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Abstract

Humans have a wide range of cognitive capacities that make us adept at interpreting
our physical world. Every day, we encounter new environments, yet we can parse
those environments with limited visual exposure and make fairly accurate inferences
about unfamiliar objects. Emulating scene understanding capacities in computa-
tional models has numerous applications ranging from autonomous driving to virtual
reality. Despite the proficiency demonstrated by deep neural networks in pattern
recognition, recent works have uncovered challenges in their abilities to encode prior
physical knowledge, form visual concepts, and perform compositional reasoning, such
as inferring inter-object relations like containment. To this end, the thesis intro-
duces the Simulated COgnitive Tasks (SCOT) benchmark, a large-scale synthetic
dataset and data creation codebase allowing for the procedural generation of videos of
simulated cognitive tasks targeting intuitive physics understanding. Those cognitive
tasks are adapted from tests in the literature used to comparatively assess the cogni-
tive capacities of non-human primates. Additionally, the thesis presents an analysis
of several deep learning models on the benchmark, underlining their limitations in
tasks involving object permanence comprehension, quantities, and compositionality
and their inability to generalize learned knowledge to complex dynamic scenes. In
response to these limitations, we propose a probabilistic generative approach that
leverages Bayesian inverse graphics to learn structured scene representations that
facilitate learning new objects and tracking objects in dynamic scenes. Our evalua-
tion of this model on SCOT revealed near-perfect performance on most tasks with
significant data efficiency, suggesting that structured representations and symbolic
inference can cooperate with deep learning methods to interpret complex 3D scenes
accurately. Overall, this thesis contributes to the field of artificial intelligence (AI)
by presenting a new method for improving scene understanding in AI models and
providing a benchmark for assessing the visual cognitive capacities of computational
models.

Thesis Supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Imagine walking into a new place. Within mere moments, you begin to parse your

surroundings: you identify objects, interpret their context within the environment,

and develop an intuition about their relationships. If something drops, it will probably

fall down. If a container is moved, everything inside it will be moved along with

it. This ability to continually and reliably parse unfamiliar physical scenes, often

through limited visual exposure [9], marks one of the most distinctive features of

human intelligence.

Similarly, like a child constantly discovering the world, we frequently encounter

new objects, learn their shapes and attributes, and even with minimal exposure,

we can identify those objects in different scenes, poses, and orientations. These

abilities stem from a spectrum of cognitive capacities that, through a combination of

genetic endowment and experience, allow us to generate mental hypotheses about the

observed world, test those hypotheses, and update our mental model of the physical

world accordingly [61].

Developing computational models that embody similar cognitive capacities, namely

scene understanding, can prove helpful in many applications, ranging from robotic

manipulation and autonomous driving to augmented and virtual reality. For instance,

robots interacting with objects need to comprehend the objects and their dynamics

accurately [84]. Similarly, autonomous vehicles need to parse through significant sen-

sory input and efficiently characterize the structures and locations of objects. There-
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fore, these models need not only to understand visual cues but also to construct a

compositional and causal representation of the physical world, incorporating prior

knowledge [61]. They must also possess a robust mechanism to correct errors and

update their knowledge when needed [84]. As numerous research and industry sec-

tors increasingly rely on artificial intelligence (AI) for automated inference, a reliable

model that can accurately understand and interpret 3D scenes in real time becomes

necessary.

1.2 Problem Statement

Models that aim to learn similar cognitive functions for scene understanding should

possess certain ingredients that enable them to interpret 3D scenes through limited

and noisy visual input. Those ingredients include:

• An intuitive physics engine, as described by Battaglia et al. [9], encodes char-

acteristics about objects and generates physically plausible hypotheses when

reasoning about the physical world.

• The capacity to explain observed physical phenomena through a causal (e.g.,

generative) framework [22], supplementing the intuitive physics model with ob-

servation.

• A structured, compositional representation of scenes that encodes object poses

and relations and maintains that compositionality over time in dynamic scenes [84].

While many other ingredients are essential in matching human-level cognition,

such as an intuitive model of the psychology of agents and theory of mind [7], those

three are highlighted because of their relevance to scene understanding and their

significance to this project.

Many computational approaches to scene understanding use deep neural networks,

which primarily rely on matching the computational model with the statistical pat-

terns of the data. Nonetheless, while neural networks show remarkable performance

on vision downstream tasks such as object recognition and image classification, they

14



lack an inherent mechanism to encode prior physical knowledge, causality, and com-

positionality [40]. Therefore, it is difficult to investigate whether the representations

learned by those models approximate the human core knowledge systems [94] or if

they generalize to complex environments through abstraction and concept formation.

The problem this thesis aims to address is twofold. Firstly, despite significant ad-

vances, bottom-up deep-learning approaches to scene perception struggle with learn-

ing intuitive physics, causality, and compositionality. Thus, there’s a need to explore

alternate models that encapsulate these aspects and investigate whether they make

more accurate and robust predictions.

Secondly, the current benchmarks and methodologies used to evaluate models for

scene understanding primarily evaluate the corresponding downstream tasks. Down-

stream tasks seldom target the specific cognitive functions involved. Thus, it is nec-

essary to develop a benchmark that approaches scene perception as a cognitive task

and evaluates core knowledge understanding of scenes.

1.3 Approach

We propose to address these issues in two steps: (1) by developing a benchmark to

evaluate the high-level core knowledge of objects, space, and numbers in agents using

tasks from academic literature on cognition; and (2) by integrating object-level struc-

tured inference (using Bayesian modeling) and analysis by synthesis (using inverse

graphics) with deep learning models to learn more generalizable scene representa-

tions.

1.3.1 SCOT: Experimental Test Suite

We develop a procedural scene generator on top of the Unity [52] game engine and

AI2Thor [57] comprised of six cognitive tasks designed to target concepts such as

causality, physics biases, and compositionality. Hence, we develop the Simulated

COgnitive Tasks (SCOT) benchmark: a library of simulated intuitive physics videos

inspired by cognitive tests of non-human primates [88], to evaluate the generalizability

of learned knowledge.
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At its core, each task in the SCOT benchmark requires an agent to observe a

dynamic scene (video) with rewards and receptacles subject to physical manipula-

tion. The observing agent aims to identify the final location(s) that contain the most

rewards at the end of the video. Inspired by reinforcement learning principles, this

design philosophy focuses on maximizing cumulative reward through interaction with

the environment. However, in our benchmark, the agent only observes a scene and

infers the final locations with the highest reward accumulation, necessitating prior

knowledge about objects and space that aligns with the core knowledge framework.

This emphasis on long-term reward maximization highlights the importance of percep-

tion, and it aligns with broader artificial intelligence goals of creating models capable

of identifying and tracking objects in complex, dynamic, and noisy environments.

(a) Addition (b) Gravity Bias (c) Rotation

(d) Simple Swap (e) Relative Numbers (f) Shape Causality

Figure 1-1: Samples from the Simulated Cognitive Tasks The proposed bench-
mark comprises six tasks, each assessing a specific cognitive ability. Tasks involve
physical manipulation of one or more rewards with scene objects to maximize the
agent’s reward acquisition. This requires understanding the scene’s compositional
semantics and consistently tracking object locations over time.
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1.3.2 Deep Learning Baselines

Moreover, we use the SCOT benchmark to investigate current computational ap-

proaches to scene understanding, focusing primarily on deep-learning methods. In

particular, we fine-tune the parameters of several pre-trained deep-learning models

using gradient descent and backward propagation on a portion of the video dataset

and evaluate it on videos with more complex dynamics.

Chapter 4 details the implementation of a PyTorch-based [75] framework that

enables the training and evaluation of deep learning models on the benchmark, and it

provides experimental results that show significant performance decreases as the phys-

ical dynamics in videos grow more complex. Our analysis demonstrates that while

neural models trained on tasks perform much better than chance in tasks that require

spatial awareness, they perform at or slightly above chance on tasks that require an

understanding of object performance, numbers, and compositionality. In addition,

we observe a decline in zero-shot performance when we increase the task complexity,

indicating a limitation in their capacity to generalize the learned knowledge.

1.3.3 Bayesian Modeling & Inverse Graphics

Inverse graphics, a concept that views 3D scene understanding as the inverse problem

to 3D graphics rendering, can serve as an intuitive physics engine in computational

models. Specifically, it provides a mechanism for generating physically plausible hy-

potheses when reasoning about the physical world. Combined with deep learning,

it can enhance the focus on primary effects like occlusion and projection, improving

tasks such as object pose estimation [76].

Concurrently, Bayesian models offer a structured approach to understanding causal-

ity and compositionality in dynamic scenes. In particular, a Bayesian model that oper-

ates with a scene graph can handle uncertainties about scene structures by comparing

its scene graph state with the observed scenes, and they can incorporate prior knowl-

edge about physics to enrich the intuitive physical model with observations. The

careful selection and learning of priors, particularly beneficial in complex systems,

can bridge gaps in current deep learning approaches, leading to more comprehensive

17



computational models for scene understanding [54].

We employ an integrative approach that combines the strengths of Bayesian mod-

eling and inverse graphics to develop a probabilistic generative model capable of

internally representing scene states and making inferences about object movements,

compositional structures, and causal dynamics in the scenes. A more detailed discus-

sion about the probabilistic model is presented in Chapter 5.

The model operates by first inferring object shapes (meshes) from the depth im-

ages by iteratively comparing them to a library of stored object models and identifying

the most likely object type under a uniform prior.

Consequently, it tracks object movements by generating pose hypotheses through

coarse adjustments to its representation of object poses and renders them using a

physics engine. It then uses a voting mechanism to determine the most plausible

object poses, all while ensuring no violations of compositionality. In addition, the

probabilistic model is based on Bayesian principles and consists of (i) a dynamics prior

that encodes physical phenomena such as gravity and velocity and (ii) a likelihood

that estimates noise in depth information between the observed depth images and

the images generated from the pose hypotheses. It uses a first-order Markov Chain

to iteratively update its state of object poses and scene graph.

Finally, it uses a maximum a posteriori estimator to make categorical inferences

about each scene type. As shown in Chapter 5, the model exhibits an impressive

performance, achieving perfect accuracy on multiple cognitive tasks.

1.4 Contributions

This thesis contributes in three main areas:

(i) the SCOT benchmark, a dataset of 10, 000 videos consisting of over 2.3 million

RGB images, along with their depth images, segmentation masks, and rich

metadata, varying across six intuitive physics tasks, as well as the methodology

and the generation codebase for its synthesis and potential extensibility;

(ii) a systematic analysis and experimental results of several deep learning models on

18



the SCOT benchmark, including the methodology and codebase of a framework

for automatic data-loading, training, and evaluation in PyTorch; and

(iii) a formulation and implementation of a probabilistic generative model that uses

Bayesian inverse graphics with a dynamics prior and a depth noise likelihood for

scene perception, as well as experimental results showing perfect performance

in multiple tasks, measured on the SCOT benchmark.

1.5 Thesis Overview

Following this introduction, Chapter 2 provides a literature review on scene under-

standing and the different computational approaches used for scene understanding,

including deep learning, reinforcement learning, and 3D inverse graphics. Chapter 3

delves deeper into the SCOT benchmark, providing a detailed description of each task

and the methodology for generating the large-scale synthetic dataset. Subsequently,

Chapter 4 examines the performance of deep-learning models on the SCOT bench-

mark and shows their limitations in generalizing knowledge to more complex tasks.

