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Abstract

Epilepsy is a chronic neurological disorder characterized by recurrent seizures that affect
more than 50 million people worldwide, representing approximately 0.6% of the global pop-
ulation. This condition poses significant public health challenges, with a heightened risk of
premature mortality. Underdiagnosis and undertreatment remain pervasive, particularly in
low- and middle-income countries.

Studies have discovered that seizure occurrences are phase-locking to subject-specific circa-
dian and multi-day rhythms in human physiological signals. Also, various types of epilepsy
have distinctive timing patterns with respect to sleep-wake cycles. However, it remains in-
conclusive how sleep parameters, non-invasive ambulatory physiological signals, and seizure
occurrences are quantitatively related.

We first conduct an observational study on the association between sleep parameters, includ-
ing duration, efficiency, fragmentation, and regularity, and generalized tonic-clonic seizure
(GTCS) occurrences on the next day. We then conduct retrospective analyses of GTCS
events phase-locking to rhythms in wrist electrodermal activity (EDA), validating previous
claims. Ambulatory sleep-wake cycles and EDA recorded by smart wristbands from more
than 1,000 patients diagnosed with GTCS are analyzed. GTCS events are detected by an
FDA-cleared algorithm on the wristband.

Thesis Advisor:
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Chapter 1

Introduction

According to WHO, epilepsy is the fourth most common neurological disease globally.1 CDC

statistics show that 1 in 26 individuals in the U.S. will be diagnosed with epilepsy over a

lifetime.2 While there are 36 epilepsy drugs available on the market, 1 in 3 adult patients

and 20 to 25% of child patients have drug-resistant epilepsy.3

When having a seizure episode, patients with epilepsy (PWE) may suffer from temporary

loss of consciousness, sensation, and motor control. The notorious nature of GTCS has

been known for a long time, especially the correlation between high-frequency GTCS and

sudden unexpected death in epilepsy (SUDEP) [24]. Based on patient surveys, the seemingly

random timing of seizures is one of the worst aspects of epilepsy [22]. Unexpected episodes

are disruptive, significantly hindering their daily routines. Sometimes, there may be severe

secondary damage, such as having an attack while driving or sporting.

Over the years, research has shown that seizure occurrence is not entirely random. Notably,

studies have reported circadian and multi-day rhythms in seizure [31, 28, 39] and how they

are modulated by brain excitability [3, 45]. Subjective self-reporting seizure diaries from

PWE and objective chronic electroencephalogram (EEG) monitoring are consistent with

the prevalence of such rhythms [29]. Lately, researchers have also explored multi-day syn-

chrony between seizures and other human physiological systems [30, 20]. Causal evidence is
1https://www.who.int/news-room/fact-sheets/detail/epilepsy
2https://www.cdc.gov/epilepsy/data/index.html
3https://www.epilepsy.com/treatment/medicines/drug-resistant-epilepsy
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lacking for the entrainment of multi-day epilepsy rhythms. Nevertheless, machine learning

techniques combined with biosignal rhythms have shown promising results in forecasting

seizure events [3, 8, 30].

In this thesis, we study sleep-wake cycles, circadian and multi-day rhythms in physiological

signals, the risk of generalized tonic-clonic seizure (GTCS), and the potential modulation

between them. We envision these rhythms captured by wearable devices to empower person-

alized and unobtrusive GTCS forecasting technologies. Specifically, we focus on sleep-wake

behaviors, electrodermal activity (EDA), and GTCS events detected by wrist-worn smart

wristbands in ambulatory settings. Data from over 1,000 to 2,000 patients diagnosed with

GTCS are analyzed, depending on the availability in specific chapters. The structure of the

thesis is outlined below:

• Chapter 1: Introduction

• Chapter 2: Sleep Duration, Quality, Regularity, and Generalized Tonic-Clonic Seizure

Risk

– Previous Literature: An overview of existing literature on circadian patterns

in epilepsy and cues for such patterns.

– Data Preprocessing: Preparation and cleaning of sleep-wake data and GTCS

alerts provided by smart wristbands.

– Dataset Statistics: Descriptive statistics of data in Chapter 2.

– Sleep Parameters and Next-day GTCS Risk: Statistical analyses of sleep

duration, efficiency, fragmentation, regularity, and their correlation with next-day

GTCS risk.

• Chapter 3: Cycles in Electrodermal Activity and Generalized Tonic-Clonic Seizures

– Previous Literature: An overview of existing literature on circadian and multi-

day physiological rhythms and the relationship with epilepsy.

– Data Preprocessing: Preparation and cleaning of long-term physiological sig-

nals and detected GTCS events.
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– Dataset Statistics: Descriptive statistics of data in Chapter 3.

– Cycle Extraction with Wavelet Analysis: Detailed wavelet methods to ex-

tract cycles from physiological signals.

– GTCS Alerts Phase-locking to Physiological Cycles: Population and

individual-level GTCS phase-locking to multi-day physiological rhythms.

– Rhythmic Patterns in GTCS Alerts: The discovery of cycles solely from

objective GTCS alerts.

– Rethinking Phase-locking with Simulated GTCS: A simple and robust

benchmark to evaluate GTCS phase-locking.

• Chapter 4: Conclusions and Future Work
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Chapter 2

Sleep Duration, Quality, Regularity,

and Generalized Tonic-Clonic Seizure

Risk

In this chapter, we conduct an observational study using existing longitudinal data to inves-

tigate the association between sleep parameters, including duration, efficiency, fragmenta-

tion, and regularity, and GTCS occurrences on the next day using wearable monitoring. We

study objective GTCS events and sleep-wake cycles detected by wrist-worn wearable devices

(Embrace 2, Empatica, Boston, M.A., USA) in ambulatory settings. We hypothesize that

inferior sleep episodes are correlated with elevated GTCS risk in the next 24 hours. Inferior

sleep episodes can be separately defined by low sleep duration, low sleep efficiency, high

sleep fragmentation, and low sleep regularity. We explore these four sleep parameters one

by one in this chapter.

2.1 Previous Literature

Epilepsy patients are advised to maintain adequate sleep to reduce seizure risk. However,

few studies have clarified the relationship between sleep parameters and seizure risk. A

bidirectional relationship [37] has been proposed previously. On the one hand, nocturnal

seizures may induce wakefulness or alter sleep structures, such as delaying REM sleep.
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Diurnal seizures may trigger fatigue and elevate instantaneous sleepiness. On the other

hand, along with sleep-wake schedules, alterations of the electrical excitability and hormonal

levels in the brain may influence subsequent seizures.

2.1.1 Circadian Patterns in Epilepsy

Circadian patterns in epilepsy are described using two time standards: with respect to the

clock time and with respect to sleep-wake cycles. It is challenging to disentangle the two-time

references. When timing w.r.t. clock time, various seizure chronotypes have been identified,

e.g., afternoon, dawn, or midnight peaks, depending on the type of epilepsy [39, 25, 28] and

patient age [19, 26]. Anderson et al. showed that day–night patterns also exist in interictal

epileptiform activity (IEA) [1].

When timing seizures w.r.t. sleep, seizures occur more commonly around sleep-wake tran-

sitions [29]. Compared to generalized epilepsy, patients with focal epilepsy are more likely

to have nocturnal attacks [59]. Within focal epilepsy, frontal lobe seizures occur predom-

inantly during sleep, while the occurrences of temporal lobe seizures are more individual-

ized [59, 25, 32]. Nonetheless, seizure rhythms timed by sleep may not be stationary. Rao et

al. reported that some patients experienced a reversal in peak seizure timing: sleep-related

patterns may flip to diurnal patterns, and vice versa [45]. Some suggested that age-related

factors, e.g., changes in hormone and sleep-wake schedule, may account for such reversal as

they observed distinctive epilepsy chronotypes between adults and pediatric patients [19, 26].

Moreover, EEG of PWE when asleep demonstrated that nocturnal seizure frequency and

IEA counts are both higher during non-rapid eye movement (NREM) sleep than during REM

sleep [36, 17]. Pavlova et al. kept five patients with generalized epilepsy under constant dim

light for three days, during which sleep is distributed evenly across their circadian phases

assessed by plasma melatonin [40]. None of the patients had seizures during the course of

the study. The researchers observed significantly higher IEA counts during NREM sleep,

and IEA counts varied with circadian phases.

2.1.2 Cues for Circadian Patterns in Epilepsy

Given the circadian rhythm in sleep-related hormones such as dim-light melatonin onset

(DLMO) and cortisol fluctuations, researchers have hypothesized endogenous drivers of
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seizure cycles [29, 37]. However, there is a lack of evidence that hormones are causal trig-

gers of seizures. Multiple studies reported that the correlation between baseline melatonin

concentration and having a seizure is inconclusive [29], but patient-specific increases in mela-

tonin after seizures appeared across patients [26, 34, 4]. Also, it has been found that patients

with stress-sensitive epilepsy have cortisol fluctuations synced with IEA [57, 12].

Besides sleep-related hormones, researchers are also interested in sleep-wake behavioral cues

for epilepsy. There are two frequently discussed aspects: sleep deprivation and sleep reg-

ularity. Sleep deprivation is often discussed as a potential trigger of seizure, but a robust

relationship with IEA is only reported among generalized epilepsy patients [47]. Rossi et al.

conducted a systematic review and identified five publications investigating sleep deprivation

and focal epilepsy risks, and only one study involved randomized control experiments [48].

In contrast, Dell et al. found that an average increase in sleep duration by 1.66 hours corre-

sponded to a 27% reduction in drug-resistant focal seizure likelihood in the next 48 hours[11].

Some researchers have summarized how the “circadian timing system, secondary circadian

cycles of hormone secretion, sleep and wakefulness, and recurrent environmental factors”

may influence neural excitability and seizure occurrences in temporal Lobe epilepsy with

observational data from humans and mice [44, 13, 9].

