
Efficient Algorithms, Hardware Architectures and Circuits for
Deep Learning Accelerators

by

Miaorong Wang

B.S., Shanghai Jiao Tong University (2016)
S.M., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© Miaorong Wang 2023. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright, including to
reproduce, preserve, distribute and publicly display copies of the thesis, or release

the thesis under an open-access license.

Authored by: Miaorong Wang
Department of Electrical Engineering and Computer Science
August 18, 2023

Certified by: Anantha P. Chandrakasan
Vannevar Bush Professor of Electrical Engineering and Computer Science
Dean, MIT School of Engineering
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Efficient Algorithms, Hardware Architectures and Circuits for

Deep Learning Accelerators

by

Miaorong Wang

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2023, in Partial Fulfillment of the

Requirements for the Degree of
Doctor of Philosophy

Abstract

Deep learning has permeated many industries due to its state-of-the-art ability to
process complex data and uncover intricate patterns. However, it is computationally
expensive. Researchers have shown in theory and practice that the progress of deep
learning in many applications is heavily reliant on increases in computing power, and
thus leads to increasing energy demand. That may impede further advancement in
the field. To tackle that challenge, this thesis presents several techniques to improve
the energy efficiency of deep learning accelerators while adhering to the accuracy and
throughput requirements of the desired application.

First, we develop hybrid dataflows and co-design the memory hierarchy. That
enables designers to trade off the reuse between different data types across different
storage elements provided by the technology for higher energy efficiency. Second, we
propose a weight tuning algorithm and accelerator co-design, which optimizes the
bit representation of weights for energy reduction. Last, we present VideoTime3, an
algorithm and accelerator co-design for efficient real-time video understanding with
temporal redundancy reduction and temporal modeling. Our proposed techniques
enrich accelerator designers’ toolkits, pushing the boundaries of energy efficiency for
sustainable advances in deep learning.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering and Computer Science

Dean, MIT School of Engineering

3

4

Acknowledgments

This thesis would not have been possible without the help of a large group of people.

First of all, I would like to express my sincere gratitude to my thesis supervisor,

Professor Anantha P. Chandrakasan, for his guidance and support throughout my

doctoral journey. I feel very fortunate to have had the opportunity to work under his

mentorship. He is always very supportive and provides a great environment for me

to learn and grow. Also, I am very fortunate to have a unique perspective into the

professional life of an exceptional leader who has achieved remarkable success and

global recognition in the field. Having a role model like him has an invaluable impact

on my professional life.

I would like to acknowledge Professor Vivienne Sze and Professor Song Han for

serving on my thesis committee and providing invaluable advice. I would like to thank

Professor Vivienne Sze for providing me with invaluable feedback on paper writing

and presentation, and Professor Song Han for the guidance in the VideoTime3 project

(Chapter 4).

I would also like to extend my appreciation to Professor Luca Daniel for serving on

my RQE committee and Professor David J. Perreault for being my academic advisor

and providing me with great advice every semester.

I would like to express my heartfelt gratitude to Professor Joel Emer. He led

me into computer architecture and deep learning accelerator design with two of his

courses (with Professor Daniel Sanchez and Professor Vivienne Sze). And his way of

understanding and analyzing hardware architectures has greatly influenced my way

of thinking.

I am very grateful to my mentor Joyce Wu. She is always there answering my

questions and providing guidance about professional and personal life. Many thanks

to her unlimited plant support that lights up my living environment.

My internship at the ASIC/VLSI research group of NVIDIA also contributed a

lot to my professional development. I would like to thank my manager Dr. Brucek

Khailany, my mentor Dr. Rangharajan Venkatesan, my co-mentor Prof. Yakun

5

Sophia Shao, and many other colleagues at NVIDIA for their helpful advice during

my internship.

I am very grateful to all past and present members of Anantha Group for creating

such a supportive working environment. I would like to thank Utsav Banerjee for

providing great support for my first chip tape-out, Michael Price for answering my

questions about speech recognition and chip measurement setups even though we

did not overlap during MIT, Mehul Tikekar, Priyanka Raina and Phillip Nadeau for

helpful advice about tape-out, Preetinder Garcha for being a good friend and cubicle

neighbor, our visiting student Xiaopeng Zhong for answering my questions regarding

chip measurement and other senior members for helpful discussions. Also, thanks to

Alex Ji for being a wonderful peer and Ruicong (Ray) Chen, Rishabh Mittal, Skanda

Koppula, Vipasha Mittal, Deniz Umut Yildirim, Zhiye (Zoey) Song, Adam Matthew

Gierlach, Eunseok Lee, Kyungmi Lee, Maitreyi Ashok and Saurav Maji for many

happy chats.

I would like to thank Margaret Flaherty, Yuvie Cjapi, Jessie-Leigh O Thomas,

Katey Provost, and other former lab administrators for their help with appointment

scheduling, reimbursement, purchase orders, and lab space maintenance. I would also

like to thank MTL Compute Team for their quick response to emails for various IT

issues (sometimes even during non-working hours).

My life at MIT would not be so colorful without my friends. I want to thank them

for all the fun we had together, such as badminton games, meals, BBQs, movies, etc.

I would like to acknowledge Irwin Mark Jacobs and Joan Klein Jacobs Presidential

Fellowship for funding the academic year 2016 – 2017, TSMC for funding the eMRAM

evaluation, Foxconn for funding the weight tuning project, and Qualcomm for funding

the VideoTime3 project.

I would like to thank my boyfriend for his support. Thanks for trying his best

to feeding me well when I was busy! Many thanks to all the wonderful moments we

have together.

Finally, I would like to express my deepest gratitude to my family members. I am

very grateful to my parents for being my biggest cheerleaders, and offering words of

6

encouragement when I needed them the most. Their understanding gave me a lot of

comfort in the difficult time during the pandemic. I would like to thank my grandmas

for all they have done for me!

7

8

Contents

1 Introduction 23

1.1 Motivation . 23

1.2 Background . 24

1.3 Thesis Overview . 27

2 Hybrid Dataflow and Memory Hierarchy Co-design 29

2.1 Introduction and Motivation . 29

2.2 Hybrid Dataflow and Memory Hierarchy 31

2.3 System 1 and its Evaluation . 36

2.4 System 2 and its Evaluation . 40

2.4.1 Technology . 42

2.4.2 Overall Architecture . 43

2.4.3 Evaluation Setup . 46

2.4.4 Evaluation Results . 50

2.5 Summary and Conclusions . 53

3 Weight Tuning Algorithm and Datapath/SRAM Co-design for Flex-

ible Fully-Integrated CNN Accelerator 55

3.1 Introduction and Motivation . 56

3.2 Weight Tuning Algorithm and Potential SRAM Co-design 58

3.2.1 Tensor Decomposition with Retraining 58

3.2.2 Quantization and the Sign-Magnitude Representation 59

3.2.3 Weight Scaling and Bit Perturbation with Retraining 60

9

3.3 Datapath Co-design and Flexible CNN Accelerator Architecture . . . 63

3.3.1 Overall Architecture . 63

3.3.2 Flexbile Dataflow and NoC 64

3.3.3 Mixed-Representation Datapath 66

3.4 Evaluation and Test Setup . 67

3.4.1 Algorithm Evaluation Setup 67

3.4.2 Chip Measurement Setup . 68

3.5 Evaluation and Measurements . 69

3.5.1 Weight Tuning Algorithm Evaluation Results 69

3.5.2 FPGA Demonstration Results 70

3.5.3 Chip Implementation Results 70

3.6 Summary and Conclusions . 73

4 Algorithm and Architecture Co-design Utilizing Data Features for

Video Understanding 75

4.1 Overview of Deep-learning-based Video Understanding and Related

Work . 76

4.2 Algorithm and Accelerator Architecture 80

4.2.1 Real-Time DiffFrame Convolution 80

4.2.2 Sparsity Handling . 85

4.2.3 Temporal Modeling . 90

4.2.4 Activation Buffering . 91

4.2.5 Data Layout in DRAM . 94

4.2.6 Other Components and Overall Architecture 95

4.3 Evaluation and Test Setup . 99

4.3.1 Model Preparation and Algorithm Evaluation Setup 99

4.3.2 Architecture Evaluation and Chip Measurement Setup 100

4.4 Evaluation and Measurements . 102

4.4.1 Accuracy . 103

4.4.2 DRAM Access . 104

10

4.4.3 Energy Breakdown . 106

4.4.4 Chip Measurements and Comparison with Prior Work 107

4.5 Further Discussions on CNN Sparsity Handling 107

4.6 Summary and Conclusions . 112

5 Conclusions and Future Directions 113

5.1 Summary of Contributions . 113

5.2 Future Directions . 115

A List of Abbreviations 117

B Custom NN Model structures 119

C Dataflows 123

11

12

List of Figures

1-1 Implications of model performance versus computation of deep learning

and linear regression [52]. 24

1-2 Illustration of a convolution layer. Some convolution layers do not have

an activation function and thus OA equals IA for the next layer. . . . 25

1-3 Illustration of (a) ordinary convolution and (b) depth-wise convolution

and the annotations used in this thesis. 26

1-4 An overview of a general deep learning system and a summary of the

thesis. 27

2-1 Memory access and data delivery energy is a significant part of the total

NN accelerator energy. This figure only includes the reported on-chip

energy consumption. Off-chip data access is more energy-consuming

than on-chip memory access [23]. The energy ratio is obtained from the

energy breakdown graphs/tables of prior NN accelerators running vari-

ous workloads. We exclude the clock network energy from our analysis

for Eyeriss [6] and Eyeriss v2 [7]. All the on-chip energy consumption

is included except the "CLK and MISC." part in Fig. 18 of QUEST [53]. 30

2-2 The baseline (a) spatial datapath architecture and (b) spatial mapping

(to better illustrate the spatial mapping, we only show the multipliers

from the MAC array in this figure). VS : the number of multipliers in

a vector MAC; VL: the number of vector MACs and accumulators in

the MAC array; accum.: accumulator. The colored squares indicate

the mapping of IA, weight, and OA across the channel dimensions. . . 32

13

2-3 Examples of (a) WS, (b) OS, and (c) IS dataflow with L1 buffers and L0

registers. wr_rd: write and bypass read or read. accum: accumulation. 34

2-4 Illustration of WS-LOS (a) dataflow and (b) memory hierarchy. The

differences between WS dataflow are highlighted in red. 35

2-5 Illustration of OS-LWS (a) dataflow and (b) memory hierarchy. The

differences between the WS dataflow are highlighted in red. 37

2-6 (a) The overall architecture of system 1. PE: processing element. (b)

The PE architecture. The MAC array is shown in Fig. 2-2a. SC:

standard cell. 39

2-7 Overview of MAGNet framework [54]. Its capability to co-design the

DL application is not used in our evaluation and thus is not included

in this figure. 40

2-8 Comparison of energy efficiency and performance per area of the opti-

mal accelerators with conventional dataflows and the proposed dataflows.

The proposed hybrid dataflows greatly improve energy efficiency and

performance per area. 41

2-9 The energy breakdown of a PE with 𝑉 𝐿 and 𝑉 𝑆 of 16. 41

2-10 Normalized (a) read energy per bit, and (b) write energy per bit of

22-nm eMRAM and 28-nm standard cell memory (SCM) and SRAM

relative to 512-b SCM. DP RF: the dual-port register file from 28-

nm memory compilers (this thesis refers to it as SRAM). SP SRAM:

single-port SRAM. 42

2-11 Normalized (a) read speed, and (b) write speed of 22-nm eMRAM and

28-nm SRAM relative to eMRAM. DP RF: the dual-port register file

from 28-nm memory compilers (this thesis refers to it as SRAM). SP

SRAM: single-port SRAM. 43

2-12 Normalized (a) leakage power per bit and (b) area density of 22-nm

eMRAM and 28-nm SRAM. DP RF: the dual-port register file from

28-nm memory compilers (this thesis refers to it as SRAM). SP SRAM:

single-port SRAM. 44

14

2-13 Overall system architecture. The system is fully on-chip with eMRAM. 45

2-14 OS-LWS-a dataflow (inner-level). 47

2-15 OS-LWS-b dataflow (inner-level). 48

2-16 The design space exploration framework for system 2. 49

2-17 Comparison of the best energy efficiency and EDP achieved by conven-

tional dataflows and proposed dataflows under different optimization

targets—maximizing energy efficiency and minimizing EDP. The leg-

end of (a): <design space>, <optimization target>. 49

2-18 Comparison of EDP between different dataflows. The optimization

target is minimizing EDP. 50

2-19 The energy breakdown of different dataflows. The results are from an

optimization target of minimizing EDP. 51

2-20 Comparison of overall proportion of on-chip energy used for memory

access and data delivery of various NN accelerators, including Eye-

riss [6], Eyeriss v2 [7], QUEST [53], B. Keller et al. [30] and the two

systems presented in this chapter. System 2 is different from other

works as it includes all memory hierarchy on chip. The energy con-

sumption of off-chip memory hierarchies in other works is not included

in the analysis. 53

3-1 Illustration of tensor decomposition for CNNs [32]. The original weight

tensor is first decomposed into three smaller tensors. The resulting NN

is then retrained as proposed in [32]. 59

3-2 The flowchart of the bit perturbation algorithm. The first branch is to

keep the lowest possible 𝑒 and the corresponding toggle count and the

weight vector. The second branch is to find out how many sub-vectors

D needs to be split into so that 𝑒 can be lower than 𝑒𝑚𝑎𝑥 given that 𝑘

LSBs are tuned. The third branch is to loop through all possible 𝑘. . 62

3-3 The flowchart of quantization and sign-magnitude representation and

weight scaling and bit perturbation with retraining. 63

15

3-4 System architecture of the NN accelerator and the micro-architecture

of the NoC controller. 64

3-5 The dataflow illustrated with loop nests. The tensor dimension pa-

rameters are defined in Fig. 3-1. Bias is ignored for simplicity. The

batch size is 1 for real-time application. For the first layer, where ICHN

= 1, we replace ICHN with FW and remove the original FW loop to

increase the PE array utilization. The read, delivery, and computa-

tion sequence of weight is as shown. PEs are filled up with weights in

sequence. The limits on natively supported NN shapes are annotated. 65

3-6 The PE structure. The shaded part is the sign-magnitude domain.

The rest is in the 2’s complement domain. Wgt: weight; rnd: round;

trunc: truncate; RF: RegFile; accum. reg.: accumulation register. . . 67

3-7 The chip measurement setup. 68

3-8 The weight tuning algorithm reshapes the histogram of Hamming dis-

tance between successive weights. CNN80 is shown as an example. . . 69

3-9 The FPGA demo of the CNN accelerator with a feature extraction

processorv [15] on KWS, and a summary of FPGA post-PnR resource

utilization. 70

3-10 a) Die micrograph. b) Area breakdown of the CNN accelerator. . . . 71

3-11 Power breakdown of the CNN accelerator based on post-P&R simulation. 72

4-1 The NN accelerator that only supports single-frame/image processing

fails to capture temporal information across video frames. 77

4-2 Illustration of the conventional DiffFrame method, which is based on

the linearity of convolution, i.e., conv(𝑓𝑡−𝑓𝑡−1) + conv(𝑓𝑡−1) = conv(𝑓𝑡).

𝑓𝑡− 𝑓𝑡−1 and conv(𝑓𝑡−1) are DiffFrame and RefFrame at time 𝑡 respec-

tively. 78

16

4-3 (a) An illustration of serial batch processing. The processing sequence

is noted in red. N is the total number of layers and B is the batch

size. (b) The high-level block diagram of the DiffFrame convolution

accelerator and an illustration of RefFrame buffer access during the

process of layer 𝑙 at frame 𝑡. (c) The reuse of RefFrame over time in

the on-chip buffer. 79

4-4 Illustration of 3D CNN convolving the temporal dimension, which is

composed of a batch of frames. For simplicity, the channel size is set

to one in the illustration. W: width. H: height. B: batch. 79

4-5 (a) An illustration of frame-by-frame processing. The processing se-

quence is noted in red. N is the number of layers. (b) A long interval

between the reuse of RefFrame in frame-by-frame processing. 81

4-6 The block diagram of naive DiffFrame generation and buffering. . . . 81

4-7 (a) An illustration of naive RefFrame read. (b) An illustration of pro-

posed selective RefFrame read and update. 82

4-8 (a) Fine-grained irregular sparsity in DiffFrame leads to DRAM burst

length under-utilization for selective RefFrame load and store. (b)

Channel-wise coarse-grained sparsity in DiffFrame leads to high uti-

lization of DRAM burst length for selective RefFrame load and store. 83

4-9 The rules of input and output coordinates in sub-manifold sparse con-

volution. (a) For stride = 1 layers, the input and output coordinates

are exactly the same. (b) For stride = 2 layers, the valid outputs are

those with 𝑥%2 = 0 and 𝑦%2 = 0, where (𝑥, 𝑦) is the output coordinate

of conventional convolution. 84

4-10 The proposed real-time DiffFrame method illustrated with stride = 1

layer. 84

4-11 An illustration of sparse (a) PW convolution and (b) DW convolution.

Channels are set to 1 for simplicity and clarity of the figure. Colored

and white boxes present nonzeros and zeros respectively. 87

17

4-12 An illustration of map-guided convolution and decoupled metadata

generation. 88

4-13 (a) An overview of the proposed sorter-free ConvMap and coordinate

generator. cIA, cOA and cW : coordinates of nonzero IA, OA and

weight respectively; pIA, pOA and pW : positions of nonzero IA, OA

and weight respectively; 𝑀 ′
𝑂𝑆; the intermediate unfiltered map con-

taining all possible outputs of conventional convolution; 𝑀𝑂𝑆: the final

ConvMap satisfying the rules in Fig. 4-9. (b) An example of simple 1D

ConvMap and coordinate generation. 89

4-14 An illustration of temporal shift module [35]. C: channel. 91

4-15 (a) An illustration of software approach of TSM data handling. (b)

An illustration of the proposed dual-mode IA Buffet for TSM data

handling. AGen: address generator. 93

4-16 A cache-based implicit decoupled data orchestration for ConvMap-

guided IA load of DW DiffFrame SparseConv. 94

4-17 An illustration of row-major memory order for data and coordinate

with a simple 3 × 3 × 3 tensor. (a) Uncompressed storage. (b) Com-

pressed storage (zero data are shown in white). 95

4-18 Overall system architecture. AGen: address generator; gen.: gener-

ator; PSum: partial sum; RF: RefFrame; IFC: interface; COORD:

coordinate. 96

4-19 The dual-mode MAC array and weight buffer. (a) Standard convolu-

tion. (b) DW convolution. 97

4-20 The block diagram of the ConvMap and coordinate generator and

buffers. WGT: weight. 98

4-21 A few samples of the DAC-SDC dataset [61]. 100

4-22 The setup for architecture exploration and evaluation. LUT: lookup

table. 101

18

4-23 (a) The block diagram of the chip measurement setup. FPGA has two

clock domains. One is the highest clock frequency for DDR3 and the

other is for the chip. gen: generator; cntl: controller. (b) A photo of

the chip measurement setup. 102

4-24 Comparison with conventional convolution and sensitivity of accuracy

on the pruning threshold of the proposed real-time DiffFrame SparseC-

onv with temporal modeling algorithm. The NN is not quantized. The

case with a density of 100% is equivalent to convolution with TSM.

The dash lines are plain conventional convolution. 103

4-25 The total DRAM traffic vs. the pruning threshold (input density) of

the proposed real-time DiffFrame SparseConv with temporal modeling

algorithm and a comparison with conventional convolution. The target

of the mapping optimizer is set to be minimizing DRAM traffic. . . . 105

4-26 The proposed method reduces DRAM traffic by 1.3x and 2.2x com-

pared to the prior sparsity handling method and conventional convolu-

tion on MobileNetv2-47 respectively. The mapping optimizer target is

to lower the energy-delay product. MobileNetv2-34 has a small chan-

nel size; thus, our method featuring channel-wise sparsity leads to less

DRAM traffic reduction. Nonetheless, a 1.8x reduction in the energy-

delay product of the accelerator is observed. W: weight. COORD:

coordinate. 106

4-27 Energy breakdown of the accelerator chip (including IO drivers) run-

ning MobileNet-v2-34. DRAM access time and energy are not included.

COORD: coordinate; Gen.: generator; IFC: interface. 107

4-28 (a) Die micrograph (1: 16 kB Weight buffer; 2: 8 × 8 MAC array; 3:

32 kB IA buffer; 4: 44 kB OA RefFrame unit; 5: DiffFrame generator;

6: DiffFrame pruning; 7: ConvMap buffer; 8: ConvMap generator and

coordinate buffer). (b) Frequency and power measurements. 108

19

4-29 Comparison of the proposed real-time Diffframe convolution and con-

ventional convolution in terms of energy, frame rate and energy-delay

product (EDP) on our accelerator chip. 108

C-1 WS-a dataflow (inner-level). No weight L1 buffer is needed. 124

C-2 WS-b dataflow (inner-level). 125

C-3 OS-a dataflow (inner-level). 126

C-4 OS-b dataflow (inner-level). 127

C-5 WS-LOS-a dataflow (inner-level). No weight L1 buffer is needed. . . . 128

C-6 WS-LOS-b dataflow (inner-level). 129

20

List of Tables

2.1 Summary of reuse per read/write of L1 buffers and reuse per write of

L0 registers in the WS, OS, and IS dataflows. 33

2.2 Summary of reuse per read/write of L1 buffers/L0 collectors and reuse

per write of L0 registers in WS-LOS and OS-LWS dataflows. 38

2.3 The design space of system 1 [54]. A conventional design space con-

tains WS and OS dataflow. The proposed hybrid dataflow expands the

design space with WS-LOS and OS-LWS dataflows. 40

2.4 The design space of the system. 45

3.1 The Effect of the Weight Tuning Algorithm on Accuracy and Energy

Consumption Based on Post-P&R Simulation 70

3.2 Chip Specifications . 72

4.1 The Summary of Existing Challenges in Prior Work 77

4.2 Comparison of Conventional DiffFrame Convolution and Our Proposed

Real-time DiffFrame Convolution . 80

4.3 A Summary of Data Types and Their Layout in DRAM 94

4.4 Accuracy Analysis of the Proposed Method on Quantized MobileNet-

v2 Neural Nets . 104

4.5 Comparison to Prior Work . 109

4.6 Computation-Related Sparsity Handling Techniques 110

4.7 Memory-Related Sparsity Handling Techniques 110

4.8 Comparison to Prior Work in Terms of Sparsity Handling in Activations

and Partial Sums . 111

21

B.1 The Original and Decomposed Structure of CNN80 (The input size of

CNN80 is 𝐻 = 10 and 𝑊 = 49.) . 119

B.2 The Structure of MobileNet-v2-47 (The input size is 𝐻 = 160 and

𝑊 = 360. The proposed real-time DiffFrame convolution with tempo-

ral modeling algorithm is applied to layer 4 and the following layers.

Metadata need to be generated for layer 4, 16, 17, 37 andd 38. The last

layer, which is a fully connected layer, is not included in our evaluation.)120

B.3 The Structure of MobileNet-v2-34 (The input size is 𝐻 = 54 and

𝑊 = 122. The proposed real-time DiffFrame convolution with tem-

poral modeling algorithm is applied to layer 3 and the following layers.