Then, Chapter 5 details our proposed model: a probabilistic generative model that

combines Bayesian modeling and inverse graphics. Lastly, Chapter 6 provides a direc-

tion for future research, suggesting the use of real-world data to increase model robust-

ness, expanding the types and variety of cognitive tasks, testing more recent models

and techniques, and implementing Markov Chain Monte Carlo (MCMC) methods

for more efficient fine-tuning of the inference pipeline. We conclude the thesis by

summarizing the contributions and final remarks in Chapter 7.
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Chapter 2

Related Work

2.1 Chapter Overview

This chapter reviews relevant literature on scene perception, both in humans and

through computational methods.

First, Section 2.2 presents studies on scene understanding in humans, examining

the cognitive and neural mechanisms involved and the methods used for investigat-

ing these processes. We then move on to computational approaches, including deep

learning techniques and 3D inverse graphics for scene perception in Section 2.3

Additionally, Section 2.4 explores the role of synthetic and simulated data in

training vision models, focusing on the potential for generating large amounts of

pre-labeled training data. Finally, Section 2.5 reviews specific tasks related to scene

perception and their importance to current research, and Section 2.6 briefly reviews

concepts from probability theory and Bayesian inference.

2.2 Scene understanding in Humans

Perception of physical scenes in humans plays a central role in how we interact with

the world around us, from identifying tools and their potential uses to building a

stack of blocks in a game of Jenga. Nonetheless, the neural and cognitive mechanisms

underlying scene perception remain an interesting research question.

A line of research investigates the evolution of human cognitive capacities through

a comparative assessment with non-human primates [45, 88, 32]. The Primate Cog-
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nition Test Battery [45] is a collection of behavioral tasks that target specific physical

and social cognitive capacities. For physical cognition, tests target various core knowl-

edge domains [94], such as objects, actions, numbers, and space. Examples of such

tasks include locating a reward while undergoing physical manipulation (rotation, oc-

clusion, or transposition) [93, 51, 43], discriminating quantities [12], causally inferring

added and removed quantities [85], and inferring the location of an object through

its causal effects on other objects [13].

To identify the cognitive computations involved, long and parallel lines of research

have investigated the neurocognitive mechanisms involved in scene perception. Here,

four relevant lines of work are highlighted: hierarchical processing, attention and

working memory, the intuitive physical engine framework, and learning from experi-

ence.

Recent research has suggested that the brain uses hierarchical processing for scene

perception [47, 4, 31]. In particular, Epstein et al. [31] argue the visual system

uses goal-specific hierarchical processing and processes information about a scene at

multiple levels: low-level features like color and edges, mid-level elements like layout

and objects, and high-level semantic and spatial properties like scene category.

In addition, cognitive processes such as attention and short-term memory play a

role in scene perception. Visual attention [19] allows us to selectively process vast

amounts of visual information. For example, in object recognition, spatial attention

in the form of horizontal connections between nearby neurons in the same visual

area and feedback connections from higher-level visual areas facilitate identifying and

segmenting objects in visual scenes [18].

On an algorithmic cognitive level, scene understanding has been approached through

an intuitive physics engine framework [9, 42, 5], whereby the brain uses probabilis-

tic simulations about the physical state of an observed world to make approximate

inferences about future unobserved states. In this framework, a physical model of

the world is represented in a latent space, and future states are generated by recur-

sively applying learned physical principles over time. Hence, in dynamic scenes, this

model evaluates acceptable hypotheses through simulation and updates its state of

22



the world [80] or problem-solving strategy [5] through limited observations.

Furthermore, experience and learning are crucial in human scene perception. In

particular, the brain’s ability to extract and process information from a scene is

not static but evolves with experience and depends on the context of the visual

information. For instance, Bainbridge et al. [6] showed that personal experience with

scenes can influence scene recognition, indicating that past experiences can shape how

we perceive and understand scenes. In addition, Epstein et al. [31] highlighted the

role of learning in the development of scene-selective regions in the brain, suggesting

that these regions may be shaped by our experiences and learning throughout life.

2.3 Advances in Computational Scene Perception

2.3.1 Machine Learning Approaches

Many computational approaches to scene understanding involve the use of artificial

neural networks. Computational models in this framework often encode images into a

learned latent space using a convolutional neural network (CNN) [65] or transformer

model [103] and learn classifiers or regressors that minimize an objective function

over a set of downstream tasks. Such tasks usually include object segmentation and

recognition, 3D scene reconstruction, and depth and pose estimation. With recent

advances in deep neural networks and the introduction of multi-million-scale image

datasets such as ImageNet [24], COCO [67], and many others [60, 1, 20, 58], state-of-

the-art deep learning models have shown great promise on scene understanding tasks,

achieving near-human-level accuracies.

Convolutional neural network (CNN)-based models such as ResNet and DenseNet

have made significant strides in image classification and object recognition tasks.

ResNet introduced an architecture that includes skip connections for training deeper

networks [44]. DenseNet models connect each layer to every other layer in the network,

strengthening feature propagation and reuse [48]. Non-convolution neural networks

that employ spatial attention have also been proposed. For example, Dosovitskiy et

al. [28] proposed Vision Transformers (ViT) and showed that they outperform es-
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tablished CNN models. Furthermore, vision models can be combined with recurrent

LSTM networks [46] to create sequential models with a convolutional backbone, al-

lowing them to handle video data with temporal dependencies. This combination

leverages the strength of CNNs in extracting spatial features from images and the

ability of LSTMs to model temporal dependencies, making it a powerful tool for

video-based tasks [27, 104, 86].

Recently, transformer-based models have also been applied to video scene under-

standing. For instance, TimeSformer applies self-attention across space and time in

videos, capturing long-range spatiotemporal dependencies efficiently [10]. Similarly,

XClip leverages both transformer and convolutional architectures to learn represen-

tations from a large amount of weakly-supervised data, using a two-branch archi-

tecture to process image frames and text data, thereby capturing both visual and

textual information [70]. Furthermore, VideoMAE uses transformer-based masked

auto-encoding to learn video representations, predicting masked-out patches in the

video to understand the context in both spatial and temporal dimensions [98].

One limitation of the previous approaches is that they do not enforce particular

structure learning; hence they tend to fail on tasks where the data involves complex

relationships and interactions. Graph neural network (GNN) models that learn struc-

tured graph representations have been used for scene understanding. For instance,

Chen et al. [17] use GNNs to predict scene graphs by propagating information between

objects in the scene. Similarly, Huang et al. [49] propose a GNN for instance seg-

mentation by using a textual query to guide information aggregation in neighboring

nodes in graph representations.

In reinforcement learning, a common approach to scene perception is to use con-

volutional networks to extract visual features from the environment. These features

can then inform the agent about the current state of the environment [66, 33, 3]. For

example, Moses et al. [74] use a convolutional network to encode visual cues in the

environment and learn a policy that correlates observed features with actions, leading

to learning more generalizable policies. Another example is Gupta et al. [41], where a

model uses a combination of convolutional processing backbones and recurrent units
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to learn a policy that guides the agent through solving a maze. In particular, the

model learns to construct a spatial map of the environment from visual input and uses

this map to plan a path to the goal. Likewise, Adjodah et al. [2] introduce relational

architectures, which employ neural network sub-modules, in reinforcement learning

and showed improved generalization by transforming input states into relational ob-

ject representations.

2.3.2 3D Inverse Graphics

Another common approach to computational scene understanding involves 3D inverse

graphics. The core idea behind inverse graphics is to reverse the graphics render-

ing process, going from 2D images to 3D scene representations. Hence, the inverse

graphics method is inherently probabilistic since the same 2D image can correspond

to multiple 3D scenes due to occlusions, lighting conditions, and other factors.

Analysis-by-synthesis involves generating hypotheses about the scene’s structure

and comparing it with the observed data [107]. This approach resembles a Bayesian

process as it involves computing a posterior distribution over possible scenes given

the observed data. In addition, models following this approach tend to be explicitly

stateful and can generalize to various dynamic compositions, especially for modeling

states under limited observability conditions such as occlusion [39, 111]

However, traditional analysis-by-synthesis approaches often involve hand-crafted

models and are computationally expensive as they require repeated rendering and

likelihood evaluation with the observed data. To overcome these limitations, recent

work has focused on learning-based approaches that accelerate inference [23, 71, 38].

For instance, Picture [71] allows for the specification of generative models that in-

clude graphics rendering operations and uses a combination of MCMC and variational

inference methods to infer the scene structure.

2.4 Learning from Simulated Data

Using synthetic and simulated data in training vision models has gained increased

interest in artificial intelligence research. In particular, the ability to generate large
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amounts of labeled data without manual annotation effort is a significant advantage,

especially for tasks where real-world data collection and annotation can be challenging

or expensive. Hence, these datasets provide diverse environments and objects that

aid in tasks such as semantic segmentation, object detection, and pose estimation.

One of the key advantages of synthetic data is the ability to relatively-cheaply gen-

erate a large amount of pre-labeled training data with little effort. The mass genera-

tion procedures often rely on physical simulators such as Unity [52], Unreal [30], and

Drake [97] to provide realistic object poses, accurate physics, and plausible scenery.

Accordingly, platforms such as ThreeDWorld [34], AI2Thor [57], and Habitat [87, 96]

provide a layer of abstraction specifically designed for machine learning research by

providing pre-built environments, objects, and interactions that are commonly used

in machine learning tasks. For instance, ThreeDWorld [34] provides tools for generat-

ing complex 3D scenes with realistic lighting and textures and allows for control over

camera parameters. Meanwhile, AI2Thor [57] provides an interactive 3D environ-

ment for visual AI. It includes a variety of pre-built objects and scenes and provides

high-quality visual rendering and physics simulation. This makes it suitable for tasks

that require high-level scene understanding.

To facilitate the mass generation of synthetic data, dataset creators often de-

velop custom simulators that generate task-specific scenes sampled from a distribu-

tion over the possible scene generation parameters (e.g. colors, lighting, object poses,

etc..) [63, 72, 108, 15]. For instance, Synthia [83] provides a virtual city simulator

with pixel-level annotations and sequences of images with temporal consistency. Sim-

ilarly, datasets such as SyVic [14] and BlenderProc [25] provide modular pipelines

that generate realistic images and metadata for various computer vision tasks.

In robotics, synthetic environments have been used to generate simulated datasets

for embodied agent learning. For instance, Tremblay et al. [100] developed the Falling

Things dataset, a synthetic resource for 3D object detection and pose estimation,

which proved beneficial for training models for robotic manipulation tasks. Similarly,

the GeneSIS-Rt framework [95], RobotriX dataset [36], and others [101, 29, 72], were

introduced to show that learning from large-scale and photorealistic synthetic im-
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ages can improve the performance of robotic vision systems for tasks such as robot

localization, mapping, and object interaction.

While synthetic and simulated data offer advantages, they also present challenges,

especially the domain gap between synthetic and real-world data. This gap can lead

to models that perform well in simulation but poorly in real-world tasks, primarily

due to the significant differences between the characteristics of real versus simulated

visual information [100].

Multiple approaches have been proposed to bridge the domain gap. One approach

is domain randomization, where the irrelevant attributes of the synthetic data are ran-

domized to force the model to learn the essential features of the object of interest [99].

In addition, multiple domain adaptation techniques have been investigated where the

synthetic data is enhanced with real data features through stylization [112, 50] to

make the models robust to diversity in styles, or Adversarial training [102, 91, 35]

to align the latent features of simulated data with those of real data. Nonetheless,

Baradad et al. [8] have demonstrated that augmenting synthetic images with struc-

tured noise improves representation learning as long as the generated noise embodies

certain structural properties of real data and offers sufficient diversity.

