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Abstract
The field of machine learning has witnessed a growing interest in learning from un-
curated data, which involves training models from data that has not been carefully
curated or labeled. However, this type of data is typically noisy, incomplete, and
riddled with errors, making it challenging for machine learning algorithms to learn
effectively. This thesis focuses on the development of robust learning methods that
can effectively leverage uncurated data while being resilient to the inherent noise and
errors in the data. Specifically, we investigate the robustness of contrastive learn-
ing, a prominent technique for self-supervised representation learning by contrasting
semantically similar and dissimilar pairs of samples.

Firstly, we delve into the fundamental challenge inherent in learning from unla-
beled data. We find that eliminating false negatives and encouraging hard negatives
notably enhance downstream performance and training efficiency.

Subsequently, we shift our focus to the omnipresent noise within the dataset.
We pay particular attention to the emergence of false positive pairs, a phenomenon
particularly prevalent in multimodal contrastive learning settings.

In the final segment of our study, we contemplate the efficient eradication of
biases from large-scale models. It is observed that, when models are pretrained on
biased, uncurated data, they frequently inherit numerous inappropriate biases, which
consequentially lead to skewed predictions. In an effort to rectify this, we devise a
debiasing algorithm that operates independently of any data or training requirements.

Throughout the dissertation, the common thread tying these three components
together is a robust and comprehensive approach to mitigating the unique error types
associated with unlabeled, noisy, and biased data respectively, offering substantial
contributions to the realm of machine learning research.

Thesis Supervisor: Stefanie Jegelka
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Machine learning has made significant progress in recent years, particularly in the area

of supervised learning where models are trained on labeled data. However, obtaining

large amounts of labeled data can be a costly and time-consuming process, which has

led to increasing interest in learning from uncurated data.

Uncurated data refers to data that has not been carefully curated or labeled, and

is often noisy, incomplete, and contains errors. Learning from such data presents a

significant challenge to machine learning algorithms, as they must be able to effec-

tively leverage the available information while being resilient to the inherent noise

and errors. This thesis is concerned with the following fundamental goal:

Robust learning algorithms that can learn from uncurated data.

To achieve the goal, I analyze contrastive learning, a prominent technique for self-

supervised representation learning through the comparison of semantically similar

and dissimilar sample pairs [24, 81, 147]. Traditionally, supervised learning has been

the cornerstone of progress in artificial intelligence (AI), relying on large quantities

of labeled data to train models. However, the process of collecting and labeling such

vast amounts of data can be costly and time-consuming. Moreover, in real-world

applications, labeled data may often be scarce or even unavailable. To overcome

these obstacles, researchers have turned to unsupervised and self-supervised learning

techniques that leverage unlabeled data to train models. Yet, these techniques have
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Figure 1-1: Problems of uncurated data. The uncurated data is often unlabeled,
meaning it lacks explicit annotations for supervised learning. Moreover, the data can also
be noisy, containing errors, outliers, or irrelevant information that can negatively impact
performance. Lastly, the data can be biased, reflecting the inherent biases in the data
sources, which, if not appropriately addressed, can lead to skewed model predictions and
perpetuate existing inequalities or prejudices.

often lagged behind supervised methods in performance, primarily due to the difficulty

in defining an objective that guides the model towards useful representations.

This is where contrastive learning enters the picture. By setting the objective to

pull together semantically similar (positive) and dissimilar (negative) pairs of data

points in a learned feature space, contrastive learning offers a way to construct use-

ful and informative representations from unlabeled data. The power of contrastive

learning has been demonstrated in several areas, including computer vision, natu-

ral language processing, graph representation learning, and reinforcement learning,

achieving state-of-the-art performance in many benchmarks.

1.1 Challenges of Uncurated Data

While the framework of contrastive learning undeniably presents a promising avenue

for harnessing the untapped potential of uncurated data, it is not without its set of

unsolved complexities. The application of contrastive learning methodologies to raw,

unfiltered data sources uncovers a myriad of challenges that remain unresolved and

necessitate further research and innovation within this discipline. In this disserta-

tion, my primary objective revolves around the development and implementation of

strategies aimed at attenuating the errors associated with three specific types of data:

unlabeled data, noisy data, and biased data.

26



Unlabeled Data Without access to the labels, the negative pairs are often chosen

via a heuristic way. This introduces several key challenges in the context of contrastive

learning. A significant disadvantage is the risk of encountering false negatives. A

false negative occurs when a positive instance, i.e., a sample that should have been

drawn closer to the target sample in the representation space, is mistakenly treated

as a negative instance and pushed away. This can lead to the model developing a

distorted representation of the data, which can affect downstream tasks that depend

on these representations.

Similarly, the heuristic selection process can overlook hard negatives, which are

negative instances that are hard to distinguish from positive ones. Hard negatives

are crucial for improving the model’s ability to discern subtle differences between

different classes or types of data. When these are overlooked, the model may become

overly generalized and less sensitive to critical dissimilarities, potentially decreasing

its discriminative power.

Noisy Data Lastly, the issue of false positives poses another challenge. False pos-

itives emerge due to the systematic noise of the sampling process or the collection of

pair data. These are instances that, despite being negative, are incorrectly treated as

positive ones, leading to them being pulled closer to the target instance in the rep-

resentation space. This erroneous pairing can blur the boundaries between different

classes or clusters, making it more challenging for the model to accurately distinguish

between them.

The challenge of mitigating the impact of noisy positive pairs in the framework

of contrastive learning is significantly exacerbated within multimodal contexts, ex-

emplified particularly in vision-language tasks. In the paradigm of large-scale vision-

language training, for instance, the deployment of training models is often reliant on

image-caption pairings, which are predominantly collated from the expansive Internet

environment.

Given the vastness and inherent noise present in this environment, such pairings

are inevitably plagued by noise, thus presenting a substantial complication to the
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accuracy and efficiency of the learning process. Therefore, it becomes paramount

to formulate robust methodologies and techniques to mitigate the effects of noisy

data within this large-scale context. This issue of noise within the vast scale of the

training setting highlights an urgent requirement for the development of more refined

and noise-resistant models and learning strategies.

Biased Data Furthermore, the biases present in the collection of large-scale mul-

timodal dataset processes pose another significant challenge. When positive pairs

are collected from the internet, they often contain societal, cultural, or other types

of inappropriate biases that reflect the inherent prejudices of the data sources. The

danger here is that contrastive learning models can inadvertently learn and perpetu-

ate these biases if they are present in the training data. Such biases can negatively

affect the performance of the model and lead to unfair or unbalanced outcomes when

the model is deployed in real-world applications.

As an example, in Chapter 7, we highlight several foundational models like Stable

Diffusion [164] and CLIP [159] which, despite their sophisticated architecture and

mechanisms, are not immune to detrimental predictive biases, encompassing gender

and racial dimensions among others.

These instances underline the critical necessity for meticulous and ethically sound

data curation practices. Alongside this, it also underscores the imperative for de-

veloping efficient de-biasing techniques within the pipeline of contrastive learning.

The presence of such biases in prediction results not only impacts the model’s per-

formance but also raises significant ethical and societal considerations, which, if left

unaddressed, can lead to potentially harmful real-world implications.

Therefore, our research places a significant emphasis on the exploration and ad-

vancement of data handling and model training practices that can effectively minimize

the influence of such biases and ensure the deployment of more accurate, equitable,

and socially responsible predictive models in the field of contrastive learning.
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1.2 Outline

This thesis addresses the aforementioned bottlenecks with three parts: Part I: learn-

ing from unlabeled data, Part II: learning from noisy data, and Part III: learning

from biased data.

In Part I, I address two key problems of the negative samples: false negative

samples and hard negative samples. We start by giving background in Chapter 2

on problem formulation and contrastive learning. In Chapter 3, which is based on

Chuang et al. [36], I address the problem of false negative samples with a new con-

trastive loss. Then in Chapter 4, based on Robinson et al. [163], we extend the

proposed loss with hard negative sampling estimated via importance sampling.

In Part II, I will unveil the problem of false positive samples, especially in the

multimodal setting and develop a robust loss function against it. In Chapter 5,

based on Chuang et al. [39], I relate contrastive learning to binary classification and

develop robust loss functions for contrastive loss. Chapter 6 provides a theoretical

justification of the proposed loss with a variational lower bound on Wasserstein mutual

information.

In Part III, I will discuss how to remove the biases in large-scale foundation models

based on Chuang et al. [40]. Chapter 7 provides an overview of the rise of foundation

models and proposes a debiasing algorithm to efficiently remove the biases of vision-

language foundation models.

Chapter 8 establishes a nexus between representation learning and generalization

theory using margin bounds, thereby offering a theoretical validation for contrastive

learning. As an epilogue, Chapter 9 summarizes the thesis along with some discus-

sions.

1.3 List of Publications

The contributions in this thesis mainly comprise work from the following publications

[36, 39, 40, 163]:
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• CY Chuang, J Robinson, L Yen-Chen, A Torralba, S Jegelka. Debiased con-
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negative samples. In Proceedings of the 9th International Conference on
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Generalization with Optimal Transport. Advances in Neural Information

Processing Systems, 2021.

• CY Chuang, RD Hjelm, X Wang, V Vineet, N Joshi, A Torralba, S Jegelka, Y

Song. Robust Contrastive Learning against Noisy Views. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2022.
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language Models via Biased Prompts. Preprint, 2023.

The following publications [34, 35, 37, 38, 41] are a part of my PhD research.

While these papers are strongly related to the thesis, they were left out to maintain

a clearer story:
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of the 37th International Conference on Machine Learning, 2020.
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Chapter 2

Foundations of Contrastive Learning

Learning good representations without supervision has been a long-standing goal of

machine learning. One such approach is self-supervised learning, where auxiliary

learning objectives leverage labels that can be observed without a human labeler.

The aim is to formulate learning tasks from the input data itself, making the process

of model training less reliant on human supervision, thus reducing time and cost.

This learning paradigm can discover intricate patterns and structures in the data,

leading to a richer and more generalized feature representation. This high-quality

representation is instrumental in enhancing the performance of downstream tasks

such as classification, regression, or decision making, where traditionally labeled data

would be required. For instance, in computer vision, representations can be learned

from colorization [225], predicting transformations [47, 146], or generative modeling

[25, 69, 101]. Remarkable success has also been achieved in the language domain

[45, 104, 128].

Recently, self-supervised representation learning algorithms that use a contrastive

loss have outperformed even supervised learning [24, 74, 80, 119]. The key idea of

contrastive loss is to contrast semantically similar (positive) and dissimilar (negative)

pairs of data points, encouraging the representations of similar pairs (x, x+) to be

close, and those of dissimilar pairs (x, x�) to be more orthogonal. Figure 2-1 provides

an illustration. In particular, contrastive loss is one of the earliest approaches used for

deep metric learning [32], where various variants such as triplet loss [169] and multi-
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Figure 2-1: Illustration of contrastive learning. The key idea of contrastive learning
is to contrast semantically similar (positive) and dissimilar (negative) pairs of data points,
encouraging the representations of similar pairs to be close, and those of dissimilar pairs to
be more orthogonal.

class N-pair loss are proposed [174]. In the current landscape of contrastive learning, a

loss function that has gained widespread acceptance is the InfoNCE loss, as proposed

by Oord et al. [147]. This approach takes its inspiration from the Noise Contrastive

Estimation (NCE), a method first introduced by Gutmann and Hyvärinen [73].

2.1 InfoNCE Loss

The fundamental innovation behind InfoNCE is its use of categorical cross-entropy

loss, a strategy that is effective in identifying the positive sample x+ among a set of

unrelated noise samples x�

i , commonly referred to as negative samples:

(InfoNCE Loss) Ex,x+,{x�
i }

N
i=1

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) +
PN

i=1 e
f(x)T f(x�

i )

#
. (2.1)

In practice, it’s common to draw negative samples, denoted as x�

i , uniformly from

the entirety of the training dataset. However, the strategy for deriving positive sam-

ples can significantly differ and is intrinsically tied to the unique characteristics of

the domain in question. Whether it’s computer vision, natural language processing,
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or reinforcement learning, the method of identifying and generating positive sam-

ples is thoughtfully adjusted to reflect the nature of the data and the task at hand,

demonstrating the adaptability of contrastive learning across diverse domains.

For instance, in computer vision, positive samples are often generated through

data augmentation techniques. For a given image, different augmented versions -

which could be transformations like rotation, scaling, color jittering, or cropping - of

the same image serve as positive samples because they maintain the inherent visual

information. Negative samples, on the other hand, typically come from other images

in the batch that are unrelated to the target image.

For natural language processing, positive samples might be derived by using differ-

ent sentences or phrases from the same document or contextually related documents,

assuming that these share semantic meaning. Alternatively, one can use different

embeddings of the same sentence (e.g., from different layers of a transformer model).

Negative samples could be sentences or phrases from different contexts, different doc-

uments, or even randomly sampled from the dataset.

In reinforcement learning, the process is a bit more complex due to the temporal

dimension of the data. Positive samples might come from the same or similar episodes

or trajectories, as they share a similar series of actions and rewards. Negative samples,

conversely, could be different episodes, different trajectories, or instances where the

agent takes a different series of actions, leading to different outcomes.

Beyond single-modal contrastive learning, multimodal contrastive learning that

involves learning representations from data across multiple modalities, such as text,

images, audio, or video, has also gained significant attention. In this setting, positive

pairs usually consist of different modalities of the same instance, like an image and its

corresponding caption. Meanwhile, negative pairs could be different modalities from

unrelated instances. The objective is still to bring the positive pairs closer and push

negative pairs further apart in the learned representation space.
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2.2 Related Works

Contrastive approaches have become prominent in unsupervised representation learn-

ing [32, 74, 83]. InfoNCE [147] and its variants [24, 70, 81, 220] achieve state-of-the-art

across different modalities [12, 119, 120, 127, 132]. Modern approaches improve upon

InfoNCE in different directions. A major line of work focuses on modifying train-

ing mechanisms, e.g., appending projection head (SimCLR) [24], momentum encoder

with dynamic dictionary update (MoCo-v1/v2/v3) [27, 28, 81], siamese networks with

stop gradient trick (e.g., BYOL) [26, 70], and online cluster assignment [23].

Contrastive learning can be adopted to various domains with different strategies of

obtaining positive pairs. Examples in computer vision include random cropping and

flipping [147], or different views of the same scene [186]. Chen et al. [24] extensively

study verious data augmentation methods. For language, Logeswaran and Lee [119]

treat the context sentences as positive samples to efficiently learn sentence represen-

tations. Srinivas et al. [178] improve the sample efficiency of reinforcement learning

with representations learned via the contrastive loss. Computational efficiency has

been improved by maintaining a dictionary of negative examples [27, 80].

2.3 Bottlenecks of Contrastive Learning

Contrastive learning, despite its potential for greatly improving machine learning

tasks, faces significant drawbacks when dealing with negative samples. In particular,

two problems arise when we uniformly draw the negative samples from the dataset:

false negatives and easy negatives, as illustrated in Figure 2-2.

The problem of false negatives arises from the way negative samples are typically

selected. By default, these samples are drawn uniformly from the dataset, which

means that all examples have an equal chance of being chosen. However, the intrica-

cies of real-world data sets mean that certain negative examples could be semantically

similar to positive examples. False negatives can lead to a cascade of problems within

the model’s learning process. Mislabeling instances as dissimilar when they are, in
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f

f

x
x�

No useful learning signal

Figure 2-2: Problems of Uniform Negative Sampling. By default, the negative sam-
ple x� is uniformly at random from the training set, which implies that x� could be similar
to x. Uniform sampling also treats hard negatives and easy negatives equally, reducing
training efficiency.

fact, similar can result in the model developing a skewed understanding of the data.

This can cause the model to make erroneous predictions when encountering similar

examples in future tasks, resulting in reduced model performance and accuracy.

The second challenge relates to the model’s tendency to overlook hard negative

samples. Hard negatives are instances that, while dissimilar from the positive sample,

are difficult to distinguish due to subtle differences. For example, images of two

different dog breeds could act as hard negatives for each other due to their close

visual resemblance despite belonging to different classes.

The issue with the uniform selection process is that it doesn’t account for the

complexity of these hard negatives. As a result, these samples can end up being un-

derrepresented in the learning process. This is a significant limitation, as encounter-

ing and learning from these challenging examples is crucial for improving the model’s

robustness and ability to generalize to new, unseen data.

In the next two chapters, we will introduce new contrastive losses that elegantly

address the aforementioned problems without significantly modifying the training

pipeline.
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Chapter 3

False Negative Samples

Much research effort has addressed sampling strategies for positive pairs, and has

been a key driver of recent progress in multi-view and contrastive learning [11, 19,

24, 188, 210]. Surprisingly, the choice of negative pairs has drawn much less attention

in contrastive learning. Often, given an “anchor” point x, a “negative” x� is simply

sampled uniformly from the training data, independent of how informative it may be

for the learned representation.

But, this means it is possible that x� is actually similar to x, as illustrated in

Figure 3-1. This phenomenon, which we refer to as sampling bias, can empirically

lead to significant performance drop. Figure 3-2 compares the accuracy for learning

with this bias, and for drawing x�

i from data with truly different labels than x; we

refer to this method as unbiased (further details in Section 3.4).

However, the ideal unbiased objective is unachievable in practice since it requires

knowing the labels, i.e., supervised learning. This dilemma poses the question whether

it is possible to reduce the gap between the ideal objective and standard contrastive

learning, without supervision. In this chapter, we demonstrate that this is indeed

possible, while still assuming only access to unlabeled training data and positive

examples. In particular, we develop a correction for the sampling bias that yields a

new, modified loss which we call debiased contrastive loss.

The key idea underlying our approach is to indirectly approximate the distribution

of negative examples. The new objective is easily compatible with any algorithm
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Figure 3-1: “Sampling bias”: The com-
mon practice of drawing negative examples
x�i from the data distribution p(x) may re-
sult in x�i that are actually similar to x.

Negative Sample Size (N)

To
p-

1 
A

cc
ur

ac
y

Figure 3-2: Sampling bias leads to
performance drop: Results on CIFAR-
10 for drawing x�i from p(x) (biased) and
from data with different labels, i.e., truly
semantically different data (unbiased).

that optimizes the standard contrastive loss. Empirically, our approach improves

over the state of the art in vision, language and reinforcement learning benchmarks.

Our theoretical analysis relates the debiased contrastive loss to supervised learning:

optimizing the debiased contrastive loss corresponds to minimizing an upper bound

on a supervised loss. This leads to a generalization bound for the supervised task,

when training with the debiased contrastive loss.

3.1 Setup of Contrastive Learning

Contrastive learning assumes access to semantically similar pairs of data points (x, x+),

where x is drawn from a data distribution p(x) over X . The goal is to learn an embed-

ding f : X ! Rd that maps an observation x to a point on a hypersphere with radius

1/t, where t is the temperature scaling hyperparameter. Without loss of generality,

we set t = 1 for all theoretical results.

Similar to [8], we assume an underlying set of discrete latent classes C that repre-

sent semantic content, i.e., similar pairs (x, x+) have the same latent class. Denoting

the distribution over classes by ⇢(c), we obtain the joint distribution px,c(x, c) =

p(x|c)⇢(c). Let h : X ! C be the function assigning the latent class labels. Then

p+x (x
0) = p(x0|h(x0) = h(x)) is the probability of observing x0 as a positive example

for x and p�x (x
0) = p(x0|h(x0) 6= h(x)) the probability of a negative example. We
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assume that the class probabilities ⇢(c) = ⌧+ are uniform, and let ⌧� = 1� ⌧+ be the

probability of observing any different class.

Note that to remain unsupervised in practice, our method and other contrastive

losses only sample from the data distribution and a “surrogate” positive distribution,

mimicked by data augmentations or context sentences [24, 119]. We will provide a

more comprehensive analysis of positives in Chapter 5.

3.2 Problem of False Negative Samples

Intuitively the contrastive loss will provide most informative representations for down-

stream classification tasks if the positive and negative pairs correspond to the desired

latent classes. Hence, the ideal loss to optimize would be

LN
Unbiased(f) = Ex⇠p,x+

⇠p+x
x�
i ⇠p�x

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) + Q
N

PN
i=1 e

f(x)T f(x�
i )

#
, (3.1)

which we will refer to as the unbiased loss. Here, we introduce a weighting parameter

Q for the analysis. When the number N of negative examples is finite, we set Q = N ,

in agreement with the standard contrastive loss. However, p�x (x�

i ) = p(x�

i |h(x�

i ) 6=

h(x)) is not accessible in practice. The standard approach is thus to sample negative

examples x�

i from the (unlabeled) p(x) instead. We refer to the resulting loss as the

biased loss LN
Biased. When drawn from p(x) the sample x�

i will come from the same

class as x with probability ⌧+.

Lemma 3.1 shows that in the limit, the standard loss LN
Biased upper bounds the

ideal, unbiased loss.

Lemma 3.1. For any embedding f and finite N , we have

LN
Biased(f) � LN

Unbiased(f) + Ex⇠p

"
0 ^ log

Ex+⇠p+x
exp f(x)>f(x+)

Ex�⇠p�x
exp f(x)>f(x�)

#
� e3/2

r
⇡

2N
.

(3.2)

where a ^ b denotes the minimum of two real numbers a and b.
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Proof. I use the notation h(x, x̄) = exp f(x)>f(x̄) for the critic. We will borrow

Theorem 3.3 to prove this lemma. Setting ⌧+ = 0, Theorem 3.3 states that

E x⇠p
x+

⇠p+x


� log

h(x, x+)

h(x, x+) +NEx�⇠ph(x, x
�

i )

�

� E x⇠p
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i }
N
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h(x, x+)

h(x, x+) +
PN

i=1 h(x, x
�

i )

�
 e3/2

r
⇡

2N
.

Equip with this inequality, the biased objective can be decomposed into the sum

of the debiased objective and a second term as follows,

LN
Biased(f)

= E x⇠p
x+

⇠p+x
{x�

i }
N
i=1⇠pN


� log

h(x, x+)
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= LN
Debiased(f) + E x⇠p
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log

h(x, x+) + ⌧�NEx�⇠p�x
h(x, x�) + ⌧+NEx�⇠p+x

h(x, x�)

h(x, x+) + ⌧�NEx�⇠p�x
h(x, x�) + ⌧+NEx�⇠p�x

h(x, x�)

�

� e3/2
r

⇡

2N
.

If Ex�⇠p+x
h(x, x�) � Ex�⇠p�x

h(x, x�) then this expression can be lower bounded

by LN
Debiased(f) + log 1 = LN

Debiased(f). Else, if Ex�⇠p+x
h(x, x�)  Ex�⇠p�x

h(x, x�) we

can use the elementary fact that a+c
b+c � a

b for a  b and a, b, c � 0. Bringing these
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two possibilities together we conclude that

LN
Biased(f) � LN

Unbiased(f) + Ex⇠p

"
0 ^ log

Ex+⇠p+x
exp f(x)>f(x+)

Ex�⇠p�x
exp f(x)>f(x�)

#
� e3/2

r
⇡

2N
.

where we replaced the dumour variable x� in the numerator by x+.

Recent works often use large N , e.g., N = 65536 in [80], making the last term

negligible. While, in general, minimizing an upper bound on a target objective is a

reasonable idea, two issues arise here: (1) the smaller the unbiased loss, the larger is

the second term, widening the gap; and (2) the empirical results in Figure 3-2 and

Section 3.4 show that minimizing the upper bound LN
Biased and minimizing the ideal

loss LN
Unbiased can result in very different learned representations.

3.3 Debiased Contrastive Loss (DCL)

Next, we derive a loss that is closer to the ideal LN
Unbiased, while only having access

to positive samples and samples from p. Figure 3-2 shows that the resulting embed-

dings are closer to those learned with LN
Unbiased. We begin by decomposing the data

distribution as

p(x0) = ⌧+p+x (x
0) + ⌧�p�x (x

0).

This decomposition is inspired by Positive-Unlabeled (PU) learning, i.e., learning from

only positive (P) and unlabeled (U) data. Common applications of PU learning are

retrieval or outlier detection [49, 52, 105].

An immediate approach would be to replace p�x in LN
Unbiased with p�x (x

0) = (p(x0)�

⌧+p+x (x
0))/⌧� and then use the empirical counterparts for p and p+x . The resulting

objective can be estimated with samples from only p and p+x , but is computationally
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expensive for large N :
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where {x�

i }
j
i=k = ; if k > j. It also demands at least N positive samples. To give the

derivation of this claim, let
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We plug in the decomposition as follows:
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By the Binomial Theorem the product can be separated into N + 1 groups corre-

sponding to how many x�

i are sampled from p.
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In particular, the objective becomes
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Note that this is exactly Inclusion–exclusion principle.

3.3.1 Asymptotic Approximation

To obtain a more practical form, we consider the asymptotic form as the number N

of negative examples goes to infinity.

Lemma 3.2. For fixed Q and N ! 1, it holds that
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Proof. Since the contrastive loss is bounded, applying Dominated Convergence The-

orem completes the proof:
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Since p�x (x
0) = (p(x0)� ⌧+p+x (x

0))/⌧� and by the linearity of the expectation, we have

Ex�⇠p�x
ef(x)

T f(x�) = ⌧�(Ex�⇠p[e
f(x)T f(x�)]� ⌧+Ex�⇠p+x

[ef(x)
T f(x�)]),

which completes the proof.

The limiting objective equation 3.5, which we denote by eLDebiased, still samples

examples x� from p, but corrects for that with additional positive samples v. This

essentially reweights positive and negative terms in the denominator.

The empirical estimate of eLDebiased is much easier to compute than the straightfor-

ward objective equation 3.4. With N samples {ui}Ni=1 from p and M samples {vi}Mi=1

from p+x , we estimate the expectation of the secong term in the denominator as

g(x, {ui}Ni=1, {vi}Mi=1) = max
n 1
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NX
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We constrain the estimator g to be greater than its theoretical minimum e�1/t 

Ex�⇠p�x
ef(x)

T f(x�
i ) to prevent calculating the logarithm of a negative number. The

resulting population loss with fixed N and M per data point is

LN,M
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where, for simplicity, we set Q to the finite N . The class prior ⌧+ can be estimated

from data [33, 88] or treated as a hyperparameter. Theorem 3.3 bounds the error due

to finite N and M as decreasing with rate O(N�1/2 +M�1/2).

Theorem 3.3. For any embedding f and finite N and M , we have

���eLN
Debiased(f)� LN,M

Debiased(f)
��� 

e3/2

⌧�

r
⇡

2N
+

e3/2⌧+

⌧�

r
⇡

2M
. (3.8)

Empirically, the experiments in Section 3.4 also show that larger N and M con-
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sistently lead to better performance. In the implementations, we use a full empirical

estimate for LN,M
Debiased that averages the loss over T points x, for finite N , M .

Proof. In order to prove Theorem 3.3, which shows that the empirical estimate of the

asymptotic debiased objective is a good estimate, we first seek a bound on the tail

probability that the difference of the integrands of the asymptotic and non-asymptotic

objective functions. That is we wish to bound the probability that the following

quantity is greater than ",

� =

����� log
h(x, x+)

h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)
+ log

h(x, x+)

h(x, x+) +QEx�⇠p�x
h(x, x�)

����.

where we again write h(x, x̄) = exp f(x)>f(x̄) for the critic. Note that implicitly

� depends on x, x+ and the collections {ui}Ni=1 and {vi}Mi=1. We achieve control over

the tail using through the following theorem.

Theorem 3.4. Let x and x+ in X be fixed. Further, let {ui}Ni=1 and {vi}Mi=1 be

collections of i.i.d. random variables sampled from p and p+x respectively. Then for

all " > 0,

P(� � ")  2 exp

 
�N"2(⌧�)2

2e3

!
+ 2 exp

 
�M"2(⌧�/⌧+)2

2e3

!
.

We delay the proof of Theorem 3.4 to Appendix B.1. By Jensen’s inequality

we may push the absolute value inside the expectation to see that |eLN
Unbiased(f) �

LN,M
Debiased(f)|  E�. All that remains is to exploit the exponential tail bound of

Theorem 3.4. To do this we write the expectation of � for fixed x, x+ as the integral

of its tail probability,
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The outer expectation disappears since the tail probably bound of Theorem 3.4

holds uniformly for all fixed x, x+. Both integrals can be computed analytically using

the classical identity

Z
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1

2
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c
.

Applying the identity to each integral we finally obtain the claimed bound,
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3.4 Experiments

In this section we evaluate our new objective LN
Debiased empirically, and compare it

to the standard loss LN
Biased and the ideal loss LN

Unbiased. In summary, we observe

the following: (1) the new loss outperforms state of the art contrastive learning on

vision, language and reinforcement learning benchmarks; (2) the learned embeddings

are closer to those of the ideal, unbiased objective; (3) both larger N and large M

improve the performance; even one more positive example than the standard M = 1

can help noticeably.

3.4.1 CIFAR10 and STL10

First, for CIFAR10 [108] and STL10 [42], we implement SimCLR [24] with ResNet-50

[79] as the encoder architecture and use the Adam optimizer [100] with learning rate
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Figure 3-3: Classification accuracy on CIFAR10 and STL10. (a,b) Biased and
Debiased (M = 1) SimCLR with different negative sample size N . (c) Comparison with
biased SimCLR with 50% more training epochs (600 epochs) while fixing the training epoch
for Debiased (M � 1) SimCLR to 400 epochs.

0.001. Following [24], we set the temperature t = 0.5 and the dimension of the latent

vector to 128. All the models are trained for 400 epochs and evaluated by training a

linear classifier after fixing the learned embedding.

To understand the effect of the sampling bias, we additionally consider an estimate

of the ideal LN
Unbiased, which is a supervised version of the standard loss, where negative

examples x�

i are drawn from the true p�x , i.e., using known classes. Since STL10 is

not fully labeled, we only use the unbiased objective on CIFAR10.

Debiased Objective with M = 1. For a fair comparison, i.e., no possible advan-

tage from additional samples, we first examine our debiased objective with positive

sample size M = 1 by setting v1 = x+. Then, our approach uses exactly the same

data batch as the biased baseline. The debiased objective can be implemented by a

slight modification of code. The results with different ⌧+ are shown in Figure 3-3(a,b).

Increasing ⌧+ in Objective equation 3.6 leads to more correction, and gradually im-

proves the performance in both benchmarks for different N . Remarkably, with only

a slight modification to the loss, we improve the accuracy of SimCLR on STL10 by

4.26%. The performance of the debiased objective also improves by increasing the

negative sample size N .

49



CIFAR10

Debiased M=8 Debiased M=1 Biased Unbiased

Figure 3-4: t-SNE visualization of learned representations on CIFAR10. Classes
are indicated by colors. The debiased objective (⌧+ = 0.1) leads to better data clustering
than the (standard) biased loss; its effect is closer to the supervised unbiased objective.

Debiased Objective with M � 1. By Theorem 3.3, a larger M leads to a better

estimate of the loss. To probe its effect, we sample M positive samples for each x

(e.g., M times data augmentation) while fixing N = 256 and ⌧+ = 0.1. A larger

M would require additional computation, therefore, we compare our debiased objec-

tive with biased SimCLR trained for 50% more epochs (600 epochs). The results

for M = 1, 2, 4, 8 are shown in Figure 3-3(c), and indicate that the performance of

the debiased objective can indeed be further improved by increasing the number of

positive samples. Surprisingly, with only one additional positive sample, the top-1

accuracy on STL10 can be significantly improved. We can also see that the debiased

objective (M > 1) still outperforms the biased baseline even it is trained with 50%

more epochs.

Objective Top-1 Top-5

Biased (CMC) 73.58 92.06

Debiased (⌧+ = 0.005) 73.86 91.86

Debiased (⌧+ = 0.01) 74.6 92.08

Table 3.1: ImageNet-100 Top-1 and
Top-5 classification results.

Figure 3-4 shows t-SNE visualizations of

the representations learned by the biased and

debiased objectives (N = 256) on CIFAR10.

The debiased contrastive loss leads to bet-

ter class separation than the contrastive loss,

and the result is closer to that of the ideal,

unbiased loss.

3.4.2 ImageNet-100

Following [186], we test our approach on ImageNet-100, a randomly chosen subset of

100 classes of Imagenet. Compared to CIFAR10, ImageNet-100 has more classes and
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hence smaller class probabilities ⌧+. We use contrastive multiview coding (CMC)

[186] as our contrastive learning baseline, and M = 1 for a fair comparison. The

results in Table 3.1 show that, although ⌧+ is small, our debiased objective still

improves over the biased baseline.

3.4.3 Sentence Embeddings

Next, we test the debiased objective for learning sentence embeddings. We use the

BookCorpus dataset [104] and examine six classification tasks: movie review senti-

ment (MR) [151], product reviews (CR) [85], subjectivity classification (SUBJ) [150],

opinion polarity (MPQA) [206], question type classification (TREC) [196], and para-

phrase identification (MSRP) [46]. Our experimental settings follow those for quick-

thought (QT) vectors in [119]. In contrast to vision tasks, positive pairs here are

chosen as neighboring sentences, which can form a different positive distribution than

data augmentation. The minibatch of QT is constructed with a contiguous set of sen-

tences, hence we can use the preceding and succeeding sentences as positive samples

(M = 2). We retrain each model 3 times and show the mean in Table 3.2. The de-

biased objective improves over the baseline in 4 out of 6 downstream tasks, verifying

that our objective also works for a different modality.