Metadata need to be generated for layer 3, 12, 13, 27, and 28. The last

layer, which is a fully connected layer, is not included in our evaluation.)121

22

Chapter 1

Introduction

1.1 Motivation

Deep learning (DL) is widely used in many applications for its state-of-the-art perfor-

mance revolutionizing how we process and analyze complex data. Among its many

uses, DL has demonstrated impressive results in image and video understanding,

speech recognition, and natural language processing. In image and video understand-

ing, DL models have been deployed on drones and autonomous vehicles to detect

and track objects, such as pedestrians, roads, obstacles, etc. [13, 11]. In natural lan-

guage processing, the state-of-the-art DL model, such as the generative pre-trained

Transformer (GPT) series [12], enables a natural and interactive way of obtaining

knowledge and assistance. With the growth in data and the increasing demand for

more intelligent systems, the importance of DL is set to increase in the years to come.

However, DL is computationally expensive. Researchers have shown in theory and

practice that the progress of DL in a wide variety of applications is strongly reliant on

increases in computing power [52]. As shown in Fig. 1-1, traditional machine learning

methods, e.g., linear regression, which use a small number of parameters, have their

performance plateau at a low level as available computation (and amount of data)

increases. In contrast, deep learning methods, which use an enormous number of

parameters, achieve higher performance at the cost of more computation (and data).

If we project this dependence into the future, it becomes evident that continuing on

23

Computation

M
od

el
 P

er
fo

rm
an

ce

Most Flexible Model
e.g., Deep Learning

Least Flexible Model
e.g., Linear Regression

Figure 1-1: Implications of model performance versus computation of deep learning
and linear regression [52].

the same path is unsustainable given the current energy cost of computation. This

projection is supported by a probabilistic analysis of the emissions from computing

onboard a global fleet of autonomous vehicles in the future. The model predicts that

the computing power of 1 billion autonomous vehicles with 1-hour drive per day leads

to the emission of all data centers on earth [50]. Even in the near term, the computing

cost of DL is prohibitive. Quoted OpenAI, the popular DL tool ChatGPT [39] caused

“eye-watering” computing cost when it hit 1 million users1. The increasing demand

for computing power poses significant challenges to the growth of DL applications.

As a result, improving the energy efficiency of DL workloads while preserving their

accuracy and meeting application throughput requirements becomes very important.

The objectives of this thesis are to propose algorithm, architecture, and circuit co-

design techniques to tackle this challenge, and experimentally evaluate them through

simulation and/or chip tapeout and measurements.

1.2 Background

This section presents a general background and the terminology used in this thesis.

Convolution: Fig. 1-2 illustrates a general convolution layer, which convolutes

input activation (IA) with weight, generates output activation (OA) and optionally

1https://analyticsindiamag.com/chatgpt-hits-one-million-users-burns-in-millions/

24

Convolution

Activation
Function

IA

OA

IA for the next layer

Figure 1-2: Illustration of a convolution layer. Some convolution layers do not have
an activation function and thus OA equals IA for the next layer.

applies an activation function to OA to generate IA for the next layer. OA refers to

the direct output of convolution instead of the output of the activation function in

this thesis. Partial sum (PSum) refers to the partially computed OA. Feature map

(FMap) refers to the activations in a NN, including both IAs and OAs. Illustration of

ordinary convolution and depth-wise convolution [24] is shown in Fig. 1-3 along with

the annotation of tensors and dimensions used in this thesis. The fully connected

layer can be treated as a special case of ordinary convolution with 𝐹𝐻, 𝐹𝑊 , 𝐼𝐻,

𝐼𝑊 , 𝑂𝐻 and 𝑂𝑊 equal to 1.

Dataflow, mapping and loop nest: Sze et al. introduce dataflow to represent

the ordering of calculations in convolution and which calculations run in parallel [51].

We split the dataflow into two parts, including spatial mapping which represents the

parallel calculations, and temporal mapping which represents the sequential ordering

of calculations. To precisely describe a dataflow, Sze et al. introduce loop nests [51].

In this thesis, we use the following syntax to represent a loop in temporal mapping,

For each dimension:

and the following syntax to represent a loop in spatial mapping.

Parallel_for dimension:

25

FW

FH

OCHN

1
...

ICHN

weight
W[OCHN][ICHN][FH][FW]

IW

IH

ICHN

input activation
IA[ICHN][IH][IW]

OH

OW
OCHN

output activation
OA[OCHN][OH][OW]

(a)

FW

FH

CHN

1

...
...

...

weight
W[CHN][FH][FW]

IW

IH

CHN

1

input activation
IA[CHN][IH][IW]

1 OH

OW

CHN

output activation
OA[CHN][OH][OW]

(b)

Figure 1-3: Illustration of (a) ordinary convolution and (b) depth-wise convolution
and the annotations used in this thesis.

Although loop nests define how accelerators handle the computation, it does not

show how data are buffered. To describe data buffering schemes of NN accelerators,

we add read and write annotations of storage elements in the loop nests, such as the

following.

Weight_L1_buffer.read()

Weight_L0_buffer.write()

Coordinate and position: Coordinate refers to the coordinate of each datum

in the tensor. They are used to index the tensor and represent how convolution

should be done mathematically. Position refers to the position of each datum in

the memory relative to the base of this data block. They represent how to access the

memory in hardware accelerators. If a data block is sequentially stored in the memory

26

off-chip DRAM

DL accelerator chip

on-chip
memory

hierarchy

data delivery

computation

...

...

Hybrid
Dataflow &
Memory
Hierarchy
Co-design

Weight
Tuning
Algorithm &
Flexible
CNN
Accelerator
Co-design

VideoTime3:
Algorithm &
Architecture
Co-design
Utilizing
Data
Features
for Video
Understand-
ing

Figure 1-4: An overview of a general deep learning system and a summary of the
thesis.

without compression, the position can be calculated from the coordinate based on the

storing sequence and the dimensions of the data block. For 1-D arrays, the position

is equal to the coordinate. If a data block is as a compressed form in the memory,

the relationship between the position and the coordinate is not straightforward. It

can be influenced by many factors, such as the sparsity pattern and the compression

algorithm.

1.3 Thesis Overview

In this thesis, we focus on reducing energy consumption and improving energy effi-

ciency across various system components while ensuring that we meet the required

levels of accuracy and performance. The major components in a general DL acceler-

ator are on-chip memory hierarchy, data delivery fabrics, and computing units. The

DL accelerator may need off-chip storage if the processing data are too large to fit on

chip. We take an algorithm, hardware architecture and circuit co-design approach to

optimize different system components as summarized in Fig. 1-4.

Hybrid Dataflow and Memory Hierarchy Co-design: In Chapter 2, we

27

focus on memory hierarchy design and dataflows to reduce the associated energy con-

sumption. We propose hybrid dataflows that provide an option to tradeoff the reuse

opportunities of weight and PSum in different memory hierarchies. We evaluate how

the proposed hybrid dataflows affect the energy efficiency and other characteristics

of two system designs with different technologies. In both systems, our proposed

hybrid dataflows improve energy efficiency by around 1.5x – 2x and show significant

improvements in performance per area and energy-delay product (EDP).

Weight Tuning Algorithm and Flexible CNN Accelerator Co-design: In

Chapter 3, we propose a weight tuning algorithm to reduce the energy consump-

tion of on-chip components—the memory access, data delivery, and computation—

associated with weights. It focuses on reducing the weight-related switching activity

through optimization of the bit representation of weights. In addition, we co-design

a standalone deep learning accelerator with a specialized datapath and potentially

applicable custom SRAM for the algorithm.

Algorithm and Architecture Co-design Utilizing Data Features for Vi-

deo Understanding: In Chapter 4, we take the entire system into consideration and

co-design the algorithm and architecture for video understanding applications utiliz-

ing their data features. Our design features the capability of temporal modeling for

higher accuracy, the utilization of temporal redundancy to improve energy efficiency,

and achieving single-frame latency for real-time applications, such as autonomous

vehicles and AI drones. Our work also provides an extension to the existing sparsity

handling taxonomy with the proposed map-guided sparse convolution and decoupled

metadata generation.

28

Chapter 2

Hybrid Dataflow and Memory

Hierarchy Co-design

As discussed in the previous chapter, it is important to keep improving the energy

efficiency of NN accelerators. In this chapter, we focus on reducing the energy con-

sumption of memory access and data delivery through the design of efficient dataflow

and memory hierarchy.

The chapter is organized as follows. First, we analyze the energy consumption

of memory access and data delivery in existing NN accelerators, point out the im-

portance of energy reduction for memory access and data delivery, and summarize

the related prior works. Then, we introduce our proposed hybrid dataflows and their

corresponding memory hierarchy. Later, we present the evaluation results of our pro-

posed techniques on several systems with different technologies followed by a summary

of this chapter.

2.1 Introduction and Motivation

Optimizing memory access and data delivery is an important part of neural network

(NN) accelerator design. Fig. 2-1 describes the contribution of memory access and

data delivery to the overall power consumption of various NN accelerators. In terms

of target workload, Eyeriss [6] and QUEST [53] are optimized for dense NNs, while

29

Eyeriss Eyeriss v2 QUEST
0

10

20

30

40

50

60

70

80
M

em
or

y
Ac

ce
ss

 &

 D
at

a
D

el
iv

er
y

En
er

gy
/ O

ve
ra

ll
En

er
gy

 (%
)

Figure 2-1: Memory access and data delivery energy is a significant part of the to-
tal NN accelerator energy. This figure only includes the reported on-chip energy
consumption. Off-chip data access is more energy-consuming than on-chip memory
access [23]. The energy ratio is obtained from the energy breakdown graphs/tables
of prior NN accelerators running various workloads. We exclude the clock network
energy from our analysis for Eyeriss [6] and Eyeriss v2 [7]. All the on-chip energy
consumption is included except the "CLK and MISC." part in Fig. 18 of QUEST [53].

Eyeriss v2 [7] is designed for sparse NNs. In terms of the memory system, Eyeriss [6]

and Eyeriss v2 [7] use regular DRAM and SRAM based systems, while QUEST [53]

proposes a unique 3D-stacking SRAM with inductive coupling technology. As shown,

the energy of memory access and data delivery takes up a significant portion of the

total energy consumption of different NN accelerators.

Extensive prior works have proposed many techniques to reduce the energy con-

sumption of memory access and data delivery in NN accelerators, and some works

investigated the factors influencing memory access and data delivery. Yu-Hsin et

al. was pioneered in proposing a dataflow taxonomy and the convolution loop nest

representation to systematically analyze the memory access and data delivery in NN

accelerators [5, 51]. X. Yang et al. distinguished the impact of spatial mapping from

30

that of temporal mapping in the dataflow. They showed that spatial mapping does

not lead to much impact on the overall energy consumption as long as the temporal

mapping and memory hierarchy are fully optimized [62]. That emphasizes the im-

portance of the choice of memory allocation for each data type along with the loop

permutation and temporal unrolling in the convolution loop nest. Prior work proposed

weight stationary (WS), input stationary (IS), and output stationary (OS) dataflow

corresponding to specific loop permutations that have weight/input/output-related

dimensions in the outermost loops respectively. They result in a maximum reuse

opportunity of weight/IA/OA respectively at the cost of losing reuse opportunities of

other data types.

Based on prior work, we propose hybrid dataflows that offer balanced reuse op-

portunities for different data types at different levels of memory hierarchies. To

demonstrate the impact of our proposed techniques, we evaluate them on several

systems with different technologies, including a system with off-chip DRAM using

16nm FinFET technology and a fully-on-chip NN accelerator with embedded magne-

toresistive RAM (eMRAM) in 22-nm/28-nm CMOS technology. It is shown that our

proposed output stationary with local weight stationary (OS-LWS) dataflow delivers

around 1.5x – 2x improvements in the energy efficiency of all systems evaluated and

significant improvements in performance per area and EDP. Part of the work was

done during the author’s internship at the ASIC/VLSI research group at NVIDIA.

2.2 Hybrid Dataflow and Memory Hierarchy

This section presents our proposed hybrid dataflows, WS with local OS (WS-LOS)

and OS with local WS (OS-LWS), which 1) provide designers the capability to balance

the reuse of weight and PSum/OA based on the characteristics of the storage elements

in the chosen technology, 2) enrich the design space for the architecture exploration

framework to achieve potentially better energy efficiency and performance/area.

The baseline spatial datapath architecture and spatial mapping of the proposed

dataflows are shown in Fig. 2-2. The spatial datapath architecture is composed of sev-

31

Accum. Accum.

...

...

VL

VL

Vector
MAC

Accum.

Vector
MAC

MAC
Array

Vector
MAC

Weight Buffers IA Buffers

PSUM Buffers

...
VS

(a)

...

...

...

...

...

VL

VSICHN

ICHN

ICHN

OCHN

OCHN

Weight

IA

OA
OCHN

(b)

Figure 2-2: The baseline (a) spatial datapath architecture and (b) spatial mapping
(to better illustrate the spatial mapping, we only show the multipliers from the MAC
array in this figure). VS : the number of multipliers in a vector MAC; VL: the num-
ber of vector MACs and accumulators in the MAC array; accum.: accumulator. The
colored squares indicate the mapping of IA, weight, and OA across the channel di-
mensions.

eral vector MACs and accumulators. The vector MAC consists of several multipliers

to generate the products of weights and IAs, and an adder tree to spatially accumu-

late the products (PSums). The accumulator is used for the temporal accumulation

32

Table 2.1: Summary of reuse per read/write of L1 buffers and reuse per write of L0
registers in the WS, OS, and IS dataflows.

Data Type Storage Unit WS OS IS

Weight
L1 buffer OH×OW 0 0

L0 register OH×OW 0 0

PSum/OA
L1 buffer 0 FH×FW×ICHN 0

L0 register 0 0 0

IA
L1 buffer 0 0 FH×FW×OCHN

L0 register 0 0 FH×FW×OCHN

of PSums locally before storing them in PSum/OA buffers. We spatially map the

input and output channels to the MAC array for parallel computing. With high-level

architecture modeling, prior work demonstrated that spatial mapping only has a lim-

ited impact on overall energy consumption, and channel-wise spatial mapping is good

for the utilization of computing units as NNs usually have a large channel size [62].

That justifies our choice of spatial mapping. Moreover, the spatial accumulation of

part of the PSums enabled by our vector MACs is shown to be more energy efficient

than temporal accumulation as there is no need to access the accumulation register.

With this spatial architecture and spatial mapping, conventional dataflows—WS,

IS, and OS—can be implemented as shown in Fig. 2-3 with a memory hierarchy that

has one level of buffer for each data type, weight and IA registers at the inputs of MAC

array, and PSum accumulation registers in the accumulators. The reuse opportunity

for each data access to each buffer is summarized in Table 2.1. For WS, all the

weight-related dimensions are in the outer loops and thus each weight buffer read and

weight register write gets reused over the 𝑂𝐻 and 𝑂𝑊 loops while other data keep

being accessed in every loop. Similar analysis can be applied to other conventional

dataflows. For OS dataflow, the PSum accumulation register needs to be accessed

each cycle for temporal accumulation, although all the PSum-related dimensions are

in the outermost loops.

To balance the reuse opportunities across multiple data types, we propose hybrid

33

1. For each OCHN/ochn_parallel:

2. For each FH:

3. For each FW:

4. For each ICHN/ichn_parallel:

5. weight_l1_buf.read()

6. weight_l0_reg.wr_rd()

7. For each OH:

8. For each OW:

9. ia_l1_buf.read()

10. ia_l0_reg.wr_rd()

11. psum_l1_buf.read()

12. Parallel_for ichn_parallel:

13. Parallel_for ochn_parallel:

14. MAC & psum_l0_reg.accum()

15. psum_l1_buf.write()

(a)

1. For each OCHN/ochn_parallel:

2. For each OH:

3. For each OW:

4. For each FH:

5. For each FW:

6. For each ICHN/ichn_parallel:

7. ia_l1_buf.read()

8. ia_l0_reg.wr_rd()

9. weight_l1_buf.read()

10. weight_l0_reg.wr_rd()

11. Parallel_for ichn_parallel:

12. Parallel_for ochn_parallel:

13. MAC & psum_l0_reg.accum()

14. psum_l1_buf.write()

(b)

1. For each IH:

2. For each IW:

3. For each ICHN/ichn_parallel:

4. ia_l1_buf.read()

5. ia_l0_reg.wr_rd()

6. For each OCHN/ochn_parallel:

7. For each FH:

8. For each FW:

9. psum_l1_buf.read()

10. weight_l1_buf.read()

11. weight_l0_reg.wr_rd()

12. Parallel_for ichn_parallel

13. Parallel_for ochn_parallel

14. MAC & psum_l0_reg.accum()

15. psum_l1_buf.write()

(c)

Figure 2-3: Examples of (a) WS, (b) OS, and (c) IS dataflow with L1 buffers and L0
registers. wr_rd: write and bypass read or read. accum: accumulation.

dataflows—WS-LOS and OS-LWS—and introduce new storage elements.

34

1. For each OCHN/ochn_parallel:

2. For each FH:

3. For each FW:

4. For each ICHN/ichn0:

5. weight_l1_buf.read()

6. weight_l0_collector.write()

7. For each OH:

8. For each OW:

9. psum_l1_buf.read()

10. For each ichn0/ichn_parallel:

11. weight_l0_collector.read()

12. ia_l1_buf.read()

13. ia_l0_reg.wr_rd()

14. Parallel_for ichn_parallel:

15. Parallel_for ochn_parallel:

16. MAC & psum_l0_reg.accum()

17. psum_l1_buf.write()

(a)

Weight BufferL1

L1

L0

L0

Weight Collector

IA Buffer

PSUM Buffer

MAC Array

IA Register

PSum Register

(b)

Figure 2-4: Illustration of WS-LOS (a) dataflow and (b) memory hierarchy. The
differences between WS dataflow are highlighted in red.

Weight Stationary with Local Output Stationary

The weight stationary with local output stationary (WS-LOS) dataflow and its mem-

ory hierarchy implementation are shown in Fig. 2-4. Based on WS dataflow, we move
35

part of the input channels to the innermost temporal loop and those input chan-

nels are temporally accumulated in the PSum registers without accessing the PSum

buffer. Instead of having single-entry L0 weight registers at the input of the MAC

array, we expand it to a 𝑖𝑐ℎ𝑛0/𝑖𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙-entry weight collector to temporally

hold 𝑖𝑐ℎ𝑛0 × 𝑜𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 weights during the 𝑂𝐻, 𝑂𝑊 and 𝑖𝑐ℎ𝑛0 loops. In this

way, reuse per weight buffer read stays the same as the WS dataflow while reuse per

PSum buffer read goes up to 𝑖𝑐ℎ𝑛0 at the cost of no reuse opportunity for the weight

collector. A summary of the reuse opportunity can be found in Table 2.2.

Output Stationary with Local Weight Stationary

The output stationary with local weight stationary (OS-LWS) dataflow and its mem-

ory hierarchy implementation are shown in Fig. 2-5. Based on OS dataflow, we move

part of the input width to the innermost temporal loop, and the same weights are

reused across those inputs. Instead of having single-entry L0 PSum registers for

temporal accumulation in the MAC array, we expand it to be a 𝑜𝑤0-entry PSum

accumulation collector to temporally hold 𝑜𝑤0× 𝑜𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 PSums during 𝐹𝑊 ,

𝐹𝑊 , 𝐼𝐶𝐻𝑁 and 𝑜𝑤0 loops. In this way, reuse per PSum buffer write stays the same

as the OS dataflow while reuse per weight buffer read and weight register write goes

up to 𝑜𝑤0. The overhead is that the multi-entry PSum collector needs muxes and

thus the energy consumption of read and write is higher compared to that of the

single-entry PSum accumulation register. A summary of the reuse opportunity can

be found in Table 2.2.

2.3 System 1 and its Evaluation

The previous section introduces the proposed hybrid dataflows on a MAC-array-based

spatial datapath with channel-wise spatial mapping. That expands the design space

with options to balance the reuse opportunities between different data types and

storage elements. In this section, we briefly present an evaluation of the impact of

our proposed techniques on the energy efficiency and performance per area of a DL

36

1. For each OCHN/ochn_parallel:

2. For each OH:

3. For each OW/ow0:

4. For each FH:

5. For each FW:

6. For each ICHN/ichn_parallel:

7. weight_l1_buf.read()

8. weight_l0_reg.wr_rd()

9. For each ow0:

10. ia_l1_buf.read()

11. ia_l0_reg.wr_rd()

12. Parallel_for ichn_parallel:

13. Parallel_for ochn_parallel:

14. MAC & psum_l0_collector.accum()

15. psum_l1_buf.write()

(a)

Weight BufferL1

L1

L0

L0

Weight Register

IA Buffer

PSUM Buffer

MAC Array

IA Register

PSum Collector

(b)

Figure 2-5: Illustration of OS-LWS (a) dataflow and (b) memory hierarchy. The
differences between the WS dataflow are highlighted in red.

accelerator done in collaboration with Rangharajan Venkatesan, Yakun Sophia Shao,

Jason Clemons, Steve Dai, Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel

Pinckney, Priyanka Raina, Yanqing Zhang, Brian Zimmer, William J. Dally, Joel

Emer, Stephen W. Keckler, and Brucek Khailany during the author’s internship at

37

Table 2.2: Summary of reuse per read/write of L1 buffers/L0 collectors and reuse per
write of L0 registers in WS-LOS and OS-LWS dataflows.

Data Type Storage Unit WS-LOS OS-LWS

Weight
L1 buffer OH×OW ow0

L0 collector/
L0 register 0* ow0

PSum/OA
L1 buffer ichn0 FH×FW×ICHN

L0 collector/
L0 register 0 0*

IA

The differences between the baseline WS/OS dataflow are highlighted in red.
*Collectors has multiple entries and thus muxes are needed per read/write. That increases the
energy consumption per read/write compared to registers.

L1 buffer 0 0

L0 register 0 0

NVIDIA.

The proposed techniques were evaluated with a DL system shown in Fig. 2-6a.

It comprises a processing element (PE) array as the main workhorse, a global buffer

for data transfer between DRAM and chip, and a controller. The MAC-array-based

spatial datapath is distributed in the PEs with local buffers and local controllers. The

PE architecture is shown in Fig. 2-6b. SRAMs are used for L1 buffers and standard

cells are used for the L0 registers/collectors.

MAGNet [54] shown in Fig. 2-7 is developed to explore the design space of PEs

and search for the best design-time and runtime parameters for given workloads. The

design space of PEs is shown in Table 2.3. The MAGNet designer takes that as

the input and generates a set of design-time parameters. An RTL generator, which

consists a systemC-based parameterized architecture template, uses those design-time

parameters to generate RTL [31]. The MAGNet mapper takes in the design-time

parameters and workloads, and searches for the best runtime parameters, such as the

tile size, for the accelerator. Given the runtime parameters, a trace generator produces

the configuration bits and data traces for simulation. Traditional RTL synthesis,

place-and-route, and simulation tools are used to evaluate the power, performance,

38

PE

Global
Buffer

DRAM

PE PE PE

PE PE PE PE

PE PE PE PE

PE
Controller

PE PE PE

(a)

MAC Array

Weight
SRAM

IA
SRAM

PSum
SRAM

L0
Regs/Collector

L1
Buffer

SC SC SC

(b)

Figure 2-6: (a) The overall architecture of system 1. PE: processing element. (b) The
PE architecture. The MAC array is shown in Fig. 2-2a. SC: standard cell.

and area of the generated accelerator. The designer sets the design goal for the

MAGNet tuner and uses it to tune the designer and mapper to efficiently explore the

design space guided by the power, performance, and area of generated designs.