2.5 Review of Scene Perception Tasks

We refer to three main tasks that pertain to scene perception throughout the manuscript.

Object Identification aims to assign a predefined class label to an object given its

representation. In the case of 2D images, given an image 𝐼 of 𝐻×𝑊 pixels, each

of ∈ Z3 between 0 and 255, and a set of object classes 𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑛}, the

task can be formulated as a function 𝑓 : J0, 255K𝐻×𝑊×3 → 𝑂, as per [59, 92, 44].

When dealing with depth point clouds, the task remains the same but the input

changes. A depth point cloud is a set of points in a 3D space, each with its own

spatial coordinates. We denote a depth point cloud as c ∈ R𝐻×𝑊 . The task

can be formulated as a function 𝑔 : R𝐻×𝑊 → 𝑂, as per [78, 79].

Semantic Segmentation aims to assign a class label to each pixel in an image,
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hence partitioning the image into regions corresponding to different objects

or parts of objects. Given an input image 𝐼, semantic segmentation can be

formulated as a function 𝑓 : J0, 255K𝐻×𝑊×3 → 𝑂𝑁 , where 𝑂 is the set of object

classes and 𝑁 is the number of pixels in the image [69, 16, 62, 73].

Object Pose Estimation aims to determine an object’s 3D translation and orien-

tation in a scene. Given an image 𝐼 and an object class 𝑜, the task can be

mathematically formulated as a function 𝑓 : 𝑂× J0, 255K𝐻×𝑊×3 → R3×𝑆𝑂(3).

That is, 𝑓 outputs a 6D pose 𝑝 = (𝑡, 𝑅) for the object 𝑜 in the image 𝐼, where

𝑡 ∈ R3 is the translation vector representing the object’s position in 3D space,

and 𝑅 ∈ 𝑆𝑂(3) is the rotation matrix representing the object’s orientation.

Notable works in this area include using deep learning for 6D pose estimation

in images [109, 53, 105].

2.6 Preliminaries: Bayesian Inference

2.6.1 Events and Sample Space

Sample space, often represented by 𝑆 or Ω, refers to the entire set of all possible

outcomes that can be derived from an experiment. For example, when flipping a fair

coin, the sample space encompasses two possibilities: Ω = {heads, tails}.

On the other hand, an event is a subset (one or multiple outcomes) of this sample

space. Applying this to the coin toss scenario, one could define an event 𝐴 such that

𝐴 = {heads}. When the result is heads, event 𝐴 has occurred.

2.6.2 Bayesian Networks

Bayesian networks serve as graphical models that encapsulate the probabilistic rela-

tionships among variables. Each node in a Bayesian network symbolizes a random

variable, whereas the edges represent the conditional dependencies between these vari-

ables. If two variables lack a connecting edge, they are conditionally independent.

For example, consider three binary variables: Rain (R), Sprinkler (S), and Wet

Grass (W). One could construct a Bayesian network where the occurrence of rain (R)
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influences whether the sprinkler is activated (S), and both rain and sprinkler whether

the grass is wet (W). Using this network, one can easily calculate probabilities such

as 𝑃 (𝑊 = True|𝑅 = True, 𝑆 = False), indicating the probability of the grass being

wet given it rained and the sprinkler was not activated.

2.6.3 Markov Models and Stochastic Processes

Stochastic processes are used for predicting a sequence of potential events wherein

the future state could rely on the current state and a certain level of randomness.

Markov models are examples of stochastic processes that describe systems changing

over time under the influence of random events. The distinguishing factor of Markov

models is that the probability of each event relies solely on the state of the preceding

events. This attribute is often referred to as the Markov property.

A first-order Markov model is a Markov model where the likelihood of transitioning

to the subsequent state depends only on the current state and not the sequence of

previous events. Formally, given a sequence of random variables 𝑋1, 𝑋2, ..., 𝑋𝑛, for

any 𝑖 the likelihood 𝑃 (𝑋𝑖+1 = 𝑥|𝑋1 = 𝑥1, ..., 𝑋𝑖 = 𝑥𝑖) equals 𝑃 (𝑋𝑖+1 = 𝑥|𝑋𝑖 = 𝑥𝑖).

Hence, the future state depends solely on the current state, with the past states having

no influence, making it memoryless. For example, if we are modeling the weather, we

might assume that tomorrow’s weather depends only on the weather today and not

on the weather of all previous days.

2.6.4 Probability Distributions

Uniform Distribution defined over a range [𝑎, 𝑏], with all outcomes being equally

likely.

𝑈(𝑥; 𝑎, 𝑏) =

⎧⎪⎨⎪⎩
1

𝑏−𝑎
for 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

Gaussian Distribution a common probability distribution for a real-valued ran-

dom variable.

𝒩 (𝑥;𝜇,Σ) =
1√︀

(2𝜋)𝑑|Σ|
𝑒−

1
2
(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇)
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Chapter 3

Proposed Benchmark

3.1 Chapter Overview

Inspired by the Primate Cognition Test Battery [88], we leverage the advantages of

synthetic data, including its cost-effectiveness, flexibility, and rapid generation, to

evaluate computational models on intuitive physics cognitive tests. In particular, we

construct the Simulated COgnitive Tasks (SCOT) benchmark, which comprises six

intuitive physics tasks adapted from literature in cognitive tests for human infants

and non-human primates [93, 51, 43, 12, 85, 13].

This chapter introduces the SCOT benchmark, detailing the six tasks, their ob-

jectives, and the task-specific complexity definitions (Section 3.2). It also explains the

process of creating the synthetic dataset and discusses potential biases (Section 3.3).

The chapter concludes by formalizing the dataset into a benchmark, outlining its met-

rics, use cases, and how it can be utilized for training and evaluating computational

models (Section 3.4).

3.2 Simulated Cognitive Tasks

3.2.1 Examination of the Cognitive Tasks

We implement a system that facilitates simulations of six cognitive tasks, each de-

signed to evaluate a certain cognitive capability of agents. Below, we list the intuitive

physics scenes and tasks associated with each of them. Figure 1-1 shows examples of

the described scenes.

31



Addition Multiple rewards are moved from a central plate to one of several other

occluded plates. The agent’s goal is to identify which plate holds the most

rewards after this transfer. This task challenges the agent’s ability to keep

track of multiple occluded objects and perform basic numerical computations.

Gravity Bias Multiple rewards are dropped into an opaque tube with a complex

geometric design, leading to one of several receptacles. The agent’s understand-

ing of how gravity influences the movement of objects is tested. In particular,

by observing the rewards’ initial movement and the tube’s shape, the agent is

tasked with predicting in which receptacle the rewards will end up. This task

tests the agent’s grasp of fundamental physics principles in a dynamic setting.

Rotation A reward is initially hidden under one of several receptacles. Random

pairs of receptacles are then rotated, and the agent’s task is to predict under

which receptacle the reward ends up. This task tests the agent’s ability to

understand and track spatial movements.

Simple Swap Inspired by the classic shell game, a reward is initially hidden into or

under one of several receptacles, which are then shuffled around randomly. The

agent’s challenge is to keep track of the reward’s location and correctly identify

the bowl hiding the reward at the end of the shuffling sequence. This task tests

the agent’s ability to persistently track an object’s location and its ability to

track moving objects.

Relative Numbers The agent is presented with several plates, each containing a

certain number of rewards. The agent’s task is to identify which plate holds the

most rewards. This task assesses the agent’s basic numeracy skills, specifically

its ability to compare and evaluate quantities. Unlike other tasks, this task does

not involve a dynamic component (i.e., a static scene).

Shape Causality The agent is tasked with finding a reward hidden beneath an

object. The object subtly changes shape to accommodate the hidden reward.

The agent’s challenge is recognizing the correlation between the object’s altered

shape and the hidden reward’s location. This task assesses the agent’s ability to
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understand causality, specifically how changes in an object’s shape can indicate

the presence of a hidden item.

As the thesis aims to evaluate the fundamental cognitive abilities of computational

models and assess how well they generalize their learned knowledge, each task in the

SCOT benchmark features varying levels of complexity. However, it’s important to

note that complexity is defined differently for each task; hence the ability to generalize

may not increase linearly with complexity within a single task, nor is it directly

comparable between different tasks. Table 3.1 explains the complexity variable for

each task. For instance, a scene in the Gravity Bias task may contain anywhere from

1 to 8 tubes, increasing the task’s difficulty. Figure 3-1 provides examples from the

Gravity Bias and Relative Numbers tasks, illustrating how complexity varies within

each task.

Task Complexity Variable Difficulty Levels

Addition number of receptacles involved in the transfer [1-4]
Gravity Bias number of tubes in the scene [1-8]
Rotation number of receptacle rotations in the video [1-8]
Simple Swap number of receptacle swaps in the video [1-8]
Relative Numbers number of non-empty receptacles in the scene [1-6]
Shape Causality number of deformed receptacles [1-3]

Table 3.1: Task-Specific Complexity Definitions Illustrates the variables that
determine the complexity levels for each task in the SCOT benchmark. For every
task, increasing the complexity variable makes the task more difficult, either by re-
quiring more advanced reasoning capacities or extended memory.

3.3 Simulated Dataset Curation and Analysis

3.3.1 Dataset Generation Procedure

This section outlines the components and the pipeline of our approach used to gen-

erate the synthetic dataset for the proposed SCOT benchmark.
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(a) Gravity Bias with 1, 3, 5 tubes respectively

(b) Relative Numbers with 1, 3, 5 engaged receptacles respectively

Figure 3-1: Examples of Task-Specific Complexity Levels Complexity for the
gravity bias dataset is defined by the number of tubes in the scene. On the other
hand, complexity is defined as the number of engaged (non-empty) receptacles for
the Relative Numbers task.

We develop a procedural video generation pipeline using the Unity game engine

to simulate the cognitive tasks. This pipeline can record videos of the simulated

scenes and provide dense ground-truth information, including object poses, instance

segmentations, and depth data. It also offers extensive customization options for

each experiment, including the ability to randomize settings like colors, background

objects, poses, and lighting and experimental design elements such as the number

of rewards or receptacles. These options are task-dependent and can be exported as

metadata.

For most tasks, custom environments were designed within the AI2Thor platform,

which facilitates rendering by providing an API with a Unity renderer to communicate

scene information and object movements. For the Gravity Bias task, we created a

custom environment directly in Unity to facilitate the on-the-spot generation of tube
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geometries. In both scenarios, we ensured strong supervision for each video by having

the simulation platform provide comprehensive metadata. Researchers can utilize this

metadata to train or evaluate computational models on various downstream tasks.

By obtaining strong supervision over the simulation environment, users can obtain

detailed descriptions of the generated scenes for each frame. In particular, alongside

RGB frames, the simulation platform is able to generate rich metadata, including (i)

the world coordinates of each object in the scene, including the camera position and

viewing direction; (ii) the physical attributes of each object in the scene, including

color, size, and material; (iii) rendered depth images, instance segmentation masks,

and category segmentation masks. The metadata is rich by design to support a variety

of downstream tasks such as semantic segmentation, object identification, and pose

estimation. For example, as detailed in Section 3.4, this benchmark expects models

to make a single categorical prediction about the index or indices of the receptacles

containing the most rewards. Hence, ground-truth labels can easily be derived from

the metadata by comparing object positions. However, the pipeline accommodates

other use cases as the metadata can be used to obtain ground-truth labels for other

downstream tasks, such as object localization, prediction of compositional structures

or scene graphs, or captioning for V&L training as in [14].

