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Abstract

Flow state represents the quality of meaningful experience– an e↵ortless, depth of attention
that is often undermined in our interrupt-driven, modern society. In this thesis, I present
four novel interventions to promote states of deep engagement.

Evaluating whether one of these interventions has a meaningful impact on flow state is
di�cult to do. The bulk of my work, then, focuses on the methodological challenges of
flow state research. Herein I tackle three weaknesses in our ability to make strong, gener-
alizable predictions about the causal link between environmental stimuli and flow states:
(1) I discuss advancing how we represent the environment (specifically for aural stimuli)
using phenomenological principles; (2) I advance the state-of-the-art in how we represent
and measure flow bio-behaviorally (with the goal of integrating physiology into our judge-
ments); and (3) I evaluate methodological weaknesses in current experimental flow work.
To do this, I present experimental work on models of auditory attention, new wearables and
survey instruments for flow estimation, and an experiment that compares flow as measured
in lab and at home across varying task structures.

This thesis contributes a suite of state-of-the-art psychophysiological and behavioral hard-
ware tools designed to inform inference about flow in-the-wild; it also contributes two
unique, open-source, naturalistic datasets collected with them. Combined with time-aware,
probabilistic representations of cognition, this work sets the stage for a precise and explicit
bio-behavioral definition of flow states that will improve our ability to understand its re-
lationship to our environment. In so doing, it points to an improved approach for social
psychology more generally.

Thesis Advisor:
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Alexander W Dreyfoos Professor of Media Arts and Sciences
Program in Media Arts and Sciences
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5-1 Three of Cśıkszentmihályi’s flow models over the years: the first is his ‘quad-
rant model’ (1989), the second is his ‘channel model’ from ‘Flow’ (1990), and
the third is an updated channel model from ‘Finding Flow’ (1997). . . . . . 139

5-2 Figure 2.8 from ’Advances in Flow Research’ [307] by Giovanni B. Moneta
suggesting a latent model that separates precursors and consequences of flow. 142

5-3 Diverse flow faces; we see Musicians John Mayer (top-left), Patrick Metheny
(middle-right), and Christian Vader (bottom-right) furrowing their brows and
contorting their faces; Eric Clapton, in contrast (top-right), has an unusually
relaxed expression. All of these musicians have their eyes closed. The images
in the lower left are from Robbie Cooper’s ‘Immersion’ art project, showing
people playing video games. We see a di↵erent kind of facial expression here;
eyes locked, with expression-less that may be relaxed or may be contorted.
Blink rates seem to slow, head motion is either non-existent or shifts unusual
as gaze remains unbroken. Despite the di↵erences between musicians and
gamers, the subtle cues suggest a similar utter focus on the percept being
acted upon. Photos of Metheny/Vader courtesy of Joe Paradiso. . . . . . . 158

5-4 A Representation of Flow Estimates. (A) Surveys; they don’t capture a
notion of uncertainty for the interval that was ranked other than perhaps
something like Cronback’s alpha for internal consistency. More or less, you
have ‘4 out of 7’ flow for a task, unidimensionally or multidimensionally. (B)
We try to learn what physiology represents flow states. We treat the state
as known– it is once again the singular number reported by the user, the
‘ground truth’, for a given task. We typically will then treat the entire task
as ‘in flow’ or ‘out of flow’ as labeled, and compare summary statistics to the
number. More sophisticated papers may apply more intelligent processing
of the time-series data. (C) Our proposal is to learn a probability distribu-
tion per timeslice during an interval, and adapt the survey questions to give
insight into the time-varying nature of flow and attention. We also apply
our collected data intelligently to the relevant time steps– if we introduce a
small distractor that goes unnoticed, we can infer something about that brief
period. If the user incorrectly estimates the passage of time, we expect that
to reflect an integrated estimate of their experience. If they give a survey
response, we expect that to apply to some moment of peak salience, not the
entire interval. Additionally, instead of treating survey responses as ground
truth, we treat them as strong suggestions; we co-learn all relationships.
When multi-modal signals all agree, we have more faith in the ones that do
and trust them more. Thus, if someone has a clear physiological indicator
that they are focused (i.e. unusual stillness while working), we can infer la-
tent focus state from that just as much as we infer that the physiology is
representative of flow. We move improve (B) with a stochastic, time-varying
notion of flow for which survey data is treated as one of many noisy sources
of data for the underlying state. . . . . . . . . . . . . . . . . . . . . . . . . . 161

5-5 David sporting the wearables described below. . . . . . . . . . . . . . . . . 164
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5-6 The custom ‘Equinox’ watch can notify the user, monitor ambient light levels,
and collect time estimates, duration estimates, or experience sampling survey
data all day long. In our initial test, we ask users to guess the time in order
to check the time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5-7 The two PCB design of the Equinox watch. This design sandwiches two
boards together, so that the top board can support a large, flat touch inter-
face. Individually addressable LEDs emit light around the mid-plane of the
watch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5-8 Two possible interactions with Equinox. (A) shows the watch vibrating and
lighting up to prompt a user to guess the time, (B) shows an example of an
ESM survey where the bottom of the touch dial maps to a 5-point likert scale
rating. For our main exploratory analysis, we allowed the user to initiate a
‘guess time’ interaction, and displayed the current time immediately after
their guess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5-9 Resulting Data from Equinox study. (A) compares the duration since the
last time a user checked their watch (x-axis) with the duration their esti-
mate (so if they checked their watch at noon, and then guessed it was 12:15
at 12:20, we’d see a point at (20min, 15min))– accurate guesses fall along
the dotted line. (B) shows continuous light level (white and full-spectrum),
temperature, and humidity data displayed in the custom iPhone application,
which synchronizes data with a secure online database. These estimates are
during normal daily activity and represent a range of focus states. . . . . . 173

5-10 The ‘Feather’ device is strapped to the leg to monitor how intense a vibration
is required to exogenously draw the user’s attention away from their task in
naturalistic settings. It can easily be hidden under the user’s clothes. When
the user senses a vibration, they indicate it by hitting the ‘surprised smiley’
icon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5-11 Representative data from a user wearing the device. Green lines indicate
that the user has noticed the stimuli; black marks show the stair-stepping
increase of vibration intensity that start 1-5 minutes after the last noticed
event. There are a few long sections without a notice, as well as a few sections
where the user continues to notice lower and lower vibration intensities in
rapid succession, consistent with the idea that focus state is altering this
threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
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5-12 (Left) Peak acceleration measurements from the motor when commanded at
various intensities; dots represent raw measurements, the line represents the
average. There is quite a bit of spread here, though the highest acceleration
when as we continue to draw samples at each level follows a linear trend.
Peak acceleration does not capture all the features of the input waveform
that interact with perception (i.e. average intensity, duration). (Center) To
characterize this noise in practice, users were asked to do a calibration pro-
cedure where they were rapidly presented with a random string of intensities
around their threshold of noticing. It takes users an average of 6.5 steps to
move from a level where they notice less than 20% of the stimuli to more
than 80% when they pay attention. Threshold estimates are thus probabilis-
tic, but informative; to capture better quality information, we present each
level of stimuli 3 times as they increase. (Right) Summary data from the user
study, collected over 26 hours with six participants. Most participants have
a pretty large spread in noticed intensity even over a single working session;
for some, like participant 4, the data indicate a real e↵ect of cognition on the
data (i.e. a tight standard deviation with large outliers). . . . . . . . . . . 182

5-13 The distribution of z-scored, self-reported focus based on self-report during
our test (left; based on a 5-point likert scale very distracted/average/very
focused), as well as a comparison between these self-reported values and the
level of stimuli that grabbed the user’s attention (right). The dataset is
small but suggestive that as people start to focus, they become more aware
of distractions. We posit that for deep levels of focus, the threshold starts
to increase again (an inverted-U shape); to capture this will require a larger
dataset taken especially in deep states of focus. . . . . . . . . . . . . . . . . 183

5-14 Captivates Final Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5-15 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5-16 Side View of Captivates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5-17 Pre-bent Flex Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5-18 Illuminated Brow of Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5-19 Deconstructed Captivates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5-20 Thermal imaging (right), the OpenFace video analysis tool (center), and a
comparison of orientation data between the glasses and extracted from the
video (a tighter blue cone is better). . . . . . . . . . . . . . . . . . . . . . . 207

5-21 Representative blink trace data from Participant 3 (bottom) and Participant
5 (top). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5-22 Smartglasses Compared in Survey . . . . . . . . . . . . . . . . . . . . . . . 214

5-23 Glasses Survey Comparison Results . . . . . . . . . . . . . . . . . . . . . . . 215
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5-24 The Captivates Smartglasses platform presented in [84] is used to measure
self-interruption behavior. Two symmetrical peripheral LEDs slowly change
from green to blue over 53 seconds; when the user notices the change, they in-
dicate it by hitting the ‘surprised’ emoji in the companion application (which
is left open on the table near them). These transitions are spaced 10-20 min-
utes apart to give the user su�cient time to achieve a state of deep focus
on their primary task. The change is slow and gradual to minimize the
probability of drawing attention to itself. . . . . . . . . . . . . . . . . . . . . 220

5-25 To test the e↵ect of variable lighting conditions on perceptual acuity of the
LED color shift, we used a specially designed lighting room set to two ex-
tremes; a bright white light (high blue light spectrum- Figure Left) and a
low warm light (Figure Right). Participants were asked to look at an ‘X’ on
the wall and pay attention to the LED color change in their periphery, indi-
cating when they noticed the transition in the application. Participants were
exposed to ten transitions in each lighting condition; the order of exposure to
each condition was counterbalanced across participants. Results from these
calibration sessions (in seconds) are shown in the table; the transition was
sped up 3x from the typical intervention to 17 seconds to maintain attention. 223

5-26 Initial results from seven participants wearing the interface in natural work/social
settings for a minimum of 2 hours each (19.3 hours captured total). Data
points represent the delay from a transition starting to when the user noticed
it. Included in the plot are indicators of when the transition becomes observ-
able based on the calibration data (purple), as well a worst case indicator
over the 100 calibration trials (dotted– this represents the worst case mo-
ment, across lighting conditions, that we’d expect the transition to become
obvious if the user was paying attention.) The slow transition completes at
53 seconds (blue). We see several data points in which users didn’t notice
the transition for many minutes after it was completed (top left); a zoomed
view of the first few minutes after transition onset are shown in the bottom
right. As expected, noticing delay follows a roughly log-normal distribution
for each user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6-1 A summary of the main study conditions measured across three sessions. . . 236

6-2 Screenshots of the companion application used during the first two sessions
(A)– we see the main screen where we can select a session type, a typical
survey screen, and the screen showing when the user is engaged in the task
(they indicate they’ve noticed the LED color change by tapping the surprised
face button). (B) shows the new interface for the final task; no companion
application is required, just this box. To end the task, the watch is touched
and the survey is completed in a the booklet that sits on top of the black
data collection device shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 237
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6-3 Examples of feature processing: (A) is a technique for extracting micromove-
ments from [434], (B) shows blink identification for an ideal case (lower) and
a more challenging case (upper); (C) shows traditional SCL/SCR extraction
and the canonical SCR response model used to deconvolve the raw signal to
approximate iSCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

6-4 Self-reported duration to get into flow, and fraction of time spent in flow, by
task and environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

6-5 A subset of flow drawings for several participants across the four conditions
(lab/home, Tetris/self-selected flow activity). Lower Y-axis ratings indicate
deeper states of flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6-6 Kernel Density Estimate (base-rates removed) for FSS-2 results compared
against self-reported flow experience. . . . . . . . . . . . . . . . . . . . . . . 248

6-7 FSS-2 results by environment and activity. . . . . . . . . . . . . . . . . . . . 251
6-8 LED delays until noticing across conditions look very similar. . . . . . . . . 251
6-9 Example raw data from across the four conditions for random participants/data

sources; for the left column (Tetris gameplay) green means a script designed
to process the video of the Tetris footage identified the user is playing the
game; red indicates a game-over event. Notice (1) the heterogeneity within
an interval across time, and (2) the heterogenity across conditions. If we
imagine condensing these data down to a single summary statistic– throw-
ing away the time-relevant information– we might expect that the insights
from any subset of the data will fail to generalize to any other subset when
attempting to make a more specific prediction than the basic physiological
variance we naturally experience. . . . . . . . . . . . . . . . . . . . . . . . . 254

6-10 Randomly selected distributions of individual data from a few select physi-
ological indicators. These distributions represent matched pairs of tasks in
which both conditions were reported to have induced flow; we see they typi-
cally look quite distinct. The top compare lab vs home; the bottom compare
Tetris vs selected flow activity. . . . . . . . . . . . . . . . . . . . . . . . . . 256

7-1 The Huxley Smart Book, showing updating e-ink displays on the cover, spine,
and inside. A USB port on top is available for charging, one button is
available for turning pages. Huxley only updates when the user is away
and the current book has been completed or ignored. Its selection is based
on the measured interests and a↵ective state of the user at work. . . . . . . 262

7-2 Guitarbot is a guitar stand built on top of a iRobot Create 2, that can rove
around the space and find the positions most likely to result in guitar use. . 265

7-3 Stagehand marries a custom button which attaches to the guitarstrap (left)
with an immersive living room system (right). Whenever the guitar is lifted
and in use, the entire environment shifts to ’concert mode’ (right bottom). . 266

7-4 The system underlying Stagehand includes many aspects of environmental
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

7-5 This email device is an e-ink screen VPNed to a small single board computer
(latte panda); designed to evoke a typewriter and to feel di↵erent than a
typical laptop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
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7-6 Cell2Jack is a solution for your grandparents to allow their cellphones to
operate like the familiar phones of yester-year. It’s been very reliable as my
bluetooth-to-landline bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

7-7 Incoming texts get printed, in chronological order, on a receipt printer. Im-
ages are also printed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7-8 To send texts, the user selects one of the auto-generated documents that
correspond to every incoming texts, sorted chronologically (and seeded with
everyone in the address book) [A]. After clicking on a document name (labeled
by sender) the user hand-writes a reply [B], which automatically gets OCRed
and sent in both text and image form. Upon success, it is also printed to the
receipt printer [C]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

8-1 All of my asynchronous communication is designed to happen at this desk–
texts are handwritten on the tablet (and automatically sent once written),
incoming texts are printed, phone calls are routed through the rotary phone,
and email happens on the main typewriter-like interface with an e-ink screen. 275

8-2 A sample of Beiwe data; this open-source application is run by the Onella
lab at Harvard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8-3 Every day I would stream a video diary using this web interface. On the left,
you can see a list of topics I discussed every day; For me, this interface had
a button to advance the topic, which recorded timestamps so I could easily
slice together videos of all 60 days by topic. It’s also easy to do emotion and
speech analysis on these daily diaries. They also included screen shots of my
screen-time app for the day when I had my phone. Typically these sessions
would last 20 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8-4 Examples of the video stream I had on Twitch 4-8 hours a day. At the top
we see the dashboard I used at the media lab; at the middle and bottom we
see the dashboard at home, which features more configurations depending on
my activity, location, and screen usage. . . . . . . . . . . . . . . . . . . . . 282

8-5 The dashboard of data I actively collected at all times over two months. This
dashboard was hosted on a raspberry pi that I carried around with me in a
backpack (since I gave up my phone for one of the two months). . . . . . . 283

8-6 A summary of the types of reporting data. On the left you can see the video
diary sections (top); part of the twitch dashboard driven by a chatbot that
monitored user labels of my focus, stress, altertness, and emotional state
(middle), and a small, always-open note-taking app (bottom). . . . . . . . . 284
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Chapter 1

Introduction

This is a thesis about how our tools and environments alter our sense of meaning and

fulfillment.

1.1 My Journey

I joined the Responsive Environments group in 2014 with a belief and a goal. I believed that

our lives are powerfully and silently guided by subtle forces we never consciously consider;

my goal was to harness the power of small changes in our environments and our world to

nudge us to be fulfilled, joyful, and engaged.

1.1.1 A Belief Destroyed

My beliefs were shaped by many prevalent cultural and academic forces. Daniel Kahneman’s

Thinking Fast and Slow (2011) was taking the world by storm. It featured several chapters

on social priming– our ability to drive behavior using subtle, unconscious influence. He

wrote about this experimental work:
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When I describe priming studies to audiences, the reaction is often disbelief...

disbelief is not an option. The results are not made up, nor are they statistical

flukes. You have no choice but to accept that the major conclusions of these

studies are true. More important, you must accept that they are true about you.

[...] You do not believe that these results apply to you because they correspond to

nothing in your subjective experience. But your subjective experience consists

largely of the story that your System 2 tells itself about what is going on.

Priming phenomena arise in System 1, and you have no conscious access to

them.

Against the backdrop of this trend in experimental psychology, Richard Thaler– a behavioral

economist who went on to follow Kahneman’s footsteps with a 2017 Nobel Prize win– was

rising to prominence with his ‘Nudge Theory.’ Thaler’s work also suggested that tiny, trivial

modifications in how you present a choice to someone would have a major impact on their

decision making.

I bought heavily into the science behind these findings. Only over many years have I come

to understand the flaws and limits of this worldview; the ways psychologists and behavioral

economics have systemically and mistakenly misused statistics to ‘prove’ false things about

human nature, judgement, happiness, and decision-making.

Kahneman eventually recanted. In an open letter to Yale’s John Bargh in 2011, he warned

about ‘a trainwreck looming for the field’, and would later admit “I put too much faith in

underpowered studies” [287]. In turn, psychology has fallen into a replication crisis– the

first major meta-analysis showed successful replications for only 36% of the findings in the

top four major journals on the topic [88].

‘Nudging’ and behavioral economics has faced similar criticism. Vernon Smith had this to

say in his Nobel Prize lecture in 2002:

Behavioral economists have made a cottage industry of showing that the Stan-

dard Social Science Model [SSSM] assumptions seem to apply almost nowhere
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to real decisions. This is because their research program has been a deliberate

search in the tails of distributions for “Identifying the ways in which behavior

di↵ers from the standard model. . . ” (Mullainathan and Thaler 2001), a search

that can only succeed. [400]

And he’s right. While some nudges have made a di↵erence, the di↵erences are almost

universally slight– the largest study to date on the topic (23 million people, 126 RCTs) shows

a 1.4% di↵erence in decisions, contradicting the 8.7% suggested in the research literature

on the topic [110]. In that same paper, DellaVigna et al. showed that academic intuition

on this topic is mistaken– the median academic predicted 4x the e↵ect seen in reality, with

a sizable minority reporting estimates an order of magnitude larger. Recent meta-analyses

argue that the research literature, taken as a whole, has yet to provide any evidence at all

for nudges once we control for publication bias [275].

I was one of those researchers with faulty intuition. I based many of my early studies

on a belief that these interventions would have a real and meaningful e↵ect that I could

easily measure with 20 participants. I watch colleagues continue to ground their work on

faulty principles from social science, and unwittingly perpetuate the underpowered studies

and statistical malpractice that led us here. Unfortunately, while nudges of this sort may

matter at the level of policy where hundreds of thousands of decisions are at stake, the odds

that they matter for any one individual in their daily experience is vanishingly small.

So where does this leave those of us drawn to research and innovation in this huge area?

1.1.2 A New Goal

My goal remains to design tools and experiences that structure meaningful lives. There is

no doubt in my mind that the design of our technology has had powerful, lasting e↵ects on

our cognition and our social fabric; that phones and browsers shape how we think and act.

We’re all aware of this– everyone I talk to has rules or habits or strategies to mediate how

they interact with social media or phones– though our daily awareness may dwindle as we

habituate to the patterns in our lives.
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I remain committed to designing closed-loop, intelligent interventions that enhance how we

live in a powerful way. The question becomes which kinds of interventions actually matter

and which ones don’t? What is the role of published social psychology in discerning the

truth of the matter? How can we discern the truth using experimental techniques ourselves?

While I retain my initial goal, my intentions have shifted towards our understanding of

methodology in a few important ways.

Many people I know are aware of the replication crisis. They may understand some of the

basic issues– underpowered research, p-hacking, file-drawers, etc. The more sophisticated

among them understand some of the basics of meta-analysis and can list o↵ a handful of the

major replication failures. My impression, though, is that few understand the real weight of

what is happening, and my first goal is to elucidate what’s at stake. Yes, the misapplication

of statistics is part of the problem; but as I’ve become an expert on this topic, I’ve come to

realize the existential challenge facing experimental psychology as a whole.

Psychology as an experimental discipline is relatively young; it’s also much more di�cult to

model, predict, or describe the complexities of human thought and behavior than any hard

science. Frequently we try to understand fundamentally unobservable aspects of mental life–

personality, beliefs, emotions. To do this properly is two steps beyond artificial intelligence;

marrying the ability to reason with deep emotional awareness and theory of mind. Yet

the brightest minds in statistical learning are focused on simpler-to-measure problems, and

psychology continues to counteract a pervasive misunderstanding of statistics (80% of people

teaching the statistics continue to hold incorrect beliefs about fundamental concepts [172]).

Parsing current experimental work thus requires a forensic mindset. Having done that

myself, I’d like to present in this thesis my new perspective on *what* is true (Chapter 2) and

*how* we get to truth in light of the crisis (Chapter 3). I will discuss the underlying tension

between the Frequentist and Bayesian paradigms and its implication for our philosophy of

science. This epistemological question abuts questions of artificial intelligence, where many

great thinkers are critiquing and analyzing the limits of what’s possible with approaches to

statistical or di↵erentiable learning that minimize inductive bias. The scientific endeavor

and the goals of modeling intelligence are largely the same, and I will comment on the
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parallels and shared learning between the discourse on these topics.

Having established our mistaken beliefs and laid the groundwork for a general approach

to methodological rethinking, I will finish Chapter 3 by describing the implications for

psychology and motivate my own research to build and quantify interventions to promote

flow states. The remaining chapters will describe my work to advance the state of flow

research, using it as a case study of broader methodological strategies:

Chapter 4, 5, and 6 focus on issues of ontology. In Chapter 4 I’ll describe the new techniques

I’ve developed to improve how we represent the external world and environment, focusing

on auditory stimuli; in Chapter 5 I’ll describe the new techniques I’ve developed to improve

how we represent the mental states with an emphasis on flow states. Finally, in Chapter 6,

I’ll describe my experimental work that tests these ideas of representation and methodology.

Chapters 7 and 8 focus on naturalistic intervention design. In Chapter 7 I’ll describe the

interventions I’ve prototyped to induce a real impact on people’s daily lives. In Chapter 8

I’ll describe my self-experimentation to understand the impact of one of these interventions,

and that study’s broader implications.

Finally, in Chapter 9, I’ll conclude with a brief summary of the contributions contained

within this work.
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Chapter 2

The Echoes of Poor Replicability

I’m all for rigor, but I prefer other people do it. I see its

importance— it’s fun for some people— but I don’t have the

patience for it. If you looked at all my past experiments, they

were always rhetorical devices. I gathered data to show how my

point would be made. I used data as a point of persuasion, and I

never really worried about, ‘Will this replicate or will this not?’

Daryl J. Bem

Engber, 2017

Imagine that it’s 2011. You’re the editor of a well respected social psychology journal– the

Journal of Personality and Social Psychology (JSPS)– and you have a big problem. You

receive a paper from this professor Daryl Bem, from Cornell University. He has submitted a

paper summarizing two years of work, his magnum opus. It follows all of the right methods.

It’s rigorously done. It looks just like all the other papers you accepted. And you really,

really don’t want to publish it.

That’s because this paper has proved that we are capable of seeing the future– referred to

as ‘retro-causation’ or ‘psi’. It includes many di↵erent experiments that demonstrate this

is a real phenomena. Daryl Bem really believes it’s true.
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In one such experiment, participants are presented with two curtains on a computer screen

and asked to click on one, revealing what is behind it. Behind one curtain is nothing; behind

the other is a picture. Over three thousand trials, he tested whether the participants would

choose to see a picture of a daily object or a pornographic picture. If that picture was of

benign daily objects, people chose the image 49.8% of the time; no di↵erent than chance.

But if the image was a pornographic image of someone very attractive, 53% of the time

people were able to choose the pornographic image (and 57% of the time for ‘stimulus

seekers’). That is more than random chance would predict, a statistically significant result

[53]. Bem hypothesized that the motivation of seeing an attractive, erotic image was enough

to encourage people to peer into the future. Accumulating the results across a series of seven

studies like this, he showed that normal people are doing this with 74 billion to 1 odds.

What do you do with this paper? Well, to their credit, the journal editors held fast to

objective statistical criteria and published it; however, alongside of it they wrote a small

editorial:

After a rigorous review process, involving a large set of extremely thorough re-

views by distinguished experts in social cognition, we are publishing the follow-

ing article by Daryl J. Bem... To some of our readers it may be both surprising

and disconcerting that we have decided to publish Bem’s article....We openly

admit that the reported findings conflict with our own beliefs about causality

and that we find them extremely puzzling. Yet, as editors we were guided by

the conviction that this paper— as strange as the findings may be— should be

evaluated just as any other manuscript on the basis of rigorous peer review...

The next day, it was a New York Times front page story: “One of psychology’s most

respected journals has agreed to publish a paper presenting what its author describes as

strong evidence for extrasensory perception, the ability to sense future events. The decision

is already mortifying scientists, generating a mixture of amusement and scorn.”

Of course, these results have been handily disproven by meta-statistical work. And though

the original work remains unretracted (as of 2023 there is still an active debate with JSPS
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editors to get it removed [379])– and even though Daryl Bem has doubled down, publishing

even more studies in favor of psi [52]– this paper was a postive catalyst for the paradigm

shifting conversation now ongoing in social psychology. Its publication forced a broader

reflection on our statistical standards– if this paper was just as rigorous as the others,

which of the others are true?

Consequently, large scale replication e↵orts began. Kahneman penned his famous open

letter about the ‘trainwreck looming’ for the field [287]. Devastating results started to pour

in; it is now estimated that only 20% - 45% of social psychology papers will replicate [376]

and prediction markets do a pretty good job of guessing which ones [77]. Moreover, incorrect

results are cited 16x more a year than correct ones [387], and even retraction does not fix

this [78] (With the most generous overestimate of the impact of retraction, the average

non-replicated result will continue to be cited at 4 times the rate of an average replicable

study).

Figure 2-1: A reproduction of Table 1. from the Open Science Collaboration’s ‘Estimating
the reproducibility of psychological science’ [88]. Notice that Social Psychology papers
specifically fare far worse than others. Based on 100 replication attempts carried out by
270 di↵erent authors.
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Taken as a whole, these results have a couple earth-shattering implications: (1) within

many of the top journals, ‘significant’ social psychology results are informative in a negative

direction, worse than a coin flip– i.e. if you have no prior about a claim, you should assume

it is less likely to be true than if you hadn’t seen it published,1 (2) if you’ve encountered

the result outside of a journal, the bias in coverage makes the probability of accuracy much,

much worse,2 and (3) you may be better o↵ asking your friends to make bets or trusting

your intuition than peer-reviewed social psychology.3

Thus, the locus of truth for this field has shifted away from academic journals. Instead,

replication-focused blogs run by statisticians are the most trustworthy source of information.

Thankfully, it is possible to rescue objective insight from the accumulated literature with a

healthy set of priors and a forensic attitude.

2.0.1 The Overall Impact

Though I’ve introduced this crisis as it has unfolded in social psychology, the same story

a↵ects positive psychology and behavioral economics as well. In fact, the crisis is incredibly

broad, a↵ecting medical research, neuroscience, and AI. Besides the overall erosion of trust

in science, each field has its own misconceptions to rectify.

For social psychology, the crisis is responsible for two pervasive misconceptions:

(1) People are utterly lacking in agency, easily manipulated, and unaware of

the forces that shape their lives. In ‘The Quick Fix: Why Fad Psychology Can’t
1If we replicate an experiment exactly, and it was done at reasonable power (80%), we would expect a

successful replication 80% of the time, and 20% failure shouldn’t concern us; moreover, we should take all
of the evidence together to estimate a real underlying e↵ect size. In the cases we’re discussing, however,
the replications are pre-registered– thus averting systemic bias in reporting– and typically done at a huge
multiple of the original sample size (i.e. 10x), giving much stronger evidentiary value. While the language
of ‘replication’ and ‘failed replication’ perpetuates a flawed categorical statistical mindset, it is a convenient
shorthand here for the state of a↵airs, as many of these failed replications are actually very strong evidence
for negligible e↵ect sizes.

220-45% of these studies replicate, and non-replicable results are cited 16x more on average. We’ll use
35% and 16x as our touch points. That means roughly, if we assume citation count reflects news coverage,
that the odds of a study you hear about failing to replicate is roughly 0.35*16 / (0.35*16 + 0.65*1) = 90%.
In reality, popular press coverage is better represented by a Pareto distribution than simple 16:1 odds and
the number is probably higher.

3Prediction markets have seemingly fared well as a tool to separate out replicable research, enough that
DARPA and Berkley have funded betting market initiatives for behavioral science.
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Cure Our Social Ills’, Jesse Singal labels the worldview this bad science has perpetuated

‘Primeworld’ [395]. This idea has many corollaries– people deserve neither condemnation

nor praise because they are simply the product of the subtlety of their environment (in-

fluencing our views of justice and self-worth). People are almost entirely shaped by their

environment (diminishing the role of human nature– see, i.e., Steven Pinker’s ‘The Blank

Slate’ [338]). Perhaps most perniciously, as Kahneman famously said, “you must accept

that [these studies] are true about you’ despite the fact that ‘you have no conscious access

to them” [230]. Denying these facts is not an option; to do so means you are irrational and

unwilling to confront the data (rhetoric that makes you either a ‘believer in science’ or not–

a politicizing and factionizing identity).

These ideas diminish human nature and personal responsibility in a way that is incredibly

disempowering. It also justifies overly-paternalistic legislation– people are *already* pup-

peteered by their environments so we might as well ensure that the controlling forces are

pro-social.

(2) The way to live a happy life, should you feel unfulfilled and disempowered,

is to adopt one of many small habits that are grounded in a shallow philosophy

with an under-powered positive psychology study behind it. Mainstream academia

has taken over the self-help industry, famous for peddling quick fixes and simple solutions.

Faith in quick fixes aligns with point (1); it relies on the assumption that small changes are

powerful enough to meaningfully shape our sense of fulfillment, and treats existing religious

institutions as a collection of superficial nudges themselves (rather than a gestalt, memetic,

adaptive social system in conversation with human nature).

2.0.2 YourAd: My Story of Reckoning

There are many, very important implications of the above-mentioned worldview– for politics

and society, for design, and for our own sense of humanity. They also have a tremendous

impact on science. I’d like to give an example of how these ideas have a↵ected my work

when I started my PhD, through a project I created called ‘YourAD.’
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Advertising

Advertisers are often scorned for their manipulative tactics and extractive techniques. The

price of diamonds is famously the result of De Beers, an e↵ective monopolist, artificially re-

stricting supply in the late 1800s alongside their campaigns to solidify diamonds as a symbol

of love and commitment. Cigarette sales– once lagging with women in the 1920s– soared

after Edward Bernays (the father of Public Relations) handed them out to su↵ragettes at a

large women’s rights march and convinced newspapers to label them ‘torches of freedom.’

Fast forward to the modern world. According to Scientific American, ‘subliminal advertising’–

famous as a massive fraud perpetuated by a marketing consultant who went on to make

millions o↵ of it when it was first ‘discovered’– may actually be real [409]. Robert Cialdini–

the world’s top academic psychologists in marketing and persuasion– wrote in the Harvard

Business Review that you can control your customers’ decisions by changing the wallpaper

behind your products4 [277]. He attributes this to the ‘subliminal mere exposure e↵ect’–

that subconscious exposure will make us view similar concepts favorably because of increased

‘perceptually fluency’ (i.e. we prefer things that feel familiar or are easy to understand).

He speaks to this e↵ect (with admittedly small e↵ect sizes) at length in his NY Times

best-selling book ‘Pre-suasion’ [85]:

Additional research has found similarly sly e↵ects for online banner ads—the

sort we all assume we can ignore without impact while we read. Well-executed

research has shown us mistaken in this regard. While reading an online article

about education, repeated exposure to a banner ad for a new brand of camera

made the readers significantly more favorable to the ad when they were shown

it again later. Tellingly, this e↵ect emerged even though they couldn’t recall

having ever seen the ad, which had been presented to them in five-second flashes

near the story material. Further, the more often the ad had appeared while

they were reading the article, the more they came to like it. This last finding

4Not in a reasonable sense like creating a cohesive brand identity; in the sense of ‘clouds in your wallpaper
unconsciously suggests comfort’ and thus make a customer subconsciously more likely to weigh comfort
heavily in their purchasing decisions.
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deserves elaboration because it runs counter to abundant evidence that most ads

experience a wear-out e↵ect after they have been encountered repeatedly, with

observers tiring of them or losing trust in advertisers who seem to think that

their message is so weak that they need to send it over and over. Why didn’t

these banner ads, which were presented as many as twenty times within just

five pages of text, su↵er any wear-out? The readers never “processed the ads

consciously, so there was no recognized information to be identified as tedious

or untrustworthy.

These results pose a fascinating possibility for online advertisers: Recogni-

tion/recall, a widely used index of success for all other forms of ads, might

greatly underestimate the e↵ectiveness of banner ads. In the new studies, fre-

quently interjected banners were positively rated and were uncommonly resistant

to standard wear-out e↵ects, yet they were neither recognized nor recalled. In-

deed, it looks to be this third result (lack of direct notice) that makes banner

ads so e↵ective in the first two strong and stubborn ways. After many decades

of using recognition/recall as a prime indicator of an ad’s value, who in the

advertising community would have thought that the absence of memory for a

commercial message could be a plus?

Within the outcomes of the wallpaper and the banner ad studies is a larger

lesson regarding the communication process: seemingly dismissible information

presented in the background captures a valuable kind of attention that allows

for potent, almost entirely uncounted instances of influence.

Cialdini’s work and similar research has started to bleed out into the mainstream conception

of advertising. Shoshanna Zubo↵– a Harvard psychologist– suggests in her influential book

‘Age of Surveillance Capitalism’ that the only way to compete in the modern economy is by

manipulating people with more and more sophistication [464]. She believes that Google and

Facebook advertising has gotten so good at eliciting desire in the people that they target

that they have moved beyond traditional advertising and are instead trading ‘in human

futures’; they can ‘coax, tune, and herd our behavior’ and we are both deeply unaware of
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Figure 2-2: Example of auto-generated ads: impersonal sugar ads (left), pair ads in which
‘promoted’ things are paired with surprising happy photos and negative with the opposite
(center), and personalized ads (right) in a few of the IAB standard sizes.

the power of their manipulation and deeply controlled by it.

The implications for our society, our legislation, our economy, our lives, and our self-

conception could not be greater.

YourAd

At the time, I believed in these ideas, so against this backdrop I created a project called

YourAd [350]. As I wrote then:

Advertisers have optimized the periphery of our attention to drive complex pur-

chasing behavior, typically using persuasive or rhetorical techniques to promote

decisions that are agnostic to our best interest... [and o]ur ability to recognize

overt manipulation has pushed modern advertising towards subtle, integrated

strategies.
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Figure 2-3: Example ads inserted into NYTimes and Facebook using YourAd.

...Instead of serving the ambition of companies with large marketing budgets,

what if these techniques were used to reinforce the behaviors and attachments

we choose for ourselves? YourAd is an open-source browser extension and design

tool that allows users to supplant their internet ads with custom replacements–

designed by and for themselves. YourAd incorporates industry best practices

into a platform to facilitate experimentation with user-aligned advertisement

ecosystems, probe the limits of their influence, and optimize their design in

support of an end user’s personal aspiration.

YourAd is a browser extension that allows people to create personalized ads targeted at

themselves using personal messages and images, or pair concepts with random and surprising

positive and negative images (see Figure 2-2). It then replaces the banner ads you normally

see with them (Figure 2-3). I built this tool, and created several ads targeted at myself– ads

to suggest I eat healthier, focus on work, spend more time playing music, and keep in touch

with my family more regularly. They featured pictures of my loved ones; I then used this

tool for several months. I found within a couple days, I started completely ignoring the ads.
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Nothing about my behaviors changed; they had no impact on my life. I reverted to ‘banner

blindness’ almost immediately, despite the novelty of the experience and my self-interest in

their e�cacy. I started to question the worldview promoted by Cialdini, Zubo↵, and others

like them.

Reality Strikes

A closer, skeptical reading of Cialdini’s work betrays many methodological weaknesses.5

While no one has attempted to replicate the ‘subliminal mere exposure e↵ect’ it shows many

hallmarks of poor methodological standards; in fact, Cialdini sometimes presents work as

confirmatory even without hitting the p < 0.05 threshold.6 The main study depends on a

small, high variance dataset, with 12% of the outlier data removed. The evidence contained

within this body of work simply isn’t convincing against the backdrop of consistent failed

replications for priming and subliminal advertising.

The Truth About Advertising

Cialdini and Zubo↵ both believe we live in Primeworld; Zubo↵ wants legislation to save us.

These two individuals alone have had a dramatic influence on public discourse and marketing

budgets (Zubo↵’s book Surveillance Capitalism is available in 17 languages; Cialdini’s work

is available in 41). They promote a dangerous narrative– that ‘You are Now Remotely

Controlled’ (as the New York Times reports, citing Zubo↵) [464].

5In the original work on wallpaper and furniture preference, he studies undergraduates when faced with a
fake scenario of buying a couch in a fake online store. They are greeted with a large/obvious image of clouds
or pennies, forced to rank their choices on ‘comfort’ and ‘value’, and then asked to make a purchase decision.
There is indeed a real statistical e↵ect; but the e↵ect is explained by a common sense phenomena– when
you ask someone to simulate a purchasing decision and put them in an obvious discount store, they will
simulate a decision like a person who has decided to shop at a discount store. This study simply measures
trust in obvious brand communication. Cialdini is puzzled by the lack of mediation of expertise (he expects
couch-experts, or people with strong opinions about couches, to be immune to the prime); this is the obvious
explanation. It also completely discounts the possibility that anyone was subconsciously manipulated by the
wallpaper.

6See i.e. [184], where we find this conclusion: ‘In line with [our hypothesis] H1, fear led social proof

appeals to be more persuasive than the control (F(1, 305) = 3.84, p = .051, d = .22)’
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The reality is that, as Sinan Aral puts it in Harvard Business Review, ‘the e↵ectiveness

of digital ads is wildly oversold’ [34]. Large-scale analysis on Facebook and EBay suggests

overestimates of around 4,000% [56, 179]; targeted ad e↵ectiveness is overestimated by

around 1,000% [143]. Frequently, causal influence (the ad driven purchasing behavior) is

conflated with association; conversion rates simply suggest those that made a purchase saw

a relevant ad at some point. This is especially pernicious for websites like Google, where

the ads are shown as someone types in the name of that product category (frequently with

purchase intent). Most tellingly– for all the hand-wringing about the power of targeted,

digital ads– as of 2022 trends show advertisers returning to traditional ad spend [310].

As most companies have recognized, for an ad to work it needs to be consciously processed

(hence the move to embedded ads that look like content and influencer product placement).

For me, YourAd was a reality check; it made me look critically at the trust I put in the

leading academics on influence and persuasion. I started reading the literature critically,

and my views changed dramatically.

The most powerful scientific voices on this topic are getting it obviously wrong. Digital

advertising funds the free access to huge, expensive infrastructure and life-changing services

like Google; neutering this business model will only exclude those who can’t easily a↵ord

this technology, in the name of protecting them from a chimera.

The Future of Ads

In a world where we don’t accept a priori that people are easy to manipulate, ads are

much less pernicious. In fact, in this world, they provide a service– they create an e�cient,

democratic, market-based system to allow innovative new products to get a foothold; they

educate consumers about new things that could improve their lives (and on Google, that

education can come on-demand when you express interest). Businesses with marketing

budgets have either made good products or convinced a small handful of people with faith

in the idea to give up cold, hard cash.

In this world, advertisers are not capable of fundamentally reaching into a consumer and
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changing their preference using a thirty-second commercial or an unnoticed banner ad; they

aren’t capable of creating needs in people at all. They are forced to cater to our real needs

as dictated by our nature. Fashion and jewelry– arbitrary items whose symbolic value is co-

created culturally– are a feature of every human society. It is in-line with our own interests

to have advertisers who e�ciently shape and perpetuate the symbolic meanings behind our

fashions. There is nothing wrong with this on its surface.7

Conclusion

This is one small example of how unreplicable, overexaggerated ‘science’ has impacted me–

my own mistaken intuition and my own investment in a project that simply didn’t have a

meaningful impact. It also points to some of the real, powerful, society-impacting e↵ects

of replication crisis research in one, tiny domain. The broader implications are even more

powerful.

2.1 The Crisis in Social Psychology

To put it bluntly, any modern research which suggests unnoticeable interventions cause

measurable change in behavior is almost certainly false. This work can be broken down

into several categories.

2.1.1 Social Priming

The first category is ‘social priming’, which posits an even more implausible step in the

causal chain– something in our environment unconsciously ‘primes’ our mental state so

we’re biased towards actions, thoughts, or beliefs with weak associations to the stimuli.

John Bargh is probably the most famous researcher on social priming; Kahneman penned

7Obviously ads can be predatory. They can misrepresent their product, overpromise, underdeliver, or prey
on a consumer’s insecurities or weaknesses; we need mechanisms and legal frameworks to keep advertising
honest. It’s certainly not all roses, but it’s a lot closer to all roses than most people seem to believe.
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his open letter addressed to him [461]. Some of his most famous results that have failed

replication in high power trials include:

• Warm beverages promote interpersonal warmth. This is one of the most famous studies

from Bargh’s lab, featuring large e↵ect sizes; it has failed to replicate in studies triple

the size [81].

• Hearing words associated with old age makes you walk slower and act older. This

finding sparked a ton of follow up work on priming– with nearly 4,000 citations; it is

featured in many pop psychology books. It even replicated– when graduate researchers

were in charge of surreptitiously measuring walk times using a stopwatch. The e↵ect

disappears with an automatic laser timer [121].8

Other famous examples of social priming that have failed replication include things like:

• French background music makes you buy French wine. This finding is a favorite of the

marketing pop-psychology field; the original paper was based on only 82 purchases (so

roughly 20 bottles each, across the four conditions of music type x wine type). This

was replicated with five times the participants showing no e↵ect [212].

• Exposure to hostile words make you interpret ambiguous events as hostile. This 1979

study by Srull and Wyer failed to replicate [286]; it’s often cited as justification that

small changes in verbiage matter, as in Cialdini’s book where he describes a hospital

deciding to ban the use of so-called ‘aggressive phrases’ like ‘bullet points’, ‘attacking

problems’, and ‘hitting targets’ [85].

• Feelings of cleanliness a↵ect people’s moral judgements. Washing your hands after

a disgusting movie scene or doing a word scramble with ‘cleanliness words’ cleans

your conscience, thus it’s easier for you to then accept immoral acts like falsifying a

8This finding has two important implications that are worth emphasizing: (1) tools for objective mea-
surement improve the methodological quality of our work, and (2) people absolutely do respond to clearly
articulated goals and expectations, sometimes in subtle ways. Priming as we have defined it includes a
subconscious cue; our goals and beliefs manifest in our lives powerfully and automatically.
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resume or keeping a wallet. This failed replication featured a public dispute between

researchers [294].

• The sight of money makes you more accepting of social norms. Money priming makes

up a whole subfield of priming research; the sight of money is claimed to produce all

kinds of e↵ects. In 2006, Vohs published a very influential paper in Science on money

priming. Unfortunately Vohs work– alongside other work on money priming– has not

replicated in large-scale pre-registered studies; and the original findings show tell-tale

signs of p-hacking in the experimental design [79].

• Female-named Hurricanes are more deadly. This was supposedly because people have

gender-based expectations, and thus don’t flee from the gentler sounding female hur-

ricanes. It turns out, this isn’t true [398].

• Imagining life as a college professor makes you better at recalling facts. This is the

so-called ‘professor bias’ made famous by Ap Dijksterhuis, which has failed in large

scale replication [324].

• Seeing the American Flag makes you more likely to vote Republican [146].

• Drawing smaller (vs. larger) distances on graph paper makes you feel closer to your

family and reduces estimates of food calories [329].

• Seeing the color red or the word ‘red’ makes you perform worse on tests, moderated

by self-control over emotional responses [55].

• Higher physical perspectives leads to more helping and sharing resources [371].

• Bitter foods that trigger physical disgust heighten our sense of moral wrongness [167].

2.1.2 Physiology on Feelings

Another subclass of these issues appears with unconscious physiological drivers of emotions

and behavior. In these experiments, the hypotheses suggest that engaging our musculature
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in certain ways will unconsciously lead to cognitive or behavioral e↵ects. The most famous

three failed replications are:

Power Posing.

Harvard’s Amy Cuddy popularized her research suggesting large hormonal e↵ects (cortisol

and testosterone) from striking a powerful pose. The idea that the posture itself matters–

and not the act of self-coaching when striking the pose– has failed to replicate [353]. Dana

Carney– the original first author– has said “I do not believe that ‘power pose e↵ects’ are

real...the evidence against the existence of power poses is undeniable” [334]. This is one of

the most replicated studies in psychology and the results are quite definitive.

The Facial Feedback E↵ect.

To study whether recruiting smiling muscles will make you happy without the psychological

implications of asking you to smile, researchers study this e↵ect by asking participants

to bite a pencil [416]. It turns out the happiness you might feel from forcing a smile is

psychological; recruitment of the smile muscles themselves has yet to have a provable e↵ect

[442].

The Hungry Judges E↵ect.

This famous study showed judges make harsher parole decisions just before lunch by an

astonishing margin (from 65% in the morning to 0% before lunch) [104]. This study has

been cited 1,400 times and made a splash in the popular press; Stanford’s Robert Sapolsky

popularized this e↵ect in his book ‘Behave’. On NPR he reinforced how irrational people

are when they question this data: “you get that judge two seconds after they made that

decision, you sit him down at that point and say “Hey, so why did you make that decision?”

And they’re gonna quote, I don’t know, Immanuel Kant or Alan Dershowitz at you. They’re

going to post-hoc come up with an explanation that has all the pseudo-trappings of free will
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and volition, and in reality it’s just rationalization. It’s totally biological” [1]. In reality,

it turns out the docket was ordered by case severity [177]. Meta-statistician Daniel Lakens

points out the absurdity of the original finding: “if hunger had an e↵ect on our mental

resources of this magnitude,” he writes, “our society would fall into minor chaos every day

at 11:45” [250].

2.1.3 Implicit Bias

These issues are also pronounced amongst highly politicized literature on race or gender and

implicit bias. Once again, these studies rest upon the premise that subconscious associations

cause measurable di↵erences in beliefs and behavior (or the inverse). Kelsey Piper reports

“the conversation about diversity in tech is getting hijacked by bad research” [339]; Jesse

Singal convincingly argues a similar point about the role of implicit bias research in racism

[394]. Here are three famous examples:

Stereotype Threat

Stereotype threat is the idea that, by eliciting a stereotype before a task, performance drops

(i.e. with the stereotype ‘women are bad at math’, calling a math test ‘a math test’ will

cause female performance to drop while calling it a ‘problem-solving task’ will not). It was

introduced in 1995 by Stanford’s current Dean of Psychology, Claude Steele [406].

Stereotype threat was put in the replication spotlight as part of an NPR Radiolab episode

featuring Steele and his collaborators [2]. As part of that episode, his collaborators admit

they no longer believe in the concept and describe pervasive, inadvertent p-hacking. Statis-

tical analysis of the original paper shows very strong evidence of this; psychologist Russel

Warne writes [445]:

The average sample size of African Americans in Steele and Aronson’s (1995)

four studies was 37.75. This means that the statistical power was too small to
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detect any but the strongest e↵ects of stereotype threat. Assuming an e↵ect of d

= .50 (Cohen’s, 1988, “medium” e↵ect size and a reasonable default at the time

for new research topics), the power to detect stereotype threat in Steele and

Aronson’s (1995) four studies ranged from .300 to .459. The joint probability

for detecting stereotype threat in all four studies was just .014. Conversely, the

probability of not detecting the stereotype threat in four out of four studies was

.173 (Warne, in press, p. 279).

In layman’s terms, this means that all four studies were each (individually)

more likely to fail to detect a stereotype threat than to detect the phenomenon.

Moreover, the probability of all four studies failing to demonstrate stereotype

threat was over ten times more likely (17.3%) than identifying the phenomenon

in all four studies (1.4%). Based on these probabilities, the most likely result

of a collection of four small-sample studies on stereotype threat was a mix of

some studies supporting and not supporting the existence of the phenomenon.

Steele and Aronson (1995) either got extremely lucky . . . or they engaged

in questionable research practices that inflated the strength of the evidence for

stereotype threat.

This corrobrates the overwhelming conclusions of meta-analysis on the phenomena. Rut-

ger’s psychologist Lee Jussim summarizes the state of stereotype threat in “Is Stereotype

Threat Overcooked, Overstated, and Oversold?” [229]:

Flore Wicherts (2015) performed the only meta-analysis of which I am aware

that has subjected stereotype threat findings to a whole family of skeptical

tests, such as p-curves, funnel and forest plots, and tests for excess of significant

results. The results are not pretty and show that the e↵ects primarily appear in

the underpowered, small-scale studies, and either disappear or reverse altogether

in the highly powered large-scale studies. Uli Schimmack has also shown that

stereotype threat studies are likely to have considerable di�culty replicating.

Furthermore, as Heterodox Academy’s Amy Wax (2009) has so aptly pointed
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out, stereotype threat e↵ects among African Americans have been mostly ob-

tained in very select and unrepresentative samples. A slew of boundary condi-

tions have been proposed, which is another way of saying, “it might only apply

to select people under select circumstances.”

Stereotype threat never meaningfully explained real achievement gaps; its claimed e↵ect

sizes have always been relatively minor [406]. Even in context, the best statistical minds

of the replication crisis agree that there is no trustworthy evidence that the e↵ect is real

[162, 375].

