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Abstract

The societal challenges posed by machine learning algorithms are becoming increasingly
important, and to effectively study them, it is crucial to incorporate the incentives and pref-
erences of users into the design of algorithms. In many cases, algorithms are solely designed
based on the platform’s objectives, without taking into account the potential misalignment
between the platform’s goals and the interests of users.

This thesis presents frameworks for studying the interactions between a platform and
strategic users. The central objective of the platform is to estimate a parameter of interest
by collecting users’ data. However, users, recognizing the value of their data, demand privacy
guarantees or compensations in exchange for sharing their information. The thesis delves
into various aspects of this problem, including the estimation task itself, the allocation of
privacy guarantees, and the potential vulnerabilities of these guarantees to the platform’s
power.

In particular, in the first part of this thesis, we formulate this question as a Bayesian-
optimal mechanism design problem, in which an individual can share her data in exchange
for a monetary reward but at the same time has a private heterogeneous privacy cost which
we quantify using differential privacy. We consider two popular data market architectures:
central and local. In both settings, we establish minimax lower bounds for the estimation
error and derive (near) optimal estimators for given heterogeneous privacy loss levels for
users. Next, we pose the mechanism design problem as the optimal selection of an estimator
and payments that elicit truthful reporting of users’ privacy sensitivities. We further develop
efficient algorithmic mechanisms to solve this problem in both privacy settings. Moreover,
we investigate the case that users have heterogeneous sensitivities for two types of privacy
losses corresponding to local and central privacy measures.

In the second part, we study a different aspect of the data market design: the optimal
choice of architecture from both users’ and the platform’s point of view. The platform
collects data from users by means of a mechanism that could partially protect users’ privacy.
We prove that a simple shuffling mechanism, whereby individual data is fully anonymized
with some probability, is optimal from the viewpoint of users. We also develop a game-
theoretic model of data sharing to study the impact of this shuffling mechanism on the
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platform’s behavior and users’ utility. In particular, we uncover an intriguing phenomenon
that highlights the fragility of provided privacy guarantees: as the value of pooled data
rises for users, the platform can exploit this opportunity to decrease the provided privacy
guarantee, ultimately leading to reduced user welfare at equilibrium.

Thesis Supervisor: Asuman Ozdaglar
Title: Professor of Electrical Engineering and Computer Science
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“It is not knowledge, but the act of learning, not possession but

the act of getting there, which grants the greatest enjoyment.

When I have clarified and exhausted a subject, then I turn away

from it, in order to go into darkness again; the never-satisfied

man is so strange if he has completed a structure, then it is not

in order to dwell in it peacefully, but in order to begin another.”

Karl Friedrich Gauss

Letter to Bolyai, 1808
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Chapter 1

Introduction

1.1 Problems and Contributions

Machine Learning (ML) algorithms are shaping every aspect of our lives, including work,

healthcare, education, transportation, and communication. Though the promise of these new

technologies is evident, the challenges they create are equally fundamental. In particular,

it is crucial to understand the implications of these emerging technologies on society and

address any ethical, legal, or social issues that may arise in their interactions with society.

Many algorithms, particularly those involving user participation, are often designed with

the goal of optimizing certain objectives or achieving desirable outcomes for the platforms.

However, overlooking user incentives and strategic behavior can have unintended conse-

quences due to potential conflicting interests. More specifically, in many settings, there is a

misalignment between the what platforms want and what user utilities or social objectives

are.

Privacy concerns serve as a notable example, as the success of machine learning algorithms

heavily relies on the collection and utilization of vast amounts of user data. Most online

platforms’ business model is partly based on acquiring and harvesting users’ data. These data

are often put to a multitude of uses, including improvements of algorithms, learning about

underlying parameter (for example, in health care applications), and targeting individualized

ads to users.

Each user’s data is informative about an underlying state (e.g., some health condition of
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the population or its severity) and about their own private characteristics and preferences

(that can be used for targeted intrusive ads). While users may tolerate or even value some of

these data applications, they may wish to prevent others and protect some degree of privacy

(for example, against intrusive ads). In fact, a survey in 2021 Lucas et al. [2021] found out

that 86% of United States population find data privacy as a growing concern and 68% say

they are concerned by the level of data collected by businesses.

Consequently, we need to adjust the design of data markets to include privacy-preserving

mechanisms. In this regard, in Chapter 2, we consider a data market with users who ask

for different levels of privacy guarantees to share their data, leading to the following key

practical question:

Given users’ heterogeneous privacy demands, how do we decide on privacy allocations to

different users?

We answer this question and study the impact of data market architecture on the design

of mechanisms for purchasing data from privacy-sensitive strategic users. We do so by

considering two data market architectures: central and local. In the central setting, users

trust the platform and share their raw non-private data with it. Yet, they require the

platform’s output, i.e., the estimator, to be private. On the other hand, the local setting

is more conservative: users do not trust the platform and make their data private before

even sharing it with the platform. We also use differential privacy to quantify the privacy

loss of users to characterize its trade-offs with the benefits of data. Roughly speaking,

differential privacy provides an upper bound on how sensitive the output of an algorithm is

to an individual’s data.

We consider a model in which a user, in addition to her private data, has a heteroge-

neous privacy sensitivity that is unknown to the platform and represents her cost per unit

differential privacy loss. We design an incentive-compatible mechanism to elicit privacy sen-

sitivity correctly. We frame this as a mechanism design problem in which an individual can

share her data in exchange for a monetary reward or services. Individuals participate in the

mechanism by reporting their privacy sensitivities and sharing their data. This mechanism

returns three elements: (i) an optimal estimator, (ii) the privacy guarantee allocated to each

16



user, and (iii) the compensation each user receives for her privacy loss. Thus, the mechanism

endogenously determines the privacy loss levels as a function of both users’ sensitivities and

how their data is used in the estimation problem of the platform. Next, we also develop ef-

ficient algorithms to solve the resulting mechanism design problem in both privacy settings.

Our mechanism in the central setting can be implemented in quasi-linear time, and it admits

a Polynomial Time Approximation Scheme (PTAS) in the local setting.

Another key contribution of our work is characterizing the optimal estimator for given

privacy loss levels desired by users. While this question has been answered in the homoge-

neous setting, i.e., when privacy levels are equal, our work is the first to answer it in the

general heterogeneous case. To do so, we first establish minimax lower bounds for the esti-

mation error using Le Cam’s method from the statistics literature. We then provide nearly

tight upper bounds that match our lower bounds and enable the choice of optimal estimator.

Finally, our work also compares central and local architectures from the perspective of

both the users and the platform. We show that the platform prefers the central setting,

meaning that her optimal utility under central differential privacy is always (weakly) larger.

Intuitively, this holds since the platform receives non-private data in the central case, as

opposed to the local case in which users make their data private before sharing it. However,

the users’ preference between central and local settings depends on their privacy sensitivities:

if a user has a low privacy sensitivity, i.e., she cares more about learning the parameter of

interest rather than her privacy, she would prefer the central setting. In contrast, users who

have high privacy sensitivity would favor the local architecture.

Central and local architectures correspond to privacy losses at two different stages of data

acquisition. The local privacy loss is due to the leakage of a user’s information when she

shares her data with the platform, and the central privacy loss is due to the released estimate

by the platform to the public. One natural question is whether we can allow users to report

possibly different privacy sensitivities for these two types of privacy losses, depending on

their level of trust in the platform. In chapter 3, we consider a model of utility for users

in which their privacy loss is a heterogeneous combination of the local and central privacy

losses. We accordingly derive the privacy allocations at both local and central stages and

the compensation to each user as the solution of this new mechanism design formulation.
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The results of these two chapters are based on joint work with Ali Makhdoumi, Azarakhsh

Malekian, and Asu Ozdaglar Fallah et al. [2022a,b].

In the aforementioned chapters, we fixed the central and local architectures to primarily

study the heterogeneity aspect of privacy demands in the data market, i.e., when users

have different and unknown (to the platform) privacy sensitivities. Furthermore, we used

monetary compensations to incentivize users to report their privacy sensitivities truthfully.

In Chapter 4, we study a different aspect of the data market design: the optimal choice of

architecture from both users’ and the platform’s point of view.

The platform collects data from users by means of a mechanism that could partially

protect users’ privacy. We develop a game-theoretic model of data sharing to study the choice

of this mechanism in the space of all possible mappings from users’ data to the platform’s

input. In selecting the mechanism, the platform chooses the balance between data harvesting

and privacy to convince users to share their data (we assume that the platform can commit

to an algorithm to achieve the desired balance). We establish a number of main results in

this environment:

First, from the users’ point of view, the optimal privacy-preserving mechanism takes a

simple “mask-shuffling" form, whereby a user’s data is revealed to the platform with some

probability (and fully masked and anonymized with the complementary probability). Then,

all the data go through a shuffler and a random permutation of the original set of datapoints

is revealed to the platform. We establish that such a mask-shuffling mechanism provides

the best privacy guarantee to users for any given amount of learning about the underlying

state. This type of shuffling is attractive from the viewpoint of users because it maintains

information about the underlying common state but ensures that the platform learns much

less about the individual in expectation. From our modeling viewpoint, the mechanism

is attractive because it enables us to characterize the extent of privacy guarantees by the

probability with which the platform commits to shuffle the data of users.

Next, we utilize the mask-shuffle mechanism and frame the interaction between the plat-

form and users as a two-stage game. In the first stage, the platform determines the prob-

ability of offering shuffling to the users. In the second stage, with this information, users

independently decide on the probability of sharing (or masking) their data. We characterize
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the Bayesian-Stackelberg equilibrium of this game and present several comparative statics

results. Specifically, we demonstrate that as users become more interested in learning the

shared information, the platform offers a lower shuffling guarantee at equilibrium since users

require less persuasion to disclose their data.

Moreover, we show that, an increase in the importance of the underlying common state

makes users worse off and the platform better off. This is a paradoxical result, since holding

the platform’s algorithm fixed, users’ welfare would have increased (for example, because

they learn more about the underlying health condition). However, recognizing this, the

platform then relaxes privacy guarantees so much that its profits increases significantly and

user welfare decreases. Put differently, when learning about the underlying state becomes

more important for users, the platform can exploit this preference to tilt things for its own

benefit.

Finally, we demonstrate that the platform has an incentive to deviate from the optimal

mask-shuffling mechanisms preferred by the users. We identify a set of "pivot mechanisms"

that allow the platform to make individual privacy dependent on the choices of other users.

By designing a pivot mechanism that guarantees not to use any user data if any user decides

not to share their data, the platform can exploit user preferences towards the common state.

As a result, the user’s cost of not sharing her data increases, making her more likely to share

her data, even if she values her privacy. We also demonstrate that more continuous versions

of pivot mechanisms can achieve the same outcome. This result underscores the fact that

self-regulation by platforms may not be sufficient to ensure user privacy and highlights the

challenges in protecting individual privacy in the face of collective benefits.

Taken together, our results highlight various facets of excessive platform power, even

when platforms can design and commit to algorithms for protecting user privacy. The results

of this chapter are based on joint work with Daron Acemoglu, Ali Makhdoumi, Azarakhsh

Malekian, and Asu Ozdaglar Acemoglu et al. [2023].

The results of this thesis shed light on the intricate dynamics between algorithms, strate-

gic users, and data market design. By addressing the variety of preferences, optimiz-

ing privacy-preserving mechanisms, and understanding the interplay between users and

platforms, we aim to mitigate the challenges and negative consequences arising from the
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widespread use of data. Ultimately, the responsible integration of ML algorithms into soci-

ety requires continuous examination, refinement, and consideration of diverse perspectives.

1.2 Related Literature

Private data acquisition literature: Our work in Chapters 2 and 3 builds on the growing

literature on optimal data acquisition from strategic privacy conscious users. Several of

these papers use differential privacy to quantify the cost users incur when sharing their data

Ghosh and Roth [2011], Nissim et al. [2012], Nissim et al. [2014]. A pioneering paper in this

literature is Ghosh and Roth [2011], which consider designing a mechanism for collecting

data from users that explicitly experience a cost for privacy loss. Ghosh and Roth [2011]

assume that each user has a private bit and a heterogeneous privacy loss parameter and the

platform’s goal is to estimate the sum of user’s data by using a differentially private and

dominant strategy truthful mechanism. This paper considers both the case when the user

data and privacy parameter are independent (as in our case) and when they are correlated.

For the independent case, their mechanism results in providing a single privacy level to all

users whose data are collected (because of their worst case view with a focus on dominant

strategy truthful mechanisms and lack of distributional assumptions on user data or cost

parameters). For the correlated case, Ghosh and Roth [2011] provide an impossibility result

for the existence of a truthful and individually rational mechanism. Several papers build on

Ghosh and Roth [2011], extending it to take it or leave it offers Ligett and Roth [2012], and

strengthening the impossibility results Nissim et al. [2014].

Another line of work tackles the open question posed by Ghosh and Roth [2011] on

whether a model with distributional assumption on users’ costs and Bayesian mechanism

design approach could be used to develop optimal mechanism for collecting data with privacy

guarantees. Roth and Schoenebeck [2012], Chen et al. [2018], and Chen and Zheng [2019]

followed this approach using a randomized mechanism in which user’s data is used with a

probability that depends on the reported privacy costs of the users.1 These papers do not

1This is different from our mechanism in which payments and resulting privacy losses depend on the
reported privacy sensitivity of all users.
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use differential privacy to model privacy costs, but rather use a menu of probability-price

pairs to control the privacy loss and compensation for each user.

Another noteworthy paper in this literature is Cummings et al. [2015], which consider

data purchase from users that provide different levels of data accuracy (variance) and may

strategically price access to their data. The variance in the data can represent uncertainty in

data quality or intentionally added noise in order to guarantee privacy. This paper does not

impose a functional form for the privacy loss in terms of a differential privacy parameter and

instead allows for a flexibility in offering a menu of different variance levels (or equivalently,

arbitrary costs for each level independently).

Our work differs from these works by assuming prior information on user privacy sensitiv-

ities, and focusing on characterizing the optimal Bayesian incentive compatible mechanism.

We further assume that user data are drawn from the same underlying distribution. This

allows the platform to put more weight on the data of a user with lower price sensitivity,

leading to different privacy levels for participating users. Another important distinction of

our model is our assumption that users derive utility from the accuracy of the estimation

outcome which changes the privacy allocation of the optimal mechanism. Finally our work

considers different privacy architectures, central and local, and explores the different privacy

guarantees provided by an optimal mechanism under these different architectures. Prior to

our work Cummings et al. [2022] has considered a setting in which the users benefit from

a better estimation outcome. They consider a linear estimator with Laplace additive noise

and show how it allows for heterogeneous privacy guarantees to different users in the central

model. We depart from this paper by establishing the (near) optimal estimator, considering

strategic users in reporting their privacy costs, and studying both central and local settings

and their comparison (see also Pai and Roth [2013] for a survey).

In our work, as well as the above papers, the platform can verify the data of users. A

different stream of this literature considers a setting in which individuals have the ability to

misreport their information Perote and Perote-Pena [2003], Dekel et al. [2010], Meir et al.

[2012], Ghosh et al. [2014], Cai et al. [2015], Liu and Chen [2016, 2017].

Our work also relates to the literature that consider privacy aware mechanism design and

selling strategies such as McSherry and Talwar [2007], Nissim et al. [2012], Abernethy et al.
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[2019], Lei et al. [2020], Chen et al. [2021a], and Chen et al. [2021b]. In particular, Chen

et al. [2021a] consider a dynamic personalized pricing problem with unknown nonparametric

demand models under data privacy protection, while Lei et al. [2020], Chen et al. [2021a],

and Han et al. [2021] consider parametric demand models. We note that both our research

question and results are different from these papers. In particular, we study the design

of optimal mechanisms for collecting data from strategic users with privacy concerns while

these papers consider demand learning for personalized pricing under privacy concerns in an

online learning framework and provide (tight) bounds on the regret of the optimal algorithm.

In addition, our work relates to the literature that studies the problem of choosing the

proper level of differential privacy given the goal of protecting individuals’ privacy such as

Lee and Clifton [2011], Hsu et al. [2014], and Mehner et al. [2021]. We depart from this line

of work by studying the endogenous choice of differential privacy levels based on individuals’

privacy sensitivity and their interactions with a platform.

The literature on data market and platform behavior: Our work, especially Chapter

4, also relates to the emerging literature on the social dimension of data and online platform

behavior, for example, Acemoglu et al. [2022] and Bergemann et al. [2020]. Bergemann

et al. [2020] consider a setting in which a (trusted) data intermediary collects users’ data

and resells them to a platform. They show that the data externality, whereby a user’s data

is predictive of others, can reduce the intermediary’s cost of acquiring the data. Acemoglu

et al. [2022] consider a more general, though reduced-form, data externality and establish

that this externality also reduces the value of data to both users and the platform. As a

result, data externalities depress data prices and amplify inefficiencies. Relatedly, Ichihashi

[2020] considers the interactions between a privacy-concerned user and a platform, where

the user’s activity reveals private information (see also Fainmesser et al. [2022] for a similar

model). These papers do not consider general privacy-preserving mechanisms.

More broadly, our work is also related to the literature on data collection and sharing.

Hörner and Skrzypacz [2016] study the design of mechanisms for selling data, while Goldfarb

and Tucker [2011], Bergemann and Bonatti [2015], Montes et al. [2019], and Jagabathula

et al. [2020] investigate how individual private information can be used to improve resource
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allocation. Competition implications of online data sharing and technologies have been

explored in, among others, Bimpikis et al. [2021] and Gur et al. [2019]. Bergemann and

Bonatti [2015] study the problem of selling cookies for targeted advertisement and study

how the price of data changes with the reach of the dataset and the fragmentation of data

sales. Fu et al. [2022] study data collection and privacy in recommendation systems. Other

works on information-sharing and market structure include Li [2002], Li and Zhang [2008],

Ha and Tong [2008], Shang et al. [2015], Foster et al. [2016], Lobel and Xiao [2017], Bimpikis

et al. [2019], Candogan and Drakopoulos [2020], Immorlica et al. [2020], Hu et al. [2020],

Ashlagi et al. [2020], Anunrojwong et al. [2021], Besbes and Mouchtaki [2021], and Ashlagi

et al. [2021] (see Bergemann and Bonatti [2019] for a survey).

The differential privacy literature: Our work in Chapters 2 and 3 relates to the lit-

erature on differential privacy. Initiated by the work of Dwork et al. [2006a,b], differential

privacy has emerged as a popular framework in computer science and engineering for charac-

terizing the privacy leakage of data oriented algorithms. Our work, in particular, is related to

the private mean estimation which has been studied extensively over the past decade Duchi

et al. [2013], Barber and Duchi [2014], Karwa and Vadhan [2017], Asoodeh et al. [2021],

Kamath et al. [2019, 2020], Cummings et al. [2021], Acharya et al. [2021]. Additionally, our

work in Chapter 3 uses the Rényi differential privacy introduced by Bun and Steinke [2016]

and Mironov [2017].
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Chapter 2

Optimal Deferentially Private Data

Acquisition

2.1 Introduction

The data of billions of people around the world are used every day for improving search

algorithms, recommendations on online platforms, personalized advertising, and the design of

new drugs, services and products. With rapid advances in machine learning (ML) algorithms

and further growth in data collection, these practices will become only more widespread in the

years to come. However, a common concern with many of these data-intensive applications

centers on privacy — as a user’s data is harnessed, more and more information about her

behavior and preferences are uncovered and potentially utilized by platforms and advertisers.

A popular solution to the tension between privacy costs and benefits of data is to use

methods such as differential privacy in order to limit the extent to which an individual’s

data is uncovered and exploited. The basic idea of differential privacy is to provide an upper

bound on how sensitive the output of an algorithm (e.g., the vector of recommendations

from an online site) is to an individual’s data. Although differential privacy methods are

already used by many of the tech companies, including, Apple, Google and Microsoft (see,

e.g., Erlingsson et al. [2014] and Ding et al. [2017]), a key practical question remains: how

do we decide how much privacy an individual will obtain? Imagine, for example, that two

individuals have similar data, but one is very privacy conscious, while the other one does not
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think that she has any concerns of privacy. It is natural to provide different privacy levels

for these two individuals when acquiring their data, but exactly how?

This chapter is an attempt to answer this key question and study the impact of data

market architecture on the design of mechanisms for purchasing data from privacy sensitive

strategic users. We consider a platform interested in estimating an underlying parameter

using data collected from users. While users benefit from the outcome of the estimation,

they are cognizant of the privacy losses they will incur and hence might be discouraged from

sharing their data. User data come from some underlying population distribution where

its mean is given by the parameter of interest. We formulate this question as a mechanism

design problem, in which an individual can share her data in exchange for a monetary reward

or services, but at the same time has a heterogeneous privacy sensitivity that represents her

cost per unit privacy loss. We assume a known prior on user’s privacy sensitivity (which is

independent of the data distribution). While an individual’s data is difficult to manipulate,

her privacy preferences are easier to falsify (if monetary rewards were increasing in how

privacy conscious individual is, then she might prefer to misrepresent this information).

Individuals participate in the mechanism by reporting their privacy sensitivities and sharing

their data. This mechanism simultaneously determines an “optimal” estimator, compensation

for the users, and privacy losses an individual will incur. Thus, the mechanism endogenously

determines the privacy loss levels as a function of both user sensitivities and also how their

data is used in the estimation problem of the platform.

We consider two popular differential privacy settings for providing privacy guarantees

for the users: central and local. In the central privacy setting, we require the output of

the estimation process to be differentially private with respect to each individual’s data. In

the local privacy setting, we impose a differential privacy requirement with respect to the

individual data of each user. Before formulating the optimal mechanism design problem,

we derive optimal estimators for given heterogeneous privacy loss levels for users in the two

privacy settings. We establish minimax lower bounds for the estimation error and use these

bounds to characterize the form of the optimal estimator with central and local privacy

guarantees. In particular, in the central setting we show that, for a given vector of privacy

losses, a linear estimator that combines a (properly designed) weighted average of the users’
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data points and a Laplace noise achieves the (near) optimal estimation error among all

estimators that can achieve the desired privacy losses. In addition, in the local setting, we

show that, for a given vector of privacy losses, first adding a Laplace noise to the data of

each user and then taking a weighted average of the users’ data points achieves the optimal

estimation error.

In the second part of the chapter, we formulate the Bayesian-optimal mechanism design

problem where the objective of the platform is to minimize the sum of the estimation error

and total payment for the users. We first provide a characterization of the optimal payment

as a function of the reported privacy sensitivities. This is closely related to the payment

identity in Myerson’s optimal auction design problem (Myerson [1981]), but differs in that

the reported privacy sensitivities of other users impacts a user’s utility not only through her

privacy loss level and payment but also through the overall estimation error (all users benefit

from a lower estimation error). We then focus our attention to linear estimators (which were

shown to be optimal for differentially private estimation given exogenous privacy loss levels).

We show that under some regularity conditions on the distribution of privacy sensitivities,

the problem of finding the optimal privacy levels can be cast as the solution to a non-convex

optimization problem. In both settings, we first reformulate the platform’s problem in terms

of designing a pair of weight and privacy loss functions. These functions map the vector of

reported privacy sensitivities to a vector of privacy losses for users and a vector of weights in

the linear estimator of the platform, respectively. In the central setting, we use the structure

of the problem to derive an efficient score-based algorithm for implementing our mechanism

in time 𝒪(𝑛 log 𝑛). In the local setting, we develop a Polynomial Time Approximation

Scheme (PTAS) to solve the platform’s problem.

In the last section, we compare the central and local differential privacy settings and

establish that the platform achieves a (weakly) higher utility in the central privacy setting

than that in the local one. This is because the local setting provides a stronger privacy

guarantee and hence increases the final estimator’s variance, which in turn reduces the

platform’s utility. We also illustrate that, for a given vector of privacy sensitivities, the

privacy loss level allocated to a user in the optimal local data acquisition mechanism is not

necessarily higher than the central setting, and in fact, it can be strictly lower (providing
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better privacy guarantees).

From a technical point of view, our first technical contribution is deriving the minimax

optimal private mean estimator for heterogeneous differential privacy levels. Prior to our

work, the optimal estimation has been studied only for homogeneous differential privacy

levels (see, e.g., Duchi et al. [2013], Dwork et al. [2014], Barber and Duchi [2014]). Utilizing

this optimal estimator, we demonstrate how existing mechanism design tools can be applied

to our setting, resulting in a point-wise optimization approach using virtual values to find

the optimal mechanism. Our second technical contribution involves developing efficient

algorithms specifically tailored for solving non-convex point-wise optimization problems that

arise in private data acquisition. This differs from the conventional mechanism design setting,

where the optimal mechanism can be obtained by solving a linear program. In terms of the

structural aspect, our problem deviates from the classic mechanism design, where the optimal

allocation typically follows a threshold rule. Instead, in our problem, the optimal differential

privacy level exhibits a continuous dependence on privacy sensitivity.

The rest of the chapter proceeds as follows. Section 2.2 presents the setting, describes

central and local differential privacy, and provides near optimal minimax estimator with

heterogeneous privacy losses. In Section 2.3, we establish how the platform’s mechanism

design problem turns into a point-wise optimization problem over the privacy losses. In

Section 2.4, we characterize the optimal privacy loss levels in the central privacy setting and

find a polynomial time algorithm to find them. In Section 2.5, we characterize the optimal

privacy losses in the local privacy setting and establish that it admits a PTAS. Section 2.6

compares the central and the local privacy settings. Section 2.7 concludes, while the last

section includes the omitted proofs from the text.

2.2 Differential Privacy and Platform’s Estimation Prob-

lem

We consider a platform interested in estimating an underlying parameter 𝜃 ∈ R by collecting

relevant data from a set of users denoted by 𝒩 = {1, . . . , 𝑛}. Each user 𝑖 ∈ 𝒩 has some
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personal data 𝑋𝑖 ∈ 𝒳 which is informative about 𝜃. We assume that 𝑋𝑖 = 𝜃 + 𝑍𝑖, where

(𝑍1, . . . , 𝑍𝑛) are independent and identically distributed mean zero random variables with a

variance denoted by var.1 Throughout the chapter, for simplicity, we assume |𝑍𝑖| ≤ 1
2

for

all 𝑖 ∈ 𝒩 .2

Users share their data with the platform since a more accurate estimate of parameter

𝜃 is useful for their objective (e.g., identifying a treatment from collecting individual med-

ical records). However, sharing of individual data raises privacy concerns which users are

cognizant of. Failure to address these privacy concerns would discourage users from sharing

their data. We model the privacy demand of users as a maximum privacy loss they can

tolerate. We use the notion of differential privacy to combine optimal estimation with such

privacy guarantees.

In the next section, we assume the privacy loss level each user is willing to accept is

given and derive (near-)optimal estimators that achieve these levels using different privacy

guarantees. In particular, the central setting provides a privacy guarantee in terms of how

user data impacts the final estimate of the platform, whereas the more restrictive local setting

seeks a guarantee for the individual data shared by each user.

In section 2.4, we endogenize the choice of the privacy loss levels by assuming a privacy

sensitive user utility.

2.2.1 Central and Local Differential Privacy

We first formalize the differential privacy framework we use to quantify guarantees on privacy

demand of users. We focus on two settings, known as central and local differential privacy. In

the central case, we assume that the users trust the platform to share their data and require

a privacy guarantee for user data by limiting its impact on the output of the analyst’s

estimation problem. In the local case, we assume a more restrictive privacy demand on the

individual data shared by each user.

1The assumption that 𝑍𝑖’s are independent and have the same variance is reasonable in the context of
estimation from a population and is made to simplify the notation and analysis. Our characterization of the
optimal data acquisition mechanism readily extends to a setting with correlated users’ data with different
variances.

2This is without loss of generality and the analysis extends to an arbitrary bound on |𝑍𝑖|’s by properly
adjusting the estimator used by the platform.
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We start with the definition of central differential privacy which slightly generalizes the

standard definition in Dwork et al. [2006a,b] by allowing different levels of privacy loss for

each user.3

Definition 2.1 (Central differential privacy). Let 𝜀 = (𝜀𝑖)
𝑛
𝑖=1 ∈ R𝑛

+. Assume 𝒮,𝒮 ′ ∈ 𝒳 𝑛 are

two datasets that differ in the 𝑖-th component (which represents user 𝑖’s data). A randomized

algorithm 𝒜 : 𝒳 𝑛 → R is 𝜀-centrally differentially private if for all measurable sets 𝒲 in R,

P(𝒜(𝒮) ∈ 𝒲) ≤ 𝑒𝜀𝑖 P(𝒜(𝒮 ′) ∈ 𝒲).

This definition implies that the algorithm’s output changes with probability at most

𝑒𝜀𝑖 when the data of user 𝑖 changes. In particular, Definition 2.1 is equivalent to 𝑒−𝜀𝑖 ≤
P(𝒜(𝒮)∈𝒲)
P(𝒜(𝒮′)∈𝒲)

≤ 𝑒𝜀𝑖 for all 𝑖 ∈ 𝒩 , neighboring 𝒮,𝒮 ′ ∈ 𝒳 𝑛, which only differ in user 𝑖’s data, and

all measurable sets 𝒲 in R. Therefore, 𝜀𝑖 can be interpreted as a variable that captures the

maximum privacy loss that Algorithm 𝒜 ensures for user 𝑖: the smaller 𝜀𝑖 is, the less of an

impact user 𝑖’s data has on the output of Algorithm 𝒜, implying a lower privacy loss (or

equivalently a higher privacy guarantee) for user 𝑖’s data.

Local differential privacy considers the setting where the users do not trust the platform

with their data. The users therefore first produce a private version of their data through

a mapping before sharing it with the platform. Building on the literature on differential

privacy, we refer to this mapping as a channel (see, e.g., Duchi et al. [2013]) and define it to

be locally differentially private as follows.

Definition 2.2 (Local differential privacy). A randomized channel 𝒞 : 𝒳 → R is 𝜀-locally

differentially private if for any 𝑥, 𝑥′ ∈ R and all measurable sets 𝒲 in R,

P(𝒞(𝑥) ∈ 𝒲) ≤ 𝑒𝜀P(𝒞(𝑥′) ∈ 𝒲).

Let 𝜀 = (𝜀𝑖)
𝑛
𝑖=1 ∈ R𝑛

+. An algorithm 𝒜 : 𝒳 𝑛 → R is (𝜀𝑖)
𝑛
𝑖=1-locally differentially private if it

3This extension is in line with the literature that introduced personalized or heterogeneous differential
privacy, where each user can have a different privacy loss Jorgensen et al. [2015], Alaggan et al. [2015], Niu
et al. [2021]. In our setting users have different preferences for their privacy which motivates our definition
with heterogeneous privacy loss levels.
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(a) (b)

Figure 2-1: (a) the central setting and (b) the local setting. In the local setting, in contrast
to the central setting, the users privatize their data before sharing with the platform.

takes (𝒞𝑖(𝑥𝑖))𝑛𝑖=1 as input (as opposed to (𝑥𝑖)
𝑛
𝑖=1 itself), where 𝒞𝑖 is an 𝜀𝑖-locally differentially

private channel.

It is worth noting that an (𝜀𝑖)
𝑛
𝑖=1-locally differentially private algorithm is (𝜀𝑖)𝑛𝑖=1-centrally

differentially private according to Definition 2.1 as well (see Dwork et al. [2014, Observa-

tion 12.1].) Figure 2-1a and 2-1b depict central and local differential privacy architectures,

respectively.

A point worth mentioning is that in the local privacy setting, the data is privatized

directly on the user side, giving users control over its implementation. Unlike the central

setting, the local setting does not rely on the platform credibly delivering the promised

privacy level.

In both central and local cases, the basic mechanism to ensure privacy is adding fine-

tuned noise. As we establish next, a Laplace mechanism which adds a zero-mean Laplace

noise to the variable of interest is optimal, and therefore we adopt this throughout (we make

the optimality statement precise in this section). Recall that the density of a mean-zero

(one-dimensional) Laplace distribution with parameter 𝜂, denoted by Laplace(𝜂), is given by

𝑝(𝑧) =
1

2𝜂
exp(−|𝑧|/𝜂) for all 𝑧 ∈ R

and its variance is given by 2𝜂2. The following lemma characterizes the differential privacy
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guarantees obtained by a Laplace mechanism.

Lemma 2.1 (Dwork et al. [2014]). Consider a real-valued function 𝑓 : 𝒳 𝑛 → R and let 𝑊

be a Laplace noise with parameter 1/𝜀, i.e., 𝑊 ∼ Laplace(1/𝜀). Then, 𝒜(𝑥) := 𝑓(𝑥) +𝑊

for any 𝑥 ∈ 𝒳 𝑛, is (𝜀𝐿𝑖(𝑓))
𝑛
𝑖=1-centrally differentially private, where 𝐿𝑖(𝑓) is the sensitivity

of 𝑓 with respect to the 𝑖-th coordinate, and is given by

𝐿𝑖(𝑓) := sup {|𝑓(𝑥)− 𝑓(𝑥′)| : for all 𝑥,𝑥′ ∈ 𝒳 that only differ in the 𝑖-th coordinate} .

(2.1)

Next, we consider the following problem in both the central and the local differential

privacy settings: Assume that the desired privacy level of users, i.e., 𝜀𝑖 for user 𝑖, is given to

the platform. What is the optimal choice of the estimator in terms of expected square error?

To answer this question, we first provide minimax lower bounds for private mean-

estimation problem under both central and local definitions of differential privacy (given

in Definitions 2.1 and 2.2, respectively). We then prove that a linear estimator with Laplace

mechanism achieves those lower bounds up to a logarithmic factor. While the private mean

estimation problem has been extensively studied when privacy levels across all users are

equal Duchi et al. [2013], Dwork et al. [2014], Barber and Duchi [2014], to the best of our

knowledge, it has not been studied in our setting where the privacy levels of users are het-

erogeneous.

2.2.2 (Near) Optimal Estimation With Central Differential Privacy

Let 𝒫 be a family of distributions, defined over the sample space 𝒳 . Our goal is to estimate

the mean 𝜃 : 𝒫 → R where 𝜃(𝑃 ) = E𝑋∼𝑃 [𝑋] for any 𝑃 ∈ 𝒫 . We let 𝑋1, · · · , 𝑋𝑛 be 𝑛

independent and identically distributed samples that are drawn from 𝑃 ∈ 𝒫 and 𝜀 = (𝜀𝑖)
𝑛
𝑖=1

be the privacy levels. In the central setting, an estimator 𝜃(𝑋1, · · · , 𝑋𝑛) is a real-valued

measurable function over 𝒳 𝑛 which estimates 𝜃(𝑃 ). We define 𝒬𝑐(𝜀) as the class of 𝜀-

centrally differentially private estimators, according to Definition 2.1. With this notation in
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hand, the minimax estimation error is given by

ℒ𝑐(𝒫 , 𝜃, 𝜀) := inf
𝜃∈𝒬𝑐(𝜀)

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃(𝑋1:𝑛)− 𝜃(𝑃 )

⃒⃒⃒2]︂
, (2.2)

where the expectation is taken over the randomness in both samples 𝑋1:𝑛 and the estimator.

The supremum in the above expression is the worst-case estimation error over all distributions

of the data points. Therefore, given that the platform does not know the distribution of

the data points, the infimum outputs the 𝜀-centrally differentially private estimator that

minimizes this worst-case estimation error.

Our goal is to provide a lower bound on the minimax rate defined above and prove that

such lower bound can be (almost) achieved by linear estimators with Laplace mechanism. To

do so, let us first, formally define this class of estimators. Given the data of users 𝑥1, · · · , 𝑥𝑛,

a linear estimator with Laplace mechanism is in the form of

𝜃 =
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + Laplace(1/𝜂), (2.3)

where 𝑤𝑖 is the weight that the estimator allocates to the data of user 𝑖 with
∑︀𝑛

𝑖=1𝑤𝑖 = 1.

Given this estimator, the following lemma shows that the data of each user is centrally

differentially private.

Lemma 2.2. The estimator 𝜃 given in (2.3) is (𝑤𝑖𝜂)
𝑛
𝑖=1-centrally differentially private.

This lemma directly follows from Lemma 2.1. The proof of this lemma as well as other

omitted proofs are presented in the Section 2.8.

We next establish a lower bound for the estimation error in the central setting and prove

that a linear estimator with Laplace mechanism (almost) achieves the lower bound.

Theorem 2.1. Let 𝜀 = (𝜀𝑖)
𝑛
𝑖=1 and, without loss of generality, suppose 𝜀1 ≤ · · · ≤ 𝜀𝑛 ≤ 1.

Also, let 𝒫* be the family of distributions 𝑃 such that |𝑋| ≤ 1
2

almost surely.4 There exists

4The choice of upper bound 1/2 is without loss of generality and is made to guarantee the length of the
support is bounded by 1, simplifying the equations.
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a (universal) positive constant 𝑐𝑙 such that5

ℒ𝑐(𝒫*, 𝜃, 𝜀) ≥ 𝑐𝑙

(︃
max

𝑘∈{0,1,··· ,𝑛}

1

𝑛− 𝑘 + (
∑︀𝑘

𝑖=1 𝜀𝑖)
2
∧ 1

)︃
. (2.4)

Moreover, there exists an 𝜀-centrally differentially private linear estimator 𝜃 and a (universal)

constant 𝑐𝑢 such that

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃(𝑋1:𝑛)− 𝜃(𝑃 )

⃒⃒⃒2]︂
≤ 𝑐𝑢 max

𝑘∈{0,1,··· ,𝑛}

log(𝑛+ 1)

𝑛− 𝑘 + (
∑︀𝑘

𝑖=1 𝜀𝑖)
2
, (2.5)

for any 𝑃 ∈ 𝒫*.

We prove the lower bound by using the Le Cam’s method Yu [1997] that reduces the

problem of finding lower bounds to a hypothesis testing problem between two distributions.

More specifically, using this technique, we need to bound the change in the distribution of

estimator’s output, i.e., the distribution of 𝜃(𝑋1:𝑛), when the underlying data distribution

changes. To bound the change in the distribution, we first notice that bounding the change

in the distribution by using a single distance between the distributions does not immediately

give us the desired bound. We circumvent this challenge by using a combination of two

well-known distances between two distributions: Total Variation (TV) and Kullback–Leibler

(KL).

We establish the upper bound by constructing a linear estimator in the form of (2.3)

that achieves the desired bound. Note that, by Lemma 2.2, to have an (𝜀𝑖)
𝑛
𝑖=1-centrally

differentially private estimator, we should have

𝜂𝑤𝑖 ≤ 𝜀𝑖 for all 𝑖. (2.6)

An interesting and somewhat counter-intuitive observation is that the above constraints

are not necessarily all binding for the optimal estimator. In other words, the optimal estima-

tor might end up providing higher privacy levels than reported for certain users. This means

that we might achieve a lower variance for the estimator by guaranteeing better privacy

5For any 𝑥, 𝑦 ∈ R, we let 𝑥 ∧ 𝑦 denote min{𝑥, 𝑦}.
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levels (i.e., lower 𝜀𝑖’s) for certain users. The main reason for this structure is that, if we keep

all the constraints active while some users ask for less privacy, this might lead to putting

too much weight on their data. In fact, the optimal estimator in the proof of Theorem 2.1 is

built by capping the weight that we assign to the data of a portion of users with the highest

𝜀𝑖’s, i.e., users with the lowest privacy restrictions. Let us elaborate this matter with an

example. Suppose (𝜀𝑖)
𝑛
𝑖=1 are given as

𝜀1 = · · · = 𝜀⌊𝑛−√
𝑛⌋ =

1√
𝑛
, 𝜀⌊𝑛−√

𝑛⌋+1 = · · · = 𝜀𝑛 = 1. (2.7)

As shown in the proof of Theorem 2.1, the linear estimator

𝜃 =
𝑛∑︁
𝑖=1

1

𝑛
𝑥𝑖 + Laplace

(︂
1√
𝑛

)︂
, (2.8)

achieves the variance 𝒪( 1
𝑛
) which matches the lower bound, and hence it is optimal. More-

over, this estimator is 1√
𝑛
-centrally differentially private with respect to every user’s data,

meaning it guarantees a much better level of privacy for users ⌊𝑛 −
√
𝑛⌋ + 1 to 𝑛. Now let

us see what happens if we consider the linear estimator that keeps all the constraints active:

𝜃 =
𝑛∑︁
𝑖=1

𝜀𝑖∑︀𝑛
𝑗=1 𝜀𝑗

𝑥𝑖 + Laplace

(︃
1∑︀𝑛
𝑗=1 𝜀𝑗

)︃
. (2.9)

The variance of this estimator is

E[|𝜃 − 𝜃|2] = 2

(
∑︀𝑛

𝑗=1 𝜀𝑗)
2
+

⌊𝑛−
√
𝑛⌋∑︁

𝑖=1

1/𝑛

(
∑︀𝑛

𝑗=1 𝜀𝑗)
2
var +

𝑛∑︁
𝑖=⌊𝑛−

√
𝑛⌋+1

1

(
∑︀𝑛

𝑗=1 𝜀𝑗)
2
var.

Note that,
∑︀𝑛

𝑗=1 𝜀𝑗 ≈ 2
√
𝑛, and hence, the first two terms in the right-hand side of the above

expression are 𝒪( 1
𝑛
). However, the third term is Ω( 1√

𝑛
). This leads to the total variance

being Ω( 1√
𝑛
), and thus, this estimator is suboptimal.
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2.2.3 Optimal Estimation With Local Differential Privacy

Here, we consider the local differential privacy setting. In this setting, and for any 𝑖, instead

of observing 𝑋𝑖, the platform observes 𝑋̂𝑖 := 𝒞𝑖(𝑋𝑖), where 𝒞𝑖 : 𝒳 → 𝒳 is a 𝜀𝑖-locally

differentially private channel. Hence, the estimator 𝜃 would be defined over 𝒳 𝑛 and would

be cast as 𝜃(𝑋̂1:𝑛). Also, 𝒬𝑙(𝜀) denotes the class of mechanisms ℳ : 𝒳 𝑛 → 𝒳 𝑛 where

ℳ(𝑋1, · · · , 𝑋𝑛) = (𝒞𝑖(𝑋𝑖))
𝑛
𝑖=1, with 𝒞𝑖 being an 𝜀𝑖-locally differentially private channel.

Under local differential privacy, the minimax rate is defined as

ℒ𝑙(𝒫 , 𝜃, 𝜀) := inf
𝜃,ℳ∈𝒬𝑙(𝜀)

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃(𝑋̂1:𝑛)− 𝜃(𝑃 )

⃒⃒⃒2]︂
, (2.10)

where the expectation is taken over the randomness in both samples 𝑋1:𝑛 and the estima-

tor. Again, the supremum in the above expression is the worst-case estimation error over all

distributions of the data points. Therefore, given that the platform does not know the distri-

bution of the data points, the infimum outputs the 𝜀-locally differentially private estimator

that minimizes this worst-case estimation error.

In this case, the linear estimator with Laplace mechanism is defined as follow: User 𝑖

releases an 𝜀𝑖-locally differentially private version of 𝑥𝑖, denoted by 𝑥̂𝑖, using Laplace mech-

anism, i.e., 𝑥̂𝑖 = 𝑥𝑖 + Laplace(1/𝜀𝑖). Using these private data points, we form the following

estimate

𝜃 =
𝑛∑︁
𝑖=1

𝑤𝑖𝑥̂𝑖, (2.11)

where 𝑤𝑖 is the weight that the estimator allocates to the private data of user 𝑖 with
∑︀𝑛

𝑖=1𝑤𝑖 =

1. We next establish a lower bound for the estimation error in the local setting and prove

that a linear estimator with Laplace mechanism achieves the lower bound.

Theorem 2.2. Let 𝜀 = (𝜀𝑖)
𝑛
𝑖=1 with 𝜀𝑖 ≤ 1 for all 𝑖. Also, let 𝒫* be the family of distributions

𝑃 such that |𝑋| ≤ 1
2

almost surely. There exists a (universal) positive constant ℓ𝑙 such that

ℒ𝑙(𝒫*, 𝜃, 𝜀) ≥ ℓ𝑙

(︂
1∑︀𝑛
𝑖=1 𝜀

2
𝑖

∧ 1

)︂
. (2.12)
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Moreover, there exists an 𝜀-locally differentially private linear estimator 𝜃 and a universal

constant ℓ𝑢 such that

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃(𝑋1:𝑛)− 𝜃(𝑃 )

⃒⃒⃒2]︂
≤ ℓ𝑢∑︀𝑛

𝑖=1 𝜀
2
𝑖

, (2.13)

for any 𝑃 ∈ 𝒫*.

Similar to the proof of Theorem 2.1, we prove the lower bound by using the Le Cam’s

method. To establish the upper bound, similarly, we construct a linear estimator that

achieves the lower bound up to a constant factor.

2.3 Data Acquisition Mechanism With Privacy Guaran-

tees

In this section, we endogenize the choice of the privacy loss levels by assuming a utility

function that captures different privacy sensitivities. In particular, each user 𝑖 ∈ 𝒩 has

a type or privacy sensitivity 𝑐𝑖 ∈ R+ that represents the per unit cost of privacy loss for

user 𝑖. We assume each 𝑐𝑖 is independently drawn from a publicly known distribution with

cumulative distribution function 𝐹𝑖(·) and probability density function 𝑓𝑖(·). We also let

c = (𝑐1, . . . , 𝑐𝑛) denote the vector of privacy sensitivities. The privacy sensitivity of each

user is their private information.

We consider a mechanism whereby individuals participate by sharing their data and

reporting their privacy sensitivities.6 While users can misrepresent their privacy sensitivities,

they have no capability to manipulate their data (e.g., their data is collected by the analyst

when they participate or can be verified). Depending on the reported sensitivity, the analyst

provides a compensation for the user in exchange for her data. This compensation may be

a direct monetary payment or it may be an implicit transfer, for example, in the form of

some good or service the analyst provides to the user to acquire her data. The mechanism

designer simultaneously determines the privacy loss levels (which were assumed given in the

6From here on, we will use the terms mechanism designer and platform interchangeably.
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previous section) and a differentially private estimator based on users’ data that achieves

these levels.

Given this interaction, we next specify a data acquisition mechanism with privacy guar-

antees on users’ data.

Definition 2.3 (Private data acquisition mechanism). We call the tuple (𝜃, 𝜀, t) a private

data acquisition mechanism where

1. 𝜃 : 𝒳 𝑛 × R𝑛
+ → R is a (centrally or locally) differentially private estimator that maps

acquired user data x = (𝑥𝑖)
𝑛
𝑖=1 and privacy losses 𝜀 = (𝜀𝑖)

𝑛
𝑖=1 to an estimate 𝜃(x, 𝜀).7

2. For all 𝑖 ∈ 𝒩 , 𝜀𝑖 : R𝑛
+ → R+ is a function that maps privacy sensitivities c to a privacy

loss for user 𝑖, 𝜀𝑖(c), with 𝜀(.) = (𝜀𝑖(·))𝑛𝑖=1.

3. For all 𝑖 ∈ 𝒩 , 𝑡𝑖 : R𝑛
+ → R+ is a function that maps privacy sensitivities c to a payment

for user 𝑖, 𝑡𝑖(c), with 𝑡(.) = (𝑡𝑖(·))𝑛𝑖=1.

The above functions are assumed to be differentiable, with their derivatives being Riemann

integrable. The minimax optimal estimators derived in Subsections 2.2.2 and 2.2.3 meet

these assumptions.

We will study mechanisms with estimators that provide both central and local differential

privacy guarantees (see Definitions 2.1 and 2.2) and use the notations 𝜃central and 𝜃local to

highlight the distinction.