Furthermore, the pipeline was implemented in Python and offers a convenient

interface to the simulation platforms, allowing users to control high-level scene at-

tributes via a YAML configuration file. The configuration file can be used to adjust a

wide range of parameters, including simulation parameters, such as camera intrinsic,

lighting, colors, and textures; experimental variables, such as the count and types of

receptacles and rewards; and task-specific variables, such as the count of occluders or

tubes and the task complexity level. Figure 3-2 presents a high-level overview of our

dataset generation procedure, highlighting the process from user-specified parameters

to producing comprehensive scene data and annotations.

Additionally, our pipeline is designed to be accessible, requiring no prior knowledge

of rendering or Unity, and is compatible with both MacOS and Linux platforms. The

simulation platform source code is publicly available for building on unsupported
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random seed
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Figure 3-2: Overview of the Dataset Generation Procedure Users may specify
the experimental and rendering parameters, along with a random seed, in a YAML
config file. If any parameters are left unspecified, they are randomly selected from
a predefined range using the provided seed, resulting in a comprehensive scene con-
figuration. Accordingly, the simulator performs the task using this configuration,
generating a sequence of RGB frames, depth images, instance segmentations, and
dense annotations of the scene state.

operating systems. Moreover, the simulator’s design supports headless operation,

facilitating large-scale scene generation on high-performance computing clusters.

3.3.2 Dataset Bias Analysis

Using the proposed dataset generation pipeline, we employed Satori, a high-performance

computing cluster at MIT, to generate a large-scale dataset of intuitive physics scenes.

The contributed dataset encompasses a total of 10,000 videos, which collectively con-

tain over 2.3 million RGB-D frames, along with their depth images, segmentation

masks, and dense metadata. These videos span the six cognitive tasks, offering a

diverse array of videos with highly randomized configurations for each task.

Leveraging domain randomization in the dataset generation pipeline ensures a

robust and comprehensive representation of intuitive physics scenes. This technique

randomizes the parameters of each video, such as the physical properties of objects,

lighting, and camera field of view, thereby sampling from a uniform distribution across

the entire parameter space. As a result, no specific condition is over-represented,
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Task # Videos # Frames # Conditions # Videos per Condition

Addition 2,000 639K 4 500
Gravity Bias 400 89K 8 50
Rotation 2,000 476K 8 250
Simple Swap 2,000 1,065K 8 250
Relative Numbers 2,100 2.1K 6 350
Shape Causality 1,500 49.5K 3 500

Table 3.2: Quantitative Overview of the SCOT Dataset Presents the overall
number of videos and frames generated for each simulated task.

mitigating potential biases. The value of domain randomization lies in its ability

to generate a diverse array of scenarios and control for variables irrelevant to the

simulated task, hence eliminating any favoritism towards learning scene attributes

instead of physical properties on a higher level. This ensures a fair evaluation by

exposing models to a wide variety of conditions, thereby reducing overfitting and

improving their ability to handle unfamiliar situations.

Additionally, we use label distribution analysis, as visualized Figure 3-3, as a crit-

ical tool for assessing the balance and fairness of our dataset across all classes. In

particular, label distribution analysis allows us to ensure a fair evaluation and robust

training on the dataset by punishing models that favor any specific class due to over-

representation or underrepresentation in the training data. The plot reveals that our

dataset adheres closely to an ideal uniform distribution for each task, with a stan-

dard deviation ≤ 1.2%. This demonstrates the effectiveness of our data generation

and sampling methods in maintaining class balance. A minor exception is observed

in the Gravity Bias dataset, which exhibits a slightly higher variation of 1.75%. This

deviation is likely due to the smaller size of this dataset of only 400 videos, and thus,

minor fluctuations in label distribution can lead to a larger percentage deviation.

3.4 Benchmark and Metrics

Following the dataset generated in the previous section, we propose a benchmark

that assesses the performance of computational models on the Simulated Cognitive
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Figure 3-3: Label Distribution Bias Analysis Our analysis of label distribution
within the dataset reveals a well-balanced representation across all classes. Each label
exhibits a roughly equal likelihood of occurrence, indicating that no single class is sig-
nificantly over-represented or underrepresented. This balanced distribution mitigates
the risk of model bias towards any particular class.

Tasks (SCOT) dataset. In particular, we pose scene perception as a classification

problem where an agent observing the scene makes a categorical prediction about the

index or indices of the receptacle(s) that contain the highest number of rewards. In

particular, given a sequence of frames {𝐼1, 𝐼2, ..., 𝐼𝑇}, each containing 𝐻 ×𝑊 pixels,

from a scene containing 𝑘 receptacles, we model the agent as a function 𝑀 that

estimates a posterior PMF over the 𝑘 receptacles, where each probability corresponds

to the likelihood that a given receptacle contains the highest number of rewards.

𝑀 : Z(𝐻×𝑊××3)×𝑇 →

{︃
𝑃 : [1− 𝑘] ∈ Z → [0, 1]

⃒⃒⃒⃒
⃒

𝑘∑︁
𝑖=1

𝑃 (𝑖) = 1

}︃
We use task complexity as a proxy to evaluate the generalizability of an agent’s

intuitive physics core knowledge. However, as complexity parameters differ among

tasks, we neither expect a linear relationship within a specific task nor direct compa-

rability between tasks. Thus, we view complexity as a qualitative indicator, focusing

our comparisons on individual task levels rather than across tasks. We evaluate the
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performance of artificial agents using a range of metrics, including categorical classi-

fication accuracy, mean absolute error (MAE), precision, recall, and F1 score. Each

metric offers a unique insight into the agent’s performance.

Below, we describe and formulate each metric. Let 𝑛 be the total number of videos

and 𝑃𝑖 be the PMF produced by the agent after observing the 𝑖-th video. Accordingly,

the most-likely class for that video is 𝑦𝑖 = argmax
𝑗∈[1,𝑘]

𝑃𝑖(𝑗), and the true class is 𝑦𝑖.

Classification Accuracy is the ratio of correct predictions to the total number of

predictions. This metric provides a fundamental assessment of the predictive

performance.

Classification Accuracy =
1

𝑛

𝑛∑︁
𝑖=1

1(𝑦𝑖 = 𝑦𝑖)

Mean Absolute Error (MAE) computes the absolute difference between the pre-

dicted and the actual receptacle index. This metric is particularly useful as it

indicates the model’s predictive accuracy in numerical terms, helping us under-

stand the magnitude of the error.

MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|

Precision and Recall deliver a more detailed view of the model’s performance for

each class. Precision calculates the proportion of true positive predictions

among all positive predictions for each class, whereas Recall measures the pro-

portion of true positive predictions out of all actual positives for each class.

Since tasks involve multiple classes, we compute the average (macro) precision

and recall.

Average Precision =
1

𝑘

𝑘∑︁
𝑗=1

(︂∑︀𝑛
𝑖=1 1(𝑦𝑖 = 𝑗 and 𝑦𝑖 = 𝑗)∑︀𝑛

𝑖=1 1(𝑦𝑖 = 𝑗)

)︂

Average Recall =
1

𝑘

𝑘∑︁
𝑗=1

(︂∑︀𝑛
𝑖=1 1(𝑦𝑖 = 1 and 𝑦𝑖 = 1)∑︀𝑛

𝑖=1 1(𝑦𝑖 = 1)

)︂
F1 Score is the harmonic mean of precision and recall, providing a comprehensive
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measure for imbalanced datasets. Given that some tasks might result in a

slightly-uneven distribution of labels, the F1 Score ensures that the model’s

performance is thoroughly evaluated. Denoting 𝑝𝑗 and 𝑟𝑗 to refer to the precision

and recall, respectively, of class 𝑗,

𝐹1macro =
1

𝑘

(︃
𝑘∑︁

𝑗=1

2 · 𝑝𝑗 · 𝑟𝑗
𝑝𝑗 + 𝑟𝑗

)︃

Integrating the metrics above allows for a holistic evaluation of the model’s perfor-

mance, thereby providing a comprehensive understanding of its strengths and areas

for improvement. We believe that our benchmark should serve not only as a measure

of the agent’s performance but also help identify specific strengths and weaknesses

of the different computational models. The combination of these metrics addresses

both the overall accuracy and the quality of the predictions for each class, enabling

a thorough evaluation of the model’s ability to generalize from training to unseen

scenarios.

Hence, interpretability plays a crucial role in the evaluation. An agent that per-

forms well quantitatively but whose internal workings are a "black box" may prove

less valuable than a less performant but interpretable model. Therefore, the bench-

mark also considers the interpretability of the model’s reasoning, adding another

dimension to our evaluation. We do not specify a particular qualitative metric that

can be used for qualitative evaluation beyond complexity levels as model designs can

vary significantly. Nonetheless, we recommend developing models whose decisions

can be efficiently explainable as it facilitates the iterative development of those mod-

els. In addition, we take a step to ensure that no overfitting is achieved by strongly

controlling non-relevant scene attributes through domain randomization.

40



Chapter 4

Deep Learning Baselines

4.1 Chapter Overview

To facilitate the testing of computational models on the SCOT benchmark, we im-

plement a general system through which artificial neural models can interact with the

SCOT benchmark. This system is further described in Section 4.2 and is used to train

and evaluate several baseline deep learning models on the SCOT benchmark. We

present evaluation results and briefly discuss the limitations of those neural models

on our intuitive physics dataset (Section 4.3).

4.2 Experimental Setup

Inspired by recent work in model and benchmark separation [89], the system, at its

core, develops an abstraction that separates model specification from the datasets

and inference procedure.

In particular, we develop a "Training Job" abstraction that streamlines the pro-

cess of feeding data into the models, training the models if necessary, carrying out

inference, and evaluating the results based on the defined metrics. This abstrac-

tion, therefore, ensures a clear and coherent workflow, reducing the overhead often

associated with linking deep learning models to efficient data loaders and inference

procedures. Figure 4-1 illustrates the different components of the system and how

they interact with each other.
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Figure 4-1: Baseline Evaluation System Diagram The intuitive physics dataset,
consisting of videos and labels, is loaded from the file system and transformed into
PyTorch tensors via the appropriate data loader. The model, either implemented by
the user or chosen from a pre-implemented list, performs inference. Following that,
a procedure for computing evaluation metrics is carried out. If training is enabled,
the cross-entropy loss is computed and used for backward propagation. Lastly, an
evaluation report is produced with scores for each metric. Each component of the
system may be customized through configuration files.

4.2.1 Model Descriptions

Using this system, we have implemented two classes of models that can be tested

on the SCOT benchmark: (i) LSTM models with visual encoder backbones and

(ii) specialized video understanding models from HuggingFace [106]. We conduct a

systematic evaluation of example models from both classes. Here, we describe each

class and list the models we used for evaluation.

Visual Encoder-LSTM Models are constructed from three primary components:

a visual encoder, an LSTM network, and a multilayer perceptron for classifica-

tion. The visual encoder backbone, which can be a convolutional neural network

(CNN) such as ResNet or DenseNet, or a transformer model like Vision Trans-

former (ViT-B16), processes the visual aspects of the scene to extract frame-

level features. This includes recognizing spatial patterns, objects, and scene

composition based on individual pixels, resulting in a vector representation for
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each frame. Subsequently, a two-layer LSTM model is employed to encode tem-

poral information from frame-level features using attention mechanisms. The

last component, a multilayer perceptron, takes the hidden temporal features

from the last LSTM layer and maps them into a distribution over the indices

related to the cognitive task. We source the CNN and ViT models and obtain

their weights using Torchvision.

