
Achieving Robustness and Generalization in MARL
for Sequential Social Dilemmas through Bilinear

Value Networks

by

Jeremy Ma
B.S. in Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, 2022

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© Jeremy Ma, MMXXIII. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide,
irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Author: Jeremy Ma
Department of Electrical Engineering and Computer Science
June 25, 2023

Certified by: Jonathan P. How
Richard C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Achieving Robustness and Generalization in MARL for

Sequential Social Dilemmas through Bilinear Value Networks

by

Jeremy Ma

Submitted to the Department of Electrical Engineering and Computer Science
on June 25, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents a novel approach for training multi-agent reinforcement learn-
ing (MARL) agents that are robust to different unforeseen gameplay strategies in
sequential social dilemma (SSD) games. Recent literature has demonstrated that
reward shaping can not only be used to enable MARL agents to discover diverse,
human-interpretable strategies with emergent qualities, but also help alleviate the
issue in conventional actor-critic methods that tend to converge to suboptimal Nash
equilibria in SSD games. However, agents trained through self-play typically converge
and overfit to a singular Nash equilibrium. Consequently, these agents are limited
to executing the specific strategy they have converged to during training, which ren-
ders them ineffective when faced with opponents employing commonly-used strategies
such as tit-for-tat. This thesis proposes a method that employs a bilinear value critic
that can learn an adaptive and robust strategy in SSD games through self-play with
randomized reward sharing.

We evaluate the efficacy of this approach on “prisoner’s buddy,” an iterated three-
player variant of the prisoner’s dilemma game. Our results show that the bilinear
value structure helps the critic generalize over the reward sharing manifold and leads
to an adaptive agent with emergent qualities such as reputation.

The results of this research highlight the ability of MARL agents to learn a general
high-level policy that can effectively socialize with agents with different strategies in
SSD games, despite being trained through self-play. The proposed method is scalable
and has the potential to be applied to a wide range of multi-agent competitive-
cooperative environments, providing insights into the design of MARL algorithms for
solving social dilemmas.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to express my deepest gratitude to my Thesis Advisor, Jonathan How,

for his unwavering support, guidance, and invaluable insights in aiding the process of

completing my thesis.

I would also like to extend my heartfelt appreciation to my Academic Advisor,

Vincent Chan, and Professor Katrina LaCurts, for their continuous support and en-

couragement. Their belief in my abilities and their willingness to offer guidance and

assistance have been crucial in navigating through the challenges of this academic

journey.

I am deeply grateful to my previous advisor, Boris Katz, for his inspiration and

support in initiating and pursuing this thesis.

I would like to extend my appreciation to my dear friend Kevin, whose insights

and discussions have greatly enriched my college life as well as this work.

Furthermore, I am grateful to my parents, Tera and Season, as well as my stepfa-

ther David, for their unconditional love, support, and understanding.

5

6

Contents

1 Introduction 13

1.1 Background . 13

1.2 Motivation . 14

1.3 Problem Statement . 15

1.4 Thesis Outline . 16

2 Background 17

2.1 Social Dilemmas . 17

2.1.1 Sequential Social Dilemmas 18

2.1.2 Existing Solutions . 20

2.2 Reinforcement Learning . 20

2.2.1 Deep-Q-Networks (DQN) . 20

2.2.2 Policy Gradient . 21

2.2.3 Proximal Policy Optimization 21

2.3 Multi-Agent Reinforcement Learning 22

2.3.1 Multi-Agent Actor Critic . 22

2.4 Reward Shaping . 24

2.4.1 Reward Sharing . 24

2.5 Multi-Goal Reinforcement Learning 25

3 Methods 27

3.1 Motivation . 27

3.1.1 Randomized Reward Sharing 28

7

3.1.2 Bilinear Value Networks . 29

3.2 Formal Formulation . 30

3.2.1 General Markov Game . 30

3.2.2 Reward Sharing . 31

3.2.3 Reward Sharing Generalization 32

3.3 Experimental Setup . 33

3.3.1 Environment . 33

3.3.2 Implementation . 36

3.3.3 Evaluations . 39

4 Results 43

4.1 Baseline Performance . 43

4.1.1 Importance of reward sharing 43

4.1.2 Randomized Reward Sharing 45

4.2 Scenario Evaluations . 46

4.2.1 Naive Scenarios . 46

4.2.2 Strategic Scenarios . 48

4.2.3 Agent Scenarios . 52

4.2.4 Implications . 53

4.3 Ablations . 54

4.3.1 Scalarization Function and Prior 54

4.3.2 Latent Size . 58

5 Conclusion 61

5.1 Summary . 61

5.2 Limitations and Future Work . 62

8

List of Figures

3-1 Example game of IPD where arrows indicate agent actions. Figure by

Baker. [3] . 34

3-2 A visual representation of the state 𝑠𝑡 35

3-3 Network architecture for Multi-Agent Proximal Policy Optimization

(MAPPO) . 38

3-4 Network architecture for Universal Value Function Approximator (UVFA) 38

3-5 Network architecture for Bilinear Value Network (BVN 39

4-1 Learning curve with cumulative reward over training iterations with

and without reward sharing. 44

4-2 Learning curve with cumulative reward over training iterations of dif-

ferent network architectures. 45

4-3 Cumulative reward during evaluation against Naive players. 47

4-4 Cumulative reward during evaluation against Trust players with 𝑐 = 0.4. 48

4-5 Cumulative rewards during evaluation of MAPPO and UVFA agents

across Trust players with different values of 𝑐. 50

4-6 Cumulative rewards during evaluation of BVN agent across Trust play-

ers with different values of 𝑐. 50

4-7 Cumulative reward during evaluation against settings with one Betray

and one Naive player. 51

4-8 Cumulative reward during evaluation against Tit-for-tat players. . . . 52

4-9 Cumulative reward during evaluation against settings with another

trained agent. 53

9

4-10 Cumulative reward of different agents averaged across 200 trials with

error bars as 95% confidence interval 55

4-11 Learning curves of BVN agents using different scalarization functions

across different values of 𝛼. The performance of the agents shows

contrasting trends based on the scalarization approach. 56

4-12 Learning curves of UVFA agents using different scalarization functions

across different values of 𝛼. 57

4-13 Learning curves with BVN agent with WPM and 𝛼 = 1.0 across dif-

ferent sizes of latent vectors 𝑙𝑠𝑎 and 𝑙𝑠𝑔. 59

4-14 Cumulative reward of BVN agents with different latent vector sizes

across different settings averaged over 200 trials with error bars as

95% confidence interval. 59

10

List of Tables

3.1 Configuration of agents and high level task for each test scenario . . . 42

11

12

Chapter 1

Introduction

1.1 Background

Society is a highly intricate network comprising individuals with diverse values and

motives. These complex social systems play a central role in our lives, yet they re-

main among the most intricate phenomena known to us. Despite their complexity,

humans possess a remarkable capacity to engage in social interactions, understand-

ing how to effectively cooperate, compete, resolve conflicts, exchange resources, or

exert influence. However, comprehending and unraveling the dynamics of these so-

cial systems pose significant challenges as the inter-agent relationship networks are

often too intricate and tedious to be reliably followed by other approaches. Ana-

lytic approaches often face significant challenges in comprehending intricate social

systems due to their complex nature, while relying solely on natural language ap-

proaches proves inadequate in capturing the nuanced cause-and-effect relationships

that underlie these systems [12].

As a result, agent-based computational approaches, such as Multi-Agent Rein-

forcement Learning (MARL), have emerged as promising methods for gaining a deeper

understanding of such complex processes through the utilization of simulations. These

computational approaches enable the formal modeling of emergent phenomena, allow-

ing for a more comprehensive exploration of the dynamics at play [12]. Furthermore,

MARL draws inspiration from the learning paradigm of social cognition in humans,

13

which shares similarities with reinforcement learning [19]. Consequently, MARL of-

fers valuable insights into the cognitive processes underpinning human interactions

and the navigation of society [30].

MARL has demonstrated success across various experimental settings, encompass-

ing general sum games, coordination games, and social dilemmas [33,44]. Moreover, it

has found practical applications in diverse domains, including electricity distribution

management [48], air traffic control [5], and supply chain planning [64]. As a model of

social interactions, MARL exhibits substantial potential in capturing emergent social

norms [21, 67], as well as learned collective behaviors such as flocking [45, 53] and

human-like social behaviors in virtual environments [57, 58]. In fact, MARL approx-

imates human social behavior so effectively that there are use cases where MARL

agents are intentionally designed to exhibit human-like characteristics by implement-

ing hand-coded heuristics such as Belief-Desire-Intent [6], bounded rationality [42],

and affinity [40].

1.2 Motivation

While MARL has achieved considerable success in coordination and general sum

games, it still faces challenges in mixed competitive-cooperative environments where

the relationships between agents are not specified. General obstacles in RL, such as

credit assignment, are often further exacerbated in MARL due to the non-stationarity

of rapidly evolving agents. Although methods have been proposed to stabilize training

in purely competitive or cooperative environments [9,15,54], these approaches do not

readily apply to mixed comp-coop scenarios. Existing methods for training MARL

agents in such environments often rely on pre-defined team structures embedded in

the reward function, requiring prior knowledge of team relationships [36,37,49,62,70].

Although these agents learn how to compete and cooperate, they do not possess the

ability to determine when it is appropriate to employ these strategies.

Hence, we turn our attention to sequential social dilemmas (SSD) as the target

environment. SSDs encompasses scenarios in which emergent behavior, such as team

14

formation, plays a crucial role in achieving equilibrium. This characteristic renders

it an ideal candidate as a mixed competitive-cooperative environment without prede-

termined team structures. Traditional MARL methods often converge to sub-optimal

defecting equilibria in SSDs, while cooperative optima with higher social welfare ex-

ist [32, 46, 50]. Reward randomization has shown promise in guiding MARL agents

to converge to cooperative optima [3, 56]. However, as these methods tend to guide

agents to discover a specific cooperative equilibrium, agents trained with these meth-

ods tend to over-fit on one specific optima, or Nash equlibrium, rather than learning

a general strategy applicable across various SSD scenarios, threreby restricting their

capability to play against policies that have different motives or aim to achieve a

different equilirium.

For instance, if MARL agents were to be trained to execute a cooperative policy

during self-play training in a game of Iterated Prisoner’s Dilemma [35], it is highly

likely that they would be blindly cooperating even during test time, as the only type

of players that the agent encountered during self-play were cooperative agents. As

a result, they become vulnerable to exploitation by malicious agents that defect.

Given the intricate nature of interactions and the presence of emergent phenomena

in SSDs, hand-coded solutions are not readily attainable. Therefore, the objective of

this thesis is to train an agent that exhibits robustness to different strategies in SSDs

by generalizing across a diverse set of player behaviors in order to effectively execute

and play against such behaviors.

1.3 Problem Statement

This thesis addresses two primary problem statements: first, how can we maintain a

diverse set of behaviors during self-play? And second, how can we ensure that our

agent generalizes effectively across these behaviors? To tackle the first problem, we

propose the use of randomized reward sharing schemes, which facilitate the mainte-

nance of behavior diversity among the trained agents. To address the second problem,

we introduce Bilinear Value Networks (BVN) into the network architecture, leverag-

15

ing their ability to incorporate an inductive bias that promotes generalization across

behaviors specified by different reward sharing schemes.

These solutions lead to the overarching question: Does the ability to generalize

across reward sharing schemes enable an adaptive player to learn a general strategy

for sequential social dilemmas? This thesis aims to demonstrate that MARL agents

trained using the proposed method acquire a high-level policy that effectively inter-

acts with agents employing different strategies and achieves near-optimal equilibria.

Our experimental results substantiate the superior performance of the BVN agents

compared to other baseline methods when evaluated against players adopting unseen

strategies.

1.4 Thesis Outline

This thesis begins with a brief introduction to social dilemmas and a review of ex-

isting RL methods, MARL techniques, reward sharing approaches, and multi-goal

reinforcement learning in Chapter 2. Chapter 3 delves into the methods employed,

presenting a formal formulation of the problem at hand along with detailed informa-

tion regarding the experimental setup and implementation. The subsequent chapter,

Chapter 4, presents the experimental results, including ablation analyses and their

associated implications. Finally, Chapter 5 provides a comprehensive summary of

the thesis, highlighting its contributions, discussing the limitations of the proposed

approach, and outlining potential avenues for future research.

