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ABSTRACT

The problem of reconstructing an unknown set from a given partial
description arises in a variety of applications areas such as roboties,
tomography, pattern recognition, and nondestructive evaluation. For the
most part, these applications areas have remained disjoint. This is
unfortunate, because there is often substantial overlap in the
underlying mathematical set reconstruction problems. This suggests the
need for a unified mathematical theory of set reconstruction.

The main contribution of this thesis is to begin to develop a
general theory of set reconstruction. To this end, we develop results
for some generally stated reconstruction problems, explore and organize
the existing literature on problems related to set reconstruction, and
abstract several themes from our work. Our focus is on the important
special class of reconstruction problems in which the unknown set isg
known to be a convex set. This class is selected because convex sets
are important in many applications, and the theory of convex sets is
well-developed.

First, we study the case where the given partial description
consists of three sets Gj, G, and G, that are known to respectively be
subsets of the interior, exterior, and boundary of the unknown convex
set A. For this problem, the following three sets are characterized:
the largest set that can be guaranteed to be contained in the interior
of &, the largest set that can be guaranteed to be contained in the
exterior of A, and the smallest set that can be guaranteed to contain
the boundary of A. We also focus upon the special case where only a
finite number of points on the boundary of A is given. For this case,
conditions that must hold in order to conclude that the set A is bounded
are given.

Next, we consider the case where the set A is known to be a simplex
and we are given two sets F and G that satisfy FCACG. We show how
this problem arises in many signal analysis problems, when we attempt to
estimate a collection of unknown positive functions from a given set of
functions that are positive combinations of the unknown component
functiors. For this simplex reconstruction problem, we characterize the
smallest set V that can be guaranteed to contain all the vertices of the



unknown simplex A. Key results are given for the special but
practically important 3-component case, where F and G are convex planar
sets. For this case, we present several geometric fixed point
algorithms that may be used to obtain an approximation to V. 1In
addition, we describe the special structure of the boundary of V in the
case where F and G are convex polygons.

We then unify the literature on problems related to reconstructions
where the unknown set A is known to be a sphere, plane, or polytope.
First, we discuss the problem of reconstructing an unknown sphere S from
two given sets F and G that satisfy FCS Ccom(G). Then, we consider the
problem of reconstructing an unknown m-dimensional plane P from k sets
Ag,...,Ay that intersect P. Finally, we describe some existing
algorithms that generate a sequence of boundary points to reconstruct an
unknown polytope. We show that this problem is the dual to that of
reconstructing a polytope by using a sequence of support planes. The
relevant literature on minimum spanning spheres, largest empty spheres,
a-hulls, motion planning, and interval linear equations is also
discussed.

Finally, the follewing themes are isolated: penumbras, star-shaped
sets, extreme sets (i.e. largest and smallest), iterative algorithas,
and duality. Some of these themes recur throughout our work, others
(such as duality) have surfaced in the work and bear further study in
the development of a general theory.

Several of the mathematical results obtained in our investigation
are of interest in their own right. In addition, many of our results
may be directly applicable to a variety of areas such as robotiecs,
tomography, pattern recognition, and chemometrics.

Thesis Supervisor: George C. Verghese
Title: Associate Professor



ACKNOWLEDGEMENTS

I feel very fortunate to have met my thesis advisor George Verghese
early in my graduate study. Throughout the past four years he has given
me more than enough freedom to develop my thoughts. By carefully
reading all of my work, he has significantly improved my ability to
properly present research results. His enthusiasm, encouragement and
suggestions have kept me going.

I would like to thank Adly Fam of SUNY at Buffalo for helping me to
develop my geometric insight. Adly exposed me to a reseach environment
very early in my undergraduate study and this experience has greatly
helped me in my graduate work., I deeply appreciate his continuing
interest.

The suggestions provided by my thesis readers Gary Miller, Fred
Schweppe, and Bob Tenney helped make this thesis a more well-rounded
work. I would also like to thank my office-mate Ryan Kim for many
helpful discussions. The general encouragement and interest of John
Wyatt, Bernard Levy, and Alan Willsky is appreciated.

The stimulus provided by the 1983 Vinton Hayes Lectures at Harvard
University by Professor J.T. Schwartz of the Courant Institute is
gratefully acknowledged. In additionm, I would like to thaak Dr. Richard
King of Waters Associates, Inc. for suggesting the component analysis
problem.

Thanks go to my lab friends Clem, Juan, Malik, Ryan, Scott, and
Seth for their participation in a variety of events at the Fall 1984
Office Olympiecs.

My entire family has given me a great deal of support throughout
this process. My brother Sam and uncle Tony Zubal, the mechanical
engineers, have kept me in tune with reality (in addition to improving
my golf game).

Finally, I would like to thank my lovable wife Be. Her sense of
humor has greatly contributed to my mental health during the past seven
years.

Partial support of this work has come from the C.S. Draper
Laboratory under contract DL-H-225272, an EECS Department Fellowship in
the spring of 1983, and a Bell Laboratories Fellowship in the spring and
summer of 1984,



. dcs

Champ



CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CONTENTS

INTRODUCTION
1.1 Set Reconstruction Problems
1.2 Outline of the Thesis
RECONSTRUCTING A CONVEX SET FROM SUBSETS OF ITS
INTERIOR, EXTERIOR, AND BOUNDARY
2.1 Outline of the Chapter
2.2 Properties of C
2.2.1 Conditions for C to be Nonempty
2.2.2 The Structure of C
2.3 Properties of I, B, E, and O
2.3.1 Properties of I and com(E)
2.3.2 The Boundary Points of Sets in C

2.3.3 An Application of Conditions for
C to be Nonempty

2.4 Extentions and Open Problems

RECONSTRUCTING A SIMPLEX: THE CUMFONENT ANALYSIS PROBLEM
3.1 Introduction

* The Component Analysis Problem

* A Related Simplex Reconstruction Problem
3.2 Outline of the Chapter
3.3 The 3-Component Case

3.3.1 Characterization of V¥
* The Polygonal Case

3.3.2 Iterative Procedures to Approximate V¥

11

11

16

21

21

24

24

28

31

32

37

38

40

41

41

41

42

46

48

48

52

56



CHAPTER 4.

CHAPTER 5.

3.4 The (n+1)-Component Case

3.4.1 Characterization of ¥
3.5 Some Open Problems

3.5.1 The (n+1)-Component Case

3.5.2 Iterative Processes in Geometry

RECONSTRUCTING SPHERES, PLANES, AND POLYTOPES: A SURVEY
4.1 Sphere Recconstruction Problems
* The Largest and Smallest Spheres in C
* Estimating the Unknown Sphere
4.2 Plane Reconstruction Problems
* Linear Interval Equations
4.3 Interactive Polytope Reconstruction Problems
* Probing the Boundary of a Polytope
* Support Planes: A Dual Problem

4.4 Some Open Problems

CONCLUSION
5.1 Summary of Results
5.2 Recurring Themes

* Penumbras

Star—-Shaped Sets

* Extreme Sets

Iterative Algorithms
* Duality

5.3 Future Work

64
64

66
66

68

72
73
74
77
79
83
84
84
89

95

96
96
98
98
100
100
101
101

102



APPENDIX 1. MATHEMATICAL TERMS AND BASIC RESULTS
1.1 Mathematical Terms

1.2 Basic Results

APPENDIX 2. PROOFS FOR CHAPTER 2

APPENDIX 3. PROOFS FOR CHAPTER 3

REFERENCES

104

104

111

116

133

151



LIST OF SYMBOLS

Most of the mathematical terms that are used in the following list

of symbols are defined in Appendix 1.

B(p,8)
bdy (2)
clo(A)
com(A)
dim(A)
dist (A,B)
ext (4)
ged (i, J)
hul (&)
hul (A, B)
hul(pq,...,pp)
iff

int (A)
ker(A)
pen(A,B)
R0

[a,b]
(a,b)
{a,b)

(a,bl]

The open ball about the point p with radius 5.
The boundary of A.

The closure of A.

The complement of A.

The dimension of A.

The distance between two sets A and B.

The exterior of A.

The greatest common divisor of i aud j.

The convex hull of A,

The convex hull of the union of the sets A and B.
The convex hull of {pj,....Ppl.

If and only if.

The interior of A.

The kernel of A.

The penumbra of A with respect to B.
n-dimensional Euclidean space.

{ x | x is in R and a¢x<b }, or the line segment
joining points a and b.

{ x | xis in R and a<x<b }, or the open line segment
joining points a and b.

{ x| xis in R and a{x<b }, or the union of a and the
open line segment (a,b).

{ x| xis in R and a<x¢b }, or the union of b and the
open line segment (a,b).



[f:a] {x | f(x) =a}.

v union.

n intersection.

C contained in.

€ element of.
vl the transpose of v.
¢ The empty set.
[9] Reference number 9.
9) Equation number 9.
Ip-ql The distance between points p and q.
f(A)>a f(x)>a, for all x in A.
é(n): The Euler phi-function.

10



CHAPTER 1. INTRODUCTION

1. Set Reconstruction Problems

There are many practical situations where one is faced with the
problem of reconstructing an unknown subset of RM from a given partial
descriptiorn of the set. We shall refer to any problem of this type as a
set reconstruction problem. Set reconstruction problems arise from the
areas of roboties, tomography, nondestructive evaluation, and
chemometries (just to name a few). Let us take a closer look at each of
these areas in order to illustrate some typical set reconstruction
problems.

Set reconstruction problems arise in robotics when we attempt to

process tactile or visual information. Refer to Fig.l.

Fig.1a

Fig.la shows a robot arm that has swept out a subset of R3 and grasped
an unknown object A. In this case, the partial description of A might
consist of the following two facts: the points p;, pj, and p3 are on the
boundary of A, and the set swept by the rcbot’s arm is contained in the

complement of A. Some reconstruction problems of this type were
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Ch.1

considered in (3], (8], [17], [46], and [49]; see Chapter 4 for a
discussion of some of these papers. A more general form of this set

reconstruction problem will be considered in Ctapter 2.

0 0 0 0 0 0 0

0 1 1 0 1 1 0

1 0 0 1 0 0 1

0 1 1 0 1 1 0

0 0 0 0 0 0 0
Fig.1b

The visual input to a robot often takes the form of a picture that
has been discretized and digitized. An example is given in Fig.1b,
which shows an overhead view of an unknown object A that is resting on a
table. The number 0 has been assigned to the grid points that do not
lie in A and the number 1 has been assigned to the points that lie in A.
In this case the partial description of the unknown set A might consist
of the planar grid of points together with a mapping from the grid into
the set {0,1}.

A number of set recconstruction problems arise from the area of
tomography. In positron-emission tomography, the distribution of an
ingested radioisotope must be deduced from a partial description that
consists of a collection of lines that pass through an unknown
radioactive region A in the body [30]. This situation is depicted in
Fig.2a. 1In other types of tomography [55], the partial description

consists of a set of projections of the unknown set &, see Fig.2b.

12



Ch.1

1

Fig.2a

Fig.2b

In the area of nondestructive evaluation, reconstruction problems
arise when we attempt to identify a flaw in a piece of material. The
flaw could either be a void (an air pocket) or an inclusion (a piece of

another material).

Fig.3

13
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In [22]1, it was shown how ul trasound measurements of an unknown flaw A
may be used to obtain a partial description that consists of a
collection of support (or tangent)} planes for A, see Fig.3. The results
in [22] were obtained by taking advantage of the fact that many flaws
are ellipsoidal (or nearly ellipsoidal).

In reconstruction problems that are derived from rcbotics,
tomography, and nondestructive evaluation, the set that must be
reconstructed js an actual physical object. As a result, these problems
are typically 3~dimensional in nature. Reconstruction problems i
higher dimensions may arise from situations where the set that must be
reconstructed is a byproduct of some geometric interpretation of a
problem that is not obviously geometric. Some reconstruction problems
of this type arise from the area of chemometrics. In Chapter 3, we
shall shou hovw & geometric interpretation of the problem of identifying
the components of a chemical mixture, bY using 2 collection of
absorption spectra of chromatographic fractions, 1eads us to consider
the following set reconstruction problen: estimate an unknown n-simplex
A from two given sets F and G that satisfy FCACG. A Z-dimensional

example of this reconstruction problem is jllustrated in Fig.4.

Fig.l

14
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Although set reconstruction problems arise in a wide variety of
applications and thus are very important, there is no unified
mathematical theory of set reconstruction. By this we mean that there
is no collection of general concepts and tools for reconstructing an
unknown set from a given partial descripticn., This is not to say that
researchers have not considered any recoastruction problems. On the
contrary, many authors have considered the particular problems that
arise in robotices or tomography. Unfortunately, the literature does not
recognize or take advantage of the fact that when we abstract the
underlying mathematical problems from the particular set reconstruction
problems that arise in these applications, there is considerable
overlap.

The main contribution of this thesis is to begin to develop a
general theory of set reconstruction. The steps that must be taken to
develop a useful theory of set reconstruction are similar to those that
have been taken to obtain a useful theory of numbers, probability,
groups, linear equations, or any other entity. First, some fractable
mathematical problems must be abstracted from the potential applications
for the general theory. Next, we must attack these mathematical
problems. Then, a collection of recurring themes must be abstracted
from our solutions to these problems. If there are no significant
recurring themes, then additional tractable problems must be solved.
Once a collection of themes has been identified, we can develop results
for these. The results and themes that are obtained by this process
form the body of the general theory. [It seems as though we have the
seeds for the development of a general theory of generating general

theories! If we really did understand the process of generating general
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theories, we might be able to program a computer to generate the general
theory of set reconstruction whilst we eat bonbons. But this sounds
like another thesis.]

To accomplish our goal, first we develop results for some generally
stated reconstruction problems that arise from the application areas
that we have listed. Then we explore and organize the existing
literature on problems related to set reconstruction. Finally. a
collection of recurring themes will be abstracted from our work. A more

detailed outline of these tasks is given in the next section.

2. Outline of the Thesis

We have decided to focus upon the important special class of
reconstruction problems in which the unknown set is known to be a convex
set. We have selected this class of problems because convex sets are
important in many applications (e.g. see the reconstruction problems
that arise from the areas of nondestructive evaluation and chemometrics
that were discussed in Section 1) and the theory of convex sets is well-
developed (so we should be able to formulate some tractable problems).

A detailed study of the following two reconstruction problems will
be given (note that the terms interior, exterior, boundary, convex, and
n-simplex that are used in these problem statements are defined in

Appendix 1):

Reconstruction Problem 1:
Estimate an unknown convex set A from threz given sets Gi, Ge,
and Gp that are contained in the interior, exterior, and

boundary of A, respectively.

16
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Reconstruction Problem 2:
Estimate an unknown n-simplex A from two given sets F and G

that satisfy FCACG.

Reconstruction Problem 1 will be discussed in Chapter 2.
Reconstruction Problem 2, which arises when we attempt to estimate a
collection of unknown positive functions from a given set of functions
that are positive combinations of the unknown functions, will be
considered in Chapter 3. Many interesting results will be given for
each of these problems. In order to provide some feeling for the flavor
of these results, we shall describe one result for each problem here.

In Chapter 2, we show that if we are given eight points on the
boundary of an unknown 3-dimensional convex set A, then in some cases it
is possible to conclude that the set A is bounded. We also show that
this conclusion cannot be drawn if we are given less than eight points
(i.e. for every set of m points {pln."pml in R3, if m is in the
interval [1,7] and there is a convex subset A of R3 for which Pi is in
bdy(A), for all i, then there is an unbounded convex subset B of R3 for
which py is in bdy(B), for all 1i).

In Chapter 3, we shall describe a collection of iterative
algorithms that may be used to obtain solutions to Reconstruction
Problem 2 for the case where the unknown simplex A is a triangle. One
of these algorithms is illustrated in Fig.5 for a particular choice of
the given sets F and G. In Chapter 3, we show that this procedure
converges to a triangle T that has all of its vertices on the boundary
of G and all of its legs tangent to F (if such a triangle exists). A

triangle T of this type has the property'that none of the vertices of

17
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the unknown triangle A can be contained in int(Y¥). By exploiting this

property, certain possible locations for the unknown triangle A may be

ruled out.

bﬂl ,,Tﬂ

AN
R R
Fig.5

The two results that we have just described focus on the 2 and 3-
dimensional cases. Most of the results that are presented in this
thesis are only developed for low dimensional cases. The problem of
extending these results to higher dimensions is not trivial. However,
the low dimensional case is of interest in many applications, and much
of the literature in this area is restricted to this.

The approaches that we shall use in solving Reconstruction Problems
1 and 2 will not yield a single estimate of the unknown set A. Rather
than focusing upon a single set that satisfies the constraints imposed
by the given partial description, we shall explore the structural
properties of the glass of all sets that satisfy these constraints.

This approach has been applied to a variety of other problems, see (601

and {38].

18
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Apart from helping us formulate a general theory of set
reconstruction, the results given in Chapters 2 and 3 may be directly
applicable to a variety of areas such as robotics, tomography, pattern
recognition, and chemometrics. These applications will be cited on a
result-by-result basis throughout the thesis.

In Chapter 4, we unify the literature on problems related to set
reconstruction where the unknown convex set A is known to be a sphere,
plane, or polytope. We first discuss the problem of reconstructing an
unknown ;sphere S from two given sets F and G that satisfy F C S Ccom(G).
We then consider the problem of reconstructing an unknown m-dimensional
plane P from k sets Aj,...,Ay that intersect P. Finally, we describe
some existing algorithms that generate a sequence of boundary points to
reconstruct an unknown polytope. We show that this problem is the dual
of the problem of reconstructing a polytope by using a sequence of
support planes. The relevant literature on minimum spanning spheres,
largest empty spheres, a-hulls, motion planning, and interval linear
equations will also be discussed.

In his frequently cited book [54], Rockafellar defines the penumbra
of a set A with respect to a set B as the set of all points p of the

form
p = (1-A)a + Ab, for some a in A, some b in B, and some A0 .

Rockafellar refers to the penumbra as "an interesting construction".
However, as far as we can tell, he never actually uses it in the book.
It turns out that the penumbra is a very important set that surfaces
throughout our work. As a result, this is one of the recurring themes

that we shall describe. A discussion of some recurring themes may be

19
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found in Chapter 5. In addition to penumbras, we shall discuss star-
shaped sets, extreme sets, iterative algorithms, and duality. Chapter §
also contains a summary of the results of the Chapters 2, 3, and 4.

This thesis represents a solid step toward the development of a
general theory of set reconstruction. However, .the job is far from
finished. Chapter 5 contains a discussion of the steps that should be
taken in order to continue towards a general theory of set
reconstruction.

In order to make this thesis accessible to a wide audience,
Appendix 1 has been included to present most of the required background
material. In this appendix, we shall review many of the mathematical
terms and basic results that are used in the thesis.

The proofs for the results given in Chapters 2 and 3 are given in
Appendices 2 and 3, respectively.

Throughout the thesis, we make use of the important notion of a
convex hull to form compact statements of our results. Thus, in order
to directly apply many of our results, one must equipped with an
algorithm for determining the convex hull of a given set. A discussion
of some convex hull algorithms is given in [61], [19], [33], and in the

forthcoming book [51].

20



CHAPTER 2. RECONSTRUCTING A CONVEX SET FROM SUBSETS OF ITS

INTERIOR, EXTERIOR, AND BOUNDARY

In this chapter, we shall consider the problem of reconstructing as
well as possible an unknown convex set A from three given sets G;, Gg-
and Gy that are known to be subsets of the interior, exterior, and
boundary of A, respectively.

