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Abstract

Deep learning has permeated many industries due to its state-of-the-art ability to
process complex data and uncover intricate patterns. However, it is computationally
expensive. Researchers have shown in theory and practice that the progress of deep
learning in many applications is heavily reliant on increases in computing power, and
thus leads to increasing energy demand. That may impede further advancement in
the field. To tackle that challenge, this thesis presents several techniques to improve
the energy efficiency of deep learning accelerators while adhering to the accuracy and
throughput requirements of the desired application.

First, we develop hybrid dataflows and co-design the memory hierarchy. That
enables designers to trade off the reuse between different data types across different
storage elements provided by the technology for higher energy efficiency. Second, we
propose a weight tuning algorithm and accelerator co-design, which optimizes the
bit representation of weights for energy reduction. Last, we present VideoTime3, an
algorithm and accelerator co-design for efficient real-time video understanding with
temporal redundancy reduction and temporal modeling. Our proposed techniques
enrich accelerator designers’ toolkits, pushing the boundaries of energy efficiency for
sustainable advances in deep learning.
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Title: Vannevar Bush Professor of Electrical Engineering and Computer Science

Dean, MIT School of Engineering
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Chapter 1

Introduction

1.1 Motivation

Deep learning (DL) is widely used in many applications for its state-of-the-art perfor-

mance revolutionizing how we process and analyze complex data. Among its many

uses, DL has demonstrated impressive results in image and video understanding,

speech recognition, and natural language processing. In image and video understand-

ing, DL models have been deployed on drones and autonomous vehicles to detect

and track objects, such as pedestrians, roads, obstacles, etc. [13, 11]. In natural lan-

guage processing, the state-of-the-art DL model, such as the generative pre-trained

Transformer (GPT) series [12], enables a natural and interactive way of obtaining

knowledge and assistance. With the growth in data and the increasing demand for

more intelligent systems, the importance of DL is set to increase in the years to come.

However, DL is computationally expensive. Researchers have shown in theory and

practice that the progress of DL in a wide variety of applications is strongly reliant on

increases in computing power [52]. As shown in Fig. 1-1, traditional machine learning

methods, e.g., linear regression, which use a small number of parameters, have their

performance plateau at a low level as available computation (and amount of data)

increases. In contrast, deep learning methods, which use an enormous number of

parameters, achieve higher performance at the cost of more computation (and data).

If we project this dependence into the future, it becomes evident that continuing on

23



Computation

M
od

el
 P

er
fo

rm
an

ce

Most Flexible Model
e.g., Deep Learning

Least Flexible Model
e.g., Linear Regression

Figure 1-1: Implications of model performance versus computation of deep learning
and linear regression [52].

the same path is unsustainable given the current energy cost of computation. This

projection is supported by a probabilistic analysis of the emissions from computing

onboard a global fleet of autonomous vehicles in the future. The model predicts that

the computing power of 1 billion autonomous vehicles with 1-hour drive per day leads

to the emission of all data centers on earth [50]. Even in the near term, the computing

cost of DL is prohibitive. Quoted OpenAI, the popular DL tool ChatGPT [39] caused

“eye-watering” computing cost when it hit 1 million users1. The increasing demand

for computing power poses significant challenges to the growth of DL applications.

As a result, improving the energy efficiency of DL workloads while preserving their

accuracy and meeting application throughput requirements becomes very important.

The objectives of this thesis are to propose algorithm, architecture, and circuit co-

design techniques to tackle this challenge, and experimentally evaluate them through

simulation and/or chip tapeout and measurements.

1.2 Background

This section presents a general background and the terminology used in this thesis.

Convolution: Fig. 1-2 illustrates a general convolution layer, which convolutes

input activation (IA) with weight, generates output activation (OA) and optionally

1https://analyticsindiamag.com/chatgpt-hits-one-million-users-burns-in-millions/
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Figure 1-2: Illustration of a convolution layer. Some convolution layers do not have
an activation function and thus OA equals IA for the next layer.

applies an activation function to OA to generate IA for the next layer. OA refers to

the direct output of convolution instead of the output of the activation function in

this thesis. Partial sum (PSum) refers to the partially computed OA. Feature map

(FMap) refers to the activations in a NN, including both IAs and OAs. Illustration of

ordinary convolution and depth-wise convolution [24] is shown in Fig. 1-3 along with

the annotation of tensors and dimensions used in this thesis. The fully connected

layer can be treated as a special case of ordinary convolution with 𝐹𝐻, 𝐹𝑊 , 𝐼𝐻,

𝐼𝑊 , 𝑂𝐻 and 𝑂𝑊 equal to 1.

Dataflow, mapping and loop nest: Sze et al. introduce dataflow to represent

the ordering of calculations in convolution and which calculations run in parallel [51].

We split the dataflow into two parts, including spatial mapping which represents the

parallel calculations, and temporal mapping which represents the sequential ordering

of calculations. To precisely describe a dataflow, Sze et al. introduce loop nests [51].

In this thesis, we use the following syntax to represent a loop in temporal mapping,

For each dimension:

and the following syntax to represent a loop in spatial mapping.

Parallel_for dimension:
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ICHN

weight
W[OCHN][ICHN][FH][FW]
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input activation
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output activation
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OA[CHN][OH][OW]

(b)

Figure 1-3: Illustration of (a) ordinary convolution and (b) depth-wise convolution
and the annotations used in this thesis.

Although loop nests define how accelerators handle the computation, it does not

show how data are buffered. To describe data buffering schemes of NN accelerators,

we add read and write annotations of storage elements in the loop nests, such as the

following.

Weight_L1_buffer.read()

Weight_L0_buffer.write()

Coordinate and position: Coordinate refers to the coordinate of each datum

in the tensor. They are used to index the tensor and represent how convolution

should be done mathematically. Position refers to the position of each datum in

the memory relative to the base of this data block. They represent how to access the

memory in hardware accelerators. If a data block is sequentially stored in the memory
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Figure 1-4: An overview of a general deep learning system and a summary of the
thesis.

without compression, the position can be calculated from the coordinate based on the

storing sequence and the dimensions of the data block. For 1-D arrays, the position

is equal to the coordinate. If a data block is as a compressed form in the memory,

the relationship between the position and the coordinate is not straightforward. It

can be influenced by many factors, such as the sparsity pattern and the compression

algorithm.

1.3 Thesis Overview

In this thesis, we focus on reducing energy consumption and improving energy effi-

ciency across various system components while ensuring that we meet the required

levels of accuracy and performance. The major components in a general DL acceler-

ator are on-chip memory hierarchy, data delivery fabrics, and computing units. The

DL accelerator may need off-chip storage if the processing data are too large to fit on

chip. We take an algorithm, hardware architecture and circuit co-design approach to

optimize different system components as summarized in Fig. 1-4.

Hybrid Dataflow and Memory Hierarchy Co-design: In Chapter 2, we
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focus on memory hierarchy design and dataflows to reduce the associated energy con-

sumption. We propose hybrid dataflows that provide an option to tradeoff the reuse

opportunities of weight and PSum in different memory hierarchies. We evaluate how

the proposed hybrid dataflows affect the energy efficiency and other characteristics

of two system designs with different technologies. In both systems, our proposed

hybrid dataflows improve energy efficiency by around 1.5x – 2x and show significant

improvements in performance per area and energy-delay product (EDP).

Weight Tuning Algorithm and Flexible CNN Accelerator Co-design: In

Chapter 3, we propose a weight tuning algorithm to reduce the energy consump-

tion of on-chip components—the memory access, data delivery, and computation—

associated with weights. It focuses on reducing the weight-related switching activity

through optimization of the bit representation of weights. In addition, we co-design

a standalone deep learning accelerator with a specialized datapath and potentially

applicable custom SRAM for the algorithm.

Algorithm and Architecture Co-design Utilizing Data Features for Vi-

deo Understanding: In Chapter 4, we take the entire system into consideration and

co-design the algorithm and architecture for video understanding applications utiliz-

ing their data features. Our design features the capability of temporal modeling for

higher accuracy, the utilization of temporal redundancy to improve energy efficiency,

and achieving single-frame latency for real-time applications, such as autonomous

vehicles and AI drones. Our work also provides an extension to the existing sparsity

handling taxonomy with the proposed map-guided sparse convolution and decoupled

metadata generation.
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Chapter 2

Hybrid Dataflow and Memory

Hierarchy Co-design

As discussed in the previous chapter, it is important to keep improving the energy

efficiency of NN accelerators. In this chapter, we focus on reducing the energy con-

sumption of memory access and data delivery through the design of efficient dataflow

and memory hierarchy.

The chapter is organized as follows. First, we analyze the energy consumption

of memory access and data delivery in existing NN accelerators, point out the im-

portance of energy reduction for memory access and data delivery, and summarize

the related prior works. Then, we introduce our proposed hybrid dataflows and their

corresponding memory hierarchy. Later, we present the evaluation results of our pro-

posed techniques on several systems with different technologies followed by a summary

of this chapter.

2.1 Introduction and Motivation

Optimizing memory access and data delivery is an important part of neural network

(NN) accelerator design. Fig. 2-1 describes the contribution of memory access and

data delivery to the overall power consumption of various NN accelerators. In terms

of target workload, Eyeriss [6] and QUEST [53] are optimized for dense NNs, while
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Figure 2-1: Memory access and data delivery energy is a significant part of the to-
tal NN accelerator energy. This figure only includes the reported on-chip energy
consumption. Off-chip data access is more energy-consuming than on-chip memory
access [23]. The energy ratio is obtained from the energy breakdown graphs/tables
of prior NN accelerators running various workloads. We exclude the clock network
energy from our analysis for Eyeriss [6] and Eyeriss v2 [7]. All the on-chip energy
consumption is included except the "CLK and MISC." part in Fig. 18 of QUEST [53].

Eyeriss v2 [7] is designed for sparse NNs. In terms of the memory system, Eyeriss [6]

and Eyeriss v2 [7] use regular DRAM and SRAM based systems, while QUEST [53]

proposes a unique 3D-stacking SRAM with inductive coupling technology. As shown,

the energy of memory access and data delivery takes up a significant portion of the

total energy consumption of different NN accelerators.

Extensive prior works have proposed many techniques to reduce the energy con-

sumption of memory access and data delivery in NN accelerators, and some works

investigated the factors influencing memory access and data delivery. Yu-Hsin et

al. was pioneered in proposing a dataflow taxonomy and the convolution loop nest

representation to systematically analyze the memory access and data delivery in NN

accelerators [5, 51]. X. Yang et al. distinguished the impact of spatial mapping from
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that of temporal mapping in the dataflow. They showed that spatial mapping does

not lead to much impact on the overall energy consumption as long as the temporal

mapping and memory hierarchy are fully optimized [62]. That emphasizes the im-

portance of the choice of memory allocation for each data type along with the loop

permutation and temporal unrolling in the convolution loop nest. Prior work proposed

weight stationary (WS), input stationary (IS), and output stationary (OS) dataflow

corresponding to specific loop permutations that have weight/input/output-related

dimensions in the outermost loops respectively. They result in a maximum reuse

opportunity of weight/IA/OA respectively at the cost of losing reuse opportunities of

other data types.

Based on prior work, we propose hybrid dataflows that offer balanced reuse op-

portunities for different data types at different levels of memory hierarchies. To

demonstrate the impact of our proposed techniques, we evaluate them on several

systems with different technologies, including a system with off-chip DRAM using

16nm FinFET technology and a fully-on-chip NN accelerator with embedded magne-

toresistive RAM (eMRAM) in 22-nm/28-nm CMOS technology. It is shown that our

proposed output stationary with local weight stationary (OS-LWS) dataflow delivers

around 1.5x – 2x improvements in the energy efficiency of all systems evaluated and

significant improvements in performance per area and EDP. Part of the work was

done during the author’s internship at the ASIC/VLSI research group at NVIDIA.

2.2 Hybrid Dataflow and Memory Hierarchy

This section presents our proposed hybrid dataflows, WS with local OS (WS-LOS)

and OS with local WS (OS-LWS), which 1) provide designers the capability to balance

the reuse of weight and PSum/OA based on the characteristics of the storage elements

in the chosen technology, 2) enrich the design space for the architecture exploration

framework to achieve potentially better energy efficiency and performance/area.

The baseline spatial datapath architecture and spatial mapping of the proposed

dataflows are shown in Fig. 2-2. The spatial datapath architecture is composed of sev-

31



Accum. Accum.

...

...

VL

VL

Vector
MAC

Accum.

Vector
MAC

MAC
Array

Vector
MAC

Weight Buffers IA Buffers

PSUM Buffers

...
VS

(a)

...

...

...

...

...

VL

VSICHN

ICHN

ICHN

OCHN

OCHN

Weight

IA

OA
OCHN

(b)

Figure 2-2: The baseline (a) spatial datapath architecture and (b) spatial mapping
(to better illustrate the spatial mapping, we only show the multipliers from the MAC
array in this figure). VS : the number of multipliers in a vector MAC; VL: the num-
ber of vector MACs and accumulators in the MAC array; accum.: accumulator. The
colored squares indicate the mapping of IA, weight, and OA across the channel di-
mensions.

eral vector MACs and accumulators. The vector MAC consists of several multipliers

to generate the products of weights and IAs, and an adder tree to spatially accumu-

late the products (PSums). The accumulator is used for the temporal accumulation
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Table 2.1: Summary of reuse per read/write of L1 buffers and reuse per write of L0
registers in the WS, OS, and IS dataflows.

Data Type Storage Unit WS OS IS

Weight
L1 buffer OH×OW 0 0

L0 register OH×OW 0 0

PSum/OA
L1 buffer 0 FH×FW×ICHN 0

L0 register 0 0 0

IA
L1 buffer 0 0 FH×FW×OCHN

L0 register 0 0 FH×FW×OCHN

of PSums locally before storing them in PSum/OA buffers. We spatially map the

input and output channels to the MAC array for parallel computing. With high-level

architecture modeling, prior work demonstrated that spatial mapping only has a lim-

ited impact on overall energy consumption, and channel-wise spatial mapping is good

for the utilization of computing units as NNs usually have a large channel size [62].

That justifies our choice of spatial mapping. Moreover, the spatial accumulation of

part of the PSums enabled by our vector MACs is shown to be more energy efficient

than temporal accumulation as there is no need to access the accumulation register.

With this spatial architecture and spatial mapping, conventional dataflows—WS,

IS, and OS—can be implemented as shown in Fig. 2-3 with a memory hierarchy that

has one level of buffer for each data type, weight and IA registers at the inputs of MAC

array, and PSum accumulation registers in the accumulators. The reuse opportunity

for each data access to each buffer is summarized in Table 2.1. For WS, all the

weight-related dimensions are in the outer loops and thus each weight buffer read and

weight register write gets reused over the 𝑂𝐻 and 𝑂𝑊 loops while other data keep

being accessed in every loop. Similar analysis can be applied to other conventional

dataflows. For OS dataflow, the PSum accumulation register needs to be accessed

each cycle for temporal accumulation, although all the PSum-related dimensions are

in the outermost loops.

To balance the reuse opportunities across multiple data types, we propose hybrid
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1. For each OCHN/ochn_parallel:

2. For each FH:

3. For each FW:

4. For each ICHN/ichn_parallel:

5. weight_l1_buf.read()

6. weight_l0_reg.wr_rd()

7. For each OH:

8. For each OW:

9. ia_l1_buf.read()

10. ia_l0_reg.wr_rd()

11. psum_l1_buf.read()

12. Parallel_for ichn_parallel:

13. Parallel_for ochn_parallel:

14. MAC & psum_l0_reg.accum()

15. psum_l1_buf.write()

(a)

1. For each OCHN/ochn_parallel:

2. For each OH:

3. For each OW:   

4. For each FH:

5. For each FW:

6. For each ICHN/ichn_parallel:

7. ia_l1_buf.read()

8. ia_l0_reg.wr_rd()

9. weight_l1_buf.read()

10. weight_l0_reg.wr_rd()

11. Parallel_for ichn_parallel:

12. Parallel_for ochn_parallel:

13. MAC & psum_l0_reg.accum()

14. psum_l1_buf.write()

(b)

1. For each IH:

2. For each IW:

3. For each ICHN/ichn_parallel:

4. ia_l1_buf.read()

5. ia_l0_reg.wr_rd()

6. For each OCHN/ochn_parallel:

7. For each FH:

8. For each FW:

9. psum_l1_buf.read()

10. weight_l1_buf.read()

11. weight_l0_reg.wr_rd()

12. Parallel_for ichn_parallel

13. Parallel_for ochn_parallel

14. MAC & psum_l0_reg.accum()

15. psum_l1_buf.write()

(c)

Figure 2-3: Examples of (a) WS, (b) OS, and (c) IS dataflow with L1 buffers and L0
registers. wr_rd: write and bypass read or read. accum: accumulation.

dataflows—WS-LOS and OS-LWS—and introduce new storage elements.
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1. For each OCHN/ochn_parallel:

2. For each FH:

3. For each FW:

4. For each ICHN/ichn0:

5. weight_l1_buf.read()

6. weight_l0_collector.write()

7. For each OH:

8. For each OW:

9. psum_l1_buf.read()

10. For each ichn0/ichn_parallel:

11. weight_l0_collector.read()

12. ia_l1_buf.read()

13. ia_l0_reg.wr_rd()

14. Parallel_for ichn_parallel:

15. Parallel_for ochn_parallel:

16. MAC & psum_l0_reg.accum()

17. psum_l1_buf.write()

(a)

Weight BufferL1

L1

L0

L0

Weight Collector

IA Buffer

PSUM Buffer

MAC Array

IA Register

PSum Register

(b)

Figure 2-4: Illustration of WS-LOS (a) dataflow and (b) memory hierarchy. The
differences between WS dataflow are highlighted in red.