Recently, Stirling et al. claimed that the time of sleep and wake onset differed significantly

on days with and without self-reported seizures [53]. To draw individual-level conclusions

on sleep duration, onset, and offset, Stirling et al. grouped the sleep episodes of each patient

based on whether the next day contained seizures or not. Wilcoxon rank-sum tests were

used to compare the two groups [53]. One caveat in this approach is that, to pass the

statistical tests, sleep preceding seizure days and sleep preceding non-seizure days should

be significantly different. However, low-quality sleep is not the only driver of seizures, and

high-quality sleep cannot completely eliminate seizures. There is a baseline GTCS risk for

each patient regardless of sleep (see Section 3.6.2), and GTCS events may be triggered by

other factors such as stress, alcohol, or missed medication.
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2.2 Data Preprocessing

In this section, we describe a preprocessing pipeline for the raw data from Embrace 2 wrist-

bands. In particular, for GTCS events detected by Embrace 2, we discuss how to (i) select

alerts produced after the FDA-clearance and (ii) assess user compliance and filter for reliable

true-positive alerts. For sleep episodes detected by Embrace 2, we discuss how to (i) exclude

invalid sleep episodes, such as naps, and (ii) generate four sleep parameters of interest: sleep

duration, fragmentation, efficiency, and regularity. We identify a subset of data eligible for

analysis in this chapter after preprocessing.

2.2.1 False Positive Generalized Tonic-Clonic Seizure Alerts

An FDA-cleared convulsive seizure detection algorithm on the wristband produces objective

alerts at GTCS event onset and records the timestamp and duration [38]. In an offline

setting with data from epilepsy monitoring units (EMU), this proprietary algorithm has a

sensitivity of 0.98, rarely missing true GTCS events. However, on average, 0.94 false-positive

alerts are produced every 24 hours. False-positive alerts are often triggered by excessive wrist

movements, e.g., hand clapping. In ambulatory settings, patients may learn what triggers

false alerts in their daily routines over time and try to avoid them, lowering their false alarm

rate.

Every time an alert is triggered, the user will have a 10-second window to respond to the

wristband indicating false-positive detection. If no response is received, the wristband will

automatically notify medical and emergency contacts previously registered in the system,

assuming a true-positive detection. Also, the user and caregiver may later label an alert as

false-positive through a patient portal without a time limit. Therefore, each GTCS alert

has a true-positive (TP) or false-positive (FP) label stored in the server along with the

timestamp and duration. Table 2.1 below shows some basic statistics of all alerts in the raw

data.

2.2.2 User Compliance Screening

Consequently, not all TP alerts are reliable, and many users have never reported any FP

alert. It is almost impossible to check all alerts and concurrent wrist physiological signals

manually. Thus, to screen users for compliance and study eligibility, we first plot the distri-
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Embrace 2 User Group Number

Number of Embrace 2 users with alerts on valid dates
(e.g., excluding 1970-01-01 and 0000-00-00) 28,893

Number of Embrace 2 users with a 0% false positive (FP) rate 18,524
Number of Embrace 2 users with a 100% FP rate 767

Number of Embrace 2 users with alerts after February 1st, 2018 (FDA clearance) 24,343

Table 2.1: Basic statistics of all alerts in the raw data.

bution of TP and FP alerts. Other quantities include the usage length (time elapsed between

the first and last alert in days) and total alert count. Figure 2-1 shows the distribution of

(a) FP count, (b) FP rate (FP count divided by total alert count), (c) usage length, and

(d) total alert count in the raw data. Abnormal spikes at 0% and 100% FP rates indicate

potential ineligible users such as internal testing accounts. For the rest of the chapter, a

quantity of 0, such as 0 FP alert, is incremented by 1 for visualization on the logarithm

scale. Figure 2-2 shows the empirical cumulative distribution function (ECDF) of the same

quantities, indicating more than 60% of the users had a 0% FP rate. The high percentage of

users with 0% FP rate is unrealistic, and it emphasizes the importance of scrutinizing and

selecting reliable alerts for any subsequent analysis.

Combining two quantities may provide additional insights. Figure 2-3 shows the density

contours of (a) alert count versus FP count and (b) usage length versus FP count, respec-

tively. As expected, a smaller set of compliant users (along the diagonal) recorded more

FP alerts as time progressed, and this trend holds as more total alerts are reported. Dark

eclipse clusters on the bottom represent users who never reported FP alerts.

Figure 2-4 shows the 3-dimensional scatter plot where each dot represents a user. The color

of the dot represents the FP rate. The dark layer on the bottom consists of users who

never have reported FP alerts. Users with a 100% FP rate also clustered around low total

usage length and low total alert count, potentially reflecting short-term internal testing,

prototyping, or a commercial demo.

Thus, we introduce three quantities to screen for compliant users, i.e., users who regularly

reported FP alerts over a long period. It will be irrational to threshold the exact value of

FP since users may trigger FP at different frequencies depending on ambulatory conditions.
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(a) (b)

(c) (d)

Figure 2-1: The distribution of (a) FP count, (b) FP rate, (c) usage length, and (d) total
alert count in the raw data. A quantity of 0, such as 0 FP alert, is incremented by 1 for
visualization on the logarithm scale.
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Figure 2-2: The empirical cumulative distribution function (ECDF) of FP rate, FP count,
total alert count, and total usage length in the raw data. FP count is incremented by 1 for
visualization on the logarithm scale.
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(a) (b)

Figure 2-3: Density contours of (a) alert count versus FP count and (b) usage length versus
FP count.

• Bounded: The bound of each user is determined by the first and the last FP alert.

It naturally does not exist for users with a 0% FP rate. Quantities suffixed Bounded

are calculated within such bounds. For example, Usage Length Bounded represents

the time elapsed between the first and the last FP alert, which is less than or equal

to total usage length; TP Count Bounded represents the number of TP alerts between

the first and the last FP alert, which is less than or equal to total TP count total.

• FP Interval SD: For each user, the standard deviation of intervals between FP alerts

in days.

• FP Interval SD Normalized: For each user, the intervals between FP alerts are nor-

malized to [0, 1] by subtracting the minimum and then dividing by the maximum.

Figure 2-5 shows the density contours of (a) Alert Count Bounded versus FP count and

(b) Usage Length Bounded versus FP count, respectively. They have successfully removed

the bottom eclipse clusters, and the general trend shows a positive correlation. Figure 2-6

shows the distributions of (a) FP Interval SD and (b) FP Interval SD Normalized. A

clear outlier cluster at FP Interval SD Normalized > 0.6 is detected.
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Figure 2-4: 3-dimensional scatter plot of users.
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(a) (b)

Figure 2-5: Density contours of (a) Alert Count Bounded versus FP count and (b) Usage
Length Bounded versus FP count.

(a) (b)

Figure 2-6: Distributions of (a) FP Interval SD and (b) FP Interval SD Normalized.
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Criteria Threshold

FP Interval SD Normalized <0.6
Usage Length Bounded >3 months
FDA-cleared Algorithm Since February 1st, 2018

TP Count Bounded >20

Table 2.2: User compliance criteria

Hence, FP Interval SD Normalized reflects the degree to which each user responds with FP

alerts regularly regardless of the absolute FP count or the length of intervals in between. The

upper bound of FP Interval SD Normalized is
√
0.5. It happens when two FP alerts are

infinitely close to each other in the beginning, and one FP alert lies at the end. We observed

outlier users with FP Interval SD Normalized greater than 0.6 in Figure 2-6, reflecting

poor usage compliance. Usage Length Bounded serves as a strict screening criterion that

reflects long device usage and ensures the user was actively responding with FP alerts during

that time. Low FP Interval SD Normalized and high Usage Length Bounded together

select users who regularly responded with FP alerts over a long time, regardless of the

absolute count of FP, which may be subject to individual conditions and, therefore hard to

set a threshold.

Moreover, GTCS alerts from non-patient cases, including internal testing, prototyping and

engineering, and commercial demo accounts, are discarded. Alerts are deliberately triggered

in these cases with external forces or programs mimicking GTCS occurrences. Some alerts

were produced by older versions of the detection algorithm before FDA clearance in 2018.

Finally, the screening criteria for compliant usage are shown in Table 2.2.For the rest of the

thesis, only TP GTCS alerts are studied, and “TP” is omitted for conciseness. These TP

alerts (i) must be detected by the FDA-cleared algorithm after January 2018 and (ii) must

be produced by compliant users who regularly reported FP over Bounded periods. We

simultaneously check the timestamps of alerts and the firmware version of the device in case

the user did not update the algorithm after the clearance. If an alert after February 1st,

2018, did not use the updated firmware, it is also discarded.
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2.2.3 Rest Detection and Sleep Reports

Sleep data of patients are produced by a published rest detection algorithm on the wrist-

band [46]. It is an actigraphy-based algorithm and has been validated with manually scored

electroencephalography-based PSG (PSG-EEG) on a clinically diverse population. For each

sleep episode detected, the quantities below are provided:

• Timestamp of bed onset in UTC: going to bed but not necessarily sleep onset.

• Timestamp of wake onset in UTC

• Sleep latency (minutes): The time between bed onset and sleep onset.

• Total time in bed (minutes)

• Number of interruptions after sleep onset

• Duration of wakefulness after sleep onset (minutes)

For the longitudinal sleep report of each patient, we first converted the timestamps to the

patient local timezone (all data are stored in UTC on the cloud server). Next, naps are

identified as non-overnight sleep episodes followed by a longer overnight sleep episode within

12 hours and excluded from further analyses.

