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Abstract
Deep learning has seen exciting progress over the last decade. As large foundation
models continue to evolve and be deployed into real-life applications, an important
question to ask is how we can make these expensive, inscrutable models more efficient
and reliable. In this thesis, we present a number of fundamental techniques for build-
ing and deploying effective deep learning systems that are broadly based on conformal
prediction, a model-agnostic and distribution-free uncertainty estimation framework.
We develop both theory and practice for leveraging uncertainty estimation to build
adaptive models that are cheaper to run, have desirable performance guarantees, and
are general enough to work well in many real-world scenarios. Empirically, we primar-
ily focus on natural language processing (NLP) applications, together with substantial
extensions to tasks in computer vision, drug discovery, and medicine.
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1

Introduction

1.1 Motivation

Steady advancements in deep learning methods in recent years have led to widespread,

and at times revolutionary, breakthroughs in fields such as natural language pro-

cessing (Devlin et al., 2019; Brown et al., 2020; Schulman et al., 2023), computer

vision (He et al., 2015; Dosovitskiy et al., 2021), computational chemistry (Jumper

et al., 2021), and predictive medicine (Yala et al., 2021; Mikhael et al., 2023). A signif-

icant part of this progress can be attributed to scale: large foundation models trained

on unprecedented amounts of data have changed the way that many predictive tasks

are modeled and solved. At the same time, as these models begin to permeate real-life

applications, new challenges start to arise. In particular, the large computational foot-

prints of the best modern models makes them expensive to run, and even these best

models can—and inevitably do—make harmful mistakes during deployment.

In this thesis, we develop rigorous statistical tools based on conformal prediction

that help to tackle multiple aspects of these interrelated challenges. Conformal pre-

diction (Vovk et al., 2005) is an uncertainty estimation framework that has become

increasingly popular in the machine learning community due to its favorable model-

agnostic, distribution-free, and finite-sample guarantees. We build on conformal pre-
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diction to propose several fundamental theoretical and empirical advancements that

help prepare users to safely use deployed models in difficult, but common, situations

that arise in the real world. At the same time, we also show how these uncertainty es-

timation techniques can be leveraged to make more efficient predictions by taking the

opposite approach: for easy inputs, it can pay to be less conservative, and to choose

to use less expensive, simpler functions to make a prediction—but still ensure that

any degradation suffered to the model’s overall performance is tightly bounded.

Efficient computation in large neural networks

Large, multi-layered neural networks such as Transformers (Vaswani et al., 2017b)

have become the de facto standard approach for solving tasks in natural language pro-

cessing and beyond. Despite their impressive performance, however, their often mas-

sive computational burden makes them costly to run. Concerns about their efficiency

have kindled a large body of research in the field (Schwartz et al., 2020a). Making

models more efficient does not generally come for free: naïve techniques for speeding

up inference can result in unpredictable hits to dependent dimensions, such as model

accuracy, especially in the worst case over harder, minority sub-groups. A key insight,

however, is that this degradation can vary from input to input—and not all examples

require the same amount of computation (e.g., simple functions can be used to infer

their labels). We develop techniques that allow for adaptive computation in neural

networks that depends on the complexity of the input examples, together with precise

probabilistic upper bounds on the increases in error that may be suffered.

Rigorous, general-purpose uncertainty estimation

Making models more efficient to run allows them to be more widely deployed in prac-

tical scenarios where computational constraints may be limiting. As models are more

widely deployed in the real world, however, they are at risk of making costly mistakes.

Most modern systems output a single prediction—whether that is a real value, label,

free-form generated text, structured object, or other response variable. For many

applications, however, it is also critical to enrich such predictions with meaningful
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uncertainty estimates (Amodei et al., 2016; Jiang et al., 2012, 2018; Rajpurkar et al.,

2018). In sensitive high-stakes applications (such as those in medicine), displaying

confidence metrics (that actually reflect whether the model is likely to be right or

wrong) can be as important as obtaining high-accuracy. Uncertainty estimation is

also relevant any time a user is not able to easily verify the answer themselves, and

must otherwise trust it blindly. For example, most machine translation system users

have no way of knowing if a particular translation is accurate. Reliable uncertainty

estimates can mitigate some of the negative consequences of these errors. A model

that is aware of its own uncertainty can be used to (1) tell the user how sure it is

with some probability, (2) say that it is confident that the right answer is one of a

few options, or (3) abstain from predicting altogether in order to defer to a different

model or a human. In this thesis, we explore several of these directions, and build

on conformal prediction to establish additional important groundwork for calibrating

set-valued uncertainty estimates with provable performance guarantees. Specifically,

we propose extensions to conformal prediction that provably control various types of

risks, are better suited for large label spaces with non-unique answers=, are amenable

to being used in few-shot settings with limited calibration data for validation, and

are generally more useful when applied to practical problems with constraints.

Applications

This thesis contains both theoretical and empirical contributions. On the applied

side, our primary focus is on natural language processing tasks such as automatic

fact verification, sentiment analysis, open-domain question answering, and informa-

tion extraction or retrieval. However, we also note that our methods are general

in nature, and easily extend to domains beyond language. As a demonstration, a

significant number of our experiments explore tasks in computational chemistry for

drug discovery, computer vision, and medicine, with strong results. Code for our

experiments is available online (see each chapter for details).
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Overview

In the rest of this chapter, we discuss related work, and give background on some of the

key results in conformal prediction that we build on here. We then conclude this intro-

duction with an outline of the key ideas of the remaining chapters of this thesis.

1.2 Related work

Efficiency and reliability have been popular topics in the machine learning literature

for decades, well before models reached the performance levels that they have today.

Our work builds on top of this strong foundation. In the following, we briefly sum-

marize some of past and present developments related to our area of focus. Note that

additional related work is also provided within each chapter of this thesis.

Adaptive computation

Improving inference-time efficiency of modern networks such as LLMs has been an

ongoing effort of the research community over the past several years (Moosavi et al.,

2020; Tay et al., 2022; Xu et al., 2021), leveraging techniques such as knowledge dis-

tillation (Bai et al., 2020; Hinton et al., 2015; Jiao et al., 2019; Sun et al., 2019; Wang

et al., 2020a; Sanh et al., 2019), floating point quantization (Sun et al., 2020; Shen

et al., 2020), layer pruning (Fan et al., 2020a), vector dropping (Kim and Cho, 2021),

and others (Lei, 2021). Another line of work involves conditional computation to

train larger models that only use a sparse subset of the full network during inference,

for example by routing over mixture-of-experts (Bapna et al., 2020; Du et al., 2021;

Kudugunta et al., 2021; Zhou et al., 2022), recurring modules (Dehghani et al., 2019;

Graves, 2016; Jernite et al., 2016), or accessing external memory (Graves et al., 2014;

Sukhbaatar et al., 2015; Wu et al., 2022). These models, however, still use a similar

amount of compute for all input examples.

In this thesis, we focus on adaptive compute, a specific kind of conditional compute

that aims to dynamically allocate different computational power per example, with
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the goal of reducing the overall complexity while maintaining high performance. This

approach, often referred to as early-exiting (Cambazoglu et al., 2010; Figurnov et al.,

2017; Liu et al., 2022; Teerapittayanon et al., 2016; Wang et al., 2018b; Yin et al.,

2021), is complementary to many of the solutions above and can potentially be com-

bined with them. Multiple early-exit techniques for Transformers (e.g., BERT (Devlin

et al., 2019)) have been recently proposed (Baier-Reinio and Sterck, 2020; Hou et al.,

2020; Li et al., 2020; Liu et al., 2020b, 2021a; Schwartz et al., 2020b; Stickland and

Murray, 2019; Xin et al., 2020c; Zhou et al., 2020b; Zhu, 2021). Most of these meth-

ods rely on intrinsic confidence measures (e.g., based on the softmax distribution),

while others try to predict the routing in advance (Liu et al., 2021b; Sun et al., 2022),

or train a small early-exit classifier (Xin et al., 2021), as we also examine here. Impor-

tantly, however, we not only focus on adaptation, but also calibrated adaptation in

which we are able to provably control for the differences in our new predictions.

Uncertainty estimation

A large body of work in estimating model uncertainty focuses on calibrating model-

based conditional probabilities, pθ(ŷ | x). Calibration has a rich history in machine

learning (Brier, 1950; Murphy and Epstein, 1967; Dawid, 1982; Foster and Vohra,

1998; Gneiting et al., 2007; Niculescu-Mizil and Caruana, 2005; Guo et al., 2017a),

and has generally been used to describe the quality where the model’s predicted prob-

abilities match that its actually observed accuracy, i.e., P(ŷ = y | pθ(ŷ | x) = α) = α,

though more sophisticated definitions have also been proposed (Vaicenavicius et al.,

2019; Zhao et al., 2021; Gupta and Ramdas, 2022). Recently, it has begun to experi-

ence a resurgence in the deep learning literature (Kuleshov and Liang, 2015; Kuleshov

et al., 2018; Kumar et al., 2019; van Amersfoort et al., 2020; Gupta et al., 2020a),

partly motivated by observations that modern neural networks can be significantly

miscalibrated out-of-the-box (Guo et al., 2017a; Ashukha et al., 2020). To start, a

number of efforts have focused on how to best define and measure calibration, es-

pecially in multi-class settings. A common approach (e.g., as taken by Guo et al.

(2017a)) measures the top-label calibration error, or the probability that the model’s
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top prediction is correct (a definition we adopt). Other methods propose more pre-

cise notions of calibration, including calibration that is conditioned on the predicted

class (Gupta and Ramdas, 2022), across classes (Kull et al., 2019), for sub-populations

or individuals (Hebert-Johnson et al., 2018; Zhao et al., 2020), or with respect to de-

cision making (Zhao et al., 2021). In theory, estimates of these types could be used

to create prediction sets (Gupta et al., 2020b), but they are not always accurate (Guo

et al., 2017b; Ashukha et al., 2020; Hirschfeld et al., 2020).

In a similar vein, Bayesian formalisms quantify uncertainty via computing the pos-

terior predictive distribution over model parameters (Neal, 1996; Graves, 2011; Hernández-

Lobato and Adams, 2015; Gal and Ghahramani, 2016). Indeed, Bayesian posteriors

can be used to create so-called credible intervals, which have analogous interpreta-

tions to some of the types of confidence intervals that we develop in this thesis. How-

ever, the quality of these methods can vary depending on the suitability of the pre-

sumed prior and on approximation error, though some recent work has also combined

Bayesian methods with frequentist coverage guarantees (Hoff, 2021). Selective classi-

fication (Hellman, 1970; De Stefano et al., 2000; Herbei and Wegkamp, 2006; El-Yaniv

and Wiener, 2010; Geifman and El-Yaniv, 2017), where models have the option to

abstain from answering when not confident, is also similar in motivation, but still com-

plimentary, to a number of the techniques that we develop here. In fact, selective clas-

sification can be considered as a special case of set-based conformal prediction in which

the classifier chooses to abstain unless the predicted confidence set is a singleton.

This thesis focuses on branch of uncertainty estimation called conformal prediction,

that is based on distribution-free, finite-sample guarantees. In contrast to Bayesian

methods, no assumptions are made on the distribution family or prior, and in contrast

to typical calibration approaches, the types of guarantees are not asymptotic in the

number of data points used. We cover this more in depth next, and in §1.3.
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Conformal prediction

Conformal prediction was developed by Vladimir Vovk and collaborators beginning

in the late 1990s (Vovk et al., 1999, 2005), and has recently become a popular un-

certainty estimation tool in the machine learning community, due to its favorable

model-agnostic, distribution-free, finite-sample guarantees. In its standard formula-

tion, conformal prediction uses n calibration points (X1, Y1), i = 1, . . . n to construct

a prediction set for the (n + 1)th example, Cϵ(Xn+1), that satisfies guarantees on

the event 1{Yn+1 ∈ Cϵ(Xn+1)}. Recently there have been many extensions of the

conformal algorithm, mainly targeting deviations from exchangeability (Tibshirani

et al., 2019; Gibbs and Candes, 2021; Barber et al., 2022; Fannjiang et al., 2022)

and improved conditional coverage (Barber et al., 2020; Romano et al., 2019a; Guan,

2020; Romano et al., 2020b; Angelopoulos et al., 2021b). Most relevant to us is recent

work on risk control in high probability (Vovk, 2012; Bates et al., 2020; Angelopoulos

et al., 2021a) and its applications (Park et al., 2020; Sankaranarayanan et al., 2022;

Angelopoulos et al., 2022b,c; Cauchois et al., 2021; Stanton et al., 2023, inter alia).

We provide additional background on conformal prediction in the next section.

1.3 Background

We begin with a brief review of conformal prediction. See also Angelopoulos and

Bates (2021) for a modern introduction to the area, or Shafer and Vovk (2008) for a

more classical alternative. Here, and in the rest of the chapter, upper-case letters (X)

denote random variables; lower-case letters (x) denote scalars, and script letters (X )

denote sets, unless otherwise specified. Proofs are deferred to the appendix.

Suppose we have been given n examples, (Xi, Yi) ∈ X ×Y , i = 1, . . . , n, as calibration

data, that have been drawn exchangeably from some underlying distribution P . Let

Xn+1 ∈ X be a new exchangeable test example for which we would like to make a

prediction. The goal of conformal predictin is to use the first n examples to construct

14



a prediction set Cϵ that contains Yn+1 at a tolerance level ϵ ∈ (0, 1), i.e.,

P
(
Yn+1 ∈ Cϵ(Xn+1

)
≥ 1− ϵ; for any distribution P. (1.1)

The above probability is marginal over all n+ 1 data points.

At the core of the conformal algorithm is a simple statistical hypothesis test: for each

candidate y ∈ Y we must either accept or reject the null hypothesis,1

H0 : y is the correct label for Xn+1. (1.2)

The test statistic for this hypothesis test is a nonconformity measure. Though N

can be any scoring function, traditionally N compares the proposed point (x, y) to a

dataset of exchangeable examples D to measure how plausible the pairing is. Infor-

mally, a lower value of N reflects that point (x, y) “conforms” to D, whereas a higher

value of N reflects that (x, y) is atypical relative to D. A practical choice for N is a

model-based loss, e.g., − log pθ(y|x), where θ is a model fit to D. An important caveat,

however, is thatN should preserve exchangeability (which we will explain later).

Definition 1.3.1 (Nonconformity measure). Let Z := X ×Y be the space of examples

(X,Y ), and let Z(∗) := ⋃
d≥1(X×Y)d be the space of datasets of examples D, of any size

d ≥ 1. A nonconformity measure N is then a measurable mapping N : Z×Z(∗) → R,

that assigns a real-valued score to any example (X,Y ), indicating how different it

is from a reference dataset D.2 Furthermore, in order to retain exchangeability, N

should be symmetric with respect to permutations of its inputs.

A key assumption in conformal prediction is that of the exchangeability of its input

data points. An exchangeable sequence of n random variables is a sequence whose

joint probability distribution is a symmetric function of its n arguments.

1For background on hypothesis testing (and multiple hypothesis testing), see Appendix A.2.
2The definition of “different” here is intentionally vague, as any metric will technically work.
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Definition 1.3.2. Random variables X1, . . . , Xn are said to be exchangeable if

(X1, . . . , Xn) d= (Xπ(1), . . . , Xπ(n)) for any permutation π. (1.3)

Exchangeability is important, since it will allow us to make valid probabilistic state-

ments about the new data point, as we will show later. One way to retain ex-

changeability is to treat calibration and test points symmetrically. For example,

let Zj := (Xj, Yj), j = 1, . . . , n be the training data. Then, for test point x ∈ X and

candidate label y ∈ Y , we calculate the nonconformity scores for (x, y) as:

V
(x,y)

j := N (Zj, Z1:n ∪ {(x, y)}) and (1.4)

V
(x,y)

n+1 := N ((x, y), Z1:n ∪ {(x, y)}). (1.5)

This formulation, known as full conformal prediction, requires running the learning

algorithm that underliesN potentially many times for every new test point (|Y| times).

“Split” conformal prediction (Papadopoulos, 2008) uses a held-out training set to first

learn N , and then fix it. The nonconformity scores are then just computed as

Vj := N (Zj) and V
(x,y)

n+1 := N ((x, y)), (1.6)

which preserves exchangeability of (V1, . . . , Vn+1) = (N (X1, Y1), . . . ,N (Xn+1, Yn+1)).

This is a more computationally attractive alternative, but comes at the expense of

predictive efficiency when data is limited (since we need to reserve separate data for

learning N ). As we are primarily dealing with expensive neural models, we adopt

this approach in most of this work.3 Exchangeability then allows us to quantify how

nonconformal a new point is using a rank-based p-value.

3Split conformal prediction also allows for simple nonconformity score calculations for regression
tasks. For example, assume that a training set has been used to train a fixed regression model, fθ(x).
The absolute error nonconformity measure, |y − fθ(x)|, can then be easily evaluated for all y ∈ R.
Furthermore, since the absolute error monotonically increases going away from fθ(x), the conformal
prediction Cϵ simplifies to a closed-form interval.
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Lemma 1.3.3 (Rank-based p-value). Assume that the random variables V1, . . . , Vn+1

are exchangeable. We define the smoothed rank-based p-value pval(Vn+1, V1:n) as

pval(Vn+1, V1:n) := |{i ∈ [1, n] : Vi > Vn+1}|+ τ |{i ∈ [1, n] : Vi = Vn+1}|+ 1
n+ 1

, (1.7)

where τ ∼ U(0, 1). Then, for any ϵ ∈ (0, 1), we have P( pval(Vn+1, V1:n) ≤ ϵ ) ≤ ϵ.

Proof. See Appendix A.1.1.

To construct the final conformal prediction, the classifier uses the p-values to include

all y for which the null hypothesis—i.e., that the candidate pair (xn+1, y) is confor-

mal—is not rejected, simply by comparing the computed p-values to ϵ.

Theorem 1.3.4 (Split CP; Vovk et al. (2005); Papadopoulos (2008)). Assume that the

random variables (Xi, Yi) ∈ X × Y, i = 1, . . . , n + 1 are exchangeable. For a fixed

nonconformity measure N , let random variable Vi = N (Xi, Yi) be the score of (Xi, Yi).

For ϵ ∈ (0, 1), define the prediction (based on the first n examples) at x ∈ X as

Cϵ(x) :=
{
y ∈ Y : pval

(
N (x, y), V1:n

)
> ϵ

}
. (1.8)

Then Cϵ(Xn+1) satisfies P (Yn+1 ∈ Cϵ(Xn+1)) ≥ 1− ϵ.

Proof. See Appendix A.1.2.

This can also be reformulated in terms of quantiles of the distribution of the calibra-

tion data, where for a random variable V with distribution function F we define

Quantile(β;F ) := inf{v : F (v) ≥ β}. (1.9)

This quantile can then be computed over the (inflated) calibration set and used di-

rectly as a threshold for rejecting y ∈ Y based on its non-conformity score.
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Corollary 1.3.5. Under the same conditions as Theorem 1.3.4, define the prediction

(based on the first n examples) at x ∈ X as

Cϵ(x) :=
{
y ∈ Y : N (x, y) ≤ Quantile(1− ϵ; V1:n ∪ {∞})

}
(1.10)

Then Cϵ(Xn+1) satisfies P(Yn+1 ∈ Cϵ(Xn+1)) ≥ 1− ϵ.

Proof. See Appendix A.1.3.

While the above methods give remarkable theoretical guarantees, naïvely applying

CP in practice can still yield disappointing results in practice. For example, though

these results hold (marginally) for any n, in practice n must be fairly large (e.g., 1000)

to achieve reasonable, stable performance—in the sense that Cϵ will not be too large

on average (Lei et al., 2018; Bates et al., 2020). In the remainder of this thesis we will

both leverage and adapt conformal prediction for various practical use-cases.

1.4 Outline

The rest of this thesis is organized as follows:

• Chapter 2 presents our first contribution with respect to confident adaptive com-

putation, where we pair early exiting techniques for more efficient inference with

performance guarantees via an extension of conformal prediction. Here our focus

is not on absolute performance, but rather relative performance. Our goal is to

make models faster while still retaining some amount of fidelity towards the orig-

inal predictions (without any early exiting). This work is based on a previously

published paper at EMNLP 2021 (Schuster et al., 2021b). Follow-up work (that is

not included in this thesis) can also be found in Schuster et al. (2022), where we

extend these ideas to adaptive prediction for language modeling.

• Chapter 3 transitions from more classical classification and regression tasks with

well-defined targets to more “messy” open-ended problems with many possible
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responses, multiple of which are acceptable. This chapter introduces a relaxation

to the conformal prediction coverage criterion to handle these types of problems, in

addition to a valid way of chaining models of varying complexity together in order

to more quickly explore candidates within these large output spaces. An example

of this is extractive open-domain question answering, where models both retrieve

and read documents at scale (for example, over all of Wikipedia). By relaxing

our correctness criterion, and chaining together more efficient models (like BM25

keyword search) with more expensive models (like deep neural networks), we can

make predictions that have meaningful guarantees while remaining tractable. This

work is based on a previously published paper at ICLR 2021 (Fisch et al., 2021b).

• Chapter 4 continues to develop theory and practice for problems for which cover-

age guarantees of the form P(Yn+1 ∈ Cϵ(Xn+1)) ≥ 1 − ϵ may take a backseat to

other constraints, such as how many false positives within Cϵ(Xn+1) are tolerable.

Besides the different style of guarantee, the main idea advanced in this chapter is

to view conformal prediction as a holistic set prediction problem, rather than only

considering candidates for Cϵ(Xn+1) individually. Instead, we develop an auxiliary

mechanism for searching and scoring complete candidate sets. This work is based

on a previously published paper at ICML 2022 (Fisch et al., 2022).

• Chapter 5 looks at the problem of data availability, and tries to alleviate some

of conformal prediction’s heavy reliance on both substantial amounts of training

and calibration data in order to obtain effective predictions with guarantees. We

do this by leveraging auxiliary data within a meta learning framework. The key

idea is to take advantage of additional exchangeability assumptions (this time over

the collection of prediction tasks we are interested in solving), to help improve the

quality of the (exchangeable) test task’s uncertainty estimates. This work is based

on a previously published paper at ICML 2021 (Fisch et al., 2021c).

• Chapter 6 takes a step back to present a powerful theoretical generalization of

conformal prediction that allows for valid control of the expectation of not only
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coverage losses of the form 1{Y ∈ Cϵ(X)}, but also of any monotone loss function.

In particular, the framework established in this chapter generalizes simple versions

of each of the previous chapters, though the analysis in the preceding chapters is

different and of independent interest (beyond the empirical components). This

work is based on a previous arXiv pre-print (Angelopoulos et al., 2022a).

• Chapter 7 summarizes this thesis, and highlights directions for future work.
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2

Confident Adaptive Transformers

Large and expensive multilayer neural networks are now ubiquitous in machine learning—

and natural language processing (NLP) in particular in the form of pre-trained Trans-

formers (Vaswani et al., 2017a). In this chapter we develop an approach for reducing

their inference cost while also controlling for predictive performance. Amortized or

approximate computational methods increase efficiency, but can come with unpre-

dictable degradations in model quality. We present a method called CATs (Confident

Adaptive Transformers), in which we simultaneously increase computational effi-

ciency, while guaranteeing a specifiable degree of consistency with the original model

with high confidence. Our method trains additional prediction heads on top of inter-

mediate layers, and dynamically decides when to stop allocating computational effort

to each input using a meta consistency classifier. To calibrate our early prediction

stopping rule, we formulate a unique extension of conformal prediction. We demon-

strate the effectiveness of this approach on classification and regression tasks.

2.1 Introduction

Large pre-trained language models have become the de facto standard approach for

solving natural language processing tasks (Devlin et al., 2019; Liu et al., 2019). De-

spite their impressive performance, however, their often massive computational bur-
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Figure 2-1: Our CAT model G can save computational resources by exiting early on
certain inputs—while guaranteeing predictive consistency with the full model F .

den makes them costly to run (Schwartz et al., 2020a; Sharir et al., 2020). Concerns

about their efficiency have kindled a large body of research in the field (Sanh et al.,

2020; Schwartz et al., 2020b; Fan et al., 2020a). For multilayered architectures such

as the Transformer, a popular approach is adaptive early exiting (Schwartz et al.,

2020b; Xin et al., 2020a, inter alia). Early exiting takes advantage of the observation

that task instances vary in complexity. In this setting, “early” classifiers are added

on top of the simpler features of intermediate layers in the base model, and can trig-

ger a prediction before the full model is executed. Naively deciding when to preempt

computation, however, can result in unpredictable decreases in model accuracy.

Quantifying the uncertainty in a prediction in order to decide when additional compu-

tation is needed (or not) is critical to making predictions quickly without excessively

sacrificing performance. In this chapter, we present Confident Adaptive Transformers

(CATs), a method for increasing Transformer-based model efficiency while remaining

confident in the quality of our predictions. Specifically, given a fixed, expensive l-

layer model F(x), we create an amortized model G(x) that includes early classifiers
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(Ex.1) Claim: All airports in Guyana were closed for all international passenger flights until
1 May 2020.
Evidence: Airports in Guyana are closed to all international passenger flights until 1
May 2020.

(Ex.2) Claim: Deng Chao broke sales record for a romantic drama.
Evidence: The film was a success and broke box office sales record for mainland-
produced romance films.

Figure 2-2: Confidence levels given by our meta model regarding the consistency of
our prediction as computation progresses. Ex.1 from the VitaminC fact verification
dataset is “easy”, and is classified consistently by all early classifiers Fk (Supports).
The meta confidence captures this, and increases with time. Ex.2 is harder—and the
prediction changes (Refutes/NEI) as it propagates though the Transformer layers.
Appropriately, the meta confidence is low. The exact exit layer of G is determined as
a function of a user-specified tolerance ϵ, see Eq. (2.1).

{F1, . . . ,Fl}.1 We then make G provably consistent with the original F with arbi-

trarily high probability (e.g., 95% of the time). See Figure 2-1.

Our approach builds on conformal prediction (CP). As introduced in Chapter 1, CP

is a framework for creating well-calibrated predictions (Vovk et al., 2005). Concretely,

suppose we have been given n unlabeled examples, Xi ∈ X , i = 1, . . . , n, as calibration

data, that have been drawn exchangeably from some underlying distribution P . Let

Xn+1 ∈ X be a new exchangeable test example for which we would like to make

a prediction. The aim of our method is to construct G such that its predictions

probabilistically agree with those of F at a tolerance level ϵ ∈ (0, 1), i.e.,

P
(
G(Xn+1) = F(Xn+1)

)
≥ 1− ϵ. (2.1)

1We simply define the final Fl as Fl(x) ≜ F(x) ∀x.
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We consider G to be ϵ-consistent if the frequency of error, G(Xn+1) 6= F(Xn+1), does

not exceed ϵ.2 By design, this ensures that G preserves at least (1 − ϵ)-fraction of

F ’s original performance. Within these constraints, the remaining challenge is to

make G relatively efficient (for example, a consistent, but vacuous, model is simply

the identity G ≜ F , which does not save any computation time).

In order to support an efficient G, we need a reliable signal for inferring whether or not

the current prediction is likely to be stable. Past work (e.g., Schwartz et al., 2020b)

rely on potentially poorly calibrated metrics such as the early classifier’s softmax

response. We address this challenge by instead directly learning meta “consistency

predictors” for each of the l − 1 early classifiers of our l layer model, by leveraging

patterns in past predictions.3 Figure 2-2 demonstrates the progression of meta con-

fidence scores across layers when applied to “easy” versus “hard” instances from the

VitaminC fact verification task (Schuster et al., 2021a).

We pair the scores of our meta classifier for each layer with a stopping rule that

is calibrated using a unique twist on standard conformal prediction. Traditionally,

CP is used to construct prediction sets that cover the desired target (e.g., Yn+1)

with high probability. We invert the CP problem to first infer the multi-label set of

inconsistent layers, and then exit at the first layer that falls in its complement. We

then demonstrate that this can be reduced to setting a simple (but well-calibrated)

exit threshold for the meta classifier scores. Our resulting algorithm is (1) fast to

compute in parallel to the main Transformer, (2) requires only unlabeled data, and

(3) is statistically efficient in practice, in the sense that it finds low exit layers on

average while still maintaining the required predictive consistency.

We validate our method on four diverse NLP tasks—covering both classification and

regression, different label space sizes, and varying amounts of training data. We find

that it constitutes a simple-yet-effective approach to confident adaptive prediction

with minimal interventions and desirable theoretical guarantees.
2For regression, we define equality as |G(·)−F(·)| ≤ τ , for some specified τ .
3We refer to the meta aspect of the classifier (not to be confused with meta-learning).
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Contributions. In summary, the main results of this chapter are as follows:

1. An extension of conformal prediction to accommodate adaptive prediction;

2. A meta consistency classifier for deriving a confident “early exiting” model;

3. A demonstration of the utility of our framework on both classification and regres-

sion tasks, where we show significant efficiency gains with high consistency.

2.2 Related work

Adaptive computation. Reducing the computational cost of neural models has re-

ceived intense interest. Adaptive approaches adjust the amount of computation per

example to amortize the total inference cost (see Teerapittayanon et al., 2017; ?;

Huang et al., 2018; Kaya et al., 2019; Wang et al., 2018a, inter alia). As discussed in

§2.1, our method is inspired by the approach of Schwartz et al. (2020b) and others

(Liu et al., 2020a; Geng et al., 2021; Zhou et al., 2020a), where they preempt com-

putation if the softmax value of any early classifier is above a predefined threshold.

Yet unlike our approach, their model is not guaranteed to be accurate. In concurrent

work, Xin et al. (2021) propose a meta confidence classifier similar to ours. However,

as in previous work, they do not do any calibration that guarantees consistency.

Conformal prediction. CP (Vovk et al., 2005) typically is formulated in terms of

prediction sets Cϵ(Xn+1) with finite-sample, distribution-free guarantees on the event

that Cϵ contains Yn+1 (see §1.3). As we discuss in §2.4, internally our method follows

a similar approach in which we try to conservatively identify the inadmissible set

of all layers that are inconsistent (and exit at the first layer that falls in that set’s

complement). Most relevant to our work, Cauchois et al. (2021) presents algorithms

for conformal multi-label predictions. We leverage similar methods in our model, but

formulate our solution in terms of the complement of a multi-label set of inconsistent

predictions. Our work adds to recent directions that explore CP in the context of

risk-mitigating applications (Lei and Candès, 2020; Romano et al., 2020a; Bates et al.,

2020; Fisch et al., 2021a), or meta-learning settings (Fisch et al., 2021d).
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2.3 Early exiting transformers

In the following, we describe our dynamic early exiting model. We summarize early

classification (following previous work) for convenience (§2.3.1), and then present our

proposed meta consistency classifier (§2.3.2). We focus on classification and regression

tasks, given a model F(x) = y. We assume that F maps the input x ∈ X into a

series of feature representations before making the prediction y ∈ Y . Here, F is a

multilayered Transformer (Vaswani et al., 2017a) composed of l layers (although our

method can be applied to any multilayer network).

For all of our downstream tasks we follow standard practice and assume that the

input contains a [CLS] token whose hidden representation is used for prediction. For

classification, we use a task-specific head, softmax(Wo(ϕ(Wph[CLS]))), where h[CLS] ∈

Rd is the hidden representation of the [CLS] token,4 ϕ is a nonlinear activation, and

W∗ are linear projections, where Wp ∈ Rd×d and Wo ∈ R|Y|×d. Regression is treated

similarly, but uses a 1-d output projection instead of a softmax, wo · h[CLS].

2.3.1 Early predictors

F ’s structure yields a sequence of hidden [CLS] representations, {h(1)
[CLS], . . . ,h

(l)
[CLS]},

where h(k)
[CLS] ∈ Rd is the representation after applying layer k. After each intermediate

layer k < l, we train an early classification head that is similar to the head used in

F , but reduce the dimensionality of the first projection to W(k)
p ∈ Rde×d.5 The final

Fl is unchanged from F . These extra (l − 1) × (de × d + de × |Y|) parameters are

quick to tune on top of a fixed F , and we can reuse F ’s training data as Dtune.6 The

classifier Fk(x) = softmax(W(k)
o (ϕ(W(k)

p h(k)
[CLS]))) is then used after layer k to get an

early prediction candidate. Early regression is handled similarly.

4d varies by F . In Albert-xlarge d = 2048.
5This is purely for efficiency. We set de = 32 in all our experiments.
6Or if Dtune is unlabeled, we can use F(x) as labels.
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Meta Feature Description

ŷk The current prediction.
history The past k−1 predictions, ŷ1:k−1 (for classification we use the confidence

in the current prediction pi(ŷk | x), for i ∈ [k − 1]).
pmax

k Probability of the prediction, pk(ŷk | x).
pdiff

k Difference in probability of the top predictions,
pk(ŷk | x)− argmaxyk 6=ŷk

pk(yk | x).

Table 2.1: Additional meta features used as input to the meta early exit classifier,
Mk. Where specified, the probability pk is taken from the model’s early classifier
softmax. The features pmax

k and pdiff
k are only used for classification tasks.

2.3.2 Meta early exit classifier

To decide when to accept the current prediction and stop computation, we require

some signal as to how likely it is that Fk(x) = F(x). Previous work relies on intrinsic,

and mostly heuristic, measures like the classifier’s softmax response. Here, we present

a meta classifier to explicitly estimate the consistency of an early predictor. Given

fixed Fk and F , we train a small binary MLP, Mk(x) ∈ R, on another unlabeled

(but limited) sample of task in-domain data, Dmeta. As input, we provide the current

“early” hidden state ϕ(W(k)
p h(k)

[CLS]), in addition to several processed meta features,

see Table 2.1. We then train Mk with a binary cross entropy objective, where we

maximize the likelihood of predicting 1{Fk(xi) = F(xi)} for xi ∈ Dmeta.

Using the trained Fk andMk, we define the full adaptive model G using the rule

G(x; τ ) :=



F1(x) if M1(x) > τ1,

F2(x) else if M2(x) > τ2,
...

Fl(x) otherwise,

(2.2)

where τ = (τ1, . . . , τl−1) are confidence thresholds. The key challenge is to calibrate

τk such that G guarantees ϵ-consistent performance per Eq. (2.1).
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2.3.3 Warmup: development set calibration

A simple approach to setting τ is to optimize performance on a development set Ddev,

subject to a constraint on the empirical inconsistency:

τ ∗ := minimize
(τ1,...,τl−1)

Êdev[exit(G(X; τ ))]

s.t. Êdev[1{G(X; τ ) = F(X)}] ≥ 1− ϵ,
(2.3)

where exit(·) measures the exit layer, and Êdev is the average over Ddev. Using a

standard error bound that leverages the concentration properties of the binomial dis-

tribution (Langford, 2005) on another split, Dcal, we can derive the following:

Proposition 2.3.1. Let Xi, i = 1, . . . , n be an i.i.d. sample with s = ∑n
i=1 1{G(Xi; τ ) =

F(Xi)}. Then, up to a confidence level δ, we have that

P(P(G(X; τ ) = F(X) | Dcal) ≥ 1− ϵ̃) ≥ 1− δ, (2.4)

where the outer probability is over the draw of Dcal. ϵ̃ is the solution to Beta(s, n −

s+ 1) = δ, where Beta is the incomplete beta function.

Proof. See Appendix B.1.1.

Though in practice ϵ̃ might be close to ϵ for most well-behaved distributions and suf-

ficiently sized Ddev and Dcal, unfortunately Eq. (2.4) does not give a fully specifiable

guarantee as per Eq. (2.1). Readjusting τ based on Dcal requires correcting for mul-

tiple testing in order to remain theoretically valid, which can quickly become statisti-

cally inefficient. In the next section, we provide a novel calibration approach that al-

lows us to guarantee a target performance level with strong statistical efficiency.
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2.4 Conformalized early exits

We now formulate the main contribution of this paper, which is a distribution-free

and model-agnostic method based on CP for guaranteeing any performance bound

an end-user chooses to specify. Our training (§2.3), conformal calibration (§2.4), and

inference pipelines are summarized in Algorithm 1.

2.4.1 Formulation

Let I(x) := {i : Fi(x) 6= F(x)} be the index set of layers that are inconsistent with

the final model’s prediction. To maintain ϵ-consistency, we must avoid using any of

the predictions specified by this set, Fi(x) where i ∈ I(x), more than ϵ-fraction of

the time for x ∈ X . In §2.4.2, we show how M1:l−1 can be paired with a conformal

procedure to obtain calibrated thresholds τ = (τ1, . . . , τl−1) such that we obtain a

conservative prediction of the layer index set I(x),

Cϵ(x) := {k : Mk(x) ≤ τk}, (2.5)

where we ensure that I(x) ⊆ Cϵ(x) with probability at least 1− ϵ. Proposition 2.4.1

states our guarantee when τ is paired with G following Eq. (2.2).

Proposition 2.4.1. Assume that examples Xi, i = 1, . . . , n + 1 are exchangeable. For

any ϵ ∈ (0, 1), let the index set Cϵ (based on the first n examples) be the output of

conformal procedure satisfying

P(I(Xn+1) ⊆ Cϵ(Xn+1)) ≥ 1− ϵ. (2.6)

Define K := min{j : j 6∈ Cϵ(Xn+1)} to be the index of the layer selected by G. Then

P(FK(Xn+1) = F(Xn+1)) ≥ 1− ϵ. (2.7)

Proof. See Appendix B.1.2.
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Remark 2.4.2. Note that Eq. (2.6) is stricter than necessary. Fundamentally, we only

require that P(K 6∈ I(Xn+1)) ≥ 1 − ϵ. Nevertheless, Eq. (2.6) is easier to calibrate,

and leads to strong empirical results despite being theoretically conservative.

Remark 2.4.3. During inference we do not fully construct Cϵ; it is only used to cali-

brate τ beforehand. Instead we exit at the first layer that is not put in Cϵ.

2.4.2 Conformal calibration

We now describe our conformal procedures for calibrating τ . Conformal prediction

is based on hypothesis testing, where for a given input x and possible output y, a

statistical test is performed to accept or reject the null hypothesis that the pairing

(x, y) is correct. In our setting, we consider the null hypothesis that layer k is in-

consistent, and we use Mk(x) as our test statistic. Since Mk is trained to predict

1{Fk(xi) = F(xi)}, a high value of Mk(x) indicates how “surprised” we would be

if layer k was in fact inconsistent with layer l for input x. Informally, a low level

of surprise indicates that the current input “conforms” to past data. To rigorously

quantify the degree of conformity via the threshold τk for predictor Mk, we use a

held-out set of n unlabeled, exchangeable examples, Dcal.