Weight Stationary with Local Output Stationary

The weight stationary with local output stationary (WS-LOS) dataflow and its mem-

ory hierarchy implementation are shown in Fig. 2-4. Based on WS dataflow, we move
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part of the input channels to the innermost temporal loop and those input chan-

nels are temporally accumulated in the PSum registers without accessing the PSum

buffer. Instead of having single-entry L0 weight registers at the input of the MAC

array, we expand it to a 𝑖𝑐ℎ𝑛0/𝑖𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙-entry weight collector to temporally

hold 𝑖𝑐ℎ𝑛0 × 𝑜𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 weights during the 𝑂𝐻, 𝑂𝑊 and 𝑖𝑐ℎ𝑛0 loops. In this

way, reuse per weight buffer read stays the same as the WS dataflow while reuse per

PSum buffer read goes up to 𝑖𝑐ℎ𝑛0 at the cost of no reuse opportunity for the weight

collector. A summary of the reuse opportunity can be found in Table 2.2.

Output Stationary with Local Weight Stationary

The output stationary with local weight stationary (OS-LWS) dataflow and its mem-

ory hierarchy implementation are shown in Fig. 2-5. Based on OS dataflow, we move

part of the input width to the innermost temporal loop, and the same weights are

reused across those inputs. Instead of having single-entry L0 PSum registers for

temporal accumulation in the MAC array, we expand it to be a 𝑜𝑤0-entry PSum

accumulation collector to temporally hold 𝑜𝑤0× 𝑜𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 PSums during 𝐹𝑊 ,

𝐹𝑊 , 𝐼𝐶𝐻𝑁 and 𝑜𝑤0 loops. In this way, reuse per PSum buffer write stays the same

as the OS dataflow while reuse per weight buffer read and weight register write goes

up to 𝑜𝑤0. The overhead is that the multi-entry PSum collector needs muxes and

thus the energy consumption of read and write is higher compared to that of the

single-entry PSum accumulation register. A summary of the reuse opportunity can

be found in Table 2.2.

2.3 System 1 and its Evaluation

The previous section introduces the proposed hybrid dataflows on a MAC-array-based

spatial datapath with channel-wise spatial mapping. That expands the design space

with options to balance the reuse opportunities between different data types and

storage elements. In this section, we briefly present an evaluation of the impact of

our proposed techniques on the energy efficiency and performance per area of a DL

36



1. For each OCHN/ochn_parallel:

2. For each OH:

3. For each OW/ow0:    

4. For each FH:

5. For each FW:

6. For each ICHN/ichn_parallel:

7. weight_l1_buf.read()

8. weight_l0_reg.wr_rd()

9. For each ow0:

10. ia_l1_buf.read()

11. ia_l0_reg.wr_rd()

12. Parallel_for ichn_parallel:

13. Parallel_for ochn_parallel:

14. MAC & psum_l0_collector.accum()

15. psum_l1_buf.write()

(a)

Weight BufferL1

L1

L0

L0

Weight Register

IA Buffer

PSUM Buffer

MAC Array

IA Register

PSum Collector

(b)

Figure 2-5: Illustration of OS-LWS (a) dataflow and (b) memory hierarchy. The
differences between the WS dataflow are highlighted in red.

accelerator done in collaboration with Rangharajan Venkatesan, Yakun Sophia Shao,

Jason Clemons, Steve Dai, Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel

Pinckney, Priyanka Raina, Yanqing Zhang, Brian Zimmer, William J. Dally, Joel

Emer, Stephen W. Keckler, and Brucek Khailany during the author’s internship at
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Table 2.2: Summary of reuse per read/write of L1 buffers/L0 collectors and reuse per
write of L0 registers in WS-LOS and OS-LWS dataflows.

Data Type Storage Unit WS-LOS OS-LWS

Weight
L1 buffer OH×OW ow0

L0 collector/
L0 register 0* ow0

PSum/OA
L1 buffer ichn0 FH×FW×ICHN

L0 collector/
L0 register 0 0*

IA

The differences between the baseline WS/OS dataflow are highlighted in red.
*Collectors has multiple entries and thus muxes are needed per read/write. That increases the 
energy consumption per read/write compared to registers.

L1 buffer 0 0

L0 register 0 0

NVIDIA.

The proposed techniques were evaluated with a DL system shown in Fig. 2-6a.

It comprises a processing element (PE) array as the main workhorse, a global buffer

for data transfer between DRAM and chip, and a controller. The MAC-array-based

spatial datapath is distributed in the PEs with local buffers and local controllers. The

PE architecture is shown in Fig. 2-6b. SRAMs are used for L1 buffers and standard

cells are used for the L0 registers/collectors.

MAGNet [54] shown in Fig. 2-7 is developed to explore the design space of PEs

and search for the best design-time and runtime parameters for given workloads. The

design space of PEs is shown in Table 2.3. The MAGNet designer takes that as

the input and generates a set of design-time parameters. An RTL generator, which

consists a systemC-based parameterized architecture template, uses those design-time

parameters to generate RTL [31]. The MAGNet mapper takes in the design-time

parameters and workloads, and searches for the best runtime parameters, such as the

tile size, for the accelerator. Given the runtime parameters, a trace generator produces

the configuration bits and data traces for simulation. Traditional RTL synthesis,

place-and-route, and simulation tools are used to evaluate the power, performance,
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Figure 2-6: (a) The overall architecture of system 1. PE: processing element. (b) The
PE architecture. The MAC array is shown in Fig. 2-2a. SC: standard cell.

and area of the generated accelerator. The designer sets the design goal for the

MAGNet tuner and uses it to tune the designer and mapper to efficiently explore the

design space guided by the power, performance, and area of generated designs.

The design is implemented with TSMC 16-nm FinFET technology. It is opti-

mized across a workload of three NNs—AlexNet [33], ResNet [21], and DriveNet [3]—

weighted by their number of operations. Fig. 2-8 shows the evaluation results of a

baseline accelerator optimized with the conventional dataflows, and the most energy-

efficient accelerator design with the proposed hybrid dataflows. As shown, our pro-

posed hybrid dataflows improve energy efficiency by 1.75x and performance per area

by 2.1x running ResNet. Fig. 2-9 shows the energy breakdown of the most energy-

efficient PE with 𝑉 𝐿 and 𝑉 𝑆 of 16 under different dataflows. As shown, our proposed

hybrid dataflows greatly reduce the energy of memory access compared to the baseline

WS and OS dataflows.
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Figure 2-7: Overview of MAGNet framework [54]. Its capability to co-design the DL
application is not used in our evaluation and thus is not included in this figure.

Table 2.3: The design space of system 1 [54]. A conventional design space contains
WS and OS dataflow. The proposed hybrid dataflow expands the design space with
WS-LOS and OS-LWS dataflows.

Bit-width 8-b weight/activation, 24-b PSum
VL/VS 4, 8, 16
Weight Collector Size 8 B – 2 KB
PSum Collector Size 8 B – 384 B 
IA Buffer Size 2 KB, 8 KB, 16 KB
Weight Buffer Size 4 KB – 128 KB 
PSum Buffer Size 1 KB – 6 KB 
Global Buffer Size 64 KB
Target Frequencies 500 MHz, 1 GHz
Supply Voltage 0.6 V
Dataflow WS, OS, WS-LOS, OS-LWS

2.4 System 2 and its Evaluation

The last section presents the benefits of hybrid dataflows on energy efficiency and

performance per area on a 16-nm accelerator with a memory system composed of

off-chip DRAM and on-chip SRAM. As discussed in Section 2.2, the technology and

its characteristics of storage units affect the choice of optimal dataflow and temporal

mapping. In this section, we expand our analysis to a fully on-chip NN acceler-

ator with emerging eMRAM in 22-nm technology. In the evaluation, we compare
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Figure 2-9: The energy breakdown of a PE with 𝑉 𝐿 and 𝑉 𝑆 of 16.

the optimal design achieved by our proposed techniques with the optimal design of

conventional dataflow to show the benefits of our hybrid dataflows. The evaluation

also serves as an early-stage exploration for their application with emerging embed-

ded non-volatile memory for edge computing applications, such as automotive and

Industry 4.0.
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Figure 2-10: Normalized (a) read energy per bit, and (b) write energy per bit of 22-
nm eMRAM and 28-nm standard cell memory (SCM) and SRAM relative to 512-b
SCM. DP RF: the dual-port register file from 28-nm memory compilers (this thesis
refers to it as SRAM). SP SRAM: single-port SRAM.

2.4.1 Technology

This system targets TSMC 22-nm technology with eMRAM. But as TSMC 22-nm

memory compilers are not available for university access, we use 28-nm technology as

an estimate in our evaluation.

eMRAM

STT-MRAM is a promising solution for next-generation embedded non-volatile mem-

ory. Technology developments have brought us logic-compatible and high-retention

eMRAM [14, 44]. It helps keep all data on-chip which eliminates the need for energy-

consuming off-chip data access. Moreover, it enables duty cycling to reduce the power

consumption of applications that do not need to be always on and maintains NN pa-

rameters and boot codes locally avoiding the need for cloud access [25].

Compared to eFlash, which is difficult to scale any further, eMRAM reduces mask
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Figure 2-11: Normalized (a) read speed, and (b) write speed of 22-nm eMRAM and
28-nm SRAM relative to eMRAM. DP RF: the dual-port register file from 28-nm
memory compilers (this thesis refers to it as SRAM). SP SRAM: single-port SRAM.

adders by over 2x, achieves similar read/write speed and read power, and delivers over

100x higher retention while leading to around 2x higher write power [14]. Compared to

off-chip DRAM, MRAM achieves similar bandwidth with 44x less access energy [44].

Fig. 2-10, 2-11, and 2-12 compare eMRAM over 28-nm standard cell memory (SCM)

and SRAM. As shown, eMRAM delivers over 2x higher area density and over 100x

less leakage power compared to SRAM while having much higher access energy and

lower access speed (the inverse of cycle time), especially for writes. Moreover, the

minimum macro capacity of eMRAM is over 1000x compared to that of SRAM. The

characteristics of eMRAM affect how it can be used in the DL accelerator, which will

be discussed in the next section.

2.4.2 Overall Architecture

Fig. 2-13 shows the overall architecture of the accelerator chip. A monolithic MAC

array is used. More complicated architecture with multiple MAC arrays distributed
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Figure 2-12: Normalized (a) leakage power per bit and (b) area density of 22-nm
eMRAM and 28-nm SRAM. DP RF: the dual-port register file from 28-nm memory
compilers (this thesis refers to it as SRAM). SP SRAM: single-port SRAM.

in a processing element array, like Simba [48], is left as future work. The lowest-

level storage elements are either IA/weight/accumulation registers or a weight/PSum

collector for hybrid dataflows. Above that, two levels of buffers are implemented for

each data type. eMRAM is used as the last level buffer for weights for the following

reasons—1) weights need to be kept in non-volatile memory during power down, 2)

the high area density and low leakage of eMRAM make large memory less costly

compared to SRAM, 3) the reuse opportunity per access can be high in the last level

storage reducing the read bandwidth requirements. The last level buffer for IA and

OA is made of SRAM instead of eMRAM, although the above 2) and 3) also hold

in this case. The reason is that it is challenging to supply enough write bandwidth

with eMRAM for medium/large-scale NN processing as indicated in Fig. 2-11b. Tiny

NNs with several thousand parameters or even fewer are not included in the target

workload as they cannot fully utilize the capacity of eMRAM available, which is

in the MB range. Furthermore, the write energy of eMRAM is much higher than
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Figure 2-13: Overall system architecture. The system is fully on-chip with eMRAM.

Table 2.4: The design space of the system.

Bit-width 8-b weight/activation, 24-b PSum
VL/VS 16
Weight Collector Depth 2, 4, 8
PSum Collector Depth 4, 8, 32
L1 IA Buffer Depth 128, 256, 512, 1024
L1 Weight Buffer Depth 128, 256, 512, 1024
L1 PSum Buffer Depth 128, 256, 512, 1024
L2 Weight Buffer Size 2.3 MB
L2 IA/OA Buffer Size 0.3 MB
Target Frequencies 100 MHz
Supply Voltage 0.8 V/0.9 V
Outer Dataflow OS
Inner Dataflow WS-a, WS-b, OS-a, OS-b,

WS-LOS-a, WS-LOS-b, 
OS-LWS-a, OS-LWS-b

that of SRAM shown in Fig. 2-10b, which may lead to a nonnegligible increase in

system energy consumption. We adopt Buffets [42] for weight and IA L1 buffers and

ping-pong buffer for the PSum L1 buffer.

The design time parameters are summarized in Table 2.4. We set the size of the

L2 buffers to store the medium-size NNs, such as AlexNet [33], fully on-chip. We

have two levels of buffers and temporal unrolling is applied to the convolution loop
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nest breaking it into two levels. OS dataflow is used at the outer level so that no read

operation for PSum is needed from the L2 buffer. That keeps the buffer simple and

area efficient—a single-port SRAM for IA read and a single-port SRAM for OA write

are sufficient for the operations needed. The inner level has a large variety of choices.

We expand the WS, OS, WS-LOS, and OS-LWS dataflows with two flavors using

different buffering schemes for weights. We use OS-LWS dataflow as an example to

illustrate the differences between the two weight buffering schemes. The details of

other dataflows can be found in Appendix C.

Fig. 2-14 and Fig. 2-15 show the details of the OS-LWS-a and OS-LWS-b dataflow.

Tiling is applied to each data type so that part of the data can be kept in L1 buffers for

temporal reuse. The level 1 loops are similar to the one-level OS-LWS dataflow shown

in Fig. 2-5a except that it includes the reads of L2 buffers and the writes of L1 buffers.

The difference between OS-LWS-a and OS-LWS-b dataflow is the data buffered in the

L1 weight buffer. OS-LWS-a dataflow buffers 𝐹𝐻×𝐹𝑊 ×𝑜𝑐ℎ𝑛_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙× 𝑖𝑐ℎ𝑛_𝑡𝑖𝑙𝑒

of weights, and each read of L2 buffer is reused for 𝑜ℎ_𝑡𝑖𝑙𝑒× 𝑜𝑤_𝑡𝑖𝑙𝑒 times in the L1

buffer. OS-LWS-b dataflow buffers 𝐹𝐻 ×𝐹𝑊 × 𝑜𝑐ℎ𝑛_𝑡𝑖𝑙𝑒× 𝐼𝐶𝐻𝑁 of weights, and

each read of L2 buffer is reused for 𝑂𝐻×𝑂𝑊 times in the L1 buffer. OS-LWS-a and

OS-LWS-b provide a tradeoff between the size of the L1 weight buffer, which impacts

its area and energy per access, and the number of access to the L2 weight buffer,

which impacts its energy consumption.

We evaluate the impact of the choice of inner-level dataflows on the overall perfor-

mance, energy efficiency and EDP. In the rest of this chapter, the dataflows mentioned

refer to the inner-level dataflow.