The design is implemented with TSMC 16-nm FinFET technology. It is opti-

mized across a workload of three NNs—AlexNet [33], ResNet [21], and DriveNet [3]—

weighted by their number of operations. Fig. 2-8 shows the evaluation results of a

baseline accelerator optimized with the conventional dataflows, and the most energy-

efficient accelerator design with the proposed hybrid dataflows. As shown, our pro-

posed hybrid dataflows improve energy efficiency by 1.75x and performance per area

by 2.1x running ResNet. Fig. 2-9 shows the energy breakdown of the most energy-

efficient PE with 𝑉 𝐿 and 𝑉 𝑆 of 16 under different dataflows. As shown, our proposed

hybrid dataflows greatly reduce the energy of memory access compared to the baseline

WS and OS dataflows.

39

MAGNet TunerDesign Goal

Design Space

Workloads

MAGNet Designer

Area/Power/Performance

runtime
parameters

design-time
parameters

design-time
parameters

ASIC Generator
& Simulator

Trace GeneratorMAGNet Mapper

Figure 2-7: Overview of MAGNet framework [54]. Its capability to co-design the DL
application is not used in our evaluation and thus is not included in this figure.

Table 2.3: The design space of system 1 [54]. A conventional design space contains
WS and OS dataflow. The proposed hybrid dataflow expands the design space with
WS-LOS and OS-LWS dataflows.

Bit-width 8-b weight/activation, 24-b PSum
VL/VS 4, 8, 16
Weight Collector Size 8 B – 2 KB
PSum Collector Size 8 B – 384 B
IA Buffer Size 2 KB, 8 KB, 16 KB
Weight Buffer Size 4 KB – 128 KB
PSum Buffer Size 1 KB – 6 KB
Global Buffer Size 64 KB
Target Frequencies 500 MHz, 1 GHz
Supply Voltage 0.6 V
Dataflow WS, OS, WS-LOS, OS-LWS

2.4 System 2 and its Evaluation

The last section presents the benefits of hybrid dataflows on energy efficiency and

performance per area on a 16-nm accelerator with a memory system composed of

off-chip DRAM and on-chip SRAM. As discussed in Section 2.2, the technology and

its characteristics of storage units affect the choice of optimal dataflow and temporal

mapping. In this section, we expand our analysis to a fully on-chip NN acceler-

ator with emerging eMRAM in 22-nm technology. In the evaluation, we compare

40

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5

En
er

gy
 e

ffi
ci

en
cy

 (p
J/

op
)

Performance/area (TOPS/mm2)

Baseline-ResNet
Baseline-AlexNet
Baseline-DriveNet
Proposed-ResNet
Proposed-AlexNet
Proposed-DriveNet

1.75x

2.1x

Figure 2-8: Comparison of energy efficiency and performance per area of the optimal
accelerators with conventional dataflows and the proposed dataflows. The proposed
hybrid dataflows greatly improve energy efficiency and performance per area.

100%

0%

20%

40%

60%

80%

WS OS WS-LOS OS-LWS

Datapath

PSum Buffer

Weight Buffer

IA Buffer

Figure 2-9: The energy breakdown of a PE with 𝑉 𝐿 and 𝑉 𝑆 of 16.

the optimal design achieved by our proposed techniques with the optimal design of

conventional dataflow to show the benefits of our hybrid dataflows. The evaluation

also serves as an early-stage exploration for their application with emerging embed-

ded non-volatile memory for edge computing applications, such as automotive and

Industry 4.0.

41

SC
M

 (512 b)

SC
M

 (6 kB)

D
P R

F (6 kB)

SP SR
AM

 (42 kB)

SP SR
AM

 (144 kB)

eM
R

AM
 (2.3 M

B)

0

20k

40k

60k

80k

100k

120k

N
or

m
al

iz
ed

 R
ea

d
En

er
gy

 p
er

 B
it

1

(a)

SC
M

 (512 b)

SC
M

 (6 kB)

D
P R

F (6 kB)

SP SR
AM

 (42 kB)

SP SR
AM

 (144 kB)

eM
R

AM
 (2.3 M

B)

0
200
400
600
800

1000
1200
1400
1600

N
or

m
al

iz
ed

 W
rit

e
En

er
gy

 p
er

 B
it

1

(b)

Figure 2-10: Normalized (a) read energy per bit, and (b) write energy per bit of 22-
nm eMRAM and 28-nm standard cell memory (SCM) and SRAM relative to 512-b
SCM. DP RF: the dual-port register file from 28-nm memory compilers (this thesis
refers to it as SRAM). SP SRAM: single-port SRAM.

2.4.1 Technology

This system targets TSMC 22-nm technology with eMRAM. But as TSMC 22-nm

memory compilers are not available for university access, we use 28-nm technology as

an estimate in our evaluation.

eMRAM

STT-MRAM is a promising solution for next-generation embedded non-volatile mem-

ory. Technology developments have brought us logic-compatible and high-retention

eMRAM [14, 44]. It helps keep all data on-chip which eliminates the need for energy-

consuming off-chip data access. Moreover, it enables duty cycling to reduce the power

consumption of applications that do not need to be always on and maintains NN pa-

rameters and boot codes locally avoiding the need for cloud access [25].

Compared to eFlash, which is difficult to scale any further, eMRAM reduces mask

42

D
P R

F (6 kB)

SP SR
AM

 (42 kB)

SP SR
AM

 (144 kB)

eM
R

AM
 (2.3 M

B)

0

500

1000

1500

2000

2500
N

or
m

al
iz

ed
 R

ea
d

Sp
ee

d

1

(a)

D
P R

F (6 kB)

SP SR
AM

 (42 kB)

SP SR
AM

 (144 kB)

eM
R

AM
 (2.3 M

B)

0

0.5M

1M

1.5M

N
or

m
al

iz
ed

 W
rit

e
Sp

ee
d

1

(b)

Figure 2-11: Normalized (a) read speed, and (b) write speed of 22-nm eMRAM and
28-nm SRAM relative to eMRAM. DP RF: the dual-port register file from 28-nm
memory compilers (this thesis refers to it as SRAM). SP SRAM: single-port SRAM.

adders by over 2x, achieves similar read/write speed and read power, and delivers over

100x higher retention while leading to around 2x higher write power [14]. Compared to

off-chip DRAM, MRAM achieves similar bandwidth with 44x less access energy [44].

Fig. 2-10, 2-11, and 2-12 compare eMRAM over 28-nm standard cell memory (SCM)

and SRAM. As shown, eMRAM delivers over 2x higher area density and over 100x

less leakage power compared to SRAM while having much higher access energy and

lower access speed (the inverse of cycle time), especially for writes. Moreover, the

minimum macro capacity of eMRAM is over 1000x compared to that of SRAM. The

characteristics of eMRAM affect how it can be used in the DL accelerator, which will

be discussed in the next section.

2.4.2 Overall Architecture

Fig. 2-13 shows the overall architecture of the accelerator chip. A monolithic MAC

array is used. More complicated architecture with multiple MAC arrays distributed

43

D
P R

F (6 kB)

SP SR
AM

 (42 kB)

SP SR
AM

 (144 kB)

eM
R

AM
 (2.3 M

B)

0

50

100

150

200

250

300
N

or
m

al
iz

ed
 L

ea
ka

ge
Po

w
er

 p
er

 B
it

1

(a)

D
P R

F (6 kB)

SP SR
AM

 (42 kB)

SP SR
AM

 (144 kB)

eM
R

AM
 (2.3 M

B)

0

5

10

15

20

25

30

35

N
or

m
al

iz
ed

 A
re

a
D

en
si

ty

1

(b)

Figure 2-12: Normalized (a) leakage power per bit and (b) area density of 22-nm
eMRAM and 28-nm SRAM. DP RF: the dual-port register file from 28-nm memory
compilers (this thesis refers to it as SRAM). SP SRAM: single-port SRAM.

in a processing element array, like Simba [48], is left as future work. The lowest-

level storage elements are either IA/weight/accumulation registers or a weight/PSum

collector for hybrid dataflows. Above that, two levels of buffers are implemented for

each data type. eMRAM is used as the last level buffer for weights for the following

reasons—1) weights need to be kept in non-volatile memory during power down, 2)

the high area density and low leakage of eMRAM make large memory less costly

compared to SRAM, 3) the reuse opportunity per access can be high in the last level

storage reducing the read bandwidth requirements. The last level buffer for IA and

OA is made of SRAM instead of eMRAM, although the above 2) and 3) also hold

in this case. The reason is that it is challenging to supply enough write bandwidth

with eMRAM for medium/large-scale NN processing as indicated in Fig. 2-11b. Tiny

NNs with several thousand parameters or even fewer are not included in the target

workload as they cannot fully utilize the capacity of eMRAM available, which is

in the MB range. Furthermore, the write energy of eMRAM is much higher than

44

MAC Array

Weight
SRAM

Weight
MRAM

IA & OA
SRAM

IA
SRAM

PSUM
SRAM

L0
Regs/Collector

L1
Buffer

L2
Buffer

SCM SCM SCM

Figure 2-13: Overall system architecture. The system is fully on-chip with eMRAM.

Table 2.4: The design space of the system.

Bit-width 8-b weight/activation, 24-b PSum
VL/VS 16
Weight Collector Depth 2, 4, 8
PSum Collector Depth 4, 8, 32
L1 IA Buffer Depth 128, 256, 512, 1024
L1 Weight Buffer Depth 128, 256, 512, 1024
L1 PSum Buffer Depth 128, 256, 512, 1024
L2 Weight Buffer Size 2.3 MB
L2 IA/OA Buffer Size 0.3 MB
Target Frequencies 100 MHz
Supply Voltage 0.8 V/0.9 V
Outer Dataflow OS
Inner Dataflow WS-a, WS-b, OS-a, OS-b,

WS-LOS-a, WS-LOS-b,
OS-LWS-a, OS-LWS-b

that of SRAM shown in Fig. 2-10b, which may lead to a nonnegligible increase in

system energy consumption. We adopt Buffets [42] for weight and IA L1 buffers and

ping-pong buffer for the PSum L1 buffer.

The design time parameters are summarized in Table 2.4. We set the size of the

L2 buffers to store the medium-size NNs, such as AlexNet [33], fully on-chip. We

have two levels of buffers and temporal unrolling is applied to the convolution loop

45

nest breaking it into two levels. OS dataflow is used at the outer level so that no read

operation for PSum is needed from the L2 buffer. That keeps the buffer simple and

area efficient—a single-port SRAM for IA read and a single-port SRAM for OA write

are sufficient for the operations needed. The inner level has a large variety of choices.

We expand the WS, OS, WS-LOS, and OS-LWS dataflows with two flavors using

different buffering schemes for weights. We use OS-LWS dataflow as an example to

illustrate the differences between the two weight buffering schemes. The details of

other dataflows can be found in Appendix C.

Fig. 2-14 and Fig. 2-15 show the details of the OS-LWS-a and OS-LWS-b dataflow.

Tiling is applied to each data type so that part of the data can be kept in L1 buffers for

temporal reuse. The level 1 loops are similar to the one-level OS-LWS dataflow shown

in Fig. 2-5a except that it includes the reads of L2 buffers and the writes of L1 buffers.

The difference between OS-LWS-a and OS-LWS-b dataflow is the data buffered in the

L1 weight buffer. OS-LWS-a dataflow buffers 𝐹𝐻×𝐹𝑊 ×𝑜𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙× 𝑖𝑐ℎ𝑛_𝑡𝑖𝑙𝑒

of weights, and each read of L2 buffer is reused for 𝑜ℎ_𝑡𝑖𝑙𝑒× 𝑜𝑤_𝑡𝑖𝑙𝑒 times in the L1

buffer. OS-LWS-b dataflow buffers 𝐹𝐻 ×𝐹𝑊 × 𝑜𝑐ℎ𝑛_𝑡𝑖𝑙𝑒× 𝐼𝐶𝐻𝑁 of weights, and

each read of L2 buffer is reused for 𝑂𝐻×𝑂𝑊 times in the L1 buffer. OS-LWS-a and

OS-LWS-b provide a tradeoff between the size of the L1 weight buffer, which impacts

its area and energy per access, and the number of access to the L2 weight buffer,

which impacts its energy consumption.

We evaluate the impact of the choice of inner-level dataflows on the overall perfor-

mance, energy efficiency and EDP. In the rest of this chapter, the dataflows mentioned

refer to the inner-level dataflow.

2.4.3 Evaluation Setup

The design space exploration framework is shown in Fig. 2-16. Instead of writing

RTL codes or a cycle-accurate model of the entire system with all possible design-

time parameters including a large variety of dataflows, we build an analytical model,

like Timeloop [40], to calculate the memory accesses of each buffer and the computing

cycles of the MAC array based on design-time and runtime parameters of the under-

46

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. weight_l2_buf.read()

9. weight_l1_buf.write()

10. For each oh_tile:

11. For each ow_tile/ow0:

12. psum_l1_ping_buf.read()

13. For each FH:

14. For each FW:

15. For each ichn_tile/ichn_parallel:

16. weight_l1_buf.read()

17. weight_l0_reg.wr_rd()

18. For each ow0:

19. ia_l1_buf.read()

20. ia_l0_reg.wr_rd()

21. Parallel_for ichn_parallel:

22. Parallel_for ochn_parallel:

23. MAC & psum_l0_collector.accum()

24. psum_l1_ping_buf.write()

25. psum_l1_pong_buf.read()

26. psum_l2_buf.write()

Figure 2-14: OS-LWS-a dataflow (inner-level).

lying architecture for fast early-stage design exploration. We characterize the energy

and throughput of major design components, including SRAMs, eMRAM, SCM, and

the MAC array, using TSMC memory compiler or RTL synthesis and simulation.

Using the operational statistics (e.g., memory accesses and operation cycles) of ma-

jor components in the design and their energy and throughput characteristics, we

estimate the energy and runtime of the entire system. Given the estimated energy

47

1. For each OCHN/ochn_tile:

2. weight_l2_buf.read()

3. weight_l1_buf.write()

4. For each OH/oh_tile:

5. For each OW/ow_tile:

6. For each ICHN/ichn_tile:

7. ia_l2_buf.read()

8. ia_l1_buf.write()

9. For each ochn_tile/ochn_parallel:

10. For each oh_tile:

11. For each ow_tile/ow0:

12. psum_l1_ping_buf.read()

13. For each FH:

14. For each FW:

15. For each ichn_tile/ichn_parallel:

16. weight_l1_buf.read()

17. weight_l0_reg.wr_rd()

18. For each ow0:

19. ia_l1_buf.read()

20. ia_l0_reg.wr_rd()

21. Parallel_for ichn_parallel:

22. Parallel_for ochn_parallel:

23. MAC & psum_l0_collector.accum()

24. psum_l1_ping_buf.write()

25. psum_l1_pong_buf.read()

26. psum_l2_buf.write()

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

Figure 2-15: OS-LWS-b dataflow (inner-level).

and runtime, a design space explorer and a mapper search for optimal design-time

parameters and the corresponding runtime parameters given a design target, e.g.,

best energy efficiency.

We use Alexnet [33] as our target workload. The overall energy efficiency (i.e.,

TOPS/W) and throughput (i.e., GOPS) of the entire workload are weighted sums of

energy efficiency and throughput of each layer based on its number of operations.

48

Design Space Explorer

Synthesizer
& Simulator

Memory
Compiler

Hardware Constraints/
Design Space

Design-time
Parameters

Estimated
Energy,

Throughput,
etc.

Mapper

Component
Characteristic LUT

NN Workloads

Component RTL

Analytical Model

Runtime
Parameters

Figure 2-16: The design space exploration framework for system 2.

2 2.5 3

3

3.5

4

4.5

Conventional, TOPS/W Proposed, TOPS/W
Conventional, EDP Proposed, EDP

EDP (uJ×s)

TO
PS

/W

1.5x

1.5x

1.5x

1.4x

Figure 2-17: Comparison of the best energy efficiency and EDP achieved by con-
ventional dataflows and proposed dataflows under different optimization targets—
maximizing energy efficiency and minimizing EDP. The legend of (a): <design
space>, <optimization target>.

49

WS OS WS-LOS OS-LWS
0

1

2

3

4

5

a b

ED
P

(u
J×

s)

Figure 2-18: Comparison of EDP between different dataflows. The optimization
target is minimizing EDP.

2.4.4 Evaluation Results

Fig. 2-17 compares the best energy efficiency and EDP achieved by the conventional

dataflows and our proposed hybrid dataflows. When we optimize for energy effi-

ciency, our proposed hybrid dataflows achieve around 1.5x improvement in the opti-

mal TOPS/W compared to that of the conventional dataflows. When we optimize

for EDP, our proposed hybrid dataflows improve the optimal EDP by around 1.5x

compared to the conventional dataflows. The attained throughput of all cases is at

least 99% of the highest throughput achieved when optimizing for maximum through-

put. As shown, our proposed hybrid dataflows deliver significant energy efficiency im-

provements and energy savings for the entire NN accelerator system with a multi-level

memory hierarchy while maintaining adequate throughput.

Fig. 2-18 shows a comparison of the optimal EDP achieved by different dataflows.

WS dataflow achieves much better EDP compared to the OS dataflow given our

architecture and technology, and our proposed OS-LWS dataflow outperforms all

other dataflows. The b version of dataflows, which achieves more reuse of weight L2

buffer read at the cost of a bigger weight L1 buffer as presented in Section 2.4.2, leads

to better EDP compared to the a version of dataflows.

50

WS-b OS-b WS-LOS-b OS-LWS-b
0

100

200

300

400

500 MAC Array
PSum L0
IA L0
Weight L0
PSum L1
IA L1
Weight L1
IA/OA L2
Weight L2

En
er

gy
 (u

J)

(a)

WS-a WS-b OS-LWS-a OS-LWS-b
0

50

100

150

200

250

300

350 MAC Array
PSum L0
IA L0
Weight L0
PSum L1
IA L1
Weight L1
IA/OA L2
Weight L2

En
er

gy
 (u

J)

(b)

Figure 2-19: The energy breakdown of different dataflows. The results are from an
optimization target of minimizing EDP.

To analyze the differences between those dataflows, we evaluate the energy break-

down of the NN accelerator. As shown in Fig. 2-19a, WS-b dataflow delivers lower

51

energy consumption compared to OS-b dataflow as zero reuse of the PSum L1 buffer

read/write leads to much less energy than zero reuse of the weight L1 buffer read.

The OS-LWS-b dataflow consumes less energy than the WS-b and OS-b dataflows as

it greatly reduces the energy of the PSum and weight L1 buffers with a small PSum

L0 collector as presented in Section 2.2. OS-LWS-b dataflow consumes less energy

than WS-LOS-b dataflow as accessing the PSum L0 collector is less energy-consuming

than accessing the weight L0 collector. The reason is that the weight L0 collector has

an IO size of 16× 16× 8 to match the bandwidth of the MAC array, while the PSum

L0 collector only has an IO size of 16× 24.

Fig. 2-19b compares the energy breakdown of a and b versions of dataflows. The

b version of dataflows significantly reduces the energy consumption of the weight L2

buffer as the reuse of L2 buffer access increases. Moreover, the energy consumption

of the L1 IA buffer is largely reduced in the b version of dataflows. The reason is

that 𝑜ℎ_𝑡𝑖𝑙𝑒 and 𝑜𝑤_𝑡𝑖𝑙𝑒 do not affect the number of access of the weight L2 buffer

in the b version of dataflows and thus can be more flexibly adjusted. That results in

smaller 𝑜ℎ_𝑡𝑖𝑙𝑒 and 𝑜𝑤_𝑡𝑖𝑙𝑒 and thus smaller 𝑖ℎ_𝑡𝑖𝑙𝑒 and 𝑖𝑤_𝑡𝑖𝑙𝑒, which can be fit

in a smaller L1 IA buffer and reduces its energy consumption. This emphasizes that

the design choice of one buffer may affect the design choice and energy consumption

of another buffer through mapping optimization.

As shown in Fig. 2-19, the energy consumption of L2 buffers takes up a small

portion of total energy consumption. Besides that each access of L2 buffers has large

reuse opportunities thanks to temporal tiling, an important reason is that eMRAM

enables on-chip storage of weights and eliminates the need for energy-consuming off-

chip memory access. As discussed in Section 2.4.1, off-chip DRAM access is shown

to increase energy consumption by 44x compoared to eMRAM access. If we replace

eMRAM of the OS-LWS-b case with off-chip DRAM, off-chip weight access can take

up 96.5% of total energy consumption assuming runtime stays the same.

52

Eyeriss Eyeriss v2 QUEST System 1 B. Keller et al. System 2
0

10

20

30

40

50

60

70

80

M
em

or
y

Ac
ce

ss

 &
 D

at
a

D
el

iv
er

y
En

er
gy

/ O
ve

ra
ll

En
er

gy
 (%

)

on chip memory only
off-chip DRAM and SRAM excluded

fully on chip
eMRAM included

Figure 2-20: Comparison of overall proportion of on-chip energy used for memory
access and data delivery of various NN accelerators, including Eyeriss [6], Eyeriss
v2 [7], QUEST [53], B. Keller et al. [30] and the two systems presented in this chapter.
System 2 is different from other works as it includes all memory hierarchy on chip.
The energy consumption of off-chip memory hierarchies in other works is not included
in the analysis.

2.5 Summary and Conclusions

This chapter shows the importance of reducing the energy consumption in memory

access and data delivery for NN accelerators and presents our proposed techniques—

hybrid dataflows and corresponding memory hierarchy—for this issue. We propose

the OS-LWS dataflow with a PSum accumulation collector and the WS-LOS dataflow

with a weight collector, which balances the reuse of weight and PSum/OA in different

storage elements provided by the technology. Based on our evaluation of several

systems with different technologies, our proposed hybrid dataflows significantly reduce

the energy consumption of memory access and data delivery and the OS-LWS dataflow

delivers around 1.5x–2x improvements in energy efficiency compared to conventional

dataflows.

Besides the systems analyzed in this chapter, a more recent DL accelerator for

transformers also adopts our proposed memory hierarchy with the PSum accumu-

53

lation collector and a simplified OS-LWS dataflow for matrix multiplication [30].

Fig. 2-20 summarizes its overall proportion of on-chip energy used for memory access

and data delivery along with other works. As shown, both the recent transformer

accelerator (B. Keller et al.) and System 1 presented in this chapter, which applies

our proposed OS-LWS dataflow, achieve a significant reduction in data access energy.

Besides those systems with off-chip DRAM (not included in the energy analysis), we

evaluate System 2 with all memory hierarchies on chip using eMRAM. It shows that

our proposed techniques still delivers significant reduction in the overall proportion

of energy used for memory access and data delivery compared to most prior works

with their off-chip access energy excluded.

54

Chapter 3

Weight Tuning Algorithm and

Datapath/SRAM Co-design for

Flexible Fully-Integrated CNN

Accelerator

The last chapter focuses on dataflow and memory hierarchy co-design. In this chap-

ter, we expand our scope to an entire deep learning accelerator chip that runs small-

footprint models fully on chip. We look into the data being processed and investigate

how to manipulate them to save the energy consumption of the chip. This chapter

presents a weight tuning algorithm that tweaks the bit representation of weights to

lower the toggle count of weight sequences while preserving the accuracy. That re-

duces the switching activity of weight buses and a co-designed mixed representation

datapath. With reduced switching activity, the power consumption of weight delivery

and computation is lowered. Moreover, a low toggle count of weight read sequence

leads to reduced read access energy of the weight buffer when SRAM with condi-

tional pre-charge [10] is used. Besides the weight tuning algorithm, we highlight an

architecture that is highly flexible for various NN structures.