16

Chapter 2

Background

In the following chapter, we will first introduce social dilemmas and the game-

theoretical properties, along with the complexities and challenges of using multi-

agent reinforcement learning (MARL) in such settings. Subsequently, the next section

briefly goes over conventional RL methods and reviews recent MARL methods that

effectively address both cooperative and competitive environments. Section 4 of this

chapter outlines existing literature on reward sharing. Finally, section 5 describes ex-

isting multi-goal RL methods such as Bilinear Value Networks, and benefits of using

such methods.

2.1 Social Dilemmas

Social dilemmas refer to natural or designed environments where individuals con-

front a fundamental conflict between their self-interest and the collective interest of

a group or society. In such contexts, individuals may derive personal benefits by

pursuing their own self-interest, but if everyone adopts this approach, it results in

a suboptimal outcome for the entire group. These dilemmas require a delicate bal-

ance of competition and cooperation to be reached during inference, as opposed to

environments with predetermined teams and fixed relationships between agents that

involve more explicit mixed competitive-cooperative dynamics.

Mathematically, social dilemmas can be represented as matrix games with two

17

fundamental actions: cooperation and defection. The outcomes of this matrix game

can be categorized into four possibilities: R (reward for mutual cooperation), P (pun-

ishment arising from mutual defection), S (sucker outcome obtained by the player

who cooperates with a defecting partner), and T (temptation outcome achieved by

defecting against a cooperator). A matrix game is a social dilemma when its four

payoffs satisfy the following social dilemma inequalities [39].

1. 𝑅 > 𝑃 : players prefer mutual cooperation (CC) over mutual defection (DD).

2. 𝑅 > 𝑆: players prefer mutual cooperation over unilateral cooperation (CD).

3. 2𝑅 > 𝑇 + 𝑆: players prefer mutual cooperation over an equal probability of

unilateral cooperation and defection.

4. 𝑇 > 𝑅: players prefer unilateral defection (DC) to mutual cooperation (greed)

or 𝑃 > 𝑆: players prefer mutual defection to unilateral cooperation (fear).

Prisoner’s Dilemma [61], for example, is a matrix game social dilemma where agents

defect out of both fear and greed, meaning both 𝑇 > 𝑅 and 𝑃 > 𝑆.

In social dilemmas involving humans, various factors contribute to the stable out-

comes of mutual cooperation, including direct reciprocity [60], indirect reciprocity

[43], emotions [68], and more. These factors foster cooperative behavior among in-

dividuals and facilitate sustained cooperation within social contexts. However, RL

agents lack built-in mechanisms that naturally encourage cooperative behavior. More-

over, the inherent high risk associated with cooperating agents without unknown

intent further diminishes the likelihood of multiple RL agents converging naturally

towards cooperative optima [56].

2.1.1 Sequential Social Dilemmas

Matrix Game Social Dilemmas, as described above, present limitations in capturing

the complexity of real-life social dilemmas due to their lack of temporal extension.

Real-world social dilemmas often involve temporally extended policies that exhibit

18

graded qualities in terms of cooperation and competition. Moreover, episodes in real-

world social dilemmas are no longer zero-shot, necessitating the ability to predict

behavior, infer intentions, and reason about other players’ policies based on past

gameplay experiences.

To address these limitations, Sequential Social Dilemmas (SSD) were proposed to

extend the existing social dilemma framework by incorporating a temporal dimension.

For instance, the SSD equivalent of Prisoner’s Dilemma would be Iterated Prisoner’s

Dilemma (IPD), where players would play multiple rounds of Prisoner’s Dilemma

consecutively. This transformation converts the zero-shot scenario into a significantly

more intricate in IPD despite there being an evolutionarily stable strategy in zero-shot

Prisoner’s Dilemma (all-defect).

Formally, a Sequential Social Dilemma is defined as a tuple (ℳ,Π𝑐,Π𝑑), where

ℳ represents a Markov Game (see Section 3.2.1), and Π𝑐 and Π𝑑 denote two disjoint

sets of policies representing cooperating and defecting strategies, respectively. The

long-term payoff of a state 𝑠 with a discount factor 𝛾 ∈ (0, 1] is defined as [32]

𝑉𝜋1,𝜋2(𝑠) = E𝑠∼𝑝,𝑎1,𝑎2∼𝜋1,𝜋2 [
∞∑︁
𝑡=0

𝛾𝑡𝑟(𝑠, 𝑎1, 𝑎2)].

The values of the empirical payoff matrix at that state are denoted as:

𝑅(𝑠) = 𝑉𝜋𝑐,𝜋𝑐(𝑠)

𝑃 (𝑠) = 𝑉𝜋𝑑,𝜋𝑑
(𝑠)

𝑆(𝑠) = 𝑉𝜋𝑐,𝜋𝑑
(𝑠)

𝑇 (𝑠) = 𝑉𝜋𝑑,𝜋𝑐(𝑠)

(2.1)

where 𝜋𝑐 ∈ Π𝑐 and 𝜋𝑑 ∈ Π𝑑 are policies that execute cooperating and defecting

strategies respectively. If there exists 𝑠 ∈ 𝑆 such that the empirical payoff matrix

satisfies the social dilemma inequalities (as described in Section 2.1), the Markov

Game ℳ is classified as a Sequential Social Dilemma. An example of a non-matrix

game SSD is a resource game known as “the commons” [46].

19

2.1.2 Existing Solutions

Considerable research efforts have been devoted to the development of algorithmic

solutions and frameworks that incentivize and foster cooperative behavior among

RL agent by integrating explicit mechanisms or reward structures. Notable examples

include GAMA [9] and reward sharing [23], which have both been employed as a means

to induce cooperative behavior by through introducing explicit bias to the agents and

establishing appropriate reward structures within the RL framework respectively.

Moreover, recent research has demonstrated successful induction of cooperation and

emergence of indirect reciprocity among RL agents during training, even without

explicit mechanisms, by incorporating uncertainty [3].

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning that focuses on devel-

oping algorithms and techniques for training agents to make sequential decisions in

an environment to maximize cumulative rewards. RL has gained significant attention

and success in various domains, including robotics, game playing, and autonomous

systems.

Two prominent RL methods that have been widely applied are Deep-Q-Networks

(DQN) and Policy Gradient. These methods offer distinct approaches for learning

optimal policies in the context of agent decision-making. When integrated, they give

rise to actor-critic methods, which are recognized for their effectiveness.

2.2.1 Deep-Q-Networks (DQN)

DQN is a method that learns an action-value (Q) function, denoted as 𝑄𝜋(𝑠, 𝑎) =

E[𝑅|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], which estimates the expected cumulative reward when taking

a particular action 𝑎 in a given state 𝑠. The policy in DQN is generally defined as

selecting the action with the highest Q-value, represented as 𝜋(𝑠) = argmax𝑎′𝑄
𝜋(𝑠, 𝑎′)

20

[41]. The Q-function is learned by minimizing the following loss function:

𝐿(𝜃) = Es,a,r,s’

[︁
(𝑄(𝑠, 𝑎|𝜃)− (𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′))

]︁
(2.2)

𝑄 refers to a frozen target Q-network that is periodically updated. To stabilize the

training process, DQN conventionally utilizes a replay buffer 𝒟 containing tuples of

state, action, reward, and next state (𝑠, 𝑎, 𝑟, 𝑠′).

A possible way to apply DQN to multi-agent environments is to allow each agent

to learn its own optimal Q-function 𝑄𝑖. However, updating multiple Q-functions

individually at different rates may cause non-stationarity in the environment, leading

to convergence challenges.

2.2.2 Policy Gradient

Policy Gradient is another popular RL method that focuses on optimizing the param-

eters 𝜃 of a policy 𝜋, which outputs a probability distribution over the action space

𝒜. The objective is to maximize the expected reward 𝐽(𝜃) = E𝑠∼𝑝𝜋 ,𝑎∼𝜋𝜃
[𝑅].

The policy gradient is computed through gradient ascent in the direction of:

∇𝜃𝐽(𝜃) = E𝑠∼𝑝𝜋 ,𝑎∼𝜋𝜃
[∇𝜃log𝜋𝜃(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)] (2.3)

𝑄𝜋(𝑠, 𝑎) can be approximated by a learned function, such as a DQN, where 𝑄𝜋(𝑠, 𝑎)

acts as a critic and 𝜋 acts as an actor.

2.2.3 Proximal Policy Optimization

Actor-Critic methods are among the most widely used policy gradient architectures

in reinforcement learning. Actor-Critic methods combine the benefits of value-based

and policy-based approaches by simultaneously learning a value function and a policy.

The actor in an Actor-Critic algorithm is responsible for selecting actions based on

the current policy. It aims to maximize the expected cumulative reward by exploring

the environment and adapting its policy accordingly. The critic, on the other hand,

21

evaluates the quality of the chosen actions and provides feedback to the actor. It es-

timates the value function, which represents the expected cumulative reward starting

from a given state and following the current policy.

Proximal Policy Optimization (PPO) is a state-of-the-art Actor-Critic algorithm

that builds upon the policy gradient method. PPO addresses some limitations of

traditional policy gradient approaches, such as unstable updates and the potential

for large policy changes [52].

PPO is a variant of the policy gradient that leverages a surrogate objective func-

tion that incorporates a clipped probability ratio between the updated policy and the

old policy. By enforcing a limit on the change in the policy, PPO ensures more stable

and controlled updates.

Actor-Critic methods such as PPO provide a powerful framework for training RL

agents and have been successfully applied in various domains, including multi-agent

environments, where they can effectively handle the challenges of coordinating actions

and dealing with non-stationary environments [66].

2.3 Multi-Agent Reinforcement Learning

2.3.1 Multi-Agent Actor Critic

There are several approaches to extend single-agent actor-critic algorithms to multi-

agent settings. One intuitive method is Independent Actor-Critic (IAC), where each

agent in the environment has a separate actor and critic [38]. Concretely, Each agent 𝑖

has its own independent, decentralized actor 𝜋𝑖 and critic 𝑄𝑖, operating locally based

on its own actions 𝑎𝑖 and observations or state 𝑠𝑖. The policies of agents in IAC are

independent, and the policy gradient for IAC is defined in Equation 2.4. However,

this fully decentralized approach can be unstable and computationally expensive due

to the constantly changing, non-stationary environment caused by the difference in

learning progresses between agents.

∇𝜃𝑖𝐽(𝜃𝑖) = Es,a[∇𝜃𝑖 log𝜋𝜃𝑖(𝑎𝑖|𝑠𝑖)𝑄
𝜋𝜃𝑖
𝑖 (𝑠𝑖, 𝑎𝑖)] (2.4)

22

In contrast, the fully centralized setting, Joint Actor-Critic (JAC), treats the

multi-agent environment as a single-agent RL problem, where one network would

output the actions of all agents [38]. Due to the shared parameters and knowledge

amongst agents, JAC is conventionally used in cooperative settings only. This ap-

proach involves a centralized actor operating on the joint action space a and state

space s, along with a centralized critic that evaluates state and joint-action pairs.

The policy gradient for JAC is defined as follows:

∇𝜃𝐽(𝜃) = Es,a[∇𝜃log𝜋𝜃(a|s)𝑄𝜋𝜃(a, s)] (2.5)

CTDE A commonly used paradigm in MAAC is Centralized Training, Decentralized

Execution (CTDE). CTDE combines a centralized critic with decentralized actors,

where the critic evaluates state and joint-action pairs, while the actors operate within

each agent’s individual action space [38]. CTDE stabilizes training by assuming global

access to the actions of all agents during training and conditioning the critic on this

joint action space, addressing the issue of non-stationarity in the environment. This

assumption is relaxed during execution as actors do not require the actions of all

agents as they are decentralized. The policy gradient for CTDE is defined as follows:

∇𝜃𝑖𝐽(𝜃𝑖) = Es,a[∇𝜃𝑖 log𝜋𝜃𝑖(𝑎𝑖|𝑠𝑖)𝑄𝜋𝜃𝑖 (a, s)] (2.6)

The CTDE paradigm has been widely utilized and extended in various studies [8,

26, 69]. Notable approaches such as Multi-Agent Deep Deterministic Policy Gradi-

ents (MADDPG) have demonstrated the effectiveness of CTDE in continuous action

spaces, introducing approximate policies to estimate the actions of other agents dur-

ing training [37]. Multi-Agent Proximal Policy Optimization (MAPPO) has shown

the efficacy of utilizing PPO as a MAAC method [66]. In this thesis, we adopt the

CTDE formulation and employ MAPPO with approximate policies as the training

method.

