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Abstract

Quantum materials are essential components in the development of advanced tech-
nologies, including magnetic-field sensors, energy-related technologies, and quantum
computers. Especially, the search of highly entangled quantum materials is crucial,
because entanglement is a resource in quantum information applications. A key step
towards finding and fabricating highly-entangled materials is to develop experimental
and theoretical methods to characterize entanglement. In large-scale solid-state sys-
tems, the experimental characterization relies on spectroscopies, including X-ray and
neutron spectroscopies. Among different conceptual and mathematical formalisms of
entanglement, multipartite entanglement has gained significance due to its accessi-
bility through local probe techniques such as spectroscopies. The resonant inelastic
X-ray scattering (RIXS) is an advanced X-ray spectroscopic technique that can probe
collective excitations arising from charge, spin, and orbital degrees of freedom, which
makes it suitable to characterize multipartite entanglement. RIXS also exhibits po-
tential that extends beyond current understandings, under exceptional precision, it
can measure four-point correlations beyond the capability of other spectra techniques,
which inspires new entanglement probes.

This dissertation contains many aspects of probing entanglement and symmetry
breaking orders using both spectroscopies and machine learning. In the first part
about probing entanglement using spectroscopies, we will introduce a theoretical pro-
posal for using RIXS to probe entanglement. We propose a new RIXS technique that
can extract four-point correlations beyond the scope of the spin and charge structure
factors. We verify our method using computational RIXS spectra and theoretically
propose multipartite entanglement witnesses based on the four-point correlations for
general fermion systems. Building upon the theme of extracting information from
materials using spectroscopies, we further present two theoretical works that predict
symmetry breaking orders in two-dimensional systems, which can be directly visual-
ized using spectroscopic techniques. (1) We investigate local signatures of quantum
Hall ferroelectric and nematic states arising near impurities that can be observed
via Scanning Tunnelling Microscopy (STM). (2) We study charge orders at the frac-



tional fillings in twisted transition metal dichalcogenide (TMD) bilayers that can be
observed directly via STM.

The second part is about the prediction of magnetic orders using machine learning.
We’ll present a machine-learning model based on the Euclidean equivariant graph
neural network (E3NN) which preserves the crystallographic symmetry, that is trained
to predict magnetic orders (ferromagnetic, antiferromagnetic, and non-magnetic) and
magnetic propagation vectors (zero or nonzero) with the crystal structures as input.
The descriptor used has the advantage to encode general crystal structures of any
space group while retaining all spatial information, this characteristic holds significant
potential for advancing material science studies.

Thesis Supervisor: Mingda Li
Title: Class ’47 Career Development Professor,
Associate Professor of Nuclear Science and Engineering

Thesis Supervisor: Paola Cappellaro
Title: Ford Professor of Engineering,
Professor of Nuclear Science and Engineering,
Professor of Physics
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Chapter 1

Introduction

Quantum materials are essential components in the development of advanced tech-

nologies, including magnetic-field sensors[1], energy-related technologies[2], and quan-

tum computers[3]. In this context, the search of highly entangled quantum materials

is crucial, because entanglement is a quantum resource in information applications

and topological quantum computing[4, 5, 6]. There are two central questions in the

study of entanglement, (1) How to detect entanglement in the laboratory, and (2)

How to characterize and quantify entanglement theoretically. Both of these questions

are key steps toward discovering and fabricating highly-entangled materials. In large-

scale solid-state systems, the experimental characterization relies on spectroscopies

that measure certain correlation functions of the systems, including X-ray, neutron,

and photoemission spectroscopies. The most commonly used theoretical formalism

to characterize entanglement is the Von Neumann entanglement entropy, however,

it is hard to measure the entanglement entropy using spectroscopies. The multipar-

tite entanglement has gained significance due to its accessibility through local probe

techniques such as spectroscopies[7]. The resonant inelastic X-ray scattering (RIXS)

[8] is an advanced X-ray spectroscopy technique that can probe collective excitations

arising from charge, spin, and orbital degrees of freedom, which makes it suitable to

characterize multipartite entanglement[9].

Besides the quantum entanglement, symmetry breaking in the context of classical

Landau theory plays a crucial role in understanding the macroscopic properties of
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materials. This is because most physical phenomena in the materials are dictated by

their underlying symmetry breaking, including, but not limited to, spin-polarization

effects, valley-contrasting physics, unconventional superconductivity, nematic order,

and ferroelectricity. Symmetry breaking phases often exhibit distinct patterns or

signatures that can be observed through experimental techniques including thermal

measurements, transport measurements, and spectroscopies. Among other spectral

techniques, scanning tunneling microscopy adds spatial resolution. In some cases, it

enables local determination of the symmetry breaking, and can even provide a direct

image of the order parameters of the symmetry breaking, providing fundamental

insights into the behavior of materials and offering opportunities for technological

applications.

Figure 1-1: Conceptual overview: interrelationships and explanations of key concepts

Machine learning methods are particularly valuable in predicting symmetry-breaking

orders of materials, even prior to experiments and extensive theoretical calculations.

This capability provides an alternative approach to understanding materials, comple-

menting traditional methods. By combining these tools—spectroscopic techniques,

machine learning, and theoretical investigations—we can enhance our understanding

of materials and unlock new insights into their properties and behavior.

20



In this chapter, I will provide an overview of the experimental spectra methods

as well as delve into the machine learning methods that will be further explored

throughout the remainder of the thesis. In Section. 1.1, I’ll introduce the resonant

inelastic scattering spectra (RIXS), emphasizing its ability to probe specific types of

correlations. This discussion serves as a foundation for exploring the role of RIXS in

probing entanglement in Chapter 3. Additionally, a brief overview of the scanning

tunneling microscope (STM) will be presented, focusing on its capacity to capture

spatial images that are valuable for investigating symmetry-breaking orders within a

system, particularly when influenced by defects. In Section. 6, I’ll introduce the ma-

chine learning technique, called Euclidean equivariant neural network (E3NN), which

will have a significant impact on the application of machine learning in predicting

material properties based on their crystal structures. This topic will be further elab-

orated upon in Chapter 6. To adequately address the entanglement in many-body

systems, I will defer the introduction on entanglement to the subsequent Chapter 2,

specifically pertaining to multipartite entanglement and indistinguishable particles,

crucial for the comprehensive exploration in Chapter 3.

1.1 Spectroscopy methods in condensed matter sys-

tems

Spectroscopic methods play a vital role in probing the properties of solid-state sys-

tems, offering insights into their electronic, magnetic, and structural characteristics.

With theoretical insights and the application of spectroscopic methods, it is possible

to investigate classical and topologically ordered phases, as well as identify and char-

acterize quantum entanglement. In this section, I will introduce the basic idea of some

spectroscopic techniques that will support the subsequent chapters, they are resonant

inelastic X-ray scattering (RIXS) and scanning tunneling microscopes (STM).

The resonant inelastic X-ray scattering (RIXS) [8] is an advanced X-ray spec-

troscopy technique that can probe many different collective excitations arising from
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charge, spin, and orbital degrees of freedom by measuring their energy, momentum,

and polarization dependence. It’s achieved by tuning the incident X-ray energy to

an atomic absorption edge, resulting in resonance that boosts the scattered intensity

and can probe new excitations fundamentally different from non-resonant processes.

It is not sensitive to sample size since the wavelength of this radiation is comparable

to that of atomic spacing.

Figure 1-2: A schematic that illustrates the RIXS process.

The direct RIXS process consists of two dipole transitions, as illustrated in Fig. 1-

2. In the first step, an incoming photon with momentum 𝑘⃗in and frequency 𝜔in

excites the ground state by promoting an electron from a filled core shell into the

valence band. An intermediate state undergoes an evolution determined by the system

Hamiltonian over the core-hole lifetime 1
Γ
. In the second step, an electron from the

valence band fills the core hole, accompanied by an outgoing photon with momentum

kin − q and frequency 𝜔in − 𝜔, which leaves the system in an excited final state.

The RIXS cross section is

𝐼(q, 𝜔) =
∑︁
𝑓

| ⟨𝑓 |𝑂q,e|𝑖⟩ |2𝛿(𝜔 + 𝐸𝑖 − 𝐸𝑓 ) (1.1)

where |𝑖⟩ (|𝑓⟩) is the initial (final) state of the system in the RIXS process with

energy 𝐸𝑖(𝐸𝑓 ), the transferred momentum (energy loss) is q(𝜔), and e = e𝑖 · (e𝑓 )†

is the tensor that describes the incoming (i) and outgoing (f) photon polarizations.
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Here, the operator 𝑂q,e =
1√
𝑁

∑︀
𝑗 𝑒

𝑖q·rj𝑂𝑗,e where

𝑂𝑗,e = 𝐷†
𝑗,e𝑓

1

𝜔𝑖 −ℋ + 𝑖Γ
𝐷𝑗,e𝑖 (1.2)

which describes the evolution of the system in the RIXS experiment, from the initial

ground state to the excited final state, the intermediate states contain a core hole and

an excited valance electron created by the dipole transition operator 𝒟𝑗,e𝑖 . The dipole

transition operator 𝒟𝑚,e = (𝑐†𝑚,↑, 𝑐
†
𝑚,↓)𝑀𝑒

⎛⎝𝑝𝑚,↑

𝑝𝑚,↓

⎞⎠, where 𝑝𝑚,𝜎(𝑐
†
𝑚.𝜎) is an annihilation

(creation) operator in the core (valence) shell at the site index 𝑚 and the spin orbital

𝜎. The matrix 𝑀e depends on the light polarization e, and can be simplified into

a normalized linear combination of two-by-two Pauli matrices, representing different

spin channels.

The above two-level description (one core level and one valance level) is an effective

model much simplified based on the realistic setup. In real experiments, there are

often multiple core levels involved and the system should be described by a multi-band

model instead of a 2-band model (1 valance band and 1 core band). For example, in

the Cu L-edge 2p → 3d transition, there are three 2p orbitals as core levels denoted

as 2𝑝𝛼, 𝛼 = 𝑥, 𝑦, 𝑧. Actually, the multiple core orbitals combined with the spin-

orbital effects are the cause of spin flip. The dipole transitions preserve the total

spin, however, due to the spin-orbit coupling at multiple core levels, the pair of

photon absorption and emission may flip a spin. This is derived for 2𝑝𝛼 orbitals in

the Supplementary Information of Ref. [10]. Here we use the effective theory model

with only one core level and four spin channels, for simplicity and for generality in

different X-ray edges. The four spin channels are represented by 𝑀𝑒𝑓 = 𝜎0,𝑥,𝑦,𝑧, while

keeping 𝑀𝑒𝑖 = 𝜎0. There is one spin-conserved channel (𝑀𝑒𝑓 = 𝜎0) and three spin-flip

channels (𝑀𝑒𝑓 = 𝜎𝑥,𝑦,𝑧).

Under the spin-flip channel with 𝑀𝑒𝑖 = 𝜎0,𝑀𝑒𝑓 = 𝜎𝑧, RIXS gives a good approx-

imation to the spin excitation susceptibility usually represented by 𝑆𝑧(𝑞, 𝜔), which

becomes exact at the ultra-short core-hole lifetime (UCL) limit [11]. We will discuss
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this in detail in Chapter. 3.

Scanning tunneling microscopy (STM) is a powerful technique that provides not

only spatially resolved information about surfaces, but also spectroscopic measure-

ments of the electronic density of states at the atomic length scale. Thus, it is ideal

for investigating local excitations and observing defect effects at the atomic scale,

especially on two-dimensional materials. A schematic illustration of STM is shown

in Fig. 1-3, a tip is brought close to a sample surface, and a bias voltage is applied in

between, due to the quantum tunneling, electrons will be removed from or injected

into the sample. The tip scans over the surface with fine control of its position, thus

one acquires a spatial profile of the sample. The STM intensity is the local differen-

tial conductance 𝑑𝐼
𝑑𝑉

with both spatial and energy resolution. Because the tunneling

current 𝐼 is proportional to the integral of the sample density of states over the range

of the tip Fermi surface energy and the sample Fermi surface energy which is differed

by −𝑒𝑉 , the differential conductance is proportional to the local density of states

(LDOS) of the single particle charged excitations at certain energy denoted as 𝜀. The

differential conductance 𝐺 as a function of the applied voltage bias 𝑉 reads

𝐺(𝑉 ) =
𝑑𝐼

𝑑𝑉
=

2𝑒2

ℎ

∑︁
k

𝐴(k)𝜌(k, 𝑉 ) (1.3)

where the summation
∑︀

k accounts for summing over different wavevectors k, cap-

turing the contributions from various electronic states. The tunneling matrix ele-

ment 𝐴(k) signifies the coupling strength between the scanning tunneling microscope

(STM) tip and the sample at wavevector k. Lastly, 𝜌(k, 𝑉 ) represents the local den-

sity of states (LDOS) at wavevector k and energy 𝑒𝑉 , representing the availability of

electronic states for tunneling at specific energy and position in the sample.

In this thesis, we explore the use of various spectroscopic techniques to extract

information from a diverse range of quantum materials. The information obtained in-

cludes multipartite entanglement, ferroelectric and nematic orders, and charge orders.

In Chapter 3, we discuss the use of resonant inelastic X-ray scattering (RIXS) to mea-

sure four-point correlations. This approach enables us to probe a more general piece of
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Figure 1-3: A schematic that illustrates the STM tunneling.

information applicable to any quantum material: fermion multipartite entanglement.

In Chapter 4, we delve into employing scanning tunneling microscopy (STM) to probe

impurity states and detect ferroelectric and nematic phases in valley quantum Hall

systems. In Chapter 5, we again utilize STM to investigate various charge orders,

including stripe phases, in twisted transition metal dichalcogenide (TMD) bilayers.

1.2 Machine learning applications

Machine learning has emerged as a promising tool in the field of quantum materi-

als, with applications spanning from predicting material properties to accelerating

numerical algorithms used in condensed matter theory[12].

We explore the use of symmetry-preserved graph neural networks to predict the

properties of materials in Chapter 5. Graph neural networks are naturally suited for

material structures, as they can represent atoms and bonds (interactions) between

atoms in a straightforward manner. Information about atoms can be encoded on the

nodes of the graph neural network, while interactions or bond information, such as

distances, can be represented by the connections between nodes.

Any space group that describes the crystal geometric symmetries in three dimen-

sions is a subgroup of E(3) (Euclidean group in 3 dimensions), we utilize an Euclidean

equivalent neural network called E3NN[13], which preserves all geometric symmetries

of the crystal structure. This approach leverages the inherent structure of the materi-
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als and their symmetries to make accurate predictions of their properties and removes

the need for extensive data augmentation needed to consider arbitrary translations

or rotations of the input structures. The mathematical foundation of E3NN lies in

the tensor field neural networks developed by Thomas and Smidt et al. [14]. The

NNs perform pointwise convolutions on three-dimensional point clouds with permu-

tation, rotation, and translation equivariances into account. Such properties make it

extremely suitable for studying crystals.

Intuitively, the convolution step is implemented as:

𝑓 ′
𝑎 =

1√
𝑧

∑︁
𝑏;|𝑟⃗𝑎𝑏|<𝑟𝑚𝑎𝑥

𝑓𝑏 ⊗(ℎ(‖𝑟⃗𝑎𝑏‖)) 𝑌 (𝑟⃗𝑎𝑏/‖𝑟⃗𝑎𝑏‖)

where 𝑓 ′
𝑎 is the output for node 𝑎. The output is the sum of the tensor product

between the input from neighborhood nodes 𝑓𝑏 and the neural networks ℎ depending

on the distances between nodes. 𝑌 is the spherical harmonics, which serve as basis

functions that enable the mapping of the relative angles to the weights of the tensor

product. The prefactor 1/
√
𝑧 adjusts the different numbers of the neighborhoods.

With such implementation, it can almost preserve complete geometric information of

the input crystal structure when applied to encode materials.

1.3 Outline

As can be surmised from the broad list of topics mentioned in the previous sections of

the introduction, this thesis will touch upon many aspects of measurements of quan-

tum materials and machine learning applications. Therefore, except Chapter 2 which

is an extra intro chapter for the entanglement in many-body systems and Chapter 7

is a conclusion chapter, each chapter will begin with its own introduction to a spe-

cific problem considered within it. This thesis focuses on various topics surrounding

the themes of entanglement, spectroscopies, and machine learning: the experimental-

driven proposals to detect multipartite entanglement using X-ray scattering spec-

troscopy (Chapter 3), and the prediction of symmetry breaking in two-dimensional
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platforms, which are detectable via scanning tunneling microscopy (STM) (Chap-

ters 4 and 5). Another is machine learning-assisted prediction of magnetic structures

(Chapter 6).

I will begin in Chapter 2 with an introduction of entanglement in many-body

systems, focusing on the multipartite entanglement and entanglement in systems of

indistinguishable particles, in support of Chapter 3. In Chapter 3, I’ll propose a new

technique to extract high-order correlations using Resonant inelastic X-ray scatter-

ing (RIXS). I’ll then define a new multipartite entanglement witness in a many-body

fermion system that utilizes higher-order correlations and gives tighter boundaries

than quantum Fisher information (QFI). In Chapter 4, I will discuss the impurity

bound states arising near impurities in two-dimensional multivalley electronic sys-

tems under strong quantizing magnetic fields, that can be directly probed via STM

spectroscopy, thus serve as local signatures for detecting the quantum hall ferroelec-

tric and nematic order. In Chapter 5, I will move on to the charge orders at the

fractional band fillings in twisted transition metal dichalcogenide (TMD) bilayers

that can be and later measured in experiment via STM, the charge orders at vari-

ous fractional fillings arise from the interplay of long wavelength moiré potential and

long-range Coulomb interaction. In Chapter 6, I’ll present a machine-learning model

based on the Euclidean equivariant graph neural network (E3NN) which preserves

the crystallographic symmetry, that is trained to predict magnetic orders (ferromag-

netic, antiferromagnetic, and non-magnetic) and magnetic propagation vectors (zero

or nonzero) with the crystal structures as input. The descriptor used has the advan-

tage to encode general crystal structures of any space group and the model reached

an accuracy of 77.8% for magnetic ordering prediction over all materials containing

magnetic elements in the database Materials Project. In Chapter 7, I’ll summarize

and provide insights into potential future efforts.
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Chapter 2

Entanglement in many-body systems

This chapter reviews the entanglement in many-body systems in supporting Chap-

ter 3, for both distinguishable particles and identical particles, with a focus on the

accessibility through spectroscopies. Among various topics, we’ll include fermion

multipartite entanglement and quantum Fisher information that supports the ideas

in Chapter 3. A more comprehensive review on quantum entanglement can be found

in Refs. [4, 15].

This chapter is structured as followings. In Sec. 2.1, we review the entanglement

in systems of distinguishable particles, such as qubit/spin system, where we first

introduce bipartite entanglement following Refs [16, 17, 18], then we introduce the

multipartite entanglement and quantum Fisher information following Refs [19, 20, 7].

In Sec. 2.2, we initiate the discussion on entanglement in systems of indistinguish-

able(identical) particles[21, 22], with a specific focus on the differences between iden-

tical and distinguishable particles regarding exchange symmetry[23] and basis invari-

ance. Furthermore, we elucidate the need for a distinct entanglement definition than

the distinguishable case and introduce a classification scheme for entangled and non-

entangled fermion states[24]. In Sec. 2.3, we review the efforts of identity entangled

states in fermion systems, the Slater number in Refs. [21, 22] and the pairing theory

in Ref. [24], this part is to be compared with the fermion multipartite entangle-

ment witness we propose in Sec. 3. In Sec. 2.4, we formally present the definition of

fermion multipartite entanglement, drawing parallels to multipartite entanglement in
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spin systems, but tailored specifically to indistinguishable fermionic particles.

2.1 entanglement in systems of distinguishable par-

ticles

2.1.1 bipartite entanglement

In the spin/qubit system, there are various ways to quantify the entanglement. For

bipartite systems(two-qubit systems of multi-qubit systems divided into two subsys-

tems), people usually use the entanglement entropy as a measure of the entanglement[17],

there are a full set of Rényi entropies[25], the most commonly used one is the von

Neumann entropy 𝑆(𝜌𝐴) = −Tr(𝜌𝐴 log2 𝜌𝐴), where 𝜌𝐴 is the reduced density matrix

of a subsystem 𝐴 obtained by tracing out the other subsystem 𝐵, 𝜌𝐴 = 𝑇𝑟𝐵𝜌𝐴𝐵. For

a bipartite system in a pure state, the entanglement entropy of both subsystems is

equal, reflecting the monogamy of entanglement.

Another important concept in the study of bipartite entanglement is quantum

mutual information (𝐼(𝐴 : 𝐵)), which measures the total correlations between sub-

systems A and B, including both classical and quantum correlations. It is defined

as 𝐼(𝐴 : 𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) − 𝑆(𝜌𝐴𝐵), where 𝜌𝐴 and 𝜌𝐵 are the reduced density

matrices of subsystems A and B, respectively, and 𝜌𝐴𝐵 is the joint density matrix

of the composite system. Quantum mutual information can be interpreted as the

reduction in uncertainty about one subsystem when the state of the other subsystem

is known. In this context, it provides valuable insights into the relationship between

entanglement and correlations in bipartite quantum systems. The quantum mutual

information can be applied to tripartite systems [26],

𝐼(𝐴 : 𝐵 : 𝐶) = 𝑆(𝜌𝐴)+𝑆(𝜌𝐵)+𝑆(𝜌𝐶)−𝑆(𝜌𝐴𝐵)−𝑆(𝜌𝐴𝐶)−𝑆(𝜌𝐵𝐶)+𝑆(𝜌𝐴𝐵𝐶) (2.1)

We will show that quantum mutual information plays a role in the definition of

topological entanglement entropy.

30



While the above definitions have been proven useful for quantifying entanglement

in few-body systems, they face some limitations when applied to many-body systems,

such as large-scale solid-state systems. The major issue lies in the fact that both the

entanglement entropy and the quantum mutual information depend on the chosen

division of the whole system into subsystems, resulting in a quantified value that

varies with this choice. Besides, the measurement of entanglement entropy is usually

only possible in small/synthetic quantum systems.

In solid-state systems, an alternative definition of entanglement, known as topo-

logical entanglement entropy, has been proposed to address this concern. Dividing a

large system into regions A and B with a shared boundary, the entanglement entropy

𝑆 obeys the area law[27] for each region, scaling as the boundary length, if the states

are ground states of local gapped quantum Hamiltonian.

𝑆(𝜌𝐴) = 𝛼𝐿− 𝛾 + · · · (2.2)

where 𝐿 is the area of boundary, · · · are terms that will vanish at the thermody-

namic limit, 𝛾 is called the topological entanglement entropy[17, 18]. The topological

entanglement entropy carries information about the topological order of the system.

In topologically trivial systems, 𝛾 = 0, while for topologically nontrivial systems,

𝛾 > 0. This quantity is invariant under smooth deformations of the system and is

independent of the choice of subsystems, making it a robust indicator of topological

order. There is another way to define the topological entanglement entropy in a tri-

partite system with regions 𝐴,𝐵,𝐶, the topological entanglement entropy is simply

the quantum mutual information between tripartites, 𝛾 = 𝐼(𝐴 : 𝐵 : 𝐶)[18].

However, the topological entanglement entropy is still not ideal when we consider

its accessibility, as it necessitates global measurements over a large 𝑁 system[28, 29],

that are often unattainable through spectroscopic methods, which effectively measure

few-point correlations that are in the region of local measurements. There is a need

for an entanglement definition for many-body systems that can be probed by local

measurements, such as spectroscopies.
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2.1.2 multipartite entanglement and quantum Fisher informa-

tion

The multipartite entanglement, on the other hand, can be witnessed by local measure-

ments, as shown in Refs. [20, 7]. The definition of multipartite entanglement[30, 31]

is that, for a pure state |𝜓⟩, if the state can be decomposed into

|𝜓⟩ = ⊗𝑝
𝑙=1 |𝜓𝑙⟩ (2.3)

where |𝜓𝑙⟩ is a state with 𝑁𝑙 < 𝑘 particles (qubits), then the state is called 𝑘-

producible, a state that is 𝑘-producible but not 𝑘 − 1-producible is called 𝑘-particle

entangled, meaning that if we decompose the state into the form where each prod-

uct term can not be further separable, meaning they are genuinely entangled, then

the largest genuinely entangled block are formed by 𝑘 particles(qubits). Some con-

tents also call the state as 𝑝-partite separable or 𝑝 separable, when it can be decom-

posed into at most 𝑝 product terms. In this definition, the fully separable state is

1-producible, a mixed state 𝜌 =
∑︀

𝑖 𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖| is 𝑘-particle entangled if each |𝜓𝑖⟩ is

𝑁 𝑖-particle entangled and max𝑖𝑁
𝑖 = 𝑘. The multiparticle entanglement, unlike the

previous definitions that can apply a continuous measure of the entanglement of the

systems, is only a coarse-grained classification. An integer 𝑘 is used to classify all

quantum states as 𝑘-particle entangled, it doesn’t require to specify subsystems. It is

not the only way to classify quantum many-body states, a further classification can

be achieved by means of stochastic local quantum operations and classical communi-

cation (SLOCC), a topic beyond the scope of this discussion. Interested readers are

referred to relevant references for more detailed information[32, 33, 4].

In Ref .[20, 7], the quantum Fisher information (QFI) is proposed to be a witness

of the multipartite entanglement. An observable 𝑊 is called an entanglement witness,

if for all separable states 𝜌sep it has a non-negative mean value, 𝑇𝑟[𝑊𝜌sep] ≥ 0 and

there exist at least one entangled state 𝜌𝑡𝑒𝑥𝑡𝑒𝑛𝑡 such that 𝑇𝑟[𝑊𝜌ent] < 0, changing the

direction of inequality signs or adding constant number to both side of the equation

does not affect the definition. The definition stems from the geometry: the set for all
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separable states is convex, and the convex sets can be described by hyperplanes. Ac-

tually, each set of all 𝑘-producible states is also convex[20], which suggests proposing

witnesses for multipartite entanglement.

QFI originates from the field of quantum metrology[34, 35, 36, 37, 38], it quantifies

the maximal precision one can achieve for the parameter(phase) estimation in a quan-

tum state. Namely, a probe state 𝜌 transform as 𝜌(𝜃) = 𝑒−𝑖𝜃𝐻̂𝜌𝑒𝑖𝜃𝐻̂ , depending on the

parameter/phase to be estimated 𝜃 and the operator 𝐻̂. An estimator 𝜃est ({𝜇𝑖}𝑚) de-

pends on the results {𝜇𝑖}𝑚 = {𝜇1, · · · , 𝜇𝑚} of 𝑚 independent repeated measurements

of a positive operator valued measurement(POVM) with elements {𝐸̂𝜇}𝜇. If the es-

timator is unbiased, then its minimal standard deviation is limited by the so-called

quantum Cramer-Rao bound,

∆𝜃est ≥
1√
𝑚𝐹

≥ 1√︀
𝑚𝐹𝑄

(2.4)

where 𝐹 is the Fisher information that depends on the POVM, maximizing 𝐹 over

all possible POVMs leads to the quantum Fisher information 𝐹𝑄. The QFI depends

on the generator operator 𝐻̂ but does not depend on the POVM {𝐸̂𝜇}𝜇.

For a mixed state 𝜌 =
∑︀

𝑙 𝜆𝑙 |𝜓𝑙⟩ ⟨𝜓𝑙|, the QFI is given by

𝐹𝑄[𝜌; 𝐻̂] = 2
∑︁
𝑙,𝑙′

(𝜆𝑙 − 𝜆𝑙′)
2

𝜆𝑙 + 𝜆𝑙′
| ⟨𝜓𝑙|𝐻̂|𝜓𝑙′⟩ |2 (2.5)

For pure states, it reduces to 𝐹𝑄 = 4(∆𝐻̂)2, where (∆𝐻̂)2 = ⟨𝐻̂
2
⟩ − ⟨𝐻̂⟩

2
is the

variance of the generator of the phase shift 𝐻̂.

If we select the generator 𝐻̂ as the ones in linear two-mode interferometers, so it

is a summation over local operators on each particle(qubit) of the states, such as

𝐻̂ =
1

2

𝑁∑︁
𝑙=1

𝜎̂
(𝑙)
𝑛⃗𝑙

(2.6)

where 𝑁 is the number of qubit in the state, 𝜎̂(𝑙)
𝑛⃗𝑙

= 𝑛⃗𝑙 · 𝜎(𝑙)⃗ , 𝑛⃗𝑙 is a vector on the

Bloch sphere. The QFI with this linear generator has three properties that allow it
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to serve as a witness of multipartite entanglement. (1) QFI is convex in states, i.e.

𝐹𝑄[𝑝𝜌1 + (1− 𝑝)𝜌2] ≤ 𝑝𝐹𝑄[𝜌1] + (1− 𝑝)𝐹𝑄[𝜌2]. (2)QFI is additive for product states,

𝐹𝑄[|𝜑⟩⊗|𝑐ℎ𝑖⟩] = 𝐹𝑄[|𝜑⟩]+𝐹𝑄[|𝜒⟩]. (3) For a 𝑘-qubit state, QFI has an upper bound 𝑘2

that uniquely saturated by the GHZ state, |𝐺𝐻𝑍𝑘⟩ = 1√
𝑘
(|0⟩⊗𝑘 + |1⟩⊗𝑘). Combining

three properties, there is an upper bound of QFI for any 𝑘-particle entangled state

with 𝑁 total particles,

𝐹𝑄[𝜌𝑘−𝑝𝑎𝑟𝑡; 𝐻̂ lin] ≤ 𝑠𝑘2 + 𝑟2 (2.7)

where 𝑠 =
[︀
𝑁
𝑘

]︀
and 𝑟 = 𝑁−𝑠𝑘. Hence a violation of the bound proves (𝑘+1)-particle

entanglement, so it is a multipartite entanglement witness. The bounds are uniquely

saturated by a product of 𝑠 GHZ states of 𝑘 particles and another GHZ states of 𝑟

particles.

2.2 entanglement in systems of indistinguishable par-

ticles

Entanglement is very well understood for distinguishable particles, however, in a

system of indistinguishable particles like fermions or bosons, the definition of entan-

glement and separability becomes tricky. One can find discussions about the different

definitions of entanglement between identical particles in Refs. [39, 40, 41, 21, 22, 24],

we briefly summarize the basic ideas below.

2.2.1 exchange symmetry and Slater determinant

We follow the idea in Ref. [21] to discuss the consequence of exchange symmetry in

identical particles. Considering a two-particle state where Alice has one particle and

Bob the other, in the mode-occupation, or Fock, representation, the state is |1, 1⟩,

which appears unentangled. If the two particles are distinguishable, we can write the

wavefunction as 𝜓𝐴(𝑥)𝜓𝐵(𝑦), which also has a product state form. However, since the

two particles are identical and indistinguishable, exchanging the two particles leave

the state unchanged ignoring a phase factor, the wave function must be symmetrized
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as

𝜓𝐴(𝑥)𝜓𝐵(𝑦)± 𝜓𝐴(𝑦)𝜓𝐵(𝑥) (2.8)

for bosons and fermions, respectively. This has the appearance of an entangled state.

The same story happens all the time in many-body fermion and boson states, where

there could be ambiguity on whether the state is entangled or separable, and the

entanglement could merely come from the indistinguishability of particles. Taking

the fermion Fock state as an example, its wavefunction can be written as a Slater

determinant,

Ψ(𝑥1⃗, 𝑥2⃗, · · · , 𝑥𝑛⃗) =
1√
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝜒1(𝑥1⃗) 𝜒2(𝑥2⃗) · · · 𝜒𝑁(𝑥1⃗)

𝜒1(𝑥2⃗) 𝜒2(𝑥2⃗) · · · 𝜒𝑁(𝑥2⃗)
...

... . . . ...

𝜒1(𝑥𝑁⃗) 𝜒2(𝑥𝑁⃗) · · · 𝜒𝑁(𝑥𝑁⃗)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ (2.9)

There have been some debates about whether such a state is entangled or not, some

literature view this entanglement purely from indistinguishability and the exchange

relation of particles as a failure of the mathematical formalism [42, 39], and count

them as unuseful or unphysical entanglement. Here we adopt this viewpoint, the

naive reason is that all fermion/boson states will be entangled if oppositely, and

we need the ability to distinguish entangled and separable states in a system of

indistinguishable particles. More formally we can argue that the entanglement from

indistinguishable particle exchange is not useful for practical propose. Considering a

two-particle state well separated in two locations, such that their wavefunction 𝜓𝐴(𝑥)

and 𝜓𝐵(𝑥) has only vanishingly small overlap, then all the exchange correlations of

physically meaningful operators will tend to zero, as shown in the Hatree-Fock theory.

Therefore, for condensed matter systems where the single-particle wavefunctions are

essentially centered around locations being sufficiently apart from each other, or the

particles are separated by a sufficiently large energy barrier, the entanglement from

exchange statistics does not have any physical effect.

The Slater determinant is frequently used as an approximation to describe the
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wave function of multi-fermionic systems. It fulfills the anti-symmetry requirements

and, consequently, the Pauli principle by changing its sign when two electrons are ex-

changed. In reality, almost none of the condensed matter systems can precisely match

the Slater determinant. In fact, most strongly correlated systems deviate significantly

from it. This is due to two main reasons: Firstly, finding a set of single-particle or-

thogonal orbitals for a many-body fermionic state is challenging since there can be

overlapping between different orbitals, regardless of the chosen orbital wavefunctions,

for example, in non-Fermi liquids such an orthogonal basis does not exist. Secondly,

even with a set of single-particle orthogonal (non-overlapping) basis, which allows us

to utilize the second quantization formalism, the state can still be entangled in the

second quantization form, as discussed in Section 2.2.2. Two examples with negligi-

ble overlapping between single-particle orbitals are Mott insulators, where electrons

are nearly localized at atomic sites due to strong Coulomb interactions, and metals

with weak Coulomb interactions that can be described by Fermi liquid theory, which

exhibit properties similar to those of an ideal Fermi gas (non-interacting fermions).