Objective MR CR SUBJ MPQA TREC MSRP
(Acc) (F1)

Biased (QT) 76.8 81.3 86.6 93.4 89.8 73.6 81.8
Debiased (⌧+ = 0.005) 76.5 81.5 86.6 93.6 89.1 74.2 82.3
Debiased (⌧+ = 0.01) 76.2 82.9 86.9 93.7 89.1 74.7 82.7

Table 3.2: Classification accuracy on downstream tasks. we compare sentence rep-
resentations on six classification tasks. 10-fold cross validation is used in testing the perfor-
mance for binary classification tasks (MR, CR, SUBJ, MPQA)

3.4.4 Reinforcement Learning

Lastly, we consider reinforcement learning. We follow the experimental settings of

Contrastive unsupervised representations for reinforcement learning (CURL) [178] to

51



perform image-based policy control on top of the learned contrastive representations.

Similar to vision tasks, the positive pairs are two different augmentations of the same

image. We again set M = 1 for a fair comparison. Methods are tested at 100k

environment steps on the DeepMind control suite [184], which consists of several

continuous control tasks. We retrain each model 3 times and show the mean and

standard deviation in Table 3.3. Our method consistently outperforms the state-

of-the-art baseline (CURL) in different control tasks, indicating that correcting the

sampling bias also improves the performance and data efficiency of reinforcement

learning. In several tasks, the debiased approach also has smaller variance. With

more positive examples (M = 2), we obtain further improvements.

Objective Finger Cartpole Reacher Cheetah Walker Ball in Cup
Spin Swingup Easy Run Walk Catch

Biased (CURL) 310±33 850±20 918±96 266±41 623±120 928±47
Debiased Objective with M = 1

Debiased (⌧+ = 0.01) 324±34 843±30 927±99 310±12 626±82 937±9
Debiased (⌧+ = 0.05) 308±57 866±7 916±114 284±20 613±22 945±13
Debiased (⌧+ = 0.1) 364±36 860±4 868±177 302±29 594±33 951±11

Debiased Objective with M = 2

Debiased (⌧+ = 0.01) 330±10 858±10 754±179 286±20 746±93 949±5
Debiased (⌧+ = 0.1) 381±24 864±6 904±117 303±5 671±75 957±5

Table 3.3: Scores achieved by biased and debiased objectives. Our debiased objec-
tive outperforms the biased baseline (CURL) in all the environments, and often has smaller
variance.

3.4.5 Discussion

Class Distribution: Our theoretical results assume that the class distribution ⇢

is close to uniform. In reality, this is often not the case, e.g., in our experiments,

CIFAR10 and Imagenet-100 are the only two datasets with perfectly balanced class

distributions. Nevertheless, our debiased objective still improves over the baselines

even when the classes are not well balanced, indicating that the objective is robust

to violations of the class balance assumption.
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Positive Distribution: Even if we approximate the true positive distribution with

a surrogate positive distribution, our debiased objective still consistently improves

over the baselines. It is an interesting avenue of future work to adopt our debiased

objective to a semi-supervised learning setting [221] where true positive samples are

accessible.

3.5 Theoretical Analysis of Debiasing Loss

3.5.1 Generalization Implications for Classification Tasks

Next, we relate the debiased contrastive objective to a supervised loss, and show how

our contrastive learning approach leads to a generalization bound for a downstream

supervised learning task.

Our supervised task is a classification task T with K classes {c1, . . . , cK} ✓ C.

After contrastive representation learning, we fix the representations f(x) and then

train a linear classifier q(x) = Wf(x) on task T with the standard multiclass soft-

max cross entropy loss LSoftmax(T , q). Hence, we define the supervised loss for the

representation f as

LSup(T , f) = inf
W2RK⇥d

LSoftmax(T ,Wf). (3.9)

In line with the approach of [8] we analyze the supervised loss of a mean classifier

[173], where for each class c, the rows of W are set to the mean of representations

µc = Ex⇠p(·|c)[f(x)]. we will use Lµ
Sup(T , f) as shorthand for its loss. Note that

Lµ
Sup(T , f) is always an upper bound on LSup(T , f). To allow for uncertainty about

the task T , we will bound the average supervised loss for a uniform distribution D

over K-way classification tasks with classes in C.

LSup(f) = ET ⇠DLSup(T , f). (3.10)

I begin by showing that the asymptotic unbiased contrastive loss is an upper

bound on the supervised loss of the mean classifier.
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Lemma 3.5. For any embedding f , whenever N > K we have

LSup(f)  Lµ
Sup(f)  eLDebiased(f).

Proof. I first show that N = K � 1 is the smallest loss:

eLN
Unbiased(f)

= E x⇠p
x+

⇠p+x

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) +NEx�⇠p�x
ef(x)T f(x�)

#

� E x⇠p
x+

⇠p+x

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) + (K � 1)Ex�⇠p�x
ef(x)T f(x�)

#

= LK�1
Unbiased(f)

To show that LK�1
Unbiased(f) is an upper bound on the supervised loss Lsup(f), we

additionally introduce a task specific class distribution ⇢T which is a uniform distri-

bution over the classes in task T .

LK�1
Unbiased(f)

= E x⇠p
x+

⇠p+x

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) + (K � 1)Ex�⇠p�x
ef(x)T f(x�)

#

= ET ⇠DEc⇠⇢T ;x⇠p(·|c)
x+

⇠p(·|c)

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) + (K � 1)ET ⇠DE⇢T (c�⇠|c� 6=h(x))Ex�⇠p(·|c�)ef(x)
T f(x�)

#

� ET ⇠DEc⇠⇢T ;x⇠p(·|c)

2

64� log
ef(x)

TEx+⇠p(·|c)f(x
+)

e
f(x)TE

x+⇠p+
x,T

f(x+)
+ (K � 1)ET ⇠DE⇢T (c�|c� 6=h(x))Ex�⇠p(·|c�)ef(x)

T f(x�)

3
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� log
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ef(x)
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T f(x�)

#

� ET ⇠DEc⇠⇢T ;x⇠p(·|c)

"
� log
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= ET ⇠DEc⇠⇢T ;x⇠p(·|c)

"
� log

exp(f(x)Tµc)

exp(f(x)Tµc) +
P

c�2T ,c� 6=c exp(f(x)
Tµc�)

#

= ET ⇠DL
µ
Sup(T , f)

= L̄µ
Sup(f)

where three inequalities follows from Jensen’s inequality. The first and third inequal-

ity shift the expectations Ex+⇠p+x,T
and Ex�⇠p(·|c�), respectively, via the convexity of

the functions and the second move the expectation ET ⇠D out via the concavity. Note

that L̄Sup(f)  L̄µ
Sup(f) holds trivially.

Lemma 3.5 uses the asymptotic version of the debiased loss. Together with Theo-

rem 3.3 and a concentration of measure result, it leads to a generalization bound for

debiased contrastive learning, as we show next.

3.5.2 Generalization Bound for Contrastive Learning

In practice, we use an empirical estimate bLN,M
Debiased, i.e., an average over T data

points x, with M positive and N negative samples for each x. Our algorithm learns

an empirical risk minimizer f̂ 2 argminf2F
bLN,M

Debiased(f) from a function class F .

The generalization depends on the empirical Rademacher complexity RS(F) of F

with respect to our data sample S = {xj, x
+
j , {ui,j}Ni=1, {vi,j}Mi=1}Tj=1. Let f|S =

(fk(xj), fk(x
+
j ), {fk(ui,j)}Ni=1, {fk(vi,j)}Mi=1)j2[T ],k2[d] 2 R(N+M+2)dT be the restriction

of f onto S, using [T ] = {1, . . . , T}. Then RS(F) is defined as

RS(F) := E� sup
f2F

h�, f|Si (3.11)

where � ⇠ {±1}(N+M+1)dT are Rademacher random variables. Combining Theorem

3.3 and Lemma 3.5 with a concentration of measure argument yields the final gener-

alization bound for debiased contrastive learning.
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Theorem 3.6. With probability at least 1� �, for all f 2 F ,

LSup(f̂)  LN,M
Debiased(f) +O

0

B@
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r
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N
+

⌧+

⌧�

r
1

M
+

�RS(F)

T
+B

s
log 1

�

T

1

CA (3.12)

where � =
q

1
(⌧�)2 (

M
N + 1) + (⌧+)2(NM + 1) and B = logN

�
1
⌧� + ⌧+

�
.

Proof. We wish to derive a data dependent bound on the downstream supervised

generalization error of the debiased contrastive objective. Recall that a sample

(x, x+, {ui}Ni=1, {vi}Mi=1) yields loss

� log

(
ef(x)

>f(x+)

ef(x)>f(x+) +Ng(x, {ui}Ni=1, {vi}Mi=1)

)
= log

(
1 +N

g(x, {ui}Ni=1, {vi}Mi=1)

ef(x)>f(x+)

)

which is equal to `
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�
f(ui)� f(x+)

�oN

i=1
,
n
f(x)>

�
f(vi)� f(x+)

�oM

i=1

◆
where

we define,

`({ai}Ni=1, {bi}Mi=1) = log

8
<

:1 +N max

0

@ 1

⌧�
1

N

NX

i=1

ai � ⌧+
1

M

MX

i=1

bi, e
�1

1

A

9
=

; .

In order to derive our bound we will exploit a concentration of measure result due

to [8]. They consider an objective of the form

Lun(f) = E
h
`({f(x)>

�
f(xi)� f(x+)

�
}ki=1)

i

where (x, x+, x�

1 , . . . , x
�

k ) are sampled from any fixed distribution on X k+2 (they

were particularly focused on the case where x�

i ⇠ p, but the proof holds for arbi-

trary distributions). Let F be a class of representation functions X ! Rd such that

kf(·)k  R for R > 0. The corresponding empirical risk minimizer is,

f̂ 2 argmin
f2F

1

T

TX

j=1

`
⇣
{f(xj)

>
�
f(xji)� f(x+)

�
}ki=1

⌘
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over a training set S = {(xj, x
+
j , x

�

j1, . . . , x
�

jk)}Tj=1 of i.i.d. samples. Their result

bounds the loss of the empirical risk minimizer as follows.

Lemma 3.7. (Arora et al. [8]) Let ` : Rk ! R be ⌘-Lipschitz and bounded by B. Then

with probability at least 1� � over the training set S = {(xj, x
+
j , x

�

j1, . . . , x
�

jk)}Tj=1, for

all f 2 F

Lun(f̂)  Lun(f) +O

0

B@
⌘R

p
kRS(F)

T
+B

s
log 1

�

T

1
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where

RS(F) = E�⇠{±1}(k+2)dT

"
sup
f2F

h�, f|Si
#
,

and f|S =
⇣
ft(xj), ft(x

+
j ), ft(x

�

j1), . . . , , ft(x
�

jk)
⌘
j2[T ]
t2[d]

.

In our context we have k = N +M and R = e. So, it remains to obtain constants

⌘ and B such that `({ai}Ni=1, {bi}Mi=1) is ⌘-Lipschitz, and bounded by B. Note that

since we consider normalized embeddings f , we have kf(·)k  1 and therefore only

need to consider the domain where e�1  ai, bi  e.

Lemma 3.8. Suppose that e�1  ai, bi  e. The function `({ai}Ni=1, {bi}Mi=1) is ⌘-

Lipschitz, and bounded by B for

⌘ = e ·

s
1

(⌧�)2N
+

(⌧+)2

M
, B = O

 
logN

✓
1

⌧�
+ ⌧+

◆!
.

Proof. First it is easily observed that ` is upper bounded by plugging in ai = e and

bi = e�1, yielding a bound of,

log

(
1 +N max

✓
1

⌧�
e� ⌧+e�1, e�1

◆)
= O

 
logN

✓
1

⌧�
+ ⌧+

◆!
.

To bound the Lipschitz constant we view ` as a composition `({ai}Ni=1, {bi}Mi=1) =

�
⇣
g
�
`({ai}Ni=1, {bi}Mi=1

�⌘
where1,

1Note the definition of g is slightly modified in this context.
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�(z) = log
�
1 +N max(z, e�1
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bi.

If z < e�1 then @z�(z) = 0, while if z � e�1 then @z�(z) =
N

1+Nz  N
1+Ne�1  e.

We therefore conclude that � is e-Lipschitz. Meanwhile, @aig = 1
⌧�N and @big = ⌧+

M .

The Lipschitz constant of g is bounded by the Forbenius norm of the Jacobian of g,

which equals,

vuut
NX
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MX
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Now we have control on the bound on ` and its Lipschitz constant, we are ready

to prove theorem 5 by combining several of our previous results with Lemma 3.7. In

particular, by Lemma 3.8 and Theorem 3 we have

Lsup(f̂)  eLN
Unbiased(f̂)  LN,M

Debiased(f̂) +
e3/2

⌧�

r
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2N
+

e3/2⌧+

⌧�

r
⇡

2M

Combining Lemma 3.7 and Lemma 3.8, with probability at least 1 � �, for all

f 2 F we have

LN,M
Debiased(f̂)  LN,M

Debiased(f) +O
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B@
�RS(F)

T
+B

s
log 1

�

T

1

CA

where � = ⌘
p
k =

q
1
⌧�2 (MN + 1) + ⌧+2(NM + 1) and B = 2 + log(N + 1)

The bound states that if the function class F is sufficiently rich to contain some

embedding for which LN,M
Debiased is small, then the representation encoder f̂ , learned

from a large enough dataset, will perform well on the downstream classification task.
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The bound also highlights the role of the positive and unlabeled sample sizes M and

N in the objective function, in line with the observation that a larger number of

negative/positive examples in the objective leads to better results [24, 80]. The last

two terms in the bound grow slowly with N , but the effect of this on the generalization

error is small if the dataset size T is much larger than N and M , as is commonly the

case. The dependence on on N and T in Theorem 3.6 is roughly equivalent to the

result in [8], but the two bounds are not directly comparable since the proof strategies

differ.

3.6 Conclusion

In this chapter, we propose debiased contrastive learning, a new unsupervised con-

trastive representation learning framework that corrects for the bias introduced by the

common practice of sampling negative (dissimilar) examples for a point from the over-

all data distribution. Our debiased objective consistently improves the state-of-the-

art baselines in various benchmarks in vision, language and reinforcement learning.

The proposed framework is accompanied by generalization guarantees for the down-

stream classification task. Interesting directions of future work include (1) trying the

debiased objective in semi-supervised learning or few shot learning, and (2) studying

the effect of how positive (similar) examples are drawn, e.g., analyzing different data

augmentation techniques.
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Chapter 4

Hard Negative Samples

In the preceding chapter, we effectively established that rectifying the instances of

false negative samples significantly enhances the performance across a wide array

of downstream tasks. In this present chapter, our focus shifts towards examining

and elucidating the impacts and potential optimization strategies related to what are

categorized as hard negative samples.

In supervised and metric learning settings, “hard” (true negative) examples can

help guide a learning method to correct its mistakes more quickly [169, 176]. For

representation learning, informative negative examples are intuitively those pairs that

are mapped nearby but should be far apart. This idea is successfully applied in

metric learning, where true pairs of dissimilar points are available, as opposed to

unsupervised contrastive learning.

With this motivation, this chapter will address the challenge of selecting infor-

mative negatives for contrastive representation learning. In response, we propose a

solution that builds a tunable sampling distribution that prefers negative pairs whose

representations are currently very similar. This solution faces two challenges: (1) we

do not have access to any true similarity or dissimilarity information; (2) we need an

efficient sampling strategy for this tunable distribution. We overcome (1) by building

on ideas from positive-unlabeled learning [49, 52], and (2) by designing an efficient,

easy to implement importance sampling technique that incurs no computational over-

head.
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Sample Negatives  
Uniformly from 
Dataset  
(typical method)

Sample Hard 
Negatives  
(our method)

Anchor: Negative Batch: 
 

WillowSycamore Maple Sequoia

OakVioletsMountain

Embedding Space:

Oak

Oak

Willow

Figure 4-1: Schematic illustration of negative sampling methods for the example of clas-
sifying species of tree. Top row: uniformly samples negative examples (red rings); mostly
focuses on very different data points from the anchor (yellow triangle), and may even sample
examples from the same class (triangles, vs. circles). Bottom row: Hard negative sampling
prefers examples that are (incorrectly) close to the anchor.

4.1 Hard Negative Contrastive Loss (HCL)

We will primarily follow the setup in Chapter 3, where we wish to learn an embedding

f : X ! Sd�1/t that maps an observation x to a point on a hypersphere Sd�1/t in Rd

of radius 1/t, where t is the temperature scaling hyperparameter.

As a quick recap, the InfoNCE objective for learning the representation f uses a

positive example x+ with the same label as x, and negative examples {x�

i }Ni=1 with

(supposedly) different labels, h(x�

i ) 6= h(x), sampled from q:

Ex⇠p, x+
⇠p+x

{x�
i }

N
i=1⇠q

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) + Q
N

PN
i=1 e

f(x)T f(x�
i )

#
. (4.1)

The negative sample distribution q is frequently chosen to be the marginal distribution

p, or, in practice, an empirical approximation of it [24, 27, 27, 81, 82, 147, 186]. In

this chapter we ask: is there a better way to choose the negative distribution q?

4.1.1 Principle of Negative Samples

We begin by asking what makes a good negative sample? To answer this question we

adopt the following two guiding principles:

Principle 4.1. q should only sample “true negatives” x�

i whose labels differ from that

of the anchor x.
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Principle 4.2. The most useful negative samples are ones that the embedding cur-

rently believes to be similar to the anchor.

In short, negative samples that have different label from the anchor, but that

are embedded nearby are likely to be most useful and provide significant gradient

information during training. In metric learning there is access to true negative pairs,

automatically fulfilling the first principle.

In unsupervised contrastive learning there is no supervision, so upholding Principle

1 is impossible to do exactly. Chapter 3 introduces a method that upholds Principle

1 approximately, where in this section, we will simultaneously combine this idea with

the key additional conceptual ingredient of “hardness” (encapsulated in Principle 2).

The level of “hardness” in our method can be smoothly adjusted, allowing the user

to select the hardness that best trades-off between an improved learning signal from

hard negatives, and the harm due to the correction of false negatives being only

approximate. This important since the hardest points are those closest to the anchor,

and are expected to have a high propensity to have the same label. Therefore the

damage from the approximation not removing all false negatives becomes larger for

harder samples, creating the trade-off. As a special case our method, when the

hardness level is tuned fully down, we obtain the debiased contrastive loss proposed

in Chapter 3 that only upholds Principle 1 (approximately) but not Principle 2.

4.1.2 Hard Negatives via Importance Sampling

Our first goal is to design a distribution q on X that is allowed to depend on the

embedding f and the anchor x. From q we sample a batch of negatives {x�

i }Ni=1

according to the principles noted above. We propose sampling negatives from the

distribution q�� defined as

q�� (x
�) := q�(x

�|h(x) 6= h(x�)), where q�(x
�) / e�f(x)

>f(x�) · p(x�),

for � � 0. Note that q�� and q� both depend on x, but we suppress the dependance

from the notation. The exponential term in q� is an unnormalized von Mises–Fisher

63



distribution with mean direction f(x) and “concentration parameter” � [123]. There

are two key components to q�� , corresponding to each principle: 1) conditioning on

the event {h(x) 6= h(x�)} which guarantees that (x, x�) correspond to different latent

classes (Principle 1); 2) the concentration parameter � term controls the degree by

which q� up-weights points x� that have large inner product (similarity) to the anchor

x (Principle 2). Since f lies on the surface of a hypersphere of radius 1/t, we have

kf(x)� f(x0)k2 = 2/t2 � 2f(x)>f(x0) so preferring points with large inner product is

equivalent to preferring points with small squared Euclidean distance.

Although we have designed q�� to have all of the desired components, it is not

clear how to sample efficiently from it. To work towards a practical method, note

that we can rewrite this distribution by adopting a positive-unlabeled decomposition

introduced in the previous chapter. That is, by conditioning on the event {h(x) =

h(x�)} we can split q�(x�) as

q�(x
�) = ⌧�q�� (x

�) + ⌧+q+� (x
�), (4.2)

where q+� (x
�) = q�(x�|h(x) = h(x�)) / e�f(x)

>f(x�) · p+(x�). Rearranging equa-

tion 4.2 yields a formula q�� (x
�) =

�
q�(x�)�⌧+q+� (x

�)
�
/⌧� for the negative sampling

distribution q�� in terms of two distributions that are tractable since we have samples

from p and can approximate samples from p+ using a set of semantics-preserving

transformations, as is typical in contrastive learning methods.

It is possible to generate samples from q� and (approximately from) q+� using

rejection sampling. However, rejection sampling involves an algorithmic complication

since the procedure for sampling batches must be modified. To avoid this, we instead

take an importance sampling approach. To obtain this, analogous to the previous

chapter, first note that fixing the number Q and taking the limit N ! 1 in the

objective (4.1) yields,

L(f, q) = E x⇠p
x+

⇠p+x

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) +QEx�⇠q[ef(x)
T f(x�)]

#
. (4.3)
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The original objective (4.1) can be viewed as a finite negative sample approxima-

tion to L(f, q) (note implicitly L(f, q) depends on Q) . Inserting q = q�� and using the

rearrangement of equation (4.2) we obtain the following hardness-biased objective:

E x⇠p
x+

⇠p+x

2

4� log
ef(x)

T f(x+)

ef(x)T f(x+) + Q
⌧� (Ex�⇠q� [e

f(x)T f(x�)]� ⌧+Ev⇠q+�
[ef(x)T f(v)])

3

5 . (4.4)

This objective suggests that we need only to approximate expectations Ex�⇠q� [e
f(x)T f(x�)]

and Ev⇠q+�
[ef(x)

T f(v)] over q� and q+� (rather than explicily sampling). This can be

achieved using classical Monte-Carlo importance sampling techniques using samples

from p and p+ as follows:

Ex�⇠q� [e
f(x)T f(x�)] = Ex�⇠p[e

f(x)T f(x�)q�/p] = Ex�⇠p[e
(�+1)f(x)T f(x�)/Z�],

Ev⇠q+�
[ef(x)

T f(v)] = Ev⇠p+ [e
f(x)T f(v)q+� /p

+] = Ev⇠p+ [e
(�+1)f(x)T f(v)/Z+

� ],

where Z�, Z
+
� are the partition functions of q� and q+� respectively. The right hand

terms readily admit empirical approximations by replacing p and p+ with p̂(x) =

1
N

PN
i=1 �x�

i
(x) and p̂+(x) = 1

M

PM
i=1 �x+

i
(x) respectively (�w denotes the Dirac delta

function centered at w). The only unknowns left are the partition functions, Z� =

Ex�⇠p[e�f(x)
T f(x�)] and Z+

� = Ex+⇠p+ [e�f(x)
T f(x+)] which themselves are expectations

over p and p+ and therefore admit empirical estimates,

bZ� =
1

N

NX

i=1

e�f(x)
>f(x�

i ), bZ+
� =

1

M

MX

i=1

e�f(x)
>f(x+

i ).

It is important to emphasize the simplicity of the implementation of our proposed

approach. Since we propose to reweight the objective instead of modifying the sam-

pling procedure, only two extra lines of code are needed to implement our approach,

with no additional computational overhead.
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4.2 Experiments

Next, we evaluate our hard negative sampling method empirically, and apply it as a

modification to state-of-the-art contrastive methods on image, graph, and text data.

For all experiments � is treated as a hyper-parameter (see ablations in Fig. 4-2 for

more understanding of how to pick �). Values for M and ⌧+ must also be determined.

We fix M = 1 for all experiments, since taking M > 1 would increase the number

of inputs for the forward-backward pass. Lemma 4.6 in the end of previous section

gives a theoretical justification for the choice of M = 1. Choosing the class-prior ⌧+

can be done in two ways: estimating it from data [33, 88], or treating it as a hyper-

parameter. The first option requires the possession of labeled data before contrastive

training.

Figure 4-2: Classification accuracy on downstream tasks. Embeddings trained using
hard, debiased, and standard (� = 0, ⌧+ = 0) versions of SimCLR, and evaluated using linear
readout accuracy.

4.2.1 Image Representations
SimCLR Debiased Hard (� = 1)

53.4% 53.7% 57.0%

Table 4.1: Top-1 linear readout on
tinyImageNet. Class prior is set to ⌧+ =
0.01.

Similar to Chapter 3, we begin by testing the

hard sampling method on vision tasks using

the STL10, CIFAR100 and CIFAR10 data.

We use SimCLR [24] as the baseline method,

and all models are trained for 400 epochs. The

results in Fig. 4-2 show consistent improvement over SimCLR (q = p) and the par-

ticular case of our method with � = 0 proposed in [36] (called debiasing) on STL10

and CIFAR100. For N = 510 negative examples per data point we observe absolute
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improvements of 3% and 7.3% over SimCLR on CIFAR100 and STL10 respectively,

and absolute improvements over the best debiased baseline of 1.9% and 3.2%. On

tinyImageNet (Tab. 4.1) we observe an absolute improvement of 3.6% over SimCLR,

while on CIFAR10 there is a slight improvement for smaller N , which disappears at

larger N . Figure 4-3 further demonstrates that hard negative sampling significantly

improves the training efficiency, where it takes much fewer epochs to reach the same

accuracy as SimCLR does in 400 epochs.

Figure 4-3: Hard sampling takes much fewer epochs to reach the same accuracy as SimCLR
does in 400 epochs; for STL10 with � = 1 it takes only 60 epochs, and on CIFAR100 it
takes 125 epochs (also with � = 1).

4.2.2 Hard Negatives with Large Batch Sizes

Figure 4-4: Hard negative sampling
using MoCo-v2 framework. Results
show that hard negative samples can
still be useful when the negative mem-
ory bank is very large (in this case
N = 65536).

The vision experiments so far are all based off

the SimCLR framework [24]. They use a rel-

atively small batch size (up to 512). In order

to test whether our hard negatives sampling

method can help when the negative batch size

is very large, we also run experiments using

MoCo-v2 with standard negative memory bank

size N = 65536 [27, 81]. We adopt the offi-

cial MoCo-v2 code. Embeddings are trained

for 200 epochs, with batch size 128. Figure 4-

4 summarizes the results. We find that hard
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Figure 4-5: Histograms of cosine similarity of pairs of points with the same label (top) and
different labels (bottom) for embeddings trained on CIFAR100 with four different objectives.
H=Hard Sampling, D=Debiasing. Histograms overlaid pairwise to allow for convenient
comparison.

Anchor
Hard negatives

Uniform negatives 

Figure 4-6: Qualitative comparison of hard negatives and uniformly sampled negatives
for embedding trained on STL10 for 400 epochs using SimCLR. Top row: selecting the 10
images with highest inner product with anchor in latent space from a batch of 128 inputs.
Bottom row: a set of random samples from the same batch. Hard negatives are semantically
much more similar to the anchor than uniformly sampled negatives - hard negatives possess
many similar characteristics to the anchor, including texture, colors, animals vs machinery.

negative sampling can still improve the generalization of embeddings trained on CI-

FAR10: MoCo-v2 attains linear readout accuracy of 88.08%, and MoCo-v2 with hard

negatives (� = 0.2, ⌧+ = 0) attains 88.47%.

Ablations To study the effect of varying the concentration parameter � on the

learned embeddings Figure 4-5 plots cosine similarity histograms of pairs of similar

and dissimilar points. The results show that for � moving from 0 through 0.5 to 2

causes both the positive and negative similarities to gradually skew left. In terms of

downstream classification, an important property is the relative difference in similarity

between positive and negative pairs. In this case � = 0.5 find the best balance (since

it achieves the highest downstream accuracy). When � is taken very large (� = 6),

we see a change in conditions. Both positive and negative pairs are assigned higher

similarities in general. Visually it seems that the positive and negative histograms for
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� = 6 overlap a lot more than for smaller values, which helps explain why the linear

readout accuracy is lower for � = 6 .

Figure 4-6 gives real examples of hard vs. uniformly sampled negatives. Given

an anchor x (a monkey) and trained embedding f (trained on STL10 using standard

SimCLR for 400 epochs), we sample a batch of 128 images. The top row shows the

ten negatives x� that have the largest inner product f(x)>f(x�), while the bottom

row is a random sample from from the same batch. Negatives with the largest inner

product with the anchor correspond to the items in the batch are the most important

terms in the objective since they are given the highest weighting by q�� . Figure 4-6

shows that “real” hard negatives are conceptually similar to the idea as proposed in

Figure 1: hard negatives are semantically similar to the anchor, possessing various

similarities, including color (browns and greens), texture (fur), and objects (animals

vs machinery).

4.2.3 Graph Representations

Second, we consider hard negative sampling in the context of learning graph repre-

sentations. We use the state-of-the-art InfoGraph method introduced by [181] as the

baseline, which is suitable for downstream graph-level classification. The objective is

of a slightly different form from the NCE loss. Because of this we use a generaliza-

tion of the formulation. In doing so, we illustrate that it is easy to adapt our hard

sampling method to other contrastive frameworks.

Fig. 4-7 shows the results of fine-tuning an SVM [21, 43] on the fixed, learned

embedding for a range of different values of �. Hard sampling does as well as Info-

Graph in all cases, and better in 6 out of 8 cases. For ENZYMES and REDDIT, hard

negative samples improve the accuracy by 3.2% and 2.4%, respectively, for DD and

PTC by 1 � 2%, and for IMDB-B and MUTAG by at least 0.5%. Usually, multiple

different choices of � > 0 were competitive with the InfoGraph baseline: 17 out of

the 24 values of � > 0 tried (across all 8 datasets) achieve accuracy as high or better

than InfoGraph (� = 0).
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Figure 4-7: Classification accuracy on downstream tasks. We compare graph rep-
resentations on four classification tasks. Accuracies are obtained by fine-tuning an SVM
readout function, and are the average of 10 runs, each using 10-fold cross validation. Re-
sults in bold indicate best performer.

4.2.4 Sentence Embeddings

Third, we test hard negative sampling on learning representations of sentences using

the quick-thoughts (QT) vectors framework introduced by [119], which uses adjacent

sentences (before/after) as positive samples. Embeddings are trained using the unla-

beled BookCorpus dataset [104], and evaluated following the protocol of [119] on six

downstream tasks. The results are reported in Table 4.2. Hard sampling outperforms

or equals the QT baseline in 5 out of 6 cases, the debiased baseline [36] in 4 out of 6,

and both in 3 out of 6 cases. Setting ⌧+ > 0 led to numerical issues in optimization

for hard sampling.

Objective MR CR SUBJ MPQA TREC MSRP
(Acc) (F1)

QT (� = 0, ⌧+ = 0) 76.8 81.3 86.6 93.4 89.8 73.6 81.8
Debiased (⌧+ = 0.01) 76.2 82.9 86.9 93.7 89.1 74.7 82.7
Hard (� = 1, ⌧+ = 0) 77.1 82.5 87.0 92.9 89.2 73.9 82.2
Hard (� = 2, ⌧+ = 0) 77.4 83.6 86.8 93.4 88.7 73.5 82.0

Table 4.2: Classification accuracy on downstream tasks. Sentence representations
are learned using quick-thoughts (QT) vectors on the BookCorpus dataset and evaluated on
six classification tasks. Evaluation of binary classification tasks (MR, CR, SUBJ, MPQA)
uses 10-fold cross validation.
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4.3 Theoretical Analysis of Hard Negative Sampling

4.3.1 Hard Sampling Interpolates between Marginal and Worst-

case Negatives

Intuitively, the concentration parameter � in the proposed negative sample distribu-

tion q�� controls the level of “hardness” of the negative samples. As discussed earlier,

the debiasing method in Chapter 3 can be recovered as a special case: taking � = 0

to obtain the distribution q�0 . This case amounts to correcting for the fact that some

samples in a negative batch sampled from p will have the same label as the anchor.

But what interpretation does large � admit? Specifically, what does the distribution

q�� converge to in the limit � ! 1, if anything? We show that in the limit q��

approximates an inner solution to the following zero-sum two player game.

inf
f
sup
q2⇧

⇢
L(f, q) = E x⇠p

x+
⇠p+x


� log

ef(x)
T f(x+)

ef(x)T f(x+) +QEx�⇠q[ef(x)
T f(x�)]

i�
. (4.5)

where ⇧ = {q = q(·; x, f) : supp
�
q(·; x, f)

�
✓ {x0 2 X : x0 ⌧ x}, 8x 2 X} is

the set of distributions with support that is disjoint from points with the same class

as x (without loss of generality we assume {x0 2 X : x0 ⌧ x} is non-empty). Since

q = q(·; x, f) depends on x and f it can be thought of as a family of distributions.

The formal statement is as follows.

Proposition 4.3. Let L⇤(f) = supq2⇧ L(f, q). Then for any t > 0 and f : X !

Sd�1/t we observe the convergence L(f, q�� ) �! L⇤(f) as � ! 1.