Subsequently, we computed the following metrics:

• Timestamp of sleep onset = Timestamp of bed onset - Sleep latency

• Total sleep time (TST) = Total time in bed - Sleep latency - Duration of wakefulness

after sleep onset

• Sleep efficiency (SE) = Total sleep time / Total time in bed

• Sleep fragmentation index (SFI): For actigraphy-based sleep detection [2], SFI repre-

sents the restlessness during the sleep episode expressed as a percentage. The SFI is

calculated as the sum of two percentages: the proportion of 1-minute windows after

the sleep onset that are mobile (activity count ≥ 2) and the proportion of all the sleep

interruptions after the sleep onset that are ≤ 1 minute in duration. A higher SFI
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(a) (b)

Figure 2-7: 3-dimensional scatter plots from two different angles of users after applying the
compliance screening criteria.

represents a more disturbed sleep episode, and vice versa.

2.3 Dataset Statistics

In total, 2,932 users passed the above compliance screening. Descriptive statistics are ex-

pressed as the median ± standard deviation (SD) for this section. Figure 2-7 shows the

3-dimensional scatter plot of users after applying the above screening criteria. The color

of the dot represents the FP rate. After excluding naps, off-wrist periods, and users with

low compliance (in terms of FP alerts), 262,796 GTCS events (123± 218) and 348,593 sleep

episodes (164 ± 121) were detected. Consistent with Stirling et al. [53], we include 2,132

patients with at least three months of data each.
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Sleep Metric Thresholds

TST (hours) 5, 6, 7
SE 0.7, 0.8, 0.9
SFI 0.1, 0.2, 0.3

Table 2.3: Shared thresholds of TST, SE, and SFI for the patient cohort.

2.4 Sleep Parameters and Next-day GTCS Risk

In this section, we investigate the relationship between next-day GTCS events and TST, SE,

and SFI of the previous sleep episode. We first define shared thresholds for the cohort on

TST, SE, and SFI, respectively. Table 2.3 shows the thresholds used. While population-level

conclusions are not uninteresting, given the personal nature in sleep habits, we acknowledge

that future work should emphasize more on individual sleep parameters modulating next-day

GTCS risk. For each metric and each threshold, we group the sleep episodes of a patient

as inferior or normal. For instance, for the 5-hour cutoff of TST, periods ≤ 5 hours are

inferior, and periods > 5 hours are normal. TST of 5, 6, and 7 hours are all below the

age-dependent sleep duration recommendations of the National Sleep Foundation (U.S.A.)

and 24-hour movement guidelines (Canada) [10]. For the 0.2 cutoff of SFI, periods with SFI

≤ 0.2 are normal because lower SFI represents fewer sleep fragments. For SE, higher than

the threshold means normal sleep. Most importantly, the patient’s data were analyzed for

next-day GTCS only if they had at least 30 inferior sleep episodes and at least 30 normal

sleep episodes for a given threshold.

Next, we compute two risk ratios per patient:

• 𝑅1 =
Number of normal sleep episodes followed by ≥ 1 GTCS within the next 24 hours

Number of normal sleep episodes

• 𝑅2 =
Number of inferior sleep episodes followed by ≥ 1 GTCS within the next 24 hours

Number of inferior sleep episodes

After visual inspection, two-tailed paired t-tests were used to assess if the population-level

difference between the two risk ratios, 𝑅2−𝑅1, is significant with Bonferroni correction [23].

The magnitude of effect [14] (MoE) is computed as the average of 𝑅2−𝑅1 over all patients,

representing clinical significance. Unlike Stirling et al. [53], this approach avoids the one-to-

one caveat and may provide a fair estimation of changes in next-day GTCS risk.
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In addition to hard thresholds shared by the cohort, we also test patient-specific thresholds

for each metric. Specifically, the threshold is set to the lowest 5th percentile for TST and

SE and the highest 5th percentile for the SFI of each patient. The constraint of at least 30

inferior sleep and at least 30 normal sleep still applies, and the calculation of 𝑅2−𝑅1 is the

same as above.

To draw population-level conclusions on sleep modulating seizure risk, nocturnal events

should be processed carefully. As stated by Stirling et al. [53], their counter-intuitive re-

sult shows that “when patients slept less than the 25th percentile, there was a slight (2%)

reduction in the odds of a seizure in the following 48 h.” They also recognized the reason

as “undersleep was suggestive of nights without nocturnal seizures, and nocturnal seizures

were found to strongly increase the risk of seizures in the following 48 h.” [53] To avoid such

phenomena, sleep episodes containing nocturnal GTCS are excluded from the denominators

of 𝑅1 and 𝑅2. For numerators of 𝑅1 and 𝑅2, eligible next days may contain nocturnal

GTCS, but the previous sleep must be GTCS-free. In such a way, 𝑅1 and 𝑅2 quantify only

the unidirectional modulation of sleep on GTCS risk.

Besides, we am interested in the sleep regularity of patients leading to GTCS events. One

established metric for quantifying the day-to-day sleep regularity of patients is Sleep Regu-

larity Index (SRI) [41, 16]:

𝑆𝑅𝐼 =
1 + 1

𝑇−𝜏

∫︀ 𝑇−𝜏
0 𝑠(𝑡)𝑠(𝑡+ 𝜏)𝑑𝑡

2
(2.1)

where 𝑠(𝑡) = 1 for awake and 𝑠(𝑡) = −1 for asleep. The period 𝜏 is set to 24 hours. For

any two time points separated by 24 hours, SRI estimates the probability of the patient

being in the same state (asleep or awake). As pointed out by Fischer et al. [16], SRI is a

“whole-signal metric” calculated over a period of time. Thus, it is different from a single

parameter extracted from one night of sleep, such as TST, SE, and SFI. In this chapter, we

consider the SRI over 2, 3, and 7-day windows consistent with Stirling et al. [53].

It is worth noticing that patient sleep reports usually only contain true-positive sleep, and

periods without detected sleep may be caused by off-wrist or improper device usage, not

necessarily wakefulness. Therefore, true-positive wakefulness is identified as the intersection

of non-sleep and on-wrist periods. Off-wrist periods are recorded by the wristband firmware.
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2 days of sleep-wake data is the minimum requirement for SRI computation, and we only

consider days with less than 4.8 hours (20% of 24 hours) of off-wrist periods.

The analysis procedure of SRI and changes in GTCS risk is similar to that for TST, SE,

and SFI, but we only consider personalized cutoff, i.e., SRI in the lowest 5th percentile of

each patient. 2, 3, and 7-day SRI are obtained by a moving window with 1-day overlaps,

respectively. Three sets of 𝑅1, 𝑅2, and MoE are obtained for SRI over 2, 3, and 7 days.

2.4.1 Sleep Duration

We evaluated 5, 6, and 7 hours as TST thresholds. Significantly elevated GTCS risk was

found for TST < 6 (𝑝 < 0.001, two-tailed paired t-test with Bonferroni correction) and TST

< 7 hours (𝑝 < 0.001, two-tailed paired t-test with Bonferroni correction). Figure 2-8 shows

the distributions of (𝑅2 − 𝑅1) × 100% at various TST thresholds where significant results

are labeled with *. All distributions are empirically Gaussian, justifying the use of stricter

paired t-tests over Wilcoxon rank-sum tests. A small number of subjects on the right tail

are extremely sensitive to short TST. The red vertical line marks the population average

𝑅2 − 𝑅1 (MoE). Figure 2-8d shows the distribution of TST over the cohort. Periods less

than 4 hours disappeared, perhaps because of nap exclusion.

Table 2.4 shows MoE for shared and personal (the lowest 5th percentile) TST thresholds

along with 𝑝-values, 𝑡-statistic, average 𝑅1, average 𝑅2, and degree of freedom (DoF). The

personalized threshold was also significant (𝑝 = 0.007, two-tailed paired t-test with Bonfer-

roni correction). All average MoE are small, reflecting marginal clinical significance. These

results suggest that reduced sleep of fewer than 6 hours, 7 hours, and patient-specific 5th

percentile significantly increase next-day GTCS risk by a marginal amount.

2.4.2 Sleep Fragmentation

We evaluated 0.1, 0.2, and 0.3 as SFI thresholds. Significantly elevated GTCS risk was

found for SFI > 0.2 (𝑝 < 0.001, two-tailed paired t-test with Bonferroni correction) and SFI

> 0.3 (𝑝 < 0.001, two-tailed paired t-test with Bonferroni correction). Figure 2-9 shows the

distributions of (𝑅2 − 𝑅1) × 100% at various SFI thresholds where significant results are

labeled with *. All distributions are also empirically Gaussian, justifying the use of paired

t-tests. The red vertical line marks the population average 𝑅2 − 𝑅1 (MoE). Figure 2-9d
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(a) (b)

(c) (d)

Figure 2-8: Distribution of (𝑅2 − 𝑅1) × 100% at various TST thresholds where significant
results are labeled with *. The red vertical line marks the population average 𝑅2 − 𝑅1

(MoE). (d) Distribution of TST of all patients. 𝑅1 : next-day GTCS risk associated with
normal TST. 𝑅2 : next-day GTCS risk associated with short TST.