2.4.3 Evaluation Setup

The design space exploration framework is shown in Fig. 2-16. Instead of writing

RTL codes or a cycle-accurate model of the entire system with all possible design-

time parameters including a large variety of dataflows, we build an analytical model,

like Timeloop [40], to calculate the memory accesses of each buffer and the computing

cycles of the MAC array based on design-time and runtime parameters of the under-
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1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. weight_l2_buf.read()

9. weight_l1_buf.write()

10. For each oh_tile:

11. For each ow_tile/ow0:

12. psum_l1_ping_buf.read()

13. For each FH:

14. For each FW:

15. For each ichn_tile/ichn_parallel:

16. weight_l1_buf.read()

17. weight_l0_reg.wr_rd()

18. For each ow0:

19. ia_l1_buf.read()

20. ia_l0_reg.wr_rd()

21. Parallel_for ichn_parallel:

22. Parallel_for ochn_parallel:

23. MAC & psum_l0_collector.accum()

24. psum_l1_ping_buf.write()        

25. psum_l1_pong_buf.read()

26. psum_l2_buf.write()

Figure 2-14: OS-LWS-a dataflow (inner-level).

lying architecture for fast early-stage design exploration. We characterize the energy

and throughput of major design components, including SRAMs, eMRAM, SCM, and

the MAC array, using TSMC memory compiler or RTL synthesis and simulation.

Using the operational statistics (e.g., memory accesses and operation cycles) of ma-

jor components in the design and their energy and throughput characteristics, we

estimate the energy and runtime of the entire system. Given the estimated energy
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Figure 2-15: OS-LWS-b dataflow (inner-level).

and runtime, a design space explorer and a mapper search for optimal design-time

parameters and the corresponding runtime parameters given a design target, e.g.,

best energy efficiency.

We use Alexnet [33] as our target workload. The overall energy efficiency (i.e.,

TOPS/W) and throughput (i.e., GOPS) of the entire workload are weighted sums of

energy efficiency and throughput of each layer based on its number of operations.
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Figure 2-16: The design space exploration framework for system 2.
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2.4.4 Evaluation Results

Fig. 2-17 compares the best energy efficiency and EDP achieved by the conventional

dataflows and our proposed hybrid dataflows. When we optimize for energy effi-

ciency, our proposed hybrid dataflows achieve around 1.5x improvement in the opti-

mal TOPS/W compared to that of the conventional dataflows. When we optimize

for EDP, our proposed hybrid dataflows improve the optimal EDP by around 1.5x

compared to the conventional dataflows. The attained throughput of all cases is at

least 99% of the highest throughput achieved when optimizing for maximum through-

put. As shown, our proposed hybrid dataflows deliver significant energy efficiency im-

provements and energy savings for the entire NN accelerator system with a multi-level

memory hierarchy while maintaining adequate throughput.

Fig. 2-18 shows a comparison of the optimal EDP achieved by different dataflows.

WS dataflow achieves much better EDP compared to the OS dataflow given our

architecture and technology, and our proposed OS-LWS dataflow outperforms all

other dataflows. The b version of dataflows, which achieves more reuse of weight L2

buffer read at the cost of a bigger weight L1 buffer as presented in Section 2.4.2, leads

to better EDP compared to the a version of dataflows.
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Figure 2-19: The energy breakdown of different dataflows. The results are from an
optimization target of minimizing EDP.

To analyze the differences between those dataflows, we evaluate the energy break-

down of the NN accelerator. As shown in Fig. 2-19a, WS-b dataflow delivers lower
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energy consumption compared to OS-b dataflow as zero reuse of the PSum L1 buffer

read/write leads to much less energy than zero reuse of the weight L1 buffer read.

The OS-LWS-b dataflow consumes less energy than the WS-b and OS-b dataflows as

it greatly reduces the energy of the PSum and weight L1 buffers with a small PSum

L0 collector as presented in Section 2.2. OS-LWS-b dataflow consumes less energy

than WS-LOS-b dataflow as accessing the PSum L0 collector is less energy-consuming

than accessing the weight L0 collector. The reason is that the weight L0 collector has

an IO size of 16× 16× 8 to match the bandwidth of the MAC array, while the PSum

L0 collector only has an IO size of 16× 24.

Fig. 2-19b compares the energy breakdown of a and b versions of dataflows. The

b version of dataflows significantly reduces the energy consumption of the weight L2

buffer as the reuse of L2 buffer access increases. Moreover, the energy consumption

of the L1 IA buffer is largely reduced in the b version of dataflows. The reason is

that 𝑜ℎ_𝑡𝑖𝑙𝑒 and 𝑜𝑤_𝑡𝑖𝑙𝑒 do not affect the number of access of the weight L2 buffer

in the b version of dataflows and thus can be more flexibly adjusted. That results in

smaller 𝑜ℎ_𝑡𝑖𝑙𝑒 and 𝑜𝑤_𝑡𝑖𝑙𝑒 and thus smaller 𝑖ℎ_𝑡𝑖𝑙𝑒 and 𝑖𝑤_𝑡𝑖𝑙𝑒, which can be fit

in a smaller L1 IA buffer and reduces its energy consumption. This emphasizes that

the design choice of one buffer may affect the design choice and energy consumption

of another buffer through mapping optimization.

As shown in Fig. 2-19, the energy consumption of L2 buffers takes up a small

portion of total energy consumption. Besides that each access of L2 buffers has large

reuse opportunities thanks to temporal tiling, an important reason is that eMRAM

enables on-chip storage of weights and eliminates the need for energy-consuming off-

chip memory access. As discussed in Section 2.4.1, off-chip DRAM access is shown

to increase energy consumption by 44x compoared to eMRAM access. If we replace

eMRAM of the OS-LWS-b case with off-chip DRAM, off-chip weight access can take

up 96.5% of total energy consumption assuming runtime stays the same.

52



Eyeriss Eyeriss v2 QUEST System 1 B. Keller et al. System 2
0

10

20

30

40

50

60

70

80

M
em

or
y 

Ac
ce

ss
 

 &
 D

at
a 

D
el

iv
er

y 
En

er
gy

/ O
ve

ra
ll 

En
er

gy
 (%

)

on chip memory only
off-chip DRAM and SRAM excluded

fully on chip
eMRAM included

Figure 2-20: Comparison of overall proportion of on-chip energy used for memory
access and data delivery of various NN accelerators, including Eyeriss [6], Eyeriss
v2 [7], QUEST [53], B. Keller et al. [30] and the two systems presented in this chapter.
System 2 is different from other works as it includes all memory hierarchy on chip.
The energy consumption of off-chip memory hierarchies in other works is not included
in the analysis.

2.5 Summary and Conclusions

This chapter shows the importance of reducing the energy consumption in memory

access and data delivery for NN accelerators and presents our proposed techniques—

hybrid dataflows and corresponding memory hierarchy—for this issue. We propose

the OS-LWS dataflow with a PSum accumulation collector and the WS-LOS dataflow

with a weight collector, which balances the reuse of weight and PSum/OA in different

storage elements provided by the technology. Based on our evaluation of several

systems with different technologies, our proposed hybrid dataflows significantly reduce

the energy consumption of memory access and data delivery and the OS-LWS dataflow

delivers around 1.5x–2x improvements in energy efficiency compared to conventional

dataflows.

Besides the systems analyzed in this chapter, a more recent DL accelerator for

transformers also adopts our proposed memory hierarchy with the PSum accumu-
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lation collector and a simplified OS-LWS dataflow for matrix multiplication [30].

Fig. 2-20 summarizes its overall proportion of on-chip energy used for memory access

and data delivery along with other works. As shown, both the recent transformer

accelerator (B. Keller et al.) and System 1 presented in this chapter, which applies

our proposed OS-LWS dataflow, achieve a significant reduction in data access energy.

Besides those systems with off-chip DRAM (not included in the energy analysis), we

evaluate System 2 with all memory hierarchies on chip using eMRAM. It shows that

our proposed techniques still delivers significant reduction in the overall proportion

of energy used for memory access and data delivery compared to most prior works

with their off-chip access energy excluded.
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Chapter 3

Weight Tuning Algorithm and

Datapath/SRAM Co-design for

Flexible Fully-Integrated CNN

Accelerator

The last chapter focuses on dataflow and memory hierarchy co-design. In this chap-

ter, we expand our scope to an entire deep learning accelerator chip that runs small-

footprint models fully on chip. We look into the data being processed and investigate

how to manipulate them to save the energy consumption of the chip. This chapter

presents a weight tuning algorithm that tweaks the bit representation of weights to

lower the toggle count of weight sequences while preserving the accuracy. That re-

duces the switching activity of weight buses and a co-designed mixed representation

datapath. With reduced switching activity, the power consumption of weight delivery

and computation is lowered. Moreover, a low toggle count of weight read sequence

leads to reduced read access energy of the weight buffer when SRAM with condi-

tional pre-charge [10] is used. Besides the weight tuning algorithm, we highlight an

architecture that is highly flexible for various NN structures.

This chapter is organized as follows. First, we provide an introduction to small-
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footprint NNs and their promising applications. Following that, we analyze the chal-

lenges of their accelerators, summarize the related prior work, and explain our unique

contributions. Then, we present our weight tuning algorithm and the accelerator ar-

chitecture. In the end, we explain our evaluation and measurement setup and show

our evaluation results followed by a summary of this chapter. A more detailed expla-

nation of the proposed algorithm can be found in M. Wang et al. [55]. This chapter

highlights updated hardware design and analysis, and chip measurements.

3.1 Introduction and Motivation

Smart edge devices that support efficient NN processing have recently gained public

attention. With algorithm development, previous work has proposed small-footprint

NNs achieving high performance in various medium-complexity tasks, e.g. speech

keyword spotting (KWS), human activity recognition, etc. Among them, convolu-

tion NNs (CNNs) achieve good accuracy [66]. This gives rise to the deployment of

CNN models on edge devices that have limited storage due to their area and power

constraints. Processing NNs on the edge has several benefits. For one, it reduces the

amount of data transmission by handling part of the data locally instead of sending

them all to the cloud computing unit. That can reduce the overall system power

as data transmission can dominate the total power consumption of various systems,

e.g., the sensor network [49]. For another, it can serve as a trigger for more complex

and power-hungry downstream processing. In this way, the downstream system can

be automatically switched off when not needed to save energy. Take KWS as an

example. It is often achieved by small-footprint NNs running on edge devices. KWS

filters out the noise and unrelated speech signals in the environment and only trig-

gers the downstream speech recognition and/or natural language processing system,

which uses complex models on the cloud when certain keywords are detected [16].

Thus, efficiently processing the small-footprint NNs on the edge devices is critical

to the overall system performance. A hardware platform for edge devices should be

(1) flexible to support various NN structures optimized for different applications; (2)
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energy efficient to operate within the power budget; and (3) achieving high accuracy

to minimize spurious triggering of the power-hungry downstream processing [56].

Both algorithms and accelerator designs for energy-efficient processing of CNNs

have been proposed. On the algorithm side, quantization and model compression

are the two main techniques. Quantization reduces the bit precision with the aim of

lowering the data storage size and the complexity of the computation unit. However,

some experiments show that quantizing NNs to extremely low bit-width, e.g. 1 bit,

does not necessarily lead to model size reduction, because the model structure needs

to be modified to retain the accuracy [18]. The use of 8-bit precision in weights

generally achieves reliable performance without the need to modify the NN structure

for classification tasks [28]. Model compression algorithms focus on reducing the

model size with little loss in accuracy and thus reduce the needed memory size and

the amount of computation. A widely investigated approach is to create sparsity

in weights and/or activations using pruning. However, pruning-based algorithms

usually need specialized hardware architecture to exploit the resulting sparse tensors

for energy reduction. On the hardware side, previous work has demonstrated several

CNN accelerators targeting edge computing. However, many of them support limited

flexibility for the NN shapes, are designed only for a specific task, or sacrifice the

accuracy [17, 63, 47].

To address the challenges in flexibility, energy efficiency, and accuracy in CNN

accelerator design, this work takes an algorithm-and-hardware co-design approach.

The key contributions of this chapter are highlighted as follows: (1) a weight tuning

algorithm that reduces the energy consumption associated with weight delivery and

computation by lowering the toggle count of weight sequence; (2) the co-design of a

CNN accelerator that supports the proposed algorithm and is flexible for a wide range

of NN model structures; and (3) the demonstration of speech KWS as an example on

the FPGA [56] and a fully integrated ASIC with the proposed CNN accelerator and

a feature extraction processor1.

1This unit was first designed by M. Price [43] and then modified by S. Lauwereins from Prof.
Marian Verhelst’s group at MICAS – KU Leuven [15].

57



3.2 Weight Tuning Algorithm and Potential SRAM

Co-design

The weight tuning algorithm reduces the energy consumption of the CNN accelerator

with little loss in accuracy by tuning the bit representation of weights. Fundamentally

different from quantization and model compression algorithms that aim to reduce NN

size, the proposed algorithm focuses on the toggling of bit sequences in the circuits.

As shown in Eq. 3.1 with the load capacitance 𝐶𝐿, the supply voltage 𝑉𝑑𝑑, and the

operating frequency 𝑓 ,

𝑃𝑑𝑦𝑛 = 𝛼0→1𝐶𝐿𝑉
2
𝑑𝑑𝑓, (3.1)

the dynamic power of a CMOS gate is linearly proportional to its switching activity

(𝛼0→1), which is influenced by the toggle count of its input sequence. In a NN

accelerator, weights are read from the memory, delivered through network-on-chip

(NoC) and then multiplied with IAs following a sequence set by the designer. The

toggle count of this weight sequence affects the switching activity of weight buses

and the multipliers. Moreover, its impact can be extended to recently proposed

data-dependent SRAMs, e.g. [10]. Given that the SRAM does conditional pre-charge

based on previously read data, reducing the toggle count of weight read sequence

reduces the pre-charge activity of bit-lines. As a result, minimizing the toggle count

of weight sequence can reduce the power consumption of weight buses, multipliers

and the weight buffer. To gain those benefits, we propose a weight tuning algorithm

that contains three sequential steps: (1) tensor decomposition with retraining; (2)

quantization and the sign-magnitude representation; and (3) weight scaling and bit

perturbation with retraining.

3.2.1 Tensor Decomposition with Retraining

Tensor decomposition is used to compress the model size and reduce the number of

calculations in the NN with little loss of accuracy after retraining [32]. As shown

in Fig. 3-1, tensor decomposition breaks one convolutional layer into three succes-
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Figure 3-1: Illustration of tensor decomposition for CNNs [32]. The original weight
tensor is first decomposed into three smaller tensors. The resulting NN is then re-
trained as proposed in [32].

sive layers without any activation function in between. The total parameters and

computation of the resulting layers are less than those of the original layer. Thus,

it is favorable for reducing the energy per inference. Since tensor decomposition in-

troduced some error, directly using the decomposed tensors results in some loss in

accuracy [32]. Therefore, retraining is needed after tensor decomposition.

3.2.2 Quantization and the Sign-Magnitude Representation

After decomposing and retraining the CNN, we use a linear quantizer to convert the

model from floating point to fixed point numbers for deployment on the NN acceler-

ator. It has been demonstrated by many works, e.g. [20, 66], that 8-bit precision in

weights is enough for maintaining good accuracy. Instead of the 2’s complement for-

mat, we use the sign-magnitude representation to reduce the toggle count of the weight

sequence [4, 59]. Based on our experiments on various NNs, the sign-magnitude for-

mat reduces around 30% – 40% of the toggle count of the weight sequence compared to

the 2’s complement format. The overhead of using the sign-magnitude representation

is the implementation of adders. Considering the fixed computation pattern of the
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NN accelerator, we implement a mixed-representation PE to minimize the hardware

cost. Section 3.3 discusses that in detail.

3.2.3 Weight Scaling and Bit Perturbation with Retraining

This step manipulates the bits of weights to further reduce the toggle count on top

of the sign-magnitude representation. We first flatten the 4-D weight tensor of every

layer to a 1-D vector following the sequence that weights are read, delivered, and

calculated in the NN accelerator. Then we sequentially apply weight scaling and bit

perturbation to further reduce the toggle count and incorporate them with retraining

to maintain the accuracy.

