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Abstract

Latency-sensitive applications in recent datacenter workloads, such as inter-
active machine learning inference, high-frequency algorithm trading, cloud
gaming, and interactive AR/VR applications impose stringent latency re-
quirements. These applications heavily rely on low-latency RPCs as an
essential building block, often executed in mere microseconds through par-
allel computations and in-memory operations. Given the high fan-out RPC
traffic patterns typical of these applications, it’s imperative to minimize
tail latency to maintain end-to-end latency within its service level objec-
tives (SLO).
With the innovations in datacenter networks and the end of Dennard

scaling, congestion is now moving from networks to compute resources. This
thesis introduces two systems, Breakwater and LDB, designed to mitigate
and diagnose compute congestion, each targeting different sources of tail
latency. Breakwater aims to alleviate CPU congestion and lock contention
during intermittent server overload, while LDB furnishes developers with a
tool to diagnose the functions causing high tail latency with low overhead.
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1 Introduction

In the last decades, a dramatic surge has been witnessed in the demand for
applications that adhere to strict Service Level Objectives (SLOs), high-
lighting the crucial necessity for enhanced user interactivity and swift re-
sponse times. For instance, artificial intelligence-enabled chatbots [98, 100]
and search engines necessitate sub-second response times to ensure seamless
user interactions. In the fast-paced world of real-time ad bidding [53, 90],
the ability to determine participation and bid prices in mere milliseconds can
make or break the deal. Likewise, high-frequency trading algorithms [25]
are required to make split-second decisions and execute orders to capitalize
on fleeting latency arbitrage opportunities.

Minimizing end-to-end latency is crucial for businesses, as it directly in-
fluences their revenue. Google, for example, revealed that a delay as small
as 500 milliseconds could result in a significant 20% decline in their earn-
ings [59]. Similarly, Amazon has indicated that for every 100 milliseconds of
latency they encounter, their sales suffer a 1% reduction [73]. Additionally,
an Akamai study demonstrated that for every 100 milliseconds increase in
online retailer website load time, there could be a detrimental 6% decrease
in sales [57]. Furthermore, the races for latency arbitrage occur approxi-
mately once every minute per symbol, with the winner outpacing the closest
competitor by a mere 5-10 microseconds [77].

For better scalability, availability, modularity, and parallel processing,
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1 Introduction

implementation of datacenter applications often involves multiple RPCs.
Each RPC now typically executes in mere microseconds, facilitated by in-
memory operations, specialized hardware, and faster disks, leading to a high
fan-out traffic pattern. With “high fan-out”, tail latency takes on critical
importance in attaining low end-to-end latency due to the straggler problem,
where the completion of the response depends on the slowest RPC. In a
complex RPC call graph utilizing microservice architectures, the impact of
tail latency on the end-to-end latency becomes even more pronounced.

Considerable research and engineering effort has enhanced datacenter net-
work performance through new hardware [38, 101], new flow control [104],
new congestion control [17, 52, 54, 66], zero-copy within I/O [4, 44, 95], ker-
nel bypass networking stack [1, 23, 34, 36], and hardware virtualization [31].
Thanks to these advancements, there has been a tenfold improvement in
network bandwidth from 40 Gbps to 400 Gbps, while single-hop network
latency has dwindled from tens of microseconds down to single-digit mi-
croseconds in the past ten years. In the meantime, CPU clock frequency
has improved only 25% from 4 GHz to 5 GHz with the end of Dennard’s
scaling. As a result, congestion is now moving from networks to compute
resources.

While there exist mechanisms to keep the latency low even with congested
compute resources through hedging requests [27], employing Active Queue
Management (AQM) [24, 42], and implementing admission control [8], these
traditional solutions are primarily designed for millisecond-level RPC la-
tency. Because of microsecond-level overhead per request, they are not
entirely suitable for the current landscape of microsecond-scale RPCs.

This thesis explores three primary causes of tail latency in compute re-
sources handling microsecond-scale RPCs and suggests systems to miti-
gate or diagnose them. First, we pinpoint that receive livelock significantly
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bloats latency when CPUs are congested. When the server receives more
load than its capacity while CPUs are congested, more CPU cycles are
dedicated to packet processing and request parsing, leaving fewer for useful
application logic. While the existing AQM mechanisms alleviate receive live-
lock for millisecond-scale RPCs by dropping them, they are insufficient for
microsecond-scale RPCs due to the almost equivalent cost of dropping the
request and request processing time. We identify that as request processing
time reduces from milliseconds to microseconds, receive livelock re-emerges
as a major latency source.

Second, we discovered that lock contention within an application, partic-
ularly blocking synchronization such as mutexes, contributes to tail latency
because threads are delayed as they wait to acquire a contended lock. This
lock contention causes threads to linger in the lock waiter queue, increas-
ing tail latency. Determining whether the system should accept additional
incoming load becomes complex in the face of lock contention. CPU-based
signals like thread queueing delay or packet queueing delay prove ineffective,
as threads waiting for locks do not consume any CPU cycles. Relying on
end-to-end latency signals can be overly conservative as latency rises even
when a single lock within a datapath becomes contended. While measuing
per-lock waiter queueing delay does capture lock-specific congestion, it’s
unclear how to aggregate these per-lock delay signals to gauge the overall
system’s capacity to handle more incoming load.

Lastly, we attribute high tail latency to the application logic itself, such
as performance bugs, inefficient algorithms, or a misalignment between the
system design and the actual workload. Identifying the specific functions
or modules responsible for high tail latency is challenging because most
existing profiling tools focus on measuring CPU usage rather than latency,
or they impose high overhead through static timestamp instrumentation.

13



1 Introduction

To address CPU congestion and lock contention, we introduce Breakwa-
ter, a novel overload control for microsecond-scale RPCs featuring credit-
based admission control and delay-based AQM. Breakwater decides whether
to accept additional incoming load using one of two optional congestion sig-
nals: request queueing delay, which is rapid but only effective for CPU
congestion, and performance-based efficiency metric, which operates more
slowly but is applicable to both CPU congestion and lock contention. Our
results demonstrate that Breakwater adeptly manages intermittent excess
load, ensuring that tail latency remains within controlled bounds under
both CPU congestion and lock contention.

To identify the specific functions responsible for high tail latency, we
developed LDB, a tail latency debugging tool. LDB facilitates low over-
head latency profiling without code modifications, based on the observation
that the call stack remains the same while a thread is executing the same
function. Additionally, by utilizing optional request tagging supplied by
developers, LDB can reconstruct a detailed timeline for a request. This
timeline includes intricate details such as context switches and inter-thread
interactions, allowing for a more precise understanding of the latency be-
havior.

In the subsequent chapters, we will discuss Breakwater (Chapter 2) and
LDB (Chapter 3) in detail. Chapter 4 discuss the future work, and Chap-
ter 5 concludes with a summary of the key insights presented throughout
the thesis.
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2 Breakwater: Overload
Control for µs-scale RPCs

2.1 Introduction

Modern datacenter applications are comprised of an interconnected set of
microservices [26, 37, 103], utilizing Remote Procedure Calls (RPCs) to fa-
cilitate communication between them. These microservices often operate
under stringent Service Level Objectives (SLOs), with some requirements
even scaled down to microseconds with in-memory operations [29, 35, 43,
110], specialized hardware, and faster I/O. While recent advances in operat-
ing systems [76] and network hardware [107] have allowed these demanding
SLOs to be met under typical load conditions, the challenge to adhere to
these requirements becomes markedly difficult when the server’s load nears
or exceeds its capacity.

One of the key objectives of datacenter operators is to maximize the uti-
lization of limited resources. Running a server near its full capacity can
lead to maximum throughput, but it also increases the risk of high tail
latency, particularly during transient overload situations when the load mo-
mentarily surpasses the server’s capacity. Such overloads can be triggered by
unpredictable changes in request arrival patterns, load imbalances, sudden
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2 Breakwater: Overload Control for µs-scale RPCs

packet bursts, or redirected traffic due to a failure. Consequently, striking a
balance between maintaining stringent SLOs and maximizing resource uti-
lization becomes a new challenge. The challenge is further complicated by
microsecond-level service times, as even slight delays or errors in making a
decision can lead to long response times or suboptimal server utilization.

The primary objective of overload control is to shed excess load to ensure
both high server utilization and low tail latency. Existing overload control
schemes can generally be grouped into two main categories. One class of
approaches involves dropping requests at the overloaded server or at its
proxy [24, 42, 48], with the most optimistic scheduling leaving overload
control task solely to the server.

Other schemes throttle clients’ request sending rates [50, 61, 75] by re-
quiring clients to probe the server’s load. Unfortunately, neither approach
is effective for handling microsecond-scale RPCs. When dealing with such
very short requests, relying on the request drop is not practical, as the
overhead is often on par with the service time of the request itself. On the
other hand, client-side rate limiting requires a real-time understanding of
server congestion to adjust rate limits accurately. However, synchronizing
the server’s congestion status between the server and the client requires a
network round-trip time (RTT), and any delay in responding to congestion
can be a substantial negative impact on performance of microsecond-scale
RPCs.

Scaling the overload control system to accommodate a large number of
clients adds another layer of complexity. The small resource requirements
of a short RPC allow a single server to process millions of requests per sec-
ond, potentially from thousands of clients [18, 62, 85]. In such a large-scale
system, many clients have sporadic and infrequent demands on a particular
server, making it challenging to set an accurate rate limit as the clients may
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2.1 Introduction

not have a fresh view of the server’s congestion. Thus, server overload can
be caused by “RPC incast” [8, 28], where a large number of clients make re-
quests simultaneously, leading to a large queue build-up at the server. Some
strategies involve probing the server directly before sending a request, but
this can create significant overhead for microsecond-scale RPCs, especially
when communication is needed for each individual request.

When multiple requests requires the same lock for processing, they con-
tend for the lock, not CPU, introducing an additional source of delay in
RPC server. However, devising a control signal that can effectively respond
to lock contention is a compounding challenge. Since existing schemes that
measure load or thread queueing delays are sensitive to overall system load,
they fall short in identifying bottlenecks at the level of individual locks.
Most existing schemes hinge on CPU congestion with queueing delay sig-
nal [70, 80] or end-to-end response time [8], but these methods falter under
lock contention, especially with blocking synchronization (e.g., mutexes)
that makes a thread yield the CPU rather than spinning on it (§2.2.3).
Such contention results in lengthy lock acquisition wait times, thereby in-
creasing tail latency and squandering valuable CPU resources.

To better understand the challenge of managing lock contention, consider
a key-value store, where the key-value pairs are grouped together based on
the hashes of their keys. Access to a bucket (i.e., a group of items with the
same hash) is protected by a bucket lock. This means that in a key-value
store, the number of locks corresponds to the number of buckets. However,
a GET request acquires only a single lock which synchronizes access to the
bucket holding the data it’s accessing. As a specific piece of data becomes
popular, the lock protecting its bucket becomes highly contended, negatively
impacting the latency of all requests attempting to access that bucket. It is
important to note that such contention and high delay impact some but not
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2 Breakwater: Overload Control for µs-scale RPCs

all of the requests the application handles. The remainder of the requests
can be accessing different buckets incurring no contention, finishing with
minimal latency.

To maintain good performance under lock contention, one must reduce
the load on the contended lock, and thus the latency of requests attempting
to acquire it. On the other hand, this should not be done in a way that
affects the throughput of requests not facing contention. The classic tension
between throughput and latency is exacerbated in this case due to the un-
predictability of request behavior: the locks accessed by a request can only
be known after the execution of the request starts. Thus, the delay faced
by different requests, that look identical when admitted to the server, can
be very different depending on whether they attempt to access a contended
resource or not. This renders overload signals that consider the overall de-
lay of requests ineffective. Furthermore, blocking locks can prevent the load
from saturating the CPU, rendering CPU congestion signals ineffective as
well.

In this chapter, we introduce Breakwater, an overload control system
for µs-scale RPCs, with particular attention to CPU congestion and lock
contention. Breakwater adopts a balanced approach, situated between opti-
mistic and skeptical scheduling. This “optimistic-enough” scheduling strat-
egy aims to provide enough load to saturate the server but without incurring
high latency. Any accidental delays that might arise from incorrect schedul-
ing decisions are managed through a request drop with AQM to ensure low
tail latency at all times.

Breakwater employs a server-driven admission control mechanism, wherein
clients are permitted to send requests only after receiving credits from the
server. Breakwater offers two modes of overload control signals: request
queueing delay and performance-driven efficiency. The request queueing
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delay signal is measured by the time from a packet arrival to a request
execution. This mode is fast-acting but limited to CPU congestion sce-
narios. On the other hand, performance-driven efficiency is measured by
the changes in system throughput relative to the changes in incoming load.
While this mode is slower to respond, it is more versatile, capable of de-
tecting a broader range of overload scenarios, including locking-related bot-
tlenecks. If an overload signal indicates that the server is not currently
overloaded, Breakwater issues more credits to the clients.

Breakwater minimizes the overhead of coordination (i.e., the communi-
cation overhead for the server to know which clients need credits) using
demand speculation. In particular, a Breakwater server only receives de-
mand information from clients when such information can be piggybacked
on requests. When all known demand is satisfied, the server distributes
credits randomly to clients. This approach does not require coordination
messages to determine demand in clients. However, demand speculation
can lead to issuing credits to clients who do not need them at that moment.
These unused credits lower server utilization. Thus, Breakwater issues ex-
tra credits to ensure high utilization. Such overcommitment introduces the
potential for queue buildup at the server if many clients with credits send
requests simultaneously (i.e., RPC incast).

With RPC incast, the tail latency can grow beyond its SLO. In addition,
because the performance-driven efficiency metric is a system-wide metric not
considering the individual lock’s contention, a hot lock can have a lengthy
waiter queue, which further increases tail latency. To ensure tail latency
stays below SLO even in such cases, we employ request drop with AQM as
a safety net. Breakwater drops the request at request queues or lock waiter
queues if it is expected to violate its SLO by waiting for the queue. In this
way, Breakwater can offer the right load to maximize a server’s throughput,
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2 Breakwater: Overload Control for µs-scale RPCs

even if some requests must be aborted before/during processing.

We implemented Breakwater as an RPC library on top of the TCP trans-
port layer. Our extensive evaluation of various workloads demonstrates that
Breakwater achieves higher goodput with lower tail latency under CPU con-
gestion and/or lock contention compared to SEDA [8] and DAGOR [70], the
best available overload control systems. For example, Breakwater achieves
6.6% more goodput and 1.9× lower 99%-ile latency with clients’ demand
of 2× capacity, compared to DAGOR with a synthetic workload in a CPU
congested scenario, and it achieves up to 1.6× more goodput with 5.7×
lower 99th percentile latency compared to SEDA with a Memcached SET-
heavy workload in a lock contended scenario. In addition, Breakwater scales
to a large number of clients without degrading its benefits. For example,
when serving 10,000 clients with Memcached, Breakwater achieves 14.3%
more goodput and 2.9× lower 99%-ile latency than DAGOR. Compared to
SEDA for the same workload, Breakwater achieves 5% more goodput and
1.8× lower 99%-ile when the clients’ demand is 2× capacity.

Breakwater has some limitations. The performance can be degraded if
there is a mismatch between the types of resources congested and the over-
load signal. It handles CPU congestion the best with request queueing delay
signal and lock contention with the performance-driven efficiency signal.
Furthermore, it requires application-level code changes to employ delay-
based AQM on the locks and to provide the logic for how to handle the
aborted request during processing (releasing acquired locks, cleaning up the
state, freeing the resources allocated, etc).
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2.2 Motivation and Background

2.2 Motivation and Background

2.2.1 Problem Definition and Objectives

Overload control is key to ensuring that backend services remain opera-
tional even when processing demand exceeds available capacity. Overload
was identified as the main cause of cascading failures in large services [48].
Transient overload can occur for a variety of reasons. For example, it may
not be cost-effective to provision enough capacity for maximum load [70].
Services can also experience unexpected overload conditions (faulty slow
nodes, thermal throttling, hashing hot spots, etc.) despite careful capacity
planning.

Without proper overload control, a system may experience congestion col-
lapse producing no useful work as the majority of requests fail to meet their
SLOs. Even when the average of clients’ demand is less than the capacity,
short-timescale bursty request arrivals can degrade latency for short re-
quests. Microsecond-timescale RPCs are much more prone to performance
degradation due to short-lived congestion than RPCs with longer service
times [68].

RPCs with microsecond-scale execution time are prevalent in modern
datacenters. Such RPCs span a variety of operations on data residing in
memory or fast storage like M.2 NVMe SSDs (e.g., key-value stores [35,
110] or in-memory databases [29, 43]). The move towards microservice
architectures has only increased the prevalence of such RPCs [26, 37, 103].
Further, a single server must process µs-scale requests at very high rates,
possibly from thousands of clients [18, 62, 85]. To cope with µs-scale RPCs,
an ideal overload control mechanism should provide the following properties:

1. No loss in throughput. An RPC server should be processing requests at its
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2 Breakwater: Overload Control for µs-scale RPCs

full capacity regardless of overload, avoiding congestion collapse. Further,
the overhead of performing the overload control must be minimal.

2. Low latency. An ideal overload control scheme should ensure that any
request that gets processed spends minimal time queued at the server. Low
queuing latency ensures that processed RPCs meet their SLOs, and is par-
ticularly important for µs-scale RPCs which tend to have tight SLOs.

3. Scaling to a large number of clients. For such short RPCs, clients with
sporadic demand consume very little resources at the server. Thus, high
server utilization requires scaling to a large number of clients. The ideal
overload control system should be resilient to “incast” scenarios when a
large number of clients send requests within a short period of time. In
particular, overload control should prevent queue build-ups that result from
incast without harming throughput.

4. Low drop rate. Dropping requests wastes resources at the server because
it must spend time processing and parsing requests that will eventually be
dropped. Furthermore, dropping requests harms the end-to-end tail latency
of RPCs, especially when network round-trip time (RTT) is comparable to
RPC execution time, making retries more expensive. Thus, overload control
should minimize the drop rate at the server.

5. Fast feedback. Clients have more flexibility to decide the next action if
they can discover when a request is unlikely to be served within its SLO.
Thus, if a server expects a request will violate its SLO, it should notify
the client as soon as possible so that it can decide an alternative action
without having to wait for the request to timeout (e.g., giving up on the
request, sending it to another replica, issuing a simpler alternative request,
degrading the quality of the service, etc. [27]).

Next, we examine existing overload control mechanisms, which were de-
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2.2 Motivation and Background

veloped for RPCs with relatively long execution times. Our goal is to un-
derstand the challenges of designing an overload control system for µs-scale
RPCs.

2.2.2 Overload Control in Practice

The fundamental concept in overload control is to shed excess load before
it consumes any resources [2]. This is typically achieved by either drop-
ping excess load at the server or throttling the sending rate of requests at
the client. We look at the performance impairments of these two popular
overload control approaches, developed for RPCs with long execution times,
when used for µs-scale RPCs.

Active Queue Management (AQM). Such approaches operate as cir-
cuit breakers, dropping requests at a server or at a separate proxy under
certain conditions of congestion. The simplest approach maintains a spe-
cific number of outstanding requests in the queue at the server, typically
manually tuned by the server operator [42, 48, 86]. More advanced algo-
rithms can improve performance and avoid the need for manual tuning. For
example, CoDel maintains the queuing delay within a specific target value,
dropping requests if the queuing delay exceeds the target [24, 42, 48]. RPC
servers are typically required to report on success and on failure to avoid
expensive timeouts [70, 86, 110]. This means that packets are processed,
and failure messages are generated for dropped requests. This overhead is
trivial when the message rate is low with a long execution time. However,
it becomes a significant overhead in the case of µs-scale RPCs.