Threshold 𝑝-value 𝑅2 −𝑅1 (%) 𝑡-statistic Average 𝑅1 Average 𝑅2 DoF

5 hours 0.036 1.044 -2.093 0.146 0.157 606
6 hours <0.001 4.493 -14.805 0.140 0.185 1314
7 hours <0.001 4.475 -16.702 0.133 0.177 1780

Personalized 0.007 3.267 -11.191 0.144 0.176 1677

Table 2.4: Total Sleep Time (TST): Two-tailed paired t-tests with thresholds of 5 hours,
6 hours, 7 hours, and the lowest 5th percentile personalized TST. Bonferroni correction is
done to set the significance level to 0.05/4 [23]. Significant results are found for 6 hours, 7
hours, and personalized cutoff. 𝑅1 : next-day GTCS risk associated with normal TST. 𝑅2 :
next-day GTCS risk associated with short TST.
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(a) (b)

(c) (d)

Figure 2-9: Distribution of (𝑅2 − 𝑅1) × 100% at various SFI thresholds where significant
results are labeled with *. The red vertical line marks the population average 𝑅2 − 𝑅1

(MoE). (d) Distribution of SFI of all patients. 𝑅1 : next-day GTCS risk associated with
normal SFI. 𝑅2 : next-day GTCS risk associated with high SFI.

shows the distribution of SFI over the cohort.

Table 2.5 shows MoE for shared and personal (the highest 5th percentile) SFI thresholds

along with other statistics. The highest 5th percentile personalized threshold was not signif-

icant (𝑝 = 0.06, two-tailed paired t-test with Bonferroni correction). For significant results,

all average MoE are small, reflecting marginal clinical significance. Figure 2-9 and Table 2.5

together suggest that a sleep fragmentation index of greater than 0.2 or 0.3 significantly

increases next-day GTCS risk by a marginal amount.
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Threshold 𝑝-value 𝑅2 −𝑅1 (%) 𝑡-statistic Average 𝑅1 Average 𝑅2 DoF

0.1 0.528 0.376 -0.632 0.121 0.124 244
0.2 <0.001 3.276 -11.854 0.142 0.175 1692
0.3 <0.001 2.922 -6.300 0.149 0.178 1669

Personalized 0.06 1.003 -2.517 0.127 0.137 669

Table 2.5: Sleep Fragmentation Index (SFI): Two-tailed paired t-tests with thresholds of
0.1, 0.2, 0.3, and the highest 5th percentile SFI. Bonferroni correction is done to set the
significance level to 0.05/4. Significant results are found for SFI greater than 0.2 and 0.3.
𝑅1 : next-day GTCS risk associated with normal SFI. 𝑅2 : next-day GTCS risk associated
with high SFI.

Threshold 𝑝-value 𝑅2 −𝑅1 (%) 𝑡-statistic Average 𝑅1 Average 𝑅2 DoF

0.7 0.373 -0.822 0.895 0.158 0.150 110
0.8 0.852 0.074 -0.186 0.154 0.154 870
0.9 0.121 0.439 -1.553 0.143 0.147 1768

Personalized <0.001 3.861 -13.456 0.132 0.171 1797

Table 2.6: Sleep Efficiency (SE): Two-tailed paired t-tests with thresholds of 0.7, 0.8, 0.9, and
the lowest 5th percentile personalized SE. Bonferroni correction is done to set the significance
level to 0.05/4. Significant result was only found for personalized SE thresholds. 𝑅1 : next-
day GTCS risk associated with normal SE. 𝑅2 : next-day GTCS risk associated with low
SE.

2.4.3 Sleep Efficiency

No significantly elevated risk was found for SE with thresholds of 0.7, 0.8, and 0.9. The

distributions of (𝑅2 − 𝑅1) × 100% at various SE thresholds are also empirically Gaussian,

see Figure 2-10. Figure 2-10d shows the distribution of SE over the cohort.

Table 2.6 shows MoE for shared and personal (the lowest 5th percentile) SE thresholds

along with other statistics. The personalized threshold was significant (𝑝 < 0.001, two-

tailed paired t-test with Bonferroni correction). Such results suggest that sleep efficiency is

highly patient-specific, and low efficiency on a personal level significantly increases next-day

GTCS risk by a small amount. This may be attributed to large sleep latency after bed

onset, such as insomnia.

2.4.4 Sleep Regularity

Table 2.7 shows MoE for 2-day, 3-day, and 7-day personal SRI thresholds, along with other

statistics. The distribution of (𝑅2 −𝑅1)× 100% also follow an empirically Gaussian distri-
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Figure 2-10: The distribution of (𝑅2−𝑅1)×100% at various SE thresholds. The red vertical
line marks the population average 𝑅2 − 𝑅1 (MoE). (d) Distribution of SE of all patients.
𝑅1 : next-day GTCS risk associated with normal SE. 𝑅2 : next-day GTCS risk associated
with low SE.
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SRI 𝑝-value 𝑅2 −𝑅1 (%) statistic Average 𝑅1 Average 𝑅2

2-day 0.006 3.130 10337.5 0.144 0.175
3-day 0.139 0.175 2414.0 0.148 0.150
7-day 0.231 -0.038 159788.5 0.153 0.152

Table 2.7: Sleep Regularity Index (SRI): Two-tailed paired t-tests with the lowest 5th per-
centile SRI threshold over 2, 3, and 7 days. Bonferroni correction is done to set the signif-
icance level to 0.05/3. Significant result is only found for 2-day SRI. 𝑅1 : next-day GTCS
risk associated with normal SRI. 𝑅2 : next-day GTCS risk associated with low SRI.

bution, so two-tailed paired t-tests were used. The personalized threshold was significant

(𝑝 = 0.006, two-tailed paired t-test with Bonferroni correction) for 2-day SRI. Since 2-day

SRI essentially measures only the deviation of the current sleep-wake cycle from the pre-

vious day, this result may be confounded by previous sleep’s TST and SFI studied above.

Replicating and reconciling with the sleep and wake onset regularity metrics proposed by

Stirling et al. [53] in this GTCS cohort remains future work.
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Chapter 3

Cycles in Electrodermal Activity and

Generalized Tonic-Clonic Seizures

In this chapter, we focus on retrospective analyses of cycles in wrist EDA from patients

diagnosed with GTCS, validating previous claims on a larger patient cohort. Same as the

previous chapter, GTCS attacks are detected by the FDA-cleared multi-modal algorithm

embedded in the wearable device. Wavelet methods are used to extract and examine ro-

bust circadian and multi-day cycles in EDA. As EDA may be influenced by peripheral

temperature measured on wrists (TEMP), e.g., increasing skin temperature coexisting with

sweating, we also consider EDA weighted by TEMP. Phase-locking properties of GTCS

events detected by wearable devices are assessed by Hilbert spectral analyses. In the end,

we provide a simple benchmark for evaluating phase-locking in addition to previously used

statistical tests [30, 20], showcasing how simulated GTCS reports may frequently phase-lock

to cycles of certain periods in weighted and unweighted EDA signals.

3.1 Previous Literature

Karoly et al. provided a review of historical evidence of multi-day seizure cycles [29]. They

have also demonstrated that these cycles do not always sync with the female menstrual or

lunar cycles [29]. Cohorts from different studies have reported about-monthly seizure cycles

across different epilepsy types, genders, and ages [5, 21]. Self-reported online seizure diaries
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converged on such persistent multi-day rhythms across large patient populations, where the

periodicity runs from one week to 30 days [28].

With advances in intracranial chronic EEG monitoring, Baud et al. discovered multi-day

rhythms in IEA [3]. Seizures cluster around the rising period of IEA. The periodicity of

multi-day IEA rhythms ranges between 7 to 30 days for both male and female patients.

Subsequently, Rao et al. validated the correlation between IEA phases and seizure occur-

rences [45]. They have also concluded that multi-day cycles are not entrained by any known

external cue, conjecturing an endogenous mechanism. Subsequently, Karoly et al. illustrated

that multi-day heart rate (HR) cycles were presented in PWE and healthy control partici-

pants, and 10 out of 19 PWE had seizures significantly phase-locked to personal multi-day

heart rate cycles [30]. While current studies have only found correlational conclusions,

various results have suggested possible causal relationships between hormonal factors and

multi-day seizure cycles [29].

EDA has been extensively studied in the epilepsy domain. For instance, wrist EDA has

helped improve the specificity of GTCS event onset detection [38]. Rising EDA of large

amplitudes are correlated with the duration of post-ictal generalized EEG suppression

(PGES) [43]. PGES has been observed in 100% of SUDEP cases monitored by EEG [49].

Consistent with Ryvlin et al. [49], unusually high EDA has been observed in one SUDEP

case [42]. EDA may thus be associated with neurological changes during seizures at height-

ened risk of SUDEP, though other pathways remain possible. Recently, researchers have

started looking at long-term rhythmic patterns in EDA of PWE. Gregg et al. discovered

that circadian and multi-day cycles exist in physiological signals measured by wristbands,

including heart rate, actigraphy (ACC), EDA, and TEMP, and seizures recorded by RNS

devices showed significant correlation with particular phases of these cycles [20]. Objec-

tively and subjectively recorded seizures are found to occur at preferred phases of different

cycles with similar statistical methods, and the periods of detected physiological cycles are

often patient-specific [29]. Converging evidence in separate published studies implies the

prevalence of circadian and multi-day cycles in physiological signals of PWE. These cycles

are discovered by retrospective observational statistics, and investigations of the patholog-

ical source of seizure risk modulation are required. Nonetheless, it has been shown that

phase information in physiological signals can facilitate better seizure risk forecasting tech-

37



(a) Empirical distribution of EDA values with outliers (b) An example of flat-top EDA

Figure 3-1

nology [8].

3.2 Data Preprocessing

3.2.1 GTCS Alerts

Consistent with the previous chapter, only lead seizures were kept in the GTCS report of

each patient. Patients with fewer than 20 GTCS events were excluded from further analyses.

Filtering of false-positive alerts and compliant patient screening procedures are the same as

Section 2.2.

3.2.2 Physiological Signal from Wearable Device

Chronic wrist EDA is susceptible to movement artifacts, device malfunction, and user non-

compliance. To ensure high-quality EDA signals, we followed previously proposed EDA

preprocessing standards [6, 35]. In particular, EDA samples less than 0.05𝜇𝑆 were dis-

carded. To set an upper threshold for invalid EDA, we visually inspected the distribution of

EDA values, see Figure 3-1a. An abnormal peak ≥ 70𝜇𝑆 was observed, and further visual-

ization revealed a “flat-top” pattern for these high values, possibly due to sensor saturation.

