
Architecting Trust: Building Secure and
High-Performance Confidential VMs

by

Shashvat Srivastava
S.B. in Computer Science and Engineering and in Mathematics

Massachusetts Institute of Technology 2023

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Shashvat Srivastava. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Shashvat Srivastava
Department of Electrical Engineering and Computer Science
August 18, 2023

Certified by: Mengjia Yan
Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee



2



Architecting Trust: Building Secure and High-Performance

Confidential VMs

by

Shashvat Srivastava

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2023, in Partial Fulfillment of the

Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Recent research in TEE (Trusted Execution Environment) design have focused on the
development of confidential VMs — virtual machines completely protected by secure
hardware. All major CPU vendors have rolled out support for VM based TEEs —
AMD created SEV (2017), Intel created TDX (2020), and ARM launched CCA (2021).
Confidential VMs are a quite promising new technology as they are significantly more
user-friendly, allow existing applications to run without modifications, and have better
performance compared to process-based TEE. However, confidential VMs still face
two large design challenges: security and performance.

In the first part of this thesis, we propose a secure confidential VM design on the
RISC-V platform, which currently has no official confidential VM support. We specif-
ically focus on the task of secure CPU virtualization and build a security monitor that
hides the virtual CPU register state from the hypervisor during context switches. To
allow the hypervisor to properly handle interrupts and emulate instructions, we sum-
marize a specification listing which registers need to be exposed in specific scenarios.

In the second part of this thesis, we aim to improve the network I/O performance
of existing confidential VMs. The hardware protections of TEEs create additional I/O
overhead in confidential VMs, and Trusted I/O (TIO) is a promising solution to reduce
this overhead. However, TIO has several drawbacks — it relies on hardware support
from the I/O device and expands the Trusted Computing Base (TCB) to include
these TIO devices. Furthermore, TIO devices will not be commercially available for
several years. We aim to create a I/O solution that can reach the performance of TIO
without relying on TIO devices. In particular, we present Folio, a system for high-
performance network I/O compatible with AMD SEV-SNP. Compared to network
I/O in a non-TEE VM, Folio performs only a single extra memory-copy of packet
data. Our extensive evaluation shows that Folio performs only 6% worse than the
ideal TIO solution.

Thesis Supervisor: Mengjia Yan
Title: Assistant Professor

3



4



Acknowledgments

First and foremost, I would like to thank my parents, who have supported me through-

out my time at MIT and without whom I would not even be here. I also have to

thank all my friends, who accompanied (and distracted) me through countless hours

of study and work. Of course, I must also thank Dr. Mengyuan Li, with whom I

worked with on both projects contained in this thesis over a span of more than 3

semesters. Towards the end, we spent many nights discussing and resolving issues.

Finally, I would like thank Professor Mengjia Yan for supervising this thesis.

5



Contents

1 Introduction 10

2 Background 14

2.1 RISC-V TEE Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 RISC-V ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 RISC-V Hardware Features . . . . . . . . . . . . . . . . . . . 15

2.1.3 RISC-V Keystone . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 AMD SEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 AMD SEV-ES . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 AMD SEV-SNP . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 VirtIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 SRIOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 DPDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Trusted I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 VM-based TEE for RISC-V 24

3.1 RISC-V Register Whitelist Specification . . . . . . . . . . . . . . . . 26

3.1.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Hypervisor-Necessary Exceptions . . . . . . . . . . . . . . . . 27

3.1.3 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.4 Hypervisor-mode Address Translation and Protection (HGATP)

Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6



3.2 Secure Context-Switching . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Creating and Resuming Virtual CPUs . . . . . . . . . . . . . 32

3.2.2 Handling MMIO Instructions . . . . . . . . . . . . . . . . . . 36

3.2.3 Security Discussion . . . . . . . . . . . . . . . . . . . . . . . . 37

4 I/O Performance of VM-Based TEEs 39

4.1 Network Bottlenecks in Confidential VMs . . . . . . . . . . . . . . . . 40

4.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Folio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Threat Model and Design Goals . . . . . . . . . . . . . . . . . 46

4.2.2 Folio Design Overview . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Folio Design Details . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Simple UDP Echo Server . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Generalized Network Testing Tool . . . . . . . . . . . . . . . . 56

4.3.3 IPsec Performance . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Real World DPDK Applications . . . . . . . . . . . . . . . . . 63

4.4 Comparison of Folio with TIO Solutions . . . . . . . . . . . . . . . 64

4.4.1 Security Comparison . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . 66

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Conclusion 69

7



List of Figures

2-1 Context switch comparison. . . . . . . . . . . . . . . . . . . . . . . . 17

2-2 Instruction emulation workflow in AMD SEV-ES. . . . . . . . . . . . 19

2-3 Common VirtIO network path. . . . . . . . . . . . . . . . . . . . . . 22

3-1 Overall execution flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3-2 Merging CPU states. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3-3 Special case for MMIO instructions. . . . . . . . . . . . . . . . . . . . 38

4-1 Folio overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4-2 Shadow packet buffer pool design. . . . . . . . . . . . . . . . . . . . . 52

4-3 Three crypto offload methods. . . . . . . . . . . . . . . . . . . . . . . 54

4-4 Tail latency between SNP and non-TEE VMs. . . . . . . . . . . . . . 56

4-5 Throughput under different packet sizes. . . . . . . . . . . . . . . . . 58

4-6 Mean and tail latency for UDP workload. . . . . . . . . . . . . . . . . 59

4-7 Mean and tail latency for TCP workload. . . . . . . . . . . . . . . . . 60

4-8 Comparison between 1 vCPU and 2 vCPUs. . . . . . . . . . . . . . . 61

4-9 Throughput when enabling IPsec. . . . . . . . . . . . . . . . . . . . . 62

4-10 IPsec latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4-11 Performance of emulated-inline mode. . . . . . . . . . . . . . . . . . . 63

4-12 Nginx Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8



List of Tables

3.1 Exceptions codes and their required handlers. . . . . . . . . . . . . . 27

3.2 High-level overview of which registers to hide. . . . . . . . . . . . . . 28

3.3 All instructions emulated by hypervisor and registers needed for emu-

lated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 All page-fault cases and data needed to emulate instruction. . . . . . 30

4.1 Factors affecting network performance under different VM configura-

tions and the standardized round trip latency. . . . . . . . . . . . . . 44

9



Chapter 1

Introduction

Trusted execution environments (TEEs) [11] are used to securely run sensitive soft-

ware. Typically, they guarantee the confidentiality and integrity of the software and

data run within. The purpose of a TEE can be motivated by a mistrust of the un-

derlying operating system. Modern operating systems are large and complex; the

Linux kernel itself has over 26 million lines of code [48]. It is impossible to guar-

antee the correctness of an operating system, and any bugs in the OS are prone to

exploitation by an adversary. For instance, an adversary may be able to manipulate

an existing application, such as a web browser, into exploiting the operating system

and compromising another secure application on the computer. One way to model

these vulnerabilities is to treat the operating system itself as a malicious, adversarial

entity. Using specific hardware features, TEE systems can secure applications and

protect them from the OS.

TEEs are becoming increasingly more important in the context of cloud comput-

ing. Concerns over the security of cloud data often deter many potential cloud users

from adopting cloud services. Typically, the cloud service provider (CSP) has unfet-

tered access to the underlying cloud hardware through hypervisor software and is free

to examine sensitive cloud user data. Even if the CSP can be trusted to not access

user data, it has been shown that malicious users sharing physical cloud resources are

capable of determining sensitive details through side-channel attacks [44, 18]. Conse-

quently, both CSPs and cloud users are challenged to find solutions that ensure the

10



security of cloud workloads, and TEEs provide a natural solution.

The significant market demand for TEE solutions is reflected in the confidential-

computing products launched by major CSPs. AWS, Google, and Microsoft all sup-

port AMD’s SEV technology [2, 15, 34]. Moreover, Microsoft also supports Intel’s

SGX technology [33], and AWS even developed their own TEE system, AWS Nitro [1].

The interest in the creation and application of TEEs has lead to a wealth of dif-

ferent TEE designs. Originally, TEE designs could be described as enclaves that

protected individual, isolated applications (see e.g. Intel Software Guard Extensions

(SGX) [49], RISC-V Keystone [27], Penglai [14]). However, the industry has recently

shifted its focus away from enclave-based TEEs and towards VM-based TEEs that

protect entire virtual machines [23, 22, 4, 7, 19]. All major CPU vendors have rolled

out support for VM based TEEs — AMD created SEV (2017), Intel created TDX

(2020), and ARM launched CCA (2021) — and Intel has even decided to discontinue

SGX support for desktop processors [42]. VM-based TEEs are significantly more

user-friendly compared to enclave-based TEEs as they protect the entire virtual ma-

chine. This approach allows applications to execute securely without any source code

modifications. Furthermore, multiple applications can run and communicate within

the same TEE without any hassle or overhead.

Despite the great number of TEE designs, there are still many challenges in the

field of creating secure TEE designs for new CPU architectures and creating higher-

performance TEEs for existing CPU architectures. In this thesis, we focus on these

two challenges.

In the first part of this thesis, we propose an open-sourced and customizable VM-

based TEE design for the RISC-V platform1. While there are various RISC-V TEE

systems that secure single applications, there are currently no systems that secure

an entire virtual machine (running on RISC-V hardware)[14, 27]. Securing an entire

virtual machine poses a new set of challenges. For instance, unlike Intel and AMD, a

RISC-V TEE does not have the option of modifying hardware to aid the TEE; it must

make use of existing facilities and hardware mechanisms. A RISC-V confidential VM

1Specifically, we focus on the component that protects a VM’s virtual CPU.

11



relying only on existing RISC-V hardware features and primitives will undoubtedly

be a great benefit to the RISC-V community.

In the second part of this thesis, we focus on improving the I/O performance of

existing VM-based TEEs. Recent work highlights the poor I/O performance of TEE

systems [53, 25]. In an ideal world, there would be no performance gap between

VMs and confidential VMs. In practice, the additional protections introduced by

VM-based TEEs seem to cause non-negligible I/O performance overhead. To combat

these problems, both AMD and Intel have published whitepapers on trusted I/O

devices (TIO) [5, 20].

To understand the purpose of TIO, consider the interaction between a traditional

I/O device with memory encryption, a feature often used to protect memory in con-

fidential VMs. For an I/O device to access data in a confidential VM, that data

must first be decrypted, which incurs a performance penalty. More importantly, I/O

devices cannot perform DMA operations directly on VM’s memory; instead, they

must perform DMA operations to and from a special region of shared memory called

the bounce buffer. When the VM wants write (or read) from the the I/O device, it

must first copy data to (or from) the bounce buffer from its own private memory.

This memory-copy, as well as the allocation and release of memory from the bounce

buffer, incurs a second performance penalty.

This second problem could be mitigated if the I/O device could encrypt data as

part of the DMA operation. The solution is currently impossible because peripheral

devices, including network I/O cards, are outside the trust boundary and cannot be

trusted with encryption or decryption keys. TIO extends the trust boundary from

the CPU to include peripheral devices and grants TIO devices the ability to DMA

directly to the VM’s private memory, eliminating TEE-related I/O overhead.

Trusted I/O devices are promising, but it is unclear if they are immediately useful.

TEE solutions depend on hardware, which leads to long product development cycles.

For instance, while the Intel TDX whitepaper was published in 2020, there are no

commercial implementations as of the time of writing in 2023. Additionally, trusted

I/O devices introduce a new threat models where trusted I/O devices are included in

12



the trusted computing base (TCB). It is risky to extend trust to trusted I/O devices

as thorough evaluation of the security of their design requires time from both industry

and academia. The security of confidential VM is limited by the weakest link in the

TCB, which may be the new I/O device. The addition of trusted I/O devices may

create new attack vectors that could undermine the security of the entire confidential

VM.

Therefore, in the second part of this thesis, we investigate if it is possible to

achieve high I/O performance comparable to trusted I/O devices without sacrificing

any security guarantees.

13



Chapter 2

Background

2.1 RISC-V TEE Designs

2.1.1 RISC-V ISA

RISC-V is an open-sourced ISA following RISC (reduced instruction set computer)

principles. RISC-V follows a modular approach, with different standard extensions

that add different features to the ISA. For example, the ‘M’ extension adds basic

integer multiplication and division to the ISA, and the ‘H’ extension adds support

for virtualization through hypervisor-specific instructions [50, 51]. Crucially, RISC-V

is completely royalty-free, allowing anyone to create processors based on the RISC-V

ISA. Moreover, its open-source nature allows the ISA to be customized for different

use cases. As such, it is already being used to create specialized microprocessor

designs for home appliances, robotics, and autonomous vehicles [16].

Since its creation in 2010 [9], RISC-V has been following a growing trend of adop-

tion and use. Companies such as Samsung, Western Digital, NVIDIA, and Qualcomm

use (or plan to use) RISC-V in devices such as SSDs, HHDs, and GPUs [16]. Ad-

ditionally, companies such as SiFive and Experanto offer RISC-V CPUs. Notably,

Esperanto’s ET-SoC-1 Chip contains 1000 low-powered RISC-V cores for use in ma-

chine learning applications, showcasing RISC-V’s use in upcoming technologies [37].

14



2.1.2 RISC-V Hardware Features

Before we can dive into TEE systems for RISC-V, we must introduce the different

RISC-V hardware features used to build these systems. There are two key hardware

features than can be leveraged to build a TEE on RISC-V hardware: a higher privilege

mode, machine-mode, and physical memory protection.

