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Abstract

Robot perception is crucial for both fully autonomous systems, like self-driving cars,
and human-centric devices such as mixed reality glasses. While advances have been
made in perception problems like simultaneous localization and mapping (SLAM) and
visual localization, the quest for self-diagnosable, robust systems capable of operating
in large, complex environments continues.

This thesis aims to improve self-diagnosis and robustness in robot perception by
promoting continuous uncertainty reasoning in localization and mapping, particu-
larly under limited and ambiguous world observations. We investigate scalable and
expressive approximations for posterior distributions in SLAM, overcoming the lim-
ited expressivity of Gaussian approximations for representing commonly encountered
non-Gaussian posteriors. We harness the sparsity in factor graphs for scalability and
utilize diverse density approximations to enhance expressivity. In advancing SLAM
algorithms, we have achieved three contributions that provide unprecedented accuracy
in describing posterior distributions, especially in highly non-Gaussian situations: 1)
real-time inference of marginal posteriors by blending Gaussian approximation and
particle filters, 2) incremental inference of joint posterior through learning normaliz-
ing flows on the Bayes tree, and 3) reference solutions to full posterior inference via
nested sampling. Additionally, we develop a streaming platform that connects mobile
devices and servers through web applications to conduct live demos of object-based
SLAM, featuring the sharing of mapping results among online peers and continuous
visualization of localization and mapping uncertainty.

We also introduce a novel application of full posterior inference for uncertainty-
aware robot perception, focusing on evaluating camera pose localizability to pinpoint
visual localization challenges in 3D scenes. By employing this framework, we optimize
fiducial marker placements in 3D environments, boosting localization rates by 20%.

Thesis Supervisor: John J. Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Uncertainty-aware robot perception

Robot perception refers to the process that a robot interprets its own state (e.g.,

location) and the environment around it using sensor data and prior information

(e.g., pre-built maps, learned models). Fig. 1-1 illustrates this process. Not only does

robot perception support planning and control in autonomous systems such as self-

driving cars and mobile manipulators, but also it connects with human-centric devices

such as mixed reality glasses to amplify humans’ interaction with each other and the

world. Thus robot perception serves a critical role no matter in a fully autonomous

system or systems with a human in the loop [16]. While we have witnessed great

research advances for solving perception problems such as simultaneous localization

and mapping (SLAM) [18, 110, 19, 130], visual localization [115, 116, 140], object

detection and pose estimation [127], and point cloud registration [136, 86], we still

pursue self-diagnosable and robust perception systems that safely work in large-scale,

complex environments.

In this thesis, the way we improve the self-diagnosis (or introspection in [110])

and robustness of robot perception is to achieve uncertainty-aware robot perception

via inferring uncertainty in perception results (e.g., location). We present a moti-

13



Figure 1-1: Illustration explaining robot perception. Robot perception interprets
states of robots and environments using sensor data and prior information. It is
pivotal in both fully autonomous systems (e.g., mobile manipulators) and human-in-
the-loop systems (e.g., mixed reality glasses).

vating example to explain the advantages of evaluating uncertainty. The example is

localization services provided by a map app (Fig. 1-2a) and a ride app (Fig. 1-2b).

As seen in the figure, although these apps localize me to wrong spots, they manage

to show large circles around estimated locations to indicate a significant level of lo-

calization uncertainty. Furthermore, alerted by uncertainty, I would carefully plan

my next steps, for example, setting a good place to meet my driver in the case of the

ride app, and look around to localize myself, which are similar to planning and active

perception in autonomous systems for reducing uncertainty [110]. In summary, our

investigation on uncertainty-aware robot perception is motivated by three advantages:

1) understanding uncertainty in perception results, 2) alerting us to potentially inac-

curate results and guiding us where/how to improve the results, and 3) supporting

autonomous systems for safe navigation and active perception.

While the importance and advantage of uncertainty awareness are general to var-

ious perception problems, methods for achieving uncertainty-aware robot perception

depend on specific context. For example, data-driven methods are widely adopted

to learn probability distributions of object pose or orientation from images [94]. As

seen in Fig. 1-3a, when a robot sees a mug with an occluded handle, the robot’s per-

14



(a1)

(a2) (b)

x
x

X True location

Figure 1-2: Example of apps for localization: (a1) and (a2) were taken on a cloudy
day on the south of the Longfellow Bridge on the Charles river, and (b) was taken
in the midtown of New York City. The red crosses indicate my true locations. The
big circles in (a1) and (b), provided by these apps, alerted me potentially inaccurate
localization services at these moments.

ception about the orientation of the handle should be very uncertain and described

by a multimodal likelihood function rather than a unimodal likelihood centering at a

single value. However, this thesis does not focus on how to perceive uncertainty from

a single measurement like Fig. 1-3a. Our focus is to understand uncertainty in esti-

mation problems for perception: developing full posterior inference algorithms that

fuse probabilistic models about various measurements, as seen in Fig. 1-3b. Specifi-

cally, given likelihoods of measurements (e.g., relative pose, distance, direction), we

seek parametric or sample-based approximations of posterior distributions of robot

poses or landmark locations. In the thesis, we consider estimation problems in SLAM

15



Learned model

Likelihood of the orientation of the handleImage of a mug

Fusing likelihoods across all time steps

……

(a)

(b)

Figure 1-3: Example of tasks for uncertainty-aware robot perception: (a) single-
frame measurement likelihood and (b) full posterior inference that fuses likelihoods
from multiple time steps. This thesis focuses on algorithms for (b). We thank Ziqi
Lu for providing the figure of the robot and mug [85].

and visual localization, which are arguably among the most important robot percep-

tion problems. In the following subsections, we discuss challenges encountered in our

investigation on these two problems, respectively.

1.1.2 SLAM

Simultaneous localization and mapping (SLAM) is a foundational capability for mo-

bile robots, enabling such basic functions as planning, navigation, and control. As

such, the development of robust, accurate, and computationally efficient SLAM algo-

rithms has been a major focus of research in robotics over the previous three decades

[5, 18, 110].

We state the estimation problem for SLAM as inferring the full posterior distri-

bution of latent variables (i.e., robot and landmark poses) provided noisy relative

measurements between those variables. Note that full posterior inference is different

from the point estimation typically seen in the SLAM literature (e.g., the maximum

16
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Our goalX

(c)

Figure 1-4: Approximations of an unnormalized posterior density, 𝑝(𝑥|𝑧): (a) the
Laplace (or Gaussian) approximation centering on the maximum a posteriori (MAP)
estimate, �̂�, (b) sample-based approximation, and (c) sketch for roughly positioning
scopes of different representations of the posterior density under similar computation
budgets (interested readers can find a similar plot in [138, Fig. 2.2]) with a focus
of showing the scalability-reliability trade-off across specific probabilistic inference
algorithms).

a posteriori estimation in [18, Fig. 2]). We pursue full posterior inference since es-

timation of the distribution is required in many applications including probabilistic

data association, collision avoidance, and active perception.

Standard methods for full posterior inference in SLAM research either compute

a Gaussian approximation, centered on the point estimate, to the posterior (Fig. 1-

4a) [28], or represent the posterior using samples (e.g., Fig. 1-4b) in the framework

of Rao-Blackwellized particle filtering (RBPF) [91]. Constructing the Gaussian ap-

proximation enjoys great advantages in scalability for tackling high-dimensional pos-

teriors, owing to efficient nonlinear optimization solvers for SLAM [71, 77]. How-

ever, the Gaussian approximation is inherently incapable of describing highly non-

Gaussian/multi-modal posteriors, which often appear in realworld SLAM problems

due to non-linear measurement models and non-Gaussian factors [111, 100]. Real-

world examples that incur highly non-Gaussian posteriors include systems with range

measurements [12], scale ambiguity in images [56], pose transformations on the special

Euclidean group [83], multi-modal data association [34], the bimodal slip/grip behav-

ior of odometry measurements [131], multipath effects of sonar and radar [126], the

17



(a) (b) (c)

(d) (e) (f)

Figure 1-5: Examples of measurements that incur non-Gaussian posteriors of poses
or locations: (a) range sensing which implies 2D ring-shaped or 3D sphere-shaped
distributions of the receiver location, (b) RGB images where scaled objects along a ray
may look the same, (c) noisy pose transformations (TF) that cause the high-curvature
distribution, (d) multi-modal data association that connects multiple landmarks to a
robot pose, (e) the uncertain traction state (i.e., slip and grip) between a wheel and the
road surface that leads to multiple modes in the measurement about the displacement
𝑥, and (f) object pose ambiguity in images due to occlusion and symmetry. Image
credit for (f): Ziqi Lu [85].

shadow matching technique for GNSS positioning in urban canyons [135, 53], and ob-

ject pose ambiguity in images due to occlusion and symmetry [85, 94, 32, 46]. Some of

these examples are illustrated in Fig. 1-5. While the RBPF can capture non-Gaussian

features of the posterior via samples, it suffers from scalability issues, incurred by

particle degeneracy and depletion [4], when dealing with high-dimensional posteriors.

Fig. 1-4c positions the sample-based approximation and parametric models accord-

ing to their strengths on pursuing greater expressivity and higher dimensionality. In

summary, both non-Gaussian distributions and high dimensionality pose difficulties

on scalable full posterior inference for SLAM while standard techniques usually focus

on addressing one of the difficulties.

This thesis explores the sparsity structure in SLAM factor graphs and various

density representations (e.g., samples, parametric models, and their hybrid) to tackle
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Room A Room B Textureless Wall

Optimized Marker Placement

Similar 
appearance

Figure 1-6: Three challenging examples for visual localization within the same scene.
The images on the left and middle show two almost identical rooms in the scene,
whereas the image on the right depicts a very weakly textured surface. Marker
placements1 in this scene guided by our optimized marker placement approach led to
improved visual localization on these examples.

high dimensionality and non-Gaussian distributions, respectively, achieving scalable

full posterior inference for SLAM.

1.1.3 Visual localization

Visual localization is a foundational technique for applications including AR/VR,

autonomous driving, and robotic navigation and manipulation. A typical problem

in visual localization is to estimate the camera pose of a query image, provided a

pre-built map. While the problem has long been investigated in many fields [140],

visual localization still suffers due to challenging scenes such as textureless walls and

repetitive structures (e.g., Rooms A and B in Fig. 1-6). A quantitative analysis

about camera localizability over the entire scene will help to identify difficult places

for improved visual localization but still remains as an open problem. This thesis

will define and compute camera localizability via applying full posterior inference to

evaluate camera pose uncertainty that occurs in visual localization.
1Fiducial markers in the examples are AprilTags [99] but our algorithm is general and can be

used with any existing family of fiducial markers.
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In addition, one common solution to challenges in visual localization is to place

fiducial markers as additional texture and identifiers in the scene [92, 27]; however,

placing fiducial markers in larger environments is a time consuming process and the

resulting performance improvement depends on marker positions. Traditionally, these

marker locations are selected by humans who are familiar with visual localization

techniques. This thesis will also explore the problem of automatic marker placement

within a scene. Specifically, given a predetermined set of markers and a scene model,

we aim to compute optimized marker positions within the scene that can improve

accuracy in visual localization. The automatic selection of marker positions will be

based on the camera localizability framework we mentioned above.

1.2 Contributions

This thesis develops scalable full posterior inference algorithms for SLAM that achieve

superior accuracy in comparison to state-of-the-art SLAM algorithms in describing

the full posteriors encountered in highly non-Gaussian SLAM settings. In addition,

we identify a new application of full posterior inference for uncertainty-aware robot

perception: evaluating uncertainty in the estimation of camera poses for visual local-

ization. Contributions are stated in detail as follows:

1. We develop GAPSLAM, an algorithm that achieves real-time operation for infer-

ring highly non-Gaussian marginal posteriors in SLAM. Specifically, we propose

two techniques: 1) an adaptive modeling strategy whereby only marginals with

great uncertainty are sampled by particle filters, while others are represented by

the Gaussian approximation, and 2) an uncertainty-aware re-initialization tech-

nique that leverages particle filters to reset linearization points in the nonlinear

optimization solver for computing the Gaussian approximation.

2. We develop NF-iSAM, an algorithm that achieves incremental non-Gaussian in-

ference of the joint posterior in SLAM, warranting the scalability for handling

high-dimensional non-Gaussian posteriors. Specifically, our technical contri-
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butions are threefold: 1) introducing normalizing flows [101] to factor graph

inference for robot perception, 2) generalizing the Bayes tree [71], which has

beed used to implement incremental updates of the Gaussian approximation,

to perform full (non-Gaussian) posterior inference for the joint posterior distri-

bution, and 3) augmenting normalizing flows from low-dimensional inference to

high-dimensional cyclic factor graphs.

3. We develop NSFG, an algorithm that provides high-quality samples for the of-

fline validation of other inference methods such as GAPSLAM and NF-iSAM.

NSFG adapts nested sampling methods to directly draw samples from the pos-

terior, serving as reference solutions for full posterior inference at the expense of

computation resources. Our technical contributions are twofold: 1) introducing

nested sampling methods for solving robotics problems, and 2) exploiting the

sparsity structure of SLAM factor graphs for improved sampling efficiency in

nested sampling by providing more informative and sampling-efficient priors to

nested sampling methods.

4. We propose a novel framework that models localizability of camera poses in

a scene and computes localizability scores. This framework enables the devel-

opment of OMP, a new algorithm that optimizes marker placement for visual

localization based on scene features and fiducial markers. We demonstrate that

the optimized marker placement by our approach can improve the localization

rate by up to 20 percent on four different scenes.

Note that all the code and datasets for testing the algorithms above are open

source online:

• GAPSLAM: https://github.com/doublestrong/gapslam

• NF-iSAM: https://github.com/MarineRoboticsGroup/NF-iSAM

• NSFG: https://github.com/MarineRoboticsGroup/nsfg

• OMP: https://github.com/doublestrong/OMP
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1.3 Overview and publications

1.3.1 Thesis outline

The remainder of this thesis is organized as follows. Relevant publications we con-

tributed to are also listed and * indicates equal contributors. Chapter 2 provides

a review of general probabilistic inference methods and relevant ones to SLAM and

visual localization.

Chapter 3 introduces the NSFG algorithm.

• Qiangqiang Huang, Alan Papalia, John J. Leonard. Nested Sampling for Non-

Gaussian Inference in SLAM Factor Graphs. IEEE Robotics and Automation

Letters (RA-L) & IEEE/RSJ International Conference on Intelligent Robots

and System (IROS), 2022.

Chapter 4 introduces the GAPSLAM algorithm.

• Qiangqiang Huang, John J. Leonard. GAPSLAM: Blending Gaussian Approximation

and Particle Filters for Real-Time Non-Gaussian SLAM. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and System (IROS), 2023.

Chapter 5 introduces the NF-iSAM algorithm.

• Qiangqiang Huang, Can Pu, Kasra Khosoussi, David M. Rosen, Dehann Fourie,

Jonathan P. How, John J. Leonard. Incremental Non-Gaussian Inference for

SLAM Using Normalizing Flows. IEEE Transactions on Robotics (T-RO), 2023.

• Qiangqiang Huang*, Can Pu*, Dehann Fourie, Kasra Khosoussi, Jonathan P.

How, John J. Leonard . NF-iSAM: Incremental Smoothing and Mapping via

Normalizing Flows. IEEE International Conference on Robotics and Automa-

tion (ICRA), 2021.

Chapter 6 introduces the OMP algorithm.

22



• Qiangqiang Huang, Joseph DeGol, Victor Fragoso, Sudipta N. Sinha, John J.

Leonard. Optimizing Fiducial Marker Placement for Improved Visual Local-

ization. IEEE Robotics and Automation Letters (RA-L) & IEEE/RSJ Interna-

tional Conference on Intelligent Robots and System (IROS), 2023.

1.3.2 Additional work not in the thesis

In addition, we have contributed to two related papers from our lab (i.e., the Ma-

rine Robotics Group at MIT), in the object-based SLAM area, which inspired some

experiments in Chapter 4 for demonstrating the GAPSLAM algorithm.

• Ziqi Lu*, Qiangqiang Huang*, Kevin Doherty, John J. Leonard. Consensus-

Informed Optimization Over Mixtures for Ambiguity-Aware Object SLAM.

IEEE/RSJ International Conference on Intelligent Robots and System (IROS),

2021.

• Jiahui Fu, Qiangqiang Huang, Kevin Doherty, Yue Wang, John J. Leonard. A

Multi-Hypothesis Approach to Pose Ambiguity in Object-Based SLAM. IEEE/RSJ

International Conference on Intelligent Robots and System (IROS), 2021.
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Chapter 2

Preliminaries and literature review

2.1 Preliminaries

2.1.1 Notation

General notation: Deterministic values are denoted by lowercase letters while ran-

dom variables are indicated by uppercase letters. If 𝒱 is a set of indices, then 𝑥𝒱

denotes a vector or collection of variables associated with those indices. For example,

𝑥{𝑖,𝑖+1,...,𝑗} = (𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑗). A vector of variables with all 𝑛 indices is bolded, e.g.,

x = 𝑥{1,2,...,𝑛}. Particularly, 𝑥<𝑑 = (𝑥1, 𝑥2, . . . , 𝑥𝑑−1) and 𝑥>𝑑 = (𝑥𝑑+1, 𝑥𝑑+2, . . . , 𝑥𝑛).

We use 𝑝(𝑋) to denote the probability density function 𝑝𝑋(·) of random variable 𝑋.

We denote the function 𝑝𝑋(𝑥) at the deterministic value 𝑥 by 𝑝(𝑥) or 𝑝(𝑋 = 𝑥). We

use 𝑚(·) to indicate a non-negative potential function. We use 𝑔(·;w) to indicate a

function 𝑔(·) that is determined by parameters w. We denote the sampling of 𝑋 from

a distribution 𝑝(𝑋) using the notation 𝑥 ∼ 𝑝(𝑥). The resulting 𝑛 i.i.d. samples are

denoted by {𝑥(𝑘)}𝑛𝑘=1. The conditional independence relation 𝑋 ⊥⊥ 𝑌 |𝑍 reads 𝑋 and

𝑌 are conditionally independent given 𝑍.

Graphical model notation: We define a factor graph 𝒢(f ,Θ, ℰ) by nodes of random

variables Θ and factors f and edges ℰ between variables and factors. Variables that

are adjacent to factor 𝑓𝑖 are denoted by Θ𝑓𝑖 = {Θ𝑖 ∈ Θ|(Θ𝑖, 𝑓𝑖) ∈ ℰ}. We use 𝐶 to

denote a node or clique on the Bayes tree. We also use 𝐶 to denote the collection of
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Figure 2-1: Examples of perception problems (left) and factor graphs (right) represent
posterior distributions encountered in the problems: (a) a SLAM example where we
estimate robot poses 𝑋𝑠 and landmark locations 𝐿𝑠 given measurements such as
relative poses and distances, and (b) a visual localization example where we estimate
the camera pose 𝑋0 given matches between 2D keypoints and 3D points. A factor
refers to a probabilistic model of a measurement or prior.

variables in the clique so 𝐶 ⊆ Θ. The collection of child cliques of 𝐶 is denoted by

𝒞𝐶 . The parent clique of 𝐶 is Π𝐶 . The intersection of clique 𝐶 and its parent Π𝐶 is

called separator 𝑆𝐶 = 𝐶 ∩ Π𝐶 while the remaining variables in 𝐶 are called frontal

variables 𝐹𝐶 = 𝐶 ∖ Π𝐶 .

2.1.2 Posterior distributions and factor graphs

Chapter 1 introduces that this thesis focuses on reasoning uncertainty in estimation

problems for robot perception. Before stating any estimation problem, we present

the probabilistic description of the latent variable that we aim to estimate. The

latent variable Θ := (Θ1,Θ2, . . . ,Θ𝑛) is a high-dimensional random variable with

𝑛 components such as robot poses and landmark locations. All measurements are
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denoted by z. The posterior distribution of the latent variable is

𝑝(Θ|z) =
𝑝(z|Θ)𝑝(Θ)

𝑝(z)
∝ 𝑝(z|Θ)𝑝(Θ) =

𝑚∏︁
𝑖=1

𝑓𝑖(Θ𝑓𝑖), (2.1)

where 𝑚 is the number of factors. A factor 𝑓𝑖(Θ𝑓𝑖) represents either a measurement

likelihood or a prior. A prior factor has density 𝑓𝑖(Θ𝑓𝑖) = 𝑝(Θ𝑓𝑖), where Θ𝑓𝑖 are vari-

ables involved in factor 𝑓𝑖. A likelihood factor represents density 𝑓𝑖(Θ𝑓𝑖) = 𝑝(𝑧𝑖|Θ𝑓𝑖)

where 𝑧𝑖 is the measurement in z that is associated with factor 𝑓𝑖. The posterior

distribution is often expressed with factor graphs [31], which are bipartite graphical

models consisting of variable and factor nodes. Fig. 2-1 shows factor graphs of a

SLAM example and a visual localization example. Factor graphs highlight the spar-

sity structure or conditional independence relations [9] which will be essential assets

for us to develop scalable algorithms.

We introduce basic methods to find a point estimate of the latent variable and to

approximate the posterior distribution in the following two subsections, respectively.

2.1.3 Maximum a posteriori (MAP) estimation via optimiza-

tion

In perception problems such as SLAM or visual localization, the primary task is to

find optimal configurations of the latent variable (e.g., robot poses and landmark

locations) that best explain measurements and priors. The MAP estimation is widely

exploited to search such a configuration by maximizing the posterior, as expressed in

�̂� = argmax
𝜃∈ℳ

𝑝(Θ|z), (2.2)

= argmax
𝜃∈ℳ

∏︁
𝑖

𝑓𝑖(Θ𝑓𝑖) (2.3)

where �̂� is the point estimate of the latent variable andℳ denotes the domain that

the latent variable must belong to. For example, if the latent variable Θ refers to a 6

Degree-of-Freedom (DoF) pose and a 3D location, the domain would be SE(3)×R3.
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In practice, measurements are often assumed being perturbed by zero-mean, normally

distributed noise for which factors are formulated as

𝑓𝑖(Θ𝑓𝑖) ∝ exp

(︂
−1

2
‖ℎ𝑖(Θ𝑓𝑖)− 𝑧𝑖‖2Σ𝑖

)︂
. (2.4)

Thus the MAP estimation problem is equivalent to a nonlinear least-squares problem,

for which many existing optimization solvers such as ceres [2], GTSAM [29], and

g2o [77] can efficiently find a solution. The solution is usually an approximate MAP

point due to linearization errors and local optima of the posterior. Note that the

Gaussian noise is not necessary for creating the nonlinear least-squares problem since

it has been proven that the MAP estimation can be converted to a nonlinear least-

squares minimization under mild conditions [111, Theorem 1].

2.1.4 Full posterior inference via Gaussian approximation

Since Chapters 4 and 6 still exploit the Gaussian approximation for developing new

algorithms, we briefly review how to construct a Gaussian to locally approximate the

posterior via the Laplace approximation [9, Ch. 4.4]. The Gaussian centers on the

MAP estimate �̂� with a covariance

Σ̂ ≈ {Hess[− ln 𝑝(Θ|z)]|Θ=�̂�}
−1, (2.5)

which is the inverse of an estimated Hessian of the negative logarithm of the posterior.

In the nonlinear least-squares form of the MAP estimation problem, the Hessian can

be approximated as the square of the Jacobian 𝐴 at the MAP estimate, i.e., 𝐴T𝐴 [70,

Sec. 2]. Thus we define the Gaussian approximation

𝑔(Θ) = 𝒩 (Θ|�̂�, Σ̂), (2.6)

where 𝒩 (·) denotes a normal distribution. Note that the substraction operation in

the expression of the Gaussian depends on the domain or manifold of Θ.
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2.2 Literature review

We briefly review related work and point out connections with proposed approaches

in this thesis.

2.2.1 Sampling methods for probabilistic inference

The related work in this section connects with the NSFG algorithm in Chapter 3 which

also directly draws samples from the posterior. These samples are recognized as more

computationally expensive, but more accurate, approximation of the full posterior so

they serve as reference solutions for evaluating other full posterior inference algorithms

in this thesis. A brief review of state-of-the-art sampling methods is as follows.

Hamiltonian Monte Carlo (HMC) is an Markov Chain Monte Carlo (MCMC)

variant which guides sampling exploration with the gradient of the density function

[8]. The No-U-Turn Sampler (NUTS) [59] extends HMC with automatic parameter

tuning, improving usability and performance. However, multi-modal distributions

with distant modes still pose general difficulties as state space exploration uses only

local density information. Specialized MCMC algorithms designed for multi-modal

distributions were recently developed [128, 105].

Sequential Monte Carlo (SMC) is a sampling algorithm which combines impor-

tance sampling, re-sampling, tempering, and MCMC. Particle filters in general are

just special instances of SMC [36]. The use of tempering and MCMC alleviates sam-

ple impoverishment in standard particle filters (e.g., sampling importance resampling

algorithms in [4, Alg. 4]). SMC usually requires a proposal distribution that possesses

good coverage of the typical set of the target density. It is difficult to design such a

proposal distribution for a general high dimensional target density.

Nested sampling was proposed by Skilling [120] to compute the evidence or marginal

likelihood for Bayesian inference with a by-product of posterior samples. It is mostly

developed and used in the field of astronomy. Nested sampling has two attractive

features: (1) well-defined stopping criteria related to the convergence of estimated

evidence and (2) global exploration of the state space. Nested sampling (NS) meth-
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ods keep exploring and drawing new samples from the state space until the estimate

of evidence converges. NS has demonstrated great success with complex posterior

distributions that possess multiple modes [17]. The practical benefits of NS meth-

ods include: (i) no predetermined number of samples and (ii) little to no tuning of

proposal distributions is required to get accurate results. The estimated evidence

by nested sampling is also helpful for model selection problems (e.g., multiple factor

graphs under different data associations). There are several open-source nested sam-

pling packages [40, 55, 123]. In particular, [123] developed dynesty, an open-source

dynamic nested sampling package which our implementation of NSFG in Chapter 3

is built upon.

The SLAM community has already explored sampling methods such as particle

filtering [51, 13, 91] and Markov Chain Monte Carlo (MCMC) [119]. Many particle

filtering algorithms for SLAM (e.g., FastSLAM2.0 [91]) track landmarks by extended

Kalman filters which cannot represent general non-Gaussian/multi-modal distribu-

tions. Recent work leveraged factor graphs and probabilistic modeling techniques

such as non-parametric belief propagation [45, 42] and normalizing flows [64]. NSFG

differs from these works in that it does not assume any parametric density models and

builds upon a stochastic inference technique (i.e. nested sampling) which is generally

more accurate for multi-modal distributions [123]. NSFG aims to improve inference

fidelity at the cost of computational complexity. This tradeoff suggests that NSFG

could be used in accuracy evaluation of approximate distributions found by SLAM

techniques.

2.2.2 MAP estimation and sparsity structure in SLAM

The literature review in this section is related to the NF-iSAM algorithm in Chapter 5

because NF-iSAM exploits the same sparsity structure of factor graphs as state-of-

the-art SLAM algorithms for improved computation efficiency, with an extension to

(non-Gaussian) full posterior inference.

The state-of-the-art optimization-based solutions to SLAM, such as iSAM2 [71],

are MAP-based point estimators that approximate the posterior distribution by a
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single, parametric Gaussian model. iSAM2 presents the Bayes tree [71], a graphical

model that provides a probabilistic interpretation for sparse linear algebra in square

root smoothing and mapping (
√
𝑆𝐴𝑀) [30] and incremental smoothing and mapping

(iSAM) [72]. The Bayes tree can be generalized to non-Gaussian settings since it

is a result purely based on conditional independence structures in graphical models;

however, in iSAM2, the estimated model of the joint posterior is still constructed

by linear-Gaussian conditionals [31, Sec. 3.4]. Recent works of parametric SLAM

solutions focus on robust MAP estimation in the presence of outliers or multi-modal

factors. [110] extensively reviews robust estimation techniques including switchable

constraints [126], robust cost functions [1, 111], and mixture models [100, 104]. How-

ever, these techniques do not aim at capturing the shape of the full posterior.