Independent calibration

As a first approach, we construct Cϵ(x) by composing l− 1 separate tests for Fk(x) 6=

F(x), each with significance αk, where αk are corrected for multiple testing. Let

v
(1:n,∞)
k denote the inflated empirical distribution of inconsistent layer scores,7

v
(1:n,∞)
k :=

{
Mk(xi) : xi ∈ Dcal,Fk(xi) 6= F(xi)

}
∪
{
∞
}
. (2.8)

We then define

τ ind
k := Quantile

(
1− αk, v

(1:n,∞)
k

)
, (2.9)

7“Inflating” the empirical distribution is critical to our finite sample guarantee, see Appendix ??.
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and predict the inconsistent index set at x ∈ X as

Cind
ϵ (x) :=

{
k : Mk(x) ≤ τ ind

k

}
. (2.10)

The following theorem states how to set each αk such that τ ind
k yield a valid Cind

ϵ .

Theorem 2.4.4. Let αk = ωk · ϵ, where ωk is a weighted Bonferroni correction, i.e.,∑l−1
k=1 ωk = 1. Then Cind

ϵ (Xn+1) satisfies Eq. (2.6).

Proof. See Appendix B.1.3.

Remark 2.4.5. ω1:l−1 can be treated as hyper-parameters and tuned on a development

set Ddev, as long as Ddev is kept distinct from Dcal.

Shared calibration

Cind
ϵ has the advantage of calibrating each layer independently. As l grows, however,

αk will tend to 0 in order to retain validity (as specified by Theorem 2.4.4). As a

result, Cind
ϵ will lose statistical efficiency. Following a similar approach to Cauchois

et al. (2021) and Fisch et al. (2021a), we compute a new test statistic,Mmax, as

Mmax(x) := max
k∈[l−1]

{
Mk(x) : Fk(x) 6= F(x)

}
. (2.11)

We discard ill-defined values when Mmax(x) = max∅. Mmax(x) reflects the worst-

case confidence across inconsistent layers for input x (i.e., where Mk(x) predicts a

high consistency likelihood for layer k when layer k is, in fact, inconsistent). This

worst-case statistic allows us to keep a constant significance level ϵ, even as l grows.

Let m(1:n,∞) denote the inflated empirical distribution,

m(1:n,∞) :=
{
Mmax(xi) : xi ∈ Dcal,∃k Fk(xi) 6= F(xi)

}
∪
{
∞
}
. (2.12)
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Algorithm 1 Consistent accelerated inference.
Definitions: F is a multilayered classifier trained on Dtrain. Dtune, Dmeta and Dscale are collections
of in-domain unlabeled data points (in practice, we reuse Dtrain and divide it to 70/20/10%, respec-
tively). Dcal has in-domain unlabeled examples not in Dtrain (in practice, we take a subset of the
task’s validation set). ϵ is the user-specified consistency tolerance.

1: function Train(F , Dtune, Dmeta)
2: # Learns F1...l−1 and M1...l−1 components
3: # of amortized model G for Eq. (2.2) (see §2.3.1 and §2.3.2).
4: Initialize G from F and add early prediction heads.
5: # (All of F ’s base parameters in G are frozen.)
6: Train prediction heads F1...l−1 on Dtune.
7: Add meta early exit classifiers M1...l−1 to G.
8: # (All of G’s other parameters are frozen.)
9: Train meta early exit classifiers M1...l−1 on Dmeta.

10: Optionally apply temperature scaling using Dscale.
11: return G
12: function Calibrate(G, Dcal, ϵ)
13: # Sets thresholds τ of amortized model G for Eq. (2.2)
14: # using shared calibration (see §2.4.2).
15: M ← {∞}
16: for x ∈ Dcal do
17: S ← {}
18: # Record all inconsistent layers for input x.
19: # Keep the highest (false) confidence score.
20: for k ∈ [1, l − 1] do
21: if Fk(x) 6= F(x) then
22: S ← S ∪Mk(x)
23: M ← M ∪max (S)
24: # Share one threshold across layers.
25: τ share ← Quantile

(
1− ϵ, M

)
26: return [τ share]× (l − 1)

27: function Predict(G, τ , x)
28: # Implements Eq. (2.2) to exit early with confidence.
29: for k ∈ [1, l − 1] do
30: Compute the k-th prediction head of G, Fk(x).
31: if Mk(x) > τk then
32: return Fk(x)
33: # Fallback to prediction using full computation.
34: return Fl(x)

We then define a single threshold shared across layers,

τ share = Quantile
(
1− ϵ,m(1:n,∞)

)
, (2.13)

and predict the inconsistent index set at x ∈ X as

Cshare
ϵ (x) =

{
k : Mk(x) ≤ τ share

}
(2.14)
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Dataset |Y| Train Dev. Test F test perf.

IMDB 2 20K 5K 25K 94.0
VitaminC 3 370K 10K∗ 55K 90.6
AG News 4 115K 5K 7.6K 94.4
STS-B ∞ 5.7K 1.5K 1.4K 89.8

Table 2.2: Task dataset and label space sizes. The rightmost column reports either
test accuracy (classification) or Pearson-correlation (regression). ∗We downsample
the 63K public development set to expedite validation.

Theorem 2.4.6. For any number of layers l ∈ N+, Cshare
ϵ (Xn+1) satisfies Eq. (2.6).

Proof. See Appendix B.1.4

2.5 Experimental setup

For our main results, we use an Albert-xlarge model (Lan et al., 2020) with 24 Trans-

former layers. Results using an Albert-base model and a RoBERTa-large model (Liu

et al., 2019) are in Appendix B.3. See Appendix B.2 for implementation details.

We did not search across different values for the hyper-parameters of F or G as our

approach is general and guarantees consistency for any F with any nonconformity

measure. Tuning the hyper-parameters could further improve the efficiency of G.

2.5.1 Tasks

We evaluate on three classification tasks with varying label space size |Y| and difficulty:

IMDB (Maas et al., 2011) sentiment analysis on movie reviews, VitaminC (Schuster

et al., 2021a) fact verification with Wikipedia articles, and AG (Gulli, 2004; Zhang

et al., 2015) news topic classification. We also evaluate on the STS-B (Cer et al., 2017)

semantic textual similarity regression task (Y = [0, 5]). Table 2.2 contains dataset

statistics, as well as the test result of our original F model (Albert-xlarge).
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2.5.2 Baselines

In addition to our main methods discussed in §2.4.2, we compare to several non-CP

baselines. Note that the following methods are not guaranteed to give well-calibrated

performance in terms of satisfying Eq. (2.1) (as our CP ones are).

Static. We use the same number of layers for all inputs. We choose the exit layer as

the first one that obtains the desired consistency on average on Dcal.

Softmax threshold. Following Schwartz et al. (2020b), we exit on the first layer

where pmax
k ≥ 1− ϵ, where pmax

k denotes the maximum softmax response of our early

classifier. Softmax values are calibrated using temperature scaling (Guo, 2017) on

another held-out (labeled) data split, Dscale.

Meta threshold. Even if perfectly calibrated, pmax
k from softmax thresholding is not

measuring consistency likelihood P(G(X) = F(X) | X = x), but rather P(G(X) =

Y | X = x). This is equivalent if F is an oracle, but breaks down when F is not. We

also experiment with thresholding the confidence value of our meta classifier (§2.3.2)

in a similar way (i.e., exiting when it exceeds 1− ϵ).

2.5.3 Evaluation

For each task, we use a proper training, validation, and test set. We use the training

set to learn F and G. We perform model selection on the validation set, and report

final numbers on the test set. For all methods, we report the marginalized results over

25 random trials, where in each trial we partition the data into 80% Dcal (x1:n) and

20% Dtest (xn+1). In order to compare different methods across all tolerance levels,

we plot each metric as a function of ϵ. Shaded regions show the 16-84th percentiles

across trials. We report the following metrics:

Consistency. We measure the percent of inputs for which the prediction of the CAT

model G is the same as the full Transformer on our test prediction, i.e., G(Xn+1) =

F(Xn+1). For regression tasks, we count a prediction as consistent if it is within a
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small margin τ from the reference (we use τ = 0.5). As discussed in §2.1, if G is

ϵ-consistent, we can also derive an average performance lower bound: it will be at

least (1− ϵ)×F ’s average performance.8

Layers (�). We report the computational cost of the model as the average number of

Transformer layers used. Our goal is to improve the efficiency (i.e., use fewer layers)

while preserving ϵ-consistency. We choose this metric over absolute run-time to allow

for implementation-invariant comparisons, but we provide a reference analysis next,

to permit easy approximate conversions.

2.5.4 Absolute runtime analysis

The exact run-time of G depends on the efficiency of the hardware, software, and

implementation used. Ideally, the early and meta classifiers can run in parallel with

the following Transformer layer (layer k + 1). As long as they are faster to compute

concurrently than a single layer, this will avoid incurring any additional time cost.

For simplicity, however, we use a naïve synchronous implementation. We provide a

reference timing for the IMDB task implemented with the Transformers (Wolf et al.,

2020) library, PyTorch 1.8.1 (Paszke et al., 2019), and an A100-PCIE-40GB Nvidia

GPU with CUDA 11.2 using the naïve approach. A full forward path of an Albert-

xlarge takes 22.32ms per input, 0.85ms ×24 for the transformer layers and 1.95ms

for the embedding layer and top classifier. Our early classifier takes 0.20ms and

the meta classifier takes 0.11ms. Therefore, with a naive implementation, a CAT

model G with an average exit layer less than 17.6 with the meta classifier, or 19.5

without, will realize an overall reduction in wall-clock time relative to the full F . We

report example speedup times with the naive implementation in §2.6.3, as well as an

implementation agnostic multiply-accumulate operation (MACs) reduction measure.

The added computational effort per layer of the early predictor and meta-classifier is

marginal (only 66, 304 and 1, 920 MACs, respectively). In comparison, Albert-xlarge

with an input length of 256 has ∼ 3 · 1011 MACs.
8In practice, the performance is likely to be higher than this lower bound, since inconsistencies

with F could lead to a correct prediction when F would have otherwise been wrong.
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(a) IMDB (b) VitaminC (c) AG News

Figure 2-3: Classification results (dev). While both our CP-based methods give valid
consistencies (above diagonal), shared calibration generally results in earlier exits.
This advantage is especially pronounced at smaller tolerance levels (right-hand side),
where it significantly outperforms other approaches. Our meta-learned confidence
measure Mk improves over using the softmax response as a drop-in replacement,
especially for tasks with larger |Y|. Note that we care more about the right-hand side
behavior, (i.e., larger 1− ϵ), as it corresponds to higher consistency.

2.6 Experimental results

We experiment with both our meta classifierMk confidence score (Meta, §2.3.2), and,

for classification tasks, the early classifier’s softmax response, pmax
k (SM), as a drop-

in replacement for Mk (at no additional cost). Appendix B.3 reports results with

other drop-in Mk replacements, in addition to results using our fixed development

set calibration approach (§2.3.3). Appendix B.4 provides qualitative examples.

2.6.1 Classification results

Figure 2-3 summarizes the average consistency and number of layers used by G as a

function of ϵ, while Table 2.3 presents results for specific ϵ on task test sets. Indepen-

dent calibration proves to be quite conservative due to the loss of statistical power

from the loose union bound of the Bonferroni correction for large l (here l = 24).
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Method IMDB VitaminC AG News
Consist. Acc. Layers Consist. Acc. Layers Consist. Acc. Layers

1− ϵ = 0.95: (88.50) (86.10) (89.02)
Static 95.54 92.88 18.36 95.51 89.40 21.00 95.48 93.20 22.00
Thres./ SM 99.65 94.01 16.55 99.83 90.59 20.07 100.00 94.44 22.28
Thres./ Meta 99.98 93.96 17.73 99.73 90.59 19.67 99.41 94.00 16.21
Indep./ Meta 99.66 93.82 15.69 99.07 89.97 19.60 99.81 94.31 20.58
Shared/ SM 97.17 93.24 12.65 96.87 88.99 17.58 97.15 93.43 13.24
Shared/ Meta 97.15 92.71 10.83 96.91 89.01 16.79 97.08 92.50 10.17

1− ϵ = 0.90: (83.84) (81.57) (84.33)
Static 90.82 89.47 14.00 92.57 87.80 19.00 90.88 89.10 14.00
Thres./ SM 98.88 93.93 14.71 99.05 90.27 18.91 99.68 94.21 19.53
Thres./ Meta 99.75 93.86 15.30 99.10 90.31 18.45 98.90 93.82 13.50
Indep./ Meta 99.39 93.67 14.85 98.29 89.42 18.50 99.60 94.18 17.65
Shared/ SM 94.34 91.77 10.30 93.73 87.00 16.40 94.50 92.01 10.79
Shared/ Meta 94.36 90.78 9.01 93.83 86.89 15.33 94.29 90.26 8.35

Table 2.3: Classification results (test) for specific tolerance levels. We report the accu-
racy lower bound guaranteed by our CP methods in parentheses. Shared/ Meta is re-
liably the most efficient method (and is ϵ-consistent). Greyed rows reflect approaches
without guarantees; our CAT approaches with guarantees are presented below them.

At some levels of ϵ, non-CP baselines perform competitively, however, they lack for-

mal guarantees. Overall, for the most critical tolerance levels (small ϵ, right-hand

side of the plots), our shared method leads to significant efficiency gains while still

maintaining the desired level of consistency (above the diagonal).

The effectiveness of our meta predictor,Mk, is most pronounced for tasks with |Y| >

2, where the drop-in softmax score (SM) becomes less indicative of consistency. Both

SM and Meta are relatively well-calibrated for IMDB and VitaminC, which makes

the threshold-based exit rule a competitive baseline. Still, our Shared/ Meta method

provides both reliable and significant gains.

The computational advantage of our CAT model is dependent on the average diffi-

culty of the task and the implementation. As Table 5.2 shows, allowing up to an ϵ of

10% inconsistency, for two of the tasks we cut down the average Transformer layer to

only 9 out of 24 using our Shared/ Meta model. This leads to an approximate speedup

of 1.8× with a synchronous implementation and of 2.7× with a concurrent one, com-
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Figure 2-4: Dev results for the STS-B regression task.

1− ϵ = 0.95 1− ϵ = 0.90
Method Consist. Layers Consist. Layers

Static 100.00 24.00 92.51 20.00
Thres./ Meta 99.87 19.19 99.19 18.53
Indep./ Meta 99.29 23.60 97.77 20.26
Shared/ Meta 96.42 17.64 92.65 17.29

Table 2.4: Test results for the STS-B regression task.

pared to running the full model. Moreover, Figure 2-5 illustrates the user’s control

over available computational resources via modulating ϵ. Decreasing ϵ increases the

confidence level required before committing to the early classifier’s prediction (thereby

increasing the average number of required layers), and vice-versa.

2.6.2 Regression results

Table 2.4 and Figure 2-4 present results for our regression task, where we see similar

trends. Here, an attractive advantage of our meta confidence predictor is its gener-

alizability to multiple task output types. Notice that the event space of 1{G(X) =

F(X)} = {0, 1} always, regardless of the original Y .9 This allows it to be easily

adapted to tasks beyond classification, such as regression, where traditional softmax-

based confidence measures (as used in, e.g., Schwartz et al. (2020b)) are absent.

9As long as equality is suitably defined, e.g., for the STS-B regression task we define consistent
outputs as being within distance τ = 0.5 away.
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Figure 2-5: Distribution of exit layers per tolerance level ϵ for the IMDB task (dev
set) with Shared/ Meta. Larger ϵ allows the CAT model to shift its predictions earlier
by permitting for more inconsistencies with the full model F .

Method Amortized time (100 · TG/TF )
IMDB VitaminC AG News STS-B

Thres./ SM 76.91 96.66 99.58 N/A
Thres./ Meta 87.22 103.59 77.87 104.01
Indep./ Meta 84.88 103.85 99.44 113.00
Shared/ SM 56.16 84.86 58.47 N/A
Shared/ Meta 54.53 % 87.38 % 51.10 % 97.56 %

Table 2.5: Reference time speedup for 1 − ϵ = 0.90 (see Table B.3.2 for 0.95). We
compute the amortized time with the naive synchronous implementation (§2.5.4).

Method MACs reduction (|F|/|G|)
IMDB VitaminC AG News STS-B

Thres./ SM 1.63 1.27 1.23 N/A
Thres./ Meta 1.57 1.30 1.78 1.30
Indep./ Meta 1.62 1.30 1.36 1.18
Shared/ SM 2.33 1.46 2.22 N/A
Shared/ Meta ×2.66 ×1.57 ×2.87 ×1.39

Table 2.6: Reference model complexity reduction for 1− ϵ = 0.90 (see Table B.3.3 for
0.95). The MACs reduction measure is implementation agnostic.

2.6.3 Example efficiency gains

Following the analysis in §2.5.4, we compute the amortized inference time with a naive

implementation and report its percentage out of the full model. As Table ?? shows,

our Shared calibration is the most efficient method on all four tasks. For tasks with

many easy inputs (IMDB and AG News), our Shared/ Meta method can save 45% -

49% of the inference time when 1− ϵ = 0.90. Unsurprisingly, the absolute speedup is
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less significant for harder tasks, but increases with higher tolerance levels. On Vita-

minC, even though the Meta measure allows exiting on earlier layers, its additional

meta classifiers result in slightly slower inference on average at this tolerance level,

compared to our Shared/ SM. With a more efficient concurrent implementation, the

Meta measure will be favorable. We also compute the MACs reduction metric which

is independent of the specific implementation or hardware and shows the number of

multiply-accumulate operations of the full model compared to our CAT model. As

demonstrated in Table ??, our Shared/ Meta method is most effective in reducing the

computational effort across all tasks for the two examined tolerance levels.

2.7 Conclusion

The ability to make predictions quickly without excessively degrading performance

is critical to production-level machine learning systems. In fact, being capable of

quantifying the uncertainty in a prediction and deciding when additional computa-

tion is needed (or not) is a key challenge for any intelligent system (e.g., see the

System 1 vs. System 2 dichotomy explored in Kahneman (2011)). In this chapter,

we addressed the crucial challenge of deciding when to sufficiently trust an early pre-

diction of Transformer-based models by learning from their past predictions. Our

Confident Adaptive Transformers (CATs) framework leverages meta predictors to ac-

curately assess whether or not the prediction of a simple, early classifier trained on

an intermediate Transformer representation is likely to already be consistent with

that of the full model F(X) (i.e., after all l layers of F are computed). Importantly,

we develop a new conformal prediction approach for calibrating the confidence of the

meta classifier that is (1) simple to implement, (2) fast to compute alongside the

Transformer, (3) requires only unlabeled data, and (4) provides statistically efficient

marginal guarantees on the event that the prediction of the faster, amortized CAT

model is consistent with that of the full F . Our results on multiple tasks demon-

strate the generality of our approach, and its effectiveness in consistently improving

computational efficiency—all while maintaining a reliable margin of error.
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3

Conformal Prediction Cascades

In this chapter, we continue to focus on the efficiency of making reliable predictions.

Here we introduce a new approach for conformal prediction (CP) that is well-suited

for large-scale, open-ended classification tasks. In the standard CP paradigm, the

output sets can often be unusably large and costly to obtain when the correct answer

is not unique, and the number of total possible answers is high. We first expand the

CP correctness criterion to allow for additional, inferred “admissible” answers, which

can substantially reduce the size of the predicted set while still providing valid perfor-

mance guarantees. Second, we amortize costs by conformalizing prediction cascades,

in which we aggressively prune implausible labels early on by using progressively

stronger classifiers—again, while still providing valid performance guarantees. We

demonstrate the empirical effectiveness of our approach for multiple applications in

natural language processing and computational chemistry for drug discovery.

3.1 Introduction

The ability to provide precise performance guarantees is critical to many classification

tasks (Amodei et al., 2016; Jiang et al., 2012, 2018). Yet, achieving perfect accuracy

with only single guesses is often out of reach due to noise, limited data, insufficient

modeling capacity, or other pitfalls. Nevertheless, in many applications, it can be
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more feasible and ultimately as useful to hedge predictions by having the classifier

return a set of plausible options—one of which is likely to be correct.

Consider the example of information retrieval (IR) for fact verification. Here the goal

is to retrieve a snippet of text of some granularity (e.g., a sentence, paragraph, or

article) that can be used to verify a given claim. Large resources, such as Wikipedia,

can contain millions of candidate snippets—many of which may independently be able

to serve as viable evidence. A good retriever should make precise snippet suggestions,

quickly—but do so without excessively sacrificing sensitivity (i.e., recall).

As discussed in earlier sections, conformal prediction (CP) is a methodology for plac-

ing exactly that sort of bet on which candidates to retain (Vovk et al., 2005). Con-

cretely, suppose we have been given n examples, (Xi, Yi) ∈ X × Y , i = 1, . . . , n, as

training data, that have been drawn exchangeably from an underlying distribution

P . For instance, in our IR setting, X would be the claim in question, Y a viable

piece of evidence that supports or refutes it, and Y a large corpus (e.g., Wikipedia).

Next, let Xn+1 be a new exchangeable test example (e.g., a new claim to verify) for

which we would like to predict the paired y ∈ Y . The aim of conformal prediction

is to construct a set of candidates Cϵ(Xn+1) likely to contain Yn+1 (e.g., the relevant

evidence) with distribution-free marginal coverage at a tolerance level ϵ ∈ (0, 1):

P (Yn+1 ∈ Cϵ(Xn+1)) ≥ 1− ϵ. (3.1)

The marginal probability above is taken over all the n + 1 calibration and test

points {(Xi, Yi)}n+1
i=1 . A classifier is considered to be valid if the frequency of error,

Yn+1 6∈ Cϵ(Xn+1), does not exceed ϵ. In our IR setting, this would mean including the

correct snippet at least ϵ-fraction of the time. Not all valid classifiers, however, are

particularly useful (e.g., a trivial classifier that merely returns all possible outputs).

A classifier is considered to have good predictive efficiency if E[|Cϵ(Xn+1)|] is small

(i.e., � |Y|). In our IR setting, this would mean not returning too many irrelevant

articles—or in IR terms, maximizing precision while holding the level of recall at
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Figure 3-1: A demonstration of our conformalized cascade with set-valued outputs,
here on an IR for claim verification task. The number of considered articles is reduced
at every level—red frames are filtered, while green frames pass on. We only care about
retrieving at least one of the admissible articles (starred) for resolving the claim.

≥ 1 − ϵ (assuming Y is a single answer). In practice, in domains where the number

of outputs to choose from is large and the “correct” one is not necessarily unique,

classifiers derived using conformal prediction can suffer dramatically from both poor

predictive and computational efficiency (Burnaev and Vovk, 2014; Vovk et al., 2016,

2020). Unfortunately, these two conditions tend to be compounding: large label

spaces Y both (1) often place strict constraints on the set of tractable model classes

available for consideration, and (2) frequently contain multiple clusters of labels that

are difficult to discriminate between, especially for a low-capacity classifier.

In this chapter, we present two effective methods for improving the efficiency of con-

formal prediction for classification tasks with large output spaces Y , in which several

y ∈ Y might be admissible—i.e., acceptable for the purposes of our given task. First,

we describe a generalization of Eq. (3.1) to an expanded admission criteria, where

Cϵ(Xn+1) is considered valid if it contains at least one admissible y with high proba-

bility. For example, in our IR setting, given the claim ”Michael Collins took part in

the Apollo mission to the moon”, any of the articles ”Apollo 11”, ”Michael Collins

(astronaut)”, or ”Apollo 11 (2019 film)” have enough information to independently

support it (see Figure 3-1)—and are therefore all admissible. When Yn+1 is not unique,

forcing the classifier to hedge for the worst case, in which a specific realization of Yn+1

must be contained in Cϵ(Xn+1), is too strict and can lead to conservative predictions.

We theoretically and empirically show that optimizing for an expanded admission
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criteria yields classifiers with significantly better predictive efficiency.

Second, we present a technique for conformalizing prediction cascades to progressively

filter the number of candidates with a sequence of increasingly complex classifiers.

This allows us to balance predictive efficiency with computational efficiency during

inference. Importantly, we also theoretically show that, in contrast to other similarly

motivated pipelines, our method filters the output space in a manner that still guaran-

tees marginal coverage. Figure 3-1 illustrates our combined approach applied to our

IR setting. We demonstrate that, together, these two approaches can serve as com-

plementary pieces of the puzzle towards making conformal prediction more efficient.

We empirically validate our approach on information retrieval for fact verification,

open-domain question answering, and in-silico screening for drug discovery.

Contributions. In summary, the main results of this chapter are as follows:

• A theoretical extension of validity to allow for inferred admissible answers.

• A framework for conformalizing computationally efficient prediction cascades.

• Empirical gains on three diverse tasks with up to 4.6× better predictive efficiency

AUC (measured across all ϵ) when calibrating for expanded admission, with prun-

ing factors of up to 1/m, where m is the number of models, when using cascades.

3.2 Related work

Conformal prediction. As validity is already guaranteed by design in conformal pre-

diction (see §1.3), most efforts in CP focus on improving various aspects of efficiency.

Mondrian CP (Vovk et al., 2005) accounts for the fact that some classes are harder to

model than others, and leverages class-conditional statistics. Similiarly, several recent

studies have built towards conditional—as opposed to marginal—coverage through

various adaptive approaches, such as conformalizing quantile functions or working

with conditional distributions that vary with x (see Chernozhukov et al., 2019; Ki-

varanovic et al., 2020; Romano et al., 2019b, 2020a; Cauchois et al., 2021, inter alia).
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Cauchois et al. (2021) also directly model dependencies among y variables for use in

multi-label prediction. Our method for expanded admission, on the other hand, ag-

gregates statistics for equivalent single labels by example and across classes. Though

we only provide marginal guarantees, the ideas expressed in those related works are

complementary, and can be applied here as well. Inductive CP (Papadopoulos, 2008),

also known as split CP, is also complementary extension that dramatically reduces

the cost of computing Cϵ(Xn+1) in the general case; we make use of it here. Most

similar to our work, trimmed (Chen et al., 2016) and discretized (Chen et al., 2018)

CP trade predictive efficiency for computational efficiency in regression tasks, where

the label space is infinite. A key distinction of our method is that we do not force

the same trade-off: in fact, we empirically show that our conformalized cascades can

at times result in better predictive efficiency alongside a pruned label space.

Prediction cascades. The idea of balancing cost with accuracy by using multi-step

inference has been explored extensively for many applications (Jurafsky and Martin,

2000; Fleuret and Geman, 2001; Charniak et al., 2006; Rush and Petrov, 2012; Li et al.,

2015; Deng and Rush, 2020). Some of these methods use fixed rules with no perfor-

mance guarantees, such as greedy pipelines where the top k predictions are passed on

to the next level (Chen et al., 2017; Ferrucci et al., 2010). Closer to our work, Weiss

and Taskar (2010) optimize their cascades for overall pruning efficiency, and not for

top-1 prediction. While they also analyze error bounds for filtering, their guarantees

are specific to linear classifiers with bounded L2 norm, whereas our conformalized ap-

proach only assumes data exchangeability. Furthermore, while they assume a target

filtering loss before training—our tolerance level ϵ is defined at test time.

3.3 Conformal prediction with expanded admission

We now introduce our strategy for improving the predictive efficiency of CP, partic-

ularly when the value Y can take to be considered “good enough” is not well-defined.

What might it mean for a label y to be “good enough?” Among other factors, this

depends on the task, the label space Y , and even the input x. For example, in IR, two
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different texts might independently provide sufficient information for claim x to be re-

solved. Formally, we pose the underlying setting as a set-valued function f : X → 2Y ,

where the ground truth is defined as the expanded set of all admissible answers f(X)

for input X (e.g., given our notions of semantic equivalence or error tolerance). Un-

like ranking or multi-label classification, we only require retrieving a single element

of this ground truth set (and without any preference as to which element).

Definition 3.3.1 (Admissible label set). The underlying (latent) set of labels that are

considered to be equally acceptable for input Xi is the admissible label set, f(Xi).

Every label in this set is considered substitutable for any other label also in the set.

It is often the case that this underlying function f remains unknown—after all, ex-

haustively annotating all possible admissible answers can quickly become intractable

for many problems. Rather, we assume that what we observe in our dataset are

samples, (Xi, Yi), from the underlying ground truth sets f(Xi) via some additional

observation process. For example, often the answer that one sees annotated in a

dataset is influenced by which particular annotator wrote it. In this view, the dis-

tribution P governing each pair (Xi, Yi) is an induced distribution from this set-

valued function, together with the unknown observation process. We can then use

the provided dataset reference Yi to seed a label-expansion operation, in an at-

tempt to approximate f(Xi). More concretely, for some choice of admission function

g : (X × Y) × Y → {0, 1}, we construct a set of inferred admissible labels Ag given

the seed reference (X = x, Y = y), i.e.,

Ag(x, y) :=
{
ȳ ∈ Y : g(x, y, ȳ) = 1

}
. (3.2)

We make a few practical assumptions about Ag, namely, that any seed reference that

is given to us is also considered admissible, and that Ag is conservative.

Assumption 3.3.2. For any Y ∈ f(X), we have that Ag(X,Y ) contains Y and is a

subset of the full ground truth. That is, Ag(X,Y ) obeys Y ∈ Ag(X,Y ) ⊆ f(X).
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In this work we assume that g is given to us (not learned), and is a deterministic

function that has no inherent error in its outputs. For many tasks, this is a quite

natural assumption, as it is often feasible for the user to define a set of rules that

qualify label admission—e.g., syntactic normalization rules in NLP, or expanding

some small δ-neighborhood of the original y given some metric.

Given g, x, and y, any prediction that is a member of the derived set Ag is then

considered to be admissible, i.e., a success. For example, in IR for claim verification,

let h be the verification model (or a human) that, given the claim x and evidence y,

outputs a score for the final verdict (that the claim is true or false). The admission

might then be defined as g(x, y, ȳ) := 1{|h(y, x)−h(ȳ, x)| ≤ δ}, where δ is a small slack

parameter. This then leads us to a helpful definition of expanded admission:

Definition 3.3.3 (Expanded admission). Given an admission function g and exchange-

able calibration examples {(Xi, Yi)}n
i=1, a conformal predictor producing admissible

predictions Cϵ(Xn+1) for a new exchangeable test example Xn+1 is considered to be

valid under expanded admission if for any ϵ ∈ (0, 1), the set Cϵ satisfies

P
(
|Ag(Xn+1, Yn+1) ∩ Cϵ(Xn+1)| ≥ 1

)
≥ 1− ϵ. (3.3)

Recall that by predictive efficiency we mean that |Cϵ(Xn+1)| should be small. A CP

that simply returns all possible labels is trivially valid, but not useful. By Defini-

tion 3.3.3, we only need to identify at least one Ȳn+1 that is deemed admissible ac-

cording to g. As such, we propose a modification that allows the classifier to be more

discriminative—and produce smaller Cϵ(Xn+1)—when testing the null hypothesis that

y is not just conforming, but that it is the most conforming admissible y for x. Let

N be our non-conformity measure (see §1.3). For each data point (Xi = xi, Yi = yi),

we then define the minimal nonconformity score as

Nmin
g (xi, yi) := min

{
N (xi, ȳ) : ȳ ∈ Ag(xi, yi)

}
, (3.4)
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and use these random variables to compute p-values.

Theorem 3.3.4 (CP with expanded admission). Assume that (Xi, Yi) ∈ X × Y, i =

1, . . . , n+1 are exchangeable. For any non-conformity measure N , admission function

g, and ϵ ∈ (0, 1), define the conformal set at x ∈ X as

Cmin
ϵ (x) :=

{
y ∈ Y : pval

(
N (x, y), {Nmin

g (Xi, Yi)}n
i=1

)
> ϵ

}
. (3.5)

where pval is defined in Eq. (1.7). Then Cmin
ϵ (Xn+1) satisfies Eq. (3.3).

Furthermore, we have that

E
[
|Cmin

ϵ (Xn+1)|
]
≤ E

[
|Cϵ(Xn+1)|

]
. (3.6)

Proof. See Appendix C.1.1.

In §3.6 we demonstrate empirically that this simple modification can yield large im-

provements in efficiency, while still maintaining the desired coverage.

3.4 Conformal prediction with cascaded inference

We now introduce our strategy for improving the computational efficiency of confor-

mal prediction. For clarity of presentation, we return to the standard setting without

expanded admission, i.e., where Cϵ(Xn+1) satisfies Eq. (3.1), but emphasize that the

method applies to either case. Recall the typical definition of Cϵ:

Cϵ(x) :=
{
y ∈ Y : pval

(
N (x, y), {N (Xi, Yi)}n

i=1

)
> ϵ

}
. (3.7)

The cost of constructing Cϵ as part of CP is therefore, in general, linear in |Y|. In

practice, this can limit the tractable choices available for the nonconformity measure

N , particularly in domains where |Y| is large. Furthermore, predictive and computa-

tional efficiency are coupled, as being forced to use weaker N reduces the statistical
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power of the CP. This is worse in large-scale applications where computational effi-

ciency is indeed limiting, and where predictive efficiency is particularly important in

order for the classifier to be considered useful.

Our approach balances the two by leveraging prediction cascades (Sapp et al., 2010;

Weiss and Taskar, 2010), where m models of increasing power are applied sequen-

tially. At each stage, the number of considered outputs is iteratively pruned. Here,

we conformalize the cascade, preserving marginal coverage. As we can see above, a

nonconformity score and p-value is computed for every candidate y ∈ Y when con-

structing Cϵ. Different y, however, might be much easier to reject than others, and

can be filtered using simple metrics. For example, in IR, wholly non-topical sentences

(of which there are many) can be discarded using fast key-word matching algorithms

such as TFIDF or BM25. On the other hand, more ambiguous sentences—perhaps

those on the same topic but with insufficient information—might require a more so-

phisticated scoring mechanism, such as a large neural network.

Assume that we are given a sequence of progressively more discriminative, yet also

more computationally expensive, nonconformity measures (N1, . . . ,Nm). When ap-

plied in order, we only consider y ∈ Ci
ϵ(Xn+1) as candidates for Ci+1

ϵ (Xn+1), i.e.,

Cm
ϵ (Xn+1) ⊆ Cm−1

ϵ (Xn+1) ⊆ . . . ⊆ C1
ϵ (Xn+1) ⊆ Y . (3.8)

In this way, the amortized cost of evaluating m measures over parts of Y can be

lower than the cost of running one expensive measure over all of it. For example, in

IR, we can use BM25 (N1) to prune the label space passed to a neural model (N2).

Furthermore, combining multiple nonconformity measures together can also lead to

better predictive efficiency when using complementary measures—similar to ensem-

bling (Cherubin, 2019; Linusson et al., 2017; Toccaceli and Gammerman, 2017).

Naïvely applying multiple tests to the same data, however, leads to the multiple

hypothesis testing (MHT) problem. This results in an increased family-wise error

rate (FWER), i.e., false positives, making the CP invalid. Many corrective procedures
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Algorithm 2 Cascaded conformal prediction.
Definitions: (N1, . . . ,Nm) is a sequence of nonconformity measures. M is a monotonic
FWER correction. xn+1 ∈ X is a test point. x1:n ∈ X n and y1:n ∈ Yn are the calibration
examples and their labels, respectively. Y is the label space. ϵ is the tolerance.
1: function predict(xn+1, (x1:n, y1:n), ϵ)
2: # Initialize with the full label set.
3: C0

ϵ ← Y
4: # Conservatively set unknown p-values.
5: p

(y)
1 = p

(y)
2 = . . . = p

(y)
m ← 1, ∀y ∈ Y

6: for j = 1 to m do
7: Cj

ϵ ← {}
8: # Iterate through the previous label set.
9: for y ∈ Cj−1

ϵ do
10: # Update the j-th p-value for (xn+1, y).
11: p

(y)
j ← pval (Nj(xn+1, y), {Nj(xi, yi)}ni=1))

12: # Correct the current p-values for multiple testing.
13: p̃

(y)
j ← M(p(y)

1 , . . . , p
(y)
m )

14: # Keep y only if the corrected p-value is ≤ ϵ.
15: if (p̃(y)

j > ϵ) then
16: Cj

ϵ ← Cj
ϵ ∪ {y}

17: return Cm
ϵ

exist in the literature (e.g., see Liu (1996)). Formally, given m p-values (P1, . . . , Pm)

for a pair (X,Y ), we denote as M some such correction satisfying

P̃ =M (P1, . . . , Pm) s.t. P
(
P̃ ≤ ϵ | Y is correct

)
≤ ϵ. (3.9)

Furthermore, we require M to be element-wise monotonic,1 i.e.,

(P1, . . . , Pm) ≼
(
P̂1, . . . , P̂m

)
=⇒M (P1, . . . , Pm) ≤M

(
P̂1, . . . , P̂m

)
. (3.10)

where ≼ operates element-wise. We consider several options forM, namely the Bon-

ferroni and Simes corrections (see Appendix C.4). In order to exit the test early at

cascade j before all the p-values (i.e., for measures k > j) are known, we compute

an upper bound for the corrected p-value by conservatively assuming that Pk = 1,

∀k > j. The procedure is demonstrated in Algorithm 2, and formalized below.

1We are unaware of M beyond contrived examples satisfying Eq. (3.9) but not Eq. (3.10).
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Theorem 3.4.1 (Cascaded CP). Assume that (Xi, Yi) ∈ X × Y, i = 1, . . . , n + 1 are

exchangeable. For any sequence of nonconformity measures (N1, . . . ,Nm) yielding p-

values (P1, . . . , Pm), and ϵ ∈ (0, 1), define the conformal set for step j at xn+1 ∈ X as

Cj
ϵ (xn+1) :=

{
y ∈ Y : P̃ (y)

j > ϵ
}
, (3.11)

where P̃ (y)
j is the conservative p-value for y at step j,M(P (y)

1 , . . . , P
(y)
j , 1, . . . , 1), with

P
(y)
k>j := 1. Then ∀j ∈ [1,m], Cj

ϵ (Xn+1) satisfies Eq. (3.1), and Cm
ϵ (Xn+1) ⊆ Cj

ϵ (Xn+1).