To develop a better intuitive understanding of the worst case negative distribution

objective L⇤(f) = supq2⇧ L(f, q), we note that the supremum can be characterized

analytically. Indeed,

sup
q2⇧

L(f, q) = �E x⇠p
x+

⇠p+x

f(x)Tf(x+) + sup
q2⇧

E x⇠p
x+

⇠p+x

log
n
ef(x)

T f(x+) +QEx�⇠q[e
f(x)T f(x�)]

o

= �E x⇠p
x+

⇠p+x

f(x)Tf(x+) + E x⇠p
x+

⇠p+x

log
n
ef(x)

T f(x+) +Q · sup
q2⇧

Ex�⇠q[e
f(x)T f(x�)]

o
.
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The supremum over q can be pushed inside the expectation since q is a family of

distribution indexed by x, reducing the problem to maximizing Ex�⇠q[ef(x)
T f(x�)],

which is solved by any q⇤ whose support is a subset of arg supx�:x�⌧x e
f(x)T f(x�) if the

supremum is attained. However, computing such points involves maximizing a neural

network. Instead of taking this challenging route, using q�� defines a lower bound by

placing higher probability on x� for which f(x)Tf(x�) is large. This lower bound

becomes tight as � ! 1 (Proposition 4.3). We now give the proof of the proposition.

Proof. Consider the following essential supremum,

M(x) = ess sup
x�2X :x�⌧x

f(x)Tf(x�) = sup{m > 0 : m � f(x)Tf(x�) a.s. for x� ⇠ p�}.

The second inequality holds since supp(p) = X . We may rewrite

L⇤(f) = E x⇠p
x+

⇠p+x

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) +QeM(x)

#
,

L(f, q�� ) = E x⇠p
x+

⇠p+x

2

4� log
ef(x)

T f(x+)

ef(x)T f(x+) +QEx�⇠q��
[ef(x)T f(x�)]

3

5 .

The difference between these two terms can be bounded as follows,

���L⇤(f)� L(f, q�� )
���

 E x⇠p
x+

⇠p+x

������
� log

ef(x)
T f(x+)

ef(x)T f(x+) +QeM(x)
+ log

ef(x)
T f(x+)

ef(x)T f(x+) +QEx�⇠q��
[ef(x)T f(x�)]

������

= E x⇠p
x+

⇠p+x

����log
⇣
ef(x)

T f(x+) +QEx�⇠q��
[ef(x)

T f(x�)]
⌘
� log

⇣
ef(x)

T f(x+) +QeM(x)
⌘����

 e1/t

Q+ 1
· E x⇠p

x+
⇠p+x

���ef(x)
T f(x+) +QEx�⇠q��

[ef(x)
T f(x�)]� ef(x)

T f(x+) �QeM(x)
���

=
e1/tQ

Q+ 1
· Ex⇠p

���Ex�⇠q��
[ef(x)

T f(x�)]� eM(x)
���

 e1/t · Ex⇠pEx�⇠q��

���eM(x) � ef(x)
T f(x�)

���
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where for the second inequality we have used the fact that f lies on the hypersphere

of radius 1/t to restrict the domain of the logarithm to values greater than (Q+1)e�1/t.

Because of this the logarithm is Lipschitz with parameter e1/t/(Q + 1). Using again

the fact that f lies on the hypersphere we know that
��f(x)Tf(x�)

��  1/t2 and hence

have the following inequality,

Ex⇠pEq��

���eM(x) � ef(x)
T f(x�)

���  e1/t
2Ex⇠pEq��

���M(x)� f(x)Tf(x�)
���

Let us consider the inner expectation E�(x) = Eq��

��M(x)� f(x)Tf(x�)
��. Note

that since f is bounded, E�(x) is uniformly bounded in x. Therefore, in order to

show the convergence L(f, q�� ) ! L⇤(f) as � ! 1, it suffices by the dominated

convergence theorem to show that E�(x) ! 0 pointwise as � ! 1 for arbitrary fixed

x 2 X .

From now on we denote M = M(x) for brevity, and consider a fixed x 2 X . From

the definition of q�� it is clear that q�� ⌧ p�. That is, since q�� = c · p� for some (non-

constant) c, it is absolutely continuous with respect to p�. So M(x) � f(x)Tf(x�)

almost surely for x� ⇠ q�� , and we may therefore drop the absolute value signs from

our expectation. Define the following event G" = {x� : f(x)>f(x�) � M � "} where

G is refers to a “good” event. Define its complement B" = Gc
" where B is for “bad”.

For a fixed x 2 X and " > 0 consider,

E�(x) = Ex�⇠q��

���M(x)� f(x)Tf(x�)
���

= Px�⇠q��
(G") · Ex�⇠q��

���M(x)� f(x)Tf(x�)
��� |G"

�

+ Px�⇠q��
(B") · Ex�⇠q��

���M(x)� f(x)Tf(x�)
��� |B"

�

 Px�⇠q��
(G") · "+ 2Px�⇠q��

(B")

 "+ 2Px�⇠q��
(B").
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We need to control Px�⇠q��
(B"). Expanding,

Px�⇠q��
(B") =

Z

X

1
n
f(x)Tf(x�) < M(x)� "

o e�f(x)
T f(x�) · p�(x�)

Z�
dx�

where Z� =
R
X
e�f(x)

T f(x�)p�(x�)dx� is the partition function of q�� . We may

bound this expression by,

Z

X

1
n
f(x)Tf(x�) < M � "

o e�(M�") · p�(x�)

Z�
dx�

 e�(M�")

Z�

Z

X

1
n
f(x)Tf(x�) < M � "

o
p�(x�)dx�

=
e�(M�")

Z�
Px�⇠p�(B")

 e�(M�")

Z�

Note that

Z� =

Z

X

e�f(x)
T f(x�)p�(x�)dx� � e�(M�"/2)Px�⇠p�(f(x)

Tf(x�) � M � "/2).

By the definition of M = M(x) the probability ⇢" = Px�⇠p�(f(x)Tf(x�) � M �

"/2) > 0, and we may therefore bound,

Px�⇠q��
(B") =

e�(M�")

e�(M�"/2)⇢"

= e��"/2/⇢"

�! 0 as � ! 1.

We may therefore take � to be sufficiently big so as to make Px�⇠q��
(B")  " and

therefore E�(x)  3". In other words, E�(x) �! 0 as � ! 1.
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4.3.2 Optimal Embedding for Worst-case Negatives

What desirable properties does an optimal contrastive embedding (global minimizer

of L) possess that make the representation generalizable? To study this question, we

first analyze the distribution of an optimal embedding f ⇤ on the hypersphere when

negatives are sampled from the adversarial worst-case distribution. We consider a

different limiting viewpoint of objective (4.1) as the number of negative samples

N ! 1. Following the formulation of [200] we take Q = N in (4.1), and subtract

logN . This changes neither the set of minimizers, nor the geometry of the loss surface.

Taking the number of negative samples N ! 1 yields the limiting objective,

L1(f, q) = E x⇠p
x+

⇠p+x


� log

ef(x)
T f(x+)

Ex�⇠q[ef(x)
T f(x�)]

�
. (4.6)

Theorem 4.4. Suppose the downstream task is classification (i.e. C is finite), and

let L⇤

1
(f) = supq2⇧ L1(f, q) . The infimum inff : measurable L⇤

1
(f) is attained, and

any f ⇤ achieving the global minimum is such that f ⇤(x) = f ⇤(x+) almost surely.

Furthermore, letting vc = f ⇤(x) for any x such that h(x) = c (so vc is well defined

up to a set of x of measure zero), f ⇤ is characterized as being any solution to the

following ball-packing problem,

max
{vc2Sd�1/t}c2C

X

c2C

⇢(c) ·min
c0 6=c

kvc � vc0k2. (4.7)

Proof. In order to study properties of global optima of the contrastive objective using

the adversarial worst case hard sampling distribution recall that we have the following

limiting objective,

L1(f, q) = E x⇠p
x+

⇠p+x

"
� log

ef(x)
T f(x+)

Ex�⇠q� [e
f(x)T f(x�)]

#
. (4.8)

We may separate the logarithm of a quotient into the sum of two terms plus a

constant,

L1(f, q) = Lalign(f) + Lunif(f, q)� 1/t2
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where Lalign(f) = Ex,x+kf(x)�f(x+)k2/2 and Lunif(f, q) = Ex⇠p logEx�⇠qef(x)
>f(x�).

Here we have used the fact that f lies on the boundary of the hypersphere of radius

1/t, which gives us the following equivalence between inner products and squared

Euclidean norm,

2/t2 � 2f(x)>f(x+) = kf(x)k2 + kf(x+)k2 � 2f(x)>f(x+) = kf(x)� f(x+)k2. (4.9)

Taking supremum to obtain L⇤

1
(f) = supq2⇧ L1(f, q) we find that the second

expression simplifies to,

L⇤

unif(f) = sup
q2⇧

Lunif(f, q) = Ex⇠p log sup
x�⌧x

ef(x)
>f(x�) = Ex⇠p sup

x�⌧x
f(x)>f(x�).

Using Eqn. (4.9), this can be re-expressed as,

Ex⇠p sup
x�⌧x

f(x)>f(x�) = �Ex⇠p inf
x�⌧x

kf(x)� f(x�)k2/2 + 1/t2. (4.10)

Any minimizer of Lalign(f) has the property that f(x) = f(x+) almost surely.

So, in order to prove the first claim, it suffices to show that there exist functions

f 2 arg inff L⇤

unif(f) for which f(x) = f(x+) almost surely. This is because, at

that point, we have shown that argminf Lalign(f) and argminf L⇤

unif(f) intersect, and

therefore any solution of L⇤

1
(f) = Lalign(f) + L⇤

unif(f) must lie in this intersection.

To this end, suppose that f 2 argminf L⇤

unif(f) but that f(x) 6= f(x+) with non-

zero probability. We shall show that we can construct a new embedding f̂ such that

f(x) = f(x+) almost surely, and L⇤

unif(f̂)  L⇤

unif(f). Due to Eqn. (4.10) this last

condition is equivalent to showing,

Ex⇠p inf
x�⌧x

kf̂(x)� f̂(x�)k2 � Ex⇠p inf
x�⌧x

kf(x)� f(x�)k2. (4.11)

Fix a c 2 C, and let xc 2 argmaxx:h(x)=c infx�⌧x kf(x)� f(x�)k2. The maximum

is guaranteed to be attained, as we explain now. Indeed we know the maximum is

attained at some point in the closure @{x : h(x) = c} [ {x : h(x) = c}. Since X is
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compact and connected, any point x̄ 2 @{x : h(x) = c} \ {x : h(x) = c} is such that

infx�⌧x̄ kf(x̄)� f(x�)k2 = 0 since x̄ must belong to {x : h(x) = c0} for some other c0.

Such an x̄ cannot be a solution unless all points in {x : h(x) = c} also achieve 0, in

which case we can simply take xc to be a point in the interior of {x : h(x) = c}.

Now, define f̂(x) = f(xc) for any x such that h(x) = c and f̂(x) = f(x) otherwise.

Let us first aim to show that Eqn. (4.11) holds for this f̂ . Let us begin to expand

the left hand side of Eqn. (4.11),

Ex⇠p inf
x�⌧x

kf̂(x)� f̂(x�)k2

= Eĉ⇠⇢Ex⇠p(·|ĉ) inf
x�⌧x

kf̂(x)� f̂(x�)k2

= ⇢(c)Ex⇠p(·|c) inf
x�⌧x

kf̂(x)� f̂(x�)k2

+ (1� ⇢(c))Eĉ⇠⇢(·|ĉ 6=c)Ex⇠p(·|ĉ) inf
x�⌧x

kf̂(x)� f̂(x�)k2

= ⇢(c)Ex⇠p(·|c) inf
x�⌧x

kf(xc)� f(x�)k2

+ (1� ⇢(c))Eĉ⇠⇢(·|ĉ 6=c)Ex⇠p(·|ĉ) inf
x�⌧x

kf̂(x)� f̂(x�)k2

= ⇢(c) inf
x�⌧xc

kf(xc)� f(x�)k2

+ (1� ⇢(c))Eĉ⇠⇢(·|ĉ 6=c)Ex⇠p(·|ĉ) inf
h(x�) 6=ĉ

kf̂(x)� f̂(x�)k2 (4.12)

By construction, the first term can be lower bounded by infx�⌧xc kf(xc)�f(x�)k2 �

Ex⇠p(·|c) infh(x�) 6=c kf(x)� f(x�)k2 for any x such that h(x) = c. To lower bound the

second term, consider any fixed ĉ 6= c and x ⇠ p(·|ĉ) (so h(x) = ĉ). Define the

following two subsets of the input space X

A = {f(x�) : f(x�) 6= ĉ for x� 2 X} bA = {f(x�) 2 X : f̂(x�) 6= ĉ for x� 2 X}.

Since by construction the range of f̂ is a subset of the range of f , we know that
bA ✓ A. Combining this with the fact that f̂(x) = f(x) whenever h(x) = ĉ 6= c we
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see,

inf
h(x�) 6=ĉ

kf̂(x)� f̂(x�)k2 = inf
h(x�) 6=ĉ

kf(x)� f̂(x�)k2

= inf
u2 bA

kf(x)� uk2

� inf
u2A

kf(x)� uk2

= inf
h(x�) 6=ĉ

kf(x)� f(x�)k2

Using these two lower bounds we may conclude that Eqn. (4.12) can be lower

bounded by,

⇢(c)Ex⇠p(·|c) inf
h(x�) 6=c

kf(x)� f(x�)k2 + (1� ⇢(c))Eĉ⇠⇢(·|ĉ 6=c)Ex⇠p(·|ĉ) inf
h(x�) 6=ĉ

kf(x)� f(x�)k2

which equals Ex⇠p infx�⌧x kf(x)�f(x�)k2. We have therefore proved Eqn. (4.11).

To summarize the current progress; given an embedding f we have constructed a new

embedding f̂ that attains lower Lunif loss and which is constant on x such that f̂ is

constant on {x : h(x) = c}. Enumerating C = {c1, c2 . . . , c|C|}, we may repeatedly

apply the same argument to construct a sequence of embeddings f1, f2, . . . , f|C| such

that fi is constant on each of the following sets {x : h(x) = cj} for j  i . The final

embedding in the sequence f ⇤ = f|C| is such that L⇤

unif(f
⇤)  L⇤

unif(f) and therefore

f ⇤ is a minimizer. This embedding is constant on each of {x : h(x) = cj} for j =

1, 2, . . . ,|C|. In other words, f ⇤(x) = f ⇤(x+) almost surely. We have proved the first

claim.

Obtaining the second claim is a matter of manipulating L⇤

1
(f ⇤). Indeed, we know

that L⇤

1
(f ⇤) = L⇤

unif(f
⇤) � 1/t2 and defining vc = f ⇤(x) = f(xc) for each c 2 C, this

expression is minimized if and only if f ⇤ attains,
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max
f

Ex⇠p inf
x�⌧x

kf(x)� f(x�)k2 = max
f

Ec⇠⇢Ex⇠p(·|c) inf
h(x�) 6=c

kf(x)� f(x�)k2

= max
f

X

c2C

⇢(c) · inf
h(x�) 6=c

kf(x)� f(x�)k2

= max
{vc2Sd�1/t}c2C

X

c2C

⇢(c) ·min
c0 6=c

kvc � vc0k2

where the final equality inserts f ⇤ as an optimal f and reparameterizes the max-

imum to be over the set of vectors {vc 2 Sd�1/t}c2C.

Interpretation: The first component of the result is that f ⇤(x) = f ⇤(x+) almost

surely for an optimal f ⇤. That is, an optimal embedding f ⇤ must be invariant across

pairs of similar inputs x, x+. The second component is characterizing solutions via

the classical geometrical Ball-Packing Problem of [183] (Eq. 4.7) that has only been

solved exactly for uniform ⇢, for specific of |C| and typically for S2 [134, 170, 183].

When the distribution ⇢ over classes is uniform this problem is solved by a set of |C|

points on the hypersphere such that the average squared-`2 distance from a point to

the nearest other point is as large as possible. In other words, suppose we wish to

place |C| number of balls1 on Sd�1 so that they do not intersect. Then solutions to

Tammes’ Problem (4.7) expresses (twice) the largest possible average squared radius

that the balls can have. So, we have a ball-packing problem where instead of trying to

pack as many balls as possible of a fixed size, we aim to pack a fixed number of balls

(one for each class) to have as big radii as possible. Non-uniform ⇢ adds importance

weights to each fixed ball. In summary, solutions of the problem minf L⇤

1
(f) are a

maximum margin clustering.

This understanding of global minimizers of L⇤

1
(f) = supq2⇧ L1(f, q) can further

developed into a better understanding of generalization on downstream tasks. The

next result shows that representations that achieve small excess risk on the objective
1For a manifold M ✓ Rd, we say C ⇢ M is a ball if it is connected, and there exists a Euclidean

ball B = {x 2 Rd : kxk2  R} for which C = M \ B.
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L⇤

1
still separate clusters well in the sense that a simple 1-nearest neighbor classifier

achieves low classification error.

Theorem 4.5. Suppose ⇢ is uniform on C and f is such that L⇤

1
(f)�inf f̄ measurable L⇤

1
(f̄) 

" with "  1. Let {v⇤

c 2 Sd�1/t}c2C be a solution to Problem 4.7, and define the con-

stant ⇠ = minc,c�:c 6=c�
��v⇤

c � v⇤

c�

�� > 0. Then there exists a set of vectors {vc 2

Sd�1/t}c2C such that the 1-nearest neighbor classifier ĥ(x) = argminc̄2C

��f(x)� vc̄

��

(ties broken arbitrarily) achieves misclassification risk,

Px,c(ĥ(x) 6= c)  8"

(⇠2 � 2|C| (1 + 1/t)"1/2)2

Proof. To begin, using the definition of ĥ we know that for any 0 < � < ⇠,

Px,c(ĥ(x) = c) = Px,c

✓��f(x)� vc

��  min
c�:c� 6=c

��f(x)� vc�
��
◆

� Px,c

✓��f(x)� vc

��  �, and �  min
c�:c� 6=c

��f(x)� vc�
��
◆

� 1� Px,c

⇣��f(x)� vc

�� > �
⌘
� Px,c

�
min

c�:c� 6=c

��f(x)� vc�
�� < �

�

So to prove the result, our goal is now to bound these two probabilities. To

do so, we use the bound on the excess risk. Indeed, combining the fact L⇤

1
(f) �

inf f̄ measurable L⇤

1
(f̄)  " with the notational rearrangements before Theorem ?? we

observe that Ex,x+

��f(x)� f(x+)
��2  2".

We have,

2" � Ex,x+

��f(x)� f(x+)
��2 = Ec⇠⇢Ex+⇠p(·|c)Ex⇠p(·|c)

��f(x)� f(x+)
��2 .

For fixed c, x+, let xc 2 argmin
{x+:h(x+)=c} Ex⇠p(·|c)

��f(x)� f(x+)
��2 where we ex-

tend the minimum to be over the closure, a compact set, to guarantee it is attained.

Then we have
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2" � Ec⇠⇢Ex+⇠p(·|c)Ex⇠p(·|c)

��f(x)� f(x+)
��2 � Ec⇠⇢Ex⇠p(·|c)

��f(x)� vc

��2

where we have now defined vc = f(xc) for each c 2 C. Note in particular that vc

lies on the surface of the hypersphere Sd�1/t. This enables us to obtain the follow

bound using Markov’s inequality,

Px,c

⇣��f(x)� vc

�� > �
⌘
= Px,c

⇣��f(x)� vc

��2 > �2
⌘


Ex,c

��f(x)� vc

��2

�2

 2"

�2
.

so it remains still to bound Px,c

�
minc�:c� 6=c

��f(x)� vc�
�� < �

�
. Defining ⇠0 =

minc,c�:c 6=c�kvc � vc�k, we have the following fact (proven in Appendix B.2).

Fact (see lemma B.1): ⇠0 �
p

⇠2 � 2|C| (1 + 1/t)
p
".

Using this fact we are able to get control over the tail probability as follows,

Px,c

✓
min

c�:c� 6=c

��f(x)� vc�
�� < �

◆
 Px,c

⇣��f(x)� vc

�� > ⇠0 � �
⌘

 Px,c

✓��f(x)� vc

�� > ⇠ �
q

⇠2 � 2|C| (1 + 1/t)"1/2 � �

◆

= Px,c

✓��f(x)� vc

��2 > (
q
⇠2 � 2|C| (1 + 1/t)"1/2 � �)2

◆

 2"

(
p

⇠2 � 2|C| (1 + 1/t)"1/2 � �)2
.

where this inequality holds for for any 0  � 
p

⇠2 � 2|C| (1 + 1/t)"1/2.

Gathering together our tail probability bounds we find that Px,c(ĥ(x) = c) �

1� 2"
�2 �

2"

(
p
⇠2�2|C|(1+1/t)"1/2��)2

for any 0  � 
p

⇠2 � 2|C| (1 + 1/t)"1/2. That is,
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Px,c(ĥ(x) 6= c)  2"

�2
+

2"

(
p
⇠2 � 2|C| (1 + 1/t)"1/2 � �)2

Since this holds for any 0  � 
p

⇠2 � 2|C| (1 + 1/t)"1/2,

Px,c(ĥ(x) 6= c)  min
0�

p
⇠2�2|C|"

⇢
2"

�2
+

2"

(
p
⇠2 � 2|C| (1 + 1/t)"1/2 � �)2

�
.

Elementary calculus shows that the minimum is attained at � =
p
⇠2�2|C|(1+1/t)"1/2

2 .

Plugging this in yields the final bound,

P(ĥ(x) 6= c)  8"

(⇠2 � 2|C| (1 + 1/t)"1/2)2
.

In particular, P(ĥ(x) 6= c) = O(") as " ! 0, and in the limit " ! 0 we recover

the invariance claim of Theorem 4.4 as a special case. The result can be general-

ized to arbitrary ⇢ by replacing |C| in the bound by 1/minc ⇢(c). The result also

implies that it is possible to build simple classifiers for tasks that involve only a sub-

set of classes from C, or classes that are a union of classes from C. The constant

⇠ = minc,c�:c 6=c�
��v⇤

c � v⇤

c�

�� > 0 is a purely geometrical property of spheres, and

describes the minimum separation distance between a set of points that solves the

Tammes’ ball-packing problem.

4.3.3 Bias-variance of Empirical Estimation

We close the theoretical section with a bias-variance analysis of our objective. Recall

the final hard negative samples objective we derive is,
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E x⇠p
x+

⇠p+x

2

4� log
ef(x)

T f(x+)

ef(x)T f(x+) + Q
⌧� (Ex�⇠q� [e

f(x)T f(x�)]� ⌧+Ev⇠q+�
[ef(x)T f(v)])

3

5 . (4.13)

This objective admits a practical counterpart by using empirical approximations

to Ex�⇠q� [e
f(x)T f(x�)] and Ev⇠q+�

[ef(x)
T f(v)]. In practice we use a fairly large number

of samples (e.g. N = 510) to approximate the first expectation, and only M = 1

samples to approximate the second. Clearly in both cases the resulting estimator is

unbiased. Further, since the first expectation is approximated using many samples,

and the integrand is bounded, the resulting estimator is well concentrated (e.g. apply

Hoeffding’s inequality out-of-the-box). But what about the second expectation? This

might seem uncontrolled since we use only one sample, however it turns out that the

random variable X = ef(x)
T f(v) where x ⇠ p and v ⇠ q+� has variance that is bounded

by Lalign(f).

Lemma 4.6. Consider the random variable X = ef(x)
T f(v) where x ⇠ p and v ⇠ q+� .

Then Var(X)  O
�
Lalign(f)

�
.

Recall that Lalign(f) = Ex,x+kf(x)�f(x+)k2/2 is termed alignment, and [200] show

that the contrastive objective jointly optimize alignment and uniformity. Lemma 4.6

therefore shows that as training evolves, the variance of the X = ef(x)
T f(v) where

x ⇠ p and v ⇠ q+� is bounded by a term that we expect to see becoming small,

suggesting that using a single sample (M = 1) to approximate this expectation is not

unreasonable. We cannot, however, say more than this since we have no guarantee

that Lalign(f) goes to zero.

Proof. Fix an x and recall that we are considering q+� (·) = q+� (·; x). First let X 0

be an i.i.d. copy of X, and note that, conditioning on x, we have 2Var(X|x) =

Var(X|x)+Var(X 0|x) = Var(X �X 0|x)  E
⇥
(X �X 0)2|x

⇤
. Bounding this difference,
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E
⇥
(X �X 0)2|x

⇤
= Ev,v0⇠q+�

✓
ef(x)

>f(v) � ef(x)
>f(v0)

◆2

 Ev,v0⇠q+�

✓
e1/t

2⇥
f(x)>f(v)� f(x)>f(v0)

⇤◆2

 e1/t
4Ev,v0⇠q+�

✓⇥��f(x)
����f(v)� f(v0)

�� ⇤
◆2

=
e1/t

4

t2
Ev,v0⇠q+�

��f(v)� f(v0)
��2

 O
✓
Ev,v0⇠p+

��f(v)� f(v0)
��2
◆

where the first inequality follows since f lies on the sphere of radius 1/t, the second

inequality by Cauchy–Schwarz, the third again since f lies on the sphere of radius

1/t, and the fourth since q+� is absolutely continuous with respect to p+ with bounded

ratio.

Since p+(x+) = p(x+|h(x)) only depends on c = h(x), rather than x itself, tak-

ing expectations over x ⇠ p is equivalent to taking expectations over c ⇠ ⇢. Fur-

ther, ⇢(c)p(v|c)p(v0|c) = p(v)p(v0|c) = p(v)p+v (v
0). So Ec⇠⇢Ev,v0⇠p+

��f(v)� f(v0)
��2 =

Ex,x+

��f(x)� f(x+)
��2 = 2Lalign(f), where x ⇠ p and x+ ⇠ p+x . Thus we obtain the

lemma.

4.4 Conclusion

We argue for the value of hard negatives in unsupervised contrastive representation

learning, and introduce a simple hard negative sampling method. Our work con-

nects two major lines of work: contrastive learning, and negative mining in metric

learning. Doing so requires overcoming an apparent roadblock: negative mining in

metric learning uses pairwise similarity information as a core component, while con-

trastive learning is unsupervised. Our method enjoys several nice aspects: having

desirable theoretical properties, a very simple implementation that requires modify-
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ing only a couple of lines of code, not changing anything about the data sampling

pipeline, introducing zero extra computational overhead, and handling false negatives

in a principled way.
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Part II

Learning from Noisy Data
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Chapter 5

False Positive Samples

The central idea of contrastive learning is to learn representations that capture the

underlying information shared between different “views” of data [147, 188]. For im-

ages, the views, which are also known as positive samples, are typically constructed by

applying common data augmentation techniques, such as jittering, cropping, resizing

and rotation [24], and for video the views are often chosen as adjacent frames [171] or

co-occurring multimodal signals, such as video and the corresponding optical flow [78],

audio [132] and transcribed speech [127].

Designing the right contrasting views has shown to be a key ingredient of con-

trastive learning [24, 154]. This often requires domain knowledge, intuition, trial-and-

error (and luck!). What would happen if the views are wrongly chosen and do not

provide meaningful shared information? Prior work has reported deteriorating effects

of such noisy views in contrastive learning under various scenarios, e.g., unrelated

image patches due to extreme augmentation [188], irrelevant video-audio pairs due

to overdubbing [131], and misaligned video-caption pairs [127]. The major issue with

noisy views is that representations of different views are forced to align with each

other even if there is no meaningful shared information. This often leads to sub-

optimal representations that merely capture spurious correlations [6] or make them

collapse to a trivial solution [94]. Worse yet, when we attempt to learn from large-

scale unlabeled data – i.e., the scenario where self-supervised learning is particularly

expected to shine – the issue is only aggravated because of the increased noise in the

87



Noisy View2

Clean View2

Noisy View

Clean View

View1

Figure 5-1: Problem of Noisy Views (False Positive Pairs). Noisy views, e.g.,
unrelated image patches due to extreme augmentation, can deteriorate the downstream
performance.

real-world data [114], hindering the ultimate success of contrastive learning.

Consequently, a few attempts have been made to design contrastive approaches

that are noise-tolerant. For example, Morgado et al. [131] optimize a soft instance

discrimination loss to weaken the impact of noisy views. Miech et al. [127] address the

misalignment between video and captions by aligning multiple neighboring segments

of a video. However, existing approaches are often tied to specific modalities or make

assumptions that may not hold for general scenarios, e.g., MIL-NCE [127] is not

designed to address the issues of irrelevant audio-visual signals.

In this chapter, we develop a principled approach to make contrastive learning

robust against noisy views. We start by making connections between contrastive

learning and the classical noisy binary classification in supervised learning [64, 140].

This allows us to explore the wealth of literature on learning with noisy labels [65,

115, 194]. In particular, we focus on a family of robust loss functions that has the

symmetric property [64], which provides strong theoretical guarantees against noisy

labels in binary classification. We then show a functional form of contrastive learning

that can satisfy the symmetry condition if given a proper symmetric loss function,

motivating the design of new contrastive loss functions that provide similar theoretical

guarantees.

This leads us to propose Robust InfoNCE (RINCE), a contrastive loss function

that satisfies the symmetry condition. RINCE can be understood as a generalized
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form of the contrastive objective that is robust against noisy views. Intuitively, its

symmetric property provides an implicit means to reweight sample importance in the

gradient space without requiring an explicit form of noise estimator. It also provides

a simple “knob” (a real-valued scalar q 2 (0, 1]) that controls the behavior of the loss

function balancing the exploration-exploitation trade-off (i.e., from being conservative

to playing adventures on potentially noisy samples). Implementing RINCE requires

only a few lines code and can be a simple drop-in replacement for the InfoNCE loss to

make contrastive learning robust against noisy views. Since InfoNCE sets the basis

for many modern contrastive methods such as SimCLR [24] and MoCo-v1/v2/v3 [27,

28, 81], our construction can be easily applied to many existing frameworks.

5.1 From Noisy Labels to Noisy Views

To address the problem of noisy views, we start by connecting two seemingly dif-

ferent but related frameworks: supervised binary classification with noisy labels and

self-supervised contrastive learning with noisy views. We then introduce a family

of symmetric loss functions that is noise-tolerant and show how we can transform

contrastive objectives to a symmetric form.

5.1.1 Robust Loss Functions against Noise

Before the era of self-supervised learning, The problem of noise has been actively

explored explored in supervised learning setting, especially in supervised classification

with noisy labels [64, 76, 89, 115, 117, 140, 155, 162, 179, 194, 209]. One line of work

attempts to develop robust loss functions that are noise-tolerant [64, 65, 201, 226].

Ghosh et al. [64] prove that symmetric loss functions are robust against noisy labels,

e.g., Mean Absolute Error (MAE) [65], while commonly used Cross Entropy (CE)

loss is not. Based on this idea, Zhang and Sabuncu [226] propose the generalized

cross entropy loss to combine MAE and CE loss functions. A similar idea is adopted

in [201] by combining the reversed cross entropy loss with CE loss. In the section

5.2, we will relate noisy views to noisy labels by interpreting contrastive learning as
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binary classification, and developed a robust symmetric contrastive loss that enjoys

the similar theoretical guarantees.

5.1.2 Symmetric Loss Function

Denoting the input space by X and the binary output space by Y = {�1, 1}, let

S = {xi, yi}mi=1 be the unobserved clean dataset that is drawn i.i.d. from the data dis-

tribution D. In the noisy setting, the learner obtains a noisy dataset S⌘ = {xi, ŷi}mi=1,

where ŷi = yi with probability 1�⌘xi and ŷi = �yi with probability ⌘xi . Note that the

noise rate ⌘x is data point-dependent. For a classifier f 2 F : X ! R, the expected

risk under the noise-free scenario is R`(f) = ED[`(f(x), y)] where ` : R⇥ Y ! R is a

binary classification loss function. When the noise exists, the learner minimizes the

noisy expected risk R⌘
` (f) = ED⌘ [`(f(x), ŷ)].

Ghosh et al. [64] show that symmetric loss functions are robust against noisy

labels in binary classification. In particular, a loss function ` is symmetric if it sums

to a constant:

`(s, 1) + `(s,�1) = c, 8s 2 R, (5.1)

where s is the prediction score from f . Note that the symmetry condition should also

hold with the gradients w.r.t. s. They show that if the noise rate is ⌘x  ⌘max <

0.5, 8x 2 X and if the loss is symmetric and non-negative, the minimizer of the noisy

risk f ⇤

⌘ = arg inff2F R⌘(f) approximately minimizes the clean risk:

R(f ⇤

⌘ )  ✏/(1� 2⌘max),

where ✏ = inff2F R(f) is the optimal clean risk. This implies that the noisy risk

under symmetric loss is a good surrogate of the clean risk. We further relax the

non-negative constraint on the loss with a corollary1:

1This is important for our proposed RINCE loss that involves an exponential function `(s, y) =
�yes, which can produce negative values.
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Corollary 5.1. Consider the setting of Ghosh et al. [64] and the exponential loss

function L(s, y) = �yes. Let f ⇤

⌘ = arg inff2F R⌘
L
(f) be the minimizer of the noisy

risk and ✏ = inff2F RL(f) be the optimal risk. If ⌘x  ⌘max < 0.5 for all x 2 X . If the

prediction score is bounded by smax, we have R(f ⇤

⌘ )  (✏+ 2⌘maxesmax)/(1� 2⌘max).

Proof. Consider a binary classification loss with the following form:

L̃x(f(x), y) = B + Lx(f(x), y) = B � y · ef(x) � 0,

where the prediction score f(x) is bounded by smax = log(B). Note that the bound-

edness assumption holds for general representation learning on hypersphere, where

the prediction score is the inner product between normalized feature vectors. Impor-

tantly, the loss satisfies

L̃(f(x), 1) + L̃(f(x),�1) = 2B.