Video Understanding Models are specifically designed for and pre-trained on

video data. These models include TimeSformer, VideoMAE, and XClip, all of

which have demonstrated a unique capacity to extract meaningful features for

video classification. We remark that XClip is inherently multimodal, designed

to work with both visual and textual data; hence we only use the embeddings

from the visual encoder following the cross-frame attention mechanism. Like the

CNN-LSTM models, we employ a multilayer perceptron to map the processed

visual embeddings into a probability distribution across possible receptacle in-

dices. In our system, we source video understanding models and obtain their

weights using Huggingface.

4.2.2 Implementation Details

The developed system operates on top of PyTorch [75], a versatile and widely-adopted

open-source machine-learning library in Python. Accordingly, any model imple-

mented in Python or with a Python interface can be integrated into the system.

All model constructions and weights described in 4.2.1 are loaded using PyTorch,

and both the training and inference pipelines adhere to standard PyTorch implemen-

tations. Similarly, the system allows the integration of various pre-trained models

from the Huggingface repository, including VideoMAE, TimeSformer, and XClip.

Moreover, an efficient data-loading pipeline was implemented that uses FFCV [64]

to mitigate memory bottlenecks during data loading. In particular, we (optionally)

provide a version of the dataset in FFCV format, which allows users to use efficient file

storage format, caching, pre-loading, and other techniques to speed up data loading,

ensuring full memory utilization. As a result, model training becomes much more
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efficient, a valuable attribute considering the data-intensive nature of video datasets

used in the system. We remark that using FFCV accelerates training on V-100 GPUs

twofold.

Furthermore, by abstraction, the system emphasizes configuration flexibility and

extensibility. Specifically, users can adjust the attributes of the data loading pipeline

and model specifications. For example, for the pre-implemented CNN-LSTM baseline

model, users can change the CNN architecture, number of LSTM layers, and hidden

size of the LSTM block. Additionally, users can develop their configuration files for

new models, expanding the system’s adaptability.

4.3 Baseline Evaluations

We evaluate the models from 4.2.1 on the SCOT benchmark using Supercloud [82],

an MIT high-performance compute cluster. We allocated one V100 GPU for each job

involved in the training and evaluation of the models.

The datasets employed in this study were sourced from the SCOT video library

presented in Chapter 3. We divided the video dataset for each task into two distinct

subsets - a training/validation subset and a testing subset. The complexity level

definitions guided the partitioning process, allocating the smaller ⌊2/3𝑛⌋ of the 𝑛

complexity levels for training/validation and the remaining for testing. For example,

the gravity bias task has eight complexity levels, so we used the first five (1-5 tubes

per scene) for training and the last three (6-8 tubes per scene) for testing.

Within the training/validation subset, we randomly sample 80% of the dataset to

fine-tune the neural models and use the remaining 20% for validation.

Accordingly, we fine-tuned pre-trained versions of the neural models, sourced from

Torchvision and Huggingface, for 100 epochs or until the validation loss monotonically

increased for five consecutive epochs. We define an "epoch" as a full pass through

the fine-tuning dataset. Subsequently, we select the model weights (checkpoint) at

the epoch with the lowest categorical cross-entropy loss on the validation dataset to

perform inference on the testing dataset.

The training jobs utilized a linear learning rate schedule and the Adam optimizer,
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as per [55]. The linear learning rate schedule gradually decreased the learning rate

throughout the training. Meanwhile, the Adam optimizer, known for its adaptive

learning rates and efficient memory usage, facilitated the optimization process.

To identify the most effective parameters for the optimizer, we conducted a com-

prehensive hyperparameter tuning process using the Weights & Biases Sweeps [11].

This sweeping tool allowed us to explore various combinations of hyperparameters

and identify the configuration that yielded the best performance for each model.

4.3.1 Experimental Results

Following fine-tuning, we evaluate the models on the held-out testing dataset using

top-1 accuracy, macro-average F1 score, and mean absolute error. Table 4.1 compares

the six deep learning models’ performance on each task of the SCOT benchmark.

For each of the six models assessed, two values are presented: one for the validation

dataset and one for the testing dataset. The validation dataset is the randomly

selected 20% subset of the videos with low complexity, unseen during the training

phase but used to select the best model weights for inference. In contrast, the testing

dataset comprises videos of higher complexity, also unseen during the training phase.

We observe that XClip and TimeSformer consistently outperform the other models

in top-1 accuracy and average F1 scores across most tasks. In contrast, despite its

memory-augmented mechanism, VideoMAE did not reach the performance levels of

TimeSformer and XClip on most tasks. This result suggests that VideoMAE’s model

architecture may face challenges encapsulating all the necessary information from

multiple video clips.

On the other hand, mean absolute errors offer an alternative perspective on the

models’ performance. In this metric, lower values are desirable as they signify smaller

errors. In particular, it measures how far the correct receptacle is from the predicted

receptacle, on average, assigning lower errors to spatially closer predictions and align-

ing more with the intuitive definition of the benchmark’s objective. Once again,

TimeSformer and XClip perform better than other models, suggesting their predic-

tions are generally proximate to the ground truth.
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Addition Gravity Rotation Swap Relative Shape

Model Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test

ResNet-18/LSTM 26.40 25.91 38.00 16.00 22.16 19.07 16.96 16.40 59.86 28.00 98.02 71.20
Densenet/LSTM 27.93 25.39 44.40 18.67 22.16 19.07 16.96 16.40 17.64 16.00 97.40 66.20
ViT-B16/LSTM 25.89 27.85 15.20 12.00 22.16 19.07 17.52 17.87 47.14 21.71 99.70 80.95
VideoMAE 31.19 27.14 18.00 14.67 24.24 18.93 20.40 13.20 96.43 54.57 100.0 89.70
TimeSformer 74.21 49.42 97.20 52.67 68.72 27.73 52.96 17.87 97.36 72.71 100.0 100.0
XClip 67.18 52.35 94.80 43.33 76.24 28.00 41.60 14.93 96.86 65.71 100.0 100.0

(a) Top-1 Accuracy (%)

Addition Gravity Rotation Swap Relative Shape

Model Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test

ResNet-18/LSTM 18.27 16.62 36.43 14.90 6.04 5.34 4.83 4.70 59.71 27.86 97.81 69.84
Densenet/LSTM 10.92 10.12 42.01 15.96 6.04 5.34 4.83 4.70 5.00 4.59 97.15 65.29
ViT-B16/LSTM 16.72 17.40 5.50 5.50 6.04 5.34 4.97 5.05 42.92 19.56 99.66 78.81
VideoMAE 23.17 18.18 6.91 6.54 12.34 9.83 14.59 9.46 96.40 54.84 100.0 87.77
TimeSformer 73.92 49.26 96.48 46.82 61.84 21.98 51.51 17.23 97.33 71.59 100.0 100.0
XClip 66.76 51.92 93.86 39.51 72.81 22.52 41.01 13.30 96.78 64.85 100.0 100.0

(b) Average F1 Score (%)

Addition Gravity Rotation Swap Relative Shape

Model Val. Test Val. Test Val. Test Val. Test Val. Test Val. Test

ResNet-18/LSTM 1.14 1.06 1.62 2.31 1.44 1.49 1.52 1.52 0.90 1.71 0.02 0.29
Densenet/LSTM 0.96 0.99 1.62 2.37 1.44 1.49 1.52 1.52 2.46 2.48 0.03 0.34
ViT-B16/LSTM 0.96 0.97 2.20 2.27 1.44 1.49 2.47 2.37 1.37 1.94 0.00 0.19
VideoMAE 0.98 1.01 2.47 2.37 1.45 1.61 2.24 2.41 0.07 1.00 0.00 0.10
TimeSformer 0.40 0.77 0.07 0.67 0.46 1.36 1.08 1.97 0.07 0.71 0.00 0.00
XClip 0.55 0.75 0.12 1.26 0.38 1.30 1.52 2.09 0.07 0.80 0.00 0.00

(c) Mean Absolute Error

Table 4.1: Performance of Deep Learning Models on the SCOT Benchmark
Illustrates the top-1 accuracy, macro F1 score, and mean absolute error achieved by
each baseline neural model on both the validation and test subsets of each task within
the benchmark. The validation subset is a random selection comprising 20% of the
videos with low complexity not seen during training, while the test subset contains
the videos with higher complexity levels. The best test performance on each task is
highlighted in bold text.

Additionally, Figure 4-2 provides a more comprehensive summary of each model’s

performance on the datasets as a function of the dataset’s complexity levels. We

observe a consistent pattern of decreasing model performance, as indicated by lower

accuracy, lower F1 score, and higher MAE scores as the complexity level increases.

The results suggest that the ability of the models to generalize is reduced when they

are exposed to scenes with more complex dynamics.

While we remark that this pattern may result from overfitting on the complexity
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Figure 4-2: Performance Comparison of Models Across Datasets Complex-
ity Levels Presents a comparative performance evaluation of various machine learn-
ing models across multiple datasets, depicted in terms of three key metrics: Accu-
racy(blue), Mean Absolute Error (orange) (scaled by 1/3 for better visualization), and
the F1 Score (green). The metrics are plotted against increasing complexity levels.
Each row corresponds to a distinct dataset, and each column represents a different
machine-learning model.

levels of the training data, we still observe a performance decrease among the held-

out testing complexity levels for most models. However, this pattern does not hold

uniformly across all models and datasets. Some models demonstrate a stable or
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slightly improved performance with higher complexity levels, potentially due to their

mainly incorrect and noisy predictions.

Finally, we use Grad-CAM [90, 37] visualizations to provide qualitative insights

into the interpretability of the neural baseline models. Specifically, we interpret ex-

planations of correct classifications by visualizing the feature map of the last convolu-

tional block in the ResNet-18 model and the spatial attention maps following the last

self-attention layer in TimeSformer. Those visualizations are presented in Figure 4-3.

Addition Gravity Rotation Swap Relative Shape
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Figure 4-3: Qualitative Evaluation of the Feature Maps of Neural Baselines
Shows Grad-CAM visualizations of the ResNet-18/LSTM and TimeSformer models
on sample frames from each task in the SCOT dataset.

4.3.2 Discussion

The results provide observations about the capabilities and limitations of deep learn-

ing models in generalizing intuitive physics knowledge.

The first insight is the contrast between the average performance of deep learning

models when recognizing spatial attributes of scenes versus understanding objects and

numbers in the visual world. In particular, in tasks requiring spatial awareness, such

as Gravity Bias and Shape Causality, we observe that models displayed high com-

petence in identifying the correct receptacles. For instance, TimeSformer achieves

52.67% accuracy on the high-complexity scenes of the Gravity Bias test set, signifi-

cantly higher than the expected accuracy of a random classifier of 12.5%. Similarly,

TimeSformer and XClip achieve near-perfect classification accuracies on the entire

Shape Causality video dataset.

48



However, models perform at or slightly above chance levels on tasks that require

developing concepts of objects and keeping track of them under occlusion, such as the

Rotation and Swap tasks. For example, in the Simple Swap and Rotation datasets,

the highest top-1 classification accuracies on the test set are 17.23% and 22.52%, re-

spectively, slightly higher than the expected accuracy of a random classifier of 16.7%.

This finding suggests that the emphasis of current deep learning algorithms on

pattern recognition and feature extraction enables the models to identify objects, their

shapes, and their spatial proximity fairly well. This competence may be attributed

to the large amounts of data that deep learning models were pre-trained on, which

require understanding visual attributes like shape and orientation as they are common

across various scenes in nature. Hence, those models are successful in tasks such as

image classification and object detection.