Machine mode (M-mode) is an even higher privilege mode than supervisor mode

(S-mode) and user mode (U-mode) [51]. M-mode is the highest privilege mode on

RISC-V systems and controls the access to all physical resources and interrupts and

is therefore typically used to write firmware.

Crucially, M-mode is uninterruptible from lower privilege levels, but is capable of

trapping exceptions and interrupts to lower privilege levels, making it a useful tool

for security purposes. Just as the kernel running in S-mode is protected and isolated

from userspace programs, low-level M-mode firmware is protected and isolated from

the kernel. Consequently, a secure enclave running in M-mode is protected against

the operating system or hypervisor.

M-mode can also be used to implement supervisor binary interfaces (SBI) for the

operating system. These SBIs can control and manipulate hardware features not

directly available to S-mode. An example of this is the PMU SBI in OpenSBI1 which

is used to manage a RISC-V performance monitor unit [39]. In the context of enclaves,

SBIs are used to create, run, resume, and destroy enclaves. They can also be used to

facilitate communication between the programs running within the enclave and the

operating system.

The second primitive, physical memory protection (PMP), is used to control access

to physical memory[51]. Each CPU has several PMP registers (usually 16) that specify

which regions of memory can be accessed by the CPUs. Each register specifies read,

write, and execute permissions for a region of memory. The PMP registers can only

be modified while in M-mode. Thus, M-mode code can be used in conjunction with

the PMP registers to prevent the operating system or hypervisor from reading specific

memory regions, such as the internal memory of a process or virtual machine.
1OpenSBI is an open-source platform for writing RISC-V firmware running in M-mode.

15



2.1.3 RISC-V Keystone

Keystone is an open framework for creating TEEs on RISC-V hardware [27]. Keystone

introduced several novel contributions, including the concept of a customizable TEE.

We focus on the core security monitor component as it is the component most relevant

to us.

The Keystone framework uses a trusted security monitor, running in M-mode,

to manage enclaves and enforce enclave security. Each enclave has its own separate

physical memory region; the security monitor uses the PMP registers to isolate each

memory region and restrict access to the enclave’s memory to the enclave’s underlying

application. These PMP registers are manipulating during context switches to and

from the enclave application.

Crucially, the security monitor does not have to manage any resources (e.g. mem-

ory management), allowing the TCB to remain small. Instead, each enclave is pack-

aged with a special runtime running in S-mode that does memory management and

more. The application can then run in U-mode unmodified.

Figure 2-1 contrasts context switches in Keystone to traditional context switches [24].

To resume an enclave, the operating system using a special Keystone SBI to trigger

the security monitor (1). When this happens, the security monitor manipulates the

PMP registers to grant the current CPU access to the enclave’s memory. By default,

PMP registers are configured to deny access to any enclave’s memory. The security

monitor then resumes the enclave application (2). And interrupt or traps during the

execution of the enclave application are handled by the security monitor first (3).

Upon such a trap, the security monitor stores the enclave application’s execution

state (e.g. register state, program counter) within its own private memory and re-

configures PMP registers to deny all access to enclave memory. The security monitor

finally resumes the execution of the operating system (4). Through this careful pro-

cess, the security monitor guarantees that enclave memory access is restricted to the

enclave application.

16



(a) Traditional (b) Keystone

Figure 2-1: Context switch comparison.

2.2 AMD SEV

AMD SEV (secure encrypted virtualization) was AMD’s first attempt at a trusted

execution environment holding an entire virtual machine[23]. AMD SEV initially

focused on just protecting and encrypting the virtual machine’s memory. Two addi-

tional versions, AMD SEV-ES and AMD SEV-SNP add additional crucial security

features [22, 46].

AMD SEV provides memory isolation and protection by encrypting all virtual

machine data. Each virtual machine is associated with an ASID (identifying) tag.

SEV hardware automatically tags all code and hardware with an ASID. Whenever

data is written to physical memory, it is encrypted using a secret key according to the

ASID. Whenever data is read, it is decrypted according to that secret key. Encryption

and key management is performed by the trusted AMD hardware.

This approach prevents the hypervisor from reading a secured virtual machine’s

memory contents. Although the hypervisor is able to create, run, pause, and otherwise

manage virtual machines, it is not allowed to access the encryption keys or modify

its own ASID. If the hypervisor tries to read a virtual machine’s memory, the AMD

hardware will decrypt memory using the hypervisor’s decryption key, not the virtual

machines. As a result, the hypervisor will only be able to read garbage data.

2.2.1 AMD SEV-ES

The original AMD SEV design does not prevent two crucial attack vectors. Part of

the hypervisor’s function is to emulate instructions for the guest virtual machines

through exceptions and perform page table management, but these functions create

17



severe vulnerabilities. For example, when the hypervisor handles an exception or

interrupt, it can access the entire CPU state of the virtual machine. If the CPU state

holds part of some encryption secret key, the hypervisor is capable of learning the

entire key.

AMD SEV-ES (encrypted state) adds support to encrypt the guest’s CPU state

while also allowing the hypervisor to emulate critical instructions. The overall process

is summarized in Figure 2-2. When the VM first exits, The AMD hardware raises

a special #VC exception, which the guest OS uses to transfer specific registers into

the GHCB block. The hypervisor emulates the instruction based on GHCB data.

The guest OS then uses the results in the GHCB block to resume after the original

instructions.

In general, exits from the VM can be divided into automatic exits and non-

automatic exits. On an automatic exit, the AMD CPU automatically encrypts the

CPU state. If the hypervisor tries to read the CPU state, they will only see garbage

values. In certain cases, the hypervisor must have access to some of the CPU state in

order to emulate an instruction. A good example is the CPUID instruction; depend-

ing on the value of the eax register, the hypervisor will return different information

about the guest machine.

The guest-host communication block (GHCB) is a shared memory region that

allows the hypervisor to correctly emulate these instructions. When an instruction

must be emulated, a non-automatic exit (NAE) exception is triggered. The guest

supervisor will trap this exception, and will copy any relevant registers to the GHCB.

The guest supervisor will then trigger an AE, causing the CPU state to be encrypted;

the GHCB will remain in plaintext. The hypervisor can then use the register values

in the GHCB to properly emulate the instruction.

AMD specifies a GHCB protocol that should be followed by the guest operating

system and hypervisor. It summarizes the possible different types of non-automatic

exceptions and what register values need to be shared in the GHCB. In addition

to encrypting the register state, AMD hardware also automatically calculates a mea-

surement of the register state. This measurement is referenced during subsequent

18



Figure 2-2: Instruction emulation workflow in AMD SEV-ES.

VMRUN operations to detect replay attacks and register tampering.

2.2.2 AMD SEV-SNP

AMD SEV-SNP was the next iteration in AMD SEV design, and protects guest

VMs against attacks exploiting page table management [46, 31, 35, 36]. SNP mainly

addresses the issue of data integrity. Although a malicious hypervisor cannot read

encrypted memory, it can still attempt to modify a guest VM’s memory (even without

knowing the guest’s encryption key). This type of attack can potentially compromise

an application running inside a VM. For example, such an application could be vul-

nerable to replay attacks. Even without knowing the encryption key, the hypervisor

could try to launch a replay attack on such an application.

The key addition SNP brings is the Reverse Map Table (RMP). The RMP is a

table holding one entry for each page of physical memory in the system. Each entry

holds the owner of the page, whether it be the hypervisor or a specific virtual machine.

Crucially, the RMP provides bijectivity: each physical page of memory can only have

19



one owner. The RMP thus prevents the hypervisor from assigning the same physical

page to two different VMs, or from creating a duplicate page table entry between

itself and a VM.

The RMP table is referenced whenever the CPU does a page-table walk (called

an ownership check), specifically checking if the id of the current executor matched

the listed owner in the RMP table. The hardware rejects illegal accesses by throwing

a special page-fault. If the RMP entry matches, the virtual address is added to the

TLB. This process prevents the hypervisor from violating the integrity of the guest

VM as the hypervisor is unable to write to guest memory.

SNP also protects against I/O operations using direct memory access (DMA) and

interfaces with the IOMMU to allow devices to write to memory when appropriate.

The IOMMU also checks the RMP table, preventing I/O devices from corrupting

memory. However, there are instances where an I/O device should be allowed to

write to guest memory. To handle these cases, SNP allows pages to be marked as

shared or private. The owner of a page can request that a page be marked as shared,

which removes that page’s entry from the RMP table. This allows an I/O device to

write to the memory region.

Protection Against TLB Poisoning

SEV-ES also suffers from a second, more subtle type of attack known as the TLB

poisoning attack [32]. To protect against this attack, SNP makes an additional check

during each VMRUN that determines if the TLB needs to be flushed, and flushed the

TLB if it is necessary.

Removal of VMEXIT Measurement

The ownership check feature of SNP also stops a malicious hypervisor from tampering

with the encrypted register states of SEV-ES. Thus, measurements of the register state

during VMEXITs are not necessary in SNP, and SNP hardware does not make these

measurements or checks.

20



2.3 Networking

There are three commonly used networking techniques used in virtualization: VirtIO,

SR-IOV, and DPDK. We also briefly discuss TIO.

2.3.1 VirtIO

VirtIO [45] is a popular networking technology and the default configuration in the

Linux KVM (Kernel-based Virtual Machine). In VirtIO, the VM interacts with I/O

devices that are emulated by the hypervisor. Figure 2-3 shows a common VirtIO

networking path, and also highlights three main sources of overhead: routing within

the VM, routing within the host, and emulated interrupts.

When a network application needs to send data, it typically makes a system call,

which triggers a context switch to the guest kernel. The guest kernel then performs

several layers of packet processing, before finally performing a “virtqueue kick.” Each

of these actions create overhead, and are cumulatively referred to as overhead from

routing within the VM.

After the virtqueue kick action, network packets must go through several layers

of emulation. This emulation requires communication between QEMU, which actu-

ally emulates the device, and the host kernel, which interacts with the NIC. This

cumulative overhead is called overhead from routing within the host.

Finally, notifying the network application requires interrupts, which takes addi-

tional overhead. Interrupts cannot be delivered to the VM directly. Instead, the

physical interrupt triggers the KVM, which must then emulate and inject that in-

terrupt. During the next VMRUN, hardware automatically checks for any pending

emulated interrupts and redirects the CPU to the guest VM’s interrupt handler if

necessary. All of these overheads are cumulatively referred to as emulated interrupt

overhead.

21



QEMU

1. IRQ

4. IRQ sensed (next VMRUN) 

2. Singal eventfd

3. IRQ injection

QEMU Host
Kernel NIC

1. Virtqueue Kick
2. Signal

      ioeventfd

3. Syscall
4. Req

      submitted

Incoming Packets
Outgoing Packets

VM
App

VM
Kernel

Routing within host
overhead

Routing within host
overhead

Emulated Interrupt
overhead

Routing within VM
overhead

Figure 2-3: Common VirtIO network path.

2.3.2 SRIOV

To avoid the expensive overhead of routing within the host side, hypervisors can

directly assign I/O devices to virtual machines using PCI passthrough. Although PCI

passthrough removes much overhead, this technique is unfavorable for several reasons.

Each virtual machine would need its own physical NIC, which may be expensive and

unfeasible in the context of cloud computing. Furthermore, the guest VM would gain

complete access to the I/O device, which could be a security vulnerability (e.g., the

guest VM could try to maliciously modify the device’s firmware).

SR-IOV, an extension of the PCIe standard, helps solve many of these issues. An

SR-IOV capable I/O device can split its resources among a Physical Function (PF)

and several Virtual Functions (VFs). Each PF and VF appears as its own separate

device with its own PCI Express Requester ID, allowing the IOMMU to differentiate

their I/O traffic and interrupt signals. Thus, SRIOV allows the hypervisor to bind a

VF to the VM directly using PCI passthrough, significantly reducing the VM’s I/O

22



overhead. SRIOV also allows a CSP to service many VMs using a single NIC (e.g.,

an Intel 82599 10GB NIC can create up to 63 VFs per physical port). Crucially, only

the PF is capable of configuring the device, so directly assigning a VF does not create

any security vulnerabilities.

2.3.3 DPDK

Intel DPDK is a software framework that boosts network performance by avoiding

the overhead of I/O interrupts and bypassing the kernel. DPDK provides a series

of userspace APIs through the construction of an Environment Abstraction Layer

(EAL) to assist DPDK applications in fast network processing. DPDK applications

run in userspace, thus avoiding the overhead of making system calls and switching

to kernel space. DPDK libraries also provide Poll Mode Drivers (PMD), which allow

DPDK applications to send and receive packets without relying on interrupts. The

DPDK library itself is also heavily optimized, employing a zero-copy architecture and

several hardware-based optimizations such as using huge pages and cache alignment.

2.3.4 Trusted I/O

Trusted I/O (TIO) devices are specifically designed to reduce I/O overhead from

security features of confidential VMs. Confidential VMs can establish a trusted

relationship with a TIO device using the TEE Device Interface Security Protocol

(TDISP) [5, 20], which grants TIO devices access to the private memory and memory

encryption keys of the confidential VM. Thus, TIO devices can execute DMA reads

and writes directly and avoid all bounce buffer overhead.

23



Chapter 3

VM-based TEE for RISC-V

In this chapter, we discuss the design and implementation of the secure CPU virtual-

ization component of a VM-based TEE for RISC-V. This component is the part that

protects or hides a virtual CPU from the hypervisor like AMD SEV-ES does. The

two other components for a VM-based TEE, memory and page-table protection and

secure I/O, were researched by others in parallel.