Our results for this problem form a foundation for the work
described in Chapter 3. In addition, these results are of interest in
their own right, for they may be directly applicable to many problems in
robotiecs. These latter applications will be cited throughout the

chapter. Proofs of the results of this chapter are given in Appendix 2.

1. Outline of the Chapter

This section contains a description of the particular problems that
will be considered in this chapter.

The chapter uses several basic results concerning the interior,
relative interior, exterior, boundary, complement, closure, convex hull,
and kernel of a set. Most of these basic results are given in Appendix
1, which also contains a dictionary of terms. Additional results,

properties, and definitions may be found in [5] and [31].

Notation:

a. If ¥V is a subset of RM, then int(V), rint(V), ext(V),
bdy(¥), com(V), clo(¥), hul(V), and ker(¥) denote the
intérior. relative interior, exterior, boundary,

complement, closure, convex hull, and kernel of the set V¥,

21
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respectively. int(V,W) denotes the interior of the union
of fhe sets V and ¥ (the sets ext(V,H) through ker(V,W) are
defined similarly).

b. If p is a point in RB, then B(p,5) denotes the open ball
about p with radius 5.

c. dist(V,W) denotes the distance between two sets ¥ and W.

d. pen(V,¥) denotes the penumbra of V with respect to W.

Now our problem is the following: let C denote the class of all

convex subsets A of RP that satisfy all three of the following:

G; C int(a) , {(1a)
Gp C bdy(a) , (1b)
G C ext(a) , (1c)

where Gy, Gp, and Gy are some given subsets of RR. Fig.1 illustrates

the family of sets C for a particular choice of G;, Gy, and Ge.

il S

Fig.1

In our figures we shall use the symbols A, N, and * to represent points
that are in Gj, Gp, and Gg» respectively. Note that although our
figures consist of 2-dimensional configurations of a finite number of
points, all our results hold for the case where Gi' Gp» and G, are

arbitrary subsets of RR,

22
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Let I, B, B, and O denote the subsets of R given by

I = {plp€int(d), YAEC) , (2a)
B = {(pl pebdy(a), VAEC) , (2b)
E = {pl p€ext(n), VAEC} , (2¢)
0 = com(IVUBUE) . (2d)

If Ais asetinC, then I, B, and E represent the largest sets that can
be guaranteed to be contained in int(A), bdy(&), and ext(d),
respectively.

The sets I, B, E, and 0 could play an important role in many
problems in robotics. Suppose that A is an unknown convex set and we
have obtained the measurements Gj, Gp, and Gg of the interior, boundary,
and exterior of A. Since A must be contained in the set ccm(E) and I
must be contained in A, the sets I and com(E) are bounds for the set A.
If a robot could determine both I and com(E), then it could use this
information to help it decide which object it has selected from a bin of
parts containing several different types of convex objects.

In this chapter, we shall discuss several properties of the class C
and sets I, B, B, and 0. In Sectioun 2.1, we shall give some necessary
and sufficient conditions for C to be nonempty. Some structural
properties of C and a characterization of the smallest set in C are
given in Section 2.2. In Section 3.1, we shall characterize the sets I
and com(E). In addition, we show that com(E) is a star-shaped set, and
give conditions under which com(E) is bounded. In Section 3.2, we shall
characterize the smallest set that contains the boundary of every set in
C. In Section 3.3, we Shall suggest a way by which new

characterizations of the sets I, B, E, and O can be obtained by using
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condifions for €C to be nonempty. Section 4 contains a description of

some open problems.

2. Properties of C

Several properties of the class € will be discussed in this
section. In Section 2.1, we shall develop some necessary and sufficient
conditions for C to be nonempty. In Section 2.2 we shall show that if
{A7,...A1} is known to be a subset of C, then we can also classify some

other types of sets with respect to C.

2.1 Conditions for C to be Nonempty

Conditions for C to be nonempty are important for two reasons.
First, they suggest ways by which one could reject the initial
hypothesis that a particular unknown set A that satisfies (1) is convex.
A robot with this ability could determine whether it has selected a ball
or a ring from a bin of parts containing these two types of objects.

A second use of conditions for C to be nonempty will be discussed
in Section 3, where we shall show that such conditions may be used to
classify a given point with respect to the sets I, B, E, and O.

We shall give our conditions for C to be nonempty after a sequence
of intermediate lemmas.

Let G denote the set given by

G =GuG, . (3)

24
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Lemma 1:
If A is a set in the class C, then hul(G) is contained in

clo(A).

Lemma 1 is illustrated in Fig.2. The closure of the set A in Fig.2

contains the convex hull of G.

Fig.2

The next lemma shows that if C is nonempty, then hul(G) satisfies

all but one of constraints that define C.

Lemma 2:

If C is nonempty, then

Gp C bdy[hul(G)] , and (4a)

Ge Cext[hul(G)] . (4b)

From Lemma 2, it is clear that if C is nonempty and Gi is contained

in int[hul(G)], then hul(G) must be in C. Let Y be the set given by
Y = bdy[hul(G)1NG;. (5)

Fig.3 illustrates Y for a particular choice of Gj, Gp, and Ge. For this

example Y equals (a,b}.

25
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* Fig.3
With this definition, we have the following result:

Lemma 3a:

If Cis nonempty and Y is empty, then hul(G) is in C.

Next, we shall investigate what can be said in the case where C is
nonempty and Y is nonempty. In this case, hul(G) cannot be in C because
G; is not contained in int[hul(G)]. However, there are sets in C that

are only slightly larger than hul(G), as we discuss next.

Let A be a set in C. Gj must be contained in int(A). Thus, for
each point p in Gi, there is some positive number r(p) for which the

open ball B(p,r(p)] is contained in A. Let T(r) be the set given by

T(r) = hullG, [\UB(y.r(y))11 . (6)
yeY

The set T(r) is depicted in Fig.4 for a particular choice of the sets

Gi' Gp» Ge: and A.

Fig.4
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It is easily shown that

hul (G) ¢ T(r)C clo(A) . (7)

We then have the following:

Lemma 4:

The set T(r) given by (6) is in C.

Let T denote the class of all sets T(r) that satisfy (6) for some

map r from Y to (0,0). From the discussion thus far, we have the

following result:

Lemma 3b:

If A is a set in C and Y is nonempty, then there is a set T(r)

in T that is in C and contained in clo(A).

By combining Lemmas 3a and 3b, we obtain the following necessary
and sufficient conditions for the class C to be nonempty (note that

sufficiency is trivial):

Theorem 1: Conditions for C to be Nonempty:
C is nonempty iff
a. ¥ is empty and hul(G) is in the class C, or
b. Y is nonempty and there is a set T(r) in T that is in

the n2iass C.

21



Ch.2

2.2 The Structure of C

In this section we investigate what may be deduced from the
knowledge that some given sets belong to C. In particular, we attempt
to classify certain additional types of sets with respect to C. UWe
shall also state a theorem that gives the smallest set in C.

If A is a set in C, then clo(A) is convex, int(A) equals
int[clo(A)], and bdy(A) equals bdylclo(A)]. In addition, rint(A) is
convex and bdy(A) equals bdylrint(A)]. From this, we have the following

lemma:

Lemma §:

If A is in C, then clo(A) and rint(A) are also in C.

The converse of Lemma 5 does not hold. If clo(A) is in C, we
cannot conclude that A is also in C. The problem lies in the fact that
the closure of a nonconvex set may be convex. For example, if A is the
1-dimensional set given by the union of the intervals [-1,0) and (0,1],
then A is not convex. However, clo(A) equals the interval [-1,1] which
is convex. If rint(A) is in C, we cannot conclude that A is in C. Here
the problem lies in the fact that the interior of a nonconvex set may be
convex. For example, consider the set A shown in Fig.5. Since A does
not contain the open segment that joins the points p and q, A4 is not
convex. However, int(A) is convex.

! 1%

A 1
e 4dq Fig.5
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Although the converse of Lemma 5 does not hold, we do have the

following result:

Lemma §:

If R is a convex set and clo{A) or rint(A) is in C, then A is

also in C.

In the previous subsection, we defined the class of sets T tor the

case where Y (the intersection of bdy[hul(G)] and Gj) is nonempty. The

next lemma gives a structural result for C with respect to this class T.

Lemma 7:
Suppose Y is nonempty. If T(ry) is a set in T that is in C,

then every set T(rj) in T that satisfies
T(ry) cT(ry) , (8
is also in C.

We shall now state a theorem that gives the smallest set in C for
the case where C is nonempty. This result could be applied in the area
of rchotics. A robot that could determine the smallest set in C, might
use this ability to help it decide whether it has selected a small bali
or & largs ball from a bin of parts containing two different size balls.

The ccllection of all subsets of RP is an ordered set with respect
to the set containment relation € (see [24] for the definition of an
ordcred set). The next theorem characterizes the smallest set in C with

respect to this ordering.
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Theorem 2: Smallest Set in C:

Suppose C is nonempty and the dimension of hul(G) equals n.

a. If Yis empty, then I is the smallest set in C (i.e. I is
in C and I is contained in every set in C).

b. If Y is nonempty, then I is the infimum of C (i.e. I is the

largest subset of RP that is contained in every set in C).

Theorem 2 may be obtained by combining Lemmas 1, 3, §, and 7 with
the following fact: if ¥ is a proper subset of the relative interio:. of
a convex set ¥V, then either W is not convex or clo(W) is a proper subset
of clo(V).

Next we shall consider the case where we are given two sets A4 and
Ay in C. Suppose that A; is contained in A,. This situation is

depicted in Fig.6 for a particular choice of €;, Gp, and Ge.

Fig.6

The next lemma shows that all the convex sets between A; and A; must be

in C.

Lemma 8:

If By and A, are in C, then every convex set A that satisfies
A; CACAy , (9)

is also in C.
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3. Properties of I, B, E, and O

This section contains a discussion of several properties of the
sets I, B, E and 0 given by (2).

In Section 3.1, we shall characterize the sets I and com(E).

If A is an unknown convex set and we have obtained the measurements
G;, Gp, and Gg of the interior, boundary, and exterior of A, then com(E)
is the smallest set that can be guaranteed to contain A. Suppose we
also know that A 1s bounded. In this case, we would hope that the set
com(E) is also bounded. This can happen for certain choices of the sets
Gj, Gp, and Gg. In Section 3.1, we shall consider the case where we
take m boundary point measurements of A. We shall state results for
both the 2 and 3-dimensional cases and conjecture a result for the n-
dimensional case. Our results imply the following: 8 boundary point
measuremerts of an unknown bounded convex set A in R3 can provide enough
information to determine a bounded set that must contain A. Said
another way, in some cases it is possible to conclude that an unknown
convex set in R3 is bounded, from only 8 boundary point measurements.
Whether or not this can be done in a particular case depends upon the
configuration of the 8 boundary points.

If A is an unknown convex set and we have obtained the measurements
Gi, Gp, and Gg of the interior, boundary, and exterior of A, then A must
be contained in the set com(E) and I must be contained in A. In Section
3.2, we shall show that any point in com(E) that is not in I could be a
boundary point for A.

In Section 2.1, we gave some conditions under which C is nonempty.

In Section 3.3, we shall show how conditions of this type may be used to
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obtain new characterizations of the sets I, B, E, and O.

3.1 Properties of I and com(E)

In this section, we characterize the sets I and com(E) and describe
some properties of the set com(E). We shall show that com(B) is a star-
shaped set with kernel clo[hul(G)]. Then we shall discuss some
conditions under which com(E) is bounded.

First, we observe that I must contain G;, B must contain G, and E
must contain Gg- Since the sets in C are convex, it is possible to say
much more. Fig.7 depicts some of the implications that the convexity

assumption gives us.

int int -_> int
o ) —— e
bdy int -—> int
o o o~ —
bgy bgy —3 bdy or int
e
bdy or 1 —
y or nt egt > o ext
int bd —_—
n OY egt > o ext
Fig.?7

For example, the first statement in Fig.7 is as follows: if two points
are in the interior of a convex set, then the line segment that joins
them is also contained in the interior of the set, i.e. the interior of
a convex set is convex. By using such statements, it is possible to
grow the sets I, B, and E from the seeds Gy, G, and G,- An example of

how this can be done is given in Fig.8.
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/;\ Fig.8

The next two lemmas are used to obtain a characterization of I.

Lemma 9:
Suppose Y is nonempty. If p is a point in ext([hul(G)], then

there is a set T(r) in T for which p 13 in ext[T(r)l.

Fig.9 illustrates Lemma 9. If Y is nonempty and p 1s a point in
ext[hul(G)], then we may shrink the open balls about the points in Y

that are used to define T(r) to force p into the exterior of T(r).

.
PYY

- \\\k’//
* Fig.9

Let Z denote the set of points p that satisfy the following
constraints: p is in bdy[hul(G)] and all the support hyperplanes for
clo[hul(G)] at p intersect Gy. In Fig.9, Z equals bdy[hul(G)] minus the

two points in Gb-

Lemma 10:
Suppose Y is nonempty. A point p in bdy(hul(G)] is in

bdy[T(r)] for some set T(r) in T 1ff p is not in Z.
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Lemma 10 is illustrated in Fig.i0. There is only one support line

of the set clofhul(G)] at the point p and this line intersects G4. From
Fig.10, we can see that pis in int[T(r)] for all sets T(r) in T. There
are support lines for clo[hul(G)] that do not intersect G4 at the two

points that are not in Z and these points are in bdy[T(r)] for some of

the T(r) in T.

. Fig.10

The next two theorems characterize the sets I and com(E).

Theorem 3: Characterization of I:

If C is nonempty, then

I =int{hul(G)]VZ .

Theorem 4: Characterization of com(E):
Apoint pin RN jis in com(E) iff
a. Y1s empty and hul(p,G) is in C, or
b. Y is nonempty and hul[p,T(r)] is in C for some set

T(r) in T.

Theorem 4 is illustrated in Fig.11. Since the intersection of Gb
and the interior of hullp,T(r)] is nonempty for all sets T(r) in T,
hulp,T(r)] cannot be in C. Thus p must be in E. Fig.11 shows that

there is a set T(r) in T for which hullq,T(r)] is in C. Thus, q must be
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in com(E).

- -
(\ N\ ( —-"‘"":’ P
SMA -
. Fig.11

If p is a point in com(E), then there must be a set A in C for
which p is in int(A) or bdy(R), see Fig.12. By Lemma 1, we known that

clofhul(G)] must be contained in clo(A). Thus by using the first three
statements described iu Fig.7, we may conclude that any line segment
that joins p with a point q in clo[hul(G)] must be contained in clo(h),
and hence in com(E). The next result gives a formal statement of this

property.

* Fig.12

Lemma 11:

clolhul (G)] C ker[com(E)] .
The kernel of com(E) may be larger than the set clo[hul(G)]. For
example, consider the case illustrated in Fig.13. Theorem 4 may be used

to show that com(E) equals the triangle abc. Thus ker[com(E)] equals

abe which properly contains clo[hul(G)].
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a c Fig.13

Suppose that we have determined that a point p is in com(E). Then
by Lemma 11 we may conclude that all of the points in hul[p,clolhul (G)]]
are also in com(E). An analogous conclusion may be reached for the case
where we have determined that a point P is in E. Suppose p is a point
in E. Let Sp denote the penumbra of p with respect to the set
clo[hul(G)] (Sp equals the set of points of the form (1-A)p+Aq, for some
Point q in clo{hul(G)] and some A<0, see Fig.14). We may conclude that
Sp is contained in E (if a point x in Sp was in com(E) then by Lemma 11,

P would also have to be in com(E)). Thus, we have the following:

Lemma 12:

If pis in E, then Sp is contained in E.

We close this section with some conditions under which the set
com(E) is bounded. We shall focus upon the case where G; and G, are
empty, and G, equals a finite set of points. An example of this case is

shown in Fig.15. Note that in this example the set com(E) is bounded.

36

D e



Ch.2

Fig.15

The next result gives some conditions under which com(E) may be bounded.

These conditions are stated in terms of the cardinality of Gpe

Result 1:
Suppose G; and G, are empty, and Gp consists of m points.
a. In the 2-dimensional case, if m<5, then com(E) is
unbounded. If m)5, then com(E) could be bounded.
b. In the 3-dimensional case, if m<8, then com(E) is
unbounded. If m)8, then com(E) could be bounded.
c. In the n-dimensional case, if m)»2n+2, then com(E)

could be bounded.
We conjecture that in the (n>3)-dimensional case, com(E) must be
unbounded if m is less than 2n+2.
3.2 The Boundary Points of Sets in C

A characterization of the set of points that are in bdy(A) for some

set A in C will be given in this section. We need the following lemma:

Lemma 13:
Let p be a point in RP and let A; and A, be sets in C. If p
is in both ext(A1) and int(A3), then there is a set A in C for

which p is in bdy(A).
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Lemma 13 is illustrated in Fig.6.

The next theorem follows from Lemma 13.

Theorem 5: The Boundary Points of Sets in C:
Suppose C is nonempty. A point p is in bdy(A) for some set A

in C iff p is in the union of B and O.

If A is an unknown convex set and we have obtained the measurements
Gi' Gy, and G, of the interior, boundary, and extericr of A, then

Theorem 5 tells us that the union of B and 0 is the smallest set that

can be guaranteed to contain the boundary of A.

3.3 An Application of Conditions for C to be Nonempty

We now show how new characterizations for the sets I, B, E, and 0
may be obtained from conditions for C to be nonempty.
Let p be a point in R™ and let C;(p), Cy(p), and Cy(p) denote the

subclasses of C given by

Ci(p) = (A| AEC and p€int(h) } , (10a)
cp®) = (A | AEC and pEbdy(a) } , (10b)
Co(p) = { A | AEC and p€ext(h) } . (10c)
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We then obtain the following theorem from Lemma 13:

Theorem 6: Characterization of I, B, E, and O:

Let p be a point in RP.

pisinI 1iff Cy(p) = Co(p) =46 ,
pis in B iff Cj(p) = Co(p) =4 ,
pis in E 1iff Ci(p) = Co(p) = 4 .
pis in 0 iff Cp(p) # &, and

Ci(p) £d or Colp) £ 6 .

Suppose that we would like to classify a given point with respect
to the sets I, B, E, and 0. First, we observe that the classes C;(p),

Cp(p), and Co(P) all have the same form as the class C. For example,

C;(p) is the class of convex sets A that satisfy the constraints

G, C bdy(a) , (11b)
Ge C ext(4) , (11c)

As a result, any test that determines whether or not C is empty (for
example, Theorem 1) can alsc be used to determine whether or not Cj(P),

Cy(p), or Ce(p) is empty. Thus Theorem 6 can be used in conjunction

with a test that determines whether or not C is empty, to classify a
given point p with respect to I, B, E, and 0. In this way, new
conditions for C to be nonempty can generate new characterizations for

the sets I, B, E, and O.
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4. Extensions and Open Problems

In Result 1, we gave some conditions under which the set com(E) may
be bounded in the case where G; and G, are empty and Gp consists of m
points. This result only handles the 2 and 3-dimensional cases. We do
not have any similar results for the n-dimensional case. We conjecture
that in the (n)>3)-dimensional case, com(E) must be unbounded if m is
less than 2n+2.

In Theorems 3 and 4 we characterized the sets I and com(E). To
complete the story, a characterization of B must be developed. It
should be possible to obtain such a characterization by examining the

points at which the sets bdy(I) and bdylcom(E)] intersect.
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CHAPTER 3. RECONSTRUCTING A SIMPLEX: THE COMPONENT ANALYSIS PROBLEM

The problem of reconstructing as well as possible an unknown
simplex S from two given sets F and G that satisfy FCSCG will be
considered in this chapter. Proofs of the results in this chapter may

be found in Appendix 3.

