
Serialization and Applications for the Gen
Probabilistic Programming Language

by

Ian Limarta
S.B. in Electrical Engineering and Computer Science

Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Ian Limarta. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Ian Limarta
Department of Electrical Engineering and Computer Science
August 11, 2023

Certified by: Vikash Mansinghka
Principal Research Scientist
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Serialization and Applications for the Gen Probabilistic
Programming Language

by
Ian Limarta

Submitted to the Department of Electrical Engineering and Computer Science
on August 11, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Probabilistic programming has emerged as a powerful framework for building expres-
sive models that can handle uncertainty in a wide range of applications. Serialization,
the process of converting data structures or objects into a format suitable for storage
or transmission, plays a crucial role in the development and execution of probabilistic
programs. Efficient serialization techniques are essential for tasks such as data per-
sistence, distributed computation, and data exchange between different programs or
machines. We delve into specific challenges and considerations unique to probabilistic
programming for serialization. Probabilistic models often involve complex structures,
including nested random variables, hierarchical dependencies, and potentially infinite
or unbounded dimensions. Serializing samples from such models requires careful han-
dling of these complexities, including strategies for preserving model fidelity, dealing
with modeling dependencies, and specializing for disk representations. In this thesis,
we discuss twofold objectives for the Gen probabilistic programming model. The first
establishes a formalism for serializing (and deserializing) traces as an interface that
respects the existing Gen interfaces and faithfully reconstructs data objects from disk.
We highlight challenges for efficient serialization for Gen’s DSLs. The second objective
is to show how serialization routines common in other areas of computing transfer
well to Gen. We show how serialization provides easiers means for visualizations,
remote computing, and training inference approximators.

Thesis Supervisor: Vikash Mansinghka
Title: Principal Research Scientist

3

4

Acknowledgments
This project would not have been possible without the gracious help of the members
at the Probabilistic Computing Project. I would like to thank my supervisor Vikash
Mansinghka for his generosity and providing me the opportunity to spend the year
learning about probabilistc computing. It was a time of fruitful discovery and align-
ment of my interests. My time at ProbComp would not have been the same had
McCoy Becker not ramped the thesis work to fourth gear. I thank him for all his
help and advice as well as admire his unusually high degree of patience. I’d also like
to thank Nishad Gothoskar and Matin Ghavamizadeh for being absolute OGs with
debugging and theory help. I extend my warmest thanks for Alex Lew who clarified
Gen’s internals and graciously reviewed the writing. I would also like to thank Arijit
Dasgupta, Tan Zhi-Xuan, Andrew Bolton, Cameron Freer, and Austin Garrett for
helpful discussions along the way. The lab would be a circus if it wasn’t for Amanda
and Rachel’s incredible support. Again thanks. I would also like to acknowledge the
incredible work McCoy and Matin have developed which this thesis stands on.

Finally, I thank my parents whose unconditional love brought me to where I now
am. I am forever thankful for them.

This research was funded by the DARPA Machine Common Sense program, under
(sub)contract CW3013540.

5

Contents

1 Introduction 9
1.1 Contributions . 10
1.2 Related Work . 10

2 Background 12
2.1 The Gen PPL . 12

2.1.1 Generative Functions and Traces 12
2.1.2 Modeling Languages and Generative Function Interfaces . . . 14
2.1.3 Tracing as an Implementation 14

2.2 Importance Sampling . 16
2.3 Amortized Inference . 16

2.3.1 EUBO Objective and Gradient Estimators 17

3 Serialization Interfaces 19
3.1 Limitations of Existing Methods . 19
3.2 Serialization Operations for Traces 21
3.3 Compositionality of Interfaces . 22
3.4 Internal Proposals and Encapsulated Randomness 24

3.4.1 Compatibility with Gen’s Interfaces 26
3.5 Combinators . 26

4 Serialization Implementations for Modeling Languages 29
4.1 Dynamic Modeling Language and Combinators 30

4.1.1 Optimizing using Lazy Deserialization 32
4.1.2 Combinators . 33

4.2 Custom Backends and Batching . 34

5 Applications of Serialization in PPLs 36
5.1 Storage and Reporducibility . 36
5.2 Checkpointing Progress and Out-of-Core Computation 37
5.3 Remote and Distributed Computing 38
5.4 Training Approximate Distributions 41

5.4.1 Amortized Inference for Expensive Generative Models 41
5.4.2 Training . 44

6 Conclusion 45
6.1 Future Work . 45

A Remote Generative Function Calls 47

6

List of Figures

2.1 A Gen program modeling a line with noise. 13
2.2 Example of Traced Calls . 15

3.1 Serialization Overview . 19
3.2 Using Generate To Deserialize . 21

4.1 An invalid Gen DML model . 29
4.2 A Dynamic Modeling Trace as a File 30
4.3 Performance of Serializing and Deserializing 33
4.4 Trace grouped by Arrow . 35

5.1 Experiment Reproducibility . 37
5.3 Out-of-Core Computation . 39
5.4 Slow Generative Processes . 42
5.5 Examples of Slow Generative Processes 42
5.6 Neural Proposals . 43
5.7 Enumerative Proposal of Object Poses 44

A.1 Remote Tracing Macros . 47

7

List of Tables

3.1 The Gen Combinators . 27

5.1 Applications of Serialization . 36

8

Chapter 1
Introduction
Probabilistic programming language (PPL) shave become an increasingly popular
paradigm for modeling using Bayesian inference. At its core, a PPL automates
Bayesian inference procedures and lets the user focus on the model specification in-
stead. By abstracting away inference, these languages can greatly simplify the com-
plexity and redundancy of writing algorithms by hand. Today PPLs have become
increasingly sophisticated, and several languages support nearly abitrary execution
flows such as looping and branching. Under the hood, a PPL may produce data ob-
jects that keep track of state conducive for efficient inference. Objects emitted may
be structured according to model specifications, the types of inference workloads, and
runtime environment. One common data object found in several PPLs is a container
storing stochastic events with associated probabilities generated from a model. Gen,
a PPL designed for custom inference, heavily uses this concept in the form of traces
to sample from models, condition distributions, and score generated samples. Thus,
traces are crucial data objects emitted from implementations of generative models
and are of interest for many applications in Gen. Often users use the random choices
in the trace to gain insight into the generative model or use them as a debugging infor-
mation to diagnose inference convergence. For computationally expensive generative
models, however, maintaining traces in memory is less ideal and is not a solution for
long-term storage. Without a tool to save traces to disk, users would need to re-run
the model everytime to recollect data. This becomes cumbersome for recording ex-
periemental results, sharing data between machines, and reliably resuming inference
after an indefinite amount of time.

Frequently in many languages, users serialize objects to disk using well-supported
tools. Different serializers write objects in various formats (e.g. binary or BSON)
and are geared to different types of data or read workloads. However, most serializers
fail to save out ephemeral data created during the runtime of the program such as
pointers or generated code, and implementations of Gen’s traces heavily use them.
To overcome these difficulties, this thesis outlines a serialization specification for Gen
that handles trace objects while respecting Gen’s existing specification. We show how
these interfaces remain composable with the modeling interfaces and explain efficient
implementations for several of the modeling constructs.

The benefits of serialization come in many flavors. First this enables typical serial-
ization routines prevalent in many data science applications such as visualization and
storage. In the PPL setting, serialization tools also provide a convenient way of per-
forming inference between different runtimes, transmitting traces between machines,
and running memory-intensive inference. The stochastic nature of generative models
means that a reliable storage format ensures replication across different executions
and machines. Moreover, serialization can be used in novel ways for amortizing train-
ing cost for parameterized models. For example, finding an approximate distribution
for an expensive generative process against some objective can be slow if the model

9

needs to be sampled many times. Serializing out samples from the model and reusing
these samples can help speed up the training process.

1.1 Contributions
This thesis makes the following contributions:

1. A formal description of serialization and deserialization interfaces for the Gen
programming language. We demonstrate how these interfaces remain compos-
able and demonstrate how to implement these interfaces efficiently for Gen’s
DSLs.

2. Example applications of serialization. We show how common uses of serializa-
tion can be extended to probabilistic programs. Creating visualizations, out-of-
core computation, and interprocess communication across machines often use
serialization as a means to accomplish tasks. We also show how to save out
samples from slow generative processes to train inference approximators.

Chapter 2 provides background on Gen’s design and specification. We review
sequential importance resampling and provide a overview of amortized EUBO training
in the setting of variational inference. Chapter 3 presents the serialization interfaces
for Gen. Chapter 4 discusses implementations using tracing semantics for the Gen’s
Dynamic Modeling language and combinators. Chapter 5 discusses applications of
serialization for data science, debugging, and performant computation.

1.2 Related Work
Several other probabilistic programs provide some serialization for their native data
objects. However, Gen is a universal probabilistic program, and its design provides
extra challenges that are not encountered with restricted modeling languages such
as Stan. [3] Gen’s model inference design provides users highly customizable data-
driven proposals, and this thesis addresses these limitations when serializing trace
objects. The serialization and deserialization implementations we show resembles
the implementations of Gen’s other interfaces using tracing semantics as shown in
the Julia implementation, Gen.jl. Other probabilistic programming languages are
universal but do not allow users to specifiy custom inference proposals. [7]

It is helpful to compare other variational methods to the amortized learning
scheme used in Section 5.4. [18], [13], [11] train parameterized proposals against
the target posterior using an EUBO objective, but do not consider training infer-
ence algorithms (whose internals may use neural proposals). Variational inference is
another popular technique to approximate target distributions, however, it instead
optimizes an ELBO objective that seeks to fit a model to a collection of observa-
tions whose behavior is "mode-seeking". [1] The EUBO objective fits the model "on
average" according to the target distribution. Variational autoencoders [10] and the

10

extended Importance Weighted Variational Autoencoders [2] use networks to param-
eterize distributions although this thesis does not use the reparameterization trick to
take gradients.

3DP3 is a probabilistic generative model designed to express objects and their
poses in scenes.[8] Model inference uses a renderer-in-the-loop to score likelihoods of
proposed hypothesis in parallel. Since the latent space is high dimensional, techniques
such as coarse-to-fine gridding proposals can prune hypothesis regions. Using neural
proposals could help reduce the grid search over the latent space, speeding pose
estimation.

11

Chapter 2
Background
This chapter provides an overview of Gen’s design and inference algorithms needed
used throughout the thesis. Section 2.1 describes the Gen probablistic programming
language, its interfaces, and how implementations use tracing to support the specifi-
cation. The second half of the chapter reviews several inference algorithms that will
be relevant in the later parts of the thesis. Section 2.2 reviews importance resam-
pling and several common improvements to reduce variance of sampled estimators.
The final section provides an overview to recent work in approximate inference using
EUBO gradient estimators. This framework applies can be applied to importance
sampling and is thus amenable to variational optimization.

2.1 The Gen PPL

2.1.1 Generative Functions and Traces
To model normal code as generative processes with randomness, Gen’s specification
uses the abstraction known as generative function to define functions with an as-
sociated probability distribution. Generative functions are core to Gen’s modeling
language and inference libraries, and in implementation are usually exposed as native
functions defined in a programming language as shown in Figure 2.1. Along with the
output to the function, a generative function also produces an addressable dictionary
of the sampled random choices which is useful both as a namespace and for hierar-
chical structure as we will soon describe. We restate relevant definitions as defined
in [5].

Definition 2.1.1 (Address Universe). Let 𝐴 be a finite or countably infinite set
of addresses. For each 𝑎 ∈ 𝐴, let 𝑉𝑎 denote the domain of 𝑎, where 𝑉𝑎 is finite
or countably infinite. A pair of (𝐴, 𝑉), which defines a set of addresses and their
domains, is called an address universe.

Example 2.1.1. Let 𝐴 = {𝑎, 𝑏}, 𝑉𝑎 = {0, 1}, and 𝑉𝑏 = {1, 2, 3, 4, 5, 6}. Then the
address universe consists of 𝑎 and 𝑏 along with their domains.

