 10. Two of

these four solution methods can be completed within 𝑡𝑓 . Compared to

the no switch solve probability 𝑃𝛼=0, the maximum solve probability

𝑃𝑚𝑎𝑥 at the optimal switching tendency 𝛼𝑜𝑝𝑡 is significantly higher.

(b) Choosing a better starting method will improve 𝑃𝑠𝑜𝑙𝑣𝑒, especially

when the switching tendency 𝛼 is low. The model was computed for

three scenarios with 𝑡𝑓 = 10 and three solution methods (solve times

2, 5, and 12 timesteps). In the first scenario (light gray), the starting

probabilities were weighted towards the longest method. In the second

scenario (dark gray), the starting probabilities were weighted equally.

In the third scenario (black), the starting probabilities were weighted

towards the shortest method. Note that as the weight is shifted towards

the shorter methods, 𝑃𝑠𝑜𝑙𝑣𝑒 is improved for every 𝛼 ∈ [0, 1). However,

the effects are greatest for small 𝛼. Also, the optimal 𝛼 decreases as

starting method is improved. (c) Judiciously switching methods can

improve 𝑃𝑠𝑜𝑙𝑣𝑒. Improvement occurs when the student chooses to switch

from more complex to less complex methods. The model was computed

for three scenarios for a problem with four solution methods and 𝑡𝑓 =

10. Two of these four solution methods can be completed within 𝑡𝑓 .

In the first scenario (light gray), random transitions were used. In

the second scenario (dark gray), the problem solver avoided the most

complex method when switching. In the third scenario (black), the

problem solver only switched from a more complex to a simpler method.

As the transition strategy is improved, 𝑃𝑠𝑜𝑙𝑣𝑒 is increased for every

𝛼 ∈ (0, 1). Additionally, the better the transition strategy, the more

benefit there is from switching, so the optimal 𝛼 is increased. . . . . . 119
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6-3 Order of deployment for recommendations to improve problem solving

outcomes. Note that tools and strategies are interleaved. The tool of

low solve time methods is essential and prerequisite to other strategies

and tools; it directly unlocks the strategy of switching and the strategy

of starting on a low complexity method. Subsequently, the strategy

of switching unlocks the optimization of switching strategy and the

optimization of solve time for already known methods. . . . . . . . . 120

B-1 Graph of the solve probability 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼). Note that at 𝛼 = 0, 𝑃𝑠𝑜𝑙𝑣𝑒 is

1
2
. This corresponds to the no-switch case, where the problem solver

stays on the first method chosen. As 𝛼 is increased, 𝑃𝑠𝑜𝑙𝑣𝑒 reaches a

maximum of 9
16

at 𝛼 = 1
4
. Further increasing 𝛼 will lead to a decrease

in 𝑃𝑠𝑜𝑙𝑣𝑒 until the solve probability reaches zero at 𝛼 = 1. . . . . . . . 127

G-1 Decision tree for the Markov Dual Problem with two solution methods.

The problem solver will start on either method with probability 𝑃 = 1
2
.

If the problem solver solves the problem with method 𝑖, they will do

so with probability 𝑃 = (1 − 𝛼)𝑡𝑖−1. If the problem solver does not

solve the problem with method 𝑖, they will do so with probability

𝑃 = 1 − (1 − 𝛼)𝑡𝑖−1, and switch to the other method. The problem

solver will continue to switch methods until they solve the problem. . 148
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Chapter 1

Introduction

One of the key challenges of engineering education is to develop students’ ability to

solve complex, open-ended problems [5, 16]. According to the literature, one way

to improve problem solving skills is to teach students multiple representations or

multiple solution methods [9, 26]. However, once students acquire the ability to use

multiple solution methods, how should they use it? Given a problem, how should

they decide which method to use first? If they get stuck on their first method, should

they persevere or switch to a different method? Should instructional time be spent

solely on teaching students tools, or would it be beneficial to teach them problem

solving strategies as well?

The purpose of this section is to introduce the previous work necessary to un-

derstanding problem solving with multiple solution methods. The subject matter is

not limited to mechanical engineering and can include other engineering, science, or

mathematics fields as well.

1.1 Previous Work: Problem Solving

Previous work has deconstructed problem solving in several ways. These are explained

below and summarized in Figure 1-1. These four deconstructions categorize different
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aspects of problem solving and serve as a foundation for understanding the focus of

this work: multiple solution methods.

Figure 1-1: Research space summary, depicting the areas that are relevant to this
work. The category Stage of Problem Solving is adapted from Wankat and Oreovicz
[25]. The category Type of Representation is adapted from a previous paper by Li and
Hosoi [13]. The category Openness of Problems was posed by Bahar and Maker [4].
The category Accuracy of Solution is derived from work by Linder [15] and Shakerin
[20].

1.1.1 Stages of Problem Solving

Previous work has defined the different stages of problem solving, namely the steps

that a problem solver must carry out in order to successfully arrive at a solution.

Various formulations of the stages of problem solving were collected by Woods [26].

Among these are Polya’s four stages of problem solving: Define, Plan, Carry out the

Plan, and Look back [17]. Another formulation, adapted from Wankat and Oreovicz

[25], is shown in Figure 1-1. Schoenfeld developed timing diagrams to display stu-

dents’ problem solving stages over time [19], and Kohl applied these diagrams in the

context of experiments in physics problem solving [11]. Previous efforts by Li and
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Hosoi sought to understand the impact of the early decisions students make in prob-

lem solving [12, 13]. In these papers, there was a need to clearly define the start of

problem solving. Within the context of the stages of problem solving (as formulated

by Polya, Wankat and Oreovicz, Schoenfeld, and Kohl), Li and Hosoi divided student

work into “How would you start solving this problem?,” which corresponds roughly

to the “Define” and “Plan” stages in Polya’s breakdown, and “Solve as much of the

problem as you can,” which corresponds roughly to the “Carry out the Plan,” and

“Look back” stages. The stage of problem solving can affect what solution method

a student may take. The focus of this work is on “Solve as much of the problem as

you can,” the portion of problem solving in which the student has already decided

which method they will attempt. Note that during the defining and exploring stages,

it is possible that a student has not yet decided on a solution method. However,

during the planning and execution stages, students are likely to know which method

they will use. Furthermore, it is possible that a solution method may fail, and the

student will need to start over, thereby transitioning from executing the solution to

additional exploration and planning. When the student has arrived at an answer,

they may decide to double check using a different solution method, thereby briefly

repeating the stages of problem solving. These complexities are inherent in the use

of multiple solution methods.

1.1.1.1 Start of Problem Solving

A student’s ability to start solving a problem is important for several reasons. Train-

ing students in problem solving skills helps students gain confidence in their abilities

[3, 18]. Ancel found that taking a problem solving course improved the self-efficacy

beliefs of nursing students [3]; Psycharis and Kallia found that taking a programming

course improved the mathematical self-efficacy of high school students [18]. Further-

more, how a student starts a problem may have significant effect on their ability to
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fully carry out the solution. A student may solve the wrong problem, spend all their

time pursuing the wrong approach, or forget their goal if they do not properly define

the problem and formulate a plan [17].

Additionally, the ability to start problems is beneficial to the trust between teach-

ers and students. According to a professor in the author’s department, if students

cannot start problems, they often believe that they are unfairly treated in a class

[8]. A large difference in the expectation of difficulty between students and teachers

may call into question a teacher’s competence and integrity, necessary components

of teacher-student trust according to a review performed by Trahan [23]. Thus, the

instructor may need to facilitate this process by getting students “unstuck.” One way

to do this is to suggest initial approaches such as exploring problem specifications or

trying a simple case.

1.1.2 Types of Representations

There is also prior work that defines types of representations, i.e. the various for-

mats that problem solving activity can take. These “formats” are broad categories

defined by the qualitative nature of the problem solver’s solution steps. For example,

Kohl’s work on physics problem solving used four types of representations: Forces,

Picture, Math, and Written. In this work, Kohl found differences between experts

and novices in the frequency of transitions between representations; novices tend to

use more representations and switch between them more often, while experts tend to

use fewer representations and solve the problem in a more straightforward way [11].

Another example of representation types, shown in Figure 1-1, was used by Li and

Hosoi in a previous paper. This set of representations included Graph/drawing, In-

tuition/reasoning, Algorithm, Equation/calculation, and Identification of additional

information [13]. In a separate work, Van Huevelen and Zou used multiple representa-

tions to teach problem solving in work-energy processes. Their analysis showed that
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a significant majority of students found multiple representations useful, especially

when solving unfamiliar problems [24]. In this work, we are interested in students’

use of multiple solution methods, which can be interpreted as analogous to multiple

representations. It is possible to map solution methods to different representations,

though the mapping may not be straightforward. One solution method might corre-

spond one-to-one with one type of representation, or one solution method may include

multiple representations, or multiple solution methods may correspond to one type of

representation. The nature of a solution method can determine which representations

are involved. For example, a simple solution method, such as estimation, may only

need a few lines of calculations. However, a more complex solution method, such as

integration, may involve a figure, several sentences to explain the reasoning, multiple

lines of equations, and potentially some computer code as well. The need to manage

several representations can increase the time requirements of more complex solution

methods, making them difficult to execute within a time limit. When there are con-

straints to problem solving, it is important for the problem solver to be aware of the

tradeoffs inherent in using solution methods with more representational requirements.

1.1.3 Open and Closed Problems

The literature has also categorized the degree of openness of problems. These range

from completely closed (“well-structured”), where both the problem and the solution

method are prescribed, to completely open-ended (“ill-structured”), where not even

the problem is known to the instructor [4, 7, 10]. In engineering education, examples

of closed problems include textbook exercises, and examples of open-ended problems

include Problem-Based Learning (PBL) [16] and Model-Eliciting Activities (MEA)

[5]. The continuum of open and closed problems is shown in Figure 1-1. Of special

interest to this work are problems with intermediate openness, where there are multi-

ple possible solution methods to achieve a well-defined goal. These types of problems
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are valuable because the experience learned by solving them can be transferred to new

situations [7]. Furthermore, the existence of a well-defined objective makes the anal-

ysis of problem solving activity potentially tractable, yet the possibility of multiple

methods gives ample opportunities to find optimal pathways.

1.1.4 Role of Estimation in Problem Solving

Previous literature has also analyzed the role of estimation in engineering education.

When solving open-ended problems, the problem solver is often faced with a range of

approaches: from simple estimation to detailed analysis leading to an exact solution.

There is a need to choose a method that is appropriate given the desired precision and

time constraints. Previous work has assessed students’ performance on one end of the

range: simple estimation. Linder found that students often had difficulty making basic

estimates [15]. Shakerin noted that engineering classes overwhelmingly emphasized

detailed analysis over estimation and suggested several activities to help students

improve estimation skills [20]. Smith observed that students were unwilling to make

rough estimates before and after performing Finite Element Analysis, often trusting

the computer simulations without reservation [21]. Furthermore, these deficiencies

in estimation ability were observed from undergraduate seniors [15, 21]. Given the

lack of emphasis on estimation in the curriculum and the current state of students’

estimation ability, we pose the question: Would a student choose estimation, detailed

analysis, or a method of intermediate complexity if given the freedom to choose among

methods of different complexity? Understanding this may inform recommendations

for using multiple solution methods.
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1.2 Previous Work: Related Areas

1.2.1 Early Stage Design

In analogous work in design education, Yang analyzed the role of sketching [27] and

prototyping in design outcomes [28]. Sketches and prototypes are two types of rep-

resentations engineers might use when solving design problems, where the expected

result can be a physical product or object instead of a mathematical solution. These

two activities also represent the early stages of solving design problems. Because

design inherently allows for multiple solution methods, these activities can portray

a wide range of approaches. Sketching is used for concept generation [27] and can

be linked to the exploration and planning stages of problem solving. Prototyping

requires a higher level of effort and involvement and can be used for transitioning to

product production [28]; it can be linked to not only the exploration and planning

stages but also the implementation stage of problem solving.

It is possible to map the results of design education research to those of problem

solving research. For example, Yang found that simpler prototypes were associated

with better design outcome [28]. Additionally, since design problems are relatively

open, or ill-structured, compared to classroom problems, a better solution can be

found by exploring a larger design space. Estimation or simple analysis allows the

designer to explore a larger design space, potentially improving design outcome [6].

This work addresses whether simple solution methods, such as estimation, lead to

better outcomes on moderately-structured problems (which may not necessarily be

design problems).

1.2.2 Connections to Theoretical and Conceptual Frameworks

Existing theoretical and conceptual frameworks can provide a basis for understand-

ing how students solve moderately- or ill-structured problems with multiple solution
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paths. The framework of self-regulated learning can be applied to problem solving.

In self-regulated learning, the problem solver (or learner) first plans, sets goals, and

lays out strategies. Then, they implement these strategies. Finally, the problem

solver reflects on their performance [1, 29]. For ill-structured problems where the

solution path is not immediately obvious, the systematic approach of self-regulated

learning can help students navigate the possible difficulties and dead ends. If a so-

lution method does not work out, the problem solver can reflect on this and try a

different approach. This process is depicted in Figure 1-2.

Figure 1-2: The cycle of self-regulated learning. If this cycle is applied to problem
solving, the problem solver would proceed through three stages: they plan their
solution, implement their plan, and reflect on their performance. The feedback from
one attempt can inform their next attempt (possibly using a different method). Image
from [1].

The Model of Domain Learning is another conceptual framework that can be

applied to problem solving. The goal is to understand how novices build expertise

and become experts [2, 22]. In this framework, the learner progress through three

stages. In the first stage, Acclimation, the learner has little knowledge of a field, and

this knowledge is unstructured. For example, a novice problem solver may use the
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first approach that comes to mind when solving a problem, never changing approach

if their attempt fails. In the second stage, Competence, the learner has begun to

understand the key principles of the field and can accomplish basic tasks easily. For

example, an intermediate problem solver may attempt to solve a problem using a

standard approach, get stuck, and then switch to a simpler approach to obtain an

answer. In the third stage, Proficiency, the learner has accumulated large stores

of organized knowledge and can efficiently accomplish a wide variety of tasks. For

example, an expert problem solver may use a back-of-the-envelope calculation to first

estimate the solution to a complex problem before investing time in a more precise

method.
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Chapter 2

Preliminary Studies

The purpose of this section is to document two studies that explore different ways to

analyze the start of a problem. Both studies feature problems that can be solved in

multiple ways. The first study (Section 2.1) investigates how problem solvers start

problems. This study seeks to answer the following research question:

RQ1: How do problem solvers of different expertise levels start solving problems?

The second study (Section 2.2) investigates the types of representations students

use to solve problems. This study seeks to answer the following research question:

RQ2: Are there initial approaches to starting a problem that are more likely to get

the problem solved?

The contents of both studies are based on previous publications by Li and Hosoi

[12, 13].
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2.1 Differences between Experts and Novices in Start-

ing a Problem

2.1.1 Participant Description and Experimental Method

The subject population consisted of undergraduates, graduate students, and profes-

sors in the Mechanical Engineering department of the author’s institution. Under-

graduates were chosen from the approximately 55 enrollees of Numerical Computation

for Mechanical Engineers, a second-year course in Mechanical Engineering. Gradu-

ate students were the attendees of a seminar hosted by the Graduate Association of

Mechanical Engineers, and professors were chosen by appointment. All participants

consented to the study.

The participants in this study were given three problems and asked “what is the

first thing you would try to start this problem?” Participants were not required

to solve the entire problem. Problems 1 and 2 had a five-minute time limit, and

problem 3 had a ten-minute time limit. Undergraduates were given the problems

during the recitation period attached to the Numerical Computation class. Graduate

students were given the problems during a seminar. Faculty were given the problems

by appointment.

Problem 1 provided participants with a table and a graph of data collected from

a prosthetic testing context. Participants were then asked to estimate the value of

a variable in between data points. Techniques suggested by the participants include

reading the graph (least complex), interpolation, and curve fitting (most complex).

Responses that did not fit in any of these three categories were classified as “other.”

Problem 2 provided participants with equations of a circle and an ellipse and

their graphs. Participants were then asked to find the area lying inside both curves.

Techniques suggested by the participants included visual estimation (least complex),

Monte Carlo, and integration (most complex). Responses that did not fit in any of
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these three categories were classified as “other.”

Problem 3 provided participants with a simple, rigid-body model of a robot leg.

The relationship for hip torque and leg angle was also given. Participants were asked

to consider a situation in which the leg can deform. They were then asked to find the

hip torque at a given angle for this deformable model. Techniques suggested by the

participants included drawing a free body diagram (FBD). Responses were separated

by whether an FBD was drawn. If a FBD was not drawn, responses were binned by

whether progress was made.

2.1.2 Problems

2.1.2.1 Problem 1

A PhD student and her advisor published the graph below (Figure 2-1) of the phys-

iological gait cycle describing position and orientation of an ankle. Let’s say that

the table below (Figure 2-2) represents the data on the Physiological gait (not the

Model). Estimate the 𝑦-position of the ankle at 34% of the gait cycle.

Figure 2-1: Problem 1 graph
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Figure 2-2: Problem 1 data table

What is the first thing you can try to start the problem? “I don’t know” is a valid

response.

2.1.2.2 Problem 2

We are interested in the area 𝐴 that lies inside both the circle of radius 2, centered

at (1, 0.5) and the ellipse with equation 𝑥2

25
+ 𝑦2

4
= 1. The curves are shown in Figure

2-3.

Figure 2-3: Problem 2 circle and ellipse

List all the different things you might try to find this area 𝐴. What is the first
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thing you would try? “I don’t know” is a valid answer.

2.1.2.3 Problem 3

A leg for a walking robot is being tested (Figure 2-4a). As a rough first estimate,

you model the leg as a mass 𝑚 attached to one end of a rigid stick with length 𝐿

(Figure 2-4b). The assembly is standing up at an angle 𝛽 to the ground because a

“hip” torque 𝜏 is applied on the end with the mass. The stick does not slide on the

ground, but its contact point with the ground can rotate.

Figure 2-4: Problem 3 robot and model

Modeling the leg as a rigid stick, you find the following relationship between the

applied torque 𝜏 and the equilibrium angle 𝛽 (Figure 2-5).

Figure 2-5: Problem 3 rigid model relationship

This is not a bad estimate for rigid legs, but it may be inaccurate if the legs are
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deformable (as in Figure 2-4a). If, instead of a rigid leg, the leg is a compression

spring with spring constant 𝑘, what is the first thing you would do to estimate

the torque required to hold the leg at 𝛽 = 60∘ and why? Please consider two

cases: (1) 𝑚𝑔
𝑘𝐿

≪ 1 and (2) 𝑚𝑔
𝑘𝐿

≈ 1.

2.1.3 Analysis

The characteristics of how the participants started the problems were studied. Char-

acteristics include (1) techniques used: drawing a free body diagram, finding equations

of motion, reading a graph, and suggesting mathematical or computational methods

and (2) progress made or result obtained: answer obtained, correct equation of motion

stated, or effective technique suggested.

For problems 1 and 2, the technique suggested by the participant was analyzed. If

multiple techniques were suggested, the first one written down was used for analysis.

If a student wrote “I would try this first...", then this technique was used for analysis.

For problem 3, whether the participant used a FBD was analyzed. If the partici-

pant suggested drawing a FBD or drew a FBD, the response was counted. Partially

drawn FBDs were also counted. This type of binning was chosen because drawing a

FBD is a canonical part of solving statics problems. Participants who did not draw

FBDs were further binned into those who made progress and those who did not make

progress. Progress was defined as giving a correct torque balance or using the graph

for the case 𝑚𝑔
𝑘𝐿

≪ 1.

2.1.4 Results

The results for problems 1, 2, and 3 are tabulated below.

38



Table 2.1: Problem 1 results

Participants Graph Interp. Curve Fit Other Total
Undergraduates 6 20 18 7 51

Graduate students 8 5 2 1 16
Faculty 4 3 0 3 10

Figure 2-6: Problem 1 responses by technique

Table 2.2: Problem 2 results

Participants Visual MC Integral Other Total
Undergraduates 5 13 16 5 39

Graduate students 0 0 3 1 4
Faculty 2 1 3 4 10

Table 2.3: Problem 3 results

No FBD, No FBD,
Participants FBD Progress No Progress Total

Undergraduates 18 3 8 39
Graduate students 12 0 0 12

Faculty 5 4 1 10
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Figure 2-7: Problem 2 responses by technique

Figure 2-8: Problem 3 responses by by whether Free Body Diagram (FBD) technique
was drawn
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2.1.5 Discussion

A typical problem solving heuristic is to first try a simple technique to get a rough

approximation, followed by a more complicated method if more accuracy is needed.

During the PhD oral qualifying exams at the author’s institution, it has been

said that students who ignore simple approaches and begin problems with a complex

method make the graders uneasy, because it is not clear these students understand

the problem [8].

The problem 1 results suggest that graduate students and faculty prefer a “faster”

or “simpler” technique as the first step to solving the problem. That is, graduate

students and faculty tended to suggest reading the graph instead of interpolating or

doing a curve fit. More than 40% of faculty and graduate students chose to read

the graph for problem 1, compared to only 12% of undergraduates. All three faculty

whose responses fit into the “other” category corroborated the data and the graph

as a first step. This cross-checking approach was not used by undergraduates and

graduate students.

The problem 2 results show that about 35% of undergraduate students mentioned

Monte Carlo (MC), none of the graduate students mentioned MC, and one of the of

ten professors mentioned MC. Professors tended to avoid the most complex route as

the first step. Of the professors who used an “other” method, one suggested a simple

geometric approach and another suggested to cut and weigh the desired shape; both

of these are relatively “simple” techniques. Seven of ten professors avoided integration,

which is the most complex way to solve this problem. It should be noted that MC is a

technique that is emphasized in the Numerical Computation for Mechanical Engineers

class. All of the students have had some exposure to MC, and two of the ten professors

surveyed were present or past instructors of this class. However, none of the graduate

students have had recent experience with MC.

The problem 3 results show that compared to undergraduates, graduate students
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were more likely to draw a free body diagram. Five of ten faculty drew free body

diagrams. Of the five faculty who did not draw a free body diagram, four were still

able to make progress by giving correct approaches. Of the eleven undergraduates

who did not draw free body diagrams, only three were able to make progress.

It was found that while a novice may know how to apply a relatively complex

technique (e.g. doing a curve fit in problem 1), they may not be adept at choosing

among multiple approaches of varying complexity. Engineers of greater experience

were able to find the “simple” approaches; this ability may reflect their higher level

of sophistication in applying engineering reasoning.

2.2 Relationship between Starting Approach and So-

lution Outcome

2.2.1 Participant Description and Experimental Method

The participants were 69 students recruited from an undergraduate Mechanics and

Materials course. The participants were given 15 minutes to solve a problem. They

made two submissions: one with the prompt “How would you start solving this prob-

lem?” at 5 minutes and another with the prompt “Solve as much of the problem as

you can” at 15 minutes. This problem (see Section 2.2.2) was somewhat open-ended

and had multiple solution paths. Participants were prompted to explore the problem

space, and were discouraged from erasing any ideas or approaches they wrote down.

Participants were not required to finish the problem, though it is possible to obtain

an answer within 15 minutes. Students did not provide their names on submissions.