Key Challenges

With respect to CPU virtualization, there are two core problems that must be solved

to securely run a virtual machine. First, the hypervisor must not be able to access

and manipulate the guest’s CPU state through interrupts and exceptions. However,

the hypervisor must retain control of the execution of the virtual machine — it must

still be able to run and pause a virtual machine arbitrarily as part of its duties as a

hypervisor. We call this the context-switching problem.

Second, the hypervisor must still be able to emulate instructions on behalf of

the guest. Notably, this conflicts with the first problem: the hypervisor needs to

be able to view certain parts of the guest’s CPU state in order to correctly emulate

instructions. This is called the instruction emulation problem.

24



Our Solution

A security monitor can be used to reconcile these two issues. If the security monitor

can be used to intercept all traps to the hypervisor and all attempts from the hypervi-

sor to resume a guest VM, we can limit the hypervisor’s view of the guest’s CPU state.

This approach is similar to that of Keystone’s security monitor (see Figure 2-1b).

At a high level, whenever a trap is taken to the hypervisor, the security monitor

should hide most CPU register values by zeroing them out. The hypervisor may need

to legitimately access certain register values; the security monitor is responsible for

determining the smallest set of registers that must be shared with the hypervisor.

When guest execution is resumed, the security monitor should intercept and restore

the original CPU state, excepting registers that the hypervisor should have modified.

To implement such a security monitor, we need an analog to the AMD GHCB

specification [3]: a specification of what CPU registers need be to shared with the

hypervisor during instruction traps as well as which CPU registers are allowed to

be modified during these instruction traps. We call this specification the RISC-V

Register Whitelist, and is discussed in Section 3.1. Then in Section 3.2, we discuss

the design and implementation of the security monitor that protects a guest VM’s

CPU state according to the white-list specification.

Deviations from SEV-ES

Overall, the approach is similar to AMD SEV-ES, save for two small improvements.

First, the decision of which registers to reveal to the hypervisor is left to the security

monitor, not the guest supervisor as in AMD SEV-ES. Transferring the decision to the

security monitor does not significantly change the size of the TCB. The benefit is that

it eliminates extra several extra layers of exception handling (see Figure 2-2). Second,

there is no shared memory region between the hypervisor and guest supervisor (or

security monitor) that serves as an analog to the AMD GHCB. Whitelisted registers

simply remain as-is when control is transferred from the security monitor to the

hypervisor.

25



3.1 RISC-V Register Whitelist Specification

In this section, we outline exactly which CPU registers must be shared with the

hypervisor during a context switch. This specification is a whitelist ; by default, all

CPU state should be hidden during a context-switch.

Throughout this section, the term “CPU state” refers to the normal registers used

during computation, and not other pieces of CPU state such as control status-registers

or performance counters. There is one special control-status register that we must

pay attention to: the HGATP register. We discuss this at the end in Section 3.1.4.

3.1.1 Exceptions

To gather the necessary information, we look at three main sources. First, the RISC-

V specification lists all possible causes for interrupts and exceptions [51]. We then

looked at the source code of OpenSBI to determine which types of exceptions could

conceivably be handled using M-mode code directly [39]. Finally, we looked at the

Linux KVM to determine which registers needed to be shared with the hypervisor

[26].

We start off by discussing exceptions. At a high level, an exception can be handled

in three ways. In the simplest case, the exception can be handled by the security

monitor directly and does not need to be redirected to the hypervisor at all. In the

second case, the hypervisor handles the exception by redirecting the exception to the

guest VM’s exception handler. This case is also simple; the security monitor can

simply redirect the exception to the guest VM instead of the hypervisor. The third

case is the important case; in this case, the hypervisor actually does some relevant

computation to handle the exception. This information is summarized in Table 3.1.

Fortuitously, most exceptions can be handled by the SM itself or the guest OS. Only

a few types of exceptions must be redirected to the hypervisor.

26



Exception Code Description Handler

0 Instruction address misaligned Guest

1 Instruction access fault Hypervisor

2 Illegal instruction Security Monitor

3 Breakpoint Guest

4 Load address misaligned Security Monitor

5 Load access fault Security Monitor

6 Store/AMO address misaligned Security Monitor

7 Store/AMO access fault Security Monitor

8 Environment call from U/VU-mode Guest

9 Environment call from HS-mode Security Monitor

10 Environment call from VS-mode Hypervisor

11 Environment call from M-mode Cannot be thrown by VM

12 Instruction page fault Guest

13 Load page fault Guest

14 Reserved

15 Store/AMO page fault Guest

16–19 Reserved

20 Instruction guest-page fault Hypervisor

21 Load guest-page fault Hypervisor

22 Virtual instruction Hypervisor

23 Store/AMO guest-page fault Hypervisor

Table 3.1: Exceptions codes and their required handlers.

3.1.2 Hypervisor-Necessary Exceptions

There are six exception types that must be handled by the hypervisor: instruction

access faults, environment calls, instruction guest-page faults, load and store guest-

page faults, and virtual instructions faults. Each of these cases must be handled

separately. We give a high-level overview of the different cases in table 3.2 before

diving into each exception type in detail.

27



Exception Code Description Overview

1 Instruction access fault Should currently never be thrown

10 Environment call from VS-mode Hide based on ecall type

20 Instruction guest-page fault Hide all registers

21 Load guest-page fault Hide depending on MMIO read or not

22 Virtual instruction Hide depending on instruction

23 Store guest-page fault Hide depending on MMIO write or not

Table 3.2: High-level overview of which registers to hide.

Instruction access faults and instruction guest-page faults are the simplest cases to

handle. For instruction guest-page faults, the hypervisor needs no CPU state; thus,

all registers should be hidden. Currently, instruction access faults are not actually

handled by the hypervisor, meaning that the VM will crash if this exception type is

thrown. For now, all registers should be hidden for this exception type as well.

Virtual Instruction Faults

Certain instructions may trigger a virtual instruction fault, including instructions

that manipulate CSRs. Currently, the only other type of instruction that triggers

an virtual instruction fault is the wait-for-interrupt (WFI) instruction. These are

documented in Table 3.3.

Hypervisor Environment Calls

Similar to how an application may make system calls to the supervisor, the guest

virtual machine may also make environment calls to the hypervisor using the ecall

instruction. The usage the ecall instruction is identical in both types of environment

calls. Per convention, the a7 register is used to specify the system call number or

binary interface extension number, and the register a6 is optionally used to provide

a function id. The parameters to the system call are stored in registers a0 – a5, and

the return value is stored in a0.

By default, we require that the security monitor only reveals registers a0 - a7 and

28



Instruction Registers Read Registers Wrote

CSRRW RS1 RD

CSRRS RS1 RD

CSRRC RS1 RD

CSRRWI RS1 RD

CSRRSI RS1 RD

CSRRCI RS1 RD

WFI None None

Table 3.3: All instructions emulated by hypervisor and registers needed for emulated.
Note that RS1 and RD are specific bits in the instructions encoding. For example, in
the instruction add a0, a1, a2, RD is a0 and RS1 is a1.

only allows register a0 to be written to. As an extension, the security monitor can

use knowledge of the different binary interfaces to place further restrictions on the

whitelisted registers and return values. For example, if the security monitor knows

that a specific type of environment call does not give a return value, it can restrict

the modification of the a0 return register. We do not include these details as part of

the specification because different systems may have different binary interfaces, and

these interfaces are liable to change over time.

Load and Store Guest-Page Faults

The last type of exception are load and store guest-page faults. These types of

exceptions can be further broken down into two types: ordinary page faults, and

MMIO instructions.

RISC-V handles MMIO (memory-mapped I/O) by reading and writing from spe-

cial virtual addresses that are not mapped to physical memory. Attempts to read

and write from these addresses trigger page faults, allowing the hypervisor to emu-

late MMIO instructions.

For an ordinary page fault, the hypervisor does not need to access any CPU

registers. For MMIO store instructions, the hypervisor must access one register cor-

responding to the stored value. For MMIO load instructions, the hypervisor writes

29



to one register corresponding to the loaded value.

An overview on the whitelist for page faults is shown in Table 3.4. There are

two complications that must be dealt with. First, there is no simple way for the

security monitor to distinguish between MMIO loads and stores and regular load and

store instructions. Second, specifically for MMIO instructions, the hypervisor uses

the HGATP control-status register to access the faulting instruction. As we discuss

in section 3.1.4, the hypervisor is no longer allowed to access the HGATP register.

Therefore, we must provide an alternative way for the hypervisor to look-up the

faulting instruction.

The issue is resolved by the security monitor, which should look up the faulting

instruction instead and stores this instruction into the a1 register. The hypervisor no

longer needs to rely on the HGATP register, instead using the value provided by the

security monitor.

Page Fault Type Values Read Values Wrote

Normal Load None None

Normal Store None None

MMIO Load INSN (a1) RD (RD)

MMIO Store INSN (a1), RS2 (a0) None

Table 3.4: All page-fault cases and data needed to emulate instruction. Note that the
faulting instruction itself must be stored into the a1 register. Also note that for MMIO
stores, reading the register encoded by RS2 consists of several sub-cases that we do
not describe for simplicity. For simplicity, rather than revealing the actual encoded
register, the security monitor should store the relevant value in the a0 register (e.g.,
if RS2 encoded the a7 register, the value of a7 should be stored in a0 register and not
the a7 itself).

3.1.3 Interrupts

Interrupts are a much simpler case than exceptions. Currently, the hypervisor never

needs to access guest CPU state during an interrupt. Thus, for interrupts, all registers

should be hidden in all cases.

30



3.1.4 Hypervisor-mode Address Translation and Protection

(HGATP) Register

The HGATP register is a special control-status register used by hypervisors and guest

VMs for page-table management. Specifically, it stores the root for the hypervisor’s

second-stage page table for the guest VM, the guest’s VM ID, and additional page-

table metadata (e.g. addressing mode and protection bits). At a high-level, the

hypervisor uses HGATP to keep track of which VM is running and to perform top-level

page table management for the guest VMs.

The hypervisor can use special hypervisor-load and hypervisor-store instructions to

arbitrarily read and write from guest VM memory. If allowed to run, these instructions

would trivially circumvent the protection of the security monitor.

The hypervisor-load and hypervisor-store instructions depend on the value stored

inside the HGATP register to execute. Therefore, in every trap, all bits of the HGATP

register except for the VM-ID bits should be hidden (zeroed out), preventing the

hypervisor from correctly executing hypervisor-load and hypervisor-store instructions.

It is important to note that hiding bits of the HGATP register from the hypervisor

still results in a functional design. The memory-protection1 component carefully con-

trols the hypervisor’s ability to manipulate the page table. As such, the hypervisor no

longer needs to use the HGATP register while the VM is running, save for except for the

VM-ID bits. The only instance we found where the hypervisor used the hypervisor-

load and hypervisor-store instructions were when it needed to handle MMIO stores

and loads. This case is already addressed; thus, hiding the HGATP register in the way

described results in a functional design.

3.2 Secure Context-Switching

In this section, we discuss the implementation details of the security monitor and

how it achieves the intended white-list behaviour. For a starting point, we forked

1We give a reminder that the memory protection component is covered in other, simultaneous
work.

31



OpenSBI [39] and added three new SBIs:

• sm_resume_cpu: the primary interface, used to resume a virtual cpu

• sm_create_cpu: the interface used to initialize a virtual cpu

• sm_prepare_mmio: a special interface used to deal with the complexity of MMIO

instructions

Figure 3-1 shows the overall execution flow of the system.

3.2.1 Creating and Resuming Virtual CPUs

The starting point for the system is sm_create_cpu; the hypervisor must be modified

to call this interface before attempting to run the virtual CPU for the first time. This

interface takes the initial virtual CPU state and stores it securely within the security

monitor’s memory. In a full VM-based TEE, this interface would also be combined

with a secure attestation component. However, the main purpose is to just store the

CPU state, allowing future calls to sm_resume_cpu to function.

The main interface in the system is sm_resume_cpu; the hypervisor must be mod-

ified to use this interface instead of the normal procedure to resume a VM. It takes as

input the virtual CPU index to resume and the new CPU register state. The security

monitor must merge this state with the CPU state prior to the trap (see Figure 3-2)

as per the white-list specification. This merging process is necessary for two reasons:

(1) it prevents a malicious hypervisor from unnecessarily modifying registers during

traps in an attempt to glean information and (2) as per the white-list specification,

most registers in the hypervisor’s view will be 0; merging simply brings these registers

back to original state from before the trap.

The security monitor must also ensure that it handles any traps before the hy-

pervisor. By zeroing out the MIDELEG (machine interrupt delegation) and MEDELEG

(machine exception delegation) registers, the security monitor guarantees that the

next trap to supervisor mode would instead trap to machine mode (the security mon-

itor) instead.

32



CPU Creation

Ordinary Execution

Security 
Monitor

Guest OS

sm-create-cpu

Security Monitor Execution and Flow

Hypervisor

initial CPU state

1. Store CPU 
state

return

sm-resume-cpu

new CPU state

1. Modify CSR to 
trap to SM

2. Merge CPU 
state with old

3. Resume guest

resume guest

 merged CPU state

trap intercepted by SM

Guest resumes 
execution

1. Save CPU state
2. Hide registers
3. Restore CSRs
4. Redirect to 

hyperviser

redirect

Figure 3-1: Overall execution flow.