Implicit Gender Bias in Recruiting

‘Orchestrating Impartiality: The Impact of ‘Blind’ Auditions on Female Musicians’ [178] is

a seminal paper in the world of bias– it made rounds in many major news outlets, with a

culminating appearance in Malcolm Gladwell’s best seller ‘Blink’. It reports that adding a

large visual barrier to obscure the audition from existing orchestra members could “explain

30 to 55 percent of the increase in the proportion female among new hires... from 1970

to 1996.” The study suggests that implicit bias was perhaps the dominant reason women

weren’t getting hired; the authors attribute much of the success of the real-world success of

women to removing gender cues. Upon deeper inspection, the claims from this paper are

overstated; the Wall-Street Journal describes the results after they became controversial:

the raw tabulations showed women doing worse behind the screens.... [t]he result

was a tangle of ambiguous, contradictory trends. The screens seemed to help

women in preliminary audition rounds but men in semifinal rounds. None of the

findings were strong enough to draw broad conclusions one way or the other...

After warning that their findings were not statistically significant, they declared

them to be “economically significant.” What does that mean in this context?

“That doesn’t mean anything at all,” writes Columbia University data scientist

Andrew Gelman.
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The massive e↵ect size reported by this study have been corroborated by a few other studies

around blinded resumes– studies which Kelsey Piper reports are “literally incredible.” She

writes, “If these statistics were right, a relatively simple change to job applications could

close the whole gender gap in tech” [339].

The real picture is much more complicated than these influential analyses imply; disparities

between the sexes have many other possible explanations. 58% of women report experi-

encing sexual harassment in the workplace [397]. Women frequently deal with overt sex-

ism/misogyny alongside a host of systemic, institutional challenges surrounding femininity

and motherhood. Gender bias “operating at the unrecognized, unconscious level” [365] is

only one possible factor in that conversation.

And despite early work to the contrary, the data does not suggest it is a dominant one.

As Regner et. al. summarizes in a recent Nature Human Behavior paper on the topic,

“whether gender bias contributes to women’s under-representation in scientific fields is

still controversial... [e]xperimental studies have examined the possible role of gender bias

in contributing to women’s under-representation, but have revealed conflicting patterns”

[354]. Large scale studies on the topic across domains have had mixed results and occasional

reversals (i.e. [203], [424], [339]). The totality of evidence suggests that– should unconscious

attitudes manifest into real forms of discrimination– their real e↵ect sizes, if we are able to

measure them, will be very small.
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The Implicit Association Test

[I]n the early 1990s, social psychologists were enthralled by work

in cognitive psychology that demonstrated unconscious or

uncontrollable processes (Greenwald Banaji, 1995). Implicit

measures were based on this work, and it seemed reasonable to

assume that they might provide a window into the unconscious

(Banaji Greenwald, 2013). However, ...[t]here is nothing

implicit about being a Republican or Democrat, gay or straight,

or having low self-esteem. Conflating implicit processes in the

measurement of attitudes with implicit personality constructs

has created a lot of confusion. It is time to end this confusion.

The IAT is an implicit measure of attitudes with varying

validity. It is not a window into people’s unconscious feelings,

cognitions, or attitudes.

Ulrich Schimmack

The Implicit Association Test: A Method in Search of a

Construct (2021)

The Implicit Association Test is another concept featured heavily in Gladwell’s ‘Blink’. In

this test, di↵erences in response times when pairing words like ‘good’ and ‘bad’ with African

American or European faces is taken as evidence of implicit racial bias.

The IAT has poor construct validity and reliability. It predicts e↵ectively nothing about

whether you exhibit biased behavior in your life; the largest meta-analysis, carried out by

its proponents, suggest it can only explain 1% of the implicit bias it’s trying to measure

[151].9 The authors of the IAT themselves– after public debate with a team led by UPenn’s

Philip Tetlock– concede it is only ”good for predicting individual behavior in the aggregate,

and the correlations are small” [266]. In their publication on the topic they write: ”IAT

measures have two properties that render them problematic to use to classify persons as

9They write: “we found little evidence that changes in implicit measures translated into changes in
explicit measures and behavior, and we observed limitations in the evidence base for implicit malleability
and change.”
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likely to engage in discrimination. Those two properties are modest test–retest reliability

(for the IAT, typically between r = .5 and r = .6; cf., Nosek et al., 2007) and small to

moderate predictive validity e↵ect sizes. Therefore, attempts to diagnostically use such

measures for individuals risk undesirably high rates of erroneous classifications” [182].

Despite these concessions, the IAT creators argue that its small correlational predictive va-

lidity for population level trends are still meaningful (it correlates with 4% of the variance in

discrimatory behavior at this level). This interpretation of the IAT retains criticism. Ulrich

Schimmack write in ”The Implicit Association Test: A Method in Search of a Construct”

[378]:

Most of this valid variance stems from a distinction between individuals with

opposing attitudes, whereas reaction times contribute less than 10% of variance

in the prediction of explicit attitude measures. In all domains, explicit measures

are more valid than the IAT.

In other words, the very small amount of variance explained by the IAT is also almost

completely explained by simultaneous, simple measures of overt, conscious attitudes. Jesse

Singal summarizes other critical views, from psychologists like James Jaccard and Hart

Blanton, in his work on the measure [394]:

...after almost 20 years and millions of dollars’ worth of IAT research, the test

has a markedly unimpressive track record relative to the attention and acclaim

it has garnered. Leading IAT researchers haven’t produced interventions that

can reduce racism or blunt its impact. They haven’t told a clear, credible story

of how implicit bias, as measured by the IAT, a↵ects the real world. They

have flip-flopped on important, baseline questions about what their test is or

isn’t measuring. And because the IAT and the study of implicit bias have

become so tightly coupled, the test’s weaknesses have caused collateral damage

to public and academic understanding of the broader concept itself. As Mitchell

and Tetlock argue in their book chapter, it is “di�cult to find a psychological
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construct that is so popular yet so misunderstood and lacking in theoretical and

practical payo↵” as implicit bias. They make a strong case that this is in large

part due to problems with the IAT.

Despite the well publicized criticism, the IAT remains the centerpiece of implicit bias lit-

erature, perpetuating a flawed understanding. Harvard’s ‘Project Implicit’ website– home

to this work– has informed over a million visitors that their IAT scores suggest they po-

tentially harbor unconscious racial bias against African Americans [43] with the disclaimer

that “[researchers] make no claim for the validity of these suggested interpretations” [378].

Patrick Forscher– co-lead author on the last major meta-analysis of the IAT with the lead

researcher at Harvard’s Project Implicit– summarizes our understanding of implicit bias

thusly: “Based on the evidence that is currently available, I’d say that we cannot claim

that implicit bias is a useful target of intervention” [394].

In the wake of race riots in Ferguson, The Justice Department reported ”emails circulated

by police supervisors and court sta↵ that stereotype racial minorities as criminals” [436]. As

recently as 2008, 4% to 6% of Americans reported that they would be unwilling to vote for

any African American candidate as president [331]– certainly an underestimate given social

desirability biases. Overt racism still exists in American culture. Instead, the debate about

racism has shifted focus to the unproven impact of unconscious attitudes on real behavior.

2.1.4 Summary

People make automatic judgments and engage in automatic, habitual behavior without

conscious thought. This is a di↵erent claim than the claims we see above; that our automatic

judgements and behaviors are shaped unconsciously, that to do so is trivial, and that we

are fundamentally incapable of successful introspection about this process (and in fact, our

earnest self-assessments, stated beliefs, and honest intentions may all oppose our implicit

biases). There is no evidence for these pervasive and damaging ideas.

52



2.2 Behavioral Economics

Behavioral Economics has also come under criticism, though it has fared better than social

psychology. Noble-prize winning economist Vernon Smith characterized it as “a deliberate

search in the tails of distributions for “Identifying the ways in which behavior di↵ers from

the standard model...” (Mullainathan Thaler 2001, Vol. II, p. 1094), a search that can

only succeed” [400]. Andreas Ortmann argues for the notion that economics models cannot

be fundamentally improved by importing insights from psychology because psychology has

no consistent and universalizable theory– it can only attach to standard economic models

in an ad-hoc way (and the validity of these ad-hoc cognitive illusions and biases are hotly

contested given the replication crisis, with many disappearing or reversing in more realistic

decision making scenarios). Ortmann calls out specific examples [321]:

[During replication] only about one out of ten participants violate the con-

junction principle (rather than more than eight out of ten in Kahneman and

Tversky’s version of the problem.) The authors point out that their set-up mir-

rors real-life more closely than the scenario studies that Kahneman Tversky

preferred here and elsewhere. Likewise the reality of endowment e↵ects, sunk

costs, income targeting, overconfidence, loss aversion, and self-control have all

been contested, although you would not know if you read self-congratulatory

accounts of the state of the literature like Thaler (2016). Notably, the last

three concepts were identified by Thaler in his 2016 AEA presidential address

as “three of the most important concepts of behavioral economics” (p. 1578)

Gerd Gigerenzer of the Max Planck Institute is one of the most vocal critics of the fun-

damental assumption behind most behavioral economics research– that humans are biased

and irrational. He argues that our decision-making heuristics are quite rational and useful,

especially in the context of uncertain environments. Gigerenzer and Kahneman/Tversky

faced o↵ in a somewhat heated, public debate in Psychological Review throughout the 90s

[170, 231, 171]. While many of the specific initial results hold up empirically, the debate
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centers around theory and contextualization– some of the original ‘biases’ fail to appear

when tests are slightly re-framed (i.e. with raw numbers instead of percentages, or when

people reason about a group of people instead of an individual). In general, Gigerenzer

seems to desire a more rigorous underlying psychological theory of heuristics and biases to

describe decision-making under uncertainty, and finds some clear weak points in the blan-

ket descriptions put forth by prospect theory; Kahneman and Tversky, on the other hand,

argue that the field and its data are too nascent to support a rigorous level of modeling and

analysis.

2.2.1 Framing E↵ects

Framing e↵ects share a lot with priming– subtle, changes in presentation that make a

measurable di↵erence– however in these cases, the outcome is a conscious decision and the

‘frame’ structures what a decision-maker considers and how they reason about their choice.

Framing e↵ects are real [28]. Some have failed replication (i.e. framing e↵ects to alter honest

behavior in a high power, pre-registered study that showed no e↵ect (N=1,200) [118]) or

require further contextualization (i.e. in the political domain, a meta-analysis of 138 studies

suggests framing e↵ects are real but limited, with medium e↵ect sizes reported on attitudes

and emotions and very little e↵ect on behavior– and these results significantly weaken if a

competing frame is introduced [28]).

It is still di�cult to identify which framing e↵ects work under what circumstances; there

is no unified theory. The debate continues over whether these e↵ects should be described

as fundamentally irrational (i.e. inconsistent with respect to stable preferences) cognitive

biases or reasonable heuristics based on the implied information (language pragmatics)

[171].

2.2.2 Nudges

Nudges are one of the areas that shares the most similarity with social psychology. As I

mentioned in chapter 1, the largest meta-analysis on ‘nudge-style’ interventions– a 2020
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Berkeley study that looked at 126 randomly controlled trials performed by the US federal

agencies (the OES and BIT-NA) on tens of millions of citizens— showed that nudges re-

ported to have an e↵ect size of 8.7% in academic contexts result in a real but marginal 1.4%

impact on behavior in the real world [110]. While a 1.4% change in behavior might have an

important impact at scale, it clearly plays a very, very minor role in individual, real-world

decision making. The e↵ects are real, but their impact is very small.

Ortmann [321] summarizes the literature as follows:

Hummel Maedche ... provide a quantitative review of 100 empirical nudging

studies in which 317 e↵ect sizes from di↵erent research areas are reported....

They find relatively small e↵ects for environmental, health, wealth, and pri-

vacy interventions (typically in the 0.2 – 0.3 range), even smaller e↵ects for

energy-saving interventions (around 0.1), and essentially imperceptible e↵ects

for policy-making (the major application area of behavioral insights units).

Kristal Whillans (2020) report the outcomes of five naturalistic well-powered

nudging experiments (involving almost 70,000 employees of a large organization)

involving attempts to move people out of single-occupancy vehicle commutes.

They report that the treatment e↵ects observed in four of five of their experi-

ments were statistically equivalent to zero.

The failures of large-scale nudge interventions goes on for multiple pages. Magda Osman

has published a good critique suggesting that the focus on success– instead of documenting

the failures and why– is holding back theory in this field [322].

That’s not to say all nudges fail. One of the few nudges that seems to have succeeded

well is Thaler’s Save Tomorrow Campaign (pre-commitment to automatically save a higher

percentage of your paycheck as you get raises). But to quote another skeptic of the field,

John Cochrane– “The nudge for saving experience is good and solid. But the skeptical

reader, who does not sing in the choir, wonders: you’ve been at it three decades, and this

is all you got?” [87]
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Figure 2-4: The famous figure from Johnson and Goldstein’s 2003 Science paper ‘Do De-
faults Save Lives?’ [227] demonstrating the alleged default e↵ect.

2.2.3 Other Famous E↵ects

There are too many aspects of Behavioral Economics to thoroughly review, but a few select

topics are included here:

The Default E↵ect

One of the most popular examples of the ‘power of defaults’ in behavioral economics comes

from Johnson and Goldstein’s 2003 Science paper ‘Do Defaults Save Lives?’ [227]. Within

it is the following chart, which purports to show the di↵erence in organ donation rates in

countries that are opt-in vs opt-out:

This graph gets used by prominent behavioral economists to suggest that for complex

decisions, we get overwhelmed and will simply choose the default. Dan Ariely has called

this “one of his favorite graphs in all of social science” [35].
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This argument that ‘we rely on defaults in the face of complexity’ is included by Nobel Prize

winning economist Richard Thaler in his 2008 book Nudge, and his 2015 book ‘Misbehaving’

[427]. The graph was interpreted in 2013 NY Times: “Roughly 98 percent of people take

part in organ donor programs in European countries where you have to check a box to opt

out. Only 10 percent or 20 percent take part in neighboring countries where you have to

check a box to opt in” [65].

Unfortunately, this graph obscures the truth. In the opt-out case, countries presume

consent– in many cases they aren’t ever given an explicit choice and must self-initiate a

process to opt-out. Furthermore, the process for organ donation is complicated, so this

presumed consent is frequently ignored in favor of family wishes. A systematic review of

the actual changes in rates of organ donation from presumed-consent (where no choice is

presented) suggests small actual increases in the range of 2-6 donors per million [362]. Most

sources suggest little-to-no real e↵ect from switching the default [368].

While the default e↵ect is probably real for low-stakes decisions where people have weak

preferences (i.e. where the decision cost is greater than the perceived benefit of making a

marginally better choice), there is no evidence that it drives large changes in behavior; the

canonical example of its impact– organ donation rates– is not at all definitive.

The Backfire E↵ect

A widely cited 2010 paper coined the term ‘backfire e↵ect’ to describe a perplexing, coun-

terintuitive cognitive bias– when people are given a correction to a news article, it actually

increases their misperceptions. [317] This e↵ect is more than simple source credibility (where

new information from an untrustworthy source would be ignored); it actually pushes people

further towards their pre-existing beliefs.

A more recent 2018 paper entitled ‘The Elusive Backfire E↵ect’ used the same methodology

to test the e↵ect on 10,100 subjects and found no evidence for it across 52 issues ”despite

testing precisely the kinds of polarizing issues where backfire should be expected” [457].

They included the exact condition of the prior article with 10x the population (n=977).
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They conclude that presenting factual corrective information does not increase the strength

of political misperceptions– “by and large” they write, “citizens heed factual information,

even when such information challenges their ideological commitments.” They note that

ideology does shape the extent of receptivity to corrective information.

Honesty Priming

While fraud is not common in the academy, when it occurs it is very damaging to trust

in science. The most recent famous case for social psychology involves flagrant evidence of

fraud in papers on honesty primes by both Harvard’s Francesca Gino and Duke’s Dan Ariely

[407]. This research is widely disseminated, having been detailed in Ariely’s Netflix special

and several New York Times bestselling books– and its irony makes for a great headline.

Ariely’s work gained the spotlight in 2021 when researchers proved that fraudulent data

underpinned his 2012 paper which showed that signing an honesty pledge at the start of a

form made people more honest in reporting car odometer readings to their insurance com-

pany. Interestingly, the renewed scrutiny came after he himself published a follow-up paper

in 2020 suggesting the original results didn’t replicate with higher power experimentation

[249]. Honesty priming does not seem to replicate [330].

Unconscious Thought Theory

Introduced by Ap Dijksterhuis in 2006, Unconscious Thought Theory (UTT) posits that

we will make better decisions if we let our unconscious mind do the work. Dijksterhuis

argues for the weighting principle– that unconscious thought naturally weighs attributes

by their true relative importance, whereas conscious thought relies heavily on schemas

and rules. The theory posits unconscious decision-making perform better than conscious

decision-making as decisions increase in complexity.

A typical Dijksterhuis experiment involve showing participants several complex options

where one is objectively the best but di�cult to recognize. Participants either (a) aren’t
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allowed any time to think about choices, (b) given some time while distracted with a sec-

ondary task, or (c) allowed to carefully weigh the options. UTT predicts the second group–

given time to unconsciously process the information– will perform the best, which is what

Dijksterhui reports [117].

Replications of these findings fail to support the theory. From ‘Four empirical tests of

Unconscious Thought Theory’ conducted with 480 participants [211]:

Unconscious Thought Theory yields four specific predictions. First, an exact

replication of Dijksterhuis et al. (2006a) study should indicate that unconscious

decisions are superior to conscious decisions. Second, decisions should improve

with duration of conscious thought. Third, unconscious decisions should be

superior to conscious decisions, even if unconscious decisions are deliberated

while having access to information. Fourth, unconscious decisions should be

based on a weighting strategy. We report results of four studies, featuring 480

participants, that yield no evidence in favor of these predictions.

These failed replications appear elsewhere, across many labs and several variations [18, 446].

The original theory still has proponents, however. (see i.e Lassiter et al. [254], Payne et al.

[332], Bargh et al. [44])

2.2.4 Summary

Behavioral Economics has also come under fire for its findings, some of which have failed to

replicate. For the most part, the science behind ‘nudging’– subtly controlling behavior or

choice with di↵erences in choice architecture– have very minor real-world e↵ects. Framing

e↵ects do seem to impact conscious decision-making, but the debate over whether these are

‘irrational biases’ as oppose to ‘intelligent interpretations of communicated information’ is

still contested.

It seems to me that Gerd Gigerenzer’s interpretation of these e↵ects is correct; a lot of

useful information is conveyed in the subtlety of our language, and most of the evidence for
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so-called ‘irrationality’ in when information is presented di↵erently is actually evidence of

our intelligence and awareness. In the real world it does not seem that these e↵ects can be

meaningfully exploited to unconsciously control behavior.

2.3 Positive Psychology

So, a lot of positive psychology over the last ten, twenty years–I

say this with respect to my friends in the field, I’ve been to

conferences, I’ve given talks– and a lot of this is flimflam. A lot

of it is oversold hokum. . . It is quick fixes based on shoddily

done studies designed to get people to publish best-selling books

and get TED Talks and so on. But, it’s not grounded in science

and, maybe worse than that, it has a limited and sort of parched

philosophy behind it. Often a sort of simple-minded hedonism.

a famous Yale psychologist

podcast interview, 2020

‘Positive Psychology’ is the project of Martin Seligman (the president of the American

Psychological Association) alongside Ed Diener and Mihaly Csikszentmihalyi (who popu-

larized the concept of ‘flow states’) [156]. Its stated goal is to shift the focus of psychology

research away from mental disorder and towards optimal experience– though humanistic

psychologists of the seventies, led by Maslow, Rogers, and Bugental, already championed a

decades-long tradition in this spirit.

In di↵erentiating the two fields, Alan Waterman has pointed to a philosophical divide (pos-

itive psychologists have favored Aristotle, J.S. Mill, and modern eudaimonists over the

existentialists and phenomenologists embraced by their humanistic predecessors) as well as

nomothetic (general truths across populations) vs. idiographic (studying the individual)

perspective [450]. Papers discussing the contentious relationship between the two ‘sibling

rival’ fields regularly appear in major journals [359]. But the main focus has been epistemic.

To brand ‘Positive Psychology’, Seligman has described a turn from qualitative humanistic
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techniques toward rigorous, quantitative ones. In 2000 he wrote “humanistic psychology

did not attract much of a cumulative empirical base”, and blames it for “10 shelves on

crystal healing, aromatherapy, and reaching the inner child for every shelf of books that

tries to uphold some scholarly standard” [57]. This derisive comment has led to tension and

criticism from many others in the broader field, especially as its proponents face meaningful

criticism of their own empirical practice.

In ‘Positive Psychology Goes to War’ [393] Seligman is accused of weak empiricism himself–

incorporated poorly justified research into his talks and promoting his Penn Resilience

Program (PRP). PRP is a resilience intervention with weak empirical support (one meta-

analysis in the Journal of Adolescence concluded that a ‘roll-out of PRP cannot be recom-

mended’), which became a touchpoint when it was adopted to fight PTSD in the Army.

At that point, it had never been tested for e�cacy either for trauma or with soldiers. In

the article, Harvard psychologist Richard McNally recounts trying to steer the Army away

from a large roll-out in an early meeting; Nick Brown echoes McNally’s sentiments [393]:

The idea that techniques that have demonstrated, at best, marginal e↵ects in

reducing depressive symptoms in school-age children could also prevent the onset

of a condition that is associated with some of the most extreme situations with

which humans can be confronted is a remarkable one that does not seem to be

backed up by empirical evidence.

In the single largest mental health intervention in history, the Army rolled out the Penn

Resilience Program (rebranded the CSF) to the tune of $30 million. The roll-out was later

extolled in a wholly-devoted issue of the APA’s main journal, American Psychologist.

The program has since been criticized for its ethics and weak empirical backing in Time

Magazine, Scientific American, Psychology Today, and by a team of psychologists in an

article dubbed “The Dark Side of ‘Comprehensive Soldier Fitness’” [132]. In it, the journal

issue dedicated to celebrating the program has also been condemned— Psychologist Stephen

Soldz writes:
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In addition to our deep concerns about Comprehensive Soldier Fitness, the

American Psychological Association’s unrestrained enthusiasm for the program

is especially worrisome for what it says about the APA, the largest organization

of psychologists in the country, indeed the world. As we have demonstrated,

there are many complex issues regarding the CSF program’s empirical founda-

tions, its promotion as a massive research project absent informed consent, and

the basis on which its psychologist developers justify the program. We would

therefore expect a special issue of the American Psychologist, a journal edited

by the APA’s CEO Norman Anderson, to encourage an extended discussion of

these matters.

In contrast, guest editors Seligman and Matthews have assembled 13 articles

that include no independent evaluation of the empirical claims underlying CSF.

They contain no unbiased discussion of ethical issues raised by the program.

... Unfortunately, the APA’s uncritical promotion of the CSF program reveals

much about the current moral challenges facing the psychology profession itself.

Journalist Daniel Defraia quotes Columbia University’s George Bonanno reacting to many

over-exaggerated claims about the CSF program: “I was more or less floored. I’ve been

studying resilience for 20 years, and I don’t know of any empirical data that shows how to

build resilience in anybody” [109].

After a decade of military use, there still does not appear to be strong empirical support

for the program. No amount of resilience training seems to shield soldiers from the trauma

of war.

2.3.1 Broader Criticism

The criticisms leveled at CSF extend to the entire field. Soldz contends ‘Positive Psychology’

is characterized by “its failure to su�ciently recognize the valuable functions played by

‘negative’ emotions like anger, sorrow, and fear; its slick marketing and disregard for harsh
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and unforgiving societal realities like poverty; its failure to examine the depth and richness of

human experience; and its growing tendency to promote claims without su�cient scientific

support” [132].

Psychologist Richard Grant has suggested that the push towards ‘quantitative’ techniques

incentivizes scientistic, pseudo-scientific ‘rigor’ [359]; Psychologist Barbara Held has argued

that the very act of casting psychology as a positive/negative dichotomy is a terrible car-

icature of the complexity of human emotions that is reflected in the positive psychology

literature [196].

Statistician Nick Brown has stated “positive psychology has claimed superiority... in terms

of supposedly both using more rigorous science and avoiding popularizing nonsense... posi-

tive psychology did not live up to these claims... [it has] merely repeated whatever research

problems that humanistic psychology might have had with its own romanticism, resulting

in what are even more egregious problems” [155].

Daniel Horowitz, a historian who has outlined the rise of positive psychology in his book

‘Happier?’ characterizes it thusly: “Virtually every finding of positive psychology under

consideration remains contested, by both insiders and outsiders... Major conclusions have

been challenged, modified, or even abandoned. Even what happiness means has been up

for grabs” [207].

2.3.2 The Critical Happiness Ratio

UNC psychologist Barbara Fredrickson is very influential in the positive psychology move-

ment. In 2011 she introduced the ‘critical happiness ratio’ with a widely cited (>1,000)

publication entitled ‘Positive A↵ect and the Complex Dynamics of Human Flourishing’

[153]. Fredrickson argued that if you experience more than 2.9013 positive emotions for

every negative emotion, you would flourish. Otherwise, you would languish. She wrote of

this discovery in a successful book on the topic, Positivity: “the 3-to-1 positivity ratio may

well be a magic number in human psychology” [298].
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Unfortunately, this ratio was born from the misapplication of complex fluid dynamics equa-

tions that few in the field understood. In fact, it was eight years before Nick Brown (who also

revealed Cornell Food Scientist Brian Wansink’s statistical errors) critically deconstructed

the math behind this fantastic claim. He published his work in American Psychologist un-

der the title ‘The Complex Dynamics of Wishful Thinking: The Critical Positivity Ratio’

[68]:

We examine critically the claims made by Fredrickson and Losada (2005) con-

cerning the construct known as the ‘positivity ratio’. We find no theoretical or

empirical justification for the use of di↵erential equations drawn from fluid dy-

namics, a subfield of physics, to describe changes in human emotions over time;

furthermore, we demonstrate that the purported application of these equations

contains numerous fundamental conceptual and mathematical errors. The lack

of relevance of these equations and their incorrect application lead us to con-

clude that Fredrickson and Losada’s claim to have demonstrated the existence

of a critical minimum positivity ratio of 2.9013 is entirely unfounded. More

generally, we urge future researchers to exercise caution in the use of advanced

mathematical tools such as nonlinear dynamics and in particular to verify that

the elementary conditions for their valid application have been met.

The many years of acceptance for this idea were damaging to the field’s reputation. Brown’s

co-author Sokal later noted “the main claim made by Fredrickson and Losada is so implau-

sible on its face that some red flags ought to have been raised” [46].

As a response, Fredrickson removed the chapter from her book Positivity and issued a

partial retraction, but turned to American Psychologist to defend herself. She responded

to Brown’s critique with ‘Updated Thinking on Positivity Ratios’– a response that notably

lacked involvement from her engineering co-author Losada [152]. In it, she argued that

despite their flawed model, a ‘tipping point ratio’ of positive-to-negative emotions was still

the correct conceptualization of human flourishing. Brown once again dispelled this idea

with a retort entitled ‘The Persistence of Wishful Thinking’ [69].
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This spat concluded in 2014; in 2018, Brown published ‘Implications of Debunking the

“Critical Positivity Ratio” for Humanistic Psychology’ in the Journal of Humanistic Psy-

chology, in which he takes aim at the broader field of positive psychology alongside several

other critics [155]. Of this incident, he notes that the original paper gains citations as a

much faster rate than the correction, and that co-author Losada continues to promote the

retracted model (in parallel with other charlatanic behavior). To contextualize his encounter

with Fredrickson, Brown had this to say:

A number of unnamed adherents to positive psychology challenged us by claim-

ing that Fredrickson’s work on the critical positivity ratio was just an anomaly.

As the avowed best-of-the-best researcher within positive psychology, they claimed

her other work lives up to her top-notch reputation, so we turned our attention

to some of that other work. In a recent high-profile paper in which she and

her coauthors claimed that adhering to eudaimonic (i.e., altruistic-based) rather

than hedonic (i.e., pleasure-based) happiness led to more favorable patterns of

gene expression, we found that her conclusion again was more than problematic

(Brown, MacDonald, Samanta, Friedman, Coyne, 2014), and when she and her

coauthors published a follow-up paper on the same topic that doubled-down on

her previous claim, that too we found to be severely flawed (Brown, MacDonald,

Samanta, Friedman, Coyne, 2016); other authors have also pointed out very

substantial problems with this work (Nickerson, 2017a; Walker, 2016). Simi-

larly, in another recent high-profile paper we examined closely, Fredrickson and

her coauthors claimed that practicing loving–kindness meditation led to better

physiological outcomes (as indexed by vagal nerve tone), and yet again we found

that conclusion untenable (Heathers, Brown, Coyne, Friedman, 2015).

2.3.3 The Happiness Pie

In ‘Pursuing Happiness: The Architecture of Sustainable Change’, Sonja Lyubomirsky

presented a now popular concept in the positive psychology world– the ‘happiness pie [271]:
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Figure 2-5: Lyubomirsky’s ‘Happiness Pie’ from [271].

[E]xisting evidence suggests that genetics account for approximately 50% of the

population variation (Braungart et al., 1992; Lykken Tellegen, 1996; Tellegen

et al., 1988), and circumstances account for approximately 10% (Argyle, 1999;

Diener et al., 1999). This leaves as much as 40% of the variance for intentional

activity, supporting our proposal that volitional e↵orts o↵er a promising possible

route to longitudinal increases in happiness. In other words, changing one’s

intentional activities may provide a happiness-boosting potential that is at least

as large as, and probably much larger than, changing one’s circumstances.

Jesse Singal describes the influence of this paper (cited over 3,000 times) on the field [393]:

[the] concept went viral, leading to book contracts, speaking engagements, and

other professional rewards for Lyubomirsky. Seligman transformed it into a

“happiness formula” in his own work: H = S + C + V. That is, happiness, H,

equals S (genetic set point) plus C (circumstances) plus V (things under the

individual’s voluntary control). In part on the basis of Lyubomirsky’s finding,

he argued that there was a great deal of potential for the average person to

become significantly happier.

More than a decade later, Nick Brown took a critical look at this work in this 2019 paper
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Figure 2-6: Figure 2 from ‘Meta-analyses of positive psychology interventions: The e↵ects
are much smaller than previously reported’ [454]. This is a re-analysis of the studies included
in a previous meta-analysis conducted by Sin and Lyumbomirsky.

‘Easy as (Happiness) Pie? A Critical Evaluation of a Popular Model of the Determinants

of Well-Being’ [67]:

We conclude that there is little empirical evidence for the variance decomposi-

tion suggested by the “happiness pie,” and that even if it were valid, it is not

necessarily informative with respect to the question of whether individuals can

truly exert substantial influence over their own chronic happiness level.

2.3.4 Positive Psychology Interventions

In a 2019 meta-analysis entitled ‘Meta-analyses of positive psychology interventions: The

e↵ects are much smaller than previously reported’, author Carmela White conducts a thor-

ough re-evaluation of the field [454]. A small study bias is quite evident in previous meta-

analysis work (Figure 2-6). White and her co-authors summarize their results as follows:

the reanalyses and replications of Sin and Lyubomirsky [22] and Bolier et al.

[23] indicate that there is a small e↵ect of approximately r = .10 of PPIs on

well-being. In contrast, the e↵ect of PPIs on depression was nearly zero when

based on the studies included in Sin and Lyubomirsky [22] and highly variable,

and sensitive to outliers, when based on studies included in Bolier et al. [23].

Notably, Sin and Lyubomirsky [22] included nearly twice as many studies as

Bolier et al. [23] in their meta-analysis of the e↵ects of PPIs on depression.
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This is revised down from e↵ect sizes almost 3 times as large. Interventions of this type

have barely demonstrated an impact on well-being and depression.

Furthermore, in a 2020 meta-analysis focused on gratitude interventions [94] the authors

conclude: “the e↵ects of gratitude interventions on symptoms of depression and anxiety

are relatively modest. Therefore, we recommend individuals seeking to reduce symptoms of

depression and anxiety engage in interventions with stronger evidence of e�cacy for these

symptoms.”

Intervention studies based on positive psychological principles su↵er from similar method-

ological problems that led to the replication crisis in the first place– under-powered work

with high variance and small sample sizes, combined with publication bias and file drawer

e↵ects. There is currently little empirical support for interventions based on the principles

championed in the positive psychology movement.

2.3.5 Mindfulness Interventions

Similar to positive psychology interventions, mindfulness interventions have started to come

under fire for a lack of rigor (see i.e. ‘Has the science of mindfulness lost its mind?’ [144]).

In a 2017 article in Perspectives of Psychological Science, fifteen psychologists penned an

editorial entitled ‘Mind the Hype: A Critical Evaluation and Prescriptive Agenda for Re-

search on Mindfulness and Meditation’ in which they argue that mindfulness is both a

poorly-defined and di�cult-to-measure concept whose “widespread use is premature” [438].

...there is a common misperception in public and government domains that com-

pelling clinical evidence exists for the broad and strong e�cacy of mindfulness

as a therapeutic intervention (e.g., Coyne, 2016; Freeman Freeman, 2015). Re-

sults from some clinical studies conducted over the past 10 years have indicated

that mindfulness-based cognitive therapy (MBCT) may be modestly helpful for

some individuals with residual symptoms of depression (Eisendrath et al., 2008;

Geschwind, Peeters, Huibers, van Os, Wichers, 2012; van Aalderen et al., 2012).
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As a consequence of select results, published in high-profile journals, MBCT is

now o�cially endorsed by the American Psychiatric Association for prevent-

ing relapse in remitted patients who have had three or more previous episodes

of depression. Moreover, the U.K. National Institute for Health and Clinical

Excellence now even recommends MBCT over other more conventional treat-

ments (e.g., SSRIs) for preventing depressive relapse (Crane Kuyken, 2012).

Mitigating such endorsements, a recent meta-analysis found that mindfulness-

based stress reduction did not generally benefit patients susceptible to relapses

of depression (C. Strauss, Cavanagh, Oliver, Pettman, 2014). Other meta-

analysis have suggested general e�cacy of MBIs for depressive and anxious

symptoms (Hofmann, Sawyer, Witt, Oh, 2010), though head-to-head compar-

isons of mindfulness-based interventions (MBIs) to other evidence-based prac-

tices have resulted in mixed findings, some suggesting comparable outcomes,

others suggesting MBIs might be superior in certain conditions, and others sug-

gesting cognitive behavioral therapy is superior in certain conditions (e.g., Arch

et al., 2013; Goldin et al., 2016; Manicavasgar, Parker, Perich, 2011). There is

also mixed evidence comparing MBIs to interventions such as progressive mus-

cle relaxation (e.g., Agee, Dano↵-Burg, Grant, 2009; Jain et al., 2007). Direct

comparisons of MBIs to empirically established treatments are limited.

In a recent review and meta-analysis commissioned by the U.S. Agency for

Healthcare Research and Quality, MBIs (compared to active controls) were

found to have a mixture of only moderate, low, or no e�cacy, depending on

the disorder being treated. Specifically, the e�cacy of mindfulness was only

moderate in reducing symptoms of anxiety, depression, and pain. Also e�cacy

was low in reducing stress and improving quality of life. There was no e↵ect

or insu�cient evidence for attention, positive mood, substance abuse, eating

habits, sleep, and weight control (Goyal et al., 2014). These and other limita-

tions echoed those from a report issued just 7 years earlier (Ospina et al., 2007).

The lack of improvement over these 7 years in the rigor of the methods used to

validate MBIs is concerning; indeed if research does not extend beyond Stage
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2A (comparison of MBI to wait-list control), it will be di�cult, if not impos-

sible, to ascertain whether MBIs are e↵ective in the real world (cf. Dimidjian

Segal, 2015). On balance, much more research will be needed before we know for

what mental and physical disorders, in which individuals, MBIs are definitively

helpful.

Few replication attempts for mindfulness based interventions have been attempted; some

targeting on relapse prevention have failed [208] while some have succeeded [272].

2.3.6 The Paradox of Choice

Barry Schwartz wrote a book and delivered a famous TED talk on the ‘Paradox of Choice’–

more choices can paradoxically lead to decision fatigue, regret, and choice paralysis. You

may never feel satisfied that you make the best choice when you have too many to consider.

He states: “though modern Americans have more choice than any group of people ever has

before, and thus, presumably, more freedom and autonomy, we don’t seem to be benefiting

from it psychologically” [384].

The study that is at the center of much of this narrative comes from the first study to

investigate the concept, by Sheena Iyengar [219]. A tasting table for exotic jams is placed

in a grocery store; in one condition, 24 jams are o↵ered, and in the other only six. While

more people came to examine the larger group, only 3% purchased a jam compared to 30%

of customers confronted with the small assortment.

Another of her conditions, however, contradicts the ‘paradox of choice’ concept– she showed

that people were more satisfied with their choice when choosing from 30 exotic chocolates

instead of six, though they found the decision more frustrating.

Psychologist Ben Scheibehenne was intrigued by this, and conducted a meta-analysis of 50

experiments on the topic, with over 5,000 participants [374]. He found that “[t]he overall

mean e↵ect size across 63 conditions from 50 experiments in our meta-analysis was virtually
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zero. On the basis of the data, no su�cient conditions could be identified that would lead

to a reliable occurrence of choice overload.”

He suggests more choices are definitely better when the choice is about quantity or when

preferences are well-defined; there is no broadly applicable choice-overload e↵ect. However,

there were significant results in several of the experiments; they just fell equally on positive

and negative sides of the average. For certain contexts, more choices may significantly

improve or diminish our appraisal of our decisions.

The average e↵ect size of zero in this meta-analysis led to a few high-profile articles chal-

lenging the concept in the Atlantic and the Financial Times; Barry Schwartz responded

with a fair analysis of the original paper on PBS NewsHour [385]. Sometimes, more choices

are better; sometimes they’re worse; a lot of the time, they don’t matter. We have yet to

understand when and where these e↵ects apply.

2.3.7 Hedonic Adaptation

One of the first, and most widely cited studies on hedonic adaptation– the idea that we

have a setpoint for happiness, and regardless of the events in our life we end up at the

same level of enjoyment– is a 1978 study called ‘Lottery Winners and Accident Victims:

Is Happiness Relative?’ [64] This study shows relatively small di↵erences in self-reported

happiness between paraplegics and lottery winners in the first months after the event. This

paper entered the popular consciousness when it served as a centerpiece of Dan Gilbert’s

famous TED talk on happiness.

This particular finding doesn’t seem to be true as it’s been presented. The lottery winners

in the study didn’t win ‘life-changing money’ (only 23% reported lifestyle changes). The

life-satisfaction scores immediately after these life events showed parapalegics were, as you’d

expect, significantly worse o↵. Moreover, Diener et al. write in ‘Beyond the hedonic tread-

mill: Revising the adaptation theory of well-being’ [115]: “Lucas (2005a) used two large,

nationally representative panel studies to examine adaptation to the onset of disability.

Participants in this study (who were followed for an average of seven years before and seven
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years after onset) reported moderate to large drops in satisfaction and very little evidence

of adaptation over time. For instance, those individuals who were certified as being 100%

disabled reported life satisfaction scores that were 1.20 standard deviations lower than their

nondisabled baseline levels.”

Overall, however, a softer idea of hedonic adaptation is generally supported in the literature;

it just requires several additional caveats. The above paper points out several key revisions

that weaken the overall concept. Most people are happy most of the time, though there

is high variability in setpoint across individuals due to temperament. Well-being setpoints

might be heritable and distinct from overall life satisfaction setpoints. (Happiness is poorly

defined as a unitary psychological concept, after all.) Individuals appear highly variable in

how much and how quickly they adapt to new circumstances.

2.3.8 Agency and Well-Being

The experimental case for agency interventions is exceedingly weak. The main source of

experimental work on agency comes from Harvard’s Ellen Langer, who claims in her book

‘Counterclockwise’ [253] that being in charge of watering your plant at the nursing home

makes you live longer (vs. simply having a plant that someone else cares for). Harvard’s

Dan Gilbert rehashes this study in his book ‘Stumbling on Happiness’ [174]:

In one study, researchers gave elderly residents of a local nursing home a house-

plant. They told half the residents that they were in control of the plant’s care

and feeding (high-control group), and they told the remaining residents that

a sta↵ person would take responsibility for the plant’s well-being (low-control

group). Six months later, 30 percent of the residents in the low-control

group had died, compared with only 15 percent of the residents in the

high-control group.

The shape of this anecdote should raise flags– control of watering a houseplant does not

make you 2x more likely to die. In this example, participant age ranged from 65 to 90; and
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this di↵erence (6 deaths out of 45 people) doesn’t control for age or health status prior to

the intervention.

While self- and nurse-reported surveys indicate there may have been some real health

di↵erences– relative to baseline– between the two groups, this stark mortality statistic

actually calls more plausible di↵erences between the two groups (based on questionnaires)

into question. If an additional six participants died in the control arm, it is likely that their

health and age deteriorated more precipitously during the study for reasons other than the

house plant intervention.

Gilbert uses a second, unrelated study [382] to reiterate his point about the importance of

control, in which elderly adults could choose visitation times from college students (control),

were simply told when to expect a visit (predictable), or happened to receive random visits

(random).

Gilbert suggests again that, after this study, a “disproportionate number of residents who

had been in the high-control group had died....[because they] were inadvertently robbed of

control when the study ended.” The paper actually reports no e↵ect of control at all during

the study (“the positive outcome of the predict and control groups is attributable to pre-

dictability alone.”) and declares no link to mortality risk upon its conclusion (additionally,

the risk they discuss was related to the lack of visitation, nothing to do the lack of control).

2.3.9 Growth Mindset Interventions

Carol Dweck is an eminent psychologist known for coining the idea of ‘Growth Mindset’– the

idea that your belief that you can grow your abilities and skills through e↵ort (as opposed

to a belief that you are fixed or limited by your genetic ability) is a key determinant of

your success. For Dweck, this belief is the bedrock on which resilience and grit are built–

challenges feel surmountable and enriching if you believe yourself to be growing as a result

of your e↵ort; without that belief, failure becomes a referendum on who you are and what

you can accomplish.
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The idea has become a popular one; interventions to teach growth mindset have been rolled

out at large scale. In their wake there has been some controversy over their e�cacy. A 2018

Meta-analysis by Brooke Macnamara of over 300 interventions (conducted on over 400,000

students) [396] concluded “overall e↵ects were weak ... However, some results supported

specific tenets of the theory, namely, that students with low socioeconomic status or who are

academically at risk might benefit from mindset interventions.” In two separate analyses,

64% and 86% of the interventions under review had no (or negative) impact on academic

achievement; they also found evidence of publication bias, so they caution that the reported

results are likely over-estimates.

Carol Dweck responded [129] by suggesting these mild e↵ects were important and good

value (given how cheap and quick mindset interventions are to implement), and with a 2018

replication (reported in Nature) [459] that showed 3% fewer high schoolers were o↵-track

for graduation in the intervention group (N=12,542), with low-achievers and schools that

more e↵ectively support social norms showing the biggest e↵ect. Much to Dweck’s credit,

this replication was pre-registered and randomized in 65 schools with a good control arm.

This result comes from a very minimal intervention– two, 20 minute sessions. The data

largely agreed (empirically) with Macnamara’s meta-analysis. At the same time, a simi-

lar large scale randomized controlled trial from England in 101 schools across the country

(N=5,000) ran a much stronger intervention (eight consecutive weeks of 40 min to 2 hours

a week, teacher training, and material for teachers to embed in their curricula). Similar

age students showed negative or no di↵erence from controls across the three main measure-

ments– math, reading, and grammar.

In ‘The One Variable that Makes Growth Mindset Interventions Work’, Russel Warne points

out– after reviewing a handful of the large scale trials of Growth Mindset Interventions–

that the only ones that have successfully captured an e↵ect are those run by Carol Dweck

herself [444]. This is a known failure mode when scaling research interventions– having a

team that specializes in the concept under study, communicates it well, believes in it, and

has experience can dramatically improve the quality of what’s delivered. It’s another strike

against the general idea of Growth Mindset Interventions (and instead a point for Carol
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Dweck’s specific Growth Mindset Interventions). As Macnamara stated in her article, these

small e↵ect sizes should serve as an upper bound.

The initial back and forth between Dweck and Macnamara was covered in Scientific Amer-

ican in their article ‘Debate Arises over Teaching “Growth Mindsets” to Motivate Student’

[113]. It falls on the side of Dweck, taking her reported e↵ect sizes as accurate.

2.3.10 Summary

Positive psychology attempts to distance itself from a humanistic tradition of studying the

well-lived life with its focus on ‘empiricism.’ Unfortunately, that has meant an epistemo-

logical shift in how work is conducted and evaluated; a shift that places too much faith

in simple statistical tests and too much value on oversimplifications and contrivances that

allow those tests to be used. By doing so, it abandoned the complex richness and deep in-

tuition characteristic of the leading psychological minds of the preceding era– an epistemic

approach much better suited to the task.

2.4 ...and more broadly

The preceding sections target the relevant parts of the replication crisis for my work; but

it is worth briefly contextualizing how deep the crisis runs for the entirety of science.

2.4.1 Mainline Psychology

A look back on the history of experimental psychology shows that even the most basic,

canonical findings are now facing skepticism (if not for p-hacking, than for the way they’ve

been interpreted and simplified). Examples include:

• The Milgram Experiments. These famous experiments have been under renewed

scrutiny for methodological issues. The results– while real– don’t support Milgram’s
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‘agentic state’ interpretation (that we cede our moral agency to authority figures)

[356].

• The Stanford Prison Experiments Reexamination of this famous experiments– pur-

porting to show that we descend into abusive behavior given the right conditions–

have shown that the experimenters coached the desired behavior out of the ‘prison

guards’ [193].

• The Asch Conformity Experiments A famous experiment in which people are asked

simple questions in a room full of confederates (who all intentionally answer incor-

rectly), this study shows 75% of people will conform at least some of the time. A 2015

study showed that the results of this study have been incorrectly overblown in 19 out

of 20 major textbooks [183].

• The Marshmallow Test The results of this experiment hold– delayed gratification

predicts future success– however their interpretation about why has been questioned.

Does delayed gratification imply about executive functioning or more about childhood

environment [451]? Even the critique has come under fire.

• The Pygmalion (‘My Fair Lady’) E↵ect This e↵ect suggests that teachers’ expec-

tations account for real improvements in IQ. It turns out there are some serious

methodological flaws in the original paper– and though expectancy e↵ects are real,

intelligence doesn’t seem to be altered by a teacher’s beliefs [431].

• Robber’s Cave This famous experiment showed tribes of young boys cooperating when

resources were plentiful, and attacking each other when resources were scarce. It turns

out the whole experiment was contrived and took three tries and a lot of coaching to

get the desired result [292].

• The Bystander E↵ect The story of Kitty Genovese’s death in NYC lead to the creation

of ‘911’ to call the police. While she was murdered, almost no one witnessed it– the

story was a fabrication by the NY Times editor Abe Rosenthal. Replications show

the e↵ect is real but small (r=0.2) [360].
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• Subliminal Advertising The idea of subliminal advertising gained national attention in

the wake of a 1957 study by James Vicary, in which he claimed imperceptible flashes

of ‘eat popcorn’ and ‘drink soda’ during a movie resulted in sales increases of 18 and

58 percent. Vicary made $4.5 million as an advertising consultant in the wake of his

fraud. Subliminal advertising still appears in the popular press as a real thing despite

a complete lack of evidence for it.

• Skinner Box Addiction This study showed rats would forgo food and press a lever

to death if it stimulated their pleasure centers; framing addiction as insurmountable

once it is introduced to an environment [383]. This was famously challenged by the

‘Rat Park’ experiment, which showed it was the unnatural, isolating environment that

caused rats to do this, not the drugs (rats in a pro-social rat park don’t repeat the

behavior) [157]. This study also su↵ered from a spotty replication record [335], but

holds up conceptually (i.e. based on heroin use statistics in Vietnam veterans [189]).

2.4.2 AI

Generative Adversarial Networks (GANs) are a model architecture invented by Ian Good-

fellow in 2014 that are responsible for numerous, impressive results. In 2018, a colleague of

mine at Google published a paper comparing the results of all stated improvements to the

original GAN paper, testing them over all sets of hyperparameters and on all standard test

datasets. His results show that none of the published, claimed improvements on the original

GAN architecture were actual improvements; they were overfit to the hyperparameters or

test set used in the paper [270]. This result is corroborated by another paper benchmarking

advances: “Deep metric learning papers from the past four years have consistently claimed

advances in accuracy, often more than doubling the performance of decade-old methods...

the actual improvements over time have been marginal at best” [311].

This raises some interesting questions for a field enabled by big data. When competitions

are run for years, and multiple teams make small tweaks to the same fundamental architec-

tures, the possibility for spurious/over-fit improvements starts to become a real problem.

77



Moreover, smaller research teams can’t run huge tests like Google (comparing all architec-

tures over all hyperparameters over all datasets). The types of assertions should probably be

probabilistic, rather than the deterministic benchmarking that is standard practice today.

This view is starting to gain traction; in ‘Deep Reinforcement Learning at the Edge of the

Statistical Precipice’ [19] Agarwal et al. introduce the rliable tool to introduce uncertainty

into metric reporting for reinforcement learning.

2.4.3 Medicine

The case against science is straightforward: much of the

scientific literature, perhaps half, may simply be untrue.

A✏icted by studies with small sample sizes, tiny e↵ects, invalid

exploratory analyses, and flagrant conflicts of interest, together

with an obsession for pursuing fashionable trends of dubious

importance, science has taken a turn towards darkness.

Lancet Editor Richard Horton

2015

The Lancet is one of the most respected journals in medical science; as we can see above,

its editor has a pessimistic outlook on the quality of the science contained therein. He’s

not alone; Marcia Angell– previous editor of the New England Journal of Medicine– said

this in 2009: ”It is simply no longer possible to believe much of the clinical research that

is published, or to rely on the judgment of trusted physicians or authoritative medical

guidelines. I take no pleasure in this conclusion, which I reached slowly and reluctantly

over my two decades as editor of The New England Journal of Medicine” [188]. That

same year, Richard Smith, 25 year editor at BMJ, wrote: ”Sadly we also know— from

hundreds of systematic reviews of di↵erent subjects and from studies of the methodological

and statistical standards of published papers— that most of what appears in peer-reviewed

journals is scientifically weak” [399].

