
Towards ML Models That We Can Deploy Confidently

by

Hadi Salman

B.S., Mathematics, American University of Beirut (2016)
B.E., MechE, American University of Beirut (2016)
M.S., Robotics, Carnegie Mellon University (2018)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

September 2023

©2023 Hadi Salman. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright,
including to reproduce, preserve, distribute and publicly display copies of

the thesis, or release the thesis under an open-access license.

Authored by: Hadi Salman
Department of Electrical Engineering and Computer Science
August 28, 2023

Certified by: Aleksander Mądry
Cadence Design Systems Professor of Computing
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Towards ML Models That We Can Deploy Confidently
by

Hadi Salman

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2023, in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

Abstract

As machine learning (ML) systems are deployed in the real world, the reliability and

trustworthiness of these systems become an even more salient challenge. This thesis aims

to address this challenge through two key thrusts: (1) making ML models more trustworthy

by leveraging what has been perceived solely as a weakness of ML model—adversarial

perturbations, and (2) exploring the underpinnings of reliable ML deployment.

Specifically, in the first thrust, we focus on adversarial perturbations, which constitute

a well-known threat to integrity of ML models, and show how to build ML models that are

robust to so-called adversarial patches. We then show that adversarial perturbations can

be repurposed to not just be a weakness of ML models but rather to bolster these models’

resilience and reliability. To this end, we leverage these perturbations to, first, develop

a way to create objects that are easier for ML models to recognize, then to devise a way

to safeguard images against unwanted AI-powered alterations, and finally to improve

transfer learning performance.

The second thrust of this thesis revolves around ML model interpretability and debug-

ging so as to ensure safety, equitability, and unbiased decision-making of ML systems.

In particular, we investigate methods for building ML models that are more debuggable

and provide tools for diagnosing their failure modes. We then study how data affects

model behavior, identify unexpected ways in which data might introduce biases into ML

models, particularly in the context of transfer learning. Finally, we put forth a data-based

framework for studying transfer learning which can help us discover problematic biases

inherited from pretraining data.

Thesis Supervisor: Aleksander Mądry
Title: Cadence Design Systems Professor of Computing

3

Acknowledgements

First and foremost, I want to express my gratitude to God for the endless blessings and
guidance throughout my life. Alhamdulillah.

I extend a heartfelt thank you to my advisor, Aleksander Mądry. Your guidance and
friendship have been indispensable in shaping my academic and career paths. I am
extremely lucky to have had the chance to be one of your students and learn from you. I
want to also thank Antonio Torralba and Costis Daskalakis for serving on my committee,
and for their valuable insights and discussions.

To all my lab mates, both past and present—Alaa, Andrew, Aspen, Ben, Brian, Debbie,
Dimitris, Eric, Guillaume, Hedi, Harshay, Josh, Kai, Kristian, Logan, Saachi, Sam, Sara,
Shibani—thank you for making MadryLab a remarkable space for intellectual growth,
camaraderie, and even some much-needed levity. Your collective spirit has been invaluable.
I am really lucky that I got the chance to work with you all.

I must also acknowledge my professors, friends, and staff at the American University of
Beirut. Your unwavering support throughout my undergraduate years was foundational.
My gratitude extends to everyone at Carnegie Mellon University for making my time
there enriching and enjoyable. Special thanks to everyone at Microsoft Research for the
life-changing experience during the few years I spent there.

To my circle of Lebanese friends in Boston—Ali, Rasha, Lama, Ali, Kareem, Hussein,
Ibrahim, Aya, Samia, Ahmad, Mohamad Ali, Maryam, Zeina, Hiba, Diala, Wael, Molly,
Mohamad, Rola—your friendship has been my sanctuary in a foreign land, making Boston
feel like a second home.

A warm thank you to my extended family in Lebanon for their consistent support, as
well as to my wife’s family for embracing me as one of their own and standing beside
me throughout this journey. Special thanks to my parents, my brother Ali, and my sisters
Mariam and Fatima; thank you for the unwavering and unconditional love and support
throughout my life.

Lastly, to my incredible wife, Alaa: Your amazing support and love have been my
compass through the challenging and rewarding terrain of this PhD journey. I’m eagerly
looking forward to the next chapter of our lives together. With all my love, thank you.

4

Contents

Introduction 19

I Adversarial perturbations and better ML 29

1 Building practical certifiably robust classifiers against adversarial patches 31
1.1 Certified patch defense with smoothing & transformers 32

1.1.1 Preliminaries . 33

1.1.2 Smoothed vision transformers . 36

1.2 Improving certified and standard accuracies with ViTs 36

1.2.1 ViTs outperform ResNets on image ablations. 37

1.2.2 Ablation size matters . 39

1.3 Faster inference with ViTs . 40

1.3.1 Dropping masked tokens . 40

1.3.2 Empirical speed-up for smoothed ViTs 41

2 Improving transfer learning via adversarial perturbations 43
2.1 Background on Transfer Learning . 44

2.2 Motivation: Fixed-Feature Transfer Learning 45

2.3 Adversarial Robustness and Full-Network Fine Tuning 48

2.4 Analysis and Discussion . 49

2.4.1 ImageNet accuracy and transfer performance 50

2.4.2 Robust models improve with width 51

2.4.3 Optimal robustness levels for downstream tasks 53

2.4.4 Comparing adversarial robustness to texture robustness 54

3 Unadversarial examples: Designing objects for robust vision 55
3.1 Motivation and approach . 57

3.1.1 Leveraging more controlled vision settings 57

3.1.2 Unadversarial examples . 58

5

3.1.3 Constructing unadversarial objects . 59

3.2 Experimental evaluation . 61

3.2.1 Access model and baselines . 61

3.2.2 Clean data and synthetic corruptions 62

3.2.3 Classification in 3D simulation . 64

3.2.4 Localization for (simulated) drone landing 66

3.2.5 Physical-world unadversarial examples 66

4 Raising the cost of malicious AI-based manipulation 69
4.1 Preliminaries . 70

4.1.1 Diffusion Models . 70

4.1.2 Adversarial Attacks . 73

4.2 Adversarially Attacking Latent Diffusion Models 73

4.3 Results . 75

4.3.1 Qualitative Results . 76

4.3.2 Quantitative Results . 77

4.4 A Techno-Policy Approach to Mitigation of AI-Powered Editing 79

II Understanding the underpinnings of reliable ML deployment 81

5 Model debugging and the missingness bias 83
5.1 Missingness . 85

5.1.1 Missingness bias . 86

5.1.2 A more natural form of missingness via vision transformers 87

5.2 The impacts of missingness bias . 88

5.3 Missingness bias in practice: a case study on LIME 91

6 Debugging computer vision models with 3DB 95
6.1 Designing 3DB . 97

6.2 Debugging and analyzing models with 3DB 99

6.2.1 Sensitivity to image backgrounds . 99

6.2.2 Texture-shape bias . 102

6.2.3 Orientation and scale dependence . 104

6.2.4 Case study: using 3DB to dive deeper 106

6.3 Physical realism . 106

6.4 Extensibility . 108

6

7 When does bias transfer in transfer learning? 113
7.1 Biases Can Transfer . 114
7.2 Exploring the Landscape of Bias Transfer . 116

7.2.1 Bias consistently transfers in the fixed-feature transfer setting 117
7.2.2 Factors mitigating bias transfer . 118

7.3 Bias Transfer Beyond Backdoor Attacks . 119
7.3.1 Transferring co-occurrence biases in object recognition 120
7.3.2 Transferring gender bias in facial recognition 120

7.4 Bias Transfer in the Wild . 124

8 A data-based framework for studying transfer learning 127
8.1 A Data-Based Framework for Studying Transfer Learning 128
8.2 Identifying the Most Influential Classes of the Source Dataset 130
8.3 Probing the Impact of the Source Dataset on Transfer Learning 131

8.3.1 Capability 1: Extracting target subpopulations 133
8.3.2 Capability 2: Debugging the failures of a transferred model 135
8.3.3 Capability 3: Detecting data leakage and misleading source examples 136

Appendix 157

A Additional details for Chapter 1 157
A.1 Experimental setup . 157

A.1.1 Models and architectures . 157
A.1.2 Datasets . 157
A.1.3 Training parameters . 158
A.1.4 Compute and timing experiments . 158
A.1.5 Example ablations . 158
A.1.6 Differences in setup from Levine and Feizi [LF20a] 159

A.2 Ablation sweeps . 160
A.2.1 Train-time ablation . 160
A.2.2 Test-time ablations . 161

A.3 Dropping tokens for ViTs . 161
A.3.1 Computational complexity of ViTs with dropped tokens 162
A.3.2 Effect of dropping tokens on speed . 163
A.3.3 Effect of dropping tokens on performance 164

A.4 Strided ablations . 164

7

A.4.1 Certification thresholds for strided ablation sets 165

A.4.2 Performance under strided ablations 165

A.5 Block smoothing . 166

A.5.1 Practical inference speeds for block smoothing 166

A.6 Extended experimental results . 169

B Additional details for Chapter 2 171
B.1 Experimental Setup . 171

B.1.1 Pretrained ImageNet models . 171

B.1.2 ImageNet transfer to classification datasets 172

B.1.3 Unifying dataset scale . 174

B.1.4 Replicate our results . 174

B.2 Transfer Learning with ℓ∞-robust ImageNet models 175

B.3 Object Detection and Instance Segmentation 175

B.4 Background on Adversarially Robust Models 177

B.5 Omitted Figures . 179

B.5.1 Full-network Transfer: additional results to Figure 2.5 179

B.5.2 Varying architecture: additional results to Table 2.2 180

B.5.3 Unified scale: additional results to Figure 2.7 181

B.5.4 Stylized ImageNet Transfer: additional results to Figure 2.8b 181

B.5.5 Effect of width: additional results to Figure 2.6 182

B.6 Detailed Numerical Results . 183

B.6.1 Fixed-feature transfer to classification tasks (Fig. 2.5) 183

B.6.2 Full-network transfer to classification tasks (Fig. 2.3) 184

B.6.3 Unifying dataset scale . 185

C Additional details for Chapter 3 187
C.1 3D Simulation Details . 187

C.1.1 Overview of AirSim . 187

C.1.2 3D Boosters Classification Experiment 187

C.1.3 Drone Landing Experiment . 189

C.2 Experimental Setup . 191

C.2.1 Pretrained vision models we evaluate 191

C.2.2 Unadversarial patch/texture training details 191

C.2.3 Details of the physical world experiment 192

C.2.4 Datasets . 192

8

C.2.5 Compute . 193

C.2.6 Replicate our results . 193

C.3 Omitted Results . 193

C.3.1 Corruption benchmark main results: additional results to Figure 3.3b 194

C.3.2 Baselines . 195

D Additional details for Chapter 4 199
D.1 Experimental Setup . 199

D.1.1 Details of the diffusion model we used 199

D.1.2 Our attacks details . 199

D.2 Extended Background for Diffusion Models 200

D.3 Additional Results . 202

D.3.1 Additional quantitative results . 202

D.3.2 Generating Image Variations using Textual Prompts 203

D.3.3 Image Editing via Inpainting . 204

E Additional details for Chapter 5 213
E.1 Experimental details. 213

E.1.1 Models and architectures . 213

E.1.2 Training Details . 213

E.1.3 Experimental Details for Section 5.2 214

E.1.4 Experimental Details for Section 5.3 215

E.2 Implementing missingness by dropping tokens in vision transformers . . . 216

E.3 Additional experiments (Section 5.2) . 217

E.3.1 Additional examples of the bias (Similar to Figure 5.2). 217

E.3.2 Bias for removing patches in various orders 218

E.3.3 Results for different architectures . 219

E.3.4 Results for different missingness approximations 220

E.3.5 Using differently sized patches . 222

E.3.6 Using superpixels instead of patches 224

E.3.7 Comparison of dropping tokens vs blacking out pixels for ViTs . . . 224

E.4 Additional experiments (Section 5.3) . 225

E.4.1 Examples of LIME . 225

E.4.2 Top-k ablation test with superpixels. 227

E.4.3 Effects of Missingness Bias on Learned Masks 227

E.5 Other Datasets . 229

9

E.5.1 MS-COCO . 229
E.5.2 CIFAR-10 . 229

E.6 Relationship to ROAR . 231
E.6.1 Overview on ROAR . 231
E.6.2 ViTs do not require retraining . 231

F Additional details for Chapter 6 233
F.1 Experiment dashboard . 233
F.2 iPhone app . 234
F.3 Controls . 234
F.4 Additional experiments details . 236

F.4.1 Sensitivity to image backgrounds (Section 6.2.1) 236
F.4.2 Texture-shape bias (section 6.2.2) . 237
F.4.3 Orientation and scale dependence (Section 6.2.3) 237
F.4.4 3D models heatmaps (Figure 6.12) . 237
F.4.5 Case study: using 3DB to dive deeper (Section 6.2.4) 237
F.4.6 Physical realism (Section 6.3) . 238

F.5 Omitted figures . 239

G Additional details for Chapter 7 241
G.1 Experimental Setup . 241

G.1.1 ImageNet Models . 241
G.1.2 Transfer details from ImageNet to downstream image classification . 241
G.1.3 Compute and training time . 242
G.1.4 Varying architectures . 243
G.1.5 The effect of weight decay in full-network transfer learning 244
G.1.6 Clean accuracies for experiments of Section 7.2 246
G.1.7 Comparison with models trained from scratch (Additional results to

Section 7.2) . 246
G.1.8 MS-COCO . 248
G.1.9 CelebA . 248

G.2 ImageNet Biases . 251
G.2.1 Chainlink fence bias. 251
G.2.2 Hat bias. 254
G.2.3 Tennis ball bias. 255

H Additional details for Chapter 8 257

10

H.1 Experimental Setup . 257
H.1.1 ImageNet Models . 257
H.1.2 ImageNet transfer to classification datasets 257
H.1.3 Compute and training time. 258
H.1.4 Handpicked baseline details . 259
H.1.5 Convergence Analysis . 259

H.2 Variants of Computing Influences . 261
H.2.1 Variations of targets for computing transfer influences 261

H.3 Full Counterfactual Experiment . 263
H.4 Adapting our Framework to Compute the Effect of Every Source Datapoint

on Transfer Learning . 267
H.5 Omitted Results . 269

H.5.1 Per-class influencers . 269
H.5.2 More examples of extracted subpopulations from the target dataset . 271
H.5.3 More examples of transfer of shape and texture feature 272
H.5.4 More examples of debugging mistakes of transfer model 273
H.5.5 Do Influences Transfer? . 274

H.6 Further Convergence Analysis . 276

11

List of Figures

1 An example of an adversarial example . 20

1.1 Example of column ablations for derandomized smoothing 33
1.2 Illustration of the smoothed vision transformer 33
1.3 Accuracies on column-ablated images for models 38
1.4 Certified accuracies for ViTs and ResNets as patch size varies 38
1.5 The effect of ablation size at inference time for the smoothed classifiers . . . 39
1.6 Average time for forward pass of smoothed ViTs 41

2.1 Difference betweeen adversarially robust and standard representations . . . 47
2.2 Overview of fixed-feature transfer learning results for robust models 48
2.3 Overview of full-network transfer learning results for robust models 49
2.4 Object detection with robust backbones . 50
2.5 Fixed-feature transfer accuracies of robust ImageNet models 51
2.6 Effect of width on robust transfer . 52
2.7 Effect of dataset scale on fixed-feature robust transfer learning 54
2.8 Comparison between standard, stylized and robust ImageNet models. . . . 54

3.1 Overview of unadversarial objects . 56
3.2 Two methods for constructing unadverasarial objects 60
3.3 Example ImageNet images with unadversarial patches 62
3.4 Unadversarial examples improve OOD accuracy on ImageNet-C 62
3.5 Classifier relies on both object and unadversarial patch for predictions . . . 64
3.6 The unadversarial jet example . 65
3.7 Additional unadversarial objects . 65
3.8 Drone landing on unadversarial landing pad 66
3.9 Unadversarial examples in the physical world 67

4.1 Overview of our image immunization framework 70
4.2 Overview of diffusion models’ capabilities . 72
4.3 Overview of encoder and diffusion attacks 74

12

4.4 Encoder attack immunization example . 76
4.5 Photo-guarding photos with encoder and diffusion attacks 77
4.6 Image-prompt similarity after immunization 79

5.1 Importance of missingness in model debugging 85
5.2 Qualitative illustration of missingness bias 86
5.3 Quantitative illustration of missingness bias 89
5.4 Prediction change under patch ablations . 89
5.5 Prediction change under patch ablations with retraining 89
5.6 WordNet similarity for assessing missingness bias 90
5.7 Effect of missingness bias on LIME explanations 92
5.8 Jaccard similarity for assessing the missingness bias 92
5.9 LIME explanations on ViTs and ResNets . 93
5.10 LIME explanations on ViTs and ResNets with missingness augmentation . . 94

6.1 Examples of vulnerabilities of computer vision systems 96
6.2 3DB allows users to realistically compose transformations 96
6.3 An overview of the 3DB workflow . 99
6.4 Visualization of model accuracy per object and per environment 101
6.5 Coffee mug 3D model rendered in different environments 102
6.6 Best and worst environments for the coffee mug 102
6.7 Relation between the complexity of a background and its average accuracy 103
6.8 Using 3DB to study the composition of zoom and background changes . . . 103
6.9 Generating texture vs. shape cue-conflict with 3DB 103
6.10 The effect of modifying texture on accuracy 103
6.11 What is more important - texture or shape? 104
6.12 Analyzing model sensitivity to pose via heatmaps 105
6.13 Per-object analysis of the effect of orientation and zoom 105
6.14 The liquid inside a coffee mug determines whether or not it is a coffee mug 107
6.15 Comparison between images from 3DB and their real-world counterparts . 109
6.16 Examples of how to extend 3DB . 109

7.1 Bias transfer in the fixed-feature setting in the backdoor example 116
7.2 The effect of bias strength on bias transfer . 117
7.3 Bias transfer in full-network finetuning setting 118
7.4 Effect of target dataset debiasing on bias transfer 119
7.5 MS-COCO bias transfer experiment . 121

13

7.6 CelebA bias transfer experiment . 121
7.7 The “chainlink fence” ImageNet bias . 122
7.8 The “tennis ball” ImageNet bias . 123

8.1 Top positive and negative ImageNet influencing classes 131
8.2 Transfer accuracy as we remove negative influencing ImageNet classes . . . 132
8.3 Top class influences for CIFAR-10 “bird” class 133
8.4 Projecting source labels onto the target datset 133
8.5 Finding subpopulations using class influences 134
8.6 Class influences for debugging ML models 135
8.7 Detecting data leakage between source and target datasets 136

A.1 Example ablations that we use in this chapter. 159
A.2 Train-time ablation for smoothed ViTs . 160
A.3 Test-time ablations for smoothed ViTs . 161
A.4 Effect of dropping tokens on derandomized smoothing speed 164
A.5 Effect of dropping tokens on derandomized smoothing performance 164
A.6 Effect of strided ablations on derandomized smoothing 165
A.7 Average inference time to compute with block smoothing 167
A.8 Strided block smoothing on ImageNet varying ablation size 168
A.9 Strided block smoothing on ImageNet for the best ablation size 168

B.1 Object detection additional results with robust backbones 176
B.2 An example of an adversarial attack . 178
B.3 Full-network transfer accuracies from standard vs. robust models 179
B.4 Effect of unifying dataset scale on robust full-network transfer 181
B.5 Comparison between standard, stylized, and robust transfer models 181
B.6 Additional results on the effect of width for robust transfer 182

C.1 Various AirSim environment for testing unadeversarial examples 188
C.2 Physical unadversarial examples in various poses 193
C.3 Detailed plots for 2D unadversarial examples ImageNet ResNet-18 194
C.4 Detailed plots for 2D unadversarial examples ImageNet ResNet-50 194
C.5 QR-Code boosted ImageNet results under various corruptions. 195
C.6 Best training example baseline for unadversarial examples 196
C.7 Best training example baseline vs random example baseline 197
C.8 Predefined pattern baseline for unadversarial examples 198

14

D.1 Immunization against generating prompt-guided image variations. 203
D.2 Immunization against image editing via prompt-guided inpainting. 204

E.1 Additional qualitative examples demonstrating missingness bias 217
E.2 Full experiments of removing patches to study missingness bias 218
E.3 Missingness bias for ViT-T vs ResNet-18 . 219
E.4 Missingness bias for ViT-S vs ResNet-50 . 219
E.5 Missingness bias for ViT-S vs InceptionV3 . 220
E.6 Missingness bias for ViT-S vs VGG16 . 220
E.7 Various baseline color for approximating missingness 221
E.8 Blur as a missingness approximation . 222
E.9 Effect of using various patch sizes for masking pixels 223
E.10 Using SLIC superpixels instead of patches . 224
E.11 Dropping tokens vs masking pixels as missingness approximations 225
E.12 Examples of LIME explanations . 226
E.13 Top K ablation test using superpixels . 227
E.14 Effect of missingess bias on learned masks in model debugging 228
E.15 Missingness bias in MS-COCO . 230
E.16 Missingness bias in CIFAR-10 . 230

F.1 The 3DB dashboard used for data exploration. 233
F.2 The iOS app used to recreate real-world versions of render 3DB images . . . 235
F.3 Picture of studio used for the real-world experiments 236
F.4 Spherical objects have different sensitivity to object heading and tilt 239
F.5 Additional plots of the mug liquid experiment 239
F.6 Additional figures of the texture swap experiment 240

G.1 Backdoor bias transfer on various architectures 243
G.2 Effect of weight decay on bias transfer . 244
G.3 The clean accuracy of transfer models as we vary weight decay 245
G.4 The clean accuracies of backdoor biased models we used 247
G.5 Additional baseline: training from scratch and measuring bias transfer . . . 247
G.6 CelebA Experiment bias transfer full results 250
G.7 The chainlink fence bias in ImageNet . 251
G.8 The chainlink fence bias transfers to Birdsnap 252
G.9 The chainlink fence bias transfers to Flowers 252
G.10 The chainlink fence bias transfers to Food . 252

15

G.11 The chainlink fence bias transfers to SUN397 253
G.12 The hat bias in ImageNet . 254
G.13 The hat bias transfers to CIFAR-10 . 254
G.14 The tennis ball bias in ImageNet . 255
G.15 The tennis ball bias transfers to CIFAR-100 . 255
G.16 The tennis ball bias transfers to Aircraft . 256
G.17 The tennis ball bias transfers to Birdsnap . 256
G.18 The tennis ball bias transfers to SUN397 . 256

H.1 Detailed counterfactual experiments with more models 260
H.2 Standard deviation of the class influences as number of models varies 260
H.3 The effect of influence targets on counterfactual experiments 261
H.4 Datamodels vs influences counterfactual experiment 262
H.5 ImageNet class influencers for all CIFAR-10 classes 269
H.6 ImageNet class influencers for all CIFAR-10 classes (Continued) 270
H.7 Most positively influenced CIFAR-10 samples by ImageNet classes 271
H.8 Most highly influenced CIFAR-10 samples by ImageNet classes 272
H.9 More examples of debugging transfer mistakes through our framework . . 273
H.10 Influence transfer across datasets . 275
H.11 Influence transfer across architectures . 276
H.12 Effect of number of models on influence estimation (rank correlation) 277
H.13 Effect of number of models on influence estimation (FDR) 278

16

List of Tables

1.1 Summary of our ImageNet results and comparisons to other baselines . . . 35
1.2 Summary of our CIFAR-10 results and comparisons to other baselines . . . 37
1.3 Multiplicative speed up of smoothed ViT over smoothed ResNet 42

2.1 Transfer performance of robust and standard ImageNet models 44
2.2 Source and target accuracies for a fixed robustness level 52

4.1 Effect of immunization on image quality after manipulation 78

6.1 Baseline accuracy of a standard pre-trained model on 3DB-rendered objects 100

A.1 A collection of neural network architectures we use in this chapter. 157
A.2 Extended summary of CIFAR-10 smoothing results 169
A.3 Standard accuracies of regular and smoothed models 169
A.4 Extended summary of ImageNet smoothing results 170

B.1 Clean accuracies of ℓ∞-robust ImageNet classifiers. 171
B.2 Clean accuracies of standard and ℓ2-robust ImageNet classifiers 172
B.3 Classification datasets used in this chapter. 173
B.4 Transfer Accuracy of standard vs ℓ∞-robust ImageNet models 175
B.5 Additional source and target accuracies for a fixed robustness level 180
B.6 Fixed-feature transfer detailed numerical results 183
B.7 Full-network transfer detailed numerical results 184
B.8 Fixed-feature transfer on 32x32 downsampled datasets. 185
B.9 Full-network transfer on 32x32 downsampled datasets 186

D.1 Hyperparameters used for the Stable Diffusion model. 199
D.2 Hyperparameters used for the adversarial attacks. 200
D.3 Effect of immunization on image quality after manipulation 202

E.1 Neural network architectures we used in this chapter 213
E.2 A collection of neural network architectures we use in this chapter. 214

17

G.1 Image classification benchmarks used in this chapter 242
G.2 The synthetic datasets we create from MS-COCO for testing bias transfer . . 248
G.3 Hyperparameters used for training on the MS-COCO dataset 248
G.4 The synthetic source datasets we create from CelebA 249
G.5 The synthetic target datasets we create from CelebA 249
G.6 Hyperparameters used for training on the CelebA datasets 249

H.1 Image classification datasets used in this chapter. 258

18

Introduction

Over the past decade, machine learning (ML) has fueled remarkable advancements in
various fields such as computer vision [KSH12], natural language processing [VSP+17;
DCL+19], and speech recognition [GMH13; BZM+20; ZQP+20]. The widespread utilization
of ML in diverse fields accentuates the critical necessity to thoroughly evaluate its reliability,
trustworthiness, and deployability in real-world systems. As machine learning continues
to spread into complex and ever-changing areas, making sure it works reliably and fairly
is crucial.