This chapter is organized as follows. First, we provide an introduction to small-

55

footprint NNs and their promising applications. Following that, we analyze the chal-

lenges of their accelerators, summarize the related prior work, and explain our unique

contributions. Then, we present our weight tuning algorithm and the accelerator ar-

chitecture. In the end, we explain our evaluation and measurement setup and show

our evaluation results followed by a summary of this chapter. A more detailed expla-

nation of the proposed algorithm can be found in M. Wang et al. [55]. This chapter

highlights updated hardware design and analysis, and chip measurements.

3.1 Introduction and Motivation

Smart edge devices that support efficient NN processing have recently gained public

attention. With algorithm development, previous work has proposed small-footprint

NNs achieving high performance in various medium-complexity tasks, e.g. speech

keyword spotting (KWS), human activity recognition, etc. Among them, convolu-

tion NNs (CNNs) achieve good accuracy [66]. This gives rise to the deployment of

CNN models on edge devices that have limited storage due to their area and power

constraints. Processing NNs on the edge has several benefits. For one, it reduces the

amount of data transmission by handling part of the data locally instead of sending

them all to the cloud computing unit. That can reduce the overall system power

as data transmission can dominate the total power consumption of various systems,

e.g., the sensor network [49]. For another, it can serve as a trigger for more complex

and power-hungry downstream processing. In this way, the downstream system can

be automatically switched off when not needed to save energy. Take KWS as an

example. It is often achieved by small-footprint NNs running on edge devices. KWS

filters out the noise and unrelated speech signals in the environment and only trig-

gers the downstream speech recognition and/or natural language processing system,

which uses complex models on the cloud when certain keywords are detected [16].

Thus, efficiently processing the small-footprint NNs on the edge devices is critical

to the overall system performance. A hardware platform for edge devices should be

(1) flexible to support various NN structures optimized for different applications; (2)

56

energy efficient to operate within the power budget; and (3) achieving high accuracy

to minimize spurious triggering of the power-hungry downstream processing [56].

Both algorithms and accelerator designs for energy-efficient processing of CNNs

have been proposed. On the algorithm side, quantization and model compression

are the two main techniques. Quantization reduces the bit precision with the aim of

lowering the data storage size and the complexity of the computation unit. However,

some experiments show that quantizing NNs to extremely low bit-width, e.g. 1 bit,

does not necessarily lead to model size reduction, because the model structure needs

to be modified to retain the accuracy [18]. The use of 8-bit precision in weights

generally achieves reliable performance without the need to modify the NN structure

for classification tasks [28]. Model compression algorithms focus on reducing the

model size with little loss in accuracy and thus reduce the needed memory size and

the amount of computation. A widely investigated approach is to create sparsity

in weights and/or activations using pruning. However, pruning-based algorithms

usually need specialized hardware architecture to exploit the resulting sparse tensors

for energy reduction. On the hardware side, previous work has demonstrated several

CNN accelerators targeting edge computing. However, many of them support limited

flexibility for the NN shapes, are designed only for a specific task, or sacrifice the

accuracy [17, 63, 47].

To address the challenges in flexibility, energy efficiency, and accuracy in CNN

accelerator design, this work takes an algorithm-and-hardware co-design approach.

The key contributions of this chapter are highlighted as follows: (1) a weight tuning

algorithm that reduces the energy consumption associated with weight delivery and

computation by lowering the toggle count of weight sequence; (2) the co-design of a

CNN accelerator that supports the proposed algorithm and is flexible for a wide range

of NN model structures; and (3) the demonstration of speech KWS as an example on

the FPGA [56] and a fully integrated ASIC with the proposed CNN accelerator and

a feature extraction processor1.

1This unit was first designed by M. Price [43] and then modified by S. Lauwereins from Prof.
Marian Verhelst’s group at MICAS – KU Leuven [15].

57

3.2 Weight Tuning Algorithm and Potential SRAM

Co-design

The weight tuning algorithm reduces the energy consumption of the CNN accelerator

with little loss in accuracy by tuning the bit representation of weights. Fundamentally

different from quantization and model compression algorithms that aim to reduce NN

size, the proposed algorithm focuses on the toggling of bit sequences in the circuits.

As shown in Eq. 3.1 with the load capacitance 𝐶𝐿, the supply voltage 𝑉𝑑𝑑, and the

operating frequency 𝑓 ,

𝑃𝑑𝑦𝑛 = 𝛼0→1𝐶𝐿𝑉
2
𝑑𝑑𝑓, (3.1)

the dynamic power of a CMOS gate is linearly proportional to its switching activity

(𝛼0→1), which is influenced by the toggle count of its input sequence. In a NN

accelerator, weights are read from the memory, delivered through network-on-chip

(NoC) and then multiplied with IAs following a sequence set by the designer. The

toggle count of this weight sequence affects the switching activity of weight buses

and the multipliers. Moreover, its impact can be extended to recently proposed

data-dependent SRAMs, e.g. [10]. Given that the SRAM does conditional pre-charge

based on previously read data, reducing the toggle count of weight read sequence

reduces the pre-charge activity of bit-lines. As a result, minimizing the toggle count

of weight sequence can reduce the power consumption of weight buses, multipliers

and the weight buffer. To gain those benefits, we propose a weight tuning algorithm

that contains three sequential steps: (1) tensor decomposition with retraining; (2)

quantization and the sign-magnitude representation; and (3) weight scaling and bit

perturbation with retraining.

3.2.1 Tensor Decomposition with Retraining

Tensor decomposition is used to compress the model size and reduce the number of

calculations in the NN with little loss of accuracy after retraining [32]. As shown

in Fig. 3-1, tensor decomposition breaks one convolutional layer into three succes-

58

IW

IH

ICHN

FH
FW

OCHN
.
 .
 .

ICHN

.
 .
 .

.
 .
 .

.
 .
 .

OH

OWOCHN

tensor decomposition

input activation

weight

output activation

input
activation

output
activation

OH

OW
OCHN

IW

IH
ICHN

intermediate
results

intermediate
results

Figure 3-1: Illustration of tensor decomposition for CNNs [32]. The original weight
tensor is first decomposed into three smaller tensors. The resulting NN is then re-
trained as proposed in [32].

sive layers without any activation function in between. The total parameters and

computation of the resulting layers are less than those of the original layer. Thus,

it is favorable for reducing the energy per inference. Since tensor decomposition in-

troduced some error, directly using the decomposed tensors results in some loss in

accuracy [32]. Therefore, retraining is needed after tensor decomposition.

3.2.2 Quantization and the Sign-Magnitude Representation

After decomposing and retraining the CNN, we use a linear quantizer to convert the

model from floating point to fixed point numbers for deployment on the NN acceler-

ator. It has been demonstrated by many works, e.g. [20, 66], that 8-bit precision in

weights is enough for maintaining good accuracy. Instead of the 2’s complement for-

mat, we use the sign-magnitude representation to reduce the toggle count of the weight

sequence [4, 59]. Based on our experiments on various NNs, the sign-magnitude for-

mat reduces around 30% – 40% of the toggle count of the weight sequence compared to

the 2’s complement format. The overhead of using the sign-magnitude representation

is the implementation of adders. Considering the fixed computation pattern of the

59

NN accelerator, we implement a mixed-representation PE to minimize the hardware

cost. Section 3.3 discusses that in detail.

3.2.3 Weight Scaling and Bit Perturbation with Retraining

This step manipulates the bits of weights to further reduce the toggle count on top

of the sign-magnitude representation. We first flatten the 4-D weight tensor of every

layer to a 1-D vector following the sequence that weights are read, delivered, and

calculated in the NN accelerator. Then we sequentially apply weight scaling and bit

perturbation to further reduce the toggle count and incorporate them with retraining

to maintain the accuracy.

Weight Scaling

To lower the toggle count of the weight sequence, we scale the weights and biases

uniformly in every layer, which is inspired by the coefficient scaling for finite impulse

response (FIR) filters [29]. The scaling factor 𝐾𝑙 of layer 𝑙 is determined by Eq. 3.2,

𝐾𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑙𝑇𝑜𝑔𝑔𝑙𝑒𝐶𝑜𝑢𝑛𝑡(𝑘𝑙Wl), 𝑘𝑙 ∈ (𝑎, 𝑏), 𝑎 ≥ 0, (3.2)

where Wl is the weight tensor at layer 𝑙, 𝑇𝑜𝑔𝑔𝑙𝑒𝐶𝑜𝑢𝑛𝑡 is a function to calculate

the toggle count, and 𝑎, 𝑏 are the user-defined bounds of 𝐾𝑙. 𝐾𝑙 is determined

by an exhaustive search in the given range with a predefined step size 𝑠. It can

be applied to layers using ReLU as the activation function without impact on the

classification accuracy, given that 𝑅𝑒𝐿𝑈(𝐾𝑙x𝑙) = 𝐾𝑙𝑅𝑒𝐿𝑈(x𝑙). For scale variant

activation functions, users can skip this step.

The scaling in the range of weights may affect the quantization of both weights

and activations. Although the user can choose arbitrary 𝑎 and 𝑏 as the range when

searching for the scaling factor, we constrain it within (0.5, 2) to restrict the search

space and also prevent moving the decimal point in the fixed-point representation.

Changing the average magnitude of weights affects the average magnitude of activa-

tions at each layer and may move the decimal point of activations. For example, if

60

the weight scaling factor of two successive layers is 0.6, the resulting scaling factor on

the output activations of the second layer is 0.36. It is important to prevent activa-

tions from overflow or underflow given the fixed-point representation when applying

the proposed algorithm, otherwise, the accuracy may be greatly impaired. The user

needs to keep track of the scaling factor and adjust the integer and fractional bit

widths of activations in each layer accordingly after weight scaling is applied.

Bit Perturbation

Inspired by the coefficient perturbation for FIR filters [29], we perturb the bits of the

weight sequence to reduce the bit toggling between successive weights. Bit perturba-

tion changes the weight values, so it introduces some tuning errors. We use relative

error averaged over all data to represent that. The relative error is defined as

𝑒 =
|𝑣 − 𝑣0|
|𝑣0|

(3.3)

where 𝑣0 and 𝑣 are the original value and the perturbed value respectively. The

algorithm is illustrated in Fig. 3-2. Given the weight vector D and the maximum

relative error 𝑒𝑚𝑎𝑥 the system can tolerate, we split the weight vector into 𝑛 sub-

vectors and replace 𝑘 LSBs of weights in each sub-vector with their average value.

We loop through different combinations of 𝑛 and 𝑘 to find the minimum toggle count

and the corresponding weight sequence.

Retraining

Since weight scaling and bit perturbation modify the weight values, retraining is

applied to restore the potential accuracy loss. The flowchart in Fig. 3-3 summarizes

the steps of quantization and sign-magnitude representation, and weight scaling and

bit perturbation with retraining. The proposed algorithm is applied to the pre-trained

floating point NN as a wrapper function of weights in the forward pass. During

back-propagation, the straight-through estimator [67] is adopted, which passes the

gradients through the wrapper function as-is. The activations are also quantized

61

Figure 3-2: The flowchart of the bit perturbation algorithm. The first branch is to
keep the lowest possible 𝑒 and the corresponding toggle count and the weight vector.
The second branch is to find out how many sub-vectors D needs to be split into so
that 𝑒 can be lower than 𝑒𝑚𝑎𝑥 given that 𝑘 LSBs are tuned. The third branch is to
loop through all possible 𝑘.

in the linear quantization step, given that activation-quantization-aware retraining

provides higher accuracy.

62

Figure 3-3: The flowchart of quantization and sign-magnitude representation and
weight scaling and bit perturbation with retraining.

3.3 Datapath Co-design and Flexible CNN Acceler-

ator Architecture

This section presents the proposed mixed-representation datapath to support the

sign-magnitude representation of weights resulting from the weight tuning algorithm,

and shows the standalone CNN accelerator architecture flexible for a wide-range of

CNN structures.

3.3.1 Overall Architecture

The overall architecture of our proposed standalone system for CNN processing is

shown in Fig. 3-4. It has an 80 kB weight buffer and a 1 kB configuration buffer for

storage and configuration of the entire NN with up to 12 layers during the setup phase.

All the data buffering is done on-chip using a 2 kB circular input buffer and a 48 kB

63

7210

15 14 13 8

63 62 61 56

17 18 23

8x8 PE
Array

0

1

2

7

0 1 2 7
0 1 2 7

0567
8131415

0 1 2 7
16 17 18 23

7 6 5 0
63 62 61 56

Top-level Controller

Cfg. Buffer
~ 1 kB

Act. Buffer
48 kB

Input Buffer
2 kB

Host Ifc. ID
cfg.

ready enable data

tag enable ready data

ID

=

0 1

0

Weight Buffer
~ 80 kB

Level 0 NoC Controller

Level 1 NoC Controller

PE
Inter-PE Partial Sum
Delivery

weights & cfg. bits

inputs
classification results

ReLU & Scale

Figure 3-4: System architecture of the NN accelerator and the micro-architecture of
the NoC controller.

activation buffer without the need for off-chip DRAM. NoC delivers data following

programmable dataflow settings. Convolution/matrix multiplication is handled by

the 8x8 PE array, and the activation scaling and the ReLU function are done by a

separate unit before storing the activations in the buffer.

3.3.2 Flexbile Dataflow and NoC

The PE array level dataflow for convolutional layers is shown in line 4 – 10 of Fig. 3-5.

The 8× 8 PE array can be logically treated as having ICHN1 columns and OCHN1s

rows handling the channel dimensions as shown in line 9 – 10.

After tensor decomposition, the channel sizes of different layers have large vari-

ances as shown in Appendix B. To achieve high utilization of the PE array when

running the decomposed NNs, our architecture supports fully flexible logical rows

and columns as long as ICHN1 × OCHN1s ≤ 64. That is different from Eyeriss [6],

which limits the logical rows and columns to be less than the physical rows and

columns. Such flexibility is achieved by a reconfigurable NoC [6] for data deliver-

64

1) # IA[ICHN][IF][IW], ICHN = ICHN1*ICHN0 <= 256
2) # W[OCHN][ICHN][FH][FW], OCHN = OCHN1t*OCHN1s*OCHN0 <= 256
3) # OA[OCHN][OH][OW]
PE array level – temporal dataflow
4) For each FH:
5) For each FW:
6) For each OCHN1t: # FH*FW*OCHN1t <= 2^16
7) For each OH:
8) For each OW:
 # PE array level – spatial dataflow
9) Parallel_for ICHN1: # ICHN1 * OCHN1s <= 64
10) Parallel_for OCHN1s:
PE level – temporal dataflow
11) For each OCHN0: # OCHN0 = {0, 1, 2, 3}
12) For each ICHN0: # ICHN0 = {3, 4}
13) # MAC

Figure 3-5: The dataflow illustrated with loop nests. The tensor dimension param-
eters are defined in Fig. 3-1. Bias is ignored for simplicity. The batch size is 1 for
real-time application. For the first layer, where ICHN = 1, we replace ICHN with
FW and remove the original FW loop to increase the PE array utilization. The read,
delivery, and computation sequence of weight is as shown. PEs are filled up with
weights in sequence. The limits on natively supported NN shapes are annotated.

ies between buffers and PEs, and fully connected and flexible inter-PE partial sum

delivery. Following this logical mapping, weights are unicast to PEs, and thus a tree-

structured NoC with a depth of two, as shown in Fig. 3-4, is used for weight delivery

between the weight buffer and PEs. The ID of every controller at each level is unique

and fixed. IAs are multicast across multiple logical rows. To support that, only level

0 NoC controllers are used. Their IDs, determined by OCHN1s and ICHN1, are con-

figured at runtime before the execution of every layer. The deliveries of biases, partial

sums, and OAs to/from the buffers are similar except that not every PE needs data.

Thus, the unused controllers and FIFOs can be gated. For the inter-PE partial sum

delivery, all PEs are connected in a sequence as shown in Fig. 3-4. Partial sums can

be spatially accumulated across an arbitrary number of PEs. Thus, logical rows and

columns can be fully flexible and accommodate a large variety of channel sizes.

65

As shown in line 4 – 8 of Fig. 3-5, our proposed design follows WS dataflow in the

PE array level, different from Eyeriss which implements row stationary dataflow. The

reason is that 1× 1 or 1× 𝑥 convolutional layers resulting from tensor decomposition

take up a large part of the CNNs. WS dataflow can have more data reuse than row

stationary dataflow in those layers. For fully-connected layers, we treat it as a special

case of convolutional layers where OW = 1, OH = 1, IW = FW, IH = FH.

The PE level dataflow is shown in line 11 – 12 of Fig. 3-5 and the PE structure is

illustrated in Fig. 3-6. PE has local storage to hold OCHN0 × ICHN0 weights and

ICHN0 IAs to achieve temporal reuse of OW × OH and OCHN0 times respectively

as shown in line 7 – 8 and line 11 of Fig. 3-5. OCHN0 and ICHN0 are configurable

in runtime to balance the workload between PEs given layer shapes. Each PE has its

local controller and local states so that they can execute independently once data are

available.

3.3.3 Mixed-Representation Datapath

As discussed in Section 3.2.2, weights are represented in the sign-magnitude format

to reduce toggle count. Given the fixed calculation pattern in CNN, we implement a

mixed-representation datapath as shown in Fig. 3-6. Weights and IAs are multiplied

in the sign-magnitude format using an unsigned multiplier and an XOR gate that gen-

erates the sign bit. An adder-subtractor is then used to convert the sign-magnitude

product to the 2’s complement representation with the sign bit of the product as the

carry bit, and at the same time do accumulation. The 2’s complement outputs are

delivered to other PEs for spatial sum or buffered in memory for temporal accumula-

tion to generate the output activations. Only after all the computation of this layer

is finished, do we need to convert them back to the sign-magnitude format for the

next layer. Thus, the energy overhead of the conversion is mitigated.

66

Figure 3-6: The PE structure. The shaded part is the sign-magnitude domain. The
rest is in the 2’s complement domain. Wgt: weight; rnd: round; trunc: truncate; RF:
RegFile; accum. reg.: accumulation register.

3.4 Evaluation and Test Setup

3.4.1 Algorithm Evaluation Setup

We evaluate the accuracy and toggle count reduction of the weight tuning algorithm

on several CNNs designed for KWS on the Google speech command dataset [58],

including CNNs under 80 kB (referred to as CNN80) and 200 kB memory constraints

in [66] and the fstride-4 model in [45]. Tensor decomposition with retraining is applied

to most layers except the ones that largely impact the accuracy, e.g. the last layer.

The resulting models in the 2’s complement format serve as the baseline. Quantization

and sign-magnitude representation, and weight scaling and bit perturbation with

retraining are applied to the decomposed layers with a step size 𝑠 of 0.05, the scaling

factor bounds 𝑎 = 0.8, 𝑏 = 1.8, 𝑒𝑚𝑎𝑥 = 0.15 and 𝑛𝑚𝑎𝑥 equal to half of the vector

length.

To evaluate how much energy savings our weight tuning algorithm provides, we

implemented a baseline CNN accelerator that uses 2’s complement MACs following

the same procedures for synthesis and place-and-route (PnR) and using the same

technology as the proposed accelerator. After PnR, both accelerators are simulated

to run the entire tensor decomposed CNN80 on the actual inputs from the Google

67

Figure 3-7: The chip measurement setup.

speech command dataset [58] to obtain the switching activity. Switching activity,

parasitics, and timing information obtained after PnR are annotated during power

analysis.

3.4.2 Chip Measurement Setup

Fig. 3-7 shows the chip measurement setup. A Keithley source meter provides power

supplies. An Opal Kelly FPGA board generates clocks and transmits data between

the chip and the PC. After the chip is powered up, clocked, and reset, it enters the

setup phase. The PC sends the configuration bits, including the layer shapes of the

entire NN up to 12 layers and rounding and shifting settings. Then the pre-trained

weights of the NN for certain tasks can be sent to the chip. In our measurements, we

use CNN80 [66] on the Google speech command dataset [58] as an example. After

the setup phase, the chip starts taking in streaming inputs, computing the entire NN

fully on chip, and streaming out the output classification results. The PC receives

the outputs and generates real-time visualization.

68

Figure 3-8: The weight tuning algorithm reshapes the histogram of Hamming distance
between successive weights. CNN80 is shown as an example.

3.5 Evaluation and Measurements

3.5.1 Weight Tuning Algorithm Evaluation Results

Based on our evaluation shown in Section 3.4.1, the weight tuning algorithm reduces

the toggle count of weight sequences by 1.79x – 2.56x with less than 0.75% accuracy

loss on the testing set for those cases. As shown in Fig. 3-8, the Hamming distance

between successive weights is greatly reduced.

Table 3.1 summarizes the accuracy, the toggle count, and the total energy con-

sumption of different components during the execution. 𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 and 𝐸𝑎𝑑𝑑𝑒𝑟𝑠 are

the total energy consumption of all the multipliers and adders in the PEs respectively.

𝐸𝑀𝐴𝐶 is the sum of them. 𝐸𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑢𝑠 is the energy of weight buses between the weight

memory and PEs. It is obtained by summing up the internal and switching energy of

buffers inserted in between. As shown, the weight tuning algorithm with the mixed-

representation MAC reduces the computation energy by 1.20x compared to the 2’s

complement baseline. The energy of weight buses is reduced by 1.70x. Although the

energy consumption of memory (the data dependant custom-SRAM is not used) and

activation delivery is not affected by the algorithm, a 1.16x reduction in the total

switching energy of the entire system 𝐸𝑡𝑜𝑡𝑎𝑙𝑆𝑤𝑖𝑡𝑐ℎ is observed.

69

Table 3.1: The Effect of the Weight Tuning Algorithm on Accuracy and Energy
Consumption Based on Post-P&R Simulation

Baseline Proposed Loss/Reduction
Accuracy 89.3% 88.8% 0.5%
Toggle Count 154k 86k 1.79x
𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 1.58uJ 1.11uJ 1.42x
𝐸𝑎𝑑𝑑𝑒𝑟𝑠 0.55uJ 0.66uJ 0.83x
𝐸𝑀𝐴𝐶 2.13uJ 1.77uJ 1.20x
𝐸𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑢𝑠 96.91nJ 56.89nJ 1.70x
𝐸𝑡𝑜𝑡𝑎𝑙𝑆𝑤𝑖𝑡𝑐ℎ 8.94uJ 7.68uJ 1.16x

Figure 3-9: The FPGA demo of the CNN accelerator with a feature extraction pro-
cessorv [15] on KWS, and a summary of FPGA post-PnR resource utilization.

3.5.2 FPGA Demonstration Results

We demonstrate our design on FPGA with a speech feature extraction processor [15].

Implemented on Xilinx XC7K410T, the proposed CNN accelerator operates at 50MHz

and consumes 68mW based on Vivado power estimation. A photo of the FPGA demo

and the post PnR resource utilization are shown in Fig. 3-9.

3.5.3 Chip Implementation Results

The proposed system is fabricated using TSMC 40-nm LP process, including the

speech feature extraction front end [15] and the proposed CNN accelerator. It has

two operation modes – the general CNN acceleration mode with the front end clock-

gated or the standalone KWS mode with both blocks activated. The die shot is shown

70

Figure 3-10: a) Die micrograph. b) Area breakdown of the CNN accelerator.

in Fig. 3-10-a. The total core area is 2.16 mm2 and the area breakdown of the CNN

accelerator is shown in Fig. 3-10-b.