Proof. See Appendix C.1.2.

Theorem 3.4.1 also easily extends to the setting of Eq. (3.3). A consequence of this

result is that early pruning will not affect the validity of the final set, Cm
ϵ .

3.5 Experimental setup

We empirically evaluate our method on three different tasks with publicly available

datasets. In this section, we briefly give a high-level outline of each task and our

conformalized approach to it. We also describe our evaluation methodology. We

defer the technical details for each task, such as data preprocessing, training, and

nonconformity measure formulations, to Appendix C.2.

3.5.1 Tasks

Open-domain question answering (QA). Open-domain question answering focuses

on using a large-scale corpusD to answer arbitrary questions via search combined with

reading comprehension. We use the open-domain setting of the Natural Questions

dataset (Kwiatkowski et al., 2019). Following Chen et al. (2017), we first retrieve

relevant passages from Wikipedia using a document retriever, and then select an

answer span from the considered passages using a document reader. We use a Dense

Passage Retriever model (Karpukhin et al., 2020) for the retriever, and a BERT

model (Devlin et al., 2019) for the reader. The BERT model yields several score
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variants—we use multiple in our cascade (see Table C.2.1). Any span from any

retrieved passage that matches any of the annotated answer strings when lower-case

and stripped of articles and punctuation is considered to be correct.

Information retrieval for fact verification (IR). As introduced in §5.1, the goal of

IR for fact verification is to retrieve a sentence that can be used to support or refute

a given claim. We use the FEVER dataset (Thorne et al., 2018), in which evidence

is sourced from a set of ∼40K sentences collected from Wikipedia. A sentence that

provides enough evidence for the correct verdict to be determined (whether that is

“supports” or “refutes”) is considered to be acceptable (multiple are labeled in the

dataset). Our cascade consists of (1) a fast, non-neural BM25 similarity score between

a given claim and sentence, and (2) the score of an ALBERT model (Lan et al., 2020)

trained to directly predict if a given claim and sentence are related.

In-silico screening for drug discovery (DR). In-silico screening of chemical com-

pounds is a common task in drug discovery and drug repurposing, where the goal

is to identify possibly effective drugs to manufacture and test (Stokes et al., 2020).

Using the ChEMBL database (Mayr et al., 2018), we consider the task of screening

molecules for combinatorial constraint satisfaction, where given a specified constraint

such as “has property A but not property B”, we want to identify at least one molecule

from a given set of candidates that has the desired attributes. Our cascade consists

of (1) the score of a fast, non-neural Random Forest (RF) applied to binary Morgan

fingerprints (Rogers and Hahn, 2010), and (2) the score of a directed Message Passing

NN (MPNN) ensemble trained using chemprop (Yang et al., 2019).

3.5.2 Evaluation metrics

For each task, we use a proper training, validation, and test set. We use the training

set to learn all nonconformity measures. We perform model selection specifically

for CP on the validation set, and report final numbers on the test set. For all CP

methods, we report the marginalized results over 20 random trials, where in each trial

we partition the data into 80% calibration (x1:n) and 20% prediction points ( xn+1).
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In order to compare the aggregate performance of different CPs across all tolerance

levels, we plot each metric as a function of ϵ, and compute the area under the curve

(AUC). In all plots, shaded regions show the 16-84th percentiles across trials.

For evaluation, we use the following metrics:

Predictive accuracy. We measure accuracy as the rate at which at least one admissi-

ble prediction is in Cϵ, i.e., |Ag(Xn+1, Yn+1) ∩ Cϵ(Xn+1)| ≥ 1. To be valid, the key crite-

ria in this work, classifier should have an accuracy rate ≥ 1−ϵ, and AUC ≥ 0.5. Note

that more is not necessarily better: higher success rates than required can lead to poor

efficiency (i.e., the size of Cϵ can afford to decrease at the expense of accuracy).

Predictive efficiency (�). We measure predictive efficiency as the size of the predic-

tion set out of all candidates: |Cϵ| · |Y|−1. The goal is to make the predictions more

precise while still maintaining validity. Lower predictive efficiency is better (�), as it

means that the size of Cϵ is relatively smaller.

Amortized computation cost (�). We measure the amortized computation cost

as the ratio of pvalue computations required to make a cascaded prediction with

early pruning, compared to when using a simple combination of CPs (no pruning,

same number of measures). In this work we do not measure wall-clock times as

these are hardware-specific, and depend heavily on optimized implementations. Lower

amortized cost is better, as it means that the relative number of p-value computations

required to construct Cm
ϵ (for a given m) is smaller.

3.6 Experimental results

In the following, we address several key research questions relating to our two com-

bined conformal prediction advancements, and their impact on overall performance.

In all of the following experiments, we report results on the test set, using cascade con-

figurations selected based on the validation set performance. The QA and IR cascades

use the Simes correction for MHT, while the DR cascades uses the Bonferroni correc-
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(a) QA (b) IR (c) DR

Figure 3-2: Predictive efficiency and success rates as a function of ϵ. The efficiency
of the min-calibrated CPs (both cascaded and non-cascaded) is significantly better
(i.e., lower) than standard CP across all tasks, especially at critical values of ϵ. The
min-calibrated CP’s accuracy hugs the diagonal, allowing it to remain valid, but be
far less conservative (resulting in better efficiency).

tion. Additional results, details, and analysis are included in Appendix C.3.

Predictive efficiency of expanded admission. We begin by testing how deliber-

ately calibrating for expanded admission affects predictive efficiency. That is, we

use minimal nonconformity scores {Nmin
g (Xi, Yi)}n

i=1 for calibration (Eq. 3.4) to cre-

ate Cϵ(Xn+1) using Eq. 3.5. Figure 3-2 shows the predictive efficiency of our min-

calibrated CPs with expanded admission across all ϵ, while Table 3.1 shows results for

select values. We compare both cascaded and non-cascaded CPs, as Theorem 3.3.4

applies to both settings. The non-cascaded CP uses the last nonconformity mea-

sure of the cascaded CP. Across all tasks, the efficiency of the min-calibrated CP is

significantly better than the baseline CP method, and results in tighter prediction

sets—giving up to 4.6× smaller AUC. Naturally, this effect depends on the qualities

of the admission function g and resulting admissible label sets Ag. For example, the

most dramatic gains are seen on QA. This task has a relatively large variance among

admissible label nonconformity scores (i.e., some admissible answer spans are much
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Task Target Acc. Baseline CP min-CP Cascaded min-CP

(1− ϵ) Acc. |Cϵ| Acc. |Cmin
ϵ | Acc. |Cmin

ϵ | Amortized cost

QA

0.90 0.98 1245.7 0.90 198.0 0.90 235.1 0.59
0.80 0.94 453.5 0.80 58.7 0.80 57.7 0.50
0.70 0.91 227.8 0.70 22.1 0.70 20.6 0.45
0.60 0.87 127.8 0.60 10.6 0.61 9.5 0.42

IR

0.99 1.00 33.6 0.99 17.8 0.99 18.0 0.92
0.95 1.00 20.9 0.95 7.4 0.95 7.4 0.79
0.90 0.98 13.8 0.90 4.0 0.90 3.8 0.73
0.80 0.95 6.7 0.80 1.7 0.80 1.6 0.63

DR

0.90 0.99 429.8 0.90 84.1 0.91 147.8 0.84
0.80 0.97 305.8 0.80 42.7 0.81 62.1 0.79
0.70 0.96 216.6 0.70 28.1 0.71 37.3 0.75
0.60 0.94 145.6 0.60 19.3 0.63 24.6 0.72

Table 3.1: CP results for specific tolerance levels ϵ. Each line shows the empirical
accuracy (Acc.) and the (raw) size of the prediction set for our two methods as
compared to regular CP, per target accuracy rate (1−ϵ). The amortized computation
cost of the cascade, a consequence of pruning, is also given.

easier to identify than others), and thus calibrating for the most “conforming” spans

has a large impact.

Validity of minimal nonconformity calibration. As per Theorem 3.3.4, we observe

that our min-calibrated CP still creates valid predictors, with an accuracy rate close

to 1 − ϵ on average. We see that the min-calibration allows the predictor to reject

more wrong predictions (lower predictive efficiency, which is better) while, with high

enough probability, still accept at least one that is correct. The standard CP methods,

however, are more conservative—and result in prediction sets and accuracy rates

larger than necessary. This effect is most pronounced at smaller ϵ (e.g., < 0.2).

Computational efficiency of conformalized cascades. Figure 3-3 shows the amortized

cost, in terms of percentage of p-value computations skipped, achieved using our cas-

caded CP algorithm. Our method reduces the number of p-value computations by up

to a factor of 1/m for an m-layer cascade. The effect of conformalization is clear: the

more strict an ϵ we demand, the fewer labels we can prune, and vice versa. To simplify

comparisons, our metric gives equal weight to all p-value computations. In practice,

however, the benefits of early pruning will generally grow by layer, as the later p-values
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(a) QA (b) IR (c) DR

Figure 3-3: Pruning rates as function of ϵ. Incorporating early rejection via the
cascade reduces the fraction of required p-value computations. Larger tolerance
levels (ϵ) allow for more aggressive pruning.

are assumed to be increasingly expensive to compute. Again, exactly quantifying this

trade-off in terms of absolute cost is model- and implementation-specific.

Conservativeness of conformalized cascades. A limitation of the cascade approach

is the conservative nature of the corrected p-values, which can reduce the statistical

power of the CP as the number of cascade layers grows. This effect is especially

present if the cascaded measures are highly dependent. In general, however, in both

Figure 3-2 and Table 3.1, we see that the benefits of combining complementary cas-

caded models largely make up for this drop in statistical power, as our cascaded min-

calibrated CPs nearly matches the predictive efficiency of our non-cascaded models.

Importantly, this is achieved while still improving computational efficiency.

Relation to heuristic methods. For completeness, in Appendix C.3.2 we also compare

CP to common heuristic methods for producing set-valued predictions—namely, tak-

ing the top-k predictions and taking all predictions for which the model’s score exceeds

a threshold τ . We show that while CP is more general, it can be (practically) reduced

to each of these methods with the appropriate choice of nonconformity measure. In

some cases, the flexibility of CP even allows for better predictive efficiency, even while

those heuristics do not amortize cost or guarantee coverage in finite samples.
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3.7 Conclusion

Conformal prediction can afford remarkable theoretical performance guarantees to ap-

plications for which high accuracy and precise confidence estimates are key. Naïvely

applying CP, however, can be inefficient in practice. This is especially true in domains

in which the correct answers are not clearly delineated, and in which the computa-

tional cost of discriminating between options starts to become a limiting factor. In this

chapter, we proposed two novel methods that provide two more pieces of the puzzle.

Our results show that (1) calibration using expanded admission consistently improves

empirical predictive efficiency, and (2) conformal prediction cascades yield better com-

putational efficiency—thereby enabling the use of more powerful classifiers.
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4

Constrained Conformal Prediction

In this chapter, we develop a new approach to conformal prediction with constraints.

Standard conformal prediction provides the ability to adapt to model uncertainty by

constructing a calibrated candidate set with guarantees that the set contains the cor-

rect answer with high probability. In order to obey this coverage property, however,

conformal sets can become inundated with noisy candidates—which can render them

unhelpful in practice. This is particularly relevant to practical applications where

there is a limited budget, and the cost (monetary or otherwise) associated with false

positives is non-negligible. We propose to trade coverage for a notion of precision by

enforcing that the total number of false positives in the predicted conformal sets is

bounded according to a user-specified tolerance. Subject to this constraint, our algo-

rithm then optimizes for a generalized notion of set coverage (i.e., the true positive

rate) that allows for any number of true answers for a given query (including zero). We

demonstrate the effectiveness of this approach across a number of classification tasks

in natural language processing, computer vision, and computational chemistry.

4.1 Introduction

Conformal prediction (Vovk et al., 2005) is remarkable in the sense that it yields

confident prediction sets that provably contain the correct answer with high proba-
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Figure 4-1: A demonstration of our approach to relaxing standard coverage guarantees
(“Goal A”) in favor of rigorous limits on the total number of false positives included in
the output Ck,δ (“Goal B”). In the case of in-silico screening for drug discovery, limiting
false positives is critical when balancing a budget for experimental validation.

bility. For many classification problems, these guarantees make the prediction sets

useful tools for analyzing uncertainty (Gammerman and Vovk, 2007; Lei, 2014; Ro-

mano et al., 2020c). Unfortunately, however, these guarantees do not come for free.

Rather, in order to achieve proper coverage on difficult tasks, conformal prediction

can often be unable to rule out an overwhelming number of candidates, making their

prediction sets large and inefficient. This can make conformal predictors unusable in

settings in which the cost of returning false positive predictions is substantial.

As an example, consider in-silico screening for drug discovery (see Figure 4-1). In-

silico screening uses computational tools to search over millions of molecular com-

pounds to identify candidates with desired properties. Any identified candidates are

then verified experimentally. While it is often not necessary to return all possible

viable candidates (e.g., even identifying just one effective drug can suffice), it is im-

portant to respect budgetary constraints by avoiding false positive predictions. Too

many false positives can quickly consume available resources (e.g., time, materials,

funding, or other assets). This is especially relevant when a valid answer—which in

this case is an effective drug—might not even exist (a common occurrence)

In this chapter, we develop an approach to creating confident prediction sets that

trades off standard coverage guarantees for constraints on the total number of false

positives (FP). In other words, we shift the focus of our conformal guarantees to be

on limiting the number of incorrect answers in our outputs, with the understanding
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that we can potentially fail to recover some proportion of the true answers, i.e., we

may obtain a lower true positive rate (TPR), which we assume is acceptable.

Concretely, we are interested in a set prediction setting where we have been given n

multi-label classification examples (Xi, Zi) ∈ X × 2Y , i = 1, . . . n as calibration data,

that have been drawn exchangeably from some underlying distribution PXZ . Under

our assumptions, each observation Xi can be associated with any number of correct

labels (including zero, in the case of having no answer at all, or one, like standard

classification). That is, the response variable Zi is a subset of the full label space Y .

For example, in the above in-silico screening task, Xi would be the current property

being screened for, Y the space of all molecular candidates that might have this

property, and Zi ⊆ Y the set of molecules that do have it. Let Xn+1 ∈ X be a new

exchangeable test example for which we would like to predict the set of correct labels,

Zn+1 ⊆ Y . Our goal is to construct a set predictor Ck(Xn+1) that maximizes recall of

Zn+1 (i.e., TPR), while limiting the expected number of false positives according to

a user-defined tolerance k ∈ R>0:

maximize E
[
|Ck(Xn+1) ∩ Zn+1|

max(|Zn+1|, 1)

]
s.t. E

[
|Ck(Xn+1) \ Zn+1|

]
≤ k. (4.1)

As an alternative to bounding the expected number of false positives, we can also

seek a predictor Ck,δ that controls the probability of exceeding k false positives:

maximize E
[
|Ck,δ(Xn+1) ∩ Zn+1|

max(|Zn+1|, 1)

]
s.t. P

(
|Ck,δ(Xn+1) \ Zn+1| ≤ k

)
≥ 1− δ, (4.2)

where δ ∈ (0, 1) is another user-defined tolerance level. Both constructions define

different, but useful, operating conditions; the first is more straightforward (e.g., for

the general practitioner), while the second offers a finer level of control. Note that

both constraints are marginal over the choice of calibration and test data.

In order to achieve the desired levels of false positive control, we present an ap-

proach that is based on set classification, combined with conformal calibration tech-
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niques (Shafer and Vovk, 2008; Papadopoulos, 2008; Alvarsson et al., 2021). Specifi-

cally, we use a set nonconformity measure F : X × 2Y → R to score candidate output

sets, S ∈ 2Y , for a given input x ∈ X . Intuitively, a high nonconformity score (e.g.,

loss) should reflect the confidence that the candidate set might contain a high number

of false positives, and vice-versa. We learn this function from separate multi-label

classification training data. As enumerating and scoring all possible candidate sets

is combinatorially hard, we instead adopt the nested conformal prediction strategy

of Gupta et al. (2019), where we greedily construct prediction sets using a best-first

strategy that adds top-ranked individual labels to a growing, nested output set S.

We stop when its nonconformity score, F(x,S), exceeds a calibrated threshold—that

we find based on our desired false positive constraints. This greedy approach both

allows us to scale to larger label spaces Y (i.e., where there are many candidate

labels that choose from when composing the prediction set), and to leverage exist-

ing statistical theory for calibrating expectations of monotonic losses for nested set

predictors (Gupta et al., 2019; Bates et al., 2020; Angelopoulos et al., 2022a).

Contributions. In summary, the main results of this chapter are as follows:

• An adaptation of conformal prediction that provides rigorous false positive control;

• A simple strategy for constructing output sets with high true positive rates;

• An empirical demonstration of the utility of our method across classification tasks

in NLP, computer vision, and computational chemistry.

4.2 Related work

Conformal prediction. As introduced in §1.3, conformal prediction provides a finite-

sample, distribution-free method for obtaining prediction sets C with guarantees on

the event 1{Yn+1 ∈ C(Xn+1)}. Most efforts in CP focus on improving the predictive

efficiency, E[|C(Xn+1)|], of the conformal sets (Vovk et al., 2016; Sadinle et al., 2019;

Romano et al., 2020c; Angelopoulos et al., 2021b; Fisch et al., 2021a,c; Hoff, 2021).

As coverage is guaranteed by design, improving efficiency will naturally lead to more
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precise sets with fewer false positives—but not to a specifiable level. Cauchois et al.

(2021) develop a conformal approach to multi-label classification that can guarantee

that the prediction set only contains true labels (i.e., FP = 0), but does not offer

fine-grained control. Most relevant to our work, Bates et al. (2020) develop a flexible

framework for controlling the risk, E[L(Y, T (X))], of a set-valued predictor T with

an arbitrary loss function L—as long the loss respects a monotonic nesting property,

S ⊂ S ′ ⇒ L(S) ≥ L(S ′), for any two prediction sets S and S ′. The calibration strat-

egy we use here for marginal expectations is based on an extension in Angelopoulos

et al. (2022a). Angelopoulos et al. (2021a) proposed methods to rigorously control

non-monotonic losses, including the related false discovery rate (FDR), which nor-

malizes the number of false positives over the size of the prediction set. However, as

most of our target applications have relatively few true positives, FDR control can

lead to many empty predictions, which makes controlling total false positives a more

natural fit for this work (see also our extended discussion in Appendix D.5). Finally,

though we focus on conformal approaches, our methods are tightly connected to the

broader literature surrounding distribution-free calibration (Vovk et al., 2004, 2015;

Vovk and Petej, 2014; Gupta et al., 2019, 2020a; Barber, 2020).

Multiple hypothesis testing. Controlling the number of false positives/discoveries

over a collection of hypothesis tests is well-studied (Dunn, 1961; Benjamini and

Hochberg, 1995; Lehmann and Romano, 2005a; Romano and Wolf, 2007). In fact, the

objectives expressed in Eqs. (4.1) and (4.2) are established concepts in statistics—i.e.,

PFER, the per-family error rate, and k-FWER, the generalized familywise error rate

(Spjøtvoll, 1972; Romano and Wolf, 2007). Recently, FDR control has also been stud-

ied for outlier detection in a conformal inference setting (Bates et al., 2021). Classic

approaches operate over p-values for each hypothesis test that have specific depen-

dency structures (e.g., independent or positively dependent), or otherwise use more

conservative corrections. Though similar, our multi-label setting is slightly different

from standard multiple testing in that there is both (1) an unknown dependency

structure between candidate labels for the same query, but also (2) an extra layer
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of exchangeability over the n + 1 queries. Our approach is able to ignore (1) by

leveraging (2) within a conformal calibration framework.

Selective classification. In selective classification (El-Yaniv and Wiener, 2010), mod-

els can abstain from answering. In particular, Geifman and El-Yaniv (2017) propose

a strategy for finding classifiers with specific selective 0/1 risks (i.e., the expected ac-

curacy over answered examples). In our setting, this is analogous to controlling false

positives using k ≈ 0. If uncertain, the model would have to “abstain” by outputting

an empty set. Our framework also generalizes this behavior for any positive k.

4.3 Set predictions with limited false positives

We now introduce our strategy for limiting the number of false positives that are

contained in our output sets. Once again, we assume that we have been given n

exchangeable multi-label classification examples, (Xi, Zi) ∈ X × 2Y , i = 1, . . . n as

calibration data, that are drawn from a distribution PXZ . We follow split conformal

prediction, and assume that any training data used is distinct from this calibration

data. The response Zi is treated as a generalized set of correct labels for input Xi,

and is a subset of Y . For example, in the in-silico screening task from §5.1, Xi is the

current target property being screened for, Y is the space of all molecular candidates,

and Zi ⊆ Y is the set of molecules that have that property.

For a set C(x) ⊆ Y evaluated at a point x ∈ X with labels z ⊆ Y , we define the true

positive proportion (TPP) as the ratio of correct labels that are recovered:

TPP(z, C(x)) := |C(x) ∩ z|
max(|z|, 1)

(4.3)

(note that TPR := E[TPP]), and the number of false positives (FP) as the total count

of incorrect labels in C(x):

FP(z, C(x)) := |C(x) \ z|. (4.4)
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Our goal, as stated in §5.1, is to maximize the expected TPP, while constraining the

FP in either of two ways:

Definition 4.3.1 (k-FP validity). A conformal classifier producing test prediction

Ck(Xn+1) is k-FP valid if it satisfies E[FP(Zn+1, Ck(Xn+1))] ≤ k.

Definition 4.3.2 ((k, δ)-FP validity). A conformal classifier producing test prediction

Ck,δ(Xn+1) is (k, δ)-FP valid if it satisfies P(FP(Zn+1, Ck,δ(Xn+1)) ≤ k) ≥ 1− δ.

4.3.1 An oracle set predictor

To motivate our approach, imagine an oracle with access to PZ|X , the conditional

distribution of the multi-label set Z given the input X. Given this information, for

any input x ∈ X and candidate set S ∈ 2Y , in theory such an oracle would be able to

exactly calculate both the expectation and the conditional distribution of the number

of false (and true) positives in S given x. In order to maximize the TPR while meeting

k-FP and (k, δ)-FP validity, it could then yield:

Coracle
k (x) := arg max

S∈2Y

{
E[TPP(Z,S) | x] : E[FP(Z,S) | x] ≤ k

}
(4.5)

Coracle
k,δ (x) := arg max

S∈2Y

{
E[TPP(Z,S) | x] : P(FP(Z,S) | x] > k) < δ

}
(4.6)

where ties are settled by smaller set size. Of course, computing this oracle is not

possible, as PZ|X is unknown. Furthermore, enumerating all sets S ∈ 2Y is infeasible

for large Y . Instead, in the following sections we develop a practical approach for

roughly approximating the oracle’s behavior with three main components:

1. A set function F : X × 2Y → R that directly generates a score for a candidate set

S given x that is predictive of either E[FP(Z,S) | x] or P(FP(Z,S) | x] > k).

2. A calibrated search strategy for exploring a tractable number of candidate sets,

and identifying valid sets satisfying our constraints using predictions from F ;

3. A selection policy for picking a final output set.
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Algorithm 3 Training the LikelihoodModel pθ and SetModel F (§4.3.2).
Definitions: Dcal is a calibration set. LikelihoodModel is an abstract model that estimates
individual label likelihood for ranking and set item featurization. SetModel is an abstract
model that estimates FP (we use DeepSets).
1: function train(Dtrain)
2: # Split the training data into two disjoint sets.
3: D(1)

train,D(2)
train ← split(Dtrain)

4: # Use one set to estimate individual likelihoods, pθ(yc ∈ Z | x).
5: pθ(yc ∈ Z | x) ← fit(LikelihoodModel,D(1)

train)
6: # Use the other (smaller) set to learn the FP set function, F(x,S).
7: F(x,S) ← fit(SetModel, pθ,D(2)

train)
8: return pθ, F

Wherever possible, our proposed method will try to balance simplicity and efficiency

with effectiveness. Theoretically, however, the framework it follows is model-agnostic.

4.3.2 Scoring candidate sets with set functions

We choose to model F using DeepSets (Zaheer et al., 2017). DeepSets is a popular

method which is known to be a universal approximator for continuous set functions,

which makes it a natural choice for our purpose. Let {ϕ(x, y1), . . . , ϕ(x, y|S|)} featur-

ize a candidate set S ⊆ Y , where ϕ(x, yc) ∈ Rd is a function of (x, yc), for yc ∈ S. In

practice, we find that taking ϕ(x, yc) to be an estimate of pθ(yc ∈ Z | x), the marginal

likelihood of yc being a correct label, performs well and is simple to implement. These

one-dimensional prediction scores can be provided by any base model.1 For example,

in our in-silico screening task, we define ϕ using a directed MPNN (Yang et al., 2019)

that independently predicts the probability of an individual molecule having the prop-

erties targeted by the screen, or not. Given ϕ, the DeepSets model is defined by

Ψ(x,S) := softmax
(

dec
( ∑

yc∈S
enc(ϕ(x, yc))

))
, (4.7)

where enc(·) and dec(·) are neural encoder and decoder models, and softmax(·) is

taken over the range of possible false positives, {0, . . . , |S|}. Ψ is trained to predict

1This is comparable to the 1-d features used by Platt scaling.
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the total number of false positives in S via cross entropy, using labeled sets sampled

from held-out training data, separate from the split used to learn pθ (used for ϕ). We

then compute Fk and Fk,δ (for either k-FP or (k, δ)-FP validity) as

Fk(x,S) :=
|S|∑

η=0
η ·Ψ(x,S)η (4.8)

Fk,δ(x,S) := 1−
min(k,|S|)∑

η=0
Ψ(x,S)η, (4.9)

where Ψ(x,S)η denotes the η-th index of the softmax (i.e., the estimated probabil-

ity that FP = η). Additional details on how to train F are given Algorithm 4 and

Appendix D.2. In the next sections, we will only refer to F as a general function.

4.3.3 Searching for valid candidate sets

Although our set predictor F is trained to model either the expected FP or its CDF,

it is not necessarily accurate. If F were simply substituted into Eq. (4.5) or Eq. (4.6),

it may not produce valid set predictions. To account for this mismatch, we must

carefully calibrate a threshold for accepting candidate sets based on F . At the same

time, we also must efficiently search the combinatorial space of candidate sets.

To efficiently calibrate our predictor, we cast our approach into a form of nested

conformal prediction (Gupta et al., 2019). First, we greedily identify a sequence of

nested candidate sets, ∅ ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sj, by ranking individual labels yc ∈ Y

according to some auxiliary model, and including them one by one into the growing

output set Sj+1. Notice that, by construction, the number of false positives contained

in Sj is non-decreasing in index j, i.e., j ≤ j′ =⇒ FP(z,Sj) ≤ FP(z,Sj′).

In practice, we find that ranking individual labels by their estimated marginal likeli-

hoods of being true positives, i.e., pθ(yc ∈ Z | x)—the same model used in §4.3.2—

performs well and avoids the overhead of training an additional scoring model. Im-

portantly, for further efficiency (elaborated on in Remark 4.3.5) we only consider sets

up to a maximum size B ≤ |Y|, where B is a hyper-parameter that we can set.
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Algorithm 4 Calibration of the set score for k-FP validity (§4.3.3).
Definitions: Dcal is a calibration set, k is the tolerance, and B is a parameter for considering
only the top individually ranked candidates. pθ and F are the outputs of Algorithm 3.
1: function calibrate(pθ, F , Dcal, k, B)
2: Tcal = {}
3: for (xi, zi) ∈ Dcal do
4: # Rank top B candidates by individual likelihood.
5: {yi,π(1), . . . , yi,π(B)} ← sort(Y, pθ(yc ∈ Zi | xi))1:B
6: # Construct nested sets using this ordering.
7: {Si,1, . . . ,Si,B} ← {yi,π(1:j) : j ∈ {1, . . . , B}}
8: # Compute nonconformity scores using F .
9: {vi,1, . . . , vi,B} ← {F(xi,Si,1), . . .F(xi,Si,B)}

10: # Cache dependent variables for FPmax(xi, zi, t).
11: FPmax(xi, zi, t) ← cache(xi, zi, vi,1:B,Si,1:B)
12: # Append cached FPmax(xi, zi, t) to the calibration set.
13: Tcal ← Tcal ∪ {FPmax(xi, zi, t)}
14: # Use Eq. (4.12) to find a k-FP valid set score threshold.
15: tk ← find_threshold(Tcal, B, k)
16: return tk

Next, we compute a set nonconformity score vj (assumed to be finite) for each candi-

date set Sj using F , where vj := F(x,Sj). Finally, we define the worst-case number

of false positives over all nested candidate sets S1:B having nonconformity scores less

than t (given the input x with label set z) as

FPmax(x, z, t) := max
{
FP(z,Sj) : vj < t

}
. (4.10)

If this set is empty, then FPmax is 0. Due to our nested construction, this is also

simply the number of false positives contained in the largest set Sj satisfying vj < t.

It is simple to show that FPmax is non-decreasing in t, as stated below.

Lemma 4.3.3 (Monotonicity). For sets Sj and scores vj and FPmax(x, z, t), we have

t ≤ t′ =⇒ FPmax(x, z, t) ≤ FPmax(x, z, t′). (4.11)

Proof. See Appendix D.1.1.
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Using this property, we can find a maximal threshold t to use as a “cutoff point” for

the sequence of nested candidate sets such that FPmax is controlled.

Theorem 4.3.4 (FP-CP). Assume that examples (Xi, Zi) ∈ X × 2Y , i = 1, . . . , n + 1

are exchangeable. For each example i, let Si,j, j = 1, . . . , B (where B ≤ |Y| is a finite

hyper-parameter) be candidate sets, where finite random variable Vi,j = F(Xi,Si,j)

is a set nonconformity score. For tolerances k ∈ R>0 and δ ∈ (0, 1) define random

variables Tk and Tk,δ (based on the first n examples) as

Tk := sup
{
t ∈ R : B +∑n

i=1 FPmax(Xi, Zi, t)
n+ 1

≤ k
}

and (4.12)

Tk,δ := sup
{
t ∈ R :

∑n
i=1 1{FPmax(Xi, Zi, t) ≤ k}

n+ 1
≥ 1− δ

}
, (4.13)

where FPmax is as defined in Eq. (4.10). Then we have that

E
[
FPmax(Xn+1, Zn+1, Tk)

]
≤ k, and (4.14)

P
(

FPmax(Xn+1, Zn+1, Tk,δ) ≤ k
)
≥ 1− δ. (4.15)

Proof. See Appendix D.1.2.

Remark 4.3.5. The hyper-parameter B plays an important role when controlling for

k-FP. Tk may be very conservative if B = |Y| and |Y| is very large, to the point where

Tk = −∞ always if |Y| > k(n + 1). It can therefore be beneficial to truncate the

considered label space Y for an example x to only the top B � k(n + 1) individual

candidates, {y1, . . . , yB} ∈ YB. For example, for text generation tasks (like machine

translation), Y is infinite, but we can restrict our predictions to a subset of the top

B beam search candidates (where B can still be reasonably large). Nevertheless, this

does not come for free: a smaller B may result in fewer true positives.

Remark 4.3.6. No constraints are placed on the underlying set function F ; i.e., it need

not be a DeepSets architecture. If, however, F is a good estimator of FP(Z,S) | X,

then our method is more likely to identify sets that are approximately valid condi-
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Algorithm 5 Set prediction using calibrated tk (§4.3.4).
Definitions: xn+1 is a test point, B is the same input as for Algorithm 4, and tk is the
output of Algorithm 4. pθ and F are the outputs of Algorithm 3.
1: function predict(xn+1, pθ, F , tk, B)
2: # Repeat lines 12-14 to compute Sn+1,1:B and vn+1,1:B.
3: # Identify indices of candidate sets that pass threshold tk.
4: J ← {j ∈ {1, . . . , B} : vn+1,j < tk}
5: # Choose the largest sized set among filtered candidates.
6: Ck(xn+1) ← Sn+1,max J
7: return Ck(xn+1)

tioned on Xn+1 = xn+1, which we investigate empirically in §5.5.

Remark 4.3.7. It is useful to note that nestedness of Si,j is not necessary for the above

calibration to hold (it is used for efficiency). Monotonicity of FPmax is sufficient.

An example implementation of this calibration procedure is given in Algorithm 4.

4.3.4 Selecting the final output set

The main consequence of Theorem 4.3.4 is that, using the calibrated nonconformity

threshold Tk or Tk,δ = t∗, we can construct a collection of sets that are simultaneously

valid by keeping all candidate sets with scores less than t∗. Specifically, we are free to

select any set in the filtered set of candidates Sn+1,j, j ∈ J where J := {j : vn+1,j <

t∗}, as a valid output. Ideally, we would be able to follow the the oracle strategy in

returning the smallest set with the highest number of true positives. This would make

our predictions efficient, in the sense that we are not including more false positives

than necessary (even if the total is still ≤ k). A reasonable choice is to then choose

Sj∗ where j∗ := arg maxj∈J |Sj| − F(x,Sj); but this can be sub-optimal if F is not

accurate. As a greedy, but effective, approach we simply take the largest set as our

final output, which has maximal TPR. We formalize this in Proposition 4.3.8, and

provide its implementation in Algorithm 5.

Proposition 4.3.8 (Greedy FP-CP). Let T◦ denote either Tk or Tk,δ. Then random

candidate sets Sn+1,j, ∀j ∈ J := {j : Vn+1,j < T◦}, are valid. Furthermore, among
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indices J , maxJ indexes the nested set with the highest TPR.

Proof. See Appendix D.1.3.

We discuss some additional extensions, and limitations, of our method in Appendix D.5.

4.4 Experimental setup

In this section, we outline our tasks and models. We also describe our evaluation and

baselines. For all experiments, we set B to 100. Table 4.1 provides statistics for the

datasets used in experiments. Appendix D.3 contains additional details.

4.4.1 Tasks

In-silico screening for drug discovery. The goal of in-silico screening is to identify

potentially effective drugs to manufacture and test. We use the ChEMBL database

(Mayr et al., 2018) to screen molecules for combinatorial constraint satisfaction, where

given a constraint such as “has property A but not property B,” we want to identify

the subset of molecules from a given set of candidates that have the desired attributes.

We partition the dataset both by molecules and property combinations, so that at test

time the model makes predictions on combinations it has never been tested on before

(after being trained on the same properties, but seen in different combinations), over a

pool of molecules that it has never seen before. Scores for candidate molecules are ob-

tained via an ensemble of directed MPNNs using chemprop (Yang et al., 2019).

Object detection. We consider the task of placing bounding boxes around all objects

of a certain type (such as a person) that are present in an image (of which there may

be few, many, or none). We use the MS-COCO dataset (Lin et al., 2014), a dataset

with images of everyday scenes containing 80 object types (e.g., person, bicycle, dog,

car, etc). We extract typed bounding box candidates (i.e., tuples of both location

and category) using an EfficientDet model (Tan et al., 2020) with non-maximum
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Dataset Input # Examples # Negatives # Positives % Empty
In-silico screening SMILES 5,000 85 (50-97) 15 (3-50) 0.0
Object detection Image 3,000 96 (89-98) 4 (2-11) 1.1
Entity extraction Text 3,453 99 (97-100) 1 (0-3) 20.2

Table 4.1: Dataset statistics (test split). Numbers are reported with respect to the
top B = 100 candidates per example. The median number of positives and negatives
per example is given, in addition to their 16th-84th percentiles. We also report the
percentage of examples that have “empty” label sets with no positives (i.e., |z| = 0).

suppression. True positives are defined as boxes that have an intersection over union

(IoU) > 0.5 with a matching annotation of the same type.

Entity extraction. In entity extraction, we are interested in identifying all named

entities that appear in a tokenized sentence x of length l, where x = {w1, . . . , wl}, and

classifying them into appropriate categories. A named entity is a proper noun, demar-

cated by a contiguous span {wstart, . . . , wend} ⊆ x of the input sentence, that can be

associated with a particular class of interest (such as a person, location, organization,

or product). We report results on the CoNLL NER dataset (Tjong Kim Sang and

De Meulder, 2003), where we use the PURE span-based entity extraction model of

Zhong and Chen (2021) to individually score all O(l2) candidate spans. We consider

exact span predictions of the correct category to be true positives, and all others to be

false positives. Many sentences contain no entities, and have no true positives.

4.4.2 Evaluation

For each task we learn all models on a training set, perform model selection on a

validation set, and report final results as the average over 1000 random trials on a

test set, where in each trial we partition the data into 80% calibration (x1:n) and 20%

prediction points (xn+1). To compare across k, we plot each metric as a function of

k (up to k = B), and compute the area under the curve (AUC). Shaded regions show

the 16-84th percentiles across trials. In addition to TPR (our main metric), as our

method already guarantees marginal FP-validity, we also compute the size-stratified

k-FP (SSFPk) and (k, δ)-FP (SSFPk,δ) violation (Angelopoulos et al., 2021b), see
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Appendix D.3.1. Lower size-stratified violation suggests that a classifier has better

conditional coverage. We also report average FP results in Table 4.2.

4.4.3 Baselines

We compare our FP-CP (NN) method using DeepSets to the following baselines:

1. Top-k. We naïvely take the top k′ fixed predictions for any xn+1, where k′ is found

using average performance on the calibration set (without any correction factors,

so it is not guaranteed to be valid). Note that this k′ can be (and mostly is)

different than the user-specified k for FP (i.e., it will be higher).

2. Outer Sets @ 90. We use the (one-sided) multi-label conformal prediction tech-

nique of Cauchois et al. (2021) to bound P(Zn+1 ⊆ Cϵ(Xn+1)) ≥ 0.90. Though

not directly comparable, we use this to benchmark our method against sets that

preserve marginal coverage (at a typical level). For simplicity, we use the direct in-

ner/outer method without dynamic CQC quantiles (which we found to be similar).

3. Inner Sets. Again, we use the (one-sided) method of Cauchois et al. (2021), this

time to bound P(Cϵ(Xn+1) ⊆ Zn+1) ≥ 1− ϵ at level ϵ = k/B (recall that B ≤ |Y|

is the truncation parameter, and the FP upper bound) for k-FP control and at

level ϵ = δ for (k, δ)-FP control. It is straightforward to show that these levels of

ϵ conservatively achieve k-FP and (k, δ)-FP control.