By construction, the optimal risk takes the following value:

inf
f2F

R
L̃
(f) = inf

f2F
Ex⇠µ[L̃(f(x), yx)] = ✏+B := ✏̃,

and f ⇤ = arg inff2F R
L̃
(f). Note that f ⇤ is also a minimizer w.r.t. the original

loss L( f ⇤ = arg inff2F RL(f)), as an additive constant will not change the optimum

solutions. Expanding the noisy risk gives

R⌘

L̃
(f) = E(x,y)⇠µ[(1� ⌘x)L̃(f(x), yx) + ⌘xL̃(f(x),�yx)]

= Ex⇠µ[(1� ⌘x)L̃(f(x), yx) + ⌘x(2B � L̃(f(x), yx))] (Symmetry)

= Ex⇠µ[(1� 2⌘x)L̃(f(x), yx)] + 2BEx⇠µ[⌘x].

Let f ⇤

⌘ = arg inf R⌘
L
(f ⇤

⌘ ) = arg inf R⌘

L̃
(f ⇤

⌘ ), we have

R⌘

L̃
(f ⇤)�R⌘

L̃
(f ⇤

⌘ ) = Ex⇠µ[(1� 2⌘x)(L̃(f ⇤(x), yx)� L̃(f ⇤

⌘ (x), yx))] � 0
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since f ⇤

⌘ is the minimizer of R⌘

L̃
, which implies that

Ex⇠µ[(1� 2⌘x)L̃(f ⇤

⌘ (x), yx)]  Ex⇠µ[(1� 2⌘x)L̃(f ⇤(x), yx)]  ✏̃,

since 0 < 1� 2⌘x  1 by assumption. Let ⌘max = supx2X ⌘x, we have

(1� 2⌘max)Ex⇠µ[L̃(f ⇤

⌘ (x), yx)]  ✏,

since the loss is non-negative, which implies

R
L̃
(f ⇤

⌘ ) 
✏̃

1� 2⌘max
.

Finally, we recover the original exponential loss without the additive term B.

Plugging the form we have

B +RL(f
⇤

⌘ ) 
✏+B

1� 2⌘max
,

which implies

RL(f
⇤

⌘ ) 
✏+B

1� 2⌘max
� B =

✏+ 2B⌘max

1� 2⌘max
.

For exponential loss, setting B to esmax completes the proof.

For instance, when the noise level is 40%, we have RL(f ⇤

⌘ )  5✏ + 4B. Note that

the prediction score is bounded by 1/t in our case as the representations are projected

onto the unit hypersphere.

5.1.3 Towards Symmetric Contrastive Objectives

The results above suggest that we can achieve robustness against noisy views if a

contrastive objective can be expressed in a form that satisfies the symmetry condition

in the binary classification framework. To this end, we first relate contrastive learning

to binary classification, and then express it in a form where symmetry can be achieved.
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Contrastive learning as binary classification. Given two views X and V , we

can interpret contrastive learning as noisy binary classification operating over pairs of

samples (x, v) with a label 1 if it is sampled from the joint distribution, (x, v) ⇠ PXV ,

and �1 if it comes from the product of marginals, (x, v0) ⇠ PXPV . In the presence

of noisy views, some negative pairs (x, v0) ⇠ PXPV could be mislabeled as positive,

introducing noisy labels.

To see this more concretely, we again consider the InfoNCE loss:

LInfoNCE(s) = � log
es

+

es+ +
PK

i=1 e
s�i

:= � log
ef(x)

T g(v)/t

ef(x)T g(v)/t +
PK

i=1 e
f(x)T g(vi)/t

, (5.2)

where s = {s+, {s�i }Ki=1}, s+ and s�i are the scores of related (positive) and unrelated

(negative) pairs and t is the temperature parameter introduced to avoid gradient

saturation. Note that different from Part I, we use two different encoders, f and g for

different views, which makes InfoNCE loss adaptable for multimodal scenarios such

as image-text or video-audio contrastive learning.

The expectation of the loss is taken over (x, v) ⇠ PXV and K independent samples

vi ⇠ PV , where PXV denotes the joint distribution over pairs of views such as transfor-

mations of the same image or co-occurring multimodal signals. Although InfoNCE has

a functional form of the (K+1)-way softmax cross entropy loss, the model ultimately

learns to classify whether a pair (x, v) is positive or negative by maximizing/minimiz-

ing the positive score s+/negative scores s�i . Therefore, InfoNCE under noisy views

can be seen as binary classification with noisy labels. We acknowledge that similar

interpretations have been made in prior works under different contexts [73, 187, 208].

Symmetric form of contrastive learning. Now we turn to a functional form of

contrastive learning that can achieve the symmetric property. Assume that we have

a noise-tolerant loss function ` that satisfies the symmetry condition of equation 5.1.
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We say a contrastive learning objective is symmetric if it accepts the following form

L(s) = `(s+, 1)| {z }
Positive Pair

+�
KX

i=1

`(s�i ,�1)

| {z }
K Negative Pairs

(5.3)

which consists of a collection of (K + 1) binary classification losses; � > 0 is a
density weighting term controlling the ratio between classes 1 (positive pairs) and

�1 (negative pairs). Reducing � places more weight on the positive score s+, while

setting � to zero recovers the negative-pair-free contrastive loss such as BYOL [70].

Contrastive objectives that satisfy the symmetric form enjoy strong theoretical

guarantees against noisy labels as described in Ghosh et al. [64], as long as we plug

in the right contrastive loss function ` that satisfies the symmetry condition. Un-

fortunately, the InfoNCE loss [147] does not satisfy the symmetry condition in the

gradients w.r.t. s+/�. To see this, note that by taking the derivative with respect to

the prediction score s, the definition is equivalent to @L(s,1)
@s + @L(s,�1)

@s = 0 8s 2 R.

Applying the equation to the InfoNCE loss, we have

@LInfoNCE(s)
@s+

=
�1

LInfoNCE(s)
· es

+ ·
PK

i=1 e
s�i

(es+ +
PK

i=1 e
s�i )2

@LInfoNCE(s)
@s�i

=
�1

LInfoNCE(s)
· e

s+(1� es
�
i ) +

PK
i=1 e

s�i

(es+ +
PK

i=1 e
s�i )2

.

Within a batch of data, the gradients with respect to s+ and s� are entangled and do

not sum to a constant, which fail to meet the symmetry condition. This motivates

us to develop a new contrastive loss function that satisfies the symmetry condition,

described next.

5.2 Robust InfoNCE Loss (RINCE)
Based on the idea of robust symmetric classification loss, we present the following

Robust InfoNCE (RINCE) loss:

L�,qRINCE(s) =
�eq·s

+

q
+

(� · (es+ +
PK

i=1 e
s�i ))q

q
,
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where q,� 2 (0, 1]. When q = 1, RINCE becomes a contrastive loss that fully satisfies

the symmetry property in the form of equation 5.3 with `(s, y) = �yes:

L�,q=1
RINCE(s) = �(1� �)es

+
+ �

KX

i=1

es
�
i .

Notice that the exponential loss �yes satisfies the symmetric condition defined in

equation 5.1 with c = 0. Therefore, when q ! 1, we achieve robustness against noisy

views in the same manner as binary classification with noisy labels.

In the limit of q ! 0, RINCE becomes asymptotically equivalent to InfoNCE, as

the following lemma describes:

Lemma 5.2. For any � > 0, it holds that

lim
q!0

L�,qRINCE(s) = LInfoNCE(s) + log(�);

lim
q!0

@

@s
L�,qRINCE(s) =

@

@s
LInfoNCE(s).

Proof. We first prove the convergence in the function space with the L’Hôpital’s rule:

lim
q!0

L�,qRINCE(s) = lim
q!0

�eq·s
+

q
+

⇣
� · (es+ +

PK
i=1 e

s�i )
⌘q

q

= lim
q!0

1� eq·s
+

q
+

�1 +
⇣
� · (es+ +

PK
i=1 e

s�i )
⌘q

q

= lim
q!0

1� eq·s
+

q
+ lim

q!0

�1 +
⇣
� · (es+ +

PK
i=1 e

s�i )
⌘q

q

= � log(es
+
) + log

0

@�(es
+
+

KX

i=1

es
�
i )

1

A (L’Hôpital’s rule)

= � log
es

+

�
⇣
es+ +

PK
i=1 e

s�i

⌘

= LInfoNCE(s) + log(�).

To prove the convergence in its derivative, we analyze the derivative with respect
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to the positive score s+ and the negative score s�i . We begin with RINCE:

(positive score) lim
q!0

@

@s+
L�,qRINCE(s) = lim

q!0

@

@s+
�eq·s

+

q
+

@

@s+

⇣
� · (es+ +

PK
i=1 e

s�i )
⌘q

q
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q!0

�eq·s
+
+ (� · (es+ +

KX

i=1

es
�
i ))q�1 · � · es+

=� 1 +
es

+

es+ +
PK

i=1 e
s�i
;

(negative score) lim
q!0

@

@s�i
L�,qRINCE(s) = lim

q!0

@

@s�i
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� · (es+ +

PK
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We can see that the derivatives match the ones of InfoNCE

(positive score)
@

@s+
LInfoNCE(s) =

@

@s+
� log

es
+

es+ +
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(negative score)
@

@s�i
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· �es
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=
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i=1 e
s�i
.

Note that the convergence also holds for the derivatives: optimizing RINCE in

the limit of q ! 0 is mathematically equivalent to optimizing InfoNCE. Therefore,
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by controlling q 2 (0, 1] we smoothly interpolate between the InfoNCE loss (q ! 0)

and the RINCE loss in its fully symmetric form (q ! 1).

5.2.1 Intuition behind RINCE

We now analyze the behavior of RINCE through the lens of exploration-exploitation

trade-off. In particular, we reveal an implicit easy/hard positive mining scheme by

inspecting the gradients of RINCE under different q values, and show that we achieve

stronger robustness (more exploitation) with larger q at the cost of potentially useful

clean hard positive samples (less exploration).

To simplify the analysis, we consider InfoNCE and RINCE with a single negative

pair (K = 1):

LInfoNCE(s) = � log(es
+
/(es

+
+ es

�
));

L�,qRINCE(s) =
�eq·s

+

q
+

(� · (es+ + es
�
))q

q
.

We visualize the loss and the scale of the gradients with respect to positive scores

s+ in Figure 5-2. Although the loss values are different for each q, they follow the same

principle: The loss achieves its minimum when the positive score s+ is maximized

and the negative score s� is minimized.

The interesting bit lies in the gradients. The InfoNCE loss (q ! 0) places more

emphasis on hard positive pairs, i.e., the pairs with low positive scores s+ (the left-

most part in the plot). In contrast, the fully symmetric RINCE loss (q = 1) places

more weights on easy positive pairs (the right-most part). This reveals an implicit

trade-off between exploration (convergence) and exploitation (robustness). When

q ! 0, the loss performs hard positive mining, providing faster convergence in the

noise-free setting. But in the presence of noise, exploration is harmful; it wrongly puts

higher weights to false positive pairs because noisy samples tend to induce larger losses

[9, 76, 131, 217], and this could hinder convergence. In contrast, when q ! 1, we per-

form easy positive mining. This provides robustness especially against false positives;

but this is done at the cost of exploration with clean hard positives. An important
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Figure 5-2: Loss Visualization. We visualize the (a) loss value and the (b) gradient
scale with respect to the positive score s+ and (c) negative score s� for different q while
setting � = 0.5. The gradient scale of InfoNCE (q ! 0) is larger when the positive score is
smaller (hard positive pair). In contrast, for fully symmetric RINCE (q = 1), the gradient
is larger when positive score is large (easy positive pair).

aspect here is that RINCE does not require an explicit form of noise estimator: the

scores s+ and s�, and the relationship between the two (which is what the loss func-

tion measures) act as noise estimates. In practice, we set q 2 [0.1, 0.5] to strike the

balance between exploration and exploitation.

Note that both q ! 0 and q ! 1 naturally perform hard negative mining; both

their derivatives put exponentially more weights on hard negative pairs.

5.3 Experiments

We evaluate RINCE on various contrastive learning scenarios involving images (CIFAR-

10 [108], ImageNet [44]), videos (ACAV100M [114], Kinetics400 [98]) and graphs (TU-

Dataset [133]). Empirically, we find that RINCE is insensitive to the choice of �; we
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(b) Augmentation Noise(a) Label Noise

Figure 5-3: Noisy CIFAR-10. We show the top-1 accuracy of RINCE with different
values of q across different noise rate ⌘. Large q (q = 0.5, 1) leads to better robustness, while
smaller q (q = 0.01) performs similar to InfoNCE (q ! 0).

simply set � = 0.01 for all vision experiments and � = 0.025 for graph experiments.

5.3.1 Noisy CIFAR-10

We begin with controlled experiments on CIFAR-10 to verify the robustness of RINCE

against synthetic noise by controlling the noise rate ⌘. We consider two noise types:

Label noise. We start with the case of supervised contrastive learning [99] where

positive pairs are different images of the same label. This allows us to control noise in

the traditional sense, i.e., learning with noisy labels. Similar to [226], we flip the true

labels to semantically related ones, e.g., CAT $ DOG with probability ⌘/2. This is

commonly referred to as class-dependent noise [76, 201, 226].

Augmentation noise. We consider the self-supervised learning scenario and

vary the crop size during data augmentation similar to [188], i.e., after applying all

the transformations as in SimCLR [24], images are further cropped into 1/5 of their

original size with probability ⌘. This effectively controls the noise rate as cropped

patches will most likely to be too small to contain any shared information.

Figure 5-3 shows the results of SimCLR trained with InfoNCE and RINCE with

different choices of q and �. When the augmentation noise is present, e.g., ⌘ = 0.4,

the accuracy of InfoNCE drops from 91.14% to 87.33%. In contrast, the robustness
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Figure 5-4: t-SNE Visualization on CIFAR-10 with label noise. Colors indicate
classes. RINCE leads to better class-wise separation than the InfoNCE loss in both noise-less
and noisy cases.

of RINCE is enhanced by increasing q, achieving 89.01% when q = 1.0. InfoNCE also

fails to address label noise and suffers from significant performance drop (93.38% !

87.11% when ⌘ = 0.8). In comparison, RINCE retains the performance even when

the noise rate is large (91.59% for q = 1.0). In both cases, reducing the value of q

makes the performance of RINCE closer to InfoNCE, verifying our analysis in Lemma

5.2.

Figure 5-4 shows t-SNE visualization [192] of representations learned with In-

foNCE and RINCE (q = 1.0) under different label noise. As the noise rate increases,

representations of different classes start to tangle up for InfoNCE, while RINCE still

achieves decent class-wise separation.

5.3.2 Image Contrastive Learning

We verify our approach on the well-established ImageNet benchmark [44]. We adopt

the same training protocol and hyperparameter settings of SimCLR [24] and MoCo-

v3 [28] and simply replace the InfoNCE with our RINCE loss (q = 0.1 and q = 0.6,

respectively). Table 5.1 shows that RINCE improves InfoNCE (SimCLR and MoCo-

v3) by a non-trivial margin. We also include results from the SOTA baselines, where
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Method � to SimCLR [24] Top 1 Top 5

Supervised [79] N/A 76.5 -

SimSiam [26] No negative pairs 71.3 -
BYOL [70] No negative pairs 74.3 91.6

Barlow Twins [220] Redundancy reduction 73.2 91.0
SwAV [23] Cluster discrimination 75.3 -

SimCLR [24] None 69.3 89.0
+RINCE (Ours) Symmetry controller q 70.0 89.8

MoCo [81] Momentum encoder 60.6 -
MoCo-v2 [27] Momentum encoder 71.1 90.1
MoCo-v3 [28] Momentum encoder 73.8 -

+RINCE (Ours) Symmetry controller q 74.2 91.8

Table 5.1: Linear Evaluation on ImageNet. All the methods use ResNet-50 [79] as
backbone architecture with 24M parameters.

they improve SimCLR by introducing dynamic dictionary plus momentum encoder

(MoCo-v1/v2/v3 [27, 28, 81]), removing negative pairs plus the stop-gradient trick

(SimSiam [26], BYOL [70]), or online cluster assignment (SwAV [23]). In comparison,

our work is orthogonal to the recent developments, and the existing tricks can be

applied along with RINCE.

Figure 5-5 shows the positive pairs from SimCLR augmentations and the corre-

sponding positive scores s+ = f(x)Tg(v) output by trained RINCE model. Examples

with lower positive scores contain pairs that is less informative to each other, while

semantically meaningful pairs often have higher scores. This implies that positive

scores are good noise detectors, and down-weighting the samples with lower positive

score brings robustness during training, verifying our analysis in section 5.2.1.

5.3.3 Video Contrastive Learning

We examine our approach in the audio-visual learning scenario using two video

datasets: Kinetics400 [98] and ACAV100M [114]. Here, we find that simple q-warmup

improves the stability of RINCE, i.e., q starts at 0.01 and linearly increases to 0.4

until the last epoch. We apply this to all RINCE models in this section. As we show
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Method Backbone
Finetune
Input Size

HMDB UCF

3D-RotNet [95] R3D-18 16⇥1122 33.7 62.9
ClipOrder [211] R3D-18 16⇥1122 30.9 72.4

DPC [77] R3D-18 25⇥1282 35.7 75.7
CBT [180] S3D 16⇥1122 44.6 79.5

AVTS [107] MC3-18 25⇥2242 56.9 85.8
SeLaVi [10] R(2+1)D-18 32⇥1122 47.1 83.1

XDC [5] R(2+1)D-18 32⇥2242 52.6 86.8
Robust-xID [131] R(2+1)D-18 32⇥2242 55.0 85.6
Cross-AVID [132] R(2+1)D-18 32⇥2242 59.9 86.9

AVID+CMA [132] R(2+1)D-18 32⇥2242 60.8 87.5

InfoNCE (Ours) R(2+1)D-18 32⇥2242 57.8 88.6
RINCE (Ours) R(2+1)D-18 32⇥2242 61.6 88.8

GDT [154] R(2+1)D-18 30⇥1122 62.3⇤ 90.9⇤
⇤Based on an advanced hierarchical data augmentation during pretraining.

Table 5.2: Kinetics400-pretrained performance on UCF101 and HMDB51 (top-1
accuracy). Ours use the same data augmentation approach as Cross-AVID and AVID+CMA,
while GDT uses a hierarchical sampling process to obtain good performance.

below, RINCE outperforms SOTA noise-robust contrastive methods [131, 132] on Ki-

netics400, while also providing scalability and computational efficiency compared to

InfoNCE.

Kinetics400 For fair comparison to SOTA, we follow the same experimental pro-

tocol and hyperparameter settings of [132] and simply replace their InfoNCE loss

functions with RINCE. We use the same network architecture, i.e., 18-layer R(2+1)D

video encoder [189], 9-layer VGG-like audio encoder, and 3-layer MLP projection head

producing 128-dim embeddings. We use the ADAM optimizer [100] for 400 epochs

with 4,096 batch size, 1e-4 learning rate and 1e-5 weight decay. The pretrained en-

coders are finetuned on UCF-101 [177] and HMDB-51 [109] with clips composed of

32 frames of size 224 ⇥ 224.

Table 5.2 shows RINCE outperforming most of the baselines, including Robust-

xID [131] and AVID+CMA [132] which are recent InfoNCE-based SOTA methods

proposed to address the noisy view issues in audio-visual contrastive learning. Con-
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Figure 5-5: Positive pairs and their scores. The positive scores s+ 2 [�1, 1] are output
by the trained RINCE model (temperature = 1). Pairs that have lower scores are visually
noisy, while informative pairs often have higher scores.

sidering the only change required is the simple replacement of the InfoNCE with our

RINCE loss, the results clearly show the effectiveness of our approach. The simplicity

means we can easily apply RINCE to a variety of InfoNCE-based approaches, such

as GDT [154] that uses advanced data augmentation to achieve SOTA results.

ACAV100M We conduct an in-depth analysis of RINCE on ACAV100M [114], a

recent large-scale video dataset for self-supervised learning. Compared to Kinetics400

which is limited to human actions, ACAV100M contains videos “in the wild” exhibiting

a wide variety of audio-visual patterns. The unconstrained nature of the dataset

makes it a good benchmark to investigate the robustness of RINCE to various types

of real-world noise, e.g., background music, overdubbed audio, studio narrations, etc.

We focus on evaluating the (a) scalability and (b) convergence rate of RINCE,

thereby answering the question: Will it retrain its edge over InfoNCE (a) even in

the large-scale regime and (b) with a longer training time? We follow the same

experimental setup as described above, but reduce the batch size to 512 and report
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Figure 5-6: RINCE outperforms InfoNCE with fewer epochs across different
scales The results are based on ACAV100M-pretrained models transferred to UCF-101.

the results only on the first split of UCF-101 to make our experiments tractable.

Figure 5-6 (a) shows the top-1 accuracy across different data scales and training

epochs. RINCE outperforms InfoNCE by a large margin at every data scale. In terms

of the convergence rate, RINCE is comparable to or even outperforms fully-trained

(200 epochs) InfoNCE models with only 100 or fewer epochs. Figure 5-6 (b) gives

a closer look at the convergence at 50K and 200K scales. Interestingly, InfoNCE

saturates and even degenerates after epoch 150, while RINCE keeps improving. This

verifies our analysis in section 5.2.1: InfoNCE can overfit noisy samples due to its

exploration property, while RINCE downweights them and continue to obtain the

learning signal from clean ones, achieving robustness against noise.

5.3.4 Graph Contrastive Learning

To see whether the modality-agnostic nature of RINCE applies beyond image and

video data, we examine our approach on TUDataset [133], a popular benchmark

suite for graph inference on molecules (BZR, NCI1), bioinformatics (PROTEINS),

and social network (RDT-B, IMDB-B). Unlike vision datasets, data augmentation for

graphs requires careful engineering with domain knowledge, limiting the applicability

of InfoNCE-type contrastive objectives.
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Methods RDT-B NCI1 PROTEINS DD

node2vec [71] - 54.9±1.6 57.5±3.6 -
sub2vec [2] 71.5±0.4 52.8±1.5 53.0±5.6 -

graph2vec [139] 75.8±1.0 73.2±1.8 73.3±2.1 -
InfoGraph [195] 82.5±1.4 76.2±1.1 74.4±0.3 72.9±1.8
GraphCL [215] 89.5±0.8 77.9±0.4 74.4±0.5 78.6±0.4

JOAO [216] 85.3±1.4 78.1±0.5 74.6±0.4 77.3±0.5
JOAOv2 [216] 86.4±1.5 78.4±0.5 74.1±1.1 77.4±1.2

InfoNCE⇤ (Ours) 89.9±0.4 78.2±0.8 74.4±0.5 78.6±0.8
RINCE (Ours) 90.9±0.6 78.6±0.4 74.7±0.8 78.7±0.4

⇤GraphCL [215] but uses the same data augmentation as RINCE.

Table 5.3: Self-supervised representation learning on TUDataset: The baseline
results are excerpted from the published papers.
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Figure 5-7: Performance v.s. Perturbation Rate: We increase the perturbation rate
of node dropping, edge perturbation, and attribute masking from 10% to 60%. RINCE
outperforms InfoNCE in terms of accuracy and variance when perturbation enhances.

For fair comparison, we follow the protocol of [215] and train graph isomorphism

networks [213] with four types of data augmentation: node dropout, edge perturba-

tion, attribute masking, and subgraph sampling. We train models using ADAM [100]

for 20 epochs with a learning rate 0.01 and report mean and standard deviation over

5 independent trials. We set q = 0.1 for all the experiments in this section.

Table 5.3 shows that RINCE outperforms SOTA InfoNCE-based contrastive meth-

ods, GraphCL and JOAO /JOAOv2, setting the new records on all four datasets.

GraphCL applies different augmentations for different datasets, while JOAO/JOAOv2

require solving bi-level optimization to choose optimal augmentation per dataset. In

contrast, we apply the same augmentation across all four datasets and achieve com-

petitive performance, demonstrating its generality and robustness. In Figure 5-7, we
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control perturbation rate by applying three augmentation types (node dropout, edge

perturbation, attribute masking) to different % of nodes/edges. We show results on

two datasets most sensitive to augmentation. Again, RINCE consistently outperform

InfoNCE and has relatively smaller variances when the noise rate increases.
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Chapter 6

InfoNCE and Mutual Information

In this chapter, we will provide a theoretical analysis of the proposed RINCE objective

and show that it extends the analyses by Ghosh et al. [64] to the self-supervised

contrastive learning regime. Furthermore, we relate the proposed loss function to

dependency measurement. Analogous to InfoNCE loss, which is a lower bound of

mutual information between two views [147], we show that RINCE is a lower bound

of Wassersein Dependency Measure (WDM) [149], even in the noisy setting. By

replacing the KL divergence in the mutual information estimator with the Wasserstein

distance, WDM is able to capture the geometry of the representation space and

provides robustness against noisy views better than the KL divergence, both in theory

and practice. In particular, the features learned with RINCE achieve better class-wise

separation, which is proved to be crucial to improve generalization [38].

6.1 Variational Lower Bounds of InfoNCE

Without loss of generality, let f = g and consider f = f 0��, where � is a representation

encoder and f 0 is a projection head [24]. Also, let P � = �#P be the pushforward

measure of P with respect to �. It has been shown that InfoNCE is a variational lower-
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bound of MI in the representation space expressed with KL-divergence [157, 188]:

�E
⇥
LInfoNCE(s)

⇤
+ log(K)  I(�(X),�(V ))

= DKL(P
�
XV , P

�
XP

�
V ).

Intuitively, maximizing MI can be interpreted as maximizing the discrepancy between

positive and negative pairs. However, prior works [124, 149] have identified theoretical

limitations of maximizing MI using the KL divergence: Because KL divergence is

not a metric, it is sensitive to small differences in data samples regardless of the

geometry of the underlying data distributions. Therefore, the encoder � can capture

limited information shared between X and V as long as the differences are sufficient

to maximize the KL divergence. Note that this can be especially detrimental in the

presence of noisy views, as the learner can quickly settle on spurious correlations in

false positive pairs due to the absence of the actual shared information.

6.2 Variational Lower Bounds of RINCE

6.2.1 Wasserstein Mutual Information

We now establish RINCE as a lower bound of WDM [149], which is proposed as a

replacement for the KL divergence in MI estimation.

WDM is based on the Wasserstein distance, a distance metric between probability

distributions defined via an optimal transport cost. Letting µ and ⌫ 2 Prob(Rd⇥Rd)

be two probability measures, we define the Wasserstein-1 distance with a Euclidean

cost function as

W(µ, ⌫) = inf
⇡2⇧(µ,⌫)

E (X,V )
(X0,V 0)

⇠⇡

h��X �X 0
��+

��V � V 0
��
i

where ⇧(µ, ⌫) denotes the set of measure couplings whose marginals are µ and ⌫,

respectively. By replacing the KL divergence in MI with Wasserstein distance, we

obtain the following definition of Wasserstein dependency measure, or sometimes
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referred as Wasserstein mutual information:

IW(�(X),�(V )) := W1(P
�
XV , P

�
XP

�
V )

By virtue of symmetry when q = 1, if � > 1/(K+1), the Kantorovich-Rubinstein

duality [84] implies the following result:

Theorem 6.1. If �K > 1�� and f projects the representation to a unit hypersphere,

we have

� E
h
L�,q=1

RINCE(s)
i
 Lip(f) · (1� �) · e1/t

t
IW(�(X),�(V )). (6.1)

Proof. By the additivity of expectation, we can bound the negative symmetric loss

as follows

� E
h
L�,q=1

RINCE(s)
i

= E x⇠PX
v⇠PV |X=x

vi⇠PV

[(1� �)ef(�(x))
T f(�(v)/t � �

KX

i=1

ef(�(x))
T f(�(vi)/t]
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T f(�(v)/t
i
� Ex⇠PX

vi⇠PV

2

4�
KX

i=1

ef(�(x))
T f(�(vi)/t

3

5

= E(x,v)⇠PXV

h
(1� �)ef(�(x))

T f(�(v)/t
i
� Ex⇠PX

vi⇠PV

2

4�
KX

i=1

ef(�(x))
T f(�(vi)/t

3

5

= E(x,v)⇠PXV

h
(1� �)ef(�(x))

T f(�(v)/t
i
� �KEx⇠PX

v⇠PV

h
ef(�(x))

T f(�(v)/t
i

 (1� �) · (E(x,v)⇠PXV

h
ef(�(x))

T f(�(v)/t
i
� Ex⇠PX

v⇠PV

h
ef(�(x))

T f(�(v)/t
i
),

where the last equality follows by �K > 1 � �. Note that for �1
t  s  1

t , which
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implies |rses|  e1/t. Therefore, by the mean value theorem, we have

|ef(�(x))T f(�(v))/t � ef(�(x
0))T f(�(v0))/t|

 e1/t

t
|hf(�(x)), f(�(v))i � hf(�(x0)), f(�(v0))i| (Mean Value Theorem)

=
e1/t

t
|hf(�(x))� f(�(x0)), f(�(v))i+ hf(�(x0)), f(�(v)� f(�(v0))i|

 e1/t

t
(|hf(�(x))� f(�(x0)), f(�(v))i|+ |hf(�(x0)), f(�(v)� f(�(v0))i|)

 e1/t

t
(kf(�(x))� f(�(x0))kkf(�(v))k+ kf(�(v)� f(�(v0))kkf(�(x0))k)

(Cauchy–Schwarz Ineq.)

=
e1/t

t
(kf(�(x))� f(�(x0))k+ kf(�(v)� f(�(v0))k) (f(�(x)) is unit norm)

 Lip(f) · e1/t
t

(k�(x)� �(x0)k+ k�(v)� �(v0)k)

=
Lip(f) · e1/t

t
d((�(x),�(v)), (�(x0),�(v0))).

We can see that the Lipschitz constant of exp(f(·, ·)) with respect to the metric d is

bounded by Lip(f)·e1/t
t . Therefore, by Kantorovich-Rubinstein duality, we have

� E
h
L�,q=1

RINCE(s)
i

 (1� �) · (E(x,v)⇠PXV
[ef(�(x))

T f(�(v)/t]

� Ex⇠PX
v⇠PV

[ef(�(x))
T f(�(v)/t]),

 Lip(f) · (1� �) · e1/t
t

W1(�#PXV ,�#PX · �#PV )

The IW(�(X),�(V )) is the WDM defined in [149] and L is a constant that depends

on t,�, and the Lispchitz constant of the projection head f . Note that we are not

aware of any work that showed it is possible to establish a similar bound with WDM

for the InfoNCE loss.

This provides another explanation of what makes RINCE robust against noisy
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views. Unlike InfoNCE which maximizes the KL divergence, optimizing RINCE is

equivalent to maximizing the WDM with a Lipschitz function. Equipped with a

proper metric, this allows RINCE to measure the divergence between two distributions

P �
XV and P �

XP
�
V without being overly sensitive to individual sample noise, as long

as the noise does not alter the geometry of the distributions. This also allows the

encoder � to learn more complete representations, as maximizing the Wasserstein

distance requires the encoder to not only model the density ratio between the two

distributions but also the optimal cost of transporting one distribution to another.

6.2.2 Lower Bounds with Noise

Finally, we show that RINCE still maximizes the noise-less WDM under additive

noise, corroborating the robustness of RINCE. Let’s consider a simple mixture noise

model:

P ⌘
XV = (1� ⌘)PXV + ⌘PXPV ,

where ⌘ is the noise rate and the noisy joint distribution P ⌘
XV is a weighted sum

between the noise-less positive distribution PXV and negative distribution PXPV .

Note that the marginals of P ⌘
XV are still PX and PV by construction. The intuition

behind mixture noise model is that when we draw positive pairs from P ⌘
XV , we obtain

false positives from PXPV with probability ⌘. Via the symmetry of the contrastive

loss, we can extend bound (6.1) as follows.

Theorem 6.2. If � � ⌘K�⌘+1
⌘K�⌘+1+K and f projects the representation to a unit hyper-

sphere, we have

� E
h
L�,q=1

RINCE(s)
i
 (1� ⌘) · Lip(f) · (1� �) · e1/t

t
IW(�(X),�(V )).

Proof. The result is a simple combination of Corollary 5.1 and Theorem 6.1. If

� � ⌘K�⌘+1
⌘K�⌘+1+K , by the assumption of additive noisy models and the symmetry of loss,
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we have

� E
h
L�,q=1

RINCE(s)
i

= E(x,v)⇠P ⌘
XV

vi⇠PV

[(1� �)ef(�(x))
T f(�(v)/t � �

KX

i=1

ef(�(x))
T f(�(vi)/t]

= E(x,v)⇠P ⌘
XV

h
(1� �)ef(�(x))

T f(�(v)/t
i
� Ex⇠PX

vi⇠PV

2

4�
KX

i=1

ef(�(x))
T f(�(vi)/t

3

5

= (1� �)(1� ⌘)E(x,v)⇠PXV

h
ef(�(x))

T f(�(v)/t
i
�K · (�� ⌘ + ⌘�)Ex⇠PX

v⇠PV

h
ef(�(x))

T f(�(v)/t
i

(symmetry)

 (1� �)(1� ⌘) · (E(x,v)⇠PXV

h
ef(�(x))

T f(�(v)/t
i
� Ex⇠PX

vi⇠PV

h
ef(�(x))

T f(�(vi)/t
i
)

(� � ⌘K�⌘+1
⌘K�⌘+1+K )

 (1� ⌘) · Lip(f) · (1� �) · e1/t
t

W1(�#PXV ,�#PX · �#PV )

Comparing to the bound (6.1), the right hand side is rewieghted with (1 � ⌘).