The chip specifications are listed in Table 3.2. The CNN accelerator operates from

0.76 V to 1.1 V with a clock frequency from 20 MHz to 31.25 MHz. It supports 8-bit

weights and 16-bit activations, which provides the arithmetic precision for most of

the classification tasks to achieve good accuracy. The chip supports fully standalone

processing for NNs with less than 80 kB of weights and less than 12 layers. Few

limits are imposed on the layer shapes as long as they can fit in the on-chip buffers.

Such flexibility makes the chip capable of running various NN structures specifically

designed for different tasks. The power breakdown of the CNN accelerator is shown

in Fig. 3-11. The weight buffer does not take a dominant part of the total power

consumption, since weight stationary dataflow is used to minimize the number of

reads of weights. The maximum energy efficiency of 14.87 pJ/MAC achieves at 0.76

V at the clock frequency of 20 MHz and the power consumption of 1.94 mW, for the

CNN accelerator.

Compared with other digital ASICs for KWS, e.g. [47, 17, 63], our design is flex-

ible, accurate, and achieves comparable energy efficiency. The proposed architecture

71

Table 3.2: Chip Specifications

Figure 3-11: Power breakdown of the CNN accelerator based on post-P&R simulation.

supports flexible shapes and strides of inputs and weights for up to 12 CNN layers.

However, [47] is restricted to a fixed structure, [17] supports up to 2 layers with up

72

to 64 nodes/layer for LSTMs, and [63] is designed for a fixed input stride and 3x3

1-bit convolution. Our supported CNNs can achieve 91.6% accuracy with 12 output

classes on the public available dataset [66], while [47, 17, 63] only report accuracy on

the custom-designed dataset and [17] only shows binary classification.

3.6 Summary and Conclusions

We co-designed a weight tuning algorithm and the datapath of a CNN accelerator to

improve energy efficiency with little loss in accuracy. Potentially, a data-dependent

SRAM [10] can be used with the weight tuning algorithm to reduce weight read en-

ergy by around 2x. Furthermore, the accelerator features high flexibility and runtime

reconfigurability to support various applications. The proposed algorithm reduces

the energy consumption of weight delivery and computation by 1.70x and 1.20x re-

spectively. The CNN accelerator consumes 14.87 pJ/MAC with a latency of 10 ms

for real-time KWS applications. We made demonstrations with an integrated feature

extraction processor for KWS on both FPGA and ASIC.

73

74

Chapter 4

Algorithm and Architecture

Co-design Utilizing Data Features for

Video Understanding

The last chapter focuses on the energy reduction of the fully integrated DL accelerator

chip. In this chapter, we expand our scope to the entire system including DRAM. We

co-design algorithms and architecture specifically for real-time video understanding

systems and tapeout the accelerator chip, VideoTime3 [57]. We utilize the temporal

similarities in video data to reduce DRAM traffic and improve the energy efficiency

and throughput of the system during real-time processing. It also captures temporal

information between frames to achieve higher video understanding accuracy. More-

over, we expand the existing analysis and taxonomy of sparsity handling architecture

for CNNs with our proposed techniques for the unique sparsity in PSums and OAs

resulting from our algorithm co-design.

This work is done in collaboration with Prof. Song Han and his students as listed

below. The training framework of conventional CNNs for object tracking is done in

collaboration with Ji Lin. The design of the metadata generator is joint work with

Yujun Lin and Zhekai Zhang.

The chapter is organized as follows. First, we provide an overview of deep-learning-

based video understanding and analyze the challenges in existing accelerators. Then,

75

we present our proposed algorithm and its architecture co-design. Following that,

we explain our evaluation and measurement setup and then present our evaluation

results. In the end, we discuss our analysis and taxonomy of sparsity handling archi-

tecture followed by a summary and conclusion of this chapter.

4.1 Overview of Deep-learning-based Video Under-

standing and Related Work

Video understanding is a classic area in computer vision. Common tasks in video

understanding include video classification (what action the agent is performing), ob-

ject detection and tracking (where the objects are located and where they are moving

to), dense captioning (producing natural language annotations that describe what is

happening at different times throughout the video), etc. [8]. They are widely used in

many applications, including autonomous vehicles, augmented reality/virtual reality

(AR/VR), artificial intelligence (AI) drones, health monitoring, etc. A lot of them

require real-time video understanding on the edge. For example, autonomous vehi-

cles need edge processing of enormous data due to latency, network connectivity, and

energy limits. Also, a large amount of the workload requires real-time processing for

safety considerations. With a video frame rate of 24 fps, a multi-frame latency of 4

frames can lead to a processing delay of 0.17 seconds, during which the vehicle oper-

ating at the speed of 65 miles/hour moves more than 16 feet. Thus, batch processing

can lead to severe safety issues. With the rise of those edge applications, there is an

increasing need for accurate, energy-efficient, and real-time video understanding on

the edge.

Deep learning, especially deep CNN, has been extensively applied to video under-

standing and achieved considerable advances compared to traditional methods [35,

27, 26, 60]. Numerous CNN accelerators have been proposed over the past years for

edge applications. We classify them into three categories in Table 4.1 and analyze

existing challenges for video understanding.

76

Table 4.1: The Summary of Existing Challenges in Prior Work

X
X

X

X

X

Accelerator category

1: Conventional
single-frame

inference
accelerators

2: A single-frame
inference accelerator

with conventional
DiffFrame method

3: 3D CNN
accelerators

This
work

Capture temporal information?

Utilize temporal redundancy?

Single-frame latency?

output 0

frame 0

NN processing

output 1

tim
e ...

frame 1

NN processing

output 2

frame 2

NN processing

Figure 4-1: The NN accelerator that only supports single-frame/image processing
fails to capture temporal information across video frames.

The first category is the accelerators, e.g. [34, 37], which only support image

processing for a single frame as illustrated in Fig. 4-1. Thus, it fails to capture

temporal information between successive frames and leverage their similarities.

To utilize those similarities, the second category proposed a DiffFrame method [64]

based on the linearity of convolution, i.e., conv(𝑓 𝑙
𝑡) = conv(𝑓 𝑙

𝑡 − 𝑓 𝑙
𝑡−1) + conv(𝑓 𝑙

𝑡−1),

where 𝑓 𝑙
𝑡 − 𝑓 𝑙

𝑡−1 and conv(𝑓 𝑙
𝑡−1) are DiffFrame and RefFrame at time 𝑡 of layer 𝑙

respectively. As shown in Fig. 4-2, instead of directly convolving every frame, it

subtracts successive frames to generate a difference feature map 𝑓 𝑙
𝑡 − 𝑓 𝑙

𝑡−1, which

is referred to as DiffFrame, for convolution. As the difference between frames is

typically sparse, it can reduce computation during convolution to generate conv(𝑓 𝑙
𝑡 −

𝑓 𝑙
𝑡−1). However, since only the DiffFrame is convolved, the reference frame (RefFrame)

77

t

f0

f1

f2

...

conv
core

activation function

conv(f1)f1 − f0 conv(f1 − f0)

RefFrame conv(f0) RefFrame

next RefFrame next RefFrame

DiffFrame Conv

DiffFrame
Generation

D
iffFram

e G
en

D
iffFram

e C
onv

...

process f1

Layer 1
Frame 1

Layer 2
Frame 1

f1 − f0

Figure 4-2: Illustration of the conventional DiffFrame method, which is based on the
linearity of convolution, i.e., conv(𝑓𝑡 − 𝑓𝑡−1) + conv(𝑓𝑡−1) = conv(𝑓𝑡). 𝑓𝑡 − 𝑓𝑡−1 and
conv(𝑓𝑡−1) are DiffFrame and RefFrame at time 𝑡 respectively.

conv(𝑓 𝑙
𝑡−1) needs to be added to the convolution output to generate the convolution

of the original frame conv(𝑓 𝑙
𝑡). Also, this result of the current frame, conv(𝑓 𝑙

𝑡), needs

to be kept as the RefFrame for the computation of the next frame 𝑓 𝑙
𝑡+1.

Although convolving the sparse DiffFrame may lead to some computation and en-

ergy savings, it is challenging to handle the orchestration of RefFrames. To efficiently

buffer RefFrames, prior work followed serial batch processing as shown in Fig. 4-3a.

A batch of frames is buffered and processed serially for every layer. Once the Ref-

Frame is generated by a frame at a layer, it will be immediately consumed by the

next frame at the same layer. If the on-chip RefFrame buffer is big enough to hold the

entire RefFrame of a layer, then the RefFrame can be reused on-chip across frames

eliminating access to DRAM as shown in Fig. 4-3c. However, serial batch processing

leads to multi-frame latency since a batch of frames needs to be buffered.

The third category is designed for 3D CNN which includes the temporal dimension

in convolution to capture temporal information and reduce temporal redundancy

across layers by downsampling in the temporal dimension [22]. However, it has multi-

frame latency as multiple frames must be buffered for temporal convolution as shown

in Fig. 4-4.

Despite prior work, it remains challenging to capture temporal information for

78

Layer 1
Frame 1

Layer 2
Frame 1

Layer N
Frame 1

... output

Layer 1
Frame B

Layer 2
Frame B

Layer N
Frame B

... output

Layer 1
Frame 2

Layer 2
Frame 2

Layer N
Frame 2

... output

conv(f1
1) conv(f1

2) conv(f1
N)

Layer 1
Frame 3

Layer 2
Frame 3

Layer N
Frame 3

... output

conv(f2
1) conv(f2

2) conv(f2
N)

.... .
 .

... ...

f1

f2

f3

fB

1 B+1

B+2

B+3

B+B

NB+1

NB+2

NB+3

NB+B

2

3

B

(a)

RefFrame Buffer

DiffFrame Conv DiffFrame Gen

conv(ft
l)conv(ft+1

l)

(b)
time

read:

read-after-write
reuse in RefFrame buffer

write:

conv(ft
l)

conv(ft+1
l)

conv(ft+1
l)

conv(ft+2
l)

conv(ft+2
l)

conv(ft+3
l)

(c)

Figure 4-3: (a) An illustration of serial batch processing. The processing sequence
is noted in red. N is the total number of layers and B is the batch size. (b) The
high-level block diagram of the DiffFrame convolution accelerator and an illustration
of RefFrame buffer access during the process of layer 𝑙 at frame 𝑡. (c) The reuse of
RefFrame over time in the on-chip buffer.

3D filterH
B

W

H
B

W

input
output

Figure 4-4: Illustration of 3D CNN convolving the temporal dimension, which is
composed of a batch of frames. For simplicity, the channel size is set to one in the
illustration. W: width. H: height. B: batch.

79

Table 4.2: Comparison of Conventional DiffFrame Convolution and Our Proposed
Real-time DiffFrame Convolution

Conventional DiffFrame Convolution
Proposed Real-Time

DiffFrame ConvolutionSerial Batch
Processing

Frame-by-frame
Processing

Sparsity in Convolution Yes Yes Yes
Latency High Low Low

RefFrame DRAM Traffic Low High Low
Input DRAM Storage Large Small Small

high accuracy and utilize temporal redundancy in videos for energy savings while

achieving single-frame latency for real-time applications.

4.2 Algorithm and Accelerator Architecture

To tackle the remaining challenges in prior work, we propose a real-time DiffFrame

convolution with temporal modeling algorithm and co-design novel sparsity-handling

architecture and efficient data orchestration. In this section, we first present our

real-time DiffFrame convolution algorithm—how it efficiently utilizes temporal re-

dundancy at single-frame latency. Following that, the sparsity handling architec-

ture we co-designed with the algorithm is explained. Then we discuss how temporal

modeling is achieved with the real-time DiffFrame convolution. Succeeding that, we

present how we handle the unique data orchestration requirements of both real-time

DiffFrame convolution and temporal modeling. In the end, we illustrate the DRAM

data layout, other components and overall architecture of the accelerator.

4.2.1 Real-Time DiffFrame Convolution

We propose real-time DiffFrame convolution that 1) utilizes temporal redundancy,

which generates sparsity in convolution, as the conventional DiffFrame method, 2) de-

livers single-frame latency for real-time applications, and 3) achieves efficient DRAM

utilization. A comparison between our proposed real-time DiffFrame convolution and

80

Layer 1
Frame 1

Layer 2
Frame 1

Layer N
Frame 1

... output

Layer 1
Frame 2

Layer 2
Frame 2

Layer N
Frame 2

... output

conv(f1
1) conv(f1

2) conv(f1
N)

conv(f1
1) conv(f1

2) conv(f1
N)

conv(f2
1) conv(f2

2) conv(f2
N)

. .
 .

. .
 .

. .
 .

. .
 .

1

N+1 N+2 N+N

2 N

RefFrame
Storage

f1

f2

(a)

time

read:

long reuse interval

write:

conv(ft-1
1)

conv(ft
1)

conv(ft-1
2)

conv(ft
2)

conv(ft-1
3)

conv(ft
3)

conv(ft-1
N)

conv(ft
N)

conv(ft
1) conv(ft

2)

conv(ft+1
1) conv(ft+1

2)

...

...

...

...

(b)

Figure 4-5: (a) An illustration of frame-by-frame processing. The processing sequence
is noted in red. N is the number of layers. (b) A long interval between the reuse of
RefFrame in frame-by-frame processing.

RefFrame Buffer

DRAM

DiffFrame Conv DiffFrame Gen

conv(ft
l)

conv(ft
l)

conv(ft+1
l)

conv(ft+1
l)

Figure 4-6: The block diagram of naive DiffFrame generation and buffering.

conventional DiffFrame convolution is summarized in Table 4.2. How we achieve those

advantages against conventional techniques is presented in this subsection.

To achieve single-frame latency, we use frame-by-frame processing, as shown in

Fig. 4-5a, instead of serial batch processing. That eliminates the need to buffer a

81

naive RefFrame read

activation function

conv(f1)conv(f1 − f0)

RefFrame DRAM
conv(f0)

f1 − f0

(a)

activation function

conv(f1 − f0)

RefFrame DRAM
conv(f0)

f1 − f0

selective RefFrame read

(b)

Figure 4-7: (a) An illustration of naive RefFrame read. (b) An illustration of proposed
selective RefFrame read and update.

batch of input frames and thus reduces the DRAM storage for inputs. However,

frame-by-frame processing leads to a long interval between the reuse of RefFrame as

illustrated in Fig. 4-5b and thus all the RefFrames generated in between, which are

all the activations in a NN, have to be kept. Since the size of activation in a NN can

be really big, e.g., bigger than 10 MB for MobileNet-v2, off-chip DRAM is usually

required to store those data. The system block diagram for naive RefFrame generation

and buffering is shown in Fig. 4-6. Reading and updating the entire RefFrame for

each layer and frame leads to high DRAM traffic and system energy.

To solve this problem, we propose a selective RefFrame read and update scheme,

which reduces RefFrame DRAM and buffer traffic by 70% at 30% DiffFrame density

(nonzeros) with zero loss in accuracy. The selective RefFrame read is illustrated in

Fig. 4-7. To compute the DiffFrame for the next layer, only the pixels at the positions

of nonzero pixels of conv(𝑓1 − 𝑓0) are needed in conv(𝑓1) and conv(𝑓0) (highlighted

in yellow in Fig. 4-7a). Because conv(𝑓1) and conv(𝑓0) are equal elsewhere and yield

zero difference after the activation function. Thus, only RefFrames at those positions

need to be read and updated as shown in Fig. 4-7b. Moreover, the selective read and

update not only reduce DRAM traffic as shown in Fig. 4-7, but also reduce buffer

traffic accordingly.

82

low utilization
of burst length

RefFrame DRAM

...

...

...

...
...

C
ol

Row

read & updated RefFrame
unchanged RefFrame

burst length

(a)

high utilization
of burst length

...

...

...

...

...

C
ol

read & updated RefFrame
unchanged RefFrame

RefFrame DRAM
Row

burst length

(b)

Figure 4-8: (a) Fine-grained irregular sparsity in DiffFrame leads to DRAM burst
length under-utilization for selective RefFrame load and store. (b) Channel-wise
coarse-grained sparsity in DiffFrame leads to high utilization of DRAM burst length
for selective RefFrame load and store.

With our selective RefFrame read and update scheme, the read and update pattern

of the RefFrame is determined by the sparsity pattern in the convolution output of

DiffFrame conv(𝑓𝑡−𝑓𝑡−1). Thus, the sparsity pattern in conv(𝑓𝑡−𝑓𝑡−1) greatly affects

the load and store efficiency of DRAM for RefFrame. If we allow fine-grained irregular

sparsity, the DRAM burst length cannot be fully utilized for selective RefFrame load

and store as shown in Fig. 4-8b. To address this issue, we enforce channel-wise sparsity

in conv(𝑓𝑡 − 𝑓𝑡−1) and maintain a channel-first DRAM storage sequence as shown in

Fig. 4-8b. It achieves 2.5x higher utilization of DRAM burst size compared to the

fine-grained load/store pattern at 40% density.

To efficiently enforce channel-wise sparsity in conv(𝑓𝑡 − 𝑓𝑡−1), we propose Diff-

Frame SparseConv, which applies pruning and sub-manifold sparse convolution [19]

on DiffFrames.

We prune the DiffFrame based on the L1 norm of its channel values to obtain a

density similar to fine-grained sparsity in DiffFrame. To the best of our knowledge,

it is the first work that explores the application of pruning on temporal similarities

to generate sparsity in activations. Accuracy analysis is presented in Section 4.4.1.

Sub-manifold sparse convolution [19] is different from conventional convolution

in that it enforces specific rules between input and output coordinates as shown in

83

input valid output

 zeros

 nonzeros

 zeros (dilation of
 conventional 3x3 conv)

(a)

input valid output

(1, 2)
1%2 != 0, invalid

downsampled
output

 zeros

 nonzeros

 zeros (dilation of
 conventional 3x3 conv)

(b)

Figure 4-9: The rules of input and output coordinates in sub-manifold sparse con-
volution. (a) For stride = 1 layers, the input and output coordinates are exactly
the same. (b) For stride = 2 layers, the valid outputs are those with 𝑥%2 = 0 and
𝑦%2 = 0, where (𝑥, 𝑦) is the output coordinate of conventional convolution.

...

t

f0

f1

f2

...

sparse
conv
core

activation function

f1 − f0 conv(f1 − f0)

RefFrame DRAM

DiffFrame SparseConv

Selective RefFrame
Read & Update Scheme

process f1
Layer 1
Frame 1

Layer 2
Frame 1

f1 − f0

conv(f0)

Figure 4-10: The proposed real-time DiffFrame method illustrated with stride = 1
layer.

Fig. 4-9. That removes the dilation in conventional convolution, which is marked in

gray in Fig. 4-9, and prevents the activations from getting denser through convolu-

tion. Thus, it reduces the RefFrame traffic. Also, metadata involved in activation

sparsity handling, e.g., the coordinates of nonzeros, can be reused across stride=1 lay-

ers, which significantly reduces metadata computation overhead. Detailed discussion

about sparsity handling is presented in Section 4.2.2.

84

The overall algorithm diagram of the proposed real-time DiffFrame method is

shown in Fig. 4-10. The output of DiffFrame SparseConv is the same as its input

for stride = 1 layers without dilation and the selective read and update of RefFrame

follow the same pattern reducing DRAM traffic. DiffFrame SparseConv and selective

RefFrame read and update scheme work together to achieve computation and memory

access reduction at single-frame latency.

4.2.2 Sparsity Handling

To efficiently handle the channel-wise sparsity in our real-time DiffFrame convolution,

we propose a decoupled metadata generation and map-guided convolution scheme. It

brings more flexibility to metadata generation, achieves metadata reuse, and delivers

the first 2D CNN accelerator that stores both IA and PSum/OA directly in the com-

pressed format during convolution. It enables the accelerator to skip all computation

and memory traffic of zero IA and PSum/OA pixels with low overhead. This section

focuses on explaining how our proposed scheme works and the design of our sorter-

free metadata generator. A comparison of different sparsity handling schemes and a

proposed representation for analyzing sparsity handling architecture are presented in

Section 4.5.

Overview of Sparse Point-wise Convolution and Sparse Depth-wise Con-

volution

As plenty of prior work has presented various techniques to handle sparsity in weights,

our work focuses on sparsity handling for activations, which can be more challenging

as discussed in Section 4.5. The proposed real-time DiffFrame convolution generates

sparse DiffFrame as the input to the convolution core and outputs sparse PSum/OA

following the rules specified in Fig. 4-9. Both IA and PSum/OA can be stored in a

compressed format. Compared to conventional sparse convolution where PSum/OA

is usually dense, our method provides around 3x reduction in PSum/OA storage at

30% density. Moreover, compressed PSum can lead to a large impact on overall

85

data access and memory energy consumption of DNN accelerators. This is because:

1) PSum is usually set to be more than 20 bits to preserve the accuracy during

accumulation, while weight and IA are set to be 8 bits or even less in most DNN

inference accelerators; 2) PSum needs to be read and written for every temporal

accumulation, while weight and IA only need to be read.

The storage and computation of sparse point-wise (PW) and depth-wise (DW)

convolution are illustrated in Fig. 4-11. PW convolution uses a 1× 1 filter and thus

the sparse convolution on compressed IA and OA storage is straightforward. IAs and

OAs share a one-to-one relationship based on their positions. For example, an IA

pixel at the position of 1 generates an OA pixel at the position of 1. Therefore, we

only need to go over each pixel in the compressed IA storage, multiply that with the

weight, and store them at the same position in the OA storage. DW convolution is

more challenging as the filter size can be bigger than 1× 1. The filter pixels need to

be multiplied with IA pixels at certain coordinates. However, it is not straightforward

to know the position of an IA pixel given its coordinate in compressed IA storage. To

tackle this challenge, we propose map-guided convolution and decoupled metadata

generation for sparse DW convolution.

Map-Guided Convolution and Decoupled Metadata Generation

Fig. 4-12 illustrates our proposed map-guided convolution and decoupled metadata

generation. To get the positions of data needed for each multiplication, we use a

ConvMap, which is a list of the set (pIA, pW, pOA), to guide sparse convolution. For

example, a ConvMap entry (1, 0, 1) shows that an IA pixel at the position of 1 and a

filter pixel at the position of 0 need to be loaded and multiplied to generate a PSum of

an OA pixel at the position of 1. The ConvMap is generated by a metadata generator

decoupled from the convolution core, i.e., the loading sequence of coordinates and the

operations on coordinates can be fully separate from data loading and processing.

Given a fixed filter size (e.g., 3 × 3), the output coordinates and ConvMap are only

determined by the coordinates of nonzero IAs and the stride of this layer. As long

as the IA coordinates (the IA sparsity pattern) and stride stay the same, metadata

86

IA W OA

compressed storage

cIA 1 2 06

pIA 1 20

cOA 1 2 6cW
=

pOA 1 200pW =

pW=0

pW=0

pW=0

pIA=1

pIA=2

pIA=0

pOA=2

=
pOA=1

=
pOA=0

(a)

IA W OA

compressed storage

cIA 1 2 -10 16

pIA 1 20

cOA 1 2 6cW

-10 1pW

=

pOA 1 20

=

cW=-1
pW=-1

cW=0
pW=0

cW=1
pW=1

cIA=1
pIA=0

cIA=2
pIA=1

0

cOA=1
pOA=0

=

cW=-1
pW=-1

cW=0
pW=0

cW=1
pW=1

cIA=2
pIA=1

0

cIA=1
pIA=0

cOA=2
pOA=1

=

cW=-1
pW=-1

cW=0
pW=0

cW=1
pW=1

cIA=6
pIA=2

0

0

cOA=6
pOA=2

(b)

Figure 4-11: An illustration of sparse (a) PW convolution and (b) DW convolution.
Channels are set to 1 for simplicity and clarity of the figure. Colored and white boxes
present nonzeros and zeros respectively.