Despite the substantial achievements attributed to ML models, they are not devoid
of shortcomings. Interestingly, these models are fragile, inadvertently aligning with
superficial patterns that perpetuate existing biases within the data they are trained on. A
clear illustration of this brittleness is the phenomenon of adversarial examples [BCM+13;
SZS+14], where imperceptible perturbations to images can disrupt ML models leading to
erroneous classifications (cf. Figure 1).

Adversarial examples represent merely one manifestation of the broader issue of ML
models’ lack of robustness particularly when exposed to distribution shift, where the data
distribution at test time diverges from that at training time. This casts doubts on the
readiness of ML for real-world deployment, accentuating the need for dependable systems
capable of withstanding dynamic, real-world conditions. Consequently, the following
critical question arises:

How can we confidently and responsibly deploy machine learning in the wild?

This thesis advances this overarching challenge via two major thrusts, both working
towards addressing some of the most critical issues facing real-world deployment of
machine learning. These two thrusts are:

Adversarial perturbations and better ML. The development of new ML models often
involves optimization on static benchmarks, which can be quite different from the scenarios
these models face during deployment. This discrepancy necessitates the creation of models

19

Figure 1: Making nearly invisible changes (adversarial perturbations) to an image of a “pig”
can lead an otherwise highly accurate classifier to incorrectly identify it as an “airliner.”
This phenomenon is known as an adversarial example.

that are robust and reliable, especially for high-stakes applications where prediction
accuracy is crucial. The first part of this thesis addresses this need, with a focus on worst-
case distribution shifts manifested by adversarial perturbations. We first show how to
build models robust to these perturbations, and demonstrate how, in addition to being
safer to deploy from a security perspective, such robust models generalize better when
used for downstream tasks (e.g., in transfer learning). We then switch gears to show how
we can utilize these (seemingly bad) adversarial perturbations to (1) create of robust objects
that can be easily recognized by ML models under distribution shift, and (2) protect images
against unwanted AI manipulation, both of which also aid in making ML deployment
more reliable and trustworthy.

Understanding the underpinnings of reliable ML deployment. Real-world ML deploy-
ment requires more than robust and reliable models; it demands a deep understanding
of models’ decision-making processes for safety, equity, and bias detection. The second
part of this thesis focuses on deciphering and troubleshooting ML models. It explores (1)
building debuggable ML models, (2) developing tools for detecting and understanding
how ML models fail, and (3) investigating how data can unexpectedly bias and affect ML
models. This multifaceted approach seeks to enhance our comprehension and control over
ML models in practical applications.

In the subsequent sections of this introduction, we present a summary of each of these
primary areas of focus, delineating our principal concepts and findings, and aligning them
with the respective parts of the thesis.

20

Part I: Adversarial perturbations and better ML

The evolving landscape of ML has witnessed both incredible achievements and unique
challenges. As the applications of ML models grow in complexity and criticality, under-
standing and addressing vulnerabilities becomes an imperative part of model development.
In the first part of this thesis, we delve into the intricate relationship between adversarial
perturbations (as depicted in Figure 1) and the improvement of ML models. We not only
explore how adversarial examples can pose severe threats to system reliability but also
uncover how they can be turned into valuable assets for understanding and improving
machine learning systems.

In particular, we first demonstrate how to create robust models that can withstand
adversarial perturbations, a theme we delve into in Chapter 1. We then demonstrate in
Chapter 2 how, in addition to being safer to deploy from a security perspective, such
robust models generalize better when used for downstream tasks in particular in transfer
learning settings. Finally, we shift our focus towards showcasing how these perturbations,
often perceived as harmful, can be repurposed to enhance various facets of ML. This
includes the creation of objects that are more easily recognizable by ML models (explained
in Chapter 3), and the protection of images from unwanted alterations by generative ML
models (covered in Chapter 4).

Building adversarially robust ML models

Adversarial examples pose serious threats on the reliability and security of ML models.
Indeed, they can be used to attack ML models in the wild, leading to erroneous predictions.
This is especially concerning in safety-critical applications such as autonomous driving,
where a small perturbation to a stop sign can lead to a car ignoring this sign. This motivates
the need for building models that are robust to adversarial perturbations.

Most of my pre-doctoral work has focused on building models that are robust to imper-
ceptible adversarial perturbations [SLR+19; SYZ+19; SSY+20]. However, in practice, we
usually expect to deal with more physically-realizable adversarial perturbations that might
not be imperceptible. This class of perturbations, known as adversarial patches [BMR+18],
are characterized by arbitrary changes contained within a small, contiguous region of
the input (e.g., a small square). Adversarial patches are particularly interesting types
of adversarial examples due to how easy it is to generate and deploy them. They also
capture the essence of a range of maliciously designed physical objects such as adversarial
glasses [SBB+16], stickers/graffiti [EEF+18a], and adversarial clothing [WLD+20]. To

21

defend against such threats, we commence this thesis in Chapter 1 and put forth smoothed
vision transformers [SJW+21], which are vision transformers (ViTs [DBK+21]) that are built
to be certifiably robust against adversarial patches. These models achieve non-precedent
robustness against adversarial patches while remaining a viable alternative for standard
non-robust models thanks to maintaining competitive standard accuracy and inference
speeds. We thus demonstrate that, contrary to general expectation, certified robustness
does not need to come at a high price of deployment (i.e., bad performance on benign data
and slow inference).

Adversarial perturbations beyond model security

Although adversarial examples are at first glance just a threat to the robustness and
reliability of ML systems, one can also view them as symptomatic of a much deeper
problem: a fundamental misalignment between humans and ML models [IST+19]. The
fact that an adversary can make a tiny perturbation to parts of an image that humans
do not consider important, and yet the model totally changes classification, indicates
that the model makes its decision very differently from how humans do. Indeed, Ilyas
et al. [IST+19] show that ML models fundamentally rely on features that humans do not.
Their results indicate that while such features are extremely brittle, they are still useful
in classification. The relationship this work uncovers between adversarial perturbations
and the mechanisms underlying model decisions paved the way for exploring the role of
adversarial robustness as a prior for aligning ML models with human perception [EIS+19b;
STT+19; SIE+20]. So how can this observation be used to improve ML models?

Robustness prior improves transfer learning. In Chapter 2, we find that this robustness
prior allows ML models to learn significantly better feature representations. Specifically,
we investigate the benefits of such robust representations in the context of transfer learning
(where one fine-tunes models from pre-trained weights to obtain better performance on
a given task than could be achieved with random initialization). We find that despite
having lower accuracy on the original task, robustly trained models yield higher accura-
cies on downstream tasks spanning image classification, object detection, and semantic
segmentation. The reliability and breadth of tasks for which robust models outperform
standard models is evidence that robust representations can be more meaningful than
those of standardly trained models.

22

Building (unadversarial) objects that are easily recognized by ML models. The fact that
ML models and humans approach decision-making differently motivated us to further
ask the questions: given that ML models rely on (non-robust) features that humans do
not use, can we leverage these features to improve our ML models? Specifically, can we
design the world to be robustly perceived by our ML models? Indeed, in Chapter 3, we
introduce “unadversarial examples,”—objects specifically designed (leveraging adversarial
perturbations) to be robustly recognized by ML models.

In particular, we proposed a new approach to image recognition in the face of un-
foreseen corruptions or distribution shifts. This approach is rooted in a reconsideration
of the problem setup itself. Specifically, we observe that in many situations, a system
designer actually controls, to some extent, the inputs that are fed into their model. For
example, a drone operator seeking to train a landing pad detector can modify the surface
of the landing pad; and, a roboticist training a perception model to recognize a small
set of custom objects can slightly alter the texture or design of these objects. Indeed, a
similar insight motivates QR codes, which are patterns explicitly designed to encode easily
recoverable bits in photographs.

We find that such control over inputs can be leveraged to drastically improve our
ability to tackle computer vision tasks. In particular, it allows us to turn the reliance of
modern vision systems on non-robust features from a weakness into a strength. Instead
of optimizing inputs to mislead models (e.g., as in adversarial examples), we can alter
inputs to reinforce correct behavior, yielding to unadversarial examples or robust objects.
Indeed, we show that even a simple gradient-based algorithm can successfully construct
unadversarial examples in a variety of vision settings and demonstrate that, by optimizing
objects for vision systems (rather than vice-versa), we can significantly improve both
in-distribution performance and robustness to unforeseen data shifts and corruptions. This
was our first demonstration that adversarial perturbations can be used to improve ML
models, and not just to attack them.

Defending against malicious AI-powered image editing. Another venue where we
show that adversarial perturbations can be useful is for protecting images against un-
wanted manipulation by generative AI models. Indeed, recently large diffusion models
such as DALL·E 2 [RDN+22] and Stable Diffusion [RBL+22] have emerged with impressive
capabilities to produce high-quality photorealistic images. However, the ease of use of
these models has raised concerns about their potential abuse, e.g., by creating inappro-
priate or harmful digital content. In Chapter 4, we propose an approach that aims to
protect people against malicious AI-powered image editing. At the core of our approach is

23

the idea of image immunization—that is, making a specific image resistant to AI-powered
manipulation by adding (imperceptible) adversarial perturbation to it. This perturbation
would disrupt the operation of a diffusion model, forcing the edits it performs to be unre-
alistic. This is as in the previous chapter, motivated by the fact that ML models heavily
rely on non-robust features in their predictions. Thus, we aim to utilize these non-robust
features to immunize images against malicious AI-powered manipulation.

Part II: Understanding the underpinnings of reliable ML

deployment

In the first part of this thesis, we explored how we can improve the reliability of ML
models by making them more robust, performant, and trustworthy. However, even with
highly performant and robust ML models, the complexities of real-world deployment
demand more than resilience. It’s essential to thoroughly examine the decision-making
process of these models, whether for ensuring safety, maintaining equity, or identifying
underlying biases in data and algorithms. Indeed, we should not deploy ML models in
safety-critical settings until we have a more precise characterization of how they work,
and a clear understanding of when they would fail.

To this end, the second part of this thesis aims to develop a rigorous foundation for
explaining how, why, and in what settings modern machine learning systems succeed or
fail.

Building interpretable ML models. Interpretability is critical in nearly any deployment
situation. Indeed, it is essential for identifying biases in models, finding and ameliorating
potential failure modes, uncovering potential negative externalities of a model’s operation
in the real world, and—more generally—ensuring that the underlying process behind
decision-making is well-aligned with how we would like models to make decisions.

A key primitive in interpretability is the ability to remove features from the input of ML
models, sometimes referred to as missingness. Indeed, by comparing the model’s output
with and without specific features, we can infer what parts of the input led to a specific
outcome, as done in various interpretability methods [SLL20; STY17; ACÖ+17; RSG16a].
However, there is a problem: removing features from inputs is not always straightforward.
Indeed, removing a feature from an image usually requires approximating missingness
by replacing those pixel values with something else, e.g., black color. However, these
approximations tend not to be perfect [SLL20].

24

In chapter 5, we investigate how the above missingness approximations can result in
what we call missingness bias, hindering our ability to properly interpret ML models. We
then show how transformer-based architectures can enable a more natural implementation
of missingness, allowing us to side-step this bias, and leading to more interpretable ML
models.

Developing model debugging tools. Even if we build interpretable ML models, it
is important to properly evaluate and diagnose failure modes for these models before
deploying them in the real world. In Chapter 6, we introduce 3DB, a framework for
automatically identifying and analyzing the failure modes of computer vision models.
Specifically, we integrate a 3D simulator into a robustness analysis pipeline to render
realistic scenes that can be used to stress-test computer vision system. 3DB is general
enough to enable users to, with little-to-no effort, evaluate the robustness of ML models to
pose, background, and texture bias, among others.

Such a tool is important for testing the ML model in isolation. However, in most
scenarios, the ML model is just a component of a larger system, and this requires more
complex techniques as we explore in the next chapters.

Investigating how data can impact the full ML pipeline. In practice, the process of
creating an ML system is not merely confined to training a model on a dataset and
evaluating it through benchmarks. ML models often grow and change over time, forming
integral components of more complex systems. This complexity underscores the necessity
of devising tools that can accurately detect and diagnose failure points within the complete
pipeline. For instance, ML models are often crafted using transfer learning, drawing
from pre-existing models or source datasets. This method raises pertinent questions: Are
there underlying issues or biases embedded in the transfer process? And if so, do these
challenges propagate into the subsequent, downstream models?

Indeed, in Chapter 7, we show that biases in pretrained models can (and do) transfer to
downstream tasks—a phenomenon that we refer to as bias transfer. For example, consider
a facial recognition system that has been pretrained on some large-scale dataset (which
contains a racial or gender bias), and then fine-tuned on a curated downstream dataset
where all genders or races are equally represented. Our work shows that the racial or gender
bias shows up in the resulting model, even though this models was finetuned on a curated
and de-biased dataset.

This phenomenon raises more flags on the equitability and fairness of our deployed
ML models, and begs for methods to detect and remedy these limitations. So we need de-

25

bugging tools that work across the ML pipeline, from pretraining all the way to finetuning
and testing stages. In Chapter 8, we present a framework for pinpointing the impact of the
source dataset on the downstream predictions in transfer learning. This framework draws
inspiration from techniques such as influence functions [FZ20] and datamodels [IPE+22]
and enables us, in particular, to automatically identify source datapoints that—positively
or negatively—impact transfer learning performance. Using this framework, we are able
to detect datapoints in the source dataset that are detrimental to the downstream per-
formance on the target task, debug failure modes originating due to transfer learning,
and surface pathologies such as source-target data leakage and misleading or mislabelled
source datapoints, which we would not be able to do by applying debugging techniques
(e.g. 3DB alone) to the ML model itself without considering the full pipeline starting from
pretraining.

Outlook: Towards confident ML deployment

Deployable machine learning (ML) continues to pose significant challenges, as complexities
arise with the evolution and increased capabilities of models, such as Large Language
Models (LLMs). Though this thesis sheds light on certain aspects of deployable ML, there
remains an extensive path to achieving confident ML deployment. Further research is
required in this field, and some pressing unanswered questions are highlighted below.

Reassessing adversarial examples for LLMs. Despite efforts to enhance ML model ro-
bustness against adversarial examples, it is still a difficult open problem. The focus has
recently shifted towards average case robustness for general distribution shifts, given
the difficulty of addressing the worst-case robustness problem. However, with the ad-
vancements in LLMs, it has become vital to revisit adversarial examples. For instance,
how can we strengthen LLMs against jailbreaks [WHS23; ZWK+23], a particular type of
adversarial example affecting LLMs? As LLMs grow more potent and encompass various
modalities, such as images, videos, and audio, jailbreaks become more challenging to
prevent [CNC+23].

Furthermore, the solution may not only lie in fortifying ML models but also in strength-
ening the entire ML pipeline. The current research often overlooks the context in which ML
models operate within complex systems. How would the robustness assessment change
if an ML model were a part of a complex system? Are content moderation techniques
effective against jailbreaks, and how can they be improved? These questions have become
exceedingly relevant with LLMs’ increasing societal impact.

26

Creating human-aligned representations. The existence of adversarial examples illus-
trates the substantial differences in decision-making between ML models and humans. The
goal is to align models with human-like feature utilization, thus eliminating adversarial
vulnerabilities. How can models be guided to use the "right" features? While adver-
sarial robustness has shown some success in aligning with human representations, this
area remains an open challenge. There may be a need for entirely new techniques and
methodologies in the quest for human-aligned learning.

Exploring unadversarial examples beyond computer vision. This thesis has explored
unadversarial examples as a method to enhance ML model robustness and reliability
in image classification. However, this concept can be extended to other domains such
as object detection, image segmentation, and beyond. In fields like natural language
processing, speech recognition, and tabular data processing, unadversarial examples could
play a critical role. Could unadversarial speech signals or text be synthesized to facilitate
future recognition? Connecting this with watermarking techniques, especially in detecting
fake generated content by LLMs and diffusion models, presents another exciting avenue
of exploration.

Debugging ML models as part of a comprehensive system. This thesis has demon-
strated how biases can permeate the ML pipeline, emphasizing the need for debugging
the entire process to identify failure modes. The focus was specifically on failure modes
originating either from the model itself, or from pretrained models that it was built on
top of. What other essential components of ML systems might similarly introduce biases
or failures? There is a growing necessity to develop specialized tools for comprehensive
debugging within the broader context of ML deployment.

Thesis organization

We now describe how the rest of the thesis is organized.
Chapter 1 presents our smoothed vision transformers which achieve non-precedent cer-
tified robustness while maintaining competitive inference speeds and clean accuracies,
making them viable alternatives to their standard counterparts. The material presented
in this chapter is based on joint work with Saachi Jain, Eric Wong, and Aleksander
Mądry [SJW+21].
Chapter 2 shows that adversarial robustness can improve transfer learning. The material
presented in this chapter is based on joint work with Andrew Ilyas, Logan Engstrom,

27

Ashish Kapoor, and Aleksander Mądry [SIE+20].
Chapter 3 shows that adversarial perturbations can be used to design objects that are
robustly recognized by ML models. The material presented in this chapter is based on joint
work with Andrew Ilyas, Logan Engstrom, Sai Vemprala, Ashish Kapoor, and Aleksander
Mądry [SIE+21].
Chapter 4 shows that adversarial perturbations can be used to protect images against
malicious AI-powered manipulation. The material presented in this chapter is based
on joint work with Alaa Khaddaj, Guillaume Leclerc, Andrew Ilyas, and Aleksander
Mądry [SKL+23].
Chapter 5 presents the missingness bias, and shows that vision transformers naturally
mitigate this bias. The material presented in this chapter is based on joint work with
Saachi Jain, Eric Wong, Pengchuan Zhang, Vibhav Vineet, Sai Vemprala, and Aleksander
Mądry [JSW+22].
Chapter 6 presents 3DB, a framework for debugging computer vision models. We use this
framework to automate discovery of ML model biases and vulnerabilities. The material
presented in this chapter is based on joint work with Logan Engstrom, Andrew Ilyas,
Guillaume Leclerc, Hadi Salman, Sai Vemprala, Vibhav Vineet, Pengchuan Zhang, Shibani
Santurkar, Greg Yang, Ashish Kapoor, and Aleksander Mądry [LSI+21].
Chapter 7 shows that biases can transfer from source datasets to downstream tasks in
transfer learning, and demonstrates techniques to mitigate this problem. The material
presented in this chapter is based on joint work with Saachi Jain, Andrew Ilyas, Logan
Engstrom, Eric Wong, and Aleksander Mądry [SJI+22].
Chapter 8 presents a framework for pinpointing the impact of the source dataset on the
downstream predictions in transfer learning. The material presented in this chapter is
based on joint work with Saachi Jain, Alaa Khaddaj, Eric Wong, Sung Min Park, and
Aleksander Mądry [JSK+22].

28

Part I

Adversarial perturbations and better ML

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

Chapter 1

Building practical certifiably robust
classifiers against adversarial patches

High-stakes scenarios warrant the development of certifiably robust models that are
guaranteed to be robust to a set of transformations. These techniques are beginning to find
applications in real-world settings, such as verifying that aircraft controllers behave safely
in the presence of approaching airplanes [JK19], and ensuring the stability of automotive
systems to sensor noise [WSS+20].

In this chapter, we study robustness in the context of adversarial patches—a broad class
of arbitrary changes contained within a small, contiguous region. Adversarial patches
capture the essence of a range of maliciously designed physical objects such as adversarial
glasses [SBB+16], stickers/graffiti [EEF+18a], and clothing [WLD+20]. Researchers have
used adversarial patches to fool image classifiers [BMR+18], manipulate object detectors
[LK19; HSS+20], and disrupt optical flow estimation [RJG+19].

Adversarial patch defenses can be tricky to evaluate—recent work broke several empir-
ical defenses [BMV18; Hay18; NKP19] with stronger adaptive attacks [TCB+20; CNA+20].
This motivated certified defenses, which deliver provably robust models without having
to rely on an empirical evaluation. However, certified guarantees tend to be modest and
come at a cost: poor standard accuracy and slower inference times [LF20b; LF20a; ZYM+20;
XBS+21]. For example, a top-performing, recently proposed method reduces standard
accuracy by 30% and increases inference time by two orders of magnitude, while certifying
only 13.9% robust accuracy on ImageNet against patches that take up 2% of the image
[LF20a]. These drawbacks are commonly accepted as the cost of certification, but severely
limit the applicability of certified defenses. Does certified robustness really need to come
at such a high price?