23

2.4 Reward Shaping

Research has demonstrated that modifying individual rewards for each agent can

result in the emergence of competitive and cooperative behaviors [17, 37, 55]. Fur-

thermore, by incorporating the rewards of other agents into an agent’s own reward, a

wide range of emergent behaviors can be observed. By designing a recursive reward

structure in MARL, agents can exhibit recognizable behaviors that resemble compe-

tition, cooperation, coercion, exchange, and conflict [57, 58]. When multiple agents

are involved, reward shaping enables the emergence of complex social ecosystems,

including phenomena such as team formation and tribal behaviors [20,49].

2.4.1 Reward Sharing

Reward sharing is a type of reward shaping that involves agents allocating a portion

of their own reward to other agents based on a specified weighting scheme. In other

words, each agent’s reward is a scalar combination of the rewards of all agents. Further

technical details on reward sharing are discussed in Section 3.2.2.

For example, cooperative agents can be trained effectively by employing a global

reward function, where each agent’s reward is equally shared among all agents, ef-

fectively averaging the reward for each agent and thereby promoting a non-selfish

behavior. However this sharing scheme is far from optimal: a technical challenge

arises in the credit assignment problem, as the actions of all agents are weighted

equally [23]; in realistic scenarios involving competitive-cooperative settings, such as

social dilemmas, a global reward function would not be optimal as agents are expected

to cooperate with varying degrees of cooperation or even compete with each other.

Learning to Share (LToS) have demonstrated the benefits and feasibility of learn-

ing reward sharing schemes online, although LToS face challenges and instabilities

associated with two-level optimization and reward learning in general [1]. Moreover,

reward sharing has served as the foundation for various RL methods that assist agents

in discovering cooperative optima in social dilemma settings [3, 56].

24

2.5 Multi-Goal Reinforcement Learning

Multi-Goal Reinforcement Learning (MGRL) is a subfield of RL which aims to train

an agent to perform a collection of tasks, usually specified by some unique index

𝑔. These tasks are typically similar and exhibit some degree of overlap in terms

of underlying low-level tasks. By conditioning the agent’s behavior on these tasks,

researchers have been able train agents to extrapolate and systematically generate new

goals to promote exploration [13,24] and establish an appropriate learning curriculum

[14].

Existing MGRL methods have demonstrated remarkable abilities to generalize

across tasks and even different reward functions [29]. Universal Value Function Ap-

proximators (UVFA) achieve this by training a value function that generalizes across

both state and goal space, denoted as 𝑓(𝑠, 𝑎, 𝑔). Further studies have shown promising

results in training a latent representation for each goal, encoding each 𝑔 into a shared

latent space [10]. Bilinear Value Networks (BVN) have also exhibited exceptional gen-

eralization capabilities across goals. BVN networks explicitly decompose the value

function into a dot product between two vectors, which are functions of 𝑓𝑠𝑎(𝑠, 𝑎) and

𝑓𝑠𝑔(𝑠, 𝑔), respectively [65]. By explicitly decoupling environment-specific dynamics

from goal-related dynamics, the internal network structure of BVN provides an in-

ductive bias that encourages generalization across goals. More details on BVN can

be found in Section 3.3.2. In this work, we utilized BVN to aide generalization across

different reward sharing schemes.

25

26

Chapter 3

Methods

3.1 Motivation

As mentioned in Chapter 1, in the field of multi-agent reinforcement learning (MARL),

traditional self-play approaches often result in agents converging to a single Nash equi-

librium, limiting their ability to generalize to other strategies beyond the ones they

were trained on. While randomized rewards have shown promise in promoting the

convergence to more optimal equilibria, these agents still struggle to adapt to complex

strategies that were not encountered during training.

Recent works have explored alternative training methods to train adaptive agents.

However, these approaches are limited in their ability to reach a stable global optimum

when faced with more complicated strategies. RUSP [3] was able to train agents

that exhibited behavior resembling reputation and reciprocity when evaluated against

fixed (constant) policies but is unable to reach a stable global optimum when played

against more complicated strategies. RPG [56] was able to train an adaptive agent

in a computationally expensive manner by training a set of policies with different

behaviors by hand-picking reward sharing schemes, a new policy is then trained to

play against this pretrained set of polices.

This work of this thesis aims to enable agents to adapt to complex strategies in

SSDs and improve their ability to generalize to new scenarios beyond their training

distribution through self-play. We propose two main methods to achieve this: (1)

27

maintaining quality diversity through randomized reward sharing during self-play

and (2) generalizing across these experiences by adopting BVNs.

3.1.1 Randomized Reward Sharing

Quality diversity, which refers to the diversity of agent behaviors, has been extensively

studied in evolutionary algorithms and reinforcement learning and has been shown to

be beneficial for various AI methods [7,16,34]. We aim to maintain quality diversity

during self-play to ensure that the trained agent encounters a wide range of behaviors

rather than being limited to a single specific strategy. The primary challenge in

maintaining quality diversity lies in finding an appropriate representation for ‘quality’

or ‘behavior’. Numerous studies have successfully trained latent and controllable

representations of behavior, enabling the exploration of diverse behaviors [27, 31,

63]. In the context of reward sharing, the weights assigned to each sharing scheme

naturally serve as a latent representation of the behavioral space. Moreover, the space

of all possible combinations of weights forms a manifold of behaviors, allowing us to

quantitatively maintain diversity; however, it is important to note that this manifold

does not encompass all possible behaviors.

Reward sharing has been shown to offer the overlooked advantage of promoting

the emergence of diverse profiles of behaviors among trained agents. At the individual

agent level, reward sharing leads to the emergence of diverse policies and behaviors

[49,57]. On an inter-agent level, it has the potential to create complex ecosystems of

agents resembling various sociological structures [20]. Although the reward sharing

weight manifold does not include all behaviors, this supports the notion that each

reward sharing scheme can specify some human-interpretable behavior in a typical

SSD.

Randomized reward sharing has also been shown to facilitate the convergence

to more optimal equilibria in social dilemmas and mixed competitive-cooperative

environments [3,56]. In the context of this work, the randomization of reward sharing

weights during self-play does not only aide exploration of cooperative equilibria, but

also allows the agent to learn and execute different behaviors, while at the same time

28

exposing it to agents that behave differently, consequently maintaining a degree of

quality diversity among the trained agents. This approach aims to encourage the

exploration of different strategies, including cooperative and selfish ones, and thereby

preventing agents from converging to a single fixed Nash equilibrium. By promoting

quality diversity, the agents can better adapt to complex strategies that were not

encountered during training and improve their ability to generalize to new scenarios

beyond their training distribution.

3.1.2 Bilinear Value Networks

The inherent instability of MARL, due to multiple constantly adapting policies, is

further exacerbated when introducing the task of generalizing across a continuous

manifold of reward sharing schemes. To tackle this challenge, we draw upon the con-

cept of multi-goal reinforcement learning (MGRL), treating reward sharing weights

as ‘goals’. This allows us to leverage the continuity of the reward sharing space and

the overlapping behavior exhibited by different reward sharing schemes.

Several studies have explored methods to guide exploration during MGRL training

and improve generalization to unseen goals [4, 10, 13, 14, 22, 24]. Notably, one study

proposed the possibility of interpolating across reward functions, which aligns with

the objective of our work [29]. These studies reinforce the notion of treating reward

sharing schemes as goals and support the feasibility of training an agent capable of

generalizing across different reward sharing schemes.

However, despite this parallel with MGRL, training MARL agents in such a set-

ting can still be highly unstable and computationally expensive due to the vast space

of possible reward sharing schemes. To address this issue, we introduce the use of

Bilinear Value Networks (BVNs), which have demonstrated effectiveness in facilitat-

ing generalization across goals. BVNs provide a powerful approach to incorporate

inductive biases that disentangle the local dynamics of the game from the strategy

required to achieve equilibrium based on the specified reward sharing scheme [65].

This utilization of BVNs enhances the data efficiency of training and improves the

generalization capability of the trained agents to unseen reward sharing schemes.

29

3.2 Formal Formulation

In this section we will build up the formulation of this thesis by starting from a general

Markov Game, augmenting it with reward sharing, and finally the goal of generalizing

across reward sharing schemes.

3.2.1 General Markov Game

Consider a general 𝑛-player Markov game 𝑀 defined by (𝒮,𝒪,𝒜,ℛ,𝒫). Let 𝒩 =

{1, 2, . . . , 𝑛} denote the set of 𝑛 players. Let 𝒮 be the set of possible states of the

game and 𝒜𝑖 be the set of possible actions that player 𝑖 can take. 𝒪 = {𝑜𝑖 : 𝑠 ∈

𝒮, 𝑜𝑖 = 𝑂(𝑠, 𝑖), 𝑖 ∈ 𝒩} is the observation space where agent 𝑖 receives the observation

𝑜𝑖 = 𝑂(𝑠, 𝑖) at state 𝑠. In a fully observable setting, 𝑂(𝑠, 𝑖) = 𝑠. Let 𝑅𝑖 : 𝑆 ×

𝐴1 × 𝐴2 × . . . × 𝐴𝑛 ↦→ R be the reward function for player 𝑖. It maps the joint

action of all players and the current state to a real-valued reward for player 𝑖. Let

𝑃 : 𝑆 × 𝐴1 × 𝐴2 × . . . × 𝐴𝑛 × 𝑆 ↦→ [0, 1] be the transition probability function.

𝑃 (𝑠′|𝑠, 𝑎1, 𝑎2, . . . , 𝑎𝑛) specifies the probability of transitioning from state 𝑠 to state 𝑠′

given that the players take actions 𝑎1, 𝑎2, . . . , 𝑎𝑛 in the current state 𝑠.

Each agent 𝑖 has a policy 𝜋𝑖(𝑂; 𝜃𝑖) that outputs a stochastic action based on it’s

observations and is parameterized by 𝜃𝑖. The following thesis work uses a decen-

tralized RL framework, meaning each agent 𝑖 independently optimizes the expected

reward over time 𝐽(𝜋𝑖) = E𝑎𝑖∼𝜋𝑖

[︁∑︀
𝑡 𝛾

𝑡𝑅𝑖(𝑠
𝑡, 𝑎𝑡1, 𝑎

𝑡
2, . . . , 𝑎

𝑡
𝑛)
]︁

using the policy gradi-

ent. [38] The global objective however is to reach an equilibrium that maximizes the

cumulative reward of all agents
∑︀

𝑖

∑︀
𝑡 𝛾

𝑡𝑅𝑖(𝑠
𝑡, 𝑎𝑡1, 𝑎

𝑡
2, . . . , 𝑎

𝑡
𝑛).

Each agent 𝑖 has a critic 𝑄𝑖 that evaluates the current state-action. In this thesis

we condition the critic on vector a, which represents the actions of all agents, as

in MADDPG [37]. However since the policies of other agents 𝑗 ̸= 𝑖 are not directly

accessible to 𝑄𝑖, an estimation of the policies of other agents 𝜋′
𝑗 are trained to predict

the future actions of other agents. It is optimized to minimize the 𝐿2 distance to the

30

bootstrapped Q-value:

𝑄𝜋
𝑖 (𝑠, a|𝜑) = E𝑠′ [𝑟𝑖(𝑠, a) + 𝛾Ea′∼𝜋,𝜋′

𝑗
[𝑄𝜋

𝑖 (𝑠
′, a′|𝜑)] (3.1)

3.2.2 Reward Sharing

In order to augment reward sharing to a general Markov game, we introduce a

weighted directed graph 𝒢 = (𝒱 , ℰ), where each agent 𝑖 is associated to a vertex

of the graph 𝒱 = {1, 2, . . . , 𝑛}, and ℰ ⊆ 𝒱 × 𝒱 . We consider 𝒢 to be fully connected

with self-loops, which implies that ∀𝑖, 𝑗 ∈ 𝒱 , (𝑖, 𝑗) ∈ ℰ . This allows any agent to

share it’s rewards with any other agent in the environment. Each directed edge 𝑑𝑖𝑗

between vertices 𝑖 and 𝑗 has an associated weight 𝑤𝑖𝑗 ∈ [0, 1], satisfying the constraint

that
∑︀

𝑗∈𝒱 𝑤𝑖𝑗 = 1. This implies that a portion specified by 𝑤𝑖𝑗 of agent 𝑖’s reward 𝑟𝑖

will be shared with agent 𝑗. Consider w ∈ 𝑊 = ×𝑖,𝑗∈𝑣𝑤𝑖𝑗, to be the weights of the

graph. The shared reward agent 𝑖 receives can be defined as

𝑟w𝑖 = S(w𝑖, r) (3.2)

The scalarization function S maps the reward vector r to a scalar value based on

the relationship between agent 𝑖 and other agents specified in w𝑖. A commonly used

scalarization function is the weighted sum model, which computes the sum of the

individual rewards multiplied by the corresponding weights, denoted as Ssum(w𝑖, r) =∑︀
𝑗∈𝒱 𝑤𝑗𝑖𝑟𝑗. Another successful alternative that is used in this thesis is the Weighted

Product Model (WPM) (Equation 3.3), which preserves the natural qualitative rela-

tionship between agents and strictly increases for positive weights, assuming positive

rewards.