As discussed earlier, we consider the Slater determinant state to be non-entangled.

Therefore, both of these distinct examples are non-entangled in this sense.

The failure of Slater determinant approximation also suggests that the energy-

filling picture in conventional condensed matter physics fails to explain many strongly

correlated quantum states. The mean-field approximation and Fermi liquid theory

fail accordingly. If a measure could be established to quantify the extent of error in

the Slater determinant approximation for a particular state, it might likely serve as

an indicator of the state’s level of strong correlation. One of these relevant measures

will be explored in Chapter 3.

2.2.2 single-particle orbital basis invariance

Having excluded the unphysical entanglement from exchange symmetry, here we an-

alyze the useful entanglement in the second-quantization form, because the second-

quantization naturally avoids the difficulty of representing an antisymmetric wave-

function as a product state in the first-quantization form. The antisymmetric Fock
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state in Eq. 2.9 can be represented in the second-quantization form as

|Ψ⟩ = 𝑐†1𝑐
†
2 · · · 𝑐

†
𝑁 |0⟩ (2.10)

where 𝑐†𝑖 is the creation operator that satisfied the canonical anticommutation rela-

tions, {𝑐†𝑖 , 𝑐
†
𝑗} = 0, {𝑐𝑖, 𝑐†𝑗} = 𝛿𝑖,𝑗. We want to view this state as unentangled since it

has a separate product state form. Besides, for all operators 𝑂1, 𝑂2 locally act on 1, 2

modes, we have

⟨Ψ|𝑂1 ⊗𝑂2|Ψ⟩ = ⟨Ψ|𝑂1|Ψ⟩ ⟨Ψ|𝑂2|Ψ⟩ (2.11)

this is another view to distinguish entangled states and separable states, by show-

ing that for selected subsystems, two-point correlations of all local operators can be

factorized as above, such that the subsystems can be individually addressed.

Up to here, it seems all good, we have found the definition of the product state

(unentangled state), however, there are linear transformations of the fermionic op-

erators which preserve the canonical anticommutation relations and the total parti-

cle numbers, called the passive canonical transformations, and they are of the form

𝑐†𝑖 ↦→ 𝑐
′†
𝑖 =

∑︀
𝑗 𝑈𝑗𝑖𝑐

†
𝑗, where 𝑈 is unitary on the single-particle Hilbert space ℋ.

The above definitions, either the product state form or the factorization of two-point

correlations, depend on the choice of basis/subsystems. Naively, a Fermi sea state

where electrons fill in the energy bands without Coulomb interaction is a product

state on the momentum space basis, but it is not in the product state form on the

real space basis. In Ref. [24], a state is defined as a product/separable/unentangled

state, if there exists a basis change of the fermion operators (a passive transformation)

𝑐†𝑖 ↦→ 𝑐
′†
𝑖 =

∑︀
𝑗 𝑈𝑗𝑖𝑐

†
𝑗 such that

|Ψ⟩ = 𝑐
′†
1 𝑐

′†
2 · · · 𝑐

′†
𝑁 |0⟩ (2.12)

Such a state also fulfills the factorization relation of the two-point correlations between

any two modes in any basis(transformation). All other states are called entangled,

now the definition of entanglement becomes basis-invariant.
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A mixed state 𝜌𝑠 is called unentangled/separable, if it can be written as the convex

combination of product states, i.e.

𝜌𝑠 =
𝐾∑︁
𝑝=1

𝜆𝑝𝜌𝑝 (2.13)

where 𝜌𝑝 = |𝜓𝑝⟩ ⟨𝜓𝑝| are product states,
∑︀𝐾

𝑝=1 𝜆𝑝 = 1, 𝜆𝑝 ≤ 1.

2.3 Entanglement witnesses in fermionic systems

Based on this definition, there have been some efforts in finding an entanglement

witness for the entangled states in the fermionic system. To make a comparison with

the multiparticle witness in a fermionic system defined in Sec. 3, here I briefly review

two types of witnesses, the Slater number/rank or concurrence[21, 22], and the pairing

witness[24].

In the two-particle system, we can always write the state as a sum of elementary

Slater determinants where each single-particle basis state occurs at most in one term.

The general state vector is

|𝜔⟩ =
𝑁∑︁

𝑖,𝑗=1

𝜔𝑖𝑗𝑐
†
𝑖𝑐

†
𝑗 |0⟩

𝑡𝑟(𝜔*𝜔) = −1

2

(2.14)

where |0⟩ is the vacuum state, 𝜔𝑖𝑗 is an antisymmetriy matrix fulfills the above nor-

malization condition. Under a unitary transformation of the single-particle space,

𝑐†𝑖 ↦→ 𝒰𝑐†𝑖𝒰 † = 𝑈𝑗𝑖𝑐
†
𝑗, there exist a transformation 𝑈 for any antisymmetric 𝜔 such

that

𝜔 ↦→ 𝑈𝜔𝑈𝑇 = diag [𝑍1, · · · , 𝑍𝑟, 𝑍0] (2.15)

where 𝑍𝑖 =

⎡⎣ 0 𝑧𝑖/2

−𝑧𝑖/2 0

⎤⎦ and 𝑧𝑖 > 0,
∑︀

𝑖 𝑧
2
𝑖 = 1, and 𝑍0 is the (𝑁−2𝑟)×(𝑁−2𝑟) null

matrix. This process is called Slater decomposition, any two-particle fermion state |𝜔⟩
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can be written as a sum of elementary Slater determinants where each single-particle

basis state occurs at most in one term, this is analogous to the Schmidt decomposition

in bipartite qubit systems.

The Slater number/rank is defined as the minimum number 𝑟 of the non-vanishing

basis of elementary Slater determinants. If the Slater number is 1, meaning the state

can be written as |𝜔⟩ = 𝑐†𝑖𝑐
†
𝑗 |0⟩ which is a fully separate product state. We conclude

that the state is unentangled if and only if the Slater number is 1. The Slater number

coalign with the definition above of entangled/non-entangled states. The concurrence

𝒞(|𝜔⟩) is an entanglement measure and defined as

𝒞(|𝜔⟩) = |
∑︁
𝑖,𝑗,𝑘,𝑙

𝜖𝑖𝑗𝑘𝑙𝜔𝑖𝑗𝜔𝑘𝑙|. (2.16)

It ranges from zero for non-entangled states to one for fully entangled states, which

are colinear with their dual states.

The Slater decomposition, however, does not apply to 𝑘-particle fermion states

for 𝑘 > 2, a sum of elementary Slater determinants does not always exist for multi-

particle states, which can be understood by counting the dimensions, we will dis-

cuss this in more details in Sec. 3. As a result, the concurrence does not ap-

ply directly to multiparticle fermion states. For a general 𝑘-particle fermion state,

|𝜔⟩ =
∑︀
𝜔𝑖1,𝑖2,··· ,𝑖𝑘𝑐

†
𝑖1
· · · 𝑐†𝑗𝑘 |0⟩, It is possible to define alternative measure which is

zero if and only if the state is non-entangled(has Slater number 1), however, such a

measure will be highly complicated and involve the matrix elements 𝜔𝑖1,𝑖2,··· ,𝑖𝑘 , which

are only accessible through high-order correlations where the number of fermion op-

erators is in the order of 𝑘.

Naively, if we can access all correlations of a 𝑁 -particle system, we already have

all the information to reconstruct the state. Experimentally, most spectroscopic tech-

niques can only measure correlations whose operators are the product of at most two

creation and two annihilation operators, including correlations like ⟨𝑐𝑖𝑐†𝑗⟩ , ⟨𝑐𝑖𝑐𝑗𝑐
†
𝑘𝑐

†
𝑙 ⟩,

we call these kinds of correlations as one-particle and two-particle correlations. The

practical question is whether we can construct entanglement witnesses just with one-
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particle and two-particle correlations. This question is discussed in Ref. [24], where

it refers to the states whose one-particle and two-particle correlations can not be re-

produced by any separable state as paired states. Paired states are fermionic states

exhibiting non-trivial quantum correlations up the two-particle level, however, it is

not equivalent to entanglement, a short answer is that there exist states that are en-

tangled according to the Slater rank concept, but not paired. For example, the non-

entangled state 𝜌 = 1
2
|𝜑⟩ ⟨𝜑| + 1

2
|𝜒⟩ ⟨𝜒|, where |𝜑⟩ = 𝑐†1𝑐

†
2𝑐

†
3𝑐

†
4 |0⟩ , |𝜒⟩ = 𝑐†5𝑐

†
6𝑐

†
7𝑐

†
8 |0⟩,

has all the one- and two-particle expectations the same with the entangled state

|Ψ⟩ = 1√
2
|𝜑⟩ + 1√

2
|𝜒⟩, so they are indistinguishable at the two-particle correlation

level.

2.4 The Multipartite Entanglement

Among the entangled states in multiparticle fermionic systems, we want to further

compare whether one state is more entangled than another, and consider the indistin-

guishability and basis-invariant as discussed above. A natural generation is to adopt

a similar concept of multipartite entanglement in the spin systems and apply it to

the fermionic system. The definition is based on the previous attempt in Ref. [43],

and accommodates the basis-invariant property inspired by Ref. [44]. We will first

elaborate the definition, and some discussions follow behind.

Consider a set of fermionic modes 𝑀 , with associated creation and annihilation

operators 𝑐†𝑚 and 𝑐𝑚, labeled by 𝑚 ∈ 𝑀 . A 𝑘 partition of the system is defined as

a partition 𝑀 = 𝑀1 ∪𝑀2 ∪ · · · ∪𝑀𝑝. A pure fermionic state |𝜓⟩ defined on the set

of modes 𝑀 with conserved particle number 𝑁 is 𝑘 particle entangled if there exist

a unitary transformation 𝑐𝑘 ↦→ 𝑐′𝑘 such that it can be decomposed as

|𝜓k-particle⟩ = 𝐶*
1𝐶

*
2 · · ·𝐶*

𝑝 |0⟩ (2.17)

where the operator 𝐶*
𝑗 is restricted to act on 𝑀𝑗, and there are 𝑛𝑗 particles created by

𝐶*
𝑗 ,
∑︀

𝑗 𝑛𝑗 = 𝑁,𝑚𝑎𝑥(𝑛1, 𝑛2, · · · , 𝑛𝑝) = 𝑘. The state 𝐶*
𝑗 |0⟩ is a genuinely multipartite
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entangled(GME) state, meaning it cannot be written as a product in any possible

bipartition of the state for any single-particle fermion basis we use. We thus call each

𝐶*
𝑗 a GME block with modes 𝑀𝑗 and particle number 𝑛𝑗. A GME block with two

fermions is easy to describe, if performing Slater decomposition on 𝐶*
𝑗 , the result is

full rank, i.a. the rank number is equal to |𝑀𝑗|/2. And we can divide modes in 𝑀𝑗

as subgroups 𝑀1
𝑗 ,𝑀

2
𝑗 , · · · ,𝑀

|𝑀𝑗 |/2
𝑗 , each contains 2 modes. The 𝐶*

𝑗 operator with 2

fermions in the Slater decomposition basis can be written as

𝐶*
𝑗 =

|𝑀𝑗 |/2∑︁
𝑖=1

𝜑𝑗
𝑖

∏︁
𝑀 𝑖

𝑗={𝑚1,𝑚2}

𝑐†𝑚1
𝑐†𝑚2

(2.18)

where 𝜑𝑗
𝑖 > 0 and

∑︀|𝑀𝑗 |/2
𝑖=1 (𝜑𝑗

𝑖 )
2 = 1,𝑀 𝑖1

𝑗 ∩𝑀 𝑖2
𝑗 = ∅, 𝑖1 ̸= 𝑖2.

Following the definition of product/entangled fermionic states, we naturally inherit

the second-quantization form and allow a passive transformation, so it excludes the

unphysical entanglement from antisymmetry exchange of indistinguishable fermions,

while also being basis-invariant. The definition adopts a similar idea of multipartite

entanglement in the qubit(spin) system, while the particles here refer to fermionic

particles instead of qubits.
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Chapter 3

Entanglement witness and

multi-point correlations in resonant

inelastic X-Ray scattering

The characterization of entanglement in quantum materials is crucial for the develop-

ment of next-generation quantum technologies, yet defining and measuring a quantifi-

able figure of merit for entanglement in a many-body quantum system is theoretically

and experimentally challenging. The presence of entanglement in fermionic systems

can be diagnosed by extracting entanglement witnesses from spectroscopies, which

are directly related to the spin dynamic structure factors of the system. With cross-

polarization, RIXS(Resonant inelastic X-ray scattering) approximates the spin and

charge dynamic structure factors, which becomes exact at the ultra-short core-hole

lifetime limit. Here, we propose a new RIXS technique that can extract higher-order

correlations beyond the scope of the spin and charge structure factors. We verify

our method using computational RIXS spectra, and theoretically propose a new en-

tanglement witness of fermion systems. Using the extended Hubbard model and

sampled random states as examples, we show the entanglement witness can quantify

the multipartite entanglement in different phase regions.
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3.1 introduction

Quantum materials are essential components in the development of advanced tech-

nologies, including magnetic-field sensors, energy-related technologies, and quantum

computers. In particular, the search for highly-entangled quantum materials is cru-

cial, because entanglement is a resource in quantum information applications[4]. A

key step towards finding and fabricating highly-entangled materials is to develop ex-

perimental and theoretical methods to characterize entanglement. The concept of

multipartite (multiparticle) entanglement [45] has been introduced for the purpose of

characterizing entangled states in large-scale solid-state systems. We can coarse-grid

classify [32, 46, 30, 31, 47, 48] multipartite entanglement by an integer number 𝑘

and name it 𝑘-partite entanglement or entanglement depth 𝑘, this apply generally to

any quantum state. While other descriptions of entanglement in a large-scale system

like the topological entanglement entropy are usually only accessible through global

measurements [18, 49, 50, 27], studies have shown that a witness of multipartite en-

tanglement can be measured through dynamic susceptibilities [7], which are simply

local measurements achievable via many spectroscopic techniques.

The experimental methods of probing entanglement have been developed mostly

in two scenarios, for few-body quantum information setups, and for many-body sys-

tems like large-scale solid states. The former usually requires creating multiple copies

of quantum states and measuring the same operator repeatedly to obtain its statis-

tics, like in quantum metrology [34, 51]. It is hard to prepare or copy particular

states in large-scale solid-state systems, and single local measurement usually does

not carry enough information, consequently, most information is measured through

spectroscopies, including X-ray, neutron, and photoemission spectroscopy. The typ-

ical procedure is to define an entanglement witness that can be derived from the

spectra, such as the quantum Fisher information (QFI). The QFI is a concept orig-

inating from the quantum metrology [52, 36, 35, 38, 34, 45], it is later used as an

entanglement witness for multipartite entanglement [20], and measurable through

spectroscopies for a direct relation between the QFI and dynamic susceptibility [7].
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Both the multipartite entanglement and the QFI as a witness are mostly well-studied

on the spin basis. To apply them to general fermionic systems, an extension for multi-

particle entanglement in systems consisting of indistinguishable particles is required,

and a new entanglement witness that is related to the measurable spectra has to be

defined accordingly.

Among different spectral techniques, the resonant inelastic X-ray scattering (RIXS)

[8] is an advanced X-ray spectroscopy technique that can probe many different collec-

tive excitations arising from charge, spin, and orbital degrees of freedom by measuring

their energy, momentum, and polarization dependence, and is not sensitive to sample

size. With cross polarization resolution, RIXS gives a good approximation to the

spin excitation susceptibility usually represented by 𝑆(𝑞, 𝜔), which becomes exact at

the ultra-short core-hole lifetime (UCL) limit [11]. The capability of measuring spin

susceptibility makes RIXS a suitable spectroscopy technique for measuring QFI [9].

However, since RIXS is a high-order process involving the intermediate core-hole state

and can measure correlations that involve four fermion operators in the valence band,

and it is momentum and polarization-resolved, it has the potential to go beyond just

the spin susceptibility, i.e. the spin-spin correlations. We will show that RIXS with

high precision can extract even more information from the target materials, and we

can relate it to a new multipartite entanglement witness which is more general than

the QFI.

In this chapter, we consider the role of the core-hole mobility in the probe of

multipartite entanglement of valence electrons. We found that when the dispersion

of the core level is considered, the 4-point correlations can be directly read from

the RIXS spectra, and the connected part of the correlations can be derived from

the difference between the RIXS and ARPES spectra. The incident-momentum-

dependence in RIXS, which was usually ignored in previous studies, plays a crucial

role to extract the multipoint correlations. The later sections focus on defining a

multiparticle entanglement witness based on the connected four-point correlations,

and examine the witness in 1D extended Hubbard model and uniformly sampled

states in certain subspaces.
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Figure 3-1: Probing multiparticle fermion entanglement through RIXS and
ARPES. The connected parts of four-point correlations are derived from the differ-
ence between RIXS and ARPES spectra. We propose fermion entanglement witnesses
based on the correlations that can detect multiparticle entanglement.

3.2 Four-point correlations from RIXS spectra

3.2.1 Expansion of the scattering cross section

If the core hole created by the incoming photon can hop to a nearby site, the RIXS

intensity contains a small expansion originating from the mobile core hole, that is

related to four-mode correlations. This expansion term can be separated from the

rest by considering its dependence on the incoming photon momentum, which is rarely

used in RIXS spectra analysis before.

The cross section of RIXS is evaluated by the Kramers-Heisenberg formula,

𝐼 (𝑘in, 𝑞, 𝜔in,∆𝜔) =
∑︁

f

|⟨Ψ|f⟩|2 𝛿 (𝐸𝑓 − 𝐸0 −∆𝜔) . (3.1)
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Figure 3-2: An illustration of extracting four-point correlations from RIXS
spectra. (a) The RIXS spectra at each (𝑘in, 𝑞) plotted over incoming photon fre-
quency 𝜔in and frequency difference ∆𝜔. (b) After a double integration over both
frequencies, an integrated 2D RIXS intensity map over incoming photon momentum
𝑘in and the momentum change 𝑞 is obtained. By summing over the two momenta
and considering a phase factor, we finally derive (c) the four-point correlations with
𝑖, 𝑗, 𝑘, and 𝑙 each referring to a different index in the real space. (d) The mechanism
of RIXS is when a higher orbital serves as a core level and allows core-hole mobility.
The corresponding RIXS is 𝑘in-dependent and allows the extracting of four-point cor-
relations with all different real space indices.

The intermediate state is given by

|Ψ⟩ = 1

𝑁

∑︁
𝑚1,𝑚2

𝑒𝑖𝑘in·𝑟𝑚1𝑒−𝑖(𝑘in+𝑞)·𝑟𝑚2

×𝒟†
𝑚1,𝑒𝑓

1

∆−ℋ
𝒟𝑚2,𝑒𝑖 |Ψ0⟩

(3.2)

where ∆ = 𝐸0+𝜔in+𝑖Γ, |Ψ0⟩ = |Ψ𝑣
0⟩⊗|Ψ𝑐

0⟩ is the initial state and can be decomposed

into the initial state of valence band and core level, the core level initial state is fully

filled, and 𝑁 is the system size. If there is no core-hole hopping term in Hamiltonian

ℋ, all terms with 𝑚1 ̸= 𝑚2 disappear, and we restore the original intermediate
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state with an immobile core-hole. The dipole operator 𝒟𝑚,𝑒 = (𝑐†𝑚,↑, 𝑐
†
𝑚,↓)𝑀𝑒

⎛⎝𝑝𝑚,↑

𝑝𝑚,↓

⎞⎠
describes the excitation from initial to intermediate state, 𝑐†𝑚.𝜎 is creation operator in

valence band, 𝑝𝑚,𝜎 is annihilation operator in core level. With the presence of strong

spin-orbit coupling at core-level, and when multiple core-level orbitals are involved in

the transition, the RIXS spectra can have contributions from both the spin-conserved

(SC) and three non-spin-conserved (NSC) channels, represented by different dipole

operator and controlled by the polarization of incoming and outgoing photons, the

matrix 𝑀𝑒 depends on light polarization 𝑒. The 𝑀𝑒 matrix and 𝑝𝑚,𝜎 operator here use

a basis after diagonalizing multiple core-level orbits, so effectively we only consider a

single core-level orbit. A detailed derivation is shown in Ref. [10]. In the following,

we fix the incoming photon polarization 𝑀𝑒𝑖 = 𝜎0, the SC channel corresponds to

𝑀𝑒𝑓 = 𝜎0, and the three NSC channels correspond to 𝑀𝑒𝑓 = 𝜎1,2,3, we denote 𝑀𝑒𝑓 as

𝜎𝛼, 𝛼 = 0, 1, 2, 3 in the following content.

For a general case, the Hamiltonian ℋ = ℋ0 +ℋ𝑐, where ℋ0 is the valence band

Hamiltonian, including the interaction between core-hole and valence band electron

which is usually treated as a local core-hole potential with strength 𝑈𝑐, ℋ𝑐 is the core

level Hamiltonian that describes hopping between core sites. The hopping amplitude

𝑡 is small, so ℋ𝑐 can be treated as a perturbation. Taking the first order perturbation,

the eigenenergies of ℋ are 𝐸𝑁 ≃ 𝐸
(0)
𝑁 +𝐸

(1)
𝑁 , with {|𝑁⟩} as its eigenstates. Performing

the following expansion in the intermediate state, keep only the first order of 𝐸(1)
𝑁

1

∆−ℋ
≃
∑︁
𝑁

|𝑁⟩

(︃
1

∆− 𝐸
(0)
𝑁

+
𝐸

(1)
𝑁(︁

∆− 𝐸
(0)
𝑁

)︁2
)︃
⟨𝑁 | (3.3)

The term proportional to 𝐸
(1)
𝑁 is our focus, it is a small perturbation, but we can

distinguish it from the leading order because they have different incoming momentum

𝑘in dependence. To show this relation explicitly, let us assume a specific form of the
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core-hole Hamiltonian ℋ𝑐

ℋ𝑐 = −𝑡
∑︁
𝑖,𝜎

(︁
𝑝†𝑖,𝜎𝑝𝑖+1,𝜎 + h.c.

)︁
. (3.4)

The eigenstates with single core-hole are |𝑘, 𝜎⟩ = 1√
𝑁

∑︀
𝑖 𝑒

𝑖𝑘𝑟𝑖𝑝𝑖,𝜎 |Ψ𝑐
0⟩ with eigenen-

ergies 𝑡 cos(𝑘𝑎), and
∑︀

𝑁 |𝑁⟩𝐸(1)
𝑁 ⟨𝑁 | =

∑︀
𝑘,𝜎 |𝑘, 𝜎⟩ 𝑡 cos(𝑘𝑎) ⟨𝑘, 𝜎|, where 𝑎 is the

distance between nearest sites. Under this assumption and the ultrashort core-hole

lifetime approximation, we can set 𝜔in = 𝜔𝑝𝑒𝑎𝑘
in at the X-ray edge, integrate the RIXS

spectra over ∆𝜔, and use the explicit form of 𝒟𝑚,𝑒 to derive it into correlation func-

tions that only involve the operators in valence band (details in Appendix)

𝐼𝛼(𝑘in,𝑘𝑠) =

∫︁
𝜔in

∫︁
𝑑∆𝜔 𝐼𝛼(𝑘in, 𝑘𝑠, 𝜔in,∆𝜔)

≃ 1

𝑁2

∑︁
𝑚1,𝑚3

𝑒𝑖𝑞(𝑟𝑚1−𝑟𝑚3)

[︃
1

Γ2
𝐼𝛼{0,0} +

𝑡2

4Γ4
×

(︁
𝑒𝑖(2𝑘in+𝑞)·𝑎𝐼𝛼{1,1} + 𝑒𝑖𝑞𝑎𝐼𝛼{1,−1}+

𝑒−𝑖𝑞𝑎𝐼𝛼{−1,1} + 𝑒−𝑖(𝑞+2𝑘in)𝑎𝐼𝛼{−1,−1}

)︁]︃
(3.5)

𝐼𝛼{𝑥,𝑦} = ⟨Ψ𝑣
0| cm1𝜎

𝛼c†m1+xcm3𝜎
𝛼c†m3+y |Ψ𝑣

0⟩

where 𝑞 = 𝑘in−𝑘𝑠 is the momentum difference between incoming and outgoing photon,

cm = (𝑐𝑚,↑, 𝑐𝑚,↓), 𝛼 = 0, 1, 2, 3 correspond to the SC channel and three NSC channels.

The ultra-short core-hole lifetime condition is used for an approximation to achieve

the final result.

From Eq. 3.5, 𝐼𝛼{0,0} is a correlation including only two sites, the rest 𝐼𝛼{𝑥,𝑦} are

four-site correlation, we can target 𝐼𝛼{1,1} or 𝐼𝛼{−1,−1} by summing over both 𝑞 and 𝑘in,
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with proper phase factor added

𝐼𝛼 =
4Γ4

𝑡2

∑︁
𝑞

𝑒𝑖𝑞(𝑟𝑐−𝑎)
∑︁
𝑘in

𝑒−𝑖2𝑘in𝑎𝐼𝛼(𝑘in, 𝑘𝑠)

=
1

𝑁

∑︁
𝑚1

⟨Ψ𝑣
0| cm1𝜎

𝛼c†m1+1cm1+c𝜎
𝛼c†m1+c+1 |Ψ𝑣

0⟩

= ⟨Ψ𝑣
0| cm𝜎𝛼c†m+1cm+c𝜎

𝛼c†m+c+1 |Ψ𝑣
0⟩

(3.6)

where 𝑁 is the total number of sites. In the last line of Eq. 3.6, we assume the

Hamiltonian has translational symmetry, so the correlation functions only depend on

the spatial difference.

We can not, however, target 𝐼𝛼{1,−1} or 𝐼𝛼{−1,1}, because

∑︁
𝑞

𝑒𝑖𝑞𝑟𝑐
∑︁
𝑘in

𝐼(𝑘in, 𝑘𝑠) =

∑︁
𝑚1

1

Γ2
⟨Ψ𝑣

0| cm1𝜎
𝛼c†m1

cm1+c𝜎
𝛼c†m1+c |Ψ𝑣

0⟩

+
𝑡2

4Γ4

(︁
⟨Ψ𝑣

0| cm1𝜎
𝛼c†m1+1cm1+c+1𝜎

𝛼c†m1+c |Ψ𝑣
0⟩

+ ⟨Ψ𝑣
0| cm1𝜎

𝛼c†m1−1cm1+c−1𝜎
𝛼c†m1+c |Ψ𝑣

0⟩
)︁
.

(3.7)

𝐼{0,0}, 𝐼{1,−1}, 𝐼{−1,1} are inseparable because they all have no dependence with 𝑘in,

however, by tuning Γ, we can distinguish the first order part from the rest.

The ultrashort core-hole lifetime approximation plays an important role in con-

necting the RIXS spectra with correlation functions as shown in Eq. 3.5, where it

implies Γ ≫ 𝐸𝑁1 − 𝐸𝑁2 for any low energy levels 𝐸𝑁 of the valence band Hamilto-

nian. Numerically, we can fix it by only calculating the second order expansion 𝐼{1,1}

as needed.

3.2.2 Connected two-particle correlations from RIXS and ARPES

If the Hamiltonian of the valence band ℋ0 has the time-reversal symmetry, the cor-

relations of eigenstates or thermal states of ℋ0 fulfill ⟨𝑐𝑖↑𝑐†𝑗↑𝑐𝑘↑𝑐
†
𝑙↑⟩ = ⟨𝑐𝑖↓𝑐†𝑗↓𝑐𝑘↓𝑐

†
𝑙↓⟩,

⟨𝑐𝑖↑𝑐†𝑗↓𝑐𝑘↑𝑐
†
𝑙↓⟩ = ⟨𝑐𝑖↓𝑐†𝑗↑𝑐𝑘↓𝑐

†
𝑙↑⟩ and ⟨𝑐𝑖↑𝑐†𝑗↓𝑐𝑘↓𝑐

†
𝑙↑⟩ = ⟨𝑐𝑖↓𝑐†𝑗↑𝑐𝑘↑𝑐

†
𝑙↓⟩. In addition, if the

50



Hamiltonian has the translational symmetry,
∑︀𝑁

𝑚=1 ⟨𝑐𝑚+𝑎,𝜎𝑎𝑐
†
𝑚+𝑏,𝜎𝑏

𝑐𝑚+𝑐,𝜎𝑐𝑐
†
𝑚+𝑑,𝜎𝑑

⟩ =

𝑁 ⟨𝑐𝑛+𝑎,𝜎𝑎𝑐
†
𝑛+𝑏,𝜎𝑏

𝑐𝑛+𝑐,𝜎𝑐𝑐
†
𝑛+𝑑,𝜎𝑑

⟩ for any 𝑛. Combining the four fundamental RIXS

channels (one SC 𝐼0 and three NSC 𝐼1, 𝐼2, 𝐼3), we can derive all four-point corre-

lations in the form of ⟨𝑐𝑚1,𝜎1𝑐
†
𝑚1+𝑥,𝜎2

𝑐𝑚1+𝑐,𝜎3𝑐
†
𝑚1+𝑐+1,𝜎4

⟩, short note as 𝐼(𝜎1, 𝜎2, 𝜎3, 𝜎4)

𝐼(↑, ↑, ↓, ↓) = 𝐼(↓, ↓, ↑, ↑) = 𝐼0 − 𝐼3

4

𝐼(↑, ↑, ↑, ↑) = 𝐼(↓, ↓, ↓, ↓) = 𝐼0 + 𝐼3

4

𝐼(↑, ↓, ↑, ↓) = 𝐼(↓, ↑, ↓, ↑) = 𝐼1 − 𝐼2

4

𝐼(↑, ↓, ↓, ↑) = 𝐼(↓, ↑, ↑, ↓) = 𝐼1 + 𝐼2

4
.

(3.8)

In Fig. 3-3 (a), a comparison of the exact correlations and the correlations calculated

from RIXS spectra is shown. The model is an extended Hubbard model with the

Hamiltonian in Eq. A.21, the RIXS intensity is calculated on a two-band model with

both the core band and the valance band. The comparison shows that RIXS fits exact

correlations very well at an ultra-short core-hole lifetime when Γ = 10𝑡. We compare

the results for Γ = 1 and 10 in Fig. 3-3 (b,c,d).

For convenience purposes, we would like to take the correlation in the anti-normal

ordering, i.e. ⟨𝑐𝑐𝑐†𝑐†⟩. This can be achieved by exchanging two operators. In addition,

we are interested in the connected part of the correlation, like ⟨𝑐𝑖𝑐𝑗𝑐†𝑘𝑐
†
𝑙 ⟩−⟨𝑐𝑖𝑐†𝑙 ⟩ ⟨𝑐𝑗𝑐

†
𝑘⟩+

⟨𝑐𝑖𝑐†𝑘⟩ ⟨𝑐𝑗𝑐
†
𝑙 ⟩, the reason of interest will be explained in Sec. 3.3. The one-particle (two-

point) correlations ⟨𝑐𝑖𝑐†𝑗⟩ can be obtained from the spin-resolved ARPES spectra by

Tr[𝜌(𝑐𝑚↑𝑐
†
𝑚+𝑐,↑)] =

∑︀
𝑘 𝑒

−𝑖𝑘𝑟𝑐
∫︀
𝑑𝜔𝐴+(𝑘, 𝜔), note ⟨𝑐↑𝑐†↓⟩ derives zero for spin conserved

system. We will obtain the following connected correlation

⟨𝑐𝑚1,𝜎1𝑐𝑚1+𝑐,𝜎3𝑐
†
𝑚1+𝑥,𝜎2

𝑐†𝑚1+𝑐+𝑥,𝜎4
⟩𝑐𝑜𝑛 =

𝛿1,𝑐 ⟨𝑐𝑚1,𝜎1𝑐
†
𝑚1+𝑐+𝑥,𝜎4

⟩

− ⟨𝑐𝑚1,𝜎1𝑐
†
𝑚1+𝑥,𝜎2

𝑐𝑚1+𝑐,𝜎3𝑐
†
𝑚1+𝑐+𝑥,𝜎4

⟩

− ⟨𝑐𝑚1,𝜎1𝑐
†
𝑚1+𝑐+𝑥,𝜎4

⟩ ⟨𝑐𝑚1+𝑐,𝜎3𝑐
†
𝑚1+𝑥,𝜎2

⟩

+ ⟨𝑐𝑚1,𝜎1𝑐
†
𝑚1+𝑥,𝜎2

⟩ ⟨𝑐𝑚1+𝑐,𝜎3𝑐
†
𝑚1+𝑐+𝑥,𝜎4

⟩ .