(including the nonzero OA coordinates and the ConvMap) keep unchanged. Thus, it

can be reused across those layers. Metadata only needs to be generated 5 times for our

target workload—MobileNet-v2-34 and MobileNet-v2-47 as shown in Appendix B.

Sorter-free Coordinate and ConvMap Generator

To efficiently generate metadata, we design a sorter-free coordinate and ConvMap

generator. It reads sorted IA coordinates sequentially and outputs sorted OA coor-

87

cIA

cOA ConvMap

compressed
IA

compressed
OA

Weightstride

sparse
convolution

metadata
processing

For each (pIA, pW, pOA) in ConvMap:
OA[pOA] += IA[pIA] * W[pW]

Figure 4-12: An illustration of map-guided convolution and decoupled metadata gen-
eration.

dinates and a ConvMap sorted by OA positions guiding an OS dataflow for sparse

convolution. The coordinates are kept in the COO format [2] in this work. Other

formats, e.g., the compressed sparse row (CSR) format, may also be used to further

reduce storage size, which is left for future work.

The generator consists of three parts. The first two parts are a convolution output

coordinate generator and a sorting unit. The inputs of them are sorted cIA and the

output is an intermediate map (𝑀 ′
𝑂𝑆) sorted by OA coordinates, which is a list of

the set (pIA, cW, cOA) (cW and cOA are coordinates of the weight and the OA

respectively). The example pseudo codes for 1D convolution are shown in Fig. 4-

13a. We enumerate the sorted cIA to get the pairs of IA positions and coordinates.

The naive implementation loops through all the weight coordinates sequentially to

calculate the coordinates of all possible convolution outputs given each IA coordinate.

All the (pIA, cW, cOA) sets generated in the loops (𝑀) are passed to a sorter with

the key of cOA to generate the intermediate ConvMap 𝑀 ′
𝑂𝑆. The drawbacks of naive

implementation are that the sorter is very expensive and the sequential loops lead to

low throughput.

To solve those problems, the proposed work handles the calculation of each weight

coordinate in parallel and the output (pIA, cW, cOA) sets are kept separately (𝑀𝑛).

An example can be found in Fig. 4-13b-1. Since input cIA is sorted and cOA is shifted

from cIA by a fixed number, each 𝑀𝑛 is sorted by cOA. Thus, simple mergesort,

instead of expensive sort, can be used to combine the sorted 𝑀𝑛s into the sorted

88

M = [] # unsorted map
generate intermediate map
for (pIA,cIA) in enumerate(CIA):
 for cW in CW: # low throughput
 # output COORD
 cOA = cIA - cW
 m = (pIA, cW, cOA)
 M.append(m)
sort M according to cOA
Mos’ = SORT2(M) # expensive

INPUT: IA COORD CIA

COA
OA COORD

OUTPUT:

convolution output COORD generator

M0M1M2M3M4M5M6M7M8

ConvMap & OA COORD filter

pipelined merger tree

Mos
ConvMap

Mos’

1

1

1
3

2

Naive Implementation

Proposed Implementation
seperate map for each weight
M0 = []; M1 = []; ...; Mn = []
generate intermediate map
for (pIA,cIA) in enumerate(CIA):
 parallel_for cW in CW:
 cOA = cIA - cW # output COORD
 m = (pIA, cW, cOA)
 McW.append(m)
mergesort Mns according to cOA
Mos’ = MERGESORT2(M0,...,Mn)

pipeline
register

(a)

ConvMap & OA COORD Filter

2-to-1
merger

One Merge Block of the MergeSort Tree
the mergesort steps (pIA & cW not shown)

idx
steps

in

0
0
0
0
-1
0
-1

1
0
0
1
1
1
0

2
1
2
1
1
2
1

3
1
2
--
--
3
2out

idx

idxMos’

M1

M0M0

idx
pIA
cW
cOA

0
0
0
0

1
1
0
2

idx
pIA
cW
cOA

0
0
1
-1

1
1
1
1

M1

Convolution Output
Coordinate Generation

1D Example (*actual workload is 2D)

cIA cIA

cOA

cOA

cOA

cW=0 cW=1

sorted
data

=
COORD
position

cIA
pIA

0
0

x
x

x
x

2
1

cOA
pOA

0
0

x
x

x
x

2
1

cW
pW 0 1

Mos
idx
0
1
2
3

pIA
0
0
1
1

cW/pW
1
0
1
0

cOA
-1
0
1
2

pOA
x
0
x
1

0

1

3

pipeline
register

2

(b)

Figure 4-13: (a) An overview of the proposed sorter-free ConvMap and coordinate
generator. cIA, cOA and cW : coordinates of nonzero IA, OA and weight respectively;
pIA, pOA and pW : positions of nonzero IA, OA and weight respectively; 𝑀 ′

𝑂𝑆; the
intermediate unfiltered map containing all possible outputs of conventional convolu-
tion; 𝑀𝑂𝑆: the final ConvMap satisfying the rules in Fig. 4-9. (b) An example of
simple 1D ConvMap and coordinate generation.

89

𝑀 ′
𝑂𝑆. We implement the mergesort algorithm with a pipelined merger tree shown

in Fig. 4-13a for the target workload of 3 × 3 convolution. Fig. 4-13b-2 illustrates

one of the merger blocks. In step 1, the 2-to-1 merger takes in 𝑀0[0] and 𝑀1[0], and

compares their cOAs. Since cOA of 𝑀1[0] is no greater than that of 𝑀0[0], the merger

consumes and outputs 𝑀1[0]. Next, the merger compares 𝑀0[0] and 𝑀1[1]. And so

on. Using parallel processing and simple mergers, the proposed method generates the

sorted intermediate map 𝑀 ′
𝑂𝑆 with higher throughput and lower complexity compared

to naive implementation.

The last part is the ConvMap and OA coordinate filter. It 1) filters out invalid OAs

and related 𝑀 ′
𝑂𝑆 entries based on the rules shown in Fig. 4-9, 2) generates positions

of OAs (pOA), and 3) groups pIA and pW in 𝑀 ′
𝑂𝑆 and pOA to form a ConvMap

𝑀𝑂𝑆. An example is shown in Fig. 4-13b-3. Since stride = 1, the first valid cOA (0)

is assigned a pOA of 0 and so on. Since 𝑀𝑂𝑆 is sorted by cOA, pOA can be generated

by a simple counter. The proposed design eliminates a separate OA coordinate sorter

needed in the existing point cloud accelerator with WS dataflow and a different OA

filtering rule to generate sorted OA coordinates [36]. Moreover, OS dataflow results

in best energy efficiency and latency compared to other dataflows for our workload.

4.2.3 Temporal Modeling

One of the major differences between video and image is that video embeds temporal

information between successive frames. To capture temporal information, our work

adopts online temporal shift module (TSM) [35] and handles it natively in hardware.

TSM enjoys great accuracy-cost trade-off and online performance compared with

other popular video understanding algorithms [35].

Fig. 4-14 illustrates how TSM works on a CNN backbone. It does not introduce

any changes in the convolution kernel. It only shifts some data in the feature map—

part of the channels in a feature map is replaced by the corresponding part from

the previous frame. The resulting feature map mixes information from the previous

frame and the current frame and serves as the input to the next layer. In this way,

convolution captures the information between successive frames. In our work, TSM is

90

conv

Ft

…

conv

yt

conv

Ft+1

…

conv

yt+1efficient
memory

management

shift out replace shift out

conv

FN

…

conv

yN

replace
…

…

TSM
layer

conventional
layer

unshifted
part
shifted
part

Figure 4-14: An illustration of temporal shift module [35]. C: channel.

applied to a few point-wise convolution layers of the CNNs following [35]. The shifted

channel size is set to be a multiple of 8, which takes up the entire DRAM burst size, to

achieve good DRAM burst utilization. The efficient data buffering scheme is designed

for TSM, which is presented in Section 4.2.4.

4.2.4 Activation Buffering

Compared to conventional convolution, our proposed real-time DiffFrame convolution

with temporal modeling has two unique operations on activation orchestration—1)

the shifting operation for TSM on some PW layers; 2) the ConvMap-guided reads of

IA for sparsity handling in DW layers. We designed a multi-mode IA buffer to handle

them efficiently.

Dual-mode IA Buffering for Temporal Shift Module in Point-wise Diff-

Frame SparseConv

The shifting operation of activations is illustrated in Fig. 4-14. A software approach

shifts data in DRAM to form the mixed IA for the next layer via load and store

operations on the entire feature map as shown in Fig. 4-15a. The DRAM traffic

91

overhead of this approach equals twice the size of IA.

To reduce DRAM traffic overhead, we propose a hardware-based approach with

a dual-mode Buffet [42] buffer. The activations of the shifted part from the previ-

ous frame and the unshifted part of the current frame are kept separate in DRAM

throughout convolution. Different from conventional explicit decoupled data orches-

tration with Buffet, dual-mode read and fill address generators and IA Buffet [42]

are used to handle activation buffering. The dual-mode fill address generator loads

and mixes the shifted and unshifted tiles on chip for the next layer with two address

generation modes. The shifted part is a small portion of the entire feature map [35]

and is stored in the uncompressed format for efficient indexing based on the sparsity

pattern of the current frame. The unshifted part is generated by the previous layer

of the current frame, stored in the compressed format needed for the current frame,

and thus indexed with the position. Without shifting data in DRAM, our proposed

dual-mode IA buffering removes the DRAM traffic overhead of TSM.

Implicit Decoupled Data Orchestration for Depth-wise DiffFrame Spar-

seConv

For DW DiffFrame SparseConv, load and store addresses are determined by Con-

vMap, which can be generated on-the-fly. Fig. 4-16 contains an example ConvMap.

As shown, both weight and IA accessing sequences are random with the temporal

locality. Since the weight size of DW layers is small, we can store weight fully on-

chip and maintain efficient bandwidth for random access. However, IA can be big,

e.g., hundreds of kB, and needs DRAM storage. To reduce DRAM traffic, we adopt

implicit decoupled data orchestration (IDDO) [42] for IA. We turn off the Buffet [42]

controller and the fill address generator used for other layers and activate a direct-

mapped cache controller with a block size of 1 pixel with a programmable channel

size. The average cache hit rate for stride = 1 layers is 79% and stride = 2 layers is

55%. It greatly reduces DRAM traffic and accessing latency compared to a circular

buffer by utilizing the temporal locality. The underlying SRAMs are shared across

IDDO for DW DiffFrame SparseConv layers and explicit decoupled data orchestration

92

shifted part ft-1 load

load

store

load
for

conv

DRAM

unshifted part ft

input to next layer

(a)

2xIA

zero

software
approach

proposed
method

D
R

AM
 traffic

ovehead

DRAM

IA Buffet

Dual-Mode
Fill AGen

Read
AGen

mixture
of ft-1 & ft-

SparseConv
Core

uncompressed
shifted part ft-1

mode 1:
address =
 x*ochn + y*width*ochn

mode 2:
address =
 position*ochn

compressed
unshifted part ft

(b)

Figure 4-15: (a) An illustration of software approach of TSM data handling. (b)
An illustration of the proposed dual-mode IA Buffet for TSM data handling. AGen:
address generator.

in other layers. Since SRAMs take up much more area compared to the controller

logic, our method does not lead to a significant increase in the die area.

93

79%

circular
buffer

proposed
method

(stride = 1)
IA D

R
AM

 traffic

DRAM

IA Cache

miss

hit

ConvMap example
sequential read

Read
AGen

random
access
OS

SparseConv
Core

address = pIA*ICHN

pW
pIA
pOA

0
0
0

7
1
0

0
1
1

2
0
1

0
2
2

6
3
2

8
4
2

0
3
3

3
2
3

0
4
4

1
2
4

Figure 4-16: A cache-based implicit decoupled data orchestration for ConvMap-
guided IA load of DW DiffFrame SparseConv.

Table 4.3: A Summary of Data Types and Their Layout in DRAM

name compressed memory order

data

current frame n row major

previous frame (& shifted part) n row major

DiffFrame y row major

weight n row major

RefFrame n row major

OA y row major

metadata

input coordinate y row major

output coordinate y row major

ConvMap NA NA (1D array)

4.2.5 Data Layout in DRAM

Table 4.3 summarizes different data and metadata involved in our proposed real-time

DiffFrame convolution and temporal modeling algorithm. Our algorithm works on

channel-wise sparsity and thus it is natural to have data in a channel stored together

and compute in parallel. So all data are stored in a row-major order with a channel-

first sequence, which is illustrated in Fig. 4-17. Our work focuses on the utilization

of activation sparsity, thus DiffFrame and OA are compressedly stored. Other data

remain uncompressed. Input and output coordinates are also stored in row-major

94

channel

data data layout in DRAM

height

width
(a)

channel

data data layout in DRAM

height

width

0,0 0,1 0,2

2,0 2,1 2,2
2,0 2,1 2,2

coordinate layout in DRAM

0,0 0,1 0,2

(b)

Figure 4-17: An illustration of row-major memory order for data and coordinate with
a simple 3 × 3 × 3 tensor. (a) Uncompressed storage. (b) Compressed storage (zero
data are shown in white).

order to match the corresponding data (DiffFrame and OA) as shown in Fig. 4-17b.

ConvMap is and stored as a 1D array of the set (pIA, pW, pOA) sorted by pOA,

where pIA, pW, pOA are the positions of IA, W, and OA respectively.

4.2.6 Other Components and Overall Architecture

Fig. 4-18 shows the overall architecture of the proposed accelerator. It is designed

with a DRAM bandwidth limit of 800 MB/s. A round-robin arbiter handles multiple

95

8x8b OA

Memory Arbitrator

OA Circular Buffer

RF Circular Buffer

DiffFrame
Generator
& Pruning

Unit

Fill AGen

Act. & RefFrame
Update Unit

Read AGen

Buffet Controller Cache Controller

32kB SRAM

8x8 MAC Array

Host IFC

IA Buffer

48kB PSum Ping-Pong Buffer

64x8b or 8x8b W 8x8b IA

19b IA
position

5b W
position

8x19b

OA & RefFrame Unit

off-chip
DRAM

DRAM bandwidth limit
800MB/s

ConvMap/
COORD

Generator &
Buffers
(6.6kB)

18b IA
COORD

8x22b

16kB
Weight
Buffer

Vector Accumulator
18b OA
COORD
18b RF
COORD

1b NEXT

Figure 4-18: Overall system architecture. AGen: address generator; gen.: generator;
PSum: partial sum; RF: RefFrame; IFC: interface; COORD: coordinate.

simultaneous DRAM requests from various buffers.

The convolution workhorse is a dual-mode 8×8 MAC array (composed of 8 vector

MACs) for MobileNet-v2-based workload. As shown in Fig. 4-19a, the 8 × 8 MAC

array is fully activated for standard convolution handling 8 input channels and 8

output channels in parallel. For DW convolution, only 8 multipliers are activated to

handle 8 channels in parallel and the rest can be data gated as shown in Fig. 4-19b.

To provide enough bandwidth of weights and high utilization of SRAMs, a dual-

mode weight buffer is proposed. It follows a Buffet-based EDDO [42] and contains

8 banks. Each has a read bandwidth of 8 × 8 bits and 256 entries. For standard

convolution, all banks of the weight buffer are read every cycle providing a total read

bandwidth of 8× 8× 8 bits for the fully-activated 8× 8 MAC array. The total weight

buffer entry is 256. For depth-wise separable convolution, banks are reorganized so

that only one bank of the weight buffer is read each cycle providing a total read

bandwidth of 8 × 8 bits for the partially activated MAC array. The rest of the

banks are also utilized to provide an equivalent total weight buffer entry of 256× 8.

Compared to only activating one bank and power gating the rest, our proposed dual-

mode weight buffer achieves a larger storage size for depth-wise separable convolution.

96

...

...

...
...

...

bank 0bank 6bank 7weight
buffer

8x8b 8x8b IA

MAC
array

vector
MAC

vector
MAC

(a)

...

...

...

bank 0

bank 6
bank 7

weight
buffer

IA

......MAC
array

data gated

vector
MAC

vector
MAC

(b)

Figure 4-19: The dual-mode MAC array and weight buffer. (a) Standard convolution.
(b) DW convolution.

The multi-mode IA buffer is presented in Section 4.2.4 providing 8 × 8 bits read

bandwidth to the MAC array. A vector accumulator handles the temporal accumu-

lation of partial sums at the output of the MAC array with a partial sum ping-pong

buffer. The activation and RefFrame update unit applies the activation function and

RefFrame addition and generates DiffFrame for the next layer. Circular buffers are

used for RefFrame load and store, and OA store.

For standard convolution and PW convolution, OS dataflow is used between

DRAM and on-chip buffers, and both OS and WS dataflows are supported between

on-chip buffers and the MAC array. A custom mapping optimizer (discussed in Sec-

tion 4.3.2) is designed to search for the best dataflow and tiling given a CNN layer

and design metrics (such as EDP, throughput, etc.).

For DW convolution, OS dataflow is applied with a ConvMap guiding the com-

97

19b IA
position

18b IA
coordinate

18b OA
coordinate

18b RefFrame
coordinate

1b NEXT

5b WGT
position

ConvMap/coordinate
generator (4.6kB)

TSM & RefFrame
information generator

Input
circular
buffer

In/out
circular
buffer

ConvMap
information
generator

1kB Ping
buffer/input

Buffet

1kB Pong
buffer

& AGen

Rd/Shrink
AGen

ConvMap buffer

external memory
requests & data

coordinate buffer

coordinate & ConvMap generator & buffers

Figure 4-20: The block diagram of the ConvMap and coordinate generator and buffers.
WGT: weight.

putation. A detailed block diagram of the ConvMap and coordinate generator and

buffers is shown in Fig. 4-20. The design of ConvMap and coordinate generator is

presented in Section 4.2.2. A circular buffer is used for the ConvMap load and store

between DRAM. The ConvMap information generator outputs a NEXT signal to the

partial sum buffer indicating when the vector accumulator needs to move forward to

the next partial sum. A multi-mode coordinate buffer is designed to handle different

buffering requirements for different layers. 1) Some layers directly load coordinates

from off-chip DRAM and then use those coordinates to guide the load and store of

RefFrame or shifted part for TSM. Thus, a Buffet-based buffer is needed. 2) The

starting layer of our DiffFrame SparseConv directly receives coordinates from the

ConvMap and coordinate generator, and needs to use them for RefFrame and then

store them off-chip. A ping-pong buffer is used. 3) Some layers need to load coor-

dinates from off-chip DRAM for the pruning unit and the coordinate generator to

produce a new set of coordinates, use the new coordinate for computation and then

store them in DRAM. In this case, a circular buffer is used to buffer input coordinates

to the pruning unit and then a ping-pong buffer is used for the output coordinates

from the coordinate generator.

As presented above, a lot of blocks are conditionally needed based on the layer

type and operation mode. To reduce power consumption, user-configured block-level

98

clock gating is applied to red blocks as shown in Fig. 4-18 and Fig. 4-20 based on

the operational need of each layer. It brings 1.3x power reduction on MobileNet-v2

workload.

4.3 Evaluation and Test Setup

This section describes how we set up the experiments to evaluate the proposed algo-

rithm and architecture in Section 4.2.

4.3.1 Model Preparation and Algorithm Evaluation Setup

We use MobileNet-v2-based models [46] as the backbone to evaluate the proposed

algorithm. MobileNet-v2 achieves higher accuracy and lower runtime with fewer

parameters than various NNs, e.g., MobileNet-v1 and ShuffleNet, on mobile devices

on multiple applications, e.g. object detection, etc. [46]. Since our work targets edge

applications, it is suitable to serve as a backbone.

Both a basic MobileNet-v2 model (MobileNet-v2-47) and a reduced MobileNet-

v2 model (MobileNet-v2-34) were used during evaluation and measurements. Ap-

pendix B shows their model structures. The MobileNet-v2-34 is constructed from the

ordinary MobileNet-v2 by 1) having a width multiplier of 0.68, a channel multiplier

of 0.5, and a depth multiplier of 0.695; 2) advancing one downsampling layer to the

beginning of the NN. For both NNs, the DiffFrame is first calculated at the input of

the first inverted residual bottleneck block and our proposed method is then applied

to the rest of the NN. By advancing the downsampling layer to the beginning, the

metadata generation of our proposed sparsity handling method is reduced. Pruning

is applied at the input of the first DiffFrame SparseConv layer to achieve higher spar-

sity in the input DiffFrame and the layers following all the downsampling layers as

downsampling densifies the feature maps.

Our proposed algorithm is evaluated on DAC-SDC dataset [61] with ImageNet [9]

pretraining. The DAC-SDC dataset includes 95 categories of video clips captured by

unmanned aerial vehicles (UAVs) with moving objects inside and labels of bounding

99

(a)

(b)

(c)

Figure 4-21: A few samples of the DAC-SDC dataset [61].

boxes tracking the moving objects. Some samples are shown in Fig. 4-21. The

accuracy of this object-tracking task is evaluated as intersection-over-union (IoU) [61],

which is the ratio between the intersection of the predicted bounding box and the

ground-truth bounding box and the union of them.

Quantization is applied to the NN during the evaluation. Standard 8-bit linear

quantization with fine-tuning is used on weights, IAs, and OAs.

4.3.2 Architecture Evaluation and Chip Measurement Setup

The setup for architecture exploration (algorithm and architecture co-design) and

evaluation is shown in Fig. 4-22. We use PyTorch to train and test the proposed

algorithm, dump model parameters and intermediate data, and evaluate accuracy.

We built a cycle-accurate and bit-accurate model in C++ to explore and evaluate the

architecture. With an energy lookup table of major hardware components and the

workload description, it logs the number of DRAM and on-chip buffer accesses and

provides an estimated cycle count and energy consumption of the underlying archi-

tecture given the workload and mapping. A mapping optimizer searches the design

space of the runtime parameters to find the optimum for the underlying architecture

100

PyTorch
training &
testing

framework

mapping
optimizer

RTL

dataset energy LUT

debug traces

input

model

output

mappings

accuracy

runtime

energy

memory
access

c++
cycle-accurate
& bit-accurate

model

Figure 4-22: The setup for architecture exploration and evaluation. LUT: lookup
table.

given a certain target, such as minimum DRAM traffic, highest throughput, or lowest

energy-delay product. With the best mappings and data traces dumped from the

bit-accurate model, we simulate RTL to get the accurate runtime and energy con-

sumption of the accelerator. We iteratively tuned the architecture and its design-time

and runtime parameters to achieve good accuracy and low memory access, runtime,

and energy consumption.

We evaluate our proposed architecture with a chip called VideoTime3 [57] taped

out in TSMC 28 nm HPC+ technology. Fig. 4-23 shows the block diagram and a

photo of our measurement setup. The host PC is connected to Opal Kelly FPGA

board through a USB interface to send 1) the configuration bits to the chip via

Opal Kelly FrontPanel endpoints and user-designed FrontPanel adapter, and 2) input

data to DRAM via the Xilinx MIG and a user-designed MIG adapter. DRAM, the

Xilinx MIG, and the MIG adapter operate at 200MHz, which is the highest clock

frequency for DDR3. The rest components operate at the chip core frequency, which

is adjustable during measurement. Our VideoTime3 chip is attached to the test PCB

using chip-on-board packaging and supplied with the Keithley power sources.