𝒮WPM(w𝑖r) =
∏︁
𝑗∈𝒱

𝑟
𝑤𝑗𝑖

𝑗 (3.3)

In other words, a higher reward results in a higher scalarized value, satisfying the

minimal assumptions of scalarization functions. Moreover, WPM promotes equality

among agents with similar weights due to the significant decrease in the scalarized

31

value when the reward of any agent approaches zero.

For each agent 𝑖, it’s policy 𝜋𝑖(𝑂; 𝜃𝑖) remains the same as it only takes it’s observa-

tions of the environment as an input. However, the critic, 𝑄𝜋
𝑖 (𝑠, a,w|𝜑) parameterized

by 𝜑 is now conditioned on w and optimized towards the shared reward according to

𝑄𝜋
𝑖 (𝑠, a,w|𝜑) = E𝑠′ [𝑟

w
𝑖 (𝑠, a) + 𝛾Ea′∼𝜋,𝜋′

𝑗
[𝑄𝜋

𝑖 (𝑠
′, a′,w|𝜑)] (3.4)

3.2.3 Reward Sharing Generalization

It is possible to conceptualize a Markov game with reward sharing according to w,

as a novel Markov game 𝑀(w) that has a modified reward function ℛw. Let 𝑊 ∈

R𝑛×𝑛|
𝑛∑︀

𝑗=1

𝑤𝑖𝑗 = 1 denote the set of all feasible weight matrices of graph 𝒢. Each

w uniquely specifies a Markov game 𝑀(w) = (𝒮,𝒪,𝒜,ℛw,𝒫). We establish a

probability distribution 𝑝(w) over 𝑊 , where each w specifies a unique reward function

ℛw along with a unique maximization objective of the accumulated expected shared

reward

𝐽(𝜋𝑖,w) = E𝑎𝑖∼𝜋𝑖

[︁∑︁
𝑡

𝛾𝑡ℛw
𝑖 (𝑠

𝑡, 𝑎𝑡1, 𝑎
𝑡
2, . . . , 𝑎

𝑡
𝑛)
]︁
.

The objective of this thesis is to learn a generalized policy capable of maximizing

Ew∼𝑝

[︀∑︁
𝑖

𝐽(𝜋𝑖,w)
]︀
.

In the context of traditional MGRL, the objective is to train a generalized policy

that can perform well across different tasks from a given, discrete set of 𝑁 tasks.These

tasks are usually each specified by an index 𝑖 and associated with a unique Markov

Decision Process (MDP) that differs in transition and reward functions.

We can draw parallels between the objective of this thesis and traditional MGRL.

The weight matrix w is analogous to the task identifier 𝑖 in traditional MGRL, and

the ultimate aim is to learn a generalized policy that can perform well across different

tasks. However, there are two key differences in this setting. First, the set of Markov

games in this thesis is infinitely large, as the weight matrix w lies in a continuous

32

space. As a result, the policy needs to learn to interpolate between Markov games to

generalize well. Second, while the transition function is not affected by w directly and

remains unchanged across different Markov games; the agents’ behavior are affected

by the weight matrix w through the critic’s knowledge of it. As a result, the transition

between states of the Markov Games are indirectly altered due to the transformation

of agent behaviors.

Decentralized execution It should be noted that the conditioning on w is solely

applied to the critic, whereas the actor is unaware of the reward-sharing mechanism.

This is motivated by the fact that the actor should not have prior knowledge on

the motives and intentions of other agents. Consequently, the actor must infer w or

potentially comprehend the intentions and behaviors of other agents solely based on

the game state to achieve equilibrium effectively, while the critic must acquire the

ability to generalize across various 𝑊 values and the actions of other agents.

3.3 Experimental Setup

In this section, we present an experimental study to evaluate the effectiveness of

our proposed approach in enabling MARL agents to adapt to complex strategies in

SSDs. Specifically, we implemented a 3-player MARL environment and compared the

performance of BVN agents with baseline agents against unseen play patterns. We

describe the details of the chosen environment, Iterated Prisoner’s Buddy, in Section

3.3.1. Section 3.3.2 explains our implementation of Multi-Agent Proximal Policy

Optimization (MAPPO) and BVNs. Finally, we introduce strategic agents that were

designed to test the adaptiveness of the trained agents.

3.3.1 Environment

Iterated Prisoner’s Buddy Prisoner’s Buddy is a variant of the classic game of

Prisoner’s Dilemma that can be extended to include more than two players [3]. The

objective of this game is for each player to find a “friend.” At each turn, each player

has the option to either choose one of the other players as their friend or not choose

33

anyone. If two players mutually choose each other, they both receive a reward of

+2(𝑅). If player B chooses player A, but player A does not reciprocate, player A

receives a reward of +1(𝑇) and player B incurs a penalty of −2(𝑆). Finally, a player

receives a reward of 0(𝑃) if they choose not to act. An example round of Prisoner’s

Buddy is shown in Figure 3-1.

Figure 3-1: Example game of
IPD where arrows indicate agent
actions. Figure by Baker. [3]

The two-player version of this game is a Stag Hunt

where 𝑃 > 𝑆, but 𝑇 < 𝑅. In games involving more

than two players, a prisoner’s dilemma may arise.

For instance, consider a 3-player variant of Prisoner’s

Buddy where players A and B were initially friends,

and a new player C enters the game and tempts B

to become their friend. In this scenario, the payoff

matrix for player B would have 𝑇 = 3 because they

could obtain +2 from being friends with C and +1

from the one-way choice by A, making 𝑇 > 𝑅.

In this study, the agents participate in an iter-

ated version of the game, wherein they play against

the same set of agents over multiple rounds. This approach allows for a history of

interactions to develop, providing ample time for team formation and inference of

behavior.

Sparse Rewards In our setting, agents engage in episodes consisting of 60 time

steps, during which rewards are calculated only every 𝑠 rounds. This sparsity in

rewards incentivizes agents to refrain from acting greedily every round and instead

utilize the unrewarded rounds as an opportunity to communicate, infer, or deceive

each other. By doing so, agents can gain a better understanding of each other’s behav-

ior and intentions, which can lead to more successful collaboration and coordination.

Action and State Space In the presented RL problem, the agents receive fully

observable states 𝑠𝑡 within each episode and simultaneously output an action 𝑎𝑡.

The action space consists of three discrete actions, where 𝑎𝑡 ∈ 0, 1, 2, where 𝑎𝑡 = 0

indicates that no partner is chosen, and 𝑎𝑡 = 1 or 𝑎𝑡 = 2 implies that agent 𝑖 + 𝑎𝑡

34

Figure 3-2: A visual representation of the state 𝑠𝑡

(mod 3) is selected as a buddy. The state space is defined as a 5 × ℎ matrix, where

ℎ denotes the number of previous time steps included in the history. Given current

time step 𝑡, each column 𝑖 of the matrix represents the history and state at a previous

time step 𝑝 = 𝑡− (ℎ− 𝑖), where the first three entries represent the actions taken by

each agent at time step 𝑝. The fourth entry is a flag that indicates if a reward will be

given at the next time step, i.e., at time 𝑝+ 1. The fifth entry represents if a reward

was given at time step 𝑝. Refer to Figure 3-2 for an illustration of the state space.

Reward Sharing In each episode, a single matrix w ∈ R3×3, satisfying the

constraints stated in Section 3.2.3, is employed for training the agents. To model

each agent’s reward sharing preferences, we assume a 3D Dirichlet distribution with

parameter vector 𝛼 = (𝛼, 𝛼, 𝛼) as a prior, which reflects the likelihood that each

agent will share its rewards with other players. By sampling this distribution three

times, we obtain a matrix w. By doing so, we assume that all agents’ prior on each

other are the same and all agents behave under the same prior. Later we find that

𝛼 can greatly affect the stability and results of training, as it controls the underlying

distribution of tasks during optimization. Nevertheless, the sampling process enables

us to initialize w with an appropriate prior and set of reward allocation weights.

In terms of scalarization function, recall that WPM requires that the rewards of

IPD to be strictly positive. Therefore, the reward is transformed using the function

𝑇 (𝑟) = 𝑒𝑟

𝑁
where N is a normalizing factor when WPM is implemented. This transfor-

mation is applied to keep the effect of a negative reward strictly decreasing the overall

reward while keeping all rewards positive. When WPM is not used, the weighted sum

35

model is used with the normal rewards of IPD.

3.3.2 Implementation

MAPPO Our baseline model is an implementation of MAPPO [66] trained through

self-play. In order to exploit the homogeneity of the IPD environment [28], we share

the network parameters across agents to improve data efficiency [11, 18, 37, 59]. To

allow the network to differentiate between agents, we use a player-specific size-16

embedding layer 𝑒𝑖𝑑, which is then concatenated with the state and encoded to obtain

a size-32 player-specific representation of the state 𝑒𝑖𝑠 = 𝑓(𝑠, 𝑒𝑖𝑑). The actor 𝜋𝑖(𝑒
𝑖
𝑠; 𝜃𝑖)

is a 2-layer MLP that maps 𝑒𝑖𝑠 to a probability distribution over the action space.

In addition, we train two additional actors 𝜋′
𝑗(𝑒

𝑖
𝑠; 𝜃𝑗) to predict the actions of other

agents. These actors are trained to minimize the cross-entropy loss with the ground

truth actions of other agents, unlike 𝜋𝑖, which is trained on the a clipped policy

gradient, just as in PPO [52]. As a result, the network can predict the future actions

of all agents at any state 𝑠 using these policies a = (𝜋𝑖(𝑒
𝑖
𝑠),𝜋

′
1(𝑒

𝑖
𝑠),𝜋

′
2(𝑒

𝑖
𝑠)). The critic

𝑄𝑖(𝑒𝑠, a|𝜑) is modeled by another 2-layer MLP that maps the encoded input into a

scalar. All layers are initialized orthogonally and have a tanh activation function,

except for the output layers. Note that this baseline has no knowledge of w. A visual

representation of the model architecture can be found in Figure 3-3 and pseudocode

is in Algorithm 1. Note that the pseudocode does not include internal structures of

the policy and critic.

UVFA Another baseline that we compare to is UVFA [51]. UVFA in our prob-

lem formulation is analogous to combining the reward matrix w with the state rep-

resentation 𝑒𝑠 to create a larger state space. Specifically, we concatenate w and

player embedding 𝑒𝑖𝑑 to obtain a size-16 representation 𝑒𝑤 = 𝑔(w, 𝑒𝑖𝑑), which is then

passed into the critic along with 𝑒𝑠 to predict the final state-action-weight value,

as 𝑄𝑖(𝑒𝑠, 𝑒𝑤, a|𝜑). It should be noted that only the critic has knowledge of w or

𝑒𝑤, allowing for centralized training through the omniscient critic but decentralized

execution of the actor [38]. A visual representation of this model is in Figure 3-4.