33



Merging CPU states

Merged CPU State

pc 0x98760004

x0 0

x1 0x1234

x2 0x5678

x3 0x8

Saved CPU State (SM)

pc 0x98760000

x0 0

x1 0x1234

x2 0x5678

x3 0x4

New CPU State (Hypervisor)

pc 0x98760004

x0 0

x1 0

x2 0

x3 0x8

Merge uses the saved 
trap information

Figure 3-2: Merging CPU states.

Finally, the security monitor must restore the HGATP register. Once this is done,

the security monitor resumes the guest vCPU.

Eventually, a trap is triggered and intercepted by the security monitor. The

security monitor must first save a copy of CPU state and trap details in its private

memory; this information is necessary for merging CPU states after sm_resume_cpu.

After this, registers and HGATP are zeroed out according to the whitelist, and MIDELEG

and MEDELEG CSRs are restored to their original state. Finally, the security monitor

redirects the trap to the hypervisor2.

Inputs to sm_create_cpu and sm_resume_cpu

Both sm_create_cpu and sm_resume_cpu take as input the entire vCPU state and

a virtual CPU index. Implementing this behaviour for an environment call is tricky

as traditional environment calls conventionally take only a few registers as input.
2In cases where the guest OS can handle the trap, most of these steps are skipped and the security

monitor simply redirects to the guest OS trap handler

34



Theoretically, the input for sm_resume_cpu could be modified to instead be a list of

registers that were modified and their new values, but this approach would require

additional changes to the hypervisor. Additionally, determining which registers were

modified during an exception and converting the information to a shorter format

could introduce significant overhead during the context switch.

Fortuitously, environment calls only take a few registers as input by convention

only. Thus, to create a sm_create_cpu or sm_resume_cpu environment call, the

hypervisor can load guest VM register values as if it were resuming the guest VM

normally (i.e., the hypervisor loads the guest VM’s a5 register into the a5 register).

However, to actually trigger the correct environment call, the a7 register must hold

the environment call id and another register (we use a1) must hold the virtual CPU

index. To resolve this issue, we reuse two special control-status registers, STVAL and

SCAUSE, to hold the guest VM’s a1 and a7 registers respectively. These control-status

registers are only used to hold special trap handling information, and their values are

irrelevant when the hypervisor needs to resume a guest VM. It is thus possible to

transmit all inputs necessary for these two environment calls.

The use of the STVAL and SCAUSE may seem ad-hoc, but we believe it is currently

the best solution. Other approaches could be considered, but they add complexity and

overhead. A simple solution could be to use two environment calls instead of a single

call, with each call transmitting half the CPU state; this solution obviously creates

much extra overhead when resuming a guest VM. The conventional method would

be to give the security monitor a pointer to the hypervisor’s view of the guest CPU

state instead. While the security monitor is capable of reading from the hypervisor’s

memory, doing so takes significantly longer than reading from the security monitor’s

own memory and again creates extra overhead. While crude, the approach we use

may be the most effective. An additional benefit is that the procedure for creating

the two environment calls is nearly identical to the original procedure for resuming a

guest VM.

35



3.2.2 Handling MMIO Instructions

The third SBI interface, sm_prepare_mmio, is used to deal with a special edge case.

Currently, both guest VM page faults and guest MMIO page faults trigger the same

exception codes, and there is no reasonable method for the security monitor to dis-

tinguish between the two cases. However, according to the white-list specification,

MMIO page faults require certain registers to be revealed, while normal page faults

require no register information. The security monitor could simply treat all page

faults as MMIO page faults, but this approach reveals unnecessary information.

sm_prepare_mmio is used to resolve this issue, as shown in Figure 3-3.

By default, the security monitor treats all guest page faults as normal (non-MMIO)

page faults, hiding all registers. If the hypervisor determines that the page fault is

an MMIO page fault and that it needs extra information from the security monitor,

the hypervisor uses sm_prepare_mmio to inform the security monitor that the next

exception for that vCPU will be an MMIO page fault. The security monitor verifies

that the most recent trap was, in fact, a guest page fault before marking the next

exception down as an MMIO page-fault. Afterwards, the hypervisor resumes the

guest VM at the same instruction.

This approach causes the same page fault exception to trigger again. The security

monitor, using the information from the previous SBI call, realizes that this page fault

is a guest page fault and includes the registers necessary for an MMIO page fault.

The hypervisor can then handle the page fault, and execution resumes as normal.

Note that we cannot simply create an SBI for the hypervisor to request the reg-

ister information it is missing. Such an interface could easily be misused to fetch

information during traps that are not MMIO page faults. Moreover, by convention,

environment calls only return values through the a0 register and by Table 3.4, the

hypervisor needs two pieces of information to correctly handle the page-fault.

We note that, although this approach is quite inefficient, it is sufficient for an

initial implementation.

36



3.2.3 Security Discussion

At first glance, the system seems to rely on the hypervisor willingly using the pro-

vided SBI interfaces to create and run the vCPUs. In practice, secure attestation

and memory protection would prevent the hypervisor from circumventing the use of

these interfaces. During the secure attestation phase for VM startup, the VM would

simply query the security monitor if the hypervisor had called sm_create_cpu and

sm_resume_cpu at least once. If the hypervisor had not, the attestation would fail

and the VM would refuse to continue.

Once the regular cycle of calling sm_resume_cpu begins, the hypervisor is forced

to continue using the sm_resume_cpu interface to resume the vCPU. As the hypervi-

sor’s view of the vCPU state is hidden, it cannot resume the vCPU with the proper

registers. The hypervisor could try to resume the vCPU anyways with arbitrary data

for the CPU registers. Even then, the memory protection component would prevent

the CPU from reading from the VM’s memory as the VM was launched without use

of the security monitor. Very quickly, an exception would be triggered without the

hypervisor learning anything.

There is one small weakness relating to MMIO page faults. Despite the careful

design of the sm_next_mmio interface, there is currently no way for the security mon-

itor to verify if the instruction is indeed an MMIO instruction. Consequently, it is

possible for the hypervisor to lie and attempt to glean trace amounts of information

during guest page faults.

37



Security 
Monitor

Guest OS

guest page fault

Security Monitor Execution: MMIO Instructions

Hypervisor

redirect

sm-resume-cpu

resume guest

 merged CPU state

trap intercepted by SM

Guest resumes 
execution

redirect

notify-next-mmio

return

(Is MMIO page fault)

SM does not know is MMIO
and does not include necessary 

information to handle trap

SM will treat exactly the next 
page fault as an MMIO instruction

Hypervisor 
resumes guest 
execution at the 
same instruction

SM includes MMIO trap 
information now

sm-resume-cpu
Hypervisor can 
properly handle 

MMIO instruction

resume guest
Guest resumes 

execution

Figure 3-3: Special case for MMIO instructions.

38



Chapter 4

I/O Performance of VM-Based TEEs

In this chapter, we discuss the network I/O performance of VM-based TEEs. Our

primary goal is to address the following question:

Is it possible to achieve the same level of I/O performance without trusted

I/O devices and sacrificing the existing security guarantees?

We focus on the network I/O performance of AMD SEV-SNP because it is the

only available VM-based TEE as of the time of writing.

We start off in Section 4.1 with a comprehensive analysis on the sources of I/O

overhead in a VM-based TEE. The sources of overhead can generally be broken into

two different categories: VM-related overhead, and TEE-related overhead. The pur-

pose of TIO is to reduce TEE related I/O, but our initial findings indicate that

bounce buffer-related overhead — the main source of TEE-related overhead — only

creates approximately 1−2% additional overhead. This initial finding is encouraging,

as small TEE-related overhead indicates that it should be feasible to approach the

performance of a TIO solution even without using TIO.

Our analysis finds that using DPDK within a VM minimizes VM-related overhead,

making TEE-related overhead the most impactful. If an SNP VM could use DPDK

and meet the performance of an ordinary VM using DPDK, TIO devices would not

be necessary. This implication would also apply to lower-performing configurations

such as VirtIO or plain SRIOV because these configurations have more VM-related

39



overhead, decreasing the impact of TEE-related overhead1. Unfortunately, SNP VMs

cannot use DPDK out of the box because of memory encryption protections.

In Section 4.2, we design Folio (Fast Opaque user-Level I/O), a solution that

allows use of DPDK within an AMD SEV-SNP VM. The primary goal of Folio is

to approach or match the performance of a (future) TIO network solutions without

sacrificing any security or changing any security assumptions. Folio meticulously

manages two interfaces: the one between the I/O device and the confidential VM,

and the one between the DPDK library and the DPDK application. This approach

allows existing DPDK applications to run without modifications while continuing to

guarantee the security of the application and the VM itself. We conduct an extensive

evaluation comparing the performance of Folio to a non-TEE VM (as a substitute

for a VM using TIO) in Section 4.3. Our results indicate that the performance gap

between Folio and a future TIO VM is less than 6% in terms of throughput and

latency. We conclude with a comparison of Folio to TIO solutions in Section 4.4

and a brief discussion of related works in Section 4.5.

4.1 Network Bottlenecks in Confidential VMs

As a first step, we conduct an in-depth experiment to analyze the importance of

various sources of I/O overhead.

4.1.1 Methodology

There is a limited set of factors that can contribute to a VM’s network performance,

and the presence of these factors can be controlled by the configuration of the VM.

Table 4.1 shows various VM configuration and which factors contribute to network

overhead. To estimate the impact of a factor, we simply need to compare the per-

formance of two VM configurations differing only by that factor. To compare per-

formance, we measure the latency (both average round-trip latency and tail latency)

1Albeit, with some caveats for VirtIO as that method requires frequent VMEXITs, which creates
additional sources of TEE-related overhead.

40



between a simple UDP echo server running on a VM and a desktop client on the local

network.

We note that this comparison-based method diverges from more established bench-

marking methods such as simply measuring the percentage of time spent executing

each type of overhead. For our use case, the comparison-based method actually has

several key benefits.

(1) The comparison-based method can estimate the impact of factors that are im-

possible to measure traditionally. For instance, consider the SNP ownership check, in

which SNP hardware verifies ownership of a piece of memory against the RMP table.

The ownership check is performed for every page table walk, making its performance

impact exceedingly difficult to measure directly.

(2) The comparison-based method reduces inaccurate results caused by the fre-

quent reading on timestamps within the VM. To read a timestamp within a VM, an

instruction like RDTSCP would typically need to be executed. This instruction forces a

VMEXIT event, triggering the hypervisor and making it emulate the instruction. Even

within a normal VM, frequently reading timestamps in such a manner would slow

down any application being benchmarked and incorrectly amplify the impact of any

factors being measured.

In the context of an SEV-SNP (or even SEV-ES) VM, the amplification is even

more inaccurate because of the VC handlers. Recall Figure 2-2; a VC handler must

be invoked both during the original VMEXIT event and after the hypervisor finishes

emulating the timestamp instruction. These overheads would lead to even greater

inaccuracies for SEV VMs.

(3) The comparison-based method can still easily isolate the impact of a single

factor. For example, as shown in Table 4.1, the presence of a bounce buffer is the

only difference between the “non-TEE VM with SR-IOV” configuration and the “SEV

VM with SR-IOV” configuration. By comparing the performance of these factors, we

can still estimate the performance impact of the bounce buffer.

41



SEV’s Impacts on Non-TEE VMs.

Before diving into our experimental setup and the results, we must note that certain

SEV features also impact the performance of non-TEE VMs. While these impacts

are small and do not significantly impact our results or understanding, it is important

to discuss them now.

First, Secure Memory Encryption (SME) [23] is enabled by default when using

SEV. Thus, the memory pages of the hypervisor and all non-TEE VMs are encrypted

automatically by hardware, and our results do not account for the raw cost of hard-

ware encryption. This cost is small and does not significantly impact the results of

our findings.

Second, when SNP is enabled, the hardware must also perform an RMP ownership

check for all hypervisor writes. Non-TEE VMs experience some small ownership check

overhead as a result, but this overhead has been shown to be minimal [30].

4.1.2 Experimental Setup

Our experimental setup consists of a SNP-supported workstation and a desktop client.

The SNP-supported workstation has an AMD EPYC 7313 16-Core Processor, 64GB

DRAM, 1TB disk, an Intel I350 Gigabit NIC for internet connection, and an In-

tel 82599ES-based 10Gb NIC (Silicom PE210G2SPI9) for supporting DPDK and

SR-IOV. The desktop client has an Intel i5-12400F Processor, 32GB DRAM, 500GB

disk, an Intel I219-V NIC for sharing internet with the workstation, and another Intel

82599ES-based 10Gb NIC for supporting DPDK and SR-IOV. The two Intel 82599ES

NICs are connected by a MokerLink 8 Port 10Gbps switch. The original host kernel

(sev-snp-iommu-avic_5.19-rc6_v4 branch), QEMU (snp-v3 branch), and OVMF

(master branch) were directly obtained from the sev-snp-devel repository [6] (Com-

mit: fbd1d07628f8a2f0e29e9a1d09b1ac6fdcf69475). The desktop client simply

runs an unmodified Ubuntu 22.04.1 LTS with a kernel of 5.19.0-38-generic.