4. Independent scoring (max). We take F(x,S) to be the maximum individual label

uncertainty in S, max{1− pθ(yc ∈ Z | x) : yc ∈ S}. This is equivalent to choosing

labels independently. Calibration uses the same FP-CP algorithm (the maximum

score functions as a drop-in replacement for the NN-based set score).

5. Cumulative scoring (sum). We take F(x,S) to be the cumulative individual label

uncertainty in S, ∑yc∈S 1 − pθ(yc ∈ Z | x). We calibrate pθ using Platt scal-

ing (Platt, 1999). Calibration uses the same FP-CP algorithm.

Baseline (1) contrasts our approach with what is normally a “first thought” in prac-
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(a) In-silico screening (b) Object detection (c) Entity extraction

Figure 4-2: (k, δ)-FP results as a function of k up to k = B = 100 (δ = 0.1). The top
row plots SSFPk,δ violation (lower is better). The bottom row plots TPR (higher is
better). Compared to the other baselines, the DeepSets approach (NN) has the best
(or close to) TPR AUC, while having the lowest (or close to) SSFPk,δ violation.

tice, (2) and (3) test the efficacy of our system over existing techniques, and (4) and

(5) demonstrate our FP-CP calibration with simpler alternatives for F .

4.5 Experimental results

We now present our empirical results. Figure 4-3 and Figure 4-2 present AUC results,

computed over all values of ϵ, for all tasks. Table 4.2 reports additional absolute

results for a number of reference k values, focusing on the in-silico screening task.

Appendix D.4 contains additional discussion.

Limiting false positives. The top rows of Figures 4-2 and 4-3 show the size-stratified

violation for (k, δ)-FP and k-FP, respectively. Across values of k, FP-CP (NN) typi-

cally achieves substantially lower worst-case violations than either max or sum scoring

alternatives, (though, in some cases, the magnitude of SSFP can depend strongly on

k). The Top-k and Inner Sets approaches also prevent large violations (though, by

itself, this result is not necessarily impressive, as always returning an empty set will
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(a) In-silico screening (b) Object detection (c) Entity extraction

Figure 4-3: k-FP results as a function of k up to k = B = 100. The top row plots
SSFPk violation (lower is better). The bottom row plots TPR (higher is better). As
k grows, our methods achieve high TPR. Consistent with Figure 4-2, the DeepSets
(NN) approach demonstrates high TPR and low SSFPk across tasks.

lead to SSFP = 0). When accounting for TPR (bottom rows), we see that our FP-CP

methods demonstrate stronger performance.

Maximizing true positive rates. The bottom rows of Figures 4-2 and 4-3 plot TPR

and AUC across k, while Table 4.2 details results for several representative individual

configurations. On the screening task, we see that our FP-CP (NN) method provides

significantly higher TPR than other baselines. For example, allowing no more than 5

false positives leads to a TPR of 36.1% with k-FP. In comparison, the TPR of Top-k

is only 29.8%. As might be expected, the advantage of the DeepSets approach under-

lying FP-CP (NN) over simpler FP-CP scoring mechansims is more pronounced for

tasks with higher cardinality label sets, such as in-silico screening versus object detec-

tion of entity extraction (see a comparison of dataset characteristics in Table 4.1). Fur-

thermore, since entity extraction contains a high proportion of examples with “empty”

label sets, we can see that its TPR asymptotes at the natural rate of answerable ex-

amples. Nevertheless, in general, all FP-CP methods (with max, sum, or NN scoring)

provide high TPR (exceeding non FP-CP methods) even at low values of k.
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Top k Inner Sets FP-CP (Max) FP-CP (Sum) FP-CP (NN)
k-FP:

E[FP] TPR E[FP] TPR E[FP] TPR E[FP] TPR E[FP] TPR

k = 5 4.59 29.8 0.14 2.5 4.98 27.5 4.99 34.1 4.98 36.1
k = 15 14.47 53.4 0.88 9.5 14.98 50.7 14.99 58.8 14.99 59.9
k = 25 24.51 68.0 1.49 13.4 24.98 66.8 24.99 73.1 24.99 73.2
k = 35 34.54 78.2 2.45 18.4 34.97 78.4 34.99 82.6 34.99 82.5

(k, δ)-FP with 1− δ = 0.9:
FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR

k = 5 100.0 20.5 96.6 6.36 90.0 15.8 90.0 27.2 90.0 31.6
k = 15 94.7 42.4 99.5 6.36 90.0 26.7 90.0 47.4 90.0 55.3
k = 25 96.6 55.7 100.0 6.36 90.0 37.4 90.0 62.3 90.0 69.0
k = 35 97.5 66.2 100.0 6.36 90.0 49.1 90.0 74.0 90.0 79.0

Table 4.2: Results for the in-silico screening task on the ChEMBL dataset. For k-FP
validity, we report the empirical average of false positives in the prediction sets. For
(k, δ)-FP validity we report the percentage of prediction sets with ≤ k false positives.
TPR is expressed as a percent. Our FP-CP methods meet our target thresholds;
using the Inner Sets approach does too, but is conservative (as expected). Applying
FP-CP calibration with our DeepSets model (NN) yields substantially higher TPR
across various tolerance levels compared to the other baseline scoring mechanisms.

Task TPR Avg. FP Avg. Size
In-silico screening 97.2 63.6 86.6
Object detection 96.1 32.4 38.2
Entity extraction 75.0 0.77 2.31

Table 4.3: Outer Sets applied at coverage 0.90 for comparison. Note that as some
examples do not have any positives, full coverage in the typical sense is not always
achievable. Average FP and set size are reported as absolute values.

Comparison to conformal coverage methods. Table 4.3 gives the results of the Outer

Sets method at level 0.90 (a typical tolerance). Indeed, we achieve strong TPR

(97.2% for the in-silico screening task), but also incur a high false positive cost in the

process (63.6 average FP for in-silico screening). In contrast, our method allows us to

directly limit false positives, without losing high TPR empirically (e.g., equivalently

controlling for≤ 63.6 FP, we acheive 97.0% TPR on the in-silico screening task).

75



4.6 Conclusion

Conformal prediction, in its standard formulation, already grants theoretical perfor-

mance guarantees that can be critical in many applications. However, as also shown

in Chapter 3, naïve applications of CP can yield disappointing results. Even if the

target coverage is upheld, the predicted sets may be too large, and too noisy, to be

practical. In this chapter, we proposed a method for trading coverage guarantees

in favor of strict limits on the number of false positives contained in our prediction

sets. Our results show that our method yields classifiers that (1) still achieve strong

true positive rates compared to their coverage-seeking counterparts, and (2) predict

meaningful output sets with effectively controlled numbers of false positives.
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5

Few-shot Conformal Prediction

In this chapter, we develop a new approach to conformal prediction when the target

task has limited data available for training. Conformal prediction identifies a small

set of promising output candidates with guarantees that the set contains the correct

answer with high probability. When training data is limited, however, the predicted

set can easily become unusably large. We obtain substantially tighter prediction sets

while maintaining desirable marginal guarantees by casting conformal prediction as a

meta-learning paradigm over exchangeable collections of auxiliary tasks. Our confor-

malization algorithm is simple, fast, and agnostic to the choice of underlying model,

learning algorithm, or dataset. We demonstrate the effectiveness of this approach

across a number of few-shot classification and regression tasks in natural language

processing, computer vision, and computational chemistry for drug discovery.

5.1 Introduction

Accurate estimates of uncertainty are important for difficult or sensitive prediction

problems that have variable accuracy (Amodei et al., 2016; Jiang et al., 2012, 2018; An-

gelopoulos et al., 2021b). Few-shot learning problems, in which training data for the

target task is severely limited, pose a discouragingly compounded challenge: in gen-

eral, not only is (1) making accurate predictions with little data hard, but also (2) rig-
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orously quantifying the uncertainty in these few-shot predictions is even harder.

We are interested in creating confident prediction sets that provably contain the cor-

rect answer with high probability (e.g., 95%), while only relying on a few in-task

examples. We continue our focus on conformal prediction (Vovk et al., 2005), where

given n examples (Xj, Yj) ∈ X × Y , j = 1, . . . , n as training data, that have been

drawn exchangeably from some underlying distribution P we aim to construct a set-

valued output, Cϵ(Xn+1), for a new exchangeable test point, Xn+1), that contains Yn+1

with distribution-free marginal coverage at a significance level ϵ ∈ (0, 1), i.e.,

P (Yn+1 ∈ Cϵ(Xn+1)) ≥ 1− ϵ. (5.1)

A conformal model is considered to be valid if the frequency of error, Yn+1 6∈ Cϵ(Xn+1),

does not exceed ϵ. The challenge for few-shot learning, however, is that as n → 0,

standard CP methods quickly result in outputs Cϵ(Xn+1) so large that they lose all

utility (e.g., a trivially valid classifier that returns all of Y). A conformal model is

only considered to be efficient if E[|Cϵ(Xn+1)|] is relatively small.

In this chapter we approach this frustrating data sparsity issue by casting conformal

prediction as a meta-learning paradigm over exchangeable collections of tasks. By

being exposed to a set of similar, auxiliary tasks, our model can learn to learn quickly

on the target task at hand. As a result, we can increase the data efficiency of our

procedure, and are able to produce more precise—and confident—outputs.

Specifically, we use the auxiliary tasks to meta-learn both a few-shot model and a

quantile predictor. The few-shot model provides relevance scores (i.e., nonconformity

scores, see §1.3) for each possible label candidate y ∈ Y , and the quantile predictor

provides a threshold rule for including the candidate y in the prediction set, Cϵ(Xn+1),

or not. A good few-shot model should provide scores that clearly separate correct

labels from incorrect labels—much like a maximum-margin model. Meanwhile, a good

quantile predictor—which is intrinsically linked to the specific few-shot model used—

should quantify what few-shot scores correspond to relatively “high” or relatively
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Figure 5-1: A demonstration of our conformalized few-shot learning procedure. Given
a base model (e.g., a prototypical network for classification tasks (Snell et al., 2017))
and a few demonstrations of a new task, our method produces a prediction set that
provably contains the correct answer with some desired probability. Like other meta-
learning algorithms, our approach leverages information gained from t other, similar
tasks—here to make more precise and confident predictions on the new task, Tt+1.

“low” values for that task (i.e., as the name suggests, they infer the target quantile of

the expected distribution of few-shot scores). Both of these models must be able to

operate effectively given only a few examples from the target task, hence how they

are meta-learned over auxiliary tasks becomes crucial.

Consider the example of image classification for novel categories (see Figure 5-1 for an

illustration). The goal is to predict the class of a new test image out of several never-

before-seen categories—while only given a handful of training examples per category.

In terms of auxiliary tasks, we are given access to similarly-framed image classification

tasks (e.g., cat classes instead of dog classes as in Figure 5-1). In this case, we can com-

pute relevance by using a prototypical network (Snell et al., 2017) to measure the Eu-

clidean distance between the test image’s representation and the average representa-

tion of the considered candidate class’s support images (i.e., prototype). Our quantile

predictor then computes a “distance cut-off” that represents the largest distance be-

tween a label prototype and the test example that just covers the desired percentage of

correct labels. Informally, on the auxiliary tasks, the prototypical network will learn

efficient features, while the quantile predictor will learn what typically constitutes ex-

pected prototypical distances for correct labels when using the trained network.
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We demonstrate that these two meta-learned components combine to make an ef-

ficient and simple-yet-effective approach to few-shot conformal prediction, all while

retaining desirable theoretical performance guarantees. We empirically validate our

approach on image classification, relation classification for textual entities, and chem-

ical property prediction for drug discovery.

Contributions. In summary, the main results of this chapter are as follows:

• An extension of conformal prediction to few-shot prediction with auxiliary tasks;

• A meta-learning framework for building set-valued classifiers for new target tasks;

• A empirical demonstration of the utility of our method across classification and

regression tasks in NLP, computer vision, and computational chemistry.

5.2 Related work

Conformal prediction. As introduced in §1.3, conformal prediction (Vovk et al.,

2005) provides a model-agnostic and finite-sample, distribution-free method for ob-

taining prediction sets with marginal coverage guarantees. Most pertinent to our

work, Linusson et al. (2014) carefully analyze the effects of calibration set size on

CP performance. For precise prediction sets, they recommend using at least a few

hundred examples for calibration—much larger than the few-shot settings considered

here. When the amount of available data is severely restricted, the predicted sets

typically become unusably large. Johansson et al. (2015) and Carlsson et al. (2015)

introduce similarly motivated approximations to CP with small calibration sets via

interpolating calibration instances or using modified p-value definitions. These meth-

ods are heuristics, however, and fail to provide finite-sample guarantees. Our work

also complements several recent directions that explore conformal prediction in the

context of various validity definitions, such as conditional, risk-controlling, admissible,

or equalized coverage (Chernozhukov et al., 2019; Cauchois et al., 2021; Kivaranovic

et al., 2020; Romano et al., 2019b, 2020a; Bates et al., 2020; Fisch et al., 2021a).

Few-shot learning. Despite the many successes of machine learning models, learning
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from limited data is still a significant challenge (Bottou and Bousquet, 2008; Lake

et al., 2015; Wang et al., 2020b). Our work builds upon the extensive few-shot learning

literature by introducing a principled way of obtaining confidence intervals via meta-

learning. Meta-learning has become a popular approach to transferring knowledge

gained from auxiliary tasks—e.g., via featurizations or computed statistics (Edwards

and Storkey, 2017)—to a target task that is otherwise resource-limited (Vinyals et al.,

2016; Finn et al., 2017; Snell et al., 2017; Bertinetto et al., 2019; Bao et al., 2020).

We leverage the developments in this area for our models (see Appendix E.2.1).

5.3 Few-shot meta conformal prediction

We now propose a general meta-learning paradigm for training efficient conformal

predictors, while relying only on a very limited number of in-task examples.

At a high level, like other meta-learning algorithms, our approach leverages informa-

tion gained from t similar tasks in order to perform better on task t + 1. In our

setting we achieve this by learning a more statistically powerful nonconformity mea-

sure and quantile estimator than would otherwise be possible using only the limited

data available for the target task. Our method uses the following recipe:

1. Meta-learning. We meta-learn (and calibrate) a nonconformity measure and quan-

tile predictor over a set of auxiliary tasks;

2. Target task adaptation. We adapt our meta nonconformity measure and quantile

predictor using the examples we have for our target task;

3. Prediction. We compute a prediction set for an input x ∈ X by including all labels

y ∈ Y whose meta nonconformity score is below the predicted 1− ϵ quantile.

Our procedure applied to classification is sketched in Algorithm 6; regression is similar.

Our framework is model agnostic, in that it allows for practically any meta-learning

implementation for both nonconformity and quantile prediction models.
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Algorithm 6 Meta conformal prediction with auxiliary tasks.
Definitions: T1:t+1 are exchangeable tasks. Itrain ∪ Ical are the t tasks used for meta-training and
meta-calibration. z1:k ∈ (X × Y)k are the k support examples for target task Tt+1. x ∈ X is the
target task input. Y is the label space. ϵ is the significance.

1: function predict(x, z1:k, T1:t, ϵ)
2: # Learn N and P on meta-training tasks (§5.3.2).
3: # N and P are meta nonconformity/quantile models.
4: N , P1−ϵ ← train(Ti, i ∈ Itrain)
5: # Predict the 1− ϵ quantile.
6: Q̂t+1 ← P1−ϵ(z1:k; ϕmeta)
7: # Initialize empty output set.
8: Mϵ ← {}
9: # (Note that for regression tasks, where |Y| =∞, for certain N the following

10: # simplifies to a closed-form interval, making it tractable—see §1.3.)
11: for y ∈ Y do
12: # Compute the nonconformity score for label y.
13: V̂

(x,y)
t+1,k+1 ← N ((x, y), z1:k; θmeta)

14: # Compare to the calibrated quantile (§5.3.3). Keep label y if deemed conformal.
15: if V̂

(x,y)
t+1,k+1 ≤ Q̂t+1 + Λ(1− ϵ, Ical) then

16: Mϵ ← Mϵ ∪ {y}
17: return Mϵ

In the following sections, we break down our approach in detail. In §5.3.1 we precisely

formulate our few-shot learning setup with auxiliary tasks. In §5.3.2 and §5.3.3 we de-

scribe our meta-learning and meta-calibration setups, respectively. Finally, in §5.3.4

we discuss further theoretical extensions. For a complete technical description of our

modeling choices and training strategy for our experiments, see Appendix E.2.

5.3.1 Task formulation

We assume access to t auxiliary tasks, Ti, i = 1, . . . , t, that we wish to leverage to pro-

duce tighter uncertainty sets for predictions on a new task, Tt+1. Furthermore, we as-

sume that these t+1 tasks are exchangeable with respect to some task distribution, PT .

Here, we treat PT as a distribution over random distributions, where each task Ti ∈ T

defines a task-specific distribution, PXY ∼ PT , over examples (X,Y ) ∈ X × Y . The

randomness is in both the task’s relation between X and Y, and the task’s data.

For each of the t auxiliary tasks, we do not make any assumptions on the amount
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of data we have (though, in general, we expect them to be relatively unrestricted).

On the new task Tt+1, however, we only assume a total of k exchangeable training

examples. Our goal is then to develop a task-agnostic uncertainty estimation strategy

that generalizes well to new examples from the task’s unseen test set, (Xtest
t+1 , Y

test
t+1 ).1

Specifically, we desire finite-sample marginal task coverage, as follows:

Definition 5.3.1 (Task validity). Let Mϵ be a set-valued predictor. Mϵ is considered

to be valid across tasks if for any task distribution PT and ϵ ∈ (0, 1), we have

P
(
Y test

t+1 ∈Mϵ

(
Xtest

t+1

))
≥ 1− ϵ. (5.2)

Note that we require the marginal coverage guarantee above to hold on average across

tasks—which is nuanced difference from the condition expressed in Eq. (5.1) which

holds on average over calibration and test samples within a task.

5.3.2 Meta-learning conformal prediction models

Given our collection of auxiliary tasks, we would like to meta-learn both (1) an ef-

fective nonconformity measure that is able to adapt quickly to a new task using only

k examples; and (2) a quantile predictor that is able to robustly identify the 1 − ϵ

quantile of that same nonconformity measure using the same k examples.

Prior to running our meta-learning algorithm of choice, we split our set of t auxiliary

tasks into disjoint sets of training tasks, Itrain, and calibration tasks, Ical, where

|Itrain|+ |Ical| = t. See Table 5.1 for an overview of the different splits. We use Itrain

to learn our meta nonconformity measures and quantile predictors, which we discuss

now. Additional technical details are contained in Appendix E.2.1.

1For ease of notation, we write Xtest
t+1 to denote the (k + 1)th example of task Tt+1, i.e., the new

test point after observing k training points. This is equivalent to test point Xn+1 from §1.3.

83



Task Split # Tasks # Examples / Task

Auxiliary
{

Meta-training |Itrain| � k
Meta-calibration |Ical| k + mi

Test 1 k

Table 5.1: An overview of the data assumptions for a single test task “episode”. We
use |Itrain|+|Ical| = t total auxiliary tasks to create more precise uncertainty estimates
for the (t + 1)th test task. This is repeated for each test task (§5.4). mi � k is the
number of extra examples per calibration task that are used to compute an empirical
CDF when finding Λ(β; Ical)—it may vary per task.

Meta nonconformity measure

Let N ((x, y),D; θmeta) be a meta nonconformity measure, where θmeta are meta pa-

rameters learned over the auxiliary tasks in Itrain, and D is a test dataset following

notation in §1.3. Since θmeta is fixed after the meta training period, N preserves

exchangeability over new collections of exchangeable tasks (i.e., Ical) and task exam-

ples. Let Zi,j := (Xi,j, Yi,j), j = 1, . . . , k be the few-shot training data for a task Ti

(here i is the task index, while j is the example index). Following the formulation

of “full” CP, given a new test point x ∈ X and candidate pairing (x, y), the meta

nonconformity scores are computed as

V
(x,y)

i,j := N (Zi,j, Zi,1:k ∪ {(x, y)}; θmeta),

V
(x,y)

i,k+1 := N ((x, y), Zi,1:k ∪ {(x, y)}; θmeta).
(5.3)

As an example, Figure 5-2 demonstrates how we compute V (x,y)
i,k+1 using the distances

from a meta-learned prototypical network following the setting in Figure 5-1.

Computing all k + 1 scores |Y| times is typically tractable due to the few number of

examples (e.g., k ≈ 16) and the underlying properties of the meta-learning algorithm

supporting N . For example, prototypical networks only require computing a forward

pass. A naive approach to few-shot conformal prediction is to exploit this efficiency,

and simply run full CP using all k + 1 data points. Nevertheless, though a strong

baseline, using only k+ 1 points to compute an empirical quantile is still suboptimal.

84



Figure 5-2: An example of using a prototypical network (Snell et al., 2017) to com-
pute meta nonconformity scores. If N is well-trained, the distance between the test
point and the correct class prototype should be small, and the distance to incorrect
prototypes large, even when the number of in-task training examples is limited.

As we discuss next, we choose to regress the desired quantile directly from Zi,1:k, and

disregard the empirical quantile completely. Since we predict the quantile instead of

relying on the empirical quantile, we do not have to retain exchangeability for Zi,1:k.

As a result, we do not include (x, y) when calculating V (x,y)
i,j , as this is faster.

Meta quantile predictor

Let Pβ(D;ϕmeta) be a meta β-quantile predictor, where ϕmeta are the meta parameters

learned over the auxiliary tasks in Itrain. Pβ is trained to predict the β-quantile of F ,

where F is the underlying task-specific distribution of nonconformity scores—given

D, a dataset of Z = (X,Y ) pairs sampled from that task. As some intuition, recall

that in calculating Quantile(β;F ) given exchangeable samples v1:n ∼ F , we implicitly

need to estimate P(Vn+1 ≤ v | v1:n). For an appropriate parameterization ψ of F , de

Finetti’s theorem for exchangeable sequences allows us to write

P(Vn+1 ≤ v | v1:n) ∝
v∫

−∞

∫
Ψ

p(v | ψ)
n∏

i=1
p(vi | ψ)p(ψ)dψdv. (5.4)

In this sense, meta-learning over auxiliary task distributions may help us learn a

better prior over latent parametrizations ψ—which in turn may help us better model
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Figure 5-3: An illustration of using our quantile predictor Pβ to infer the β-quantile of
the distribution of V test

i,k+1, given the few examples from Ti’s training set. The numbers
above each image reflect the leave-one-out scores we use as inputs, see Eq. (5.6).

the β-quantile than we could have, given only k samples and nothing else.

We develop a simple approach to modeling and learning Pβ. Given the training

examples Zi,1:k, we use a deep sets model (Zaheer et al., 2017) parameterized by ϕmeta

to predict the β-quantile of V test
i,k+1, the random variable representing the nonconformity

score of the test point, Zi,k+1 := (Xi,k+1, Yi,k+1). We optimize ϕmeta as

ϕmeta := min
ϕ

∑
i∈Itrain

∣∣∣Pβ

(
Zi,1:k;ϕ

)
−Quantile

(
β;V test

i,k+1

)∣∣∣2 (5.5)

where we estimate the target, Quantile
(
β;V test

i,k+1

)
, using m� k extra examples sam-

pled from the training task. In practice, we found that choosing to first transform

Zi,1:k to leave-one-out meta nonconformity scores,

Li,j := N
(
Zi,j, Zi,1:k \ Zi,j; θmeta

)
, (5.6)

and providing Pβ with these scalar leave-one-out scores as inputs, performs reasonably

well and is simple to implement.2 Inference using Pβ is illustrated in Figure 5-3.

Training strategy

The meta nonconformity measure N and meta quantile predictor Pβ are tightly cou-

pled, as given a fixed N , Pβ learns to model its behavior on new data. A straightfor-

ward, but data inefficient, approach to training N and Pβ is to split the collection of
2We also experimented with directly encoding Zi,1:k, but did not find that it added much benefit.
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Figure 5-4: An illustration of our strategy for learning meta nonconformity measures,
N , and meta quantile predictors, P1−ϵ. As P1−ϵ is trained on the outputs of N , we
adopt a cross-fold procedure where we first train N on a fraction of the data, and
evaluate nonconformity scores on the held-out fold. We repeat this process for all kf

folds, and then aggregate them all for training P1−ϵ.

auxiliary tasks in Itrain in two, i.e., Itrain = I(1)
train ∪ I

(2)
train, and then train N on I(1)

train,

followed by training Pβ on N ’s predictions over I(2)
train. The downside is that both N

and Pβ may be sub-optimal, as neither can take advantage of all of Itrain.

We employ a slightly more involved, but more data efficient approach, where we

split Itrain into kf folds, i.e., Itrain = ⋃kf

f=1 I
(f)
train. We then train kf separate meta

nonconformity measures Ŝf , where we leave out fold f from the training data. Using

Ŝf , we compute nonconformity scores on fold f ’s data, aggregate these nonconformity

scores across all kf folds, and train the meta quantile predictor on this union. Finally,

we train another nonconformity measure on all of Itrain, which we use as our ultimate

Ŝ. This way we are able to use all of Itrain for training both N and Pβ. This process

is illustrated in Figure 5-4. Note that it is not problematic for Pβ to be trained on

the collection of N instances trained on kf − 1 folds, but then later used to model

one N trained on all the data, since it will be calibrated (next, in §5.3.3).

5.3.3 Calibrating meta-learned conformal prediction

Though Pβ may obtain low empirical error after training, it does not have any guar-

antees out-of-the-box. Given our held-out set of auxiliary tasks Ical, however, we can

quantify the uncertainty in Pβ (i.e., how far off it may be from the true quantile),
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and calibrate it accordingly. The following lemma formalizes our procedure:

Lemma 5.3.2 (Meta calibration). Let Q̂i, i ∈ Ical be (exchangeable) meta β-quantile

predictions produced by Pβ for tasks Ti, i ∈ Ical,

Q̂i := Pβ(Zi,1:k;ϕmeta) (5.7)

Let V test
i,k+1 be the meta nonconformity score for a new sample from task Ti, where Fi

is its distribution function. Define the correction Λ̂(β; Ical) as

Λ̂(β; Ical) := inf
{
λ ∈ R : 1

|Ical|+ 1
∑

i∈Ical

Fi

(
Q̂i + λ

)
≥ β

}
. (5.8)

We then have that P
(
V test

t+1,k+1 ≤ Q̂t+1 + Λ̂(β; Ical)
)
≥ β.

Proof. See Appendix E.1.1

It is important to clarify at this point that calculating Λ̂(β; Ical) requires knowledge of

the true meta nonconformity distribution functions, Fi, for all calibration tasks. For

simplicity, we write Lemma 5.3.2 and the following Theorem 5.3.3 as if these distribu-

tion functions are indeed known (again, only for calibration tasks). In practice, how-

ever, we typically only have access to an empirical distribution function over mi task

samples. In this case, Lemma 5.3.2 holds in expectation over task samples Zi,k:k+mi
,

as for an empirical distribution function of m points, F̂m, we have E[F̂m(v)] = F (v).

For large enough mi, concentration results also suggest that we can approximate Fi

with little error given a particular sample (this is the focus of §5.3.4).

That said, in a nutshell, Lemma 5.3.2 allows us to adjust for the error in Pβ, such

that it is guaranteed to produce valid β-quantiles on average. We can then perform

conformal inference on the target task by comparing each meta nonconformity score

for a point x ∈ X and candidate label y ∈ Y to the calibrated meta quantile, and

keep all candidates with nonconformity scores that fall below it.
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Theorem 5.3.3 (Meta CP). Assume that tasks Ti, i ∈ Ical and Tt+1 are exchangeable

with known nonconformity distribution functions Fi, ∀i ∈ Ical. For any meta quantile

predictor P1−ϵ, meta nonconformity measure N , and tolerance ϵ ∈ (0, 1), define the

meta conformal set (based on Ical and the k examples of task Tt+1) at x ∈ X as

Mϵ(x) :=
{
y ∈ Y : V (x,y)

t+1,k+1 ≤ Q̂t+1 + Λ̂(1− ϵ; Ical)
}
, (5.9)

where Q̂t+1 is the result of running P1−ϵ on the k training examples of task Tt+1,

Q̂t+1 := Pβ(Zt+1,1:k;ϕmeta). (5.10)

Then Mϵ(Xtest
t+1) satisfies Eq. (5.2).

Proof. See Appendix E.1.2

Theorem 5.3.3 guarantees coverage marginally over tasks, as specified in Eq. (5.2).

Naturally, we might also want to ask how well we can be guaranteed to perform on a

specific task. This strongly depends on the quality of the quantile predictor P1−ϵ, as

well as how many in-task examples we have for the target task. For example, if the

predictor is consistent, its predictions will improve with k.

Definition 5.3.4 (Consistency). We say P1−ϵ is an asymptotically consistent estimator

of the 1 − ϵ quantile if limk→∞P1−ϵ(Zi,1:k;ϕmeta) p−→ Quantile(1 − ϵ, Fi), where k is

the number of in-task examples for task ti ∈ T .

In other words, asymptotically consistent P1−ϵ converge in probability to the true

quantile given enough in-task data (where the randomness is over the draw of in-task

data). Under this assumption, and the assumption that tasks are i.i.d. with continu-

ous distribution functions, we achieve task-conditional coverage asymptotically.

Proposition 5.3.5 (Asymptotic meta CP). Assume that tasks Ti, i ∈ Ical and Tt+1

are i.i.d., and that Fi are known and continuous. If P1−ϵ is also asymptotically
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consistent, then the meta conformal set Mϵ based on P1−ϵ achieves asymptotically

valid task-conditional coverage, where

lim
k→∞

P
(
P
(
Y test

t+1,k+1 /∈Mϵ(Xtest
t+1,k+1) | Tt+1 = tt+1

)
≤ ϵ

)
= 1 (5.11)

Proof. See Appendix E.1.3.

The outer probability is taken over the k(|Ical| + 1) in-task examples sampled for

quantile prediction for all tasks, while the inner probability is over the test samples

for the target task. Furthermore, Eq. (5.11) bounds the under-coverage rate, but not

the over-coverage rate (i.e., how conservative the predictions are). How conservative

the meta conformal predictor is can also depend on the number of calibration tasks.

Of course, the underlying assumptions of Proposition 5.3.5 are fairly strong. Yet,

at its essence, this result simply claims that as the number of in-task samples k in-

creases, our under-coverage rate becomes vanishingly small on all tasks, not just on

average (for appropriate P1−ϵ and Fi). Intuitively speaking, as we get more in-task

data, we can expect our quantile predictor to be more accurate, and therefore require

less adjustment. By itself, this is not particularly inspiring: after all, standard CP

also becomes viable as k → ∞. Rather, the takeaway is that this desirable behav-

ior is nicely preserved in our meta setup. In Figure 5-6 we demonstrate that in our

experiments P1−ϵ indeed becomes significantly more accurate as k grows.

5.3.4 Approximate meta-learned conformal prediction

Recall that a key assumption in the theoretical results established in the previous

section is that the distribution functions of our calibration tasks (Fi where i ∈ Ical)

are known. In this section we turn to analyze the practical setting where these Fi

must be estimated empirically, i.e.,

F̂mi
(v) := 1

mi

mi∑
j=1

1{V test
i,k+j ≤ v}, (5.12)
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where F̂mi
(v) is computed over an empirical sample of mi points. In this case, Theo-

rem 5.3.3 holds only in expectation over the mi samples chosen for each the calibration

tasks, as E[F̂mi
(v)] = Fi(v). However, standard concentration results also suggest

that Fmi
can approximate Fi with little error, given enough empirical samples (which,

in general, we assume we have for our calibration tasks). We now further adapt The-

orem 5.3.3 to be conditionally valid with respect to the specific labeled examples that

are used when replacing each task Fi with its plug-in estimate, F̂mi
.

First, we formalize a PAC-type 2-parameter validity definition (similar to training-

conditional CP in Vovk (2012)):

Definition 5.3.6 ((δ, ϵ) task validity). Mδ,ϵ is (δ, ϵ) task valid if for any task distribu-

tion PT , ϵ ∈ (0, 1), and δ ∈ (0, 1),

P
(
P
(
Y test

t+1 ∈Mδ,ϵ

(
Xtest

t+1

) )
≥ 1− ϵ

)
≥ 1− δ (5.13)

The outer probability is taken over the data samples used to compute Fmi
for each

calibration task, while the inner probability is still over the choice of calibration and

test tasks and their examples (but conditioned on the particular samples chosen to

compute Fmi
for each task). The basic idea is to include a secondary confidence

level δ that allows us to control how robust we are to sampling variance in our

estimation of calibration task quantiles when computing Λ̂(β; Ical), our correction

factor. In practice, this equates to simply adjusting the tolerance ϵ to be slightly

stricter. Proposition 5.3.7 formalizes our sample-conditional approach.

Proposition 5.3.7 (Sample-conditional meta CP). Assume that all |Ical| = l calibration

tasks are i.i.d., where for each task we have a fixed i.i.d. dataset. That is, for task

Ti, we have drawn mi i.i.d. training examples,
(
xi,j, yi,j

)
, j = 1, . . . ,mi. For any

δ ∈ (0, 1), ϵ ∈ (0, 1), and α ∈
(
0, 1− (1− δ) 1

l

)
, define the adjusted ϵ′ as
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ϵ′ ≤ ϵ−

√√√√√−2
l2

 ∑
i∈Ical

γ2
i

 log

1− 1− δ
(1− α)l

 (5.14)

where γi =
√

log(2/α)
2mi

. Then Mδ,ϵ′(Xtest
t+1) satisfies Eq. (5.13).

Proof. See Appendix E.1.4

Remark 5.3.8. This result is still not calibration set-conditional, which would allow for

a fixed set of calibration tasks (versus a marginal guarantee over all tasks). This must

account for a second source of sampling variance (the tasks), and can be addressed

using techniques similar to the one above (see follow-up in Park et al. (2022)).

Remark 5.3.9. Perhaps most importantly, this result is also still not test task-conditional,

which would allow the bound to hold conditioned on a particular test task.

Experimentally, in §5.5 we demonstrate that we can achieve (δ, ϵ) task valid meta

conformal predictors, while only sacrificing a small amount of efficiency relative to

our unadjusted methods, even for low tolerances δ (i.e., δ = 0.1).

5.4 Experimental setup

In this section, we outline the tasks and evaluation procedure we use to empirically

validate our approach. Additional technical details, such as data preprocessing, mod-

eling choices, and training procedures, are included in Appendix E.2.2.

5.4.1 Evaluation tasks

Image classification (CV). As introduced in §5.1, the goal of few-shot image classifica-

tion is to train a computer vision model that generalizes to entirely new image classes

at test time. We use the miniImageNet dataset (Vinyals et al., 2016), a downsam-

pled version of a subset of classes from ImageNet (Deng et al., 2009). miniImageNet

contains 100 classes that are divided into training, validation, and test class splits.
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Within each class partition, we construct K-shot N -way tasks, where K examples

per class are used to discriminate between a sample of N distinct, novel classes. We

use K = 16 and N = 10 in our experiments, for a total of k = 160 training examples.

In order to avoid label imbalanced accuracy, however, we choose to focus on Mon-

drian CP (Vovk et al., 2005), where validity is guaranteed across class type. In other

words, we design our task validity guarantee in Eq. (5.2) to hold conditionally on

the test class (e.g., if discriminating among the dog classes in Figure 5-1, we require

coverage to hold independently over all test images that are Boxers, Gordon Set-

ters, Newfoundlands, etc). Our meta nonconformity measure consists of a standard

prototypical network based on top of a CNN encoder.

Relation classification (NLP). Relation classification focuses on identifying the rela-

tionship between two entities mentioned in a given natural language sentence (here,

English). An example sentence would be “Newton served as the president of the

Royal Society”, where the relation between the entities (Newton, the Royal Society)

can then be inferred as member_of (a predetermined category). In few-shot relation

classification, the goal is to train an NLP model that generalizes to entirely new sen-

tences and entity relationship types at test time. We use the FewRel 1.0 dataset (Han

et al., 2018), which consists of 100 relations derived from 70k Wikipedia sentences.

Like miniImageNet, the relation types are divided into training, validation, and test

splits. We only use training/validation splits (the test set is hidden). Within each

partition, we sample K-shot N -way classification episodes (again with K = 16 and

N = 10 and Mondrian CP for validity per relation type, as in our CV task). Our meta

nonconformity measure consists of a prototypical network on top of a CNN encoder

over GloVe word embeddings (Pennington et al., 2014).

Chemical property prediction (Chem). In-silico screening of chemical compounds

is an important task for drug discovery. Given a new molecule, the goal is to predict

its activity for a target chemical property. We use the ChEMBL dataset (Mayr et al.,

2018), a manually curated database of bioactive molecules with drug-like properties,

and regress the pChEMBL value (a normalized log-activity metric) for individual
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molecule-property pairs. We select a subset of 296 sufficiently diverse assays from

ChEMBL, and divide them into training (208), validation (44), and test (44) splits.

Within each partition, each assay’s pChEMBL values are treated as a real-valued

regression task. We use k = 16 training samples per task. Our meta nonconformity

measure consists of a few-shot, closed-form ridge regressor (Bertinetto et al., 2019) on

top of a directed Message Passing Neural Network molecular encoder trained using

chemprop (Yang et al., 2019). For our full CP regression baseline, we apply ridge

regression at test time via the RRCM algorithm (Nouretdinov et al., 2001) on top of

the same meta-learned MPNN encoded features.

5.4.2 Evaluation metrics

For each experiment, we use proper training, validation, and test meta-datasets. We

use the meta-training tasks to learn all meta nonconformity measures N and meta

quantile predictors P . We perform model selection for CP on the meta-validation

tasks, and report final numbers on the meta-test tasks. For all methods, we report

marginalized results over 5000 random trials, where in each trial we partition the data

into l calibration tasks (T1:l) and one target task (Tt+1). In all plots, shaded regions

show +/- the standard deviation across trials. We use the following metrics:

Prediction accuracy. We measure accuracy as the rate at which the target label

y ∈ Y is contained within the predicted label set. For classification problems, the

prediction is a discrete set, whereas in regression the prediction is a continuous interval.

To be valid, a conformal model should have an average accuracy rate ≥ 1− ϵ. Higher

accuracy rates than necessary, however, are not necessarily better (i.e., we can afford

to choose the output set more aggressively).