31

Our contributions

In this chapter, we demonstrate how to leverage vision transformers (ViTs) [DBK+21]
to create certified patch defenses that achieve significantly higher robustness guarantees
than prior work. Moreover, we show that certified patch defenses with ViTs can actually
maintain standard accuracy and inference times comparable to standard (non-robust)
models. At its core, our methodology exploits the token-based nature of attention modules
used in ViTs to gracefully handle the ablated images used in certified patch defenses.
Specifically, we demonstrate the following:

Improved guarantees via smoothed vision transformers. We find that using ViTs as the
backbone of the derandomized smoothing defense [LF20a] enables significantly improved
certified patch robustness. Indeed, this change alone boosts certified accuracy by up to
13% on ImageNet, and 5% on CIFAR-10 over similarly sized ResNets.

Standard accuracy comparable to that of standard architecures. We demonstrate that
ViTs enable certified defenses with standard accuracies comparable to that of standard, non-
robust models. In particular, our largest ViT improves state-of-the-art certified robustness
on ImageNet while maintaining standard accuracy that is similar to that of a non-robust
ResNet (>70%).

Faster inference. We modify the ViT architecture to drop unnecessary tokens, and reduce
the smoothing process to pass over mostly redundant computation. These changes turn
out to vastly speed up inference time for our smoothed ViTs. In our framework, a forward
pass on ImageNet becomes up to two orders of magnitude faster than that of prior certified
defenses, and is close in speed to a standard (non-robust) ResNet.

1.1 Certified patch defense with smoothing & transformers

Smoothing methods are a general class of certified defenses that combine the predictions
of a classifier over many variations of an input to create predictions that are certifiably
robust [CRK19; LF20b]. One such method that obtains robustness to adversarial patches is
derandomized smoothing [LF20a], which aggregates a classifier’s predictions on various
image ablations that mask most of the image out.

These approaches typically use CNNs, a common default model for computer vision
tasks, to evaluate the image ablations. The starting point of our approach is to ask: are

32

convolutional architectures the right tool for this task? The crux of our methodology is
to leverage vision transformers, which we demonstrate are more capable of gracefully
handling the image ablations that arise in derandomized smoothing.

1.1.1 Preliminaries

Image ablations. Image ablations are variations of an image where all but a small portion
of the image is masked out [LF20a]. For example, a column ablation masks the entire image
except for a column of a fixed width (see Figure 1.1 for an example). We focus primarily
on column ablations and explore the more general block ablation in Appendix A.5.

…

Figure 1.1: Examples of column ablations for the left-most image with column width 19px.

For a input h× w sized image x, we denote by Sb(x) the set of all possible column
ablations of width b. A column ablation can start at any position and wrap around the
image, so there are w total ablations in Sb(x).

Derandomized smoothing. Derandomized smoothing [LF20a] is a popular approach
for certified patch defenses that constructs a smoothed classifier comprising of two main

Figure 1.2: Illustration of the smoothed vision transformer. For a given image, we first
generate a set of ablations. We encode each ablation into tokens, and drop fully masked
tokens. The remaining tokens for each ablation are then fed into a vision transformer, which
predicts a class label for each ablation. We predict the class with the most predictions over
all the ablations, and use the margin to the second-place class for robustness certification.

33

components: (1) a base classifier, and (2) a set of image ablations used to smooth the base
classifier. Then, the resulting smoothed classifier returns the most frequent prediction of
the base classifier over the ablation set Sb(x). Specifically, for an input image x, ablation
set Sb(x), and a base classifier f , a smoothed classifier g is defined as:

g(x) = arg max
c

nc(x) (1.1)

where
nc(x) = ∑

x′∈Sb(x)
I{ f (x′) = c}

denotes the number of image ablations that were classified as class c. We refer to the
fraction of images that the smoothed classifier correctly classifies as standard accuracy.

A smoothed classifier is certifiably robust for an input image if the number of ablations
for the most frequent class exceeds the second most frequent class by a large enough
margin. Intuitively, a large margin makes it impossible for an adversarial patch to change
the prediction of a smoothed classifier since a patch can only affect a limited number of
ablations.

Specifically, let ∆ be the maximum number of ablations in the ablation set Sb(x) that
an adversarial patch can simultaneously intersect (e.g., for column ablations of size b,
an m×m patch can intersect with at most ∆ = m + b− 1 ablations). Then, a smoothed
classifier is certifiably robust on an input x if it is the case that for the predicted class c:

nc(x) > max
c′ ̸=c

nc′(x) + 2∆. (1.2)

If this threshold is met, the most frequent class is guaranteed to not change even if an
adversarial patch compromises every ablation it intersects. We denote the fraction of
predictions by the smooth classifier that are both correct and certifiably robust (according
to Equation 1.2) as certified accuracy.

Vision transformers. A key component of our approach is the vision transformer (ViT)
architecture [DBK+21]. In contrast to convolutional architecures, ViTs use self-attention
layers instead of convolutional layers as their primary building block and are inspired by
the success of self-attention in natural language processing [VSP+17]. ViTs process images
in three main stages:

1. Tokenization: The ViTs split the image into p× p patches. Each patch is then embedded
into a positionally encoded token.

34

Table 1.1: Summary of our ImageNet results and comparisons to certified patch defenses
from the literature: Clipped Bagnet (CBG), Derandomized Smoothing (DS), and Patch-
Guard (PG). Time refers to the inference time for a batch of 1024 images, b is the ablation
size, and s is the ablation stride. An extended version is in Appendix A.6.

Standard and Certified Accuracy on ImageNet (%)

Standard 1% pixels 2% pixels 3% pixels Time (sec)

Baselines

Standard ResNet-50 76.1 — — — 0.67
WRN-101-2 78.85 — — — 3.1
ViT-S 79.90 — — — 0.4
ViT-B 81.80 — — — 0.95
CBN [ZYM+20] 49.5 13.4 7.1 3.1 3.05
DS [LF20a]a 44.4 17.7 14.0 11.2 149.5
PG [XBS+21]b 55.1b 32.3b 26.0b 19.7b 3.05

Smoothed models

ResNet-50 (b = 19) 51.5 22.8 18.3 15.3 149.5
ViT-S (b = 19) 63.5 36.8 31.6 27.9 14.0

WRN-101-2 (b = 19) 61.4 33.3 28.1 24.1 694.5
ViT-B (b = 19) 69.3 43.8 38.3 34.3 31.5
ViT-B (b = 37) 73.2 43.0 38.2 34.1 58.7
ViT-B (b = 19, s = 10) 68.3 36.9 36.9 31.4 3.2

2. Self-Attention: The set of tokens are then passed through a series of multi-headed
self-attention layers [VSP+17].

3. Classification head: The resulting representation is fed into a fully connected layer to
make predictions for classification.

aWe found that ResNets could achieve a significantly higher certified accuracy than was reported by
Levine and Feizi [LF20a] if we use early stopping-based model selection. We elaborate further in Ap-
pendix A.1.

bThe PatchGuard defense uses a specific mask size that guarantees robustness to patches smaller than the
mask, and provides no guarantees for larger patches. In this table, we report their best results: each patch
size corresponds to a separate model that achieves 0% certified accuracy against larger patches. Comparisons
across the individual models can be found in Appendix A.6.

35

1.1.2 Smoothed vision transformers

Two central properties of vision transformers make ViTs particularly appealing for pro-
cessing the image ablations that arise in derandomized smoothing. Firstly, unlike CNNs,
ViTs process images as sets of tokens. ViTs thus have the natural capability to simply drop
unnecessary tokens from the input and “ignore” large regions of the image, which can
greatly speed up the processing of image ablations.

Moreover, unlike convolutions which operate locally, the self-attention mechanism in
ViTs shares information globally at every layer [VSP+17]. Thus, one would expect ViTs
to be better suited for classifying image ablations, as they can dynamically attend to the
small, unmasked region. In contrast, a CNN must gradually build up its receptive field
over multiple layers and process masked-out pixels.

Guided by these intuitions, our methodology leverages the ViT architecture as the
base classifier for processing the image ablations used in derandomized smoothing. We
first demonstrate that these smoothed vision transformers enable substantially improved
robustness guarantees, without losing much standard accuracy (Section 1.2). We then
modify the ViT architecture and smoothing procedure to drastically speed up the cost of
inference of a smoothed ViT (Section 1.3). We present an overview of our approach in
Figure 1.2.

Setup. We focus primarily on the column smoothing setting and defer block smoothing
results to Appendix A.5. We consider the CIFAR-10 [Kri09] and ImageNet [DDS+09]
datasets, and perform our analysis on three sizes of vision transformers—ViT-Tiny (ViT-T),
ViT-Small (ViT-S), and ViT-Base (ViT-B) models [Wig19; DBK+21]. We compare to residual
networks of similar size—ResNet-18, ResNet-50 [HZR+16], and Wide ResNet-101-2 [ZK16],
respectively. Further details of our experimental setup are in Appendix A.1.

1.2 Improving certified and standard accuracies with ViTs

Recall that even though certified patch defenses can guarantee robustness to patch attacks,
this robustness typically does not come for free. Indeed, certified patch defenses tend
to have substantially lower standard accuracy when compared to typical (non-robust)
models, while delivering a fairly limited degree of (certified) robustness.

In this section, we show how to use ViTs to substantially improve both standard
and certified accuracies for certified patch defenses. To this end, we first empirically
demonstrate that ViTs are a more suitable architecture than traditional convolutional

36

Table 1.2: Summary of our CIFAR-10 results and comparisons to certified patch defenses
from the literature: Clipped Bagnet (CBG), Derandomized Smoothing (DS), and Patch-
Guard (PG). Here, b is the column ablation size out of 32 pixels. An extended version is in
Appendix A.6.

Standard and Certified Accuracy on CIFAR-10 (%)

Standard 2× 2 4× 4

Baselines

CBN [ZYM+20] 84.2 44.2 9.3
DS [LF20a]a 83.9 68.9 56.2
PG [XBS+21]b 84.7b 69.2b 57.7b

Smoothed models

ResNet-50 (b = 4) 86.4 71.6 59.0
ViT-S (b = 4) 88.4 75.0 63.8

WRN-101-2 (b = 4) 88.2 73.9 62.0
ViT-B (b = 4) 90.8 78.1 67.6

networks for classifying the image ablations used in derandomized smoothing (Section
1.2.1). Specifically, this change in architecture alone yields models with significantly
improved standard and certified accuracies. We then show how a careful selection of
smoothing parameters can enable smoothed ViTs to have even higher standard accuracies
that are comparable to typical (non-robust) models, without sacrificing much certified
performance (Section 1.2.2).

Our ImageNet and CIFAR-10 results are summarized in Table 1.1 and Table 1.2, re-
spectively. We further include the inference time to evaluate a batch of images, using the
modifications described in Section 1.3. See Appendix A.6 for extended tables covering a
wider range of experiments.

1.2.1 ViTs outperform ResNets on image ablations.

We first isolate the effect of using a ViT instead of a ResNet as the base classifier for
derandomized smoothing. Specifically, we keep all smoothing parameters fixed and only
vary the base classifier. Following Levine and Feizi [LF20a], we use column ablations of
width b = 4 for CIFAR-10 and b = 19 for ImageNet for both training and certification.

Ablation accuracy. The performance of derandomized smoothing entirely depends on
whether the base classifier can accurately classify ablated images. We thus measure the

37

2 4 6 8 10
Ablation Size (px)

40

60

80
Ab

la
tio

n
Ac

cu
ra

cy
 (%

)
(B

as
e

Cl
as

sif
ie

r)
ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

(a) CIFAR-10

15 20 25 30 35
Ablation Size (px)

30

40

50

Ab
la

tio
n

Ac
cu

ra
cy

 (%
)

(B
as

e
Cl

as
sif

ie
r)

ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

(b) ImageNet

Figure 1.3: Accuracies on column-ablated images for models on CIFAR-10 and ImageNet.
The models were trained on column ablations of width b = 19 for ImageNet and b = 4 for
CIFAR-10, and evaluated on a range of ablation sizes. ViTs outperform ResNets on image
ablations by a sizeable margin.

1 3 5 7 9 11
Patch Size (px)

0

25

50

75

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

(a) CIFAR-10

0 20 40 60 80 100
Patch Size (px)

0

20

40

60

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

(b) ImageNet

Figure 1.4: Certified accuracies for ViT and ResNet models on CIFAR-10 and ImageNet for
various adversarial patch sizes. Certification was performed using a fixed ablation of size
b = 4 for CIFAR-10 and b = 19 for ImageNet (as in [LF20a]).

accuracy of ViTs and ResNets at classifying column ablated images across a range of
evaluation ablation sizes as shown in Figure 1.3. We find that ViTs are significantly more
accurate on these ablations than comparably sized ResNets. For example, on ImageNet,
ViT-S has up to 12% higher accuracy on ablations than ResNet-50.

Certified patch robustness. We next measure the effect of improved ablation accuracy
on certified accuracy. We find that using a ViT as the base classifier in derandomized
smoothing substantially boosts certified accuracy compared to ResNets across a range
of model sizes and adversarial patch sizes, as shown in Figure 1.4. For example, against
32× 32 adversarial patches on ImageNet (2% of the image), a smoothed ViT-S improves
certified accuracy by 14% over a smoothed ResNet-50, while the larger ViT-B reaches a
certified accuracy of 39%—well above the highest reported baseline of 26% [XBS+21]1.

1The highest reported certified accuracy in the literature for this patch size on ImageNet is 26% from
PatchGuard [XBS+21]. However, this defense uses a masking technique that is optimized for this particular
patch size, and achieves 0% certified accuracy against larger patches.

38

Standard accuracy. We further find that smoothed ViTs can mitigate the precipitous drop
in standard accuracy observed in previously proposed certified defenses, particularly so
for larger architectures and datasets. Indeed, the smoothed ViT-B remains 69% accurate on
ImageNet—14.2% higher standard accuracy than that of the best performing prior work
(Table 1.1). A full comparison between the performance of smoothed models and their
non-robust counterparts can be found in Appendix A.6.

1.2.2 Ablation size matters

In the previous section, we fixed the width of column ablations at b = 19 for derandomized
smoothing on ImageNet, following [LF20a]. We now demonstrate that properly choosing
the ablation size can improve the standard accuracy even further—by 4% on ImageNet—
without sacrificing certified performance.

15 20 25 30 35
Ablation Size (px)

20

30

40

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

15 20 25 30 35
Ablation Size (px)

50

60

70

St
an

da
rd

 A
cc

ur
ac

y
(%

)
(S

m
oo

th
ed

 C
la

ss
ifi

er
) ViT-T

ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

Figure 1.5: Certified (left) and standard (right) accuracies for a collection of smoothed
models trained with a fixed ablation size b = 19 on ImageNet, and evaluated with varying
ablation sizes. Certified accuracy remains stable across a range of ablation sizes, while
standard accuracy substantially improves with larger ablations.

Specifically, we take ImageNet models trained on column ablations with width b = 19,
and change the smoothing procedure to use a different width at test time. We report the
resulting standard and certified accuracies in Figure 1.5, and defer additional experiments
on changing the ablation size during training to Appendix A.2.1.

Although Levine and Feizi [LF20a] found a steep trade-off between certified and
standard accuracy in CIFAR-10 (which we verify in Appendix A.2.2), we find this to not
be the case for ImageNet for either CNNs or ViTs. We can thus substantially increase
the ablation size to improve standard accuracy without significantly dropping certified
performance as shown in Figure 1.5. For example, increasing the width of column ablations
to b = 37 improves the standard accuracy of the smoothed ViT-B model by nearly 4%
to 73% while maintaining a 38% certified accuracy against 32× 32 patches. In addition
to being 12% higher than the standard accuracy of the best performing prior work, this
model’s standard accuracy is only 3% lower than that of a non-robust ResNet-50.

39

Thus, using smoothed ViTs, we can achieve state-of-the-art certified robustness to
patch attacks in the ImageNet setting while attaining standard accuracies that are more
comparable to those of non-robust ResNets.

1.3 Faster inference with ViTs

Derandomized smoothing with column ablations is an expensive operation, especially for
large images. Indeed, an image with h× w pixels has w column ablations, so the forward
pass of smoothed model is w times slower than a normal forward pass—two orders of
magnitude slower on ImageNet.

To address this, we first modify the ViT architecture to avoid unnecessary computa-
tion on masked pixels (Section 1.3.1). We then demonstrate that reducing the number
of ablations via striding offers further speed up (Section 1.3.2). These two (complemen-
tary) modifications vastly improve the inference time for smoothed ViTs, making them
comparable in speed to standard (non-robust) convolutional architectures.

1.3.1 Dropping masked tokens

Recall that the first operation in a ViT is to split and encode the input image as a set
of tokens, where each token corresponds to a patch in the image. However, for image
ablations, a large number of these tokens correspond to fully masked regions of the image.

Our strategy is to pass only the subset of tokens that contain an unmasked part of the
original image, thus avoiding computation on fully masked tokens. Specifically, given an
image ablation, we alter the ViT architecture to do the following steps:

1. Positionally encode the entire ablated image into a set of tokens.

2. Drop any tokens that correspond to a fully masked region of the input.

3. Pass the remaining tokens through the self-attention layers.

As one would expect, since the positional encoding maintains the spatial information of
the remaining tokens, the ViT’s accuracy on image ablations barely changes when we drop
the fully masked tokens. We defer a detailed analysis of this phenomenon, along with a
formal description of the token-dropping procedure to Appendix A.3.

40

Computational complexity. We now provide an informal summary of the computational
complexity of this procedure, and defer a formal asymptotic analysis to Appendix A.3.1.
After tokenization, the bulk of a ViT consists of two main operation types:

• Attention operators, which have costs that scale quadratically with the number of
tokens but linearly in the hidden dimension.

• Fully-connected operators, which have costs that scale linearly with the number of
tokens but quadratically in the hidden dimension.

Reducing the number of tokens thus directly reduces the cost of attention and fully
connected operators at a quadratic and linear rate, respectively. For a small number of
tokens, the linear scaling from the fully-connected operators tends to dominate. The cost
of processing column ablations thus scales linearly with the width of the column, which
we empirically validate in Figure 1.6. Further details about how we time these models can
be found in Appendix A.1.4.

20 30 40 50 60
Ablation Size (px)

0.0

0.5

Fo
rw

ar
d

Pa
ss

 T
im

e
(s

ec
)

(B
as

e
Cl

as
sif

ie
r)

ViT-T
ViT-S
ViT-B

Drop Tokens
All Tokens

Figure 1.6: The average time to compute a forward pass for ViTs on 1024 column ablated
images with varying ablation sizes, with and without dropping masked tokens. The cost
of processing a full image without dropping masked tokens corresponds to the maximum
ablation size b = 224.

1.3.2 Empirical speed-up for smoothed ViTs

Smoothed classifiers must process a large number of image ablations in order to make
predictions and certify robustness. Consequently, using our ViT (with dropped tokens) as
the base classifier for derandomized smoothing directly speeds up inference time. In this
section, we explore how much faster smoothed ViTs are in practice.

We first measure the number of images per second that smoothed ViTs and smoothed
ResNets can process. We use column ablations of size b = 19 on ImageNet, following
Levine and Feizi [LF20a]. In Table 1.3 that describes our results, we find speedups of

41

Table 1.3: Multiplicative speed up of inference for a smoothed ViT with dropped tokens
over a smoothed ResNet, measured over a batch of 1024 images with b = 19.

ResNet-18 ResNet-50 WRN-101

ViT-T 5.85x 21.96x 101.99x
ViT-S 2.85x 10.68x 49.62x
ViT-B 1.26x 4.75x 22.04x

5-22x for smoothed ViTs over smoothed ResNets of similar size, with larger architectures
showing greater gains. Notably, using our largest ViT (ViT-B) as the base classifier is
1.25x faster than using a ResNet-18, despite being 8x larger in parameter count. Dropping
masked tokens thus substantially speeds up inference time for smoothed ViTs, to the point
where using a large ViT is comparable in speed to using a small ResNet.

Strided ablations. We now consider a complementary means of speeding up smoothed
classifiers: directly reducing the size of the ablation set via strided ablations. Specifically,
instead of using every possible ablation, we can subsample every s-th ablation for a given
stride s. Striding can reduce the total number of ablations (and consequently speed up
inference) by a factor of s, without substantially hurting standard or certified accuracy
(Table 1.1). We study this in more detail in Appendix A.4.

Strided ablations, in conjunction with the dropped tokens optimization from Sec-
tion 1.3.1, lead to smoothed ViTs having inference times comparable to standard (non-
robust) models. For example, when using stride s = 10 and dropping masked tokens, a
smoothed ViT-S is only 2x slower than a single inference step of a standard ResNet-50,
while a smoothed ViT-B is only 5x slower. We report the inference time of these models,
along with their standard and certified accuracies, in Table 1.1.

42

Chapter 2

Improving transfer learning via
adversarial perturbations

In the previous chapter, we laid the groundwork by demonstrating how to create models
robust to (a specific class of) adversarial perturbations. As we move forward, this chapter
will extend that discussion, showing how such robustness is not just a security asset but
also a crucial factor in improving transfer learning [DJV+14; SAS+14].

The relevance of this discussion is underpinned by the prevailing role that transfer
learning plays in many practical settings where there is insufficient data or compute.
Broadly, transfer learning refers to any machine learning algorithm that leverages infor-
mation from one (“source”) task to better solve another (“target”) task. A prototypical
transfer learning pipeline in computer vision (and the focus of our work) starts with a
model trained on the ImageNet-1K dataset [DDS+09; RDS+15], and then refines this model
for the target task.

Though the exact underpinnings of transfer learning are not fully understood, recent
work has identified factors that make pre-trained ImageNet models amenable to transfer
learning. For example, [HAE16; KBZ+19] investigate the effect of the source dataset;
Kornblith et al. [KSL19] find that pre-trained models with higher ImageNet accuracy also
tend to transfer better; Azizpour et al. [ARS+15] observe that increasing depth improves
transfer more than increasing width.

Our contributions. In this work, we identify another factor that affects transfer learning
performance: adversarial robustness [BCM+13; SZS+14]. We find that despite being less
accurate on ImageNet, adversarially robust neural networks match or improve on the
transfer performance of their standard counterparts. We first establish this trend in the
“fixed-feature” setting, in which one trains a linear classifier on top of features extracted

43

Table 2.1: Transfer performance of robust and standard ImageNet models on 12 down-
stream classification tasks. For each transfer learning paradigm, we report accuracy
averaged over ten random trials of standard and robust models. We used a grid search
(using a disjoint set of random seets) to find the best hyperparameters, architecture, and
(for robust models) robustness level ε. In each column, we bold the entry with the higher
average accuracy; if the accuracy difference is significant (as judged by a 95% CI two-tailed
Welch’s t-test [WEL47]) we bold only the higher entry, otherwise (if the test is inconclusive)
we bold both.