The VMs were configured as 4-virtual CPUs (vCPUs), 8-GB memory, 30GB disk

storage. The guest kernel used to support the SNP feature is forked and built from

42



the same repository and commit version as the host kernel. For “non-TEE VM” and

“SEV VM” setup, the VMs use the default virtio-net-pci device suggested by AMD’s

official script used for launching SEV VM [6]. For all SR-IOV and DPDK setups,

one NIC’s virtual function (VF) is directly assigned to the VM via QEMU PCI pass-

through configuration. The network server applications running inside the VMs are

two simple UDP echo servers. One of them uses normal socket APIs, and the other

is only used in “VM with DPDK” setup and is configured using DPDK APIs. On the

client side, we reuse a client application from an existing open-sourced project that

focuses on measuring tail latency [21]. We configure the packet rate for the client

application to be 5000 packets per second (pps).

4.1.3 Results

Table 4.1 shows the performance of various VM configurations, which we use to make

several observations.

Observation-1: VM-related overhead is the dominant source of overhead im-

pacting performance.

Table 4.1 shows that, when focusing in non-TEE VMs, enabling SR-IOV reduces

routing latency by more than 50 times. This result indicates that the cost of emulating

an I/O device on the host side is the dominant factor in performance. Furthermore,

when comparing ‘non-TEE VM with SR-IOV” to “non-TEE VM with DPDK,” we see

that DPDK usage results in roughly 3 times lower latency, indicating that the kernel

network stack is a critical factor in performance.

Observation-2: Overhead due to ownership checks and TLB checks in SNP is

smaller than that of VMEXIT measurement checks in ES. The VC handler might

be the key factor that impact performances for SEV-ES and SEV-SNP VMs.

43



non-TEE VM Existing SEV Configurations Proposed Configurations

Overhead Description non-TEE VM VM with
SRIOV

VM with
DPDK SEV VM SEV with

SRIOV
ES VM

with SRIOV
SNP VM

with SRIOV
SNP VM
with TIO

SNP VM ⋆
(TIO/ DPDK)

SNP VM
(Folio)

Co
mm

on
Routing within the VM Y Y N Y Y Y Y N N N
Routing within the host Y N N Y N N N N N N
Emulated I/O interrupt Y Y N Y Y Y Y Y N N
Other factors Y Y Y Y Y Y Y Y Y Y

SE
V-

on
ly

Encrypted memory overhead Y Y Y Y Y Y Y Y Y Y
Register encryption Y Y N+ Y Y Y Y Y N+ N+

Bounce buffer allocation N N N Y Y Y Y N N N
Bounce buffer copy N N N Y Y Y Y N N Y
VMEXIT check overhead N N N N N Y N N N N
VC handler overhead N N N N N Y Y Y N* N*

Ownership check overhead N− N− N− N− N− N− Y Y Y Y
TLB check overhead N N N N N N Y Y N+ N+

Standardized Latency (5000 pps)
Mean latency >50x 1.00 (75.1 µs) 0.37x >50x 1.01x 1.17x 1.16x N/A N/A N/A
Median latency >50x 1.00 (75.3 µs) 0.36x >50x 1.02x 1.18x 1.13x N/A N/A N/A
p95 tail latency >50x 1.00 (83.8 µs) 0.33x >50x 1.00x 1.20x 1.18x N/A N/A N/A
p99 tail latency >50x 1.00 (123.6 µs) 0.31x >50x 0.78x 0.94x 2.19x N/A N/A N/A

Table 4.1: Factors affecting network performance under different VM configurations
and the standardized round trip latency. With DPDK means the VM is using DPDK
to operate a SR-IOV device. With TIO means the VM is using trusted I/O devices
with SR-IOV. ⋆ means the future idealized solution. Other factors refer to the im-
pact of physical devices and other software settings on performance, which are all
configured the same. Y implies that there is this overhead and N implies not. -
indicates that the ownership check only happens for write access. * indicates that
VC handler overheads due to the scheduler or interrupts are minimized. + indicates
that the number of VMEXIT and thus the overhead is minimized due to the polling
mode. For standardized latency, the performance of “non-TEE VM with SR-IOV” is
chosen as the standard with their value represented in parentheses. 𝑥 represents the
ratio of latency under different configurations compared to the standard. N/A means
this configuration is not supported yet.

The second group is SEV series VMs. When comparing “ES with SR-IOV” and

“SNP with SR-IOV”, we found that SNP’s performance is better than ES despite

SNP introducing ownership checks and TLB checks2. This improvement could be

attributed to the significant performance impact caused by the VMEXIT check in ES.

At the same time, it also implies that the overhead of ownership and TLB checks is not

as substantial. When comparing “ES/SNP VMs with SR-IOV” and “SEV VM with

SR-IOV”, we noticed that their performance differs by more than 10%. This finding

suggests that the VC handler might be the primary reason for the performance decline

in the ES and SNP configurations.

Observation-3: The impact of the bounce buffer is actually quite small, much

smaller than previously thought.

2Recall AMD SEV-ES and Protection Against TLB Poisoning

44



Comparing “non-TEE VM with SR-IOV” with “SEV with SR-IOV”, we see that the

performance difference is only 1 − 2%. The only difference between these two con-

figurations is that “SEV with SR-IOV” has additional overhead from using bounce

buffers, suggesting that the performance impact of the bounce buffer itself is small.

4.2 Folio

The observations in Section 4.1.3 indicate that even if bounce-buffer related overhead

cannot be eradicated without use of TIO devices, such overhead is not actually a

limiting factor in the network performance of confidential VMs. This observation lead

us to create Folio, a software solution that enables the usage of DPDK and DPDK

application within SNP VMs. Compared to the ideal future configuration (“SNP VM

with TIO/DPDK”), Folio only requires a single packet buffer copy overhead.

Challenges: Designing Folio in SNP poses several challenges in terms of security,

efficiency, and functionality :

• Security: Folio must ensure security in terms of maintaining a strict bound-

ary between shared memory and private memory and preventing the VM from

leaking any secrets to the I/O device. The task is complicated by the fact

that DPDK and its applications run in userspace and cannot easily access the

features of the kernel.

• Efficiency: Folio must maintain DPDK’s performance, even when it has to

deal with the extra complexity of shared and private memory regions.

• Functionality: TIO might offer additional cryptography offload capabilities that

cannot be replicated in software alone. As only the SoC is trusted, it is impos-

sible to offload any sensitive cryptographic operations without compromising

security. Folio finds a way to implement similar functionality at the cost of

additional CPU resources.

45



In the remainder of this section, we discuss our threat model and design goals

(Section 4.2.1) and a brief design overview (Section 4.2.2) before jumping into the

specific design details (Section 4.2.3).

4.2.1 Threat Model and Design Goals

Folio uses the same threat model as traditional VM-based TEEs [23, 19]. Specif-

ically, the TCB consists only of the SoC and the software running within the SNP

VM. We assume that any potential adversary has complete control over the rest of

the server and any I/O devices. To communicate with I/O devices, SNP VMs need to

use a shared memory region, and we assume that any data within this shared region

can be accessed or modified at will. Finally, we do not consider denial of service

attacks just like VM-based TEEs.

The goals of Folio are summarized as follows:

G1. End-to-end Security: Folio must achieve the same level of security as exist-

ing confidential VMs using VirtIO. We assume that applications in these confidential

VMs use some software-based encryption such as TLS/SSL or IPsec to achieve end-

to-end-security. Note that we cannot compare the security Folio to TIO, which we

discuss in Section 4.4.1.

G2. Comparable Network Performance: Folio should achieve high networking

performance that is comparable to the future performance of TIO solutions.

G3. On-core acceleration of offloading tasks: We suspect that confidential VMs

may be able to offload sensitive network tasks, such as packet encryption, to TIO

devices when they are made available3. Folio should find a way to make offloading

possible or find an alternative way to enhance performance.

G4. Code Compatibility: Folio should be mostly compatible with existing DPDK

applications; these applications should be able to run within a confidential VM with

little to no changes. Obviously, the primary benefit of this goal is to let existing

DPDK applications to easily run within SNP VMs. An additional benefit is that
3Of course, packet encryption and decryption can be offloaded to ordinary I/O devices as well,

but I/O devices cannot be trusted with this task in the context of confidential VMs

46



DPDK Application

DPDK ABI

SR-IOV NIC

TEE Private Memory

RX TX

Hypervisor

TEE Shared Memory

RX
Pkts

NIC Queues mbuf Pool

TX
Pkts

Shadow
Pool

rte_pktmbuf_copy()

Standard APIs Process Pkts

Shared Region Management
Kernel Module

manage

Figure 4-1: Folio overview. All components within the TEE private memory are
considered trusted. Meanwhile, data within the shared memory, the hypervisor, and
the NIC are untrusted. The DPDK library and shared region management module
strictly control the interaction with shared memory.

developers can develop and run their applications with Folio and effortlessly switch

to TIO devices once they are available.

4.2.2 Folio Design Overview

Of the design goals we outlined, the hardest goal to satisfy is G1.. For DPDK to

function within an SNP VM, it must be modified to establish a shared memory region

to communicate with the I/O device. There are currently no tools for creating shared

regions in userspace within SNP VMs. Even if the challenge of allocating a shared

47



memory region is solved, the system must take care to handle this memory very

carefully; no true computations should be done using this shared memory.

To achieve G1. End-to-end Security, Folio breaks this considerable task into

two essential aspects that ensure security: Constrained VM-I/O interaction interfaces

and Constrained DPDK-App interaction interfaces. These aspects ensure security

between the VM and hypervisor (and I/O devices), and the security between the

DPDK library and DPDK application.

As shown in Figure 4-1, the interaction between VMs and I/O devices is managed

by a combination of a Shared Region Management kernel module and a modified

DPDK library. This setup rigorously manages the shared memory region, ensuring

that only necessary data is exposed and tightly controlling all network packets and

metadata that could be exposed to the untrusted environment.

Regarding the interaction between the DPDK library and the DPDK applications,

we employ a shadow network buffer pool design. This design ensures that only data

structures within the private memory region can be accessed by DPDK applications.

This protection mechanism prevents sensitive secrets or information from being ac-

cidentally exposed due to misutilizations of the shared region. Additionally, Folio

also takes care of secure memory recycling and fault handling.

To achieve G2. Comparable Network Performance, Folio tries to minimize

overhead due to different factors to the greatest extent. This includes using a modified

version of DPDK to mitigate most factors associated with SEV-specific protection and

using preallocated memory segments to mitigate bounce buffer allocation overhead.

These measures enable Folio to achieve near non-TEE-protection’s performance in

the evaluation section.

For G3. On-core acceleration of offloading tasks, Folio focuses on ensur-

ing end-to-end secure network communication with a specific emphasis on crypto-

operation offload support. Folio leverages AES-NI instructions to accelerate crypto

operations, supporting both look-aside offload mode and a CPU-enabled emulated

inline mode4). To evaluate the performance of network offloading, we also devel-

4See Hardware-accelerated End-to-end Encryption

48



oped an IPsec performance testing tool to enable a comprehensive evaluation of the

performance of CPU-based network offloading.

To handle G4. Code Compatibility, Folio follows the original DPDK ABI,

allowing the existing DPDK application to be compiled and executed directly within

SEV-SNP VMs.

4.2.3 Folio Design Details

Folio is a modification of DPDK that allows secure and efficient network I/O from

within an SNP VM. This section outlines the design details of Folio.

Constrained VM-I/O Interaction Interfaces

To properly interact with the I/O device, Folio needs to use shared memory. To

properly restrict and control this shared memory, Folio uses a shared region manage-

ment module to allocate and manage regions of shared memory and follows a limited

exposed metadata principle to ensure only necessary and secure data are exposed.

Shared region management Folio introduces a shared region management ker-

nel module to strictly control the contents that need to be placed in shared memory.

Specifically, any DPDK-related content that needs to be placed in shared memory

must explicitly notify this kernel module during DPDK initialization. This module

then interacts with the hypervisor to synchronize the corresponding physical addresses

of shared regions for later I/O purposes. When shutting down the DPDK applica-

tion, the kernel module zeros out all contents placed in these shared regions, recycles

memory pages, and resets them to private memory.

Limited exposed metadata Folio explicitly and manually examines all data

structures exposed to the host. It turns out that only two types of data region need

to be shared. The first is the receive/transmit (RX/TX) descriptor rings, which are

also used in the default VirtIO to facilitate the communication between VM and I/O

devices. These rings contain metadata information about network packets, such as

49



the memory location, length, or status of network packets. The second type of region

is the DPDK-specific RX/TX memory buffers, which hold the actual incoming and

outgoing network packets and were originally designed to be directly accessible by

DPDK applications. In the manual examination procedure, we conduct a thorough

comparison between the data exposed by the default VirtIO and Folio to ensure

that there is no inadvertent information leakage. The most exposed data mainly

comprises meta-data associated with packets, which is handled either in an on-core

write-only manner or protected by software-based encryption. Additionally, we pay

extra attention to data structures resembling pointers. For pointers that do not

necessarily need to be exposed, such as some DPDK-specific pointer design, we keep

them in private memory. For pointers that must be exposed, like addresses in the

descriptor rings, we check whether the pointed-to addresses are within the shared

region when performing operations.

Constrained DPDK-APP Interaction Interfaces

To ensure the security of DPDK applications, Folio follows a copy-before-processing

principle and proposes a shadow packet buffer pool design to ensure that applications

only operate on private memory. Additionally, Folio also conceals shared mem-

ory from DPDK applications by hiding vulnerable information (e.g., address of the

shared region or exposed data) inside the Environment Abstraction Layer (EAL), and

includes special fault handling mechanisms to provide additional protection.