To demonstrate the limitations of the AQM approach, we implemented
an RPC server that uses CoDel for AQM. Our main evaluation metric is the
goodput of the server, defined as the throughput of requests whose response
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Figure 2.1: Goodput of CoDel and window-based rate limiting (win-based
RL) with different clients’ demands and different numbers of
clients. It uses a synthetic workload of requests with exponen-
tially distributed service time, with a mean of 10 µs.
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time is less than the SLO. Figures 2.1 (a) and (b) demonstrate the goodput
of CoDel with different clients’ demands and different numbers of clients.
This experiment uses a synthetic workload of requests busy-running for a
exponentially-distributed service time, with a mean of 10µs, making CPU
congested as the clients’ demand exceeds the server’s capacity. The drop
threshold parameter is tuned to achieve the highest goodput given an SLO
of 200µs. As the clients’ demand increases and CPUs become congested, the
system experiences receive livelock [2], where incoming requests are starved
because the server is busy processing interrupts for new packet arrivals even
though a majority of requests are dropped at the server. As a result, less
CPU can be used for RPC execution, which leads to goodput degradation.
Goodput degrades as the number of clients increases since there are fewer
opportunities to coalesce failure messages, leading to larger overheads.

Client-side Rate limiting. In order to eliminate the overhead caused by
dropping requests at the server, some overload control mechanisms limit
the sending rate at the clients. With client-side rate limiting, clients probe
the server, detect its capacity, and adjust their rate to avoid overloading
the server [10, 50, 61, 75]. The reaction of clients to overload is delayed by
a network RTT, which can lead to long delays when the execution time of
RPCs is comparable to or less than the RTT. Further, the delay in getting
feedback increases with the number of clients; consider the impact this has
on overload control performance.

When the number of clients is small, the load generated by each individual
client is large and each client exchanges messages with the server at a high
frequency. This means that each client has a fresh view of the state of the
server, allowing it to react quickly and accurately to overload. In this case,
client-based approaches outperform AQM approaches because they have
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fresh enough information to prevent overload at the server.
As the number of clients increases, the load generated by each client

becomes more sporadic and messages are exchanged at a lower frequency
between any individual client and the server. This means that in the pres-
ence of a large number of clients, each client will have a stale or inaccurate
estimate of server overload, leading to clients undershooting or overshooting
the available capacity at the server. When many clients overshoot server
capacity, it can lead to incast congestion, causing large queueing delays.
AQM avoids high tail latency by dropping excess load at the server, leading
to AQM outperforming client-based approach for a large number of clients,
despite having less than ideal goodput.

To illustrate the limitation of client-side rate limiting with µs-scale exe-
cution time, we implement window-based rate limiting used in ORCA [75].
The mechanism is similar to TCP congestion control. The client maintains
a window size representing the maximum number of outstanding requests.
Upon receiving a response, if the response time is less than the SLO, it ad-
ditively increases the window size; otherwise, it multiplicatively decreases
the window size. Figure 2.1 (a) and (b) depict the goodput of window-
based rate limiting for exponentially-distributed service time of 10µs (SLO
= 200µs) on average. We optimized the parameters (i.e. additive factor
and multiplicative factor) to achieve the highest goodput. Window-based
schemes typically support a minimum of one open slot in the window (i.e.,
a minimum of one outstanding request at the server). This is problematic
when there is a large number of clients as each client can always send one
request, leading to incast and overwhelming the server. Rate-based rate lim-
iting [10, 50] overcomes this limitation, but it still suffers from incast with
a larger number of clients which results in high latency and low goodput.

Hybrid approaches that combine client-side rate limiting and AQM have
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request

If (condition)
datapath_1();

Else
datapath_2();

CPU
mutexes work

response

1 − 𝑝𝑝

𝑝𝑝

Figure 2.2: A simple example application with two global mutexes. With a
probability p, the request takes the first data path (red arrow).

also been proposed. We provide a more comprehensive evaluation of rate-
based rate limiting and hybrid approaches in §2.5.

2.2.3 Locking Complicates Overload Control

In modern datacenter applications, RPC requests often require blocking
synchronization (e.g., mutexes, semaphores, and conditional variables) to
serialize access to shared data. However, blocking synchronization primi-
tives can experience contention when multiple requests attempt to access
the same critical section, leading to a performance bottleneck. This is fur-
ther complicated by the fact that the locks required by each request may be
different depending on the request payload and the program’s state. This
makes it hard to know the data path a request will take before its actual
execution.

The crux of this problem is that seemingly identical requests can have
different execution paths at the server with different latency and throughput
characteristics. This unpredictable behavior makes admission control hard,

27



2 Breakwater: Overload Control for µs-scale RPCs

0

1

2

3

0 1 2 3 4 5

T
hr

ou
gh

pu
t (

kR
PS

)
Total Data path 1 Data path 2

Data path 2 saturated

0

5

10

15

0 1 2 3 4 5

p9
9 

L
at

en
cy

 (s
)

Offered Load (kRPS)

Figure 2.3: gRPC performance for the example application of Figure 2.2
(p = 20%). After acquiring a mutex, requests busy-loop for a
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age. Four cores are allocated for this experiment, one for each
data path and two to adsorb any system overhead, ensuring that
the CPU is not bottlenecked.
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leading to the question: which data path should admission control consider
when admitting new requests? To better understand this dilemma, consider
the scenario in Figure 2.2. Incoming requests can take one of two paths, each
protected with a different mutex. Requests can take the first data path with
probability p, where 0 ≤ p ≤ 1, and the second path with probability 1− p.
We implemented this simple scenario in gRPC running on Linux. Figure 2.3
shows the performance of this scenario with p = 20% under various loads
generated by client machines with an open-loop Poisson arrival process.

The existence of multiple data paths with different lock bottlenecks cre-
ates a dilemma. As shown in Figure 2.3, different datapaths are saturated
at different offered load levels. Typically, clients and servers can’t predict
whether a request will take the datapath currently bottlenecked (data path
2 in the example). Here, the admission control dilemma emerges from the
existence of multiple desirable operating points. If the operator desires low
latency for all paths, then they have to sacrifice throughput, admitting only
enough load to saturate the most congestion execution path (i.e., 1.2 kRPS
in this example). On the other hand, if they desire high throughput, then
they have to admit a high load and deal with the congested path through
other means (e.g., dropping a request after admitting it). Next, we show
that no existing overload control scheme can navigate this dilemma and
produce good results in such scenarios.

2.2.4 Existing Overload Controls Cannot Handle Lock

Contention

Overload control attempts to operate a server near its capacity with minimal
SLO violations and request drops. The basic idea behind overload control
is to keep track of the load on the server using a signal, adjusting the

29



2 Breakwater: Overload Control for µs-scale RPCs

admitted load based on that signal. Multiple signals have been proposed to
improve the accuracy of admission control, including CPU utilization [61],
end-to-end delay [8], and queuing delay [70, 80, 84]. However, none of these
signals are useful in lock contention scenarios where the operator attempts
to maximize throughput while maintaining low latency.

For example, Swift [84] and DAGOR [70] use past observations to pre-
dict the amount of queueing delay each request will face. However, in the
presence of thousands of locks, it’s unclear which queueing delay value (or
statistic), if any, can be used to perform admission control. This is because
admission control doesn’t know in advance which locks requests will access,
making it impossible to decide which value to react to without overestimat-
ing or underestimating overload. Note that any CPU-based metrics also fail
as the CPU might not be the bottleneck in lock contention scenarios.

One possible approach to handle problematic or unpredictable lock be-
havior is to leverage existing primitives like try_lock() or timed_mutex().
Specifically, such primitives will allow requests to fail, avoiding latency, if
the lock cannot be acquired due to congestion. However, overload control
schemes that rely exclusively on request drops do not scale well due to the
large overhead of packet drops. Furthermore, relying on existing primitives
is not straightforward; try_lock() is a very aggressive overload control
mechanism because it causes a request to fail on the first failed attempt to
acquire a lock. On the other hand, timed_mutex() is too relaxed, forcing
a request to wait for the full waiting time even under severe congestion
conditions.

We demonstrate the limitation of existing overload control schemes, in-
cluding the usage of try_lock(), by implementing those schemes for the
scenario described in Figure 2.2, setting the average service time to 100µs.
However, rather than using gRPC, we use our implementation of SEDA on
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Figure 2.4: Performance SEDA and trylock for the example application of
Figure 2.2 (p = 20%) with 100 µs average service time on
Shenango. Throughput and 99th percentile latency are nor-
malized by the performance of Breakwater.
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top of Shenango [76] for optimized network stack. It spawns a new thread
per incoming request. We limit the number of spawned threads to bound the
memory usage of the system. When a request is aborted, a failure message
is reported to the client. The results are shown in Figure 2.4, comparing
the throughput, tail latency, and drop rate of existing schemes, normalized
by the performance of Breakwater.

As a client-side rate limiting approach, SEDA successfully bounds the
tail latency as it throttles clients based on the measured tail end-to-end
latency. However, by considering only the tail latency, it reacts to the most
congested path, leading to poor throughput as it underutilizes the uncon-
gested path. Sharing a similar principle as AQM, using try_lock() allows
the system to achieve near-ideal latency while suffering from an extremely
high drop rate and poor throughput. This is caused by try_lock()’s ag-
gressiveness in dropping requests, wasting CPU and throughput even at
low loads. Our proposal overcomes the shortcomings of existing systems,
achieving the highest throughput while keeping the latency and drop rate
low.

2.2.5 Challenges

Existing overload control schemes, developed for long RPCs, suffer signifi-
cant performance degradation when handling µs-scale RPCs with CPU con-
gestion and/or lock contention. The fundamental challenge facing existing
schemes is the need for coordination of clients in order to schedule access to
the server under very tight timing constraints with the appropriate conges-
tion signal. This challenge is exacerbated by the following characteristics of
modern datacenter applications:

1. Short average service times. We aim to support execution times for
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RPCs on the order of microseconds. This requires devising an overload
control scheme that can react at microsecond granularity while keeping co-
ordination overheads significantly less than request service times. Achieving
this compromise is challenging, and any errors in devising or implementing
the overload control scheme can lead to either long queues and overload, or
underutilization of the server.

2. Variability in datapaths and service times. RPC execution times typically
follow a long-tailed distribution [27, 48, 71]. In addition, modern datacenter
applications have thousands of data paths with different set of lock required.
As the overload controller doesn’t know which lock a request will require in
advance, the lock queueing delay a request will face is unpredictable. The
stochastic nature of RPC latency limits the accuracy of any coordination or
scheduling at the client or server. Accurate scheduling requires knowledge
of the execution time and the datapath of each request in advance, which
is not possible because they often depend on the client’s context, data in
the request, and system’s configuration. Further, this variability creates
ambiguity for overload detection because a single request can be long enough
to cause significant queueing delay.

3. No explicit signal to indicate server overload. With the lock contention,
delay reflects the state of the most congested path, not the state of the over-
all system. On the other hand, CPU-related signal such as CPU utilization
or thread queueing delay is not helpful when the bottleneck is not the CPU.
Thus, we need a new approach to assessing the capacity of the server with
different types of bottlenecks in order to make accurate admission control
decisions.

4. Large numbers of clients. All previous challenges are exacerbated as the
number of clients increases: accurate coordination becomes more challeng-
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ing and overheads become higher (§2.5.2). Furthermore, a larger number of
clients increases demand variability because it makes the system more sus-
ceptible to bursts (i.e., many clients generating demand simultaneously).

The challenges a server overload control system faces bear some similar-
ities to those observed in network congestion control. At a surface level,
network and compute congestion can be managed by similar mechanisms,
but they each have fundamentally different requirements. Both are nec-
essary to achieve good performance. Network congestion control aims to
maintain short packet queues at switches while maximizing network link
utilization. By contrast, overload control aims to maintain a short queue-
ing delay at the RPC server while maximizing CPU utilization. There are
two critical differences between these problems: (a) RPC processing often
has high dispersion in request service times with diverse datapaths while
packet processing times are almost constant, and (b) client-side demand can
fluctuate more significantly at the RPC layer because clients may give up
after a timeout or choose to send an RPC to a backup server. On the other
hand, once a network flow starts, it generally completes. With such high
variability in processing time, datapath, and demand, designing an over-
load control system requires overcoming different challenges than a network
congestion control system.

2.2.6 Breakwater Approach

Breakwater begins with insights from receiver-driven mechanisms proposed
in recent work on datacenter congestion control. In receiver-driven conges-
tion control, a receiver issues explicit credits to senders for controlling their
packet transmissions, which provides better performance than conventional
sender-based schemes [54, 55, 66]. Inspired by this line of work, our design
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has the following components:
1. Explicit server-based admission control: A client is only allowed
to send a request if it receives explicit permission from the server. A server-
based scheme allows for coordination that is based on the accurate estima-
tion of the state of the server. Explicit admission control means that the
load received by the server is completely controlled by the server itself. This
allows for more accurate control that maintains high utilization and low la-
tency. Server-based admission control can add an extra RTT for a client to
request admission. We avoid this through piggybacking and overcommitting
credits, as detailed later.
2. Demand speculation with overcommitment: The server requires
knowledge of clients’ demand in order to decide which client should be per-
mitted to send requests. This is comparable to the need for clients to know
about the state of the server in client-based schemes. Exchanging such infor-
mation introduces significant overhead as the number of clients increases.
Furthermore, as the execution time of RPCs decreases, the frequency of
exchanging the demand information increases, further increasing overhead.
The key difference between server-based schemes and client-based schemes
is that we can relax the need for the server to have full information about
clients’ demand without harming performance. In particular, we allow the
server to speculate about clients’ demand and avoid lowering server uti-
lization by allowing the server to overcommit, issuing more credits than its
capacity.
3. AQM: Due to overcommitment, the server can occasionally receive
more load than its capacity. In addition, with a lock contention, overload
controller can admit more load even when the most congested datapath
becomes congested to improve the server utilization. Thus, we rely on
AQM to shed the excess load in both the request queues and the lock
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Figure 2.5: Breakwater Overview

waiter queues. In our scheme, a request is dropped at a last resort when it
is expected to violate its SLO.

2.3 System Design

We present Breakwater, a scalable overload control system for µs-scale
RPCs. Figure 2.5 depicts an overview of the operation of a Breakwater
server. A new client joining the system sends a register message to the
server, indicating the number of requests it has in its queue. The client
piggybacks its first request to the registration message. The server adds the
client to its client list, and if it is not overloaded it executes the request.
The server then replies to the client with the execution result or a failure
message. The server piggybacks with the response any credits it issued to
the client depending on the demand indicated by the client. The client is-
sues more requests depending on the number of credits it received. When
the client has no further requests, it sends a deregister message to the server
returning back any unused credits.

For the rest of the section, we present how Breakwater detects overload
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and how it reacts to it. In particular, we present how a server determines
the number of credits it can issue, how to distribute them among clients,
and how clients react to credits or the lack thereof.

2.3.1 Overload Detection

Breakwater offers two distinct options for overload signals, each suited to
different types of congestion. For CPU congestion, request queueing delay
is utilized as an overload signal. It is both rapid and robust to noise, but it
is confined solely to scenarios involving CPU congestion. As an alternative,
performance-driven efficiency is employed to detect a broader spectrum of
overload scenarios, including lock contention. While this is more versatile,
accommodating more general overload conditions, it is comparatively slower
and more susceptible to noise.

Detecting CPU Congestion with Reqeust Qeueuing Delay

There are multiple signals we can utilize to determine whether CPUs are
congested. CPU load is a popular congestion signal—it is often used to
make auto-scaling decisions in cloud computing [78]. However, using CPU
utilization as a signal does not allow an overload controller to differentiate
between the ideal scenario of 100% utilization with no delayed RPCs and a
livelock state.

Another potential congestion signal is queue length at the server. A
similar signal is widely used in network congestion control [17, 46]. Unfor-
tunately, when RPC service times have high dispersion, queue length is a
poor indicator of request latency. A more reliable signal is queuing delay,
as it is accurate even under RPC service time variability. Furthermore, it
is intuitive to map a target SLO to a target queueing delay at the server.
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Thus, Breakwater uses queuing delay as its congestion signal to detect CPU
congestion.

Effective overload control requires accurate measurement of the queuing
delay signal. In particular, the signal should account for the sum of each
of the queueing delay stages a request experiences, ignoring non-overload-
induced delays. This ensures that the system only curbs incoming requests
when it is overloaded. This is especially critical for microsecond-scale RPCs,
as they leave little room for error.

Breakwater has two types of queues that grow with CPU congestion.
Packets are queued while they await processing to create a request. Then,
threads created to process requests are queued awaiting execution. Break-
water tracks and sums queuing delay at both of these. In particular, for
every packet queue and thread queue, each item (e.g., a packet or a thread)
is timestamped when it is enqueued. Each queue maintains the oldest times-
tamp of enqueued elements in a shared memory region, and this timestamp
is updated on every dequeue. When the delay of a queue needs to be calcu-
lated, Breakwater computes it by taking the difference between the current
time and the queue’s oldest timestamp. We use this approach instead of
measuring explicit delays of each request (i.e., the timestamp difference be-
tween request arrival and the request execution) to minimize noise in the
queueing delay signal with interference, context switch, and interrupts.

There are multiple sources of delay that are not caused by CPU conges-
tion. For example, long delays due to head-of-line blocking do not indicate
a thread is waiting for resources, but rather it is a sign of poor load bal-
ancing. Accurate queueing delay measurement requires the system to avoid
such delays. We find that the biggest source of such delays is the threading
model used by the system. Our initial approach for developing Breakwater
relied on the in-line threading model [32, 35] where a single thread han-
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dles both packet processing and request processing. This choice was made
as the in-line model provides the lowest CPU cost. However, it leads to
head-of-line blocking as a single request with a large execution time can
block other requests waiting at the same core. The alternative is relying
on the dispatcher threading model [43] where a dispatcher thread processes
packets and spawns a new thread for request processing incurring inter-
thread communication overhead. However, this overhead is minimal when
the dispatcher model is implemented using lightweight threads in recently
proposed low-latency stacks (e.g., Shenango [76] and Arachne [67]). Thus,
Breakwater employs the dispatcher model for request processing.

Detecting Lock Contention with Performance-driven Efficiency

There is a fundamental tradeoff between throughput and drop rate in the
presence of unpredictable synchronization. To achieve high throughput,
clients should offer enough load for the server to fully utilize its uncon-
tended data paths. Unfortunately, this permits some congestion to occur
in its contended data paths. Thus, our high-level strategy is to use an
admission control scheme that admits enough load to keep all data paths
operating at full capacity, combined with an Active Queue Management
(AQM) mechanism that drops excess load on the contended data paths.
This option of overload signal draws insight from network congestion con-
trol algorithms like PCC [39]. Specifically, it does not depend on a specific
system’s state. Rather, it observes the impact of its current admission rate
on the behavior of the system, admitting more load only when it improves
overall system performance.

Our goal is to develop an admission control algorithm that allows a server
operator to navigate the tradeoff between throughput and drop rate. Note
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that the admission control algorithm should support scaling to a large num-
ber of data paths. Thus, we avoid developing an overload signal that has
to take into account the state of every data path in the server.

Intuition. To better understand the intuition behind our overload signal,
we go back to the setup in Figure 2.2. Specifically, we rerun the experiment
discussed in §2.2.4. However, we use a smaller service time per request
(10µs rather than 100µs) because these results help to make our point
clearer. Moreover, we don’t use any admission control scheme but rely on
the AQM scheme, discussed in the next section, to keep latency bounded.
The results are shown in Figure 2.6. The design of our admission control
scheme stems from observing that as the load increases, the system operates
in four different phases:
Phase I (uncongested) is the phase where none of the locks or CPUs
is congested. Throughput grows linearly with load increases because the
system has capacity to handle all incoming demand. Further, tail latency
increases only marginally because of bursts in the queue caused by the
variable request arrivals, modeled as a Poisson arrival process. With no
congestion, AQM does not drop the requests.
Phase II (partially congested) is the phase where a subset of locks are
contended. As load increases, throughput increases sub-linearly because the
system has capacity to handle only a fraction of incoming demand (i.e., the
uncongested path still has capacity). Incoming requests that take the con-
gested path will face high queueing delay, leading AQM to start dropping
requests while keeping the tail latency near the target value. To generalize,
different applications will produce a different concave line like that shown
in Figure 2.6(a), where the slope of the curve decreases as more paths be-
come congested. The exact shape of the curve depends on the number of
congested paths, and their capacities along with the load.
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Figure 2.6: Performance of the application in Figure 2.2 (p = 20%) with
10µs average service with the latency bounded by ASQM.
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Phase III (congested) is the phase where all the data paths become con-
gested. Thus, as the load increases, the throughput doesn’t change. How-
ever, the increase in load increases CPU utilization because of the increase
in network processing load and the increasing overhead of dropping requests.
Eventually, the CPU also becomes congested, increasing tail latency.
Phase IV (congestion collapse) is the phase where the system enters a
livelock state, spending more time dropping requests than processing them.
During that phase, throughput degrades and latency keeps increasing.