Definition 2.1.2 (Choice dictionary). A choice dictionary in address universe (𝐴, 𝑉)
is a map 𝜏 : 𝐴𝜏 →

⋃︀
𝑎∈𝐴

𝑉𝑎 where 𝐴𝜏 is a finite subset of 𝐴 and where 𝜏 [𝑎] := 𝜏(𝑎) ∈ 𝑉𝑎

for all 𝑎 ∈ 𝐴𝜏 . Equivalently, 𝜏 is a finite set of pairs {(𝑎1, 𝑣1) . . . , (𝑎𝑘, 𝑣𝑘)} such that
each 𝑎𝑖 ∈ 𝐴 appears once and 𝑣𝑖 ∈ 𝑉𝑎𝑖

for each 𝑖.

The choice dictionary is thus a map from addresses to selections of values from
each address’s domain. Selecting one value from each addresses domain is akin to
sampling a random choice from event space of a random variable. There may be
different possible choice maps consistent with an address universe and a choice map

12

@gen function line_model(x)
y ~ normal(2*x+2,1)

end

Figure 2.1: A Gen program modeling a line with noise.

need not use all addresses availabe from the address set. For an address universe
(𝐴, 𝑉), let 𝐵 ⊂ 𝐴 be a selection of addresses. Define 𝒯𝐵 to be the collection of choice
maps 𝜏 such that 𝐴𝜏 = 𝐵. Similarly let 𝒯 *

𝐵 be the collection of choice maps such that
𝐴𝜏 ⊂ 𝐵. Two choice dictionaries 𝜏 and 𝜎 are said to be disjoint if 𝐴𝜏 ∪ 𝐴𝜎 = ∅ and
let 𝜏 ⊕ 𝜎 be the concatentation.

Example 2.1.2 (Coin and Die Choicemap). From Example 2.1.1, there are 21 pos-
sible choice maps in 𝜏 *

𝐴.

𝒯 *
𝐴 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{}
{𝑎 ↦→ 0}, {𝑎 ↦→ 1}
{𝑏 ↦→ 𝑛} 1 ≤ 𝑛 ≤ 6
{𝑎 ↦→ 0, 𝑏 ↦→ 𝑛}, {𝑎 ↦→ 1, 𝑏 ↦→ 𝑛} 1 ≤ 𝑛 ≤ 6

A generative function is a function and a probability distribution over choice maps,
effectively recording the random choices produced inside of the function. These ran-
dom choices can for example be generated by simple random variables - both dis-
crete and continuous - or through composition by other generative functions. Drawn
choices maps from the probability distribution and return values from the function
create what is known as a trace. Traces act as samples from the generative function
and are primarily used in inference.

Definition 2.1.3 (Generative Function and Trace). A generative function in address
universe (𝐴, 𝑉) is a tuple 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓). 𝑋 is the argument type, 𝑌 is the return
type. For every 𝑥 ∈ 𝑋, 𝑝(·; 𝑥) : 𝒯 *

𝐴 → [0, 1] is a structured and well-behaved probabil-
ity density on 𝒯 *

𝐴 . The function 𝑓 : {(𝑥, 𝜏) : 𝜏 ∈ supp(𝑝(·; 𝑥))} → 𝑌 maps arguments
and supported choice dictionaries to return values 𝑦 ∈ 𝑌 . A trace from generative
function 𝒫 is a sample of the form (𝒫 , 𝑥, 𝜏) where 𝑥 are arguments and 𝜏 is the choice
dictionary.

Example 2.1.3. The Gen program written in Figure 2.1 can viewed as a generative
function. The generative function produces traces where 𝑥 ∈ R. The address universe

13

is {𝑦} and 𝑉𝑎 = R, so 𝜏 is a choice mapping the only address available, y, to R. The
input and return types of 𝒫 are (𝑋, 𝑌) = (R,R). The function 𝑓 : R × 𝜏𝐴 → [0, 1]
maps (𝑥, 𝜏) to 𝜏 [𝑦]. Finally 𝑝(·; 𝑥) is defined as the Gaussian

𝑝(𝜏 ; 𝑥) = 1√
2𝜋

exp
(︃
−(𝜏 [𝑦]− (2𝑥 + 2))2

2

)︃

for 𝜏 ∈ 𝒯𝐴 and 0 otherwise.
We use choice map and choice dictionary interchangeably. As shown in [5], func-

tions remain generative functions for certain compositions such as calling a two gener-
ative functions in sequence. This composition simplifies the description of a generative
function into modular pieces and establishes hierarchical structures that resembles
code-like execution. Gen requires that the composition of generative functions does
not cause an address conflict (e.g. two functions addressing the same variable).

2.1.2 Modeling Languages and Generative Function Inter-
faces

To model generative processes in Gen, there are two default modeling languages suited
for different use cases. The Dynamic Modeling Language (DML) provides users the
ability to express models using nearly arbitrary code execution. For example, in the
Julia version of Gen, Gen.jl, models can be written as functions with control flow
constructs like loops, switch statements, and recursion. While highly dynamic, the
inference algorithms can be slow. The Static Modeling Language (SML) is a restricted
set of Gen with limited control flow, but amenable to static analysis to determine
model structure ahead of time. Thus inference is specialized and is asymptotically
faster than their analogs in the DML.

Gen decomposes inference computation into a minimal set of interfaces needed
to support common operators such as evaluating log-likelihoods and updating im-
portance weights as these are operations found in most algorithms. Both modeling
languages support these interfaces in the form of generative functions and traces.
Some functions produce new traces whereas others take in a trace and produce new
traces with updated random chocies and log-likelihood scores. Algorithm 1 summa-
rizes these methods.

2.1.3 Tracing as an Implementation
Tracing is a popular method used in a wide array of probabilistic programming
languages and automatic differentiation systems. Tracing involves intercepting key
points of execution to run effect handlers which are functions that perform operations
opaque to the user. This method abstracts the model specification - which the user
is responsible for - from the automated tooling needed to run generative models as
native functions. Some of Gen’s implementations use tracing to support the inter-
faces and intercept sample calls (e.g. with the ∼ syntax in Julia). These traced calls
execute effect handlers under-the-hood to as shown in Figure 2.2 for Gen.jl.

14

Algorithm 1 Gen Model Interfaces
• 𝑡← simulate(arguments: 𝑥, distribution : 𝒫)
Generate a trace from the distribution.

• 𝑡← generate(arguments: 𝑥, distribution: 𝒫 , choices: 𝒯)
Returns a trace from a distribution that is consistent with passed choices.

• 𝑡′, 𝜏 ′ ← update(arguments: 𝑥, trace: 𝑡, choices: 𝜏)
Update trace’s arguments and choices consistent with the passed choices.
Returns a new trace and discarded choices from the old trace.

• 𝜏 ← choices(trace: 𝑡)
Return the choicemap.

• 𝜏 ← assess(arguments: 𝑥, distribution: 𝒫 , choices: 𝜏)
Return an importance score.

@gen function model()
x ~ normal(0,1)
y ~ submodel(x)

end

@gen function submodel(x)
z ~ normal(x,1)

end

function model():
x = trace_at(state, :x , normal, (0,1))
y = trace_at(state, :x , submodel, (x,))

end

function submodel(x)
z = trace_at(state, :z , normal, (x,1))

end

Figure 2.2: Gen.jl uses program transformations to convert human-readable gener-
ative models to functions that enable tracing at the stochastic choices.

Encapsulated and Untraced Randomness Although the choice dictionary is de-
fined to contain all random choices produced by the generative function, this does
not mean a generative function must relegate all randomness to the choice dictionary.
Encapsulated randomness is black-box randomness that is not accesible to the user.
In practice, encapsulated randomness usually occurs as untraced randomness when
users do not or are unable to use the tracing semantics in the language. For instance,
any foreign calls to third-party libraries cannot immediately be traced and therefore
any internal stochastic behavior is unaccounted for. Traces generated from a model
containing untraced randomness can create variability in likelihood scores, choice
maps, and even return values. Despite this Gen allows for encapsulated (untraced)
randomness so long as the model satisfies several assumptions. [5]

15

2.2 Importance Sampling
Importance sampling is a widely-used technique for estimating expectations with
respect to a target distribution by drawing samples from a proposal distribution.[17]
Often this target distribution is not known nor can it be sampled from, so an auxilliary
distribution known as a proposal is used to simulate samples.

Sequential Importance Resampling In practice traditional importance sampling
can suffer due to high dimensionality or with ill-conditioned proposals. In high-
dimensional spaces, the proposal distribution often struggles to adequately cover
regions with significant probability mass in the target distribution. Consequently,
a large number of low-weighted samples are obtained, resulting in poor estimation
accuracy. Sequential importance resampling attempts to address this issue by resam-
pling from the set of weighted samples produced by importance sampling and thus
prevents particles from degenerating. Algorithm 2 shows the algorithm.

Conditional Importance Sampling Conditional importance sampling is a boos-
trap algorithm that uses a conditional distribution as a proposal. Whereas SIR re-
sampled particles from a collection of proposed particles, CIS starts with one particle
and produces a collection of new particles as showin in Algorithm 3.

Algorithm 2 Sampling Importance Resampling (SIR)
procedure SIR(𝑁 , 𝑝(x), 𝑞(x))

for 𝑖 ∈ [𝑁] do ◁ Sample 𝑁 particles from proposal
x𝑖 ∼ 𝑞(x)
𝑤𝑖 ← 𝑝(x𝑖)/𝑞(x𝑖)

end for
𝑊 ← ∑︀𝑁

𝑖=1 𝑤𝑖 ◁ Normalize Weights
𝑤𝑖 ← 𝑤𝑖/𝑊 for 𝑖 ∈ [𝑁]
// Resampling: Draw samples with replacement according to the weights
for 𝑖 = 1 to 𝑁 do

x𝑖 ∼ Categorical({𝑤𝑖}𝑁
𝑖=1) ◁ Resample particles

end for
return {x1, x2, . . . , x𝑁}, {𝑤1, 𝑤2, . . . , 𝑤𝑁} ◁ Return collection of particles

end procedure

2.3 Amortized Inference
Bayesian models provide expressive model structure, but often at the cost of slow
exact inference. Inference algorithms such as importance sampling or Markov Chain
Monte Carlo can approximate target distributions, but the choice proposal heavily
influences convergence speed. Amortized inference is a broad set of methods to make
Bayesian inference tractable by using a parameterized distribution - often in the form

16

Algorithm 3 Conditional Importance Sampling (CIS)
procedure CIS(𝑁 , 𝑥, 𝑝(x), 𝑞(x))

𝑗 ∼ CategoricalUniform(N) ◁ Sample uniformly from [𝑛]
𝑤𝑗 ← 𝑝(x𝑗)/𝑞(x𝑗)
for 𝑖 ∈ [𝑁] and 𝑖 ̸= 𝑗 do

x𝑖 ∼ 𝑞(x)
𝑤𝑖 ← 𝑝(x𝑖)/𝑞(x𝑖)

end for
return Sample set {x1, x2, . . . , x𝑁} with weights {𝑤1, 𝑤2, . . . , 𝑤𝑁}

end procedure

of a neural network - to provide fast inference approximations and instead amortize
the cost of inference to training time. Recent work in [11] has explored how to train
LSTM architectures on data averaged posteriors for fast, approximate inference. In
[11], training involves sampling from the model joint distribution and conditioning
recurrent neural proposals on observations and ancestor samples to generate distri-
butional parameters in a proposal with the same shape and support as the model.
This approach imposes strong (and, often, wrong) assumptions on the latent depen-
dencies induced by inference, exacerbating training times and potentially leading to
poor inference approximation performance.

We highlight another amortized learning approach which uses a similar evidence
upper bound (EUBO) objective as in [11], but utilizes inference approximations based
on the variational importance sampling family [2]. We will illustrate how to combine
serialization with this training method to amortize the cost of inference targets with
fast approximated neural likelihoods for slow likelihood models. The final learned
approximations learn the target and can be re-used for different observations 𝑥 to
generate good approximations to 𝑝(𝑧|𝑥).