(3.9)
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Figure 3-3: (a) The comparison between correlations derived from computational
RIXS spectra and the exact values directly from exact diagonalization calculation.
The results shown are from the extended Hubbard model, with 𝑈 = 1.6, 𝑡 = 1,
𝑡𝑐 = 0.1, Γ = 10, and 𝑉 = −1, the upper (lower) panels correspond to the spin
channel ↑, ↑, ↑, ↑ (↑, ↓, ↓, ↑). (b) The root mean square error(RMSE) between the
RIXS-derived correlations and exact correlations, in the x-axis the nearest neighbor
interaction in the Hamiltonian 𝑉 varies, we compare the RMSE at different inverse
core-hole lifetime Γ, a large Γ is required for the small error. (c)(d) RIXS intensity
at fixed momentums, 𝐼 = 𝐼(q = 0,kin = 0,∆𝜔, 𝜔in) with the same Hamiltonian
parameters as the panel (a), but Γ = 1, 10 for the green and purple colors, (c) shows∫︀
𝑑𝜔in𝐼 versus ∆𝜔, (d) shows

∫︀
𝑑∆𝜔𝐼 versus 𝜔in.

where 𝑥 = 0, 1,−1, these are correlations that are accessible by the combination of

RIXS and ARPES.

In the ground state of the local Hamiltonian, ⟨𝑐𝑚1,𝜎1𝑐𝑚1+𝑐,𝜎3𝑐
†
𝑚1+𝑥,𝜎2

𝑐†𝑚1+𝑐+𝑥,𝜎4
⟩𝑐𝑜𝑛

becomes much smaller when |𝑥| > 1, so we can safely ignore those correlations

under many cases, we will justify this point in every model we take as examples

later. We approximately find all the two-fermion (four-point) connected correlations
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⟨𝑐𝑖𝜎1𝑐𝑗𝜎2𝑐
†
𝑘𝜎3
𝑐†𝑙𝜎4

⟩ for particle-conserved systems with time reversal and translational

symmetry. There are still many constraints in terms of "all", we need time-reversal

and translational symmetry, spin and particle conservation, also local Hamiltonian,

however, many well-known condensed matter systems fulfill these conditions, thus

in the following discussion, we will assume we know all the two-particle correlations

while justifying this approximation is reasonable along the way.

3.3 Entanglement witness in fermionic states

RIXS spectra can measure a summation of two-particle correlations like
∑︀

𝑚 ⟨𝑐𝑚𝑐†𝑚+𝑥𝑐𝑚+𝑐𝑐
†
𝑚+𝑐+𝑦⟩,

when considering the dispersion of core level, the site indices between creation and

annihilation operators are separate apart, i.e. 𝑥 ̸= 0, 𝑦 ̸= 0. Even though it does not

provide a full set of all correlations {⟨𝑐𝑖𝑐†𝑗𝑐𝑘𝑐
†
𝑙 ⟩ , 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑀}, the following reasons

enable it to approximately fully characterize all the two-particle correlations: (1) most

condensed matter systems are translational invariant, (2) the connected part of the

correlation functions vanishes when 𝑖, 𝑗, 𝑘, 𝑙 indices are separate farther apart for the

ground state of local Hamiltonian. We show that with access to these two-particle

correlations, a measurable entanglement witness can be constructed. We consider

only systems with conserved particle numbers.

In a fermionic state, the wave function is antisymmetric and fermion particles

are indistinguishable, the definition of entanglement [4, 15] is less straightforward

than states with distinguishable particles, like spin systems. One approach is to use

the notion of Slater rank and concurrence [21, 22, 53], they are accessible via two-

particle correlations in a two-particle system, however, Slater rank becomes much

more complicated to access via two-particle correlations and the concurrence is not

enough to describe the entanglement in systems with more than two particles[22].

A similar concept like three tangles can describe entanglement in a three-particle

system but is not accessible by just two-particle correlations[54]. Another approach

is to construct an entanglement witness like Tr [𝑊𝜌]. Naively, if we can find all states

that are k-producible 𝜌k-prod ∈ 𝒮k-prod, and access all correlations {𝒪𝛼} ∈ 𝐴, where

53



𝐴 is the set of all fermion operators that conserve particle number in anti-normal

order {𝑐𝑖1 · · · 𝑐𝑖𝑛𝑐
†
𝑗1
· · · 𝑐†𝑗𝑛 , 𝑛 = 1, 2, · · · , 𝑁}(where N is the total particle number in

the system), we can find the full set of correlations of product states 𝑊k-prod =

{{Tr [𝒪𝛼𝜌k-prod] ,𝒪𝛼 ∈ 𝐴}, 𝜌k-prod ∈ 𝒮k-prod}. A state 𝜌 is at least k-particle entangled

if {Tr [𝒪𝛼𝜌] ,𝒪𝛼 ∈ 𝐴} /∈ 𝑊k-prod.

In realistic experiments, only a subset of 𝐴 can be accessed. Assuming with access-

ing to all the single-particle and two-particle correlations {𝑐𝑖𝑐†𝑗, 𝑐𝑖𝑐𝑗𝑐
†
𝑘𝑐

†
𝑙}, and define

this subset as 𝐴2. The question now becomes whether we can design an entanglement

witness for k-particle entangled states in the fermion system. The witness of bipar-

ticle entangled states has been discussed in [24], where they refer to it as pairing.

In the following, we first define the multiparticle entanglement in fermionic systems

considering its basis-independent properties, then we construct a multiparticle entan-

glement witness based on the correlations we have. Here we constrain the definition

of witness in the pure state subset while discussing possible extensions to the mixed

states in the conclusion section.

3.3.1 Multipartite entanglement in fermionic systems

The notions of 𝑘-producibility and multipartite entanglement adapt well in spin sys-

tems. The QFI is related to the lower bound of multipartite entanglement [20], and

can be probed by measuring the dynamic susceptibility [7]. If we want to adopt a sim-

ilar concept in fermionic systems, the fermion particles are indistinguishable, and the

definition of particle entanglement should not depend on the choices of fermion oper-

ator basis, i.e., states of the Fermi sea should be unentangled no matter in real-space

basis or momentum-space basis. Here we first introduce the definition of fermionic

product states like [24], following a similar manner, we can define the multiparticle

entangled fermionic states. The definition of entanglement is invariant under a uni-

tary transformation of fermionic operators 𝑐𝑎 =
∑︀

𝑏 𝑐𝑏𝑎𝑐
′
𝑏. A pure fermionic state |𝜓𝑝⟩

is called an unentangled or product state, if there exists a unitary transformation
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𝑐𝑘 ↦→ 𝑐′𝑘 such that

|𝜓𝑝⟩ =
𝑁∏︁
𝑗=1

𝑐′
†
𝑗 |0⟩ . (3.10)

A mixed state 𝜌𝑠 is called unentangled, if it can be written as the convex combination

of product states, i.e.

𝜌𝑠 =
𝐾∑︁
𝑝=1

𝜆𝑝𝜌𝑝 (3.11)

where 𝜌𝑝 = |𝜓𝑝⟩ ⟨𝜓𝑝| are product states,
∑︀𝐾

𝑝=1 𝜆𝑝 = 1, 𝜆𝑝 ≤ 1. All other states are

said to have Slater number larger than 1 and are called entangled.

Similarly, we can define a 𝑘-particle entangled fermion state. In Ref. [55], a

definition of 𝑘-producible fermion states is given, but it is basis-dependent, here we

show a basis-independent definition. Consider a set of fermionic modes 𝑀 , with

associated creation and annihilation operators 𝑐†𝑚 and 𝑐𝑚, labeled by 𝑚 ∈ 𝑀 . A 𝑘

partition of the system is defined as a partition 𝑀 = 𝑀1 ∪𝑀2 ∪ · · · ∪𝑀𝑝. A pure

fermionic state |𝜓⟩ defined on the set of modes 𝑀 with conserved particle number

𝑁 is 𝑘 particle entangled if there exist a unitary transformation 𝑐𝑘 ↦→ 𝑐′𝑘 such that it

can be decomposed as

|𝜓k-particle⟩ = 𝐶*
1𝐶

*
2 · · ·𝐶*

𝑝 |⟩ (3.12)

where the operator 𝐶*
𝑗 is restricted to act on 𝑀𝑗, and there are 𝑛𝑗 particles created

by 𝐶*
𝑗 ,
∑︀

𝑗 𝑛𝑗 = 𝑁 , max(𝑛1, 𝑛2, · · · , 𝑛𝑝) = 𝑘, |⟩ refers to a vacuum state. The

operator 𝐶*
𝑗 |⟩ is a genuinely multipartite entangled (GME) state, meaning it cannot

be written as a product in any possible bipartition of the state for any single-particle

fermion basis we use. We thus call each 𝐶*
𝑗 a GME block with modes 𝑀𝑗 and particle

number 𝑛𝑗. A GME block with two fermions is easy to describe, if performing Slater

decomposition on 𝐶*
𝑗 , the result is full rank, i.e. the rank number is equal to |𝑀𝑗|/2.

And we can divide modes in 𝑀𝑗 as subgroups 𝑀1
𝑗 ,𝑀

2
𝑗 , · · · ,𝑀

|𝑀𝑗 |/2
𝑗 , each contains 2

modes. The 𝐶*
𝑗 operator with 2 fermions in the Slater decomposition basis can be

written as

𝐶*
𝑗 =

|𝑀𝑗 |/2∑︁
𝑖=1

𝜑𝑗
𝑖

∏︁
𝑀 𝑖

𝑗={𝑚1,𝑚2}

𝑐†𝑚1
𝑐†𝑚2

(3.13)
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where 𝜑𝑗
𝑖 > 0,

∑︀|𝑀𝑗 |/2
𝑖=1 (𝜑𝑗

𝑖 )
2 = 1,𝑀 𝑖1

𝑗 ∩𝑀 𝑖2
𝑗 = ∅, 𝑖1 ̸= 𝑖2.

3.3.2 CRDM witness multiparticle entanglement

The multiparticle entanglement of fermionic states is basis-independent, this inspires

us to find values that are invariant under basis change in the two-particle correlations,

also named two-particle reduced density matrix (RDM) in some literature[56, 57, 58,

59, 60, 61, 62, 63, 64, 65, 66, 67], as the witness of entanglement, represented by

a function 𝐹 (𝑂). The two-particle RDM is a fourth-order tensor defined as 𝑂𝑘𝑙
𝑖𝑗 =

Tr
[︀
𝜌𝑐𝑖𝑐𝑗(𝑐𝑘𝑐𝑙)

†]︀, it is Hermitian and positive semidefinite, and has the symmetry that

𝑂(𝑖𝑗)(𝑘𝑙) = −𝑂(𝑗𝑖)(𝑘𝑙) = −𝑂(𝑖𝑗)(𝑙𝑘) = 𝑂*
(𝑘𝑙)(𝑖𝑗). A change of basis 𝑐†𝑖 ↦→

∑︀
𝑘 𝑈𝑖𝑘𝑐

†
𝑘 acts on

𝐹 (𝑂) as

𝐹
(︀
𝑂(𝑖𝑗),(𝑘𝑙)

)︀
=

𝐹
(︁
(𝑈 ⊗ 𝑈)(𝑖𝑗),(𝑚𝑛)𝑂

(𝜌)
(𝑚𝑛),(𝑝𝑞)(𝑈 ⊗ 𝑈)†(𝑝𝑞),(𝑘𝑙)

)︁
.

(3.14)

According to Wick’s theorem, for a Gaussian state, we have ⟨𝑐𝑖𝑐𝑗𝑐†𝑙 𝑐
†
𝑘⟩ = ⟨𝑐𝑖𝑐†𝑘⟩ ⟨𝑐𝑗𝑐

†
𝑙 ⟩−

⟨𝑐𝑖𝑐†𝑙 ⟩ ⟨𝑐𝑗𝑐
†
𝑘⟩. For a general state, we can define the connected two-particle correlations,

also named cumulant 2RDM (2CRDM) 𝑂con as

(𝑂con
(𝑖𝑗),(𝑘𝑙))

(𝜌) = Tr
[︁
𝜌𝑐𝑖𝑐𝑗𝑐

†
𝑙 𝑐

†
𝑘

]︁
− Tr

[︁
𝜌𝑐𝑖𝑐

†
𝑘

]︁
Tr
[︁
𝜌𝑐𝑗𝑐

†
𝑙

]︁
+ Tr

[︁
𝜌𝑐𝑖𝑐

†
𝑙

]︁
Tr
[︁
𝜌𝑐𝑗𝑐

†
𝑘

]︁
.

(3.15)

It has the same symmetry and unitary transformation as 𝑂, is Hermitian, but not

positive semidefinite, and the function 𝐹 (𝑂con) should also remain unchanged when

changing the basis of 𝑐†𝑖 . Additionally, there is an important particle-hole symmetry

for 𝑂con [67], namely

(𝑂con
(𝑖𝑗),(𝑘𝑙))

(𝜌) = Tr
[︁
𝜌𝑐†𝑘𝑐

†
𝑙 𝑐𝑗𝑐𝑖

]︁
− Tr

[︁
𝜌𝑐†𝑘𝑐𝑖

]︁
Tr
[︁
𝜌𝑐†𝑙 𝑐𝑗

]︁
+ Tr

[︁
𝜌𝑐†𝑙 𝑐𝑖

]︁
Tr
[︁
𝜌𝑐†𝑘𝑐𝑗

]︁
.

(3.16)

Naively, if we can find the singular values of 𝑂, they are the invariant scalars
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under such unitary transformation, however, a rank-four tensor does not always have a

singular values decomposition form, and if we combine a pair of indices (𝑖𝑗) and view it

as a matrix, the eigenvalues of its matrix form are obtained through unitary operations

in an enlarged space, which is beyond (𝑈 ⊗ 𝑈)(𝑖𝑗),(𝑚𝑛), part of the information is

missing in the diagonalization. On the other hand, there are known irreducible basic

invariants of fourth-order tensor 𝑂 or 𝑂con [68, 69, 70, 71]

𝜆𝜈(𝑂) = Tr(𝑂𝜈), 𝜈 = 1, 2, · · · , 𝑁

𝐹 (𝑂) = 𝜆𝜈(𝑂)
(3.17)

where Tr(𝐴) =
∑︀

𝑖,𝑗 𝐴𝑖𝑗𝑖𝑗, the maximal value 𝑁 is the dimension of single-particle

Hilbert space and the dimension of the tensor 𝑂. Thus, we have 𝑁 scalars Tr(𝑂𝜈),

which carry all the basis-invariant information of the tensor 𝑂. Specially, Tr(𝑂2) =∑︀
𝑖,𝑗,𝑘,𝑙 |𝑂𝑖𝑗𝑘𝑙|2 because of the symmetry property of 𝑂. In the following, we are going

to focus on the connected part of the two-particle reduced density matrix 𝑂con. The

particle-hole symmetry of 𝑂con implies that, if we perform a particle-hole transforma-

tion for the state, its invariants Tr(𝑂𝜈) will stay the same, so there is no difference

whether we treat electrons or holes as aiming particles, in the following we use "par-

ticles" to refer to either electrons or holes.

With the framework of decomposing a pure fermion state into Eq. 3.12, if 𝜌 is any

pure state, and in the basis that has this decomposition, there a few cases for 𝑖, 𝑗, 𝑘,

𝑙 indices in each 𝑂con
(𝑖𝑗),(𝑘𝑙),

1. 𝑂con
(𝑖𝑗),(𝑘𝑙) = 0, 𝑖, 𝑘 ∈𝑀𝑗1 , 𝑗, 𝑙 ∈𝑀𝑗2 , 𝑗1 ̸= 𝑗2

2. 𝑂con
(𝑖𝑗),(𝑘𝑙) = 0, 𝑖, 𝑙 ∈𝑀𝑗1 , 𝑗, 𝑘 ∈𝑀𝑗2 , 𝑗1 ̸= 𝑗2

3. 𝑖, 𝑗, 𝑘, 𝑙 ∈𝑀𝑗1

4. 𝑂con
(𝑖𝑗),(𝑘𝑙) = 0, all other situations.

The first two cases are equivalent, so we focus on case 1, and we have ⟨𝑐†𝑖𝑐
†
𝑗𝑐𝑘𝑐𝑙⟩ =

−⟨𝑐†𝑖𝑐𝑘⟩ ⟨𝑐
†
𝑗𝑐𝑙⟩ , ⟨𝑐

†
𝑖𝑐𝑙⟩ = 0, ⟨𝑐†𝑗𝑐𝑘⟩ = 0, so 𝑂con

(𝑖𝑗),(𝑘𝑙) = 0. Similarly, for all other situations

that the two pairs among four indices do not each belong to the same block state in
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𝑀𝑗, we have 𝑂disc
(𝑖𝑗),(𝑘𝑙) = 0 because all the two-particle and one-particle correlations are

zero. If we treat 𝑂con as a block tensor, then the case 1, 2, 3 all refer to off-diagonal

components of the block tensor

𝑂con =
⨂︁

𝑗=1,··· ,𝑝

𝑂con
𝑀𝑗
. (3.18)

A conclusion is derived by summarizing the above definition, if we have a pure

state 𝜌 that can be decomposed as Eq. 3.12 in any basis, then for any irreducible

basic invariant, we can decompose it into a summation of separable subsystems

Tr[(𝑂con)𝜈 ] = Tr

[︃(︁ ⨂︁
𝑗=1,··· ,𝑝

𝑂con
𝑀𝑗

)︁𝜈]︃

=
∑︁

𝑗=1,··· ,𝑝

Tr
[︁(︁
𝑂con

𝑀𝑗

)︁𝜈]︁
.

(3.19)

Following the similar spirit as the upper boundary obtained in QFI, here if we can

find the upper boundary of Tr(𝑂𝜈) for 𝑛-particle inseparable state, like Tr(𝑂𝜈
𝜌𝑛) ≤ 𝐹𝑛,

then for any system with conserved 𝑁 fermions, if

Tr [(𝑂con)𝜈 ] ≤
[︂
𝑁

𝑛

]︂
𝐹 𝜈
𝑛 + 𝐹 𝜈

𝑁−[𝑁𝑛 ]𝑛
(3.20)

the system is at least 𝑛+1-particle entangled, and this boundary will be tighter as 𝜈

increases, this is because for a fully connected (inseparable) states containing particle

number 𝑛, Tr [(𝑂con)𝜈 ] ∼ 𝑂(𝑛𝜈), we will show this explicitly for 𝜈 = 1, 2, and implies

the relations for 𝜈 > 2. Overall, Tr[(𝑂con)𝜈 ] is size extensive for separable states and

follows polynomial relations for inseparable states, which makes it a valid multipartite

entanglement witness.

We derive the upper boundary 𝐹 𝜈
𝑛 for 𝜈 = 1, for a fermion state with 𝑛 particles

and in total 𝑚𝑛 modes. In the later content, we will refer Tr [𝑂con] as the first-order

witness and Tr [(𝑂con)2] as the second order witness.

𝐹 1
𝑛(𝑚) =

(︂
1− 1

𝑚

)︂
𝑛 < 𝐹 1

𝑛(∞) = 𝑛 (3.21)
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These upper boundaries correspond to generalized GHZ states in fermion systems,

with 𝑛 particles and 𝑛𝑚 modes, labeling the modes as {1, 2, · · · , 𝑛𝑚}, the GHZ type

state is

|GHZ⟩ = 1√
𝑚

(︁
|1, 2, · · · , 𝑛⟩+ |𝑛+ 1, 𝑛+ 2, · · · , 2𝑛⟩

+ · · ·+ |(𝑚− 1)𝑛+ 1, (𝑚− 1)𝑛+ 2, · · · ,𝑚𝑛⟩
)︁ (3.22)

and |𝑎𝑏 · · ·⟩ = 𝑐†𝑎𝑐
†
𝑏 · · · |0⟩. For the 𝐹 1

𝑛(𝑚), we prove the upper boundary in Ap-

pendix A.2.

For 𝐹 2
𝑛(𝑚), the upper bounds are more tricky, however, we prove the cases for

𝑛 = 2 in Appendix A.2, and derive

𝐹 2
2 (𝑚) = 4

(︂
1− 1

𝑚3

)︂
< 𝐹 2

2 (∞) = 4. (3.23)

For 𝑛 > 3, and specially 𝑚 = 2 when there are 𝑛 particles that fill in 2𝑛 modes, we

can prove that

𝐹 1
𝑛(2) =

𝑛

2

𝐹 2
2 (2) =

7

2

𝐹 2
3 (2) =

104

27

𝐹 2
𝑛(2) =

2𝑛2 − 𝑛

4
, 𝑛 > 2

(3.24)

The bounds at 𝑛 = 1, 2 work for all half-filling systems, while the second order witness

bound for 𝑛 > 3 is valid when double occupation on each site is not allowed for a

spinful fermion system, such that the state can be represented as a 𝑛-qubit state.

For 𝑛 = 3, there are two inequivalent maximally entangled types, GHZ states and W

states, we proved that the upper bound of the second-order witness at 𝑛 = 3 actually

refers to W states instead of the GHZ states. While for all 𝑛 ̸= 3, the upper bounds

are achieved by the GHZ-type states. We numerically verify some upper bounds in

Sec. 3.4.2.
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For 𝑚 > 2, we can infer that

𝐹 1
𝑛(𝑚) =

(︂
1− 1

𝑚

)︂
𝑛 < 𝐹 1

𝑛(∞) = 𝑛

𝐹 2
2 (𝑚) = 4

(︂
1− 1

𝑚3

)︂
< 𝐹 2

2 (∞) = 4

𝐹 2
3 (𝑚) = 4

(︂
1− 1

(𝑚+ 1)3

)︂
< 𝐹 2

3 (∞) = 4

𝐹 2
𝑛(𝑚) = 2𝑛2

(︂
1

𝑚
− 1

𝑚2

)︂
− 2𝑛

(︂
1

𝑚
− 2

𝑚2
+

1

𝑚3

)︂
≤ 𝐹 2

𝑛(2) =
2𝑛2 − 𝑛

4
, 𝑛 > 3

We can formally prove the bounds of 𝐹 1
𝑛(𝑚), 𝐹 2

2 (𝑚), 𝐹 2
3 (𝑚) in Appendix. A.2, while

the last bound 𝐹 2
𝑛(𝑚), 𝑛 > 3 is a hypothesis, it refers to the 𝑛-particle generalized

GHZ states. Even though it’s not proved due to the high complexity of multiparticle

fermion states, the exact upper bound can not be smaller than it and it exhibits a

quadratic relation with particle number 𝑛.

There is no need to consider 𝑚 < 2, because as we mentioned already, there is

a particle-hole symmetry for CRDM 𝑂con, and we can always treat the state as its

particle-hole inversion, and in that case, we have 𝑚 > 2. When using Eq. 3.20 to

find the multiparticle entanglement bounds for a particle-conserved state, we always

choose 𝑁 to be the minimum value between electron and hole numbers. For 𝑚 ≥ 2

but 𝑚 is not an integer, we don’t provide an exact bound but we can reason that the

bound is between 𝐹 𝜈
𝑛 ([𝑚]) and 𝐹 𝜈

𝑛 ([𝑚] + 1).

3.3.3 CRDM measure quantum correlations

Apart from being viewed as a multiparticle entanglement witness, there is another per-

spective to explain the scalar Tr[(𝑂con)2], which is to view it as a measure of quantum

correlations. As discussed in Sec. 2.2.1, the Slater determinant is an approximation

people use to describe multi-fermion quantum states, however, most strongly corre-

lated quantum states deviate significantly from it. If we can find a quantity that

is zero for the Slater determinant state, and increase as the state deviates from the
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Slater determinant form, then we can call this a measure of how the extent of error

in the Slater determinant approximation for a particular state. We here name it as a

measure of quantum correlations. We formalize that Tr[(𝑂con)2] is a qualified measure

of quantum correlations, due to the following properties it fulfills:

1. It is Invariant under a single-particle orbital unitary transformation.

2. It vanishes for all the Slater determinant wave functions (separable fermion

states), in any orthogonal single-particle orbital basis.

3. The tensor (𝑂con)2 is positive semidefinite, and Tr[(𝑂con)2] =
∑︀

𝑖𝑗𝑘𝑙 |𝑂con
𝑖𝑗𝑘𝑙|2.

All properties have been verified in the previous discussion. We thus can define

Tr[(𝑂con)2] as a quantified measure as it vanishes for all Slater determinant (separate)

states, no matter what orthogonal single-particle orbital basis we choose to observe

the state; and there is no cancellation term due to the positive semidefinite property,

so any state that can not be written in the Slater determinant form must have a

non-zero Tr[(𝑂con)2]. We can not yet call it a measure of entanglement, as it requires

the monotonicity under local operations and classical communication (LOCC), we

defer this to future studies.

3.4 Examples

As examples, we turn to illustrate the first and second-order trace of the 2CRDM

in the ground states of a Hubbard model and 𝑘-particle entangled states uniformly

sampled in a subspace.

3.4.1 Extended Hubbard model and entanglement entropy

We test our witness and quantum correlation measure on the extended Hubbard

model as described in Sec. A.3 at half and quarter fillings. Because the results via

exact diagonalization at small system size show a strong finite-size effect as shown

in Appendix A.3, we apply density matrix renormalization group (DMRG) algorithm
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Figure 3-4: DMRG results of EHM at half filling with open boundary condition. Top:
N=64, Bottom: N=128. Only the central 12 orbitals are counted for Tr [(𝑂con)2].
𝑈 = 1.6, 𝑡 = 1 are fixed, and nearest neighbor interaction 𝑉 changes in the x-axis.
The exact and measurable values of Tr [(𝑂con)2] and the entanglement entropy(EE)
are shown.

with closed boundary conditions to calculate larger system size when there are 𝑁 =

64, 128 sites. When measuring the correlations, we select 12 sites in the center of

the 1D chain, the witness is calculated only on the subspace of these 12 sites, so it

actually acts on a reduced mixed state by tracing out other sites except the 12 central

sites, while our derivation of the upper bound of the witness only works in pure states.

Here we neglect the effect of the bond dimension cut at the edge of these 12 sites

and apply the same bound as derived in pure states. The entanglement entropy is

measured by cutting the system into halves from the center site among 𝑁 sites, the

reduced density matrix from the left to the center site is 𝜌𝐴 = Tr𝐵𝜌𝐴𝐵, while 𝐴 and 𝐵
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represents the Hilbert space of left half and right half, and the entanglement entropy

𝑆(𝜌𝐴) = −Tr(𝜌𝐴 log 𝜌𝐴), the entanglement entropy is an intensive quantity as we

approach the thermodynamics limit, as it is relative to the bond dimension between

two subsystems and does not increase with the size of the system. While the witness

is an extensive quantity that increases with the size, here we choose 12 central sites,

if we increase the range of correlations, the witness also increases.

Fig. 3-4 shows the second-order witness and entanglement entropy(EE) at half fill-

ing, the measurable Tr [(𝑂)2] only sums over the connected correlations that are acces-

sible by RIXS as discussed in Eq. 3.9, other inaccessible connected correlations are set

to zero. The measurable Tr [(𝑂)2] is always smaller or equal to the exact value, they

are both nonzero, indicating the system is entangled, otherwise, the witness should

be zero as analyzed in Sec. 3.3. However, neither of the witnesses exceeds the upper

bound of bi-particle entanglement(12
2
𝐹 2
2 (2)) or tri-particle entanglement(12

3
𝐹 2
3 (2)) for

systems with 12 particles at half filling, so we can only detect bi-particle entanglement

here. Nevertheless, we can also view Tr [(𝑂)2] as a measure of quantum correlations at

the two-particle level, and we compare it with the entanglement entropy, they follow

the same increasing trend when the system undergoes a phase transition from the

SDW phase to TS(spin-triplet) phase, indicating an increase of the quantum correla-

tions and the entanglement. Tr [(𝑂)2] does not change dramatically across the phase

transition point, this can be explained as it serves a similar property here as the

entanglement entropy, which means that it may only exhibit discontinuous behaviors

across the phase transition, at the thermodynamic limit.

3.4.2 Random States

Because the proof of upper bounds in Eq. 3.24 is tedious as attached in the appendix,

in order to get an impression of the strength of the criteria, here we numerically

examine those upper bounds by sampling 𝑘-particle entangled random states in rep-
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resentative subspace. The states in the figure are defined as

|N2⟩ =𝑥1 |12⟩+ 𝑥2 |34⟩

|GHZ3⟩ =𝑥1 |123⟩+ 𝑥2 |456⟩

|SPIN3⟩ =𝑥1 |123⟩+ 𝑥2 |123⟩+ 𝑥3 |123⟩+ 𝑥4 |123⟩

=𝑥1 |123⟩+ 𝑥2 |156⟩+ 𝑥3 |426⟩+ 𝑥4 |453⟩

|GHZ4⟩ =𝑥1 |1234⟩+ 𝑥2 |5678⟩

|SPIN4⟩ =𝑥1 |1234⟩+ 𝑥2 |1234⟩+ 𝑥3 |1234⟩+ 𝑥4 |1234⟩

+ 𝑥5 |1234⟩+ 𝑥6 |1234⟩+ 𝑥7 |1234⟩+ 𝑥8 |1234⟩

=𝑥1 |1234⟩+ 𝑥2 |1278⟩+ 𝑥3 |1638⟩+ 𝑥4 |1674⟩

+ 𝑥5 |5238⟩+ 𝑥6 |5274⟩+ 𝑥7 |5634⟩+ 𝑥8 |5678⟩

|GHZ5⟩ =𝑥1 |12345⟩+ 𝑥2 |6789(10)⟩

(3.25)

where |𝑖𝑗 · · ·⟩ = 𝑐†𝑖𝑐
†
𝑗 · · · |⟩. Here |GHZ𝑛⟩ does not indicate the state is an exact GHZ

state(𝑥1 = 𝑥2), but refers to the state with a similar form as the GHZ state, and 𝑥1

not necessarily equals to 𝑥2. In states |SPIN3⟩, we label the later half indices with

an overline, {1, 2, 3} → {4, 5, 6}, and similarly in |SPIN4⟩. With this notation, we

can transform a subset of 𝑘 particle entangled states into 𝑘-qubit states. Because the

phase factors of the coefficients do not matter in Tr [𝑂con] and Tr [(𝑂con)2], we sample

random parameters {𝑥1, · · · } with a constraint
∑︀𝑝

𝑖=1 𝑥
2
𝑖 = 1 distributed uniformly on

a sphere in a 𝑝-dimensional space

(𝑥1, · · · , 𝑥𝑝) =
(︀
cos(𝛼1), sin(𝛼1) cos(𝛼2), · · · ,

sin(𝛼1) · · · cos(𝛼𝑝−2), sin(𝛼1) · · · sin(𝛼𝑝−2) sin(𝛼𝑝−1)
)︀ (3.26)

In Fig. 3-5, the upper bounds of the first-order witness(top) and second-order

witness(bottom) of 𝑘-particle entangled states are shown, and the witness of sampled

random states are represented as violin plots. All sampled states in their type have

some instances that reach the corresponded upper bounds and do not exceed, which

demonstrate the validness of the criteria, except for |GHZ3⟩, which does not reach
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Figure 3-5: Top: Upper bound of the first-order witness Tr [𝑂con] and sampled states.
Bottom: Upper bound of the second-order witness Tr [(𝑂con)2] and the sampled states.

the 3-particle entangled bound for the second-order witness. This is because the state

that reaches this upper bound is the W state, which is not included in the |GHZ3⟩ but

included in |SPIN3⟩. The W state in |SPIN3⟩ appears when 𝑥1 = 𝑥2 = 𝑥3, 𝑥4 = 0(or

any one of the parameters is zero and others are equal), while 𝑥1 = 𝑥2 = 𝑥3 = 𝑥4 is

equivalent to an exact GHZ state under basis transformation, see Appendix A.2.

65



3.5 Discussion

In this work, we propose extracting 4-point (2-particle) correlations, denoted as

⟨𝑐𝑖𝑐†𝑗𝑐𝑘𝑐
†
𝑙 ⟩, with high precision from RIXS spectra. By performing Fourier transfor-

mation in the incident-photon momentum, we can distinguish the perturbation part

from the leading term in the spectra. The perturbation term corresponds to the dis-

persion of the core level and leads to the 4-point correlations, while the leading term

gives rise to the spin-spin (charge-charge) correlations. The connected part of these

correlations can be obtained by analyzing the difference between RIXS and ARPES

spectra. Assuming access to all connected 4-point correlations, we propose fermionic

basis-invariant multi-particle entanglement witnesses. We derive upper bounds for

the 𝑘-particle entangled states using two of these witnesses. To examine our crite-

ria, we investigate a 1D extended Hubbard chain undergoing a phase transition and

randomly sample 𝑘-particle entangled states.

The precision of the correlations derived from RIXS spectra is influenced by the

core-hole lifetime, the core-level dispersion, and the excitation spectra of the valance

band. Since the 4-point correlations originate from the perturbation term of the

Hamiltonian in the order of 𝑂( 𝑡2

4Γ4 ), the accuracy of RIXS spectra becomes crucial to

capture the perturbation term, which varies with the incoming photon momentum.

Improving the precision of RIXS measurements would allow us to capture higher-

order perturbations and derive a complete set of 4-point correlations that surpass

the nearest-neighbor constraint imposed by first-order perturbation. Alternatively,

exploring materials with higher orbital as the core level could enhance core-hole mo-

bility and increase the magnitude of the perturbation term. Unlike previous works[11]

that derive the spin and charge dynamic susceptibilities from RIXS using UCL ap-

proximation at the resonance peak energy, our derivation involves integrating over

the entire nonzero range of incoming photon energy. This is necessary as the 4-point

correlations typically arise from higher-order excitations in the Hamiltonian energy

levels, its spectra covering a wide range of incoming photon frequencies. Neglecting

the RIXS intensity solely at the resonance peak leads to significant systematic errors,

66



as we have verified numerically.