101

host
PC

Opal Kelly
FPGA board

200MHz
clock
domain

Xilinx FPGA

Xilinx MIG

DRAM (DDR3) oscillator

USB adapter

Opal Kelly
FrontPanel
endpoints

MIG adapter CLK
gen
&

cntl
unit

Front Panel
adapter

VideoTime3 chip

power supply &
measurement

power supply &
sourcemeter

testing PCB

core
clock
domain

(a)

(b)

Figure 4-23: (a) The block diagram of the chip measurement setup. FPGA has two
clock domains. One is the highest clock frequency for DDR3 and the other is for the
chip. gen: generator; cntl: controller. (b) A photo of the chip measurement setup.

4.4 Evaluation and Measurements

Using the experimental setup discussed in the previous section, we evaluate the accu-

racy of our proposed algorithm and the DRAM traffic reduction, energy breakdown

of our algorithm and architecture co-design. In the end, we present the chip measure-

102

20% 30% 40% 50% 100%

0.49

0.5

0.51

0.52

0.53

0.64

0.65

0.66

0.67

0.68

MobileNet-v2-34 MobileNet-v2-47

Ac
cu

ra
cy

 (I
oU

)

Density (Pruning Threshold)

Ac
cu

ra
cy

 (I
oU

)

MobileNet-v2-34 Conventional Conv

MobileNet-v2-47 Conventional Conv

Figure 4-24: Comparison with conventional convolution and sensitivity of accuracy
on the pruning threshold of the proposed real-time DiffFrame SparseConv with tem-
poral modeling algorithm. The NN is not quantized. The case with a density of
100% is equivalent to convolution with TSM. The dash lines are plain conventional
convolution.

ment and a comparison with prior work.

4.4.1 Accuracy

We compare our proposed real-time DiffFrame SparseConv with temporal modeling

algorithm with conventional convolution and evaluate the sensitivity of accuracy on

the pruning threshold of our algorithm. During this analysis, we use a density-based

pruning threshold, which prunes the less significant pixels based on the L1 norm

and keeps the pruned data at a specified density. During online processing, the user

can use a value-based pruning threshold, which prunes data given a preset value.

The pruning threshold is set according to user analysis and estimation of the input

data given their target application. As shown in Fig. 4-24, our proposed algorithm

improves the accuracy over conventional convolution even at 20% density (nonzeros).

MobileNet-v2-47, which uses larger input resolution and has more parameters, is less

103

Table 4.4: Accuracy Analysis of the Proposed Method on Quantized MobileNet-v2
Neural Nets

XX
X

Conventional
Convolution

Convolution
with TSM This Work

Real-Time DiffFrame SparseConv
Temporal Shift Module

IoUMobileNet-v2-34 (%) 48.8 52.7 51.3
IoUMobileNet-v2-47 (%) 65.4 68.7 67.4

sensitive to pruning compared to MobileNet-v2-34.

Furthermore, we evaluate the accuracy of quantized MobileNet-v2 NNs at a den-

sity of 30% in three cases—conventional convolution, convolution with TSM, our

proposed real-time DiffFrame convolution with temporal modeling. The results in

summarized in Table 4.4. Although DiffFrame SparseConv and pruning lead to some

information loss, overall accuracy (IoU) improves 2%–2.5% on various MobileNet-v2-

based NNs on the object tracking dataset [61]. When SparseConv is directly applied

to raw IA instead of DiffFrame, the accuracy drops to less than 30% at 40% density.

The intuition may be that DiffFrames inform NNs which pixel locations have big

changes between frames and are crucial for object tracking. The study emphasizes

the importance of each component of our proposed real-time DiffFrame convolution

with temporal modeling.

4.4.2 DRAM Access

We compare the DRAM traffic between our proposed real-time DiffFrame SparseC-

onv with temporal modeling and conventional convolution on our proposed hardware

and evaluate how DRAM traffic changes with the input density of the proposed al-

gorithm on two different NNs. Our hardware supports both the proposed algorithm

and conventional convolution (this mode is used in the first few layers before the

first DiffFrame layer). The optimal mappings for both the proposed algorithm and

conventional convolution are used during the evaluation. As shown in Fig. 4-25, our

104

30% 40% 50%
0

5

10

15

20

25

30

35
MobileNet-v2-34 MobileNet-v2-47

Density (Pruning Threshold)

D
R

AM
 T

ra
ffi

c
(M

B)

Conventional Conv

Conventional Conv

Figure 4-25: The total DRAM traffic vs. the pruning threshold (input density) of the
proposed real-time DiffFrame SparseConv with temporal modeling algorithm and a
comparison with conventional convolution. The target of the mapping optimizer is
set to be minimizing DRAM traffic.

proposed method significantly reduces the DRAM traffic for MobileNet-v2-47 across

various density levels. For MobileNet-v2-34, a higher level of pruning is needed to

achieve DRAM traffic reduction with our proposed algorithm. The reason is the fol-

lowing. MobileNet-v2-34 has a much smaller channel size than MobileNet-v2-47 as

shown in Appendix B. Our proposed algorithm features channel-wise sparsity and thus

leads to less DRAM traffic reduction on MobileNet-v2-34 compared to MobileNet-v2-

47. Nonetheless, a 1.8x reduction in the energy-delay product of the accelerator chip

at 30% density is observed on MobileNet-v2-34 as shown in Section 4.4.4.

Fig. 4-26 shows a detailed breakdown of DRAM traffic and compares conven-

tional convolution, estimated conventional frame-by-frame DiffFrame sparsity han-

dling method, and our proposed method. The conventional frame-by-frame Diff-

Frame sparsity handling method is estimated by adding full RefFrame traffic, which

is twice the size of total IAs, and the weight, IA, and OA DRAM traffic of our pro-

posed method. The naive frame-by-frame DiffFrame sparsity handling method con-

105

a: conventional convolution
b: estimated conventional frame-by-frame
 DiffFrame sparsity handling method
c: proposed method
*30% density

a b* c*
0

1

2

3

4
D

R
AM

 tr
af

fic
 (M

B) DiffFrame
Other

COORD
RefFrameConvMap

OAIA W

MobileNetv2-34 MobileNetv2-47

1.3x

0
10
20
30
40
50

2.2x

1.3x

a b* c*

Figure 4-26: The proposed method reduces DRAM traffic by 1.3x and 2.2x compared
to the prior sparsity handling method and conventional convolution on MobileNetv2-
47 respectively. The mapping optimizer target is to lower the energy-delay product.
MobileNetv2-34 has a small channel size; thus, our method featuring channel-wise
sparsity leads to less DRAM traffic reduction. Nonetheless, a 1.8x reduction in the
energy-delay product of the accelerator is observed. W: weight. COORD: coordinate.

sumes higher DRAM traffic than conventional convolution at 30% input density with

MobileNetv2-34 workload due to the large overhead of RefFrame traffic. Our pro-

posed method greatly reduced the RefFrame traffic and IA, OA, and weight DRAM

traffic with very little overhead in sparsity handling metadata. It achieves 1.3x and

2.2x DRAM traffic reduction compared to the conventional sparsity handling method

and conventional convolution respectively on the MobileNet-v2-47 workload.

4.4.3 Energy Breakdown

The energy breakdown of our accelerator running the proposed algorithm with the

MobileNet-v2-34 backbone is shown in Fig. 4-27. The energy is obtained from post-

PnR simulation with timing, switching activity and parasitic information annotated.

The OA & RefFrame Unit (including PSum, OA and RefFrame buffers, the vector

accumulator, and activation and RefFrame update unit as shown in Fig. 2-6a) and

the weight buffer take up around 50% of the total energy consumption. Adding

support to the OS-LWS dataflow proposed in Chapter 2 may further reduce their

energy consumption. The energy overhead of having the ConvMap and Coordinate

generator and buffer, DiffFrame pruning unit and the DiffFrame generator for our

proposed algorithm is very small.

106

26.1%24.4%

12.7%

12.1% 11.3%

9.33%

OA & RefFrame Unit
Weight Buffer
IA Buffer
Others
MAC Array
Memory Arbiter
ConvMap/COORD Gen. & Buffer
DiffFrame Pruning Unit
DiffFrame Gen.
Host IFC

Figure 4-27: Energy breakdown of the accelerator chip (including IO drivers) running
MobileNet-v2-34. DRAM access time and energy are not included. COORD: coordi-
nate; Gen.: generator; IFC: interface.

4.4.4 Chip Measurements and Comparison with Prior Work

The accelerator is fabricated in 28nm CMOS. The die micrograph is shown in Fig. 4-

28a. We measure the accelerator chip running the proposed real-time DiffFrame

convolution with temporal modeling algorithm with the MobileNet-v2-34 backbone.

The voltage-frequency sweep is shown in Fig. 4-28. Achieving 50MHz at 0.6 V, it

consumes 40 uJ/frame (DRAM excluded) with 1.01 TOPS/W and 38 FPS with an

average IA sparsity of 63.1%. We also measure the accelerator chip running the con-

ventional convolution with the same backbone. As shown in Fig. 4-29, our proposed

techniques reduce the EDP by around 1.8x compared to conventional convolution.

Furthermore, our work achieves a 6.3x improvement in energy efficiency (TOPS/W)

compared to [64] and the lowest energy/frame compared to prior work as shown in

Table 4.5.

4.5 Further Discussions on CNN Sparsity Handling

In Section 4.2.2, we present how our work handles sparsity in the proposed real-time

DiffFrame convolution. In this section, we analyze the existing sparsity handling

techniques and describe how our work is different from prior work.

Sparse data can be utilized in various ways. Based on existing works and analy-

107

(a)

0.6 0.7 0.8 0.9 10

20

40

60

80

100

0

2

4

6

8

10

Frequency Power

Voltage (V)

Fr
eq

ue
nc

y
(M

H
z)

Po
w

er
 (m

W
)

(b)

Figure 4-28: (a) Die micrograph (1: 16 kB Weight buffer; 2: 8 × 8 MAC array; 3:
32 kB IA buffer; 4: 44 kB OA RefFrame unit; 5: DiffFrame generator; 6: DiffFrame
pruning; 7: ConvMap buffer; 8: ConvMap generator and coordinate buffer). (b)
Frequency and power measurements.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80
Conventional Conv Proposed

Frame/s

En
er

gy
 (u

J)

EDP = 1 uJ•s

EDP = 1.8 uJ•s

Figure 4-29: Comparison of the proposed real-time Diffframe convolution and con-
ventional convolution in terms of energy, frame rate and energy-delay product (EDP)
on our accelerator chip.

108

Table 4.5: Comparison to Prior Work

JSSC’18 [1]
1—3,5)

ISSCC’20 [3]
1—5)

ISSCC’21 [2]
1,2,4,5)

This work
1—5)

Temporal
modeling? N N N Y

Temporal
redundancy
utilized?

N Y N Y

Single-frame
latency? N N Y Y

Technology 65 nm 65 nm 28 nm 28 nm

Core vol. (V) 0.7~1.1 0.52~0.99 0.6~0.9 0.55~1.0

Clock freq. 10~200 MHz 50 MHz 100~470 MHz 29~100 MHz

Precision 8b W & IA 8b W, 4b/8b IA 8b W & IA 8b W & IA

DRAM BW limit not mentioned 800MB/s not mentioned 800MB/s

Workload AlexNet MNet-v1-27 ResNet MNet-v2-34

Dataset ImageNet custom dataset ImageNet DAC-SDC

Accuracy 56.9% (top-1) not mentioned 76.92% (top-1) 51.3% IoU

Throughput
(GOPS) not mentioned 1.32~1.97 not mentioned 0.9~3.1

Frame/sec. 20 ~ 346 44 ~ 67 40 23 ~ 77

Energy/frame 310 ~ 838 uJ 183 ~ 278 uJ6) 1120 uJ 39 ~ 98 uJ

1) 1MAC=2OP; 2) BatchNorm, softmax not included; 3) MLP not included; 4) DRAM
access time not included; 5) DRAM access energy not included; 6) The minimum
energy/frame reported in [3] is 24.7uJ with a tiny MNet-v1-16 (3.2x fewer operations
compared to our MNet-v2-34). Since [3] does not report the corresponding throughput,
we note this case here for the clarity of the table. *MNet: MobileNet.

sis [51, 6], we classify them into two categories based on their target components. One

is the computation-related techniques shown in Table 4.6. A basic approach is to gate

computation with zero weight and/or IA to reduce the dynamic energy of computing

units. An example can be found in Eyeriss [6]. A more aggressive approach skips the

computation cycle along with computation when weight and/or IA is zero, such as

Cnvlutin [1] and SCNN [41]. The other category is the memory-related techniques

shown in Table 4.7. Some work, such as Eyeriss [6], skips memory access of an input

when the other input is zero for the computation. As skipping memory access only ap-

plies to low memory level(s) close to the computing units, it does not save major data

delivery costs. Other work compresses the sparse data in part of or all of the memory

109

Table 4.6: Computation-Related Sparsity Handling Techniques

Computation
Energy

Computation
Cycles

Gate Computation
Skip Computation

Table 4.7: Memory-Related Sparsity Handling Techniques

Memory
Access

Data
Delivery

Storage
Size

Skip Memory Access
Compress Data

levels so that associated memory access, data delivery and storage size are reduced.

A common approach is to compress the data traffic between the off-chip DRAM and

the accelerator chip as shown in Eyeriss [6] and Envision [38]. Another well-studied

approach is to convolve with compressed weights only, such as Cambricon-X [65].

Since weights stay the same during inference, they can be compressed in advance ac-

cording to the need of the designer. Thus, the sparsity pattern of weights is known in

advance and metadata can be generated offline. That simplifies the inference acceler-

ator design compared to handling sparsity in activations as activations are generated

on-the-fly and their metadata needs to be processed online. In the following analysis,

we focus on activation sparsity handling with the more aggressive technique in each

category—skipping computation and data compression—as they potentially provide

more benefits.

Table 4.8 summarizes the ineffectual computation skipping and activations and

PSums compression in different memories in prior work. Some prior works explored

the handling of compressed IAs in all memory levels for convolution, such as Cn-

vlutin [1] and SCNN [41]. However, prior work does not consider the sparsity han-

dling of PSums/OAs across all memory levels. The reason is that PSums/OAs have a

high probability to be dense in conventional convolution due to dilation. In contrast,

our work proposes real-time DiffFrame convolution eliminating dilation (with specific

110

Table 4.8: Comparison to Prior Work in Terms of Sparsity Handling in Activations
and Partial Sums

Conventional
Convolution Prior Work This

Work
Skip zero computation?

Is compressed in
DRAM?

IA
OA/PSum

Is compressed in
SRAM?

IA
OA/PSum

X
X
X
X
X

X
X
X
X

X
X X

rules between nonzero input and output coordinates) to introduce sparsity in PSums

and OAs. With algorithm and architecture co-design, our work handles convolution

with compressed PSums/OAs in all memory levels. That expands the sparse CNN

accelerator design space.

Furthermore, our work introduces decoupled metadata generation and map-guided

sparse convolution to efficiently convolve compressed PSums/OAs. The definition

and explanation of decoupled metadata generation is presented in Section 4.2.2. In

contrast, we classify the prior sparsity handling architectures as coupled metadata

generation and coordinate-guided sparse convolution. Coupled metadata generation

refers to the design in which the processing sequence of metadata is associated with

that of compressed data. The reasons prior work used coupled metadata generation

are that 1) prior work needs coordinates to index uncompressed PSums during ac-

cumulation for convolution whereas our work directly uses position to index PSums,

2) the PSum coordinate sequences are different for every layer providing no reuse

opportunities, and thus they need to be generated with PSums to guide accumula-

tion (whereas metadata are shared across the layers with a stride equal to 1 in our

work). To analyze prior work, a sparse fiber tree representation is proposed, which

uses coordinates as indices to present sparse dataflow as an abstraction of the CNN

accelerator architecture [51]. To represent our work more straightforwardly, we illus-

trate our map-guided convolution and decoupled metadata generation as shown in

the pseudo-codes of Fig. 4-12 and 4-13a, where positions are used to index data dur-

ing convolution and metadata generation is fully decoupled from convolution. That

111

provides an alternative way of representing sparsity handling architectures of NN

accelerators.

4.6 Summary and Conclusions

This section presents an algorithm and hardware co-design of a deep learning accel-

erator, VideoTime3, optimized for state-of-the-art video understanding applications.

The chip is innovative as it achieves all three features—is capable of temporal model-

ing for higher accuracy, utilizes temporal redundancy to improve energy efficiency, and

achieves single-frame latency for real-time applications, such as autonomous vehicles

and AI drones. Our work has four key contributions: 1) propose real-time DiffFrame

convolution achieving 2.2x DRAM access reduction on MobileNet-v2 workload at

single-frame latency compared to conventional convolution; 2) introduce decoupled

metadata processing and map-guided convolution to efficiently handle compressed

PSums/OAs and IAs resulting from algorithm co-design and design sorter-free ar-

chitecture for the metadata generator; 3) enable temporal modeling and have 2%

– 2.5% accuracy (IoU) improvement with real-time DiffFrame convolution on DAC-

SDC object tracking dataset [61]; 4) optimize data buffering to remove DRAM traffic

overhead for temporal modeling and reduce 55% – 79% IA DRAM traffic in depth-

wise layers. The chip consumes 40 uJ/frame with 38 frames/second at 0.6 V in 28nm

CMOS.

We focus on the efficient handling of activations for real-time video understand-

ing applications considering redundancy and information between successive video

frames in our analysis. However, the proposed techniques can also be applied to

other applications that have similarities between multiple inputs, such as data from

MRI machines. Also, they can be applied with well-known weight sparsity handling

methods to boost energy savings and speed even further.

112

Chapter 5

Conclusions and Future Directions

Addressing the challenge of the immense demand for the computing power while

maximizing potential of deep learning has been a crucial and highly sought-after

focus in both the research community and industry. Designing across the boundaries

of circuit, architecture and algorithm, this thesis provides unique insights and presents

novel techniques to tackle this challenge.

5.1 Summary of Contributions

• Hybrid dataflows and memory hierarchy co-design

This thesis shows that maximizing the reuse of a single data type, such as fully

weight/output/input stationary, may not lead to the highest energy efficiency.

We argue that the designer should explore all possible storage elements provided

by a chosen technology for each data type and consider balancing the reuse

across different data types given the energy and access time of different storage

elements.

We propose hybrid dataflows that balance the reuse of weight and partial sums

and introduce a new level of the memory hierarchy—the collector—between the

on-chip buffer and compute units. Our proposed output stationary with local

weight stationary dataflow improves the energy efficiency of two NN acceler-

113

ators analyzed in this thesis by 1.5x – 2x. This technique is also adopted in

a more recent accelerator for tranformers and significantly reduces the overall

proportion of power used for memory access and data delivery compared to

prior work. It can be generalized to accelerators for various applications, such

as NN training and general tensor algebra, and various types of accelerators,

such as accelerators on the edge and accelerators on the cloud.

• Weight tuning algorithm and datapath/SRAM co-design

We looked into the data statistics in the accelerator and investigated how they

affect the overall energy consumption. As the designer has a full control over

weights for inference, we propose a weight tuning algorithm that reduces the

toggle count of weight sequence by tweaking the bit representation of weights.

The reduction in toggle count of weight leads to dynamic energy reduction

of weight delivery and computation with the co-designed datapath. Adopting

a custom SRAM with conditional precharge, this technique also reduces the

energy consumption of the weight buffer.

• Algorithm and architecture co-design for real-time video understanding with

temporal redundancy reduction and temporal modeling

When designing an accelerator for a specific application, investigating the pro-

cessed data and co-designing the application-specific algorithm bring more flex-

ibility and provide powerful design knobs to improve energy efficiency. Fol-

lowing this design methodology, we propose a real-time DiffFrame convolution

with temporal modeling algorithm for video understanding, which captures the

useful information in video data for higher application accuracy while utilizing

redundancy in the data for energy savings.

• Decoupled metadata processing and map-guided sparse convolution with com-

pressed OA

The proposed real-time DiffFrame convolution for video understanding provides

unique sparsity handling opportunities—sparse PSum and OA. We propose de-

114

coupled metadata processing and map-guided sparse convolution to efficiently

enable compressed PSum/OA across all memory hierarchies. Compared to con-

ventional sparse convolution with uncompressed PSum and OA, our method

delivers around 3x reduction in storage size for PSum/OA at 30% density and

achieves a significant reduction in overall memory access and data delivery. We

expand the taxonomy of sparsity handling architectures for convolution with our

decoupled metadata generation and map-guided sparse convolution. Besides

video, this method can be applied to other data that present some similarities

or correlations across batches, such as images from MRI.

• Test chips

We taped out two test chips in this thesis to evaluate the proposed techniques,

including 1) the NN accelerator in 40-nm technology supporting the proposed

weight tuning algorithm for small footprint NNs, and 2) the VideoTime3 acceler-

ator in 28-nm technology for video understanding with our proposed techniques.

• Evaluation of eMRAM

We explore the application of emerging eMRAM on DL accelerators in this

thesis. After comparing the characteristics of eMRAM, DRAM and SRAM, we

used eMRAM for the last level weight storage to keep all the weights on chip.

Through dataflow and buffer scheme optimization, the energy consumption of

eMRAM is less than 6% of the total energy consumption of the NN accelerator.

5.2 Future Directions

Given the significant advancements in DL applications, such as generative AI and

autonomous vehicles, and their large computation demand, there is increasing de-

mand and exciting opportunities for efficient DL accelerators. Here are some possible

extensions of this work:

• More Efficient Sparsity Handling: The activation sparsity handling tech-

niques developed in this work can be applied along with existing efficient weight

115

sparsity handling techniques. That will enable compression in all data types in-

volved in convolution, leading to higher utilization of sparsity and thus more

opportunities to achieve higher energy efficiency.

• Generalization to Other Applications: It would be interesting to explore

the generalization of the techniques proposed in this thesis to other applications,

such as generative AI and graph processing, which also involve NNs or sparse

tensor algebra.

• New Technologies: While all our chips were fabricated in CMOS technology,

we also explored the application of the emerging eMRAM technology on DL

accelerators with an analytical model and obtained promising results. It would

be useful to design and fabricate the chip with emerging technologies. Moreover,

while our techniques are designed for a single chip, it would be beneficial to

incorporate them into DL accelerator systems with chiplet, which is a promising

technology to further push the limit of energy efficiency.

• Compiler Design and Software Ecosystem: While our work explores al-

gorithm and hardware co-design for a given application and develops custom

mappers for our proposed algorithms and hardware, it would be useful to inves-

tigate how to jointly develop the compiler and build a better software ecosystem

along with the DL accelerator design in a systematic way.

116

Appendix A

List of Abbreviations

DL deep learning

GPT generative pre-trained Transformer

IA input activation

OA output activation

PSum partial sum

FMap feature map

EDP energy-delay product

NN neural network

WS weight stationary

IS input stationary

OS output stationary

eMRAM embedded magnetoresistive RAM

OS-LWS output stationary with local weight stationary

WS-LOS weight stationary with local output stationary

PE processing element

SCM standard cell memory

KWS keyword spotting

CNN convolution neural network

NoC network on chip

FIR finite impulse response

117

AR augmented reality

VR virtual reality

AI artificial intelligence

TSM temporal shift module

PW point-wise (convolution)

DW depth-wise (convolution)

UAV unmanned aerial vehicle

IoU intersection-over-union

118

Appendix B

Custom NN Model structures

We present the structures of custom NN models used in this thesis.

Table B.1: The Original and Decomposed Structure of CNN80 (The input size of
CNN80 is 𝐻 = 10 and 𝑊 = 49.)