2.3.1 EUBO Objective and Gradient Estimators
Let 𝑝(𝑥, 𝑧) be the joint distribution for latents 𝑧 and observations 𝑥. The goal is to
determine an approximation for the posterior 𝑝(𝑧|𝑥) under the EUBO objective:

𝐷(𝑝(𝑧|𝑥)||𝑄𝜃(𝑧; 𝑥)) =
∫︁

𝑝(𝑧|𝑥) log
[︃

𝑝(𝑧|𝑥)
𝑄𝜃(𝑧; 𝑥)

]︃
d𝑧

where 𝑄𝜃(𝑧; 𝑥) is a parameterized distribution, and the learning 𝑄𝜃(𝑧; 𝑥) arises from
minimizing the divergence. In contrast to the ELBO which produces approximations
that are said to be "mode-seeeking", the EUBO objective is a model average and tends
to promote "mass-covering" behavior.[9] This is beneficial in the case of approximating
𝑝(𝑧|𝑥) as the learned model should work well on average for multiple observations 𝑥.

As opposed to inference compilation and similar learning schemes, we consider
𝑄𝜃(𝑧; 𝑥) to be the distribution of an inference algorithm itself. In particular let
𝑄𝜃(𝑧; 𝑥) be parameterized SIR with scorer 𝑄𝑠(𝑧; 𝑥) and proposal 𝑄𝑝(𝑧; 𝑥) (we sup-

17

press dependence on 𝜃). While SIR does output one 𝑧 given observations 𝑥, in-
ternally the sampler proposes a collection of particles and samples one candidate
proportional to the importance weights. The accessible distribution is of the form
𝑄𝜃(𝑧*, 𝐼, 𝑧1, . . . 𝑧𝑛; 𝑥) where {𝑧𝑖}𝑛

𝑖=1 is the particle collection and 𝐼 is the index satis-
fying 𝑧* = 𝑧𝐼 , but note the EUBO objective requires the marginal 𝑄𝜃(𝑧; 𝑥) instead.
We estimate the the value of 𝑄𝜃(𝑧; 𝑥) (and its gradient) using recent work leveraging
the pseudo-marginal estimators introduced in [12].

A meta distribution describes the auxilliary randomness of 𝑄 to be marginal-
ized out. For SIR, this is the distribution 𝑄𝑚𝑒𝑡𝑎(𝐼, 𝑧1, . . . , 𝑧𝐼−1, 𝑧𝐼+1, . . . 𝑧𝑛; 𝑥). Meta-
inference then uses 𝑄𝑚𝑒𝑡𝑎 to propose values for the auxillliary randomness. Here we
use conditional importance sampling as defined in Algorithm 3. Define the unbiased
estimator �̂�(𝑧; 𝑥) for the marginal 𝑄(𝑧; 𝑥) as

�̂�(𝑧; 𝑥) = 1
𝐾

𝐾∑︁
𝑘=1

𝑄(𝑧, 𝐼(𝑘), 𝑧
(𝑘)
1 , . . . 𝑧

(𝑘)
𝐼(𝑘)−1, 𝑧, 𝑧

(𝑘)
𝐼(𝑘)+1 . . . , 𝑧(𝑘)

𝑛 ; 𝑥)
𝑄𝑚𝑒𝑡𝑎(𝐼(𝑘), 𝑧

(𝑘)
1 , . . . , 𝑧

(𝑘)
𝐼(𝑘)−1, 𝑧

(𝑘)
𝐼(𝑘)+1, . . . 𝑧𝑛; 𝑥)

(2.1)

The following argument shows that Equation 2.1 is unbiased.

Proposition 2.3.1. Let 𝑝(𝑥, 𝑦) be a distribution. For samples 𝑦𝑘 drawn from 𝑞(𝑦),

𝑝(𝑥) =
𝐾∑︁

𝑘=1

1
𝐾

𝑝(𝑥, 𝑦𝑘)
𝑞(𝑦𝑘)

is an unbiased estimator of the marginal 𝑝(𝑥).

Proof.

E
[︃

1
𝐾

𝐾∑︁
𝑘=1

𝑝(𝑥, 𝑦)
𝑞(𝑦)

]︃
= E

[︃
𝑝(𝑥, 𝑦)
𝑞(𝑦)

]︃
=
∫︁

𝑞(𝑦)𝑝(𝑥, 𝑦)
𝑞(𝑦) d𝑦 = 𝑝(𝑥)

Similarly, we can use a REINFORCE-like estimate for the gradient ∇𝜃𝑄𝜃(𝑧; 𝑥).[19]
Assuming ∇𝜃 and the expectation commute, the gradient with respect to the param-
eters is

∇𝜃𝐸

[︃
log 𝑝(𝑥, 𝑧)

𝑄𝜃(𝑧; 𝑥)

]︃
= ∇𝜃

∫︁
𝑝(𝑥, 𝑧) log

[︃
𝑝(𝑧|𝑥)

𝑄𝜃(𝑧; 𝑥)

]︃

= −
∫︁

𝑝(𝑥, 𝑧)∇𝜃 log 𝑄𝜃(𝑧; 𝑥)

18

Chapter 3
Serialization Interfaces
In this chapter we introduce two new interfaces for serialization of traces. We first
motivate the discussion in Section 3.1 by exploring why standard serialization tools
and the existing Gen interfaces are not enough to read traces into memory. In the
second half, we provide a specification for the interfaces.

Tracegenerate()

simulate()

update()

Trace
File

serialize()

deserialize()

Figure 3.1: Overview of Serializing Traces Users call inference methods such as
simulate to produce traces. Calling the serialization methods stores a trace to disk
which can later be read back into memory for further inference tasks.

3.1 Limitations of Existing Methods
A trace is defined as (𝒫 , 𝑥, 𝜏) where 𝒫 is the generative function. A Gen implementa-
tion can represent generative functions as native functions in the language of choice,
and trace implemenations may hold data objects ephemeral to the runtime. For ex-
ample, both the Dynamic and Static Modeling Languages hold function pointers in
each trace (and subtraces for the DML). Thus serializing a trace would entail serial-
izing the function identities, which many standard serialization tools cannot reliably
save. 1 We direct our attention to problems with serializing functions, but trace
implementations may have other runtime-specific attributes and similar roadblocks
will apply.

Nearly all languages associate functions with arbitrary memory addresses only
defined at runtime and are thus temporary - deserialization during a fresh runtime
will fail because the pointer will likely reference invalid memory. Moreover, even if
a function identity could be deserialized, there are still several pitfalls that create
unintended side-effects.

• Changes in Function Definition If the function used to generate the trace
changes slightly (e.g. adding print statements or changes in logic), then upon

1Some tools like Python’s dill can serialize functions and simplify this problem.

19

deserialization two new functions could be added. This is typical in packages
that support function serialization. The runtime does not recognize that the
new function is simply a redefinition of the old one and may in fact override it.

• Allocating Foreign Functions Similar to the first issue, the trace may contain
a function that the user was not aware about. This clutters the namespace and
may create security vulnerabilities that a malicious party can exploit. Consider
the following example. Suppose trace 𝑡𝑡𝑟𝑢𝑠𝑡 is modified by replacing its gener-
ative function with malicious code. Then on a call to update, the malicious
code executes on a user’s machine.

• Large File Sizes Serializing functions can create consume a large memory
footprint as it requires saving the definition. Moreover, if function is defined
as a closure, it must save captured variables defined in the lexical scope of the
closure.

First Attempt This previous discussion suggests that the function pointer should
be discarded and the rest of the trace should be serialized (e.g. arguments and choice
map). A possible scheme consists of two steps. First serialize all data objects of
the trace except the function. Upon reading the contents back to disk, the trace is
constructed by assigning manually the correct generative function which produced
the trace. This unfortunately does not work since any subtraces serialized would have
also required discarding their function pointers. The user would need to know exactly
which functions were in the callstack to reattach all function pointers. This becomes
very untenable for all but the simplest generative functions. A complicated, highly
dynamic model would produce various traces with different address structures and
would requiring saving away the entire call stack of traced calls.
Second Attempt - Using GENERATE Another alternative is to utilize the ex-
isting interfaces to deserialize. In particular, the generate method accepts a choice
map and produces a fresh trace (with associated function pointers). The choicemap
is used to constrain all the random choices made by callees, so any subcall with a
matching address is automatically constrained by the corresponding address the pro-
vided choicemap. This method also fails because generate does not guarantee the
effects of untraced randomness are ignored and can erroneously produce incorrect
scores. There is still another problem even if the score can be correctly serialized -
it is self-defeating to call generate and incur the cost of executing the generative
function again. This will motivate an implementation of deserialize that defers the
cost of running the generative function until it is absolutely necessary.

Example 3.1.1 (Untraced randomness in generate). Figure 3.2 shows a program
with untraced randomness. The table shows all possible traces if a call to simulate
sampled 𝑥 = 0.5, and each has a score of 2 ln(1/2) ≈ −1.386. If 𝜎 = {𝑦 ↦→ 0, 𝑧 ↦→
0} was saved out, then calling model.generate(𝜎) does produce a trace t where
t.𝜏 = 𝜎. However, during the execution of generate is is possible for 𝑥 ̸= 0.5 and
as a result change the score. For example, if 𝑥 = 0.25, then the "deserialized" trace
has score 2 ln(3/4) ≈ −0.575 which is different from the old one.

20

@gen function model()
x = rand() # Untraced
y ~ bernoulli(x)
if y == 0

z ~ bernoulli(x)
else

z ~ bernoulli(1-x)
end
return z

end

𝜏 𝑝(𝜏) Score
{𝑦 ↦→ 0, 𝑧 ↦→ 0} 0.25 -1.386
{𝑦 ↦→ 0, 𝑧 ↦→ 1} 0.25 -1.386
{𝑦 ↦→ 1, 𝑧 ↦→ 0} 0.25 -1.386
{𝑦 ↦→ 1, 𝑧 ↦→ 1} 0.25 -1.386

Figure 3.2

3.2 Serialization Operations for Traces
Gen exposes generative functions and traces as abstract data types (ADTs) with sup-
ported operations listed in Listing 1. [5] ADTs abstract away the internals and im-
plementation of an object to create modular functionality which increases the ease
of compositionality and design of code. The same abstractions can be extended to
support two primitive operations called serialize and deserialize for trace ADTs.

We first restrict to generative models that do not use a proposal or contain encap-
sulated randomness to simplify the discussion, but we later drop these assumption.
Let 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓) be a generative function where 𝑋 is the argument type and 𝑓
maps arguments 𝑥 ∈ 𝑋 to outputs in 𝑌 . Furthermore, 𝒫 produces traces t = (𝒫 , 𝑥, 𝜏)
such that t ∈ supp(𝑝(·; 𝑥)). Recall that 𝑝 satisfies the following condition [5]:

Definition 3.2.1 (Structured Probability Distribution on Choice Dictionaries). A
probability distribution 𝑝 on choice dictionaries is called structured if for all 𝜏 , 𝜏 ′ ∈
supp(p) either 𝜏 = 𝜏 ′ or 𝜏 [𝑎] ̸= 𝜏 ′[𝑎] for some 𝑎 ∈ 𝐴𝜏

⋂︀
𝐴𝜏 ′ .

Serializing a trace 𝜏 to disk involves finding some encoding that is amenable to storage.
Define ⟨𝑥⟩ as the encoding of an object 𝑥 which represents a string description of
the object. The map ⟨·⟩ abstracts away details of serialization for an object and is
assumed to exist for primitive types (e.g. numbers and strings).2. The encoding can
later be read to reconstruct the object. We use the syntax ⟨𝑥, 𝑦⟩ as a shorthand for
the concatenation of encodings.
Assumption: Elements of an address set 𝐴, address values ⋃︀𝑉𝑎 , argument type
𝑋, output type 𝑌 , and real numbers have encodings. In light of the challenges with
saving out functions stated in Section 3.1, ⟨𝒫⟩ is not necessarily available (but 𝒫 is).

Definition 3.2.2 (Encoding of a Choice Dictionary). Let 𝜏 : 𝐴𝜏 →
⋃︀

𝑎∈𝐴
𝑉𝑎 be a

choice dictionary. Then ⟨𝜏⟩ = ⟨𝑎1, 𝜏 [𝑎1], . . . , 𝑎𝑘, 𝜏 [𝑎𝑘]⟩ is its encoding. For disjoint
choice dictionaries 𝜏 and 𝜎, 𝜏 ⊕ 𝜎 has encoding ⟨𝜏 ⊕ 𝜎⟩ = ⟨𝜏, 𝜎⟩

2Exactly which objects have an encoding is beyond scope, but in practice there are many tools
that handle primitives (e.g. floats and immutable structs) to produce binary descriptions. Thus we
delegate how to create and decode encodings to other tools.