Extracting information about quantum states from correlation functions has been

a longstanding question. Rosina’s theorem[72] establishes a one-to-one mapping be-

tween the energetically nondegenerate ground state two-particle reduced density ma-

trix (2RDM) and the many-electron wave function for quantum systems with only

two-particle (Coulomb) interactions. This suggests that the 2RDM, or equivalently

the 4-point correlations, are sufficient to reconstruct the ground state wave func-

tion. However, the challenge lies in determining the specific approach for achieving

this. Although the problem is mathematically intricate and falls under the realm of

N-representability, we address a related aspect by linking it to multiparticle entangle-

ment. We investigate whether the 2RDM can be employed to construct witnesses for

𝑘-particle entangled states, which provides a coarse-grained classification of fermionic

states. Among the proposed witnesses, the second-order witness Tr [(𝑂con)2] natu-

rally serves as an entanglement measure due to its size extensivity and quadratic

relationship with the depth of multi-particle entanglement. This witness can detect

genuine multi-particle entanglement blocks in large systems. There are other invari-

ants of the 2CRDM 𝑂con
(𝑖𝑗)(𝑘𝑙) that potentially serve as entanglement witnesses, such

as the eigenvalue spectra of the matrix. Naively, the largest eigenvalue is bounded

as demonstrated in Appendix. A.2, thereby serving as an additional entanglement

witness. However, a comprehensive analysis of the eigenvalues necessitates further

investigation, which we defer to future studies.
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Chapter 4

Local probes for quantum Hall

ferroelectrics and nematics

Part of the work described in this chapter is published as Ref. [73].

Scanning tunneling microscopy (STM) is an effective technique utilized in the

measurement of two-dimensional materials. It measures the local density of states

(LDOS), as explained in Chapter 1. Given its spatial resolution, STM possesses

the potential to directly visualize local features that reflect the system’s symmetry.

In instances where translational symmetry is broken, these features manifest promi-

nently as charge orders observable through the nonuniform density profile obtained

from STM. However, in most other scenarios involving symmetry breaking, the LDOS

remains uniform, and no discernible local characteristics emerge. Nonetheless, impu-

rities can play a crucial role in targeting a bound state that reflects the symmetry

breaking and is also visualizable through STM.

In this chapter, we will explore the two-dimensional multi-valley electronic sys-

tems in which the dispersion of individual pockets has low symmetry, giving rise to

quantum Hall ferroelectric and nematic states in the presence of strong quantizing

magnetic fields. While the detection of valley symmetry-breaking has primarily relied

on macroscopic transport or optical properties, certain experiments have successfully

enabled the direct visualization of Landau orbitals’ shape in the vicinity of impuri-

ties [74, 75]. This progress paves the way for directly imaging the order parameter –
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dipole moment near impurities. We investigate local signatures of these states arising

near impurities that can be probed via Scanning Tunnelling Microscopy (STM) spec-

troscopy. For quantum Hall ferroelectrics, we demonstrate a direct relation between

the dipole moment measured at impurity-bound states and the ideal bulk dipole mo-

ment obtained from the modern theory of polarisation. We also study the many-body

problem with a single impurity via exact diagonalization and find that nearing strong

impurities non-trivial excitonic states can form with specific features that can be

easily identified via STM spectroscopy.

4.1 Introduction

Recently we have witnessed an explosion of high-quality two-dimensional electronic

systems with strongly anisotropic dispersions that can be driven into the quantum

Hall regime in the presence of strong magnetic fields [76, 77], such as (111) surface of

Bismuth [74, 75, 78, 79], AlAs heterostructures [80, 81], PbTe(111) quantum wells [82]

and (001) surface of the topological crystalline insulator (TCI) like Sn1−𝑥Pb𝑥(Te,Se)

[83]. In these systems, at integer fillings of the Landau levels, Coulomb interaction

tends to spontaneously break symmetry by forming valley-polarized states [76, 84,

85, 86], which can be generally divided into nematic or ferrolectric states according to

whether or not the Fermi surface of individual valley preserves inversion (or two-fold

rotation) symmetry [76]. Advances in STM have made it possible to directly image

the shape of Landau orbitals near impurities [74, 75, 78, 87], providing an exciting

window into these correlated states. Evidence of the quantum Hall ferroelectrics has

been reported in Bismuth (111) [75]. The surface of SnPb(Te,Se) based TCI’s is

another promising platform to realize these states [88, 89, 90, 91, 92].

In this chapter, we investigate the behaviour of quantum Hall ferroelectrics and

nematics near short-range impurities. One of our goals is to elaborate on how to

measure an “order parameter" for the quantum Hall ferroelectricity. In trivial in-

sulators in which the bulk and the boundary are simultaneously gapped a natural

order parameter is the ferroelectric dipole moment, which can be computed from the
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valley A valley B

valley A

valley B

|n|-3 |n|-2 |n||n|-1 |n|+1 |n|+2

FIG. 4-1: (a) Simplistic illustration of a quantum Hall ferroelectric system. The
Fermi surface consists of two valleys related by a two-fold rotation, while individual
valley breaks (preserves) two-fold rotation symmetry for the ferroelectric (nematic)
state. (b) Schematic of single orbit spectra, for the 𝑛th Dirac Landau level: upon
hybridization only 2 states are perturbed in energy by a delta-function impurity 𝑉0 B.
The exchange splitting ∆𝑋 favors valley polarization. (c) Energies, ∆𝐸1 and ∆𝐸2, of
the two impurity states for the 𝑛 = ±1 Dirac Landau level, as a function of the tilt
(𝜏) and mass (𝜆) of the Dirac cone.

Berry-phase-based approach in the modern theory of polarization [93, 94]. In quan-

tum Hall ferroelectrics, although such polarization is well defined in an ideal setting

subjected to periodic boundary conditions, it is unclear how to directly measure it

due to screening at metallic boundaries. This issue can be resolved by studying states

bound to impurities. Indeed, the ideal dipole moment defined by the modern theory

of polarization can be related to that of impurity-bound states, as we will demon-

strate for the case of tilted Dirac cones relevant to the surface of SnPb(Te,Se) based

TCI’s.

We also study numerically the many-body problem of states near short-range

impurities by exact diagonalization. As previously discussed [74, 75] the impurities

can shift the energy of the occupied state that has a finite amplitude at the impurity

location. We have found a new many-body regime where the impurity potential

exceeds the exchange energy that attempts to keep the Landau level (LL) completely
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filled. For repulsive short-range impurities, once the impurity potential overcomes this

threshold, a state with a quasi-hole bound to the impurity becomes the ground state

of the system, and one of the lowest-lying excited states corresponds to a non-trivial

inter-valley excitonic state, in which an electron is added to another valley. We will

discuss how these new many-body states have clear signatures in STM measurements.

4.2 Impurity states for Dirac cones

Here we consider a model that is relevant to the (001) surface of SnPb(Te,Se) based

TCI’s. In these materials, at temperatures below a ferroelectric transition, their sur-

face states comprise four Dirac cones, two of which are massive and two massless.

Each of the massive/massless pair is degenerate in the presence of time-reversal sym-

metry [92], but under a background magnetic field, the degeneracy of the massive

pair is no longer protected. The degeneracy of the massless pair will however remain

protected by the product of time reversal and a mirror symmetry (see Supplement B).

Here we focus on the latter two degenerate valleys. The dispersions generally have a

tilt in momentum [95, 90], which is essential to the ferroelectricity that we describe

below. We thus consider the following effective Hamiltonian for the Dirac cone at ±Λ̄

(near 𝑋̄):

𝐻 = 𝑣𝑥𝜎𝑥𝑝𝑥 − 𝑣𝑦𝜎𝑦𝑝𝑦 ± 𝛿𝑣𝑥𝑝𝑥 +∆𝜎𝑧, (4.1)

where 𝜎𝑖 are Pauli matrices and 𝛿𝑣𝑥 represents the tilt of the Dirac cone. For generality

we have added a mass term, ∆𝜎𝑧, to the originally massless Dirac cones which is

allowed in magnetic fields due to the Zeeman effect, however, in TCI’s this coupling

has been seen to be negligibly small [83]. In the presence of external magnetic fields

Landau levels will form, and we consider a partial filling 𝜈 = 1 for the resulting

2-fold degenerate valley doublet. The quantum Hall ferroelectric (nematic) state

forms when the electrons spontaneously polarize into a single one of these valleys

due to interactions [76]. Figure 4-1(a) and (b) provide simplistic illustrations of this

model. Inspired by recent STM experiments [74, 75], we study states near short-range
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Figure 4-2: (a), (b): Average position, measured from the impurity site, of the impu-
rity states from the 𝑛 = −1 Dirac LL, as a function of the tilt (𝜏) and mass (𝜆) of the
Dirac cone. (c), (d): Spatial probability distribution of the impurity states (for TCI
parameters 𝜏 = 0.1, 𝜆 = 0 and 𝑣𝑥/𝑣𝑦 = 1.6), which can be probed by the tunneling
differential conductance in STM.

impurities modelled as delta-function potentials [96]:

𝐻𝑖𝑚𝑝 = 𝑉0𝑙
2
𝐵 𝛿(r), (4.2)

where 𝑙𝐵 =
√︀
ℏ𝑐/𝑒𝐵 is the magnetic length. Assuming that the impurity potential

(𝑉0) is smaller than the Landau level spacing, we project the Hamiltonian to the

Landau level of interest. Only states with a finite probability at the origin will be

affected by the impurity potential. For a parabolic dispersion, there would be a single

state per Landau level with non-zero probability at the origin, as demonstrated in the

Bismuth experiments [74]. However, the situation is richer for Dirac Landau levels due

to the two-component nature. Some distinctions between the conventional and Dirac

Landau levels have been revealed in STM experiments on the surface of topological

insulators [97], and here we discuss another distinction regarding the impurity state.

The wavefunction of the 𝑛th Dirac Landau level in the massless and un-tilted limit

(for the general case see the Supplement B) is:

𝜓𝑛,𝑚 =
1√
𝑍𝑛

⎛⎝ 𝜑|𝑛|,𝑚

𝑠𝑛𝜑|𝑛|−1,𝑚

⎞⎠ , (4.3)
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where 𝑛 ∈ Z, 𝑠𝑛 = sgn(𝑛) (with 𝑠0 = 0), 𝑍𝑛 = 2|𝑠𝑛|, and 𝜑|𝑛|,𝑚 is the wavefunction for

a parabolic Landau level in the symmetric gauge with angular momentum 𝑚 − |𝑛|.

For the 𝑛 = 0 LL only the 𝑚 = 0 state would have probability at the origin, however,

for 𝑛 ̸= 0, two states with 𝑚 = |𝑛| and 𝑚 = |𝑛| − 1 would have probability at the

origin and opposite pseudospins [98, 99]. These two states are exactly degenerate

for a massless and un-tilted dispersion, but either of these perturbations produces

an energy splitting as illustrated in Fig. 4-1. Thus the impurity states are generi-

cally resolvable in STM measurements. In Supplement B we demonstrate that these

perturbations do not produce extra impurity states, and therefore, only these two

states are split from the bulk Landau level and bound to the impurity. Let us intro-

duce dimensionless parameters to characterise the tilt 𝜏 ≡ 𝛿𝑣𝑥/(2𝑣𝑥) and the mass

𝜆 ≡ ∆𝑙𝐵/(
√︀

2𝑣𝑥𝑣𝑦). In Sn1−𝑥Pb𝑥(Te,Se) these are approximately 𝜏 = 0.1, 𝜆 = 0 (ne-

glecting Zeeman effect) and 𝑣𝑥/𝑣𝑦 = 1.6 B. It is therefore justified to use perturbation

theory in 𝜏 . The splitting of the two impurity states from the bulk 𝑛 = ±1 Landau

level to leading order in 𝜏 , are then estimated to be: ∆𝐸1 ≈ 0.10𝑉0, ∆𝐸2 ≈ 0.06𝑉0.

Figure 4-2 displays the spatial profile of these two states.

4.3 Ferroelectric dipole moments

In the modern theory of electric polarization [93, 94], the dipole moment of an insu-

lator is computed by adopting periodic boundary conditions. The dipole is computed

from the change of the electronic position while varying the Hamiltonian along an

adiabatic path in which the bulk gap remains open and starts from an inversion sym-

metric reference state. Following this principle, a dipole moment for the ferroelectric

quantum Hall state was introduced in Ref. [76]. For tilted Dirac cones, this dipole

moment per particle to leading order in the tilt is:

D𝑛 = 𝑠̃𝑛
√
2 𝜏 𝑒 𝑙𝐵

(︃
2𝜆2 + 3|𝑛|√︀
𝜆2 + |𝑛|

)︃√︂
𝑣𝑦
𝑣𝑥

ŷ, (4.4)
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here 𝑠̃𝑛 = sgn(𝑛) (with 𝑠̃0 = 1). Notice that the dipole along the tilt (𝑥-axis) van-

ishes [76]. The limitation of this definition is that one assumes the charge that flows

through the bulk will appear intact at the surface, providing a net electric polar-

ization. However, in an insulating topological phase with a metallic boundary, the

latter assumption is unjustified since the surface charge can flow and lead to vanishing

macroscopic polarization. Hence it is important to devise alternative diagnostics of

inversion asymmetry in topological phases such as the quantum Hall ferroelectrics.

Impurity states, which can be locally probed by STM, offer a resolution. For

any given impurity state one can define a dipole moment as the expectation value

of the position measured relative to the center of the impurity potential. If the

impurity potential is inversion symmetric, this dipole moment serves to characterize

the inversion asymmetry of the host state. Figure 4-2(a) and (b) display the average

position of the impurity states in tilted Dirac cones as a function of their mass and

tilt. Interestingly, the average position is non-analytic, as evidenced by the fact that

the limits of 𝜏 → 0, 𝜆→ 0 do not commute in Fig. 4-2. This is a consequence of the

fact that in this limit both impurity states are degenerate and hence the expectation

values on individual states become ambiguous. However, the sum of the average

positions in both impurity states is free from ambiguities and vanishes as 𝜏 → 0,

𝜆 → 0. We, therefore, introduce the notion of the impurity dipole moment, Dimp, as

the sum of the average position of impurity states 𝜓𝑖
1:

Dimp = 𝑒
∑︁
𝑖

⟨𝜓𝑖|r|𝜓𝑖⟩. (4.5)

To leading order in the tilt (𝜏) and mass (𝜆) of the Dirac cone, we obtained the

following relation between the adiabatic bulk dipole moment, in Eq. (4.4), and the

impurity dipole moment:

Dimp
𝑛 =

2|𝑛|
3|𝑛|+ 2𝜆2

D𝑛, (4.6)

1This average coincides with the minus of dipole moment weighted by the charge distribution of
the hole that is left in Landau level which can also be directly accessed by STM measurements.
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for the 𝑛th Dirac Landau level in a Dirac cone of mass 𝜆 (derivation is presented in the

Supplement B). This formula summarizes one of the key messages of our study: local

measurement of the impurity dipole moment, Dimp, combined with the knowledge

of the electronic structure, can be used to probe the bulk adiabatic dipole moment

following from the modern theory of polarisation, D, in a quantum Hall ferroelectric

state.

In the massless limit, i.e. 𝜆 ≪
√︀

|𝑛|, the two dipole moments have a simple pro-

portionality relation, Dimp
𝑛 = (2/3)D𝑛. However, a notable difference between these

two notions appears in the large mass limit, i.e. 𝜆 ≫
√︀
|𝑛|, for which the adiabatic

dipole grows linearly with the mass, |D𝑛| ∝ 𝜆, whereas |Dimp
𝑛 | ∝ 1/𝜆. This markedly

different behavior is a consequence of the approach to the parabolic mass limit as we

explain in the Supplement B.

4.4 Many-body physics near impurities

So far we have largely ignored the role of electron-electron interactions by imagining

a large self-consistent exchange field has set in to select a single valley. Next, we will

study the many-body problem in the presence of the impurity potential from Eq. (4.2)

by means of exact diagonalization on a torus. We concentrate here on the ferroelectric

states where two valleys are described by the tilted massless Dirac cone with the same

axis orientation and velocity ratio but opposite tilt. We expect the states at Landau

level 𝑛 = +3 to essentially carry over to the case of Bismuth Surfaces [74, 75, 78, 79].

In the Supplement B, we also present a nematic model of two valleys with anisotropic

masses whose principal axes are rotated by 𝜋/2, as in AlAs quantum wells [80, 81],

which gives a simpler picture of what we find.

In the absence of impurity (𝑉0 = 0) at the 𝑛 = +3 Dirac LL and partial filling

𝜈 = 1, the ground state of the system sponaneously polarizes into a single valley

and an exchange splitting, ∆𝑋 , between the two valleys develops [76, 85, 86]. This

is schematically depicted in Fig. 4-1(a) and (b). In the forthcoming discussion, we
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choose the chemical potential to lie exactly in the middle of the charge gap, namely,

we add a single particle term to the Hamiltonian so that far away from the impurity

the energy to add one electron equals the energy to add one hole. In STM spectra this

is satisfied when the two peaks corresponding to the occupied and empty valleys in

the Landau level are located symmetrically away from zero bias with no impurity, as

illustrated in Fig. 4-3. We assume a sufficiently strong tilt so that the lowest-energy

charged excitations are not skyrmions [76].

We denote the valley polarization of states by a vector (𝑁A, 𝑁B), where 𝑁𝑖 is the

number of electrons in valley 𝑖 (𝑖 = A, B). The ground state at 𝜈 = 1 in the absence

of the impurity, therefore, has polarization (𝑁𝜑, 0). The number of orbits in a single

valley is taken to be 𝑁𝜑 = 40. STM is customarily viewed as a probe of the density

of states of the single particle charged excitations because it requires the removal or

injection of electrons from the sample. As we will see, however, near strong impurities,

it is possible to use STM to probe excitonic states. For a weak impurity, 𝑉0 ≪ ∆𝑋 , as

the STM tip is brought near the impurity one expects simply a shift of the spectrum

by an energy ∼ 𝑉0, reflecting the local change of energy to remove/add particles as

illustrated by peaks 𝐴,𝐵 in Fig. 4-3. In this regime, one encounters excitonic states

inside the gap. However, they are invisible in the STM spectrum because they are

neutral and hence orthogonal to states with added/removed electrons relative to the

ground state.

Interestingly, when the impurity potential exceeds a threshold on the order of ex-

change splitting, the ground state of the system is no longer the fully valley-polarized

state, (𝑁𝜑, 0), but rather a quasihole state with polarization (𝑁𝜑−1, 0) 2, as described

in Fig. 4-3(a). This is essentially the local doping of the ground state by removing

one electron. Importantly, there appear then two energetically close excited states

with quantum numbers (𝑁𝜑, 0) and (𝑁𝜑−1, 1). These two lowest excited states differ

from the ground state by adding a single electron, and hence will appear as two peaks

2Here we describe the behavior for repulsive impurities 𝑉0 > 0, but equivalent statements hold for
attractive impurities after performing a particle-hole conjugation (𝑁A, 𝑁B) → (𝑁𝜑−𝑁B, 𝑁𝜑−𝑁A).
Particularly, the quasihole state in the repulsive case is replaced by a quasi-particle state in the
attractive case.
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Figure 4-3: (a) Spectra with increasing impurity potential: (𝑁A, 𝑁B) labels the state
with𝑁A electrons in valley A and𝑁B electrons in valley B. Energy is measured relative
to that of (𝑁𝜑, 0). Notice that the ground state is changed from (𝑁𝜑, 0) to (𝑁𝜑−1, 0) as
the repulsive impurity becomes stronger. Here we use 𝑁𝜑 = 40, 𝜏 = 0.1, 𝑣𝑥/𝑣𝑦 = 5
and 𝜆 = 0. (b) Illustration of tunneling peaks measured via STM. The peaks are
labeled in correspondence with the tunneling processes indicated in the upper panel.
For simplicity in (b) we only show one of the two impurity levels that split from the
bulk Landau level. The other is visible in panel (a) as a solid-dashed orange line.

Figure 4-4: The local density of states at energy levels 𝐴,𝐵,𝐶 ′, 𝐷′, 𝐶 ′′, 𝐷′′, which is
proportional to the differential conductance obtained by STM measurements. The
unit of length is set to be 𝑙𝐵. The tilt 𝜏 = 0.1 and velocity ratio 𝑣𝑥/𝑣𝑦 = 5 are used.
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(𝐶 and 𝐷) at positive bias in the STM spectrum, as shown in Fig. 4-3(b). These

two peaks shift sides as 𝑉0 increases, when the energy of (𝑁𝜑, 0) exceeds (𝑁𝜑 − 1, 1).

Experimentally these peaks can be distinguished by probing the respective spatial

differential conductance, as detailed in Fig. 4-4.

The (𝑁𝜑 − 1, 1) state can be viewed as an excitonic state bound to the impurity.

Since it differs from the local ground state by one electron its wavefunction can be

imaged by STM. The differential conductance of adding an electron in STM is given

by the local density of state (LDOS) at energy 𝜀:

𝐺(r) ∝
∑︁
𝑚

|⟨𝜑𝑚|
∑︁
𝑗

(︁
𝑐†A,𝑗𝜑

*
A,𝑗(r) + 𝑐†B,𝑗𝜑

*
B,𝑗(r)

)︁
|𝜑0⟩|2, (4.7)

where |𝜑0⟩ is the lowest energy state. For a weak impurity below the threshold,

|𝜑0⟩ = |𝑁𝜑, 0⟩. Above the threshold, |𝜑0⟩ = |𝑁𝜑 − 1, 0⟩, which is the hole state

created by the impurity. 𝑐†𝑖,𝑗 and 𝜑𝑖,𝑗 are the creation operator and single electron

wavefunction for an orbit 𝑗 on valley 𝑖. ⟨𝜑𝑚| is the state with energy 𝜀, the sum over

𝑚 is taken for all degeneracy. The case of removing an electron follows from Eq. (4.7)

by replacing 𝑐†𝑖,𝑗 and 𝜑*
𝑖,𝑗 with 𝑐𝑖,𝑗 and 𝜑𝑖,𝑗 respectively.

Figure 4-4 depicts the expected shape of the differential conductance in STM at

the energy and impurity indicated in Fig. 4-3. The 𝐵 peak in the spectroscopy in-

cludes multiple nearly degenerate states, here in Fig. 4-4 we treat them as degenerate

at energy 𝜀 and average over them. The first two panels of Fig. 4-4 depict tunneling

between a single-hole or electron state and the fully polarized state, which only in-

volves single-body physics; while the last panel is the tunneling between the hole state

and the excitonic state, though only reflects the LDOS of valley B with one electron,

its shape is modified via the interaction with the hole in valley A. The significant dif-

ference between Fig. 4-4(a) and (c) allows for distinguishing this non-trivial excitonic

state in STM.
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Chapter 5

Charge order in twisted transition

metal dichalcogenide bilayers

Part of the work described in this chapter is published as Ref. [100].

In this chapter, we will explore the charge orders that emerge due to the sponta-

neous symmetry breaking induced by the long-range Coulomb interaction in transition

metal dichalcogenide (TMD) bilayers. Experimentally, the charge-ordered insulating

states at fractional fillings can be probed by optical anisotropy experiments[101, 102],

and the density profile of charge orders can be observed directly from the STM

images[64], which is the most direct evidence. The real-space imaging of charge or-

ders is accomplished through the combination of high spatial resolution in advanced

STM techniques, and the expanded moiré lattice resulting from moiré heterostructure

effects. While the primary focus of this chapter centers around theoretical modeling

to predict and understand these charge orders, it serves as an example of how the

combination of spectroscopic observations and theoretical modeling advances our un-

derstanding of novel materials.

Moiré superlattices of TMD bilayers have been shown to host correlated electronic

states, which arise from the interplay of long wavelength moiré potential and long-

range Coulomb interaction. Here we theoretically investigate structural relaxation

and single-particle electronic structure of twisted TMD homobilayer. From the large-

scale density functional theory calculation and continuum model with layer degrees
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of freedom, we find that the out-of-plane gating field creates a tunable charge trans-

fer gap at the Dirac point between the first and second moiré valence bands. We

further study the charge orders at the fractional band fillings. In the flat band limit,

we find from Monte Carlo simulations a series of charge-ordered insulating states at

various fillings 𝑛 = 1/4, 1/3, 1/2, 2/3, 1. We predict that the gating field induces a

phase transition between different electron crystals at fixed filling 𝑛 = 1/2 or 2/3.

At half-filling 𝑛 = 1, the ground state is a Mott insulator with electronically driven

ferroelectricity. Our work demonstrates that transition metal dichalcogenide homo-

bilayer provides a powerful platform for the investigation of tunable charge transfer

insulators and charge orders.

5.1 Introduction

Moiré superlattices are a fruitful platform for realizing and controlling correlated elec-

tron states, as evidenced by the remarkable success in twisted bilayer graphene (TBG)

[103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114] and trilayer graphene-hBN

heterostructure[115, 116, 117, 118]. Recently a new family of moiré materials based

on transition metal dichalcogenides (TMD) [119, 120, 121, 122, 123, 124, 125, 126,

127, 128, 129, 130, 131] have attracted great interest. They host an abundance of

correlated insulating states at a series of fractional fillings [132, 133, 134, 135, 101].

In TMD bilayers, moiré bands are formed from parabolic bands of individual lay-

ers. In twisted TMD homobilayers, the moiré bandwidth can be made arbitrarily

small by reducing the twist angle, which gives rise to a strong correlation without

fine-tuning. Electrons or holes in these moiré bands are tightly localized in high-

symmetry stacking regions, which can be well described by a simple effective tight-

binding model. This description offers a convenient starting point for investigating

interaction-induced states at finite density. Despite the conceptual simplicity, quanti-

tative modeling of moiré bands in TMD is highly nontrivial. For example, the moiré

bandwidth of TMD heterobilayer WSe2/WS2 is only on the order of 10 meV, and

depends highly on the lattice relaxation [132, 133, 136, 137].
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In this work, using the large-scale density functional theory, continuum model ap-

proach, and Monte Carlo simulation, we study the effect of structural relaxation and

electric field on the moiré band structure in twisted TMD homobilayers and predict

novel charge orders at fractional fillings in the strong-coupling regime. We focus on

the moiré valence bands originating from the Γ pocket [138, 139, 140, 141, 142]. Due

to interlayer tunneling and lattice relaxation, these moiré bands are derived from lo-

calized orbitals in MX and XM stacking regions that form a honeycomb lattice. We

find a pair of massless Dirac fermions at 𝐾,𝐾 ′ points of the mini Brillouin zone (BZ),

which is protected by the 𝐷3 point group symmetry of the moiré superlattice. Ap-

plying an out-of-plane electric field breaks the sublattice symmetry of the honeycomb

lattice and opens a tunable gap ∆ at the Dirac point. We introduce a new continuum

model for twisted TMD homobilayers, which captures the layer degrees of freedom

and the electrically tunable gap.

We further use an extended Hubbard model on the honeycomb lattice and perform

Monte Carlo simulations to study the insulating electron crystals in the flat band limit.

We find a distinctive set of charge orders at hole fillings 𝑛 = 1/4, 1/3, 1/2, 2/3, 1 on

the honeycomb lattice. Interestingly, the charge orders at 𝑛 = 1/2 and 2/3 both break

the rotational symmetry and differ from the proposed states in the WSe2/WS2 heter-

obilayer. And the 𝑛 = 1 insulating state has a spontaneous out-of-plane ferroelectric

polarization, which can be switched by the electric field. These symmetry breaking

charge orders can be directly probed by the optical anisotropy experiments [101, 102].

Moreover, we predict that phase transitions between distinct charge-ordered states at

the same filling can be induced by the electric field, which tunes the charge-transfer

gap ∆. Our work shows that twisted homobilayer MoS2 provides an ideal platform

for investigating electrically tunable charge transfer gap and charge orders.
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5.2 Structure and lattice relaxation in untwisted ho-

mobilayer

We study TMD homobilayers with a small twist angle starting from AA stacking,

where every metal (M) or chalcogen (X) atom on the top layer is aligned with the

same type of atom on the bottom layer 1. Within a local region of a twisted bilayer,

the atom configuration is identical to that of an untwisted bilayer, where one layer

is laterally shifted relative to the other layer by a corresponding displacement vector

𝑑0. For this reason, the moiré band structures of twisted TMD bilayers can be

constructed from a family of untwisted bilayers at various 𝑑0, all having 1 × 1 unit

cell. Our analysis thus starts from untwisted bilayers [143].

In particular, 𝑑0 = 0,− (𝑎1 + 𝑎2) /3, (𝑎1 + 𝑎2) /3, where 𝑎1,2 is the primitive lat-

tice vector for untwisted bilayers, correspond to three high-symmetry stacking con-

figurations of untwisted TMD bilayers, which we refer to as MM, XM, MX. In MM

(MX) stacking, the M atom on the top layer is locally aligned with the M (X) atom

on the bottom layer, see Fig. 5-1a. Likewise for XM. The bilayer structure in these

stacking configurations is invariant under three-fold rotation around the 𝑧 axis.

In homobilayer TMD, the spin degenerate Γ pockets in the valence band arise from

electron tunneling between the two layers. The 𝑘 · 𝑝 Hamiltonian takes the form:

ℋ (𝑑0) =

⎛⎝ −ℏ2𝑘2
2𝑚* + 𝜖𝑏 (𝑑0) ∆𝑇 (𝑑0)

∆†
𝑇 (𝑑0) −ℏ2𝑘2

2𝑚* + 𝜖𝑡 (𝑑0)

⎞⎠ . (5.1)

Here 𝑚* = 1.07𝑚𝑒 is the effective mass for the valence band. ∆𝑇 (𝑑0) is the interlayer

tunneling amplitude which depends on the in-plane displacement between the two

layers. In contrast to the complex tunneling amplitude for the 𝐾 pockets [144], here

the time-reversal symmetry at Γ pocket enforces ∆𝑇 (𝑑0) to be real. The potential

term 𝜖𝑏,𝑡 (𝑑0) denotes the energy of the valence band maximum in the absence of

tunneling, which arises from the unequal layer weight of the wavefunction at MX and

XM stacking configuration.
1AB stacking can be viewed as a 180∘ rotation of top layer
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We expand ∆𝑇 (𝑑0) in Fourier components up to the second harmonic term:

∆𝑇 (𝑑0) = 𝑤0 + 2𝑤1

3∑︁
𝑗=1

cos(𝐺𝑗 · 𝑑0) + 2𝑤2

3∑︁
𝑗=1

cos(2𝐺𝑗 · 𝑑0), (5.2)

where 𝐺𝑖(𝑖 = 1, 2, 3) are the three reciprocal lattice vectors in monolayer TMD.

Due to three-fold rotational symmetry, ∆𝑇 is a local extremum for MM, MX, and

MX stackings, with ∆𝑇 = 𝑤0 + 6𝑤1 + 6𝑤2 for 𝑑0=0 (MM) and 𝑤0 − 3𝑤1 − 3𝑤2

for 𝑑0 = ± (𝑎1 + 𝑎2) /3 (MX or XM). The zero-momentum-transfer tunneling term

𝑤0 is responsible for the large bonding and antibonding energy splitting for all 𝑑0,

while 𝑤1, 𝑤2 capture the variation of the tunneling amplitude at different lateral

displacements.

The interlayer tunneling strength depends significantly on the layer spacing 𝑑.

From the DFT calculation, we find the equilibrium layer spacing of untwisted TMD

bilayers in MM, MX, and XM stackings: 𝑑𝑀𝑀 = 6.63 Angstroms and 𝑑𝑀𝑋 = 𝑑𝑋𝑀 =

5.97 Angstroms. The 10% variation of layer spacing is comparable with that in bilayer

graphene [145] and strongly impacts the energy splitting of Γ pockets.

By calculating the work function, we plot in Fig. 5-1 the band structure of MM

and MX-stacked bilayers, with reference energy 𝐸 = 0 chosen to be the absolute

vacuum level. Using the relaxed layer spacings, we find the energy splitting in MX

(or XM) stacking to be stronger than in 𝑀𝑀 , as a result of its smaller layer distance.

From the different energy splitting at Fig. 5-1c, we obtain the tunneling parameters

as 𝑤0 = 338 meV, 𝑤1 + 𝑤2 = −18 meV. If the same layer spacing were used for

both MX and MM bilayers, the opposite (and incorrect) conclusion about the energy

splitting would be found, see Fig.5-1b. Thus lattice relaxation is crucial for obtaining

the correct moiré band structure.

5.3 Moiré superlattice and effective continuum model

The structure of twisted TMD homobilayers can be described by a lateral shift 𝑑0 that

varies slowly in space: 𝑑0 = 𝜃𝑧 × 𝑟. Therefore we construct the following continuum
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Figure 5-1: (a) Lattice structure of MM, MX, XM spots for AA stacking hetero-
bilayer, M stands for metal atom and X stands for chalcogen atom (Green for the
top layer, yellow for the bottom layer). DFT band structures of MM and MX(XM)
stacking homobilayer in (b) MoS2/MoS2 with identical layer spacing; (c) MoS2/MoS2

with relaxed layer spacing.