Figure 3-1b gives an example of flat-top EDA at this abnormal value. Consequently, all

EDA samples greater than 70𝜇𝑆 were removed.

The rate of amplitude change (RAC) is another essential indicator of EDA quality [6, 35].
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(a) Distribution of RAC in raw EDA signals. Notice
the large RAC representing > 40% change in 1-second
windows.

(b) Empirical distribution of TEMP with outliers

Figure 3-2

For all EDA signals, we performed a rolling window of 1 second, and RAC is calculated

as the percentage change between the maximum and minimum EDA within each window.

Figure 3-2a shows the distribution of RAC in raw EDA signals, noticing the large RAC

> 40% within 1 second. In the case of ascending, windows with RAC ≥ 0.2 were removed.

In the case of descending, windows with RAC ≥ 0.1 were removed. The previous EDA

outlier removal was performed before RAC cleaning in order to avoid false-positive RAC

windows caused by exceptionally high or low EDA. Concurrent TEMP was also cleaned

by simple thresholds [6, 20]. The distribution of TEMP is shown in Figure 3-2b, and only

values between 29∘𝐶 to 40∘𝐶 were preserved. Notably, TEMP is converted from the digital-

to-analog (DAC) value on Embrace 2 wristbands to Celsius, and the conversion is done by

a lookup table provided by the temperature sensor manufacturer. We have retrieved the

correct table for different firmware versions, but outliers still exist and need explanations.

For concurrent samples of EDA and TEMP, if one modality was deemed invalid, both

were removed. Also, physiological signals during GTCS events are removed, and the onset

and duration are provided in the alerts. In the end, EDA and TEMP samples within the

first minute after putting on the device were discarded to account for sensors warming up.

Figure 3-3 showcases the effect of the proposed artifact removal for an example 24-hour

period. Additional details on batch downloading from cloud servers (more than 10TB),

memory-efficient parsing of long-term signals, and fixing signal timestamp drifts are omitted.
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(a) Before EDA artifact removal (b) After EDA artifact removal

Figure 3-3

After removing invalid EDA and TEMP values, missing gaps are interpolated. Following [3],

for a given period 𝑇 (see Section 3.4), only gaps shorter than 20% of 𝑇 were interpolated.

For example, only gaps less than 4.8 hours were filled for wavelet analysis of 24 hours. We

utilized a moving window of 𝑇 centered at each missing sample to interpolate. For a missing

sample, it is filled by the median EDA within the window of length 𝑇 , ignoring other missing

values in the same window if presented. There have been several attempts and discussions

of interpolation by taking the average of all samples from the same clock hour [30, 20], e.g.,

missing values at 8 P.M. are filled by the average of other EDA values at 8 P.M. Yet, it

could modify circadian and other possible rhythms in the signal, so we refrained from this

practice.

3.2.3 Weighted Electrodermal Activity

With cleaned EDA and TEMP from above, we also analyzed weighted EDA. Since skin

conductance may be influenced by skin temperature, e.g., sweating when overheating, it is

interesting to study EDA variations in the absence of TEMP changes. As skin conductance

is controlled by the sympathetic nervous system, skin conductance responses (SCR) may

appear when experiencing “fight or flight” responses without temperature variations. TEMP

signals are first up-sampled from 1Hz to 4Hz by linear interpolation. For each patient, we

normalized the TEMP signal to [0, 1] by (i) subtracting the minimum TEMP value and then
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Figure 3-4: The distribution of the weighted EDA values from the same subjects in Figure 3-
1 and Figure 3-2.

(ii) dividing the whole signal by the new maximum TEMP value.

Weighted EDA is computed as the original EDA multiplied by 1− normalized TEMP at

the same timestamp. The distribution of the weighted EDA values from the same subject

in Figure 3-1 and Figure 3-2 is shown in Figure 3-4. Please notice that weighted EDA was

obtained after cleaning the original EDA and TEMP.

3.3 Dataset Statistics

After signal cleaning and interpolation, only the longest segment without missing values

from each patient was included for further analyses. Physiological signal segments shorter

than three months were discarded. Since the amount of valid data varies with the wavelet

period 𝑇 , we report here patients with at least one cycle being analyzed. In total, 69,719

days of physiological signals and 26,280 concurrent lead GTCS alerts were available from

1,797 patients. Physiological signal length ranges from 3 months to 3.7 years (median: 2.7

years). The number of lead GTCS alerts ranges from 20 to 177 (median: 121). Following

the definition of data completeness to quantify patient compliance [6], the completeness

score ranges from 0.43 to 0.96 (median: 0.78) in the cohort. Detailed breakdowns of the

demographic information of the patient population are not available due to industry privacy

regulations.

41



3.4 Cycle Extraction with Wavelet Analysis

3.4.1 Background

A Morlet wavelet is defined by a simple periodic wave damped by a Gaussian:

𝜓0(𝑡) = 𝑒𝑖𝜔0𝑡𝑒−𝑡2/2, (3.1)

where 𝜔0 = 6 in our analysis. The peak frequency 𝑓0 on its discrete Fourier transform is

given by 6
2𝜋 = 3

𝜋 , and 𝑇0 = 1
𝑓0

, i.e., the Fourier period. To scale the wavelet to a desired

period 𝑇 , we define 𝑠𝑇0 = 𝑇 , and thus the scaled wavelet is given by

𝜓(𝑡) = 𝑒𝑖𝜔0
𝑡
𝑠 𝑒−(

𝑡
𝑠)

2
/2 (3.2)

Figure 3-5 showcases how the Morlet wavelet was scaled to desired frequencies.

3.4.2 Wavelet Analysis of Physiological Signal

For each segment, the signal was down-sampled to 1 sample per 5 minutes and then z -

scored [30, 20]. Before down-sampling, an anti-aliasing low-pass finite impulse response

(FIR) filter was applied to the 4Hz EDA signal with a cutoff frequency of 4
1/(5×60) . The

order of the FIR filter was set to 20× 4
1/(5×60) , and we used a Hamming window. We used

the SciPy [58] package 1. The power of the rhythm of period 𝑇 in the signal was obtained

by a Morlet wavelet (𝜔0 = 6) transform scaled to 𝑇 . Consistent with Baud et al. [3] and

Karoly et al. [30], we investigate 89 periods 𝑇 (scales) with ascending spacing: 1.2 hours

between 2.4 and 31.2 hours, 2.4 hours between 33.6 and 48 hours, 4.8 hours between 2.2

and 4 days, 12 hours between 4.5 and 10 days, and 24 hours between 11 and 45 days. If a

given 𝑇 is longer than 25% of the segment length, the wavelet analysis is terminated. It is

required to observe at least four cycles of any given 𝑇 .

The scaled wavelet 𝜓(𝑡) in Equation 3.2 was then convolved with the down-sampled signal

to obtain the power spectrum. Figure 3-6 illustrates the wavelet transform process of an

example patient with six months of EDA where all small gaps are interpolated. For visu-

alization purposes, hourly average z -scored EDA are plotted in Figure 3-6a, but the actual
1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html
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Figure 3-5: Morlet wavelets scaled to different frequencies. Top to bottom: 𝑇 = 𝜋
3 , 24

hours, and 7 days. Left column: wavelets in the time domain. Right column: The power
spectrum of wavelets after Fourier transforms with peaks at 1

𝑇 . Power index on the y-axis
is normalized (divided by the maximum power) for visualization.

43



Figure 3-6: The wavelet transform of ambulatory wrist EDA from an example patient. a):
Hourly average z -scored EDA values. b): Wavelet power spectrum across the 89 scales.
Regions crossed out represent the CoI. c): Time-average global power spectrum. The solid
gray line shows the Fast Fourier Transform (FFT) of the EDA for comparison.

wavelet was convolved with the original z -scored EDA. Figure 3-6b is the corresponding

wavelet power spectrum across the 89 scales. Zeros were padded on both ends of the finite-

length segment for the wavelet transform. The cone of influence (CoI), i.e., regions where

the estimated power was diminished due to the edges of the signal, is given by
√
2× 𝑇 [56]

and crossed out in the figure. We excluded all CoI in further analyses of phase-locking. In

Figure 3-6c, the solid black line shows the time-average global power spectrum, and the solid

gray line shows the Fast Fourier Transform (FFT) of the EDA. This comparison reaffirms

that wavelets are more suitable for analyzing frequencies in non-stationary signals than FFT.

3.4.3 Significant Rhythm Finding

In order to determine, for each patient and each signal modality, if a peak in the time-average

spectrum is significant, we adopt a red noise simulation method [56]. In particular, the lag-1

autocorrelation of the original signal is used to simulate a red-noise process. On the time-

average power spectrum, simulated red noise produces an upper 95% CI for each frequency,

and this bound is used to threshold peaks in the spectrum, i.e., only peaks above the 95%
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(a) (b)

(c)

Figure 3-7: Distribution of lag-1 autocorrelation 𝛼 (x -axis) for (a) EDA, (b) weighted EDA,
and (c) TEMP over the cohort.

CI are deemed significant. Figure 3-7 below shows the distribution of lag-1 autocorrelation

𝛼 for (a) EDA (range 0.4-0.98; median: 0.96), (b) weighted EDA (range 0.38-0.99; median:

0.97), and (c) TEMP (range 0.85-0.98; median: 0.95) over the cohort.