21

Definition 3.2.2 is one choice of encoding choice dictionaries, but it is a convenient one
for modularity. This is useful when describing choice dictionaries concatenated from
mupltiple generative functions. Now we use an example model written in Gen.jl’s
Dynamic Modeling Language to illustrate the operations.

@gen function model()
cow ~ uniform(0,1)
if x < 0.5

moo ~ bernoulli(0.1)
else

jump ~ normal(0,1)
end
return 2*cow

end

Serialize Operation The operation t.serialize() takes in a trace t = (𝒫 , 𝑥, 𝜏) and
first calculates the return value 𝑦 = 𝑓(𝑥, 𝜏) using the return function of 𝒫 . The
output is the encoding ⟨𝑥, 𝑦, 𝜏⟩.

Example Suppose t = (model,⊥, {cow ↦→ 0.48, moo ↦→ 1}). The return value is
𝑦 = 0.96 and the encoding is ⟨⊥, 0.96, {cow ↦→ 0.48, moo ↦→ 1}⟩.

Deserialize Operation Given an encoding of a trace 𝑒 = ⟨𝑥, 𝑦, 𝜏⟩, 𝒫 .deserialize(𝑒)
decodes ⟨𝑥⟩, ⟨𝑦⟩, and ⟨𝜏⟩ to produce the trace t = (𝒫 , 𝑥, 𝜏). Here it is assumed that
𝒫 is a generative function that produced the trace or in other words 𝑝(𝜏 ; 𝑥) > 0 and
𝑦 = 𝑓(𝜏, 𝑥).

Example Calling 𝒫 = model on the previous encoding reconstructs the trace t =
(model,⊥, {cow ↦→ 0.48, moo ↦→ 1}). The encoding ⟨⊥,−1.0, {cow ↦→ −0.5, moo ↦→
1}⟩ does not lie in the support of 𝑝 and so deserialization has undefined behavior.

3.3 Compositionality of Interfaces

Both serialize and deserialize are compositional, and we highlight this composi-
tionality for two ubiquitous control flows: sequencing and branching. [5]

Sequencing Generative Functions Two generative functions 𝒫1 = (𝑋1, 𝑌1, 𝑝1, 𝑓1)
and 𝒫2 = (𝑋2, 𝑌2, 𝑝2, 𝑓2) can be called in sequence to define a third generative function
𝒫3. The argument 𝑥 to 𝑃3 is the same as 𝒫1’s. First a choice map is drawn from 𝑝1(·; 𝑥)
and the return value 𝑓1(𝜏 |𝐴1 , 𝑥) is then passed as arguments to 𝒫2. The remaining
portion of the choice map is drawn according to the distribution 𝑝2(𝜏 |𝐴2 ; 𝑓1(𝑥, 𝜏 |𝐴1)).

22

The construction is summarized below.

𝑋3 := 𝑋1

𝑌3 := 𝑌2

𝑓3(𝑥, 𝜏) := 𝑓2(𝑓1(𝑥, 𝜏 |𝐴1), 𝜏 |𝐴2)
𝑝3(𝜏 ; 𝑥) := 𝑝1(𝜏 |𝐴1 ; 𝑥)𝑝2(𝜏 |𝐴2 ; 𝑓1(𝑥|𝜏𝐴1))

Note this construction is only valid if 𝐴1 and 𝐴2 are disjoint as per Gen’s assumptions.
Now suppose 𝒫3 is evaluated at 𝑥 and returns the trace t3 = (𝒫3, 𝑥, 𝜏3) with return
value 𝑦3 ∈ 𝑌3. By definition, the corresponding traces from 𝒫1 and 𝒫2 are t1 =
(𝒫1, 𝑥, 𝜏3|𝐴1) and t2 = (𝒫2, 𝑓(𝑥, 𝜏3|𝐴1), 𝜏3|𝐴2) respectively. Moreover, the encodings
produced by calling serialize on t1 and t2 are

⟨𝑥, 𝑓(𝑥, 𝜏3|𝐴1), 𝜏3|𝐴1⟩
⟨𝑓(𝑥, 𝜏3|𝐴1), 𝑓(𝑓(𝑥, 𝜏3|𝐴1), 𝜏3|𝐴2), 𝜏3|𝐴2⟩

Thus it is clear what ⟨t3⟩ should be:

⟨𝑥, 𝑓(𝑓(𝑥, 𝜏3|𝐴1), 𝜏3|𝐴2), 𝜏3|𝐴1 , 𝜏3|𝐴2⟩ = ⟨𝑥, 𝑓(𝑓(𝑥, 𝜏3|𝐴1), 𝜏3|𝐴2), 𝜏3⟩

which is equivalent to the encoding produced by 𝑡3.serialize(). The deserialize
operation works similarly compositional and uses the structure property in Definition
3.2.1. Given an encoding ⟨𝑥, 𝑦, 𝜏⟩ of a trace t3 from 𝒫3, there exists by definition
some 𝐴1 such that 𝜏 |𝐴1 ∈ supp(𝑝1(·;)). We recalll the following theorem due to
Cusamano-Towner [5].

Proposition 3.3.1. For a structured probability density 𝑝 on choice dictionaries,
and some 𝜎 ∈ 𝒯 *

𝐴 , if 𝜏1 = 𝜎|𝐵1 ∈ supp(𝑝) and 𝜏2 = 𝜎|𝐵2 ∈ supp(𝑝) for some 𝐵1, 𝐵2
then 𝜏1 = 𝜏2.

Since 𝑝1 is a structured probability distribution, by Proposition 3.3.1 𝐴1 is unique. De-
fine 𝐴2 = 𝐴𝜏∖𝐴1. Then the encodings produced by 𝒫1 and 𝒫2 were 𝑒1 = ⟨𝑥, 𝑓(𝑥, 𝜏𝐴1), 𝜏𝐴1⟩
and 𝑒2 = ⟨𝑓(𝑥, 𝜏𝐴1), 𝑓(𝑓(𝑥, 𝜏𝐴1), 𝜏𝐴2), 𝜏𝐴2⟩. Finally 𝒫1.deserialize = (𝒫1, 𝑥, 𝜏𝐴1)
and 𝒫2.deserialize = (𝒫2, 𝑓(𝑥, 𝜏𝐴1), 𝜏𝐴2). Since 𝒫1 executes first before 𝒫2, the
combined trace is (𝒫3, 𝑥, 𝜏𝐴1 ⊕ 𝜏𝐴2) or equivalently t3. Note that for both serialize
and deserialize, some arguments and return values (𝑓(𝑥, 𝜏𝐴1) and 𝑓(𝑓(𝑥, 𝜏𝐴1), 𝜏𝐴2))
of the two constituient traces were dropped to encode and decode t3. We later show
that it is useful in implementations to store these intermediary values and necessary
when dealing with encapsulated randomness.

Conditional Branching Generative Function A conditional branch between two
generative functions takes in a boolean value as well as the two arguments of the
respective generative functions. Only one generative function is called depending on
the boolean value. Let (𝑏, 𝑥1, 𝑥2) be the boolean and arguments. Then 𝒫3 is defined

23

as

𝑋3 := {0, 1} ×𝑋1,×𝑋2

𝑌3 := 𝑌1 ∪ 𝑌2

𝑝3(𝜏 ; (𝑏, 𝑥1, 𝑥2)) :=

⎧⎨⎩𝑝1(𝜏 ; 𝑥1) if 𝑏 = 0
𝑝2(𝜏 ; 𝑥2) if 𝑏 = 1

𝑓3((𝑏, 𝑥1, 𝑥2), 𝜏) :=

⎧⎨⎩𝑓1(𝑥1, 𝜏) if 𝑏 = 0
𝑓2(𝑥2, 𝜏) if 𝑏 = 1

Again, serialize remains compositional. If t = (𝒫3, 𝑥, 𝜏), the call t.serialize()
produces the encoding

⟨t⟩ =

⎧⎨⎩⟨(0, 𝑥1, 𝑥2), 𝑓1(𝑥1, 𝜏), 𝜏⟩ if 𝑏 = 0
⟨(1, 𝑥1, 𝑥2), 𝑓2(𝑥2, 𝜏), 𝜏⟩ if 𝑏 = 1

which exactly equivalent to encoding the constituient traces and selecting one based
of the value 𝑏. To deserialize ⟨(𝑏, 𝑥1, 𝑥2), 𝑦, 𝜏⟩, the value of 𝑏 determines whether to
call 𝒫1.deserialize(⟨𝑥1, 𝑦, 𝜏⟩) or 𝒫2.deserialize(⟨𝑥2, 𝑦, 𝜏⟩).

3.4 Internal Proposals and Encapsulated Random-
ness

In the previous section, we assumed that the only source of randomness eminated
from the choice dictionary and this greatly simplified deserialization. In fact with-
out encapsulated randomness, it is actually sufficient to reconstruct traces with the
generate approach mentioned in Section 3.1. Intuitively, the choice dictionary of
the serialized trace serves as a record of the call graph that generate can "follow"
to reproduce the trace. However, this fails with untraced randomness, and so the
interfaces need to be modified to account for these types of generative functions.

Gen, likewise, permits the use proposal distributions for inference. What a gen-
erative function uses a proposal distribution for can vary. For example, inference
algorithms can use a proposal distribution to transition between states as done in
Metropolis-Hastings or SMC. [4] A proposal distribution can furthermore use data
to better explore regimes of latent space when approximating posterior distributions.
Thus the proposal distribution is a central part of Gen’s design and every generative
function comes with a default one known as an internal proposal. We restate a couple
of definitions. [5]

Definition 3.4.1 (Encapsulated Randomness). A generative function 𝒫 with en-
capsulated randomness is a tuple 𝒫 = (𝑋, 𝑌, 𝑝, 𝑓, 𝑞, Ω, �̊�, �̊�) where (𝑋, 𝑌, 𝑝, 𝑓, 𝑞) is a
generative function with an internal proposal family, �̊� and �̊� are families of probabil-
ity densities on 𝜔 ∈ Ω such that �̊�(𝜔; 𝑥, 𝜏) > 0 if and only if �̊�(𝜔; 𝑥, 𝜏) > 0 for all 𝑥, 𝜏

24

such that 𝑝(𝜏 ; 𝑥) > 0. A trace t of such a generative function is a tuple (𝒫 , 𝑥, 𝜏, 𝜔)
where 𝜔 ∈ Ω satisfies �̊�(𝜔; 𝑥, 𝜏) > 0. The return function 𝑓 is a function of 𝑥, 𝜏 , and
𝜔 ∈ Ω.

The joint distribution 𝑝(𝜏 ; 𝑥)�̊�(𝜔; 𝑥, 𝜏) governs the choice dictionaries and encap-
sulated randomness from the generative function. Even with a fully specified trace,
invocations of the generative function may not be deterministic as it also depends on
the encapsulated randomness produced. This becomes problematic when perform-
ing inference using the log-scores produced by generate and regenerate. These
log-scores are a function of estimators 𝜉(𝑥, 𝜏, 𝜔) which approximate the value 𝑝(𝜏 ; 𝑥).
Intuititely, modifying the serialization interfaces requires encoding the encapsulated
randomness.

Storing 𝜔 to disk In some cases, it is possible to store 𝜔 along with the serialized
trace. Functions written in the modeling language can make untraced calls to known
random sources (e.g. rand()) and store the values. However, this is limited to un-
traced randomness that can be directly observed, which is self-defeating. It would
be more beneficial to trace random calls rather than tracking them separately as un-
traced calls. More typically, a user may need to call black-box stochastic functions in
their model and therefore has no knowledge of 𝜔. Although 𝜔 may not be known, it is
still possible to guarantee serialization of encapsulated randomness by observing that
the return values and log-likelihood scores are functions of 𝜔. This fact is exploited to
modify the interfaces. Again, we guide the remainder of the section using an example
of a model with untraced randomness.