Alternatively, nonparametric models yield more expressive representations of the

full posterior. These methods use sampling techniques, such as particle filters, MCMC,

or nested sampling [90, 132, 63]. The most well-known nonparametric SLAM algo-

rithm is FastSLAM [90] which is based on Rao-Blackwellized particle filters. Fast-

SLAM leverages the relation that map features are conditionally independent once

robot poses are given. However, due to sample impoverishment in particle filters,

smoothed estimates degenerate as the loss of diversity in particles’ paths [4]. In

order to further exploit conditional independence relations, a more recent method,

multimodal-iSAM (mm-iSAM) [43], leverages the Bayes tree [71] to solve SLAM prob-

lems with a variety of non-Gaussian error sources. mm-iSAM uses nested Gibbs

sampling, derived from nonparametric belief propagation [125], to approximate the

marginal belief of each node on the Bayes tree. As a direct extension of iSAM2, MH-

iSAM2 [60] explicitly solves point estimates of multiple modes for SLAM problems

involving multiple hypotheses (e.g., uncertain data association and ambiguous loop

closures), but it cannot directly tackle more general factors such as range measure-

ments. In contrast, the NF-iSAM algorithm in Chapter 5 models and draws samples

from the joint posterior and is able to deal with both multi-hypothesis factors (e.g.,

multi-modal data association) and nonlinear measurement factors (e.g., range mea-

surements).
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NF-iSAM extends iSAM2 to non-Gaussian settings, because NF-iSAM replaces

the Gaussian posterior in iSAM2 by non-Gaussian posteriors which are represented

by normalizing flows, a learning-based technique for probabilistic modeling. Full

posterior inference has also drawn researchers’ interest in the machine learning com-

munity. Many tools such as kernel embedding [50, 74] and Gaussian copula [79, 87]

have been leveraged to model non-Gaussian densities. A recent class of algorithms

aims to draw samples from a non-Gaussian target distribution by estimating a trans-

formation that maps samples from a simple reference distribution onto the target.

These algorithms are known as transport maps [38, 102], or normalizing flows [108].

Although they have shown good performance in modeling very complex densities, re-

search on high-dimensional probabilistic graphical models is limited. Chapter 5 will

show that NF-iSAM augments normalizing flows from low-dimensional inference to

high-dimensional cyclic factor graphs.

2.2.3 Full posterior inference for SLAM

This section connects to the GAPSLAM algorithm in Chapter 4 because GAPSLAM

blends both Gaussian approximation and particle filters, which are arguably standard

techniques for full posterior inference for SLAM. We briefly review some work on full

posterior inference for SLAM with a focus on non-Gaussian representations of the

posterior. Note that the non-Gaussian representation can be parametric models (e.g.,

sum of Gaussians) or non-parametric (i.e., samples).

The framework of RBPF has been leveraged in a big class of SLAM algorithms

(e.g., FastSLAM) [91, 12, 11], where the posterior of robot poses is represented by

a set of particles, and each particle is attached with parametric models [91, 11] or

samples [12] of the conditional of the map. Although our work exploits the same

conditional independence relation as FastSLAM, i.e., landmarks are conditionally

independent given robot poses, our work swaps representations of the robot path

and map in RBPF, resulting in a parametric (Gaussian) model to describe the belief

about robot poses and a set of particle filters to independently draw samples from

the posterior of each landmark. Thus the issue of losing diversity in robot path
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particles no longer exists, warranting the scalability of our work. We will compare

to [11] in our experiments section. mm-iSAM [45] and NF-iSAM [61] are recent non-

Gaussian inference algorithms that leverage the Bayes tree algorithm [71] to exploit

more conditional independence relations. As solvers for general factor graphs, they

can tackle both nonlinear measurement models and multi-modal data association,

while our work is only focused on nonlinear measurement models. Another class of

approaches purely relies on Monte Carlo techniques to directly draw samples from

the joint posterior [132, 119, 63]. These methods, in general, do not suit real-time

online applications due to the exorbitant computational cost but can serve as reference

solutions to full posterior inference.

The GAPSLAM algorithm in Chapter 4 is inspired by some works [25, 11, 12]

dedicated to bearing-only (ponit-object-based) or range-only SLAM. Existing ap-

proaches for these two problems can be categorized as batch optimizations [96], de-

layed initializations of landmarks [82, 25], and undelayed initializations of landmarks

[78, 121, 11, 12]. Our work falls into the undelayed category. Our experiments show

that we can solve both of these problems in a unified framework and demonstrate

the evolution of landmark posteriors since time step zero. Furthermore, we clarify

that, while our object-based SLAM system requires similar input (RGB images and

object detections) as the systems in [97, 137, 98, 112], we do not estimate occupied

areas of objects and focus sololy on inferring how distributions of object locations

evolve. The ellipsoids in the object-based SLAM section are confidence intervals of

object locations rather than models often seen in those works for indicating the 3D

occupancy of objects in a scene.

2.2.4 Visual localization and fiducial markers

Chapter 6 investigates how to optimize the positions of fiducial markers for improved

visual localization. We briefly review some recent work related to mapping and local-

ization with fiducial markers and marker/landmark placement optimization. Exam-

ples of fiducial markers include tag families with explicit IDs (e.g., ArUco markers [49],

AprilTag [99], ChromaTag [26]) and emerging learning-based marker designs [139].
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Fiducial markers are widely recognized as an effective approach for improving local-

ization and mapping accuracy. DeGol et al. [27] demonstrate that marker IDs are

useful in image matching and resectioning for structure from motion (SfM), leading to

improvements in reconstruction results. The UcoSLAM system [92] integrates marker

detection with a bag-of-words approach and presents more robust tracking and relo-

calization than SLAM techniques with no marker detection [93, 47]. However, marker

placements in these SfM or SLAM systems are manually determined and not planned

by algorithms.

Existing work about marker deployment focuses on robotic localization without

considering scene features [21, 134, 69]. Beinhofer et al. [7] explore optimal placement

of artificial landmarks such that a robot equipped with range and/or bearing sensors

repeatedly follows predetermined trajectories in planar environments with improved

accuracy. Meyer-Delius et al. [89] introduce a measure that defines the uniqueness of

robot poses in the context of Monte Carlo localization using laser scanners and then

propose a greedy algorithm to incrementally select landmark locations for maximizing

the measure. While we find the greedy algorithm is similar to ours, it is not straight-

forward to apply the measure to visual localization using images and scene features.

Lei et al. [81] investigate landmark deployment for poses on SE(3) and demonstrate

placing fiducial markers in a cubic environment; however, features in the scene are

not involved in optimizing the marker placement.

On the note of uncertainty quantification in visual localization, [56, Ch. 5] reviews

methods for computing the covariance of a transformation (e.g., 6 DoF poses) under

settings of least-squares and Monte Carlo simulation. Zhang et al. [140] apply and

develop those methods to characterize uncertainty of reference poses that are used

for benchmarking visual localization approaches. The uncertainty is then exploited

to define a new evaluation metric that computes the percentage of queries localized

within per image error thresholds rather than fixed thresholds. The OMP algorithm

in Chapter 6 leverages a similar method as the first order approximation in [140, Sec.

3.4] to compute the covariance of a reference camera pose. However, our focus is to

utilize the covariance to define localizability scores over the entire environment and
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optimize fiducial marker placement for increased localizability scores.
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Chapter 3

Reference solutions to full posterior

inference via nested sampling

The content in this chapter is mainly based on the following paper:

• Qiangqiang Huang, Alan Papalia, John J. Leonard. Nested Sampling for Non-

Gaussian Inference in SLAM Factor Graphs. IEEE Robotics and Automation

Letters (RA-L) & IEEE/RSJ International Conference on Intelligent Robots

and System (IROS), 2022.

3.1 Introduction

As introduced in Chapter 1.1.2, due to nonlinearities in real-world sensing models

or multi-modal factors (e.g., multi-modal data association), the SLAM posterior is

in general non-Gaussian. Exact inference over those non-Gaussian posteriors is gen-

erally intractable so practitioners resort to either deterministic approximations (e.g.,

Gaussian approximation) or sampling methods [9]. Sampling methods, which directly

draw samples from the posterior distribution, are generally recognized as more com-

putationally expensive, but more expressive, inference solutions [9]. Our work in this

chapter falls into this class of algorithms. The resulting samples of these algorithms

enable qualitative analysis of the posterior as well as estimation of statistical quanti-

ties of interest. Thus, stochastic approximation algorithms provide value in (1) offline
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accuracy evaluation of other algorithms and (2) high-fidelity posterior estimation for

problems which do not require real-time results onboard a robotic system.

Nested sampling is a recent stochastic approximation technique that is powerful

for sampling multi-modal distributions [120]. This work combines nested sampling

with informative priors obtained from factor graphs. We term our algorithm nested

sampling for factor graphs (NSFG). To the best of our knowledge, there are no existing

general purpose algorithms for reference solutions even on posteriors of small SLAM

problems. This need for accuracy evaluation motivated the development of NSFG,

which pursues the bona fide shape of the posterior and thus aids accuracy evaluation

of other SLAM inference algorithms.

3.2 Problem statement

We define the SLAM inference problem that NSFG solves. We use the latent variable

Θ to denote all robot poses (𝑋) and landmark locations (𝐿). Let z be all measure-

ments. We aim to sample the posterior distribution of Θ given all measurements,

i.e.

𝑝(Θ|z) ∝ 𝑝(z|Θ)𝑝(Θ) =
𝑚∏︁
𝑖=1

𝑓𝑖(Θ𝑓𝑖) (3.1)

where 𝑚 is the number of factors in the factor graph representation of the posterior.

3.3 Approach

We discuss nested sampling at a high level, and elaborate on how NSFG uses the

conditional independence structure of factor graphs to improve the abilities of nested

sampling.
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3.3.1 Nested sampling

Nested sampling [120] was proposed to compute the evidence 𝑝(z), with a by-product

of posterior samples. The evidence is defined by an integral of the likelihood function

𝐿(z|Θ) and the prior distribution 𝜋(Θ) over the latent variable Θ, as seen in

𝑝(z) =

∫︁
Θ

𝐿(Θ)𝜋(Θ)𝑑Θ, (3.2)

where 𝐿(Θ) stands for the likelihood 𝐿(z|Θ). In nested sampling, samples of Θ are

drawn from the prior distribution. The prior distribution must cover all variables and

is ideally computationally efficient to sample. The likelihood function contains the

remaining factors of the posterior distribution.

Conceptually, nested sampling breaks up the sample space of the prior into nested

areas. Each nested area is enclosed by an iso-likelihood contour. We define the

probability of a nested area as the prior volume 𝑉 ∈ [0, 1], while the likelihood on the

contour is denoted by 𝐿(𝑉 ); thus, the small prior volume 𝑑𝑉 denotes the probability

of a small iso-likelihood shell in the sample space. With the notion of prior volumes,

nested sampling transforms the integration (3.2) to a one-dimensional integral of the

likelihood over iso-likelihood small prior volumes, as follows [120, 17]:

𝑝(z) =

∫︁ 1

0

𝐿(𝑉 )𝑑𝑉. (3.3)

In practice, each of the samples from the prior represents a small prior volume

𝑑𝑉 , and the sum of all small prior volumes is 1. Thus, the integration (3.3) can be

implemented numerically by the likelihood-weighted sum of those prior volumes to

estimate the evidence. To increase the precision of the numerical integration, nested

sampling chooses to draw more samples from the prior volume where the likelihood is

higher. This can be visualized using the 𝑉 -𝐿 plot in Fig. 3-1b. Each bin under the 𝑉 -

𝐿 curve corresponds to a sample. The small prior volume and likelihood of a sample,

respectively, determine the width and height of the bin. Those bins are ordered from

left to right following a descending order of sample likelihoods (or bin heights). Thus,
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more samples naturally lead to finer bins that approach the theoretical 𝑉 -𝐿 curve

better.

Instead of drawing all samples of Θ only once from the prior distribution, nested

sampling draws samples across iterations. With each iteration the feasible space of

new samples gradually shrinks to high-likelihood areas in the sample space, leading

to an efficient and accurate estimate of the evidence. This gradual focusing is often

referred to as likelihood-restricted prior sampling (LRPS) [17], and is the most im-

portant step in nested sampling. We stress that LRPS is different from proposals

in particle filters. While particle filters attempt to draw samples of a variable once

from a proposal, the LRPS draws new samples across iterations until the estimated

evidence converges; additionally, the weight of each sample depends on not only the

likelihood but also the small prior volume. As the contribution of our work is not in

performing nested sampling, but in using conditional independence structures from

factor graphs to more efficiently prepare a problem for nested sampling, we refer

interested readers to [120, 123, 17] for further details.

3.3.2 Nested sampling for factor graphs

Proposed approach

While nested sampling is a powerful approach to sampling complex distributions,

naive application of nested sampling to SLAM does not take advantage of the con-

ditional independence structure of SLAM. We focus on how to use this structure to

enable nested sampling to be effectively applied to SLAM. Specifically, we exploit the

sparsity structure of SLAM factor graphs to construct a prior 𝜋(Θ) and likelihood

function 𝐿(Θ), which enhances nested sampling.

Factors in SLAM factor graphs usually consist of a few unary factors as priors,

a number of binary factors modeling measurement likelihoods, and a few factors

connected to a robot pose and multiple landmarks for modeling multi-model data as-

sociation. As described in Section 3.3.1, the prior model for nested sampling, 𝜋(Θ),

must be a tractable distribution from which samples of all latent variables can be effi-
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Figure 3-1: Our approach to performing nested sampling over factor graphs. (a) The
factor graph is first decomposed into two parts: a prior factor set and a likelihood
factor set. (b) From the acyclic graph in the prior factor set we apply ancestral
sampling to generate samples of the prior distribution. The functions for sampling
and likelihood evaluation are supplied to a nested sampler. Nested sampling returns
estimated evidence and samples which approximate the posterior distribution.

ciently drawn. Thus, 𝜋(Θ) must incorporate factors more than the nominal priors to

cover all variables and, accordingly, these factors will be excluded from the likelihood

model, 𝐿(Θ). We will introduce our strategy for selecting factors that compose 𝜋(Θ)

and 𝐿(Θ).

Our strategy constructs a 𝜋(Θ) that enables ancestral sampling [9] for all variables,

as ancestral sampling admits very efficient distributional sampling. NSFG effectively

builds 𝜋(Θ) from a spanning tree, for trees naturally afford ancestral sampling.

NSFG assumes that any variable in the SLAM factor graph is connected to at

least a binary factor (i.e., each variable is created along with a bivariate factor),

implying that binary factors already form a connected graph of all variables. NSFG

designates a node or variable connected to a prior factor as the root of the spanning

tree. Starting from samples drawn from the prior factor for the root variable, one can

use binary factors along the spanning tree to generate samples of descendant variables

up to the leaves of the tree. As seen in Fig. 3-1a, we designate the factors involved

in this ancestral sampling procedure as PF (prior factor set) and incorporate them
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in the prior model 𝜋(Θ) while the remaining factors are referred to as LF (likelihood

factor set) and make up the likelihood model, 𝐿(Θ). The resulting factorization of

the posterior distribution in (3.1) is

𝑝(Θ|z) ∝
∏︁

𝑓𝑗∈LF

𝑓𝑗(Θ𝑓𝑗)⏟  ⏞  
𝐿(Θ)

∏︁
𝑓𝑖∈PF

𝑓𝑖(Θ𝑓𝑖)⏟  ⏞  
𝜋(Θ)

. (3.4)

For example, for a typical SLAM factor graph with a single robot and 𝐾 unknown

landmarks, the PF set can be composed of the prior factor at the starting pose of

the robot, odometry factors, and 𝐾 binary factors that are connected to different

landmarks. Notions such as the PF set have commonly been used in SLAM to

initialize variables in MAP solvers and construct proposal distributions in particle

filters. This work introduces such approaches to nested sampling, with a focus on

sampling from joint posteriors in SLAM problems.

This partition of PF and LF sets improves nested sampling in two aspects: (i)

the prior model resembles the posterior distribution better than simple proposals such

as uniform distributions of all variables and (ii) the likelihood model involves fewer

factors, which reduces the cost of likelihood evaluation in nested sampling. SLAM

factor graphs are usually sparse, which implies that the cardinality of PF set can

be comparable to or even much greater than the cardinality of LF set. Therefore,

exploiting the sparsity structure of SLAM factor graphs can effectively improve both

the computational performance and solution quality of nested sampling.

Algorithms

We implemented Algorithms 1 and 2 for obtaining the PF and LF sets and draw-

ing posterior samples via NSFG. The factors in the PF set are constructed from a

spanning tree, as seen in Algorithm 1, and are thus ordered for performing ancestral

sampling. Note that selection of the prior factor for designating the root of the tree

in line 3 of Algorithm 1 depends on user-defined heuristics (e.g., choosing a more

informative prior). Using the PF and LF sets, Algorithm 2 defines the prior model
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Algorithm 1: Obtain PF and LF sets (spanning tree)
Input: Univariate factor set 𝒫 , binary factor set ℬ, and all other factors ℒ
Output: Prior factor queue PF and likelihood factor queue LF

1 Initialize empty FIFO queues of PF and LF
2 Construct a spanning tree 𝒯 from the graph formed by binary factors ℬ
3 Push a prior factor 𝑓 from 𝒫 to PF and designate its variable as the root of
𝒯

4 Traverse 𝒯 from the root to leaves and push binary factors to PF once they
have been visited

5 Push all factors that are not in PF to LF
6 return PF and LF

𝜋(Θ) and likelihood model 𝐿(Θ) that enable nested sampling. The likelihood model

is simply evaluating the sum of the log-likelihoods of the factors in the LF set (line 1

in Algorithm 2). The use of the PF set for realizing 𝜋(Θ) is less straightforward since

it involves density transformation (line 10 in Algorithm 2).

Nested sampling methods usually require transformation functions that map from

the uniform distribution over unit hypercube to the prior distribution 𝜋(Θ), rather

than explicit expressions of prior distributions [40, 55, 123, 17]. We refer to these

transformations as hypercube transforms. Hypercube transforms are necessary be-

cause the unit hypercube is first sampled to enable global exploration of the state

space. The transform applied to these samples casts the global exploration into the

domain of the variable Θ, improving global coverage of the state space. Hypercube

transforms can be implemented by quantile functions of noise models, which are avail-

able in typical SLAM problems (e.g., Gaussian noise models). With these hypercube

transforms and observation models, we obtain samples for our first variable in the

PF set and then apply ancestral sampling to propagate the samples along the tree

encoded in the PF set (line 8 in Algorithm 2).
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Algorithm 2: NSFG
Input: Prior factor queue PF and likelihood factor queue LF
Output: Samples of the joint posterior distribution

1 Function LLK(latent variable Θ) :
2 𝑙← 0 // Initialize log likelihood
3 for 𝑓 in LF do
4 𝑙 = 𝑙 + 𝑓.loglikelihood(Θ)

5 return 𝑙

6 Function PriorTrans(hypercube sample 𝑢):
7 Initialize a dictionary 𝒫 for containing prior samples
8 for 𝑓 in PF do // Ancestral sampling in each iteration
9 𝑣 ← Variable in 𝑓 but not in 𝒫

10 𝒫 [𝑣]← 𝑓.hypercube_transform(𝑢,𝒫 , 𝑣)

11 return 𝒫
12 𝒮 ← 𝑁𝑒𝑠𝑡𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑃𝑟𝑖𝑜𝑟𝑇𝑟𝑎𝑛𝑠, 𝐿𝐿𝐾)
13 return 𝒮 // Return posterior samples

3.4 Implementation

3.4.1 Observation and noise models

We introduce observation and noise models that will be used in our experiments. A

noisy pose observation is defined by 𝑇 = 𝑇 exp(𝜉∧) where pose 𝑇 ∈ SE(𝑑) is a latent

variable, ∧ turns 𝜉 into a member of the Lie algebra se(𝑑), and 𝜉 ∼ 𝒩 (0,Σ) is the

perturbation vector subject to a Gaussian distribution. A noisy range measurement

is modeled by 𝑟 = ‖t𝑖 − t𝑗‖2 + 𝒩 (0, 𝜎2) ∈ R where t𝑖 is the translation component

of variable 𝑋𝑖 or 𝐿𝑖. Beyond binary factors with known data associations, we use

sum-mixture factors to model ambiguous data association as follows

𝑓𝑖(Θ𝑓𝑖) = 𝑝(𝑧𝑖|Θ𝑓𝑖) =

|𝒟|∑︁
𝑗=1

𝑝(𝑧𝑖|Θ𝑓𝑖 , 𝑑𝑗)𝑝(𝑑𝑗) (3.5)

where each component is a binary factor with certain data association 𝑑𝑗 ∈ 𝒟. In

our experiments we assume the data association prior 𝑝(𝑑𝑗) is a uniform distribution

given no prior knowledge.
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3.4.2 Other solvers for comparison

We use an open source package called dynesty, developed in [123], for performing

nested sampling in line 12 of Algorithm 2. A vanilla sampler based on nested sampling

was also implemented to justify the advantage of exploiting factor graph structure.

In the vanilla sampler, all SLAM factors are incorporated into the likelihood model

for nested sampling while predetermined uniform distributions of all variables are

supplied as the prior distribution. This vanilla sampler is denoted as NS(UnifPr)

in Section 3.5 for comparison.

Two other state-of-the-art stochastic inference methods, NUTS and SMC, a state-

of-the-art Gaussian SLAM solver, GTSAM [28], and a non-Gaussian SLAM solver,

NF-iSAM [64], are tested in our experiments as well. We supply our SLAM factors

to the NUTS and SMC implementations in PyMC3 [113], GTSAM, and NF-iSAM

to solve our SLAM problems. We used the default built-in initialization functions

in PyMC3 for NUTS and provided a predetermined uniform distribution that covers

the space of interest to SMC. The C++ library of GTSAM was used while all other

techniques were implemented in Python. All computation was run on an AMD Ryzen

ThreadRipper 3970X processor with 32 cores.

3.5 Results

NSFG is evaluated across four simulated and one real-world dataset to observe differ-

ent aspects of its performance and capability. The datasets are: pose-graph SLAM

(Section 3.5.1), range-only SLAM (Section 3.5.2), sensor network localization (Sec-

tion 3.5.3), ambiguous data association (Section 3.5.4), and the Plaza1 dataset (Sec.

3.5.5). We emphasize that NSFG pursues high-fidelity samples of the posterior at

the cost of computational complexity. While examples in this work are small-scale,

they possess abundant non-Gaussian features in posteriors, warranting their potential

as canonical examples for comparing algorithms in this work and validating efficient

non-Gaussian inference techniques in the future.

Qualitative evaluation is performed by plotting the samples drawn by each infer-
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ence algorithm. Points of different colors indicate different variables. We choose to

compare the empirical mean, rather than the MAP point, of the samples with the

ground truth to compute the RMSE. This choice was made for two reasons: (i) the

MAP point among samples can be very random in posteriors with equally weighted

modes, and (ii) the MAP point does not reflect secondary modes when gauging dis-

tributional errors.

3.5.1 Pose graphs

To test the simplest scenario in which all methods would be expected to work, we

first evaluate 2D pose graphs. In Fig. 3-2 we show the results on one such problem.

Samples of the GTSAM solution are drawn from the Laplace approximation provided

by GTSAM. Estimated distributions by different methods were qualitatively similar

with the exception of some spurious modes found in the NUTS solution.

Fig. 3-3 indicates that estimates made by the different samplers indeed converge

as more samples are drawn. As a result of spurious modes shown in Fig. 3-2, the

estimates by NUTS converge to different values from those by the other solvers. It is

worth noting that estimated standard deviations of the 𝑥 coordinate of 𝑋4 by NSFG,

SMC, NS(UnifPr), and NFiSAM converge to roughly the same value, but visibly differ

from the GTSAM estimate. This difference is reasonable since the standard deviation

estimated by GTSAM is a local Gaussian approximation at the MAP point of this

non-Gaussian posterior.

For quantitative evaluation, Fig. 3-4a shows the root mean squared error (RMSE)

and runtime of solutions for 10 randomly generated pose graphs with 10 poses. The

runtime and accuracy of GTSAM are not plotted in Fig. 3-4a as GTSAM outper-

formed the RMSE and runtime of other approaches by several orders of magnitude

on these pose graphs. Since the posteriors in these pose graphs are expected to be

unimodal, a large RMSE in the figure is intended to indicate samples from spurious

modes. Compared with the vanilla sampler relying on uniform prior distributions,

NS(UnifPr), both accuracy and runtime performances are improved in NSFG. No-

tably, NSFG appears faster by a factor of 3-4. These results suggest the benefits of
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Figure 3-2: Samples that represent estimated posterior distributions for a pose-graph
with 6 poses (X0-X5) and 4 loop-closures. The robot starts in the lower left and travels
counter-clockwise. The groundtruth poses are marked by arrows. The black lines
indicate odometry measurements between successive poses. The red lines indicate
loop closures. Samples are marked by colored dots, with different colors indicating
different pose variables.

supplying an informative prior model to nested sampling. The narrow error bands

for NSFG suggest that NSFG is more robust than other samplers.

3.5.2 Range-only SLAM

We evaluate range-only SLAM problems to explore performance on a simple, well-

understood problem with non-Gaussian, multi-modal posterior distributions. We

show a single result from the range-only SLAM problems in Fig. 3-5. In the first

three time steps (X0, X1, X2) the robot moves along a line, as such the posterior dis-

tribution of the landmark position consists of two distinct modes mirrored across the

line driven by the robot. At the final time step (X3) the robot breaks away from the

line, disambiguating the landmark position and causing the posterior distribution to

converge to a single mode around the true landmark position. Qualitative evaluation

of the solutions shows that NSFG best matches the expected posterior distribution for
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Figure 3-3: Empirical mean and standard deviation over samples of 𝑥 coordinates of
selected variables (𝑋4 and 𝑋5) in the pose graph example in Fig. 3-2. Note that
samples generated in the burn-in and tuning stages of NUTS are discarded.

(a) (b)

Figure 3-4: Performance of different approaches in two experiments: (a) 10 randomly
generated pose graphs with 30 dimensions each (10 poses), and (b) 10 randomly
generated range-only SLAM problems with 14 dimensions (4 poses and 1 landmark
position). Shaded areas in plot (a) and error bars in plot (b) indicate the 95%
confidence interval.

all time steps. This strongly suggests that NSFG can best approximate the posterior

distribution of range-only SLAM problems.

In Fig. 3-4b we quantitatively compare all solvers on 10 other randomly generated

range-only experiments. The statistics presented were computed at the final time step

of each experiment after the distribution becomes unimodal (similar to time step 3 in

Fig. 3-5). NSFG enjoys the lowest RMSE across different approaches. Note that in

46



Figure 3-5: Solutions by different inference methods for a range-only SLAM problem.
The red arrows indicate the groundtruth robot pose and the blue points indicate
samples of the estimated landmark state. The red and black lines denote range and
odometry measurements, respectively. For the GTSAM solution, the initial value of
the landmark 𝐿0 is randomly picked on a circle that centers around the pose 𝑋0.

Figure 3-6: Traces of the x-coordinate values of the landmark explored by the MCMC
chains in Fig. 3-5 and kernel density estimation performed on the final distributions
obtained from these MCMC chains. (a) NUTS solution for the baseline range-only
problem at time step 2 and (b) SMC solution for the baseline range-only problem at
time step 3.

both pose-graph and range-only SLAM experiments, NSFG presents advantages over

the other sampling techniques for accuracy and runtime (faster by over an order of

magnitude in Fig. 3-4).