1. Introduction
The Component Analysis Problem
Consider the following problem:

Given r functions fl(x)....,f‘p(x) from R into R that are known

to be of the form
fJ(X) = HIJQI(X) + .0 + ijcm(X) » (1)

for some unknown number m of unknown nonnegative functions
€y(x),..c,Cp(x) and some unknown nonnegative weights Wigs

estimate the functions cl(x).....cm(X).

We shall refer to this as the component analysis problem.

This problem arises in many practical situations. For example, we

must solve a component analysis problem when we attemp: to estimate a

collection of positive signals emitted from multiple sources by using a
set of measurements that have been obtained from an array of sensors;
see [57] for some related problems. 1In this case, at the jth sensor we
observe a signal fJ(x) that is of the form (1), where ¢ (x),...,cp(x)

are the appropriately delayed unknown source signals and Wi j is the
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attenuation factor from the ith source to the jth sensor.

The component analysis problem also arises when we attempt to
identify the components in a collecticn of r chemical mixtures by using
the absorption spectra of the mixtures. The absorption spectrum of a
chemical component is a nonnegative function of frequency that measures
how well the given component absorbs various frequencies of light, and
the absorption spectrum fJ(x) of the jth mixture is of the form (1),
where cj(x),...,cp(x) are the spectra of unit concentrations of the
components of the mixture and the weight wyj is the concentration of the
ith component in the jth mixture. One typically observes the spectra of
r mixtures of the same m components, where each mixture is formed from
different relative corcentrations of the components. We then must solve
a component analysis problem to identify the component spectra
c1(x) e,y (x), see [32], [45].

This chapter fbcuses upon the 3-component problem (note that a
brief discussion of the general case is given in Section 4). This
special case is of considerable significance in the chemical analysis
problem mentioned above, and yet the only treatment we are aware of is

that of [45), which is rather limited.

A Related Simplex Reconstruction Problem

A subset S of RN i3 called a k-simplex if it may be expressed as
the convex hull of a k-dimensional set consisting of k+1 points (note
that the dimension of a subset S of RP is given by the dimension of the

smallest plane containing it).

VK



Ch.3

Rext we show that if the functions fj(x),...,fn(x) in (1) are only
known for d values of X, then the component analysis problem reduces to

the following simplex reconstiruction problem (where n will be defined

shortly):

Estimate an unknowa n—-simplex S from two given n-dimensional

cunvex polytopes F and G that satisfy
FCSCG . (2)

Suppose that we are given the values c¢f the functions

£3(x),ee, fr(x) at d values xj,...,Xq of the variable x. Let fj denote

the points in rd given by
where

Let F and G be the polytopes given by

F

hul (£y,....5.) , (4a)

G=P0O {p !} p)0, component-wise } , (4b)

where P denotes the minimal-dimension plane that contains F. Let n
equal dim(F). The sets F and G are illustrated in Fig.1 for the case
where d=3, r=6, and n=2. In this case, the points f1,eeerfg must Lle in
the regular tetrakedron with vertices (1,0,0,0), (0,1,0,0), (0,0,1,0),
and {¢,0,0,1). PFor the particular case shown in Fig.1l, F is a pentagon
and G is the quadrilatsral abed which equals the intersection of the 2-

dimensional plane that contains P with the regular tetrahedron,
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(0100)

Suppose there is an n-simplex S that satisfies (2). Let
ClrecesCpn+1 denote the vertices of S. For the example given in Fig.l, S
could be any triangle cjcsc3 that contains the pentagon F, and is
contained in the quadrilateral G.

Since F is contained in S, each point f‘j may be written as

fj = wpje1 + ... + Wp41,jCn+l ° (5a)
for some Wjjs,e.,Wn+l,j fOr which
"ij 20, for all i, and (5b)
Wij + ee. tWpsr,y=1- (5¢)
In addition, since S is contained in G, the vertices of S satisfy
ci 2 0 , component-wise, for all i . (6)

Suppose c¢j(x) is a nonnegative function from R into R for which

ej = [01(x1).ci(x2)....,ci(xd)] . (1)

From (3), (5a), (5b), (6), and (7), we see that (1) holds for x equal to

X1seee,Xde Thus, the functions c1(X),...,cp+1(X) could be the actual

components. In this way, every n-simplex S that satisfiesa (2) gives

rise to an (n+l1)-tuple (el(x),...,cn.,.l(.‘x)) that could represent the

actual components that combine to generate the fuunctions
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£1(x),eee,fp(x). In fact, since a positive scaling Ay of the function
cj (x) may be absorbed by the weights wjj. any (n+1)-tuple of the form
(llcl(x)-"..1n+1cn+1(x)). for some positive scale factors Aq,...,Ap41,
could also represent the actual components.

Next we show that, under certain conditiohs. one of the simplexes
that satisfies (2) must correspond fo the actual components. Suppose
€q(x),.ccoCp(x) are the actual components. Let c; denote the points in

rd given by

¢j = [ej(xg),ci(x2),...,00(xg4)] / Bi » (8a)

where

Pi =cilxg) + ... + ejxq) , (8b)

and let S be the set hul(ey,...,cp). From (1), it can be shown that
each point fj is a convex combination of the points CjsecesCp. Thus,
the set [fln.”frl must be contained in S. Therefore, since S is
convex, F must be contained in S. If the number of components m

satisfies

m=n-+1, (9)

then S must be an n-simplex that is contained in the minimal-dimension
plane P that contains F (it can be shown that if (9) holds, then the

points ej,...,¢y must be linearly independent, and if c¢jp,...,cp are

linearly independent and r)m, then (9) will hold for almost all choices
of the weights wyj in (1)). In addition, since cj(x),...,cy(x) are
nonnegative functions, S must be contained in the n-dimensional polytope

G. Thus if m satisfies (9), S must satisfy (2).
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We have shown how the component analysis problem may be reduced to
the geometric problem of estimating an n-simplex from two n—dimensional
convex polytopes F and G that satisfy (2). This geometric
interpretation of the component analysis problem gives us a simple
representation of the constraints imposed upon the functions
c1(x),eeercp(x) and £1(x),...,fp(x). The first containment relation in
(2) arises from the constraint that each function fj(x) is a positive
combination of the functions e¢j(x),...,ep(x). The second containment
relation arises from the fact that the functions C1(x),.eerCp(x) are

nonnegative.

2. Outline of the Chapter

Let G be a given n-dimensional subset of R™ and let F be a given

bounded subset of G. Let C be the set defined by
C=(S | Sis an n-simplex and FCSCG } . (10)

The class C is illustrated in Fig.2 for a particular choice of F and G.

Fig.2

Let V denote the subset of R given by

V={p | pis a vertex of some simplex in C } . (11)
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We shall refer to this set as the vertex domain. The vertex domain is

illustrated in Fig.3 for a particular choice of the sets F and G. In

this figure, the point p is in V and the point q is not in V.

Fig.3

The set V plays an important role in the component analysis
problem. Suppose that F and G are given by (4). Any point that does
not lie in the vertex domain for the sets F and G cannot corr=spend to
one of the underlying components. Thus, V may be used to obtain bounds
that all of the underlying components must satisfy. Later we shall see
that in some rases the set V is formed from the union of n+1 disjoint
sets 71,;...'n+1 wlth the property that each simplex S in C must have
exactly one vertex in each of the sets ¥4,...,V,,y. In these cases, we
may approximate C as the Cartesian product of the sets vl,....vnﬂ
(recall that the Cartesian product of k sets Aj,...,Ay is the set of all
k-tuples of the form (al....,ak). where a; is in Ay). Thus, in some
cases V may be used to obtain a separate bound for each of the
underlying components in the component analysis problem.

In Section 3, we shall focus upon the case where F and G are
compact convex planar sets. This would correspond to the 3-component
problem. In Section 3.1 we characterize V and specialize our results to
the case where F and G are convex polygons. Section 3.2 describes three
interesting iterative procedures that may be used to obtain an

approximation to V. We shall discuss the case where F and G are compact
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convex subsets of RD jin Section 4. In Section 4.1 we characterize ¥ and

in Section 5 we discuss some open questions.

3. The 3-Component Case
3.1 Characterization of ¥
Let F and G be two compact convex subsets of R2 that satisfy

bdy(F)Nbdy(G) = ¢ , and (12a)

int(F) # & . (12b)

An example of two sets F and G that satisfy these constraints is shown

in Fig.4.

\_ c
Fig.4

Let X be the subset of RZ given by

X ={p | there are points q and r in G (13)
for which the triangle pqr contains F } .

The set X is 11llustrated in Fig.5 for a particular choice of the sets F

and G. In this figure, the point pj is in X, and the point pp is in

com(X).
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since G ijs a conveX set, the verte¥ domain V equals the

jntersection of G and X. Thus, any characterization of the set X may be

used to characterize Y.

Let £ be the map from ext(F) into bdy (G) that is illustr‘ated in
Fig.6. For any point P in ext(F), there are two support lines for F that
_pass through D. To qptain f(p), we move from p along the support line
for F that passes to the right of F. f(p) 18 taken to be the point in
bdy(G) at which we exit fpom the set G.

f(Pi)
f(Pz)

K Py

¢ Dy Fig.6

The penumbra of a set A with respect to a set B is the set of all
points p that may be written as (1-M)a + Ab, for some a in A, some b in
B, and some A <0 {541 (some problems that involve penumbras are
considered in [681). We shall denote this set by pen(A.B). The set
pen(A,B) is j1lustrated in Fig.7 for a particular choice of the sets A

and B.
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pen(a, B)

B Fig.7

We shall denote the ith iterate of a function g at x by gi(x). For

2 point pin the domain of f, let xe(p) and xi(p) be defined by

Xo (p) = int{pen([F,f(p)]1N pen[F,fz(p)]] , (14a)

X (p) = int{peniXy(p),F1} , (14b)

where Xp(p) denotes the intersection of the rays f(p)p and £2(p)r3(p).

The sets X;(p), Xo(p), and ZXp(p) are illustrated in Fig.8 for a

particular choice of the sets F and G. Fig.8a shows the case where the
rays f(p)p and £2(p)f3(p) intersect at a point, and Fig.8b shows the

case where these rays do not intersect.

f(p)
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The next theorem shows that the sets X; (p), Xg(p), and X,(p) can be

used to characterize the interior, exterior, and boundary of X.

Tkeorem 1: Characterization of X:

int(X) = pendy(g) i) (15a)
_ UV

ext(X) = pebdy (G) X, (p) , (15b)

bdy (X) = (15¢)

pebdy(g) Xb(P) -

From Theorem 1, we see that the boundary of the set X is generated
by rotating a triangle that circumscribes F and has a chord of G for its
base, see Fig.9.

Corollary 1 gives the characterization of V that corresponds to the

characterization of X given in Theorem 1.

Corollary 1: Characterization of V:

_, U 6
V= pebdy (G) (X3 (P)uX,(P)] )N G . (16)

Fig.9 illustrates the vertex domain for the sets F and G of Fig.4.

V¥V is shaded

Fig.9
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In Fig.9, the intersection of com(V) and G is star-shaped about

each point in the interior of F. The next corollary shows that this

property is general.
Corollary 2:

int (F) C kerlcom(¥)NG] . (17)

Corollary 1 gives a characterization of V for the case where F and

G are compact convex planar sets that satisfy (12).

The Polygonal Case

In Section 1, we showed that a geometric interpretation of the
component analysis problem leads us to consider the class C for the case
where F and G are convex polytopes. Here, we shall discuss some results
for the 2-dimensional version of this problem, which results when three

components are present.

Fig.10

Suppose F and G are convex polygons that satisfy (12). The set
bdy(X) is generated by rotating a triangle that circumscribes F and has
a chord of G for its base. This procedure is illustrated in Fig.10 for
the polygonal case. As the point p moves along the segment pyp,, the

point q moves along the segment qiqz and the point d traces a portion of
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the ¢ re bdy(X). This basic operation is isolated in Fig.ll.

d

Fig.11

For each line pq that passes through the point a and intersects the
lines pypy and qyq5, we obtain a point d. The set of all points
obtained in this way will be a conic, i.e. all such points d=(x,y)

satisfy
Ax2 + By + Cxy + Dx + Ey + F =0 , (18)

for some constants A through F. MacLaurin [35] in 1735 observed this
fact and used it along with several other similar constructions in an
effort to describe curves of various degrees (to the best of our
knowledge, no one has generalized Maclaurin’s results to higher
dimensions).

The conic passes through the following five points: b, ¢, the
intersection of the lines p;p, and q;qp, the intersection of the lines
ab and q7q,, and the intersection of the lines ac and pjp;. If we have
determined these five points, then the coefficients of (18) may be
obtained in the following way: evaluate (18) at the five known points to
obtain five linear equations in the six unknowns, normalize F to 1
(provided that the curve does not pass through (0,0), we can take F to
be 1), and solve the five linear equations in the five remaining
unknowns.

Alternatively, we can obtain a parametric description of the conic.

Since d equals the intersection of the lines
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Ap + (1 - )b and (19a)
vq + (1 - y)ec, _ (19b)

d may be written as
d=b+ (p -b) le=b e=ql 7 lp-b e—ql } , (20a)

where the points in this equation are written as vectors in R2, with

respect to some coordinate system, and |+| denotes the determinant.

Similarly, since q equals the intersection of the lines pa and qjqy-
q=a+ (p-a) lag-a qz-q3! / lp-a qz-q1l 1. (20b)
In addition, p can - be written as
P=P; + (pp -pp)t . (20c)

By substituting (20b) and (20¢) into (20a), it can be seen that d is of

the form
d=1[ x(t) y(t) 1 /7 w(t) , (20d)

where x(t), y(t), and w(t) are second degree polynomials in t. (20d) is

a rational parametrization of the conic in terms of the points py, pj,

conic, for when x and y are the ratio of two quadratics in t, (18)
becomes a fourth degree polynomial in t (after clearing the
denominators) where each of the five coefficients is a linear function
of A, B, C, D, E, and F. Thus, there exist values for A, B, C, D, E,

and F such that this polynomial is zero for ail t.]

54



Ch.3

Fig.12 illustrates the set ¥V for a particular choice of the
polygons F and G. The curve bdy(V) is formed from several conic ares.
(20) may be used to parametrize each of these ares in terms of the

vertices of F and G.

¥ is shaded

gives an upper bound on the number of nondegenerate conics that can be

involved in forming the boundary of the vertex domain.

Result 1: The Number of Conic Arecs in bdy(V):
Let £ and g be the number of vertices of F and G,
respectively. The curve bdy(V) consists of at most 3f + 2g

nondegenerate conic arecs.

(3f+2g) is only an upper bound. First, some of the conic arcs that
we have counted may not intersect G, and thus could not contribute to
the boundary of the vertex domain. In other cases, Ib(p) may remain at
a vertex of F while p (in Fig.8) varies over an interval of bdy(X). For

example, this happens when both F and G are triangles, see Fig.12.
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3.2 Iterative Procedures to Approximate V

In this section, we shall describe a set of iterative procedures
that may be used to approximate V for the case where F and G are compact
convex sets that satisfy (12). First, we give a procedure that
converges to the members of a special class of triangles that may be
used to approximate V. Then we shall discuss a procedure that converges
to the asymptotes of the curve bdy(X) and a procedure that converges to
the point at which a given ray that is emitted from F intersects the
curve bdy(X).

We shall refer to a triangle that is inscribed in G (i.e. has each
of its vertices in bdy(G)) and circumscribes F (i.e. has each of its
legs tangent to F) as a circumscribing-inscribed (CI) triangle. Fig.13
illustrates the CI triangles S; and Sp for the particular choice of the
sets F and G that was given in Fig.4.

If S is a CI triangle, then the set int(S) may be written as the
union of Xe(p1). Xe(p2), and Xe(p3), where p3, py, and p3 are the
vertices of S. From Theorem 1, it follows that the interior of a CI
triangle must be contained in com(V). Thus V must be contained in the
set G-int(S4,...,S,), where Sj,...,Sy are the CI triangles. For the
case shown in Fig.13, this set equals the union of 6 sets Vyp,...,¥g that
lie along bdy(G). More generally, if there are m CI triangles, then
there will be 3m sets of this form. We may approximate V by the union
of all sets ¥y for which the intersection of int(Vy) and ¥V is nonempty
(later we show that a simple test may be performed to determine whether
or not such an intersection is nonempty). From Fig.9, we see that ¥

does not intersect Vy, ¥3, and V5. Thus in this case, the resulting

56



Ch.3

approximation to V is the union of the sets ¥y, V4, and Vg- Note that

this approximation to ¥ i3 conservative in the sense that ¥ is contained

in this approximation.

Fig.1i3

To obtain the approximation described above, we must devise methods

to

1. locate CI triangles, and (21a)

2. test for whether 1m:(vj)nv =9 . (21b)

It can be shown tﬁat if a pair of sets F and G satislying (12) has
a CI triangle, then for every point p in the domain of the function f
defined in Fig.6, the iterates of f at p will converge to a CI triangle.
Said another way, if £ has a 3-periodic point, then every point in the
domain of £ is an asymptotically 3-periodic point of f (a point p is
said to be a k-periodic point of a function g if gX(p)=p and gl(e)#p,

for all i in the interval [0,k-1]1 (g0(p) is defined to be the identity

if the set

2 (p).adt*(p),....gk W 1(pyy (22)

comverges to k different points).
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The structural propei:tics of the periodic points of f depend upon
the sets F and G. As can be s=en from the example in Fig.13, for some
choices of F and G the corresponding function f will possess 3-periodic
points. Fig.14 illustrates that there are sets F and G for which the
corresponding function f has a 4-periodic point but no 3-periodic
points, and Fig.1l5 shows that more than one type of 5-periodic point can

be obtained.

Fig.14

Fig.15a Fig.15b

The word "type" here can be rigorously defined, but corresponds
essentially to the kind of polygon that is generated by the iterates of
a periodic point (a rigorous definition may be made by using the
permutations that were introduced in [10] to analyze biliiard ball paths
in a planar set). In Fig.15a, the iterates of p form a 5-point star,

and in Fig.15b the iterates of p generate a pentagon., It can be shown

that for k)3 the number of different types of k-periodic points that can
be obtained is @(k)/2, where d(k) is the Euler phi-function, which
equals the the number of integers r in the interval [1,k) for which

ged(r,k)=1.
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The next theorem shows that the function f that is associated with

a particular pair of sets F and G can only possess‘k-periodic points for

one value of k, and all k—-periodic points must be of the same type.

Theorem 2: The Pericdic Points of f:

All of the periodic points of the function f that is

associated with a particular pair of compact convex sets F and

G that satisfy (12) are of the same period and type.

The next theorem is even stronger than Theorem 2. It states that

if f has a k-periodic point, then every point in the domain of f is

asymptotically k-periodic.

Theorem 3: The Asymptotically Periodic Points of f:

Suppose the function f that is associated with a particular

pair of compact convex sets F and G the satisfy (12) has a k-

periodic point.

a. Then, every point in the domain of f is an asymptotically

k-periodic point of f.