Weight Scaling

To lower the toggle count of the weight sequence, we scale the weights and biases

uniformly in every layer, which is inspired by the coefficient scaling for finite impulse

response (FIR) filters [29]. The scaling factor 𝐾𝑙 of layer 𝑙 is determined by Eq. 3.2,

𝐾𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑙𝑇𝑜𝑔𝑔𝑙𝑒𝐶𝑜𝑢𝑛𝑡(𝑘𝑙Wl), 𝑘𝑙 ∈ (𝑎, 𝑏), 𝑎 ≥ 0, (3.2)

where Wl is the weight tensor at layer 𝑙, 𝑇𝑜𝑔𝑔𝑙𝑒𝐶𝑜𝑢𝑛𝑡 is a function to calculate

the toggle count, and 𝑎, 𝑏 are the user-defined bounds of 𝐾𝑙. 𝐾𝑙 is determined

by an exhaustive search in the given range with a predefined step size 𝑠. It can

be applied to layers using ReLU as the activation function without impact on the

classification accuracy, given that 𝑅𝑒𝐿𝑈(𝐾𝑙x𝑙) = 𝐾𝑙𝑅𝑒𝐿𝑈(x𝑙). For scale variant

activation functions, users can skip this step.

The scaling in the range of weights may affect the quantization of both weights

and activations. Although the user can choose arbitrary 𝑎 and 𝑏 as the range when

searching for the scaling factor, we constrain it within (0.5, 2) to restrict the search

space and also prevent moving the decimal point in the fixed-point representation.

Changing the average magnitude of weights affects the average magnitude of activa-

tions at each layer and may move the decimal point of activations. For example, if

60



the weight scaling factor of two successive layers is 0.6, the resulting scaling factor on

the output activations of the second layer is 0.36. It is important to prevent activa-

tions from overflow or underflow given the fixed-point representation when applying

the proposed algorithm, otherwise, the accuracy may be greatly impaired. The user

needs to keep track of the scaling factor and adjust the integer and fractional bit

widths of activations in each layer accordingly after weight scaling is applied.

Bit Perturbation

Inspired by the coefficient perturbation for FIR filters [29], we perturb the bits of the

weight sequence to reduce the bit toggling between successive weights. Bit perturba-

tion changes the weight values, so it introduces some tuning errors. We use relative

error averaged over all data to represent that. The relative error is defined as

𝑒 =
|𝑣 − 𝑣0|
|𝑣0|

(3.3)

where 𝑣0 and 𝑣 are the original value and the perturbed value respectively. The

algorithm is illustrated in Fig. 3-2. Given the weight vector D and the maximum

relative error 𝑒𝑚𝑎𝑥 the system can tolerate, we split the weight vector into 𝑛 sub-

vectors and replace 𝑘 LSBs of weights in each sub-vector with their average value.

We loop through different combinations of 𝑛 and 𝑘 to find the minimum toggle count

and the corresponding weight sequence.

Retraining

Since weight scaling and bit perturbation modify the weight values, retraining is

applied to restore the potential accuracy loss. The flowchart in Fig. 3-3 summarizes

the steps of quantization and sign-magnitude representation, and weight scaling and

bit perturbation with retraining. The proposed algorithm is applied to the pre-trained

floating point NN as a wrapper function of weights in the forward pass. During

back-propagation, the straight-through estimator [67] is adopted, which passes the

gradients through the wrapper function as-is. The activations are also quantized
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Figure 3-2: The flowchart of the bit perturbation algorithm. The first branch is to
keep the lowest possible 𝑒 and the corresponding toggle count and the weight vector.
The second branch is to find out how many sub-vectors D needs to be split into so
that 𝑒 can be lower than 𝑒𝑚𝑎𝑥 given that 𝑘 LSBs are tuned. The third branch is to
loop through all possible 𝑘.

in the linear quantization step, given that activation-quantization-aware retraining

provides higher accuracy.
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Figure 3-3: The flowchart of quantization and sign-magnitude representation and
weight scaling and bit perturbation with retraining.

3.3 Datapath Co-design and Flexible CNN Acceler-

ator Architecture

This section presents the proposed mixed-representation datapath to support the

sign-magnitude representation of weights resulting from the weight tuning algorithm,

and shows the standalone CNN accelerator architecture flexible for a wide-range of

CNN structures.

3.3.1 Overall Architecture

The overall architecture of our proposed standalone system for CNN processing is

shown in Fig. 3-4. It has an 80 kB weight buffer and a 1 kB configuration buffer for

storage and configuration of the entire NN with up to 12 layers during the setup phase.

All the data buffering is done on-chip using a 2 kB circular input buffer and a 48 kB

63



7210

15 14 13 8

63 62 61 56

17 18 23

8x8 PE 
Array

0

1

2

7

0 1 2 7
0 1 2 7

0567
8131415

0 1 2 7
16 17 18 23

7 6 5 0
63 62 61 56

Top-level Controller

Cfg. Buffer 
~ 1 kB

Act. Buffer
48 kB

Input Buffer 
2 kB

Host Ifc. ID
cfg.

ready enable data

tag enable ready data

ID

=

0 1

0

Weight Buffer
~ 80 kB

Level 0 NoC Controller

Level 1 NoC Controller

PE
Inter-PE Partial Sum 
Delivery

weights & cfg. bits

inputs
classification results

ReLU & Scale

Figure 3-4: System architecture of the NN accelerator and the micro-architecture of
the NoC controller.

activation buffer without the need for off-chip DRAM. NoC delivers data following

programmable dataflow settings. Convolution/matrix multiplication is handled by

the 8x8 PE array, and the activation scaling and the ReLU function are done by a

separate unit before storing the activations in the buffer.

3.3.2 Flexbile Dataflow and NoC

The PE array level dataflow for convolutional layers is shown in line 4 – 10 of Fig. 3-5.

The 8× 8 PE array can be logically treated as having ICHN1 columns and OCHN1s

rows handling the channel dimensions as shown in line 9 – 10.

After tensor decomposition, the channel sizes of different layers have large vari-

ances as shown in Appendix B. To achieve high utilization of the PE array when

running the decomposed NNs, our architecture supports fully flexible logical rows

and columns as long as ICHN1 × OCHN1s ≤ 64. That is different from Eyeriss [6],

which limits the logical rows and columns to be less than the physical rows and

columns. Such flexibility is achieved by a reconfigurable NoC [6] for data deliver-
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1) # IA[ICHN][IF][IW], ICHN = ICHN1*ICHN0 <= 256 
2)  # W[OCHN][ICHN][FH][FW], OCHN = OCHN1t*OCHN1s*OCHN0 <= 256 
3)  # OA[OCHN][OH][OW] 
# PE array level – temporal dataflow 
4)  For each FH: 
5)      For each FW:  
6)     For each OCHN1t:  # FH*FW*OCHN1t <= 2^16 
7)       For each OH:  
8)             For each OW: 
 # PE array level – spatial dataflow 
9)               Parallel_for ICHN1:  # ICHN1 * OCHN1s <= 64 
10)        Parallel_for OCHN1s:   
# PE level – temporal dataflow 
11)          For each OCHN0:  # OCHN0 = {0, 1, 2, 3} 
12)            For each ICHN0:  # ICHN0 = {3, 4} 
13)              # MAC 

Figure 3-5: The dataflow illustrated with loop nests. The tensor dimension param-
eters are defined in Fig. 3-1. Bias is ignored for simplicity. The batch size is 1 for
real-time application. For the first layer, where ICHN = 1, we replace ICHN with
FW and remove the original FW loop to increase the PE array utilization. The read,
delivery, and computation sequence of weight is as shown. PEs are filled up with
weights in sequence. The limits on natively supported NN shapes are annotated.

ies between buffers and PEs, and fully connected and flexible inter-PE partial sum

delivery. Following this logical mapping, weights are unicast to PEs, and thus a tree-

structured NoC with a depth of two, as shown in Fig. 3-4, is used for weight delivery

between the weight buffer and PEs. The ID of every controller at each level is unique

and fixed. IAs are multicast across multiple logical rows. To support that, only level

0 NoC controllers are used. Their IDs, determined by OCHN1s and ICHN1, are con-

figured at runtime before the execution of every layer. The deliveries of biases, partial

sums, and OAs to/from the buffers are similar except that not every PE needs data.

Thus, the unused controllers and FIFOs can be gated. For the inter-PE partial sum

delivery, all PEs are connected in a sequence as shown in Fig. 3-4. Partial sums can

be spatially accumulated across an arbitrary number of PEs. Thus, logical rows and

columns can be fully flexible and accommodate a large variety of channel sizes.
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As shown in line 4 – 8 of Fig. 3-5, our proposed design follows WS dataflow in the

PE array level, different from Eyeriss which implements row stationary dataflow. The

reason is that 1× 1 or 1× 𝑥 convolutional layers resulting from tensor decomposition

take up a large part of the CNNs. WS dataflow can have more data reuse than row

stationary dataflow in those layers. For fully-connected layers, we treat it as a special

case of convolutional layers where OW = 1, OH = 1, IW = FW, IH = FH.

The PE level dataflow is shown in line 11 – 12 of Fig. 3-5 and the PE structure is

illustrated in Fig. 3-6. PE has local storage to hold OCHN0 × ICHN0 weights and

ICHN0 IAs to achieve temporal reuse of OW × OH and OCHN0 times respectively

as shown in line 7 – 8 and line 11 of Fig. 3-5. OCHN0 and ICHN0 are configurable

in runtime to balance the workload between PEs given layer shapes. Each PE has its

local controller and local states so that they can execute independently once data are

available.

3.3.3 Mixed-Representation Datapath

As discussed in Section 3.2.2, weights are represented in the sign-magnitude format

to reduce toggle count. Given the fixed calculation pattern in CNN, we implement a

mixed-representation datapath as shown in Fig. 3-6. Weights and IAs are multiplied

in the sign-magnitude format using an unsigned multiplier and an XOR gate that gen-

erates the sign bit. An adder-subtractor is then used to convert the sign-magnitude

product to the 2’s complement representation with the sign bit of the product as the

carry bit, and at the same time do accumulation. The 2’s complement outputs are

delivered to other PEs for spatial sum or buffered in memory for temporal accumula-

tion to generate the output activations. Only after all the computation of this layer

is finished, do we need to convert them back to the sign-magnitude format for the

next layer. Thus, the energy overhead of the conversion is mitigated.
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Figure 3-6: The PE structure. The shaded part is the sign-magnitude domain. The
rest is in the 2’s complement domain. Wgt: weight; rnd: round; trunc: truncate; RF:
RegFile; accum. reg.: accumulation register.

3.4 Evaluation and Test Setup

3.4.1 Algorithm Evaluation Setup

We evaluate the accuracy and toggle count reduction of the weight tuning algorithm

on several CNNs designed for KWS on the Google speech command dataset [58],

including CNNs under 80 kB (referred to as CNN80) and 200 kB memory constraints

in [66] and the fstride-4 model in [45]. Tensor decomposition with retraining is applied

to most layers except the ones that largely impact the accuracy, e.g. the last layer.

The resulting models in the 2’s complement format serve as the baseline. Quantization

and sign-magnitude representation, and weight scaling and bit perturbation with

retraining are applied to the decomposed layers with a step size 𝑠 of 0.05, the scaling

factor bounds 𝑎 = 0.8, 𝑏 = 1.8, 𝑒𝑚𝑎𝑥 = 0.15 and 𝑛𝑚𝑎𝑥 equal to half of the vector

length.

To evaluate how much energy savings our weight tuning algorithm provides, we

implemented a baseline CNN accelerator that uses 2’s complement MACs following

the same procedures for synthesis and place-and-route (PnR) and using the same

technology as the proposed accelerator. After PnR, both accelerators are simulated

to run the entire tensor decomposed CNN80 on the actual inputs from the Google
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Figure 3-7: The chip measurement setup.

speech command dataset [58] to obtain the switching activity. Switching activity,

parasitics, and timing information obtained after PnR are annotated during power

analysis.

3.4.2 Chip Measurement Setup

Fig. 3-7 shows the chip measurement setup. A Keithley source meter provides power

supplies. An Opal Kelly FPGA board generates clocks and transmits data between

the chip and the PC. After the chip is powered up, clocked, and reset, it enters the

setup phase. The PC sends the configuration bits, including the layer shapes of the

entire NN up to 12 layers and rounding and shifting settings. Then the pre-trained

weights of the NN for certain tasks can be sent to the chip. In our measurements, we

use CNN80 [66] on the Google speech command dataset [58] as an example. After

the setup phase, the chip starts taking in streaming inputs, computing the entire NN

fully on chip, and streaming out the output classification results. The PC receives

the outputs and generates real-time visualization.
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Figure 3-8: The weight tuning algorithm reshapes the histogram of Hamming distance
between successive weights. CNN80 is shown as an example.

3.5 Evaluation and Measurements

3.5.1 Weight Tuning Algorithm Evaluation Results

Based on our evaluation shown in Section 3.4.1, the weight tuning algorithm reduces

the toggle count of weight sequences by 1.79x – 2.56x with less than 0.75% accuracy

loss on the testing set for those cases. As shown in Fig. 3-8, the Hamming distance

between successive weights is greatly reduced.

Table 3.1 summarizes the accuracy, the toggle count, and the total energy con-

sumption of different components during the execution. 𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 and 𝐸𝑎𝑑𝑑𝑒𝑟𝑠 are

the total energy consumption of all the multipliers and adders in the PEs respectively.

𝐸𝑀𝐴𝐶 is the sum of them. 𝐸𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑢𝑠 is the energy of weight buses between the weight

memory and PEs. It is obtained by summing up the internal and switching energy of

buffers inserted in between. As shown, the weight tuning algorithm with the mixed-

representation MAC reduces the computation energy by 1.20x compared to the 2’s

complement baseline. The energy of weight buses is reduced by 1.70x. Although the

energy consumption of memory (the data dependant custom-SRAM is not used) and

activation delivery is not affected by the algorithm, a 1.16x reduction in the total

switching energy of the entire system 𝐸𝑡𝑜𝑡𝑎𝑙𝑆𝑤𝑖𝑡𝑐ℎ is observed.
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Table 3.1: The Effect of the Weight Tuning Algorithm on Accuracy and Energy
Consumption Based on Post-P&R Simulation

Baseline Proposed Loss/Reduction
Accuracy 89.3% 88.8% 0.5%
Toggle Count 154k 86k 1.79x
𝐸𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 1.58uJ 1.11uJ 1.42x
𝐸𝑎𝑑𝑑𝑒𝑟𝑠 0.55uJ 0.66uJ 0.83x
𝐸𝑀𝐴𝐶 2.13uJ 1.77uJ 1.20x
𝐸𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑢𝑠 96.91nJ 56.89nJ 1.70x
𝐸𝑡𝑜𝑡𝑎𝑙𝑆𝑤𝑖𝑡𝑐ℎ 8.94uJ 7.68uJ 1.16x

Figure 3-9: The FPGA demo of the CNN accelerator with a feature extraction pro-
cessorv [15] on KWS, and a summary of FPGA post-PnR resource utilization.

3.5.2 FPGA Demonstration Results

We demonstrate our design on FPGA with a speech feature extraction processor [15].

Implemented on Xilinx XC7K410T, the proposed CNN accelerator operates at 50MHz

and consumes 68mW based on Vivado power estimation. A photo of the FPGA demo

and the post PnR resource utilization are shown in Fig. 3-9.

3.5.3 Chip Implementation Results

The proposed system is fabricated using TSMC 40-nm LP process, including the

speech feature extraction front end [15] and the proposed CNN accelerator. It has

two operation modes – the general CNN acceleration mode with the front end clock-

gated or the standalone KWS mode with both blocks activated. The die shot is shown
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Figure 3-10: a) Die micrograph. b) Area breakdown of the CNN accelerator.

in Fig. 3-10-a. The total core area is 2.16 mm2 and the area breakdown of the CNN

accelerator is shown in Fig. 3-10-b.

The chip specifications are listed in Table 3.2. The CNN accelerator operates from

0.76 V to 1.1 V with a clock frequency from 20 MHz to 31.25 MHz. It supports 8-bit

weights and 16-bit activations, which provides the arithmetic precision for most of

the classification tasks to achieve good accuracy. The chip supports fully standalone

processing for NNs with less than 80 kB of weights and less than 12 layers. Few

limits are imposed on the layer shapes as long as they can fit in the on-chip buffers.

Such flexibility makes the chip capable of running various NN structures specifically

designed for different tasks. The power breakdown of the CNN accelerator is shown

in Fig. 3-11. The weight buffer does not take a dominant part of the total power

consumption, since weight stationary dataflow is used to minimize the number of

reads of weights. The maximum energy efficiency of 14.87 pJ/MAC achieves at 0.76

V at the clock frequency of 20 MHz and the power consumption of 1.94 mW, for the

CNN accelerator.