Prediction size (�). We measure the average size of the output (i.e., |Cϵ|) as a proxy

for how precise the model’s predictions are. In the conformal prediction this is com-

monly referred to as efficiency (Vovk et al., 2016). The goal is to make the prediction

set as small as possible while still maintaining the desired accuracy. Accordingly, a

lower average prediction size is better (indicated by �).
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(a) Image classification (b) Relation classification (c) Chem. prop. prediction

Figure 5-5: Few-shot CP results as a function of ϵ. The size of the prediction set
of our meta CP approach is better (i.e., smaller) than that of our full CP baseline.
Furthermore, our meta CP approach’s average accuracy is close to the diagonal—
allowing it to remain valid in the sense of Eq. (5.2), but also less conservative when
making predictions. Note that we care more about the right-hand-side behavior of
the above graphs (i.e., larger 1− ϵ), as they correspond to higher coverage.

5.4.3 Baselines

For all experiments, we compare our methods to full conformal prediction, in which

we use a meta-learned nonconformity scores—as defined in Eq. (5.3). Though still

a straightforward application of standard conformal calibration, meta-learning N

with auxiliary tasks already adds significant statistical power to the model over an

approach that would attempt to learn S from scratch for each new task.

In addition to evaluating improvement over full CP, we compare our approach to

other heuristics for making set valued predictions: Top-k and Naive. In Top-k we

always take the k-highest ranked predictions. In Naive we select likely labels until

the cumulative softmax probability exceeds 1− ϵ. While related to our CP approach,

we emphasize that these are only heuristics, and do not give the same theoretical per-

formance guarantees (e.g., raw softmax probabilities are often miscalibrated).
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Task Target Acc. Baseline CP Meta CP (δ, ϵ)-valid Meta CP
(1− ϵ) Acc. |Cϵ| Acc. |Mϵ| Acc. |Mk,ϵ′ |

CV

0.95 1.00 10.00 0.95 3.80 0.96 3.98
0.90 0.94 4.22 0.90 2.85 0.91 2.96
0.80 0.83 2.38 0.80 1.89 0.81 1.95
0.70 0.76 1.94 0.70 1.37 0.71 1.42

NLP

0.95 1.00 10.00 0.95 1.65 0.96 1.71
0.90 0.94 1.84 0.90 1.39 0.91 1.42
0.80 0.83 1.25 0.80 1.12 0.81 1.14
0.70 0.76 1.10 0.70 0.93 0.71 0.94

Chem

0.95 1.00 inf 0.97 3.44 0.99 5.25
0.90 0.94 3.28 0.92 2.62 0.95 3.02
0.80 0.82 2.08 0.82 1.95 0.86 2.16
0.70 0.71 1.59 0.72 1.56 0.76 1.70

Table 5.2: Few-shot CP results for specific ϵ values. We report the empirical accuracy
and raw prediction set size for our two meta CP methods, and compare to our baseline
CP model (full CP with meta-learned N ). For our sample-conditional meta CP
approach, we fix δ = 0.1 (see §5.3.4). Note that CP can produce empty sets if no
labels are deemed conformal, hence the average classification size may fall below 1 for
high error tolerance values of ϵ (i.e., for low 1− ϵ coverage targets).

5.5 Experimental results

In the following, we present our main conformal few-shot results. We evaluate both

our sample-conditional and unconditional meta conformal prediction approaches.

Predictive efficiency. We start by testing how our meta CP approach affects the

size of the prediction set. Smaller prediction set sizes correspond to more efficient

conformal models. We plot prediction set size as a function of ϵ ∈ (0, 1) in Figure 5-5.

Table 5.2 shows results for specific values of ϵ, and also shows results for our sample-

conditional meta CP approach, where we fix 1− δ at 0.9 for all trials (note that the

other meta results in Figure 5-5 and Table 5.2 are unconditional). Across all tasks

and values of ϵ, our meta CP performs the best in terms of efficiency. Moreover,

the average size of the meta CP predictions increases smoothly as a function of ϵ,

while full CP suffers from discrete jumps in performance. Finally, we see that our

sample-conditional (δ = 0.1, ϵ) approach is only slightly more conservative than our
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Figure 5-6: Performance of our quantile predictor Pβ (for β = 0.8) on the CV task
as a function of k. We use the empirical CDF over held-out points to measure the
ECDF(P̂β). As k increases, the predictor converges to the true quantile.

unconditional meta CP method. This is especially true for domains with a higher

number of auxiliary tasks and examples per auxiliary task (i.e., CV and NLP).

Task validity. In support of Theorem 5.3.3, we observe that our meta CP approach is

valid, as the test task accuracy always matches or exceeds the target performance level

(this is measured on average over test task instances). Typically, meta CP is close

to the target 1− ϵ level for all ϵ, which indicates that it is not overly conservative at

any point (which improves the predictive efficiency). On the other hand, our full CP

baseline is only close to the target accuracy when 1− ϵ is near a multiple of 1
k+1 . This

is visible from its “staircase”-like accuracy plot in Figure 5-5. We see that our sample-

conditional approach is slightly conservative, as its accuracy typically exceeds 1 − ϵ.

This is more pronounced for domains with smaller amounts of auxiliary data—which

causes the adjusted ϵ′ ≤ ϵ to be smaller.

Conditional coverage. Figure 5-6 shows the accuracy of our meta quantile predictor

Pβ as a function of k. We compute this by measuring the empirical CDF of Pβ’s

prediction on a multiple test tasks (using a large sample of held-out data), and com-

pare it to the target value β, i.e., ECDF(Pβ) ≈ β if Pβ is good. As expected, as k
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Top-k: CV NLP Naive: CV NLP
Size (k) Acc. Acc. Target Acc. Acc. Size Acc. Size

5 0.96 0.99 0.95 0.97 4.38 0.99 2.98
3 0.88 0.98 0.90 0.94 3.50 0.99 2.45
1 0.60 0.79 0.80 0.88 2.61 0.97 1.94

Table 5.3: Non-conformal baselines (for classification tasks only). Top-k takes a
target size (k), and yields statically sized outputs. Naive takes a target accuracy of
1− ϵ, and yields dynamically sized outputs according to softmax probability mass.

grows, P1−ϵ becomes more accurate. This lessens the need for large correction factors

Λ̂(1− ϵ, Ical), and reduces performance variance across tasks. Accordingly, as argued

in Proposition 5.3.5, this also leads to task-conditional coverage asymptotically.

Baseline comparisons. Table 5.3 gives the results for our non-conformal heuristics,

Top-k and Naive. We see that both approaches under-perform our CP method in

terms of efficiency. Comparing to Table 5.2, we see that we achieve similar accuracy

to Top-k with smaller average sets (while also being able to set ϵ). Similarly, Naive is

uncalibrated and gives conservative results: for a target ϵ we obtain tighter prediction

sets with our meta CP approach.

5.6 Conclusion

The ability to provide performance guarantees and make confidence-aware predictions

is a critical element for many machine learning applications in the real world. Con-

formal prediction can afford remarkable finite-sample theoretical guarantees, but will

suffer in practice when data is limited. In this chapter, we introduced a theoretically

grounded approach to meta-learning few-shot conformal predictor using exchangeable

collections of auxiliary tasks. Our results show that our method consistently improves

performance across multiple diverse domains, and allow us to obtain meaningful and

confident conformal predictors when using only a few in-task examples.
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6

Generalized Conformal Risk Control

In this chapter, we extend conformal prediction to control the expected value of

any monotone loss function. The algorithm generalizes split conformal prediction

together with its coverage guarantee. Like conformal prediction, the conformal risk

control procedure is tight up to an O(1/n) factor. We also introduce extensions

of the idea to distribution shift, quantile risk control, multiple and adversarial risk

control, and expectations of U-statistics. Worked examples from computer vision

and natural language processing demonstrate the usage of our algorithm to bound

the false negative rate, graph distance, and token-level F1-score.

6.1 Introduction

We seek to endow some pre-trained machine learning model with guarantees on its

performance as to ensure its safe deployment. Suppose we have a base model f that is

a function mapping inputs x ∈ X to values in some other space, such as a probability

distribution over classes. Our job is to design a procedure that takes the output of f

and post-processes it into quantities with desirable statistical guarantees.

Split conformal prediction (Vovk et al., 2005; Papadopoulos et al., 2002), which we

have been working with so far (and will henceforth refer to simply as “conformal

prediction”), has been useful in areas such as computer vision (Angelopoulos et al.,
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2021b) and natural language processing (Fisch et al., 2021e) to provide such a guar-

antee. By measuring the model’s performance on a calibration dataset
{
(Xi, Yi)

}n

i=1

of feature-response pairs, conformal prediction post-processes the model to construct

prediction sets that bound the miscoverage,

P
(
Yn+1 /∈ C(Xn+1)

)
≤ α, (6.1)

where (Xn+1, Yn+1) is a new test point, α is a user-specified error rate (e.g., 10%), and

C is a function of the model and calibration data that outputs a prediction set.1 Note

that C is formed using the first n data points, and the probability in Eq. (6.1) is over

the randomness in all n+1 data points (i.e., the draw of both the calibration and test

points). In this chapter, we extend conformal prediction to prediction tasks where

the natural notion of error is not simply miscoverage. In particular, our main result

is that a generalization of conformal prediction provides guarantees of the form

E
[
ℓ
(
C(Xn+1), Yn+1

)]
≤ α, (6.2)

for any bounded loss function ℓ that shrinks as C(Xn+1) grows. We call this a confor-

mal risk control guarantee. Note that Eq. (6.2) recovers the conformal miscoverage

guarantee in Eq. (6.1) when using the miscoverage loss,

ℓ
(
C(Xn+1), Yn+1) = 1{Yn+1 6∈ C(Xn+1)} (6.3)

However, our algorithm also extends conformal prediction to situations where other

loss functions, such as the false negative rate (FNR), are more appropriate.

As an example, consider multilabel classification, where the Yi ⊆ {1, ..., K} are sets

comprising a subset of K classes. Given a trained multilabel classifier f : X → [0, 1]K ,

we want to output sets that include a large fraction of the true classes in Yi. To that

end, we post-process the model’s raw outputs into the set of classes with sufficiently

1For conformal prediction, α plays the same role as ϵ per notation in previous sections.
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high scores, Cλ(x) = {k : f(X)k ≥ 1 − λ}. Note that as the threshold λ grows, we

include more classes in Cλ(x)—i.e., it becomes more conservative. In this case, confor-

mal risk control finds a threshold value λ̂ that controls the fraction of missed classes,

i.e., the expected value of ℓ
(
Cλ̂(Xn+1), Yn+1

)
= 1− |Yn+1 ∩ Cλ(Xn+1)|/|Yn+1|. Setting

α = 0.1 would ensure that our algorithm produces sets Cλ̂(Xn+1) containing ≥ 90%

of the true classes in Yn+1 on average.

6.1.1 Algorithm and preview of main results

Formally, we will consider post-processing the predictions of the model f to create

a function Cλ(·). The function has a parameter λ that encodes its level of conser-

vativeness: larger λ values yield more conservative outputs (e.g., larger prediction

sets). To measure the quality of the output of Cλ, we consider a loss function

ℓ(Cλ(x), y) ∈ (−∞, B] for some B < ∞. We require the loss function to be non-

increasing as a function of λ. Our goal is to choose λ̂ based on the observed data{
(Xi, Yi)

}n

i=1
so that risk control as in Eq. (6.2) holds.

We now rewrite this same task in a more notationally convenient and abstract form.

Consider an exchangeable collection of non-increasing, random functions Li : Λ →

(−∞, B], i = 1, . . . , n+ 1. Throughout the paper, we assume λmax ≜ sup Λ ∈ Λ. We

seek to use the first n functions to choose a value of the parameter, λ̂, in such a way

that the risk on the unseen function is controlled:

E
[
Ln+1

(
λ̂
)]
≤ α. (6.4)

We are primarily motivated by the case where Li(λ) = ℓ(Cλ(Xi), Yi), in which case

the guarantee in Eq. (6.4) coincides with risk control as in Eq. (6.2).

Now we describe the algorithm. Let R̂n(λ) = (L1(λ) + . . . + Ln(λ))/n. Given any

desired risk level upper bound α ∈ (−∞, B), define

λ̂ = inf
{
λ : n

n+ 1
R̂n(λ) + B

n+ 1
≤ α

}
. (6.5)
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When the set is empty, we define λ̂ = λmax. Our proposed conformal risk control

algorithm is to deploy λ̂ on the forthcoming test point. Our main result is that this

algorithm satisfies Eq. (6.4). When the Li are i.i.d. from a continuous distribution,

the algorithm satisfies a tight lower bound saying it is not too conservative,

E
[
Ln+1

(
λ̂
)]
≥ α− 2B

n+ 1
. (6.6)

We show the reduction from conformal risk control to conformal prediction in §6.3.3.

Furthermore, if the risk is non-monotone, then this algorithm does not control the

risk; we discuss this in §6.3.4. Finally, we provide both practical examples and several

theoretical extensions of our procedure in §6.4 and §6.5, respectively.

6.2 Related work

As previously discussed, here we primarily build on split conformal prediction (Pa-

padopoulos et al., 2002); statistical properties of this algorithm including the cover-

age upper bound were studied in (Lei et al., 2018). Recently there have been many

extensions of the conformal algorithm, mainly targeting deviations from exchangeabil-

ity (Tibshirani et al., 2019; Gibbs and Candes, 2021; Barber et al., 2022; Fannjiang

et al., 2022) and improved conditional coverage (Barber et al., 2020; Romano et al.,

2019a; Guan, 2020; Romano et al., 2020b; Angelopoulos et al., 2021b). Most relevant

to us is recent work on risk control in high probability (Vovk, 2012; Bates et al., 2020;

Angelopoulos et al., 2021a) and its applications (Park et al., 2020; Schuster et al.,

2021b, 2022; Sankaranarayanan et al., 2022; Angelopoulos et al., 2022b,c). Though

these works closely relate to ours in terms of motivation, the algorithm presented

herein differs greatly: it has a guarantee in expectation, and neither the algorithm

nor its analysis share much technical similarity with these previous works.

To elaborate on the difference between our work and previous literature, first consider

conformal prediction. The purpose of conformal prediction is to provide coverage

guarantees of the form in Eq. (6.1). The guarantee available through conformal risk
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control, Eq. (6.4), strictly subsumes that of conformal prediction; it is generally im-

possible to recast risk control as coverage control. As a second question, one might

ask whether Eq. (6.4) can be achieved through standard statistical machinery, such

as uniform concentration inequalities. Though it is possible to integrate a uniform

concentration inequality to get a bound in expectation, this strategy tends to be exces-

sively loose both in theory and in practice (see, e.g., the bound of Anthony and Shawe-

Taylor (1993)). The technique herein avoids these complications; it is simpler than

concentration-based approaches, practical to implement, and tight up to a factor of

1/n, which is comparatively faster than concentration would allow. Finally, we target

distribution-free finite-sample control of Eq. (6.4), but as a side-note it is also worth

pointing the reader to the rich literature on functional central limit theorems (David-

son and De Jong, 2000), which are another way of estimating risk functions.

6.3 Conformal risk control

In this section, we establish the core theoretical properties of conformal risk control.

All proofs, unless otherwise specified, are deferred to Appendix F.1.

6.3.1 Risk control

We first show that the proposed algorithm leads to risk control when the loss is

monotone.

Theorem 6.3.1. Assume that Li(λ) is non-increasing in λ, right-continuous, and

Li(λmax) ≤ α, sup
λ
Li(λ) ≤ B <∞ almost surely. (6.7)

Then

E[Ln+1(λ̂)] ≤ α. (6.8)
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Proof. Let R̂n+1(λ) = (L1(λ) + . . .+ Ln+1(λ))/(n+ 1) and

λ̂′ = inf
{
λ ∈ Λ : R̂n+1(λ) ≤ α

}
. (6.9)

Since infλ Li(λ) = Li(λmax) ≤ α, λ̂′ is well-defined almost surely. Since Ln+1(λ) ≤ B,

we know R̂n+1(λ) = n
n+1R̂n(λ) + Ln+1(λ)

n+1 ≤ n
n+1R̂n(λ) + B

n+1 . Thus,

n

n+ 1
R̂n(λ) + B

n+ 1
≤ α =⇒ R̂n+1(λ) ≤ α. (6.10)

This implies λ̂′ ≤ λ̂ when the LHS holds for some λ ∈ Λ. When the LHS is above α

for all λ ∈ Λ, by definition, λ̂ = λmax ≥ λ̂′. Thus, λ̂′ ≤ λ̂ almost surely. Since Li(λ)

is non-increasing in λ,

E
[
Ln+1

(
λ̂
)]
≤ E

[
Ln+1

(
λ̂′
)]
. (6.11)

Let E be the multiset of loss functions {L1, . . . , Ln+1}. Then λ̂′ is a function of

E, or, equivalently, λ̂′ is a constant conditional on E. Additionally, Ln+1(λ)|E ∼

Uniform({L1, ..., Ln+1}) by exchangeability. These facts combined with the right-

continuity of Li imply

E
[
Ln+1(λ̂′) | E

]
= 1
n+ 1

n+1∑
i=1

Li(λ̂′) ≤ α. (6.12)

The proof is completed by the law of total expectation and Eq. (6.11).

6.3.2 A tight risk lower bound

Next we show that the conformal risk control procedure is tight up to a factor 2B/(n+

1) that cannot be improved in general. Like the standard conformal coverage upper

bound, the proof will rely on a form of continuity that prohibits large jumps in the risk

function. Towards that end, we will define the jump function below, which quantifies

the size of the discontinuity in a right-continuous input function l at point λ:

J(l, λ) = lim
ϵ→0+

l(λ− ϵ)− l(λ) (6.13)
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The jump function measures the size of a discontinuity at l(λ). When there is a

discontinuity and l is non-increasing, J(l, λ) > 0. When there is no discontinuity, the

jump function is zero. The next theorem will assume that the probability that Li has

a discontinuity at any pre-specified λ is P(J(Li, λ) > 0) = 0. Under this assumption

the conformal risk control procedure is not too conservative.

Theorem 6.3.2. In the setting of Theorem 6.3.1, further assume that the Li are i.i.d.,

Li ≥ 0, and for any λ, P (J(Li, λ) > 0) = 0. Then

E
[
Ln+1

(
λ̂
)]
≥ α− 2B

n+ 1
. (6.14)

Proof. See Appendix F.1.1.

This bound is tight for general monotone loss functions, as we show next.

Proposition 6.3.3. In the setting of Theorem 6.3.2, for any ϵ > 0, there exists a loss

function and α ∈ (0, 1) such that

E
[
Ln+1

(
λ̂
)]
≤ α− 2B − ϵ

n+ 1
. (6.15)

Proof. See Appendix F.1.2.

Since we can take ϵ arbitrarily close to zero, we conclude that the factor 2B/(n+ 1)

in Theorem 6.3.2 is required in the general case.

6.3.3 Conformal prediction reduces to risk control

Conformal prediction can be thought of as controlling the expectation of an indicator

loss function. Recall that the risk upper bound Eq. (6.2) specializes to the conformal

coverage guarantee in Eq. (6.1) when the loss function is the indicator of a miscover-

age event. The conformal risk control procedure specializes to conformal prediction

under this loss function as well. However, the risk lower bound in Theorem 6.3.2 has
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a slightly worse constant than the usual conformal guarantee. We now describe these

correspondences.

First, we show the equivalence of the algorithms. In conformal prediction, we have

conformal scores s(Xi, Yi) for some score function s : X ×Y → R. Based on this score

function, we create prediction sets for the test point Xn+1 as

Cλ̂(Xn+1) =
{
y : s(Xn+1, y) ≤ λ̂

}
, (6.16)

where λ̂ is the conformal quantile, a parameter that is set based on the calibration

data. In particular, conformal prediction chooses λ̂ to be the d(n + 1)(1 − α)e/n

sample quantile of {s(Xi, Yi)}n
i=1. To formulate this in the language of risk control,

we consider a miscoverage loss LCvg
i (λ) = 1{Yi /∈ Ĉλ(Xi)} = 1{s(Xi, Yi) > λ}. Direct

calculation of λ̂ from Eq. (6.5) then shows the equivalence of the proposed procedure

to conformal prediction:

λ̂ = inf
{
λ : 1

n+ 1

n∑
i=1

1{s(Xi, Yi) > λ}+ 1
n+ 1

≤ α

}

= inf
{
λ : 1

n

n∑
i=1

1{s(Xi, Yi) ≤ λ} ≥ d(n+ 1)(1− α)e
n

}
︸ ︷︷ ︸

conformal prediction algorithm

.
(6.17)

Next, we discuss how the risk lower bound relates to its conformal prediction equiv-

alent. In the setting of conformal prediction, Lei et al. (2018) proves that P(Yn+1 /∈

Cλ̂(Xn+1)) ≥ α − 1/(n + 1) when the conformal score function follows a continuous

distribution. Theorem 6.3.2 recovers this guarantee with a slightly worse constant:

P(Yn+1 /∈ Cλ̂(Xn+1)) ≥ α − 2/(n + 1). First, note that our assumption in Theo-

rem 6.3.2 about the distribution of discontinuities specializes to the continuity of the

score function when the miscoverage loss is used:

P
(
J
(
LCvg

i , λ
)
> 0

)
= 0⇐⇒ P(s(Xi, Yi) = λ) = 0. (6.18)
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However, the bound for the conformal case is better than the bound for the general

case in Theorem 6.3.2 by a factor of two, which cannot be improved according to

Proposition 6.3.3. The fact that conformal prediction has a slightly tighter lower

bound than conformal risk control is an interesting oddity of the binary loss function;

however, it is of little practical importance, as the difference between 1/(n + 1) and

2/(n+ 1) is small even for moderate values of n.

6.3.4 Controlling general loss functions

We next show that the conformal risk control algorithm does not control the risk if

the Li are not assumed to be monotone. In particular, Eq. (6.4) does not hold. We

show this by example.

Proposition 6.3.4. For any ϵ, there exists a non-monotone loss function such that

E
[
Ln+1

(
λ̂
)]
≥ B − ϵ. (6.19)

Proof. See Appendix F.1.3.

Notice that for any desired level α, the expectation in Eq. (6.4) can be arbitrarily

close to B. Since the function values here are in [0, B], this means that even for

bounded random variables, risk control can be violated by an arbitrary amount—

unless further assumptions are placed on the Li. However, the algorithms developed

may still be appropriate for near-monotone loss functions. Simply ‘monotonizing’ all

loss functions Li and running conformal risk control will guarantee Eq. (6.4), but

this strategy will only be powerful if the loss is near-monotone. For concreteness, we

describe this procedure below as a corollary of Theorem 6.3.1.

Corollary 6.3.5. Allow Li(λ) to be any (possibly non-monotone) function of λ satisfy-

ing Eq. (6.7). Take L̃i(λ) = sup
λ′≥λ

Li(λ′), R̃n(λ) = 1
n

n∑
i=1

L̃i(λ), and

λ̃ = inf
{
λ : n

n+ 1
R̃n(λ) + B

n+ 1
≤ α

}
. (6.20)
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Then,

E
[
Ln+1

(
λ̃
)]
≤ α. (6.21)

Proof. This is a direct application of Theorem 6.3.1 to the new loss L̃i.

If the loss function is already monotone, then λ̃ reduces to λ̂.

We next show that the proposed algorithm leads to asymptotic risk control for non-

monotone risk functions when applied to a monotone version of the empirical risk

(which is less strict than the monotone version of each individual loss function as

handled previously). However, this algorithm again is only powerful when the risk is

near-monotone and reduces to the standard conformal risk control algorithm when

the loss is monotone. We set the monotonized empirical risk to be

R̂↑
n(λ) = sup

t≥λ
R̂n(t), (6.22)

then define

λ̂↑
n = inf

{
λ : R̂↑

n(λ) ≤ α
}
. (6.23)

Theorem 6.3.6. Let the Li(λ) be right-continuous, i.i.d., bounded (both above and

below) functions satisfying (6.7). Then,

lim
n→∞

E
[
Ln+1

(
λ̂↑

n

)]
≤ α. (6.24)

Proof. See Appendix F.1.4.

Theorem 6.3.6 implies that an analogous procedure to 6.5 also controls the risk asymp-

totically. In particular, taking

λ̃↑ = inf
{
λ : R̂↑

n(λ) + B

n+ 1
≤ α

}
(6.25)

also results in asymptotic risk control (to see this, plug λ̃↑ into Theorem 6.3.6 and see
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that the risk level is bounded above by α− B
n+1). Note that in the case of a monotone

loss function, λ̃↑ = λ̂. However, the counterexample in Proposition 6.3.4 does not

apply to λ̃↑, and it is currently unknown whether this procedure does or does not

provide finite-sample risk control.

6.4 Examples

To demonstrate the flexibility and empirical effectiveness of the proposed algorithm,

we apply it to four tasks across computer vision and natural language processing.

All four loss functions are non-binary, monotone losses bounded by 1. They are

commonly used within their respective application domains. Our results validate

that the procedure bounds the risk as desired and gives useful outputs to the end-user.

We note that the choices of Cλ used herein are only for the purposes of illustration;

any nested family of sets will work. For each example use case, for a representative

α (details provided for each task) we provide both qualitative results, as well as

quantitative histograms of the risk and set sizes over 1000 random data splits that

demonstrate valid risk control (i.e., with mean ≤ α).

6.4.1 FNR control in tumor segmentation

In the tumor segmentation setting, our input is a d× d image and our label is a set

of pixels Yi ∈ ℘ ({(1, 1), (1, 2), ..., (d, d)}), where ℘ denotes the power set. We build

on an image segmentation model f : X → [0, 1]d×d outputting a probability for each

pixel and measure loss as the fraction of false negatives,

LFNR
i (λ) = 1− |Yi ∩ Cλ(Xi)|

|Yi|
, where Cλ(Xi) = {y : f(Xi)y ≥ 1− λ} . (6.26)

The expected value of LFNR
i is the FNR. Since LFNR

i is monotone, so is the FNR.

Thus, we use the technique in Section 6.3.1 to pick λ̂ by Eq. (6.5) that controls the
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Figure 6-1: FNR control in tumor segmentation. The top figure shows examples of
our procedure with correct pixels in white, false positives in blue, and false negatives
in red. The bottom plots report FNR and set size over 1000 independent random
data splits. The dashed gray line marks α.

FNR on a new point, resulting in the following guarantee:

E
[
LFNR

n+1 (λ̂)
]
≤ α. (6.27)

For evaluating the proposed procedure we pool data from several online open-source

gut polyp segmentation datasets: Kvasir, Hyper-Kvasir, CVC-ColonDB, CVC-ClinicDB,

and ETIS-Larib. We choose a PraNet (Fan et al., 2020b) as our base model f and used

n = 1000, and evaluated risk control with the 781 remaining validation data points.

We report results with α = 0.1 in Figure 6-1. The mean and standard deviation of

the risk over 1000 trials are 0.0987 and 0.0114, respectively.
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Figure 6-2: FNR control on MS COCO. The top figure shows examples with correct
classes in black, false positives in blue, and false negatives in red. The bottom plots
report our false negative rate loss and set size for multilabel classification over 1000
independent random data splits. The dashed gray line marks α.

6.4.2 FNR control in multilabel classification

In the multilabel classification setting, our input Xi is an image and our label is

a set of classes Yi ⊂ {1, . . . , K} for some number of classes K. Using a multiclass

classification model f : X → [0, 1]K , we form prediction sets and calculate the number

of false positives exactly as in Eq. (6.26). By Theorem 6.3.1, picking λ̂ as in Eq. (6.5)

again yields the FNR-control guarantee in Eq. (6.27).

We use the Microsoft Common Objects in Context (MS COCO) computer vision

dataset (Lin et al., 2014), a large-scale 80-class multiclass classification baseline

dataset commonly used in computer vision, to evaluate the proposed procedure. We

choose a TResNet (Ridnik et al., 2020) as our base model f and used n = 4000,

and evaluated risk control with 1000 validation data points. We report results with

α = 0.1 in Figure 6-2. The mean and standard deviation of the risk over 1000 trials
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Figure 6-3: Control of graph distance on hierarchical ImageNet. The top figure
shows examples with correct classes in black, false positives in blue, and false negatives
in red. The bottom plots report our minimum hierarchical distance loss and set size
over 1000 independent random data splits. The dashed gray line marks α.

are 0.0996 and 0.0052, respectively.

6.4.3 Control of graph distance in hierarchical image classification

In the K-class hierarchical classification setting, our input Xi is an image and our

label is a leaf node Yi ∈ {1, ..., K} on a tree with nodes V and edges E . Using a

single-class classification model f : X → ∆K , we calibrate a loss in graph distance

between the interior node we select and the closest ancestor of the true class. For any

x ∈ X , let ŷ(x) = arg maxk f(x)k be the class with the highest estimated probability.

Further, let d : V × V → Z be the function that returns the length of the shortest

path between two nodes, let A : V → 2V be the function that returns the ancestors

of its argument, and let P : V → 2V be the function that returns the set of leaf nodes

that are descendants of its argument. We also let

g(v, x) =
∑

k∈P(v)
f(x)k (6.28)
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be the sum of scores of leaves descended from v. Define a hierarchical distance

dH(v, u) = inf
a∈A(v)

{d(a, u)}. (6.29)

For a set of nodes Cλ ∈ 2V , we then define the set-valued loss

LGraph
i (λ) = inf

s∈Cλ(Xi)
{dH(y, s)}/D, where Cλ(x) =

⋂
{a∈A(ŷ(x)) : g(a,x)≥−λ}

P(a). (6.30)

This loss returns zero if y is a child of any element in Cλ, and otherwise returns the

minimum distance between any element of Cλ and any ancestor of y, scaled by the

depth D. Thus, it is a monotone loss function and can be controlled by choosing λ̂

as in Eq. (6.5) to achieve the guarantee

E
[
LGraph

n+1 (λ̂)
]
≤ α. (6.31)

We use the ImageNet dataset (Deng et al., 2009), which comes with an existing label

hierarchy, WordNet, of maximum depth D = 14. We choose a ResNet152 (He et al.,

2016) as our base model f and used n = 30k, and evaluated risk control with the re-

maining 20k. We report results with α = 0.05 in Figure 6-3. The mean and standard

deviation of the risk over 1000 trials are 0.0499 and 0.0011, respectively.

6.4.4 F1-score control in open-domain question answering

In the open-domain question answering setting, our input Xi is a question and our

label Yi is a set of (possibly non-unique) correct answers. For example, the input

Xn+1 = “Where was Barack Obama Born?”

could have the answer set

Yn+1 = {“Hawaii”, “Honolulu, Hawaii”, “Kapo’olani Medical Center”}
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Figure 6-4: F1-score control on Natural Questions. The top figure shows examples
with fully correct answers in green, partially correct answers in blue, and false
positives in gray. Due to the nature of the evaluation, answers that are technically
correct may still be down-graded if they do not match the reference (we treat this as
part of the randomness in the task). The bottom plots report the F1 risk and average
set size over 1000 independent random data splits. The dashed gray line marks α.

Here we treat all questions and answers as being composed of sequences (up to size m)

of tokens in a vocabulary V—i.e., assuming k valid answers, we have Xi ∈ Z and Yi ∈

Zk, where Z := Vm. Using an open-domain question answering model that individu-

ally scores candidate output answers f : Z×Z → R, we calibrate the best token-based

F1-score of the prediction set, taken over all pairs of predictions and answers:

LF1
i (λ) = 1−max

{
F1(a, c) : c ∈ Cλ(Xi), a ∈ Yi

}
,

where Cλ(Xi) = {y ∈ Vm : f(Xi, y) ≥ λ} .
(6.32)

We define the F1-score following popular QA evaluation metrics (Rajpurkar et al.,

2016), where we treat predictions and ground truth answers as bags of tokens and

compute the geometric average of their precision and recall (while ignoring punctua-

tion and articles {“a”, “an”, “the”}). Since LF1
i , as defined in this way, is monotone

and upper bounded by 1, it can be controlled by choosing λ̂ as in Section 6.3.1 to
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achieve the following guarantee:

E
[
LF1

n+1(λ̂)
]
≤ α. (6.33)

We use the Natural Questions (NQ) dataset (Kwiatkowski et al., 2019), a popular

open-domain question answering baseline, to evaluate our method. We use the splits

distributed as part of the Dense Passage Retrieval (DPR) package (Karpukhin et al.,

2020). Our base model is the DPR Retriever-Reader model (Karpukhin et al., 2020),

which retrieves passages from Wikipedia that might contain the answer to the given

query, and then uses a reader model to extract text sub-spans from the retrieved pas-

sages that serve as candidate answers. Instead of enumerating all possible answers to a

given question (which is intractable), we retrieve the top several hundred candidate an-

swers, extracted from the top 100 passages (which is sufficient to control all risks of in-

terest). We use n = 2500 calibration points, and evaluate risk control with the remain-

ing 1110. We report results with α = 0.3 (chosen empirically as the lowest F1 score

which typically results in nearly correct answers) in Figure 6-4. The mean and stan-

dard deviation of the risk over 1000 trials are 0.2996 and 0.0150, respectively.

6.5 Extensions

In this section, we discuss several theoretical extensions of our procedure.

6.5.1 Risk control under distributional shift

Suppose the researcher wants to control the risk under a distribution shift. Then the

goal in Eq. (6.4) can be redefined as

E(X1,Y1),...,(Xn,Yn)∼Ptrain, (Xn+1,Yn+1)∼Ptest

[
Ln+1

(
λ̂
)]
≤ α, (6.34)

where Ptest denotes the test distribution that is different from the training distribution

Ptrain that (Xi, Yi)n
i=1 are sampled from. Assuming that Ptest is absolutely continuous
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with respect to Ptrain, the weighted objective (6.34) can be rewritten as

E(X1,Y1),...,(Xn+1,Yn+1)∼Ptrain

[
w(Xn+1, Yn+1)Ln+1

(
λ̂
)]
≤ α,

where w(x, y) = dPtest(x, y)
dPtrain(x, y)

.
(6.35)

When w is known and bounded, we can apply our procedure on the loss function

L̃n+1(λ) = w(Xn+1, Yn+1)Ln+1(λ), (6.36)

which is non-decreasing, bounded, and right-continuous in λ whenever Ln+1 is. Thus,

Theorem 6.3.1 guarantees that the resulting λ̂ satisfies Eq. (6.35).

In the setting of transductive learning, Xn+1 is available to the user. If the conditional

distribution of Y given X remains the same in the training and test domains, the

distributional shift reduces to a covariate shift and

w(Xn+1, Yn+1) = w(Xn+1) ≜
dPtest(Xn+1)
dPtrain(Xn+1)

. (6.37)

In this case, we can achieve the risk control even when w is unbounded. In particular,

assuming Li ∈ [0, B], for any potential value x of the covariate, we define

λ̂(x) = inf
{
λ :

∑n
i=1 w(Xi)Li(λ) + w(x)B∑n

i=1 w(Xi) + w(x)
≤ α

}
. (6.38)

When λ does not exist, we simply set λ̂(x) = max Λ. It is not hard to see that

λ̂(x) ≡ λ̂ in the absence of covariate shifts. We can prove the following result.

Proposition 6.5.1. In the setting of Theorem 6.3.1,

E(X1,Y1),...,(Xn,Yn)∼Ptrain,(Xn+1,Yn+1)∼Ptest [Ln+1(λ̂(Xn+1))] ≤ α. (6.39)

Proof. See Appendix F.1.5.
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It is easy to show that the weighted conformal procedure (Tibshirani et al., 2019) is

a special case with Li(λ) = 1 {Yi 6∈ Cλ(Xi)} where Cλ(Xi) is the prediction set that

thresholds the conformity score at λ. Thus, Proposition 6.5.1 generalizes Tibshirani

et al. (2019) to any monotone risk. When the covariate shift w(x) is unknown but

unlabeled data in the test domain are available, it can be estimated, up to a multi-

plicative factor that does not affect λ̂(x), by any probabilistic classification algorithm;

see Lei and Candès (2020) and Candès et al. (2023) in the context of missing and

censored data, respectively. We leave the full investigation of weighted conformal risk

control with an estimated covariate shift for future research.

Total variation bound

Finally, for arbitrary distribution shifts, we give a total variation bound describing the

way standard (unweighted) conformal risk control degrades. The bound is analogous

to that of Barber et al. (2022) for independent but non-identically distributed data

(see their Section 4.1), though the proof is different. Here we will use the notation

Zi = (Xi, Yi), and λ̂(Z1, . . . , Zn) to refer to that chosen in Eq. (6.5).

Proposition 6.5.2. Let Z = (Z1, . . . , Zn+1) be a sequence of random variables. Then,

under the conditions in Theorem 6.3.1,

E
[
Ln+1(λ̂)

]
≤ α +B

n∑
i=1

TV(Zi, Zn+1). (6.40)

If further the assumptions of Theorem 6.3.2 hold,

E
[
Ln+1(λ̂)

]
≥ α−B

(
2

n+ 1
+

n∑
i=1

TV(Zi, Zn+1)
)
. (6.41)

Proof. See Appendix F.1.6.

6.5.2 Quantile risk control

Snell et al. (2022) generalizes Bates et al. (2020) to control the quantile of a monotone

loss function conditional on (Xi, Yi)n
i=1 with probability 1 − δ over the calibration
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dataset for any user-specified tolerance parameter δ. In some applications, it may be

sufficient to control the unconditional quantile of the loss function, which alleviates

the burden of the user to choose the tolerance parameter δ.

For any random variable X, let

Quantileβ(X) = inf{x : P(X ≤ x) ≥ β}. (6.42)

Analogous to (6.4), we want to find λ̂ based on (Xi, Yi)n
i=1 such that

Quantileβ

(
Ln+1(λ̂β)

)
≤ α. (6.43)

By definition,

Quantileβ

(
Ln+1(λ̂β)

)
≤ α⇐⇒ E

[
1
{
Ln+1(λ̂β) > α

}]
≤ 1− β. (6.44)

As a consequence, quantile risk control is equivalent to expected risk control (Eq. (6.4))

with loss function L̃i(λ) = 1 {Li(λ) > α}. Let

λ̂β = inf
{
λ ∈ Λ : 1

n+ 1

n∑
i=1

1 {Li(λ) > α}+ 1
n+ 1

≤ 1− β
}
.

Proposition 6.5.3. In the setting of Theorem 6.3.1, Eq. (6.43) is achieved.