Let P1py be an open segment of bdy(G) for which py and pj
are k-periodic points of f and pypy does not contain any
periodic points of f. Let f, denote the restrictionof f
to bdy(G) (so that f, is invertible, though f is not). If
P is a point in the segment pyp,, then either (r¥Xi(p)}
converges to p; and {f;ki(p)l converges to pj, or {fgi(D)}
converges to p, and (f Ki(p)} converges to pj. 1In
addition, both of the sequences converge monotonically with

respect to the curve bdy(G).
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Theorem 3 is illustrated in Fig.16 for the case where f has a 3-periodic
point. In this case {f3l1(p)} converges to p; and (rz31(p)) converges to

Pa.

Fig.16

The following procedure, which is based upon the results given in

Theorem 3, may be used to locate CI triangles:

Procedure: Find CI Triangles:

1. A ¢-- bdy(G),

2. Select a point p from A,

3. Compute {f31(p)} and {f731(p)} until convergence is
detected and set q and r to the estimated limits of
(fgi(p)} and (fz31(p)}, respectively,

4, A ¢-- A minus the ares qpr, fr(q)fr(p)f;z(l‘)n
£2(q)f2(p)fr1(r) of bdy(G),

S. If A is empty (to within the tolerance used in detecting

convergence), then stop, else go to 2.

Since some sets F and G have an infinite number of CI triangles
(for example see Fig.17), this procedure will not terminate for all

choices of the sets F and G.
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Fig.17

The next result shows that the number of CI triangles i1s finite in the
case where F and G are convex polygons. In this case the procedure will

always terminate.

Result 2: The Number of CI Triangles:
A pair of convex polygons F and G that satisfy (12) will only

have a finite number of CI triangles.

The function f can also be used to perform the test (21b). Refer
to Fig.13. Let py,...,p3y be the 3-periodic points of f numbered in
counterclockwise order around bdy(G), let Sj,...,Sp be the CI triangles,
and let VJ be the subsét of G-int(Sy,...,S;) that corresponds to the arc
PjPj+1 Of bdy(G). Let qj be a point on the open arc pypj+1- It can be
shown that V¥ intersects int(VJ) if and only if xb(qj) is a point that is

in G.

The function f may be used to obtain a second type of approximation
to V. Let {AJ] and {BJ} be the sequences of sets that are generated by

the recurrence relations

Ajpq = Ajuxe[fj(p)] , (23a)
Bj'f'l = BJuxilfJ(p)] ’ (23b)
Ay =B, =4 . (23c)

We o ; use Aj and By for a Jth approximation to the sets com(V)NG and

V, respectively. This alternative approach is illustrated in Fig.18.
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-Whereas the first approximation method that we discussed only applies to
the cases where there are CI triangles, this second method may be used

in all cases,

Fig.18

The function f may be used to determine the points at which bdy(X)
intersects bdy(G). We conclude this section with a brief discussion of
two additional iterative procedures that also may be used to expose
important features of X.

In some cases the set com(X) will be unbounded. This happens for
the example given in Fig.4. It can be shown that if com(X) is
unbounded, then the asymptotes of the curve bdy(X) will be of the same

form as the parallel rays s; and sp 1in Fig.19a.

P Fig.19a
Let g be the function from bdy(G) into bdy(G) that is defined in

Fig.19b (the lines £(p)f2(p) and g(p)a in Fig.19b are pcrallel). It can

be shown that the iterates of g and g~1 can be used to locate the
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asymptotes of bdy(X).

fz(p)
f(p)

g(p)
o Fig.1i9b

The approximations to V that were given in this section could be
improved in a particular case by determining the point at which a given
ray emitted from F intersects bdy(X). Refer to Fig.20a. Let qyq, be a

ray that is emitted from F. Suppose the ray qiqy intersects bdy(X) at a

point r. From Theorem 1, we know that the point r must equal X(p), for
some point p in bdy(G), and the corresponding sets X;(p) and Xg(p) must
be contained in X and com(X), respectively. These two sets may be used

to improve our approximation to V.

Fig.20a

It can be shown that the iterates of the function h that is defiined

in Fig.20b converge to the point at which the given ray intersects the

curve bdy(X).
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4. The (n+l1l)-Component Case

A characterization for V in the case where the sets F and G are
compact convex subsets of RP will be given in this section. 1In

addition, we shall describe some open problems for this case.

4.1 Characterization of V

Let C, be the set of n-simplexes given by

Cp = { S| S is an n-simplex with vertices PsP1secesPn (24)
for which PCS and P1,.e.,Pp are in G } .

Let X be the subset of R? given by
X=(plec,#41. (25)

The set X given by (25) is the n-dimensional generalization of the 2-
dimensional set X defined in Section 3.1. Since V equals the
intersection of X and G, any characterization of the set X may be used
to characterize V.

Theorem 1 gives a characterization of X for the 2-dimensional case.
In this case, a point p in the set com(F) is in bdy(X) if and only if Cp

consists of a single triangle that circumscribes F and has a chord of G
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for its base. We shall show that the set B given by

B={plC,#¢and if S is a simplex in Cp, (26)

then F intersects every face of S
and F intersects the relative
interior of at least one face of S
that containsp } ,
is the n-dimensional generalization of this set (the relative interior
of a subset A of R® is the interior of A with respect to the minimal-
dimension plane that contains A).
The next lemma describes the ways in which a ray that is emitted
from int(F) may intersect X.
Lemma 1: The Structure of X with respect to Rays Emitted from
int(F):
Let q be a point in int(F), let p be a point in bdy(F), and

let r(A) be the point (1-A)q + Ap. Either

a. r(A) €com(X) , for all A0 , or

b. r(A) €com(X) , for 0{A <A
€B , for A=Ap>1
€x , for A2y , or

c¢. r(A) €Ecom(X) , for 0<A<1 ,
€X , for A)1 .

Fig.21 illustrates the three cases given in Lemma 1.

a. OFLLiesibs  com(X) 1s shaded

q P
b, Ol gl holom

q p b
C. OS5 LL4

q P Fig.21

The next lemma shows that the sets X and com(X) are wide about rays

that are emitted from the set int(F).
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Lemma 2: The Directional Wideness of X and com(X):

Let p be a point in RE.

a. p€EX —> pen(p,S) CX, for all S in Cp,

b. p Ecom(X) -->» hulip,int(F)] Ccom(X).

The next theorem, which follows from Lemmas 1 and 2, gives a

characterization of the set X.

Theorem 4: Characterization of X:

bdy(X) = B U [Xnbdy(F)] , (27a)
= U
int (X) pebdy (X) int[pen(p,F)] . (27b)

5. Some Open Problems

This section contains a discussion of several open questions. 1In
Section 5.1 we list some results for the 3-component case that have not
been generalized to the (n+l)-component case, and in Section 5.2, we
describe some problems associlated with the iterative procedures that

were presented in Section 3.2.

5.1 The (n+1)-Component Case

There are several open questions for the case where F and G are n-
dimensional compact convex sets. In this section, we give a brief

description of some of these questions.
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Fig.22 shows how Lemma 2 may be applied to obtain subsets of X and
com(X) in each of the cases described in Lemma 1. If we had an
algorithm that could determine whether a given ray that is emitted from
int(F) satisfies a, b, or ¢ in Lemma 1 (and also find Ay in case b),
then we could apply this algorithm to several such rays in order to
obtain an approximation of X. In Section 3.2, we saw that in the 2-
dimensional case, the function h given in Fig.20b may be used to
determine the point at which a given ray that is emitted from F
intersects the curve bdy(X). Perhaps there is an n-dimensional

generalization of this function.

a. l///: com (X)
N: ¥
> (%—@

C.

\ . Fig.22

Theorem 1 shows that in the 2-dimensional case the set bdy(X) may
be expressed as a mapping of bdy(G). In Section 3.1, we used this fact
to show that in the case where F and G are polygons, the set bdy(X) is
formed from a collection of conic arcs. We have not been able to

generalize these results to the n-dimensional case.

67



Ch.3
5.2 Iterative Processes in Geometry

In Section 3.2, we described a set of geometric fixed point
algorithms that may be used to approximate ¥ for the case where F and G
are compact convex sets that satisfy (12). 1In this section, we shall
deseribe another similar geometric procedure that also appears to
converge to its fixed points. Some open questions will be raised
regarding the iterative algorithms that we have presented.

Consider the following triangle reconstruciion problem:

Estimate an unknown equilateral triangle T from a given
triangle abc and line d that satisfy the following

constraints:

1. each leg of abc contains a vertex of T in its interior,

2, d is parallel to one of the legs of T.

An iterative procedure that converges (in many cases) to the
unknown equilateral triangle T is illustrated in Fig.23. First we
select a point p, from the triangle abc. From this initial point, we
generate the sequences pj, Pp3, P3s «ce» and p-j3, pP-2, D-3recee To
obtain p;, we move away from g and parallel to the line d until we
intersect abe. From this point we make a 60 degree left turn to obtain

Py. We continue in this way to generate pPi, for 1>2, If at some point

we cannot make a 60 degree left turn, (for example, p3 in Fig.23) we
make a 120 degree right turn. The negative portion of the sequence is

obtained from pj by reversing these steps. In particular, we move from

P1 to pgo and then make 60 degree right Eprns when possible, and 120

degree left turns when a 60 degree right turn cannot be made.
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Fig.23

We have implemented this algorithm using the language LOGO on an
Apple II Plus personal computer and have studied its behavior for
several triangles abc and lines d. The following conjecture
charac terizes the convergence properties of the algorithm and is based

upon our observations:

Conjecture 1:
In general, both the positive and negative portions of the

Sequence pj converge to a triangle that could be the unknown

triangle T.

Finally, we note that the algorithm does not always converge to an
equilateral triangle. Fig.24 shows another fixed path for this

procedure.
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This algorithm and the three algorithms described in Section 3.2
all have a similar structure. Each procedure yields a path within a
given convex set that bounces off the boundary of the set according to
some set of rules, The fixed paths of these procedures are stable. Is
this a consequence of a more general result or is this the bud of a new
result on iterative procedures defined on convex sets?

We shall conclude this section with a list of some related papers
that may help us formulate general results. In [65], an iterative
algorithm is given to determine the point at which a given ray enters a
given convex set. The papers [9], (6], and [62] study the convergence
properties of various sequences of polygons. [9] considers the sequence
P3, P4,cee., where P3 is an equilateral triangle, and Py is the largest
regular k-gon that is contained in the polygon Pp_3. In [6], three
different sequences are examined. One of these sequences is illustrated

in Fig.25.
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Fig.25

The sequence considered in [62] is shown in Fig.26. The recent paper
(28], which describes a new algorithm for the linear programming

problem, may also contain some useful 1deas.

Fig.26

A number of recent articles have studied the trajectery of a
billiard ball bouncing in a convex set. [56] discusses the motion of a
billiard ball in an annulus bounded by two non—céncentric circles. [16]
focuses upon the case where the convex set 1s a polygon or polyhedron.
Billiard paths in planar convex sets of constant width are considered in

F&3}.
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CHAPTER 4. RECONSTRUCTING SPHERES, PLANES, AND POLYTOPES: A SURVEY

Originally, the results given in Chapters 2 and 3 were developed

because we were interested in the following two problems:

1. estimate the shape of an unknown 3-dimensional object from
a given collection of boundary point measurements obtained

by a robot hand that has touched the unknown object,

2, identify the components of a chemical mixture by using a
collection of absorption spectra of chromatographic

fractions.

Later, we recognized that the mathematical formulation of each of
these seemingly unrelated problems had the following structure: estimate
an vnknown subset A of RM from a given partial description of A. We
decided to call problems of this form set reconstruction problems.

More recently, we have explored the literature in a variety of
fields to identify additional set reconstruction problems that other
authors have studied in the past. This search has proven to be quite
fruitful. In this chapter, we shall discuss the material uncovered in
this search,

In Chapter 3, we investigated a simplex reconstruction problemn.
The simplex is an important convex set because it arises in many
applications. There are many other special types of convex sets that
are equally. important. In this chapter, we shall discuss some
reconstruction problems for the following convex sets: spheres, planes,

and polytopes.
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In Section 1, we shall discuss the problem of reconstructing an
unknown sphere S from two given sets F and G that satisfy F S com(G).
We shall pull together the existing literature on minimum spanning
spheres, largest empty spheres, a-hulls, and motion planning in our
discussion of this problem. In Section 2, we consider the problem of
reconstructing an unknown m-dimensional plane P from k sets A4,..,,4)
that intersect P. We shall focus upon the case where the k sets are
interval polytopes and we shall discuso the related literature on
interval linear equations.

In Section 3, we consider some interactive polytope reconstruction
problems (the concept of interactive problems will be described in
Section 3). First, we describe some existing algorithms that generate a
sequence of boundary points to reconstruct an unknown polytope. Then,
we shall show that the problem of reconstructing a polytope by using a
sequence of support planes is a dual of the boundary points problem, and
we shall show how algorithms for one problem may be used to obtain
algorithms for the other problem. In Section 4, we shall summarize some

of the open problems that are identified in Sections 1 through 3.

1. Sphere Reconstruction Problems

Consider the following sphere reconstruction problem:

Estimate an unknown sphere S in R® from two given sets F and

G that satisfy

FCS, (1a)

S C com(G) . (1b)
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Let C be the class of all spheres in RN that satisfy (1). The
class C is illustrated in Fig.l for a particular choice of the sets F

and G.

Fig.1

The Largest and Smallest Spheres in C

Many algorithms have been devised to obtain either the largest or
smallest sphere in € (or a subset of C) when the sets F and G are of a
special form. For example, in [14] and [19] algorithms were given to
determine the smallest sphere in C for the case where G is empty and F

consists of a finite set of points, see Fig.2.

Fig.2
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In [11] and [72], it was shown how the largest sphere in C may be found

in the case where F is empty and G is the complement of a polytope, See

Fig.3.

Fig.3

The relationship between these two problems was dicussed in [121.
Toussaint {691 considered the case where F is empty and G consists of 2
finite set of points in g2. For this case, he gave an algorithm to
locate the largest sphere jn € that is centered in someé given convex
polygon, sSee Fig.4. (Note that some authors have considered similar

scaling problems for ellipsoids, see {501 and {261.)

XX
X X
X
X
X X

Fig.4

To the best of our knowledge, no algorithms have been developed to

find the largest and smallest spheres in ¢ for the case where both F and
G are nonempty. Fig.5 shows that in some cases we can decouple these

problens, i.e. the smallest sphere in C equals the smallest sphere that
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contains P and the largest sphere in C equals the largest spnere that is
contained in com(G). However, in general these problems cannot be
decoupled. For example, in Fig.6 the largest sphere in com(G) does not
contain the set F, and the smallest sphere that contains F is not

contained in com(G). Thus, these extreme spheres are not in C.

E

com (@) Fig.5

Fig.6

Since these problems may not be decoupled, the algorithms that have
been given for the cases in which either F or G is empty may not be
applied directly to the problem where both F and G are nonempty.
However, it might be possible to modify the approaches that were taken

to derive these algorithms to obtain algorithms for the general case.
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Estimating the Unknown Sphere

Let A and B denote the following subsets of RID:

b
i

{plpisin s, for all SinC} , (2a)

{pl pis in com(S), for all SinC} . (2b)

In Section 2.3.1, we showed how it is possible to grow the sets I, B,
and E from the seeds G;, G,, and G, by using the properties of convex
sets given in Fig.2.7; see Fig.2.8. Anzlogously, we may grow the sets A
and B from the seeds F and G by using the properties of spheres. For
example, for the case shown in Fig.7 the point p must be in A and the
point q must be in B. It should be possible to characterize the sets A
and B, and to develop algorithms to determine whether a given point is

in &, B, or com(A,B).

Fig.?7

Suppose G is empty and we know that the radius of the unknown
sphere is r. In this case, the set A is given by the intersection of
all the spheres of radius r that contain the set F. The set A is shown
in Fig.8 for a particular choice of F and r. In [13], the intersection
of all spheres of radius 1/e that contain a given set was defined to be

the a-hull of the set. In that paper, algorithms were given to compute
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the a-hull of a given finite subset of R2,

Fig.8

Next, suppose instead that F is empty and that we know the radius
of the unknown sphere is r. Suppose G equals the union of a finite set
of points and the complement of a polytope, see Fig.9. For the
Particular choice of G shown in Fig.9, the shaded region denotes the
possible locations for the center of the unknown circle. In [64] an
algorithm was given to determine the area of the union of a finite
collection of circles. This algorithm could be used to determine the
ratio of the shaded region in Fig.9 to the bounding polygon. This ratio
could be used as an indication of the quality of our estimate of the

location of the center of the unknown circle,

Fig.9
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In [75] and [42] the problem of planning the motion of dises in the
plane was considered. Perhaps some of the algorithms that have been

given for this related problem could be used for sphere reconstruction

problems as well.

2, Plane Reconstruction Problems

Suppose that we are given noisy samples Sj,...,Sk of an unknown
linear function f(x)=mx+b at k values Xq,...,Xp Of the independent
variable x. We could use the method of least squares to estimate the
function f(x). The estimate obtained in this way, call it fe(x)=mex+be,

would be chosen so as to minimize the sum
[8-fo(x1)12 + ... + [sy—fo (X312 - (3)
If it is known that the noisy samples satisfy the inequalities
£(xg) —a; £ 84 £ f(xg) + b5 (4)

for some given scalars aj and bj (see Fig.10), then the least squares

method may not be appropriate.

‘rsl'ra.

Fig.10
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(It is easy to construct examples for which the estimate fo(x) obtained

from the least squares method does not pass through the intervals given

by (4).)

In this case, we might try to determine the class C of all linear

Sunctions g(x) that satisfy the inequalities
83 - by ¢ &) < si +ay, (5)

i.e. that cut all of the intervals illustrated in Fig.10. From (4) we
know that the unknown function f(x) must be in C. The class C could
serve as our estimate of f(x).

The problem of determining the class C was considered in [48]. Let
Cj be the class of all linear functions g(x) that satisfy the

inequalities (5) for i=1,...,j. In [48], an algorithm was given to

compute the class CJ by using cj_l.

Consider the following more general problenm:

Estimate an unknown m-dimensional plane P in RP from a

collection of k sets Ay,.,A, that satisfy
PAA + 4. (6)
(The following related problem was considered in [12]: for a given set

S, find the smallest value for a for which there exists a t such that

t + aS intersects each set in a given collection of sets.)
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Example 1:

Refer to Fig.11l. Suppose we would like to estimate an unknown

plane P from k given points aj,...,ax that are known to be of

the form

where pj 1s a point in the unknown plane P, and the

coordinates of the point ej are all less than 6/2.

Fig.1il1

Let A; be the n-dimensional cube with edges of length & that
is oriented along the coordinate axis and centered at the
point aj. Since p; is in P and aj satisfies (7), the plane P
must intersect the cube Aj. Thus, we are faced with a special

case of the plane reconstruction problem stated above. B

Example 2:

Refer to Fig.12. Suppose we would like to estimate an unknown
plane P from k given points aj,...,ay that are known to be of
the form (7), where P; is a point in P and e; is a vector with

a magnitude ry that is bounded by some given constant r.
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Let A; be the sphere about the point aj with radius r. Since
Pj is in P and aj satisfies (7), the plane P must intersect
the sphere Aj. Again we are faced with a special case of the

plane reconstruction problem stated above. H

For the remainder of this section, we shall focus upon the case
where each of the sets A; is an n-dimensional cube.