Compared with other digital ASICs for KWS, e.g. [47, 17, 63], our design is flex-

ible, accurate, and achieves comparable energy efficiency. The proposed architecture
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Table 3.2: Chip Specifications

Figure 3-11: Power breakdown of the CNN accelerator based on post-P&R simulation.

supports flexible shapes and strides of inputs and weights for up to 12 CNN layers.

However, [47] is restricted to a fixed structure, [17] supports up to 2 layers with up
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to 64 nodes/layer for LSTMs, and [63] is designed for a fixed input stride and 3x3

1-bit convolution. Our supported CNNs can achieve 91.6% accuracy with 12 output

classes on the public available dataset [66], while [47, 17, 63] only report accuracy on

the custom-designed dataset and [17] only shows binary classification.

3.6 Summary and Conclusions

We co-designed a weight tuning algorithm and the datapath of a CNN accelerator to

improve energy efficiency with little loss in accuracy. Potentially, a data-dependent

SRAM [10] can be used with the weight tuning algorithm to reduce weight read en-

ergy by around 2x. Furthermore, the accelerator features high flexibility and runtime

reconfigurability to support various applications. The proposed algorithm reduces

the energy consumption of weight delivery and computation by 1.70x and 1.20x re-

spectively. The CNN accelerator consumes 14.87 pJ/MAC with a latency of 10 ms

for real-time KWS applications. We made demonstrations with an integrated feature

extraction processor for KWS on both FPGA and ASIC.
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Chapter 4

Algorithm and Architecture

Co-design Utilizing Data Features for

Video Understanding

The last chapter focuses on the energy reduction of the fully integrated DL accelerator

chip. In this chapter, we expand our scope to the entire system including DRAM. We

co-design algorithms and architecture specifically for real-time video understanding

systems and tapeout the accelerator chip, VideoTime3 [57]. We utilize the temporal

similarities in video data to reduce DRAM traffic and improve the energy efficiency

and throughput of the system during real-time processing. It also captures temporal

information between frames to achieve higher video understanding accuracy. More-

over, we expand the existing analysis and taxonomy of sparsity handling architecture

for CNNs with our proposed techniques for the unique sparsity in PSums and OAs

resulting from our algorithm co-design.

This work is done in collaboration with Prof. Song Han and his students as listed

below. The training framework of conventional CNNs for object tracking is done in

collaboration with Ji Lin. The design of the metadata generator is joint work with

Yujun Lin and Zhekai Zhang.

The chapter is organized as follows. First, we provide an overview of deep-learning-

based video understanding and analyze the challenges in existing accelerators. Then,
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we present our proposed algorithm and its architecture co-design. Following that,

we explain our evaluation and measurement setup and then present our evaluation

results. In the end, we discuss our analysis and taxonomy of sparsity handling archi-

tecture followed by a summary and conclusion of this chapter.

4.1 Overview of Deep-learning-based Video Under-

standing and Related Work

Video understanding is a classic area in computer vision. Common tasks in video

understanding include video classification (what action the agent is performing), ob-

ject detection and tracking (where the objects are located and where they are moving

to), dense captioning (producing natural language annotations that describe what is

happening at different times throughout the video), etc. [8]. They are widely used in

many applications, including autonomous vehicles, augmented reality/virtual reality

(AR/VR), artificial intelligence (AI) drones, health monitoring, etc. A lot of them

require real-time video understanding on the edge. For example, autonomous vehi-

cles need edge processing of enormous data due to latency, network connectivity, and

energy limits. Also, a large amount of the workload requires real-time processing for

safety considerations. With a video frame rate of 24 fps, a multi-frame latency of 4

frames can lead to a processing delay of 0.17 seconds, during which the vehicle oper-

ating at the speed of 65 miles/hour moves more than 16 feet. Thus, batch processing

can lead to severe safety issues. With the rise of those edge applications, there is an

increasing need for accurate, energy-efficient, and real-time video understanding on

the edge.

Deep learning, especially deep CNN, has been extensively applied to video under-

standing and achieved considerable advances compared to traditional methods [35,

27, 26, 60]. Numerous CNN accelerators have been proposed over the past years for

edge applications. We classify them into three categories in Table 4.1 and analyze

existing challenges for video understanding.
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Table 4.1: The Summary of Existing Challenges in Prior Work

X
X

X

X

X

Accelerator category

1: Conventional 
single-frame 

inference 
accelerators

2: A single-frame 
inference accelerator 

with conventional 
DiffFrame method 

3: 3D CNN 
accelerators

This 
work

Capture temporal information?

Utilize temporal redundancy?

Single-frame latency?

output 0

frame 0

NN processing

output 1

tim
e ...

frame 1

NN processing

output 2

frame 2

NN processing

Figure 4-1: The NN accelerator that only supports single-frame/image processing
fails to capture temporal information across video frames.

The first category is the accelerators, e.g. [34, 37], which only support image

processing for a single frame as illustrated in Fig. 4-1. Thus, it fails to capture

temporal information between successive frames and leverage their similarities.

To utilize those similarities, the second category proposed a DiffFrame method [64]

based on the linearity of convolution, i.e., conv(𝑓 𝑙
𝑡) = conv(𝑓 𝑙

𝑡 − 𝑓 𝑙
𝑡−1) + conv(𝑓 𝑙

𝑡−1),

where 𝑓 𝑙
𝑡 − 𝑓 𝑙

𝑡−1 and conv(𝑓 𝑙
𝑡−1) are DiffFrame and RefFrame at time 𝑡 of layer 𝑙

respectively. As shown in Fig. 4-2, instead of directly convolving every frame, it

subtracts successive frames to generate a difference feature map 𝑓 𝑙
𝑡 − 𝑓 𝑙

𝑡−1, which

is referred to as DiffFrame, for convolution. As the difference between frames is

typically sparse, it can reduce computation during convolution to generate conv(𝑓 𝑙
𝑡 −

𝑓 𝑙
𝑡−1). However, since only the DiffFrame is convolved, the reference frame (RefFrame)
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Figure 4-2: Illustration of the conventional DiffFrame method, which is based on the
linearity of convolution, i.e., conv(𝑓𝑡 − 𝑓𝑡−1) + conv(𝑓𝑡−1) = conv(𝑓𝑡). 𝑓𝑡 − 𝑓𝑡−1 and
conv(𝑓𝑡−1) are DiffFrame and RefFrame at time 𝑡 respectively.

conv(𝑓 𝑙
𝑡−1) needs to be added to the convolution output to generate the convolution

of the original frame conv(𝑓 𝑙
𝑡). Also, this result of the current frame, conv(𝑓 𝑙

𝑡), needs

to be kept as the RefFrame for the computation of the next frame 𝑓 𝑙
𝑡+1.

Although convolving the sparse DiffFrame may lead to some computation and en-

ergy savings, it is challenging to handle the orchestration of RefFrames. To efficiently

buffer RefFrames, prior work followed serial batch processing as shown in Fig. 4-3a.

A batch of frames is buffered and processed serially for every layer. Once the Ref-

Frame is generated by a frame at a layer, it will be immediately consumed by the

next frame at the same layer. If the on-chip RefFrame buffer is big enough to hold the

entire RefFrame of a layer, then the RefFrame can be reused on-chip across frames

eliminating access to DRAM as shown in Fig. 4-3c. However, serial batch processing

leads to multi-frame latency since a batch of frames needs to be buffered.

The third category is designed for 3D CNN which includes the temporal dimension

in convolution to capture temporal information and reduce temporal redundancy

across layers by downsampling in the temporal dimension [22]. However, it has multi-

frame latency as multiple frames must be buffered for temporal convolution as shown

in Fig. 4-4.

Despite prior work, it remains challenging to capture temporal information for
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Figure 4-3: (a) An illustration of serial batch processing. The processing sequence
is noted in red. N is the total number of layers and B is the batch size. (b) The
high-level block diagram of the DiffFrame convolution accelerator and an illustration
of RefFrame buffer access during the process of layer 𝑙 at frame 𝑡. (c) The reuse of
RefFrame over time in the on-chip buffer.
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Figure 4-4: Illustration of 3D CNN convolving the temporal dimension, which is
composed of a batch of frames. For simplicity, the channel size is set to one in the
illustration. W: width. H: height. B: batch.
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Table 4.2: Comparison of Conventional DiffFrame Convolution and Our Proposed
Real-time DiffFrame Convolution

Conventional DiffFrame Convolution
Proposed Real-Time 

DiffFrame ConvolutionSerial Batch 
Processing

Frame-by-frame 
Processing

Sparsity in Convolution Yes Yes Yes
Latency High Low Low

RefFrame DRAM Traffic Low High Low
Input DRAM Storage Large Small Small

high accuracy and utilize temporal redundancy in videos for energy savings while

achieving single-frame latency for real-time applications.

4.2 Algorithm and Accelerator Architecture

To tackle the remaining challenges in prior work, we propose a real-time DiffFrame

convolution with temporal modeling algorithm and co-design novel sparsity-handling

architecture and efficient data orchestration. In this section, we first present our

real-time DiffFrame convolution algorithm—how it efficiently utilizes temporal re-

dundancy at single-frame latency. Following that, the sparsity handling architec-

ture we co-designed with the algorithm is explained. Then we discuss how temporal

modeling is achieved with the real-time DiffFrame convolution. Succeeding that, we

present how we handle the unique data orchestration requirements of both real-time

DiffFrame convolution and temporal modeling. In the end, we illustrate the DRAM

data layout, other components and overall architecture of the accelerator.

4.2.1 Real-Time DiffFrame Convolution

We propose real-time DiffFrame convolution that 1) utilizes temporal redundancy,

which generates sparsity in convolution, as the conventional DiffFrame method, 2) de-

livers single-frame latency for real-time applications, and 3) achieves efficient DRAM

utilization. A comparison between our proposed real-time DiffFrame convolution and
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Figure 4-5: (a) An illustration of frame-by-frame processing. The processing sequence
is noted in red. N is the number of layers. (b) A long interval between the reuse of
RefFrame in frame-by-frame processing.
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Figure 4-6: The block diagram of naive DiffFrame generation and buffering.

conventional DiffFrame convolution is summarized in Table 4.2. How we achieve those

advantages against conventional techniques is presented in this subsection.

To achieve single-frame latency, we use frame-by-frame processing, as shown in

Fig. 4-5a, instead of serial batch processing. That eliminates the need to buffer a
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Figure 4-7: (a) An illustration of naive RefFrame read. (b) An illustration of proposed
selective RefFrame read and update.

batch of input frames and thus reduces the DRAM storage for inputs. However,

frame-by-frame processing leads to a long interval between the reuse of RefFrame as

illustrated in Fig. 4-5b and thus all the RefFrames generated in between, which are

all the activations in a NN, have to be kept. Since the size of activation in a NN can

be really big, e.g., bigger than 10 MB for MobileNet-v2, off-chip DRAM is usually

required to store those data. The system block diagram for naive RefFrame generation

and buffering is shown in Fig. 4-6. Reading and updating the entire RefFrame for

each layer and frame leads to high DRAM traffic and system energy.

To solve this problem, we propose a selective RefFrame read and update scheme,

which reduces RefFrame DRAM and buffer traffic by 70% at 30% DiffFrame density

(nonzeros) with zero loss in accuracy. The selective RefFrame read is illustrated in

Fig. 4-7. To compute the DiffFrame for the next layer, only the pixels at the positions

of nonzero pixels of conv(𝑓1 − 𝑓0) are needed in conv(𝑓1) and conv(𝑓0) (highlighted

in yellow in Fig. 4-7a). Because conv(𝑓1) and conv(𝑓0) are equal elsewhere and yield

zero difference after the activation function. Thus, only RefFrames at those positions

need to be read and updated as shown in Fig. 4-7b. Moreover, the selective read and

update not only reduce DRAM traffic as shown in Fig. 4-7, but also reduce buffer

traffic accordingly.
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Figure 4-8: (a) Fine-grained irregular sparsity in DiffFrame leads to DRAM burst
length under-utilization for selective RefFrame load and store. (b) Channel-wise
coarse-grained sparsity in DiffFrame leads to high utilization of DRAM burst length
for selective RefFrame load and store.

With our selective RefFrame read and update scheme, the read and update pattern

of the RefFrame is determined by the sparsity pattern in the convolution output of

DiffFrame conv(𝑓𝑡−𝑓𝑡−1). Thus, the sparsity pattern in conv(𝑓𝑡−𝑓𝑡−1) greatly affects

the load and store efficiency of DRAM for RefFrame. If we allow fine-grained irregular

sparsity, the DRAM burst length cannot be fully utilized for selective RefFrame load

and store as shown in Fig. 4-8b. To address this issue, we enforce channel-wise sparsity

in conv(𝑓𝑡 − 𝑓𝑡−1) and maintain a channel-first DRAM storage sequence as shown in

Fig. 4-8b. It achieves 2.5x higher utilization of DRAM burst size compared to the

fine-grained load/store pattern at 40% density.

To efficiently enforce channel-wise sparsity in conv(𝑓𝑡 − 𝑓𝑡−1), we propose Diff-

Frame SparseConv, which applies pruning and sub-manifold sparse convolution [19]

on DiffFrames.

We prune the DiffFrame based on the L1 norm of its channel values to obtain a

density similar to fine-grained sparsity in DiffFrame. To the best of our knowledge,

it is the first work that explores the application of pruning on temporal similarities

to generate sparsity in activations. Accuracy analysis is presented in Section 4.4.1.

Sub-manifold sparse convolution [19] is different from conventional convolution

in that it enforces specific rules between input and output coordinates as shown in
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Figure 4-9: The rules of input and output coordinates in sub-manifold sparse con-
volution. (a) For stride = 1 layers, the input and output coordinates are exactly
the same. (b) For stride = 2 layers, the valid outputs are those with 𝑥%2 = 0 and
𝑦%2 = 0, where (𝑥, 𝑦) is the output coordinate of conventional convolution.
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Figure 4-10: The proposed real-time DiffFrame method illustrated with stride = 1
layer.

Fig. 4-9. That removes the dilation in conventional convolution, which is marked in

gray in Fig. 4-9, and prevents the activations from getting denser through convolu-

tion. Thus, it reduces the RefFrame traffic. Also, metadata involved in activation

sparsity handling, e.g., the coordinates of nonzeros, can be reused across stride=1 lay-

ers, which significantly reduces metadata computation overhead. Detailed discussion

about sparsity handling is presented in Section 4.2.2.
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The overall algorithm diagram of the proposed real-time DiffFrame method is

shown in Fig. 4-10. The output of DiffFrame SparseConv is the same as its input

for stride = 1 layers without dilation and the selective read and update of RefFrame

follow the same pattern reducing DRAM traffic. DiffFrame SparseConv and selective

RefFrame read and update scheme work together to achieve computation and memory

access reduction at single-frame latency.

4.2.2 Sparsity Handling

To efficiently handle the channel-wise sparsity in our real-time DiffFrame convolution,

we propose a decoupled metadata generation and map-guided convolution scheme. It

brings more flexibility to metadata generation, achieves metadata reuse, and delivers

the first 2D CNN accelerator that stores both IA and PSum/OA directly in the com-

pressed format during convolution. It enables the accelerator to skip all computation

and memory traffic of zero IA and PSum/OA pixels with low overhead. This section

focuses on explaining how our proposed scheme works and the design of our sorter-

free metadata generator. A comparison of different sparsity handling schemes and a

proposed representation for analyzing sparsity handling architecture are presented in

Section 4.5.

Overview of Sparse Point-wise Convolution and Sparse Depth-wise Con-

volution

As plenty of prior work has presented various techniques to handle sparsity in weights,

our work focuses on sparsity handling for activations, which can be more challenging

as discussed in Section 4.5. The proposed real-time DiffFrame convolution generates

sparse DiffFrame as the input to the convolution core and outputs sparse PSum/OA

following the rules specified in Fig. 4-9. Both IA and PSum/OA can be stored in a

compressed format. Compared to conventional sparse convolution where PSum/OA

is usually dense, our method provides around 3x reduction in PSum/OA storage at

30% density. Moreover, compressed PSum can lead to a large impact on overall
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data access and memory energy consumption of DNN accelerators. This is because:

1) PSum is usually set to be more than 20 bits to preserve the accuracy during

accumulation, while weight and IA are set to be 8 bits or even less in most DNN

inference accelerators; 2) PSum needs to be read and written for every temporal

accumulation, while weight and IA only need to be read.