Medicine has also been ground-zero for the replication crisis, kicking o↵ in 2005 with the

famous publication of “Why Most Published Research Findings are False” by Stanford
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Medical School’s John Ioannidis. The low replication rate doesn’t a↵ect our quality of care

because we have a rigorous approval process and a large pharmaceutical market to vet

academic research. These companies– like Bayer and Amgen– report replication success

of academic work between 11 and 24% [344, 49]. Major replications attempts show this

problem is particularly stark in cancer research. [140]. This terrible track record for pre-

clinical research costs an estimated $28 billion per year [154].

2.4.4 Neuroscience

fMRI is an imaging technique that looks at blood flow in the brain, with incredible power

to tie high resolution images of brain activity to mental function. Unfortunately, many

of the studies are also based on small sample sizes, and the statistical tools to run these

studies can be opaque. In 2009, Dartmouth’s Craig Bennett published a famous, tongue-in-

cheek (but very real) study showing that a dead salmon had active voxels of brain activity– a

statistically significant di↵erence in their two (humorous) conditions– when they were shown

di↵erent pictures of humans [54]. In an interview about his work, Bennett stated: “By

complete, random chance, we found some voxels that were significant that just happened to

be in the fish’s brain, and if I were a ridiculous researcher I’d say, “A dead salmon perceiving

humans can tell their emotional state.”” [274] This ‘Red Herring (Atlantic Salmon)’ study

has become a famous cautionary tale about statistical methods in fMRI research.

These issues have taken the spotlight again in 2020, with a big paper in Nature showing

that the same fMRI data analyzed by 70 research teams– for the same pre-selected nine

hypotheses– showed huge disagreement over which results were ‘significant’ [61]. Moreover,

a team from Sungkyunkwan University in South Korea has shown that many successful

fMRI ‘replication studies’ take advantage of the fact that– frequently– very large brain

areas are functionally implicated, making them very ‘forgiving’. In their paper entitled

‘False-positive neuroimaging: Undisclosed flexibility in testing spatial hypotheses allows

presenting anything as a replicated finding’ they recommend a pattern matching approach

to test replicability [205]. These neuroscientific replication issues have been detailed by a

large European team as well [60].
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This might be the least of the issues for the ‘social’ branch of neuroscience, which attempt

to tie behavioral or mental states to functional imaging. A 2020 meta-analysis has shown

test-retest reliability of social neuroscientific studies land at about 0.4, “which is below the

minimum required for good reliability (ICC = .6) and far below the recommended cuto↵s for

clinical application (ICC = .8) or individual-level interpretation (ICC = .9)” [135]. Other

papers have found errors in common fMRI analysis software that lead to a false positive

discovery rate of 70% with an engineered dataset that should give only 5% false positives

[133], or pointed out that the correlations reported in many of these papers are above what

is possible given well-characterized variability of the underlying personality/emotion data

and imaging techniques [441].

2.4.5 Summary

The reproducibility crisis a↵ects a variety of disciplines, from AI to medicine to neuroscience

to psychology. A healthy statistical intuition about the system level incentives and reporting

dynamics– i.e. basic meta-science– is crucial to parse the literature accurately. Tools to

mitigate the crisis will become more important as the negative impacts become better

publicized and better understood.
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Chapter 3

Methodological Implications

In the last chapter, we looked at many of the mistaken findings that have been promoted

as a result of the replication crisis. In this chapter we’ll talk about the methodology that

led us here, the underlying philosophical issues they stem from, and their implications for

psychology.

Many people believe that the replication crisis starts and ends with a simple misapplication

of statistics. In actuality, it is the fine point of a deeper crisis– a much broader debate about

statistical philosophy with implications for general scientific practice at multiple levels–

as well as a broader one– it’s one of many methodological challenges facing experimental

psychology.

In this chapter, we briefly look at the surface level problems of replication before discussing

the deeper issues of a Humean philosophy that attempts to side-step causal intuition and

prior belief. This mistaken perspective underlies the broad misconception that Popperian

falsifiability is the correct approach to theory building. Once we dispel with this notion,

the scientific endeavor looks more like a process of formalizing how we reason at scale– a

direct analog to the goals of artificial intelligence.

This shift in methodological perspective has important implications for the broad issues

facing psychology, a discipline which has long served as the lynch-pin for debate in philos-
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ophy of science.1 Even if we solve the statistical problems,2 there are still broad challenges

of generalizability (i.e. When and how does what we observe apply to other contexts, stim-

uli, and people? What moods, dispositions, and personalities is it true for? ) and ontology

(How do we describe what makes two people, situations, or stimuli more similar or more

distinct? ) to contend with.

We can thus marry insight from a few disciplines to improve our scientific practice in psy-

chology. We can treat scientific theories as data generating models, and treat ontological

claims as scientific theories. We can also move towards statistical frameworks that allow for

stronger modeling assumptions (required when data is scarce/contextual) and that incorpo-

rate causality and uncertainty as first class primitives (matching the underlying structure

that we are modeling).

3.1 The Problem with P-values

In [376], Ulrich Schimmack taxonomizes many popular academic perspectives minimizing

the replication crisis: that ‘crisis’ is an overly dramatic label, that these issues are not

endemic, that replications themselves are flawed or fail to accurately reproduce original

findings, or that results regress to the mean or shift over time. Schimmack writes:

1Karl Popper famously advocated for falsifiability because he didn’t think Freudian psychoanalytic theory
should be considered ‘science’ (the so-called Demarcation Problem). Kuhn credits Piaget with his inspiration
for paradigm shifts (Piaget– a great psychologist– “would probably be rejected from most modern journals
on methodological grounds of sample size, non-standard measurement, and lack of inter-rater reliability”
[243].) Within psychology, there is debate between humanistic and positive psychology about the role of
empiricism for claims about flourishing; a debate that echoes a long history of similar methodological debate
in psychology. Kurt Lewin famously discussed the interactions of people and environments in the first half of
the twentieth century, and described much of modern psychological practice as ’like trying to build a model of
gravity by studying balls rolling down inclined planes and simply averaging the results’ (paraphrased). In the
1970s, Walter Michel famously argued against personality (Big 5) as useful for prediction in ’Personality and
Assessment’ which led to a dramatic decrease in experimental personality work in favor of social psychology’s
focus on contextual factors. Meta-analysis suggests environments have fared worse as a predictive tool.
Almost all of the great psychologists have had a clearly articulated and novel epistemic perspective; much
of the richest innovation in a field this young and complex comes at this level of reflection.

2i.e., if we were to continue with categorical notions of ‘statistical significance’, that ‘significant’ results
replicate roughly 80% of the time in line with suitably powered testing; reported e↵ect sizes contain unbiased
variance about the true underlying e↵ect size; base rates of ‘statistically significant’ results in publication
match the actual base rates of true hypotheses.
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In an opinion piece for the New York Times, [the] current president of the As-

sociation for Psychological Science commented on the OSC results and claimed

that “the failure to replicate is not a cause for alarm; in fact, it is a normal

part of how science works”. On the surface, [she] makes a valid point. It is true

that replication failures are a normal part of science. If psychologists would

conduct studies with 80% power, one out of five studies would fail to replicate,

even if everything is going well and all predictions are true. Second, replica-

tion failures are expected when researchers test risky hypotheses (e.g., e↵ects

of candidate genes on personality) that have a high probability of being false.

In this case, a significant result may be a false-positive result and replication

failures demonstrate that it was a false positive. Thus, honest reporting of repli-

cation failures plays an integral part in normal science, and the success rate of

replication studies provides valuable information about the empirical support

for a hypothesis. However, a success rate of 25% or less for social psychology is

not a sign of normal science, especially when social psychology journals publish

over 90% significant results (Motyl et al., 2017; Sterling, 1959; Sterling et al.,

1995). This discrepancy suggests that the problem is not the low success rate

in replication studies but the high success rate in psychology journals.

This failure to understand the fundamental statistical issues is pervasive. In his paper ‘Sta-

tistical Rituals’, Gerd Gigerenzer suggests– contrary to theorists who point to misaligned

system-level academic incentives– that the primary failure mode is a fundamental misun-

derstanding of p-values. He also points to the ‘null ritual’– and the mindless application of

formulaic null hypothesis significance testing (NHST)– as the pervasive pedagogical misstep

that perpetuates this crisis. [172]

The data bare him out– interpreting p values as ‘the probability of success in replication’ is

a pervasive misunderstanding which exists “among 20% of the faculty teaching statistics in

psychology, 39% of the professors and lecturers, and 66% of the students.” In a meta-review

of research on this topic, the data suggest between 56%-80% of statistics and methodology

instructors in psychology departments hold at least one major misconception about null hy-
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pothesis testing; that increasing to 74%-97% for other university level psychology educators

[173].

Modern statistical practice for journal acceptance centers around p<0.05 as a categorical

line between ‘significance’ and ‘non-significance’, but the p<0.05 threshold was never meant

to be a categorical cuto↵. Ronald Fisher himself– the father of modern statistics and creator

of null hypothesis testing– stated about p-values: “No scientific worker has a fixed level of

significance at which from year to year, and in all circumstances, he rejects hypotheses; he

rather gives his mind to each particular case in the light of his evidence and his ideas” [148].

Fortunately, it seems there is momentum to end an era of categorical thinking in statistics.

In a series of 2019 editorials in Nature and the American Statistician, the American Statis-

tical Association released a special issue with over 800 researchers signed on to put an end

to the categorical term ‘statistically significant’ [448, 449, 131]:

In 2016, the American Statistical Association released a statement in The Amer-

ican Statistician warning against the misuse of statistical significance and P val-

ues. The issue also included many commentaries on the subject. This month,

a special issue in the same journal attempts to push these reforms further. It

presents more than 40 papers on ‘Statistical inference in the 21st century: a

world beyond P < 0.05’. The editors introduce the collection with the caution

“don’t say ‘statistically significant’”. Another article with dozens of signatories

also calls on authors and journal editors to disavow those terms.

We agree, and call for the entire concept of statistical significance to be aban-

doned. [27]

Their analysis of of 791 articles in 5 major journals (mostly outside of psychology) showed

that 49% included conclusions or text that betray a fundamental misinterpretation of this

concept.
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3.1.1 The Correct Way to Think

Null Hypothesis Significance Testing and corresponding p-values are useful. The problem

comes from (1) the reduced emphasis on statistical measures that matter, (2) their categor-

ical interpretation, and (3) the misuse of language around ‘statistical significance.’

P-values depend on sample sizes just as they do on e↵ect sizes; the conflation of language

between ‘statistically significant’ (implying the e↵ect is likely to be real and not an artifact of

noise) and ‘significant’ (implying it is meaningful and important) works against the pursuit

of good science. Results that are significant (as in they matter) should be judged instead

by the e↵ect size (d) or the normalized e↵ect size (Cohen’s d).

Gene Glass– the statistician who invented the meta-analysis- writes “statistical significance

is the least interesting thing about the results. You should describe the results in terms of

measures of magnitude– not just ‘Does a treatment a↵ect people?’ but ‘How much does

it a↵ect them?’” Jacob Cohen– for whom Cohen’s D was coined– states: “The primary

product of a research inquiry is one or more measures of e↵ect size, not P values.”

Interpreting P-values

As we know from introductory statistics, the p-value is simply the probability that the

results we see were generated by noise. With a large enough sample size and with enough

variables controlled, trivial and contingent relationships can be ‘proven true’ even when

they have no bearing on the real-world.3

The p-value is not the probability that a result is true, which depends on how likely a

hypothesis is to be true before testing. The probability that a hypothesis is true– known

as the positive predictive value (PPV)– is very frequently conflated with the p-value itself.

3Jacob Cohen makes this point– that statistically speaking, the di↵erence of means sampled from two real
sub-populations will never be perfectly zero– in his 1990 article ‘Things I Have Learned (So Far)’. He states
that “[t]he null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis
testing), is always false in the real world... If it is false, even to a tiny degree, it must be the case that a
large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is
always false, what’s the big deal about rejecting it?”
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The PPV is defined by the equation (1� �) ⇤R/((1� �) ⇤R+↵) where ↵ is our threshold,

� is our study power, and R is our odds ratio (or prior); any one of these four quantities

is completely defined by the other three. We can apply this formula to get the number we

really wish to use the p-value for– an assessment of how likely a result is to be true given

we meet our ↵ criteria, or P ( real e↵ect = 1 | significance = 1 ).

3.1.2 Real World P-Hacking

Unfortunately, applications of the PPV are guesses, as we never actually know these quan-

tities in the real world. Moreover, if we try to apply this formula directly, we must assume

we have direct access to all evidence (or at least an unbiased sample of it). In the real world,

our evidence is obscured due to p-hacking, file drawer e↵ects, and publication bias. Our

ideal evidentiary value P ( real e↵ect = 1 | significance = 1 ) needs to be considered against

the backdrop of P ( significanceactual = 1 | significanceobserved = 1 ) in the real world, which

is unknown but certainly very low due to biases in scientific reporting.

P-hacking takes many forms. The typical example is a researcher testing increasingly ob-

scure or combinatorial hypotheses until one hits (i.e. ‘subliminal advertising works, but

only if people are primed to be thirsty first and only if the brand is not a major coca-cola

brand’ [440]). These can be easy to spot as the hypothesis was clearly not generated a

priori.

More pernicious forms of p-hacking exist however; we might imagine one of our researchers

pre-processing the data a few di↵erent ways, re-engineering features, and trying several

di↵erent models to test the same hypothetical underlying relationship. They run slight

variations of the same test, taking 10 or 100 or 1000 ‘forking paths’ to examine one hypoth-

esis and reporting significance if any one hits. In this case, the hypothesis might appear like

a reasonable one; to spot this kind of behavior, it’s important to assess the data analysis

techniques against your own intuition and consider how standardized they are. Variations

on standard techniques, dubious treatments of outliers, shifting procedures across similar

studies, and/or a large independent variable space can be signs that this has happened;
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pre-registration of the methodology guards against this.

Finally, a researcher might look at the data, see a relationship, and create a hypothesis that

perfectly explains it. Here, there might actually be just one hypothesis under test, and it

may seem like incredibly powerful evidence when it is not. For example– when predicting

divorce– finding a correlation in personality traits or communication styles that is consistent

with 5 couples out of 10 after you know which ones divorced is trivial; there are many sets

of traits that will separate any two arbitrary groups of five couples. Predicting the specific

relationship beforehand, however, is much more di�cult and evidence of incredible insight.

Conflating exploratory and confirmatory work by hypothesizing after the results are known

(HARKing) has been a source of confusion in the popular discourse around researchers like

John Gottman, who did exactly this experiment (the first FAQ on his website, which address

his ability to predict divorce, states: “statements about the 94% accuracy rate of divorce

prediction have become a source of confusion. What Dr. Gottman is able to say is that a

particular couple is behaving like the couples that were in the group that got divorced in

his 1992 study (Buehlman, K., Gottman, J.M., Katz, L.)” [3]). Three significant findings

are completely unsurprising if we test 1000 theories— they are probably a result of noise.

Three significant findings out of three hypotheses, on the other hand, is strong evidence

that the theory contains deep, accurate insight.

These forms of p-hacking are harder to spot and easier to inadvertently fall prey if you

are not disciplined as a researcher. As a research consumer, we must try and spot this

kind of behavior in the papers we read. To do so requires an evaluation of the researcher’s

methods; are they deeply aware of how to use statistics or are they ’motivated researchers’?

We actually have a lot of clues when evaluating an academic’s work– do they seem to know

the results before they collect data? Are their data analysis techniques consistent and in-line

with common sense? Do they appear aware of these statistical issues? Researchers who pre-

register, choose sample sizes based on a power analysis, revise their alpha levels, report null

results and full p-values, and interrupt their results accurately and conservatively probably

use a trustworthy method; researchers who only use N=20, over-interpret their findings in

a flashy way, and consistently report strong significance for counter-intuitive e↵ects should
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raise suspicion. Even conscientious researchers doing high-power research are probably not

powering their studies to 100%, the recommendation is 80%; that means even if they only

study real e↵ects, we’d expect one null result for every five hypotheses they test.

P-hacking at the level of the researcher is only one form of this ‘biased observer’ issue– we

also have file-drawer e↵ects and publication bias. We can imagine 10 or 100 researchers

all testing roughly the same hypothesis; because journals only like to publish ‘interesting’

results, only the one with a significant result will get published (publication bias). This

publication bias causes researchers to discard their null results instead of bothering to

submit them (the file-drawer e↵ect).

This kind of system-level bias occurs most frequently when a topic enjoys media success

and becomes popular to fund; one of the most covered replication-failures of this nature is

stereotype threat (as discussed in Chapter 2). Evidentiary value from papers on popular

topics need to be severely discounted in light of this.

3.1.3 What to Do with Existing Research?

Looking Backward

This is a pretty damning critique of the state of scientific evidence; it’s very hard to separate

sound research from unsound work. Fortunately, it is possible to evaluate literature critically

and identify useful experimental insights. As we recall from the introduction to this crisis,

we can trust at least 25% of research, and people are generally quite good at predicting that

subset. We simply need to bring a critical eye to the work we read; evaluate the power of

the study, the quality of the methodology, and the plausibility of the conclusions. We need

strong priors– informed by meta-statistical analysis and replication work– as we integrate

new data into our beliefs. Individual papers can still be very informative if we put in the

e↵ort to critically evaluate them.

On a system level, there is actually a fair amount to be extracted from the literature. We

can evaluate patterns in the data over journals, fields, individual researchers, and topics to
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identify bias. Two of the most useful, standard tools for this are funnel plots and p-curves.

Funnel Plots We expect, if we plot sample size on one axis and e↵ect size on the other,

to get a triangle– more power in the study will get us closer to the real e↵ect size, less

powerful studies should have unbiased variance around the real e↵ect size. Failure to match

this pattern gives quantitative evidence of bias in the literature) [410]. See the example in

Figure 3-1.

Figure 3-1: Example funnel plot for a meta-analysis of the Pygmalion e↵ect (how teacher
expectations a↵ect student IQ) from [390].

P-Curves We expect, if a venue is unbiased, that the distribution of reported p-curves

should follow certain trends (it is uniformly distributed when testing null e↵ects, and loga-

rithmic when testing real e↵ects at high power). If we see a big spike just below p=0.05 or

p=0.01 and few results below that, it represents clear evidence that people are rolling the

die many times and only reporting results that just fall below those cuto↵s. Any left-skew

in p value distributions is inconsistent with either a null e↵ect or a real one [392].

There are other tools that are proposed for meta-statistical analysis of bias:

(1) Ulrich Schimmack has created the Z-Curve [47], which estimates the replication rate of a

researcher and ranks journals and researchers. It creates this replication rate by comparing

the fraction of significant results reported (the observed discovery rate) with the expected

true discovery rate (which relies on a post-hoc estimate of study power). We can estimate

the average power of a body of work by looking at the distribution of p-values; we take

significant results, and fit a curve to them to estimate the true power. Any discrepancy
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between the expected and reported discovery rates is evidence of bias. In my experience

looking at results from this test, it’s a very noisy estimate of research quality and bias.

(2) There are also forensic tools that automate simple checks for implausible data like

SPRITE or GRIM [194, 66]. These are surprisingly useful– while outright fraud represents a

tiny fraction of research output, mistakes are not uncommon (for instance, 30% of Genomics

papers are believed to contain excel auto-correct errors based on a study of 10,000 papers

[260]).

Taken together, there is a rich community of meta-statisticians that run analyses, correct

results, and publish accessible articles summarizing the quality of research. One of the best

places to start to gain expertise in these disciplines is the blogosphere.

The Continued Problem with Replication

One major part of helping us to understand past work is the practice of replication. Repli-

cation will always be important to bring us closer to a true understanding of an e↵ect size

and measurement error. If we continue to carve out a place for NHST– which may be a

reasonable thing to do in certain circumstances– we’d expect even high-power, unbiased

research to result in Type I and Type II errors at relatively high rates.

Current replication attempts, unfortunately, perpetuate the flawed assumptions they seek

to correct. They imply a categorical truth value on a topic by reinforcing the notion

that ‘successful’ replications are once again ‘statistically significant’ while ‘unsuccessful’

replications are not. Of course we shouldn’t be thinking this way at all; we should be

looking at the accumulated literature on a topic and use all of it to better predict the real

e↵ect size (and, in the background, many meta-statisticians are doing just that).

Unfortunately, we still are retro-fitting proper statistical formulations into the entrenched

categorical simplifications that underpin modern scientific practice. Because the evidence

in prior literature is so distorted, ’replication’ becomes shorthand for a pre-registered, very

high-power study whose methodology we can trust; its ‘success’ or ‘failure’ becomes short-
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hand about the trustworthiness of the original evidence when we re-apply the original flawed

statistical categories.

Moving Forward

There are certain things we can do as individual researchers to avoid the statistical missteps

of recent work.

As individual researchers, we have an obligation to use and promote sound research prac-

tices; commit to our data processing beforehand, pre-register our studies, open our datasets,

rigorously divide exploratory and confirmatory work, interpret our results cautiously and

correctly, and publish all of our results. It’s important to go in with a true ‘scientific’

mindset– asking an earnest question of the data– rather than a rhetorical or motivated one.

Pre-registration and open data, while a step in the right direction, still leave plenty of

researcher degrees of freedom on the table. Though they doesn’t solve the problem, their

practice brings methodological awareness into the spotlight and exerts subtle pressure to

commit to both hypotheses and data processing techniques a priori. It also serves as a

signal to the broader community that you’re aware and care about these issues, increasing

external trust in your work.

It’s also important to teach statistical intuition to new researchers; to establish research

programs that promote and reward high quality methodology and transparency. Much of

the work we need to do involves pressuring journal editors and stakeholders who design

system-level incentives to require these changes. NIH is leading the way in how they’ve

addressed the estimated $10-50 billion [39] lost to irreproducible medical research; they

now require open-data for the research they fund [248]. The signs are positive for medical

research; hopefully other disciplines will fall in line. A general push for open publishing

of all research–especially carving out a place for negative findings and explicit exploratory

analyses– would go a long way to improve the state of a↵airs.

These, however, are only band-aids on a larger wound. The statistical rituals that got us to

this point are born from a philosophy of statistics that undervalued the critical importance
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of causality and intuition in science; the implications are much larger than a slight revision

of how we present the results of our t-tests. Statistical misapplication is also only one in a

set of broader methodological concerns for facing psychology.

3.2 A Broader Crisis: Research Methodology

Psychology has seen many great debates about the role of empiricism (see i.e. the debate

between humanist and positive psychologists in the last chapter). Outside of statistical

concerns, broader methodological concerns fall roughly into categories of generalizability

and ontology:

• What are we measuring? Psychological phenomena are unobservable, sparking

substantial debate at the level of basic concepts. When it comes to states of attention

like flow, it’s not uncommon to find papers that are critical of the core concepts

themselves [204, 24]. Where a concept defies formal definition, multiple definitions

compete and science does not build; we fail to accumulate a literature around a single

topic.

This is not to say debate about the core topic is unwarranted; on the contrary, this

debate is one of the most important steps in the scientific endeavor. The current

process of reasoning, comparison, and consolidation relies on an ill-defined, social

academic marketplace. If instead we were to treat ontological claims as theories, we

might improve and formalize this process with an eye toward its predictive utility.

• Laboratory Stimuli A few years ago, my colleagues at the Media Lab created an

immersive exhibit at the Museum of Fine Arts. Titled ‘Hot Milk’, they invited patrons

to sit in a chair and experience a plethora of ‘textbook’ positive stimuli from laboratory

psychology experiments– they would be given an mouth brace to engage their smile

muscles, their head would be gently stroked, they would be shown images of clowns,

soothing music would play, and they would be fed placebo pills to make them happy.

92



Needless to say, this experience was utterly unsettling for for anyone brave enough to

allow themselves to try it out.

This art piece raises an important issue. Stimuli cannot be considered in isolation;

their impact is part of a larger, gestalt whole. If we hope to make a robust, general-

izable, scientific claim, we need to operate at the level of the larger, gestalt percept.

Most concepts in psychology face this challenge– in many cases, the percepts and the

experiences that contextualize them are not analytically decomposable.4

Moreover, laboratory stimuli include social features that are rarely considered. They

may be perceived (we know a happy picture should make us happy) as much as they

are felt (you actually feel happy when looking at them); a tension that can be di�cult

to tease out of survey results. They imply intentionality. (For example, a positive

picture implies the experimenter is trying to make you feel happy; a negative one

implies that they are trying to make you feel sad. How does this knowledge make you

feel? Do you believe their stimuli is well designed and e↵ective? Are you agreeable

or resistant to it, and how does that depend on your personality, your opinion about

the experimenter, or the perceived hypotheses?)

These considerations– how the subject perceives both the goal (i.e. to make you feel

happy) and the intent (i.e. to learn about emotion) of a stimuli– are frequently more

important than the typical naive physicalist description (it’s a picture of a puppy). If

we wish to build theories about how kinds of stimuli a↵ect people, or draw broader

conclusions about life from laboratory work, we first require an ontological framework

to describe the stimuli accurately in phenomenological terms.

• Laboratory Settings For many of the reasons just described, we know that results

from contrived, laboratory settings don’t always hold in the real world. Laboratory

settings are generally sterile, high pressure environments where people are very aware

of being observed and more likely to be vigilant. They are social settings; the way an

experimenter treats a subject can have a huge impact on their comfort, the demand

4Concerts are a great example of this. The experience can be utterly transformative, but if you try to
alter any dimension of that experience to understand its importance– you remove the lights, or the sounds,
or the music– the whole psychological experience falls apart. The whole is much more than the combination
of the parts, and cannot be described in more fundamental terms.)
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characteristics and desire to be a good subject, etc.

Moreover, people who have time and/or willingness to come in to a lab are typically

a biased subset of people– WEIRD,5 interested in the topic/result, or motivated by

study incentives. This once again presents a problem for generalizability.

• Representations As we can see, none of the ontological primitives we work with– the

stimuli we design, the environments that envelope them, the states and traits of the

individuals we test, or their resulting cognitive experiences we care to measure– are di-

rectly observable (they are all phenomenological experiences and percepts). When we

measure them, however, we frequently consider them with deterministic confidence–

for instance, our representations of cognitive states usually come in the form of a

single average from a survey; we frequently treat our treatments/stimuli with similar

simplicity.

This paradigm fails to represent the underlying stochastic nature of our concepts;

better representations would treat their inherent uncertainty as a first-class primitive.

With regards to cognition, many great thinkers have suggested bio-behavioral rep-

resentations, where multiple physiological, behavioral, and self-report measures are

used in concert to estimate the underlying state. This fusion across multiple modal-

ities provides us with a mechanism to assess the trustworthiness and utility of each

individual modality in our estimation.

• Physiology in the Lab The desire to create these better representations has driven

significant research to understand the underlying psychophysiological relationships.

The in-lab paradigm allows us to collect clean data and tightly control sources of

noise. We can elucidate the types and orders of magnitude we might expect of the

relationships that exist between cognition and measurable physiology.

Physiology in the lab, however, also faces a challenge of generalizability. This work

su↵ers from the same critiques above (the stimuli and environment may elicit di↵erent

responses than naturalistic ones), in addition to two more: (1) real world systems and

measurements are significantly noisier, so relationships in the lab may not be feasi-

5shorthand for Western, Educated, Industrialized, Rich and Democratic.
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ble to capture under real-world conditions; (2) the relationship between physiological

signals and cognition is roughly a many-to-few-to-many bottleneck of sympathetic

and parasympathetic activation. Nose temperatures, for instance, have been shown

to drop for fear, stress, joy and guilt; they remain untested for a wide variety of

other emotional stimuli, some of which assuredly have a similar influence. This makes

reasoning about cognition from physiology very challenging under realistic conditions

(even after we attempt to control for the primary mechanisms driving nose tempera-

ture like metabolism, ambient temperature, and clothing choice).

• Interaction E↵ects. The story of personality psychology’s demise appears in Ulrich

Schimmack’s ‘Personality Science’ [377], Brian Little’s ‘Me, Myself, and Us’, [264]

and John Gottman’s ‘The Mathematics of Marriage’ [180]: personality psychology

experienced a boon in the first half of the 20th century leading to the taxonomy of the

Big-5 personality factors. These factors were used experimentally to predict behavior,

showed little predictive value, and were famously criticized by Walter Michel in his

influential 1970’s work ‘Personality and Assessment’. His book led to a refocusing

on social psychology and environments as predictors (after all, environments must be

the primary factor driving behavior if personality explains so little of the variance in

behavior).

Recent meta analysis of this body of work shows environments have actually fared

worse than personality in prediction; neither personality nor environments have much

explanatory value when considered in isolation [377]. As Kurt Lewin would argue

nearly a century ago, this implies that behaviors must be considered within a trans-

actionalist frame; they are shaped through the interaction of the person and their

environment. We cannot consider just the person or just the environment alone.

This insight has problematic implications for data collection (a high e↵ort process for

those of us deeply studying individuals in context)– as Andrew Gelman discusses, a

simple interaction e↵ect requires roughly sixteen times the amount of data for similar

power compared with a main e↵ect [163]. For much psychological work, the scale of

data for appropriately powered research looks infeasible; without large scale and a
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robust treatment of the entire constellation of person/environment interactions, we

can’t draw general conclusions.

These points suggest a few important, fundamental challenges to how we study psychological

phenomena. Our core concepts must move towards phenomenological, gestalt representa-

tions that capture the uncertainty inherent to the process. This is tricky to formalize; it

would be useful to have a way to compare and evaluate ontological claims. Bio-behavioral

models that provide more insight into the psychological state under study are preferable.

Building a solid model of how and when the real-world looks like the laboratory setting is

equally di�cult; it may well be that the laboratory setting simply cannot be designed to

generalize to normal living. Thus, in order for our data to apply in the real-world, we need

to move our study to the real-world as well.

Tools for naturalistic study can alter naturalistic behavior; it is important to design them in

a way that minimizes their psychological footprint. These naturalistic scenarios also ground

our intuition about the value of physiological markers when we consider real-world noise

and confounding.

Finally, the current paradigm– randomizing out individual di↵erences to get at an average

treatment e↵ect– makes little sense from a transactionalist worldview; a view with reason-

ably strong empirical support. If a concept under study is dominated by interaction e↵ects,

data requirements grow exponentially and likely become untenable.

This suggests a return to currently out-of-favor idiographic approaches that were popular

a generation ago– approaches we abandoned as ‘unscientific’ because they don’t carry with

them an implicit claim of generalization. Unfortunately, this implicit notion of generaliza-

tion rarely holds even for our nomothetic studies; moreover, randomizing the interaction

e↵ects across treatment groups not only destroys our picture of the true underlying re-

lations (i.e. our intervention could be very positive or negative for people depending on

something about their personality, which is obscured in the average), we should also expect

this powerful antecedent of our outcome to only balance across groups in expectation.
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3.3 A Deeper Crisis: Humean Philosophy

The impacts of the replication crisis represent not just a broader methodological crisis in

psychology, but also a deeper philosophical confrontation at the root of statistics, philosophy

of science, and applied statistical learning theory (AI/ML). The origins of this crisis are

frequently attributed to the 18th century Scottish philosopher David Hume.

Hume famously articulated that causal beliefs are really unjustifiable extrapolation of ‘con-

stant conjunction’ with his ‘problem of induction’– i.e. we believe all swans are white until

we see a black one; a chicken believes the farmer is a benevolent source of food until the

day he is not. For Hume, no amount of consistent correlation ever justifies a causal belief.

This argument has an important corollary; that the strength of a belief should only be

considered in direct proportion to the amount of evidence we observe. We should not solid-

ify an underlying causal model in the face of constant conjunction; we should simply treat

our statements of future prediction as expressions of observed frequencies. The certainty

of our predictions is not derived from a presumed understanding of causality but from the

regularity of observed phenomena.

His skepticism about our causal intuition had a deep influence on the statistical theory which

serves as the basis for modern scientific research. Though the Bayesian counterpoints are

gaining mainstream acceptance (in which evidence is considered in light of prior beliefs and

intuitive causal reasoning is embraced) the sub-structure of science is still built on Humean

foundations.

3.3.1 The Individual Researcher

The first place we see this di↵erence playing out is in theory building and analysis we perform

as researchers. Beyond a reinterpretation of p-values in light of prior belief, researchers

like Judea Pearl have been advocating for a causal reappraisal of mainstream associative

statistical practice (in the tradition of Hume and his adherents like Pearson).
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Pearl e↵ectively argues that causal assumptions are a necessary prerequisite for any valid

analysis. For example, correlation can be spurious if we control for the wrong variables

(‘colliders’6 as in Berkson’s paradox) or fail to control for the wrong variables (confounders).

In the extreme case, it’s possible for Simpson’s Paradox to occur, as it did famously in a

1994 BMJ kidney stone analysis (showing one treatment was more successful both for people

with small kidney stones and people with large kidney stones– the only two groups– but

was a worse treatment when considering the two groups together). In this real life example,

kidney stone size a↵ects treatment selection; thus, the overall results are misleading, and

we should trust the results for each subgroup [59]. Pearl advocates for ‘do-calculus’ and

the adoption of Bayesian Networks as primary tools to formalize our causal intuition and

perform statistical analysis.

While it is common belief that randomized controlled trials side-step these problems, they

too require causal assumptions– randomized controls are controls in expectation (not perfect

controls) and thus require repeated runs to approach an unbiased estimate of the average

treatment e↵ect. Single trials are only balanced for a su�ciently large sample size, which

we can only estimate given our priors about the underlying data generating process. If

con-founders are well understood, it is better to precisely control for them rather than to

rely on randomization. (The debate between pure randomization vs. a Bayesian attempt

to minimize the e↵ect of likely confounders goes back to Fisher himself) [108].

When it comes to drawing conclusions, even from a randomized study, we again run into

questions that rely on tacit hueristics about the underlying causal structure which would

be better made explicit– how representative is our sample? Did we introduce bias? How

representative are our stimuli, our environments, the moods of our participants? How much

do each of these matter? What kinds of variation and underlying data generating processes

do we expect in our data, so we can analyze it appropriately? In all cases, scientific studies

require explicit, a priori causal assumptions to contextualize the results and use them to

build generalizable scientific theories.

6In Pearl’s language a simple example of a ‘collider’ would be controlling for university admission when
assessing the link between intelligence and athleticism; if a school selects for either criteria, controlling for
it will introduce a negative correlation between these two otherwise unrelated concepts.
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3.3.2 The Scientific Process

The issues Pearl identifies at the level of the individual study also apply to our philosophy

of science. Karl Popper was a Humean; and though Kuhn famously attacked many of

his notions, the general belief amongst scientists seems to be that Kuhn described the

scientific enterprise as the flawed, sociological enterprise that it is, and Popper described

the falsification standard it as it should be. This is not the case.

Richard McElreath, author of ‘Statistical Rethinking’ [289], writes “The greatest obstacle

that I encounter among students and colleagues ... is a kind of folk Popperism, an informal

philosophy of science common among scientists but not among philosophers of science.

Science is not described by the falsification standard, as Popper recognized and argued. In

fact, deductive falsification is impossible in nearly every scientific context.”

He supports this argument with a story from gene science (in which one theory was proven

by predicting the distribution of alleles over time very closely) in which no theories were

falsifiable. Much like Pearl, he argues that statistical techniques follow from theory building,

and theory building looks like a ‘data generating model’ or a ‘process model’. Falsifiability

can be seen as a subset of this broader abductive approach over hypothesis spaces; it works

well when a particular theory predicts data that is unlikely under all other theories (I think

of this as the ‘Babe Ruth’ criteria)– P (D | H1) is high, and the P (D|Hall others) is low, thus

P (H1 | D) dominates the hypothesis space after inference. Of course, there are infinitely

many hypotheses we could create, so we rely on priors over our hypotheses just as much

as the data (i.e. Occam’s Razor– simple hypotheses are better). As soon as we’ve seen

that data, all viable future theories will incorporate them a priori. As a result, competing

theories will consolidate, making similar kinds of predictions and becoming increasingly

di�cult to di↵erentiate empirically.

This worldview puts forth a very di↵erent fundamental requirement for scientific theory–

theories must be data generating, not falsifiable.
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3.3.3 Lessons from AI

This model of science starts to look like a model of human reasoning from computational

cognitive science (see i.e. Josh Tennenbaum’s work): many AI researchers argue that in-

telligence is a process of causal model-building, a process which enables counterfactual

reasoning about the world from a small set of observations. This view is not without its

critics, however– a similar Humean/Bayesian debate exists in AI. As Frank Wood writes in

‘Introduction to Probabilistic Programming’:

How do we engineer machines that reason? This is a question that has long

vexed humankind; answering it would be incredibly valuable. There exist var-

ious hypotheses. One major division of hypothesis space delineates along lines

of assertion: are random variables and probabilistic calculation more-or-less a

requirement (Ghahramani, 2015; Tenenbaum et al., 2011), or the opposite (Le-

Cun et al., 2015; Goodfellow et al., 2016)? The field ascribed to the former

camp is roughly known as Bayesian or probabilistic machine learning; the latter

as deep learning. The first requires inference as a fundamental tool; the latter

optimization, usually gradient-based, for classification and regression.

The debate between intelligence-as-pattern-matching vs intelligence-as-model-building has

direct analogs to how we think about structuring scientific theories. More importantly,

practitioners in this field are at the cutting edge of modeling assumptions– quantitatively

exploring the limits of our inductive biases, the structure of our data, and the optimal ways

to represent it statistically. There is a lot to gain by applying their work to our philosophy

of science in psychology.

Psychologists rely on Structural Equation Modeling (SEM) as their main tool for causal rea-

soning, which has been largely limited to assumptions of deterministic linear relationships

until Judea Pearl (relatively recently) started extending the technique towards probabilistic

and nonlinear ones. Pearl advocates for Bayesian Networks (BNs), a type of Directed Acyclic
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Graph (DAG) that allows inference over a limited set of conditional probability distribu-

tions. Probabilistic programming languages (PPLs) allow more flexibility and expressivity

than BNs (in the relationships between variables, control flow, and distribution choice) at

the cost of computational complexity at inference-time. These languages treat random vari-

ables as first class primitives. They represent a large-scale e↵ort to create general-purpose,

expressive computing tools that allow practitioners to fully express data-generating theories

in precise terms.

3.4 Opportunities for Improvement

The replication crisis is one example of the underlying Humean/Bayesian tension that we

see in discussions of statistical practice, philosophy of science, and artificial intelligence.

Combining the best points of these discussions leads us to consider our goal as scientists in

terms of creating precise, data generating theories– deeply informed by domain knowledge–

using state-of-the-art tools like PPLs, and to compare them with abduction.

We can apply this logic to the methodological challenges we discussed above. We can (1)

treat our ontological claims as scientific theories (implying they should be data-generating,

causal models that we can express in the language of PPLs). Our latent cognitive concepts

will be represented by probability distributions, making the inherent uncertainty a first

class feature of the representation. For these models to have a chance of converging to

something that usefully characterizes real-world experience, we need (2) multiple streams

of naturalistic, real-world bio-behavioral data to feed them, a requirement that demands

convenient, always-on wearable monitoring that are socially acceptable enough to disappear

into the background. Finally, we (3) should attempt to understand our work idiographically,

paying special attention to the interpersonal variation. Focusing on longitudinal data– one

person across activities, days, and contexts– is a powerful way to inform our models and

draw personalized insights that are robust before we contend with generalization across

groups.

In the following chapters, I will apply these principles to flow research. I will show (1)

101



how we might improve representations of environmental stimuli that can grab our attention

and distract us based on phenomenological principles, (2) introduce a suite of novel tools

to inform naturalistic, bio-behavioral models of flow itself, to allow us to move towards

probabilistic, bio-behavioral representations, and (3) collect data that show the limits of

current practice and can serve as a useful jumping o↵ point for exploratory flow modeling

work. Additionally, I will introduce several interventions I’ve designed in light of my new

beliefs about what interventions can have an impact, with an eye towards idiographic,

longitudinal data collection. I provide a dataset an open-source, longitudinal dataset based

on one month of living with one of these interventions. These are philosophically motivated

choices, in light of the broader methodological and statistical challenges adjacent to the

replication crisis, as well as the state-of-the-art solutions proposed to address them.
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Chapter 4

Models of External Stimuli

If you’re in the jungle, intently listening to the soundscape enveloping you, and a jackham-

mer intrudes in the distance, you’ll notice it– it will be the main thing that you recall when

asked about the scene. Similarly, if we introduce a lion roaring into an urban soundscape,

it will be the primary thing you notice and remember amongst dozens of sounds to choose

from.

These sounds grab out attention because they stand out in context. The jackhammer is

not memorable in the city scene; in nature, however, it powerfully holds out attention. The

lion roar– acoustically similar to a motorcycle revving, and easily masked and obscured in

our urban spectrogram– does not stand out acoustically. These cases trivially demonstrate

that acoustic features alone– even contextualized ones– are insu�cient to predict how we

attend to and recall the sounds of our environment.

To make generalizable claims about how the world shapes and interacts with our experience,

we must represent the world as we perceive it. This problem of representation has a rich

philosophical and psychological history; as we discussed in the last chapter, our representa-

tions of stimuli and environments must move away from naive-realist descriptions of pitch

and duration and towards gestalt, phenomenological ones.

This chapter introduces the work I’ve done with my colleague Ishwarya Ananthabhotla to
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develop phenomenological representations of auditory stimuli. Our goal is to introduce,

in a general way, phenomenological/gestalt features to the conversation around predicting

human auditory attention and memory. We do this by (1) creating a dataset, (2) running

some basic aural memory tasks using this dataset, and (3) exploring the role of these features

in estimating the results. We end with a discussion of the implications of our work on the

future gestalt modeling and some specific examples of the types of user interfaces it might

enable. This work points to general principles around how psychology should represent our

tools and environments.

4.1 Background

4.1.1 Auditory Perception

In the 1950’s, Colin Cherry conducted a famous dichotic listening experiment in which he

proved ’the cocktail party e↵ect’. He showed that a background conversation– of which you

have no conscious recollection– would draw your attention to it if the speaker uttered your

name, or invoked danger (‘fire!’), or mentioned something explicit.

This e↵ect points to a fascinating insight about auditory processing– at the lowest levels of

pre-conscious processing, we are highly attuned to the meaning of sounds (it’s your name),

not just their acoustic structure (the constituent phonemes). The latest neuroscience sup-

ports the idea that gestalt auditory pre-processing and attentive filtering precedes conscious

perception. [401, 455] Distinct and measurable pre-conscious variations in neuronal event-

related potentials (ERPs) occur both when a contextualized stimuli is acoustically novel

(i.e. unexpectedly softer or lower pitched than others) as well as when it is conceptually

novel (i.e. a machine sound in a group of animal sounds). [380]

The stored gestalt representation of the current sound context– necessary to explain these

change-driven ERPs– can be thought of as the first stages of auditory memory [214]. This

immediate store, known as ‘echoic memory’, starts decaying exponentially by 100ms after

a sound onset [269]. Measurements of ERPs suggest immediate storage of rhythmic stimuli
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on the order of 100 ms with a resolution as low as 5 ms [313]; other studies have shown

this immediate store is complimented with an additional echoic mechanism that lasts sev-

eral seconds [93, 23]. On these time-scales, our auditory system compresses its perceptual

representation of textures based on time-averaged statistics [288]. These short-term e↵ects

sit atop a larger literature of ’perceptual learning’ which emphasises the role of meaning

and experience in shaping the most fundamental and visceral aspects of perception. [169]

These fascinating experiments motivate the importance of high-level conceptual and con-

textual features for our representations of aural percepts– a field currently dominated by

simple time-frequency models.

4.1.2 Taxonomies of Acoustic Stimuli

Despite what scientists understand about perception, our attempts to taxonomize sounds-

as-perceived are relatively simplistic.

In 1993, Gaver introduced an ecological model of auditory perception based on the physics

of an object in combination with the class of its sound-producing interaction [160]. He

suggests that everyday listening focuses on sound sources, while musical listening focuses

on acoustic properties of a sound, and that the di↵erence is experiential.

Research in which participants are forced to categorize a collection of sounds corroborates

this distinction– listeners primarily group sounds by category of sound-source, sometimes

group sounds by location/context, and only in certain conditions favor groupings by acoustic

properties [278, 187]. Open-ended sound labeling tasks encourage more detailed descriptions

along valence/arousal axes (i.e. for animal sounds) or using acoustic properties (i.e. for

mechanical sounds) if sound-source distinctions are too insu�cient for the categorization

task [58].

It has also been suggested that non-verbal sounds from a living source are processed di↵er-

ently in the brain than other physical events [261]. Symbolic information tends to underly

our characterization of sounds from humans and animals (i.e. yawning, clapping), while
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acoustic information is relied on for other environmental sounds [175, 20, 340]. Along

these lines, Dubois et al. [126] demonstrated that, for complex scenes, the perception of

pleasant/unpleasantness was attributed to audible evidence of human activity instead of

measurable acoustic features.

4.1.3 Taxonomies of Sound Objects

It is clear from the above research that acoustic features are insu�cient to capture the

complex cognition underlying sound phenomenology; we must start with something more,

for example a characterization of a sound’s interpreted cause (and the meaning of that

source for the subject). In many cases however, a sound’s cause can be ambiguous. In

[41] Ballas introduced a measure of casual uncertainty (Hcu) based on a large set of elicited

noun/verb descriptions for 41 everyday sounds: Hcui =
Pn

j pijlog2pij . (For sound i, pij is the

proportion of labels for that sound that fall into category j as decided by experts reviewing

the descriptions). He shows a complicated relationship between Hcu and the typicality of

the sound, its familiarity, the average cognitive delay before an individual is able to produce

a label, and the ecological frequency of the sound in his subjects’ environment. Hcu was

further explored in [259] using 96 kitchen sounds. Lemaitre et al. demonstrated that Hcu

alters how we classify sounds: with low causal uncertainty, subjects cluster kitchen sounds

by their source; otherwise they fall back to acoustic features.

4.1.4 Summary

Many factors influence the cognitive processes underlying human aural attention, process-

ing, and storage. Research shows a complicated interdependence between attention, acoustic

feature salience, source concept salience, emotion, and memory; furthermore, verbal, pic-

torial, and phonological-articulatory mnemonics can have a significant impact on auditory

attention, processing, and recall.
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4.2 Advancing the Paradigm

Current state-of-the-art models for auditory salience operate on acoustic features in a col-

lapsed time-frequency space. Multiple sounds in a scene may overlap in this representation.

With advances in machine learning, it is now possible to transform raw audio into accurate

predictions of individual sound objects, and base predictions of attention, salience, and

memory on sound objects and their meanings in addition to acoustic properties.

Of course, this new feature space comes with its own set of questions. The label of sound

sources alone aren’t necessarily useful; we need to understand the fundamental meaning of

that sound source in context to make predictions; the emotions, expectations, and asso-

ciations the source evokes. The work summarized below is our first attempt to explore a

first-order, phenomenological feature space for audition.
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4.3 HCU400: A New Annotated Dataset for Exploring Aural

Phenomenology through Causal Uncertainty

To begin our work on on gestalt/phenomenological representation of sound perception, we

needed a dataset of environmental sounds which:

• captured common environmental sounds from everyday life,

• labeled those sounds on dimensions of ’meaning’ – what emotions and images they

evoke,

• sample the full space of causal uncertainty.

This will allow us to test our ability to improve the representation of sounds, and the

relationships we expect between acoustic and semantic features. We could not find an

existing dataset with sounds of reasonable quality, so we created our own– the HCU 400.

This open-source dataset includes 400 sounds– many obvious, and many ambiguous in

origin– alongside a collection of 12,000 hand-annotations ( 30 per sound). We collected

hand-labeled, high-level ratings of emotional features (valence and arousal) in line with

previous work on a↵ective sound measurement [62]; we also collected features that provide

other insights into the mental processing of sound– familiarity and imageability [380, 74].

Finally, we introduce a per-sound estimate of Hcu based on the clustering of free-text labels

in word-embedding space.

Our preliminary analysis shows reliable trends across users in their labeling, agreement

between the automatic Hcu metric, deliberation time for a label, and our a priori design

of ambiguous vs. non-ambiguous samples. This dataset is useful for explorations of sound

representation and cognition. For details and to review the data, see [32].

The HCU400 dataset consists of 402 sound samples sourced from the Freesound archive

(https://freesound.org) alongside 3 groups of features: sound sample annotations and
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Figure 4-1: A screenshot of the interface shown to AMT workers.

associated metadata, audio features, and semantic features. It is available at github.com/

mitmedialab/HCU400.

A major goal in our curation was to find audio samples that spanned the space from ‘common

and easy to identify’ to ‘common but di�cult to identify’ and finally to ‘uncommon and

di�cult to identify’. We sought an even distribution of sounds in each broad category

(approximately 130 sounds) using rudimentary blind self-tests. In sourcing sounds for the

first two categories, we attempted to select samples that form common scenes one might

encounter, such as kitchen, restaurant, bar, home, o�ce, factory, airport, street, cabin,

jungle, river, beach, construction site, warzone, ship, farm, and human vocalization. We

avoided samples with explicit speech.

To source unfamiliar/ambiguous sounds, we include a handful of digitally synthesized sam-

ples in addition to artificially manipulated everyday sounds. Our manipulation pipeline

applies a series of random e↵ects and transforms to our existing samples from the former

categories, from which we curated a subset of su�ciently unrecognizable results. E↵ects
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Typing Modified Chair Sliding
Cluster Radius = 6.3 Cluster Radius = 8.7
typing on a keyboard bowling ball
Typing on keyboard electric tube
typing PVC pipe building pressure and release
typing Error message on computer
Typing on a keyboard High Speed Frisbee
someone typing beer mug sliding on bar
Someone typing on keyboard driving a car
keyboard toy car hitting wall
typing filling up a tub
... ...

Figure 4-2: Left: Average ConceptNet embedding where the radius represents our Hcu

metric; red bubbles and the ‘ mod’ su�x are used to indicate sounds that have been inten-
tionally modified. Right: examples from our free-text capture, demonstrating the di↵erence
between labels of large radius and small radius clusters.

include reverberation, time reversal, echo, time stretch/shrink, pitch modulation, and am-

plitude modulation.