Hamiltonian for the moiré bands from Γ pocket two-band 𝑘𝑝 model:

ℋ =

⎛⎝ −ℏ2𝑘2
2𝑚* + 𝜖𝑏(𝑟) ∆𝑇 (𝑟)

∆†
𝑇 (𝑟) −ℏ2𝑘2

2𝑚* + 𝜖𝑡(𝑟)

⎞⎠ (5.3)

The position-dependent tunneling term is obtained by replacing 𝑑0 with 𝜃𝑧 × 𝑟 in

Eq.(5.2):

∆𝑇 (𝑟) = 𝑤0 + 2𝑤1

3∑︁
𝑗=1

cos(𝐺𝑚
𝑗 · 𝑟) + 2𝑤2

3∑︁
𝑗=1

cos(2𝐺𝑚
𝑗 · 𝑟) (5.4)

Where 𝐺𝑚
𝑖 = 𝐺𝑖𝜃 × 𝑧(𝑖 = 1, 2, 3) are the three reciprocal lattice vectors in moiré

superlattice. Likewise, the intralayer potential 𝜖𝑡,𝑏 (𝑡, 𝑏 stand for top and bottom

layer, respectively) can be expressed as the first order Fourier expansion over moiré
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Figure 5-2: (a) Real-space moiré pattern of heterobilayer TMD heterobilayer, where
MM, MX, XM spots within one supercell are labeled, and the diagram for spacial
dependent layer distance (in the unit of Angstrom) in the moiré superlattice; (b)
Twist-angle dependent layer spacing for 𝑑𝑓𝑎𝑟 and 𝑑𝑛𝑒𝑎𝑟, and out of plane corrugation.

reciprocal lattice vector:

𝜖𝑡,𝑏 (𝑟) = 2𝑉0
∑︁

𝑗=1,2,3

cos
(︀
𝐺𝑚

𝑗 · 𝑟 ± 𝜑
)︀

(5.5)

The sign of phase factor 𝜑 changes under layer exchange, enforced by 𝐶2𝑦 symmetry

as shown in Fig. 5-2a. The potential term is crucial for the later modeling with

out-of-plane gating field.

We now compare the band structure from the continuum model with the large-

scale density functional theory. The moiré superlattice is fully relaxed with van der

Waals correction incorporated by the vdW-DF (optB86) functionals [146] as imple-

mented in the Vienna Ab initio Simulation Package[147]. We plot the twist-angle

dependent layer distance, 𝑑𝑓𝑎𝑟 at MM region, and 𝑑𝑛𝑒𝑎𝑟 in MX (XM) region, in Fig.

5-2b. At small twist angle 𝜃 ∼ 0, the two layers are corrugated, and the layer distance

of MM, MX, or XM stacking region approaches to that of the untwisted structure.
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The interlayer tunneling amplitude is maximum at MX and XM regions, which are

related by 𝐶2𝑦 symmetry. As a result, low-energy moiré bands are formed from layer-

hybridized orbitals in MX and XM regions, which form a honeycomb lattice with

identical on-site potential.

We perform the large-scale DFT simulation to calculate the band structures for

various twist angles, shown in Fig. 5-3. We find that above a small moiré period 𝐿𝑚 ∼

4.7 nm with twist angle 𝜃 = 3.89∘, the two topmost moiré 𝑠 bands are well separated

from the remaining bands. Similar band structures are also found in large-scale DFT

calculation with fully relaxed lattice structure for homobilayer MoS2[138, 139] and

WS2[140]. Fitting the DFT moiré band structure to the continuum model, we obtain

the parameters as 𝑤0 = 338 meV, 𝑤1 = −16 meV, and 𝑤2 = −2 meV, 𝑉0 = 6 meV,

𝜑 = 121∘ at twist angle 𝜃 = 2.876∘. These values are consistent with the estimation

from untwisted structures.

As shown in Fig. 5-3(a,c), the moiré bands exhibit Dirac points at 𝐾 and 𝐾 ′

points of the moiré Brillouin zone. These Dirac points are protected by the 𝐷3 point

group of twisted TMD homobilayer: the doublet at 𝐾 or 𝐾 ′ form a two-dimensional

𝐸 representation. The bandwidth of Dirac bands changes monotonously from 250

meV to 10 meV when twist angle 𝜃 ranges from 6∘ to 2∘ as shown in Fig. 5-3b. This

provides an ideal platform to study the tunable correlation physics of Dirac electrons

at the filling of 𝑛 = 2 per moiré unit cell.

In the case of twisted bilayer graphene [148], the low energy Dirac fermion is

protected by the 𝐶2𝑧 symmetry, which can not be broken by the out-of-plane field.

However, in MX and XM regions of the twisted homobilayer MoS2, the wavefunc-

tions have unequal layer weights as indicated by the untwisted calculation. Thus the

out-of-plane gating field breaks the 𝐶2𝑦 symmetry and gaps out the Dirac fermion. A

simplified continuum model targeting at antibonding orbitals well captures the top-

most moiré bands, but can not describe the band structure and charge distribution

involving layer degrees of freedom.

We further calculate the band structure of the fully relaxed moiré superlattice of

homobilayer MoS2 with the applied gating field. As shown in Fig. 5-3d, an out-of-
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Figure 5-3: (a)DFT Band structure for 𝜃 = 3.89∘; (b)Twist angle dependent band-
width for the first two moiré bands (top two valence bands in (a) ) of the honeycomb
lattice. DFT (black cross) and continuum model(blue line) band structures for (c)
𝜃 = 2.876∘; (d) 𝜃 = 2.876∘ with 0.5 𝑉/𝑛𝑚 out of plane gating field.

plane gating field 0.5 𝑉/𝑛𝑚 creates a 2.4 meV gap at K point, while the bandwidth

of the first energy-separable moiré band is 12 meV. At 𝐾 point of the band edge,

the wavefunction of the first band is localized at MX region, while the second band

is at XM region. For small twist angle 𝜃 = 2∘ with wavelength 𝐿𝑚 = 9.1 nm, the

gating field 𝐸𝑑 = 1𝑉/𝑛𝑚 induces a charge transfer gap ∆ up to 5 meV, even larger

than the bandwidth of the topmost moiré band (see supplementary material). A

larger field-induced ∆ can be achieved in twisted TMD homobilayers with reduced

interlayer tunneling (which competes with the layer potential asymmetry). This can

be realized by inserting an hBN layer in between the top and bottom TMD layers

[126].

5.4 Tunable charge order in honeycomb lattice

In the TMD superlattice, the local minimums of the periodic moiré potential can

be viewed as the effective moiré atoms to host charge. Under the harmonic ap-

proximation, the size of the Wannier orbital for the topmost moiré band is given
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by 𝜉 =
√︁

ℏ
𝑚*𝜔

= 2 (𝜋)−
1
2
√
𝐿𝑚(

ℏ2
𝑚*𝑉𝑚

)
1
4 [136](𝑉𝑚 is the moiré potential integrated to

antibonding orbitals). In homobilayer system without lattice mismatch, the kinetic

energy over nearest neighbor interaction (𝑡/𝑉1) can be tuned arbitrarily small, so that

the classical model is well justified at a sufficiently small twist angle. The effective

extended Hubbard model without kinetic energy is given by:

𝐻0 =
∑︀

𝑗∈𝐵 ∆𝑛𝑗 +
∑︀

𝑖 𝑈𝑛𝑖↑𝑛𝑖↓+
1
2

∑︀
𝑖 ̸=𝑗 𝑉𝑖𝑗𝑛𝑖𝑛𝑗 (5.6)

Here ∆ is the charge transfer gap between two sublattice sites A and B, and 𝑉𝑖𝑗 is

the extended interaction between 𝑖 and 𝑗 sites.

In twisted homobilayer MoS2, the gating field introduces a charge transfer gap

∆. We first discuss the situation with large ∆. At filling 𝑛 < 1, the effective tight-

binding model reduces to a triangular lattice model, as in the case of WSe2/WS2,

and exhibits similar charge orders. Various insulating states have been observed at

fractional fillings 𝑛 = 1/4, 1/3, 2/5, 1/2, 3/5, 2/3[134, 132, 133]. Due to the strong

on-site Coulomb repulsion 𝑈 >> ∆, the system at 𝑛 = 1 should be regarded as a

charge transfer insulator [136]. When doped to a higher filling 𝑛 > 1, additional

charges transfer to the other sublattice/layer.

Here we further study the charge orders of honeycomb lattice with small ∆ in-

cluding ∆ = 0 in flat band limit. We perform classical Monte Carlo simulation up to

120 × 120 sites with periodic boundary conditions for the extended Hubbard model

with different gate distances from 𝑑 = 𝐿𝑚/2 to 𝑑 = 10𝐿𝑚. The distance-dependent

interaction strength is plotted in Fig. S2 up to 𝑉100, and the interaction cutoff is cho-

sen as 0.1%𝑉1. We identify a series of charge orders at 𝑛 = 1/4, 1/3, 1/2, 2/3, 1.

For 𝑛 < 1/2, moiré electrons are all filled to one sublattice, exhibiting similar

charge orders (or generalized Wigner crystals) as observed in WSe2/WS2 heterobilayer

[44, 132, 149].

Interestingly, for small ∆, we find that charge transfer involving two sublattices

already takes place for filling 𝑛 ≥ 1/2, leading to new charge-ordered states beyond

those found in WSe2/WS2. At filling factor 𝑛 = 1/2, we find an emerging rectangular
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Figure 5-4: Ground state charge order at filling (a) n=1/2 with increasing charge
transfer gap ∆, (b) n=2/3 with increasing charge transfer gap ∆.

lattice with
√
3× 2 periodicity. This state breaks the three-fold rotational symmetry

and can be viewed as the combination of the stripe states on both sublattices, each at

1/4 filling. This rectangular electron crystal is energetically favorable compared to the

enlarged 2×2 honeycomb crystal at all gate screening distances. In contrast, at large

∆, the ground state becomes a simple stripe state on the triangular sublattice with

lower on-site potential, as shown in Fig. 5-4. We find the critical charge transfer gap

is ∆𝑐 = 2(𝑉2−𝑉3−𝑉4+2𝑉6−𝑉9+𝑉12+...). For 𝑑 = 𝐿𝑚 = 9.1 nm, ∆𝑐 = 0.12 𝑒2

𝜖𝐿𝑚
∼ 3.8

meV can be reached by realistic gating field. We note the critical ∆𝑐 can be further

lowered by increasing moiré wavelength.

At filling factor 𝑛 = 2/3, the charges form a zigzag stripe order with 6 × 6 pe-

riodicity breaking the 𝐶3 rotational symmetry. This zigzag-type charge configura-

tion is energetically favored compared to a linear stripe at screening distances from

𝑑 = 1/2𝐿𝑚 to 𝑑 = 10𝐿𝑚. As ∆ increases, the zigzag charge stripe transitions to the
√
3×

√
3 crystal that occupies one sublattice site only, as shown in Fig. 5-4. We find

the critical charge transfer gap is ∆𝑐 = 𝑉2−𝑉3− 10
3
𝑉4+

14
3
𝑉5.... = 0.04 𝑒2

𝜖𝐿𝑚
∼ 1.3 meV

at 𝑑 = 𝐿𝑚 = 9.1 nm.

The transition between distinct electron crystals at the same filling is first-order.

This should lead to a kink in the sublattice/layer charge imbalance as a function of

the gating field. This prediction, which is a main result of our work, can be tested
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in MoSe2/hBN/MoSe2 heterostructure [126], where the gating field induced charge

transfer between the top and bottom layers has already been observed at relatively

high temperature.

For 𝑛 = 1, we find that even at ∆ = 0, the ground state is a fully sublattice

polarized Mott insulating state, which spontaneously breaks the honeycomb lattice

symmetry. As the two sublattice sites MX and XM have different layer weights, the

Mott insulating state at n=1 develops a finite out-of-plane ferroelectric polarization,

which can be switched by the electric field. The ferroelectricity driven by the Mott

physics in TMD moiré systems goes beyond the conventional ferroelectricity and

enables fast switching due to electronic origin [150]. For filling 𝑛 > 1, the charge-2e

trimer can be the lowest energy excitation when tuning the charge transfer gap ∆,

providing a platform to design unconventional superconductivity [151].

In homobilayer WSe2, the valence band maximum is located at 𝐾 with weak

interlayer tunneling amplitude and intralayer potential both on the order of 10 meV.

The complex tunneling term between two layers brings further complications for the

theoretical and experimental investigation of the insulating states [144, 128, 130].

In conclusion, we present a combined study of lattice relaxation, single-particle

electronic structure, and ground state charge orders on the twisted homobilayer MoS2.

Unlike the previous moiré charge transfer insulator in WSe22/WS2 heterobilayer, here

out-of-plane gating field breaks 𝐶2𝑦 symmetry and induces a controllable charge trans-

fer gap. With Monte Carlo simulation, we predict additional stripe-type charge orders

at fillings 𝑛 = 1/2, 2/3 in the emergent honeycomb lattice with ∆ = 0. When increas-

ing ∆, these electron crystals transit to fully sublattice polarized states. We further

predict the ferroelectricity at the 𝑛 = 1 Mott insulating state, which enables the ul-

trafast switching of electronic polarization. Our work demonstrates that the interplay

between two moiré regions leads to the charge transfer insulator [152, 136] and serves

as a platform for creating novel correlated states, such as unconventional density wave

[153, 154], charge stripes [101], spin superfluid[155] and superconductivity[151].
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Chapter 6

Machine learning magnetism

classifiers from atomic coordinates

Part of the work described in this chapter is published as Ref. [156].

The atomic structures of materials inherently contain the necessary information

for reconstructing their magnetic structures. This is because the magnetic struc-

tures arise from spontaneous symmetry breaking induced by the Coulomb interaction,

wherein the atomic structures play a significant role in determining the magnitude

of this interaction. However, the theoretical determination of magnetic structures

is often impeded by computational resource limitations, and some existing efficient

methods may lack accuracy. Nonetheless, DFT-based methods have facilitated high-

throughput calculations for over 10,000 materials, creating an ideal platform for the

application of machine learning techniques.

A crucial step in applying machine learning methods to materials science is finding

an appropriate descriptor capable of encoding atomic structure information. Atomic

structures can be simplified as a three-dimensional ball-and-stick model. To represent

materials at the thermodynamic limit, a large ball-and-stick model is unnecessary.

This is because materials often exhibit spatial symmetries such as translational, ro-

tational, and inversion symmetries. By leveraging these symmetries, simplification

can be achieved. If we can encode the atomic structures not only in a graph neural

network (NN) but also incorporate symmetry, such that the NN model can readily
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recognize the equivalence of two inputs under spatial transformations, it would pro-

vide significant benefits. This approach allows us to represent the same structure with

a less complex descriptor and aids in training the model without needing augmented

data to teach it about the equivalence of structures through spatial transformations.

In this chapter, we present a machine-learning model that aims to classify the

magnetic structure by inputting atomic coordinates containing transition metal and

rare-earth elements. By building a Euclidean equivariant neural network that pre-

serves the crystallographic symmetry, the magnetic structure (ferromagnetic, anti-

ferromagnetic, and non-magnetic) and magnetic propagation vector (zero or non-

zero) can be predicted with an average accuracy of 77.8% and 73.6%. In particular, a

91% accuracy is reached when predicting no magnetic ordering even if the structure

contains magnetic element(s). Our work represents one step forward to solving the

grand challenge of full magnetic structure determination.

6.1 Introduction

As one of the most prominent quantum phenomena, the magnetism of materials en-

compasses a large portion of functional applications such as data storage [157], high-

resolution imaging [158], spintronic devices [159], high-energy scientific instruments

[160, 161], and quantum computing [162, 163]. Particular types of magnetism are also

believed to be associated with unconventional quantum phases such as high-𝑇𝑐 and

topological superconductivity [164]. Unlike small molecules where magnetic struc-

tures contain only several high-spin and low-spin configurations, spatial correlations

between magnetic moments in sizeable materials constitute vast possibilities of dif-

ferent magnetic configurations. With infinite combinations of wavevectors, moments,

and correlations lengths, magnetic materials can form a variety of structures such as

antiferromagnetism [165], non-collinear magnetism, skyrmions [166], spin glass [167],

and quantum spin liquids [168, 169]. Therefore, the determination of magnetic struc-

tures, either experimentally or theoretically, is crucial for materials discovery and

technological progress in general.
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Experimentally, the state-of-the-art neutron scattering [170] and more recently

resonant X-ray scattering [171] have enabled the characterization of magnetic struc-

tures with atomic-scale resolution. However, these measurements require large-scale

neutron sources or synchrotron X-ray radiation and are highly limited by capacity and

beamtime availability. According to the most comprehensive database, only ∼ 1, 500

materials’ magnetic structures have been identified through these experimental spec-

tra since the 1950s [172, 173]. Therefore, without order-of-magnitude improvements

of these facilities’ capacity, a pure experimental exploration of magnetic materials is

yet to catch up with the rapidly rising demand for materials discovery of new magnetic

materials.

Theoretically, ab initio simulations with advanced quantum chemistry and physics

methods have been successfully applied to the prediction of magnetism of small

molecules [174]. However, the computational complexity of these accurate meth-

ods increases exponentially with the system size, which makes it impractical to be

extended to sizeable materials beyond the nanoscale. The first-principles DFT simula-

tions and the associated corrections provide an efficient compromise between accuracy

and scalability. Although the delocalization error and the lack of static correlation

may underestimate the magnetic moment and correlations [175, 176], DFT-based

methods have enabled high-throughput calculations over ∼10,000 materials [177],

allowing for preliminary statistical predictions of materials’ properties. Even with

substantial acceleration compared to experiments and wavefunction-based methods,

the computational complexity of DFT calculations is still non-negligible and hinders

the discovery in a huge, possibly infinitely large, parameter space of chemical compo-

sitions. Moreover, since electronic structure theory evaluates the energy for a specific

electronic configuration, including the magnetic structure, the standard simulation re-

quires traversing all configurations for a single atomic structure and determining the

ground-state magnetic configuration. Thus the large number of possible magnetic

configurations forms a "guessing-computing" duo; that is, guessing many possible

configurations and computing them one by one. Consequently, most computational

efforts are spent on irrelevant magnetic excited states rather than the true ground
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states. A reliable prediction of the ground-state magnetic structure would greatly ac-

celerate high-throughput calculation and bring us closer to achieving simulation-free

materials discovery.

Given the challenges in magnetic structure determination from experiments and

calculations, significant research effort has recently been dedicated to using machine

learning to enhance magnetic structure determination. Some recent works com-

bine DFT calculations with machine learning [178, 179, 180, 181], in some of which

the "guessing" step in the guessing-calculating procedure is obtained with machine-

learned models. For instance, machine learning has been implemented to reduce

the search space of possible magnetic configurations in the "guessing" step. With

this approach, the main calculation task is still carried out by the standard first-

principles DFT calculations. Some other works are based on model Hamiltonians

[182, 183], mostly classical spin models, and use machine learning methods to fit the

free parameters in such a model, such as from experimental data that contain the

spin information. Even so, the direct prediction of magnetic structure from the more

direct atomic structure, aka replacing the "computing" step, is still challenging.

A full description of magnetism[184] can be nontrivial. In this work, we focus on

two different descriptions that use relatively few variables: magnetic order labels and

propagation vectors. Magnetic ordering labels (e.g. ferromagnetic (FM) and antifer-

romagnetic (AFM)) are helpful because they summarize the complexity of magnetic

structures into simple classes that are application relevant. A propagation vector is

a vector in reciprocal space that describes symmetry breaking due to the presence of

magnetic order. A non-zero propagation vector is one indicator for a more involved

magnetic structure beyond the FM, AFM, and NM ternary classification. While these

descriptions are expressive, they are not comprehensive and we leave more complex

descriptions of magnetic order to future work.

We build an ML-based classifier that predicts the magnetic order under a ternary

classification (FM/FiM: ferromagnetic/ferrimagnetic, AFM: antiferromagnetic, NM:

non-magnetic), and also outputs whether the propagation vector is zero or non-zero.

We choose these two in our prediction as a start, in doing so, we acquire partial but
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valuable information that may accelerate full magnetic structure determination. Our

work differs from some prior efforts in that, after training, the predictive model can

directly output the magnetic order and propagation vector with only atomic struc-

ture as the input, without requiring any further first-principles calculations. This

is realized by applying the Euclidean neural network (E(3)NN), which preserves 3D

rotation, inversion, and translation symmetry in the atomic structures so that high

accuracy is reached without data augmentation [13]. The accuracy in the test set is

about 78% for magnetic order prediction and about 74% for propagation vector pre-

diction. The accuracy varies when the material of interest contains different elements

or belongs to different space groups, as we will elaborate in the results section. Since

the magnetic order and propagation vector represent two different pieces of magnetic

structure information, they are trained separately with different neural network ar-

chitectures and training data from the Materials Project and MAGNDATA [172, 173]

databases, respectively. The atomic structure inputs for magnetic order classifiers are

from Materials Project, magnetic order labels are obtained using pymatgen’s mag-

netism analyzer given structures with atoms decorated with DFT calculated magnetic

moments as inputs. Both structures and propagation vectors for propagation vector

classifiers are from MAGNDATA.

6.2 Methodology

6.2.1 Data assembly

In order to train the magnetism classifier, we assemble a dataset containing both

structure and magnetic order information from the Materials Project [177]. We query

structures that contain at least one magnetic element, including transition metals (Sc,

Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Ru, Rh, Re, Os, Ir, Pt), lanthanides (Ce,

Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), and/or actinides (Th, U, Np, Pu);

however, a material containing a magnetic element does not necessarily host mag-

netic order. Our search is restricted to calculations using the generalized gradient
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approximation with Hubbard interaction (GGA+U), which is suitable for magnetic

structure calculations and leads to a total of 34,856 structures1, among which 30,584

are FiM/FM, 1,790 are AFM and 2,482 are NM. The magnetic order labels are de-

rived using the Python-based pymatgen analysis code [185] and through the use of a

CollinearMagneticStructureAnalyzer class. The CollinearMagneticStructureAnalyzer

class uses the DFT calculated magnetic moments and total magnetization (the abso-

lute value of the sum of individual magnetic moments) to assign one of the following

labels: FM if the total magnetization is greater than zero and all magnetic moments

have the same sign, FiM if the total magnetization is greater than zero, AFM if total

magnetic moment is zero and max absolute magnetic moment greater than zero, or

NM magnetic order if total and max magnetic moment is zero. We then train 20

classifiers with different initial weights, each optimized on a randomly selected subset

of 6,086 structures with a AFM:FM:NM ratio of 5:6:6. The size of each class is kept

comparable in each selected subset to mitigate the training bias toward nonmagnetic

examples, since there is a substantially larger fraction of FM/FiM structures in the

total dataset and only 1,790 AFM examples. Each subset of 6,086 materials is divided

among training, validation, and test sets with a ratio of 0.8:0.1:0.1. Note that we find

this further improves our model’s ability to differentiate between AFM and FM/FiM

classes, and the smaller data size helps reduce the overall training time.

Magnetic materials may host more complex magnetic structures beyond AFM/FiM

which are described by other non-zero magnetic propagation vectors. In order to cap-

ture this complexity, we further train a binary classifier of the propagation vector

magnitude (zero or non-zero). The zero propagation vector represents the prototyp-

ical FM order, while the non-zero propagation vector represents AFM/FiM orders

and beyond. We obtain the structure and magnetic propagation vector information

from the MAGNDATA database [172, 173], which to date contains the comprehensive

experimentally-determined magnetic structures of 1,562 compounds. The data used

in this study were restricted to commensurate magnetic structures, as incommen-

1Due to recent updates in the Materials Project, if querying in the latest pymatgen version with
the same magnetic elements, the number of total structures may change. Our models are trained
and tested based on pymatgen version 2022.0.8, with 34,856 total structures after querying.
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surate magnetic structures always have non-zero propagation vectors. This yielded

1,134 total structures, of which 552 (582) have zero (non-zero) propagation vectors.

We again train 20 classifiers with different initial weights, independently dividing the

1,134 total structures at random among training, validation, and test sets with a

ratio of 0.8:0.1:0.1 for each model. To link the propagation vector classification with

that of magnetic order, we show the statistics of structures appearing in the prop-

agation vector classification datasets in Fig. 6-1. Some structures’ magnetic orders

are unknown to pymatgen’s magnetism analyzer which we use for determining mag-

netic order, so those are not included in the figure. Most structures with nonzero

propagation vectors are AFM, some are FiM, and none are FM or NM, as expected.

The propagation vector classifier can further divide AFM and FiM classes into sub-

classes with zero/nonzero propagation vectors, giving us more information about the

magnetic structure of a material.
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Figure 6-1: Number of examples with zero and nonzero propagation vector in each
magnetic ordering class.

6.2.2 Model architecture

The architecture of both classifiers is based on Euclidean Neural Networks (E(3)NNs)

[13], a class of 3D Euclidean group (E(3))-equivariant neural networks. Any space

group that describes the crystal geometric symmetries in three dimensions is a sub-

group of E(3), and thus E(3)NNs preserve all geometric symmetries of the crystal

structure, which removes the need for extensive data augmentation needed to con-

sider arbitrary translations or rotations of the input structures. The neural network
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(a) (b)

𝑟!"

Figure 6-2: Illustration of input data structures. (a) A representative periodic
graph constructed from the crystal structure in the neighborhood of a given atom.
Each atom (node) carries a feature vector 𝑥𝑎, and each edge connecting node 𝑎 to
a neighboring node 𝑏 is characterized by the relative distance vector 𝑟⃗𝑎𝑏. (b) Each
atom is represented by a node in the periodic graph, and the atom type is expressed
by a property-weighted one-hot feature vector. The top row shows a set of represen-
tative feature vectors used for the propagation vector classifier. Each is an array of
125 scalars, with the 𝑍-th scalar being the atomic mass in amu (atomic mass unit),
where 𝑍 denotes the atomic number. The bottom row shows a set of representa-
tive feature vectors used for the magnetism classifier. Each is an array of 3 × 118
scalars, formed by concatenating three arrays of 118 scalars which encode the atomic
radius(pm), electronegativity on a Pauling scale, and dipole polarizability(a.u.) of a
given atom employing the same property-weighted one-hot encoding scheme used for
the propagation vector classifier input.

inputs consist of a material’s crystal structure and one or more descriptors of each

constituent atom. Specifically, the unit cell of each example is first converted into a

periodic graph, where each node 𝑎 represents an atom described by a feature vector

𝑥𝑎. A single convolutional layer operates on the input 𝑥𝑎 and the radial distance

vectors 𝑟⃗𝑎𝑏 between atoms 𝑎 and 𝑏 in the neighborhood of 𝑎 up to a radial cutoff

𝑟max = 5Å, as shown in Fig. 6-2a. The feature vector 𝑥𝑎 associated with each node is

constructed by a property-weighted one-hot encoding of selected atomic properties,

illustrated in Fig. 6-2b. For the propagation vector classifier, each feature vector is

an array of 125 scalars, with the 𝑍-th scalar being the atomic mass in amu (atomic

mass units), where 𝑍 denotes the atomic number. Additional properties can be con-

sidered by simple concatenation of several such feature vectors, each weighted by the
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appropriate value of the property of interest. For example, each of the input feature

vectors used for the magnetism classifier is an array of 3 × 118 scalars, formed by

concatenating three arrays of 118 scalars that encode the atomic radius (pm), elec-

tronegativity on a Pauling scale, and dipole polarizability (a.u.). The architecture of

both classifiers consists of three principal parts, as shown in Fig. 6-3. First, the input

feature vectors are passed to an embedding layer for dimensionality reduction. The

E(3)NN layers are then applied to the resulting hidden state and consist of alternating

convolution and gated block operations (dashed rounded rectangle). The convolution

signifies the tensor product between input feature vectors and symmetry-constrained

convolutional kernels. The convolution step is implemented as:

𝑓 ′
𝑎 =

1√
𝑧

∑︁
𝑏;|𝑟⃗𝑎𝑏|<𝑟𝑚𝑎𝑥

𝑓𝑏 ⊗(ℎ(‖𝑟⃗𝑎𝑏‖)) 𝑌 (𝑟⃗𝑎𝑏/‖𝑟⃗𝑎𝑏‖)

where the node 𝑓 ′
𝑎 is the output node for the atom 𝑎. The output node is the sum

of the tensor product between the input node of a neighborhood atom 𝑓𝑏 and the

neural network ℎ. 𝑌 is the spherical harmonics, which serve as basis functions that

enable the mapping of the relative distances to the weights of the tensor product.

𝑧 is the average degree of the nodes, that is the number of atoms surrounding the

center atom. The prefactor 1/
√
𝑧 adjusts the different number of neighborhoods. The

gated block step denotes a gated rotation-equivariant nonlinearity as described in Ref.

[186]. The gate activation is a direct sum of two sets of irreducible representations.

Mathematically, this can be written as:

(︃⨁︁
𝑖

𝜑𝑖(𝑥𝑖)

)︃
⊕

(︃⨁︁
𝑙,𝑚

𝜑𝑗(𝑔𝑙𝑚)𝑦𝑗

)︃

The first set of the irreducible representation is the scalars 𝑥𝑖 passing through

activation functions 𝜑𝑖. The second set is the gated scalars 𝑔𝑙𝑚 passing through

activation functions 𝜑𝑗 and multiplied by the scalars 𝑦𝑗. The number of functions in

the list should match the number of irrep groups in irreps gates.

Finally, the E(3)NN output is converted to a class label by first adding together
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the output vectors for all atoms in a given material, and then applying a final non-

linear activation. For the propagation vector classifier, the output is a sigmoid-

activated scalar, while for the magnetism classifier, it is a softmax-activated array

of three scalars giving the probability of exhibiting one of three magnetic orders

(AFM, FM/FiM, NM).

6.3 Results Analysis

To quantify the consistency of predictions made by the magnetism and propagation

vector classifiers, we independently train 20 models for each task using randomly

drawn data subsets as described in Section 6.2.1 above. For the magnetic order clas-

sification, we show the test set accuracies of the 20 models in the left panel of Fig. 6.3,

which range from 73.8% to 80.7% and have a mean accuracy of 77.8%. For the propa-

gation vector classification, the test accuracies obtained from 20 models are displayed

in the right panel, ranging from 68.1% to 85.0% with a mean of 73.6%, the thresholds

of this binary classification are chosen separately for each model to guarantee maximal

accuracy. In Table 6.3 and 6.3, we summarize the averaged precision, recall, and F1

scores over all trained models for the two tasks, respectively. We note that the larger

spread of accuracies in propagation vector classification can possibly be attributed

to fewer training examples (1,134 total structures taken 907 at a time for training),

which are not sufficient for our model to learn all complex connections between crystal

structures and propagation vectors. Besides, it may also suggest that the propagation

vector contains a rich strong correlation effect that cannot be fully characterized by

only atomic structures. More details about the performance of both classifiers are

apparent in the confusion matrices (CM) shown in Fig. 6-4. For the magnetic order

classifier, we observe an excellent separation of the NM class from the two magnetic

classes (Fig. 6-4(a)). Since all calculations are performed at 𝑇 = 0K, we believe that

this non-magnetic separation is important in rapidly screening and excluding materi-

als that do not host any magnetism, without having to experimentally cool down to

the lowest measurable temperature. More ambiguities appear between classifications
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Figure 6-3: Illustration of the neural network architectures for propagation
vector (top block) and magnetic order classification (middle block). The
models each consist of three principal layers: embedding layers, convolution and gated
layers based on E(3)NN, and the output layers which generate the predicted classes.
The convolution and gated layers of both models share the same architecture (detailed
architecture shown in the bottom block). Even though the loss functions and embed-
ding layers are optimized separately, by adopting this approach, one atomic structure
can lead to a simultaneous prediction of both magnetic order and propagation vector.

of the AFM and FM/FiM classes, where magnetic orders exist in both classes but

in different formats. This is possibly due to the difficulty of distinguishing between

FiM and AFM from atomic structures, and the energy difference between magnetic

structures with AFM and FM/FiM orders can be small. The overall CM suggests a
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good capability of recognizing potential magnetic orders but a slightly weaker ability

to identify the exact class. Fig. 6-4(b) depicts the CM for the propagation vector

classifier. Although the overall performance is hard to be considered satisfactory,

as already mentioned above, the model has better precision versus the recall for the

non-zero propagation vector.
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for magnetic orders (left) and

propagation vectors (right) collected

from 20 independently trained models.

class precision recall f1-score

NM 0.91 0.92 0.91

AFM 0.70 0.68 0.69

FM 0.68 0.70 0.69
tableAveraged metrics of the 20

magnetic order classification models in

test sets.

class precision recall f1-score

Zero 0.70 0.83 0.76

Non-zero 0.79 0.64 0.71
tableAveraged metrics of the 20

propagation vector classification models

in test sets.

To analyze the performance of the magnetism classifier in more detail, we visualize

the element-specific test set accuracies in Fig. 6-5(a). We observe the highest classi-

fication accuracy on examples containing elements commonly found in ferromagnetic

materials, such as Fe, Co, and Ni, with accuracies exceeding 76%. In addition, ma-

terials containing certain rare earth elements such as Tb, Dy, and Ho are classified

with similar levels of accuracy.

To further understand varying accuracies across different elements from the as-

pect of data abundances, we show the appearance frequency of each element inside

the training set in Figs. 6-5(b). The correlations between high accuracies of some

elements and large numbers of training samples containing those elements, including

Mn, Fe, Co, Ni and Cu, can be readily found. On the other hand, the elements with

lower prediction accuracies are typically less common, such as Ga, Lu, Re, and Sm.
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(a) (b)

Figure 6-4: Confusion matrices for prediction results on test sets of (a) magnetic
orders and (b) propagation vectors. The values are averaged over 20 models, the
color represents the percentage.

However, it is worth highlighting the great performance of some rare earth elements

(e.g. Tb, Dy, and Ho) given the small number of training samples, this is because

they usually coexist with other abundant elements, for example, 65.9% of structures

that contain Tb, Dy and Ho also contain elements Mn, Fe, Mo, Co, Ni.
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Figure 6-5: Performance on the testing set and sample statistics of the training set

for the magnetic order predictions. (a) The testing accuracy of magnetic order clas-

sification per element shown in a color map on a periodic table, grey color indicates

the element is absent or insufficient (mean frequency less than 1) in testing sets. (b)

Histogram of frequency each element appears in the training sets. The following el-

ements are greyed out due to their absences or insufficiency in test compounds: Pd,

Th, Re, Yb, Ce, Eu, Os, Ir, Pt, Rh, Ru, and Np.