Proof. See Appendix F.1.7.

Snell et al. (2022) considers the high-probability control of a wider class of quantile-

based risks, including the conditional value-at-risk (CVaR). Whether those more gen-

eral risks can be controlled unconditionally is an open problem for future work.
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6.5.3 Controlling multiple risks

Let Li(λ; γ) be a family of loss functions indexed by γ ∈ Γ for some domain Γ that

may have infinitely many elements. A researcher may want to control E[Li(λ; γ)] at

level α(γ). Equivalently, we need to find an λ̂ based on (Xi, Yi)n
i=1 such that

sup
γ∈Γ

E

Li(λ̂; γ)
α(γ)

 ≤ 1. (6.45)

Though the above worst-case risk is not an expectation, it can still be controlled.

Towards this end, we define

λ̂ = sup
γ∈Γ

λ̂γ, where λ̂γ = inf
{
λ : 1

n+ 1

n∑
i=1

Li(λ; γ) + B

n+ 1
≤ α(γ)

}
. (6.46)

Then the risk is controlled.

Proposition 6.5.4. In the setting of Theorem 6.3.1, Eq. (6.45) is satisfied.

Proof. See Appendix F.1.8.

6.5.4 Adversarial risks

We next show how to control risks defined by adversarial perturbations. We adopt

the same notation as Section 6.5.3. Bates et al. (2020) (Section 6.3) discusses the

adversarial risk where Γ parametrizes a class of perturbations of Xn+1, e.g., Li(λ; γ) =

L(Xi + γ, Yi) and Γ = {γ : ‖γ‖∞ ≤ ϵ}. A researcher may want to find a value of λ̂

based on (Xi, Yi)n
i=1 such that the worst-case risk within this class is controlled,

E
[
sup
γ∈Γ

Li(λ̂; γ)
]
≤ α. (6.47)

This can be recast as a conformal risk control problem by taking L̃i(λ) = supγ∈Γ Li(λ; γ).

Then, the following choice of λ leads to risk control:
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λ̂ = inf
{
λ : 1

n+ 1

n∑
i=1

L̃i(λ) + B

n+ 1
≤ α

}
. (6.48)

Proposition 6.5.5. In the setting of Theorem 6.3.1, Eq. (6.47) is satisfied.

Proof. See Appendix F.1.9.

6.5.5 U-risk control

For ranking and metric learning, Bates et al. (2020) considered loss functions that

depend on two test points. In general, for any k > 1 and subset S ⊂ {1, . . . , n + k}

with |S| = k, let LS(λ) be a loss function.

Our goal is to find λ̂k based on (Xi, Yi)n
i=1 such that

E
[
L{n+1,...,n+k}(λ̂k)

]
≤ α. (6.49)

We call the LHS a U-risk since, for any fixed λ̂k, it is the expectation of an order-k

U-statistic. As a natural extension, we can define

λ̂k = inf

λ : k!n!
(n+ k)!

∑
S⊂{1,...,n}

|S|=k

LS(λ) +B

(
1− (n!)2

(n+ k)!(n− k)!

)
≤ α

 . (6.50)

Again, we define λ̂k = λmax when the right-hand side is an empty set. Then we can

prove the following result.

Proposition 6.5.6. Assume that LS(λ) is non-increasing in λ, right-continuous, and

LS(λmax) ≤ α, sup
λ
LS(λ) ≤ B <∞ almost surely.

Then Eq. (6.49) is achieved.

Proof. See Appendix F.1.10.
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6.6 Conclusion

This generalization of conformal prediction broadens its scope to new applications, as

shown in Section 6.4. In particular, conformal risk control provides a new perspective

to many of the tools developed in earlier chapters, as many of those tools can also be

cast in terms of controlling expectations of different risks, even though their respective

theoretical analyses are different. The mathematical tools developed in Section 6.3,

Section 6.5, and the Appendix may be of independent technical interest, since they

provide a new and more general language for studying conformal prediction along

with new results about its validity. Important questions remain, such as (1) whether

a conformal-type algorithm exists for providing a finite-sample bound when the losses

are not monotone but the risk is, (2) whether other functions, such as the value-at-

risk, can be controlled with a similar algorithm, and (3) whether there exists a full

conformal or cross conformal version of conformal risk control.
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7

Conclusion

The contributions put forth in this thesis build towards addressing some of the new

challenges associated with deploying large-scale deep learning models in the real world.

In particular, in this thesis we focused on two key aspects: efficient adaptive compu-

tation in large neural networks and rigorous, general-purpose uncertainty estimation

with guarantees. Together, these new tools provide multiple pieces of the puzzle for

effectively using today’s powerful modern systems in efficient and reliable ways.

Still, there are many open problems in this area, which we briefly explore.

Communicating uncertainty to users

One remaining challenge is in how to best communicate uncertainty to users. Express-

ing uncertainty in generative language models is a good example. Language modeling

provides a flexible framework for solving complex tasks with a unified natural lan-

guage input and output format. Pre-training also relaxes the need for task-specific

data collection and optimization. When combined with their impressive performance

on almost every widely-used NLP task considered in the field today, pre-trained large

language models (LLMs) have unsurprisingly become extremely popular. Still, like

other modeling paradigms, LLMs are susceptible to errors. Uncertainty estimation

in generative language modeling, however, can be difficult. For instance, the space of

possible model utterances is (in general) infinite, human languages naturally have ar-
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eas of variation and ambiguity, and syntactic, semantic, and pragmatic uncertainties

can be intertwined. Furthermore, while various mathematical formalisms exist for

describing and quantifying uncertainty, how to best communicate that uncertainty to

users (in an audience-aware manner) via language remains quite overlooked.

Efficient continual language learning

In this thesis, we focused on the inference time efficiency of modern models. Our

techniques, however, do not apply during training—which is also a computationally

expensive procedure. Nevertheless, taking a different angle, the unique shared struc-

ture and pre-training strategies of LLMs allow for the same type of models to be

used across many different NLP tasks. A typical approach is to take the pre-trained

LLM, and then independently fine-tune it on any downstream task that may be en-

countered. Rather than repeat this (often expensive) procedure over and over again,

a natural question to ask is if we can leverage past (supervised or not) tasks as part

of a continual learning framework in order to make training the (n + 1)th task more

efficient (in terms of performance as a function of compute) than if it were the first.

Straightforward applications of continual learning, however, can result in worse per-

formance over time, whether due to artifacts from non-stationary optimization, or

from interference from past, competing and/or contradictory task examples. Devel-

oping robust methods that can decide to leverage past data with provably low notions

of regret (e.g., that the odds of doing worse than always learning tasks independently

is controlled) could lead to more reliable, and efficient, training.

Reliable performance under realistic distribution shifts

A key assumption in our conformal methods is that of data exchangeability. While

models may appear to perform well in the lab on datasets where such assumptions

hold, or even initially on real data, distribution shifts—that we can expect to happen

in nearly any practical scenario—may eventually harm model performance. These

shifts may be gradual and subtle (e.g., language usage changing from year to year) or

sudden and drastic (e.g., a new MRI machine with different settings is installed in a
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clinic). Identifying when distribution shifts that adversely affect model performance

occur is relevant in situations in which a user cannot easily verify predictions them-

selves. Moreover, in areas such as predictive medicine, where models make predictions

about events that may happen years in the future (e.g., lung cancer risk assessment)

immediate corrective feedback is unavailable. A possible solution is selective pre-

diction, where a model can choose to abstain from answering if a distribution shift

is detected. Attempting to guard against all possible distribution shifts, however,

can result in conservative, and unhelpful, model behavior. One possible direction

is to develop unsupervised systems for detecting when models require re-training,

re-calibration, or absolute abstention, subject to limits on model degradation.

Balancing uncertainty and creativity during drug discovery

The presence of uncertainty is not always a bad thing—in fact it is sometimes a nec-

essary component during discovery and exploration. For example, in-silico screening

for drug discovery uses computational tools to discover new drug-like molecules with

desireable predicted properties. An inherent point of tension in in-silico screening,

however, is that while the most “valuable” molecules are typically those that are

distinctly different from those already “discovered” in the training set, these “novel”

molecules are also the ones for which accurate predictions—including reliable uncer-

tainty estimates—are the hardest to make. This is compounded by the fact that, in

molecular settings, even relatively small changes in structure can result in dramatic

differences in functionality (i.e., activity cliffs). A possible compromise is to leverage

conformal prediction to provide formal confidence intervals for the expected utilities of

queried examples, which can then be used as part of a robust portfolio optimization al-

gorithm. Similar tools might be able to handle settings with multiple objectives, which

then might be leveraged to construct Pareto optimal sets with high probability.

Summary

In conclusion, this thesis has made significant strides in addressing the challenges

of large-scale deep learning models. Our contributions in efficient computation and
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uncertainty estimation provide practical tools and insights for improving the reliability

and efficiency of deep learning models in real-world applications. However, there

are still numerous opportunities for future research. By continuing to explore these

avenues, we can advance the field of artificial intelligence and develop systems that

are not only powerful, but also reliable, trustworthy, and beneficial to society.
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A

Appendix for Chapter 1

A.1 Proofs

A.1.1 Proof of Lemma 1.3.3

Proof. It is straightforward to show that for P = pval(Vn+1, V1:n),

P ≤ ϵ⇐⇒ Vn+1 is ranked among the bϵ · (n+ 1)c largest of V1, . . . , Vn+1. (A.1)

According to our exchangeability assumption over the n+ 1 variables, the right hand

side event occurs with at most probability bϵ · (n+ 1)c/(n+ 1) ≤ ϵ.

A.1.2 Proof of Theorem 1.3.4

Proof. For notational convenience, let random variable Vi be the nonconformity score

S(Xi, Yi). Since the nonconformity scores Vi are constructed symmetrically, then

((X1, Y1), . . . , (Xn+1, Yn+1))
d= ((Xπ(1), Yπ(1)), . . . , (Xπ(n+1), Yπ(n+1)))

⇐⇒ (V1, . . . , Vn+1)
d= (Vπ(1), . . . , Vπ(n+1))

(A.2)
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for all permutations (π(1), . . . π(n+ 1)). Therefore, if {(Xi, Yi)}n+1
i=1 are exchangeable,

then so too are their nonconformal scores {Vi}n+1
i=1 . By the definition, we have

Yn+1 6∈ Cϵ(Xn+1)⇐⇒ pval (Vn+1, V1:n) ≤ ϵ. (A.3)

Then, using Lemma 1.3.3, P(Yn+1 ∈ Cϵ(Xn+1)) = 1−P(Yn+1 6∈ Cϵ(Xn+1)) ≥ 1− ϵ.

A.1.3 Proof of Corollary 1.3.5

We first state the following useful lemma on inflated quantiles.

Lemma A.1.1. Let Quantile(α;F ) denote the α quantile of distribution F . Let V1:n

denote the empirical distribution over random variables {V1, . . . , Vn}. Furthermore,

assume that Vi, i = 1, . . . , n+ 1 are exchangeable. Then for any α ∈ (0, 1), we have

P (Vn+1 ≤ Quantile(α, V1:n ∪ {∞})) ≥ α.

Proof. Given support v1, . . . , vn ∈ R for a discrete distribution F , let q = Quantile(α;F ).

Any points vi > q do not affect this quantile, i.e., if we consider a new distribution

F̃ where all points vi > q are mapped to arbitrary values also larger than q then

Quantile(α;F ) = Quantile(α; F̃ ). Accordingly, for the exchangeable Vi, we have

Vn+1 > Quantile(α;V1:n ∪ {∞})⇐⇒ Vn+1 > Quantile(α;V1:(n+1)). (A.4)

Equivalently, we also have that

Vn+1 ≤ Quantile(α;V1:n ∪ {∞})⇐⇒ Vn+1 ≤ Quantile(α;V1:(n+1)). (A.5)

Given the discrete distribution over the n+1 variables Vi, Vn+1 ≤ Quantile(α;V1:(n+1))

implies that Vn+1 is among the dα(n + 1)e smallest of V1:(n+1). By exchangeability,

this event occurs with probability at least dα(n+1)e
n+1 ≥ α.

Proof of Corollary 1.3.5. Let Vi := N (Xi, Yi). Yn+1 is included in Cϵ(Xn+1) iff Vn+1 ≤
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Quantile(1− ϵ;V1:n ∪ {∞}). Applying Lemma A.1.1 then gives the result.

A.2 Hypothesis testing

A number of chapters in this thesis make use of statistical hypothesis testing, which

we briefly give informal background for here. See, e.g., Lehmann and Romano (2005b)

or Wasserman (2010) for a more comprehensive introduction. Consider the problem

of choosing between two hypotheses: the null hypothesis H0 and the alternative

hypothesis H1, which is H0’s inverse. We define a hypothesis to be a basic statement

or assumption that is tested on the basis of observed data. For example, when flipping

a coin with bias p, the null hypothesis (H0) might be that it is not biased in favor of

heads, versus the alternative hypothesis (H1) that it is:

H0 : p ≤ 0.5. vs. H1 : p > 0.5. (A.6)

Given data, such as the outcome of n random flips of the coin, we can then make

inferences about whether or not H0 should be accepted or rejected, such that the

probability of falsely rejecting H0 is bounded by some ϵ ∈ [0, 1]. Here the probability

is taken over the draw of data given that the null hypothesis is true, i.e.:

P(reject H0 | H0 is true) ≤ ϵ. (A.7)

Example 1. When paired with conformal prediction, where we want to guarantee that

the prediction set Cϵ(Xn+1) satisfies P(Yn+1 ∈ Cϵ(Xn+1)) ≥ ϵ, we can use statistical

testing to test the null hypothesis H0 : y is the correct label for Xn+1. If we include

every label y ∈ Y where H0 is not rejected, then the probability that the one correct

y is included is simply P(reject H0 | H0 is true), which is ≤ ϵ if Eq. (A.7) holds.

P-values are a useful tool for accepting or rejecting null hypotheses. For our purposes,

we define a valid p-value to be any random variable P (typically a statistic of the
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randomly drawn data) that has a super-uniform distribution under H0. That is,

P(P ≤ u | H0 is true) ≤ u, ∀u ∈ [0, 1]. (A.8)

Example 2. Let K be the number of heads within the sample of n flips of our coin.

We can define a p-value for H0 based on the binomial CDF. Let S be a binomial

random variable with success probability p. Then define the random variable

P = FS(K) = P(S ≤ K) =
K∑

i=0

(
n

i

)
pi(1− p)n−i. (A.9)

Under H0, P is super uniform:

P(P ≤ u | H0 is true) = P(FS(K) ≤ u | H0 is true)

= P(K ≤ F−1
S (u) | H0 is true)

≤ FS(F−1
S (u))

= u.

(A.10)

When a p-value is super-uniform, this allows us to reject H0 if we observe it to be less

than our desired significance level ϵ, as this only happens with probability at most

ϵ under H0. While there are many types of p-values, in this thesis we mainly use

p-values based on ranks within an exchangeable collection: see Lemma 1.3.3.

A.2.1 Multiple hypothesis testing

Oftentimes we might be interested in testing multiple hypotheses simultaneously.

Continuing the example from earlier, we might now not only be testing just if one

coin is biased, but rather an entire coin collection consisting of m different, indepen-

dent coins. For any one test, the probability of a false rejection of H0,i (in this case,

that coin i ∈ {1, . . . ,m} is not biased in favor of heads) is bounded by ϵ. Jointly,
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however, we have that

P(any H0,i is rejected | H0,1, . . . , H0,m are true)

= 1− P(no H0,i is rejected | H0,1, . . . , H0,m are true)

≥ 1− ϵm

(A.11)

which tends to 1 as m grows. In general, the principle is that as the number of

simultaneously considered hypotheses becomes larger, the chance of at least one false

rejection can become much higher as well, unless proper corrections are made.

Multiple testing corrections are well-studied in statistics, and several exist (with and

without assuming certain dependencies between tests). The simplest one is the Bon-

ferroni correction, which has no additional assumptions, as demonstrated next.

Example 3. Given p-values P1, . . . , Pm reject H0,i if Pi <
ϵ
m

.

It is easy to show that this method (called Bonferroni) controls the false rejection rate

at level ϵ using the union bound. Let A be the event that any H0,i is false rejected

and Ai be the event that H0,i is falsely rejected. Then

P(A) = P(
m⋃

i=1
Ai) ≤

m∑
i=1

P(Ai) ≤
m∑

i=1

ϵ

m
= ϵ. (A.12)

The downside of this method (and others) is that it can be very conservative. When

m is large, it can fail to reject any null hypothesis whatsoever, even if there is strong

evidence against individual hypotheses. Additional discussion on multiple testing and

multiple testing corrections is given in Appendix C.4.
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B

Appendix for Chapter 2

B.1 Proofs

B.1.1 Proof of Proposition 2.3.1

Proof. This result is based on Clopper-Pearson confidence interval for Binomial ran-

dom variables (Clopper and Pearson, 1934). As the events 1{G(Xi; τ ) = F(Xi)}

are i.i.d., the sum is Binomial. Directly applying a one-sided Clopper-Pearson lower

bound on the true success rate, P(G(Xi; τ ) = F(Xi)), gives the result.

B.1.2 Proof of Proposition 2.4.1

Proof. We prove by simple calculation using the property assumed in Eq. (2.6).

P(FK(Xn+1) = F(Xn+1)) = P(min Cc
ϵ (Xn+1) ∈ Ic(Xn+1))

≥ P(Cc
ϵ (Xn+1) ⊆ Ic(Xn+1))

= P(I(Xn+1) ⊆ Cϵ(Xn+1))

≥ 1− ϵ.
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B.1.3 Proof of Theorem 2.4.4

Proof. For a given k, let V (i)
k :=Mk(Xi) denote the random meta confidence values

used for calibration, and V
(n+1)

k :=Mk(Xn+1) the random test point. For all k, Mk

is trained and evaluated on separate data (Dmeta vs Dcal∪Dtest), preserving exchange-

ability. Therefore, as X1:n+1 are exchangeable, V (1:n+1)
k are also exchangeable.

Layer k is included in Cind
ϵ iff V

(n+1)
k ≤ Quantile(1− αk, V

(1:n)
k ∪ {∞}). For a given k,

this happens with probability ≥ 1−αk by Lemma A.1.1. Taken over all k ∈ I(Xn+1)

where |I(Xn+1)| is at most l − 1 (i.e., all early layers are inconsistent), we have

P(I(Xn+1) ⊆ C ind
ϵ (Xn+1)) = 1− P

( ⋃
k∈I
{k 6∈ C ind

ϵ (Xn+1)}
)

≥ 1−
∑
k∈I

P(k 6∈ C ind
ϵ (Xn+1)

= 1−
∑
k∈I

αk

≥ 1− ϵ.

The last inequality is given by the constraint αk = ωk · ϵ, where ∑l−1
i=1 ωi = 1.

B.1.4 Proof of Theorem 2.4.6

Proof. By the same argument as Theorem 2.4.4, the meta scores Mk(Xi) are ex-

changeable. SinceMmax operates symmetrically across all Xi, M (i) =Mmax(Xi) are

also exchangeable. Let M (n+1) denote the maximum meta score across inconsistent

layers for the new test point. By Lemma A.1.1, this falls below Quantile(1−ϵ,M (1:n)∪

{∞}) with probability at least 1− ϵ. Since M (n+1) reflects the maximum meta score,

this entails that the meta scores of all other inconsistent layers k ∈ I(Xn+1) for Xn+1

will be below Quantile(1− ϵ,M (1:n) ∪ {∞}) if M (n+1) is, and thereby be included in

Cshare
ϵ (Xn+1). This gives the bound in Eq. (2.6).
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Nonconformity IMDB VitaminC AG News
measure Consist. Bound Layers Consist. Bound Layers Consist. Bound Layers

1− ϵ = 0.95:
SM 95.16 93.74 10.39 94.84 94.04 16.60 95.02 93.75 11.63

Meta 94.96 93.72 9.13 94.93 94.12 15.60 94.86 93.58 9.37

1− ϵ = 0.9:
SM 90.22 88.30 7.35 89.85 88.59 14.93 89.72 88.01 8.98

Meta 90.19 88.36 7.13 90.00 88.70 13.67 90.14 88.48 6.85

Table B.1.1: Results (dev) using the naive development set calibration method (see
§2.3.3). This method tunes the early exit thresholds to get efficient ϵ-consistent
predictions on a development set, but does not guarantee that prediction will be ϵ-
consistent on new data. “Consist.” measures the empirical consistency on a test set,
from which we compute a guaranteed lower bound (“Bound”) to 99% confidence. The
bound is significantly lower than our target 1 − ϵ, and the measured consistency in
our experiments also falls slightly bellow 1− ϵ in some cases.

B.2 Implementation details

We implement our early exit Transformers (§2.3) on top of the Transformers li-

brary (Wolf et al., 2020).1 We set de to 32 in our experiments. For each task we

fix a pre-trained F and train the early and meta classifiers. We reuse the same train-

ing data that was used for F and divide it to 70/10/20% portions for Dtune,Dscale and

Dmeta, respectively. For classification tasks, we add the temperature scaling step (Guo

et al., 2017b) after the early training to improve the calibration of the softmax. We

run the scaling for 100 steps on Dscale using an Adam optimizer (Kingma and Ba,

2015) with a learning rate of 10−3. For the early and meta training we use the same

optimizer as for F . We fix F rather than train it jointly with the new components

of G to avoid any reduction in F ’s performance (Xin et al., 2020b). This also makes

our method simple to train over any existing Transformer without having to retrain

the whole model which could be very costly. Training all parameters of G jointly can

lead to more efficient inference as the early representations will be better suited for

classification (Schwartz et al., 2020b; Geng et al., 2021), but potentially with the cost

1As discussed in §2.3, our methods can also be applied to any multilayered model such as
BERT (Devlin et al., 2019), GPT (Brown et al., 2020), ResNet (He et al., 2015), and others.
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of reducing the accuracy of Fl. In the case of joint training, our CATs will provide

consistency guarantees with respect to the jointly-trained Fl.

We implement the conformal calibration process in Python and perform retrospective

analysis with different random splits of Dcal and Dtest. For Theorem 2.4.4, we simply

use the uniform Bonferroni correction, setting wk = 1
l−1 ∀k. For the naive develop-

ment set calibration, we use a shared threshold across all layers in order to reduce

the examined solution space in Equation 2.3.

B.3 Additional results

In this section, we provide complementary results for the experiments in Chapter 2.

All results, except for sections B.3.4 and B.3.5, are with an Albert-xlarge model as

F . We note that the results in these tables are based on the development sets, while

the tables presented earlier in Chapter 2 report the test set results.

B.3.1 Naïve development set calibration

For completeness, we evaluate the simple, but naïve, calibration method described

in §2.3.3. Recall that in this approach we first tune τ on a development set, and

then bound the resulting G’s accuracy using another held-out calibration split. The

bound we get is “static”, in the sense that we cannot control what value it gives us by

further modifying τ . Consequently, we are not able to guarantee that it will satisfy

our performance constraint in Eq. (2.1).

Table B.1.1 gives results for our models when using either the Meta or SM confidence

measures (which we threshold with τ ). We use half of Dcal to find the minimal

threshold that provides ϵ-consistency. Then, we evaluate the threshold on the second

half of Dcal to get the empirical error. We compute the test set bound on this error

with a confidence of δ = 10−2. As expected, the lower bound we compute is often

significantly below 1− ϵ, as it reflects the uncertainty that our measured consistency

is accurate. Often the measured empirical consistency is also slightly below 1− ϵ. At
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Nonconformity IMDB VitaminC AG News
measure Consist. Acc. Layers Consist. Acc. Layers Consist. Acc. Layers

1− ϵ = 0.95: (88.50) (85.17) (89.02)
Random 97.23 91.56 21.57 96.91 87.42 22.71 97.11 91.58 21.60
DKL(pk−1||pk) 97.36 92.49 19.33 96.84 88.85 22.28 97.08 92.46 20.18
H(pk) 97.28 92.84 12.49 96.79 88.28 17.44 97.15 92.79 14.55
pdiff

k 97.28 92.84 12.49 96.83 88.38 17.42 96.96 92.80 12.89
pmax

k (SM) 97.28 92.84 12.49 96.79 88.31 17.40 97.08 92.81 13.23
Meta 96.99 92.24 10.75 96.91 88.29 16.49 96.98 91.98 10.60

1− ϵ = 0.90: (83.84) (80.69) (84.33)
Random 94.52 89.68 19.21 93.94 85.44 21.47 94.27 89.28 19.01
DKL(pk−1||pk) 94.48 91.36 12.13 93.76 86.81 20.49 93.88 89.98 14.59
H(pk) 94.49 91.31 9.91 93.67 86.41 16.29 94.54 90.80 13.08
pdiff

k 94.49 91.31 9.91 93.67 86.53 16.11 94.02 90.56 10.69
pmax

k (SM) 94.49 91.31 9.91 93.68 86.44 16.13 94.05 90.76 11.01
Meta 94.40 90.45 8.80 93.74 86.17 15.09 94.08 89.72 8.88

Table B.3.1: Results (dev) of our Shared model on the classification tasks using dif-
ferent nonconformity measures. pdiff

k and pmax
k are defined in Table 2.1, DKL(pk−1||pk)

is the Kullback-Leibler Divergence between the previous layer’s softmax outputs and
the current layer, and H(pk) is the entropy of the softmax outputs. Our CP-based
Shared method provides the guaranteed consistency with any measure, even random.
The benefit, however, of using a better measure is in confidently exiting earlier. Our
Meta measure allows the use of least Transformer layers meeting the consistency re-
quirement with enough confidence.

a high level, the overall consistency vs. efficiency trade-off is otherwise broadly similar

to the one obtained by the Shared CP calibration.

B.3.2 Nonconformity measure comparison

The test statistic used for a conformal prediction is typically called a nonconformity

measure (i.e., for this work this isMk(x); in other chapters we have used N as nota-

tion). We experiment with different nonconformity measures as drop-in replacements

for Mk(x), and report the results in Table B.3.1. The conformal calibration guaran-

tees validity with any measure, even a random one, as long as they retain exchange-

ability. Good measures are ones that are statistically efficient, and will minimize the

number of layers required for prediction at the required confidence level. This is a re-

sult of smaller Cϵ sets, that tightly cover the inconsistent layers (and hence are more ju-

158



(a) VitaminC

(b) AG News

(c) STS-B

Figure B.3.1: Distribution of exit layers per tolerance level ϵ (dev sets) with our
Shared/ Meta Albert-xlarge model. See Figure 2-5 for IMDB.

dicious with the complement, Cc
ϵ ). To be consistent with previous work where softmax

metrics are used (such as Schwartz et al., 2020b), we use pmax
k as our non-Meta baseline

in the main paper. In some settings, however, pdiff
k performs slightly better.

B.3.3 Exit layer statistics

Figure B.3.1 depicts the distribution of exit layers for the different tasks with three

reference tolerance levels. Reducing ϵ requires greater confidence before exiting, re-
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Method Amortized time (100 · TG/TF )
IMDB VitaminC AG News STS-B

Thres./ SM 85.56 102.12 112.52 N/A
Thres./ Meta 99.85 109.93 91.95 107.44
Indep./ Meta 89.25 109.57 114.66 130.36
Shared/ SM 67.22 90.41 69.99 N/A
Shared/ Meta 63.99 % 94.97 % 60.56 % 99.38 %

Table B.3.2: Complementary results for Table 2.5 with 1− ϵ = 0.95.

Method MACs reduction (|F|/|G|)
IMDB VitaminC AG News STS-B

Thres./ SM 1.45 1.20 1.08 N/A
Thres./ Meta 1.35 1.22 1.48 1.25
Indep./ Meta 1.53 1.22 1.17 1.02
Shared/ SM 1.90 1.37 1.81 N/A
Shared/ Meta ×2.22 ×1.43 ×2.36 ×1.36

Table B.3.3: Complementary results for Table 2.6 with 1− ϵ = 0.95.

sulting in later exits on average. We provide example inputs with their respective

exit layer in Appendix B.4.

B.3.4 Albert-base results

Figure B.3.2 reports the classification and regression results with an Albert-base 12-

layers model. The trends are similar to the larger 24-layers version. Again, we see

the efficacy of our Shared conformal calibration and the Meta nonconformity scores.

For example, the AG News CAT Shared/ Meta model can preserve 95% consistency

while using less than 5 Transformer layers on average.

B.3.5 RoBERTa-large results

Figure B.3.3 shows the results of our methods on top of the RoBERTa-large 24-layers

Transformer. One main difference between RoBERTa and Albert, is that Albert

shares the same parameters across all layers, essentially applying the same function

recursively, whereas RoBERTa learns different parameters per layer. Yet, our method

is agnostic to such differences and, as observed in the plots, results in similar trends.
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(a) IMDB (b) VitaminC (c) AG News

(d) STS-B

Figure B.3.2: Development set results with an Albert-base 12-layers model as F .

The value of our Meta classifier compared to the softmax response is even greater

with the RoBERTa model.

B.4 Example predictions

Tables B.4.1-B.4.4 report examples of inputs for different tasks and the number of

layers that our Albert-xlarge CAT with ϵ = 0.1 required. These examples suggest
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(a) IMDB (b) VitaminC (c) AG News

(d) STS-B

Figure B.3.3: Development set results with an RoBERTa-large 24-layers model as F .

that “easier” inputs (e.g., containing cue phrases or having large overlaps in sentence-

pair tasks) might require less layers. In contrast, more complicated inputs (e.g.,

using less common language or requiring numerical analysis) can lead to additional

computational effort until the desired confidence is obtained.
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IMDB (Maas et al., 2011)
Exit
layer

Gold label Input

1 Pos Without question, film is a powerful medium, more so now than
ever before, due to the accessibility of DVD/video, which gives the
filmmaker the added assurance that his story or message is going
to be seen by possibly millions of people. [...]

4 Neg This movie was obscenely obvious and predictable. The scenes
were poorly written and acted even worse.

10 Pos I think Gerard’s comments on the doc hit the nail on the head.
Interesting film, but very long. [...]

15 Pos here in Germany it was only shown on TV one time. today, as
everything becomes mainstream, it’s absolute impossible, to watch
a film like this again on the screen. maybe it’s the same in USA
[...]

20 Neg I tried to be patient and open-minded but found myself in a coma-
like state. I wish I would have brought my duck and goose feather
pillow... [...]

24 Neg Hypothetical situations abound, one-time director Harry Ralston
gives us the ultimate post-apocalyptic glimpse with the world dead,
left in the streets, in the stores, and throughout the landscape, sans
in the middle of a forgotten desert. [...]

Table B.4.1: Number of Transformer layers used for example inputs from the IMBD
test set with our Shared/Meta CAT with a tolerance level of ϵ = 0.1
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VitaminC (Schuster et al., 2021a)
Exit
layer

Gold label Input

3 Sup Claim: Another movie titled The SpongeBob Movie: Sponge on
the Run is scheduled for release in 2020.
Evidence: A second film titled The SpongeBob Movie : Sponge
Out of Water was released in 2015, and another titled The Sponge-
Bob Movie: Sponge on the Run is scheduled for release in 2020.

5 Sup Claim: Julie Bishop offered a defence of her nation’s intelligence
cooperation with America.
Evidence: The Australian Foreign Minister Julie Bishop stated
that the acts of Edward Snowden were treachery and offered
a staunch defence of her nation’s intelligence co-operation with
America.

10 NEI Claim: The character Leslie hurts her head on the window in the
film 10 Cloverfield Lane.
Evidence: Michelle realizes Howard was right and returns his keys.

15 Sup Claim: Halakha laws are independent of being physically present
in the Land of Israel.
Evidence: The codification efforts that culminated in the Shulchan
Aruch divide the law into four sections, including only laws that
do not depend on being physically present in the Land of Israel.

20 Sup Claim: Germany has recorded less than 74,510 cases of coronavirus
, including under 830 deaths.
Evidence: 74,508 cases have been reported with 821 deaths and
approximately 16,100 recoveries.

24 NEI Claim: For the 2015-16 school year , the undergraduate fee at USF
is under $43,000.
Evidence: Undergraduate tuition at USF is $44,040 for the 2016-
17 school year.

Table B.4.2: Number of Transformer layers used for example inputs from the Vitam-
inC test set with our Shared/Meta CAT with a tolerance level of ϵ = 0.1
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AG News (Gulli, 2004; Zhang et al., 2015)
Exit
layer

Gold label Input

1 Business Crude Oil Rises on Speculation Cold Weather May Increase De-
mand Crude oil futures are headed for their biggest weekly gain
in 21 months [...]

5 Sports NHL Owner Is Criticized for Talking of Replacement Players The
day before the regular season was supposed to open [...]

15 World Scotch Whisky eyes Asian and Eastern European markets (AFP)
AFP - A favourite tipple among connoisseurs the world over,
whisky is treated with almost religious reverence on the Hebridean
[...]

20 Business Arthritis drug withdrawn after trial A prescription painkiller used
by more than 250,000 Australians to treat arthritis has been with-
drawn from sale after a clinical trial found it doubled the risk [...]

24 Sci/Tech Airbus drops out of Microsoft appeal Aircraft builder withdraws
its request to intervene in Microsoft’s antitrust appeal; Boeing also
forgoes intervention.

Table B.4.3: Number of Transformer layers used for example inputs from the AGNews
test set with our Shared/Meta CAT with a tolerance level of ϵ = 0.1

STS-B (Cer et al., 2017)
Exit
layer

Gold label Input

10 0.6 Sent. 1: A child wearing blue and white shorts is jumping in the
surf.
Sent. 2: A girl wearing green twists something in her hands.

15 2.8 Sent. 1: Saudi Arabia gets a seat at the UN Security Council
Sent. 2: Saudi Arabia rejects seat on UN Security Council

20 4.2 Sent. 1: a small bird sitting on a branch in winter.
Sent. 2: A small bird perched on an icy branch.

24 3.0 Sent. 1: It depends entirely on your company and your contract.
Sent. 2: It depends on your company.

Table B.4.4: Number of Transformer layers used for example inputs from the STS-B
test set with our Shared/Meta CAT with a tolerance level of ϵ = 0.1
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C

Appendix for Chapter 3

C.1 Proofs

C.1.1 Proof of Theorem 3.3.4

Proof. We begin by establishing exchangeability of the minimal nonconformity scores,

Nmin
g (Xi, Yi), as defined in Eq. (3.4). We simplify notation once again by letting Vi :=

N (Xi, Yi), and Mi := Nmin
g (Xi, Yi). Since (Xi, Yi) are exchangeable and N is fixed, Vi

are also exchangeable. Then, since the label expansion and subsequent min operator

are taken point-wise over the Vi, we retain symmetry, and therefore Mi are also

exchangeable. Next, we want to prove that P (|Ag(Xn+1, Yn+1) ∩ Cmin
ϵ (Xn+1)| ≥ 1) ≥

1− ϵ. Let |Ag(Xn+1, Yn+1)| = k, where Ag(Xn+1, Yn+1) = {Ȳ 1
n+1, . . . , Ȳ

k
n+1}. Then:

P
(∣∣∣Ag(Xn+1, Yn+1) ∩ Cmin

ϵ

∣∣∣ ≥ 1
)

= P
(

k⋃
i=1

Ȳi ∈ Cmin
ϵ

)

≥ max
{
P
(
Ȳ1 ∈ Cmin

ϵ

)
, . . . ,P

(
Ȳk ∈ Cmin

ϵ

)}
= max

{
P
(
pval(N (Xn+1, Ȳ

1
n+1),M1:n) > ϵ

)
, . . . ,P

(
pval(N (Xn+1, Ȳ

k
n+1),M1:n) > ϵ

)}
(i)= P ( pval(Mn+1,M1:n) > ϵ )
(ii)
≥ 1− ϵ

(C.1)
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where (i) is by construction of Mn+1 (assuming unique non-conformity scores or tie-

breaking in pval), and (ii) comes from applying Lemma 1.3.3.

We now prove the second part of Theorem 3.3.4: that E [|Cmin
ϵ (Xn+1)|] ≤ E [|Cϵ(Xn+1)|].

Let 1{yi ∈ Cϵ} be the indicator random variable that yi ∈ Y is included in Cϵ. Then:

E [|Cϵ|] = E

 |Y|∑
i=1

1{yi ∈ Cϵ}


=

|Y|∑
i=1

E[1{yi ∈ Cϵ}]

=
|Y|∑
i=1

P (pval(N (Xn+1, yi), V1:n) > ϵ) .

(C.2)

By the same derivation, we have

E
[
|Cmin

ϵ |
]

=
|Y|∑
i=1

P (pval(N (Xn+1, yi),M1:n) > ϵ) . (C.3)

Since Mi ≤ Vi, ∀i ∈ [1, n+ 1], we have Vn+1 ≤Mi =⇒ Vn+1 ≤ Vi, and it is the easy

to see from the definition of the pval that this also implies

P(pval(N (Xn+1, y),M1:n) > ϵ) ≤ P(pval(N (Xn+1, y), V1:n) > ϵ), ∀y ∈ Y . (C.4)

It follows that E [|Cmin
ϵ |] ≤ E [|Cϵ|].