Annotated Features

We began by designing an Amazon Mechanical Turk (AMT) experiment as shown in Figure

4-1. Participants were presented with a sound chosen at random, and upon listening as

many times as they desired, provided a free-text description alongside likert ratings of

its familiarity, imageability, arousal, and valence (as depicted by the commonly used self-

assessment manikins [62]). The interface additionally captured metadata such as the time

taken by each participant to complete their responses, the number of times a given sound

was played, and the number of words used in the free-text response. Roughly 12,000 data

points were collected through the experiment, resulting in approximately 30 evaluations per

sound after discarding outliers (individual workers whose overall rankings deviate strongly

from the global mean/standard deviation).

Audio Features

Low level features were extracted using the Google VGGish audio classification network,

which provides a 128-dimensional embedded representation of audio segments from a net-

work trained to classify 600 types of sound events from YouTube [201]. This is a standard
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feature extraction tool, and used in prominent datasets. A comprehensive set of standard

features extracted using the OpenSMILE toolkit [142] is also included.

Semantic Features

A novel contribution of this work is the automation and extension of Hcu using word embed-

dings and knowledge graphs. Traditionally, these are used to geometrically capture semantic

word relationships; here, we leverage the ‘clustering radius’ of the set of label embeddings

as a metric for each sound’s Hcu.

We employed three major approaches to embed each label: (1) averaging all constituent

words that are nouns, verbs, adjectives, and adverbs– a common/successful average encoding

technique [210]– (2) choosing only the first or last noun and verb, and (3) choosing a single

‘head word’ for each embedding based on a greedy search across a heavily stemmed version

of all of the labels (using the aggressive Lancester Stemmer [83]). In cases where words

are out-of-corpus, we auto-correct their spelling, and/or replace them with a synonym from

WordNet where available [296]. Labels that fail to cluster are represented by the word with

the smallest distance to an existing cluster for that sound (using WordNet path-length).

This greedy search technique is used to automatically generate the group of labels used in

the Hcu calculation. Both Word2Vec [295] and Conceptnet Numberbatch [402] were tested

to embed individual words.

After embedding each label, we derived a ‘cluster radius’ score for the set of labels, using

the mean and standard deviation of the distance of each label from the centroid as a

baseline method. We also explore (k=3) nearest neighbor intra-cluster distances to reduce

the impact of outliers and increase tolerance of oblong shapes. Finally, we calculate the

sum of weighted distance from each label subgroup to the largest ‘head word’ cluster– a

technique which emphasizes sounds with a single dominant label.

We also include a location-based embedding to capture information pertaining to the like-

lihood of concept co-location in a physical environment. In order to generate a co-location

embedding, we implement a shallow-depth crawler that operates on ConceptNet’s location
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relationships (‘Located-Near’, ‘Located-At’, etc) to create a weighted intersection matrix of

the set of unique nouns across all our labels as a pseudo-embedding. Again, we derive the

centroid location and mean deviation from the centroid of the labels (represented by the

first unique noun) for a given sound sample.

Given the number of techniques, we compare and include only the most representative

pipelines in our dataset. All clustering approaches give a similar overall monotonic trend,

but with variations in their derivative and noise. Analysis of cluster labels in conjunction

with scores suggests that a distance-from-primary-cluster definition is most fitting. Most

embedding types are similar, but we prefer ConceptNet embeddings over others because it

is explicitly designed to capture meaningful semantic relationships.

Our clustering results from a Processed ConceptNet embedding are plotted in Figure 4.3.

Intentionally modified sounds are plotted in red, and we see most sounds with divergent

labeling fall into this category. Sounds that have not been modified are in other colors–

here we see examples of completely unambiguous sounds, like human vocalizations, animal

sounds, sirens, and instruments.

Baseline Analysis and Discussion

We find that the likert annotations are reliable amongst online workers, using a split ranking

evaluation adapted from [38]. Each of the groups consisted of 50 % of the workers, and

the mean ranking was computed after averaging N=5 splits. The resulting spearman rank

coe�cient value for each of the crowd-sourced features is given in Figure 4-3. This provides

the basis for several intuitive trends in our data, as shown by Figure 4-4 – we find a near

linear correlation between imageability and familiarity, and a significant correlation between

arousal and valence. We also find a strong correlation between imageability, familiarity,

time-based individual measures of uncertainty (such as such ‘time to first letter’ or ‘num

of times played’), and the label-based, aggregate measures of uncertainty (the cluster radii

and Hcu).

We next see strong evidence of the value of word embeddings as a measure of causal un-

112



Figure 4-3: Split ranking correlation plots and Spearman rank coe�cient values for the
four Likert annotated features following the split-half procedure outlined in Bainbridge et
al. [37]. We split the participants randomly into two groups several times and each time
plot the score of the first group against its ranking by score in each sub-group.

certainty – the automated technique aligns well with the split of modified/ non-modified

sounds (see Fig. 4.3) and a qualitative review of the data labels. Our measure also goes one

step beyond Hcu, as the cluster centroid assigns representative content to the group of la-

bels. Initial clustering of sounds by their embedded centroids reveals a relationship between

clusters and emotion rankings when the source is unambiguous, which could be generalized

to predict non-annotated sounds (i.e., sirens, horns, and tra�c all cluster together and have

very close positive arousal and negative valence rankings; similar kinds of trends hold for

clusters of musical instruments and nature sounds).

Furthermore, we use this data to explore the causal relationship between average source

uncertainty and individual assessment behavior. In Figure 4-5, we plot the distributions of

pairs of features as a function of data points within the 15th (red) and greater than 85th

(blue) percentile of a single cluster metric (‘Processed CNET’). It confirms a strong relation-

ship between the extremes of the metric and individual deliberation (plot e), as reported by
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Figure 4-4: Correlation Matrix displaying the absolute value of the Pearson correlation
coe�cient between the mean values of annotated features, metadata, and four representative
word embedding based clustering techniques.

Ballas [41]. We further find that more ambiguous sounds have less extreme emotion ratings

(a); the data suggest this is not because of disagreement in causal attribution, but because

individuals are less impacted when the source is less clear (b). This trend is not true of

imageability and familiarity, however; as sounds become more ambiguous, individuals are

more likely to diverge in their responses (d). Regardless, we find a strong downward trend
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Figure 4-5: Feature distributions grouped by extremes in the ‘Processed CNET’ cluster
metric; red points represent data at  15th percentile (the most labeling agreement and
least ambiguous); blue dots are � 85th percentile (high Hcu). Time-to-first and last letters
indicate deliberation time when asked to label a new sound.

in average familiarity/imageability scores as the source becomes more uncertain (c).

Summary

Aural phenomenology rests on a complex interaction between a presumed sound source,

the certainty of that source, the sound’s acoustic features, its ecological frequency, and

its familiarity. We have introduced the HCU400– a dataset of everyday and intentionally

obscured sounds that reliably captures a↵ective features, self-reported cognitive features,

timing, and free-text labels. Our analysis demonstrates (1) the e�cacy of a quantified

approach to Hcu using word embeddings; (2) the quality of our crowd-sourced likert ratings;

and (3) the complex relationships between global uncertainty and individual rating behavior,

which o↵ers novel insight into our understanding of auditory perception.
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4.4 The Intrinsic Memorability of Everyday Sounds

To understand the relative importance of the gestalt features we collected as part of the

HCU400, we created a seven minute aural memory game using these sounds, and paid

4,500 online workers to play it 20,000 times. We then analyzed the relationship between

sound memorability and two sets of features– the gestalt features we ascertained as part of

the HCU400 dataset project, as well as more traditional ‘cognitive salience’ features based

purely on the spectrogram (using state-of-the-art techniques).

In this work, we show that, while reliable, population level trends in memory and cognition

exist (despite the highly individual and contextual nature of attention and memory), these

trends are incredibly di�cult to explain or predict with our features. However, using a

shapely value regression, gestalt features dominate acoustic features when we allow more

complex, non-linear mappings.

To our knowledge, this work represents the first general treatment of auditory memorability

that combines low-level auditory salience models with multi-domain, top-down cognitive

gestalt features. It highlights the challenges we face in modeling and predicting auditory

attention and memorability, as well as the complex, contextual, and personal nature of these

cognitive processes. It also suggests that the first steps we take here– translating acoustic

features into semantic labels, from which we derive representations based on our emotional

and symbolic connection to the sound source and it’s contextual relationship to other sound

objects– is a better approach than state-of-the-art methods that operate exclusively in the

time-frequency domain.

4.4.1 Aural Memorability

For a sound to enter our memory, it is first unconsciously processed by a change-sensitive,

gestalt neural mechanism before passing through a conscious filtering process [401, 455, 214].

We then encode this auditory information via a complex and variable procedure; frequently

we abstract our experiences into words, though we also utilize phonological-articulatory,
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visual/visuospatial, semantic, and echoic memory [75, 437].

Di↵erent types of memory may also drive more visceral forms of recollection and experi-

ence; non-semantic memory, for example, may underpin powerful recollection and nostalgia

similar to those reported with music [224].

In this work, we map out the features of everyday sounds that drive their memorability using

an auditory memory game. As a recall experiment, we hypothesize that it can provide useful

insights into cognitive models for auditory capture and curation. Additionally, we design

the task such that it is beyond the capacity of our working and echoic memory and engages

long-term memory cognitive processes [273, 265].

4.4.2 What Influences Memorability?

Emotionality is known to have a powerful e↵ect on cognitive processing and memory forma-

tion [257]. For music, recall has been shown to improve with positive valence, high arousal

sound events [224], though recent research has called the significance of arousal into question

[141]. In noise pollution research, the high-level perception of human activity is considered

‘pleasant’ (more positively valenced) regardless of low-level acoustic features [126]. In gen-

eral, the emotional impact of a sound is correlated with the clarity of its perceived source

[31], though sounds can have emotional impact even without a direct mapping to an explicit

abstract idea [346].

For recognition and recall memory exercises, verbalizing a sound or naming a sound (both

of which may engage phonological-articulatory motor memory) is the most common and

successful strategy [45]. This semantic abstraction has overshadowing e↵ects, though; verbal

descriptions can distort recollection of the sound itself, degrading recognition performance

without altering confidence [300]. Some researchers specifically isolate and study echoic

memory, separating it from naming (a process that doesn’t involve outward verbalization)

using homophonic sound sources to ensure subjects are not relying internally on a naming

mechanism [91]. In everyday life, though, we naturally rely on a complex mixture of echoic
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(perceptual), phonological-articulatory (motor), verbal (semantic), and visual memory [75,

437].

In this work, we explore the relationship between both low-level acoustic features and

high-level conceptual features with the memorability of sound, in a context that engages

long-term memory processes. We set out to test a few important hypotheses, namely:

1. The cognitive processing of sound is similar enough across people that trends in recall

across sound samples will be measurable and robust across users.

2. Higher-level gestalt features will be most predictive of successful recall performance. We

see from the literature that naming and emotionality have very strong e↵ects in similar

tasks– we expect sounds with low Hcu (easy to name their source) and strong valence/high

arousal to be the most memorable. High Hcu (uncertain) sounds elicit weaker emotions,

reinforcing this e↵ect.

3. Low-level acoustic feature information will marginally predict memory performance.

Gestalt features are not easily mapped to low level feature space (and we expect gestalt fea-

tures to dominate); however, the literature suggests a measurable, second-order contribution

from low-level perceptual saliency modeling.

4. The likelihood of a sound eliciting a false memory will be best predicted by its conceptual

familiarity as well as by low-level acoustic features.

5. The context a sound is presented against will have a marginal but measurable impact

on whether it is recalled. In other words, we expect emotional and unambiguous sounds

to be the most memorable regardless of presentation, but when a sound stands out against

the immediately preceding sounds, we hypothesize that it will be slightly more memorable.

4.4.3 Samples and Feature Generation

Audio samples for this test were taken from the HCU400 dataset alongside standard low-

level acoustic features [361]. We used default configurations from three audio analysis tools:
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Vomit Marketplace

Figure 4-6: A table demonstrating the auditory salience model based on [234] applied to two
contrasting audio samples in the HCU400 dataset. The resulting salience scores (bottom)
are summarized and used as features in predicting memorability.

Librosa [290], pyAudioAnalysis [168], and Audio Commons [150], which include basic fea-

tures (i.e. spectral spread) as well as more advanced timbral modeling. We supplement these

features with additional summary statistics like high/mid/bass energy ratios, percussive vs.

harmonic energy, and pitch contour diversity.

Over the last decade there have been advances in cognitive models that can determine the

acoustic salience of sound, inspired by the neuroscience of perception [111, 232]. Here we

follow the procedure proposed by [234], applying separate temporal, frequency, and intensity

kernels to an input magnitude spectrogram to produce three time-frequency salience maps.

Figure 4-6 shows a comparison of temporal salience between two sound samples in the

HCU400 dataset with highly contrasting auditory properties. From these maps, we compute

a series of summary statistics to be used as features.

High-level, top-down features were taken directly from HCU400 and include causal un-

certainty (Hcu), the cluster diameter of embedding vectors generated from user-provided
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labels (quantifying source agreement or source location), familiarity, imageability, valence,

and arousal.

4.4.4 Measuring Memorability

In order to quantify memorability, we drew inspiration from work in [38], which used an

online memory game to determine the features that make images memorable. We designed

an analogous interface for the audio samples in the HCU400 dataset; this interface can be

found at http://keyword.media.mit.edu/memory. The game opens with a short auditory

phase alignment-based assessment [458] to ensure that participants are wearing headphones,

followed by a survey that captures data about where they spend their time (urban vs. rural

areas, the workplace vs home, etc). Participants are then presented with a series of 5 second

sound clips from the HCU400 dataset, and are asked to click when they encounter a sound

that they’ve heard previously in the task. At the end of each round consisting of roughly

70 sound clips, the participant is provided with a score. Screenshots of the interface at each

stage are shown in Figure 4-7.

By design, each round of the game consisted of 1-2 pairs of target sounds and 20 pairs

of vigilance sounds. Target sounds were defined as samples from the dataset that were

separated by exactly 60 samples– the sounds for which memorability was being assessed

in a given round. The vigilance sounds, pairs of sounds that were separated in the stream

by 2 to 3 others, were used to ensure reliable engagement throughout the task following

the method in [38]. Roughly 20,000 samples were crowd-sourced on Amazon Mechanical

Turk such that a single task consisted of a single round in the game. Individual workers

were limited to no more than 8 rounds to ensure that target samples were not repeated.

Rounds that failed to meet a minimum vigilance score (>60%) or exceeded a maximum

false positive rate (>40%) were discarded.
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Figure 4-7: Screenshots of the auditory memory game interface presented to participants as
a part of our study. The game can be found at http://keyword.media.mit.edu/memory.
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4.4.5 Summary of Participant Data

We recruited 4488 participants, consisting of a small (<50) number of volunteers from the

university community and the rest from Amazon Mechanical Turk. Our survey data shows

that our participants report a 51/37/12% split between urban, suburban, and rural com-

munities. We see weak trends in the average time per location reported for each community

type– urbanites self-report spending less time at home, in the kitchen, in cars, and watching

media on average. Rural participants report spending more time in churches and in na-

ture. Using KNN clustering and silhouette analysis, we find four latent clusters – students

(590 users), o�ce workers (1250 users), home-makers (1640 users), and none of these (1010

users). Split-rank comparisons between groups did not reveal meaningful di↵erences in re-

sults across user groups; we speculate any di↵erences due to ecological exposure of sounds

between environments is not consistent or influential enough at this group level to alter

performance.

Figure 4-8: Top: A histogram of the raw scores for each sound – they were successfully
remembered and identified about 55% of the time on average, with a large standard devi-
ation; Bottom: A histogram of ‘confusability’ scores for each sound, with an average score
of about 25%.

4.4.6 Summary of Memory Data

The raw memorability score M for each sound is simply computed as the number of times

it was correctly identified as the target divided by the number of its appearances. However,

this does not account for the likelihood that the sound will be falsely remembered (i.e.

clicked on without a prior presentation). We additionally compute a ‘confusability’ score

C10 for each sound sample, defined as the false positive rate for sounds when they fall

122



close to the second target presentation (i.e. in the last ten positions of the game). We can

thus derive a ‘normalized memory score’ represented by M � C10 (See Figure 4-8 for raw

results). In attempting to understand auditory memory, we consider both what makes a

sound memorable and what makes a sound easily mis-attributed to other sounds, whether

those sounds are encountered in our game or represent the broader set of sounds that one

encounters on a habitual basis. We therefore model both normalized memorability and

confusability in this work.

We confirm the reliability of both the normalized memory scores and the confusability scores

across participants by performing a split ranking analysis similar to [38] with 5 splits, shown

in Figure 4-9 with their respective Spearman correlation coe�cients. This confirms that

memorability and confusability are consistent, user-independent properties.

In Table 4.1, we show a short list of the most and least memorable and confusable sounds

in our dataset as a function of the normalized memorability score and confusability score.

Figure 4-9: The results of the split-ranking analysis for the normalized memorability score
and confusability score, using 5 splits; The Spearman coe�cient correlations demonstrate
the reliability of these scores across study participants, enabling us to model both metrics
in the later parts of the work.

4.4.7 Feature Trends in Memorability and Confusability

We consider two objectives – (1) to determine the relationship between individual features

and our measured memorability and confusability scores, and (2) to determine the relative

importance of these features in predicting memorability and confusability. To address the

former, we provide the resulting R
2 value after applying a transform learned using support
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Most Memorable Least Memorable
man screaming.wav morphed firecracker fx.wav
woman screaming.wav truck (idling).wav
flute.wav morphed turkey2 fx.wav
woman crying.wav morphed airplane fx.wav
opera.wav morphed metal gate fx.wav
yawn.wav morphed shovel fx.wav
Most Confusable Least Confusable
garage opener.wav clock.wav
lawn mower.wav morphed 335538 fx.wav
washing machine.wav phone ring.wav
rain.wav woman crying.wav
morphed tank fx.wav woman screaming.wav
morphed printing press fx.wav vomit.wav

Table 4.1: A list of the most and least memorable and confusable sounds from the HCU400
dataset.

vector regression (SVR) for each individual feature. For the latter, we use a sampled Shapley

value regression technique in the context of SVR– that is, we first take N random features

(N between 1 and 10) and perform an SVR to predict memorability or confusability scores

for our 402 sounds and the calculated R
2 of the fit. We then measure the change in R

2

as we append every remaining feature to the model, each individually. The largest average

changes over 10k models are reported in table 4.2. This technique is robust to complex

underlying nonlinear relationships from feature space to predicted metric as well as feature

collinearity.

We find that the strongest predictors of both memorability and confusability are the mea-

sures of imageability (how easy the sound is to visualize) and its causal uncertainty. Memo-

rability is dominated by high level, gestalt features, with only one lower level feature (‘pitch

diversity’) in the ten most important features. Low level features, including those derived

from the auditory salience models, play a more significant role in determining confusability.
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The absolute R
2 values indicate that no individual feature is a significant predictor of

memorability by itself. This implies a complex causal interplay in feature space, which

we explore further in the set of plots presented by Figure 4-10. In each plot, we show

a distribution of feature values for the 15% of sounds that are most memorable or least

confusable (blue) contrasted against the least memorable or most confusable sounds (red).

We first consider the e↵ect of Hcu and valence on memory– low memorability and high

confusability sounds exhibit a similar trend of high causal uncertainty and neutral valence

(Column 1). ; however, while a fairly broad distribution of valence drives high memorability

(eliciting excitement or anxiety), positive valence tends to be a much stronger driver of low

confusability. In Column 2, we consider imageability and familiarity ratings, shown to

be strongly collinear in [31]. Here, their relationship to memorability and confusability

diverge; while both are positively correlated with memorability, neutral ratings are the

stronger predictor of confusability. This suggests that we are most likely to confuse sounds

if they are loosely familiar but neither strictly novel nor immediately recognizable. Finally,

Column 3 reveals a discernible decision boundary in low-level feature space for confusability

which doesn’t exist in its memorability counterpart. The relative importance of low-level

salience features, here represented by spectral spread, aligns with intuition– we hypothesize

that, in the absence of strong causal uncertainty or a↵ect feature values, our perception of

sounds is driven by their spectral properties.

4.4.8 Per-game Modeling of Memorability

The aural context in which a sound is presented, which includes ecological exposure as

well as the immediate preceding sounds in our audition task, may influence the memory

formation process. The literature supports the notion that, given a context, unexpected

sounds are more likely to grab our attention and engage memory in simple experimental

settings [380]. To understand this e↵ect in our test, we ran two studies based on a 5 sound

context (approximating the limits of semantic working memory) and a 1 sound context

(approximating the limits of echoic memory).

Table 4.3 shows the results of a model trained to predict whether the target in each game
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Top Predictors for Memorability and Confusability
Memorability Confusability

Feature R
2 Shapley � R

2 Feature R
2 Shapley � R

2

Imageability 0.201 0.126 Imageability 0.065 0.078
Hcu 0.224 0.125 Hcu 0.073 0.078
Familiarity 0.176 0.123 Avg Spectral Spread 0.087 0.078
Valence 0.178 0.120 Peak Spectral Spread 0.037 0.076
Location Embedding Density 0.147 0.117 Peak Energy, Frequency Salience Map 0.059 0.076
Familiarity std 0.103 0.117 Location Embedding Density 0.100 0.076
Pitch Diversity 0.084 0.113 Frequency Skew, Frequency Salience Map 0.059 0.076
Imageability std 0.086 0.113 Arousal 0.039 0.076
Arousal 0.072 0.112 Peak Energy, Intensity Salience Map 0.044 0.075
Arousal std 0.056 0.111 Familiarity 0.045 0.075

Avg Spectral Spread 0.099 0.107 Valence 0.100 0.075
Timbral Sharpness 0.094 0.091 Timbral Roughness 0.094 0.047
Max Energy 0.091 0.100 Avg Flux, Sub-band 1 0.092 0.064
Treble Energy Ratio 0.090 0.020 Flux Entropy, Sub-band 1 0.091 0.061

Table 4.2: The top performing features from the Shapley regression analysis for both mem-
orability and confusability (gestalt features are bolded); shown are the features ordered by
their respective contributions to the R2 value, with additional features with top performing
individual R2 values appended in italics. The first column indicates the individual predic-
tive power of each feature; the second indicates its relative importance in the context of the
full feature set.

Figure 4-10: Scatter plots showing the changes in distribution of select features based on
extremes in memorability (top row) and confusability (bottom row); blue indicates sounds
that are most (85th percentile) memorable or least (15th percentile) confusable; red indi-
cates sounds that are least memorable or most confusable.

will be successfully recalled. This model was trained with the most memorable and least

memorable sounds only (15th/85th percentiles) with a 5-fold cross-validation process, and

results are reported on a 15% hold-out test set.

To begin, a baseline model is trained using the absolute, immutable features of the target
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sound. Because there are a limited number of sounds in our dataset relative to the number

of games, the feature space is redundant and sparse, and we expect the accuracy of this

model to converge to the average expected value over our set of sounds. We then introduce

a simple proxy for contextual features– the relative di↵erence (z-score) of target sound

features with those of the varying sounds that precede its first presentation in each game–

to see if our model improves given the context of our 50 most meaningful features (from

the SVR analysis; 25 high-level and 25 low-level). In both 5- and 1-sound context cases,

however, model performance does not improve as we would expect if the context provided

additional useful information.

We also run a classifier to predict memorability and confusability that only uses these

relative di↵erences in features with nearby sounds. We start with a noise baseline, in which

the relative features are calculated using a random, unseen context (these features are still

informative as the z-score depends largely on the absolute features of the target sound). We

then train the same model with the proper context to assess the di↵erence in performance.

There is no improvement when the true context is re-introduced.

This leads us to an insight contrary to our hypothesis – the experimental context of neigh-

boring sounds does not exert a measurable influence on our results. While experiential

context almost certainly matters, we see no e↵ect in our experimental notion of context.

The stable di↵erences across sub-populations in our study are thus una↵ected by varia-

tions in the immediate experimental context and participant ecological exposure (as was

demonstrated in the split-rank analysis).

4.4.9 Implications and Conclusion

In this work, we quantify the inherent likelihood that a sound will be remembered or

incorrectly confused and confirm that is consistent across user groups. In line with our

hypotheses, we show that the most important features that contribute to a sound being

remembered are gestalt– namely those sounds with clear sound sources (high Hcu), that

are easy to visualize, familiar, and emotional. We also show that low Hcu sounds that

127



Memorability Per-Game Models
Features Accuracy (%)
Absolute + All 5-Sound Context Feats (working semantic) 68.0
Absolute + Top 50 5-Sound Context Feats 69.1
Absolute Feature Only Baseline (˜expected value) 70.3

Contextual Only, 5-Sound Context (working semantic) 62.5
5 Sound Context, Noise Baseline 64.1

Absolute + All 1-Sound Context Feats (echoic) 68.0
Absolute + Top 50 1-Sound Context Feats 69.5
Absolute Feature Only Baseline (˜expected value) 70.3

Contextual Only, 1-Sound Context (echoic) 60.0
1 Sound Context, Noise Baseline 61.3

Table 4.3: The influence of contextual sounds before the first presentation of the target on
our ability to predict recall across games.

are not familiar or easy to visualize are most likely to be mis-attributed, and low level

features play a more important role in predicting this behavior. We see no evidence that

these relationships are influenced by the immediate experimental context or variation in

ecological exposure.

4.5 Practical Bootstraping with AudioSet

We extend our findings from the prior work to a simple predictive model, bootstrapped

with Google’s AudioSet, and discuss the implications of our work. It enables more accurate

models of auditory attention and memory, and represents a step toward cognitively-inspired

compression of everyday sound environments, automatic curation of large-scale environmen-

tal recording datasets, and real-time modification of aural events to promote focus, control

attention, and alter memory.

4.5.1 Motivation

The cognitive impacts of sound objects are highly subjective [285] and ultimately de-

mand personalized modeling. Here, however, we suggest that even general purpose, non-
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Figure 4-11: We first bootstrap gestalt property scores to all labels in the AudioSet ontology
by running a classifier on the HCU400 dataset (top); we then estimate gestalt property
scores for unseen audio examples by first predicting AudioSet labels, and then combining
the scores associated with these labels, weighted by the prediction uncertainty (bottom)

personalized estimators that capture crowd-scale information about intrinsic, semantic prop-

erties of sound – often referred to in the auditory psychology literature as gestalt properties

– can be a useful preliminary step for artistic and creative applications.

We present a simple paradigm for estimating a set of gestalt properties – such as valence

and arousal, imageability, causal uncertainty, and memorability – from unseen, real-world

audio, using a probabilistic bootstrapping approach that employs an AudioSet [200, 164]

classification network as an intermediary. Given limited quantities of annotations of these

properties in sound cognition datasets, we can create a robust estimator by first mapping

these properties to semantic classes obtained via large, pre-trained networks.

4.5.2 Approach

To illustrate our approach (summarized in Figure 4-11), we consider the HCU400 and

memorability datasets presented in [32, 351], and aim to scale the hand-labeled annotations

of six gestalt properties – arousal, valence, imageability, familiarity, memorability, and

confusability – to unseen audio. We achieve this by building a probabilistic mapping between

these scores and the 600+ labels in the AudioSet ontology. To build this mapping, we employ

a pre-trained AudioSet classification network1 to obtain the top k label predictions from

each audio sample in the HCU400 dataset. Then, we capture the correlation between each

1https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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AudioSet class and gestalt property. To do this, for a given label and gestalt property,

we fit a Gaussian distribution to the property scores across all of the sounds with that

label, wherein each set of scores (representing the set of human annotations per sound) is

weighted according to the network’s label uncertainty. While the labels associated with

the sounds in the HCU400 dataset are too sparse to fully cover all of the AudioSet labels,

we can exploit the existing class relationships in the AudioSet ontology to impute our

estimates of the new gestalt properties to the uncharacterized labels: parents adopt mean

scores of children, children inherit parent scores (examples of this hierarchy in the AudioSet

ontology with increasing specificity include ‘music’!‘musical instrument’!‘plucked string

instrument’!‘banjo’ or ‘source-ambiguous sounds’!‘surface contact’!‘scratch’) [200].

To calculate gestalt property scores for unseen audio examples, this process can e↵ectively

be inverted: the distributions associated with the top k AudioSet labels are combined–

weighted by prediction uncertainty– to obtain mean and variance estimates for the un-

seen audio. Any number of similar weighting heuristics can be applied, contingent on the

application context.

Throughout this approach, we treat the uncertainty of the pre-trained AudioSet model as

a proxy for human uncertainty in sound source identification. We use this notion implic-

itly in the bootstrapping process as we weight the contribution from di↵erent instances in

the HCU400 dataset by the network prediction uncertainty, mimicking the role of causal

uncertainty as the fulcrum between semantic and acoustic processing [159, 161].

The intermediary structure in this approach can be constructed using a spectrum of meth-

ods, spanning simple causal intuition derived from auditory psychology literature to rigorous

bootstrapping from more extensive datasets onto detailed ontologies. In contrast to tradi-

tional transfer or few-shot learning approaches, the structure here has intuitive meaning,

and we rely on explicit relationships in label and language space to provide a sca↵olding

for relationships in cognitive understanding space.
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4.6 Implications: Cognitive Audio Interfaces

In a world of rich, complex, and demanding audio environments, intelligent systems— driven

by the models of auditory cognition we are developing— can mediate our interaction with

the sounds around us. These systems can both enable meaningful, aesthetic experiences

and transition design work from humans to computational agents.

In this section, we discuss two promising applications of cognition-informed interface design

as future work based on this research.

4.6.1 Parsing Large-Scale, Ubiquitous Audio Datasets

High-level

Low-level

Uniform 
Sampling

Saliency

Spectral 
Features

Spectral 
SSM

Sentiment 
Analysis

Hcu
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Repetition

.
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.
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Figure 4-12: A system diagram illustrating the presented approach to audio summarization
via cognitively-inspired content curation. A full recording is first uniformly sampled to
create a set of thousands of 3-second excerpts; these excerpts are then evaluated and ranked
along the high-level and low-level feature axes shown in the center box; finally, summaries
are created by selecting excerpts at the extrema of a single feature dimension or a composite
‘memorability’ feature (derived by weighting the single features according to [348]), and
crossfading the samples in chronological order.

As audio infrastructure has become cheaper and smaller, we are now able to collect, stream,

and manipulate large sets of audio data from natural environments. The size of these

datasets make them impractical for human curation. To surface meaningful content requires
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us to extract and isolate sound objects and events, identify them robustly, and infer their

meaning or impact.

One such example comes for a major reclamation project of commercialized marshland,

the Tidmarsh Living Observatory. Our research group has instrumented this area with

hundreds of sensors; twenty-four of those sensors are custom microphones designed for the

harsh environment, clustered in di↵erent areas of the vast marsh. All of these microphones

are streaming their data o↵-site using a custom API that allows them to be used in real-

time. A collection of years of historical audio data can also be easily accessed through this

API [284].

In combining wide area sound source separation and localization techniques with deep

learning [369, 127], our group can isolate sounds and identify sources from this environ-

ment. Armed with labeled sound objects and hours of recordings, we want to automatically

generate short summaries of the aural scene.

Our audio summarization project– based on our prior work with gestalt feature estimation–

attempts to do just that. It combine gestalt features – based on sound labels and measures of

semantic relatedness – with acoustic analysis, to curate ambient audio recordings based on

perceptual goals (i.e. ‘memorable’ summaries for an engaging presentation, ‘undistracting’

for someone to listen to while studying). We find that the tool surfaces diverse collections

of sounds across the long-term environmental recordings that point to di↵erent regions of

our perceptual outcome space.

4.6.2 Frontiers in User Interface Design

Interfaces that intelligently interact with auditory attention represent an interesting frontier

in design.

Another example from TidMarsh is HearThere by Dublon et al. [125]. HearThere users

wear a bone-conduction headset that overlays virtual sounds over their natural hearing when

they are physically present at Tidmarsh. These virtualized sound sources are actually real

132



Figure 4-13: User Interfaces at the Perceptual Boundary: Dublon et al.’s HearThere
project [125] (A) can be used in the marsh environment to naturally extend a user’s hearing
in a way that requires no conscious e↵ort and is organically managed by our auditory at-
tention. This follows their earlier PhoxEars project [245] (B) which also extended auditory
perception through overlay, this time using parabolic microphones on user-controlled mo-
torized gimbals. A final example is the Ananthabhotla’s Sound Signaling project [29] (C),
which introduces real-time alterations to your music library as a notification tool. These
changes are less likely to be noticed by a focused or preoccupied user– fundamentally in-
corporating their mental state into the design of this notification UI.

sounds in the space– located, identified, and streamed through the Tidmarsh infrastructure.

The HearThere headset uses a combination of GPS and head tracking to render these sounds

as though they are coming from their real-world locations, but with additional control. You

can extend your hearing in distance, or focus on a particular type of sound.

In SoundSignaling, Ananthabhotla et al. introduced a notification platform based on subtle

manipulations of your favorite music [29] (adding harmonies to a jazz standard, adding

extra layers of rhythm to a blues track, or altering the tempo). It operates on the implicit

assumption that attentional load modulates awareness of incongruence, an idea borrowed

from Stroop’s famous colored text experiments [418] and explorations of auditory and visual

switching costs [309]. These modifications aren’t noticeable when you’re focused, but hard
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to miss otherwise.

We can imagine future systems built on a personal attention model that can predict and

interact with these attentional characteristics automatically; masking and modifying po-

tential distractors, introducing alerts, and guiding the user’s attention intelligently in a

closed-loop fashion. The predictions from such a model also may inform robust estimates of

user focus; how a user attends to and responds to perceptual stimuli is contingent on their

cognitive state. Models of both the user and the environment will drive the sophisticated,

intelligent user experiences of the future.

4.6.3 The Future

We believe these and similar modeling e↵orts will form the cornerstone of audio interfaces

of the future; both for next generation o↵-line compression and search of soundscapes based

on the principles of human-perception, as well as for real-time analysis and control of our

auditory landscape to direct our attention, promote our focus, and strengthen our memory.

4.7 Summary

In this section, we introduced a general framework to extend our representations of sound ob-

jects phenomenologically, by (1) introducing a new, open-source dataset of hand-annotated

sound samples, (2) testing cognitive processes with these sounds, and evaluating thier pre-

dictive quality, (3) building a first-pass, personalizable model of sound perception using

these data as priors, and (4) discussing the implications for future work.

Fundamentally, this body of work a statement about e�cient representation. We are, after

all, operating on a spectrogram to ascertain sound objects, just as the saliency models

that exist purely in acoustic space. In the limit, we might expect a black box auditory

perception model to learn the representations and structure we are imposing with VGGish2

as a necessary intermediate step.
2VGGish is a Google model trained on thousands and thousands of labeled audio clips across hundreds

of categories that allows us to extract predictions of a sound source from the raw audio.
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In some specific, limited contexts, the mapping from acoustic features in a spectrogram to

objects in a scene to the cognitive implications of each object may be deterministic enough

that we gain little by imposing this additional structure. We should expect, however, that

any general treatment– for a sound in multiple contexts, or for an individual across many

contexts– will require a probabilistic mapping over semantic features to make accurate

predictions. The things that grab our attention are personal and goal-oriented; if you’re

feeling frightened about a specific threat, what grabs your attention will be di↵erent than

when you’re hyperfocused on a goal in a safe environment. How you feel about a baby crying

depends on your mood (sweet, adorable, frustrating, angering, saddening), your situation,

and the baby. This kind of perceptual variation we should expect all the time on every

scale.

Moreover– in light of time-varying personal di↵erences and contextual factors– the amount

of data it would take to train a model to learn a mapping from spectrograms to concepts

to cognition as a sub-task in a weakly-biased model is intractable. We must move towards

stronger inductive biases operating over perceptually-relevant representations to accurately

learn the probabilistic, non-linear, personal dynamics of the relationships that underlie

cognition.
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Chapter 5

Models of Flow and the Tools to

Capture It

We’ve all lost ourselves in our work, in a great movie, or in a deeply engaging conversation.

This intangible quality of what we choose to do is important. We can engage in the same

activities– work, play, socialize– with a distracted, fractured mind or with deep, e↵ortless

concentration.

For modern psychologists, the name for this type of experience is ‘flow state’, and it matters–

the evidence suggests that the quality of our attention matters more than what we choose to

do when it comes to happiness [241]. Moreover, flow states– and not optimism– moderated

the e↵ect of the duration of Covid-19 lockdowns on well-being [420].1

At work, Gallup estimates 67% of people have completely disengaged from their work (59%

‘quiet quitting’), costing the global economy an estimated nine trillion dollars [158]. Harvard

Business School’s Teresa Amabile describes the solution to this disengagement epidemic with

her ’progress principle’ concept: “Of all the things that can boost emotions, motivation, and

perceptions during a workday, the single most important is making progress in meaningful

1These are both large-N, descriptive, survey-based papers. Killingsworth et al. [241] show a large
di↵erence in explained variance in happiness when comparing state of attention to activity choice (more
than double both within and between persons). Sweeny et al. [420] results are pre-registered and open on
OSF. Their findings on the importance of flow are more nuanced, but suggestive.
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work” [25]. While we perceive progress when impressive results finally materialize, a better

metric– especially for tough, complex, or hard-to-quantify work– shifts our attention from

our output to our process. Flow states provide an immediate and intrinsic feeling of progress

that is especially important when milestones are infrequent or ambiguous.

Thus, the concept of flow is important for us to understand. According to positive psy-

chologists, it is an integral, experiential part of a well-lived life; a sentiment it shares with

the humanistic concepts that predate it (i.e. Abraham Maslow’s ‘peak experiences’). Un-

fortunately, the definition of flow is imprecise and heavily criticized [17]– conflating the

phenomenological mental state of flow both with its contextual correlates and with its post

hoc appraisal. As a result, most researchers end up re-defining the term to suit their task,

and the research literature fragments.

In this section, I will review the history of ‘flow’, it’s conceptual critiques, and it’s future.

5.1 Cśıkszentmihályi’s Flow

The positive aspects of human experience— joy, creativity, the

process of total involvement with life I call flow.

Cśıkszentmihályi

‘Flow’, 1970

The term ‘flow state’ was coined by Mihály Cśıkszentmihályi in his 1975 work ‘Beyond

Boredom and Anxiety.’ His initial definition featured six characteristics, though a seventh

(time transformation) was added shortly thereafter. His definition has slightly shifted over

the years, but generally includes the following seven features:

1. The merging of action and skill/awareness

2. Clear goals and feedback

3. Concentration on the task at hand

4. The perceived exercise of control (strength and self-esteem)
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5. The loss of self-consciousness

6. An autotelic experience (intrinsically rewarding)

7. The transformation of time

A parallel definition introduced by Cśıkszentmihályi has been to identify flow states by their

context, a ‘balance of challenge and skill’ (typically ‘perceived’ challenge and skill rather

than some objective notion of the terms). Below we see the evolution of this conception

of flow in his work (the x-axis is skill, the y-axis is challenge). Other researchers have

experimented with regression models and latent factor models that are based entirely on

this notion of balance as the primary aspect of flow state.

Figure 5-1: Three of Cśıkszentmihályi’s flow models over the years: the first is his ‘quadrant
model’ (1989), the second is his ‘channel model’ from ‘Flow’ (1990), and the third is an
updated channel model from ‘Finding Flow’ (1997).

Cśıkszentmihályi’s flow definition has mostly settled out of his early work into a nine-

dimensional concept– the seven items above with one modification (‘clear goals and feed-

back’ separated into two categories) and a dimension for ‘challenge-skill balance’:

1. A balance of challenge and skill

2. The merging of action and skill/awareness

3. Clear goals

4. Unambiguous feedback

5. Concentration on the task at hand

6. The perceived exercise of control (strength and self-esteem)

7. The loss of self-consciousness
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8. An autotelic experience (intrinsically rewarding)

9. The transformation of time

Yet another key aspect of flow states, frequently invoked by Cśıkszentmihályi in his prose

on the topic, is its connection to optimal living and fulfillment. While this aspect of flow

experiences is never explicitly included in a definition, the application of the term in the lit-

erature (and certainly in Cśıkszentmihályi’s work) is almost exclusive applied in aspirational

terms to activities that are enhancing to one’s life and sense of purpose.

5.1.1 Exemplars

When we think of flow we usually think of high-performance athletes in the zone; Cśıkszentmihályi

includes games, loosely defined (sports, athletic pursuits, mental, and virtual– things like

chess players, rock climbers, and gamers) and artistic pursuits (musicians, artists, and po-

ets). These are ’canonical’ examples of flow activity.

According to Cśıkszentmihályi’s later work, flow specifically *excludes* certain things like

watching TV, going to the theater, browsing social media, or losing yourself in a story. He

writes “flow always involves the use of muscle and nerve, on the one hand, and will, thought,

and feelings on the other” (for Cśıkszentmihályi, chess counts because elite chess players

train physically).

He thus discounts passive activity. He explicitly criticizes television in his most famous

book, pointing out that it doesn’t have “the kind of goals and rules that are inherent in

flow activities” [99], drawing a distinction between external objects (i.e. television) that

structure our mental attention and endogenous control of attention that we exert (i.e.

chess). As Keller and Landhäußer summarize in ‘Advances in Flow Research’, “the activity

has to be skill-related for flow experiences to emerge ... That is, activities that are passive

in character (such as watching a sunset or taking a relaxing bath) and do not involve a skill

component cannot be associated with a flow experience.” [239]
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5.1.2 ...and Disputes

This criticism marks a departure from some of his own early thoughts on flow, in which he

explicitly describes “microflow events such as watching television, stretching one’s muscles,

or taking a co↵ee break.” As Stefan Engeser argues in the prologue to ‘Advances in Flow Re-

search’ (forward by Cśıkszentmihályi himself) “flow can be experienced not only in typical

“flow activities” but in nearly any kind of activity.” He discusses flow in non-achievement

situations, citing Cśıkszentmihályi. “[S]ome individuals mainly experience flow in inter-

actions with others, some in physical movements like walking, some in reading books or

watching TV, and some experience flow while watching people walking down the street.”

Engeser argues that these examples fit the flow definition because Cśıkszentmihályi redefines

challenges as ’opportunities for action’ elsewhere in his work (for exactly this reason).

The ambiguity surrounding passive situations or social situations extends to artistic practice

as well– a set of activities where goals are not clear and feedback is not unambiguous. As

Charlotte Doyle summarizes in her 2017 article on the topic: [122]

Interviews with visual artists suggested that in this domain, goals, which are part

of problem representations, are not clear (Mace, 1997)... In another interview

study, Cseh (2017) concluded that clear goals, sense of control, and unambiguous

feedback were not typically part of fine artists’ flow experiences.

Doyle makes it clear that what emerges from a creative process is often surprising to the cre-

ator, and advocates that this experience of flow should be thought of as a distinct cognitive

process.

Finally, there are the set of activities which are autotelic– deeply intrinsically motivating,

e↵ortless, and absorbing– that fall even further afield of Cśıkszentmihályi’s conception of

flow than passive activities. These include all manner of addictive, harmful behaviors

(that, at least colloquially, most people would label as flow inducing)– gambling and slot

machines, facebook and social media, doomscrolling, state of anger or rage– that run against
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the narrative of optimal experience. Despite the focus on a well-lived life, flow states are

rarely studied in the context of spiritual or religious experience.

5.2 Issues with the Flow Definition.

If we just look at flow as defined by its originator, it is a nine-component concept; sometimes

described by just one of the components divided along two axes (challenge-skill balance),

only invoked with positive examples that may or may not include passive activities like

reading, social activities like debate, or common ritualistic daily activities like walking,

making a co↵ee, or gazing at the sky. Its ambiguity has been a source of confusion, but the

critiques run much deeper than the obvious.

5.2.1 Precursors, Consequences, and Covariates.

Figure 5-2: Figure 2.8 from ’Advances in Flow Research’ [307] by Giovanni B. Moneta
suggesting a latent model that separates precursors and consequences of flow.

One of the most common critiques leveled at this nine-component definition of flow is that

it conflates antecedents and consequences of flow state with the cognitive state itself.

142



Antecedents: a balance of challenge and skill

The most common critique of challenge/skill balance is a relatively clear one– the notion

of challenge already factors in skill. How cognitively well-resourced and adapted you are

to handle a situation– and whether it will demand utter concentration– could easily be

reduced to a simple 1-D notion of ‘task challenge’. For flow, however, typically researchers

wish to distinguish between the laborious, self-aware concentration we might imagine when

for a beginner learning a skill with low task fluency, and the automatic, high-performance

character we expect of a masterful practitioner in-the-zone. A better conception thus retains

the notion of balance, but removes the double reference to ‘skill’ by replacing ‘challenge’

with ‘task demands.’ (This is common practice among top flow researchers) [252].

Even after this fix, there is healthy debate about whether this task structure that we expect

to elicit and correlate with flow is actually necessary or su�cient. It turns out there is quite

a lot of empirical work to show the contrary– people sometimes have a↵ectively positive,

on-task experiences when demands and skill are balanced without experiencing flow state.

Keller et al. found the relationships between this balance and flow experience was moderated

by an internal locus of control or action orientation [238, 236]. Demand/skill balance is not

a su�cient condition.

There are also many examples of activities where demand/skill balance doesn’t seem to

be a necessary precondition either– at least for positively-valenced experiences of deep,

e↵ortless concentration that are enriching and meaningful in post-hoc appraisals. In other

words, we can have a strong flow experience by all criteria except the antecedents that relate

to challenge and skill with passive experiences of art, theater, or religious service; in deep,

connected conversation; or in moments of awe or meditative depth experienced out in nature

or during daily life.

Other task taxonomies– like the mutual information between actions and goal states– have

made better predictors of flow cognition than challenge/skill balance in certain contexts

[293]. This redefinition, however, opens the door for flow activities that are *not* tradition-

ally considered as such; in fact, the authors stated inspiration for this theory of flow was
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the slot machine.2

‘Challenge/skill balance’ describes a set of conditions that should elicit flow, not the flow

state itself; as an antecedent, there is strong evidence that it is neither necessary nor

su�cient. For certain types of tasks and certain types of people, this condition does imply a

significantly increased probability of flow experience. However, even once we leave individual

di↵erences aside, challenge/skill balance is not an ideal criteria to separate the full set of

tasks that regularly induce flow from those that are not.

Antecedents: clear goals, unambiguous feedback

Some have argued ‘clear goals and unambiguous feedback’ are redundant criteria because

our perception of ‘task demand’ and ‘skill’ are already contingent on our understanding of

task goals and our progress toward them [252]. Indeed, it is hard to imagine an unclear task

with ambiguous feedback for which a user would perceive themselves as ‘skillful’– unless, of

course, we’re talking about artistic practice.3 There is strong empirical evidence that clear

goals and unambiguous feedback simply do not apply for most artistic endeavors (a typical

’canonical’ example of flow) [122].

Whether a goal is ’clear’ and feedback ’unambiguous’ is itself an unclear, ambiguous desig-

nation that requires judgement; but art can certainly be exploratory, and its goals can shift

in conversation with feedback from the process, fellow collaborators, or artistic output. This

precursor to flow once again fails to describe an essential characteristic of task structures

that illicit flow-like experience.

2As we saw before, the standard definition of flow might be criticized for its flexibility and imprecision; i.e.
‘clear goals and feedback’ might be extended to art with a semantic flourish (the goal is to be exploratory!
The goal is to break new ground! The goal is not to rigidly cling to preconceived notions of what we should
take as our goals!); ‘challenge’ might be redefined as ‘opportunities to act’ when it fails to account for
certain examples. This criticism also applies to the flow theory of mutual information– how we taxonomize
tasks and assign information to actions and outcomes is very subjective. These are not falsifiable theories.
And as much as I dislike falsifiability as a philosophy of science, it is important to evaluate the plausible
explanatory power of these theories without jumping through mental hoops to fit the data to our hypothesis.
With enough word-smithing any task could be said to have a ‘clear goal’ or ‘challenge’; the same is true
about the way we divide tasks into actions and sub-goals and represent the information therein.

3Perhaps also an expert tackling a tricky, novel, poorly specified problem in their domain? Still, task
demands and skill seem like the should either be tellingly out of balance or impossible to judge because the
task demands are so poorly defined.

144



The perceived exercise of control

We would expect the exercise of control to correlate heavily with skill in most situations.

We might imagine an athlete in a fundamentally unwinnable situation (a star on a bad

team) who perceives themselves as meeting the high demands of the task in balance with

their skill, though the outcome is outside of their control. Some researchers have argued

for the opposite causality; that our ability to achieve flow state during a task drives our

self-perception of control [307].

Regardless of whether perceived exercise of control is an antecedent and/or a consequence

of flow, it is not the state itself. We can easily enumerate a variety of situations where low

control (real and perceived) may actually contribute to flow-like phenomenology. Gambling

and slot machines, immersion in theater, media, or art, reading, browsing the internet,

ritual, religious experience, awe, anger... there are many kinds of experiences where we

experience flow cognition without control. In fact, relinquished control may facilitate flow-

like experience, inviting the loss of self-awareness through inaction and an external locus of

attention.

Other Consequences

Other aspects of flow are di�cult to categorize as core descriptions of the phenomenological

state or consequences of it. Certainly time distortion seems to be a consequence of awareness

shifting to the task at hand and away from external cues; arguably, whether a task is deemed

’intrinsically rewarding’ or ’autotelic’ (done for the joy of the means, not the ends) may be

a circular post hoc judgement as well.

The remaining three dimensions– describing deep enough levels of concentration that at-

tention to self evaporates– seem to be core descriptors of cognitive state of flow.
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5.2.2 Flow Itself

Is Flow a Singular Concept?

Factor analysis of the nine dimensions of flow by colleagues of Cśıkszentmihályi show that a

single, latent concept does not explain the variance in real-world answers to flow question-

naires well; they suggest that analyses should be run on each dimension of flow individually

[220, 4]. In the weakest interpretation this calls into question the validity of the opera-

tionalized construct; in the harshest, it calls into question whether the flow concept is truly

capturing one latent idea. Other researchers suggest flow should actually collapse down to

two dimensions– absorption and task fluency [255, 137].

Is Flow Gestalt?