Similar connections between the classification accuracy and the number of training
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samples can be made for different crystal systems. In Fig. 6-6(a), we show the number

of examples of each magnetic order class as a function of the crystal system of the

corresponding structure. Fig. 6-6(b) indicates that higher appearance frequency in

training data in general leads to higher classification accuracy in test data. Such

relationships suggest that the predictions made by our model is based on not only

the atomic species but also their coordinates and the crystal structure.

(a) (b)

Figure 6-6: (a) Number of examples in each magnetic order class as a function of
the crystal system. (b) Comparison between the number of training samples and
testing classification accuracy for each crystal system, the values are averaged over
20 independent models.
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Figure 6-7: outputs of the neural network with testing data as inputs shown in ternary

plots, points represent 3-element vector outputs and are colored by their true label:

FM/FiM, AFM and NM.
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Figure 6-8: outputs of the neural network with testing data as inputs shown in ternary

plots, points represent 3-element vector outputs and are colored by their true label:

FM and FiM data.

As mentioned above, our magnetic order classifiers show excellent separation be-

tween magnetic (including FM/FiM and AFM) and non-magnetic orders, but more

ambiguities between the classification of the AFM and FM/FiM classes. To discuss

this further, particularly to see whether the FiM is preferably assigned to the FM or

AFM class, Fig. 6-7 and 6-8 shows the 3-element-vector outputs of the neural network

before taking argmax function in a ternary form, with testing data as inputs. The

closer a point is to a corner of the triangle, the more likely the predicted label is the

corresponding class of that corner. We color the points with their true label to show

the distinction. Fig. 6-7 explains that the testing outputs with true labels of AFM

and FM/FiM distribute along the edge connecting AFM and FM/FiM classes and do

not distinctly separate from each other, which causes ambiguities in the classification.

The data with the true label of NM stay close to the NM corner and away from the

other two classes. Fig. 6-8 suggests that our choice to consider FM and FiM order

jointly in the class FM/FiM is reasonable, since the distribution of FM and FiM in

the ternary plots is similar, and our classifiers treat atomic structures with FM and

FiM orders similarly.
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6.4 Discussion and Future Directions

In this chapter, we present a machine-learning-based magnetism classifier that takes

crystal structure as input and basic magnetic structure information as output. De-

spite extensive training, it seems that the prediction of magnetism hits a performance

barrier, except for the non-magnetic class. There are two potential factors contribut-

ing to this barrier. Firstly, the magnetic orders represent a coarse-grained classifica-

tion of magnetic structures. Utilizing them as label vectors for the neural network

model may not provide sufficient information for effective learning, as the E(3)NN

structures possess the potential to employ complete magnetic structures (including

magnetic moments of each atom) as label vectors during training, even though we

can still focus solely on predicting magnetic orders determined by the net magnetic

moments in the end. Secondly, the input feature vectors encompass the crystal struc-

tures and certain atomic properties, which may not be comprehensive enough. This

brings up the fundamental query on magnetic representation: besides the atomic

species, the interatomic bonding, and the crystal symmetries, there might be some

additional information still at large that can capture the essence of magnetism. We

anticipate that finding proper magnetic representation can significantly boost the ma-

chine learning on magnetic materials research and shed light on strongly correlated

electronic materials in general.

Except for the limitation in our magnetic classification models, the E(3)NN itself

is a powerful tool for machine learning tasks in materials science. Nevertheless, the

current configuration of E(3)NN lacks the ability to represent quantum effects. In

a graph neural network, each node corresponds to a vector that can encode atomic

properties or classical magnetic moments, resembling the structure of a classical mag-

netic model. However, the E(3)NN model cannot adequately capture the superposi-

tion states present in quantum magnetism, exceeding its encoding capacity. Future

developments that enable the representation or approximation of quantum states

within the framework of E(3)NN would be a significant advancement. This integra-

tion would combine the benefits of symmetry equivalence and the ability to represent
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quantum states within the same model, leading to a general machine-learning model

to study quantum many-body systems. Furthermore, this development would play

a crucial role in utilizing machine learning techniques to probe entanglement and

detect symmetry-breaking orders, this chapter serves as a primary example of this

overarching objective.
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Chapter 7

Conclusions and future work

In this thesis, we discussed various topics regarding using spectroscopies and machine

learning as tools, to probe entanglement and symmetry breaking orders in many-body

quantum systems. This chapter aims to summarize the presented work and provide

insights into potential future efforts.

In Chapter. 3, we proposed a new X-ray technique to measure four-point two-

particle correlations. The proposed method is based on resonant inelastic X-ray

scattering (RIXS), and requires either one of the two conditions in addition to the

current RIXS standard, the first is the high accuracy of RIXS intensities and precise

resolution in the wave vector of incoming and outgoing X-ray photons, that allows to

capture the minor term in RIXS cross-section which depends on the incoming photon

momentum. The second condition is to find materials with valid core levels of higher

orbitals, that have a relatively large hopping term in core levels, indicating high

mobility of the core hole. It induces a larger contribution of four-point correlations in

RIXS intensities to be captured within current RIXS precision. The proposal suggests

the great potential of advanced X-ray techniques and provides motivations for future

upgrades in RIXS beamlines.

Theoretically, we define measurable quantities based on the full set of four-point

two-particle correlations and aim to probe and quantify quantum correlations and

entanglement within the accessibility of spectroscopies. Most spectroscopies can only

measure correlation functions with few particles and few indices (points), and entan-
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glement is hard to be quantified with limited access to correlations. The quantities we

define contain only one-particle and two-particle correlations, which are potentially

accessible through spectroscopies, and we have shown that using the RIXS techniques

we presented, combined with the spin-resolved ARPES, we can almost measure the

defined quantities. The quantities we define have two explanations, (1) It is a measure

of quantum correlations, measuring how much the system deviates from the Slater

determinant approximation; (2) It is a multiparticle entanglement witness, we can

derive a series of upper bounds for 𝑛-particle entangled states, and when the quan-

tities exceeding those upper bounds, they witness 𝑛 + 1-particle entanglement. We

summarize the future theoretical directions as follows: (1) We have shown the up-

per bounds of Tr[𝑂2] for a 𝑛-particle entangled system growing quadratically with 𝑛.

There are some states carrying long-range entanglement, that remain inseparable even

at thermodynamic limits, like the Kitaev model. It will be interesting to test whether

Tr[𝑂2] grows quadratically with system size in the solvable Kitaev model, and this

quadratic relation with system size can potentially serve as a signature of long-range

entangled states. (2) The bigger theoretical question is to quantify entanglement with

limited access to correlations, and the limitation originates from the accessibility of

spectroscopies, we can only expect to measure few-body few-point correlations using

spectroscopies, the term "few" refers to values that do not increase with the system

size. Future theoretical studies are required to provide a formal pathway to define

entanglement measures that only contain 𝑛-particle correlations, with a finite integer

number 𝑛.

Lastly, there are other spectroscopic methods carrying the potential to measure

higher-order correlations considering higher perturbation in their cross section, one

example is neutron scattering. In the following, we show some preliminary results.

The cross section of neutron scattering is

𝜔 =
2𝜋

ℏ
∑︁

f

⃒⃒⃒⃒
⃒⟨f|𝐻 ′ |i⟩+

∑︁
n

⟨f|𝐻 ′ |n⟩ ⟨n|𝐻 ′ |i⟩
𝐸i − 𝐸n

⃒⃒⃒⃒
⃒
2

𝛿(𝐸f − 𝐸i). (7.1)

It is based on Fermi’s golden rule, and we here include the second-order term that
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contributes to the transition rate of this process. This second-order term refers to

the process of the neutron scattering twice with the probed system, most previous

literature only considers the first-order term, referring to the neutron scattering a

single time with the system. Within the formula, 𝐻 ′ is the interaction Hamiltonian

between the system and the neutron, the initial state |i⟩ = |𝑖, 𝑘𝑖, 𝜎𝑖⟩, the intermediate

states |n⟩ = |𝑛, 𝑘𝑛, 𝜎𝑛⟩, and the final states |f⟩ = |𝑓, 𝑘𝑓 , 𝜎𝑓⟩, the initial and final

energies include both the system energies and the neutron energies 𝐸i = 𝐸𝑖+𝜔𝑘𝑖 , 𝐸n =

𝐸𝑛+𝜔𝑘𝑛 , 𝐸f = 𝐸𝑓 +𝜔𝑘𝑓 . The summation of f here is actually only over 𝑓, 𝜎𝑓 , because

𝑘𝑓 is fixed here, but for n, it also sums over 𝑘𝑛. The leading order except the linear

order is the crossing term between linear order and second order, thus leading to a

three-mode correlation.We denote this part as 𝜔12

𝜔12 =
4𝜋

ℏ
∑︁

f

∑︁
n

⃒⃒⃒⃒
⟨i|𝐻 ′ |f⟩ ⟨f|𝐻

′ |n⟩ ⟨n|𝐻 ′ |i⟩
𝐸i − 𝐸n

⃒⃒⃒⃒
𝛿(𝐸f − 𝐸i) (7.2)

where

⟨f|𝐻 ′ |i⟩ = ⟨𝑓, 𝑘𝑓 , 𝜎𝑓 |𝐻 ′ |𝑖, 𝑘𝑖, 𝜎𝑖⟩ = −8𝜋𝛾𝜇𝐵𝜇𝑁

𝐿3
⟨𝜎𝑓 , 𝑓 | 𝜎⃗𝑁 · 𝑀⃗⊥(𝑄) |𝜎𝑖, 𝑖⟩ (7.3)

where 𝑄 = 𝑘𝑖− 𝑘𝑓 and 𝑀⊥(𝑄) =𝑀(𝑄)− (𝑄·𝑀(𝑄))𝑄
𝑄2 ,𝑀(𝑄) =

∑︀
𝑗 𝑒

𝑖𝑄·𝑟𝑗(𝑠𝑗 +
𝑖
𝑄2 (𝑘𝑒,𝑗 ×

𝑄)). If assuming unpolarized neutron, 𝑝(𝜎𝑖) = 1/2, 𝜎𝑖 ∈ {[1, 0]𝑇 , [0, 1]𝑇}, and assum-

ing the detector can not distinguish between 𝜎𝑓 , so we need to take a sum of 𝜎𝑓 , then

𝜔12 is

𝜔12 =
2𝜋

ℏ
∑︁

f

∑︁
n

(⟨i|𝐻 ′ |f⟩ ⟨f|𝐻
′ |n⟩ ⟨n|𝐻 ′ |i⟩
𝐸i − 𝐸n

+
⟨i|𝐻 ′ |n⟩ ⟨n|𝐻 ′ |f⟩

𝐸i − 𝐸†
n

⟨f|𝐻 ′ |i⟩)𝛿(𝐸f − 𝐸i)

=
2𝜋

ℏ
∑︁
𝜎𝑖

3∑︁
𝑎,𝑏,𝑐,𝑑=1

𝑝(𝜎𝑖) ⟨𝜎𝑖|𝜎𝑎𝜎𝑏𝜎𝑐 |𝜎𝑖⟩

×
∑︁
𝑓

∑︁
𝑛

∑︁
𝑘𝑛

(⟨𝑖|𝑀𝑎
⊥(−𝑄) |𝑓⟩

⟨𝑓 |𝑀 𝑏
⊥(𝑘𝑛 − 𝑘𝑓 ) |𝑛⟩ ⟨𝑛|𝑀 𝑐

⊥(𝑘𝑖 − 𝑘𝑛) |𝑖⟩
𝐸i − 𝐸n

+
⟨𝑖|𝑀𝑎

⊥(𝑘𝑛 − 𝑘𝑖) |𝑛⟩ ⟨𝑛|𝑀 𝑏
⊥(𝑘𝑓 − 𝑘𝑛) |𝑓⟩

𝐸i − 𝐸†
n

⟨𝑓 |𝑀 𝑐
⊥(𝑄) |𝑖⟩)𝛿(𝐸f − 𝐸i)

(7.4)
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To get a nonzero
∑︀

𝜎𝑖
𝑝(𝜎𝑖) ⟨𝜎𝑖|𝜎𝑎𝜎𝑏𝜎𝑐 |𝜎𝑖⟩, we need to have 𝜎𝑎𝜎𝑏𝜎𝑐 ∝ 𝜎0, the only

possibilities are when 𝑎, 𝑏, 𝑐 are in some arrangement of 1, 2, 3, we have 𝜎𝑎𝜎𝑏𝜎𝑐 = 𝑖𝜖𝑎𝑏𝑐

and 𝜖𝑎𝑏𝑐𝐴𝑎𝐵𝑏𝐶𝑐 = 𝐴 · (𝐵 × 𝐶). Finally, we derived

𝜔12 =
4𝜋

ℏ
∑︁
𝑓

∑︁
𝑛

∑︁
𝑘𝑛

|𝑀⃗ 𝑖𝑓 (−𝑄) · (𝑀⃗ 𝑓𝑛(𝑘𝑛 − 𝑘𝑓 )× 𝑀⃗𝑛𝑖(𝑘𝑖 − 𝑘𝑛))

𝐸𝑖 − 𝐸𝑛 − 𝑖Γ𝑛 + 𝜔𝑖 − 𝜔𝑛

|𝛿(𝐸𝑓 −𝐸𝑖+𝜔𝑓 −𝜔𝑖)

(7.5)

where 𝑀𝑚𝑛 = ⟨𝑚|𝑀 |𝑛⟩.

We have derived that the next perturbation term of high-order neutron scat-

tering refers to three-spin correlations. If the system has time-reversal symmetry,

𝒯 𝑀⃗𝒯 −1 = −𝑀⃗ , but the odd term does not cancel here due to the absolute norms

in the expression of transition rate, so this term remains nonzero. The application

of high-order neutron scattering is another promising direction in advanced spectral

techniques.

In Chapter. 4 and 5, we predicted symmetry breaking orders in two-dimensional

materials and targeted identified observable characteristics that can be directly vi-

sualized through STM. The core idea is that while order parameters are typically

connected to measurable correlations through spectroscopy and we can target the

symmetry breaking orders by analyzing correlation functions, here we aim to directly

visualize symmetry breaking orders via STM density profiles, avoiding further data

analysis. To achieve this direct visualization of symmetry breaking orders, specific

conditions are necessary, and we present two examples. In Chapter. 4, the ferroelectric

and nematic states originated from valley symmetry breaking become observable due

to the localized bound states near defects. In Chapter. 5, the enlarged superlattice in

TMD moiré systems has lattice vectors on the order of 10 angstroms, enabling the di-

rect observation of charge orders on the lattice scale within STM’s spatial resolution.

These examples underscore how defects facilitate local probing of symmetry-breaking

orders, and how the twisted bilayer systems can be both highly tunable and enable

spatial observations that are challenging in conventional two-dimensional materials.

In Chapter. 6, we trained a machine-learning-based magnetism classifier that

takes crystal structure as input and basic magnetic structure information as out-
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put. We have discussed the potential direction of representing variational quantum

states within the framework of E(3)NN in Sec. 6.4.
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Appendix A

Appendices of Chapter 3

A.1 Perturbation of mobile core-hole

We provide details about how Eq. 3.5 is derived. Expand the intermediate state

following the expansion in Eq. 3.3 as∫︁
𝑑∆𝜔 𝐼 (𝑘in, 𝑘𝑠, 𝜔in,∆𝜔) =

∑︁
𝑓

|⟨Ψ|𝑓⟩|2

=
1

𝑁2

∑︁
𝑚1,𝑚2,𝑚3,𝑚4

∑︁
𝑁1,𝑁2

𝑒𝑖𝑘𝑠·(𝑟𝑚2−𝑟𝑚3 )−𝑖𝑘in·(𝑟𝑚1−𝑟𝑚4 ) ⟨Ψ0|𝐷†
𝑚1,𝑒𝑖

|𝑁1⟩

(︃
1

∆− 𝐸
(0)
𝑁1

+
𝐸

(1)
𝑁1

(∆− 𝐸
(0)
𝑁1

)2

)︃

× ⟨𝑁1|𝐷𝑚2,𝑒𝑓𝐷
†
𝑚3,𝑒𝑓

|𝑁2⟩

(︃
1

∆− 𝐸
(0)
𝑁2

+
𝐸

(1)
𝑁2

(∆− 𝐸
(0)
𝑁2

)2

)︃
⟨𝑁2|𝐷𝑚4,𝑒𝑖 |Ψ0⟩ .

(A.1)

117



Further integrating over 𝜔in and in the ultrashort core-hole lifetime condition, because

Γ ≫ 𝐸
(0)
𝑁 , we take the approximation that 𝐸(0)

𝑁1
−𝐸(0)

𝑁2
+2Γ𝑖 ≃ 2Γ𝑖 in the denominators

𝐼(𝑘in, 𝑘𝑠) =

∫︁
𝑑𝜔in

∫︁
𝑑∆𝜔𝐼(𝑘in, 𝑘𝑠, 𝜔in,∆𝜔)

=
1

𝑁2

∑︁
𝑚1,𝑚2,𝑚3,𝑚4

∑︁
𝑁1,𝑁2

𝑒𝑖𝑘𝑠·(𝑟𝑚2−𝑟𝑚3 )−𝑖𝑘in·(𝑟𝑚1−𝑟𝑚4 ) ⟨Ψ0|𝐷†
𝑚1,𝑒𝑖

|𝑁1⟩ ⟨𝑁1|𝐷𝑚2,𝑒𝑓𝐷
†
𝑚3,𝑒𝑓

|𝑁2⟩

⟨𝑁2|𝐷𝑚4,𝑒𝑖 |Ψ0⟩ ×

[︃
2𝜋𝑖

𝐸
(0)
𝑁1

− 𝐸
(0)
𝑁2

+ 2Γ𝑖
−

4𝜋𝑖𝐸
(1)
𝑁2
𝐸

(1)
𝑁2(︁

𝐸
(0)
𝑁1

− 𝐸
(0)
𝑁2

+ 2Γ𝑖
)︁3
]︃

≃ 1

𝑁2

∑︁
𝑚1,𝑚2,𝑚3,𝑚4

𝑒𝑖𝑘𝑠·(𝑟𝑚2−𝑟𝑚3 )−𝑖𝑘in·(𝑟𝑚1−𝑟𝑚4 )

[︃
𝜋

Γ
𝛿𝑚1,𝑚2𝛿𝑚3,𝑚4 ⟨Ψ0|𝐷†

𝑚1,𝑒𝑖
𝐷𝑚2,𝑒𝑓𝐷

†
𝑚3,𝑒𝑓

𝐷𝑚4,𝑒𝑖 |Ψ0⟩

+
∑︁
𝑁1,𝑁2

𝜋𝐸
(1)
𝑁1
𝐸

(1)
𝑁2

2Γ3
⟨Ψ0|𝐷†

𝑚1,𝑒𝑖
|𝑁1⟩ ⟨𝑁1|𝐷𝑚2,𝑒𝑓𝐷

†
𝑚3,𝑒𝑓

|𝑁2⟩ ⟨𝑁2|𝐷𝑚4,𝑒𝑖 |Ψ0⟩

]︃

≃ 1

𝑁2

∑︁
𝑚1,𝑚2,𝑚3,𝑚4

𝑒𝑖𝑘𝑠·(𝑟𝑚2−𝑟𝑚3 )−𝑖𝑘in·(𝑟𝑚1−𝑟𝑚4 )

[︃
𝜋

Γ
⟨Ψ0|𝐷†

𝑚1,𝑒𝑖
𝐷𝑚2,𝑒𝑓𝐷

†
𝑚3,𝑒𝑓

𝐷𝑚4,𝑒𝑖 |Ψ0⟩

+
∑︁
𝑘1,𝑘2

𝜋𝑡2 cos(𝑘1𝑎) cos(𝑘2𝑎)

2Γ3
⟨Ψ0|𝐷†

𝑚1,𝑒𝑖

∑︁
𝜎1

|𝑘1, 𝜎1⟩ ⟨𝑘1, 𝜎1|𝐷𝑚2,𝑒𝑓𝐷
†
𝑚3,𝑒𝑓

∑︁
𝜎2

|𝑘2, 𝜎2⟩ ⟨𝑘2, 𝜎2|𝐷𝑚4,𝑒𝑖 |Ψ0⟩

]︃
.

(A.2)

The 𝛿 function in the 0th order expansion comes from the fact that without the

effect of ℋ𝑐, the core-hole is immobile. In the last step, we use
∑︀

𝑁 |𝑁⟩𝐸(1)
𝑁 ⟨𝑁 | =∑︀

𝑘,𝜎 |𝑘, 𝜎⟩𝐸𝑘 ⟨𝑘, 𝜎|, because the first-order perturbation 𝐸
(1)
𝑁 = ⟨𝑛|ℋ𝑐 |𝑛⟩, where

{|𝑛⟩} are the eigenstates of ℋ0 before the perturbation. We can replace the basis by

the eigenstates of ℋ𝑐, which is {|𝑘, 𝜎⟩}, and the eigenenergies 𝐸𝑘 = 𝑡 cos(𝑘𝑎) following

Eq. 3.4.

To derive the correlation function that only contain operators in the valence band,

we need to substitute the dipole operator 𝒟𝑚,𝑒 with the corresponding valence band

and core level operators, and use |Ψ0⟩ = |Ψ𝑣
0⟩⊗ |Ψ𝑐

0⟩ , |𝑘, 𝜎⟩ = 1√
𝑁

∑︀
𝑖 𝑒

𝑖𝑘𝑟𝑖𝑝𝑖,𝜎 |Ψ𝑐
0⟩. In
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the SC channel, 𝑀𝑒𝑖 =𝑀𝑒𝑓 =

⎛⎝1 0

0 1

⎞⎠, 𝒟𝑚,𝑒𝑖 = 𝒟𝑚,𝑒𝑓 =
∑︀

𝜎 𝑑
†
𝑚,𝜎𝑝𝑚,𝜎,

𝐼(𝑘in, 𝑘𝑠) ≃
1

𝑁2

∑︁
𝑚1,𝑚2,𝑚3,𝑚4

𝑒𝑖𝑘𝑠·(𝑟𝑚2−𝑟𝑚3 )−𝑖𝑘in·(𝑟𝑚1−𝑟𝑚4 ) ⟨Ψ𝑣
0|
∑︁
𝜎1

𝑑𝑚1,𝜎1𝑑
†
𝑚2,𝜎1

∑︁
𝜎2

𝑑𝑚3𝜎2𝑑
†
𝑚4𝜎2

|Ψ𝑣
0⟩

×

[︃
𝛿𝑚1,𝑚2𝛿𝑚3,𝑚4

𝜋

Γ
+ (𝛿𝑚1,𝑚2+1 + 𝛿𝑚1,𝑚2−1)(𝛿𝑚3,𝑚4+1 + 𝛿𝑚3,𝑚4−1)

𝜋𝑡2

8Γ3

]︃
.

(A.3)

Similarly, we can derive in the three NSC channels, they correspond to 𝑀𝑒𝑖 = 𝜎0,

𝑀𝑒𝑓 = 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝒟𝑚,𝑒𝑖 =
∑︀

𝜎 𝑑
†
𝑚,𝜎𝑝𝑚,𝜎, 𝒟𝑚,𝑒𝑓 =

∑︀
𝜎,𝜎 𝑑

†
𝑚,𝜎𝜎

𝛼𝑝𝑚,𝜎, 𝛼 = 0, 1, 2, 3,

substitute it back and the results replace the correlation part in Eq. A.3 with

⟨Ψ𝑣
0|
∑︀

𝜎1,𝜎1
𝜎𝛼
𝜎1,𝜎1

𝑑𝑚1,𝜎1𝑑
†
𝑚2,𝜎1

∑︀
𝜎2,𝜎2

𝑑𝑚3𝜎2𝜎
𝛼
𝜎2,𝜎2

𝑑†𝑚4𝜎2
|Ψ𝑣

0⟩. Combining SC and NSC

channels, we obtained Eq. 3.5.

The integration over 𝜔in requires measuring RIXS spectra at different 𝜔in, instead,

we can take the resonance peak position of X-ray absorption where 𝜔peak
in = 𝐸0 (or

𝜔peak
in = 𝐸0 −𝑈𝑐 if considering core-hole potential), so that ∆ = 𝑖Γ in Eq. A.1. In the

numerical test, the resonance peak is set at the maximal intensity of XAS spectra.

Under the ultrashort core-hole lifetime condition,∫︁
𝑑∆𝜔 𝐼

(︁
𝑘in, 𝑘𝑠, 𝜔

peak
in ,∆𝜔

)︁
≃ 1

𝑁2

∑︁
𝑚1,𝑚2,𝑚3,𝑚4

𝑒𝑖𝑘𝑠·(𝑟𝑚2−𝑟𝑚3 )−𝑖𝑘in·(𝑟𝑚1−𝑟𝑚4 ) ⟨Ψ𝑣
0|
∑︁
𝜎1

𝑑𝑚1,𝜎1𝑑
†
𝑚2,𝜎1

∑︁
𝜎2

𝑑𝑚3𝜎2𝑑
†
𝑚4𝜎2

|Ψ𝑣
0⟩

×

[︃
𝛿𝑚1,𝑚2𝛿𝑚3,𝑚4

1

Γ2
+ (𝛿𝑚1,𝑚2+1 + 𝛿𝑚1,𝑚2−1)(𝛿𝑚3,𝑚4+1 + 𝛿𝑚3,𝑚4−1)

𝑡2

4Γ4

]︃

≃ 1

𝑁2

∑︁
𝑚1,𝑚3

𝑒𝑖𝑞(𝑟𝑚1−𝑟𝑚3 )

[︃
1

Γ2
𝐼{0,0} +

𝑡2

4Γ4
(𝑒𝑖(2𝑘in+𝑞)·𝑎𝐼{1,1} + 𝑒𝑖𝑞𝑎𝐼{1,−1}

+ 𝑒−𝑖𝑞𝑎𝐼{−1,1} + 𝑒−𝑖(𝑞+2𝑘in)𝑎𝐼{−1,−1})

]︃
,

(A.4)
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𝐼{𝑥,𝑦} = ⟨Ψ𝑣
0|
∑︁
𝜎1

𝑑𝑚1,𝜎1𝑑
†
𝑚1+𝑥,𝜎′

1

∑︁
𝜎2

𝑑𝑚3𝜎2𝑑
†
𝑚3+𝑦,𝜎′

2
|Ψ𝑣

0⟩ .

The spatial correlation can be obtained by integrating over both 𝑘in and 𝑞

𝐼(𝑘in,𝑘𝑠) =

∫︁
𝑑𝜔in

∫︁
𝑑∆𝜔 𝐼 (𝑘in, 𝑘𝑠, 𝜔in,∆𝜔) ≃

1

𝑁2

∑︁
𝑚1,𝑚3

𝑒𝑖𝑞(𝑟𝑚1−𝑟𝑚3 )

[︃
𝜋

Γ
𝐼{0,0} +

𝜋𝑡2

8Γ3
(𝑒𝑖(2𝑘in+𝑞)·𝑎𝐼{1,1} + 𝑒𝑖𝑞𝑎𝐼{1,−1} + 𝑒−𝑖𝑞𝑎𝐼{−1,1} + 𝑒−𝑖(𝑞+2𝑘in)𝑎𝐼{−1,−1})

]︃
,

(A.5)

𝐼{𝑥,𝑦} = ⟨Ψ𝑣
0|
∑︁
𝜎1

𝑑𝑚1,𝜎1𝑑
†
𝑚1+𝑥,𝜎′

1

∑︁
𝜎2

𝑑𝑚3𝜎2𝑑
†
𝑚3+𝑦,𝜎′

2
|Ψ𝑣

0⟩ ,

∑︁
𝑞

𝑒𝑖𝑞(𝑟𝑐−𝑎)
∑︁
𝑘in

𝑒−𝑖2𝑘in𝑎𝐼 (𝑘in, 𝑘𝑠) =
1

𝑁

∑︁
𝑚1

𝜋𝑡2

8Γ3
⟨Ψ𝑣

0|
∑︁
𝜎1

𝑑𝑚1,𝜎1𝑑
†
𝑚1+1,𝜎′

1

∑︁
𝜎2

𝑑𝑚1+𝑐,𝜎2𝑑
†
𝑚1+𝑐+1,𝜎′

2
|Ψ𝑣

0⟩

=
𝜋𝑡2

8Γ3
⟨Ψ𝑣

0|
∑︁
𝜎1

𝑑𝑚1,𝜎1𝑑
†
𝑚1+1,𝜎′

1

∑︁
𝜎2

𝑑𝑚1+𝑐,𝜎2𝑑
†
𝑚1+𝑐+1,𝜎′

2
|Ψ𝑣

0⟩ .

(A.6)

Although the RIXS spectra at the resonance peak can provide an approximation

of the correlations using a different normalization factor, our numerical test indicates

that such an approach leads to significant errors. This is primarily due to the wide

range of incoming photon frequencies in which the RIXS intensities are non-zero.

A.2 Upper trace boundary of RDM

We can prove that for any state with 𝑛 particles and𝑀 = 𝑚𝑛modes, there is an upper

boundary for Tr (𝑂con), because the electron or hole representations are equivalent
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for Tr (𝑂con). Here we assume the 𝑛 particles are holes, and ⟨𝑛𝑖⟩ = ⟨𝑐𝑖𝑐†𝑖⟩ as

Tr (𝑂con) =
∑︁
𝑖,𝑗,𝑖̸=𝑗

(︁
⟨𝑐𝑖𝑐𝑗𝑐†𝑗𝑐

†
𝑖⟩ − ⟨𝑐𝑖𝑐†𝑖⟩ ⟨𝑐𝑗𝑐

†
𝑗⟩+ ⟨𝑐𝑖𝑐†𝑗⟩ ⟨𝑐𝑗𝑐

†
𝑖⟩
)︁

= 𝑛(𝑛− 1)−
∑︁
𝑖 ̸=𝑗

(︁
⟨𝑐𝑖𝑐†𝑖⟩ ⟨𝑐𝑗𝑐

†
𝑗⟩+ | ⟨𝑐𝑖𝑐†𝑗⟩ |2

)︁
≥ 𝑛(𝑛− 1)−

∑︁
𝑖

⟨𝑐𝑖𝑐†𝑖⟩
∑︁
𝑗

⟨𝑐𝑗𝑐†𝑗⟩+
∑︁
𝑖

⃒⃒⃒
⟨𝑐𝑖𝑐†𝑖⟩

⃒⃒⃒2
≥− 𝑛+

∑︁
𝑖

𝑛2
𝑖

≥− 𝑛

(︂
1− 1

𝑚

)︂
.

(A.7)

The last inequality is obtained from minimizing
∑︀𝑚𝑛

𝑖 𝑛2
𝑖 when given

∑︀𝑚𝑛
𝑖 𝑛𝑖 = 𝑛.

The state reaches this upper bound is the GHZ state as defined in Eq. 3.22.

In the natural spin oribitals (NSO), the basis is the eigenvector of single-particle

reduced density matrix, so ⟨𝑐𝑖𝑐†𝑗⟩ = 𝑛𝑖𝛿𝑖,𝑗. We can also prove the following inequality

Tr (𝑂con) =
∑︁
𝑖,𝑗,𝑖̸=𝑗

(︁
⟨𝑐𝑖𝑐𝑗𝑐†𝑗𝑐

†
𝑖⟩ − ⟨𝑐𝑖𝑐†𝑖⟩ ⟨𝑐𝑗𝑐

†
𝑗⟩
)︁
= 𝑛(𝑛−1)−

∑︁
𝑖

⟨𝑐𝑖𝑐†𝑖⟩)2+
∑︁
𝑖

⟨𝑐𝑖𝑐†𝑖⟩
2 ≤ 𝑛(𝑛−1)−𝑛2+𝑛 = 0.