In Figure 3-6c, the dashed black line shows the upper 95% CI for different frequency com-

ponents in the EDA of the example patient. For comparison, the dashed gray line shows

the 95% CI based on a white-noise process (autocorrelation of zero), which was used by

Gregg et al. [20]. The red-noise process produces a higher and more realistic CI than the

white-noise process for physiological signals. Peaks are defined as local maxima by compar-

ing every three adjacent values. Only the highest is kept for any neighboring peaks within
𝑇
3 . The same wavelet transform and peak finding were also applied on weighted EDA and
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EDA Weighted EDA

At least 1 cycle 96% 92%
More than 1 cycle 82% 81%

24-hour cycle 94% 90%
7-day cycle 70% 70%

28 to 32-day cycles 66% 64%

Table 3.1: Percentages of the patient population with significant cycles detected in wrist
EDA and weighted EDA.

TEMP signals to identify frequency components with significant power, see Figure 3-8 from

the same example patient. We used Python 3.10 and the SciPy [58] package for wavelet

analyses and peak finding.

Before looking into the relationship between GTCS occurrence and significant cycles dis-

covered in EDA, we inspect the distribution of time-average power spectra over the patient

cohort. Figure 3-9a shows the global average EDA and weighted EDA spectra over the

1,797 patients from Section 3.3. Shaded areas represent ±1 standard deviation. Dashed

lines represent the population-average upper 95% CI for EDA and weighted EDA power

spectra, respectively. The upper 95% CI was calculated for each patient based on personal

lag-1 autocorrelation (see Figure 3-7), but ±1 standard deviation is not displayed in the

figure for visual clarity. The power index was estimated for each 𝑇 as the square root of

the time-average absolute value of complex wavelet coefficients. Given certain long periods,

some patients might not have enough data for the analysis (e.g., three months of data but

𝑇 = 45 days) and were thus ignored for that 𝑇 . In Figure 3-9b, circadian (24-hour), weekly

(7-day), and about-monthly (28 to 32-day) EDA and weighted EDA cycles are robust and

shared across the patient cohort. The median ratio of weekly to circadian peak amplitude

was 1.8 (range 0.7-3.7; > 1 in 1,310 patients), demonstrating similar power. Not much differ-

ence was found between the global power spectra of EDA and weighted EDA in Figure 3-9,

reflecting that the effect of TEMP on EDA rhythms may be marginal.

Table 3.1 shows percentages of the patient population with significant cycles detected in wrist

EDA and weighted EDA (> 95%CI, red noise simulations). Following [3], in order to assess

the consistency of physiological rhythms over time, the Pearson coefficient was computed

between the time-average spectrum (Figure 3-6c) and each vertical slice (timestamp) of the
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Figure 3-8: The wavelet transform and time-average spectrum of weighted EDA and TEMP
from the same patient in Figure 3-6. The solid gray line shows the Fast Fourier Transform
(FFT) for comparison.
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Figure 3-9: EDA and weighted EDA power spectra of the cohort. a): Global average spec-
trum over the 1,797 patients from Section 3.3. Shaded areas represent ±1 standard deviation.
Dashed lines represent the population-average upper 95% CI for EDA and weighted EDA
power spectra, respectively. b): Individual EDA spectra. Circadian, weekly, and about-
monthly cycles are shared across patients.
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original wavelet spectrum (Figure 3-6b). After that, the lag-1 autocorrelation is computed

for this array of Pearson coefficients of each patient. The median autocorrelation is 0.73

(range 0.23-0.91; < 0.5 in 89 patients), suggesting cycles are not robust over time for a small

number of patients. These 89 patients were excluded from further analyses.

In contrast, Figure 3-10a shows the global average TEMP spectrum over the 1,797 patients

from Section 3.3. Only the circadian cycle in TEMP was prevalent across the cohort, see

Figure 3-10b.

3.5 GTCS Alerts Phase-locking to Physiological Cycles

3.5.1 Instantaneous Phase Estimation

We now estimate the phases of GTCS events using the Hilbert Transform in the frequency

domain. Given a significant frequency 1
𝑇 , a second-order zero-phase Butterworth band-

pass filter with a cutoff at 1
𝑇 ± 33.3% was applied to the physiological signal to obtain the

corresponding component 𝑥(𝑡). Similar to Baud et al. [3] and Karoly et al. [30], if the bands

of multiple 𝑥(𝑡) overlap, only the strongest was kept for analyses. We denote the FFT of

the real-valued 𝑥(𝑡) as

𝑋(𝑓) = ℱ{𝑥(𝑡)} (3.3)

Next, we obtain 𝑌 (𝑓) as the result of applying the frequency response of the Hilbert Trans-

form to 𝑋(𝑓):

𝑌 (𝑓) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−𝑗 ·𝑋(𝑓) for 𝑓 > 0

0 for 𝑓 = 0

𝑗 ·𝑋(𝑓) for 𝑓 < 0

(3.4)

This creates a phase shift of −𝜋
2 for positive frequencies and 𝜋

2 for negative frequencies.

Subsequently, the Hilbert Transform, 𝑥̂(𝑡), of 𝑥(𝑡) is given by the inverse FFT:

𝑥̂(𝑡) = ℱ−1{𝑌 (𝑓)} (3.5)

The analytic signal 𝑥𝑎(𝑡) is obtained by combining the original 𝑥(𝑡) and its Hilbert Transform

𝑥̂(𝑡):

𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗𝑥̂(𝑡) (3.6)

49



Figure 3-10: TEMP power spectra of the cohort. a): Global average spectrum over the 1,797
patients from Section 3.3. Shaded areas represent ±1 standard deviation. The dashed line
represents the population-average upper 95% CI for TEMP. b): Individual TEMP spectra.
Only the circadian cycle is shared across patients.
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In the frequency domain, this addition corresponds to 𝑋(𝑓)+𝑗𝑌 (𝑓). The negative frequency

components of 𝑥̂(𝑡) are the conjugates of the positive frequency components of 𝑥(𝑡), and vice

versa. Hence, the negative frequency components cancel out in 𝑥𝑎(𝑡), and amplitudes of the

positive frequency components are doubled. Finally, suppose a patient had 𝑁 GTCS events

detected at 𝑡1, 𝑡2, ..., 𝑡𝑁 , the corresponding instantaneous phases 𝜑1, 𝜑2, ..., 𝜑𝑁 of 𝑥𝑎(𝑡) can

be computed by the argument function:

𝜑𝑛 = arg[𝑥𝑎(𝑡𝑛)] (3.7)

We used the Hilbert Transform function 2 from the SciPy [58] package.

Figure 3-11 and Figure 3-12 demonstrate the alignments of GTCS events with circadian,

weekly, and about-monthly components in the EDA and weighted EDA of an example

patient, respectively. Figure 3-13 shows the alignment of GTCS events with circadian,

weekly, and about-monthly components in the TEMP of the same patient for comparison.

3.5.2 GTCS Phase-locking

Thus, for a particular period 𝑇 and the band-pass filtered signal, a mean resultant vector

can be calculated for each patient by averaging 𝜑1, 𝜑2, ..., 𝜑𝑁 :

1

𝑁

𝑁∑︁
𝑛=1

𝑒𝑖𝜑𝑛 (3.8)

The magnitude of the mean resultant vector quantifies the degree of “phase-locking” of

GTCS timing with respect to the cycle of period 𝑇 in physiological signals. It measures the

distribution of phases at which GTCS occurred. For the rest of the thesis, we denote this

magnitude as the phase-locking value (PLV), and it ranges from 0 (𝜑1, 𝜑2, ..., 𝜑𝑁 are evenly

distributed on [0, 2𝜋]) to 1 (𝜑1, 𝜑2, ..., 𝜑𝑁 are the same).

We used the Omnibus (Hodges-Ajne) test to calculate statistical significance for non-uniform

angular distribution. The null hypothesis asserts a uniform circular distribution of 𝜑1, 𝜑2, ..., 𝜑𝑁

over [0, 2𝜋]. In comparison to the commonly used Rayleigh test, the Omnibus test is non-
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html
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Figure 3-11: GTCS events aligning with EDA cycles. From the top to the bottom row: the
z -scored EDA and two-day average, the 24-hour component from the Butterworth band-pass
filter, the 7-day component, and the 28-day component.

52



Figure 3-12: GTCS events aligning with weighted EDA cycles. From the top to the bottom
row: the z -scored EDA and two-day average, the 24-hour component from the Butterworth
band-pass filter, the 7-day component, and the 28-day component.
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Figure 3-13: GTCS events aligning with TEMP cycles. From the top to the bottom row:
the z -scored TEMP and two-day average, the 24-hour component from the Butterworth
band-pass filter, the 7-day component, and the 28-day component.

54



GTCS <>EDA GTCS <>Weighted EDA

At least 1 cycle 86% 81%
More than 1 cycle 73% 70%

24-hour cycle 82% 75%
7-day cycle 21% 14%

28 to 32-day cycles 22% 18%

Table 3.2: Percentages of the patient population with GTCS occurrences significantly phase-
locked to cycles detected in wrist EDA and weighted EDA.

parametric and weaker. Still, it does not require GTCS phases to follow a von Mises (circular

normal) distribution, which is a strong assumption often unmet by the majority of the pa-

tients and periods analyzed [3, 28]. Figure 3-14 shows the angular distribution of GTCS

phases of the example patient from Figure 3-11 for 𝑇 = (a) 24 hours, (b) 7 days, and

(c) 28 days. For visualization, GTCS phases were binned into 12 equal-sized bins on po-

lar coordinates (𝜋6 each), forming a polar histogram where the bar height represents the

number of GTCS events. Also, the mean resultant vectors are enlarged by multiplying the

maximum bar height in each plot for visualization. Opaque bars on the polar plots mean

the null hypothesis of the Omnibus test was not rejected with a Bonferroni correction, i.e.,

uniform circular distribution. For this patient, GTCS is significantly phase-locking to all

24-hour, 7-day, and 28-day EDA cycles. Significantly phase-locking also exists in 24-hour

and 7-day weighted EDA rhythms and 28-day TEMP rhythm. For future work, we should

scrutinize how GTCS events of this subject are phase-locked to the trough of the 28-day

TEMP rhythm.