These questions of representation center around a more fundamental question of the nature

of flow– should we think of it as a continuous construct– ever deepening and e↵ortless

focus– or as a binary, gestalt one? Cśıkszentmihályi wrote “the flow model suggests that

flow exists on a continuum from extremely low to extremely high complexity” [96]. Most

modern conceptions are moving toward less categorical representations of flow. Moneta–

a colleague of Cśıkszentmihályi– categorizes flow into two levels, and shows in his work

that a third of UK adults experience ‘shallow flow’ but not the ‘deep flow’ in their lives

[306]. Keller and Landhauber suggest a continuous gradient of flow intensity based on

demand/skill balance and subjective task value [252].

The thrust of research is moving in the direction of a consolidated, continuous latent con-

ception of flow (a view that stands in opposition to a nine-factor model). But this is not

a settled debate, and indeed its label as a ‘state’ implies bivalence (you’re ‘in-the-zone’ or

you’re not). It is reasonable to theorize a categorical, gestalt notion of flow– something

greater than the sum of its parts that emerges probabilistically given the proper confluence

of state/trait/situation factors. If this is the case, how we operationalize it might natu-

rally require several irreducible, independent dimensions of observation glued together with
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probabilistic reasoning.

5.2.3 Is Flow Common?

Using his other major contribution to psychology– the Experience Sampling Method (ESM)–

Cśıkszentmihályi assessed flow in participants’ daily lives using two questions rated on 10-

point low-to-high scales (challenge of activity, skill of activity). As part of his methodology,

he would z-score each participant such that ’flow states’ are any activity with both above

average challenge and above average skill ratings for that individual. [98] Assuming normal

distributions in response, this results in a flow state designation roughly 25% of the time.

Labeled ‘the above average hypothesis’ by Keller and Landhauber, the method implies flow

is abundant in daily life, in opposition to his statements about its relative infrequency (i.e.

“On the rare occasions that it happens, we feel a sense of exhilaration, a deep sense

of enjoyment” [96]).

Most researchers assume flow occurs relatively infrequently and is hard to elicit. Cśıkszentmihályi

himself compared inducing flow in the lab to ”trying to make someone relax in a dentist’s

chair.” [305]. This di�culty makes flow hard to study, and incentivizes more generous

interpretations of flow experience as we see with the ’above average hypothesis’.

5.2.4 Is Flow Pleasant?

A central point of debate about flow states has centered around their a↵ective quality– are

you happy while in flow, or are you unable to experience emotions at all because you have

no sense of self? Here is Cśıkszentmihályi on the matter in 1996: “Flow is defined as a

psychological state in which the person feels simultaneously cognitively e�cient, motivated,

and happy” [308]. Here he is again, in 1999: “[D]uring the experience people are not nec-

essarily happy because they are too involved in the task (. . . ) to reflect on their subjective

states” [97].

In his 2002 book ‘Authentic Happiness’, Martin Seligman (the other main founder of positive

psychology) takes the stance that “it is the absence of emotion, of any kind of consciousness,
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that is at the heart of flow” [386]. In ‘Advances in Flow Research’, Engeser states ‘flow is

not defined by a↵ective means’ [139]. Some researchers, however, focus heavily on emotion

when operationalizing flow [283]. While this debate rages on, I believe Corinna Peifer unifies

the worldviews nicely [333]:

Literature provides contradicting statements whether flow is a positive emotional

state or if emotions are absent during flow. It is proposed here to rather speak

of a positively valenced state, than of an emotion. To experience emotions,

self-referential thoughts are needed, which are naturally absent during flow.

Interestingly, the flow physiology literature is split over whether subtle smiling (EMG ac-

tivation of the facial CS muscle) is a sign of flow or not. It has been demonstrated for

musicians, but not for other flow induction tasks like video games. These contradictory

results potentially highlight a true di↵erence between artistic flow tasks and other kinds of

flow task– for artistic tasks, deep and complete awareness of the a↵ective response elicited

through artistic action may be central to flow; for other types of flow task, it is not.

5.2.5 Is Flow Value-Aligned?

As we saw in Cśıkszentmihályi’s quote that started this chapter, he defines flow primarily

as ‘the positive aspects of human experience’ in line with prior work on ‘peak experience’

(a similar experience outlined by Maslow decades before as he studied the same idea). Its

relatedness to joy, fulfillment, and meaning are consistently highlighted in the literature.

However, it contrasts with prior work by defining focusing on the cognitive state rather than

the set of experiences. Maslow defined ‘peak experience’ as the study of fulfilling activity

and what constitutes it– the cognitive state is not included a priori as part of the definition.

Flow states– however– are defined by the phenomenology first.4

4Peak Experiences ask ’Given I have judged that experience as a fulfilling one, what occurred?’ Flow
instead asks instead ’Given you lost yourself in an intrinsically motivated way in what you were doing, what
happened?’ The value-aligned assessment of experience motivates the study for the first; the cognitive state
motivates the latter.
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Much like Maslow, Cśıkszentmihályi has clearly been motivated exclusively by peak ex-

periences when he started to study flow; he has kept flow states linked to value-aligned

experience throughout his writing in all of his colloquial definitions of flow, though it never

appears in his precise ones. Hence the ambiguity around whether flow-state applies to

gamblers, addicts, and passive media consumers; whether these experiences are judged as

‘peak, fulfilling experiences’ or ‘inescapable, addictive forces of destruction’ has to do with

a post-hoc value-/identity-laden appraisal rather than the phenomenology of the experience

itself.

There is very little work on flow in these kinds of situations, with only a handful of re-

searchers starting to study ‘the dark side’ of flow in combat, addiction, online, and while

gambling. [381]

5.3 Related concepts.

Flow as a concept sits among many related concepts. In this section, I’ll give a brief, high

level overview of the ontological landscape surrounding flow.

5.3.1 Altered States of Consciousness and Trait Absorption

Flow is an altered state of consciousness. As such, it shares many features with trance,

hypnosis, awe, religious experience, dissociation, depersonalization/derealization, and other

unusual cognitive states. Of particular note is hypnosis– a state which motivated Tellegen

(who wanted to identify hypnotically susceptible people) to create the Tellegen Absorption

Scale (TAS) in the 1970s [425]. This scale weakly correlated with hypnotic suggestibility;

instead, it became a measure of trait absorption and is the most common measure of a trait

related to flow today [281].
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5.3.2 Disentangling Flow

When we study flow, there are many other cognitive forces at work that we might need to

co-model, control for, or otherwise acknowledge. Modern experimental psychology describes

stress, emotion, cognitive load, perceptual load, alertness/arousal, engagement, immersion,

attention; a host of related ideas about the state of our mental operation and attention.

Additionally, we have personalities, beliefs, and motivations that can structure our mental

states– self e�cacy, intrinsic and extrinsic motivations, resilience, confidence (well-justified

and otherwise), etc.

Empirical work on any one of these ideas reveals the complexity underlying their relation-

ship. For example, Kahneman argues our attentional capacity is drawn from a reservoir

of cognitive e↵ort that scales with our level of arousal [73]. Arousal is also a fundamental

dimension of emotional state, as well as stress [228]. Isolating any one from any of the others

becomes nearly impossible in experimental work; we can rarely claim with certainty that

we’ve only modulated one parameter. We rely on unspoken, simplifying assumptions– that

these latent cognitive concepts are independent, or their causal interdependence is weak or

controlled for.5

5.3.3 Situating Flow

Engeser and Schiepe-Tiska point to precusors of the flow concept as Piaget and Caillois’s

‘Play’, Hebb and Berlyn’s ‘Optimal Stimulation’, White’s ‘Competence’, DeCharms ‘Per-

sonal Causation’, Groos and Buhler’s ‘Funktionslust’, and Maslow’s ‘Peak Experience’ [138].

Flow itself shares much in common with concepts like absorption or immersion (frequently

used to describe flow states alongside task fluency); it also shares a lot with engagement,

though engagement doesn’t imply the consistent depth of attention. In my opinion, the

5To illustrate, we may vary our task di�culty to influence flow; that probably means we’ve also altered the
number of perceptual objects, and thus perceptual load; we’ve altered the amount of processing required,
and thus cognitive load; we’ve placed more or less stress on the user, and made the task more or less
enjoyable, etc... to really understand the pure relationship of task di�cult to flow, we need to map the
entire constellation of tasks that vary over all dimensions, to their latent mental concept, and estimate the
interdependence of each pair of cognitive experiences.
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best extension of flow is the concept of ‘deep, e↵ortless attention’ [72]– which targets the

cognitive state associated with flow, while dispensing with flow’s ambiguity around value-

alignment, emotion, and categorical subtext (‘acheiving flow’ or ‘being in the zone’). My

preference is to operationalize this notion of deep, e↵ortless phenomenology in the moment,

and separate it from (1) an attempt to separate ‘passive’ from ‘active’ activities, when in

both cases the automatic processing is fully activated regardless of our role in the task

structure; which I see as an instinct rooted in Cśıkszentmihályi’s desire to (2) separate

activities based on a post hoc assessments of whether they are meaningful and fulfilling,

and only apply ‘flow states’ to the good ones.

This redefinition– as a type of attention– also properly situates this concept in the broader

landscape of work on attention. Attention itself is a rich topic in perceptual psychology and

neuroscience (as we saw in the last chapter on auditory attention) with rich taxonomies and

debates around early and late processing, selection, and automaticity [24]. These insights

are quite relevant to the ontological debate surrounding flow; yet models of attention are

rarely discussed in flow contexts.

When it comes to the other side of ‘flow’–understanding the nature of fulfilled living– Maslow

and the humanistic psychologists were the first to introduce many of the modern concepts

surrounding flourishing (and in my opinion, psychology’s best). Maslow’s treatment of peak

experiences (and later plateau experiences) powerfully speak to the ephemeral quality of

experience alongside the cognitive postures and habits that structure a well-lived life. His

work, of course, rests on the back of millennia of philosophers and religious leaders, who

have tackled eudiamonia, hedonia, and spirituality; the kinds of experiences, beliefs, and

attitudes that weigh in the balance of meaningful living. There is something to be said

for the way we approach our daily tasks; the joy of mastery, progress, and execution; the

state of total connection to our craft, our family, or our world. States of e↵ortless attention

matter, but they are only a small part of the answer to a larger, eternal question.
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5.4 How do we measure flow?

The confusion around the flow concept has resulted in a fractured literature; one review

found 24 distinct implementations of flow in just 42 articles [17]. There are literally dozens

of instruments measuring flow in di↵erent contexts and di↵erent languages. In mainstream

flow research, however, there are only a few general purpose methods that have become

most dominant. These methods were used by Cśıkszentmihályi or endorsed by him [312].

• FQ One standard technique to measure flow experience in general is with the Flow

Questionaire (FQ), a series of descriptions for which participants check ‘yes’ or ‘no’

to indicate whether they’ve ever experienced something similar. This was used i.e. to

test how many people had ever had shallow or deep flow experiences by Moneta [306],

and is generally regarded as a good instrument for assessing flow prevalence.

• ESM Cśıkszentmihályi used his Experience Sampling Method (ESM) to assess flow

in participants’ daily lives, by paging them at random times to answer two questions

rated on 10-point low-to-high scales (challenge of activity, skill of activity). As part

of his methodology, he would z-score each participant such that ‘flow states’ are any

activity with both above average challenge and above average skill ratings for that

individual [98]. This method has been criticized as it result in roughly 25% of daily

life labeled as ‘flow’ on average [17].

• FSS, DFS, Short FSS The Flow State Scale (FSS) is a 36 (5-point) Likert question

survey in which four questions are mapped to each of flow’s 9 dimensions developed

by Cśıkszentmihályi’s colleague Susan Jackson for sports applications [221]. After cri-

tique by Doganis, Iosifidou and Vlachopoulos [120] the FSS was refined to the FSS-2

with five questions replaced. This version of the scale was validated in music-playing

and education contexts, to make it a general use flow scale [222]. The FSS-2 is also

adapted to measure flow trait and called the Dispositional Flow Scale (DFS and DFS-

2) by simply changing the tense of the questions so they refer to a participants past

experience in general instead of their current activity. In the 2008 paper introduc-

ing these scales, Jackson also introduced short versions (the short FSS-2 and short
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DFS-2), which are 9 questions instead of 36, and still map to the original 9 axes of

Cśıkszentmihályi’s flow.

• FSS Another general purpose scale, called the Flow Short Scale (FSS– yes, confus-

ingly, sharing the same abbreviation as the Flow State Scale), is the only scale devel-

oped outside of Cśıkszentmihályi’s direct orbit to have gained widespread adoption

(especially in Europe, where Flow research has been more popular). This scale was

developed initially in German [358], though it has been translated broadly. It includes

10 (7-point) Likert questions (compared to the short FSS-2 9 questions). Though the

questions are similar, the FSS projects its questions down to two latent dimensions

for analysis– Absorption (4 questions) and Task Fluency (6 questions).

These scales are not without critique [258], though most of the criticism follows from the

critique of the flow concept itself rather than the instruments. These techniques tend to be

unruly (9 irreducible dimensions to analyze?) or improverished (two questions that suggest

an unrealistic amount of experience is in flow). With so much dispute about the core concept

itself, there is certainly room for improvement.
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5.5 Improving Flow Estimation

One approach to improve the flow definition is to divide the concept back into the two

separate areas of study from which it owes its origins– deep, e↵ortless attention (the phe-

nomenology of experience) on one hand, and its interaction with fulfillment (a la ‘peak

experiences’) on the other. This decision leaves us with a question about how to properly

operationalize the concept, given the typical questionnaire has several questions that ei-

ther (1) relate to antecedents for challenge/skill balance that are not integral to the core

phenomenological state of flow, or (2) probe an activity’s importance or reward based by

post hoc, value-laden assessments that have little to do with the experience in-the-moment.

These criticism are in line with a new but growing movement to redefine flow-like states

as simply ‘deep, e↵ortless engagement’ [72]; stripping it of many of the nine features that

currently define it.

In the following section, we propose two improvements to standard flow measurement.

We can improve our surveys to more accurately capture user-experienced flow, especially

as they experience it unfolding over time– a dimension of flow experience that has been

largely overlooked in standard survey methods. We can also shift our focus to include a

priori trust in bio-behavioral indicators of flow states.

5.6 Survey Improvements

5.6.1 The Standard Flow Survey

Regardless of the survey questions we choose, we’re left with self-report ratings of the

experience itself– self-interrogation of a state defined by its dissolution of self-awareness–

and its consequences (i.e. how did time feel?). When we use this method to measure

flow, we (1) have a number (i.e. 3 out of 5) with no notion of uncertainty that represents

flow state over a multi-minute interval. Moreover, self-report is subject to biases (demand

characteristics, memory ‘peak-end’ e↵ects, and participant self-awareness).
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We can improve the survey process alone in several ways. The typical flow study asks nine

specific questions (i.e. ’I feel I am competent enough to meet the highest demands of the

situation.’) or two questions (‘challenge/skill of activity’) instead of one simple one (‘Did

you experience flow?’). It suggests we either don’t trust people to understand the concept

or we expect a more accurate insight by asking several diverse questions instead of one.

If we educate a participant with examples and clarify exactly how we’d like to operationalize

the definition, this question seems as reasonable for self-interrogation as the other standard

questions. Moreover, given the literature demonstrating that these surveys merely correlate

with an increased likelihood of flow state rather than indicate the core state itself, this

seems to be a better (only) way to get a true self-assessment of flow state. We introduce

this self-interrogation to our surveys.

While asking about a gestalt concept like flow implies reaching for a higher level of abstrac-

tion than usual in our survey, we might favor lower levels of abstraction with other aspects

of the standard questionnaire. For instance, in typical practice, we ask secondary questions

about time perception (‘how did it feel?’) instead of interrogating time perception directly

by asking for duration and certainty estimates.

We might hypothesize, however, that the answer to ‘how time felt’ could be self-interrogated

in multiple ways. The first is contingent on two estimates– how long you believe has actually

elapsed vs. how much of that time you felt elapse (i.e., we could imagine your answer to

‘how time felt’ would drastically change if it is revealed to you that 2 hours had passed when

you thought it had actually just been 15 minutes). Alternatively, we might imagine someone

answering this question with a pure self-assessment of certainty– i.e. how accurate do I feel

I can be in my estimate of the current time? In this model, they would be unsurprised to

find out it had either been 15 minutes or 2 hours, and this ‘sense of certainty’ would not

change their rating with knowledge of how much time has actually elapsed.

This seems to be an opportunity to improve our understanding of the relationship between

the flow state and dimensions of time experience– by explicitly asking about certainty, we

also have an opportunity to integrate some preliminary notion of stochasticity into our
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representation of flow instead of treating it as a point estimate. We thus add a quantitative

slant to time experience by asking participants to (1) guess the time, (2) guess the duration

on task, and (3) estimate their certainty in both cases.

5.6.2 The Peak-End Rule

In 2008, Kahneman demonstrated an interesting e↵ect– that over short painful sessions

of hand in cold water, people would state a preference for a session that had the exact

same pain experience as another, but added a short duration of less pain at the end [119].

This experiment shows that memory does not simply integrate over an experience; our

recollections and judgements are filtered through a memory process that is biased towards

memorable moments– hence ‘the peak-end rule.’ The peak-end rule has been replicated

robustly over many tasks [209] and time-scales [415].

Unfortunately, the rule is really more like a ‘heuristic’– though the peak/end of an experience

is better correlated with final ratings than averages, the relationships are more complex than

a clean weighting of peak/end experience– for example, sometimes the end doesn’t seem to

matter much at all [345, 297, 165].

This insight about how a survey result applies to the task under study points to the lack

of consideration for the dynamics of time in flow survey results. We expect flow states to

take some time to access, yet we have no sense for how long this takes to achieve nor how

fragile that depth of focus may be.

5.6.3 Adding a Notion of Time

In our work, we use the standard short FSS-2 to benchmark against other literature. Because

this survey asks questions as they pertain to the entire interval, the peak-end rule would

suggest we should assume that they apply only to salient moments during the interval. In

other words, we should expect that that judgment does not map to the entire interval or

its average, but instead a few unknown timeslices of the experience.
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Mapping these overall judgements back to the interval can be di�cult, since we don’t know

how they apply in time. To interogate the time dimension of flow, we introduce questions

that specifically request data about the most salient moment of flow (what was the *peak*

depth of flow you experienced?) and durations (how long did it take you to get into flow?

What percentage of the time were you in flow? Was it one continuous experience of flow,

or many small experiences?). This separation of intensity and time helps disambiguate the

estimation process a participant may use in their overall ranking.

As part of our experimental work, we also asked participants to draw their flow experience

over time. Surprisingly, people reveal a diversity of temporal experience through these

drawings, especially in the face of di↵erent task structures. It’s now quite easy to analyze

these kind of data, fit functions to them, and utilize them as priors. How to properly

interpret and utilize this gestural data about a time interval is an open question.

5.7 Behavioral and Physiological Measures in Context

When we think of the people we know, we can usually tell whether they are in a deep

state of focus without surveys. At work, they might be very still and locked on to what

they’re doing with a contorted but relaxed facial expression. They might have a repetitive

behavior that they engage in unconsciously like shaking their leg or clicking a pen. For a

musician, their expressions may distort in line with what they’re playing in a way shows

deep connection to the sounds they’re producing, with a corresponding lack of focus on how

they look to others, their visual environment, and their physical body. Unlike a worker in

the zone, their eyes are likely closed– the last place we’d expect them to look is at their

hands– and their physical movements exaggerated in line with the rhythm.

In all cases, interrupting them might be very di�cult to do– their threshold for noticing

these distractions is high in these moments; and their corresponding reaction is typically

one of heightened shock. Observing this pattern– a person oblivious to relatively obvious

external stimuli and their corresponding surprise when they recognize it– is the normal
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Figure 5-3: Diverse flow faces; we see Musicians John Mayer (top-left), Patrick Metheny
(middle-right), and Christian Vader (bottom-right) furrowing their brows and contorting
their faces; Eric Clapton, in contrast (top-right), has an unusually relaxed expression. All
of these musicians have their eyes closed. The images in the lower left are from Robbie
Cooper’s ‘Immersion’ art project, showing people playing video games. We see a di↵erent
kind of facial expression here; eyes locked, with expression-less that may be relaxed or
may be contorted. Blink rates seem to slow, head motion is either non-existent or shifts
unusual as gaze remains unbroken. Despite the di↵erences between musicians and gamers,
the subtle cues suggest a similar utter focus on the percept being acted upon. Photos of
Metheny/Vader courtesy of Joe Paradiso.
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mechanism we use to gain confidence that the subtle behavioral and physiological cues we

attribute to that individual’s focus are correct.

We can model our formal process of reasoning about flow states o↵ of this intuitive process

we utilize in our lives. We don’t use surveys to build our models of other peoples’ atten-

tional states, yet our mental models are typically very good. There are a few important

features of this anecdote: (1) models likely need to be heavily personalized and may vary

by activity; if we care about understanding real instances of natural flow, we need to study

it idiographically, with real activities, in real contexts, (2) we have access to other power-

ful indicators of attentional depth that we should trust a priori (as much we trust survey

results), and we can combine them with surveys to infer the underlying cognitive state. To

formalize these improvements, we suggest a move toward:

• Field Measurement Cśıkszentmihályi studied people in their normal lives with sur-

veys; he compared inducing flow in the lab to ”trying to make someone relax in a

dentist’s chair.” [305]. Flow is rare; to study it e↵ectively requires tools that people

can live with. As far as flow research goes, so far, that has only involved surveys

and pagers.footnotePagers are used as part of ‘Experience Sampling’ to simply deliver

short surveys at random moments, and thus mitigate the biases of recollection.

• Psychophysiology In the lab, several people have studied or put forth psychophys-

iological theories of flow. [333]. These usually follow from Dietrich’s hypo-frontality

hypothesis [116] (downregulation of prefrontal cortex because attention is e↵ortless)

with EEG/fNIRS or the hypothesis of a distinct physiological profile for flow. Prelimi-

nary fNIRs work has shown no evidence of hypofrontality [192]. There is contradictory

evidence for facial EMG and EDA; possible trends for salivary cortisol, and general

corroboration for decreased HRV [240, 283]. Much of this work is preliminary; all of it

relies on simple survey results compared against population level trends in summary

statistics. Psychophysiological modeling in this space is still relatively underdevel-

oped.

• Behavioral Cues An under-utilized tool for studying flow states, there are many be-
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havioral cues we can use to infer depth of focus (much like we do as people). Obviously,

someone in flow is not task switching, self interrupting, and shifting their attention in

an overt manner. Beyond these obvious indications of inattention, someone’s stillness,

blinking, and relaxed face posture can indicate the dissolution of self-awareness; they

also stop responding to distracting stimuli– until, of course, a su�ciently substantial

interruption takes them out of the moment (large startle responses are a good indi-

cator of flow in the moment before). We can tap into these common sense signals to

estimate flow.

Our goal is to move from (A/B) in Figure 5-4, where we treat flow as deterministically

and perfectly linked to one number over the entire interval duration, to (C), where we use

multimodal insights to estimate the probability that they are in an underlying flow state at

a specific moment.

5.7.1 Toward Data Generating Theories

In the world of (A/B) above, researchers put forward variations of the survey in line with

their beliefs. These definitions are justified by intuition, rarely compared, and largely tau-

tological in the contexts where they are applied (there is no arguing with a particular

definition; it simply represents a new variant of the concept that highlights certain features

the author deems important). This is problematic, because the expansion of practical defi-

nitions stands in direct opposition to theory-building and scientific abstraction. Moreover,

with so many definitions in practice, we can’t easily identify which are the best abstractions.

Comparing and consolidating definitions is a necessary first step; but in the context of

current practice, this is di�cult because the theories are not data generating. If we wish

to compare them, we must assume data-generating features about them; for example, in

the contexts for which we a priori expect the definitions to apply, the best one gives more

consistent/high ratings compared to others, maximizes the variance, captures a presumed

feature of the underlying distribution, or minimizes overlap with other established concepts.

Notice that none of these claims are encoded in the definitions themselves.
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Figure 5-4: A Representation of Flow Estimates. (A) Surveys; they don’t capture a notion
of uncertainty for the interval that was ranked other than perhaps something like Cron-
back’s alpha for internal consistency. More or less, you have ‘4 out of 7’ flow for a task,
unidimensionally or multidimensionally. (B) We try to learn what physiology represents
flow states. We treat the state as known– it is once again the singular number reported by
the user, the ‘ground truth’, for a given task. We typically will then treat the entire task as
‘in flow’ or ‘out of flow’ as labeled, and compare summary statistics to the number. More
sophisticated papers may apply more intelligent processing of the time-series data. (C) Our
proposal is to learn a probability distribution per timeslice during an interval, and adapt
the survey questions to give insight into the time-varying nature of flow and attention. We
also apply our collected data intelligently to the relevant time steps– if we introduce a small
distractor that goes unnoticed, we can infer something about that brief period. If the user
incorrectly estimates the passage of time, we expect that to reflect an integrated estimate
of their experience. If they give a survey response, we expect that to apply to some moment
of peak salience, not the entire interval. Additionally, instead of treating survey responses
as ground truth, we treat them as strong suggestions; we co-learn all relationships. When
multi-modal signals all agree, we have more faith in the ones that do and trust them more.
Thus, if someone has a clear physiological indicator that they are focused (i.e. unusual
stillness while working), we can infer latent focus state from that just as much as we infer
that the physiology is representative of flow. We move improve (B) with a stochastic, time-
varying notion of flow for which survey data is treated as one of many noisy sources of data
for the underlying state.
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The real definition of flow is this data-generating claim we use to compare it. In other

words, we see two kinds of statements that rarely intersect in the literature– ‘Flow is X.’

(i.e. the answers to these survey questions) and ‘We expect Flow to have features Y under

conditions Z.’ (i.e. a good definition of flow will be one that gives high ratings for musicians

and gamers). Instead, we should say ‘Flow is the thing that has features Y under conditions

Z.’ Our definitions are theories; our theories need to be data generating so we can compare

them.

When we move to multi-modal, probabilistic representations of flow, we are faced with a

similar proliferation of possible theories as we see under surveys– what are the underlying

relationships between these measures? Which do we trust a priori, and how much? In

contrast to the survey-based definitions however, these definitions explicitly encode the

data generating process about how flow manifests across all of the measures for which we

have access. It is easy to compare and improve theories based on how well they explain the

real distributions of data we capture.

This forms the basis of our contributions to flow research. We attempt to (1) base our

estimate of flow on self-report, physiology, and behavior; (2) we build tools to capture these

signals in the course of normal daily living; and (3) we modify our use of surveys in several

important ways such that they give us insight into the time-varying nature of flow over a

task interval. Moreover, we refrain from treating them as ‘ground truth’– which they are

not– and instead treat them as one of many noisy estimates from which we can estimate

the true latent flow experience. When our predictors agree in common sense ways, we have

higher confidence; when we have higher confidence, we learn about the trustworthiness and

consistency of our predictors.

We can thus create explicit, data generating theories of flow to describe the underlying

relationships between these indicators in the language of PPLs. Armed with a large dataset

of naturalistic, bio-behavioral flow data, we can compare the our theories against real world

data and converge on the best definitions.
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5.8 New Wearables for Flow Estimation

The following sections introduce wearables I’ve built to study flow in the wild.

The first, Equinox, is a watch designed to integrate into someone’s life as they hide the

rest of their clocks– when they need to check the time, they have to first guess it with

this watch. It enables the study of time distortion in daily life; we show that– despite

the rigidly clocked nature of modern life– people readily experience time distortion during

their day, and there is variation we might take advantage of when we try to estimate

flow naturalistically. Based on the literature, we expect time estimate error to accumulate

relative to attentional/emotional state over an interval.

The second, Feather, is a leg-band that pokes the user at various levels of intensity through-

out the day. It drops down to a barely noticeable level and slowly gets stronger until the

user notices it. In initial testing, it seems that the threshold at which people notice a small

distraction fluctuates throughout their day; moreover, this gives an interesting and accurate

point estimate of focus level.

The final, Captivates, is a pair of smartglasses really targeted to measure head stillness

and blink rates, which are common sense indicators of deep flow (see again i.e. Figure

5-3 Robber Cooper’s ‘Immersion’ art piece). Captivates also allows an intervention to test

awareness/vigilance– an LED in the periphery of the glasses will infrequently change colors

from green to blue. This change is slow enough to be ‘change-blind’– not to draw attention

to itself. By looking at how long it takes a user to notice the color change, we have yet

another quantitative behavioral insight– this time, good assurance that the participant is

in a state of flow just before and during that period should they miss the change; and

good assurance that they’re not particularly focused at that moment should they catch it

immediately. Preliminary tests show delays up to 15 minutes before noticing.
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Figure 5-5: David sporting the wearables described below.
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Figure 5-6: The custom ‘Equinox’ watch can notify the user, monitor ambient light levels,
and collect time estimates, duration estimates, or experience sampling survey data all day
long. In our initial test, we ask users to guess the time in order to check the time.

5.9 Wearables for Flow Estimation: Equinox

5.9.1 Introduction

Our perception of time varies with our experience. Time flies when we are deeply engaged

in ‘flow’ (i.e while playing music or sport) and slows when we are highly aroused or stressed

(i.e. during a car accident) [139, 411]. Research has shown significant time distortion

when we are highly engaged; under extreme states of stress or emotional arousal; and when

environmental cues are removed. By measuring these time distortions, we can thus (1) infer

someone’s cognitive experience and state of deep engagement [70] and (2) evaluate design

(time perception has become an area of increasing focus within HCI [318, 263], and shaping

time perception is frequently an explicit interaction design goal [460]).

Time distortions have been studied in controlled laboratory situations (like during a video

game or while looking at emotionally evocative images) and in specific, extreme situations

(like cave exploration or free-fall) [370, 363, 314], but have not been studied in daily routine.

Clocks are ubiquitous, which makes the phenomena di�cult to capture.
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This research explores the possibility of extending time perception research to naturalistic

settings. We present a new wearable called ‘Equinox’ specifically created to enable daily

time perception research, and tested it with a small set of users to understand the feasibility

of ecologically valid time perception measurement. The contributions are as follows:

• We present a new watch interface specifically designed for time perception study. To

our knowledge, this is the first intervention targeting the study of time perception

across normal daily experiences.

• We present a novel time perception time experimental paradigm. In order to integrate

into modern life, Equinox asks participants to guess the time when they need to check

the time (we refer to this guess of the clock state as a ‘clock-time estimate’). To our

knowledge, clock-time estimates are a novel approach to study perceptual distortions

in the time perception literature; time perception literature exclusively uses intervals

or durations.

• Equinox was evaluated by seven initial users over 31.8 hours in their normal lives

(playing sports, working, etc). This data provides insight into the feasibility of natu-

ralistic time perception study. We aim to answer a few questions: (1) Can we collect

meaningful time perception data at all during a user’s normal, highly scheduled life,

and on what time scales? (2) Do people experience meaningful and varied time distor-

tions on a daily basis? (3) Are there obvious trends in the data that suggest clock-time

estimates are a feasible or valid way to approach time perception research?

• Finally, we summarize our lessons learned to inform future design work.

5.9.2 Background

William James famously suggested that ‘varied and interesting experiences’ feel short in

the moment and long in retrospect [223], and the data has borne him out. Prospective

time-keeping (where the user is informed ahead of time that they will be asked to estimate

duration) are usually more accurate and less compressed than retrospective assessments
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[71, 202]. There is less research on longer time estimates (hours to days), but the studies

that have tested these intervals suggest similar trends [70, 433].

Time perception is usually measured prospectively by estimating, producing, reproducing,

or comparing durations [185, 430]. While production has been used to assess perception of

intervals on the order of minutes (i.e., play this game until you feel 10 minutes have passed);

for longer durations, estimation is the most common and practical strategy.

Influences on Time Perception: Arousal, Attention, and Environment

Emotional state alters time perception [432, 124], but recent work suggests the mechanism

is mediated by arousal, a.k.a. the intensity of a felt emotion– for instance, sad faces do not

have the same e↵ect as frightened ones [123]. Research in depressed patients corroborates

a relationship between time perception and arousal [430]. Increased arousal during short,

adventurous activities slows time up to 30% [411].

Deep focus is another cognitive state that alters time perception dramatically. Time esti-

mates are 40% underestimated during hypnosis [404], during video games [370, 314], and

in flow [191]. It is common to see this relationship exploited to interrogate video game

immersion [314, 363].

Environmental cues also can alter our perception of time. Time spent building small scale

models of i.e. trains or ships appears to compress time [299]. Moreover, light-deprived cavers

will drift towards a 48 hour circadian cycle and underestimate their time underground by

about half [190].

Models of Time Perception

While there are challenges unifying a theory of time perception with the variability intro-

duced by memory, duration, and task structure6, the ‘pacemaker-accumulator’ model first
6Take ‘Vierodt’s Law’– commonly reported in time perception literature across durations– that people

have a central tendency when making time duration estimates, and will overestimate short durations and
underestimate longer ones. This e↵ect has recently been called into question based on systematic method-
ological errors in time perception research. [176]
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Deconstructed Equinox to show the PCB layout and mechanical design.

Figure 5-7: The two PCB design of the Equinox watch. This design sandwiches two boards
together, so that the top board can support a large, flat touch interface. Individually
addressable LEDs emit light around the mid-plane of the watch.

proposed by Treisman in 1963 is still dominant [435]. This two-part model is comprised

of an internal clock (influenced by arousal/environment) generating ticks that are counted

by an accumulator (influenced by attention) and filtered through memory. Some intrinsic

neuro-scientific models [124, 423] support this conception, though other modality-specific

models are gaining traction (i.e. ‘dedicated’ neural circuits just for motor prediction and

timing) [48, 423].

5.9.3 Equinox

A watch interface is a minimally disruptive, well-received interface for psychological ex-

periment [198] and is one of the only ways to preempt phone-based time checks. Equinox

(Fig. 5-6 & 5-7) is a custom watch interface that captures white light/overall light lev-

els, temperature, and humidity; it syncs with a phone over BLE and keeps track of the

time accurately. It provides a 72x40 OLED display, three tactile buttons, twelve LEDs,

a vibration motor, and a capacitive touch wheel for user interaction. The watch com-
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municates to a cross-platform native smartphone application, and authorizes and uploads

data to a Firebase database instance which synchronously supports multiple watches and

users; it is also programmed with a range of interactions including duration estimates,

clock-time estimates, and experience sampling. Equinox is an open hardware design, with

PCBs available at https://oshpark.com/profiles/dramsay. A bill of materials, custom

firmware code, mechanical design files, and the companion application code are all available

at https://github.com/mitmedialab/equinox.

Design Considerations

Sensor selection and UI design considerations in Equinox are driven by the need to adapt

laboratory time perception measurement instruments to daily life, embody them such that

they’re usable and reliable, and to collect secondary environmental data that might influence

timing judgement.

We prioritized measuring time perception over minutes to hours, to ascertain a picture of

time distortion across a full day, with interaction support for both duration measurements

(where the user starts the watch, and then estimates the elapsed number of minutes when

prompted) as well as clock-time estimates (guess the time when you need to check the time).

The device provides enough UI degrees of freedom to prototype any major time perception

task.

We included secondary measures of temperature and humidity because they can indicate

indoor/outdoor context switches [105], influence arousal level [186], and provide an ambi-

ent baseline for additional skin-temperature arousal monitoring techniques [114]. We also

include ambient light measurements, as peripheral light can be a powerful indicator of time

passing [422, 190]. These measures give us insight into arousal and environmental cues–

the two main factors outside of engagement– that might a↵ect time perception, especially

when paired with additional wearables [84, 349].

We want to integrate time perception measurement into a user’s life in a way that is mini-

mally disruptive and practical. Users need to check the time frequently; moreover, almost
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Equinox interaction design examples.

Figure 5-8: Two possible interactions with Equinox. (A) shows the watch vibrating and
lighting up to prompt a user to guess the time, (B) shows an example of an ESM survey
where the bottom of the touch dial maps to a 5-point likert scale rating. For our main
exploratory analysis, we allowed the user to initiate a ‘guess time’ interaction, and displayed
the current time immediately after their guess.

every screen-based UI immediately greets users with the current time, making it di�cult to

hide explicit time cues from users. We designed our interaction as a minimally invasive, easy

to bypass interaction that provides the current time immediately, with minimal overhead,

and which can be easily dismissed and reset should the user receive an external cue.

Our desire for minimal disruption during field use also informed our engineering goals– all

day battery life, responsive and precise touch UI, data caching when operating without a

nearby phone, accurate time-keeping, and easy charging.

Finally, we had a desire for researcher usability, enabling flexibly prototyping of various time

interactions, seamlessly data collection, and easily integration with a wider wearable ecosys-

tem. Hardware and software transparency is integral to physiological monitoring [319]; this

platform a↵ords hardware upgrades and extensions, alongside easy cross-platform app de-

velopment with a single toolchain. This makes Equinox a useful, open-source prototyping

platform for others.
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5.9.4 Evaluation

Preliminary Stages

We started with a preliminary engineering evaluation to check that all engineering systems

were successfully capturing a range of realistic conditions (i.e. direct light, cold tempera-

tures), that data was correctly cached when out-of-range of a BLE master device, and that

the touch controller provided smooth, single-minute resolution data entry. Battery life was

>10hrs in all tests, and clock drift never approached 1 minute (our lowest resolution).

We performed short interviews with potential users, to inform a few preliminary design

decisions before running our initial usability study:

• Time Intervals. After building the watch to support up to 15 second steps, we

decided on 1 minute resolution, based on how frequently we expect people to check

the time.

• Clock-time instead of Duration. Duration measures require the user to initialize a

timer, and should be rendered invalid if they see a clock (a peripheral time cue) during

that test. We decided against this interaction because (1) it puts an initialization

burden on the user, which they must remember and which primes them prospectively

(retrospective measurements are preferable because they show more time dilation),

and (2) it creates a parallel, secondary timing task from the primary user timing task

of tracking their daily schedule. This adds a lot of friction, and room for unwitting

bias from checking the clock in parallel. We instead decided to integrate the time-

perception measurement into the time-monitoring process people already engage with.

We use the natural instinct to check the time to capture measurements; it also makes

‘mistakes’ more clear to users (glancing at a clock during a task where you estimate

the clock-time obviously invalidates that interval; this is less obvious for duration

estimates).

• Expectations of ‘Mistakes’. Participants were willing to put post-it notes over

clocks around their workspace and switch to push calendar notifications to alert them
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for meetings. We still expect many intervals throughout the day to be invalid because

of scheduled cues or clocks; thus, we designed an interaction to accommodate these

frequent ‘failures’ with the tap of a button.

• Natural Breaks instead of Interruptions. Instead of interrupting the user to

initiate a clock-time estimate after a random interval with a vibration and light alert

(Figure 5-8), we decided to allow the user to use the watch as they normally would

to check the time, but with a short preceding interaction (either guess the time, or

hit a button to indicate you’d seen a clock or received a reminder since you last

looked at your watch). This interaction is easy to bypass if the user is in a rush;

it also maximizes the interval lengths we can study naturalistically, and gives us an

additional signal into user stress and focus (i.e. we expect stressed/distracted users

will check the time more frequently).

Our final interaction was designed with speed in mind, knowing how frequently people must

check the time. When the user touches the dial of the watch, it enters ‘guess time mode’;

releasing the dial locks in that guess and quickly reveals the actual time. This interaction

requires a single gesture, without buttons. Users who have noticed the time elsewhere can

instead hit a button that will bypass the ‘guess time’ interaction, show the time, and reset

the interaction.

Primary Exploratory Study

Using this interaction, we collected 32 hours worth of data with 7 initial users (age 25-34)

in their normal, naturally-lit workspace, with no constraints on work tasks. Fig 5-9 shows

the resulting 59 time estimates taken between 7 min and 1 hr 51 min after last checking

the time (mean=33.5 min). No users reported major input errors, though some reported

surprise at their accuracy (both good and bad).

Our data shows that average time estimate error was 12.5 minutes (after accounting for o↵-

by-one-hour mistakes). Errors heavily favors time compression at an average 7.4 minutes
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Figure 5-9: Resulting Data from Equinox study. (A) compares the duration since the
last time a user checked their watch (x-axis) with the duration their estimate (so if they
checked their watch at noon, and then guessed it was 12:15 at 12:20, we’d see a point at
(20min, 15min))– accurate guesses fall along the dotted line. (B) shows continuous light
level (white and full-spectrum), temperature, and humidity data displayed in the custom
iPhone application, which synchronizes data with a secure online database. These estimates
are during normal daily activity and represent a range of focus states.
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short (22.1% of the actual duration). These time errors reasonably match expectation of

retrospective, duration-based time perception lab research [404, 411]. For durations over

an hour, estimates tend to favor 5 minute increments.

Over twenty of our estimates were after 5PM; a comparison between daytime and evening

time estimates showed no meaningful di↵erences, though this data is preliminary (evening

errors = 10.8 min ± 10.9, day errors = 13.4 min ± 11.0, average time since last check =

31.0 vs 34.9).

5.9.5 Discussion and Future Work

In this section, we presented a novel, open source interface for naturalistic time perception

measurement, and validated some basic assumptions by using it in a 32 hour pilot study. We

were able to collect high quality data over the course of the study, which validates that (1)

naturalistic time perception measurement during a normal workday on the order of 10-45

minutes is possible and (2) users experience significant and measurable time distortion in

normal life that we can capture, especially as intervals grow.

This preliminary data shows no obvious major di↵erences between clock-time estimates

during unscheduled, dark evening hours compared with the workday, which suggests the

influence of peripheral cues may not be as significant a factor as we had initially anticipated.

The raw data reveals some fascinating trends. We would expect long duration, ‘in-the-zone’

work periods to have some of the most significant time compression, which they do. How-

ever, clock-time estimates have unique errors compared with typical duration techniques.

Three users made o↵-by-an-hour errors, which suggests they were conceptualizing the task

as a prospective duration task (‘how many minutes have passed?’) and focused only on the

minute value.

Another three users made estimates that were not o↵-by-an-hour, but still greater than

the interval since the last time they checked the watch (i.e., checking the time at 10p,

then guessing at 10:30p that it’s 9:57p or 11:02p). Given the frequency of this phenomena,
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we hypothesize that users don’t memorize the time precisely (i.e. 1:43PM), and instead

conceptualize its meaning (it’s a early afternoon and I still have a while before my meeting)

in a way that can be very forgettable if they have no incumbent commitments.

These errors raise some interesting questions about how to properly handle the data we

receive; clock-time estimation may not directly map to a rigid prospective/retrospective

paradigm. With continued use and habituation we might expect ‘more retrospective’ as-

sessments, though the overall trend between focus and time distortion in both cases is

similar. These data elicit interesting questions about how we conceive of time in our daily

lives– how should we interpret a failure to internalize the time when glancing at the clock?

Our work suggests ecological data is varied, insightful, and worth capturing. It also raises

questions important to future naturalistic study specifically and time perception research

generally. Future studies will collect more data; pair the watch with other wearables;

extend the work to include experience sampling of related cognitive phenomena; and more

rigorously evaluate environmental covariates.

Most importantly, we plan to further explore clock-time estimation as a technique, and

compare it more robustly to duration-specific estimates. Future work will focus on further

understanding the mental processes behind clock-time estimation and how they di↵er from

and interact with standard time perception research practice. This question is central to

naturalistic time perception work, as clock-time is central to naturalistic living and will

always confound time perception research in the wild.

Moreover, the common errors we find in wall-clock estimates suggest variability and com-

plexity in individual approaches to clock-time estimation, and suggest that we frequently

fail to internalize (hold in working memory or shift to long-term) exact numerical clock-

time representations. Beyond time distortions, our data suggests the frequency with which

a user checks the time and forgets the time may also provide quantitative insight into user

phenomenology.
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5.9.6 Conclusions

We present an open-source platform for the naturalistic study of time perception. Equinox

has successfully demonstrated the feasibility of this agenda. With it, we measured high

levels of time distortion in our participants’ daily lives, alongside a new method for time

perception measurement– the clock-time estimate.

We plan to use the lessons learned from this exploratory study to refine and expand our

data collection techniques. Naturalistic studies provide an opportunity to vastly scale data

collection compared to lab-constrained designs, which will be crucial to improve our un-

derlying models of time perception. Ultimately, tools like Equinox will allow us to infer

engagement and emotion from time distortion in a quantitative way so that we can evalu-

ate the design and impact of our tools and our environments to increase the depth of our

engagement– and thus our happiness– with our daily experiences.

5.10 Wearables for Flow Estimation: Feather

Feather is a leg-mounted interface vibrates over a range of intensities at the threshold

of awareness, slowly increasing its strength over time. When the user notices a stimuli,

they indicate it by pressing a button, and the system records the corresponding vibration

intensity. We test whether there are significant enough fluctuations in the threshold of

exogenous attentional capture with Feather to usefully inform a model of user cognitive

state estimation with a small set of initial users in real-world settings.

5.10.1 Introduction

The depth of a person’s attention in the natural environment is di�cult to measure. Many

domain-specific techniques have been suggested [327, 235, 429]; these, however, typically

rely on self-report scales, which have considerable systemic error [165] or focus on overt

attention (i.e. eye gaze) instead of underlying depth or quality [197].
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Images of the Feather leg-strap prototype.

Figure 5-10: The ‘Feather’ device is strapped to the leg to monitor how intense a vibration
is required to exogenously draw the user’s attention away from their task in naturalistic
settings. It can easily be hidden under the user’s clothes. When the user senses a vibration,
they indicate it by hitting the ‘surprised smiley’ icon.
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At the same time, our attention shapes our perception in ways that have been been leveraged

to inform notification design (i.e. you won’t notice a notification designed at the threshold

of noticing if you’re deeply focused) [30, 216]. In this section, we invert that logic to create

a novel methodology for quantifying engagement. The contributions are as follows:

• The design of a device to make inferences about user cognitive state by measuring

fluctuations in the strength of a tactile stimuli required to capture the attention of

the user (‘Feather’). To our knowledge, this is the first intervention to use variations

in our threshold for noticing to inform a model of cognitive state.

• A prototype that can be used for naturalistic study in daily life, and run a pilot user

study with 6 participants who spent a total of 26.4 hours testing this device while at

their desk.

• An evaluation of the initial data with the goal of (1) assessing whether these fluctua-

tions meaningfully capture information about the cognitive state of the user and (2)

informing future interface design.

5.10.2 Background

Interactions of Mental State and Design

Notifications can be explicitly tuned to balance noticeability and distractability [244]. Two

interventions take advantage of this research to design notifications just at the threshold

for capturing attention– aurally by modifying background music [30], or visually at the

edge of the visual field [216]. These notifications are designed such that fluctuations in a

user’s cognitive state alters the likelihood of noticing the stimuli– deep focus will proceed

uninterrupted.

Compared with other modalities, tactile stimuli are very successful at capturing attention

even during active tasks [367], and have been used extensively in the peripheral notification

design literature [417, 337].
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Representative data from a session with the Feather device.

Figure 5-11: Representative data from a user wearing the device. Green lines indicate that
the user has noticed the stimuli; black marks show the stair-stepping increase of vibration
intensity that start 1-5 minutes after the last noticed event. There are a few long sections
without a notice, as well as a few sections where the user continues to notice lower and
lower vibration intensities in rapid succession, consistent with the idea that focus state is
altering this threshold.

Related Measurement Techniques

The interaction between mental state and responding has been used to infer cognitive states

in the peripheral detection task (PDT)– once an ISO-standard road test to categorize cog-

nitive load while driving [462]. In the PDT participants press a button when they notice

a light in their peripheral vision; a newer extension of this task replaces the light with a

vibration on the shoulder (tactile Detection Response Task or tDRT) [414].

tDRTs provide empirical support for the use of tactile cues as a cognitive indicator, but

are tailored for high cognitive load task situations. The test stimuli are fired rapidly (every

3-5 sec), at constant intensity, long duration (1 sec), and reliable noticeability (>95% in

practice– reaction times are the primary tDRT measure). Furthermore, tDRTs do not need

to disambiguate noticing and reacting (response conflict is a known e↵ect) [462]. This rapid

and consistent dual task paradigm is a poor fit for the naturalistic study of focus.
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5.10.3 Feather

Feather is based on the Pavlok, a commercial device designed to induce pain with electric

shock (50-450V, 4mA, 100 steps of intensity) and to deliver tactile vibrations across a

range of intensities and durations (using a low-power SMD cylindrical ERM motor; likely

the NFP-RF2323, which delivers 0.4G.)

Preliminary Design

The main considerations for Feather’s design are (1) the ability to present finely resolved

stimuli at the threshold of noticing, (2) consistent and comfortable long-term use in natu-

ralistic settings, and (3) an interaction that allows the user to forget about the secondary

task and accurately probe the intensity required for exogenous attentional capture.

Our initial testing revealed that leg-coupled vibrations in the range of our device transition

through a range of intensities that match the motor’s operating regime to the threshold

where vibrations are di�cult to notice even with full focus. Furthermore, leg movement is

minimal, which provides a more consistent contact and reduces the perceptual noise from

motion, (besides supplying a discrete place for comfortable, long-term use). Based on these

initial considerations, we created the form factor seen in Fig 5-10.

Our initial tests also included electrostimulation at very low levels. Participant concern

around the pain of shock (even at the threshold of noticing) induced anxiety and hyper-

vigilance. Though we were able to find a region of stimulation that passed from unobservable

to noticeable, the perceptual transition was sharper than with vibration. For these reasons,

we focused exclusively on vibration.

Calibration Tests

Our first characterization tests were to estimate the precision of the system across trials.

We fixed a MPU6050 accelerometer to the device and captured acceleration data at each
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vibration command level (range from 1-100, though the lowest practical value is 30) over

five trials. Peak acceleration data for each trial is shown in Fig 5-12, with a line to indicate

the average peak acceleration per level.

The data reveal a concerning and highly variable peak acceleration through the command

levels of the Pavlok device. This is likely due to the fact that we are driving this motors at the

limit of their design (even the smallest vibration motors are built to be create unambiguous

vibrations), and it seems the initial torque required to pulse the o↵set mass varies depending

on how it is resting.