@gen function model(sigma)
x = rand() - 0.5
v ~ normal(x^2, sigma)
return v

end

Serialization with Encapsulated Randomness Given trace 𝑡 = (𝒫 , 𝑥, 𝜏, 𝜔) first
compute the return value 𝑦 = 𝑓(𝑥, 𝜏, 𝜔) and density estimate 𝜉(𝑥, 𝜏, 𝜔). The output
to t.serialize() is the encoding is ⟨𝑥, 𝑦, 𝜏, 𝜉(𝑥, 𝜏, 𝜔)⟩.

Example Consider the unbiased estimator

𝜉(𝑥, 𝜏, 𝜔) = 𝑝(𝜏, 𝑥)�̊�(𝜔; 𝑥, 𝜏)
�̊�(𝜔; 𝑥, 𝜏) (3.1)

using some proposal 𝑞 and its corresponding encapsulated randomness �̊�(𝜔; 𝑥, 𝜏). The
call rand() is an untraced call that produces a value in [0, 1). Suppose the argument
sigma = 1.0 and 𝑥 = 0.1, then t = (𝒫 , 1.0, {v ↦→ 0.02}) is a possible trace.3. The
encoding is ⟨1.0, 0.02, {v ↦→ 0.02}, 𝜉(1.0, {v ↦→ 0.02}, 0.1)⟩.

3(0.1)2 plus noise

25

Deserialization with Encapsulated Randomness For this operation, the encod-
ing 𝑒 = ⟨𝑥, 𝑦, 𝜏, 𝜉⟩ must come from a valid trace. In other words, 𝑝(𝜏 ; 𝑥) > 0 and
there exists an 𝜔 ∈ Ω such that 𝑦 = 𝑓(𝑥, 𝜏, 𝜔). Since such an 𝜔 is assumed to exist,
𝒫 .deserialize(𝑒) ouptuts (𝒫 , 𝑥, 𝜏, 𝜔).

Note that there may be more than one possible value of 𝜔 that satisfies the return
value constraint and evaluates to the same value 𝜉 as in Equation 3.1. It is possible to
treat the equivalence class over all 𝜔 that satisfies these two relations as the returned
encapsulated randomness, but as we will show it is sufficient to consider only one
representative element of the class. Therefore, this interface only guarantees that
some 𝜔 satisfies the relations and does not guarantee any particular value.

Example Given the encoding from previous example, there are two consistent traces:
(𝒫 , 1.0{𝑣 ↦→ 0.02}, 0.1) or (𝒫 , 1.0, {𝑣 ↦→ 0.02},−0.1). deserialize will output one
of them.

We have shown the minimum requirements needed to store a trace onto disk and
correctly deserialize. Although any implementation must encode the four values into
a file, each implementation is at the liberty to add auxilliary information to the en-
coding to help with deserialization. This is especially helpful for composed generative
functions where callees may also be serialized. In Chapter 4, we show an example for
the Dynamic Modeling Language.

3.4.1 Compatibility with Gen’s Interfaces
The only modification to the encodings was to append the score estimates. Since
𝜔 is thrown out in the encoding, it may seem that deserialization requires finding
a consistent 𝜔′ ∈ Ω. This is just as intractible as knowing 𝜔 itself for black-box
functions. Without 𝜔, would it be possible to pass a deserialized trace into the other
interfaces and guarantee that the importance scores remain valid? Note that there
are only three existing interfaces that use a trace as input: logpdf, update, and
regenerate. It is clear that if we save out the score estimate 𝜉, calling logpdf
on the deserialized trace simply returns log 𝜉. For the other two, 𝜔 only influences
the value of the log-weight score 4. This relinquishes the need to know 𝜔 in the
first place, and only save 𝜉. Similar to Section 3.3, analogous arguments hold for
combining generative functions together with encapsulated randomness.

3.5 Combinators
Gen exposes a set of combinators to compose generative functions in common ways.
[5] Table 3.1 lists the existing combinators. Note that these combinators are very
similar to the sequencing and branching compositions in the previous chapter and

4For example, update computes log(𝜉(𝑥′, 𝜏 ′, 𝜔′)/𝜉(𝑥, 𝜏, 𝜔)). The new choice dictionary is only a
function of the original choice map and the proposed choice dictionary. Refer to [5]

26

moreover are compatible with both interfaces. Each combinator has a straightforward
way to serialize, and all encodings take essentially the same form.

Combinator Function
Map Broadcast ℱ over a vector of in-

puts
Unfold Apply ℱ in sequence. Pass the

return value of one application as
input to the next.

Recurse Call ℱ to produce inputs, recurse
on each input using 𝒢, and com-
bine outputs with ℋ.

Switch Multiplexes {𝐹𝑛}𝑁
𝑛=1 and over vec-

tor of input and select one 𝑛.

Table 3.1: Combinators composing generative functions to produce a new generative
function.

Map Given a generative function 𝒫 , the combinator produces a new generative func-
tion 𝒫 ′ that takes a vector of inputs (𝑥1, . . . , 𝑥𝑛) ∈

∞⋃︀
𝑚=0

𝑋𝑚 and produces a vector of
outputs. Each call to 𝒫 with arguments 𝑥𝑖 creates a choice map 𝑡𝑖 within a names-
pace and denote this by namespace(𝜏𝑖, 𝑖) for 𝑖 ∈ [𝑛]. A trace of 𝒫 ′ takes the form
𝜏 ′ =

𝑛⨁︀
𝑖=1

namespace(𝜏𝑖, 𝑖). Store

⟨𝑥1, . . . 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, 𝜏 ′, 𝜉1 + . . . + 𝜉𝑛⟩

On deserialization, construct the trace

(𝒫 ′, (𝑥1, . . . 𝑥𝑛), 𝜏 ′, 𝜔)

where 𝜔 is consistent.

Unfold Let 𝒫 be a generative function whose argument type equals the return type,
or 𝑋 = 𝑌 . Then 𝒫 ′, the unfold combinator of 𝒫 , takes a pair (𝑥0, 𝑛) and produces a
sequence of outputs

𝑦1 := 𝑓(𝑥0, 𝜏1, 𝜔1)
...

𝑦𝑛 := 𝑓(𝑦𝑛−1, 𝜏𝑛−1, 𝜔𝑛−1)

Now consider a trace t = (𝒫 ′, (𝑥0, 𝑛), 𝜏, 𝜔) where 𝜏 =
𝑛⨁︀

𝑖=1
namespace(𝜏𝑖, 𝑖). The

encoding is
⟨𝑥0, 𝑛, 𝑦1, . . . , 𝑦𝑛, 𝜏, 𝜉1 + . . . + 𝜉𝑛⟩

27

Switch The Switch combinator is an extension to branching. The encoding is similar
to that in Section 3.3.

Recurse Let 𝒫𝑝 and 𝒫𝑟 be the production and reduction generative functions. The
Recurse combinator takes 𝒫𝑝 and 𝒫𝑟 and a produces a third function 𝒫 ′ defined by

𝑣, 𝑥1, . . . , 𝑥𝑛 := 𝑓𝑝(𝑥, 𝜏𝑝, 𝜔𝑝)
𝑦𝑖 := 𝑓 ′(𝑥𝑖, 𝜏 ′

𝑖 , 𝜔𝑖) for 𝑖 ∈ [𝑛]
𝑦 := 𝑓𝑟(𝑣, 𝑦1, . . . , 𝑦𝑛, 𝜏𝑟, 𝜔𝑟)

with base case

𝑣 := 𝑓𝑝(𝑥, 𝜏𝑝, 𝜔𝑝)
𝑦 := 𝑓𝑟(𝑣, 𝜏𝑟, 𝜔𝑟)

The encodings are ⟨𝑥, 𝑦, 𝜏𝑟 ⊕
𝑛⨁︀

𝑖=1
𝜏 ′

𝑖 ⊕ 𝜏𝑟, 𝜉𝑝 + 𝜉′
1 + . . . 𝜉′

𝑛 + 𝜉𝑟⟩ if 𝑛 ≥ 1 and ⟨𝑥, 𝑦, 𝜏𝑝 ⊕
𝜏𝑟, 𝜉𝑝 + 𝜉𝑟⟩ for 𝑛 = 0.

28

Chapter 4
Serialization Implementations for
Modeling Languages
The previous chapter introduced two new interfaces for serializing traces and laid
out the minimal requirements for correct serialization, namely storing arguments, re-
turn values, the choice map, and score. This chapter focuses on implementing the
interfaces for Gen’s different modeling languages and combinators. There are two
default modeling languages - the Dynamic Modeling and the Static Modeling Lan-
guage, and each exposes a trace object whose internals are abstracted away from
th user. We provide implementations for the Dynamic Modeling Language and the
combinators using Gen’s tracing semantics. Tracing is a common technique in proba-
bilistic programming languages to intercept calls to randomness. Traced calls invoke
effect handlers under-the-hood which store information such as the random choices
and probability scores, and this process remains opaque to the user. In Section 4.1,
we give an overview for the Dynamic Modeling Language and the combinators. The
second half of the chapter focuses on making "encodings" more concrete and considers
different formats on disk.

Restrictions In general, it is possible to write functions with untraced randomness
that produce traces which cannot be deserialized correctly for later inference. How-
ever, Gen already places restrictions on the modeling language that coincide with
these paint points. There are two restrictions that are relevant for deserialization. [5]
Restricted use of untraced randomness: Untraced randomness cannot directly influ-
ence control flow. This forbids, for example, an untraced value to decide which branch
of an if-else to take. Furthermore, this also restricts influence on the address support.
Restricted use of mutability: Arguments to generative functions may not change.
Figure 4.1 shows an example. We assume from this point on that all models written
abide by the modeling language restrictions.

@gen function()
x ~ uniform(0,1)
if x < 0.5

y ~ normal(0,1)
end
if rand() < 0.5

z ~ normal(0,2)
end

end

Figure 4.1: An invalid Gen DML model The first branch is legal, but the second
branch uses the native rand call which is untraced and therefore not permitted in
the language.

29

4.1 Dynamic Modeling Language and Combina-
tors

We explain now how to implement serialize and deserialize using the tracing
semantics of the Dynamic Modeling Language. While implementing serialize will
be straightfoward, creating an efficient deserialize implementation requires some
care. First we explain a slow version that reuses the same tracing logic as the other
interfaces, and later show how a minor change to can amortize deserialization cost
over inference instead.

A DML trace is implemented as a recursive data structure that uses a dictionary-
like container to map addresses to subtraces. The trace also stores the arguments,
return value, generative function identity, and score. By convention, any subtrace
has its own namespace 1. It is useful to think of the trace as a call graph but only
for generative functions calls - it is a history of all the callees invoked.

The pseudocode for serialize is shown in Algorithm 4. Recall in Chapter 3,
a trace must store ⟨𝑥, 𝑦, 𝜏, 𝜉⟩. Like the trace itself, the encoding takes the form
of a recursive data structure that stores not only the top level arguments, return
values, and scores, but also for every subtrace. The choice map is divided into a
hierarchy by callees. We denote the encoding as 𝒟 and its dictionary as 𝐷.𝜆. The
dictionary 𝜆 maps namespace addresses to sub-encodings (and their corresponding
arguments, return values, etc.). 𝒟 may map to sub-encodings of various trace types,
not just DML traces (e.g. combinator traces). Recursive serialize calls ensure
proper handling of subtraces, freeing the top-level from requiring knowledge about
how subtraces implement serialize. Here we denote the top-level address space as
𝜏𝐴 for convenience.

Figure 4.2: A Dynamic Modeling Trace as a File. One possible implementation
for a DML trace is to organize the subtraces as contiguous chunks. The first block
is an "address map" mapping addresses to byte locations. Within each block is a
serialized subtrace with possibly smaller blocks of traces. This is analogous to a file
system.

The function encode is a third-party serializer (e.g. Serialization.jl for Julia)
used to write primitive objects to disk. Separating the logic of serialize from the
choice of encode permits different storage formats and allows users to choose a
backend that is most appropriate. Moreover, Algorithm 4 does not specify where
each "sub-encoding" is stored physically and leaves the choice to the implementer. Our

1It is fine to forgo adding namespaces using ’splicing’, but this is not recommended.