Each user that participates in a private data acquisition mechanism (𝜃, 𝜀, t) shares her

data with the platform leading to a lower estimation error. Users derive benefit from access-

ing this more accurate estimate (e.g., representing a new medical treatment that is of value

for all users), but incur a privacy cost proportional to their privacy sensitivity 𝑐𝑖. Through-

out, we find it more convenient to work with cost instead of utility. In particular, we model

the user’s cost from participation by the mean square error of the platform’s estimate 𝜃 and

her privacy cost by 𝑐𝑖𝜀(c). Hence, the cost function of a user 𝑖 with type 𝑐𝑖 who reports 𝑐′𝑖

7We assume 𝑥𝑖 is removed from x if user 𝑖 does not participate in the mechanism.
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is given by

cost(𝑐′𝑖, 𝑐𝑖; 𝜀, t, 𝜃) = Ec−𝑖

[︁
MSE(𝑐′𝑖, c−𝑖; 𝜀, 𝜃) + 𝑐𝑖𝜀𝑖(c−𝑖, 𝑐

′
𝑖)− 𝑡𝑖(c−𝑖, 𝑐

′
𝑖))
]︁
, (2.14)

where the first term is the expected mean squared error of the estimator given by

MSE(𝑐′𝑖, c−𝑖; 𝜀, 𝜃) = Ex

[︁
|𝜃(x, 𝜀)− 𝜃|2

]︁
.

Note that the privacy losses 𝜀 depends on reported privacy sensitivities (𝑐′𝑖, c−𝑖), therefore

we make the dependence of the mean square error on (𝑐′𝑖, c−𝑖) explicit in our notation. The

second term of (2.14) represents the privacy cost that the user incurs, and the third term is

the payment that the user receives.

A user 𝑖 ∈ 𝒩 that does not participate in the mechanism does not compromise her

privacy, but neither gets compensation nor enjoys the benefit of a reduced mean square error

(arising from an estimate based on a collection of users’ data). Therefore, the cost of a

nonparticipating user becomes the mean square error of her “best" estimate of parameter 𝜃

based on her data alone, 𝜃(𝑋𝑖), given by

E𝑋𝑖

[︁
|𝜃(𝑋𝑖)− 𝜃|2

]︁
= E𝑋𝑖

[︀
|𝑋𝑖 − 𝜃|2

]︀
= var. (2.15)

For a given 𝜃(·), the goal of the platform is to minimize an objective function given by

Ec

[︃
MSE(c, 𝜀, 𝜃) +

𝑛∑︁
𝑖=1

𝑡𝑖(c)

]︃
,

over the choices of 𝜀𝑖(·) and 𝑡𝑖(·) for all 𝑖 ∈ 𝒩 . In the platform’s objective, the first term

is the mean square error of estimator 𝜃 given reported types and resulting privacy losses 𝜀,

i.e.,

MSE(c, 𝜀, 𝜃) = Ex

[︁
|𝜃(x, 𝜀)− 𝜃|2

]︁
.

The second term is the total compensation the analyst provides to the users for truthfully

reporting their privacy sensitivities and acquiring their data. In Section 2.8 we establish that,
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similar to the classical mechanism design setting, revelation principle holds and therefore the

platform can focus on direct revelation mechanisms where individuals reporting their type

truthfully is a (Bayesian Nash) equilibrium. Incentive compatibility constraints formalize this

equilibrium outcome by imposing that user 𝑖 has no incentive to misrepresent her type when

others report truthfully (i.e., reporting her type correctly is a Bayesian Nash equilibrium of

the underlying incomplete information game). Similarly, individual rationality constraints

ensure that the platform does not make users worse off by participating in the mechanism.

Together with these constraints, the mechanism designer’s optimization problem can be

written as

min
𝜀(·),t(·)

Ec

[︃
MSE(c, 𝜀, 𝜃) +

𝑛∑︁
𝑖=1

𝑡𝑖(c)

]︃
(2.16)

cost(𝑐𝑖, 𝑐𝑖; 𝜀, t, 𝜃) ≤ cost(𝑐′𝑖, 𝑐𝑖; 𝜀, t, 𝜃) for all 𝑖 ∈ 𝒩 , 𝑐𝑖, 𝑐
′
𝑖 (2.17)

cost(𝑐𝑖, 𝑐𝑖; 𝜀, t, 𝜃) ≤ var for all 𝑖 ∈ 𝒩 , 𝑐𝑖, (2.18)

where the constraints in (2.17) and (2.18) represent the incentive compatibility and the

individual rationality constraints, respectively.8

2.3.1 Payment Identity

For a given estimator 𝜃, the platform decision comprises the privacy loss functions 𝜀(·) and

the payment functions t(·). We next identify the payment as a function of the privacy loss

functions. In this regard, we define the interim quantities

𝑡𝑖(𝑐𝑖) = Ec−𝑖
[𝑡(𝑐𝑖, c−𝑖)] and 𝜀𝑖(𝑐𝑖) = Ec−𝑖

[𝜀𝑖(𝑐𝑖, c−𝑖)] for all 𝑖 ∈ 𝒩 , 𝑐𝑖.

Proposition 2.1. For a given estimator 𝜃 : 𝒳 𝑛 × R𝑛
+ → R, a central or local privacy

data acquisition mechanism (𝜃, 𝜀, t) satisfies incentive compatibility (2.17) and individual

8We assume that the variance and the payments both appear with the same coefficient in the platform’s
objective. Our analysis readily extends to a setting with differing coefficients.
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rationality (2.18) if and only if

𝑡𝑖(𝑐𝑖) = Ec−𝑖

[︁
MSE(c, 𝜀, 𝜃)

]︁
− var + 𝑐𝑖𝜀𝑖(𝑐𝑖) +

∫︁ ∞

𝑧=𝑐𝑖

𝜀𝑖(𝑧)𝑑𝑧 + 𝑑𝑖, (2.19)

for some constant 𝑑𝑖 ≥ 0, and 𝜀𝑖(𝑧) is non-increasing (or equivalently, is weakly decreasing)

in 𝑧 for all 𝑖 ∈ 𝒩 .

Proposition 2.1 determines the payment in terms of the privacy loss functions. This

proposition is closely related to the payment identity in classical mechanism design (see

Myerson [1981]) and in particular single-dimensional mechanism design. In particular, by

evaluating the first order condition corresponding to the incentive compatibility constraint

(2.17), we establish that this constraint holds if and only if

𝑡𝑖(𝑐𝑖) =

𝑡𝑖(0) + Ec−𝑖

[︁
MSE(𝑐𝑖, c−𝑖, 𝜀, 𝜃)

]︁
− Ec−𝑖

[︁
MSE(0, c−𝑖, 𝜀, 𝜃)

]︁
+ 𝑐𝑖𝜀𝑖(𝑐𝑖)−

∫︁ 𝑐𝑖

𝑧=0

𝜀𝑖(𝑧)𝑑𝑧

and 𝜀𝑖(𝑧) is weakly decreasing in 𝑧. We then use the above expression in the individual

rationality constraint (2.18) and prove

𝑡𝑖(0) = Ec−𝑖

[︁
MSE(0, c−𝑖, 𝜀, 𝜃)

]︁
− var +

∫︁ ∞

𝑧=0

𝜀𝑖(𝑧)𝑑𝑧 + 𝑑𝑖

for some 𝑑𝑖 ≥ 0. Equation (2.19) follows from the previous two expressions. It is worth

noting that, for a central or local privacy data acquisition mechanism (𝜃, 𝜀, t) to be optimal,

we must have 𝑑𝑖 = 0 in (2.19).

In concluding this subsection, we want to highlight that our benchmark for individual

rationality (given in (2.18)) is that the users will not benefit from the platform’s estimate if

they do not participate. If we consider an alternative benchmark in which the users benefit

from the platform’s estimator even if they do not participate, then the payments increase,

and the platform’s cost decreases. However, as we show in Section 2.8, our characterization

of the optimal privacy levels that will follow remains unchanged.
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2.3.2 Reformulating the Platform’s Problem

We next use Proposition 2.1 to reformulate the platform’s problem in terms of only the

privacy loss functions and the virtual costs, defined as

𝜓𝑖(𝑐) = 𝑐+
𝐹𝑖(𝑐)

𝑓𝑖(𝑐)
, for all 𝑖 ∈ 𝒩 , 𝑐 ∈ supp(𝑓),

where the support of 𝑓(·) is defined as supp(𝑓) = {𝑐 ∈ R+ : 𝑓(𝑐) ̸= 0}.

Proposition 2.2. For a given estimator 𝜃 : 𝒳 𝑛 × R𝑛
+ → R, the optimal privacy loss in the

central or local privacy data acquisition mechanism is the solution of

min
𝜀(·)

Ec

[︃
(𝑛+ 1)MSE(c, 𝜀, 𝜃) +

𝑛∑︁
𝑖=1

𝜀𝑖(c)𝜓𝑖(𝑐𝑖)

]︃
− 𝑛var (2.20)

𝜀𝑖(𝑧) = Ec−𝑖
[𝜀𝑖(𝑧, c−𝑖)] is weakly decreasing in 𝑧 for all 𝑖 ∈ 𝒩 . (2.21)

Proposition 2.2 is an analogue of Myerson’s reduction of mechanism design to virtual

welfare maximization, adapted to our data acquisition setting (Myerson [1981]), and it follows

from invoking Proposition 2.1.

2.4 Privacy-Concerned Data Acquisition in the Central

Privacy Setting

In the rest of the chapter, we will focus on linear estimators, which we showed to be near

optimal for given privacy loss levels. Our goal in this section is to address the analyst’s

mechanism design problem in the central privacy setting for the near optimal choice of

estimator found in Section 2.2.2:

𝜃central(𝑥1, . . . , 𝑥𝑛) :=
𝑛∑︁
𝑖=1

𝑤𝑖(c)𝑥𝑖 + Laplace

(︂
1

𝜂

)︂
(2.22)
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Figure 2-2: The interaction between the users and the platform in the central privacy setting.

such that

𝑛∑︁
𝑖=1

𝑤𝑖(c) = 1, and 𝜂𝑤𝑖(c) ≤ 𝜀𝑖(c) for all 𝑖 ∈ 𝒩 .

Figure 2-2 depicts the interaction between the platform and the users in the central

privacy setting and when the platform is using the above (near) optimal choice of estimator.

2.4.1 Characterization of the Optimal Central Privacy Data Acqui-

sition Mechanism

Our next theorem characterizes the optimal privacy loss function in the central privacy

setting under the following assumption.

Assumption 2.1. For any 𝑖 ∈ 𝒩 , the virtual cost 𝜓𝑖(𝑐) = 𝑐+ 𝐹𝑖(𝑐)
𝑓𝑖(𝑐)

is increasing in 𝑐.

Assumption 2.1 is standard in mechanism design and in particular for procurement auc-

tions which is closer to our setting. It resembles the regularity condition adopted in mecha-

nism design literature and holds for a variety of distributions and in particular for distribu-

tions with log-concave density functions such as uniform, exponential, and normal (see, e.g.,

Rosling [2002]).

Theorem 2.3. Suppose Assumption 2.1 holds. For any reported vector of privacy sen-

sitivities (𝑐1, . . . , 𝑐𝑛), the optimal privacy loss level in the central privacy data acquisition
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mechanism is 𝜀*𝑖 (c) = 𝑦*𝑖 for 𝑖 ∈ 𝒩 , where (𝑦*1, . . . , 𝑦
*
𝑛) is the optimal solution of

min
y

𝑛+ 1(︁∑︀𝑛
𝑗=1 𝑦𝑗

)︁2
(︃
2 +

𝑛∑︁
𝑖=1

𝑦2𝑖 var

)︃
+

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 (2.23)

s.t. 𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩 .

Moreover, for all 𝑖 ∈ 𝒩 the weight of user 𝑖’s data in the platform’s estimator is 𝑦*𝑖∑︀𝑛
𝑗=1 𝑦

*
𝑗
.

Before providing the proof idea of this theorem, let us highlight the difference between

our characterization and that of classic mechanism design (e.g., Myerson [1981] or the pro-

curement counterpart). In classic mechanism design, the designer’s problem becomes a linear

optimization. In our setting, however, the designer’s problem is a non-linear and non-convex

optimization. An important implication of this distinction is that, contrary to classic mech-

anism design where the optimal mechanism typically involves a threshold rule, in this case,

the optimal privacy loss level is not a threshold strategy. Instead, it is a continuous function

that depends on the privacy sensitivity.

To prove Theorem 2.3, we first note that the mean square error of the linear estimator

𝜃central in (2.22) is given by

MSE(𝑐, 𝜀, 𝜃central) =
2

𝜂2
+

𝑛∑︁
𝑖=1

𝑤𝑖(c)
2var.

We next plug the above characterization into Proposition 2.2, and note that, if we drop the

constraint (2.21) (which is 𝜀𝑖(𝑐𝑖) = Ec−𝑖
[𝜀𝑖(𝑐𝑖, c−𝑖)] being weakly decreasing in 𝑐𝑖), it suffices

to solve the following pointwise optimization problem

min
𝜀(c),w(c),𝜂

2(𝑛+ 1)

𝜂2
+

𝑛∑︁
𝑖=1

(𝑛+ 1)var 𝑤𝑖(c)
2 +

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝜀𝑖(c)

s.t. 𝜀𝑖(c) ≥ 0, for all 𝑖 ∈ 𝒩
𝑛∑︁
𝑖=1

𝑤𝑖(c) = 1

𝜂𝑤𝑖(c) ≤ 𝜀𝑖(c) for all 𝑖 ∈ 𝒩 . (2.24)
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We next focus on solving the above problem. To do so, we establish that the constraints

in (2.24) are binding in the optimal solution and therefore this problem is equivalent to

the optimization problem (2.23) given in Theorem 2.3 statement. Finally, we conclude the

proof by showing that the solution to this pointwise optimization satisfies the aforementioned

constraint (2.21) that we dropped. More specifically, we show that the 𝑖-th component of

the optimal solution of (2.23), under Assumption 2.1, is weakly decreasing in 𝑐𝑖.

The characterization of Theorem 2.3 leads to the following observation:

Corollary 2.1. Suppose Assumption 2.1 holds. For any reported vector of privacy sensitiv-

ities (𝑐1, . . . , 𝑐𝑛), in the optimal central data acquisition mechanism, we have 𝜀*𝑖 (c) ≥ 𝜀*𝑗(c)

for all 𝑖, 𝑗 ∈ 𝒩 such that 𝜓𝑖(𝑐𝑖) < 𝜓𝑗(𝑐𝑗).

This corollary states the intuitive fact that in the optimal central data acquisition mech-

anism, users with higher virtual privacy sensitivities have lower (i.e., better) privacy loss

levels.

2.4.2 Computing the Optimal Privacy Loss Function

The implementation of the optimal central privacy data acquisition mechanism involves

solving problem (2.23), which is a non-convex program. We next develop a score-based

method that efficiently solves problem (2.23).

To guide the analysis, without loss of generality, we assume 𝜓1(𝑐1) ≤ · · · ≤ 𝜓𝑛(𝑐𝑛), and

define 𝜓𝑛+1(𝑐𝑛+1) = ∞. We first rewrite problem (2.23) by introducing a variable for the

summation of 𝑦𝑖’s as follows

min
𝑆≥0

min
y

𝑛+ 1

𝑆2

(︃
2 +

𝑛∑︁
𝑖=1

𝑦2𝑖 var

)︃
+

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 (2.25)

s.t.
𝑛∑︁
𝑖=1

𝑦𝑖 = 𝑆 (2.26)

𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩 .

For a given 𝑆, the optimization over y is a convex program. Using Karush–Kuhn–Tucker
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Algorithm 1: Computing the optimal privacy loss in the central setting
Input: The vector of privacy sensitivities (𝑐1, . . . , 𝑐𝑛)
Sort the terms {𝜓𝑖(𝑐𝑖)}𝑖. Without loss of generality, let us assume

𝜓1(𝑐1) ≤ · · · ≤ 𝜓𝑛(𝑐𝑛);

Let 𝐵0 = 𝐵̃0 = 0;
for 𝑖 = 1 to 𝑛 do

Let

𝐴𝑖 =
𝑖

2(𝑛+ 1)var
, 𝐵𝑖 = 𝐵𝑖−1 +

𝜓𝑖(𝑐𝑖)

2(𝑛+ 1)
, 𝐵̃𝑖 = 𝐵̃𝑖−1 +

𝜓𝑖(𝑐𝑖)
2

2(𝑛+ 1)var
;

Let

𝑂𝐵𝐽𝑖(𝜆) = 2(𝑛+ 1) (𝜆𝐴𝑖 −𝐵𝑖)
2 +

𝐴𝑖𝜆
2 − 𝐵̃𝑖

2 (𝜆𝐴𝑖 −𝐵𝑖)
2 ;

Let

𝜆*𝑖 = argmin
𝜆

𝑂𝐵𝐽𝑖(𝜆) s.t. 𝜓𝑖(𝑐𝑖) ≤ 𝜆 ≤ 𝜓𝑖+1(𝑐𝑖+1)

with the convention 𝜓𝑛+1(𝑐𝑛+1) = ∞;

end
Let 𝑖* = argmax𝑖OBJ𝑖(𝜆

*
𝑖 );

Output: The optimal solution is given by

𝑦*𝑗 = 0 for 𝑗 > 𝑖* and 𝑦*𝑗 =
𝜆*𝑖* − 𝜓𝑖(𝑐𝑖)

2(𝑛+ 1)var (𝜆*𝑖*𝐴𝑖* −𝐵𝑖*)
2 for 𝑗 ≤ 𝑖*.

(KKT) condition (see e.g. Bertsekas [1997]), the solution to this optimization problem is9

(𝑦1, . . . , 𝑦𝑛) =

(︃(︂
(𝜆− 𝜓1(𝑐1))𝑆

2

2(𝑛+ 1)var

)︂+

, . . . ,

(︂
(𝜆− 𝜓𝑛(𝑐𝑛))𝑆

2

2(𝑛+ 1)var

)︂+
)︃
, (2.27)

where 𝜆 is such that

𝑛∑︁
𝑖=1

(︂
(𝜆− 𝜓1(𝑐1))𝑆

2

2(𝑛+ 1)var

)︂+

= 𝑆. (2.28)

Using this relation, we can write 𝑆 as a function of 𝜆 which allows us to rewrite the minimiza-
9For any 𝑥 ∈ R, we let 𝑥+ denote max{𝑥, 0}.
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tion problem (2.25) over 𝜆 ∈ [𝜓1(𝑐1),∞] rather than 𝑆. We solve this resulting minimization

problem by finding the optimal 𝜆 in the interval [𝜓𝑖(𝑐𝑖), 𝜓𝑖+1(𝑐𝑖)] for all 𝑖 = 1, . . . , 𝑛 and

then selecting the 𝜆 with the lowest objective function. Algorithm 1 summarizes the above

procedure and the following proposition states the formal result:

Proposition 2.3. For any vector of reported privacy sensitivities (𝑐1, . . . , 𝑐𝑛), Algorithm 1

finds the optimal privacy loss levels in the optimal central data acquisition mechanism (i.e.,

the solution of problem (2.23)) in time 𝒪(𝑛 log 𝑛).

Algorithm 1 needs sorting 𝑛 elements which requires time 𝒪(𝑛 log 𝑛). We also prove that

each iteration of the for loop can be done in time 𝒪(1), establishing that the overall running

time of Algorithm 1 is 𝒪(𝑛 log 𝑛).

As depicted in Algorithm 1, the virtual cost of each user determines whether the data

of that user is included in the final estimator of the platform. In particular, there exists a

threshold 𝜓 such that only the data of users whose virtual cost 𝜓𝑖(𝑐𝑖) is below 𝜓 are used

in the estimator of the platform. This feature of the optimal data acquisition mechanism

is reminiscent of the classical optimal mechanism of Myerson [1981] with one important

difference though: unlike the classical mechanism design in which the item gets allocated

to a single user, here the data of multiple users are being used and that the weight of each

user’s data depends on her virtual cost and the entire profile of virtual costs.

2.5 Privacy-Concerned Data Acquisition in the Local

Privacy Setting

In the local differential privacy setting, each user 𝑖 shares a differentially private version of

her data with the platform who then combines them to form an estimator for the underlying

parameter. In particular, first the user reports her privacy sensitivity that determines both

the payment to the user and the variance of the noise to be added to the user’s data.

The platform then collects the “transformed data” of the users and combines them to form

an estimation of the underlying parameter. The difference between this setting and the

central privacy setting is that the data that each user shares with the platform is already
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Figure 2-3: The interaction between the users and the platform in the local privacy setting.

differentially private. As a result, the final estimator of the platform is also differentially

private (composition property of differential privacy). Therefore, the platform does not need

to transform its estimator to make it differentially private and her only estimation task is

finding an unbiased estimator with minimum bias. Our goal in this section is to address the

analyst’s mechanism design problem in the local privacy setting for the optimal choice of

estimator found in Section 2.2.3:

𝜃 =
𝑛∑︁
𝑖=1

𝑤𝑖𝑥̂𝑖, where 𝑥̂𝑖 = 𝑥𝑖 + Laplace(1/𝜀𝑖) for all 𝑖 ∈ 𝒩 . (2.29)

Figure 2-3 depicts the interaction between the users and the platform in the local privacy

setting.

2.5.1 Characterization of the Optimal Local Privacy Data Acquisi-

tion Mechanism

Our next theorem characterizes the optimal mechanism in the local privacy setting under

Assumption 2.1.

Theorem 2.4. Suppose Assumption 2.1 holds. For any reported vector of privacy sensi-

tivities (𝑐1, . . . , 𝑐𝑛), the optimal privacy loss level in the local privacy data acquisition is
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𝜀*𝑖 (c) = 𝑦*𝑖 for 𝑖 ∈ 𝒩 , where (𝑦*1, . . . , 𝑦
*
𝑛) is the optimal solution of

min
y

𝑛+ 1∑︀𝑛
𝑖=1

1
var+ 2

𝑦2
𝑖

+
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 (2.30)

s.t. 𝑦𝑖 ≥ 0 for all 𝑖 ∈ 𝒩 .

Moreover, for all 𝑖 ∈ 𝒩 , the weight of user 𝑖’s data in the platform estimator is proportional

to

1

var + 2
𝑦*𝑖

2

.

To prove Theorem 2.4, we first note that, for a given vector of privacy sensitivities c, the

mean square of the linear estimator given in (2.29) is

MSE(𝑐, 𝜀, 𝜃local) =
𝑛∑︁
𝑖=1

𝑤𝑖(c)
2

(︂
var +

2

𝜀𝑖(c)2

)︂
.

Similar to the proof of Theorem 2.3, we drop the constraint (2.21), and consider the following

pointwise optimization:

min
𝑤𝑖(c),𝜀𝑖(c)

𝑛∑︁
𝑖=1

𝑤𝑖(c)
2

(︂
(𝑛+ 1)var +

2(𝑛+ 1)

𝜀𝑖(c)2

)︂
+ 𝜓𝑖(𝑐𝑖)𝜀𝑖(c)

𝑛∑︁
𝑖=1

𝑤𝑖(c) = 1 (2.31)

𝑤𝑖(c) ≥ 0, 𝜀𝑖(c) ≥ 0 for all 𝑖 ∈ 𝒩 .

We next note that the optimization over weights (𝑤𝑖(c))
𝑛
𝑖=1 subject to (2.31) is a quadratic

optimization problem that, for a given (𝜀𝑖(c))
𝑛
𝑖=1, and we can solve explicitly. In particular,

𝑤𝑖(c) is proportional to

1

var + 2
𝜀𝑖(c)

2

for all 𝑖 ∈ 𝒩 .

Plugging in these weights, the rest of the proof follows similar to the proof of Theorem 2.3.
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The characterization of Theorem 2.4 leads to the following observation:

Corollary 2.2. Suppose Assumption 2.1 holds. For any reported vector of privacy sensitiv-

ities (𝑐1, . . . , 𝑐𝑛), in the optimal local data acquisition mechanism, we have 𝜀*𝑖 (c) ≥ 𝜀*𝑗(c) for

all 𝑖, 𝑗 ∈ 𝒩 such that 𝜓𝑖(𝑐𝑖) < 𝜓𝑗(𝑐𝑗).

This corollary, which is analogous to Corollary 2.1, states a similar fact in the local

setting: in the optimal local data acquisition mechanism, users with higher virtual privacy

sensitivity have lower privacy loss levels (better privacy guarantees).

2.5.2 Computing the Optimal Privacy Loss Function

The implementation of the optimal mechanism involves solving problem (2.30), which is a

non-convex problem. Thus, using algorithms such as gradient descent might lead to finding

a saddle point or a local minima rather than the global minimum. However, in what follows,

we present an algorithm that takes advantage of the problem’s structure and establishes that

finding the global minima admits a Polynomial Time Approximation Scheme (PTAS).

To guide the analysis, without loss of generality, we assume 𝜓1(𝑐1) ≤ · · · ≤ 𝜓𝑛(𝑐𝑛).

Letting (𝑦*1, . . . , 𝑦
*
𝑛) be the optimal solution of (2.30), the first order condition implies that

there exists 𝜆 ∈ R+ such that

4𝑦*𝑖(︀
2 + var𝑦*𝑖

2
)︀2 =

𝜓𝑖(𝑐𝑖)

𝑛+ 1
𝜆2, for all 𝑦*𝑖 ̸= 0.

We first prove that if there exists 𝑖 ∈ {1, . . . , 𝑛} such that 𝑦*𝑖 = 0, then we have 𝑦*𝑗 = 0 for

𝑗 > 𝑖. We also establish that, for such 𝑖, we have10

𝑦*𝑗 = 𝑦
(ℎ)
𝑗 (𝜆) for 𝑗 ≤ 𝑖− 1 and 𝑦*𝑖 ∈ {𝑦(𝑙)𝑖 (𝜆), 𝑦

(ℎ)
𝑖 (𝜆)}, (2.32)

where for any 𝜆 ∈ R+, 𝑦(𝑙)𝑖 (𝜆) and 𝑦(ℎ)𝑖 (𝜆) are the smallest and the largest solutions of

4𝑧

(var𝑧2 + 2)2
=
𝜓𝑖(𝑐𝑖)

𝑛+ 1
𝜆2.

10Equation (2.32) holds when 𝜓𝑖(𝑐𝑖) > 𝜓𝑖−1(𝑐𝑖−1). In the proof of Proposition 2.4, presented in Section
2.8, we provide the detail for the case 𝜓𝑖(𝑐𝑖) = 𝜓𝑖−1(𝑐𝑖−1) as well.
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Algorithm 2: Computing the optimal privacy loss in the local setting
Input: The vector of privacy sensitivities (𝑐1, . . . , 𝑐𝑛) and 𝜖 ∈ R+

Sort the terms 𝜓𝑖(𝑐𝑖), and without loss of generality, let us assume

𝜓1(𝑐1) ≤ · · · ≤ 𝜓𝑛(𝑐𝑛).

for 𝑖 = 1 to 𝑛 do
Let ∆ be the maximum Lipschitz parameter of functions 𝑛+1

𝜆
, 𝑦((ℎ))𝑗 (𝜆), and

𝑦
(𝑙)
𝑗 (𝜆) over 𝜆 ∈ [𝑦

𝑖
, 𝑦𝑖];

Find
𝜆𝑖 ∈ Grid(𝑖,

𝜖

∆
) =

{︂
𝑘
𝜖

∆
: 𝑘 = ⌊𝑦

𝑖

∆

𝜖
⌋, . . . , ⌈𝑦𝑖

∆

𝜖
⌉
}︂

as the solution of

min
𝜆∈Grid(𝑖, 𝜖

Δ
)
min

⎧⎨⎩𝑛+ 1

𝜆
+

𝑖∑︁
𝑗=1

𝜓𝑗(𝑐𝑗)𝑦
(ℎ)
𝑗 (𝜆),

𝑛+ 1

𝜆
+

𝑖−1∑︁
𝑗=1

𝜓𝑗(𝑐𝑗)𝑦
(ℎ)
𝑗 (𝜆) + 𝜓𝑗(𝑐𝑗)𝑦

(𝑙)
𝑗 (𝜆)

⎫⎬⎭ ;

Let OBJ𝑖 be the objective evaluated at 𝑦(𝑖)𝑗 = 𝑦
(ℎ)
𝑗 (𝜆𝑖) for 𝑗 ≤ 𝑖− 1, 𝑦(𝑖)𝑗 = 0 for

𝑗 ≥ 𝑖+ 1, and 𝑦(𝑖)𝑖 = 𝑦
(ℎ)
𝑖 (𝜆𝑖) if the optimal solution of the above optimization is

the first term and 𝑦(𝑖)𝑖 = 𝑦
(𝑙)
𝑖 (𝜆𝑖), otherwise;

end
Output: Letting 𝑖* = argmin𝑖∈𝒩 OBJ𝑖, the approximate solution is (𝑦

(𝑖*)
1 , . . . , 𝑦

(𝑖*)
𝑛 ).

Therefore, the platform’s problem becomes finding the optimal 𝑖 and the optimal 𝜆. We

search for the optimal 𝑖 by considering all elements of 𝒩 . We also search over the optimal 𝜆

by considering a grid search. To form a grid for the possible optimal values of 𝜆, we establish

the following upper bound and lower bound on the optimal 𝜆:

𝑦𝑖 = 𝑦(ℎ)

⎛⎝(︃ (𝑛+ 1)3
√
3

𝜓𝑖−1(𝑐𝑖−1)8
√
2var

)︃1/2
⎞⎠ and 𝑦

𝑖
=

𝑛

var +

(︂√
2𝑛(

∑︀𝑛
𝑗=1 𝜓𝑗(𝑐𝑗))

(𝑛+1)

)︂2/3
.

Algorithm 2 summarizes the above procedure and the following proposition states the

formal result:

Proposition 2.4. For any vector of reported privacy sensitivities (𝑐1, . . . , 𝑐𝑛) and 𝜖 > 0,

Algorithm 2 finds privacy loss levels for the local data acquisition mechanism whose cost
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(i.e., the platform’s objective) is at most 1 + 𝜖 of the optimal cost in time poly(𝑛, 1
𝜖
).11

Notice that the approximation factor in Proposition 2.4 depends on the underlying pa-

rameters and therefore we have a Polynomial Time Approximation Scheme (PTAS) for find-

ing the optimal privacy loss levels. Also, the output of Algorithm 2 satisfies 𝑦𝑖 ≥ 𝑦𝑗 when

𝜓𝑖(𝑐𝑖) ≤ 𝜓𝑗(𝑐𝑗) and therefore, as shown in Proposition 2.1, is implementable.

We conclude this section by highlighting that computing the payment function (2.19)

necessitates integrating over the privacy loss levels 𝜀𝑖(·), which does not have an explicit

characterization in our setting. However, in Section 2.8.1, we demonstrate that this integral

(and, therefore, the payment function) can be approximated to achieve any desired level of

accuracy 𝜖. Consequently, this approximation yields an 𝜖-approximate incentive compatibil-

ity (𝜖-IC) mechanism, where the incentive compatibility constraint (2.17) is violated by at

most 𝜖. The concept of 𝜖-IC has been previously employed in the literature (see, e.g., the

literature review of Balseiro et al. [2022]). In Section 2.8.1, we provide the formal definition

of 𝜖-IC and outline how the payment function (2.19) can be approximated to achieve 𝜖-IC.

2.6 Data Acquisition With Central Versus Local Differ-

ential Privacy

In this section, we compare the performance of the optimal data acquisition mechanism in

the central and local privacy settings.

First, let us consider a case in which there is no restriction on the estimator, i.e., the

estimator does not need to be a linear combination of users’ data with a Laplace mecha-

nism. In this case, finding the optimal value of platform’s objective function in the central

(local) differential privacy setting is equivalent to solving problem (2.16) for all centrally

(locally) differentially private estimators. Note that, as stated in Section 2.2, any 𝜀-locally

differentially private estimator is 𝜀-centrally differentially private as well. As a result, the

platform’s optimal objective in the central privacy setting is always weakly smaller than her

optimal objective in the local privacy setting. This is because the minimization problem in

11poly(·) denotes a function that is polynomial in its inputs.
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the central setting is solved over a weakly larger set of estimators. Next, we show that the

same result holds even if we restrict our focus to the class of linear estimators.

Proposition 2.5. Let 𝜀 = (𝜀𝑖)
𝑛
𝑖=1. For any 𝜀-locally differentially private linear estimator:

𝜃local =
𝑛∑︁
𝑖=1

𝑤𝑖𝑥̂𝑖 𝑥̂𝑖 = 𝑥𝑖 + Laplace(1/𝜀𝑖),

with
∑︀𝑛

𝑖=1𝑤𝑖 = 1, there exists a 𝜀-differentially private linear estimator 𝜃central such that

E[|𝜃central − 𝜃|2] ≤ E[|𝜃local − 𝜃|2]. (2.33)

This result consequently implies that, for any locally differentially private linear estima-

tor, there exists a centrally differentially private linear estimator which delivers the same

privacy loss levels with (weakly) lower estimation error. By keeping privacy loss levels un-

changed, the privacy cost and the payments will also remain unchanged in the platform’s

objective. Hence, Proposition 2.5 implies that the platform’s optimal objective function un-

der central differential privacy setting is weakly smaller than her optimal objective function

under local differential privacy. The following corollary formally states this observation.

Corollary 2.3. For any reported vector of privacy sensitivities (𝑐1, . . . , 𝑐𝑛), the optimal

solution of the local privacy optimization problem (2.30) is not smaller than the optimal

solution of the central privacy optimization problem (2.23).

2.6.1 An Illustrative Example

We next illustrate the difference between the performance of our proposed central privacy

mechanism and our proposed local privacy mechanism in the context of a simple example.

We consider two users with uniform privacy sensitivities drawn from [1, 2] (so that the virtual

privacy sensitivity of user 𝑖 ∈ {1, 2} becomes 2𝑐𝑖 − 1 for 𝑐𝑖 ∈ [1, 2]) and var = 1/4.

Figures 2-4a, 2-4b, and 2-4c depict the variance of the estimator for the central setting,

the local setting, and their difference, respectively for all pairs of privacy sensitivities (𝑐1, 𝑐2).

We observe that the variance in the central setting is always weakly larger than the variance
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(a) (b) (c)

Figure 2-4: (a) the variance in the central setting, (b) the variance in the local setting, and
(c) the variance in the local minus the central setting for two users with var = 1/4 and
uniform privacy sensitivities over [1, 2] as a function of the privacy sensitivities (𝑐1, 𝑐2).

(a) (b) (c)

Figure 2-5: (a) the analyst’s objective in the central setting, (b) the analyst’s objective in
the local setting, and (c) the analyst’s objective in the local minus the central setting for
two users with var = 1/4 and uniform privacy sensitivities over [1, 2] as a function of the
privacy sensitivities (𝑐1, 𝑐2).
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(a) (b) (c)

Figure 2-6: (a) user 1’s optimal privacy loss in the central setting, (b) user 1’s optimal
privacy loss in the local setting, and (c) the difference between user 1’s optimal privacy loss
in the local setting and the central setting as a function of (𝑐1, 𝑐2). Here, we have var = 1/4
and the privacy sensitivities are uniform over [1, 2].

in the local setting. This is because the local setting provides a stronger privacy guarantee

and will hurt the variance of the final estimator. We also observe that when there is a large

discrepancy between the two privacy sensitivities, the variance of the central and the local

settings are equal. This is because the platform obtains all of its data from only one of the

users and therefore central and local setting become identical. Further, when the two costs

are very close to each (i.e., 𝑐1 ≈ 𝑐2), the platform’s weight for the data of each of the users

in the estimator become close to each other. This implies that the variance of the local and

the central setting become very close to each other.

Figures 2-5a, 2-5b, and 2-5c depict the platform’s objective for the central setting, the

local setting, and their difference, respectively for all pairs of privacy sensitivities (𝑐1, 𝑐2).

We observe that the cost in the central setting is always weakly smaller than the cost in the

local setting. This is again because the local setting provides a stronger privacy guarantee

and will hurt the platform’s objective. When there is a large discrepancy between the two

privacy sensitivities (i.e. |𝑐1− 𝑐2| ≈ 1), the objective of the central and the local settings are

equal. This is because the platform obtains all of its data from only one of the users and

therefore central and local setting become identical.

Figures 2-6a and 2-6b depict the optimal allocation of user 1 in the central and local

settings, and Figure 2-6c depicts the optimal allocation of user 1 in the local setting minus

the central setting. We observe that, the privacy loss level of a user in the local setting can

be lower (i.e., better privacy) than the central setting. We next provide a formal statement
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for this observation in the context of an example.

2.6.2 Optimal Privacy Loss Levels in the Central Versus Local Set-

ting

Here, we illustrate that the privacy loss level of a user in the optimal local data acquisition

mechanism can be smaller than the central setting, i.e., the optimal mechanism in the local

setting may provide strictly better privacy guarantees to a user compared to the central

setting. To simplify the notation, we work with the virtual cost rather than the privacy

sensitivity. Note that this is without loss of generality as we do not pose any assumption on

the virtual cost (other than Assumption 2.1).

Proposition 2.6. Assume the virtual costs of users 1, · · · , 𝑛 − 1 are all equal to 𝜓1. We

also denote the virtual cost of user 𝑛 by 𝜓𝑛. Then, for12

𝜓𝑛 ∈
[︂
𝜓1 +Θ

(︂
1

𝑛2/3

)︂
, 𝜓1 +Θ

(︂
1

𝑛1/3

)︂]︂
,

the optimal privacy loss level of user 𝑛 in the local setting is zero, while her optimal privacy

level in the central setting is non-zero.

Proposition 2.6 follows by comparing the optimal solutions of the non-convex programs

(2.23) and (2.30). Note that, since the local privacy is a more stringent requirement, one

may expect that, in the optimal local mechanism, the delivered privacy guarantees to users

are worse (higher privacy loss levels) compared to the central setting. This proposition shows

that may not be the case. To gain an intuition, note that, as the privacy sensitivity of user

𝑛, i.e., 𝜓𝑛, increases, her privacy loss level, in both central and local settings, goes to zero.

Recall that in the central estimator (2.2.2), the privacy loss level of user 𝑛 is denoted as 𝑤𝑛𝜂.

To achieve a near-zero privacy loss level, we have two possibilities: either 𝜂 approaches zero

(which results in a larger estimation error due to the Laplace noise variance being 2/𝜂2),

or 𝑤𝑛 must approach zero. Similarly, in the local estimator, user 𝑛’s privacy loss level is

12𝑓(𝑛) = Θ(𝑔(𝑛)) means that there exist 𝑛0 and constants 𝑐1, 𝑐2 such that for 𝑛 ≥ 𝑛0, we have 𝑐1𝑔(𝑛) ≤
𝑓(𝑛) ≤ 𝑐2𝑔(𝑛).
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represented by 𝜀𝑛, and if this term approaches zero, 𝑤𝑛 must also approach zero; otherwise,

the estimation error will be considerably large. In summary, to deliver such small privacy

loss, in the optimal central and local mechanisms, the platform must allocate zero weight to

user 𝑛’s data. Otherwise, the added noise in the platform’s estimator makes the estimation

error unbounded.

In the local setting, each user first maps her data to a private version and then shares it

with the platform, meaning that, by definition, the privacy loss level of a user only depends

on this mapping and not the platform’s estimator. This in turn implies that the reallocation

of the weights will not impact the privacy loss levels delivered to other users and hence will

not change their compensations. In the central setting, however, decreasing user 𝑛’s weight

in the optimal estimator, increases the allocated weight to other users’ data (because the sum

of the wights add up to one). This in turn increases their allocated privacy loss levels and

hence their compensation. Therefore, in the central setting the platform is more reluctant

to give up on user 𝑛’s data and increase other users’ allocated weights, which is what we

establish in Proposition 2.6.

2.7 Conclusion and Discussions

We study the design of mechanisms for acquiring data from users with privacy concerns who

also benefit from a lower estimation error. We consider two architectures: (i) central privacy

setting in which users share their data with the platform, incur some privacy loss and get

compensated for their loss. The platform then combines the data of users and outputs an

estimator that guarantees the promised heterogeneous privacy loss to each user; and (ii)

local privacy setting in which users share a differentially private version of their data with

the platform, incur some privacy loss and get compensated for their loss. The platform then

combines the data of users and outputs an estimator.

In both cases, we first establish that a linear estimator with proper weights and added

Laplace noise achieves the nearly optimal minimax bound, which is of independent interest.

Building on this characterization, we then optimally solve the corresponding mechanism

design problem for both settings. In the central privacy setting, we establish a polynomial
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time score-based algorithm that finds the optimal privacy loss levels. In the local privacy

setting, however, we establish a Polynomial Time Approximation Scheme (PTAS) for finding

the optimal privacy losses.

Finally, we compare the performance of the central and the local architectures. In partic-

ular, we show that the platform’s utility in the central privacy setting is always higher than

in the local privacy setting. But, there is no dominance in terms of the optimal privacy loss

level, i.e., depending on her privacy sensitivity, a user may have a higher or lower privacy

loss in the central setting compared to the local setting.

In our analysis, we utilized a set of simplifying assumptions to aid our investigation.

Here, we would like to underline these assumptions, furnish reasons for their use within

the context of our application, and outline potential avenues for future exploration. As an

illustrative example, we consider the purchase of medical data by emerging companies such

as Hu-manity.co, where users receive compensation for sharing their medical information.

• Verifiability of data: We made the assumption that while users have the ability to

misrepresent their privacy sensitivity, they cannot falsify the actual data itself. This

assumption is applicable in scenarios where users sell the "rights" to their data, and

the platform collects data, such as in the context of Hu-manity.co, where medical data

from users is gathered.

• Independence of data and privacy sensitivity: We have assumed that there is

no relation between users’ data and their privacy sensitivity. In the context of the Hu-

manity.co application, this implies that users become aware of their privacy sensitivity

before their actual medical data (i.e., realized data) is revealed. This assumption

arises from situations where users are unable to collect/process the data themselves.

However, we recognize that in other applications, such as the sharing of financial data,

this assumption may not hold. Without this assumption, there may be a sample bias in

the data collected by the platform, which would require correction. We leave exploring

this direction as an interesting future avenue of research.

• Extensions in estimation models: We focused on the private mean estimation

task from a population, but it would be interesting to extend our results to more com-
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plex estimation models. Here are potential extensions: estimating a multi-dimensional

underlying parameter denoted as 𝜃 and estimating an underlying parameter 𝜃 when

customers have data (𝑋𝑖, 𝑌𝑖) defined as 𝑌𝑖 = 𝑋 ′
𝑖𝜃 + 𝑍𝑖.

It is worth noting that extending our results to these scenarios requires establishing the

equivalent counterparts of Theorems 2.1 and 2.2. This involves finding the (minimax)

optimal estimator while considering heterogeneous differential privacy concerns. Once

such an estimator is obtained (or when the minimax optimality of the estimator is not

a concern), our results on the characterization of the mechanism continue to hold. This

means that similar to the derivations presented in Section 2.3, the platform’s problem

revolves around solving a point-wise optimization problem. However, it is important

to note that, similar to our current setting, this problem can also be non-convex,

necessitating the development of an efficient algorithm for its solution.

• Additive user utility: In our model, each user’s utility is determined as the payment

received minus the mean squared error (MSE) of the estimator, minus the privacy

sensitivity multiplied by their level of differential privacy. This utility form assumes two

key assumptions. First, it assumes additivity and that the privacy sensitivity is directly

multiplied by the privacy level. While these assumptions simplify the derivations, it

is worth noting that, similar to the classic mechanism design setting, all the results

extend as long as the user utility is quasi-linear. In other words, the utility is a function

of the MSE, privacy sensitivity, and privacy level and is subtracted by the payment.

As an example, it is possible for the MSE and payment to have user-specific known

coefficients.

Second, the model assumes that there is only one privately known user parameter,

which is privacy sensitivity. If the users have privately known weights for either the

MSE or payment, the problem becomes a multi-dimensional mechanism design whose

study is beyond the scope of this work.

• Trusting the platform: In the central setting, we assumed there is trust between

users and the platform: users share their data with the platform, relying on the plat-

form to handle the data responsibly and deliver the promised privacy level without
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exploiting it for other purposes (this form of credibility is present in data acquisition

mechanisms and not classic auctions that are studied in Akbarpour and Li [2020]).

This concern regarding platform credibility motivated us to also study the local pri-

vacy setting. In this setting, data is privatized directly on the user side, granting users

control over the implementation of privacy measures. This local structure has been

effectively implemented by various tech companies, such as Apple, which has incorpo-

rated local differential privacy techniques into their data handling processes (see, e.g.,

Apple).

2.8 Proofs and Additional Results

Proof of Lemma 2.2

Since |𝑍𝑖| ≤ 1
2
, the difference of every two realizations of 𝑋𝑖 would be bounded by one.

Therefore, the sensitivity of 𝜃 to 𝑥𝑖, defined in (2.1), is given by 𝑤𝑖(𝑐). Hence, Lemma 2.1

immediately implies the result. ■

Proof of Theorem 2.1

For the sake of subsequent analysis, we find it helpful to recall the definition of two well-

known distribution distances. Let 𝑃 and 𝑄 be two distributions, defined over a probability

space (Ω,ℱ). Then,

• the total variation (TV) distance is denoted by ‖𝑃 −𝑄‖TV, and is given by

‖𝑃 −𝑄‖TV := sup
𝐴∈ℱ

|𝑃 (𝐴)−𝑄(𝐴)| = 1

2

∫︁
Ω

|𝑑𝑃 − 𝑑𝑄|.

• when 𝑃 is absolutely continuous with respect to 𝑄, the Kullback–Leibler (KL) distance

is denoted by 𝐷KL(𝑃,𝑄), and it is given by

𝐷KL(𝑃,𝑄) :=

∫︁
log

𝑑𝑃

𝑑𝑄
𝑑𝑃.
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One inequality that we particularly find it helpful for analysis is the Pinsker’s inequality

which states that

‖𝑃 −𝑄‖2TV ≤ 1

2
𝐷KL(𝑃,𝑄). (2.34)

To prove the lower bound (2.4), we use Le Cam’s method Yu [1997] which is a well-

known technique in deriving minimax lower bounds. The main idea of Le Cam’s method is

reducing the estimation problem to a testing problem. More formally, let 𝑃1 and 𝑃2 be two

distributions in 𝒫𝑘 with

𝛾 :=
1

2
|𝜃(𝑃1)− 𝜃(𝑃2)|. (2.35)

Furthermore, for 𝑗 ∈ {1, 2}, let 𝑄𝑗 be the marginal distribution of 𝜃, given that the samples

𝑋1:𝑛 are all drawn from 𝑃𝑗, i.e.,

𝑄𝑗(𝐴) =

∫︁
R𝑛

P(𝜃(𝑥1:𝑛) ∈ 𝐴)𝑑𝑃 𝑛
𝑗 (𝑥1:𝑛), (2.36)

for any measurable set 𝐴. Then, by Le Cam’s method, we have (see Barber and Duchi [2014]

for more details)

ℒ𝑐(𝒫𝑘, 𝜃, 𝜀) ≥ 𝛾2
(︂
1

2
− 1

2
‖𝑄1 −𝑄2‖TV

)︂
. (2.37)

Next, we bound ‖𝑄1 −𝑄2‖TV in the following lemma.

Lemma 2.3. Let 𝑃1 and 𝑃2 be two distributions in 𝒫 such that 𝑃1 is absolutely continuous

with respect to 𝑃2. Consider 𝑄1 and 𝑄2 as defined in (2.36). Then, for any 𝑘 ∈ {0, 1, · · · , 𝑛},

‖𝑄1 −𝑄2‖TV ≤ 2‖𝑃1 − 𝑃2‖TV

𝑘∑︁
𝑖=1

(𝑒𝜀𝑖 − 1) +

√︂
𝑛− 𝑘

2
𝐷KL(𝑃1, 𝑃2). (2.38)

We prove this lemma at the end of this section. Now, using this lemma, let us complete

the proof of (2.4). Let 𝛿 ∈ [0, 1/2], and define 𝑃1 and 𝑃2 as

𝑃1(−1/2) = 𝑃2(1/2) =
1 + 𝛿

2
, 𝑃1(1/2) = 𝑃2(−1/2) =

1− 𝛿

2
. (2.39)

Obviously 𝑃1, 𝑃2 ∈ 𝒫*. Also, for 𝑖 ∈ {1, 2}, E𝑃𝑖
[𝑋] = (−1)𝑖𝛿/2, and hence 𝛾 = 𝛿/2. In
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addition, by definition, we have

‖𝑃1 − 𝑃2‖TV =
1

2
× 2×

(︂
1 + 𝛿

2
− 1− 𝛿

2

)︂
= 𝛿,

𝐷KL(𝑃1, 𝑃2) = 𝛿 log
1 + 𝛿

1− 𝛿
≤ 3𝛿2,

where the last inequality holds for 𝛿 ∈ [0, 1/2]. Hence, by Lemma 2.3, along with the fact

that 𝑒𝜀𝑖 − 1 ≤ 2𝜀𝑖 for 𝜀𝑖 ≤ 1, we have that for

‖𝑄1 −𝑄2‖TV ≤ 4𝛿
𝑘∑︁
𝑖=1

𝜀𝑖 + 𝛿

√︂
3(𝑛− 𝑘)

2
.