To explain the errors in SMC and NUTS, in Fig. 3-6 we display diagnostics ex-

plaining the issues observed in Fig. 3-5. As observed in the two plots on the right
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of Fig. 3-6, the MCMC chains are effectively stuck in local optima of the posterior.

These local optima prevent the MCMC chains from mixing between the two modes

of the distribution, leading to an incorrect estimate of weights over different modes.

In the case of the NUTS solution at time step 2 (Fig. 3-5), all of the MCMC chains

are stuck around a single mode, and are thus prevented from exploring and sampling

the equally probable mirrored solution. In the case of the SMC solution at time

step 3 (Fig. 3-5), since there is a local optimum around the spurious landmark posi-

tion 𝐿0,𝑥 = 160 which some MCMC chains cannot escape, samples from these chains

incorrectly stress and overestimate the mode around the spurious landmark position.

3.5.3 Sensor network localization

To evaluate NSFG on a well-known non-Gaussian inference problem, we tested against

the sensor network localization problem of [128]. The scenario and solution by NSFG

are shown in Fig. 3-7. In brief, the inference goal is to estimate the posterior distri-

butions of four unknown sensor locations, t1, . . . , t4, on the 𝑥-𝑦 plane provided two

sensors with known locations, t5 and t6, a few range measurements, {𝑦𝑖𝑗}, and a

likelihood model. The measurement likelihood between sensors 𝑖 and 𝑗 is modeled as

𝑓𝑖𝑗(t𝑖, t𝑗|𝑦𝑖𝑗, 𝑤𝑖𝑗) =⎧⎪⎨⎪⎩exp(−‖t𝑖−t𝑗‖22
2×0.32

) exp(− (𝑦𝑖𝑗−‖t𝑖−t𝑗‖2)2
2×0.022

), if 𝑤𝑖𝑗 = 1

1− exp(−‖t𝑖−t𝑗‖22
2×0.32

), otherwise.

where 𝑤𝑖𝑗 equals 1 if there is a distance measurement between sensors 𝑖 and 𝑗 otherwise

it is zero. Thus the posterior for this example is

𝑝(t1, . . . , t4|y,w) ∝
∏︁

𝑖=2,...,6
𝑗=1,...,4

𝑖>𝑗

𝑓𝑖𝑗(t𝑖, t𝑗|𝑦𝑖𝑗, 𝑤𝑖𝑗).

The scatter plots, histograms, and kernel density estimation in Fig. 3-7a and b

highly resemble those in [128], further justifying the NSFG’s ability to represent highly

48



Figure 3-7: The sensor network localization example in [128]: samples and corre-
sponding histograms and kernel density estimation drawn by NSFG. The four black
triangular markers designate the groundtruth locations of four sensors whose posi-
tions are initially unknown. The two colored triangles designate the locations of two
sensors at known locations. The dashed lines indicate range measurements from the
various sensors to one another.

non-Gaussian posteriors.

3.5.4 Range-only SLAM with ambiguous data association

In Figs. 3-8 and 3-9, we evaluate the performance of NSFG on a range-only SLAM

problem with data association ambiguity. At time step 0, range measurements to two

beacons are acquired with the identify information of beacons; from pose 𝑋1 to 𝑋4,

however, the landmark association is ambiguous (i.e. the robot is unsure of which

landmark the distance measurement goes to). This class of problems was chosen as

the posterior distribution is highly complex and demonstrates that NSFG can solve

mixed continuous-discrete inference problems. In ground truth, 𝐿1 is observed by 𝑋1

and 𝑋2 while 𝑋3 and 𝑋4 spot 𝐿2.

As seen in Fig. 3-8, NSFG displays the posterior distribution that arises from this
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Figure 3-8: Scatter plots for posteriors of a range-only SLAM problem with data
association ambiguity using NSFG. The dashed red lines from the same robot pose
(X) to multiple landmarks (L) denote a range measurement that can be associated
with all these landmarks. Black lines denote measurements with known association.

situation and is capable of disambiguating the landmark locations by time step 7.

Alternatively, the posterior with data-association ambiguity can be represented

with the following mixture model:

𝑝(Θ|z) =

|𝒟|∑︁
𝑖=1

𝑤𝑖𝑝(Θ|𝑧, 𝑑𝑖), (3.6)

𝑤𝑖 =
𝑝(𝑧|𝑑𝑖)𝑝(𝑑𝑖)∑︀|𝒟|
𝑖=1 𝑝(z|𝑑𝑖)𝑝(𝑑𝑖)

, (3.7)

where 𝒟 denotes the set all data association combinations. Each mixture component

stems from one of the data association hypotheses, i.e., 𝑝(Θ|𝑧, 𝑑𝑖).

Fixing the data association for a given combination, 𝑑𝑖, results in a new posterior,
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Figure 3-9: Weights and posteriors under different data associations. (a) and (b) are
estimated weights of data association hypotheses at time step 2 and 4 respectively.
(c) and (d) are posterior samples formed by combining samples from individual com-
ponents in Eq. (3.6).

𝑝(Θ|𝑧, 𝑑𝑖). For the new posterior, NSFG can draw samples and estimate the evidence,

𝑝(z|𝑑𝑖). As there is no prior on data associations, 𝑝(𝑑𝑖) is assumed to be 1
|𝒟| . Thus,

the weights of components in (3.6), 𝑤𝑖, can be computed if we apply NSFG to solve

factor graphs resulted from all combinations of data association (Fig. 3-9, top). A

new ensemble of samples representing the joint posterior can be formed by performing

re-sampling over the samples and weights for different data associations, as seen in

the bottom of Fig. 3-9. These scatter plots resemble their counterparts in Fig. 3-8

well. Effectively, this demonstrates that NSFG is self-consistent and can be used in

multiple ways to reliably approximate complex posterior distributions.
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3.5.5 Real-world dataset

We apply NSFG to solve early time steps in the Plaza1 dataset [33]. The dataset

provides a sequence of timestamped odometry and range measurements collected by

a mobile robot in a planar environment. The ranges were measured between the

robot and four landmarks using ultra-wideband sensors for which a noise model can

be found in [61]. We use measurements in the early stage of the sequence to create

a range-only SLAM factor graph. The factor graph involves 29 robot poses and 4

landmark locations, thus leading to a 95-dimensional posterior distribution at the

final time step. The posterior distribution contains one prior factor, twenty-eight

odometry factors, and thirty-three range factors. Additionally, we generate three

more synthetic problems from this dataset which associate 20%, 40%, and 60% of

range measurements with all landmarks. Such a range measurement with ambiguous

data association (ADA) is modeled as a sum-mixture (3.5). These mixture factors are

expected to incur a higher function evaluation cost than binary factors (a mixture

factor entails evaluating 4 binary factors, given 4 landmarks here). We use these

synthetic problems to investigate the impact of complex likelihood factor sets on the

performance of NSFG.

Fig. 3-10a shows samples drawn by NSFG at time steps 21 and 24. Given data

association (0% ADA), we estimate that the posterior at time step 21 is dominated

by two modes, which differ in the location of landmark 𝐿3; at time step 24, the

posterior becomes unimodal. In contrast, the belief of landmark 𝐿3 becomes much

more uncertain in the 60% ADA case. The RMSE in Fig. 3-10b supports this claim

of distributional uncertainty. The transition from multimodal to unimodal posteriors

sharply decreases the RMSE in all cases. However, such sharp reduction occurs to

the 60% ADA case later than other cases. In the end of the sequence, the RMSE of

60% ADA converges to a low value, indicating the recovery of the groundtruth mode.

As seen in Fig. 3-10b, more ADA factors incur greater computational cost, but these

factors do not alter the scaling behavior of runtime with respect to dimensions. Note

that later time steps entail more poses and greater dimensionality. In addition, we
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Figure 3-10: Plaza1 dataset with different fractions of ADA: (a) posterior samples
and (b) runtime and error. In plot (a), black lines indicate range measurements
with known data association. Red lines from a robot pose indicate ambiguous range
measurements. In (b), the shaded area indicates the 95% confidence interval estimated
by six runs with different random seeds.

solve each of the factor graphs six times using different random seeds. The narrow

error bands in Fig. 3-10b indicate that random seeds have little effect on NSFG.

We note that NSFG confirms that the joint posterior of landmarks and the robot

path becomes peaked at a single point within the early time steps solved here. For the

subsequent time steps in the dataset, one can confidently apply the MAP estimation

and (unimodal) Gaussian approximation to represent the joint posterior.

3.6 Summary

We introduced nested sampling methods to directly draw samples from the posterior

distributions encountered in non-Gaussian SLAM problems, pursuing the bona fide
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shape of the posterior. Leveraging the sparsity structure of SLAM factor graphs, our

proposed approach, NSFG, provides nested sampling with informative prior distribu-

tions which can be efficiently sampled, leading to computational benefits for nested

sampling methods.

We have demonstrated the advantage of NSFG over other sampling techniques

and state-of-the-art Gaussian/non-Gaussian SLAM algorithms. NSFG presents su-

perior robustness in inferring posteriors than all other approaches and operates over

an order of magnitude faster than other sampling techniques. Additionally, we showed

that the estimate of evidence, as a unique benefit of nested sampling, can be used to

compute the posterior belief of ambiguous data associations, indicating the potential

of NSFG for solving mixed continuous-discrete inference problems. Lastly, the per-

formance of NSFG was demonstrated to be consistent under various conditions such

as dimensionality, fractions of ambiguous data associations, and random seeding.

We believe that NSFG can be a promising tool for providing reference solutions

for the posteriors in non-Gaussian SLAM problems. These solutions can aid accuracy

evaluation of approximate inference algorithms and promote deeper understanding of

uncertainty propagation on cyclic non-Gaussian SLAM factor graphs. Future work

includes developing goodness-of-fit criteria of posterior samples for SLAM.
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Chapter 4

Real-time inference of marginal

posteriors in SLAM via blending

Gaussian approximation and particle

filters

The content in this chapter is mainly based on the following paper:

• Qiangqiang Huang, John J. Leonard. GAPSLAM: Blending Gaussian Approximation

and Particle Filters for Real-Time Non-Gaussian SLAM. IEEE/RSJ Interna-

tional Conference on Intelligent Robots and System (IROS), 2023.

4.1 Introduction

The NSFG algorithm in Chapter 3 provides high-quality samples as a reference so-

lution for full posterior inference, but is computationally intractable for real-time

applications. This chapter develops a scalable, real-time algorithm to infer marginal

posteriors in SLAM. A highlight of this chapter is that, in Sec. 4.5, we describe a

streaming platform that we developed to conduct live demo of object-based SLAM.

As mentioned in Chapter 1.1.2, standard real-time full posterior inference tech-
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niques, such as Gaussian approximation and particle filters, either lack expressiveness

for representing non-Gaussian posteriors or suffer from performance degeneracy when

estimating high-dimensional posteriors. By blending advantages of the Gaussian

Approximation and Particle filters on scalability and non-Gaussian estimation, re-

spectively, we present a novel algorithm, GAPSLAM, to infer marginal posteriors

encountered in SLAM. The contributions of the chapter include:

1. An adaptive modeling strategy whereby only marginals with great uncertainty

are sampled by particle filters, while others are represented by the Gaussian

approximation.

2. An uncertainty-aware re-initialization technique that leverages particle filters

to reset linearization points in the nonlinear optimization solver.

3. Range-only and object-based bearing-only SLAM experiments that demonstrate

the scalability, generalizability, and accuracy of GAPSLAM, as well as its ability

to precisely describe the evolution of non-Gaussian posteriors in real-time.

4.2 Problem statement

We focus on landmark-based SLAM. Let X𝑡 := (𝑋0, 𝑋1, . . . , 𝑋𝑡) be robot pose vari-

ables up to time step 𝑡 where 𝑋𝑖 ∈ SE(𝑑). Landmark variables are denoted by

L𝑛 := (𝐿1, 𝐿2, . . . , 𝐿𝑛) where each element denotes the location or pose of a land-

mark (e.g., ultra-wideband tags, 3D points of visual features, and daily objects). For

SLAM problems, we consider two types of measurements: i) odometry and ii) land-

mark measurements. Let o𝑡 := (𝑜1, 𝑜2, . . . , 𝑜𝑡) be odometry measurements of which

each is modeled by the likelihood function 𝑝(𝑜𝑖|𝑋𝑖−1, 𝑋𝑖). Without loss of general-

ity, for the ease of notation in the method formulation, we assume the robot makes

at most a landmark measurement at a time. Let z𝑡 := (𝑧0, 𝑧1, . . . , 𝑧𝑡) be all land-

mark measurements in which each is modeled by the likelihood function 𝑝(𝑧𝑖|𝑋𝑖, 𝐿𝑑𝑖),

where 𝑑𝑖 ∈ {1, 2, . . . , 𝑛} is the landmark index associated with measurement 𝑧𝑖. Let

d𝑡 := (𝑑0, 𝑑1, . . . , 𝑑𝑡) be data associations for all landmark measurements thus the
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posterior of robot and landmark variables at time step 𝑡 can be formulated by

𝑝(X𝑡,L𝑛|z𝑡,o𝑡,d𝑡) (4.1)

Bayes∝
𝑡∏︁

𝑖=0

𝑝(𝑧𝑖|𝑋𝑖, 𝐿𝑑𝑖)
𝑡∏︁

𝑖=1

𝑝(𝑜𝑖|𝑋𝑖−1, 𝑋𝑖)𝑝(X,L), (4.2)

where 𝑝(X,L) denotes the prior. Our goal is to infer marginal posteriors.

4.3 Approach

Our method represents marginals either by samples or parametric models, depending

on the uncertainty of the marginal. This hybrid density modeling aims to achieve a

balance between computational efficiency and expressiveness. Our method is inspired

by a typical observation about the posterior: oftentimes, only a few of the landmarks

have very uncertain marginal posteriors, while marginals of most variables can be well

described by Gaussian distributions. For example, a noisy range-only or bearing-only

measurement between a robot pose and a landmark can simulate either spherical

or conic landmark distributions in 3D, while accumulated measurements may well

constrain the landmark to a concentrated and (almost) unimodal distribution.

Specifically, we use particle filters to estimate very uncertain landmarks for the

expressiveness of sample-based density representations. Meanwhile, we maintain a

Gaussian approximation of the posterior for computation efficiency. Fig. 4-1 illus-

trates our method. Combining these two techniques leads to a win-win situation

over time: i) the Gaussian approximation provides particle filters with a parametric

model of the smoothed robot path, reducing the sampling complexity to landmarks,

and ii) particle filters afford the Gaussian approximation statistically probable values

of landmarks, which can be used to explicitly reset linearization points in nonlinear

optimization solvers, thereby benefiting the pursuit of global optima. We describe

the details of our method in the following sections.
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Particle filters for sampling landmark distributions

Re-initializing
landmarks

Robot pose
distributions

X X

Landmark
Measurement

X Robot pose

(a) (b)

Gaussian approximation of the joint posterior

Figure 4-1: Illustration of the GAPSLAM algorithm: (a) a SLAM example, where
the robot moves along poses in green and makes measurements to landmarks in red,
and (b) our method, which blends Gaussain approximation in yellow and particle
filters in pink. The Gaussian approximation, centered on the maximum a posteri-
ori (MAP) estimate, provides robot pose distributions on which the particle filters
are conditioned to draw samples that represent landmark distributions. If a sample
attains a higher probability than the MAP estimate when evaluating the posterior,
landmarks in the Gaussian solver will be re-initialized by that sample.

4.3.1 Gaussian approximation

We denote the Gaussian approximation (GA) of the posterior at time step 𝑡 as

𝑔(X𝑡,L𝑛|z𝑡,o𝑡,d𝑡). We categorize all landmarks into a set of non-Gaussian landmarks

𝐿𝒩𝑡 and a set of Gaussian landmarks 𝐿𝒢𝑡 = L𝑛 ∖ 𝐿𝒩𝑡 , where 𝒩𝑡 ∪ 𝒢𝑡 = {1, 2, . . . , 𝑛}

and 𝒩𝑡 ∩ 𝒢𝑡 = ∅ (see Sec. 4.3.3 for the approach to identify Gaussian landmarks).

We use the Gaussian approximation to represent the posterior of robot poses and the

Gaussian landmarks. That is,

𝑝(X𝑡,L𝑛|z𝑡,o𝑡,d𝑡) (4.3)
GA
≈ 𝑝(𝐿𝒩𝑡 |X𝑡, 𝐿𝒢𝑡 , z𝑡,o𝑡,d𝑡)𝑔(X𝑡, 𝐿𝒢𝑡|z𝑡,o𝑡,d𝑡), (4.4)
CIR
= 𝑝(𝐿𝒩𝑡 |X𝑡, z𝑡,o𝑡,d𝑡)𝑔(X𝑡, 𝐿𝒢𝑡 |z𝑡,o𝑡,d𝑡), (4.5)

CIR
=

∏︁
𝑖∈𝒩𝑡

𝑝(𝐿𝑖|𝑋𝒱𝑖
, 𝑧𝒱𝑖

, 𝑑𝒱𝑖
)𝑔(X𝑡, 𝐿𝒢𝑡 |z𝑡,o𝑡,d𝑡) (4.6)

where 𝑋𝒱𝑖
denotes the set of robot poses that observed landmark 𝐿𝑖 (i.e., 𝒱𝑖 = {𝑗 ∈

[0, 𝑡]|𝑑𝑗 = 𝑖} denotes the time steps observing landmark 𝐿𝑖). The reduction from (4.4)

to (4.5) exploits the conditional independence relation (CIR) that landmarks are con-
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ditionally independent given a robot path. Note that while we use the CIR in a similar

way to typical Rao-Blackwellized particle filters (RBPFs) for SLAM (e.g., FastSLAM

2.0 [91]), our probabilistic modeling and inference methods differ from these RBPFs.

The Gaussian approximation can be computed via the Laplace approximation [10]:

1) finding the MAP estimate as the mean and 2) estimating the Hessian of the neg-

ative logarithm of the posterior at the MAP estimate as the covariance. In practice,

many nonlinear local optimization solvers, such as GTSAM, are capable of providing

efficient out-of-the-box solutions to the Gaussian approximation, although they are

subject to linearization errors and local optima in the MAP estimate. In this paper,

we refer to them as Gaussian solvers.

4.3.2 Marginal posterior of non-Gaussian landmarks

We will use particles to represent the marginal posterior of any non-Gaussian land-

mark 𝐿𝑖 ∈ 𝐿𝒩𝑡 . Alg. 3 summarizes how we draw the particles. Integrating out all

variables except 𝐿𝑖 in (4.6), we can formulate the marginal posterior by

𝑝(𝐿𝑖|z𝑡,o𝑡,d𝑡) (4.7)
GA
≈

∫︁
𝑋𝒱𝑖

𝑝(𝐿𝑖|𝑋𝒱𝑖
, 𝑧𝒱𝑖

, 𝑑𝒱𝑖
)𝑔(𝑋𝒱𝑖

|z𝑡,o𝑡,d𝑡) (4.8)

MC
≈ 1

𝐾

𝐾∑︁
𝑘=1

𝑝(𝐿𝑖|𝑋𝒱𝑖
= 𝑥

(𝑘)
𝒱𝑖
, 𝑧𝒱𝑖

, 𝑑𝒱𝑖
), (4.9)

where {𝑥(𝑘)𝒱𝑖
}𝐾𝑘=1 are𝐾 i.i.d. samples of part of the robot path drawn from the Gaussian

marginal 𝑔(𝑋𝒱𝑖
|z𝑡,o𝑡,d𝑡) (line 1 in Alg. 3). Monte Carlo (MC) integration is applied

in (4.9). The conditional of 𝐿𝑖 in (4.9) is a result of eliminating 𝐿𝑖 from factors

adjacent to 𝐿𝑖 (line 2 in Alg. 3), thus

𝑝(𝐿𝑖|𝑋𝒱𝑖
, 𝑧𝒱𝑖

, 𝑑𝒱𝑖
) =

𝜓(𝐿𝑖, 𝑋𝒱𝑖
)∫︀

𝐿𝑖
𝜓(𝐿𝑖, 𝑋𝒱𝑖

)
, (4.10)
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where

𝜓(𝐿𝑖, 𝑋𝒱𝑖
) =

∏︁
𝑗∈𝒱𝑖

𝑝(𝑧𝑗|𝑋𝑗, 𝐿𝑖)𝑝(𝐿𝑖). (4.11)

We use importance sampling to draw samples representing 𝑝(𝐿𝑖|𝑋𝒱𝑖
= 𝑥

(𝑘)
𝒱𝑖
, 𝑧𝒱𝑖

, 𝑑𝒱𝑖
).

We design the proposal distribution of landmark 𝐿𝑖 as the sum-mixture of binary

factors, as seen in

𝑞(𝐿𝑖;𝑥
(𝑘)
𝒱𝑖

) =
1

|𝒱𝑖|
∑︁
𝑗∈𝒱𝑖

𝑝(𝐿𝑖|𝑋𝑗 = 𝑥
(𝑘)
𝑗 , 𝑧𝑗). (4.12)

This proposal1 was chosen for two reasons: i) covering more area in the space of

the landmark variable and ii) it is efficient to draw landmark samples {𝑙(𝑚,𝑘)
𝑖 }𝑀𝑚=1

from the proposal 𝑞(𝐿𝑖) by sampling a multinomial distribution and binary factors

independently. With proposal samples {𝑙(𝑚,𝑘)
𝑖 }𝑀𝑚=1 in hand, the normalized weight of

each sample can be computed by

𝑤(𝑚,𝑘) ∝
𝑝(𝑙

(𝑚,𝑘)
𝑖 |𝑥(𝑘)𝒱𝑖

, 𝑧𝒱𝑖
, 𝑑𝒱𝑖

)

𝑞(𝑙
(𝑚,𝑘)
𝑖 ;𝑥

(𝑘)
𝒱𝑖

)
∝
𝜓(𝑙

(𝑚,𝑘)
𝑖 , 𝑥

(𝑘)
𝒱𝑖

)

𝑞(𝑙
(𝑚,𝑘)
𝑖 ;𝑥

(𝑘)
𝒱𝑖

)
, (4.13)

where
∑︀𝑀

𝑚=1𝑤
(𝑚,𝑘) = 1 (line 8 in Alg. 3). Finally we apply the re-sampling and

regularization steps in [4, Alg. 6] to generate equally weighted samples of 𝐿𝑖 (line 9

in Alg. 3).

Thus the marginal posterior in (4.9) can be approximated by samples, as seen in

𝑝(𝐿𝑖|z𝑡,o𝑡,d𝑡)
MC
≈ 𝑝(𝐿𝑖|z𝑡,o𝑡,d𝑡) (4.14)

=
1

𝐾

𝐾∑︁
𝑘=1

𝑀∑︁
𝑚=1

𝛿(𝐿𝑖 − 𝑙(𝑚,𝑘)
𝑖 ). (4.15)

To summarize, for each of the 𝐾 robot path samples, we draw 𝑀 landmark samples.

The delta functions (or other kernels) of all 𝐾𝑀 landmark samples can be used to
1Although we sacrificed sample diversity, we adopted a lighter-weight proposal in our experiments

to ensure computational efficiency. Specifically, we limited the number of components in the sum-
mixture to 5 and chose these components randomly.
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Algorithm 3: LandmarkSampler
Input: Landmark 𝑙, Gaussian solver 𝑔

1 Draw robot path samples 𝒳 from the Gaussian approx.
2 ℱ = {𝑓(𝑙,x)} ← All factors adjacent to 𝑙 // robot vars x

3 𝜓(𝑙,x)← Product of all factors in ℱ // potential func. (4.11)
4 𝑞(𝑙,x)← Sum of elements in ℱ // proposal density (4.12)
5 Initialize a set 𝒮 for storing landmark samples
6 for sample x̂ in 𝒳 do
7 Draw landmark samples ℒ from density 𝑞(𝑙,x = x̂)
8 Weights 𝒲 of landmark samples by computing 𝜓/𝑞
9 ℒ ← Resampling using ℒ and 𝒲

10 Add ℒ to 𝒮
11 return 𝒮 // samples of 𝑙

Algorithm 4: GAPSLAM
Input: New factor 𝑓 of landmark 𝑙, Gaussian solver 𝑔, dictionary 𝒟 of

non-Gaussian landmark samples
1 if l not in the Gaussian solver then // new landmark
2 Add 𝑙 to non-Gaussian landmarks 𝒟 as a new key

3 Add 𝑓 to the Gaussian solver
4 if 𝑙 in non-Gaussian landmarks 𝒟 then
5 LandmarkReinitializer(𝑙, 𝑔, 𝒟[𝑙]) // re-init. in the solver

6 Update the MAP estimate in the Gaussian solver
7 if 𝑙 in non-Gaussian landmarks 𝒟 then
8 𝒟[𝑙] = LandmarkSampler(𝑙, 𝑔) // update samples
9 Compute empirical covariance matrix 𝐶 of 𝒟[𝑙]

10 if the largest eigenvalue of 𝐶 is small then
11 Delete 𝑙 from 𝒟 // no longer non-Gaussian landmarks

12 return 𝑔 and 𝒟 // updated solver and dictionary

Algorithm 5: LandmarkReinitializer
Input: Landmark 𝑙, Gaussian solver 𝑔, samples 𝒮 of landmark 𝑙

1 𝜓(𝑙,x)← Product of all factors adjacent to 𝑙 // robot vars x

2 �̂�, x̂← Current estimate in the Gaussian solver 𝑔
3 𝑙* ← Value in {𝒮, �̂�} maximizes function 𝜓(𝑙,x = x̂)
4 Reset the value of 𝑙 in the Gaussian solver to 𝑙*
5 return 𝑔 // updated solver

approximate the marginal posterior of the landmark.
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4.3.3 Updates with new odometry and landmark measure-

ments

The previous sections describe how the Gaussian approximation helps compute the

particle-based belief of landmarks. Now we discuss how these particles provide the

Gaussian approximation with linearization points, thus leading to the uncertainty-

aware re-initialization in the Gaussian approximation. We will begin by analyzing

the incremental update with one time step.

From time step 𝑡 to time step 𝑡+1, the robot receives a new odometry reading 𝑜𝑡+1

and a new landmark measurement 𝑧𝑡+1. It is easy to create a new robot pose 𝑋𝑡+1 and

absorb the odometry 𝑜𝑡+1 to form the intermediate Gaussian 𝑔(X𝑡+1,L𝑛|z𝑡,o𝑡+1,d𝑡).

However, fusing the measurement 𝑧𝑡+1 is a more involved process. Alg. 4 summarizes

steps for tackling the landmark measurement. Assuming that the measurement 𝑧𝑡+1

comes from a landmark with index 𝑑𝑡+1
2, several cases are considered:

1. If the observed landmark 𝐿𝑑𝑡+1 is not new or a non-Gaussian landmark (lines

3 and 6 in Alg. 4), we simply add the likelihood model of 𝑧𝑡+1 (i.e., factor in

the algorithm) to the Gaussian solver to update the Gaussian approximation

without making any further changes.

2. If the observed landmark 𝐿𝑑𝑡+1 is new (line 2 in Alg. 4), i.e. 𝑑𝑡+1 = 𝑛 + 1, we

update the landmark set to L𝑛+1 = L𝑛 ∪ {𝐿𝑛+1} and indices of non-Gaussian

landmarks to 𝒩𝑡+1 = 𝒩𝑡 ∪ {𝑛+ 1}. We then add the likelihood model of

measurement 𝑧𝑡+1 to the Gaussian solver. Finally, we can simulate equally

weighted samples of the landmark using this single measurement and randomly

select a point from the samples as the initial guess of the landmark.