Copy before processing. Folio strictly adheres to the principle of handling net-

work packets as outlined in VirtIO, i.e., copying the network packet and the asso-

ciated network buffer data structures from the shared region to the private region

before any software begins processing it, and vice versa. Once the network packets

are placed in private memory, SEV-SNP’s memory protection mechanism explicitly

ensures the confidentiality and integrity of the network data packets and prevents the

device or hypervisor from modifying the packet content or associated data structures

of the network packets while an application is using them. Note that we want to

50



emphasize that even encrypted network packets should be copied to the private re-

gion before network applications begin processing them. Some existing applications

may attempt to decrypt the packets directly in their original memory addresses or

read unencrypted information, such as header information, during packet processing.

These actions can enable the untrusted hypervisor to manipulate the VM’s intended

control flow or provide incorrect data.

Shadow packet buffer pool Folio introduces a shadow packet buffer pool design

to provide a secure interface for DPDK applications to process network data packets.

Specifically, packet buffer pools are the memory pools used by DPDK applications

to handle network packets. These pools are created during DPDK initialization, and

each pool consists of a fixed number of data structure objects known as rte_mbuf.

These rte_mbuf objects are responsible for storing network packets and are accom-

panied by a set of preceding metadata. The metadata includes information such as

the message type, length, a region to store some application-specific private data, a

pointer to the address of the raw network packet and, if necessary, a pointer to the

next rte_mbuf object in case a single object is insufficient to hold an entire network

packet.

The shadow packet buffer pool design enables the guest VM and DPDK applica-

tions to retain critical metadata internally while maintaining the ability to efficiently

communicate with I/O devices. As shown in Figure 4-2, Folio creates three packet

buffer pools during DPDK initialization, which we call the shared pool, the shadow

pool, and the temporary pool. Among these three packet buffer pools, the shared pool

is the only memory pool allocated in shared memory. It serves as the memory pool

used by the untrusted NIC for reading TX/RX packets and is strictly restricted from

direct use by the SNP VM. The temporary memory pool is used by the device driver

inside the SNP VM to communicate with the device, where the network packet fields

of temporary pool point to shared memory while other data structures or metadata

are stored safely in private memory. This arrangement allows the device to read

and write packets from these memory buffers while keeping other data such as the

51



Data fieldStruct
rte_mbuf Priv_data

DPDK
Library

DPDK Application

SR-IOV
NIC

Struct
rte_mbuf

Shadow
Pool

Temp
Pool

Data fieldStruct
rte_mbuf

Priv_data
(Empty)

Shared
Pool

rte_pktmbuf_copy()

RX

TX

Figure 4-2: Shadow packet buffer pool design.

application’s private data and pointers inaccessible to the untrusted devices. The

shadow pool is the memory pool that is fully protected by the private memory and

used by the application. As a result, DPDK applications can maintain their existing

code behaviors without having to worry about source-code modification or any data

leakage, including performing in-place packet processing directly in the data field.

The memory copy operation between the shadow memory pool and the temporary

memory pool is embedded in TX/RX-related functions.

Concealed shared region and fault handling

In the context of SEV with VirtIO, network applications can only interact with net-

work devices through restricted interfaces such as system calls. In these system calls,

the guest VM’s kernel then formats or parses the raw network packets, and crucially

copies them from/to the shared region, guaranteeing that the network application

never interacts with or uses shared memory. By bypassing the kernel networking

layer, DPDK eschews all protections provided by the guest VM’s kernel. Thus, Fo-

lio must address the loss of these security protections and ensure that DPDK network

applications do not mistakenly access the shared region. To address this concern, all

virtual addresses pointing to shared regions are hidden from the network application,

concealed within the Environment Abstraction Layer (EAL) of the DPDK library.

This approach prevents network applications from inadvertently accessing the shared

52



region. In the case of an application crash (potentially by a malicious hypervisor

or device), improperly managed shared memory could compromise VM security if it

were to be reused by another application. In Folio, the shared region management

kernel module works with the guest VM OS to ensure that shared pages of memory

are not reused until the management module clears the region and makes it private

again.

Efficient I/O Event Handling

Folio naturally inherits the efficient optimizations of I/O event handling provided by

DPDK, including the use of polling mode to avoid interrupt overhead and the use of

huge pages to reduce memory lookup costs. Polling mode has additional performance

benefits in the context of SNP; by avoiding frequent retrieval of timestamps and

other special instructions that would trigger a VMEXIT, polling mode avoids both the

expensive cost of the VMEXIT and cost of all VC handler overhead. By preallocating

the shadow pool, Folio significantly reduces the overhead of bounce buffer operations

to a single memory-copy of the packet data.

Hardware-accelerated End-to-end Encryption

Although Folio cannot offload cryptographic operations to the untrusted NIC, it can

still leverage CPU crypto instructions to accelerate packet encryption. These crypto

instructions remain non-interceptable and secure in the SNP setup, enabling Folio

to securely and efficiently boost packet encryption and decryption. Folio supports

two crypto offload modes: look-aside mode and inline mode. Look-aside mode is

an offload mode in which the DPDK application must actively trigger hardware-

accelerated decryption, as shown in Figure 4-3a. Folio can naturally support such

mode by using DPDK’s implementation of IPsec and only needs to specify CPU

crypto instructions as the accelerator. In the original inline mode (Figure 4-3b), the

NIC actively decrypts the packet upon receiving it. To support this mode without

trusting the NIC, Folio introduces a CPU-based emulated inline mode (Figure 4-3c).

In emulated inline mode, the application thread collaborates with a reserved crypto

53



DPDK Application

Pkts Accelerator

CPU

(a) Look-aside Mode.

CPU
NIC

DPDK Application

Accelerator

Pkts

(b) Inline Mode.

Core A

NIC

DPDK Application

Pkts

DRAM

Core B
(App Thread) (Crypto Thread)

Accelerator

Batching

(c) Emulated inline.

Figure 4-3: Three crypto offload methods.

thread to share the TX/RX queues. This crypto thread performs cryptographic tasks

for data packets in real-time through polling and batching, efficiently offloading crypto

tasks from the application thread. Both modes supported by Folio guarantee the

secure storage of encryption keys within the confidential VM’s vCPU side, thereby

eliminating the risk of key leakage.

Code Compatibility

Folio makes no breaking changes to the DPDK API and is compatible with ex-

isting DPDK applications. Specifically, if the application uses the default method

rte_pktmbuf_pool_create to initialize and use memory pools, no additional source-

code changes are necessary. If the application instead allocates memory pools using a

custom method, we provide a simple API to create the shared and temporary packet

buffer pools; memory copies between shared and private regions are done automati-

cally. Furthermore, for network applications using CPU-based cryptography offload

as an hardware accelerator, no source-code modifications are required. However, to

use CPU-based inline mode, a series of function calls need to be injected into the

source code. These function calls are responsible for setting up and launching the

crypto thread.

54



4.3 Evaluation

Again, our goal is to demonstrate that Folio can perform at levels comparable to

the future idealized solution, SNP VMs running DPDK and TIO. We cannot directly

benchmark the performance of TIO solutions because TIO devices are not available

yet; we instead compare the performance of Folio to non-TEE VMs using plain

DPDK and SR-IOV. The performance of non-TEE VMs should be an upper bound

on the performance of SNP VMs using TIO, so comparing the performance of Folio

to non-TEE VMs should provide a reasonable estimate or bound on the performance

gap between Folio and SNP VMs using TIO. For the rest of this section, note

that the term “performance of non-TEE VM” refers to the performance of a non-

TEE VM using DPDK with a virtual function (VF) from SR-IOV and that the term

“performance of SNP VM” refers to the performance of Folio inside an SNP VM

using the same VF.

We evaluate Folio in four general categories: performance of a simple UDP server

(Section 4.3.1), performance against a general network testing tool (Section 4.3.2),

performance for IPsec data streams, and performance of a real-world DPDK appli-

cation (Section 4.3.4). For all categories, our testing configuration is the same as

described in Section 4.1.2.

4.3.1 Simple UDP Echo Server

We first repeated the experiments in Section 4.1 to get a baseline understanding of the

performance differences between Folio and other configurations. Figure 4-4a com-

pares the tail latency of Folio to the non-TEE VM for various packet sending rates.

In this experiment, Folio demonstrated an average latency overhead of less than

1% (compared to the non-TEE VM); even the p99 tail latency overhead was within

only 2.5%. Figure 4-4 compares the latency improvement of Folio to the latency

improvement of a non-TEE VM — latency improvement refers to how much faster

the system is compared to a corresponding configuration using just SR-IOV. Folio

performs with an impressive latency improvement of about 2×−3×, negatively corre-

55



1000pps 5000pps 30000pps 50000pps
Packet Sending Rate (pps)

0.0

0.5

1.0

1.5

2.0
Sl

ow
er

 (%
)

0.34%
0.09%

0.26%

1.07%

0.39%
0.17%

0.99%

1.83%

0.58%
0.38%

2.22%
2.36%mean p95 p99

(a) SNP’s percentage of slowdown compared to non-TEE VM.

1000pps 5000pps 30000pps 50000pps
Packet Sending Rate (pps)

1.0
1.5
2.0
2.5
3.0
3.5
4.0

Im
pr

ov
em

en
t (

tim
es

)

3.17x 3.17x

2.31x
2.05x

2.70x 2.66x

1.98x 1.89x

SNP VM No-TEE VM

(b) Improvement compared to SR-IOV only.

Figure 4-4: Tail latency between SNP and non-TEE VMs.

lated to the packets-per-second; in fact, Folio enhances SNP VM performance more

than DPDK enhances a non-TEE VM using SR-IOV. These results are consistent

with expectations as Folio only introduces a single memory-copy overhead.

4.3.2 Generalized Network Testing Tool

We used dperf, a well-established5 DPDK-based benchmarking tool, to thoroughly

assess the performance of Folio [10]. dperf was designed to benchmark network

performance for a variety of network loads and has several useful features for our pur-

poses. dperf can be configured with a multitude of configuration options — including

packet size, packet rate, packet type, number of threads, number of concurrent connec-

tions, and connection live time — granting us a versatile testing environment. dperf

5dperf has more than 3.3k stars in GitHub.

56



also provides detailed statistics and metrics, including packet counts, throughput,

and round-trip time (RTT), that offer valuable insights and information necessary for

a comprehensive analysis of Folio’s performance. Most importantly, dperf is capa-

ble of simulating heavy network traffic on the level of multiple Gigabits-per-second

and tens of thousands of concurrent connections. This traffic volume is enabled by

leveraging DPDK libraries on both the client and the server side. Finally, thanks to

Folio’s code compatibility with the original DPDK, dperf can be compiled and used

in SNP VMs without any source-code modifications.

Throughput

We first compare the throughput of Folio and the non-TEE VM. Note that we

also conducted tests in a non-virtualized environment (i.e., running dperf directly on

the server) using the network card’s Physical Function (PF). These tests, marked as

“server (PF),” serve as a control and represent the theoretical maximum bandwidth

of the system (which is constrained by the NIC’s performance and bandwidth).

In our throughput evaluation, we measured client throughput for various packet

sizes (100 bytes, 200 bytes, 500 bytes, 1000 bytes). The client sent UDP packets due

to its higher speed. Specifically, the client sent 1000 packets every second for each

client connection to the server; to test the limits of the network throughput, the client

incrementally increased the number of concurrent connections per second (CPS) until

packet loss occurred. Every second, the client would increase its CPS by 5% of the

maximum CPS, which we define as 8 Gbps
𝑁byte/ packet×1000packets/ second . The throughput is

then simply the number of bits received by the server every second.

As shown in Figure 4-5, the results indicate that the difference in throughput

between Folio and the non-TEE VM was minimal. For the different packet sizes

(100, 200, 500, and 1000 bytes), Folio’s throughput compared to the non-TEE

throughput was 98.1%, 99.9%, 99.9%, and 99.8%, respectively. Furthermore, we

also note that Folio’s performance also matched the control experiments (direct

execution on the server). Virtual environments are still affected by scheduling (as the

hypervisor may choose to interrupt the VM arbitrarily), so the close performance is

57



notable.

0 5 10 15 20 25 30
Seconds

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Gb
ps

Server (PF)
non-TEE VM (VF)
SNP VM (VF)

(a) 100 Byte/ packet.

0 5 10 15 20 25 30
Seconds

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Gb
ps

Server (PF)
non-TEE VM (VF)
SNP VM (VF)

(b) 200 Byte/ packet.

0 5 10 15 20 25 30
Seconds

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Gb
ps

Server (PF)
non-TEE VM (VF)
SNP VM (VF)

(c) 500 Byte/ packet.

0 5 10 15 20 25 30
Seconds

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Gb
ps

Server (PF)
non-TEE VM (VF)
SNP VM (VF)

(d) 1000 Byte/ packet.

Figure 4-5: Throughput under different packet sizes.

Latency

Latency naturally represents the server’s actual data processing time. We measured

latency for UDP and TCP configurations, conducting tests at different stress levels.