Nonetheless, deep learning models are not required to form abstract concepts

of objects. Therefore, we observe a performance drop if a task involves concepts

and processes that do not have clear statistical patterns or that require abstraction

and high-level cognitive processing. The difficulty with quantity understanding and

object conceptualization represents an example of this bottleneck in deep learning.

It suggests a limitation in the ability of models to generalize their learning to more

abstract or dynamic concepts, reflecting a shortcoming in dealing with tasks that

require more than just pattern recognition.

Furthermore, the Grad-CAM visualizations in Figure 4-3 reinforce our conclusions

about the capabilities and limitations of deep learning models. These visualizations

show that the models can effectively identify the relevant scene components in tasks

like Gravity Bias and Shape Causality, demonstrating a firm grasp of low-level geo-

metric features. However, in tasks such as Addition and Simple Swap, which demand a

deeper understanding of scene composition, the models exhibit less-focused attention

across all objects and surroundings, implying difficulties in comprehending complex

scene dynamics. Hence, these visualizations corroborate the performance metrics,

providing qualitative evidence of the models’ abilities and challenges in handling dif-

ferent intuitive physics tasks.
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Another insight from the experimental results is that as the complexity variable

increases, we observe a drop in performance in most tasks. This generalization gap

implies that models, while adept at making predictions under lower complexity levels,

fail to effectively extrapolate the physical and compositional principles when exposed

to increased complexity.

For example, the accuracy of TimeSformer and XClip, the highest-performing

models on the Gravity Bias dataset, monotonically drops as the number of tubes in

the videos increase. This failure suggests another limitation in the models’ capacity

to internalize task-specific rules or logic at the level of objects, resorting instead to

reliance on the learned patterns. This also highlights the need for advancements in

computational modeling to facilitate pattern abstraction and derivation of generalized

insights under high-complexity conditions. This might necessitate the integration of

robust understanding mechanisms, such as symbolic reasoning or cognitive architec-

tures, that can supplement the pattern recognition capabilities of these models.

In addition, the experiments suggest that the difficulty in complex tasks is not

merely a matter of insufficient training data or computing power. The models strug-

gled with the more complex Simple Swap and Rotation tasks even when fine-tuned

on a sizeable amount of data (e.g., 1M+ frames for Simple Swap, 476K frames for

Rotation). This points to a deeper issue that cannot be resolved by simply training

models on more data. In particular, it suggests that scaling up current approaches

should take the form of new methods that equip models with a more structured un-

derstanding of the world beyond just pattern recognition. The goal should be to

develop models capable of achieving high performance under data-sparse conditions

and effectively generalize from limited, low-complexity scenarios to unfamiliar, high-

complexity ones.

Integrating Bayesian inverse graphics with deep learning could address some lim-

itations in understanding complex physics and generalizing at scale. This approach

provides a structured understanding of scene dynamics by inferring scene properties

from observed images. Deep learning can help guide the inference process by, for

instance, enabling the extraction of low-level features or helping identify and segment
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objects from their basic observed properties. This combination could offer a scalable

approach to intuitive physics tasks, enabling explicit modeling of physical processes

and improving model generalizability.

Finally, while the range of models examined here is not exhaustive, we believe

additional video-understanding models should be assessed. We design the system used

for training and inference to facilitate examining additional models. It is intended

to enable the iterative development of techniques that increase the generalizability of

learned knowledge in AI agents.
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Chapter 5

Bayesian Generative Model

5.1 Chapter Overview

Inspired by the intuitive physics engine framework [9], we develop a Bayesian proba-

bilistic generative model that builds upon previous work in generative inverse graphics

and Bayesian inference, specifically 3DP3 [39]. Our model encodes hierarchical pri-

ors about object dynamics and relations, leverages enumerative tracking to generate

object pose hypotheses, and employs a noise model on depth data to estimate the

likelihood of the generated hypotheses following observed depth images.

This chapter describes the model and its components (Section 5.2), presents an

evaluation of the model on the SCOT benchmark (Section 5.3), and briefly discusses

its advantages and limitations.

5.2 Model Description

We implement a probabilistic generative model that 1) infers the physical meshes and

initial poses of each object in the scene (5.2.2); 2) tracks object poses and relations

over time (5.2.3); and 3) draws task-specific classification inferences based on the

final inferred scene graph and object poses (5.2.4). Figure 5-1 presents a high-level

overview of the components of the model and the overall inference procedure.
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1. Object Initialization

For each object, find the best mesh by rendering each mesh and scoring them against the observed point 
cloud of the object. We obtain initial object poses that are fine-tuned for the first frame in step 2.
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Figure 5-1: Overview of the Bayesian Generative Model The model begins
by identifying object meshes and estimating their initial poses. It then tracks these
objects, updating their positions and relationships in a dynamic scene graph. Finally,
it estimates a distribution of the final class over the possible receptacle indices. This
figure provides a step-by-step visualization of the process, from initial object identi-
fication to final classification.

5.2.1 Preliminaries

We formulate the classification task posed by the SCOT benchmark as a Bayesian

inverse graphics problem searching for the scene representation that, when rendered

through a simulator, explains the observed depth images. Concretely, we define a

scene (video) as a series of 𝑇 frames (images) I1, ..., I𝑇 , where I𝑖 ∈ J0, 255K𝐻×𝑊×3.

Each frame 𝐼𝑖 contains a collection of 𝑁𝑖 objects with their corresponding mesh classes

ℳ𝑖 = [𝑚1, ...,𝑚𝑁𝑖
], where 𝑚1, ...,𝑚𝑁𝑖

∈ {1, ...,𝑀} and 6DoF poses 𝒟 = [𝑃1, ..., 𝑃𝑁𝑖
],

where 𝑃1, ..., 𝑃𝑁𝑖
∈ SE(3), represented as 4× 4 spatial transformation matrices.

In addition to the RGB image I𝑖, each frame 𝑖 has an associated depth image

D𝑖 ∈ R𝐻×𝑊 and instance segmentation map S𝑖 ∈ {1, ..., 𝑁𝑖}𝐻×𝑊 . A segmentation

map, S𝑖, maps each pixel in I𝑖 to an object from {1, ..., 𝑁𝑖}.

At time 𝑖, the model maintains a state (scene representation) 𝒮𝑖 of object poses,

𝒟𝑖, ...,𝒟𝑖−𝑤, where 𝑤 is the number of past poses to use for physics inference (such
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as velocity estimation) and scene graph, 𝒢𝑖.

The scene graph encodes objects as nodes and semantic relations between those

objects, specifically occlusion and containment, as directed edges. On a high level,

containment enforces positional constraints on object movements: if an object 𝑜𝑖

contains another object 𝑜𝑗, then any changes to the world coordinates of 𝑜𝑖 apply to

𝑜𝑗. Similarly, 𝑜𝑗 may not move beyond the bounds of 𝑜𝑖 unless containment is broken.

Additionally, an occluded object can assume any pose behind its occluding object;

thus, the proposed posterior of the occluded object’s translations is primarily guided

by the physical priors.

5.2.2 Inferring Object Meshes and Poses from Depth Data

For a given scene, we initialize 𝒟0 using the ground-truth segmentation image S1 and

the depth map D1 of the first frame, produced by the physical simulator (Unity). For

each object 𝑜 ∈ {1, ..., 𝑁1}, we first construct an object point cloud o by collecting

its depth points D1[S1=𝑜] (i.e. depth points in D1 corresponding to 𝑜’s pixels in S1).

Then, we compute a matching score 𝑠 between the observed object point cloud o and

each mesh model 𝑚 ∈ {1, ...,𝑀} by rendering the mesh at the center of the object

point cloud to get a hypothesis õm and counting the number of mutually-unexplained

points in o and õm.

𝑠(õm,o) = 𝑃 (õm|o) =
∑︀

(𝑖,𝑗) 1[õm(𝑖,𝑗) · o(𝑖,𝑗) > 0]∑︀
(𝑖,𝑗) 1[o(𝑖,𝑗) > 0]

Figure 5-2 visualizes how different mesh models compare to the observed point

cloud of the tube.

Thus, we infer that the best model 𝑚 for object 𝑜 is argmax
𝑚

𝑠(õm,o). Accord-

ingly, we approximate the spatial transformation matrix of object 𝑜 as the translation

matrix where the rotation component is an identity matrix and the translation vector

corresponds to the center of the rendered point cloud õm.

Following the initial approximation of 𝒟0, we run one tracking step (Section 5.2.3)

to correct for minor translation and rotation discrepancies between the approximate

poses and the initial point clouds, obtaining the object poses in the first frame 𝒟1.
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Figure 5-2: Example: Inferring Correct Object Mesh from Observed Point
Cloud The observed point cloud of the tube is highlighted in green. We illustrate
how when example meshes are rendered at the center of the point cloud, as shown
in red, they provide varying explanations of the point cloud. We infer that the best
object mesh is the one that maximizes 𝑠(õm,o).

Upon the initialization of the scene, we infer containment and occlusion relations

through an exhaustive pairwise comparison of the bounding boxes of objects. Con-

cretely, 𝑜𝑖 is contained by 𝑜𝑗 if the bounding box of 𝑜𝑖 lies entirely within that of 𝑜𝑗.

Similarly, 𝑜𝑖 is occluded by 𝑜𝑗 if, when rendering 𝑜𝑗 as õj and both 𝑜𝑗 and 𝑜𝑖 as õij,

we find that
(︀ ∑︀

(𝑖′,𝑗′) 1[õij(𝑖′,𝑗′) ̸= õj(𝑖′,𝑗′)]
)︀
≤ 𝜖𝑜, where 𝜖𝑜 is an occlusion threshold of

the number of non-occluded pixels. Thus, we obtain the state of the first frame as

𝒟1 and 𝒢1. For our experiments, we use scenes of 300× 300 pixels and an occlusion

threshold 𝜖𝑜 = 10.

5.2.3 Object Tracking: Enumerative Proposal Generation

Tracking object movements over time accurately and efficiently proves challenging in

continuous 3D space. Therefore, following [111], we convert the object pose space

into discrete voxel units of size (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) following the camera parameters. Given

an object 𝑜’s pose 𝑃𝑜, we create an array of pose hypotheses with minor variations in

translation and rotation. For translation, we grid the 7×7×7 voxel space surrounding

the object’s center and enumerate proposals where the object’s center is located at

each voxel in the grid. Similarly, we generate rotation proposals by sampling 64

orientations from a tightly-clustered von Mises–Fisher spherical distribution centered
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around the object’s rotation. Thus, we consider 𝑘 = 343 × 64 pose hypotheses, the

Cartesian product of the translation and rotation proposals.

Consequently, we identify the proposal that best describes the observed depth data

of a frame 𝑖 following a Bayesian procedure that uses 1) physical priors about free

object movements and hierarchical priors about pose changes under containment and

occlusion; and 2) a likelihood model based on 3DP3 that encodes noise in the depth

information. Specifically, for each object, we render the pose hypotheses (while fixing

the poses of all other objects in the scene) as depth images c̃1, ..., c̃𝑘 and approximate

a posterior distribution 𝑃 (c̃𝑗|c) over rendered hypotheses 𝑐𝑗 as the product of the

dynamics prior and the depth likelihood models:

𝑃 (c̃𝑗|c;𝒮𝑖, 𝑝, 𝑉, 𝜎) ∼ 𝑃 (c̃𝑗;𝒮𝑖)𝑃 (c|c̃𝑗; 𝑝, 𝑉, 𝜎)

where 𝑝, 𝑉, 𝜎 are likelihood parameters and 𝒮𝑖 is the scene representation at time 𝑖.