Suppose that we know that the plane P is actually an (n-1)-
dimensional linear subspace, i.e. P 1s a hyperplane that contains the
origin. Let p be the unit normal to the plane P. The problem of
estimating P is equivalent to the problem of estimating its unit normai

p. A vector x could be a multiple of the unit normal p if and only if x

satisfies

Ax =0 , (8)

for some (kxn) matrix A that has the following form: the i'h row of A is
a point in the cube A;., Fig.13 shows the range of possible normals for

a particular choice of the cubes Af,eee,Age
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Fig.13

Each element in the matrix A in (8) can range over an interval.
Thus, the problem of estimating an unknown (n-1)-dimensional linear
subspace from k given ci.‘lbes that intersect the subspace is equivalent to

i\
the problem of solving a system of k linear interval equations.

Linear Interval Equations

During the past 20 years, several results have been developed for

more general systems of linear interval equations of the form
Q Ax = b, (9)

where A is a (kxn) matrix and each of the elements of A and b is known
to lie in some given interval but is otherwise unknown (note that some
results have also been given for the problem where b ranges over some
general given set, see [39]).

Let X be the set of vectors x that satisfy (9) for some A and b
that satisfy the given interval constraints. In [43] it was shown that
X equals the union of at most 2R convex polyhedra, each having at most

2n vertices (except in degenerate cases). The paper [52] focuses upon
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the case of a single linear interval equation, i.e. the case where the
matrix A in (9) is (1xn). Ratschek and Sauer give necessary and
sufficient conditions for the existence and uniqueness of solutions,
necessary and sufficient conditions for the convexity of the solution
set X, and an explicit characterization of X for the case when it is
convex. The set X has also been studied in [53] and [2].

In general, the set X is difficult to represent. Thus, many
auvthors have developed methods to approximate X by a simpler set. In
[41], [18], and ([20] methods were given to obtain small interval
polytopes that contain the set X, and in {2] it was shown how large

interval polytopes that are contained in X may be determined.

3. Interactive Polytope Reconstruction Problems

Up to this point, we have focused upon reconstruction problems in

which the unknown set must be estimated from some fixed information. In

this section, we shall introduce another important class of
reconstruction problems. We shall describe some problems in which the
current knowledge of the unknown set is used to formulate a query, and
the current estimate of the set is updated by using the answer to this
query. Problems of this type will be refered to as jinteractive
reconstruction problems. In this section we shall discuss some

interactive problems in which the unknown set is a polytope.

Probing the Boundary of a Polytope

Let P be an unknown bounded polytope in RP. Suppose that the

origin is contained in int(P).
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For a point x in BB-0, let probe(x) denote the positive multiple of

% that lies on the boundary of P.

Fig.14

The function probe(x) is illustrated in Fig.14 for a particular choice
of P and x.

Consider the following problem:

Reconstruct an unknown bounded polytope P by selecting a
sequence of poilnts Xqreeer Xy and evaluating the function

probe() at each of these points.

This problem arises in the area of robotics. A robot can evaluate
the fupction probe(x) for some unknown object P by touching P along the
vector x.

The vnknoyn polytope P may always be determined by evaluating

probe(+) a finite number of times. An example of how this can be

acoemplished is shown in Fig.ls.
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Fig.15

In this example, P is a convex polygon and we have evaluated the
function probe(.) at six points to o#tain the points p;,...,pg on the
boundary of P. Since P is convex, 1t.must contain the triangle pjp3Ps°
In addition, the intersection of P and com(p;p3ps) must be empty (if
there was a point p in this intersection, then for some i, pj Would be
in int[hul(p,pip3ps) and this would contradict the fact that py is on
the boundary of P). Thus, from the points pj,...,pg We may conclude
that P must be the triangle pPyp3ps. (Note that objects known to be
spheres or known to be hyperplanes may also be determined by evaluating
the function probe{:) a finite number of times.)

We shall now summarize a simple algorithm that was given in (8] to
obtain the desired sequence of points X1,eeesX for the case where P is

a convex polygon. Refer to Fig.16. Let x;, xj, x3, and x4 be the

points (1,0), (0,1), (-1,0), and (0,-1), respectively. We =hall use Py
to denote tne point probe(xj)., In Fig.16, A, o, and * will be used to

denote xj, pjr and the origin, respectively. Each step in the remainder

of the algorithm uses four points p; to obtalir a new point xj.
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Fig.16

The first step uses the initial points py,...,p4 to obtain xg4. Let p be
the intersection of the lines P;jp4 and pyp3. If p is on the side of the
line p;py that contains p3 and pyg, then xj is taken to be -p.
Otherwise, x5 is taken to be p. (Note that in [8], x5 is taken to be the
midpoint of the line segment pjpz when p is on the side of the line pyP;
that contains pj and py. We have modified the original algorithm in
order to insure that it is a dual of an algorithm that we shall describe
in the next section on support planes.) For the case shown in Fig.16,
x5 1s taken to be -p. Next, pj, Ps, Py, and pg assume the roles of
P1sesesP4. These four points are used to obtain xg. Since pg lies on
the segment pjips, We known that this segment must lie on an edge of'the
unknown polygon P. Next, the points Ps5, Py, P3. and pg are useh to
obtain the point X7. Since pq equals Xq, We may conclude that Pq is a
vertex of the polygon P. Next, P3, P4, P1. and pj are used to obtain
xg. Then, p3, pg, P4, and py are used to obtain xg. Since pg equals

X9, we may conclude that pg is a vertex of the polygon P. Finally, p4,
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P1, pg, and pg are used to obtain xj9. Since pjg equals xjg, we may
conclude that pjg is a vertex of the polygon P. Since pjqg lies on the
line pypg, we may conclude that the unknown polygon is the triangle
P7P9P10"

For the example described above, 10 points were needed to determine
the unknown polygon. It can be shown that 3n+l 1s an upper bound on the
number of points that are needed to identify a convex n-gon by using
this algorithm. Sometimes the algorithm only uses 3n )oints. For the
example in Fig.16, an edge of P was identified before a vertex. If
instead, we had identified a vertex before an edge (this would have been
the case if P had been rotated by n) only 9 points would have been
required.

In [8], an improved version of this algorithm is given. This
modified algorithm determines an unknown n-gon by using 3n points. In
addition, Cole and Yap show that every algorithm that determines the
shape of an n-gon requires at least 3n points.

The rzeports [8] and (3] also discuss the probe function that
yields, for a given x and y, the smallest positive number A for which
¥y + Ax is on the bound;ry of P. Bernstein focuses upon some problems in
which the unknown coﬁvex polygon P is a member of a given set of

polygons. He considers the cases:

1. P contains the origin within its interior,
2. P contains a given disk about the origin, and
3. P contains the origin within its interior and one of the

edges of P lies on a given line,
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For cases 1, 2, and 3 he gives an algorithm to determine the unknown n-
gon in 2n+3, 2n+2, and 2n-1 probes, respectively. He also shows that
each of the algorithms may be shortened by one step in the case where it
is known that the polygon P has n sides. (Note that we have omitted
some of the technical assumptions that are made in [8] and [3] to handle
cases.where the line y + Ax contains an edge of P or only intersects a
single vertex of P. In addition to these assumptions, Bernstein places
a condition on the set of polygons he considers. However, as he points
out, this condition is satisfied for the important special case where
the set of polygons is finite.)

Finally, we note that in [17] a similar problem was considered.
Gaston and Lozano-Perez considered the problem of identifyfhg an unknown
polygon from a set of boundary points and bounds for the.surface normals

at these points.

Support Planes: A Dual Problem

Let P be an unknown bounded polytope in RP, Suppose that the
origin is contained in int(P).

For a hyperplane r in RN-0, let support(r) denote the positive
multiple of r that is a support plane of P (a multiple of a set is

defined point-wise).

Support(r)

Fig.17
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The function support(r) is illustrated in Fig.17 for a particular choice
of P and r.

Consider the .owing problem:

Reconstruet an unknown bounded polytope P by selecting a
sequence of hyperplanes rj,...,ly and evaluating the function

support(s) at each of these planes.

This problem may be obtained from the one discussed in the previous
section by replacing probe(:) by support(:).

Algorithms for this problem could be used in roboties. For
example, to identify an v :nown polygon standing on one of its edges

(this problem is described in [59]), a robot could determine support
lines by using LED sensors across two opposing fingers (the IBM RS-1 has

this type of gripper).

\\53\ AN \ s,
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We shall now describe an algorithm that determines the required
sequence of hyperplanes r,,...,r, for the case where the unknown set P
is a convex polygon. Refer to Fig.18. Let * denote the origin of Rz
and let ¢y and cy denote the coordinate axes of R2. Let ry, rp, r3, and
r4 be the lines c3=1, e3=1, e¢1=-1, and c3="1, respectively. We shall
use S; to denote the line support(ri). Each step in the remainder of
the algorithm uses four lines s; to obtain a new line ry. The first
step uses the initial lines s,,...,84 to obtain r5. Let a; be the
intersection of the lines sj and s4, and let aj be the intersection of
the lines s, and s3. If the origin and the intersection of thé lines sq
and s, are on the same side of the line aja, then rj is taken to be the
negative of the line aja,. Otherwise, rs is taken to be the line aja,.
For the case shown in Fig.18, rs5 is the negative of the line ajaj-
Next, s;, sg, s,, and s4 assume the roles of sj,...,84. These four
lines are used tc obtain rgz. Since sg passes through the intersection
of the lines S; and s5, we known that this point of intersection must be
a vertex of the unknown polygon P. Next, the lines sg, S, s3, and sg
are used to obtain the line rq. Since sq equals rq, we may conclude
that s contains an edge of the polygon P. Next, s3, s4, 33, and sj are
used to obtain rg, Then, s3, sg, s4, and sy are used to obtain rg.
Since sg¢ equals rg, we may conclude that sg contains an edge of the
polygon P, Finally, s4, sj;, sg, and sg are used to obtain rjg. Since
s10 equals ryg., we may conclude that sqg contains an edge of the polygon
P. Since s;, passes through the intersection of the lines s; and sg, we
may conclude that the unknown polygon is the triangle that is given by

the intersection of the half-planes given by S, 389, and sjyq.
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At this point we observe that a certain duality exists between the
the algorithms given in Fig.16 and Fig.18. One algorithm may be
obtained from the other by exchanging the roles of points and lines.
This notion of duality may be formalized by using the concept of dual
polytopes.

For each given polytope P, there is a corresponding dual polytope D
that is given by the polar set of P (the polar set of a given set A is
the set of all points y that satisfy yTxgl, for all points x in A). The

dual polytope D is  illustrated in Fig.19 for a particular choice of the

polytope P.

Fig.19

The boundary of D may be generated by replacing each vertex of P by its
polar plane and each face of P by its pole. (The peolar plane of a point
p in RN-0 is the set of points y for which yIp=1. The pole of a
hyperplane S in R1-0 is the point p for which pTx=1. for all points x in
S. Some polar planes are shown with their ccrrespending poles in

Fig.20.)
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3 I S

Fig.20

In Fig.21, we have superimposed the algorithms of Fig.16 and

Fig.18. In order to clearly show the duality between these algorithms,
we chose toc have the support plane algorithm search for the dual of the

triangle the was used to illustrate the boundary point algorithm.

Se

\?

Fig.21
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From Fig.21 we see that for each i, the line 3y is the polar line of the
point pj. It is also true that for each i, the line rj is the polar
line of the point Xj.

The next result follows from duality.

Result 1:

If an algorithm A reconstructs an unknown bounded polytope P
in RM by generating a sequence of k points X1soees X and
evaluating the function probe(-) at each of these points,
there is a dual algorithm A* that reconstructs the polar set
of P (or dual of P) by generating a sequence of k hyperplanes
ri,...,rxy (that are the polar planes Of Xjp,ees,Xk*’
respectively) and evaluating the function support(:) at each

of these planes. The converse also holds.

Result 1 lets us transfer complexity results between these two
problems. For example, since 3n+l1 is an upper bound on the number of
points that are needed to identify a convex n—-gon by using the aigorithm
in Fig.16, 3n+1 is an upper bound on the number of planeé that are
needed to identify a convex n-gon by using the algorithm in Fig.18.

By using the ideas in this section, efficient dual algorithms may
be derived from existing algorithms. For example, the dual of an
algorithm in [8] that determines an unknown n-gon by using only 3n
points may be used to determine an n-gon by using 3n support planes.

In this section we have discussed the problem of reconstructing a
polytope from sequences of boundary points gor support planes. We are

not aware of any reconstruction algorithms that use both boundary points

and support planes.
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4. Some Open Problems

of the open problems that were described in Sections 1

given below. H

Develop an algorithm to find the largest and smallest
spheres in the set of all spheres S that satisfy ACS(CB,

for two given (nonempty) subsets & and B of R4,

Characterize the sets A and B given by (2), and develop
algorithms to determine whether a given point is in A, B,

or com(A,B).

Characterize the set of all m—-dimensional planes that
intersect a given collection of spheres (or interval

polytopes) in RR,

Develop an algorithm to reconstruct an unknown polytope

from sequences of boundary points and support planes.
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CHAPTER 5. CONCLUSION

The main goal of this thesis is to begin to develop a general
theory of set reconstruction. Thus far, we have considered some
particular reconstruction problems (Chapters 2 and 3) and surveyed some
of the related literature (Chapter 4). In this chapter, we shall
summarize the problems and results that were discussed in Chapters 2
through 4. A number of recurring themes in these results will be
described. These themes form the foundation for a general theory of set

reconstruction., In addition, we shall outline some directions for

future research.

5.1 Summary of Results

We considered the following set reconstruction problem in Chapter

2: f

Estimate an unknown convex subset A of R from three given
sets Gy, Ge, and Gp that are known to be subsets of the

interior, exterior, and boundary of A, respectively.

We defined C to be the collection of all convex sets S that satisfy
the constraints Gj Cint(S), Gg Cext(S), and Gp Cbdy(S). Some necessary
and sufficient conditions for C to be nonempty were given and some
structural properties of C were identified.

We let I denote the set of points p that are contained in the
interior of every set in C. The sets B and E were defined similarly for

the boundary and exterior of sets in C, resp-ctively, and 0 was defined

96



Ch.5

to be the complement of the union of the sets I, B, and E. Several
properties of the sets I, B, E, and O were discussed. We characterized
the sets I and com(E). In addition, we showed that com(E) is a star-
shaped set, and gave conditions under which com(E) is bounded. The
smallest set that contains the boundary of every set in C was shown to
be the union of B and 0. Finally, we suggested a way by which new
characterizations of the sets I, B, E, and 0 can be obtained by using

conditions for €C to be nonempty.

In Chapter 3 we focused upon a particular simplex reconstruction
problem. This was derlved from the problem of estimating a collection
of unknown positive functions from a given set of functions that are
positive combinations of the unknown functions, and took the following

form:

Estimate an unknown n-simplex S from two given sets F and G

that satisfy FCSCG.

Again, we defined the class C to be the collection of all sets that
satisfy the constraints imposed by the given partial description of the
unknown set, i.e. C was taken to be the collection of n-simplexes that
satisfy FCSCG. We defined V to be the unilon of all the vertices of
the n-simplexes in C.

We gave many results for the case where F and G are compact convex
planar sets. For this case, we characterized V and specialized our
results to the case where F and G are convex polygons. We also
described three novel iterative procedures that may be used to obtain an
approximation to V. V was also characterized for the more general case

where F and G are compact convex subsets of RM.
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We considered some sphere, plane, and polytope reconstruction
problems in Chapter 4. First, we discussed the problem of
reconstructing an unknown sphere S from two given sets F and G that
satisfy FCS Ccom(G). Thern, we considered the problem of reconstructing

an unknown m-dimensional plane P from k sets A;,...,A) that intersect P.
Finally, %e considered some interactive polytope reconstruction
problems. We showed that the problem of reconstructing a polytope by
using sequences of support planes is a dual of thaz problem of
reconstructing a polytope by using a sequence of boundary points. We
also showed how algorithms for one problem may be used to obtain
algorithms for the other problem. In Chapter 4, numerous connections
were made with the existing literature on problems involving spheres,

planes, and polytopes.

5.2 Recurring Themes

This section contains a discussion of some topiecs that have

surfaced repeatedly in our work.

Penumbras

The penumbra of a set A with respect to a set B is given by
{ x| x=(1-2)a + b, for some a in A, b in B, and A0 } .

We denote this set by pen(A,B). Fig.l illustrates the set pen(A,B} for

a particular choice of the sets A and B.

pen(4, B)

Fig.1
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Suppose that we are given three points a, b, and ¢ on the boundary
of an unknown convex subset A of R2 and we would like to determine the
largest set E that can be guaranteed to be contained in the exterior of
A (this is a special case of the reconstruction problem considered in
Chapter 2). By using Theorem 3 of Chapter 2, it can be shown that E may
be expressed as the union of the three penumbras penla,int(hul(b,c))],

pen[b,int(hul(a,c))], and penl[e,int(hul(a,b))], see Fig.2.

Fig.2

Penumbras also play a role in the reconstruction problem that was
considered in Chapter 3. Let F and G denote compact convex subsets of
R2. Suppose abec is a triangle that contains F and is contained in G,
see Fig.3. It is easy to see that, any triangle of the form abp, where
p is a point in pen{ec,hul(a,b)], must contain F. This is a special case

of Lemma 2a of Chapter 3.

. 77/ 7117
2L/ /fenle hul(a W]
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To the best of our knowledge, there are no efficient algorithms for

determining the set pen(4,B) (even for the simplest case where A and B

are finite subsets of R2),

Star—Shaped Sets

A subset A of R! is star-shaped relative to a point x in A& if the
line segment that joins x with any point in A is contained in A. Star-
shaped sets played a role in both Chapters 2 and 3.

Refer to Fig.4. Suppose that we are given six points pj,...,pg ©OR
the boundary of an unknown convex subset A of RZ, By using Theorem 4 of
Chapter 2, it can be shown that the smallest set that can be guaranteed
to contain the set A is the star—-shaped set shown 1in Fig.4. This is a

special case of Lemma 11 of Chapter 2.

P

Fig.l

In Chapter 3, we showed that set of points that cannot be a vertex

of a triangle between two compact convex planar sets F and G is star-

shaped atr.i:t the set int(F) (see Fig.9 and Corollary 2 of Chapter 3).

Extreme Sets

Suppose that we are given a partial descripticn of an unkncwn
subset A of R0, 1In order to bound the size of A we can determine the
largest and smallest sets in RR that satisfy the given partial

description. Several different extreme sets ol this type were discussed
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in this thesis.

In Chapter 2, we considered the problem of reconstructing an
unknown convex set A from three given sets Gj, Ge, and Gy that are known
to be subsets of the interior, exterior, and boundary of A,
respectively. In Theorem 2 of that chapter we characterized the
smallest subset of RD that satisfies this partial description. We
showed that for some cases, there is no smallest set. For these cases,
we determined the infimum of the collection of sets that satisfy the
given nartial description.

A variety of exireme problems for spheres that have been considered
by otuer authors were listed in our survey in Chapter 4, see Figs.2, 3,

and 4.

Iterative Algorithms

Several iterative geometric procedures were introduced in Chapter
3. We described three algorithms that may be used to obtain an
approximation of the vertex domain (see Figs.16, 19b, and 20b). A
procedure with a similar structure that converges to an equilateral
triangle was also discussed. In Section 5.2 of Chapter 3, we identified
a number of topies for future research and listed a collection of

related papers that should be carefully investigated.

Duality

In Section 3 of Chapter 4, we described some existing algorithms
that generate a sequence of boundary points to reconstruct an unknown
polytape. We. showed that the problem cf reconstructing a polytope by
using a sequence of support planes is a dual of the boundary points

problem., Thic fact may be exploited to obtain algorithms for one
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problem from algorithms for the other problem.