Dataset

Mode Model A
irc

ra
ft

Bi
rd

sn
ap

C
IF

A
R-

10
C

IF
A

R-
10

0
C

al
te

ch
-1

01
C

al
te

ch
-2

56

C
ar

s

D
TD

Fl
ow

er
s

Fo
od

Pe
ts

SU
N

39
7

Fixed- Robust 44.24 50.75 95.50 81.16 92.54 85.16 51.35 70.38 92.05 69.32 92.08 58.80
feature Standard 38.52 48.40 81.29 60.08 90.01 82.87 44.54 70.32 91.83 65.73 91.92 56.02

Full- Robust 86.26 76.41 98.70 89.22 95.67 87.92 91.37 77.05 96.94 89.10 94.36 64.97
network Standard 86.19 75.90 97.72 86.20 94.85 86.54 91.37 76.11 97.13 88.61 94.43 63.90

from a pre-trained network. Then, we show that this trend carries forward to the more
complex “full-network” transfer setting, in which the pre-trained model is entirely fine-
tuned on the relevant downstream task. We carry out our study on a suite of image
classification tasks (summarized in Table 2.1), object detection, and instance segmentation.

Our results are consistent with (and in fact, add to) recent hypotheses suggesting
that adversarial robustness leads to improved feature representations [EIS+19b; AL20].
Still, future work is needed to confirm or refute such hypotheses, and more broadly, to
understand what properties of pre-trained models are important for transfer learning.

2.1 Background on Transfer Learning

A number of works study transfer learning with CNNs [DJV+14; CSV+14; SAS+14;
ARS+15]. Indeed, transfer learning has been studied in varied domains including med-
ical imaging [MGM18], language modeling [CK18], and various object detection and
segmentation related tasks [RHG+15; DLH+16; HRS+17; CPK+17]. In terms of meth-
ods, others [AGM14; CSV+14; GDD+14; YCB+14; ARS+15; LRM15; HAE16; CMB+16]
show that fine-tuning typically outperforms frozen feature-based methods. As discussed
throughout this chapter, several prior works [ARS+15; HAE16; KSL19; ZSS+18; KBZ+19;
SSS+17; MGR+18; YCB+14] have investigated factors improving or otherwise affecting
transfer learning performance. Recently proposed methods have achieved state-of-the-art
performance on downstream tasks by scaling up transfer learning techniques [HCB+18;

44

KBZ+19].
On the adversarial robustness front, many works—both empirical (e.g., [MMS+18;

MMK+18; BGH19; ZYJ+19]) and certified (e.g., [LAG+19; WZC+18; WK18; RSL18; CRK19;
SLR+19; YDH+20])—significantly increase model resilience to adversarial examples [BCM+13;
SZS+14]. A growing body of research has studied the features learned by these robust
networks and suggested that they improve upon those learned by standard networks
(cf. [IST+19; EIS+19b; STT+19; AL20; KSJ19; KCL19] and references). On the other hand,
prior studies have also identified theoretical and empirical tradeoffs between standard
accuracy and adversarial robustness [TSE+19; BPR19; SZC+18; RXY+19]. At the inter-
section of robustness and transfer learning, Shafahi et al. [SSZ+19] investigate transfer
learning for increasing downstream-task adversarial robustness (rather than downstream
accuracy, as in this work). Aggarwal et al. [ASK+20] find that adversarially trained models
perform better at downstream zero-shot learning tasks and weakly-supervised object
localization. Finally, concurrent to our work, [UKE+20] also study the transfer perfor-
mance of adversarially robust networks. Our studies reach similar conclusions and are
otherwise complementary: here we study a larger set of downstream datasets and tasks
and analyze the effects of model accuracy, model width, and data resolution; Utrera et
al. [UKE+20] study the effects of training duration, dataset size, and also introduce an
influence function-based analysis [KL17] to study the representations of robust networks.

2.2 Motivation: Fixed-Feature Transfer Learning

In one of the most basic variants of transfer learning, one uses the source model as a feature
extractor for the target dataset, then trains a simple (often linear) model on the resulting
features. In our setting, this corresponds to first passing each image in the target dataset
through a pre-trained ImageNet classifier, and then using the outputs from the penultimate
layer as the image’s feature representation. Prior work has demonstrated that applying
this “fixed-feature” transfer learning approach yields accurate classifiers for a variety of
vision tasks and often out-performs task-specific handcrafted features [SAS+14]. However,
we still do not completely understand the factors driving transfer learning performance.

How can we improve transfer learning? Conventional wisdom and evidence from prior
work [CSV+14; SZ15; KSL19; HRS+17] suggest that accuracy on the source dataset is
a strong indicator of performance on downstream tasks. In particular, Kornblith et al.
[KSL19] find that pre-trained ImageNet models with higher accuracy yield better fixed-
feature transfer learning results.

45

Still, it is unclear if improving ImageNet accuracy is the only way to improve perfor-
mance. After all, the behaviour of fixed-feature transfer is governed by models’ learned
representations, which are not fully described by source-dataset accuracy. These repre-
sentations are, in turn, controlled by the priors that we put on them during training. For
example, the use of architectural components [UVL17], alternative loss functions [MIM+18],
and data augmentation [VM01] have all been found to put distinct priors on the features
extracted by classifiers.

The adversarial robustness prior. In this work, we turn our attention to another prior:
adversarial robustness. Adversarial robustness refers to a model’s invariance to small (often
imperceptible) perturbations of its inputs. Robustness is typically induced at training time
by replacing the standard empirical risk minimization objective with a robust optimization
objective [MMS+18]:

min
θ

E(x,y)∼D [L(x, y; θ)] =⇒ min
θ

E(x,y)∼D

[
max
∥δ∥2≤ε

L(x + δ, y; θ)

]
, (2.1)

where ε is a hyperparameter governing how invariant the resulting “adversarially robust
model” (more briefly, “robust model”) should be. In short, this objective asks the model to
minimize risk on the training datapoints while also being locally stable in the (radius-ε)
neighbourhood around each of these points. (A more detailed primer on adversarial
robustness is given in Appendix B.4.)

Adversarial robustness was originally studied in the context of machine learning secu-
rity [BCM+13; BR18; CW17] as a method for improving models’ resilience to adversarial
examples [GSS15; MMS+18]. However, a recent line of work has studied adversarially
robust models in their own right, casting (2.1) as a prior on learned feature representa-
tions [EIS+19b; IST+19; JBZ+19; ZZ19].

Should adversarial robustness help fixed-feature transfer? It is, a priori, unclear what
to expect from an “adversarial robustness prior” in terms of transfer learning. On one
hand, robustness to adversarial examples may seem somewhat tangential to transfer
performance. In fact, adversarially robust models are known to be significantly less
accurate than their standard counterparts [TSE+19; SZC+18; RXY+19; Nak19], suggesting
that using adversarially robust feature representations should hurt transfer performance.

On the other hand, recent work has found that the feature representations of robust
models carry several advantages over those of standard models. For example, adversar-
ially robust representations typically have better-behaved gradients [TSE+19; STT+19;

46

ZZ19; KCL19] and thus facilitate regularization-free feature visualization [EIS+19b] (cf.
Figure 2.1a). Robust representations are also approximately invertible [EIS+19b], meaning
that unlike for standard models [MV15; DB16], an image can be approximately recon-
structed directly from its robust representation (cf. Figure 2.1b). More broadly, Engstrom
et al. [EIS+19b] hypothesize that by forcing networks to be invariant to signals that humans
are also invariant to, the robust training objective leads to feature representations that are
more similar to what humans use. This suggests, in turn, that adversarial robustness might
be a desirable prior from the point of view of transfer learning.

(a) Perceptually aligned gradients (b) Representation invertibility

Figure 2.1: Adversarially robust (top) and standard (bottom) representations: robust
representations allow (a) feature visualization without regularization; (b) approximate
image inversion by minimizing distance in representation space. Figures reproduced from
Engstrom et al. [EIS+19b].

Experiments. To resolve these two conflicting hypotheses, we use a test bed of 12
standard transfer learning datasets (all the datasets considered in [KSL19] as well as
Caltech-256 [GHP07]) to evaluate fixed-feature transfer on standard and adversarially
robust ImageNet models. We considere four ResNet-based architectures (ResNet-{18,50},
WideResNet-50-x{2,4}), and train models with varying robustness levels ε for each architec-
ture (for the full experimental setup, see Appendix B.1).

In Figure 2.2, we compare the downstream transfer accuracy of a standard model to that
of the best robust model with the same architecture (grid searching over ε1). The results
indicate that robust networks consistently extract better features for transfer learning than
standard networks—this effect is most pronounced on Aircraft, CIFAR-10, CIFAR-100,
Food, SUN397, and Caltech-101. Due to computational constraints, we could not train
WideResNet-50-4x models at the same number of robustness levels ε, so a coarser grid was
used. It is thus likely that a finer grid search over ε would further improve results (we
discuss the role of ε in more detail in Section 2.4.3).

1To ensure a fair comparison (i.e., that the gains observed are not an artifact of training many random
robust models), we first use a set of random seeds to select the best ε level, and then calculate the perfomance
for just that ε using a separate set of random seeds.

47

35

40

45
Aircraft

45

50

Birdsnap

80

90

CIFAR-10

60

80
CIFAR-100

85

90

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

80

85
Caltech-256

45

50

Cars

65

70

DTD

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

90.0

92.5

Flowers

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
60

70
Food

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
87.5
90.0
92.5

Pets

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
50

60
SUN397

Mode
std
robust

Figure 2.2: Fixed-feature transfer learning results using standard and robust models for
the 12 downstream image classification tasks considered. Following [KSL19], we record
re-weighted accuracy for the unbalanced datasets, and raw accuracy for the others (cf.
Appendix B.1). Error bars denote one standard deviation computed over ten random trials.

2.3 Adversarial Robustness and Full-Network Fine Tuning

A more expensive but often better-performing transfer learning method uses the pre-
trained model as a weight initialization rather than as a feature extractor. In this “full-
network” transfer learning setting, we update all of the weights of the pre-trained model
(via gradient descent) to minimize loss on the target task. Kornblith et al. [KSL19] find that
for standard models, performance on full-network transfer learning is highly correlated
with performance on fixed-feature transfer learning. Therefore, we might hope that the
findings of the last section (i.e., that adversarially robust models transfer better) also
carry over to this setting. To resolve this conjecture, we consider three applications of
full-network transfer learning: image classification (i.e., the tasks considered in Section 2.2),
object detection, and instance segmentation.

Downstream image classification We first recreate the setup of Section 2.2: we perform
full-network transfer learning to adapt the robust and non-robust pre-trained ImageNet
models to the same set of 12 downstream classification tasks. The hyperparameters for
training were found via grid search (cf. Appendix B.1). Our findings are shown in
Figure 2.3—just as in fixed-feature transfer learning, robust models match or improve on
standard models in terms of transfer learning performance.

Object detection and instance segmentation It is standard practice in data-scarce object
detection or instance segmentation tasks to initialize earlier model layers with weights
from ImageNet-trained classification networks. We study the benefits of using robustly

48

80

85

Aircraft

70
75

Birdsnap

95

100 CIFAR-10

80

90
CIFAR-100

90

95

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

80

90 Caltech-256

87.5
90.0
92.5

Cars

70

75

DTD

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

95.0

97.5

Flowers

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

85

90
Food

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
90

95
Pets

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

60

65
SUN397

Mode
std
robust

Figure 2.3: Full-network transfer learning results using standard and robust models for
the 12 downstream image classification tasks considered. Following [KSL19], we record
re-weighted accuracy for the unbalanced datasets, and raw accuracy for the others (cf.
Appendix B.1). Error bars denote one standard deviation computed with ten random
trials.

trained networks to initialize object detection and instance segmentation models, and find
that adversarially robust networks consistently outperform standard networks.

We evaluate with benchmarks in both object detection (PASCAL Visual Object Classes
(VOC) [EVW+10] and Microsoft COCO [LMB+14]) and instance segmentation (Microsoft
COCO). We train systems using default models and hyperparameter configurations from
the Detectron2 [WKM+19] framework (i.e., we do not perform any additional hyperpa-
rameter search). Appendix B.3 describes further experimental details and more results.

We first study object detection. We train Faster R-CNN FPN [LDG+17] models with
varying ResNet-50 backbone initializations. For VOC, we initialize with one standard
network, and twelve adversarially robust networks with different values of ε. For COCO,
we only train with three adversarially robust models (due to computational constraints).
For instance segmentation, we train Mask R-CNN FPN models [HGD+17] while varying
ResNet-50 backbone initialization. We train three models using adversarially robust
initializations, and one model from a standardly trained ResNet-50. Figure 2.4 summarizes
our findings: the best robust backbone initializations outperform standard models.

2.4 Analysis and Discussion

Our results from the previous section indicate that robust models match or improve on the
transfer learning performance of standard ones. In this section, we take a closer look at the
similarities and differences in transfer learning between robust networks and standard
networks.

49

0.0 0.1 0.2 0.3 0.4 0.5
2-Robustness Epsilon

38

40
AP

COCO InstSeg

Box AP
Mask AP

0.0 0.1 0.2 0.3 0.4 0.5
2-Robustness Epsilon

39.6

39.8

40.0

COCO ObjDet

0.0 0.1 0.2 0.3 0.4 0.5
2-Robustness Epsilon

52.5
53.0
53.5

VOC ObjDet

Task
Box AP Mask AP

Standard Robust Standard Robust

VOC Object Detection 52.80 53.87 — —
COCO Object Detection 39.80± 0.08 40.07± 0.10 — —
COCO Instance Segmentation 40.67± 0.06 40.91± 0.15 36.92± 0.08 37.08± 0.10

Figure 2.4: AP of instance segmentation and object detection models with backbones
initialized with ε-robust models before training. Robust backbones generally lead to better
AP, and the best robust backbone always outperforms the standardly trained backbone for
every task. COCO results averaged over four runs due to computational constraints; ±
represents standard deviation.

2.4.1 ImageNet accuracy and transfer performance

In Section 2.2, we discussed a potential tension between the desirable properties of robust
network representations (which we conjectured would improve transfer performance) and
the decreased accuracy of the corresponding models (which, as prior work has established,
should hurt transfer performance). We hypothesize that robustness and accuracy have
counteracting yet separate effects: that is, higher accuracy improves transfer learning for
a fixed level of robustness, and higher robustness improves transfer learning for a fixed
level of accuracy.

To test this hypothesis, we first study the relationship between ImageNet accuracy and
transfer accuracy for each of the robust models that we trained. Under our hypothesis, we
should expect to see a deviation from the direct linear accuracy-transfer relation observed
by [KSL19], due to the confounding factor of varying robustness. The results (cf. Figure 2.5;
similar results for full-network transfer in Appendix B.5) support this. Indeed, we find that
the previously observed linear relationship between accuracy and transfer performance is
often violated once robustness aspect comes into play.

In even more direct support of our hypothesis (i.e., that robustness and ImageNet
accuracy have opposing yet separate effects on transfer), we find that when the robustness
level is held fixed, the accuracy-transfer correlation observed by prior works for standard
models actually holds for robust models too. Specifically, we train highly robust (ε = 3)—
and thus less accurate—models with six different architectures, and compared ImageNet

50

35

40
Aircraft

30

40

Birdsnap

80

90
CIFAR-10

60

70

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

80

85

90 Caltech-101

65
70
75

Caltech-256

30

40

Cars

55
60
65

DTD

80

85

90
Flowers

50 60 70

50

55

60
Food

50 60 70
ImageNet Accuracy (%)

70

80

90
Pets

50 60 70

45

50
SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(a) ResNet-18

38

40

42
Aircraft

30

40

50 Birdsnap

80

90

CIFAR-10

60

70

80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

85

90
Caltech-101

75

80

Caltech-256

40

45

Cars

60
65
70

DTD

85

90
Flowers

60 70
55

60

65
Food

60 70
ImageNet Accuracy (%)

80

90
Pets

60 70

50

55
SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(b) ResNet-50

35

40

Aircraft

35
40
45

Birdsnap

85
90
95

CIFAR-10

60

80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

87.5

90.0

Caltech-101

75

80

Caltech-256

40

45

Cars

60

70
DTD

85

90

Flowers

60 65 70 75

60

65
Food

60 65 70 75
ImageNet Accuracy (%)

80

90
Pets

60 65 70 75

50

55
SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(c) WRN-50-2

37.5
40.0
42.5

Aircraft

40

50
Birdsnap

80

90

CIFAR-10

60

70

80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

90

92
Caltech-101

80

85
Caltech-256

40

45

50
Cars

60

65

70
DTD

85.0
87.5
90.0

Flowers

65 70 75

60

65

Food

65 70 75
ImageNet Accuracy (%)

85

90

Pets

65 70 75
50

55

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(d) WRN-50-4

Figure 2.5: Fixed-feature transfer accuracies of standard and robust ImageNet models
to various image classification datasets. The linear relationship between ImageNet and
transfer accuracies does not hold. Full numerical results (i.e., in tabular form) are available
in Appendix B.6.

accuracy against transfer learning performance. Table 2.2 shows that for these models
improving ImageNet accuracy improves transfer performance at around the same rate as
(and with higher R2 correlation than) standard models.

These observations suggest that transfer learning performance can be further improved
by applying known techniques that increase the accuracy of robust models (e.g. [BGH19;
CRS+19]). More broadly, our findings also indicate that accuracy is not a sufficient measure
of feature quality or versatility. Understanding why robust networks transfer particularly
well remains an open problem, likely relating to prior work that analyses the features these
networks use [EIS+19b; SSZ+19; AL20].

2.4.2 Robust models improve with width

Our experiments also reveal a contrast between robust and standard models in how
their transfer performance scales with model width. Azizpour et al. [ARS+15], find that

51

Table 2.2: Source (ImageNet) and target (CIFAR-10) accuracies, fixing robustness (ε) but
varying architecture. When robustness is controlled for, ImageNet accuracy is highly
predictive of transfer performance. Similar trends for other datasets are shown in Ap-
pendix B.5.

Architecture (see details in Appendix B.1.1)

Robustness Dataset A B C D E F R2

Std (ε = 0) ImageNet 77.37 77.32 73.66 65.26 64.25 60.97 —
CIFAR-10 97.84 97.47 96.08 95.86 95.82 95.55 0.79

Adv (ε = 3) ImageNet 66.12 65.92 56.78 50.05 42.87 41.03 —
CIFAR-10 98.67 98.22 97.27 96.91 96.23 95.99 0.97

although increasing network depth improves transfer performance, increasing width hurts
it. Our results corroborate this trend for standard networks, but indicate that it does
not hold for robust networks, at least in the regime of widths tested. Indeed, Figure 2.6
plots results for the three widths of ResNet-50 studied here (x1, x2, and x4), along with a
ResNet-18 for reference: as width increases, transfer performance plateaus and decreases
for standard models, but continues to steadily grow for robust models. This suggests
that scaling network width may further increase the transfer performance gain of robust
networks over the standard ones. (This increase comes, however, at a higher computational
cost.)

37.5
40.0
42.5

Aircraft

35
40
45

Birdsnap

80

90

CIFAR-10

60
70
80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

85

90

Caltech-101

70

80

Caltech-256

35
40
45

Cars

60

70
DTD

85

90

Flowers

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

55
60
65

Food

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

80

90
Pets

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
45

50

55
SUN397

0.0
1.0
3.0

(a) Fixed-feature transfer

80

85
Aircraft

70

75
Birdsnap

97

98

CIFAR-10

82.5
85.0
87.5

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

90

95
Caltech-101

75

80

85
Caltech-256

87.5

90.0

Cars

65

70

75
DTD

94

96

Flowers

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

85.0

87.5

Food

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
85

90

Pets

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
55

60

65
SUN397

0.0
1.0
3.0

(b) Full-network transfer

Figure 2.6: Varying width and model robustness while transfer learning from ImageNet to
various datasets. Generally, as width increases, transfer learning accuracies of standard
models generally plateau or level off while those of robust models steadily increase. More
values of ε are in Appendix B.5.

52

2.4.3 Optimal robustness levels for downstream tasks

We observe that although the best robust models often outperform the best standard
models, the optimal choice of robustness parameter ε varies widely between datasets. For
example, when transferring to CIFAR-10 and CIFAR-100, the optimal ε values were 3.0
and 1.0, respectively. In contrast, smaller values of ε (smaller by an order of magnitude)
tend to work better for the rest of the datasets.

One possible explanation for this variability in the optimal choice of ε might relate
to dataset granularity. We hypothesize that on datasets where leveraging finer-grained
features are necessary (i.e., where there is less norm-separation between classes in the
input space), the most effective values of ε will be much smaller than for a dataset where
leveraging more coarse-grained features suffices. To illustrate this, consider a binary
classification task consisting of image-label pairs (x, y), where the correct class for an
image y ∈ {0, 1} is determined by a single pixel, i.e., x0,0 = δ · y, and xi,j = 0, otherwise.
We would expect transferring a standard model onto this dataset to yield perfect accuracy
regardless of δ, since the dataset is perfectly separable. On the other hand, a robust model
is trained to be invariant to perturbations of norm ε—thus, if δ < ε, the dataset will not
appear separable to the standard model and so we expect transfer to be less successful. So,
the smaller the δ (i.e., the larger the “fine grained-ness” of the dataset), the smaller the ε

must be for successful transfer.

Unifying dataset scale. We now present evidence in support of our above hypothesis.
Although we lack a quantitative notion of granularity (in reality, features are not simply
singular pixels), we consider image resolution as a crude proxy. Since we scale target
datasets to match ImageNet dimensions, each pixel in a low-resolution dataset (e.g., CIFAR-
10) image translates into several pixels in transfer, thus inflating datasets’ separability.
Drawing from this observation, we attempt to calibrate the granularities of the 12 image
classification datasets used in this work, by first downscaling all the images to the size
of CIFAR-10 (32× 32), and then upscaling them to ImageNet size once more. We then
repeat the fixed-feature regression experiments from prior sections, plotting the results
in Figure 2.7 (similar results for full-network transfer are presented in Appendix B.5).
After controlling for original dataset dimension, the datasets’ epsilon vs. transfer accuracy
curves all behave almost identically to CIFAR-10 and CIFAR-100 ones. Note that while this
experimental data supports our hypothesis, we do not take the evidence as an ultimate
one and further exploration is needed to reach definitive conclusions.

53

20
25

Aircraft

15

20

Birdsnap

80

90

CIFAR-10

60

80
CIFAR-100

60

80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

50

60
Caltech-256

15

20

25
Cars

42

44
DTD

60 70

70

75

Flowers

60 70
 ImageNet Accuracy (%)

40

45
Food

60 70

60

70
Pets

60 70
25

30

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

Figure 2.7: Fixed-feature transfer accuracies of various datasets that are down-scaled to
32× 32 before being up-scaled again to ImageNet scale and used for transfer learning. The
accuracy curves are closely aligned, unlike those of Figure 2.5, which illustrates the same
experiment without downscaling.

2.4.4 Comparing adversarial robustness to texture robustness

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Robustness of ImageNet Model ()

8

10

Te
st

 A
cc

ur
ac

y

 o
n

SI
N

(%
)

Model
ResNet-18
ResNet-50

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Robustness of ImageNet Model ()

50

55

Tr
an

sf
er

 A
cc

ur
ac

y
 to

 S
IN

 (%
)

Model
ResNet-18
ResNet-50

(a) Stylized ImageNet Transfer

Aircra
ft
Birdsnap

CIFAR-10

CIFAR-100

Caltech-101

Caltech-256Cars DTD
Flowers Food Pets

SUN397
0

20

40

60

80

100

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Training Mode
Stylized
Standard
Robust

(b) Transfer to Standard Datasets using a ResNet-50

Figure 2.8: We compare standard, stylized and robust ImageNet models on standard
transfer tasks (and to stylized ImageNet).