Overview. Admission control should bound the incoming load to make
the server operate in Phase II. Note that the values of latency, drop rate,
and CPU utilization do not help identify the phase in which the server op-
erates. However, by observing the slope of the throughput curve, one can
identify the boundaries of Phase II. Specifically, Phase II starts when the
slope of the throughput curve drops from 1 (i.e., the system can no longer
handle all incoming requests) and ends when the slope reaches 0 (i.e., the
system can no longer handle any additional incoming requests). A server
operator that’s interested in achieving a near-zero drop rate would operate
the server at the leftmost edge of Phase II, where the slope of the throughput
curve is slightly lower than one. On the other hand, a server operator that’s
interested in achieving the highest possible throughput would operate the
server at the rightmost edge of Phase II, where the slope of the throughput
curve is slightly higher than zero. The server operator can operate between
those two points by choosing desired slope value. Additionally, the opera-
tor could specify the region of operation further by capping the maximum
allowed drop rate.

We propose a performance-driven admission control algorithm with two
parameters: efficiency threshold (te) and maximum drop rate (td). The
efficiency threshold represents the target operating point on the through-
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put curve in terms of the slope of the curve at that point. Specifically, te
takes values between zero and one, with zero representing the highest pos-
sible throughput, and one representing zero drop rate. The maximum drop
rate, td, allows a service operator to cap the drop rate at the expense of
throughput to reduce the expected number of request drops. Breakwater
uses the maximum drop rate in addition to the efficiency threshold to de-
termine whether to accept more incoming load. Breakwater judges an RPC
server to be overloaded, accepting no further load, if throughput improve-
ment with additional load is less than the efficiency threshold or if the drop
rate exceeds the maximum drop rate.

2.3.2 Overload Control

During overload, the system has to decide which requests to admit for pro-
cessing and which requests to drop or possibly queue at the client. In this
section, we explain our design for Breakwater’s approach to overload con-
trol.

Server-driven Credit-based Admission Control

A Breakwater server controls the admission of incoming requests through
a credit-based scheme. Server-driven admission control avoids the need for
clients to probe the server to know what rate to send at. It also allows the
server to receive the exact load it can handle. A credit represents availability
at the server to process a single request by the client that receives the credit.
A Breakwater server manages a global pool of credits (Ctotal) that is then
distributed to individual clients. Ctotal represents the load the server can
handle while maintaining its SLO.
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With request queueing delay as the overload signal, Breakwater adjusts
Ctotal such that the measured queuing delay (dm) remains close to a target
queuing delay (dt) or measured efficiency value (e), which is set based on the
SLO of the RPC. Every network RTT, Breakwater updates Ctotal based on
the measured queuing delay (dm). If dm is less than dt, Breakwater increases
Ctotal additively.

Ctotal ← Ctotal +A (2.1)

Otherwise, it decreases Ctotal multiplicatively, proportional to the level of
overload.

Ctotal ← Ctotal ·max(1.0− β · dm − dt
dt

, 0.5) (2.2)

Note that A controls the overcommitment and aggressiveness of the genera-
tion of credits. On the other hand, β controls the sensitivity of Breakwater
to queue build-up. We explain how we select A and β in the next section.

With performance-driven efficiency as the overload signal, the server mea-
sures its efficiency (the change in throughput divided by the change in ad-
mitted load). If measured efficiency is less than the efficiency threshold
(te), the server reduces the credit pool size, reducing the admitted load;
otherwise, it increases the credit pool size. In particular, the server op-
erates in iterations, each lasting a few end-to-end RTTs.1 We measure
the end-to-end RTT with the elapsed time between the credit issue and
the successful response return which is tracked with an 8B unique credit
ID. The server keeps track of the number of admitted requests from the
current iteration and the previous iteration, incur and inlast, respectively.
It also keeps track of the current throughput and the throughput in the
previous iteration, outcur and outlast, respectively. The efficiency metric

1We found that four RTTs allows for accurate measurement of all parameters while
allowing for fast reaction to changes in the workload.
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e = (outcur − outlast)/(incur − inlast) is compared to the efficiency threshold
te. The server continuously monitors the drop count dropcur and decreases
the admitted load if dropcur exceeds td · incur. Breakwater uses additive
increase / multiplicative decrease (AIMD) for credit management due to its
simplicity. The details of the algorithm are shown in Algorithm 1.

Once Ctotal is decided, credits are distributed to clients. When Ctotal in-
creases, new credits are issued to clients by piggybacking the issued credits
to response messages sent to the clients. Explicit credit messages are only
generated when piggybacking is not possible (i.e., server has no messages
bound for the client). When Ctotal decreases, the server does not issue addi-
tional credits to the clients, or if the clients have unused credits, the server
sends negative credits to revoke the credits issued earlier. The server can
tell how many unused credits each client has by keeping track of the num-
ber of credits issued and the number of requests received. In the following
section, we explain how Breakwater decides which client should be issued
credits.

Demand Speculation with Overcommitment

There is a tradeoff between accurate credit generation and messaging over-
head. Choosing which client should receive a credit can be simply deter-
mined based on the demand at the client. This requires clients to inform
the server whenever their number of pending requests changes. The server
can then select which clients to send a credit to based on demand. This
ensures that all issued credits are used, allowing the server to generate cred-
its that accurately represent its capacity. However, as we scale the number
of clients, the overhead of exchanging demand messages overwhelms the
capacity of the server.
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Algorithm 1 Credit management with performance-driven efficiency
1: te: efficiency threshold
2: td: maximum drop threshold
3: C: the size of credit pool
4: in{last,cur}: # of incoming requests in {last, current} iteration
5: out{last,cur}: # of outgoing responses in {last, current} iteration
6: dropcur: # of request drops in current iteration
7: a: increment step size
8: d: multiplicative decrement factor
9:

10: repeat Every 4 * end-to-end RTT
11: if dropcur > td · incur then
12: Ctotal ← (1− d) · Ctotal

13: else if (incur − inlast)(outcur − outlast) > 0 then
14: if |outcur − outlast| > te · |incur − inlast| then
15: Ctotal ← Ctotal + a
16: else
17: Ctotal ← (1− d) · Ctotal

18: end if
19: else
20: Ctotal ← (1− d) · Ctotal

21: end if
22: Ctotal ← max(Ctotal, Cmin)
23: Ctotal ← min(Ctotal, Cmax)
24: inlast ← incur

25: outlast ← outcur
26: until Application exits
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In our design of Breakwater, we choose to eliminate the messaging over-
head completely. A client notifies the server of its demand only if the de-
mand information can be piggybacked on a request (i.e., the client already
has a credit and can send a request to the server). The server therefore does
not have accurate information about clients with sporadic demand as they
can’t update the server as soon as their demand changes. Thus, Breakwa-
ter speculatively issues credits based on the latest demand information even
though it may be stale. Speculative generation of credits means that some
clients that receive credits will not be able to use them immediately. If
credits are generated to exactly match capacity, the server may experience
underutilization because some credits are left unused when they are issued
to clients with no queued requests. To achieve high utilization, speculative
demand estimation is coupled with credit overcommitment to ensure that
enough clients receive credits to keep the server utilized.

Overcommitment is achieved by setting the A and β parameters of the
admission control algorithm. In particular, we set A to be proportional to
the number of clients (nc).

A = max(α · nc, 1) (2.3)

where α controls the aggressiveness of the algorithm. Further, each client
is allowed to have more credits than its latest demand. The number of
overcommitted credits per client (Coc) is based on the number of clients
(nc), the total number of credits in the credit pool (Ctotal), and the total
number of credits presently issued to clients (Cissued).

Coc = max(
Ctotal − Cissued

nc

, 1) (2.4)
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The server makes sure that each client does not have unused credits more
than its (latest) demand plus Coc by revoking already issued credits if nec-
essary.

Further, Breakwater attempts to avoid generating explicit credit messages
whenever possible. This means that a new credit will be given to a client to
whom the server is about to send a response unless that client has reached
the maximum number of credits it can receive. Explicit credit messages are
only generated when piggybacking a credit on a response is not possible. In
the current version of Breakwater, the client that receives an explicit credit
message is selected randomly, but we expect the selection could be smarter
with per-client statistics. For example, the server can choose a client based
on its average request rate to increase the likelihood of the client using the
credit immediately.

AQM on Request Queues and Lock Waiter Queues: Active
Synchronization Queue Management (ASQM)

The drawback of credit overcommitment is that the server may occasion-
ally receive a higher load than its capacity, leading to long request queues.
In addition, with admission control with performance-driven efficiency, the
locks in the congested datapaths have long lock waiter queues. Therefore,
we need a mechanism to drop the request in the queues as a last resort to
avoid long queueing delays leading to high tail latency.

Breakwater assumes a standard queue abstraction per blocking synchro-
nization object. However, to ensure scalability, Breakwater requires no co-
ordination between queues, no per-queue parameter setting, and only min-
imal changes to the existing implementation of the synchronization API.
Specifically, ASQM caps the total time a request is allowed to spend in a
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queue, assigning each request a queueuing delay budget. The value of the
budget represents the maximum queueing delay a request can tolerate for
the server to respond within a target latency. The queueing delay budget
is computed by subtracting the 99th percentile network latency and 99th
percentile service time from the target delay of the request, leaving the slack
time that the request can afford to spend in the server.

When a request arrives at the server, Breakwater assigns it a queueing
delay budget. Before placing the request in each queue for a contended
resource, it first checks the instantaneous queueing delay of the queue and
drops the request if the queueing delay is larger than the request’s remaining
queueing delay budget. After the request is dequeued, it deducts the queue-
ing delay it incurred from its budget. The queueing delay is measured by
computing the difference between the current timestamp and the enqueue
timestamp of the oldest item in the queue. In this chapter, we only con-
sider the runnable thread queue in the CPU scheduler and the wait queues
for blocking synchronization primitives. However, we believe the same idea
can be applied to other queues for contended blocking interfaces such as
blocking I/O.
Target delay vs. SLO. It’s critical to note that the target delay used
to compute the queueing delay budget is different from the RPC’s Service
Level Objective (SLO). The target delay is a per-server metric: a single
server should finish a request or report failure within the target delay. On
the other hand, an SLO is a per-request metric: a request of a specific type
should finish within its SLO, taking into account that multiple attempts at
multiple servers might be needed for the request to succeed. In Breakwater,
the target delay is set by default to SLO divided by the maximum number
of retries.
Handling dropped requests. Upon a request drop, the server returns
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a failure message immediately to the client. At the server, a request drop
incurs some CPU overhead to partially process the request and generate
the failure message. Further, the failure message and retransmission of the
request can incur networking overhead. If the overhead of dropping requests
is large, a service operator can reduce the drop rate by choosing a higher
value for the efficiency threshold (te), sacrificing throughput. At the clients,
the dropped request may be handled in various ways: retransmission to an-
other replica, triggering failure handling operations (e.g., online banking
transaction), or degrading the quality of the response (e.g., search). For
systems with replication and auto-scaling, retransmission is the most com-
mon failover mechanism. For the rest of this chapter, we focus on scenarios
where an overloaded server has a non-overloaded replica which can serve
dropped requests.

Retransmission of dropped requests introduces additional latency, inflat-
ing the overall delay faced by such requests, potentially harming their SLOs.
Breakwater drops requests before they consume their delay budget. Thus,
clients receive failure messages within the target delay. In the worst case,
for each retransmission, a request will be delayed by at most the target
delay (§2.5.3). Alternatively, if the SLO is tight, the client can send tied or
hedged requests to multiple replicas to avoid the retransmission delay but
incur the cost of coordination overhead and/or CPU wasted by duplicate
executions [27].

2.3.3 Breakwater Client

Breakwater allows a client to queue requests if it does not have a credit for
it. Client-side queuing is critical in a server-driven system as the client has
to wait for the server to admit a request before it can send it. However,
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if the client queue is too long, the request will experience high end-to-end
latency. In Breakwater, in order to achieve high throughput and low end-to-
end latency, we allow requests to expire at the client. The request expiration
time is set based on its SLO.

When a client receives credits, it can immediately consume them if its
queue length is equal to or larger than the number of credits it receives. Due
to overcommitment, a client can receive credits which it cannot immediately
consume (cunused). When a client receives negative credits with decreased
Ctotal at the server, the client decrements cunused. However, if a client has
already consumed all of its credits (i.e., cunused = 0), no action is taken by
the client.

2.4 Implementation

Breakwater requires a low-latency network stack in order to ensure accurate
estimation of the queuing delay signal. This requires minimal variability in
packet processing and no head-of-line-blocking between competing requests.
We use Shenango [76], an operating system designed to provide low tail
latency for µs-scale applications with fast core allocations, lightweight user-
level threads, and an efficient network stack. Shenango achieves low latency
by dedicating a busy-spinning core to reallocate cores between applications
every 5 µs to achieve high utilization and minimize the latency of packets
arriving into the server.

We implement Breakwater as an RPC library on top of the TCP transport
layer. Breakwater handles TCP connection management, admission control
with credits, and AQM on the request queue at the RPC layer. Further-
more, Breakwater extends Shenango’s synchronization library to implement
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ASQM, facilitating the adoption of Breakwater to Shenango applications.
Breakwater abstracts connections and provides a simple individual RPC-
oriented interface to applications, leaving applications to only specify re-
quest processing logic. Breakwater provides a single RPC layer per applica-
tion (i.e., overload signal, credit pool, etc.) regardless of the number of cores
allocated to the application and the number of clients of that application.
A request arriving at a Shenango server is first queued in a packet queue.
Then a Shenango kernel thread processes packets and moves the payload
to the socket memory buffer of the connection. Once all the payload of a
request is prepared in the memory buffer, a thread in Breakwater parses the
payload to a request and creates a thread to process it. Threads are queued
pending execution, and when they execute, they execute to completion.
Threading model. As explained earlier, Breakwater relies on a dis-
patcher threading model for accurate queueing delay measurement. A
Breakwater server has a listener thread and the admission controller thread
running. When a new connection arrives, the listener thread spawns a re-
ceiver thread and a sender thread per connection. Receiver threads read in-
coming packets and parse them to create requests. After parsing a request,
AQM is performed, dropping requests if the current request queueing delay
is greater than the request’s latency budget. If a request is not dropped,
the receiver thread spawns a new thread for the request. The new thread is
enqueued to the thread queue. The sender thread is responsible for sending
responses (either success or reject) back to the clients. If there are multiple
responses, the sender thread coalesces them to reduce the messaging over-
head. For all threads in Breakwater, we use lightweight threads provided
by Shenango’s runtime library.
Queueing delay measurement. Breakwater needs to measure instan-
taneous queueing delay to compare it against a request’s remaining budget.
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We instrument the request queues and the lock waiter queues to measure
the queueing delay. When a thread is enqueued to a queue, Breakwater
timestamps the request. When a queue is queried for the queueing delay,
it returns the difference between the current timestamp and the enqueue
timestamp of the oldest thread in the queue. Using an efficient hardware
timestamp read function, Breakwater can measure the queueing delay with
little overhead.
Performance-driven efficiency measurement. With the efficiency
as the overload signal, Breakwater adjusts the credit pool size, once every
iteration, based on five measures of efficiency and drop rate: incur, outcur,
dropcur, inlast and outlast. The measures are updated (i.e., current measures
are reset after their values are assigned to the last measures) after one end-
to-end RTT from the time the credit pool size is updated to accurately
reflect performance during an iteration. This period is selected because the
incoming load changes in correspondence to the new pool size after at least
one end-to-end RTT.
Lazy credit distribution. The admission controller updates Ctotal every
RTT. Once the credit pool size is updated, the admission controller can
re-distribute credits to clients to achieve max-min fairness based on the
latest demand information. However, this requires the admission controller
to scan the demand information of all clients, requiring O(N) steps. To
reduce the credit distribution overhead, Breakwater approximates max-min
fair allocation with lazy credit distribution. In particular, Breakwater delays
determining the number of credits a client can receive until it has a response
to send to that client. The sender thread, responsible for sending responses
to a client, decides whether to issue new credits, not to issue any credits, or
to revoke credits based on Cissued, Ctotal, and the latest demand information.
It first calculates the total number of credits the server should grant to client
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x (cnewx ). If Cissued is less than Ctotal, cnewx becomes

cnewx = min(demandx + Coc, cx + Cavail) (2.5)

where demandx is the latest demand of client x, cx is the number of unused
credits already issued to client x and Cavail is the number of available credits
the server can issue (Cavail = Ctotal−Cissued). If Cissued is greater than Ctotal,
cnewx becomes

cnewx = min(demandx + Coc, cx − 1) (2.6)

The sender thread then piggybacks the number of credits newly issued for
client x (cnewx − cx) to the response. It also updates cx to cnewx and Cissued

accordingly.
Latency-aware Active Synchronization Queue Management (ASQM)
API. Breakwater provides the following latency-aware APIs to enable
ASQM:

bool mutex_lock_unless_congested(mutex_t *);

bool condvar_wait_unless_congested(condvar_t *, mutex_t *);

These interfaces are similar to those of a try_lock(), but their behavior
is different. If the queueing delay of a blocking critical section exceeds a re-
quest’s queueing delay budget, it returns false without waiting. Otherwise,
it returns true after successfully acquiring the lock. An application devel-
oper can leverage the existing synchronization API provided by Shenango,
including mutex_lock() and condvar_wait() for parts of the program that
cannot handle dropping. For example, a maintenance thread running in the
background may need to acquire a lock no matter how long it has to wait.
Identifying contended locks. In order to get the full performance ben-
efits of Breakwater, developers must identify all the contended locks to
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replace with Breakwater’s ASQM APIs. A developer needs to hypothesize
which locks are likely to be contended based on the application-specific
knowledge and run experiments to verify which locks introduce a large
queueing delay with per-lock queueing delay measurements. This process
requires iterating multiple times until all the contended locks are identified
and their code is modified to use the Breakwater API. Alternatively, a de-
veloper can use high-resolution latency profilers [91] to identify contended
locks.

Application modification. Enabling Breakwater requires replacing block-
ing synchronization primitives with the ones provided in the Breakwater
API. Further, Breakwater allows requests to be dropped after they have
been partially processed by the server, potentially modifying some states
or reserving some resources. Thus, enabling Breakwater requires the ap-
plication to perform all necessary clean-up after a request is dropped (e.g.,
freeing memory it allocated to the request and releasing other locks the re-
quest currently holds). However, the complexity of handling request drops
can be significantly reduced by utilizing features of modern programming
languages, such as RAII in C++ with smart pointers and scoped locks.

2.5 Evaluation

Our evaluation answers the following questions under two different bottle-
necks: CPU congestion and lock contention. With CPU congestion scenar-
ios, we use request queueing delay as the overload signal (§ 2.5.2); with lock
contention scenarios, we use performance-driven efficiency (§ 2.5.3) unless
otherwise noted.

1. Does Breakwater achieve the objectives of overload control defined in
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§2.2 even given tight SLOs?
2. How much code change is required?
3. Can Breakwater maintain its advantages regardless of load character-

istics (i.e., average RPC service time and service time distribution)?
4. Can Breakwater effectively handle CPU congestion and lock con-

tention within an application?
5. Can Breakwater scale to large numbers of clients?
6. Can Breakwater react quickly to a sudden load shift?
7. What is the impact of Breakwater’s key design decisions: demand

speculation and credit overcommitment?
8. How sensitive is Breakwater’s performance to different parameters?
9. What are the limitations of Breakwater?