This approximation is valid for estimating the Maximum A Posteriori (MAP)

as the marginal likelihood 𝑃 (c) does not depend on the state of the model or the

likelihood parameters and hence does not affect the MAP.

Prior We select a prior that favors intuitive physical dynamics in 𝒟𝑖, such as gravity

and velocity, as well as consistent semantic relations in 𝒢𝑖. That is, for a set of

rendered proposals c̃1, ..., c̃k targeting the pose of object 𝑜, the prior distribu-

tion resembles a 3-dimensional Gaussian distribution with identity covariance

centered at the position vector 𝑃 *
(𝑜)𝑖

, which is the position of object 𝑜 following

a dynamics model 𝐷 : R𝑤×3 → R3. The dynamics model heuristically predicts

the new pose of an object given the object’s current pose and its 𝑤 past poses

by applying a gravity translation and approximating the object’s translational

velocity as the exponentially-weighted moving average of pose deltas over the

preceding 𝑤 poses.

𝑃 *
(𝑜)𝑖

= 𝐷(𝑃(𝑜)𝑖
, ..., 𝑃(𝑜)𝑖−𝑤) = 𝑃(𝑜)𝑖

+ [0 𝑔 0]𝑇⏟  ⏞  
gravity shift

+
∑︁𝑤−1

𝑗=0
𝛼(1− 𝛼)𝑗(𝑃(𝑖−𝑗) − 𝑃(𝑖−𝑗−1))⏟  ⏞  

velocity shift

where 𝑔 is the translation shift caused by gravity, 𝛼 is the recency weight pa-
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rameter of the moving average, and 𝑤 is the number of past poses to consider

for the velocity shift. Empirically, we determine 𝑔 = 0.2, 𝛼 = 0.15, 𝑤 = 5.

Accordingly, the prior distribution over the pose proposals targeting object 𝑜,

whose proposed new pose in c̃𝑗 is 𝑃(𝑜)𝑗 , is

𝑃 (c̃𝑗;𝒮𝑖) = 𝑃 (𝑃(𝑜)𝑗 ;𝒮𝑖) = 𝒩 (𝑃(𝑜)𝑗 ;𝑃
*
(𝑜)𝑖

, 𝐼3)

where the covariance of the Gaussian distribution is 𝐼3, the 3×3 identity matrix.

Likelihood We use a likelihood function acting as a noise model on observations, es-

timating the likelihood of the observed depth image given the rendered images

(from object pose hypotheses). It incorporates a Gaussian noise component

around non-outlier points and a uniform outlier component. Outliers refer to

data points in the observation that significantly deviate from the expected ren-

derings. This is particularly relevant in 3D scenes where factors like noise,

occlusions, and environmental conditions can cause depth points to differ from

the object models.

The Gaussian noise component accommodates small deviations between ob-

served and rendered points, accounting for uncertainties in rendering. This

noise is assumed to follow a Gaussian distribution centered around each ren-

dered point. Additionally, the outlier component accommodates observed points

that do not align with the expected data using a uniform distribution over a

3D bounding volume 𝑉 . Thus, the likelihood is expressed as follows:

𝑃 (c|c̃; 𝑝, 𝑉, 𝜎) =
𝐾∏︁
𝑘

⎛⎝𝑝 · 1
𝑉

+ (1− 𝑝) · 1

�̃�

�̃�∑︁
𝑘

𝒩 (c𝑘; c̃𝑘, 𝜎
2 · 𝐼3)

⎞⎠
Here, c and c̃ refer to the latent observed and rendered depth points, respec-

tively. 𝑝 is the a priori probability of a point being an outlier. 𝑉 is the volume

of the 3D bounding space where an outlier could be found. 𝜎 characterizes the

Gaussian noise we anticipate around each rendered point, and 𝐼3 is the 3 × 3

identity matrix. 𝐾 and �̃� correspond to the number of latent points in the
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observed and rendered point clouds, respectively. We empirically determine the

likelihood parameters to be 𝑝 = 0.05, 𝜎 = 0.1, and 𝑉 = 103 to provide effective

estimation for our specific tasks.

Due to the computational cost of calculating this likelihood for all combinations

of observed and rendered points, the algorithm approximates this calculation

by only considering a subset of terms. We assume that faraway points in the

depth map do not significantly affect the likelihood estimation for the current

point. Therefore, we select this subset based on proximity, including only those

points within a certain filter size around the current point.

To ensure that the posterior maps to a proper probability distribution, we remark

that the prior is defined as a Gaussian distribution that integrates to 1 and is always

non-negative. Similarly, the likelihood model is a weighted Gaussian that integrates

to 1 and is always non-negative. In addition, we remark that a finite set of possible

observed and rendered depth images exists, as depth is encoded via a 16-bit integer

for each pixel, meaning that there are 216×𝐻×𝑊 possible images. Therefore, the sum

of the likelihood over all possible observed and depth images is finite and well-defined.

Hence, there exists a normalization constant 𝑃 (c), making the approximated posterior

map to a proper distribution.

Finally, we score each pose proposal 𝑗 for the object using the posterior 𝑃 (c̃𝑗|c

and update the pose of the object in 𝒟𝑖. We repeat this process for every object

in the frame and update the scene graph by re-checking occlusion and containment

between objects. We repeat this process at every frame to track the poses of objects

and maintain a scene graph.

5.2.4 Classification: From Tracking to Categorical Inference

Following object tracking over time, we assign final classes for inference as per the

SCOT benchmark using a task-generic inference procedure. This procedure trans-

lates object poses into a distribution over potential receptacles.

Firstly, we identify the objects that serve as receptacles, i.e., those that match
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the rendered receptacle mesh. They are sorted based on their x-coordinates. We also

identify reward objects corresponding to the reward mesh.

For each receptacle object 𝑖 with pose 𝑃𝑖 and each reward object 𝑗 with pose 𝑃𝑗, we

estimate the probability that the reward 𝑗 belongs to receptacle 𝑖. This probability is

equivalent to drawing 𝑃𝑖 from a 3-dimensional Gaussian distribution centered around

𝑃𝑗, with an identity covariance matrix. Consequently, we determine the receptacle 𝑟

to which reward 𝑖 belongs by finding the maximum value of this Gaussian:

𝑟 = argmax
𝑖

𝒩 (𝑃𝑖;𝑃𝑗, 𝐼3)

where 𝐼3 is the three-dimensional identity matrix.

We repeat this process for all reward objects and count the rewards in each recep-

tacle. Following the philosophy of the benchmark that agents aim to maximize the

number of obtained rewards, the inferred class is defined as the index of the receptacle

that holds the most rewards. The distribution over potential receptacles is calculated

as follows:

𝑃 (𝑟 = 𝑖) =
1

𝑅

𝑅∑︁
𝑗=1

𝒩 (𝑃𝑖;𝑃𝑗, 𝐼3)

where 𝑅 is the total number of reward objects in the scene.

It’s important to note that different tasks may have varying types of receptacles,

such as flat plates, which don’t necessarily contain or occlude the reward. Therefore,

relying solely on the scene graph for inference may not yield accurate results. Hence,

we use the categorical inference procedure described above and only use the scene

graph to facilitate the tracking procedure.

5.2.5 Additional Implementation Details

Our model operates primarily on the depth images and segmentation images generated

by the physical simulator. For real-life data with no ground-truth depth information,

substantial work has been proposed on using deep learning for frame-by-frame robust

and accurate depth estimation [68, 81, 110] and object instance segmentation [69,
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16, 62, 73] on real images. Hence, depth images and segmentation maps can be

obtained through a deep learning component. Similarly, we assume the availability

of the relevant object meshes for each scene type. This is feasible for many tasks, but

even if the assumption is relaxed, meshes can be constructed from the initial observed

object point cloud by triangulation.

The proposed model is implemented in Python using JAX, a powerful library for

efficient numerical computations. The model extensively uses JAX’s accelerated linear

algebra (XLA) compilation for improved performance, particularly on GPUs. JAX’s

just-in-time (JIT) compilation, coupled with its automatic vectorization feature, is

used to accelerate depth image rendering from pose hypotheses and to compute the

prior and likelihood for observed images in parallel across batches of proposals. For

rendering, we use the OpenGL-based parallel renderer from [111].

5.3 Evaluation

We evaluate the proposed model on the SCOT benchmark on Supercloud [82], ded-

icating one V100 GPU for inference on each task. Unlike the machine learning base-

lines, we perform inference on the entire dataset and report the results in the following

subsections.

5.3.1 Experimental Results

Table 5.1 reports the performance of the probabilistic model on the different tasks of

the SCOT benchmark. In particular, for each task, we present the top-1 accuracy,

macro-average F1 score, and mean absolute error results for each complexity level.

Additionally, for comparison, we report the averaged accuracy over the complexity

levels of each task of both the probabilistic model and the highest-performing deep

learning baselines, XClip and TimeSformer, in Table 5.2.

As we can observe, the probabilistic model demonstrates significant improvements

over the deep learning baselines in all tasks. In particular, for the Rotation, Relative

Numbers, and Shape Causality tasks, the model correctly identified the receptacle(s)

containing the highest rewards in every video in the SCOT dataset. In addition,
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Level Addition Gravity Bias Rotation

Acc. F1 MAE Acc. F1 MAE Acc. F1 MAE

1 90.40 86.60 0.21 92.00 90.59 0.08 100.0 100.0 0.00
2 86.40 84.93 0.46 91.00 90.85 0.13 100.0 100.0 0.00
3 86.20 84.35 0.71 93.00 90.91 0.19 100.0 100.0 0.00
4 84.20 83.52 0.84 94.00 93.44 0.12 100.0 100.0 0.00
5 - - - 91.00 90.31 0.12 100.0 100.0 0.00
6 - - - 94.00 93.49 0.13 100.0 100.0 0.00
7 - - - 95.00 92.29 0.18 100.0 100.0 0.00
8 - - - 90.00 88.03 0.20 100.0 100.0 0.00

Level Simple Swap Relative Numbers Shape Causality

Acc. F1 MAE Acc. F1 MAE Acc. F1 MAE

1 92.40 88.42 0.11 100.0 100.0 0.00 100.0 100.0 0.00
2 92.00 88.71 0.11 100.0 100.0 0.00 100.0 100.0 0.00
3 95.20 92.62 0.07 100.0 100.0 0.00 100.0 100.0 0.00
4 94.40 93.89 0.09 100.0 100.0 0.00 - - -
5 94.80 94.26 0.08 100.0 100.0 0.00 - - -
6 94.00 92.21 0.09 - - - - - -
7 92.80 90.61 0.10 - - - - - -
8 91.60 91.92 0.12 - - - - - -

Table 5.1: Performance of Bayesian Model on the SCOT Benchmark Illus-
trates the top-1 accuracy (Acc. %), macro F1 score (F1 %), and mean absolute error
(MAE) achieved by the probabilistic model on each task within the benchmark by
complexity level. Dashes (-) indicate that the experiment (column) does not contain
the corresponding complexity level (row).

the model considerably outperformed the neural baselines, obtaining 24.98%, 12%,

and 53.6%, average accuracy improvement on the Addition, Gravity Bias, and Simple

Swap tasks, respectively, over the best neural baseline results for each task.