The storage and computation of sparse point-wise (PW) and depth-wise (DW)

convolution are illustrated in Fig. 4-11. PW convolution uses a 1× 1 filter and thus

the sparse convolution on compressed IA and OA storage is straightforward. IAs and

OAs share a one-to-one relationship based on their positions. For example, an IA

pixel at the position of 1 generates an OA pixel at the position of 1. Therefore, we

only need to go over each pixel in the compressed IA storage, multiply that with the

weight, and store them at the same position in the OA storage. DW convolution is

more challenging as the filter size can be bigger than 1× 1. The filter pixels need to

be multiplied with IA pixels at certain coordinates. However, it is not straightforward

to know the position of an IA pixel given its coordinate in compressed IA storage. To

tackle this challenge, we propose map-guided convolution and decoupled metadata

generation for sparse DW convolution.

Map-Guided Convolution and Decoupled Metadata Generation

Fig. 4-12 illustrates our proposed map-guided convolution and decoupled metadata

generation. To get the positions of data needed for each multiplication, we use a

ConvMap, which is a list of the set (pIA, pW, pOA), to guide sparse convolution. For

example, a ConvMap entry (1, 0, 1) shows that an IA pixel at the position of 1 and a

filter pixel at the position of 0 need to be loaded and multiplied to generate a PSum of

an OA pixel at the position of 1. The ConvMap is generated by a metadata generator

decoupled from the convolution core, i.e., the loading sequence of coordinates and the

operations on coordinates can be fully separate from data loading and processing.

Given a fixed filter size (e.g., 3 × 3), the output coordinates and ConvMap are only

determined by the coordinates of nonzero IAs and the stride of this layer. As long

as the IA coordinates (the IA sparsity pattern) and stride stay the same, metadata
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Figure 4-11: An illustration of sparse (a) PW convolution and (b) DW convolution.
Channels are set to 1 for simplicity and clarity of the figure. Colored and white boxes
present nonzeros and zeros respectively.

(including the nonzero OA coordinates and the ConvMap) keep unchanged. Thus, it

can be reused across those layers. Metadata only needs to be generated 5 times for our

target workload—MobileNet-v2-34 and MobileNet-v2-47 as shown in Appendix B.

Sorter-free Coordinate and ConvMap Generator

To efficiently generate metadata, we design a sorter-free coordinate and ConvMap

generator. It reads sorted IA coordinates sequentially and outputs sorted OA coor-
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Figure 4-12: An illustration of map-guided convolution and decoupled metadata gen-
eration.

dinates and a ConvMap sorted by OA positions guiding an OS dataflow for sparse

convolution. The coordinates are kept in the COO format [2] in this work. Other

formats, e.g., the compressed sparse row (CSR) format, may also be used to further

reduce storage size, which is left for future work.

The generator consists of three parts. The first two parts are a convolution output

coordinate generator and a sorting unit. The inputs of them are sorted cIA and the

output is an intermediate map (𝑀 ′
𝑂𝑆) sorted by OA coordinates, which is a list of

the set (pIA, cW, cOA) (cW and cOA are coordinates of the weight and the OA

respectively). The example pseudo codes for 1D convolution are shown in Fig. 4-

13a. We enumerate the sorted cIA to get the pairs of IA positions and coordinates.

The naive implementation loops through all the weight coordinates sequentially to

calculate the coordinates of all possible convolution outputs given each IA coordinate.

All the (pIA, cW, cOA) sets generated in the loops (𝑀) are passed to a sorter with

the key of cOA to generate the intermediate ConvMap 𝑀 ′
𝑂𝑆. The drawbacks of naive

implementation are that the sorter is very expensive and the sequential loops lead to

low throughput.

To solve those problems, the proposed work handles the calculation of each weight

coordinate in parallel and the output (pIA, cW, cOA) sets are kept separately (𝑀𝑛).

An example can be found in Fig. 4-13b-1. Since input cIA is sorted and cOA is shifted

from cIA by a fixed number, each 𝑀𝑛 is sorted by cOA. Thus, simple mergesort,

instead of expensive sort, can be used to combine the sorted 𝑀𝑛s into the sorted

88



M = [ ] # unsorted map
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Figure 4-13: (a) An overview of the proposed sorter-free ConvMap and coordinate
generator. cIA, cOA and cW : coordinates of nonzero IA, OA and weight respectively;
pIA, pOA and pW : positions of nonzero IA, OA and weight respectively; 𝑀 ′

𝑂𝑆; the
intermediate unfiltered map containing all possible outputs of conventional convolu-
tion; 𝑀𝑂𝑆: the final ConvMap satisfying the rules in Fig. 4-9. (b) An example of
simple 1D ConvMap and coordinate generation.
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𝑀 ′
𝑂𝑆. We implement the mergesort algorithm with a pipelined merger tree shown

in Fig. 4-13a for the target workload of 3 × 3 convolution. Fig. 4-13b-2 illustrates

one of the merger blocks. In step 1, the 2-to-1 merger takes in 𝑀0[0] and 𝑀1[0], and

compares their cOAs. Since cOA of 𝑀1[0] is no greater than that of 𝑀0[0], the merger

consumes and outputs 𝑀1[0]. Next, the merger compares 𝑀0[0] and 𝑀1[1]. And so

on. Using parallel processing and simple mergers, the proposed method generates the

sorted intermediate map 𝑀 ′
𝑂𝑆 with higher throughput and lower complexity compared

to naive implementation.

The last part is the ConvMap and OA coordinate filter. It 1) filters out invalid OAs

and related 𝑀 ′
𝑂𝑆 entries based on the rules shown in Fig. 4-9, 2) generates positions

of OAs (pOA), and 3) groups pIA and pW in 𝑀 ′
𝑂𝑆 and pOA to form a ConvMap

𝑀𝑂𝑆. An example is shown in Fig. 4-13b-3. Since stride = 1, the first valid cOA (0)

is assigned a pOA of 0 and so on. Since 𝑀𝑂𝑆 is sorted by cOA, pOA can be generated

by a simple counter. The proposed design eliminates a separate OA coordinate sorter

needed in the existing point cloud accelerator with WS dataflow and a different OA

filtering rule to generate sorted OA coordinates [36]. Moreover, OS dataflow results

in best energy efficiency and latency compared to other dataflows for our workload.

4.2.3 Temporal Modeling

One of the major differences between video and image is that video embeds temporal

information between successive frames. To capture temporal information, our work

adopts online temporal shift module (TSM) [35] and handles it natively in hardware.

TSM enjoys great accuracy-cost trade-off and online performance compared with

other popular video understanding algorithms [35].

Fig. 4-14 illustrates how TSM works on a CNN backbone. It does not introduce

any changes in the convolution kernel. It only shifts some data in the feature map—

part of the channels in a feature map is replaced by the corresponding part from

the previous frame. The resulting feature map mixes information from the previous

frame and the current frame and serves as the input to the next layer. In this way,

convolution captures the information between successive frames. In our work, TSM is
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Figure 4-14: An illustration of temporal shift module [35]. C: channel.

applied to a few point-wise convolution layers of the CNNs following [35]. The shifted

channel size is set to be a multiple of 8, which takes up the entire DRAM burst size, to

achieve good DRAM burst utilization. The efficient data buffering scheme is designed

for TSM, which is presented in Section 4.2.4.

4.2.4 Activation Buffering

Compared to conventional convolution, our proposed real-time DiffFrame convolution

with temporal modeling has two unique operations on activation orchestration—1)

the shifting operation for TSM on some PW layers; 2) the ConvMap-guided reads of

IA for sparsity handling in DW layers. We designed a multi-mode IA buffer to handle

them efficiently.

Dual-mode IA Buffering for Temporal Shift Module in Point-wise Diff-

Frame SparseConv

The shifting operation of activations is illustrated in Fig. 4-14. A software approach

shifts data in DRAM to form the mixed IA for the next layer via load and store

operations on the entire feature map as shown in Fig. 4-15a. The DRAM traffic
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overhead of this approach equals twice the size of IA.

To reduce DRAM traffic overhead, we propose a hardware-based approach with

a dual-mode Buffet [42] buffer. The activations of the shifted part from the previ-

ous frame and the unshifted part of the current frame are kept separate in DRAM

throughout convolution. Different from conventional explicit decoupled data orches-

tration with Buffet, dual-mode read and fill address generators and IA Buffet [42]

are used to handle activation buffering. The dual-mode fill address generator loads

and mixes the shifted and unshifted tiles on chip for the next layer with two address

generation modes. The shifted part is a small portion of the entire feature map [35]

and is stored in the uncompressed format for efficient indexing based on the sparsity

pattern of the current frame. The unshifted part is generated by the previous layer

of the current frame, stored in the compressed format needed for the current frame,

and thus indexed with the position. Without shifting data in DRAM, our proposed

dual-mode IA buffering removes the DRAM traffic overhead of TSM.

Implicit Decoupled Data Orchestration for Depth-wise DiffFrame Spar-

seConv

For DW DiffFrame SparseConv, load and store addresses are determined by Con-

vMap, which can be generated on-the-fly. Fig. 4-16 contains an example ConvMap.

As shown, both weight and IA accessing sequences are random with the temporal

locality. Since the weight size of DW layers is small, we can store weight fully on-

chip and maintain efficient bandwidth for random access. However, IA can be big,

e.g., hundreds of kB, and needs DRAM storage. To reduce DRAM traffic, we adopt

implicit decoupled data orchestration (IDDO) [42] for IA. We turn off the Buffet [42]

controller and the fill address generator used for other layers and activate a direct-

mapped cache controller with a block size of 1 pixel with a programmable channel

size. The average cache hit rate for stride = 1 layers is 79% and stride = 2 layers is

55%. It greatly reduces DRAM traffic and accessing latency compared to a circular

buffer by utilizing the temporal locality. The underlying SRAMs are shared across

IDDO for DW DiffFrame SparseConv layers and explicit decoupled data orchestration
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Figure 4-15: (a) An illustration of software approach of TSM data handling. (b)
An illustration of the proposed dual-mode IA Buffet for TSM data handling. AGen:
address generator.

in other layers. Since SRAMs take up much more area compared to the controller

logic, our method does not lead to a significant increase in the die area.
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Table 4.3: A Summary of Data Types and Their Layout in DRAM

name compressed memory order

data

current frame n row major

previous frame (& shifted part) n row major

DiffFrame y row major

weight n row major

RefFrame n row major

OA y row major

metadata

input coordinate y row major

output coordinate y row major

ConvMap NA NA (1D array)

4.2.5 Data Layout in DRAM

Table 4.3 summarizes different data and metadata involved in our proposed real-time

DiffFrame convolution and temporal modeling algorithm. Our algorithm works on

channel-wise sparsity and thus it is natural to have data in a channel stored together

and compute in parallel. So all data are stored in a row-major order with a channel-

first sequence, which is illustrated in Fig. 4-17. Our work focuses on the utilization

of activation sparsity, thus DiffFrame and OA are compressedly stored. Other data

remain uncompressed. Input and output coordinates are also stored in row-major
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Figure 4-17: An illustration of row-major memory order for data and coordinate with
a simple 3 × 3 × 3 tensor. (a) Uncompressed storage. (b) Compressed storage (zero
data are shown in white).

order to match the corresponding data (DiffFrame and OA) as shown in Fig. 4-17b.

ConvMap is and stored as a 1D array of the set (pIA, pW, pOA) sorted by pOA,

where pIA, pW, pOA are the positions of IA, W, and OA respectively.

4.2.6 Other Components and Overall Architecture

Fig. 4-18 shows the overall architecture of the proposed accelerator. It is designed

with a DRAM bandwidth limit of 800 MB/s. A round-robin arbiter handles multiple
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Figure 4-18: Overall system architecture. AGen: address generator; gen.: generator;
PSum: partial sum; RF: RefFrame; IFC: interface; COORD: coordinate.

simultaneous DRAM requests from various buffers.

The convolution workhorse is a dual-mode 8×8 MAC array (composed of 8 vector

MACs) for MobileNet-v2-based workload. As shown in Fig. 4-19a, the 8 × 8 MAC

array is fully activated for standard convolution handling 8 input channels and 8

output channels in parallel. For DW convolution, only 8 multipliers are activated to

handle 8 channels in parallel and the rest can be data gated as shown in Fig. 4-19b.

To provide enough bandwidth of weights and high utilization of SRAMs, a dual-

mode weight buffer is proposed. It follows a Buffet-based EDDO [42] and contains

8 banks. Each has a read bandwidth of 8 × 8 bits and 256 entries. For standard

convolution, all banks of the weight buffer are read every cycle providing a total read

bandwidth of 8× 8× 8 bits for the fully-activated 8× 8 MAC array. The total weight

buffer entry is 256. For depth-wise separable convolution, banks are reorganized so

that only one bank of the weight buffer is read each cycle providing a total read

bandwidth of 8 × 8 bits for the partially activated MAC array. The rest of the

banks are also utilized to provide an equivalent total weight buffer entry of 256× 8.

Compared to only activating one bank and power gating the rest, our proposed dual-

mode weight buffer achieves a larger storage size for depth-wise separable convolution.
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Figure 4-19: The dual-mode MAC array and weight buffer. (a) Standard convolution.
(b) DW convolution.

The multi-mode IA buffer is presented in Section 4.2.4 providing 8 × 8 bits read

bandwidth to the MAC array. A vector accumulator handles the temporal accumu-

lation of partial sums at the output of the MAC array with a partial sum ping-pong

buffer. The activation and RefFrame update unit applies the activation function and

RefFrame addition and generates DiffFrame for the next layer. Circular buffers are

used for RefFrame load and store, and OA store.

For standard convolution and PW convolution, OS dataflow is used between

DRAM and on-chip buffers, and both OS and WS dataflows are supported between

on-chip buffers and the MAC array. A custom mapping optimizer (discussed in Sec-

tion 4.3.2) is designed to search for the best dataflow and tiling given a CNN layer

and design metrics (such as EDP, throughput, etc.).

For DW convolution, OS dataflow is applied with a ConvMap guiding the com-
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putation. A detailed block diagram of the ConvMap and coordinate generator and

buffers is shown in Fig. 4-20. The design of ConvMap and coordinate generator is

presented in Section 4.2.2. A circular buffer is used for the ConvMap load and store

between DRAM. The ConvMap information generator outputs a NEXT signal to the

partial sum buffer indicating when the vector accumulator needs to move forward to

the next partial sum. A multi-mode coordinate buffer is designed to handle different

buffering requirements for different layers. 1) Some layers directly load coordinates

from off-chip DRAM and then use those coordinates to guide the load and store of

RefFrame or shifted part for TSM. Thus, a Buffet-based buffer is needed. 2) The

starting layer of our DiffFrame SparseConv directly receives coordinates from the

ConvMap and coordinate generator, and needs to use them for RefFrame and then

store them off-chip. A ping-pong buffer is used. 3) Some layers need to load coor-

dinates from off-chip DRAM for the pruning unit and the coordinate generator to

produce a new set of coordinates, use the new coordinate for computation and then

store them in DRAM. In this case, a circular buffer is used to buffer input coordinates

to the pruning unit and then a ping-pong buffer is used for the output coordinates

from the coordinate generator.

As presented above, a lot of blocks are conditionally needed based on the layer

type and operation mode. To reduce power consumption, user-configured block-level
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clock gating is applied to red blocks as shown in Fig. 4-18 and Fig. 4-20 based on

the operational need of each layer. It brings 1.3x power reduction on MobileNet-v2

workload.

4.3 Evaluation and Test Setup

This section describes how we set up the experiments to evaluate the proposed algo-

rithm and architecture in Section 4.2.

4.3.1 Model Preparation and Algorithm Evaluation Setup

We use MobileNet-v2-based models [46] as the backbone to evaluate the proposed

algorithm. MobileNet-v2 achieves higher accuracy and lower runtime with fewer

parameters than various NNs, e.g., MobileNet-v1 and ShuffleNet, on mobile devices

on multiple applications, e.g. object detection, etc. [46]. Since our work targets edge

applications, it is suitable to serve as a backbone.

Both a basic MobileNet-v2 model (MobileNet-v2-47) and a reduced MobileNet-

v2 model (MobileNet-v2-34) were used during evaluation and measurements. Ap-

pendix B shows their model structures. The MobileNet-v2-34 is constructed from the

ordinary MobileNet-v2 by 1) having a width multiplier of 0.68, a channel multiplier

of 0.5, and a depth multiplier of 0.695; 2) advancing one downsampling layer to the

beginning of the NN. For both NNs, the DiffFrame is first calculated at the input of

the first inverted residual bottleneck block and our proposed method is then applied

to the rest of the NN. By advancing the downsampling layer to the beginning, the

metadata generation of our proposed sparsity handling method is reduced. Pruning

is applied at the input of the first DiffFrame SparseConv layer to achieve higher spar-

sity in the input DiffFrame and the layers following all the downsampling layers as

downsampling densifies the feature maps.