C.1.2 Proof of Theorem 3.4.1

Proof. We restate our assumption that M is a valid multiple hypothesis testing cor-

rection procedure that properly controls the family-wise error rate,

P̃ =M (P1, . . . , Pm) s.t. P
(
P̃ ≤ ϵ | Y is correct

)
≤ ϵ, (C.5)

and that it is element-wise monotonic

(P1, . . . , Pm) ≼
(
P̂1, . . . , P̂m

)
=⇒M (P1, . . . , Pm) ≤M

(
P̂1, . . . , P̂m

)
, (C.6)
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where Pi are p-values produced by different nonconformity measures for the same

point (X,Y ), and ≼ operates element-wise.1 First we show that all Cm
ϵ constructed

via Eq. (3.11) satisfies Eq. (3.1) when all p-values are known and no pruning has been

done. M operates element-wise over examples, therefore exchangeability is conserved

and all basic individual p-value computations from nonconformity scores are valid as

before. Then, by the construction of Cm
ϵ (Xn+1), we have

Yn+1 6∈ Cϵ(Xn+1)⇐⇒ P̃ ≤ ϵ, (C.7)

and

P (Yn+1 ∈ Cm
ϵ (Xn+1)) = 1− P (Yn+1 6∈ Cm

ϵ (Xn+1))

= 1− P
(
P̃ ≤ ϵ

)
≥ 1− ϵ,

(C.8)

where the final inequality comes from the first assumption on M. Next, we want

to prove that early pruning does not remove any candidates y that would not be

removed from Cm
ϵ . When all p-values after step j are not yet known, we set Pk>j to

1. Using the element-wise monotonicity of M, we have

M (P1, . . . , Pj, 1, . . . 1) ≥M (P1, . . . , Pm) (C.9)

Therefore, {
y ∈ Y : P̃ (y)

j > ϵ
}
⊇
{
y ∈ Y : P̃ (y)

m > ϵ
}
, (C.10)

yielding y ∈ Cm
ϵ (Xn+1)⇒ y ∈ Cj

ϵ (Xn+1), ∀y ∈ Y . We finish by using the earlier result

for Cm
ϵ (Xn+1) to get

P
(
Yn+1 ∈ Cj

ϵ (Xn+1)
)
≥ P (Yn+1 ∈ Cm

ϵ (Xn+1)) ≥ 1− ϵ, ∀j ∈ [1,m]. (C.11)

1As previously noted, though we formally require this, we are unaware of any common M satis-
fying Eq. (3.9) but not Eq. (3.10). See Appendix C.4 for common MHT corrections.
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C.2 Implementation details

Multiple answers. When multiple answers are given (i.e., y is a set) we take Ag(x, y)

as the union of all the admissible answers, along with any additional answers expanded

by g. For the standard conformal prediction baseline, we calibrate on one of the

answers at a time, chosen uniformly at random. Note that this is important to

preserve equivalent sample sizes across min-calibrated CP and standard CP.2

Open-Domain QA. We use the open-domain setting of the Natural Questions (NQ)

dataset (Kwiatkowski et al., 2019). In this task, the goal is to find a short span from

any article in Wikipedia that answers the given question. Questions in the NQ dataset

were sourced from real Google search queries, and human annotators identified answer

spans to the queries in Wikipedia articles (we use the short answer span setting, and

only consider answerable, non-boolean questions).

We use the open-source, pre-trained DPR model for retrieval (i.e., the document

retriever) and the BERT model for question answering (i.e., the document reader)

provided by Karpukhin et al. (2020). To summarize briefly, the DPR model is trained

to maximize the dot-product similarity between the dense representations (obtained

via BERT embeddings) of the question and the passage that contains the answer. For

candidate passages, we use the Wikipedia-based corpus processed by Karpukhin et al.

(2020), where each article is split into disjoint passages of 100 words, resulting in a

total of 21,015,324 passages. The DPR model pre-computes dense representations

for all passages and indexes them with FAISS (Johnson et al., 2019) for efficient

retrieval. At test time, relevant documents for a given dense question encoding are

retrieved via fast similarity search. The reader model is a standard BERT model with

an independent span prediction head. This model encodes the question and passage

jointly, and therefore, the representations cannot be pre-computed. For each token,

the model outputs independent scores for being the start or end of the answer span.

We also follow Karpukhin et al. (2020) by using the output of the “[CLS]” token

2Another possibility would be to calibrate on all the given answers, but we found this does worse.
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Task Metric Description

QA

retriever −1· sim. score of the question/paragraph by the retrieval model.
passage −1· logit of the passage selection score by BERT.
span start −1· logit of the answer’s first token by BERT.
span end −1· logit of the answer’s last token by BERT.
span sum span start + span end.

IR BM25 −1· BM25 similarity score between query and candidate.
CLS logit −1· logit of the claim-evidence pair by ALBERT.

DR RF −1· score of the candidate by the Random Forest model.
MPNN −1· score of the candidate by the directed MPNN.

Table C.2.1: Nonconformity measures used in our experiments.

to get a passage selection score from the reader model (to augment the score of the

retriever). For ease of experimentation, we only consider the top 5000 answer spans

per question—taken as the top 100 passages (ranked by the retriever) and the top

50 spans per passage (ranked by the reader). In order to be able to evaluate all ϵ ∈

(0, 1) we discard questions whose answers do not fall within this selection. We retain

6750/8757 questions from the validation set and 2895/3610 from the test set.

We compose the cascade for this task using four metrics: the retriever score, followed

by the reader’s passage selection score, the “span start” score, and the “span end”

score. For the non-cascaded models, we take the sum of the span start and span end

scores as a single metric. See Table C.2.1.

IR. We use the FEVER dataset for evidence retrieval and fact verification (Thorne

et al., 2018). We focus on the retrieval part of this task. Note that the retrieved

evidence can then be used to verify the correctness of the claim automatically (Nie

et al., 2019; Schuster et al., 2019), or manually by a user. We follow the splits of

the Eraser benchmark (DeYoung et al., 2020) that contain 97,957 claims for train-

ing, 6,122 claims for validation, and 6,111 claims for test. The evidence needs to be

retrieved from a set of 40,133 unique sentences collected from 4,099 total Wikipedia

articles.

We compose the cascade using two metrics: an efficient BM25 model, and a neural
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sentence-pair classifier. Our BM25 retriever uses the default configuration available

in the Gensim library (Řehůřek and Sojka, 2010). We perform simple preprocessing

to the text, including removing punctuation and adding word stems. We also add the

article title to each sentence. Our neural classifier (CLS) is built on top of ALBERT-

Base and is trained with BCE on (claim, evidence) pairs. We collect 10 negative pairs

for each positive one by randomly selecting other sentences from the same article as

the correct evidence. For shorter articles, we extend the negative sampling to also

include the top (spurious) candidates indentified by the BM25 retriever.

DR. We construct a molecular property screening task using the ChEMBL dataset (see

Mayr et al., 2018). Given a specified constraint such as “is active for property A and

property B but not property C”, we want to retrieve at least one molecule from a given

set of candidates that satisfies this constraint. The motivation of this task is to sim-

ulate in-silico screening for drug discovery, where it is often the case where chemists

will searching for a new molecule that satisfies several constraints (such as toxicity

and efficacy limits), out of a pool of many possible molecular candidates.

We split the ChEMBL dataset into a 60-20-20 split of molecules, where 60% of

molecules are separated into a train set, 20% into a validation set, and 20% into

a test set. Next, we take all properties that have more than 1000 labeled molecules

(of which at least 100 are positive and 100 are negative, to avoid highly imbalanced

properties). Of these ∼200 properties, we take all N choose K combinations that

have at least 100 molecules with all K properties labelled (ChEMBL has many miss-

ing values). We set K to 3. For each combination, we randomly sample an assignment

for each property (i.e., {active, inactive}K). We keep 5000 combinations for each of

validation and test sets. The molecules for each of the combinations are only sourced

from their respective splits (i.e., molecular candidates for constraints in the property

combination validation split only come from the molecule validation split). Therefore,

at inference time, given a combination we have never seen before, on a molecules we

have never seen before, we must try to retrieve at least one molecule that has the

desired combination assignment.
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Both our random forest (RF) and the directed Message Passing Neural Network

(MPNN) were implemented using the chemprop repository (Yang et al., 2019). The

RF model is based on the Scikit library (Pedregosa et al., 2011) and uses 2048-bit

binary Morgan fingerprints (Rogers and Hahn, 2010) of radius 2 to independently

predict all target properties (active or inactive) for a given molecule. The RF model

is fast to run during inference, even on a single CPU. The MPNN model uses graph

convolutions to learn a deep molecular representation, that is shared across property

predictions. Each property value (active/inactive) is predicted using an independent

classifier head. The final prediction is based on an ensemble of 5 models, trained

with different random seeds. Given a combination assignment (Z1 = z1, . . . , Zk = zk),

for both the RF and MPNN models, we take the nonconformity score as the model’s

negative log-likelihood, where the likelihood is computed independently, i.e.

pθ(Z1 = z1, . . . , Zk = zk) =
∏
pθ(Zi = zi). (C.12)

C.3 Additional results

We provide supplemental experimental results to those shown in §3.6. In C.3.1 we

show an example of a closed-domain QA task where cascading multiple measures

boosts the predictive efficiency to the extent that it outweighs the MHT correction

factor. In C.3.2 we compare our method to heuristic methods at fixed ϵ.

C.3.1 Complementary conformal cascades for closed-domain QA

The motivation in this work for conformalized cascades is to improve computational ef-

ficiency by allowing cheaper models to filter the candidate space prior to running more

expensive and more powerful models. Though not guaranteed, in some cases it is also

possible that combining different nonconformity scores together has an overall syner-

gistic effect that outweighs the generally conservative effects of the MHT corrections.

This is similar in theory to ensembles or mixtures-of-experts (Jacobs et al., 1991),
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and similar results have been reported for combined conformal prediction (Carlsson

et al., 2014; Linusson et al., 2017; Toccaceli and Gammerman, 2017).

While the tasks in §3.6 focus on cascades that are designed primarily for efficiency,

here we also explore cascades for the smaller-scale task of closed-domain questions

answering on the SQuAD 2.0 dataset (Rajpurkar et al., 2018). This task isolates the

document reader aspect of the open-domain QA pipeline, in which a relevant passage

is already given. We cascade two primary models: (1) a span extractor (EXT) that

gives independent scores for the start and end positions of the answer span, and (2)

a more expensive answer classifier (CLS) that considers the entire candidate span

(i.e., models the start and end jointly). We briefly outline the implementation details

before giving the results below.

The EXT model uses the ALBERT-Base QA model (Lan et al., 2020). It is trained

to maximize the likelihood of the answer span [i, j], where p(start = i, end = j) is

modeled as p(start = i)p(end = j). During inference, the model computes all O(n2)

start and end position scores, and predicts the pair with the highest sum. We use

the start and end position scores as two separate nonconformity measures. The CLS

model is also built on top of ALBERT-Base, and is similar to Lee et al. (2016). Instead

of scoring start and end positions independently, we concatenate the corresponding

hidden representations at tokens i (start) and j (end), and score them jointly using

an MLP. We then train with binary cross-entropy (BCE) over correct and incorrect

answers. We limit the number of negative samples (incorrect answers) to the top 64

incorrect predictions of the EXT model.

The authors keep the original test set hidden; for ease of CP-specific evaluation we

re-split the development set randomly by article. This results in 5,302 questions

in our validation set, and 6,571 questions in our test set. The average length of a

paragraph in the evaluation set is 127 words. Together with the “no answer” option,

a question for a paragraph of that length will have 8,129 candidate answer spans. For

the purposes of experimentation, we filter out questions for which the EXT model
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does not rank the correct answer within the top 150 predictions (so we can compute

the full (0, 1) range of ϵ tractably). This discards less than 0.5% of questions.

Our results across several values of epsilon are given in Table C.3.1. As in the tasks in

§3.6, the min-calibrated CPs improve over the baseline CP. In this case, however, the

cascaded CP also consistently outperforms the CP with only a single measure.

1− ϵ
CP min CP Cascaded min CP

Succ. |Cϵ| Succ. |Cmin
ϵ | Succ. |Cmin

ϵ | Amortized cost

0.99 1.00 17.69 0.99 6.68 0.99 6.31 0.50
0.95 0.98 5.14 0.95 3.14 0.96 2.45 0.42
0.90 0.95 3.09 0.90 1.98 0.92 1.76 0.40
0.80 0.86 1.66 0.80 1.31 0.83 1.24 0.38

Table C.3.1: CP results on the SQuAD 2.0 dataset.

C.3.2 Heuristic methods

In addition to evaluating our improvements over regular conformal prediction, we

compare our conformal method to other common heuristics for making set-valued pre-

dictions. Specifically, we consider baseline methods that given some scoring function

score(x, y) and threshold τ to define the output set of predictions B at x ∈ X as

B(x, τ) := {y ∈ Y : score(x, y) ≥ τ} , (C.13)

where τ is then tuned on the calibration set to find the largest threshold for the

desired accuracy:

τ ∗
ϵ := sup

{
τ : 1

n

n∑
i=1

1{yi ∈ B(x, τ)} ≥ 1− ϵ
}
. (C.14)

The prediction for the test point xn+1 is then B(xn+1, τ
∗
ϵ ). We consider two vari-

ants: (1) fixed top-k, where score := −rank(metric(xn+1, y)) according to some

metric, and (2) raw thresholding, where score := metric(xn+1, y), i.e., some raw,
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unnormalized metric. Top-k is simple and relatively robust to the variance of the

metric used, but as it doesn’t depend on x, it also means that both easy examples

and hard examples are treated the same (giving prediction sets that are too large

in the former, and too small in the latter). Raw metric thresholding, on the other

hand, gives dynamically-sized prediction sets, but is more sensitive to metric variance.

We emphasize that these baselines do not provide theoretical coverage guarantees for

potentially non-i.i.d. finite samples.

When ignoring smoothing factors and restricting ourselves to a single, non-cascaded

metric, it is straightforward to see that choosing the nonconformity measure to be

S := rank(metric(x, y)) or simply S := −metric(x, y) makes the set Cn(xn+1) equiv-

alent to B(xn+1, τ̃ϵ), where

τ̃ϵ := Quantile
(
1− ϵ, F̂ ({S(x1, y1), . . . ,S(xn, yn)} ∪ {∞})

)
. (C.15)

We write F̂ (V) to denote the empirical distribution of set V . For large enough n,

τ̃ϵ becomes nearly identical to τ ∗
ϵ . Note, however, that this comparison only applies

to the split (i.e., inductive) conformal prediction setting. Metrics computed without

relying on a held-out calibration set (as full CP is able to do) must treat the n+1 data

points symmetrically, a key feature of CP. Our methods extend to multiple cascaded

metrics, finite n, and the full CP setting.

We compare predictive efficiency results when using top-k and threshold heuristics

versus our CP methods in Figure C.3.1 and Table C.3.2. As expected, with large

enough n, the CP and Threshold methods are nearly equivalent. In some cases,

top-k outperforms the threshold- and CP-based methods that use raw scores (this

is likely due to variance in the densities of high scoring candidates across examples).

When optimizing for admissible answers, our min-calibrated CP improves over all

three methods. Note that optimizing for admissible answers is also applicable for the

heuristic methods, in which case the trends will be similar to that of CP.
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(a) QA (b) IR (c) DR

Figure C.3.1: We show predictive efficiency and accuracy across various target accura-
cies (values of 1−ϵ). As expected, with a large enough calibration set, the performance
of the threshold heuristic is similar to CP. The top-k threshold is harder to tune, re-
sulting in lower than the desired accuracy for some values of IR, and sometimes in
unnecessary large prediction sets. Specific values of ϵ are compared in Table C.3.2.

Task Target Acc. Threshold Top-k Baseline CP min-CP

Acc. |B| Acc. |B| Acc. |Cϵ| Acc. |Cmin
ϵ |

QA

0.90 0.98 1243.8 0.98 1041.7 0.98 1245.7 0.90 198.0
0.80 0.94 452.8 0.95 390.5 0.94 453.5 0.80 58.7
0.70 0.91 228.8 0.92 203.3 0.91 227.8 0.70 22.1
0.60 0.87 128.4 0.89 120.5 0.87 127.8 0.60 10.6

IR

0.99 1.00 33.6 1.00 41.0 1.00 33.6 0.99 17.8
0.95 1.00 20.9 0.95 29.8 1.00 20.9 0.95 7.4
0.90 0.98 13.8 0.89 18.7 0.98 13.8 0.90 4.0
0.80 0.95 6.7 0.78 6.7 0.95 6.7 0.80 1.7

DR

0.90 0.99 429.5 1.00 652.9 0.99 429.8 0.90 84.1
0.80 0.97 305.8 1.00 525.1 0.97 305.8 0.80 42.7
0.70 0.96 216.8 0.99 398.3 0.96 216.6 0.70 28.1
0.60 0.94 145.7 0.98 266.5 0.94 145.6 0.60 19.3

Table C.3.2: Non-CP baseline (B) results on the test set for different target accuracy
values, compared to CP methods (|Cϵ| and |Cmin

ϵ |).

C.4 Multiple hypothesis testing

As we discuss in §3.4, naively combining multiple hypothesis tests will lead to an

increased family-wise error rate (FWER). As a simple analogy, suppose the rejection
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decision is based on a random toss of a fair coin. Then we will reject the correct label

50% of the time. However, if we toss two coins and reject if either one is “heads”,

then we will reject the correct label 75% of the time. For a visual example, see

the uncorrected cascaded CP (blue dashed lined) in Figure C.4.1. It demonstrates

that combining nonconformal measures without using a MHT correction can result

in accuracies smaller than 1− ϵ (i.e., invalid coverage).

Several methods exist for correcting for MHT by bounding the FWER (with different

assumptions on the dependencies between the hypothesis tests). We experiment with

the Bonferroni and Simes procedures. We test the corrections on each task’s valida-

tion set and find Simes to work well for QA and IR, but not to hold for DR (See Fig-

ure C.4.1). Therefore, we use the Bonferroni correction for DR and Simes for the other

two tasks. For completeness, we briefly describe the two methods and the assumptions

they rely on below (extensive additional details can be found in the literature).

(a) QA (b) IR (c) DR

Figure C.4.1: Success rate against tolerance thresholds with different methods for
MHT correction (validation set). Not applying any correction leads to a in-valid clas-
sifier (the success rate is below the diagonal). The Bonferroni method is conservative,
leading to a valid classifier, but sometimes with a higher accuracy rate than necessary
(a result of having excessively large Cϵ). The Simes correction works for the QA and
IR tasks and provides a tighter bound for them. The Simes correction does not work
for the DR task, likely due to a violation of its MTP2 assumption, but the Bonferroni
method provides a relatively tight correction there—especially for small ϵ.

C.4.1 Bonferroni Procedure

The Bonferroni correction is easy to apply and doesn’t require assumptions on the de-

pendencies between the hypothesis tests used (e.g., independent, positively dependent,
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etc). However, it is generally very conservative. The Bonferroni correction scales ϵ by

a factor of 1/m, and uses the union bound on the p-values (P1, . . . , Pm) to get:

P (Yn+1 6∈ Cm
ϵ (Xn+1)) = P

(
m⋃

i=1
Pi ≤

ϵ

m

)
≤

m∑
i=1

P
(
Pi ≤

ϵ

m

)
= ϵ. (C.16)

We get the same result by scaling each p-value by m, and take the combined p-value to

be the minimum of the scaled p-values. It is easy to show that this is monotonic.

C.4.2 Simes Procedure

The Simes procedure (Simes, 1986) allows a stricter bound on the FWER when the

measures are multivariate totally positive (Sarkar and Chang, 1997), which usually

holds in practice (Rødland, 2006). To apply the correction, we first sort the p-values in

ascending order, and then perform an order-dependent correction where the correction

factor decreases as the index of the p-value increases. Specifically, if (P(1), . . . P(m))

are the sorted p-values (P1, . . . Pm) in an m-level cascade, we modify the p-values to

be P Sim
(i) = m · p(i)

i
. We take the final combined p-value to be the minimum of the

corrected p-values. It is easy to show that this correction is monotonic.
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D

Appendix for Chapter 4

D.1 Proofs

D.1.1 Proof of Lemma 4.3.3

Proof. Notice that

t ≤ t′ =⇒ {vj : vj < t} ⊆ {vj : vj < t′}. (D.1)

As an immediate consequence,

t ≤ t′ =⇒ {FP(z,Sj) : vj ≤ t} ⊆ {FP(z,Sj) : vj ≤ t} (D.2)

=⇒ max{FP(z,Sj) : vj < t} ≤ max{FP(z,Sj) : vj < t′} (D.3)

=⇒ FPmax(x, z, t) ≤ FPmax(x, z, t′). (D.4)

D.1.2 Proof of Theorem 4.3.4

Our proof of Theorem 4.3.4 builds on conformal risk control (Angelopoulos et al.,

2022a, see also Chapter 6). We restate the main result here:
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Theorem D.1.1 (CRC). Let Li : R → R, i = 1, . . . , n + 1 be exchangeable functions,

where Li(t) is non-increasing in t. Also, take g : R→ R where g(x) is non-decreasing

in x. Further assume that g ◦ Li is right-continuous, and

inf
t
g(Li(t)) < γ, sup

t
g(Li(t)) ≤ B <∞ almost surely. (D.5)

Then

E[g ◦ Ln+1(T (γ; g))] ≤ γ, (D.6)

where

T (γ; g) = inf
{
t : 1
n+ 1

(
B +

n∑
i=1

g(Li(t))
)
≤ γ

}
. (D.7)

Proof. See Angelopoulos et al. (2022a).

We provide an additional corollary for lower-bounding functionRn+1, whereR1, . . . , Rn+1

are now non-decreasing exchangeable functions (as opposed to non-increasing).

Corollary D.1.2 (CRC, lower bound, non-decreasing case). Similar to the setting in

Theorem D.1.1, let Ri : R → R, i = 1, . . . , n + 1 be exchangeable functions, where

Ri(t) is non-decreasing in t. Also, take g : R→ R where g(x) is non-decreasing in x.

Further assume that g ◦Ri is right-continuous, and

inf
t
g(Ri(t)) ≥ 0, sup

t
g(Ri(t)) > C ≥ γ almost surely. (D.8)

For any γ ≤ 0, define the random variable T (γ, g) as

T (γ; g) := inf
{
t : 1
n+ 1

n∑
i=1

g(Ri(t)) ≥ γ

}
, (D.9)

where we define inf ∅ =∞. Then E[g ◦Rn+1(T (γ; g))] ≥ γ.

Proof. Let
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T ′(γ; g) := inf
{
t : 1
n+ 1

n+1∑
i=1

g(Ri(t)) ≥ γ

}
. (D.10)

Since inft g(Ri(t)) ≥ 0, supt g(Ri(t)) > C ≥ γ, T ′(γ; g) and T (γ, g) are both well-

defined almost surely.

Since inft g(Ri(t)) ≥ 0,

1
n+ 1

n∑
i=1

g(Ri(t)) ≥ γ =⇒ 1
n+ 1

n+1∑
i=1

g(Ri(t)) ≥ γ. (D.11)

Thus, T ′(γ; g) ≤ T (γ; g). Since g(Ri(t)) is non-decreasing in t,

E[g ◦Rn+1(T (γ; g))] ≥ E[g ◦Rn+1(T ′(γ; g))]. (D.12)

Let Ef be the unordered set (bag) of {R1, . . . , Rn+1}. Then T ′(γ; g) is a function of

Ef , and is a constant conditional on Ef . Exchangeability of Ri and right-continuity

of g ◦Ri imply

E[g ◦Rn+1(T ′(γ; g)) | Ef ] = 1
n+ 1

n+1∑
i=1

g ◦Ri(T ′(γ; g)) ≥ γ. (D.13)

As this is true given any Ef , we can take the expectation over Ef to yield

E[E[g ◦Rn+1(T ′(γ; g)) | Ef ]] ≥ γ. (D.14)

The proof is completed by applying Eq. (D.12).

Proof of Theorem 4.3.4. By Lemma 4.3.3, we have that FPmax(x, z, t) is non-decreasing

in t. It is also easy to verify that FPmax(x, z, t) is left-continuous in t and preserves

exchangeability, so that FPmax(Xi, Zi, t) are exchangeable functions of t. Next, define

FP−
max(x, z, t) := FPmax(x, z,−t), (D.15)
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so that FP−
max(x, z, t) is non-increasing in t and right-continuous. Define random

variables T ′
k and T ′

k,δ as

T ′
k = inf

{
t ∈ R : B +∑n

i=1 FP−
max(Xi, Zi, t)

n+ 1
≤ k

}
and (D.16)

T ′
k,δ = inf

{
t ∈ R :

∑n
i=1 1{FP−

max(Xi, Zi, t) ≤ k}
n+ 1

≥ 1− δ
}
. (D.17)

We then have Tk = −T ′
k and Tk,δ = −T ′

k,δ, which gives

E
[
FPmax(Xn+1, Zn+1, Tk)

]
= E

[
FP−

max(Xn+1, Zn+1, T
′
k)
]

and (D.18)

P
(

FPmax(Xn+1, Zn+1, Tk,δ) ≤ k
)

= P
(

FP−
max(Xn+1, Zn+1, T

′
k,δ) ≤ k

)
. (D.19)

(Part 1) We first prove E
[
FP−

max(Xn+1, Zn+1, T
′
k)
]
≤ k.

Since B is finite, we have that supt FP−
max(x, z, t) ≤ maxj |Sj| ≤ B < ∞. As we

assume nonconformity scores are finite, we also have inft FP−
max(x, z, t) = 0 < k ∈ R>0.

Let Li(t) = FP−
max(Xi, Zi, t) and g(x) = x. Theorem D.1.1 gives

E
[
FP−

max(Xn+1, Zn+1, T
′
k)
]
≤ k. (D.20)

Substituting Eq. (D.18) gives E
[
FPmax(Xn+1, Zn+1, Tk)

]
≤ k.

(Part 2) We now prove P
(

FP−
max(Xn+1, Zn+1, T

′
k,δ) ≤ k

)
≥ 1− δ.

Let Li(t) = 1{FP−
max(Xi, Zi, t) ≤ k}. Let g(x) = x. As shown earlier, FP−

max(Xi, Zi, t)

is non-increasing, right-continuous; as a result Li(t) is non-decreasing, right-continuous.

Let γ = 1− δ ∈ (0, 1). Since g(Li(t)) ∈ {0, 1} and Vi,j are finite, it is easy to see that

we have supt g(Li(t)) = 1 ≥ γ and inft g(Li(t)) = 0 ≥ 0.
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Applying Corollary D.1.2 gives

E
[
1{FP−

max(Xn+1, Zn+1, T
′
k,δ) ≤ k}

]
= P

(
FP−

max(Xn+1, Zn+1, T
′
k,δ) ≤ k

)
(D.21)

≥ γ (D.22)

= 1− δ. (D.23)

Substituting Eq. (D.19) gives P
(

FPmax(Xn+1, Zn+1, Tk,δ) ≤ k
)
≥ 1− δ.

D.1.3 Proof of Proposition 4.3.8

Proof. We first prove simultaneous validity of candidate sets indexed by j ∈ J . By

definition we have

FP(Zn+1,Sj) ≤ FPmax(Xn+1, Zn+1, T◦) ∀j ∈ J , (D.24)

which implies

E
[
FP(Zn+1,Sj)

]
≤ E

[
FPmax(Xn+1, Zn+1, Tk)

]
and (D.25)

P
(

FP(Zn+1,Sj) ≤ k
)
≥ P

(
FPmax(Xn+1, Zn+1, Tk,δ) ≤ k

)
(D.26)

simultaneously ∀j ∈ J . Theorem 4.3.4 then implies validity.

We now show maximal TPR (a simple outcome). If Sj ⊆ Sj′ then yc ∈ Sj =⇒ yc ∈ Sj′

for any yc ∈ z ⊆ Y . Therefore

Sj ⊆ Sj′ =⇒ TPP(z,Sj) ≤ TPP(z,Sj′). (D.27)

Since candidate sets are nested,

j ≤ j′ =⇒ Sj ⊆ Sj′ , (D.28)
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and

TPP(z,Smax J ) ≥ TPP(z,Sj′) ∀j′ ∈ J . (D.29)

Since this is true for all (x, z),

E
[
TPP(Zn+1,Smax J )

]
= sup

h∈H
E
[
TPP(Zn+1,Sh◦J )

]
(D.30)

where H is the space of all possible index selection policies.

D.2 Additional training details

We provide additional details on F ’s training data. First, recall that in our setup we

have an input space X and label space Y . For every input x ∈ X , there are (assumed

to be) potentially multiple true positives z ⊆ Y . Referring to Algorithm 3, during

training (train) we split whatever multi-label training data we have into two sets.

The first (larger split) is used to learn a likelihood model (which can either be simply

training independent binary predictors, or something with label dependencies that are

explicitly accounted for, e.g., with a CRF). The second (smaller split) is used to train

F . From this second split of data, again, we have inputs x and sets of true positives z.

For every input x, however, we can sample combinatorially many candidate output

sets z ⊆ Y , and measure the (ground truth) number of false positives by comparing

z′ with z. This (x, z) candidate is then used as a training instance for F , where our

target is to directly estimate the number of false positives, |z \ z|.

In practice, we construct candidate sets greedily by ranking output labels individually,

and then combining them into nested sets, i.e., {yπ(1)}, {yπ(1), yπ(2)}, {yπ(1), yπ(2), yπ(3)},

etc. This is aligned with our eventual calibration and inference time procedure. As

with testing, we only train on candidate sequences up to length B (recall that B

is used as a hyper-parameter for a cutoff for the maximum number of considered

sets—both for efficiency and technical details for ensuring CP guarantees). This also

allows us to train F quite efficiently, since, instead of randomly sampling candidate
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sets z, we create them greedily (as we would during testing). Concretely, suppose

for an input x with true label set z we have the set of labels ranked by individual

likelihood, {yπ(1), yπ(2), yπ(3), . . . , yπ(B)}. For each ranked yπ(i), we also have a corre-

sponding {0, 1} target y′
π(i) that indicates if yπ(i) is a false positive, or not. Suppose,

in this example, this sequence of labels is {1, 0, 1, . . . , 1}. Taking the cumulative

sum, our total number of FP targets for the batch are then then provided by the set

{1, 1, 2, . . . , B−|z|}. We train F to predict each of these targets by pairing the shared

input x with each of the nested candidate sets {yπ(1), . . . , yπ(k)} ⊆ {yπ(1), . . . , yπ(B)},

paired with the sum of its false positives, ∑i≤k y
′
π(i). In total, for a training split of n

examples, we will have n×B prediction targets.

D.3 Implementation and dataset details

In-silico screening. We construct a molecular property screening task using the

ChEMBL dataset (Mayr et al., 2018). Given a specified constraint such as “is active

for property A but not property B,” we want to retrieve at least one molecule from a

given set of candidates that satisfies this constraint. The input for each molecule is its

SMILES string, a notational format that specifies its molecular structure. The moti-

vation of this task is to simulate in-silico screening for drug discovery, where it is often

the case where chemists are searching for a new molecule that satisfies several con-

straints (such as toxicity and efficacy limits), out of a pool of many candidates.

We split the ChEMBL dataset into a 60-20-20 split of molecules, where 60% of

molecules are separated into a train set, 20% into a validation set, and 20% into a test

set. Next, we take all properties that have at least 50 positive and negative examples

(to avoid highly imbalanced properties). Of these properties, we take all N choose K

combinations that have at least 100 molecules with all K properties labelled (ChEMBL

has many missing values). We set K to 2. For each combination, we randomly sample

an assignment for each property (i.e., {active, inactive}K). We discard combinations

for which more than 90% of labeled molecules satisfy the constraint. We keep 5000

combinations for testing, 767 for validation, and 4375 for training. The molecules for
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each of the combinations are only sourced from their respective splits (i.e., molecu-

lar candidates for constraints in the property combination validation split only come

from the molecule validation split). Therefore, at inference time, given a combination

we have never seen before, on a molecules we have never seen before, we must try to

retrieve the molecules that have the desired combination assignment.

Our directed Message Passing Neural Network (MPNN) is implemented using the

chemprop1 repository (Yang et al., 2019). The MPNN model uses graph convolutions

to learn a deep molecular representation, that is shared across property predictions.

Each property value (active/inactive) is predicted using an independent classifier

head. The final prediction is based on an ensemble of 5 models, trained with different

random seeds. Given a combination assignment (Z1 = z1, . . . , Zk = zk), we naively

compute the joint likelihood independently, i.e.,

pθ(Z1 = z1, . . . , Zk = zk) =
∏
pθ(Zi = zi). (D.31)

Object detection. As discussed in §4.4, we use the MS-COCO dataset (Lin et al.,

2014) to evaluate our conformal object detection. MS-COCO consists of images of

complex everyday scenes containing 80 object categories (such as person, bicycle,

dog, car, etc.), multiple of which may be contained in any given example. Since

the official test set is hidden, we use the 5k examples from the development set and

randomly partition them into sets of size 1k, 1k, and 3k for calibration, validation,

and testing, respectively. The EfficientDet model (Tan et al., 2020)2 for extracting

bounding boxes uses a pipeline of three neural networks to extract deep features, and

then predict candidates. The model also uses a non-maximum suppression (NMS)

post-processing step to reduce the total number of predictions by keeping only the

one with the maximum score across highly overlapping prediction boxes. We merge

the predictions of all classes into a unified set, where each element is a tuple of (class,

bounding box). This means that multiple class predictions can be included for the
1https://github.com/chemprop/chemprop
2We use tf_efficientdet_d2 from https://github.com/rwightman/efficientdet-pytorch.

186

https://github.com/chemprop/chemprop
https://github.com/rwightman/efficientdet-pytorch


same bounding box (i.e., there is class uncertainty), and multiple bounding boxes can

be found for the same class (i.e., there are multiple objects in one image). We define

true positives as predictions that have an intersection over union (IoU) value > 0.5

with a gold bounding box annotation, and that match the annotation’s class.

Entity extraction. Entity extraction is a popular NLP task. Given a sentence, such

as “Barack Obama was born in Hawaii,” the goal is to identify and classify all named

entities that appear—i.e., (“Barack Obama”, Person) and (“Hawaii”, Location). We

use the CoNLL NER dataset (Tjong Kim Sang and De Meulder, 2003), and extract

1k examples for calibration out of the 3.3k development set, and report test results

on the 3.5k test set. For our base model, we use the entity extraction module of

PURE (Zhong and Chen, 2021), that predicts span scores with a classifier head on top

of Albert-base (Lan et al., 2020) contextual embeddings. The classification head has

two non-linear layers and uses the learned contextual embeddings of the span start and

end tokens, concatenated with a learned span width embedding. We train the model

on the training set of the CoNLL NER dataset. We use the official code repository3

and the following parameters: 1e−5 learning rate, 5e−4 task learning rate, 32 batch

size, and 100 context window. Similar to our object detection task, we treat exact span

predictions of the correct category as true positives, and any other entity predictions

as false positives. As illustrated in Table 4.1, a fairly large number of sentences do

not contain any entities at all, while other sentences may contain several.

D.3.1 Definition of size-stratified false positive violation

The size-stratified false positive (SSFP) violation measures the worst-case violation

of our metric of interest (i.e., expectation or probability), conditioned on the size of

the output set C. Specifically, SSFPk and SSFPk,δ are defined as follows:

3https://github.com/princeton-nlp/PURE.
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SSFPk(C, {A}a
s=1) := (D.32)

sup
s

max
(
Ê
[
FP(Zn+1, Cϵ(Xn+1))

∣∣∣∣ {|Cϵ(Xn+1)| ∈ As}
]
− k, 0

)
and

SSFPk,δ(C, {A}a
s=1) := (D.33)

sup
s

max
(
Ê
[
1
{
FP(Zn+1, Cϵ(Xn+1)) > k

} ∣∣∣∣ {|Cϵ(Xn+1)| ∈ As}
]
− δ, 0

)
,

where {A}a
s=1 forms a partition of {1, . . . , |Y|}, and Ê denotes the empirical average

over our test samples.

Following Angelopoulos et al. (2021b), we show that if conditional validity holds for

our objectives, then validity also holds after stratifying by set-size. Poor SSFP is

therefore a symptom of poor conditional validity.

In the following, we drop dependence on n+ 1 for clarity.

Proposition D.3.1 (Expectation case). Suppose E[FP(Z, Cϵ(X)) | X = x] ≤ k for

each x ∈ X . Then for any A ⊂ {0, 1, 2, . . .},

E
[
FP(Z, Cϵ(X)) | {|Cϵ(X)| ∈ A}

]
≤ k. (D.34)

Proof.
E[FP(Z, Cϵ(X)) | {|Cϵ(X)| ∈ A}]

= E[FP(Z, Cϵ(X)) · 1{|Cϵ(X)| ∈ A}]
P(|Cϵ(X)| ∈ A)

= E[E[FP(Z, Cϵ(X)) · 1{|Cϵ(X)| ∈ A} | X = x]]
P(|Cϵ(X)| ∈ A)

=
∫

x E[FP(Z, Cϵ(X)) | X = x] · 1{|Cϵ(x)| ∈ A}dP(x)
P(|Cϵ(X)| ∈ A)

≤
∫

x k · 1{|Cϵ(x)| ∈ A}dP(x)
P(|Cϵ(X)| ∈ A)

= k.

(D.35)
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Proposition D.3.2 (Probability case.). Suppose P(FP(Z, Ck,δ(X)) ≤ k | X = x) ≥ 1−δ

for each x ∈ X . Then for any A ⊂ {0, 1, 2, . . .},

P
(

FP(Z, Ck,δ(X)) ≤ k | {|Ck,δ(X)| ∈ A}
)
≥ 1− δ. (D.36)

Proof.
P(FP(Z, Ck,δ(X)) ≤ k | {|Ck,δ(X)| ∈ A})

=
∫

x P(FP(Z, Ck,δ(X)) ≤ k | X = x) · 1{|Ck,δ(x)| ∈ A}dP(x)
P(|Ck,δ(X)| ∈ A)

≥
∫

x(1− δ) · 1{|Ck,δ(x)| ∈ A}dP(x)
P(|Ck,δ(X)| ∈ A)

= 1− δ.

(D.37)

D.4 Additional experimental details

In this section we provide additional discussion of our experimental results.

D.4.1 Non-smoothness of SSFP results

The top rows of Figure 4-3 and Figure 4-2 plot the worst-case size-stratified violation,

that is the worst-case exceedance of k, conditioned on the prediction set being a

particular size. As can be seen from the plots, this can “spike” at different values

of ϵ. We provide an interpretation here. As the false positive allowance k grows,

the calibration threshold rises, but not all prediction sets necessarily grow in size at

the same rate. Therefore, the “worst” sets experience discrete jumps in total false

positives at various increments of k. This is most severe when the number of true

positives is naturally very low, as in entity extraction, so that increases in set size often

lead to increases in false positives (in the worst case). The exact behavior depends

on the score function used. In the meantime, between these jumps, the worst case

deviation will decrease, as deviation is measured as max(E[false positives | set size]−
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k, 0), where k is linearly increasing. The average deviation is much smoother, but less

interesting for comparing various methods, which is why we focus on SSFP.

D.5 Other practical considerations and limitations

In this section we address a number of practical considerations, limitations, and ex-

tensions for our FP-CP method.