Therefore, using (2.37), we obtain

ℒ𝑐(𝒫𝑘, 𝜃, 𝜀) ≥
𝛿2

8

(︃
1− 𝛿

[︃
4

𝑘∑︁
𝑖=1

𝜀𝑖 +

√︂
3(𝑛− 𝑘)

2

]︃)︃
. (2.40)

Choosing

𝛿 =

(︃
8

𝑘∑︁
𝑖=1

𝜀𝑖 +
√︀
6(𝑛− 𝑘)

)︃−1

∧ 1

2
,

implies

ℒ𝑐(𝒫𝑘, 𝜃, 𝜀) ≥
1

16

⎛⎝(︃8 𝑘∑︁
𝑖=1

𝜀𝑖 +
√︀

6(𝑛− 𝑘)

)︃−2

∧ 1

4

⎞⎠ . (2.41)

Using inequality (𝑥+ 𝑦)2 ≤ 2(𝑥2 + 𝑦2) with 𝑥 = 8
∑︀𝑘

𝑖=1 𝜀𝑖 and 𝑦 =
√︀

6(𝑛− 𝑘) completes the

proof of (2.4).

Next, we show the upper bound (2.5). First note that, since |𝑋| ≤ 1/2 almost surely for

any 𝑃 ∈ 𝒫 , we have 𝜃(𝑃 ) ≤ 1/2 for any 𝑃 ∈ 𝒫 . Hence, 𝜃 = 0, which is a linear estimator

in the form of (2.3) with 𝑤𝑖 = 0 for all 𝑖 and 𝜂 = ∞, leads to E[|𝜃 − 𝜃|2] ≤ 1/4. Hence, it

suffices to find a linear estimator 𝜃 with Laplace mechanism such that

E[|𝜃 − 𝜃|2] ≤ 𝒪(1) log(𝑛+ 1)max
𝑗

1

𝑛− 𝑗 + (
∑︀𝑗

𝑖=1 𝜀𝑖)
2
. (2.42)
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To do so, let 𝑘* be the largest 𝑘 ∈ {0, 1, · · ·𝑛− 1} such that

𝜀𝑛−𝑘 >
1√
𝑘 + 1

, (2.43)

if such 𝑘 exists. Now, we consider two cases:

∙ First, assume such 𝑘 does not exists. Then, consider linear estimator

𝜃 =
𝑛∑︁
𝑖=1

𝜀𝑖
𝜂
𝑥𝑖 + Laplace

(︂
1

𝜂

)︂
,

with

𝜂 =
𝑛∑︁
𝑖=1

𝜀𝑖.

In this case, it is straightforward to see

E[|𝜃 − 𝜃|2] ≤
∑︀𝑛

𝑖=1 𝜀
2
𝑖 + 2

𝜂2
=

∑︀𝑛
𝑖=1 𝜀

2
𝑖 + 2

(
∑︀𝑛

𝑖=1 𝜀𝑖)
2
, (2.44)

where we the fact that the variance is bounded by one since the absolute value of the random

variable almost surly bounded by one. Next, note that, since (2.43) does not hold for any 𝑘,

we have 𝜀𝑛−𝑘 ≤ 1√
𝑘+1

for any 𝑘, which implies that

𝑛∑︁
𝑖=1

𝜀2𝑖 ≤
𝑛∑︁
𝑖=1

1

𝑖
= 𝒪(1) log(𝑛+ 1).

Plugging this relation into (2.44) implies

E[|𝜃 − 𝜃|2] ≤ 𝒪(1) log(𝑛+ 1)
1

(
∑︀𝑛

𝑖=1 𝜀𝑖)
2
.

This completes the proof of (2.42) since

1

(
∑︀𝑛

𝑖=1 𝜀𝑖)
2
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is
1

𝑛− 𝑗 + (
∑︀𝑗

𝑖=1 𝜀𝑖)
2

with 𝑗 = 𝑛.

∙ Now assume there exists at least one 𝑘 that satisfies (2.43) (and hence the aforemen-

tioned 𝑘* is well-defined.) As a result, we have

𝜀1 ≤
1√
𝑛
, · · · , 𝜀𝑛−𝑘*−1 ≤

1√
𝑘* + 2

, (2.45)

𝜀𝑛 ≥ · · · 𝜀𝑛−𝑘* >
1√

𝑘* + 1
. (2.46)

In this case, consider the following linear estimator

𝜃 =
𝑛−𝑘*−1∑︁
𝑖=1

𝜀𝑖
𝜂
𝑥𝑖 +

𝑛∑︁
𝑖=𝑛−𝑘*

1/
√
𝑘* + 1

𝜂
𝑥𝑖 + Laplace

(︂
1

𝜂

)︂
,

with

𝜂 =
𝑛−𝑘*−1∑︁
𝑖=1

𝜀𝑖 +
𝑘* + 1√
𝑘* + 1

=
𝑛−𝑘*−1∑︁
𝑖=1

𝜀𝑖 +
√
𝑘* + 1.

First, by Lemma 2.2, this estimator is

(𝜀1, · · · , 𝜀𝑛−𝑘*−1,
1√

𝑘* + 1
, · · · , 1√

𝑘* + 1
)

differentially private, and hence, due to (2.46), it is (𝜀𝑖)
𝑛
𝑖=1-differentially private as well.

Second, using the fact that variance is bounded by one, we have

E[|𝜃 − 𝜃|2] ≤
∑︀𝑛−𝑘*−1

𝑖=1 𝜀2𝑖 +
𝑘*+1
𝑘*+1

+ 2

𝜂2

≤
∑︀𝑛

𝑖=𝑘*+2
1
𝑖
+ 3

(
∑︀𝑛−𝑘*−1

𝑖=1 𝜀𝑖 +
√
𝑘* + 1)2

, (2.47)

where the last inequality follows from (2.45) and definition of 𝜂. To complete the proof, note

that, the numerator of (2.47) is upper bounded by 𝒪(1) log(𝑛 + 1) and its denominator is
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lower bounded by

(︃
𝑛−𝑘*−1∑︁
𝑖=1

𝜀𝑖

)︃2

+ 𝑘* + 1 =

(︃
𝑗∑︁
𝑖=1

𝜀𝑖

)︃2

+ 𝑛− 𝑗 with 𝑗 = 𝑛− 𝑘* − 1.

Hence, (2.42) holds in this case as well. ■

Proof of Lemma 2.3

Let 𝑄̃ be the marginal distribution of 𝜃 given that 𝑋1, · · · , 𝑋𝑘 are drawn from 𝑃1 and

𝑋𝑘+1, · · · , 𝑋𝑛 are drawn from 𝑃2, i.e.,

𝑄̃(𝐴) =

∫︁
R𝑛

P(𝜃(𝑥1:𝑛) ∈ 𝐴)𝑑𝑃 𝑘
1 (𝑥1:𝑘)𝑑𝑃

𝑛−𝑘
2 (𝑥𝑘+1:𝑛). (2.48)

Note that, we have

‖𝑄1 −𝑄2‖TV ≤ ‖𝑄1 − 𝑄̃‖TV + ‖𝑄̃−𝑄2‖TV. (2.49)

The idea is to bound the two terms on the right hand side separately. In particular, we show

‖𝑄1 − 𝑄̃‖2TV ≤ 𝑛− 𝑘

2
𝐷KL(𝑃1, 𝑃2), (2.50)

‖𝑄̃−𝑄2‖TV ≤ 2‖𝑃1 − 𝑃2‖TV

𝑘∑︁
𝑖=1

(𝑒𝜀𝑖 − 1). (2.51)

If we show these two bounds, then plugging them into (2.49) will show Lemma 2.3.

∙ We start by showing (2.50). First, note that, by data processing inequality, we have

‖𝑄1 − 𝑄̃‖TV ≤ ‖𝑃 𝑛
1 − 𝑃 𝑘

1 𝑃
𝑛−𝑘
2 ‖TV.

Next, using Pinsker’s inequality (2.34), we obtain

‖𝑃 𝑛
1 − 𝑃 𝑘

1 𝑃
𝑛−𝑘
2 ‖2TV ≤ 1

2
𝐷KL(𝑃

𝑛
1 , 𝑃

𝑘
1 𝑃

𝑛−𝑘
2 )

≤ 𝑛− 𝑘

2
𝐷KL(𝑃1, 𝑃2),
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where the second inequality follows from the chain rule for KL-divergence. This completes

the proof of (2.50).

∙ Next, we show (2.51). By total variation distance definition, it suffices to show that,

for any measurable set 𝐴, |𝑄̃(𝐴)−𝑄2(𝐴)| is upper bounded by the right hand side of (2.38).

To see this, first, note that we have

𝑄̃(𝐴)−𝑄2(𝐴) =

∫︁
R𝑛

P(𝜃(𝑥1:𝑛) ∈ 𝐴)(𝑑𝑃 𝑘
1 (𝑥1:𝑘)− 𝑑𝑃 𝑘

2 (𝑥1:𝑘))𝑑𝑃
𝑛−𝑘
2 (𝑥𝑘+1:𝑛)

=

∫︁
R𝑛−𝑘

∆(𝑥𝑘+1:𝑛)𝑑𝑃
𝑛−𝑘
2 (𝑥𝑘+1:𝑛), (2.52)

where

∆(𝑥𝑘+1:𝑛) :=

∫︁
R𝑘

P(𝜃(𝑥1:𝑛) ∈ 𝐴)(𝑑𝑃 𝑘
1 (𝑥1:𝑘)− 𝑑𝑃 𝑘

2 (𝑥1:𝑘)). (2.53)

To show (2.51), it suffices to show

|∆(𝑥𝑘+1:𝑛)| ≤ 2‖𝑃1 − 𝑃2‖TV

𝑘∑︁
𝑖=1

(𝑒𝜀𝑖 − 1). (2.54)

To do so, first, note that 𝑑𝑃 𝑘
1 (𝑥1:𝑘)− 𝑑𝑃 𝑘

2 (𝑥1:𝑘) can be cast as

𝑑𝑃 𝑘
1 (𝑥1:𝑘)− 𝑑𝑃 𝑘

2 (𝑥1:𝑘) =
𝑘∑︁
𝑖=1

𝑑𝑃 𝑖−1
2 (𝑥1:𝑖−1) (𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)) 𝑑𝑃

𝑘−𝑖
1 (𝑥𝑖+1:𝑘).

Plugging this into (2.53), we obtain

∆(𝑥𝑘+1:𝑛) =
𝑘∑︁
𝑖=1

∫︁
R𝑛

P(𝜃(𝑥1:𝑛) ∈ 𝐴)𝑑𝑃 𝑖−1
2 (𝑥1:𝑖−1) (𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)) 𝑑𝑃

𝑘−𝑖
1 (𝑥𝑖+1:𝑘). (2.55)

Let 𝑥𝑖1:𝑛 be a vector similar to 𝑥1:𝑛, except on 𝑖-th coordinate, where 𝑥𝑖 is replaced by 𝑥′𝑖.

Note that,

∫︁
R𝑘

P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)𝑑𝑃 𝑖−1
2 (𝑥1:𝑖−1) (𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)) 𝑑𝑃

𝑘−𝑖
1 (𝑥𝑖+1:𝑘) = 0.
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Hence, we could write (2.55) as

∆(𝑥𝑘+1:𝑛) = (2.56)
𝑘∑︁
𝑖=1

∫︁
R𝑘

(︁
P(𝜃(𝑥1:𝑛) ∈ 𝐴)− P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)

)︁
𝑑𝑃 𝑖−1

2 (𝑥1:𝑖−1) (𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)) 𝑑𝑃
𝑘−𝑖
1 (𝑥𝑖+1:𝑘).

Hence, we have

|∆(𝑥𝑘+1:𝑛)| ≤ (2.57)
𝑘∑︁
𝑖=1

∫︁
R𝑘

⃒⃒⃒
P(𝜃(𝑥1:𝑛) ∈ 𝐴)− P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)

⃒⃒⃒
𝑑𝑃 𝑖−1

2 (𝑥1:𝑖−1) |𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)| 𝑑𝑃 𝑘−𝑖
1 (𝑥𝑖+1:𝑘).

Note that, by differential privacy definition, we have

(𝑒−𝜀𝑖 − 1)P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴) ≤ P(𝜃(𝑥1:𝑛) ∈ 𝐴)− P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴) ≤ (𝑒𝜀𝑖 − 1)P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴),

which implies

⃒⃒⃒
P(𝜃(𝑥1:𝑛) ∈ 𝐴)− P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)

⃒⃒⃒
≤ (𝑒𝜀𝑖 − 1)P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴).

Plugging this into (2.57), we obtain

|∆(𝑥𝑘+1:𝑛)| ≤ (2.58)
𝑘∑︁
𝑖=1

(𝑒𝜀𝑖 − 1)

∫︁
R𝑘

P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)𝑑𝑃 𝑖−1
2 (𝑥1:𝑖−1) |𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)| 𝑑𝑃 𝑘−𝑖

1 (𝑥𝑖+1:𝑘).

Finally, note that

∫︁
R𝑘

P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)𝑑𝑃 𝑖−1
2 (𝑥1:𝑖−1) |𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)| 𝑑𝑃 𝑘−𝑖

1 (𝑥𝑖+1:𝑘)

=

∫︁
R𝑘−1

P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)𝑑𝑃 𝑖−1
2 (𝑥1:𝑖−1)𝑑𝑃

𝑘−𝑖
1 (𝑥𝑖+1:𝑘)

∫︁
R
|𝑑𝑃1(𝑥𝑖)− 𝑑𝑃2(𝑥𝑖)|

≤ 2‖𝑃1 − 𝑃2‖TV, (2.59)
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where the last inequality follows from the fact that

∫︁
R𝑘−1

P(𝜃(𝑥𝑖1:𝑛) ∈ 𝐴)𝑑𝑃 𝑖−1
2 (𝑥1:𝑖−1)𝑑𝑃

𝑘−𝑖
1 (𝑥𝑖+1:𝑘)

is bounded by 1. Plugging (2.59) into (2.58) completes the proof of (2.54). ■

Proof of Theorem 2.2

To show the lower bound (2.12), we again use the Le Cam’s method. Here, for 𝑗 ∈ {1, 2}, we

define 𝑄𝑗 to be the marginal distribution of ℳ, given that the samples 𝑋1:𝑛 are all drawn

from 𝑃𝑗, i.e.,

𝑄𝑗(𝐴) =

∫︁
R𝑛

P(ℳ(𝑥1:𝑛) ∈ 𝐴)𝑑𝑃 𝑛
𝑗 (𝑥1:𝑛), (2.60)

for any measurable set 𝐴 ⊂ R𝑛. Then, again, by Le Cam’s method, we have (see Duchi et al.

[2013] for more details)

ℒ𝑙(𝒫𝑘, 𝜃, 𝜀) ≥ 𝛾2
(︂
1

2
− 1

2
‖𝑄1 −𝑄2‖TV

)︂
, (2.61)

where 𝛾 is given by (2.35). A slight extension of Corollary 1 in Duchi et al. [2013] implies

‖𝑄1 −𝑄2‖2TV ≤ 1

4
(𝐷KL(𝑄1, 𝑄2) +𝐷KL(𝑄2, 𝑄1)) ≤ ‖𝑃1 − 𝑃2‖2TV

𝑛∑︁
𝑖=1

(𝑒𝜀𝑖 − 1)2.

Hence, for 𝜀𝑖 ≤ 1, using 𝑒𝜀𝑖 − 1 ≤ 2𝜀𝑖, we have

‖𝑄1 −𝑄2‖TV ≤ 2‖𝑃1 − 𝑃2‖TV

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝜀2𝑖 .

Taking 𝑃1 and 𝑃2 similar to (2.39), and using (2.61), we have

ℒ𝑙(𝒫𝑘, 𝜃, 𝜀) ≥
1

8
𝛿2

⎛⎝1− 2𝛿

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝜀2𝑖

⎞⎠ . (2.62)
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Choosing

𝛿 =
1

4
√︀∑︀𝑛

𝑖=1 𝜀
2
𝑖

∧ 1

2

completes the proof of (2.12).

To show the upper bound (2.13), we form the following estimator

𝜃 =
𝑛∑︁
𝑖=1

𝜀2𝑖∑︀𝑛
𝑗=1 𝜀

2
𝑗

𝑥̂𝑖, where 𝑥̂𝑖 = 𝑥𝑖 + Laplace
(︂
1

𝜀𝑖

)︂
. (2.63)

Clearly this estimator is (𝜀𝑖)
𝑛
𝑖=1-locally differentially private. Next, note that

E
[︁
|𝜃 − 𝜃|2

]︁
=

𝑛∑︁
𝑖=1

𝜀4𝑖
(
∑︀𝑛

𝑗=1 𝜀
2
𝑗)

2
Var(𝑥̂𝑖) =

𝑛∑︁
𝑖=1

𝜀4𝑖
(
∑︀𝑛

𝑗=1 𝜀
2
𝑗)

2

(︂
Var(𝑋) +

1

𝜀2𝑖

)︂
. (2.64)

Using the fact that 1
𝜀2𝑖

≥ 1 ≥ Var(𝑋), we obtain

E
[︁
|𝜃 − 𝜃|2

]︁
≤ 2

𝑛∑︁
𝑖=1

𝜀4𝑖
(
∑︀𝑛

𝑗=1 𝜀
2
𝑗)

2
· 1

𝜀2𝑖
= 2

𝑛∑︁
𝑖=1

𝜀2𝑖
(
∑︀𝑛

𝑗=1 𝜀
2
𝑗)

2
=

2∑︀𝑛
𝑗=1 𝜀

2
𝑗

, (2.65)

which completes the proof. ■

Proof of Proposition 2.1

Letting

ℎ𝑖(𝑐) = Ec−𝑖

[︁
MSE(𝑐, c−𝑖, 𝜀, 𝜃)

]︁
,

𝑡𝑖(𝑐) = Ec−𝑖
[𝑡(𝑐, c−𝑖)] ,

and

𝜀𝑖(𝑐) = Ec−𝑖
[𝜀𝑖(𝑐, c−𝑖)] ,
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we can write the incentive compatibility constraint as

ℎ𝑖(𝑐𝑖) + 𝑐𝑖𝜀𝑖(𝑐𝑖)− 𝑡𝑖(𝑐𝑖) ≤ ℎ𝑖(𝑐
′
𝑖) + 𝑐𝑖𝜀𝑖(𝑐

′
𝑖)− 𝑡𝑖(𝑐

′
𝑖).

Taking derivative of the right-hand side with respect to 𝑐′𝑖 and evaluating the derivative at

𝑐′𝑖 = 𝑐𝑖 and equating it to zero leads to

ℎ′𝑖(𝑐𝑖) + 𝑐𝑖𝜀
′
𝑖(𝑐𝑖)− 𝑡′𝑖(𝑐𝑖) = 0.

By taking the integral of this expression we obtain

𝑡𝑖(𝑐𝑖) = 𝑡𝑖(0) +

∫︁ 𝑐𝑖

𝑧=0

(ℎ′𝑖(𝑧) + 𝑧𝜀′𝑖(𝑧)) 𝑑𝑧 = 𝑡𝑖(0) + ℎ𝑖(𝑐𝑖)− ℎ𝑖(0) + 𝑐𝑖𝜀𝑖(𝑐𝑖)−
∫︁ 𝑐𝑖

𝑧=0

𝜀𝑖(𝑧)𝑑𝑧.

(2.66)

We next show that the payment in (2.66) together with a weakly decreasing 𝜀𝑖(𝑧) guaran-

tees that the incentive compatibility constraint. To see this, we consider two possibilities

depending on whether 𝑐′𝑖 is larger or smaller than 𝑐𝑖:

• For 𝑐′𝑖 ≥ 𝑐𝑖: by plugging in the payment in (2.66) the incentive compatibility constraint

becomes equivalent to

𝜀𝑖(𝑐
′
𝑖)(𝑐𝑖 − 𝑐′𝑖) ≥

∫︁ 𝑐𝑖

𝑧=𝑐′𝑖

𝜀𝑖(𝑧)𝑑𝑧,

which holds because 𝜀𝑖(𝑧) is weakly decreasing in 𝑧.

• For 𝑐′𝑖 ≤ 𝑐𝑖: again, by plugging in the payment in (2.66) the incentive compatibility

constraint becomes equivalent to

𝜀𝑖(𝑐
′
𝑖)(𝑐𝑖 − 𝑐′𝑖) ≤

∫︁ 𝑐′𝑖

𝑧=𝑐𝑖

𝜀𝑖(𝑧)𝑑𝑧,

which, again, holds because 𝜀𝑖(𝑧) is weakly decreasing in 𝑧. This completes one direc-

tion of the proof.

To see the other direction, notice that the first order condition of the incentive compati-
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bility implies (2.66). Finally notice that the incentive compatibility implies

ℎ𝑖(𝑐𝑖) + 𝑐𝑖𝜀𝑖(𝑐𝑖)− 𝑡𝑖(𝑐𝑖) ≤ ℎ𝑖(𝑐
′
𝑖) + 𝑐𝑖𝜀𝑖(𝑐

′
𝑖)− 𝑡𝑖(𝑐

′
𝑖).

and

ℎ𝑖(𝑐
′
𝑖) + 𝑐′𝑖𝜀𝑖(𝑐

′
𝑖)− 𝑡𝑖(𝑐

′
𝑖) ≤ ℎ𝑖(𝑐𝑖) + 𝑐′𝑖𝜀𝑖(𝑐𝑖)− 𝑡𝑖(𝑐𝑖).

Taking summation of these two equations results in

(𝜀𝑖(𝑐𝑖)− 𝜀𝑖(𝑐
′
𝑖)) (𝑐𝑖 − 𝑐′𝑖) ≤ 0,

which shows that 𝜀𝑖(·) is weakly decreasing.

We next consider the individual rationality constraint. Using (2.66), we can rewrite this

constraint as

𝑡𝑖(0) ≥ ℎ𝑖(0)− var +

∫︁ 𝑐𝑖

𝑧=0

𝜀𝑖(𝑧)𝑑𝑧 for all 𝑐𝑖 (2.67)

which means it only needs to hold for 𝑐𝑖 = ∞. Hence, we could cast 𝑡𝑖(0) as

𝑡𝑖(0) = ℎ𝑖(0)− var +

∫︁ ∞

𝑧=0

𝜀𝑖(𝑧)𝑑𝑧 + 𝑑𝑖

for some nonnegative constant 𝑑𝑖. Plugging this back in (2.66) results in

𝑡𝑖(𝑐𝑖) = ℎ𝑖(𝑐𝑖)− var + 𝑐𝑖𝜀𝑖(𝑐𝑖) +

∫︁ ∞

𝑧=𝑐𝑖

𝜀𝑖(𝑧)𝑑𝑧 + 𝑑𝑖.

This completes the proof. ■
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Proof of Proposition 2.2

Using the payment identity in Proposition 2.1, we obtain

E𝑐𝑖 [𝑡𝑖(𝑐𝑖)] = E[MSE(c; 𝜀, 𝜃)]− var + E𝑐𝑖 [𝑐𝑖𝜀𝑖(𝑐𝑖)] + E𝑐𝑖
[︂∫︁ ∞

𝑧=𝑐𝑖

𝜀𝑖(𝑧)𝑑𝑧

]︂
= E[MSE(c; 𝜀, 𝜃)]− var

+

∫︁
z−𝑖

∫︁
𝑧𝑖

(︂
𝑧𝑖𝜀𝑖(𝑧𝑖, z−𝑖) +

∫︁ ∞

𝑦𝑖=𝑧𝑖

𝜀𝑖(𝑦𝑖, z−𝑖)𝑑𝑦𝑖

)︂
𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

= E[MSE(c; 𝜀, 𝜃)]− var +

∫︁
z−𝑖

∫︁
𝑧𝑖

𝑧𝑖𝜀𝑖(𝑧𝑖, z−𝑖)𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

+

∫︁
z−𝑖

∫︁ ∞

𝑧𝑖=0

∫︁ ∞

𝑦𝑖=𝑧𝑖

𝜀𝑖(𝑦𝑖, z−𝑖)𝑑𝑦𝑖𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

(𝑎)
= E[MSE(c; 𝜀, 𝜃)]− var +

∫︁
z−𝑖

∫︁
𝑧𝑖

𝑧𝑖𝜀𝑖(𝑧𝑖, z−𝑖)𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

+

∫︁
z−𝑖

𝑓−𝑖(z−𝑖)𝑑z−𝑖

∫︁ ∞

𝑦𝑖=0

𝜀𝑖(𝑦𝑖, z−𝑖)𝑑𝑦𝑖

∫︁ 𝑦𝑖

𝑧𝑖=0

𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖

= E[MSE(c; 𝜀, 𝜃)]− var +

∫︁
z−𝑖

∫︁
𝑧𝑖

𝑧𝑖𝜀𝑖(𝑧𝑖, z−𝑖)𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

+

∫︁
z−𝑖

𝑓−𝑖(z−𝑖)𝑑z−𝑖

∫︁ ∞

𝑦𝑖=0

𝜀𝑖(𝑦𝑖, z−𝑖)𝑑𝑦𝑖𝐹𝑖(𝑦𝑖)

(𝑏)
= E[MSE(c; 𝜀, 𝜃)]− var +

∫︁
z

(︂
𝑧𝑖 +

𝐹𝑖(𝑧𝑖)

𝑓𝑖(𝑧𝑖)

)︂
𝜀𝑖(z)𝑓(z)𝑑z, (2.68)

where (a) follows from changing the order of the integrals and (b) follows by a change of

variable from 𝑦𝑖 to 𝑧𝑖. Substituting equation (2.68) in the platform’s objective function,

results in

Ec

[︃
MSE(c, 𝜀, 𝜃) +

𝑛∑︁
𝑖=1

𝑡𝑖(c)

]︃
= Ec

[︃
(𝑛+ 1)MSE(c, 𝜀, 𝜃) +

𝑛∑︁
𝑖=1

𝜓(𝑐𝑖)𝜀𝑖(c)

]︃
− 𝑛var.

Finally, note that, by using Proposition 2.1, the payment identity guarantees a privacy level

function is decreasing if 𝜀𝑖(·) is decreasing. This completes the proof. ■

72



Proof of Theorem 2.3

Since the variance of the data points are var, the variance of the estimator given in (2.22)

(i.e., the mean square error) is

2

𝜂2
+

𝑛∑︁
𝑖=1

𝑤𝑖(c)
2var.

By plugging this expression into the characterization of Proposition 2.2, we see that for any

vector of reported privacy costs (𝑐1, . . . , 𝑐𝑛), the point-wise optimization problem becomes

min
𝜀(c),w(c),𝜂

2(𝑛+ 1)

𝜂2
+

𝑛∑︁
𝑖=1

(𝑛+ 1)var 𝑤𝑖(c)
2 + 𝜓𝑖(𝑐𝑖)𝜀𝑖(c)

s.t. 𝜀𝑖(c) ≥ 0, for all 𝑖 ∈ 𝒩
𝑛∑︁
𝑖=1

𝑤𝑖(c) = 1

𝜂𝑤𝑖(c) ≤ 𝜀𝑖(c) for all 𝑖 ∈ 𝒩 .

In the optimal solution we must have 𝜂𝑤𝑖(c) = 𝜀𝑖(c) for all 𝑖 ∈ 𝒩 . Therefore, the above

optimization is equivalent to

min
𝜀(c),w(c),𝜂

2(𝑛+ 1)

𝜂2
+

𝑛∑︁
𝑖=1

(𝑛+ 1)var
𝜀2𝑖 (c)

𝜂2
+ 𝜓𝑖(𝑐𝑖)𝜀𝑖(c)

s.t. 𝜀𝑖(c) ≥ 0, for all 𝑖 ∈ 𝒩
𝑛∑︁
𝑖=1

𝜀𝑖(c)

𝜂
= 1,

which in turn, by letting 𝜀𝑖(c) = 𝑦𝑖 for all 𝑖 ∈ 𝒩 , is equivalent to

min
y

2(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦𝑗

)︁2 +
𝑛∑︁
𝑖=1

(𝑛+ 1)var

(︃
𝑦𝑖∑︀𝑛
𝑗=1 𝑦𝑗

)︃2

+ 𝜓𝑖(𝑐𝑖)𝑦𝑖 (2.69)

s.t. 𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩 .
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The corresponding payment to user 𝑖 is given by

Ec−𝑖

[︁
MSE(𝑐𝑖, c−𝑖; 𝜀, 𝜃central)

]︁
− var + 𝑐𝑖Ec−𝑖

[𝜀𝑖(𝑐𝑖, c−𝑖)] +

∫︁ ∞

𝑥=𝑐𝑖

E−𝑖
[𝜀𝑖(𝑥, c−𝑖)] 𝑑𝑥.

By invoking Proposition 2.1, this payment and allocation satisfy the incentive compatibility

and the individual rationality constraints provided that the optimal privacy level function is

weakly decreasing in the reported privacy cost which we prove next.

Let (𝑦1, . . . , 𝑦𝑛) be the solution of optimization problem (2.69) for 𝑐1, . . . , 𝑐𝑛. Now, sup-

pose we increases one of the 𝑐𝑖’s, which, without loss of generality, we assume is the first one.

Let 𝑐′1 > 𝑐1 and 𝑐′𝑖 = 𝑐𝑖 for 𝑖 = 2, . . . , 𝑛 and suppose 𝑦′1, . . . , 𝑦′𝑛 is the corresponding optimal

solution of optimization problem (2.69). The optimality condition implies that

2(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦

2
𝑗

)︁2 +
(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦

2
𝑗

)︁2 ∑︁
𝑖=1

𝑦2𝑖 var + 𝜓𝑖(𝑐𝑖)𝑦𝑖

≤ 2(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦

′
𝑗
2
)︁2 +

(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦

′
𝑗
2
)︁2 ∑︁

𝑖=1

𝑦′𝑖
2var + 𝜓𝑖(𝑐𝑖)𝑦

′
𝑖

and

2(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦

′
𝑗
2
)︁2 +

(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦

′
𝑗
2
)︁2 ∑︁

𝑖=1

𝑦′𝑖
2var + 𝜓𝑖(𝑐

′
𝑖)𝑦

′
𝑖

≤ 2(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦𝑗

2
)︁2 +

(𝑛+ 1)(︁∑︀𝑛
𝑗=1 𝑦𝑗

2
)︁2 ∑︁

𝑖=1

𝑦𝑖
2var + 𝜓𝑖(𝑐

′
𝑖)𝑦𝑖

Taking summation of both sides of these equations and using the fact that 𝑐𝑖 = 𝑐′𝑖 for

𝑖 = 2, . . . , 𝑛, we obtain

(𝑦1 − 𝑦′1)(𝜓1(𝑐1)− 𝜓1(𝑐
′
1)) ≤ 0.

Assumption 2.1 and the above inequality establishes that the solution of problem (2.69) is

weakly decreasing in the privacy cost.
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Finally, notice that if the platform pays user 𝑖

−var + 𝑐𝑖𝜀
*
𝑖 (c) +

∫︁
𝑐𝑖

𝜀*𝑖 (𝑧, c−𝑖)𝑑𝑧 +
2(︁∑︀𝑛

𝑗=1 𝜀
*
𝑗(c)

)︁2 +
𝑛∑︁
𝑖=1

(︃
𝜀𝑖(c)∑︀𝑛
𝑗=1 𝜀𝑗(c)

)︃2

var.

the expected payment becomes the same as the characterization of Proposition 2.1. This

completes the proof. ■

Proof of Corollary 2.1

If 𝜓𝑖(𝑐𝑖) = 𝜓𝑗(𝑐𝑗), then by swapping the 𝑖-th and 𝑗-th components of the solution the

objective remains the same and therefore we can always let 𝑦*𝑖 ≥ 𝑦*𝑗 . Now, suppose 𝜓𝑖(𝑐𝑖) <

𝜓𝑗(𝑐𝑗). We let

𝑦ℓ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦*ℓ ℓ ̸= 𝑖, 𝑗

𝑦*𝑖 ℓ = 𝑗

𝑦*𝑗 ℓ = 𝑖.

The difference of the objective function evaluated at (𝑦1, . . . , 𝑦𝑛) and (𝑦*1, . . . , 𝑦
*
𝑛) becomes

(𝜓𝑖(𝑐𝑖)− 𝜓𝑖(𝑐𝑗))
(︀
𝑦*𝑗 − 𝑦*𝑖

)︀
≥ 0

where the inequality follows from the optimality condition. Inequality 𝜓𝑖(𝑐𝑖) < 𝜓𝑗(𝑐𝑗),

implies that 𝑦*𝑖 ≥ 𝑦*𝑗 , proving the corollary. ■
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Proof of Proposition 2.3

Problem (2.23) is the same as

min
𝑆≥0

min
y

𝑛+ 1

𝑆2

(︃
2 +

𝑛∑︁
𝑖=1

𝑦2𝑖 var

)︃
+

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖

s.t.
𝑛∑︁
𝑖=1

𝑦𝑖 = 𝑆

𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩 .

Let us consider the optimization over y for a given 𝑆. The Lagrangian of this problem is

𝑛∑︁
𝑖=1

(𝑛+ 1)var
𝑆2

𝑦2𝑖 +
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 − 𝜆

(︃
𝑛∑︁
𝑖=1

𝑦𝑖 − 𝑆

)︃
−

𝑛∑︁
𝑖=1

𝜇𝑖𝑦𝑖.

The KKT conditions imply that the optimal solutions (𝑦*1, . . . , 𝑦
*
𝑛), 𝜆* and 𝜇*

𝑖 satisfy

2(𝑛+ 1)
var
𝑆2

𝑦*𝑖 + 𝜓𝑖(𝑐𝑖)− 𝜆* − 𝜇*
𝑖 = 0 for all 𝑖 ∈ 𝒩 .

If 𝑦*𝑖 > 0, we have 𝜇*
𝑖 = 0 and therefore

𝑦*𝑖 =
(𝜆* − 𝜓𝑖(𝑐𝑖))𝑆

2

2(𝑛+ 1)var
.

If 𝑦*𝑖 = 0, we have 𝜇*
𝑖 = 𝜓𝑖(𝑐𝑖)− 𝜆* ≥ 0. Hence, if, we define

𝑦(𝜆) =

(︃(︂
(𝜆− 𝜓1(𝑐1))𝑆

2

2(𝑛+ 1)var

)︂+

, . . . ,

(︂
(𝜆− 𝜓𝑛(𝑐𝑛))𝑆

2

2(𝑛+ 1)var

)︂+
)︃

for any 𝜆, (2.70)

(𝑦*𝑖 )
𝑛
𝑖=1 would be equal to 𝑦(𝜆*). Next, define

𝑆(𝜆) =
𝑛∑︁
𝑖=1

𝑦𝑖(𝜆). (2.71)

We can see that the function 𝑆(𝜆) is increasing in 𝜆 and that 𝜆* is such that 𝑆(𝜆*) = 𝑆.

Once we find 𝜆*, (2.70) gives the optimal solution (subject to
∑︀𝑛

𝑖=1 𝑦𝑖 = 𝑆). To find 𝜆* we
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first sort the terms {𝜓𝑖(𝑐𝑖)}𝑖 in 𝒪(𝑛 log 𝑛). Without loss of generality, let us assume

𝜓1(𝑐1) ≤ · · · ≤ 𝜓𝑛(𝑐𝑛).

We let 𝑖* be the smallest element of 𝒩 for which

𝑆(𝜓𝑗(𝑐𝑗)) ≥ 𝑆.

If no such element exists, then we let 𝑖* = 𝑛 + 1. Therefore, for any 𝑆 > 0, there exists

𝑖* > 1 and 𝜆* ∈ [𝜓𝑖*−1(𝑐𝑖*−1), 𝜓𝑖*(𝑐𝑖*)] such that in the optimal solution we have

𝑦𝑖 = 0 for 𝑖 > 𝑖* and 𝑦𝑖 =
(𝜆* − 𝜓𝑖(𝑐𝑖))𝑆

2

2(𝑛+ 1)var
for 𝑖 ≤ 𝑖*,

with the convention that 𝜓𝑛+1(·) = ∞. Also, using (2.70) and (2.71), 𝑆 and 𝜆* satisfy the

following relation

𝑖*∑︁
𝑖=1

(𝜆* − 𝜓𝑖(𝑐𝑖))𝑆
2

2(𝑛+ 1)var
= 𝑆

which results in

1

𝑆
= 𝜆*𝐴𝑖* −𝐵𝑖* ,

with

𝐴𝑖* =
𝑖*

2(𝑛+ 1)var
, 𝐵𝑖* =

𝑖*∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)

2(𝑛+ 1)var
.
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Hence, in this case, the original optimization for the given 𝑆 can be cast as

2(𝑛+ 1)

𝑆2
+
𝑛+ 1

𝑆2

𝑖*∑︁
𝑖=1

(︂
(𝜆− 𝜓𝑖(𝑐𝑖))𝑆

2

2(𝑛+ 1)var

)︂2

var +
𝑖*∑︁
𝑖=1

(𝜆− 𝜓𝑖(𝑐𝑖))𝑆
2

2(𝑛+ 1)var
𝜓𝑖(𝑐𝑖) (2.72)

=
2(𝑛+ 1)

𝑆2
+

𝑆2

4(𝑛+ 1)var

𝑖*∑︁
𝑖=1

(𝜆2 − 𝜓2
𝑖 (𝑐𝑖)) (2.73)

= 2(𝑛+ 1) (𝜆𝐴𝑖* −𝐵𝑖*)
2 +

1

(𝜆𝐴𝑖* −𝐵𝑖*)
2

(︃
𝐴𝑖*

2
𝜆2 − 𝐵̃𝑖*

2

)︃
, (2.74)

with

𝐵̃𝑖* :=
𝑖*∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)
2

2(𝑛+ 1)var
.

Note that, as 𝑆 moves from zero to infinity, 𝜆* also moves from 𝜓1(𝑐1) to infinite. Hence,

instead of minimizing (2.72) over 𝑆, we could minimize (2.74) over 𝜆. To do so, it suffices

to solve

min
𝜆

2(𝑛+ 1) (𝜆𝐴𝑖* −𝐵𝑖*)
2 +

1

(𝜆𝐴𝑖* −𝐵𝑖*)
2

(︃
𝐴𝑖*

2
𝜆2 − 𝐵̃𝑖*

2

)︃
(2.75)

𝜆 ≥ 𝜓𝑖*(𝑐𝑖*)

𝜆 ≤ 𝜓𝑖*+1(𝑐𝑖*+1),

for 𝑖* ∈ {2, · · · , 𝑛+ 1} and pick the one with minimum value. As the last step, we establish

that (2.75) can be solved in time 𝒪(1) which implies that the total optimization problem

can be solved in time 𝒪(𝑛).

To do so, note that the objective function of (2.75) can be written as

2(𝑛+ 1) (𝜆𝐴𝑖* −𝐵𝑖*)
2 +

1

(𝜆𝐴𝑖* −𝐵𝑖*)
2

(︃
𝐴𝑖*

2
𝜆2 − 𝐵̃𝑖*

2

)︃

=
2(𝑛+ 1) (𝜆𝐴𝑖* −𝐵𝑖*)

4 + 𝐴𝑖*
2
𝜆2 − 𝐵̃𝑖*

2

(𝜆𝐴𝑖* −𝐵𝑖*)
2 . (2.76)

One can see that the derivative of (2.76) is in the form of a polynomial of degree four divided

by (𝜆𝐴𝑖* −𝐵𝑖*)
3. Hence, the derivative of (2.76) has at most four roots and they all can be

characterized using the formulas for roots of a degree four polynomial. Therefore, to find
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the solution of (2.75), it suffices to compare the value of the objective function (2.76) at

endpoints of the constraint interval [𝜓𝑖*(𝑐𝑖*), 𝜓𝑖*+1(𝑐𝑖*+1)] and those roots of the derivative

that lie within this interval. These are at most six points and thus the optimization problem

(2.75) can be solved in time 𝒪(1). ■

Proof of Theorem 2.4

Using the payment identity in Proposition 2.1, we obtain

E𝑐𝑖 [𝑡𝑖(𝑐𝑖)] =E[MSE(c; 𝜀,w)]− var + E𝑐𝑖 [𝑐𝑖𝜀𝑖(𝑐𝑖)] + E𝑐𝑖
[︂∫︁

𝑧=𝑐𝑖

𝜀𝑖(𝑧)𝑑𝑧

]︂
=E[MSE(c; 𝜀,w)]− var

+

∫︁
z−𝑖

∫︁
𝑧𝑖

(︂
𝑧𝑖𝜀𝑖(𝑧𝑖, z−𝑖) +

∫︁
𝑦𝑖=𝑧𝑖

𝜀𝑖(𝑦𝑖, z−𝑖)𝑑𝑦𝑖

)︂
𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

(𝑎)
=E[MSE(c; 𝜀,w)]− var

+

∫︁
z−𝑖

∫︁
𝑧𝑖

(︂
𝑧𝑖𝜀𝑖(𝑧𝑖, z−𝑖) + 𝜀𝑖(𝑧𝑖, z−𝑖)

𝐹𝑖(𝑧𝑖)

𝑧𝑖

)︂
𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

=E[MSE(c; 𝜀,w)]− var +

∫︁
z

(︂
𝑧𝑖 +

𝐹𝑖(𝑧𝑖)

𝑧𝑖

)︂
𝜀𝑖(z)𝑓(z)𝑑z, (2.77)

where (a) follows from changing the order of the integrals. Moreover, we have

MSE(c; 𝜀,w) =
𝑛∑︁
𝑖=1

var𝑤2
𝑖 (c) +

𝑛∑︁
𝑖=1

2𝑤2
𝑖 (c)

𝜀2𝑖 (c)
. (2.78)

Substituting equations (2.77) and (2.78) in the platform’s objective function, results in

Ec

[︃
MSE(c; 𝜀,w) +

𝑛∑︁
𝑖=1

𝑡𝑖(c)

]︃
=

Ec

[︃
𝑛∑︁
𝑖=1

𝑤2
𝑖 (c)(𝑛+ 1)var + (𝑛+ 1)

2𝑤2
𝑖 (c)

𝜀2𝑖 (c)
+ 𝜓(𝑐𝑖)𝜀𝑖(c)

]︃
− 𝑛var.
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For any vector of reported privacy costs (𝑐1, . . . , 𝑐𝑛), we solve the point-wise optimization

problem:

min
w,y

𝑛∑︁
𝑖=1

𝑤2
𝑖

(︂
(𝑛+ 1)var +

2(𝑛+ 1)

𝑦2𝑖

)︂
+ 𝜓𝑖(𝑐𝑖)𝑦𝑖

𝑛∑︁
𝑖=1

𝑤𝑖 = 1

𝑤𝑖 ≥ 0 for all 𝑖 ∈ 𝒩 .

Let us first minimize the objective over 𝑤𝑖’s. Using Cauchy-Schwarz inequality, for any given

y we have

(︃
𝑛∑︁
𝑖=1

𝑤2
𝑖

(︂
(𝑛+ 1)var +

2(𝑛+ 1)

𝑦2𝑖

)︂)︃⎛⎝ 𝑛∑︁
𝑖=1

1

(𝑛+ 1)var + 2(𝑛+1)

𝑦2𝑖

⎞⎠ ≥

(︃
𝑛∑︁
𝑖=1

𝑤𝑖

)︃2

= 1

and therefore the minimum of
∑︀𝑛

𝑖=1𝑤
2
𝑖

(︁
(𝑛+ 1)var + 2(𝑛+1)

𝑦2𝑖

)︁
becomes

1∑︀𝑛
𝑖=1

1

(𝑛+1)var+ 2(𝑛+1)

𝑦2
𝑖

.

with solution

𝑤𝑖 =
1(︁

(𝑛+ 1)var + 2(𝑛+1)

𝑦2𝑖

)︁∑︀𝑛
𝑖=1

1

(𝑛+1)var+ 2(𝑛+1)

𝑦2
𝑖

for all 𝑖 ∈ 𝒩 .

Therefore, the point-wise optimization problem becomes

min
y

1∑︀𝑛
𝑖=1

1

(𝑛+1)var+ 2(𝑛+1)

𝑦2
𝑖

+
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖.

A similar argument to that of Theorem 2.3 establishes that, under Assumption 2.1, the

optimal 𝑥𝑖 is weakly decreasing in 𝑐𝑖 and therefore the corresponding payment, noise variance,

and weight function satisfy the incentive compatibility and the individual rationality. ■
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Proof of Proposition 2.4

Without loss of generality we assume

𝜓1(𝑐1) ≤ · · · ≤ 𝜓𝑛(𝑐𝑛).

We make use of the following two lemmas in this proof.

Lemma 2.4. Suppose Assumption 2.1 holds. For any reported vector of privacy sensitivities

(𝑐1, . . . , 𝑐𝑛), in the optimal local data acquisition mechanism, we have 𝜀*𝑖 (c) ≥ 𝜀*𝑗(c) for all

𝑖, 𝑗 ∈ 𝒩 such that 𝜓𝑖(𝑐𝑖) < 𝜓𝑗(𝑐𝑗).

Proof of Lemma 2.4: If 𝜓𝑖(𝑐𝑖) = 𝜓𝑗(𝑐𝑗), then by swapping the 𝑖-th and 𝑗-th components

of the solution the objective remains the same and therefore we can always let 𝑦*𝑖 ≥ 𝑦*𝑗 . Now,

suppose 𝜓𝑖(𝑐𝑖) < 𝜓𝑗(𝑐𝑗). We let

𝑦ℓ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦*ℓ ℓ ̸= 𝑖, 𝑗

𝑦*𝑖 ℓ = 𝑗

𝑦*𝑗 ℓ = 𝑖.

The difference of the objective function evaluated at (𝑦1, . . . , 𝑦𝑛) and (𝑦*1, . . . , 𝑦
*
𝑛) becomes

(𝜓𝑖(𝑐𝑖)− 𝜓𝑖(𝑐𝑗))
(︀
𝑦*𝑗 − 𝑦*𝑖

)︀
≥ 0

where the inequality follows from the optimality condition. Inequality 𝜓𝑖(𝑐𝑖) < 𝜓𝑗(𝑐𝑗),

implies that 𝑦*𝑖 ≥ 𝑦*𝑗 , proving the corollary. ■

Lemma 2.5. For any 𝜆 ∈ R+ and any 𝜓𝑖(𝑐𝑖) the equation

4𝑧

(var𝑧2 + 2)2
=
𝜓𝑖(𝑐𝑖)

𝑛+ 1
𝜆2 (2.79)

either has no solution or at most two solutions in R+. Furthermore:

(a) The solutions can be found in time 𝒪(1).
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(b) The smallest solution is strictly increasing in 𝜓𝑖(𝑐𝑖) and the largest solution is strictly

decreasing in 𝜓𝑖(𝑐𝑖).