The type of technique the participant used was analyzed relative to their progress in

solving the problem.
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2.2.2 Problem Given to Participants

Figure 2-9: Cantilevered beam to support traffic lights

You work at an engineering design company, and your supervisor has given you

the following project:

A horizontal cantilevered beam is used to support traffic lights as shown in Figure

2-9. For the horizontal part of the beam, several designs are possible:

1. Circular cross-section with radius 5cm at the fixed end (where it’s attached to

the vertical pole) tapering to a circular cross section with radius 10cm at the

free end

2. Circular cross-section with radius 10cm at the fixed end tapering to a circular

cross section with radius 5cm at the free end

3. Circular cross section with radius 7.5cm throughout the beam

4. A different design

You will need to find the best design and justify it with reasoning.
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2.2.3 Results and Analysis

Based on previous work, it is expected that students will use one of several approaches

to solve each problem. These approaches will depend on the problem given [12]. For

the problem given in Section 2.2.2, a correlation will be performed between partici-

pants’ 5 minute and 15 minute responses. The 5 minute “starting approach” response

was analyzed by the presence or absence of one of five characteristics. These five

characteristics are: free body diagram or drawing, calculations or analysis, intuition

or estimation, identification of additional background, and consideration of alterna-

tive designs. The coding of student responses is described in more detail in Table

2.4. These five characteristics, while specifically selected for this problem, are gen-

eral enough to be applicable to other engineering problems as well. The 15 minute

“solution” response was binned by two items: the presence of an answer and whether

the answer was the preferred choice. For the problem given in Section 2.2.2, a choice

of design 2 or 4, accompanied by the appropriate justification, was considered the

preferred choice.

For each of the five problem-starting characteristics described above, the students

were divided into two categories: those whose response contained the characteristic

and those who did not. It was possible for a student’s 5 minute response to contain

more than one characteristic. For each of the two solution outcomes described above,

the students were divided in two categories of participants: those who were successful

and those who were not. For each pair of starting characteristic and solution out-

come, the chi-squared test was used to determine whether the relationship was due

to random chance. The 𝑝-values are given in Table 2.5. A 𝑝-value of less than .05

was considered statistically significant.
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Table 2.4: Characteristics of students’ 5 minute submission

Characteristic present in Example keywords
in 5 minute submission
Free body diagram (FBD) Draw, diagram, moment and shear diagram

or drawing
Analysis or calculation Solve, calculate, find, optimize, minimize,

Solidworks, moment and force balance
Intuition or estimation Approximation, estimation,

elimination of choices with reasoning
Identification of add’l info Cost, building standards,

material properties, wind loads
Alternate design Alternate design, advantages of alternate design

Table 2.5: 𝑝-values of characteristics vs. problem solving outcome

Characteristic 𝑝-value vs. 𝑝-value vs. correlation direction
present in 5 minute answer is answer

submission choice 2 or 4 present
FBD or Drawing .848 .866 Neutral

Analysis or calculation .035 .056 Negative
Intuition or estimation .078 .142 Positive

Identification of add’l info .600 .260 Slightly positive
Alternate design .720 .141 Slightly positive
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2.2.4 Discussion

The presence of analysis or calculation in the 5 minute response had a negative

relationship with outcome in the 15 minute response. We found statically significant

𝑝 = .035 for the outcome indicator of obtaining the preferred answer, and 𝑝 = .056 for

the outcome indicator of obtaining an answer at all. Participants preferring analysis

or calculation tended to “dive in” to solving the problem analytically, often running

out of time.

On the other hand, the presence of intuition or estimation in the 5 minute response

had a positive relationship with outcome in the 15 minute response. We found 𝑝 =

.078 for the outcome indicator of obtaining the preferred answer, and 𝑝 = .142 for

the outcome indicator of obtaining an answer at all. This result is not statistically

significant, but it does suggest that students using intuition obtained a result more

often than students who did not. Participants using intuition tended to “cut through”

the difficulty of detailed analysis and obtain an answer within the time limit. The

other three categories had relatively weak relationships with outcome. This data

suggests that for relatively open-ended problems, it may be advantageous for students

to use their intuition or do an estimation first, and then follow up with detailed

analysis.
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Chapter 3

Main Experiment

This experiment investigates the methods used by problem solvers and the associ-

ated problem solving outcome. Specifically, we seek to answer the following research

question:

RQ: How would a student select from a range of low complexity to high complexity

methods, and how would this choice affect their problem solving outcome?

Portions of this Chapter are based on a previous work by Li and Hosoi [14].

3.1 Recruitment of Participants

The subject population consisted of 72 undergraduates and graduate students of the

author’s institution. The objective of recruitment was to maximize the number of

participants, so participants were not limited to students in the Mechanical Engi-

neering department; the diversity in students’ disciplines may potentially result in a

larger variety of solution methods.

Multiple recruitment methods were used. Subjects were recruited from the en-

rollees of Numerical Computation for Mechanical Engineers (a second-year course

in Mechanical Engineering), through announcements made to student organizations,

and from flyers posted in the author’s institution. Additionally, participants were al-
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lowed to refer fellow students via snowball sampling, and some subjects were recruited

informally from existing networks.

3.2 Procedure

The participants in this study were given the Volume Problem (see Figure 3-1), which

consisted of two sections. The first section asked students “How would you start solv-

ing this problem?" and was five minutes long. The second section asked students

to “Solve as much of the problem as you can" and was ten minutes long. The par-

ticipants submitted their answers on paper answer sheets. Every two minutes the

participant switched pen color so that work can be identified within time intervals.

A sample of student work is shown in Figure 3-2. The participant was able to access

a computer connected to the internet. There were no restrictions on what tools they

could use, but they could not consult other people. After completing the two sections

of the Volume Problem, the participant completed a short questionnaire about their

problem solving process (see Appendix A).

The problem solving task was to “estimate the volume of the component.” This

task was chosen such that participants are likely to consider both low complexity and

high complexity methods. While it is possible to obtain an analytic (exact) solution,

most students are unlikely to do so within the time constraints.

3.3 Experimental Results

Participants’ responses were analyzed for three categories of items: stage of problem

solving, type of representation, and solution method. The first two categories, stage

of problem solving and type of representation, are based on previous literature (see

Figure 1-1). The third category, solution method, is central to this work. Solution

methods were extracted from interpreting students’ answer sheets and corroborating
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Figure 3-1: Volume Problem used in the main experiment. Figure reproduced from
previous work by Li and Hosoi [14].
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Figure 3-2: Example of student work. The participant’s pen color was switched every
two minutes so that work can be identified within time intervals. Figure reproduced
from previous work by Li and Hosoi [14].

with questionnaire (Appendix A) responses. Specifically, the results to the follow-

ing questions were used: “Which method did you pick and why?,” “Did you switch

methods?,” and “If so, why did you switch?”

The Volume Problem instructed participants to estimate a quantity. Any answer

within 10% of exact was considered correct. 26 of 72 (36%) participants solved the

problem correctly. We first analyze failure mode, and then compare the problem

solving outcome against the student’s year, the method used, and number of methods

used.

3.3.1 Failure Mode

The nature of successful and unsuccessful solutions was analyzed (see Table 3.1). We

found that 26 of 29 (90%) of student who obtained an answer got the correct answer.

Also, 43 of 46 (93%) of students who did not obtain the correct answer obtained
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no answer at all. The majority of incorrect solutions was due to the problem solver

not finishing, not because they made a mistake. In other words, students who did

not solve the problem correctly tended to work until the time limit expired, while

students who solved the problem correctly sometimes finished their work before the

time limit was reached.

Obtained answer Did not obtain answer Total
Correct 26 - 26
Incorrect 3 43 46

Total 29 43 72

Table 3.1: Failure mode analysis of participants. A large majority of students who
finished the problem obtained a correct solution; a large majority of students who did
not obtain the correct solution did not finish solving the problem.

3.3.2 Student Year

The participants’ results were analyzed by school year. Students of different years

performed somewhat similarly (See Table 3.2). The second year students did not

perform as well as average, but the result was within the margin of error. Overall, a

strong trend was not observed.

Number Fraction correct (with
School year correct Total number 95% confidence intervals)

First year 9 19 0.47 [0.17, 0.68]
Second year 2 11 0.18 [0.05, 0.48]
Third year 6 15 0.40 [0.20, 0.64]
Fourth year 4 11 0.36 [0.15, 0.64]

Graduate student 5 16 0.31 [0.14, 0.56]
Overall 26 72 0.36 [0.26, 0.48]

Table 3.2: Volume Problem results by school year. Clear differences between students
in different years were not observed. Table reproduced from previous work by Li and
Hosoi [14].
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3.3.3 Type of Method

Participants’ solution methods were placed into six categories formulated from a

broad, high-level view of students’ solution attempts. The categories are: Visual

Estimation, Geometric Approximation, CAD (e.g. Solidworks or Onshape), Monte

Carlo, Integral, and Other. With the exception of “Other,” which includes approaches

that do not fit in the first five categories, these are in approximate order of imple-

mentation complexity from simplest to most complex (see Table 3.3). They are also

in approximate order of accuracy from least precise to most precise. It is possible for

a student to use more than one method. In this case, the incomplete method (i.e.

the one the student switched away from) is not analyzed, while the method that the

student “completed” (i.e.. the one the student finished, or ran out of time doing so) is

analyzed. Fraction correct is defined as the number of students who correctly solved

with a given method, divided by the total number of students who “completed” the

given method (as defined in this context).

On average, Visual Estimation was associated with the lowest solve time. Geo-

metric Approximation, CAD, and Monte Carlo were associated with moderate solve

time, while Integral was associated with the longest solve time. The fraction of stu-

dents who correctly solved the problem also depended on which method was used.

Integration was associated with the lowest fraction correct. Geometric Approxima-

tion and Monte Carlo were associated with a moderate fraction correct, while Visual

Estimation and CAD were associated with the highest fraction correct. In general,

shorter methods were associated with a higher fraction correct.
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Students who correctly solved the problem using a given method tended to use

less time on that method than students who did not correctly solve the problem. This

is consistent with the observation from Section 3.3.1 that students who did not solve

the problem correctly tended to work until the time limit expired, while students who

solved the problem correctly sometimes finished their work before the time limit was

reached.

Fraction Solve time
Number correct (with Solve time (correct soln.

Method students 95% CI) (min) only, min)
Visual Estimation 6 0.83 [0.44, 0.97] 3.8 3.4
Geometric Approx. 23 0.39 [0.22, 0.59] 7.8 6.3

CAD 5 0.80 [0.38, 0.96] 7.8 7.3
Monte Carlo 4 0.50 [0.15, 0.85] 8.3 6.5

Integral 28 0.21 [0.10, 0.40] 9.5 9.0

Table 3.3: Accuracy and corresponding solve times. Fraction correct is the fraction
of participants who obtained a correct solution with a given method. Solve time is
the time spent on the method. These methods are in the order of least complex (least
average time spent) to most complex (most average time spent). Table reproduced
from previous work by Li and Hosoi [14].

3.3.4 Number of Methods

We also analyzed the number of methods used by the participants (See Table 3.4). It

was found that most students used only one method (64); in comparison, few students

used two or more solution methods (8). The potential reasons for this are discussed

with survey results in Section 3.4.5. Of seven participants who switched methods

exactly once, four obtained correct answers, an accuracy of 57% compared to the

overall accuracy of 36%. Additionally, one participant switched methods twice and

obtained the correct answer. Even though this data is not statistically significant, it

may suggest the existence of an optimal number of solution methods for maximizing

the probability of correctly solving this problem.
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Total number Fraction correct
Number methods Number correct students (with 95% CI)

1 21 64 0.33 [0.23, 0.45]
2 4 7 0.57 [0.25, 0.84]
3 1 1 1.00 [0.21, 1.00]

Table 3.4: Number of methods used vs. solution outcome. Note that a higher fraction
correct was associated with more solution methods. Table reproduced from previous
work by Li and Hosoi [14].

3.4 Data Analysis and Discussion

3.4.1 Sankey Diagrams

Sankey diagrams were used to visualize the participants’ method use on the Volume

Problem. Figure 3-3 represents the methods used during the 10 minute “solve” section

only. Figure 3-4 represents the methods used during both the 5 minute and 10 minute

sections, with intermediate methods omitted for clarity. The Sankey diagrams were

compiled such that the first method nodes used were aligned on the left, and the last

method nodes used were aligned on the right. In Figure 3-3, intermediate method

nodes were aligned in the order they appear. If a participant only used one method,

the node would appear once on the left and once on the right.

It was found that participants with more transitions tended to solve the problem

successfully. However, the number of transitions between solution methods cannot

be indefinitely high, suggesting that there is an optimum number of transitions that

maximizes the likelihood of solving the problem.

3.4.2 Choice of Starting Method and Ending Method

The participants’ choice of starting method (for the 5 minute section) was notable. Of

the 72 participants, 29 did not immediately suggest a method. Among the remaining

43 that did, 27 suggested Integral, 8 suggested Geometric Approximation, and 3 sug-
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Figure 3-3: Sankey diagram for the Volume Problem, 10 minute section only. Darker
transitions represent a larger fraction of participants with the correct answer. The
left nodes represent the method used at the start of the 10 minute section, and the
right nodes represent the method used at the end of the 10 minute section. There is
one intermediate node, corresponding to one participant who used three methods in
the 10 minute section. Note that the majority of students did not switch methods.
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Figure 3-4: Sankey diagram for the Volume Problem, 5 minute and 10 minute sections.
Intermediate steps have been omitted for clarity. Darker transitions represent a larger
fraction of participants with the correct answer. The left nodes represent the method
used at the start of the 5 minute section, and the right nodes represent the method
used at the end of the 10 minute section. If a participant only used one method in
both the 5 and 10 minute sections, the node would appear once on the left and once
on the right. Note that the last method (10 minute section) was a better predictor
of problem solving success than the first method (5 minute section). The right nodes
for Visual Estimation, Geometric Approximation, CAD, and Monte Carlo tended to
attract transitions with higher fraction correctly solved than Integral or Other. There
was no clear pattern for transitions originating from the left nodes.
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gested Visual Estimation. The tendency to suggest an integral method first indicates

a preference for detailed analysis over simple estimation, at least when starting the

problem. This pattern could reflect participants’ lack of awareness or knowledge of

lower complexity methods or absence of a starting strategy. However, this should be

considered in the following context: when starting to solve the problem, the student

does not have perfect information about which solution methods are available and

their relative solve times. Therefore the first method they chose may or may not be

the optimal (shortest) one.

There were also differences between the number of participants starting and end-

ing with a given method. Of the 72 participants, only 7 did not choose a method

by the end of the 10 minute section. Among the remaining 65, 29 ended with In-

tegral, 22 ended with Geometric Approximation, and 5 ended with Visual Estima-

tion. There was a shift from other methods to Geometric Approximation, especially

from the “Other" category. In particular, 8 participants started the 5 minute section

with geometric approximation, but 22 participants ended the 10 minute section with

geometric approximation. A significant number of participants shifted to this less

complex method from a more complex method; Geometric Approximation was taken

to be a method with intermediate complexity and accuracy. In contrast to geomet-

ric approximation, the number of participants starting with visual estimation, CAD,

Monte Carlo, and integral was similar to the number of participants ending with

those methods. Most notably, a significant number of participants remained on the

most complex method, Integral, throughout the entire time allotted. These patterns

reflect mixed results: while some participants switched to a less complex method,

others remained on more complex methods throughout the problem solving period.

For some participants, there is evidence of switching strategy or knowledge of lower

complexity methods. For others, this evidence is absent.
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3.4.3 Starting Method and Problem Solving Outcome

Data from the Volume Problem suggests that the last method used in the 10 minute

section is a better predictor of successfully solving the problem than the first method

used in the 5 minute section. In the 5 minute section, participants would often

suggest methods without following through on a full solution. For example, of the

3 participants who started with visual estimation in the 5 minute section, only one

obtained the correct answer. However, of the 5 participants who ended with visual

estimation in the 10 minute section, 4 obtained the correct answer.

3.4.4 Patterns of Transitions

It is possible to have the following types of transitions between methods:

∙ Transitions from methods of lower complexity to higher complexity. For ex-

ample, a participant may finish the problem early using estimation and wishes

to confirm the answer with more detailed analysis. Note that in the analytic

model in Chapter 4, we assumed (for simplicity) that problem solving activity

ceases upon the first correct answer obtained. However, for the experiment, we

allow this type of transition to be a possibility.

∙ Transitions from methods of higher complexity to lower complexity. For ex-

ample, a participant may fail to solve the problem using detailed analysis and

change to estimation in order to obtain an answer within the time limit.

∙ Transitions between methods of similar complexity. For example, a participant

may start the problem on one method, decide that they are more familiar with

another method, and switch to that method.

Method transitions within the 5 minute section were not counted because the

participant was not expected to solve the problem during that section. Method tran-

sitions within the 10 minute section were observed for 8 of 72 participants; of these,
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six transitioned from higher complexity methods to lower complexity methods, one

transitioned from a lower complexity method to a higher complexity method after ob-

taining an answer with the lower complexity method, and one combined two methods

in their solution attempt.

The pattern of method transitions suggests that the participants would use a

lower complexity method to “descope” if their higher complexity method failed. This

strategy seems to have been beneficial, as the participants using it had higher solve

percentage than average. However, the number of participants using transitions was

small, so limited conclusions can be drawn.

The “descoping” strategy is consistent with predictions made by the analytic model

in Chapter 4; the presence of low solve time methods, in addition to a tendency to

start on high solve time methods, presented ample opportunities to switch to the

lower solve time method, thereby increasing solve probability.

Note that very few students (11%) used two or more solution methods in the

10 minute section. The small amount of students using estimation in the Volume

Problem is consistent with the findings from the literature: that students had difficulty

with estimation, and that engineering classes overwhelmingly emphasized detailed

analysis over estimation [15, 20]. To remedy this, the instructor can teach estimation

as a backup option. This may or may not be the perfect solution (instead, students

could deploy estimation as a first-line strategy), but the benefits from its use here on

the Volume Problem suggest it is an improvement over the status quo; students are

no longer saddled with the inflexibility of using only detailed analyses when solving

problems.

3.4.5 Survey Results

In the questionnaire completed after the problem (Appendix A), the participants were

asked, “On the previous problem, which method did you pick and why?” They were
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also asked whether they switched methods and “If so, why did you switch?’ The

following patterns were observed from the responses:

∙ Some students decided to solve the problem using equations and integrals, but

then tried to estimate or approximate because their initial method was too

time consuming. Sometimes the students saw their approximations as “bad” or

“crude.”

∙ Some students deliberately chose a method that they felt was easiest

∙ Some student chose a method that they perceived to be the most accurate

∙ Some student chose a method based on what they remember (e.g. calculus

techniques)

∙ Some students decided to visualize the problem instead of doing detailed calcu-

lations

∙ Some students spent considerable time searching on the internet for a black-box

automatic solver for this problem.

While some students did use lower complexity methods, their overall attitudes

toward higher complexity methods and lower complexity methods were not the same;

they favored higher complexity methods and attempted to use them whenever possible

because of higher perceived accuracy. Estimations and simple approximations were

not as highly regarded due to potential inaccuracy or “crudeness.” However, at the

same time, the students looked for solution techniques that were simple to implement

and time-efficient. Some students attempted to find a solution method that is both

short and precise, spending considerable time searching on the internet for a black-box

automatic solver.

It is possible that some students believed that the experimenter expected fancy,

exact, or clever solution methods. Alternately, it is possible that students were not
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accustomed to using approximations and estimations in the context of homework or

exams. Nevertheless, this pattern is quite different from the strategies suggested by

the analytic model (in subsequent Chapters 4–6) , namely using a switching strategy

or starting on a low complexity method.

Additionally, the participants were asked, “What is your confidence in your solu-

tion method” and “What is your confidence in your answer?” Answers were given on a

five-point Likert scale. The results are shown in Table 3.5. It was found that students’

overall confidence in their answer was significantly lower than their confidence in their

method. When comparing students who obtained the correct answer with those that

did not, we found that the method confidence was nearly the same. However, the

answer confidence was much higher for students who obtained the correct answer.

Average Average
confidence confidence

N, method in method N, answer in answer
confidence (with 95% CI) confidence (with 95% CI)

Correct 25 3.52 [3.07, 3.97] 25 3.00 [2.48, 3.52]
Incorrect 44 3.41 [3.04, 3.78] 43 1.37 [1.10, 1.65]
Overall 69 3.45 [3.17, 3.73] 68 1.97 [1.65, 2.29]

Table 3.5: Survey results for participants’ confidence in their solution method and
answer. Most, but not all, participants responded. Responses were recorded on a five-
point Likert scale (1-5). A 𝑡-test was used to calculate confidence intervals. Overall,
students had a much higher confidence in their method than their answer. Students
who obtained the correct answer reported similar confidence in their method as those
with incorrect answers. However, students with correct answers reported much higher
confidence in their answer than those with incorrect answers.

One possible reason is that most students believed that their method was correct

even though only some students completed their solution. There was no additional

reward for obtaining the correct answer, so some students may have been content to

demonstrate a method they believed would work, without worrying too much whether

they obtained an answer or not. This could also explain why a large majority of

students only used one method in Section 3.3.4. It is possible some students did not
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understand the time requirements of a more complex method like integration, even

though they were confident such a method would work. Thus they did not take the

time to consider other (lower complexity) methods as well.
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Chapter 4

Analytic Model

The purpose of the model is to build a framework to articulate the interplay of skills

and strategies in solving problems with multiple solution methods. The model was

motivated by the better performance of students using shorter methods in Section

3.3.3 and potentially better performance of students using multiple solution methods

in Section 3.3.4; we sought to more clearly understand these phenomena.

This model shares some similarities with the main experiment presented in Chap-

ter 3. Just as in the experiment, our objective for the model is to maximize the

probability of solving the problem within a time limit. Different solution methods

are each associated with a solve time and a solve probability, and switching between

methods is allowed. We begin with the simplest case (Two Solution Methods) to

illustrate the concepts. Next, we successively add additional complexities. Finally,

we match the model with the experiment.

Portions of this Chapter are based on a previous work by Li and Hosoi [14].

4.1 Assumptions

This model makes several assumptions about the types of problems and solutions

that are relevant to this analysis, namely:
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1. The problem has a well-defined solution, and can be solved via more than one

solution method. The different solution methods may have different solve times.

2. There is a time limit (e.g. an in-class exam), and this limit is known to the

problem solver.

3. From the point of view of the problem solver, there can be uncertainty in aware-

ness of solve time of various solution methods. The student does not necessarily

know, before solving the problem, which solution method will take less time.

The student also does not necessarily know exactly how long a problem will

take. If the student did have perfect information about the relative solve time

or difficulty of the various solution methods, it would be obvious which solution

path to take. (They would be doing exercises instead of solving problems.)

4. The student may tailor their solution according to what they think that the

instructor (or in this case, the experimenter) wants for an acceptable solution.

This may influence their problem solving behavior. In this thesis, this effect

is assumed to be negligible; in the experiment (Chapter 3), the experimenter

attempted to take a neutral approach by defining the goal of problem solving,

but not prescribing or recommending a specific method.

Additionally, this model makes the following assumptions about the problem solv-

ing process:

1. The time variables in the model are discrete. Key variables, such as the solve

time of various solution methods, are multiples of a discrete time interval. This

approach can be generalized to the continuous time limit, but, for simplicity,

we focus on the discrete formulation in this Chapter.

2. The student may switch methods at any point during their problem solving time.

In the simplest case with two solution methods, we assume equal probability of
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starting on each method and random switching at discrete time steps. In later

sections, these assumptions are relaxed as the student is allowed to bias their

starting or switching to certain solution methods.

3. The solve time and solve probability for a given method is fixed regardless of

how long the student has already spent working on solving the problem, or what

order position the solution attempt in their list of solution attempts. Work done

for one method that leads to an unsuccessful outcome does not influence the

solve time or solve probability for another method.

4. The student “starts over” when they switch to a new method; they lose all

progress on their current method. They must complete the requisite number of

consecutive time steps on the new method to successfully solve the problem.