Although this is the only instance in which the concept of duality
was needed in our work, we feel that duality might be a useful idea in
other situations as well. Several authors have already pointed out how
duality may be used in the analysis and development of algorithms for a

variety of geometriec problems, see [33], (511, [7], and [4].

5.3 Future Work

In Sections 2.4, 3.5, and 4.4, we described several specific open
problems that are directly related to the particular reconstruction
problems that have been considered in this thesis. In this section, we
shall describe some general directions for future research.

This thesis represents a first step toward the development of a
general theory of set reconstruction. Where do we go from here? There
are two lmportant steps that should be taken next. The recurring themes
that were discussed in the previous section should be studied, and in
parallel with this effort, we should attempt to pull together the
related work of other authors,

There is a large body of published work on various specific set
reconstruction problems. For example, several authors have considered
the problem of reconstructing an unknown set A from a set of projections
of A, see [27], [37]), [55], and [71]. This is a fundamental problem in
tomography. The problem of reconstructing a set from slices is another
important type of problem that arises from tomography (and also
microscopy), see [67], [34]. A third type of problem that arises in
positron-emission tomegraphy is the problem of reconstructing an unknown

set A from a collection of lines that intersect A [30].
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Other authors, within the context of computer vision, have attacked
the problem of reconstructing an unknown set A from a set of silhouettes
of A [58], [73].

The relatively new mathematical discipline called stereology deals
with problems that involve some descriptions such as sections,
projections, silhouettes, or intersections with test sets. The main
problem of stereology is to determine the characteristic geometric
properties éhg. volume) of an unknown set from a given partial
description. A fine survey of this related growing field is given in
[74]. This article contains several references that are relavant to the
study of set reconstruction.

A list of some of the different types of unknown sets that other

authors have considered is given below (A denotes the unknown set).

1. A is a point that moves along a piecewise linear random
path [25], [36], and [21].

2. A has a random lifetime [40].

3. A has a hole or inclusion [22].

4. A changes shape with time [23], [1], [44].

5. A rotates and translates with time [23].

6. B is disconnected [23].

It should be possible to expand our list of recurring themes by
inspecting the problems and solutions that are contained in the papers

cited in this section.
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APPENDIX 1. MATHEMATICAL TERMS AND BASIC RESULTS

In this appendix, we shall define several terms and state many
basic results that are used throughout the body of the thesis. Most of

the material in this appendix has been taken from [31], [5]1, and [54].

1, Mathematical Terms

asymptotically k-periodic point. A point p 13 said to be an

asymptotically k-periodic point of a function f if the set
{ tki(p), rki+l(py, ..., gk(i+D)-1(p)
converges to k different points.

bound. A hyperplane H=([f:a] is said to bound the set S if either

£f(S))a or 1(S)¢a.

boundary. The boundary of a subset S of R? is the set of all points p
for which every open ball B(p,5) with 8>0, contains at least
one point of S and at least one point of com(S). The

boundary of a set S is denoted by bdy(S).

bounded. A subset S of R is bounded if S is contained in some open

ball B(p,5).

closed. A subset S of RMN is closed if com(S) is open.
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closed half-space. For a given hyperplane H=[f:e], the sets

{x| f(x)2a) and {x| flx) {a}
are called the closed half-spaces determined by H.

closure. The closure of a subset S of R? is the union of S and bdy(S).

The closure of S is denoted by clo(S).
compact. A subset S of RP is compact if S is closed and bounded.

complement. The complement of a subset S of R® is the set of all points
in R0 that are not in S. The complement of S is denoted by

com(S).

convex. A subset S of R is convex if the line segment joining each

pair of points in S is contained in S.

convex combination. A pointy in R is called a convex combination of

the points x1, X2, «., X} in ER if y may be written as

Y = Axq o+ Agxg + oaue F AeXp
where
;"1+12+onc+;\-k=1,

l-JZO.

convex hull. The convex hull of a subset S of RM is the intersection of
all the convex sets that contain S. The convex hull of a set

S is denoted by hul(S).

dimension of a plane. The dimension of a plane is the dimension of its

corresponding parallel linear subspace [66].
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dimension of a set. The dimension of a subset S of RN is the dimension
of the smallest-dimension plane containing it, and is dernoted

by dim(S).

distance between sets. If A and B are two nonempty subsets of R1, then

the distance between them is given by

dist(A,B) = inf( all lIp-ql for pin A and q in B} .

dual polytope. The dual of a polytope P equals the polar set of P.

Euclidean distance. The Euclidean distance between two points p and q

in RM is given by the positive square root of

(P1-q1)2 + (py—a5)2 + ... (py-qy)2

where p; and qj denote the coordinates of the points p and q.

The Euclidean distance between p and q is denoted by Ip—ql.

Euclidean space (n—dimensional). The inner product space [66] given by
the collection of all ordered n-tuples of real numbers (for

n=1,2,...) together with the operations of addition defined

by
(allnncpan) + (blncoopbn) = (a1+b1"'..'an+bn) »
and scalar multiplication defined by

k(al,...,an) = (lalguoaplan) »

and the inner product ([66] <a,b> of a=(aj,...,ap) and

b=(b1...,..bn) defined by
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<a;b> = albl + e o s + anbn ’

is called n-dimensional Euclidean space, and is denoted by

RO,

Euler phi-function. The Euler phi-function, denoted by &é(n), is defined
for positive integers n to be the number of integers in the

range [1,n] that are relatively prime to n [15].

exterior. The exterior of a subset S of RR is the set of all points p
for which there is an oper ball B(p,58) with 8>0 that is
contained in the set com(S). The exterior of a set S is

denoted by ext(S).

functional. A function from RD to R is called a functional.

hyperplane. An (n-1)-dimensional plane is called a hyperplane. For
every hyperplane H, there is a nonidentically zero linear

functional f and a real constant a such that H=[f:al.

interior. The interior of a subset & of RP is the set of all points p
for which there is an open ball B(p,5) with §>0 that is

contained in S. The interior of a set S is denoted by

int(8).

interval hull. The interval hull of a subset S of R® is the smallest

interval polytope that contains S.
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interval polytope. A polytope P of RD is said to be an interval
polytope if the linear functional that is associated with

each closed half-space used to obtain P only depends on one

coordinate of RB

iterate (ith iterate). The ith jterate of a funection f at x equals
£((i-1)th iterate of £ at x). The £0(x) is defined to be the

identity function.

kernel. The kernel of a subset S of RD is the set of all points p in
S such that the line segment. joining p with any point in S is

contained in S.
line. A 1-dimensional plane is called a line.

line segment. The line segment joining two points x and y is the set of
all points of the form ax + (1-a)y where a is in the
interval [0,1]. The line segment joining x and y is denoted

by [x,yl.

linear function. A function f from RP? to R® is said to be linear if

f(x+y) f(x) + £f(y) , and

f(Ax)

Af(x) , for scalar A .

linear functional. A linear function from RM to R is called a linear
functional. If f is a linear functional, then [f:a] denotes

the set of all points x for which f(x) = a.

open. A subset S of R' is open if S equals int(S).
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open ball. An open ball B(p,8) in RD is the set of all points q in RD

that satisfy |p-ql < s.
open half-space. For a given hyperplane H=[f:al], the sets
{x | f(x)>al and (x| f(x) < e}
are called the open hal f-spaces determined by H.

open line—segment. The open line segment joining two points x and y is
the set of all points of the form ax + (i-a)y where e is in
the interval (0,1). The open line segment joining x and y is

denoted by (x,y).

parallel planes. Two planes are parallel if one is a translafe of the

other.

penumbra. The penumbra of the set A with respect to the set B is given

by
{ x| x = (1-A)a + Ab, for some a in A, b in B, and A40 } .
We shall denote this set by pen(A,B).

periodic point (k-periodic point). A point p is said to be a k-periodic
point of a function f if t‘k(p)=p and fi(p)#p, for all 1 in

the interval [0,k-1].

plane (k-dimensional). A translate of a k-dimensional 1linear subspace

of RM is called a k-dimensional plane [66].

polar plane. The polar plane of a given point p in RP-0 is the set of

points y for which yTp=1.
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polar set. The polar set of a given set A is the set of all points y

that satisfy yTxgl, for all points x in A,

pole. The pole of a hyperplane Pin R0-0 is the point p for which

pTx=1, for all points x in P.

polytope. A polytope is the intersection of a finite number of

closed half-spaces.

relative interior. The relative interior of a set S is the interior of
S relative to the minimal-dimension plane that contains S.

The relative interior of a set S is denoted by rint(S).

simplex (k-simplex). A k-simplex is the convex hull of a set S

consisting of k+1 points for which dim(S) = k.

sphere, A sphere in RD with center p and radius & is the set of all

points q in RD that satisfy lp-ql ¢ s.

star—-shaped. A subset S of R is star-shaped relative to a point x in S
1f the line segment that joins x with any point in S is

contained in S.

support hyperplane. A hyperplane H is said to support a set S at a

point pin Sif p is in Hand if H bounds S.

translate. A subset B of RN is a translate of a set A if there is a
point x such that every point in B can be writtenas x + y

where y is a2 point in A,
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2. Basic Results

ACB —> int(A) Cint(B) .

int (A) ubdy(A) uext(A) = RD ,
int (A)nbdy(A) = & ,
int(A)next(A) = ¢ ,
bdy(A)next(8) = ¢ .

a€h --> a€int(A) or ag€bdy(A) .

ACB —> ext(B) Cext(A) .

ext (A) = extl[eclo(A)] .

int[int(A)] = int(A) .

int(A) CB —-—> int(A) Cint(B) .

clo(A) is closed.

ACB, B closed —> clo(A)CB .

clo(A) = int(A)ubdy(A) .

ACB --> clo(A) Cclo(B) .

int(A) CA .

p is a point -—> clo(p) =p .
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n. If two of the statements

int(A) = int(B) ,
bdy (A) = bdy(B) ,
ext (&) = ext(B) ,

are true, then all three are true.

o. &, B closed —)» AUB closed .

2> C convex —>

a. int (C) convex ,

b. clo(C) convex ,

c. clo{int(C)] = clo(C) ,
d. intlclo(C)] = int(C) ,
e. bdylclo(C)] = bdy(C) .

¢(3) a. ACB, B convex -> hul(A)CB,

b. hul (A) Chul (A,B) .

c. The intersection of any collection of convex sets is convex.

d. hul(A) is convex .

e. AChul(d) .

f. ACclo(B), B convex -—» 1int(R) Cint(B) .

g. hul(A) = hulihul(Aa)] .

h. hul(4,B) = hul[A,hul(B)] .

112



Ap.1

4> Caratheodory’s Theorem. Let S be a nonempty subset of RD. Every

point p in hul(S) may be expressed as a convex combination of n+i

or fewer points of S.

(5 A subset S of RN is a hyperplane iff there is a nonidentically

zero linear functional f and a real constant a such that S=[f:a].

{(6> I~ b is a boundary point of a closed convex subset S of R®, then

there is at least one suppcrt hyperplane for S at b.
< For any points p and q in R znd real number A
a. Ip+ql ¢ Ipl + lql (triangle inequality) ,
b. lapl = [Allpl (scaling property) .
(& The following set version of the triangle inequality holds:
dist(a,B) ) dist(e,B]l - le-al .
{9 A set S is convex iff every convex combination of points of S lies
in S.
<{10> The dimension of an open ball in RR is n.

(11> If C is a convex set, then
a. a,b€int(C) --» [a.blCint(C) ,
b. a€int(C), bEbdy(C) --> [a,b) Cint(C) ,

¢. a,b€bdy(C) --» (a,b) Cint(C), or (a,b) Cbdy(C) .
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<12>

(13>

14

15

(16>

17

18

a1%»

Let BE=[f:a] be a hyperplane in R? and let p be a point in H. For
each >0, there are two points py and ps in B(p,8) that satisfy
f(Pl))a and f(py)<e, i.e. B(p,8) for 6>0, always intersects both

open half-spaces determined by H.

If H=[f:a] is a support hyperplane for a convex subset S of R,

then H=([f':e'] for some linear functional f' for which f'(S))e’.
Planes are closed convex sets.

If A is a closed subset of RP, and p is in com(A), then

dist(p,A)>0.

Let H=[f:a] be a hyperplane in R and let C be a convex subset of
R", If there are points p; and p, in C for which f(p;)<e and

£{py)>a, then H intersects C.

For all 5>0 and all points p in R}, the open ball B(p,8) in RP is
a, open, and

b. convex.

Open and closed hal f-spaces are

a. open and closed, respectively, and

b. convex.

Let C be a convex subset of R? and let p be a point RM.

a. hul(p,C) = { x | x = Ap + (i-A)e, for some ¢ in C

and some A in [0,1] } .
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(21>

22>

23>

25

(26>

Ap.1

b. p¢int(C) —» p€bdylhul(p,C)] .
¢. q€int[hul(p,C)] —> (bdylhul(p,C)]1M bdylhul(q,C)]) C bdy(C) .

int (hul(p,C)] ,

d. p€clo(C) —>» int(C)

bdy (€C) = bdy[hul(p,C)] ,

ext (C) ext [hul(p,C)] .

e. g €int{hul(p,C)] —> q = Ap + (1-A)c, for some A in (0,i) and

some ¢ in C.
For any subset S in RP, hul(S) consists precisely of all convex
combinations of elements of S.

For any convex subset C of R, if [a,b] is in bdy(C), then any

support hyperplane for C at a point in (a,b) contains the line ab.
Let S be a subset of RI,

a. dim(S)<n —>» int(S) =¢ .

b. dim(S)=n, S convex —¥ 1int(S) #d¢ .

If S is a subset nof RN and H is a support hyperplane for S, then

HAint(S) = ¢ .

Same as <3c>.

B CACAy , pEIbdy(A))nbdy(Az)] =--> pE€bdy(a) .
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APPENDIX 2. PROOFS FOR CHAPTER 2

This appendix contains the proofs for the results given in Chapter
2. For convenience, we shall also restate those results here. The
results (and their proofs) that were proved within the text of Chapter 2
will not be discussed here. We shall use (x) to denote equation number

x from Chapter 2. Additional equations will be denoted by (*x).

Lemma 1:

If A is a set in the class C, then hul(G) is contained in

clo(Ad).

Proof of Lemma 1:
Let A be a set in the class C. G; must be contained in int(4), and
G, must be contained in bdy(A). Thus G must be contained in clo(A),

which must be convex. Hence hul(G) must be contained in clo(A).

Lemma 2:

If C is nonempty, then

Gy C bdy(hul(G)] ., and (da)

G, Cext[hul(G)] . (4b)

Proof of Lemma 2:

Suppose C is nonempty. Let A be a set in C.

Let b be a point in G- Suppose bis in int[hul(G)]. By Lemma 1,
hul(G) must be contained in clo(A). Thus, the set int[hul(G)] must be

contained in int[clo(A)]. Since A is convex, int[hul(G)] must be
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contained in int(A). So the point b must be in int{A). But since b is
in Gy, this contradicts the fact that A is in C. Thus, it must be the
case that the intersection of Gp and int [hul(G)] is empty. Thus, since
Gy, is contained in hul(G), G, must be contained in bdy[hul(G)].

Ge must be contained in ext(A). Thus, G, must be contained in
ext{clo(A)]. By Lemma 1, hul(G) must be contained in clo(d). Thus,
ext[clo(A)] must be contained in ext[hul(G)]. So, G must be contained

in ext[hul(G)]. B

Lemma 4:

The set T(r) given by (6) is in C.

Proof of Lemma 4:

Since A is in C, G, must be contained in ext(A), and therefore in
ext[T(r)], by (7).

Since & is in C, G, must be contained in bdyl[clo(A)]. Thus, since
Gp is contained in bdy[hul(G)] and T(r) satisfies (7), Gp must be
contained in bdy[T(r}l.

Let p be a point in G;. The point p must be in hul(G). So, p must
either be in int[hul(G)] or bdy[hul(G)]. Suppose p is in int[hul(G)].
Since T(r) satisfies (7), p must be in int{T(r)]. Now suppose p is
contained in bdy[hul(G)]. Since p is also in Gj, P must be in Y. Thus,
B(p,r(p)) is contained in T(r). So p must be contained in int{T(r)].
Thus, G is contained in int[T(r)l.

Thus, since T(r) is convex, T(r) must be in C. H
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Lemma 7:

Suppose Y is nonempty. If T(r,) is a set in T that is in C,

then every set T(rp) in T that satisfies
T(ry) C Tiry) , (8)
is also in C.

Proof of Lemma 7:

Suppose Y is nonempty. Let T(rz) be a set in T that is in C, and
let T(r;) be a set in T that is contained in T(r,). T(r;) is convex and
G; is contained in int[T(ry)]. Gg must be contained in ext[T(ry)], and
the intersection of int[T(r;)] and G, must be empty. Thus, by (8), Gg
must be contained in ext[T(ry)], and the intersection of int[T(ry)} and
G, must be empty. Thus since G, is contained in T(ry), G, must be

contained in bdy(T(ry)]. Thus, T(rj) must be in C. E

Theorem 2: Smallest Set in C:

Suppose C is nonempty and the dimension of hul(G) equals n.

a. If Yis empty, then I is the smallest set in C (i.e. I is
in Cand I is contained in every set in C).

b. If Y is nonempty, then X is the infimum of C (i.e. I is the

largest subset of RD that is contained in every set in C).

Proof of Thaorem 2:
Suppose C is nonempty and the dimension of hul(G) equals n.
Suppose Y is empty. By Lemma 3a, hul(G) must be in C. Thus by
Lemma 5, rint[hul(G)] must be in C, Since the dimension of hul(G)

equals n, rint[hul(G)] equals int[hul(G)]. Thus int[hul(G)] is in C.
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From Theorem 3, since Y is empty, I equals int[hul(G}]. Thus I is in C.
Also, by definition I is contained in every set in C.

Next suppose Y is nonempty. ~From Theorem 3, I equals the union of
int[hul(G)] and Z. Let p be a point in com(I). We shall show that
there is a set in C that does not contain p. First, suppose p is in
ext[hul(G)]. By Theorem 1b, there is a set T(r;) in T that is in C. By
Lemma 9, there is a set T(rg) in T for which p is in ext[T(rg)l. Let r
be the map from Y to (0,=) that equals minlr (y),r (y)1, for all y in Y.
T(r) must be contained in both T(re) and T(ro)- Thus, by Lemma 7, T(r)
must be in C. Also, p must be in ext[T(r)]l. Thus p is not contained in
every set in C.

Now suppose p is a in bdy{hul(G)] but not in Z. By Lemma 10, there
is a set T(rp) in T for which p is in bdy(T(rp)]. By Theorem 1, there
is a set T(ry,) in T that is in C. Let r be the map from Y to (0,«) that
equals min[rp(y),ro(¥)1, for all y in Y. T(r) must be contained in both
T(ry) and T(rp). By Lemma 7, T(r) must be in C. Also, p must be in
bdy[T(r)]. By Lemma 5, rint[T(r)] must be in C. Since the dimension of
hul(G) equals n, the dimensioh of T(r) equals n. Thus rint[T(r)] equals
int(T(r)). Hence, int[T(r)] is in C. Since p is not in int[T(r)], p is

not contained in every set in C. B

Lemma 8:
If A; and A are in C, then every convex set A that satisfies

A; CACAp » (9)

is also in C.
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Proof of Lemma 8:

Let A; and A5 be s2ts in C and let A be a set that satisfies (9).
Gj must be contained in int(A1). Thus, by (9), Gj must be contained in
int(&). G, must be contained in ext(Aj). Thus, by (9) G, must be
contained in ext(A). Gp must be contained in bdy(A;} and bdy(Ajy)-
Thus, by (9), Gy, must be contained in bdy(&). Thus if A is convex, then

A must be in C. H

Lemma 9:
Suppose Y is nonempty. If p is a point in ext[hul(G)], then

there is a set T(r) in T for which p is in ext[T(r)].