2.5.1 Evaluation Setup

Testbed: We use 11 nodes from the Cloudlab xl170 cluster [72]. Each
node has a ten-core (20 hyper-thread) Intel E5-2640v4 2.4 GHz CPU, 64GB
ECC RAM, and a Mellanox ConnectX-4 25Gbps NIC. Nodes are connected
through a Mellanox 2410 25Gbps switch. The RTT between any two nodes
is 10µs. We use one node as the server and ten nodes as clients. The
server application uses up to 10 hyper-threads (5 physical cores) for pro-
cessing requests, and the client application uses up to 16 hyper-threads (8
physical cores) to generate load. All nodes dedicate a hyper-thread pair for
Shenango’s IOKernel.
Workloads: We evaluate Breakwater under CPU congestion (§ 2.5.2)
and lock contention (§ 2.5.3) using three applications: 1) a synthetic ap-
plication with its execution time drawn from an exponential distribution,
2) Memcached, a latency-sensitive in-memory key-value store that exhibits
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both locking bottlenecks and CPU bottlenecks, and 3) Lucene, a search
application with significant lock contention overhead.

Baseline. We compare Breakwater to DAGOR [70] and SEDA [8].
DAGOR is a priority-based overload control system used for WeChat mi-
croservices. Priorities are assigned based on business requirements across
applications and at random across clients. We only consider a single appli-
cation in our evaluation. DAGOR uses queueing delay to adjust the priority
threshold at which a server drops incoming requests (i.e., requests with a
priority lower than the threshold are dropped). To reduce the overhead of
dropped requests, the server advertises its current threshold to clients, pig-
gybacked it in responses. Clients use that threshold to drop the requests.
Note that DAGOR does not drop its threshold to zero, meaning that a
request with the highest priority value (i.e., a priority of one) will never
be dropped. SEDA uses a rate-based rate limiting algorithm. It sets rates
based on the 90%-ile response time. Since we evaluate the performance
of Breakwater using the 99%-ile latency metric, we modified SEDA’s algo-
rithm so that it adjusts rates based on 99%-ile response time. We implement
DAGOR and SEDA as an RPC layer in Shenango with the same dispatcher
model as Breakwater.

Setting end-to-end SLO. We set tight SLOs to support low-latency
RPC applications. We budget SLOs based on the server-side request pro-
cessing time and the network RTT. An SLO is set as 10× the sum of the
average RPC service time measured at the server and the network RTT;
the multiplicative factor of 10 was inspired by recent work on µs-scale RPC
work [60, 71]. The RTT in our setting is 10µs, leading to SLOs of 110µs,
200µs, and 1.1 ms for workloads with 1µs, 10µs, and 100µs average ser-
vice times, respectively. These are comparable with SLO values used in
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practice [41].

Evaluation metrics: We report goodput, 99%-ile latency, drop rate,
and reject message delay. Goodput represents the number of requests pro-
cessed per second that meet their SLO. Reported latency captures all delays
faced by a request from the moment it is issued till its response is received
by the client. This includes any queuing delay at the client, communication
delay, and all delays at the server. We report the drop rate at the server
only, as it is the factor that directly impacts overall system performance.
Note that SEDA does not support any AQM at the server and has zero drop
rate in all experiments. Reject message delay represents the delay between
the departure of a request from a client and the arrival of a reject message
back to the client when that request is dropped at the server.

Parameter tuning. We tune the parameters of all systems so that they
achieve the highest possible goodput. We re-tune the parameters when we
change the average service time, service time distribution, and the number
of clients. Note that Breakwater and DAGOR do not require parameter
re-tuning for a different number of clients while SEDA does. Specifically,
we need to scale adji parameter in SEDA based on the number of clients to
get the best goodput.

For Breakwater, we set α = 0.1%, β = 2%. With the overload signal
of request queueing delay, we use dt to 40% of SLO (e.g., dt = 80µs for
exponential service time distribution with 10µs average and 200 µs SLO),
With the overload signal of efficiency, we use an efficiency threshold (te)
of 10%, a maximum drop rate (td) of 100%. We determine the queueing
delay budget for ASQM by deducting 99th percentile service time and 99th
percentile network delay (20µs) from the target delay for each workload.

For DAGOR and SEDA, which are devised for ms-scale RPCs, we scale
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down the hyperparameters from the default values. For DAGOR, we update
the priority threshold every 1ms (instead of 1 s) or every 2, 000 requests
and use α = 5% and β = 1%. We assign random priority for each request
ranging from 1 to 128, which is the default priority setting with one type
of service in DAGOR [70]. We tune DAGORq for each workload (e.g.,
DAGORq = 70µs for exponential service time distribution with 10µs on
average). For SEDA, we used the same default parameter from [8] except
for timeout, adji, and adjd. We set timeout = 1ms (instead of 1 s) and tune
adji and adjj for each workload (e.g., adji = 40, adjd = 1.04 for exponential
workload with 10µs average with 1,000 clients). AQM in Breakwater and
DAGOR drops requests right after parsing packets to requests, following the
drop-as-early-as-possible principle [2]. We run all the experiments for four
seconds. We measure steady state performance with converged adaptive
parameters by collecting data two seconds after an experiment starts.

2.5.2 CPU-bottlenecked Scenarios

In this subsection, we examine the scenarios where the CPU becomes the
bottleneck of the application. To address CPU congestion promptly and
effectively, we use request queueing delay as the congestion signal for ad-
mission control.

Performance for Synthetic Workload

Workload: We run 1,000 clients divided equally between the ten nodes in
our CloudLab setup. We generate the workload with exponential, constant,
and bimodal service time distributions with 1µs, 10µs, and 100µs average
where each client generates the load with an open-loop Poisson process.
We change the demand by varying the average arrival rate of requests at
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the server between 0.1× to 2× of server capacity. Exponential service time
distribution models applications waiting for a shared resource while busy-
spinning; constant distribution models applications with a fixed amount of
latency such as fetching value from memory or flash drive; bimodal distribu-
tion models applications that cache frequently requested values, which will
have shorter execution time compared to non-cached results. In particular,
20% of the requests take four times the average service time, and 80% of
the requests take one fourth of the average following the Pareto principle.
Overall performance: Figure 2.7 shows the performance for a workload
whose service time follows an exponential distribution with 10µs average.
The capacity of the server in this case is around 850k requests per second.

When the clients’ demand is less than the capacity, all three systems
perform comparably in terms of goodput, latency, and drop rate. The only
noticeable difference among them is that, at 700k reqs/s, SEDA has a 15%
higher 99%-ile latency than Breakwater or DAGOR. This is because SEDA
doesn’t drop requests at servers.

When the clients’ demand is around the capacity of the server, Break-
water achieves 801k requests per second for goodput (or 808k reqs/s of
throughput), which is around 5% overhead when compared to the max-
imum throughput with no overload control. Other systems have higher
overhead than Breakwater.

When the demand exceeds the capacity, incast becomes the dominant fac-
tor impacting performance. Breakwater handles incast well by preventing
clients from sending requests unless they have credits, limiting the maxi-
mum queue size. Thus, Breakwater achieves higher goodput with lower and
bounded tail latency. On the other hand, SEDA experiences high tail la-
tency because clients do not coordinate their rate increase, making multiple
clients increase their rate simultaneously and overwhelm the server. De-
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Figure 2.7: Performance of Breakwater, DAGOR, and SEDA for synthetic
workloads with the exponential distribution of 10µs average.
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layed reaction to overload does not allow SEDA to react quickly to incast.
DAGOR’s high tail latency is also explained by delayed reaction as it up-
dates its priority threshold every 1 ms or every 2,000 requests. Breakwater
is also impacted by incast due to the overcommitted credits, which lead to
increased tail latency and higher drop rate with overload. However, Break-
water relies on delay-based AQM which effectively bounds the tail latency
while maintaining a comparable drop rate to DAGOR.
Impact of Workload Characteristics: To verify that Breakwater’s per-
formance benefits are not confined to a specific workload, we repeat the
experiments with different service time distributions and different average
service time values. Figure 2.8 shows goodput and drop rate with three dif-
ferent distributions of the service time whose average is 10µs, where the load
generated by 1,000 clients is 0.9×capacity, 1.2× capacity, and 2× capacity.
The service time distributions are aligned over the x-axis in ascending order
of variance. Breakwater achieves the highest goodput regardless of the load
and service time distribution. All three systems experience small goodput
reduction with higher variance, especially when the load is 2× the server
capacity. The goodput reduction of DAGOR and SEDA comes from their
poor reaction to incast, whose size increases as the load increases. As a
result, Breakwater’s goodput benefit becomes larger as the clients’ demand
increases. Breakwater achieves 5.7% more goodput compared to SEDA and
6.2% more goodput compared to DAGOR with exponential distribution at a
load of 2× capacity. With a higher variance of the service time distribution,
the drop rate of the Breakwater tends to increase because a larger number
of credits are overcommitted with higher variance, but it is still comparable
to DAGOR.

Figure 2.9 depicts performance with an exponential service time distri-
bution and different average service times with 1,000 clients. Breakwater
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Figure 2.8: Goodput and drop rate with different service time distribution of
10µs average with 1,000 clients (The label represents the good-
put gain compared to the worst of baselines).
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Figure 2.9: Goodput and drop rate with different average service time with
1,000 clients.
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outperforms DAGOR and SEDA regardless of the clients’ demand and the
average service time. As the average service time increases, clients and
servers exchange messages less frequently, exposing the delayed reaction
problem in SEDA and DAGOR. With short service times (i.e., 1µs), clients
and servers exchange messages very frequently, giving clients a fresh view
of the state of the server in case of DAGOR and SEDA, allowing clients to
react quickly to overload. With high demand, the size of incast gets larger
which is poorly handled by SEDA and DAGOR. With clients’ demand of
2× capacity with 100µs (i.e., 180k reqs/s), Breakwater achieves 17.5% more
goodput than SEDA and 10.2% more goodput with a comparable drop rate
compared to DAGOR.
Scalability to a Large Number of Clients: We vary the number of
clients from 100 to 10,000 with synthetic workload whose service time fol-
lows exponential service time distribution of 10µs average. Note that the
server capacity is around 850k requests per second. Figure 2.10 depicts the
goodput with different numbers of clients. As clients’ demand nears and
exceeds the capacity, the goodput of all systems degrades as the number
of clients increases. As the number of clients increases, the size of the in-
cast increases, leading to performance degradation. This is problematic for
Breakwater as well since overcommitment can occasionally result in large
bursts of incoming requests. The performance of DAGOR and SEDA drops
more than Breakwater as the number of clients increases. This is because
each client exchanges messages with the server less frequently as the num-
ber of clients increases. The stale view of the server status leads clients to
overwhelm the server. Note that for SEDA’s best performance, we scale
the additive rate increase factor (adji) to the number of clients. This helps
mitigate any bursty behavior that can result from multiple clients sharply
increasing their rate simultaneously. A small increase factor is not practical
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for a small number of clients as it will lead to slow ramp-up of rates after
an overload, leading to lower utilization of the server. Because of this is-
sue, SEDA has a much slower convergence time to the right rate, making it
impractical for load shift scenarios as we show next.

Further, it is hard to tune SEDA dynamically. The rate control algorithm
in SEDA is implemented at the client, and dynamic tuning requires each
client to know the total number of active clients. Such a dynamic approach
will lead to performance degradation as the client will retune its parameter
to at least an RTT after the number of clients changes. The drawbacks of
such a delayed reaction can be seen in the behavior of DAGOR. Further,
exchanging such information might not feasible in practice due to messaging
overhead as well as privacy concerns (e.g., a FaaS cloud provider will not
want any of its clients to know the total number of clients). Note that even
though Breakwater also scales the number of newly issued credits to the
number of clients (Equation 2.1 and 2.3), Breakwater is server-driven, and
the server has perfect knowledge of the number of active clients at all times
with no need to expose this information outside. In SEDA, by contrast,
each client cannot have perfect knowledge of the number of active clients.
Each client would have to guess or receive feedback from the server to scale
the increment factor.
Reaction to Sudden Shifts in Demand: An RPC server may expe-
rience sudden shifts in demand for many reasons, such as load imbalance,
packet bursts, unexpected user traffic, or redirected traffic due to server fail-
ure. To verify Breakwater’s ability to converge after a shift in demand, we
measure its performance with a shifting load pattern. We use a workload
whose service time follows an exponential distribution with 10µs average
and calculate goodput, 99%-ile latency, and mean reject message delay ev-
ery 20ms. When the experiment starts, 1,000 clients generate requests at
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400k reqs/s (0.5× capacity). Then, clients double their request rate to 800k
reqs/s (0.9× capacity) at time = 2 s, then triple their demand to 1.2M
reqs/s (1.4× capacity) at time = 4 s. Clients sustain their demand at 1.2M
reqs/s for 2 seconds. Then, clients reduce their demand back to 800k reqs/s
at time = 6 s and finally to 400k reqs/s at time = 8 s. Figure 2.11 depicts
a time series behavior of all systems.

When the clients’ demand is far less than the capacity, all three over-
load control schemes maintain comparable goodput and tail latency at a
steady state. When demand increases to near server capacity, Breakwater
converges fast, exhibiting a stable behavior in terms of both goodput and
tail latency. On the other hand, DAGOR and SEDA experience higher tail
latency because of the poor reaction to the transient server overload. As the
server becomes persistently overloaded with a sudden spike at time = 4 s,
Breakwater converges quickly while DAGOR and SEDA suffer from con-
gestion collapse. Breakwater experiences a momentary tail latency increase
(reaching 1.4× the SLO) with the sudden increase of clients’ demand due to
more incast caused by overcommitted credits. However, credit revocation
and AQM rapidly limit the impact of any further incast. When demand
returns back below the capacity at time = 6 s, Breakwater doesn’t show a
noticeable goodput drop while the DAGOR and SEDA experience a tem-
porary goodput drop down to 77.5% and 82.6% of the converged goodput,
respectively.

SEDA reacts slowly to the demand spike since each client needs to wait
for a hundred responses or 1ms to adjust its rate. After the demand spikes
beyond the capacity, the server builds up long queues, and the latency goes
up beyond SLO, resulting in almost zero goodput. SEDA takes around 1.6 s
to recover its goodput. DAGOR also has the delayed reaction problem, but
its goodput converges more quickly than SEDA thanks to AQM, taking
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Figure 2.11: Goodput, 99%-ile latency, and mean rejection delay with a
sudden shift in demand with 1,000 clients.
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500ms to recover its goodput. During the congestion collapse period, the
99%-ile latency of DAGOR soars up to 300 ms and its mean delay of reject
message reaches 220ms. This is problematic as clients cannot receive the
feedback in a timely manner, making them rely on expensive timeout.
The Value of Demand Speculation: To quantify the performance bene-
fits of demand speculation, we compare the two strategies for collecting de-
mand information: demand synchronization and demand speculation. With
demand synchronization, clients notify the server whenever their demand
changes using explicit demand messages, and the server generates explicit
credit messages to clients if it cannot be piggybacked to responses. With de-
mand speculation, the server speculatively estimates client demands based
on the latest demand information and piggybacks credits to the responses
as much as possible. The load is generated by 1,000 clients where the ser-
vice time per request follows an exponential distribution with an average of
10µs. The message overhead is measured by the number of packets received
(RX) and sent (TX) at the server. With demand synchronization, both
RX and TX message overhead increase as the clients’ demand increases,
leading to goodput degradation (Figure 2.12 (a)). In particular, as shown
in Figure 2.12 (b), explicit demand and credit messages double RX and TX
message overhead below and at the capacity (i.e., 850k requests per second).
As the system gets overloaded, the overhead of demand messages keeps in-
creasing because per-client demand changes more frequently with increased
clients’ demand. Further, the overhead of generating credits contributes to
the cost of synchronization. The server sends more credit messages during
low demand as they cannot be piggybacked on responses due to low request
rates. As the load increases beyond capacity, more credits can be piggy-
backed to the responses, which results in the reduction of TX overhead.
Demand synchronization has a smaller number of overcommitted credits,
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Figure 2.12: Goodput, message overhead, and drop rate with demand spec-
ulation and demand synchronization in Breakwater.
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leading to a lower drop rate than demand speculation (Figure 2.12 (c)).
Overall, the cost of synchronization between the clients and the server is
high in terms of goodput degradation and network overhead, with the small
benefit of lowering the drop rate at the server.
Performance Breakdown: To quantify the contribution of each compo-
nent of Breakwater to its overall performance, we measure the throughput
and 99%-ile latency after incrementally activating its three major compo-
nents: credit-based admission control, demand speculation, and delay-based
AQM. The results are shown in Figure 2.13. We use the synthetic workload
whose service time is exponentially distributed with 10µs average (SLO =
200 µs). With no overload control at all, throughput starts to degrade,
and tail latency soars, making almost all requests violate their SLO as de-
mand becomes higher than server capacity. Credit-based admission control
effectively lowers and bounds the tail latency, but throughput still suffers
due to the messaging overhead. Demand speculation with message piggy-
backing reduces the messaging overhead, but it worsens tail latency due to
incast caused by credit overcommitment. By employing delay-based AQM,
Breakwater effectively handles incast, leading to high throughput and low
tail latency.
Parameter Sensitivity: Breakwater parameters are set aggressively to
maximize the goodput, resulting in a relatively high drop rate. With less
aggressive parameters, Breakwater can drop fewer requests sacrificing good-
put. Figure 2.14 demonstrates the trade-off between the goodput and the
drop rate for the workload with exponential service time distribution with
10µs average with 1M reqs/s demand from 1,000 clients. The values of pairs
of α and β are aligned in descending order of aggressiveness over the x-axis.
Breakwater achieves 0.7% of drop rate by sacrificing 2.2% of goodput (with
α = 0.1%, β = 8%) and 0.4% of drop rate by sacrificing 5.1% of goodput
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Breakwater.

(with α = 0.05%, β = 10%).

In practice, it is not easy to find the best parameter configuration for an
operational system. It is even more difficult when traffic patterns change
over time because parameter adjustments could be required to achieve the
best possible performance. Thus, it is desirable to develop systems that are
robust to parameter misconfiguration and changes in traffic patterns, pro-
viding consistently good performance even with small errors in parameter
settings. Breakwater is robust. In particular, it provides high through-
put and low tail latency despite parameter misconfiguration. We com-
pare it against DAGOR and SEDA, measuring their performance for the
same workload while varying their parameters. Specifically, we measure the
throughput and 99%-ile latency after reconfiguring the three most sensitive
parameters for each system: target delay, increment factor, and decrement
factor (dt, α, β for Breakwater; threshold of the average queueing time, α, β

74



2.5 Evaluation

for DAGOR; and target, adji, adjd for SEDA). Given the set of parameters
producing best goodput, we measure 27 data points with -10, 0, +10 µs of
target queueing delay, 0.5×, 1×, 2× of the increment factor, and 0.5×, 1×,
2× of the decrement factor. We use a synthetic workload with exponen-
tially distributed service times with 10µs average with 1,000 clients. The
results are shown in Figure 2.15 where the circles filled with light color indi-
cate the performance with the parameters tuned for the best goodput. All
configurations of Breakwater achieve comparable performance in terms of
both throughput and tail latency, achieving better throughput and latency
trace-offs and more consistent performance with different sets of parame-
ters. DAGOR tends to provide high throughput, but its tail latency is as
high as four times the SLO in the worst case. SEDA’s worst case tail latency
is lower than DAGOR, but it suffers from severe throughput degradation
when its parameters are too conservative.

Performance under Realistic Workload

To evaluate Breakwater in a more realistic scenario, we create a scenario
where one memcached instance serves 10,000 clients. We use the USR work-
load from [22] where 99.8% of the requests are GET, and other 0.2% are
SET. Each client generates the load according to an open-loop Poisson pro-
cess. We set an SLO of 50µs considering that the latency of GET operation
of memcached is less than 1µs. Figure 2.16 shows goodput, median latency,
99%-ile latency, and drop rate of Breakwater, DAGOR, and SEDA. Break-
water achieves steady goodput, low latency, and low drop rate, whereas both
DAGOR and SEDA suffer from goodput degradation with high tail latency
caused by incast when the server becomes overloaded. With clients’ demand
of 2× capacity, Breakwater achieves 5% more goodput and 1.8× lower 99%-
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ile latency than SEDA; and 14.3% more goodput and 2.9× lower 99%-ile
latency than DAGOR. Because of bimodally distributed service time with
a mix of GET and SET requests, Breakwater shows around 25µs higher
99%-ile latency than its SLO and about 1.5% point higher drop rate than
DAGOR.