Proof of Lemma 2.5: The derivative of the function 4𝑧
(var𝑧2+2)2

with respect to 𝑧 is

4

(2 + var𝑧2)2

(︂
1− 4var𝑧2

(2 + var𝑧2)

)︂
,

which is positive if and only if 𝑧 ≤
√︁

2
3var . Therefore, the function is zero at 𝑧 = 0, increases

to 3
√
3

8
√
2var

at 𝑧 =
√︁

2
3var and then decreases to 0 as 𝑧 → ∞. Therefore, either there is no

solution or there are at most two solutions. To see the proof of part (a), note that finding

the solutions of (2.79) is equivalent to finding the roots of a degree four polynomial that can

be characterized using the formulas for roots of a degree four polynomial. Finally, to see the

proof of part (b) notice that

4𝑧

(var𝑧2 + 2)2

is strictly increasing for 𝑧 ≤
√︁

2
3var . The smallest solution of (2.79) is the intersection of this

function over 𝑧 ≤
√︁

2
3var with the function level 𝜓𝑖(𝑐𝑖)

𝑛+1
𝜆2. As 𝜓𝑖(𝑐𝑖) increases, the intersecting

𝑧 strictly increases. Further, the largest solution of (2.79) is the intersection of this function

𝑧 ≥
√︁

2
3var with the function level 𝜓𝑖(𝑐𝑖)

𝑛+1
𝜆2. As 𝜓𝑖(𝑐𝑖) increases, the intersecting 𝑧 strictly

decreases. ■

When (2.79) has two solutions, we let

𝑦
(𝑙)
𝑖 (𝜆) and 𝑦(ℎ)𝑖 (𝜆)

be the smallest and the largest solutions, respectively. If (2.79) has one solution then the

above two solutions coincide.

We now proceed with the proof of the proposition. The KKT condition for problem
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(2.30) implies that when 𝑦*𝑖 ̸= 0, then

4𝑦*𝑖

𝜓𝑖(𝑐𝑖)
(︀
2 + var𝑦*𝑖

2
)︀2 =

1

𝑛+ 1

⎛⎝ 𝑛∑︁
𝑗=1

1

var + 2
𝑦*𝑗

2

⎞⎠2

. (2.80)

We let

𝜆 =
𝑛∑︁
𝑗=1

1

var + 2
𝑦*𝑗

2

. (2.81)

By using Lemma 2.4, we know that if there exists 𝑖* ∈ {1, . . . , 𝑛} such that 𝑦𝑖* = 0, then

we have 𝑦*𝑖 = 0 for 𝑖 > 𝑖*. For such 𝑖*, by using Lemma 2.5, we know that for 𝑖 ≤ 𝑖*,

𝑦*𝑖 ∈ {𝑦(𝑙)𝑖 (𝜆), 𝑦
(ℎ)
𝑖 (𝜆)}.

We need to find the optimal 𝜆 and the corresponding optimal solution. In this regard,

we search over all 𝑖* ∈ {1, . . . , 𝑛} and then find the optimal 𝜆 such that for 𝑖 > 𝑖* we have

𝑦*𝑖 = 0 and for 𝑖 ≤ 𝑖*, we have 𝑦*𝑖 ∈ {𝑦(𝑙)𝑖 (𝜆), 𝑦
(ℎ)
𝑖 (𝜆)}.

Claim 1: Consider 𝑖* ∈ {1, . . . , 𝑛} and an optimal solution such that for 𝑖 > 𝑖* we have

𝑦*𝑖 = 0 and for 𝑖 ≤ 𝑖* we have 𝑦*𝑖 ∈ {𝑦(𝑙)𝑖 (𝜆), 𝑦
(ℎ)
𝑖 (𝜆)}. If 𝜓𝑖*(𝑐𝑖*) > 𝜓𝑖*−1(𝑐𝑖*−1), then for all

𝑖 ≤ 𝑖* − 1, we have 𝑦*𝑖 = 𝑦
(ℎ)
𝑖 (𝜆).

Proof of Claim 1: To prove this claim, we assume the contrary and reach a contradiction.

In particular, suppose 𝑦*𝑖 = 𝑦
(𝑙)
𝑖 (𝜆) for 𝑖 ≤ 𝑖* − 1. We can write

𝑦
(𝑙)
𝑖 (𝜆) = 𝑦*𝑖

(𝑎)
> 𝑦*𝑖* ≥ 𝑦

(𝑙)
𝑖* (𝜆)

where (a) follows from Lemma 2.4 together with 𝜓𝑖(𝑐𝑖) < 𝜓𝑖*(𝑐𝑖*) (In fact, Lemma 2.4 implies

𝑦*𝑖 ≥ 𝑦*𝑖* . However, from the proof, one could see that, since 𝑦*𝑖* > 0, the inequality would be

strict.) This is a contradiction by invoking part (b) of Lemma 2.5, completing the proof of

Claim 1. ■

For the rest of the proof, we assume 𝜓1(𝑐1) < · · · < 𝜓𝑛(𝑐𝑛). We will cover the case that
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two or more of the 𝜓𝑖(𝑐𝑖)’s are equal at the end. In this case, claim 1 implies that

𝑦*𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦
(ℎ)
𝑖 (𝜆) 𝑖 < 𝑖*

𝑦
(𝑙)
𝑖 (𝜆) or 𝑦(ℎ)𝑖 (𝜆) 𝑖 = 𝑖*

𝑦𝑖 = 0 𝑖 > 𝑖*.

This provides the solution for a given 𝜆. We next show how we can find the (approximately)

optimal 𝜆. In this regard, we first establish a lower bound and an upper bound on 𝜆.

Claim 2: Consider 𝑖* ∈ {1, . . . , 𝑛} and an optimal solution such that for 𝑖 > 𝑖* we have

𝑦*𝑖 = 0 and for 𝑖 ≤ 𝑖* we have 𝑦*𝑖 ∈ {𝑦(𝑙)𝑖 (𝜆), 𝑦
(ℎ)
𝑖 (𝜆)}. The optimal 𝜆 satisfies

𝜆 ∈ [𝑦
𝑖*
, 𝑦𝑖* ],

where

𝑦𝑖* = 𝑦(ℎ)

⎛⎝(︃ (𝑛+ 1)3
√
3

𝜓𝑖*−1(𝑐𝑖*−1)8
√
2var

)︃1/2
⎞⎠ and 𝑦

𝑖*
=

𝑛

var +

(︂√
2𝑛(

∑︀𝑛
𝑖=1 𝜓𝑖(𝑐𝑖))

(𝑛+1)

)︂2/3
.

Proof of Claim 2: As we proved in the proof of Corollary 2.1, the maximum of 4𝑧
(var𝑧2+2)2

is
3
√
3

8
√
2var

. Therefore, in order to guarantee that (2.79) has a solution we must have

𝜆 ≤

(︃
(𝑛+ 1)3

√
3

𝜓𝑖*−1(𝑐𝑖*−1)8
√
2var

)︃1/2

.

We next derive a lower bound on 𝜆. For 𝑦𝑖 = 𝑦, the objective becomes

𝑛+ 1

𝑛

(︂
var +

2

𝑦2

)︂
+

(︃
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)

)︃
𝑦

which is a convex program whose minimum is

𝑛+ 1

𝑛

(︃
var + 2

(︂
2(𝑛+ 1)

𝑛 (
∑︀𝑛

𝑖=1 𝜓𝑖(𝑐𝑖))

)︂−2/3
)︃

+

(︃
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)

)︃(︂
2(𝑛+ 1)

𝑛 (
∑︀𝑛

𝑖=1 𝜓𝑖(𝑐𝑖))

)︂1/3

.
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Since the objective is

𝑛+ 1

𝜆
+

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖

and 𝜓𝑖(𝑐𝑖) ≥ 0, the optimal 𝜆 is larger than

𝑦
𝑖*
=

𝑛+ 1

𝑛+1
𝑛

(︃
var + 2

(︂
2(𝑛+1)

𝑛(
∑︀𝑛

𝑖=1 𝜓𝑖(𝑐𝑖))

)︂−2/3
)︃

+ (
∑︀𝑛

𝑖=1 𝜓𝑖(𝑐𝑖))

(︂
2(𝑛+1)

𝑛(
∑︀𝑛

𝑖=1 𝜓𝑖(𝑐𝑖))

)︂1/3

=
𝑛

var +

(︂√
2𝑛(

∑︀𝑛
𝑖=1 𝜓𝑖(𝑐𝑖))

(𝑛+1)

)︂2/3
.

This completes the proof of Claim 2. ■

Equipped with Claims 1 and 2, we next search over the near optimal 𝜆. Letting

Grid(𝑖*, 𝜖
Δ
) be an 𝜖

Δ
grid of [𝑦

𝑖*
, 𝑦𝑖* ] where ∆ is the maximum Lipschitz parameter for all

functions 𝑛+1
𝜆

and 𝑦
((ℎ))
𝑖 (𝜆) and 𝑦

(𝑙)
𝑖 (𝜆) over [𝑦

𝑖*
, 𝑦𝑖* ]. With this definition, the following

optimization

min
𝜆∈Grid(𝑖*, 𝜖

Δ
)
min

{︃
𝑛+ 1

𝜆
+

𝑖*∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦
(ℎ)
𝑖 (𝜆),

𝑛+ 1

𝜆
+

𝑖1−1∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦
(ℎ)
𝑖 (𝜆) + 𝜓𝑖(𝑐𝑖)𝑦

(𝑙)
𝑖 (𝜆)

}︃

achieves at most (1 + 𝜖) of the optimal objective. Finally, notice that ∆ defined above is

polynomial in 𝑛. Then proof completes by noting that the output of this procedure satisfies

the monotonicity property in 𝜓𝑖(𝑐𝑖) because we do a grid search over 𝜆 and once we find 𝜆

the corresponding 𝑦𝑖’s are decreasing in the virtual costs.

Finally, we conclude the proof by discussing the case that two or more of 𝜓𝑖’s are equal.

For simplicity, we consider the case that

𝜓1(𝑐1) < · · · < 𝜓𝑖(𝑐𝑖) < 𝜓𝑖+1(𝑐𝑖+1) = · · · = 𝜓𝑖+𝑘(𝑐𝑖+𝑘) < 𝜓𝑖+𝑘+1(𝑐𝑖+𝑘+1) < · · · < 𝜓𝑛(𝑐𝑛).

(2.82)

The argument here generalizes to the case when some of 𝜓𝑖’s are equal on two or more

different values.
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For (2.82), we need to modify the algorithm when the for loop counter reaches 𝑖, i.e.,

the case that we take 𝑦*1 = · · · = 𝑦*𝑖 = 0 and 𝑦*𝑗 > 0 for 𝑗 > 𝑖. In this case, Claim 1

would change as follow: For 𝑖 + 𝑘 ≤ 𝑗 ≤ 𝑖 + 1, we have 𝑦*𝑗 ∈ {𝑦(𝑙)𝑗 (𝜆), 𝑦
(ℎ)
𝑗 (𝜆)}, and for

𝑗 > 𝑖 + 𝑘, we have 𝑦*𝑗 = 𝑦
(ℎ)
𝑗 (𝜆). Moreover, since 𝜓𝑖+1(𝑐𝑖+1) = · · · = 𝜓𝑖+𝑘(𝑐𝑖+𝑘), we have

𝑦
(𝑙)
𝑖+1(𝜆) = · · · = 𝑦

(𝑙)
𝑖+𝑘(𝜆) = 𝑦𝑖+1:𝑖+𝑘(𝜆) and 𝑦(ℎ)𝑖+1(𝜆) = · · · = 𝑦

(ℎ)
𝑖+𝑘(𝜆) = 𝑦𝑖+1:𝑖+𝑘(𝜆).

Hence, we define an inner loop which considers 𝑘 + 1 cases on the number of {𝑦*𝑗}𝑖+𝑘𝑗=𝑖+1

that are equal to 𝑦𝑖+1:𝑖+𝑘(𝜆). Also, when this inner for loop ends, the outer loop jumps to

𝑖+ 𝑘 + 1 instead of 𝑖+ 1, and thus, the total number of iterations still remains bounded by

2𝑛. ■

Proof of Proposition 2.5

Let

𝜃central =
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + Laplace(1/𝜂),

with

𝜂 = min
𝑖

𝜀𝑖
𝑤𝑖
. (2.83)

First, note that, by definition, for any 𝑖, 𝜂𝑤𝑖 ≤ 𝜀𝑖. Hence, by Lemma 2.2, this estimator is

𝜀-differentially private. Hence, it suffices to show (2.33) holds. Note that

E[|𝜃central − 𝜃|2] = var
𝑛∑︁
𝑖=1

𝑤2
𝑖 +

2

𝜂2
,

E[|𝜃local − 𝜃|2] = var
𝑛∑︁
𝑖=1

𝑤2
𝑖 + 2

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝜀2𝑖
.

Comparing the right hand sides, to establish (2.33), we need to show

1

𝜂2
≤

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝜀2𝑖
.

To do so, note that,
1

𝜂2
=

(︃
1

min𝑖
𝜀𝑖
𝑤𝑖

)︃2

=

(︂
max
𝑖

𝑤𝑖
𝜀𝑖

)︂2

,
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which is clearly upper bounded by
∑︀𝑛

𝑖=1
𝑤2

𝑖

𝜀2𝑖
. Thus, the proof is complete. ■

Proof of Proposition 2.6

We first state a more detailed version of Proposition 2.6.

Proposition 2.6. Assume the virtual costs of users 1, · · · , 𝑛 − 1 are all equal to 𝜓1. We

also denote the virtual cost of user 𝑛 by 𝜓𝑛. Denote the optimal privacy loss levels in the

central and local settings by (𝜀central1 , · · · , 𝜀central𝑛 ) and (𝜀local1 , · · · , 𝜀local𝑛 ), respectively.

1. In the central setting, if 𝜀central𝑛 = 0, then

𝜓𝑛 ≥ 𝜓1 +
1

(𝑛− 1)var
3
√︀
2𝜓1(𝑛+ 1)2. (2.84)

2. In the local setting, there exists a universal constant 𝜅, independent of problem’s pa-

rameters, such that, if

𝜓𝑛 ≥ 𝜓1 + 𝜅

(︂
𝜓1/3

𝑛2/3var
+
𝜓1

𝑛
+

𝜓−1/3

𝑛4/3var2

)︂
, (2.85)

then 𝜀local𝑛 = 0.

Therefore, there exists 𝑁 ∈ N such that for 𝑛 ≥ 𝑁 and

𝜓𝑛 ∈
[︂
𝜓1 + 𝜅

(︂
𝜓1/3

𝑛2/3var
+
𝜓1

𝑛
+

𝜓−1/3

𝑛4/3var2

)︂
, 𝜓1 +

1

(𝑛− 1)var
3
√︀

2𝜓1(𝑛+ 1)2
]︂
, (2.86)

the optimal privacy loss level of user 𝑛 in the local setting is zero while her optimal privacy

loss level in the central setting in non-zero.

Proof: First, note that the optimal privacy loss levels in the central and local settings are

the solutions of optimization problems (2.23) and (2.30), respectively. We first note that in

both cases, without loss of generality, we can assume var = 1 by replacing 𝑦𝑖 by 𝑦𝑖
√

var

and 𝜓𝑖 by 𝜓𝑖var3/2. Therefore, without loss of generality, we could assume var = 1 while

studying optimization problems (2.23) and (2.30).
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We start with the central setting. The characterization of solutions (2.27) implies that

𝜀central1 = · · · = 𝜀central𝑛−1 . Hence, the Lagrangian corresponding to optimization (2.23) can be

rewritten as

𝐿(𝑦, 𝑧, 𝜇, 𝜈) :=
𝑛+ 1

((𝑛− 1)𝑦 + 𝑧)2
(︀
2 + (𝑛− 1)𝑦2 + 𝑧2

)︀
+ (𝑛− 1)𝜓1𝑦 + 𝜓𝑛𝑧 − 𝜇𝑦 − 𝜈𝑧, (2.87)

where 𝑦 and 𝑧 denote the central privacy loss level of the first 𝑛− 1 users and the last user,

respectively. If 𝜀central𝑛 = 0, then there exists a tuple (𝑦*, 𝑧*, 𝜇*, 𝜈*) with 𝑧* = 0 such that

𝜕

𝜕𝑦
𝐿(𝑦*, 𝑧*, 𝜇*, 𝜈*) = 0, (2.88)

𝜕

𝜕𝑧
𝐿(𝑦*, 𝑧*, 𝜇*, 𝜈*) = 0. (2.89)

Furthermore, since 𝑧* = 0 and the optimal cost is finite, we have 𝑦* > 0 which implies

𝜇* = 0. Next, note that,

𝜕

𝜕𝑦
𝐿(𝑦, 𝑧, 𝜇, 𝜈) = −2(𝑛+ 1)(𝑛− 1)

2 + 𝑧2 − 𝑦𝑧

((𝑛− 1)𝑦 + 𝑧)3
+ (𝑛− 1)𝜓1 − 𝜇.

Hence, (2.88) along with 𝑧* = 0 and 𝜇* = 0, implies

𝑦* =
1

𝑛− 1
3

√︃
4(𝑛+ 1)

𝜓1

. (2.90)

Also, note that

𝜕

𝜕𝑧
𝐿(𝑦, 𝑧, 𝜇, 𝜈) = 2(𝑛+ 1)

(𝑛− 1)𝑦𝑧 − 2− (𝑛− 1)𝑦2

((𝑛− 1)𝑦 + 𝑧)3
+ 𝜓𝑛 − 𝜈.

Thus, (2.89) along with 𝑧* = 0 and 𝜈* ≥ 0, implies

𝜓𝑛 ≥ 2(𝑛+ 1)
2 + (𝑛− 1)(𝑦*)2

(𝑛− 1)3(𝑦*)3

Plugging (2.90) into this bound completes the proof of (2.84).
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To show (2.85), it suffices to show that if 𝜓𝑛 > 𝜓1 and 𝜀local𝑛 > 0, then

𝜓𝑛 ≤ 𝜓1 +𝒪(1)

(︂
𝜓1/3

𝑛2/3
+
𝜓1

𝑛
+

1

𝜓1/3𝑛4/3

)︂
.

To do so, first assume 𝜓𝑛 > 𝜓1 and 𝜀local𝑛 > 0. Then, by Lemma 2.4, we know 𝜀local𝑛 < 𝜀local𝑖

for any 𝑖 ∈ {1, · · · , 𝑛 − 1}.13 Next, by the characterization of solutions (2.32), we know

𝜀local1 = · · · = 𝜀local𝑛−1 . With a slight abuse of notation, we denote the local privacy loss level of

𝑛− 1 first users and the last user by 𝑦 and 𝑧, respectively, with 𝑦* > 𝑧*.

From (2.80) in the proof of Proposition 2.4, we know the following two equations hold

4𝑦*

𝜓1(2 + 𝑦*2)2
=

1

𝑛+ 1

(︂
(𝑛− 1)

𝑦*2

2 + 𝑦*2
+

𝑧*2

2 + 𝑧*2

)︂2

, (2.91)

4𝑧*

𝜓𝑛(2 + 𝑧*2)2
=

1

𝑛+ 1

(︂
(𝑛− 1)

𝑦*2

2 + 𝑦*2
+

𝑧*2

2 + 𝑧*2

)︂2

. (2.92)

We next provide upper and lower bounds on 𝑦*. To do so, first, by replacing 𝑧*2

2+𝑧*2
by 0, we

obtain
4𝑦*

𝜓1(2 + 𝑦*2)2
≥ (𝑛− 1)2𝑦*4

(𝑛+ 1)(2 + 𝑦*2)2

which implies

𝑦* ≤ 3

√︃
4(𝑛+ 1)

𝜓1(𝑛− 1)2
. (2.93)

Second, we note that 𝑥2

𝑥2+2
is an increasing function of 𝑥 over (0,∞). Hence, given that

𝑦* > 𝑧*, replacing 𝑧*2

2+𝑧*2
by 𝑦*2

2+𝑦*2
leads to an upper bound for the right hand side of (2.91).

Therefore, we have
4𝑦*

𝜓1(2 + 𝑦*2)2
≤ 𝑛2𝑦*4

(𝑛+ 1)(2 + 𝑦*2)2

which implies

𝑦* ≥ 3

√︃
4(𝑛+ 1)

𝜓1𝑛2
. (2.94)

13It is worth mentioning that Lemma 2.4, in fact, implies 𝜀local𝑛 ≤ 𝜀local𝑖 . However, by reviewing its proof,
one could see that the inequality should be strict, given the assumption 𝜀local𝑛 > 0.
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Next, note that, we can rewrite (2.92) as

√︁
4(𝑛+1)
𝜓𝑛

√
𝑧* − 𝑧*2

2 + 𝑧*2
= (𝑛− 1)

𝑦*2

𝑦*2 + 2
. (2.95)

By replacing the left hand side by the upper bound

1

2

√︃
4(𝑛+ 1)

𝜓𝑛

√
𝑧*,

we obtain
1

2

√︃
4(𝑛+ 1)

𝜓𝑛

√
𝑧* ≥ (𝑛− 1)

𝑦*2

𝑦*2 + 2
. (2.96)

Next, we use the fact that 𝑧* < 𝑦* and the upper bound on 𝑦* (2.94) to further upper bound

the left hand side of (2.96). In addition, we use the lower bound on 𝑦* 2.93 to lower bound

the right hand side of (2.96). Taking these two steps and simplifying the equation leads to

the following result:
(4(𝑛+ 1))2/3

2𝜓
1/6
1 (𝑛− 1)4/3

+
√︀
𝜓1

𝑛4/3

(𝑛− 1)4/3
≥
√︀
𝜓𝑛. (2.97)

Using this inequality along with,

𝑛4/3 = (𝑛− 1)4/3 +𝒪(𝑛1/3),

we obtain

𝒪(1)

(︃
1

𝜓
1/6
1 𝑛2/3

+

√
𝜓1

𝑛

)︃
+
√︀
𝜓1 ≥

√︀
𝜓𝑛. (2.98)

Using the fact that
√
𝜓𝑛 −

√
𝜓1 =

𝜓𝑛−𝜓1√
𝜓1+

√
𝜓𝑛

, we can rewrite (2.98) as

𝜓1 +𝒪(1)(
√︀
𝜓1 +

√︀
𝜓𝑛)

(︃
1

𝜓
1/6
1 𝑛2/3

+

√
𝜓1

𝑛

)︃
≥ 𝜓𝑛. (2.99)

Upper bounding
√
𝜓𝑛 on the left hand side of (2.99) by using (2.98) completes the proof. ■
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2.8.1 Additional Results and Details

Revelation principle for both central and local privacy settings

Suppose the strategy of user 𝑖 is a function of its privacy cost denoted by 𝛽𝑖(𝑐𝑖). For a given

estimator 𝜃 and mechanism (𝜀, t), the action profile {𝛽𝑖(·)}𝑛𝑖=1 is an equilibrium if

Ec−𝑖

[︁
var(𝛽−i(c−i), 𝛽i(ci); 𝜃̂) + ci𝜀i(𝛽−i(c−i), 𝛽i(ci))− ti(𝛽−i(c−i), 𝛽i(ci))

]︁
≤ Ec−𝑖

[︁
var(𝛽−i(c−i), 𝛽

′
i(ci); 𝜃̂) + ci𝜀i(𝛽−i(c−i), 𝛽

′
i(ci))− ti(𝛽−i(c−i), 𝛽

′
i(ci))

]︁
for all 𝑖 ∈ 𝒩 , 𝑐𝑖, 𝛽

′
𝑖(·). By letting (𝜀̃, t̃) be such that 𝜀𝑖(𝑐1, . . . , 𝑐𝑛) = 𝜀𝑖(𝛽1(𝑐1), . . . , 𝛽𝑛(𝑐𝑛)) and

𝑡𝑖(𝑐1, . . . , 𝑐𝑛) = 𝑡𝑖(𝛽1(𝑐1), . . . , 𝛽𝑛(𝑐𝑛)), the users will report truthfully and that the platform’s

objective is the same as the original mechanism. This establishes the revelation principle. ■

Computing the payment function and approximate incentive compatibility

Recall the incentive compatibility (IC) definition (2.17) states

cost(𝑐𝑖, 𝑐𝑖; 𝜀, t, 𝜃) ≤ cost(𝑐′𝑖, 𝑐𝑖; 𝜀, t, 𝜃) for all 𝑖 ∈ 𝒩 , 𝑐𝑖, 𝑐
′
𝑖.

The approximate 𝜖-IC definition allows for an 𝜖 violation of the original IC definition, i.e.,

cost(𝑐𝑖, 𝑐𝑖; 𝜀, t, 𝜃) ≤ cost(𝑐′𝑖, 𝑐𝑖; 𝜀, t, 𝜃) + 𝜖 for all 𝑖 ∈ 𝒩 , 𝑐𝑖, 𝑐
′
𝑖. (2.100)

The following result highlights that in both the central and local settings if we possess an

algorithm that provides the estimator and privacy loss allocations for any given vector of

privacy sensitivities, we can efficiently compute payment functions that satisfy 𝜖-IC. This

means that the algorithm ensures approximate incentive compatibility with an error no

greater than 𝜖.

Lemma 2.6. Suppose we have an algorithm that returns the estimator and the privacy loss

levels for any given vector of privacy sensitivities. Then, for any 𝜖, we can return payment

functions in polynomial time such that 𝜖-IC holds.
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Proof of Lemma 2.6: Recall that the payment function is

𝑡𝑖(c) = MSE(c, 𝜀, 𝜃)− var + 𝑐𝑖𝜀𝑖(c) +

∫︁ ∞

𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧.

All the terms, except the integral, can be computed based on the algorithm’s output on the

estimator and privacy allocations for the vector c. The last step is to show that we can

approximate the integral efficiently. To do so, we establish that, for any c−𝑖 and 𝛿, there

exists 𝑐𝑖 such that ∫︁ ∞

𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧 ≤ 𝛿.

To show this, first note that, even as 𝑐𝑖 increases, there is a fixed upper bound 𝑀 on the

platform’s cost in the optimization problems stated in Theorems 2.3 and 2.4, as the platform

can always ignore the data of user 𝑖, i.e., put 𝑦𝑖 = 0 in (2.23) and (2.30). As a result, we

have

𝜀𝑖(𝑧, c−𝑖) ≤
𝑀

𝜓𝑖(𝑧)
=

𝑀

𝑧 + 𝐹𝑖(𝑧)
𝑓𝑖(𝑧)

≤ 𝑀𝑓𝑖(𝑧)

𝐹𝑖(𝑧)
.

Note that, for any 𝛿′, there exists 𝑐𝑖 such that 𝐹𝑖(𝑐𝑖) ≥ 1− 𝛿′. Therefore, we have

∫︁ ∞

𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧 ≤
∫︁ ∞

𝑧=𝑐𝑖

𝑀𝑓𝑖(𝑧)

𝐹𝑖(𝑧)
𝑑𝑧

≤
∫︁ ∞

𝑧=𝑐𝑖

𝑀𝑓𝑖(𝑧)

1− 𝛿′
𝑑𝑧

𝑀

1− 𝛿′

∫︁ ∞

𝑧=𝑐𝑖

𝑓𝑖(𝑧) =
𝑀

1− 𝛿′
(1− 𝐹𝑖(𝑐𝑖)) ≤

𝑀

1− 𝛿′
𝛿′.

Setting 𝛿′ gives us the desired result. Now, suppose that we want an 𝜖-approximate of the

integral. Given the above result, we can choose 𝑐𝑖 such that

∫︁ ∞

𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧 ≤
𝜖

2
.

Therefore, it suffices to show that we can approximate
∫︀ 𝑐𝑖
𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧 up to 𝜖/2 error. For

any 𝛿, let 𝒮(𝛿) be a mesh with sub-intervals of size maximum 𝛿 from 𝑐𝑖 to 𝑐𝑖, i.e.,

𝒮(𝛿) = (𝐼0, 𝐼1, · · · , 𝐼𝑀),
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where

𝑐𝑖 = 𝐼0 < 𝐼1 < · · · < 𝐼𝑀 = 𝑐𝑖, with 𝐼𝑗 − 𝐼𝑗−1 ≤ 𝛿.

Note that we have

𝑀∑︁
𝑗=1

(𝐼𝑗 − 𝐼𝑗−1) inf
𝑧∈[𝐼𝑗−1,𝐼𝑗 ]

𝜀𝑖(𝑧, c−𝑖) ≤
∫︁ 𝑐𝑖

𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧 ≤
𝑀∑︁
𝑗=1

(𝐼𝑗 − 𝐼𝑗−1) sup
𝑧∈[𝐼𝑗−1,𝐼𝑗 ]

𝜀𝑖(𝑧, c−𝑖).

Notice that, as shown earlier, the optimal 𝜀𝑖(𝑧, c−𝑖) is decreasing in 𝑧 for a fixed c−𝑖. Thus,

we can rewrite the above equation as

𝑀∑︁
𝑗=1

(𝐼𝑗 − 𝐼𝑗−1)𝜀𝑖(𝐼𝑗, c−𝑖) ≤
∫︁ 𝑐𝑖

𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧 ≤
𝑀∑︁
𝑗=1

(𝐼𝑗 − 𝐼𝑗−1)𝜀𝑖(𝐼𝑗−1, c−𝑖).

Therefore, if we take
∑︀𝑀−1

𝑗=0 (𝐼𝑗 − 𝐼𝑗−1)𝜀𝑖(𝐼𝑗, c−𝑖) as an approximate of the integral, its error

will be bounded by the difference of the left-hand side and the right-hand side, i.e.,

𝑀∑︁
𝑗=1

(𝐼𝑗 − 𝐼𝑗−1)𝜀𝑖(𝐼𝑗−1, c−𝑖)−
∫︁ 𝑐𝑖

𝑧=𝑐𝑖

𝜀𝑖(𝑧, c−𝑖)𝑑𝑧 ≤
𝑀∑︁
𝑗=1

(𝐼𝑗 − 𝐼𝑗−1) (𝜀𝑖(𝐼𝑗−1, c−𝑖)− 𝜀𝑖(𝐼𝑗, c−𝑖))

≤ 𝛿
𝑀∑︁
𝑗=1

(𝜀𝑖(𝐼𝑗−1, c−𝑖)− 𝜀𝑖(𝐼𝑗, c−𝑖)) = 𝛿 (𝜀𝑖(𝑐𝑖, c−𝑖)− 𝜀𝑖(𝑐𝑖, c−𝑖)) .

As a result, by letting

𝛿 =
𝜖

2 (𝜀𝑖(𝑐𝑖, c−𝑖)− 𝜀𝑖(𝑐𝑖, c−𝑖))
,

the exprerssion
∑︀𝑀−1

𝑗=0 (𝐼𝑗−𝐼𝑗−1)𝜀𝑖(𝐼𝑗, c−𝑖) becomes an 𝜖/2-approximate of the integral. Also,

computing this sum requires solving the allocation problem 𝑀 times, where each time can

be done in polynomial time. Finally, notice that 𝑀 is less than ⌈(𝑐𝑖 − 𝑐𝑖)/𝛿⌉ which is order

of Ω(1
𝜖
). Hence, the above procedure establishes an FPTAS for finding the payment. ■

Alternative individual rationality constraint

Here, we consider an alternative individual rationality constraint to (2.18) in which the users

benefit from the platform’s estimator even if they do not participate. In this case, constraint
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(2.18) becomes

cost(𝑐𝑖, 𝑐𝑖; 𝜀(𝑛), t(𝑛), 𝜃(𝑛)) ≤ Ec−𝑖

[︁
MSE(c−𝑖, 𝜖

(𝑛−1)
−𝑖 , 𝜃(𝑛−1))

]︁
, (2.101)

where the right-hand side is the MSE of an estimator with 𝑛 − 1 data points of users in

𝒩 ∖ {𝑖}, noting that without participating in the mechanism, the user does not incur any

privacy cost but also does not receive any payment. Here, we use the superscript (𝑘) to show

that a function has 𝑘 inputs.

We next highlight how each one of our results extends to this setting. We do not repeat

the proofs as they are identical to those presented earlier.

Proposition 1’: For a given estimator 𝜃 : 𝒳 𝑛 × R𝑛
+ → R defined for all 𝑛, a central

or local privacy data acquisition mechanism (𝜃(𝑛), 𝜀(𝑛), t(𝑛)) satisfies incentive compatibility

(2.17) and individual rationality (2.101) if and only if

𝑡𝑖(𝑐𝑖) = Ec−𝑖

[︁
MSE(c, 𝜀(𝑛), 𝜃(𝑛))

]︁
− Ec−𝑖

[︁
MSE(c−𝑖, 𝜀

(𝑛−1)
−𝑖 , 𝜃(𝑛−1))

]︁
+ 𝑐𝑖𝜀𝑖(𝑐𝑖) +

∫︁ ∞

𝑧=𝑐𝑖

𝜀
(𝑛)
𝑖 (𝑧)𝑑𝑧 + 𝑑𝑖, (2.102)

for some constant 𝑑𝑖 ≥ 0, and 𝜀(𝑛)𝑖 (𝑧) is weakly decreasing) in 𝑧 for all 𝑖 ∈ 𝒩 .

Proposition 2’: For a given estimator 𝜃 : 𝒳 𝑛 × R𝑛
+ → R defined for all 𝑛, the optimal

privacy loss in the central or local privacy data acquisition mechanism is the solution of

min
{𝜀(𝑛)

𝑖 (·)}𝑛𝑖=1

Ec

[︃
(𝑛+ 1)MSE(c, 𝜀(𝑛), 𝜃(𝑛)) +

𝑛∑︁
𝑖=1

𝜀𝑖(c)𝜓𝑖(𝑐𝑖)

]︃

−
𝑛∑︁
𝑖=1

Ec−𝑖

[︁
MSE(c−𝑖, 𝜀

(𝑛−1)
−𝑖 , 𝜃(𝑛−1))

]︁
and 𝜀(𝑛)𝑖 (𝑧) = Ec−𝑖

[︁
𝜀
(𝑛)
𝑖 (𝑧, c−𝑖)

]︁
is weakly decreasing in 𝑧 for all 𝑖 ∈ 𝒩 ,

where 𝜖(𝑛−1)
𝑗 for all 𝑖 ∈ 𝒩 and 𝑗 ∈ 𝒩 ∖ {𝑖} is the optimal privacy loss levels for users in

𝒩 ∖ {𝑖}.

From the above proposition, it is evident that finding the optimal {𝜀(𝑛)𝑖 (·)}𝑛𝑖=1 decouples

from finding the optimal {𝜀(𝑘)𝑖 (·)}𝑖 for any other 𝑘 < 𝑛. Therefore, for both central and
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local settings, the characterization of the optimal privacy levels is the same as the ones given

in Theorems 2.3 and 2.4, respectively. This in turn implies that Propositions 2.3 and 2.4

continue to hold. The only difference between this setting and our baseline model is that

here in order to compute the payments, one needs to solve for the privacy loss levels for both

𝑛 users and any subset of 𝑛− 1 users. After solving these 𝑛 + 1 optimization problems, we

can then use Proposition 1’ to obtain the payment for 𝑛 users.
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Chapter 3

Bridging Central and Local Differential

Privacy Mechanisms

3.1 Introduction

Central and local architectures point to two different types of privacy considerations: (i)

local privacy concern that captures their concern about the revealed information about their

personal data to the platform when they share data with the platform, and (ii) central privacy

concern that captures their concern about the revealed information about their personal data

to the public when the platform outputs an estimate (based on users’ collected data).

In this chapter, we consider the design of data acquisition mechanisms and ask the

following question:

What is the optimal data acquisition mechanism when users have heterogeneous

privacy concerns regarding access to their raw data and the outcome of the plat-

form’s processing?

Similar to the previous chapter, we have a platform whose goal is to estimate an un-

derlying parameter of interest by collecting data from a set of users 𝒩 = {1, . . . , 𝑛} who

own a noisy version of the underlying parameter. However, in this chapter, we adopt local

and central Rényi differential privacy to measure these two types of privacy losses (Mironov

[2017], Bun and Steinke [2016]). The reason for choosing Rényi differential privacy as op-
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posed to the classical definition of differential privacy (Dwork et al. [2006a]) is twofold. First,

our framework can cover a wide range of information measures by varying the Rényi diver-

gence parameter. Second, it can be achieved by a Gaussian mechanism, which simplifies

our analysis while capturing the main tradeoffs in the design of two-part data acquisition

mechanisms.

Before formulating the platform’s data acquisition problem, we derive optimal estimators

for a given vector of heterogeneous local privacy loss levels. In particular, we establish a

minimax lower bound for the estimation error and prove that first, privatizing users’ data

by adding a properly designed Gaussian noise to them and then using a properly designed

weighted sum of these privatized data points achieves this lower bound. Equipped with this

result, we then turn to the optimal data acquisition mechanism design when the platform

uses an estimator that belongs to the class of linear estimators.

We cast this problem as a mechanism design problem as follows. Each user has a het-

erogeneous preference regarding the importance of the above two privacy concerns. For

instance, if a user fully trusts the platform, then the first type of concern lessens, and the

main concern would be about the information revealed about her personal data from the

platform’s estimate. On the other hand, if a user does not trust the platform at all, the first

type of concern would be more than the second one. We model such a setting by assuming

that each user 𝑖 has a privacy sensitivity 𝑐𝑖 ∈ [0, 1] that determines the relative weight she

puts on the local privacy concern (therefore, 1 − 𝑐𝑖 is the weight she puts on the central

privacy concern). The utility of user 𝑖 is the payment she receives from the platform (in

exchange for sharing her data), minus 𝑐𝑖 times her local privacy loss, and again, minus 1− 𝑐𝑖

times her central privacy loss. The platform does not know the value of 𝑐𝑖 and (knowing its

distribution) must design a (Bayesian) data acquisition mechanism to elicit the true privacy

sensitivities (that guide the optimal choice of the local and central privacy losses delivered

to each user) and optimize its objective.

In particular, the platform designs a two-part data acquisition mechanism that comprises

a payment scheme, a local privacy guarantee, and a central privacy guarantee as a function

of the reported privacy sensitivity of users. The platform’s goal is to minimize the sum of the

mean estimation error of the underlying parameter and the expected total payment to users
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while satisfying the incentive compatibility and individual rationality constraints. Incentive

compatibility ensures that users have no incentive to misreport their privacy sensitivity. In-

dividual rationality ensures that the payment to users (and the delivered privacy guarantees)

is such that users are willing to share their data with the platform.

The platform’s problem is a functional optimization over three functions of the reported

privacy sensitivities: payments, local privacy guarantees, and central privacy guarantees. We

first establish a payment identity, similar to the classic mechanism design Myerson [1981],

that pins down the payment function in terms of the local and central privacy guarantees

by using incentive compatibility and individual rationality constraints. This reduces the

space of the platform’s decision variables. We then show that the platform’s problem, in

contrast to the classical mechanism design Myerson [1981], can be cast as an optimization

problem that minimizes a non-convex objective (which depends on the virtual cost of users)

for any reported vector of privacy sensitivities. This reformulation significantly reduces the

space of decision variables that the platform needs to optimize. However, it still involves

solving a non-convex optimization problem. We further use the structural properties of this

non-convex optimization and use duality theory to develop a polynomial time algorithm

to approximate the platform’s problem. More precisely, we prove that the design of the

optimal two-part data acquisition mechanism admits a Polynomial Time Approximation

Scheme (PTAS).

The contribution of our work is threefold. First, we develop a minimax lower bound

when users have heterogeneous local privacy losses and establish that a linear estimator

(approximately) achieves this bound. Second, we formulate the design of the two-part data

acquisition mechanism as the solution to a point-wise optimization problem and develop an

algorithm to approximately find the optimal data acquisition mechanism (despite the fact

that the corresponding optimization is non-convex). Third, we develop a modeling framework

for data acquisition mechanisms when users have heterogeneous concerns for both local and

central privacy losses. Our focus is on a mean estimation problem, but our framework is

more general and can encompass other estimation problems.

The rest of the chapter proceeds as follows. In Section 3.2, we introduce our privacy

measure and characterize the minimax optimal estimator. In Section 3.3, we introduce the
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platform and the user’s utilities and formulate the platform’s mechanism design problem.

In Section 3.4, we establish how the platform’s mechanism design problem turns into a

point-wise (non-convex) optimization problem. In Section 3.5, we establish an algorithm

to approximately find the optimal two-part data acquisition mechanism and then provide

some illustrative examples. Section 3.6 concludes while the last section includes the deferred

proofs.

3.2 Privacy Measure and the Minimax Optimal Estima-

tor

We follow a model similar to the previous chapter, in which a platform is interested in

estimating an underlying parameter 𝜃 ∈ R by collecting data of 𝑛 users, indexed by 𝒩 =

{1, · · · , 𝑛}. Similarly, for any 𝑖 ∈ 𝒩 , we denote user 𝑖’s personal data by 𝑋𝑖 ∈ 𝒳 , and

we assume 𝑋𝑖 is given by 𝑋𝑖 = 𝜃 + 𝑍𝑖 where 𝑍1, · · · , 𝑍𝑛 are independent and identically

distributed zero-mean random variables with variance var (and we again assume |𝑍𝑖| ≤ 1/2

for any 𝑖 ∈ 𝒩 ).

3.2.1 Local and Central Privacy Losses

Before formalizing the utilities/objectives of the platform and the users, let us recall the

notions of central and local privacy losses that we adopt in this chapter. The local one is

the information leaked about a user’s personal data to the platform when she shares her

data with the platform, and the central one is the information leaked about a user’s personal

data to the public when she shares her data with the platform, and the platform releases its

estimate to the public. To further illustrate that, consider a platform that wants to learn the

efficacy of a drug by collecting patients’ medical record. In this context, the local privacy

loss corresponds to patients not trusting the hospital to keep their medical records private,

and the central privacy loss corresponds to patients trusting the hospital but not trusting

that the learning outcome, which is the output of the study, will keep their personal data

private (e.g., the hospital output may reveal information about their medical record that can
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be exploited by insurance companies, hurting the users). Depending on how much different

users trust the platform, they might care differently about these two privacy losses. For

instance, if a user fully trusts the platform, then her main privacy concern would be the

central one, while a user who does not trust the platform at all would be more concerned

with the local one as the public only observes the aggregated estimate, as opposed to the

platform which observes each user’s (shared) data separately.

As stated earlier, in this chapter, we use another variant of the differential privacy frame-

work to quantify these privacy losses. More specifically, we work with a popular one in

the machine learning and data science literature, named Rényi differential privacy (RDP)

Mironov [2017]. Let us first recall the definition of Rényi divergence.

Definition 3.1 (Rényi divergence). Let 𝑃 and 𝑄 be two distributions over R with densities 𝑝

and 𝑞. For any 𝛼 ∈ (1,∞], the Rényi 𝛼-divergence between 𝑃 and 𝑄 is denoted by 𝐷𝛼(𝑃 ||𝑄)

and is given by

𝐷𝛼(𝑃 ||𝑄) :=
1

𝛼− 1
log

∫︁ (︂
𝑝(𝑥)

𝑞(𝑥)

)︂𝛼
𝑞(𝑥)𝑑𝑥.

For two random variables 𝑋 and 𝑌 , 𝐷𝛼(𝑋||𝑌 ) denotes the 𝛼-divergence between their dis-

tributions.

Throughout the chapter, we fix the parameter 𝛼 > 1 that we use in the definition of

Rényi divergence and quantify the privacy losses. We next define two notions of differential

privacy, known as central and local, to capture the two aforementioned types of privacy

losses. Local differential privacy corresponds to the privacy loss of a user when she shares

her data with the platform through a randomized mapping, known as a channel.

Definition 3.2 (local privacy). Let 𝜀 ≥ 0 and 𝛼 ∈ (1,∞]. A randomized channel 𝒞 : 𝒳 → R

is locally (𝜀, 𝛼)-Rényi (differentially) private if for any 𝑥, 𝑥′ ∈ 𝒳 ,

𝐷𝛼(𝒞(𝑥)||𝒞(𝑥′)) ≤ 𝜀.

Conceptually, having a smaller 𝜖 in the above definition implies that the output’s dis-

tribution almost remains the same when the user’s personal data changes, and therefore a

limited amount of information leaks about the user’s personal data.
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Central differential privacy corresponds to the other privacy loss mentioned above. It

bounds the change in the distribution of the platform’s output, i.e., the released estimate,

by changing one user’s data. We next provide the formal definition.

Definition 3.3. Let 𝜀 = (𝜀𝑖)
𝑛
𝑖=1 ∈ R𝑛

+ and 𝛼 ∈ (1,∞]. A randomized algorithm 𝒜 : 𝒳 𝑛 → R

is centrally (𝜀, 𝛼)-Rényi (differentially) private if for any two datasets 𝑥1:𝑛, 𝑥′1:𝑛 ∈ 𝒳 𝑛 that

only differ in the 𝑖-th coordinate (i.e., data of user 𝑖),

𝐷𝛼(𝒜(𝑥1:𝑛)||𝒜(𝑥′1:𝑛)) ≤ 𝜀𝑖.

3.2.2 Minimax Optimal Estimator

In general, there are many ways to guarantee either local or central Rényi differential privacy.

This implies that the space of mechanisms that the platform can employ to deliver privacy

is very large. However, one key observation, as we prove in this section, is that the (worst-

case) estimation error is minimized over the class of linear estimators with the Gaussian

mechanism, defined next.

Definition 3.4 (Linear estimators with Gaussian mechanism). Let 𝜀 ∈ R𝑛
+ and w ∈ R𝑛

+

such that
∑︀𝑛

𝑖=1𝑤𝑖 = 1. A (𝜀,w)-linear estimator with Gaussian mechanism is

𝜃(𝑥1, . . . , 𝑥𝑛) :=
𝑛∑︁
𝑖=1

𝑤𝑖𝑥̂𝑖 where 𝑥̂𝑖 = 𝑥𝑖 +𝒩
(︂
0,

𝛼

2𝜀𝑖

)︂
for all 𝑖 ∈ 𝒩 .

Figure 3-1 depicts this class of estimators.

Let us first state the privacy guarantees of a linear estimator with a Gaussian mechanism.

Lemma 3.1. With a (𝜀,w)-linear estimator with Gaussian mechanism, the local privacy

delivered to user 𝑖 ∈ 𝒩 is 𝜀(𝑙)𝑖 = 𝜀𝑖 and the central privacy delivered to user 𝑖 ∈ 𝒩 is

𝜀
(𝑐)
𝑖 =

𝑤2
𝑖∑︀𝑛

𝑗=1

𝑤2
𝑗

𝜀𝑗

.

We nest establish that for a given vector of local privacy losses (𝜀(𝑙)𝑖 )𝑛𝑖=1, a linear estimator

is optimal with respect to mean square error. To formalize this statement, we first need
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Figure 3-1: The interaction between the users and the platform in the two-part private data
acquisition.

to define the minimax estimation error as our notion of optimality. Let 𝒫 be a class of

distributions over 𝒳 . For any 𝑃 ∈ 𝒫 , we denote its mean by 𝜃(𝑃 ). A locally (𝜀
(𝑙)
𝑖 )𝑛𝑖=1- RDP

estimator can be cast as 𝜃((𝒞𝑖(𝑥𝑖))𝑛𝑖=1), where 𝒞𝑖(.) is the randomized channel corresponding

to user 𝑖. Let 𝒬((𝜀
(𝑙)
𝑖 )𝑛𝑖=1) be the class of such locally (𝜀

(𝑙)
𝑖 )𝑛𝑖=1- RDP estimators. The minimax

estimation error is

ℒ(𝒫 ,𝒬, (𝜀(𝑙)𝑖 )𝑛𝑖=1) := inf
𝜃,{𝒞𝑖}𝑛𝑖=1∈𝒬((𝜀

(𝑙)
𝑖 )𝑛𝑖=1)

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃
[|𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃 )|2], (3.1)

where the expectation is taken over both the randomness of data and the estimator (including

private channels). In other words, the optimal estimator is the one that has the lowest worst-

case error among all estimators that satisfy the privacy requirements. With this definition

in mind, we next state our optimality result.

Theorem 3.1. Assume 𝛼 ≥ 2 and 𝜀
(𝑙)
𝑖 ≤ 1 for all 𝑖. Let 𝒫1 be the family of distributions

over [−1
2
, 1
2
] and 𝒞1, · · · , 𝒞𝑛 be independent channels. Then, there exists a universal constant

𝑐 such that

ℒ(𝒫 ,𝒬, (𝜀(𝑙)𝑖 )𝑛𝑖=1) ≥ 𝑐min

{︃
1∑︀𝑛

𝑖=1 𝜀
(𝑙)
𝑖

, 1

}︃
.

Furthermore, there exists a linear estimator with a Gaussian mechanism such that

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃
[|𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃 )|2] ≤ 𝒪(1)

𝛼∑︀𝑛
𝑖=1 𝜀

(𝑙)
𝑖

.