5. The student stops problem solving activity when the goal is achieved (i.e. the

problem is solved).

4.2 Model with Two Solution Methods

Consider a problem that has two solution methods (e.g. the student could solve the

problem graphically or via integration). Let the time required to solve the problem

using these methods be 𝑇1 and 𝑇2. (Note that 𝑇1 and 𝑇2 are continuous quantities.)

If we consider time intervals of length Δ, the total number of intervals needed to solve

the problem for each method is 𝑡1 = 𝑇1/Δ and 𝑡2 = 𝑇2/Δ, respectively. Unlike 𝑇1 and

𝑇2, we let 𝑡1 and 𝑡2 be discrete quantities and do not consider noninteger multiples of

Δ. The problem solver successfully solves the problem if they spend 𝑡1 consecutive

timesteps on method 1 or 𝑡2 consecutive timesteps on method 2. In addition, they

are allocated a total of 𝑡𝑓 timesteps for problem solving; i.e. 𝑡𝑓 is a time limit, and it

is not possible to solve the problem if both methods have solve times longer than 𝑡𝑓 .
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Suppose initially, the problem solver has an equal probability, 1
2
, of selecting either

method 1 or method 2. Then at each subsequent timestep, the problem solver will

switch to the other method with probability 𝛼 and remain on the current method with

probability 1−𝛼. Here, 𝛼 can be considered a strategy. For example, a problem solver

can choose a strategy of switching more often (higher 𝛼), a strategy of switching less

often (lower 𝛼), or a strategy of staying on an existing method (𝛼=0). Whether a

strategy is favorable may depend on the problem solver’s skills, i.e. their ability to

use the tools at their disposal to solve the problem within a time constraint; this is

reflected in their solve times 𝑡1 and 𝑡2.

We can now ask, what is the best strategy (i.e. value of 𝛼) that maximizes the

probability of solving the problem. Assume that 𝑡1, 𝑡2 ≥ 2 to avoid a degenerate

case. Without loss of generality, also assume that method 1 has a shorter or equal

solve time compared to the method 2; that is, 𝑡1 ≤ 𝑡2. Then the following cases are

possible:

∙ Case I: 𝑡1 ≤ 𝑡2 ≤ 𝑡𝑓 . In this case, the best strategy is to not switch methods,

since the problem can be solved with both methods within the time limit. There-

fore, 𝛼 = 0 gives the maximum probability of solving the problem, 𝑃𝑠𝑜𝑙𝑣𝑒 = 1.

Note that this model assumes that switching methods requires the student to

“start over” on the new method; they must stay on the new method for the

needed number of consecutive timesteps to solve the problem.

∙ Case II: 𝑡1 = 𝑡𝑓 < 𝑡2. In this case, it is impossible to solve the problem with

method 2, but it is just possible with method 1. The best strategy is to not

switch at all, hence 𝛼 = 0 gives the maximum 𝑃𝑠𝑜𝑙𝑣𝑒 =
1
2
.

∙ Case III: 𝑡𝑓 < 𝑡1 ≤ 𝑡2. In this case, it is impossible to solve the problem with

either method 1 or method 2. Any value of 𝛼 ∈ [0, 1] will give 𝑃𝑠𝑜𝑙𝑣𝑒 = 0.

∙ Case IV: 𝑡1 < 𝑡𝑓 < 𝑡2. This is the interesting case in which there may exist an
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optimal strategy 𝛼 > 0 which maximizes 𝑃𝑠𝑜𝑙𝑣𝑒. This case is nontrivial and will

be further analyzed below.

It can be shown (see Appendix C for proof) that if 0 < 𝑡1 ≤ ⌊ 𝑡𝑓
2
⌋ and 𝑡2 > 𝑡𝑓 ,

there exists 𝛼 > 0 that maximizes 𝑃𝑠𝑜𝑙𝑣𝑒. That is, for these values of 𝑡1, the best

outcome is obtained if the problem solver explores both solution methods. (Here,

the floor function symbol ⌊ ⌋ means to round down any noninteger values.) On the

other hand, if ⌊ 𝑡𝑓
2
⌋ < 𝑡1 < 𝑡𝑓 and 𝑡2 > 𝑡𝑓 , 𝛼 = 0 maximizes 𝑃𝑠𝑜𝑙𝑣𝑒, so the problem

solver is better off if they stick to the original starting method. As 𝑡1 decreases, the

optimal switching frequency 𝛼 increases and the associated solve probability 𝑃𝑠𝑜𝑙𝑣𝑒

also increases (see Figure 4-1). That is, if the solve time for method 1 is very short

(i.e. the student is able to solve the problem quickly), the optimal switching tendency

is high; i.e. the problem solver is rewarded for a higher tendency to switch methods.

The corresponding probability of solving the problem also increases. If the solve

time for method 1 exceeds a critical limit (in this case ⌊ 𝑡𝑓
2
⌋), there is no reward for

switching, and it is optimal for the problem solver to stay on the same method they

started with. See Appendix B for a numerical example of calculating 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼). See

Figures 4-1 and 4-2 for a numerical example of the effect of 𝑡1 on solve probability.

4.3 Additional Elements of the Model

4.3.1 Effect of Starting Method

Now that we have illustrated the basic interplay between strategies (as reflected in 𝛼)

and skills (as reflected in 𝑡1 and 𝑡2), we can consider the impact of other parameters.

One way to extend the model is to allow the probability of starting on each method

to be unequal. Let 𝛽𝑖 be the probability of starting on method 𝑖. In Section 4.2, we

set 𝛽1 = 𝛽2 = 1
2
, but here, we can freely vary the 𝛽𝑖, subject to the constraint that

the sum of all the starting probabilities, Σ𝑖𝛽𝑖, is 1.
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Figure 4-1: 𝑃𝑠𝑜𝑙𝑣𝑒 with two solution methods and time limit 𝑡𝑓 = 10 and 𝑡2 > 𝑡𝑓 .
Note that for 𝑡1 = 2, 3, 4, 5 there exists an 𝛼 > 0 for which 𝑃𝑠𝑜𝑙𝑣𝑒 is maximized.
In other words, a strategy of not switching (𝛼 = 0) is not optimal for maximizing
solve probability; some switching is beneficial. Values of 𝑡1 equal to 6 or greater do
not benefit from switching at all. If the problem solver is aware that they do not
have a simple way to solve the problem (i.e. 𝑡1 is 6 or greater), they should consider
improving their skills, i.e., reducing their 𝑡1. Figure reproduced from previous work
by Li and Hosoi [14].

Figure 4-2: Heatmap showing the dependence of 𝑃𝑠𝑜𝑙𝑣𝑒 on 𝑡1 and 𝛼 with 𝑡𝑓 = 10 and
𝑡2 > 𝑡𝑓 . Note that as 𝑡1 increases, the maximum 𝑃𝑠𝑜𝑙𝑣𝑒 decreases, and it occurs at a
smaller switching tendency 𝛼. This shows the benefit of improving both skills (i.e.
reducing the solve time 𝑡1) and strategy (i.e. choosing the correct 𝛼 for the problem
solver’s value of 𝑡1).
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From the point of view of the problem solver, the ability to more reliably identify

a more efficient solution method can have significant benefits for increasing 𝑃𝑠𝑜𝑙𝑣𝑒.

For example, consider using this strategy for the case with two solution methods.

If the probability of starting on the shorter method, 𝛽1, is increased, the maximum

achievable 𝑃𝑠𝑜𝑙𝑣𝑒 is correspondingly increased for every value of 𝛼 (see Figure 4-3).

Furthermore, increasing 𝛽1 decreases the 𝛼 required to achieve this maximum. In

other words, if a problem solver is more proficient at selecting shorter methods, they

have less need for a switching strategy. In fact, if 𝛽1 is sufficiently high, there is no

longer any need for any switching, so 𝛼 = 0 would result in the maximum 𝑃𝑠𝑜𝑙𝑣𝑒. See

Figure 4-3 for an example of this situation. Conversely, students who tend to start

with the higher solve-time method (i.e. smaller 𝛽1) are less likely to find a solution

in the allotted time.

Figure 4-3: An example 𝑃𝑠𝑜𝑙𝑣𝑒 showing the effect of starting method probability.
There are two solution methods, the time limit is 𝑡𝑓 = 10, method 1 has solve time
𝑡1 = 5, and method 2 has 𝑡2 > 𝑡𝑓 . Note that for curves where 𝛽1 ≤ 0.5, a switching
strategy is beneficial. However, for curves where 𝛽1 > 0.5, there is no benefit from
switching, and 𝛼 = 0 gives the highest solve probability. In other words, the more
likely the problem solver starts on the shorter method, the less need they have for a
switching strategy. Figure reproduced from previous work by Li and Hosoi [14].
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4.3.2 Generalization to 𝑛 Solution Methods

In the previous two sections, we developed a two solution method model to demon-

strate the basic interplay between strategy and skills. The next step is to generalize

this model to three or more solution methods. Consider 𝑛 ≥ 3 methods with solve

times 2 ≤ 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛. At each timestep, let the total probability of switching

remain 𝛼. However, we will have to modify the probability of switching to a given

method. There are 𝑛−1 other methods, so we set the probability of switching to each

of the other methods to be 𝛼
𝑛−1

. Note that the probabilities of switching to each of the

other methods are equal, and they sum up to 𝛼. Thus the probability of remaining

on the current method is 1− 𝛼.

Just as in the basic model with two solution methods, several cases are possible:

∙ Case I: it is possible to solve the problem with all of the methods within the

time limit, i.e.

𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛 ≤ 𝑡𝑓

If this occurs, then not switching methods (𝛼 = 0) results in a solve probability

of one, so there is no need for a switching strategy. Any positive value of 𝛼 will

result in the possibility of a sequence of solve methods that does not solve the

problem. (For example, it is possible that the problem solver switches at each

time step among several solution methods, never accumulating two or more

consecutive time steps on any method, and thereby never solving the problem.)

∙ Case II: It is not possible to solve the problem with any of the methods within

the time limit, i.e.

𝑡𝑓 < 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛

If this occurs, then there is no way the problem solver can solve the problem

regardless of switching strategy. Thus the solve probability is zero.
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∙ Case III: Neither I or II is true. It is possible to solve the problem within the

time limit for at least one method, but not for all of the methods. This is the

nontrivial case and will be analyzed further.

The presence of additional solution methods makes analysis more difficult, but the

goal remains the same: to increase the solve probability 𝑃𝑠𝑜𝑙𝑣𝑒 as much as possible,

and to determine the conditions for which a switching strategy 𝛼 > 0 can maximize

the solve probability. There are several characteristics of the solve times that affect

the 𝑃𝑠𝑜𝑙𝑣𝑒 curve.

The first characteristic is the number of methods with solve times less than the

time limit 𝑡𝑓 . This must be at least one and at most 𝑛− 1 in accordance with Case

III above. Because the problem solver can complete these methods within the time

limit, these are the solution methods that the problem solver can execute effectively,

i.e. they are the handiest tools in their analytical toolbox. For a fixed number of

total methods 𝑛, the more methods that fall into this category, the more likely they

will start on an effective method. This will increase their no-switch (𝛼 = 0) solve

probability because an effective method will have a solve time less than 𝑡𝑓 . A problem

solver may also start on a solution method they cannot execute within the time limit.

In this case, the solution method will not lead to a solution unless the problem solver

switches sufficiently quickly to an effective method.

The second characteristic is the solve times of the effective solution methods.

These solve times can be small compared to 𝑡𝑓 , representing short methods that are

simple for the problem solver to execute. Alternately, these solve times can be as large,

or nearly as large as 𝑡𝑓 , representing longer methods that are more complex but still

feasible for the problem solver to execute within the time limit. This characteristic

represents a combination of how well the problem solver knows the method (their skill

in using their tools) and the method’s intrinsic complexity. The magnitude of these

solve times do not affect the problem solver’s no-switch (𝛼 = 0) solve probability,
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but they can determine whether a switching strategy 𝛼 > 0 can improve 𝑃𝑠𝑜𝑙𝑣𝑒. As a

rule of thumb, the lower these solve times, the more benefit there is to implementing

a switching strategy. Figure 4-4a represents an example of a situation that benefits

from a switching strategy.

4.3.3 Partial Solve Probabilities

In the previous sections, each solution method is modeled such that after the problem

solver spends a fixed number of timesteps on the method, the probability of a correct

solution is one. However, in real world situations, it is possible for a problem solver

to arrive at an incorrect solution due to, for example, a conceptual or calculation

mistake. In other words, the solve probability for a given method can be a positive

number less than one.

Therefore, it is natural to extend the model such that probability of solving the

problem with each method can be any number in the interval [0, 1]. We define the

partial solution probability 𝑝𝑖 ∈ [0, 1] as the probability of solving with method 𝑖

after 𝑡𝑖 timesteps. Therefore, after 𝑡𝑖 timesteps, the problem is successfully solved

with probability 𝑝𝑖 and not successfully solved with probability 1 − 𝑝𝑖. For clarity

of modeling, we reset the counter for the consecutive timesteps if the problem is

not successfully solved. In other words, if the problem solver is unable to solve

with method 𝑖 after 𝑡𝑖 timesteps, they will start over at the next time step with a

method that is determined by their switching strategy. It is possible for multiple

solve attempts to occur within the time limit. For example, a problem solver can

attempt to solve using one method, complete the required number of timesteps for

that method, fail, and then attempt to solve with another method (provided the solve

attempts fit within the time constraint 𝑡𝑓 ).

The partial solution probability 𝑝𝑖 represents a problem solver’s ability to correctly

use a tool in their toolbox. Higher partial solution probabilities will increase a problem
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solver’s no-switch (𝛼 = 0) overall solve probability 𝑃𝑠𝑜𝑙𝑣𝑒, as each effective method

will make a greater contribution. Higher partial solution probability can also change

the optimal switching strategy 𝛼. As a rule of thumb, the higher the partial solution

probability, the more benefit there is to implement a switching strategy; this can be

especially true if the higher partial solution probability is associated with low solve

time methods. Figure 4-4b represents an example of a situation involving partial

solution probabilities that benefits from a switching strategy.

Figure 4-4: (a) An example of 𝑃𝑠𝑜𝑙𝑣𝑒 with six solution methods, equal starting prob-
abilities, and time limit 𝑡𝑓 = 10. Four of the solution methods have solve times less
than 10 timesteps; their solve times are 2, 4, 4, and 6 timesteps, respectively. The
partial solution probabilities 𝑝𝑖 are equal to one for all methods. Two methods have
solve times longer than 10 timesteps. This is a situation that benefits from a switching
strategy, i.e. 𝑃𝑠𝑜𝑙𝑣𝑒 is maximized from some 𝛼 > 0. (b) An example of 𝑃𝑠𝑜𝑙𝑣𝑒 where
the partial solution probabilities can be between 0 and 1. The result of the analytic
model (solid black line) is overlaid with a Monte Carlo simulation (gray line). There
are six solution methods with solve times 2, 3, 3, 6, 6, and 6 timesteps. The partial
solution probabilities are 0.8, 0.45, 0.8, 0.5, 0.21, and 0, respectively. The starting
probabilities are equal, and the time limit is 𝑡𝑓 = 10 timesteps. Note that meth-
ods with lower solve times are associated with higher partial solution probabilities,
potentially increasing the benefits of a switching strategy.

4.3.4 Improving Transitions between Solution Methods

Up to this point, the model has assumed a switching strategy where the probability of

switching from any method to any other method is equal. However, this may not be

the optimal strategy; it is possible to improve 𝑃𝑠𝑜𝑙𝑣𝑒 by allowing some transitions but
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not others. For example, the following guidelines can improve the switching strategy.

These are rules of thumb; they are true for many, but not necessarily all situations:

∙ It is favorable for a problem solver to switch from a complex method (high solve

time) to a simple method (low solve time) but not vice versa. Once the problem

solver arrives at a low solve time method, it is favorable for them to either stay

on the method, or switch to another low solve time method. This increases the

probability that a problem solver spends a sufficient number of timesteps on a

favorable method, thereby increasing 𝑃𝑠𝑜𝑙𝑣𝑒.

∙ It is prudent to avoid switching from one high solve time method (e.g. solve time

more than half the time limit) to another high solve time method. The second

high solve time method is unlikely to be completed in time. If the problem

solver failed to solve using a low solve time method, it may not be favorable to

try a more complicated, higher solve time method. Instead, it may be favorable

to attempt another low solve time method.

When implementing any improved switching strategy in our model, we set the

total switching probability at each timestep to 𝛼 for simplicity. However, this 𝛼 is

divided only among other methods that are favorable for switching according the

heuristics above. In this improved strategy, if the problem solver is working on a

simple, low solve time method, they can only switch to other, comparably simple

methods. If the problem solver is working on a complex, high solve time method,

they can switch to any simpler method. This strategy represents an optimization of

the switching strategy outlined in the two solution method model. It requires the

problem solver to be aware of solution methods they can implement in a short period

of time and with high accuracy. If a problem solver can implement this strategy, they

will be able to significantly improve the effectiveness of the tools in their toolbox.
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4.4 Matching Analytic Model with Experiment

When comparing the model with the data, we make the following assumption: in the

application of the model, the five minute section was not counted in the solve time

for model parameter fitting. So, for the problem solving time period corresponding

with the model fit, the student had already seen and read the problem, and started

brainstorming for the solution. We assume that the student had possibly already

read the problem and done some defining and exploring before starting the execution

of the solution. In other words, the model does not account for reading, defining,

exploring, and planning.

The model was matched with the experimental data from the Volume Problem.

The fitting parameters were such that the model’s 𝑃𝑠𝑜𝑙𝑣𝑒 at 𝛼 = 0 was matched with

the fraction correct of the study participants who did not switch. Starting probabil-

ities 𝛽𝑖 were set by the fraction of students starting on method 𝑖 in the 10 minute

section. Additionally, partial solve probabilities 𝑝𝑖 were set by the fraction correct

for each method. Furthermore, the model assumed that students only transitioned

to visual estimation or geometric approximation (if they are currently on a method

that is not “other”). This is consistent with the majority of the transitions observed

in the data (Figure 3-3). The resulting 𝑃𝑠𝑜𝑙𝑣𝑒 vs 𝛼 curve is shown in Figure 4-5. This

curve was overlaid with three data points representing the 64 participants who did not

switch methods (𝛼 = 0), the 72 total participants (𝛼 = .014) , and the 7 participants

who switched methods once (𝛼 = .111).

The confidence intervals were calculated assuming a Bernoulli distribution for

the solve probabilities 𝑃𝑠𝑜𝑙𝑣𝑒. The model’s 𝑃𝑠𝑜𝑙𝑣𝑒 prediction is within the confidence

intervals for the participants who did not switch and for the total participants. Since

the number of students who switched once was low compared to the total number of

students, the confidence interval for this data point is wide. However, the model is

still within the 95% confidence interval.
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4.4.1 Monte Carlo Sensitivity Analysis

Additionally, a Monte Carlo sensitivity analysis was performed to better understand

the range of possible 𝑃𝑠𝑜𝑙𝑣𝑒 curves. Parameters for the model were first estimated from

the measured data and then varied. The 95% confidence intervals for solve times 𝑡𝑖

and solve probabilities 𝑝𝑖 were first calculated from data of the 72 participants who

worked the Volume Problem. Then, for the Monte Carlo sensitivity analysis, each

value of 𝑡𝑖 and 𝑝𝑖 was randomly chosen to be either the top or bottom of its respective

95% confidence interval in order to map out the boundaries of our data. Next, the

𝑃𝑠𝑜𝑙𝑣𝑒 vs 𝛼 curve was calculated. The results are shown in Figure 4-5.

Note that the Monte Carlo curves coalesced into four “bundles,” or groups of sim-

ilar curves. These bundles correspond with the 𝑡1 and 𝑝1 of the solution method with

the lowest solve time and highest solve accuracy, Visual Estimation. The parameters

𝑝1 and 𝑡1 can each take the value of either the top or bottom of its 95% confidence

interval, for a total of four combinations (see Figure 4-5 legend). The top bundle

(corresponding to the highest 𝑃𝑠𝑜𝑙𝑣𝑒) resulted from the solve time 𝑡1 at the bottom of

its interval and 𝑝1 at the top of its interval. The existence of these bundles shows the

large effect of changing the characteristics of the solution method with the shortest

solve time (and in this case, the highest solve probability).

4.4.2 Analysis of Students who Used Multiple Methods

Participants who switched methods on the Volume Problem performed better than

the model would have suggested (see Figure 4-5). While no definitive conclusions

can be reached due to limited data, it may be illuminating to analyze trends. Of

seven participants who switched methods exactly once, four obtained correct answers,

an accuracy of 57% compared to the overall accuracy of 36%. Additionally, one

participant switched methods twice and obtained the correct answer. Therefore,

there were a total of five participants who obtained the correct answer and switched
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Figure 4-5: Matching model and data, with Monte Carlo sensitivity analysis. Starting
method probabilities 𝛽𝑖 of the model were set by the fraction of students starting
on the corresponding method in the experiment’s 10 minute section. Partial solve
probabilities 𝑝𝑖 of the model were set by the fraction of students successfully using
a given method. In the model, transitions to only the first two methods (Visual
Estimation and Geometric Approximation) were allowed, unless the first method is
“other,” in which case transitions to all five other methods were allowed. Monte Carlo
simulation regions are also shown, which were generated by overlaying the 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼)
curves generated from varying the model parameters 𝑡𝑖 and 𝑝𝑖. The four regions,
corresponding to the different values of 𝑡1 and 𝑝1, are clearly distinct. These regions
were generated by overlaying all Monte Carlo 𝑃𝑠𝑜𝑙𝑣𝑒 curves with the corresponding
𝑡1 and 𝑝1. Here, 𝑡1 and 𝑝1 represent the characteristics of the first method, Visual
Estimation; a low solve time 𝑡1 and a high solve probability 𝑝1 led to the largest 𝑃𝑠𝑜𝑙𝑣𝑒.

77



methods. These five participants used various methods, but they obtained the correct

answer only through two methods: Visual Estimation and Geometric Approximation.

Three of these five participants reached the correct answer through Visual Es-

timation; their average solve time was 4 minutes, compared to 3.4 minutes for all

students who obtained the correct answers with Visual Estimation. The other two

reached the correct answer through Geometric Approximation; their average solve

time was 2 minutes, compared to 6.3 minutes for all students who obtained correct

answers with Geometric Approximation. These five students had an average solve

time of 3.2 minutes, but the average solve time of all students who obtained the cor-

rect answer (through any method) was 6.5 minutes, approximately two times greater.

This difference in solve times may imply that students who switched methods may be

more adept at using strategy; they were not necessarily better at using a specific tool

(such as Visual Estimation or Geometric Approximation). Instead, they were able

to reduce the solve times through switching to a simpler method. In fact, all five of

these participants spent five minutes or less on the method they used to successfully

solve the problem. Given that the time limit is 10 minutes, this provides some cor-

roboration for a key prediction of the model: that it would be beneficial to switch if

there were methods with solve time of 𝑡𝑓
2

or less.
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Chapter 5

Analytic Solutions and Proofs

In Chapter 4, we modeled the problem solving process with a time limit and discrete

timesteps. In this Chapter, we extend the model to consider additional cases: one

with no time limit and one with continuous time. For the cases in this Chapter, we

consider 𝑛 ≥ 2 solution methods, but do not consider unequal starting probabilities,

partial solve probabilities, or unequal method transition probabilities.