This implies that minimizing RINCE with noisy views still maximizes a lower bound

of noise-less WDM. Despite the simplicity of the analysis, it intuitively relates de-

pendency measures and the noisy views with interpretable bounds. It would be an

interesting future direction to extend the analysis to more complicated noise models,

e.g., P ⌘
XV = (1 � ⌘)PXV + ⌘QXV , where Q is an unknown perturbation on positive

distribution.

6.3 Conclusion

In the second part, We presented RINCE as a simple drop-in replacement for the

InfoNCE loss in contrastive learning. Despite its simplicity, it comes with strong

theoretical justifications and guarantees against noisy views. Empirically, we pro-

vided extensive results across image, video, and graph contrastive learning scenarios

demonstrating its robustness against a variety of realistic noise patterns.

112



Part III

Learning from Biased Data
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Chapter 7

Debiasing Foundation Models

Foundation Vision-Language (VL) models, such as CLIP [159], DALLE-2 [161], Ima-

gen [166], and Stable Diffusion [164], which are trained on extensive multimodal data

at a massive scale, have led to a significant shift in the landscape of machine learn-

ing systems. Specifically, contrastive vision-language encoders like CLIP have the

ability to perform zero-shot inferences without fine-tuning, and language embeddings

can be used to train high-quality text-to-image models [164]. Figure 7-1 provides an

illustration.

While vision-language models demonstrate impressive capabilities, it is important

to recognize that they may also exacerbate biases [3, 126, 197]. Recent studies [17]

have shown that the datasets these models are trained on can contain inappropriate

image-text pairs with stereotypes, racist content, and ethnic slurs. The biases are

then propagated to downstream applications [3, 197], resulting in biased predictions.

Figure 7-2 provides an example of biases within Stable Diffusion [164]. In addition

to social biases, zero-shot models derived from vision-language models can also suffer

from more general forms of spurious correlations such as image background, lead-

ing to poor group robustness [224]. Biases also exist in generative models, where

generated images may exhibit bias towards certain genders and races [29, 129]. Sub-

stantial progress has been made recently toward mitigating biases in vision-language

models [16, 152, 224]. However, many current approaches for addressing bias in mod-

els require training or fine-tuning the models using resampled datasets or modified

115



�d

f

g
“A cute golden retriever.”

“A cat flying in the sky.”

g

“A
 c

ut
e 

go
ld

en
 re

tri
ev

er
.”

g

(a) Discriminative VL Model (b) Generative VL Model

Figure 7-1: Discriminative and Generative Vision-language Models. Discrim-
inative VL models typically leverage multimodal contrastive learning to map image and
language to the same representation space. Generative VL models learn to generate images
conditioned on a text embedding.

objectives, which can be computationally intensive for foundation models.

In this chapter, we propose a general approach for self-debiasing foundation vision-

language models by projecting out biased directions in the text embedding. Given

a vision-language encoder such as CLIP, we define a set of biased directions in the

embedding using prompts that describe the biases. For instance, prompts like “a

photo of a male/female” define a biased subspace in the latent space. One approach

to mitigating these biases is to construct a projection matrix, a linear transformation

of the text embedding that projects out the biased directions [20]. However, solely

relying on prompts to define biased directions may be unstable and noisy [68]. To

address this issue, we propose a calibration loss that minimizes the discrepancy of

a pair of prompt embeddings. For example, given a projection matrix that removes

gender information, the projected vectors of prompts “a photo of a male doctor”

and “a photo of a female doctor” should be similar. Based on this principle, we

design an objective to calibrate the projection matrix, which has an easily solvable

closed-form solution. This allows for the construction of the projection matrix to

be training-free and requires no downstream dataset or labels, making it suitable for

large-scale models. Empirically, we find that debiasing only the text embedding with

a calibrated projection matrix suffices to improve the group robustness of zero-shot

models on well-established benchmarks.

We then extend our approach to generative models such as Stable Diffusion [164],
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Figure 7-2: Biases of Diffusion Models. We generate images with prompt “a photo of
a doctor” and “a photo of a nurse” using online Stable Diffusion model [164]. The current
model has clear gender biases.

a widely adopted text-to-image model conditioned on text embeddings from CLIP

[159]. The inherent challenge lies in the fact that generative models are distinctly

dissimilar from zero-shot classification, where the target classes are explicitly defined.

With generative models, our objective is to develop a debiasing matrix that is uni-

versally applicable to every prompt. This matrix can then be employed as a standard

preprocessing stage prior to feeding the text embedding into the generative model.

To accomplish this, we solve the calibration matrix with a set of positive pairs which

comprise various prompts from the training dataset, and debias the unseen prompts

with the obtained matrix. Similar to debiasing zero-shot models, the projection ma-

trix improves the diversity of generated images from text-to-image models without

altering the model parameters.

7.1 Biases of Foundation Models

Vision-Language models [159, 161, 164, 166] have become increasingly widespread in

recent years. However, these models are known to suffer from spurious correlations

and can be biased towards certain races and gender. Birhane et al. [17] study the
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datasets these models are trained on and show that their biases can be inherited by

the models. Various methods have been proposed to address biases, but many of

them only address single-modality models.

Biases in Language Models Large-scale language models have been shown to

contain harmful or misrepresentative biases [18, 135, 205]. Previous research has

demonstrated the presence of gender bias in natural language processing systems

[20, 228] as well as racial bias [62, 122]. Bolukbasi et al. [20] first proposed the

use of orthogonal projections to remove gender biases in word embeddings. This

approach was later extended to debiasing sentence embeddings [116]. Alternative

methods include regularizing the models with constraints on training data [86, 227] or

directly modifying the dataset [182, 228]. However, scaling these approaches to large

foundation models can be challenging as they often require retraining the backbone

encoders.

Biases in Vision Models Gender and racial biases have also been widely explored

in computer vision [4, 198], in terms of dicsriminative models [199] and generative

models [29, 72, 212]. Many debiasing approaches aim to learn good representations

via adversarial training [121, 202], or augmenting the biased dataset [35, 160]. Beyond

social bias, many works study spurious correlations, a more general form of bias that

can include features such as image background or other non-target attributes that

are correlated with labels. This problem of spurious correlations is often studied and

tackled as a group robustness problem [87, 165]. Kirichenko et al. [102] show that last

layer re-training is sufficient for robustness to spurious correlations, which aligns with

our finding that debiasing the zero-shot weights suffices to yield robust classifiers.

Biases in Vision-Language Models Recently, biases in multimodal settings have

gained significant attention [3, 75]. Wang et al. [197] propose to remove dimensions

in the CLIP embedding that are highly correlated with gender attributes. Berg

et al. [16] debias the CLIP models with prompt learning via an adversarial approach.

Seth et al. [172] learn additive residual image representations to offset the biased
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representations. Recently, Zhang and Ré [224] address the group robustness of vision-

language models with contrastive learning. These previous works are data-oriented,

where models are trained or finetuned on labeled datasets. In contrast, our approach

is fully zero-shot, which does not require any downstream dataset and model training.

To debias generative models, a recent work [59] pre-defines a look-up table to provide

fair guidance for text-to-image diffusion models. Nevertheless, this method encounters

limitations when faced with previously unseen classes that are absent from the look-up

table, while our approach generalizes well to new concepts.

7.2 Biases and Spurious Correlations

We consider a dataset in which each input x 2 X is associated with multiple at-

tributes, including the target class y 2 Y and a spurious attribute a 2 A. We focus

on the case where biases are present and the attribute a is spuriously correlated with

the label y. For instance, the class “doctor” could be correlated with the spurious

attribute “gender” in the datasets foundation models are trained on [17]. Impor-

tantly, these biases can be transferred to downstream tasks, both discriminative and

generative.

Discriminative Models In this work, we examine the biases present in zero-shot

classifiers obtained via a vision-language encoder such as CLIP. These classifiers are

built by assigning each row of the linear classifier weight � 2 RK⇥d to be the embed-

ding of a “class prompt”, for example, “a photo of a [class name]” [159]. Importantly,

it does not require any data or training to construct these zero-shot classifiers. How-

ever, it is possible for these zero-shot classifiers to inherit biases from the dataset

used to train the vision-language models. To study these biases, we utilize the group

robustness framework proposed by Sagawa et al. [165]. In this setting, groups are

defined by a combination of the labels and spurious attributes: G 2 Y ⇥ A. Given

a distribution Pg conditioned on g 2 G and a loss function ` : Y ⇥ Y ! R, group

robustness requires that the classifier f : X ! Y achieves a small gap between its
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worst-group error and average error:

max
g2G

Ex,y⇠Pg

⇥
`(f(x), y)

⇤
� Ex,y⇠P

⇥
`(f(x), y)

⇤
. (7.1)

The definition of metrics for text-image retrievals, such as maximal skewness [63],

will be deferred to the experiment section.

Generative Models A text-to-image model learns a conditional distribution P̂ (X|Z =

z), where z is the embedding of the prompt. However, the biased nature of the dataset

used to train the generative model can affect the distribution P̂ . To measure the bias

present in generative models, recent works [30, 185] propose using statistical parity.

Specifically, given a classifier h : X ! A for the spurious attribute, the discrepancy

of the generative distribution P̂ is defined as the L2 norm between empirical and

uniform distributions [30]:

sX

a2A

⇣
Ex⇠P̂

⇥
h(x)=a

⇤
� 1/|A|

⌘2

(7.2)

In practice, the expectation is estimated with empirical samples. A fair generative

model minimizes the discrepancy by ensuring that each attribute a 2 A has an equal

probability (uniformly distributed).

7.3 Debiasing Discriminative Models

It is essential for a robust classifier to evade dependence on irrelevant features present

in images. This necessitates the classifier to be invariant to image backgrounds and

insensitive to attributes such as race or gender. Prior research has employed datasets

with target labels and spurious attributes to quantify and eliminate biases [165, 224].

However, this approach is not feasible in a zero-shot setting, where data and training

are prohibitive.
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CelebA Waterbird

Male Female Land Water

�y=0 0.83 0.78 0.75 0.66
�y=1 0.77 0.85 0.65 0.70

Table 7.1: Cosine similarity be-
tween classifier weights and spu-
rious directions. In both datasets,
the classifier weights are biased toward
certain spurious attributes.

A photo of a male doctor.

A photo of a female doctor.
A photo of a doctor.

Figure 7-3: Calibration with Positive Pairs.
Upon projecting out irrelevant features (such as
gender), the embeddings of group prompts should
exhibit similarity and contain only information
pertaining to the target class (e.g. doctor).

7.3.1 Measuring Biases with Prompts

In contrast to previous approaches, our proposed method for measuring biases uti-

lizes prompts, drawing inspiration from studies on debiasing word embeddings [20].

The use of vision-language contrastive training allows for the description of irrelevant

features through natural language. As such, embeddings of prompts such as “a photo

of a [irrelevant attribute]" can capture these spurious features in the visual embed-

ding. Consequently, the bias of a classifier can be quantified by computing the cosine

similarity between its weights and the corresponding spurious feature. Table 7.1 il-

lustrates the cosine similarity between the embeddings of prompts that describe the

target classes and irrelevant attributes, using two popular group robustness bench-

marks: Waterbird [165] and CelebA [118]. The details of datasets and the specific

prompts can be found in section 7.4 and appendix A.4. The results demonstrate

that the classifier weights are inclined towards certain irrelevant attributes (gender or

image background), implicitly implying that the classifiers are using these spurious

directions to make predictions.

7.3.2 Debiasing via Orthogonal Projection

As the zero-shot weights can also be viewed as natural language embeddings, a

straightforward approach is to follow the debiasing pipeline employed in word and

sentence embeddings [20, 116]. In particular, to make the classifier invariant to these

irrelevant features, we align the classifier weights with the orthogonal complement of
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these embeddings. Let A 2 Rd⇥m be a matrix whose columns are the embeddings of

spurious prompts. The orthogonal projection matrix is then:

P0 = I � A(ATA)�1AT .

We can use the projection matrix to eliminate spurious directions in a text embedding

z as P0z.

7.3.3 Calibrating the Projection Matrix

It is essential to acknowledge that the estimation of the irrelevant feature directions

may introduce an approximation error in the projection matrix [68]. Additionally, in

certain scenarios, it may be challenging to thoroughly describe the irrelevant attribute

using a limited number of prompts, resulting in increased uncertainty in the projection

matrix estimation. This issue is also evident in our empirical results (Table 7.2 and

7.4), where the use of orthogonal projection fails to enhance performance.

To improve the estimation of the projection matrix, we leverage positive pairs of

prompts that are expected to have the same semantic meaning after projection. In

particular, the embedding of prompts such as “a photo of a [class name] with [spurious

attribute]” should only contain information about “[class name]” after projecting out

the spurious information, as Figure 7-3 illustrates. Motivated by this intuition, we

propose to regularize the difference between the projected embeddings using a set of

positive pairs S:

min
P

kP � P0k2 +
�

|S|
X

(i,j)2S

��Pzi � Pzj
��2 , (7.3)

where (zi, zj) is the embedding of pair (i, j) in S and (i, j) are prompts that describe

the same class but different spurious attributes. The loss encourages the linear pro-

jection P to be invariant to the difference between (i, j), i.e., the spurious attributes.

The optimization problem has a convenient closed-form solution, as demonstrated in

Lemma 7.1.
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Lemma 7.1. The minimizer of the calibration loss is

P ⇤ = P0

⇣
I +

�

|S|
X

(i,j)2S

(zi � zj)(zi � zj)
T
⌘�1

.

Proof. We will leverage the first order optimality criteria to derive the solution.

min
P

kP � P0k2 +
�

|S|
X

(i,j)2S

kPzi � Pzjk2

The loss can be written as

L(P ) =
�

|S|(Pzi � Pzj)
T (Pzi � Pzj) + (P � P0)

T (P � P0)

=
�

|S|(zi
TP TPzi + zj

TP TPzj � zi
TP TPzj � zj

TP TPzi)

+ (P TP + P T
0 P0 � P T

0 P � P TP0)

Setting the derivate w.r.t. P to zero yields:

@L(P )

@P
=

�

|S|
X

(i,j)2S

2(Pzizi
T + Pzjzj

T � Pzizj
T � Pzjzi

T ) + (2P � 2P0) = 0

P (I +
�

|S|
X

(i,j)2S

(zizi
T + zjzj

T � zizj
T � zjzi

T )) = P0

P = P0(I +
�

|S|
X

(i,j)2S

(zizi
T + zjzj

T � zizj
T � zjzi

T ))�1

= P0

⇣
I +

�

|S|
X

(i,j)2S

(zi � zj)(zi � zj)
T
⌘�1

One can also rewrite the objective as

min
P

kP � P0k2 +
�

|S|
X

(i,j)2S

kP (zi � zj)k2

=min
P

kP � P0k2 +
�

|S|kPZdiffk2
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We then have

@L(P )

@P
= 2(P � P0) + 2

�

|S|PZdiffZ
T
diff = 0

P (I +
�

|S|ZdiffZ
T
diff) = P0

P = P0(I +
�

|S|ZdiffZ
T
diff)

�1.

Note that two optimums are equivalent, where the second one is simply the matrix

form of the first.

We can obtain an interpretation of the minimizer by relating it to singular value

decomposition (SVD). Let Zdiff 2 Rd⇥|S|, where the columns of Zdiff enumerate the

pairwise difference zi � zj for all (i, j) 2 S. The matrix Zdiff defines a subspace that

represents the variation in the embedding when the irrelevant feature is changed.

Using Zdiff, the minimizer can be written as P ⇤ = P0(I + �0ZdiffZT
diff)

�1, where we

define �0 = �/|S| to simplify the notation. Assume that the SVD of Zdiff is U⌃V T .

Then we have ZdiffZT
diff = U⌃2UT . The optimal solution P ⇤ can then be rewritten as

P ⇤ = P0(U(I + �0⌃2)UT )�1 = P0 U(I + �0⌃2)�1UT

| {z }
Calibration Matrix

.

We can see that U(I + �0⌃2)�1UT acts as a calibration term. Before multiplying the

text embedding with the projection matrix P0, variation due to the change of the

spurious feature, namely, the eigenvectors with large squared singular value in Zdiff

(spurious direction) will be down-weighted due to the inverse (I+�0⌃2)�1. Therefore,

varying the spurious attributes should result in similar embeddings after multiplying

the calibration matrix.

7.3.4 Relation to an Equalization Loss

Finally, we provide an equivalent form of the calibrated projection and relate it to an

equalization loss. Ideally, we want each row of the classifier weight � 2 RK⇥d to have

similar cosine similarity to pairs of embeddings in S. For instance, the embedding
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of “a photo of a doctor” should be equally similar to “a photo of a male doctor” and

“a photo of a female doctor”. In this section, we will show that the optimum of the

calibration loss does satisfy this criterion.

We consider the following objective for obtaining a debiased text embedding z 2

Rd of a prompt given its initialization z0 2 Rd from the text encoder:

min
z

kz � z0k2 +
�

|S|
X

(i,j)2S

(zT zi � zT zj)
2. (7.4)

The loss encourages the embedding z to have similar cosine similarity to embeddings

in positive pairs while maintaining proximity to the initialization z0. Objective (7.4)

has the same optimal solution as the calibration loss (7.3).

Lemma 7.2. The minimizer of objective (7.4) reads

z⇤ =
⇣
I +

�

|S|
X

(i,j)2S

(zi � zj)(zi � zj)
T
⌘�1

| {z }
Calibration Matrix

z0

In particular, we have P0z⇤ = P ⇤z0 where P ⇤ is the minimizer of the calibration loss

(7.3).

Proof. Similarly, the objective can be rewritten as

min
z

kz � z0k2 +
�

|S|
X

(i,j)2S

(zT (zi � zj))
2

=min
z

kz � z0k2 +
�

|S|kz
TZdiffk2.

The derivative is:

@L(z)
@z

= 2z � 2z0 + 2
�

|S|ZdiffZ
T
diffz = 0

z = (I +
�

|S|ZdiffZ
T
diff)

�1z0

=
⇣
I +

�

|S|
X

(i,j)2S

(zi � zj)(zi � zj)
T
⌘�1

z0
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Lemma 7.2 shows that the optimal solution of (7.4) is equivalent to multiplying

the original embedding z with the calibration matrix defined before. Applying the

projection P0 to z⇤ leads to the same weight in Lemma 7.1. This interpretation is

particularly useful in cases where the ideal solution does not lie in the middle of zi

and zj, as will be shown in section 7.5 where we address biases in generative models.

The equalization objective has a similar motivation as the equalization step pro-

posed by Bolukbasi et al. [20] in their work on removing gender bias from word

embeddings. Similar to the idea of positive pairs, given a set of word embeddings

that has the same semantic meaning except for gender, their approach centers these

embeddings by setting them to the average embedding of the set. After centering,

any word in the dictionary will be equidistant to all words in the set. However, our

approach differs in that we modify the embedding of the target prompt z, rather

than the embedding of positive pairs, making it more suitable for debiasing zero-shot

classifiers as we are primarily concerned with the embedding of z.

7.4 Experiments: Discriminative Models

7.4.1 Group Robustness against Spurious Correlations

By following the setting of Zhang and Ré [224], we evaluate our approach on two

popular benchmarks for evaluating spurious correlations, Waterbird [165] and CelebA

[118]. On Waterbird, a water/land background is a confounding factor for the water-

birds/landbirds class, while on CelebA the binary gender is the spurious feature for

blond/dark hair. As such, both datasets contain four groups defined by the labels

and the spurious attributes.

We evaluate our approach against several baselines, including zero-shot classifica-

tion [159], empirical risk minimization (ERM) with linear probing [110], and ERM

with non-linear adapter [60]. Additionally, we also consider three recent methods

designed to improve the group robustness of vision-language foundation classifiers:
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Backbone CLIP ResNet-50 CLIP ViT-L/14

Dataset Waterbird CelebA Waterbird CelebA
WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

methods using data and labels

ERM Linear 7.9 93.5 85.6 11.9 94.7 82.8 65.9 97.6 31.7 28.3 94.7 66.4
ERM Adapter 60.8 96.0 35.2 36.1 94.2 58.1 78.4 97.8 19.4 36.7 94.2 57.5
WiSE-FT 49.8 91.0 41.2 85.6 88.6 3.0 65.9 97.6 31.7 80.0 87.4 7.4
DFR (Sub) 63.9 91.8 27.9 76.9 92.5 15.6 51.9 95.7 43.8 76.3 92.1 15.8
DFR (Up) 51.3 92.4 41.1 89.6 91.8 2.2 65.9 96.1 30.2 83.7 91.2 7.5
CA 83.7 89.4 5.7 90.0 90.7 0.7 86.9 96.2 9.3 84.6 90.4 5.8

methods without data and labels

Zero-shot 39.6 77.3 37.7 75.9 82.3 6.4 45.3 84.4 39.1 72.8 87.6 14.9
Orth-Proj (Ours) 48.1 83.6 35.4 61.4 86.4 25.0 61.4 86.4 25.0 71.1 87.0 15.9
Orth-Cali (Ours) 74.0 78.7 4.7 82.2 84.4 2.2 68.8 84.5 15.7 76.1 86.2 10.1

Table 7.2: Group Robustness of Vision-Language Models. For each backbone, the
first blocks contain methods that require data and labels, while the second blocks contain
zero-shot methods. The numbers for the first block are adopted from Zhang and Ré [224].
The proposed calibration loss achieves comparable or even smaller gaps between average
and worst group accuracy without the need for any data or labels.

• Weight Space Ensembling (WiSE-FT) [207], which trains a linear classifier first

using ERM and then combines the classifier outputs with the initial zero-shot

predictions;

• Deep Feature Reweighting (DFR) [102], which trains a linear probe on embeddings

obtained from a pre-trained model using group-balanced data. Following Zhang

and Ré [224], the group labels are replaced with zero-shot predictions;

• Contrastive Adapter (CA) [224], which trains adapters using contrastive learning

to bring embeddings in the same class closer.

It is important to note that all of the baselines except the zero-shot classifier

require at least training data and class labels, while our debiasing approach

does not require access to any input data, labels, or group labels, which follows the

principles of zero-shot learning.

We evaluate the performance of our proposed approach using two CLIP back-
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Waterbird CelebA
WG Avg Gap WG Avg Gap

� = 200 71.8 80.8 9.0 80.7 83.9 3.2
� = 400 72.9 79.5 6.6 81.6 84.2 2.6
� = 600 73.5 79.2 5.7 81.9 84.3 2.4
� = 1000 74.0 78.7 4.7 82.2 84.4 2.2

Table 7.3: Sensitivity to �. We vary the weighting parameter � and evaluate group
robustness with ResNet-50 backbone.

bones: ResNet-50 [79] and ViT-L/14 [48]. The results are presented in Table 7.2.

The results indicate that a simple application of the orthogonal projection (Orth-

Proj) by itself only yields limited improvement of the worst group accuracy, whereas

the calibration loss (Orth-Cali) significantly improves robustness across datasets and

base models. The proposed Orth-Cali method achieves comparable or even smaller

gaps between average and worst group accuracy compared to the state-of-the-art con-

trastive adapter [224], without the need for any data or labels. Note that the baselines

generally achieve better average accuracy as they require fine-tuning on the target

datasets.

Empirically, we found that gradually increasing the parameter � improves the

worst group accuracy and leads to a stable solution as shown in Table 7.3. Therefore,

for all the experiments on discriminative models, we set � to 1000 by default. To

investigate the importance of orthogonal projection and calibration, we present an

ablation study in Table 7.4. The results indicate that the calibration loss alone (P0 =

I) performs well on the CelebA dataset, as the spurious feature (gender) is relatively

easy to describe with prompts. However, performance drops on the Waterbird dataset

without a good initialization from the orthogonal projection. More ablation studies

can also be found in Appendix A.4, where we demonstrate the importance of class

names in positive pairs.
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Waterbird CelebA
WG Avg Gap WG Avg Gap

Proj only 48.1 83.6 35.4 61.4 86.4 25.0
Cali only 55.6 81.6 26.0 81.6 84.7 3.1
Proj + Cali 74.0 78.7 4.7 82.2 84.4 2.2

Table 7.4: Dissecting Orthogonal Projections. We evaluate variants of orthogonal
projection with ResNet-50 backbone.

CLIP ViT-B/32 CLIP ViT-L/14
Gen Race Age Gen Race Age

Zero-shot .206 .743 .797 .206 .768 .703
Orth-Proj .146 .755 .635 .349 .605 .706
Orth-Cali .102 .638 .641 .200 .461 .662

Table 7.5: Measuring biases on FairFace. We MaxSkew@1000 (the smaller the better)
on FairFace validation set.

7.4.2 Debiased Information Retrieval

Fairness in text-image retrieval has gained increasing attention in recent years. Build-

ing on the work of Berg et al. [16], we propose to utilize the MaxSkew metric, in-

troduced by Geyik et al. [63], to evaluate the level of fairness in the retrieval results.

Specifically, we conduct our analysis on the FairFace dataset [97], which is specifically

designed to address issues of fairness in facial recognition systems. Given a ranked

list of images in response to a text query, let ra,k be the ratio of the top k images

that are labeled with attribute a. Then MaxSkew@k is defined as maxa2A log ra,k
1/|A|

.

It quantifies the maximal discrepancy between the ratio of top k images labeled with

a specific sensitive attribute, denoted as ra,k, and the uniform weight 1/|A|, where

A represents the set of sensitive attributes. The MaxSkew metric provides a use-

ful measure of fairness in text-image retrieval systems, by assessing the degree to

which the retrieval results are evenly distributed across sensitive attributes. A small

MaxSkew value indicates that the distribution of retrieved images across different

sensitive attributes is close to being uniform.
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To measure the bias, we query the validation set of FairFace based on 10 prompts

that are uncorrelated with facial expressions or sensitive attributes, e.g., “a photo of a

[concept] person”, where the [concept] is a neutral concept such as evil or smart. The

detailed prompts are described in Appendix A.4. We measure the MaxSkew based

on three labeled attributes of FairFace: gender, race, and age. Table 7.5 shows the

average MaxSkew@1000 over concepts, demonstrating that our approach significantly

reduces the MaxSkew across different attributes and backbones.

7.5 Debiasing Generative Models

We now explore the possibility of extending the methodology developed for discrimi-

native models to generative models. Our primary focus is on addressing social group

biases, specifically gender and race discrepancy, as measured by metric (7.1). In

particular, the main experiment is to query the generative model using profession-

related prompts, specifically “a photo of a [profession]". Empirically, the generated

images were found to exhibit a strong bias towards certain gender and race, and we

attempt to improve the diversity of generated images with the proposed equalization

loss in this section. We also demonstrate that our approach can also address spurious

correlations beyond social biases.

A Single Matrix for Comprehensive Debiasing Unlike the well-defined tar-

gets prevalent in zero-shot classification, the nature of generative models requires a

more universal solution. Specifically, we seek to derive a debiasing matrix capable of

accommodating any prompt. This matrix could subsequently be treated as a stan-

dardized preprocessing step, applied prior to the introduction of the embedding into

the generator.

To achieve this, we optimize the equalization loss with positive pairs consisting

of an enumeration of “a photo of a [attribute] [profession]” where the [attribute] is a

member of the set of gender or races and the [profession] is a job title sampled from

a training set. For instance, to mitigate gender bias, we adopt S = {(“a photo of
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a male doctor”, “a photo of a female doctor”), · · · , (“a photo of a male engineer”, “a

photo of a female engineer”) }. By solving the calibration matrix with professions in

the training set, we expect the obtained matrix can also mitigate the biases in unseen

professions. Note that we optimize the equalization loss (7.4) without applying the

initial orthogonal projection matrix P0. This is because our goal is to balance rather

than completely eliminate biased information in the generated images.

7.6 Experiments: Generative Models

To evaluate the effectiveness of our approach in the context of generative models, we

conducted experiments using the Stable Diffusion (SD) v2.1 framework [164]. We

construct a list of professions that consists of 100 job titles with GPT-4 [148] and

randomly separate them into 80 training and 20 testing professions. In alignment

with the framework proposed by Kärkkäinen and Joo [97], we consider the gender

attributes of male and female, and racial attributes of White, Asian, Black, Indian,

and Latino1.

Evaluating generative models can be challenging without the use of human labels.

Inspired by Cho et al. [29], we used sensitive attribute classifiers to predict the sen-

sitive attributes of the generated images. The discrepancy, as defined in (7.2), was

then calculated. In particular, we generate 100 images for each train / test profes-

sion for evaluation, resulting in 10000 images for each model. We then leverage the

CLIP classifier to predict the sensitive attributes to calculate the discrepancy. An

alternative to CLIP is the FairFace classifier [97]; however, we found that the domain

shift between the FairFace dataset and the generated images significantly impairs its

performance. The debiased and biased models share the same random seed for fair

comparison. We set � = 500 for all the experiments in this section.

1It is essential to recognize gender and race are complex social constructs that cannot be sim-
ply reduced to binary or discrete categories. The choice of using binary gender and discrete race
attributes in our work was primarily based on the existing literature and benchmark datasets that
have commonly adopted this setting for evaluation purposes.
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Figure 7-4: Improving Gender Diversity of Stable Diffusion. We fix the random
seed of initial latent noise of Stable Diffusion [164] and generate the images with the training
/ testing prompt “a photo of a doctor / firefighter”. The results demonstrate that applying
the calibration matrix to the prompt embedding improves the balance between male and
female in the generated images.

7.6.1 Measuring the Generalization of Calibration

Gender Race

before after before after

train 0.56 0.14 0.70 0.23

test 0.54 0.16 0.69 0.26

Table 7.6: Difference between
embeddings (� = 500).

We first examine whether minimizing the calibra-

tion loss with training prompts can yield a cali-

bration matrix that also works for unseen (testing)

professions. In particular, we measure the aver-

age L2 difference between the projected embedding
P

(i,j)2Stest

��Pzi � Pzj
�� /|Stest| for testing prompts

and show the results in Table 7.6. We can see that

the calibration matrix successfully minimizes the dif-

ference after projection, even for unseen professions.

7.6.2 Quantitative and Qualitative Results

The results presented in Table 7.7 demonstrate a significant reduction in both gender

and race discrepancy after debiasing. Importantly, the improvements are observed for

both training and testing professions, implying that the obtained debiasing matrix
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can generalize beyond training prompts. To further illustrate the effectiveness of our

approach, we present quantitative results for mitigating gender bias in Figure 7-4. By

applying the calibration matrix to balance the male and female directions, the gender

diversity of the generated images significantly improved. Additional examples can be

found in appendix A.4.

Gender Race

Train SD 0.472±0.225 0.485±0.160
Ours 0.395±0.205 0.434±0.163

Test SD 0.412±0.255 0.528±0.184
Ours 0.354±0.253 0.455±0.169

Table 7.7: Discrepancy between Groups: Calibration matrix reduces the discrepancy
over gender and race. The calibration matrix derived from the training set generalizes well
to testing set.

Compared to gender bias, we found that addressing racial bias is a more chal-

lenging task. One source of complexity is the ambiguity of ethnicity, as individuals

may identify with multiple races. Nevertheless, as Figure 7-5 and Table 7.7 demon-

strate, the diversity in the output images is improved by simply debiasing the prompt

embedding with the calibration matrix.

7.6.3 Human Evaluation

Gender Race

SD 0.472±0.257 0.723±0.185

Ours 0.372±0.253 0.589±0.188

Table 7.8: Human Evaluation. We
calculate the discrepancy on testing pro-
fessions with human annotations. Our
approach improves the diversity of Sta-
ble Diffusion by a non-trivial margin.

Despite the scalability, the prediction from a

trained classifier could be erroneous. There-

fore, we also evaluate our approach with hu-

man evaluation, where we invite annotators

of different genders, races, and nationalities to

label the sensitive attributes of the generated

images. Details and the interface are included

in appendix A.4.3. For human evaluation, we

generate 25 images for each test profession, re-
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Figure 7-5: Improving Racial Diversity of Stable Diffusion. We again generate the
images with Stable Diffusion. After applying the calibration matrix, the race attributes are
more diverse in the generated images.

sulting in 500 images for each model. As Table 7.8 shows, our approach greatly

improves the diversity of the generated images, corroborating the previous results.

7.6.4 Beyond Social Biases

Our approach can also be applied to address general spurious attributes beyond social

biases. As an example, we draw inspiration from the WaterBird dataset [165] and

debias the prompt “a photo of a waterbird” by using {“a photo of a [animal] with

water background” and “a photo of a [animal] with land background” } as positive

pairs, where we construct a list of 100 names of animals with GPT-4 [148].

As Figure 7-6 illustrates, our approach successfully generates images of water birds

in both land and water backgrounds, whereas the original models only generated

images with water background.

7.7 Conclusion

In this chapter, we present a new approach to debiasing vision-language foundation

models by utilizing prompts to mitigate biases. The proposed calibrated projec-
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tion effectively mitigates biases in both discriminative and generative vision-language

models without any additional training or data.
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Figure 7-6: Generation against Non-social Biases. The results demonstrate the
ability of the proposed method to generate images of waterbirds in both land and water
backgrounds.
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Chapter 8

Generalization Theory of

Representation Learning

In this chapter, we culminate our discussions from previous sections by delving into

the intrinsic generalization theory of representation learning. Our focus lies in under-

standing how the cultivation of superior representations can enhance generalization

across a multitude of downstream tasks. To this end, we propose a new generalization

theory that accentuates the importance of the representations encoded by the model.