To simulate different stress levels, the client sent a packets of a variety of different

sizes. We measured the round-trip time from the client side, which is specifically

the duration between the client initiating a new connection and it receiving the first

response from the server. For the UDP configuration, the client gradually increases

the number of new connections per second until it reaches 20000, approximately 1/3

of the total port number 65535, and then maintains this level of connections for a

stable period of 30 seconds. Under the TCP configuration, the client follows the

three-way handshake principle to establish connections, and the server transmits the

primary data payload during the third handshake. Every connection is closed after a

58



single round of communication. Figure 4-6 and Figure 4-7 show that Folio’s average

latency is consistently less than 6% slower than the non-TEE latency across different

packet sizes. Moreover, a comparison of UDP and TCP packets shows that TCP

demonstrates discernible tail latency variations. Specifically, the cases of 1 byte and

100 byte payloads exhibit a tail latency disparity of approximately 25% at the 99%

significance level.

mean p95 p99 p999
70
80
90

100
110
120
130
140

La
te

nc
y(

s)

4.3%

-0.5% 0.0% 0.1%non-TEE
snp

(a) UDP/1 Byte payload.

mean p95 p99 p999
70
80
90

100
110
120
130
140

La
te

nc
y(

s)

4.1%

-0.1% 0.1% 0.2%non-TEE
snp

(b) UDP/100 Byte payload.

mean p95 p99 p9990
50

100
150
200
250

La
te

nc
y(

s)

6.0%
8.3% 1.4%

-4.5%non-TEE
snp

(c) UDP/500 Byte payload.

mean p95 p99 p9990

100

200

300

400

La
te

nc
y(

s)

5.7% -0.3% -0.2%

13.9%
non-TEE
snp

(d) UDP/1000 Byte payload.

Figure 4-6: Mean and tail latency for UDP workload.

Multi-thread

Finally, we tested the performance Folio in a multi-threaded system using RSS

(Receive Side Scaling). When RSS is enabled, all received packets are automatically

spread across the different threads and cores in the dperf server. Using the same

latency testing strategy and environment from before, we measured the latency of

UDP connections with a payload size of 1000 bytes for dperf servers with both one or

two threads. As shown in Figure 4-8, multi-threading slightly increases the latency,

most likely from the overhead of the RSS feature. However, Folio’s latency remains

59



mean p95 p99 p999
60
80

100
120
140
160
180
200

La
te

nc
y(

s)

5.5%

1.4%

25.6%
6.1%non-TEE

snp

(a) TCP/1 Byte payload.

mean p95 p99 p999
60
80

100
120
140
160
180
200

La
te

nc
y(

s)

5.9%

2.0%
22.2%

5.9%non-TEE
snp

(b) TCP/100 Byte payload.

mean p95 p99 p9990

50

100

150

200

La
te

nc
y(

s)

0.7%

0.2% 6.8%

4.8%
non-TEE
snp

(c) TCP/500 Byte payload.

mean p95 p99 p9990

50

100

150

200

La
te

nc
y(

s)

5.4%

4.4%
-5.5%

-1.6%
non-TEE
snp

(d) TCP/1000 Byte payload.

Figure 4-7: Mean and tail latency for TCP workload.

within within 6% of the non-TEE system.

4.3.3 IPsec Performance

To evaluate Folio’s performance with IPsec, we enhanced the dperf to send and

receive IPsec data streams. We focused on analyzing the performance impact of

encrypting and decrypting data end-to-end. Therefore, all packets were sent through

a single transport-mode IPsec connection (in which source and destination addresses

are not encrypted for routing purposes) and the IPsec secret keys were hardcoded on

both server and client sides. Each packet was 1000-bytes and encrypted or decrypted

using 128-bit AES in GCM mode.

Regrettably, due to hardware limitations with the network card, the SR-IOV

Virtual Functions used in our experiments did not support IPsec offload inline mode,

even in non-virtualized environments. Thus, we were unable to benchmark this mode.

Instead, we used a CPU look-aside mode (marked as “Server (PF)”) running in a non-

virtualized environment with the PF directly as the reference for upper bound.

60



1 vCPU 2 vCPUs
60

80

100

La
te

nc
y(

s)

+5.4%

+0.7%

non-TEE SNP

(a) Mean.

1 vCPU 2 vCPUs

120

140

160

La
te

nc
y(

s)

+4.4%
+7.6%

non-TEE SNP

(b) Tail latency/p95.

1 vCPU 2 vCPUs
125

150

175

200

La
te

nc
y(

s)

+-5.5%
+28.4%

non-TEE SNP

(c) Tail latency/p99.

1 vCPU 2 vCPUs
150

175

200

225

La
te

nc
y(

s)

+-1.6% +27.6%

non-TEE SNP

(d) Tail latency/p999.

Figure 4-8: Comparison between 1 vCPU and 2 vCPUs.

CPU look-aside mode

To evaluate CPU look-aside mode, we ran throughput and latency tests configured

similarly to tests from Section 4.3.2. Figure 4-9 compares IPsec throughput. Once

again, Folio nearly matches the non-TEE VM and the native environments, reaching

99.8% of the non-TEE throughput. Predictably, IPsec did decrease overall through-

put, resulting in a 9.85% decrease. Figure 4-10 shows the difference in percentage

between non-TEE VM and the server, and between Folio and non-TEE VM. On

average, Folio exhibited a latency 6.96% higher than the non-TEE VM.

CPU-enabled emulated-inline Mode

Evaluating the emulated inline mode is trickier than the previous tests because it

requires reserving an extra vCPU. In most real network applications, it would be

simpler and wiser to just run the application with an additional CPU thread. Such

an approach eliminates overheads from shared queues and communication between

61



0 5 10 15 20 25 30
Seconds

0

1

2

3
Gb

ps
9.85%

Server (PF)
non-TEE VM
SNP VM
No-IPsec (PF)

25 26 27 28 29 30
2.75

3.00

3.25

3.50

2.85
2.85 2.96

3.07
2.95

3.25

2.95

3.26

2.95

3.26

Figure 4-9: Throughput when enabling IPsec.

mean p95 p99 p9990

100

200

300

400

500

La
te

nc
y 

(
s)

+6.25%+6.96% +7.01%+-6.22% +0.89%+-0.63%

+18.42%
+6.74%

Server non-TEE VM SNP VM

Figure 4-10: IPsec latency.

the application thread and the extra cryptography thread. However, emulated inline

mode may still be useful for single-threaded network application that suffer from CPU

pressure.

To accurately simulate such conditions, we introduced an additional per-packet

processing delay that simulates a more realistic post-decryption workload, and mea-

sure the average latency for different processing delay times. Indeed, emulated mode

is capable of alleviating pressure from the application thread, as shown in Figure 4-11.

At a workload of 135 milliseconds, the latency of CPU mode spiked by about a factor

of 10. Emulated mode, however, only experience packet loss at a workload of 145

milliseconds.

62



125 130 135 140 145
Workload ( s)

0

5000

10000

15000

20000
Av

g.
 L

at
en

cy
 (

s)
packet loss packet losspacket lossEmulated offload Mode (SNP)

CPU Mode (SNP)

Figure 4-11: Performance of emulated-inline mode.

4.3.4 Real World DPDK Applications

To showcase the performance of Folio in real-world applications, we evaluated the

performance the performance of a fork of nginx [38] based on F-Stack [13] (Commit:dd27d06).

F-Stack is an open-sourced network framework based on DPDK, providing POSIX

APIs (Socket, Epoll, Kqueue), a user-space TCP/IP stack (port FreeBSD), a pro-

gramming SDK (Coroutine), and application interfaces (nginx) that assist network

applications in benefiting from DPDK. We focus on comparing the performance of

F-Stack-provided nginx on Folio against non-TEE VM. As a control, we also show

the performance of an standard version of nginx (obtained from apt-get) running in

a non-TEE VM with SR-IOV. We note that this evaluation also showcases the code

compatibility of Folio with existing DPDK applications.

Following official guidance [43], we measured the requests-per-second (RPS) and

latency following official guidance. The client side ran a HTTP benchmarking tool

called wrk [52]. We collected each metric against various requested file sizes. For the

RPS test, we ran 12 independent wrk to gather the maximum RPS. Each instance

opened 50 HTTP connections for 1 minute. For the latency test, we ran 1 wrk instance

for 5 minutes to get more stable results.

Figure 4-12a shows the total RPS. While there is a performance gap of 11.07% for

the 1KB test, this gap shrinks to negligible as the request size increases. Figure 4-12b

shows the average latency. Curiously, when the request size exceeds 10KB, the original

version of nginx shows better performance. We speculate that this discrepancy is due

63



0KB 1KB 10KB 100KB
Request Size

0

50000

100000

150000

200000

250000

300000

350000

400000

Re
qu

es
t p

er
 se

co
nd

-7.46%

-11.07%

-0.16%
-0.28%

non-TEE
SNP
SRIOV

(a) RPS Comparison.

0KB 1KB 10KB 100KB
Request Size

0

50

100

150

200

250

300

350

No
rm

al
ize

d 
La

te
nc

y 
(%

)

-0.42%
15.91%

-7.80% 0.74%

225.22%

138.61%

-64.12%
-36.06%146.0 s 271.3 s 6772.0 s 42526.0 s

non-TEE
SNP
SRIOV

(b) Latency Comparison.

Figure 4-12: Nginx Performance.

to optimization differences between the different versions of nginx; the standard ver-

sion could include additional optimizations for large files, or the F-stack version may

not have considered such use cases and refrained from implementing them. Therefore,

for the larger request sizes, we primarily focus on the performance variance between

the identical F-stack nginx code executed in the SNP VM (using Folio) and in the

non-TEE VM. Although there is a higher performance difference shown in these re-

sults, that difference is the combination of the performance difference of both the core

program execution and all network I/O operations. The former depends highly on the

implementation of the application and cannot be mitigated through TIO solutions.

Crucially, our experiments show that Folio can be reasonably applied to complex

existing network frameworks.

4.4 Comparison of Folio with TIO Solutions

4.4.1 Security Comparison

Due to distinct threat models, Folio and TIO solutions attain varying security levels

and TCB sizes.

Folio: end-to-end security

Folio shares the same threat model and accomplishes the same end-to-end security

level as the default VirtIO solution. They both exclusively rely on the CPU side,

64



thereby necessitating the employment of software-based encryption for ensuring com-

prehensive I/O security. Various software-based solutions can be utilized to ensure

end-to-end security, such as IPsec at the network layer or SSL/TLS at the application

layer. Considering the performance of SSL/TLS may vary based on the application

being used, we use IPsec in this paper to evaluate the potential throughput when

software-based encryption is enabled. Furthermore, it is important to mention that

malicious or vulnerable DPDK applications are beyond the scope of this paper’s dis-

cussion as SNP’s threat model assumes that all software components within SNP

VMs are trustworthy.

TIO: VM-to-NIC security

TIO solutions achieve a different VM-to-NIC security. The different threat model

adopted by TIO, where the device and VM both reside within the TCB, fosters mu-

tual trust between devices and VMs, allowing them to operate within a private mem-

ory region protected from the untrusted hypervisor. This, together with encryption

on the PCIe buses, ensures the security of VM-to-NIC communication, safeguard-

ing it from the hypervisor. This design also reduces some attack surfaces during

I/O communication. For instance, the driver interfaces now reside completely in

private memory, mitigating attacks that attempt to explore vulnerable driver imple-

mentations [17]. Even with the TIO solution, software-based encryption may still be

necessary to prevent potential leakage during network routing.

TCB size

Folio only slightly increases the TCB size compared to the original software stack

whereas TIO solutions significantly increase TCB size by including the I/O device in

the trust boundary. Folio introduced approximately 2K lines of code modifications

to the DPDK library, and the shared region management kernel module added 0.5K

lines of code. Additionally, we added 1.2K lines of code to dperf to support IPsec

benchmarking. Apart from these changes, we made less than 5 lines of code changes

to the F-stack source code, primarily focusing on fixing inconsistent kernel headers,

65



to ensure successful compilation with the kernel version running in our VMs.

4.4.2 Performance Comparison

Folio can only benefit DPDK-compatible applications and has extra memory over-

head compared to TIO solutions.

Network application without DPDK

Although Folio can achieve the same-level performance compared to the idealized so-

lution, where both DPDK and TIO are utilized, network applications without DPDK

support cannot directly benefit from Folio. On the contrary, with TIO support, net-

work applications using POSIX APIs can also potentially benefit from the overhead

mitigated by the TIO device. Luckily, Folio can work together with some software-

based network frameworks, like F-stack [13], to alleviate SNP-specific overhead for

applications using POSIX APIs. These frameworks embed DPDK to provide POSIX

APIs or other network socket interfaces, such as user-space TCP/IP stacks, to help

network applications benefit from DPDK.

Additional Memory Overhead

One limitation of Folio is the additional memory overhead. To avoid the extra

allocation delay during runtime, Folio allocates all data structures required by the

shadow memory pool design during DPDK initialization. By default, this setting

approximately doubles the memory pool size used, as we configure the shared memory

pool to be the same size as the shadow memory pool. In situations of excessive

memory overhead, Folio offers a special configuration option for a constant-sized

memory overhead. In practical scenarios, each device can only accommodate a fixed

number of 𝑃 packets for TX and RX, significantly smaller than the number of reserved

memory buffers. Thus, the shared and temporary memory pools only need to be large

enough to store 𝑃 packets at a time. Folio supports the application to adjust such

size through additional configurations.