3. If the observed landmark 𝐿𝑑𝑡+1 is not new and is in non-Gaussian landmarks

𝐿𝒩𝑡 , this is the challenging case we will focus on.

In the third case, our goal is to use the new measurement 𝑧𝑡+1 to determine

whether we should explicitly re-initialize the non-Gaussian landmark in the Gaussian
2Data association and creation of new landmarks are left to the specific application in Sec. 4.4.2.
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solver (line 5 in Alg. 4). Furthermore, if our belief of the landmark converges to a

less uncertain situation after fusing measurement 𝑧𝑡+1, we remove the landmark from

the non-Gaussian set 𝐿𝒩𝑡 (line 11 in Alg. 4).

Algorithm 5 summarizes how we re-initialize a non-Gaussian landmark 𝐿𝑖. As

described in Sec. 4.3.2 and Alg. 3, we already have samples of the landmark at hand,

which can be passed to Alg. 5 as input. The union of the samples and the current

estimate of the landmark forms a set of candidate points for re-initialization. The

point in the set that maximizes the posterior will be used to re-initialize the landmark

(lines 3 and 4 in Alg. 5). During the evaluation of the posterior, all variables other

than the landmark are fixed by the current mean of the Gaussian approximation.

This reduces the evaluation to only the product of factors that are adjacent to the

landmark, simplifying the computation. The re-initialization can be formulated as

𝑙*𝑖 = argmax
𝑙𝑖∈{𝒮,�̂�𝑖}

𝜓(𝐿𝑖 = 𝑙𝑖, 𝑋𝒱𝑖
= �̂�𝒱𝑖

), (4.16)

where the potential 𝜓(·) is the same as (4.11), 𝒮 = {𝑙(𝑗)𝑖 }𝑀𝑗=1 denotes current samples

of the landmark, and �̂�𝑖 and �̂�𝒱𝑖
denote current estimates of the landmark and robot

poses in the Gaussian solver.

After performing the re-initialization, we compute the Gaussian approximation

for time step 𝑡 + 1 (line 6 in Alg. 4), 𝑔(X𝑡+1,L𝑛|z𝑡+1,o𝑡+1,d𝑡+1), where the new

measurement 𝑧𝑡+1 has been incorporated. Given the new Gaussian approximation,

we update samples of the marginal posterior of 𝐿𝑖 (line 8 in Alg. 4), which are cached

for potential re-initialization in the future. Following [12], we compute an empirical

covariance matrix of these samples as well as its largest eigenvalue. When the largest

eigenvalue falls below a threshold, it indicates that the belief of landmark 𝐿𝑖 has

become sufficiently certain, and 𝐿𝑖 is removed from the non-Gaussian landmark set

𝐿𝒩𝑡+1 (line 11 in Alg. 4). As a result, 𝐿𝑖 will no longer be estimated by particle filters

and will only be involved in updates in the Gaussian solver. Note that currently, we

set the threshold of the eigenvalue with predetermined values. One can explore au-
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tomatic approaches such as monitoring the convergence rate of the largest eigenvalue

or performing normality tests on samples.

4.3.4 Summary of the approach

Algorithms 3-5 summarize our approach. Algorithm 4 is the main process where we

update the Gaussian solver/approximation and a dictionary that maps non-Gaussian

landmarks to their samples.

4.4 Experiments and results

We implemented Algorithms 3-5 in Python by blending our in-house code of particle

filters and the Gaussian solver provided by the GTSAM library. In addition, we ap-

plied explicit regularization to the Gaussian solver by adding large-covariance priors

on new non-Gaussian landmarks. These prior factors were not involved in the sam-

pling or re-initialization and were removed once the corresponding landmarks were

removed from non-Gaussian landmarks. We perform two sets of experiments: 1) we

validate our solutions for distribution and point estimations using range-only SLAM

experiments, and 2) we demonstrate the generalizability and scalability of our method

using object-based bearing-only SLAM experiments. All experiments were conducted

on a laptop with a 2.30GHz Intel Core i7-10875H CPU running Ubuntu 20.04.4 LTS.

4.4.1 Range-only SLAM

Datasets and methods for comparison

The performance of GAPSLAM is evaluated by comparing it with other methods on

a range-only SLAM dataset, as range measurements can easily lead to highly non-

Gaussian/multi-modal posteriors. We use the Plaza 1 dataset [33] which provides

time-stamped range and odometry measurements collected by a mobile robot in a

planar environment. Ranges between the robot and four landmarks were measured

by an ultra-wideband ranging system so each range measurement was tagged with
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the identity of the landmark. Two methods were used for comparison: 1) NSFG [63],

which directly draws samples from the joint posterior using nested sampling methods

[120, 123] and is considered as reference solutions at the expense of computational

burden, and 2) RBPF-SOG [11], which models landmark conditionals as sum-of-

Gaussians (SOGs) in the RBPF framework, updates the SOGs using multi-hypothesis

EKFs, and attains real-time operation. We present two sets of results: 1) marginal

posteriors for demonstrating how the Gaussian approximation helps particle filters

to draw landmark samples, and 2) point estimates for validating the use of particle

filters in re-initializing the Gaussian approximation.

Results on marginal posteriors

We present the posteriors of early time steps, which are expected to be strongly non-

Gaussian (e.g., multi-modal). Fig. 4-2 shows samples drawn by different methods

to represent the posteriors. GAPSLAM shows good consistency with the reference

samples by NSFG, while RBPF-SOG overestimates the uncertainty in the posteriors,

as indicated by spurious modes of landmark 𝐿3 samples (blue dots in the last column

of Fig. 4-2). The excessive number of modes is an expected result of tracking multiple

hypotheses in SOGs. Although we applied the strategy suggested in [11] to prune

hypotheses with negligible weights, as shown by the decreasing blue line in the bottom

of Fig. 4-3b, the averaged number of modes per landmark is still 11 at time step 21.

In order to explain how GAPSLAM draws the samples in Fig. 4-2 and when the re-

initialization occurs, we can start by looking at the green confidence intervals, which

represent the Gaussian approximation. Samples of robot positions and Gaussian

landmarks are drawn from the Gaussian. At time step 21, 𝐿0 and 𝐿3 are non-Gaussian

landmarks, and we use the method described in Sec. 4.3.2 and Algorithm 3 to draw

their samples. Following (4.16), these samples are then used for re-initialization

across time steps 21 and 24, which is reflected by the increased computation time for

re-initialization in Fig. 4-3a. Because the set of Gaussian landmarks extends from

(𝐿1, 𝐿2) at time step 21 to all landmarks at time step 24, the number of non-Gaussian

landmarks drops to zero, as shown in the bottom of Fig. 4-3b.

65



Figure 4-2: Samples from marginal posteriors in the range-only experiment. The
robot moves from (0, 0) to pose 𝑋21 or 𝑋24, observing 4 landmarks 𝐿0−3. Black lines
and markers indicate the ground truth. Measurements are shown as dashed lines
(accumulated measurements are shown in the middle column). Gray dots indicate
robot position samples while colored dots denote landmark samples. Green ellipses
in GAPSLAM represent confidence intervals (2𝜎) of the Gaussian approximation.

Fig. 4-3a illustrates the computation time of different methods for updating their

probabilistic models. Note that the computation time for drawing dense samples

(𝐾 = 200,𝑀 = 100 in (4.15)) of landmarks shown in Fig. 4-2 is separately shown

in the top of Fig. 4-3b. There are two reasons for excluding it from Fig. 4-3a:

1) sampling landmark posteriors can be implemented as a parallel process, and 2)

RBPF-SOG does not need landmark samples to update the SOGs, and GAPSLAM

only needs sparse samples to assist the re-initialization to the Gaussian approxima-

tion. For the sparse samples (i.e., ‘update samples’ in Fig. 4-3a), we draw landmark

samples given only the current mean of the robot path (i.e., 𝐾 = 1 in (4.15)). While
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(a) (b) (c)

Figure 4-3: Performance comparison at early time steps in the Plaza1 dataset: (a)
computational time for updating probabilistic models, (b) computational time for pos-
terior samples of landmarks, the number of non-Gaussian landmarks in GAPSLAM,
and the averaged number of modes per landmark in RBPF-SOG, and (c) the root
mean square error (RMSE) of point estimates and the maximum mean discrepancy
(MMD) [52] of landmark samples. The MMD is a distance between two distributions
represented by samples. We compute the MMD between the reference samples and
samples by GAPSLAM (or RBPF-SOG), so a lower MMD means samples that de-
scribe the posterior better. Error bands indicate the mean and standard deviation
across 6 runs with different random seeds.

sampling landmark posteriors consumes slightly more computation time than up-

dating models in GAPSLAM before time step 24, the sampling still supports an

update frequency of at least 30 Hz. After time step 24, there are no non-Gaussian

landmarks, so GAPSLAM is just the Gaussian solver with additional functions for

sampling Gaussian marginals, which enjoys significantly faster speeds.

Fig. 4-3c presents the performance evaluation of point estimates and distribution

estimation using the root mean square error (RMSE) and maximum mean discrepancy

(MMD) [52], respectively. We compute the MMD between samples by GAPSLAM (or

RBPF-SOG) and the reference samples by NSFG. The MMD is a distance between

two distributions represented by samples, so a lower MMD here indicates a more

accurate set of samples for representing posteriors. The results show that GAPSLAM

significantly outperforms RBPF-SOG in terms of MMD, especially after time step 21

when the spurious modes in SOGs become more prominent, providing quantitative

evidence of the superior accuracy of GAPSLAM in sampling posteriors. Additionally,

it is worth noting that the RMSE of GAPSLAM only slightly outperforms that of

RBPF-SOG at these early time steps. This indicates that MMD is a more suitable
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Table 4.1: Point estimates for the full sequence of the Plaza1 dataset. The RMSE
is presented by the mean ± standard deviation across 50 runs with different random
seeds which lead to different random initial values in the Gaussian solver. The case
‘GAP. w/o reinit.’ serves as an ablation study and is configured by disabling the non-
Gaussian landmarks set and operations for re-initialization and sampling, which is
essentially just GTSAM with the explicit regularization treatment (large-covariance
priors). The RMSE in this case is computed on 29 out of 50 runs (i.e., 58% success
rate) that were not ceased by the GTSAM error, indeterminant linear system. The
GTSAM error is expected because, in this problem, bad initial values may incur
near-singular linear systems.

Metric Odom. GAPSLAM RBPF-SOG GAP. w/o reinit.

RMSE (cm) 639.6 34.4± 0.0 56.0± 5.4 34.5± 0.0

Success rate (%) - 100 100 58

evaluation metric than RMSE for full posterior inference, especially in highly non-

Gaussian settings.

Results on point estimates

Table 4.1 presents the errors of point estimates for the entire Plaza1 sequence. RBPF-

SOG incurs less accurate and consistent results due to the particle depletion issue.

GAPSLAM without re-initialization is essentially the Gaussian solver with additional

priors on landmarks. However, only 58% of runs without re-initialization return so-

lutions despite having RMSE values comparable to those of GAPSLAM. The su-

perior performance of GAPSLAM supports the effectiveness of the sample-based,

uncertainty-aware re-initialization.

4.4.2 Object-based bearing-only SLAM

Datasets and real-world experiments

We estimate 6DOF camera poses and a map of object locations, using visual odometry

and object detections from RGB videos. We aim to demonstrate the scalability of

GAPSLAM to three-dimensional (3D) environments and its ability to fuse other types

of measurements such as bearing-only. We test GAPSLAM using RGB data from
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Figure 4-4: Estimates made by GAPSLAM for the realworld RGB sequence: (a,b,c)
samples or confidence intervals (3𝜎) of object locations in 3D and their reprojection in
images at key frames 10, 20, and 30, (d) final estimates of camera poses and samples
and confidence intervals of object locations (we show samples of only 5 non-Gaussian
landmarks to avoid clutter), and (e) a comparison of trajectory estimates with the
pseudo ground truth. ORBSLAM3 did not close the big loop between ‘leave’ and
‘return’ due to the large change (∼180 degrees) in viewing angles.

the RGB-D Scenes Dataset v2 [80] and a video collected by a monocular camera in

our office area. For visual odometry, we use camera poses of key frames computed by

ORB-SLAM3 [19], while object classes and masks in the key frames are detected using

the Detic detector [142]. Camera poses are optimized using both visual odometry and

measurements to objects.

Pre-processing object detections

We treat the center 𝑧𝑘 of an object mask on an image as a projection factor that models

the reprojection error ℎ(𝑥𝑖, 𝑙𝑗;𝐾)−𝑧𝑖, where ℎ(·) denotes the reprojection of 3D object

center 𝑙𝑗 in the image with pose 𝑥𝑖 and camera intrinsics 𝐾. This measurement 𝑧𝑘

is either associated with an existing landmark or yields a new landmark, depending

on the semantic and geometric information of the map. Thus wrong semantic labels

may affect data association or spawn spurious landmarks. On the other hand, partial

views of objects, which are often caused by occlusions or objects on image edges, lead

to 2D mask centers that significantly deviate from the object center in 3D. To address

these issues, we pre-process object detections as follows:

• Rejecting object detections that are potentially occluded by other detections on

the image. Specifically, for any pair of detections (say 𝑖 and 𝑗) whose bounding

boxes intersect, one of the detections (say 𝑖) will be discarded if any of the
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following conditions is satisfied:

– The object mask of detection 𝑖 is smaller than a fraction (e.g., 10% in our

experiments) of the mask of detection 𝑗. This condition is for rejecting

very small masks.

– The area of mask 𝑖 within the bounding-box intersection is smaller than

that of mask 𝑗 and the area ratio between the intersection and the mask 𝑖

is greater than a fraction (e.g., 10% in our experiments). This condition is

for rejecting object detections that may be occluded by large bounding-box

intersections.

• Increasing uncertainty in noise models of object mask centers that are close to

image edges. Let us denote the relative position of the center of an object mask

on an image as (𝑟𝑥, 𝑟𝑦) ∈ [−1, 1]2 so 𝑟𝑥 = 0 and 𝑟𝑦 = 0 indicate a mask center

located at the image center and |𝑟𝑥| or |𝑟𝑦| that approaches 1 indicates a mask

center that is close to image edges. Thus we define standard deviations in the

noise model as

𝜎𝑥 = 𝛿𝑥(1− |𝑟𝑥|) + max(𝛿𝑥, 𝛿𝑦)|𝑟𝑥|, (4.17)

𝜎𝑦 = 𝛿𝑦(1− |𝑟𝑦|) + max(𝛿𝑥, 𝛿𝑦)|𝑟𝑦| (4.18)

where 𝛿𝑥 and 𝛿𝑦 denote standard deviations of the mask in pixels.

• Rejecting any object detection which cannot be associated with landmarks in

the same class via the maximum likelihood (ML) data association [70, 95] but

passes the data association with landmarks that belong to different classes. This

step intends discarding detections with wrong object classes. See the following

section about the data association.

Data association and creation of new landmarks

We choose to implement the ML data association with some additional treatment

for exploiting semantic information in object detections and posterior samples in
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GAPSLAM. For a mask center 𝑧𝑘 labeled by an object class and observed from pose

𝑥𝑖, we first compute its Mahalanobis distances to reprojections of any landmark 𝑙𝑗 in

the same class, as defined in

𝐷2
𝑘𝑗 = ‖ℎ(x̂)− 𝑧𝑘‖2𝐶 (4.19)

where x = (𝑥𝑖, 𝑙𝑗) and

𝐶 =
𝜕ℎ

𝜕x

⃒⃒⃒⃒
x̂

Σ
𝜕ℎ

𝜕x

⃒⃒⃒⃒𝑇
x̂

+ Γ. (4.20)

Σ is the covariance between 𝑥𝑖 and 𝑙𝑗 in the Gaussian approximation of the posterior.

Γ is the covariance of measurement noise model (e.g., (4.17) and (4.18)). The mea-

surement is associated with 𝑙𝑗 if 𝐷2
𝑘𝑗 is the smallest among landmarks in the same

class and passes the chi-square test, 𝐷2
𝑘𝑗 < 𝒳 2

𝑑,𝛼, where 𝑑 is the dimension of the

measurement and 𝛼 is the desired confidence level.

Note that the quality of the Gaussian approximation affects the ML data associ-

ation so, if the ML data association does not accept any landmark, we then perform

another round of data association using landmark samples. For any landmark 𝑙𝑗 in

the same class as detection 𝑧𝑘, we reproject samples of 𝑙𝑗 onto the image and count

the percent 𝑝𝑘𝑗 of samples that fall in the bounding box of the detection. The detec-

tion is associated with 𝑙𝑗 if 𝑝𝑘𝑗 is the highest among landmarks in the same class and

higher than a threshold (e.g., 10% in our experiments).

If the sample-based data association does not accept any landmark either, we

create a new landmark in the map.

Results

Fig. 4-4 shows qualitative results on our realworld sequence. We set the Detic detector

to recognize only a certain number of classes: cup, cereal box, trash can, skateboard,

office chair, football, bottle, traffic cone, and toy car since they are quite common in

our office and we found Detic worked with good recall and precision for these classes.
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Figs. 4-4a, b, and c show how marginal posteriors of object locations evolve over

key frames 10, 20, and 30, which occur before the ‘leave’ arrow on the path in Fig.

4-4e. The trash can in Fig. 4-4b and the chair in Fig. 4-4c have been identified

as Gaussian landmarks by GAPSLAM so we draw confidence intervals (3𝜎) of their

locations using the Gaussian approximation in lieu of samples.

There are 415 camera poses and 100 landmarks being created in the end. Fig. 4-

4d visualizes all camera poses and landmarks marginals in 3D. Fig. 4-4e compares the

pseudo ground truth and the estimated trajectories by GAPSLAM and ORBSLAM3.

ORBSLAM3 fails to close the big loop between ‘leave’ and ‘return’ since the camera

returns from an opposite viewing angle, and the bag-of-word approach in ORBSLAM3

does not recognize the return. The trajectory by GAPSLAM is aligned with the

pseudo ground truth much better since object detections introduce many loop closures

along the path. We found object detections by Detic performed consistently well

under big changes of viewing angles. In GAPSLAM, the big loop between ‘leave’ and

‘return’ is successfully closed when the camera returns to and recognizes chairs and

trash cans that appeared at early key frames (Figs. 4-4a, b, and c). The pseudo

ground truth is the early portion of ORBSLAM3 results on a longer video, which

circles our office three times along the same path, so the early portion has been

corrected by loop closures introduced in the later portion.

Table 4.2 shows the RMSEs of estimated trajectories on the Scenes v2 sequences

and our realworld sequence. GAPSLAM attains lowest errors in all the sequences.

We attribute this accuracy to two reasons: 1) extra constraints introduced by object-

based measurements, and 2) functions in the GAPSLAM algorithm. We also disable

some functions in the object-based SLAM system to demonstrate their contributions

to the estimation of the path. We find the pre-processing makes the biggest impact

to the estimation while the re-initialization ranks the second and the sample-based

data association ranks the third. Disabling all of them incurs significant estimation

errors in some of the sequences (e.g., seqs. 9 and realwrold).

Fig. 4-5 shows the runtime of our system for the realworld sequence. The system

implemented in Python supports an update frequency of 6 Hz for the slowest key

72



Table 4.2: Root mean square error (cm) of estimated paths under different settings.
Each row below GAPSLAM serves as an ablation study that disables one (or three)
of the functions in the object-based SLAM system.

Method Sequences in RGB-D Scenes Dataset v2 Real
world1 2 3 4 9 10

ORBSLAM3 1.9 2.2 2.0 2.0 2.6 3.7 14.0
GAPSLAM 0.9 1.0 0.7 1.2 0.7 2.6 5.2
- no pre-processing 1.0 1.0 0.8 1.4 2.4 2.7 6.6
- no sample-based DA 0.9 1.0 0.7 1.2 0.8 2.6 5.8
- no reinitialization 0.9 1.0 0.8 1.3 0.7 2.6 6.6
- disable all above 1.0 2.2 0.9 1.3 4.2 2.7 9.5

Table 4.3: Runtime profiling of the object-based SLAM system and specifics for
different datasets.

Items Sequences in RGB-D Scenes Dataset v2 Real
world1 2 3 4 9 10

Time/frame (ms) 43.2 28.6 29.7 32.1 23.9 19.7 63.3
- pre-processing 4.2 2.7 2.2 3.0 1.5 1.1 9.0
- data association 6.2 4.6 7.6 7.2 7.0 4.8 9.8
- GAPSLAM 32.8 21.3 21.2 21.9 15.4 13.9 44.4

- reinit. 3.2 2.4 1.6 1.4 1.0 1.3 6.1
- GA 8.8 6.1 7.6 8.8 4.8 3.7 13.9
- samples 13.6 8.0 6.8 6.2 4.7 5.5 17.1

Obj. det./frame (-) 5.1 5.0 5.2 5.0 2.8 3.0 5.3
Key frames (-) 99 95 108 109 96 87 415
# of landmarks (-) 8 7 8 8 4 3 100

frames and, on average, affords an update frequency of 16 Hz. We are confident that

the runtime can be greatly optimized by an improved implementation. Given that we

only process key frames, GAPSLAM is able to support real-time operation. Table 4.3

shows the runtime profiling of our system and specifics of different datasets. The

runtime on Scenes v2 sequences is expected to be faster since the sequences involve

fewer poses and objects. The crux of averaged runtime is on steps for updating

samples and the Gaussian approximation. However, Fig. 4-5 shows that updating

samples only dominates the runtime in early key frames, when many non-Gaussian
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Figure 4-5: Runtime profiling of the object-based SLAM system (in Python).

landmarks had just been created. Revisiting objects at later key frames reduces the

uncertainty in the posteriors of object locations, so more and more objects are moved

to the set of Gaussian landmarks. Thus the computation burden gradually transfers

to updating the Gaussian approximation. The scalability of updating the Gaussian

approximation can be improved via many strategies such as fix-lag smoothing [31].

4.5 Live demo: a streaming platform for object-based

SLAM

We developed a streaming platform for executing real-time object-based SLAM (see

Fig. 4-6). The platform consists of a web-based client application on a mobile device

and a centralized SLAM application server that can handle multiple connected clients

simultaneously. The mobile client offers instant feedback to the user while uploading a
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camera feed to the SLAM server in real-time. The SLAM server is an implementation

of the GAPSLAM algorithm [62] that offers undelayed initialization of objects via a

hybrid representation of particles and Gaussian models for describing probable object

locations (see Fig. 4-7). We highlight two key features of our technical demonstration:

First, our ability to deploy over-the-air through the browser on multiple mobile and

robot hardware platforms, enabling the sharing of mapping results among multiple

online peers. Second, our system renders critical feedback to the user by visualizing

the uncertainty of the camera pose and object location estimates and their evolution

as object detection accrues. A sample video about the demo can be found at https:

//youtu.be/4XnWBBHBjc8.

SLAM Serverclient

mobile devices

results

video

Figure 4-6: The streaming platform for real-time object-based SLAM.

(a) (b)

Figure 4-7: Object-based SLAM results: a) projection of object representations and
b) bird view of the camera and object representations.
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4.5.1 Detailed implementation

The mobile devices simply stream videos to the server so the implementation was

mainly made on the SLAM server. The server is a workstation with an AMD Ryzen

ThreadRipper 3970X CPU with 32 cores and 64 threads and NVIDIA RTX 3090

GPUs. On the workstation, we detect objects in videos using Yolo-v8 [68], compute

visual odometry using ORB-SLAM3 [19], infer camera poses and object locations

using the GAPSLAM algorithm, and stream visualization to a web application which

can be viewed from any browser using the IP of the server. The web application was

developed using the web framework Flask. We used Redis, an in-memory key–value

database as the middleware to exchange data across processes.

4.6 Extension study of the GAPSLAM algorithm

4.6.1 Criteria for determining Gaussian landmarks

We used the largest eigenvalue of the empirical covariance of samples to determine

the transition to the Gaussian approximation, as mentioned in Sec 4.3.3. Fig. 4-8a

compares the largest eigenvalues derived from samples and Gaussians in the range-

only SLAM experiment in Sec. 4.4.1. Fig. 4-9 visualizes the samples and Gaussians

to explain the evolution of the largest eigenvalues. At time step 0, both sample-

based belief and Gaussians derive large eigenvalues for all landmarks. Note that we

added large-covariance prior factors on each landmark to enable the computation of

the Gaussians at this time step. Later at time step 5, the Gaussians for 𝐿1 and 𝐿2

converge to local modes, ignoring other modes captured by samples in Fig. 4-9, so

the largest eigenvalues in these Gaussians fall below eigenvalues derived from samples.

At time step 10, the sample-based belief of 𝐿1 and 𝐿2 then converges to uni-modal

distributions, leading to similar eigenvalues as the Gaussians for these two landmarks.

One can find in Fig. 4-8a that a small value such as 3.0 for this problem should serve

sufficiently well as the threshold of the eigenvalue derived from samples and determine

the transition to solely using the Gaussian approximation. However, the drawback of
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using the eigenvalue is that the threshold must change with the scale of problems or

landmarks.

We explore three other metrics whose values range from 0 to 1. The key idea

behind these metrics is to check the similarity between the covariances derived from

samples and Gaussians. We review a geometric and probabilistic interpretation of

the covariance to understand better the motivation for using these metrics. Fig. 4-10

shows an ellipsoid derived from a covariance. The length and directions of the semi-

axes of the ellipsoid are determined by the square roots of eigenvalues and eigenvectors

of the covariance. The ellipsoid can also be interpreted as the 1-𝜎 confidence interval

of the zero-mean Gaussian distribution with the covariance. Therefore, the similarity

between the covariances can be examined by comparing the ellipsoids constructed

from eigenvalues and eigenvectors.

The first metric is the correlation matrix distance (CMD) [58]

CMD(Σ1,Σ2) = 1− tr (Σ1Σ2)

‖Σ1‖𝑓‖Σ2‖𝑓
, (4.21)

where ‖ · ‖𝑓 denotes the Frobenius norm. Note that, while CMD is coined for pro-

cessing correlation matrices. Equation (4.21) also applies to covariances. The CMD

becomes zero if the covariances are equal up to a scaling factor. Fig. 4-8b shows

the CMD between covariances derived from samples and Gaussians of landmarks in

the range-only SLAM experiment. The shaded areas in the figure show that the

CMD drops below 0.1 when the sample-based belief converges to a uni-modal, cer-

tain situation, indicating that the CMD is also an effective metric for determining

the transition.

Figs. 4-8c and d show the remaining two metrics we explored, although they

are not effective for detecting the transition. Fig. 4-8c visualizes the evolution of

the cosine similarity between vectors of eigenvalues. The cosine similarity (CS) was

defined by

CS(Σ1,Σ2) =
v𝑇
1 v2

‖v1‖2‖v2‖2
, (4.22)

where v𝑖 is the vector of sorted eigenvalues of covariance Σ𝑖 and Σ𝑖 is a covariance
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(a) (b)

(c) (d)

Figure 4-8: Criteria for the transition from samples to Gaussians: a) largest eigen-
values of covariances, b) correlation matrix distance (CMD) [58], c) cosine similarity
between vectors of eigenvalues, and d) D’Agostino and Pearson’s normality test [24].
The shaded areas indicate time steps where landmark samples look similar to Gaus-
sians. The figure shows that the CMD, which ranges from 0 to 1, can serve as a good
criterion using a problem- or scale-independent threshold (e.g., 0.1).

derived from samples or Gaussians. Fig. 4-8c shows that the sharp rise of cosine

similarity for landmarks 𝐿1 or 𝐿2 does not occur at the time step when the distribu-

tion of samples is uni-modal and highly concentrated (i.e., shaded areas in Fig. 4-8).