2.5.3 Lock-bottlenecked Scenarios

In this subsection, we examine the scenarios where the locks are the bot-
tleneck of the application. With unpredictable lock contention, we use
performance-driven efficiency as the congestion signal to determine whether
the server is overloaded or not.

Mutex-intensive Application: Lucene

Lock contention inside Lucene: Lucene is a search engine library that
maintains two main types of structures: 1) inverted indices, called Segments,
and 2) per-term scores of all indexed documents, called TermDocs. Every
Segment and TermDocs is protected by its own mutex. Every request per-
forms a binary search over all Segments to find the documents corresponding
to its search query. Then, documents are ranked based on the information
found in the TermDocs corresponding to the identified documents.

As load increases on the server, the per-Segment lock becomes contended
because every request needs to search over all the Segments. Segments con-
taining more entries are more likely to be contended because it takes more
time to perform a binary search over their entries. Further, if a specific doc-
ument becomes popular, the per-TermDocs lock protecting its data becomes
contended.
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Figure 2.16: Memcached performance for USR workload with 10,000 clients
(SLO = 50µs).
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Application modification: We ported the C++ version of Lucene,
Lucene++ [108], to Shenango and built a simple in-memory search appli-
cation, where all the data is stored in memory with RAMDirectory. We
replaced the per-Segment lock and per-TermDocs lock with Breakwater’s
latency-aware synchronization API to allow request drops. In total, we
modified 40 LOC of Lucene++ after porting it to Shenango. Note that,
while Lucene allows for reporting partial search results, we don’t allow that
to provide a fair comparison between overload control schemes that don’t
drop requests. The response contains either the complete search result or a
failure notification.
Workload and configuration: We populate the server with a dataset of
403,619 COVID-19-related tweets [79] in English posted between 27th and
29th November 2021. The clients generate single-term search queries. The
search term (or word) is sampled from the word distribution in the data set
excluding stop words like “a”, “the”, “and”, etc. All the tweets are loaded
to the server before serving clients, and tweets are not modified or deleted
during an experiment. This workload yields an average processing time of
1.7 ms and a 99th percentile latency of 20 ms on a lightly-loaded server.
Thus, we set the target delay to 40 ms. For SEDA, we set timeout = 1 s,
adji = 0.1, and adjd = 1.3.
Overall performance: Figure 2.17 shows the goodput, 99th percentile
latency, and drop rate for SEDA and Breakwater. Note that Lucene does
not suffer from any CPU congestion. Thus, overload control mechanism
with CPU-based overload signal such as Breakwater with request queueing
delay overload signal never controls the incoming load, leading to congestion
collapse as mutexes become congested with clients’ demand exceeding 600

RPS. SEDA reduces clients’ request sending rate as soon as it measures
high latency due to a mutex congestion, reacting to the most congested
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Figure 2.17: Performance of SEDA, Breakwater with request queueing delay
overload signal, and Breakwater with efficiency overload signal
for Lucene.
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data path, which limits the system’s goodput to 500 RPS. SEDA’s tail
latency is bounded but more than 10 times higher than the target latency
because of incast. By better utilizing uncongested data paths and dropping
the excess load, Breakwater with efficiency overload signal achieves up to
3.3 times higher goodput and 17 times lower 99th percentile latency than
SEDA.

Latency-critical Application: Memcached

Lock contention inside Memcached: The key-value pairs are stored
in a giant hash table, composed of multiple hash buckets. Memcached has
two main types of locks that may be contended. First, each hash bucket is
protected by a mutex called item_lock, and this mutex may get contended
not only by concurrent accesses (i.e., reads or rights) to the same key but
also by accesses on different keys sharing the same key hash. Thus, it’s
difficult to predict which item_lock a request will need before executing it.
Second, Memcached manages its memory by assigning items memory from
a global pool, which is protected by a global lock called slabs_lock. Every
SET and UPDATE request must grab the slabs_lock to allocate memory for
the new value.

Application modification: We replaced the item_locks and slabs_lock

with Breakwater’s latency-aware mutexes. When a request is dropped,
Breakwater delivers a failure message to the client immediately. Further-
more, it cleans up the intermediate state processed by the request, freeing up
the chunk allocated to the request before the thread handling that request
exits. We don’t allow drop when a request tries to reacquire slabs_lock to
free up the memory to avoid memory leaks. In total, we modified 50 LOC
in Memcached [110], excluding the modifications to port it to Shenango.
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Workload and configuration: For Memcached experiments, we use the
VAR workload from Facebook Memcached cluster [30]. VAR is a SET-heavy
workload for server-side browser information where 82% of the requests are
SET requests. The key distribution of the workload is skewed with 10%
of the keys used by 90% of the requests. With a SET-heavy workload,
slabs_lock becomes the bottleneck as all SET requests require slabs_lock
to allocate memory region. We approximately follow the key and value size
distribution for each workload as described in [30]. We generate 100,000
key-value pairs and use the hash power of 17, providing 131,072 buckets in
the hash table, which is sufficient to avoid severe hash collisions. Since SET

requests complete within less than 1µs on average, we set the target delay
to 110µs. For SEDA, we set timeout to 1 ms, adji to 100, and adjd to 1.02.
For Breakwater, we set the initial queueing delay budget to 70µs.
Performance with a global mutex bottleneck: Figure 2.18 demon-
strates the performance of the three overload control schemes. When the
slabs_lock becomes contended with clients’ demand of more than 550

kRPS, both Breakwater with delay signal and SEDA experience a goodput
drop because of the increase in latency. As with Lucene, the admission
control of Breakwater delay signal are not triggered because the CPU is
not congested. On the other hand, SEDA suffers from incast. The goodput
of Breakwater with efficiency signal increases further by utilizing uncon-
gested data paths with GET requests achieving 1.6 times higher goodput
than SEDA and 7 times higher goodput than Breakwater. The increment
in Breakwater’s goodput is limited by the overhead of request drops. Most
of the dropped requests are SET requests, and some of them require the
slabs_lock to free the allocated memory. As more requests are dropped,
the slabs_lock becomes more contended by new SET requests that need
to allocate the memory as well as old and dropped requests that need to
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Figure 2.18: Performance of SEDA, Breakwater with request queueing delay
overload signal, and Breakwater with efficiency overload signal
for Memcached with VAR workload.
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release their memory, resulting in lower throughput of SET requests at very
high loads.
Maintaining the SLO under retransmissions: To better understand
the impact of request drops on the overall SLO, we construct a simple sce-
nario where Memcached has two replicas, but we otherwise use the same
configuration as before. When a client makes a request, it sends the request
to Server 1. If it is dropped, the client then retransmits it to Server 2 (after
receiving a failure message from Server 1). This structure is similar to how
Memcached is operated at Facebook [28] where they don’t provide a strong
consistency guarantee. Note that if both servers are overloaded, the prob-
lem ceases to be an overload control problem as the service operator needs
to allocate more servers. Thus, our experiment captures the case where
there is sufficient capacity to handle all requests, but retransmission may
still be necessary. We anticipate up to one retransmission could happen,
considering the capacity of the two servers and the demand the clients gen-
erate during the experiment, so we set the service-level objective (SLO) to
two times the single server target delay, or 220µs.

Figure 2.19 demonstrates the total goodput of both servers, the 99th per-
centile end-to-end latency, and failure message delay for the VAR workload.
When the clients’ demand exceeds 400 kRPS, Server 1 starts to drop re-
quests. Breakwater drops the requests before they wait for the contended
mutex if the delay at the mutex exceeds a request’s budget. Thus, most
of the failure messages are delivered within the target delay. Note that if
a client doesn’t receive a credit for a request within 10µs from Server 1,
it sends the request to Server 2 with the locally generated failure message.
As clients’ demand increases, the 99th percentile delay of failure messages
decreases because more requests are retransmitted to Server 2 with local
failure message. The overall 99th percentile end-to-end latency achieved by
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Figure 2.19: Service-level performance of Breakwater for the Memcached
VAR workload with retransmission.
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Breakwater is higher than the per-server target delay because some requests
need to be retransmitted. However, it is still 1.7 × lower than the SLO.

Microbenchmark

Workload and configuration: To further analyze Breakwater’s perfor-
mance, we run the synthetic application depicted in Figure 2.2. We choose
the configuration p = 50%, making both data paths equally likely to be con-
gested, to provide a best-case scenario for SEDA. We use a workload with
exponential service time distribution of 10µs. The target delay values are
200µs. For SEDA, we set timeout = 1 ms, adji = 10, and adjd = 1.04. For
Breakwater, we set the initial queueing delay budget to 134µs and 85µs,
respectively, for the two settings.

Overall performance: Figure 2.20 shows the goodput, CPU usage, 99th
percentile latency, and drop rate for a workload with 10µs average service
time. The performance is bottlenecked by the mutexes, leaving the CPU
underutilized even with a high clients’ demand. Thus, at high load, the
admission control or AQM logic of Breakwater with delay signal is not
triggered, leading to congestion collapse. SEDA limits the sending rates
of clients as soon as it measures high tail latency with a single temporarily
congested data path. Thus, SEDA’s goodput is limited to 168 kRPS leaving
the other data path uncongested. With a larger clients’ demand, SEDA
suffers from incast because 1,000 clients are each running a control loop
separately. As a result, it shows up to three times higher tail latency than
the target delay. Breakwater with efficiency signal improves goodput by
up to 32% compared to SEDA, maintaining latency within the target delay
by dropping up to 40% of incoming requests. Note that the performance
benefits of Breakwater compared to SEDA increase as p deviates from 50%,
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Figure 2.20: Performance of SEDA, Breakwater with delay signal, and
Breakwater with efficiency signal for synthetic workload with
p = 50% and 10µs average service time.
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making SEDA more conservative as it reacts to the most congested path.

Performance breakdown: We measure the performance of Breakwater
after incrementally activating its two components: the performance-driven
admission control scheme (AC) and Active Synchronization Queue Man-
agement (ASQM). We run the experiments with the synthetic application
with p = 50% and an average service time of 10µs. Figure 2.21 shows the
throughput, the goodput, the 99th percentile latency, and drop rate. With
no overload control, goodput collapses as soon as one of the data paths
becomes congested. Enabling admission control bounds the tail latency by
limiting incoming load if there is no throughput improvement. However,
when mutexes start to be congested, its goodput degrades with up to three
times higher tail latency than the target because one of the mutexes can
have a high queueing delay with the requests’ probabilistic data path selec-
tion. By employing ASQM, Breakwater ensures the tail latency does not
miss the target delay by dropping requests.

Parameter sensitivity: With efficiency overload signal, Breakwater bal-
ances goodput and drop rate using the efficiency threshold (te). To quantify
the trade-off between them, we repeat the experiment with the synthetic
application with p = 50% and the average service time of 10µs varying
the te from 1% to 50%. Figure 2.22 shows the goodput and drop rate of
Breakwater with different te values when the clients’ demand is 300 kRPS,
around 1.4 × of the capacity (consider Figure 2.21 as a reference). For all
values of te smaller than 10%, the goodput and drop rate don’t change be-
cause throughput improvements with a small te are always marginal. With
larger te values, both the goodput and drop rate decrease as admission con-
trol targets to operate the server on the left side of the Phase II region in
Figure 2.6. With te = 50%, it achieves 23% less goodput and 4 × lower
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Figure 2.21: Performance of Breakwater by incrementally applying
performance-driven admission control (AC) and ASQM with
the synthetic application with 10µs average service time.
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Figure 2.22: Breakwater parameter sensitivity (efficiency threshold, te).

drop rate than te = 1%, allowing server operators to navigate the tradeoff
between goodput and drop rate.

2.5.4 Limitations of Breakwater

Breakwater requires a correct overload signal depending on the bottlenecked
resources. Request queueing delay signal works only for CPU congestion
while the efficiency signal works for other types of bottleneck including
locks. When there is a mismatch between the bottlenecked resources and
the overload signal, Breakwater’s performance can be severely degraded. In
§2.5.3, we demonstrated that lock-bottlenecked applications can experience
congestion collapse when Breakwater uses request queueing delay as the
overload signal.

To demonstrate the performance of Breakwater with efficiency signal for
CPU bottlenecked workload, we repeat the Memcached experiment in §2.5.3
with the USR workload with efficiency overload signal, a GET-dominated
workload for user account status information where 99.8% of the requests
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Figure 2.23: Performance of SEDA, Breakwater with delay signal, and
Breakwater with efficiency signal for Memcached with USR
workload.
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are GET requests and about 20% of the keys are used by 80% of the re-
quests. With the USR workload, Memcached saturates the CPU when it’s
configured with a high enough hash power (i.e., a large number of buckets
compared to the number of key-value pairs). However, some item_locks can
still become congested intermittently because of the skewed key distribution.
Figure 2.23 shows the goodput and drop rate, comparing Breakwater with
efficiency signal to Breakwater with delay signal and SEDA. With clients’
demand of 3.6 million RPS, Breakwater with efficiency signal achieves 37%
less goodput than SEDA and 23% less goodput than Breakwater with delay
signal.

The USR workload is CPU bottlenecked, allowing CPU-based request
queueing delay signal to be effective. Efficiency signal achieves lower good-
put than delay signal due to the slow reaction of the admission control.
In particular, Breakwater with efficiency signal changes its credit pool size
every four end-to-end RTTs. On the other hand, Breakwater with delay
signal adjusts its credit pool size every network RTT. As a result, admis-
sion control with the efficiency signal reacts to both congestion and added
capacity slowly, leading to a lower goodput. SEDA achieves higher good-
put than Breakwater because of the overhead of credit management at the
server. Specifically, SEDA doesn’t add any extra logic at the server while
Breakwater performs all their admission control and AQM calculations at
the server. This overhead is significant when the request execution time is
very small. Note that increasing the number of clients from 1,000 to 10k can
lead to performance degradation in SEDA with a larger size of incast [80].
This experiment shows that Breakwater can lead to goodput degradation,
especially when there is a mismatch between bottlenecked resources and the
overload signal.
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2.6 Discussion

Auto-scaling. We do not consider auto-scaling [19, 33, 78] in this chapter,
where more resources are provisioned as load increases, as a potential so-
lution for overload control. Auto-scaling can allocate enough capacity over
time, but because it operates at the timescale of minutes, it is too slow to
resolve microsecond-scale imbalances. Furthermore, over-provisioning re-
sources can be cost-inefficient if used to handle transient spikes in demand,
such as those that occur during temporary failures [16].
Fairness. When the server has a sufficient number of credits, it tries to ap-
proximate max-min fairness when distributing credits to clients. However,
when the number of available credits is less than the number of clients,
Breakwater does not provide fairness to clients. Instead, it favors clients for
which it is currently processing requests. This allows the server to piggyback
credits to the responses and avoid sending explicit credit messages. This
preference toward a subset of clients is common in production services [70].
If a service operator wants to provide fairness among clients, the clients
receiving the most credits could be timed-out over a longer timescale, so
clients starved of credits can get a chance to send instead.

2.7 Related Work

Receiver-driven transport protocols. Homa [66], NDP [55], and Ex-
pressPass [54] schedule network packets with a receiver-driven mechanism
to achieve high throughput and low latency. While Homa and Breakwater
share some similarities including a credit-based, receiver-driven scheme and
credit overcommitment, they are different in three significant aspects. First,
Homa handles network congestion, whereas Breakwater handles server over-
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load, which means that Breakwater must handle the additional challenges
posed by overload control discussed in §2.2.5. Second, Homa relies on full
knowledge of clients’ demand, whereas Breakwater does not. Instead, the
Breakwater server speculates clients’ demand based on the latest demand
information, the number of clients, and the number of available credits to
minimize the message overhead. Third, both the motivation and the mech-
anism of overcommitment are different. Homa overcommits a fixed number
of credits to handle an all-to-all workload, where a sender may get credits
from multiple receivers and therefore not be able to send to all of them
simultaneously. In Breakwater, however, the server does not know which
clients have demand. Thus, it dynamically increases the amount of over-
committed credits until it receives sufficient requests to keep itself busy with
demand speculation.
Transport protocol for µs-scale RPCs. R2P2 [74] is a request/response-
aware transport protocol designed for µs-scale RPCs. It implements JBSQ
inside a programmable switch to better load balance requests among multi-
ple servers. R2P2 limits the number of requests in a server’s queue by explic-
itly pulling the requests from the switch. Through this mechanism, R2P2
provides bounded request queueing and low tail latency when the clients’
demand is less than the servers’ capacity. However, R2P2 does not provide
any server overload control mechanism. If the clients’ demand exceeds the
servers’ capacity, the request queue will build up at the switch, causing re-
quests to violate their SLO. SVEN [83] builds upon R2P2 by adding a server
overload control mechanism. Specifically, it drops requests at the switch if
sampled tail latency exceeds an SLO-derived threshold. SVEN avoids the
cost of request drops at the server by dropping requests early at the switch.
However, unlike Breakwater, message overhead increases as clients’ demand
increases.
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Circuit breaker in proxy. Envoy [81], HAProxy [82], NGINX [15], and
GateKeeper [12] provide circuit breaker mechanisms to prevent back-end
server overload. These proxies sit in front of a back-end server and stop
forwarding requests to the server when one of the load metrics (e.g., the
number of connections, the number of outstanding requests, the response
time, estimated load) exceeds a threshold. However, since those thresholds
must be set manually, it’s challenging to find the right threshold value that
maximizes resource utilization while keeping latency low.
Server overload control. Session-based admission control [6, 7] pre-
vents web server overloads by limiting the creation of new sessions based
on the number of successfully completed sessions or QoS metrics. However,
they are not compatible with request-response models as they cannot pre-
vent server overloads caused by a single session from a proxy that forwards
requests from multiple clients. CoDel [24] controls the queuing delay of
a server to prevent server overloads. Still, if the incoming packet rate is
high and the CPU is used more for packet processing, the server becomes
less CPU efficient and degrades throughput. ORCA [75], SEDA [8], and
Doorman [50] rate limit clients so that their sending rates do not exceed
the server capacity. Doorman requires manual setting of the server ca-
pacity threshold. Both ORCA and SEDA may suffer from long queueing
delays or under-utilization if clients make mistakes in their sending rate with
stale congestion information from the server. DAGOR [70] takes a hybrid
approach using both AQM and client-side rate limiting using adaptive pa-
rameter based on queueing delay. However, as DAGOR server updates the
congestion status with responses, clients still can undershoot or overshoot
the server capacity with stale information on server congestion when client
demand is sporadic.
Flow control. TCP flow control prevents the sender from transmitting
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more bytes than the receiver can accommodate. The objective of TCP flow
control is to avoid memory overrun at the server, not to prevent server
overload or SLO violations. More recently, an SLO-aware TCP flow con-
trol mechanism [65] was proposed where the server adjusts receive window
size in TCP header based on SLO and the queueing delay at the server.
This approach limits the “bytes” of the incoming requests to prevent server
overload, but it’s challenging to decide the appropriate receive window size,
especially when the request size is variable.

Measurement-based network congestion control. BBR [49] and
PCC [39] employ mechanisms similar to Breakwater’s performance-driven
admission control. BBR explores the maximum network bandwidth by mea-
suring the throughput with increasing window size. It concludes that the
network bandwidth has reached its maximum value if it observes less than
25% of bandwidth increase with doubled window size. Unlike Breakwa-
ter, BBR does not utilize a performance-based approach to detect network
congestion but to determine a parameter used for congestion control. In
PCC, the system operator defines a utility function (e.g., TCP friendliness,
latency, or throughput). PCC conducts multiple micro-experiments with
a randomized set of parameters to find the configuration that achieves the
highest utility. PCC-like algorithms require multiple rounds to find the
best configuration, which slows down the reaction of the algorithm to the
congestion. Unlike PCC, Breakwater deterministically modifies the credit
pool size based on the measurement, which makes its reaction to congestion
faster.
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2.8 Conclusion

This chapter describes Breakwater, a server-driven, credit-based overload
control system for microsecond-scale RPCs. Breakwater achieves high through-
put and low latency regardless of the RPC service time, the load at the
server, and the number of clients generating the load. Breakwater generates
credits based on queueing delay at the server, maintaining high utilization
by targeting non-zero queueing delay while avoiding queue buildup. To
minimize the overhead of coordination between the clients and the server,
we propose demand speculation and credit overcommitment to realize the
credit-based design for overload control with minimal overhead. By estimat-
ing clients’ demand and issuing more credits than their capacity, Breakwater
eliminates the extra messaging cost which is often required with a credit-
based approach. Additionally, Breakwater reduces its remaining messaging
overhead significantly by piggybacking demands and credits to requests and
responses, respectively. Our evaluation of Breakwater shows that it out-
performs state-of-the-art overload control systems under CPU-bottlenecked
and lock-bottlenecked scenarios. In particular, with CPU bottleneck, Break-
water achieves 25× faster convergence with 6% higher converged goodput
than DAGOR and 79× faster convergence with 3% higher converged good-
put than SEDA when the clients’ demand suddenly spikes to 1.4× capacity;
with lock contention, Breakwater achieves up to 3.3× higher goodput with
12.2× lower 99th percentile latency than SEDA when applied to Lucene, a
realistic search workload.
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3 LDB: An Efficient Latency
Profiling Tool for
Multithreaded Applications

3.1 Introduction

Modern datacenter services like search, social networks, and DNN training
operate on huge datasets with complex communication patterns and large
numbers of servers [9, 64]. Tail latency is a key challenge in this setting
because overall performance is often limited by the slowest response [27].
Despite the tremendous effort that goes into optimizing latency-sensitive
programs, operators tend to treat high tail latency as inevitable due to the
complexity of deployed programs. Therefore, the main method available to
operators today is to keep machine utilization low to control for tail latency,
wasting both power efficiency and money [14].