We now investigate the effects of adversarial robustness on transfer learning perfor-
mance in comparison to other invariances commonly imposed on deep neural networks.
Specifically, we consider texture-invariant [GRM+19] models, i.e., models trained on the
Stylized ImageNet (SIN) [GRM+19] dataset. Figure 2.8b shows that transfer learning from
adversarially robust models outperforms transfer learning from texture-invariant models
on all considered datasets.

Finally, we use the SIN dataset to further re-inforce the benefits conferred by adversarial
robustness. Figure 2.8a top shows that robust models outperform standard imagenet
models when evaluated (top) or fine-tuned (bottom) on Stylized-ImageNet.

54

Chapter 3

Unadversarial examples: Designing
objects for robust vision

Up to this point, we have largely viewed adversarial examples as a vulnerability that
compromises the reliability of ML systems. However, a different perspective suggests that
these examples actually highlight a deeper issue: a fundamental misalignment between
humans and ML models. Indeed, Ilyas et al. [IST+19] show that ML models fundamentally
rely on non-robust features that humans do not. Their results indicate that while such
features are extremely brittle, they are still useful in classification. In this chapter and the
next one, we demonstrate that we can leverage these—seemingly bad—non robust features
to enhance the trustworthiness of ML models. We initiate this line work by illustrating
how to employ these non-robust features in designing objects that ML models can easily
and robustly recognize, even under distribution shift.

Indeed, performing reliably on unseen or shifting data distributions is a difficult chal-
lenge for modern computer vision systems. For example, slight rotations and translations
of images suffice to reduce the accuracy of state-of-the-art classifiers [ETT+19; ALG+19;
KMF18]. Similarly, models that attain near human-level performance on benchmarks
exhibit significantly degraded performance when faced with even mild image corruptions
and transformations [HD19; KSH+19]. In fact, when an adversary is allowed to modify in-
puts directly, standard vision models can be manipulated into predicting arbitrary outputs
(cf. adversarial examples [BCM+13; SZS+14]). While robustness interventions and additional
training data can improve out-of-distribution behavior, they do not fully close the gap
between model performance on standard heldout data and on corrupted/otherwise unfa-
miliar data [TDS+20; HBM+20]. The situation is worse still when test-time distribution is
under- or mis-specified, which occurs commonly in practice.

55

How can we change this state of affairs? We propose a new approach to image recogni-
tion in the face of unforeseen corruptions or distribution shifts. This approach is rooted
in a reconsideration of the problem setup itself. Specifically, we observe that in many
situations, a system designer actually controls, to some extent, the inputs that are fed into
that model. For example, a drone operator seeking to train a landing pad detector can
modify the surface of the landing pad; and, a roboticist training a perception model to
recognize a small set of custom objects can slightly alter the texture or design of these
objects.

Clean Foggy Dusty
Unadversarial Jet

Human-designed Jet

Figure 3.1: We demonstrate that optimizing objects (e.g., the pictured jet) for pre-trained
neural networks can boost performance and robustness on computer vision tasks. Here, we
show an example of classifying an unadversarial jet and a standard jet using a pretrained
ImageNet model. The model correctly classifies the unadversarial jet even under bad
weather conditions (e.g., foggy or dusty), whereas it fails to correctly classify the standard
jet.

We find that such control over inputs can be leveraged to drastically improve our ability
to tackle computer vision tasks. In particular, it allows us to turn the input-sensitivity of
modern vision systems from a weakness into a strength. Instead of optimizing inputs to
mislead models (e.g., as in adversarial examples), we can alter inputs to reinforce correct
behavior, yielding what we refer to as “unadversarial examples.” Indeed, we show that
even a simple gradient-based algorithm can successfully construct unadversarial examples
in a variety of vision settings and demonstrate that, by optimizing objects for vision systems
(rather than vice-versa), we can significantly improve both in-distribution performance
and robustness to unforeseen data shifts and corruptions.

We demonstrate the efficacy of our methods on both standard benchmarks (CIFAR, Im-
ageNet) and robustness-based benchmarks (ImageNet-C, CIFAR-C) while also comparing
them to a broad set of baselines (e.g., QR codes or heuristically designed patches). To fur-
ther highlight the practicality of our framework, we (a) extend our methods to designing

56

the texture of three-dimensional objects (rather than patches); (b) deploy unadversarial
examples in a simulated drone setting; and (c) ensure that the performance improvement
yielded by the objects we design actually transfer to the physical world.

3.1 Motivation and approach

While vision models tend to perform well on held-out data drawn from the same distribu-
tion as the training data, out-of-distribution inputs can severely degrade this performance.
For example, models behave unreliably under distribution shifts induced by new data
collection procedures [RRS+19; EIS+20; TE11], synthetic corruptions [HD19; KSH+19],
spatial transformations [ETT+19; FF15], as well as under other types of shift.

Given a fixed type of distribution shift, a standard approach to increasing model
robustness is to explicitly train on or regularize with data from the corresponding antici-
pated test distribution [KSH+19]. For example, Engstrom et al. [ETT+19] find that vision
models trained on worst-case rotations and translations end up being fairly robust to
rotation and translation-based distribution shifts. However, this approach is not without
shortcomings—for example, Kang et al. [KSH+19] find that training CIFAR classification
models that are robust to JPEG-compression in this manner requires a significant sacri-
fice in natural accuracy. Recent works make similar observations in the context of other
distribution shift mechanisms like ℓp adversaries [TSE+19; SZC+18; RXY+19] or texture
swapping [GRM+19].

These observations give rise to a more general question: given that performing reliably
in the face of constrained, well-specified distribution shifts is already a difficult challenge,
how can we attain robustness to broad, unforeseen distribution shifts?

3.1.1 Leveraging more controlled vision settings

Consider the vision tasks of detecting a landing pad from a drone, or classifying manu-
facturing components from a factory robot. In both these tasks, reliable in-distribution
performance is a necessity; still, a number of possible distribution shifts may occur at
deployment time. For example, the drone might approach the landing pad at an atypical
angle, or have a view obstructed by snow, smoke, or rain. Similarly, the factory robot may
encounter objects in unfamiliar poses, or could be equipped with only a low-quality/noisy
camera.

At first glance, dealing with these issues seems to require tackling the difficult problem
of general distribution shift robustness discussed earlier in this section. However, there

57

is in fact a critical distinction between the scenarios considered above and vision tasks in
their full generality. In particular, in these scenarios and many others, the system designer
has control over the physical objects that the model operates on. For instance, the designer
of the drone’s landing algorithm could paint the landing pad bright yellow. A machine
learning model trained to detect this custom landing pad might then be more effective than
a model trained to detect a standard grey pad, especially in low-visibility conditions. Still,
the particular choice to paint the landing pad yellow is rather ad hoc, and likely rooted in
the way humans recognize objects. Meanwhile, an abundance of prior work (e.g., [JBZ+19;
GRM+19; JLT18; IST+19]) demonstrates that humans and machine learning models tend
to use different sets of features to make their decisions. This suggests that rather than
relying on human priors, we should instead be asking: how can we build objects that are
easily detectable by machine learning models?

3.1.2 Unadversarial examples

The task of making inputs less recognizable by computer vision systems has been a focus
of research in adversarial examples. Adversarial examples are small, carefully constructed
perturbations to natural images that can induce arbitrary (mis)behavior from machine
learning models [BCM+13; SZS+14]. These perturbations are typically constructed as the
result of an optimization problem that maximizes the loss of a machine learning model
with respect to the input, i.e., by solving the optimization problem

δadv = arg max
δ∈∆

L(fθ(x + δ), y), (3.1)

where fθ is a parameterized model (e.g., a neural network with weights θ); x is a natural
input; y is the corresponding correct label; L is the loss function used to train θ (e.g.,
cross-entropy loss) and ∆ is a class of permissible perturbations (e.g., norm-bounded
perturbations: ∆ = {δ : ∥δ∥p ≤ ϵ} for some small ϵ > 0). Adversarial perturbations are
typically crafted via projected gradient descent (PGD) [Nes03] in input space, a standard
iterative first-order optimization method—prior work in adversarial examples has shown
that even a few iterations of PGD suffice to completely change the prediction of many
state-of-the-art machine learning systems [MMS+18].

From adversarial examples to unadversarial objects. The goal of this work is to modify
the design of objects so that they are more easily recognizable by computer vision systems.
If we could specify every pixel of every image that a model encounters at test time, we

58

could draw on the effectiveness of adversarial examples, and construct image perturbations
(using PGD) that minimize the loss of the system, e.g.,

δunadv = arg min
δ∈∆

L(θ; x + δ, y). (3.2)

In our setting of interest, however, having such fine-grained access to the test inputs is
unrealistic (presumably, if we had precise control over every pixel in the input, we could
just directly encode the ground-truth label directly in it). Instead, we have limited control
over some physical objects; these objects are in turn captured within images, affected
by many signals that are out of our control, such as camera artifacts, weather effects, or
background scenery.

It turns out that we can still draw on techniques from adversarial examples research in
this limited-control setting. Specifically, a recent line of work [KGB17; SBB+16; EEF+18a;
AEI+18] concerns itself with constructing robust adversarial examples [AEI+18], i.e., physi-
cally realizable objects that act as adversarial examples when introduced into a scene in
any one of a variety of ways. For example, Sharif et al. [SBB+16] design glasses frames
that cause facial recognition models to misclassify faces, Athalye et al. [AEI+18] design
custom-textured 3D models that are misclassified by state-of-the-art ImageNet classifiers
from many angles and viewpoints, and [BMR+18] design adversarial patches: stickers
that can be placed anywhere on objects causing them to be misclassified. In this chap-
ter, we leverage the techniques developed in the above line of work to construct robust
un-adversarial objects—physically realizable objects optimized to minimize (rather than
maximize) the loss of a target classifier. In the next section, we will more concretely discuss
our methods for generating unadversarial objects, then outline our evaluation setup.

3.1.3 Constructing unadversarial objects

In the previous section, we identified a class of scenarios where a system designer can,
to some extent, control the objects that a machine learning system model operates on. In
these settings, we motivated so-called unadversarial examples as a potential way to boost
models’ overall performance and robustness to distribution shifts. In this section, we
present and illustrate two concrete algorithms for constructing unadversarial examples:
unadversarial patches and unadversarial textures. In the former, we design a sticker or
“patch” [BMR+18] that can be placed on the object; in the latter, we design the 3D texture of
the object (in a similar manner to the texture-based adversarial examples of Athalye et al.
[AEI+18]). Example results from both techniques are shown in Figure 3.2. For simplicity,

59

(a) An example unadversarial
patch designed for the “tiger”
class.

(b) An example unadversarial texture designed for a jet 3D
mesh (class “warplane”) and applied to rendered city back-
grounds.

Figure 3.2: Examples of the two considered methods for constructing unadversarial objects.

we will assume that the task being performed is image classification, but the techniques
are directly applicable to other tasks as well. In all cases, we require access to a pre-trained
model for the dataset of interest.

Unadversarial patches. To train unadversarial patches (cf. Figure 3.2a), in addition to
the pre-trained model, we require sample access to image-label pairs from the dataset
of interest. At each iteration, we sample an image-label pair (x, y) from a training set,
and place the patch corresponding to class y onto the image with random orientation and
position1. Since placing the patch is an affine transformation, after each iteration we can
compute the gradient of the model’s loss with respect to the pixels in the patch, and take
a negative gradient step on the patch parameters. The algorithm terminates when the
model’s loss on sticker-boosted images plateaus, or after a fixed number of iterations.

Unadversarial textures. To train unadversarial textures (cf. Figure 3.2b), we do not require
sample access to the dataset, but instead a set of 3D meshes for each class of objects that we
would like to augment, as well as a set of background images that we can use to simulate
sampling a scene (these can be images from the dataset of interest, solid-color backgrounds,
random patterns, etc.).

For each 3D mesh, our goal is to optimize a 2D texture which improves classifier perfor-
mance when mapped onto the mesh. At each iteration, we sample a mesh and a random
background; we then use a 3D renderer (Mitsuba [NVZ+19]) to map the corresponding
texture onto the mesh. We overlay the rendering onto a random background image, and
then feed the resulting composed image into the pre-trained classifier, with the label being
that of the sampled 3D mesh. Since rendering is typically non-differentiable, we use a
linear approximation of the rendering process (cf. Athalye et al. [AEI+18]) in order to
compute (this time approximate) gradients of the model’s loss with respect to the utilized

1We allow the patch to be placed anywhere as a matter of convenience: ideally we would only be applying
the patch onto the main object itself, but this would require bounding box data that we do not have for most
classification datasets.

60

texture. From there, we apply the same SGD algorithm as we did for the patch case.

3.2 Experimental evaluation

In order to determine the effectiveness of our proposed framework, we evaluate against a
suite of computer vision tasks. Below, we first provide some detail on the precise access
model and baselines that will be considered. We then briefly outline the experimental
setup of each task, and show that unadversarial objects consistently improve the perfor-
mance and robustness of the vision systems tested. For a more detailed account of each
experimental setup, see Appendix C.2.

3.2.1 Access model and baselines

In many of the settings discussed thus far, a system designer can alter the objects being
recognized but is not allowed to alter the the classifier itself. That is, we are optimizing
unadversarial objects for a fixed (pre-trained) model. For instance, a road engineer may
wish to design road signs that are easier to recognize for autonomous vehicles, without
being able to train or alter the machine learning models that operate the vehicles. Similarly,
a roboticist might want to design a landing pad that works better for a commercial (pre-
trained) drone. We will refer to this setting as the fixed-model setting. On the other hand,
sometimes the same entity is able to train both the model and the transformations (the
discussed factory robot example may fall into this category, for example). In this “free-
model” setting, one may be able to boost performance by co-designing the machine learning
model and the objects of interest.

In this work, we will focus on designing unadversarial examples in the fixed-model
setting, for the sake of both simplicity and applicability. In particular, any valid algorithm
under a fixed-model assumption is also a valid algorithm under the co-design assumption
(but the converse is not true). This leaves the task of leveraging even more control in joint
optimization settings as a potential avenue for future work.

Baselines. Since we consider the fixed-model setting throughout our chapter, the only
truly comparable baselines are those which do not alter the model being trained. Nonethe-
less, in order to fully contextualize our results, we will also consider a few baselines that
fall outside of our intended access model (e.g., QR codes). A notable disadvantage of these
baselines (that we do not explicitly demonstrate below) is that if the “unadversarial signal”
(e.g., the QR code) is occluded or removed, the entire system fails; this is in contrast to the

61

Figure 3.3: Clean (left) and corresponding corrupted (right) ImageNet images augmented
with an unadversarial patch—we use such images to evaluate the efficacy of unadversarial
patches in Section 3.2.2.

1 5 20 45
Patched Portion
 of the Image (%)

0

50

100

Ac
cu

ra
cy

 (%
) Clean

(a) Performance on Ima-
geNet

0

50

100

Ac
cu

ra
cy

 (%
)

Brightness Contrast Defocus Blur Elastic Transform Fog

0

50

100

Ac
cu

ra
cy

 (%
)

Frost Gaussian Noise Glass Blur Impulse Noise JPEG Compression

1 5 20 45
0

50

100

Ac
cu

ra
cy

 (%
)

Motion Blur

1 5 20 45

Pixelate

1 5 20 45
Patched Portion of the Image (%)

Shot Noise

1 5 20 45

Snow

1 5 20 45

Zoom Blur

(b) Performance on synthetically corrupted data (ImageNet-C)

Figure 3.4: Accuracy on (a) clean ImageNet images and (b) synthetically corrupted
ImageNet-C images as a function of patch size (given as a percentage of image area).
In (b), each bar denotes the average accuracy over the five severities in ImageNet-C, and
the horizontal dashed lines report the accuracy on the original (non-patched) datasets. Un-
adversarial patches consistently boost performance for both clean and corrupted images,
with accuracy monotonically increasing with patch size. The patches were trained without
any corruptions or non-standard data augmentation in-the-loop (we train with the same
augmentations that the pre-trained model itself was trained with).

fixed-model setting, where the pre-trained model is able to recognize objects without any
unadversarial signals and is instead “boosted” by their presence.

3.2.2 Clean data and synthetic corruptions

We first test whether unadversarial examples improve the performance of image classifiers
on benchmark datasets. Using the algorithm described in Section 3.1.3, we construct
unadversarial patches of varying size for pre-trained ResNet-50 classifiers on the CIFAR
[Kri09] and ImageNet [RDS+15] datasets. For evaluation, we add these patches at random

62

positions, scales, and orientations to validation set images (see Appendix C.2 for the exact
protocol). As shown in Figure 3.3a, the pre-trained ImageNet classifier is consistently
more accurate on the augmented ImageNet images. For example, an unadversarial patch
20 times smaller than ImageNet images boosts accuracy by 26.3% (analogous results for
CIFAR are given in Appendix C.3).

Robustness to synthetic corruptions. Next, we use the CIFAR-C and ImageNet-C
datasets [HD19] (consisting of the CIFAR and ImageNet validation sets corrupted in
15 systematic ways) to see whether the addition of unadversarial patches to images confers
any corruption robustness.

We use the same patches and evaluation protocol that we used when looking at clean
data (to ensure a fair evaluation, we apply corruptions to boosted images only after the
unadversarial patches have been applied). As a consequence, at test time neither model nor
patch has been exposed to any image corruptions beyond standard data augmentation. As
a result, this experiment tests the ability for unadversarially boosted images to withstand
completely unforeseen corruptions; we also avoid any potential biases from training
on (and thus “overfitting” to [KSH+19]) a specific type of corruption. The results (cf.
Figure 3.3b for ImageNet and Appendix C.3 for CIFAR) indicate that unadversarial patches
do improve performance across corruption types; for example, applying an unadversarial
patch 5% the size of a standard ImageNet image boosts accuracy by an average of 31.7%
points across corruptions 2.

The model does not ignore the image in the presence of unadversarial patches. Recall
from our discussion of the fixed-model setting in Section 3.2.1 that an advantage of
designing unadversarial objects without changing the model is that the model still works
in the absence of the unadversarial signal. We now briefly explore the case where the
model is exposed to an unadversarial signal for the wrong class. Ideally, we would want
the patch to only assist/boost the signal from the original image—in particular, we do not
want the patch to make the model totally ignore the contents of the image itself. Thus, in
cases where the signal from the image and the patch conflict, we would like the classifier
to predict according to the features present in the image more frequently than the class
encoded in the unadversarial patch.

2Since the original corruption benchmarks proposed by [HD19] are only available as pre-computed JPEGs
(for which we cannot apply a patch pre-corruption) or CPU-based Python image operations (which were
prohibitively slow), we re-implemented all 15 corruptions as batched GPU operations; we verified that
model accuracies on our corruptions mirrored the original CPU counterparts (i.e., within 1% accuracy). For
more details about our reimplementation, see our code release.

63

1 2 3 4 5 6 7 8 9 10
CIFAR-10 class ID

0

50

100

Ac
cu

ra
cy

 (%
)

Patch-based
Class-based
Patch and class match

Figure 3.5: The accuracy of a pretrained ResNet-50 on boosted CIFAR-10 when the image
and the unadversarial patch used to boost the image have: (1) same class, (2) conflicting
classes. For the conflicting classes setting, we report the accuracies based on the class of
the patch (red bars), and those based on the class of the image (blue bars). When there is a
conflicting signal between the patch and the image, the model relies more on the image.

Indeed, this turns out to be the case. Figure 3.5 shows that on CIFAR-10, when the signal
from an unadversarial patch and the image itself conflict, the model predicts according to
the patch only 31.2% of the time on average, and according to the image 60.3% of the time
(the accuracy of the model when the patch and image agree is 98.93%.)

At first glance, this result may seem to be at odds with the near-perfect effectiveness
of adversarial patches [BMR+18]. However, the phenomenon we observe here can be tied
to the subtle difference between the way we train our unadversarial patches and the way
one trains targeted adversarial patches. In the former, we overlay each patch exclusively
onto images from its respective class—thus, unadversarial patches are never optimized to
be effective when overlaid on a different class. In the latter, however, adversarial patches
are optimized to maximize confidence in a particular class on all possible backgrounds,
making the patch dominant even when overlaid on an image from a different class.

Baselines. We also compare our results to a variety of natural baselines; the most relevant
of these is the “best loss image patch,” where we use the minimum-loss training image
in place of a patch. We compare with this baseline to ensure that our method is doing
something beyond this naive way to add signal to an image. The results are shown in
Appendix C.3, along with comparisons to less sophisticated baselines, such as QR Codes
and predefined random Gaussian noise patches.

3.2.3 Classification in 3D simulation

We now test unadversarial examples in a more practical setting: recognizing 3D objects
in a high-fidelity simulator. We collect meshes corresponding to four ImageNet classes:
“warplane,” “minibus,” “container ship,” and “trailer truck,” from sketchfab.com. We

64

sketchfab.com

Figure 3.6: The jet unadversarial example task. We show example conditions under which
we evaluate the objects, along with aggregate statistics for how well an ImageNet classifier
classifies the objects in different conditions. We find that the classifiers perform consistently
better on the unadversarial jet texture over the standard jet texture in both standard and
distributionally shifted conditions. We also give a baseline of a white jet with a lighter
texture because of the poorly visibility inherent in the simulator; we find it performed
worse than even the standard jet.

(a) Bus (b) Container Ship (c) Trailer Truck

Figure 3.7: Additional examples reporting aggregate statistics for how well an ImageNet
classifier classifies various objects in different conditions. Again, we find that the classifiers
perform consistently better on the unadversarial objects texture over the standard objects.

generate a texture for each object using the unadversarial texture algorithm of Section 3.1.3,
using the ImageNet validation set as the set of backgrounds for the algorithm, and a
pre-trained ResNet-50 as the classifier.

To evaluate the resulting textures, we import each mesh into Microsoft AirSim, a high-
fidelity three-dimensional simulator; we then test pre-trained ImageNet models’ ability to
recognize each object with and without the unadversarial texture applied in a variety of
surroundings. We also test each texture’s robustness to more realistic weather corruptions
(snow and fog) built directly into the simulator (rather than applied as a post-processing
step). We provide further detail on AirSim and our usage of it in Appendix C.1. Examples
of the images used to evaluate the unadversarial textures, as well as our main results for
one of the meshes are shown in Figure 3.6. We find that in both standard and adverse
weather conditions, the model consistently performs better on the unadversarial texture

65

Severity of Fog Severity of Fog

Figure 3.8: Drone landing task. On the left we show the unadversarial versus standard
landing pads. On the right we show the results for the task when both the standard and
unadversarial landing pads are used. We find that the drone consistently takes less time
to land, and has a higher chance of landing correctly, when detecting the unadversarial
landing pad.

than on the original. We present similar results for the other three meshes in Figure 3.7.