The inefficacy of the cosine similarity is in part due to ignoring eigenvectors of the

covariance (e.g., directions of semi-axes of ellipsoid in Fig. 4-10). Last, we performed

D’Agostino and Pearson’s normality test on samples and show the resulting 𝑝-value

in Fig. 4-8d. Higher 𝑝-value indicates a higher likelihood that the samples were drawn

from a Gaussian distribution. Unfortunately, the 𝑝-value does not exhibit any useful

pattern. The inefficacy of the normality test is expected because the samples are still
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Time Step 0 Time Step 5 Time Step 10

Figure 4-9: GAPSLAM results on the Plaza1 dataset for early time steps. Color dots
are posterior samples and ellipses in green are 2-𝜎 confidence intervals in Gaussian
approximations.

Algorithm 6: GAPSLAM with the new criterion of Gaussian landmarks
Input: New factor 𝑓 of landmark 𝑙, Gaussian solver 𝑔, dictionary 𝒟 of

non-Gaussian landmark samples
1 if l not in the Gaussian solver then // new landmark
2 Add 𝑙 to non-Gaussian landmarks 𝒟 as a new key

3 Add 𝑓 to the Gaussian solver
4 if 𝑙 in non-Gaussian landmarks 𝒟 then
5 LandmarkReinitializer(𝑙, 𝑔, 𝒟[𝑙]) // re-init. in the solver

6 Update the MAP estimate in the Gaussian solver
7 if 𝑙 in non-Gaussian landmarks 𝒟 then
8 𝒟[𝑙] = LandmarkSampler(𝑙, 𝑔) // update samples
9 Compute empirical covariance matrix 𝐶 of 𝒟[𝑙]

10 Get covariance Σ of 𝑙 in the Gaussian solver // new criterion
11 if Correlation matrix distance between 𝐶 and Σ is small
12 and largest eigenvalues of 𝐶 and Σ are similar then // new criterion
13 Delete 𝑙 from 𝒟 // no longer non-Gaussian landmarks

14 return 𝑔 and 𝒟 // updated solver and dictionary

subject to the non-Gaussian marginal of landmarks and, statistically, do not resemble

a Gaussian.

Based on the investigation above, we update our criterion for determining the

transition of Gaussian approximation to satisfy the following two conditions:

• the CMD between covariances derived from samples and Gaussians is below

threshold 𝛼 ∈ [0, 1];
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Figure 4-10: Ellipsoid derived from the covariance 𝑑𝑖𝑎𝑔(9, 4, 1). The lengths of the
semi-axes of the ellipsoid are 3, 2, and 1, which are square roots of eigenvalues of
the covariance. The unit vectors indicate the directions of the semi-axes, which are
aligned with the eigenvectors of the covariance.

  (a) (b)

Figure 4-11: Results of the new criterion for determining the transition to Gaussians:
(a) RMSE and MMD for the range-only SLAM experiment shown in Fig. 4-3c and
(b) a comparison of trajectory estimates for the real-world object SLAM experiment
shown in Fig. 4-4e.

• the ratio between largest eigenvalues of the covariances is in the range [ 1
𝛽
, 𝛽]

where 𝛽 > 1.

Because the CMD only identifies similar covariances up to a scaling factor, we design
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the second condition to match scales of covariances derived from samples and Gaus-

sians. We set the threshold 𝛼 of CMD to 0.1 and the threshold 𝛽 to 1.2 as the new

criterion and perform experiments about range-only SLAM and object-based bearing-

only SLAM again. Fig. 4-11 shows that, while the new criterion consistently works

for both range-only SLAM and object-based bearing-only SLAM, the resulting per-

formance such as MMD or RMSE is slightly worse than that using the old criterion,

which sets thresholds for largest eigenvalues. This result indicates that if we know

the environment a priori, we had better set predetermined thresholds of the largest

eigenvalues to determine the transition from samples to Gaussians. However, the

new criterion enjoys improved generalizability for various environments. Algorithm 6

updates the GAPSLAM algorithm (i.e., Alg. 4) with the new criterion of Gaussian

landmarks.

4.6.2 Computational complexity

Time complexity of the GAPSLAM algorithm is dominated by solving the Gaus-

sian approximation and drawing samples of non-Gaussian landmarks, as seen in the

runtime profiling in Figs. 4-3 and 4-5. One can refer to [31, Ch. 4] for the com-

plexity of MAP inference in SLAM via solving least-squares, which is crucial in the

computation of the Gaussian approximation. Here, we focus on discussing the other

computational crux in the GAPSLAM algorithm, i.e., sampling the marginal of a

non-Gaussian landmark. The detailed version of the complexity in the sampling (i.e.,

Alg. 3) is 𝑂(𝑁3 +𝐾𝑁2 +𝑀𝑁𝐾) where 𝑁 = max𝑖 |𝑋𝒱𝑖
| denotes the maximal num-

ber of robot poses that observe the same non-Gaussian landmark, 𝐾 is the number

of robot path samples, and 𝑀 is the number of landmark samples per path. The

first two terms 𝑁3 +𝐾𝑁2 are the complexity of drawing 𝐾 robot path samples from

the Gaussian distribution via Cholesky decomposition of the covariance and matrix-

vector production. The last term 𝑀𝑁𝐾 is the complexity of using the importance

sampling in Sec. 4.3.2 to generate 𝐾𝑀 landmark samples from a density which is the

product of 𝑁 factors. Note that, if a landmark is observed by many robot poses, the

posterior belief of that landmark is generally very certain thus is highly likely being
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Figure 4-12: MMD of samples drawn from the joint posterior.

identified as a Gaussian landmark. Thus 𝑁 = max𝑖 |𝑋𝒱𝑖
| can be sufficiently bounded

by a constant which depends on the specific type of measurements. Therefore, the

complexity of drawing 𝐾𝑀 samples of a non-Gaussian landmark can be reduced to

𝑂(𝐾𝑀).

4.6.3 Samples of the joint posterior

The GAPSLAM algorithm can be extended to draw samples of the joint poste-

rior at the expense of computation resources. As shown in (4.11) and (4.13) of

Sec. 4.3.2, we are able draw 𝑀 landmark samples {𝑙(𝑚,𝑘)
𝑖 }𝑀𝑚=1 from the conditional

𝑝(𝐿𝑖|𝑋𝒱𝑖
= 𝑥

(𝑘)
𝒱𝑖
, 𝑧𝒱𝑖

, 𝑑𝒱𝑖
), given a robot path sample 𝑥

(𝑘)
𝒱𝑖

. We can randomly se-

lect one of the landmark samples and joint it with the robot path sample to form

a sample (𝑥𝒱𝑖
, 𝑙𝑖)

(𝑘) of the marginal of variables (𝑋𝒱𝑖
, 𝐿𝑖). The time complexity of

drawing 𝐾 samples {(𝑥𝒱𝑖
, 𝑙𝑖)

(𝑘)}𝐾𝑘=1 is still 𝑂(𝐾𝑀). Note that 𝑥𝒱𝑖
is part (i.e.,

some components) of a sample from the high-dimensional Gaussian approximation

𝑔(X𝑡, 𝐿𝒢𝑡|z𝑡,o𝑡,d𝑡). If we want to sample the joint posterior of all variables, we can

draw𝐾 samples from the Gaussian first and then sample conditionals of non-Gaussian

landmarks separately in parallel. The complexity of drawing 𝐾 joint posterior sam-

ples is 𝑂(𝐺3 +𝐾𝐺2 +𝐾𝑀𝑁𝑄) where 𝐺 = |X𝑡|+ |𝐿𝒢𝑡| is the number of robot poses
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and Gaussian landmarks and 𝑄 = |𝐿𝒩𝑡 | is the number of non-Gaussian landmarks.

Note that this time complexity covers the worst cases in computation. In practice,

the runtime performance can be greatly optimized via efficient implementation strate-

gies, including 1) utilizing matrix sparsity to alleviate the complexity 𝐺3 + 𝐾𝐺2 in

sampling the Gaussian and 2) parallelizing the sampling of non-Gaussian landmarks.

We draw samples from the joint posterior for the range-only SLAM dataset. These

samples are compared with samples from RBPF-SOG in terms of MMD. Note that

this MMD is computed using joint posterior samples provided by NSFG, so it is

different from Fig. 4-3, which shows the MMD of samples drawn from marginals.

Fig. 4-12 shows the MMD of samples drawn from the joint posterior. The lower

MMD by GAPSLAM indicates that the samples by GAPSLAM resemble the joint

posterior much better than those by RBPF-SOG.

4.7 Summary

We presented a real-time algorithm, GAPSLAM, that precisely infers non-Gaussian/multi-

modal marginal posteriors encountered in SLAM. Our experiments justified the ef-

ficacy of the adaptive modeling strategy for efficient full posterior inference, and

the uncertainty-aware re-initialization technique for explicitly correcting linearization

points in nonlinear optimization solvers. Future work includes inferring the joint pos-

terior of multiple variables, incorporating more complex likelihood of measurements

(e.g., learned orientation distributions [94], multi-modal data association [34]), and

applying GAPSLAM to realworld planning tasks based on the non-Gaussian belief of

obstacles [54].
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Chapter 5

Incremental inference of the joint

posterior in SLAM via learning

normalizing flows on the Bayes tree

The content in this chapter is mainly based on the following paper:

• Qiangqiang Huang, Can Pu, Kasra Khosoussi, David M. Rosen, Dehann Fourie,

Jonathan P. How, John J. Leonard. Incremental Non-Gaussian Inference for

SLAM Using Normalizing Flows. IEEE Transactions on Robotics (T-RO), 2023.

5.1 Introduction

Chapter 4 develops a scalable, real-time algorithm for full posterior inference of

marginals. Inferring the joint posterior is a much more challenging task due to the

increasing dimensionality of the joint posterior encountered in SLAM. This chapter

develops a scalable algorithm that incrementally updates a non-Gaussian, parametric

approximation of the joint posterior, beyond the Gaussian approximation. The tech-

nical goal in this chapter is to find a computationally tractable density representation

that has the necessary flexibility to approximate the joint posterior. Specifically,

we aim to develop an algorithm that is able to perform the following tasks in non-
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Gaussian settings:

Task 1. Solve for a distribution that effectively approximates the full posterior.

Task 2. Draw samples from the distribution to infer quantities of interest using Monte

Carlo integration.

Task 3. Allow incremental updates of the distribution.

A key step for scalability is to extend the Bayes tree, which was proposed in

iSAM2 [71] for analyzing the Gaussian approximation, to non-Gaussian settings. The

Bayes tree algorithm converts a cyclic factor graph into an acyclic directed graph

using a variable elimination game [57] and max-cardinality search [129]. From an

information-theoretic standpoint, the Bayes tree shows how to factorize the origi-

nal high-dimensional posterior into a sequence of low-dimensional conditionals that

encode a tree-like graphical model. We propose to learn non-Gaussian models of con-

ditionals that factorize the posterior using the Bayes tree. The learned non-Gaussian

models in turn reconstruct the posterior. To perform inference, we draw samples

sequentially from these models following the order governed by the Bayes tree.

We exploit normalizing flows to represent the non-Gaussian conditionals. Nor-

malizing flows, as emerging tools for density modeling [108, 37, 66, 109, 76, 101], have

shown strong expressive power for representing complex densities and support fast

sampling. An important property is that conditionals of the modeled density can be

extracted easily from a normalizing flow model, which perfectly matches our need for

modeling conditionals. Therefore, the problem statement in this chapter is to find

normalizing flows that can represent the joint posterior 2.1.

Contributions

We present a novel general solution, called normalizing flows for incremental smooth-

ing and mapping (NF-iSAM), to model and sample the joint posterior distribution of

general SLAM problems using the Bayes tree and the normalizing flow model. Key

contributions of this work include:
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1. NF-iSAM introduces normalizing flows to factor graph inference for robot per-

ception.

2. NF-iSAM generalizes the Bayes tree to perform full (non-Gaussian) posterior

estimation for the joint posterior distribution.

3. NF-iSAM augments normalizing flows from low-dimensional inference to high-

dimensional cyclic factor graphs.

4. NF-iSAM achieves superior accuracy in comparison to state-of-the-art SLAM

algorithms in describing the full posteriors encountered in highly non-Gaussian

SLAM settings.

Outline

The rest of this chapter is organized as follows. Sec. 5.2 presents the problem state-

ment and the high-level idea of the inference framework without digging into density

modeling techniques. Sec. 5.3 delineates the formulation for modeling densities and

the detailed algorithms. Sec. 5.4 summarizes our implementation and experimental

setup. Sec. 5.5 provides experimental results and demonstrates the advantages of our

algorithm in comparison with state-of-the-art algorithms. Finally, Sec. 5.6 concludes

with a summary of the contributions of this paper and a discussion of future research

directions.

5.2 Inference on the Bayes tree

5.2.1 Factor graphs and the Bayes tree

We provide a brief review of factor graphs and the Bayes tree which are the foundation

of our inference method. Posterior distributions in SLAM problems are usually repre-

sented by factor graphs [31], which have been introduced in Chapter 2.1.2. Fig. 5-1a

shows an example of factor graph.
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Figure 5-1: Illustration of core steps in NF-iSAM: (a) conversion from a factor graph
to the Bayes tree with elimination ordering (𝑋0, 𝑋1, 𝑋2, 𝐿1, 𝐿2) and (b) construction
of clique conditional sampler via normalizing flows. The colon in a Bayes tree node
splits frontal variables 𝐹𝐶 and separator 𝑆𝐶 . The normalizing flow model is learnt
from training samples by neural networks. In factors of Bayes tree node 𝐶1, the factor
𝑓4 is reverted to a Bayes net where the measurement variable 𝑍4 is treated unobserved
to enable ancestral sampling for rapidly simulating training samples (See Fig. 5-4 for
more details).

The Bayes tree is a directed variant of the junction tree [31]. Given a variable

elimination ordering, a factor graph can be converted to a Bayes tree by the variable

elimination algorithm [71, Alg. 2] and the Bayes tree algorithm [71, Alg. 3]. Nodes

on the Bayes tree represent cliques of variables as shown in Fig. 5-1(a). Variables

in a clique shared with its parent clique are called the separator while the remain-

der are frontal variables. The Bayes tree factorizes the posterior by a sequence of

conditionals [31, 44], as seen in

𝑝(Θ|𝑧) =
∏︁
𝐶∈C

𝑝(𝐹𝐶 |𝑆𝐶 , z) =
∏︁
𝐶∈C

𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶), (5.1)
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Figure 5-2: Illustration of learning and inference procedures on the Bayes tree. The
variable elimination ordering (𝑋0, 𝑋1, 𝑋2, 𝐿1, 𝐿2) for constructing Bayes trees is con-
sistent with that in Fig. 5-1. A Bayes tree node is denoted by 𝐶. The colon in a
Bayes tree node splits frontal and separator variables. The white node on the new
Bayes tree is the changes caused by new measurements. Updates of density models
only occur to the changed part on the Bayes tree. Green factors in a clique factor
graph are from user-defined factor graphs (e.g., old and new factor graphs here) while
blue factors are separator densities from child cliques and are passed to parent cliques
as new factors resulted from variable elimination.

where C is the collection of cliques, 𝐹𝐶 denotes the set of frontal variables in clique

𝐶, 𝑆𝐶 denotes the separator, and 𝑧𝐶 denotes the set of observations in and below

clique 𝐶 on the Bayes tree (we designate the root clique as the top of the tree).

The last equality in (5.1) is a result of applying the conditional independence re-

lation 𝐹𝐶 ⊥⊥ (z ∖ 𝑧𝐶)|𝑆𝐶 . Note that 𝑆𝐶 is the junction between clique 𝐶 and its

parent clique. Once 𝑆𝐶 is fixed with a realization, the measurements above 𝐶, i.e.,

z ∖ 𝑧𝐶 , will not affect 𝐹𝐶 . Thus, z ∖ 𝑧𝐶 can be excluded from the condition in (5.1).

The factorization (5.1) reflects the information-theoretical view of the Bayes tree we

mentioned in Section 5.1: a decomposition of the original high-dimensional posterior

into a sequence of low-dimensional clique conditionals 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶). We will solve a

sequence of low-dimensional density modeling problems to learn the clique condition-
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als. The learned conditionals in turn reconstruct the posterior, which enjoys better

scalability than directly learning the high-dimensional posterior.

5.2.2 Inference using the clique conditionals

We introduce the main idea of our inference method for modeling clique condition-

als and drawing samples from the full posterior distribution. The inference method

consists of two steps: (i) performing the bottom-up belief propagation on the Bayes

tree for learning the clique conditionals 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶) and (ii) applying ancestral sam-

pling [9, Ch. 8.1.2] to the learned conditionals for drawing posterior samples in a

top-down traversal of the Bayes tree (see the batch inference in Fig. 5-2 for an exam-

ple of the two steps).

The primary challenge is modeling the clique density 𝑝(𝐹𝐶 , 𝑆𝐶 |𝑧𝐶) and extracting

the clique conditional 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶) in the belief propagation. The bottom-up belief

propagation is the unidirectional sum-product message passing from the leaf nodes to

the root node in a tree [9, Fig. 8.52] (also known as the Shafer-Shenoy algorithm [117]

for junction trees). The clique density for any clique 𝐶, as a result of the product

operation in the sum-product, is formulated by

𝑝(𝐹𝐶 , 𝑆𝐶 |𝑧𝐶) ∝
∏︁
𝑞∈𝒞𝐶

𝑝(𝑆𝑞|𝑧𝑞)
∏︁

Θ𝑓𝑖
⊆𝐶

Θ𝑓𝑖
̸⊆𝑆𝑞

𝑓𝑖(Θ𝑓𝑖), (5.2)

where 𝑞 denotes any child clique of clique 𝐶 and 𝒞𝐶 indicates the set of the child

cliques. Relation (5.2) shows that the clique density contains some user-defined factors

𝑓(·) and separator densities 𝑝(𝑆𝑞|𝑧𝑞) which are resulted from variable elimination (i.e.

the sum operation) in the child cliques. We will introduce normalizing flows in the

following section to model the clique density as well as extract the clique conditional

and the separator density. The separator density 𝑝(𝑆𝐶 |𝑧𝐶) will be passed upwards as

a new factor for joining in the sum-product in the parent clique of 𝐶.

In addition, we will also use normalizing flows to construct conditional samplers

for each clique conditional 𝑝(𝐹𝐶 |𝑆𝐶 = 𝑠𝐶 , 𝑧𝐶) such that independent samples of 𝐹𝐶
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can be drawn once the separator is fixed by a realization 𝑠𝐶 . These conditional

samplers will be created during the belief propagation and cached for performing the

ancestral sampling in the top-down traversal.

5.3 SLAM via normalizing flows

We first briefly review normalizing flows in Section 5.3.1. We then present our novel

technique for modeling and learning clique conditional 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶) via normalizing

flows in Section 5.3.2. Finally, in Section 5.3.3 we describe our incremental inference

approach that generates joint posterior samples.

5.3.1 Normalizing flows

Normalizing flows have shown strong expressive power for modeling complex distribu-

tions. An extensive review can be found in [76, 101]. A normalizing flow is a transfor-

mation 𝑇 that maps a 𝐷-dimensional target random variable X := (𝑋1, . . . , 𝑋𝐷) onto

another 𝐷-dimensional random variable Y := (𝑌1, . . . , 𝑌𝐷) that follows a reference

distribution 𝑞(y). We choose the standard multivariate normal distribution 𝒩 (0, 𝐼𝐷)

as the reference distribution which is also a common choice in related literature for its

advantages in computation [37, 66, 109, 76, 101]. We will explain those advantages in

the later discussion of this subsection and, in particular, stress their connections with

some properties of the chosen reference distribution including sampling efficiency,

separability (i.e., independent components), and log-concavity. Our objective in this

subsection is to use the reference distribution, 𝑞(y), and the transformation, 𝑇 , to

model the target distribution, 𝑝(x); see Fig. 5-3 for an example.

We take the transformation to be a lower-triangular map:

𝑇 (x) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑇1(𝑥1)

𝑇2(𝑥1, 𝑥2)
...

𝑇𝐷(𝑥1, 𝑥2, . . . , 𝑥𝐷)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦1

𝑦2
...

𝑦𝐷

⎤⎥⎥⎥⎥⎥⎥⎦ = y, (5.3)
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where each function 𝑇𝑑 is differentiable, bijective, and increasing with respect to 𝑥𝑑

[108, 37, 66, 101, 109]. In general, a transformation between random variables of

two distributions without additional constraints is not unique. It has been proven,

however, that triangular maps to a standard Gaussian exist and are unique for any

non-vanishing densities [20, 14, 133]. Theoretically, the Knothe–Rosenblatt rear-

rangement provides a scheme to construct the triangular map by defining 𝑇1 to 𝑇𝐷

sequentially [133, Ch. 1]. However, it is computationally impractical to construct the

exact Knothe–Rosenblatt rearrangement for modeling a general multivariate density.

Thus, in practice, many works opt to estimate such a map by seeking the optimal

one among a parameterized family of triangular maps [38, 102, 66]. We will follow

the same practice and show how to solve for the optimal 𝑇 . Before the optimization

problem for 𝑇 , we review three useful properties of triangular maps that have been

widely exploited for constructing the map, drawing samples, and extracting marginals

and conditionals.

Property 1 : Since 𝑇𝑑 is differentiable, lower-triangular, and increasing with respect

to 𝑥𝑑, its Jacobian matrix is triangular with positive diagonals. The absolute value

of Jacobian determinant is thus given by,

|𝑇 ′(x)| =
𝐷∏︁

𝑑=1

𝜕𝑇𝑑
𝜕𝑥𝑑

. (5.4)

For any such 𝑇 , by change of variables, we have 𝑝(x;𝑇 ) = 𝑞(𝑇 (x)) |𝑇 ′(x)|, where

𝑝(x;𝑇 ) denotes a density defined by 𝑞(y) and 𝑇 for modeling 𝑝(x). Thus, with the

triangular structure, 𝑝(x;𝑇 ) can be expressed by

𝑝(x;𝑇 ) = 𝑞(𝑇 (x))
𝐷∏︁

𝑑=1

𝜕𝑇𝑑
𝜕𝑥𝑑

. (5.5)

The density model (5.5) can be evaluated once we can evaluate 𝑇 and its Jacobian.

Our goal is to find 𝑇 that makes 𝑝(x;𝑇 ) well approximate the target density 𝑝(x).

Property 2 : 𝑇𝑑 essentially models the conditional probability 𝑝(𝑥𝑑|𝑥1, . . . , 𝑥𝑑−1)

[66]. This idea is also referred to as autoregressive flows in literature [101, 76]. For
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Figure 5-3: A one-dimensional example of transformation function: histogram of
sample 𝑥 (left), transformation function 𝑇 (𝑥) (middle), and histogram of transformed
samples and reference variable 𝑦 ∼ 𝑁(0, 1) (right).

any 𝑑 where 2 ≤ 𝑑 ≤ 𝐷,

𝑝(𝑥1, . . . , 𝑥𝑑−1;𝑇 ) = 𝑞(𝑦1, . . . , 𝑦𝑑−1)
𝑑−1∏︁
𝑖=1

𝜕𝑇𝑖
𝜕𝑥𝑖

(5.6)

and

𝑝(𝑥1, . . . , 𝑥𝑑;𝑇 ) = 𝑞(𝑦1, . . . , 𝑦𝑑)
𝑑∏︁

𝑖=1

𝜕𝑇𝑖
𝜕𝑥𝑖

. (5.7)

Their quotient is simply

𝑝(𝑥𝑑|𝑥1, . . . , 𝑥𝑑−1;𝑇 ) = 𝑞(𝑦𝑑|𝑦1, . . . , 𝑦𝑑−1)
𝜕𝑇𝑑
𝜕𝑥𝑑

. (5.8)

Furthermore, since we defined 𝑞(y) as the standard multivariate normal distribution,

(5.8) can be reduced to

𝑝(𝑥𝑑|𝑥1, . . . , 𝑥𝑑−1;𝑇 ) = 𝑞(𝑦𝑑)
𝜕𝑇𝑑
𝜕𝑥𝑑

, (5.9)

where 𝑦𝑑 = 𝑇𝑑(𝑥1, . . . , 𝑥𝑑) and 𝑞(𝑦𝑑) is a one-dimensional normal distribution. Thus,

𝑇𝑑 fully determines how we model the conditional 𝑝(𝑥𝑑|𝑥1, . . . , 𝑥𝑑−1). This important

property enables extracting marginals and conditionals once 𝑇 is learned. We will

use this property to build desired clique conditional samplers on the Bayes tree in

Section 5.3.2.

Property 3 : The normalizing flow 𝑇 provides the following simple procedure for
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generating samples from 𝑝(x;𝑇 ):

1. Draw samples y ∼ 𝑞(y);

2. Solve for x by inverting 𝑇 , i.e.,

x = 𝑇−1(y) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑇−1
1 (𝑦1)

𝑇−1
2 (𝑦2;𝑥1)

...

𝑇−1
𝐷 (𝑦𝐷;𝑥1, 𝑥2, . . . , 𝑥𝐷−1)

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.10)

In the first step, we can directly draw samples from the standard multivariate normal

distribution 𝑞(y). Since 𝑇 is lower triangular, in the second step one can use a

forward substitution-type approach to solve for elements of x one by one. We denote

𝑥<𝑑 = (𝑥1, 𝑥2, . . . , 𝑥𝑑−1). Specifically, 𝑥<𝑑 is solved before 𝑥𝑑 so 𝑥<𝑑 can determine the

one-dimensional function 𝑇𝑑(· ;𝑥<𝑑) that maps 𝑥𝑑 to 𝑦𝑑. Since 𝑇𝑑 was constructed to

be invertible with respect to 𝑥𝑑, 𝑥𝑑 can be solved by evaluating the inverse function

of 𝑇𝑑(· ;𝑥<𝑑) at 𝑦𝑑. Computation of the inverse can be efficiently done numerically

or analytically, depending on the specific parameterization of 𝑇𝑑 [76, 101]. Thus, a

sample of y can be transformed to a sample of x ∼ 𝑝(x;𝑇 ) by computing components

𝑥1, . . . , 𝑥𝐷 recursively.

Optimal Normalizing Flow: It remains to explain how the triangular map 𝑇

in (5.3) can be obtained. Given 𝑛 i.i.d. training samples {x(𝑘)}𝑛𝑘=1 from 𝑝(x), we find

𝑇 by minimizing the Kullback–Leibler (KL) divergence between 𝑝(x) and 𝑝(x;𝑇 ).