Original Decomposed
Layer FH FW ICHN OCHN SH SW Layer FH FW ICHN OCHN SH SW
CONV1 4 10 1 28 1 1 CONV1-1 1 10 1 6 1 1

CONV1-2 4 1 6 9 1 1
CONV1-3 1 1 9 28 1 1

CONV2 4 10 28 30 2 1 CONV2-1 1 1 28 18 1 1
CONV2-2 4 10 18 21 2 1
CONV2-3 1 1 21 30 1 1

LIN 1 1 1920 16 NA NA LIN-1 1 1 1920 12 NA NA
LIN-2 1 1 12 12 NA NA
LIN-3 1 1 12 16 NA NA

FC1 1 1 16 128 NA NA FC1 1 1 16 128 NA NA
FC2 1 1 128 12 NA NA FC2 1 1 128 12 NA NA

* LIN: linear layer; FC: fully-connected layer; SW: stride in width; SH: stride in height

119

Table B.2: The Structure of MobileNet-v2-47 (The input size is 𝐻 = 160 and
𝑊 = 360. The proposed real-time DiffFrame convolution with temporal modeling
algorithm is applied to layer 4 and the following layers. Metadata need to be gener-
ated for layer 4, 16, 17, 37 andd 38. The last layer, which is a fully connected layer,
is not included in our evaluation.)

Layer IDX OCHN ICHN FH FW Stride Group

1 32 3 3 3 2 1

2 32 32 3 3 2 1

3 128 32 3 3 2 1

4 128 128 3 3 1 128

5 24 128 1 1 1 1

6 128 24 1 1 1 1

7 128 128 3 3 1 128

8 32 128 1 1 1 1

9, 12 256 32 1 1 1 1

10, 13 256 256 3 3 1 256

11, 14 32 256 1 1 1 1

15 256 32 1 1 1 1

16 256 256 3 3 2 256

17 64 256 1 1 1 1

18, 21, 24 512 64 1 1 1 1

19, 22, 25 512 512 3 3 1 512

20, 23, 26 64 512 1 1 1 1

27 512 64 1 1 1 1

28 512 512 3 3 1 512

29 96 512 1 1 1 1

30, 33 512 96 1 1 1 1

31, 34 512 512 3 3 1 512

32, 35 96 512 1 1 1 1

36 512 96 1 1 1 1

37 512 512 3 3 2 512

38 160 512 1 1 1 1

39, 42 1024 160 1 1 1 1

40, 43 1024 1024 3 3 1 1024

41, 44 160 1024 1 1 1 1

45 1024 160 1 1 1 1

46 1024 1024 3 3 1 1024

47 320 1024 1 1 1 1

48 1280 320 1 1 1 1

120

Table B.3: The Structure of MobileNet-v2-34 (The input size is 𝐻 = 54 and 𝑊 = 122.
The proposed real-time DiffFrame convolution with temporal modeling algorithm is
applied to layer 3 and the following layers. Metadata need to be generated for layer
3, 12, 13, 27, and 28. The last layer, which is a fully connected layer, is not included
in our evaluation.)

Layer IDX OCHN ICHN FH FW Stride Group

1 32 3 3 3 2 1

2 64 32 3 3 2 1

3 64 64 3 3 1 64

4 16 64 1 1 1 1

5 64 16 1 1 1 1

6 64 64 3 3 1 64

7 16 64 1 1 1 1

8 128 16 1 1 1 1

9 128 128 3 3 1 128

10 16 128 1 1 1 1

11 128 16 1 1 1 1

12 128 128 3 3 2 128

13 32 128 1 1 1 1

14, 17 256 32 1 1 1 1

15, 18 256 256 3 3 1 256

16, 19 32 256 1 1 1 1

20 256 32 1 1 1 1

21 256 256 3 3 1 256

22 48 256 1 1 1 1

23 256 48 1 1 1 1

24 256 256 3 3 1 256

25 48 256 1 1 1 1

26 256 48 1 1 1 1

27 256 256 3 3 2 256

28 80 256 1 1 1 1

29 512 80 1 1 1 1

30 512 512 3 3 1 512

31 80 512 1 1 1 1

32 512 80 1 1 1 1

33 512 512 3 3 1 512

34 160 512 1 1 1 1

35 1280 160 1 1 1 1

121

122

Appendix C

Dataflows

We present all the dataflows (besides OS-LWS-a, OS-LWS-b dataflows shown in Chap-

ter 2) used in the design space of System 2 in Chapter 2.

123

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. For each FH:

9. For each FW:

10. For each ichn_tile/ichn_parallel:

11. weight_l2_buf.read()

12. weight_l0_reg.wr_rd()

13. For each OH:

14. For each OW:

15. ia_l1_buf.read()

16. ia_l0_reg.wr_rd()

17. psum_l1_ping_buf.read()

18. Parallel_for ichn_parallel:

19. Parallel_for ochn_parallel:

20. MAC & psum_l0_reg.accum()

21. psum_l1_ping_buf.write()

22. psum_l1_pong_buf.read()

23. psum_l2_buf.write()

Figure C-1: WS-a dataflow (inner-level). No weight L1 buffer is needed.

124

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

1. For each OCHN/ochn_tile:

2. weight_l2_buf.read()

3. weight_l1_buf.write()

4. For each OH/oh_tile:

5. For each OW/ow_tile:

6. For each ICHN/ichn_tile:

7. ia_l2_buf.read()

8. ia_l1_buf.write()

9. For each ochn_tile/ochn_parallel:

10. For each FH:

11. For each FW:

12. For each ichn_tile/ichn_parallel:

13. weight_l2_buf.read()

14. weight_l0_reg.wr_rd()

15. For each OH:

16. For each OW:

17. ia_l1_buf.read()

18. ia_l0_reg.wr_rd()

19. psum_l1_ping_buf.read()

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()

Figure C-2: WS-b dataflow (inner-level).

125

1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. weight_l2_buf.read()

9. weight_l1_buf.write()

10. For each oh_tile:

11. For each ow_tile:

12. psum_l1_ping_buf.read()

13. For each FH:

14. For each FW:

15. For each ichn_tile/ichn_parallel:

16. ia_l1_buf.read()

17. ia_l0_reg.wr_rd()

18. weight_l1_buf.read()

19. weight_l0_reg.wr_rd()

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

Figure C-3: OS-a dataflow (inner-level).

126

1. For each OCHN/ochn_tile:

2. weight_l2_buf.read()

3. weight_l1_buf.write()

4. For each OH/oh_tile:

5. For each OW/ow_tile:

6. For each ICHN/ichn_tile:

7. ia_l2_buf.read()

8. ia_l1_buf.write()

9. For each ochn_tile/ochn_parallel:

10. For each oh_tile:

11. For each ow_tile:

12. psum_l1_ping_buf.read()

13. For each FH:

14. For each FW:

15. For each ichn_tile/ichn_parallel:

16. ia_l1_buf.read()

17. ia_l0_reg.wr_rd()

18. weight_l1_buf.read()

19. weight_l0_reg.wr_rd()

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

Figure C-4: OS-b dataflow (inner-level).

127

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. For each FH:

9. For each FW:

10. For each ichn_tile/ichn0:

11. weight_l2_buf.read()

12. weight_l0_collect.write()

13. For each OH:

14. For each OW:

15. psum_l1_ping_buf.read()

16. For each ichn0/ichn_parallel:

17. weight_l0_collect.read()

18. ia_l1_buf.read()

19. ia_l0_reg.wr_rd()

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()

Figure C-5: WS-LOS-a dataflow (inner-level). No weight L1 buffer is needed.

128

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

2

1. For each OCHN/ochn_tile:

2. weight_l2_buf.read()

3. weight_l1_buf.write()

4. For each OH/oh_tile:

5. For each OW/ow_tile:

6. For each ICHN/ichn_tile:

7. ia_l2_buf.read()

8. ia_l1_buf.write()

9. For each ochn_tile/ochn_parallel:

10. For each FH:

11. For each FW:

12. For each ichn_tile/ichn0:

13. weight_l1_buf.read()

14. weight_l0_collector.write()

15. For each OH:

16. For each OW:

17. psum_l1_ping_buf.read()

18. For each ichn0/ichn_parallel:

19. weight_l0_collector.read()

20. ia_l1_buf.read()

21. ia_l0_reg.wr_rd()

22. Parallel_for ichn_parallel:

23. Parallel_for ochn_parallel:

24. MAC & psum_l0_reg.accum()

25. psum_l1_ping_buf.write()

26. psum_l1_pong_buf.read()

27. psum_l2_buf.write()

Figure C-6: WS-LOS-b dataflow (inner-level).

129

130

Bibliography

[1] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie En-
right Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neu-
ral network computing. ACM SIGARCH Computer Architecture News, 44(3):1–
13, 2016.

[2] Brett W Bader and Tamara G Kolda. Efficient matlab computations with sparse
and factored tensors. SIAM Journal on Scientific Computing, 30(1):205–231,
2008.

[3] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski,
Bernhard Firner, Lawrence Jackel, and Urs Muller. Explaining how a deep
neural network trained with end-to-end learning steers a car. arXiv preprint
arXiv:1704.07911, 2017.

[4] Anantha P Chandrakasan and Robert W Brodersen. Minimizing power con-
sumption in digital CMOS circuits. Proceedings of the IEEE, 83(4):498–523,
1995.

[5] Y. H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. In Proceedings of
ACM/IEEE International Symposium on Computer Architecture (ISCA), pages
367–379, June 2016.

[6] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE Journal
of Solid-State Circuits, 52(1):127–138, January 2017.

[7] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308, 2019.

[8] Inc. Cloudera. An introduction to video understanding: Capabilities and appli-
cations, 2021.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 248–255. IEEE, 2009.

131

[10] C. Duan, A. Gotterba, M. E. Sinangil, and A. P. Chandrakasan. Reconfigurable,
conditional pre-charge SRAM: Lowering read power by leveraging data statistics.
In Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), pages
177–180, November 2016.

[11] Jamil Fayyad, Mohammad A Jaradat, Dominique Gruyer, and Homayoun Naj-
jaran. Deep learning sensor fusion for autonomous vehicle perception and local-
ization: A review. Sensors, 20(15):4220, 2020.

[12] Luciano Floridi and Massimo Chiriatti. GPT-3: Its nature, scope, limits, and
consequences. Minds and Machines, 30:681–694, 2020.

[13] Paula Fraga-Lamas, Lucía Ramos, Víctor Mondéjar-Guerra, and Tiago M
Fernández-Caramés. A review on IoT deep learning UAV systems for autonomous
obstacle detection and collision avoidance. Remote Sensing, 11(18):2144, 2019.

[14] William J Gallagher, Eric Chien, Tien-Wei Chiang, Jian-Cheng Huang, Meng-
Chun Shih, CY Wang, Christine Bair, George Lee, Yi-Chun Shih, Chia-Fu Lee,
et al. Recent progress and next directions for embedded MRAM technology. In
IEEE Symposium on VLSI Circuits, pages T190–T191, 2019.

[15] J. S. P Giraldo, Steven Lauwereins, Komail Badami, Hugo Van Hamme, and
Marian Verhelst. 18uW SoC for near-microphone keyword spotting and speaker
verification. In IEEE Symposium on VLSI Circuits, pages C52–C53, 2019.

[16] J. S. P. Giraldo and Marian Verhelst. Hardware acceleration for embedded key-
word spotting: tutorial and survey. ACM Transactions on Embedded Computing
Systems (TECS), 20(6), oct 2021.

[17] JSP Giraldo and Marian Verhelst. Laika: A 5uW programmable LSTM accel-
erator for always-on keyword spotting in 65nm CMOS. In Proceedings of IEEE
European Solid State Circuits Conference (ESSCIRC), pages 166–169, 2018.

[18] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence Beyond
the Edge: Inference on intermittent embedded systems. In Proceedings of Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 199–213. ACM, 2019.

[19] Benjamin Graham and Laurens Van der Maaten. Submanifold sparse convolu-
tional networks. arXiv preprint arXiv:1706.01307, 2017.

[20] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-oriented
approximation of convolutional neural networks. arXiv:1604.03168 [cs], April
2016.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

132

[22] Kartik Hegde, Rohit Agrawal, Yulun Yao, and Christopher W Fletcher. Morph:
Flexible acceleration for 3D CNN-based video understanding. In Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
933–946, 2018.

[23] Mark Horowitz. Computing’s energy problem (and what we can do about
it). In International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10–14. IEEE, 2014.

[24] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[25] Vikram Jain, Sebastian Giraldo, Jaro De Roose, Linyan Mei, Bert Boons, and
Marian Verhelst. TinyVers: A tiny versatile system-on-chip with state-retentive
eMRAM for ML inference at the extreme edge. IEEE Journal of Solid-State
Circuits, 2023.

[26] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng,
and Rong Qu. A survey of deep learning-based object detection. IEEE Access,
7:128837–128868, 2019.

[27] Licheng Jiao, Ruohan Zhang, Fang Liu, Shuyuan Yang, Biao Hou, Lingling Li,
and Xu Tang. New generation deep learning for video object detection: A survey.
IEEE Transactions on Neural Networks and Learning Systems, 33(8):3195–3215,
2022.

[28] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture, pages 1–12,
2017.

[29] Nitin Kasturi. Power reducing algorithms in FIR filters. Master’s thesis, Mas-
sachusetts Institute of Technology, 1997.

[30] Ben Keller, Rangharajan Venkatesan, Steve Dai, Stephen G. Tell, Brian Zimmer,
Charbel Sakr, William J. Dally, C. Thomas Gray, and Brucek Khailany. A
95.6-TOPS/W deep learning inference accelerator with per-vector scaled 4-bit
quantization in 5 nm. IEEE Journal of Solid-State Circuits, 58(4):1129–1141,
2023.

[31] Brucek Khailany, Rangharajan Venkatesan, Jason Clemons, Joel S Emer,
Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney,
Yakun Sophia Shao, Shreesha Srinath, et al. A modular digital vlsi flow for
high-productivity soc design. In Proceedings of the 55th Annual Design Automa-
tion Conference, pages 1–6, 2018.

133

[32] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and
Dongjun Shin. Compression of deep convolutional neural networks for fast and
low power mobile applications. arXiv:1511.06530 [cs], November 2015.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural Information
Processing Systems, 25, 2012.

[34] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin, Sangyeob Kim,
and Hoi-Jun Yoo. UNPU: An energy-efficient deep neural network accelerator
with fully variable weight bit precision. IEEE Journal of Solid-State Circuits,
54(1):173–185, 2018.

[35] Ji Lin, Chuang Gan, and Song Han. TSM: Temporal shift module for efficient
video understanding. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7083–7093, 2019.

[36] Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, and Song Han. PointAcc:
Efficient point cloud accelerator. In Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 449–461, 2021.

[37] Huiyu Mo, Wenping Zhu, Wenjing Hu, Guangbin Wang, Qiang Li, Ang
Li, Shouyi Yin, Shaojun Wei, and Leibo Liu. A 28nm 12.1 TOPS/W
dual-mode CNN processor using effective-weight-based convolution and error-
compensation-based prediction. In IEEE International Solid-State Circuits Con-
ference (ISSCC), volume 64, pages 146–148, 2021.

[38] Bert Moons, Roel Uytterhoeven, Wim Dehaene, and Marian Verhelst. 14.5
Envision: A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm FDSOI. In
IEEE International Solid-State Circuits Conference (ISSCC), pages 246–247,
2017.

[39] OpenAI. GPT-4 technical report, 2023.

[40] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. Timeloop: A systematic approach to dnn
accelerator evaluation. In IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), pages 304–315, 2019.

[41] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. SCNN: An accelerator for compressed-sparse convolutional
neural networks. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, pages 27–40, 2017.

134

[42] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen W Keckler, Christopher W Fletcher, and Joel
Emer. Buffets: An efficient and composable storage idiom for explicit decoupled
data orchestration. In Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, pages 137–151, 2019.

[43] Michael Price, James Glass, and Anantha P Chandrakasan. 14.4 A scalable
speech recognizer with deep-neural-network acoustic models and voice-activated
power gating. In IEEE International Solid-State Circuits Conference (ISSCC)
Digest of Technical Papers, pages 244–245, 2017.

[44] Davide Rossi, Francesco Conti, Manuel Eggiman, Alfio Di Mauro, Giuseppe
Tagliavini, Stefan Mach, Marco Guermandi, Antonio Pullini, Igor Loi, Jie Chen,
et al. Vega: A ten-core SoC for IoT endnodes with DNN acceleration and cog-
nitive wake-up from MRAM-based state-retentive sleep mode. IEEE Journal of
Solid-State Circuits, 57(1):127–139, 2021.

[45] T Sainath and Carolina Parada. Convolutional neural networks for small-
footprint keyword spotting. In Proceedings of Interspeech, 2015.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4510–4520, 2018.

[47] Mohit Shah, Jingcheng Wang, David Blaauw, Dennis Sylvester, Hun-Seok Kim,
and Chaitali Chakrabarti. A fixed-point neural network for keyword detection on
resource constrained hardware. In IEEE Workshop on Signal Processing Systems
(SiPS), pages 1–6. IEEE, 2015.

[48] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. Simba: Scaling deep-learning inference with multi-chip-
module-based architecture. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 14–27, 2019.

[49] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and
Matt Welsh. Simulating the power consumption of large-scale sensor network
applications. In Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, pages 188–200. ACM, 2004.

[50] Soumya Sudhakar, Vivienne Sze, and Sertac Karaman. Data centers on wheels:
Emissions from computing onboard autonomous vehicles. IEEE Micro, 43(1):29–
39, 2022.

135

[51] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing
of deep neural networks. Synthesis Lectures on Computer Architecture, 15(2):1–
341, 2020.

[52] Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso.
The computational limits of deep learning. arXiv preprint arXiv:2007.05558,
2020.

[53] Kodai Ueyoshi, Kota Ando, Kazutoshi Hirose, Shinya Takamaeda-Yamazaki,
Mototsugu Hamada, Tadahiro Kuroda, and Masato Motomura. QUEST: Multi-
purpose log-quantized dnn inference engine stacked on 96-MB 3-D SRAM using
inductive coupling technology in 40-nm CMOS. IEEE Journal of Solid-State
Circuits, 54(1):186–196, 2018.

[54] Rangharajan Venkatesan, Yakun Sophia Shao, Miaorong Wang, Jason Clemons,
Steve Dai, Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. MAGNet: A modular accelerator generator for neural
networks. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8. IEEE, 2019.

[55] Miaorong Wang. Algorithms and low power hardware for keyword spotting.
Master’s thesis, Massachusetts Institute of Technology, 2018.

[56] Miaorong Wang and Anantha P Chandrakasan. Flexible low power CNN accel-
erator for edge computing with weight tuning. In 2019 IEEE Asian Solid-State
Circuits Conference (A-SSCC), pages 209–212. IEEE, 2019.

[57] Miaorong Wang, Yujun Lin, Zhekai Zhang, Ji Lin, Song Han, and Anantha P.
Chandrakasan. Videotime3: A 40-uJ/frame 38 FPS video understanding ac-
celerator with real-time diffframe temporal redundancy reduction and temporal
modeling. IEEE Solid-State Circuits Letters, 6:169–172, 2023.

[58] P. Warden. Speech command: A public dataset for single-word speech recogni-
tion., 2017.

[59] Paul N Whatmough, Sae Kyu Lee, David Brooks, and Gu-Yeon Wei. DNN
engine: A 28-nm timing-error tolerant sparse deep neural network processor for
iot applications. IEEE Journal of Solid-State Circuits, 53(9):2722–2731, 2018.

[60] Di Wu, Nabin Sharma, and Michael Blumenstein. Recent advances in video-
based human action recognition using deep learning: A review. In International
Joint Conference on Neural Networks (IJCNN), pages 2865–2872, 2017.

[61] Xiaowei Xu, Xinyi Zhang, Bei Yu, Xiaobo Sharon Hu, Christopher Rowen, Jing-
tong Hu, and Yiyu Shi. DAC-SDC low power object detection challenge for UAV
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(2):392–403, 2019.

136

[62] Xuan Yang, Mingyu Gao, Jing Pu, Ankita Nayak, Qiaoyi Liu, Steven Emberton
Bell, Jeff Ou Setter, Kaidi Cao, Heonjae Ha, Christos Kozyrakis, et al. DNN
dataflow choice is overrated. arXiv preprint arXiv:1809.04070, 6:5, 2018.

[63] Shouyi Yin, Peng Ouyang, Shixuan Zheng, Dandan Song, Xiudong Li, Leibo Liu,
and Shaojun Wei. A 141 uW, 2.46 pJ/neuron binarized convolutional neural
network based self-learning speech recognition processor in 28nm CMOS. In
IEEE Symposium on VLSI Circuits, pages 139–140, 2018.

[64] Zhe Yuan, Yixiong Yang, Jinshan Yue, Ruoyang Liu, Xiaoyu Feng, Zhiting
Lin, Xiulong Wu, Xueqing Li, Huazhong Yang, and Yongpan Liu. A 65nm
24.7 𝜇J/frame 12.3 mW activation-similarity-aware convolutional neural network
video processor using hybrid precision, inter-frame data reuse and mixed-bit-
width difference-frame data CODEC. In IEEE International Solid-State Circuits
Conference (ISSCC), pages 232–234. IEEE, 2020.

[65] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for sparse neural
networks. In 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 1–12, 2016.

[66] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello Edge:
Keyword spotting on microcontrollers. arXiv:1711.07128 [cs, eess], November
2017.

[67] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary
quantization. In Proceedings of International Conference on Learning Represen-
tations (ICLR), 2016.

137

	Introduction
	Motivation
	Background
	Thesis Overview

	Hybrid Dataflow and Memory Hierarchy Co-design
	Introduction and Motivation
	Hybrid Dataflow and Memory Hierarchy
	System 1 and its Evaluation
	System 2 and its Evaluation
	Technology
	Overall Architecture
	Evaluation Setup
	Evaluation Results

	Summary and Conclusions

	Weight Tuning Algorithm and Datapath/SRAM Co-design for Flexible Fully-Integrated CNN Accelerator
	Introduction and Motivation
	Weight Tuning Algorithm and Potential SRAM Co-design
	Tensor Decomposition with Retraining
	Quantization and the Sign-Magnitude Representation
	Weight Scaling and Bit Perturbation with Retraining

	Datapath Co-design and Flexible CNN Accelerator Architecture
	Overall Architecture
	Flexbile Dataflow and NoC
	Mixed-Representation Datapath

	Evaluation and Test Setup
	Algorithm Evaluation Setup
	Chip Measurement Setup

	Evaluation and Measurements
	Weight Tuning Algorithm Evaluation Results
	FPGA Demonstration Results
	Chip Implementation Results

	Summary and Conclusions

	Algorithm and Architecture Co-design Utilizing Data Features for Video Understanding
	Overview of Deep-learning-based Video Understanding and Related Work
	Algorithm and Accelerator Architecture
	Real-Time DiffFrame Convolution
	Sparsity Handling
	Temporal Modeling
	Activation Buffering
	Data Layout in DRAM
	Other Components and Overall Architecture

	Evaluation and Test Setup
	Model Preparation and Algorithm Evaluation Setup
	Architecture Evaluation and Chip Measurement Setup

	Evaluation and Measurements
	Accuracy
	DRAM Access
	Energy Breakdown
	Chip Measurements and Comparison with Prior Work

	Further Discussions on CNN Sparsity Handling
	Summary and Conclusions

	Conclusions and Future Directions
	Summary of Contributions
	Future Directions

	List of Abbreviations
	Custom NN Model structures
	Dataflows