D.5.1 Choosing a suitable k

An outstanding question a practitioner faces is how to choose the value of k for

k-FP and (k, δ)-FP objectives. The value of k in our method has a reliable and

easy interpretation: it is the total number of incorrect answers. For many tasks,

such as in-silico screening, there is a direct relation between the number of noisy

predictions (e.g., failed experiments conducted during wet-lab validation) and total

“wasted” cost. Therefore, for example, given some approximate budget Q and cost

per noisy prediction c, a reasonable approach is to then set k ≈ Q/c. Of course, the

advantage of our approach is that the user may set k to whatever they wish—this

might change based on their needs, and is not part of our algorithm.

D.5.2 Choosing between k-fwer and fdr control

A related question to D.5.1 is when to target k-FWER (i.e., our k-FP and (k, δ)-

FP objectives) or FDR (e.g., using Angelopoulos et al. (2021a)). This choice is well

discussed in the multiple testing literature (Lehmann and Romano, 2005a; Romano

and Wolf, 2007; Gold et al., 2009). An important aspect to consider is the size of the

label space Y , natural rate of true and false positives, and the efficiency of the base

model at separating true positives from false positives. When the total number of true

positives is large and |Y| is large then it is reasonable to control the FDR. If, however,

the natural rate of true positives is low, or they are not well separated from false

positives, then the FDR can be high and hard to control. This is especially true for

smaller prediction sets (as the ratio of positive to negative labels can be quickly driven
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down even with the addition of only a few false positives). For illustration, suppose

for a given example there is one true positive that is ranked 10th by the base model.

For many applications, 10 total predictions (with 9 false positives) is acceptable. Yet,

the lowest FDR cutoff that allows for this positive to be discoverable is 0.9 (which,

for other examples, may allow for hundreds of false positives—an outcome which is

undesirable for some applications, even given a high number of accompanying true

positives). To satisfy a lower FDR, the algorithm must output an empty set (with

FDR = 0). This remains true even if there are a few (but not many) other true

positives: for instance, in the previous example, if predictions 10-20 were also all true

positives then the lowest FDR is still only 0.5—specifying a FDR tolerances any lower

than this would force an empty set prediction.

D.5.3 Learning more expressive set functions

Our choice of DeepSets model is motivated by its property of being a universal approx-

imator for continuous set functions, and by its efficient architecture. Of course, its

realized accuracy depends on its exact parameterization and optimization. In terms

of input features, in §4.3.2, we chose a simplistic ϕ(x, yc) for two reasons: (1) we

view it’s low complexity as an advantage (practitioners can simply plug-in individual

multi-label probabilities, or other scalar conformity scores, that most out-of-the-box

methods provide into a general framework without having to do any more work for

providing additional features), and (2) it is easy to train this light-weight model on

smaller amounts of data. Still, this approach can discard potentially helpful informa-

tion about the input x, and any dependencies between labels yc and y′
c. For example, if

yc and y′
c are mutually exclusive, then the number of false positives if both are included

in S is at least 1. Using more expressive ϕ that is able to capture and take advantage

of this sort of side information about x and yc is a subject for future work.
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D.5.4 Constructing non-nested candidate sets

We choose to construct nested prediction sets because they are efficient and effective.

It is useful to emphasize, however, that nestedness is not necessary for our calibration

framework: our procedure still works even when candidate sets are not nested. It

only relies on FPmax remaining monotonic in t, which is preserved even for non-nested

candidate sets. That said, generally speaking, considering individual candidates in

the order of individual likelihood is a good strategy: this maximizes the expected

number of true positives in a set of fixed size. Of course, we are not ranking by

the true marginal likelihood, but rather the estimate, pθ(yc ∈ Z | x), and this may

introduce some error. In theory, the set function F may be able to identify higher

quality outputs sets S ∈ 2Y by jointly considering all of the included elements (rather

than ranking them one-by-one). That said, an unconstrained search process over 2Y

is expensive. Furthermore, identifying the final output set with maximal TPR, as we

show we do in Proposition 4.3.8, is no longer trivial. Nevertheless, this is a promising

area for future work, can potentially be combined with efficient search or pruning

methods (e.g., such as in Fisch et al. (2021a), see also Chapter 3).
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E

Appendix for Chapter 5

E.1 Proofs

Symbol Meaning

k The number of in-task examples used for few-shot learning.
ϵ The stipulated performance tolerance.
δ The stipulated secondary confidence tolerance for calibration conditional

validity.
t The total number of auxiliary tasks.

T The space of potential tasks to be solved in a few-shot learning setting.
X × Y The joint input (X’s) and output (Y ’s) space.
Itrain The set of auxiliary tasks used for meta-learning nonconformity scores

and quantile predictors.
Ical The set of auxiliary tasks used to calibrate the quantile predictor.

Tt+1 The target few-shot test task to be solved.
N A meta-learned nonconformity measure.
P1−ϵ A meta-learned regressor of the 1−ϵ quantile of N ’s scores on Tt+1 given

k in-task samples.
V̂

(x,y)
i,j The meta nonconformity score for example j of task i, given the current

candidate output (x, y).

Fi, F̂mi The true vs. mi-sample empirical distribution function over nonconfor-
mity scores of task i.

Q̂i, Quantile(1− ϵ, Fi) The predicted vs. true nonconformity score 1− ϵ quantiles for task i.
Λ̂(1− ϵ, Ical) The 1 − ϵ meta quantile correction factor, computed using calibration

tasks.

Cϵ, Mϵ Output label sets for standard and meta conformal prediction, respec-
tively, at level 1− ϵ.

Table E.1.1: Definitions of common notations used in this chapter.
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E.1.1 Proof of Lemma 5.3.2

Proof. Let the event {Ti = ti} indicate that task i has a quantile prediction {Q̂i = q̂i)

and CDF {Fi = fi} over meta nonconformity scores. For convenience, assume tasks

Ti, i ∈ Ical and Tt+1 are indexed contiguously as i = 1, . . . , n+ 1. Let

Λ̂′(β) := inf
{
λ : 1

n+ 1

n+1∑
i=1

Fi

(
Q̂i + λ

)
≥ β

}
, and

Λ̂(β) := inf
{
λ : 1

n+ 1

n∑
i=1

Fi

(
Q̂i + λ

)
≥ β

}
.

(E.1)

where Λ̂(β) is the same as Λ̂(β, Ical) as per Eq. (5.8). As CDFs, Fi are non-decreasing,

bounded in [0, 1], and right-continuous. Therefore, both Λ̂(β) and Λ̂′(β) are well-

defined. Furthermore, since Fi ≥ 0, we have that Λ̂′(β) ≤ Λ̂(β), since

1
n+ 1

n∑
i=1

Fi(Q̂i + λ) ≥ β =⇒ 1
n+ 1

n+1∑
i=1

Fi(Q̂i + λ) ≥ β. (E.2)

Next, denote by Et the event that {T1, . . . , Tn+1} = {t1, . . . , tn+1}, i.e., we observe an

unordered set of task values. Exchangeability of tasks Ti implies that

P(Tn+1 = ti | Et) = 1
n+ 1

, (E.3)

and, accordingly, that the distribution of Tn+1 | Et is uniform on the set {t1, . . . , tn+1}.

For convenience, let Vi := V test
i,k+1. For any constant λ ∈ R,

P(Vn+1 ≤ Q̂n+1 + λ | Et) =
n+1∑
i=1

P(Vn+1 ≤ Q̂n+1 + λ, Tn+1 = ti | Et)

=
n+1∑
i=1

P(Vn+1 ≤ Q̂n+1 + λ | Tn+1 = ti)P(Tn+1 = ti | Et)

= 1
n+ 1

n+1∑
i=1

P(Vn+1 ≤ Q̂n+1 + λ | Tn+1 = ti).

(E.4)
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From our definition of the event {Tn+1 = ti} = {Q̂n+1 = q̂i, Fn+1 = fi}, we can rewrite

P(Vn+1 ≤ Q̂n+1 + λ | Et) = 1
n+ 1

n+1∑
i=1

fi(q̂i + λ). (E.5)

Conditioned on Et, Λ̂′(β) is a constant. Right-continuity of fi then implies that

1
n+ 1

n+1∑
i=1

fi(q̂i + Λ̂′(β) | Et) ≥ β. (E.6)

Since Λ̂′(β) | Et ≤ Λ̂(β) | Et and Fi are non-decreasing,

1
n+ 1

n+1∑
i=1

fi(q̂i + Λ̂(β) | Et) ≥ β, (E.7)

Finally, because this is true for any Et, we can marginalize

P(Vn+1 ≤ Q̂n+1 + Λ̂(β)) =
∫

Et

P(Vn+1 ≤ Q̂n+1 + Λ̂(β) | Et) dP(Et)

=
∫

Et

1
n+ 1

n+1∑
i=1

fi(q̂i + Λ̂(β) | Et)dP(Et)

≥ β
∫

Et

dP(Et)

= β.

(E.8)

N.B. See Chapter 6 for related analysis of more general monotonic risks, which follows

the same proof strategy.

E.1.2 Proof of Theorem 5.3.3

Proof. Let Vi := V test
i,k+1. By definition, Y test

t+1 ∈ Mϵ(Xtest
t+1) ⇐⇒ Vt+1 ≤ Q̂t+1 + Λ̂(1 −

ϵ; Ical). As N and P are trained on the disjoint proper training set Itrain, they preserve

exchangeability, and produce exchangeable Q̂i. We then apply Lemma 5.3.2.
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E.1.3 Proof of Proposition 5.3.5

Intuitively, as the predicted quantiles become more accurate, they require less correc-

tion during calibration. On the target task Tt+1, under-coverage happens when the

predicted quantile/threshold, Q̂t+1 + Λ̂(1 − ϵ, Ical) is too low. We will show that as

k →∞, this happens with probability 0.

For convenience, let Vi := V test
i,k+1. Let tasks Ti, i ∈ Ical and Tt+1 be indexed contigu-

ously as i = 1, . . . , n + 1 Let Q̂(k)
i refer to Pβ(Zi,1:k;ϕmeta), the predicted quantile

for task i using k in-task samples. We will also drop conditioning on the target task

Tn+1 = tn+1 with the understanding that it applies on all probabilities.

Lemma E.1.1. Under the same conditions as Proposition 5.3.5,

lim
k→∞

P
(
Fn+1

(
Q̂

(k)
n+1 + Λ̂(β, Ical)

)
< β

)
= 0. (E.9)

Proof. By assumption, Fi are continuous and Q̂
(k)
i

p−→ Quantile(β, Fi). The continu-

ous mapping theorem then gives

Fn+1
(
Q̂

(k)
n+1 + Λ̂(β, Ical)

)
p−→ Fn+1

(
Quantile(β, Fn+1) + Λ(β, Ical)

)
, (E.10)

where

Λ(β, Ical) := inf
{
λ : 1

n+ 1

n∑
i=1

Fi

(
Quantile(β, Fi) + λ) ≥ β

}
. (E.11)

As this implies convergence in distribution,

lim
k→∞

P
(
Fn+1

(
Q̂

(k)
n+1 + Λ̂(β, Ical)

)
≥ β

)
= P

(
Fn+1

(
Quantile(β, Fn+1) + Λ(β, Ical)

)
≥ β

)
(i)
≥ P

(
Fn+1

(
Quantile(β, Fn+1)

)
≥ β | Λ(β, Ical) ≥ 0

)
P
(
Λ(β, Ical) ≥ 0

)
(ii)= P

(
Fn+1

(
Quantile(β, Fn+1)

)
≥ β

)
P
(
Λ(β, Ical) ≥ 0

)
(iii)= P

(
Λ(β, Ical) ≥ 0

)
,

(E.12)
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where (i) is from Fn+1 being non-decreasing, (ii) is from the independence of tasks

{Ti}n+1
i=1 , and (iii) is from Fn+1(Quantile(β, Fn+1)) = β, for continuous Fn+1.

Finally, since Fi are monotonic increasing and continuous,

P
(
Λ(β, Ical) ≥ 0

)
= 1− P

(
∃λ < 0: 1

n+ 1

n∑
i=1

Fi

(
Quantile(β, Fi) + λ) ≥ β

)

≥ 1− P
( 1
n+ 1

n∑
i=1

Fi

(
Quantile(β, Fi)) ≥ β

)

= 1− P
(

n

n+ 1
β ≥ β

)
= 1.

(E.13)

We now proceed to prove Proposition 5.3.5.

Proof. Y test
t+1 is included in Mϵ(Xtest

t+1) iff Vt+1 ≤ Q̂
(k)
t+1 + Λ(1− ϵ, Ical), thus

P
(
Y test

t+1 /∈Mϵ(Xtest
t+1)

)
= 1− P

(
Y test

t+1 ∈Mϵ(Xtest
t+1)

)
= 1− P(Vt+1 ≤ Q̂

(k)
t+1 + Λ(1− ϵ, Ical))

= 1− Ft+1(Q̂(k)
t+1 + Λ(1− ϵ, Ical)).

(E.14)

Applying Lemma E.1.1 gives

lim
k→∞

P
(
P
(
Y test

t+1 /∈Mϵ(Xtest
t+1)

)
≤ ϵ

)
= lim

k→∞
P
(
Ft+1(Q̂(k)

t+1 + Λ(1− ϵ, Ical)) ≥ 1− ϵ
)

= 1.

(E.15)
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E.1.4 Proof of Proposition 5.3.7

Proof. Let F̂mi
be the mi-sample ECDF for Ti. Define the empirical correction,

Λ̂′(β, Ical), when plugging in F̂mi
as

Λ̂emp(β, Ical) := inf
{
λ : 1
|Ical|+ 1

∑
i∈Ical

F̂mi

(
Q̂i + λ

)
≥ β

}
(E.16)

where the ECDF is calculated as

F̂mi
:=

mi∑
j=1

1{V test
i,k+j ≤ Q̂i + λ},

where V test
i,k+j are i.i.d.

We proceed in two parts. First, we prove that if, for some choice of τ , the error

incurred by using the ECDF instead of the true CDF is bounded by τ w.p. 1 − δ,

then Mϵ−τ is (δ, ϵ) valid. Due to monotonicity of coverage in the correction factor,

it is sufficient to prove that Λ̂emp(β + τ, Ical) ≥ Λ̂(β + τ, Ical) w.p. 1− δ. Second, we

show that this holds for τ defined per Eq. (5.14).

(1) For ease of notation, let

B(λ) := 1
|Ical|+ 1

∑
i∈Ical

F̂mi
(Q̂i + λ), and (E.17)

B̂(λ) := 1
|Ical|+ 1

∑
i∈Ical

Fi(Q̂i + λ). (E.18)

Both B(λ) and B̂(λ) are non-decreasing in λ.

Next, assume that (to be proved) that for some τ > 0

P(sup
λ
B̂(λ)−B(λ) ≤ τ) ≥ 1− δ. (E.19)
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Then w.p. 1− δ,

Λ̂emp(β + τ, Ical) = inf
{
λ : B̂(λ) ≥ β + τ

}
(i)
≥ inf

{
λ : B(λ) + τ ≥ β + τ

}
= inf

{
λ : B(λ) ≥ β

}
= Λ̂(β, Ical)

(E.20)

where (i) is due to our assumption that B̂(λ) ≤ B(λ) + τ ∀λ, and the fact that both

B̂(λ) and B(λ) are non-decreasing in λ. Since Λ̂emp(β+ τ, Ical) ≥ Λ̂(β+ τ, Ical), it fol-

lows by monotonicity that coverage is preserved (see also the proof for Lemma 5.3.2).

(2) We now prove Eq. (E.19). Given an m-sample ECDF, F̂m(u), for some random

variable U , the Dvoretsky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956) allows

us to build an interval for the value of the true distribution function, F (u), where

P
(

sup
u∈R
|F̂m(u)− F (u)| > γ

)
≤ 2e−2nγ2

. (E.21)

Alternatively stated, w.p. ≥ 1−α, F (u) ∈ [F̂m(u)− γ, F̂m(u) + γ], where γ =
√

log 2
α

2n
.

Let Yi := F̂mi
(Vi ≤ Q̂i + λ) − Fi(Vi ≤ Q̂i + λ). For convenience tasks Ti, i ∈ Ical

and Tt+1 are indexed contiguously as i = 1, . . . , n + 1. The difference, A − B, is

then equivalent to 1
n+1

∑n
i=1 Yi, where Yi are i.i.d., E[Yi] = 0, and Yi is bounded with

probability 1− α. Applying Hoeffding’s inequality gives

P
( 1
n+ 1

n∑
i=1

Yi < τ
)
≥ P

( n∑
i=1

Yi < nτ,
n⋂

i=1
Yi ∈ [−γi, γi]

)

≥ P
( n∑

i=1
Yi < nτ

∣∣∣∣ n⋂
i=1

Yi ∈ [−γi, γi]
)
P
( n⋂

i=1
Yi ∈ [−γi, γi]

)

≥
(

1− e
− 2n2τ2∑n

i=1(2γi)2
)(

1− α
)n

.

(E.22)
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Solving for τ given the target 1− δ error probability yields

τ ≥

√√√√−2
n2

( n∑
i=1

γ2
i

)
log

(
1− 1− δ

(1− α)n

)
(E.23)

This holds for any choice of α.

E.2 Meta conformal prediction details

E.2.1 Meta-Learning algorithms

Prototypical networks (Snell et al., 2017)

We use prototypical networks for our classification tasks. We assume that for each task

we have N total classes with K examples per class (for a total of k = N ×K training

examples). In this model, an encoder, h = enc(x; θ) is trained to produce vector

representations. Thereafter, a “prototype” for each class is computed by averaging

the representations of all instances of that class. Let Sj denote the support set of

training examples for class j. Then the prototype cj is

cj := 1
|Sj|

∑
(xi,yi)∈Sj

enc(xi; θ). (E.24)

The likelihood of each class is then calculated using a softmax over the euclidean

distance to each prototype:

pθ(y = j | x) := exp(−d(cj, enc(x; θ)))∑
j′ exp(−d(cj′ , enc(x; θ)))

, (E.25)

where d(·, ·) denotes the euclidean distance.

During training, random “episodes” are created by sampling N classes from the train-

ing set. For each class, K examples are randomly sampled to construct the prototypes.

An additional Q examples are then sampled to simulate queries. The objective is to

then minimize the cross entropy loss across queries.After training, we use −pθ(y =
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j | x) as defined in Eq. (E.25) as the nonconformity measure for label y = j.

Differentiable ridge regression (Bertinetto et al., 2019)

We use differentiable ridge regression for our regression tasks. We assume that for

each task we have k labeled (xi, yi) pairs, where y ∈ R. In this model, like the

prototypical networks, an encoder, h = enc(x; θ), is trained to produce vector rep-

resentations of dimension d. We then solve a least-squares regression to obtain our

prediction, ŷ = w · enc(x; θ), where

w = X>(XX> + λI)−1Y (E.26)

with X ∈ Rk×d, Y ∈ Rk, and λ a meta regularization parameter that we optimize. We

optimize MSE by back-propagating through the least-squares operator to the encoder.

We train using the same episode-based procedure that we described for the prototyp-

ical networks. After training, we use the absolute error, |ŷ− y|, as the nonconformity

score for candidate y ∈ R.

Deep sets (Zaheer et al., 2017)

We use a simple deep sets architecture for all of our quantile predictors. Deep sets

are of the form

f(X) := dec
( ∑

x∈X

enc(x;ϕ1);ϕ2

)
(E.27)

where X is an input set of elements, enc is an element-wise encoder, and dec is a

decoder that operates on the aggregated encoded set elements. Importantly, the deep

sets model f is invariant to permutations of the elements in X.

E.2.2 Implementation details

Image classification. Each image is first resized to 84 × 84 pixels. We use a CNN

encoder with 4 layers. Each layer contains a 3×3 convolution kernel with 64 channels

and a padding of size 1, followed by batch normalization layer, ReLU activation, and
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a 2× 2 max pooling filter. The final output is of size 1600, which we use to compute

the prototypes and as the query representations. We train the model for 100 epochs

with an Adam optimizer and a batch size of 256. In each epoch, we run 100 episodes

in which we sample 10 support images and 15 query images per class.

Relation classification. We use GloVe (Pennington et al., 2014) word embeddings of

size 50 to convert the sentence into vectors. To each word embedding, we also concate-

nate two learned position embeddings of size 5, where the positions are relative to the

location of the two entities in the sentence. Thereafter, a 1D convolution is applied

with 230 output channels, a kernel size of 3 and padding size 1, followed by a ReLU

activation. Finally, a max pooling filter is applied. The resultant sentence representa-

tion of size 230 is used to compute the prototypes and query representations. We train

the model for a total of 20k episodes with a SGD optimizer and a batch size of 32. In

each episode, we sample 10 support sentences and 5 query sentences per class.

Chemical property prediction. Our ridge regression network uses directed message

passing networks (Yang et al., 2019) to compute enc(x; θ). The message passing net-

work uses graph convolutions to learn a deep molecular representation that is shared

across property predictions. We also include additional RDKit features as inputs.1

We map inputs with a FFNN with hidden size 200, and then apply 3 layers of graph

convolutions with a hidden size of 256. Finally, we map the output representation to

a hidden size of 16, and apply least-squares regression. We train the network using an

Adam optimizer for 15 epochs with 8 meta episodes per batch, each with 32 queries

(for a total batch size of 256).

Quantile prediction. For all of our quantile predictors, we use a 2-layer FFNN for

both the element-wise encoder, enc(·;ϕ1), and the aggregated set decoder, dec(·;ϕ2).

Each FFNN has a hidden size of 256 and uses ReLU activations. We train the network

using an Adam optimizer for 15 epochs with batch size 64.

1www.rdkit.org
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E.2.3 Training strategy

We adopt a cross-fold procedure for training our meta nonconformity measure N and

meta quantile predictor P1−ϵ in a data efficient way, as outlined in §5.3.2. Figure 5-4

illustrates this cross-fold process, in which we train a meta-nonconformity measure on

each training fold and aggregate their predictions as input data for the quantile pre-

dictor. Since we train in a cross-fold manner but ultimately use a meta-nonconformity

measure N that is trained on all of the training data, there is a train-test mismatch

in the data supplied to the quantile predictor. Nevertheless, any error induced by this

discrepancy (and any other sources of error, for that matter) is handled during meta-

calibration (§5.3.3). All experiments took 1-5 hours to run on an Nvidia 2080 Ti GPU.

As absolute performance is not the primary goal of this work, little hyperparameter

tuning was done (most hyperparameters were taken from prior work). Datasets are

available for miniImageNet2, FewRel 1.03, and ChEMBL4.

2https://github.com/yaoyao-liu/mini-imagenet-tools
3https://thunlp.github.io/1/fewrel1.html
4https://github.com/chemprop/chemprop
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F

Appendix for Chapter 6

F.1 Proofs

F.1.1 Proof of Theorem 6.3.2

We use the following lemma on the approximate continuity of the empirical risk.

Lemma F.1.1 (Jump Lemma). In the setting of Theorem 6.3.2, any jumps in the

empirical risk are bounded, i.e.,

sup
λ
J
(
R̂n, λ

) a.s.
≤ B

n
. (F.1)

Proof. By boundedness, the maximum contribution of any point to the jump is B
n

, so

∃λ : J
(
R̂n, λ

)
>
B

n
=⇒ ∃λ : J(Li, λ) > 0 and J(Lj, λ) > 0 for some i 6= j. (F.2)

Call Di = {λ : J(Li, λ) > 0} the sets of discontinuities in Li. Since Li is bounded

monotone, Di has countably many points. The union bound then implies that

P
(
∃λ : J(R̂n, λ) > B

n

)
≤
∑
i 6=j

P(Di ∩ Dj 6= ∅) (F.3)

Rewriting each term of the right-hand side using tower property and law of total
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probability gives

P (Di ∩ Dj 6= ∅) = E
[
P
(
Di ∩ Dj 6= ∅

∣∣∣Dj

)]
(F.4)

≤ E

 ∑
λ∈Dj

P
(
λ ∈ Di

∣∣∣∣ Dj

) = E

 ∑
λ∈Dj

P (λ ∈ Di)

 , (F.5)

Where the second inequality is because the union of the events λ ∈ Dj is the entire

sample space, but they are not disjoint, and the third equality is due to the indepen-

dence between Di and Dj. Rewriting in terms of the jump function and applying the

assumption P (J(Li, λ) > 0) = 0,

E

 ∑
λ∈Dj

P (λ ∈ Di)

 = E

 ∑
λ∈Dj

P (J(Li, λ) > 0)

 = 0. (F.6)

Chaining the above inequalities yields P
(
∃λ : J(R̂n, λ) > B

n

)
≤ 0, so

P
(
∃λ : J(R̂n, λ) > B

n

)
= 0.

Proof of Theorem 6.3.2. If Li(λmax) ≥ α−2B/(n+1), then E[Ln+1(λ̂)] ≥ α−2B/(n+

1). Throughout the rest of the proof, we assume that Li(λmax) < α − 2B/(n + 1).

Define the quantity

λ̂′′ = inf
{
λ : R̂n+1(λ) + B

n+ 1
≤ α

}
. (F.7)

Since Li(λmax) < α − 2B/(n + 1) < α − B/(n + 1), λ̂′′ exists almost surely. De-

terministically, n
n+1R̂n(λ) ≤ R̂n+1(λ), which yields λ̂ ≤ λ̂′′. Again since Li(λ) is

non-increasing in λ,

E
[
Ln+1

(
λ̂′′
)]
≤ E

[
Ln+1

(
λ̂
)]

(F.8)

By exchangeability and the fact that λ̂′′ is a symmetric function of L1, . . . , Ln+1,

E
[
Ln+1

(
λ̂′′
)]

= E
[
R̂n+1

(
λ̂′′
)]

(F.9)
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For the remainder of the proof we focus on lower-bounding R̂n+1
(
λ̂′′
)
. We begin with

the following identity:

α = R̂n+1
(
λ̂′′
)

+ B

n+ 1
−
(
R̂n+1

(
λ̂′′
)

+ B

n+ 1
− α

)
. (F.10)

Rearranging the identity,

R̂n+1
(
λ̂′′
)

= α− B

n+ 1
+
(
R̂n+1

(
λ̂′′
)

+ B

n+ 1
− α

)
. (F.11)

Using the Jump Lemma to bound
(
R̂n+1

(
λ̂′′
)

+ B
n+1 − α

)
below by − B

n+1 gives

R̂n+1
(
λ̂′′
)
≥ α− 2B

n+ 1
. (F.12)

Finally, chaining together the above inequalities,

E
[
Ln+1(λ̂)

]
≥ E

[
R̂n+1(λ̂′′)

]
≥ α− 2B

n+ 1
. (F.13)

F.1.2 Proof of Proposition 6.3.3

Proof. Without loss of generality, assume B = 1. Fix any ϵ′ > 0. Consider the

following loss functions, which satisfy the conditions in Theorem 6.3.2:

Li(λ) i.i.d.∼



1 λ ∈ [0, Zi)

k
k+1 λ ∈ [Zi,Wi)

0 else

, (F.14)
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where k ∈ N, the Zi
i.i.d.∼ Uniform(0, 0.5), the Wi

i.i.d.∼ Uniform(0.5, 1) for i ∈ {1, ..., n+

1} and α = k+1−ϵ′

n+1 . Then, by the definition of λ̂, we know

R̂n

(
λ̂
)
≤ k − ϵ′

n
. (F.15)

If n > k + 1, R̂(λ) ≥ k
k+1 > k

n
whenever λ ≤ 1

2 . Thus, we must have λ̂ > 1
2 .

Since k is an integer and by (F.15), we know that
∣∣∣{i ∈ {1, ..., n} : Li

(
λ̂
)
> 0}

∣∣∣ ≤
b(k + 1)(k − ϵ′)/kc ≤ k. This immediately implies that

λ̂ ≥ W(n−k+1), (F.16)

where W(j) denotes the j-th order statistic. Notice that for all λ > 1
2 ,

R(λ) = E [Li(λ)] = k

k + 1
P
(
Wi > λ

)
= k

k + 1
· 2(1− λ), (F.17)

so R
(
λ̂
)
≤ k

k+1 · 2(1 −W(n−k+1)). Let U(k) be the k-th smallest order statistic of n

i.i.d. uniform random variables on (0, 1). Then, by symmetry and rescaling, 2(1 −

W(n−k+1))
d= U(k),

R
(
λ̂
)
� k

k + 1
U(k),

where � denotes the stochastic dominance. It is well-known that U(k) ∼ Beta(k, n +

1− k) and hence

E[R
(
λ̂
)
] ≤ k

k + 1
· k

n+ 1
.

Thus,

α− E
[
R
(
λ̂
)]
≥ k + 1− ϵ

n+ 1
− k2

(n+ 1)(k + 1)
= 1
n+ 1

· (2− ϵ
′)k + 1− ϵ′

k + 1
. (F.18)

For any given ϵ > 0, let ϵ′ = ϵ/2 and k = d2
ϵ
− 1e. Then

(2− ϵ′)k + 1− ϵ′

k + 1
≥ 2− ϵ,
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implying that

α− E
[
R
(
λ̂
)]
≥ 2− ϵ
n+ 1

.

F.1.3 Proof of Proposition 6.3.4

Proof of Proposition 6.3.4. Without loss of generality, we assume B = 1. Assume λ̂

takes values in [0, 1] and α ∈ (1/(n+ 1), 1). Let p ∈ (0, 1), N be any positive integer,

and Li(λ) be i.i.d. right-continuous piecewise constant (random) functions with

Li(N/N) = 0, (Li(0/N), Li(1/N), . . . , Li((N − 1)/N)) i.i.d.∼ Ber(p). (F.19)

By definition, λ̂ is independent of Ln+1. Thus, for any j = 0, 1, . . . , N − 1,

{
Ln+1(λ̂) | λ̂ = j/N

}
∼ Ber(p),

{
Ln+1(λ̂) | λ̂ = 1

}
∼ δ0. (F.20)

Then,

E
[
Ln+1

(
λ̂
)]

= p · P(λ̂ 6= 1) (F.21)

Note that

λ̂ 6= 1⇐⇒ min
j∈{0,...,N−1}

1
n+ 1

n∑
i=1

Li(j/N) ≤ α− 1
n+ 1

. (F.22)

Since α > 1/(n+ 1),

P(λ̂ 6= 1) = 1− P(λ̂ = 1) = 1− P
(

for all j, we have 1
n+ 1

n∑
i=1

Li(j/N) > α− 1
n+ 1

)

= 1−

 n∑
k=d(n+1)αe

(
n

k

)
pk(1− p)(n−k)

N

= 1−
(
1− BinoCDF

(
n, p, d(n+ 1)αe − 1

))N
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As a result,

E
[
Ln+1

(
λ̂
)]

= p

1−
(
1− BinoCDF

(
n, p, d(n+ 1)αe − 1

))N

. (F.23)

Now let N be sufficiently large such that

1−
(
1− BinoCDF

(
n, p, d(n+ 1)αe − 1

))N

 > p. (F.24)

Then

E
[
Ln+1

(
λ̂
)]
> p2 (F.25)

For any α > 0, we can take p close enough to 1 to render the claim false.

F.1.4 Proof of Theorem 6.3.6

Proof of Theorem 6.3.6. Define the monotonized population risk as

R↑(λ) = sup
t≥λ

E
[
Ln+1(t)

]
(F.26)

Note that the independence of Ln+1 and λ̂↑
n implies that for all n,

E
[
Ln+1

(
λ̂↑

n

)]
≤ E

[
R↑
(
λ̂↑

n

)]
. (F.27)

SinceR↑ is bounded, monotone, and one-dimensional, a generalization of the Glivenko-

Cantelli Theorem given in Theorem 1 of (DeHardt, 1971) gives that uniformly over λ,

lim
n→∞

sup
λ
|R̂n(λ)−R(λ)| a.s.→ 0. (F.28)

As a result,

lim
n→∞

sup
λ
|R̂↑

n(λ)−R↑(λ)| a.s.→ 0, (F.29)

which implies that

lim
n→∞
|R̂↑

n(λ̂↑)−R↑(λ̂↑)| a.s.→ 0. (F.30)
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By definition, R̂↑(λ̂↑) ≤ α almost surely and thus this directly implies

lim sup
n→∞

R↑
(
λ̂↑

n

)
≤ α a.s.. (F.31)

Finally, since for all n, R↑
(
λ̂↑

n

)
≤ B, by Fatou’s lemma,

lim
n→∞

E
[
Ln+1

(
λ̂↑

n

)]
≤ lim sup

n→∞
E
[
R↑
(
λ̂↑

n

)]
≤ E

[
lim sup

n→∞
R↑
(
λ̂↑

n

)]
≤ α. (F.32)

F.1.5 Proof of Proposition 6.5.1

Proof of Proposition 6.5.1. Let

λ̂′ = inf
{
λ :

∑n+1
i=1 w(Xi)Li(λ)∑n+1

i=1 w(Xi)
≤ α

}
. (F.33)

Since infλ Li(λ) ≤ α, λ̂′ exists almost surely. Using the same argument as in the proof

of Theorem 6.3.1, we can show that λ̂′ ≤ λ̂(Xn+1). Since Ln+1(λ) is non-increasing

in λ,

E[Ln+1(λ̂(Xn+1))] ≤ E[Ln+1(λ̂′)]. (F.34)

Let E be the multiset of loss functions {(X1, Y1), . . . , (Xn+1, Yn+1)}. Then λ̂′ is a func-

tion of E, or, equivalently, λ̂′ is a constant conditional on E. Lemma 3 of Tibshirani

et al. (2019) implies that

(Xn+1, Yn+1) | E ∼
n+1∑
i=1

w(Xi)∑n+1
j=1 w(Xj)

δ(Xj ,Yj) =⇒ Ln+1 | E ∼
n+1∑
i=1

w(Xi)∑n+1
j=1 w(Xj)

δLi

where δz denotes the Dirac measure at z. Together with the right-continuity of Li,

the above result implies

E
[
Ln+1(λ̂′) | E

]
=
∑n+1

i=1 w(Xi)Li(λ̂′)∑n+1
i=1 w(Xi)

≤ α. (F.35)

The proof is then completed by the law of total expectation.
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F.1.6 Proof of Proposition 6.5.2

Proof. Define the vector Z ′ = (Z ′
1, . . . , Z

′
n, Zn+1), where Z ′

i
i.i.d.∼ L(Zn+1) for all i ∈ [n].

Let

ϵ =
n∑

i=1
TV(Zi, Z

′
i). (F.36)

By sublinearity,

TV(Z,Z ′) ≤ ϵ. (F.37)

It is a standard fact that (F.37) implies

sup
f∈F1

|E[f(Z)]− E[f(Z ′)]| ≤ ϵ, (F.38)

where F1 = {f : Z 7→ [0, 1]}. Let ℓ : Z × Λ → [0, B] be a bounded loss function.

Furthermore, let g(z) = ℓ(zn+1; λ̂(z1, . . . , zn)). Since g(Z) ∈ [0, B],

|E[g(Z)]− E[g(Z ′)]| ≤ Bϵ. (F.39)

Furthermore, since Z ′
1, . . . , Z

′
n+1 are exchangeable, we can apply Theorems 6.3.1

and 6.3.2 to E[g(Z ′)], recovering

α− 2B
n+ 1

≤ E[g(Z ′)] ≤ α. (F.40)

A final step of triangle inequality implies the result:

α− 2B
n+ 1

−Bϵ ≤ E[g(Z)] ≤ α +Bϵ. (F.41)

F.1.7 Proof of Proposition 6.5.3

Proof. It is left to prove that L̃i(λ) satisfies the conditions of Theorem 6.3.1. It is

clear that L̃i(λ) ≤ 1 and L̃i(λ) is non-increasing in λ when Li(λ) is. Since Li(λ) is
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non-increasing and right-continuous, for any sequence λm ↓ λ,

Li(λm) ↑ Li(λ) =⇒ 1 {Li(λm) > α} → 1 {Li(λ) > α} .

Thus, L̃i(λ) is right-continuous.

Finally, Li(λmax) ≤ α implies L̃i(λmax) = 0 ≤ 1− β.

F.1.8 Proof of Proposition 6.5.4

Proof. Examining (6.46), for each γ ∈ Γ, we have

E
[
L(λ̂, γ)

]
≤ E

[
L(λ̂γ, γ)

]
≤ α(γ). (F.42)

Thus, dividing both sides by α(γ) and taking the supremum, we get that

sup
γ∈Γ

E

L(λ̂, γ)
α(γ)

 ≤ 1, (F.43)

and the worst-case risk is controlled.

F.1.9 Proof of Proposition 6.5.5

Proof. Because Li(λ, γ) is bounded and monotone in λ for all choices of γ, it is also

true that L̃i(λ) is bounded and monotone. Furthermore, the pointwise supremum

of right-continuous functions is also right-continuous. Therefore, the L̃i satisfy the

assumptions of Theorem 6.3.1.

F.1.10 Proof of Proposition 6.5.6

Proof. Let

λ̂′
k = inf

λ : k!n!
(n+ k)!

∑
S⊂{1,...,n+k},|S|=k

LS(λ) ≤ α

 .
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Since LS(λmax) ≤ α, λ̂′
k exists almost surely. Since LS(λ) ≤ B, we have

k!n!
(n+ k)!

∑
S⊂{1,...,n+k},|S|=k

LS(λ)

≤ k!n!
(n+ k)!

∑
S⊂{1,...,n},|S|=k

LS(λ) +B ·
∑

S∩{n+1,...,n+k}6=∅,|S|=k

1

= k!n!
(n+ k)!

∑
S⊂{1,...,n},|S|=k

LS(λ) +B

1− k!n!
(n+ k)!

∑
S⊂{1,...,n},|S|=k

1


= k!n!

(n+ k)!
∑

S⊂{1,...,n},|S|=k

LS(λ) +B

(
1− (n!)2

(n+ k)!(n− k)!

)
.

Since LS(λ) is non-increasing in λ, we conclude that λ̂′
k ≤ λ̂k if the right-hand side

of Eq. (6.50) is not empty; otherwise, by definition, λ̂′
k ≤ λmax = λ̂k. Thus, λ̂′

k ≤ λ̂k

almost surely. Let E be the multiset of loss functions {LS : S ⊂ {1, . . . , n+ k}, |S| =

k}. Using the same argument in the end of the proof of Theorem 6.3.1 and the

right-continuity of LS , we can show that

E
[
L{n+1,...,n+k}(λ̂′

k) | E
]

= k!n!
(n+ k)!

∑
S⊂{1,...,n+k},|S|=k

LS(λ) ≤ α.

The proof is then completed by the law of iterated expectation.
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