In this chapter, our aim is to empower developers to tackle tail latency
problems head-on by answering the following question: Can a debugging
tool identify the precise source of tail latency experienced by a request in
a server (e.g., the line of code that is responsible)? This is a significant
challenge, as the effort needed to understand tail behaviors is formidable
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with the tools that exist today. Statistical profilers (e.g., Linux’s perf-tool),
for example, have only limited utility because their method of periodic
sampling captures the average runtime of functions, which may deviate
significantly from the tail runtime. Further, they don’t account for request
semantics, so they cannot differentiate between requests running on the
critical path versus the background, making it hard to identify bottlenecks.
Instead, developers commonly hand instrument code locations that they
suspect are problematic, but they can only try a few locations at a time due
to instrumentation overhead. Thus, a typical workflow involves multiple
iterations of instrumentation location adjustment, deployment, and data
collection.

One way to avoid this tedious process would be to use a tool that can
instrument all functions at a time (e.g., XRay). However, this approach
causes significant overhead that can distort an application’s behavior. A
less invasive option would be to use hardware assistance. For example, Intel
recently introduced a CPU extension called Intel Processor Trace (Intel PT)
that records every control flow operation (calls, branches, jumps, etc.) to
an in-memory log for analysis. NSight recently demonstrated that Intel PT
can be used to derive rich tail latency insights, such as a precise timeline of
how cycles are spent handling network requests [91].

Unfortunately, Intel PT has drawbacks that make it difficult to use for
profiling latency in practice. First, Intel PT is proprietary and requires
hardware support, so it is only available on certain platforms. Second, Intel
PT generates data at an enormous rate up to more than 1GB/s, so it is only
feasible to record a few seconds of samples. Finally, Intel PT’s compression
scheme requires a software decoder that walks a program’s object code to
reconstruct its control flow. This requires several hours of processing—even
for a few seconds of data—prohibiting interactive profiling (§3.6.3).
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We present LDB, a new latency debugging tool that provides unprece-
dented visibility into the latency behavior of applications. LDB reports the
distribution of the latency of all functions in a process. Furthermore, it al-
lows developers to breakdown the latency faced by a specific request, even
when processed by multiple threads, allowing them to zoom in and identify
the code responsible for anomalous behavior. LDB provides this informa-
tion after only seconds of decoding and without significantly harming the
performance of the profiled program, enabling monitoring in production en-
vironments. In contrast to Intel PT, LDB is also hardware agnostic. In
principle, it can be ported to any architecture, and we demonstrate its use
on Intel and AMD processors.

The efficiency and portability of LDB stem from a novel, software-only
technique, called stack sampling. Unlike prior approaches, stack sampling
doesn’t record timestamps from within application threads (e.g., as obtained
by the RDTSC instruction) to an in-memory log, so it is much lighter weight
(< 0.5 ns per function call) [47, 69]. Instead, a separate stack scanner thread
polls the stack of every application thread. During each polling cycle, the
stack scanner thread performs a backtrace on each stack to inspect changes
to call frames. Intuitively, a function’s call frame will be resident on the
stack until the function returns, so the more it is responsible for latency, the
longer its call frame will remain resident. LDB exploits this to capture the
runtime of all the functions that contribute meaningfully to latency (i.e.,
those that last longer than its sub-us polling interval). As the tail behavior
involves longer function execution times, LDB is well-equipped to identify
and analyze it.

While stack sampling is based on a simple premise, we had to overcome
several challenges to make it work in practice. First, it is not possible for
one core to access another core’s stack pointer register, so we had to find an
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alternative way to locate the deepest call frame. Second, there is not enough
information available in call frames to discern between repeated invocations
of the same function so we had to find a way to detect them. Third, the stack
scanning thread could race with application threads causing it to observe
corrupted call frames, so had to develop a mechanism to detect and discard
bad samples. Finally, backtracing can cause false sharing with variables on
the stack, negatively impacting application performance, so we needed a
way to limit this overhead without sacrificing resolution. We discuss our
solution to each of these problems in §3.3.2.

In addition to efficiency improvements, LDB provides better visibility into
latency problems through event tagging, recording several types of events
with timestamps and event-specific metadata. Examples include the start
and end of requests; cross-thread interactions like locks; and the transfer of
request ownership among threads. This allows LDB to track the timeline
of each request and correlate this information across multiple threads. For
example, LDB can identify a slow function running inside a critical sec-
tion that is protected by a lock, and then tie it back to a request that is
blocked in another thread waiting to acquire the same lock. LDB also uses
event tagging to track context switching, allowing it to differentiate between
delays caused by the OS scheduler and the application itself.

We demonstrate the value of LDB by profiling two latency-sensitive ap-
plications (Memcached and Lucene) and a best-effort application, Qperf,
a throughput benchmarking tool for Fastly’s implementation of the QUIC
transport. We show that LDB allows for detecting complex interactions be-
tween threads and identifies functions that significantly impact performance
(latency and throughput). Then, we provide a thorough evaluation of the
performance of LDB when used to profile the three applications presented
in the use cases. In particular, we show that the overhead of LDB is less
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than the overhead of Coz and Xray; and comparable to the one of Intel PT
on the latest Intel architecture (Ice Lake). LDB maintains its low overhead
across Intel and AMD architectures. On the other hand, the overhead of
Intel PT increases considerably when used on older Intel architectures.

LDB has some limitations. First, it cannot capture some OS or hardware
events like traps or interrupts. Second, LDB requires programs or libraries
to be recompiled to support stack sampling, so it cannot trace function
latency for unmodified binaries or libraries. Finally, to get the best possible
visibility, LDB requires request annotations in the source code (typically just
a few lines), but it can still provide useful information including statistics
of latencies for each function without annotations.

3.2 Motivation

3.2.1 Debugging the Tail Latency

Consider the example shown in Figure 3.1, based on a pattern found in
many real programs. A request processing and background thread require
synchronized access to the same data. The request processing thread nor-
mally responds with low latency by executing request_handler(), which
adds items to a std::map. Concurrently, the background thread takes a
snapshot of the std::map every 10ms. Access to the std::map is serialized
through a std::mutex. Figure 3.2 shows a CCDF of the latency of the
request_handler() function. At the tail, its latency jumps from 1 us to
10 ms (a 10,000× increase)!

This is a challenging issue to debug because it is caused by a rare in-
teraction across two threads. LDB, however, can easily identify the root
cause. It captures everything that happened in the program and can gen-
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1 std::mutex lock;
2 std::map<int, std::string> db;
3

4 void snapshot() {
5 std::ofstream out("snapshot.txt");
6 std::lock_guard<std::mutex> g(lock);
7 for (const auto& kv : db)
8 out << kv.first << "," << kv.second << std::endl;
9 out.close();

10 }
11

12 void background_thread() {
13 while (true) {
14 snapshot();
15 usleep(10000);
16 }
17 }
18

19 void request_handler(int key, std::string& value) {
20 std::lock_guard<std::mutex> g(lock);
21 db[key] = value;
22 }
23

24 int main() {
25 std::thread bg_thread(background_thread);
26 for (int i = 0; i < kRounds; i++) {
27 int key = std::rand() % dbSize;
28 std::string value = generate_random_string();
29 request_handler(key, value);
30 }
31 }

Figure 3.1: example.cc: a simple multithreaded program where a foreground
thread handles user requests and a background thread snapshots
program state every 10 ms.
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Figure 3.3: A timeline visualization of the time spent in each function during
the longest request. The thread on the top is the mutex holder,
while the thread on the bottom is the request handler, which is
blocked waiting to acquire the mutex.
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erate a timeline visualization for each request that includes all the threads
that were involved. By plotting the longest request—an output generated
by LDB—as shown in Figure 3.3, it becomes clear that the snapshot thread
(shown on top) delayed request_handler() (shown on bottom) by hold-
ing the mutex it was trying to acquire. This suggests that tail latency can
be improved by optimizing snapshot() or reducing the size of its critical
section.

However, existing profilers struggle to debug tail latency issues like these.
For example, Figure 3.4 shows the output of perf, one of the widely used de-
bugging tools. The majority of time is spent in generate_random_string()

and other functions under request_handler(). snapshot() accounts for
only 0.6% and was buried under other 13 miscellaneous functions. This
result reveals three interesting problems of using perf for tail latency de-
bugging. First, tail behavior is amortized, so it gets buried down under
average behaviors. Second, perf is measuring where the CPU cycles go, not
how long each function takes, so it is unable to show the time spent on
blocking I/O or synchronization. Figure 3.3 and Figure 3.2 suggest that
snapshot() runs for over 10 ms and then sleeps for 10 ms, so it should
account for at least about 50% time on average. However, much of the
time spent on snapshot() is spent blocking on I/O, so perf reports only
0.62%. Lastly, perf cannot capture the interplay across threads caused by
the mutex.

Intuition. We pay attention to the observation that the metadata in x86
stack frames (e.g., the number of stack frames, return instruction pointers,
saved based pointers, etc.) remains unchanged as long as a thread is exe-
cuting a bottlenecked function. LDB takes an approach in which a separate
dedicated busy-running thread, stack scanning thread, periodically scans
these stack frames. It then measures the latency of the function call by
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Function CPU Time ▽
generate_random_string 63.75%
request_handler 7.43%
std::_Rb_tree_increment 2.82%

...(13 more functions)...
snapshot 0.62%

Figure 3.4: Perf’s output with the example application.

examining whether the metadata in the stack frame metadata stays consis-
tent. If a change is detected in this metadata, it signifies that a function
has either returned or that a new function call has been invoked.

3.2.2 Challenges

To realize this stack sampling idea entails the following challenges:

1. Finding out the most recent stack frame. In the architecture of x86 stack
frames, the stack frames form a singly linked list data structure. Starting
with the most recent stack frame, one can traverse the entire call stack
by following the saved base pointers. This traversal is necessary for LDB
to ascertain whether the stack frame metadata has been modified or not.
The location of the most recent stack frame can be retrieved from the RBP
register. However, threads other than the application thread itself cannot
access this register, making it challenging for the stack scanning thread to
determine where to commence the traversal of the stack frames.

2. Differentiating stack frames for different function calls. When function
calls are invoked within the same line of code (such as within a loop), they
may have identical metadata in their respective stack frames. This can
lead to confusion in the function call latency measurement performed by
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the stack scanning thread, as it may fail to detect any changes even when
a function has returned and a new function call has been invoked. To
accurately measure the latency of individual function calls, it is necessary
to find a way to differentiate between stack frames from distinct function
calls, even if their stack frame metadata appears the same.

3. Cache thrashing and false sharing. Stack frames are frequently accessed
by the application thread for local variables. If the stack scanning thread
accesses stack frames too often, it may lead to performance degradation
because of cache thrashing and false sharing. Stack scanning thread’s re-
peated access to stack frames causes the data to be continually invalidated
from the application thread’s cache, increasing the delay to access the stack
frame.

4. Data race for the stack frames. While the stack scanning thread is
traversing the stack frame, the stack frame can be concurrently modified
by the application thread with a function return or a new function call.
This data race for the stack frames can result in the stack scanning thread
collecting incorrect data. Consequently, it leads to inaccurate measurement
of function latencies. For precise latency measurement, we need a way to
detect and gracefully handle such data races, ensuring the integrity of the
data collected by stack scanning thread.

3.3 System Design

3.3.1 Overview

Our objective is to create a lightweight, portable latency profiling tool that
can capture fine-grained information about the time spent in each function
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Figure 3.5: The flow of events that are recorded by LDB.

in a program. Thus, the per-function cost has to be minimal. We achieve
this through two key ideas. First, we use a separate busy-polling core to
shift away the instrumentation cost that would normally be incurred inside
program threads, such as capturing timestamps and recording events to
an in-memory log. Second, we reduce the trace data generation rate by
recording only functions with call frames that are resident on the stack
for longer than the polling interval. Intuitively, very short functions do not
contribute to latency, so it is okay to not spend resources in capturing them.

Building upon these ideas, we propose a new technique, called stack sam-
pling, where a stack scanner thread repeatedly scans the stacks of appli-
cation threads. By observing the persistence of specific call frames across
multiple scans, the stack scanner thread can estimate each function’s in-
vocation latency. These invocation latencies can then be integrated with
other event sources (e.g., acquiring a mutex, starting to process a request,
spawning a thread, etc.) that are tagged with metadata and synchronized
timestamps. This enables greater visibility, such as capturing locking inter-
actions across threads.

Event recording. Figure 3.5 shows how different types of events are
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Event Category Event Code Trigger Condition Metadata

Stack samples FUNCTION A function returned

- timestamp
- thread ID

- caller’s PC
- latency
- function IP

Request

REQ_START A request started (or re-
sumed from a queue)

- request ID
(- queue address)

REQ_BLOCK A request was inserted into
a software queue

- request ID
- queue address

REQ_END A request ended - request ID
REQ_END_ALL All pending requests ended

(on this thread)

Synchronization
MUTEX_WAIT A thread waited for a mutex - mutex address
MUTEX_LOCK A thread acquired a mutex - mutex address
MUTEX_UNLOCK A thread released a mutex - mutex address

Scheduling* SCHED_SWITCH A thread was context
switched by the OS

- next thread ID
- CPU ID

SCHED_MIGRATE A thread was migrated to a
different core by the OS

- origin CPU ID
- destination CPU ID

* Scheduling events are collected by an external tool from OS.

Figure 3.6: The types of events that are tagged and recorded by LDB.

tagged and recorded by LDB. LDB has three main components that gener-
ate events. First, a stack scanner, which runs in a busy-polling thread, scans
application threads’ stack and records invocation latencies each time a func-
tion returns. Second, a shim layer intercepts common threading operations
(e.g., pthread_mutex_lock()) and records an event before forwarding the
operation to its underlying implementation. Finally, application threads
can generate events directly when they are annotated by the programmer,
such as the start and end of a request. LDB records all events to per-thread
shared-memory queues to improve scalability. An event logger, running in
a separate thread, then gathers the events and stores them to disk for later
analysis. Separately, the existing OS performance monitoring subsystem
can be used to record scheduling events (not shown) like context switches
and thread migrations [94]. Our design is extensible, and we plan to add
additional event sources in the future, such as recording delays caused by
interrupts. A listing of all the events that LDB tracks is shown in Figure 3.6.
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3.3.2 Stack Sampling

Compiler instrumentation. LDB relies on compiler instrumentation that
it inserts as small, low-overhead changes to the function calling conventions.
First, the compiler emits a frame pointer for each call frame. Normally, most
compilers optimize away frame pointers, but they are needed by the stack
scanner to backtrace the stack. While functions can be identified using the
return address saved on the call frame, this value doesn’t allow us to differ-
entiate between multiple invocations of the same function. This difference
is critical for latency debugging, as we care about the per-invocation latency
on each function, not aggregate measures like CPU time. To resolve this
problem, LDB uses generation numbers to differentiate different invocations
to the same function. If a generation number is different in an otherwise
identical call frame, LDB knows that it was a separate invocation. The
compiler appends a generation number to each call frame. The generation
number is a monotonically increasing number, derived by incrementing a
word stored in thread-local storage (TLS). Finally, the compiler records the
frame base pointer of the deepest call frame (i.e., the RBP), also placing
it in TLS. The use of TLS avoids cache contention between application
threads, allowing LDB to scale well across cores.

Sampling the stack. Figure 3.7 illustrates how the stack scanner samples
the stacks of application threads. The stack scanner runs as a separate
thread in the same process as the application, allowing it to share its address
space. The stack scanner maintains a table of the application threads that
are currently running ( 1 ). For each application thread, it fetches the frame
pointer of the deepest call frame, which the compiler stores in TLS, ( 2 )
and starts scanning the stack ( 3 ). It traverses all the call frames up to the
main function by following the stack frame pointers ( 4 ). While traversing
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Stack Scanner Thread

Per-thread scan record
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Figure 3.7: Stack Scanner Thread’s Stack Sampling.
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the stack, it collects each generation number, which is located at a fixed
offset from the current frame pointer, along with the return address of the
call frame.
Latency calculations. When the stack scanner collects information from
the stack, it updates its scan records, which are a table of metadata for each
call frame ( 5 ). If the scanner detects a new call frame, it creates a new
scan record and records the current timestamp and generation number. If
an existing scan record’s call frame is not found during the new scan, LDB
concludes that the function has returned and generates the FUNCTION
event with the generation number, latency, and return address ( 6 ). It
then removes the scan record. We now discuss the various enhancements
we made to this basic procedure to address validating call frames, avoiding
race conditions, and minimizing probing effects.
Validating call frames. Another challenge is in identifying valid call
frames. For example, even a program compiled using LDB’s compiler may
still be linked against library code that does not contain instrumentation.
Thus, some call frames may not have valid generation numbers. To detect
this, LDB reserves an additional eight bytes in the call frame, called a
canary. The canary contains a known magic value that the stack scanner
looks for before parsing the generation number. If it is missing, latency
is not reported for that function, but any parent functions that have the
canary will still be reported. To avoid pursuing invalid stack frames, LDB
stops traversing when the canary in the current stack frame is invalid, or the
next stack base pointer is invalid. Thus, LDB is guaranteed to terminate its
stack traversal. Further, it avoids segmentation faults by validating whether
a certain memory address is between the start of the stack (base pointer of
the very first stack frame recorded at thread start) and the end of the stack
(latest RBP value in the thread local storage) before reading it.
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Preventing data races. The application thread could race with stack
scanning if it calls or returns from functions while the stack scanner thread
is traversing the stack. To avoid collecting invalid call frames, the stack
scanner uses TLS data as a sequential lock, a form of optimistic concurrency
control [112]. Because the frame pointer changes with each function call or
return, and the generation number changes with each function call, TLS
data can be used to verify that the collected generation numbers are valid.
The stack scanner compares TLS data before and after each stack scan, and
if they don’t match, it discards the collected sample and tries again.

Reducing probing effects. Another potential concern is that reading
the stack could impact an application’s performance. For example, if an
application thread frequently modifies a variable stored on its stack, and it
lands in the same cache line as a call frame, this could result in false sharing
between the stack scanner and the application.

To prevent this, LDB uses TLS data to detect function calls and re-
turns, and initiates stack sampling only when they occur. This avoids all
false sharing during function execution. The stack scanner supports this by
polling the generation number stored in each TLS region, and waiting for it
to increase before sampling the thread’s stack. The stack scanner then pro-
ceeds with the scan, retrying if there was a race condition (which is rare).
Once it gets a valid sample, it stops scanning until the next time the gen-
eration number increases. The generation number is placed in a dedicated
cache line, allowing it to remain in the shared cache state. Therefore, no
coherence traffic is generated while it is polled (until it is modified). LDB
also supports pausing the stack scanner between probes (e.g., delaying for
1µs). However, we found that the above technique allows LDB to poll in a
tight loop with negligible probing effects and better resolution.
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3.3.3 Tracing Cross-thread Request Handling

LDB analyzes cross-thread interaction with three types of events: request
events, synchronization events, and scheduling events. Each event is times-
tamped and included in the trace. The time duration between two events
(e.g., waiting for and acquiring a lock) along with other functions that hap-
pen between the two events, help construct a rich timeline. To minimize
the extra latency required for event logging, each event is recorded to a
per-thread circular event buffer. Then, the events in the event buffers are
polled by the event logger which persists the events to disk.