(A.8)

The last inequality is because ⟨𝑐𝑖𝑐†𝑖⟩ ≤ 1 and
∑︀

𝑖 ⟨𝑐𝑖𝑐
†
𝑖⟩ = 𝑛, the largest

∑︀
𝑖 ⟨𝑐𝑖𝑐

†
𝑖⟩

2

appears when ⟨𝑐𝑖𝑐†𝑖⟩ = 1, 𝑖 = 1, 2, · · · , 𝑛 and the others are zero. In summary, we

have

−𝑛
(︂
1− 1

𝑚

)︂
≤ Tr (𝑂con) ≤ 0. (A.9)

To prove the inequality for Tr [(𝑂con)2], we need to show that the generalized GHZ

states take the upper boundary of Tr [(𝑂con)2]. Because it is invariant in different

basis, we choose an NSO basis, where the off-diagonal elements of the one-particle

reduced density matrix are always zero, i.e. ⟨𝑐𝑖𝑐†𝑗⟩ = 𝛿𝑖,𝑗𝑛𝑖. We prove the upper

boundary for 𝑛-particle state in 𝑛 = 2, 3, 4.
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A.2.1 n=2

When there are two particles in the system, we can always write the state as a sum of

elementary Slater determinants where each single-particle basis state occurs at most

in one term. The general state vector is

|𝜔⟩ =
𝑁∑︁

𝑖,𝑗=1

𝜔𝑖𝑗𝑐
†
𝑖𝑐

†
𝑗 |0⟩ , 𝜔 ↦→ 𝑈𝜔𝑈𝑇 = diag [𝑍1, · · · , 𝑍𝑟, 𝑍0] (A.10)

where 𝑍𝑖 =

⎡⎣ 0 𝑧𝑖/2

−𝑧𝑖/2 0

⎤⎦, 𝑧𝑖 > 0,
∑︀

𝑖 𝑧
2
𝑖 = 1, and 𝑍0 is the (𝑁 − 2𝑟)× (𝑁 − 2𝑟) null

matrix. In this representation, we can derive that

Tr
[︀
(𝑂con)2

]︀
= 4

𝑟∑︁
𝑖=1

(︀
𝑧2𝑖 − 𝑧4𝑖

)︀2
+ 8

∑︁
⟨𝑖,𝑗⟩

𝑧2𝑖 𝑧
2
𝑗 + 16

∑︁
⟨𝑖,𝑗⟩

𝑧4𝑖 𝑧
4
𝑗

= 4

⎛⎝(︃∑︁
𝑖

𝑧2𝑖

)︃2

+
∑︁
𝑖

𝑧8𝑖 − 2
∑︁
𝑖

𝑧6𝑖 + 4
∑︁
⟨𝑖,𝑗⟩

𝑧4𝑖 𝑧
4
𝑗

⎞⎠
= 4

⎛⎝1 +
∑︁
𝑖

𝑧8𝑖 − 2
∑︁
𝑖

𝑧6𝑖 + 4
∑︁
⟨𝑖,𝑗⟩

𝑧4𝑖 𝑧
4
𝑗

⎞⎠
(A.11)

where ⟨𝑖, 𝑗⟩ indicates all pairs of 𝑖, 𝑗 indices with 𝑖 ̸= 𝑗, all 𝑧𝑖 are totally symmetric

in the function, i.e. exchanging them in any order does not affect the function. Now

to find the upper bound of Tr [(𝑂con)2], this is an optimization subject to an equality

constraint, we use the Lagrange multiplier method to solve the equivalent problem

where 𝑥𝑖 = 𝑧2𝑖 , 𝑓({𝑥𝑖}) = Tr [(𝑂con)2] /4

𝑓 ({𝑥𝑖}) =
∑︁
𝑖

𝑥4𝑖 − 2
∑︁
𝑖

𝑥3𝑖 + 4
∑︁
⟨𝑖,𝑗⟩

𝑥2𝑖𝑥
2
𝑗

𝑔({𝑥𝑖}) =
∑︁
𝑖

𝑥𝑖 − 1 = 0

𝜕𝑓

𝜕𝑥𝑗
+ 𝜆

𝜕𝑔

𝜕𝑥𝑗
= −4𝑥3𝑗 − 6𝑥2𝑗 + 8𝑥𝑗

(︃∑︁
𝑖

𝑥2𝑖

)︃
+ 𝜆 = 0

(A.12)
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so all {𝑥𝑖} at the saddle point fulfills the same equation of 𝑥𝑗, the equation has at

most two solutions in the range of 0 ≤ 𝑥𝑗 ≤ 1, therefore, there is at most one solution

refers to the local maximum because we can not have two local maxima without a

local minimum. Finally, the only possible solution refers to a local maximum is when

all 𝑥𝑖 are equal, substitute this condition back to the equation, we derive the maximal

value of Tr [(𝑂con)2] for a general fermion state with two particles and Slater rank 𝑟

Tr
[︀
(𝑂con)2

]︀
≤ 4

(︂
1− 1

𝑟3

)︂
. (A.13)

The equality is satisfied when the state fulfills 𝑧1 = 𝑧2 = · · · = 𝑧𝑟 = 1√
𝑟
, we call

these kind of states, general GHZ state, and Tr [(𝑂con)2] increases as the Slater rank

𝑟 increases, when 𝑟 → ∞, Tr [(𝑂con)2] = 4.

A.2.2 n=3

The general form of a three-fermion state is

|𝜔⟩ =
𝑁∑︁

𝑖,𝑗,𝑘=1

𝜔𝑖𝑗𝑘𝑐
†
𝑖𝑐

†
𝑗𝑐

†
𝑘 |0⟩ ,

∑︁
𝑖𝑗𝑘

𝜔*
𝑖𝑗𝑘𝜔𝑖𝑗𝑘 =

1

6
(A.14)

where 𝜔 is completely antisymmetric. While it can not be transformed into a sum

of Slater determinants [22], we can still simplify it in the natural spin orbital (NSO)

basis. To start with, let us consider a special case when the total mode number

𝑁 = 2𝑛 = 6, there are

⎛⎝6

3

⎞⎠ = 20 parameters in the antisymmetric tensor 𝜔𝑖𝑗𝑘.

a general state in NSO basis can be written as

|𝜔⟩ =
(︁
𝜔123𝑐

†
1𝑐

†
2𝑐

†
3 + 𝜔156𝑐

†
1𝑐

†
5𝑐

†
6 + 𝜔264𝑐

†
2𝑐

†
6𝑐

†
4 + 𝜔345𝑐

†
3𝑐

†
4𝑐

†
5

)︁
|0⟩ (A.15)

where now we only have 4 parameters. This is because in the NSO basis, each index

can only appear twice, for example, index 1 only appears in 𝜔123, 𝜔156, adding any

other term containing 1 will cause off-diagonal term in the one-particle reduced den-
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sity matrix. Therefore, only 𝑁 × 2/𝑛 = 4 terms are allowed. Eq. A.15 is not the only

possible NSO basis representation, however, other representation is equivalent under a

fermion basis transformation, for example, |𝜔⟩ =
(︁
𝜔123𝑐

†
1𝑐

†
2𝑐

†
3 + 𝜔145𝑐

†
1𝑐

†
4𝑐

†
5 + 𝜔246𝑐

†
2𝑐

†
4𝑐

†
6 + 𝜔356𝑐

†
3𝑐

†
5𝑐

†
6

)︁
|0⟩

is another NSO basis representation and by exchanging indices 4 and 6, we recover

Eq. A.15.

Assuming {𝜔123, 𝜔156, 𝜔264, 𝜔345} = {𝑧1, 𝑧2, 𝑧3, 𝑧4}, we derive

Tr
[︀
(𝑂con)2

]︀
= ℎ(𝑧1, {𝑧2, 𝑧3, 𝑧4}) + ℎ(𝑧2, {𝑧1, 𝑧3, 𝑧4}) + ℎ(𝑧3, {𝑧1, 𝑧2, 𝑧4}) + ℎ(𝑧4, {𝑧1, 𝑧2, 𝑧3})

+
∑︁
⟨𝑧𝑖,𝑧𝑗⟩

ℎ(𝑧𝑖, 𝑧𝑗) + ℎ(𝑧1, 𝑧2, 𝑧3, 𝑧4)

(A.16)

where

ℎ(𝑎, {𝑏, 𝑐, 𝑑}) = 4
(︀
𝑎2 −

(︀
𝑎2 + 𝑏2

)︀
(𝑎2 + 𝑐2)

)︀2
+ 4

(︀
𝑎2 − (𝑎2 + 𝑏2)(𝑎2 + 𝑑2)

)︀2
+ 4

(︀
𝑎2 − (𝑎2 + 𝑐2)(𝑎2 + 𝑑2)

)︀2
ℎ(𝑎, 𝑏) = 8𝑎2𝑏2

ℎ(𝑧1, 𝑧2, 𝑧3, 𝑧4) = 4
(︀
−(𝑧21 + 𝑧22)(𝑧

2
3 + 𝑧24)

)︀2
+ 4

(︀
−(𝑧21 + 𝑧23)(𝑧

2
2 + 𝑧24)

)︀2
+ 4

(︀
−(𝑧21 + 𝑧24)(𝑧

2
2 + 𝑧23)

)︀2
.

𝑧1, 𝑧2, 𝑧3, 𝑧4 are totally symmetric in Tr [(𝑂con)2]. Again, we can substitute 𝑥𝑖 = 𝑧2𝑖 and

use the Lagrange multiplier method, 𝑓 ({𝑥𝑖}) = Tr [(𝑂con)2] /4, 𝑔({𝑥𝑖}) =
∑︀

𝑖 𝑥𝑖−1 =

0,

𝜕𝑓

𝜕𝑥𝑗
+ 𝜆

𝜕𝑔

𝜕𝑥𝑗
= 8 + 𝜆− 16𝑠2 + 16𝑠3 + 16𝑠′2 + (4 + 24𝑠2)𝑥𝑗 − 32𝑥2𝑗 = 0 (A.17)

where 𝑠2 =
∑︀

𝑖 𝑥
2
𝑖 , 𝑠3 =

∑︀
𝑖 𝑥

3
𝑖 , 𝑠′2 =

∑︀
⟨𝑖,𝑖′⟩ 𝑥𝑖𝑥𝑖′ , if we treat them as constants, then

at the saddle point, every 𝑥𝑗 is the solution of the same equation. The equation has

at most two solutions because it is quadratic to 𝑥𝑗, thus similarly to the previous

case, there is only one solution that refers to the local maximum. We derive again

that the local maximum solution only appears when some of 𝑥𝑖 can be zero, and all

the rest are equal. It turns out that, when 𝑧1 = 𝑧2 = 𝑧3 = 𝑧4 = ±1
2
, Tr [(𝑂con)2] = 15

4
.

And when 𝑧1 = 𝑧2 = 𝑧3 = ± 1√
3
, 𝑧4 = 𝑧0, Tr [(𝑂con)2] = 104

27
> 15

4
. Thus especially at
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𝑛 = 3, the upper bound does not appear at a GHZ-type state, as we will discuss in

more detail in the next paragraph.

The state with 𝑧1 = 𝑧2 = 𝑧3 = ± 1√
3
, 𝑧4 = 𝑧0 that reaches this upper boundary can

be transformed into a W-type state by performing a basis transformation. And the

state with 𝑧1 = 𝑧2 = 𝑧3 = 𝑧4 = ±1
2

can be transformed into a GHZ-type state. The

W and GHZ states are two inequivalent maximally entangled states, here the W state

reaches the upper bound. To show the transformation, we relabel {1, 2, 3, 4, 5, 6} as

{1, 2, 3, 1̇, 2̇, 3̇}, and relabel some of the fermion states into equivalent spin states, as

(|123⟩ , |123̇⟩ , |12̇3⟩ , |1̇23⟩ , |12̇3̇⟩ , |1̇23̇⟩ , |1̇2̇3⟩ , |1̇2̇3̇⟩)

= (|000⟩ , |001⟩ , |010⟩ , |100⟩ , |011⟩ , |101⟩ , |110⟩ , |111⟩)
(A.18)

With this relabeling, we perform a basis transformation on both cases to show how

they are actually 𝑊 and 𝐺𝐻𝑍 types of states,

|𝜔1⟩ =
(︂

1√
3
𝑐†1𝑐

†
2𝑐

†
3 +

1√
3
𝑐†1𝑐

†
5𝑐

†
6 +

1√
3
𝑐†2𝑐

†
6𝑐

†
4

)︂
|0⟩

=

(︂
1√
3
|000⟩+ 1√

3
|011⟩+ 1√

3
|101⟩

)︂
=(𝐼 ⊗ 𝐼 ⊗𝑋)

1√
3
(|001⟩+ |010⟩+ |100⟩)

=(𝐼 ⊗ 𝐼 ⊗𝑋) |W⟩

(A.19)

|𝜔2⟩ =
(︂
1

2
𝑐†1𝑐

†
2𝑐

†
3 +

1

2
𝑐†1𝑐

†
5𝑐

†
6 +

1

2
𝑐†2𝑐

†
6𝑐

†
4 +

1

2
𝑐†3𝑐

†
4𝑐

†
5

)︂
|0⟩

=
1

2
(|000⟩+ |011⟩+ |101⟩+ |110⟩)

=(𝐻 ⊗𝐻 ⊗𝐻)

(︂
1√
2
|000⟩+ 1√

2
|111⟩

)︂
=(𝐻 ⊗𝐻 ⊗𝐻) |GHZ⟩

(A.20)

Now we move forward to consider a more general case when the total mode number

𝑁 = 3𝑚 and 𝑚 is an integer value. The key idea is that we want to show any general
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state can be represented in a symmetric form such that every nonzero coefficient

𝜔𝑖𝑗𝑘 is a symmetric variable in the function Tr [(𝑂con)2]. If we perform the Lagrange

multiplier method to find the saddle point, then the differential equation for each 𝜔𝑖𝑗𝑘

is exactly the same. By estimating the number of solution for the Lagrange multiplier

equation, we want to show that the maximal solution only appears at the boundary

or when all nonzero 𝜔𝑖𝑗𝑘 are the same in our symmetric state representation, and that

state refers to the generalized GHZ state in a different basis. It turns out we can find

such a symmetric representation in the NSO basis, the rules are:

• (NSO) between any two nonzero 𝜔𝑖𝑗𝑘, 𝜔𝑖′𝑗′𝑘′ , they share at most one common

index.

• (complete) the basis should include as many as nonzero coefficients as possible,

adding any extra coefficient will violate the NSO condition.

• (symmetric) each mode index 𝑖 appears the same number of times in all nonzero

coefficients {𝜔𝑖𝑗𝑘}.

Combining the three conditions together, we can calculate the largest number of

nonzero coefficients. From the NSO condition we learn that any pair of indices only

appears once in all nonzero coefficients, there are in total 3𝑚(3𝑚−1)
2

pairs, so we have

at most 3𝑚(3𝑚−1)
6

nonzero coefficients. For example, when 𝑚 = 3, we have

{123, 145, 167, 189, 256, 278, 249, 347, 358, 369, 468, 579}. For 𝑚 = 2, we only have 4

nonzero coefficients, the reason is that there are in total 3𝑚 = 6 indices, so each index

can only appear twice by combing with the rest 5 indices, which is an odd number,

so each index can only appears
[︀
3𝑚−1

2

]︀
times, formally we have at most 𝑚

[︀
3𝑚−1

2

]︀
nonzero coefficients.

A.3 Model Hamiltonian and numerical methods

To demonstrate this protocol of witnessing entanglement by RIXS, we exploit a 1D

extended Hubbard model (EHM) with attractive interaction, whose phase diagram is
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explicitly obtained in Ref. [187]. The Hamiltonian of the EHM reads as

ℋ =− 𝑡
∑︁
𝑖𝜎

[︁
𝑐†𝑖𝜎𝑐𝑖+1,𝜎 + h.c.

]︁
+ 𝑈

∑︁
𝑖

𝑛𝑖↑𝑛𝑖↓

+ 𝑉
∑︁
𝑖,𝜎,𝜎′

𝑛𝑖𝜎𝑛𝑖+1,𝜎′ +ℋ𝑐.
(A.21)

We fix 𝑡 = 1 as a reference value for other parameters. In the spectra simulation and

the comparison with the exact correlations, We conduct exact diagonalization (ED)

in a finite system size of 𝑁 = 12 respectively, where 𝑁 is the number of sites in the

1D chain, and calculate the RIXS spectra with core Hamiltonian defined in Eq. 3.4

to compare the RIXS derived correlations with the exact ones. The corresponding

spectra depend on both 𝑘in and 𝑞 as we discussed. In the RIXS spectra calculation,

we set the core-hole lifetime Γ = 10, the range of 𝜔in is [−50, 50] with the spacing

0.5, and ∆𝜔 ∈ [−6, 15] with the spacing being 0.05. As discussed in the second

subsection of Sec. 3.2, experimentally, we can derive four-point correlations with all

possible combinations of spin indices from one SC channels and three NSC channels

corresponding to the polarization of photons. While numerically, we directly calculate

the four-point correlations with different spin indices. In Fig. 3-3, the true values are

obtained from directly calculating the correlations using ED, and the Γ = 10 values

are obtained from first numerically calculate the RIXS intensities over 𝜔in, ∆𝜔, 𝑞, 𝑘in,

and do the summation with phase factor as described in Sec. 3.2.

Before the DMRG calculations, we first conduct exact diagonalization in small

system sizes with a periodic boundary condition where 𝑁 = 12, 14, 16; 𝑁 is the

number of sites in the 1D chain. At half filling, as shown in Fig. A-1, we detect at most

4-particle entanglement at 𝑁 = 16, however, the finite system size is not excluded so

larger system size can lead to different results, and the largest entanglement appears

at the PS2(phase separation) region, while the TS(spin-triplet) phase is expected to

be more entangled. As mentioned in Sec. 3.2, our proposed RIXS techniques can only

measure the connected four-point correlations with a nearest neighbor constrain, the

measurable results in Fig. A-1 correspond to the approximated Tr [(𝑂con)2] by setting

all connected correlation inaccessible to RIXS as zeros, and the approximated value
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is always smaller than the accurate values because Tr [(𝑂con)2] is equivalent to the

Frobenius norm of 𝑂con which always increases with absolute value of each element.

We show that, even though the measurable Tr [(𝑂con)2] is much smaller than the

exact one for states with small multiparticle entanglement, they are closer for large

multipartite entangled states and the measurable one also reaches the upper bound

for 𝑛 = 4 thus detects the 𝑛 = 4 multipartite entanglement.

In Sec. 3.4 A, we conduct DMRG on the same model with a larger system size,

and measure the correlations directly. While in the main text we focus on the results

at half filling, here we attach the results at quarter filling, as shown in Fig. A-3.
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Figure A-1: (top) N=12, M=24; (middle) N=14, M=28; (bottom) N=16, M=32.
Tr [(𝑂con)2] results in EHM at half filling, with 𝑈 = 1.6, 𝑡 = 1 and nearest neighbor
interaction 𝑉 shows in the x-axis. Both exact values and measurable ones that are
achievable by our proposed RIXS method are shown. The upper boundaries are
derived from Eq. 3.20 for different system size 𝑁 . The lower boundary of 𝑛 = 2 is
always zero based on our definition.
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Figure A-2: (top) N=6, M=24; (bottom) N=8, M=32. Tr [(𝑂con)2] results in EHM
at quarter filling, with 𝑈 = 4, 𝑡 = 1 and nearest neighbor interaction 𝑉 shows in the
x-axis.
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Figure A-3: DMRG results of EHM at quarter filling with open boundary condition.
Only the central 12 orbitals are counted for Tr [(𝑂con)2]. 𝑈 = 4, 𝑡 = 1 and nearest
neighbor interaction 𝑉 shows in the x-axis. The exact and measurable values of
Tr [(𝑂con)2] and the entanglement entropy are shown.
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Appendix B

Appendices of Chapter 4

In this Appendix, we provide more details about the setup of our theoretical and

numerical studies. In Sec. B.1-B.1.5, we explain how we study integer quantum

Hall states on the surface of topological crystalline insulator (TCI), which has Dirac

dispersion that is both tilted and massive. In Sec. B.1 we discuss the symmetry on

the (001) surface of TCI Sn1−𝑥Pb𝑥(Te,Se), and introduce the low-energy 𝑘 · 𝑝 model

for our subsequent study. The Dirac Landau levels in this system are solved in Sec.

B.1.1, and it is argued in Sec. B.1.2 that in the presence of delta-potential impurity,

there are exactly two states per Landau level that are perturbed away in energy. In

Sec. B.1.3 we explain the values of parameters adopted in our model. In Sec. B.1.4 we

derive the relation between the local impurity dipole moment and the bulk adiabatic

dipole moment, which is quoted in the main text, while in Sec. B.1.5 we distinguish

these two notions of dipole and identify the one that can reveal ferroelectricity in our

system. In Sec. B.1.6, we present the setup for carrying out exact diagonalization

which leads to the prediction of non-trivial excitonic states near strong impurities.

While the experimental signatures of these many-body states in systems with Dirac

dispersion have been discussed in the main text, a simpler situation with anisotropic

parabolic dispersion (such as in AlAs quantum well) is analyzed in Sec. B.1.7.
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B.1 𝑀𝒯 symmetry and its spontaneous breaking

The low-energy effective Hamiltonian is introduced in Eq. (1) of the main text. Here

we describe a symmetry that relates the two valleys under consideration.

We are interested in the (001) surface of TCI. It is known from earlier studies that

there is a structural distortion occurring spontaneously at low temperature and breaks

all rotation symmetry [188]. This distortion can happen along either [110] or [11̄0]

direction, and leads to a ferroelectric polarization. Note that this is not the quantum

Hall ferroelectricity that we study in this paper. Without loss of generality, let us

assume the distortion is along [110] and set up the coordinates such that it is the 𝑥-

direction. Because of the ferroelectric distortion, the (001) surface has only the mirror

symmetry 𝑀𝑦, which reverses the 𝑦-direction, and time-reversal 𝒯 . An illustration

of the surface Brillouin zone is shown in Fig. B-1. The low-energy effective model

consists of four Dirac cones, with a massive degenerate pair near 𝑋̄1 and a massless

degenerate pair near 𝑋̄2 [189]. The 2 + 2-fold degeneracy is protected by 𝒯 .

Figure B-1: Surface Brillouin zone of the (001) surface of TCI. There is a pair of

Dirac cones near 𝑋̄1 and a pair near 𝑋̄2. The blue arrow indicates the ferroelectric

distortion.

In the presence of magnetic field, the mirror symmetry 𝑀𝑦 and the time-reversal

𝒯 are individually broken. Still, the product 𝑀𝑦𝒯 remains a symmetry. Notice that

𝑀𝑦𝒯 relates the individual valleys near 𝑋̄1 to themselves, while it exchanges opposite

valleys near 𝑋̄2. Hence, under a magnetic field, such 2+2-fold degeneracy of Landau

levels is explicitly broken down to just the 2-fold degeneracy for the massless Dirac
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cones near 𝑋̄2. Moreover, such originally massless Dirac cones can now acquire a

Zeeman gap, as we explain below.

Let us label the location of the Dirac cones as ±Λ. At +Λ, a two-band model has

been constructed before and admits the following form [189, 190]:

𝐻+Λ = 𝑣𝑥𝜎𝑦𝑝𝑥 + 𝑣𝑦𝜎𝑥𝑝𝑦 + 𝛿𝑣𝑥𝑝𝑥 +∆𝜎𝑧, (B.1)

Here 𝛿𝑣𝑥 characterizes the tilt of Dirac cone, which is symmetry-allowed and has been

observed experimentally [191]. The mirror symmetry 𝑀𝑦 acts on the pseudo-spin and

momentum as follows:

𝑀𝑦 : 𝑝𝑥 → 𝑝𝑥, 𝑝𝑦 → −𝑝𝑦, 𝜎𝑥 → −𝜎𝑥, 𝜎𝑦 → 𝜎𝑦, 𝜎𝑧 → −𝜎𝑧, (B.2)

while time-reversal 𝒯 acts as follows:

𝒯 : 𝑝𝑥 → −𝑝𝑥, 𝑝𝑦 → −𝑝𝑦, 𝜎𝑥 → −𝜎𝑥, 𝜎𝑦 → −𝜎𝑦, 𝜎𝑧 → −𝜎𝑧. (B.3)

From these we see that the mass term ∆ = 0 in the absence of background field,

as 𝑀𝑦 is a symmetry that relates the cone at +Λ to itself but sends ∆𝜎𝑧 to −∆𝜎𝑧.

However, in the presence of a magnetic field, 𝑀𝑦 is no longer a symmetry, and hence

the massless Dirac cone at +Λ can acquire mass in general (i.e. Zeeman effect). The

remaining symmetry is the 𝑀𝑦𝒯 symmetry which relates the cone at +Λ to the one

at −Λ:

𝐻−Λ = (𝑀𝑦𝒯 )𝐻+Λ(𝑀𝑦𝒯 )−1 = 𝑣𝑥𝜎𝑦𝑝𝑥 + 𝑣𝑦𝜎𝑥𝑝𝑦 − 𝛿𝑣𝑥𝑝𝑥 +∆𝜎𝑧. (B.4)

To simplify notation, we rotate the basis: 𝜎𝑥 → −𝜎𝑦, 𝜎𝑦 → 𝜎𝑥, 𝜎𝑧 → 𝜎𝑧 and obtain

the following unitarily equivalent Hamiltonian:

𝐻±Λ = 𝑣𝑥𝜎𝑥𝑝𝑥 − 𝑣𝑦𝜎𝑦𝑝𝑦 ± 𝛿𝑣𝑥𝑝𝑥 +∆𝜎𝑧. (B.5)

This is Eq. (1) in the main text, which provides the starting point for our study.
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In the main text, we have referred to the symmetry that protects the degeneracy of

the two valleys as a “two-fold rotation" or “inversion" symmetry, but when applied

specifically to the surface of TCI, it has a precise meaning as the 𝑀𝒯 symmetry. This

symmetry is spontaneously broken by Coulomb interaction and results in a valley-

polarized state.

B.1.1 Massive and tilted Dirac Landau levels

Assuming valley-polarization, we focus on the one at +Λ. Under an out-of-plane

magnetic field −𝐵𝑧, in the un-tilted limit, the massive Dirac Hamiltonian in Eq.

(B.5) can be written as

𝐻0 =

√
2 𝑣

𝑙𝐵

⎛⎝𝜆 𝑎†

𝑎 −𝜆

⎞⎠ (B.1)

where 𝑣 =
√
𝑣𝑥𝑣𝑦, magnetic length 𝑙𝐵 =

√︀
ℏ𝑐/𝑒𝐵 and the mass parameter 𝜆 =

∆𝑙𝐵/(
√
2𝑣). Here, 𝑎†, 𝑎 are parabolic Landau level raising and lowering operators

respectively, and are related to the momentum operators by:

𝑝𝑥 =
1

𝑙𝐵

√︂
𝑣𝑦
2𝑣𝑥

(𝑎†+𝑎) , 𝑝𝑦 =
𝑖

𝑙𝐵

√︂
𝑣𝑥
2𝑣𝑦

(𝑎− 𝑎†)

[𝑎, 𝑎†] = 1

(B.2)

The wavefunctions of the massive Dirac Landau levels and their corresponding

energy can then be solved exactly. For the 𝑛-th Landau level with 𝑛 ̸= 0:

𝜓𝑛,𝑚 =
1√︀

1 + 𝛾2𝑛

⎛⎝ 𝜑𝑛,𝑚

𝛾𝑛𝜑𝑛−1,𝑚

⎞⎠ , 𝐸𝑛 = 𝑠𝑛

√
2 𝑣

𝑙𝐵

√
𝜆2 + 𝑛 (B.3)

where

𝛾𝑛 =
−𝜆+ 𝑠𝑛

√
𝜆2 + 𝑛√
𝑛

(B.4)

Here 𝑠𝑛 = sign(𝑛), and 𝜑𝑛,𝑚 are the wavefunctions for a parabolic Landau level in the

symmetric gauge with angular momentum 𝑚 − 𝑛. For the 0-th Dirac Landau level,
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we have:

𝜓0,𝑚 =

⎛⎝𝜑0,𝑚

0

⎞⎠ , 𝐸0 =

√
2 𝑣

𝑙𝐵
𝜆 (B.5)

When the tilt of Dirac cone 𝛿𝑣𝑥 is turned on, we can do first order perturbation

theory to obtain the approximate eigenstates. To leading order in 𝜏 = 𝛿𝑣𝑥/(2𝑣𝑥), for

the 𝑛 ̸= 0 massive and tilted Dirac LL, we obtain (up to normalization):

𝜓𝑛,𝑚 =

⎛⎝ 𝜑𝑛,𝑚 ± 𝜏 [𝛼−1𝜑𝑛−1,𝑚 + 𝛼1𝜑𝑛+1,𝑚]

𝛾𝑛[𝜑𝑛−1,𝑚 ∓ 𝜏(𝛼0𝜑𝑛,𝑚 + 𝛼−2𝜑𝑛−2,𝑚)]

⎞⎠ (B.6)

where

𝛼−1 =
(2𝑛− 1)

√
𝜆2 + 𝑛± 𝜆√
𝑛

, 𝛼1 = −2
√
𝑛+ 1

√︀
𝜆2 + 𝑛

𝛼0 =
(2𝑛+ 1)

√
𝜆2 + 𝑛± 𝜆√
𝑛

, 𝛼−2 = −2
√
𝑛− 1

√︀
𝜆2 + 𝑛

(B.7)

As for the massive and tilted 0-th Dirac LL:

𝜓0,𝑚 =

⎛⎝𝜑0,𝑚 − 2𝜏𝜆𝜑1,𝑚

−𝜏𝜑0,𝑚

⎞⎠ (B.8)

These expressions allow us to calculate dipole moments, and energy shifts under the

influence of impurity, straightforwardly.

B.1.2 Number of impurity states for massive and tilted Dirac

cones

Here we demonstrate that there are only two states that have probability amplitudes

at the impurity site, and which therefore are split from the Landau level, even in the

presence of perturbations in mass and tilt of the Dirac cone.

We consider a delta-function impurity 𝐻𝑖𝑚𝑝 = 𝑉0𝑙
2
𝐵𝛿(𝑥⃗). Upon projection to a

specific Landau level, the impurity Hamiltonian has matrix elements:

⟨𝑛,𝑚|𝐻𝑖𝑚𝑝 |𝑛,𝑚′⟩ = 𝑉0𝑙
2
𝐵Ψ

†
𝑛,𝑚Ψ𝑛,𝑚′ (B.1)
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where we have defined Ψ𝑛,𝑚 ≡ 𝜓𝑛,𝑚(0⃗), 𝑖.𝑒. the amplitude of the Landau level orbital

at the impurity site. To the first order in tilt 𝜏 , the Dirac Landau level is found in

Eq. (B.6). To prove our claim in full generality, let us assume we have carried out a

𝑘-th order perturbation theory in 𝜏 , so that the 𝑛-th tilted Dirac Landau level 𝜓𝑛,𝑚 is

expressed in terms of 𝜑𝑝,𝑚 with 𝑝 = 𝑛−𝑘−1, ..., 𝑛+𝑘. The only states that are relevant

to our impurity problem are those that have non-vanishing probability amplitudes at

the impurity site, which correspond to those 𝜓𝑛,𝑚 with 𝑚 = 𝑛 − 𝑘 − 1, ..., 𝑛 + 𝑘.

We thus study the degenerate perturbation theory within this subspace, and consider

linear combinations of Ψ𝑛,𝑚:

Φ = 𝑟1Ψ𝑛,𝑛−𝑘−1 + 𝑟2Ψ𝑛,𝑛−𝑘 + ...+ 𝑟2𝑘+2Ψ𝑛,𝑛+𝑘 (B.2)

If there is a choice of (𝑟1, 𝑟2, ..., 𝑟2𝑘+2) such that Φ = (0, 0)𝑇 , the corresponding linear

combination of intra-Landau level orbitals are guaranteed to diagonalize the impurity

Hamiltonian and thus remain at the same energy as the Landau level in the absence

of impurity. Below, we argue that there are 2𝑘 such solutions.

Denote Ψ𝑛,𝑚 = (𝜓↑
𝑚, 𝜓

↓
𝑚)

𝑇 . Only the intra-Landau level index 𝑚 is made explicit

here. Notice that 𝜓↑
𝑚 and 𝜓↓

𝑚 are both real or both imaginary. This is because each of

them is proportional to the wavefunction of parabolic Landau level 𝜑𝑚,𝑚 evaluated at

the origin, which is real when 𝑚 is even and is imaginary when 𝑚 is odd. Redefining

𝑖Ψ𝑛,𝑚 ↦→ Ψ𝑛,𝑚 for odd 𝑚, Eq. (B.2) with Φ = (0, 0)𝑇 becomes a set of simultaneous

equations for real unknowns 𝑟𝑖. Setting 𝑟2𝑘+2 = 1 without loss of generality, we reach

the following set of equations for 𝑟𝑖 ∈ R:⎧⎪⎨⎪⎩𝑟1𝜓
↑
𝑛−𝑘−1 + 𝑟2𝜓

↑
𝑛−𝑘 + ...+ 𝑟2𝑘+1𝜓

↑
𝑛+𝑘−1 = −𝜓↑

𝑛+𝑘

𝑟1𝜓
↓
𝑛−𝑘−1 + 𝑟2𝜓

↓
𝑛−𝑘 + ...+ 𝑟2𝑘+1𝜓

↓
𝑛+𝑘−1 = −𝜓↓

𝑛+𝑘

(B.3)

With 2𝑘 + 1 unknowns and only two linear equations, there are in general 2𝑘

linearly independent solutions, leading to 2𝑘 states that have vanishing amplitudes

at the impurity site. Since we start with a (2𝑘 + 2)-dimensional subspace, only

2𝑘 + 2 − 2𝑘 = 2 states are allowed to have non-vanishing amplitudes at the origin.
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These are the two impurity bound states whose energy are split from the bulk Landau

level, and are the ones employed in our construction of impurity dipole moment in

the main text.

The above argument also works for the 0-th Landau level. However, only one

impurity state is significantly shifted away from the bulk Landau level, while the

shift of the second impurity state is minuscule (controlled by the size of the tilt),

so practically, in the quantum Hall ferroelectric system that we consider, only one

impurity state can be probed in this special case.

B.1.3 Choice of Parameters

In the main text, we use the following parameters to study the quantum Hall ferro-

electrics in topological crystalline insulator Sn1−𝑥Pb𝑥(Te,Se):

𝜏 = 0.1, 𝜆 = 0, 𝑣𝑥/𝑣𝑦 = 1.6 (B.4)

Here we explain why these values match with the low-energy physics of the system

obtained either from experiments or ab initio calculations.