First, we present the various formulations. A summary of the formulations is given

in Table 5.1. Next, for each formulation, we derive the criteria necessary for which

switching methods leads to the optimal outcome. A summary of the optimality crite-

ria is given in Table 5.2. Finally, we derive analytic solutions for the solve probability

𝑃𝑠𝑜𝑙𝑣𝑒 and the solve time 𝑡𝑠𝑜𝑙𝑣𝑒 as a function of the method switching tendency (𝛼 or

𝜆) for 𝑛 = 2 solution methods. These analytic solutions are then used to calculate

the location of the optima for 𝑃𝑠𝑜𝑙𝑣𝑒 and 𝑡𝑠𝑜𝑙𝑣𝑒 for the case of continuous time. The

purpose of this Chapter is to derive the mathematical facts, which are interesting

problems in themselves, and to apply these results.
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5.1 Formulations

5.1.1 Discrete (Markov) Formulation of the Primal Problem

This formulation is the basis for the model presented in Chapter 4. Recall that we

consider a problem that has 𝑛 solution methods. Let the time required to solve

the problem using method 𝑖 be discrete quantity 𝑡𝑖. The problem solver successfully

solves the problem if they spend 𝑡𝑖 consecutive timesteps on method 𝑖 for any 𝑖 ∈

{1, 2, . . . , 𝑛}. In addition, the problem solver is constrained by a time limit 𝑡𝑓 . 𝑃𝑠𝑜𝑙𝑣𝑒

is the overall probability of solving the problem. The problem solver will start on

each method 𝑖 with probability 1
𝑛
. At each subsequent timestep, the problem solver

will switch to another method with probability 𝛼 and remain on the current method

with probability 1− 𝛼. For simplicity, we set the probability of switching to each of

the 𝑛− 1 other methods to be 𝛼
𝑛−1

.

Define a Sequence 𝒮 as a progression of methods used by the problem solver. An

example of a sequence with ten elements is {1, 3, 3, 2, 2, 2, 1, 1, 1, 1}. In this work, a

sequence can also be represented as a block of digits (e.g. 1332221111) for simplicity.

For the Primal Problem, a sequence of methods will be 𝑡𝑓 elements long, with each

element representing the method used at each timestep.

5.1.2 Discrete (Markov) Formulation of the Dual Problem

The goal of the Dual Problem is to minimize the average solve time, 𝑡𝑠𝑜𝑙𝑣𝑒, required

to achieve 𝑃𝑠𝑜𝑙𝑣𝑒 = 1. In this problem, we retain the solution methods 𝑖 with solve

times 𝑡𝑖, 𝑖 = {1, 2, . . . , 𝑛}. Additionally, we set the probability of starting on each

method to be 1
𝑛
. However, there is no time limit. The problem solver will attempt

to solve the problem until they succeed. A sequence can be indefinitely long for the

Dual Problem, since there is no time limit.
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5.1.3 Continuous (Poisson) Formulation of the Primal Prob-

lem

We modify the Markov version to obtain the Poisson formulation. To construct the

Poisson model, we take the discretization size Δ𝑡 → 0. As before, let 𝑡𝑖 represent

the time required to solve the problem using method 𝑖 for 𝑖 = {1, 2, . . . , 𝑛} and let

𝑡𝑓 represent the time limit. However, 𝑡𝑖 and 𝑡𝑓 are now continuous quantities that

are not defined in terms of a discrete timestep size. As before, the probability of

starting on each method is 1
𝑛
. However, method switching is now modeled as Poisson

process. The switching events arrive at a rate 𝜆 ≥ 0 with units of arrivals per unit

time (instead of arrivals per timestep 𝛼 in the Markov model). Additionally, the

arrivals are independent. In each switching event, a transition to each of the 𝑛 − 1

other methods remains equally likely.

5.1.4 Continuous (Poisson) Formulation of the Dual Problem

We use the Poisson formulation with continuous time and retain the solution methods

𝑖 with solve times 𝑡𝑖, 𝑖 = {1, 2, . . . , 𝑛}. We set the probability of starting on each

method to be 1
𝑛

and do not impose a time limit. The problem solver switches methods

at a rate 𝜆 ≥ 0, and the goal is to minimize the average solve time 𝑡𝑠𝑜𝑙𝑣𝑒(𝜆).

5.2 Optimality Criteria

5.2.1 Discrete Primal Problem

Proposition 1. The existence of an optimum for 𝑃𝑠𝑜𝑙𝑣𝑒 occurs when

𝑚(1 + 𝑡𝑓 )−
𝑚∑︁
𝑖=1

𝑡𝑖 −
1

𝑛− 1

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1) > 0, (5.1)
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Discrete Continuous
Primal Time 𝑡 ∈ {0, 1, 2, . . . } Time 𝑡 ∈ [0,∞)

Method solve times 𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛 Method solve times 𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛
Time limit 𝑡𝑓 Time limit 𝑡𝑓

Switching tendency 𝛼 per timestep Switching tendency 𝜆 per unit time
Find max𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) such that 𝑡𝑠𝑜𝑙𝑣𝑒 ≤ 𝑡𝑓 Find max𝑃𝑠𝑜𝑙𝑣𝑒(𝜆) such that 𝑡𝑠𝑜𝑙𝑣𝑒 ≤ 𝑡𝑓

Dual Time 𝑡 ∈ {0, 1, 2, . . . } Time 𝑡 ∈ [0,∞)
Method solve times 𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛 Method solve times 𝑡𝑖, 𝑖 = 1, 2, . . . , 𝑛

No time limit No time limit
Switching tendency 𝛼 per timestep Switching tendency 𝜆 per unit time

Find min 𝑡𝑠𝑜𝑙𝑣𝑒(𝛼) such that 𝑃𝑠𝑜𝑙𝑣𝑒 = 1 Find min 𝑡𝑠𝑜𝑙𝑣𝑒(𝜆) such that 𝑃𝑠𝑜𝑙𝑣𝑒 = 1

Table 5.1: Possible formulations of the model. Differences between the Discrete and
Continuous models, as well as differences between Primal and Dual problems, are
shown.

where solution methods 1, 2, . . . ,𝑚 have solve times less than or equal to 𝑡𝑓 , and

solution methods 𝑚+ 1,𝑚+ 2, . . . , 𝑛 have solve times greater than 𝑡𝑓 .

Proof. Consider a problem with 𝑛 solution methods, of which methods 1, 2, . . . ,𝑚

have solve time not exceeding 𝑡𝑓 . A sequence of 𝑡𝑓 timesteps may now have numbers

1, 2, . . . , 𝑛 denoting the method used at the timestep. For example, 1222144324 is a

possible sequence for 𝑛 = 4 and 𝑡𝑓 = 10.

The solve probability can be expressed as

𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) =
∑︁
all 𝒮

𝛿𝑆𝑃𝒮(𝛼),

where

𝛿𝒮 =

⎧⎪⎪⎨⎪⎪⎩
1 Sequence 𝒮 solves problem

0 Otherwise.

The probability of each sequence occurring is

𝑃𝒮(𝛼) =
1

𝑛

(︂
𝛼

𝑛− 1

)︂𝐵

(1− 𝛼)𝑡𝑓−1−𝐵,

where 𝐵 is the number of transitions, 1
𝑛

is the probability of starting on a given

method, 𝛼
𝑛−1

is the probability of switching to a given method, and 1 − 𝛼 is the

82



probability of staying on the same method.

We compute

𝑃 ′
𝒮(𝛼) =

1

𝑛

(︃
𝐵

𝑛− 1

(︂
𝛼

𝑛− 1

)︂𝐵−1

(1− 𝛼)𝑡𝑓−1−𝐵 −
(︂

𝛼

𝑛− 1

)︂𝐵

(𝑡𝑓 − 1−𝐵)(1− 𝛼)𝑡𝑓−2−𝐵

)︃
.

For 𝐵 = 0, we have

𝑃 ′
𝒮(𝛼) = − 1

𝑛
(𝑡𝑓 − 1)(1− 𝛼)𝑡𝑓−2,

so

𝑃 ′
𝒮(0) = − 1

𝑛
(𝑡𝑓 − 1).

If 𝐵 = 0, there is only one method used. The problem is solvable with the 𝑚 solution

methods that have solve times not exceeding 𝑡𝑓 . The total 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) contribution is

−𝑚
𝑛
(𝑡𝑓 − 1).

For 𝐵 = 1, we have

𝑃 ′
𝒮(𝛼) =

1

𝑛

(︂
1

𝑛− 1
(1− 𝛼)𝑡𝑓−2 − 𝛼

𝑛− 1
(𝑡𝑓 − 2)(1− 𝛼)𝑡𝑓−3

)︂
,

so

𝑃 ′
𝒮(0) =

1

𝑛(𝑛− 1)
.

There are two cases for 𝐵 = 1:

(i) The problem is solved with the first method encountered. The first method must

be one of the 𝑚 methods with solve time 𝑡𝑓 or less. The number of timesteps

spent on the first method (call this method 𝑖) must be in {𝑡𝑖, 𝑡𝑖+1, . . . , 𝑡𝑓 − 1},

for a total of (𝑡𝑓 − 1)− 𝑡𝑖 + 1 = 𝑡𝑓 − 𝑡𝑖 possibilities. The second method can be

any other method, for a total of 𝑛− 1 possibilities. Therefore, total number of
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possible method pairs is (𝑛−1)
∑︀𝑚

𝑖=1(𝑡𝑓−𝑡𝑖). The total contribution to 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0)

is
1

𝑛(𝑛− 1)
· (𝑛− 1)

𝑚∑︁
𝑖=1

(𝑡𝑓 − 𝑡𝑖) =
1

𝑛

𝑚∑︁
𝑖=1

(𝑡𝑓 − 𝑡𝑖).

(ii) The problem is solved with the second method encountered. Let 𝑡𝑖 and 𝑡𝑗 denote

the solve times of the first and second methods used, respectively. The problem

solver can spend at most 𝑡𝑖 − 1 timesteps on the first method for 1 ≤ 𝑖 ≤ 𝑚,

since they do not solve the problem with the first method. This constraint

causes the problem solver to spend at least 𝑡𝑓 − 𝑡𝑖 + 1 timesteps on the second

method. Additionally, the problem solver must spend at least 𝑡𝑗 timesteps on

the second method. Combining these constraints, we find that the timesteps

spent on the second method can range from max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1) to 𝑡𝑓 − 1, for a

total of

(𝑡𝑓 − 1)−max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1) + 1 = 𝑡𝑓 −max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1)

combinations. Summing over all possibilities of 𝑖 and 𝑗, we obtain

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

(𝑡𝑓 −max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1)),

for a total 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) contribution of

1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

(𝑡𝑓 −max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1)).

For 𝐵 ≥ 2, we can show that 𝑄′(0) = 0 in a similar way to the 𝑛 = 2 case, so

there are no contributions to 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0). For an example, see Figure 5-1.

Adding the 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) contributions together and setting this sum to be positive,

84



we obtain

−𝑚

𝑛
(𝑡𝑓 − 1) +

1

𝑛

𝑚∑︁
𝑖=1

(𝑡𝑓 − 𝑡𝑖) +
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

(𝑡𝑓 −max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1)) > 0.

Combining terms, we obtain

−𝑚

𝑛
(𝑡𝑓−1)+

1

𝑛

𝑚∑︁
𝑖=1

𝑡𝑓−
1

𝑛

𝑚∑︁
𝑖=1

𝑡𝑖+
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

𝑡𝑓−
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

max(𝑡𝑗 , 𝑡𝑓−𝑡𝑖+1) > 0

⇔ −𝑚

𝑛
𝑡𝑓 +

𝑚

𝑛
+

𝑚

𝑛
𝑡𝑓 −

1

𝑛

𝑚∑︁
𝑖=1

𝑡𝑖 +
𝑚

𝑛
𝑡𝑓 −

1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1) > 0,

which is equivalent to

𝑚(1 + 𝑡𝑓 )−
𝑚∑︁
𝑖=1

𝑡𝑖 −
1

𝑛− 1

∑︁
𝑖 ̸=𝑗

1≤𝑖≤𝑛
1≤𝑗≤𝑚

max(𝑡𝑗, 𝑡𝑓 − 𝑡𝑖 + 1) > 0,

as desired.

5.2.1.1 Remarks

For 𝑛 = 2 solution methods, we can apply Equation 5.1 with 𝑛 = 2 and 𝑚 = 1 to

obtain

𝑡1 <
𝑡𝑓 + 1

2
. (5.2)
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Figure 5-1: Example of probabilities of sequences for 𝑡𝑓 = 6 with 2 methods. The
right subplot is a zoomed in version of the left subplot, with the 𝐵 = 0 curve omitted.
Note that 𝑃 ′

𝒮(0) ̸= 0 for only 𝐵 = 0, 1 transitions.

For integer 𝑡1 and 𝑡𝑓 , this is equivalent to 𝑡1 < ⌊ 𝑡𝑓
2
⌋, which agrees with the result

in Section 4.2. In the time-limited problem solving scenario, a maximum 𝑃𝑠𝑜𝑙𝑣𝑒 exists

for a switching tendency 𝛼 > 0 if and only if a method with solve time ⌊ 𝑡𝑓
2
⌋ exists.

Furthermore, as the solve time of the shorter method is reduced, the corresponding

maximum 𝑃𝑠𝑜𝑙𝑣𝑒 is increased, and this maximum occurs at a higher 𝛼 (see Figure 4-1).

In other words, reducing the solve time of the shorter solution method both improves

the solve probability and justifies a higher switching tendency.

Qualitatively, Equation (5.1) means that if there are sufficiently many solution

methods of sufficiently low solve time, switching methods with tendency 𝛼 > 0 will

improve 𝑃𝑠𝑜𝑙𝑣𝑒. However, this optimality condition is a sufficient, but not necessary,

condition. There may exist combinations of solve times 𝑡𝑖 that do not satisfy (5.1)

but still produce a 𝑃𝑠𝑜𝑙𝑣𝑒 maximum at 𝛼 > 0. If the reader is interested, they can

explore a case with 𝑛 = 3, 𝑡𝑓 = 10, and 𝑡1, 𝑡2, 𝑡3 = 2, 10, 11 in Figure 5-2.

86



Figure 5-2: Pathological case for three solution methods where 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) < 0 but the

maximum occurs at 𝛼 ≈ 0.376 and 𝑃𝑠𝑜𝑙𝑣𝑒 ≈ 0.686 instead of 𝛼 = 0. For reference,
𝑃𝑠𝑜𝑙𝑣𝑒 =

2
3

when 𝛼 = 0. The three methods have solve times 2, 10, and 11, while the
time limit is 𝑡𝑓 = 10. The 𝑃𝑠𝑜𝑙𝑣𝑒-axis does not start at zero in order to clearly display
the maximum.
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5.2.2 Discrete Dual Problem

Proposition 2. The existence of 𝑡𝑠𝑜𝑙𝑣𝑒 minimum for 𝛼 > 0 occurs when

𝑛∑︁
𝑖=1

(𝑡2𝑖 + 𝑡𝑖)−
4

𝑛− 1

∑︁
𝑖<𝑗

𝑡𝑖𝑡𝑗 > 0, (5.3)

where 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛 are the solve times of the 𝑛 methods.

The proof of Equation (5.3) uses a similar approach as the proof for Equation

(5.1). Instead of setting 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) > 0, we let 𝑡′𝑠𝑜𝑙𝑣𝑒(0) < 0. The full details are given

in Appendix D.

5.2.2.1 Remarks

For 𝑛 = 2, the existence of 𝑡𝑠𝑜𝑙𝑣𝑒 minimum for 𝛼 > 0 occurs when

𝑡2 >
4𝑡1 − 1 +

√︀
12𝑡21 − 12𝑡1 + 1

2
, (5.4)

where 𝑡1 ≤ 𝑡2 are the solve times of the two methods. This result can be derived

from Equation (5.3). Note that we can write (5.4) as

𝑡2
𝑡1

>
4𝑡1 − 1 +

√︀
12𝑡21 − 12𝑡1 + 1

2𝑡1

and take 𝑡1 → ∞ to obtain

𝑡2
𝑡1

> 2 +
√
3.

This represents the continuous limit of the discrete model as the timestep size Δ𝑡

approaches zero and the number of timesteps 𝑡1, 𝑡2 approaches infinity.

Compared to the Primal Problem, this 𝑛 = 2 result can be interpreted as more

conservative; in order for switching methods to be helpful, the shorter method can

have a solve time of at most 1
2+

√
3
≈ 0.268 times the longer method. In the Primal
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Problem with two methods, switching was beneficial when the shorter method is

approximately 1
2

the time limit or less (and the longer method is greater than the

time limit). A larger disparity in solve times is needed for switching to be helpful in

the time-unlimited scenario of the Dual Problem.

5.2.3 Continuous Primal Problem

Proposition 3. Let 𝑡*𝑖 =
𝑡𝑖
𝑡𝑓

represent the normalized solve time of method 𝑖. Then a

maximum 𝑃𝑠𝑜𝑙𝑣𝑒 exists for 𝜆 > 0 when

𝑚(𝑛−𝑚)− (2𝑛−𝑚− 1)
𝑚∑︁
𝑖=1

𝑡*𝑖 +
∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min
(︀
𝑡*𝑖 , 1− 𝑡*𝑗

)︀
> 0, (5.5)

where solution methods 1, 2, . . . ,𝑚 have solve times less than or equal to 𝑡𝑓 , and

solution methods 𝑚+ 1,𝑚+ 2, . . . , 𝑛 have solve times greater than 𝑡𝑓 .

Proof. Let 𝑃𝑠𝑜𝑙𝑣𝑒|𝐵 be the solve probability given 𝐵 transitions, and let 𝑃𝐵 be the

probability of 𝐵 transitions. Using conditional probability and the properties of

Poisson distributions, we can write

𝑃𝑠𝑜𝑙𝑣𝑒(𝜆) =
∞∑︁

𝐵=0

𝑃𝐵𝑃𝑠𝑜𝑙𝑣𝑒|𝐵

=
∞∑︁

𝐵=0

(𝜆𝑡𝑓 )
𝐵𝑒−𝜆𝑡𝑓

𝐵!
𝑃𝑠𝑜𝑙𝑣𝑒|𝐵.

Then we compute

𝑃 ′
𝑠𝑜𝑙𝑣𝑒(𝜆) = −𝑡𝑓𝑒

−𝜆𝑡𝑓𝑃𝑠𝑜𝑙𝑣𝑒|0 +
∞∑︁

𝐵=1

𝐵𝑡𝑓 (𝜆𝑡𝑓 )
𝐵−1𝑒−𝜆𝑡𝑓 − 𝑡𝑓 (𝜆𝑡𝑓 )

𝐵𝑒−𝜆𝑡𝑓

𝐵!
𝑃𝑠𝑜𝑙𝑣𝑒|𝐵,

so
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𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) = −𝑡𝑓𝑃𝑠𝑜𝑙𝑣𝑒|0 + 𝑡𝑓𝑃𝑠𝑜𝑙𝑣𝑒|1.

For 𝐵 = 0 transitions, the problem is only solved when the problem solver starts

on one of the 𝑚 methods with solve time 𝑡𝑓 or less. Thus,

𝑃𝑠𝑜𝑙𝑣𝑒|0 =
𝑚

𝑛
.

For 𝐵 = 1 transition, the problem solver uses two distinct methods. There are a

total of 𝑛(𝑛−1) ways to choose these two methods. There are three cases for the two

methods chosen:

(i) The two methods chosen have solve time greater than 𝑡𝑓 . There are a total of

(𝑛 −𝑚)(𝑛 −𝑚 − 1) method combinations. Here, the probability of solving is

zero.

(ii) One method chosen has solve time 𝑡𝑓 or less, and one method chosen has solve

time greater than 𝑡𝑓 . There are a total of 2𝑛(𝑛 − 𝑚) method combinations.

The probability of solving if the shorter method chosen is 𝑖, 1 ≤ 𝑖 ≤ 𝑚, is

1− 𝑡*𝑖 , as the method transition occurs after 𝑡*𝑖 amount of time has passed. The

probability of solving over all candidate methods in this case will be the average

of the 1− 𝑡*𝑖 values:
1

𝑚

𝑚∑︁
𝑖=1

(1− 𝑡*𝑖 ) = 1− 1

𝑚

𝑚∑︁
𝑖=1

𝑡*𝑖 .

This is true regardless of whether the problem is solved with the first or second

method chosen.

(iii) Both methods chosen have solve times 𝑡𝑓 or less. There are a total of 𝑚(𝑚− 1)

ways to choose the two methods. Let 𝑖 be the first method chosen and 𝑗 be the

second method chosen. Then:
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(a) If the problem is solved with the first method chosen, the probability of

solve is 1− 𝑡*𝑖 .

(b) If the problem is not solved with the first method but with the second,

the transition must land in the interval (0, 𝑡*𝑖 ) and it must be true that the

remaining time must be sufficient. If 𝑡*𝑖 + 𝑡*𝑗 ≤ 1, both methods fit within

the time limit and the problem is solved regardless of where the transition

lands in (0, 𝑡*𝑖 ). Else, the transition must land within a subinterval (0, 𝑡*𝑗),

which has the probability 1−𝑡*𝑗
𝑡*𝑖

relative to the transition landing in (0, 𝑡*𝑖 ).

Combining these two possibilities, the probability of solve (solving with

second method) is

𝑡*𝑖 min

(︂
1,

1− 𝑡𝑗
𝑡*𝑖

*)︂
= min(𝑡*𝑖 , 1− 𝑡*𝑗).

The probability of solve for Case (iii) will be the mean solve probability over

all possible choices of 𝑖, 𝑗:

1

𝑚(𝑚− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

(︀
1− 𝑡*𝑖 +min(𝑡*𝑖 , 1− 𝑡*𝑗)

)︀

=
1

𝑚(𝑚− 1)

⎛⎜⎜⎝𝑚(𝑚− 1)− (𝑚− 1)
𝑚∑︁
𝑖=1

𝑡*𝑖 +
∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min(𝑡*𝑖 , 1− 𝑡*𝑗)

⎞⎟⎟⎠

= 1− 1

𝑚

𝑚∑︁
𝑖=1

𝑡*𝑖 +
1

𝑚(𝑚− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min(𝑡*𝑖 , 1− 𝑡*𝑗).

Then we can compute

𝑃𝑠𝑜𝑙𝑣𝑒|1 =
(𝑛−𝑚)(𝑛−𝑚− 1)

𝑛(𝑛− 1)
· 0 + 2𝑚(𝑛−𝑚)

𝑛(𝑛− 1)

(︃
1− 1

𝑚

𝑚∑︁
𝑖=1

𝑡*𝑖

)︃
+
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+
𝑚(𝑚− 1)

𝑛(𝑛− 1)

⎛⎜⎜⎝1− 1

𝑚

𝑚∑︁
𝑖=1

𝑡*𝑖 +
1

𝑚(𝑚− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min(𝑡*𝑖 , 1− 𝑡*𝑗)

⎞⎟⎟⎠

=
2𝑚𝑛−𝑚2 −𝑚

𝑛(𝑛− 1)
− 2𝑛−𝑚− 1

𝑛(𝑛− 1)

𝑚∑︁
𝑖=1

𝑡*𝑖 +
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min(𝑡*𝑖 , 1− 𝑡*𝑗).