Furthermore, this theory elucidates why contrastive learning bolsters generalization,

offering a comprehensive explanation.

Motivated by the remarkable empirical success of deep learning, there has been

significant effort in statistical learning theory toward deriving generalization error

bounds for deep learning, i.e complexity measures that predict the gap between train-

ing and test errors. Recently, substantial progress has been made, e.g., [7, 13, 22,

50, 67, 144, 204]. Nevertheless, many of the current approaches lead to general-

ization bounds that are often vacuous or not consistent with empirical observations

[51, 91, 137]. Furthermore, conventional constraints primarily limit the generalization

error by considering the complexity of the hypothesis, while neglecting the charac-

teristics of the input or feature space. This approach renders them less than optimal

for the study of representation learning’s generalization potential.

To empirically study the generalization theory, Jiang et al. [91] present a large scale
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study of generalization in deep networks and show that many existing approaches,

e.g., norm-based bounds [13, 143, 144], are not predictive of generalization in practice.

Recently, the Predicting Generalization in Deep Learning (PGDL) competition de-

scribed in [92] sought complexity measures that are predictive of generalization error

given training data and network parameters. To achieve a high score, the predictive

measure of generalization had to be robust to different hyperparameters, network

architectures, and datasets. The participants [112, 141, 168] achieved encouraging

improvement over the classic measures such as VC-dimension [193] and weight norm

[13]. Unfortunately, despite the good empirical results, these proposed approaches

are not yet supported by rigorous theoretical bounds [93].

In this chapter, we attempt to decrease this gap between theory and practice with

margin bounds based on optimal transport. In particular, we show that the expected

optimal transport cost of matching two independent random subsets of the training

distribution is a natural alternative to Rademacher complexity. Interestingly, this op-

timal transport cost can be interpreted as the k-variance [175], a generalized notion of

variance that captures the structural properties of the data distribution. Applied to

latent space, it captures important properties of the learned feature distribution. The

resulting k-variance normalized margin bounds can be easily estimated and correlate

well with the generalization error on the PGDL datasets [92]. In addition, our for-

mulation naturally encompasses the gradient normalized margin proposed by Elsayed

et al. [53], further relating our bounds to the decision boundary of neural networks

and their robustness.

Theoretically, our bounds reveal that the concentration and separation of learned

features are important factors for the generalization of multiclass classification. In

particular, the downstream classifier generalizes well if (1) the features within a class

are well clustered, and (2) the classes are separable in the feature space in the Wasser-

stein sense. This aligns with the driving principle behind contrastive learning, where

representations are learned to concentrate via positive pairs while segregating negative

pairs.
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8.1 Background of Generalization Bounds

Margin-based Generalization Bounds Classic approaches in learning theory bound

the generalization error with the complexity of the hypothesis class [14, 193]. Never-

theless, previous works show that these uniform convergence approaches are not able

to explain the generalization ability of deep neural networks given corrupted labels

[222] or on specific designs of data distributions as in [137]. Recently, substantial

progress has been made to develop better data-dependent and algorithm-dependent

bounds [7, 15, 22, 37, 145, 191, 204]. Among them, we will focus on margin-based

generalization bounds for multi-class classification [106, 111]. Bartlett et al. [13] show

that margin normalized with the product of spectral norms of weight matrices is able

to capture the difficulty of the learning task, where the conventional margin strug-

gles. Concurrently, Neyshabur et al. [144] derive spectrally-normalized margin bounds

via weight perturbation within a PAC-Bayes framework [125]. However, empirically,

spectral norm-based bounds can correlate negatively with generalization [91, 137].

Elsayed et al. [53] present a gradient-normalized margin, which can be interpreted as

the first order approximation to the distance to the decision boundary. Jiang et al.

[90] further show that gradient-normalized margins, when combined with the total

feature variance, are good predictors of the generalization gap. Despite the empirical

progress, gradient-normalized margins are not yet supported by theoretical bounds.

Empirical Measures of Generalization Large scale empirical studies have

been conducted to study various proposed generalization predictors [90, 91]. In par-

ticular, Jiang et al. [91] measure the average correlation between various complexity

measures and generalization error under different experimental settings. Building

on their study, Dziugaite et al. [51] emphasize the importance of the robustness of

the generalization measures to the experimental setting. These works show that

well-known complexity measures such as weight norm [136, 143], spectral complexity

[13, 144], and their variants are often negatively correlated with the generalization

gap. Recently, Jiang et al. [92] hosted the Predicting Generalization in Deep Learn-

ing (PGDL) competition, encouraging the participants to propose robust and general
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complexity measures that can rank networks according to their generalization errors.

Encouragingly, several approaches [112, 141, 168] outperformed the conventional base-

lines by a large margin. Nevertheless, none of these are theoretically motivated with

rigorous generalization bounds. Our k-variance normalized margins are good em-

pirical predictors of the generalization gap, while also being supported with strong

theoretical bounds.

8.2 Optimal Transport and k-Variance

Before presenting our generalization bounds with optimal transport, we first give a

brief introduction to the Wasserstein distance, a distance function between probability

distributions defined via an optimal transport cost. Letting µ and ⌫ 2 Prob(Rd) be

two probability measures, the p-Wasserstein distance with Euclidean cost function is

defined as

Wp(µ, ⌫) = inf
⇡2⇧(µ,⌫)

�
E(X,Y )⇠⇡kX � Y kp

�1/p
,

where ⇧(µ, ⌫) ✓ Prob(Rd⇥Rd) denotes the set of measure couplings whose marginals

are µ and ⌫, respectively. The 1-Wasserstein distance is also known as the Earth

Mover distance. Intuitively, Wasserstein distances measure the minimal cost to trans-

port the distribution µ to ⌫.

Based on the Wasserstein distance, Solomon et al. [175] propose the k-variance, a

generalization of variance, to measure structural properties of a distribution beyond

variance.

Definition 8.1 (Wasserstein-p k-variance). Given a probability measure µ 2 Prob(Rd)

and a parameter k 2 N, the Wasserstein-p k-variance is defined as

Vark,p(µ) = cp(k, d) · ES,S̃⇠µk

h
Wp

p (µS, µS̃)
i
,

where µS = 1
k

Pk
i=1 �xi for xi

i.i.d.⇠ µ and cp(k, d) is a normalization term described in

[175].
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When k = 1 and p = 2, the k-variance is equivalent to the variance Var[X] of

the random variable X ⇠ µ. For k > 1 and d � 3, Solomon et al. [175] show that

when p = 2, the k-variance provides an intuitive way to measure the average intra-

cluster variance of clustered measures. In this work, we use the unnormalized version

(cp(k, d) = 1) of k-variance and p = 1, and drop the p in the notation:

(Wasserstein-1 k-variance): Vark(µ) = ES,S̃⇠µk

⇥
W1(µS, µS̃)

⇤
.

Note that setting cp(k, d) = 1 is not an assumption, but instead an alternative defini-

tion of k-variance. The change in constant has no effect on any part of our paper, as

we could reintroduce the constant of Solomon et al. [175] and simply include a pre-

multiplication term in the generalization bounds to cancel it out. In Section 8.5, we

will show that this unnormalized Wasserstein-1 k-variance captures the concentration

of learned features. Next, we use it to derive generalization bounds.

8.3 Generalization Bounds with Optimal Transport

We present our generalization bounds in the multi-class setting. Let X denote the

input space and Y = {1, . . . , K} denote the output space. We will assume a compo-

sitional hypothesis class F � �, where the hypothesis f � � can be decomposed as a

feature (representation) encoder � 2 � and a predictor f 2 F . This includes dividing

multilayer neural networks at an intermediate layer.

We consider the score-based classifier f = [f1, . . . , fK ], fc 2 Fc, where the pre-

diction for x 2 X is given by argmaxy2Y fy(�(x)). The margin of f for a datapoint

(x, y) is defined by

⇢f (�(x), y) := fy(�(x))�max
y0 6=y

fy0(�(x)), (8.1)

where f misclassifies if ⇢f (�(x), y)  0. The dataset S = {xi, yi}mi=1 is drawn i.i.d.

from distribution µ over X ⇥ Y . Define mc as the number of samples in class c,

yielding m =
PK

c=1 mc. We denote the marginal over a class c 2 Y as µc and the
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distribution over classes by p(c). The pushforward measure of µ with respect to �

is denoted as �#µ. We are interested in bounding the expected zero-one loss of a

hypothesis f � �: Rµ(f � �) = E(x,y)⇠µ[ ⇢f (�(x),y)0] by the corresponding empirical

�-margin loss R̂�,m(f � �) = E(x,y)⇠S[ ⇢f (�(x),y)�].

8.3.1 Feature Learning and Generalization: Margin Bounds

with k-Variance

Our theory is motivated by recent progress in feature learning, which suggests that

imposing certain structure on the feature distribution improves generalization [24,

36, 99, 214, 219]. The participants [112, 141] of the PGDL competition [92] also

demonstrate nontrivial correlation between feature distribution and generalization.

To study the connection between learned features and generalization, we derive

generalization bounds based on the k-variance of the feature distribution. In partic-

ular, we first derive bounds for a fixed encoder and discuss the generalization error of

the encoder at the end of the section. Theorem 8.2 provides a generalization bound

for neural networks via the concentration of µc in each class.

Theorem 8.2. Let f = [f1, · · · , fK ] 2 F = F1 ⇥ · · · ⇥ FK where Fi : X ! R. Fix

� > 0. The following bound holds for all f 2 F with probability at least 1� � > 0:

Rµ(f � �)  R̂�,m(f � �) + Ec⇠p


Lip(⇢f (·, c))

�
Varmc(�#µc)

�
+

r
log(1/�)

2m
,

where Lip(⇢f (·, c)) = supx,x02X
|⇢f (�(x),c)�⇢f (�(x0),c)|

||�(x)��(x0)||2
is the margin Lipschitz constant

w.r.t �.

We give a proof sketch here and defer the full proof later. For a given class c and a

given feature map �, let Hc = {h(x) = ⇢f (�(x), c)|f = (f1 . . . fK), fy 2 F}. The last

step in deriving Rademacher-based generalization bounds [14] amounts to bounding
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for each class c:

�c = ES,S̃⇠µmc
c

2

4 sup
h2Hc

1

mc

mcX

i=1

h(x̃i)�
1

mc

mcX

i=1

h(xi)

3

5 , (8.2)

where S, S̃ ⇠ µmc
c . Typically we would plug in the Rademacher variable and arrive at

the standard Rademacher generalization bound. Instead, our key observation is that

the Kantorovich-Rubinstein duality [84] implies

W1(µ, ⌫) = sup
Lip(h)1

Ex⇠µh(x)� Ex⇠⌫h(x),

where the supremum is over the 1-Lipschitz functions h : Rd ! R. Suppose Hc is

a subset of L-Lipschitz functions. By definition of the supremum, the duality result

immediately implies that equation 8.2 can be bounded with k-variance for k = mc:

�c  L · ES,S̃⇠µmc
c
[W1(�#µS,�#µS̃)] = L · Varmc(�#µc). (8.3)

Now we provide the full proof here.

Proof of Theorem 8.2. Recall the margin definition:

⇢f (�(x), y) = fy(�(x))�max
y0 6=y

fy0(�(x))

Let µc(x) = P(x|y = c), and let p(y) = P(Y = y) = ⇡y. Given f 2 F and

� 2 � = {� : X ! Z, ||�(x)||  R}, we are interested in bounding the class-average

zero-one loss of a hypothesis f � �:

Rµ(f � �) =
KX

c=1

⇡kRµc(f � �) =
KX

c=1

⇡kEx⇠µc [ ⇢f (�(x),c)0],

where we will bound the error of each class c 2 Y separately. To do so, the margin

loss defined by L� by L�(u) = u0 + (1� u
� ) 0<u� would be handy.
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Note that :

Rµ(f � �)  E(x,y)L�(⇢f (�(x), y)),

(see for example Lemma A.4 in [13] for a proof of this claim.)

By McDiarmid Inequality, we have with probability at least 1� �,

Rµ(f � �)  E(x,y)L�(⇢f (�(x), y)) (8.4)


KX

c=1

⇡cÊS⇠µm
c
L�(⇢f (�(x), c)) + D(f � �, µ) +

r
log(1/�)

2m
. (8.5)

where

D(f � �, µ)

= ES1⇠µm
1
. . .ESK⇠µm

K

2

64sup
f2F

0

@
KX

c=1

⇡c(Eµc [L�(⇢f (�(x), c)))]� ÊSc⇠µm
c
[L�(⇢f (�(x), c))])

1

A

3

75

Note that the sup here is taken only on the classifier function class and not on the

classifier and the feature map together. For a given class c and feature map � define:

Gc =
�
h|h(z) = L⇢ � ⇢f (z, c) : f 2 F , z 2 Z

 
.

Using the fact that sup(a+ b)  sup a+ sup b, we have:

D(f � �, µ) 
KX

c=1

⇡cESc⇠µc sup
f2F

⇣
Eµc [L�(⇢f (�(x), c)))]� ÊSc⇠µm

c
[L�(⇢f (�(x), c))]

⌘

=
KX

c=1

⇡cESc⇠µc

"
sup
h2Gc

⇣
Eµc [h(�(x))]� ÊS⇠µm

c
[h(�(x))]

⌘#
, (8.6)

where the last equality follows from the definition of the function class Gc

We are left now with bouding each class dependent deviation. We drop the index

c from Sc in what follows in order to avoid cumbersome notations. Considering an
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independent sample of same size S̃ from µc we have:

ES⇠µm
c

"
sup
h2Gc

⇣
Eµc [h(�(x))]� ÊS⇠µm

c
[h(�(x))]

⌘#
 ES,S̃⇠µm

c

"
sup
h2Gc

ÊS[h(�(x)]� ÊS̃[h(�(x))]

#
.

(8.7)

Note that h(z) = L�(⇢f (z, c)) is lipchitz with lipchitz constant 1
�Lip(⇢f (., c)), since

L� is lipchitz with lipchitz constant 1
�and by assumption the margin ⇢f (z, c) is lipchitz

in its first argument. By the dual of the Wasserstein 1 distance we have:

W1(�#pS,�#pS̃) = sup
h,Lip(h)1

ÊS[h(�(x)]� ÊS̃[h(�(x))]

Since Gc are subset of lipchitz of functions with lipchitz constant Lip(⇢f (.,c))
� , it follows

that:

sup
h2Gc

ÊS[h(�(x)]� ÊS̃[h(�(x)) 
Lip(⇢f (., c))

�
W1(�#pS,�#pS̃) (8.8)

It follows from equation 8.7 and equation 8.8, that:

ES⇠µm
c

"
sup
h2Gc

⇣
Eµc [h(�(x))]� ÊS⇠µm

c
[h(�(x))]

⌘#
 Lip(⇢f (., c))

�
ES,S̃⇠µm

c
W1(�#pS,�#pS̃)

=
Lip(⇢f (., c))

�
Varmc(�#µc). (8.9)

Finally Plugging equation 8.9 in equation 8.6 we obtain finally:

D(f � �, µ) 
PK

c=1 ⇡cLip(⇢f (., c))Varmc(�#µc)

�
(8.10)

Using equation 8.10 and noting that,

L�(⇢f (�(x), c))  ⇢f (�(x),c)�

we finally have by equation 8.5, the following generalization bound, that holds with
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probability 1� �:

Rµ(f � �) 
KX

c=1

⇡cÊS⇠µm
c
[ ⇢f (�(x),c)�] +

1

�

KX

c=1

⇡cLip(⇢f (., c))Varmc(�#µc) +

r
log(1/�)

2m

= R̂�(f � �) + Ec⇠py

"
Lip(⇢f(.)(·, c))

�
Varmc(�#µc)

#
+

r
log(1/�)

2m

This connection suggests that k-variance is a natural alternative to Rademacher

complexity if the margin is Lipschitz. The following lemma shows that this holds

when the functions fj are Lipschitz:

Lemma 8.3. The margin ⇢f (., y) is Lipschitz in its first argument if each of the fj

is Lipschitz.

Proof. Assume fc(z) = maxy0 6=y fy0(z) and fc0(z0) = maxy0 6=y fy0(z0). Ties are broken

by taking the largest index among the ones achieving the max.

⇢f (z, y)� ⇢f (z
0, y) = fy(z)�max

y0 6=y
fy0(z)� (fy(z

0)�max
y0 6=y

fy0(z
0))

= fy(z)� fy(z
0) + fc0(z

0)� fc(z)

 L||z � z0||+ fc0(z
0)� fc0(z)

 L||z � z0||+ L||z � z0||

= 2L||z � z0||

where we used that all fy are lipchitz and the fact that fc(z) � fc0(z). Note that,

⇢f (z, y)� ⇢f (z
0, y) = fy(z)� fy(z

0) + fc0(z
0)� fc(z)

� �L||z � z0||+ fc(z
0)� fc(z)

� �L||z � z0||� L||z � z0||

= �2L||z � z0||.
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where we used that all fy are lipchitz and the fact that fc0(z0) � fc(z0). Combining

this two inequalities give the result.

The bound in Theorem 8.2 is minimized when (a) the k-variance of features within

each class is small, (b) the classifier has large margin, and (c) the Lipschitz constant of

f is small. In particular, (a) and (b) express the idea of concentration and separation

of the feature distribution, which we will further discuss in Section 8.5.

Compared to the margin bound with Rademacher complexity [111], Theorem 8.2

studies a fixed encoder, allowing the bound to capture the structure of the feature

distribution. Although the Rademacher-based bound is also data-dependent, it only

depends on the distribution over inputs and therefore can neither capture the effect

of label corruption nor explain how the structure of the feature distribution �#(µ)

affects generalization. Importantly, it is also non-trivial to estimate the Rademacher

complexity empirically, which makes it hard to apply the bound in practice.

8.3.2 Gradient Normalized (GN) Margin Bounds with k-Variance

We next extend our theorem to use the gradient-normalized margin, a variation of the

margin equation 8.1 that empirically improves generalization and adversarial robust-

ness [53, 90]. Elsayed et al. [53] proposed it to approximate the minimum distance to

a decision boundary, and Jiang et al. [90] simplified it to

⇢̃f (�(x), y) := ⇢f (�(x), y)/(kr�⇢f (�(x), y)k2 + ✏),

where ✏ is a small value (10�6 in practice) that prevents the margin from going to

infinity. The gradient here is r�⇢f (�(x), y) := r�fy(�(x)) � r�fymax(�(x)), where

ties among the ymax are broken arbitrarily as in [53, 90] (ignoring subgradients).

The gradient-normalized margin ⇢̃f (x, y) can be interpreted as the first order Taylor

approximation of the minimum distance of the input x to the decision boundary for

the class pair (y, y0) [53]. In particular, the distance is defined as the norm of the

minimal perturbation in the input or feature space to make the prediction change.

See also Lemma B.9 in the supplement for an interpretation of this margin in terms of
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robust feature separation. Defining the margin loss R̂r

�,m(f) = E(x,y)⇠S[ ⇢̃f (�(x),y)�],

we extend Theorem 8.2 to the gradient-normalized margin.

Theorem 8.4 (Gradient-Normalized Margin Bound). Let f = [f1, · · · , fk] 2 F =

[F1, · · · ,Fk] where Fi : X ! R. Fix � > 0. Then, for any � > 0, the following bound

holds for all f 2 F with probability at least 1� � > 0:

Rµ(f � �)  R̂r

�,m(f � �) + Ec⇠p

"
Lip(⇢̃f(.)(·, c))

�
Varmc(�#µc)

#
+

r
log(1/�)

2m
,

where Lip(⇢̃f(.)(·, c)) = supx,x02X
|⇢̃f (�(x),c)�⇢̃f (�(x0),c)|

||�(x)��(x0)|| is the Lipschitz constant defined

w.r.t �.

Proof. It is enough to show that:

Rµ(f � �)  E(x,y)[L�(⇢̃f (�(x), y))],

and the rest of the proof is the same as in Theorem 2. For any ⇠(x, y) > 0, and � > 0

Rµ(f � �) = P(x,y)(argmax
c

fc(�(x)) 6= y)

 P(fy(�(x))�max
y0 6=y

fy0(�(x))  0)

= P
✓
fy(�(x))�maxy0 6=y fy0(�(x))

⇠(x)
 0

◆

 E
"

fy(�(x))�maxy0 6=y fy0 (�(x))
⇠(x,y) 0

#

 E
"
L�

✓
fy(�(x))�maxy0 6=y fy0(�(x))

⇠(x, y)

◆#
.

Setting ⇠(x, y) = kr�⇢f (�(x), y)k2 + ✏, gives the result.

8.3.3 Estimation Error of k-Variance

So far, our bounds have used the k-variance, which is an expectation. Lemma 8.5

bounds the estimation error when estimating the k-variance from data. This may
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be viewed as a generalization error for the learned features in terms of k-variance,

motivated by the connections of k-variance to test error.

Lemma 8.5 (Estimation Error of k-Variance / “Generalization Error” of the En-

coder). Given a distribution µ and n empirical samples {Sj, S̃j}nj=1 where each Sj, S̃j ⇠

µk, define the empirical Wasserstein-1 k-variance: dVark,n(�#µ) =
1
n

Pn
j=1 W1(�#µSj ,�#µS̃j).

Suppose the encoder satisfies supx,x0 k�(x)��(x0)k  B, then with probability at least

1� � > 0, we have

Vark(�#µ)  dVark,n(�#µ) +

r
2B2 log(1/�)

nk
.

Proof. We would like to estimation to the k-variance with dVark(�#µ) =
1
n

Pn
j=1 W1(�#pSj ,�#pS̃j)

as a function of the nk independent samples from which it is computed, each sample

being a pair (xi, x̃i). To apply the McDiarmid’s Inequality, we have to examine the

stability of the empirical k-variance. The Kantorovich–Rubinstein duality gives us

the general formula of W1 distance:

W1(P,Q) = sup
Lip(f)1

EP [f ]� EQ[f ]

In our case, separately for each j, we can write

W1(�#pSj ,�#pS̃j) = sup
Lip(f)1

1

k

kX

`=1

(f(�(xj
`))� f(�(x̃j

`))).

Recall that the (x`, x̃`) are independent across ` and j. Consider replacing one of

the elements (xj
i , x̃

j
i ) with some (x0j

i , x̃
0j
i ), forming pS̄j and p ¯̃Sj . Since the (xj

`, x̃
j
`) are

identically distributed, by symmetry we can set i = 1. We then bound

W1(�#pSj ,�#pS̃j)�W1(�#pS̄j ,�#p ¯̃Sj)

= sup
Lip(f)1

1

k

0

@(f(�(xj
1))� f(�(x̃j

1))) +
kX

`=2

(f(�(xj
`))� f(�(x̃j

`)))

1

A
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� sup
Lip(f)1

1

k

0

@(f(�(x0

1
j))� f(�(x̃0j

1 ))) +
kX

`=2

(f(�(xj
`))� f(�(x̃j

`)))

1

A

 1

k
sup

Lip(f)1

⇣
f(�(xj

1))� f(�(x̃j
1)) + f(�(x0j

1 ))� f(�(x̃0j
1 ))

⌘

 1

k
sup

Lip(f)1

⇣
f(�(xj

1))� f(�(x̃j
1))
⌘
+

1

k
sup

Lip(f)1

⇣
f(�(x0j

1 ))� f(�(x̃0j
1 ))

⌘

 k�(xj
1)� �(x0j

1 )k+ k�(x0j
1 )� �(x̃0j

1 )k
k

,

 2B

k

where we have used in the third inequality the fact that the sup is a contraction

(suph A(h)� suph B(h)  suph(A(h)� B(h))), and the definition of the Lipschitzity

in the fourth inequality. By symmetry and scaling the right hand side with 1
n , we

have : ������
1

n

nX

j=1

W1(�#pSj ,�#pS̃j)�
1

n

nX

j=1

W1(�#pS̄j ,�#p ¯̃Sj)

������
 2B

kn
.

We are now ready to apply the McDiarmid Inequality with nk samples, which yields:

P(Vark(�#µ)�dVark,n(�#µ) � t)  exp

 
�t2nk

2B2

!
.

Setting the probability to be less than � and solving for t, we can see that this

probability is less than � if and only if t �
q

2B2 log(1/�)
nk . Therefore, with probability

at least 1� �,

ES,S̃[W1(�#pS,�#pS̃)] 
1

n

nX

j=1

W1(�#pSj ,�#pS̃j) +

r
2B2 log(1/�)

nk
.

We can then combine Lemma 8.5 with our margin bounds to obtain full gener-

alization bounds. The following corollary states the empirical version of Theorem

8.2:

Corollary 8.6. Given the setting in Theorem 8.2 and Lemma 8.5, with probability
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at least 1� �, for m =
PK

c=1bmc
2n c, Rµ(f � �) is upper bounded by

R̂�,m(f � �) + Ec⇠py

2

64
Lip(⇢f (·, c))

�

0

@dVarbmc
2n c,n(�#µc) + 2B

s
log(2K/�)

nbmc
2n c

1

A

3

75+

s
log(2� )

2m
.

Note that the same result holds for the gradient normalized margin ⇢̃f . The proof

of this corollary is a simple application of a union bound on the concentration of the

k-variance for each class and the concentration of the empirical risk. We end this

section by bounding the variance of the empirical k-variance. While Solomon et al.

[175] proved a high-probability concentration result using McDiarmid’s inequality, we

here use the Efron-Stein inequality to directly bound the variance.

Theorem 8.7 (Empirical variance). Given a distribution µ and an encoder �, we

have

Var
h
dVark,n(�#µ)

i
 4Varµ(�(X))

nk
,

where Varµ(�(X)) = Ex⇠µ[||�(x)� Ex⇠µ�(x)||2] is the variance of �#µ.

Proof. We use the Efron Stein inequality:

Lemma 8.8 (Efron Stein Inequality). Let X := (X1, . . . , Xm) be an m-tuple of

X -valued independent random variables, and let X 0

i be independent copies of Xi

with the same distribution. Suppose g : Xm ! R is a map, and define X(i) =

(X1, . . . , Xi�1, X 0

i, Xi+1 . . . Xm). Then

Var(g(X))  1

2

mX

i=1

E
h
(g(X)� g(X(i)))2

i
. (8.11)

Consider 1
n

Pn
j=1 W1(µ̂

j
k, µ̂

0j
k ) as a function of the nk independent samples from

which it is computed, each sample being a pair (xj
i , y

j
i ). Using Kantorovich–Rubinstein
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duality, we have the general formula:

W1(P,Q) = sup
kfkLip1

EP [f ]� EQ[f ]

where k · kLip is the Lipschitz norm. In our case, separately for each j, we can write

W1(µ̂
j
k, µ̂

0j
k ) = W1

0

@1

k

kX

`=1

�xj
`
,
1

k

kX

`=1

�yj`

1

A = sup
kfkLip1

1

k

kX

`=1

(f(xj
`)� f(yj`)).

Recall that the (xj
`, y

j
`) are independent across ` and j. Consider replacing one of

the elements (xj
i , y

j
i ) with some (x0j

i , y
0j
i ), forming µ̄j

k and µ̄0j
k . Since the (xj

`, y
j
`) are

identically distributed, by symmetry we can set i = 1. We then bound

W1(µ̂
j
k, µ̂

0j
k )�W1(µ̄

j
k, µ̄

0j
k ) = sup

kfkLip1

1

k

0

@(f(xj
1)� f(yj1)) +

kX

`=2

(f(xj
`)� f(yj`))

1

A

� sup
kfkLip1

1

k

0

@(f(x0j
1 )� f(y0j1 )) +

kX

`=2

(f(xj
`)� f(yj`))

1

A

 1

k
sup

kfkLip1
(f(xj

1)� f(x0j
1 )) + (f(y0j1 )� f(yj1))

 kxj
1 � x0j

1 k+ kyj1 � y0j1 k
k

,

where we have used the definition of the Lipschitz norm. By symmetry, this yields

(scaling by 1
n as in the expression in the theorem)

����
1

n
W1(µ̂

j
k, µ̂

0j
k )�

1

n
W1(µ̄

j
k, µ̄

0j
k )

���� 
kxj

1 � x0j
1 k+ kyj1 � y0j1 k

kn

It follows that:

E
"✓

1

n
W1(µ̂

j
k, µ̂

0j
k )�

1

n
W1(µ̄

j
k, µ̄

0j
k )

◆2
#


E
h
(kxj

1 � x0j
1 k+ kyj1 � y0j1 k)2

i

k2n2

=
2(Ex,x0⇠µkx� x0k2 + (Ex,x0⇠µkx� x0k)2)

k2n2
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for each of the independent nk random variables (xj
i , y

j
i ), where we have used the fact

that xj
i and y0ji are i.i.d. We can substitute this into the Efron Stein inequality above

to obtain

Var
h
dVark,n(µ)

i
 Ex,x0⇠µkx� x0k2 + (Ex,x0⇠µkx� x0k)2

kn

=
2Varµ(X) + (Ex,x0⇠µkx� x0k)2

kn

 2Varµ(X) + Ex,x0⇠µkx� x0k2
kn

 4Varµ(X)

kn

where used that the variance Varµ(X) = 1
2Ex,x0⇠µkx� x0k2, and Jensen inequality.

Theorem 8.7 implies that if the feature distribution �#µ has bounded variance,

the variance of the empirical k-variance decreases as k and n increase. The values of

k we used in practice were large enough that the empirical variance of k-variance was

small even when we set n = 1.

8.4 Measuring Generalization with Normalized Mar-

gins

We now empirically compare the generalization behavior of neural networks to the

predictions of our margin bounds. To provide a unified view of the bound, we set

the second term in the right hand side of the bound to a constant. For instance, for

Theorem 8.2, we choose � = �0·Ec⇠p

⇥
Lip(⇢f (·, c)) · Varmc(�#µc)

⇤
, yielding Rµ(f��) 

R̂�,m(f � �) + 1/�0 +O(m�1/2), where

R̂�,m(f � �) = Ê(x,y)⇠S

 ⇣
⇢f (�(x), y)/Ec⇠p

⇥
Lip(⇢f (·, c)) · Varmc(�#µc)

⇤
 �0

⌘ �
.

and (·) is the indicator function. This implies the model generalizes better if the

normalized margin is larger. We therefore consider the distribution of the k-variance
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normalized margin, where each data point is transformed into a single scalar via

⇢f (�(x), y)

Ec⇠p

h
dVarbmc

2 c,1(�#µc) · cLip(⇢f (·, c))
i and

⇢̃f (�(x), y)

Ec⇠p

h
dVarbmc

2 c,1(�#µc) · cLip(⇢̃f (·, c))
i ,

respectively. For simplicity, we set k and n as k = bmc/2c and n = 1. We refer

to these normalized margins as k-Variance normalized Margin (kV-Margin) and k-

Variance Gradient Normalized Margin (kV-GN-Margin), respectively.

It is NP-hard to compute the exact Lipschitz constant of ReLU networks [96, 167].

Various approaches have been proposed to estimate the Lipschitz constant for ReLU

networks [55, 96], however they remain computationally expensive. As we show in

Appendix A.5.4, a naive spectral upper bound on the Lipschitz constant leads to

poor results in predicting generalization. On the other hand, as observed by [96], a

simple lower bound can be obtained for the Lipschitz constant of ReLU networks by

taking the supremum of the norm of the Jacobian on the training set.1 Letting y⇤ =

argmaxy 6=c fy(�(x)), the Lipschitz constant of the margin can therefore be empirically

approximated as

cLip(⇢f (·, c)) := max
x2Sc

krxfc(�(x))�rxfy⇤(�(x))k,

where Sc = {(xi, yi) 2 S | yi = c} is the set of empirical samples for class c (as

noted in [96], although this does not lead to correct computation of Jacobians for

ReLU networks, it empirically performs well). In practice, we take the maximum over

samples in the training set. We refer the reader to [138] and [190] for an analysis of the

estimation error of the Lipschitz constant from finite subsets. In the supplement (App.

B.3.1), we show that for piecewise linear hypotheses such as ReLU networks, the norm

of the Jacobian of the gradient-normalized margin is very close to 1 almost everywhere.

We thus simply set the Lipschitz constant to 1 for the gradient-normalized margin.

1In general, the Lipschitz constant of smooth, scalar valued functions is equal to the supremum
of the norm of the input Jacobian in the domain [56, 96, 167].
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CIFAR SVHN CINIC CINIC Flowers Pets Fashion CIFAR

VGG NiN FCN bn FCN NiN NiN VGG NiN
Margin† 13.59 16.32 2.03 2.99 0.33 1.24 0.45 5.45
SN-Margin† [13] 5.28 3.11 0.24 2.89 0.10 1.00 0.49 6.15
GN-Margin 1st [90] 3.53 35.42 26.69 6.78 4.43 1.61 1.04 13.49
GN-Margin 8th [90] 0.39 31.81 7.17 1.70 0.17 0.79 2.12 1.16
TV-GN-Margin 1st [90] 19.22 36.90 31.70 16.56 4.67 4.20 0.16 25.06
TV-GN-Margin 8th [90] 38.18 41.52 6.59 16.70 0.43 5.65 2.35 10.11
kV-Margin† 1st 5.34 26.78 37.00 16.93 6.26 2.07 1.82 15.75
kV-Margin† 8th 30.42 26.75 6.05 15.19 0.78 1.76 0.33 2.26
kV-GN-Margin† 1st 17.95 44.57 30.61 16.02 4.48 3.92 0.61 21.20
kV-GN-Margin† 8th 40.92 45.61 6.54 15.80 1.13 5.92 0.29 8.07

Table 8.1: Mutual information scores on PGDL tasks. We compare different margins
across tasks in PGDL. The first and second rows indicate the datasets and the architecture
types used by tasks. The methods that are supported with theoretical bounds are marked
with †. Our k-variance normalized margins outperform the baselines in 6 out of 8 tasks in
PGDL dataset.