Proof of Lemma 9:

Let p be a point ext[hul(G)]. Suppose Y is nonempty. hul(G) must
be nonempty. Let d be the distance between hul(G) and the point p. d
must be nonzero and finite., Let r be the map from Y to (0,») for which

r(y) equals d/2, for all y in Y.
First we shall show that for all points t in T(r), dist([t,hul(G)]

is less thand/2. Let t be a point in T{r). t may be written as

t =291 +22q2 + ... * Aps1Qn+d (®1a)
for some scalars Ay,...,Ap4p for which

0<Aj¢1, forall j, and (*1b)

A'].'|'l2"' e +ln+1=1 » (*10)

and some points qj,....qp+y that are in G or B(y,r(y)), for some y in Y.

Since diSt[qJ,hul(G)] is less than d/2 for all J, there are points q’in

hul(G) for which dist(qj,q:j) is less than d/2. Let t’ be the point
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given by

t' = Xja{ + Apqd + ... * Aps1Qhe1 o

Since t’ is a convex combination of points in the convex set hul(G), t’
must be in hul(G). By the repeated application of the triangle

inequality and the scaling property for the distance function, we obtain

diSt(t’t’) i leldiSt(Ql,Qi) + eo e + lxn+lldist(qn+1pqﬁ+1) ©

Hence, since Bj must be nonzero for some j, and dist(qd,q@ is less than

d/2 for all j,

dist(t-t’) < IAqld/2 + ... + lageqld/2 . (*2)

Thus by combining (*1b), (®*1c), and (*2), we see that the distance
between t and t’ must be less than d/2. Therefore, since t’ is in
hul(G), dist[t,hul(G)] must be less thu.a d/2.

From a set version of the triangle inequality we have that
dist(p,t) » dist[p,hul(G)] - dist{t,hul(@)] .

Thus, dist(p,t) is greater than d/2, for all t in T(r). Therefore,
B(p,d/2) must be contained in com[T(r)]. Hence, p must be in

ext[T(r)]. B

Lemma 10:
Suppose Y is nonempty. A point p in bdy[hul(G)] is in

bdy[T(r)], for some set T(r) in T iff p is not in Z.
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Proof of Lemma 10:

Suppese Y is nonempty. Let p be a point in bdy[hul(G)]. Suppose p
is in bdy[T(r)], for some set T(r) in T. Let H be a support hyperplane
for clo[T(r)] at p. Since clolhul(G)] is contained in elo[T(r)], and p
is in elo[hul(G)], H must be a support hyperplane for clofhul(G)] at p.
Since G; is contained in int([T(r)], the intersection of H and &; must be
empty.

Now, suppose that there is a support hyperplane H for elofhul(G)]
at p that does not intersect Gj. For each pointy in¥, distly,H] must
be greater than zero. Let r be the map from Y to (0,») that equals
distly,H], for all y in Y. T(r) is the convex hull of a set that is
contained one of the closed half-spaces that is defined by H. Thus
since closed half-spaces are convex, T(r) must be contained in a closed
half-space defined by H. Since p is in bdy[hul(G)]l, p must be in

clo[T(r)]l. Thus since p is in H, p must be in bdy[T(r)l. H

Theorem 3: Characterization of I:

If C is nonempty, then

I=int(hul(G)luZ

Proof of Theorem 3:

Suppose C is nonempty. Let A be a set in C. By Lemma 1, hul(G)
musf be contained in clo(A). Thus since A is convex, int[hul(G)] must
be contained in int(A). Thus, int[hul{(G)] must be contained in I.

Suppose p is a point in ext[hul(G)]. Say Y is empty. By Lemma 3a,

hul(G) must be in C. So p cannot be in I. Now suppose Y is nonempty.

By Theorem 1b, there is a set T(rp) in T that is in C. By Lemma 9,
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there is a set T(rg) in T for which p is in ext[T(rg)]l. Let r be the
map from Y to (0,») that equals minlr (y),r,(y)], for all y in ¥. T(r)
must be contained in both T(rg) and T(ry). Thus, by Lemnma 7, T(r) must

be in C. Also, p must be in ext[T(r)]. Thus p cannot be in I.

Now suppose p is a in bdy[hul(G)]. If Y is empty, then Z must be
empty. Thus, p cannot be in Z. By Lemma 3a, hul(G) must be in C. Thus
p cannot be in I. Suppose Y is nonempty.

If pis not in I, then there must be a set A in C for which p is
not in int(A). By Lemma 3b, there is a set T(r) in T that is contained
in clo(A). Since A is convex, int([T(r)] must be contained in int(4).
Thus, p cannot be in int[T(r)]. Since hul(G) is contained in T(r), and
p is in bdy[hul(G)], p must be in clo[T(r)]. Thus, p must be in
bdy[(T(r)]. By Lemma 10, p cannot be in Z.

By Lemma 10, if p is not in Z, then there is a set T(rb) in T for
which p is in bdy[T(rp)]. By Theorem 1, there is a set T(ro) in T that
isin C. Let r be the map from Y to (0,») that equals minlry(y),r,(y)1.

for all y in Y. T(r) must be contained in both T(ry) and T(ry). BY

Lemma 7, T(r) must be in C. Also, p cannot be in int[¥(r)l. Thus, p

cannot be in I. B

Theorem 4: Characterization of com(E):
A point pin R is in com(E) iff
a. Y is empty and hul(p,G) is in C, or
b. Y is nonempty and hullp,T(r)] is in C for some set

T(r) in T.
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Proof of Theorem 4:

Let p be a point in R, If Y is empty and hul(p,G) is in C, then
since p must be in hul(p,G), p cannot be in B. S8imilarly, if there is a
set T(r) in T for which hul{p,T(r)] is in the eclass C, then p cannot be
in E.

Suppose p is not in E. In this case, there must be a set A in C
for which p is in clo(A). Suppose Y is empty. Since G is contained in

clo(A), hul(p,G) must be contained in clo(&). Thus,
hul(G) C hul(p,G) Cclo(A) .

By Lemmas 3a and 5, hul(G) and clo(A) must be in C. Thus, by Lemma 8§,
hul(p,G) must also be in C.
Now suppose Y is nonempty. By Lemma 3b, there is a set T(r) in T

that is in C and contained in clo(A). Thus,
T(r)C hul(p,T(r)] Cclo(A4) .

Thus, by Lemma 8, hullp,T(r)] must be in the class C. B

Result 1:
Suppose C is nonempty, G; and G, are empty, and Gy is nonempty
and consists of m points.
a. In the 2-dimensional case, if m<5, then com(E) is
unbounded. If m)5, then com(E) could be bounded.
b. In the 3-dimensional case, if m<8, then com(E) is
unbounded. If m)8, then com(E) could be bounded.
c. In the n-dimensional case, if m)2n+2, then com(E)

could be bounded.
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Prcof of Result 1:

Suppose C is nonempty, Gj and G are empty, and Gy is nonempty and
consists of m points.

Suppose Gb is a subset of R2. 1In particular, suppose Gy is given

by

Gy { (cos k{(2n/m), sin k(2n/m)) | k is an integer in [0,m-1] } .

It can easily be shown that if m)5, then com(E) will be bounded. ([Note
that it is not true that com(E) will be bounded for all choices of G
for which m)5. For example, consider the case where Gp 15 contained in
the intersection of the unit circle and the first quadrant.]

Next we consider the case where Gp is a subset of R, Let S be a
simplex in RN, Suppose m22n+2. Suppose Gy, contains the (n+l) vertices
of S and the center of each of the (n+l1l) faces of S (the center of a
face of a simplex is the average of the vertices on that face). It can
easily be shown that com(E) must be S. [Note that it is not true that
com(E) will be bounded for all choices of Gy for which m»2n+2. For
example, consider the case where Gy is contained in the intersection of
the unit sphere and the first orthant of RR,)

We would like to show that for certain values of m, the set com{E)
will be unbounded. We shall make use of the fact that com(E) is
unbounded when there 1s an unbounded set in C (recall that every set in
C is contained in com(E)).

Let P be the polyhedron hul(Gy,). If P is contained in an (n-1)-
dimensional plane A, then A is an unbounded set in C. For the remainder
of the proof we shall assume that P is an n—-dimensional set. Since C is

nonempty, Gp must be contained in bdy(P) (see Lemma 3a).
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Suppose Gy is a subset of R3 and we can show that G, is contained

in the union of three sets S;, S3, and S3, where S 1s either a vertex,

edge, or face of P. Let T; be a closed half-space for which

PCTy »

S; C vdy(Ty) .

Let A equal the intersection of 1, T2, and T3. A must be unbounded

(the intersection of n closed half-spaces in R? is unbounded when the
intersection is nonempty). Since G, 1s contained in bdy(A) and A is
convex, A must be in C. Thus, if we can find a list L=(SI,SZ.S3). where
Sj is either a vertex, edge, or face of P, and G, 1s contained in the
union of Sy, S,, and S3, then we may conclude that com(E) is unbounded.
[Note that in the two dimensional case, if we can find a list L=(S;,3p),
where S; is either a vertex or an edge of P, and Gy, is contained in the
union of 83 and S,, then we may conclude that com(E)} is unbounded.]

First we show that in the 2-dimensional case, if m<(5, then com(E)
is unbounded. Suppose m<5 ana G, is a subset of RZ. Let v be the
number of vertices of P. Say v=3. Let F be a face of P that contains
all thke points in Gp that are not vertices of P. Let p be the verfex of
P that is not contained in F. Take L=(F,p). Say v=4. Let F; and F, be
twc opposite sides of the quadrilateral P. Take L=(Fy,Fj).

Next, we show that in the 3-dimensional case, if m({8, then com(E)
is unbounded. Suppose m<8 and Gy is a subset of R3. Let v, e, and { be
‘the number of vertices, edges, and faces of P. Say v=4. In this case,
P has four faces Fp, Fy, F3, and Fy4. The faces of P may be labaled so

that the intersection of rint(F4) and Gy, is empty. Take L=(F;,F3,Fj).
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Suppose v=5. Let Fj and Fg be faces of P for which the union of Fj

and Fy contains all the points in G, that are not vertices of P. The

union of Fy and Py must contain at least four vertices of P. If this
union does not contain all five vertices of P, then let vy be the fifth
vertex. Otherwise, let vs5 be any vertex of P. Take L=(F1,F3,vs)e

Suppose v=6. Let Fi be a face of P that contains all the points in
Gp that are not vertices of P. First, we consider the case where all
the faces of P are triangular. Let vy, v,, and v3 be the vertices of P
on Fy, and let v4, vs, and vg be the three remaining vertices of P.
Either v, vs, vgvg, or v4vg 1s an edge of P. [By Euler’s theorem on
polyhedra [24] v-e+f=2. Since all the faces of P are triangular, 3f=2e.
By combin:l:ng these relations with the fact that v=6, we find that e=12.
If v4vs, V5V, and vgvg are not edges of P, then in order for P to nave
12 edges, all the other segments that join two vertices of P must be
edges. The resulting graph that consists of the vertices and edges of P
is nonplanar. But this contadicts the fact that the graph of a
polyhedron is always planar. Thus either v4vs, vsvg, or vqveg 18 an edge
of P.] Without loss of generality, we may assume that V4vs5 is an edge
of P. Take L=(F1,v4Vs5,Vg)-

Next, suppose that v=6 and all the faces of P are triangular except
for one which is a quadrilateral. Let F, be the four sided face. Let
vy, Vg, v3 and v4 be the vertices of P on Fjy, and let v5 and vg . the
other vertices of P. vsvg Mmust be an edge of P. [In this case,
2e=4+3f3, where f3 is the number of triangular faces of P. By combining

this with Euler’s theorem and v=6, we find that e=11. If vsvg is not an

edge of P, then in order for F to have 11 edges, all but one of the

segments that join two vertices of P must be edges. It can be shown
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that this is a nonplanar graph.] Take L=(F;,F,,v,vs).

If P has two quadrilateral faces F; and F3, then take L=(F1.F2,F3)-

Suppose P has a pentagonal face F,, Let vg be the vertex of P that
is not in F,. Take L=(F;,F;,vg).

Next, we consider the case where v=7. Suppose all the faces of P
are triangular. Let P be one of the faces of P. Let vy, vy, and v3 be
the vertices of P on F;, and let v4, vs, vg, and vq be the four

remaining vertices of P. If the graph for P is not given by Fig.®1,

V3

Vi \/3
Fig.®*1

then either v4vs and vgvy, or v4qvg and v5vy, or v4vyg and vgvg are edges
of P. If the graph of P is given by Fig.*1, then take L=(face
V1V4V5oV3V1'V2V6)' If the graph of P is not given by Fig.*1, then we
may assume without loss of generality that v,vs and vgvy are edges of P.
In this case take L=(F,v4vs,vgvy):

[Let D be the set of edges of P. Let Dy={vyvs,vgvqyl,
Dy={v4vg.Vsvq7), and D3={v4vqy,vsVgl. We shall show that if Dy, Dy, and

Dy are not subsets of D, then the graph of P is given by Fig.*1.
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Since all the faces of P are triangular, 3f=2e. By combining this
with Euler’s theorem and v=7, we find that e=135., Since the triangle
V1VaV3 is a face of P, the graph of P may be drawn within a trilangle
labeled Vivavs.

Case 1: vsvq and vgvy are in D, and D3 and D are disjoint. 1In

order to have 15 edges, we must have two vertices in the set

(v4,v5,v6,v7} connected to each of the vertices in the set

{vi,va,v3}. But this leads to a nonplanar graph in the triangle

Vivyv3. Thus case 1 cannot be true.

Case 2: v4vs, v4vg, and vsvg are in D. In this case vq must be

connected to each of the vertices in the set [vl'VZ-Vsl (v7 must

have three edges). Without loss of generality, we may assume that
the triangle v4vsvg is contained in the triangle vivavy. V3V4,
v3vs, and v3vg cannot be edges. Thus in order to have 15 edges,
each vertex in the set {v4,vs,vg] must be connected to each of the
vertices in the set {vq,vq}. But this leads to a nonplanar graph.

Thus case 2 cannot be true.

Case 3: v4vs, v4vg, and vqvg are in D.

Case a: Vgvy is not in D. 1In this case viv4 and vav4 must be

in D {otherwise two of the vertices in the set (vs,vg.,v7]

would have to be connected to each of the vertices in the set
{VI'VZ'V3}' and this is a nonplanar graph). It can be shown
that in order to obtain 15 edges, we must generate a nonplanar
graph.

Case b: vyvy, vavy, v3vy are in D. In this case, it can be

shown that the graph of P is given by Fig.*1.]
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Next, suppose that v=7 and all the faces of P are triangular except
for one which is a quadrilateral. Let F be the four sided face. Let
Vi, V3, v3 and v4 be the vertices of Pon F, and let vs, vg, and vq7 be
the other vertices of P. Either vsvg, vgVy, or vsvq must be an edge of
P. VWithout loss of generallty., we may assume that Vsvg 1s an edge.
Take L=(F,vgvg,vq). [2e=4+3f3, where f3 equals the number of triangular
faces of P. By combining Euler’s theorem with v=7, we find that e=14.
Since F is a face of P, we can draw the graph for P within a
quadrilateral labeled vyvovzvy. Suppose vsvg, vgvy, and vsvy are not
edges of P, In order to get 14 edges, one of the vertices in the set
{(vs,vg,vq} must be connected to each of the vertices in the set
(v{,v5,v3,v4}. Then one of the vertices in the set {vg,vq} must be
connected to three of the vertices in the set (vy,vy,v3,v4)}. This is a
nonplanar graph.l]

Suppose v=7 and P has two quadrilateral faces F; and F,. Let vq be
the vertex of P that is not in the union of F; and £, (if all the
vetices of P are in the union of F; and F,, then let v; be any vertex of
P). Take L=(F1,Fj,v7)-

If P has a pentagonal or hexagonal face F then take L=(F, the
vertices of P that are not in F).

[Note that most of this proof consists of a case—-by-—-case analysis
of the different triangulations of the plane. It might be possible to

obtain a more efficient proof by using the ideas in [70] and [29].] B
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Lemma 13:
Let p be a point in RD and let Ay and A5 be sets in C. Ifp
is in both ext (A1) and int(A5), then there is a set A in C for

which p is in bdy(A).

Proof of Lemma 13:

Let p be a point in RM and let A, and Aj; be sets in C. Suppose p
is in both ext(Ag) and int (&4).

By Lemma 5, clo(A;) and clo(Ay) must be in C.

First, we shall consider the case where Y is empty. We shall show
that hulp,hul(G)] is in C and the point p is in bdy[hullp,hul(G)]]l. By
Lemma 3a, hul(G) must be in C. By Lemma 1, hul{(G) must be contained in
clo(Ay), Thus since p is in clo(A;), and clo(A;) is convex,

hul[p,hul(G)] must be contained in clc(4j). Thus, we have

hul (G) C hul {p,hul (G)] Cclo(Ay) ,

where hul(G) and clo(ai) are in C. By Lemma 8, it follows that
hul [p,hul(G)] is in C.

Suppose p is in int[hul(G)]. By Lemma 1, hul(G) must be contained
in clo(Ag). Thus, int[hul(G)] must be contained in int{clo(Ag)l.
Hence, since A, is convex, int[hul(G)] must be contained in int(A;).
Thus, p must be in int(Ae). But this contradicts the fact that p is in
ext(A,). Thus, it must be the case that p is not in int[hul(G)]l. Since
hul(G) is convex, it follows that p is in bdy(hullp,hul(G)]l.

Next, we shall consider the case where Y is nonempty. We shall
show that there is a set T(r) in T for which hul[p,T(r)] is in C, and p
is in bdy[{hullp,T(r)1]. By Lemma 3b, there are two sets T(r,) and T(ry)

in T that are in C, and contained in clo(Ag) and clo(Aj), respectively.
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Let r be the map from Y to (0,®) that equals minlr.(y),rj(y)], for all y
in Y. Since r(y)<{rj(y) for ally in ¥, T(r) is contained in T(rj). BY

Lemma 7, it follows that T(r) must also be in C. Also T(r) must be

contained in clo(Ay). Thus since p is in clo(A;), and clo(Ay) is

convex, hul[p,T(r)] must be contained in clo(A;). Thus, we have
T(r) Chul{p,T(r)] Cclo(4y) .

where T(r) and clo(A;) are in C. By Leuma 8, it follows that
hul{p,T(r)] is in C.

Suppose p is in int[T(r)]. Since r(y){r.(y), for all y in ¥, T(r)
is contained in T(rg). Thus T(r) must be contained in clo(A,). Hence,
intIT(r)] is contained in int([elo(A.)]. Thus, since A4, is convex,
int[T(r)] must be contained in int(4,). Hence, p is in int(Ae). But
this contradicts the fact that p is in ext(A_ ). Thus it must be the
case that p is not inint[T(r)]l. Since T(r) is convex, it follows that

p is in bdy(hullp,T(r)]]. 5
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APPENDIX 3. PROOFS FOR CHAPTER 3

This appendix contains the proofs for the results given in Chapter
3. For convenience, we shall also restate those results here. The
results {(and their proofs) that were proved within the text of Chapter 3
will not be discussed here. We shall use (x) and Fig.x to denote
equation number x and figure number x from Chapter 3, respectively.
Additional equations and figures will be denoted by (*x) and Fig.*x,

respectively.