BVN Our BVN model is largely similar to the UVFA model, with the exception

36

Algorithm 1 MAPPO with randomized reward sharing
Initialize 𝜃, the parameters for policy of self 𝜋
For each player 𝑗 ∈ {0 . . . 𝑁} ∖ 𝑖, initialize 𝜃𝑗 , the parameters for estimated policy 𝜋̂𝑗

Initialize 𝜑, the parameters for critic 𝑄, using Orthogonal initialization [25]
while 𝑠𝑡𝑒𝑝 ≤ 𝑠𝑡𝑒𝑝𝑚𝑎𝑥 do

Set data buffer 𝒟 = {}
while 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ≤ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥 do

w ∼ 𝐷𝑖𝑟(𝛼)
for 𝑡 = 0 to 𝑇 do

for agents 𝑖 = 0 to 𝑁 do
𝑝𝑖𝑡 = 𝜋(𝑠𝑡, 𝑖|𝜃)
𝑎𝑖𝑡 ∼ 𝑝𝑖𝑡

end for
a𝑡 ← (𝑎0𝑡 , 𝑎

1
𝑡 , . . . 𝑎

𝑁
𝑡)

Execute actions a𝑡, observe rw𝑡 , s𝑡+1

end for
Compute advantage estimate 𝒜 via GAE on 𝒟
Store (𝑠𝑡,a𝑡, r

w
𝑡 , s𝑡+1,𝒜,w, 𝑖) in 𝒟

end while
for mini-batch 𝑘 = 0 to 𝐾 do

Sample mini-batch (𝑠𝑡,a𝑡, r𝑡, s𝑡+1,𝒜,w, 𝑖)𝑘 from 𝒟
ℒ(𝜃𝑗) = − log 𝜋̂𝑗(a

𝑗
𝑡 |𝑠𝑡) ◁ Estimated policy loss

ℒ(𝜃) = −𝑐𝑙𝑖𝑝(𝜋
′(a𝑡|𝑠𝑡)

𝜋(a𝑡|𝑠𝑡))𝒜 ◁ PPO loss
a𝑡+1 ← (𝜋(𝑠𝑡+1, 𝑖|𝜃), 𝜋̂𝑗(𝑠𝑡+1, 𝑗|𝜃𝑗)) ◁ Estimate future action
𝑦 ← r𝑡 + 𝛾𝑄(𝑠𝑡+1,a𝑡+1, 𝑖)
ℒ(𝜑) = 1

𝐾 (𝑦 −𝑄(𝑠𝑡,a𝑡, 𝑖))
2 ◁ Critic loss

Adam update each parameter on their respective losses
end for

end while

of the structure of the critic. In the BVN model, we decompose the critic into two

modules: ℎ𝑠𝑎(𝑒𝑠, a) and ℎ𝑠𝑔(𝑒𝑠, 𝑒w). The former module handles the local dynamics

of the game, while the latter module is responsible for learning how to achieve equi-

librium under the goal w. Each of these modules is a 2-layer MLP that outputs a

size-16 latent vector 𝑙𝑠𝑎 and 𝑙𝑠𝑔, respectively. The final value is obtained by taking

the dot product of these two vectors,

𝑄𝑖(𝑒𝑠, 𝑒𝑤, a|𝜑) = ℎ𝑠𝑎(𝑒𝑠, a)
𝑇ℎ𝑠𝑔(𝑒𝑠, 𝑒w) = 𝑙𝑠𝑎

𝑇 𝑙𝑠𝑔. (3.5)

We present ablations across hyperparameters in Section 4.3. A visual representation

of this model can be found in Figure 3-5.

37

Figure 3-3: Network architecture for Multi-Agent Proximal Policy Optimization (MAPPO)

Figure 3-4: Network architecture for Universal Value Function Approximator (UVFA)

38

Figure 3-5: Network architecture for Bilinear Value Network (BVN

3.3.3 Evaluations

In the following section, we define the player models that were employed to play

against our trained agents, as well as the scenarios that were specifically designed to

evaluate various properties of the trained agents.

Naive Players The simplest players are those that are naive, choosing the same

action at every time step. Naive players come in three types: neutral, those that do

not choose anyone as a buddy; friend, those that choose the target agent as a buddy;

and foe, those that choose the non-agent player as a buddy.

Strategic Players Strategic players are those that play according to a predefined

strategy. In this study, we designed three strategic players: trust-based, tit-for-tat,

and betraying.

Trust-Based The trust-based player has a threshold 𝑐, which is set such that it

only chooses players that chose it as a buddy for more than 𝑐 of the time steps in the

past history. In cases where both agents pass the threshold, it will choose the player

that chose it the most. See Algorithm 2 for details.

Tit-for-tat The tit-for-tat player defaults to no action but will befriend the first

39

Algorithm 2 Trust-Based Player
Require:
𝑐: threshold for buddy selection
ℎ𝑖𝑠𝑡𝑜𝑟𝑦: past history of interactions
function ChooseBuddyTrust(𝑐, ℎ𝑖𝑠𝑡𝑜𝑟𝑦)

𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← null
𝑐𝑜𝑢𝑛𝑡𝑠← []
𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡← 0
for 𝑡𝑢𝑟𝑛 in ℎ𝑖𝑠𝑡𝑜𝑟𝑦 do ◁ Count turns

for 𝑝𝑙𝑎𝑦𝑒𝑟 in ℎ𝑖𝑠𝑡𝑜𝑟𝑦 do
if 𝑡𝑢𝑟𝑛.𝑝𝑙𝑎𝑦𝑒𝑟 chose 𝑠𝑒𝑙𝑓 then

𝑐𝑜𝑢𝑛𝑡𝑠[𝑝𝑙𝑎𝑦𝑒𝑟]← 𝑐𝑜𝑢𝑛𝑡𝑠[𝑝𝑙𝑎𝑦𝑒𝑟] + 1
end if

end for
end for
for 𝑝𝑙𝑎𝑦𝑒𝑟 in ℎ𝑖𝑠𝑡𝑜𝑟𝑦 do ◁ Choose max player

if 𝑐𝑜𝑢𝑛𝑡𝑠[𝑝𝑙𝑎𝑦𝑒𝑟] > 𝑐 and 𝑐𝑜𝑢𝑛𝑡𝑠[𝑝𝑙𝑎𝑦𝑒𝑟] > 𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡 then
𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡← 𝑐𝑜𝑢𝑛𝑡𝑠[𝑝𝑙𝑎𝑦𝑒𝑟]
𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← 𝑝𝑙𝑎𝑦𝑒𝑟

end if
end for
return 𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦

end function

player that chooses it as a buddy, ties broken randomly. Given a game with agent A,

B, and T4T, if A chooses T4T at some time step, T4T will befriend A and choose

A next round as reciprocation. This friendship will persist until player A breaks the

bond by choosing no one (0) or the other agent (B). T4T will then react by either

choosing no one (0), or in the case that agent B chose T4T at the same round, it

will befriend B, and the friendship cycle continues. Essentially, tit-for-tat matches

the actions of a target agent: it will cooperate when an agent cooperates, but will

punish accordingly if the agent betrays it. Tit-for-tat is a highly effective strategy in

the infinite prisoner’s dilemma and can lead to Nash equilibrium, although it is not

sub-game perfect [2]. See Algorithm 3 for details.

Betraying A betraying player selects the target agent at every time step, ex-

cept when a reward is offered, which occurs every 𝑠 time steps. At these instances,

the player will opt for the non-target-agent player or choose no player at all. See

40

Algorithm 3 Tit-for-Tat Player
Require:
ℎ𝑖𝑠𝑡𝑜𝑟𝑦: past history of interactions
function ChooseBuddyTFT(ℎ𝑖𝑠𝑡𝑜𝑟𝑦)

if ℎ𝑖𝑠𝑡𝑜𝑟𝑦 is empty then
𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← null

else
𝑙𝑎𝑠𝑡𝑇𝑢𝑟𝑛← last turn in ℎ𝑖𝑠𝑡𝑜𝑟𝑦
if 𝑙𝑎𝑠𝑡𝑇𝑢𝑟𝑛.𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 chose 𝑠𝑒𝑙𝑓 then

𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← 𝑡𝑢𝑟𝑛.𝑝𝑙𝑎𝑦𝑒𝑟
else

𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← 𝑛𝑢𝑙𝑙
end if
if 𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 is null then

𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← random player who chose 𝑠𝑒𝑙𝑓 in 𝑙𝑎𝑠𝑡𝑇𝑢𝑟𝑛
end if

end if
return 𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦

end function

Algorithm 4 Betraying Player
Require:
𝑠: sparsity, number of turns between reward time steps
ℎ𝑖𝑠𝑡𝑜𝑟𝑦: past history of interactions
𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑛𝑡: targeted agent to be betrayed
𝑏𝑒𝑡𝑟𝑎𝑦𝐴𝑐𝑡𝑖𝑜𝑛: null or non-agent player
function ChooseBuddyBetray(𝑠, ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑏𝑒𝑡𝑟𝑎𝑦𝐴𝑐𝑡𝑖𝑜𝑛, 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑛𝑡)

if ℎ𝑖𝑠𝑡𝑜𝑟𝑦 is empty then
𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑛𝑡

else
if ℎ𝑖𝑠𝑡𝑜𝑟𝑦.𝑡𝑖𝑚𝑒𝑆𝑡𝑒𝑝 mod 𝑠 = 0 then ◁ Reward time step

𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← 𝑏𝑒𝑡𝑟𝑎𝑦𝐴𝑐𝑡𝑖𝑜𝑛
else

𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑔𝑒𝑛𝑡
end if

end if
return 𝑐ℎ𝑜𝑠𝑒𝑛𝐵𝑢𝑑𝑑𝑦

end function

41

Table 3.1: Configuration of agents and high level task for each test scenario

Agent 1 Agent 2 Task
Friend ID Friend Foe/Neutral Identification of friendly player
Loss ID Foe Foe Identification of lossing scenarios
Tit-for-tat T4T T4T Sustaining teams / Forgiving
Trust Trust Trust Being optimistic
Betray - Friend Betray Friend Reputation/Retaliation
Betray - Nonfriend Betray Foe/Neutral Reputation/Retaliation
Betray - Agent Betray Network Reputation/Self identification
Self ID Foe/Neutral Network Self identification
Self-play Network Network Reaching equilibrium

Algorithm 4.

Scenarios We can design artificial social scenarios utilizing these player models

to assess the agent’s adaptability and behavior. It should be noted that the agent

has not been explicitly exposed to any of these player models or scenarios during its

training phase.

The scenarios used in the study can be classified into various groups based on

the types of players and their behaviors. Naive scenarios, which involve players that

make the same decision at every time step, are further subdivided into two categories:

Friend identification, where one of the agents is a friend and the other is either neutral

or a foe, and Loss identification, where both agents are foes. Strategic scenarios, on

the other hand, include players that follow a predefined strategy, such as Tit-for-tat,

Trust, Betray-Friend, and Betray-Nonfriend. The agent scenarios, which involve two

or more trained agents, include Betray-Agent, Self ID, and Self-play. To ensure a

comprehensive evaluation, each possible configuration of agents within each group is

randomly and equally sampled during the evaluation. Table 3.1 provides details of

the non-target-agent players and the high-level tasks evaluated.

42

Chapter 4

Results

This chapter presents the results of this thesis. Initially, we discuss the limitations of

Multi-Agent Proximal Policy Optimization (MAPPO) and the significance of weight

sharing in training multi-agent reinforcement learning (MARL) in sequential social

dilemmas. Next, in section 4.2, we evaluate the effectiveness of randomized reward

sharing as a method for offering diverse experience during training, as well as the

ability of BVNs to generalize across sharing schemes. Lastly, we present a couple of

ablations that influence the training and performance of BVNs.

4.1 Baseline Performance

In this section, we evaluate the performance of our baseline method, MAPPO, in

IPB. This is done to reaffirm our understanding of weight sharing and test the limits

of vanilla MAPPO.

4.1.1 Importance of reward sharing

In this section, we conduct two iterations of MAPPO: the first iteration involves no

reward sharing, and uses the original reward of IPB, with the weight matrix w being

the identity matrix. This can also be interpreted as every agent being greedy. The

second iteration involves full reward sharing, with every agent sharing a third of their

43

Figure 4-1: Learning curve with cumulative reward over training iterations with and without
reward sharing.

reward to each other agent, corresponding to w having 1
3

at every entry. This could

be interpreted as directly optimize the cumulative reward of all agents, resulting in a

fully cooperative Markov game.