Our proposed algorithm is evaluated on DAC-SDC dataset [61] with ImageNet [9]

pretraining. The DAC-SDC dataset includes 95 categories of video clips captured by

unmanned aerial vehicles (UAVs) with moving objects inside and labels of bounding
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Figure 4-21: A few samples of the DAC-SDC dataset [61].

boxes tracking the moving objects. Some samples are shown in Fig. 4-21. The

accuracy of this object-tracking task is evaluated as intersection-over-union (IoU) [61],

which is the ratio between the intersection of the predicted bounding box and the

ground-truth bounding box and the union of them.

Quantization is applied to the NN during the evaluation. Standard 8-bit linear

quantization with fine-tuning is used on weights, IAs, and OAs.

4.3.2 Architecture Evaluation and Chip Measurement Setup

The setup for architecture exploration (algorithm and architecture co-design) and

evaluation is shown in Fig. 4-22. We use PyTorch to train and test the proposed

algorithm, dump model parameters and intermediate data, and evaluate accuracy.

We built a cycle-accurate and bit-accurate model in C++ to explore and evaluate the

architecture. With an energy lookup table of major hardware components and the

workload description, it logs the number of DRAM and on-chip buffer accesses and

provides an estimated cycle count and energy consumption of the underlying archi-

tecture given the workload and mapping. A mapping optimizer searches the design

space of the runtime parameters to find the optimum for the underlying architecture
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Figure 4-22: The setup for architecture exploration and evaluation. LUT: lookup
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given a certain target, such as minimum DRAM traffic, highest throughput, or lowest

energy-delay product. With the best mappings and data traces dumped from the

bit-accurate model, we simulate RTL to get the accurate runtime and energy con-

sumption of the accelerator. We iteratively tuned the architecture and its design-time

and runtime parameters to achieve good accuracy and low memory access, runtime,

and energy consumption.

We evaluate our proposed architecture with a chip called VideoTime3 [57] taped

out in TSMC 28 nm HPC+ technology. Fig. 4-23 shows the block diagram and a

photo of our measurement setup. The host PC is connected to Opal Kelly FPGA

board through a USB interface to send 1) the configuration bits to the chip via

Opal Kelly FrontPanel endpoints and user-designed FrontPanel adapter, and 2) input

data to DRAM via the Xilinx MIG and a user-designed MIG adapter. DRAM, the

Xilinx MIG, and the MIG adapter operate at 200MHz, which is the highest clock

frequency for DDR3. The rest components operate at the chip core frequency, which

is adjustable during measurement. Our VideoTime3 chip is attached to the test PCB

using chip-on-board packaging and supplied with the Keithley power sources.
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Figure 4-23: (a) The block diagram of the chip measurement setup. FPGA has two
clock domains. One is the highest clock frequency for DDR3 and the other is for the
chip. gen: generator; cntl: controller. (b) A photo of the chip measurement setup.

4.4 Evaluation and Measurements

Using the experimental setup discussed in the previous section, we evaluate the accu-

racy of our proposed algorithm and the DRAM traffic reduction, energy breakdown

of our algorithm and architecture co-design. In the end, we present the chip measure-
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ment and a comparison with prior work.

4.4.1 Accuracy

We compare our proposed real-time DiffFrame SparseConv with temporal modeling

algorithm with conventional convolution and evaluate the sensitivity of accuracy on

the pruning threshold of our algorithm. During this analysis, we use a density-based

pruning threshold, which prunes the less significant pixels based on the L1 norm

and keeps the pruned data at a specified density. During online processing, the user

can use a value-based pruning threshold, which prunes data given a preset value.

The pruning threshold is set according to user analysis and estimation of the input

data given their target application. As shown in Fig. 4-24, our proposed algorithm

improves the accuracy over conventional convolution even at 20% density (nonzeros).

MobileNet-v2-47, which uses larger input resolution and has more parameters, is less
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Table 4.4: Accuracy Analysis of the Proposed Method on Quantized MobileNet-v2
Neural Nets

XX
X

Conventional 
Convolution

Convolution
with TSM This Work

Real-Time DiffFrame SparseConv
Temporal Shift Module

IoUMobileNet-v2-34 (%) 48.8 52.7 51.3
IoUMobileNet-v2-47 (%) 65.4 68.7 67.4

sensitive to pruning compared to MobileNet-v2-34.

Furthermore, we evaluate the accuracy of quantized MobileNet-v2 NNs at a den-

sity of 30% in three cases—conventional convolution, convolution with TSM, our

proposed real-time DiffFrame convolution with temporal modeling. The results in

summarized in Table 4.4. Although DiffFrame SparseConv and pruning lead to some

information loss, overall accuracy (IoU) improves 2%–2.5% on various MobileNet-v2-

based NNs on the object tracking dataset [61]. When SparseConv is directly applied

to raw IA instead of DiffFrame, the accuracy drops to less than 30% at 40% density.

The intuition may be that DiffFrames inform NNs which pixel locations have big

changes between frames and are crucial for object tracking. The study emphasizes

the importance of each component of our proposed real-time DiffFrame convolution

with temporal modeling.

4.4.2 DRAM Access

We compare the DRAM traffic between our proposed real-time DiffFrame SparseC-

onv with temporal modeling and conventional convolution on our proposed hardware

and evaluate how DRAM traffic changes with the input density of the proposed al-

gorithm on two different NNs. Our hardware supports both the proposed algorithm

and conventional convolution (this mode is used in the first few layers before the

first DiffFrame layer). The optimal mappings for both the proposed algorithm and

conventional convolution are used during the evaluation. As shown in Fig. 4-25, our
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Figure 4-25: The total DRAM traffic vs. the pruning threshold (input density) of the
proposed real-time DiffFrame SparseConv with temporal modeling algorithm and a
comparison with conventional convolution. The target of the mapping optimizer is
set to be minimizing DRAM traffic.

proposed method significantly reduces the DRAM traffic for MobileNet-v2-47 across

various density levels. For MobileNet-v2-34, a higher level of pruning is needed to

achieve DRAM traffic reduction with our proposed algorithm. The reason is the fol-

lowing. MobileNet-v2-34 has a much smaller channel size than MobileNet-v2-47 as

shown in Appendix B. Our proposed algorithm features channel-wise sparsity and thus

leads to less DRAM traffic reduction on MobileNet-v2-34 compared to MobileNet-v2-

47. Nonetheless, a 1.8x reduction in the energy-delay product of the accelerator chip

at 30% density is observed on MobileNet-v2-34 as shown in Section 4.4.4.

Fig. 4-26 shows a detailed breakdown of DRAM traffic and compares conven-

tional convolution, estimated conventional frame-by-frame DiffFrame sparsity han-

dling method, and our proposed method. The conventional frame-by-frame Diff-

Frame sparsity handling method is estimated by adding full RefFrame traffic, which

is twice the size of total IAs, and the weight, IA, and OA DRAM traffic of our pro-

posed method. The naive frame-by-frame DiffFrame sparsity handling method con-
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Figure 4-26: The proposed method reduces DRAM traffic by 1.3x and 2.2x compared
to the prior sparsity handling method and conventional convolution on MobileNetv2-
47 respectively. The mapping optimizer target is to lower the energy-delay product.
MobileNetv2-34 has a small channel size; thus, our method featuring channel-wise
sparsity leads to less DRAM traffic reduction. Nonetheless, a 1.8x reduction in the
energy-delay product of the accelerator is observed. W: weight. COORD: coordinate.

sumes higher DRAM traffic than conventional convolution at 30% input density with

MobileNetv2-34 workload due to the large overhead of RefFrame traffic. Our pro-

posed method greatly reduced the RefFrame traffic and IA, OA, and weight DRAM

traffic with very little overhead in sparsity handling metadata. It achieves 1.3x and

2.2x DRAM traffic reduction compared to the conventional sparsity handling method

and conventional convolution respectively on the MobileNet-v2-47 workload.

4.4.3 Energy Breakdown

The energy breakdown of our accelerator running the proposed algorithm with the

MobileNet-v2-34 backbone is shown in Fig. 4-27. The energy is obtained from post-

PnR simulation with timing, switching activity and parasitic information annotated.

The OA & RefFrame Unit (including PSum, OA and RefFrame buffers, the vector

accumulator, and activation and RefFrame update unit as shown in Fig. 2-6a) and

the weight buffer take up around 50% of the total energy consumption. Adding

support to the OS-LWS dataflow proposed in Chapter 2 may further reduce their

energy consumption. The energy overhead of having the ConvMap and Coordinate

generator and buffer, DiffFrame pruning unit and the DiffFrame generator for our

proposed algorithm is very small.
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MobileNet-v2-34. DRAM access time and energy are not included. COORD: coordi-
nate; Gen.: generator; IFC: interface.

4.4.4 Chip Measurements and Comparison with Prior Work

The accelerator is fabricated in 28nm CMOS. The die micrograph is shown in Fig. 4-

28a. We measure the accelerator chip running the proposed real-time DiffFrame

convolution with temporal modeling algorithm with the MobileNet-v2-34 backbone.

The voltage-frequency sweep is shown in Fig. 4-28. Achieving 50MHz at 0.6 V, it

consumes 40 uJ/frame (DRAM excluded) with 1.01 TOPS/W and 38 FPS with an

average IA sparsity of 63.1%. We also measure the accelerator chip running the con-

ventional convolution with the same backbone. As shown in Fig. 4-29, our proposed

techniques reduce the EDP by around 1.8x compared to conventional convolution.

Furthermore, our work achieves a 6.3x improvement in energy efficiency (TOPS/W)

compared to [64] and the lowest energy/frame compared to prior work as shown in

Table 4.5.

4.5 Further Discussions on CNN Sparsity Handling

In Section 4.2.2, we present how our work handles sparsity in the proposed real-time

DiffFrame convolution. In this section, we analyze the existing sparsity handling

techniques and describe how our work is different from prior work.

Sparse data can be utilized in various ways. Based on existing works and analy-
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Figure 4-28: (a) Die micrograph (1: 16 kB Weight buffer; 2: 8 × 8 MAC array; 3:
32 kB IA buffer; 4: 44 kB OA RefFrame unit; 5: DiffFrame generator; 6: DiffFrame
pruning; 7: ConvMap buffer; 8: ConvMap generator and coordinate buffer). (b)
Frequency and power measurements.
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Figure 4-29: Comparison of the proposed real-time Diffframe convolution and con-
ventional convolution in terms of energy, frame rate and energy-delay product (EDP)
on our accelerator chip.
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Table 4.5: Comparison to Prior Work

JSSC’18 [1]
1—3,5)

ISSCC’20 [3] 
1—5)

ISSCC’21 [2]
1,2,4,5)

This work   
1—5)

Temporal
modeling? N N N Y

Temporal 
redundancy 
utilized?

N Y N Y

Single-frame 
latency? N N Y Y

Technology 65 nm 65 nm 28 nm 28 nm

Core vol. (V) 0.7~1.1 0.52~0.99 0.6~0.9 0.55~1.0

Clock freq. 10~200 MHz 50 MHz 100~470 MHz 29~100 MHz

Precision 8b W & IA 8b W, 4b/8b IA 8b W & IA 8b W & IA

DRAM BW limit not mentioned 800MB/s not mentioned 800MB/s

Workload AlexNet MNet-v1-27 ResNet MNet-v2-34

Dataset ImageNet custom dataset ImageNet DAC-SDC

Accuracy 56.9% (top-1) not mentioned 76.92% (top-1) 51.3% IoU

Throughput
(GOPS) not mentioned 1.32~1.97 not mentioned 0.9~3.1

Frame/sec. 20 ~ 346 44 ~ 67 40 23 ~ 77

Energy/frame 310 ~ 838 uJ 183 ~ 278 uJ6) 1120 uJ 39 ~ 98 uJ

1) 1MAC=2OP; 2) BatchNorm, softmax not included; 3) MLP not included; 4) DRAM 
access time not included; 5) DRAM access energy not included; 6) The minimum 
energy/frame reported in [3] is 24.7uJ with a tiny MNet-v1-16 (3.2x fewer operations 
compared to our MNet-v2-34). Since [3] does not report the corresponding throughput,
we note this case here for the clarity of the table. *MNet: MobileNet.

sis [51, 6], we classify them into two categories based on their target components. One

is the computation-related techniques shown in Table 4.6. A basic approach is to gate

computation with zero weight and/or IA to reduce the dynamic energy of computing

units. An example can be found in Eyeriss [6]. A more aggressive approach skips the

computation cycle along with computation when weight and/or IA is zero, such as

Cnvlutin [1] and SCNN [41]. The other category is the memory-related techniques

shown in Table 4.7. Some work, such as Eyeriss [6], skips memory access of an input

when the other input is zero for the computation. As skipping memory access only ap-

plies to low memory level(s) close to the computing units, it does not save major data

delivery costs. Other work compresses the sparse data in part of or all of the memory
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Table 4.6: Computation-Related Sparsity Handling Techniques

Computation 
Energy

Computation 
Cycles

Gate Computation
Skip Computation

Table 4.7: Memory-Related Sparsity Handling Techniques

Memory 
Access

Data
Delivery

Storage
Size

Skip Memory Access
Compress Data

levels so that associated memory access, data delivery and storage size are reduced.

A common approach is to compress the data traffic between the off-chip DRAM and

the accelerator chip as shown in Eyeriss [6] and Envision [38]. Another well-studied

approach is to convolve with compressed weights only, such as Cambricon-X [65].

Since weights stay the same during inference, they can be compressed in advance ac-

cording to the need of the designer. Thus, the sparsity pattern of weights is known in

advance and metadata can be generated offline. That simplifies the inference acceler-

ator design compared to handling sparsity in activations as activations are generated

on-the-fly and their metadata needs to be processed online. In the following analysis,

we focus on activation sparsity handling with the more aggressive technique in each

category—skipping computation and data compression—as they potentially provide

more benefits.

Table 4.8 summarizes the ineffectual computation skipping and activations and

PSums compression in different memories in prior work. Some prior works explored

the handling of compressed IAs in all memory levels for convolution, such as Cn-

vlutin [1] and SCNN [41]. However, prior work does not consider the sparsity han-

dling of PSums/OAs across all memory levels. The reason is that PSums/OAs have a

high probability to be dense in conventional convolution due to dilation. In contrast,

our work proposes real-time DiffFrame convolution eliminating dilation (with specific
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Table 4.8: Comparison to Prior Work in Terms of Sparsity Handling in Activations
and Partial Sums

Conventional 
Convolution Prior Work This 

Work
Skip zero computation?

Is compressed in 
DRAM?

IA
OA/PSum

Is compressed in 
SRAM?

IA
OA/PSum

X
X
X
X
X

X
X
X
X

X
X X

rules between nonzero input and output coordinates) to introduce sparsity in PSums

and OAs. With algorithm and architecture co-design, our work handles convolution

with compressed PSums/OAs in all memory levels. That expands the sparse CNN

accelerator design space.

Furthermore, our work introduces decoupled metadata generation and map-guided

sparse convolution to efficiently convolve compressed PSums/OAs. The definition

and explanation of decoupled metadata generation is presented in Section 4.2.2. In

contrast, we classify the prior sparsity handling architectures as coupled metadata

generation and coordinate-guided sparse convolution. Coupled metadata generation

refers to the design in which the processing sequence of metadata is associated with

that of compressed data. The reasons prior work used coupled metadata generation

are that 1) prior work needs coordinates to index uncompressed PSums during ac-

cumulation for convolution whereas our work directly uses position to index PSums,

2) the PSum coordinate sequences are different for every layer providing no reuse

opportunities, and thus they need to be generated with PSums to guide accumula-

tion (whereas metadata are shared across the layers with a stride equal to 1 in our

work). To analyze prior work, a sparse fiber tree representation is proposed, which

uses coordinates as indices to present sparse dataflow as an abstraction of the CNN

accelerator architecture [51]. To represent our work more straightforwardly, we illus-

trate our map-guided convolution and decoupled metadata generation as shown in

the pseudo-codes of Fig. 4-12 and 4-13a, where positions are used to index data dur-

ing convolution and metadata generation is fully decoupled from convolution. That
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provides an alternative way of representing sparsity handling architectures of NN

accelerators.

4.6 Summary and Conclusions

This section presents an algorithm and hardware co-design of a deep learning accel-

erator, VideoTime3, optimized for state-of-the-art video understanding applications.