Proof Sketch of Theorem 3.1: The proof of the lower bound uses a technique called Le
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Cam’s method Yu [1997] that enables us to reduce the lower bounds problem to a hypothesis

testing problem. To do so, we first replace the supremum of 𝑃 over 𝒫 by an average over

two distributions 𝑃1, 𝑃2 ∈ 𝒫 (which we choose at the end). More formally, we have

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃 )

⃒⃒⃒2]︂
≥

1

2

2∑︁
𝑗=1

E(𝑋𝑖∼𝑃𝑗)𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃𝑗)

⃒⃒⃒2]︂
. (3.2)

Now, let 𝑄𝑗 denote the distribution of 𝜃((𝒞𝑖(𝑋𝑖))
𝑛
𝑖=1) when 𝑋1, · · · , 𝑋𝑛 are drawn from 𝑃𝑗.

Using this notation, we can rewrite the right-hand side of the above inequality as

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃 )

⃒⃒⃒2]︂
≥ 1

2

2∑︁
𝑗=1

E𝑌∼𝑄𝑗

[︀
|𝑌 − 𝜃(𝑃𝑗)|2

]︀
. (3.3)

We further lower bound the right-hand side by a term that is proportional to the error of

a nearest neighbor estimator for a hypothesis testing problem in which a sample of 𝑌 is

given, and we are asked to determine whether the underlying distribution is 𝑃1 or 𝑃2. More

specifically, the nearest neighbor estimator returns 𝑗 ∈ {1, 2} for which |𝑌 −𝜃(𝑃𝑗)| is smaller.

Next, we use the Le Cam result, which says that the error of any estimator for the above

problem is lower bounded by 1
2
− 1

2
‖𝑄1 − 𝑄2‖TV. This is how we reduce the lower bound

problem to the problem of developing an upper bound for the total variation distance between

𝑄1 and 𝑄2.

As the next step, we use the connection between the total variation distance and the

Hellinger distance. Recall that the Hellinger distance between two distributions 𝜇 and 𝜈 is

given by

𝑑hel(𝜇, 𝜈)
2 :=

∫︁
(
√︀
𝑑𝜇(𝑥)−

√︀
𝑑𝜈(𝑥))2.

The key result and our novel contribution in this part is to show the following inequality

‖𝑄1 −𝑄2‖2TV ≤ 4

(︃
𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖

)︃
𝑑hel(𝑃1, 𝑃2)

2.

The strength of this result is that it bounds the total variation distance between two complex
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distributions 𝑄1 and 𝑄2 by a term that only depends on 𝜀𝑖’s and the Hellinger distance

between the two distributions 𝑃1 and 𝑃2 that we are yet to choose. Plugging this back into

the lower bound and choosing 𝑃1 and 𝑃2 as two (carefully tuned) Bernoulli distributions

completes the proof of the lower bound. ■

3.3 Data Acquisition Mechanism With Two-Part Privacy

Guarantees

Here, we first describe the utility functions of the users and the platform and then formulate

the platform’s optimal data acquisition mechanism.

3.3.1 Utility of the Users and the Platform

As we described earlier, each user suffers from both local and central privacy losses when

sharing her data. Each user has a heterogeneous privacy sensitivity for these two types of

privacy losses. To model such heterogeneity, for each 𝑖 ∈ 𝒩 , we let 𝑐𝑖 ∈ [0, 1] be her relative

local privacy sensitivity, representing the relative weight that user 𝑖 assigns to the (per unit

cost of) local privacy loss. We also let 1 − 𝑐𝑖 be her relative central privacy sensitivity,

representing the relative weight that user 𝑖 assigns to the (per unit cost of) central privacy

loss. Therefore, 𝑐𝑖 ≈ 1 implies that user 𝑖 suffers mostly from the local privacy loss relative

to the central privacy loss. Differently, 𝑐𝑖 ≈ 0 implies that user 𝑖 suffers mostly from the

central privacy loss relative to the local privacy loss. In what follows, we use the term privacy

sensitivity instead of relative local privacy sensitivity.

For each 𝑖 ∈ 𝒩 , the privacy sensitivity 𝑐𝑖 is independently drawn from a publicly known

distribution whose support is [0, 1] with cumulative distribution and probability density

functions 𝐹𝑖(·) and 𝑓𝑖(·).1 We also let c = (𝑐1, . . . , 𝑐𝑛) be the vector of privacy sensitivities.

The privacy sensitivity of each user is her private information, i.e., the platform does not

1We assume that the distributions of the underlying privacy sensitivities are known, while the realized
privacy sensitivity of a user is private, and, because of this, we design an incentive compatible mechanism
to elicit the true privacy sensitivity. The assumption that the underlying distribution of types is known is
common in Bayesian mechanism design. In practice, the platform can learn such distribution from multiple
interactions with the user and by using simple mechanisms.
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know it. This is because individuals have different views regarding how trustworthy the

platform is in protecting their personal data.

The platform’s objective is to design a mechanism to collect users’ data by paying them

to compensate for their privacy losses without knowing the privacy sensitivity of users. To

introduce the platform’s objective formally, we adopt the formalism of Bayesian mechanism

design pioneered by Myerson [1981]. More specifically, the platform designs and announces

a payment function, a local privacy loss function, and a central privacy loss function that

are mappings from the reported privacy sensitivities of users. The users then report their

privacy sensitivities (which may or may not be truthful). Based on the payment function,

the platform compensates the users (the compensation could be monetary or some free or

discounted service provided to the user). Based on the local and central privacy functions,

the platform designs randomized channels and randomized estimation algorithms that deliver

guaranteed local and central privacy losses while minimizing the sum of the mean squared

error and the total expected payments. Given this interaction, we next formally introduce a

data acquisition mechanism with two-part data privacy guarantees.

Definition 3.5 (two-part private data acquisition mechanism). We call a tuple (𝜃, 𝜀(𝑙), 𝜀(𝑐), t)

a two-part private data acquisition mechanism such that:

1. For all 𝑖 ∈ 𝒩 , 𝜀(𝑙)𝑖 : R𝑛
+ → R+ is a function that maps the vector of privacy sensitivities

c to a local privacy loss for user 𝑖, 𝜀(𝑙)𝑖 (c), with 𝜀(𝑙)(·) = (𝜀
(𝑙)
𝑖 (·))𝑛𝑖=1.

2. For all 𝑖 ∈ 𝒩 , 𝜀(𝑐)𝑖 : R𝑛
+ → R+ is a function that maps the vector of privacy sensitivities

c to a central privacy loss for user 𝑖, 𝜀(𝑐)𝑖 (c), with 𝜀(𝑐)(.) = (𝜀
(𝑐)
𝑖 (·))𝑛𝑖=1.

3. 𝜃 : 𝒳 𝑛 ×R𝑛
+ ×R𝑛

+ → R is a centrally (𝜀(𝑐)(c), 𝛼)-Rényi differentially private estimator

that maps acquired locally (𝜀
(𝑙)
𝑖 (c), 𝛼)-Rényi differentially private data of user 𝑖 for

𝑖 ∈ 𝒩 to an estimate 𝜃(x, 𝜀(𝑙)(c), 𝜀(𝑐)(c)).

4. For all 𝑖 ∈ 𝒩 , 𝑡𝑖 : R𝑛
+ → R+ is a function that maps the vector of privacy sensitivities

c to a payment for user 𝑖, 𝑡𝑖(c), with 𝑡(.) = (𝑡𝑖(·))𝑛𝑖=1.

Notice that we have not specified the estimator and the mechanisms that deliver (local and

central) Rényi differential privacy. In the rest of this subsection, we introduce the utilities
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and the platform’s problem for general estimators and mechanisms to deliver differential

privacy. Later, we focus on linear estimator and Gaussian mechanisms and explicitly solve

the platform’s problem.

Each user that participates in a two-part private data acquisition mechanism suffers

from both local and central privacy losses and needs to be compensated by the platform. In

particular, the utility of user 𝑖 from participation when her privacy sensitivity is 𝑐𝑖 and she

reports 𝑐′𝑖 is given by

𝑢𝑖(𝜀
(𝑙)(𝑐′𝑖, c−𝑖), 𝜀

(𝑐)(𝑐′𝑖, c−𝑖), t, 𝜃) = Ec−𝑖
[𝑡𝑖(c−𝑖, 𝑐

′
𝑖))− 𝑐𝑖𝜀

(𝑙)
𝑖 (c−𝑖, 𝑐

′
𝑖)− (1− 𝑐𝑖)𝜀

(𝑐)
𝑖 (c−𝑖, 𝑐

′
𝑖)],

where the term 𝑡𝑖(c−𝑖, 𝑐
′
𝑖)) is the payment from the platform, the term 𝑐𝑖𝜀

(𝑙)
𝑖 (c−𝑖, 𝑐

′
𝑖) is the

relative local privacy sensitivity of the user multiplied by her local privacy loss, and the term

(1− 𝑐𝑖)𝜀
(𝑐)
𝑖 (c−𝑖, 𝑐

′
𝑖) is her relative central privacy sensitivity multiplied by her central privacy

loss. A user 𝑖 ∈ 𝒩 that does not participate in the mechanism neither compromises her

privacy nor gets compensation. Therefore, we normalize the utility of a user who does not

participate in the mechanism to 0.

The goal of the platform is to minimize the sum of the mean squared error and the overall

payment to users. We let 𝛾 ∈ R+ represent the relative weight of the mean estimation error

to the payments in the platform’s objective.2 Therefore, the platform’s objective is

Ec[𝛾MSE(𝜀(𝑙)(c), 𝜀(𝑐)(c), 𝜃) +
𝑛∑︁
𝑖=1

𝑡𝑖(c)],

where the first term is the mean square error of estimator 𝜃 given the reported vector of

privacy sensitivity and the resulting local and central privacy losses 𝜀(𝑙) and 𝜀(𝑐), i.e.,

MSE(𝜀(𝑙)(c), 𝜀(𝑐)(c), 𝜃) = Ex[|𝜃(x̂, 𝜀(𝑙), 𝜀(𝑐))− 𝜃|2].

Also, each summand of the second term is the compensation that the platform gives to a

user to incentivize her to participate and report her privacy sensitivity truthfully.

2Notice that by changing the parameter 𝛾, our framework includes a wide range of platform’s objectives
with differing relative weights between the estimation error and the total payments.
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3.3.2 Platform’s Problem

In general, the strategy of users can be very complicated. However, as we prove next, similar

to the classical mechanism design setting, the revelation principle holds, and therefore the

platform can focus on direct revelation mechanisms where individuals reporting their type

truthfully is a (Bayesian Nash) equilibrium.

Lemma 3.2. [Revelation principle] For any two-part private data acquisition mechanism)

and any corresponding user equilibrium, there exists an incentive-compatible two-part private

data acquisition mechanism which is equivalent from the point of view of both the platform

and the users, when the users tell the truth.

The above lemma follows from a simple argument, similar to Myerson [1981], but it

greatly simplifies the space of mechanisms that the platform needs to consider: there is no

loss of generality in focusing on the class of direct incentive compatible mechanisms, meaning

the platform’s optimization problem can be written as

min
𝜀(𝑙)(·),𝜀(𝑐)(·),t(·)

Ec[𝛾MSE(𝜀(𝑙)(c), 𝜀(𝑐)(c), 𝜃) +
𝑛∑︁
𝑖=1

𝑡𝑖(c)] (3.4)

𝑢𝑖(𝜀
(𝑙)(c), 𝜀(𝑐)(c), t, 𝜃) ≥ 𝑢𝑖(𝜀

(𝑙)(𝑐′𝑖, c−𝑖), 𝜀
(𝑐)(𝑐′𝑖, c−𝑖), t, 𝜃) (3.5)

𝑢𝑖(𝜀
(𝑙)(c), 𝜀(𝑐)(c), t, 𝜃) ≥ 0 for all 𝑖 ∈ 𝒩 , 𝑐𝑖, (3.6)

where the constraints in (3.5) represent the incentive compatibility. These constraints guar-

antee that each user 𝑖 has no incentive to misrepresent her privacy sensitivity when others

report truthfully (reporting truthfully is an equilibrium of the game among the users). Also,

the constraints in (3.6) represent individual rationality, which ensures that each user receives

a non-negative utility from participating in the platform’s mechanism and sharing her data.
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3.4 From the Mechanism Design Problem to an Opti-

mization Problem

For a given estimator 𝜃, the platform’s decision comprises the local and central privacy loss

functions 𝜀(𝑙)(·) and 𝜀(𝑐)(·) together with the payment functions t(·). We next show that

this problem can be equivalently formulated as an optimization problem over the vector of

local privacy losses and central privacy losses (as opposed to functions). In the rest of the

chapter, we impose the following assumption which is well-known in the mechanism design

literature and simplifies the analysis.3

Assumption 3.1. For any user 𝑖 ∈ 𝒩 , the virtual cost defined as 𝜓𝑖(𝑐) = 𝑐 + 𝐹𝑖(𝑐)
𝑓𝑖(𝑐)

is

increasing in 𝑐, where 𝑓𝑖(·) and 𝐹𝑖(·) are probability density and cumulative distribution

functions of 𝑐𝑖, respectively.

The above assumption holds for a wide class of distributions such as the ones with log-

concave density functions (e.g., uniform).

Theorem 3.2. Suppose Assumption 3.1 holds. For a given estimator 𝜃 : 𝒳 𝑛×R𝑛
+×R𝑛

+ → R,

in the optimal two-part data acquisition mechanism, for a given vector of reported privacy

sensitivities c, the local and central privacy losses are the solution of

min
{𝜀(𝑙)}𝑛𝑖=1,{𝜀(𝑐)}𝑛𝑖=1

𝛾MSE(𝜀(𝑙), 𝜀(𝑐), 𝜃) +
𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖 𝜓𝑖(𝑐𝑖) +

𝑛∑︁
𝑖=1

𝜀
(𝑐)
𝑖 (1− 𝜓𝑖(𝑐𝑖)) (3.7)

Proof Sketch of Theorem 3.2: We introduce the following interim functions

𝑡𝑖(𝑐𝑖) =Ec−𝑖
[𝑡(𝑐𝑖, c−𝑖)], 𝜀

(𝑙)
𝑖 (𝑐𝑖) = Ec−𝑖

[𝜀
(𝑙)
𝑖 (𝑐𝑖, c−𝑖)], and 𝜀(𝑐)𝑖 (𝑐𝑖) = Ec−𝑖

[𝜀
(𝑐)
𝑖 (𝑐𝑖, c−𝑖)].

We first establish a payment identity that determines the optimal payment in terms of the

optimal local and central privacy losses. In particular, by evaluating the first-order condition

corresponding to the incentive compatibility constraint (3.5), we establish that this constraint

3Without this assumption, extending the results requires the ironing technique of Myerson [1981].
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holds if and only if

𝑡𝑖(𝑐𝑖) = 𝑡𝑖(0) + 𝜀
(𝑐)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (0) + 𝑐𝑖(𝜀

(𝑙)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (𝑐𝑖))−

∫︁ 𝑐𝑖

0

(𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑐)
𝑖 (𝑧))𝑑𝑧,

and 𝜀(𝑙)𝑖 (𝑧)− 𝜀
(𝑐)
𝑖 (𝑧) is weakly decreasing in 𝑧. We then plug this payment identity back into

the platform’s objective, use the individual rationality constraint, and rewrite the platform’s

expected utility in terms of the privacy loss functions and the virtual cost of users. This is

still a functional optimization problem in terms of 𝜀(𝑙)(·) and 𝜀(𝑐)(·). However, we establish

that, under Assumption 3.1, we can solve this functional optimization point-wise (i.e., for

any given c). ■

Theorem 3.2 highlights the tradeoff in the platform’s problem: by decreasing the local

privacy loss, the second term of the objective decreases (this term corresponds to the payment

to users) while the first term (i.e., the mean squared error) increases. The role of central

privacy loss is more nuanced, and there are two cases. If the coefficient 1 − 𝜓𝑖(𝑐𝑖) is non-

negative, by decreasing the central privacy loss, the third term of the objective decreases

while the first term increases. If the coefficient 1− 𝜓𝑖(𝑐𝑖) is negative, increasing the central

privacy loss decreases both the third term and the first term. However, we cannot increase

the central privacy loss level without limits because the central privacy loss level is always

below the local privacy loss level. Therefore, the platform’s optimal mechanism should find

the “right” balance between these terms.

3.5 Finding the (Approximately) Optimal Two-Part

Data Acquisition Mechanism

So far, we have established that the minimax optimal estimator is a linear estimator with a

Gaussian mechanism and that the platform’s problem, when the virtual costs are monotone,

involves solving a point-wise optimization over the local and central privacy guarantees

delivered to different users. In this section, we develop an algorithm to solve the platform’s

problem efficiently.

The following is a direct corollary of Theorem 3.2.
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Corollary 3.1. Suppose Assumption 3.1 holds. For any reported vector of privacy sensitiv-

ities c, the optimal local privacy loss levels are 𝜀(𝑙)𝑖 (c) = 𝑦*𝑖 and the optimal central privacy

loss levels are

𝜀
(𝑐)
𝑖 =

𝑤*
𝑖
2∑︀𝑛

𝑗=1

𝑤*
𝑗
2

𝑦*𝑗

where (𝑤*
1, . . . , 𝑤

*
𝑛) and (𝑦*1, . . . , 𝑦

*
𝑛) are the optimal solution of

min
w,y

var𝛾
𝑛∑︁
𝑖=1

𝑤2
𝑖 +

𝛾𝛼

2

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
+

𝑛∑︁
𝑖=1

(1− 𝜓𝑖(𝑐𝑖))
𝑤2
𝑖∑︀𝑛

𝑗=1

𝑤2
𝑗

𝑦𝑗

+
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 (3.8)

s.t. 𝑤𝑖, 𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩 and
𝑛∑︁
𝑖=1

𝑤𝑖 = 1.

Let us highlight the difference between our characterization and that of classic mech-

anism design (e.g., Myerson [1981]). In classic mechanism design, the designer’s problem

becomes linear optimization. However, in our setting, the designer’s problem is a non-linear

and non-convex optimization. This makes the problem of finding the optimal two-part data

acquisition mechanism challenging. Before addressing this computational challenge, let us re-

visit the form of the Gaussian mechanism that we have adopted: the platform adds Gaussian

noise locally and then outputs a convex combination of the privatized users’ data without

adding any noise centrally. More specifically, one may guess that the platform may benefit

by having a central noise added to the final output in addition to the local noises. In the fol-

lowing subsection, we establish that there is another Gaussian mechanism for any Gaussian

mechanism that only adds local noises and achieves a weakly lower cost.

3.5.1 Optimality of Having Only Local Noises in the Gaussian

Mechanism

The platform has the opportunity of adding Gaussian noise to both the personal data of

each user and the final estimator and ex-ante one may guess that it is optimal to use both

of these instruments. However, as we establish next, interestingly, in the optimal two-part

data acquisition mechanism, it is always optimal to only add noises locally.
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A linear estimator with a Gaussian mechanism that adds both local and central noises is

of the form

𝜃(𝑥1, . . . , 𝑥𝑛) :=
𝑛∑︁
𝑖=1

𝑤𝑖𝑥̂𝑖 +𝒩
(︁
0,
𝛼

2𝜀

)︁
where

𝑛∑︁
𝑖=1

𝑤𝑖 = 1 and 𝑥̂𝑖 = 𝑥𝑖 +𝒩
(︂
0,

𝛼

2𝜀𝑖

)︂
∀𝑖 ∈ 𝒩 .

Proposition 3.1. In the optimal two-part data acquisition mechanism that adopts a linear

estimator with a Gaussian mechanism that adds both local and central noises, we have 𝜀 = ∞.

Proposition 3.1 has an important implication in terms of the design of data market

architecture when users have both central and local privacy losses: it is optimal to add

noise locally! Adding a noise centrally to the final estimator has an advantage because

the weights in the final estimator give the platform a lever to deliver heterogeneous central

privacy guarantees to users. Despite this advantage, we establish that adding noise centrally

is never optimal. This is because the platform prefers to add the noise locally to contribute

to both central and local privacy guarantees delivered to users.

3.5.2 Computing the Optimal Privacy Loss Function

The implementation of the optimal two-part private data acquisition mechanism requires

solving Problem (3.8), which is a non-convex program. However, we use the structure of

the problem to develop a polynomial time algorithm to solve it approximately. To guide the

analysis, we first define the auxiliary variable

𝑆 :=
𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
.

We first characterize the solution of the optimization problem (3.8) for a given 𝑆, and

then perform a grid search for 𝑆 to find an approximate solution to the main problem. In

112



particular, for a fixed 𝑆, the Lagrangian of (3.8) is given by

𝑛∑︁
𝑖=1

𝑤2
𝑖

(︂
var𝛾 +

1− 𝜓𝑖(𝑐𝑖)

𝑆

)︂
+

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 + 𝑝

(︃
𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
− 𝑆

)︃
− 𝑞

(︃
𝑛∑︁
𝑖=1

𝑤𝑖 − 1

)︃

−
𝑛∑︁
𝑖=1

𝑢𝑖𝑤𝑖 −
𝑛∑︁
𝑖=1

𝑣𝑖𝑦𝑖, (3.9)

where 𝑝 and 𝑞 are the Lagrangian multipliers for the constraints
∑︀𝑛

𝑖=1
𝑤2

𝑖

𝑦𝑖
= 𝑆 and

∑︀
𝑤𝑖 = 1,

respectively. In addition, for any 𝑖, the variables 𝑢𝑖 and 𝑣𝑖 are the Lagrange multipliers for

the constraints 𝑤𝑖 ≥ 0 and 𝑦𝑖 ≥ 0, respectively. Furthermore, using the complementary

slackness, for the optimal solution, we have 𝑢𝑖𝑤𝑖 = 𝑣𝑖𝑦𝑖 = 0.

By using Karush-Kuhn-Tucker (KKT) conditions, and taking the derivative of (3.9) with

respect to 𝑦𝑖 and 𝑤𝑖, we can write the primal variables 𝑦𝑖 and 𝑤𝑖 in terms of the single

parameter 𝑆 as

𝑦𝑖 = 𝑤𝑖

√︂
𝑝

𝜓𝑖(𝑐𝑖)
and 𝑤𝑖 =

𝑞
2
−
√︀
𝜓𝑖(𝑐𝑖)𝑝

var𝛾 + 1−𝜓𝑖(𝑐𝑖)
𝑆

,

where 𝑝 and 𝑞 as functions of 𝑆 are given by

𝑝 =

(︃ ∑︀𝑛
𝑖=1 𝜁𝑖

√︀
𝜓𝑖(𝑐𝑖)

𝑆 −
∑︀𝑛

𝑖=1

√︀
𝜓𝑖(𝑐𝑖)𝜉𝑖

)︃2

and 𝑞 =
2 + 2

∑︀
𝑗 𝜈𝑗
√︀
𝜓𝑗(𝑐𝑗)𝑝∑︀

𝑗 𝜈𝑗
, (3.10)

where

𝜈𝑖 =
1

𝛾var + 1−𝜓𝑖(𝑐𝑖)
𝑆

, 𝜁𝑖 =
𝜈𝑖∑︀
𝑗 𝜈𝑗

, and 𝜁𝑖

(︃
𝑛∑︁
𝑗=1

𝜈𝑗(
√︁
𝜓𝑗(𝑐𝑗)−

√︀
𝜓𝑖(𝑐𝑖))

)︃
. (3.11)

As a consequence, we can write down the optimal 𝑤𝑖’s and 𝑦𝑖’s (and also the dual variables)

for a given 𝑆. As the final step of the analysis, we establish lower and upper bounds on 𝑆

and then perform a grid search to find the approximate optimal solution. In particular, let

us denote the objective of Problem (3.35) for 𝑦𝑖 = 1, 𝑤𝑖 = 1
𝑛
, and 𝜀 = 1 by 𝑀 . We establish

that an upper bound on 𝑆 is given by 𝑆 = 𝑀
𝛾𝛼/2

and a lower bound on 𝑆 is given by 𝑆 = 1
𝑀𝑛

.

With these notations in mind, the procedure to find the approximately optimal mechanism
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Algorithm 3: Computing the optimal two-part private data acquisition mechanism
Input: The vector of privacy sensitivities (𝑐1, . . . , 𝑐𝑛)
for 𝑆 ∈ Grid

(︀
[𝑆, 𝑆], 𝛿

)︀
do

Given the definition of 𝜈𝑖 and 𝑝 in (3.10) and (3.11), consider the solution

𝑤𝑖(𝑆) =
𝜈𝑖 + 𝜈𝑖

∑︀
𝑗 𝜈𝑗
√︀
𝜓𝑗(𝑐𝑗)𝑝∑︀

𝑗 𝜈𝑗
− 𝜈𝑖

√︀
𝜓𝑖(𝑐𝑖)𝑝, 𝑦𝑖(𝑆) = 𝑤𝑖(𝑆)

√︂
𝑝

𝜓𝑖(𝑐𝑖)
.

Let OBJ(𝑆) be the objective of Problem (3.8) evaluated for this solution.
end
Output: {𝑦𝑖(𝑆*), 𝑤𝑖(𝑆

*)}𝑛𝑖=1, where (𝑆*) = argmin(𝑆) OBJ(𝑆).

is summarized in Algorithm 3.

Theorem 3.3. For any vector of reported privacy sensitivities and 𝜖 > 0, Algorithm 3 finds

local privacy loss levels and the differentially private linear estimator of the two-part data

acquisition mechanism whose cost (i.e., the platform’s objective) is at most 1 + 𝛿 of the

optimal cost in time poly(𝑛, 1
𝛿
).

Notice that the approximation factor in Theorem 3.3 depends on the underlying parame-

ters. Therefore, we have a Polynomial Time Approximation Scheme (PTAS) for finding the

optimal two-part data acquisition mechanism in the class of linear estimators.

3.5.3 A Numerical Example

Here, we give an example with two users to illustrate the performance of the optimal two-

part data acquisition mechanism in terms of the guaranteed privacy levels and payments as

functions of the reported privacy sensitivities. In particular, let us consider users 𝑖 = 1, 2

and let 𝑐𝑖 be uniformly distributed over [0, 1] so that the virtual costs are 𝜓𝑖(𝑐𝑖) = 2𝑐𝑖. We

also let 𝛾 = 1, 𝛼 = 2, and var = 1/4.

Figure 3-2 shows the weight of user 1’s data in the optimal two-part data acquisition

mechanism. As we observe, by increasing 𝑐1, user 1 cares more about local privacy, and

therefore, the weight of her data in the platform’s optimal mechanism decreases. Similarly,

by increasing 𝑐2, the platform prefers to predominantly get information from user 1 and

therefore increases the weight of user 1’s data (and decreases the weight of user 2’s data) in
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Figure 3-2: Weight of user 1’s data in the optimal mechanism as a function of 𝑐1 and 𝑐2 for
two users with 𝛾 = 1, 𝛼 = 2, and var = 1/4.

the optimal mechanism.

Figure 3-3 shows the platform’s objective (i.e., the solution of Problem (3.8)) and its

variance as a function of the privacy sensitivities. As we observe, higher privacy sensitivities

(which means that users care more about local privacy compared to central privacy) lead

to a higher platform cost and a higher estimation error. This is because guaranteeing local

privacy is more demanding compared to central privacy.

Figure 3-4 illustrates the expected utility of user 1 (similarly user 1) as a function of her

privacy sensitivity. We observe that, unlike classical mechanism design settings, the utility

is a continuous function of the user’s type (as opposed to a threshold function). Again, we

observe that higher privacy sensitivity implies better local privacy, which is more demanding

and decreases the user’s expected utility.

Figure 3-5 illustrates the platform’s expected objective and the user’s expected utility

in the optimal two-part data acquisition mechanism as a function of 𝛾, the coefficient of

the mean-squared error in the platform’s objective (note that we have a symmetric setting

and therefore the expected utility of users one and two are the same). We observe that

as 𝛾 increases, the platform’s expected objective naturally increases. This is because by

increasing 𝛾, the constraints of the platform’s problem remain the same while its objective

increases. The impact of increasing 𝛾 on the user’s expected utility is more nuanced. As we

increase 𝛾, the platform cares more about the mean-square error and therefore tries to learn

the underlying parameter more accurately. This has two opposing effects. First, as a result
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Figure 3-3: (a) the platform’s objective and (b) the platform’s estimation error as a function
of (𝑐1, 𝑐2) for two users with 𝛾 = 1, 𝛼 = 2, and var = 1/4.
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Figure 3-4: User 1’s expected utility a function of 𝑐1 for two users with 𝛾 = 1, 𝛼 = 2, and
var = 1/4.
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Figure 3-5: (a) user one’s expected utility and (b) the platform’s expected objective as a
function of 𝛾 for two users with 𝛼 = 2 and var = 1/4.
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of learning the underlying parameter, the user’s data will leak more, decreasing the user’s

utility by increasing their privacy loss. Second, the platform is willing to pay users more to

acquire their data more accurately, increasing user utility. As panel (a) of Figure 3-5 shows,

the second force dominates, and the user’s utility increases as 𝛾 increases (meaning when

the platform cares more about reducing mean-squared error compared to the payment).

3.6 Conclusion

In this chapter, we develop a unified framework to study the design of data acquisition

mechanisms when users have both local and central privacy concerns and are heterogeneous in

how they value these two privacy concerns. We use Rényi differential privacy to measure the

privacy loss of users and first establish a minimax lower bound that motivates us to focus on

linear estimators. We then establish a point-wise optimization problem whose solution fully

characterizes the optimal data acquisition mechanism that constitutes a payment scheme to

compensate users for their privacy losses, a local privacy guarantee, and a central privacy

guarantee all as a function of users’ preferences for local and central privacy concerns. We

then establish that, even though the corresponding optimization problem is non-convex, the

platform’s problem admits a Polynomial Time Approximation Scheme. We focused on data

acquisition to estimate the mean population. However, our framework is more general and

allows for considering other estimates including, for instance, vector estimates and higher

moments of the underlying population distribution. In particular, our Theorem 3.2 converts

the data acquisition mechanism design problem into a (potentially) non-convex optimization

problem.

3.7 Proofs

Proof of Lemma 3.1

The proof follows from the following lemma which is adapted from Mironov [2017].

Lemma 3.3. For a function 𝑓 : 𝒳 𝑛 → R, we define its sensitivity with respect to the 𝑖-th

117



coordinate as

𝐿𝑖(𝑓) := sup {|𝑓(𝑥1:𝑛)− 𝑓(𝑥′1:𝑛)| : for all 𝑥1:𝑛 and 𝑥′1:𝑛 differing only at 𝑖-th coordinate} .

For any 𝛼 ∈ (1,∞], 𝒜(𝑥1:𝑛) = 𝑓(𝑥1:𝑛) +𝑊 with 𝑊 ∼ 𝒩 (0, 𝜎2) is
(︁
(𝛼𝐿𝑖(𝑓)

2

2𝜎2 )𝑛𝑖=1, 𝛼
)︁
-RDP.

Proof of Theorem 3.1

We establish the lower bound by using the Le Cam’s method Yu [1997] which reduces the

lower bound problem to a hypothesis testing problem between two distributions. To prove

the lower bound, we need to show that for any 𝜃 ∈ 𝒬((𝜀
(𝑙)
𝑖 )𝑛𝑖=1), we have

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃 )

⃒⃒⃒2]︂
≥ 𝑐min

(︃
1∑︀𝑛

𝑖=1 𝜀
(𝑙)
𝑖

, 1

)︃
. (3.12)

To show this result, we replace sup𝑃∈𝒫 by an average over two carefully chosen distributions in

𝒫 . More formally, let 𝑃1 and 𝑃2 be two distributions of choice in 𝒫 with 𝛾 := 1
2
|𝜃(𝑃1)−𝜃(𝑃2)|.

Note that

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃 )

⃒⃒⃒2]︂
≥ 1

2

2∑︁
𝑗=1

E(𝑋𝑖∼𝑃𝑗)𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃𝑗)

⃒⃒⃒2]︂
=

1

2

2∑︁
𝑗=1

E𝑌∼𝑄𝑗

[︀
|𝑌 − 𝜃(𝑃𝑗)|2

]︀
, (3.13)

where, for any 𝑗 ∈ {1, 2}, 𝑄𝑗 denotes the distribution of 𝜃((𝒞𝑖(𝑋𝑖))
𝑛
𝑖=1) when 𝑋1, · · · , 𝑋𝑛 are

drawn from 𝑃𝑗. We next lower bound the right-hand side of (3.13) by Markov’s inequality

sup
𝑃∈𝒫

E(𝑋𝑖∼𝑃 )𝑛𝑖=1,𝜃

[︂⃒⃒⃒
𝜃((𝒞𝑖(𝑋𝑖))

𝑛
𝑖=1)− 𝜃(𝑃 )

⃒⃒⃒2]︂
≥ 𝛾2

1

2

2∑︁
𝑗=1

P (|𝑌 − 𝜃(𝑃𝑗)| ≥ 𝛾) . (3.14)

Now, consider a hypothesis testing problem with the goal of determining whether the un-

derlying distribution is 𝑃1 or 𝑃2, given an observation of 𝑌 . One possible approach is to

choose 𝑗 ∈ {1, 2} for which |𝑌 − 𝜃(𝑃𝑗)| is smaller. It can be shown that the probability of

an incorrect estimate by this approach is upper bounded by 1
2

∑︀2
𝑗=1 P (|𝑌 − 𝜃(𝑃𝑗)| ≥ 𝛾) on
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the right-hand side of (3.14). Furthermore, a seminal result by Le Cam states that the in-

fimum probability of incorrect decision among all possible mappings for the aforementioned

hypothesis testing problem is given by 1
2
− 1

2
‖𝑄1−𝑄2‖TV. Therefore, we obtain the following

lower bound

ℒ(𝒫 ,𝒬, (𝜀(𝑙)𝑖 )𝑛𝑖=1) ≥ 𝛾2
(︂
1

2
− 1

2
‖𝑄1 −𝑄2‖TV

)︂
. (3.15)

Next, we provide an upper bound on ‖𝑄1−𝑄2‖TV. To do so, we use the connection between

the total variation distance and the Hellinger distance. Hellinger distance has a number of

well-known desirable properties. In particular, we use the following two:

• For any two distributions 𝜇1 and 𝜇2, we have

‖𝜇− 𝜈‖TV ≤ 𝑑hel(𝜇, 𝜈). (3.16)

• Let 𝜇 := 𝜇1 × · · · × 𝜇𝑛 and 𝜈 := 𝜈1 × · · · × 𝜈𝑛. Then,

𝑑hel(𝜇, 𝜈)
2 = 2− 2

𝑛∏︁
𝑖=1

(1− 1

2
𝑑hel(𝜇𝑖, 𝜈𝑖)

2). (3.17)

Let us go back to the problem of upper bounding ‖𝑄1 −𝑄2‖TV. The following lemma is the

key result in our proof:

Lemma 3.4. Let 𝛼 ≥ 2 and suppose 𝒞(.) : 𝒳− → R is an (𝜀, 𝛼)-RDP channel. For

𝑗 ∈ {1, 2}, let 𝜈𝑗 be the distribution of 𝒞(𝑋) when 𝑋 ∼ 𝜇𝑗. Then,

𝑑hel(𝜈1, 𝜈2)
2 ≤ 2(𝑒𝜀 − 1) 𝑑hel(𝜇1, 𝜇2)

2.

We defer the proof of Lemma 2 to the end of this section. Let us first complete the proof

of lower bound using this lemma. Note that, by data processing inequality we have

‖𝑄1 −𝑄2‖TV ≤ ‖(𝒞𝑖(𝑋𝑖))
𝑛
𝑖=1 − (𝒞𝑖(𝑋̃𝑖))

𝑛
𝑖=1‖TV,
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where 𝑋𝑖 ∼ 𝑃1 and 𝑋̃𝑖 ∼ 𝑃2. Next, using (3.16) and (3.17) implies

‖𝑄1 −𝑄2‖2TV ≤ ‖(𝒞𝑖(𝑋𝑖))
𝑛
𝑖=1 − (𝒞𝑖(𝑋̃𝑖))

𝑛
𝑖=1‖2TV

≤ 𝑑hel((𝒞𝑖(𝑋𝑖))
𝑛
𝑖=1, (𝒞𝑖(𝑋̃𝑖))

𝑛
𝑖=1)

2

= 2− 2
𝑛∏︁
𝑖=1

(1− 1

2
𝑑hel(𝒞𝑖(𝑋𝑖), 𝒞𝑖(𝑋̃𝑖))

2). (3.18)

Next, note that, by Lemma 3.4, we have

𝑑hel(𝒞𝑖(𝑋𝑖), 𝒞𝑖(𝑋̃𝑖))
2 ≤ 2(𝑒𝜀

(𝑙)
𝑖 − 1) 𝑑hel(𝑃1, 𝑃2)

2 ≤ 4𝜀
(𝑙)
𝑖 𝑑hel(𝑃1, 𝑃2)

2,

where the last inequality follows from the fact that 𝜀(𝑙)𝑖 ≤ 1. Plugging this back into (3.18),

we obtain

‖𝑄1 −𝑄2‖2TV ≤ 2− 2
𝑛∏︁
𝑖=1

(1− 2𝜀
(𝑙)
𝑖 𝑑hel(𝑃1, 𝑃2)

2). (3.19)

Next, note that, for nonnegative 𝑦1, · · · , 𝑦𝑛 we have

𝑛∏︁
𝑖=1

(1− 𝑦𝑖) ≥ 1−
𝑛∑︁
𝑖=1

𝑦𝑖.

To show this, we can first verify it for 𝑛 = 2, and then it is straightforward to show it for

any 𝑛 by induction. Using this inequality with 𝑦𝑖 = 2𝜀
(𝑙)
𝑖 𝑑hel(𝑃1, 𝑃2)

2, we can further upper

bound (3.19) by

‖𝑄1 −𝑄2‖2TV ≤ 4(
𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖 ) 𝑑hel(𝑃1, 𝑃2)

2. (3.20)

Plugging this back into (3.15), we have

ℒ(𝒫 ,𝒬, (𝜀(𝑙)𝑖 )𝑛𝑖=1) ≥ 𝛾2

⎛⎝1

2
−

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖 𝑑hel(𝑃1, 𝑃2)

⎞⎠ . (3.21)
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Next, we define 𝑃1 and 𝑃2 as

𝑃1(−1/2) = 𝑃2(1/2) =
1 + 2𝛾

2
, 𝑃1(1/2) = 𝑃2(−1/2) =

1− 2𝛾

2
. (3.22)

It is straightforward to verify that |𝜃(𝑃1)− 𝜃(𝑃2)| = 2𝛾. Moreover, we have

𝑑hel(𝑃1, 𝑃2)
2 = 2

(︃√︂
1 + 2𝛾

2
−
√︂

1− 2𝛾

2

)︃2

= 2(1−
√︀

1− 4𝛾2) ≤ 8𝛾2,

where the last inequality follows from the fact that

1−
√︀

1− 4𝛾2 =
4𝛾2

1 +
√︀

1− 4𝛾2
≤ 4𝛾2.

Plugging this back into (3.21) implies

ℒ(𝒫 ,𝒬, (𝜀(𝑙)𝑖 )𝑛𝑖=1) ≥ 𝛾2

⎛⎝1

2
−

⎯⎸⎸⎷8
𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖 𝛾

⎞⎠ . (3.23)

Finally, setting

𝛾 = min

⎛⎝ 1

4

√︁
8
∑︀𝑛

𝑖=1 𝜀
(𝑙)
𝑖

,
1

2

⎞⎠
completes the proof of lower bound.

To show the upper bound, first, recall that a linear estimator with Gaussian mechanism

is in the form of

𝑛∑︁
𝑖=1

𝑤𝑖

(︃
𝑥𝑖 +𝒩

(︃
0,

𝛼

2𝜀
(𝑙)
𝑖

)︃)︃
. (3.24)

The mean square error of this estimator is given by

𝑛∑︁
𝑖=1

𝑤2
𝑖 (var +

𝛼

2𝜀
(𝑙)
𝑖

) ≤ 𝛼

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝜀
(𝑙)
𝑖

,

121



where the last inequality uses the fact that 𝛼 ≥ 2 and 𝜀(𝑙)𝑖 ≤ 1. Finally, setting

𝑤𝑖 =
𝜀
(𝑙)
𝑖∑︀𝑛

𝑗=1 𝜀
(𝑙)
𝑗

gives us the desired upper bound.

Proof of Lemma 3.4

Note that

𝑑hel(𝜈1, 𝜈2)
2 =

∫︁
(
√︀
𝜈1(𝑧)−

√︀
𝜈2(𝑧))

2𝑑𝑧 =

∫︁
(𝜈1(𝑧)− 𝜈2(𝑧))

2

(
√︀
𝜈1(𝑧) +

√︀
𝜈2(𝑧))2

𝑑𝑧

≤
∫︁

(𝜈1(𝑧)− 𝜈2(𝑧))
2

𝜈1(𝑧) + 𝜈2(𝑧)
𝑑𝑧. (3.25)

Note that, for any 𝑗 ∈ {1, 2}, we can cast 𝜈𝑗(𝑧) as

𝜈𝑗(𝑧) =

∫︁
𝑥

𝒞(𝑧|𝑥)𝑑𝜇𝑗(𝑥).

Moreover, for any 𝑥′ ∈ 𝒳 , we have

𝜈1(𝑧)− 𝜈2(𝑧) =

∫︁
𝑥

𝒞(𝑧|𝑥)(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥)) =

∫︁
𝑥

(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥)).

Substituting these into (3.25), we obtain

𝑑hel(𝜈1, 𝜈2)
2 ≤

∫︁
𝑧

(︀∫︀
𝑥
(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))

)︀2∫︀
𝑥
𝒞(𝑧|𝑥)(𝑑𝜇1(𝑥) + 𝑑𝜇2(𝑥))

𝑑𝑧. (3.26)

Next, by Cauchy–Schwarz inequality, we obtain

(︂∫︁
𝑥

(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))

)︂2

≤(︂∫︁
𝑥

𝒞(𝑧|𝑥)(𝑑𝜇1(𝑥) + 𝜇2(𝑥))

)︂(︂∫︁
𝑥

(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))2

𝒞(𝑧|𝑥)
(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))

2

𝑑𝜇1(𝑥) + 𝑑𝜇2(𝑥)

)︂
.
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Hence, using (3.26) and this inequality, we can further upper bound 𝑑hel(𝜈1, 𝜈2)
2 by

𝑑hel(𝜈1, 𝜈2)
2 ≤

∫︁
𝑧

∫︁
𝑥

(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))2

𝒞(𝑧|𝑥)
(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))

2

𝑑𝜇1(𝑥) + 𝑑𝜇2(𝑥)
𝑑𝑧

=

∫︁
𝑥

[︂∫︁
𝑧

(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))2

𝒞(𝑧|𝑥)
𝑑𝑧

]︂
(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))

2

𝑑𝜇1(𝑥) + 𝑑𝜇2(𝑥)
(3.27)

where the last equation follows from changing the order of integration using Fubini’s theorem.

Now, note that the first term on the right-hand side of (3.27) can be cast as

∫︁
𝑧

(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))2

𝒞(𝑧|𝑥)
𝑑𝑧 =

∫︁
𝑧

𝒞(𝑧|𝑥′)2

𝒞(𝑧|𝑥)
𝑑𝑧 − 2

∫︁
𝑧

𝒞(𝑧|𝑥′) 𝑑𝑧 +
∫︁
𝑧

𝒞(𝑧|𝑥) 𝑑𝑧

= exp(𝐷2(𝒞(𝑥′)||𝒞(𝑥)))− 1. (3.28)

It is known that 𝐷𝛼(.||.) is nondecreasing in 𝛼. Thus, using 𝛼 ≥ 2, we obtain

∫︁
𝑧

(𝒞(𝑧|𝑥)− 𝒞(𝑧|𝑥′))2

𝒞(𝑧|𝑥)
𝑑𝑧 ≤ 𝑒𝜀 − 1. (3.29)

Plugging this back into (3.27), we have

𝑑hel(𝜈1, 𝜈2)
2 ≤ (𝑒𝜀 − 1)

∫︁
𝑥

(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))
2

𝑑𝜇1(𝑥) + 𝑑𝜇2(𝑥)
. (3.30)

To complete the proof, we just need to show that

∫︁
𝑥

(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))
2

𝑑𝜇1(𝑥) + 𝑑𝜇2(𝑥)
≤ 2𝑑hel(𝜇1, 𝜇2)

2.

To do so, note that

∫︁
𝑥

(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))
2

𝑑𝜇1(𝑥) + 𝑑𝜇2(𝑥)
≤ 2

∫︁
𝑥

(𝑑𝜇1(𝑥)− 𝑑𝜇2(𝑥))
2

(
√︀
𝑑𝜇1(𝑥) +

√︀
𝑑𝜇2(𝑥))2

= 2

∫︁
𝑥

(︁√︀
𝑑𝜇1(𝑥)−

√︀
𝑑𝜇2(𝑥)

)︁2
= 2𝑑hel(𝜇1, 𝜇2)

2.

This concludes the proof of lemma 3.4 and hence the proof of Theorem 3.1. ■
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Proof of Lemma 3.2

Consider the strategy of user 𝑖 as a function of its relative privacy sensitivity shown by

𝛽𝑖(𝑐𝑖). For a given estimator 𝜃 and mechanism (𝜀(𝑙), 𝜀(𝑐), t), the action profile {𝛽𝑖(·)}𝑛𝑖=1 is

an equilibrium if

Ec−𝑖

[︁
𝑡𝑖(𝛽−i(c−i), 𝛽i(ci))− ci𝜀

(l)
i (𝛽−i(c−i), 𝛽i(ci))− 𝜀

(c)
i (𝛽−i(c−i), 𝛽i(ci))

]︁
≥ Ec−𝑖

[︁
𝑡𝑖(𝛽−i(c−i), 𝛽

′
i(ci))− ci𝜀

(l)
i (𝛽−i(c−i), 𝛽

′
i(ci))− 𝜀

(c)
i (𝛽−i(c−i), 𝛽

′
i(ci)

]︁
for all 𝑖 ∈ 𝒩 , 𝑐𝑖, 𝛽

′
𝑖(·). By letting (𝜀̃(𝑙), 𝜀̃(𝑐), t̃) be such that 𝜀

(𝑙)
𝑖 (𝑐1, . . . , 𝑐𝑛) =

𝜀
(𝑙)
𝑖 (𝛽1(𝑐1), . . . , 𝛽𝑛(𝑐𝑛)), 𝜀

(𝑐)
𝑖 (𝑐1, . . . , 𝑐𝑛) = 𝜀

(𝑐)
𝑖 (𝛽1(𝑐1), . . . , 𝛽𝑛(𝑐𝑛)), and 𝑡𝑖(𝑐1, . . . , 𝑐𝑛) =

𝑡𝑖(𝛽1(𝑐1), . . . , 𝛽𝑛(𝑐𝑛)), the users will report truthfully and that the platform’s objective is

the same as the original mechanism. This establishes the revelation principle. ■

Proof of Theorem 3.2

Recall the interim quantities

𝑡𝑖(𝑐𝑖) =Ec−𝑖
[𝑡(𝑐𝑖, c−𝑖)] ,

𝜀
(𝑙)
𝑖 (𝑐𝑖) =Ec−𝑖

[︁
𝜀
(𝑙)
𝑖 (𝑐𝑖, c−𝑖)

]︁
, and

𝜀
(𝑐)
𝑖 (𝑐𝑖) =Ec−𝑖

[︁
𝜀
(𝑐)
𝑖 (𝑐𝑖, c−𝑖)

]︁
for all 𝑖 ∈ 𝒩 , 𝑐𝑖.

Using these quantities, the incentive compatibility constraint becomes

𝑡𝑖(𝑐𝑖)− 𝑐𝑖𝜀
(𝑙)
𝑖 (𝑐𝑖)− (1− 𝑐𝑖)𝜀

(𝑐)
𝑖 (𝑐𝑖) ≥ 𝑡𝑖(𝑐

′
𝑖)− 𝑐𝑖𝜀

(𝑙)
𝑖 (𝑐′𝑖)− (1− 𝑐𝑖)𝜀

(𝑐)
𝑖 (𝑐′𝑖).