Peak acceleration does not map directly to perception, though; we could consider average

acceleration and duration, and we haven’t factored in the quality of the contact with the skin

and user perceptual acuity. To fully characterize the uncertainty introduced by the system,

we had six participants rapidly test on a narrow range of levels around their threshold for

noticing. Each level appears ten times; users were instructed to indicate when they felt

a vibration. Placement has a large impact on test results; further back on the calf (more

muscle contact) is less sensitive and more variable than further forward (coupling to the

bone).

The results after proper placement are more encouraging— on average there is an increase

in the likelihood of noticing a stimuli by 9.5% (± 2.5%) with each increased intensity step

when the user is focused; it takes 6.5 steps for the average user to transition from rarely

noticing to consistently noticing a stimuli (<20% to >80%) when focused. This is true

across a wide range of thresholds, which vary across individuals (41±9 on a scale from 1 to

100).

While this is not a perfect mechanical system for our task, it is su�cient to test for cog-

nitively induced di↵erences in noticing throughout the day. To improve the quality of the

readings, as the stimuli increase in intensity, we test at each level 3 times; this improves

the odds of a high peak acceleration (which we can see in 5-12 follows a linear trend and a

consistent increase in vibration intensity); it should mean our calibration transition range

should also represent the worst case (i.e. the 80% odds of noticing one pulse gives 99.2%

odds when it is presented three times).
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Calibration data and summary results.

Figure 5-12: (Left) Peak acceleration measurements from the motor when commanded at
various intensities; dots represent raw measurements, the line represents the average. There
is quite a bit of spread here, though the highest acceleration when as we continue to draw
samples at each level follows a linear trend. Peak acceleration does not capture all the fea-
tures of the input waveform that interact with perception (i.e. average intensity, duration).
(Center) To characterize this noise in practice, users were asked to do a calibration pro-
cedure where they were rapidly presented with a random string of intensities around their
threshold of noticing. It takes users an average of 6.5 steps to move from a level where they
notice less than 20% of the stimuli to more than 80% when they pay attention. Threshold
estimates are thus probabilistic, but informative; to capture better quality information, we
present each level of stimuli 3 times as they increase. (Right) Summary data from the user
study, collected over 26 hours with six participants. Most participants have a pretty large
spread in noticed intensity even over a single working session; for some, like participant 4,
the data indicate a real e↵ect of cognition on the data (i.e. a tight standard deviation with
large outliers).

In initial testing, the best method we found for robust placement was to run quick tests

with the user while they move it from the front of the leg working backward, such that

it is both comfortable and operating in the right regime of sensitivity. We followed this

process for the remainder of the task. During this process, multiple participants suggested

they would like a question mark button or said they struggled to tell a vibration from their

blood flow. Many volunteered comments in the initial testing along the lines of “yes I felt

that, but there’s no way I would notice that if I wasn’t paying really close attention to my

leg.”

Pilot Test

Six users wore the feather for a total of 26.4 hours while going about their normal work-

day. Participant are instructed to hit the surprised smiley button when they notice a
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Images of the Feather leg-strap prototype.

Figure 5-13: The distribution of z-scored, self-reported focus based on self-report during
our test (left; based on a 5-point likert scale very distracted/average/very focused), as well
as a comparison between these self-reported values and the level of stimuli that grabbed
the user’s attention (right). The dataset is small but suggestive that as people start to
focus, they become more aware of distractions. We posit that for deep levels of focus, the
threshold starts to increase again (an inverted-U shape); to capture this will require a larger
dataset taken especially in deep states of focus.

stimulus, and then asked to self report their level of focus prior to the interruption (1-5,

very distracted/slightly distracted/average/focused/very focused). The pattern of stimuli

(a stair-stepping pattern) was designed to (1) present each level of intensity three times,

helping to reduce noise from stimuli variability, (2) remove simple repeated/increasing pat-

terns of intensity or timing information that could prime responses, and (3) match the last

intensity that was noticed after 8.5-12.5 minutes so the user can re-focus (1-5 minute break,

followed by vibrations every 15-45 seconds). This pattern- alongside typical results for a

participant- can be seen in Fig 5-11; summary results are in table Fig 5-12R; self-report

data is summarized in Fig 5-13.

5.10.4 Discussion and Future Work

The data reveal that fluctuations in a user’s threshold of noticing a tactile stimuli exist

well beyond what can be easily explained by normal variation from the calibration phase,

especially given that stimuli repeat at each intensity three times during the sequence. It

corroborates that Feather is capturing cognitive e↵ects in this behavior signal; this interpre-

tation is reinforced by patterns of noticing in Fig 5-11; it’s also reinforced in the unsolicited,
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qualitative comments volunteered by every participant (i.e. ‘it’s so faint I would never no-

tice that if I was working’, ‘I definitely missed a few’, ‘I wish there was a question mark

button because I thought I might’ve felt it’, etc).

Self-report data is weakly informative; individuals almost always select ‘average’ when de-

scribing their state of focus. To compare self-reported focus with stimuli intensity, we

separated the self report into three categories (‘low focus’, ‘average’, and ‘high focus’). We

anticipated a Yerkes-Dodson relationship between self-reported focus ratings and distrac-

tion threshold- i.e. as you start to settle into focus you become more easily distracted, and

then as you get deeper into focus you become harder to distract. The preliminary data

shown in Fig 5-13R implies a simpler relationship, however; higher levels of self-reported

focus correlate with higher sensitivity to distraction. Future work will explore whether

deeper states of focus show the expected reversal (these states may be missing from this

test; flow is elusive), and explore how personal/contextual this relationship might be. It

may also point to a requirement for a longer delay between vibrations– the designed 10.5

min average cycle time may simply be too short (the cognitive cost of an interruption is

estimated to be >23 minutes [279], but the trade-o↵ with data collection is large).

This exploratory pilot study points to interesting future work. This technique shows tremen-

dous promise in capturing quantitative data about fluctuations in distractability; however,

there are several challenges to overcome to improve this system. Future work must start

with fast and minimal calibration methods that ensure proper, repeatable placement and

fit. Long-term comfort and habituation are also unknowns with the current design. This

interface may also benefit from a secondary wearable that measures stillness (or another

strong correlate of distraction) to corroborate general distraction level and the contrast

between the induced vibration and natural movement [84]. A secondary wearable like a

smartwatch would also facilitate easier data entry (rather than having an app with you).

Most importantly, repeatable, precise stimuli and mechanical coupling should be improved;

what can’t be addressed must be modeled probabilistically, favoring topologies that are

robust to interpersonal/intersession variability.
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5.10.5 Conclusion

Feather represents a novel interaction that uses fluctuations in perceptual acuity to infer a

user’s mental state. We characterized the system and demonstrated its ability to capture

variation in noticing that is best explained by corresponding variation in cognitive state;

we also point to future refinements of this promising method.

In the near future, probabilistic combinations of this technique with other, similar bio-

behavioral strategies will give us a much better picture of a user’s psychological state, and

thus on the causal forces that alter it. Feather represents a step towards empirically moti-

vated design and closed-loop, adaptable systems that will inspire deep focus and engagement

in their users across real-world settings.

5.11 Wearables for Flow Estimation: Captivates

Captivates are an open-source smartglasses system designed for long-term, in-the-wild psy-

chophysiological monitoring at scale. Captivates integrate many underutilized physiological

sensors in a streamlined package, including temple and nose temperature measurement,

blink detection, head motion tracking, activity classification, 3D localization, and head

pose estimation. Captivates were designed with an emphasis on: (1) manufacturing and

scalability, so we can easily support large scale user studies for ourselves and o↵er the plat-

form as a generalized tool for ambulatory psychophysiology research; (2) robustness and

battery life, so long-term studies result in trustworthy data over an individual’s entire day

in natural environments without supervision or recharge; and (3) aesthetics and comfort, so

people can wear them in their normal daily contexts without self-consciousness or changes

in behavior.

Captivates have been validated for a small set of beta testers. We also interrogate the impact

of our aesthetic design; corroborating that our additional design and miniaturization e↵ort

has made a significant impact in preserving natural behavior.
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Figure 5-14: Captivates Final Design.
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There is tremendous promise in translating psychophysiological laboratory techniques into

real-world insight. Captivates serve as an open-source bridge to this end. Paired with an

accurate underlying model, Captivates will be able to quantify the long-term psychological

impact of our design decisions and provide real-time feedback for technologists interested

in actuating a cognitively adaptive, user-aligned future.

5.11.1 Related Work

Non-contact Physiological Measurements related to Cognitive State

We seek to explore the space of sensor systems that do not require direct contact to the

skin, a physically less-invasive technique that results in a more natural user experience and

a more robust system for measurements on-the-go. Contact-based sensor techniques are

a popular method for measuring physiological signals, but these techniques present chal-

lenges in dynamic environments. Contact-based methods include electrocardiogram (ECG)

for measuring the heart, electroencephalogram (EEG) for measuring the brain, electroocu-

lography (EOG) for measuring eye movement, and electrodermal activity (EDA) sensing for

measuring changes in skin conductance. All of these methods have been applied to cognitive

state estimation [413, 463, 166, 251, 246] typically under controlled conditions. Oftentimes,

researchers struggle with noise artifacts from internal and external sources [256, 102, 443].

Contact sensing is not ideal for measurements throughout a person’s dynamic day because

of the mechanical skin-electrode coupling, which is highly susceptible to noise artifacts from

user motion [90]. By focusing on non-contact techniques, we have greater flexibility for fit

and comfort, and our research can be generalized to systems that are not wearable and do

not require physical skin contact.

Face Temperature

As summarized in Table 5.1, several studies have found that our face temperatures vary

with internal state changes (e.g., fear, joy, anxiety, etc.). For example, in [15], it was

observed that nose temperatures decrease with the increase of cognitive load due to blood
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flow restriction when autonomic nerve activity increases. Cognitive load was modulated

using a series of reading comprehension and Stroop Tasks (i.e., matching color of a word

with the word itself) at varying di�culty. Thermal camera measurements in that study

required a fixed distance and perspective of the user; for mobile use, similar resolution

would require multiple thermal cameras in each location, is prone to occlusion, and is cost

prohibitive.

Table 5.1: Overview of the Direction of Temperature Variation in the Considered Regions
of Interest Across Emotions from [215].

An alternative is to fix a face temperature sensing device onto the user. In [301], the

researchers fixed a passive infrared radiation sensor (i.e., thermopile) to a tethered, glasses-

like wearable to measure nose and forehead temperatures to control for movement. Forehead

temperatures are used as a baseline since it is believed to remain stable relative to internal

temperature, and face temperature varies with other internal and external events (e.g.,

convection due to wind). However, forehead temperature was demonstrated to increase

with increased cognitive load in [15]. Pompei [342] suggests the temple region provides a

better estimate of a person’s internal body temperature given its proximity to the large

superficial temporal artery. Thermometry based on this assumption is used in hospitals, as

it approximates the accuracy of more invasive rectal techniques– the most accurate method

for measuring internal temperature in a clinical setting [195].

Blink Rate and Eye Gaze

As described in [408], there are four types of eye blinks: reflex blinks, voluntary blinks, non-

blink closures, and endogenous blinks. Endogenous blinks– blinks that are not consciously
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initiated or due to any ”identifiable eliciting stimulus”– are theorized to relate to information

processing, cognitive load, and task demand.

In [256], test subjects reduced their blink rate under higher cognitive load. Furthermore in

[316], eye blink rate correlated with task di�culty over arithmetic tasks (blink rate decreases

as the di�culty of the task increases).

Others have studied blink rate as they relate to creativity or emotional shifts, and blink

magnitude has been linked to attentional control and alertness [326]. Moreover, spontaneous

blink rate drops precipitously when using screens [33] and blink patterns change in response

to visual task demands [206]. There has also been significant e↵ort to relate blink rate with

dopamine dis-regulation and the study of addiction, though evidence for this specific theory

appears weak [103].

The evidence suggests that blink rate and blink magnitude are both powerfully tied to

mental experience and poorly characterized. While it’s uncommon to find blink rate sensors

in existing wearables, a few have been reported in the literature. In [112], the authors detect

blink rate and magnitude based on changes in near infrared reflectance using a near infrared

diode/phototransistor pair with 85% accuracy.

Head Motion Dynamics

Head motion is an indicator of cognitive e↵ort and attentional control. Cognitively strenuous

tasks result in less head movement, and patterns in the data could be used to discriminate

common tasks and moments of task shift [276]. Subtle head motion dynamics can predict

ADHD in infants [447]; it has been used to measure attention in classrooms and in meetings

[428, 347]. Head motion has also been used to predict speech prosody and heart rate

[100, 40]; mirroring of head motion between patient and psychotherapist may also help

predict patient outcomes [352].

Gaze is also a powerful indicator in attention research. Apart from directly linking head

dynamics to cognitive state, Stiefelhagen et al. were able to estimate gaze direction from

head pose with 89% accuracy [412]. Given some a priori knowledge of the environment, it
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is possible to predict fixation points using head pose and 3D location; traditionally, this

is accomplished with computationally demanding systems like camera-based eye tracking,

which can also result in very awkward wearable systems.

Psychophysiological Data in Non-Laboratory Settings

Contact-based measuring techniques for cognitive state estimation are popular, especially

for the consumer market. Several products exist that claim to help improve your attention

or learning, and aid in relaxation in natural settings. Muse [8] is an EEG device that is

designed to help train in meditation, but also claims to ”make it easy to access and use

brainwave data, inside and outside the laboratory and in real world environments.” Muse

has made practical trade-o↵s for real-world use compared to usual EEG systems, with dry

electrodes that do not require additional conductive gel for better coupling [149], but motion

artifacts remain. Regardless, Muse no longer directly supports access to the raw data [373].

There are other open-source methods of collecting raw EEG signals, but most of these

designs aren’t productized for on-the-go applications [9].

There are several commercial smart eyewear devices that include access to sensors data.

Google Glass is one such design that has gained traction across the academic spectrum,

from analyzing head motion and blink frequency for activity recognition [218], augmented-

reality based indoor navigation [355], and even surgical applications [452]. Google Glass

was successful as a research platform because it was the first such scalable platform that

could survive a user’s regular day, and it provided a software development kit (SDK).

Unfortunately, consumer adoption remains elusive and its design is met with some social

push-back. Recent consumer smartglasses attempt to fix this shortcoming, taking their

design in a glasses-first direction. Vue [13] is a pair of glasses for activity tracking that o↵er

wireless bone conduction audio for discrete listening. They are designed to look like your

average pair of glasses, with all the electronics densely embedded within the plastics. Focals

by North [6] takes a similar approach by o↵ering activity tracking and a projected display

onto one of the lenses for notifications and short information intake. The display in Focals

is not visible from the outside world, allowing the glasses to retain a traditional design
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aesthetic. Both the Focals and Vue are sensor-rich systems and follow a more consumer-

friendly design approach but, unfortunately, o↵er no ability for researchers to grab any of

the raw sensor signals or to interface their own sensors.

To the best of our knowledge, J!NS MEME [14] is the only commercial platform that takes

a design-first approach for smart eyewear while also benefiting researchers with an SDK

(though their software applications are not currently supported outside of Japan). The

platform includes a 3-axis gyroscope and accelerometer (420 USD) and optional EOG sensor

(1050 USD). The EOG-version of the device has been used by researchers for monitoring

fatigue and drowsiness levels, but has been criticized for poor sensor performance and a lack

of noise robustness (i.e. when talking or moving) [366, 421]. As explained in subsection

5.11.1 and further supported by these studies, contact-based sensing includes additional

data challenges for ambulatory measurements. Furthermore, available gyroscope and EOG

sensor data are processed through proprietary algorithms before exposed to the researcher.

J!NS MEME is a clear step in the right direction, but its lack of support outside of Japan,

proprietary obfuscation of raw data, and high price make it di�cult for researchers to adapt

it to their custom applications.

More general open-source hardware acquisition platforms do exist in literature that allow

researchers to interface multiple physiological sensors. In [80], a device is presented that

uses a non-contact radiation measurement for temperature and electrode-based techniques

for ECG and EDA. Their results are promising, however their system was designed for

lab use (non-wearable and tethered), similar to OpenBCI. This is often the case for these

platforms— if they aren’t commercialized, there is little incentive to complete a robust

design for other researchers to use.

5.11.2 Design Principles

Given our motivation to build novel physiological sensing into a platform that would enable

large-scale, long-term study of natural contexts, we distilled our objectives down into a set

of design principles. These considerations were weighed with the help of various traditional
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and smart eyeglass manufacturers and product designers in the United States, Shenzhen,

China, and Seoul, South Korea.

Scalability

We chose a radio transceiver that supports multiple radio protocols for easy integration

into di↵erent network architectures such that Captivates could serve as the foundation for a

larger portfolio of responsive systems. It is designed to support meshing with similar devices

over Google’s Openthread stack, in which each node has enough on-board resources to serve

as an active mesh intermediary in addition to the resources required for simple edge comput-

ing. Mesh protocols are advantageous to future Internet-of-Things (IoT) adoption because

they sidestep support and troubleshooting related to individual router infrastructure.

Extensibility

It was a major goal to enable other researchers to use Captivates for their own experiments

without redesign work. We made the glasses easily reprogrammable without disassembly or

rework, and fully open source, so anyone may utilize the device. We also included enough

additional connectivity to simplify integration with outside sensing platforms, including

support for multiple popular network stacks like Bluetooth.

Design for User Comfort and Signal Robustness

Since this system is intended to be worn throughout the day, across static and dynamic

activities (e.g., sitting, walking, etc.), our sensing modalities were optimized for comfort

as well as consistency across activity and environment. As a result, we avoided sensors

that require significant contact force (uncomfortable for long term use) or skin adhesion

(contact changes over time). Furthermore, electrode-based techniques that require this type

of coupling often have reduced signal integrity in long-term, mobile applications due to the

dynamic mechanical stresses at the electrode-to-skin bond during movement, and natural
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variation of other confounding electrical sources, i.e. cardiac activity, ocular movements,

eye blinks and muscular activity [181, 443, 364, 102, 95].

Manufacturability

After considering the appearance and comfort of the glasses, we optimized the system for

easy production and assembly. The design balances the part count and overall assembly

time with ease of modification and extensibility. Our goal was to have a system that is

geared toward mass production, allowing us to cheaply scale production of plastic parts and

assembled printed circuit boards at a cheap cost. In addition, we also wanted the design to

be 3D-printable to allow users to easily produce small batches with custom modifications.

5.11.3 System Design

In this subsection, we discuss the technical system design. Our goal is two-fold: first, to

highlight engineering work beyond typical prototype design that went into making these

more product-like, in service of of robust real-world operation and design. Secondly, to

introduce the structure of the technical system for researchers who might want to modify

it. The design is open-sourced and available on our website at https://captivate.media.

mit.edu/resources.html.

We divide the system into three logical parts: the electrical, mechanical, and firmware. A

summary and comparison of our final system with other popular smart eyeglass systems is

shown in Table 5.2.

Sensor Selection

Based on the design considerations outlined in subsection 5.11.2, we cross-referenced the

recent literature for physiological indicators of cognitive load and attention. Much of the

recent research is focused on frontal lobe electroencephalogram (EEG). There are several
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Design Target Captivates Google Glass Enterprise Edition 2 Focals by North J!NS MEME ES
Weight 44g 46g 72.57g 36g
Battery Life 10 hours <8 hours (depends on usage) 18 hours (intermittent use) 12 hours
Battery Recharge Time 3 hours 1 hour (fast charge) 2 hours 2 hours
Ruggedization None Water and dust resistant Water and dust resistant None

Sensing Modalities

•Nose and Temple Temperature
•Touch
•Blink Rate
•9-axis IMU
•3D Location

•Microphone
•Touch
•Camera
•Gyroscope
•Accelerometer
•Magnetometer

•Microphone
•Ambient Light
•Gyroscope
•Accelerometer
•Magnetometer

•Accelerometer
•Gyroscope

Actuators
•Eye-facing LEDs
•Externally-facing LEDs

•Display Module
•Mono Speaker, USB audio, BT audio

•Display Module
•Mono Speaker

None

Price $200 (BOM Cost) $1000 $599 $420

Table 5.2: System Specifications and Comparison

initiatives already exploring this technique, including BrainCo [7], Muse [8], and AttentivU

[247]. Additionally, as described in subsection 5.11.2, electrode-based techniques aren’t well

suited for long-term use and during mobile activities. For these reasons, we decided to

refrain from this modality.

Furthermore, contact-based sensing of this type always requires a physical, head-mounted

wearable. One of our criteria for sensor selection was the ability to approximate our mea-

surements with o↵-body techniques. Any insights from this research can thus be generalized

(in specific environments) without the use of smartglasses per se– unfortunately, this kind

of contact-less physiological sensing infrastructure is too cumbersome and expensive to scale

across the many real-world environments visited by even a single user. Wearables present

the best opportunity to rapidly scale data collection across users and contexts.

We converged on a non-contact temperature sensor (i.e., thermopile) on the nose, as nose

temperature correlates with cognitive load [15]. However, since nose temperature is also in-

fluenced by external stimuli (e.g., air flow), a baseline temperature measurement is required.

For this we added a second non-contact temperature sensor at the temple, which should

not see rapid fluctuations during internal state changes [342]. The second sensor we chose

was an eye blink sensor, as cognitive load influences blink rate [256, 316]. To accurately

measure blinks, we are using an IR emitter/receiver pair since it is relatively low-power

compared to cameras and can detect blink rate and intensity [112]. We also include an

IMU, which allows us to capture a person’s activity level and head pose [217]. Head pose
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is correlated with gaze direction, which is important to determine what a user is fixated on

under controlled conditions [412]. Lastly, we included VIVE Tracking System compatibility,

so that o↵-the-shelf hardware can provide each pair of glasses a 3D location estimate, ideal

for events with crowds and/or monitoring individual movement in a room. This can also

be used for tracking fixations based on head pose and 3D localization data. Finally, the

system also includes on-board user-facing LEDs that can subtly alert the wearer to any

notifications (e.g., take a break, alertness is dropping, etc.) and influence their attention,

as well as externally-facing LEDs for creative use in performance.

Electrical System

Circuit Layout

In order to maximize the amount of circuitry that can fit into a traditional eyeglass form

factor, we spread the electronics across all faces of the glasses. This requires a three PCB-

assembly design, one on either side and a flexible one running across the front that connects

both side electronic assemblies. The side PCBs are standard FR4-core, at 0.8mm thickness

to minimize the overall temple arm thickness. The front flexible circuit is the most novel

piece of circuitry that we designed, as it conforms to the contours of the eyeglass’s front

plastic housing, folds down into the nose piece, and robustly handles dynamic bending

within the hinge.

One of the most challenging issues to overcome with this system was how to incorporate

the sensors around the nose into the electrical and mechanical design. From a design

perspective, the easiest approach is to solder the near-nose sensors to the flex circuitry

through a set of wires, but this method significantly lengthens and complicates the assembly

process. Instead, we matched the bends of the flex circuit to that of the mechanical housing

around the nose, creating two tails of flex circuitry that included the temperature and blink

sensors. During installation, these tails fold into the grooves of the plastic housing without

any additional soldering. The final manufactured flexible circuit is shown in Figure 5-19.

Processors
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A block diagram of the entire system is shown in Figure 5-15. For the main processor,

we use a dual-core microcontroller (MCU) that has an ARM Cortex-M4 processor for the

user application and an ARM Cortex M0+ processor for the network stack. This processor

allows us to treat the MCU as an application processor, without concern for network stack

overhead. It supports quick embedded firmware development and increased versatility for

applications that don’t require the network component. It also supports three major net-

work stacks (i.e., Bluetooth 5, Zigbee 3.0, and OpenThread). The chip is thus a versatile

choice, minimizing the need for hardware redesign in a clean and simple electrical design

that integrates this functionality into a single discrete package.

Figure 5-15: System Diagram

The dual-core MCU exists on one of the two-sided PCBs, which are separated and connected

by the flexible circuitry. Given that sensors exist throughout the glasses, and that the long

separation between the rigid PCBs can lead to signal integrity issues, we added a secondary

Cortex-M4 MCU on the opposite side of the glasses. This secondary MCU manages the

sensors nearby, applies our preprocessing algorithms to those sensor streams, compresses

the data, and sends it to the main processor when ready or requested. While this increased

the software complexity, it allowed us to reduce the number of conductors passing through

the hinges and across the length of the flexible circuit.
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Power Architecture

Our system utilizes two batteries for better weight distribution, but this approach increases

the complexity of our power architecture and charging circuitry. To handle possible cross

charging and rapid aging from physically separated batteries, we used a power multiplexer

(MUX), which powers 3.3V, low-quiescent, linear regulators, one on each side of the system,

and also directly powers the two LED drivers located on the flexible circuit.

Temperature

The thermopile circuit consists of two analog thermopiles, one faced towards one side of

the user’s nose and the other faced towards the user’s temple. These thermopiles are

then connected into an analog front end, which amplifies and filters the signal before being

converted by the secondary processor’s 12-bit analog ADC. Once a set of readings is collected

by the secondary processor, the main processor is alerted over an interrupt line, and after

acknowledgement, the data is transmitted over the I2C bus to the main processor.

Blink

The blink sensor is an IR emitter/receiver package that showed promising results in [112] on

detecting blink events. We experimented with di↵erent blink detection locations and found

that putting the sensor on the bridge of the nose, facing towards the eye, yielded the best

performance. The near-infrared diode that emits light can be modulated through the main

application processor to better dynamically adjust the reflected power seen by the receiving

diode and enable synchronous detection. This feature is important for environments that

have external near-infrared light sources (e.g., sunlight) that can saturate our blink sensor.

3D Localization and Pose Estimation

For the 3D localization, we are using two VIVE base stations [5] as our signaling sources

in the environment in order to triangulate the glasses in 3D space. Each base station

emits a vertical and horizontal near-infrared sweep, alternating between both sequences

and between both base stations. VIVE states that a less-than 2mm accuracy and a range
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of 16 feet can be achieved with their system, but based on preliminary testing we believe

our tuned custom system can detect the base station sweeps at a range of at least 30 feet.

The hardware architecture for our receiver consists of three near-IR sensitive diodes, one

on each face of the glasses. The search criteria for choosing which type of diode to use

consisted of finding a surface mount component that had a slim form factor but a large

enough receptive area that also o↵ered adequate responsivity to capture the momentary

sweep. We evaluated six types of diodes and found that the VBPW34FASR by Vishay

performed the best and conformed to our design constraints. The three Vishay diodes in

our circuit face in di↵erent directions (see i.e. Figure 5-14 top and bottom for an example

of the front facing diode) and are then tied together (i.e., summed) and passed into a

transimpedance amplifier to convert the diode-generated current into a voltage. The reason

for the summation is that we wanted to treat the system as a point mass that has a large

FOV so that as a person turns their head, at least one diode will still be exposed, increasing

the reliability of the system. This also allows for a simpler analog front end with the trade-

o↵ of decreased accuracy, since the diodes are not spatially co-located but are treated as

such in software.

For head pose, we chose a digital 9-axis IMU that connects to our I2C bus and o↵ers various

internally computed metrics, such as activity classification and a quaternion matrix for

estimating head pose. Software calibration was done to align the IMU’s reference coordinate

system to the glasses coordinate system for accurate head pose estimation.

Other Components and Interactivity

Our system o↵ers a few other components for easy usability, interactions, and actuation.

In order to easily program our system, we wired the USB micro port to both the battery

charging circuitry and to the single-wire programming interface for the main application

processor through a modified USB cable and an ST-Link Programmer— this can be done

by anyone with just a programmer and a spliced USB cable. In addition, the system has two

capacitive touch points on the left arm that are sensitive enough to identify taps and both

forward and backward swipe gestures. The sensitivity of the touch points can be adjusted
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in software to tune for specific applications. Additionally, there are six RGB LEDs, one

facing towards either eye, two on the top, and two facing forward. The LEDs toward the

eye are intended to be used as notification [92] while the other LEDs can be used for crowd

applications (e.g., a concert where the LEDs are actuated by the person’s physiological

signals). Our electrical design features several GPIO breakout pads scattered throughout

so to make retrofitting for other applications easier.

Mechanical Design and Assembly

The mechanical design of the glasses required several iterations as we converged to a final

form factor. As outlined in subsection 5.11.1, we wanted to choose a design that looks

less like a research prototype and more like a traditional pair of glasses that is acceptable

to wear in public contexts. Figure 5-14 shows the front view of our most recent design.

Openings above the bridge of the nose and on either side of the glasses expose the near-IR

diodes to the incident light emitting from the VIVE base stations. These openings may

be covered with near-IR transparent plastic, but we’ve left them open for easy debugging.

These openings can be covered or completely omitted for applications that do not require

the 3D localization feature.

Hinged Design

Our early, hinge-less designs were fragile, di�cult to transport, and less socially acceptable

(subsection 5.11.4). In conversation with glasses designers, we learned the importance of

hinge compliance for comfort. Our final version features a custom hinge with circuitry

running through it. Our flex circuitry is preformed (Figure 5-17) and inserted into the

front housing, resting on internal raised plastic features. The flex circuit is then sealed by a

piece of plastic acting as the back plane. The hinge preserves a wide bending radius in the

flex PCB in open and closed positions, as well as plastic guards to protect it from direct

exposure to the external environment.

Light Pipes
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Figure 5-16: Side View of Captivates.

The glasses enable concert and festival applications as well. We included several RGB LEDs;

one on each brow lights up the entire top ridge of the glasses.

We first attempted to do this by shaping polymethyl methacrylate (PMMA). We worked

with a manufacturing facility in China to laser cut these PMMA pieces and chrome-coat

three of the four sides to maximize the light emmission on the top-face. Although this

worked, we found it cost prohibitive and settled instead on side-glow fiber optic cables

(Figure 5-18).

Apart from the brow lighting, we also have lighting at two points on the front face of the

glasses where some traditional glasses have rivets. To increase light visibility, we added

commercial-o↵-the-shelf PMMA light pipes with fresnel lensing on one end so that the

emitted light is less directed, o↵ering better angular visibility.

Battery Placement

Battery placement in the glasses is important for weight balance, comfort, and power ca-

pacity (batteries are usually the most dense component in smart eyeglasses). The ideal
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Figure 5-17: Pre-bent Flex Circuitry

Figure 5-18: Illuminated Brow of Glasses

method is two identical batteries, one on either side, to better balance the weight at the

cost of complexity in power distribution architecture and charging circuitry.

For our design, we have two, 150mAh, batteries on either side of the glasses, running in

series with the side printed circuit board. The circuit boards are designed so that when

assembled, the width is uniform across the batteries and across the circuit board assemblies

for a streamlined design (Figure 5-19).
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Figure 5-19: Deconstructed Captivates.

Firmware Architecture

For a system of this complexity a low-level operating system is necessary. We decided to

use FreeRTOS, a lightweight real-time operating system that is capable of being run on

microcontrollers and small microprocessors which makes it suitable for this project [11].

This operating system is also supported by ST Microelectronics, the manufacturer of our

processors, and has several additional tools written by ST Micro for easier system integra-

tion. FreeRTOS allows for the encapsulation of individual blocks of code into threads that

can be triggered by a variety of sources (e.g., hardware interrupts, timers, other threads,

etc.) and has various methods of passing messages across threads (e.g., queues, semaphores,

mutexes, etc.).

There are numerous threads running in our system controlled by a processor’s master thread.

The radio communication thread or inter-processor thread can enable certain sensor chan-

nels, actuators, or send or receive messages. Once enabled, sensor channels operate au-

tonomously. The direct memory access (DMA) controller is used for blink sampling (1kHz)

such that the thread only awakens once a second to pre-process and pass a pointer to the
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master thread. The digital IMU is interrupt driven, as is the secondary processor (it bu↵ers

10 samples from each thermopile sampled at 10Hz and waits for an acknowledgment before

sending the data over I2C).

3D Localization

The 3D localization code was adapted from [389]. Every time one of the near-IR diodes

is saturated by incidence light (i.e. rising or falling edge), an interrupt is triggered which

results in a callback recording the exact timestamp of the event in microseconds. These

timestamps are then fed into a thread that classifies if the event was part of a sequence (i.e.,

two flashes and a sweep) or if the event is noise. If part of a sequence, the code catalogs

all the sweeps and calculates an estimate for the 3D location of the device. Since the code

requires the global coordinates of the VIVE base stations, they can either be hardcoded

into the software or updated via the server.

Networking

Our choice for flexible networking is an open-source version of Thread [12] called OpenThread

[10]. It “is an IPv6-based networking protocol designed for low-power Internet of Things

devices in an IEEE 802.15.4-2006 wireless mesh network, commonly called a Wireless Per-

sonal Area Network (WPAN). Thread is independent of other 802.15.4 mesh networking

protocols, such a ZigBee, Z-Wave, and Bluetooth LE” [10]. OpenThread has a variety of

features that makes it suitable for our system. One primary advantage is that it’s a protocol

that is seeing wide adoption across a variety of platforms, and since its being supported by

Google, it’s integrated into many of their home devices— in theory, our system could use

Google Home nodes as hops in our network. It’s also scalable to hundreds of nodes, making

it ideal for future integration of our glasses into an ecosystem of sensors and actuators.

In addition, it’s IPv6-based so integrating it with other IPv6-based systems is simple and

doesn’t require a network translator, making it appealing for a “future-proof” implementa-

tion. There also exists Contiki [128], another low-power IPV6-based protocol with evidence

that it has improvements in latency and packet loss rates over OpenThread [136]. However,

[136] was just an introductory comparison between both protocols, and more work needs to
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be done on measuring the power e�ciency and performance of both protocols. We chose to

stick with OpenThread due to the native support ST o↵ers for our network processor and

the active open source community around it.

Captivates can also trivially run a standard BLE stack implementation.

Production and Extensibility

We opted to manufacture our plastics using Nylon PA12 through a selective laser sintering

(SLS) 3D printing process using an external vendor since Nylon is much more resilient and

robust than other 3D printing materials while SLS printing o↵ers a more uniform surface

finish. However, we were also able to print all of our mechanical components with consumer-

grade 3D printers (e.g., Formlabs Form 2, Prusa) so that is an avenue that is available for

quick experimentation.

Our two rigid circuit boards were designed with specifications that fit most common circuit

board manufacturers’ capabilities (i.e., 4/4mil traces, 4 layers, 0.8mm board thickness,

0.2mm minimum hold sizes, and 1oz copper). The front flexible PCB is the only design

feature that has a custom design feature, specifically having transition regions between 2-

layers and 4-layers. We worked closely with a manufacturer in Shenzhen on producing the

boards so it is possible other manufacturers may be able to support this feature. Otherwise,

you can avoid the transition altogether and just make a 4-layer flexible PCB which would

trade-o↵ robustness for added simplicity. For circuit board assembly, we were able to

assemble a few sets by hand in our lab but many of the components are small and the front

flexible PCB has 2 ball grid array (BGA) components, so if lacking the soldering capabilities

and expertise, an outside assembly service is recommended.

For researchers wanting to add additional sensing modalities, we’ve added a few thru-hole

connections on the PCB located on the right side that provides 3.3V power, ground, and

connections to 3 general-purpose input/output pins on the secondary MCU, equipped with

access to the I2C communication and analog-to-digital conversion (ADC) peripherals. If

some of the existing sensing subsystems are not needed for an application, those sensors
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can be removed and the existing connections can be re-purposed. One example would be

to remove the blink sensor and use the existing power and the ADC lines to sample the

signal of a di↵erent sensor. To make this easier, we’ve added various thru-hole regions on

the front flexible circuit that wires can be soldered to. Another method that can be used is

removing the PCB with the secondary processor and reusing our existing power circuit to

design a new board with other sensing modalities.

All the electrical and mechanical design files are linked on our website, as well as further

information on our progress with the system: https://captivate.media.mit.edu/.

5.11.4 Validation

System

We calibrated the antenna circuit using a vector network analyzer (VNA) while the PCBs

were in the eyeglass frames and on a users head. This approach is warranted since any mass

near the antenna can attenuate the signal and distort the balance of the circuit. We also

calibrated our 3D Localization System by tuning our circuit to barely saturate at 30-feet

from the VIVE emitter, ensuring our signal-to-noise ratio is optimal for that range. In the

next subsubsection, we describe our detailed calibration of the temperature sensors.

Temperature

To estimate cognitive load, you only need to measure relative temperature di↵erences from

the baseline [15] so thermopile calibration for absolute temperature approximation is less

important. However, for applications that require an accurate estimation of absolute tem-

perature, a thorough calibration should be performed on each individual thermopile since

di↵erent resistive losses and noise artifacts exist based on the location of the sensors.

From [426], it is recommended that we account for heat flow other than radiation, such

as convection and conduction from nearby objects, in Stefan-Boltzmann’s Law. [233] We

calibrate our thermopiles using this equation:
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Tobject = 4
q
T
4
reference + f{VTP }/A (5.1)

where

f{VTP } = (VTP � a0) + a1(VTP � a0))
2 (5.2)

where VTP is the thermopile voltage, Tobject is the temperature at the active junction,

and Treference is the temperature at the reference junction [233]. The constant, A, is a

product of the thermal resistance of the thermopile, number of thermocouples within the

device, the Seebeck coe�cient, net emissivity between the object and the device, Stefan-

Botlzmann constant, and field of view (FOV) of the device. In most cases, this constant

is approximated for during calibration by varying the temperature of an object and of

the thermopile housing, while placing calibrated thermocouples throughout. a0 and a1 are

terms to solve for during the calibration process.

For our system, to estimate each thermopile’s reference temperature, Treference, each ther-

mopile has a thermistor built-in with a manufacturer-provided characterization [26]. To

calibrate, we took a Peltier module that converts a voltage potential into a temperature

di↵erential and using a thermal compound, embedded a calibrated thermocouple between

the Peltier module and a thin piece of laminate material. We then placed a calibrated

digital thermopile right next to our analog thermopile as a reference. Finally, using thermal

compound again, we attached a thermocouple to the housing of the thermopile to estimate

the accuracy of the built-in thermistor.

The test was performed over 10 di↵erent temperatures for both the nose and temple ther-

mopiles, ranging from 60-115 degrees Fahrenheit, the average temperature ranges expected

across the surface of a person’s skin. For each iteration, we waited a minimum of 5 minutes

to ensure the temperature of the reference object has stabilized. After the experiment, we

used non-linear least squares to solve for the constant A given VTP , Treference, and Tobject.

This allows for a suitable approximation for temperature within our ranges but assumes

constant emissivity across people so a more thorough calibration is warranted where tighter

absolute temperature tolerances are required. (Though emissivity varies across people, it is
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A a0 a1

Nose Thermopile 7.80e-10 -2.31e-01 3.61e-03
Temple Thermopile 4.21e-10 -3.62e-01 8.31e-02

Table 5.3: Thermopile Calibration Values

not significantly correlated with skin pigmentation [82] or sweat [86]; it does appear to vary

with age [323].) Table 5.3 shows our results from the least-squares approximation; these

values compensate for di↵erences in resistive loading for each thermopile (e.g., variable trace

length), in addition to calibrating the thermopiles for absolute temperature measurements.

Real World Evaluation

Figure 5-20: Thermal imaging (right), the OpenFace video analysis tool (center), and a
comparison of orientation data between the glasses and extracted from the video (a tighter
blue cone is better).

We validated the system in a pilot study in which 5 participants (2 female/3 male, ages 26-

34) wore the glasses while being videotaped using a GoPro set to 60 FPS/1080P. Participants

were recorded in naturalistic environments (their o�ces or homes) working as normal. Over

45 hours of data were collected in this way (>9 hours per participant on average).

This data has high ecological validity– participants have a range of face sizes and mor-

phologies, studies were done at various points in the day from 10 AM to midnight in

various lighting conditions and environments, and gaze and blink patterns varied dramati-

cally over participants and over tasks. One participant made infrequent but clear shifts in

visual attention between their screen and a desk; another participant shifted gaze frequently
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between a phone, a laptop, and a television screen; a third was making frequent large gaze

shifts across a large monitor. Recorded activities were screen-based because we needed

long-term, consistent and clear video recording of participants’ faces. Blink behavior across

participants varied dramatically, from an average of 11.3 blinks/min to 62.1 blinks/min over

individual participants (31.0 blinks/min average across users).

We performed three basic comparisons to ensure our glasses data was of high quality. For

two of these comparisons, we used the OpenFace machine learning classifier tool on our

videos as a reference point (center of Figure 5-20) [42]. OpenFace uses trained machine

learning models to calculate facial landmarks that are then used to estimate facial muscle

movements (e.g., blink, smile, eyebrow raise, etc.). OpenFace struggled with our naturalistic

videos– especially due to the framing and camera angles that we were forced to use when

installing them in participants’ real workspaces. We attempted to install the camera in a

way that the eyeglasses do not occlude the eye area of each participant from the camera.

For two participants, OpenFace’s self-reported successful classification rate was between 25

and 40%. With manual cropping and editing, we were able to improve these classification

rates to between 65 and 85% per participant. For all further comparisons, we utilized

contiguous video subsections longer than 200ms (the duration of a blink) where no more

than 2 consecutive frames were dropped by the classifier. Time alignment between the video

and glasses data was performed by looking for common minima in an extracted blink signal

cross-correlation across several of these video subsections. This time alignment was verified

visually with a data-video overlay.

1. Thermal Comparison

We did a few simple comparisons between an Optris PI400 infrared camera (382x288 pixels,

.08°C sensitivity, and ±2°C accuracy), pointed at the side of the face where we are collecting

thermopile data, to ensure proper functionality of our thermopiles in realistic settings (as

seen in Figure 5-20L). This basic comparison shows agreement between the Optris and

glasses data, within the error of our Optis measurement. While our data is aligned, even

these high-cost IR cameras do not have the pixel resolution to precisely capture 5mm2 patch

of skin underneath our thermopiles at a distance that still allows for naturalistic participant
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behavior (the entire nose is blurred over 20 pixels at the demonstrated resolution and

distance, and this e↵ect of this spatial averaging varies with subtle participant motion).

We expect higher resolution, and more spatially consistent data from our thermopiles than

an IR camera can provide; however, this did serve as a reasonable verification that the

calibration process described above was functioning properly.

2. IMU Comparison

IMU data was referenced against head orientation as extracted from OpenFace. OpenFace

uses a world coordinate system at the frame rate of 60Hz, while our IMU data is referenced

to the head and captured at 10Hz. To check for agreement, we interpolate the IMU data

to our IMU timestamps and calculate the orientation transformation required to map the

OpenFace orientation to the IMU orientation at that moment. Figure 5-20 (right) shows

these transformations for each time-step over several minutes for Participant 5. Ideally,

the mapping between the IMU and OpenFace data would consistently fall at a single point

on the unit sphere (one reading maps exactly to another with the same coordinate frame

transfer). If the IMU data and the OpenFace data were uncorrelated, we’d expect the

yellow unit sphere pictured. Naturally, we get a cone centered around the coordinate trans-

form, which shows the combined error in measurement between the IMU and the OpenFace

classifier. The error we see in this cone has a standard deviation (in Euler angle °) of

[20.4, 9.8, 22.2]. This demonstrates a rough agreement of motion from one measurement to

another across time. Participants often move around their environment in the study, and

the quality of the OpenFace orientation extraction as a face frequently translates forward

and backward is un-characterized; however, this check combined with other basic checks for

drift leads us to believe the IMUs are functioning within the manufacturer specifications

of <5 degrees of absolute error at all times, capturing transient behavior that is correlated

with activity, physiological state, and mental state. We expect the IMU– with internal drift

compensation– to perform more robustly than video-based methods.

3. Blink Comparison

To ensure blink data from the glasses was reliable, we designed a basic, micro-controller-

friendly algorithm to extract blinks from the IR signal received by the glasses. This algo-
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rithm not only captures blink timestamps; it captures useful metadata about each blink

that has been shown to correlate with alertness [21]. The algorithm works as follows, and

was applied to each participant without personalization (See Figure 5-21 for representative

data):

1. Low Pass Filter the raw 1kHz IR data (light orange) using a 50-point moving average

filter (green).

2. Take the first derivative of this signal (red) and smooth it with a 25-point moving

average filter (purple).

3. Using a fixed threshold of -0.05, wait for 100 peaks in the first derivative signal that

dip below this. At this point, we predict the user is wearing the glasses.

4. Record the next 100 minima below -0.05. We know from preliminary testing that

>10% of these are almost assuredly real blinks, and >10% are almost assuredly not,

across all users and conditions.

5. Calculate the average value of the 10 shallowest peaks (a noise metric close to -

0.05) and an average of the 10 largest peaks (known true blinks) from these minima;

calculate a threshold value a quarter of the distance between them, just above the

noise level.

6. Compare the running first derivative signal against the threshold; whenever it drops

below this value, we consider a blink to have begun. For the next 175ms, we monitor

the first derivative and capture the minimum eye close velocity (the negative peak),

the maximum eye open velocity (the corresponding positive peak), and the di↵erence

in timestamp between these two (a blink duration). This search window and duration

are shown when the blink detector triggers in a faint brown (search window) and dark

brown (extracted duration).

Initially, we planned to use OpenFace [42], a common standard reference for face tracking,

as our baseline for blinks. We quickly realized that OpenFace struggled to locate blinks

210



properly within our data, even after hand-cropping the videos to increase classification

success. Moreover, OpenFace’s ‘confidence’ metric did not directly map to the blink signal–

when participants gaze downward at a desk or a phone, they can appear almost as though

their eyes are closed. This is a situation where the head remains confidently ‘tracked’ but

blink detection is very di�cult for the classifier.

To overcome this, we hand-labeled over 2 hours of blink footage, capturing 2586 blinks

(>500 per participant). These labels are done by watching footage (in slow motion for fast

blinkers) and tapping in time on a keyboard– as you can see from the blue outlines of hand

annotations in Figure 5-21, they are not always perfectly accurate. To handle these timing

errors, we use a wide margin for error of several hundred milliseconds when estimating the

quality of OpenFace and our glasses data.

We hand-labeled only footage that had been pre-selected for its high confidence from Open-

Face but we were still forced to skip about 15 min of footage that contained subsections

that were di�cult for labeling (i.e., the head was at an angle such that blinking was oc-

cluded). Our results for OpenFace blink detection thus overstate the quality of OpenFace

blink detection based on the provided confidence metric, since we’ve thrown away about 1/5

of footage that contained some of the most di�cult and ambiguous ‘confident’ OpenFace

blink data.

For our glasses, while the IR emitter is normally on to ensure a strong received signal,

we designed the circuit to latch the emitter o↵ in bright IR conditions to prevent diode

saturation. We did not encounter this condition in our testing (though many of our indoor

environments had bright ambient light from nearby windows); the received signal was con-

sistently in a good envelope. We did, however, detect a couple of small instances of bursts

of environmental IR pollution from other electronics. These instances are easy to identify

because they cause consistent and repeated blink detection at a constant rate over a short

period. We removed an additional 2-3 minutes’ worth of data from the two hours of our

recording because of this issue.

Our results are listed in 5.4. The glasses algorithm outperforms the OpenFace classifier by a

wide margin, even for a relatively constrained naturalistic test with a generic blink detection
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algorithm. Breakdowns in classification accuracy are quite di↵erent for both algorithms.

OpenFace struggles when people are looking down (i.e. at their phone), which they do a

lot in natural settings.

Ironically, participants with rich IR glasses data streams perform the worst with our blink

detection (lower participant as compared to upper participant in Figure 5-21). This data

captures more secondary eye movements– it is marked by good IR coverage of the eye, high

contrast between pupil and cornea, and lots of attention shifts and saccadic movement– and

these details can significantly alter reflected light, which engages the blink detector.

In the raw IR data, we can see characteristic signals of a blink, but we also see the oppor-

tunity to extract gaze/attention shifts (looking down at a phone or desk vs up at a screen)

and even saccadic eye movement in some cases. With a more complex future algorithm that

incorporates metadata about the blink, signal shape, and/or classifies other eye movements

like gaze shifts, we should be able to do an even better job than this baseline technique.

Figure 5-21: Representative blink trace data from Participant 3 (bottom) and Participant
5 (top).

These early results have been further corroborated in a separate pilot user study with
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OpenFace glasses algorithm
participant # sensitivity (%) false discovery (%) sensitivity (%) false discovery (%)

1 38.4 21.7 91.9 5.0
2 53.3 58.0 88.7 33.8
3 67.7 19.1 62.1 18.2
4 75.9 37.9 85.2 19.9
5 68.9 44.4 80.3 14.7

overall 61.2 38.8 81.6 18.2

Table 5.4: OpenFace and Glasses Algorithm Success for Detecting Blinks Across Partici-
pants.

a further 6 participants, in which each user performed half an hour of cognitive tasks

(IRB protocol #2001000083) alongside video recording. Initial results show comparable

performance to o↵-body systems across subsystems and users in this test as well.

These results give high confidence along a few major dimensions: first, our sensor ge-

ometry is designed well enough to accommodate a diversity of head sizes and eye/nose

angles. Secondly, we see useful data capture with the glasses that outperforms high quality

and well-controlled external references. We anticipate noise due to motion, temperature ac-

climatization, and external IR sources to become more pronounced under social, ambulatory

conditions. These initial findings support the idea that large scale, naturalistic data collec-

tion are a fundamentally di↵erent challenge than typical highly-controlled, heavily-repeated

laboratory experiments, and that Captivates is positioned well to extend our research into

these challenging, novel scenarios.

Design

As we’ve outlined above, a major objective of the Captivates project is to create a pair

of glasses that significantly improves on aesthetics and comfort, while maintaining all day

robust performance. As much as possible, we wanted to build something that would not

alter behavior or interpersonal interaction; a pair of glasses that had the highest likelihood

of fading into the background over the day.

To test this hypothesis, we purchased several other pairs of smartglasses for comparison
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and ran some initial surveys. The glasses we used are shown in Figure 5-22; they include

well known smartglasses: Google Glass, which includes a suite of functionality, including

an outward facing camera; Bose AR, which simply plays audio; the Snapchat Spectacles,

which can take a picture on demand; and the GoVision video recording glasses. We chose

these glasses as reference points because they bound interesting corners of our design space–

all include electronics, but the Bose AR hides it completely, designed for broad appeal by a

large corporate team with access to market research. Google glass embraces a tech-futuristic

aesthetic; our prototype could be (generously) construed this way as well. Spectacles are

well-designed, but have outward facing sensors like Captivates.