We then set 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) > 0 to obtain

−𝑡𝑓
𝑚

𝑛
+ 𝑡𝑓

⎛⎜⎜⎝2𝑚𝑛−𝑚2 −𝑚

𝑛(𝑛− 1)
− 2𝑛−𝑚− 1

𝑛(𝑛− 1)

𝑚∑︁
𝑖=1

𝑡*𝑖 +
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min(𝑡*𝑖 , 1− 𝑡*𝑗 )

⎞⎟⎟⎠ > 0

⇔ 𝑚(𝑛−𝑚)

𝑛(𝑛− 1)
− 2𝑛−𝑚− 1

𝑛(𝑛− 1)

𝑚∑︁
𝑖=1

𝑡*𝑖 +
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min(𝑡*𝑖 , 1− 𝑡*𝑗) > 0

⇔ 𝑚(𝑛−𝑚)− (2𝑛−𝑚− 1)
𝑚∑︁
𝑖=1

𝑡*𝑖 +
∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑚

min(𝑡*𝑖 , 1− 𝑡*𝑗) > 0,

as desired.

5.2.3.1 Remarks

We can derive the optimality condition for 𝑛 = 2. Just as in the Markov formulation

of the Primal Problem, we assume that 𝑡1 ≤ 𝑡𝑓 and 𝑡2 > 𝑡𝑓 , so 𝑛 = 2 and 𝑚 = 1.

From Equation (5.5), we have

1− 2𝑡*1 > 0
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⇔ 𝑡*1 <
1

2
. (5.6)

Note that Equation (4.5) for general 𝑛 ≥ 2 is a necessary condition. For 𝑛 = 2,

we can show that Equation (5.6) is also a sufficient condition. To do this, suppose

𝑡1 ≥ 𝑡𝑓
2

and consider the space for which the problem is solved. Thus there is an

interval with length of at least 𝑡𝑓
2

spent on method 1. There is an equally sized

space (of equal probability) defined by taking the complement (i.e., wherever there

is method 1, replace with method 2, and vice versa). This second space cannot solve

the problem because the longest interval (≥ 𝑡𝑓
2
) will be spent on method 2, which has

solve time greater than 𝑡𝑓 , and there there is no other interval of length greater than
𝑡𝑓
2
. (There is one sub-case where 𝑡1 =

𝑡𝑓
2

and the method switching arrival occurs at

𝑡 =
𝑡𝑓
2

where the complement also can solve the problem. However, the probability

of this occurring is zero since arrivals occur in continuous time).

Because the two spaces have equal probability, the probability of solve (associated

with the original space) cannot exceed 1
2
, so there is no benefit from switching. Thus,

switching can improve 𝑃𝑠𝑜𝑙𝑣𝑒 only when 𝑡1 <
𝑡𝑓
2
. This is similar to the corresponding

Markov 𝑛 = 2 result in Equation (5.2).

5.2.4 Continuous Dual Problem

Proposition 4. The existence of 𝑡𝑠𝑜𝑙𝑣𝑒 minimum for 𝜆 > 0 occurs when

𝑛∑︁
𝑖=1

𝑡2𝑖 −
4

𝑛− 1

∑︁
𝑖<𝑗

𝑡𝑖𝑡𝑗 > 0, (5.7)

where 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛 are the solve times of the 𝑛 methods.

The proof of Equation (5.7) uses a similar approach as the proofs for previous

optimality conditions in Equations (5.1), (5.3), and (5.5). The full details are given

in Appendix E.
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5.2.4.1 Remarks

Applying Equation (5.7) to the 𝑛 = 2 case, we obtain

𝑡21 + 𝑡22 − 4𝑡1𝑡2 > 0.

Assuming 𝑡2 ≥ 𝑡1, this is equivalent to:

𝑡2 > (2 +
√
3)𝑡1. (5.8)

Note that this is the continuous limit of the corresponding Markov Dual 𝑛 = 2

optimality criterion in Equation (5.4). All optimality criteria are summarized in Table

5.2.

Discrete Continuous
Primal 𝑛 = 2: Let 𝑡1 ≤ 𝑡𝑓 < 𝑡2. 𝑛 = 2: Let 𝑡1 ≤ 𝑡𝑓 < 𝑡2.

Then max𝑃𝑠𝑜𝑙𝑣𝑒 occurs at 𝛼 > 0 when Then max𝑃𝑠𝑜𝑙𝑣𝑒 occurs at 𝜆 > 0 when
𝑡1 ≤

⌊︁
𝑡𝑓
2

⌋︁
. 𝑡1 <

𝑡𝑓
2 .

𝑛 ≥ 2: See Proposition 5.1. 𝑛 ≥ 2: See Proposition 5.5.
Dual 𝑛 = 2: Let 𝑡1 ≤ 𝑡2. 𝑛 = 2: Let 𝑡1 ≤ 𝑡2.

Then min 𝑡𝑠𝑜𝑙𝑣𝑒 occurs at 𝛼 > 0 when Then min 𝑡𝑠𝑜𝑙𝑣𝑒 occurs at 𝜆 > 0 when

𝑡2 >
4𝑡1−1+

√
12𝑡21−12𝑡1+1

2 . 𝑡2 > (2 +
√
3)𝑡1.

𝑛 ≥ 2: See Proposition 5.3. 𝑛 ≥ 2: See Proposition 5.7.

Table 5.2: Optimality criteria for the different formulations in the model. The criteria
for 𝑛 = 2 solution methods are given. References for 𝑛 ≥ 2 solution methods are
included.

5.3 Analytic Solutions for 𝑃𝑠𝑜𝑙𝑣𝑒 and 𝑡𝑠𝑜𝑙𝑣𝑒 for 𝑛 = 2

Solution Methods

We give the analytic solutions for 𝑃𝑠𝑜𝑙𝑣𝑒 and 𝑡𝑠𝑜𝑙𝑣𝑒 for 𝑛 = 2 below. The results for

the discrete model are proved in Appendices F and G. The results for the continuous

model are proved below.
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5.3.1 Discrete Primal Problem 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼)

Proposition 5. In a Markov process, the probability of exactly 𝐵 transitions occur-

ring within 𝑡𝑓 timesteps is

(︂
𝑡𝑓 − 1

𝐵

)︂
𝛼𝐵(1− 𝛼)𝑡𝑓−1−𝐵.

Then the probability of solving the problem is

𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) =
∞∑︁

𝐵=0

(︂
𝑡𝑓 − 1

𝐵

)︂
𝛼𝐵(1− 𝛼)𝑡𝑓−1−𝐵𝑃𝑠𝑜𝑙𝑣𝑒|𝐵(𝑡1), (5.9)

where 𝑃𝑠𝑜𝑙𝑣𝑒|𝐵(𝑡1) is the probability of solving given a fixed 𝐵 transitions. We have

𝑃𝑠𝑜𝑙𝑣𝑒|𝐵 =

⎧⎪⎪⎨⎪⎪⎩
1

(𝑡𝑓−1

𝐵 )
𝑝
(︀
𝐵, 𝐵+1

2

)︀
if 𝐵 is odd

1

2(𝑡𝑓−1

𝐵 )

(︀
𝑝
(︀
𝐵, 𝐵

2

)︀
+ 𝑝

(︀
𝐵, 𝐵

2
+ 1
)︀)︀

if 𝐵 is even,
(5.10)

where

𝑝(𝐵,𝐶) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
𝐶
1

)︀(︀
𝑡𝑟(1)
𝐵

)︀
if 𝑡𝑏(1) < 𝑡1 ≤ 𝑡𝑏(0)(︀

𝐶
1

)︀(︀
𝑡𝑟(1)
𝐵

)︀
−
(︀
𝐶
2

)︀(︀
𝑡𝑟(2)
𝐵

)︀
if 𝑡𝑏(2) < 𝑡1 ≤ 𝑡𝑏(1)

...(︀
𝐶
1

)︀(︀
𝑡𝑟(1)
𝐵

)︀
−
(︀
𝐶
2

)︀(︀
𝑡𝑟(2)
𝐵

)︀
+ · · ·+ (−1)𝑘+1

(︀
𝐶
𝑘

)︀(︀
𝑡𝑟(𝑘)
𝐵

)︀
if 1 < 𝑡1 ≤ 𝑡𝑏(𝑘 − 1),

(5.11)

𝑡𝑟(𝑗) = 𝑡𝑓 − 𝑗𝑡1 + (𝑗 − 1), 𝑡𝑏(𝑗) =
𝑡𝑓−(𝐵−𝑗)

𝑗+1
, and 𝑘 = min

(︁⌊︁
𝑡𝑓−𝐵−1

𝑡1−1

⌋︁
, 𝐶
)︁
.

The proof of Proposition 5 is given in Appendix F.
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5.3.2 Discrete Dual Problem 𝑡𝑠𝑜𝑙𝑣𝑒(𝛼)

Proposition 6. Let 𝑟1 = 1 − (1 − 𝛼)𝑡1−1 and 𝑟2 = 1 − (1 − 𝛼)𝑡2−1 represent the

probabilities of not solving the problem before the next transition for method 1 and

method 2, respectively. Let

𝑡1̃ =

⎧⎪⎪⎨⎪⎪⎩
1−(1+𝛼(𝑡1−1))(1−𝛼)𝑡1−1

𝛼(1−(1−𝛼)𝑡1−1)
if 𝛼 > 0

𝑡1
2

if 𝛼 = 0

and

𝑡2̃ =

⎧⎪⎪⎨⎪⎪⎩
1−(1+𝛼(𝑡2−1))(1−𝛼)𝑡2−1

𝛼(1−(1−𝛼)𝑡2−1)
if 𝛼 > 0

𝑡2
2

if 𝛼 = 0

represent the expected time spent on a problem before the next transition, given

that the solution is not successful, for method 1 and method 2, respectively. Then the

solve time is

𝑡𝑠𝑜𝑙𝑣𝑒 =
𝑡1(1− 𝑟1) + 𝑡2(1− 𝑟2) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1) + 2𝑟1𝑟2(𝑡1̃ + 𝑡2̃)

2(1− 𝑟1𝑟2)
,

where we have suppressed the dependence on 𝛼 for 𝑟1, 𝑟2, 𝑡1̃, 𝑡2̃, and 𝑡𝑠𝑜𝑙𝑣𝑒 for

compactness of notation.

The proof of Proposition 6 is given in Appendix G.

5.3.3 Continuous Primal Problem 𝑃𝑠𝑜𝑙𝑣𝑒(𝜆)

Proposition 7. Let 𝑡*1 =
𝑡1
𝑡𝑓

be the solve time for the first method normalized by the

time limit. In a Poisson process, the probability of exactly 𝐵 transitions occurring

within a time interval 𝑡𝑓 is
(𝜆𝑡𝑓 )

𝐵𝑒𝜆𝑡𝑓

𝐵!
.

96



Then the probability of solving the problem is

𝑃𝑠𝑜𝑙𝑣𝑒(𝜆) =
∞∑︁

𝐵=0

(𝜆𝑡𝑓 )
𝐵𝑒−𝜆𝑡𝑓

𝐵!
𝑃𝑠𝑜𝑙𝑣𝑒|𝐵(𝑡

*
1), (5.12)

where 𝑃𝑠𝑜𝑙𝑣𝑒|𝐵(𝑡
*
1) is the probability of solving given a fixed 𝐵 transitions. Note

that this is a function of the nondimensionalized solve time for the first method. We

have

𝑃𝑠𝑜𝑙𝑣𝑒|𝐵 =

⎧⎪⎪⎨⎪⎪⎩
𝑝
(︀
𝐵, 𝐵+1

2

)︀
if 𝐵 is odd

1
2

(︀
𝑝
(︀
𝐵, 𝐵

2

)︀
+ 𝑝

(︀
𝐵, 𝐵

2
+ 1
)︀)︀

if 𝐵 is even,
(5.13)

where

𝑝(𝐵,𝐶) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
𝐶
1

)︀
(1− 𝑡*1)

𝐵 if 𝑡*1 ≥ 1
2(︀

𝐶
1

)︀
(1− 𝑡*1)

𝐵 −
(︀
𝐶
2

)︀
(1− 2𝑡*1)

𝐵 if 1
3 ≤ 𝑡*1 <

1
2(︀

𝐶
1

)︀
(1− 𝑡*1)

𝐵 −
(︀
𝐶
2

)︀
(1− 2𝑡*1)

𝐵 +
(︀
𝐶
3

)︀
(1− 3𝑡*1)

𝐵 if 1
4 ≤ 𝑡*1 <

1
3

...(︀
𝐶
1

)︀
(1− 𝑡*1)

𝐵 −
(︀
𝐶
2

)︀
(1− 2𝑡*1)

𝐵 + · · ·+
(︀
𝐶
𝐶

)︀
(−1)𝐶+1(1− 𝐶𝑡*1)

𝐵 if 𝑡*1 <
1
𝐶 .

(5.14)

Proof. We can begin by proving the case for which 𝐵 is odd. Let

𝑡(1), 𝑡(2), . . . , 𝑡(𝐵) ∈ [0, 1]

be the times at which the transitions arrive. These times are already normalized by

the time limit 𝑡𝑓 . Then WLOG assume

0 ≤ 𝑡(1) ≤ 𝑡(2) ≤ · · · ≤ 𝑡(𝐵) ≤ 1.
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The volume of this pyramid in 𝐵-dimensional space is 1
𝐵!

because there are 𝐵! ways

to order the arrivals. This can also be seen by evaluating the nested integral

𝑉0 =

∫︁ 1

0

∫︁ 𝑡(𝐵)

0

· · ·
∫︁ 𝑡(3)

0

∫︁ 𝑡(2)

0

𝑑𝑡(1)𝑑𝑡(2) · · · 𝑑𝑡(𝐵−1)𝑑𝑡(𝐵)

=

∫︁ 1

0

∫︁ 𝑡(𝐵)

0

· · ·
∫︁ 𝑡(3)

0

𝑡(2)𝑑𝑡(2) · · · 𝑑𝑡(𝐵−1)𝑑𝑡(𝐵)

...

=

∫︁ 1

0

· · ·
∫︁ 𝑡(𝑗+1)

0

(𝑡(𝑗))
𝑗−1

(𝑗 − 1)!
𝑑𝑡(𝑗−1) · · · 𝑑𝑡(𝐵)

...

=

∫︁ 1

0

(𝑡(𝐵))
𝐵−1

(𝐵 − 1)!
𝑑𝑡(𝐵)

=
1

𝐵!
.

In order for the problem solver to solve the problem, additional constraints are

needed. Consider the case where the problem solver starts on method 1. For odd 𝐵,

the problem solver is on method 1 in the disjoint intervals

[0, 𝑡(1)], [𝑡(2), 𝑡(3)], . . . , [𝑡(𝐵−1), 𝑡(𝐵)].

At least one of these intervals must have length at least 𝑡*1 for the problem solver to

solve the problem. Therefore at least one of the following 𝐶 = 𝐵+1
2

constraints must

be satisfied:
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𝑡(1) ≥ 𝑡*1

𝑡(3) − 𝑡(2) ≥ 𝑡*1

𝑡(5) − 𝑡(4) ≥ 𝑡*1

...

𝑡(𝐵) − 𝑡(𝐵−1) ≥ 𝑡*1.

These constraints can be rewritten as:

𝑡(1) ≥ 𝑡*1

𝑡(2) ≤ 𝑡(3) − 𝑡*1

𝑡(4) ≤ 𝑡(5) − 𝑡*1

...

𝑡(𝐵−1) ≤ 𝑡(𝐵) − 𝑡*1.

If 𝑡*1 > 1
2
, exactly one of the above constraints can be satisfied in the solution

region. Otherwise two disjoint intervals within [0, 1] will have a combined length

greater than one, which is impossible. If 1
3
< 𝑡*1 ≤ 1

2
, one or two constraints can be

satisfied (otherwise, three disjoint intervals within [0, 1] will have combined length

greater than one). In general, if 1
𝑟+1

< 𝑡*1 ≤ 1
𝑟
, it is possible for 𝑘 = 1, 2, . . . , 𝑟

constraints to be satisfied. This is repeated until 0 ≤ 𝑡*1 ≤ 1
𝐶
. where it is possible

for 𝑘 = 1, 2, . . . , 𝐶 constraints to be satisfied. If 𝑘 of the 𝐶 constraints are satisfied,

where 1 ≤ 𝑘 ≤ 𝐶, then the volume of the enclosed region is
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𝑉1 =

Replace 𝑘 of the (·) with 𝑡*1, the remainder with 0⏞  ⏟  ∫︁ 1

0

∫︁ 𝑡(𝐵)−(·)

0

· · ·
∫︁ 𝑡(4)−(·)

0

∫︁ 𝑡(3)

0

∫︁ 𝑡(2)

(·)
𝑑𝑡(1)𝑑𝑡(2)𝑑𝑡(3) · · · 𝑑𝑡(𝐵−1)𝑑𝑡(𝐵).

At the 𝑗th (where 𝑗 is odd) evaluation of the nested integral starting from the

innermost integral, we obtain

𝑉1 =

∫︁ 1

0

· · ·
∫︁ 𝑡(𝑗+1)−(·)

0

(𝑡(𝑗) − 𝑙𝑡*1)
𝑗−1

(𝑗 − 1)!
𝑑𝑡(𝑗)⏟  ⏞  

𝐼

· · · 𝑑𝑡(𝐵),

where 𝑙 is the accumulated number of (·)’s that equal 𝑡*1. For the immediate

integral corresponding to the 𝑗th evaluation (denoted 𝐼),

𝐼 =

⎧⎪⎪⎨⎪⎪⎩
(𝑡(𝑗)−𝑙𝑡*1)

𝑗

𝑗!
if (·) = 0

(𝑡(𝑗)−(𝑙+1)𝑡*1)
𝑗

𝑗!
if (·) = 𝑡*1.

Each time (·) = 𝑡*1, the coefficient of the 𝑡*1 term in the integrand increases by 1.

Thus, repeating this process, we obtain

𝑉1 =
(1− 𝑘𝑡*1)

𝐵

𝐵!
.

For each value of 𝑟, the union of all volumes for 𝑘 = 1, 2, . . . , 𝑟 is found using the

Principle of Inclusion-Exclusion. A visualization of the interplay between constraints

for 𝑘 = 2 and 𝑘 = 3 is shown in Figure 5-3. There are
(︀
𝐶
𝑘

)︀
ways to choose 𝑘 constraints

from 𝐶 constraints, so we can compute for a fixed 𝑟
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𝑉𝑟 =
1

𝐵!

(︂(︂
𝐶

1

)︂
(1− 𝑡*1)

𝐵 −
(︂
𝐶

2

)︂
(1− 2𝑡*1)

𝐵 + · · ·+
(︂
𝐶

𝑟

)︂
(−1)(𝑟+1)(1− 𝑟𝑡*1)

𝐵

)︂
.

Thus the corresponding solve probability is

𝑉𝑟

𝑉0

=

(︂(︂
𝐶

1

)︂
(1− 𝑡*1)

𝐵 −
(︂
𝐶

2

)︂
(1− 2𝑡*1)

𝐵 + · · ·+
(︂
𝐶

𝑟

)︂
(−1)(𝑟+1)(1− 𝑟𝑡*1)

𝐵

)︂
.

By symmetry, this solve probability is the same when the problem solver starts on

method 2. Combining the required cases, we obtain Equations 5.13 and 5.14 for odd

𝐵. For even 𝐵, a similar approach is used; the number of constraints is 𝐶 = 𝐵
2
+ 1

when starting on method 1, and 𝐶 = 𝐵
2

when starting on method 2. The process can

be repeated to obtain Equations 5.13 and 5.14 for even 𝐵.

5.3.3.1 Location of Optimum

Using the analytic solution derived in Section 5.3.3, we find the optimal switching

tendency 𝜆 that maximizes 𝑃𝑠𝑜𝑙𝑣𝑒 as a function of 𝑡*1, the nondimensional solve time

of the shorter method (see Figure 5-4). For 𝑡*1 < 1
2
, the optimal switching tendency

is positive; 𝜆𝑜𝑝𝑡 increases for decreasing 𝑡*1. Additionally, we find the improvement in

𝑃𝑠𝑜𝑙𝑣𝑒 (compared to the no-switch case) associated with the optimal 𝜆.

As a reference value, we find that to obtain a 𝑃𝑠𝑜𝑙𝑣𝑒 improvement of 10%, we need

a 𝑡*1 of 0.32, with a corresponding optimum 𝜆 of 0.143 for 𝑡𝑓 = 10 (1.43 switches per

𝑡𝑓 period). To obtain a 𝑃𝑠𝑜𝑙𝑣𝑒 improvement of 40%, we need a 𝑡*1 of 0.127, with an

optimum 𝜆 of 0.52 (5.2 switches per 𝑡𝑓 period). In order to achieve large improvements

in 𝑃𝑠𝑜𝑙𝑣𝑒, there must exist a very short method (compared to the time limit), and the
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Figure 5-3: Visualization of the Primal Problem 𝑃𝑠𝑜𝑙𝑣𝑒 = 𝑉𝑟

𝑉0
for cases with 𝐵 = 2

and 𝐵 = 3 transitions. For each case, the problem solver started on method 1 (the
shorter method). Light shaded areas represent regions where the problem is solved
because one inequality is satisfied. Dark shaded areas represent regions where the
problem is solved, but two inequalities are satisfied. We are interested in the union
of all regions where at least one inequality is satisfied. Therefore, when computing
the total 𝑃𝑠𝑜𝑙𝑣𝑒, the dark shaded areas must be accounted for using the Principle of
Inclusion-Exclusion.

problem solver must be willing to switch methods with high tendency 𝜆 in order to

encounter this method.

5.3.4 Continuous Dual Problem 𝑡𝑠𝑜𝑙𝑣𝑒(𝜆)

Proposition 8. Let 𝑟1 = 1−𝑒−𝜆𝑡1 and 𝑟2 = 1−𝑒−𝜆𝑡2 represent the probabilities of not

solving the problem before the next transition for method 1 and method 2, respectively.

Let

𝑡1̃ =

⎧⎪⎪⎨⎪⎪⎩
1
𝜆
− 𝑡1𝑒−𝜆𝑡1

1−𝑒−𝜆𝑡1
if 𝜆 > 0

𝑡1
2

if 𝜆 = 0

and

𝑡2̃ =

⎧⎪⎪⎨⎪⎪⎩
1
𝜆
− 𝑡2𝑒−𝜆𝑡2

1−𝑒−𝜆𝑡2
if 𝜆 > 0

𝑡2
2

if 𝜆 = 0
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Figure 5-4: Optimum location for two solution methods for the Poisson Primal for-
mulation as a function of the nondimensionalized solve time of the shorter method,
𝑡*1. Optimal 𝜆 (left) is the switching tendency 𝜆𝑜𝑝𝑡 that maximizes 𝑃𝑠𝑜𝑙𝑣𝑒 for 𝑡𝑓 = 10.
𝑃𝑠𝑜𝑙𝑣𝑒 improvement (right) is the improvement in solve probability over the no-switch
case, 𝑃𝑠𝑜𝑙𝑣𝑒(𝜆𝑜𝑝𝑡)− 𝑃𝑠𝑜𝑙𝑣𝑒(0).

represent the expected time spent on a problem before the next transition, given

that the solution is not successful, for method 1 and method 2, respectively. Then the

solve time is

𝑡𝑠𝑜𝑙𝑣𝑒 =
𝑡1(1− 𝑟1) + 𝑡2(1− 𝑟2) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1) + 2𝑟1𝑟2(𝑡1̃ + 𝑡2̃)

2(1− 𝑟1𝑟2)
,

where we have suppressed the dependence on 𝜆 for 𝑟1, 𝑟2, 𝑡1̃, 𝑡2̃, and 𝑡𝑠𝑜𝑙𝑣𝑒 for

compactness of notation.

Proof. For two solution methods, the problem solver will progress through a decision

tree as in Figure 5-5. The following outcomes are possible:

(i) The problem solver starts on method 1, switches methods an even number of

times, and eventually solves with method 1.
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(ii) The problem solver starts on method 1, switches methods an odd number of

times, and eventually solves with method 2.