Theorem 1: Characterization of IX:

- U .
int (X) bebdy () X; (p) , (15a)
- U
ext (X) pebdy (G) X (p) , {(15b)
bdy (X) = pebdy(G) I, (p) . (15¢)

Proof of Theorem 1:

Let & be the invertible map from bdy(G) into [N.2x) that is given

by
t(p) = the angle o of the support line £(p)f2(p) of the set F.

[The angle of a support line s for a convex planar set A is the angle of
a normal to s, pointing away from A.]

For a given angle w in the interval [0,2n), let X{(0), Zo(w), and

Xp(s) denote the sets Ii(g’l(w)). Ie(g°1(m)). and Ib(g'l(m)). The

following three equations are equivalent to Theorem 1i:
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int(X) = v Xi(m)

bdy (X) = VU Xp(e)

ext (X)

U Xg (o)

where each union is taken over all o in the interval [0,2x). We shall

now prove this equivalent form of Theorem 1.

Part 1:

In the first part of the proof, we shall show that the sets Xi(m),

Xp(w), and Xg(w) are contained in the sets int(X), bdy(¥), and ext(X),

respectively, for each o.

S
0. S,
3(,(&:)
2
O Xelw): 2

Xl N Fig.o1

a.1) The set int(X) contains Xj(w), for all o. Refer to Fig.¢*l.

Suppose P is in Xj(w) for some w. Clearly, the triangle POj0y contains

F. Thus P must be a point in X. Since xi(u) is an open set, this

implies that every point in X, (w) must be in the interior of X.

c.1) The set ext(X) contains X, (w), for all w. Suppose P is a point in

Xg(w) for some w. If Pis a point in the int(F), then it must be in the

exterior of X. Thus, suppose P is not in int(F). We shall show that

there can be no points P; and Py, in G, such that the triangle PPj;Pp
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contains F.
Refer to Fig.*2. Let T, Tl' and Tz be peints where s, 81, and Sy
are tangent to F, respectively. Since F is convex, it must contain the

triangle TTyT,. So, any triangle that contains F, must also contain the

triangle TT;Tj. Consider the disjoint regions A and B defined in

Fig.*2a Fig.®2b

Fig.*2., (Except for the points 0y and 03, region A contains its
boundary. Region B contains the segment 0105.) Region A cannot contain
any points from G. Hence, P; or P cannot be placed in region A. If Py
or P, is placed in region B, then the triangle PP1Py will not contain

the triangle TT1T2. Hence, P, Py, and Py must all lie on the same side

of the supporting line s. As a result, the triangle PP1P5 cannot
contain the triangle TT1T2» and thus cannot contain F. So, for any
point P in Xg(w), there are no triangles PP{Py with Pj and Py in G, that
contain the oval F. 1In other words, Xo(w) is contained in the
complement of X for each w. Since Xao(w) i3 an open set, this implies

that every point in X,(s) must be in the exterior of X.

135



Ap.3

b.1) The set bdy(X) contains Xp(w), for all w. Refer to Fig.®*2a. For
each v, X4(w) is contained in X and Xg(w) is contained in the complement
of X. Thus, i1t is clear that Xy (w) must be a boundary point of X, for

all w.

Part 2:

In this part of the proof, we shall show that the sets int(X),
bdy(X), and ext(X) are contained in the sets UX; (o), VIp(v),
and UXg(w), respectively. To simplify the proof, first we shall

classify the points in R2. For each class, we shall show ‘hat
membership in the class implies membership in one of the sets: X4 (),

Xy(e), or Xg(w), for some w, which, by the results in Part 1, implies

membership in the sets int(X), bdy(X), and ext(X), respectively.
Let P by a point in RZ,

Class 1: P is a point in Class 1 if it is either a point in the
interior of F or a point on the boundary of F and there is a unique
support line for F at P. Every point in Class 1 is contained in
xe(m). for some w. [This is obviously true when P is a point in
the interior of F. Thus, suppose P is a boundary point for F. In
this case, we may use the following construction: Refer to Fig.*3.
Let s be the support line for F that is parallel to the support
line at P. Let w be the angle of the support line s, let T be a
point where s is tangent to F, and let 04 and O, be the points
where s intersects the boundary of G. Let s; (sy) be the support
line for F, distinet from s, passing through 01 (03}. No support

line for F can intersect the open segment PT. Since there is only

one support line for F at the point P, sj and s cannot pass
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through P. Thus, P must be contained in the set X (0).] Thus, by
c.l from Part 1, every point in Class 1 must be contained in the

set ext(X).

Fig.*3

Class 2: P is a point in Class 2 if it is either a point in the
complement of F or a point on the boundary of F and there is more
than one support line for F at P. Class 2 must be subdivided
because some of the points in this class may be in xe(m), for some
0w, while other points may be in either xb(w), for some w, or Xj(w),

for some w. We shall use the following construction to subdivide

Class 2: Refer to Fig.*4. Let rj and ry be the two support lines
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for F passing through P. (In the case when P is a boundary point
of F, let ri and rj be the support lines for F, at the point P,
that are also tangent to F at another point.) Let Ty and T, be
points where rj and ry are tangent co ¥, respectively. ry and rj
must intersect the boundary of G at points 01 and 0y as shown in

Fig.®*4.

Ciass 2.1: P is a point in Class 2.1 if the line 040, does not
intersect P. Every point in Class 2.1 is contained in Ki(m), for
some w. [This can be shown by completing the construction in
Fig.*4 in the following way: Refer to Fig.*5a. Let s be the
support line for F that is parallel to the line 0102 and that
separates 0,0, from F. Let w be the angle of the support line s.

Let O3 and Og4 be the points where s intersects the boundary of G.

O3 and O4 cannot lie on the segment AjA; defined in Fig.®5a.

Fig.®5a
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Thus, 03 and O4 must be as shown in Fig.*5a. Let s (sp) be the
support line for F, distinct from s, passing through O3 (04). By
considering the possible angles for s and sp, We see that P must
be a point in Xj(w).] Thus, by a.l from Part 1, every point in

Class 2.1 must be contained in the set int(X).

Class 2.2: P is a point in Class 2.2 if the line 0,05 is a support
line for F. Every point in Class 2.2 is equal to X (w), for some
w. Thus, by b.1 from Part 1, every point in Class 2.2 must be

contained in the set bdy(X).

Class 2.3: P is a point in Class 2.3 if the line 0404 intersects
the interior of F. Every point in Class 2.3 is contained in X, (w),
for some w. [This can be shown by completing the co'nstr-uction in

Fig.*4 in the following way: Refer to Fig.*5b.

Fig.*5b
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Let s be the support line for P that is parallel to the line 0102

and is on the side of 0703 that does not conftain P. Let T be a
point where the support line s is tangent to P and let w be the
angle of s. Let O3 and 04 be the points where s intersects the
boundary of G. G cannot have any points in the shaded regions in
Fig.®5b. Thus, O3 and O4 must be as shown in Fig.*5b. Let sg (s53)

be thne support line for F, distinect from s, passing through 03

{04). By considering the possible angles for sj and s, We see

that P must be a point in Xg(w).] Thus, by c.1 from Part 1, every

point in Class 2.3 must be contained in the set ext(X).

It is clear that any point P in Rz. must be a point in one of these
classes. We shall now use this classification of the points in RZ to

complete the proof.

a.2) If P is a point in the set int(X), then it must be contained in

X4 (0), fer séme w. If Pis a point in the interior of X, then it cannot
be a point in Classes 1, 2.2, or 2.3 because membership in these
classes, implies membership in the sets ext(¥) or bdy(X). Thus, P must
be in Class 2.1, in which case, P must be contained in X;j(w), for some

W.

b.2) If P is a point in the set bdy(X), then P must equal Xp(w), for
some w. If Pisa point on the boundary of X, then P cannot be a point
in Classes 1, 2.1, or 2.3 because membership in these classes, implies

membersuip in the sets ext(X) or int(X). Thus, P must be in Class 2.2,

in which rcase, P must equal xb(,.,), for some wo.
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c.2) If P 1s a point in the set ext(X), then it must be contained in
X.(s), for some w. If P is a point in the cxterior of X, then it cannot
be in the Classes 2.1 or 2.2 because membership in these classes,
implies membership in the sets bdy(X) or int(X). Thus, P must be in
Classes 1 or 2.3, in which case, P must be contained in Xe(w), for some

®. H

Result 1: The Number of Conic Ares in bdy(¥):
Let £ and g be the number of vertices of F and G,
respectively. The curve bdy(V) consists of at most 3f + 2g

nondegenerate conic arecs.

Proof of Result 1:

Extend the edges of F until they intersect bdy(G). Mark these
points of intersection. As we rotate the triangle specified in Theorem
1 around F to obtain bdy(V), the conic changes if and only if one of the
endpoints of the leg of the triangle that is constrained to be a chord
of G meets one nf the marked points or one of the vertices of G. This
happens twice for each marked point; once for each end of the rotating
chord. That is, 4f + 2g of these events occur. But we have over
counted by f, because on f occasions the chord meets two of the marked

points simultaneously. Thus, there can be at most 3f + 2g conic arcs. H

We shall use the following definitions and results in our proofs of

Theorems 1 and 2:
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Definition:
Let A be a compact convex subset of R2, Let a and b be points
in bdy(A) and let d be a point in int(A). Refer to Fig.*6.

We define the arcpab to be the set of boundary points of A

obtained as ray r sweeps from da to db in a counterclockwise

way.

Fig.#6
We shall denote arcgab by arc(ab).

Properties of f:

1. £ 1is a continuous function.

2. Let a, b, and ¢ be three distinet points in bdy(G). b is
in arc(ac) 1ff f(b) is in arc(f(a)f(e)).

Theorem 2: The Periodic Points of f:

All of the periodic points of the function f that is
associated with a particular pair of compact convex sets F and

G that satisfy (12) are of the same period and type.

Proof of Theorem 2:
Let x be an n-periodic point. An example is given in Fig.*7 to

illustrate the definitions that we shall introduce in this proof.
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Fig.#7

Starting with x and going counterclockwise around bdy(G), label the

points x, f(x), f2(x),..., £071(x) as Yo, Y1, ¥Y2seeer ¥p-1. It can be

shown that

f(yj) = ¥(j+r)mod n »

for some fixed interger r in [1,n/2] for which gecd(r,n)=1 (for the
example shown in
Fig.*7, n=5 and r=2). For 1=0,1,...,n~1, let A  be the

set given by

Aj_ = arc(YiY(i+1)mod n) - {¥i,¥(i+1)mod n} -

Let z be a point in AJ for some j in [0,n-1]. We shall show that z

cannot be an m-periodic point for m<n. From Property 2, we have that

f(Aj) = A(3+r)mod n °

It follows that

£i(ay)

A(j+ir)mod n -

Thus since z is in Aj. fi1(z) must be in A(j+ir)mod n* Since ged(r,n)=1,

the numbers (j)mod n, (j+r)mod n, (j+2r)mod n,..., and (J+(n-1)r)mod n,

must be distinect. Thus the sets A(j)mod n» A(j+r)mod n’°°*’
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A(j+(n-1)r)mod n must be disjoint. Thus fl(z)#z, for all i in [1,n-11.
Suppose z is an n-periodic point of f. Since fi(z) must be in
A(J-I-ip)mod n» We may conclude that the n-periodic points x and z are of

the same type. B

Theorem 3: The Asymptotically Periodic Points of f:

Suppose the function f that is associated with a particular

pair of compact convex sets F and G the satisfy (12) has a k-

periodic point.

a. Then, every point in the domain of f is an asymptotically
k-periodic point of f.

b. Let pyp, be an open segment of bdy(G) for which P; and py
are k-periodic points of f and pyp, does not contain any
periodic points of f. Let fr denote the restrictionof f
to bdy(G) (so that f, is invertible, though f is not). If
P is a point in the segment pyp,, then either {fki(p)}
converges to p; and {f7¥l(p)} converges to pj, or {fgi(p)l
converges to py and {fyki(p)} converges to p;. 1In
addition, both of the sequences converge monotonically with

respect to the curve bdy(G).

Proof of Theorem 3:

Let pj and P2 be points in bdy(G) that are k—-periodic points of f.
Suppose the set arc(pipj) - [pl,pzl does not contain any periodic points
of f. In this proof, we shall use f to denote the function f, defined

in Theorem 3.
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By using Property 2, it can be shown that

Ir fk(p) is in arc{ppy), then (#1a)

£k(i%1) (p) is in are(fki(p)pz) {fki(P),Pz}' for 120,

fk(i=1) (p) is in arc(pyrki(p)) - (pq,fki(p)}, for 10,

If fX(p) is in arc(pyp), then (*1b)

k1) (p) is in arc(pyfld(p)) - {py, £k (p)}, for 120,

£k(1-1) (p) is in arc(fKi(p)p,) {fki(p)‘pzl, for i<0.

Let b be a point in the set arc(pyp;) -~ {py,pz}. Let t be a point
in int(G). Let the angle of a point in bdy(G) be the angle (in radians)

between the rays tb and ty measured counterclockwise from the ray tbh.

Let a; be given by
a; = the angle of fKi(p).
From (*1) we have,

If fK(p) is in arc(pp,y), then
0 < angle(py) < ... < a-g1 < eg ¢ a1 ¢ ... ¢ angle(py) < 2=,
If fk(p) is in arc(pyP), then

0 < angle(py) ¢ ... ¢ ey <@g < a-g < ... < angle(pp) < 2xu.

It can be shown that inf{e;}=p; and suplej}=py. [Suppose
inf{e;}=g, for some B for which angle(pj)<p<angle(ps). The sequence
{ail must converge to some angle & for which a{(8<angle(py). Thus the
sequence {fi(p)} must converge to a point ¢ of bdy(G) with angle & (it
can be shown that if the angles of a sequence of boundary points
converge to 8, then the boundary points converge to the point in bdy(G)

with angle 8). But this implies that ¢ is a k—periodic point of ¢
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(asymptotically periodic points of a continuous function converge to
periodic points, and f is continuous),. But since ¢ is in
arC(plpz)-{pl,pz}, we have a contradiction. Thus inf{e;l}=pj.
Similarly, we can show that sup{ai}=p2J

Either

{a;} converges to angle(py), for 1>0, and
to angle(py), for i<0, or
{e;} converges to angle(p;), for 130, and

to angle(pjy), for i<0.
It follows that either

[fki(p)} converges to py, for 150, and
to py, for i<0, or
{rk1(p)} converges to py. for i>0, and

to py, for 1<0. B

Result 2: The Number of CI Triangles:
A pair of convex polygons F and G that satisfy (12) will only

have a finite number of CI triangles.

Proof of Result 2:

Let N be the number of points in the intersection of the boundary
of X and the boundary of G. The number of CI triangles equals N/3.
Thus, 1t is sufficient to show that N is finite. By using an argument
that 1s similar to that which was used in the proof of Result 1, 1t can
be shown that the boundary of X is formed from at most 3f + 2g

nondegenerate coniec arcs, where f and g are the number of vertices of
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the polygons F and G, respectively. Since none of these conics is a
line, and the boundary of G is the union of g line segments, each conic
can intersect the boundary of O at most 2(g) times. Thus, N must be

finite. H

Lemma 1: The Structure of X with respect to Rays Emitted from
int (F):
Let q be a point in int(F), let p be a point in bdy(F), and

let r(A) be the point (1-A)q + Ap. Either

a. r(A)€com(X) , for all A)0 , or
b. r(l)écom(x) » for 0A<A ,
€B, for A=hgyl ,
€x , for A2hg , or

c. r(r) €com(X) , for O0KAK1 ,
€x , for A1 .

Proof of Lemma 1:

Suppose (a) and (b) are not true. Then it must be the case that
r(1) is in com(X), and r(2;) is in X for some Ay>1.

It can be shown that if r(A) is in com(X), then r(A+e) is in com(X)
for some e>0. ([Let c=r'(xc) be a point in com(X). Let K be the set

given by
K = { (pg,.00,0p) | pj is in K for all i} .

K is a compact subset of ano Let v be the mapping from K to R that is

given by

v(pl....ppn) = V°1[ hul(C.D1.-o-.Pn) NF ] »
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where vol[A]l denotes the volume of a set A. Since v is a continuous
function on the compact set K, v attains a maximum value, call it vpaye
Since ¢ is not in X, vp.,<vol(F). For A)A,, let A(A) be the function

given by

A(Z) = max [ voll hul(r{x),p;,...,p,) ] — voll hul(e,Py,.c.,pPy) 13 .
K

The function A is continuous. In addition, A(lc)=o. Thus there is an

e>0 such that
A(d,+e) +¥pay < vOl(F) .
For this value of ¢
vol[ hul(r(lc+g),p1,,,,,pn) NF ] Cvol(F) .

Thus, r(i,+e) is in com(X).]

It can also be shown that the intersection of X-B and r{lA) is an
open subset of {r(A)}. [Suppose c=r(d,) is a point in X-B. Since c is
in X there are points pg,...,Pp in G for which the set hul(c.pl..".pn)
contains F. From the fact that ¢ is not in B, it can be shown that
there is an ¢>0 for which hul(r(i-e),pq,...,p,) contains F.}

It follows that {r(A)} cannot be written as the union of points in
com(X) and X-B. So {r(i)) must intersect B. It can shown that this
intersection can only contain one point, say r(lo;. It can also be
shown that r(A) must be in com(X), for 0(A<A,, and r(A) must be in X,

for A2 B
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Lemma 2: The Directional Wideness of X and com(X):

Let p be a point in Rn-

a. p€EX —> pen{p,S)CX, for all S in Cp,

b. p €com(X) —->» hul[p,int (F)] C com(X).

Proof of Lemma 2:

Suppose p is a point in X and S is a simplex in cp, Let the
vertices of p,pjseesPp be the vertices of S. Let q be a point in
pen(p,S). It can be shown that hul(q,py,...,p,) contains S which in
turn contains F. Thus q must be in X.

Suppose p is in com(X). Let g be a point in hullp,int(F)}.
Suppose q is in X. Let S be a simplex in Cq- Since p is in pen(q,S)
and q is in X, p must be in X (Lemma 2a). But this contradicts the fact

that p is in com(X). Thus q must be in com(X). B

Theorem 4: Characterization of X:

bdy(X) = Bu [Xnbdy(F)] , (27a)
int(X) = ()  intlpen(p.B)] . (27b)
pebdy (X)

Proof of Theorem 4:

Since int(F) is contained in com(X), the intersecticn of X and
bdy(F) must be contained in bdy(X). If ¢ is a point in B, then
construct a ray {r(a)} through ¢, as in Lenmma 1. From Lemma 1, we see
that ¢ must be in bdy(X).

‘ By combining Lemmas 1 and 2, it can be shown that if a point c in

bdy(X) is not in the intersection of X and bdy(F), then c must be in B.
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Suppose p is in bdy(X). p is either in B or the intersection of X
and bdy(F). 1In each case, p must be in X. Thus, pen{(p,F) must be
contained in X. So int({pen(p,F)] must be contained in int(X).

Let ¢ be a point in int(X). ¢ cannot be in B or bdy(F). Construct
a ray {r(A)) through ¢, as in Lemma 1. From Lemma 1, there must be a
point d in {r(A)} that is either in B or in the intersection of X and

bdy(F). ¢ must be in int[pen(p,F)]. B
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