In the optimal equilibrium of a 3-player IPD game, two agents form a pair of

buddies while one agent chooses not to take any action, resulting in a cumulative

reward of +4. It is important to note that attempting to form a friendship with

the established pair of buddies results in a net loss of -1 in cumulative reward, and

thus the remaining agent should not attempt to break this bond in order to achieve

equilibrium.

In Figure 4-1, the greedy agent (green) struggles to reach a cooperative equilib-

rium due to the inherently selfish nature of each agent. As evidenced by the reward

plateauing at 0, agents prefer to take no action rather than risk forming a partnership.

This is unsurprising given the high-risk nature of forming a partnership, making it

unlikely for agents to converge to the high-payoff equilibrium in self-serving dynam-

ics [56]. However, by optimizing a shared reward, agents can learn not only to form

teams but also to refrain from acting when a team is established, as indicated by the

return of MAPPO with reward sharing reaching 4.

44

Figure 4-2: Learning curve with cumulative reward over training iterations of different
network architectures.

4.1.2 Randomized Reward Sharing

In this section, we present the results of training MAPPO, UVFA, and BVN with

randomized reward sharing schemes. Figure 4-2 shows that when MAPPO is trained

without knowledge of the reward sharing weights, it leads to unstable training, as

indicated by the blue curve. On the other hand, BVN and UVFA were both able to

converge to the optimal equilibrium of the 3-player IPB, even though the agents only

have knowledge of the shared reward they received and are tasked with optimizing

this value. This shows that providing weight information to the critic is crucial to

stabilize the training of MAPPO, however the BVN architecture does not seem to

offer a significant improvement in convergence time.

The fact that BVN and UVFA were both able to converge to the optimal equi-

librium across randomized weights suggests that the agents have learned to operate

under different reward sharing schemes and achieve different equilibria specified by

𝑤, which is further demonstrated in Section 4.2. Additionally, we aimed to maximize

𝛼 for both BVN and UVFA to achieve better generalization, as a larger 𝛼 implies a

more even distribution across reward sharing weights and better generalization. How-

ever, a larger 𝛼 also leads to greater instability in training. In the end, we were able

45

to train BVN to optimal convergence with 𝛼 = 1.0 by adopting WPM. However, we

could only train UVFA to convergence at a reward of 3.8 at 𝛼 = 1.0. Further details

on this ablation can be found in Section 4.3.

In the subsequent sections, we compare only the models that were able to train

to optimal convergence during self-play, as this indicates mastery over the behavior

manifold provided by reward sharing. Therefore, we use our MAPPO agents that

were trained with fully shared rewards as our baseline. We compare the results of

this agent to our UVFA agent that was trained with 𝛼 = 0.9, and our BVN agent

was trained with 𝛼 = 1.0 and WPM.

4.2 Scenario Evaluations

In this section, we provide an evaluation of the performance of MAPPO, UVFA, and

BVN across various test scenarios, and we discuss the implications of the results. To

ensure statistical significance, all test cases were averaged over 200 trials, uniformly

sampling all configurations of agents within each scenario. We conducted each trial

for 100 time steps, which is longer than the training duration of 60 time steps. This

allows us to observe the stability of the achieved equilibrium. The presented figures

depict the cumulative reward every 10 time steps, matching the sparsity of the training

environment, with error bars indicating the 95% confidence interval. It is important

to note that agents only retain the history of the last 20 time steps.

4.2.1 Naive Scenarios

In naive settings where non-agent players make consistent choices, the goal of the

agent is to identify this behavior and select an action that leads to an optimal equi-

librium in each situation.

In the Friend ID task, the agent must detect the friendly player and reciprocate

accordingly, while in Loss ID,the agent must recognize that the other two players are

either unwilling to cooperate or have already formed a bond, and should therefore

refrain from acting. This is particularly challenging if the agents have converged to a

46

(a) Friendly and non-friendly naive agents (b) Non-friendly naive agents

Figure 4-3: Cumulative reward during evaluation against Naive players. The BVN agent
(blue) consistently outperforms MAPPO and UVFA agents in both scenarios. In the Friend
ID scenario, BVN achieves an average cumulative reward of 3, while MAPPO and UVFA
agents have an average reward smaller than 2. This indicates that BVN successfully identifies
and cooperates with friendly players, whereas MAPPO and UVFA agents struggle in this
regard. In the Loss ID scenario, a reward of 3 signifies the agent’s attempt to cooperate
with the existing pair of friends, while a reward of 4 is given when the agent refrains from
befriending anyone. BVN, compared to MAPPO and UVFA, chooses not to cooperate
more frequently. The increase in reward for BVN after the first reward step suggests initial
optimism and an initial attempt to cooperate with existing agents, but eventually learning
that not cooperating is the optimal action.

single equilibrium during training, wherein they have memorized which two players

are designated as friends.

Figure 4-3 displays the results of these two experiments, demonstrating that BVN,

in general, was able to achieve a more optimal equilibrium over time for both “Friend

ID” and “Loss ID,” albeit failing to attain an optimal equilibrium of 4. This could be

due to the fact that the agent is still making attempts to establish a better equilibrium

by attempting to befriend the agents and persuade them to change their minds.

In conclusion, BVN outperforms MAPPO and UVFA in its capacity to reciprocate

to friendly agents and recognize uncooperative agents, as well as demonstrated greater

flexibility across random configurations of naive agents in achieving equilibrium.

47

Figure 4-4: Cumulative reward during evaluation against Trust players with 𝑐 = 0.4. The
BVN agent demonstrates persistence in its optimism, gradually establishing a stable coop-
erative relationship with trust-based agents, overcoming initial lack of reward. In contrast,
UVFA and MAPPO agents exhibit lower levels of optimism and assume limited cooperation
from the Trust agent, resulting in suboptimal equilibria.

4.2.2 Strategic Scenarios

Strategic scenarios pose a greater challenge as they are generally more complex and

require agents to possess certain inherent properties and inference ability to reach an

equilibrium successfully.

Trust One of these properties is optimism. To establish an equilibrium with a

Trust player, an agent must exhibit niceness or optimism by not defecting before the

opponent and being willing to take the first step to initiate cooperation. In Figure

4-4, BVN is shown to achieve a stable equilibrium of befriending the Trust player,

while MAPPO and UVFA fail to do so.

One can argue that different agents might have varying levels of patience, causing

them to not be able consistently choose one player enough to gain their trust, and

as a result mistaking Trust agent as neutral naive agents. To test this, we ablate the

trust threshold 𝑐 and vary how easily Trust players can trust other players, with a

lower 𝑐 indicating more willingness to form a bond. In Figure 4-5, both UVFA and

48

MAPPO achieve better equilibrium as players become more trusting, but they are

still not able to sustain stable teams. In contrast, BVN is able to achieve a stable

equilibrium with stable teams despite the varying threshold, as shown in Figure 4-6.

Note that the higher the threshold, the longer it takes the BVN agent to achieve

a stable equilibrium, which is expected. In the end, the BVN agent was able to

from teams and achieve stable equilibrium with Trust agents with varying thresholds,

demonstrating its emergent optimism.

Betray The effectiveness of an IPB agent is not solely dependent on its optimism

but also on its ability to retaliate. An IPB agent must not be a blind optimist - for

instance, adopting a non-retaliating strategy by always cooperating can be exploited

by other agents. In this context, we evaluate the retaliation and reputation capa-

bilities of our agents against other agents that pretend to cooperate but ultimately

betray them during reward calculation. Agents need to be able to identify a betraying

agent through past history and retaliate by not cooperating with them. We test our

agents in two scenarios: betray-friend with a naive friend and a betraying player, and

betray-nonfriend with a naive foe and a betraying player. In the former, the optimal

strategy is to establish a bond with the friendly player, while in the latter, the optimal

strategy is to not choose anyone. A negative cumulative reward here implies that the

agent has mistakenly trusted a non-friend or betraying agent.

Figure 4-7 demonstrates that both BVN and UVFA are capable of distinguishing

a friendly agent from a betraying agent in betray-friend, although not with perfect

accuracy. Notably, BVN outperforms MAPPO and UVFA agents in recognizing a

betray-nonfriend scenario. Specifically, BVN mistrusts non-friendly agents for a lower

average number of time steps, as indicated by the higher but still negative cumulative

reward. This ability to retaliate against deceptive behavior is attributed to the emer-

gence of reputation tracking, which enables BVN agents to learn from game history

and adapt their strategies accordingly. The demonstrated retaliation and adaptation

abilities of BVN agents are crucial in many real-world scenarios where agents may

encounter adversaries who engage in deceptive behavior.

However, it is worth noting that while our agents exhibit some degree of retaliation

49

(a) MAPPO agent (b) UVFA agent

Figure 4-5: Cumulative rewards during evaluation of MAPPO and UVFA agents across
Trust players with different values of 𝑐. The rewards demonstrate a positive correlation
with increased openness to cooperation by the trust agent. However, neither UVFA or
MAPPO agents were able to reach a stable cooperative optima.

Figure 4-6: Cumulative rewards during evaluation of BVN agent across Trust players with
different values of 𝑐. The BVN agent was able to reach cooperative optima despite differing
levels of trust thresholds. The reward curve illustrates the impact of openness on the agent’s
performance, with lower 𝑐 values leading to faster attainment of cooperative optima.

50

(a) Betray and Non-friend player (b) Betray and friendly player

Figure 4-7: Cumulative reward during evaluation against settings with one Betray and one
Naive player. In Betray Non-friend, agents are confronted with two uncooperative players,
and a reward of -2 signifies the agent’s mistrust towards the betraying player. Both MAPPO
and UVFA agents struggle to identify betraying players, while the BVN agent demonstrates
partial success in some instances. In the Betray Friend scenario, we observe a significant
improvement in performance for the UVFA agent, as it successfully identifies the betraying
player, similar to the BVN agent. However, the MAPPO agent still faces challenges in
identifying betraying players.

in the betray-friend scenario, they perform poorly in the betray-nonfriend scenario.

This discrepancy may be attributed to the agents’ optimism and tendency to be-

friend other agents and attempts to change the minds of the naive agents through

cooperation.

Tit-for-tat In the context of the Iterated Prisoner’s Dilemma, it is important for

an agent not only to retaliate but also to possess the ability to forgive. While it is

common for players to engage in retaliatory or non-cooperative behavior, achieving

a cooperative equilibrium requires that the agent return to a cooperative strategy

if the opponent stops defecting, in order to prevent prolonged cycles of revenge and

counter-revenge that would diminish the total rewards accumulated by both players.

Therefore, we have evaluated our trained agent against tit-for-tat players, which

is a widely-used strategy in the Iterated Prisoner’s Dilemma. To achieve equilib-

rium with a tit-for-tat agent, an agent must avoid falling into a repetitive cycle of

non-cooperation and cooperation. Our experimental results, as shown in Figure 4-8,

indicate that BVN is capable of forming and sustaining cooperative partnerships for

51

the majority of the game, while MAPPO failed to reach any cooperative optimum.

Interestingly, we observed fluctuations in rewards with the UVFA agent, which sug-

gests that this agent tends to fall into a revenge cycle with the tit-for-tat agent. This

indicates a lack of ability to forgive and demonstrates that the implementation of

BVN can lead to emergent forgiveness.

Figure 4-8: Cumulative reward during evaluation against Tit-for-tat players. The UVFA
agents exhibit a revengeful cycle, oscillating between cooperation and defection. In contrast,
the BVN agent successfully maintains a stable cooperative relationship with the Tit-for-tat
agents.

4.2.3 Agent Scenarios

Finally, we evaluate our trained agents in scenarios that include other trained agents,

exploring it’s behavior and ability to cooperate with other agents alike. To achieve

this, we designed two settings each with two trained agents and one other agent: one

with a naive neutral agent (Self ID) and the other with a betraying agent (Betray

Self). The agents were not evaluated during self-play (with 3 trained agents), as they

were trained on this setting and could reach an optimal equilibrium with a cumulative

52

reward of 4 for all time steps as indicated during training time.

Surprisingly, all agents performed similarly, with BVN performing the best in Self

ID, and UVFA outperforming BVN in Betray Self as seen in Figure 4-9. However, the

results suggest that the agents failed to reliably reach a cooperative equilibrium and

mostly defaulted to not choosing any player, as indicated by the average cumulative

reward being less than 2. Despite this, the agents were able to avoid mistrusting

non-friendly agents better here than in betray-nonfriend, as demonstrated by the

generally positive cumulative reward. The rewards of the agents were also relatively

stable compared to previous settings, which can be attributed to the trained agents’

ability to predict each other’s behavior, leading to a more deterministic and stable

outcome.