(iii) The problem solver starts on method 2, switches methods an even number of

times, and eventually solves with method 2.

(iv) The problem solver starts on method 2, switches methods an odd number of

times, and eventually solves with method 1.

Figure 5-5: Decision tree for the Poisson Dual Problem with two solution methods.
The problem solver will start on either method with probability 𝑃 = 1

2
. If the problem

solver solves the problem with method 𝑖, they will do so with probability 𝑃 = 𝑒−𝜆𝑡𝑖 .
If the problem solver does not solve the problem with method 𝑖, they will do so with
probability 𝑃 = 1 − 𝑒−𝜆𝑡𝑖 , and switch to the other method. The problem solver will
continue to switch methods until they solve the problem.

Consider Case (i) first. The probability that the problem solver starts on method

1 and solves the problem with zero switching corresponds to the first Poisson arrival

occurring in the interval [𝑡1,∞), that is, after the problem is solved with method 1.

The distribution of Poisson arrival times is the exponential distribution, so the cumu-

lative distribution function 𝐹𝑇 (𝑡) = 1− 𝑒−𝜆𝑡 can be used to calculate this probability.

This probability is equal to 1− 𝐹𝑇 (𝑡1) = 𝑒−𝜆𝑡1 . The corresponding solve time is 𝑡1.
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The probability that the problem solver starts on method 1, switches two times

before solving, and then solves with method 1 corresponds to the first Poisson arrival

occurring in the interval [0, 𝑡1), the second arrival occurring in the interval [0, 𝑡2) after

the first arrival, and the third arrival occurring in the interval [𝑡1,∞) after the second

arrival. The probability is

𝐹𝑇 (𝑡1)𝐹𝑇 (𝑡2)(1− 𝐹𝑇 (𝑡1)) = (1− 𝑒−𝜆𝑡1)(1− 𝑒−𝜆𝑡2)𝑒−𝜆𝑡1 .

The mean time spent on method 𝑖, given the problem is not solved, is the mean

value of 𝑡 with exponential probability distribution function 𝑓𝑇 (𝑡) = 𝜆𝑒−𝜆𝑡 over the

interval [0, 𝑡𝑖). Call this 𝑡𝑖̃:

𝑡𝑖̃ ≡
∫︀ 𝑡𝑖
0
𝑡𝜆𝑒−𝜆𝑡𝑑𝑡∫︀ 𝑡𝑖

0
𝜆𝑒−𝜆𝑡𝑑𝑡

=
1
𝜆

(︀
1− 𝑒−𝑡𝑖𝜆)(𝜆𝑡𝑖 + 1

)︀
1− 𝑒−𝜆𝑡𝑖

=
1

𝜆
− 𝑡𝑖𝑒

−𝜆𝑡𝑖

1− 𝑒−𝜆𝑡𝑖
.

This is not defined at 𝜆 = 0, but

lim
𝜆→0

(︂
1

𝜆
− 𝑡𝑖𝑒

−𝜆𝑡𝑖

1− 𝑒−𝜆𝑡𝑖

)︂
=

𝑡𝑖
2
.

Therefore the mean solve time given that the problem solver starts on method 1,

switches two times, and solves with method 1 is:

1

𝜆
− 𝑡1𝑒

−𝜆𝑡1

1− 𝑒−𝜆𝑡1
+

1

𝜆
− 𝑡2𝑒

−𝜆𝑡2

1− 𝑒−𝜆𝑡2
+ 𝑡1 = 𝑡1̃ + 𝑡2̃ + 𝑡1.

In general, the probability of starting on method 1, switching 2𝑘 times, and solving

with method 1 is
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(︀
(1− 𝑒−𝜆𝑡1)(1− 𝑒−𝜆𝑡2)

)︀𝑘
𝑒−𝜆𝑡1 .

The corresponding solve time is

𝑘(𝑡1̃ + 𝑡2̃) + 𝑡1.

Next, consider Case (ii). We can see the probability of starting on method 1,

switching 2𝑘 − 1 times, and solving with method 2 is

(1− 𝑒−𝜆𝑡1)𝑘(1− 𝑒−𝜆𝑡2)𝑘−1𝑒−𝜆𝑡2 .

The corresponding solve time is

𝑘𝑡1̃ + (𝑘 − 1)𝑡2̃ + 𝑡2.

For ease of notation, set 𝑟1 = 1− 𝑒−𝜆𝑡1 and 𝑟2 = 1− 𝑒−𝜆𝑡2 . The average 𝑡𝑠𝑜𝑙𝑣𝑒(𝜆),

given that the problem solver starts on method 1 (Cases (i) and (ii)) is

𝑡𝑠𝑜𝑙𝑣𝑒,1 =

∞∑︁
𝑘=0

(︁
(𝑘(𝑡1̃ + 𝑡2̃) + 𝑡1)(𝑟1𝑟2)

𝑘(1− 𝑟1) + ((𝑘 + 1)𝑡1̃ + 𝑘𝑡2̃ + 𝑡2)𝑟
𝑘+1
1 𝑟𝑘2(1− 𝑟2)

)︁
.

Note that this is a sum of geometric and arithmetic-geometric series. Then we can

evaluate

𝑡𝑠𝑜𝑙𝑣𝑒,1 =
∞∑︁
𝑘=0

𝑡1(𝑟1𝑟2)
𝑘(1− 𝑟1) +

∞∑︁
𝑘=0

𝑘(𝑡1̃ + 𝑡2̃)(𝑟1𝑟2)
𝑘(1− 𝑟1)+

∞∑︁
𝑘=0

(𝑡2 + 𝑡1̃)𝑟
𝑘+1
1 𝑟𝑘2(1− 𝑟2) +

∞∑︁
𝑘=0

𝑘(𝑡1̃ + 𝑡2̃)𝑟
𝑘+1
1 𝑟𝑘2(1− 𝑟2)
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=
𝑡1(1− 𝑟1)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)𝑟1𝑟2(1− 𝑟1)

(1− 𝑟1𝑟2)2
+

(𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)𝑟
2
1𝑟2(1− 𝑟2)

(1− 𝑟1𝑟2)2

=
𝑡1(1− 𝑟1) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)(𝑟1𝑟2(1− 𝑟1) + 𝑟21𝑟2(1− 𝑟2))

(1− 𝑟1𝑟2)2
.

By symmetry, the average 𝑡𝑠𝑜𝑙𝑣𝑒(𝜆), given that the problem solver starts on method

2 (Cases (iii) and (iv)) is

𝑡𝑠𝑜𝑙𝑣𝑒,2 =
𝑡2(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)(𝑟1𝑟2(1− 𝑟2) + 𝑟22𝑟1(1− 𝑟1))

(1− 𝑟1𝑟2)2
.

The overall 𝑡𝑠𝑜𝑙𝑣𝑒 is

𝑡𝑠𝑜𝑙𝑣𝑒 =
1

2
(𝑡𝑠𝑜𝑙𝑣𝑒,1 + 𝑡𝑠𝑜𝑙𝑣𝑒,2)

=
𝑡1(1− 𝑟1) + 𝑡2(1− 𝑟2) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1)

2(1− 𝑟1𝑟2)
+

(𝑡1̃ + 𝑡2̃) (𝑟1𝑟2(2− (𝑟1 + 𝑟2)) + 𝑟21𝑟2(1− 𝑟2) + 𝑟22𝑟1(1− 𝑟1))

2(1− 𝑟1𝑟2)2

=
𝑡1(1− 𝑟1) + 𝑡2(1− 𝑟2) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1) + 2𝑟1𝑟2(𝑡1̃ + 𝑡2̃)

2(1− 𝑟1𝑟2)
,

as desired.
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5.3.4.1 Location of Optimum for 𝑛 = 2

We use the analytic solution derived in Section 5.3.4 to find the optimal switching

tendency 𝜆 that minimizes 𝑡𝑠𝑜𝑙𝑣𝑒 as a function of 𝑡1
𝑡2

, the ratio of the solve times of the

longer and shorter methods (see Figure 5-6). For 𝑡1
𝑡2

< 1
2+

√
3
, the optimal switching

tendency is positive; 𝜆𝑜𝑝𝑡 increases for decreasing 𝑡1
𝑡2

. Additionally, we find the fraction

reduction in 𝑡𝑠𝑜𝑙𝑣𝑒 (compared to the no-switch case) associated with the optimal 𝜆.

As a reference value, we find that to obtain a 𝑡𝑠𝑜𝑙𝑣𝑒 reduction of 10%, we need a 𝑡1
𝑡2

of 0.156, with a corresponding optimum 𝜆 of 0.195 for 𝑡𝑓 = 10 (1.95 switches per time

period of length 𝑡2). To obtain a 𝑡𝑠𝑜𝑙𝑣𝑒 reduction of 50%, we need a 𝑡1
𝑡2

of 0.075, with

a optimum 𝜆 of 0.76 (7.6 switches per time period of length 𝑡2). In order to achieve

large reductions in 𝑡𝑠𝑜𝑙𝑣𝑒, one method must be very short compared to the other, and

the problem solver must be willing to switch methods with high tendency 𝜆 in order

to encounter this shorter method.

Figure 5-6: Optimum location for two solution methods for Poison Dual formulation
as a function of the ratio of the two methods’ solve times, 𝑡1

𝑡2
. Optimal 𝜆 (left) is the

switching tendency 𝜆𝑜𝑝𝑡 that minimizes 𝑡𝑠𝑜𝑙𝑣𝑒 for 𝑡2 = 10. Fraction 𝑡𝑠𝑜𝑙𝑣𝑒 reduction
(right) is the reduction in solve time over the no-switch case,

⃒⃒⃒
𝑡𝑠𝑜𝑙𝑣𝑒(𝜆𝑜𝑝𝑡)−𝑡𝑠𝑜𝑙𝑣𝑒(0)

𝑡𝑠𝑜𝑙𝑣𝑒(0)

⃒⃒⃒
.
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5.4 Remarks

In this Chapter, we extended the analytic model formulated in Chapter 4. For both

Primal and Dual Problems and both Markov and Poisson formulations, we derived

conditions for which the problem solving outcome can be optimized by using the cor-

rect switching tendency. While the problem solving implications of the full formulas

may not be immediately obvious, the cases with two solution methods (𝑛 = 2) repre-

sent a good approximation of the general trends. In the Primal Problem, if there is a

method with a solve time of half the time limit ( 𝑡𝑓
2
) or less, switching methods with

optimal tendency will maximize the solve probability 𝑃𝑠𝑜𝑙𝑣𝑒. In the Dual Problem, if

the ratio of the solve times of the short method and the longer method is 1
2+

√
3
≈ 0.268

or less, then switching methods with optimal tendency will minimize the average solve

time 𝑡𝑠𝑜𝑙𝑣𝑒. Increasing the number of solution methods will increase the intricacy of

the optimality space for the switching tendency (𝛼 or 𝜆). However, general trends

remain. The existence of sufficiently short methods compared to 𝑡𝑠𝑜𝑙𝑣𝑒 for the Primal

Problem, or the existence of methods of sufficiently different solve time for the Dual

Problem will lead to a nonzero switching tendency optimizing the problem solving

outcome.

Additionally, we derived analytic solutions for 𝑛 = 2 Primal and Dual Problems

for both the Markov and Poisson formulations. The Poisson Primal Problem solution

𝑃𝑠𝑜𝑙𝑣𝑒(𝜆) given in Proposition 7 has a solution space with a regular geometric structure;

it is the union of pyramid volumes inside a multi-dimensional unit cube (see Figure

5-3). The Poisson Dual Problem solution 𝑡𝑠𝑜𝑙𝑣𝑒(𝜆) given in Proposition 8 can be

represented as a series of outcomes given in a flowchart in Figure 5-5. These analytic

solutions are a way to visually represent the structure of Poisson formulation solutions.

They also allow for the computation of the optimal switching tendency, as well as the

extrema of 𝑃𝑠𝑜𝑙𝑣𝑒 (Figure 5-4) and 𝑡𝑠𝑜𝑙𝑣𝑒 (Figure 5-6).
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5.5 Applications

Note that in the 𝑛 = 2 time-limited case, the threshold for switching (𝑡1 <
𝑡𝑓
2
) is

less strict than the time unlimited case (𝑡1 < 𝑡2
2+

√
3
). With a time limit, there are

more situations where switching is beneficial. An example of a situation that has a

restrictive time limit is an exam. In an exam with appropriate difficulty, the time

limit and the method solve times are approximately the same order of magnitude,

i.e., 𝑡𝑓 ∼ 𝑡𝑖. If the student is able to find a short method of length 𝑡𝑓
2

or less, then a

switching strategy will help them improve their solve probability.

On the other hand, there are situations that do not have a restrictive time limit.

One example is a problem set for an undergraduate class. The time limit is on the

order of one week, but the time required to finish the problem set is usually on

the order of 3-6 hours. Since 𝑡𝑓 ≫ 𝑡𝑖, we can approximate this as a time unlimited

situation. Yet the student still seeks to minimize their solve time while still producing

a satisfactory result, so they have time for sleep, socializing, etc.

Another example is research for a PhD Thesis. The completion time is on the

order of 5-7+ years and can often slip. There can be some exploration and project

changes because the student does not know exactly which project is a good fit at the

beginning. Yet the student still seeks to minimize their completion time in order to

advance in their career in a timely manner.

A third example is an engineering design project in industry. The time limit

is set at the beginning, but can sometimes be extended to allow the project to be

completed to specification. Additionally, unforeseen circumstances can cause a change

in the techniques or methods used. Yet the project managers seek to minimize the

completion time in order to save money.

In these situations, the problem solver should be persistent to minimize their solve

time. Switching methods too many times without completing the task will lead to a

large amount of time consumed. Only when there exists methods or solution paths
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that are very short compared to the alternative (by a ratio of 1
2+

√
3
≈ 0.268 or less)

does it make sense to contemplate switching.
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Chapter 6

Conclusions

6.1 Recommendations for Improving Problem Solv-

ing Outcome

The framework presented herein suggests the following recommendations for improv-

ing problem solving outcomes:

∙ Learn low solve time methods. Previous studies suggest that methods such as

estimation and approximation are underemphasized in the curriculum [15, 20].

This is consistent with our data, in which students gravitate towards more

complex methods. Another approach is to reuse and adapt existing solutions

for similar problems.

∙ Choose optimal 𝛼. Encourage students to make an effort to solve a problem,

but if the solution method fails, encourage them to make the decision to switch

methods.

∙ Improve starting method choice. Recommend students to choose less complex

methods when they start solving problems, especially if there are strict time

limits.
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∙ Improve choice of subsequent method. When students switch methods, they

should move toward less time-consuming or more familiar methods.

∙ Shorten solve times. Practice methods that students already know to reduce

solve time.

According to the modeling assumptions in Chapter 4.1, these recommendations

should be applied to problems with multiple ways to solve. Each solution method

considered should be sufficient to solve the problem.

These five recommendations fall into two categories: improving tools and improv-

ing strategy. They are described in more detail below.

6.1.1 Improving Tools

The priority for improving tools is to have students learn low solve time methods.

One way to implement this is to instruct students to use estimation or approximation

techniques in addition to traditional tools used for detailed analysis, thereby increas-

ing the number of low complexity methods at the students’ disposal. Another way is

to reuse a complete solution for an existing problem, as this can save time compared

to constructing a solution from scratch.

The experimental results suggest that students who use lower complexity methods

are more likely to correctly solve the problem within the time limit. Additionally,

the model suggests adding low complexity methods will improve 𝑃𝑠𝑜𝑙𝑣𝑒 regardless of

whether students switch or not. In Figure 6-1a, the analytic model was computed for

three scenarios for a problem with four possible solution methods and a time limit of

10 timesteps. In the first scenario, the problem solver could solve the problem using

one low complexity method; the other solution methods cannot be used to solve within

the time limit. In the second scenario, the problem solver could solve using two low

complexity methods. In the third scenario, the problem solver could solve with three
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low complexity methods. It was found that as the number of usable low complexity

methods increases, 𝑃𝑠𝑜𝑙𝑣𝑒 significantly increases for every value of switching tendency

𝛼 ∈ [0, 1). The optimal 𝛼 is similar for the three scenarios.

Another approach is to improve the solve time of methods that can already be

completed under the time limit. To implement this, students can simply practice

techniques they already know to become more proficient. The experimental results

show that a few students who completed the Volume Problem made mistakes that

led to an incorrect answer. Finishing the problem faster can lead to more time for

double checking. Additionally, the model suggests this does not improve 𝑃𝑠𝑜𝑙𝑣𝑒 if

the student remains on the first method selected (𝛼 = 0), but can increase 𝑃𝑠𝑜𝑙𝑣𝑒

if the student switches methods. In Figure 6-1b, the analytic model was computed

for three scenarios for a problem with three solution methods and a time limit of 10

timesteps. Two of these three solution methods can be completed under the time

limit. The scenarios show the effect of reducing solve time on the two methods that

can be completed within the time limit. In the first scenario, the solve times of these

two “effective” methods were close to the time limit. In the second scenario, the

solve times of the effective methods were approximately half the time limit. In the

third scenario, the solve time of one effective method was only one fifth the time

limit, while the solve time of the other was half the time limit. As the solve times

of the effective methods were reduced, 𝑃𝑠𝑜𝑙𝑣𝑒 is increased for every switching strategy

𝛼 ∈ (0, 1). Note that this approach should be implemented only if students already

know low solve time methods, and are able to switch between methods (See Figure

6-3). The strategy of switching methods is discussed in more detail below.

6.1.2 Improving Strategies

The most fundamental strategy is to switch methods with the right frequency, that

is, selecting an optimal 𝛼. To implement this, students can be taught that it is okay
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Figure 6-1: Examples of improving tools. (a) Introducing more low complexity meth-
ods will improve probability of solve. The analytic model was computed for three
scenarios for a problem with four possible solution methods and a time limit of 10
timesteps. In the first scenario (light gray), the problem solver could solve the prob-
lem using one low complexity method; the other solution methods cannot be used to
solve within the time limit. In the second scenario (dark gray), the problem solver
could solve using two low complexity methods. In the third scenario (black), the
problem solver could solve with three low complexity methods. Note that as the
number of usable low complexity methods increases, 𝑃𝑠𝑜𝑙𝑣𝑒 significantly increases for
every value of switching tendency 𝛼 ∈ [0, 1). The optimal 𝛼 is similar for the three
scenarios. (b) Reducing solve times can improve the solve probability, given that the
student chooses the optimal switching tendency. The analytic model was computed
for three scenarios for a problem with three solution methods and a time limit of 10
timesteps. Two of these three solution methods can be completed under the time
limit. The scenarios show the effect of reducing solve time on the two methods that
can be completed within the time limit. In the first scenario (light gray), the solve
times of these two “effective” methods were close to the time limit. In the second
scenario (dark gray), the solve times of the effective methods were approximately half
the time limit. In the third scenario (black), the solve time of one effective method
was only one fifth the time limit, while the solve time of the other was half the time
limit. As the solve times of the effective methods were reduced, 𝑃𝑠𝑜𝑙𝑣𝑒 is increased for
every switching strategy 𝛼 ∈ (0, 1). However, the benefit for switching was significant
for only the third scenario.
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to switch their approach, if they see their current method as unlikely to succeed. This

strategy works by allowing the student to find a method that they are able to complete

within the time limit, and can only improve 𝑃𝑠𝑜𝑙𝑣𝑒 if the student knows a sufficient

amount of low solve time methods. By default, the model switches from method to

method at random, without regard to method choice. However, it is still possible to

improve 𝑃𝑠𝑜𝑙𝑣𝑒 if there are enough low complexity (low solve time) methods. In Figure

6-2a, the analytic model was computed for a problem with four solution methods and

a time limit of 10 timesteps. Two of these four solution methods can be completed

under the time limit. Compared to the no switch solve probability 𝑃𝛼=0, the maximum

solve probability 𝑃𝑚𝑎𝑥 at the optimal switching tendency 𝛼𝑜𝑝𝑡 is significantly higher.

Additionally, this strategy is consistent with experimental results, which suggest that

students who switch methods are more likely to correctly solve the problem.

Another strategy is to start on less complex, lower solve time methods. It is a

strategy consistent with how experts start problems, according to previous work by

Li and Hosoi [12]. This strategy can be implemented by emphasizing to the student

that they should first try a simple approach, and only proceed to a more detailed

method if more accuracy is needed. This strategy requires the student to already

know low solve time methods. According to the experimental results, students who

started on simpler methods were more likely to solve the problem correctly (See Figure

3-3). Additionally, the model suggests that a better starting method improves 𝑃𝑠𝑜𝑙𝑣𝑒

regardless of whether the student switches methods or not. It has the biggest effect

at low 𝛼; the better the starting method, the less need there is to switch methods. In

Figure 6-2b, the analytic model was computed for three scenarios with a time limit

of 10 timesteps and three solution methods (solve times 2, 5, and 12 timesteps). In

the first scenario, the starting probabilities were weighted towards the method with

longest solve time. In the second scenario, the starting probabilities were weighted

equally. In the third scenario, the starting probabilities were weighted towards the
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method with the shortest solve time. As the weight is shifted towards the shorter

solve time methods, 𝑃𝑠𝑜𝑙𝑣𝑒 is improved for every value of switching tendency 𝛼 ∈ [0, 1).

A third strategy is to improve how you switch. To implement this strategy, stu-

dents can be taught to switch to a less complex method than their current method,

instead of switching methods haphazardly. Note that this strategy does not depend

on the previous strategy and can be implemented independently (See Figure 6-3).

This type of switching should be applied when there are simple approaches that are

sufficiently precise to solve the problem to the desired resolution. By default, the

model allows switching from method to method at random. Implementing a better

switching strategy will increase both 𝑃𝑠𝑜𝑙𝑣𝑒 and the corresponding optimal 𝛼 as well.

This strategy cuts down on undesirable switching from less complex to more complex

methods, so it also increases the benefit from switching, thereby increasing optimal

𝛼. In Figure 6-2c, the analytic model was computed for three scenarios for a problem

with four solution methods and a time limit of 10 timesteps. Two of these four so-

lution methods can be completed under the time limit. In the first scenario, random

transitions were used. In the second scenario, the problem solver avoided the most

complex method when transitioning. In the third scenario, the problem solver only

transitioned from a more complex to a simpler method. As the transition strategy is

improved, 𝑃𝑠𝑜𝑙𝑣𝑒 is increased for every switching strategy 𝛼 ∈ (0, 1). Additionally, this

strategy is consistent with the experimental results, where six of eight students who

switched did so from more complex to less complex methods (See Figure 3-3). This

subgroup of students performed better than average (four of six students obtained the

correct answer), though limited conclusion can be drawn due to small sample size.