In the following section (Sec. 5.3.2), we will present a simulation-based method for

obtaining these training samples in the context of factor graph inference; in this

section, we only focus on the procedure from training samples to normalizing flows

in Fig. 5-1b. Assuming training samples are given, an optimal triangular map 𝑇 ⋆ is
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given by,

𝑇 ⋆ ∈ argmin
𝑇∈T

𝐷KL (𝑝(x) ‖ 𝑝(x;𝑇 )) (5.11)

= argmin
𝑇∈T

∫︁
x

𝑝(x) log
𝑝(x)

𝑝(x;𝑇 )
dx (5.12)

= argmin
𝑇∈T

∫︁
x

−𝑝(x)
𝐷∑︁

𝑑=1

[︂
log 𝑞(𝑇𝑑) + log

𝜕𝑇𝑑
𝜕𝑥𝑑

]︂
dx (5.13)

≈ argmin
𝑇∈T

−
𝑛∑︁

𝑘=1

𝐷∑︁
𝑑=1

[︂
log 𝑞(𝑇𝑑) + log

𝜕𝑇𝑑
𝜕𝑥𝑑

]︂ ⃒⃒⃒⃒
x=x(𝑘)

(5.14)

= argmin
𝑇∈T

𝑛∑︁
𝑘=1

𝐷∑︁
𝑑=1

(︂
1

2
𝑇 2
𝑑 − log

𝜕𝑇𝑑
𝜕𝑥𝑑

)︂ ⃒⃒⃒⃒
x=x(𝑘)

, (5.15)

where (5.13) follows from (5.9) and also used the training samples to approximate

the expectation by Monte Carlo integration. T denotes all triangular maps defined

by (5.3). If the reference distribution is log-concave (e.g., Gaussian distributions here),

the cost function from (5.14) is convex. As the feasible set is also convex, (5.15) turns

out to be a convex optimization problem [6, Lemma 10]. Interested readers can find

more discussion in [88, 75, 102]. While (5.15) offers a theoretical pathway for finding

an optimal 𝑇 , it is not practical to solve (5.15) directly as it requires searching among

all admissible maps. To make this practical, we limit our search to admissible maps

in a parameterized family of transformations ℱ ⊂ T,

𝑇 ⋆ ∈ argmin
𝑇∈ℱ

𝑛∑︁
𝑘=1

𝐷∑︁
𝑑=1

(︂
1

2
𝑇 2
𝑑 (x(𝑘))− log

𝜕𝑇𝑑(x
(𝑘))

𝜕𝑥𝑑

)︂
. (5.16)

The parameterization choice determines whether or not the above optimization prob-

lem is convex. For example, if we let 𝑇1(𝑥1) = 𝑎𝑥1 + 𝑏 for a one-dimensional problem

(i.e., 𝐷 = 1), we can examine derivatives of the cost function to derive a close-formed

globally optimal solution under the parameterization, 𝑎⋆ = 1/𝜎𝑥1 and 𝑏⋆ = −�̄�1/𝜎𝑥1 ,

where �̄�1 and 𝜎𝑥1 are empirical mean and standard deviation of 𝑥1 samples. Obviously

this affine transformation is not expressive enough for modeling non-Gaussian densi-

ties. Many flexible parameterizations of 𝑇𝑑 have been proposed including polynomial
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Figure 5-4: Flowchart for the generation of training samples and the desired nor-
malizing flow. This factor graph is the 𝐶1 factor graph in Fig. 5-2. The collection
𝑧𝐶1 denotes all measurements in this leaf clique. 𝑍4 and 𝑧4 denote the measurement
variable and value in factor 𝑓4, respectively.

expansions [75, 38], sum-of-square polynomials [66], and splines [37]. 𝑇𝑑 can be mod-

eled as a one-dimensional function of 𝑥𝑑, 𝑇𝑑(𝑥𝑑; 𝑐𝑑(𝑥<𝑑;w𝑑)), where 𝑐𝑑(𝑥<𝑑;w𝑑) is the

so-called conditioner network [101]. The conditioner network with weights w𝑑 takes

𝑥<𝑑 as the input and then outputs a set of parameters such as polynomial coefficients

or spline segments that determine a differentiable, bijective, and increasing function

of 𝑥𝑑 under the chosen parameterization [66, 37]. However, except for special cases

like Gaussian conditionals, it is difficult to analyze and model the conditioner and

then solve for its weights since 𝑇𝑑 essentially encodes a high-dimensional conditional.

Neural networks have been widely employed as universal functional approximators of

conditioners in normalizing flows [76, 101]. In practice, one optimizes over all weights

w<𝐷+1 for a solution to (5.16) once a parameterization method and network con-

figuration are designed; see Sec. 5.4.1 for our parameterization method and neural

network configuration. It is an active research topic to construct a parameterization

method that possesses convexity for leveraging the convex problem (5.15). Interested

readers can find further discussions in [3].

Practical Considerations : A usual routine before training is standardizing raw

samples by their means and standard deviations to regularize unbounded large values

[65]. This standardizing step is equivalent to an affine transformation which makes

training more efficient and does not alter the problem nor affect the non-Gaussianity
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in the raw samples. When the training is finished, the resulting triangular map will

be transformed back to the space of raw samples by the inverse of the affine transfor-

mation. Samples of orientation variables in our SLAM experiments are transformed

to [−𝜋, 𝜋] before being standardized since the experiments are treated in a planar

environment; for samples in more general manifolds (e.g., SO(3)), one should resort

to alternative standardizing methods (e.g., in vector spaces such as so(3)). Recently,

more sophisticated treatments for orientation have been proposed for normalizing

flows, which improves the robustness and expressive power of density estimation on

complex manifolds [109]. As a widely used alternative of autoregressive flows, cou-

pling flows impose additional structures on the triangular map at the expense of

reduced expressive power, leading to improved efficiency in modeling and training

normalizing flows [101]. While there are so many different normalizing flow param-

eterizations, we stress that the inference framework of NF-iSAM is generalizable as

it is mostly governed by the Bayes tree and the triangular map structure. As what

we will depict in the flowchart of Fig. 5-4, learning for a model of density just takes

a small fraction in the flowchart. We emphasize that the specific parameterization

for modeling a complex density is a replaceable part in the pipeline. Thus, more

parameterization methods can be explored and exploited in future work for efficiency,

expressiveness, and robustness in density modeling.

5.3.2 Clique conditional samplers via normalizing flows

This subsection focuses on learning the clique density 𝑝(𝑆𝐶 , 𝐹𝐶 |𝑧𝐶) in (5.2). We

will describe in detail how to learn a normalizing flow model of the clique density

from which we can extract the separator density 𝑝(𝑆𝐶 |𝑧𝐶) and the clique conditional

𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶).

As suggested in Section 5.3.1, we can learn the normalizing flow

𝑇𝐶(𝑆𝐶 , 𝐹𝐶) =

⎡⎣𝑇𝑆𝐶
(𝑆𝐶)

𝑇𝐹𝐶
(𝑆𝐶 , 𝐹𝐶)

⎤⎦ (5.17)
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for the clique density 𝑝(𝑆𝐶 , 𝐹𝐶 |𝑧𝐶) if we have training samples from 𝑝(𝑆𝐶 , 𝐹𝐶 |𝑧𝐶).

Then 𝑇𝑆𝐶
is the normalizing flow for the separator density 𝑝(𝑆𝐶 |𝑧𝐶), and 𝑇𝐹𝐶

is

the normalizing flow for the clique conditional 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶). There are many well-

developed off-the-shelf implementations of MCMC sampling such as PyMC3 [114] or

nested sampling such as dynesty [123]. However, even though variables in a clique

are much fewer than those in the entire Bayes tree, those packages are still too slow

for generating the training samples for robotics applications [63].

Inspired by the so-called forecast-analysis scenario in hidden Markov models [122]

and simulating from a Bayes net model [31, Sec. 1.5], we propose the following

two-step strategy for modeling the clique density 𝑝(𝐹𝐶 , 𝑆𝐶 |𝑧𝐶):

Step 1. Draw training samples from an intermediate density ̃︀𝑝, where sampling is

efficient.

Step 2. Train normalizing flow ̃︀𝑇 for ̃︀𝑝, and retrieve 𝑇 for 𝑝(𝑆𝐶 , 𝐹𝐶 |𝑧𝐶).

In Step 1, we sample from the intermediate density 𝑝(𝑂𝐶 , 𝑆𝐶 , 𝐹𝐶 |𝑧′𝐶), where 𝑧′𝐶 =

𝑧𝐶 ∖ 𝑜𝐶 . We can select a set of likelihood factors, whose measurements are 𝑜𝐶 , that

breaks the factor graph of the clique into an acyclic factor graph (for example, see

𝑓4 in Fig. 5-4). We define these likelihood factors as loop-closing factors and convert

them to Bayes nets where measurements are assumed as unobserved variables 𝑂𝐶 (see

[31, Sec. 1.7] for the recipe and the probabilistic interpretation of the conversion).

Since both Bayes nets and the acyclic factor graph afford ancestral sampling, one

can use ancestral sampling and measurement models to efficiently simulate samples

of (𝑂𝐶 , 𝑆𝐶 , 𝐹𝐶) which are distributed according to the intermediate density.

Algorithm 7 is our implementation of Step 1 for SLAM problems. In the algorithm,

most of the loop-closing factors can be passively identified when we simulate samples.

The prior factors 𝒫 in the algorithm refer to either user-defined normalizable densities

(e.g., the density of the first robot pose), from which we are typically able to draw

samples directly, or separator densities modeled by normalizing flows, which enjoy

fast sampling as well (Property 3, Sec. 5.3.1). Starting from samples in these priors

(line 2), we iterate over binary factors to simulate other robot pose and landmark
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samples (line 6). If both variables adjacent to a binary factor have been sampled,

virtual observations between samples of these variables will be simulated (line 8). All

multi-modal data association factors are proactively treated as loop-closing factors

for simulating measurements (line 14).

In Step 2, we use training samples from the intermediate density 𝑝(𝑂𝐶 , 𝑆𝐶 , 𝐹𝐶 |𝑧′𝐶)

to learn the normalizing flow ̃︀𝑇𝐶 for eventually modeling 𝑝(𝑆𝐶 |𝑧𝐶) and 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶).

According to Section 5.3.1, by ordering arguments in ̃︀𝑇𝐶 to (𝑂𝐶 , 𝑆𝐶 , 𝐹𝐶), we get the

triangular map

̃︀𝑇𝐶(𝑂𝐶 , 𝑆𝐶 , 𝐹𝐶) =

⎡⎢⎢⎢⎣
̃︀𝑇𝑂𝐶

(𝑂𝐶)̃︀𝑇𝑆𝐶
(𝑂𝐶 , 𝑆𝐶)̃︀𝑇𝐹𝐶
(𝑂𝐶 , 𝑆𝐶 , 𝐹𝐶)

⎤⎥⎥⎥⎦ . (5.18)

When we fix 𝑂𝐶 to its measured value 𝑜𝐶 , ̃︀𝑇𝑆𝐶
(𝑂𝐶 = 𝑜𝐶 , 𝑆𝐶) gives the normalizing

flow for the separator density 𝑝(𝑆𝐶 |𝑧𝐶), and ̃︀𝑇𝐹𝐶
(𝑂𝐶 = 𝑜𝐶 , 𝑆𝐶 , 𝐹𝐶) gives the normal-

izing flow for the clique conditional 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶) (see Algorithm 8). Thus, we can

retrieve the desired normalizing flow model 𝑇𝐶 from ̃︀𝑇𝐶 :

𝑇𝐶 (𝑆𝐶 , 𝐹𝐶) =

⎡⎣̃︀𝑇𝑆𝐶
(𝑂𝐶 = 𝑜𝐶 , 𝑆𝐶)̃︀𝑇𝐹𝐶
(𝑂𝐶 = 𝑜𝐶 , 𝑆𝐶 , 𝐹𝐶)

⎤⎦ , (5.19)

which models the clique density 𝑝(𝐹𝐶 , 𝑆𝐶 |𝑧𝐶).

5.3.3 Incremental inference on Bayes tree

Learning the full posterior distribution will start from leaf cliques 𝐶L. By Section

5.3.2, we can learn normalizing flows for the separator density 𝑝(𝑆𝐶L|𝑧𝐶L) and the

clique conditional 𝑝(𝐹𝐶L |𝑆𝐶L , 𝑧𝐶L). The separator density will be passed to the parent

of clique 𝐶L as a new factor as shown in Fig. 5-2 (i.e., 𝑝(𝑋1, 𝐿1|𝑧𝐶1) and 𝑝(𝑋2, 𝐿1|𝑧𝐶2)).

The normalizing flow for the clique conditional will be saved in clique 𝐶L as a con-

ditional sampler for sampling the joint posterior later. Our algorithm learns all nor-

malizing flows during a single leaf-to-root traversal on the Bayes tree. The product

of learned clique conditionals resolves Task 1 in Sec. 5.1.
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As we described in Sec. 5.2.2, once all cliques have learned their conditional sam-

plers of clique conditionals 𝑝(𝐹𝐶 |𝑆𝐶 , 𝑧𝐶), we can draw components of a joint posterior

sample from these conditional samplers by recursively applying ancestral sampling

during a root-to-leaf traversal on the Bayes tree. Through the root-to-leaf traversal,

Algorithm 7: TrainingSampleSimulator
Input: Prior 𝒫 , binary measurement ℬ, and multi-modal data association

ℳ factors in a clique
Output: Samples and measured values

1 Initialize samples 𝒮 and measured values 𝒱 dictionaries
2 𝒮[Θ𝑖]← Sample any variable Θ𝑖 in 𝒫
3 while queue ℬ ̸= ∅ do
4 𝑓𝑖 = 𝑝(𝑧𝑖|Θ𝑗,Θ𝑘)← Pop the first element in ℬ
5 if only one latent variable (e.g., Θ𝑘) not in 𝒮 then
6 𝒮[Θ𝑘]← Simulate variable Θ𝑘 using sample 𝒮[Θ𝑗], measured value 𝑧𝑖,

and measurement models
7 else if both latent variables Θ𝑗,Θ𝑘 in 𝒮 then
8 𝒮[𝑍𝑖]← Simulate measurement 𝑍𝑖 between samples 𝒮[Θ𝑗] and 𝒮[Θ𝑘]

using measurement models
9 𝒱 [𝑍𝑖]← Measured value 𝑧𝑖

10 else
11 Push 𝑓𝑖 to the back of ℬ

12 for 𝑓𝑖 = 𝑝(𝑧𝑖|Θ𝑓𝑖) inℳ do
13 𝒮[𝑍𝑖]← Simulate measurement 𝑍𝑖 between samples 𝒮[Θ𝑓𝑖 ] using

measurement models
14 𝒱 [𝑍𝑖]← Measured value 𝑧𝑖
15 return Samples 𝒮, measured values 𝒱

Algorithm 8: ConditionalSamplerTrainer
Input: Training samples and measured values 𝑜
Output: Clique conditional, separator density

1 Rearrange training samples to the order of observation (𝑂), separator (𝑆),
and frontal variables (𝐹 )

2 Find ̃︀𝑇 in (5.18) by minimizing the KL divergence according to (5.15) using
the training samples

3 𝑇 (𝑆, 𝐹 )← ̃︀𝑇 (𝑂 = 𝑜, 𝑆, 𝐹 ) // fix observations in (5.19)
4 𝑇𝑆, 𝑇𝐹 ← partition 𝑇 (𝑆, 𝐹 ) following (5.17)
5 Obtain samplers of 𝑝(𝐹 |𝑆), 𝑝(𝑆) from 𝑇𝑆 and 𝑇𝐹 by (5.10)
6 return Samplers of 𝑝(𝐹 |𝑆), 𝑝(𝑆)
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Task 2 in Sec. 5.1 can be accomplished. Compared to learning normalizing flows

during the leaf-to-root traversal, the computational cost of the root-to-leaf traversal

is minimal since normalizing flows support fast sampling (Property 3, Sec. 5.3.1).

When performing incremental updates, we do not need to recompute normalizing

flows for all cliques of the Bayes tree. Every time a new factor is added into the factor

graph, the corresponding change in the Bayes tree is an exact and symbolic result

from the Bayes tree algorithm [71, Alg. 3]. We just need to learn normalizing flows for

cliques in the changed part to update posterior estimation (see clique 𝐶3 in Fig. 5-2 for

an example of incremental inference). We designate the changed part of the Bayes

tree the sub-tree. The upward traversal starts from leaves of the sub-tree instead

of the entire Bayes tree. Normalizing flows for cliques outside the sub-tree are not

changed and can be reused directly. Thus, the computational cost for incrementally

training normalizing flows depends only on the sub-tree, instead of the entire problem.

To draw samples from the full joint posterior density, the downward traversal still

needs to visit all cliques. However, as mentioned above, the computational cost for

the downward sampling traversal is much lower than that for training normalizing

flows. The detailed algorithm of NF-iSAM is summarized in Algorithm 9. At this

point, all Task 1-Task 3 we proposed in Sec. 5.1 have been resolved. With the

Algorithm 9: NF-iSAM
Input: New factors f , factor graph 𝒢, ordering Θ
Output: Samples of the joint posterior distribution

1 𝒯 ← 𝒢.update(f ,Θ) // update the Bayes tree
2 𝒯Δ ← 𝒯 .extract(f ,Θ) // extract the changed sub-tree of 𝒯
3 for clique 𝐶 in leaf-to-root traversal of 𝒯Δ do
4 x, 𝑜← TrainingSampleSimulator(𝐶)
5 𝑝(𝐹𝐶 |𝑆𝐶), 𝑝(𝑆𝐶)← ConditionalSamplerTrainer(x, 𝑜)
6 Append 𝑝(𝑆𝐶) to the parent clique as a factor

7 𝒟 ← {} // initialize an empty dictionary for posterior samples
8 for clique 𝐶 in root-to-leaf traversal of 𝒯 do
9 𝑝(𝐹𝐶 |𝑆𝐶)← retrieve the conditional sampler in 𝐶

10 𝑠← 𝒟[𝑆𝐶 ] // retrieve samples of separator
11 𝒟[𝐹𝐶 ]← draw samples from 𝑝(𝐹𝐶 |𝑆𝐶 = 𝑠) using (5.10)

12 return 𝒟
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exception of normalizing flows for modeling non-Gaussian conditionals, our strategy

for incremental updates is similar to iSAM2 where linear-Gaussian conditionals for

the Gaussian approximation are partially updated as new measurements arrive. The

back-substitution in iSAM2 for the least-squares solution also corresponds to a root-

to-leaf traversal on the entire Bayes tree [31, Sec. 5.4.3].

Although the final output of our algorithms is samples for subsequent inference

tasks requiring Monte Carlo integration, function evaluation of the approximate dis-

tribution can be conducted as well. While we wrap trained normalizing flows in the

name of “sampler” in Algorithms 8 and 9, the density modeled by normalizing flows

can be easily evaluated by (5.5). Instead of drawing samples at line 10 to line 11 in

Algorithm 9, we can simply evaluate the conditionals modeled by normalizing flows

and then return their product as the function evaluation of the approximate density

of the joint posterior.

5.4 Implementation and experimental setup

5.4.1 Current implementation of NF-iSAM

We implemented Algorithms 7-9 as well as other building blocks including prior and

measurement likelihood factors, factor graphs, and the Bayes tree in Python. In

the current implementation of normalizing flows, we choose rational-quadratic (RQ)

splines to parameterize the one-dimensional function of 𝑥𝑑, 𝑇𝑑(𝑥𝑑; 𝑐𝑑(𝑥<𝑑;w𝑑)) [37],

considering the flexibility of splines. A fully connected neural network (FCNN) with

an input dimension 𝑑− 1 is configured to model the conditioner network 𝑐𝑑(𝑥<𝑑;w𝑑).

If the spline is composed of 𝐾 different rational-quadratic functions, the conditioner

network possesses an output dimension 3𝐾 − 1 of which 2𝐾 − 2 units map to coor-

dinates of spline knots on the 𝑥𝑑-𝑦𝑑 plane and 𝐾 + 1 units are for spline derivatives

at those knots; see RQ-NSF (AR) in [37, Sec. 3] for the detailed parameterization.

Our RQ spline flows are constructed and trained using PyTorch [103]. For the ex-

periments in Sec. 5.5, we use two-layer FCNNs for every conditioner network. The
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default number of hidden layer units in the FCNN is set to 8 and the default number

of RQ splines, 𝐾, is set to 9. The default number of training samples is set to 2000.

While we had tried some stopping criteria in [106] using test sets, for less training

time, the training of the FCNNs stops when the loss (5.16) converges. We monitor

the relative change between the average loss over the latest 50 iterations and that over

the second latest 50 iterations. The ongoing training is terminated once the relative

change is lower than 1%.

It is worth mentioning that [76, Table 3] has reported that spline-based flows out-

perform or are on par with other normalizing flows in terms of modeling accuracy.

Another advantage of RQ splines is that it can be inverted by evaluating an analyt-

ically exact expression, which permits a fast solution to the inverse transformation

problem (5.10) for sampling.

5.4.2 Other solvers and computation resources

We use a nested-sampling-based approach for factor graphs, NSFG [63], to obtain

high-quality samples for some examples in Sec. 5.5 as reference solutions. NSFG is

implemented in Python based on the dynamic nested sampling package, dynesty[123].

iSAM2 (provided by the GTSAM library in C++ [28]) and mm-iSAM (provided by

Caesar.jl, v0.10.2 in Julia [22]) are tested in our experiments as well. Experiments

are performed on a workstation with an AMD Ryzen ThreadRipper 3970X CPU

with 32 cores and 64 threads, an NVIDIA RTX 3090 GPUs, and 125.7 GB of RAM

running Ubuntu 20.04.1 LTS. Only the neural network training in NF-iSAM uses the

GPU while other solvers and other computation in NF-iSAM rely on the CPU in our

experiments.

5.4.3 Datasets and measurement likelihood models

In the following experiments, we use three simulated datasets and two real-world

datasets for range-only SLAM problems with and without data association ambigu-

ity. We apply a unified variable elimination ordering in Algorithm 9 when solving
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these datasets: eliminating poses along the robot trajectory first and then landmarks.

The extensive experimental results form a parameter study that investigates how the

performance of NF-iSAM is affected by conditions such as: i) the magnitude of mea-

surement noise, ii) hyperparameters in normalizing flows, iii) the fraction of factors

involving data association ambiguity, iv) the randomness of robot trajectories, v)

random seeds for the algorithm, and vi) the dimensionality of the SLAM problems.

We define three types of likelihood models for measurements in the datasets. First,

the measurement of transformation between robot poses 𝑇𝑤
𝑖 and 𝑇𝑤

𝑗 ∈ SE(𝑑) is mod-

eled as 𝑇 𝑗
𝑖 = 𝑇 𝑗

𝑤𝑇
𝑤
𝑖 exp (𝜉∧) where 𝜉 ∼ 𝒩 (0,Σ) and 𝑇𝑤

𝑖 reads pose 𝑖 in the world

frame. Second, the range measurement between a robot pose 𝑇𝑤
𝑖 and a landmark

location l𝑤𝑗 with known data association is modeled as 𝑟𝑗𝑖 = ‖t𝑤𝑖 − l𝑤𝑗 ‖2 + 𝜉 where t𝑤𝑖

denotes the translation vector in 𝑇𝑤
𝑖 and 𝜉 ∼ 𝒩 (0, 𝜎2). Third, the range measurement

with unknown data association, 𝑟𝑖, is modeled as 𝑝(𝑟𝑖|t𝑤𝑖 ,ℒ𝑖) = 1
|ℒ𝑖|

∑︀
l𝑤𝑗 ∈ℒ𝑖

𝑝(𝑟𝑖|t𝑤𝑖 , l𝑤𝑗 )

where ℒ𝑖 denotes the set of possibly associated landmarks. Each component in the

sum-mixture is simply a likelihood model of range measurement with a given data

association. All components in the mixture are equally weighted given no prior in-

formation about data associations.

5.5 Results

5.5.1 Synthetic datasets

A small illustrative example

A small example is employed to illustrate capacities and performance of NF-iSAM

on non-Gaussian inference (Fig. 5-5 and 5-6). We create a 2D environment where a

robot performs a range-only SLAM task using odometry and range measurements to

landmarks. A large fraction of the range measurements, however, have no identity

information of landmarks, which implies that each ambiguous range measurement can

(potentially) be associated with all landmarks. While this problem is relatively low

dimensional, it is nevertheless still difficult to infer the posterior distribution of robot
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and landmark positions since the problem involves both nonlinear measurements (e.g.,

distance) and high-uncertainty non-Gaussian likelihood models (due to the multi-

modal data association).

Fig. 5-5 and 5-6 show samples that are drawn from estimated posteriors of prob-

lems without and with data association ambiguity. The runtime and accuracy are

shown in Fig. 5-7. In both cases, the robot moves from 𝑋0 to 𝑋5 following a clockwise

trajectory during which it acquires five odometry measurements and eight distance

measurements. In the case with ambiguity, however, distance measurements from

𝑋{1−4} are modeled as potentially associated with all detected landmarks with equal

weights. Note that “No solution" tags in the figures indicate that we could not obtain

a solution due to errors thrown by GTSAM.

Incorporating range measurements already presents a challenge due to strong non-

linearity, so we analyze the case without data association ambiguity first (see Fig. 5-5).

According to the scatter plots and kernel density estimation, the solutions of NF-iSAM

resemble reference solutions provided by NSFG for all steps. When a landmark owns

two distinct distance measurements (e.g., landmark 𝐿1 at time step 1 and landmark

𝐿2 at time step 3), both NF-iSAM and NSFG are able to infer the bi-modal distri-

bution of the landmark’s location. Furthermore, uni-modal posterior distributions of

the landmark are immediately recovered by them once the robot sights the landmark

from three different poses (see landmark 𝐿1 at time step 2 and landmark 𝐿2 at time

step 4). Caesar.jl was developed to estimate multi-modal marginal posteriors. Even

though Caesar.jl pinpoints the landmarks at the last step, the uncertainty estimates

are less accurate. Moreover, its estimation for earlier steps preserves many less-likely

modes, which will certainly introduce errors in the evaluation of empirical mean as

well as uncertainty. GTSAM leverages nonlinear least-squares (NLLS) optimization

techniques to resolve Gaussian approximations of posterior distributions. For a newly

detected landmark, we randomly pick a point on the circle projected by the range

measurement from a robot pose, and supply it to GTSAM as the initial value of the

landmark. At early steps, it cannot return a solution since the information matrix for

NLLS is under-determined due to insufficient constraints. At step 3 and 4 even when
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each landmark possesses at least three distinct measurements, considerable drifts from

the ground truth still exist as the NLLS optimization is subject to local optima in

this non-convex optimization problem.

As shown in Fig. 5-7a, our quantitative analysis of this case follows the qualitative

analysis above. We use the root-mean-square error (RMSE) to gauge the difference

between the empirical mean of our posterior samples and the ground truth. We

choose to compute the empirical mean rather than an MAP point among samples

since the empirical mean can reflect errors incurred by spurious modes in estimated

distributions. Here, since we aim to infer the full posterior distribution instead of a

point estimate, maximum mean discrepancy (MMD) [52] is actually a more reasonable

choice. Given samples from two densities, MMD is a metric to evaluate how far the

two distributions are apart. Therefore, a lower MMD from a solution to the NSFG

solution indicates a more “accurate” approximation of the posterior. As the reference

solver, the RMSE of NSFG outperforms others at the expense of computation time.

Note that before time step 4, the landmark belief is supposed to be bi-modal or donut-

shaped distributions so it is reasonable to have large RMSE at those time steps. The

plot of RMSE of NF-iSAM follows the same trend as that of NSFG and it is noticeably

lower than mm-iSAM and GTSAM. We extract samples from joint and marginal

distributions to compute the joint MMD and the marginal MMD respectively. The

MMD plots indicate the superior accuracy of NF-iSAM in capturing the entire “shape”

of the true posterior. The lower MMD of landmark 𝐿1 from GTSAM at time step

3 and 4 is a coincidence as the random initial value of landmark 𝐿1 happens to be

around the ground truth (see green dots in scatter plots of GTSAM). However, the

initial value of landmark 𝐿2 unluckily locates away from the ground truth so the final

estimate of GTSAM is inevitably distorted, resulting in the large MMD of landmark

𝐿1 at the final time step.

Ambiguous data association of range sensing makes the estimation problem even

more difficult, as shown in the highly uncertain posteriors of NSFG solutions in Fig. 5-

6. At time step 2, two of the three distance measurements to landmark 𝐿1 are

associated with 𝐿2 as well, leading to a more uncertain distribution of landmark

105



𝐿1 than the counterpart in the ambiguity-free case. The uni-modal distributions of

landmark 𝐿1 and 𝐿2 are not resolved until new ambiguity-free measurements added

at the last step. NF-iSAM precisely captures the same trend in all scatter, kernel

density estimation (KDE), and RMSE plots. The MMD plots in Fig. 5-7b indicate

that NF-iSAM consistently infers more accurate estimates of the true posterior than

other solvers in the setting with ambiguity. Note that iSAM2 provided by GTSAM

is extended with max-mixture factors [100, 35] for dealing with multi-modal data

association so GTSAM is replaced by max-mixtures in the legend.