By equating the derivative of the right-hand side with respect to 𝑐′𝑖 at 𝑐𝑖 to zero, we obtain

𝑡′𝑖(𝑐𝑖)− 𝑐𝑖

(︁
𝜀
′(𝑙)
𝑖 (𝑐𝑖)− 𝜀

′(𝑐)
𝑖 (𝑐𝑖)

)︁
− 𝜀

′(𝑐)
𝑖 (𝑐𝑖) = 0.
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This equation gives us the derivative of the payment in terms of the privacy loss levels. By

taking the integral of this expression we obtain

𝑡𝑖(𝑐𝑖) = 𝑡𝑖(0) +

∫︁ 𝑐𝑖

0

(︁
𝜀
′(𝑐)
𝑖 (𝑧) + 𝑧

(︁
𝜀
′(𝑙)
𝑖 (𝑧)− 𝜀

′(𝑐)
𝑖 (𝑧)

)︁)︁
𝑑𝑧

= 𝑡𝑖(0) + 𝜀
(𝑐)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (0) + 𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (𝑐𝑖)

)︁
−
∫︁ 𝑐𝑖

0

(︁
𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑐)
𝑖 (𝑧)

)︁
𝑑𝑧. (3.31)

We next show that the payment in (3.31) together with a weakly decreasing 𝜀(𝑙)𝑖 (𝑧)− 𝜀
(𝑐)
𝑖 (𝑧)

guarantees that the incentive compatibility constraint. To see this, we consider two possi-

bilities depending on whether 𝑐′𝑖 is larger or smaller than 𝑐𝑖:

• For 𝑐′𝑖 ≥ 𝑐𝑖, by using the payment in (3.31), the incentive compatibility constraint

becomes equivalent to

(︁
𝜀
(𝑙)
𝑖 (𝑐′𝑖)− 𝜀

(𝑐)
𝑖 (𝑐′𝑖)

)︁
(𝑐𝑖 − 𝑐′𝑖) ≥

∫︁ 𝑐𝑖

𝑐′𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑐)
𝑖 (𝑧)

)︁
𝑑𝑧,

which holds because 𝜀(𝑙)𝑖 (𝑧)− 𝜀
(𝑐)
𝑖 (𝑧) is weakly decreasing in 𝑧.

• For 𝑐′𝑖 ≤ 𝑐𝑖, by using the payment in (3.31), the incentive compatibility constraint

becomes equivalent to

(︁
𝜀
(𝑙)
𝑖 (𝑐′𝑖)− 𝜀

(𝑐)
𝑖 (𝑐′𝑖)

)︁
(𝑐𝑖 − 𝑐′𝑖) ≤

∫︁ 𝑐′𝑖

𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑐)
𝑖 (𝑧)

)︁
𝑑𝑧,

which, again, holds because 𝜀(𝑙)𝑖 (𝑧)− 𝜀
(𝑐)
𝑖 (𝑧) is weakly decreasing in 𝑧. This completes

one direction of the proof.

To see the other direction, notice that using the first order condition for the incentive

compatibility constraints, imply (3.31). To see the monotonicity, notice that the incentive

compatibility implies

𝜀
(𝑐)
𝑖 (𝑐𝑖) + 𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (𝑐𝑖)

)︁
− 𝑡𝑖(𝑐𝑖) ≤ 𝜀

(𝑐)
𝑖 (𝑐′𝑖) + 𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑐′𝑖)− 𝜀

(𝑐)
𝑖 (𝑐′𝑖)

)︁
− 𝑡𝑖(𝑐

′
𝑖).
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and

𝜀
(𝑐)
𝑖 (𝑐′𝑖) + 𝑐′𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑐′𝑖)− 𝜀

(𝑐)
𝑖 (𝑐′𝑖)

)︁
− 𝑡𝑖(𝑐

′
𝑖) ≤ 𝜀

(𝑐)
𝑖 (𝑐𝑖) + 𝑐′𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (𝑐𝑖)

)︁
− 𝑡𝑖(𝑐𝑖).

The summation of these two inequalities yields

(︁(︁
𝜀
(𝑙)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (𝑐𝑖)

)︁
−
(︁
𝜀
(𝑙)
𝑖 (𝑐′𝑖)− 𝜀

(𝑐)
𝑖 (𝑐′𝑖)

)︁)︁
(𝑐𝑖 − 𝑐′𝑖) ≤ 0,

that proves 𝜀(𝑙)𝑖 (·)− 𝜀
(𝑐)
𝑖 (·) is weakly decreasing.

We next evaluate the individual rationality constraint. Using (3.31), we can rewrite this

constraint as

𝑡𝑖(0) ≥ 𝜀
(𝑐)
𝑖 (0) +

∫︁ 𝑐𝑖

0

(︁
𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑐)
𝑖 (𝑧)

)︁
𝑑𝑧 for all 𝑐𝑖. (3.32)

Using 𝜀(𝑙)𝑖 (𝑧) ≥ 𝜀
(𝑐)
𝑖 (𝑧) for all 𝑧, this inequality means that it only needs to hold for 𝑐𝑖 = ∞.

Hence, we could cast 𝑡𝑖(0) as

𝑡𝑖(0) = 𝜀
(𝑐)
𝑖 (0) +

∫︁ ∞

0

(︁
𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑙)
𝑖 (𝑧)

)︁
𝑑𝑧.

Plugging this back in (3.31) yields

𝑡𝑖(𝑐𝑖) = 𝜀
(𝑐)
𝑖 (𝑐𝑖) + 𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (𝑐𝑖)

)︁
+

∫︁
𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑐)
𝑖 (𝑧)

)︁
𝑑𝑧.

which is the optimal payment when 𝜀(𝑙)(·) is decreasing.
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With this optimal payment, the expected payment becomes

E𝑐𝑖 [𝑡𝑖(𝑐𝑖)] = E𝑐𝑖 [𝜀
(𝑐)
𝑖 (𝑐𝑖)] + E𝑐𝑖

[︂
𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑐𝑖)− 𝜀

(𝑐)
𝑖 (𝑐𝑖)

)︁
+

∫︁
𝑧=𝑐𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑧)− 𝜀

(𝑐)
𝑖 (𝑧)

)︁
𝑑𝑧

]︂
= E𝑐𝑖 [𝜀

(𝑐)
𝑖 (𝑐𝑖)] +

∫︁
z−𝑖

∫︁
𝑧𝑖

(︃
𝑧𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑧𝑖, z−𝑖)− 𝜀

(𝑐)
𝑖 (𝑧𝑖, z−𝑖)

)︁
+

∫︁
𝑦𝑖=𝑧𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑦, z−𝑖)− 𝜀

(𝑐)
𝑖 (𝑦, z−𝑖)

)︁
𝑑𝑦𝑖

)︃
𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

(𝑎)
= E𝑐𝑖 [𝜀

(𝑐)
𝑖 (𝑐𝑖)] +

∫︁
z−𝑖

∫︁
𝑧𝑖

(︃
𝑧𝑖

(︁
𝜀
(𝑙)
𝑖 (𝑧𝑖, z−𝑖)− 𝜀

(𝑐)
𝑖 (𝑧𝑖, z−𝑖)

)︁
+
(︁
𝜀
(𝑙)
𝑖 (𝑧𝑖, z−𝑖)− 𝜀

(𝑐)
𝑖 (𝑧𝑖, z−𝑖)

)︁ 𝐹𝑖(𝑧𝑖)
𝑓𝑖(𝑧𝑖)

)︃
𝑓𝑖(𝑧𝑖)𝑑𝑧𝑖𝑓−𝑖(z−𝑖)𝑑z−𝑖

= E𝑐𝑖 [𝜀
(𝑐)
𝑖 (𝑐𝑖)] +

∫︁
z

(︂
𝑧𝑖 +

𝐹𝑖(𝑧𝑖)

𝑓𝑖(𝑧𝑖)

)︂(︁
𝜀
(𝑙)
𝑖 (z)− 𝜀

(𝑐)
𝑖 (z)

)︁
𝑓(z)𝑑z, (3.33)

where (a) follows from changing the order of the integrals. Substituting equation (3.33) in

the platform’s objective function yields

Ec

[︃
𝛾MSE(𝜀(𝑙)(c), 𝜀(𝑐)(c), 𝜃) +

𝑛∑︁
𝑖=1

𝑡𝑖(c)

]︃

= Ec

[︃
𝛾MSE(𝜀(𝑙)(c), 𝜀(𝑐)(c), 𝜃) +

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝜀
(𝑙)
𝑖 (c) +

𝑛∑︁
𝑖=1

(1− 𝜓𝑖(𝑐𝑖)) 𝜀
(𝑐)
𝑖 (c)

]︃
.

Notice that the maximizer of the above objective is the optimal local and central privacy

losses, provided that 𝜀(𝑙)𝑖 (·) − 𝜀
(𝑐)
𝑖 (·) is decreasing. For a given privacy sensitivity vector c,

let us consider the point-wise minimization given by

min
{𝜀(𝑙)}𝑛𝑖=1,{𝜀(𝑐)}𝑛𝑖=1

𝛾MSE(𝜀(𝑙), 𝜀(𝑐), 𝜃) +
𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖 𝜓𝑖(𝑐𝑖) +

𝑛∑︁
𝑖=1

𝜀
(𝑐)
𝑖 (1− 𝜓𝑖(𝑐𝑖)) . (3.34)

This point-wise optimization clearly finds the optimal 𝜀(𝑙)(·) and 𝜀(𝑐)(·), but the issue is

that the corresponding 𝜀
(𝑙)
𝑖 (·) − 𝜀

(𝑐)
𝑖 (·) may not be decreasing. We next show that under

Assumption 3.1 this is always the case.

Let {𝜀(𝑙)}𝑛𝑖=1 and {𝜀(𝑐)}𝑛𝑖=1 be the solution of optimization problem (3.34) for 𝑐1, . . . , 𝑐𝑛.

Now, suppose we increase one of the 𝑐𝑖’s, which, without loss of generality, we assume is the
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first one. Let 𝑐′1 > 𝑐1 and 𝑐′𝑖 = 𝑐𝑖 for 𝑖 = 2, . . . , 𝑛 and suppose {𝜀′(𝑙)}𝑛𝑖=1, {𝜀′(𝑐)}𝑛𝑖=1 is the

corresponding optimal solution of optimization problem (3.34). The optimality condition

implies that

𝛾MSE(𝜀(𝑙), 𝜀(𝑐), 𝜃) +
𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖 𝜓𝑖(𝑐𝑖) +

𝑛∑︁
𝑖=1

𝜀
(𝑐)
𝑖 (1− 𝜓𝑖(𝑐𝑖))

≤ 𝛾MSE(𝜀′(𝑙), 𝜀′(𝑐), 𝜃) +
𝑛∑︁
𝑖=1

𝜀′
(𝑙)
𝑖 𝜓𝑖(𝑐𝑖) +

𝑛∑︁
𝑖=1

𝜀′
(𝑐)
𝑖 (1− 𝜓𝑖(𝑐𝑖))

and

𝛾MSE(𝜀′(𝑙), 𝜀′(𝑐), 𝜃) +
𝑛∑︁
𝑖=1

𝜀′
(𝑙)
𝑖 𝜓𝑖(𝑐

′
𝑖) +

𝑛∑︁
𝑖=1

𝜀′
(𝑐)
𝑖 (1− 𝜓𝑖(𝑐𝑖))

≤ 𝛾MSE(𝜀(𝑙), 𝜀(𝑐), 𝜃) +
𝑛∑︁
𝑖=1

𝜀
(𝑙)
𝑖 𝜓𝑖(𝑐

′
𝑖) +

𝑛∑︁
𝑖=1

𝜀
(𝑐)
𝑖 (1− 𝜓𝑖(𝑐𝑖))

The summation of both sides of these inequalities, together with 𝑐𝑖 = 𝑐′𝑖 for 𝑖 = 2, . . . , 𝑛,

results in

(︁(︁
𝜀
(𝑙)
1 − 𝜀

(𝑐)
1

)︁
−
(︁
𝜀′

(𝑙)
1 − 𝜀′

(𝑐)
1

)︁)︁
(𝜓1(𝑐1)− 𝜓1(𝑐

′
1)) ≤ 0.

Assumption 3.1 and the above inequality establishes that the solution of problem (3.34) is

weakly decreasing in the privacy sensitivity. ■

Proof of Corollary 3.1

The proof follows by invoking Theorem 3.2 and noting that with

𝜃 =
𝑛∑︁
𝑖=1

𝑤𝑖

(︃
𝑥𝑖 +𝒩

(︃
0,

𝛼

2𝜀
(𝑙)
𝑖

)︃)︃

we have

𝜀
(𝑐)
𝑖 =

𝑤2
𝑖∑︀𝑛

𝑗=1

𝑤2
𝑗

𝜀(𝑙)
2
𝑗
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and

MSE(𝜀(𝑙), 𝜀(𝑐), 𝜃) = var
𝑛∑︁
𝑖=1

𝑤2
𝑖 +

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝛼

2𝜀
(𝑙)
𝑖

.

This completes the proof. ■

Proof of Proposition 3.1

With a Gaussian mechanism that adopts both local and central noises, using a similar

argument to that of Theorem 3.2 and Corollary 3.1, the optimal central privacy loss levels

are

𝜀
(𝑐)
𝑖 =

𝑤*
𝑖
2∑︀𝑛

𝑗=1

𝑤*
𝑗
2

𝑦*𝑗
+ 1

𝜀

,

where (𝑤*
1, . . . , 𝑤

*
𝑛), (𝑦*1, . . . , 𝑦*𝑛), and 𝜀 are the optimal solution of

min
w,y,𝜀

var𝛾
𝑛∑︁
𝑖=1

𝑤2
𝑖 +

𝛾𝛼

2

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
+
𝛼𝛾

2𝜀
+

𝑛∑︁
𝑖=1

(1− 𝜓𝑖(𝑐𝑖))
𝑤2
𝑖∑︀𝑛

𝑗=1

𝑤2
𝑗

𝑦𝑗
+ 1

𝜀

+
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖

s.t. 𝑤𝑖, 𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩
𝑛∑︁
𝑖=1

𝑤𝑖 = 1.

For any solution to the above optimization problem we define the following alternative solu-

tion:

𝑦′𝑖 =
𝑤2
𝑖

𝑤2
𝑖

𝑦𝑖
+ 𝑤𝑖

𝜀

, 𝜀′ = ∞, and 𝑤′
𝑖 = 𝑤𝑖 for all 𝑖 ∈ 𝒩 .
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We have

var𝛾
𝑛∑︁
𝑖=1

𝑤′
𝑖
2
+
𝛾𝛼

2

𝑛∑︁
𝑖=1

𝑤′
𝑖
2

𝑦′𝑖
+

𝑛∑︁
𝑖=1

(1− 𝜓𝑖(𝑐𝑖))
𝑤′
𝑖
2∑︀𝑛

𝑗=1

𝑤′
𝑗
2

𝑦′𝑗

+
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦
′
𝑖

(𝑎)
= var𝛾

𝑛∑︁
𝑖=1

𝑤𝑖
2 +

𝛾𝛼

2

𝑛∑︁
𝑖=1

𝑤𝑖
2

𝑦𝑖
+
𝛼𝛾

2𝜀
+

𝑛∑︁
𝑖=1

(1− 𝜓𝑖(𝑐𝑖))
𝑤𝑖

2∑︀𝑛
𝑗=1

𝑤𝑗
2

𝑦𝑗
+ 1

𝜀

+
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦
′
𝑖

(𝑏)

≤ var𝛾
𝑛∑︁
𝑖=1

𝑤𝑖
2 +

𝛾𝛼

2

𝑛∑︁
𝑖=1

𝑤𝑖
2

𝑦𝑖
+
𝛼𝛾

2𝜀
+

𝑛∑︁
𝑖=1

(1− 𝜓𝑖(𝑐𝑖))
𝑤𝑖

2∑︀𝑛
𝑗=1

𝑤𝑗
2

𝑦𝑗
+ 1

𝜀

+
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖,

where (a) follows the construction of the new solution and (b) follows from

𝑦′𝑖 =
𝑤2
𝑖

𝑤2
𝑖

𝑦𝑖
+ 𝑤𝑖

𝜀

≤ 𝑦𝑖 for all 𝑖 ∈ 𝒩 .

This completes the proof.

Proof of Theorem 3.3

Consider the optimization problem

min
w,y

var𝛾
𝑛∑︁
𝑖=1

𝑤2
𝑖 +

𝛾𝛼

2

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
+

𝑛∑︁
𝑖=1

𝑤2
𝑖∑︀𝑛

𝑗=1

𝑤2
𝑗

𝑦𝑗

(1− 𝜓𝑖(𝑐𝑖)) +
𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 (3.35)

s.t. 𝑤𝑖, 𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩
𝑛∑︁
𝑖=1

𝑤𝑖 = 1.
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We can rewrite this optimization problem as

min
w,y,𝑆

var𝛾
𝑛∑︁
𝑖=1

𝑤2
𝑖 +

𝛾𝛼

2
𝑆 +

1

𝑆

𝑛∑︁
𝑖=1

𝑤2
𝑖 (1− 𝜓𝑖(𝑐𝑖)) +

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖

s.t. 𝑤𝑖, 𝑦𝑖 ≥ 0, for all 𝑖 ∈ 𝒩
𝑛∑︁
𝑖=1

𝑤𝑖 = 1,

𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
= 𝑆.

Let us fix 𝑆. The Lagrangian of this optimization problem becomes

𝑛∑︁
𝑖=1

𝑤2
𝑖

(︂
var𝛾 +

1− 𝜓𝑖(𝑐𝑖)

𝑆

)︂
+

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖 + 𝑝

(︃
𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
− 𝑆

)︃
− 𝑞

(︃
𝑛∑︁
𝑖=1

𝑤𝑖 − 1

)︃

−
𝑛∑︁
𝑖=1

𝑢𝑖𝑤𝑖 −
𝑛∑︁
𝑖=1

𝑣𝑖𝑦𝑖,

where 𝑢𝑖, 𝑣𝑖 ≥ 0 and for the optimal solution we have 𝑢𝑖𝑤𝑖 = 𝑣𝑖𝑦𝑖 = 0, for all 𝑖.

Equating the derivative with respect to 𝑤𝑖 to zero, yields

2𝑤𝑖

(︂
var𝛾 +

1− 𝜓𝑖(𝑐𝑖)

𝑆

)︂
+

2𝑝𝑤𝑖
𝑦𝑖

− 𝑞 = 𝑢𝑖. (3.36)

Hence, if 𝑤*
𝑖 > 0, then 𝑢𝑖 = 0 which implies

2

(︂
var𝛾 +

1− 𝜓𝑖(𝑐𝑖)

𝑆
+
𝑝

𝑦𝑖

)︂
𝑤𝑖 = 𝑞. (3.37)

On the other hand, if 𝑤*
𝑖 = 0, then 𝑢𝑖 = −𝑞 ≥ 0.

Equating the derivative with respect to 𝑦𝑖 to zero implies

𝜓𝑖(𝑐𝑖)−
𝑝𝑤2

𝑖

𝑦2𝑖
− 𝑣𝑖.

Hence, if 𝑦*𝑖 = 0, then 𝑤*
𝑖 = 0 and 𝑣𝑖 = 𝜓𝑖(𝑐𝑖). On the other hand, if 𝑦*𝑖 > 0, then 𝑣𝑖 = 0 and
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we have

𝑤𝑖 =

√︃
𝜓𝑖(𝑐𝑖)

𝑝
𝑦𝑖. (3.38)

Now, we claim there is no 𝑖 for which 𝑤*
𝑖 = 0 (and hence there is no 𝑖 for which 𝑦*𝑖 = 0).

Assume this is not the case, and hence there exists some 𝑖0 for which 𝑤*
𝑖0
= 0. Therefore,

as we established earlier, we have 𝑞 = −𝑢𝑖0 ≤ 0. On the other hand, note that there exists

𝑗 for which 𝑤*
𝑗 > 0. Hence, for that 𝑦*𝑗 > 0 as well. Therefore, using (3.37), along with the

fact that 𝑞 ≤ 0, we should have

1− 𝜓𝑗(𝑐𝑗)

𝑆
+

𝑝

𝑦*𝑗
≤ 0,

which implies
𝜓𝑗(𝑐𝑗)− 1

𝑆
≥ 𝑝

𝑦*𝑗
.

Hence, using 𝑆 ≥ (𝑤*
𝑗 )

2/𝑦*𝑗 ,we have

𝜓𝑗(𝑐𝑗)− 1 ≥ 𝑆
𝑝

𝑦*𝑗
≥

(𝑤*
𝑗 )

2𝑝

𝑦*𝑗
.

However, since 𝑦*𝑗 > 0, by (3.38), the right hand side is equal to 𝜓𝑗(𝑐𝑗), which implies

𝜓𝑗(𝑐𝑗)− 1 ≥ 𝜓𝑗(𝑐𝑗) which is a contradiction! As a result, (3.37) and (3.38) hold for all 𝑖.

By invoking (3.38) in (3.37), we obtain

𝑤𝑖 =
1

var𝛾 + 1−𝜓𝑖(𝑐𝑖)
𝑆

(︁𝑞
2
−
√︀
𝜓𝑖(𝑐𝑖)𝑝

)︁
.

To simplify the analysis, we define the interim variable

𝜈𝑖 =
1

𝛾var + (1− 𝜓𝑖(𝑐𝑖))/𝑆
. (3.39)
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Taking summation of the above equation for 𝑖 = 1, . . . , 𝑛 and using
∑︀𝑛

𝑖=1𝑤𝑖 = 1, we obtain

𝑞

2
=

1 +
∑︀

𝑗 𝜈𝑗
√︀
𝜓𝑗(𝑐𝑗)𝑝∑︀

𝑗 𝜈𝑗
,

which together with (3.36) results in

𝑤𝑖 =
𝜈𝑖∑︀
𝑗 𝜈𝑗

+
𝜈𝑖∑︀
𝑗 𝜈𝑗

(︃
𝑛∑︁
𝑗=1

𝜈𝑗(
√︁
𝜓𝑗(𝑐𝑗)𝑝−

√︀
𝜓𝑖(𝑐𝑖)𝑝)

)︃
. (3.40)

Therefore, by using (3.38) and (3.40), once we have 𝑆 and 𝑝, we can find 𝑦𝑖 and 𝑤𝑖 for all

𝑖 ∈ 𝒩 .

Next, we derive a relation between 𝑆 and 𝑝. Note that (3.40) implies that 𝑤𝑖 can be cast

as

𝜁𝑖(𝑆) + 𝜉𝑖(𝑆)
√
𝑝

with

𝜁𝑖(𝑆) =
𝜈𝑖∑︀
𝑗 𝜈𝑗

and 𝜉𝑖(𝑆) =
𝜈𝑖∑︀
𝑗 𝜈𝑗

(︃
𝑛∑︁
𝑗=1

𝜈𝑗(
√︁
𝜓𝑗(𝑐𝑗)−

√︀
𝜓𝑖(𝑐𝑖))

)︃
.

Using (3.38), we have

𝑆 =
𝑛∑︁
𝑖=1

𝑤2
𝑖

𝑦𝑖
=

𝑛∑︁
𝑖=1

𝑤𝑖

√︀
𝜓𝑖(𝑐𝑖)√
𝑝

=
𝑛∑︁
𝑖=1

𝜁𝑖(𝑆)
√︀
𝜓𝑖(𝑐𝑖)√
𝑝

+
𝑛∑︁
𝑖=1

√︀
𝜓𝑖(𝑐𝑖)𝜉𝑖(𝑆).

This implies

𝑝 =

(︃ ∑︀𝑛
𝑖=1 𝜁𝑖(𝑆)

√︀
𝜓𝑖(𝑐𝑖)

𝑆 −
∑︀𝑛

𝑖=1

√︀
𝜓𝑖(𝑐𝑖)𝜉𝑖(𝑆)

)︃2

. (3.41)

We next show that we can search over a grid to find the approximately optimal 𝑆. In

this regard, we derive a lower and upper bound on the optimal 𝑆.

To do so, first note that the objective function (3.35) is given by

OBJ = var𝛾
𝑛∑︁
𝑖=1

𝑤2
𝑖 +

𝛾𝛼

2
𝑆 +

1

𝑆

𝑛∑︁
𝑖=1

𝑤2
𝑖 (1− 𝜓𝑖(𝑐𝑖)) +

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)𝑦𝑖

≥ 𝛾𝛼

2
𝑆 +

1

𝑆

𝑛∑︁
𝑖=1

𝑤2
𝑖 +

𝑛∑︁
𝑖=1

𝜓𝑖(𝑐𝑖)(𝑦𝑖 −
𝑤2
𝑖

𝑆
).
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It is straightforward to see 𝑦𝑖 ≥ 𝑤2
𝑖

𝑆
for all 𝑖, and thus, we have

OBJ ≥ 𝛾𝛼

2
𝑆 +

1

𝑆

𝑛∑︁
𝑖=1

𝑤2
𝑖 . (3.42)

Using (3.42) along with the fact that Cauchy–Schwarz inequality implies
∑︀𝑛

𝑖=1𝑤
2
𝑖 ≥ 1/𝑛, we

have

Optimal objective (OPT) ≥ 𝛾𝛼

2
𝑆* +

1

𝑛𝑆* .

As a result, we have
OPT
𝛾𝛼/2

≥ 𝑆* ≥ 1

OPT𝑛
. (3.43)

Letting 𝑦𝑖 = 1, 𝑤𝑖 = 1
𝑛
, and 𝜀 = 1 in the objective of Problem (3.35) gives us an upper bound

on the optimal objective OPT. Let us denote this upper bound by 𝑀 . We have

𝑀

𝛾𝛼/2
≥ 𝑆* ≥ 1

𝑀𝑛
. (3.44)

Therefore, we obtain an approximate optimal solution by grid search. This provides an

𝑂(𝛿) optimal solution for the platform’s problem because the objective of Problem (3.35) is

Lipschitz continuous. ■
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Chapter 4

How Good Are Privacy Guarantees?

Platform Architecture and Violation of

User Privacy

4.1 Introduction

In the last two chapters, we fixed the central and local architectures to primarily study the

heterogeneity aspect of privacy demands in the data market, i.e., when users have differ-

ent and unknown (to the platform) privacy sensitivities. Furthermore, we used monetary

compensations to incentivize users to report their privacy sensitivities truthfully. In this

chapter, we investigate a different aspect of the data market design: the optimal choice of

architecture from both users’ and the platform’s point of view.

More specifically, we build a model in which each user has a utility consisting of two

terms. The first attaches a positive value, with weight 𝛼, to the precision of society’s (or

the platform’s) estimate of an underlying common state, 𝜃, based on pooled user data. The

second attaches a negative value, with weight 𝛽, to the decline in the mean squared error

about the individual’s own type, which is used by the platform for pricing or ad targeting.

For concreteness, we could consider the state 𝜃 to correspond to the prevalence of a virus

in the population, such as COVID- 19, while the individual type may be whether the user
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herself has been infected, which she may wish to keep private. We assume that the platform

receives positive returns from acquiring more information on both components.

The key decision for users is whether to share their data (or participate in the platform).

If the potential cost of privacy violations is large enough, they will choose not to do so, unless

adequate privacy guarantees are provided by the platform.

The game between the platform and the users is conceptualized as follows. First, the

platform commits to a mechanism for partially preserving user privacy. Second, users decide

individually whether to share their data. Then the platform uses the data according to the

chosen mechanism, and utilities are realized. We look for a (Bayesian) Stackelberg equilib-

rium of this game, whereby the platform optimally chooses the mechanism, anticipating the

following Bayesian Nash equilibrium.

What makes this game interesting and difficult is the fact that the space of mechanisms

that provide privacy guarantees is vast, including partial anonymization, limits on what data

can be used for, various ways of adding noise to the data, and differential privacy and related

mechanisms.

We define a mechanism as a mapping from the users’ data to an output and consider

the following pair of quantities in the space of all possible mechanisms : leaked information

about the underlying common parameter and the sum of leaked information about each

user’s private data. We then ask the following question:

In the space of all mechanisms, is there a mechanism that achieves the Pareto

frontier (i.e., leaks the most about the underlying common parameter and the

least about users’ data)? What is that mechanism?

We show that a mask-shuffle mechanism achieves the Pareto frontier defined above. This

proves that from the viewpoint of the users, this mechanism provides the optimal trade-off

between the positive and the negative uses of data. Specifically, according to this optimal

mechanism, the platform should commit to a probability with which a user’s data will be

fully anonymized (will be shuffled across users). This type of mask-shuffle is attractive

from the users’ viewpoint because it maintains information about the underlying state but

implies that the platform learns much less about the individual. By choosing the probability
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of shuffling, the platform can fine-tune the privacy guarantees to users.

Our second result characterizes the (unique and Bayesian) Stackelberg equilibrium under

any mask-shuffle mechanism. Additionally, we provide a number of comparative statics of

this equilibrium, showing how the extent to which users and the platform care about privacy

affects the degree of anonymity. Our comparative statics is more subtle and surprising,

highlighting the paradox of platform-provided privacy guarantees. When 𝛼 (the weight

attached to the positive use of pooled data in order to learn the state 𝜃) increases, user

utility increases given any mask-shuffle mechanism, and users become more willing to share

their data so that it can be pooled with those of others to obtain better estimates of 𝜃.

Greater 𝛼, however, also means that the platform now chooses lower privacy guarantees.

The paradoxical result is that this platform response is powerful enough that, under some

conditions we characterize, users end up worse off than they would have been with lower 𝛼.

We interpret this result as suggesting that platform-provided privacy guarantees are highly

imperfect and often insufficient.

Our final result turns to the implications of user privacy preferences on platform choices

of data architecture. We prove that the platform has an incentive to deviate from the user-

optimal mask-shuffle mechanisms. In particular, we identify a set of pivot mechanisms that

make individual privacy on the choices of other users, for example, by linking the decision of

how much of a user’s data to utilize on the sharing decision of other users. We show that the

platform can exploit user preferences towards the underlying common state, 𝜃, by designing a

pivot mechanism that commits to not utilizing any user data if any one of the users does not

share her data. This pivot mechanism makes every user “pivotal” at the margin, meaning

that if she decides not to share her data, nothing is learned about 𝜃. Because the user

attaches some value to the society learning about 𝜃, the effective cost of not sharing her data

increases significantly, and this allows the platform to violate her privacy. We also show that

more continuous versions of pivot mechanisms can achieve the same outcome. This result

further amplifies our interpretation that self-regulation by platforms is often insufficient to

ensure sufficient user privacy.

The rest of the chapter proceeds as follows. Section 4.2 presents the users’ and the

platform’s utility and establishes the optimality of the mask-shuffle mechanism. In Section
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4.3, we introduce the equilibrium concept and establish its existence. In Section 4.4, we

characterize the equilibrium of the game among the users and the platform and provide

some comparative statics for it. In Section 4.5, we establish that the platform has incentives

to use mechanisms other than mask-shuffle as opposed to the users. Section 4.6 concludes,

while the last section presents the proofs not included in the text.

4.2 Environment

We consider a platform that wishes to collect data from 𝑛 privacy-aware users denoted by

𝒩 = {1, . . . , 𝑛}. User 𝑖’s data is represented by 𝑋𝑖 = 𝜃 + 𝑍𝑖 where 𝜃 ∼ 𝒩 (0, 1) is a

common parameter and 𝑍𝑖 ∼ 𝒩 (0, 1) is user 𝑖’s private type. We assume both users and

the platform drive higher utility from having access to a better estimation of 𝜃. The private

type of user 𝑖, 𝑍𝑖, can be used for the platform’s benefit, and therefore the platform gains

from a better estimation of it while the user suffers a privacy loss. Users and the platform

connect through a mechanism. Formally, a mechanism ℳ : R𝑛 → 𝒳 , for some set 𝒳 , is

a randomized algorithm whose input is the users’ data, i.e., 𝑥1, · · · , 𝑥𝑛, and its output is

received by the platform. The mechanism output is used by the platform to estimate 𝜃. The

mechanism output contains information about the underlying parameter 𝜃 which leads to a

better estimation of this parameter and benefits both the users and the platform. It also

reveals information about the private type of users 𝑧𝑖 for 𝑖 ∈ 𝒩 which benefits the platform

but harms the users.

Before introducing the utility of the users and the platform we introduce our measure

of revealed information. Throughout the chapter, we use lower case letters to denote the

realization of random variables. Notice that platform’s prior on 𝜃 and 𝑍𝑖 is 𝜋0 = 𝒩 (0, 1).

We denote the platform’s posterior on 𝜃 and 𝑍𝑖 after observing the mechanism’s output

by 𝜋𝜃(ℳ) and 𝜋𝑍𝑖
(ℳ), respectively. It can be seen that the best estimator of 𝜃 and 𝑍𝑖’s

with respect to the mean-squared error, given the mechanism’s output, is the mean of the

posterior distributions. We define revealed information as the reduction in the mean-squared

error from the prior to the posterior, formalized next (in our setting, privacy is ensured when

the disclosed information, as defined below, is small. This guarantee is based on an average-
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case scenario, which differs from the worst-case guarantees provided by differential privacy

Dwork et al. [2014].)

Definition 4.1 (Revealed information). For any mechanism ℳ, revealed information about

𝜃 is the reduction in the mean-squared error of 𝜃, i.e.,

ℐ(𝜃 | ℳ) = E
[︀
(𝜃 − E𝜃∼𝜋0 [𝜃])

2]︀− E
[︁(︀
𝜃 − E𝜃∼𝜋𝜃(ℳ) [𝜃]

)︀2]︁
,

where the expectations are over the randomness in data and the mechanism. Similarly, for

any 𝑖 ∈ 𝒩 , revealed information about 𝑍𝑖 is the reduction in the mean-squared error of 𝑍𝑖,

i.e.,

ℐ(𝑍𝑖 | ℳ) = E
[︀
(𝑍𝑖 − E𝑍𝑖∼𝜋0 [𝑍𝑖])

2]︀− E
[︂(︁
𝑍𝑖 − E𝑍𝑖∼𝜋𝑍𝑖

(ℳ) [𝑍𝑖]
)︁2]︂

.

Given the above definition of revealed information, the expected utility of user 𝑖 is

given by

𝒰𝑖(ℳ) := 𝛼 ℐ(𝜃 | ℳ)− 𝛽 ℐ(𝑍𝑖 | ℳ). (4.1)

The first term captures the gain of user 𝑖 from a better estimation of the underlying parameter

𝜃. For instance, in the context of a medical study, the user gains from a better estimation

by the hospital, leading to a more effective drug. The second term captures the loss of

learning user 𝑖’s private data 𝑍𝑖. Again, in the context of a medical study, the user wants

to keep her medical record private. We use parameters 𝛼 and 𝛽 that are non-negative as

constants to scale the impact of learning the underlying parameter and the user’s private

data, respectively. In the context of a medical study, again, they capture the relative weight

that users assign to a more effective drug versus their privacy loss. The expected platform’s

utility is given by

𝒰platform(ℳ) := ℐ(𝜃 | ℳ) + 𝛿
𝑛∑︁
𝑖=1

ℐ(𝑍𝑖 | ℳ), (4.2)

where the first and second terms correspond to the platform’s gain from learning 𝜃 and users’

private type, respectively. Notice that, without loss of generality, we have normalized the

impact of learning 𝜃 in platform’s utility to one and use a non-negative constant 𝛿 to scale

the impact of learning users’ private data in the platform’s utility.
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(a) (b)

Figure 4-1: (a) the mask-shuffle mechanism (b) the partial shuffler.

4.2.1 Mask-Shuffle Mechanism and Its Optimality

The space of mechanisms includes all possible mappings from users’ data to an arbitrary

space. In principle, this class includes a rich set of mechanisms. Nevertheless, we now

establish that user-optimal mechanisms take a relatively simple form, which we call mask-

shuffle mechanisms. In particular, we prove that the mask-shuffle mechanism achieves the

minimum sum of revealed information about private user types, the 𝑍𝑖’s, for a given revealed

information about 𝜃.

Definition 4.2 (Mask-shuffle mechanism). A mask-shuffle mechanism is a pair (q, 𝜇) ∈

[0, 1]𝑛+1 such that:

1. The data of each user 𝑖 ∈ 𝒩 is completely hidden from the platform with probability

1− 𝑞𝑖 (denoted by NA) and is kept with probability 𝑞𝑖.

2. Letting 𝑌𝑖 denote the user 𝑖’s data after this randomized mapping, the mechanism

directly releases each 𝑌𝑖 with an independent probability 1 − 𝜇 and shuffles the rest

and releases a permutation of these shuffled 𝑌𝑖’s (i.e., 𝑌𝑖𝜎(1)
, . . . , 𝑌𝑖𝜎𝑘 for some random

permutation 𝜎 where 𝑘 is the number of 𝑌𝑖’s that are shuffled).

Figure 4-1a illustrates the mask-shuffle mechanism that includes a partial shuffler that

shuffles each user’s data with probability 𝜇. Figure 4-1b further depicts this partial shuffling

element.
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Before establishing the optimality of a mask-shuffle mechanism, we explicitly characterize

the revealed information in terms of the shuffling parameter 𝜇 and the users’ action profile

q. In what follows, we use the following notation: for any v ∈ [0, 1]𝑘 and 𝑗 ∈ {1, · · · , 𝑘}, we

define

𝑆𝑗(v) :=
∑︁

𝐵⊆{1,··· ,𝑘}
|𝐵|=𝑗

∏︁
ℓ∈𝐵

𝑣ℓ
∏︁
ℓ/∈𝐵

(1− 𝑣ℓ). (4.3)

This function is also known as the probability density function of Poisson binomial distribu-

tion which is the number of heads after 𝑘 independent coin tosses when the probability of

head for coin ℓ is 𝑣ℓ (see, e.g., Wang [1993]).

Proposition 4.1. For a given 𝜇 ∈ [0, 1] and q ∈ [0, 1]𝑛, revealed information about 𝜃 can be

written as

ℐ(𝜃 | q, 𝜇) =
𝑛∑︁
𝑗=0

𝑗

1 + 𝑗
𝑆𝑗(q).

In addition, revealed information about 𝑍𝑖 can be written as

ℐ(𝑍𝑖 | q, 𝜇) = (1− 𝜇𝑖)𝑞𝑖

(︃
1−

𝑛∑︁
𝑘=1

𝑆𝑘−1(q−𝑖)
1

1 + 𝑘

)︃
(4.4)

+
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

𝑖∈𝐵,|𝐵|=𝑘

𝑘∑︁
𝑗=1

𝑛−𝑘∑︁
𝑟=0

(︃∏︁
ℓ∈𝐵

𝜇ℓ

)︃(︃∏︁
ℓ̸∈𝐵

(1− 𝜇ℓ)

)︃
𝑆𝑟(q𝒩∖𝐵)

𝑞2𝑖 𝑆
2
𝑗−1(q𝐵∖𝑖)

𝑆𝑗(q𝐵)

1 + 𝑟

𝑗(1 + (𝑗 + 𝑟))

where q𝐵 := (𝑞ℓ)ℓ∈𝐵.

This result shows that revealed information about 𝜃 does not depend on the shuffling

parameter 𝜇 because irrespective of whether a user’s data is shuffled or not the platform can

extract the relevant information about 𝜃 in this user’s data. Revealed information about 𝑍𝑖,

however, depends on the shuffling parameter. In fact, the first term on the right-hand side of

(4.4) captures revealed information about 𝑍𝑖 when the data of user 𝑖 is not shuffled, and the

second term corresponds to the case that data of user 𝑖 is shuffled. It is worth highlighting

that, to derive the second term, we first need to characterize the platform’s belief on which

one of the shuffled data belongs to user 𝑖.

We next establish that for a given desired level of revealed information about the com-
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mon parameter 𝜃, the mask-shuffle mechanism achieves the lowest possible sum of revealed

information regarding private types 𝑍𝑖’s. Let us formalize this notion of optimality. Let

𝒫 =

{︃
(𝐴,𝐵) : 𝐴 = ℐ(𝜃 | ℳ), 𝐵 =

𝑛∑︁
𝑖=1

ℐ(𝑍𝑖 | ℳ) for some mechanism ℳ

}︃

be the set of all pairs of revealed information about 𝜃 and revealed information about 𝑍𝑖’s

achieved by any mechanism. Let us denote the smallest and largest possible values of 𝐴 by

𝐴 and 𝐴, respectively. For any 𝐴 ∈ [𝐴,𝐴], the Pareto frontier of 𝒫 is defined as

{︀
(𝐴,PF(𝐴)) : 𝐴 ∈ [𝐴,𝐴]

}︀
where PF(𝐴) = inf {𝐵 : (𝐴,𝐵) ∈ 𝒫} . (4.5)

We next prove that the mask-shuffle mechanism achieves the Pareto frontier of all possible

mechanisms.

Theorem 4.1. For any 𝐴 ∈ [𝐴,𝐴], there exists a mask-shuffle mechanism ℳ = (q, 1), for

some 𝑞 ∈ [0, 1], for which

ℐ(𝜃 | ℳ) = 𝐴 and
𝑛∑︁
𝑖=1

ℐ(𝑍𝑖 | ℳ) = PF(𝐴).

Theorem 4.1 has two consequences. First, by varying the probability of sharing 𝑞 from

zero to one, revealed information about 𝜃 goes from zero to the highest possible level of

revelation among all mechanisms. Moreover, for any given revealed information about 𝜃 in

this range, the lowest possible leakage of users’ private information is achieved by a mask-

shuffle mechanism with a certain sharing probability 𝑞.

In closing, we should highlight that various forms of shuffling have been studied in the

differential privacy literature as a technique to boost the provided privacy guarantees (see,

e.g., Bittau et al. [2017] and Cheu [2021]). First, our mask-shuffle mechanism is different

from simply shuffling all data points as it involves randomly masking some of the user data

points and then partially and randomly shuffling them. Second, our analysis reveals the

Pareto optimality of a mask-shuffle mechanism in our setting which gives it an important

operational justification, unlike shuffling for the purpose of boosting privacy guarantees.
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4.2.2 Proof of Theorem 4.1

Here, we present three key lemmas that we use to prove Theorem 4.1. Let us first provide

the roadmap of the proof:

• We first prove that for any mechanism, the sum of the revealed information about

𝜃 and 𝑍𝑖’s is lower bounded by (a constant fraction of) the revealed information

about
∑︀𝑛

𝑖=1𝑋𝑖. Intuitively, this holds because if a mechanism reveals too much about∑︀𝑛
𝑖=1𝑋𝑖 = 𝑛𝜃 +

∑︀𝑛
𝑖=1 𝑍𝑖, then it must be the case that it reveals information about

either 𝜃 or 𝑍𝑖’s.

• We then establish that the revealed information about
∑︀𝑛

𝑖=1𝑋𝑖 is (a constant multiple

of) the revealed information about 𝜃. Intuitively, this holds because the conditional

distribution of 𝜃 given (𝑋1, · · · , 𝑋𝑛) depends on 𝑋1, · · · , 𝑋𝑛 only through
∑︀𝑛

𝑖=1𝑋𝑖.

Putting these two lemmas together, we establish a lower bound on the sum of the

revealed information about 𝑍𝑖’s in terms of the revealed information about 𝜃. This

lower bound characterizes the Pareto frontier of 𝒫 , defined in (4.5).

• We finally prove that our mask-shuffled mechanism achieves this Pareto frontier.

We next state and prove the above results formally.

Lemma 4.1. For any mechanism ℳ, we have

ℐ(𝜃 | ℳ) +
𝑛∑︁
𝑖=1

ℐ(𝑍𝑖 | ℳ) ≥ ℐ (
∑︀𝑛

𝑖=1𝑋𝑖 | ℳ)

𝑛2 + 𝑛
(4.6)

and the equality holds for a mask-shuffle mechanism ℳ = (q, 1) with any q = (𝑞, . . . , 𝑞).

Proof sketch: To show this result, we first establish a relation between the revealed infor-

mation of a random variable and the square of it expectation conditioned on the mechanism

ℳ’s output. Using this derivation, we would need to bound the square of conditional expec-

tation of
∑︀𝑛

𝑖=1𝑋𝑖 = 𝑛𝜃+
∑︀𝑛

𝑖=1 𝑍𝑖 by the the square of conditional expectation of 𝜃 and 𝑍𝑖’s.

To prove such a bound, we use a Cauchy–Schwarz inequality and carefully tailor the weight

that we assign to each of the conditional expectations to obtain the tightest bound. We also
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show that the equality case of the Cauchy–Schwarz inequality holds for the mask-shuffling

mechanism by explicitly characterizing the conditional expectations in that case.

Lemma 4.1 establishes a relation among the revealed information about the underlying

state 𝜃, the users’ type 𝑍𝑖, and the users’ data 𝑋𝑖. We are interested to find a relation

between the revealed information about 𝜃 and 𝑍𝑖’s. Therefore, the next natural step is to

show how the revealed information about
∑︀𝑛

𝑖=1𝑋𝑖 relates to the revealed information about

𝜃, which is proved in our second lemma.

Lemma 4.2. For any mechanism ℳ, we have

ℐ

(︃
𝑛∑︁
𝑖=1

𝑋𝑖 | ℳ

)︃
= (𝑛+ 1)2 ℐ(𝜃 | ℳ). (4.7)

Proof sketch: As stated in the previous proof sketch, we know that the revealed informa-

tion about 𝜃 is closely related to the conditional expectation of 𝜃 given the mechanism ℳ’s

output. To establish the desired result, we show that the conditional expectation of 𝜃 and∑︀𝑛
𝑖=1𝑋𝑖 only differ by a constant factor.

Deriving this result uses two main observations: (i) the Markov property of the mech-

anism: given 𝑋1, · · · , 𝑋𝑛, the output of the mechanism ℳ is independent from 𝜃, and (ii)

the conditional distribution of 𝜃 given (𝑋1, · · · , 𝑋𝑛) only depends on
∑︀𝑛

𝑖=1𝑋𝑖.

The proof of Theorem 4.1 follows from plugging the relation of Lemma 4.1 into the bound

given by Lemma 4.2. In particular, this proves that for any mechanism ℳ : R𝑛 → 𝒳 , we

have
𝑛∑︁
𝑖=1

ℐ(𝑍𝑖 | ℳ) ≥ ℐ(𝜃 | ℳ)

𝑛
. (4.8)

Moreover, equality holds for mask-shuffle mechanism ℳ = (q, 1) for any q = (𝑞, . . . , 𝑞).

Therefore, there is an inevitable minimum leakage of users’ private information when a

mechanism learns 𝜃, and this minimum leakage increases as the mechanism reveals more

about 𝜃. Furthermore, the mask-shuffle mechanism has this minimum leakage, i.e., the

mask-shuffle mechanism has the lowest possible leakage among all mechanisms that reveal

equally about 𝜃. This theorem proves the optimality of the mask-shuffle mechanism from

the users’ perspective.
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The last remaining piece to finish the proof of Theorem 4.1 is to show that mask-shuffle

mechanisms of the form ℳ = (q, 1) achieve all possible values of revealed information about

𝜃. to see this, notice that by varying 𝑞 from 0 to 1, the revealed information about 𝜃 by

ℳ = ((𝑞, · · · , 𝑞), 1), i.e., ℐ(𝜃 | q, 𝜇) goes from zero to 𝑛
𝑛+1

. The following lemma proves that

no other mechanism can reveal more about 𝜃.

Lemma 4.3. The minimum (i.e., 𝐴) and the maximum (i.e., 𝐴) of ℐ(𝜃 | ℳ) over all

mechanisms are 0 and 𝑛
𝑛+1

, respectively. Moreover, these bounds are achievable for a mask-

shuffle mechanism ℳ = (q, 1) for some 𝑞 ∈ [0, 1].

Combining Lemmas 4.1, 4.2, and 4.3 proves Theorem 4.1, establishing that the mask-

shuffle mechanism achieves the Pareto frontier of revealed information about 𝜃 and revealed

information about 𝑍𝑖’s.