Table 3.2 shows percentages of the patient population with GTCS occurrences significantly

phase-locked to cycles detected in wrist EDA and weighted EDA (𝑝 < 0.05, Omnibus test

with a Bonferroni correction). GTCS phase-locking is only assessed for significant physiolog-

ical cycles extracted above. More than 80% of the patients have at least one cycle detected

in EDA or weighted EDA. GTCS phase-locking to circadian EDA or weighted EDA cycles

is more prevalent than phase-locking to weekly or about-monthly cycles.

Across patients, the average PLV (length of the resultant vector) was similar between cir-

cadian (mean: 0.37) and multi-day (mean: 0.36) EDA rhythms (𝑝 = 0.27, Wilcoxon test).

This suggests that GTCS phase-locking to multi-day EDA cycles is as strong as to circadian

55



(a) (b) (c)

Figure 3-14: Angular distribution of GTCS phases of the example patient from Figure 3-11
for 𝑇 of (a) 24 hours, (b) 7 days, and (c) 28 days. Opaque bars on the polar plots mean the
null hypothesis of the Omnibus test was not rejected.
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(a) (b)

Figure 3-15: GTCS occurrences with respect to phases in EDA cycles. Each bar on the polar
coordinates represents the percentage of patients whose mean resultant vector lies within
the 𝜋/6 range. All bars sum to 100%. The inner circle marks half of the highest bar.

EDA cycles. Moreover, the population average angular distributions of 𝜑1, 𝜑2, ..., 𝜑𝑁 are

significantly different between circadian and multi-day EDA rhythms (𝑝 = 0.007, Kuiper’s

test). As presented in Figure 3-15a, GTCS occurrences tend to cluster on a narrow range

of phases (pre-falling) of circadian EDA cycles. In Figure 3-15b, GTCS occurrences are

more scattered across phases of multi-day EDA cycles, suggesting that the phase-locking

phenomena over the long term are more patient-specific. Here, the shortest EDA cycle with

𝑇 > 24 hours is selected for each patient as the multi-day rhythm. Each bar on the polar

coordinates represents the percentage of patients whose mean resultant vector lies within

the 𝜋/6 range. All bars sum to 100%. The inner circle marks half of the highest bar. This

finding is consistent with the results of EDA cycles by Gregg et al. [20], though the pro-

posed tonic-phasic component separation (based on low-pass filtering) may induce nuanced

differences. In contrast, for intracranial IEA, GTCS events are coupled to multi-day IEA

rhythms over a narrow (rising) range of phases [3].

For circadian cycles in EDA weighted by TEMP, the population-level distribution of mean re-

sultant vectors did not alter drastically, and the biggest patient cluster is shifted to the falling

phase, see Figure 3-16a. Examining this shift is required for future work. For multi-day cy-
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(a) (b)

Figure 3-16: GTCS occurrences with respect to phases in weighted EDA cycles. Each bar
on the polar coordinates represents the percentage of patients whose mean resultant vector
lies within the 𝜋/6 range. All bars sum to 1. The inner circle marks half of the highest bar.

cles in EDA weighted by TEMP, the population-level distribution of mean resultant vectors

is still scattered. Still, notable patient clusters are formed at different phases, comparing

Figure 3-15b and Figure 3-16b. The average PLV was similar between circadian (mean: 0.28)

and multi-day (mean: 0.29) EDA rhythms (𝑝 = 0.23, Wilcoxon test). Nonetheless, PLV for

weighted EDA are both significantly lower than their EDA counterparts (𝑝 < 0.05, Wilcoxon

test). The population average angular distributions of 𝜑1, 𝜑2, ..., 𝜑𝑁 are significantly differ-

ent between circadian and multi-day weighted EDA rhythms (𝑝 = 0.006, Kuiper’s test).

3.5.3 Physiological Signal Phase-locking to Clock Time

For 𝑇 = 24 hours, we also explore how the peaks of each signal modality align with the

24-hour clock time on the population level. Figure 3-17 shows the mean resultant vectors

(average over the whole cohort) of peaks of four signal modalities. The peak of the 24-hour

TEMP cycle predominately happens a little past 0 A.M. (𝑝 < 0.001, Omnibus test). A

potential explanation may be the thermal regulation of human bodies during sleep, and

peripheral temperature usually increases as core body temperature drops [51]. The peak of
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Figure 3-17: Mean resultant vectors (average over the patient cohort) of 24-hour peaks
of four signal modalities aligning with clock time. Opaque arrows represent insignificant
alignment failing Omnibus tests.

the 24-hour EDA cycle mostly happens close to 0 A.M. (𝑝 < 0.001, Omnibus test), possibly

due to EDA sleep storms [50]. Peaks of weighted EDA (𝑝 = 0.14, Omnibus test) and ACC

(𝑝 = 0.06, Omnibus test) did not show any preferred alignment with clock time. ACC is

quantified by an existing method 3 to capture activity intensity.

3.6 Rhythmic Patterns in GTCS Alerts

So far, the above analyses validated previous findings of seizure occurrence phase-locking

to cycles in physiological signals with a large patient cohort. However, previous studies

either only explored cycles in physiological signals [30, 20] or cycles in seizure reports [28]

but not both. In this section, we look for rhythmic patterns in GTCS alerts from the same

cohort. Such investigation will serve as a complement to the above wavelet analyses, and

it will also facilitate a simple benchmark for evaluating phase-locking properties. Karoly et

al. studied patients who self-reported at least 100 seizures [28], and we also only consider

patients with more than 100 GTCS detected below. A subset of 877 patients are selected

from the cohort of Section 3.3, and their longitudinal GTCS alert reports range from 1.5 to

3.7 years (median: 3.1 years).
3https://support.empatica.com/hc/en-us/articles/202028739-How-is-the-acceleration-data-formatted-in-E4-connect-
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3.6.1 Cycles in GTCS Alerts

As stated by Karoly et al. [28], mean resultant vectors and PLV can be calculated solely based

on seizure reports. In particular, GTCS phases 𝜑1, 𝜑2, ..., 𝜑𝑁 can be obtained by 2𝜋 × (𝑡𝑛

mod 𝑇 ) where 𝑡𝑛 is the time elapsed leading to each GTCS event. It is worth noticing that

self-reported seizure diaries are prone to missed events and personal bias. Following Karoly

et al. [28] in this section, we analyze 𝑇 with increasing spacing: 6 hours between 6 to 24

hours and one day between 2 to 32 days. The PLV is computed for longitudinal GTCS alerts

of each patient according to Equation 3.8. Figure 3-18 shows the raster plot of PLV from all

patients. The y-axis shows only the patient ID and is not continuous. Despite the difference

in the nature of seizures recorded (objective alerts from wearable device versus subjective

seizure diary), the population-level distribution of PLV in this cohort coincides with the one

reported by Karoly et al. [28] where circadian and weekly cycles are predominant. Such

validation may inform future seizure forecasting technology to produce weekly and monthly

forecasts separately.

3.6.2 Monthly GTCS Frequency

In addition, we perform some common statistical analyses to better describe GTCS events

detected by wearable devices. The distribution of monthly GTCS rate over the cohort (>

100 GTCS detected per patient) is shown in Figure 3-19. The cohort has a median number

of GTCS per month of 3.8 (range 0.1-28). For a subset of patients with high rates (> 4

GTCS events per month), the median rate is 7. Despite the difference in the objective and

subjective seizures recorded, these rates are similar to previously reported large-scale seizure

diaries [15]. These rates reflect the heterogeneity of seizure frequency between patients.

3.6.3 L-relationship

Counting the number of seizures self-reported by each patient every month, the linear rela-

tionship between the logarithm of mean and standard deviation of seizure count per month

has been affirmed by a previous large-scale study of seizure diary [18]. It is denoted as

the L-relationship, and the linear coefficient 𝑟 lies in [7.3, 8.3]. Figure 3-20 complied with

this claim with a fitted linear regression line over the cohort (Pearson 𝑟 = 0.73, 𝑝 < 0.001).

While seizure frequency may vary drastically across age or gender groups, stratified analyses
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Figure 3-18: Raster plot of PLV estimated from longitudinal GTCS alerts detected by the
Embrace 2 wristband of each patient.
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Figure 3-19: Distribution of monthly GTCS rate in the patient population. Each patient
has at least 100 GTCS detected.

based on age, gender, or other demographic information are not available due to privacy

regulations.