Given samples from the posterior distribution of the robot and landmark positions,

𝑝(Θ|z), one can evaluate the posterior belief of different data associations following

𝑝(𝐷|z) =

∫︁
Θ

𝑝(z|Θ, 𝐷)𝑝(𝐷)∑︀
𝐷∈𝒟 𝑝(z|Θ, 𝐷)𝑝(𝐷)

𝑝(Θ|z) (5.20)

≈ 1

𝑁

𝑁∑︁
𝑖=1

𝑝(z|Θ = 𝜃(𝑖), 𝐷)𝑝(𝐷)∑︀
𝐷∈𝒟 𝑝(z|Θ = 𝜃(𝑖), 𝐷)𝑝(𝐷)

, (5.21)

where 𝜃(𝑖) is one of the 𝑁 samples drawn from 𝑝(Θ|z), and 𝐷 is a possible data

association in the set of all associations, 𝒟. 𝑝(𝐷) is subject to a uniform distribution

over 𝒟 as we have no prior knowledge about those associations. 𝑝(z|Θ, 𝐷) is actually

a binary factor under the association 𝐷 so it is known when we formulate the problem.

Fig. 5-8 shows the posterior belief of groundtruth data associations so a good

estimate should approach 1 as more measurements arrive. It is clear that both NF-

iSAM and NSFG manage to identify true data associations eventually.

Medium-scale problems in the Manhattan world with range measurements

Here we simulate a variety of scenarios to investigate whether NF-iSAM performs

consistently well over a range of settings such as different noise magnitudes, the

fraction of measurements with ambiguous data associations, and robot trajectories.

We consider these to be “medium-scale” problems since NSFG can still converge within

tens of minutes and return samples of posteriors as reference solutions for the extensive

parameter study. We implement a simulator named “Manhattan world with range
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measurements” to synthesize odometry and distance measurements along Manhattan-

world-like trajectories (i.e., the robot operates in grid environments where it can only

move to adjacent vertices by fixed step length). Fig. 5-9 shows a navigation task

using range sensing along a lawnmower path in the simulator. Problems with random

trajectories can be found in Fig. 5-13a. In all the cases, the robot starts from time step

zero and then proceeds step-by-step until time step 15, during which three landmarks

will be sighted. At each time step, a distance measurement is acquired with or without

data association ambiguity. Hence, unknowns at the final step consist of 16 poses and

three landmark positions, resulting in a 54-dimensional posterior distribution.

There are several settings related to noise magnitudes and the fraction of ambigu-

ous range measurements for the lawnmower path experiment. The default standard

deviation of range sensing noise is set to 2 meters while the default covariance of

odometry noise is 𝑑𝑖𝑎𝑔(0.04, 0.0016, 0.0004) where the diagonal entries correspond to

longitudinal, lateral, and heading measurements. The default probability for generat-

ing ambiguous data association factors is set to 40%. We are interested in investigat-

ing how those settings affect the performance of NF-iSAM and other solvers. Before

varying and interrogating those settings, posterior samples for the default setting are

presented in Fig. 5-9a to visualize the scenario and the solutions. The posterior dis-

tribution is resolved incrementally step-by-step. An interesting point in Fig. 5-9c is

that the evidently linear curve of NSFG on the log-scale runtime plot indicates the

exponential growth of computation time with increased dimensionality. On the other

hand, while less accurate, other solvers are able to retain a roughly constant compu-

tation time per step by exploiting incremental inference techniques, which makes full

posterior inference more tractable.

We conduct an empirical study over measurement noise and the fraction of am-

biguous range measurements. Only one of the settings mentioned above varies for

each point in Fig. 5-10. Runtime plots of max-mixtures are neglected as they are

faster than others by at least two orders of magnitude in our experiments; however,

solutions of max-mixtures deviate considerably from the ground truth due to bad

initial values and local optima. The computation time of NF-iSAM is consistently
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lower than mm-iSAM (Caesar.jl) and the reference solution (NSFG) while its RMSE

is almost at the same order of magnitude as the reference solution in various settings.

The lower value of average MMD from NF-iSAM indicates that its estimated posterior

distribution resembles the reference posterior distribution better than mm-iSAM and

GTSAM, which demonstrates the superior accuracy of NF-iSAM for full posterior

estimation in non-Gaussian settings.

The normalizing flow model in NF-iSAM is primarily characterized by two pre-

determined hyperparameters: the number of RQ functions on the spline for fitting

the one-dimensional transformation map, and the number of hidden units in the fully

connected neural networks that output locations and derivatives of the spline knots

(see Sec. 5.4 for more about hyperparameters). The former one controls the flexibility

of the spline while the latter one is the width of neural networks. Both of them have

a great impact on the expressiveness of the normalizing flow model so it is worth

investigating how they influence the solutions of NF-iSAM. It is not surprising to

find that greater numbers of spline knots and hidden units in general lead to higher

computation time as there are more parameters being trained in the neural networks

(Fig. 5-11). Another considerable change is spotted in the plot of joint MMD ver-

sus the number of knots. More spline functions evidently allow for a finer fit to the

shape of the posterior, decreasing the joint MMD between NF-iSAM and reference

solutions. In contrast, these parameters overall present little influence on the RMSE,

which implies that the enhanced expressiveness only marginally improves point esti-

mates. The low sensitivity of RMSE also reflects our previous comment that MMD is

a more reasonable choice for evaluating the quality of full posterior estimation. Fur-

thermore, this implies an important fact that the accuracy evaluation simply using

means or modes can be ineffective especially for non-Gaussian posteriors.

Because training samples are self-generated in NF-iSAM, the number of train-

ing samples (i.e., 𝑛 in (5.16)) is a predetermined hyperparameter in NF-iSAM as

well. Fig. 5-12 shows how the number of training samples affects the results for the

lawnmower path problem. It is evident that small sample sizes (e.g., 500 and 1000

samples) cause less favorable performance in both computation time and accuracy.
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This can be explained by the plot of training loss where fewer samples incur slower

and more unstable convergence of training loss. An extremely large number of train-

ing samples increases both the total computation time and the fraction of the time for

sample generation; furthermore, it does not greatly improve accuracy of the results.

Further investigation is needed to design an adaptive strategy that determines good

hyperparameters in the training.

Fig. 5-13 presents posterior samples and performance of different algorithms under

randomly generated cases. NF-iSAM behaves robustly for those cases and provides

solutions almost as accurate as the reference solutions while possessing superior scal-

ability, due to the use of incremental updates.

Large-scale problems in the Manhattan world with range measurements

We demonstrate scalability of NF-iSAM and repeatability of its solutions given ran-

domness in algorithms. We simulate a relatively large-scale range-only SLAM problem

where the robot follows a path similar to that in the Plaza1 dataset [33]. The entire

trajectory involves 136 robot poses, 4 landmarks, 135 odometry measurements, and

136 range measurements among which 59 measurements are associated with multiple

landmarks (i.e., they will be modeled by multi-modal data association factors). The

posterior of robot poses and landmark locations incurs a 416-dimensional latent vari-

able at the end of the sequence, to which a reference solution via sampling techniques

is generally not available. Hence, we only compute RMSE of NF-iSAM estimates

versus ground truth as the accuracy metric.

Fig. 5-14a shows the posterior samples resolved by NF-iSAM at a few important

time steps. The odometry and groundtruth trajectories are respectively shown in gray

and black in the figure as well. At time step 6, the robot nearly moves along a line

and, as a result, the belief of landmark locations inferred by distance measurements

is subject to a distribution mirrored across the line being tracked by the robot. The

highly uncertain distribution of landmark location results in the significant RMSE

at time step 6 as shown in Fig. 5-14b. As the robot proceeds and turns left to time

step 19, distance measurements acquired along the asymmetric trajectory can disam-
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biguate landmark locations, thus the landmark distribution collapses to uni-modal.

The steep decline of RMSE at time step 19 is a direct consequence of the disambigua-

tion of landmark locations. Although the landmarks are basically pinpointed at this

time step, the accumulative error in odometry can still incur inaccurate estimation.

As seen around the bottom part of the groundtruth path, the odometry trajectory

considerably deviates from the ground truth by more or less a block, visibly twisting

the estimated trajectory. This is reflected by the sharp increase of RMSE at time

step 39 as well. However, as shown in the estimated trajectory at time step 135, the

deviation at the bottom of the trajectory is corrected via fusing the full-time history

of measurements, which demonstrates the smoothing capacity of NF-iSAM.

In practice NF-iSAM learns probability density functions from a finite number of

training samples via stochastic optimization (see Algorithms 7 and 8), so it is not a

deterministic algorithm. Therefore, it is necessary to check if NF-iSAM can achieve

consistent results in the presence of inherent randomness in algorithms. As seen

in Fig. 5-14b, the width of the error band of RMSE is comparatively much smaller

than the mean of RMSE. Thus, the accuracy of NF-iSAM is marginally affected by

randomness in algorithms.

5.5.2 Real-world datasets

We also evaluate the scalability and error of NF-iSAM using a larger real SLAM

dataset. The Plaza dataset provides time stamped range and odometry measurements

(𝛿𝑥, 𝛿𝜃) of a vehicle moving in a planar environment [33]. Two of its sequences,

Plaza1 and Plaza2, are available in the GTSAM software distribution. There are four

unknown landmarks in each of the sequences. As noted in [33], the error of distance

measurement is strongly correlated with the true distance, leading to a non-zero mean

in the distribution of errors. Therefore, we use least squares to fit an affine function

characterizing the relation between the measurement error and the true distance. We

then compute calibrated distances via subtracting the affine function from measured

distances. This is a valid calibration process. If we were provided with the same

sensor, we could make a collection of range measurements independently, and fit the
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linear model using our own data. As indicated by the histograms in Fig. 5-15a, the

error of the calibrated distances obeys zero-mean Gaussian distributions well and no

evident outliers appear in the datasets. To tackle datasets where outliers present,

the Gaussian noise model in Sec. 5.4.3 can be replaced by outlier-robust distributions

(e.g., a mixture model with a null hypothesis that the measurement is wrong [100]).

NF-iSAM is applicable to those situations since there is no assumption on noise models

in our algorithms (Algorithms 7-9).

The range-only dataset is challenging for the state-of-the-art SLAM techniques

(e.g., iSAM2) that rely on the Gaussian approximation obtained by linearization

around an MAP estimate. Since range-only SLAM is a highly non-convex problem

and good initial values are usually not available in advance, those techniques are

prone to find local optima. For a newly detected landmark, we randomly pick a point

on the circle projected by the range measurement, and supply it to GTSAM as the

initial value of the landmark. The GTSAM solutions in Fig. 5-15c clearly show that

range-only measurements pose difficulties for the MAP estimation especially when a

good initialization is not available.

As shown on the leftmost side in Fig. 5-15b, NF-iSAM can solve both sequences

and return accurate estimates on robot trajectories and landmark positions. More-

over, we consider data association ambiguity in these datasets and evaluate the per-

formance of NF-iSAM for multi-modal data association problems. Note that we

randomly choose a faction of range measurements, wipe the ID information of the

detected landmark, and designate the measurement to associate with all landmarks.

The rightmost end in Fig. 5-15b is the most challenging case where 60% of range mea-

surements are acquired with no landmark information such that they are formulated

by multi-modal factors. The estimated trajectories of NF-iSAM resemble the ground

truth well in all the cases with data association ambiguity. As seen in Fig. 5-16a,

although a higher fraction of data association ambiguity causes a higher RMSE, the

RMSE is still at the same order of magnitude as that with no data association am-

biguity. We also provide the profiling of NF-iSAM’s runtime in Fig. 5-16b. The time

for sample generation and subsequent training remains roughly even across key poses
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since the dimension of variables on the sub-tree for incremental updates is fairly con-

sistent. As we mentioned in Sec. 5.3.3, sampling posteriors takes much shorter time

than training normalizing flows. While posterior sampling is fast, it runs through the

entire Bayes tree. Thus, the time for posterior sampling increases with the dimen-

sionality of the joint posterior. To alleviate this issue for larger-scale problems, one

may consider to control the size of the Bayes tree via strategies including fixed-lag

smoothing[31, Sec. 5.3.2].

5.6 Summary

We presented a novel algorithm, NF-iSAM, that provides a promising foundation

for estimating the full posterior distribution encountered in SLAM. NF-iSAM utilizes

the Bayes tree coupled with normalizing flows to achieve efficient incremental updates

in non-Gaussian distribution estimation of the full posterior. We demonstrated the

advantages of the approach over alternative state-of-the-art point and distribution

estimation techniques for SLAM, with synthetic datasets and real datasets. Our

approach showed an improved estimate of the full posterior in highly non-Gaussian

settings due to nonlinear measurement models and non-Gaussian (e.g., multi-modal)

factors. Currently, for real SLAM problems with non-Gaussian and nonlinear models,

our approach can be used to i) understand how the posterior distribution evolves

over time, ii) provide reference estimates to approximate distributions found by other

estimation techniques, and iii) perform inference tasks that require an estimate of

the full posterior, e.g., estimating the posterior belief of data association or various

expectations with respect to the posterior.

We conclude the paper by noting that NF-iSAM warrants further research as a

promising and generalizable algorithmic framework. Its generalizability includes two

aspects: i) the parameterization of transformation maps in normalizing flows can be

replaced by other forms ii) and, more significantly, normalizing flows can be replaced

by other probabilistic modeling techniques. For instance, if restricting the param-

eterization to affine transformations or the probabilistic modeling to Gaussian, our
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approach can recover iSAM2 as a special case. On the practical side, our experiments

employ complex transformations to express non-Gaussian distributions, which in part

incurs greater computation cost than iSAM2. Further research is needed to explore

more efficient implementation strategies that can lead us closer to real-time operation

for higher dimensional problems (e.g., 3D SLAM), including: (1) leveraging more effi-

cient density modeling techniques such as coupling flows [101] and (2) utilizing faster

incremental update strategies on the Bayes tree such as marginalization operations

and variable elimination orderings with heuristics [31, 44].
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(a)

(b)

Figure 5-5: Results for the small range-only problem without data association ambi-
guity: a) samples from joint posteriors and b) kernel density estimation. The robot
moves clockwise from 𝑋0 to 𝑋5 and measures its distances to the landmarks 𝐿1 and
𝐿2. The black lines in (a) mark the odometry and range measurements with certain
data association. Groundtruth coordinates of landmark locations are marked by ‘+’
on KDE plots.
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(a)

(b)

Figure 5-6: Results for the small range-only problem with data association ambiguity:
a) samples from joint posteriors and b) kernel density estimation. The robot moves
clockwise from 𝑋0 to 𝑋5 and measures its distances to the landmarks 𝐿1 and 𝐿2.
The black lines in (a) mark the odometry and range measurements with certain data
association while the red lines in (a) between a robot pose and 𝑘 landmarks indicate
a range measurement that is potentially associated with 𝑘 landmarks. Ground truth
landmarks and poses in (a) are marked by ‘×’ and arrows, respectively. On the KDE
plots, groundtruth landmark coordinates are marked by ‘+’ .
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Figure 5-7: Performance of different solvers for the small illustrative range-only prob-
lem: (a) data associations are given and (b) data associations are unknown from
time step 1 to 4. The performance metrics include computation time, RMSE w.r.t.
the ground truth, and maximum mean discrepancy of estimated marginal and joint
posteriors to NSFG solutions.
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Figure 5-8: Estimated posterior belief of groundtruth data associations for the small
problem with data association ambiguity.
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Figure 5-9: Results for the lawnmower path problem on the 4-by-4 grid: a) samples
from joint posteriors, b) kernel density estimation, and c) performance. See Fig. 5-6
for our convention about markers in (a).
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Figure 5-10: Error and accumulated computation time for posterior estimation at
the final step of the lawnmower path problem with different measurement noise and
numbers of ambiguous data association factors. For each column, only one of the
settings varies from the default setting. Average MMD means the average of MMDs
for all estimated marginals.
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Figure 5-11: Error and accumulated computation time of posterior estimation at
the final time step with various hyper-parameters for learning normalizing flows. The
parameter study is performed with the medium-scale problem with the default setting
regarding noise models and data association ambiguity. Column-wise and row-wise
means are shown beside the grids.

  
(a) (b)

Figure 5-12: Effects of training sample numbers in NF-iSAM results: (a) accumulated
time, RMSE, and joint MMD at the final time step of the lawnmower path problem
on the 4-by-4 grid, and (b) evolution of loss for training normalizing flows at the final
time step.
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Figure 5-13: Randomly generated cases: (a) samples of estimated posteriors and (b)
error bands (95% confidence interval) of performance by different methods for ran-
domly generated cases. Runtime of GTSAM is not shown as it makes the computation
time of other solvers less distinguishable in the figure. See Fig. 5-6 for our convention
about markers in (a).

121



(a) (b)

Figure 5-14: NF-iSAM results for the simulated Plaza1 dataset: (a) posterior estima-
tion where robot trajectories are shown in red and estimated by averages of samples,
black lines and blue X markers are the ground truth, and gray lines are odometry
trajectories and (b) error bands (95% confidence interval) of computation time per
incremental update and RMSE of six NF-iSAM solutions to the simulated Plaza1
dataset. NF-iSAM was initialized with different random seeds to get those solutions.

  

P
la
za
1

P
la
za
2

(a) (b) (c)

Figure 5-15: Plaza datasets: (a) least squares for modeling distance-dependent bias in
range measurements and error distributions (fitted to N(mean, standard deviation))
of the calibrated data which is obtained by subtracting least-squares-predicted bias
from the raw data, (b) NF-iSAM’s results for the datasets mingled with different
fractions of ambiguous data association (ADA) factors, and (c) maximum a posteri-
ori estimation by GTSAM. Trajectories by NF-iSAM are formed by the average of
posterior samples. They have been processed by the Kabsch-Umeyama algorithm for
trajectory alignment.
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Figure 5-16: Performance evaluation of NF-iSAM for the Plaza datasets: (a) runtime
and RMSE with ADA factors and (b) decomposed runtime of NF-iSAM for the Plaza1
sequence without data association ambiguity. We also plot the dimension of variables
involved in learning normalizing flows for each incremental upate.
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Chapter 6

Full posterior inference for improved

visual localization via optimizing

fiducial marker placement

The content in this chapter is mainly based on the following paper:

• Qiangqiang Huang, Joseph DeGol, Victor Fragoso, Sudipta N. Sinha, John J.

Leonard. Optimizing Fiducial Marker Placement for Improved Visual Local-

ization. IEEE Robotics and Automation Letters (RA-L) & IEEE/RSJ Interna-

tional Conference on Intelligent Robots and System (IROS), 2023.

6.1 Introduction

Chapters 3-5 focuses on developing full posterior inference algorithms for SLAM.

This chapter presents a new application of full posterior inference. Chapter 1.1.3

have introduced that visual localization systems can be fragile in scenes that are

weakly textured or present repetitive structures. In visual localization, we have a pre-

built map of the environment in hand. Can we analyze the map to identify difficult

areas for visual localization before deploying visual localizaion systems to real-world?

This chapter answers this question by defining camera localizability scores over the
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entire environment and then applying full posterior inference to compute the camera

localizability.

As seen in Fig. 1-6, adding fiducial markers to the environment is a common solu-

tion for improved accuracy of visual localization. Thus a follow-up question is what the

optimal positions are for adding markers. We propose an automatic approach to op-

timizing marker placement such that 1) the resulting marker positions yield improved

accuracy in visual localization and 2) a human user will be able to place markers at

positions planned by the approach (e.g., no markers on the ceiling). Specifically, the

approach computes optimized marker positions, given a predetermined set of markers

and a scene model. The key contributions of this work include:

1. We propose a novel framework that models localizability of camera poses in a

scene and computes localizability scores.

2. We develop optimized marker placement (OMP), a greedy algorithm that opti-

mizes marker positions with the goal of increased localizability scores.

3. This is the first work that optimizes marker placement for visual localization

based on scene features and fiducial markers.

4. We design a simulation framework for testing marker placement algorithms on

3D scene models that enables others to reproduce and build on our work.

5. We demonstrate that optimized marker placement by our approach can improve

the localization rate by up to 20 percent on four different scenes.

6.2 Problem statement

We aim to compute 𝑘 3D locations in the scene for placing 𝑘 fiducial markers such

that after marker placement, the camera localization performance improves for query

images from anywhere within the scene. In summary, we solve the global search of

optimal 𝑘 locations by a greedy algorithm that seeks one marker placement each time.
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3D Model
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Feasible Camera Poses

Feasible Marker Poses
●                                  
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Camera Localizability Scores

Marker placements
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Gains of Localizability Scores 

Trial placements

Best Trial

Greedy algorithm

Figure 6-1: Overview of the OMP algorithm. We first create a set of feasible camera
poses and marker poses by discretizing space in the 3D model. Then we evaluate
localizability scores of the feasible camera poses and update the scores once a feasible
marker pose is selected to place a marker. The marker placement is selected by a
greedy algorithm as the best trial out of trial placements in the vacancies (unselected
marker poses). These trial placements are ranked by gains of localizability scores.

6.3 Approach

6.3.1 Assumptions

This work makes two assumptions: 1) A textured 3D model of the scene is available,

and 2) markers and cameras are located on a 3D plane parallel to the ground plane at

roughly the eye level of a person with average height. Note that the textured model

can be a 3D simulation environment or a dense reconstruction of scenes. We will col-

lect images (e.g., RGB, depth, and surface normal) and corresponding camera poses

from the model and take them as input to our approach for optimizing marker place-

ment. The second assumption ensures that our marker placement will be reachable

to a human user and constrains the number of feasible camera and marker locations

for computational efficiency.
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6.3.2 Key elements of the approach

Fig. 6-1 shows an overview of our approach, which is composed of three key elements:

1) discretization, 2) evaluation of camera localizability, and 3) a greedy algorithm for

selecting marker placements.

Discretization

We first convert the ground plane in the 3D model to a discretized space of camera and

marker poses, as shown in Fig. 6-2. The conversion is implemented by occupancy grid

mapping. Centers of unoccupied grid cells are designated as feasible camera locations

(dots in Fig. 6-2) while scan points form the perimeter of the free space (lines in

Fig. 6-2). We uniformly downsample the scan points to generate a set of feasible

marker poses ℳ (arrows in Fig. 6-2) whose orientations are determined by surface

normals in the 3D model. Note that one can choose other ways to select feasible

marker poses and then still apply our marker placement algorithm. For example, the

feasible marker poses can be further refined by incorporating semantics and physical

constraints. It is possible that the algorithm could produce a marker placement in

an infeasible location, although we found this was rare. Even so, we have done a

sensitivity study showing that we can place the marker nearby the exact location and

still get most of the gain.1 We derive a set of feasible camera poses 𝒞 from the

feasible camera locations. Each of the camera locations yields 𝑛 camera poses whose

optical axes are parallel to the ground plane and evenly spaced in [0, 2𝜋] (e.g., the

default 𝑛 = 8).

Camera localizability score

We compute camera localizability scores by evaluating uncertainty in localizing feasi-

ble camera poses. Specifically, for any feasible camera pose c ∈ 𝒞 (the corresponding

random variable is 𝐶), we synthesize measurements 𝑧 to create a camera localization

problem, estimate the distribution of the camera pose 𝑝(𝐶|𝑧), and define the localiz-
1A sensitivity study about the influence of position and size deviations of markers on localization

performance is available in Sec.6.6.
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Feasible Marker Pose 

Feasible Camera Location

Discretization by occupancy grid mapping

3D Model

Figure 6-2: Discretization of a model from the Habitat-Matterport 3D dataset [107].
We select a ground plane in the 3D model at roughly eye level of a human user. The
discretized space of the ground plane consists of feasible marker poses (red arrows),
which are sampled from scan points on the ground plane perimeter, and feasible
camera locations (blue dots), which are centers of unoccupied cells in the 2D discrete
grid.

ability score of the camera pose 𝑙(c) as the negation of the entropy of the distribution,

as shown in

𝑙(c) = −𝐻(𝑝(𝐶|𝑧)) = E[ln 𝑝(𝐶|𝑧)]. (6.1)
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Figure 6-3: Evaluation of localizability scores and the information gain brought by
a marker placement. On the left we show a grid of feasible camera poses. Feasible
camera poses are positioned at cell centers with orientations shown as the red arrows.
The field of view of camera pose c covers points 𝑝1, 𝑝2, and 𝑝3 in the 3D model and
a marker placement on the discretized perimeter of the level set of the ground plane.
We synthesize measurements 𝑧 of the points to create a camera localization problem
using scene features. The problem is represented by factor graph 1 and distribution
𝑝(𝐶|𝑧) by which we can compute the entropy as well as the localizability score of the
camera pose seeing no markers. We penalize contributions of repetitive structures
on the localizability score via the analysis of feature similarity. With additional
measurements m to the marker, we create another localization problem which is
represented by factor graph 2 and distribution 𝑝(𝐶|𝑧,m). The new problem leads to
a new entropy and a new localizability score.

(a) (b) (c)

Figure 6-4: Results of localizability scores: (a) no markers, (b) a trial marker place-
ment (red arrow), and (c) the information gain. The score (or gain) at a dot is
the mean score (or gain) of camera poses at the dot with all feasible orientations.
Darker dots stress low localizability scores in (a) and (b) and high information gains
in (c). This trial turns out to be the first marker in the optimized placement (see the
Apartment in Fig. 6-9).

If a new fiducial marker is added in the field of view (FOV) and range of the camera

pose, the new synthetic measurement regarding the marker will change the entropy

of the camera pose distribution, resulting in an information gain that quantifies the

impact of the marker placement. Fig. 6-3 summarizes steps for evaluating the localiz-
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ability score and the information gain. These steps are explained in detail in following

paragraphs.