4.2.3 The Game Between the Platform and Users

As we have seen, a mask-shuffle mechanism consists of a shuffling parameter 𝜇 ∈ [0, 1] and

a vector of sharing probabilities (𝑞1, . . . , 𝑞𝑛). Since users own their data, we assume that

they directly choose the probability with which their data will be shared with the platform,

i.e., each user 𝑖 ∈ 𝒩 chooses 𝑞𝑖. We refer to q as the users’ action profile. The shuffling

parameter 𝜇, on the other hand, is the platform’s action: the platform commits to shuffle

the data of each user who shares her data with probability 𝜇 ∈ [0, 1]. The timing of the

game is as follows:

1. The platform chooses her action 𝜇, specifying the shuffling parameter.

2. Knowing the platform’s shuffling parameter, all users simultaneously choose their ac-

tion, specifying the probability with which they share their information with the shuf-

fler.

The platform and the users choose their actions in an equilibrium that we introduce next.
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4.3 Equilibrium

We use the notion of symmetric (Bayesian) Stackelberg equilibrium as our solution concept.

Let us first define the user equilibrium for a given platform’s action 𝜇.

Definition 4.3 (user equilibrium). For a given platform’s action 𝜇 ∈ [0, 1], a user action

profile q = (𝑞, . . . , 𝑞) is a symmetric Bayesian Nash equilibrium if

𝒰𝑖(q, 𝜇) ≥ 𝒰𝑖((q−𝑖, 𝑞𝑖 = 𝑞′), 𝜇) for all 𝑖 ∈ 𝒩 , 𝑞′,

where q−𝑖 = (𝑞1, . . . , 𝑞𝑖−1, 𝑞𝑖+1, . . . , 𝑞𝑛).

We use the notion of symmetric equilibrium to simplify the analysis and to rule out the

existence of unintuitive user equilibria. In the rest of the chapter, we adopt the following

assumption.

Assumption 4.1. 𝛼 ≥ 𝛽, where 𝛼 and 𝛽 are the weight of the revealed information about

the common parameter 𝜃 and user’s data, respectively, in the user’s utility (given in (4.1)).

Assumption 4.1 focuses attention on the part of the parameter space where there is

sufficient value in increasing information about the underlying common state 𝜃. In particular,

it rules out the case in which all users choose not to share their information, as we show

next:

Proposition 4.2. Suppose Assumption 4.1 holds.

1. For any platform’s action 𝜇 < 1, there exists 𝑁(𝜇) such that for 𝑛 ≥ 𝑁(𝜇) any

symmetric user equilibrium is of the form q = (𝑞, . . . , 𝑞), with 𝑞 = 𝑐
𝑛
+𝒪( 1

𝑛2 ), where 𝑐

is the unique solution of

𝛼
1− (𝑐+ 1)𝑒−𝑐

𝑐2
= 𝛽(1− 𝜇)

(︂
1− 1

𝑐

(︂
1− 1− 𝑒−𝑐

𝑐

)︂)︂
.

2. For platform’s action 𝜇 = 1, there exists 𝑁 such that for 𝑛 ≥ 𝑁 , we have the following

cases:
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2.1. If 𝛼
𝛽
≤ 2, then any intermediary symmetric user equilibrium is of the form q =

(𝑞, . . . , 𝑞), where 𝑞 = 𝛼
2𝛽

+𝒪
(︁

log(𝑛)
𝑛

)︁
. Also, q = (1, . . . , 1) is a user equilibrium.

2.2. If 𝛼
𝛽
> 2, then q = (1, . . . , 1) is the unique symmetric user equilibrium.

To characterize the symmetric user equilibrium (𝑞, · · · , 𝑞), we let user 1 share her data

with probability 𝑞1 and other users share their data with probability 𝑞. For (𝑞, · · · , 𝑞) to be a

symmetric user equilibrium, we must have that user 1’s utility 𝒰1(q, 𝜇) as a function of 𝑞1 is

maximized by choosing 𝑞1 = 𝑞. We solve for such 𝑞 by considering the first-order conditions

and also checking the boundary cases. There are a few points worth mentioning. First,

Assumption 4.1 rules out 𝑞𝑖 = 0 for all 𝑖 ∈ 𝒩 as an equilibrium. Second, Proposition 4.2

characterizes the users’ equilibrium action with a 1/𝑛2 precision. Although characterizing

the exact constant of the 1/𝑛2 term is demanding, in what follows, we prove that this term

only affects the lower order terms in the utility functions of the users and the platform.

We next define the Stackelberg equilibrium of the game.

Definition 4.4 (Stackelberg equilibrium). A pair of (𝑞𝑒, 𝜇𝑒) is a symmetric Stackelberg

equilibrium if q𝑒 = (𝑞𝑒, . . . , 𝑞𝑒) is a symmetric user equilibrium for 𝜇𝑒 and

𝒰platform(q
𝑒, 𝜇𝑒) ≥ 𝒰platform(q

′, 𝜇′),

for any 𝜇′ and q′ such that q′ is a symmetric user equilibrium for 𝜇′.

Theorem 4.2. Suppose Assumption 4.1 holds. There exists a symmetric Stackelberg equi-

librium (𝜇𝑒, 𝑞𝑒).

Theorem 4.2 proves the existence of a symmetric Stackelberg equilibrium. In general,

such an equilibrium may not be unique. However, in what follows, we prove the properties

of the game among the users and the platform that holds for any symmetric Stackelberg

equilibrium.

4.4 Characterization

In this section, we characterize the equilibrium and then provide some comparative statics.
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Our next theorem proves that for a sufficiently large number of users if 𝛼 (i.e., the weight

of the revealed information about the common parameter 𝜃 in the user’s utility) is small

enough, then the platform’s equilibrium shuffling probability is close to 1 (i.e., the platform

shuffles almost all the unmasked data points). Conversely, if 𝛼 is large enough, then the

platform’s equilibrium shuffling decision is close to 0 (i.e., the platform shuffles almost none

of the unmasked data points).

Theorem 4.3. Suppose 𝛿 ≤ 1 and Assumption 4.1 holds. For any 𝜖 > 0, there exists 𝛼 and

𝛼̄ in [𝛽,∞) and 𝑁 𝑒(𝜖), such that for 𝑛 ≥ 𝑁 𝑒(𝜖) we have:

1. If 𝛼 ≤ 𝛼, then 𝜇𝑒 ≥ 1− 𝜖.

2. If 𝛼 ≥ 𝛼̄, then 𝜇𝑒 ≤ 𝜖.

The proof of this theorem relies on the following steps. From Proposition 4.2, for any

𝜖 there exists 𝑁(𝜖) such that the derivation of Proposition 4.2 holds for 𝑛 ≥ 𝑁(𝜖) and

𝜇 ≤ 1 − 𝜖. Therefore, to find the optimal choice of 𝜇𝑒 for the platform, we consider two

intervals [0, 1−𝜖) and [1−𝜖, 1] separately. In particular, we characterize the user equilibrium

for any 𝜇 ∈ [0, 1 − 𝜖) by invoking Proposition 4.2, and we find the best choice of shuffling

probability for the platform. We also upper bound the platform’s utility when the platform

chooses 𝜇 ∈ [1− 𝜖, 1]. Putting these two results together, we complete the proof of Theorem

4.3.

To understand the intuition of Theorem 4.3, let us consider what happens when the

platform increases the shuffling parameter 𝜇. There are two opposing forces that shape

equilibrium decisions. First, for a given user action profile q, the choice of the shuffling

parameter 𝜇 does not directly change revealed information about 𝜃 (as shown in Proposition

4.1) but decreases revealed information about the users’ data. Second, increasing the shuf-

fling parameter 𝜇 incentivizes the users to share with a higher probability, which increases

the platform’s utility because it increases both revealed information about 𝜃 and about users’

data. Theorem 4.3 establishes that for small enough 𝛼, the second force dominates and the

platform’s equilibrium choice is to increase the shuffling parameter very close to 1. For large

enough 𝛼, on the other hand, the first force dominates and the platform’s equilibrium choice

is to decrease the shuffling parameter very close to 0.
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We next establish our main comparative static result that establishes as 𝛼 (the weight

users attach to information about the underlying, common state 𝜃) increases, they may

become worse off. Recall that, holding the privacy mechanism constant, a higher 𝛼 leads to

greater user utility. The next theorem is therefore a paradoxical result on the response of

the platform by varying the extent of privacy guarantees.

Theorem 4.4. Suppose 𝛿 ≤ 1 and Assumption 4.1 holds. Then, there exists an interval

(𝛼𝐿, 𝛼𝐻) such that the user’s utility at equilibrium as a function of 𝛼 is decreasing over it

for sufficiently large 𝑛, i.e., for any 𝛼1 < 𝛼2 in (𝛼𝐿, 𝛼𝐻), there exists 𝑁 such that for any

𝑛 ≥ 𝑁 the user’s utility at equilibrium is larger for 𝛼 = 𝛼1 compared to 𝛼 = 𝛼2.

We prove that this phenomenon happens when the shuffling probability 𝜇𝑒 at equilibrium

starts to decrease from one to zero by increasing 𝛼. More precisely, as 𝛼 increases, the

platform takes advantage of the fact that users care more about learning the underlying

common state and decreases the probability of shuffling, knowing that users will still share

their data. However, the main challenge is that, at the same time, the user’s gain from

learning the underlying state increases. Nevertheless, we prove that the users’ loss from the

reduction of the shuffling parameter (and hence the increase of revealed information about

their private types 𝑍𝑖’s) dominates their gain from learning the state 𝜃, and hence, the total

utility of users decreases.

4.5 Platform Choice of Mechanism: Pivot Vs. Mask-

Shuffle Mechanisms

In this section, we characterize the platform’s optimal choice of mechanism and establish that

platforms will in general choose mechanisms quite different from the mask-shuffle mechanism

that is user-optimal, as shown above. Recall that the action of each user such as user 𝑖 is

her sharing probability 𝑞𝑖, and

𝑌𝑖 =

⎧⎪⎨⎪⎩𝑋𝑖 with probability 𝑞𝑖

NA with probability 1− 𝑞𝑖
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is the input of the platform. The platform’s action is a mapping from (𝑌1, . . . , 𝑌𝑛) to 𝒳 for

some set 𝒳 . The output of the platform’s action will then be used to estimate the underlying

state 𝜃 as well as the private users’ data 𝑍𝑖.

The mask-shuffle mechanism is one particular platform’s action, but the space of all

platform’s actions is very large and it is not clear what would be the platform’s optimal

choice in this space. Interestingly, we next establish that the optimal platform’s action

belongs to the following class:

Definition 4.5 (Pivot mechanism). A pivot mechanism is defined based on a function 𝜎 :

𝒩 → R+ such that: when 𝑘 users share their data, the platform adds a Gaussian noise with

zero mean and variance 𝜎2(𝑘) to all users who have shared.

Intuitively, we refer to these mechanisms as “pivot mechanisms” because they increase

the pivotal role of each user, as their sharing decision influences whether the platform can

use the data shared by others. A special case of the pivot mechanism that is optimal from

the platform’s perspective is given below.

Theorem 4.5. Suppose 𝜎(.) satisfies the following condition:

𝜎2(𝑘 − 1) ≥ 𝛼

𝛼− 𝛽

(︀
𝜎2(𝑘) + 𝑘 + 1

)︀
and 𝜎(𝑛) = 0. (4.9)

Then, the only symmetric user equilibrium under the pivot mechanism is 𝑞𝑖 = 1 for all 𝑖.

Furthermore, the platform’s utility under this equilibrium is the maximum platform’s utility

over all possible mechanisms.

Let us first understand user behavior given such a pivot mechanism. Intuitively, inequality

(4.9) ensures that without the user in question sharing her data there will be so much

noise added to the data of other users who have shared that estimating the underlying

common state, 𝜃, becomes close to impossible for the platform. This is the sense in which

the pivot mechanism makes each user pivotal: by refusing to share her data, the user makes it

impossible to estimate this underlying state. If 𝛼 is sufficiently large, as implied by condition

(4.9), this is very costly for the user, and she will be convinced to sacrifice her privacy in

order to allow the estimation of 𝜃. Given this user behavior, the platform then has a strong

150



incentive to deviate from the user-optimal mask-shuffle mechanism towards such a pivot

mechanism.

To clarify the implications of this theorem, we next consider a simple form of this pivot

mechanism as a corollary.

Corollary 4.1. For a pivot mechanism with

𝜎(𝑘) =

⎧⎪⎨⎪⎩0 𝑘 = 𝑛

∞ 𝑘 < 𝑛,

(4.10)

the unique symmetric user equilibrium is 𝑞𝑖 = 1 for all 𝑖 and the platform’s utility is 𝑛(𝑛𝛿+1)
𝑛+1

,

which is the maximum utility over all possible mechanisms.

Under the above pivot mechanism, the platform does not add any noise to users’ data so

long as they all share. Conversely, the platform “throws away” all users’ data even if one of

them does not share.

The implications for user utility are dire, however. To see this, we next characterize user

welfare under the pivot mechanisms favored by the platform.

Proposition 4.3. Suppose 𝜎(.) satisfies condition (4.9) so that the unique user equilibrium

under the pivot mechanism is 𝑞𝑖 = 1 for all 𝑖. The utility of each user is

(𝛼− 𝛽)
𝑛

𝑛+ 1
.

4.6 Conclusion

Many platforms deploy data collected from users for a multitude of purposes. Some of these

are beneficial to users, for example, when the day-to-day share enables platforms or others to

learn more about underlying health conditions or provide better, objective recommendations

to them. However, other consequences of extensive data harvesting are potentially very costly

for users. Some of those will directly violate their privacy and others will lead to intensive

target digital ads. In the extreme, the unregulated sale of individualized data to third parties

could be highly problematic for users.
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When privacy costs are substantial, users may not be willing to share their data and a

shy away from participation in platforms that do not provide explicit guarantees on privacy.

This has motivated many platforms to introduce guidelines on how they will treat user data.

Despite the growing importance of this problem, we are not aware of systematic studies of

how these guarantees are determined and to what extent they subjectively or objectively

satisfy user concerns.

This work has taken a first step in the study of this question. We have built a multi-

stage model in which users decide whether to share their data based on the privacy-deserving

mechanism choices of platforms. Our model captures several salient features of the data-

related relationships between platforms and users but is still highly tractable. As a result, we

are able to establish several novel results that are of both theoretical interests and provide

guidance on the faultiness that exists in private data markets.

Our first result establishes that mask-shuffle mechanism, whereby the user data is fully

anonymized with some probability, is Preto optimal, meaning it achieves the minimum in-

formation leakage about users’ data for any given revealed information about the underlying

common parameter. This also implies that it is optimal from the viewpoint of users. With

mask-shuffle mechanisms, there exists a unique equilibrium in which the mechanism offered

by the platform balances the utility gains from the desirable uses of data with privacy costs

for users.

Our second result characterizes the (Bayesian) Stackelberg equilibrium of the game be-

tween the platform and the users. This equilibrium concept takes into account that the plat-

form acts first by choosing (committing to) a particular mechanism for privacy preservation

(and hence acts like a “Stackelberg leader’ as in the game-theoretic analysis of oligopolistic

markets). The label Bayesian refers to the fact that individuals make inferences about how

much information will leak about the underlying state and their individual types to the user.

Third and somewhat paradoxically, we show that when the potential utility gains from

data pooling increases for users (for example, because data can reveal information about un-

derlying health conditions), users can become worse off. This result is because platforms take

advantage of such changes to reduce privacy guarantees so much that user utility declines.

This result should be contrasted with what would have happened if the privacy-preserving
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mechanism was held constant: in this case, user utility would have unambiguously increased

because users would have benefited from better deployment of data. The reason why this

paradoxical result obtained is because the platform exploits the change in user preferences

to reduce privacy guarantees. Our interpretation is that this result highlights the fragility

of platform-provided (self-regulated) privacy guarantees.

Finally, we explore the implications of the same forces for platform choice of data archi-

tecture. Here, we find that, even more strikingly, platforms have strong incentives to deviate

from user-optimal mask-shuffle mechanisms. The reason for this finding is instructive: the

platform designs a mechanism (which we refer to as a pivot mechanism) that links whether it

can use other users’ data to the decision of a marginal user about whether to share her own

data. This makes each user pivotal: if they refuse to share their data, it becomes impossible

for the platform to use the data of others to estimate the underlying common state (which

is valuable for all users). With such pivotal mechanisms, the platform convinces users to

sacrifice their privacy, but with significant costs to the welfare of users. This result further

amplifies our conclusion that self-regulated privacy guarantees are unlikely to be sufficient

for users to obtain high levels of benefit from online platform data architectures.

We view this work as a first step in the analysis of dynamic data markets, when data can

be put to a multitude of uses. Several interesting areas remain for future study. First, we

assumed that the platform can fully commit to a mechanism, whereas in practice platforms

can create ambiguity about how data will be used and deviate from certain promises. The

analysis of these issues is more challenging, as it requires an explicit modeling of platform

reputation. Second, greater heterogeneity and more diverse uses of data can be introduced

into our framework. Third, users typically participate in online platforms over many periods,

and thus issues of dynamic data sharing are important in practice. These are also interesting

areas for future study. Last but not least, it is important to empirically assess how users

react to the prevailing privacy-preserving mechanisms and test some of the implications of

this type of approach.
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4.7 Proofs

This section includes the omitted proofs from the text and additional results.

Properties of the revealed information measure

Here, for the sake of subsequent analysis, we first generalize the definition of revealed infor-

mation, provided in Definition 4.1. With slight abuse of notation, we use ℐ(.) in this case as

well.

Definition 4.6. For any real-valued random variable 𝑊 and any 𝜎-Field ℱ , the revealed

information about 𝑊 given ℱ is defined as

ℐ(𝑊 | ℱ) = Variance(𝑊 )− min
𝑊̃ is

ℱ−𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒

E
[︂(︁
𝑊 − 𝑊̃

)︁2]︂
, (4.11)

where the minimization is taken over all random variables 𝑊̃ that are ℱ-measurable. In

addition, for a random variable 𝐻, ℐ(𝑊 | 𝐻) is defined as ℐ(𝑊 | 𝜎(𝐻)), where 𝜎(𝐻)

denotes the 𝜎-field generated by 𝐻.

It is known [Durrett, 2019, Theorem 4.1.15] that minimum in (4.11) is achieved by choos-

ing 𝑊̃ = E[𝑊 | ℱ ]. We next use this fact to characterize ℐ(𝑊 | ℱ).

Lemma 4.4. Suppose E[𝑊 2] <∞. Then,

ℐ(𝑊 | ℱ) = E
[︀
E[𝑊 | ℱ ]2

]︀
− E[𝑊 ]2.

Proof of Lemma 4.4: Given that minimum in (4.11) is achieved by choosing 𝑊̃ =

E[𝑊 | ℱ ], we should substitute 𝑊̃ by E[𝑊 | ℱ ] in (4.11). By doing so, we obtain

ℐ(𝑊 | ℱ) = E[𝑊 2]− E[𝑊 ]2 − E
[︀
(𝑊 − E[𝑊 | ℱ ])2

]︀
= 2E [𝑊 E[𝑊 | ℱ ]]− E

[︀
E[𝑊 | ℱ ]2

]︀
− E[𝑊 ]2

= E
[︀
E[𝑊 | ℱ ]2

]︀
− E[𝑊 ]2,
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where the last equality follows from the following property of conditional expectation: for

any ℱ -measurable random variable 𝐻, we have E[𝑊𝐻] = E [E[𝑊 | ℱ ] 𝐻] . Here we use it

with 𝐻 = E[𝑊 | ℱ ]. ■

As a consequence, the following lemma holds.

Lemma 4.5. Suppose 𝑊 is a zero-mean random variable with E[𝑊 2] < ∞. Then, for a

discrete random variable 𝐻, we have

ℐ(𝑊 | 𝐻) =
∑︁

ℎ∈supp(𝐻)

P(𝐻 = ℎ)ℐ(𝑊 | 𝐻 = ℎ).

Proof of Lemma 4.5: Using Lemma 4.4, and since 𝑊 is zero-mean, we have ℐ(𝑊 | 𝐻) =

E [E[𝑊 | 𝜎(𝐻)]2] , where the outer expectation is taken over 𝐻. Using the linearity of this

expectation, we obtain the desired result. ■

Proof of Proposition 4.1

For 𝜃, note that indices of data points do not matter, since all𝑋𝑖’s have identical distribution.

Hence, shuffling does not have any effect on the estimation of 𝜃. More formally, using Lemma

4.5, we have

ℐ(𝜃 | q,𝜇) =
𝑛∑︁
𝑗=1

∑︁
𝐵⊆{1,··· ,𝑛}

|𝐵|=𝑗

∏︁
ℓ∈𝐵

𝑞ℓ
∏︁
ℓ/∈𝐵

(1− 𝑞ℓ) ℐ(𝜃 | (𝑋𝑘)𝑘∈𝐵)

=
𝑛∑︁
𝑗=1

∑︁
𝐵⊆{1,··· ,𝑛}

|𝐵|=𝑗

∏︁
ℓ∈𝐵

𝑞ℓ
∏︁
ℓ/∈𝐵

(1− 𝑞ℓ) E
[︀
E[𝜃 | (𝑋𝑘)𝑘∈𝐵)]

2
]︀
, (4.12)

where the second equation follows from Lemma 4.4. Next, we derive E [E[𝜃 | (𝑋𝑘)𝑘∈𝐵)]
2] for

any 𝐵 ⊆ {1, · · · , 𝑛}. Note that 𝜃 and (𝑋𝑘)𝑘∈𝐵 are jointly Gaussian, where the mean of their
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joint distribution is 0 and the covariance matrix of their joint distribution is given by⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1

1 2 · · · 1
...

... . . . ...

1 1 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.13)

Hence, the distribution of 𝜃 given (𝑋𝑘)𝑘∈𝐵 is Gaussian, and its mean is given by

E[𝜃 | (𝑋𝑘)𝑘∈𝐵)] = [1 · · · 1]

⎡⎢⎢⎢⎣
2 · · · 1
... . . . ...

1 · · · 2

⎤⎥⎥⎥⎦
−1

[𝑋𝑘]
⊤
𝑘∈𝐵. (4.14)

Using the Sherman–Morrison formula for the inverse of rank-1 perturbation of a matrix, we

can write ⎡⎢⎢⎢⎣
1 + 1 · · · 1

... . . . ...

1 · · · 1 + 1

⎤⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎣
1− 1/𝜈 · · · −1/𝜈

... . . . ...

−1/𝜈 · · · 1− 1/𝜈

⎤⎥⎥⎥⎦ , (4.15)

with 𝜈 = |𝐵|+ 1. Plugging this into (4.14), yields

E[𝜃 | (𝑋𝑘)𝑘∈𝐵)] =

(︂
1− |𝐵|

𝜈

)︂
[1 · · · 1][𝑋𝑘]

⊤
𝑘∈𝐵 =

1

|𝐵|+ 1

∑︁
𝑘∈𝐵

𝑋𝑘. (4.16)

Therefore, we have

E
[︀
E[𝜃 | (𝑋𝑘)𝑘∈𝐵)]

2
]︀
=

(︂
1

|𝐵|+ 1

)︂2

E

⎡⎣(︃∑︁
𝑘∈𝐵

𝑋𝑘

)︃2
⎤⎦

=

(︂
1

|𝐵|+ 1

)︂2 (︀
|𝐵|2 + |𝐵|

)︀
=

|𝐵|
|𝐵|+ 1

. (4.17)
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Substituting (4.17) into (4.12) implies

ℐ(𝜃 | q,𝜇) =
𝑛∑︁
𝑗=1

∑︁
𝐵⊆{1,··· ,𝑛}

|𝐵|=𝑗

∏︁
ℓ∈𝐵

𝑞ℓ
∏︁
ℓ/∈𝐵

(1− 𝑞ℓ)
𝑗

1 + 𝑗
, (4.18)

which gives us the desired result.

Next, we focus on ℐ(𝑍𝑖 | q,𝜇). Using Lemma 4.5, we can write

ℐ(𝑍𝑖 | q,𝜇) = (1− 𝜇𝑖)𝑞𝑖

𝑛∑︁
𝑘=1

𝑆𝑘−1(q−𝑖)

ℐ(𝑍𝑖 | q,𝜇, user 𝑖 data is shared and not shuffled, 𝑘 − 1 other data points are shared)

+
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

𝑖∈𝐵,|𝐵|=𝑘

𝑘∑︁
𝑗=1

𝑛−𝑘∑︁
𝑟=0

(︃∏︁
ℓ∈𝐵

𝜇ℓ

)︃(︃∏︁
ℓ̸∈𝐵

(1− 𝜇ℓ)

)︃
𝑆𝑟(q𝒩∖𝐵)𝑆𝑗(q𝐵)ℐ(𝑍𝑖 | q,𝜇,

data of set 𝐵 is shuffled, 𝑗 data points in 𝐵 and 𝑟 data points in 𝒩 ∖𝐵 are shared),

(4.19)

where the terms of the first summation correspond to the case that the data of user 𝑖 is not

shuffled, and therefore the revealed information about 𝑍𝑖 is non-zero only if user 𝑖 shares her

data. Each term of the summation corresponds to having 𝑘− 1 other data points shared (as

we show next, only the number of shared data points matters in the revealed information

and not their identity). The second term corresponds to the case that the data of user 𝑖

is shuffled. In this case, we let 𝐵 be the set of shuffled data points and we condition the

events to having 𝑗 data points in 𝐵 and 𝑟 data points in 𝒩 ∖𝐵 being shared. We next find

the revealed information in each of these cases.

Finding ℐ(𝑍𝑖 | q,𝜇,user 𝑖 data is shared and not shuffled, 𝑘 −

1 other data points are shared): Using Lemma 4.4, we need to find the condi-

tional expectation of 𝑍𝑖. Without loss of generality, we next find the conditional expectation

of 𝑍1 given 𝑋1, . . . , 𝑋𝑘. Notice that the joint distribution of 𝑍1, 𝑋1, . . . , 𝑋𝑘 is normal with
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covariance matrix ⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 0

1 2 · · · 1
...

... . . . ...

0 1 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Therefore, we have

E[𝑍1 | 𝑋1, . . . , 𝑋𝑘] =(1, 0, . . . , 0)

⎡⎢⎢⎢⎣
2 · · · 1
... . . . ...

1 · · · 2

⎤⎥⎥⎥⎦
−1

(𝑋1, . . . , 𝑋𝑘)
𝑇

=(1, 0, . . . , 0)

⎡⎢⎢⎢⎣
1− 1

𝜈𝑘
· · · − 1

𝜈𝑘
... . . . ...

− 1
𝜈𝑘

· · · 1− 1
𝜈𝑘

⎤⎥⎥⎥⎦
−1

(𝑋1, . . . , 𝑋𝑘)
𝑇

=

(︂
1− 1

𝜈𝑘

)︂
𝑋1 −

𝑘∑︁
ℓ=2

1

𝜈𝑘
𝑋ℓ, (4.20)

where 𝜈𝑘 = 𝑘 + 1. Therefore, we have

ℐ(𝑍𝑖 | q,𝜇, user 𝑖 data is shared and not shuffled, 𝑘 − 1 other data points are shared)

= E

⎡⎣(︃(︂1− 1

𝜈𝑘

)︂
𝑋1 −

𝑘∑︁
ℓ=2

1

𝜈𝑘
𝑋ℓ

)︃2
⎤⎦ = 1− 1

1 + 𝑘
. (4.21)

Finding ℐ(𝑍𝑖 | q,𝜇, data of set 𝐵 is shuffled, 𝑗 data points in 𝐵 and 𝑟

data points in 𝒩 ∖ 𝐵 are shared): Using Lemma 4.4, we need to find the conditional
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expectation of 𝑍𝑖. We can write

E [𝑍𝑖 | data of set 𝐵 is shuffled, 𝑗 data points in 𝐵 and 𝑟 points in 𝒩 ∖𝐵 are shared]

(𝑎)
= P(𝑖 ∈ 𝐵 is among those that have shared)E

[︂
𝑍𝑖 | data of set 𝐵 is shuffled, 𝑗

data points including 𝑖 in 𝐵 and 𝑟 data points in 𝒩 ∖𝐵 are shared
]︂

(𝑏)
= P(𝑖 ∈ 𝐵 is among those that have shared)

𝑗∑︁
ℓ=1

1

𝑗
E
[︂
𝑍𝑖 | data of set 𝐵 is shuffled, 𝑗

data points in 𝐵 and 𝑟 data points in 𝒩 ∖𝐵 are shared, ℓ-th one is 𝑖
]︂

(𝑐)
= P(𝑖 ∈ 𝐵 is among those that have shared)
𝑗∑︁
ℓ=1

1

𝑗

(︃(︂
1− 1

𝜈𝑗+𝑟

)︂
𝑋̃ℓ −

𝑗+𝑟∑︁
𝑡=1,𝑡̸=ℓ

1

𝜈𝑗+𝑟
𝑋̃𝑡

)︃
(𝑑)
= P(𝑖 ∈ 𝐵 is among those that have shared)

1

𝑗

(︃
𝑗∑︁
ℓ=1

(︂
1− 𝑗

𝜈𝑗+𝑟

)︂
𝑋̃ℓ −

𝑗+𝑟∑︁
ℓ=𝑗+1

𝑗

𝜈𝑗+𝑟
𝑋̃ℓ

)︃
(𝑒)
=
𝑞𝑖𝑆𝑗−1(q𝐵∖𝑖)

𝑆𝑗(q𝐵)

1

𝑗

(︃
𝑗∑︁
ℓ=1

(︂
1− 𝑗

𝜈𝑗+𝑟

)︂
𝑋̃ℓ −

𝑗+𝑟∑︁
ℓ=𝑗+1

𝑗

𝜈𝑗+𝑟
𝑋̃ℓ

)︃
, (4.22)

where (a) holds because if user 𝑖 does not share, then the revealed information about 𝑍𝑖 is

zero, (b) follows from the fact that the shuffled data points have no label and therefore 𝑖 can

be any of them with a uniform probability, (c) follows from a similar argument to that of

(4.20), (d) follows from rearranging the terms, and (e) follows from the definition of 𝑆𝑘(q).
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Therefore, we have

ℐ(𝑍𝑖 | q,𝜇, data of set 𝐵 is shuffled, 𝑗 data points in 𝐵

and 𝑟 data points in 𝒩 ∖𝐵 are shared)

=
𝑞2𝑖 𝑆

2
𝑗−1(q𝐵∖𝑖)

𝑆2
𝑗 (q𝐵)

1

𝑗2
E

⎡⎣(︃ 𝑗∑︁
ℓ=1

(︂
1− 𝑗

𝜈𝑗+𝑟

)︂
𝑋̃ℓ −

𝑗+𝑟∑︁
ℓ=𝑗+1

𝑗

𝜈𝑗+𝑟
𝑋̃ℓ

)︃2
⎤⎦

=
𝑞2𝑖 𝑆

2
𝑗−1(q𝐵∖𝑖)

𝑆2
𝑗 (q𝐵)

1 + 𝑟

𝑗(1 + (𝑗 + 𝑟))
. (4.23)

By using (4.21) and (4.23) in (4.19), we obtain

ℐ(𝑍𝑖 | q,𝜇) = (1− 𝜇𝑖)𝑞𝑖

𝑛∑︁
𝑘=1

𝑆𝑘−1(q−𝑖)

(︂
1− 1

1 + 𝑘

)︂

+
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

𝑖∈𝐵,|𝐵|=𝑘

𝑘∑︁
𝑗=1

𝑛−𝑘∑︁
𝑟=0

(︃∏︁
ℓ∈𝐵

𝜇ℓ

)︃⎛⎝∏︁
ℓ ̸∈𝐵

(1− 𝜇ℓ)

⎞⎠𝑆𝑟(q𝒩∖𝐵)𝑆𝑗(q𝐵)
𝑞2𝑖 𝑆

2
𝑗−1(q𝐵∖𝑖)

𝑆2
𝑗 (q𝐵)

1 + 𝑟

𝑗(1 + (𝑗 + 𝑟))
.

This completes the proof of Proposition 4.1. ■

Proof of Lemma 4.1

By using Lemma 4.4, for any mechanism ℳ, we have

ℐ(
𝑛∑︁
𝑖=1

𝑋𝑖 | ℳ) = E

⎡⎣(︃E[︃ 𝑛∑︁
𝑖=1

𝑋𝑖 | ℳ

]︃)︃2
⎤⎦ , ℐ(𝜃 | ℳ) = E

[︀
(E [𝜃 | ℳ])2

]︀
,

and

ℐ(𝑍𝑖 | ℳ) = E
[︀
(E [𝑍𝑖 | ℳ])2

]︀
for all 𝑖.
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We next evaluate each term of the above expectations. We can write

E

[︃
𝑛∑︁
𝑖=1

𝑋𝑖 | ℳ

]︃2
=E

[︃
𝑛𝜃 +

𝑛∑︁
𝑖=1

𝑍𝑖 | ℳ

]︃2

=

(︃
𝑛E [𝜃 | ℳ] +

𝑛∑︁
𝑖=1

E [𝑍𝑖 | ℳ]

)︃2

(𝑎)

≤

(︃
E [𝜃 | ℳ]2 +

𝑛∑︁
𝑖=1

E [𝑍𝑖 | ℳ]2
)︃
(𝑛2 +

𝑛∑︁
𝑖=1

1)

where (a) follows from Cauchy-Schwarz inequality. Taking expectation over the randomness

in ℳ gives us the desired bound. We next prove that equality holds when

1

𝑛
E [𝜃 | ℳ] = E [𝑍𝑖 | ℳ] for all 𝑖,

which is the case for ℳ = ((𝑞, . . . , 𝑞), 1) for any 𝑞. To see this, we show that when the

mechanism returns 𝑘 shuffled datapoints 𝑋1, · · · , 𝑋𝑘, we have

E[𝜃 | (𝑋ℓ)
𝑘
ℓ=1] =

1

𝑘 + 1

𝑘∑︁
ℓ=1

𝑋ℓ and (4.24)

E[𝑍𝑖 | (𝑋ℓ)
𝑘
ℓ=1] =

1

𝑛(𝑘 + 1)

𝑘∑︁
ℓ=1

𝑋ℓ. (4.25)

Let us prove (4.24) as (4.25) can be established similarly. To see why (4.24) holds, note that

𝜃 and (𝑋ℓ)
𝑘
ℓ=1 are jointly Gaussian, where the mean of their joint distribution is 0, and the

covariance matrix of their joint distribution is given by⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1

1 2 · · · 1
...

... . . . ...

1 1 · · · 2

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.26)
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Hence, the distribution of 𝜃 given (𝑋ℓ)
𝑘
ℓ=1 is Gaussian, and its mean is given by

E[𝜃 | (𝑋ℓ)
𝑘
ℓ=1] = [1 · · · 1]

⎡⎢⎢⎢⎣
2 · · · 1
... . . . ...

1 · · · 2

⎤⎥⎥⎥⎦
−1

[𝑋1, · · · , 𝑋𝑘]
⊤. (4.27)

Using the Sherman–Morrison formula for the inverse of rank-1 perturbation of a matrix, we

can write ⎡⎢⎢⎢⎣
1 + 1 · · · 1

... . . . ...

1 · · · 1 + 1

⎤⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎣
1− 1

𝑘+1
· · · − 1

𝑘+1
... . . . ...

− 1
𝑘+1

· · · 1− 1
𝑘+1

⎤⎥⎥⎥⎦ . (4.28)

Plugging this into (4.27), yields

E[𝜃 | (𝑋ℓ)
𝑘
ℓ=1] =

(︂
1− 𝑘

𝑘 + 1

)︂
[1 · · · 1][𝑋1, · · · , 𝑋𝑘]

⊤ =
1

𝑘 + 1

𝑘∑︁
ℓ=1

𝑋ℓ. (4.29)

This completes the proof. ■

Proof of Lemma 4.2

By using Lemma 4.4, for any mechanism ℳ that has access to some random variable 𝑌

which is a function of 𝑋1, . . . , 𝑋𝑛, we have

ℐ(𝜃 | ℳ) = E
[︀
(E [𝜃 | 𝑌 ])2

]︀
=

∫︁
𝑦

𝑓𝑦(𝑦)

(︂∫︁
𝜃

𝜃𝑓𝜃|𝑦(𝜃 | 𝑦)𝑑𝜃
)︂2

𝑑𝑦

(𝑎)
=

∫︁
𝑦

1

𝑓𝑦(𝑦)

(︂∫︁
𝜃

𝜃𝑓𝜃,𝑦(𝜃, 𝑦)𝑑𝜃

)︂2

𝑑𝑦. (4.30)

where (a) follows from Bayes’ rule. Similarly, we can write

ℐ(
𝑛∑︁
𝑖=1

𝑋𝑖 | ℳ) =

∫︁
𝑦

1

𝑓𝑦(𝑦)

(︃∫︁
𝑥1:𝑛

(︃
𝑛∑︁
𝑖=1

𝑥𝑖

)︃
𝑓𝑥1:𝑛,𝑦(𝑥1:𝑛, 𝑦)𝑑𝑥1:𝑛

)︃2

𝑑𝑦. (4.31)
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We next compare each term of the above expressions and in particular prove that for any 𝑦,

∫︁
𝜃

𝜃𝑓𝜃,𝑦(𝜃, 𝑦)𝑑𝜃 =
1

𝑛+ 1

∫︁
𝑥1:𝑛

(︃
𝑛∑︁
𝑖=1

𝑥𝑖

)︃
𝑓𝑥1:𝑛,𝑦(𝑥1:𝑛, 𝑦)𝑑𝜃

that together with equations (4.30) and (4.31), completes the proof. We can write

∫︁
𝜃

𝜃𝑓𝜃,𝑦(𝜃, 𝑦)𝑑𝜃
(𝑎)
=

∫︁
𝜃

𝜃

∫︁
𝑥1:𝑛

𝑓𝑥1:𝑛,𝜃,𝑦(𝑥1:𝑛, 𝜃, 𝑦)𝑑𝑥1:𝑛𝑑𝜃

(𝑏)
=

∫︁
𝜃

𝜃

∫︁
𝑥1:𝑛

𝑓𝜃(𝜃)𝑓𝑥1:𝑛|𝜃(𝑥1:𝑛 | 𝜃)𝑓𝑦|𝑥1:𝑛,𝜃(𝑦 | 𝑥1:𝑛, 𝜃)𝑑𝑥1:𝑛𝑑𝜃

(𝑐)
=

∫︁
𝜃

𝜃

∫︁
𝑥1:𝑛

𝑓𝑥1:𝑛(𝑥1:𝑛)𝑓𝜃|𝑥1:𝑛(𝜃 | 𝑥1:𝑛)𝑓𝑦|𝑥1:𝑛(𝑦 | 𝑥1:𝑛)𝑑𝑥1:𝑛𝑑𝜃

(𝑑)
=

∫︁
𝑥1:𝑛

(︂∫︁
𝜃

𝜃𝑓𝜃|𝑥1:𝑛(𝜃 | 𝑥1:𝑛)𝑑𝜃
)︂
𝑓𝑥1:𝑛(𝑥1:𝑛)𝑓𝑦|𝑥1:𝑛(𝑦 | 𝑥1:𝑛)𝑑𝑥1:𝑛

=

∫︁
𝑥1:𝑛

E [𝜃 | 𝑥1:𝑛] 𝑓𝑥1:𝑛,𝑦(𝑥1:𝑛, 𝑦)𝑑𝑥1:𝑛

(𝑒)
=

∫︁
𝑥1:𝑛

∑︀𝑛
𝑖=1 𝑥𝑖
𝑛+ 1

𝑓𝑥1:𝑛,𝑦(𝑥1:𝑛, 𝑦)𝑑𝑥1:𝑛,

where (a) follows from the law of total probability, (b) follows from Bayes’ rule, (c) follows

from the fact that the mechanism has access to 𝑋1, . . . 𝑋𝑛 and not 𝜃 and, therefore, condi-

tional on 𝑋1, . . . , 𝑋𝑛, 𝑌 and 𝜃 are independent, and (e) follows from (4.27) established in

the proof of Lemma 4.1. It is also worth mentioning that we do a change of integration in

(d). To see why we are allowed to do so, note that

E [E[|𝜃| | 𝑌 ]] ≤ E[|𝜃|] <∞,

and hence E[|𝜃| | 𝑌 ] is almost surely bounded, i.e.,

E[|𝜃| | 𝑌 = 𝑦] =

∫︁
𝜃

∫︁
𝑥1:𝑛

|𝜃| 𝑓𝑥1:𝑛,𝜃|𝑦(𝑥1:𝑛, 𝜃 | 𝑦)𝑑𝑥1:𝑛𝑑𝜃 <∞ a.s.

Therefore, ∫︁
𝜃

∫︁
𝑥1:𝑛

|𝜃| 𝑓𝑥1:𝑛,𝜃,𝑦(𝑥1:𝑛, 𝜃, 𝑦)𝑑𝑥1:𝑛𝑑𝜃 <∞ a.s.
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Thus, by Fubini’s theorem, we are allowed to change the order of integrals. This completes

the proof. ■

Proof of Lemma 4.3

Among all estimators, we know that the estimator that achieves the minimum mean-squared

error is the conditional expectation E[𝜃 | 𝑋1, · · · , 𝑋𝑛]. Furthermore, the error of this esti-

mator is equal to the error mask-shuffle mechanism ((1, · · · , 1), 1), and hence the proof is

complete. ■

Proof of Proposition 4.2

To find the symmetric the user equilibrium, for a fixed 𝜇, suppose user 1 plays 𝑞1 and users

2, · · · , 𝑛 play 𝑞, i.e., q = (𝑞1, 𝑞, · · · , 𝑞). The symmetric user equilibrium must be such that

the maximum of user 1’s utility 𝒰1(q, 𝜇) as a function of 𝑞1 is attained for 𝑞1 = 𝑞. To find

such 𝑞, we find the maximizer of 𝒰1(q, 𝜇) as a function of 𝑞1 by using first order condition

and then finding 𝑞 such that the maximizer is 𝑞1 = 𝑞. We also check the boundary cases

𝑞 = 0 and 𝑞 = 1 at the end.

Characterizing 𝑑ℐ(𝜃 | q,𝜇)
𝑑 𝑞1

⃒⃒⃒⃒
⃒
𝑞1=𝑞

: With action profile q = (𝑞1, 𝑞, · · · , 𝑞), we have

𝑆𝑗(q) = 𝑞1

(︂
𝑛− 1

𝑗 − 1

)︂
𝑞𝑗−1(1− 𝑞)𝑛−𝑗 + (1− 𝑞1)

(︂
𝑛− 1

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−1−𝑗. (4.32)

Therefore, using Proposition 4.1, we have

ℐ(𝜃 | q, 𝜇) =
𝑛∑︁
𝑗=1

𝑗

1 + 𝑗

(︂
𝑞1

(︂
𝑛− 1

𝑗 − 1

)︂
𝑞𝑗−1(1− 𝑞)𝑛−𝑗 + (1− 𝑞1)

(︂
𝑛− 1

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−1−𝑗

)︂
.

(4.33)
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Hence, we have

𝑑ℐ(𝜃 | q, 𝜇)
𝑑 𝑞1

=
𝑛∑︁
𝑗=1

𝑗

1 + 𝑗

(︂
𝑛− 1

𝑗 − 1

)︂
𝑞𝑗−1(1− 𝑞)𝑛−𝑗 −

𝑛−1∑︁
𝑗=1

𝑗

1 + 𝑗

(︂
𝑛− 1

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−1−𝑗

=
𝑛−1∑︁
𝑗=0

𝑗 + 1

𝑗 + 2

(︂
𝑛− 1

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−1−𝑗 −

𝑛−1∑︁
𝑗=0

𝑗

1 + 𝑗

(︂
𝑛− 1

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−1−𝑗

= 1− E 𝑗∼Bin(𝑛−1,𝑞)

[︂
1

𝑗 + 2

]︂
− 1 + E 𝑗∼Bin(𝑛−1,𝑞)

[︂
1

1 + 𝑗

]︂
= E 𝑗∼Bin(𝑛−1,𝑞)

[︂
1

1 + 𝑗
− 1

𝑗 + 2

]︂
= E 𝑗∼Bin(𝑛−1,𝑞)

[︂
1

(𝑗 + 2)(𝑗 + 1)

]︂
. (4.34)

The above expression becomes (Chao and Strawderman [1972])

𝑑ℐ(𝜃 | q, 𝜇)
𝑑 𝑞1

=
1− (1 + 𝑛𝑞)(1− 𝑞)𝑛

𝑛(𝑛+ 1)𝑞2
. (4.35)

Characterizing 𝑑ℐ(𝑍1 | q,𝜇)
𝑑 𝑞1

⃒⃒⃒⃒
⃒
𝑞1=𝑞

: Next, we consider the revealed information of 𝑍1 given

this action profile. By Proposition 4.1, we have

ℐ(𝑍1 | q, 𝜇) = 𝐴1 + 𝐴2, (4.36)

where

𝐴1 =(1− 𝜇)𝑞1

𝑛∑︁
𝑘=1

𝑆𝑘−1(q−𝑖)

(︂
1− 1

1 + 𝑘

)︂
,

𝐴2 =
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝑘∑︁
𝑗=1

𝑛−𝑘∑︁
𝑟=0

𝜇𝑘(1− 𝜇)𝑛−𝑘𝑆𝑟(q𝒩∖𝐵)𝑆𝑗(q𝐵)
𝑞21𝑆

2
𝑗−1(q𝐵∖1)

𝑆2
𝑗 (q𝐵)

1 + 𝑟

𝑗(1 + (𝑗 + 𝑟))
.

We next evaluate 𝐴1 and 𝐴2. Note that 𝑆𝑘−1(q−1) is given by

𝑆𝑘−1(q−1) =

(︂
𝑛− 1

𝑘 − 1

)︂
𝑞𝑘−1(1− 𝑞)𝑛−𝑘.
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Thus, by using (4.32), (4.38), and
∑︀𝑛

𝑘=1 𝑆𝑘−1(q−1) = 1 we can write

𝐴1 = (1− 𝜇)𝑞1

(︃
1−

𝑛∑︁
𝑘=1

(︂
𝑛− 1

𝑘 − 1

)︂
𝑞𝑘−1(1− 𝑞)𝑛−𝑘

1

1 + 𝑘

)︃
. (4.37)

The above expression becomes

(1− 𝜇)𝑞1

(︂
1− 1

𝑛𝑞

(︂
1− 1− (1− 𝑞)𝑛+1

(𝑛+ 1)𝑞

)︂)︂

whose derivative is

𝑑

𝑑𝑞1
𝐴1 = (1− 𝜇)

(︂
1− 1

𝑛𝑞

(︂
1− 1− (1− 𝑞)𝑛+1

(𝑛+ 1)𝑞

)︂)︂
.

We next evaluate derivative of 𝐴2 with respect to 𝑞1 at 𝑞. We first upper bound it in general,

and then derive its exact form for the special case 𝜇 = 1.

Note that 𝑆𝑗−1(q𝐵∖1) is given by

𝑆𝑗−1(q𝐵∖1) =

(︂
𝑘 − 1

𝑗 − 1

)︂
𝑞𝑗−1(1− 𝑞)𝑘−𝑗. (4.38)

Thus, by using (4.32), (4.38), 1+𝑟
1+(𝑗+𝑟)

≤ 1, and
∑︀𝑛−𝑘

𝑟=0 𝑆𝑟(𝑞𝒩∖𝐵) = 1 we can write

𝑑

𝑑𝑞1
𝐴2 ≤

𝑑

𝑑𝑞1

𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝜇𝑘(1− 𝜇)𝑛−𝑘
𝑘∑︁
𝑗=1

𝑞21𝑆𝑗−1(q𝐵∖1)
2

𝑗𝑆𝑗(q𝐵)

=
𝑑

𝑑𝑞1

𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝜇𝑘(1− 𝜇)𝑛−𝑘
𝑘∑︁
𝑗=1

𝑞21

(︁(︀
𝑘−1
𝑗−1

)︀
𝑞𝑗−1(1− 𝑞)𝑘−𝑗

)︁2
𝑗
(︁
𝑞1
(︀
𝑘−1
𝑗−1

)︀
𝑞𝑗−1(1− 𝑞)𝑘−𝑗 + (1− 𝑞1)

(︀
𝑘−1
𝑗

)︀
𝑞𝑗(1− 𝑞)𝑘−1−𝑗

)︁
=

𝑑

𝑑𝑞1

𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝜇𝑘(1− 𝜇)𝑛−𝑘
𝑘∑︁
𝑗=1

𝑞21
(︀
𝑘−1
𝑗−1

)︀
𝑞𝑗−1(1− 𝑞)𝑘−𝑗+1

(𝑗𝑞1(1− 𝑞) + (𝑘 − 𝑗)(1− 𝑞1)𝑞)
.