Request events. For multi-threaded applications, it is hard to figure out
which threads are responsible for a long latency. To enable per-request trac-
ing with a multi-thread environment, LDB provides an API for developers
to annotate when a thread starts and finishes handling a request. Us-
ing request annotations, LDB constructs the timeline for a specific request
showing the interaction between the threads handling the same request and
revealing which threads contribute to a long request processing time. In
particular, all functions invocations in a thread that happens between a
REQ_START and a REQ_END are counted towards the timeline of the
processing of that request. We rely on the application developers to cor-
rectly tag events, including if a request is temporarily placed in a queue
(i.e., REQ_BLOCK), in order for LDB to construct an accurate timeline.

Synchronization events. Contention for shared resources can be a ma-
jor source of latency. Visibility into synchronization events (i.e., mutex
wait, mutex acquire, and mutex release) can play a key role in identify-
ing performance bottlenecks in the presence of cross-thread interactions.
Mutex events reveal not only which mutex is contended and how long it
delays a request but what the mutex holder thread is doing while hold-
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ing the mutex. For mutex events recording, LDB interposes pthread calls
(pthread_mutex_lock() and pthread_mutex_unlock()) and generates the
MUTEX_WAIT, MUTEX_LOCK, and MUTEX_UNLOCK events. We
discovered recording every mutex event can introduce extra overhead, es-
pecially for mutex-intensive applications. To minimize this overhead, LDB
decides whether it should record mutex events outside of the critical sec-
tion after releasing the mutex with pthread_mutex_unlock(). If either
mutex wait time or lock time exceeds MUTEX_EVENT_THRESH (1µs
by default), it records the mutex event in the event buffer.
Scheduling events. The operating system scheduler can contribute to
request latency through context switching between applications or threads.
Revealing the delay caused by context switches can guide the developers
to look at operating system configurations, not the application, to improve
latency. Unlike other types of events, LDB collects the scheduling events
from an external source. In particular, we collect scheduling information
with perf-sched for Linux. LDB timestamps the events with the same
clock source as the external tool and stitches the events using the timestamp
when analyzing them.

3.3.4 Analysis Script

LDB provides an analysis script to generate per-function statistics for col-
lected latency samples. Further, it provides another analysis script that
constructs a timeline of specific requests with function names and line num-
bers. It can stitch together the events generated by application threads
(i.e., request and synchronization events), the stack scanner, and the OS
scheduler (i.e., scheduling events).

Constructing the timeline for a specific request, identified by its request

116



3.4 Implementation

ID, requires stitching together all events that occur during the processing of
that request. Such a timeline can have multiple components, requiring the
script to make multiple passes over the data generated by the profiler. First,
the script looks through the event log until it observes the REQ_START
event with the request ID, indicating the arrival of that request. The script
tracks all FUNCTION events generated by the thread processing that re-
quest after the REQ_START event. Upon reaching a MUTEX_WAIT
event, if the thread experiences non-negligible wait time (e.g., longer than
1µs between the MUTEX_WAIT and MUTEX_LOCK events), the script
scans the event log backward to identify the mutex holder thread by search-
ing for a MUTEX_LOCK event with the same mutex address. Once the
thread holding the mutex is identified, the script logs all FUNCTION events
produced by that thread until it releases the mutex. Then, the script con-
tinues logging FUNCTION events by the original thread processing the
request until it finds a REQ_BLOCK, REQ_END, or REQ_END_ALL
event. The output of the script is a log of all events impacting the process-
ing time of the request, each event identified by (name, thread ID, start
time, end time) tuple. Such information can be easily visualized as shown
in Figure 3.9.

3.4 Implementation

We implemented a prototype of LDB for the x86 architecture and the Linux
environment. Our implementation has three components: 1) an extension
to LLVM [13], called LLVM-LDB, to annotate call frames, 2) a stack scan-
ner library to poll the generation numbers and calculate latency values,
and 3) an API and bindings to capture request and synchronization events
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automatically. Our implementation integrates with the Linux performance
monitoring subsystem (perf-sched) to track context switches [94]. We also
developed scripts to parse and analyze the data recorded by our tool. The
core LDB tool is ≈900 lines of C code, the scripts are ≈1,200 lines of Python
code, and the changes made to LLVM are ≈250 lines of C++ code. In this
section, we describe more implementation-specific details for LDB.

3.4.1 LLVM-LDB

Reserving TLS. We reserve the two 8B TLS variables (generation number
and the RBP of the last call frame) at a fixed offset from the TLS base
address (FS base) with LLVM ModulePass. We make sure that LDB TLS
variables are inserted into the TBSS section after all the in-application TLS
variables are inserted so that LDB TLS variables are located at a fixed offset
from the FS base.
Call frame instrumentation. We modified the sequence of function pro-
logue and epilogue through changes to the LLVM X86 backend. In the
function prologue, we decrement the RSP by 16 to reserve the space in
a call frame before the RBP is pushed into the stack. After the RBP is
updated to the current RSP value, we fill up the reserved stack space and
update the TLS variables. First, we increment the generation number in
TLS and copy it into the reserved space. Second, we set up the canary in
the reserved stack space. Finally, now that the call frame is ready to be
scanned, the prologue code updates the RBP of the last call frame in TLS
to the current RBP so that the stack scanner can start scanning the stack
from a newly created call frame.

In the function epilogue, we revert the instrumented operations in the
prologue. First, before tearing down the call frame in the function epilogue,
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the compiler first updates the RBP of the last call frame in TLS to avoid
the current call frame being scanned while it is being destroyed. It then
copies the saved RBP in the current call frame—which holds the RBP of
the parent call frame—into the TLS region. After the saved RBP is popped
from the stack with a standard epilogue sequence, RSP is incremented by 16
to destroy the reserved space for LDB. In total, we add 9 instrumentation
instructions (7 in the prologue and 2 in the epilogue) which add less than
1 ns to each function call.
Thread instrumentation. We instrument the main function to initial-
ize LDB using LLVM ModulePass. The initialization allocates the shared
memory and per-thread event buffer before registering the main thread into
the shared memory with its thread ID, FS base address, and event buffer ad-
dress. Then, LDB launches the stack scanner thread and the logger thread.
To initialize a newly launched thread and clean up the state before it exits,
we interpose pthread_create(). Before a newly created thread executes
its original start routine, LDB allocates the per-thread event buffer and reg-
isters the thread into the shared memory. After the original thread starts
routine returns, it frees the event buffer and deregisters from the shared
memory so that the exited thread is no longer scanned by the stack scan-
ner.

3.4.2 The LDB API and Parameters

Request tagging API. LDB provides a way to annotate the threads with
the following C APIs:

void ldb_req_start(uint64_t req_id, void *queue=NULL);
void ldb_req_block(uint64_t req_id, void *queue);
void ldb_req_end(uint64_t req_id);
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void ldb_req_end_all();

When a thread starts to handle a request, the thread can be annotated with
the request ID using ldb_req_start(). Optionally, if a request is dequeued
from a software queue, the queue address can be specified. Multiple threads
can be annotated with the same request ID with parallel processing, and
a single thread can be annotated with multiple request IDs for batch pro-
cessing. When a thread needs to enqueue a partially executed request into
the queue the thread can hand off the responsibility of the request with
ldb_req_block(). It indicates that the current thread is not responsible
for the request anymore, but the current thread or another thread will re-
sume processing the request later. If a thread finishes processing a request,
it can clear the annotated request ID with ldb_req_end(). Alternatively,
when a thread needs to clear all the annotated request IDs to the current
thread, it can use ldb_req_end_all(). We decided to allow the program-
mer to specify the request ID, so that it can be correlated at the RPC level
in coordination with other tools.

3.5 LDB Use Cases

To demonstrate the broad utility of LDB, we illustrates four use scenar-
ios: visualizing a timeline of a specific request, debugging tail latency, de-
bugging throughput, and studying the latency of specific functions. We
evaluate these use scenarios with two latency-sensitive applications and one
throughput-oriented application:

1. Memcached is a multithreaded, latency-sensitive, in-memory key-value
store. We debug two different workloads: SET and GET. The SET work-
load exposes mutex and memory-intensive code paths. Each SET request
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can access a global lock, slabs_lock, multiple times to allocate and free
the memory and a hash table bucket lock, items_lock, to update the
hash table. Additionally, when a Memcached memory is saturated, it
may need to acquire lru_lock to evict stale items. On the other hand,
a GET request only needs to acquire the items_lock before fetching a
value from the hash table.

We allocated 10GB of memory for Memcached and used 100 million
keys, evenly distributing them across requests. The value lengths are
uniformly distributed between 4B and 1024B. We use the default hash
power, which automatically grows based on the number of key-value pairs
inserted into the hash table.

2. Lucene is a multithreaded, latency-sensitive in-memory search engine
library [108]. Lucene’s processing time is much longer than Memcached,
helping us demonstrate the value of LDB under a variety of conditions.
We used a dataset of 403,619 COVID-19-related tweets. Each client
generates single-term search queries based on the word distribution in
the dataset. For each search request, Lucene first retrieves the list of
document IDs from Segments where the mapping between a word and
the list of document IDs is stored. Once the list of all relevant document
IDs is retrieved, it fetches the pre-computed score (relevance between
the document and the search query) for each document and returns the
top 100 documents with high scores. As all shared data structures are
protected by a mutex, requiring multiple mutex operations to serve each
request.

3. Qperf [111] is a performance measurement tool for Quicly, Fastly’s imple-
mentation of the QUIC protocol [58]. Unlike the other two applications,
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Peak Throughput LOC Changed
for Tagging

Latency-sensitive workloads
Memcached SET 1.1 Mreqs / s 3
Memcached GET 3.0 Mreqs / s 3
Lucene 5.4 Kreqs / s 2
Best-effort workload
Qperf 5.63 Gbps 4

Figure 3.8: Workload characteristics: peak throughput at 100% load with-
out any profiling and the LOC changed for request tagging.
Peak throughput is measured with 8 workers for Memcached
and Lucene, and a single core for Qperf.

it measures the highest possible throughput between a server and a client.
To achieve the highest throughput, we modified the original Qperf imple-
mentation to busy-poll the packets. This application helps showcase the
value of LDB when measuring the average per-packet latency for each
function, helping identify functions that harm the average throughput of
the application. We use Reno as the congestion control algorithm and
enable generic segment offload (GSO).

To use LDB on the applications listed above, we compiled the applications
with LLVM-LDB. In addition, we inserted tagging annotations at each code
location where a thread starts to handle a new request (Memcached and
Lucene) or a new packet (Qperf). These points were easy to identify, and
only required 2–4 LOC changes. Specifics are reported in Figure 3.8, along
with the peak throughput of each workload.
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do_slabs_newslab(id) (slabs.c:423:9)
memset(ptr, 0, (size_t)len) (slabs.c:396:5)

0 285 us 571 us 856 us

do_slabs_newslab(id) (slabs.c:423:9)
...

Figure 3.9: Timeline of the request of the longest request processing time
in Memcached SET workload constructed by LDB.

3.5.1 Reconstructing the Timeline of the Request

When the application tags each request with a unique request ID, LDB can
construct a timeline of any tagged request including interactions with other
threads, which has been expensive with existing tools. Figure 3.9 shows an
example of a timeline of a request SET workload in Memcached. We picked
the request with the longest request processing time we observed during the
initial slab allocation phase as the heap is populated because it provides a
simple yet strong example of the value of LDB.

The detailed request timeline of LDB immediately shows what slowed
down the processing of the request, including interactions with another
request. When the request processing thread starts to handle the request,
it waits for the slabs_lock mutex. LDB does not only tell the waiting time
for the slabs_lock but also helps identify the thread holding the mutex and
the function it’s executing. In this example, the thread holding the mutex
executes memset() while holding slabs_lock. After the thread processing
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Function p50 p99 p9999 ▽
slabs_alloc()
ë pthread_mutex_lock(&slabs_lock)

< 1 13.57 22.00

do_item_unlink_nolock()
ë STATS_LOCK()

< 1 6.93 20.51

lru_pull_tail()
ë pthread_mutex_lock(&lru_locks[])

2.14 17.53 19.62

do_item_link()
ë STATS_LOCK()

< 1 14.64 19.50

item_unlink_q()
ë pthread_mutex_lock(&lru_locks[])

2.03 10.56 18.88

Figure 3.10: Latency statistics of top 5 functions (and its caller) ranked by
99.99th percentile latency in Memcached SET workload. All
numbers are in µs.

the request acquires the lock, the dominant request processing time is spent
executing memset() that took 645.7µs. Such fine-grained tracing helps
identify the main culprit which is performing memset() while holding the
slabs_lock.

3.5.2 Tail Latency Debugging

With Memcached and Lucene, we demonstrate that LDB can list functions
that contribute to high tail latency, giving an insight as to how to improve
their tail latencies.

For Memcached SET workload, Figure 3.10 lists the top five tail-
contributing functions of Memcached ranked by 99.99th percentile latency.
All five functions perform locking. Three out of the five functions contend
for global locks related to memory management (slabs_lock) and statistics
collection (stats_lock). To fix the tail latency from the slabs_lock, one
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Function p50 p99 p9999 ▽
resp_finish()
ë THR_STATS_LOCK()

< 1 9.04 18.55

transmit()
ë THR_STATS_LOCK()

< 1 9.66 18.26

do_item_get()
ë assoc_find()

< 1 10.10 18.25

item_lock()
ë mutex_lock(&item_locks[])

< 1 10.12 17.19

resp_start()
ë memset()

1.00 10.28 17.00

Figure 3.11: Latency statistics of top 5 functions (and its caller) ranked by
99.99th percentile latency in Memcached GET workload. All
numbers are in µs.

could consider reducing contention by using a per-thread cache [5] and by
zeroing memory without holding the lock. The stats_lock, on the other
hand, could be fixed by either not using a lock, which would reduce accuracy,
or by maintaining per-thread stats. Finally, the other two functions use the
per-slab class lock, which is required for updating the LRU timestamp and
evicting stale key-value pairs. To reduce the latency, one should fine-tune
the chunk size growth factor (-f) based on the value length distribution.

For Memcached GET workload, Figure 3.11 shows that two of the top
five functions are from per-worker thread locks (THR_STATS_LOCK). In Mem-
cached, each network connection is assigned to one of the worker threads,
but the requests can be processed by any worker thread. While the worker
thread processes the request, it needs to acquire the lock of the worker
thread that owns the network connection to update the statistics counters.
When there is a small number of connections compared to the number of
worker threads, or when the load is skewed to a subset of network connec-
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Function p50 p99 p9999 ▽
IndexSearcher::search()
ë Scorer::score()

72.18 2,005 6,232

Norm::bytes()
ë IndexInput::readBytes()

657.7 1,690 4,899

boost::make_shared()
ë new()

30.59 61.60 78.61

SegmentReader::docFreq()
ë TermInfosReader::get()

< 1 57.05 61.59

TopDocsCollector::topDocs()
ë populateResults()

< 1 20.27 25.09

Figure 3.12: Latency statistics of top 5 functions (and its caller) ranked by
99.99th percentile latency in Lucene workload. All numbers
are in µs.

tions, the per-worker thread statistics lock can be congested. The solutions
mentioned above for stats_lock apply here too. Another two of the top
five functions are for the hash table data structure (assoc_find() and per-
bucket lock, item_locks). When a hash collision happens in the hash table,
assoc_find() iterates over the bucket to find the item with the same key
while holding the item_lock. One should consider initializing the Mem-
cached with higher hashpower.

The last one is for memory operation to clear the allocated memory for
a response. Considering that a response buffer will be overwritten with
response data, one could consider removing the memset() operation, but
care must be taken to avoid sending uninitialized data.

For Lucene workload, Figure 3.12 reports that the top two functions
dominate the tail request processing time. Once Lucene receives a search
query, it first fetches a list of document IDs by binary searching Segments
after reading Segments in IndexInput::readBytes(). Once it has the list
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of document IDs, it looks up the score (the relevance between the query
and the document) for each document and enqueues the document ID with
its score into the max heap tree in Scorer::score(). In this case, a tail
latency problem arises because the most popular term in the dataset appears
in 88,558 documents. Thus, Scorer::score() needs to iterate 88,558 times
to look up the score and enqueue it into the max heap tree, which can take
6.2 ms. To reduce this latency, one could consider utilizing an increased
level of parallelism [40]. That is, if the length of fetched document ID is too
long, the search application could use multiple threads where each thread
fetches the score of a subset of document IDs.

The other three functions are less significant. The memory allocation for
reading the Segments with new() takes up to 79µs, fetching the score of a
document with get() takes up to 62µs, and popping the top 100 documents
from the max heap tree in populateResults() takes up to 25µs.
Actionable Insights. To demonstrate that LDB provides actionable in-
sights that developers can use to improve the latency behavior of real ap-
plications, we patch Memcached and Lucene using the output of LDB. We
show both the request processing time, revealing the improvement to just
the part of the application that LDB can profile, and the end-to-end pro-
cessing time, which includes other sources of tail latency like the kernel
network stack and the network fabric.

For Memcached, we (1) preallocate the slabs to avoid memory allocation
while serving the request, (2) fine-tune the object size of each slab to avoid
contention in slab classes by specifying minimum object size and adjusting
chunk size growth factor, and (3) convert global and per-connection stats
into per-thread stats. Figure 3.13 (a) and (b) show the request processing
time and end-to-end latency distribution before/after applying the patch.
Because multiple responses can be batched before written to the wire, the
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Figure 3.13: Request processing latency and end-to-end latency after apply-
ing patches that fix latency problems identified by LDB.
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improvement of end-to-end latencies is larger than the request processing
times at some tail percentiles. The patch reduces the 99th percentile request
processing time by 15% and 99th percentile end-to-end latency by 8% for
SET workload; 99th percentile request processing time by 16% and 99th
percentile end-to-end latency by 3% for GET workload.

For Lucene, we adjust the parallelism to serve the request. Specifically, we
use four concurrent threads to serve each request. Figure 3.13 (c) shows the
latency distribution of the request processing time and end-to-end latency
before/after the patch. The increased parallelism can hurt performance for
short requests due to the straggler effect, synchronization, and scheduling
overhead, but results in large reduces to request latency in the tail. This
problem has been studied extensively in prior work, which suggests an even
more sophisticated fix would be to dynamically adjust parallelism based
on the number of instantaneous requests in the system and the execution
time [40]. The patch reduces 99th percentile request processing time by
34% and 99th percentile end-to-end latency by 13%.

3.5.3 Debugging Throughput of Qperf

We use LDB to debug the average performance of Qperf, demonstrating
its value beyond tail-latency debugging. In particular, we profile the egress
path on a Qperf server, focusing on the average per-packet latency, allowing
us to determine an upper bound on achievable throughput. We find that
each batch of 32 1500-byte packets takes 38.11µs on average, putting a cap
on throughput at around 9.8 Gbps. Note that actual throughput has to
be lower because not all batches nor packets are maximum sized. Further,
the server performs other functions beyond continuously transmitting data
packets (e.g., process and transmit acknowledgments).
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Function Avg Latency ▽
send_pending()
ë send_dgrams()

29.63µs

allocate_ack_eliciting_frame()
ë do_allocate_frame()

2.79µs

encrypt_packet()
ë ptls_aead__do_encrypt()

2.41µs

Figure 3.14: Top 3 functions (and its caller) ranked by the highest average
latency in Qperf workload. The average processing time for 32
packets is 38.11µs.

We use LDB to identify which functions take the most time on average
for transmission handling, revealing throughput bottlenecks. Figure 3.14
shows the top three functions with the highest average latency. The biggest
bottleneck, responsible for 77.7% of the processing time of a batch, is
send_dgrams() which transmits packets through the kernel’s sendmsg(),
showing that the biggest performance bottleneck lies in the kernel. Other
bottlenecks include memory allocation in (do_allocate_frame()) and en-
cryption (encrypt_packet()). The remaining processing time for a batch
of packets can be attributed to a collection of lower-latency functions. Thus,
to improve the throughput, one should optimize the network stack (e.g., by
using kernel-bypass), memory operations, and cryptographic operations.