8.4.1 Experiment: Predicting Generalization in Deep Learn-

ing

We evaluate our margin bounds on the Predicting Generalization in Deep Learning

(PGDL) dataset [92]. The dataset consists of 8 tasks, each task contains a collection

of models trained with different hyperparameters. The models in the same task

share the same dataset and model type, but can have different depths and hidden

sizes. The goal is to find a complexity measure of networks that correlates with

their generalization error. In particular, the complexity measure maps the model

and training dataset to a real number, where the output should rank the models in

the same order as the generalization error. The performance is then measured by

the Conditional Mutual Information (CMI). Intuitively, CMI measures the minimal

mutual information between complexity measure and generalization error conditioned

on different sets of hyperparameters. To achieve high CMI, the measure must be

robust to all possible settings including different architectures, learning rates, batch

sizes, etc. Please refer to [92] for details.
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Experimental Setup. We compare our k-variance normalized margins (kV-Margin

and kV-GN-Margin) with Spectrally-Normalized Margin (SN-Margin) [13], Gradient-

Normalized Margin (GN-Margin) [53], and total-variance-normalized GN-Margin (TV-

GN-Margin) [90]. Note that the (TV-GN-Margin) of [90] corresponds to ⇢̃f (�(x),y)p
Varx⇠µ(||�(x)||2)

.

Comparing to our kV-GN-Margin, our normalization is theoretically motivated and

involves the Lipschitz constants of f as well as the generalized notion of k-variance.

As some of the margins are defined with respect to different layers of networks, we

present the results with respect to the shallow layer (first layer) and the deep layer

(8th layer if the number of convolutional layers is greater than 8, otherwise the deep-

est convolutional layer). To produce a scalar measurement, we use the median to

summarize the margin distribution, which can be interpreted as finding the margin �

that makes the margin loss ⇡ 0.5. We found that using expectation or other quantiles

leads to similar results. The Wasserstein-1 distance in k-variance is computed exactly,

with the linear program in the POT library [57]. All of our experiments are run on 6

TITAN X (Pascal) GPUs.

To ease the computational cost, all margins and k-variances are estimated with

random subsets of size min(200⇥#classes, data_size) sampled from the training data.

The average results over 4 subsets are shown in Table 8.1. Standard deviations are

given in App. A.5.2, as well as the effect of varying the size of the subset in App.

A.5.3 . Our k-variance normalized margins outperform the baselines in 6 out of 8

tasks. Notably, our margins are the only ones achieving good empirical performance

while being supported with theoretical bounds.

Margin Visualization. To provide a qualitative comparison, we select four

models from the first task of PGDL (CIFAR10/VGG), which have generalization error

24.9%, 26.2%, 28.6%, and 31.8%, respectively. We visualize margin distributions for

each in Figure 8-1. Without proper normalization, Margin and GN-Margin struggle

to discriminate these models. Similar to the observation in [91], SN-Margin even

negatively correlates with generalization. Among all the apporaches, kV-GN-Margin

is the only measure that correctly orders and distinguishes between all four models.

This is consistent with Table 8.1, where kV-GN-Margin achieves the highest score.
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Figure 8-1: Margin Visualization of PGDL Models. From left to right, the correct
order of the margin distributions should be red, green, orange, and blue. kV-GN-Margin is
the only measure that behaves consistently with the generalization error.

Next, we compare our approach against the winning solution of the PGDL compe-

tition: Mixup⇤DBI [141]. Mixup⇤DBI uses the geometric mean of the Mixup accuracy

[223] and Davies Bouldin Index (DBI) to predict generalization. In particular, they

use DBI to measure the clustering quality of intermediate representations of neural

networks. For fair comparison, we calculate the geometric mean of the Mixup accu-

racy and the median of the k-variance normalized margins and show the results in

Table 8.2. Following [141], all approaches use the representations from the first layer.

Our Mixup⇤kV-GN-Margin outperforms the state-of-the-art [141] in 5 out of the 8

tasks.

CIFAR SVHN CINIC CINIC Flowers Pets Fashion CIFAR

VGG NiN FCN bn FCN NiN NiN VGG NiN
Mixup⇤DBI [141] 0.00 42.31 31.79 15.92 43.99 12.59 9.24 25.86
Mixup⇤kV-Margin 7.37 27.76 39.77 20.87 9.14 4.83 1.32 22.30
Mixup⇤kV-GN-Margin 20.73 48.99 36.27 22.15 4.91 11.56 0.51 25.88

Table 8.2: Mutual information scores on PGDL tasks with Mixup. We compare
with the winner (Mixup⇤DBI) of the PGDL competition [92]. Scores of Mixup⇤DBI from
[141].
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8.4.2 Experiment: Label Corruption

A sanity check proposed in [222] is to examine whether the generalization measures are

able to capture the effect of label corruption. Following the experiment setup in [222],

we train two Wide-ResNets [218], one with true labels (generalization error = 12.9%)

and one with random labels (generalization error = 89.7%) on CIFAR-10 [108]. Both

models achieve 100% training accuracy. We select the feature from the second residual

block to compute all the margins that involve intermediate features and show the

results in Figure 8-2. Without k-variance normalization, margin and GN-Margin

can hardly distinguish these two cases, while k-variance normalized margins correctly

discriminate them.

D
en
si
ty

Margin GN-Margin kV-Margin kV-GN-Margin

Figure 8-2: Margin distributions with clean or random labels. Without k-variance
normalization, Margin and GN-Margin struggle to distinguish the models trained with clean
labels or random labels.

8.4.3 Experiment: Task Hardness

Next, we demonstrate our margins are able to measure the “hardness” of learning

tasks. We say that a learning task is hard if the generalization error appears large

for well-trained models. Different from the PGDL benchmark, where only models

trained on the same dataset are compared, we visualize the margin distributions of

Wide-ResNets trained on CIFAR-10 [108], SVHN [142], and MNIST [113], which have

generalization error 12.9%, 5.3%, and 0.7%, respectively. The margins are measured

on the respective datasets. In Figure 8-3, we again see that k-variance normalized

margins reflect the hardness better than the baselines. For instance, CIFAR-10 and

SVHN are indicated to be harder than MNIST as the margins are smaller.
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Figure 8-3: CIFAR-10, SVHN, and MNIST have different hardness. Although
models achieve 100% training accuracy on each task, the test accuracy differs. With k-
variance normalization, the margin distributions of the models are able to recognize the
hardness of the tasks.

8.5 Concentration and Separation of Representations

8.5.1 Concentration of Representations

In this section, we study how the structural properties of the feature distributions

enable fast learning. Following the Wasserstein-2 k-variance analysis in [175], we

apply bounds by Weed and Bach [203] to demonstrate the fast convergence rate of

Wasserstein-1 k-variance when (1) the distribution has low intrinsic dimension or (2)

the support is clusterable.

Proposition 8.9. (Low-dimensional Measures, Informal) For �#µ 2 Prob(Rd),

we have Varm(�#µ)  O(m�1/d) for d > 2. If �#µ is supported on an approximately

d0-dimensional set where d0 < d, we obtain a better rate: Varm(�#µ)  O(m�1/d0).

We defer the complete statement to the supplement. Without any assumption,

the rate gets significantly worse as the feature dimension d increases. Nevertheless,

for an intrinsically d0-dimensional measure, the variance decreases with a faster rate.

For clustered features, we can obtain an even stronger rate:

Proposition 8.10. (Clusterable Measures) A distribution µ is (n,�)-clusterable

if supp(µ) lies in the union of n balls of radius at most �. If �#µ is (n,�)-clusterable,

then for all m  n(2�)�2, Varm(�#µ)  24
p

n
m .

We arrive at the parametric rate O(m�1/2) if the cluster radius � is sufficiently

small. In particular, the fast rate holds for large m when the clusters are well concen-
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trated. Different from conventional studies that focus on the complexity of a complete

function class (such as Rademacher complexity [14]), our k-variance bounds capture

the concentration of the feature distribution.

8.5.2 Separation of Representations

We showed in the previous section that the concentration of the representations is

captured by the k-variance and that this notion translates the properties of the un-

derlying probability measures into generalization bounds. Next, we show that maxi-

mizing the margin sheds light on the separation of the underlying representations in

terms of Wasserstein distance.

Lemma 8.11. (Large Margin and Feature Separation) Assume there exist

fy, y = 1 . . . K that are L-Lipschitz and satisfy the max margin constraint ⇢f (�(x), y) �

� for all (x, y) ⇠ D , i.e: fy(�(x)) � fy0(�(x)) + �, 8 y0 6= y, 8x 2 supp(µy). Then

8y 6= y0, W1(�#(µy),�#(µy0)) � �
L .

Proof. Since fy and fy0 are L lipchitz, it follows that g(z) = fy(z) � fy0(z) is 2L

Lipchitz, and hence g
2L is Lip1.

W1(�#(µy),�#(µy0)) = sup
f2Lip1

Ex⇠pyf(�(x))� Ex⇠µy0f(�(x))

� 1

2L

⇣
Ex⇠pyg(�(x))� Ex⇠µy0g(�(x))

⌘

=
1

2L

⇣
Ex⇠py [fy(�(x))� fy0(�(x))] + Ex⇠µy0 [fy0(�(x))� fy(�(x))]

⌘

� 1

2L
(2�) (By Assumption on f)

=
�

L

Lemma 8.11 states that large margins imply Wasserstein separation of the repre-

sentations of each class. It also sheds light on the Lipschitz constant of the down-

stream classifier F : L � �/miny,y0 W1(�#(µy),�#(µy0)). One would need more com-

plex classifiers, i.e, those with a larger Lipschitz constant, to correctly classify classes
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that are close to other classes, by Wasserstein distance, in feature space. We further

relate the margin loss to Wasserstein separation:

Lemma 8.12. Define the pairwise margin loss Ry,y0
� for y, y0 2 Y as

Ry,y0

� (f � �) = 1

2

⇣
Ex⇠µy [� � fy(�(x)) + fy0(�(x))]+ + Ex⇠µy0 [� � fy0(�(x)) + fy(�(x))]+

⌘
.

Assume fc is L-Lipschitz for all c 2 Y. Given a margin � > 0, for all y 6= y0, we

have:

W1(�#(µy),�#(µy0)) �
1

L

⇣
� �Ry,y0

� (f � �)
⌘
.

Proof of Lemma 8.12. We follow the same notation of the proof above but we don’t

make any assumption on fy, fy0 except that they are LipL:

W1(�#(µy),�#(µy0)) = sup
f2Lip1

Ex⇠pyf(�(x))� Ex⇠µy0f(�(x))

� 1

2L

⇣
Ex⇠pyg(�(x))� Ex⇠µy0g(�(x))

⌘

=
1

2L

✓Z
[fy(z)� fy0(z))]d�#(µy)(z) +

Z
[fy0(z)� fy(z)]d�#(µy0)(z)

◆

=
1

2L

✓
� �

Z
[� � (fy(z)� fy0(z))]d�#(µy)(z) + � �

Z
[� � (fy0(z)� fy(z))]d�#(µy0)(z)

◆

� 1

2L

✓
2� �

Z
[� � (fy(z)� fy0(z))]+d�#(µy)(z)�

Z
[� � (fy0(z)� fy(z))]+d�#(µy0)(z)

◆

where the last inequality follows from the fact that for t 2 R, we have t  [t]+ =

max(t, 0) Hence we have:

W1(�#(µy),�#(µy0))

� 1

L

✓
� � 1

2

⇣
Eµy [� � fy(�(x)) + fy0(�(x))]+ + Eµy0 [� � fy0(�(x)) + fy(�(x))]+

⌘◆
.

We show a similar relation for the gradient-normalized margin [53] in the supple-

ment (Lemma B.9): gradient normalization results in a robust Wasserstein separation
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of the representations, making the feature separation between classes robust to ad-

versarial perturbations.

(a) Clean Labels (b) Random Labels

(a) CIFAR (b) MNIST

Figure 8-4: t-SNE visualization of represen-
tations. Classes are indicated by colors.

Example: Clean vs. Random La-

bels. Finally, we provide an illustrative

example on how concentration and sepa-

ration are associated with generalization.

For the label corruption setting from Sec-

tion 8.4.2, Figure 8-4 shows t-SNE vi-

sualizations [192] of the representations

learned with true or random labels on

CIFAR-10. Training with clean labels

leads to well-clustered representations. Although the model trained with random

labels has 100% training accuracy, the resulting feature distribution is less concen-

trated and separated, implying worse generalization.

Discussion The notions of concentration and separation are tightly related to self-

supervised learning with contrastive loss [24, 36, 81, 99]. The key idea of contrastive

learning is to minimize the variance of features within the class, while maximize the

distance for features between classes [200]. Recently, Khosla et al. [99] show that

contrastive loss outperforms the standard cross entropy loss in several classification

datasets. We hypothesize the empirical success of contrastive learning is a result of

concentration and separation in the feature space.

For example, in the preceding chapters, both Figure 3-4 and 5-4 demonstrate that

the features derived from contrastive learning exhibit high degrees of concentration

and separation. Furthermore, upon eliminating the false negatives and false positives,

this trend of distinct concentration and separation becomes even more pronounced.
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8.6 Conclusion

In this chapter, we present k-variance normalized margin bounds, a new data-dependent

generalization bound based on optimal transport. The proposed bounds predict the

generalization error well on the large scale PGDL dataset [92]. We use our theoretical

bounds to shed light on the role of the feature distribution in generalization.
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Chapter 9

Epilogue

Since the rise of deep learning, neural networks have been greatly dominant, marking

a significant paradigm shift in the field. The landscape has further evolved with the

advent of self-supervised models, a change that is gradually redefining the rules of

the game. These models, trained from large-scale datasets, have become an indis-

pensable backbone for numerous applications. The evolution has also given birth

to new foundation models like Segment Anything [103], Stable Diffusion [164], and

more, effectively ushering the field of artificial intelligence into the next stage of its

development.

Concurrently, the scale of data and complexity has grown exponentially, moving

towards multimodal learning that encompasses vision, text, audio, motion, etc [66].

As a result, the datasets have become noisier and the computational expense of train-

ing these models has increased substantially, but this is where our works shine! For

instance, a recent works by Radenovic et al. [158], demonstrate that our algorithms

continue to improve performance, even in the era of foundation models.

Looking ahead, it is almost certain that the size of datasets and models will

continue to increase exponentially. This growth, however, raises important questions:

Will the benefits derived from our algorithms diminish as we scale up datasets into

the hundreds or thousands of billions? Can we still control errors and biases at such

a scale and construct a reliable and responsible AI system? The mere modification of

algorithmic components, such as adjusting the loss function, may prove insufficient
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in this context. Specifically, there could be a compelling need to curate specialized

datasets for fine-tuning, ensuring that model behaviors are both corrected and aligned

with intended outcomes.

Beyond the practical ramifications of scale, there are also implications for theoreti-

cal analysis. The pertinence of theoretical analysis might be called into question when

confronted with overwhelmingly large sample sizes. Notably, as the sample size tends

towards infinity, the generalization error correspondingly approaches a minimum.

Consequently, a shift in focus might be necessitated: Instead of merely discussing

generalization within an i.i.d. setting, it may become more pertinent to explore ex-

trapolation. This includes deliberations on the types of distributions to which models

can extrapolate, or the types of regularization that empower models to learn such

extrapolations.

While there is still a great deal of uncertainty regarding the future of AI, it is my

hope that this dissertation can serve as a stepping stone toward the development of

a more reliable and robust AI system. The future of artificial intelligence remains

promising, albeit riddled with challenges that we, as a community, must tackle head-

on.
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Appendix A

Additional Experiments and Details

A.1 False Negative Pairs: DCL

A.1.1 Experiment Details

CIFAR10 and STL10 We adopt PyTorch to implement SimCLR [24] with ResNet-

50 [79] as the encoder architecture and use the Adam optimizer [100] with learning

rate 0.001 and weight decay 1e� 6. We set the temperature t as 0.5 and the dimen-

sion of the latent vector as 128. All the models are trained for 400 epochs. The data

augmentation uses the following PyTorch code:

The models are evaluated by training a linear classifier with cross entropy loss

after fixing the learned embedding. We again use the Adam optimizer with learning

rate 0.001 and weight decay 1e� 6.

Imagenet-100 We adopt the official code1 of contrastive multiview coding (CMC)

[186]. To implement the debiased objective, we only modify the “NCE/NCECrite-

rion.py” file and left the rest of the code unchanged. The temperature of CMC is set to

0.07, which often makes the estimator 1
⌧�

⇣
1
N

PN
i=1 e

f(x)T f(ui) � ⌧+ 1
M

PM
i=1 e

f(x)T f(vi)
⌘

less than e�1/t. To retain the learning signal, when the estimator is less than e�1/t,

we will optimize the biased loss instead. This improves the convergence and stability

1https://github.com/HobbitLong/CMC/
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of our method.

Sentence Embedding We adopt the official code2 of quick-thought (QT) vectors

[119]. To implement the debiased objective, we only modify the “src/s2v-model.py”

file and left the rest of the code unchanged. Since the official BookCorpus [104]

dataset is missing, we use the unofficial version 3 for the experiments. The feature

vector of QT is not normalized, therefore, we simply constrain the estimator described

in equation (7) to be greater than zero.

Reinforcement Learning We adopt the official code4 of Contrastive unsupervised

representations for reinforcement learning (CURL) [178]. To implement the debiased

objective, we only modify the “curl-sac.py” file and left the rest of the code unchanged.

We again constrain the estimator described in equation (7) to be greater than zero

since the feature vector of CURL is not normalized.

A.2 Hard Negative Pairs: HCL

A.2.1 Graph Representation Learning

We describe in detail the hard sampling method for graphs whose results are reported

in Section 4.2.3. Before getting that point, in the interests of completeness we cover

some required background details on the InfoGraph method of [181]. For further

information see the original paper [181].

Background on Graph Representations

We observe a set of graphs G = {Gj 2 G}nj=1 sampled according to a distribution p

over an ambient graph space G. Each node u in a graph G is assumed to have features

h(0)
u living in some Euclidean space. We consider a K-layer graph neural network,

2https://github.com/lajanugen/S2V
3https://github.com/soskek/bookcorpus
4https://github.com/MishaLaskin/curl
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whose k-th layer iteratively computes updated embeddings for each node v 2 G in

the following way,

h(k)
v = COMBINE(k)

0

@h(k�1)
v ,AGGREGATE(k)

 ⇢⇣
h(k�1)
v , h(k�1)

u , euv
⌘
: u 2 N (v)

�!1

A

where COMBINE(k) and AGGREGATE(k) are parameterized learnable functions

and N (v) denotes the set of neighboring nodes of v. The K embeddings for a node

u are collected together to obtain a single final summary embedding for u. As rec-

ommended by [213] we use concatenation, hu = hu(G) = CONCAT
⇣
{h(k)

u }Kk=1

⌘
to

obtain an embedding in Rd. Finally, the node representations are combined together

into a length d graph level embedding using a readout function,

H(G) = READOUT
�
{hu}u2G

�

which is typically taken to be a simple permutation invariant function such as

the sum or mean. The InfoGraph method aims to maximize the mutual information

between the graph level embedding H(G) and patch-level embeddings hu(G) using

the following objective,

max
h

EG⇠p
1

|G|
X

u2G

I
�
hu(G);H(G)

�

In practice the population distribution p is replaced by its empirical counterpart,

and the mutual information I is replaced by a variational approximation IT . In line

with [181] we use the Jensen-Shannon mutual information estimator as formulated

by [? ]. It is defined using a neural network discriminator T : R2d ! R as,

IT
�
hu(G);H(G)

�
= EG⇠p

h
�sp(�T

�
hu(G), H(G)

�
)
i
�E(G,G0)⇠p⇥p

h
sp(T

�
hu(G), H(G0)

�
)
i

where sp(z) = log(1+ez) denotes the softplus function. The finial objective is the
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joint maximization over h and T ,

max
✓, 

EG⇠p
1

|G|
X

u2G

IT
�
hu(G);H(G)

�

Hard Negative Sampling for Learning Graph Representations

In order to derive a simple modification of the NCE hard sampling technique that

is appropriate for use with InfoGraph, we first provide a mildly generalized view of

hard sampling. Recall that the NCE contrastive objective can be decomposed into

two constituent pieces,

L(f, q) = Lalign(f) + Lunif(f, q)

where q is in fact a family of distributions q(x�; x) over x� that is indexed by

the possible values of the anchor x. Lalign performs the role of “aligning” positive

pairs (embedding near to one-another), while Lunif repels negative pairs. The hard

sampling framework aims to solve,

inf
f
sup
q

L(f, q).

In the case of NCE loss we take,

Lalign(f) = �E x⇠p
x+

⇠p+x

f(x)Tf(x+),

Lunif(f, q) = E x⇠p
x+

⇠p+x

log
n
ef(x)

T f(x+) +QEx�⇠q[e
f(x)T f(x�)]

o
.

View this view, we can easily adapt to the InfoGraph framework, taking

Lalign(h, T ) = �EG⇠p
1

|G|
X

u2G

sp(�T
�
hu(G), H(G)

�
),

Lunif(h, T, q) = �EG⇠p
1

|G|
X

u2G

EG0⇠qsp(T
�
hu(G), H(G0)

�
)
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Denote by p̂ the distribution over nodes u 2 Rs defined by first sampling G ⇠ p,

then sampling u 2 G uniformly over all nodes of G. Then these two terms can be

simplified to

Lalign(h, T ) = �Eu⇠p̂sp(�T
�
hu(G), H(G)

�
),

Lunif(h, T, q) = �E(u,G0)⇠p̂⇥qsp(T
�
hu(G), H(G0)

�
)

At this point it becomes clear that, just as with NCE, a distribution q⇤ 2 argmaxq L(f, q)

in the InfoGraph framework if it is supported on argmaxG02G sp(T
�
hu(G), H(G0)

�
).

Although this is still hard to compute exactly, it can be approximated by,

q�u(G
0) / exp

�
�T (hu(G), H(G))

�
· p(G0).

A.2.2 Experimental Details

Visual Representations We implement SimCLR in PyTorch. We use a ResNet-

50 [79] as the backbone with embedding dimension 2048 (the representation used

for linear readout), and projection head into the lower 128-dimensional space (the

embedding used in the contrastive objective). We use the Adam optimizer [100]

with learning rate 0.001 and weight decay 10�6. Since we adopt the SimCLR frame-

work, the number of negative samples N = 2(batch size � 1). Since we always take

the batch size to be a power of 2 (16, 32, 64, 128, 256) the negative batch sizes are

30, 62, 126, 254, 510 respectively. Unless otherwise stated, all models are trained for

400 epochs.

Annealing � Method: We detail the annealing method whose results are given

in Figure A-1. The idea is to reduce the concentration parameter down to zero as

training progresses. Specifically, suppose we have e number of total training epochs.

We also specify a number ` of “changes” to the concentration parameter we shall

make. We initialize the concentration parameter �1 = � (where this � is the number
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Figure A-1: Left: the effect of varying concentration parameter � on linear readout ac-
curacy. Middle: linear readout accuracy as concentration parameter � varyies, in the case
of contrastive learning (fully unsupervised), using true positive samples (uses label informa-
tion), and an annealing method that improves robustness to the choice of � (see Appendix
A.2.2 for details). Right: STL10 linear readout accuracy for hard sampling with and without
debiasing, and non-hard sampling (� = 0) with and without debiasing. Best results come
from using both simultaneously.

reported in Figure A-1), then once every e/` epochs we reduce �i by �/`. In other

words, if we are currently on �i, then �i+1 = �i � �/`, and we switch from �i to �i+1

in epoch number i · e/`.

The idea of this method is to select particularly difficult negative samples early on

order to obtain useful gradient information early on, but later (once the embedding is

already quite good) we reduce the “hardness” level so as to reduce the harmful effect

of only approximately correcting for false negatives (negatives with the same labels as

the anchor). We also found the annealing in the opposite direction (“down”) achieved

similar performance.

A.3 False Positive Pairs: RINCE

A.3.1 Exact Number of CIFAR-10 and ACAV100M Experi-

ments

We first provide the exact numbers for CIFAR-10 and ACAV100M experiments in

Table A.1, A.2, and A.3.
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⌘ InfoNCE q = 0.01 q = 0.1 q = 0.5 q = 1.0

0.0 93.4±0.2 93.4±0.2 93.2±0.1 93.3±0.1 93.0±0.2
0.2 93.1±0.1 93.3±0.3 93.0±0.1 93.2±0.2 92.9±0.3
0.4 90.7±0.2 93.0±0.2 92.0±0.9 93.1±0.1 92.8±0.1
0.6 88.2±0.4 90.8±0.2 90.6±0.3 92.9±0.2 92.4±0.2
0.8 87.1±0.5 89.1±0.2 89.3±0.1 89.9±0.3 91.6±0.3
1.0 87.1±1.0 88.7±0.1 89.3±0.4 89.3±0.6 88.2±0.3

Table A.1: CIFAR-10 Label Noise

⌘ InfoNCE q = 0.01 q = 0.1 q = 0.5 q = 1.0

0.0 91.1±0.1 91.6±0.1 91.5±0.1 91.8±0.2 90.7±0.1
0.2 89.3±0.1 89.8±0.2 89.7±0.1 90.4±0.1 90.9±0.1
0.4 87.3±0.4 87.7±0.5 87.5±0.2 88.8±0.1 89.0±0.1
0.6 84.5±0.2 85.4±0.2 85.3±0.2 86.6±0.1 86.3±0.2
0.8 80.6±0.1 81.2±0.2 80.3±0.2 82.5±0.2 82.8±0.3
1.0 71.0±0.5 71.2±0.6 71.8±0.4 71.5±0.3 72.7±0.2

Table A.2: CIFAR-10 Augmentation Noise

model 20K 50K 100K 200K 500K
InfoNCE (100 epoch) 72.482 75.205 77.161 79.937 82.717
InfoNCE (150 epoch) 72.429 76.13 78.8 80.095 83.082
InfoNCE (200 epoch) 72.429 76.183 78.641 79.94 83.388
RINCE (100 epoch) 73.635 76.685 78.694 81.153 83.505
RINCE (150 epoch) 74.632 77.505 79.064 82.263 83.399
RINCE (200 epoch) 74.253 78.086 79.355 82.368 83.769

Table A.3: Top1 accuracy on UCF101 of models trained on ACAV100M.
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Figure A-2: Positive pairs and their scores. The corresponding positive scores are
shown below the image pairs. The positive scores s+ 2 [�1, 1] are output by the trained
InfoNCE and RINCE model (temperature = 1). Pairs that have lower scores are visually
noisy, while informative pairs often have higher scores.

A.3.2 Positive Scores and Views, Continue

We extend our analysis of Figure 5-5 to InfoNCE baseline and discuss the impact of

implicit weighting. We can see that the positive scores in both InfoNCE and RINCE

models are correlated to the noisiness of positive pairs.

We then study the distribution of positive scores and compare the positive scores

output by InfoNCE and RINCE on noisy views. As Figure A-3 (a) shows, the positive

scores of clean pairs output by RINCE is slightly higher, making the density of RINCE

around score 1.0 larger than InfoNCE. Figure A-3 (b) gives a closer look on scores

versus noisy views. We can see that InfoNCE tends to output higher scores for

noisy views than RINCE, corroborating our analysis: InfoNCE tends to maximize

the positive score of hard (noisy) pairs. This inherently makes the positive scores

of clean pairs lower for InfoNCE, explaining the discrepancy between InfoNCE and

RINCE in (a).
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(a) Distribution of Positive Scores (b) Noisy Views and Scores

Figure A-3: Comparison between RINCE and InfoNCE. (a) Distribution of Positive
Scores for RINCE and InfoNCE; (b) InfoNCE outputs higher scores for noisy pairs.

A.3.3 Ablation Study on �

Finally, we provide an ablation study on how � affect the performance of RINCE

with CIFAR-10 augmentation noise experiments. We can see that in both clean and

noise setting, RINCE is not sensitive to the choice of � as long as it is not too large.

Therefore, we simply set � = 0.01 for all vision experiments and � = 0.025 for graph

experiments.

Noise Rate 0.0 0.4
RINCE (� = 0.01) 91.54 89.65
RINCE (� = 0.05) 91.81 89.81

RINCE (� = 0.1) 91.32 89.9
RINCE (� = 0.2) 90.55 89.69
RINCE (� = 0.4) 90.89 89.39

Table A.4: CIFAR-10 Augmentation Noise

A.3.4 Experiment Details

CIFAR-10 We follow the experiment setup in [36], where the SimCLR [24] models

are trained with Adam optimizer for 500 epochs with learning rate 0.001 and weight

decay 1e�6. The encoder is ResNet-50 and the dimension of the latent vector is 128.

The temperature is set to t = 0.5. The models are then evaluated by training a linear

classifier for 100 epochs with learning rate 0.001 and weight decay 1e�6.
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ImageNet: SimCLR We adopt the SimCLR implementation5 from PyTorch Light-

ning [54]. In addition, we spot a bug and fix the implementation of negative masking

of PyTorch Lightning and achieve 68.9 top-1 accuracy on ImageNet (the one reported

in the PyTorch Lightning’s website is 68.4). To implement RINCE, we only modify

the lines that calculates loss.

ImageNet: Mocov3 We adopt the official code6 from Mocov3 [28]. To implement

RINCE, we only modify the lines that calculates loss in moco/builder.py.

Kinetics-400 We adopt the official implementation7 from [132]. Similarly, we only

modify the loss function in the criterions directory. In particular, we use the

SimCLR style implementation for both InfoNCE and RINCE loss. We also adopt

the same hyperparameters described in the git repository for training. We set the

learning rate to 1e�3 to finetune the models on downstream classification tasks such

as UCF101 and HMDB51 with the provided evaluation code.

ACAV100M We again modify the official implementation of [132] for the ACAV100M

experiments, where we modify the data loader to adopt it to ACAV100M. Different

from Kinetics-400 experiments, the input size is set to 8⇥ 2242 during the finetuning

process for computational efficiency. We again use the exact same set of hyperparam-

eters from [132] for both training and testing.

TU-Dataset We adopt the official implementation8 from [215]. To implement

RINCE, we only modify the loss in gsimclr.py file.

5https://github.com/PyTorchLightning/lightning-bolts/tree/master/pl_bolts/
models/self_supervised/simclr

6https://github.com/facebookresearch/moco-v3
7https://github.com/facebookresearch/AVID-CMA
8https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU
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A.4 Debiasing Foundation Models

A.4.1 Prompts

In this section, we provide the exact prompt we use for all the experiments in the

paper in Table A.5, A.6, A.7, A.8.

Class Prompt

y = 0 This is a picture of a landbird.
y = 1 This is a picture of a waterbird.

Spurious Prompt

This is a land background. This is a picture of a forest.
This is a picture of a moutain. This is a picture of a wood.
This is a water background. This is a picture of an ocean.
This is a picture of a beach. This is a picture of a port.

Positive Pairs

enumerate of This is a picture of a landbird with land background.
This is a picture of a landbird with water background.

This is a picture of a landbird in the ocean
This is a picture of a landbird in the water.
This is a picture of a landbird in the forest.

enumerate of This is a picture of a waterbird with land background.
This is a picture of a waterbird with water background.

This is a picture of a waterbird in the ocean
This is a picture of a waterbird in the water.
This is a picture of a waterbird in the forest.

Table A.5: Prompts for WaterBird Dataset. The spurious prompts are sentences
that describe the spurious features, that is, the background of the images. In addition to
keywords such as land/water background, we further include terms that describe similar
concepts, such as forest or ocean. The positive pairs consist of sentences that describe the
same type of bird (landbird/waterbird), while phrases that describe the background are
appended afterward.

A.4.2 Importance of Class Name in Positive Pairs

In this section, we study the importance of class names in the positive pairs. In

particular, instead of using “a photo of a [class name] with [spurious attribute]”, we
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Class Prompt

y = 0 A photo of a celebrity with dark hair.
y = 1 A photo of a celebrity with blond hair.

Spurious Prompt

A photo of a male. A photo of a male celebrity. A photo of a man.
A photo of a female. A photo of a female celebrity. A photo of a woman.

Positive Pairs

(A photo of a male celebrity with dark hair., A photo of a female celebrity with dark hair.)
(A photo of a male celebrity with blond hair., A photo of a female celebrity with blond hair.)

Table A.6: Prompts for CelebA Dataset. We found two positive pairs are sufficient to
mitigate the biases for CelebA dataset.

Prompt: A photo of a [CONCEPT] person.