Model Addition Gravity Rotation Swap Relative Shape

XClip 59.77 75.50 58.15 31.60 86.48 100.0
TimeSformer 61.82 80.50 53.35 39.80 89.14 100.0
Probabilistic Model 86.80 92.50 100.00 93.40 100.00 100.0

Table 5.2: Performance Comparison of Models on the SCOT Benchmark
Presents the averaged accuracy of the probabilistic model and the highest-performing
deep learning baselines (XClip and TimeSformer) on each task.
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Reconstructed Segmentation

(Overlayed) 

Figure 5-3: Qualitative Demonstration of the Input and Rendered Repre-
sentations of the Probabilistic Model Shows a series of input RGB and depth
images from a video in the Rotation dataset, as well as the reconstructed depth
and segmentation information of the model’s representation of object poses. Recon-
structed images were generated by rendering the model’s estimate of object poses at
each frame following the tracking step.

5.3.2 Discussion

The evaluation results demonstrate the advantage of using Bayesian inverse graphics

across all tasks in the SCOT benchmark. In particular, the proposed probabilistic
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model consistently outperformed neural baseline models, showcasing the advantages

of integrating prior knowledge and probabilistic reasoning into object tracking and

scene understanding.

In tasks such as Rotation, Relative Numbers, and Shape Causality, the proposed

model achieved perfect accuracy, suggesting that it can accurately capture and predict

the dynamics of these environments. In particular, it shows that representing objects

symbolically and tracking them through iterative hypothesis testing significantly aids

intuitive physics understanding.

For the Addition and Gravity Bias tasks, while there was a slight decrease in per-

formance as the complexity level increased, the model still showed superior results

compared to the best-performing neural baselines. Even as the number of objects

or interactions increases, both variables that contribute uncertainty to the estima-

tion process, the model maintained a high degree of accuracy, demonstrating higher

robustness and resilience to increasing task difficulty.

Similarly, in the Simple Swap task, the model maintained a high level of per-

formance, even as the complexity level increased, highlighting its strong ability to

track multiple objects simultaneously and accurately reason about their dynamics.

Additionally, we do not observe a consistent drop in performance as task complex-

ity increases, suggesting that accurate predictions are not necessarily a function of

task complexity and indicating the model’s capability to generalize to longer times of

object manipulation.

The observed performance increase can be traced back to the different compo-

nents of the inference mechanism. First, using a physical renderer allows the model

to infer the effect of causality when objects cause pose variations in other objects, as

in the Shape Causality task. Moreover, representing objects symbolically and using

hierarchical priors on object relations, especially containment, allows the model to

predict and maintain object compositions over time in the Addition, Simple Swap,

and Rotation tasks. In addition, incorporating physical priors such as gravity and

velocity significantly aids the Gravity Bias task, enabling the model to predict object

movements without observation. The enumerative tracking is also crucial in generat-
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ing and updating object pose hypotheses, particularly useful in the Simple Swap and

Rotation tasks. Finally, the noise model on depth data enables the model to estimate

the likelihood of these hypotheses and hence object poses over time.

Moreover, Figure 5-3 qualitatively shows the robustness of the Bayesian proba-

bilistic model. We see a strong qualitative match between the reconstructed depth

and segmentation maps; and the ground truth depth images. This demonstrates

the model’s ability to track object poses accurately, even within dynamic scenes like

the Rotation task. This validates integrating probabilistic reasoning and generative

modeling in object tracking and scene understanding tasks.

Lastly, we remark that the current implementation of the model has several limita-

tions. The model’s sequential nature can lead to significant errors, as a failure in one

component can disrupt the entire inference pipeline. This issue could be mitigated by

introducing a mechanism for retroactive error correction, such as an error detection

and correction module, which could backtrack and revise incorrect inferences when

later stages encounter high levels of uncertainty. Another challenge lies in manually

fine-tuning several gridding and likelihood parameters, which can lead to sub-optimal

performance. Using automated parameter tuning methods, such as Markov Chain

Monte Carlo techniques, could alleviate this problem and provide means of recov-

ering from significant inference errors. Lastly, the model’s reliance on ground-truth

segmentation and depth maps could introduce further uncertainty when these inputs

are estimated from real-world RGB images. Future iterations could incorporate un-

certainty handling mechanisms, such as Bayesian deep learning models, to incorporate

estimation uncertainties of deep learning models during tracking. Addressing these

limitations can enhance the model’s robustness and applicability, providing interest-

ing directions for future research.
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Chapter 6

Future Works

This chapter outlines potential directions for future research based on the findings

of this thesis. We achieved promising results on the SCOT benchmark using the

generative probabilistic model described in Chapter 5, but numerous opportunities

exist for further exploration and improvement. We discuss four potential research

directions: 1) the use of real-world data; 2) the expansion of benchmark task types

and dataset generation procedure; 3) the evaluation of additional neural or neuro-

symbolic models; and 4) employing MCMC methods to fine-tune different components

of the inference pipeline.

Use of real-world data Our work heavily relied on simulated data, allowing us

to work under controlled conditions, generate a large amount of video data,

and obtain strong supervision via dense annotations. However, simulated data

may only partially capture the complexities and unpredictability of the real

world. For example, our graphics simulator has a simplified model of lighting,

sensor noise, and rendering functions compared to the real world, which may

impact robustness to color constancy. Additionally, real-world data introduces

challenges like noise, variability, and the need for manual annotation, but it also

provides opportunities for learning more robust models.

Therefore, an area of future work could involve applying our techniques to real-

world data. Incorporating real-life data would require identifying suitable real-

world datasets or creating new datasets for similar cognitive tasks and applying

our model to make inferences on those datasets. Such efforts could provide

67



insights into the performance of our models under real-world conditions and

reveal areas needing improvement.

Moreover, the generation of synthetic data could be improved by using advanced

domain adaptation methods and rendering or by potentially using techniques

such as Generative Adversarial Networks (GANs) [21] or Variational Autoen-

coders [56], and exploring techniques to incorporate real-world variability into

synthetic data or combining real and synthetic data during training.

Expansion of task types & dataset generation procedure Although the cog-

nitive tasks in the dataset cover numerous core cognitive capacities, future re-

search could enhance the SCOT dataset generation pipeline with additional

cognitive tasks targeting other core knowledge systems. Specifically, tasks for

intuitive psychology, where videos simulate agents attempting to achieve a par-

ticular goal within the environment, could be implemented. The observing

model would then have to infer the goal. Another line of research may involve

integrating additional modalities, such as audio or text, into tasks, thereby

requiring models to make inferences based on multimodal perception.

In addition, future work could enhance the scene generation procedure in Unity

by incorporating insights from recent research in synthetic scene generation. For

instance, future work can leverage diffusion-based approaches such as Pronovost

et al. [77] to generate scene descriptions aligned with real-life scenarios. Ad-

ditionally, similar to Meta-Sim2 [26], reinforcement learning can be employed

to learn scene structure and automatically adjust parameters for more accurate

synthetic scene generation. Other approaches include using textual prompts for

scene generation and learning a distribution of synthetic scenes over the lan-

guage domain. By combining these approaches, we can generate more realistic

and diverse scenes in Unity, leading to more effective training of deep learning

models. Future work could investigate how combinations of those strategies

and the dataset generation procedure described in Chapter 3 can create more

realistic and varied intuitive physics scenes.

68



Evaluation of additional models Over the past two years, numerous vision mod-

els and techniques have been proposed, offering ample opportunities to expand

upon our work and potentially mitigate the failure modes of both the neural

baselines and the probabilistic model. For instance, diffusion models, which

model data generation as a stochastic differential equation, have demonstrated

promising generative capacities and could be used for scene perception. Addi-

tionally, reinforcement learning algorithms for scene perception and decision-

making offer an exciting avenue of research. Future work could explore their

performance on the SCOT benchmark.

Ideally, future work will focus on combining probabilistic models with strong

physical inductive biases and neural models with robust generative and feature

extraction capacities. The probabilistic model can provide a formal framework

for modeling uncertainty and complex dependencies, while the neural model can

learn features that facilitate probabilistic inference. Combining the two types

of models could potentially lead to more robust and accurate models for scene

perception and cognitive tasks.

Enabling MCMC methods for proposal evaluation Markov Chain Monte Carlo

(MCMC) methods offer a promising direction for fine-tuning the different com-

ponents of the inference pipeline in our research. In the context of our work,

MCMC methods could be used to fine-tune the mesh-initialization and track-

ing components of our probabilistic model. Specifically, Metropolis-Hastings

MCMC could be used to iteratively propose small changes to object poses in

each frame and accept them based on the MH acceptance probability, thus

enabling the model to explore the state space more efficiently. The current

proposal generation pipeline can be easily adapted into a first-order Markov

chain that is irreducible, aperiodic, positive-recurrent, and thus converges to a

stationary distribution.
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Chapter 7

Conclusions

This thesis explores the potential of computational models for scene perception, an

essential aspect of human cognition. The thesis discussed the complexities and nu-

ances in achieving a generalizable understanding of physical scenes, including the

importance of prior knowledge of physical dynamics, compositional understanding of

scene structures, and causal mapping of events.

Deep learning models have dictated the status quo in scene perception tasks,

achieving state-of-the-art results in several challenging benchmarks that evaluate per-

formance on downstream tasks such as object identification, semantic segmentation,

and pose estimation. Nonetheless, existing models often struggle to achieve scene

understanding at a high cognitive level with limited visual exposure, especially under

noisy conditions.

This work first proposed a data generation pipeline, which was used to create a

million-scale dataset of synthetic images and metadata. This dataset was used to

design the SCOT benchmark for evaluating core knowledge understanding in agents,

particularly objects, space, and quantities. Agents are expected to observe dynamic

intuitive physics scenes and make inferences that maximize their obtained rewards.

This research has also studied the performance of several recent deep neural models

on the proposed benchmark. We have developed a framework to facilitate the training

and evaluation of neural models implemented in PyTorch on the SCOT benchmark.

We experimented with training and evaluating several deep learning baselines on the

benchmark to identify the strengths and limitations of deep learning algorithms in
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performing cognitive visual tasks.

Following training and evaluation, we found that these models excel in tasks that

primarily require spatial awareness and the identification of visual patterns. However,

their performance significantly diminishes when the tasks involve higher levels of cog-

nitive processing, abstraction, or dynamic understanding. Additionally, while large

models like TimeSformer and XClip perform well on videos with simple dynamics,

they perform poorly on the same tasks but with more complex dynamics.

Finally, inspired by the intuitive physics engine framework of human perception,

we integrated Bayesian modeling and inverse graphics to construct a probabilistic

generative model. The proposed model explicitly encodes physical priors and com-

positional structures, using a Markov model to make causal inferences about object

movements and changes in scene structure. We demonstrated that the proposed model

performed significantly better than the neural baselines, achieving perfect accuracy

on a few.

While the model implementation used ground-truth depth and segmentation maps

from the renderer, this thesis shows that a probabilistic generative model with a sim-

ple physics prior can accurately perform inference over complex scene dynamics. We

believe that better systems can emerge by combining the powerful predictive capac-

ity of neural models with the robust representations of the probabilistic model. For

instance, future iterations of this work could incorporate deep learning components

that estimate the depth images and segmentation maps from RGB images and use

the model to perform high-level tracking and inference over structured scene repre-

sentations.

Looking ahead, this research has identified several promising directions for fu-

ture work. These include the incorporation of real-world data, the expansion of the

types and complexity of tasks in the benchmark, the evaluation of additional models,

and the potential use of Markov Chain Monte Carlo methods to fine-tune inference

processes. These directions highlight the scope for further advancements in compu-

tational models for scene understanding.
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