The chip is innovative as it achieves all three features—is capable of temporal model-

ing for higher accuracy, utilizes temporal redundancy to improve energy efficiency, and

achieves single-frame latency for real-time applications, such as autonomous vehicles

and AI drones. Our work has four key contributions: 1) propose real-time DiffFrame

convolution achieving 2.2x DRAM access reduction on MobileNet-v2 workload at

single-frame latency compared to conventional convolution; 2) introduce decoupled

metadata processing and map-guided convolution to efficiently handle compressed

PSums/OAs and IAs resulting from algorithm co-design and design sorter-free ar-

chitecture for the metadata generator; 3) enable temporal modeling and have 2%

– 2.5% accuracy (IoU) improvement with real-time DiffFrame convolution on DAC-

SDC object tracking dataset [61]; 4) optimize data buffering to remove DRAM traffic

overhead for temporal modeling and reduce 55% – 79% IA DRAM traffic in depth-

wise layers. The chip consumes 40 uJ/frame with 38 frames/second at 0.6 V in 28nm

CMOS.

We focus on the efficient handling of activations for real-time video understand-

ing applications considering redundancy and information between successive video

frames in our analysis. However, the proposed techniques can also be applied to

other applications that have similarities between multiple inputs, such as data from

MRI machines. Also, they can be applied with well-known weight sparsity handling

methods to boost energy savings and speed even further.
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Chapter 5

Conclusions and Future Directions

Addressing the challenge of the immense demand for the computing power while

maximizing potential of deep learning has been a crucial and highly sought-after

focus in both the research community and industry. Designing across the boundaries

of circuit, architecture and algorithm, this thesis provides unique insights and presents

novel techniques to tackle this challenge.

5.1 Summary of Contributions

• Hybrid dataflows and memory hierarchy co-design

This thesis shows that maximizing the reuse of a single data type, such as fully

weight/output/input stationary, may not lead to the highest energy efficiency.

We argue that the designer should explore all possible storage elements provided

by a chosen technology for each data type and consider balancing the reuse

across different data types given the energy and access time of different storage

elements.

We propose hybrid dataflows that balance the reuse of weight and partial sums

and introduce a new level of the memory hierarchy—the collector—between the

on-chip buffer and compute units. Our proposed output stationary with local

weight stationary dataflow improves the energy efficiency of two NN acceler-
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ators analyzed in this thesis by 1.5x – 2x. This technique is also adopted in

a more recent accelerator for tranformers and significantly reduces the overall

proportion of power used for memory access and data delivery compared to

prior work. It can be generalized to accelerators for various applications, such

as NN training and general tensor algebra, and various types of accelerators,

such as accelerators on the edge and accelerators on the cloud.

• Weight tuning algorithm and datapath/SRAM co-design

We looked into the data statistics in the accelerator and investigated how they

affect the overall energy consumption. As the designer has a full control over

weights for inference, we propose a weight tuning algorithm that reduces the

toggle count of weight sequence by tweaking the bit representation of weights.

The reduction in toggle count of weight leads to dynamic energy reduction

of weight delivery and computation with the co-designed datapath. Adopting

a custom SRAM with conditional precharge, this technique also reduces the

energy consumption of the weight buffer.

• Algorithm and architecture co-design for real-time video understanding with

temporal redundancy reduction and temporal modeling

When designing an accelerator for a specific application, investigating the pro-

cessed data and co-designing the application-specific algorithm bring more flex-

ibility and provide powerful design knobs to improve energy efficiency. Fol-

lowing this design methodology, we propose a real-time DiffFrame convolution

with temporal modeling algorithm for video understanding, which captures the

useful information in video data for higher application accuracy while utilizing

redundancy in the data for energy savings.

• Decoupled metadata processing and map-guided sparse convolution with com-

pressed OA

The proposed real-time DiffFrame convolution for video understanding provides

unique sparsity handling opportunities—sparse PSum and OA. We propose de-
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coupled metadata processing and map-guided sparse convolution to efficiently

enable compressed PSum/OA across all memory hierarchies. Compared to con-

ventional sparse convolution with uncompressed PSum and OA, our method

delivers around 3x reduction in storage size for PSum/OA at 30% density and

achieves a significant reduction in overall memory access and data delivery. We

expand the taxonomy of sparsity handling architectures for convolution with our

decoupled metadata generation and map-guided sparse convolution. Besides

video, this method can be applied to other data that present some similarities

or correlations across batches, such as images from MRI.

• Test chips

We taped out two test chips in this thesis to evaluate the proposed techniques,

including 1) the NN accelerator in 40-nm technology supporting the proposed

weight tuning algorithm for small footprint NNs, and 2) the VideoTime3 acceler-

ator in 28-nm technology for video understanding with our proposed techniques.

• Evaluation of eMRAM

We explore the application of emerging eMRAM on DL accelerators in this

thesis. After comparing the characteristics of eMRAM, DRAM and SRAM, we

used eMRAM for the last level weight storage to keep all the weights on chip.

Through dataflow and buffer scheme optimization, the energy consumption of

eMRAM is less than 6% of the total energy consumption of the NN accelerator.

5.2 Future Directions

Given the significant advancements in DL applications, such as generative AI and

autonomous vehicles, and their large computation demand, there is increasing de-

mand and exciting opportunities for efficient DL accelerators. Here are some possible

extensions of this work:

• More Efficient Sparsity Handling: The activation sparsity handling tech-

niques developed in this work can be applied along with existing efficient weight
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sparsity handling techniques. That will enable compression in all data types in-

volved in convolution, leading to higher utilization of sparsity and thus more

opportunities to achieve higher energy efficiency.

• Generalization to Other Applications: It would be interesting to explore

the generalization of the techniques proposed in this thesis to other applications,

such as generative AI and graph processing, which also involve NNs or sparse

tensor algebra.

• New Technologies: While all our chips were fabricated in CMOS technology,

we also explored the application of the emerging eMRAM technology on DL

accelerators with an analytical model and obtained promising results. It would

be useful to design and fabricate the chip with emerging technologies. Moreover,

while our techniques are designed for a single chip, it would be beneficial to

incorporate them into DL accelerator systems with chiplet, which is a promising

technology to further push the limit of energy efficiency.

• Compiler Design and Software Ecosystem: While our work explores al-

gorithm and hardware co-design for a given application and develops custom

mappers for our proposed algorithms and hardware, it would be useful to inves-

tigate how to jointly develop the compiler and build a better software ecosystem

along with the DL accelerator design in a systematic way.
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Appendix A

List of Abbreviations

DL deep learning

GPT generative pre-trained Transformer

IA input activation

OA output activation

PSum partial sum

FMap feature map

EDP energy-delay product

NN neural network

WS weight stationary

IS input stationary

OS output stationary

eMRAM embedded magnetoresistive RAM

OS-LWS output stationary with local weight stationary

WS-LOS weight stationary with local output stationary

PE processing element

SCM standard cell memory

KWS keyword spotting

CNN convolution neural network

NoC network on chip

FIR finite impulse response
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AR augmented reality

VR virtual reality

AI artificial intelligence

TSM temporal shift module

PW point-wise (convolution)

DW depth-wise (convolution)

UAV unmanned aerial vehicle

IoU intersection-over-union
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Appendix B

Custom NN Model structures

We present the structures of custom NN models used in this thesis.

Table B.1: The Original and Decomposed Structure of CNN80 (The input size of
CNN80 is 𝐻 = 10 and 𝑊 = 49.)

Original Decomposed  
Layer FH FW ICHN OCHN SH SW Layer FH FW ICHN OCHN SH SW
CONV1 4 10 1 28 1 1 CONV1-1 1 10 1 6 1 1

CONV1-2 4 1 6 9 1 1
CONV1-3 1 1 9 28 1 1

CONV2 4 10 28 30 2 1 CONV2-1 1 1 28 18 1 1
CONV2-2 4 10 18 21 2 1
CONV2-3 1 1 21 30 1 1

LIN 1 1 1920 16 NA NA LIN-1 1 1 1920 12 NA NA
LIN-2 1 1 12 12 NA NA
LIN-3 1 1 12 16 NA NA

FC1 1 1 16 128 NA NA FC1 1 1 16 128 NA NA
FC2 1 1 128 12 NA NA FC2 1 1 128 12 NA NA

* LIN: linear layer; FC: fully-connected layer; SW: stride in width; SH: stride in height 
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Table B.2: The Structure of MobileNet-v2-47 (The input size is 𝐻 = 160 and
𝑊 = 360. The proposed real-time DiffFrame convolution with temporal modeling
algorithm is applied to layer 4 and the following layers. Metadata need to be gener-
ated for layer 4, 16, 17, 37 andd 38. The last layer, which is a fully connected layer,
is not included in our evaluation.)

Layer IDX OCHN ICHN FH FW Stride Group

1 32 3 3 3 2 1

2 32 32 3 3 2 1

3 128 32 3 3 2 1

4 128 128 3 3 1 128

5 24 128 1 1 1 1

6 128 24 1 1 1 1

7 128 128 3 3 1 128

8 32 128 1 1 1 1

9, 12 256 32 1 1 1 1

10, 13 256 256 3 3 1 256

11, 14 32 256 1 1 1 1

15 256 32 1 1 1 1

16 256 256 3 3 2 256

17 64 256 1 1 1 1

18, 21, 24 512 64 1 1 1 1

19, 22, 25 512 512 3 3 1 512

20, 23, 26 64 512 1 1 1 1

27 512 64 1 1 1 1

28 512 512 3 3 1 512

29 96 512 1 1 1 1

30, 33 512 96 1 1 1 1

31, 34 512 512 3 3 1 512

32, 35 96 512 1 1 1 1

36 512 96 1 1 1 1

37 512 512 3 3 2 512

38 160 512 1 1 1 1

39, 42 1024 160 1 1 1 1

40, 43 1024 1024 3 3 1 1024

41, 44 160 1024 1 1 1 1

45 1024 160 1 1 1 1

46 1024 1024 3 3 1 1024

47 320 1024 1 1 1 1

48 1280 320 1 1 1 1
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Table B.3: The Structure of MobileNet-v2-34 (The input size is 𝐻 = 54 and 𝑊 = 122.
The proposed real-time DiffFrame convolution with temporal modeling algorithm is
applied to layer 3 and the following layers. Metadata need to be generated for layer
3, 12, 13, 27, and 28. The last layer, which is a fully connected layer, is not included
in our evaluation.)

Layer IDX OCHN ICHN FH FW Stride Group

1 32 3 3 3 2 1

2 64 32 3 3 2 1

3 64 64 3 3 1 64

4 16 64 1 1 1 1

5 64 16 1 1 1 1

6 64 64 3 3 1 64

7 16 64 1 1 1 1

8 128 16 1 1 1 1

9 128 128 3 3 1 128

10 16 128 1 1 1 1

11 128 16 1 1 1 1

12 128 128 3 3 2 128

13 32 128 1 1 1 1

14, 17 256 32 1 1 1 1

15, 18 256 256 3 3 1 256

16, 19 32 256 1 1 1 1

20 256 32 1 1 1 1

21 256 256 3 3 1 256

22 48 256 1 1 1 1

23 256 48 1 1 1 1

24 256 256 3 3 1 256

25 48 256 1 1 1 1

26 256 48 1 1 1 1

27 256 256 3 3 2 256

28 80 256 1 1 1 1

29 512 80 1 1 1 1

30 512 512 3 3 1 512

31 80 512 1 1 1 1

32 512 80 1 1 1 1

33 512 512 3 3 1 512

34 160 512 1 1 1 1

35 1280 160 1 1 1 1
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Appendix C

Dataflows

We present all the dataflows (besides OS-LWS-a, OS-LWS-b dataflows shown in Chap-

ter 2) used in the design space of System 2 in Chapter 2.
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1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. For each FH:

9. For each FW:

10. For each ichn_tile/ichn_parallel:

11. weight_l2_buf.read()

12. weight_l0_reg.wr_rd()

13. For each OH:

14. For each OW:

15. ia_l1_buf.read()

16. ia_l0_reg.wr_rd()

17. psum_l1_ping_buf.read()

18. Parallel_for ichn_parallel:

19. Parallel_for ochn_parallel:

20. MAC & psum_l0_reg.accum()

21. psum_l1_ping_buf.write()        

22. psum_l1_pong_buf.read()

23. psum_l2_buf.write()

Figure C-1: WS-a dataflow (inner-level). No weight L1 buffer is needed.
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1. For each OCHN/ochn_tile:

2. weight_l2_buf.read()

3. weight_l1_buf.write()

4. For each OH/oh_tile:

5. For each OW/ow_tile:

6. For each ICHN/ichn_tile:

7. ia_l2_buf.read()

8. ia_l1_buf.write()

9. For each ochn_tile/ochn_parallel:

10. For each FH:

11. For each FW:

12. For each ichn_tile/ichn_parallel:

13. weight_l2_buf.read()

14. weight_l0_reg.wr_rd()

15. For each OH:

16. For each OW:

17. ia_l1_buf.read()

18. ia_l0_reg.wr_rd()

19. psum_l1_ping_buf.read()

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()        

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()

Figure C-2: WS-b dataflow (inner-level).
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1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. weight_l2_buf.read()

9. weight_l1_buf.write()

10. For each oh_tile:

11. For each ow_tile:

12. psum_l1_ping_buf.read()

13. For each FH:

14. For each FW:

15. For each ichn_tile/ichn_parallel:

16. ia_l1_buf.read()

17. ia_l0_reg.wr_rd()

18. weight_l1_buf.read()

19. weight_l0_reg.wr_rd()

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()        

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()
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Figure C-3: OS-a dataflow (inner-level).
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1. For each OCHN/ochn_tile:

2. weight_l2_buf.read()

3. weight_l1_buf.write()

4. For each OH/oh_tile:

5. For each OW/ow_tile:

6. For each ICHN/ichn_tile:

7. ia_l2_buf.read()

8. ia_l1_buf.write()

9. For each ochn_tile/ochn_parallel:

10. For each oh_tile:

11. For each ow_tile:

12. psum_l1_ping_buf.read()

13. For each FH:

14. For each FW:

15. For each ichn_tile/ichn_parallel:

16. ia_l1_buf.read()

17. ia_l0_reg.wr_rd()

18. weight_l1_buf.read()

19. weight_l0_reg.wr_rd()

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()        

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()
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Figure C-4: OS-b dataflow (inner-level).
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1. For each OCHN/ochn_tile:

2. For each OH/oh_tile:

3. For each OW/ow_tile:

4. For each ICHN/ichn_tile:

5. ia_l2_buf.read()

6. ia_l1_buf.write()

7. For each ochn_tile/ochn_parallel:

8. For each FH:

9. For each FW:

10. For each ichn_tile/ichn0:

11. weight_l2_buf.read()

12. weight_l0_collect.write()

13. For each OH:

14. For each OW:

15. psum_l1_ping_buf.read()

16. For each ichn0/ichn_parallel:

17. weight_l0_collect.read()

18. ia_l1_buf.read()

19. ia_l0_reg.wr_rd()            

20. Parallel_for ichn_parallel:

21. Parallel_for ochn_parallel:

22. MAC & psum_l0_reg.accum()

23. psum_l1_ping_buf.write()        

24. psum_l1_pong_buf.read()

25. psum_l2_buf.write()

Figure C-5: WS-LOS-a dataflow (inner-level). No weight L1 buffer is needed.
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1. For each OCHN/ochn_tile:

2. weight_l2_buf.read()

3. weight_l1_buf.write()

4. For each OH/oh_tile:

5. For each OW/ow_tile:

6. For each ICHN/ichn_tile:

7. ia_l2_buf.read()

8. ia_l1_buf.write()

9. For each ochn_tile/ochn_parallel:

10. For each FH:

11. For each FW:

12. For each ichn_tile/ichn0:

13. weight_l1_buf.read()

14. weight_l0_collector.write()

15. For each OH:

16. For each OW:

17. psum_l1_ping_buf.read()

18. For each ichn0/ichn_parallel:

19. weight_l0_collector.read()

20. ia_l1_buf.read()

21. ia_l0_reg.wr_rd()            

22. Parallel_for ichn_parallel:

23. Parallel_for ochn_parallel:

24. MAC & psum_l0_reg.accum()

25. psum_l1_ping_buf.write()        

26. psum_l1_pong_buf.read()

27. psum_l2_buf.write()

Figure C-6: WS-LOS-b dataflow (inner-level).
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