CONCEPT: good, evil, smart, dumb, attractive, unattractive,
lawful, criminal, friendly, unfriendly

Table A.7: Prompts for text-image retrieval on FairFace Dataset. We adopt the
10 training concepts from [16] to construct the prompts for FairFace. These concepts are
irrelevant to gender, race, or age, which makes them suitable for evaluating the model biases.

instead use “a photo of a [spurious attribute]” to estimate the calibration matrix.

The results are shown in Table A.9. We can see that the performance significantly

drops after removing the class name from the prompt, emphasizing the importance

of class-conditioned prompts.

A.4.3 Human Evaluation

We generate 100 images for each profession for evaluation. Therefore, there are 1500

images for each model in total. The random seed is fixed for the original and debiased

Stable Diffusion models. In particular, automatic evaluation and human evaluation

adopt the same set of images for fair comparison. The interface for human evaluation

is shown in Figure A-4. Note that some generated images might be corrupted, or do

not even contain humans. In this case, the annotators can click 3 or 6 to indicate
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GENDER: A photo of a male [profession].
A photo of a female [profession].

RACE: A photo of a white [profession]. A photo of a black [profession].
A photo of an Asian [profession]. A photo of an Indian [profession].

A photo of a Latino [profession].

Table A.8: Prompts for debiasing generative models. We simply use prompts that
describe the gender and race attribute as prompts, where we avoid using ambiguous terms
such as white and black as the model could wrongly interpret it as the color of the photo.

Waterbird CelebA
WG Avg Gap WG Avg Gap

Class-Agnostic 57.5 81.4 23.9 52.8 85.2 32.4
Class-Conditioned 74.0 78.7 4.7 82.2 84.4 2.2

Table A.9: Importance of target classes in the positive pairs. Removing [class
name] in the positive pairs significantly degenerate the robustness of the zero-shot models.

that the current image is not identifiable. We remove these images while calculating

the discrepancy.

Figure A-4: Interface for human evaluation. We construct a simple labeling script
for the annotator to easily label the sensitive attributes. Once they select the label, the
program will ask whether they are sure about the answer. One can reselect the answer or
press “enter” to switch to the next image.

A.4.4 More Samples from Biased and Debiased Generative

Models

In this section, we show more generated images from Stable Diffusion 2.1 to provide a

qualitative experiment. We can see that the proposed debiasing approach significantly
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improves the diverisity across training and testing professions as as Figure A-5, A-6,

A-8 and A-9 show. Nevertheless, there are also failure cases, where both our approach

and the original model fail. For instance, biased and debiased models fail to generate

females for many engineer-related professions such as carpenter as Figure A-7 shows.
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Figure A-5: Generation against Gender Bias on Training Set. After debiasing, we
can see that the gender diversity of Stable Diffusion greatly improves.

A.5 Generalization Theory of Representation Learn-

ing

A.5.1 Summary of Margins

A.5.2 Variance of Empirical Estimation

In Table 8.1, we show the average scores over 4 random sampled subsets. We now

show the standard deviation in Table A.12. Overall, the standard deviation of the

estimation is fairly small, consistent to the observation in Theorem 8.7.
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Figure A-6: Generation against Gender Bias on Testing Set. We can see that by
applying the calibration matrix, the gender distributions are more balanced.
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Figure A-7: Failure Case for Generation against Gender Bias. There are also
failure cases, where both our approach and the original model fail. For instance, biased and
debiased models fail to generate females for professions such as carpenter and builders.

A.5.3 The effect of k in k-Variance

We next show the ablation study with respect to m (data size) in Table A.13. In

particular, we draw mc ⇥#classes samples where mc = 50, 100, and 200. Note that

if the class distribution p is not uniform, mc could be different for each class. The

scores are computed with one subset for computational efficiency. Since the sample

size per class of Flowers and Pets datasets are smaller than 50, the ablation study is

not applicable.
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Figure A-8: Generation against Race Bias on Training Set. We can observe a clear
difference before and after debiasing, where the diversity is improved after debiasing.

A.5.4 Spectral Approximation to Lipschitz Constant

In section 8.4, we use the supermum of the norm of the jacobian on the training set as

an approximation to Lipschitz constant, which is a simple lower bound of Lipschitz

constant for ReLU networks [96]. It is well known that the spectral complexity,

the multiplication of spectral norm of weights, is an upper bound on the Lipschitz

constant of ReLU networks [130]. We replace the cLip in kV-Margin with the spectral

complexity of the network and show the results in Table A.14. The norm of the

jacobian yields much better results than spectral complexity, which aligns with the

observations in [51, 91].

A.5.5 Experiment Details

PGDL Dataset The models and datasets are accessible with Keras API [31] (inte-

grated with TensorFlow [1]): https://github.com/google-research/google-research/

tree/master/pgdl (Apache 2.0 License). We use the official evaluation code of PGDL

competition [92]. All the scores can be computed with one TITAN X (Pascal) GPUs.

The intuition behind the sample size min(200⇥#classes, data_size) is that we want

the average sample size for each class is 200. Note that if the class distribution p is not
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Figure A-9: Generation against Race Bias on Testing Set. We can again see that
the diversity is improved after debising even for unseen classes.
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Figure A-10: Failure Case for Generation against Racial Bias. For certain classes
that are highly correlated with historical figures such as mathematicians, our approach does
not improve the diversity a lot due to the strong biases from the data.

uniform, the sample size for each class could be different. However, the sample size

per class of Flowers and Pets datasets are smaller than 200⇥#classes, we constrain

the sample size to be dataset size at most. We follow the setting in [141] to calculate

the mixup accuracy with label-wise mixup.

Other Experiments The experiments in section 8.4.2 are run with the code from

[222]: https://github.com/pluskid/fitting-random-labels (MIT License). We

trained the models with the exact same code and visualize the margins with our

own implementation via PyTorch [153]. For the experiments in section 8.4.3, we only

change the data loader part of the code. The models of MNIST and SVHN are trained
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Train Actor, Architect, Audiologist, Author, Baker, Barber, Blacksmith
Bricklayer, Bus Driver, Butcher, Chef, Chemist, Cleaner, Coach

Comedian, Computer Programmer, Construction Worker, Consultant,
Counselor, Dancer, Dentist, Designer, Dietitian, DJ, Doctor, Driver,

Economist, Electrician, Engineer, Entrepreneur, Farmer, Florist
Graphic Designer, Hairdresser, Historian, Journalist, Judge, Lawyer

Librarian, Magician, Makeup Artist, Mathematician, Marine Biologist
Mechanic, Model, Musician, Nanny, Nurse, Optician, Painter

Pastry Chef, Pediatrician, Photographer, Plumber, Police Officer, Politician
Professor, Psychologist, Real Estate Agent, Receptionist, Recruiter, Researcher

Sailor, Salesperson, Surveyor, Singer, Social Worker, Software Developer
Statistician, Surgeon, Teacher, Technician, Therapist, Tour Guide

Translator, Vet, Videographer, Waiter, Writer, Zoologist

Test Accountant, Astronaut, Biologist, Carpenter, Civil Engineer, Clerk, Detective
Editor, Firefighter, Interpreter, Manager, Nutritionist, Paramedic, Pharmacist

Physicist, Pilot, Reporter, Security Guard, Scientist, Web Developer

Table A.10: 100 Training and Testing Professions. We use GPT-4 to list 100 job
titles to form our training and testing set. The similar approach can also be extended to
other debiasing tasks by querying large language models.

Definition
Margin ⇢f (�(x), y)

SN-Margin [13] ⇢f (�(x), y)/SC(f � �)
GN-Margin [90] ⇢̃f (�(x), y) =

⇢f (�(x), y)/(kr�⇢f (�(x), y)k2 + ✏)

TV-GN-Margin [90] ⇢̃f (�(x), y)/
p

Varx⇠µ(||�(x)||2)
kV-Margin (Ours) ⇢f (�(x), y)/Ec⇠p[Varmc(�#µc) · Lip(⇢f (·, c))]
kV-GN-Margin (Ours) ⇢̃f (�(x), y)/Ec⇠p[Varmc(�#µc) · Lip(⇢̃f (·, c))]

Table A.11: Definitions of margins. The SC stands for the spectral complexity defined
in [13]. We use the empirical estimation of k-variance and Lipschitz constant defined in
section 8.4 to calculate kV-Margin and kV-GN-Margin.

for 10 and 20 epochs, respectively. To visualize the t-SNE in section 8.5, we use the

default parameter in scikit-learn [156] (sklearn.manifold.TSNE) with the output from

the 4th residual block of the network.
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CIFAR SVHN CINIC CINIC Flowers Pets Fashion CIFAR

VGG NiN FCN bn FCN NiN NiN VGG NiN
Margin† 0.25 0.84 0.16 0.13 0.01 0.04 0.06 0.59
SN-Margin† [13] 0.07 0.06 0.01 0.03 0.00 0.01 0.01 0.00
GN-Margin 1st [90] 0.18 0.17 0.27 0.15 0.06 0.02 0.10 0.52
GN-Margin 8th [90] 0.03 1.44 0.09 0.04 0.01 0.00 0.05 0.14
TV-GN-Margin 1st [90] 0.26 0.78 0.49 0.62 0.03 0.05 0.03 1.29
TV-GN-Margin 8th [90] 0.31 0.35 0.18 0.19 0.01 0.14 0.09 0.73
kV-Margin† 1st 0.40 1.57 0.55 0.45 0.07 0.03 0.23 2.78
kV-Margin† 8th 0.64 0.89 0.24 0.21 0.02 0.03 0.07 0.84
kV-GN-Margin† 1st 0.15 0.56 0.47 0.72 0.02 0.04 0.06 1.70
kV-GN-Margin† 8th 0.81 0.93 0.16 0.33 0.03 0.01 0.04 0.44

Table A.12: Standard deviation of CMI score on PGDL tasks.
CIFAR SVHN CINIC CINIC Fashion CIFAR

VGG NiN FCN bn FCN VGG NiN
kV-Margin 1st (50) 7.23 30.21 37.21 17.65 1.74 14.39
kV-Margin 1st (100) 5.83 29.11 36.45 17.51 1.89 13.89
kV-Margin 1st (200) 4.81 29.79 36.23 17.01 2.37 12.63
kV-Margin 8th (50) 31.66 28.10 5.82 15.13 0.36 1.54
kV-Margin 8th (100) 29.72 27.20 6.01 15.10 0.37 1.43
kV-Margin 8th (200) 28.14 27.72 5.84 15.27 0.19 3.11
kV-GN-Margin 1st (50) 19.58 45.42 31.29 15.39 0.55 23.59
kV-GN-Margin 1st (100) 18.17 45.24 30.78 15.66 0.56 21.85
kV-GN-Margin 1st (200) 17.81 44.93 30.30 15.64 0.78 20.80
kV-GN-Margin 8th (50) 40.75 44.71 6.83 15.64 0.36 9.36
kV-GN-Margin 8th (100) 41.09 46.28 6.71 15.99 0.31 8.14
kV-GN-Margin 8th (200) 41.05 47.57 6.63 15.96 0.25 8.66

Table A.13: The role of data size in estimating k-variance The number between
brackets denotes the average class size mc.

CIFAR SVHN CINIC CINIC Flowers Pets Fashion CIFAR

VGG NiN FCN bn FCN NiN NiN VGG NiN
Spectral 1st 3.20 1.19 0.31 2.68 0.24 2.43 0.58 7.06
Spectral 8th 1.08 2.26 0.69 0.91 0.08 0.99 1.99 4.72
Jacobian Norm 1st 5.34 26.78 37.00 16.93 6.26 2.11 1.82 15.75
Jacobian Norm 8th 30.42 26.75 6.05 15.19 0.78 1.60 0.33 2.26

Table A.14: k-vairance normalized margins with spectral complexity. We show
the score of kV-Margin with different approximations to Lipschitz constant. Empirically,
gradient norm of data points yields better results.
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Appendix B

Additional Theory and Proof

B.1 Theory of False Negative Samples

We provide the proof of Theorem 3.4 here.

Proof of Theorem 3.4. I first decompose the probability as follows,

P
✓����� log

h(x, x+)

h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)
+ log

h(x, x+)

h(x, x+) +QEx�⇠p�x
h(x, x�)

���� � "

◆

= P
✓���� log

�
h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)

 
� log

�
h(x, x+) +QEx�⇠p�x

h(x, x�)
 ���� � "

◆

= P
✓
log

�
h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)

 
� log

�
h(x, x+) +QEx�⇠p�x

h(x, x�)
 
� "

◆

+ P
✓
� log

�
h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)

 
+ log

�
h(x, x+) +QEx�⇠p�x

h(x, x�)
 
� "

◆

where the final equality holds simply because |X| � " if and only if X � " or �X � ".
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Consider the first term; it can be bounded as follows,
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h(x, x�)

� "

◆

 P
✓
Qg(x, {ui}Ni=1, {vi}Mi=1)�QEx�⇠p�x

h(x, x�)

h(x, x+) +QEx�⇠p�x
h(x, x�)

� "

◆

= P
✓
g(x, {ui}Ni=1, {vi}Mi=1)� Ex�⇠p�x

h(x, x�) � "

⇢
1

Q
h(x, x+) + Ex�⇠p�x

h(x, x�)

�◆

 P
✓
g(x, {ui}Ni=1, {vi}Mi=1)� Ex�⇠p�x

h(x, x�) � "e�1

◆
. (B.1)

The first inequality follows by applying the fact that log x  x � 1 for x > 0. The

second inequality holds since 1
Qh(x, x

+) + Ex�⇠p�x
h(x, x�) � 1/e. Next we move on

to bounding the second term, which proceeds similarly, using the same two bounds.

P
⇢
� log

�
h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)

 
+ log

�
h(x, x+) +QEx�⇠p�x

h(x, x�)
 
� "

◆

= P
✓
log

h(x, x+) +QEx�⇠p�x
h(x, x�)

h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)
� "

◆

 P
✓
QEx�⇠p�x

h(x, x�)�Qg(x, {ui}Ni=1, {vi}Mi=1)

h(x, x+) +Qg(x, {ui}Ni=1, {vi}Mi=1)
� "

◆

= P
✓
Ex�⇠p�x

h(x, x�)� g(x, {ui}Ni=1, {vi}Mi=1) � "

⇢
1

Q
h(x, x+) + g(x, {ui}Ni=1, {vi}Mi=1)

�◆

 P
✓
Ex�⇠p�x

h(x, x�)� g(x, {ui}Ni=1, {vi}Mi=1) � "e�1

◆
. (B.2)

Combining equation equation B.1 and equation equation B.2, we have

P(� � ")  P
✓��g(x, {ui}Ni=1, {vi}Mi=1)� Ex�⇠p�x

h(x, x�)
�� � "e�1

◆
.

It therefore suffices to bound the right hand tail probability. We are bounding the tail

of a difference of the form |max(a, b)� c| where c � b. Notice that |max(a, b)� c| 

|a� c|. If a > b then this relation is obvious, while if a  b we have |max(a, b)� c| =

|b� c| = c� b  c�a  |a� c|. Using this elementary observation we can decompose
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the random variable whose tail we wish to control as follows,

��g(x, {ui}Ni=1, {vi}Mi=1)� Ex�⇠p�x
h(x, x�)

��

 1

⌧�

����
1

N

NX

i=1

Ex⇠ph(x, ui)� Ex�
⇠p

x⇠p
h(x, x�)

����

+
⌧+

⌧�

����
1

M

MX

i=1

Ex⇠ph(x, vi)� Ex�
⇠p+x

x⇠p
h(x, x�)

����

Using this observation we find that

P
✓��g(x, {ui}Ni=1, {vi}Mi=1)� Ex�⇠p�x

h(x, x�)
�� � "e�1

◆

 P
✓�� 1

⌧�

0

@ 1

N

NX

i=1

ef(x)
T f(ui) � ⌧+

1

M

MX

i=1

ef(x)
T f(vi)

1

A� Ex�⇠p�x
h(x, x�)

�� � "e�1

◆

 I(") + II(").

where

I(") = P

0

@ 1

⌧�

����
1

N

NX

i=1

h(x, ui)� Ex�
⇠ph(x, x

�)

���� �
"e�1

2

1

A

II(") = P

0

@⌧+

⌧�

����
1

M

MX

i=1

h(x, vi)� Ex�
⇠p+x

h(x, x�)

���� �
"e�1

2

1

A .

Hoeffding’s inequality states that if X,X1, . . . , XN are i.i.d random variables

bounded in the range [a, b] then,

P

0

B@

������
1

n

NX

i=1

Xi � EX

������
� "

1

CA  2 exp

 
�2N"2

b� a

!

In our particular case e�1  h(x, x̄)  e, yielding the following bound on the tails of
both terms,
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I(")  2 exp

 
�N"2(⌧�)2

2e3

!
and II(")  2 exp

 
�M"2(⌧�/⌧+)2

2e3

!
.

B.2 Theory of Hard Negative Samples

Here, we provide the proof for some lemmas we use in Chapter 4.

Lemma B.1. Consider the same setting as introduced in Theorem 4.5. In particular

define

⇠0 = min
c,c�:c 6=c�

kvc � vc�k , ⇠ = min
c,c�:c 6=c�

��v⇤

c � v⇤

c�

�� .

where {v⇤

c 2 Sd�1/t}c2C is a solution to Problem 4.7, and {vc 2 Sd�1/t}c2C is

defined via vc = f(xc) with xc 2 argmin
{x+:h(x+)=c} Ex⇠p(·|c)

��f(x)� f(x+)
��2 for each

c 2 C. Then we have,

⇠0 �
q

⇠2 � 2|C| (1 + 1/t)"1/2.

Proof. Define,

X = min
c�:c� 6=c

kvc � vc�k2 , X⇤ = min
c�:c� 6=c

��v⇤

c � v⇤

c�

��2 .

X and X⇤ are random due to the randomness of c ⇠ ⇢. We can split up the

following expectation by conditioning on the event {X  X⇤} and its complement,
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E|X �X⇤| = P(X � X⇤)E[X �X⇤] + P(X  X⇤)E[X⇤ �X]. (B.3)

Using L⇤

1
(f) � inf f̄ measurable L⇤

1
(f̄)  " and the notational re-writing of the ob-

jective L⇤

1
introduced before Theorem 4.4, we observe the following fact, whose proof

we give in a separate lemma after the conclusion of this proof.

Fact (see lemma B.2): EX⇤ � 2(1 + 1/t)
p
"  EX  EX⇤.

This fact implies in particular E[X � X⇤]  0 and E[X⇤ � X]  2(1 + 1/t)
p
".

Inserting both inequalities into Eqn. B.3 we find that E|X �X⇤|  2(1+ 1/t)
p
". In

other words, since ⇢ is uniform,

1

|C|
X

c2C

���� min
c�:c� 6=c

kvc � vc�k2 � min
c�:c� 6=c

��v⇤

c � v⇤

c�

��2
����  2(1 + 1/t)

p
".

From which we can say that for any c 2 C ,

���� min
c�:c� 6=c

kvc � vc�k2 � min
c�:c� 6=c

��v⇤

c � v⇤

c�

��2
����  2|C| (1 + 1/t)

p
".

So we have

min
c�:c� 6=c

kvc � vc�k �
r

min
c�:c� 6=c

��v⇤
c � v⇤

c�

��2 � 2|C| (1 + 1/t)"1/2 �
q

⇠2 � 2|C| (1 + 1/t)"1/2.

Since this holds for any c 2 C , we conclude that ⇠0 �
p

⇠2 � 2|C| (1 + 1/t)"1/2.

Lemma B.2. Consider the same setting as introduced in Theorem 4.5. Define also,

X = min
c�:c� 6=c

kvc � vc�k2 , X⇤ = min
c�:c� 6=c

��v⇤

c � v⇤

c�

��2 ,

where vc = f(xc) with xc 2 argmin
{x+:h(x+)=c} Ex⇠p(·|c)

��f(x)� f(x+)
��2 for each
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c 2 C. We have,

EX⇤ � 2(1 + 1/t)
p
"  EX  EX⇤.

Proof. By Theorem 4.7 we know there is an f ⇤ attaining the minimum inf f̄ measurable L⇤

1
(f̄)

and that this f ⇤ attains L⇤

align(f
⇤) = 0, and also minimizes the uniformity term

L⇤

unif(f), taking the value L⇤

unif(f
⇤) = Ec⇠⇢maxc�:c� 6=c v⇤

c
>v⇤

c� . Because of this we

find,

L⇤

unif(f) 
�
L⇤

1
(f)� L⇤

1
(f ⇤)

�
+
�
L⇤

align(f
⇤)� L⇤

align(f)
�
+ L⇤

unif(f
⇤)


�
L⇤

1
(f)� L⇤

1
(f ⇤)

�
+ L⇤

unif(f
⇤)

 "+ L⇤

unif(f
⇤)

= "+ Ec⇠⇢ max
c�:c� 6=c

v⇤

c
>v⇤

c� .

Since we would like to bound Ec⇠⇢maxc�:c� 6=c vc
>vc� in terms of Ec⇠⇢maxc�:c� 6=c v⇤

c
>v⇤

c� ,

this observation means that is suffices to bound Ec⇠⇢maxc�:c� 6=c vc
>vc� in terms of

L⇤

unif(f). To this end, note that for a fixed c, and x such that h(x) = c we have,

sup
x�⌧x

f(x)>f(x�) = sup
x�⌧x

�
vc

>f(x�) + (f(x)� vc)
>f(x�)

 

= sup
x�⌧x

vc
>f(x�)�

��f(x)� vc

�� /t

� max
x�2{xc}c2C

vc
>f(x�)�

��f(x)� vc

�� /t

= max
c� 6=c

vc
>vc� �

��f(x)� vc

�� /t

where the inequality follows since {xc}c2C is a subset of the closure of {x� : x� ⌧

x}. Taking expectations over c, x,
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L⇤

unif(f) = Ex,c sup
x�⌧x

f(x)>f(x�)

� Ec⇠⇢max
c� 6=c

vc
>vc� � Ex,c

��f(x)� vc

�� /t

� Ec⇠⇢max
c� 6=c

vc
>vc� �

q
Ex,c

��f(x)� vc

��2/t

� Ec⇠⇢max
c� 6=c

vc
>vc� �

p
"/t.

So since " 
p
", we have found that

Ec⇠⇢max
c� 6=c

vc
>vc� 

p
"/t+"+Ec⇠⇢ max

c�:c� 6=c
v⇤

c
>v⇤

c�  (1+1/t)
p
"+Ec⇠⇢ max

c�:c� 6=c
v⇤

c
>v⇤

c� .

Of course we also have,

Ec⇠⇢ max
c�:c� 6=c

v⇤

c
>v⇤

c� = L⇤

unif(f
⇤)  Ec⇠⇢ max

c�:c� 6=c
vc

>vc�

since the embedding f(x) = vc whenever h(x) = c is also a feasible solution.

Combining these two inequalities with the simple identity x>y = 1/t2 �kx� yk2 /2

for all length 1/t vectors x,y, we find,

1/t2 � Ec⇠⇢ max
c�:c� 6=c

��v⇤

c � v⇤

c�

��2 /2  1/t2 � Ec⇠⇢ max
c�:c� 6=c

kvc � vc�k2 /2

 1/t2 � Ec⇠⇢ max
c�:c� 6=c

��v⇤

c � v⇤

c�

��2 /2 + (1 + 1/t)
p
".

Subtracting 1/t2 and multiplying by �2 yields the result.
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B.3 Theory of Representation Learning

B.3.1 Estimating the Lipschitz Constant of the GN-Margin

cLip(⇢̃f (·, c)) = max
x2Sc

�����r�
⇢f (�(x), c)

kr�⇢f (�(x), y)k2 + ✏

�����
2

= max
x2Sc

kr�⇢f (�(x), y)k2
kr�⇢f (�(x), y)k2 + ✏

⇡ 1

(B.4)

Proof of equation B.4 We first expand the derivative as follows:

cLip(⇢̃f (·, c)) = max
x2X

�����r�
⇢f (�(x), c)

kr�⇢f (�(x), y)k2 + ✏

�����
2

= max
x2X

�����
r�⇢f (�(x), c)(kr�⇢f (�(x), y)k2 + ✏)� ⇢f (�(x), c)r�kr�⇢f (�(x), y)k2

(kr�⇢f (�(x), y)k2 + ✏)2

�����
2

.

Note that ⇢f is piecewise linear as f is ReLU networks. For points where ⇢f is

differentiable i.e that do not lie on the boundary between linear regions, the second

order derivative is zero. In particular, we have r�kr�⇢f (�(x), y)k2 = 0. Therefore,

excluding from X non differentiable points of ⇢f , the empirical Lipschitz estimation

(lower bound) can be written as

cLip(⇢̃f (·, c)) = max
x2X

�����
r�⇢f (�(x), c)(kr�⇢f (�(x), y)k2 + ✏)

(kr�⇢f (�(x), y)k2 + ✏)2

�����
2

= max
x2X

�����
r�⇢f (�(x), c)

kr�⇢f (�(x), y)k2 + ✏

�����
2

= max
x2X

kr�⇢f (�(x), c)k2
kr�⇢f (�(x), y)k2 + ✏

 1,

We can see that cLip is tightly upper bounded by 1 when ✏ is a very small value.

Discussion of Lower and Upper Bounds on the Lipschitz constant Note

that the approximation of the lipchitz constant will result in additional error in the
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generalization bound as follows:

R̂�,m(f � �) + Ec⇠py

2

64
cLip(⇢f (·, c))

�

0

@dVarbmc
2n c,n(�#µc) + 2B

s
log(2K/�)

nbmc
2n c

1

A

3

75

+ Ec⇠py

2

64
Lip(⇢f (·, c))� cLip(⇢f (·, c))

�

0

@dVarbmc
2n c,n(�#µc) + 2B

s
log(2K/�)

nbmc
2n c

1

A

3

75+

s
log(2� )

2m
.

While for an upper bound on the lipschitz constant the third term is negative and

can be ignored in the generalization bound. For a lower bound this error term

Lip(⇢f (·, c)) � cLip(⇢f (·, c)) results in additional positive error term. Bounding this

error term is beyond the scope of this work and we leave it for a future work.

B.3.2 Proof of Proposition 8.9

We will prove these two arguments separately with the following two propositions.

Proposition B.3. For any �#µ 2 Prob(Rd), we have Varm(�#µ)  O(m�1/d) for

d > 2.

Proof. The result is an application of Theorem 1 of [58].

Theorem B.4 ((Fournier and Guillin [58])). Let µ 2 Prob(Rd) and let p > 0. Define

Mq(µ) =
R
Rd |x|qµ(dx) be the q-th moment for µ and assume Mq(µ)  1 for some

q > p. There exists a constant C depending only on p, d, q such that, for all m � 1,

p 2 (0, d/2) and q 6= d/(d� p),

ES⇠µm [Wp(µS, µ)]  CMp/q
q (m�p/d +m�(q�p)/q).

By the triangle inequality and setting p = 1, we have

Varm(�#µ) = ES,S̃⇠µm [W1(�#µS,�#µS̃)]  2ES⇠µm [W1(µ, µS)]

 2CM1/q
q (m�1/d +m�(q�1)/q).
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Note that the term m�(q�1)/q is small and can be removed. For instance, plugging

q = 2, we can see that the first term dominates the second term which completes the

proof for the first argument.

We then demonstrate the case when the measure has low-dimensional structure.

Definition B.5. (Low-dimensional Measures) Given a set S ✓ X , the ✏-covering

number of S, denoted as N✏(S), is the minimum n such that there exists n closed balls

B1, · · · , Bn of diameter ✏ such that S ✓
S

1in Bi. For any S ✓ X, the ✏-fattening

of S is S✏ := {y : D(y, S)  ✏}, where D denotes the Euclidean distance.

Proposition B.6. Suppose supp(�#µ) ✓ S✏ for some ✏ > 0, where S satisfies

N✏0(S)  (3✏0)�d for all ✏0  1/27 and some d > 2. Then, for all m  (3✏)�d,

we have Varm(�#µ)  2C1m�1/d, where C1 = 54 + 27/(3
d
2�1 � 1).

Proof. an application of Weed and Bach [203]’s Proposition 15 for p = 1.

Proposition B.7 ((Weed and Bach [203])). Suppose supp(µ) ✓ S✏ for some ✏ > 0,

where S satisfies N✏0(S)  (3✏0)�d for all ✏0  1/27 and some d > 2p. Then, for all

m  (3✏)�d, we have

ES⇠µm [Wp
p (µ, µS)]  C1m

�p/d,

where

C1 = 27p
 
2 +

1

3
d
2�p � 1

!
.

By the triangle inequality and setting p = 1, we have

Varm(�#µ) = ES,S̃⇠µm [W1(�#µS,�#µS̃)]  2ES⇠µm [Wp
p (µ, µS)]  2C1m

�1/d,

where C1 = 54 + 27/(3
d
2�1 � 1).
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B.3.3 Proof of Proposition 8.10

Proof. The results is an application of Weed and Bach [203]’s Proposition 13 for

p = 1.

Proposition B.8 (Weed and Bach [203]). If µ is (n,�)-clusterable, then for all

m  n(2�)�2p,

ES⇠µm [Wp
p (µ, µS)]  (9p + 3)

r
n

m
.

Similarly, by the triangle inequality, we have

Varm(�#µ) = ES,S̃⇠µm [W1(�#µS,�#µS̃)]  2ES⇠µm [Wp
p (µ, µS)]  24

r
n

m
.

Lemma B.9 (Robust Feature Separation and Max-Gradient-Margin classifiers ). Let

F be function class satisfying assumption 1 and assumption 2 (ii) in [61] (piece-wise

smoothness and growth and jump of the gradient) . Assume fy, fy0 2 LipL \ F and

M bounded. Assume that f is such that for all y :

fy(�(x)) > fy0(�(x)) + � + �n||rzfy(�(x))�rxfy0(�(x))||2, 8x 2 supp(µ̂y), 8y0 6= y

Then:

sup
µ,W1(µ,µ̂)�n

W1(�#µy,�#µy0) �
�

L
� �nM � "n.

where "n = O(1/
p
n) µ̂ is defined as follows: µ̂(x, c) be such that µ̂(x|c = 1) = µ̂y(x)

and µ̂(x|c = �1) = µ̂y0(x), let µ̂(c = 1) = µ̂(c = �1) = 1
2(similar definition holds for

µ).
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Proof. Without Loss of generality assume �(x) = x.

W1(µy, µy0) = sup
f2Lip1

Eµyf(x)� Eµy0f(x)

= sup
f2Lip1

E(c,x)⇠µ2cf(x)

= � inf
f2Lip1

�2E(c,x)⇠µcf(x)

This form of W1 suggests studying the following robust risk, for technical reason

we will use another functional class F ⇢ Lip1 instead of Lip1:

inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x)

Applying here theorem 1 (1) of Gao et al [61] see also example 12, for F of function

satisfying assumption 1 and assumption 2 in Gao et al in addition to being lipchitz

we have:

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x)  �2E(c,x)⇠µcf(x) + �n2Eµ̂||r(c,x)cf(x)||+ "n

Note that :

2E(c,x)⇠µcf(x) = Eµyf(x)� Eµy0f(x)

and

r(c,x)cf(x) = (f(x), crxf(x))

and

||r(c,x)cf(x)|| =
p

f(x)2 + ||rxf(x)||2  |f(x)|+ ||rxf(x)||  M + ||rxf(x)||

where we used
p
a+ b 

p
a+

p
b, and |f(x)|  M
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Hence we have:

inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x) = inf
f2F

�2E(c,x)⇠µcf(x) + �n2Eµ̂||r(c,x)cf(x)||+ "n

 inf
f2F

�Eµyf + Eµy0f + �nEpy(||rxf(x)||+ |f(x)|) + �nEµy0 (||rxf(x)||+ |f(x)|) + "n

 inf
f2F

�Eµy(f(x)� �n||rxf(x)||) + Eµy0 (f(x) + �n||rxf(x)||) + �nM + "n

Let g(x) =
fy(x)�fy0 (x)

2L we have:

inf
f2F

�Eµy(f(x)� �n||rxf(x)||) + Eµy0 (f(x) + �n||rxf(x)||)

 �Eµy(g(x)� �n||rxg(x)||) + Eµy0 (g(x) + �n||rxg(x)||)

= �Eµy(g(x)� �n||rxg(x)||)� Eµy0 (�g(x)� �n||rxg(x)||)

 �2�

2L
=

��

L
.

It follows that there exists a robust classifier between the two classes y, y0:

inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x)  � �

L
+ �nM + "n

Note that:

� inf
f2F

sup
µ,W1(µ,µ̂)�n

�2E(c,x)⇠µcf(x) = sup
f2F

inf
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x)

Hence:

sup
f2F

inf
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) �
�

L
� �nM � "n.

On the other hand we have:

sup
f2F

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) � sup
f2F

inf
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) �
�

L
� �nM � "n.

199



Note that F ⇢ Lip1

sup
f2Lip1

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) � sup
f2F

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x) �
�

L
� �nM � "n.

We can now swap the two sups and obtain:

sup
f2Lip1

sup
µ,W1(µ,µ̂)�n

2E(c,x)⇠µcf(x)

= sup
µ,W1(µ,µ̂)�n

sup
f2Lip1

2E(c,x)⇠µcf(x) = sup
µ,W1(µ,µ̂)�n

W1(µy, µy0)

and finally we have:

sup
µ,W1(µ,µ̂)�n

W1(µy, µy0) �
�

L
� �nM � "n.
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