(a) Non-friend agent and trained agent (b) Betray agent and trained agent

Figure 4-9: Cumulative reward during evaluation against settings with another trained
agent. The reward curves show overall stability over time, but there is no significant per-
formance improvement associated with the inclusion of another trained agent.

4.2.4 Implications

The environment of IPB poses a non-trivial challenge due to the existence of mixed

motives spanning the spectrum of competition and cooperation. In other words,

agents are required to learn not only how to cooperate or compete but also when to

engage in these behaviors. Consequently, agents must develop emergent skills and

53

behaviors such as team formation and reputation tracking. While self-play is a pop-

ular method for achieving superhuman performances in zero-sum games, it struggles

in social dilemmas where there can be many suboptimal equilibria. Therefore, to suc-

cessfully master IPB, agents must properly encounter and generalize over a variety of

interactions with different motives during training.

The results of our study demonstrate that the randomized sampling of reward

sharing schemes using a Dirichlet prior was adequate in augmenting self-play train-

ing with diverse behavior. To take advantage of these diverse playstyles, BVNs were

employed to aid generalization across these behaviors, which led to different emer-

gent behaviors such as reputation, optimism, retaliation and forgiveness. It is worth

noting that reputation and reciprocal strategies have also been shown to be evolution-

arily stable under certain conditions [47], supporting the emergence of such behaviors

through optimization. These emergent behaviors, along with the agent’s learnt abil-

ity to infer social dynamics and act accordingly allowed the agent to adapt to unseen

gameplay patterns (Figure 4-10). Note that there were no explicit built-in mecha-

nisms related to the aforementioned behaviors and skills, meaning our implementation

of a BVN agent was able to learn the intricacies of socializing that underlies a general

game of IPB.

By combining the use of BVN and randomized reward sharing, we propose a

simple method to augment self-play that is able to allow agents trained with self-

play to adapt to novel social settings. Additionally, the emergence of social behaviors

similar to those exhibited by human social norms can provide a deeper understanding

of the emergence of complex social dynamics in multi-agent systems.

4.3 Ablations

4.3.1 Scalarization Function and Prior

In this section, we conduct an investigation into the impact of the scalarization func-

tion of shared rewards and the parameterization of the Dirichlet prior on training.

54

Figure 4-10: Cumulative reward of different agents averaged across 200 trials with error bars
as 95% confidence interval

Specifically, we perform ablation studies on two scalarization functions: the weighted

sum model (WS) and the weighted product model (WPM), and explore three different

𝛼 values: 0.8, 0.9, and 1.0. To ensure comprehensive analysis, we maintain a fixed

underlying model, either UVFA or BVN, and then examine the effect of varying 𝛼

within each combination of model and scalarization function.

BVN We begin by performing ablation using BVN as the agent model and WS

as the scalarization function. The results depicted in Figure 4-11a indicate that this

configuration successfully converges to the optimal equilibrium for smaller values of

𝛼, but fails to do so when 𝛼 is set to 1.0. Subsequently, we assess the outcomes

when employing WPM as the scalarization function. Figure 4-11b illustrates that the

model achieves convergence to the optimal equilibrium of 4 for both 𝛼 values of 0.9

and 1.0, but not for the case of 𝛼 equal to 0.8.

UVFA Next, we consider the performance of the UVFA model. In Figure 4-

12b, we note that the UVFA model struggles to discover the optimal equilibrium

55

(a) BVN agent with Weighted Sum Model (b) BVN agent with WPM

Figure 4-11: Learning curves of BVN agents using different scalarization functions across
different values of 𝛼. The performance of the agents shows contrasting trends based on
the scalarization approach. With the WPM, the agent’s performance degrades as 𝛼 de-
creases due to the exascperation of the effect of reward sharing. WPM introduces a more
complicated generalization task that requires a less biased prior (larger 𝛼) to ease interpo-
lation. In contrast, the Weighted Sum Model exhibits an opposite trend, with performance
degradation as 𝛼 increases. This degradation can be attributed to the simplification of the
environment introduced through the lessened impact of reward sharing. This allows the
model to memorize clusters of equilibria in a skewed manifold (smaller 𝛼), but struggles
when presented with a more uniform prior where generalization becomes crucial.

when WPM is used, regardless of the value of 𝛼, and can only reach a suboptimal

equilibrium of +3. However, when WS is used, the UVFA model generally performs

better for a higher 𝛼 value, but still struggles to consistently reach an optimum of +4

(Figure 4-12a).

Interpretation The parameterization of the prior, specifically the 𝛼 value, has a

significant impact on the underlying distribution of reward sharing weights. A lower

𝛼 value results in a skewed distribution, where the weights tend to be biased towards

0 and 1. Conversely, when 𝛼 = 1, the distribution becomes uniform, indicating

that all configurations of weights are equally likely to be sampled. A higher 𝛼 value

poses a more challenging generalization task for the agent, as it is presented with a

continuous manifold of reward weights that exhibit subtle differences. However, if

the agent successfully learns to generalize in such a scenario, interpolating to unseen

distributions would be relatively straightforward. On the other hand, a lower 𝛼 value

offers a distribution with distinct and more easily relatable tasks, facilitating training

by allowing tasks to be more readily related and clustered. Nevertheless, interpolating

to unseen weights becomes more problematic in this case.

56

(a) UVFA agent with Weighted Sum Model (b) UVFA agent with WPM

Figure 4-12: Learning curves of UVFA agents using different scalarization functions across
different values of 𝛼. UVFA encounters a degradation of performance as 𝛼 increases when
using the Weighted Sum Model. Just as BVN using WPM, a larger 𝛼 introduces a less biased
prior, aiding the process of interpolation and generalization, albeit not being able to reach
a globally optimal policy. UVFA struggles to surpass a reward of 3 in the socially-oriented
environment specified by WPM, irrespective of the 𝛼 values employed.

These observations shed light on our BVN and UVFA models with WS. The BVN

model, which prioritizes generalization, struggles to converge when 𝛼 = 1.0 while

using the WS scalarization function. Conversely, the UVFA model demonstrates

improved generalization as 𝛼 increases. However, as the task of generalization was

not explicitly enforced, the UVFA model fails to consistently reach the optimum

solution.

Furthermore, we introduce WPM as a scalarization function, which amplifies the

impact of changes in reward and weights due to its exponential nature. The use of

WPM allows the reward sharing weights to exert a larger influence on the resulting

rewards, causing even small changes in weights to lead to significant variations in

agent behaviors. Consequently, agents are compelled to prioritize the social dynamics

among themselves and condition their behavior accordingly, rather than relying on a

general strategy that performs well across different weight values.

This distinction becomes evident in the performance of the BVN agent. When

utilizing the WPM scalarization function, the BVN agent successfully reaches the

optimal equilibrium of +4 even with smaller 𝛼 values. This outcome suggests that

the BVN agent effectively leverages the amplified effect of reward weights and demon-

strates generalization capabilities across different weight values. Conversely, in the

57

case of the WS scalarization function, where the effects of weight changes are more

subtle, the BVN agent fails to generalize when the changes in weights become too

small (as observed when 𝛼 = 1.0). However, regardless of the 𝛼 values, the UVFA

agent fails to achieve the optimal equilibrium of +4. This failure can be attributed to

the fact that the general strategy learned by the UVFA model does not translate well

into an environment where there is greater emphasis on social dynamics, as induced

by the WPM scalarization function.

4.3.2 Latent Size

In this section, we investigate the impact of the latent vector sizes 𝑙𝑠𝑎 and 𝑙𝑠𝑔 on

the performance of the BVN agent when using the WPM scalarization function with

𝛼 = 1.0. Previous research has highlighted the significant influence of latent vector

size on training outcomes in the BVN framework [65]. Figure 4-13 illustrates that the

agent faces challenges in reaching the optimal equilibrium of +4 when the latent size

is too small. Additionally, we assess the generalization capabilities of these networks

by evaluating their performance in diverse social settings. Figure 4-14 demonstrates

that a latent size of 16 outperforms models with latent sizes of 4 and 8 in most cases.

Interestingly, this finding contradicts previous literature that suggests the opposite

trend [65]. It is possible that the simplicity of the IPB state space, relative to more

complex robotic environments, allows BVNs to effectively train larger latent vectors,

leading to enhanced generalization capabilities.

58

Figure 4-13: Learning curves with BVN agent with WPM and 𝛼 = 1.0 across different sizes
of latent vectors 𝑙𝑠𝑎 and 𝑙𝑠𝑔. A higher-dimensional latent vector corresponds to a stronger
bias and enhanced ability for generalization across different reward sharing schemes during
training.

Figure 4-14: Cumulative reward of BVN agents with different latent vector sizes across
different settings averaged over 200 trials with error bars as 95% confidence interval. The
correlation between a larger latent dimension and enhanced generalization capabilities is
evident when comparing the performances in test scenarios between a latent size of 16
(green) and other sizes.

59

60

Chapter 5

Conclusion

5.1 Summary

In conclusion, this thesis has presented a novel approach for training MARL agents

that exhibit robustness against diverse, unseen gameplay strategies in SSD games.

Through the utilization of reward shaping and the employment of a bilinear value

critic, the proposed method allows MARL agents to not only overcome the issue

of suboptimal Nash equilibria but also discover and adopt accordingly to different

strategies with emergent qualities.

In a real-world environment, agents would need to learn not only how to coop-

erate, but also when to do so. Conventional MARL approaches often resulted in

agents limited to executing specific converged strategies, rendering them ineffective

against out-of-distribution, commonly-used strategies like tit-for-tat. In contrast, our

method enables agents to learn adaptive and robust strategies in SSD games through

self-play, allowing them to identify optimal defective and cooperative strategies even

in temporally extended environments. The evaluation conducted on Iterated Pris-

oner’s Buddy, with previously unseen strategies, demonstrates the effectiveness of the

proposed method.

Our results indicate that training agents with randomized reward sharing schemes

exposes them to sufficiently diverse and realistic strategies, preventing overfitting to a

single strategy and enabling extrapolation to unseen strategies. The superior adapt-

61

ability of agents trained with BVN compared to those trained with UVFA suggests

inherent overlaps and similarities between the behaviors of different strategies. These

similarities are effectively exploited by introducing an inductive bias through the use

of BVNs.

This research sheds light on the potential of MARL agents to acquire high-level

policies that effectively socialize with agents employing different strategies in SSD

games, even when trained through self-play. Furthermore, the scalability and applica-

bility of the proposed method to a wide range of multi-agent competitive-cooperative

environments provide valuable insights into the design of MARL algorithms for ad-

dressing social dilemmas.

The insights gained from this research contribute to our understanding of the man-

ifold of social behaviors and the learning process of socializing agents. By addressing

the challenges of robustness and adaptability in MARL, this work opens new av-

enues for studying and developing intelligent agents capable of effectively navigating

complex social dynamics.

5.2 Limitations and Future Work

One limitation of this thesis is that it did not extensively study the behavior of

bilinear value networks (BVNs) and randomized reward sharing in more complex

environments where the distinction between cooperating and defecting is not as clear-

cut, and instead needs to be inferred through sequences of actions. Examples of such

nuanced environments include Gridworld and the Commons [46]. Future research

could investigate the applicability and performance of the proposed method in these

types of environments to gain a deeper understanding of its effectiveness.

Another avenue for future work is to explore the scalability of the proposed method

in terms of the number of agents involved. While the theoretical scalability of the

method is supported by the parameter sharing approach, which allows for efficient

training of multiple agents, it is crucial to experimentally assess the performance

of the method with larger numbers of agents. By scaling up the agent population,

62

it would be possible to observe the emergence of more complex and intricate social

ecosystems. This would provide valuable insights into the dynamics and behavior of

MARL agents in larger-scale multi-agent systems.

Overall, this thesis opens up several avenues for future research, including study-

ing the behavior of BVNs and randomized reward sharing in complex environments,

assessing the scalability of the proposed method with larger agent populations and

further investigating the existence and coverage of the manifold of behaviors. These

efforts would contribute to advancing the field of multi-agent reinforcement learning

and enhancing our understanding of social dynamics in artificial intelligence systems.