66



4.5 Related Work

During the development of this research, we became aware of another project [29]

that was also investigating network performance in confidential VMs. Despite the

similarities in the research area, our work significantly differs from theirs in several

ways: (1) Overhead identification: our work also comprehensively analyze the indi-

vidual impacts of all known types of network overhead. (2) Research vision: while

this project focuses primarily on the future of high-performance I/O with SR-IOV

and DPDK support, their focus was on improving the focus of QEMU-based emulated

I/O devices. Both techniques are necessary and cater to different types of use-cases

for confidential VMs. (3) Optimization methods: Li et al. using various methods

to reduce bounce buffer overhead, including packet pre-processing and combining en-

cryption and memory-copy operations during I/O payload bouncing. In contrast, our

approach centers on eliminating all factors within an SNP configuration that lead to

poor network performance.

Other related TEE network performance optimizations [8, 40, 41] primarily target

enclave-based TEE (Intel SGX [12]) and involve using extra I/O threads to achieve

exitless I/O communication with SGX. Rkt-I/O [47] also utilizes DPDK to enhance

network performance by embedding it into LibOS as a hidden network driver. How-

ever, a significant distinction between our work and theirs is that our approach fully

utilizes DPDK without the LibOS layer, motivating us to provide a security-oriented

set of interfaces distinct from theirs, while ensuring end-to-end IPsec and maintaining

code compatibility. Remarkably, our research also reveals that existing SNP VMs,

with the support of Folio based on a secure and efficient DPDK, can also achieve

the same level of performance as future TIO solutions.

TEE I/O security Hetzelt et al. [17] develop a dynamic fuzzing tool for testing

device interfaces in confidential VM, identifying 50 bugs in various device drivers.

Their work holds significant value in real-world TEE setups, as all code running

inside the confidential VM is considered trusted within its thread model. Therefore,

driver bugs, such as buffer overflows, can easily undermine the security guarantees

67



offered from internal. Lefeuvre et al. [28] discuss the requirement for fast confidential

I/O, primarily focusing on the proper boundaries between the host and TEE I/O.

68



Chapter 5

Conclusion

In this thesis, we presented two different contributions in the field of confidential

VMs.

In Chapter 3, we discussed the design of a RISC-V confidential VM, focusing on

the task of secure CPU virtualization. Using the RISC-V specification and the source

code of the Linux-KVM and OpenSBI, we first created a precise specification detailing

which registers the hypervisor needed to properly handle interrupts and exceptions.

This specification served as an analog for the AMD GHCB. We then discussed the

design and implementation details of our security monitor, which concealed CPU

register state according to this specification.

In Chapter 4, we researched the performance of network I/O in confidential VMs.

We first conducted an extensive evaluation of all possible sources of I/O overhead in

a confidential VM. Using our evaluation as a guide, we created Folio, a system for

high-performance I/O using DPDK in AMD SEV-SNP. Unlike TIO devices, Folio

does not sacrifice any security assumptions. Our evaluation of Folio showed that it

performed within 6% of the ideal network I/O performance.

69



Bibliography

[1] Amazon. The Security Design of the AWS Ni-
tro System. https://docs.aws.amazon.com/
whitepapers/latest/security-design-of-aws-nitro-system/
security-design-of-aws-nitro-system.html?did=wp_card&trk=wp_card,
2022.

[2] Amazon. Amazon EC2 now supports AMD SEV-SNP. https://aws.amazon.
com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/, 2023.

[3] AMD. Sev-es guest-hypervisor communication block standardization. https:
//developer.amd.com/wp-content/resources/56421.pdf.

[4] AMD. SEV secure nested paging firmware API specification. API Document,
2020.

[5] AMD. AMD SEV-TIO: Trusted I/O for Secure Encrypted Virtualization. White
paper, 2023.

[6] AMD. AMDSEV/sev-snp-devel branch. https://github.com/AMDESE/AMDSEV/
tree/sev-snp-devel, 2023.

[7] ARM. ARM CCA Security Model 1.0, 2021.

[8] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L
Stillwell, et al. SCONE: Secure linux containers with intel SGX. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages
689–703, 2016.

[9] Krste Asanović and David A Patterson. Instruction sets should be free: The
case for risc-v. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-146, 2014.

[10] Baidu. dperf. https://github.com/baidu/dperf, 2023.

[11] Confidential Computing Consortium. Confidential Computing Consortium Mem-
bers. https://confidentialcomputing.io/members/, 2022.

70

https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html?did=wp_card&trk=wp_card
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html?did=wp_card&trk=wp_card
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html?did=wp_card&trk=wp_card
https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/
https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-ec2-amd-sev-snp/
https://developer.amd.com/wp-content/resources/56421.pdf
https://developer.amd.com/wp-content/resources/56421.pdf
https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel
https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel
https://github.com/baidu/dperf
https://confidentialcomputing.io/members/


[12] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint
Arch., 2016(86):1–118, 2016.

[13] f-stack. F-stack. https://github.com/F-Stack/f-stack, 2023.

[14] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. Scalable memory protection in the {PENGLAI} enclave.
In 15th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 21), pages 275–294, 2021.

[15] Google. Introducing Google Cloud Confidential Computing with Confiden-
tial VMs. https://cloud.google.com/blog/products/identity-security/
introducing-google-cloud-confidential-computing-with-confidential-vms,
2020.

[16] Samuel Greengard. Will risc-v revolutionize computing? Communications of the
ACM, 63(5):30–32, 2020.

[17] Felicitas Hetzelt, Martin Radev, Robert Buhren, Mathias Morbitzer, and Jean-
Pierre Seifert. Via: Analyzing device interfaces of protected virtual machines.
In Annual Computer Security Applications Conference, pages 273–284, 2021.

[18] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and
Berk Sunar. Seriously, get off my cloud! cross-vm rsa key recovery in a public
cloud. Cryptology ePrint Archive, 2015.

[19] Intel. Intel trust domain extensions whitepaper. https://
software.intel.com/content/dam/develop/external/us/en/documents/
tdx-whitepaper-final9-17.pdf, 2020.

[20] Intel. Intel TDX Connect TEE-IO Device Guide. White paper, 2023.

[21] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
ières, and Christos Kozyrakis. Shinjuku: Preemptive scheduling for 𝜇second-
scale tail latency. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 345–360, 2019.

[22] David Kaplan. Protecting vm register state with sev-es. White paper, 2017.

[23] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption. White
paper, 2016.

[24] keystone-enclave. Keystone security monitor. https://github.com/
keystone-enclave/sm, 2023.

[25] Awais Khan, Arnab K Paul, Christopher Zimmer, Sarp Oral, Sajal Dash, Scott
Atchley, and Feiyi Wang. Hvac: Removing i/o bottleneck for large-scale deep
learning applications. In 2022 IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 324–335. IEEE, 2022.

71

https://github.com/F-Stack/f-stack
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://github.com/keystone-enclave/sm
https://github.com/keystone-enclave/sm


[26] KVM. Code — kvm,, 2015. [Online; accessed 19-July-2023].

[27] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song.
Keystone: An open framework for architecting trusted execution environments.
In Proceedings of the Fifteenth European Conference on Computer Systems, pages
1–16, 2020.

[28] Hugo Lefeuvre, David Chisnall, Marios Kogias, and Pierre Olivier. Towards
(Really) Safe and Fast Confidential I/O. In Proceedings of the 19th Workshop
on Hot Topics in Operating Systems, pages 214–222, 2023.

[29] Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang, Haibing Guan, and
Haibo Chen. Analysis and optimization of network i/o tax in confidential virtual
machines. In Proceedings of the 2023 USENIX Conference on Usenix Annual
Technical Conference.

[30] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. A Systematic Look at Ciphertext Side Channels on
AMD SEV-SNP. In 2022 IEEE Symposium on Security and Privacy (SP), pages
1541–1541. IEEE Computer Society, 2022.

[31] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. CROSSLINE: Breaking
“Security-by-Crash” based Memory Isolation in AMD SEV. arXiv preprint
arXiv:2008.00146, 2020.

[32] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. Tlb
poisoning attacks on amd secure encrypted virtualization. In Annual Computer
Security Applications Conference, pages 609–619, 2021.

[33] Michael McReynolds. Azure announces next genera-
tion Intel SGX confidential computing VMs. https://
techcommunity.microsoft.com/t5/azure-confidential-computing/
azure-announces-next-generation-intel-sgx-confidential-computing/
ba-p/2839934, 2021.

[34] Microsoft. Azure and AMD announce landmark in confidential
computing evolution. https://azure.microsoft.com/en-us/blog/
azure-and-amd-enable-lift-and-shift-\confidential-computing/,
2021.

[35] Mathias Morbitzer, Manuel Huber, and Julian Horsch. Extracting secrets from
encrypted virtual machines. In 9th ACM Conference on Data and Application
Security and Privacy. ACM, 2019.

[36] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. SEVered:
Subverting AMD’s virtual machine encryption. In 11th European Workshop on
Systems Security. ACM, 2018.

72

https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://techcommunity.microsoft.com/t5/azure-confidential-computing/azure-announces-next-generation-intel-sgx-confidential-computing/ba-p/2839934
https://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift-and-shift-\confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift-and-shift-\confidential-computing/


[37] RISC-V Community News. Accelerating ml recommendation with over
1,000 risc-v/tensor processors on esperanto’s et-soc-1 chip | david r.
ditzel, esperanto technologies inc. https://riscv.org/blog/2022/07/
accelerating-ml-recommendation-with-over-1000-risc-v-tensor-processors-on-esperantos-et-soc-1-chip-david-r-ditzel-esperanto-technologies-inc/,
2022.

[38] Nginx. NGINX: Advanced Load Balancer, Web Server, & Reverse Proxy. https:
//www.nginx.com/, 2023.

[39] OpenSBI. RISC-V Open Source Supervisor Binary Interface (OpenSBI). https:
//github.com/riscv-software-src/opensbi, 2023.

[40] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos:
ExitLess OS services for SGX enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems, pages 238–253, 2017.

[41] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu, Shujie
Cui, Vasily A Sartakov, and Peter Pietzuch. SGX-LKL: Securing the host OS
interface for trusted execution. arXiv preprint arXiv:1908.11143, 2019.

[42] Anil Rao. Rising to the Challenge—Data Security
with Intel Confidential Computing. https://community.
intel.com/t5/Blogs/Products-and-Solutions/Security/
Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/
post/1353141, 2022.

[43] Amir Rawdat. Testing the Performance of NGINX and
NGINX Plus Web Servers. https://www.nginx.com/blog/
testing-the-performance-of-nginx-and-nginx-plus-web-servers/,
2017.

[44] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,
get off of my cloud: exploring information leakage in third-party compute clouds.
In Proceedings of the 16th ACM conference on Computer and communications
security, pages 199–212, 2009.

[45] Rusty Russell. virtio: towards a de-facto standard for virtual I/O devices. ACM
SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[46] AMD SEV-SNP. Strengthening vm isolation with integrity protection and more.
White Paper, January, 2020.

[47] Jörg Thalheim, Harshavardhan Unnibhavi, Christian Priebe, Pramod Bhatotia,
and Peter Pietzuch. Rkt-io: A direct i/o stack for shielded execution. In Proceed-
ings of the Sixteenth European Conference on Computer Systems, pages 490–506,
2021.

[48] torvalds. linux. https://github.com/torvalds/linux, 2023.

73

https://riscv.org/blog/2022/07/accelerating-ml-recommendation-with-over-1000-risc-v-tensor-processors-on-esperantos-et-soc-1-chip-david-r-ditzel-esperanto-technologies-inc/
https://riscv.org/blog/2022/07/accelerating-ml-recommendation-with-over-1000-risc-v-tensor-processors-on-esperantos-et-soc-1-chip-david-r-ditzel-esperanto-technologies-inc/
https://www.nginx.com/
https://www.nginx.com/
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://github.com/torvalds/linux


[49] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A practical at-
tack framework for precise enclave execution control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution, pages 1–6, 2017.

[50] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste
Asanović. The risc-v instruction set manual volume i: Unprivileged isa.
https://github.com/riscv/riscv-isa-manual/releases/download/
Ratified-IMAFDQC/riscv-spec-20191213.pdf, 2019.

[51] Hauser Waterman, Asanovic. The risc-v instruction set manual volume 2: Priv-
ileged architecture version 1.12. Technical report, University of California at
Berkeley Berkeley United States, 2021.

[52] WG. wrk - a http benchmarking tool. https://github.com/wg/wrk/, 2023.

[53] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, et al. Under-
standing data storage and ingestion for large-scale deep recommendation model
training: Industrial product. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pages 1042–1057, 2022.

74

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/wg/wrk/

	Introduction
	Background
	RISC-V TEE Designs
	RISC-V ISA
	RISC-V Hardware Features
	RISC-V Keystone

	AMD SEV
	AMD SEV-ES
	AMD SEV-SNP

	Networking
	VirtIO
	SRIOV
	DPDK
	Trusted I/O


	VM-based TEE for RISC-V
	RISC-V Register Whitelist Specification
	Exceptions
	Hypervisor-Necessary Exceptions
	Interrupts
	Hypervisor-mode Address Translation and Protection (HGATP) Register

	Secure Context-Switching
	Creating and Resuming Virtual CPUs
	Handling MMIO Instructions
	Security Discussion


	I/O Performance of VM-Based TEEs
	Network Bottlenecks in Confidential VMs
	Methodology
	Experimental Setup
	Results

	Folio
	Threat Model and Design Goals
	Folio Design Overview
	Folio Design Details

	Evaluation
	Simple UDP Echo Server
	Generalized Network Testing Tool
	IPsec Performance
	Real World DPDK Applications

	Comparison of Folio with TIO Solutions
	Security Comparison
	Performance Comparison

	Related Work

	Conclusion