Figure 5-22: Smartglasses Compared in Survey

To compare against these products, we included our initial prototype (same functionality,

unoptimized for aesthetics) and our final design. Our survey population included 101 par-

ticipants; 63% female, and of all participants, 50% wear glasses daily and overall, skewed

slightly towards 26-35 year-olds (57%). In addition to evaluating each pair of glasses, we

rated participants on the SCS-R scale for Public Self Consciousness and Social Anxiety, to

see if there were trends mediated by these psychometrics. Distributions along these axes

were unimodal and no clear di↵erences in ratings appear for high vs low groups in either

category.
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The results, shown in Figure 5-23, reveal some interesting trends. In the survey, a neutral

option was also available to participants. We opted to exclude neutral ratings in these

charts to highlight trends in strong reaction to each pair, but each rating sums to a count

of 101 with neutrals included.

Figure 5-23: Glasses Survey Comparison Results

First, we notice that all of these glasses fare pretty poorly on style– even the most positively

reviewed pair here received only 20% favorable ratings (Captivates received 18%). This

is not surprising after our conversations with glasses manufacturers; glasses are a style

accessory, and it’s quite di�cult to make a single pair that is generally well-liked. Our
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initial prototype performed notably worse than the rest, both as ranked for personal style

and in general appearance. The final Captivates design performs comparably to these other

products.

The Captivates glasses actually do quite well compared to the others along self-assessed

behavioral dimensions; they perform quite competitively with scores of comfort wearing

them in public, private, and during conversation, as well as in assessment of discomfort to

others (only outperformed by the Bose AR glasses). This is a truly significant shift from

the rankings of the prototype (where an overwhelming 85% are uncomfortable with the idea

of wearing them in public or while conversing), and clearly justifies the increased e↵ort if

our goal requires us to minimize changes in social behavior, self-consciousness, and stress

or anxiety.

These behavioral ratings do not follow from the style ratings; they instead appear more

closely linked to notions of social norm violation (do they look normal, and is it clear that

they encapsulated electronics). Along these dimensions, the Captivates fares quite well,

alongside the Bose AR and the GoVision frames.

A reasonable conclusion is that self-assessed comfort in social situations is dominated by the

stigma surrounding social norms (video recording and electronics) compared with personal

fashion or style match, as long as the style is somewhat conservative and doesn’t grab

attention. That is a positive result; it validates the notion that a generic pair of glasses

doesn’t alter self-assessed behavior as long as its style is within the norm (there is minimal

advantage to trying to tailor the glasses to individual style for research). It also validates

the notion that going from an obvious prototype that is outside the norm and has obvious

electronics to something that looks ‘normal’ and integrated has a huge impact on self-

assessed behavior.

There is still obvious room for improvement. The Bose AR are the best anchor point in this

survey, as they include minimal electronics that are not visible, they have no electronics or

unusual features on the face of the glasses, and they’ve had commercial success. A strong

majority of people (58%) are happy to wear these glasses in public and in conversation

without perceived social stigma.
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Our glasses still have room to grow to compete with Bose AR. That said, we have integrated

significantly more sensors throughout the glasses, including in di�cult to ignore areas of

the front face. If we take a look at open-ended comments surrounding the Captivates

frames, most of the critiques are centered around four main themes: about 18% noted

either bulkiness or the exposed IR diode in front as chief dislikes; the next most common

complaints (roughly 7%) noted the surface finish or the lack of lenses.

5.11.5 Conclusion

With the Captivates project, we set out to build a system for long-term, in-the-wild psy-

chophysiological monitoring at scale. We integrated many physiological sensors into a

glasses form factor, particularly in challenging locations around the bridge of the nose.

Our area of interest– naturalistic psychological measurement– dictates that our wearable

be unobtrusive and socially acceptable. With that in mind, we focused heavily on an aes-

thetic that would minimize social anxiety and stress, as well as optimizing our comfort,

weight, sensor selection, and battery life to let the user put them on without thought and

forget about them all day long.

Our validation shows success in data quality and success in aesthetic design, in-so-much that

people self-report that they would feel comfortable across public and private interactions,

including conversation, while wearing them. It also validates that this was absolutely not

true for our initial prototype, which 85% of people would not feel comfortable wearing in

public, and demonstrates the value in our additional engineering e↵ort to enable naturalistic

study.

We believe to make meaningful progress on psychophysiological modeling, we not only need

to move to naturalistic settings, but collect vast amounts of data. Once again, Captivates

was designed to hit this mark– it is a scalable and robust solution, enabling large-scale, long-

term studies with minimal administrative oversight. It is also open-source and available for

other researchers to use and adapt.

Given these intentions, Captivates unique contributions are as follows:
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• An open-sourced, manufacturable and scalable platform that is available for other

researchers to use, audit, and modify. Captivates enable researchers to leverage a

hardware platform for their specific use cases, and can enable large-scale, trustworthy

data sharing on physiology and mental experience without proprietary algorithms or

APIs common to productized platforms.

• A product-like, comfortable, and aesthetically neutral design that can be used in real-

world settings without altering naturalistic behavior. This is crucial for studying this

physiology under as-realistic conditions as possible, and prototype-like designs alter

self-reported behavior. These improvements require significant additional engineering

e↵ort.

• A robust form factor that is easy to use and lasts all day on a single charge. This is

crucial for scaling trustworthy data collection without administrative overhead, and

makes the glasses less intrusive into a participant’s daily experience. Large scale

data will be necessary to make any generalizations given the high levels of noise and

uncertainty associated with real world settings.

• A platform to study understudied physiological indicators of face temperature, subtle

head motion, and blinking in natural settings. These have been demonstrated in lab

contexts, but naturalistic analysis of these indicators is novel. Furthermore, our com-

parison against standard camera-based techniques shows we significantly outperform

them for blink tracking and spatially consistent temperature measurement, even in a

relatively uniform working environment. Heart and respiration rate estimation from

our head mounted IMU data should be possible as well. As a stand-alone device, or

as part of a broader physiological measurement suite, Captivates serves as a power

research tool for in-the-wild physiological and psycho-physiological data collection and

modeling.

In order to accomplish these goals, we spent a summer in China working with manufacturers

and glasses designers, partnering with companies, and worked with sourcing agents. We

pushed our design towards product and manufacturing in a way that is uncommon within

218



academic research, but which we believe will become more prevalent in the near future. The

ability to manufacture and quickly scale hardware design opens up opportunities for new

research techniques. Captivates leverages this unique opportunity to scale data collection.

Captivates opens the door for large-scale data collection of physiological indicators, in a

way that will enable better predictions of mental state in natural contexts. Our initial real-

world pilot study yielded promising results and further data collection is planned to fully

validate the platform. The immediate future will be spent collecting data and using that

data to engineer and validate psychophysiological models that can estimate mental states

accurately.

Success with these models would bring us a long way towards translating psychophysiological

laboratory techniques into real-world insight. Captivates serve as an open-source bridge to

that end. A strong model will enable Captivates to quantify the long-term psychological

impact of our design decisions and provide real-time feedback for technologists interested

in actuating a cognitively adaptive, user-aligned future.

The Captivates system is a key enabling piece of future responsive, adaptive environments.

We envision an ecosystem of such technology, including dense arrays of distributed sensing

and better actuation of shared spaces. With the Captivates project, we are one step closer

in understanding the impact of our designs on human experience, and thus one step creating

truly supportive, responsive environments.

5.12 Wearables for Flow Estimation: Peripheral Light Inter-

action

In the previous section, we looked at the Captivates platform, which introduced and val-

idated many useful physiological sensing modalities for on-the-go flow estimation. Using

the LED mounted in the periphery of the thetse glasses, in this section we introduce a

novel behavioral interaction to measure attention dynamics in naturalistic settings. Our

contributions are as follows:
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Images of the Smartglasses platform and the Interaction Design used in this experiment.

Figure 5-24: The Captivates Smartglasses platform presented in [84] is used to measure
self-interruption behavior. Two symmetrical peripheral LEDs slowly change from green to
blue over 53 seconds; when the user notices the change, they indicate it by hitting the
‘surprised’ emoji in the companion application (which is left open on the table near them).
These transitions are spaced 10-20 minutes apart to give the user su�cient time to achieve
a state of deep focus on their primary task. The change is slow and gradual to minimize
the probability of drawing attention to itself.

• We designed and created a novel, wearable, and discrete interaction to measure self-

interruption dynamics in daily life. This interaction is built on top of Captivates;

the glasses present a slow color change in the periphery of the user’s visual field,

gradual enough that users’ attention will not be drawn to it. When the user notices

a shift in color because they have scanned their environment, they indicate that with

a companion application.

• We ran two small pilot studies to test the e�cacy of this interaction and demonstrate

success in creating an interaction that is ‘change-blind’ to study participants and

captures data related to their state of engagement. We discuss and analyze these

preliminary results.

• We discuss future applications and design considerations of this interaction for study-

ing naturalistic attention dynamics and for quantifying the immersive success of de-
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signed experiences.

5.12.1 Background

We live in a world with constant notification and interruption that fractures our attention.

Workplace interruptions occur every 4-11 minutes; 70% of the roughly 90 emails we receive

in a day are opened within 6 seconds [280]. External interruptions make us more likely to

self-interrupt in the hour after they occur [101].

Fortunately, notifications can be designed to to be more or less distracting from our pri-

mary task [244]. Researchers have prototyped notifications to allow deep focus to proceed

uninterrupted by designing them right at the threshold for capturing attention. The user’s

attentional state is the primary factor that determines whether they notice an aural cue

(by modifying background music) [30] or a visual one [216].

At the other end of the design spectrum, some cues are impossible to ignore. Motion and

luminance changes powerfully capture attention [343]. When motion cues are masked–

including using gradual fades– large visual changes are di�cult to spot, regardless of the

magnitude of change in contrast or color [391]. This phenomena is known as ‘change-

blindness’. Moreover, research on ‘inattentional blindness’ supports the idea that we are

blind to large, obvious visual changes in the center of our visual field when focused on a

task [225].

Some distractors are more perceptually salient than others. However, even given a task,

we have no accepted standard to measure our sensitivity to chromatic or luminous changes

under varied ambient lighting conditions; the best models estimate cone absorption in the

retina [76, 456]. Ambient light levels mediate visual detection through pupil dilation; a

smaller aperture gives better spatial resolution while a larger one gives higher signal to

noise and more light [325, 130]. Large pupils may thus give an advantage to detection of

faint peripheral stimuli [282]. A simple relationship between low-level perceptual changes in

brightness or contrast and attentional capture is impossible, though; for example, luminance
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changes characteristic of a new object in a scene will capture attention more readily than

twice the di↵erence at a less-surprising location [403].

Many factors influence our perception of task-irrelevant, peripheral distractors. Motion and

luminance di↵erences– especially unexpected ones close to our visual focus– are most likely

to grab our attention. While ambient conditions likely e↵ect our ability to discriminate

peripheral stimuli, this is likely to be a second-order e↵ect relative to our psychological

factors like expectation and attentional state.

Measurement Techniques

Mainstream measures of engagement rely on self-assessments [139] that are biased by de-

mand characteristics and peak-end memory distortions and fail to capture uncertainty well.

One more quantitative approach to cognitive state inference is the peripheral detection task

(PDT), an ISO-standard test to measure cognitive load while driving [462]. This test has

been updated to use a head-mounted peripheral light as a secondary stimuli while driving

(hDRT, or head-mounted detection response task) [414].

In the hDRT, a red LED is turned on rapidly (every 3-5 sec), at constant intensity, long

duration (1 sec), and reliable noticeability (>95% in practice– reaction times are the primary

hDRT measure). When the participant notices this light, they hit a button; response latency

is the primary measure of task load.

DRTs do not disambiguate between noticing and reacting (there is evidence of physical

response conflict); also, due to the consistent nature of the task, participants treat it as

a secondary goal for which they strategically allocate attention [462]. While useful to

characterize multi-tasking load under intense driving conditions, this rapid and consistent

dual task paradigm is a poor fit for the naturalistic study of deep focus.
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Figure 5-25: To test the e↵ect of variable lighting conditions on perceptual acuity of the
LED color shift, we used a specially designed lighting room set to two extremes; a bright
white light (high blue light spectrum- Figure Left) and a low warm light (Figure Right).
Participants were asked to look at an ‘X’ on the wall and pay attention to the LED color
change in their periphery, indicating when they noticed the transition in the application.
Participants were exposed to ten transitions in each lighting condition; the order of exposure
to each condition was counterbalanced across participants. Results from these calibration
sessions (in seconds) are shown in the table; the transition was sped up 3x from the typical
intervention to 17 seconds to maintain attention.

223



5.12.2 Captivates Interaction

We design a new interaction using the two symmetrical RGB LEDs mounted in the outside

peripheral vision of the user, controlled by LED driver ICs that enable ratiometric and

logarithmic PWM dimming. Figure 5-24 details the intervention design– when the user

notices a subtle, gradual change in color of the LED (which occurs every 10-15 minutes)

they hit a button to indicate it. Their delay is an indicator of the frequency of their

self-interruption. The specific design decisions were based on an iterative design process

to isolate a subtle, gradual, but distinct peripheral change. The glasses include 300 mAh

battery capacity that allows the intervention to run continuously for over 7 hours per charge;

it is also a socially acceptable form factor that enables daily use in normal life without

inducing self-conscious behavior.

Calibration Test

For our initial test, we measure (1) when during the transition from green-to-blue an at-

tentive user notices the change, and (2) how much variability various lighting conditions

introduce. Five users sat in a closed rectangular room outfitted with a full Color Kinetics

lighting system (programmable with color temperatures between 2300K and 7000K). While

looking at an ‘X’ on the wall in front of them, they indicated when they noticed the light

in their peripheral vision shift colors. To maintain attention, the transition was sped up

3x from the typical intervention to 17 seconds. They repeated this task twenty times with

random delay– ten under bright white lighting conditions and ten under low warm lighting

conditions (counter-balanced). Low warm lighting is most favorable to the task: dilated

pupils give the best peripheral detection and the most contrast with the background (warm

light has very little of the target blue wavelength). In contrast, the bright white light has

much less contrast in the blue spectrum and constricts the pupils.

Results are shown in Figure 5-26; there was not a significant di↵erence in the participants

ability to notice the color shift across light conditions. Across all 100 trials, the best and

worst cases for perceiving the change were between 12% and 65% through the transition.
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Summary results from preliminary testing.

Figure 5-26: Initial results from seven participants wearing the interface in natural
work/social settings for a minimum of 2 hours each (19.3 hours captured total). Data
points represent the delay from a transition starting to when the user noticed it. Included
in the plot are indicators of when the transition becomes observable based on the calibration
data (purple), as well a worst case indicator over the 100 calibration trials (dotted– this
represents the worst case moment, across lighting conditions, that we’d expect the transi-
tion to become obvious if the user was paying attention.) The slow transition completes at
53 seconds (blue). We see several data points in which users didn’t notice the transition
for many minutes after it was completed (top left); a zoomed view of the first few minutes
after transition onset are shown in the bottom right. As expected, noticing delay follows a
roughly log-normal distribution for each user.
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Primary Test

In our main test, seven users experienced the intervention in Figure 5-10 as they went about

their daily lives, with an open iPad within reach to indicate their awareness of the LED

changing. We collected over 19 hours of data, with transitions spaced 10-15 minutes after

any indication to allow the user to regain task focus. The data are represented in Figure

5-25. The longest a participant went without noticing the light change was 15 minutes;

35% of the transitions were noticed after the transition had fully completed, with the vast

majority significantly delayed (74% of those were >30 seconds after the light change had

completed). Four of the seven users had delays of 5 minutes or more in noticing at least

once, indicating a deep state of focus on their primary task.

5.12.3 Discussion and Future Work

Whether or not a participant notices a gradual, peripheral color change is dependent on

environmental lighting and attentional state. We designed an intervention with the hope

that users would be change-blind to it. Our initial results imply minimal variability in

noticing for vigilant user across extreme ambient lighting conditions; this variability is small

compared with the delays we find as users engage in their day. Our results support our

hypothesis that this intervention quantitatively captures useful insight into self-interruption

and environmental awareness in real world settings.

In our future work, we will collect more data, and build probabilistic models to make strong

inferences about an individual’s attention based on it. Future experiments may introduce

longer delays between transitions to allow users more time to achieve a deep state of focus;

this trade-o↵ between quantity and quality of data is unstudied. Though it appears the

e↵ects of ambient lighting are minor (and can be modeled as noise), we also haven’t tested

for interaction e↵ects between attentional state and ambient lighting. Future work may

extend our understanding of ambient lighting conditions using tightly controlling lighting

or by measuring ambient light levels with an additional wearable.
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5.12.4 Conclusions

In this section, we presented a novel interaction design to study self-interruption and im-

mersion across naturalistic contexts. Users indicate when they have noticed a gradual,

subtle, peripheral light cue change– a transition that only happens every 10-15 minutes. In

two small pilot studies we have demonstrated that ambient lighting levels minimally a↵ect

perception of this transition, and a significant portion of these changes are unnoticed for

several minutes by our users in naturalistic settings; attentional state is thus likely to be

the primary causal precursor of this data, with a large impact on the measured delays.

We believe this interaction can improve our understanding of the dynamics of human at-

tention, and provide quantitative insight into design’s impact on the creation of immersive,

engaging, meaningful experience. This approach represents a quantitative move forward

toward personalized, adaptive, and empirically grounded immersive design.

5.13 Limitations and Future Development

This chapter introduced several, novel hardware prototypes– a set of tools to evaluate flow

states naturalistically and bio-behaviorally. While these interfaces each include (1) an all-

day battery life and (2) an unimposing form-factor so we can collect naturalistic data, the

work is largely exploratory– testing new bio-behavioral principles in real-word contexts at

a foundational level. Our goal has been to answer basic questions about whether there is

interesting variance in the signals we collect that we expect to be useful for psychological

inference. These studies feature small test populations; this data is very time-consuming to

collect (a handful of data-points a day per user, maximum) and fast design iterations are

important.

Having established more work is warranted, a major contribution of this work is in charting

the course for future development. Each of the current prototypes includes sources of noise

that could be better controlled; each requires a relatively sophisticated underlying model
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to operationalize it e↵ectively. Below are specific limitations and opportunities to improve

for the devices introduced above.

5.13.1 Equinox

Equinox represents, to our knowledge, the first attempt to quantify time distortion in nor-

mal, daily life, and the first use of ‘clock-time’ estimates in time perception research. Our

preliminary results suggest normal people experience significant daily distortions in time

perception; also, we might reasonably expect people to work for intervals of about half an

hour on average without checking the time in the normal course of living– su�cient time to

test the experience of time. Our data is also suggestive that duration estimates and clock-

time estimates have di↵erent underlying mechanisms. No firm conclusions are possible from

such a small dataset, but the initial results are encouraging.

To utilize the data from these estimates requires an underlying model that ties cognitive

states to time perception. As a first pass, it’s possible to adapt Treisman’s pacemaker-

accumulator model; however, our initial data (and much of the philosophical debate around

time perception) suggests this model is almost certainly inadequate.

Future work needs to dive deeply into the underlying mechanism for time distortion mea-

surement. Given the early test data, we hypothesize that clock times are not conceived and

remembered as explicit time values, but experienced in rough terms related to the time left

before the next time explicit commitment for that day. Future versions could integrate the

key time-keeping tasks of the day (i.e. calendar integration, to make sure you are on-time

for commitments so you don’t have to check the time); the interface would then be explicitly

aware of key time landmarks for the user throughout their day.

Another major question involves individual variation in time perception; whether some

people are naturally imbued with a better ‘sense’ of time than others, and whether this

‘sense’ improves through implicit feedback when interacting with an intervention of this

kind. (Even when the feedback is hidden, they will get some objective feedback about the
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time of day in order to allow them to live a normal life.) These are open questions that

require large-scale, long-term data collection to answer in a definitive way.

A final limitation comes from the pervasive nature of time-keeping. Each incoming email

and text is timestamped. Games frequently inform the user how long each round has been,

or include countdowns; movies and videos highlight exactly how long they will last and how

much time has elapsed; we frequently consider at this information when selecting content.

Every person has a large, visible clock on their phone, their watch, and their computer; you

cannot ask them to hide these devices. Time cues– varying from the explicit (a clock or a

timestamped email on a day with relatively consistent messages) to the implicit (this video

is 12 minutes long)– are embedded everywhere; it’s di�cult to account for the influence

of these time cues in natural time estimates, and also di�cult to formalize a process that

accounts for all of them.

5.13.2 Feather

Feather is a device to test variation in threshold of noticing in very subtle vibrations on the

leg over a long interval. Once again, while the data is strongly suggestive that some of the

variation we’ve capture is attributable to attentional state, this is preliminary work and the

data is insu�cient for specific conclusions about the underlying psycho-tactile relationships.

There are a few major challenges to the design of this interface that should be addressed in

future revisions:

• Repeatable placement. Our sensitivity to vibration varies greatly over the body; this

is particularly true on the leg. It is di�cult to draw conclusions across sessions, and

the initial calibration process to find an ideal placement is very important.

• Repeatable vibration. With this prototype, we used o↵-the-shelf vibration motors

which are designed to create powerful vibrations in a small package; we are driving

them at the lower limit of their ability and there is variability in the resulting delivered

peak force as a result. In this work, we attempt to account for this by calibrating
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the entire system as a black box and treating the values probabilistically; future work

should tackle this problem head on with a custom vibration motor design that operates

at much lower intensity, or intentionally dampens the motor such that the range where

it operates intersects our tactile threshold.

• Psycho-tactile linear ramp. The perceived intensity of a vibration is a complex psy-

chophysical relation; we would like to have precise control over vibration intensity

and increase it linearly in perceptual space. In this work, we stepped up our intensity

at the finest resolution we were given, which was designed by Pavlok to have this

property (roughly). This can and should be more precisely designed.

• A Model of Habitation. For this to work, the motor needs to press against the skin.

We might reasonably expect a habituation e↵ect (lessening of tactile sensitivity) from

wearing the device all day. We need more data to measure and account for habituation

over the day, perhaps including force sensing/contact sensing to make sure contact

and placement are consistent.

• Motion Artifacts. Detecting a vibration will be more di�cult if motion is happening

on the leg. Most of the cases we care about imply stillness; however, this is another

confounder we should consider in future modeling e↵orts. Future versions should

include an accelerometer to account for leg motion.

• Sensory Confusion. Several people reported uncertainty about whether they felt some-

thing or not during calibration and during the experience. In the first iteration, they

were told to simply wait and hit the button when they felt totally confident that they

had felt a vibration. These moments of uncertainty could be better captured and

integrated.

Despite these challenges, our first pass interface shows significant variance in reported

threshold values well outside of the region we would expect given initial calibration on

the user– we have a strong baseline for the limits of what they were able to perceive when

they were focused. This variation cannot be explained by habituation e↵ects or placement

because the reported thresholds are not at all monotonic, as we would expect with baseline
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drift. The preliminary data thus shows reasonably strong evidence that psychological state

is represented in the data. This is the strongest reasonable claim from the exploratory data

collected; future work on tactile thresholds for psychological insight will require significant

engineering e↵ort into more precise and repeatable hardware and a stronger underlying

model of tactile perception that incorporates psycho-physical principles alongside a model

of habituation and placement.

5.13.3 Captivates LED interaction

Captivates are used with the peripheral LED to track noticing behavior. This interaction

relies on minimizing the attentional process which draws your attention to the light; success-

fully making the color change ‘change-blind’. We have controlled for the primary driver of

attentional processes in visual scenes– changes in luminance and motion (e↵ectively, some-

thing new entering the scene or a sudden shift in a light’s brightness); the delays we see

in noticing and the small variability in noticing in controlled tests over a wide variation of

external light conditions suggest we successfully achieve this.

It is possible that aspects of the light stimuli itself, its color transition, its contrast, or its

placement in the visual field makes it more likely to exogenously grab attention (something

about it calls the user’s attention to it) vs the endogenous process we’re interested in. It is

possible that situations where the peripheral light enters into central vision or passes in and

out of the visual field (depending on face geometry, individual peripheral vision sensitivity,

and task-dependent gaze shifts) and the luminance contrast of the LED with ambient light

increases the probability of an exogenous attentional e↵ect.

This suggests that shorter recorded intervals may not be as strong an evidence of very low

focus state (i.e. we could attribute the short interval either to their focus or a really obvious

transition) vs the longer intervals are for high levels of focus.

In practice, this techniques appears to be relatively robust to varieties of realistic external

lighting conditions; for example, when we compare LED notice durations in the lab (highly
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controlled lighting in our ‘lighting lab’) to LED notice durations at home (highly uncon-

trolled lighting) we see similar distributions; similarly, we don’t see major di↵erences in

the distributions of Tetris (no gaze changes– the game is played on a small screen in the

central visual field) compared with other activities. These are all very preliminary data and

merely suggestive. Future improvements include adapting to external light levels, modeling

gaze/LED visibility, and collecting more data to inform a model of these e↵ects.

5.13.4 Captivates In General

Even with the huge development e↵ort behind Captivates, there are still many sources of

noise and room for improvement in all of the sensing modalities. The dual-processor design

can be a challenge for development. Newer revisions simplify the structure and replace many

of the analog traces to minimize noise, improving thermal and motion sensing. O✏ine blink

processing is a challenge, as gaze changes and external lighting also appear in the data, and

face geometry can have a large impact on the signal. There is more work to be done to model

the blink signal, combining it with head motion data and co-modeling gaze/saccades where

there is evidence for them in the data. Future versions of the glasses should incorporate other

modalities of interest, including pupilometry and secondary measures of facial expression.

232



Chapter 6

Measuring Flow Across Contexts

In this chapter, I review an experiment I conducted on flow states across 22 participants.

6.1 Prior Work

6.1.1 Flow Induction in the Lab: Tetris

Flow studies are typically correlational and survey based; few researchers have attempted to

induce flow in the lab or study its physiology. [305] When experimental work has attempted

to look at flow, video games are the most common method, specifically Tetris. [240, 305,

236, 237, 304, 328, 107] Moller et al. write in [305] that work with Tetris “...represented

an important and significant advance toward developing a reliable induction procedure for

inducing flow experimentally.” (Moller collaborated with Cśıkszentmihályi himself on flow

induction in the lab using Tetris. [304])

These studies typically present the game under three di�culties– easy, adaptive, and hard–

with the assumption that adaptive will produce flow. In the earliest of these video game

studies (which used Pac-Man instead of Tetris) gameplay at each di�culty setting lasted

5 minutes each [357]. For Tetris, the reported task durations are 3-5 minutes, 3 minutes,
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6 minutes (2x), 8 minutes, and 15 minutes [107, 236, 304, 268, 192, 237]. In these studies,

flow is usually measured with the Flow State Scale (FSS), [305, 268, 192, 242] though [236]

use one simple question as their measure (’To what degree did the demands of the game

match your ability?’). We repeat the use of this measure in our study and use durations

commiserate with the longest reported in previous literature– itself twice as long as the

average– with one of our conditions almost twice the longest reported duration (25 minutes).

The adaptive strategy used with Tetris to induce flow is novel for each researcher. In

[236] the heuristic was to increase the speed if players complete more than four lines and

decrease it if players complete less than three lines over thirty tetrominos. In [304], they

used a similar adaptive strategy in a baseline session to judge player skill, and then set the

speed at a fixed level for their test conditions. In [268], a much more sophisticated dynamic

strategy is used [267]: every ten moves– depending on board height, holes, and score– the

distribution of tetrominos will either be ’random’ or ’helpful’, where helpful pieces are based

on past game analysis of which pieces are easiest to handle for a player at this skill level.

These sophisticated strategies do make a measurable di↵erence compared to normal Tetris in

short duration play (3-5 minutes), as measured by the short Flow State Scale; however, the

di↵erences are relatively small, and no di↵erence in FSS ratings between adaptive techniques

and trivially easy settings appear at this timescale (n=40, with likert-scale ratings out of 5.0

the average ’adaptive’ score was 4.0, ’easy’ score was 4.0, and ’normal’ score was 3.8) [268].

This appears to corroborate earlier findings that easy conditions are similarly e↵ective as

adaptive conditions, which are moderately more successful at flow induction than overtly

di�cult ones, as measured by challenge/skill balance on slightly longer time-scales [236].

6.1.2 Physiological Analysis of Tetris

The literature looking at the physiology of flow is even sparser, as it is contingent on

flow induction. As we saw in the last chapter, general flow physiology shows conflicting

evidence for facial EMG, breathing, and sympathetic activation in flow states [240, 333].

Studies of Tetris specifically show larger respiratory depth, decreased heart rate variability
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[192], and high salivary cortisol [237]. fNIRs data doesn’t show reduced oxygenation in

the prefrontal cortex while playing Tetris, as hypothesized under hypo-frontality [192]. It

has been conjectured that video games generally introduce relatively higher levels of stress

and cognitive load compared to other flow tasks, complicating the interpretation of these

results.

Physiological analysis techniques vary widely in the literature; for instance, in the litera-

ture above, HRV is captured using four di↵erent methods– the raw IBI intervals, averaged;

the RMSSD (RMS of di↵erence between adjacent intervals); the low and high frequency

power of its FFT; and the log2() transform of these power values. After selecting a sum-

mary statistic, one value per user and interval is usually aggregated and compared using

a standard statistical test. At this point, techniques once again diverge; in some cases a

statistical test that rests on an assumption of normality is applied, typically after a check

(i.e. t-test, Tukey HSD) [192, 283]; in other cases, non-parametric tests are used (i.e. Fried-

man’s ANOVA) [237]; in still other cases, linear models are fit to predict self-reported FSS

[242, 106]. The unifying feature of this body of work is a single summary statistic per

physiological indicator per interval, compared against a ‘ground-truth’ FSS score.

6.2 Methods

6.2.1 Main Conditions

Each participant wore the Empatica E4 on their non-dominant wrist, the Captivates Smart-

glasses, and the Equinox watch on their dominant wrist (as described in the preceding chap-

ter) and answered survey questions about their flow states. The main conditions were (C1)

in the lab, playing Tetris; (C2) in the lab, doing an activity of their choice that typically

induces flow; (C3) at home, playing Tetris, and (C4) at home, repeating the flow activity

of choice. For each of these conditions, they were left to do the activity for 20-30 minutes,

giving 1hr40min of data collection per person across these four conditions on average.

These occurred over two sessions, a lab session (S1) containing a short demo and familiar-
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Figure 6-1: A summary of the main study conditions measured across three sessions.

ization session with the Tetris game, followed by C1 and then C2; and a home session S2

that simply included C3 followed by C4. Notably, the experimenter is not present for the

home session; the experiment is designed to be portable and self-administered (the appli-

cation includes many short videos walking the participant through the setup). In S1, the

initial part of the experiment includes (1) interaction with the experimenter to guide the

participant through putting on the wearables and (2) a 2 minute demo of the interaction

paradigm while playing Tetris, with a short example of the peripheral LED change so the

user gets comfortable with Tetris; (3) the experimenter also checks on the user in between

the Tetris and Flow tasks. These three additions are not part of the home session; at

home, the experiment starts with short videos walking the user through how to put on the

wearables instead. Otherwise the structures of lab and home sessions are identical.

To signal the end of each condition, the LED in their peripheral vision slowly transitioned

from green to blue (as described in the previous chapter)– how long it took for them to
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Figure 6-2: Screenshots of the companion application used during the first two sessions
(A)– we see the main screen where we can select a session type, a typical survey screen,
and the screen showing when the user is engaged in the task (they indicate they’ve noticed
the LED color change by tapping the surprised face button). (B) shows the new interface
for the final task; no companion application is required, just this box. To end the task, the
watch is touched and the survey is completed in a the booklet that sits on top of the black
data collection device shown.

notice this cue was recorded; they also had the option to continue the activity before filling

out the end-of-condition survey. Additionally, an LED change occurred between 10 and 15

minutes into the condition, triggering one additional question when it was noticed (’how

long do you think it’s been?’) A total of eight LED changes are registered over the four

conditions– two changes per session.

The lab session took place in a quiet, windowless white room. Noise canceling headphones

were provided, without music but with sound e↵ects for Tetris. The user could recreate

their task of choice however they saw fit to improve the likelihood of flow state, including

listening to music.
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Self-selected flow activities included a variety of personal video games, writing, reading,

coding, designing, problem set solving, video editing, crocheting, djing, and drawing.

6.2.2 A Final Session

Participants were also asked to engage in one additional flow condition at home in a separate

session (S3, C5) with their chosen flow activity. In this session, there is (1) no preceding

Tetris condition, (2) no preceding surveys, (3) no mid-task interruption (i.e. the condition

lasted 20-30 uninterrupted minutes), and (4) no companion phone device (parts 1-4 required

a smartphone open nearby for participants to indicate they noticed the color change and

to administer surveys). Instead, a small black box with no screen was provided to capture

data; a booklet was provided for the survey; and the Equinox watch was used to indicate

when the task had started and when they noticed the LED (which the participants could

decide). The goal of this final intervention, besides corroborating the home flow data in C4,

gives us a window into the task physiology when the task is uninterrupted for much longer

and the visual and behavioral cues corresponding to study participation are minimized.

The test is ordered (1) lab Tetris, (2) lab flow activity, (3) home Tetris, (4) home flow

activity, (5) home flow activity (long) instead of randomizing order over conditions for two

reasons. The first is pragmatic– it’s easier to bring people into lab and experience the test

with the administrator nearby before sending them home to repeat it alone. The second is

to structure the impact of novelty e↵ects in line with the analysis– any discomfort with the

lab setting and the wearables will be most impactful in the lab/Tetris condition and least

impactful at home with a natural task. A major goal is to compare the typical lab study

(which contends with these novelty e↵ects and structured tasks) to naturalistic, at-home

flow task (ideally una↵ected by the novelty e↵ects we mentioned).

6.2.3 Tetris Selection

Usually, the version of Tetris selected for in-lab flow induction is an open-source implemen-

tation where the tetromino drop rate can be set. In our testing of 1̃0 di↵erent versions
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of Tetris, its ability to elicit a deep flow has many intangible factors. We selected an im-

plementation of Tetris called ’Falling Blocks’, which is (1) highly rated in the app store

(social proof of engagement), (2) doesn’t include ads, breaks, timers, complicated menus,

or unusual gamification/variation on top of the game (most other implementations), and

(3) works with a high-quality external X-Box controller. The goal was to have a high qual-

ity, mobile setup with responsive, deterministic controls so that the study could be easily

recreated at home as it was experienced at lab.

Previous work on adaptive gameplay has shown slight increases in flow induction compared

to normal Tetris in 3-5 minute sessions, though the di↵erences are not large, and adaptive

play does not improve FSS ratings compared to trivially easy play [268, 236]. In our flow

test, Tetris sessions last for much longer (roughly 25 minutes), but follow the normal ebb

and flow of Tetris gameplay; starting relatively easy, getting harder until the player loses,

and then starting over.

Our task structure is faithful to the gameplay structure that has lead to Tetris’s popularity.

This decision means we can select an unmodified, high quality version designed by a profes-

sional game designer instead of creating our own version of an open-source implementation.

A professional game improves the odds of flow for reasons outside of the tetronimo drop

speed (drop speed is typically the only design feature of interest for flow research). Based

on the available data, trivially easy Tetris results in scores similar on the FSS as compared

with a tuned level of challenge. Our version of Tetris should start ’trivally easy’ for a few

minutes, and slowly walk through a region of optimal challenge before getting too di�cult.

We can compare the first few minutes of gameplay for each session with more standard

flow induction in the literature; it is the same duration and in the ’easy/adaptive’ regime.

While the never-ending, tuned version might work well in short play-sessions, it removes

fundamental aspects of the task structure over longer time-sessions that could contribute to

flow state overall; namely, a period of relative ease to practice and master the controls and

strategy, internalizing them and improving; and a period of optimal challenge that pushes

you to your limit, rewarding you when you achieve. As we’ve seen from the enduring success

of the game, alternating these periods can lead to a highly engaging overall experience.
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6.2.4 Surveys

The entrance survey, completed before the lab session, includes (1) the Tellegen Absorp-

tion Scale (TAS), (2) the Flow Questionaire (FQ), (3) basic demographic information, (4)

descriptions of experience with flow in the past, (5) the Brief Inventory of Thriving (BIT),

and (5) questions regarding familiarity/enjoyment with video games in general and Tetris

specifically.

At the beginning of each of the two main sessions, surveys captured self-reported state of

mind, ca↵eine/food intake, and exercise. Surveys that bookend each condition included

self-reported emotional states (the self-assessment manikin), stress, alertness, and reaction

time speeds. Surveys at the end of each condition included the short FSS-2, the FQ applied

to the task, the BIT, questions about time perception (including ‘how long do you think

it’s been? What time do you think it is? How certain are you?’), and new questions about

flow introduced in the last chapter (including ‘did you experience flow? If so, how long did

it take you to get into flow? What percentage of the time were you in flow? Once or many

times? Please draw your focus over time’).

After the final session, overall interview style questions about the experience were included,

asking the user to provide their own insight about home vs. lab environments, flow experi-

ence, and the impact of the wearables and study on their state of mind.

6.2.5 Physiological Feature Extraction

Proper feature extraction is essential for fair cross-context comparison. We focus on intra-

individual analysis, thus we don’t introduce pre-processing steps intended to remove indi-

vidual di↵erences (z-scores, etc).

6.2.6 Blink Processing

Blink data is processed using the algorithm described in the earlier Captivates work, which

bandpass filters the signal to capture frequency content relevant to blinking, takes the
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Figure 6-3: Examples of feature processing: (A) is a technique for extracting micromove-
ments from [434], (B) shows blink identification for an ideal case (lower) and a more chal-
lenging case (upper); (C) shows traditional SCL/SCR extraction and the canonical SCR
response model used to deconvolve the raw signal to approximate iSCR.
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derivative, finds peaks, and matches them to the duration we expect from standard blinks.

In the original paper, we were able to identify about 80% of blinks correctly this way; there

is, however, interpersonal variability in the quality of the results based on face geometry,

ambient sunlight, and noise from head motion.

Fig 6-3 shows an example of extracted blinks from an ideal participant and a non-ideal one;

blinks are easy to separate in the first case, and more ambiguous in the second. In addition

to blink intervals and counts, this script also extracts blink velocity, which has been shown

to correlate with arousal in certain contexts [226]. We thus use the number of blinks over

an interval (NUMBLINK) and the blink velocities (BLINK VEL) as our two main features

extracted from the raw blink signal.

6.2.7 Electrodermal Activity

EDA is typically divided into tonic (Skin Conductance Level- SCL) and phasic (Skin Con-

ductance Response- SCR) components as a first step before any comparisons. We use the

Neurokit 2 library to separate the E4’s EDA measurement into these two components as

described in [63]. Absolute di↵erences in SCR contain useful information [145, 336]; we thus

keep the tonic component in absolute units for comparison.

The phasic component of EDA– SCRs– exhibit a characteristic shape in response to stimuli

[36]. In our analysis, we use a standard peak-finding algorithm to identify SCRs and extract

the number of presumed SCRs over an interval (SCR NUMPEAKS) and the distribution of

their amplitudes (SCR AMP). To generate a more general estimate of underlying autonomic

activity, we also generate an integrated SCR (iSCR) by deconvolving a prototype SCR

response function (from [36]) with the SCR component of the EDA signal in the frequency

domain as discussed in [199]; the result is a time-series estimate of underlying autonomic

activity.
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6.2.8 Cardiac Features

The E4 provides an estimate of heart rate (HR) derived from the wrist PPG sensor, which

we use as a feature directly. Additionally, we feed the raw PPG signal into the peak-finding

algorithm described in [134] to estimate inter-beat intervals. This signal is then transformed

to RMSSD (RMS of successive di↵erences), a technique which has been used in prior flow

research to show successful flow state discrimination [237], and which is validated in the

literature as a strong summary statistic for heart-rate variability on timescales as low as

30-60s [388].

6.2.9 Temperature

In line with prior work on the psychophysiological predictive work on facial temperature

[16], we take the di↵erence between nose and temple temperature readings as our primary

feature (NOSE DIFF). We also include the raw wrist skin temperature readings as a feature

(SKIN TEMP); in line with prior work, the average skin temperature values may provide

similar insight to SCL over short duration (30 second) time slices [372]

6.2.10 Movement

Our dataset includes raw 3-axis accelerometer readings (linear acceleration in Gs) at the

head and wrist, and raw 3-axis gyroscope readings (angular acceleration in rad/s) at the

head. Our goal with movement features is to identify (1) stillness and (2) repetitive, fluid

motion; both could be signs of deep focus. We divide our signal into three main feature

types for this task:

• The raw magnitude of the acceleration and rotation vectors (HEAD ACC, HEAD GYRO,

WRIST ACC). For the gyroscope, this is simply the Euclidean norm; for the ac-

celerometer values, this is the Euclidean Norm Minus One (ENMO), a common tech-

nique to transform 3 axis accelerometer data into an estimate of motion [439].
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• ’Micro-movements’ as identified in [434]; this technique involves fitting a Gamma dis-

tribution to the accelerometer and gyroscope signals, mean-shifting them, and then

looking at the distribution of secondary peaks (their absolute di↵erence from the

average– which itself follows a gamma distribution). (HEAD ACC MICRO, HEAD GYRO MICRO,

WRIST ACC MICRO)

• An experimental ‘self-similarity’ feature. A metric for repetitive motion is not easy

to find in the literature. As a first pass, we split the raw 3-axis values segmented

into 1-minute intervals and create two feature vectors– one is the kurtosis of the

cross-correlation of this time slice with each of the other timeslices (so each entry in

the vector is a single value representing the ’peakiness’ of the cross-correlation of the

current timeslice with one other timeslice, repeated for all timeslices in a session), and

(2) an autocorrelation of the motion signal across the 3 axes.

6.3 Hypotheses

The structure of this experiment is designed with two main goals: to evaluate whether

current experimental paradigms are su�cient to model naturalistic flow states, and to serve

as an exploratory starting point for probabilistic, bio-behavioral theories of flow. With

respect to current methodology, we hypothesize two main dimensions in which current

methodology might be lacking: we hypothesize (1) the time-resolution of current techniques

is insu�cient to identify a physiological signature of flow states; we also hypothesize (2)

that physiological results do not generalize across environments and tasks at the individual

level.
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6.4 Results and Discussion

6.4.1 H1: The Influence of Time

In all previous work on flow state physiology, questions are structured such that they apply

to the entire task interval. In our work, we introduce a second dimension– moving to time

and depth estimates: (1) How long did it take you to get into a flow? (2) What fraction

of the time were you in flow? (3) How deep was your deepest moment of flow? (4) Did

you experience it in one continuous interval or several small intervals? (5) Please attempt

to draw and describe your depth of focus over time. This addition gives us important

insight that was previously obscured when asking participants to combine these dimensions

themselves in the form of an overall judgement.

As we see in Figure 6-4, while a significant minority (35% in lab, 6-4 top-right) report

relatively fast flow induction ( 3 minutes), the vast majority are longer than 5 minutes

(65%), with the majority (56%) reporting between 5 and 15 minutes. Moreover, reports of

the fraction of time spent in flow while playing Tetris is  50% in the vast majority of cases

(74% both in lab and at home, 6-4 bottom-right), with the majority of reports suggesting 

30% of the time in flow (55% over all conditions, 58% for Tetris 6-4 bottom-left). These self-

reported transition times are similar for Tetris and for self-selected, practiced activity. When

asked to indicate the dynamics of their flow states over time, participants communicate a

diversity of temporal dynamics. Drawings of their mental states are surprising and diverse

(Figure 6-5) and their self reports also indicate cycles, deep moments, and interruptions of

flow (Table 6.4.2).

The results point to a complex, fragile, di�cult to elicit, and time-varying experience of

deep states of focus.

Implications for Short Duration Flow Tasks

Reports that flow states for Tetris take multiple minutes to achieve (after a short introduc-

tory play session and survey) undermine the idea that flow states are quick to elicit and
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Figure 6-4: Self-reported duration to get into flow, and fraction of time spent in flow, by
task and environment.
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Figure 6-5: A subset of flow drawings for several participants across the four conditions
(lab/home, Tetris/self-selected flow activity). Lower Y-axis ratings indicate deeper states
of flow.

Quotes that Reference Variations over Time

I was very focused initially but then I got a bit distracted from my task and found it
hard to get back.
There were sporadic moments of being very focused and I wasn’t paying attention to
the glasses at all. Then I’d remember and go through a couple of minutes of more
actively paying attention to the lights. This cycle repeated several times.
Generally it was fairly good! I forgot about the experiment multiple times.
Near the beginning I became lost in the activity. Only infrequently did I snap back
when I was switching between tasks and remembered to look at the light.
There were a few moments that were similar where I was busy doing a task I knew how
to execute. When switching between tasks that’s when I snapped out of it.
Distracted a little at the very beginning when doing reading and more focused when
doing CAD design after reading.
Yes at the end of the second round I was in deep focus and cannot feel the outer world.
I pretty much got into flow and stayed there...
Several times I was aware I was distracted but also could focus a little.
I was really lost in crocheting for the first part. After that, I started struggling.
One moment where every piece I was laying down was fitting in perfectly and another
right after I got a 4-line clear.
Honestly I just remember being highly focused and then making a dumb mistake and
getting knocked out of it.
One of my last games — was focused on filling the rows didn’t notice other things
around me.
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Figure 6-6: Kernel Density Estimate (base-rates removed) for FSS-2 results compared
against self-reported flow experience.

easy to sustain. As stated, around 65% of this population report it took them more than

five minutes to access flow– roughly the same duration as the typical lab flow task length.

These reports remain consistent for the home Tetris session (62.5% report 5 minutes or

longer before flow), in which the user is (1) unobserved in a comfortable environment, (2)

has an hour of previous experience with experimental paradigm, and (3) has 25 minutes of

previous experience with this version of Tetris and its controls. These reports also roughly

match the distributions for naturalistic, well-practiced tasks that start half an hour into the

session.

Moreover, the typical method to corroborate flow induction for lab-based Tetris is the FSS-2

value, which alone is not a strong signal of the underlying flow state. When we compare

self-assessed flow induction with FSS-2 results, two overlapping skewed distributions emerge

for which an FSS-2 score of 5.0/7.0 (or 3.6/5.0) gives roughly equal odds of representing a

true flow state or not (Figure 6-6). Scores in this range should not be considered de facto

evidence of flow induction.
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These two points together– (1) that our data suggest flow takes a long time to achieve

upon task initiation, and (2) the standard FSS-2 is a weak check for underlying flow states–

imply more, careful work should be done to understand the value of short duration flow

tasks. Strong FSS-2 scores of short duration Tetris may imply that the FSS-2 is failing

to capture the core state as experienced by participants1; or it may imply the paradoxical

conclusion that introducing consistent, relatively long survey interruptions to gameplay-as-

designed improves flow induction. Future short-duration Tetris work should include survey

improvements we introduce to interrogate the time dimensions of flow and its self-assessed

experience.

Short vs Long Durations

We cannot definitively rule out the possibility that short bursts of gameplay punctuated

by survey breaks may, in fact, quickly elicit a stressful state of deep attention.2 However,

if short duration task structures are found to elicit flow on these timescales, it is because

they are psychologically (and likely physiologically) distinct from the typical flow dynamics

reported herein (a more gradual process of focusing). We should thus move towards longer

duration experiences– they more closely mimic real-world flow task structure and provide

a suitable chance to get lost in an activity.

Regardless of task duration, we simply can’t ignore time dynamics. If we assume a roughly

fixed, minimum transition period to get ‘in-the-zone’, shorter and shorter task durations will

be corrupted by a larger percentage of non-flow physiology. Longer-duration, naturalistic

flow tasks force us to develop a strategy to identify the typically  50% of the physiological

data that actually corresponds to deep focus.

1This interpretation is in line with other criticism of the FSS-2, and could explain other unusual features
of the relationship between Tetris and FSS-2 scores; i.e. trivially easy gameplay (which should be very boring
on longer timescales) elicits equally strong FSS-2 results across multiple Tetris studies. It could also be the
case that FSS-2 results su↵er from context-related di↵erences in their assessment, further undermining the
implicit link between survey results and real phenomenology.

2In addition to our data showing that this is unlikely, this hypothesis is further complicated by the strong
FSS-2 scores on trivially easy 3 minutes versions of the task.
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6.4.2 H2: Generalization Across Contexts

Tetris and Lab-based Flow Induction

Location/Activity Flow Reported? Percentage
Home 31/40 77.50%
Lab 31/40 77.50%

Playing Tetris 30/40 75.00%
Doing Selected Flow Activity 32/40 80.00%

Table 6.1: Flow states for di↵erent locations and activities

How well does Tetris in the lab represent more natural experiences of flow activity? We

start by evaluating whether reported flow experiences from Tetris or in the lab are di↵erent.

Table 6.1 shows that, in our study, Tetris and Lab-based activities are (roughly) equally

successful at inducing flow based on self-report and FSS-2 results. Moreover, our bio-

behavioral indicators– data showing taking optional extra time, delay to notice the LED,

time perception estimations– which seem to have worked as intended (Table 6.4.2) have

similar trends for across all conditions (Figure 6-8). This data is preliminary, but there are

no obvious ‘smoking-gun’ di↵erences.

There is no evidence in the population statistics here that flow states as studied (Tetris

in lab) are di↵erent from natural activities and environments based on survey data (the

standard way we measure flow). While there are some minor di↵erences that should be

explored at higher power, none warrant a distinction between cases with this relatively

small dataset– lab environments and Tetris activities look very similar to the real-world in

survey results.

Psychological Similarity?

The overall results may obscure the picture at the individual level, though. Tetris seems

to work well for flow induction generally, but many advanced players with prior experience

mentioned di↵erences in the interface from their expectations getting in the way of their flow.

(These participants may otherwise be our best population to study, as we expect experts
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Figure 6-7: FSS-2 results by environment and activity.