63

64

Bibliography

[1] Stuart Armstrong, Jan Leike, Laurent Orseau, and Shane Legg. Pitfalls of learn-
ing a reward function online, 2020.

[2] Robert Axelrod and William D Hamilton. The evolution of cooperation. science,
211(4489):1390–1396, 1981.

[3] Bowen Baker. Emergent reciprocity and team formation from randomized un-
certain social preferences, 2020.

[4] Léonard Blier and Yann Ollivier. Unbiased methods for multi-goal reinforcement
learning, 2021.

[5] Alan H. Bond and Les Gasser. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2014.

[6] Michael Bosello. Integrating BDI and Reinforcement Learning: the Case Study
of Autonomous Driving. PhD thesis, 10 2020.

[7] Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-
Baptiste Mouret. Quality-diversity optimization: a novel branch of stochastic
optimization, 2020.

[8] Paul Chelarescu. Deception in social learning: A multi-agent reinforcement learn-
ing perspective, 2021.

[9] Haoqiang Chen, Yadong Liu, Zongtan Zhou, Dewen Hu, and Ming Zhang. Gama:
Graph attention multi-agent reinforcement learning algorithm for cooperation.
Applied Intelligence, 50(12):4195–4205, dec 2020.

[10] Myungsik Cho, Whiyoung Jung, and Youngchul Sung. Multi-task reinforcement
learning with task representation method. In ICLR 2022 Workshop on General-
izable Policy Learning in Physical World, 2022.

[11] Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Stefano V. Al-
brecht. Scaling multi-agent reinforcement learning with selective parameter shar-
ing, 2021.

[12] Bruce Edmonds and Ruth Meyer. Simulating social complexity: A handbook.
2013.

65

[13] Xiaoyun Feng. Multi-goal reinforcement learning via exploring successor match-
ing. In 2022 IEEE Conference on Games (CoG), pages 401–408, 2022.

[14] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal
generation for reinforcement learning agents, 2018.

[15] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. Counterfactual multi-agent policy gradients, 2017.

[16] Matthew C. Fontaine and Stefanos Nikolaidis. Differentiable quality diversity,
2021.

[17] Siddharth Ghiya and Katia Sycara. Learning complex multi-agent policies in
presence of an adversary, 2020.

[18] Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-
agent control using deep reinforcement learning. In AAMAS Workshops, 2017.

[19] Leor M. Hackel, Peter Mende-Siedlecki, and David M. Amodio. Reinforcement
learning in social interaction: The distinguishing role of trait inference. Journal
of Experimental Social Psychology, 88:103948, 2020.

[20] Hossein Haeri, Reza Ahmadzadeh, and Kshitij Jerath. Reward-sharing relational
networks in multi-agent reinforcement learning as a framework for emergent be-
havior, 2022.

[21] Saeed Harati, Liliana Perez, and Roberto Molowny-Horas. Promoting the emer-
gence of behavior norms in a principal–agent problem—an agent-based modeling
approach using reinforcement learning. Applied Sciences, 11(18), 2021.

[22] Luiz R. T. Horita, Angelica T. M. Nakamura, Denis F. Wolf, and Valdir Grassi
Junior. Improving multi-goal and target-driven reinforcement learning with su-
pervised auxiliary task. In 2021 20th International Conference on Advanced
Robotics (ICAR), pages 290–295, 2021.

[23] David Earl Hostallero, Daewoo Kim, Sang chul Moon, Kyunghwan Son, Wan Ju
Kang, and Yung Yi. Inducing cooperation through reward reshaping based on
peer evaluations in deep multi-agent reinforcement learning. In Adaptive Agents
and Multi-Agent Systems, 2020.

[24] Edward S. Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning
goals for exploration. In The Eleventh International Conference on Learning
Representations, 2023.

[25] Wei Hu, Lechao Xiao, and Jeffrey Pennington. Provable benefit of orthogonal
initialization in optimizing deep linear networks, 2020.

[26] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A.
Ortega, DJ Strouse, Joel Z. Leibo, and Nando de Freitas. Social influence as
intrinsic motivation for multi-agent deep reinforcement learning, 2019.

66

[27] Siddharth Karamcheti, Megha Srivastava, Percy Liang, and Dorsa Sadigh. Lila:
Language-informed latent actions, 2021.

[28] R. Kretchmar. Reinforcement learning algorithms for homogenous multi-agent
systems. 01 2003.

[29] Arpan Kusari and Jonathan P. How. Predicting optimal value functions by in-
terpolating reward functions in scalarized multi-objective reinforcement learning,
2020.

[30] Angela Langdon, Matthew Botvinick, Hiroyuki Nakahara, Keiji Tanaka,
Masayuki Matsumoto, and Ryota Kanai. Meta-learning, social cognition and
consciousness in brains and machines. Neural Networks, 145:80–89, 2022.

[31] Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic
latent actor-critic: Deep reinforcement learning with a latent variable model,
2020.

[32] Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore
Graepel. Multi-agent reinforcement learning in sequential social dilemmas, 2017.

[33] Cheng Li, Levi Fussell, and Taku Komura. Multi-agent reinforcement learning
for character control. Vis. Comput., 37(12):3115–3123, dec 2021.

[34] Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and
Chongjie Zhang. Celebrating diversity in shared multi-agent reinforcement learn-
ing, 2021.

[35] Steven L. Lima. Iterated prisoner’s dilemma: An approach to evolutionarily
stable cooperation. The American Naturalist, 134:828 – 834, 1989.

[36] Michael Littman. Friend-or-foe q-learning in general-sum games. 01 2003.

[37] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments, 2020.

[38] Xueguang Lyu, Yuchen Xiao, Brett Daley, and Christopher Amato. Contrasting
centralized and decentralized critics in multi-agent reinforcement learning, 2021.

[39] Michael W. Macy and Andreas Flache. Learning dynamics in social dilemmas.
Proceedings of the National Academy of Sciences, 99(suppl_3):7229–7236, 2002.

[40] Charl Maree and Christian W. Omlin. Reinforcement learning with intrinsic
affinity for personalized prosperity management. Digital Finance, 4(2-3):241–
262, sep 2022.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis

67

Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518:529–533, 2015.

[42] Tong Mu, Stephan Zheng, and Alexander R Trott. Modeling bounded rationality
in multi-agent simulations using rationally inattentive reinforcement learning,
2022.

[43] Martin Nowak and Karl Sigmund. Evolution of indirect reciprocity by image
scoring. Nature, 393:573–7, 07 1998.

[44] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the
art. Autonomous Agents and Multi-Agent Systems, 11:387–434, 11 2005.

[45] Yanbo Pang, Takehiro Kashiyama, Takahiro Yabe, Kota Tsubouchi, and Yoshi-
hide Sekimoto. Development of people mass movement simulation framework
based on reinforcement learning. Transportation Research Part C: Emerging
Technologies, 117:102706, 2020.

[46] Julien Perolat, Joel Z. Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls,
and Thore Graepel. A multi-agent reinforcement learning model of common-pool
resource appropriation, 2017.

[47] Gregory Pollock and Lee Alan Dugatkin. Reciprocity and the emergence of
reputation. Journal of Theoretical Biology, 159(1):25–37, 1992.

[48] Zhaoming Qin, Nanqing Dong, Eric P. Xing, and Junwei Cao. Cooperative
multi-agent actor-critic for privacy-preserving load scheduling in a residential
microgrid, 2021.

[49] David Radke, Kate Larson, and Tim Brecht. Exploring the benefits of teams in
multiagent learning, 2022.

[50] Tuomas W. Sandholm and Robert H. Crites. Multiagent reinforcement learning
in the iterated prisoner’s dilemma. Biosystems, 37(1):147–166, 1996.

[51] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In Francis Bach and David Blei, editors, Proceedings of
the 32nd International Conference on Machine Learning, volume 37 of Proceed-
ings of Machine Learning Research, pages 1312–1320, Lille, France, 07–09 Jul
2015. PMLR.

[52] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017.

[53] Lee Spector, Jon Klein, Chris Perry, and Mark Feinstein. Emergence of collective
behavior in evolving populations of flying agents. volume 6, pages 200–200, 06
2003.

68

[54] Jianyu Su, Stephen Adams, and Peter A. Beling. Value-decomposition multi-
agent actor-critics, 2020.

[55] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Ko-
rjus, Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and
competition with deep reinforcement learning, 2015.

[56] Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang,
Simon Shaolei Du, Yu Wang, and Yi Wu. Discovering diverse multi-agent strate-
gic behavior via reward randomization. In International Conference on Learning
Representations, 2021.

[57] Ravi Tejwani, Yen-Ling Kuo, Tianmin Shu, Boris Katz, and Andrei Barbu. Social
interactions as recursive MDPs. In 5th Annual Conference on Robot Learning,
2021.

[58] Ravi Tejwani, Yen-Ling Kuo, Tianmin Shu, Bennett Stankovits, Dan Gutfreund,
Joshua B. Tenenbaum, Boris Katz, and Andrei Barbu. Incorporating rich social
interactions into mdps, 2022.

[59] J. K. Terry, Nathaniel Grammel, Sanghyun Son, and Benjamin Black. Parameter
sharing for heterogeneous agents in multi-agent reinforcement learning, 2022.

[60] Robert Trivers. The evolution of reciprocal altruism. Quarterly Review of Biol-
ogy, 46:35–57., 03 1971.

[61] Geoffrey Tweedale. William poundstone, prisoner’s dilemma: John von neu-
mann, game theory, and the puzzle of the bomb. oxford: Oxford university
press, 1992. pp. xi 290. isbn 0-19-286162-x. £7.99 (paperback edition). The
British Journal for the History of Science, 26(3), 1993.

[62] Jianrui Wang, Yitian Hong, Jiali Wang, Jiapeng Xu, Yang Tang, Qing-Long
Han, and Jürgen Kurths. Cooperative and competitive multi-agent systems:
From optimization to games, 2022.

[63] Woodrow Zhouyuan Wang, Andy Shih, Annie Xie, and Dorsa Sadigh. Influencing
towards stable multi-agent interactions. In 5th Annual Conference on Robot
Learning, 2021.

[64] Michael Wooldridge, Stefan Bussmann, and Marcus Klosterberg. Production
sequencing as negotiation. In PAAM, 1996.

[65] Ge Yang, Zhang-Wei Hong, and Pulkit Agrawal. Bi-linear value networks for
multi-goal reinforcement learning. In International Conference on Learning Rep-
resentations, 2022.

[66] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre
Bayen, and Yi Wu. The surprising effectiveness of ppo in cooperative, multi-
agent games, 2022.

69

[67] Chao Yu, Minjie Zhang, Fenghui Ren, and Xudong Luo. Emergence of social
norms through collective learning in networked agent societies. volume 1, pages
475–482, 05 2013.

[68] Chao Yu, Minjie Zhang, Fenghui Ren, and Guozhen Tan. Emotional multiagent
reinforcement learning in spatial social dilemmas. IEEE Transactions on Neural
Networks and Learning Systems, 26(12):3083–3096, 2015.

[69] Mohamed Salah Zaïem and Etienne Bennequin. Learning to communicate in
multi-agent reinforcement learning : A review, 2019.

[70] Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E.
Gonzalez, and Yuandong Tian. Multi-agent collaboration via reward attribution
decomposition, 2021.

70

	Introduction
	Background
	Motivation
	Problem Statement
	Thesis Outline

	Background
	Social Dilemmas
	Sequential Social Dilemmas
	Existing Solutions

	Reinforcement Learning
	Deep-Q-Networks (DQN)
	Policy Gradient
	Proximal Policy Optimization

	Multi-Agent Reinforcement Learning
	Multi-Agent Actor Critic

	Reward Shaping
	Reward Sharing

	Multi-Goal Reinforcement Learning

	Methods
	Motivation
	Randomized Reward Sharing
	Bilinear Value Networks

	Formal Formulation
	General Markov Game
	Reward Sharing
	Reward Sharing Generalization

	Experimental Setup
	Environment
	Implementation
	Evaluations

	Results
	Baseline Performance
	Importance of reward sharing
	Randomized Reward Sharing

	Scenario Evaluations
	Naive Scenarios
	Strategic Scenarios
	Agent Scenarios
	Implications

	Ablations
	Scalarization Function and Prior
	Latent Size

	Conclusion
	Summary
	Limitations and Future Work