3.2.4 Localization for (simulated) drone landing

We then assess whether unadversarial examples can help outside of the classification
setting. Again using AirSim, we set up a drone landing task with a perception module
that receives as input an axis-aligned aerial image of a landing pad, and is tasked with
outputing an estimate of the camera’s (x, y)-position relative to the pad. While this task
is quite basic, we are particularly interested in studying performance in the presence of
heavy (simulated) weather-based corruptions. The drone is equipped with a pretrained
regression model that localizes the landing pad (described in detail in Appendix C.1).
We optimize an unadversarial texture for the surface of the landing pad to best help the
drone’s regression model in localization. Figure 3.8 shows an example of the landing pad
localization task, along with the performance of the unadversarial landing pad compared
to the standard pad. The drone landing on the unadversarial pad consistently lands both
more reliably.

3.2.5 Physical-world unadversarial examples

Finally, we move out of simulation and test whether the unadversarial patches that we
generate can survive naturally-arising distribution shift from effects such as real lighting,
camera artifacts, and printing imperfections. We use four household objects (a toy racecar,
miniature plane, coffeepot, and eggnog container), and print out (on a standard InkJet

66

Class No Patch Patch

“racer” 22% 83%
“eggnog” 22% 44%
“coffee pot” 39% 56%
“warplane” 67% 83%

(a) Accuracy of pre-trained
ResNet-18 on photographs of
real world objects with and
without patches.

(b) Example photos of the “warplane” and “racer” physical
objects taken with (top) and without (bottom) an unadver-
sarial patch.

Figure 3.9: Physical-world experiments. We take pictures of objects at diverse orientations
while varying the presence of a patch on the object. Note that we don’t do any additional
data augmentation on the patches, which are the same used in our previous ImageNet
benchmark experiment.

printer) the adversarial patch corresponding to the label of each object. We take pictures
of the toy with and without the patch taped on using an ordinary cellphone camera,
and count the number of poses for which the toy is correctly classified by a pre-trained
ImageNet classifier. Our results are in Table 3.9a, and examples of patches are in Figure 3.9b.
Classifying both patched and unpatched images over a diverse set of poses, we find that
the adversarial patches consistently improve performance even at uncommon object
orientations.

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

Chapter 4

Raising the cost of malicious AI-based
manipulation

Large diffusion models such as DALL·E 2 [RDN+22] and Stable Diffusion [RBL+22] are
known for their ability to produce high-quality photorealistic images, and can be used for
a variety of image synthesis and editing tasks. However, the ease of use of these models
has raised concerns about their potential abuse, e.g., by creating inappropriate or harmful
digital content. For example, a malevolent actor might download photos of people posted
online and edit them maliciously using an off-the-shelf diffusion model (as in Figure 4.1
top).

How can we address these concerns? First, it is important to recognize that it is, in
some sense, impossible to completely eliminate such malicious image editing. Indeed,
even without diffusion models in the picture, malevolent actors can still use tools such
as Photoshop to manipulate existing images, or even synthesize fake ones entirely from
scratch. The key new problem that large generative models introduce is that these actors
can now create realistic edited images with ease, i.e., without the need for specialized skills
or expensive equipment. This realization motivates us to ask:

How can we raise the cost of malicious (AI-powered) image manipulation?

In this chapter, we put forth an approach that aims to alter the economics of AI-powered
image editing. At the core of our approach is the idea of image immunization—that is,
making a specific image resistant to AI-powered manipulation by adding a carefully
crafted (imperceptible) perturbation to it. This perturbation would disrupt the operation
of a diffusion model, forcing the edits it performs to be unrealistic (see Figure 4.1). In this
paradigm, people can thus continue to share their (immunized) images as usual, while
getting a layer of protection against undesirable manipulation.

69

Prompt: Two men
ballroom dancing

Immunization

Original Image

Immunized Image Edited Image

Edited Image

Adversary

Adversary

Original Image

Figure 4.1: Overview of our framework. An adversary seeks to modify an image found online.
The adversary describes via a textual prompt the desired changes and then uses a diffusion
model to generate a realistic image that matches the prompt (top). By immunizing the
original image before the adversary can access it, we disrupt their ability to successfully
perform such edits (bottom).

We demonstrate how one can craft such imperceptible perturbations for large-scale
diffusion models and show that they can indeed prevent realistic image editing. We then
discuss in Section 4.4 complementary technical and policy components needed to make
our approach fully effective and practical. Finally, this presents another venue (besides
designing robust objects in the previous chapter) where adversarial perturbations turn out
to be useful.

4.1 Preliminaries

We start by providing an overview of diffusion models as well as of the key concept we
will leverage: adversarial attacks.

4.1.1 Diffusion Models

Diffusion models have emerged recently as powerful tools for generating realistic im-
ages [SWM+15; HJA20]. These models excel especially at generating and editing images
using textual prompts, and currently surpass other image generative models such as
GANs [GPM+14] in terms of the quality of produced images.

70

Diffusion process. At their core, diffusion models employ a stochastic differential pro-
cess called the diffusion process [SWM+15]. This process allows us to view the task of
(approximate) sampling from a distribution of real images q(·) as a series of denoising
problems. More precisely, given a sample x0 ∼ q(·), the diffusion process incrementally
adds noise to generate samples x1, . . . , xT for T steps, where xt+1 = atxt + btεt, and εt is
sampled from a Gaussian distribution1. Note that, as a result, the sample xT starts to follow
a standard normal distribution N (0, I) when T → ∞. Now, if we reverse this process and
are able to sample xt given xt+1, i.e., denoise xt+1, we can ultimately generate new samples
from q(·). This is done by simply starting from xT ∼ N (0, I) (which corresponds to T
being sufficiently large), and iteratively denoising these samples for T steps, to produce a
new image x̃ ∼ q(·).

The element we need to implement this process is thus to learn a neural network εθ

that “predicts” given xt+1 the noise εt added to xt at each time step t. Consequently, this
denoising model εθ is trained to minimize the following loss function:

L(θ) = Et,x0,ε∼N (0,1)

[
∥ε− εθ(xt+1, t)∥2

2

]
, (4.1)

where t is sampled uniformly over the T time steps. We defer discussion of details to
Appendix D.2 and refer the reader to [Wen21] for a more in-depth treatment of diffusion
models.

Latent diffusion models (LDMs). Our focus will be on a specific class of diffusion
models called the latent diffusion models (LDMs) [RBL+22]2. These models apply the
diffusion process described above in the latent space instead of the input (image) space.
As it turned out, this change enables more efficient training and faster inference, while
maintaining high quality generated samples.

Training an LDM is similar to training a standard diffusion model and differs mainly
in one aspect. Specifically, to train an LDM, the input image x0 is first mapped to its
latent representation z0 = E(x0), where E is a given encoder. The diffusion process then
continues as before (just in the latent space) by incrementally adding noise to generate
samples z1, . . . , zT for T steps, where zt+1 = atzt + btεt, and εt is sampled from a Gaussian
distribution. Finally, the denoising network εθ is then learned analogously to as before but,
again, now in the latent space, by minimizing the following loss function:

1Here, at and bt are the parameters of the distribution q(xt+1|xt). Details are provided in Appendix D.2.
2Our methodology can be adjusted to other diffusion models. Our focus on LDMs is motivated by the

fact that all popular open-sourced diffusion models are of this type.

71

Prompt: A photo of Mount Everest
surrounded by Cherry Blossom trees

Prompt: A photo of a black cow swimming on
the beach

Prompt: A photo of two men in a wedding

+

Generating images using prompts Generating image variations using prompts

Editing images using prompts

Editable Region

Figure 4.2: Diffusion models offer various capabilities, such as (1) generating images
using textual prompts (top left), (2) generating variations of an input image using textual
prompts (top right), and (3) editing images using textual prompts (bottom).

L(θ) = Et,z0,ε∼N (0,1)

[
∥ε− εθ(zt+1, t)∥2

2

]
(4.2)

Once the denoising network εθ is trained, the same generative process can be applied as
before, starting from a random vector in the latent space, to obtain a latent representation
z̃ of the (new) generated image. This representation is then decoded into an image
x̃ = D(z̃) ∼ q(·), using the corresponding decoder D.

Prompt-guided sampling using an LDM. An LDM by default generates a random
sample from the distribution of images q(·) it was trained on. However, it turns out
one can also guide the sampling using natural language. This can be accomplished by
combining the latent representation zT produced during the diffusion process with the
embedding of the user-defined textual prompt t.3 The denoising network εθ is applied to
the combined representation for T steps, yielding z̃ which is then mapped to a new image
using the decoder D as before.

3Conditioning on the text embedding happens at every stage of the generation process. See [RBL+22] for
more details.

72

LDMs capabilities. LDMs turn out to be powerful text-guided image generation and
editing tools. In particular, LDMs can be used not only for generating images using textual
prompts, as described above, but also for generating textual prompt–guided variations of
an image or edits of a specific part of an image (see Figure 4.2). The latter two capabilities
(i.e., generation of image variations and image editing) requires a slight modification of
the generative process described above. Specifically, to modify or edit a given image x, we
condition the generative process on this image. That is, instead of applying, as before, our
generative process of T denoising steps to a random vector in the latent space, we apply
it to the latent representation obtained from running the latent diffusion process on our
image x. To edit only part of the image we additionally condition the process on freezing
the parts of the image that were to remain unedited.

4.1.2 Adversarial Attacks

For a given computer vision model and an image, an adversarial example is an imperceptible
perturbation of that image that manipulates the model’s behavior [SZS+14; BCM+13]. In
image classification, for example, an adversary can construct an adversarial example for a
given image x that makes it classified as a specific target label ytarg (different from the true
label). This construction is achieved by minimizing the loss of a classifier fθ with respect
to that image:

δadv = arg min
δ∈∆
L(fθ(x + δ), ytarg). (4.3)

Here, ∆ is a set of perturbations that are small enough that they are imperceptible—a
common choice is to constrain the adversarial example to be close (in ℓp distance) to
the original image, i.e., ∆ = {δ : ∥δ∥p ≤ ϵ}. The canonical approach to constructing
an adversarial example is to solve the optimization problem (4.3) via projected gradient
descent (PGD) [Nes03; MMS+18].

4.2 Adversarially Attacking Latent Diffusion Models

We now describe our approach to immunizing images, i.e., making them harder to ma-
nipulate using latent diffusion models (LDMs). At the core of our approach is to leverage
techniques from the adversarial attacks literature [SZS+14; MMS+18; AMK+21] and add
adversarial perturbations (see Section 4.1.1) to immunize images. Specifically, we present
two different methods to execute this strategy (see Figure 4.3): an encoder attack, and a

73

ℰ

𝒟

Diffusion Process

Text Embedding

Text
Encoder

ℰ

𝒟

ℰ

Target Image 𝒙𝑡𝑎𝑟𝑔 𝒛𝑡𝑎𝑟𝑔

Input Image 𝒙

𝒛

Diffusion Process

Text Embedding

𝒛

Denoising Network
Edited Image 𝒙

“Two men in a wedding”

Text
Encoder

𝒛

𝒛

Denoising Network

Input Image 𝒙

Edited Image 𝒙

Target Image 𝒙𝑡𝑎𝑟𝑔

“Two men in a wedding”

ℰ

ℰ

Target Image 𝒙𝑡𝑎𝑟𝑔 𝒛𝑡𝑎𝑟𝑔

Input Image 𝒙

𝒛

Input Image 𝒙

Edited Image 𝒙

Target Image 𝒙𝑡𝑎𝑟𝑔

𝛿𝑒𝑛𝑐𝑜𝑑𝑒𝑟

𝛿𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝛿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = arg min
𝛿 ∞≤𝜖

ℰ 𝒙 + 𝛿 − 𝒛𝑡𝑎𝑟𝑔
2

𝛿𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = arg min
𝛿 ∞≤𝜖

𝑓 𝒙 + 𝛿 − 𝒙𝑡𝑎𝑟𝑔
2

Edited Image 𝒙

Encoder Attack Diffusion Attack

Figure 4.3: Overview of our proposed attacks. When applying the encoder attack (left), our
goal is to map the representation of the original image to the representation of a target
image (gray image). Our (more complex) diffusion attack (right), on the other hand, aims
to break the diffusion process by manipulating the whole process to generate image that
resembles a given target image (gray image).

diffusion attack.

Encoder attack. Recall that an LDM, when applied to an image, first encodes the image
using an encoder E into a latent vector representation, which is then used to generate a
new image (see Section 4.1). The key idea behind our encoder attack is now to disrupt
this process by forcing the encoder to map the input image to some “bad” representation.
To achieve this, we solve the following optimization problem using projected gradient
descent (PGD):

δencoder = arg min
∥δ∥∞≤ϵ

∥E(x + δ)− ztarg∥2
2, (4.4)

where x is the image to be immunized, and ztarg is some target latent representation (e.g.,
ztarg can be the representation, produced using encoder E , of a gray image). Solutions to
this optimization problem yield small, imperceptible perturbations δencoder which, when
added to the original image, result in an (immunized) image that is similar to the (gray)
target image from the LDM’s encoder perspective. This, in turn, causes the LDM to gener-
ate an irrelevant or unrealistic image. An overview of this attack is shown in Figure 4.3
(left)4.

4See Algorithm 4 in Appendix for the details of the encoder attack.

74

Diffusion attack. Although the encoder attack is effective at forcing the LDM to generate
images that are unrelated to the immunized ones, we still expect the LDM to use the
textual prompt. For example, as shown in the encoder attack diagram in Figure 4.3, editing
an immunized image of two men using the prompt “Two men in a wedding” still results
in a generated image with two men wearing wedding suits, even if the image will contain
some visual artifacts indicating that it has been manipulated. Can we disturb the diffusion
process even further so that the diffusion model “ignores” the textual prompt entirely and
generates a more obviously manipulated image?

It turns out that we are able to do so by using a more complex attack, one where we
target the diffusion process itself instead of just the encoder. In this attack, we perturb
the input image so that the final image generated by the LDM is a specific target image
(e.g., random noise or gray image). Specifically, we generate an adversarial perturbation
δdi f f usion by solving the following optimization problem (again via PGD):

δdi f f usion = arg min
∥δ∥∞≤ϵ

∥ f (x + δ)− xtarg∥2
2. (4.5)

Above, f is the LDM, x is the image to be immunized, and xtarg is the target image to be
generated. An overview of this attack is depicted in Figure 4.3 (right)5. As we already
mentioned, this attack targets the full diffusion process (which includes the text prompt
conditioning), and tries to nullify not only the effect of the immunized image, but also that
of the text prompt itself. Indeed, in our example (see Figure 4.3 (right)) no wedding suits
appear in the edited image whatsoever.

It is worth noting that this approach, although more powerful than the encoder attack,
is harder to execute. Indeed, to solve the above problem (4.5) using PGD, one needs to
backpropagate through the full diffusion process (which, as we recall from Section 4.1.1,
includes repeated application of the denoising step). This causes memory issues even on
the largest GPU we used6. To address this challenge, we backpropagate through only a
few steps of the diffusion process, instead of the full process, while achieving adversarial
perturbations that are still effective. We defer details of our attacks to Appendix D.1.

4.3 Results

In this section, we examine the effectiveness of our proposed immunization method.

5See Algorithm 5 in Appendix for the details of the diffusion attack.
6We used an A100 with 40 GB memory.

75

Generated image
(without immunization)

Generated image
(with immunization)

Source Image

Black cow on the
beach

Brown cat playing
poker

Figure 4.4: Given a source image (e.g., image of a white cow on the beach) and a textual
prompt (e.g., "black cow on the beach"), the SDM can generate a realistic image matching
the prompt while still similar to the original image (middle column). However, when the
source image is immunized, the SDM fails to do so (right-most column). More examples
are in Appendix D.3.

Setup. We focus on the Stable Diffusion Model (SDM) v1.5 [RBL+22], though our meth-
ods can be applied to other diffusion models too. In each of the following experiments,
we aim to disrupt the performance of SDM by adding imperceptible noise (using either
of our proposed attacks)—i.e., applying our immunization procedure—to a variety of
images. The goal is to force the model to generate images that are unrealistic and unrelated
to the original (immunized) image. We evaluate the performance of our method both
qualitatively (by visually inspecting the generated images) and quantitatively (by examin-
ing the image quality using standard metrics). We defer further experimental details to
Appendix D.1.

4.3.1 Qualitative Results

Immunizing against generating image variations. We first assess whether we can dis-
rupt the SDM’s ability to generate realistic variations of an image based on a given textual
prompt. For example, given an image of a white cow on the beach and a prompt of “black
cow on the beach”, the SDM should generate a realistic image of a black cow on the beach
that looks similar to the original one (cf. Figure 4.4). Indeed, the SDM is able to generate
such images. However, when we immunize the original images (using the encoder attack),
the SDM fails to generate a realistic variation—see Figure 4.4.

76

A man sitting in a
metro

Two men in a
wedding

Source Image
Generated image

(without immunization)
Generated image
(diffusion attack)

Generated image
(encoder attack)

Figure 4.5: Given a source image (e.g., image of two men watching a tennis game) and
a textual prompt (e.g., "two men in a wedding"), the SDM can edit the source image to
match the prompt (second column). However, when the source image is immunized using
the encoder attack, the SDM fails to do so (third column). Immunizing using the diffusion
attack further reduces the quality of the edited image (forth column). More examples are in
Appendix D.3.

Immunizing against image editing. Now we consider the more challenging task of
disrupting the ability of SDMs to edit images using textual prompts. The process of editing
an image using an SDM involves inputting the image, a mask indicating which parts of
the image should be edited, and a text prompt guiding how the rest of the image should
be manipulated. The SDM then generates an edited version based on that prompt. An
example can be seen in Figure 4.2, where an image of two men watching a tennis game is
transformed to resemble a wedding photo. This corresponded to inputting the original
image, a binary mask excluding from editing only the men’s heads, and the prompt
“A photo of two men in a wedding.” However, when the image is immunized (using
either encoder or diffusion attacks), the SDM is unable to produce realistic image edits (cf.
Figure 4.5). Furthermore, the diffusion attack results in more unrealistic images than the
encoder attack.

4.3.2 Quantitative Results

Image quality metrics. Figures 4.4 and 4.5 indicate that, as desired, edits of immunized
images are noticeably different from those of non-immunized images. To quantify this
difference, we generate 60 different edits of a variety of images using different prompts,
and then compute several metrics capturing the similarity between resulting edits of

77

Method FID ↓ PR ↑ SSIM ↑ PSNR ↑ VIFp ↑ FSIM ↑
Immunization baseline (Random noise) 82.57 1.00 0.75± 0.13 19.21± 4.00 0.43± 0.13 0.83± 0.08
Immunization (Encoder attack) 130.6 0.95 0.58± 0.11 14.91± 2.78 0.30± 0.10 0.73± 0.08
Immunization (Diffusion attack) 167.6 0.87 0.50± 0.09 13.58± 2.23 0.24± 0.09 0.69± 0.06

Table 4.1: We report various image quality metrics measuring the similarity between
edits originating from immunized vs. non-immunized images. We observe that edits
of immunized images are substantially different from those generated from the original
(notn-immunized) images. Note that the arrows next to the metrics denote increasing
image similarity. Since our goal is to make the edits as different as possible from the
original edits in the presence of no immunization, then lower image similarity is better.
Confidence intervals denote one standard deviation over 60 images. Additional metrics
are in Appendix D.3.1.

immunized versus non-immunized images7: FID [HRU+17], PR [SBL+18], SSIM [WBS+04],
PSNR, VIFp [SB06], and FSIM [ZZM+11]8. The better our immunization method is, the
less similar the edits of immunized images are to those of non-immunized images.

The similarity scores, shown in Table 4.1, indicate that applying either of our immu-
nization methods (encoder or diffusion attacks) indeed yields edits that are different from
those of non-immunized images (since, for example, FID is far from zero for both of these
methods). As a baseline, we consider a naive immunization method that adds uniform
random noise (of the same intensity as the perturbations used in our proposed immuniza-
tion method). This method, as we verified, is not effective at disrupting the SDM, and
yields edits almost identical to those of non immunized images. Indeed, in Table 4.1, the
similarity scores of this baseline indicate closer edits to non-immunized images compared
to both of our attacks.

Image-prompt similarity. To further evaluate the quality of the generated/edited images
after immunization (using diffusion attack), we measure the similarity between the edited
images and the textual prompt used to guide this edit, with and without immunization.
The fact that the SDM uses the textual prompt to guide the generation of an image indicates
that the similarity between the generated image and the prompt should be high in the
case of no immunization. However, after immunization (using the diffusion attack),
the similarity should be low, since the immunization process disrupts the full diffusion
process, and forces the diffusion model to ignore the prompt during generation. We use
the same 60 edits as in our previous experiment, and we extract—using a pretrained CLIP
model [RKH+21]—the visual embeddings of these images and the textual prompts used

7We use the implementations provided in: https://github.com/photosynthesis-team/piq.
8We report additional metrics in Appendix D.3.1.

78

https://github.com/photosynthesis-team/piq

Original Original + Noise Immunized
25

26

27

28

29

30

C
LI

P
C

os
in

e
Si

m
ila

ri
ty

Figure 4.6: Image-prompt similarity. We plot the cosine similarity between the CLIP embed-
dings of the generated images and the text prompts, with and without immunization, as
well as with a baseline immunization of adding small random noise to the original image.
Error bars denote the interquartile range (IQR) over 60 runs.

to generate them. We then compute the cosine similarity between these two embeddings.
As show in Figure 4.6, the immunization process decreases the similarity between the
generated images and the textual prompts to generated them, as expected.

4.4 A Techno-Policy Approach to Mitigation of AI-Powered

Editing

In the previous sections we have developed an immunization procedure that, when applied
to an image, protects the immunized version of that image from realistic manipulation by
a given diffusion model. Our immunization procedure has, however, certain important
limitations. We now discuss these limitations as well as a combination of technical and
policy remedies needed to obtain a fully effective approach to raising the cost of malicious
AI-powered image manipulation.

(Lack of) robustness to transformations. One of the limitations of our immunization
method is that the adversarial perturbation that it relies on may be ineffective after the
immunized image is subjected to image transformations and noise purification techniques.
For instance, malicious actors could attempt to remove the disruptive effect of that pertur-
bation by cropping the image, adding filters to it, applying a rotation, or other means. This
problem can be addressed, however, by leveraging a long line of research on creating robust
adversarial perturbations, i.e., adversarial perturbations that can withstand a broad range
of image modifications and noise manipulations [EEF+18b; KGB16; AEI+18; BMR+18].

79

Forward-compatibility of the immunization. While the immunizing adversarial pertur-
bations we produce might be effective at disrupting the current generation of diffusion-
based generative models, they are not guaranteed to be effective against the future versions
of these models. Indeed, one could hope to rely here on the so-called transferability of
adversarial perturbations [PMG16; LCL+17], but no perturbation will be perfectly transfer-
able.

To truly address this limitation, we thus need to go beyond purely technical methods
and encourage—or compel—via policy means a collaboration between organizations that
develop large diffusion models, end-users, as well as data hosting and dissemination
platforms. Specifically, this collaboration would involve the developers providing APIs
that allow the users and platforms to immunize their images against manipulation by
the diffusion models the developers create. Importantly, these APIs should guarantee
“forward compatibility”, i.e., effectiveness of the offered immunization against models
developed in the future. This can be accomplished by planting, when training such future
models, the current immunizing adversarial perturbations as backdoors. (Observe that
our immunization approach can provide post-hoc “backward compatibility” too. That is,
one can create immunizing adversarial perturbations that are effective for models that
were already released.)