6.1.3 Order of Deployment

Our framework suggests that the recommendations for teaching tools and strategies

should be deployed in a certain order for maximum effect. This is because some

118



Figure 6-2: Examples of improving strategies. (a) Switching methods with optimal
tendency can improve 𝑃𝑠𝑜𝑙𝑣𝑒. The analytic model was computed for a problem with
four solution methods and a time limit 𝑡𝑓 = 10. Two of these four solution methods
can be completed within 𝑡𝑓 . Compared to the no switch solve probability 𝑃𝛼=0, the
maximum solve probability 𝑃𝑚𝑎𝑥 at the optimal switching tendency 𝛼𝑜𝑝𝑡 is signifi-
cantly higher. (b) Choosing a better starting method will improve 𝑃𝑠𝑜𝑙𝑣𝑒, especially
when the switching tendency 𝛼 is low. The model was computed for three scenarios
with 𝑡𝑓 = 10 and three solution methods (solve times 2, 5, and 12 timesteps). In the
first scenario (light gray), the starting probabilities were weighted towards the longest
method. In the second scenario (dark gray), the starting probabilities were weighted
equally. In the third scenario (black), the starting probabilities were weighted towards
the shortest method. Note that as the weight is shifted towards the shorter methods,
𝑃𝑠𝑜𝑙𝑣𝑒 is improved for every 𝛼 ∈ [0, 1). However, the effects are greatest for small 𝛼.
Also, the optimal 𝛼 decreases as starting method is improved. (c) Judiciously switch-
ing methods can improve 𝑃𝑠𝑜𝑙𝑣𝑒. Improvement occurs when the student chooses to
switch from more complex to less complex methods. The model was computed for
three scenarios for a problem with four solution methods and 𝑡𝑓 = 10. Two of these
four solution methods can be completed within 𝑡𝑓 . In the first scenario (light gray),
random transitions were used. In the second scenario (dark gray), the problem solver
avoided the most complex method when switching. In the third scenario (black),
the problem solver only switched from a more complex to a simpler method. As the
transition strategy is improved, 𝑃𝑠𝑜𝑙𝑣𝑒 is increased for every 𝛼 ∈ (0, 1). Additionally,
the better the transition strategy, the more benefit there is from switching, so the
optimal 𝛼 is increased.
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tools or strategies are prerequisites for others. The recommended deployment order

is shown in Figure 6-3.

First, low solve time methods, such as estimation and approximation, should be

taught to students. Once they have low solve time methods in their toolbox, students

can increase their solve probability by switching methods with optimal tendency

𝛼𝑜𝑝𝑡. Without low solve time methods, our analytic model shows that it is unlikely

students will be able to improve problem solving outcomes with switching. In parallel

to switching, they can improve their solve probability by starting with lower solve

time methods. Once students can improve 𝑃𝑠𝑜𝑙𝑣𝑒 via switching, they can optimize

their switching strategy by moving to simpler methods instead of complex ones. In

parallel, they can further improve the solve time of the methods they already know.

Figure 6-3: Order of deployment for recommendations to improve problem solving
outcomes. Note that tools and strategies are interleaved. The tool of low solve time
methods is essential and prerequisite to other strategies and tools; it directly unlocks
the strategy of switching and the strategy of starting on a low complexity method.
Subsequently, the strategy of switching unlocks the optimization of switching strategy
and the optimization of solve time for already known methods.
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6.2 Future Work

One potential area of future work is to extend the model. For example, the model can

be extended to answer the question “does attempting a simpler method first prepare

you for the more complex ones?” For example, a student starting off on a simpler

method may find it easier to move onto a more complex method than one starting

with a complex method, possibly due to more familiarity with the problem. More

generally, it is possible for a student’s experience on their first method to influence

their performance or outcome on subsequent methods.

Previous work framed estimation as a standalone skill currently missing from the

curriculum [15, 20]. However, the findings of this work suggest that estimation, as

a low complexity solution method, is a useful tool that can supplement higher com-

plexity solution methods in problem solving. The small time requirements and high

probability of solve associated with lower complexity methods suggest that there may

be concrete situations in the standard curriculum in which these can be used. An-

other potential area of future work would be to determine where in the curriculum

it would make sense to deploy these lower complexity methods. Would it be bene-

ficial to include estimation or simple approximations in Fluid Dynamics, Statics, or

Controls? Or when teaching Numerical Computation or Design? If case studies can

demonstrate effectiveness, it would go a long way in changing the “detailed analysis

only” tendency of today’s engineering curriculum.

There could be a range of ways to include low complexity methods in the cur-

riculum. An example of curriculum integration would be to ask a student to solve a

problem two ways on an assignment or examination. For an assignment, this could

potentially be helpful for increasing student awareness of multiple solution paths. For

an examination, this could allow the instructor to better assess students’ understand-

ing.

There are additional ways that low complexity methods can be used to enhance
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students’ in-class problem solving. For example, in a statics class, where there are

relatively “standard” ways to solve problems, it may be helpful to introduce students to

dimensional analysis and units-checking. Such techniques can help students to verify

their solutions and reduce their need to ask the instructor, “is my answer right?”

When introducing the idea of low solve time methods to students, they may object

that they are not allowed to simply use any method they choose in class. In lower level,

theory-based classes (such as statics, dynamics, fluids, and thermodynamics), there is

a legitimate need to learn problem solving tools. This is consistent with the flowchart

in Figure 6-3. However, nothing prevents the student from making an initial estimate

to guide their full solution, or double checking the units in their answer. And when

the student proceeds to upper-level design classes, they are expected to apply the

theory to their design projects. In this case, they will have opportunities to consider

different solution methods and apply the problem solving strategies described in this

work.

Another area that would benefit from additional work is student attitudes towards

the use of estimations and approximations. Results from this work suggest that

students have negative attitudes towards these less complex techniques. To what

extent is this true and why? A better understanding of this would help the educator

community better convey to students the value of lower complexity techniques in

problem solving.
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Appendix A

Questionnaire Given after the Volume

Problem

1. On the previous problem, which method did you pick and why?

2. Was your method successful? (circle one)

(a) Yes

(b) No

3. Did you switch methods? (circle one)

(a) Yes

(b) No

4. If so, why did you switch?
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5. How frustrated were you? (circle a number)

not at all frustrated 1 2 3 4 5 extremely frustrated

6. How difficult did you find the problem? (circle a number)

not at all difficult 1 2 3 4 5 extremely difficult

7. On the previous problem, which best describes your experience? (circle one):

(a) I do not have an effective solution approach, even after trying to solve the

problem

(b) I now have an effective solution approach, but only after trying to solve

the problem

(c) I knew of an effective solution approach immediately after reading the

problem

8. What is your confidence in your solution method? (circle a number)

no confidence 1 2 3 4 5 complete confidence

9. What is your confidence in your answer? (circle a number)

no confidence 1 2 3 4 5 complete confidence
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Appendix B

Example of 𝑃𝑠𝑜𝑙𝑣𝑒 Calculation

The following example shows how the total solve probability 𝑃𝑠𝑜𝑙𝑣𝑒 is calculated as

function of switching probability 𝛼. This section is from a previous publication by Li

and Hosoi [14].

Consider a problem with time limit 𝑡𝑓 = 4 and two solution methods with solve

times 𝑡1 = 2 and 𝑡2 = 6. Let the probability of starting on each method be 1
2
. Because

the problem solver can work on either method 1 or method 2 on each of the four time

steps, the following 24 = 16 sequences of methods are possible:

1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222,

2111, 2112, 2121, 2122, 2211, 2212, 2221, 2222

Let 𝐵 be the number of method transitions in the sequence (e.g. going from

method 1 to 2 or vice versa). For a sequence length of 𝑡𝑓 , there are 𝑡𝑓−1 opportunities

between timesteps where the problem solver can switch methods or remain on the

same method. For each sequence, the probability of the sequence occurring is the

product of 1
2

(the probability of starting on the either method), 𝛼𝐵 (associated with

the 𝐵 method transitions), and (1−𝛼)𝑡𝑓−1−𝐵 (associated with the 𝑡𝑓−1−𝐵 instances
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of staying on the same method):

𝑃𝑆 =
1

2
𝛼𝐵(1− 𝛼)𝑡𝑓−1−𝐵.

A sequence solves the problem if there are 𝑡1 = 2 consecutive ones in the sequence.

Method 2 cannot be used to solve the problem because the solve time is greater

than the time limit. We can then summarize sequence probabilities and whether the

sequence solves the problem (see Table B.1).

Sequence Solves problem? Sequence probability
1111 Yes (1− 𝛼)3/2
1112 Yes 𝛼(1− 𝛼)2/2
1121 Yes 𝛼2(1− 𝛼)/2
1122 Yes 𝛼(1− 𝛼)2/2
1211 Yes 𝛼2(1− 𝛼)/2
1212 No 𝛼3/2
1221 No 𝛼2(1− 𝛼)/2
1222 No 𝛼(1− 𝛼)2/2
2111 Yes 𝛼(1− 𝛼)2/2
2112 Yes 𝛼2(1− 𝛼)/2
2121 No 𝛼3/2
2122 No 𝛼2(1− 𝛼)/2
2211 Yes 𝛼(1− 𝛼)2/2
2212 No 𝛼2(1− 𝛼)/2
2221 No 𝛼(1− 𝛼)2/2
2222 No (1− 𝛼)3/2

Table B.1: Sequence probabilities for an example for two solution methods with
𝑡1 = 2, 𝑡2 = 6, and 𝑡𝑓 = 4.

For all sequences that solve the problem, we add up their probabilities to obtain

the total solve probability. We ignore sequences that don’t solve the problem. Thus

𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) =
1

2
(1− 𝛼)3 + 4 · 1

2
𝛼(1− 𝛼)2 + 3 · 1

2
𝛼2(1− 𝛼)

=
1

2
(1 + 𝛼− 2𝛼2).

126



Checking the graph of 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) (see Figure B-1), we see that the maximum solve

probability occurs at where 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(𝛼) = 0, or 𝛼 = 1

4
, 𝑃𝑠𝑜𝑙𝑣𝑒 =

9
16

.

Figure B-1: Graph of the solve probability 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼). Note that at 𝛼 = 0, 𝑃𝑠𝑜𝑙𝑣𝑒 is 1
2
.

This corresponds to the no-switch case, where the problem solver stays on the first
method chosen. As 𝛼 is increased, 𝑃𝑠𝑜𝑙𝑣𝑒 reaches a maximum of 9

16
at 𝛼 = 1

4
. Further

increasing 𝛼 will lead to a decrease in 𝑃𝑠𝑜𝑙𝑣𝑒 until the solve probability reaches zero
at 𝛼 = 1.
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Appendix C

Optimality Condition for 𝑃𝑠𝑜𝑙𝑣𝑒 with

𝑛 = 2 Solution Methods (Markov

Formulation of Primal Problem)

In Section 4.2, it was claimed that if 0 < 𝑡1 ≤ ⌊ 𝑡𝑓
2
⌋, there exists 𝛼 > 0 that maximizes

𝑃𝑠𝑜𝑙𝑣𝑒. On the other hand, if ⌊ 𝑡𝑓
2
⌋ < 𝑡1 < 𝑡𝑓 , 𝛼 = 0 maximizes 𝑃𝑠𝑜𝑙𝑣𝑒. We will show

this result here.

First, consider the case where 0 < 𝑡1 ≤ ⌊ 𝑡𝑓
2
⌋. Let us start by defining a sequence

as a string of 𝑡𝑓 digits representing the method used by the problem solver on each

of the 𝑡𝑓 timesteps. For the simple model in Section 4.2, the digits can only be

1 or 2, representing methods 1 and 2. Let 𝐵 represent the number of transitions

between methods. For example, the sequence 12211222 has eight timesteps and three

transitions, so 𝑡𝑓 = 8 and 𝐵 = 3.

The probability of obtaining a given sequence with 𝐵 transitions is the product

of the starting method probability (equal to 1
2
), the probability of transitions at

𝐵 timesteps (equal to 𝛼𝐵), and the probability of no transitions at the remaining

timesteps (equal to (1− 𝛼)𝑡𝑓−1−𝐵). This product is 1
2
𝛼𝐵(1− 𝛼)𝑡𝑓−1−𝐵.
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If this sequence does not solve the problem, it contributes zero to 𝑃𝑠𝑜𝑙𝑣𝑒. On the

other hand, if it solves the problem, it contributes a term

1

2
𝛼𝐵(1− 𝛼)𝑡𝑓−1−𝐵 ≡ 𝑄(𝛼)

to 𝑃𝑠𝑜𝑙𝑣𝑒. We can write 𝑃𝑠𝑜𝑙𝑣𝑒 informally as the sum of these 𝑄(𝛼) terms:

𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) = Σsequence solves problem𝑄(𝛼)

We evaluate

𝑑𝑄

𝑑𝛼
=

1

2

(︀
𝐵𝛼𝐵−1(1− 𝛼)𝑡𝑓−1−𝐵 − 𝛼𝐵(𝑡𝑓 − 1−𝐵)(1− 𝛼)𝑡𝑓−2−𝐵

)︀
Note that 𝑄′(0) = 0 except when 𝐵 = 0 or 1. If 𝐵 = 0,

𝑄′(0) =
1

2

(︀
−𝛼0(𝑡𝑓 − 1)(1− 0)𝑡𝑓−2

)︀
= −1

2
(𝑡𝑓 − 1)

If 𝐵 = 1,

𝑄′(𝛼) =
1

2

(︀
𝛼0(1− 𝛼)𝑡𝑓−2 − 𝛼1(𝑡𝑓 − 2)(1− 𝛼)𝑡𝑓−3

)︀
Evaluating this at 𝛼 = 0 gives 𝑄′(0) = 1

2
.

The number of 𝐵 = 0 contributions is always 1, as there exist one sequence of 𝑡𝑓

1s, which will always solve the problem. There also exists a sequence of 𝑡𝑓 2s, but this

will never solve the problem. The number of 𝐵 = 1 contributions can be calculated

in a straightforward manner. There are two forms of sequences with one transition:

11...1⏟  ⏞  
𝑘 ones

2...2 or 2...2 11..1⏟ ⏞ 
𝑘 ones

In order for the problem to be solved, there needs to be 𝑡1 consecutive ones, so 𝑘

can take the values 𝑡1, 𝑡1+1, ..., 𝑡𝑓−1. There are a total of 2(𝑡𝑓−1−𝑡1+1) = 2(𝑡𝑓−𝑡1)
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possible ways for the problem to be solved. Thus we can compile

𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) = −1

2
(𝑡𝑓 − 1) +

1

2
· 2(𝑡𝑓 − 𝑡1)

Our goal is to find the condition for which 𝑃 ′
𝑠𝑜𝑙𝑣𝑒(0) > 0. If this is shown, then

𝛼 = 0 does not maximize 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) on the interval [0, 1], so there must exist a

maximum in (0, 1]. So we rearrange

−1

2
(𝑡𝑓 − 1) +

1

2
· 2(𝑡𝑓 − 𝑡1) > 0

⇔ 𝑡1 <
𝑡𝑓 + 1

2

Since 𝑡1 and 𝑡𝑓 are integers, this is equivalent to 𝑡1 ≤ ⌊ 𝑡𝑓
2
⌋, as desired.

Next, consider the case where ⌊ 𝑡𝑓
2
⌋ < 𝑡1 < 𝑡𝑓 . We analyze the number of times a

sequence solves the problem for a given number of transitions 𝐵. Note that crucially,

if 𝐵 > 𝑡𝑓 − 𝑡1, there are no instances for which the sequence solves the problem. This

is because there can be at most 𝑡𝑓 −1 transitions, and solving the problem requires 𝑡1

consecutive timesteps on method 1, thereby removing 𝑡1 − 1 of the 𝑡𝑓 − 1 transition

slots. Thus the maximum number of transitions is (𝑡𝑓 − 1) − (𝑡1 − 1) = 𝑡𝑓 − 𝑡1.

This can be illustrated via the following example: if 𝑡𝑓 = 6 and 𝑡1 = 4, a sequence

that solves the problem, such as 211112, can have at most two transitions, else there

cannot be four consecutive timesteps on method 1.

Note that if 𝑡1 > ⌊ 𝑡𝑓
2
⌋, we have 𝑡1 >

𝑡𝑓
2

because 𝑡1 and 𝑡𝑓 are integers. For each

sequence that solves the problem, there is one that does not. We see this by writing

the sequence ...2 11...1⏟  ⏞  
at least 𝑡1

2.... If we swap 1s and 2s, then the sequence ...1 22...2⏟  ⏞  
at least 𝑡1

1...

cannot solve the problem because there are 𝑡𝑓 − 𝑡1 <
𝑡𝑓
2

remaining timesteps to place

method 1. This means that, for a fixed 𝑡1 and 𝐵, the number of sequence that solve

the problem can be at most half the total number of sequences.
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We can then bound the number of times that the term 1
2
𝛼𝐵(1−𝛼)𝑡𝑓−1−𝐵 appears

in 𝑃𝑠𝑜𝑙𝑣𝑒 for each 𝐵. Note that the total number of such terms can be expressed as

a binomial coefficient where 𝐵 method transition locations are chosen from 𝑡𝑓 − 1

possible transition opportunities. Multiply this by 2 to account for the first method,

which can be method 1 or method 2. Multiply again by 1
2

to incorporate the result

of the previous paragraph to obtain 1
2
· 2
(︀
𝑡𝑓−1
𝐵

)︀
=
(︀
𝑡𝑓−1
𝐵

)︀
. Thus the following bound

applies:

𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) ≤
⌊
𝑡𝑓−1

2
⌋∑︁

𝑖=0

1

2

(︂
𝑡𝑓 − 1

𝑖

)︂
𝛼𝑖(1− 𝛼)𝑡𝑓−1−𝑖 ≡ 𝑋

However, we know that

𝑌 ≡
𝑡𝑓−1∑︁
𝑖=0

1

2

(︂
𝑡𝑓 − 1

𝑖

)︂
𝛼𝑖(1− 𝛼)𝑡𝑓−1−𝑖 =

1

2
(𝛼 + 1− 𝛼)𝑡𝑓−1 =

1

2

by the binomial theorem. Taking the difference 𝑌 −𝑋 gives

𝑌 −𝑋 =

𝑡𝑓−1∑︁
𝑖=⌊

𝑡𝑓−1

2
⌋+1

1

2

(︂
𝑡𝑓 − 1

𝑖

)︂
𝛼𝑖(1− 𝛼)𝑡𝑓−1−𝑖

Note that for 𝛼 > 0, 𝑌 −𝑋 > 0, so

𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) ≤ 𝑋 < 𝑌 =
1

2

If 𝛼 = 0, then the problem solver stays on the starting method. There is 1
2

chance

of starting on method 1, so 𝑃𝑠𝑜𝑙𝑣𝑒(0) =
1
2
. Thus 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼) is maximized at 𝛼 = 0, as

desired.
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Appendix D

Proof of Equation 5.3 (Optimality

Condition for Markov Formulation of

Dual Problem)

Proof. The average solve time can be expressed as

𝑡𝑠𝑜𝑙𝑣𝑒(𝛼) =
∑︁
all 𝒮

𝛿𝑆𝑡𝒮(𝛼),

where

𝛿𝒮 =

⎧⎪⎪⎨⎪⎪⎩
1 Sequence 𝒮 solves problem

0 Otherwise,

and 𝑡𝒮(𝛼) is the average solve time of the sequence 𝒮 as a function of the switching

tendency 𝛼.

We can write

𝑡𝒮(𝛼) =
𝑡

𝑛

(︂
𝛼

𝑛− 1

)︂𝐵

(1− 𝛼)𝑡𝑚𝑎𝑥−1−𝐵,

where we set the placeholder variable 𝑡𝑚𝑎𝑥 ≫ 𝑡𝑛 to represent the maximum time
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analyzed. 𝑡𝑚𝑎𝑥 is much larger than all the solve times and approaches infinity in the

Dual Problem. Here, 𝑡 is the solve time required to solve the problem using sequence

𝒮, 𝐵 is the number of method transitions in 𝒮, and 𝑛 is the number of methods.

Differentiating with respect to 𝛼, we obtain

𝑡′𝒮(𝛼) =
𝑡

𝑛

(︃
𝐵

𝑛− 1

(︂
𝛼

𝑛− 1

)︂𝐵−1

(1− 𝛼)𝑡𝑚𝑎𝑥−1−𝐵 −
(︂

𝛼

𝑛− 1

)︂𝐵

(𝑡𝑚𝑎𝑥 − 1−𝐵)(1− 𝛼)𝑡𝑚𝑎𝑥−2−𝐵

)︃
.

We would like to impose the condition

𝑡′𝑠𝑜𝑙𝑣𝑒(0) =
∑︁
all 𝒮

𝛿𝑆𝑡
′
𝒮(0) < 0

to obtain a minimum 𝑡𝑠𝑜𝑙𝑣𝑒 for 𝛼 > 0. Note that 𝑡′𝒮(𝛼) = 0 unless 𝐵 = 0, 1.

If 𝐵 = 0,

𝑡′𝒮(𝛼) = − 𝑡

𝑛
(𝑡𝑚𝑎𝑥 − 1)(1− 𝛼)𝑡𝑚𝑎𝑥−2,

so

𝑡′𝒮(0) = − 𝑡

𝑛
(𝑡𝑚𝑎𝑥 − 1).

There are 𝑛 sequences for which this is true: the problem solver stays on method

𝑖 for 𝑖 = 1, 2, . . . , 𝑛 without switching. If the problem solver stays on method 𝑖, the

time required to solve is 𝑡 = 𝑡𝑖. Thus, the total 𝐵 = 0 contribution to 𝑡′𝑠𝑜𝑙𝑣𝑒(0) is

− 1

𝑛
(𝑡𝑚𝑎𝑥 − 1)

𝑛∑︁
𝑖=1

𝑡𝑖.

If 𝐵 = 1,

𝑡′𝒮(𝛼) =
𝑡

𝑛

(︂
(1− 𝛼)𝑡𝑚𝑎𝑥−2

𝑛− 1
−
(︂

𝛼

𝑛− 1

)︂
(𝑡𝑚𝑎𝑥 − 2)(1− 𝛼)𝑡𝑚𝑎𝑥−3

)︂
,
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so

𝑡′𝒮(0) =
𝑡

𝑛(𝑛− 1)
.

Here, there is one method transition. Let this transition be between method 𝑖 and 𝑗.

Then the sequence of methods is 𝒮 = {𝑖, . . . 𝑖⏟  ⏞  
𝑘 𝑖′s

, 𝑗, . . . , 𝑗⏟  ⏞  
𝑡𝑚𝑎𝑥−𝑘 𝑗′s

}. There are two cases:

(i) The problem is solved with method 𝑖 (the first method). For this case, the time

required to solve is 𝑡 = 𝑡𝑖. The number of steps spent on the first method, 𝑘, can

take the values 𝑡𝑖, 𝑡𝑖+1, . . . , 𝑡𝑚𝑎𝑥− 1 for a total of (𝑡𝑚𝑎𝑥− 1)− 𝑡𝑖+1 = 𝑡𝑚𝑎𝑥− 𝑡𝑖

possibilities. For each first method, there are 𝑛 − 1 choices for the second

method. Thus the 𝑡′𝑠𝑜𝑙𝑣𝑒(0) contribution for this case is

𝑛∑︁
𝑖=1

(︂
𝑡𝑖

𝑛(𝑛− 1)
(𝑡𝑚𝑎𝑥 − 𝑡𝑖)(𝑛− 1)

)︂
=

1

𝑛

𝑛∑︁
𝑖=1

𝑡𝑖(𝑡𝑚𝑎𝑥 − 𝑡𝑖).

(ii) The problem is not solved with the first method 𝑖 but is solved with the second

method 𝑗. For each choice of 𝑖 and 𝑗, the problem solver spends 1, 2, . . . 𝑡𝑖 − 1

timesteps on method 𝑖, for a total of 𝑡𝑖− 1 possibilities The possible solve times

are 𝑡 = 1 + 𝑡𝑗, 2 + 𝑡𝑗, . . . , 𝑡𝑖 − 1 + 𝑡𝑗, for an average of 𝑡𝑖
2
+ 𝑡𝑗. Thus the 𝑡′𝑠𝑜𝑙𝑣𝑒(0)

contribution for this case is

∑︁
𝑖 ̸=𝑗

(︂ 𝑡𝑖
2
+ 𝑡𝑗

𝑛(𝑛− 1)
(𝑡𝑖 − 1)

)︂
=

1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

(︂
𝑡𝑖
2
+ 𝑡𝑗

)︂
(𝑡𝑖 − 1).