Figure 6-8: LED delays until noticing across conditions look very similar.
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Quotes that Reference the LED

...during the second Tetris I was in deep focus and can’t see the LED.
I started getting a hang of the strategy and I didn’t realize the light had turned until
I lost the game.
I also didn’t notice the blue light and do not know how long it was there before I
noticed.
I got deep into the game realized my light was on when I died violently.
Before the first LED transition I was pretty deep Tetris and then I eventually snapped
out of it and noticed the LED was blue.
”There is nothing else in the world except me and ’Elia Maiden of Water’.” ”Oh sh*t
did my light change during that song-PHEW” ”Hmm that was pretty rough-OH THE
LIGHT.”
I was surprised by the first blue lights appearing since I didn’t notice them change at
all.
I think I was mostly in focus and there were some times where I saw the blue and
snapped out.
During lulls in game play I thought to check the lights.
At the beginning I kept on checking the light but as I started to do better I became
more focused.

to achieve flow more readily). Moreoever, it seems lab and home contexts were viewed by

many participants as quite di↵erent and influential on their state of focus, but that they

a↵ect people in equal and opposite ways. General commentary suggest the lab is more

conducive to work-like flow activities (coding, design) and the home is more conducive to

creative, enjoyable activities (reading, crocheting, art, music) when the home environment

is well-kept.

Physiology Across Contexts

Finally, we compare the physiological data across contexts to see if Tetris and lab stud-

ies capture representative flow physiology. We can see from a sampling of the individual

raw data in Figures 6-9 and distributions of the data across conditions (Figure 6-10) that

physiological data appears distinct across the four conditions. For each individual with a

pair of activities that both successfully induced flow, we compare the distributions of the

data using a Kolmogorov-Smirnov Test– a non-parametric test that estimates how likely

two sets of data are drawn from the same underlying distribution. When we run this test

252



Quotes that Reference Variations over Time

Home is Better for Focus
I think it is easier/faster for me to get into a deep focus state at home in the position
and environment that I always do this activity in.
Home- much more relaxed, easy to get into it. Lab- new environment, but less easily
distracted.
I definitely focus easier at home but that’s mostly because I have my setup (reclined
chair, monitor close to face, AC, etc).
At home is better. Late at night is better, more peaceful and I can lose myself in what
I am doing.
I think I was able to focus more strongly on the experiment at home than in the lab.
Periodically I find myself guessing the time or checking the LED . . . I think that is
because of the lab setting otherwise I wouldn’t find breaks at all.
Either
I don’t know if setting matters for my flow activity.
At home I am more comfortable but I have a lot more distractions and things to fidget
with.
At home there is more comfort. At a lab there are many new things.
Lab is generally good if not too many loud noises. Home is great if I have a task I
enjoy doing. . .
Lab is Better for Focus
Home is much more cozy and for me, it’s harder to get into and stay focus at home.
I find more pressure to be focused in a new and di↵erent setting, especially an isolated
one.
I was better focused in lab.
I am generally more focused in lab for work tasks, but at home I have about equal
levels of focus for creative tasks.
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Figure 6-9: Example raw data from across the four conditions for random participants/data
sources; for the left column (Tetris gameplay) green means a script designed to process the
video of the Tetris footage identified the user is playing the game; red indicates a game-over
event. Notice (1) the heterogeneity within an interval across time, and (2) the heterogenity
across conditions. If we imagine condensing these data down to a single summary statistic–
throwing away the time-relevant information– we might expect that the insights from any
subset of the data will fail to generalize to any other subset when attempting to make a
more specific prediction than the basic physiological variance we naturally experience.
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on each individual (Table 6.2 compares the physiology of each individual, when in flow, be-

tween Tetris and their Self-selected Flow Activity; Table 6.3 is the same for Lab vs. Home

environments), we see that the physiology across conditions almost never matches.

Kolmogorov-Smirnov Test - Tetris vs Flow Activity (when self-reported Flow = 1)
Title Tests with p<0.001 1st Quartile

p-value
Median p-
value

3rd Quar-
tile p-value

HR 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
IBI 15 / 17 (88.24%) <1e-5 <1e-5 <1e-5
RMSSD 1M 8 / 17 (47.06%) 0.00004 0.00151 0.04844
SKIN TEMP 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
SCL 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
SCR NUMPEAKS 9 / 17 (52.94%) <1e-5 0.00052 0.12460
SCR AMP 9 / 17 (52.94%) <1e-5 0.00077 0.05000
iSCR 16 / 17 (94.12%) <1e-5 <1e-5 <1e-5
WRIST ACC 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
WRIST ACC MICRO 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
NOSE DIFF 22 / 22 (100.00%) <1e-5 <1e-5 <1e-5
HEAD ACC 22 / 22 (100.00%) <1e-5 <1e-5 <1e-5
HEAD GYRO 22 / 22 (100.00%) <1e-5 <1e-5 <1e-5
HEAD ACC MICRO 22 / 22 (100.00%) <1e-5 <1e-5 <1e-5
HEAD GYRO MICRO 22 / 22 (100.00%) <1e-5 <1e-5 <1e-5
NUMBLINK 20 / 22 (90.91%) <1e-5 <1e-5 <1e-5
BLINK VEL 16 / 22 (72.73%) <1e-5 <1e-5 0.00709

Table 6.2: Kolmogorov-Smirnov test for Tetris vs Normal Flow Activity over all physiologi-
cal indicators. Comparisons are performed where a participant reported that both activities
performed in one environment successfully induced flow state. We see no strong indicators
that the underlying data appears from a similar distribution, even for a very strict p value
cuto↵ (p<0.001). The indicators that show rely on heavy averaging (RMSSD), have few
samples drawn from a small range of possible values (SCR or NUMBLINK, which may have
many intervals of zero), etc; still, the evidence is strong that even these seem to be from
di↵erent distributions for ‘normal’ p-value thresholds.

Summary

It is unlikely that short-duration Tetris captures the same psychophysiological dynamics as

typical long-form flow activities. We see that flow typically takes a long time to achieve

and states of attention are dynamic. Our data suggests the typical methods may be too

short, measures to corroborate flow induction too imprecise, and physiology too dissimilar

to make strong claims. We suggest short-duration lab studies at a minimum should extend
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Figure 6-10: Randomly selected distributions of individual data from a few select phys-
iological indicators. These distributions represent matched pairs of tasks in which both
conditions were reported to have induced flow; we see they typically look quite distinct.
The top compare lab vs home; the bottom compare Tetris vs selected flow activity.
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Kolmogorov-Smirnov Test - Lab vs Home (when self-reported Flow = 1)
Title Tests with p<0.001 1st Quartile

p-value
Median p-
value

3rd Quar-
tile p-value

HR 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
IBI 13 / 17 (76.47%) <1e-5 <1e-5 0.00007
RMSSD 1M 8 / 17 (47.06%) 0.00007 0.06258 0.17684
SKIN TEMP 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
SCL 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
SCR NUMPEAKS 11 / 17 (64.71%) <1e-5 <1e-5 0.04845
SCR AMP 9 / 17 (52.94%) <1e-5 0.00030 0.07204
iSCR 16 / 17 (94.12%) <1e-5 <1e-5 <1e-5
WRIST ACC 17 / 17 (100.00%) <1e-5 <1e-5 <1e-5
WRIST ACC MICRO 16 / 17 (94.12%) <1e-5 <1e-5 <1e-5
NOSE DIFF 23 / 23 (100.00%) <1e-5 <1e-5 <1e-5
HEAD ACC 23 / 23 (100.00%) <1e-5 <1e-5 <1e-5
HEAD GYRO 23 / 23 (100.00%) <1e-5 <1e-5 <1e-5
HEAD ACC MICRO 22 / 23 (95.65%) <1e-5 <1e-5 <1e-5
HEAD GYRO MICRO 22 / 23 (95.65%) <1e-5 <1e-5 <1e-5
NUMBLINK 21 / 23 (91.30%) <1e-5 <1e-5 <1e-5
BLINK VEL 23 / 23 (100.00%) <1e-5 <1e-5 <1e-5

Table 6.3: Kolmogorov-Smirnov test for Lab vs Home environments over all physiological
indicators. Comparisons are performed where a participant reported that the activity in-
duced Flow state across both of these two contexts. We see no strong indicators that the
underlying data appears from a similar distribution, even for a very strict p value cuto↵
(p<0.001). The indicators that show rely on heavy averaging (RMSSD), have few samples
drawn from a small range of possible values (SCR or NUMBLINK, which may have many
intervals of zero), etc; still, the evidence is strong that even these seem to be from di↵erent
distributions for ‘normal’ p-value thresholds.
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their survey techniques to probe the influence of time; however, a better approach favors

uninterrupted, naturalistic task structures as we have captured here.

Within this new context, Tetris and lab environments do appear to elicit flow roughly as

much as home/naturalistic activities based on survey data. However, individuals report

psychological di↵erences which may be obscured at the population level; additionally, basic

tests to compare the statistics of physiology over the intervals of each task demonstrate

distinctions at the individual level across all indicators.

These physiological comparisons, however, su↵er from the same issues that we are using

them to illustrate– when we ignore temporal dynamics, the results cannot generalize. While

the physiology we capture is not trivially similar across conditions, it may be possible to

identify temporal patterns or subsets of physiology that will generalize across conditions

using the tools of probabilistic inference. Success demands that we preserve and consider

uncertainty and temporal variation as first class features of our model.

6.5 Contribution: Open-Source Dataset

The biggest contribution of this e↵ort is an open-source, one-of-a-kind psychophysiological

dataset to explore the physiological dynamics of flow. Very few studies have collected this

depth of data in flow-like scenarios, especially across locations, days, and activities. It’s

collection rests on a very robust, mobile testing platform that can be self-administered and

run consistently over an hour and a half with no intervention. The two and a half hours of

data per person should serve as a useful starting point for idiographic, bio-behavioral model

design; it also represents the most diverse set of flow task data collected in this way.

The data from this study is organized into Participant folders and then by Session (‘P1’

� > ‘P1sess1’, ‘P1sess2’, ‘P1sess3’). Each folder includes a video file of Tetris (timestamped

at the end of the session); a folder of raw E4 data with descriptions from Empatica, and

a set of CSV files which include all user interactions, glasses and watch data, and survey

data timestamps. These sessions are timestamped and labeled in order (LAB TETRIS,
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TETRIS CONTD, LAB FLOW, FLOW CONTD). An overall excel sheet is provided with

introductory and final survey data; data processing scripts are provided to extract all of

the data in an easy to use format in the ’data processing’ folder.

6.6 Limitations and Future Work

6.6.1 FSS-2 and 2-axes of Flow

We advance a 2-axis survey methodology for interrogating flow (time-depth) vs the current

practice (depth). Future work includes a thorough interrogation of the relationship between

single flow estimates and the time-varying nature of flow we capture, giving insight into the

temporal dynamics and mental process behind these judgements.

6.6.2 Data and Feature Engineering

Besides the limitations outlined with the raw data itself in previous chapters, feature en-

gineering is also an evolving science. The quality of these features rely on post-hoc signal

processing of the raw signals in ways that cannot perfectly separate the signal from the

noise.3

We are currently revising all of our feature engineering strategies; already under develop-

ment are temperature models that try to combine the four di↵erent temperatures (ambient,

skin, nose, temple) in a way that captures underlying sympathetic activity based on a model

of blood di↵usion; similarly, we are working on a probabilistic blink model that numerically

optimizes a model of ambient lighting based on head Kalman-filtered head motion data.

EDA processing could use motion artifact analysis and a Bayesian model of SCRs for iSCR

deconvolution; movement features that capture fluid, repeated motions (or identify atypical

3Even for commercial devices with large teams and huge datasets this work is constantly evolving–
Harvard’s Onnela showed that, for the Apple Watch, exporting the same two years of heart rate data six
months apart gave completely di↵erent heart rate data– a correlation coe�cient of 0.67 (2021) [50]. For
Apple, the algorithms are evolving so rapidly that the results over the same raw data look entirely di↵erent
after just a few months of development. Apple does not provide access to the underlying raw data.
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patterns of motion given a baseline corpus) are also necessary. HR data is provided based

on a prioprietary Empatica algorithm; but we can also derive it from the raw PPG signal

and from subtle head motion. We will build an ensemble model with confidence for HR and

IBI data as well.

The features above are not population or inter-day normalized; this is an additional step

that requires theory building, such that we can have a prior over all of the relevant data. In

general, the goal is to move toward data generating feature models based on sympathetic

and parasympathetic state where applicable, and a small subset of parameters otherwise.

Modeling

Armed with this data, we can begin modeling flow states. There are yet unanswered ques-

tions about optimal time-resolution for modeling work we might approach with predictive

coding; we could also analyze basic patterns in the data at lower time-resolutions to make

stronger claims about the likelihood of generalizability and overall physiological variation

in the data. The most exciting work, however, will be probabilistic modeling development

using this data as a way to evaluate theories. There are many ways to translate the data

we’ve collected into priors of latent flow states, and many ways to evaluate how well these

models fit the data or predict unseen data conditioned on other information. We believe

this dataset will be most useful as an initial, exploratory test-bed for bio-behavioral flow

ontologies.
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Chapter 7

Interventions to Promote Flow

This chapter introduces a collection of interventions designed to influence flow state. While

much of the work on implicit interventions have failed to replicate (‘Primeworld’– interven-

tions so small that they are unnoticed), automatic interventions are still among the most

transformative (i.e. interventions that become quickly automatic because they are so inte-

gral to our lives). This distinction separates an intervention like introducing a phone into

someone’s life from nudging them; both require limited conscious consideration, but one

is incredibly powerful and one is almost certainly marginal. I attempt to design interfaces

that are automatic, but not implicit.

7.1 Huxley

7.1.1 Motivation

Multi-function devices like the smartphone su↵er from function overloading– their interface

evokes and imposes a state of constant decision-making on the user. Especially when a

task requires e↵ort, the device itself invites regular re-evaluation of the task at hand. This

undermines focus; it’s also possible that too many choices [384] and/or the ability to renege
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Figure 7-1: The Huxley Smart Book, showing updating e-ink displays on the cover, spine,
and inside. A USB port on top is available for charging, one button is available for turning
pages. Huxley only updates when the user is away and the current book has been completed
or ignored. Its selection is based on the measured interests and a↵ective state of the user
at work.

on our selections [174] lead to a paradoxical dissatisfaction, despite our instincts to the

contrary.

While there are many open questions about the nature of the relationships between an

artefact’s a↵ordances (what actions it physically invites– touching, grasping, throwing), its

symbolic information (what the buttons, menus, labels and screens indicate you should do

with it; including cultural assumptions you might bring to a new form factor), its concep-

tual model (the mental representation of the device and its state that you create in your

mind) [315], and its cognitive e↵ects (how it impacts the quality of your experience), it

seems reasonable that we should avoid designs whose symbolic information has been rig-

orously paired with fractured attention over the last decade if our goal is to promote deep

engagement. More research needs to be done to answer important questions:

• How tightly coupled are conceptual models and cognitive load? Is the relationship

binary or continuous? (If your phone decreases your ability to focus, will a similar
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phone? Any phone? Anything with a screen?)

• Have we learned a direct association between symbolic information and cognitive

state? Do new conceptual models alter it? (Does a ‘phone form factor’ induce high

cognitive load even without phone functionality? Is this reversible?)

• What aspects of these devices are most damaging to focus? (How much does the type

and nature of a device’s functionality versus addictive design choices like variable

reward structures, badges, and infinite scroll contribute to cognitive load? What is

the cost of convergence– platforms that run many diverse applications? How does

that interact with each application’s ability to notify you?)

In the spirit of ‘Calm Technology’ [453], Huxley is designed against the backdrop of these

provocations, both as a tool for inquiry and as an example of attention-aware design. Other

theories of design o↵er notions of psychological pairing between an object’s sensory features

and a user’s emotional response to it [89]; we submit that this idea logically extends to the

user’s resting attentional demand when using the object as well. We believe the psychology

supports a move toward essentialism [291] in design—environments and artefacts whose

choice architecture promotes fewer, longer, deeply engaged experiences in line with a user’s

priorities for themselves.

There is a rich confluence of cause-and-e↵ect to disentangle given the current state of screen-

based, multifunction artefacts. We hope Huxley will spark fruitful conversation about the

cultural and aesthetic implications of the Attention Economy’s addictive design tradition

and move us towards an empirical design language based on behavioural economics and

cognitive models of deep engagement.

7.1.2 The System

Huxley (Fig. 7-1) is a book with three e-ink displays, a single button, and a charging USB

port. It behaves like a book— its spine and cover display the title and cover of the book
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contained within, and once opened the internal e-ink page can be turned with a button

press.

There is no way for the user to change the book contained within. Instead, Huxley broad-

casts an API over the local network— once loaded with PDF/EPUB files, it can be pro-

grammatically directed to become a random selection (favoring new books) or become a

relevant book based on provided queries (using Doc2Vec embeddings as a similarity metric).

It’s designed to work invisibly with a custom chrome extension that selects a relevant book

based o↵ a user’s browsing history once the current one is either complete or neglected (in

this implementation, three ignored days triggers a new book).

To perform research in comparison to an iPad, a standard e-reader, and an old fashioned

book, Huxley was created with a few motivating principles in mind. It minimizes the user’s

cognitive model– there are no menus, no battery or wifi indicators, no state to track, and no

ability to summon any book in the universe or leave the current option behind. Moreover,

Huxley only switches from one book to another when the user is away. The goal is to make

Huxley feel like a permanent object. Despite its screen, it evokes the conceptual model of a

book. It also takes physical space; an important and overlooked trait in the dematerialized

era. It is still, though, a digital artifact with updating content.

Huxley reintroduces physicality, friction, and simplicity to digital reading devices; it evokes

’book’ rather than ’screen’. It is a tool to test many of our most basic assumptions about

the influence of UI on focused reading.

7.2 Guitarbot

7.2.1 Motivation

Friction has a big impact on our behavior– in my own life, I’ve noticed small amounts of

friction drastically alter how I use social media and whether or not I put on music when I

get home from work. The impact of small barriers is borne out in large data: milliseconds
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Figure 7-2: Guitarbot is a guitar stand built on top of a iRobot Create 2, that can rove
around the space and find the positions most likely to result in guitar use.

of loading delay can have a dramatic e↵ect on click-through [405], for instance. Introducing

friction can provide a moment to reconsider; over time, with consistent small decisions to

stay on task, the urge to self-interrupt may diminish.

Huxley introduced friction into the e-reader experience to promote focus in this way; Guitar-

bot takes the opposite approach, eliminating friction from the decision to practice. When-

ever you have a slight urge to play, the guitar should be within reach. In both cases, the

goal is to feel as though someone who knows you well adjusts your space for you– picking

out a book just for you and putting out your guitar just where you need it.

7.2.2 The System

Guitarbot (Figure 7-2) is a guitarstand that is built on top of a Roomba (the iRobot Create

2) and controlled using ROS running on a Raspberry Pi. The version pictured here is

programmed to assume three separate locations in my apartment; by the front door, by the

seating area, and against the wall. It moves only in the middle of the day, when no one is

home.
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As another live-with intervention, the goal of this device is to quantify how location and

reachability of the guitar actually alters my engagement with it in a truly randomized way.

7.3 Stagehand

Figure 7-3: Stagehand marries a custom button which attaches to the guitarstrap (left)
with an immersive living room system (right). Whenever the guitar is lifted and in use, the
entire environment shifts to ’concert mode’ (right bottom).

7.3.1 Motivation

After my undergraduate degree, I lived in Dublin for a year, where I’d go see live music

every week. The music culture in Ireland is incredible, and I found myself getting chills

reliably, nearly every night. At first I thought it was because of the quality of musicianship,

but as I analyzed the experience I began to realize that the musician was a small part of the

puzzle; more than the performer, the atmosphere was one of shared focus and attention.

You could hear a pin drop. The acoustics also contributed– that silence allowed incredible

dynamic range alongside just enough reverb to mask small mistakes; the system was both

forgiving and enhancing.

Those experiences have stuck with me, and with the dozens of concerts I’ve been to and

audio systems I’ve evaluated, I’m a firm believer in the power of gestalt ambiance (easily

destroyed by one chatty concert goer), trust in the performer (easily destroyed by one

obvious mistake), and the aural infrastructure (easily mu✏ed, muddy, compressed, and

one-dimensional). When they come together it can be transformative.
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7.3.2 The System

To test some of these ideas with my own guitar playing, I created Stagehand– a BLE button

armed with an accelerometer that snaps into a standard guitar strap and captures when

the guitar is in use. This button controls the larger system shown in Figure 7-4.

In normal mode, the A/C is on, a fake fireplace is roaring, the lights are on and set to

a normal color temperature, and subtle, synthetic cricket sounds are played in the space

(when my girlfriend first moved in, she didn’t notice them for 3 days, until I asked her if

she did– from then on, she was very annoyed by them).

When the guitar is lifted, the crickets and air conditioning stop; the lights either turn o↵

or turn to deep purple; the fireplace becomes a purple jellyfish; and a microphone in the

room adds an extra layer of dense reverb to the space. The room stays in the mode as long

as the guitar is in use.

Figure 7-4: The system underlying Stagehand includes many aspects of environmental
control.

As a musician, I know the power of a really nice, forgiving reverb on my ability to lose

myself in playing. I wasn’t expecting how visceral and exciting it felt with the other aspects

267



of the transition; the immediate stillness when background noises disappear is evocative

and intense. From my anecdotal experience, this kind of intervention certainly changes the

feeling of practice and I expect it to lead to longer, more frequent, and more rewarding

sessions with my guitar.

7.4 Re-designing Asynchronous Communication

Figure 7-5: This email device is an e-ink screen VPNed to a small single board computer
(latte panda); designed to evoke a typewriter and to feel di↵erent than a typical laptop.

7.4.1 Motivation

Second-Order Agency

In ’Brave New World’, Aldous Huxley weaves a dystopian story– a story where every indi-

vidual is matched in ability to their station in life, perfectly and completely happy, sexually

gratified, and unburdened by existential threat. It is a fully optimized society; a hedonic

paradise. What makes this society *so clearly* a dystopia, when many of its features are

utopian?
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Humans have the ability to cultivate tastes, to have preferences about their preferences.

Our ability to control the influences on us that shape our preferences– our second-order

agency– is fundamental to our freedom. We select friends, mentors, and colleagues; they

shape us in turn. We select news curators whose epistemological frame matches our own;

their curation has a tremendous e↵ect on our beliefs and ideology.

Controlling this choice is fascism. In some very important sense, this is the most funda-

mental type of freedom; the freedom to shape and curate the forces in your lives that shape

you.

The domain where I see the least practical second-order agency is our digital infrastructure.

It’s not for lack of trying– everyone has a technique to minimize their addiction or control

their screentime– but we are sold digital ecosystems wholesale with little ability to adapt

them. We do not have the same control over our digital environments that we have with

our physical ones.1

One of my motivations with this project is to probe the limits of adversarial interoperability–

making it seem to those in my social graph and service providers that I am still a normal

part of the technology ecosystem and preserving my ability to function as a member of

modern society, while redesigning from first principles the interaction paradigm.

Another of my goals is to make this philosophical point– much of the world of design

vectors towards a Brave New World-like notion of utopia; maximizing convenience and

hedonic reward rather than maximizing our ability to shape ourselves into the people we

wish to become.

The Largest Plausible Intervention

If there is one kind of ‘background’ intervention that will have a measurable cognitive

impact on the focus of a typical Western knowledge worker, I believe it’s a redesign of their

1I don’t want to sound too harsh, because I do believe that there is a robust conversation around these
topics, robust market-forces keeping a lot of companies in check, and a clear tradeo↵ with innovation when
legislation starts to become paternalistic and restrictive. This conversation deserves it’s own book.
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email and smartphone. A third goal with these interventions is to measure the impact of a

*huge* UI change in someone’s life; as large as I can instrument while keeping it reasonable

for someone existing in the modern world. It can then serve as a useful benchmark to set

expectations for other interventions related to ubiquitous technology.

These interventions are designed to remove all interrupt-based, asynchronous communi-

cation from a user’s daily activities– email, text, and phone are only accessible from one

communication desk. Any form of communication requires an explicit choice to visit the

station; notifications and interruptions are completely removed.

7.4.2 Email System

The first device (Figure 7-5) is a small single-board-computer connected to an e-ink screen,

designed to evoke a typewriter and feel distinct from a laptop. This device is used just to

answer emails; it is automatically synced with a dropbox folder so that attachments can be

easily interfaced from other computers. The screen refresh is slow; there is friction. As a

result, actions feel more deliberate. The threshold for opening an email is slightly higher.

This device is designed to separate email as a task from the user’s main computer. All email

interaction requires a deliberate decision to get up and move to a separate physical space. It

was originally designed to run with a modified version of the open-source Mailspring email

client to track email habits; its latest incarnation runs with a simple chrome extension to

track email habits.

7.4.3 Phone Replacement System

With the goal of preserving phone functionality while removing the smartphone itself, the

first and most simple part of this interface is to handle phone calls. Using Cell2Jack (Figure

7-6), it’s easy to move phone calls back to a landline phone. This device is incredibly reliable,

and combined with a paper address book, easily stands in for call functionality.
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Figure 7-6: Cell2Jack is a solution for your grandparents to allow their cellphones to operate
like the familiar phones of yester-year. It’s been very reliable as my bluetooth-to-landline
bridge.

To text, I designed a system that takes advantage of Apple’s iMessage functionality, a

receipt printer, and the remarkable tablet, an e-ink note-taking device. My main iMac

runs a script that monitors incoming texts; upon reception, it sends the text to the receipt

printer as shown in Figure 7-7.

Also upon receipt of a text, the system generates a PDF of that text with lines to respond.

This PDF gets pushed automatically to the remarkable tablet, where it appears in chrono-

logical order, labeled by names in my address book. Tapping a name brings up a screen with

their last message at the top, and several lines available to write a response. Upon writing

the response and exiting the document, the iMac automatically pulls the edited document,

OCRs it using Google’s API, and sends out a text version as well as a snapshot of the

handwritten message (Figure 7-8). On successful send, the text appears in the iMessages

database, which triggers the receipt printer to display the outgoing text; thus the success

of an outgoing message is easily verifiable.
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Figure 7-7: Incoming texts get printed, in chronological order, on a receipt printer. Images
are also printed.

Figure 7-8: To send texts, the user selects one of the auto-generated documents that cor-
respond to every incoming texts, sorted chronologically (and seeded with everyone in the
address book) [A]. After clicking on a document name (labeled by sender) the user hand-
writes a reply [B], which automatically gets OCRed and sent in both text and image form.
Upon success, it is also printed to the receipt printer [C].
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Chapter 8

The Smartphone Free Living

Experiment

8.1 A Brief Justification of N=1

In 2015, one Stanford professor spent two mornings per week over 18 months in an fMRI

machine studying himself. Russ Poldrack published his N=1 self-experimentation results

that year [341], demonstrating the powerful influence of a cup of co↵ee on his imaging

results.

Russ is not a typical Stanford professor; he is also the Associate Director of Stanford Data

Science, and the Director of the SDS Center for Open and Reproducible Science. He happens

to be a leading thinker on statistics and methodology.

Self-experimentation and N=1 experiments are not highly regarded by the mainstream

academy; we expect results that generalize over a population. Unfortunately, the con-

straints of nomothetic approaches obscure many of the interaction e↵ects between a per-

son’s state (emotion, mood, and personality), their environment (social and physical), and

a new intervention.
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Idiographic techniques are on the rise. Outside of Poldrack, Aaron Fisher runs the UC

Berkley Idiographic Dynamics laboratory where they “believe that the concept of per-

sonalization extends beyond treatment delivery and should encompass study design, data

collection, and statistical analysis.” His most cited paper ‘Lack of group-to-individual gen-

eralizability is a threat to human subjects research’, [147] quantifies the cost of aggregation

across subjects when basic assumption of ergodicity are violated (as we would expect). Peter

Molenaar, at Penn State, has highly cited works on the topic (‘A manifesto on psychology

as idiographic science: Bringing the person back into scientific psychology, this time forever’

[302], ‘The new person-specific paradigm in psychology’ [303]) and has worked to integrate

nomothetic and indiographic approaches using statistical tools for clinical mental health

work [51].

In medicine, several articles are starting to appear on the topic of N-of-1 trials for drug

e↵ectiveness. [419]. Lillie et al. wrote in a 2011 article [262]:

Coordinated n-of-1 trials have the potential to radically change the way in which

evidence-based and individualized medicine is pursued. The availability of rel-

evant wireless clinical monitoring devices that are largely invisible to the user

will enhance their value. These enhancements may involve the collection of data,

such as continuous time heart rate or blood pressure variability that have never

been considered in population-based trials. Not only are the results of n-of-

1 trials of immediate benefit to the patient and the treating physician, but if

enough of them are pursued, patient characteristics that ultimately di↵erentiate

those that benefit from a particular intervention from those that do not can be

explored, allowing for stratification of future patient groups in a way that would

further benefit patient care.

This statement largely sums up my own view of how research should proceed– identify inter-

ventions that have a large impact for an individual first. Once we’ve established that we can

make a di↵erence for one person, the challenge of finding similar <individual, environment>
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constellations where we might predict similar impact becomes much more tractable. People

are too diverse and interaction e↵ects are too strong for average e↵ects to be meaningful.

8.2 The N=1 Experiment

Figure 8-1: All of my asynchronous communication is designed to happen at this desk–
texts are handwritten on the tablet (and automatically sent once written), incoming texts
are printed, phone calls are routed through the rotary phone, and email happens on the
main typewriter-like interface with an e-ink screen.

My belief in in this approach led me to design the ‘Smartphone Free Living Experiment’.

For two months, I measured everything about myself while I went about my daily life. For

the second of those two months I locked my smartphone in a box and removed email from

my personal and work computers.

To communicate with the outside world, I was forced to sit down at the ‘asynchronous

communication desk’ pictured in Figure 8-1 and described in Chapter 7. At this desk, I

could hand-write outgoing texts, read printed incoming texts, make/answer phone calls on

my rotary phone, and slowly answer email using a type-writer like, e-ink interface set up
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with gmail. Away from this desk I received no notifications and no communications; I was

impossible to reach on demand.

I picked this intervention to serve as a strong line-in-the-sand– it is very disruptive, some-

thing few are willing to consider for themselves. The size of its e↵ect will serve as a useful

benchmark for other interventions of more and less severity. If it fails to produce a measur-

able result– washed out by the joy and the stress of daily living– that would also be a very

telling result about the challenges of generalization to real-world contexts, and the relative

importance of this style of intervention in daily life.

This is my attempt to design the most impactful, realistic ‘background’ intervention for

focus that I can– removing all of my notifications, my email, and my smartphone from

my normal course of living. This also represents a unique, large scale, in-the-wild dataset

that fully contextualizes the bio-behavioral and physiological data we collect with our new

wearable tools.

8.3 Contributions

This is a unique, large-scale, idiographic collection of bio-behavioral data as introduced in

earlier chapters. This data represents two full months of naturalistic data collection for one

person– one month of normal living and one month with a major UI intervention. It con-

textualizes as much as possible about that physiological data through secondary measures–

videos, structured interviews, surveys, open-ended notes, and passive metadata monitoring.

This data is open-source. Email and text data is sorted in folders by device (main laptop,

home desktop, and ‘typewriter’ interface); each timestamped entry includes interaction

type (‘view’, ‘compose’, ‘send’, ‘delete’, ‘poll’), hashed to/from fields, and summarized text

content (emotion analysis using Vader and Flair) [213, 22]. Text data is sorted by day,

identities are hashed and texts are summarized as with the email; call logs are included

with hashed phone numbers.

Beiwe metadata (see Figure 8-2) [320], E4 data, Captivates and Equinox data (including
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surveys), video diary footage (alongside a daily json file that timestamps each structured

section of the diary footage), and personal notes are all freely available in raw format. Beiwe

data formats are discussed here: [320], Empatica formats are described in the folder with

each record.

While raw video data is not publicly posted, examples of the footage are available and

requests to run scripts on the raw video feeds for computer screens and video captures will

be honored. In addition, extracted pyfeat facial features are provided for every 15s of face

footage, as well as toolbar analysis and basic motion data from each screen.

The complete video collection represents 16.5 TB of footage; including 57 continuous days

of room footage, 30 days of streaming of all cameras in my living space, 156 hours at my

workspace in the Media Lab, and 61 video diaries totally 21.5 hours of structured vlog-style

self-reflection (see Figure 8-3). The physiological data includes 48 and 41 days of E4 data

on the Right and Left hand respectively with over 25 days of overlap alongside 42.5 Days

worth of Captivates/Equinox data. As far as behavioral indicators go, the data includes

92 duration estimates, 223 LED notice events, 117 time estimates, 815 survey responses,

and 956 notes timestamped throughout the day. Finally, communication data includes 220

phone calls, 1,513 texts, 10k email interactions, and 2.6 GB of passive phone metadata.

This dataset represents a one-of-a-kind, contextualized, idiographic dataset featuring a

large-scale intervention. It should serve as a useful benchmark for individualized, bio-

behavioral modeling of deep attentional states in realistic contexts.

8.4 Tools

To enable this data collection e↵ort, I installed state-of-the-art tools, and created new

tools where o↵-the-shelf solutions were not available. I used Beiwe [320]– the top digital

phenotyping platform from Harvard– on my iPhone alongside a personal back-end server to

collect data. I downloaded call logs from my phone provider and translated these files into

CSVs; built a chrome extension to capture my email usage statistics; built a text scraping
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Physiological Measures
Empatica E4 EDA, Wrist Temperature, PPG, Wrist Acceleration

Captivates Nose and Temple Temperature, Blink Signal, Head
Rotation and Acceleration

Equinox Ambient Temperature, Humidity, and Light Levels
Behavioral Data

Captivates Duration to Notice LED Color Change
Equinox Time Estimates
Spotify Now Playing

Communication Device Statistics
Beiwe Phenotyping Data (iPhone) Power Status, WIFI/Cellular Connection Status,

GPS data, Magnetic Field, Phone Rotation, Phone
Acceleration

Email Statistics Activity Timestamps, Unread Message Statistics,
Delete, Send, and Open Events with Subject, Body,
To, and From Fields

Text Records Timestamps, To, From, Body
Call Logs Timestamps, To, From, Duration

Screen-time Screenshots Screentime for Each Day
Self-report and Twitch User Data

Equinox Surveys Likert Scales for Cognitive State, Focus, and Task
Duration

Structured Daily Video Diary Discussion of Events of the Day, Overall Feelings,
Social Interactions, Ca↵eine, Food, Exercise, Sleep,
Productivity and Focus, Screen-time, Experiment
Reflections, Gratitude

Note App Free-text application on laptop and computer to en-
ter relevant notes/thoughts

Twitch Chat Chat logs, Twitch User Labels via Chatbot (stress,
focus, emotional state)

Video and Screen Recordings
At Work Recording of Laptop screen, iPhone screen, and Face

Camera
At Home 24/7 Room Camera, Couch Camera, Face Camera,

Communication Desk Camera, Laptop Screen, iMac
Screen, iPhone Screen

Table 8.1: A summary of the types of data collected as part of the smartphone free living
experiment. All data is freely available after appropriate anonymization except full video
feeds, which can be analyzed on request.

and anonymization tool to pull my text messages from the Apple Chat application.

My physiological data was logged on-device and downloaded to the cloud for the E4 and

to a small base-station I carried with me for the Captivates and Equinox data. This base-

station hosted a dashboard, which would automatically stream data to the twitch interface

when in wifi range.
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Figure 8-2: A sample of Beiwe data; this open-source application is run by the Onella lab
at Harvard.

I had access to three E4 bands at various points during this experiment; when possible I

wore E4 bands on both wrists simultaneously, including overnight. The physiological data

is also available online.

Throughout the day, I wore the Equinox watch and Captivates glasses. The watch was

set up so I could indicate when I noticed the LED in my peripheral vision change (once

every 20 minutes to 2 hours). It also allowed time perception estimates and survey data

collection. I attempted to cover all of my normal clocks with post-it notes, and rely on

the Equinox watch to check the time as much as possible (and guess the time frequently).

The watch one survey with the following questions for time estimates: What time do you

think it is? How certain are you?, stress?, alertness?, % time in flow?, max flow? and

one survey intended to capture duration estimates as I switched tasks: How long were you

engaged in the previous activity? How certain are you? Emotional state?, mental e↵ort?,

next activity? My goal was to answer these questions about the time when I needed to

check the time or when I noticed a light change (i.e randomly throughout the day); and to

catalog my current activities and duration estimates as I went through various tasks in my

daily life. Compliance on these surveys fell over the two months of the experiment; not only

were they onerous and self-initiated, task boundaries were more di�cult to identify than I

initially anticipated.

279



After starting the experiment, I quickly realized that there was a lot of missing context

about my environment and mental state that would be more easily captured with a simple

text box on my screen. I created a simple one line note-taking app that timestamped and

saved any entry, and set it up to run on my main laptop and my home computer (see 8-6). I

used this app to make quick notes when something distracted me, or when I felt I had really

lost track of the time; it became a less structured (and thus more frequent) supplement to

the Equinox watch survey interface.

For video capture, I created two setups– one at my desk at the Media Lab and one at home–

using OBS to record many streams at once. An example of the OBS videos I captured at

my desk at the Media Lab can be seen in Figure 8-4 top; when I got to work every day, I

would plug in my laptop and my iPhone in (during month 1) such that their screens were

mirrored to HDMI inputs on my video recorder; I then captured my phone and laptop

screen and video footage of my face. At home, I ran a 24/7 room camera that looks out

over my apartment (Figure 8-4, bottom two dashboards, small inset). When at home, I

would record my activity. In addition to the 24/7 room camera, I would capture my phone

screen, my laptop screen, and my main desktop screen; I would capture camera footage of

the couch, and camera footage of my desk area (face if working on the desktop computer).

During the phone-free month, I set up an additional fish-eye lens and captured footage of

the desk I used for communication.

Every day I recorded a video diary about the day, usually lasting around 20 minutes (see

Figure 8-3). I created a custom dashboard that I could advance, with structured topics, such

that there is a json file for each day noting the timestamps at which each topic starts and

ends (the topics I discussed each day are: my activities, my general feelings about the day,

my social interactions, my stressors, ca↵eine intake, food, exercise, sleep, productivity and

focus, screen-time, experiment reflections, and gratitude). Not only is this data interesting

for transcription and a↵ect analysis, I also wore my full suite of physiological sensors during

every video diary.

280



Figure 8-3: Every day I would stream a video diary using this web interface. On the left,
you can see a list of topics I discussed every day; For me, this interface had a button to
advance the topic, which recorded timestamps so I could easily slice together videos of all
60 days by topic. It’s also easy to do emotion and speech analysis on these daily diaries.
They also included screen shots of my screen-time app for the day when I had my phone.
Typically these sessions would last 20 minutes.

8.4.1 Twitch Streaming

As part of this experiment, I streamed quite a bit of the video footage to Twitch, an

ephemeral platform (videos last two weeks) for this type of content. My goal was (1)

accountability, (2) to incentivize viewers to label my data in real-time, and (3) to curate an

open-source dataset of the video footage (anything that is streamed should be something

that can be posted/hosted publicly without having to scrub it for privacy concerns).

To build an interesting streaming platform, I had my physiological data streaming to a live

dashboard hosted on my portable raspberry pi base-station. This data interface is shown

in Figure 8-5 with all of the data described. Summary videos streamed in real-time are

shown in Figure 8-4; at the Media Lab (o�ce), E4 data was collected o✏ine (I only had one

BLE Streaming Server implementation, and kept it at home)– Captivates and Equinox data

was sent to the dashboard. At home (East Campus), the E4 data was also live-streamed,
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Figure 8-4: Examples of the video stream I had on Twitch 4-8 hours a day. At the top we
see the dashboard I used at the media lab; at the middle and bottom we see the dashboard
at home, which features more configurations depending on my activity, location, and screen
usage.
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with di↵erent configurations of the overlay depending on whether I was (1) working at my

desktop, (2) working on my laptop on the couch, or (3) using my phone.

Figure 8-5: The dashboard of data I actively collected at all times over two months. This
dashboard was hosted on a raspberry pi that I carried around with me in a backpack (since
I gave up my phone for one of the two months).

For both media lab and home overlays, I included a real-time deepface face classifier to

display real-time emotion and gaze predictions. I also implemented a Spotify monitoring

script which logs and displays the current audio track (bottom of the dashboard). At

the o�ce, I streamed my audio headphone feed to Twitch, so I listened to free-to-stream

playlists by Streambeats. The dashboard also displays the last reported activity from the

Equinox watch (options included ‘Reading’, ‘Writing’, ‘Viewing’, ‘Browsing’, ‘Video Games’,

‘Playing Music’, ‘Recording Music’, ‘Socializing’, ‘Coding’, ‘Building’, and ‘Misc. Work’).

Finally, I implemented a Twitch chatbot; it gives instructions to viewers such that they

can use certain commands to contribute stress, altertness, focus, and emotion labels to the

dataset (i.e. ‘Does David look tired? type “!tired < 0� 5 >” to label his energy state, with

0=very tired and 5=very energized!’) Should users follow this command structure, their
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assessment will be added in real-time to the Twitch overlay and saved for analysis.

To stream e↵ectively, I designed tools to obscure my phone and video screens– either cov-

ering them with a solid block of color, or blurring them so any incoming communication,

personal information, or password would be hidden.

Figure 8-6: A summary of the types of reporting data. On the left you can see the video
diary sections (top); part of the twitch dashboard driven by a chatbot that monitored user
labels of my focus, stress, altertness, and emotional state (middle), and a small, always-open
note-taking app (bottom).

8.4.2 Takeaways

I felt this intervention had a big impact on my cognition with a minimal cost (outside of

traveling away from the home), and I plan to enhance this design so I can integrate it
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permanently at home and work. I felt less stress, less pressure to always be updating and

communicating others, less frenetic energy when I had multiple tasks to get done, and a

greater comfort with missing trivial information (turns out I don’t need to need to know

the weather forecast or the name of that actor).1 Behavioral indicator corroborate a large

change. My email discipline improved dramatically– my time on email was cut in half, with

no hanging emails. My texting response times dropped from 2 to 7 hours, but my words

per text quadrupled; I sent half the number of texts but twice as many words. My number

of phone calls was similarly cut in half, while my time on the phone doubled.

Future analysis will reveal whether and how the physiological data bears out the phe-

nomenological and behavioral impact. Regardless of the specific findings in the data, they

should provide valuable insights for probabilistic models of cognition, and serve as a case

study to contextualize the cognitive impact of ubiquitous interface design.

1Some of these changes took almost three weeks to become noticeable.
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Chapter 9

Conclusion

In this thesis, we examine and contextualize the lessons of the replication crisis for the study

of flow cognition. The lessons of the crisis re-contextualize what kinds of interventions we

expect to matter; instead of implicit interventions that are too small to be consciously

perceived, we design automatic interventions that are large and obvious, but integrate

intuitively into a user’s life. We introduce four such interventions that were built to be

tested in naturalistic settings.

In order to make strong claims about the influence of these interventions on flow states,

we again turn to lessons from the broader methodological challenges facing psychology and

the broader statistical challenges facing science. We distill these lessons into an approach

that prioritizes phenomenological, gestalt representations of the concepts under study, as

demonstrated in work on auditory perception. We also lay the groundwork for probabilis-

tic, data-generating ontological theories of flow that can be easily compared based on the

naturalistic physiological, behaviorial, and self-report data. This approach requires novel

tools to capture these signals in the course of normal daily living, of which we introduce

three, and modified survey techniques that provide insight into the time-varying nature of

flow over a task interval, which we introduce as well.

To test and compare bio-behavioral definitions of flow, naturalistic data is required. We

contribute two unique open source datasets– one in which 20 users contribute 2.5 hours of
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focused time across multiple days, multiple environments, and multiple activities. This one-

of-a-kind dataset relies on a portable test setup that can be self-administered and robust

hardware monitoring. The second dataset features 60 days of invasive monitoring of one

user (me), with half of that time spent with a major intervention on my daily user interfaces.

This dataset fully contextualizes the bio-behavioral and physiological data of interest with

as many secondary measures as possible, enabling deep idiographic techniques across the

contexts in which I spend my time (work and home) and serving as a case study for major

UI interventions. Both datasets feature a rich collection of bio-behavioral and physiological

data recorded by robust, product-like hardware we developed ourselves.

The integration of low-level psychological ontology, hardware development, and advanced

modeling come together in this thesis to chart a novel path forward for theory building

related to cognition. We apply these principles in how we reason about flow states; we hope

they are illustrative of broader approaches in psychology. We believe the combination of

these tools, the naturalistic datasets they’ve enabled, and the probabilistic representations

that motivated them can serve to push the study of flow beyond the time-naive, lab-based

results that dominate current state-of-the-art psychophysiological flow research.
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Delgado-Garćıa. 2017. Looking at reality versus watching screens: Media profession-

alization e↵ects on the spontaneous eyeblink rate. PLoS One 12, 5 (2017), e0176030.

[34] Sinan Aral. 2021. What Digital Advertising gets wrong. https://hbr.org/2021/

02/what-digital-advertising-gets-wrong

[35] Dan Ariely. [n. d.]. http://danariely.com/2008/05/05/

3-main-lessons-of-psychology/

[36] Dominik R Bach and Karl J Friston. 2013. Model-based analysis of skin conductance

responses: Towards causal models in psychophysiology. Psychophysiology 50, 1 (2013),

15–22.

[37] Wilma A Bainbridge, Phillip Isola, and Aude Oliva. 2013. The Intrinsic Memorability

of Face Photographs. Journal of Experimental Psychology: General 142, 4 (2013),

1323.

[38] Wilma A Bainbridge, Phillip Isola, and Aude Oliva. 2013. The intrinsic memorability

of face photographs. Journal of Experimental Psychology: General 142, 4 (2013),

1323.

[39] Monya Baker. 2015. Irreproducible biology research costs put at $28 billion per year.

Nature 533 (2015).

292

http://arxiv.org/abs/1811.06439
https://hbr.org/2021/02/what-digital-advertising-gets-wrong
https://hbr.org/2021/02/what-digital-advertising-gets-wrong
http://danariely.com/2008/05/05/3-main-lessons-of-psychology/
http://danariely.com/2008/05/05/3-main-lessons-of-psychology/


[40] Guha Balakrishnan, Fredo Durand, and John Guttag. 2013. Detecting pulse from

head motions in video. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 3430–3437.

[41] James A Ballas. 1993. Common factors in the identification of an assortment of

brief everyday sounds. Journal of experimental psychology: human perception and

performance 19, 2 (1993), 250.

[42] Tadas Baltrusaitis, Amirali Bagher Zadeh, Yao Chong Lim, and Louis-Philippe

Morency. 2018. OpenFace 2.0: Facial Behavior Analysis Toolkit. 2018 13th IEEE

International Conference on Automatic Face Gesture Recognition (FG 2018) (2018),

59–66.

[43] Mahzarin R Banaji and Anthony G Greenwald. 2013. Implicit stereotyping and prej-

udice. In The psychology of prejudice. Psychology Press, 55–76.

[44] John A Bargh. 2011. Unconscious thought theory and its discontents: A critique of

the critiques. Social Cognition 29, 6 (2011), 629–647.

[45] James Craig Bartlett. 1977. Remembering environmental sounds: The role of verbal-

ization at input. Memory & Cognition 5, 4 (1977), 404–414.

[46] Tom Bartlett. [n. d.]. The Magic Ratio that Wasn’t. https://www.chronicle.com/

blogs/percolator/the-magic-ratio-that-wasnt
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Towards finding flow in Tetris. In Case-Based Reasoning Research and Development:

27th International Conference, ICCBR 2019, Otzenhausen, Germany, September 8–

12, 2019, Proceedings 27. Springer, 266–280.

[268] Diana Sof́ıa Lora-Ariza, Antonio A Sánchez-Ruiz, Pedro Antonio González-Calero,
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[430] Sven Thönes and Daniel Oberfeld. 2015. Time perception in depression: A meta-

analysis. Journal of a↵ective disorders 175 (2015), 359–372.

[431] Robert L Thorndike. 1968. Reviews: Rosenthal, Robert, and Jacobson, Lenore. Pyg-

malion in the Classroom. New York: Holt, Rinehart and Winston, 1968. 240+ xi pp.

3.95.American Educational Research Journal5, 4(1968), 708��711.

333



[432] Jason Tipples. 2008. Negative emotionality influences the e↵ects of emotion on time per-

ception. Emotion 8, 1 (2008), 127.

[433] Simon Tobin, Nicolas Bisson, and Simon Grondin. 2010. An ecological approach to prospec-

tive and retrospective timing of long durations: a study involving gamers. PloS one 5, 2

(2010), e9271.

[434] Elizabeth B Torres, Joe Vero, and Richa Rai. 2018. Statistical platform for individualized

behavioral analyses using biophysical micro-movement spikes. Sensors 18, 4 (2018), 1025.

[435] Michel Treisman. 1963. Temporal discrimination and the indi↵erence interval: Implications

for a model of the” internal clock”. Psychological Monographs: General and Applied 77, 13

(1963), 1.

[436] Civil Rights Division United States Department of Justice. 2015. Investigation of the Fer-

guson Police Department.

[437] Chandan J Vaidya, Margaret Zhao, John E Desmond, and John DE Gabrieli. 2002. Evi-

dence for cortical encoding specificity in episodic memory: memory-induced re-activation

of picture processing areas. Neuropsychologia 40, 12 (2002), 2136–2143.

[438] Nicholas T Van Dam, Marieke K Van Vugt, David R Vago, Laura Schmalzl, Cli↵ord D

Saron, Andrew Olendzki, Ted Meissner, Sara W Lazar, Catherine E Kerr, Jolie Gorchov,

et al. 2018. Mind the hype: A critical evaluation and prescriptive agenda for research on

mindfulness and meditation. Perspectives on psychological science 13, 1 (2018), 36–61.

[439] Vincent T Van Hees, Lukas Gorzelniak, Emmanuel Carlos Dean León, Martin Eder, Marcelo

Pias, Salman Taherian, Ulf Ekelund, Frida Renström, Paul W Franks, Alexander Horsch,

et al. 2013. Separating movement and gravity components in an acceleration signal and

implications for the assessment of human daily physical activity. PloS one 8, 4 (2013),

e61691.

[440] Thijs Verwijmeren, Johan C Karremans, Wolfgang Stroebe, and Daniël HJ Wigboldus.
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