It is important to point out that we are leveraging here an incentive alignment that
is fundamentally different to the one present in more typical applications of adversarial
perturbations and backdoor attacks. In particular, the “attackers” here—that is, the parties
that create the adversarial perturbations/execute the backdoor attack—are the same parties
that develop the models being attacked. This crucial difference is, in particular, exactly
what helps remedy the forward compatibility challenges that turns out to be crippling, e.g.,
in the context of “unlearnable” images creation (i.e., creation of images that are immune to
being leveraged by, e.g., facial recognition models) [RHC+21].

80

Part II

Understanding the underpinnings of
reliable ML deployment

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

Chapter 5

Model debugging and the missingness
bias

In the first part of this thesis, we focused on enhancing the reliability of ML models through
increased robustness, performance, and trustworthiness. Despite these improvements,
real-world deployment introduces complexities that necessitate a deeper understanding
of these models’ decision-making mechanisms, especially in safety-critical environments.
Consequently, the second part of this thesis sets out to provide methods for dissecting
when, why, and how modern ML systems either succeed or fail.

Model debugging aims to diagnose a model’s failures. For example, researchers can
identify global biases of models via the extraction of human-aligned concepts [BZK+17;
WSM21], or understand the texture bias by analyzing the models performance on synthetic
datasets [GRM+19; LSI+21]. Other approaches aim to highlight local features to debug
individual model predictions [SVZ13; DCL+18; RSG16a; GWE+19].

A common theme in these methods is to compare the behavior of the model with and
without certain individual features [RSG16a; GWE+19; FV17; DG17; ZCA+17; DCL+18;
CCG+19]. For example, interpretability methods such as LIME [RSG16b] and integrated
gradients [STY17] use the predictions when certain features are removed from the input
to attribute different regions of the input to the decision of the model. Dhurandhar et al.
[DCL+18] find minimal regions in radiology images that are necessary for classifying
a person as having autism. Fong and Vedaldi [FV17] propose learning image masks
that minimize a class score to achieve interpretable explanations. Similarly, in natural
language processing, model designers often remove individual words to understand
their importance to the output [MG21; LCH+16]. The absence of features from an input,
a concept sometimes referred to as missingness [SLL20], is thus fundamental to many

83

debugging tools.

However, there is a problem: while we can easily remove words from sentences,
removing objects from images is not as straightforward. Indeed, removing a feature from
an image usually requires approximating missingness by replacing those pixel values with
something else, e.g., black color. However, these approximations tend not to be perfect
[SLL20]. Our goal is thus to give a holistic understanding of missingness and, specifically,
to answer the question:

How do missingness approximations affect our ability to debug ML models?

Our contributions

In this chapter, we investigate how current missingness approximations, such as blacking
out pixels, can result in what we call missingness bias. This bias turns out to hinder our
ability to debug models. We then show how transformer-based architectures can enable
a more natural implementation of missingness, allowing us to side-step this bias. More
specifically, our contributions include:

Pinpointing the missingness bias. We demonstrate at multiple granularities how simple
approximations, such as blacking out pixels, can lead to missingness bias. This bias skews
the overall output distribution toward unrelated classes, disrupts individual predictions,
and hinders the model’s use of the remaining (unmasked) parts of the image.

Studying the impact of missingness bias on model debugging. We show that missing-
ness bias negatively impacts the performance of debugging tools. Using LIME—a common
feature attribution method that relies on missingness—as a case study, we find that this
bias causes the corresponding explanations to be inconsistent and indistinguishable from
random explanations.

Using vision transformers to implement a more natural form of missingness. The
token-centric nature of vision transformers (ViT) [DBK+21] facilitates a more natural
implementation of missingness: simply drop the corresponding tokens of the image
subregion we want to remove. We show that this simple property substantially mitigates
missingness bias and thus enables better model debugging.

84

(a) Original image (b) Masking the human
(c) Masking the dog’s
snout

Figure 5.1: Consider an image of a dog being held by its owner. By removing the owner
from the image, we can study how much our model’s prediction depends on the presence
of a human. In a similar vein, we can identify which aspects of the dog (head, body, paws)
are most critical for classifying the image by ablating these parts.

5.1 Missingness

Removing features from the input is an intuitive way to understand how a system behaves
[SLL20]. Indeed, by comparing the system’s output with and without specific features, we
can infer what parts of the input led to a specific outcome [STY17]—see Figure 5.1. The
absence of features from an input is sometimes referred to as missingness [SLL20].

The concept of missingness is commonly leveraged in machine learning, especially
for tasks such as model debugging. For example, several methods for feature attribution
quantify feature importance by studying how the model behaves when those features are
removed [SLL20; STY17; ACÖ+17]. One commonly used method, LIME [RSG16a], itera-
tively turns image subregions on and off in order to highlight its important parts. Similarly,
integrated gradients [STY17], a typical method for generating saliency maps, leverages a
“baseline image” to represent the “absence” of features in the input. Missingness-based
tools are also often used in domains such as natural language processing [MG21; LCH+16]
and radiology [DCL+18].

Challenges of approximating missingness in computer vision. While ignoring parts
of an image is simple for humans, removing image features is far more challenging for
computer vision models [SLL20]. After all, convolutional networks require a structurally
contiguous image as an input. We thus cannot leave a “hole" in the image where the model
should ignore the input. Consequently, practitioners typically resort to approximating
missingness by replacing these pixels with other, intended to be “meaningless”, pixels.

Common missingness approximations include replacing the region of the image with
black color, a random color, random noise, a blurred version of the region, and so forth
[SLL20; ACÖ+17; STK+17; FV17; ZF14; STY17]. However, there is no clear justification for

85

ResNet-50: flatworm
ViT-S: flatworm

ResNet-50: crossword
ViT-S: flatworm

ResNet-50: jigsaw puzzle
ViT-S: flatworm

Original

ResNet-50: cliff dwelling
ViT-S: sea slug

G
T:

 fl
at

w
or

m

Random Least Salient Most Salient

Figure 5.2: Given an image of a flatworm, we remove various regions of the original
image; masking for ResNet, and dropping tokens for ViT. (Section 5.1.1): Irrespective
of what subregions of the image are removed (least salient, most salient, or random), a
ResNet-50 outputs the wrong class (crossword, jigsaw puzzle, cliff dwelling). Taking
a closer look at the randomly masked image of Figure 5.2, we notice that the predicted
class (crossword puzzle) is not totally unreasonable given the masking pattern. The
model seems to be relying on the masking pattern to make the prediction, rather than
the remaining (unmasked) portions of the image. (Section 5.1.2): The ViT-S on the other
hand either maintains its original prediction or predicts a reasonable label given remaining
image subregions.

why any of these choices is a good approximation of missingness. For example, blacked
out pixels are an especially popular baseline, motivated by the implicit heuristic that near
zero inputs are somehow neutral for a simple model [ACÖ+17]. However, if only part of
the input is masked or the model includes additive bias terms, the choice of black is still
quite arbitrary. In [SLL20], the authors found that saliency maps generated with integrated
gradients are quite sensitive to the chosen baseline color, and thus can change significantly
based on the (arbitrary) choice of missingness approximation.

5.1.1 Missingness bias

What impact do these various missingness approximations have on our models? We find
that current approximations can cause significant bias in the model’s predictions. This
causes the model to make errors based on the “missing” regions rather than the remaining
image features, rendering the masked image out-of-distribution.

Figure 5.2 depicts an example of these problems. If we mask a small portion of the
image, irrespective of which part of the image that is, convolutional networks (CNNs)
output the wrong class. In fact, CNNs seem to be relying on the masking pattern to make
the prediction, rather than the remaining (unmasked) portions of the image. This type of
behavior can be especially problematic for model debugging techniques, such as LIME,
that rely on removing image subregions to assign importance to input features. Further
examples can be found in Appendix E.3.1.

86

There seems to be an inherent bias accompanying missingness approximations, which
we refer to as the missingness bias. In Section 5.2, we systematically study how missingness
bias can affect model predictions at multiple granularities. Then in Section 5.3, we find
that missingness bias can cause undesirable effects when using LIME by causing its
explanations to be inconsistent and indistinguishable from random explanations.

5.1.2 A more natural form of missingness via vision transformers

The challenges of missingness bias raises an important question: what constitutes a correct
notion of missingness? Since masking pixels creates biases in our predictions, we would
ideally like to remove those regions from consideration entirely. Because convolutional
networks slide filters across the image, they require spatially contiguous input images. We
are thus limited to replacing pixels with some baseline value (such as blacking out the
pixels), which leads to missingness bias.

Vision transformers (ViTs) [DBK+21] use layers of self-attention instead of convolutions
to process the image. Attention allows the network to focus on specific sub-regions while
ignoring other parts of the input [VSP+17; XBK+15]; this allows ViTs to be more robust to
occlusions and perturbations [NRK+21]. These aspects make ViTs especially appealing for
countering missingness bias in model debugging.

In particular, we can leverage the unique properties of ViTs to enable a far more natural
implementation of missingness. Unlike CNNs, ViTs operate on sets of image tokens, each of
which correspond to a positionally encoded region of the image. Thus, in order to remove
a portion of the image, we can simply drop the tokens that correspond to the regions of the image
we want to “delete.” Instead of replacing the masked region with other pixel values, we can
modify the forward pass of the ViT to directly remove the region entirely.

We will refer to this implementation of missingness as dropping tokens throughout the
chapter (see Appendix E.2 for further details). As we will see, using ViTs to drop image
subregions will allow us to side-step missingness bias (see Figure 5.2), and thus enable
better model debugging1.

1Unless otherwise specified, we drop tokens for the vision transformers when analyzing missingness
bias on ViTs. An analysis of the missingness bias for ViTs when blacking out pixels can be found in
Appendix E.3.7.

87

5.2 The impacts of missingness bias

Section 5.1.1 featured several qualitative examples where missingness approximations
affect the model’s predictions. Can we get a precise grasp on the impact of such missingness
bias? In this section, we pinpoint how missingness bias can manifest at several levels of
granularity. We further demonstrate how, by enabling a more natural implementation of
missingness through dropping tokens, ViTs can avoid this bias.

Setup. To systematically measure the impacts of missingness bias, we iteratively remove
subregions from the input and analyze the types of mistakes that our models make. See
Appendix E.1 for experimental details. We perform an extensive study across various:
architectures (Appendix E.3.3), missingness approximations (Appendix E.3.4), subregion
sizes (Appendix E.3.5), subregion shapes: patches vs superpixels (Appendix E.3.6), and
datasets (Appendix E.5).

Here we present our findings on a single representative setting: removing 16 × 16
patches from ImageNet images through blacking out (ResNet-50) and dropping tokens
(ViT-S). The other settings lead to similar conclusions as shown in Appendix E.3. Our
assessment of missingness bias, from the overall class distribution to individual examples,
is guided by the following questions:

To what extent do missingness approximations skew the model’s overall class distribu-
tion? We find that missingness bias affects the model’s overall class distribution (i.e the
probability of predicting any one class). In Figure 5.3, we measure the shift in the model’s
output class distribution before and after image subregions are randomly removed. The
overall entropy of output class distribution degrades severely. In contrast, this bias is elim-
inated when dropping tokens with the ViT. The ViT thus maintains a high class entropy
corresponding to a roughly uniform class distribution. These findings hold regardless of
what order we remove the image patches (see Appendix E.3.2).

Does removing random or unimportant regions flip the model’s predictions? We now
take closer look at how missingness approximations can affect individual predictions.
In Figure 5.4, we plot the fraction of examples where removing a portion of the image
flips the model’s prediction. We find that the ResNet rapidly flips its predictions even
when the less relevant regions are removed first. This degradation is thus more likely due
to missingness bias rather than the removal of individual regions. In contrast, the ViT
maintains its original predictions even when large parts of the image are removed.

88

maz
e

cro
ss

wo
rd

 pu
zz

le
ca

rto
n

to
ile

t t
iss

ue
jig

sa
w

pu
zz

le
pa

dlo
ck

en
ve

lop
e

wi
nd

ow
 sc

re
en

ba
nn

ist
er

qu
ilt

pa
pe

r t
ow

el
wi

nd
ow

 sh
ad

e
tra

ffi
c l

igh
t

mon
ito

r
pic

ke
t f

en
ce

we
b s

ite
wa

ll c
loc

k
dig

ita
l c

loc
k

cra
te

ho
ne

yc
om

b
bo

ok
sh

op
bo

ok
ca

se
gr

oo
m

bo
w

tie
bu

bb
le

lib
ra

ry
wi

ne
 bo

ttl
e

sto
ne

 w
all

pe
rfu

me
mor

ta
rb

oa
rd

10 4

10 3

10 2

10 1
Fr

ac
tio

n
of

 P
re

di
ct

io
ns

ResNet-50
Uniform
50% Blacked Out
0% Blacked Out

po
t

ph
ot

oc
op

ier
lak

es
ide

gr
oc

er
y s

to
re

ch
oc

ola
te

 sa
uc

e
sh

oe
 sh

op
we

b s
ite

ox
ca

rt

co
mpu

te
r k

ey
bo

ar
d

Sh
et

lan
d s

he
ep

do
g

ra
ce

r
mou

se
tra

p
lla

ma
lab

 co
at

ce
llu

lar
 te

lep
ho

ne
ca

rp
en

te
r's

 ki
t

ca
nd

le
No

rfo
lk

te
rri

er

Ch
ris

tm
as

 st
oc

kin
g

wi
nd

ow
 sh

ad
e

va
ult

pa
pe

r t
ow

el
lam

ps
ha

de
ho

rn
ed

 vi
pe

r
fu

r c
oa

t
co

ra
l r

ee
f

ce
nt

ipe
de

be
av

er
be

ac
h w

ag
on

ba
llo

on

10 4

10 3

10 2

10 1

Fr
ac

tio
n

of
 P

re
di

ct
io

ns

ViT-S
Uniform
50% Tokens Removed
0% Tokens Removed

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

ResNet-50
ViT-S

Figure 5.3: We measure the shift in output class distribution after applying missingness
approximations. Left: Fraction of images predicted as each class (on a log scale) before and
after randomly removing 50% of the image. We display the most frequently predicted 30
classes after applying the missingness approximations. Right: Degradation in overall class
entropy as subregions are removed. As patches are blacked out, the ResNet’s predictions
skew from a uniform distribution toward a few unrelated classes such as maze, crossword
puzzle, and carton. On the other hand, the ViT maintains a uniform class distribution
with high class entropy.

0 25 50 75 100 125 150 175 200
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

ResNet-50
ViT-S

Random Order
Least Salient First

Figure 5.4: We plot fraction of images whose
predictions do not change as image regions
are removed. ResNets flip their predictions
even when unrelated patches are removed,
while ViTs maintain their predictions.

0 25 50 75 100 125 150 175 200
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

ResNet-50
ViT-S

Original
Retrained

Figure 5.5: We repeat the experiment in Fig-
ure 5.4 with models retrained with missing-
ness augmentations. Applying missingness
approximations during training mitigates
missingness bias for ResNets.

Do remaining unmasked regions produce reasonable predictions? When removing
regions of the image with missingness, we would hope that the model makes a “best-
effort” prediction given the remaining image features. This assumption is critical for
interpretability methods such as LIME [RSG16a], where crucial features are identified by
iteratively masking out image subregions and tracking the model’s predictions.

89

0 50 100 150 200
Number of Features Removed

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n Random
ResNet-50
ViT-S

0 50 100 150 200
Number of Features Removed

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n Least Salient
ResNet-50
ViT-S

0 50 100 150 200
Number of Features Removed

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n Most Salient
ResNet-50
ViT-S

Figure 5.6: We iteratively remove image regions in the order of random, most salient,
and least salient. We then plot the average WordNet similarity between the original
prediction and the new prediction if the predictions differ. We find that ViT-S, even when
the prediction changes, continues to predict something relevant to the original image.

Are our models actually using the remaining uncovered features after missingness ap-
proximations are applied though? To answer this question, we measure how semantically
related the model’s predictions are after masking compared to its original prediction using
a similarity metric on the WordNet Hierarchy [Mil95] as shown in Figure 5.6. By the time
we mask out 25% of the image, the predictions of the ResNet largely become irrelevant to
the input. ViTs on the other hand continue to predict classes that are related to the original
prediction. This indicates that ViTs successfully leverage the remaining features in the
image to provide a reasonable prediction.

Can we remove missingness bias by augmenting with missingness approximations?
One way to remove missingness bias could be to apply missingness approximations
during training. For example, in RemOve and Retrain (ROAR), Hooker et al. [HEK+18]
suggest retraining multiple copies of the model by blacking out pixels during training (see
Appendix E.6 for an overview on ROAR).

To check if this indeed helps side-step the missingness bias, we retrain our models by
randomly removing 50% of the patches during training, and again measure the fraction
of examples where removing image patches flips the model’s prediction (see Figure 5.5).
While there is a significant gap in behavior between the standard and retrained CNNs,
the ViT behaves largely the same. This result indicates that, while retraining is important
when analyzing CNNs, it is unnecessary for ViTs when dropping the removed tokens:
we can instead perform missingness approximations directly on the original model while
avoiding missingness bias for free. See Appendix E.6 for more details.

90

5.3 Missingness bias in practice: a case study on LIME

Missingness approximations play a key role in several feature attribution methods. One
attribution method that fundamentally relies on missingness is the local interpretable
model-agnostic explanations (LIME) method [RSG16a]. LIME assigns a score to each
image subregion based on its relevance to the model’s prediction. Subregions of the image
with the top scores are referred to as LIME explanations. A crucial step of LIME is “turning
off” image subregions, usually by replacing them with some baseline pixel color. However,
as we found in Section 5.1, missingness approximations can cause missingness bias, which
can impact the generated LIME explanations.

We thus study how this bias impacts model debugging with LIME. To this end, we first
show that missingness bias can create inconsistencies in LIME explanations, and further
cause them to be indistinguishable from random explanations. In contrast, by dropping
tokens with ViTs, we can side-step missingness bias in order to avoid these issues, enabling
better model debugging.

Figure 5.7 depicts an example of LIME explanations. Qualitatively, we note that
explanations generated for standard ResNets seem to be less aligned with human intuition
than ViTs or ResNets retrained with missingness augmentations2.

Missingness bias creates inconsistent explanations. Since LIME uses missingness ap-
proximations while scoring each image subregion, the generated explanations can change
depending on which approximation is used. How consistent are the resulting explana-
tions? We generate such explanations for a ViT and a CNN using 8 different baseline
colors. Then, for each pair of colors, we measure how much their top-k features agree (see
Figure 5.8). We find that the ResNet produces explanations that are almost as inconsistent
as randomly generated explanations. The explanations of the ViT, however, are always
consistent by construction since the ViT drops tokens entirely. For further comparison, we
also plot the consistency of the LIME explanations of a ViT-S where we mask out pixels
instead of drop the tokens.

Missingness bias renders different LIME explanations indistinguishable. Do LIME
explanations actually reflect the model’s predictions? A common approach to answer
this is to remove the top-k subregions (by masking using a missingness approximation),
and then check if the model’s prediction changes [SBM+16]. This is sometimes referred

2See Appendix E.4.1 for more details on this. We also include an overview of LIME and detailed experi-
mental setup for this section in Appendix E.1, and further experiments using superpixels in Appendix E.4.2.

91

LIME
Explanation

O
rig

in
al

 Im
ag

e

Vi
T-

S
R

es
N

et
-5

0

O
rig

in
al

 Im
ag

e

R
es

N
et

-5
0

Vi
T-

S

R
es

N
et

-5
0

(w
ith

 m
is

s.
au

gm
en

ta
tio

ns
)

LIME
Explanation

Masking Top-20
Features

Masking Top-20
Features

R
es

N
et

-5
0

(w
ith

 m
is

s.
au

gm
en

ta
tio

ns
)

Figure 5.7: Examples of generated LIME explanations and masking the top 20 features.
Since LIME requires removing image features, it can be subject to missingness bias. We
note that LIME explanations generated for standard ResNets seem to be less aligned with
human intuition than ViTs or ResNets retrained with missingness augmentations (See
Appendix E.4.1 for more examples).

0 10 20 30 40 50
Top K Features

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

Si
m

ila
rit

y
of

 T

op
 K

 F
ea

tu
re

 S
et

s

ResNet-50
ViT-S (dropping tokens)
ViT-S (masking pixels)
Random

Figure 5.8: We plot the agreement (using Jaccard similarity) of top-k features across LIME
explanations of 28 pairs of baseline colors. The result is averaged over the 28 pairs, and we
display the 95% confidence interval over the pairs of colors. ResNet-50’s explanations are
almost as consistent as random explanations. For ViT with dropping tokens, explanations
are naturally always consistent.

to as the top-K ablation test [SLL20]. Intuitively, an explanation is better if it causes the
predictions to flip more rapidly. We apply the top-k ablation test of four different LIME
explanations on a ResNet-50 and a ViT-S as shown in Figure 5.9. Specifically, for each
model we evaluate: 1) its own generated explanations, 2) the explanations of an identical
architecture trained with a different seed 3) the explanations of the other architecture and
4) randomly generated explanations.

For CNNs (Figure 5.9-left), all four explanations (even the random one) flip the predic-
tions at roughly an equal rate in the top-K ablation test. In these cases, the bias incurred
during evaluation plays a larger role in changing the predictions than the importance

92

0 10 20 30 40 50
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

Evaluating Model: ResNet-50

0 10 20 30 40 50
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

Evaluating Model: ViT-S

LIME Explanation From

ResNet-50
ViT-S
Random

Original
Different Seed

Figure 5.9: We evaluate LIME explanations using the top-K ablation test on a ResNet and
ViT by measuring the fraction of examples who keep their original prediction after remov-
ing the Top-K features. A sharper degradation indicates a more appropriate explanation
for that model. While the LIME scores on the ResNet are largely indistinguishable, the ViT
shows clear differentiation between the different explanations.

of the region being removed, rendering the four explanations indistinguishable. On the
ViT however (Figure 5.9-right), the LIME explanation generated from the original model
outperforms all other explanations (followed by an identical model trained with a different
seed). As we would expect, the ResNet and the random explanations cause minimal
prediction flipping, which indicates that these explanations do not accurately capture the
feature importance for the ViT. Thus, unlike for the CNNs, the different LIME explanations
for the ViT are distinguishable from random (and quantitatively better) via the top-k
ablation test.

What happens if we retrain our models with missingness augmentations? As in Sec-
tion 5.2, we repeat the above experiment on models where 50% of the patches are removed
during training. The results are reported in Figure 5.10. We find that the LIME explanations
evaluated with the retrained CNN are now distinguishable, and the explanation generated
by the same CNN outperforms the other explanations. Thus, retraining with missingness
augmentation “fixes” the CNN and makes the top-k ablation test more effective by miti-
gating missingness bias. On the other hand, since the ViT already side-steps missingness
bias by dropping tokens, the top-k ablation test does not substantially change when using
the retrained model. We can thus evaluate LIME explanations directly on the original ViT
without resorting to surrogate models.