The tilting effect of Dirac cones (at Λ̄) has been observed in the ARPES mea-

surements by Tanaka et al. [191], from which we estimate the tilting parameter to

be 𝜏 = 𝛿𝑣𝑥/(2𝑣𝑥) = 0.1. The acquisition of mass in topological crystalline insulators

was observed by Okada et al. [192]. Under a ferroelectric distortion, two of the four

surface Dirac cones were measured to obtain mass of about ∆ = 10 meV, and this

would correspond to 𝜆 = ∆𝑙𝐵/(
√
2𝑣) ≈ 0.5. But notice that these two massive cones

are located near 𝑋̄1 (see Fig. B-1), which are not symmetry-related in our quantum

Hall setting. In our study we are instead focusing on the Dirac cones near 𝑋̄2, whose

degeneracy is symmetry-protected as explained in Sec. B.1. These cones can acquire

a mass via the Zeeman effect, but the experiment by Okada et al. [192] suggests that

it is too small to be observed. A rough estimate with the vacuum Zeeman effect would

give 𝜆 ∼ 0.01, and thus in the main text we decide to assume 𝜆 = 0. The values of 𝑣𝑥

and 𝑣𝑦 have been obtained by Liu et al. by fitting with ab initio calculations [190].
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For the effective Dirac Hamiltonian (around Λ̄) that we are considering, 𝑣𝑥 = 1.3 eV

and 𝑣𝑦 = 0.83 eV. Thus, the anisotropy 𝑣𝑥/𝑣𝑦 = 1.6.

B.1.4 Relation between the local impurity dipole and the bulk

adiabatic dipole

Here we present more details of the derivations of Eqs.(4) and (6) in the main text.

Let us begin with the bulk adiabatic dipole moment introduced in the modern

theory of polarization [193]. Since the tilt of Dirac cone in our model breaks inversion

symmetry in the 𝑝𝑥-direction, electric polarization is non-vanishing only in the 𝑦-

direction and we thus focus only on that component. Following the conventional

Berry phase approach, we have [194]:

𝐷𝑦 = 𝑖𝑒
𝑙2𝐵
𝐿𝑥

∫︁ 𝐿𝑥/𝑙2𝐵

0

𝑑𝑘𝑦 ⟨𝑢𝑘𝑦 | 𝜕𝑘𝑦 |𝑢𝑘𝑦⟩ (B.5)

where |𝑢𝑘𝑦⟩ is the Bloch wavefunction in a gauge which is invariant under translation

in 𝑦-direction. In this gauge, the complete wavefunction is 𝜓𝑘𝑦(𝑥, 𝑦) = 𝑒𝑖𝑘𝑦𝑦√
𝐿𝑦
𝑢𝑘𝑦(𝑥).

Making use of 𝑢𝑘𝑦(𝑥) = 𝑢0(𝑥 − 𝑘𝑦_𝐵2), one can recast Eq.(B.5) into the following

form:

𝐷𝑦 = −𝑖𝑒𝑙2𝐵
∫︁
𝑑2𝑟 𝜓*

𝑘𝑦(𝑥, 𝑦)𝜕𝑥𝜓𝑘𝑦(𝑥, 𝑦)

= 𝑒𝑙2𝐵 ⟨𝜓𝑘𝑦 | 𝑝𝑥 |𝜓𝑘𝑦⟩
(B.6)

Expressing the momentum operator in terms of inter-Landau level ladder operators

as in Eq. (B.2), and acting it on the first-order perturbed Landau orbitals in Eq.

(B.6), one would obtain Eq. (4) of the main text:

D𝑛 = 𝑠̃𝑛
√
2 𝜏 𝑒 𝑙𝐵

(︃
2𝜆2 + 3|𝑛|√︀
𝜆2 + |𝑛|

)︃√︂
𝑣𝑦
𝑣𝑥

ŷ, (B.7)

where 𝑠̃𝑛 = sgn(𝑛) (and 𝑠̃0 = 1).
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Next we turn to the local impurity dipole moment, which is defined as

𝐷imp
𝑦 = 𝑒(⟨𝜓̃1| 𝑦 |𝜓̃1⟩+ ⟨𝜓̃2| 𝑦 |𝜓̃2⟩), (B.8)

where 𝜓̃1,2 are the two impurity states bound to the delta-potential defect. Expressing

the position operator 𝑦 in terms of the guiding-center operator and the momentum

operator: 𝑦 = 𝑅̂𝑦 − 𝑙2𝐵 𝑝̂𝑥, it follows that:

𝐷imp
𝑦 = 𝑒(⟨𝜓̃1| 𝑅̂𝑦 |𝜓̃1⟩+ ⟨𝜓̃2| 𝑅̂𝑦 |𝜓̃2⟩)− 2𝐷𝑦. (B.9)

Notice that the guiding-center operator can be expressed in terms of intra-Landau

level ladder operators: 𝑅̂𝑦 = 𝑖𝑙𝐵(𝑏
†−𝑏)/

√
2. To proceed analytically, we first consider

the massless limit and to leading order in the tilt of Dirac cone. The impurity states

for the 𝑛-th Landau level have the following expressions:

𝜓̃1 = −𝑠𝑛
𝑖𝜏𝛼−2√

2
𝜓𝑛,𝑛−2 + (− 1√

2
+
𝜏𝑛√
2
)𝜓𝑛,𝑛−1 + 𝑠𝑛𝑖(

1√
2
+
𝜏𝑛√
2
)𝜓𝑛,𝑛 −

𝜏𝛼1√
2
𝜓𝑛,𝑛+1

(B.10a)

𝜓̃2 = 𝑠𝑛
𝑖𝜏𝛼−2√

2
𝜓𝑛,𝑛−2 + (

1√
2
+
𝜏𝑛√
2
)𝜓𝑛,𝑛−1 + 𝑠𝑛𝑖(

1√
2
− 𝜏𝑛√

2
)𝜓𝑛,𝑛 −

𝜏𝛼1√
2
𝜓𝑛,𝑛+1

(B.10b)

where 𝑠𝑛 = sgn(𝑛). Note that 𝜓𝑛,𝑚 and 𝛼𝑖 are defined in Eqs. (B.6) and (B.7)

respectively. Combining Eqs. (B.9) and (B.10), we obtain:

Dimp
𝑛 =

2

3
D𝑛 (B.11)

in the massless limit. For the massive case, the algebra becomes complicated without

specifying an explicit LL index. For 𝑛 = 1 and 𝑛 = 2, we have obtained explicit

analytic expressions for the impurity states and evaluated the impurity dipole. The
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result suggests that

Dimp
𝑛 =

2|𝑛|
3|𝑛|+ 2𝜆2

D𝑛. (B.12)

The validity of this expression is further checked numerically for higher Landau levels

(see Fig. B-2). It is also worth pointing out that for higher Landau levels, we are

usually in the regime where 𝜆 ≪
√
𝑛, so the relation in Eq. (B.11) for the massless

limit is a good approximation.

Figure B-2: Numerical checks of the relation between impurity dipole and bulk adia-

batic dipole. (a) Impurity dipole 𝐷imp
𝑦 (with 𝑒 set to 1) as a function of tilt 𝜏 , for the

first Dirac Landau level in the valence band with various mass 𝜆. The dashed line is

given by the analytic result in Eq. (B.11). (b) and (c): 𝐷𝑦/𝜏 as a function of tilt 𝜏

for the second and third Landau levels in the valence band respectively. Solid lines

represent results from solving the impurity states numerically, while dashed lines are

generated using the analytic formula in Eq. (B.12). For small enough tilt such that

the first-order perturbation theory is sufficient, it is shown that the analytic result

complies with the numerical calculation. Note that the figures here show the analysis

for Landau levels in the valence band (𝑛 < 0), which differ from the situation in the

conduction band (𝑛 > 0) simply by a minus sign in the dipole.

B.1.5 Differences in the two notions of electric dipole moment

To further clarify the difference between the adiabatic bulk dipole moment (following

the modern theory of polarization) and the impurity dipole moment Dimp introduced
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in this paper, we consider a toy model with a parabolic dispersion:

𝐻 =
(𝑝𝑥 − 𝑎𝑥)

2

2𝑚𝑥

+
𝑝2𝑦
2𝑚𝑦

(B.1)

The parameter 𝑎𝑥 plays a similar role as the tilt 𝛿𝑣𝑥 in the Dirac Hamiltonian.

Now, apply a magnetic field 𝐵𝑧 on the system. Denote a Landau orbital as |𝜓⟩

for 𝑎𝑥=0, and the corresponding Landau orbital when 𝑎𝑥 is tuned from zero to some

finite value as |𝜓⟩̃ . According to the polarization theory based on Berry phase, the

difference of polarization between these two Landau orbitals is:

∆𝐷𝑦 = −𝑒𝑙2[⟨𝜓|˜ 𝑝𝑥 |𝜓⟩̃ − ⟨𝜓| 𝑝𝑥 |𝜓⟩]

= −𝑒𝑙2[⟨𝜓|˜ 𝑝̃𝑥 + 𝑎𝑥 |𝜓⟩̃ − ⟨𝜓| 𝑝𝑥 |𝜓⟩]

= −𝑒𝑙2[⟨𝜓|˜ 𝑝̃𝑥 |𝜓⟩̃ − ⟨𝜓| 𝑝𝑥 |𝜓⟩+ 𝑎𝑥]

= −𝑎𝑥
𝐵

(B.2)

The last equality is obtained because 𝑝̃𝑥 = 𝑝𝑥 − 𝑎𝑥 is just a gauge transformation,

while the expectation value ⟨𝜓| 𝑝𝑥 |𝜓⟩ should be gauge-invariant.

However, this dipole moment does not reflect the inversion asymmetry of the

Landau orbital. In this example, there is simply no inversion asymmetry to begin

with, and this can be verified if one examine Dimp = 𝑒⟨𝜑|r|𝜑⟩, for the Landau orbital

bound to a delta-potential impurity. By a proper gauge transformation, one can move

the center of unperturbed Landau orbitals to the impurity site, irrespective of what

𝑎𝑥 is. After all, the presence of 𝑎𝑥 can be viewed as a gauge-transformation. In the

presence of a delta-function impurity, only one state in each Landau level is bound

to the impurity. That is the state 𝜑𝑛,𝑛, which has a non-zero amplitude at the origin

where the impurity sits. As this state is inversion symmetric, and the perturbation

(i.e. the delta potential) preserves this symmetry, the bound state should also be

inversion symmetric. Thus Dimp = 0.

In this extreme example, which can be considered as the parabolic limit (𝜆→ ∞)

of the Dirac Hamiltonian, D measures solely the effect of Landau orbital displace-
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ment, which cannot be detected in a quantum Hall system due to edge screening. On

the other hand, Dimp measures only the inversion asymmetry of Landau orbitals, and

therefore gives a local experimental signature for quantum Hall ferroelectrics.

B.1.6 Numerical Setup of Exact Diagonalization

Anisotropic parabolic dispersions

To exact-diagonalize the Hamiltonian with Coulomb interaction, one has to project

the Coulomb term onto the Landau orbitals. In the main text, we deal with Landau

levels arising from the tilted Dirac cones dispersion, while in this appendix we will

also consider the case with parabolic dispersion. The parabolic case is the cornerstone

for case with tilted Dirac cones dispersion, since the Dirac Landau orbitals are spinors

consisting of parabolic Landau orbitals. The parabolic dispersion Hamiltonian is:

𝐻 =
1

2𝑚*𝑝𝑎𝑔𝑎𝑏𝑝𝑏 =
1

𝑙2𝐵𝑚
* (𝑎

†𝑎+
1

2
) (B.1)

where 𝑝 = ∇/𝑖 − 𝑒𝐴, 𝑔 = 𝑄𝑇𝑆2𝑄 is a 2 × 2 tensor, 𝑄 ∈ 𝑆𝑂(2) describes the

rotation around principal axes in real space, the valleys we are interested in are vertical

oriented, so we can set the real space axes along the principal axes of rotation, thus

𝑄 = 𝐼, and simply 𝑔 = 𝑆2. 𝑆 = 𝑑𝑖𝑎𝑔{(𝑚𝑥/𝑚𝑦)
1/4(𝑚𝑦/𝑚𝑥)

1/4} is the mass tensor for

the valley , effective mass 𝑚* = (𝑚𝑥𝑚𝑦)
1/2. We introduce the mass ratio: 𝛼 = 𝑚𝑥/𝑚𝑦

that specifies aspect ratio of the valley. The rescaled momenta along the principal

axes of the tensor 𝜋𝑎 = 𝑆𝑎𝑏𝑝𝑏 satisfy:

[𝜋𝑎, 𝜋𝑏] = 𝑖𝑙−2
𝐵 𝜖𝑎𝑏 (B.2)

and the LL lowering operator is:

𝑎 =
𝑙𝐵√
2
(𝜋𝑥 + 𝑖𝜋𝑦), [𝑎, 𝑎†] = 1 (B.3)
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Numerically, the electrons are on the 2D surface of torus, 𝐿𝑥(𝐿𝑦) represents the

circumference of the torus along 𝑥(𝑦) direction and they satisfy relation 𝐿𝑥𝐿𝑦 = 2𝜋𝑁0,

𝑁0 represents the number of orbitals for each valley.

Choosing the Landau gauge, 𝐴⃗ = (0, 𝑥)𝐵, the wavefunction of LL orbital is ex-

pressed as:

𝜑𝛼
𝑛,𝑗(𝑟) =

(︂
2𝜋

𝐿𝑦𝑙𝐵

)︂1/2

Σ+∞
𝑘=−∞𝐻𝑛

[︂
𝑥− 𝑘𝐿𝑥 −𝑋𝑗

𝛼1/4𝑙𝐵

]︂
× exp[𝑖(𝑋𝑗 + 𝑘𝐿𝑥)𝑦/𝑙

2
𝐵 − (𝑋𝑗 + 𝑘𝐿𝑥 − 𝑥)2/(2𝛼1/2𝑙2𝐵)]

(B.4)

where 𝑋𝑗 =
2𝜋𝑙20𝑗

𝐿𝑦
to fulfill the periodic boundary condition, 𝐻𝑛 is the physicist’s

Hermite polynomial that has been normalized so that:

∫︁ +∞

−∞

(︀
𝐻𝑛(𝑥)

)︀2
𝑒−𝑥2

𝑑𝑥 = 1 (B.5)

With 𝜑𝛼
𝑛,𝑗(𝑟) normalized as

∫︀ 𝐿𝑦

0
𝑑𝑦
∫︀ 𝐿𝑥

0
𝑑𝑥|𝜑𝛼

𝑛,𝑗(𝑟)|2 = 2𝜋, when a Landau level is

completely filled and thus the electron density is uniformly distributed,
∫︀ 𝐿𝑦

0
𝑑𝑦
∫︀ 𝐿𝑥

0
𝑑𝑥
∑︀

𝑗 |𝜑𝛼
𝑛,𝑗(𝑟)|2 =

2𝜋𝑁0 = 𝐿𝑥𝐿𝑦 would then imply
∑︀

𝑗 |𝜑𝛼
𝑛,𝑗(𝑟)|2 = 1.

Next, we define 𝑓𝑛𝑚 as the form factor for the parabolic Landau levels calculated

in the Landau gauge:

𝑓𝑛𝑚(q𝛼) = ⟨𝑛, 𝛼|𝑒𝑖𝑙2𝐵q𝛼·𝜋|𝑚,𝛼⟩

= 𝑒−𝑙2𝐵(𝑞𝛼𝑦 )
2/4

∫︁ +∞

−∞
𝐻𝑚(𝑥−

𝑞𝛼𝑦
2
)𝐻𝑛(𝑥+

𝑞𝛼𝑦
2
)𝑒−𝑥2

𝑒𝑖𝑞
𝛼
𝑥𝑥𝑑𝑥

(B.6)

where the wavevector q𝛼 is not the natural wavevector q but rotated as

q𝛼 = −𝑆−1𝜖q (B.7)

where 𝜖 is the rank-2 levi-civita symbol, 𝑄 and 𝑆 are the matrices associated with

the mass ratio 𝛼. This definition will become clear later when we project the electron

interaction on the LLs.
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Tilted Dirac cone dispersion

The massless Dirac Hamiltonian is just Eq. (B.1) with 𝜆 = 0. Similar to the case with

a parabolic Hamiltonian in Eq. (B.1), here we would define 𝑆 = 𝑑𝑖𝑎𝑔{(𝑣𝑥/𝑣𝑦)1/2, (𝑣𝑦/𝑣𝑥)1/2}

and rescale the momentum by 𝜋𝑎 = 𝑆𝑎𝑏𝑝𝑏, which explains Eq. (B.2). One can relate

the mass ratio 𝛼 in the anisotropic parabolic dispersion and velocity ratio 𝑟 = 𝑣𝑥/𝑣𝑦

in the Dirac dispersion as: 𝛼 = 𝑟2.

Tilting of the Dirac cone along the 𝑥-direction is described by the following per-

turbation:

𝐻1 = 𝛿𝑣𝑥𝑝𝑥 = 𝛿𝑣𝑥

√︂
𝑣𝑦
𝑣𝑥

(𝑎+ 𝑎†)√
2𝑙𝐵

= 𝜏

√
2𝑣

𝑙𝐵
(𝑎+ 𝑎†) (B.8)

where 𝜏 = 𝛿𝑣𝑥/(2𝑣𝑥). Using the general expression for the tilted Dirac LL in Eq.

(B.6), we have the following expression for the 𝑛 = +3 Dirac Landau level:

|+ 3, 𝜏⟩ = 1√
2

⎛⎝|3⟩+ 𝜏(−4
√
3|4⟩+ 5|2⟩)

|2⟩+ 𝜏(2
√
6|1⟩ − 7|3⟩)

⎞⎠ (B.9)

Here, for simplicity, we have suppressed the intra-Landau level indices and the mass

ratio 𝛼 that would label the parabolic Landau orbitals. The form factor for the Dirac

Landau level is then obtained as follows:

𝐹 3(q𝛼, 𝜏) = ⟨+3, 𝜏 |𝑒𝑖𝑙2𝐵q𝛼·𝜋|+ 3, 𝜏⟩

=
1

2
[𝑓33 + 𝑓22 − 2𝜏(𝑓32 + 𝑓23)− 4

√
3𝜏(𝑓34 + 𝑓43) + 2

√
6𝜏(𝑓12 + 𝑓21)]

(B.10)

where 𝑓𝑛𝑚 is the form factor for the parabolic Landau levels (Eq. B.6).
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Impurity potential

The impurity potential is 𝑈(r) = 𝑉0𝑙
2
𝐵𝛿(r). The matrix elements of impurity potential

projected to the 𝑛-th and 𝑚-th parabolic Landau levels are:

𝑈𝛼
𝑗1,𝑗2,𝑛,𝑚

= 𝑉0
2𝜋𝑙𝐵
𝐿𝑦

Σ+∞
𝑙=−∞Σ+∞

𝑘=−∞𝐻𝑛

[︂
𝑋𝑗1 + 𝑙𝐿𝑥

𝑙𝐵𝛼1/4

]︂
×𝐻𝑚

[︂
𝑋𝑗2 + 𝑘𝐿𝑥

𝑙𝐵𝛼1/4

]︂
𝑒
−

(𝑋𝑗1
+𝑙𝐿𝑥)2+(𝑋𝑗2

+𝑘𝐿𝑥)2

2𝑙2
𝐵

√
𝛼

(B.11)

In the parabolic dispersion case, one only need to consider the case 𝑛 = 𝑚, and in

the main text we focus on the lowest Landau level, so 𝑛 = 𝑚 = 0; on the other hand,

in the tilted Dirac case there exist non-trivial terms with 𝑛 ̸= 𝑚, the impurity matrix

elements ⟨+3, 𝜏 |𝑈̂(r)| + 3, 𝜏⟩𝑗1,𝑗2 are linear combinations of 𝑈𝑗1,𝑗2,𝑛,𝑚 with 𝑛,𝑚 =

1, 2, 3, 4, which is similar to the form factor in Eq. (B.10).

Coulomb interaction

The Coulomb interaction in a finite system has the form

𝑉 (r) =
1

𝐿𝑥𝐿𝑦

∑︁
q

𝑉 (𝑞)𝑒𝑖q·r (B.12)

where 𝑉 (𝑞) = 2𝜋𝑒2

𝜖𝑞
, for finite size torus with the circumference 𝐿𝑥 and 𝐿𝑦. Here

q = (2𝜋𝑠
𝐿𝑥
, 2𝜋𝑡
𝐿𝑦

) takes discrete values to ensure the periodicity.

The projected Coulomb interaction between two electrons in the valleys 𝑖 and 𝑗

(𝑖, 𝑗 can either be the same valley or two different valleys) into the 𝑛-th Landau level

has the form:

𝑃𝑛𝑉 (r𝑖 − r𝑗)𝑃𝑛 =
1

𝐿𝑥𝐿𝑦

∑︁
q

𝑉 (q)𝐹 𝑛
𝑖 (q𝑖)𝐹

𝑛
𝑗 (q𝑗)

*𝑒𝑖q·(R𝑖−R𝑗) (B.13)

Here we have introduced the guiding center operator R𝑖 for valley 𝑖, which is related

to the position operator as follows:

r𝑖 ≡ R𝑖 − 𝑙2𝐵𝜖p𝑖 = R𝑖 − 𝑙2𝐵𝜖𝑆
−1
𝑖 𝜋𝑖 (B.14)
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where 𝜖 is the rank-2 levi-civita symbol and 𝑆𝑖 is the 𝑆 tensor associated to valley 𝑖,

which has been defined earlier for both parabolic and Dirac dispersions. Accordingly,

wavevector q𝑖 is defined as:

q𝑖 = −𝑆−1
𝑖 𝜖q (B.15)

For the numerical results presented in the main text, the valleys have the same ve-

locity ratio 𝑟 (or mass ratio 𝛼 = 𝑟2) and opposite 𝜏 . Thus we have q𝑖 = q𝑗 =

q𝛼, 𝐹 𝑛
𝑖/𝑗(q

𝛼) = 𝐹 3(q𝛼,±𝜏). While for the numerics to be presented in the next sec-

tion for anisotropic parabolic dispersion at 𝑛 = 0 LL, different valleys have different

mass ratio 𝛼 and 𝛽, where 𝛽 = 1
𝛼

for the two orthogonal-orientated valleys of interest.

There we have q𝑖/𝑗 = q𝛼/𝛽, and 𝐹 𝑛
𝑖/𝑗 = 𝑓00.

B.1.7 Quantum Hall Nematics with Anisotropic Parabolic Dis-

persions

After considering electron-electron interaction in ferroelectric states in the main text,

here we illustrate a simpler scenario where the anisotropic parabolic dispersion is used

so that the impurity only hosts a single bound state. The two valleys A and B are

parabolic dispersive with the same aspect ratio, but vertical elliptical axes, meaning

that if we choose the principal axes along the same direction for two valleys, there

mass ratio will satisfy 𝛼 = 1
𝛽
. A smaller system size with 𝑁0 = 20 single-valley

orbitals is enough to demonstrate this case. The corresponding energy spectra with

disorder are shown in Fig. B-3, and some representative tunneling density profiles

are shown in Fig. B-4, with various mass ratios. Again, just like what happens in the

ferroelectric state around an impurity, when the impurity potential is larger than a

certain threshold a quasihole state becomes the new ground state. Adding an electron

to this state would lead to an exciton state, and the resulting density profile can be

captured by STM measurements.
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Figure B-3: The energy spectra with increasing impurity potentials, as indicated in

the legend, blue lines represent {𝑁0, 0}, red lines {𝑁0, 1}, orange lines {𝑁0 − 1, 0},

purple lines {𝑁0 − 1, 1} and green lines {𝑁0 − 2, 0}. The mass ratios(𝛼 = 𝑚𝑥/𝑚𝑦) in

panels (a),(b),(c),(d) are 1, 2, 4, 8, respectively. The orbital number 𝑁0 = 20.

Figure B-4: The tunneling matrix elements from the ground state {𝑁0 − 1, 0} to the

excitonic state {𝑁0 − 1, 1} for different mass ratio: 𝛼 = 2 in (a, b) and 𝛼 = 8 in

(c,d), which are proportional to the differential conductance obtained by direct STM

measurements. The strength of impurity potential is set to be 0.6 𝑒2

2𝑙2𝐵𝑁0
and the length

scale is in the unit of 𝑙𝐵.

149



150



Appendix C

Appendices of Chapter 5

C.1 Angel dependent lattice structures for twisted

homobilayer MoS2

We have discussed the lattice relaxation from DFT simulation in the main text and

given the twist angle dependence of layer distance 𝑑𝑓𝑎𝑟 and 𝑑𝑛𝑒𝑎𝑟 at MM and MX(XM)

region, respectively. In the moiré superlattice, the vertical layer spacing of the metallic

atom as a function of the inplane coordinate 𝑑(r) can be obtained from the zeroth

and first Fourier expansion with the two-dimensional reciprocal lattice vectors G𝑚
𝑗 in

the lateral cell:

𝑑(r) = 𝑐0 + 𝑐1

3∑︁
𝑗=1

{︀
cos
(︀
G𝑚

𝑗 r
)︀}︀

(C.1)

We have 𝑐1 for three reciprocal lattice vectors due to the 𝐶3𝑧 in the moiré superlattice.

Here we expand from the MM region so that 𝑑(0) = 𝑑𝑓𝑎𝑟, 𝑑(𝑟MX) = 𝑑𝑛𝑒𝑎𝑟.

We first optimize the structures of heterobilayer with relatively large twist angles

from 7.34∘ to 2.876∘. At infinite wavelength limit 𝜃 ∼ 0, the spatial variation of layer

spacing can be extracted for the shifted configuration in the untwisted bilayer. Then

the Fourier coefficients 𝑐0, 𝑐1 can be calculated from relaxed structures at a series of

twist angles. We find that 𝑐0 ≈ 6.19 Angstroms for 𝜃 < 5, and 𝑐1 is monotonously

151



increasing when 𝜃 is reduced as shown in Table C.1

𝜃 0∘ 2.876∘ 3.15∘ 3.48∘ 3.89∘ 4.41∘ 5.08∘ 6.0∘ 7.34∘

𝑐0 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.20 6.23

𝑐1 0.073 0.069 0.068 0.067 0.064 0.061 0.058 0.056 0.049

𝐿𝑚 ∞ 63.5 58.0 52.5 47.0 41.4 35.9 30.4 24.9

𝑁𝑚 ∞ 2382 1986 1626 1302 1014 762 546 366

Table C.1: Fourier coefficients 𝑐0, 𝑐1 (in Angstroms) for inplane coordinate dependent
vertical layer spacing, moire wavelength 𝐿𝑚 (in Angstroms) and the number of atoms
𝑁𝑚 in the commensurate structures.

We can further fit the expression of Fourier coefficients 𝑐0, 𝑐1 from discrete twist

angles to approximate the out-of-plane corrugation at a general twist angle. This

expression for lattice structures can be used to perform more realistic atomic tight-

binding simulation [142, 141].

C.2 Density functional theory calculation

Density functional calculations are performed using Perdew-Burke-Ernzerhof gen-

eralized gradient approximation[195] with the vdW correction incorporated by the

vdW-DF (optB86) functionals [146] as implemented in the Vienna Ab initio Simula-

tion Package[147]. Pseudopotentials are used to describe the electron-ion interactions.

We have calculated eight commensurate structures with twist angle from 7.34∘ with

366 atoms to 2.876∘ with 2382 atoms, for the band structure after lattice relaxation.

In bilayer MoSe2 and WS2, the valence band maximum also locates at Γ point

[138]. As presented in the previous DFT work [138], the valence band maximum at

MX (XM) is higher than MM region in both MoSe2 and WS2, which means that the

antibonding orbitals at MX and XM form an emergent honeycomb lattice [140] as the

twisted MoS2 investigated in this work. While in twisted bilayer WSe2, the valence

band maximum locates at 𝐾 valley due to the large spin splitting up to 466 meV

[196].
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C.3 Field tunable charge transfer gap

In this section, we present the gating field dependent charge transfer gap at the

long wavelength region. In Fig. C-1 for 𝜃 = 2∘ with wavelength 𝐿𝑚 = 9.1 nm,

the bandwidth without field is 13 meV. The gating filed 𝐸𝑑 = 1 V/nm creates a

charge transfer gap ∆ up to 5.3 meV, which means that the critical ∆𝑐 for the phase

transition at 𝑛 = 1/2, 2/3 can be reached experimentally already at 𝐿𝑚 = 9.1 nm.

We plot the continuum band structure at 𝜃 = 2∘ with 𝐸𝑑 = 0.5 V/nm in Fig.

C-1b, where the charge transfer gap is comparable as the than the bandwidth of top

moiré band. At 𝑛 = 1, the large onsite interaction 𝑈 > ∆ gives rise to a charge

transfer insulator.

C.4 Interaction strength under gate screening

In the deep potential limit, the size of Wannier orbital 𝜉 is much smaller than the

moiré periodicity and the point charge approximation is used to calculated extended

interaction 𝑉 (𝑟) screened by a pair of metallic gates with distance ±𝑑:

𝑉 (𝑟) =
𝑒2

𝜖

∑︁
𝑧∈Z

(−1)𝑧√︀
𝑟2 + (2𝑑𝑧)2

(C.2)

Here the unit is 𝑒2

𝜖𝐿M
= 1440

𝜖(𝐿𝑚/𝑛𝑚)
meV, and we take dielectric constant as 𝜖 = 5. At

𝑟 ≫ 𝑑, the Coulomb interaction 𝑉 (𝑟) decays exponentially as shown in Fig. C-2a.

C.5 Monte Carlo simulation for ground state charge

order

Classical Monte Carlo (MC) simulation with Metropolis transition rule is performed

at 𝑁 ×𝑁 honeycomb lattice with periodic boundary conditions. To avoid the trun-

cation problem, we drop the long-range interaction 𝑉𝑛 only when 𝑉𝑛 < 0.001𝑉1.

A single step MC move is generated by removing an occupied charge and add an
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Figure C-1: (a)Gating field dependent charge transfer gap ∆, bandwidth for the top
moiré band 𝐸𝑤 and bandwidth of two moiré bands of the honeycomb lattice 𝐸ℎ𝑤; (b)
Continuum model band structures for 𝜃 = 2∘ and gating field 𝐸𝑑 = 0.5 V/nm.

unoccupied charge randomly, the acception rate is determined from the Metropolis

transition rule. We test Coulomb interactions with various screening gate distances:

𝑑 = 1/2𝐿𝑚, 𝐿𝑚, 2𝐿𝑚, 4𝐿𝑚, 5𝐿𝑚, 6𝐿𝑚, 10𝐿𝑚. It is found that screening distance only

changes the ground state charge order at 𝑛 = 1/4 but not at other fillings. How-

ever, we note that a smaller gate distance would reduce the critical charge transfer

gap for phase transition at fixed filling ∆ = 1/2, 2/3, and therefore can control the

sublattice/layer charge distribution.

As we are interested in the ground state charge distribution, we perform the

cooling down from 𝑇 = 𝑒2

𝜖𝐿𝑚
to 𝑇 = 10−4 𝑒2

𝜖𝐿𝑚
to avoid the possible trapped states at

the local minimum. At every temperature, 1𝑒4 *𝑁 *𝑁 local updates are performed

as warm-up steps. When reaching at 𝑇 = 10−4 𝑒2

𝜖𝐿𝑚
, 1𝑒6 * 𝑁 * 𝑁 sampling steps are

taken to identify the lowest energy configuration.

To identify the lowest energy ground state charge patterns, we perform the simu-

lations with system size 𝑁 from 30 to 120, and compare their lowest energy charge

patterns. At 𝑛 = 1/4, 1/3 and 1, charges are spontaneously polarized to one sublat-

tice site even at ∆ = 0. While at 𝑛 = 1/2 and 2/3, we find two sublattice sites are

equally occupied. To locate the critical charge transfer gap ∆𝑐 for the fully sublattice

polarized state, we perform MC simulations with varying ∆. The exact expression

of ∆𝑐 can be also obtained by comparing ∆ = 0 charge order and fully sublattice

polarized charge order. These two values are found to be consistent.
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Figure C-2: (a) Interaction within two sublattice sites, and Nth neighbour interaction
strength in the unit of 𝑒2

𝜖𝐿𝑚
with gate screening distance 𝑑 = (1/2, 1, 2, 4, 10)𝐿𝑚.

Ground state charge order at filling (b) n=1/4 with gating distance 𝑑 < 5𝐿𝑚 and
𝑑 > 5𝐿𝑚 (c) n=1 with 𝑉1 − 𝑉2 model and long range interaction.

C.6 Charge orders at n=1/4, 1/3 and 1

At filling factor 𝑛 = 1/4, the charges are all filled to one sublattice site, forming the

enlarged triangular lattice with 2 × 2 periodicity up to 𝑑 < 5𝐿𝑚. For 𝑑 > 5𝐿𝑚, the
√
3 × 2 rectangular configuration appears to be the ground state as shown in Fig.

C-2b. The phase transition between these two charge orders can be realized also in

the previous WSe22/WS2 heterobilayer.

At filling factor 𝑛 = 1/3, we find the ground state as a charge density wave

state with
√
3 ×

√
3 periodicity for all gate distances as the case in WSe22/WS2

[132, 134]. We note that even in the honeycomb lattice with equal site potential, the

classical ground state charge orders at 𝑛 < 1/2 break the sublattice symmetry and

spontaneous filled to one sublattice site. When the out of plane gating field is applied
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to the superlattice, the tiny potential difference between two sites would stabilize the

proposed sublattice-symmetry breaking insulating states.

At 𝑛 = 1, it has been shown that the system favors fully sublattice polarized states

even at ∆ = 0 for all studied gate distances. We further analyze the possible charge

order at 𝑛 = 1 involving two honeycomb sites. The microscopic phase separation

with broken rotational symmetry in Fig. C-2c can be the ground state in the 𝑉1 −𝑉2

model with 𝑉1 < 4𝑉2, which happens at the strong screening.
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