30

implemention for Gen.jl concatentates the subtraces into one file for simple access.
As we will explain in Section 4.2, different models and read workloads influence how
encodings are organized.

The implementation of deserialize uses tracing to reconstruct the function iden-
tities for the subtraces. Algorithm 5 shows how tracing enables deserialization. The
algorithm works by using the stored choices, arguments, and return values of the sub-
traces to "retrace" the execution of the function. This entails executing the function
and intercepting each trace call with known inputs and outputs. This is vital to deal
with untraced randomness. By setting the input arguments to predefined values, any
untraced randomness that would have affected the arguments is ignored. Similarly
returned the stored return values removes the effect of untraced randomness in the
return value.

The effect handler for deserialize has a similar implementation to the other
effect handlers [5]. When a user calls deserialize, a state object is created specific
for deserialization and exists for duration of the 𝒫 ’s executation. This state contains
the trace that is to be built as 𝒫 executes - of course the trace built is simply the
serialized one. The function 𝒫 is executed using the exec call that uses the explicit
trace call (see Figure 2.2). When a traced call hits address a, the handler verifies
that 𝑎 was in the stored 𝒟.𝜆. If the address pointed to a value, then the value
is decoded added to the reconstructed trace t. Otherwise, the address would have
pointed to a subtrace that would need to be deserialized. The subtrace is deserialized
using the called generative function dist. Using the stored return value retval
ensures repeatable execution by tracing the addressed values and their corresponding
populated values while ignoring the effects of untraced randomness.

Algorithm 4 Serializing a Trace
procedure serialize(t = (𝒫 , 𝑥, 𝜏, 𝜔))
𝒟 ← {}
𝒟.x← encode(t.x)
𝒟.y← encode(t.y)
𝒟.𝜉 ← encode(t.𝜉)
for 𝑎 ∈ 𝜏𝐴 do ◁ Encode top-level choices

if 𝜏 [𝑎] is value then
𝒟.𝜆[𝑎]← encode(𝜏 [𝑎])

else
𝒟.𝜆[𝑎]← serialize(𝜏 [𝑎]) ◁ Recursively visit each subtrace

end if
end for
Return 𝒟

end procedure

31

Algorithm 5 Deserializing a DML Trace using Tracing
procedure deserialize-init(𝒫 , 𝒟)

x, y, 𝜉 ← decode(𝒟.x), decode(𝒟.y), decode(𝒟.𝜉)
𝜆← 𝒟.𝜆
t← (𝒫 , 𝑥, {}) ◁ Build empty trace
t.𝑦 ← 𝑦
t.𝜉 ← 𝜉
state← (t, 𝜆)
return state

end procedure

procedure deserialize-handler(state, a, dist)
t, 𝜆← state.t, state.𝜆
if a /∈ 𝜆 then

error ◁ Address not in stored trace
end if
if is_value(𝜆[a]) then

t[𝑎]← decode𝜆[𝑎]
t[𝑎].score← decode(𝜆[𝑎].score)

else
t′ ← deserialize(dist, 𝜆[𝑎]) ◁ Deserialize subtrace
t[𝑎]← t′

end if
retval← state.t.retval ◁ Intercept return value
return retval

end procedure

procedure deserialize(𝒫 , 𝒟)
state← deserialize-init(𝒟)
retval← 𝒫 .exec(state.t.x) ◁ Begin tracing; retval = t.return
return t

end procedure

4.1.1 Optimizing using Lazy Deserialization
While deserialization in the previous section is simple, it is slow because we incur the
cost of executing 𝒫 to trace the addresses. If any point of the execution is slow, then
deserialize must complete the function before moving onto the next trace call. The
work itself to call 𝒫 is wasted. Here we describe a simple modification that defers
code execution to inference time rather than immediately.

We define a new trace type that is observationally equivalent to DML trace. A
trace, t’, of the new type exposes the same observation interfaces as the normal
DML (e.g. get_choices). When a serialized trace is read back in, there are two
options to decode the address and values into t’. The first implementation recursively

32

visits the trace and decodes all addresses and values. It is not necessary to rely
on tracing as this information is known directly from the dictionary stored in t’,
effectively creating a trace object with all function pointers dropped. On an inference
call such as update, any address that does not have a function pointer assigned to
it is assigned one. This avoids paying upfront the entire cost of deserialization and
amortizes the cost away to update or regenerate. The second implementation
not only avoids executing 𝒫 but also defers calling decode initially. Instead, calls
to decode happen at inference type when the address is visited. This is similar to
other lazy schemes like copy-on-write.

Figure 4.3 shows an example model that highlights the performance difference be-
tween full deserialization and lazily deserializing. The cost for the lazy deserialization
is amortized over many calls to update rather than paying the full cost initially. The
table shows the speedup.

@gen function model()
x ~ slow()
return x

end

@gen function slow()
sleep(10)
z ~ bernoulli(0.5)
return z

end

Implementations Time per Operation
Serializing Trace 10.02 s

Deserializing Fully 10.05 s
Lazy Initial Cost 70.53 𝜇s

Updating address z 10.004 s

Figure 4.3: Performance of Serializing and Deserializing The function model
runs in roughly 10 seconds to produce a trace. The first value in the table shows the
cost of serializing a sample from model. The second measurement is the simpler dese-
rialization implementation. The time is roughly the same as executing the model. The
third measurement records the upfront cost of lazily deserialzing which is negligible.
The final row shows that when slow eventually runs using the lazily deserialized
trace, the cost of running the model is incurred once. Timings were measured for
Gen.jl.

4.1.2 Combinators

The implementations for the combinators are analogous to the ones for DML traces.

Example 4.1.1 (Map Trace). In Gen.jl, the Map combinator produces vector traces
consisting of an array subtraces. Section 3.5 suggests one possible implementation:
serialize each subtrace and splice the results into one file.

33

4.2 Custom Backends and Batching
So far the discussion has assumed that one trace is serialized at a time. This is fine for
a small number of traces, typically used in one-off visualizations or debugging. As the
number of serialized traces grows, however, serializing each trace into individual files
becomes wasteful. The memory footprint necessary to maintain metadata used in the
serialization process grows proportional to the number of samples. Serializing all the
samples from a particle filter becomes burdensome if there are numerous large traces.
There are computational benefits for (i) selecting a different encode method and (ii)
organizing batches of traces to exploit read behavior. For instance, a user may wish
to save a collection of particles and latter query for values at a given address. This
is typical for visualizations and is characterized by predictable reads into memory.
Separated files can suffer from poor locality and do not exploit possible struct of
array representations used in many vectorized applications. What format a batch
should be formatted in greatly depends on several factors.

Model Structure The choice of model affects what addresses are present in a trace.
Highly dynamic models produce traces with hetergeonous address structure, and any
two trace may have little address overlap. On the other hand, models that conform to
simple structure (e.g. linear regression with noise) have predictable traces. "Aligning"
traces against their addresses can help reduce the memory footprint of representing
the addresses. For example, a model that only produces choice maps of the form
{a ↦→ 𝑥} where 𝑥 ∈ R can be better store a batch by representing the choice maps as
a vector of values. Similarly, it may be possible to group argument values or return
values into a vectorized representation.

Read Workloads Various serialization formats cater to different workloads and store
data on disk to optimize for read performance. Workloads may use deserialized traces
in different ways. A user who wishes to simply read in values from the choice maps
does not need to fully pay the cost of inference and instead can just deserialize the
choice map, and a similar scenario occurs when reading query one address for a
batch of traces. An application may alternatively wish for cross-language support
and require data stored in a universal format rather than a language-specific one.

Homogenous Models - Arrow Format For models that produce choice maps
with identical or nearly homogenous address structures, it can help to group values
by address. The Apache Arrow format organizes data in a columnar representation for
flat and hierarchical data, and excels at in-memory column queries.[15] Each column
of the Arrow table will correspond to an address in the address universe as shown in
Figure 4.4a. If a choice map does not have an address, the corresponding entry in
the column is marked with a missing value 2. Figure 4.4c shows the performance
of reading one address for a batch compared to deserializing each trace out. Each
column resides in contiguous memory and enables for better cache locality.

2Or some chosen sentinel value.

34

@gen function profession()
student_or_teacher ~ bernoulli(0.5)
if student_or_teacher

salary ~ uniform(0,1)
else

grade ~ categorical([0.1,0.5,0.4])
end

end

(a)

samples.arrow
:SorT :grade :salary

1 missing 0.8
1 missing 0.92
...
0 A missing

(b)

(c) (d)

Figure 4.4: Trace file using Arrow Samples from the model are aggregated into
one Arrow file called samples.arrow file. Each column groups values by addresses
and fills in a missing value for any absent addresses. Contiguous layouts enable for
better reads. Plot c shows the performance degradation of single file traces using
Serialization.jl. If the traces are stored as Arrow table, however, indexing into
:student_or_teacher for all 1000 traces only took 35.2 nanoseconds. While Arrow
file and separate trace files when indexing into :student_or_teacher (:SorT
in the table). Plot d shows that Arrow reduces the memory footprint by exploiting
struct of array representations.

Cross-Language Support As more Gen implementations are developed, cross-
language support help clients of different languages interface with each other. Several
universal formats exist such as JSON and Protocol Buffers.[14] JSON serves as a
versatile and efficient choice for cross-language serialization due to its simplicity and
widespread support across programming languages. Its human-readable format makes
it easy for developers to comprehend and work with. Furthermore, JSON’s key-value
pair representation aligns well with the data structures commonly used for addresses
such as traces in the Dynamic Modeling Language, allowing for straightforward trans-
lation from native data objects to JSON and vice versa. Implementors of serialization
can choose one of these formats and use the existing tools to conform the data objects
to protocol’s specification.

35

Chapter 5
Applications of Serialization in
PPLs
In this chapter we show that common use cases of serialization extend to traces. Table
5.1 highlights a collection of workloads that use serialization. We give an overview of
each application in the following sections.

Section 5.1 Storage and reproducibility
Section 5.2 Checkpointing and external memory computation
Section 5.3 Remote procedure calls
Section 5.4 Amortized Inference

Table 5.1: Examples of use cases for serialization in data analysis and computing.

5.1 Storage and Reporducibility
The choice map in a trace is informative to understand the generative process that
produced that trace and can be accessed using the choices interface. A user could
inspect the choice map for a wide variety of applications that may or may not be
related to inference itself.
Visualizations
It is common to visualize samples as empirical distributions to analyze model behavior
in experiments. Serializing out traces is especially useful if the gnerative model is slow
to sample from so that the user does not need to run the model each time to generate
visuals. Moreover, it is possible that the user runs one-off models that collect data
once and must be saved onto disk for long-term storage.
Reproducibility
Saved out traces can be used to replicate experiments by using an initial trace as a
seed for inference. Serialization helps ensure that the trace data remains unchanged,
enabling reproducibility of the exact conditions under which the generative model
ran. Figure 5.1 shows an example.
Versioning
Serialization also enables users to version out data and compare across different ex-
perimental methods. Users can incrementally test iterations of an experiment with
the same underlying data, simplifying the work needed to make comparison or ab-
lation studies. For instance, serialization is useful in diagnosing the convergence of
inference strategies also shown in Figure 5.1. Rather than starting at the beginning
of inference, the user can begin each algorithm at any point of interest to explore
differences.

36

Data Accessability
Serialized data can be shared with other users, facilitating collaboration.

Figure 5.1: Experiement Reproducibility Serialization enables comparing traces
representing the estimated trajectories from different inference algorithms. The left
panel shows a particle’s ground truth trajectory in red subject to a field. Two tra-
jectories produced by importance sampling and SMC respectively are also plotted.
The SMC algorithm uses a data-driven proposal which matches the trajectory better.
The right panel shows the same algorithms agree for a portion of the trajectory using
an initial trace. The quality difference becomes clearer after a sudden change in the
trajectory and the blue trajectory self-corrects.

5.2 Checkpointing Progress and Out-of-Core Com-
putation

In common inference algorithms, multiple iterations are carried out to achieve con-
vergence (e.g., MCMC) or process sequential data (e.g., time series). Checkpointing
enables the saving a single or groups of traces to a stable medium, mitigating the
potential for data loss in the event of a crash during the inference algorithm’s exe-
cution. This method eliminates the necessity to restart the entire computation. By
serializing traces to disk at regular intervals, programs that error unexpectedly can
resume computation by reading the latest saved traces.