Adding the terms of 𝑡′𝑠𝑜𝑙𝑣𝑒(0) together and setting this sum to be negative, we

obtain

𝑡′𝑠𝑜𝑙𝑣𝑒(0) = − 1

𝑛
(𝑡𝑚𝑎𝑥−1)

𝑛∑︁
𝑖=1

𝑡𝑖+
1

𝑛

𝑛∑︁
𝑖=1

𝑡𝑖(𝑡𝑚𝑎𝑥−𝑡𝑖)+
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

(︂
𝑡𝑖
2
+ 𝑡𝑗

)︂
(𝑡𝑖−1) < 0
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⇔
𝑛∑︁

𝑖=1

𝑡𝑖 −
𝑛∑︁

𝑖=1

𝑡2𝑖 +
1

𝑛− 1

(︃∑︁
𝑖 ̸=𝑗

𝑡2𝑖
2
−
∑︁
𝑖 ̸=𝑗

𝑡𝑖
2
+
∑︁
𝑖 ̸=𝑗

𝑡𝑖𝑡𝑗 −
∑︁
𝑖 ̸=𝑗

𝑡𝑗

)︃
< 0

⇔
𝑛∑︁

𝑖=1

𝑡𝑖 −
𝑛∑︁

𝑖=1

𝑡2𝑖 +
1

𝑛− 1

⎛⎝(𝑛− 1)
𝑛∑︁

𝑖=1

𝑡2𝑖
2
− (𝑛− 1)

𝑛∑︁
𝑖=1

𝑡𝑖
2
+ 2

∑︁
𝑖<𝑗

𝑡𝑖𝑡𝑗 − (𝑛− 1)
𝑛∑︁

𝑖=1

𝑡𝑖

⎞⎠ < 0

⇔
𝑛∑︁

𝑖=1

(𝑡2𝑖 + 𝑡𝑖)−
4

𝑛− 1

∑︁
𝑖<𝑗

𝑡𝑖𝑡𝑗 > 0,

as desired.
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Appendix E

Proof of Equation 5.7 (Optimality

Condition for Poisson Formulation of

Dual Problem)

Proof. We can write the mean solve time as

𝑡𝑠𝑜𝑙𝑣𝑒(𝜆) =
∞∑︁

𝐵=0

𝑃𝐵𝑡𝑠𝑜𝑙𝑣𝑒|𝐵(𝜆),

where 𝑡𝑠𝑜𝑙𝑣𝑒|𝐵(𝜆) is the mean solve time given that 𝐵 transitions occurred, and 𝑃𝐵

is the probability of 𝐵 transitions.

For 𝐵 = 0, if the problem solver starts on method 𝑖, they solve the problem if the

first transition lands in the interval [𝑡𝑖,∞). This occurs with probability 𝑒−𝜆𝑡1 . The

solve time using method 𝑖 is 𝑡𝑖. We take the mean over all the methods to obtain

𝑃0𝑡𝑠𝑜𝑙𝑣𝑒|0(𝜆) =
1

𝑛

∞∑︁
𝑖=0

𝑡𝑖𝑒
−𝜆𝑡𝑖 .

Then we can differentiate both sides with respect to 𝜆:
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𝑃0𝑡
′
𝑠𝑜𝑙𝑣𝑒|0(𝜆) = − 1

𝑛

∞∑︁
𝑖=0

𝑡2𝑖 𝑒
−𝜆𝑡𝑖 .

Thus

𝑃0𝑡
′
𝑠𝑜𝑙𝑣𝑒|0(0) = − 1

𝑛

∞∑︁
𝑖=0

𝑡2𝑖 .

For 𝐵 = 1, the problem solver starts on method 𝑖, switches to method 𝑗 before

they are able to solve, and then solves with method 𝑗. This occurs with probability

(1− 𝑒−𝜆𝑡𝑖)𝑒−𝜆𝑡𝑗 . The expected solve time is sum of the average time spent on method

𝑖, ∫︀ 𝑡𝑖
0
𝑡𝜆𝑒−𝜆𝑡𝑑𝑡∫︀ 𝑡𝑖

0
𝜆𝑒−𝜆𝑡𝑑𝑡

=
1

𝜆
− 𝑡𝑖𝑒

−𝜆𝑡𝑖

1− 𝑒−𝜆𝑡𝑖
,

and the time spent on method 𝑗, 𝑡𝑗. We take the product to find the contribution to

𝑡𝑠𝑜𝑙𝑣𝑒:

(︂
1

𝜆
− 𝑡𝑖𝑒

−𝜆𝑡𝑖

1− 𝑒−𝜆𝑡𝑖
+ 𝑡𝑗

)︂
(1− 𝑒−𝜆𝑡𝑖)𝑒−𝜆𝑡𝑗 .

Taking the mean over all choices of 𝑖, 𝑗, we obtain

𝑃1𝑡𝑠𝑜𝑙𝑣𝑒|1(𝜆) =
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑛

(︂
1

𝜆
− 𝑡𝑖𝑒

−𝜆𝑡𝑖

1− 𝑒−𝜆𝑡𝑖
+ 𝑡𝑗

)︂
(1− 𝑒−𝜆𝑡𝑖)𝑒−𝜆𝑡𝑗 .

It can be found that

𝑃1𝑡
′
𝑠𝑜𝑙𝑣𝑒|1(0) =

1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑛

𝑡𝑖

(︂
𝑡𝑖
2
+ 𝑡𝑗

)︂
.

For 𝐵 = 2, the problem solver starts on method 𝑖, switches to method 𝑗 before

they are able to solve, then switches to method 𝑘 before they are able to solve, and

then solves with method 𝑘. Using a similar approach as the 𝐵 = 1, we find the 𝑡𝑠𝑜𝑙𝑣𝑒

contribution to be
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(︂
1

𝜆
− 𝑡𝑖𝑒

−𝜆𝑡𝑖

1− 𝑒−𝜆𝑡𝑖
+

1

𝜆
− 𝑡𝑖𝑒

−𝜆𝑡𝑗

1− 𝑒−𝜆𝑡𝑗
+ 𝑡𝑘

)︂
(1− 𝑒−𝜆𝑡𝑖)(1− 𝑒−𝜆𝑡𝑗)𝑒−𝜆𝑡𝑘 .

It can be shown that differentiating the above expression with respect to 𝜆 and

evaluating at 𝜆 = 0 gives zero. Thus we conclude

𝑃2𝑡
′
𝑠𝑜𝑙𝑣𝑒|2(𝜆) = 0.

For 𝐵 ≥ 3, we can use a similar approach as 𝐵 = 2 to show that

𝑃𝐵𝑡
′
𝑠𝑜𝑙𝑣𝑒|𝐵(𝜆) = 0.

We can then set 𝑡′𝑠𝑜𝑙𝑣𝑒(0) < 0 to obtain the optimality condition:

𝑡′𝑠𝑜𝑙𝑣𝑒(0) =
∞∑︁

𝐵=0

𝑃𝐵𝑡
′
𝑠𝑜𝑙𝑣𝑒|𝐵(0)

= − 1

𝑛

∞∑︁
𝑖=0

𝑡2𝑖 +
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑛

𝑡𝑖

(︂
𝑡𝑖
2
+ 𝑡𝑗

)︂
< 0

⇔ − 1

𝑛

∞∑︁
𝑖=0

𝑡2𝑖 +
1

2𝑛

𝑛∑︁
𝑖=1

𝑡2𝑖 +
1

𝑛(𝑛− 1)

∑︁
𝑖 ̸=𝑗

1≤𝑖,𝑗≤𝑛

𝑡𝑖𝑡𝑗 < 0

⇔
𝑛∑︁

𝑖=1

𝑡2𝑖 −
4

𝑛− 1

∑︁
𝑖<𝑗

𝑡𝑖𝑡𝑗 > 0,

as desired.
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Appendix F

Proof of Proposition 5 (Analytic

Solution for 𝑃𝑠𝑜𝑙𝑣𝑒(𝛼))

Proof. We can begin by proving the case for which 𝐵 is odd and the problem solver

starts on method 1. Let 𝑡(1), 𝑡(2), . . . , 𝑡(𝐵) be the timesteps immediately preceding the

method transitions. A transition cannot occur immediately after the zeroth timestep

or after the last timestep. Then WLOG assume 0 < 𝑡(1) < 𝑡(2) < · · · < 𝑡(𝐵) < 𝑡𝑓 . The

number of possible sets of arrival times {𝑡(1), 𝑡(2), . . . , 𝑡(𝐵)} is
(︀
𝑡𝑓−1
𝐵

)︀
because there are

𝑡𝑓 − 1 possible timesteps after which a transition can occur.

In order for the problem solver to solve the problem, additional constraints are

needed. Consider the case where the problem solver starts on method 1. For odd

𝐵, the problem solver is on method 1 in the following disjoint subsets of consecutive

timesteps:

{1, 2, . . . , 𝑡(1)}, {𝑡(2) + 1, . . . , 𝑡(3)}, {𝑡(4) + 1, . . . , 𝑡(5)}, . . . , {𝑡(𝐵−1) + 1, . . . , 𝑡(𝐵)}.

At least one of these sets must have at least 𝑡1 elements for the problem solver to

solve the problem. Therefore at least one of the following 𝐶 = 𝐵+1
2

constraints must
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be satisfied:

𝑡(1) ≥ 𝑡1

𝑡(3) − 𝑡(2) ≥ 𝑡1

𝑡(5) − 𝑡(4) ≥ 𝑡1

...

𝑡(𝐵) − 𝑡(𝐵−1) ≥ 𝑡1.

Suppose that exactly 𝑗 of these 𝐶 constraints are satisfied and fix the choice of

constraints. Consider the differences

𝑡𝑓 − 𝑡(𝐵)

𝑡(𝐵) − 𝑡(𝐵−1)

𝑡(𝐵−1) − 𝑡(𝐵−2)

...

𝑡(3) − 𝑡(2)

𝑡(2) − 𝑡(1)

𝑡(1) − 0.

𝑗 of these differences must be at least 𝑡1, and the remaining 𝐵 + 1− 𝑗 differences

must be at least 1. However the sum of these differences is exactly 𝑡𝑓 , so it must also

be true that 𝑡𝑓 ≥ 𝑗𝑡1 +𝐵 + 1− 𝑗. Thus we have

𝑡1 ≤
𝑡𝑓 − (𝐵 + 1− 𝑗)

𝑗
.
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If there are no constraints, method transitions can occur at any location in

{1, 2, . . . , 𝑡𝑓 − 1}. However, imposing one constraint removes 𝑡1 − 1 locations from

the set of possible locations. Thus, imposing 𝑗 constraints removes 𝑗(𝑡1 − 1) possible

transition locations. Thus the number of transition locations remaining is (𝑡𝑓 − 1)−

𝑗(𝑡1 − 1) = 𝑡𝑓 − 𝑗𝑡1 + (𝑗 − 1), so the the number of possible sets {𝑡(1), 𝑡(2), . . . , 𝑡(𝐵)}

for which the problem is solved with these 𝑗 constraints is

(︂
𝑡𝑓 − 𝑗𝑡1 + (𝑗 − 1)

𝐵

)︂
.

Additionally, there are
(︀
𝐶
𝑗

)︀
ways to choose these constraints. In order to calculate

solve probability, we must find which interval 𝑡1 belongs to. If

𝑡𝑓 − (𝐵 − 𝑗)

𝑗 + 1
< 𝑡1 ≤

𝑡𝑓 − (𝐵 + 1− 𝑗)

𝑗
,

then there can be at most 𝑗 constraints. Some solve regions are counted multiple

times, so we must use the Principle of Inclusion-Exclusion up to 𝑗 terms to obtain

the solve probability:

1(︀
𝑡𝑓−1
𝐵

)︀ (︂(︂𝐶
1

)︂(︂
𝑡𝑓 − 𝑡1

𝐵

)︂
−
(︂
𝐶

2

)︂(︂
𝑡𝑓 − 2𝑡1 + 1

𝐵

)︂
+ · · ·+ (−1)𝑗+1

(︂
𝐶

𝑗

)︂(︂
𝑡𝑓 − 𝑗𝑡1 + (𝑗 − 1)

𝐵

)︂)︂
.

Also, we need to impose limits on 𝑗. In order for the binomial coefficients to be

computed, so we need 𝑡𝑓 − 𝑗𝑡1 + (𝑗 − 1) ≥ 𝐵 and 𝑗 ≤ 𝐶. Thus we have

𝑗 ≤ min

(︂⌊︂
𝑡𝑓 −𝐵 − 1

𝑡1 − 1

⌋︂
, 𝐶

)︂
.

Thus the solve probability for this case (fixed, odd 𝐵; start on method 1) is

𝑃𝑠𝑜𝑙𝑣𝑒|𝐵 transitions =
1(︀

𝑡𝑓−1
𝐵

)︀𝑝(︂𝐵,
𝐵 + 1

2

)︂
, (F.1)
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where

𝑝(𝐵,𝐶) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
𝐶
1

)︀(︀
𝑡𝑟(1)
𝐵

)︀
if 𝑡𝑏(1) < 𝑡1 ≤ 𝑡𝑏(0)(︀

𝐶
1

)︀(︀
𝑡𝑟(1)
𝐵

)︀
−
(︀
𝐶
2

)︀(︀
𝑡𝑟(2)
𝐵

)︀
if 𝑡𝑏(2) < 𝑡1 ≤ 𝑡𝑏(1)

...(︀
𝐶
1

)︀(︀
𝑡𝑟(1)
𝐵

)︀
−
(︀
𝐶
2

)︀(︀
𝑡𝑟(2)
𝐵

)︀
+ · · ·+ (−1)𝑘+1

(︀
𝐶
𝑘

)︀(︀
𝑡𝑟(𝑘)
𝐵

)︀
if 1 < 𝑡1 ≤ 𝑡𝑏(𝑘 − 1),

(F.2)

𝑡𝑟(𝑗) = 𝑡𝑓 − 𝑗𝑡1 + (𝑗 − 1), 𝑡𝑏(𝑗) =
𝑡𝑓−(𝐵−𝑗)

𝑗+1
, and 𝑘 = min

(︁⌊︁
𝑡𝑓−𝐵−1

𝑡1−1

⌋︁
, 𝐶
)︁
.

By symmetry, the solve probability for the case (fixed, odd 𝐵; start on method 2)

is the same as the case (fixed, odd 𝐵; start on method 1). Thus, whenever 𝐵 is odd,

Equation F.1 applies.

For the case where 𝐵 is even, we make minor modifications. If the problem solver

starts on method 1, the constraints are

𝑡(1) ≥ 𝑡1

𝑡(3) − 𝑡(2) ≥ 𝑡1

𝑡(5) − 𝑡(4) ≥ 𝑡1

...

𝑡𝑓 − 𝑡(𝐵) ≥ 𝑡1,

and the number of constraints is 𝐶 = 𝐵
2
+ 1. If we repeat the steps above for

this case, we find that the expression in Equation F.2 is the same. Similarly, if the

problem solver starts on method 2, the constraints are
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𝑡(2) − 𝑡(1) ≥ 𝑡1

𝑡(4) − 𝑡(3) ≥ 𝑡1

...

𝑡(𝐵) − 𝑡(𝐵−1) ≥ 𝑡1,

and the number of constraints is 𝐶 = 𝐵
2
. If we repeat the steps above for this

case, we find that the expression in Equation F.2 is again the same. Thus for even

𝐵, we have

𝑃𝑠𝑜𝑙𝑣𝑒|𝐵 =
1

2
(︀
𝑡𝑓−1
𝐵

)︀ (︂𝑝(︂𝐵,
𝐵

2

)︂
+ 𝑝

(︂
𝐵,

𝐵

2
+ 1

)︂)︂
, (F.3)

where 𝑝(𝐵,𝐶) is defined in Equation F.2, as desired.
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Appendix G

Proof of Proposition 6 (Analytic

Solution for 𝑡𝑠𝑜𝑙𝑣𝑒(𝛼))

Proof. For two solution methods, the problem solver will progress through a decision

tree as in Figure 5-5. The following outcomes are possible:

(i) The problem solver starts on method 1, switches methods an even number of

times, and eventually solves with method 1.

(ii) The problem solver starts on method 1, switches methods an odd number of

times, and eventually solves with method 2.

(iii) The problem solver starts on method 2, switches methods an even number of

times, and eventually solves with method 2.

(iv) The problem solver starts on method 2, switches methods an odd number of

times, and eventually solves with method 1.

Consider Case (i) first. The probability that the problem solver starts on method

1 and solves the problem with zero switching corresponds to not switching for the

first 𝑡1 − 1 timesteps. This has probability (1−𝛼)𝑡1−1. The corresponding solve time

is 𝑡1.
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Figure G-1: Decision tree for the Markov Dual Problem with two solution methods.
The problem solver will start on either method with probability 𝑃 = 1

2
. If the

problem solver solves the problem with method 𝑖, they will do so with probability
𝑃 = (1 − 𝛼)𝑡𝑖−1. If the problem solver does not solve the problem with method 𝑖,
they will do so with probability 𝑃 = 1− (1−𝛼)𝑡𝑖−1, and switch to the other method.
The problem solver will continue to switch methods until they solve the problem.
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The probability that the problem solver starts on method 1, switches two times

before solving, and then solves with method 1 corresponds to switching during the

first 𝑡1− 1 timesteps, switching during the next 𝑡2− 1 timesteps after the first switch,

and not switching for the next 𝑡1−1 timesteps after the second switch. The probability

is

(1− (1− 𝛼)𝑡1−1)(1− (1− 𝛼)𝑡2−1)(1− 𝛼)𝑡1−1.

The mean time spent on method 𝑖, given the problem is not solved, is the mean

value of the number of timesteps 𝑗 restricted to 𝑗 = 1, 2, . . . , 𝑡𝑖 − 1. Each value of 𝑗

has corresponding probability (1− 𝛼)𝑗−1. Call this mean time 𝑡𝑖̃:

𝑡𝑖̃ ≡

𝑡𝑖−1∑︁
𝑗=1

𝑗𝛼(1− 𝛼)𝑗−1

𝑡𝑖−1∑︁
𝑗=1

𝛼(1− 𝛼)𝑗−1

=

𝑡𝑖−1∑︁
𝑗=1

𝑗(1− 𝛼)𝑗−1

𝑡𝑖−1∑︁
𝑗=1

(1− 𝛼)𝑗−1

=

1− (1 + 𝛼(𝑡𝑖 − 1))(1− 𝛼)𝑡𝑖−1

𝛼2

1− (1− 𝛼)𝑡𝑖−1

𝛼

=
1− (1 + 𝛼(𝑡𝑖 − 1))(1− 𝛼)𝑡𝑖−1

𝛼(1− (1− 𝛼)𝑡𝑖−1)
.

For 𝛼 = 0,

𝑡𝑖̃ ≡

𝑡𝑖−1∑︁
𝑗=1

𝑗

𝑡𝑖−1∑︁
𝑗=0

1

=
(𝑡𝑖−1)𝑡𝑖

2

𝑡𝑖 − 1
=

𝑡𝑖
2
.
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Therefore the mean solve time given that the problem solver starts on method 1,

switches two times, and solves with method 1 is:

𝑡1̃ + 𝑡2̃ + 𝑡1.

In general, the probability of starting on method 1, switching 2𝑘 times, and solving

with method 1 is

(︀
(1− (1− 𝛼)𝑡1−1)(1− (1− 𝛼)𝑡2−1)

)︀𝑘
𝑒−𝜆𝑡1 .

The corresponding solve time is

𝑘(𝑡1̃ + 𝑡2̃) + 𝑡1.

Next, consider Case (ii). We can see the probability of starting on method 1,

switching 2𝑘 − 1 times, and solving with method 2 is

(1− (1− 𝛼)𝑡1−1)𝑘(1− (1− 𝛼)𝑡2−1)𝑘−1(1− 𝛼)𝑡2−1.

The corresponding solve time is

𝑘𝑡1̃ + (𝑘 − 1)𝑡2̃ + 𝑡2.

For ease of notation, set 𝑟1 = 1− (1−𝛼)𝑡1−1 and 𝑟2 = 1− (1−𝛼)𝑡2−1. The average

𝑡𝑠𝑜𝑙𝑣𝑒(𝛼), given that the problem solver starts on method 1 (Cases 1 and 2) is

𝑡𝑠𝑜𝑙𝑣𝑒,1 =
∞∑︁
𝑘=0

(︀
(𝑘(𝑡1̃ + 𝑡2̃) + 𝑡1)(𝑟1𝑟2)

𝑘(1− 𝑟1) + ((𝑘 + 1)𝑡1̃ + 𝑘𝑡2̃ + 𝑡2)𝑟
𝑘+1
1 𝑟𝑘2(1− 𝑟2)

)︀
.

Note that this is a sum of geometric and arithmetic-geometric series. Then we
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can evaluate

𝑡𝑠𝑜𝑙𝑣𝑒,1 =
∞∑︁
𝑘=0

𝑡1(𝑟1𝑟2)
𝑘(1− 𝑟1) +

∞∑︁
𝑘=0

𝑘(𝑡1̃ + 𝑡2̃)(𝑟1𝑟2)
𝑘(1− 𝑟1)+

∞∑︁
𝑘=0

(𝑡2 + 𝑡1̃)𝑟
𝑘+1
1 𝑟𝑘2(1− 𝑟2) +

∞∑︁
𝑘=0

𝑘(𝑡1̃ + 𝑡2̃)𝑟
𝑘+1
1 𝑟𝑘2(1− 𝑟2)

=
𝑡1(1− 𝑟1)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)𝑟1𝑟2(1− 𝑟1)

(1− 𝑟1𝑟2)2
+

(𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)𝑟
2
1𝑟2(1− 𝑟2)

(1− 𝑟1𝑟2)2

=
𝑡1(1− 𝑟1) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)(𝑟1𝑟2(1− 𝑟1) + 𝑟21𝑟2(1− 𝑟2))

(1− 𝑟1𝑟2)2
.

By symmetry, the average 𝑡𝑠𝑜𝑙𝑣𝑒(𝛼), given that the problem solver starts on method

2 (Cases (iii) and (iv)) is

𝑡𝑠𝑜𝑙𝑣𝑒,2 =
𝑡2(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1)

1− 𝑟1𝑟2
+

(𝑡1̃ + 𝑡2̃)(𝑟1𝑟2(1− 𝑟2) + 𝑟22𝑟1(1− 𝑟1))

(1− 𝑟1𝑟2)2
.

The overall 𝑡𝑠𝑜𝑙𝑣𝑒 is

𝑡𝑠𝑜𝑙𝑣𝑒 =
1

2
(𝑡𝑠𝑜𝑙𝑣𝑒,1 + 𝑡𝑠𝑜𝑙𝑣𝑒,2)

=
𝑡1(1− 𝑟1) + 𝑡2(1− 𝑟2) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1)

2(1− 𝑟1𝑟2)
+

(𝑡1̃ + 𝑡2̃) (𝑟1𝑟2(2− (𝑟1 + 𝑟2)) + 𝑟21𝑟2(1− 𝑟2) + 𝑟22𝑟1(1− 𝑟1))

2(1− 𝑟1𝑟2)2
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=
𝑡1(1− 𝑟1) + 𝑡2(1− 𝑟2) + (𝑡2 + 𝑡1̃)𝑟1(1− 𝑟2) + (𝑡1 + 𝑡2̃)𝑟2(1− 𝑟1) + 2𝑟1𝑟2(𝑡1̃ + 𝑡2̃)

2(1− 𝑟1𝑟2)
,

as desired.
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