3.7 Rethinking Phase-locking with Simulated GTCS

In this section, we ask a simple question: “Given a series of GTCS events phase-locking to

a physiological rhythm, what is the chance of a series of random GTCS events also phase-

locking to the rhythm?” This question becomes non-trivial when investigating rhythms of

large 𝑇 and binned phases of lower granularity. Intuitively, given three months of EDA, a

significant monthly EDA rhythm, and four binned phases (rising, peak, falling, and trough),

the chance of 𝑁 simulated GTCS occurring at the same phase is not negligible, especially

when 𝑁 is small. It challenges the significance of PLV computed based on the above proce-

dure, as PLV was supposed to shed light on latent continuous GTCS risk modulation. This

question is a facet of simultaneously and independently assessing the presence of rhythm

of 𝑇 in physiological signals and seizure reports, as mentioned above. It is possible that a

rhythm of 𝑇 is discovered in EDA but not found in the GTCS report, and GTCS phases

are still phase-locking to the 1
𝑇 frequency component in EDA. The phase-locking signif-

icance established by Omnibus tests merely states that the distribution of angles is not

circular-uniform.
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Figure 3-20: L-relationship between the logarithm of mean and standard deviation of GTCS
count per month. This relationship is consistent between objective GTCS alerts and sub-
jective seizure diaries [18].
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Ultimately, we propose a simple benchmark to augment circular-uniformity tests when eval-

uating PLV, inspired by Karoly et al. [28]. For a patient with a significant physiological

rhythm of 𝑇 and 𝑁 GTCS events detected, a negative binomial distribution is fitted to

describe the time intervals between GTCS events via maximum likelihood estimation. Pre-

vious literature found that negative binomial distributions perform better than Poisson dis-

tributions at characterizing point seizure events from patient diaries [28, 55]. The negative

binomial distribution is often used to describe the number of “failures” before the 𝑛th “suc-

cess” in a sequence of Bernoulli trials. The probability mass function of a negative binomial

distribution is given by:

𝑃 (𝑘𝑛|𝑛, 𝑝) =
(︂
𝑘𝑛 + 𝑛− 1

𝑘𝑛

)︂
(1− 𝑝)𝑘𝑛𝑝𝑛 where 𝑘𝑛, 𝑛, 𝑝 > 0 (3.9)

Here, 𝑛 is the number of GTCS events, 𝑝 is the probability of GTCS, and 𝑘𝑛 is the number of

hours before observing 𝑛 GTCS events. Assuming that each event happened independently,

the likelihood of observing a specific GTCS report of length𝑁 is the product of the individual

events. The log-likelihood function is then given by:

ℒ(𝑛, 𝑝) =
𝑁∑︁

𝑛=1

log𝑃 (𝑘𝑛|𝑛, 𝑝)

=

𝑁∑︁
𝑛=1

log

(︂(︂
𝑘𝑛 + 𝑛− 1

𝑘𝑛

)︂
(1− 𝑝)𝑘𝑛𝑝𝑛

)︂ (3.10)

Our goal is to find 𝑛 and 𝑝 that maximize this objective. This optimization problem has no

closed-form solution. Instead, we solved it numerically using iterative methods. We used the

statsmodels package 4 in Python [52] with the Broyden-Fletcher-Goldfarb-Shanno method

for optimization.

Next, 104 simulated GTCS reports are drawn from the fitted negative binomial distribution

of the patient, each containing 𝑁 attacks. A PLV is calculated for each period 𝑇 in each

simulated report. These simulations did not incorporate any rhythmic modeling and created

an upper 95% CI for PLV at period 𝑇 . Finally, we calculate the percentage of patients with

PLV greater than the upper 95% CI at each 𝑇 , and Table 3.3 below shows the result.

Numbers in parentheses represent the percentage change of patient count from Table 3.2.
4https://www.statsmodels.org/dev/generated/statsmodels.discrete.discrete_model.

NegativeBinomial
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GTCS <>EDA GTCS <>Weighted EDA

At least 1 cycle 52% (-34%) 55% (-26%)
More than 1 cycle 48% (-25%) 44% (-26%)

24-hour cycle 21% (-61%) 34% (-41%)
7-day cycle 7% (-14%) 9% (-5%)

28 to 32-day cycles 10% (-12%) 8% (-10%)

Table 3.3: Percentage of patients with PLV greater than the upper 95% CI generated by
simulations. Numbers in parentheses represent the percentage change of patients from Ta-
ble 3.2.

All changes are negative, meaning the 95% CI from simulated GTCS events sets a stricter

significance level for evaluating phase-locking. This finding complies with Leguia et al. [33]:

While circular distributions of seizures tend to occur in temporal clusters, passing non-

uniform statistical tests does not necessarily entail seizure cycles. More rigorous testing is

needed to scrutinize phase-locking properties.
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Chapter 4

Conclusions and Future Work

4.1 Summary of Findings

In this thesis, we discussed two types of rhythms associated with GTCS events detected

by smart wristbands: (i) sleep-wake cycles and next-day GTCS risk and (ii) multi-day

rhythms in EDA and GTCS phase-locking. All sleep data, physiological signals, and GTCS

occurrences are recorded by smart wristbands in ambulatory settings. The conclusions are

drawn from over 1,000 to 2,000 patients diagnosed with GTCS, depending on the availability

of specific analyses. All GTCS events are detected by an FDA-cleared algorithm and from

compliant users who reported false-positive alerts on a regular basis.

In Chapter 2, we studied how sleep duration, efficiency, fragmentation, and regularity are

related to next-day GTCS risk. Sleep parameters are estimated by published activity-based

algorithms [46]. Data preprocessing involved filtering for compliant users (false positive

alerts) and valid sleep episodes. By comparing ratios between normal and inferior sleep

followed by GTCS and GTCS-free days, the four sleep parameters showed various relation-

ships with next-day GTCS risk. For sleep duration, elevated GTCS risk was found for TST

less than 6 hours, 7 hours, and the lowest 10th percentile personal threshold. For sleep

fragmentation, next-day GTCS risk is correlated with SFI greater than 0.2 and 0.3. For

sleep efficiency, the lowest 10th percentile personal threshold is associated with elevated

next-day GTCS risk. For sleep regularity, the lowest 10th percentile personal SRI over 2 and

3 days prior to GTCS events showed significant results. The magnitude of elevated risk was
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marginal for all sleep parameters across the patient cohort. Potential confounding factors

are discussed, and both population and personal thresholds are tested.

In Chapter 3, we studied the prevalence of multi-day physiological rhythms over the pa-

tient cohort, patient-specific periodicity, and GTCS detected by wristbands phase-locking

to EDA rhythms. Data quality checks included cleaning physiological signals, such as ar-

tifact removal, and user compliance screening, the same as in the previous chapter. EDA

rhythms are estimated by established wavelet analyses [3, 20, 30], and we also considered

EDA weighted by TEMP in an effort to eliminate confounding effects of peripheral temper-

ature. On the population level, the prevalence of long-term EDA rhythms is consistent with

previous literature [20]. GTCS phase-locking to long-term EDA was also discovered, but

the periodicity and preferred phases of occurrence are patient-specific. Ultimately, we dis-

covered that the population statistics are similar between objective GTCS alerts detected

by wristbands and large-scale seizure diaries, including monthly frequency and rhythmic

patterns. We proposed a simple simulation method to evaluate the significance of the PLV

estimated.

4.2 Future Work

There are a considerable number of topics worth investigating to augment the analyses in this

thesis. From a signal-processing perspective, we can adapt better EDA artifact removal and

interpolation methods to process long-term physiological data, such as supervised machine-

learning approaches [54] and deep-learning multi-modal auto-encoders [27]. Also, given the

flexibility of wavelet analysis, other waveforms can be tailored to extract rhythms from EDA

signals. The Morlet wavelet may not be the optimal choice, depending on the intrinsic shape

of the long-term signal. The fitness of waveforms can be assessed by the greedy matching

pursuit method. For determining significant peaks in individual spectra, a surrogate time

series approach may be more rigorous than a simple red noise process. For testing significant

GTCS phase-locking, Leguia et al. have found that the commonly used statistical tests are

too sensitive and easy to significance [33]. Instead, a surrogate data strategy may be more

helpful.

Additionally, we have not explored the influence of naps on next-day GTCS events. All naps
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are excluded from analyses in Chapter 2, and their compensation effect remains inconclusive.

For sleep regularity, other validated methods may be suitable for studying this cohort, such

as Composite Phase Deviation (CPD) [41, 16]. CPD can be measured daily, characterizing

circadian disruptions. It is closely related to the bedtime and wake time onset irregularity

in [53] because it measures how much the current sleep deviates away from the habitual

schedule of each patient. Particularly, for each patient, a chronotype 𝑀𝑆 is first determined

by the average mid-sleep time point adjusted for the day of the week and any shift work

schedule. For day 𝑖 with mid-sleep time 𝑀𝑆𝑖, ∆Reference = 𝑀𝑆 − 𝑀𝑆𝑖 measures the

change w.r.t. the individualized average. The deviation from previous day is defined as

∆Day-to-day =𝑀𝑆𝑖−1 −𝑀𝑆𝑖. Then CPD for the day 𝑖 is denoted by

𝐶𝑃𝐷𝑖 =

√︁
∆Reference2 +∆Day-to-day2 (4.1)

GTCS risk after circadian disruption quantified by CPD may be distinguishable between

patients resilient to sudden changes in sleep conditions and patients with less tolerance.

It will also be interesting to replicate the bed and wake onset regularity measurements by

Stirling et al. [53] and compare these to the SRI and CPD.

Most importantly, we have not integrated the proposed sleep or rhythm parameters into

GTCS forecasting algorithms to assess the actual predictive power. For example, phase-

phase analyses were conducted to assess if combined circadian and multi-day peaks will

increase seizure risk [20, 3], and such phase information has been incorporated into deep-

learning seizure forecast models [7]. Likewise, sleep duration, efficiency, and fragmentation

from the previous day may serve as input features to data-driven next-day GTCS risk fore-

casts. While we have explored individual sleep parameters above, combinations of multiple

parameters may provide greater information. To what extent sleep parameters can provide

useful information for seizure forecasts is a critical yet unsolved problem.

Finally, the underlying source that modulates multi-day EDA rhythms is unclear. While

GTCS risks are shown to be phase-locked to certain phases in long-term rhythms, a causal

relationship is lacking. Several studies have proposed possible endogenous drivers for long-

term rhythms in physiological signals [29, 45], but their relationship with external multi-day

periods, such as lunar cycles, is not fully understood. Currently, it is still unknown how to
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perform randomized controlled interventions on multi-day cycles of patients with epilepsy.
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