A similar application is to use serialization to manage collections that exceed
the available memory. Particle filters rely on having a sufficient number of particles
for good convergence. In most settings, all the particles can fit in virtual memory
without reaching the memory limit. However, it is possible for a model to allocate a
large chunk of memory to produce traces. By only keeping a handful of particles and
relegating the rest to disk, a particle filter can operate with low memory resources.
A naive scheme would be to save out all the traces to disk and read each individually
when during calls to update. Of course, this increases latency so more sophisticated

37

scheduling can improve performance and can leverage ideas from database managers,
as these systems typically save pages to disk and use buffer pools to manage the pages
currently in memory. The pseudocode below shows an SMC step with one particle
active at a time. Each particle is read back into memory, updated to a new trace,
and serialized back to disk. The resampling step selects a new particle collection and
deletes unused particles.

for i=1:N
trace = deserialize_trace(i)
trace, w = update(gen_fn, trace, obs)
weight[i] = w
serialize_trace(trace)

end
new_traces, discard_traces = resample(weights)
flush(discard_traces)

An interesting application of checkpointing is for particle rejuvenation-like sam-
pling. Particle rejuvenation is necessary to widen the support of the particle collection
and is useful to prevent collapses. Checkpoints can be used to save particles of par-
ticular interest during filtering and later read back into memory to as resampled
particles for rejuvenation. Algorithm 6 illustrates the high level procedure. There,
𝑅 is the rejuvenation function which also takes the checkpoint traces and produces a
new set of particles.

Algorithm 6 Particle Rejuvenation with Checkpoints
Input: Particles {x(𝑖)}𝑁

𝑖=1, Rejuvenation function 𝑅, Saved particles 𝑆 = {𝑥(𝑖)
𝑠 }𝑀

𝑗=1
new_particles← ∅
new_particles(𝑖) ← 𝑅(x(𝑖), 𝑆) for 𝑖 ∈ [𝑛] ◁ Rejuvenate particle 𝑖
return new_particles

5.3 Remote and Distributed Computing
For more computationally expensive models or inference, parallelization and remote
calls can help speed up performance. To facilitate communication, programs can
serialize traces and transmit data the across the network. Section 4.2 discussed factors
that can influence how traces are formatted for efficient storage, but here we explain
when to call serialize to achieve basic process communication. Transmitting a
trace occurs in one of two places. The first is across separate calls to the interface
methods such as consecutively calling update on a particle filter. The second is when
executing a sub-generative models.

Parallelism Over Particles A particle filter can run in parallel by dividing particles
over separate process. Algorithms like SMC may require processing particles after

38

each step (e.g resampling), and so traces must be aggregated. Worker processes can
serialize traces onto a stream or channel and transmit the traces a master process for
aggregation. Figure 5.3 shows pseudocode for one step of a particle filter that uses
a master node to resample the particle collection. The left snippet shows the worker
code which updates each trace allocated to it and serializes back the results to the
master. The right snippet shows the the master process aggregating traces and then
(assuming the all workers finished) performs resampling.

while is_empty(jobs)
(trace, args) = take(jobs)
trace = deserialize(gen_fn, trace)
new_trace =

update(gen_fn, trace, args...)
new_trace = serialize(new_trace)
push(aggregate, data)

end

Allocate jobs
for i=1:N

push(jobs, serialize(traces[i]))
end
...
Wait for workers
Deserialize returned traces
new_traces = ...
new_traces = resample(new_traces)

Figure 5.3

Remote Procedure Calls
Serialization can also help to invoke remote function on a different process. We
consider a client and server where the client does not have access to the function
definition use generate a trace. The previous implementation for parallelized particles
extends here as well if the client wishes to make a call to the remote generative function
and obtain the trace. For example, the client can send arguments to the server for a
simulate call, and the server returns back a serialized copy of the trace. The copy
can be downloaded and inspected for its contents like the choices, and sent back to
the server for future inference calls.

It is also possible to make remote calls inside a generative function, but these calls
are not traced by default in Gen.jl as they are treated as black-boxes. We demonstrate
how to use a custom DSL to construct remote generative functions that can be traced
for the DML. In Appendix A, we show how to extend the tracing implementation of
Gen.jl to add a new macro for remote traced calls when functions are globally defined
across processes, but this does not require serialization.

Here we assume a tracing implemenations of generative functions and specifically
focus on Gen.jl, but a similar approach works for non-traced modeling languages.
The same principles apply but now a custom generative function handles sending and
saving traces from the server during tracing without the user handling this between
calls. Gen.jl supports writing custom generative functions so long as they satisfy the
Gen interfaces. Now the custom generative function implements the Gen interfaces
using effect handlers similar to the ones in the Dynamic Modeling language. Algo-
rithm 7 shows the custom effect handler for simulate on the client machine. dist is

39

assumed to be the custom generative function 1. The simulate call makes a remote
call to the server using the provided arguments and retrieves back the serialized con-
tents. The handler assigns to the trace a reference (e.g. file path for traces on disk)
for the subtrace at the intercepted address. Algorithm 8 shows the entry point to the
server’s simulate. By abstracting away the subtrace for the remote machine and
storing it to disk without ephemeral data objects, the client is able to communicate
with machines that do not share common functions. The other methods can be im-
plemented similarly. Extending the other interfaces is similar except that old trace
must be deserialized when the server receives it.

Algorithm 7 Remote Simulate on Client
procedure simulate-handler(state, 𝑥, dist)

retval, score, trace_handle← RPC_simulate_P(𝑥)
state.𝜏 [𝑎]← trace_handle
state.𝜏 [𝑎].retval← retval
state.𝜏 [𝑎].score← score
Return retval

end procedure

Algorithm 8 Server simulate RPC handler
procedure RPC_Simulate_P(𝑥)

t← 𝒫 .simulate(𝑥)
file_handler← t.serialize()
Return t.retval, t.score, file_handler

end procedure

1Julia supports multiple dispatch and can therefore dispatch on function type.

40

5.4 Training Approximate Distributions

This section discusses EUBO optimization using several case studies and explores sce-
narios where serialization is helpful. The first part deals with approximating energy-
based models where direct sampling is often expensive and requires MCMC methods.
We show that by serializing samples from the expensive energy-models, we can speed
up training without a significant hit in performance. Likewise, the second section
explores training neural proposals for pose inference probabilistic programs. Pose
inference via inverse graphics can strain the renderer for high resolution images, so
serialization can offer speed-up advantages. The final section examines training neu-
ral surrogates for importance sampling. A neural surrogate approximates the score
of the target distribution and has a virtually identitical training process. Although
this chapter focuses on EUBO optimization, the same ideas discussed here can be
extended to other objectives (e.g. SDOS). [6]

5.4.1 Amortized Inference for Expensive Generative Models

Recall the forward KL objective in Section 2.3 is defined as 𝐷(𝑝(𝑧|𝑥)||𝑄𝜃(𝑧; 𝑥)) for
target posterior 𝑝(𝑧|𝑥) and approximate distribution 𝑄𝜃(𝑧; 𝑥). Minimizing the diver-
gence corresponds to learning parameters 𝜃 for 𝑄𝜃(𝑧; 𝑥) which in this chapter is a
parameterized SIR. Let 𝑄𝑠 be the scorer and 𝑄𝑝 be the proposal for SIR. It is the
choice of the model implementer to parameterize 𝑄𝑠 or 𝑄𝑝. Samples from the gener-
ative process 𝑝(𝑥, 𝑧) are fed into the importance sampler as training data. Gradients
are computed as

−
∫︁

𝑝(𝑥, 𝑧)∇𝜃 log 𝑄𝜃(𝑧; 𝑥) (5.1)

(5.2)

While it is common to assume that it is easy to sample from 𝑝(𝑥, 𝑧) using the ob-
servationally equivalent factorization 𝑝(𝑧)𝑝(𝑥|𝑧), this assumption is not always true.
For example, if 𝑝(𝑥|𝑧) is an energy function or is itself a posterior, then sampling
according to 𝑝(𝑥|𝑧) requires approximation techniques such as MCMC. Figure 5.4
shows samples from example distributions whose generative processes are expensive
no matter the factorization. The left panel shows samples (𝑥, 𝑦, 𝑟2) using MH steps
conditioned on 𝑟 using an unnormalized energy function. The remaining panels shows
sample lattices from the Ising model using an efficient Gibbs block sampler. 2 Both
distributions require many iterations to produce samples according to their respective
energy functions.

2Recall that a lattice 𝑥 ∈ {±1}𝑁 from the Ising model with no external field has energy 𝐸(𝑥; 𝛽) =
exp(−𝛽𝐻(𝑥)) and 𝐻(𝑥) =

∑︀
𝜃𝑖𝑗𝑥𝑖𝑥𝑗 . The value 𝛽 is the inverse temperature and influences the

distribution of ±1 on the lattice.

41

Figure 5.4: Sampling from from energy functions requires iterating to get good
approximations. Often this cost cannot be avoided. The first plot corresponds to
the energy function 𝐸(𝑥, 𝑦, 𝑟2) = exp(−2(𝑥2 + 𝑦2 − 𝑟2)). The remaining figures are
Ising lattices with slightly different interaction coefficients at 𝛽 = 0.5. The red cross
indicates the impurity of the lattice which induces a checker-like pattern.

procedure circle-model(N)
𝑥 ∼ uniform
𝑦 ∼ uniform
𝑟2 ∼ uniform(0,1)
for i=1:N do

𝑥, 𝑦, 𝑟2 ∼MH(𝑥, 𝑦, 𝑟2)
end for

end procedure

procedure dirty-ising(N)
𝛼 ∼ dirty-prior()
grid∼ grid-prior()
for 𝑖 = 1 : 𝑁 do ◁ Gibbs steps

grid∼ gibbs(grid, 1)
grid∼ gibbs(grid, 2)

end for
Return grid

end procedure

Figure 5.5

Regression Proposal The left panel of Figure 5.5 shows the generative process
for the samples that lie on concentric circles, and the importance sampler distribu-
tions (𝑄𝑠, 𝑄𝑝). The distribution 𝑝(𝑥, 𝑦, 𝑟2) is proportional to the energy function
𝐸(𝑥, 𝑦, 𝑟2) = exp(−𝛽𝐻(𝑥, 𝑦, 𝑟2)) where 𝐻(𝑥, 𝑦, 𝑟2) = 𝑥2 + 𝑦2 − 𝑟2, and the distribu-
tion of interest is 𝑝(𝑟2|𝑥, 𝑦). Since 𝑝(𝑟2|𝑥, 𝑦) ∝ 𝑝(𝑥, 𝑦, 𝑟2), we can use the generative
process as the unnormalized target distribution for importance sampling. This means
that the scorer 𝑄𝑠(𝑟2; 𝑥, 𝑦) ∝ 𝐸(𝑥, 𝑦, 𝑟2) is the same energy function and is cheap to
compute - it is responsible for scoring but not sampling. The neural proposal 𝑄𝑝

shown in left panel of Figure 5.6 uses regression coefficients to predict the mean of a
Gaussian for 𝑟2. The optimal coefficients are clearly 𝑎 = 1, 𝑏 = 1, 𝑐 = 0, 𝑑 = 0, and
𝑒 = 0.

Convolutional Network Proposal The right panel of Figure 5.5 descibes a modi-
fied Ising model that has a "impure" magnetic interaction. In a "pure" lattice, 𝜃𝑖𝑗 = −1
for all 𝑖, 𝑗. Instead, the latent 𝛼 determines where a small block of 𝜃𝑖𝑗 = 1 is centered.
Figure 5.4 shows how the impure interaction influences the sample lattice. The target

42

distribution is 𝑝(𝛼|𝑥) where 𝑥 is a lattice. The proposal 𝑄𝑝(𝛼; 𝑥) maps lattice images
to values 𝛼 for the mean of a Gaussian. The target distribution is 𝑝(𝛼|𝑥) where 𝑥 is
a lattice.

procedure circle-proposal(x,y)
Parameters: (𝑎, 𝑏, 𝑐, 𝑑, 𝑒)
𝜇 = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑦 + 𝑑𝑥 + 𝑒
𝑟2 ∼ normal(𝜇, 𝜎)

end procedure

procedure ising-proposal(grid)
Parameters: 𝜃
𝜇𝛼 = convnet𝜃(grid)
𝛼 ∼ normal(𝜇𝛼, 𝜎)

end procedure

Figure 5.6

Convolution Network for Pose Inference Here we consider a network that is
not energy based but requires substantial deterministic computation. Recent work
has used probabilistic programs to infer latent object poses by using rendering [8].
Inverse graphics uses latent object models and poses to render out scenes and scores
hypothesis by how well they match the observed images. Although the original work
defined an extensive model for multi-object scenes, we restrict to the case of one
object.