To highlight the value of the profile produced by LDB, we compare its
output to the profile produced by Linux’s perf. Figure 3.15 reports the
list of function names ranked by highest CPU time by perf. It shows that
perf cannot pinpoint any of send_dgrams(), ptls_adad__do_encrypt(),
or do_allocate functions that are responsible for 91% of the packet process-
ing time, reporting that they consume 0.04%, 0.28%, and 0.2% of the CPU
time, respectively. In particular, perf’s focus on average CPU time provides
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Function CPU Time ▽
__libc_recvfrom 7.61%
send_pending 4.11%
quicly_send 2.56%

... (39 more functions) ...
do_allocate_frame 0.28%

... (10 more functions) ...
ptls_aead__do_encrypt 0.20%

... (152 more functions) ...
send_dgrams 0.04%

Figure 3.15: Top 5 functions ranked by the highest CPU time in Qperf work-
load reported by Linux perf.

very coarse grain results, focusing on top-level functions like quicly_send

which encapsulate all egress path functionality. Furthermore, it doesn’t dif-
ferentiate between functions on the critical path of egress traffic, and those
happening periodically off the critical path, and it can’t tie kernel delays to
functions. Thus, we conclude that LDB can provide superior insights even
when average performance is the focus of the debugging process.

3.6 Performance Evaluation

Our evaluations answer the following key questions:

1. How fine is the granularity of LDB’s latency measurement?
2. Is LDB more portable than hardware-assisted latency debugging sys-

tems?
3. Can LDB limit the overhead it places on applications?
4. Can the trace data from LDB be decoded quickly?
5. How much does each component of LDB contribute to overhead?
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Testbed. We use two machines with eighteen-core Intel Xeon Gold 6534
3.0GHz CPU (Ice Lake), 64GB RAM, and Mellanox ConnectX-6 200GbE
NIC. For the portability experiment(§ 3.6.2), we compare its performance
with Intel Broadwell machines (Intel Xeon E5 2640 v4 2.4GHz CPU, 64GB
RAM, and Mellanox ConnectX-4 25GbE NIC) and AMD Zen3 Milan ma-
chines (AMD 7543 2.8GHz CPU, 256GB RAM, and Mellanox ConnectX-5
25GbE NIC). The median network RTT between two machines measured
with ICMP packets is 30µs. We use one machine as a server and the other
as a client. Memcached and Lucene clients generate the requests following
an open-loop Poisson arrival process, and Qperf clients generate a stream
of requests for a data packet to measure the network bandwidth with TCP
Reno as transport.
Applications. We use a synthetic application for microbenchmark. To
evaluate the performance of LDB, we reuse the workloads used in §3.5;
Memcached SET/GET and Lucene are latency-sensitive workloads, and
Qperf is a throughput-oriented workload.
Baseline. We compare LDB to Intel Processor Trace (Intel PT) which
backs state-of-the-art latency profilers [91, 106, 109], Coz that profiles the
causal relationship between the function speedup and program speedup,
and Xray that profiles the application’s latency behavior with static times-
tamping. For Intel PT, we use perf-intel-pt provided by Linux to record
and decode the Intel PT packets. For a fair comparison, we use a coarse-
grained timing packet with tsc and decode only function call and return
events with command line argument --call-ret-trace. We disable return
compression (noretcomp) for more reliable decoding.
Evaluation Metrics. We report end-to-end latency (for latency-sensitive
applications), average throughput (for best-effort application), raw trace
size, and decoding time. End-to-end latencies and the average throughput
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1 int worker(int recursion_level) {
2 if (recursion_level == 1) {
3 busy_loop(CALL_STACK_REFRESH_PERIOD);
4 } else {
5 worker(recursion_level - 1);
6 }
7 }
8

9 int main() {
10 while (true) {
11 worker(CALL_STACK_DEPTH = 20);
12 }
13 }

Figure 3.16: a synthetic application which returns and creates new
CALL_STACK_DEPTH stack frames every CALL_STACK
_REFRESH_ PERIOD.

are measured at the clients, and raw trace size and decoding time are mea-
sured at the server after the experiment finishes. Raw trace size measures
the output size of each system, and decoding time measures the time re-
quired to parse the raw output to function-level latencies and to calculate
the statistics of the function latencies. Because Intel PT takes too much
time to decode, we measure the latency for decoding 1 ms long Intel PT
trace. For LDB, we run the experiments for 4 seconds for Memcached and
Qperf, and 1 minute for Lucene.

3.6.1 Microbenchmark

We delve into a detailed analysis of LDB’s latency measurement granular-
ity using a synthetic application described in Figure 3.16. This application
repeatedly destroys and reconstructs 20 call stacks through recursion, with
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Figure 3.17: Average latency measurement granularity and the breakdown
of stack scanning iterations with different call stack refresh
periods in the synthetic application.

a predefined refresh period (CALL_STACK_REFRESH_PERIOD). We
experiment with varying the call stack refresh period from 100 microsec-
onds to 1 microsecond and measure the average latency measurement gran-
ularity, defined as the average time elapsed between two successive valid
stack scans. We further categorize the stack scanning iterations into three
groups: invalid scans resulting from sequential lock fails with data races,
stack traversals, and fast path iterations where no modification is detected
in either the most recent RBP or the generation number in the TLS region.

Figure 3.17 presents the results. As the call stack refresh period decreases,
the application thread interacts with the stack frames more frequently to
destroy existing call stacks with function returns and to build new ones with
new function calls. This increased frequency leads to cache thrashing and
data races between the application thread and the stack scanning thread
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more often, increasing the average granularity in latency measurement with
more invalid stack scans. In addition, with more frequent modifications in
the stack frames, the stack scanner requires more iterations of full stack
frame traversals, which further increases the average latency measurement
granularity. In an experiment with a function depth of 20 and 1µs call stack
refresh period, the latency can be measured with the granularity of 119 ns
with 6% invalid stack scans, 21% of full scans, and 73% of fast path scans.

When dealing with multiple application threads, the average granularity
increases in proportion to the number of application threads being pro-
filed. To attain more refined granularity in latency measurement, multiple
stack scanner threads can be used, each profiling a subset of the application
threads.

3.6.2 Portability of LDB

LDB is not designed for a specific platform. In principle, its design can be
used on most architectures such as x86, ARM, and RISC-V. However, Intel-
PT-based tools, such as NSight, are tied to Intel’s specific architectures and
cannot be ported to other platforms. Our LDB prototype is implemented
for x86 architectures and works well on any x86 architectures while Intel
PT only works with some Intel processors (later than Broadwell).

To illustrate the portability of LDB, we run the Qperf workload with
different x86 CPU models and compare it against the reference (i.e., no
latency profiling) and Intel PT. Figure 3.18 shows the average throughput
measured by Qperf on three different CPU architectures. It shows that
Intel PT’s performance highly depends on the CPU architectures. Even
though Intel PT has only a 4% of throughput drop on the recent Ice Lake
Intel CPU, it experiences 59% of the throughput drop on an Intel Broadwell
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Figure 3.18: Average throughput of reference (without any profiling), Intel
PT, and LDB with Qperf workload with different CPU archi-
tectures.

CPU, and it cannot be used for AMD processors. On the other hand, LDB
has a more consistent overhead of up to 7% thanks to its software-based
approach.

3.6.3 Overheads of LDB

Application performance degradation. To get more confidence in
LDB’s low overhead, we measure the application performance impact on
three latency-sensitive workloads (Memcached SET/GET and Lucene) and
compare it to other profiling mechanisms. For the benefit of Intel PT,
benchmarks ran on our testbed with Intel Xeon Gold 6534.

Figure 3.19 shows the end-to-end latency distribution measured at the
client when the load is 20% of the system’s capacity for Memcached and
Lucene. We compare the performance of the applications when no latency
profiling is done (i.e., Ref.) to when LDB, Intel PT, Coz, and XRay are

136



3.6 Performance Evaluation

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

C
D

F

End-to-end Latency (us)

Ref. Intel PT Coz Xray LDB

(a) Memcached SET

0

0.2

0.4

0.6

0.8

1

0 100 200 300

C
D

F

End-to-end Latency (us)

(b) Memcached GET

0

0.2

0.4

0.6

0.8

1

0 1 2 3

C
D

F

End-to-end Latency (ms)

(c) Lucene

Figure 3.19: End-to-end latency distribution of reference (without any pro-
filing), Intel PT, and LDB with Memcached SET, GET, and
Lucene workload at 20% of load.
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Workload Trace Size / s
(trace errors / s)

Decoding
Time / s

Memcached
SET

Intel PT 696.84 MB
(2k trace errors)

48.4 min

LDB 149.38 MB (-79%) 1.7 s

Memcached
GET

Intel PT 796.72 MB
(5k trace errors)

1.8 hr

LDB 237.46 MB (-70%) 2.7 s

Lucene Intel PT 1,066.29MB
(6k trace errors)

3.1 min

LDB 2.12 MB (-99%) 0.7 s

Qperf Intel PT 944.03 MB
(559k trace errors)

3.7 hr

LDB 25.4 MB (-97%) 0.8 s

Figure 3.20: Trace size and decoding time of Intel PT and LDB for four
workloads. Trace size and decoding time are normalized by
execution time.

used. For all workloads, Coz has the largest overhead at tail because it inten-
tionally delays all the other threads than the thread being sampled, which
makes it impractical to use over live traffic. The overhead of XRay is pro-
portional to the number of function invocations as it statically instruments
every function entry/exit to measure the latency. Due to its high overhead,
the load exceeds the capacity, leading to extremely high latency with high
queueing delay. Intel PT and LDB have comparable overhead across the
workloads. LDB increases median(99th percentile) latency by 16%(1%),
22%(10%), and 18%(43%) for Memcached SET, GET, and Lucene work-
loads while Intel PT increases 9%(2%), 45%(23%), and 27%(64%) in the
same setting.

Trace size and decoding time. Figure 3.20 reports the output trace size
and decoding time of Intel PT and LDB for the three applications. Intel
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PT requires high memory / PCIe bandwidth and disk space, especially for
applications with more branches and jump instructions. For example, in the
case of Qperf, Intel PT outputs 944 MB/s of trace data. In addition, because
of the limited memory bandwidth, it drops the event records and results in
up to 559 thousand trace errors per second which make its visibility limited.
To make matters worse, Intel PT takes up to 3.7 hours to decode 1 second of
trace data, converting raw branch and jump information into function-level
latencies. In contrast, the size of LDB trace is up to 99% smaller than Intel
PT, typically requiring less than 250 MB/s, and it only takes a few seconds
to decode 1 second of trace data.

3.6.4 Breakdown of LDB’s overhead

We analyze how much each component contributes to the overhead for
Lucene workload with the highest latency distortion under LDB whose me-
dian(99th percentile) latency is increased by 35%(69%). We gradually acti-
vate four components of LDB: application instrumentation (inst), the stack
scanning/logging thread (scan), the shim layer (shim), and Linux scheduling
event recording.

Figure 3.21 shows that instrumentation, the stack scanning, the shim
layer, and Linux scheduling event recording are responsible for 11% (23%),
7% (17%), 3% (14%), and 1% (0%) of the median (99th percentile) latency
increase, respectively.

3.7 Related Work

Sampling-based tools. Today’s tools based on statistical sampling like
perf are unsuitable for studying tail latency because they gather samples
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Figure 3.21: Performance Breakdown of LDB with Lucene workload at 20%
load.

too infrequently, and focus on average or steady-state performance. Coz
aims at finding the bottleneck function whose improvement can translate
to the most application speedup. Coz statistically estimates the speed of
the application (unlike perf estimating CPU time) and performs dynamic
experiments to capture the effect of thread interplay. Coz conducts several
short online experiments, adding delays to all-but-one threads to simulate
the virtual speedup of one function. Although Coz addresses some limita-
tions of perf, it is still inappropriate for tail latency debugging. First, Coz
cannot observe tail behavior because it relies on statistical sampling for es-
timating average speedup. Second, for the lines of code Coz can identify, it
cannot provide a deeper explanation of why it is a bottleneck.

Trace-based latency profiling tools. Another strategy is to use a trace-
based tool that can capture the time spent in every function. However,
these approaches either cause large slowdowns to the application (Xray), or
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generate too much trace data, prohibiting interactive analysis (Intel PT).
For example, XRay [47] is a trace-based tool that records the execution
time of individual functions through compile-time instrumentation. XRay’s
instrumentation provides a rich timeline of the execution of functions. It’s
important to note that going from those raw traces to latency-related in-
formation is nontrivial. Further, XRay’s instrumentation introduces con-
siderable overhead to the application, limiting its applicability to tracing in
production.

Intel PT, on the other hand, is a hardware offload that can reduce pro-
filing overhead while observing an entire program at once. It is capable of
recording every control flow operation (calls, branches, jumps, etc.) to an
in-memory log. Although Intel PT has many potential use cases (e.g., re-
verse debugging [63]), NSight was one of the first systems to use Intel PT for
debugging tail latency behaviors [91]. NSight primarily focuses on study-
ing the host networking stack, but it includes a hard-coded understanding
of requests for specific workloads like Memcached. Despite its advantages
over existing approaches, NSight still has limited visibility. For example,
it cannot observe cross-thread interactions, and it requires significant per-
application tuning, limiting its applicability. MagicTrace (another tool built
on Intel PT) focuses more on debugging very short duration time segments
of application code [109]. Both systems can generate precise timelines for
program execution.

Dependence on Intel PT imposes significant limitations in terms of the
platforms they can support, the rate of data generated, and the time to
decode it. For example, Intel PT can generate up to one GB/s of samples,
requiring RAM or high-speed flash to record it. Moreover, it can take up to
a few hours to decode a single second worth of samples. These limitations
make tools based on Intel PT unusable for long-running applications or
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interactive debugging. Finally, in terms of portability, Intel PT’s overhead
varies across generations of Intel CPUs. For example, our experiments show
that the slowdown caused by Intel PT is considerable on older generations
of Intel CPUs (§ 3.6.2).
Sampling with a busy-polling thread. SHIM collects hardware perfor-
mance counters and software tags with busy running threads [45]. It shares
LDB’s basic strategy of sampling with busy-running cores, but it lacks the
ability to measure invocation latency without additional mechanisms, such
as our proposed stack sampling techniques. Moreover, a single busy-running
SHIM profiler thread is needed for each hyperthread pair, resulting in high
overheads due to competition over shared functional units. LDB, by con-
trast, can avoid this overhead by using only one monitor thread to profile
multiple threads running across multiple cores.
Limiting tracing to specific functions. As seen with the case of Xray,
timestamp instrumentation at each function’s entry and exit entails sig-
nificant overhead, especially for applications with many function invoca-
tions. Thus, limiting tracing to a few specific functions at a time could be
necessary. There are various techniques and tools to enable dynamically
enable/disable timestamp instrumentation: notably, dynamic instruction
patching [11, 20, 47], dynamic instrumentation via eBPF [51, 89, 105],
and instrumentation via JIT compiler [93]. However, because the scope of
functions being profiled is limited, they require multiple iterations with the
developer’s hands-on interaction to pinpoint which functions are responsible
for high latency, and they sacrifice the ability to capture complete timelines.
There are efforts to streamline these iterations [21, 56, 113]. AMD offers a
suite of profiling tools (e.g., Omnitrace [102] and uProf [97]). Both solutions
rely on sampling. Further, Omnitrace offers Coz-like functionality as well as
specific function instrumentation. Omnitrace’s instrumentation adds 1024
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instructions per function compared to LDB’s 9 instructions per function.
Distributed latency tracing. Envoy tracing [81], Zipkin [96], Jaeger [92],
AWS X-Ray [88], and Apache SkyWalking [87] provide a tool to trace a
request in distributed computing environment at an RPC or microservice-
level granularity. Distributed latency tracing tools may find which service
is causing high end-to-end latency, but they don’t have visibility inside the
service. Distributed tracing systems and LDB are complimentary. Prob-
lematic services can be found with distributed tracing, while problematic
functions in a specific service can be spotted with LDB.
Mutex bindings. Dynamic data race detectors, like Eraser [3], often use
similar mechanisms to interpose on locking functions, but their goal is to
instead verify if the application follows a consistent locking protocol.

3.8 Conclusion

In this chapter, we presented LDB, an efficient latency profiling tool with
low overhead, high visibility, fast decoding speed, and good portability. It
utilizes a key technique, stack sampling, where each function’s invocation
latency is measured by sampling a unique generation number assigned in the
call frame. With optional request tagging by the developer, LDB can con-
struct detailed timelines of each request, including cross-thread interactions
caused by synchronization, the time spent in functions, and the contribution
of the OS scheduler. Our evaluation demonstrates that LDB can profile the
latency behavior of three applications and reveal their main performance
bottlenecks effectively over multiple platforms with low overhead.
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4 Future Work

Breakwater and LDB make substantial progress in mitigating and diag-
nosing compute congestion, facilitating microsecond-scale datacenter RPCs
that adhere to strict SLO requirements. Nevertheless, this is merely one
chapter in a broader narrative. The potential exists to further refine and
expand Breakwater and LDB by exploring additional factors that were be-
yond the scope of this thesis.

4.1 Overload Control

4.1.1 Overload control for multi-layer services

In this thesis, we only consider a single-layer, single-server overload con-
trol scenario. Breakwater’s receiver-driven, credit-based approach can be
applied to multiple layers of microservices, preventing overload at each in-
dividual layer. However, when overload occurs in an intermediate layer of
a multi-layer service, the work performed in earlier layers is wasted. We
leave propagating overload signals and coordinating overload control across
several layers of microservices for future work.
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4.1.2 Delay from other types of congestion

Breakwater’s primary emphasis is on addressing CPU congestion and lock
contention, with a comprehensive evaluation of these specific scenarios.
Nonetheless, a system may encounter bottlenecks from other resources, in-
cluding memory bandwidth, PCIe bandwidth, and disk I/O. Some of these
congestions might be manageable through the admission control with a
performance-driven efficiency overload signal, but further investigation is
needed to ensure both low latency and high utilization when these resources
become a bottleneck.

4.2 Tail Latency Profiling Tool

4.2.1 Distributed latency profiling

Currently, LDB focuses on profiling the latency behavior of an application
within a single server. However, we believe that the potential for LDB
can extend beyond this scope. By integrating LDB’s principle with existing
distributed latency tracing tools, it could be developed to encompass a more
comprehensive analysis of a request’s latency behavior, including inter-node
interactions and communications. Such an expansion would provide deeper
insights into a request’s lifetime over the entire distributed system.

4.2.2 Detailed analysis of a function with high tail

latency

LDB can identify the specific function calls responsible for high tail latency,
yet it falls short in explaining the underlying reasons why a particular func-
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tion call takes a long time to execute, apart from delays caused by context
switches. By integrating LDB with additional hardware and software coun-
ters, we believe it can be enhanced to provide more granular insights into the
factors contributing to extended execution times for a function call. Such
information could include interrupts, false sharing, thermal throttling, cache
misses, page faults, and other underlying factors.
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5 Conclusions

Due to the advancements in datacenter networks and the end of Dennard
scaling, compute resources have become the primary factor determining the
latency of datacenter applications. As a result, the optimization of latency
performance through the mitigation of compute congestion has emerged as
an essential task to satisfy the increasingly stringent SLOs for end-to-end
latency. This dissertation identified two specific opportunities to reduce
tail latencies of microsecond-scale RPC under compute congestion, with a
particular emphasis on CPUs and locks.

Breakwater offers a robust solution to mitigate tail latency during server
overload, whether triggered by CPU congestion or lock contention. It ef-
fectively detects the server overload by request queueing delay overload sig-
nal for CPU-related congestion and performance-driven efficiency overload
signal for scenarios involving lock contention. In parallel, LDB furnishes
insightful statistics concerning the application’s tail latency behaviors and
delivers a comprehensive time-series analysis of an individual RPC request.
This functionality empowers developers to precisely pinpoint the functions
contributing to high tail latency with minimal overhead.
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