Therefore, to compute 𝑑
𝑑𝑞1
𝐴2 at 𝑞1 = 𝑞, we need to characterize

𝑑

𝑑𝑞1

𝑞21
𝑗𝑞1(1− 𝑞) + (𝑘 − 𝑗)(1− 𝑞1)𝑞

(4.39)

166



at 𝑞1 which is given by

𝑑

𝑑𝑞1

𝑞21
𝑗𝑞1(1− 𝑞) + (𝑘 − 𝑗)(1− 𝑞1)𝑞

⃒⃒⃒⃒
⃒
𝑞1=𝑞

=

(︂
2𝑞1

𝑗𝑞1(1− 𝑞) + (𝑘 − 𝑗)(1− 𝑞1)𝑞
− (𝑗 − 𝑘𝑞)𝑞21

(𝑗𝑞1(1− 𝑞) + (𝑘 − 𝑗)(1− 𝑞1)𝑞)2

)︂ ⃒⃒⃒⃒
⃒
𝑞1=𝑞

=
2

𝑘(1− 𝑞)
− 𝑗 − 𝑘𝑞

𝑘2(1− 𝑞)2
=

2𝑘 − 𝑘𝑞 − 𝑗

𝑘2(1− 𝑞)2
. (4.40)

As a consequence, we have

𝑑

𝑑 𝑞1
𝐴2

⃒⃒⃒⃒
⃒
𝑞1=𝑞

≤
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝜇𝑘(1− 𝜇)𝑛−𝑘
𝑘∑︁
𝑗=1

(︂
𝑘 − 1

𝑗 − 1

)︂
𝑞𝑗−1(1− 𝑞)𝑘−𝑗

2𝑘 − 𝑘𝑞 − 𝑗

𝑘2(1− 𝑞)

=
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝜇𝑘(1− 𝜇)𝑛−𝑘
2𝑘 − 1

𝑘2

=
𝑛∑︁
𝑘=1

(︂
𝑛− 1

𝑘 − 1

)︂
𝜇𝑘(1− 𝜇)𝑛−𝑘

2𝑘 − 1

𝑘2

=
1

𝑛

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
𝜇𝑘(1− 𝜇)𝑛−𝑘

2𝑘 − 1

𝑘
= 𝒪(

1

𝑛
).

For the special case 𝜇 = 1, we have

𝑑

𝑑 𝑞1
𝐴2 =

𝑛∑︁
𝑖=1

(︂
𝑛− 1

𝑗 − 1

)︂
𝑞𝑗−1(1− 𝑞)𝑛−𝑗

2𝑛− 𝑛𝑞 − 𝑗

𝑛2(1 + 𝑗)

=
2𝑛2𝑞 + 2𝑛𝑞 − 2𝑛− 1 + (1− 𝑞)𝑛(2𝑛+ 1− 𝑛𝑞)

𝑛3(𝑛+ 1)𝑞2
. (4.41)

Having these characterizations, we next derive the user equilibrium.

Case 𝜇 < 1: In this case, we first argue 𝑞𝑛 is bounded. Let define 𝑥 := 𝑞𝑛. Setting the

derivative of 𝒰1(𝑞1,q−1) evaluated at 𝑞1 = 𝑞 equal to zero implies

⃒⃒⃒
𝛼
(︁
1− (1 + 𝑥)(1− 𝑥

𝑛
)𝑛
)︁
− 𝛽(1− 𝜇)

(︁
𝑥(𝑥− 1) + 1− (1− 𝑥

𝑛
)𝑛
)︁⃒⃒⃒

≤ 𝜅𝑥2

𝑛
, (4.42)
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for some constant 𝜅. Note that the left-hand side grows as a quadratic function with a

leading coefficient 𝛽(1−𝜇) while the right-hand is a quadratic with a leading coefficient 𝜅/𝑛.

Hence, and since 𝜇 < 1, for sufficiently large 𝑛, 𝑥 is bounded. Therefore, we can cast 𝑞 as

𝑐/𝑛. In this case, (4.35) is equal to

1− (𝑐+ 1)𝑒−𝑐

𝑐2
+𝒪(

1

𝑛
).

Also, derivative of 𝐴1 is equal to

𝑑

𝑑𝑞1
𝐴1 = (1− 𝜇)

(︂
1− 1

𝑐

(︂
1− 1− 𝑒−𝑐

𝑐

)︂)︂
+𝒪(

1

𝑛
).

Therefore, the derivative of 𝒰1(𝑞1,q−1) evaluated at 𝑞1 = 𝑞 = 𝑐
𝑛

becomes

𝛼
1− (𝑐+ 1)𝑒−𝑐

𝑐2
= 𝛽(1− 𝜇)

(︂
1− 1

𝑐

(︂
1− 1− 𝑒−𝑐

𝑐

)︂)︂
+𝒪(

1

𝑛
).

We next show that without the 𝒪( 1
𝑛
) term there exists a unique 𝑐* that satisfies the above

equation and that the derivative of the difference between the left-hand side and the right-

hand side at 𝑐* is away from zero, proving that the fixed point of the above equation is

𝑐* +𝒪( 1
𝑛
), proving that the symmetric equilibrium is given by 𝑞 = 𝑐*

𝑛
+𝒪( 1

𝑛2 ).

Case 𝜇 < 1; Proof of uniqueness of 𝑐: notice that the function

𝛼
1− (𝑐+ 1)𝑒−𝑐

𝑐2
− 𝛽(1− 𝜇)

(︂
1− 1

𝑐

(︂
1− 1− 𝑒−𝑐

𝑐

)︂)︂

is decreasing in 𝑐. Moreover, for 𝑐 = 0, it becomes

𝛼
1

2
− 𝛽(1− 𝜇)

1

2
> 0,

where the inequality follows from Assumption 4.1, implying that 𝛼 ≥ 𝛽. For 𝑐 → ∞, it

becomes

−𝛽(1− 𝜇) < 0,
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and thus, for 𝜇 < 1, for sufficiently large 𝑛, this equation has a unique solution 𝑐*.

Proof of boundedness of the derivative: the derivative of

𝛼
1− (𝑐+ 1)𝑒−𝑐

𝑐2
− 𝛽(1− 𝜇)

(︂
1− 1

𝑐

(︂
1− 1− 𝑒−𝑐

𝑐

)︂)︂

is

𝛼
𝑒−𝑐(2 + 𝑐(𝑐+ 2)− 2𝑒𝑐)

𝑐3
− 𝛽(1− 𝜇)

𝑒−𝑐(2 + 𝑐+ (𝑐− 2)𝑒𝑐)

𝑐3
.

Evaluating the above expression at 𝑐 = 𝑐* results in

𝛼𝑒−𝑐

𝑐3

(︂
(2 + 𝑐(𝑐+ 2)− 2𝑒𝑐)− (2 + 𝑐+ (𝑐− 2)𝑒𝑐)

1− (𝑐+ 1)𝑒−𝑐

𝑐2 − 𝑐+ 1− 𝑒−𝑐

)︂

which is strictly positive for any 𝑐 > 0. Finally, notice that 𝑐* is strictly positive because

𝛼 1
2
− 𝛽(1− 𝜇)1

2
> 0 and therefore 𝑐 = 0 cannot be a solution.

Case 𝜇 = 1: In this case, using (4.41), we can write the first order condition as

𝛼 (1− (1 + 𝑛𝑞)(1− 𝑞)𝑛) = 𝛽

(︂
2𝑞 +

2𝑞 − 2

𝑛
− 1

𝑛2
+ (1− 𝑞)𝑛

2𝑛+ 1− 𝑛𝑞

𝑛2

)︂
. (4.43)

If 𝛼 > 2𝛽, then one can verify that, for sufficiently large 𝑛, this equation has no solution.

On the other hand, for 𝛼 ≤ 2𝛽, its solution is in the form of 𝛼
2𝛽

+𝒪(log(𝑛)/𝑛).

Boundary cases 𝑞 = 0 and 𝑞 = 1: Finally, we investigate when (0, 0, · · · , 0) and

(1, 1, · · · , 1) are equilibria.

• First, suppose 𝑞 = 0, and the question is when 𝑞1 = 0 is the best response of user one.

In this case, we have

ℐ(𝜃 | q, 𝜇) = 𝑞1
2
, ℐ(𝑍1 | q, 𝜇) = 𝑞1

2
. (4.44)

Hence, (0, 0, · · · , 0) is an equilibrium if and only if 𝛼 ≤ 𝛽 which is ruled out by

Assumption 4.1.
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• Now, suppose suppose 𝑞 = 1, and the question is when 𝑞1 = 1 is the best response of

user one. In this case, we have

ℐ(𝜃 | q, 𝜇) = 𝑛− 1

𝑛
+

𝑞1
𝑛(𝑛+ 1)

,

ℐ(𝑍1 | q, 𝜇) = 𝑞1

(︂
𝑛

𝑛+ 1
+

1− (1− 𝜇)𝑛

𝑛
− 𝜇

)︂
.

Thus, one could verify that (1, 1, · · · , 1) is an equilibrium if and only if

𝛼

𝛽
≥ 1 + (1− 𝜇)(𝑛2 − 1), (4.45)

and so, for 𝜇 < 1 we can choose 𝑁(𝜇) such that this equilibrium is ruled out. For 𝜇 = 1,

however, (1, 1, · · · , 1) is an equilibrium. ■

Proof of Theorem 4.2

The proof simply follows from the fact that the platform’s utility is a continuous function

and that the set of platform’s actions is the interval [0, 1]. ■

Proof of Theorem 4.3

We make use of the following two lemmas.

Lemma 4.6. Suppose Assumption 4.1 holds. Then, for any 𝑛 and any 𝜇 < 1, any interme-

diary symmetric user equilibrium q = (𝑞, . . . , 𝑞) satisfies

𝑞 ≤ 1

𝑛

(︂√︂
𝛼

𝛽(1− 𝜇)
+ 1

)︂
.

Proof of Lemma 4.6: Recall from the proof of Proposition 4.2 that any intermediary

equilibrium q = (𝑞, · · · , 𝑞) satisfies

𝛼
1− (1 + 𝑛𝑞)(1− 𝑞)𝑛

𝑛(𝑛+ 1)𝑞2
= 𝛽

(︂
(1− 𝜇)

(︂
1− 1

𝑛𝑞

(︂
1− 1− (1− 𝑞)𝑛+1

(𝑛+ 1)𝑞

)︂)︂
+

𝑑

𝑑𝑞1
𝐴2

)︂
, (4.46)
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where 𝐴2 is given in the proof of Proposition 4.2. It is straightforward to verify 𝑑
𝑑𝑞1
𝐴2 ≥ 0,

and hence, we have

𝛼
1− (1 + 𝑛𝑞)(1− 𝑞)𝑛

𝑛(𝑛+ 1)𝑞2
≥ 𝛽(1− 𝜇)

(︂
1− 1

𝑛𝑞

(︂
1− 1− (1− 𝑞)𝑛+1

(𝑛+ 1)𝑞

)︂)︂
.

Simplifying both sides and using the bound 1 ≥ 1− (1 + 𝑛𝑞)(1− 𝑞)𝑛 yields

𝛼

𝛽(1− 𝜇)
≥ 𝑛(𝑛+ 1)𝑞2 − 𝑛𝑞 + 1− 𝑞 − (1− 𝑞)𝑛+1 ≥ (𝑛𝑞)2 − 𝑛𝑞.

If 𝑛𝑞 ≤ 1, Lemma 4.6 trivially holds. Otherwise, we can lower bound the right-hand side by

(𝑛𝑞)2 − 2(𝑛𝑞) + 1 to obtain the desired bound. ■

We next provide an explicit expression for revealed information about the underlying

common state 𝜃 and private types 𝑍𝑖’s under a symmetric action profile by users.

Lemma 4.7. For any symmetric action profile q = (𝑞, · · · , 𝑞), we have

ℐ(𝜃 | q, 𝜇) ≤ 1− 1

𝑛+ 1
, (4.47)

ℐ(𝑍𝑖 | q, 𝜇) ≤ (1− 𝜇)𝑞 +
1

𝑛(𝑛+ 1)
+

1− 𝜇

𝑛
. (4.48)

Furthermore, by setting 𝑞 = 𝑐/𝑛, we have

ℐ(𝜃 | q, 𝜇) = 1− 1− 𝑒−𝑐

𝑐
+𝒪

(︂
1

𝑛

)︂
, (4.49)

ℐ(𝑍𝑖 | q, 𝜇) =
(1− 𝜇)𝑐

𝑛

(︂
1− 𝑒−𝑐 + 𝑐− 1

𝑐2

)︂
+𝒪(

1

𝑛2
). (4.50)

Proof of Lemma 4.7: To show (4.47) and (4.49), note that, for action profile q =

(𝑞, · · · , 𝑞), we have

𝑆𝑗(q) =

(︂
𝑛

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−𝑗. (4.51)
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Thus, using Proposition 4.1, we have

ℐ(𝜃 | q, 𝜇) =
𝑛∑︁
𝑗=1

𝑗

1 + 𝑗

(︂
𝑛

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−𝑗

= 1−
𝑛∑︁
𝑗=1

1

1 + 𝑗

(︂
𝑛

𝑗

)︂
𝑞𝑗(1− 𝑞)𝑛−𝑗

= 1− E 𝑗∼Bin(𝑛,𝑞)

[︂
1

1 + 𝑗

]︂
= 1− 1− (1− 𝑞)𝑛+1

(𝑛+ 1)𝑞

where the last equation follows from derivation of negative moments of binomial distribution

(see Chao and Strawderman [1972] for the proof). Also, note that 1
1+𝑗

is decreasing in 𝑗, and

hence, E 𝑗∼Bin(𝑛,𝑞)

[︁
1

1+𝑗

]︁
is decreasing in 𝑞. Thus, ℐ(𝜃 | q, 𝜇) is increasing in 𝑞. Hence, setting

𝑞 = 1 gives us (4.47). Also, setting 𝑞 = 𝑐/𝑛 and using the fact that (1− 𝑐/𝑛)𝑛 = 𝑒𝑐+𝒪(1/𝑛)

gives us (4.49).

To establish (4.48) and (4.50), it suffices to put 𝑞1 = 𝑞 in (4.36). More precisely, we have

ℐ(𝑍1 | q, 𝜇) = 𝐴1 + 𝐴2, (4.52)

where

𝐴1 =(1− 𝜇)𝑞
𝑛∑︁
𝑘=1

𝑆𝑘−1(q−𝑖)

(︂
1− 1

1 + 𝑘

)︂
,

𝐴2 =
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝑘∑︁
𝑗=1

𝑛−𝑘∑︁
𝑟=0

𝜇𝑘(1− 𝜇)𝑛−𝑘𝑆𝑟(q𝒩∖𝐵)𝑆𝑗(q𝐵)
𝑞2𝑆2

𝑗−1(q𝐵∖1)

𝑆2
𝑗 (q𝐵)

1 + 𝑟

𝑗(1 + (𝑗 + 𝑟))
.

Using (4.37), with 𝑞1 = 𝑞, we can characterize 𝐴1 as

(1− 𝜇)𝑞

(︂
1− E 𝑘∼Bin(𝑛−1,𝑞)

[︂
1

𝑘 + 2

]︂)︂
(4.53)

= (1− 𝜇)𝑞

(︂
1− 1

𝑛𝑞

(︂
1− 1− (1− 𝑞)𝑛+1

(𝑛+ 1)𝑞

)︂)︂
, (4.54)
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which is bounded by (1− 𝜇)𝑞. Also, plugging 𝑞 = 𝑐/𝑛, we obtain

𝐴1 =
(1− 𝜇)𝑐

𝑛

(︂
1− 𝑒−𝑐 + 𝑐− 1

𝑐2

)︂
+𝒪(

1

𝑛2
). (4.55)

Therefore, it remains to bound 𝐴2:

Deriving (4.48): Note that 𝐴2/𝜇 is the revealed information regarding 𝑍1, condition that

data of user one has been shuffled. From the definition of revealed information, it is imme-

diate that this term is increasing in 𝑞. Hence, we derive an upper bound for 𝐴2 by setting

𝑞 = 1. To do so, note that by simplifying 𝐴2 we have:

𝐴2 =
𝑛∑︁
𝑘=1

𝑘∑︁
𝑗=1

𝑛−𝑘∑︁
𝑟=0

(︂
𝑛− 1

𝑘 − 1

)︂(︂
𝑘 − 1

𝑗 − 1

)︂(︂
𝑛− 𝑘

𝑟

)︂
𝜇𝑘(1− 𝜇)𝑛−𝑘𝑞𝑗+𝑟(1− 𝑞)𝑛−𝑗−𝑟

1 + 𝑟

𝑘(1 + 𝑗 + 𝑟)
.

(4.56)

Setting 𝑞 = 1, only the terms with 𝑗 + 𝑟 = 𝑛 will be nonzero. This corresponds to 𝑟 = 𝑛− 𝑘

and 𝑗 = 𝑘. Hence, we have

𝐴2 ≤
𝑛∑︁
𝑘=1

(︂
𝑛− 1

𝑘 − 1

)︂
𝜇𝑘(1− 𝜇)𝑛−𝑘

𝑛− 𝑘 + 1

(𝑛+ 1)𝑘

= 𝜇

(︂
E𝑘∼Bin(𝑛−1,𝜇)

[︂
1

𝑘 + 1

]︂
− 1

𝑛+ 1

)︂
=

1− (1− 𝜇)𝑛

𝑛
− 𝜇

𝑛+ 1
(4.57)

≤ 1

𝑛
− 1

𝑛+ 1
+

1− 𝜇

𝑛+ 1

≤ 1

𝑛(𝑛+ 1)
+

1− 𝜇

𝑛
,

which completes the proof of (4.48). It is worth noting that (4.57) follows from the fact that

(see Chao and Strawderman [1972])

E𝑘∼Bin(𝑛−1,𝜇)

[︂
1

𝑘 + 1

]︂
=

1− (1− 𝜇)𝑛

𝑛𝜇
.
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Deriving (4.50): To do so, we bound the term 1+𝑟
1+(𝑗+𝑟)

≤ 1 in 𝐴2 and using∑︀𝑛−𝑘
𝑟=0 𝑆𝑟(𝑞𝒩∖𝐵) = 1 to write

𝐴2 ≤
𝑛∑︁
𝑘=1

∑︁
𝐵⊆𝒩

1∈𝐵,|𝐵|=𝑘

𝑘∑︁
𝑗=1

𝜇𝑘(1− 𝜇)𝑛−𝑘𝑆𝑗(q𝐵)
𝑞2𝑆2

𝑗−1(q𝐵∖1)

𝑗 𝑆2
𝑗 (q𝐵)

. (4.58)

Next, using (4.51), we simplify the second term on the right hand side:

𝐴2 ≤
𝑛∑︁
𝑘=1

𝑘∑︁
𝑗=1

(︂
𝑛− 1

𝑘 − 1

)︂(︂
𝑘 − 1

𝑗 − 1

)︂
𝜇𝑘(1− 𝜇)𝑛−𝑘𝑞𝑗(1− 𝑞)𝑘−𝑗

1

𝑘

=
𝑛∑︁
𝑘=1

1

𝑘

(︂
𝑛− 1

𝑘 − 1

)︂
𝜇𝑘(1− 𝜇)𝑛−𝑘

𝑘∑︁
𝑗=1

(︂
𝑘 − 1

𝑗 − 1

)︂
𝑞𝑗(1− 𝑞)𝑘−𝑗. (4.59)

Note that, we can write the inner sum as

𝑘∑︁
𝑗=1

(︂
𝑘 − 1

𝑗 − 1

)︂
𝑞𝑗(1− 𝑞)𝑘−𝑗 = 𝑞. (4.60)

Plugging this into (4.59), we obtain

𝐴2 ≤ 𝑞
𝑛∑︁
𝑘=1

1

𝑘

(︂
𝑛− 1

𝑘 − 1

)︂
𝜇𝑘(1− 𝜇)𝑛−𝑘

= 𝑞
𝑛−1∑︁
𝑘=0

1

𝑘 + 1

(︂
𝑛− 1

𝑘

)︂
𝜇𝑘+1(1− 𝜇)𝑛−1−𝑘

= 𝑞𝜇 E𝑘∼Bin(𝑛−1,𝜇)

[︂
1

𝑘 + 1

]︂
=
𝑞 (1− (1− 𝜇)𝑛)

𝑛
, (4.61)

Plugging (4.61) into (4.52) with 𝑞 = 𝑐/𝑛 completes the proof of (4.50). ■

We now proceed with the proof of the theorem. We choose 𝑁 𝑒(𝜖) > 𝑁(𝜖/2), with 𝑁(.)

defined in Proposition 4.2. Note that, by Proposition 4.2, for any 𝑛 ≥ 𝑁(𝜖/2), and for any
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𝜇 ≤ 1− 𝜖/2, user equilibrium is in the form of (𝑐+𝒪(1/𝑛))/𝑛 where 𝑐 satisfies

𝛼
1− (𝑐+ 1)𝑒−𝑐

𝑐2
= 𝛽(1− 𝜇)

(︂
1− 1

𝑐

(︂
1− 1− 𝑒−𝑐

𝑐

)︂)︂
. (4.62)

We can rewrite this equation as

1− 𝜇 =
𝛼

𝛽

1− (𝑐+ 1)𝑒−𝑐

𝑐2 − 𝑐+ 1− 𝑒−𝑐
. (4.63)

Using Lemma 4.7 along with the fact that

1− 𝑒−𝑐

𝑐

is Lipschitz continuous as a function of 𝑐, platform’s problem can be cast as

max
𝜇

1− 1− 𝑒−𝑐

𝑐
+ 𝛿(1− 𝜇)𝑐

(︂
1− 𝑒−𝑐 + 𝑐− 1

𝑐2

)︂
+𝒪

(︂
1

𝑛

)︂
(4.64a)

s.t. 1− 𝜇 =
𝛼

𝛽

1− (𝑐+ 1)𝑒−𝑐

𝑐2 − 𝑐+ 1− 𝑒−𝑐
(4.64b)

𝜇 ≤ 1− 𝜖/2. (4.64c)

The second constraint (4.64c) follows from the fact that this approximation is valid for

𝜇 ≤ 1− 𝜖/2. We also bound the platform’s utility for the case 𝜇 ∈ [1− 𝜖/2, 1]. Using Lemma

4.7, we can write

sup
𝜇∈[1−𝜖/2,1]

𝒰platform(q
𝑒(𝜇), 𝜇) ≤ sup

𝜇∈[1−𝜖/2,1]

(︂
1− 1− 𝛿

𝑛+ 1
+ (1− 𝜇)𝑛𝑞 + 1− 𝜇

)︂
≤ sup

𝜇∈[1−𝜖/2,1]

(︂
1 + (1− 𝜇)(

√︂
𝛼

𝛽(1− 𝜇)
+ 2)

)︂
(4.65)

≤ 1 + 𝜖+

√︂
𝛼𝜖

2𝛽
, (4.66)

where (4.65) follows from Lemma 4.6. Next, note that

1− (𝑐+ 1)𝑒−𝑐

𝑐2 − 𝑐+ 1− 𝑒−𝑐
(4.67)
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is a deceasing function of 𝑐 which varies from 1 to 0 as 𝑐 goes from 0 to ∞. Hence, we could

replace 1− 𝜇 in (4.64a) using (4.64b) and replace (4.64b) by the following constraint:

𝑐 ≤ 𝑐 ≤ 𝑐, (4.68)

where 𝑐 and 𝑐 are such that

1− (𝑐+ 1)𝑒−𝑐

𝑐2 − 𝑐+ 1− 𝑒−𝑐

⃒⃒⃒⃒
⃒
𝑐=𝑐

=
𝛽

𝛼
,

1− (𝑐+ 1)𝑒−𝑐

𝑐2 − 𝑐+ 1− 𝑒−𝑐

⃒⃒⃒⃒
⃒
𝑐=𝑐

=
𝜖

2

𝛽

𝛼
. (4.69)

Using these quantities, we obtain

max
𝑐

1− 1− 𝑒−𝑐

𝑐
+
𝛼𝛿

𝛽
.
1− (𝑐+ 1)𝑒−𝑐

𝑐
+𝒪

(︂
1

𝑛

)︂
(4.70a)

s.t. 𝑐 ≤ 𝑐 ≤ 𝑐, (4.70b)

where 𝑐 and 𝑐 correspond to 𝜇 = 0 and 𝜇 = 1 − 𝜖/2, respectively. Next, note that we

could choose 𝑛 large enough such that the solution of (4.70) and the following optimization

problem in which we have removed the 𝒪
(︀
1
𝑛

)︀
term from the objective function differ at most

by 𝜖/2.

max
𝑐

1− 1− 𝑒−𝑐

𝑐
+
𝛼𝛿

𝛽
.
1− (𝑐+ 1)𝑒−𝑐

𝑐
(4.71a)

s.t. 𝑐 ≤ 𝑐 ≤ 𝑐 (4.71b)

Hence, it suffices to show there exists 𝛼 and 𝛼̄ in [𝛽,∞) such that:

1. If 𝛼 ≤ 𝛼, then 𝑐 = 𝑐 which corresponds to 𝜇 = 1− 𝜖/2 being the solution of (4.71). In

this case, we will have 𝜇𝑒 ≥ 1− 𝜖.

2. If 𝛼 ≥ 𝛼̄ then 𝑐 = 𝑐 which corresponds to 𝜇 = 0 being the solution of (4.71) and the

platform’s utility at 𝑐 = 𝑐 is greater than (4.66). In this case, we will have 𝜇𝑒 ≤ 𝜖/2.
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To show (i), notice that the derivative of (4.71a) with respect to 𝑐 is given by

𝑒−𝑐

𝑐2

(︂
(𝑒𝑐 − 𝑐− 1)(1− 𝛿𝛼

𝛽
) + 𝑐2

𝛿𝛼

𝛽

)︂
. (4.72)

If 𝛽 ≤ 𝛼 ≤ 𝛽
𝛿
, then this derivative is positive, meaning that 𝑐 = 𝑐 is the solution of (4.71).

Thus, we choose 𝛼 = 𝛽
𝛿
.

To show (ii), note that for 𝛼 sufficiently large, we have

𝑐 ≥ 2,
𝑒𝑐 − 𝑐− 1

𝑒𝑐 − 𝑐2 − 𝑐− 1

⃒⃒⃒⃒
⃒
𝑐=2

≤ 𝛿𝛼

𝛽
.

In this case, it is easy to verify that the derivative is negative over [𝑐,∞), and hence, 𝑐 = 𝑐

is the optimal solution of (4.71). Furthermore, notice that the limit of (4.71) when 𝑐 goes to

infinity is one. Therefore, because the platform’s utility is decreasing over [𝑐,∞), it must be

larger than one at 𝑐 = 𝑐. Hence, using the bound (4.66), we can see that for sufficiently small

𝜖 and large 𝑛, platform’s utility at 𝑐 = 𝑐 would be greater than the maximum of platform’s

utility for any 𝜇 ∈ [1− 𝜖/2, 1]. This completes the proof. ■

Proof of Theorem 4.4

Recall the platform’s problem given in (4.70). For any 𝑡 ∈ [0, 1], we define 𝑐(𝑡) as the solution

of

𝑓1(𝑐) :=
1− (𝑐+ 1)𝑒−𝑐

𝑐2 − 𝑐+ 1− 𝑒−𝑐
= 𝑡. (4.73)

Using this change of variable, we can cast the platform’s problem as

max
𝑡

𝑐(𝑡) + 𝑒−𝑐(𝑡) − 1

𝑐(𝑡)

(︂
1− 𝛿𝛼

𝛽
𝑡

)︂
+
𝛿𝛼

𝛽
𝑡𝑐(𝑡) +𝒪

(︂
1

𝑛

)︂
(4.74a)

s.t.
𝜖

2
.
𝛽

𝛼
≤ 𝑡 ≤ 𝛽

𝛼
, (4.74b)

Note that (4.73) is equivalent to

𝑒𝑐(𝑡) =
𝑐(𝑡) + 1− 𝑡

1 + 𝑡𝑐(𝑡)− 𝑡− 𝑡𝑐(𝑡)2
. (4.75)
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Using this, we can rewrite the platform’s problem (4.74) as

max
𝑡

𝑔(𝑡,
𝛿𝛼

𝛽
) +𝒪

(︂
1

𝑛

)︂
(4.76a)

s.t.
𝜖

2

𝛽

𝛼
≤ 𝑡 ≤ 𝛽

𝛼
, (4.76b)

where

𝑔(𝑡, 𝑟) :=
𝑐(𝑡)(1− 𝑡)

1 + 𝑐(𝑡)− 𝑡
(1− 𝑟𝑡) + 𝑟𝑡𝑐(𝑡) = 𝑐(𝑡)

1− 𝑡+ 𝑟𝑡𝑐(𝑡)

1− 𝑡+ 𝑐(𝑡)
(4.77)

Also, note that, by using Lemma 4.7, the user’s utility is given by

𝛼

(︂
1− 1− 𝑒−𝑐(𝑡)

𝑐(𝑡)

)︂
+𝒪

(︂
1

𝑛

)︂
=
𝛽

𝛿
ℎ(𝑡,

𝛿𝛼

𝛽
) +𝒪

(︂
1

𝑛

)︂
, (4.78)

where

ℎ(𝑡, 𝑟) := 𝑟
𝑐(𝑡)(1− 𝑡)

1− 𝑡+ 𝑐(𝑡)
. (4.79)

Claim 1. For any 𝑟 > 1, the function 𝑔(., 𝑟) : [0, 1] → R, defined in (4.77), achieves its

maximum over [0, 1] at the unique 𝑡*(𝑟) that satisfies

𝜕

𝜕𝑡
𝑔(𝑡, 𝑟)

⃒⃒⃒⃒
⃒
𝑡=𝑡*(𝑟)

= 0. (4.80)

In addition, 𝑡*(𝑟) is an increasing function of 𝑟 that satisfies lim𝑟→1+ 𝑡
*(𝑟) = 0. Moreover,

there exists 𝑟 > 1 such that ℎ(𝑡*(𝑟), 𝑟) is decreasing in 𝑟 over (1, 𝑟).

First, let us show how this claim gives us the result. Note that for any 𝛼 > 𝛽/𝛿, 𝑔(𝑡, 𝛿𝛼
𝛽
)

achieves its maximum at 𝑡*( 𝛿𝛼
𝛽
). Also, by taking 𝛼 → 𝛽/𝛿 from right, 𝑡*( 𝛿𝛼

𝛽
) → 0. Hence,

we can choose 𝛼𝐿 < 𝛼𝐻 and 𝜖 small enough such that:

1. 𝛽
𝛿
< 𝛼𝐿 < 𝛼𝐻 < 𝑟.𝛽

𝛿
and

2. 𝑡*( 𝛿𝛼
𝛽
) ∈ [ 𝜖

2
.𝛽
𝛼
, 𝛽
𝛼
] for any 𝛼 ∈ (𝛼𝐿, 𝛼𝐻).

Also, similar to the argument we provided in the proof of Theorem 4.3, we can choose 𝜖

small enough such that, for 𝛼 ∈ (𝛼𝐿, 𝛼𝐻), the platform’s utility at 𝑡 = 𝑡*( 𝛿𝛼
𝛽
) be larger than
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the bound given by (4.66) in the proof of Theorem 4.3. This ensures that 𝜇𝑒 belongs to the

interval [0, 1− 𝜖/2] for 𝛼 ∈ (𝛼𝐿, 𝛼𝐻).

Now suppose 𝛼1 < 𝛼2 ∈ (𝛼𝐿, 𝛼𝐻). Note that, since 𝑔(., 𝛿𝛼𝑖

𝛽
) is increasing before its peak

and decreasing after that, we have that for any small enough 𝜂, there exists 𝑀(𝜂), such that

for any for 𝑛 > 𝑀(𝜂) the solution of (4.76) for 𝛼 = 𝛼1 and 𝛼 = 𝛼2 would be in at most 𝜂

distance of 𝑡*( 𝛿𝛼1

𝛽
) and 𝑡*( 𝛿𝛼2

𝛽
), respectively.

Next, note that by the above claim, we have

ℎ

(︂
𝑡*(
𝛿𝛼1

𝛽
),
𝛿𝛼1

𝛽

)︂
> ℎ

(︂
𝑡*(
𝛿𝛼2

𝛽
),
𝛿𝛼2

𝛽

)︂
. (4.81)

Notice that the user’s utility (4.78) at equilibrium for 𝛼 = 𝛼𝑖 with 𝑖 ∈ {1, 2}, is evaluated

at the solution of (4.76) which is 𝜂-close to 𝑡*( 𝛿𝛼𝑖

𝛽
). Hence, by choosing 𝜂 small enough and

𝑛 large enough, and by using (4.81), we can establish that the user’s utility at equilibrium

is larger with 𝛼 = 𝛼1 compared to 𝛼 = 𝛼2. This gives us the desired result. Therefore, it

remains to prove the claim.

Maximum of 𝑔(𝑡, 𝑟) for 𝑟 > 1: Note that 𝑔(𝑡, 𝑟) can be rewritten as

𝑔(𝑡, 𝑟) = 𝑔1(𝑐(𝑡), 𝑟) where 𝑔1(𝑐, 𝑟) = 1− 1− 𝑒−𝑐

𝑐
+ 𝑟

1− (𝑐+ 1)𝑒−𝑐

𝑐
, (4.82)

and hence, we have
𝜕

𝜕𝑡
𝑔(𝑡, 𝑟) =

𝜕

𝜕𝑐
𝑔1(𝑐, 𝑟)𝑐

′(𝑡). (4.83)

Also, note that, by inverse function theorem, 𝑐′(𝑡) is given by

𝑐′(𝑡) =
1

𝑓 ′
1(𝑐(𝑡))

, (4.84)

and therefore, 𝑐′(𝑡) is negative over (0, 1). Moreover, 𝜕
𝜕𝑐
𝑔1(𝑐, 𝑟) is given by

𝜕

𝜕𝑐
𝑔1(𝑐, 𝑟) =

𝑒−𝑐

𝑐2
(︀
(𝑒𝑐 − 𝑐− 1)(1− 𝑟) + 𝑐2𝑟

)︀
. (4.85)
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Setting the derivative of 𝑔1(𝑐, 𝑟) with respect to 𝑐 equal to zero for 𝑟 > 1 gives

𝑒𝑐 − 𝑐− 1

𝑐2
=

𝑟

𝑟 − 1
. (4.86)

Notice that the left-hand side is an increasing function that goes from 1/2 to infinity as 𝑐

goes from zero to infinity. Hence, (4.86) has a solution for any 𝑟 > 1 which we denote it by

𝑐*(𝑟). Note that 𝑓1(𝑐*(𝑟)) = 𝑡*(𝑟).

The derivative 𝜕
𝜕𝑐
𝑔1(𝑐, 𝑟) is positive for 𝑐 < 𝑐*(𝑟) which means 𝜕

𝜕𝑡
𝑔(𝑡, 𝑟) is negative for

𝑡 > 𝑡*(𝑟)(because 𝑐′(𝑡) is negative). In addition, 𝜕
𝜕𝑐
𝑔1(𝑐, 𝑟) is negative for 𝑐 > 𝑐*(𝑟) which

means 𝜕
𝜕𝑡
𝑔(𝑡, 𝑟) is positive for 𝑡 ∈ (0, 𝑡*(𝑟)). In other words, 𝑔(𝑡, 𝑟) is increasing over (0, 𝑡*(𝑟))

and decreasing over (𝑡*(𝑟),∞), and thus, it achieves its maximum at 𝑡*(𝑟).

Also, by increasing 𝑟, 𝑟/(𝑟 − 1) decreases which means 𝑐*(𝑟) also decreases. But since

𝑓1 is a decreasing function, 𝑡*(𝑟) increases. Also, by taking 𝑟 → 1+, 𝑐*(𝑟) goes to infinity,

which implies 𝑡*(𝑟) → 0*.

ℎ(𝑡*(𝑟), 𝑟) is decreasing in 𝑟 over (1, 𝑟): Note that

𝑑

𝑑𝑟
ℎ(𝑡*(𝑟), 𝑟) =

𝑐(𝑡*(𝑟))(1− 𝑡*(𝑟))

1− 𝑡*(𝑟) + 𝑐(𝑡*(𝑟))
+ 𝑟

𝑑

𝑑𝑟
𝑡*(𝑟)

⎛⎝ 𝑑

𝑑𝑡

𝑐(𝑡)(1− 𝑡)

1− 𝑡+ 𝑐(𝑡)

⃒⃒⃒⃒
⃒
𝑡=𝑡*(𝑟)

⎞⎠ . (4.87)

Using the fact that
𝜕

𝜕𝑡
𝑔(𝑡, 𝑟)

⃒⃒⃒⃒
⃒
𝑡=𝑡*(𝑟)

= 0,

we obtain

𝑑

𝑑𝑡

𝑐(𝑡)(1− 𝑡)

1− 𝑡+ 𝑐(𝑡)

⃒⃒⃒⃒
⃒
𝑡=𝑡*(𝑟)

= − 𝑟 (𝑐(𝑡) + 𝑡𝑐′2𝑐′(𝑡))

(1− 𝑡) (1− 𝑡+ 𝑟𝑡𝑐(𝑡))
.
𝑐(𝑡)(1− 𝑡)

1− 𝑡+ 𝑐(𝑡)

⃒⃒⃒⃒
⃒
𝑡=𝑡*(𝑟)

. (4.88)

Plugging this into (4.87) implies

𝑑

𝑑𝑟
ℎ(𝑡*(𝑟), 𝑟) =

𝑐(𝑡*(𝑟))(1− 𝑡*(𝑟))

1− 𝑡*(𝑟) + 𝑐(𝑡*(𝑟))

⎛⎝1− 𝑟2 (𝑐(𝑡) + 𝑡𝑐′2𝑐′(𝑡))

(1− 𝑡) (1− 𝑡+ 𝑟𝑡𝑐(𝑡))

⃒⃒⃒⃒
⃒
𝑡=𝑡*(𝑟)

.
𝑑

𝑑𝑟
𝑡*(𝑟)

⎞⎠ . (4.89)
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We want to show this derivative is negative over the interval (1, 𝑟). Note that for 𝑟 close to

one, 𝑟2

1−𝑡*(𝑟) is close to one, and hence, if we show

𝑐(𝑡) + 𝑡𝑐′2𝑐′(𝑡)

1− 𝑡+ 𝑟𝑡𝑐(𝑡)

⃒⃒⃒⃒
⃒
𝑡=𝑡*(𝑟)

𝑑

𝑑𝑟
𝑡*(𝑟) (4.90)

is very large when 𝑟 is close to one, then we are done. We next show that this term goes to

infinity as 𝑟 goes to one.

Recall that 𝑡*(𝑟) = 𝑓1(𝑐
*(𝑟)) and thus

𝑑

𝑑𝑟
𝑡*(𝑟) =

𝑑

𝑑𝑐
𝑓1(𝑐

*(𝑟))
𝑑

𝑑𝑟
𝑐*(𝑟). (4.91)

Notice that (4.86) implies

𝑟 = 𝜅(𝑐) :=
𝑒𝑐 − 𝑐− 1

𝑒𝑐 − 𝑐2 − 𝑐− 1
. (4.92)

Consequently, by inverse function theorem, we can rewrite (4.91) as

𝑑

𝑑𝑟
𝑡*(𝑟) =

𝑓 ′
1(𝑐

*(𝑟))

𝜅′*(𝑟))
. (4.93)

Using this derivation along with the fact that 𝑐′(𝑓1(𝑐))) = 1/𝑓 ′
1(𝑐), 𝑡 = 𝑓1(𝑐), and 𝑟 = 𝜅(𝑐) ,

we can rewrite (4.90) as a function of c:

𝑐𝑓 ′
1(𝑐) + 𝑓1(𝑐)− 𝑓1(𝑐)

2

𝜅′(𝑐) (1− 𝑓1(𝑐) + 𝑐𝜅(𝑐)𝑓1(𝑐))

⃒⃒⃒⃒
⃒
𝑐=𝑐*(𝑟)

,

which is equal to
(𝑒𝑐 − 1− 𝑐− 𝑐2)

3

𝑐 (𝑒𝑐(𝑐− 2) + 𝑐+ 2) (𝑒𝑐(𝑐2 − 𝑐+ 1)− 1)

⃒⃒⃒⃒
⃒
𝑐=𝑐*(𝑟)

.

Recall that 𝑐*(𝑟) goes to infinity as 𝑟 → 0+. Thus, this term goes to infinity as 𝑟 goes to

one. This completes the proof of the claim and hence Theorem 4.4. ■
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Proof of Theorem 4.5

We denote user’s 𝑖 data after adding noise by 𝑋̃𝑖, i.e., 𝑋̃𝑖 = 𝑋𝑖+𝑊𝑖, where 𝑊𝑖 ∼ 𝒩 (0, 𝜎2(𝑘))

if 𝑘 users share their data. Suppose user one shares her data with probability 𝑞1 and users

2, · · · , 𝑛 share their data with probability 𝑞. Our goal is to show the optimal choice of 𝑞1 for

user one is 1. Note that, the utility of user 1 is given by

𝛼

(︃
𝑞1

𝑛−1∑︁
𝑘=0

(︂
𝑛− 1

𝑘

)︂
𝑞𝑘(1− 𝑞)𝑛−1−𝑘 ℐ(𝜃 | 𝑘 + 1 given users share data)

+(1− 𝑞1)
𝑛−1∑︁
𝑘=0

(︂
𝑛− 1

𝑘

)︂
𝑞𝑘(1− 𝑞)𝑛−1−𝑘 ℐ(𝜃 | 𝑘 given users share data)

)︃

− 𝛽 𝑞1

𝑛−1∑︁
𝑘=0

(︂
𝑛− 1

𝑘

)︂
𝑞𝑘(1− 𝑞)𝑛−1−𝑘 ℐ(𝜃 | data of user 1 and 𝑘 other given users is shared).

Therefore, to show this term is maximized at 𝑞1 = 1, we need to show the following inequality

holds for any 𝑘 ∈ {0, · · · , 𝑛− 1}:

𝛼 ℐ(𝜃 | 𝑘 + 1 given users share data) ≥ 𝛼 ℐ(𝜃 | 𝑘 given users share data)

+ 𝛽 ℐ(𝜃 | data of user 1 and 𝑘 other given users is shared).

To do so, without loss of generality, it suffices to show

𝛼 ℐ(𝜃 | (𝑋̃𝑖)
𝑘+1
𝑖=1 ) ≥ 𝛼 ℐ(𝜃 | (𝑋̃𝑖)

𝑘
𝑖=1) + 𝛽 ℐ(𝜃 | (𝑋̃𝑖)

𝑘+1
𝑖=1 ). (4.94)

Note that 𝜃 and (𝑋̃𝑖)
𝑘
𝑖=1 are jointly Gaussian, where the mean of their joint distribution is 0

and the covariance matrix of their joint distribution is given by⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1

1 2 + 𝜎2(𝑘) · · · 1
...

... . . . ...

1 1 · · · 2 + 𝜎2(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.95)
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Therefore, by using Sherman–Morrison formula, we establish that

E[𝜃 | (𝑋̃𝑖)
𝑘
𝑖=1] = [1 · · · 1]

⎡⎢⎢⎢⎣
2 + 𝜎2(𝑘) · · · 1

... . . . ...

1 · · · 2 + 𝜎2(𝑘)

⎤⎥⎥⎥⎦
−1

[𝑋1, · · · , 𝑋𝑘]
⊤

=
1

𝑘 + 1 + 𝜎2(𝑘)

𝑘∑︁
𝑖=1

𝑋̃𝑖. (4.96)

As a consequence, we have

ℐ(𝜃 | (𝑋̃𝑖)
𝑘
𝑖=1) = E

[︂
E
[︁
𝜃 | (𝑋̃𝑖)

𝑘
𝑖=1

]︁2]︂
=

𝑘

𝑘 + 1 + 𝜎2(𝑘)
. (4.97)

Next, notice that the joint distribution of 𝑍1, 𝑋̃1, . . . , 𝑋̃𝑘 is normal with covariance matrix⎡⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 0

1 2 + 𝜎2(𝑘) · · · 1
...

... . . . ...

0 1 · · · 2 + 𝜎2(𝑘)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Similar to the previous calculations, we show

E[𝑍1 | (𝑋̃𝑖)
𝑘
𝑖=1] =

1

1 + 𝜎2(𝑘)

(︃
𝑘 + 𝜎2(𝑘)

𝑘 + 1 + 𝜎2(𝑘)
𝑋̃1 −

1

𝑘 + 1 + 𝜎2(𝑘)

𝑘∑︁
𝑖=2

𝑋̃𝑖

)︃
. (4.98)

Hence, we have

ℐ(𝑍1 | (𝑋̃𝑖)
𝑘
𝑖=1) = E

[︂
E
[︁
𝑍1 | (𝑋̃𝑖)

𝑘
𝑖=1

]︁2]︂
=

𝑘 + 𝜎2(𝑘)

(𝑘 + 1 + 𝜎2(𝑘))(1 + 𝜎2(𝑘))
. (4.99)

Plugging (4.97) and (4.99) into (4.94), we need to show

𝛼
𝑘 + 1

𝑘 + 2 + 𝜎2(𝑘 + 1)
− 𝛽

𝑘 + 1 + 𝜎2(𝑘 + 1)

(𝑘 + 2 + 𝜎2(𝑘 + 1))(1 + 𝜎2(𝑘 + 1))
≥ 𝛼

𝑘

𝑘 + 1 + 𝜎2(𝑘)
. (4.100)
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Notice that we have

𝑘 + 1

𝑘 + 2 + 𝜎2(𝑘 + 1)
≥ 𝑘 + 1 + 𝜎2(𝑘 + 1)

(𝑘 + 2 + 𝜎2(𝑘 + 1))(1 + 𝜎2(𝑘 + 1))
, (4.101)

and thus, to show (4.100), it suffices to show

(𝛼− 𝛽)
𝑘 + 1

𝑘 + 2 + 𝜎2(𝑘 + 1)
≥ 𝛼

𝑘

𝑘 + 1 + 𝜎2(𝑘)
. (4.102)

We aim to show a slightly stronger inequality by replacing 𝑘 on the numerator of the left-hand

side by 𝑘 + 1. In this case, 𝑘 + 1 cancels out from both sides, and we need to show

𝑘 + 1 + 𝜎2(𝑘) ≥ 𝛼

𝛼− 𝛽
(𝑘 + 2 + 𝜎2(𝑘 + 1)). (4.103)

Note that, the condition on 𝜎(.) implies that 𝜎2(𝑘) by itself is weakly greater than the

left-hand side, completing the proof. ■

Proof of Corollary 4.1

By using (4.97) and (4.99), if everyone shares their data and 𝜎(𝑛) = 0, then

ℐ(𝜃 | all sharing) = ℐ(𝑍𝑖 | all sharing) =
𝑛

𝑛+ 1
. (4.104)

In this case, platform’s utility is given by

(𝑛𝛿 + 1)
𝑛

𝑛+ 1
.

This is the utility corresponding to the case in the mask-shuffle mechanism that all users fully

share and the platform offers no shuffling. This is the highest possible utility for the platform,

but it never happens under the mask-shuffle mechanism since (𝑞, 𝜇) = ((1, · · · , 1), 0) is never

an equilibrium under the mask-shuffle mechanism. ■
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Proof of Proposition 4.3

The proof follows from Theorem 4.5 and (4.104). ■
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