A pose is an element of SE(3) and is composed of a rotation and a translation.
The particle filter for inference tracks moving objects by predicting the latent pose at
each time step using an enumerative proposal. By gridding the latent space near the
last known estimated pose, the proposal renders out each hypothesis as an depth map.
Figure 5.7 shows a diverse set of hypothesis of an object given a known location in
space. The depth map is scored against the observed depth map using the point cloud
likelihood defined in [8]. The particle filter resamples particles with high importance
weight. While enumeration is robust, full enumeration over a large latent space can
be expensive as each particle needs to be rendered out.

Rendering is GPU accelerated, but the enumeration cost still remains. A neural
proposal can help enumeration by suggesting small grid sizes around where the object
is likely to be. We opted for a convolution network that takes a depth map and
predicts the translation component of the pose. The predicted translation is then
perturbed by Gaussian noise. The bottom row of Figure 5.7 shows the diversification
of the proposed samples with the trained neural proposal.

43

Figure 5.7: Proposals for Object Pose On the top row, the ground truth cylinder
lies on the bottom of the image. Each image shows the proposed pose of an uninformed
prior. On the bottom row, the trained network concentrates the proposals near the
true translation component.

5.4.2 Training
Slow generative models create a computational bottleneck when training as the gra-
dient in Equation 5.2 requires sampling from 𝑝(𝑥, 𝑧). Using fresh samples provides
large data coverage but is wasteful as samples in one gradient step are discarded for
the next step. In conventional machine learning scenarios, training typically involves
drawing samples from a static dataset, and batches might reuse samples throughout
the training procedure. The same principles apply here where we serialize out sam-
ples to create datasets. The generative processes can be sampled from indefinitely,
so there is flexibility on how often samples are saved out and reused for future gradi-
ents. We compute gradients using several training strategies that save out traces at
different frequencies. Here, we list four strategies but of course different combinatons
are possible.

• Fresh Samples - Gradients are computed using new samples from 𝑝(𝑥, 𝑧),
and are immediately discarded. If a gradient estimator uses 𝐾 samples and
evaluates a gradient 𝑁 times, then 𝐾𝑁 samples are needed.

• Static Dataset - Samples are generated ahead of time and aggregated into
one dataset.

• Mixed Dataset - Initially a static dataset is constructed and periodically
regenerated.

• Regenerated Dataset - For generative functions that use MCMC, samples
do not need to be generated from scratch and can instead be sampled using
previous observations. In addition to generating samples from scratch, models
that use MCMC for sampling can use old samples and regenerate by running
the chain more.

44

Chapter 6
Conclusion
We conclude by assessing the serialization design and highlight other potential appli-
cations for serialization. This thesis has demonstrated that it is possible to serialize
in Gen’s implementations while guaranteeing observational equivalence for later in-
ference. Traces read from disk remain valid even if generative function identies are
detached and remain compositional with the other generative function interfaces.
Moreover, the interfaces provide several degrees of freedom in specifying a trace’s
format on disk. Depending on several factors such as generative function structure,
choice data types, and vectorization, the user can customize the serialization format
for better read performance. A key feature of these interfaces is that that they remain
composable and consistent with Gen’s other interfaces even with hierarchical models,
stochastic branching, and even certain cases of untraced randomness.

6.1 Future Work
The serialization implementations discussed in Section 4 primarily covered the Gen’s
Dynamic Modeling Language but left open the possibility for the Static Modeling
Language. Greater care is needed because compilation of static generative models may
change the generative functions identity, its AST structure, or even the AST tokens
themselves and thus the same procedure for the DML would not work. For example,
Julia’s implementation of the SML constructs an entirely new function whose identity
and variables are entirely different from the source - it is possible that restarting
the Julia environment renders these objects invalid. As of this thesis, Gen’s SML
compiler applies static analysis to infer model structure and this could be leveraged
for deserialization. Supporting the static language brings up a broader point about
how compiler design influences which internal internal data structures can and cannot
be serialized. More sophisticated compilers could hold more auxilliary data in the
trace to benefit inference, and serialization implementations would need to cover
these cases.

Moreover, there is limited support for serializing traces from models that sample
functions as choices. For example, [16] proposes a generative model that fits time
series data against stochastic generative models also written in Gen, and thus se-
rializing would require saving out functions as values. Presumably, these sampled
functions have a lowered represention (e.g. an AST) composed of simple types that
can be serialized. For these cases, serialize could be specialized to write the lowered
representation instead.

It is necessary to consider the security of the serialization implementation for
security-sensitive settings. Similar to Python’s pickle, deserialize reads in arbi-
trary pointers from memory and does not check what is deserialized. It is conceivable
that a malicious user may be able to execute arbitrary code upon deserialization al-
though the current design softly mitigates this so long as a user has only trusted trace

45

types in the namespace.
The discussion in Section 5.4 trained variational importance samplers using saved

out datasets. Future experiements could quatify how well neural proposals using saved
out static datasets compare to learned proposals that continuously sample from the
generative model.

46

Appendix A
Remote Generative Function Calls
The benefit of using a tracing system in Gen is that it enables for large code reuse
for other types of tracing. Figure A.1 shows the use of two new (desugared) tracing
macros, gen_rpc and gen_fetch. In a normal distributed setting, clients submit
RPCs to a remote machine and receive back a future. This future does not immedi-
ately hold the return values of the function but serves as a token the client can query.
Upon a fetch, the client blocks and only resumes execution after receiving the return
value. This is identical in the case of generative functions in Gen.jl. The model first
calls a worker process using gen_rpc with a process id and receives back a future.
The model then makes a call to gen_fetch, blocking the execution until the worker
process returns the subtrace.

@gen function really_slow_sum(args)
futures = []
for i=1:10

future = gen_rpc(i % nproc, state, remote_gen_fn, i, (args,))
push!(futures, future)

end
... # Work

results = []
for i=1:10

push!(results, gen_fetch(state))
end
final = sum(results)
return final

end

Figure A.1: Remote Tracing Macros The left snippet shows an example using
the gen_call and gen_fetch using the expanded out trace calls. Each invocation
of gen_call sends work to an available process. The model can continue working
while the remote processes finish their respective tasks, and the results are aggregated
at the end.

The same rules for common distributed computing apply here for generative mod-
els. For example, using the unfetched future may produce undefined behavior. More-
over, in our implementation calling gen_fpc does not immediately append to the
execution trace and instead defers this to the corresponding call to gen_fetch. For
example, if during the time between making the RPC and fetching future (e.g. during
Work) one of these addresses is populated, then the corresponding fetch call will fail.

47

Bibliography

[1] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A
review for statisticians. ArXiv, abs/1601.00670, 2016.

[2] Yuri Burda, Roger Baker Grosse, and Ruslan Salakhutdinov. Importance
weighted autoencoders. CoRR, abs/1509.00519, 2015.

[3] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and
Allen Riddell. Stan: A probabilistic programming language. Journal of Statisti-
cal Software, 76(1):1–32, 2017.

[4] N. Chopin and O. Papaspiliopoulos. An Introduction to Sequential Monte Carlo.
Springer Series in Statistics. Springer International Publishing, 2020.

[5] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K.
Mansinghka. Gen: A general-purpose probabilistic programming system with
programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019, pages 221–
236, New York, NY, USA, 2019. ACM.

[6] Justin Domke. An easy to interpret diagnostic for approximate inference: Sym-
metric divergence over simulations. ArXiv, abs/2103.01030, 2021.

[7] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: A language for flexible
probabilistic inference. In Amos Storkey and Fernando Perez-Cruz, editors, Pro-
ceedings of the Twenty-First International Conference on Artificial Intelligence
and Statistics, volume 84 of Proceedings of Machine Learning Research, pages
1682–1690. PMLR, 09–11 Apr 2018.

[8] Nishad Gothoskar, Marco Cusumano-Towner, Ben Zinberg, Matin
Ghavamizadeh, Falk Pollok, Austin Garrett, Josh Tenenbaum, Dan Gut-
freund, and Vikash Mansinghka. 3dp3: 3d scene perception via probabilistic
programming. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, volume 34, pages 9600–9612. Curran Associates, Inc., 2021.

[9] Ghassen Jerfel, Serena Wang, Clara Wong-Fannjiang, Katherine A. Heller, Yian
Ma, and Michael I. Jordan. Variational refinement for importance sampling us-
ing the forward kullback-leibler divergence. In Cassio de Campos and Marloes H.
Maathuis, editors, Proceedings of the Thirty-Seventh Conference on Uncertainty
in Artificial Intelligence, volume 161 of Proceedings of Machine Learning Re-
search, pages 1819–1829. PMLR, 27–30 Jul 2021.

48

[10] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR,
abs/1312.6114, 2013.

[11] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference Compilation
and Universal Probabilistic Programming. In Aarti Singh and Jerry Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning Research, pages 1338–
1348. PMLR, 20–22 Apr 2017.

[12] Alexander K. Lew, Marco Cusumano-Towner, and Vikash K. Mansinghka. Re-
cursive Monte Carlo and variational inference with auxiliary variables. In James
Cussens and Kun Zhang, editors, Proceedings of the Thirty-Eighth Conference
on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of Machine
Learning Research, pages 1096–1106. PMLR, 01–05 Aug 2022.

[13] Brooks Paige and Frank D. Wood. Inference networks for sequential monte carlo
in graphical models. In International Conference on Machine Learning, 2016.

[14] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. Foundations of json schema. In Proceedings of the 25th International
Conference on World Wide Web, pages 263–273. International World Wide Web
Conferences Steering Committee, 2016.

[15] Neal Richardson, Ian Cook, Nic Crane, Dewey Dunnington, Romain
François, Jonathan Keane, Dragos, Moldovan-Grünfeld, Jeroen Ooms,
and Apache Arrow. arrow: Integration to ’Apache’ ’Arrow’, 2023.
https://github.com/apache/arrow/, https://arrow.apache.org/docs/r/.

[16] Feras A. Saad, Brian J. Patton, Matthew D. Hoffmann, Rif A. Saurous, and V. K.
Mansinghka. Sequential Monte Carlo learning for time series structure discov-
ery. In Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 29473–29489.
PMLR, 2023.

[17] Surya T. Tokdar and Robert E. Kass. Importance sampling: a review. WIREs
Computational Statistics, 2(1):54–60, 2010.

[18] Tongzhou Wang, YI WU, Dave Moore, and Stuart J Russell. Meta-learning
mcmc proposals. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[19] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256, 1992.

49

	Introduction
	Contributions
	Related Work

	Background
	The Gen PPL
	Generative Functions and Traces
	Modeling Languages and Generative Function Interfaces
	Tracing as an Implementation

	Importance Sampling
	Amortized Inference
	EUBO Objective and Gradient Estimators

	Serialization Interfaces
	Limitations of Existing Methods
	Serialization Operations for Traces
	Compositionality of Interfaces
	Internal Proposals and Encapsulated Randomness
	Compatibility with Gen's Interfaces

	Combinators

	Serialization Implementations for Modeling Languages
	Dynamic Modeling Language and Combinators
	Optimizing using Lazy Deserialization
	Combinators

	Custom Backends and Batching

	Applications of Serialization in PPLs
	Storage and Reporducibility
	Checkpointing Progress and Out-of-Core Computation
	Remote and Distributed Computing
	Training Approximate Distributions
	Amortized Inference for Expensive Generative Models
	Training

	Conclusion
	Future Work

	Remote Generative Function Calls