Synthesized data for computing the localizability score: The leftmost

part of Fig. 6-3 illustrates 3D points and a feasible marker pose (i.e., trial marker

placement) that are in the FOV/range of a feasible camera pose2. We collect RGB

and depth images at the camera pose in the 3D model. These images will be used

to compute 3D points and descriptors of features (e.g., SIFT [84]). We use these

known poses and points to synthesize measurements and estimate probability density

functions (PDFs) of the camera pose variable. Measurements z in Fig. 6-3 contain

the camera pose, the 3D points, and bearings between them. Thus the PDF 𝑝(𝐶|z),

which is represented by factor graph 1, expresses the distribution of the camera pose

constrained by the 3D points. Placing a marker in the FOV/range of the camera leads

to new synthetic measurements m of the marker pose and the relative pose between

the marker and the camera. As a result, the camera pose is further constrained by

measurements m thus is described by a new PDF 𝑝(𝐶|z,m) represented by factor

graph 2 in Fig. 6-3. We use an approach that is similar to the one proposed by

Stachniss et al. [124] to define the information gain of a marker placement. The

information gain is defined as the change of entropy that the marker placement m

yields at the camera pose c, as seen in

𝐼(m, c) = 𝐻(𝑝(𝐶|𝑧))−𝐻(𝑝(𝐶|𝑧,m)). (6.2)

Fig. 6-4a shows localizability scores of camera poses in the original ground plane

with no marker placement. Note that the score at a dot in the figure is the mean

score of camera poses with all feasible orientations. Fig. 6-4b shows localizability

scores after adding a marker (the arrow) to the ground plane perimeter. The scores

increase in the region around the marker, indicated by the brighter dots in the region

in Fig. 6-4b and the information gain in Fig. 6-4c.
2In practice, one can further refine marker poses in the FOV by considering marker sizes and

rejecting corner cases that may fail the detection of markers. The cases include marker poses that
are too close to the boundary of the view frustum of the camera.
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Algorithm 10: Optimized Marker Placement (OMP)
Input: The number of markers 𝑘, the list of feasible marker posesℳ, the

ground plane space 𝒮
Output: 𝑘 marker poses

1 Initialize an empty list for storing selected marker poses 𝒪
2 repeat 𝑘 times
3 Initialize the best marker pose 𝑇 ⋆ = ∅
4 Initialize the highest localizability gain 𝑔⋆ = − inf
5 Evaluate localizability scores ℒ⋆ of camera poses in space 𝒮
6 for Pose 𝑇 inℳ do
7 Place a marker at pose 𝑇 in space 𝒮
8 Evaluate localizability scores ℒ of camera poses
9 Compute information gains ℐ = ℒ − ℒ⋆

10 Evaluate localizability gain 𝑔 of the marker by (6.6)
11 if 𝑔 > 𝑔⋆ then
12 𝑇 ⋆ = 𝑇
13 𝑔⋆ = 𝑔

14 Remove the marker from space 𝒮
15 Push 𝑇 ⋆ to 𝒪
16 Place a marker at pose 𝑇 ⋆ in space 𝒮
17 Remove 𝑇 ⋆ fromℳ
18 return List of marker poses 𝒪

Analysis of feature similarity of 3D points: Repetitive structures in scenes

cause similar features across RGB images and can result in localizing to a wrong

location. To reduce the contribution of repetitive structures to localizability scores,

we penalize the localizability score if similar features appear in the FOV of the camera.

Specifically, when modeling 3D points with similar features in factor graphs, we set

greater uncertainty in noise models of 3D point factors to encode the fact that similar

3D points are ambiguous and less informative. (6.3) shows the 3D point factor that

formulates the difference between the noisy 3D location p̃ and true 3D location p

using a Gaussian distribution

𝑝(p̃|p) = 𝒩 (p̃− p;0,Σp) (6.3)

where Σp is the covariance we set for modeling noise. For example, in the leftmost
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Figure 6-5: Histograms for the HM3D apartment model: (a) percentage of affected
camera poses and (b) information gains at camera poses yielded by a marker. The
most visible 90% markers (i.e., 𝑣 = 90) means 10𝑡ℎ percentile in (a), determining the
percentile 𝑞 = 99.76 by (6.9). The 99.76𝑡ℎ percentile in (b) indicates a localizability
gain 25.21 of the marker by (6.6).

part of Fig. 6-3, points p1 and p3 are visually similar, so we set big covariances in

3D point factors of p1 and p3. Informally, factors with big covariances impose loose

constraints on the camera pose distribution, leading to lower contributions on the

localizability score.

We perform an analysis of feature similarity of 3D points to determine noise models

in 3D point factors (i.e., Σp in (6.3)), as shown in the flow chart in Fig. 6-3. The

analysis is to count the number of similar 3D points to any 3D point. The resulting

covariance Σp is formulated as

Σp = (1 + 𝑛p)Σ0 (6.4)

where Σ0 is a base covariance (e.g., 𝑑𝑖𝑎𝑔(2.5, 2.5, 2.5)× 10−3 𝑚2 in our experiments)

and 𝑛p denotes the number of similar 3D points to the query point p. 3D points

observed by all feasible camera poses are filtered to select similar ones of the query

point. The selection is determined by two criteria: 1) the selected points have similar

descriptors to the query point and 2) the selected points are not too close to the 3D

location of the query point. The intuition is that, if two areas in the scene look similar

but they are far away from each other, a wrong place recognition would incur a huge
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localization error.

Estimation of camera pose distributions: We use the Laplace approxima-

tion [9, Ch. 4.4] to estimate a Gaussian distribution that approximates the camera

pose distribution encountered in the synthetic localization problem. The mean of

the Gaussian is the known feasible camera pose so the covariance Σ is the only un-

known. The covariance can be approximated by an estimated Hessian of the negative

logarithm of the camera pose distribution at the mean (see [70, Sec. 2] for the esti-

mation of the covariance). Thus the entropy encountered in the synthetic localization

problem can be approximated by

𝐻(𝑝(𝐶|·)) ≈ 1

2
ln |Σ|+ 𝑑

2
(1 + ln(2𝜋)) (6.5)

where the dimensionality 𝑑 is 6 for 6DOF poses.

The greedy algorithm

The algorithm sequentially selects 𝑘 poses from feasible marker poses ℳ (see Algo-

rithm 10). The algorithm executes 𝑘 loops to search the best 𝑘 poses. In each loop,

we update localizability scores, tentatively place a marker at any feasible marker

pose, and compute localizability gains of trial marker placements. The best pose that

earns the highest localizability gain will be removed from feasible marker poses and

be permanently occupied by a marker. The marker will influence future updates of

localizability scores.

The crux of computation in Algorithm 1 is evaluating localizability scores. To

avoid redundant computation, we update the localizability score of a camera pose

only if the newly added marker is covisible to the camera pose. The complexity of

Algorithm 1 is 𝑂(|𝒞|+𝑘|ℳ|maxm(|𝒞m|)) where 𝑂(1) is the complexity for evaluating

the localizability score of a camera pose. maxm(|𝒞m|) denotes the maximal number of

covisible camera poses to a marker so it generally increases with the FOV and range

of the camera. The first term |𝒞| indicates the cost for initializing localizability scores

over all feasible camera poses while maxm(|𝒞m|) in the second term bounds the cost
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for evaluating the localizability gain brought by a marker. For each of the 𝑘 loops,

we evaluate localizability gains of all |ℳ| markers. Note that the time complexity

can be further reduced because it is not necessary to re-evaluate localizability gains

for all markers in each loop (lines 8-10 in Algorithm 1). For example, if the covisible

camera poses of an unselected marker have not been affected by all selected markers,

we do not need to re-compute the localizability gain of that unselected marker.

We discuss the possibility of generalizing the greedy algorithm by re-defining the

localizability score. For example, one can use the pose estimation error from a visual

localization system (e.g., Fig. 8) to replace the localization score and keep the rest

of the algorithm the same. The new marker placement based on the error may enjoy

advantages in localization experiments using the same localization system since the

marker placement is directly optimized for the system. However, updating the error

along with trial marker placements is computationally much more expensive than

evaluating the localization score since we need to add markers to the 3D scene model,

generate new map and test images, update the map in the localization system, esti-

mate camera poses of test images using the system, and compute the pose estimation

error. In contrast, updating the localizability score just needs to re-estimate camera

pose distributions, as shown in Fig. 6-3.

We summarize information gains at all feasible camera poses in the scene, using

a single scalar quantity that we refer to as localizability gain. Informally, one could

think of the localizability gain as the reward for placing an additional marker at a

specific position. The localizability gain of any marker placement m is defined as the

𝑞𝑡ℎ percentile of information gains that marker m yields at all feasible camera poses

𝒞, as seen in

𝑔(m) = inf{𝑖 ∈ R : 𝐹𝐼(𝑖) ≥
𝑞

100
}, (6.6)

where 𝐹𝐼(·) is the cumulative distribution function (CDF) after sorting the informa-

tion gains at all camera poses

ℐ = {𝐼(m, c) : c ∈ 𝒞}. (6.7)
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The choice of percentile 𝑞 ∈ [0, 100] is crucial and dependent on environments (i.e.,

the ground plane). For example, in a large environment where any marker is only

visible to a small fraction of feasible camera poses, a low percentile 𝑞 would likely

incur zero localizability gains for all markers since camera poses seeing no markers

receive zero information gains and constitute a great portion of the information gain

distribution ℐ.

We use an adaptive approach to determine the percentile 𝑞 before computing

the localizability gain. The approach introduces a hyperparameter 𝑣 ∈ [0, 100] and

ensures that the most visible 𝑣 percent of markers earn nonzero localizability gains.

A high 𝑣 allows more markers, even the ones stuck in corners, to effectively join in

the selection of best marker while a low 𝑣 favors the most visible ones among feasible

marker poses. In the ground plane space, for any marker m, we can find a set of

affected camera poses 𝒞m that are supposed to see the marker (i.e., nonzero info.

gain). We can derive a CDF 𝐹𝑃 (𝑝) using percentages of affected camera poses for all

markers

𝒫 =

{︂
|𝒞m|
|𝒞|
× 100 : m ∈ℳ

}︂
. (6.8)

To ensure only the most visible 𝑣 percent of markers earn nonzero localizability gains,

the percentile 𝑞 is determined by the (100− 𝑣)𝑡ℎ percentile in percentages of affected

camera poses, as seen in

𝑞 = 100− inf

{︂
𝑝 ∈ [0, 100] : 𝐹𝑃 (𝑝) ≥ 100− 𝑣

100

}︂
. (6.9)

(6.9) indicates 𝑞 is a non-decreasing function of 𝑣. When 𝑣 approaches 100, 𝑞 ap-

proaches 100 as well so only markers that earn a greater maximum in information

gains will be considered in the best marker selection (see (6.6)); when 𝑣 approaches

0, 𝑞 approaches 0 as well so the best marker will only be selected from markers that

influence large areas. Thus the choice of hyperparameter 𝑣 can reflect the trade-off

between helping the worst single camera pose and influencing the most camera poses.

Fig. 6-5 shows an example for computing the percentile 𝑞 and the localizability

gain for the marker placement in Fig. 6-4. We set 𝑣 = 90 as the default setting so the
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Scene A with no marker Scene B with markers

Camera poses of test images

Test images in scene A Test images in scene B

Estimated poses in scene A Estimated poses in scene B

Localization module

Figure 6-6: The flowchart of our system for performing camera localization experi-
ments. Scenes with different marker placements share the same set of camera poses
for acquiring test images and the same localization module.

most visible 90% markers receive nonzero localizability gains and are effective best

marker candidates. This setting results in a marker placement strategy that tends

to support worst camera poses instead of area coverage, as shown in the optimized

marker placement for the apartment model in Fig. 6-9. No markers are placed in the

two big rooms on the right of the apartment since (i) camera poses in these rooms al-

ready enjoyed good localizability scores (see Fig. 6-4a) and (ii) a large hyperparameter

𝑣 does not emphasize area coverage.

136



6.4 Experimental setup

6.4.1 Implementation

We implemented all three key elements and Algorithm 10 in Sec. 6.3.2 in Python

with assistance of a few open source software packages. We used the Unreal Engine

4.27 [39] and the AirSim library (v1.8.1) [118] to simulate and collect images from

3D models. We used the Open3D library [141] to downsample scan points to get

candidate marker locations. We used the GTSAM library [29] to create factor graphs

and estimate covariances in Gaussian approximations of camera pose distributions.

The SIFT feature [84] was used throughout our experiments.

Additionally, we implemented a simulation system for testing marker placement

algorithms and a camera localization module for estimating camera poses of test

images. Fig. 6-6 presents a flowchart of the system. The system adds markers to a

scene model at positions planned by marker placement algorithms and then generates

test images from the same set of camera poses for different marker placements for the

fairness in comparison. We stress three advantages of the simulation system over real

world pipelines for performing camera localization experiments: 1) reproducible data

collection by other researchers for future development of marker placement algorithms,

2) a large number of test images that cover the scene, 3) consistent camera poses for

generating test images in scenes with different marker placements.

6.4.2 Evaluation

Methods for comparison

We compare our algorithm OMP with 1) no marker placement, 2) random marker

placements, 3) uniform marker placements, and 4) markers placed by a human. Ran-

dom marker placements refer to uniformly weighted samples from feasible marker

poses. Uniform placements distribute the markers roughly uniformly along the perime-

ter of the environment (see [89] for details). We generated 5 versions of random and

uniform placements for each scene and all placements were manually inspected in
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Table 6.1: Specifics of scenes

Model Area (𝑚2) # of map images # of test images

Apartment 339.3 10856 10000
Studio 149.6 2832 3000
Office 108.3 1768 2000
Room 21.0 250 200

scene models to ensure reasonable quality. The comparison with humans is only con-

ducted in the real experiment. The human prioritizes centers in less textured areas.

Scenes

The method comparison is performed on four scenes: apartment, studio, office, and

room, as seen in Fig. 6-9. The first two are pre-built dense maps of realworld spaces,

provided by the Habitat-Matterport 3D (HM3D) Research Dataset [107], while the

third model is an Unreal Engine simulation environment that resembles typical re-

alworld offices3. The first three are for simulated experiments. The last one is a

motion capture room at MIT for the real experiment (see Fig. 6-8). The textured

mesh of the room was created by fusing RGB-D images from groundtruth poses, using

the volumetric fusion [23] and marching-cubes algorithms and the screened Poisson

surface reconstruction [73]. Table 6.1 lists specifics of these models.

The localization module

Fig. 6-7 presents the flowchart of our localization module. The localization mod-

ule is similar to standard approaches [115] but with an extra function of fiducial

marker detection, provided by the AprilTag library [99]. The tag detection and

VLAD descriptors [67] were sequentially employed to find matched images in the

map data. Camera poses were estimated using P3P [48] with RANSAC [41] followed

by Levenberg-Marquardt optimization [15]. The rotation error 𝛿𝑅 is defined as the
3The serial number of the apartment model is 00770-NBg5UqG3di3 in the HM3D dataset and that

of the studio model is 00254-YMNvYDhK8mB. We inspected all scenes in the dataset and chose these
two as representatives of medium and large scenes with textureless areas and potential perceptual
aliasing. The office model is the ThreeDee Office project in the Unreal Engine Marketplace.
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Figure 6-7: The localization module using fiducial marker detection. The numbers
indicate the order of different operations.

angular distance between the estimated rotation matrix �̂� and the groundtruth ro-

tation 𝑅 while the translation error 𝛿𝑡 is defined as the Euclidean distance between

the estimated translation 𝑡 and the groundtruth translation 𝑡, as seen in

𝛿𝑅 =
⃒⃒
arccos

(︀tr(�̂�T𝑅)− 1

2

)︀⃒⃒
, (6.10)

𝛿𝑡 =
⃦⃦
𝑡− 𝑡

⃦⃦
2
. (6.11)

The map and test data

In simulated experiments, the camera was set to a FOV of 90 degrees and a range of 10

meters (RGB res. 600×450, depth res. 300×225). The camera poses for collecting the

map data are the same as the feasible camera poses in the ground plane space. The

camera poses for collecting test images are sampled from the feasible camera poses

with weights and then perturbed by translation and rotation noises that are subject

to a uniform distribution in [−0.5, 0.5]. We intend to sample more densely from the

difficult areas, which are of our interest, so the weights in the sampling correlate

with localizability scores for generating more test images around low-scoring camera
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poses4. Let ℒ = {𝑙(c) : c ∈ 𝒞} be the set of localizability scores of feasible camera

poses in the ground plane space with no markers. The weights are defined as

𝒲 = {2𝑙⋆ − 𝑙 − 𝑙(c) : c ∈ 𝒞}, (6.12)

where 𝑙⋆ is the maximal score in ℒ and 𝑙 is the mean of all scores. Thus all weights

will be non-negative and a lower score incurs a greater weight. In the real experiment,

we used the Realsense L515 camera for RGB-D data (image res. 1280×720) and the

OptiTrack system for groundtruth poses. The map and test data were sampled along

two lawn-mower paths around feasible camera poses, as seen in Fig. 6-8:

(a)

(a)

(b)

Figure 6-8: Real experiment: (a) the motion capture room and (b) paths for collecting
data.

6.5 Results

We present two sections of results. In the first section, we present results comparing

different marker placement methods. Next, we show a parameter study about factors

that can affect our algorithm and the localization performance. The main metric we

analyze is the recall, which is defined as the percent of test images localized within

certain thresholds of errors: (5 cm, 5 deg) for simulated experiments and (30 cm, 10
4Results on test images uniformly sampled are available in Sec. 6.4.2.
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deg) for the real experiment considering errors in the dense map, sensor noise, and

large textureless areas. The default hyperparameter 𝑣 is 90.

6.5.1 Comparison of marker placement methods

As optimized marker placements in Fig. 6-9 show, our algorithm focuses on

placing markers around low-scoring areas and improves mean localizability

scores by a large margin. For example, the largest room in the studio model only

receives a single marker (marker 9 on the top right of the studio) since the room

already possesses good localizability scores even with no markers.

Optimized marker placements consistently outperform no marker place-

ment, random placements, and uniform placements on the recall. After

placing 20 markers, our algorithm improves the recall by over 1.5 percentages for

the apartment model, 3.0 percentages for the studio model, 20.0 percentages for the

office model, and over 20.0 percentages for the room scene. Note that the area of the

apartment model is very big and the model has attained a high recall 85% with no

assistance of markers so the increment of recall for the apartment model was expected

to be lower than that for the other models. The real experiment in the room scene

shows that our algorithm is on par with markers placed by a human. Although our

experiment demonstrates the efficacy of optimizing marker placements in 3D models

for realworld applications, we emphasize that the efficacy relies on the similarity be-

tween rendered and real images. Vision features in rendered images can be affected

by many factors including mesh quality and lighting. For example, we covered the

glass door in the room by a well-textured poster to reduce the difficulty in 3D recon-

struction. In addition, if one has quality real RGB-D data at feasible camera poses,

the textured mesh is not needed for using our marker placement algorithm.

6.5.2 Parameter study

We design four experiment groups and change one of the default parameters in each

experiment group. The experiment groups are 1) different values of 𝑣 in the greedy
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Figure 6-9: Results for all scenes: (a) 3D models, (b) ground plane space with no
markers where darker dots indicate lower localizability scores, (c) optimized marker
placements where the red arrows represent optimized marker placements and the
numbers beside the arrows indicate the order of marker placements, and (d) the
recall in camera localization experiments. We exclude camera poses near the bottom
of the room where a table occupies.

algorithm, 2) enabling/disabling marker detection in the localization module, 3) low-

scoring/uniform test data and 4) enabling/disabling the analysis of feature similarity,

as seen in Table 6.2. The default setting is with 𝑣 = 90, marker detection enabled,

the low-scoring test data that has more test images in low-scoring areas in the ground

plane, and the similarity analysis where similar 3D points are downweighted in the

localizability score. For the parameter study, we use the office model.

Too large or small values of hyperparameter 𝑣 incur lower improvements

of the recall. As explained in Sec. 18, lower 𝑣 favors markers that cover larger areas

while greater 𝑣 tends to stress the worst single camera pose. Table 6.2 shows that

the default value (𝑣 = 90) consistently outperforms small value 50 and large value 99,
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Table 6.2: Parameter study about the hyperparameter 𝑣, the test data, en-
abling/disabling marker detection, and enabling/disabling the similarity analysis.

Experiment group Recall of test images with 𝑘 markers (%)
𝑘 = 0 5 10 15 20

𝑣 = 90 (df.) 48.6 55.5 62.1 65.7 69.2
𝑣 = 99 48.6 55.5 60.4 64.5 67.4
𝑣 = 70 48.6 54.8 61.1 63.2 66.6
𝑣 = 50 48.6 54.3 57.6 63.9 66.8

Marker detect. on (df.) 48.6 55.5 62.1 65.7 69.2
Marker detect. off 48.6 55.2 60.7 64.2 67.5

Low-scoring data (df.) 48.6 55.5 62.1 65.7 69.2
Unif. test data 57.4 63.7 68.4 72.1 74.8

Similarity analysis (df.) 48.6 55.5 62.1 65.7 69.2
Sim. analysis disabled 48.6 55.4 61.8 65.0 67.8

indicating that the default attains a good balance between area coverage and helping

the worst cases.

The localizability score can be a good indicator of localization errors.

Table 6.2 shows that uniform test samples enjoy greater recall than test samples that

stress low-scoring areas by at least 5 percentages. Fig. 6-10b indicates a statistically

significant, negative correlation between the localizability score and the localization

error. In addition, we show recall of uniformly sampled test images in Table 6.3.

Both the visual appearance and decoded label of markers are helpful

for localization. We disable marker detection in the localization module (Fig. 6-7)

to investigate its impact on the recall. Table 6.2 shows that markers still improve the

recall even though the detector is turned off. The reason is that the visual appearance

of markers is still helpful for coarse localization and pose estimation in the localization

module.

Deactivating the analysis of feature similarity decreases the recall. Fig. 6-

10a presents the marker placement after disabling the similarity analysis (i.e., no

scaling in (6.4)). The first five markers remain in the same positions as those guided

by the similarity analysis (Fig. 6-9c). Thus the recall does not change significantly
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Table 6.3: Recall (%) of test images that are uniformly sampled. Rand. refers to
random marker placements and Unif. refers to uniform marker placements.

Scene
(NoMarker)

Method Mean±STD with 𝑘 markers
𝑘 = 5 𝑘 = 10 𝑘 = 15 𝑘 = 20

Apt.
(88.2)

Ours 88.6 88.8 89.2 89.5
Rand. 88.5±0.1 88.8±0.1 89.0±0.1 89.1±0.2
Unif. 88.4±0.1 88.6±0.1 88.7±0.1 88.9±0.1

Studio
(80.3)

Ours 81.4 82.7 83.0 83.1
Rand. 80.8±0.3 81.4±0.4 81.2±0.4 81.4±0.7
Unif. 80.9±0.2 81.2±0.3 81.6±0.5 81.8±0.2

Office
(57.4)

Ours 63.7 68.4 72.1 74.8
Rand. 60.7±0.7 63.0±1.0 66.7±1.5 69.1±1.8
Unif. 60.0±0.6 63.0±0.7 67.6±0.9 69.9±1.3

until placing 10 markers, as shown in the last group in Table 6.2. The decrease in

the recall with no similarity analysis justifies the efficacy of downweighting similar

features in the computation of the localizability score.

6.6 Sensitivity study of marker sizes and positions

It is quite likely that a user will not be able to place fiducial markers exactly at

the positions computed by the OMP algorithm; meanwhile, different users may print

fiducial markers with different sizes. Thus we investigate the impact of position

deviations and marker sizes on the recall. For the sensitivity study, we used the office

model.

Enlarging markers up to a certain size keeps increasing the recall. Fig. 6-

11a shows that, under 50 cm, larger tag widths lead to greater recall (note that the

threshold 50 cm should correlate with environments). Excessively large sizes can

degrade the recall because the markers become too big to be detected from nearby

views.

Mild position deviations slightly degrade the performance of the opti-

mized marker placement. All 20 markers planned by the OMP algorithm were
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Figure 6-10: Parameter study: (a) the optimized marker placement after disabling
the similarity analysis and (b) scatter plot of the localizability score and the log
of estimation error of test images. The error is computed as the double Geodesic
distance,

√︀
𝛿2𝑅 + 𝛿2𝑡 . To avoid outliers, samples are admitted to the plot only if the

translation and rotation errors are within (50𝑐𝑚, 50𝑑𝑒𝑔). The Pearson correlation
coefficient and 𝑝-value for testing non-correlation is (−0.41, 2.4× 10−55).

(a) (b)

Figure 6-11: Sensitivity study: (a) re-sizing tags and (b) applying different position
deviations to marker poses planned by the OMP algorithm.

moved left or right by certain distances to implement position deviations. Fig. 6-11b

shows the recall can decrease by 2% in the presence of ±0.25 meters position devia-

tions and by 5% in the presence of ±1 meter position deviations, compared with zero

position deviation. However, marker placements with the position deviations still

outperform no marker placement by a large margin (∼ 15 percentages in the recall).
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6.7 Summary

This work provides a promising foundation for optimizing and evaluating marker

placement for improved visual localization. Our OMP algorithm defines localizability

scores for different areas in the scene and uses a greedy algorithm to find the best

marker placements in the sense of increased localizability scores. We applied the OMP

algorithm to four scenes and demonstrated that OMP consistently improves camera

localization recall compared to random and uniform marker placements. We believe

that our marker placement approach is also useful for SLAM. However, our approach

could be further extended to compute optimal marker placement for specific tasks in

SLAM. One potential idea involves extending the localizability score to a trackability

score that incorporates uncertainty propagation along a robot path while restricting

feasible camera poses to the operating area of the robot.

The OMP algorithm only considers placing markers in a scene model (i.e., mapped

areas in the scene), however, regions in the scene which are challenging for mapping

are also likely to be good locations for placing markers. Thus, it would be worth

exploring ways to extend the algorithm to prioritize marker placements in regions

that are either partially or inadequately mapped. Further research is also needed to

compute more accurate localizability scores and explore more efficient optimization

methods beyond the greedy algorithm, including: (1) joint optimization of marker

poses and sizes, (2) extending the single-layer ground plane to multi-layer planes

for deploying markers in multi-storey structures, (3) using non-Gaussian distribution

estimation techniques to compute localizability scores, and (4) applying submodular

optimization to jointly select multiple best markers together with fewer iterations.
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Chapter 7

Conclusion

This thesis seeks scalable, expressive density representations, beyond the Gaussian

distribution, for the improved approximation of posterior distributions encountered in

SLAM. We achieve scalable full posterior inference for SLAM in highly non-Gaussian

settings, by leveraging sparsity structures in factor graphs and various density rep-

resentations to address the scalability challenge and the expressivity challenge, re-

spectively. Our algorithms enable the robot to continuously reason the uncertainty

in localization and mapping even with few, ambiguous observations about the world.

In addition to SLAM algorithms, we apply full posterior inference to identify difficult

areas for visual localization in an environment.

Chapter 3 introduces nested sampling methods to directly draw samples from

the posterior distribution encountered in SLAM problems, pursuing the bona fide

shape of the posterior at the expense of computation resources. We demonstrate that

NSFG can serve as a reference solution for the posterior, aiding accuracy evaluation

of density approximations found by scalable inference algorithms. In Chapter 4, we

present a real-time algorithm, GAPSLAM, that precisely infers non-Gaussian/multi-

modal marginal posteriors encountered in SLAM. In addition, we develop a streaming

platform that bridges mobile devices and servers via web applications to conduct live

demo of object-based SLAM, featured by the sharing of mapping results among online

peers and the continuous visualization of the uncertainty in localization and mapping.

Chapter 5 introduces a novel algorithm, NF-iSAM, that achieves incremental updates
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for modeling and sampling the joint posterior encountered in SLAM. Our approach

show an improved approximation of the joint posterior in highly non-Gaussian settings

due to nonlinear measurement models and non-Gaussian (e.g., multi-modal) factors.

Chapter 6 provides a promising foundation for optimizing and evaluating marker

placement for improved visual localization. Our OMP algorithm defines localizability

scores, via performing full posterior inference in visual localization, and uses a greedy

algorithm to find the best marker placements in the sense of increased localizability

scores. We have evaluated OMP within this testbed and demonstrate an improvement

in the localization rate by up to 20 percent on four different scenes.

7.1 Future work

Contributions in this thesis can be extended further in several ways. First, while the

NF-iSAM algorithm is scalable owing to incremental inference, our implementation

has not reached real-time operation since training neural networks to model normal-

izing flows is time-consuming. Further research is needed to explore more efficient

implementation strategies that can lead us closer to real-time operation, including:

1) leveraging more efficient learning-based density models and 2) utilizing hardware

accelerators for training neural networks. Second, this thesis focuses on non-Gaussian

posteriors that are incurred by physical measurements and model-based likelihoods.

Future work on full posterior inference can explore how to incorporate data-driven

observations and learned, highly uncertain likelihoods. Last, there are a number of

opportunities to utilize the uncertainty in perception results to improve autonomous

systems, including the detection of anomaly in the perception pipeline and improved

decision-making for active perception. We believe that advances in uncertainty-aware

perception will assume an increasingly vital role in propelling the advancement of life-

long, self-diagnosing, and self-improving autonomous systems.
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