93

0 10 20 30 40 50
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

Evaluating Model: ResNet-50
(With Miss. Augmentation)

0 10 20 30 40 50
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

Evaluating Model: ViT-S
(With Miss. Augmentation)

LIME Explanation From

ResNet-50
ViT-S
Random

Original
Different Seed

Figure 5.10: We replicate the experiment in Figure 5.9, but instead use models where miss-
ingness approximations were introduced during training. This procedure fixes evaluation
issues for ResNets, but does not substantially change the evaluation picture of ViTs.

94

Chapter 6

Debugging computer vision models with
3DB

Even with the advances in interpretable ML models discussed in the previous chapter,
it’s imperative to diagnose the weaknesses of ML models before deploying them in the
real world. This is particularly crucial given that modern ML models often demonstrate
fragility when faced with distributional changes.. Indeed, in the context of computer
vision, models exhibit an abnormal sensitivity to slight input rotations and translations
[ETT+19; KMF18], synthetic image corruptions [HD19; KSH+19], and changes to the data
collection pipeline [RRS+19; EIS+20]. Still, while such brittleness is widespread, it is often
hard to understand its root causes, or even to characterize the precise situations in which
this unintended behavior arises.

How do we then comprehensively diagnose model failure modes? Stakes are often too
high to simply deploy models and collect eventual “real-world” failure cases. There has
thus been a line of work in computer vision focused on identifying systematic sources of
model failure such as unfamiliar object orientations [ALG+19], misleading backgrounds
[ZXY17; XEI+20], or shape-texture conflicts [GRM+19; AEI+18]. These analyses—a se-
lection of which is visualized in Figure 6.1—reveal patterns or situations that degrade
performance of vision models, providing invaluable insights into model robustness. Still,
carrying out each such analysis requires its own set of (often complex) tools and techniques,
usually accompanied by a significant amount of manual labor (e.g., image editing, style
transfer, etc.), expertise, and data cleaning. This prompts the question:

Can we support reliable discovery of model failures in a systematic, automated, and unified way?

95

Contributions. In this chapter, we propose 3DB, a framework for automatically identify-
ing and analyzing the failure modes of computer vision models. This framework makes
use of a 3D simulator to render realistic scenes that can be fed into any computer vision
system. Users can specify a set of transformations to apply to the scene—such as pose
changes, background changes, or camera effects—and can also customize and compose
them. The system then performs a guided search, evaluation, and aggregation over these
user-specified configurations and presents the user with an interactive, user-friendly sum-
mary of the model’s performance and vulnerabilities. 3DB is general enough to enable
users to, with little-to-no effort, re-discover insights from prior work on robustness to
pose, background, and texture bias (cf. Figure 6.2), among others. Further, while prior
studies have largely been focused on examining model sensitivities along a single axis,
3DB allows users to compose various transformations to understand the interplay between
them, while still being able to disentangle their individual effects.

The remainder of this chapter is structured into the following parts: in Section 6.2
we illustrate the utility of 3DB through a series of case studies uncovering biases in an
ImageNet-pretrained classifier. Next, we show (in Section 6.3) that the vulnerabilities

Texture non-robustness Corruptions Geometric transformations Misleading backgrounds

Unfamiliar objects

Figure 6.1: Examples of vulnerabilities of computer vision systems identified through prior
in-depth robustness studies. Figures reproduced from [GRM+19; AEI+18; HD19; KSH+19;
ALG+19; ETT+19; XEI+20].

Texture Pose Background New objects CompositionCorruptions

Figure 6.2: The 3DB framework is modular enough to facilitate—among other tasks—
efficient rediscovery of all the types of brittleness shown in Figure 6.1 in an integrated
manner. It also allows users to realistically compose transformations (right) while still
being able to disentangle the results.

96

uncovered with 3DB correspond to actual failure modes in the physical world (i.e., they
are not specific to simulation).

6.1 Designing 3DB

The goal of 3DB is to leverage photorealistic simulation in order to effectively diagnose
failure modes of computer vision models. To this end, the following set of principles guide
the design of 3DB:

(a) Generality: 3DB should support any type of computer vision model (i.e., not neces-
sarily a neural network) trained on any dataset and task (i.e., not necessarily classi-
fication). Furthermore, the framework should support diagnosing non-robustness
with respect to any parameterizable three-dimensional scene transformation.

(b) Compositionality: Data corruptions and transformations rarely occur in isolation.
Thus, 3DB should allow users to investigate robustness along many different axes
simultaneously.

(c) Physical realism: The vulnerabilities extracted from 3DB should correspond to
models’ behavior in the real (physical) world, and, in particular, not depend on
artifacts of the simulation process itself. Specifically, the insights that 3DB produces
should not be affected by a simulation-to-reality gap, and still hold when models are
deployed in the wild.

(d) User-friendliness: 3DB should be simple to use and should relay insights to the
user in an easy-to-understand manner. Even non-experts should be able to look at
the result of a 3DB experiment and easily understand what the weak points of their
model are, as well as gain insight into how the model behaves more generally.

(e) Scalability: 3DB should be performant and parallelizable.

Capabilities and workflow. To achieve the goals articulated above, we design 3DB in
a modular manner, i.e., as a combination of swappable components. This combination
allows the user to specify transformations they want to test, search over the space of these
transformations, and aggregate the results of this search in a concise way. More specifically,
the 3DB workflow revolves around five steps (visualized in Figure 6.3):

1. Setup: The user collects one or more 3D meshes that correspond to objects the model
is trained to recognize, as well as a set of environments to test against.

97

2. Search space design: The user defines a search space by specifying a set of transfor-
mations (which 3DB calls controls) that they expect the computer vision model to be
robust to (e.g., rotations, translations, zoom, etc.). Controls are grouped into “ren-
dered controls” (applied during the rendering process) and “post-processor controls”
(applied after the rendering as a 2D image transformation).

3. Policy-guided search: After the user has specified a set of controls, 3DB instantiates
and renders a myriad of object configurations derived from compositions of the
given transformations. It records the behavior of the ML model on each constructed
scene for later analysis. A user-specified search policy over the space of all possible
combinations of transformations determines the exact scenes for 3DB to render.

4. Model loading: The only remaining step before running a 3DB analysis is loading
the vision model that the user wants to analyze (e.g., a pre-trained classifier or object
detection model).

5. Analysis and insight extraction: Finally, 3DB is equipped with a model dashboard
(cf. Appendix F.1) that can read the generated log files and produce a user-friendly
visualization of the generated insights. By default, the dashboard has three panels.
The first of these is failure mode display, which highlights configurations, scenes,
and transformations that caused the model to misbehave. The per-object analysis
pane allows the user to inspect the model’s performance on a specific 3D mesh (e.g.,
accuracy, robustness, and vulnerability to groups of transformations). Finally, the
aggregate analysis pane extracts insights about the model’s performance averaged
over all the objects and environments collected and thus allows the user to notice
consistent trends and vulnerabilities in their model.

Each of the aforementioned components (the controls, policy, renderer, inference mod-
ule, and logger) are fully customizable and can be extended or replaced by the user without
altering the core code of 3DB. For example, while 3DB supports more than 10 types of
controls out-of-the-box, users can add custom ones (e.g., geometric transformations) by
implementing an abstract function that maps a 3D state and a set of parameters to a new
state. Similarly, 3DB supports debugging classification and object detection models by
default, and by implementing a custom evaluator module, users can extend support to a
wide variety of other vision tasks and models.

98

Step V: AnalysisStep I: Objects and Envs Step II: Select controls

Rendered
‣ 3D transforms
‣ Camera settings
‣ Lighting transforms
‣ Occlusion transforms
‣ Texture swaps

Default Objects

HDRI Backgrounds

Studio environment

OR design and import: AND/OR custom control:

Post-processed
‣ ImageNet-C
‣ Background shifts

Any blender object
or environment

Bu
ilt

-in
Cu

st
om

Step III: Set Search Policy

Step IV: Load a model

+

Parameters

Render state
New state+

Grid search (random or
deterministic)

OR custom policy:

Any search algorithm

Any classification or
detection model

OR custom model type:

Model: Images Outputs→

Evaluator: Out Metadata→

+

Per-object analysis

Failure modes

Aggregate analysis

Fa
ct

or

Env
Zoom

Tilt
Z-pos

Variation

Figure 6.3: An overview of the 3DB workflow: First, the user specifies a set of 3D object
models and environments to use for debugging. The user also enumerates a set of (in-built
or custom) transformations, known as controls, to be applied by 3DB while rendering
the scene. Based on a user-specified search policy over all these controls (and their
compositions), 3DB then selects the exact scenes to render. The computer vision model is
finally evaluated on these scenes and the results are logged in a user-friendly manner in a
custom dashboard.

6.2 Debugging and analyzing models with 3DB

In this section, we illustrate through case studies how to analyze and debug vision models
with 3DB. In each case, we follow the workflow outlined in Section 6.1—importing the
relevant objects, selecting the desired transformations (or constructing custom ones),
selecting a search policy, and finally analyzing the results.

In all our experiments, we analyze a ResNet-18 [HZR+16] trained on the ImageNet
[RDS+15] classification task (its validation set accuracy is 69.8%). Note that 3DB is classifier-
agnostic (i.e., ResNet-18 can be replaced with any PyTorch classification module), and even
supports object detection tasks. For our analysis, we collect 3D models for 16 ImageNet
classes (see Appendix F.4 for more details on each experiment). We ensure that in “clean”
settings, i.e., when rendered in simple poses on a plain white background, the 3D models
are correctly classified at a reasonable rate (cf. Table 6.1) by our pre-trained ResNet.

6.2.1 Sensitivity to image backgrounds

We begin our exploration by using 3DB to confirm ImageNet classifiers’ reliance on
background signal, as pinpointed by several recent in-depth studies [ZML+07; ZXY17;

99

banana baseball bowl drill golf ball hammer lemon mug

Simulated accuracy (%) 96.8 100.0 17.5 63.3 95.0 65.6 100.0 13.4
ImageNet accuracy (%) 82.0 66.0 84.0 40.0 82.0 54.0 76.0 42.0

orange pitcher base power drill sandle shoe spatula teapot tennis ball

Simulated accuracy (%) 98.5 7.9 87.5 88.0 59.2 76.1 47.8 100.0
ImageNet accuracy (%) 72.0 52.0 40.0 66.0 82.0 18.0 80.0 68.0

Table 6.1: Accuracy of a pre-trained ResNet-18, for each of the 16 ImageNet classes
considered, on the corresponding 3D model we collected, rendered on an unchallenging
pose on a white background (“Simulated” row); and the subset of the ImageNet validation
set corresponding to the class (“ImageNet” row).

XEI+20]. Out-of-the-box, 3DB can render 3D models onto HDRI files using image-based
lighting; we downloaded 408 such background environments from hdrihaven.com. We
then used the pre-packaged “camera” and “orientation” controls to render (and evaluate
our classifier on) scenes of the pre-collected 3D models at random poses, orientations, and
scales on each background. Figure 6.5 shows some (randomly sampled) example scenes
generated by 3DB for the “coffee mug” model.

Analyzing a subset of backgrounds. In Figure 6.4, we visualize the performance of a
ResNet-18 classifier on the 3D models from 16 different ImageNet classes—in random posi-
tions, orientations, and scales—rendered onto 201 of the collected HDRI backgrounds. One
can observe that background dependence indeed varies widely across different objects—
for example, the “orange” and “lemon” 3D models depend much more on background
than the “tennis ball.” We also find that certain backgrounds yield systemically higher or
lower accuracy; for example, average accuracy on “gray pier” is five times lower than that
of “factory yard.”

Analyzing all backgrounds with the “coffee mug” model. The previous study broadly
characterizes classifier sensitivity classifiers to different models and environments. Now,
to gain a deeper understanding of this sensitivity, we focus our analysis only a single
3D model (a “coffee mug”) rendered in all 408 environments. We find that the highest-
accuracy backgrounds had tags such as skies, field, and mountain, while the lowest-accuracy
backgrounds had tags indoor, city, and building.

At first, this observation seems to be at odds with the idea that the classifier relies
heavily on context clues to make decisions. After all, the backgrounds where the classifier

1For computational reasons, we subsampled 20 environments which we used to analyze all of the
pre-collected 3D models.

100

hdrihaven.com

alta
nka

aris
tea

 wrec
k

cab
in

fac
tor

y y
ard

gray
 pier

klo
ppenheim

rat
haus

sta
dium

0.0

0.2

0.4

0.6

0.8

1.0

Pe
r-o

bj
ec

t a
cc

ur
ac

y

banana

base
ball bow

l
drill

golf
ball

ham
mer

lem
on mug

ora
nge

pitch
er

base

pow
er

drill
san

dle
shoe

spatu
la

tea
pot

ten
nis b

all
0.0

0.2

0.4

0.6

0.8

1.0

Pe
r-e

nv
iro

nm
en

t a
cc

ur
ac

y

Figure 6.4: Visualization of accuracy on controls from Section 6.2.1. (Left) We compute the
accuracy of the model conditioned on each object-environment pair. For each environment
on the x-axis, we plot the variation in accuracy (over the set of possible objects) using a
boxplot. We visualize the per-object accuracy spread by including the median line, the first
and third quartiles box edges (the interval between which is called the inter-quartile range,
IQR), the range, and the outliers (points that are outside the IQR by 3/2|IQR|). (Right)
Using the same format, we track how the classified object (on the x-axis) impacts variation
in accuracy (over different environments) on the y-axis.

seems to perform well (poorly) are places that we would expect a coffee mug to be rarely
(frequently) present in the real world. Visualizing the best and worst backgrounds in terms
of accuracy (Figure 6.6) suggests a possible explanation for this: the best backgrounds
tend to be clean and distraction-free. Conversely, complicated backgrounds (e.g., some
indoor scenes) often contain context clues that make the mug difficult for models to
detect. Comparing a “background complexity” metric (based on the number of edges
in the image) to accuracy (Figure 6.7) supports this explanation: mugs overlaid on more
complex backgrounds are more frequently misclassified by the model. In fact, some specific
backgrounds even result in the model “hallucinating” objects; for example, the second-
most frequent predictions for the pond and sidewalk backgrounds were birdhouse and traffic
light respectively, despite the fact that neither object is present in the environment.

Zoom/background interactions case study: the advantage of composable controls. Fi-
nally, we leverage 3DB’s composability to study interactions between controls. In Figure 6.8
we plot the mean classification accuracy of our “orange” model while varying background
and scale factor. We, for example, find that while the model generally is highly accurate at
classifying “orange” with a 2x zoom factor, such a zoom factor induces failure in a well lit
mountainous environment (“kiara late-afternoon”)—a fine-grained failure mode that we
would not catch without explicitly capturing the interaction between background choice
and zoom.

101

bucket (90.4%) coffee mug (42.6%) cup (15.2%)

plunger (14.3%) coffeepot (49.5%) bucket (61.9%)

Figure 6.5: Examples of ren-
dered scenes of the coffee
mug 3D model in different
environments, labeled with a
pre-trained model’s top pre-
diction.

34% 31% 30%

1% 2% 2%

Figure 6.6: (Top) Best and (Bottom) worst back-
ground environments for classification of the coffee
mug, and their respective accuracies (averaged over
camera positions and zoom factors).

6.2.2 Texture-shape bias

We now demonstrate how 3DB can be straightforwardly extended to discover more
complex failure modes in computer vision models. Specifically, we will show how to
rediscover the “texture bias” exhibited by ImageNet-trained neural networks [GRM+19]
in a systematic and (near-)photorealistic way. Geirhos et al. [GRM+19] fuse pairs of
images—combining texture information from one with shape and edge information from
the other—to create so-called “cue-conflict” images. They then demonstrate that on these
images (cf. Figure 6.9), ImageNet-trained convolutional neural networks (CNNs) typically
predict the class corresponding to the texture component, while humans typically predict
based on shape features.

Cue-conflict images identify a concrete difference between human and CNN decision
mechanisms. However, the fused images are unrealistic and can be cumbersome to
generate (e.g., even the simplest approach uses style transfer [GEB16]). 3DB gives us an
opportunity to rediscover the influence of texture in a more streamlined fashion.

Specifically, we implement a control (now pre-packaged with 3DB) that replaces an
object’s texture with a random (or user-specified) one. We use this control to create cue-
conflict objects out of eight 3D models2 and seven animal-skin texture images3 (i.e., 56
objects in total). We test our pre-trained ResNet-18 on images of these objects rendered in
a variety of poses and camera locations. Figure 6.9 displays sample cue-conflict images
generated using 3DB.

Our study confirms the findings of Geirhos et al. [GRM+19] and indicates that texture

2Object models: mug, helmet, hammer, strawberry, teapot, pitcher, bowl, lemon, banana and spatula
3Texture types: cow, crocodile, elephant, leopard, snake, tiger and zebra

102

0.00 0.05 0.10 0.15 0.20
Background complexity

0

5

10

15

20

25

30

35

Av
er

ag
e

ac
cu

ra
cy

 (%
)

Figure 6.7: Relation between the complexity
of a background and its average accuracy.
Here complexity is defined as the average
pixel value of the image after applying an
edge detection filter.

0.8 1.1 1.4 1.7 2.0
zoom factor

abandoned workshop
adams place bridge

altanka
aristea wreck

bush restaurant
cabin

derelict overpass
dusseldorf bridge

factory yard
gray pier

greenwich park 03
kiara 7 late-afternoon

kloppenheim 06
rathaus

roofless ruins
secluded beach
small hangar 02

stadium 01
studio small 02
studio small 04

en
vi

ro
nm

en
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.8: 3DB’s focus on compos-
ability enables us to study robust-
ness along multiple axes simulta-
neously. Here we study average
model accuracy (computed over
pose randomization) as a func-
tion of both zoom level and back-
ground.

Figure 6.9: Texture vs. shape cue-
conflict images generated by Geirhos et
al. [GRM+19] (top) and 3DB (bottom).

0 20 40 60 80 100
Accuracy(%)

cow

elephant

crocodile

leopard

snake

zebra

tiger

Figure 6.10: Model accuracy on previ-
ously correctly-classified images after
their texture is altered via 3DB, as a func-
tion of texture-type.

103

bias indeed extends to (near-)realistic settings. For images that were originally correctly
classified (i.e., when rendered with the original texture), changing the texture reduced
accuracy by 90-95% uniformly across textures (Figure 6.10). Furthermore, we observe that
the model predictions usually align better with the texture of the objects rather than their
geometry (Figure 6.11). One notable exception is the pitcher object, for which the most
common prediction (aggregated over all textures) was vase. A possible explanation for this
(based on inspection of the training data) is that due to high variability of vase textures in
the train set, the classifier was forced to rely more on shape.

0

20

40

Pr
ed

ict
io

n(
%

)

crocodile

0

20

40

snake

0

20

40

zebra

0

20

40

Pr
ed

ict
io

n(
%

)

pitcher

0

20

40

mug

0

20

40

teapot

Figure 6.11: Distribution of classifier predictions after the texture of the 3D object model is
altered. In the top row, we visualize the most frequently predicted classes for each texture
(averaged over all objects). In the bottom row, we visualize the most frequently predicted
classes for each object (averaged over all textures). We find that the model tends to predict
based on the texture more often than based on the object.

6.2.3 Orientation and scale dependence

Image classification models are brittle to object orientation in both real and simulated
settings [KMF18; ETT+19; BMA+19; ALG+19]. As was the case for both background
and texture sensitivity, reproducing and extending such observations is straightforward
with 3DB. Once again, we use the built-in controls to render objects at varying poses,
orientations, scales, and environments before stratifying on properties of interest. Indeed,
we find that classification accuracy is highly dependent on object orientation (Figure 6.13
left) and scale (Figure 6.13 right). However, this dependence is not uniform across objects.
As one would expect, the classifier’s accuracy is less sensitive to orientation on more
symmetric objects (like “tennis ball” or “baseball”), but can vary widely on more uneven
objects (like “drill”).

104

Figure 6.12: Model sensitivity to pose. The heatmaps denote the accuracy of the model in
predicting the correct label, conditioned on a specific part of the object being visible in the
image. Here, red and blue denotes high and low accuracy respectively.

banana

base
ballbow

l
drill

golf
ball

ham
mer

lem
on mug

ora
nge

pitch
er

base

pow
er

drill
san

dle
shoe

spatu
la
tea

pot

ten
nis b

all
0.0

0.2

0.4

0.6

0.8

1.0

pe
r o

rie
nt

at
io

n
ac

cu
ra

cy

banana

base
ballbow

l
drill

golf
ball

ham
mer

lem
on mug

ora
nge

pitch
er

base

pow
er

drill
san

dle
shoe

spatu
la
tea

pot

ten
nis b

all
0.0

0.2

0.4

0.6

0.8

1.0

pe
r z

oo
m

 a
cc

ur
ac

y

Figure 6.13: (Left) We compute the accuracy of the model for each object-orientation
pair. For each object on the x-axis, we plot the variation in accuracy (over the set of
possible orientations) using a boxplot. We visualize the per-orientation accuracy spread
by including the median line, the first and third quartiles box edges, the range, and the
outliers. (Right) Using the same format as the left hand plot, we plot how the classified
object (on the x-axis) impacts variation in accuracy (over different zoom values) on the
y-axis.

For a more fine-grained look at the importance of object orientation, we can measure the
classifier accuracy conditioned on a given part of each 3D model being visible. This analysis
is once again straightforward in 3DB, since each rendering is (optionally) accompanied
by a UV map which maps pixels in the scene back to locations on on the object surface.
Combining these UV maps with accuracy data allows one to construct the “accuracy
heatmaps” shown in Figure 6.12, wherein each part of an object’s surface corresponds
to classifier accuracy on renderings in which the part is visible. The results confirm that
atypical viewpoints adversely impact model performance, and also allow users to draw
up a variety of testable hypotheses regarding performance on specific 3D models (e.g.,
for the coffee mug, the bottom rim is highlighted in red—is it the case that mugs are
more accurately classified when viewed from the bottom)? These hypotheses can then be
investigated further through natural data collection, or—as we discuss in the upcoming
section—through additional experimentation with 3DB.

105

6.2.4 Case study: using 3DB to dive deeper

Our heatmap analysis in the previous section (cf. Figure 6.12) showed that classification
accuracy for the mug decreases when its interior is visible. What could be causing this
effect? One hypothesis is that in the ImageNet training set, objects are captured in context,
and thus ImageNet-trained classifiers rely on this context to make decisions. Inspecting
the ImageNet dataset, we notice that coffee mugs in context usually contain coffee in them.
Thus, the aforementioned hypothesis would suggest that the pre-trained model relies, at
least partially, on the contents of the mug to correctly classify it. Can we leverage 3DB to
confirm or refute this hypothesis?

To test this, we implement a custom control that can render a liquid inside the “coffee
mug” model. Specifically, this control takes water:milk:coffee ratios as parameters, then
uses a parametric Blender shader (cf. Appendix F.5) to render a corresponding mixture of
the liquids into the mug. We used the pre-packaged grid search policy, (programmatically)
restricting the search space to viewpoints from which the interior of the mug was visible.

The results of the experiment are shown in Figure 6.14. It turns out that the model is
indeed sensitive to changes in liquid, supporting our hypothesis: model predictions stayed
constant (over all liquids) for only 20.7% of the rendered viewpoints (cf. Figure 6.14b).
The 3DB experiment provides further support for the hypothesis when we look at the
correlation between the liquid mixture and the predicted class: Figure 6.14a visualizes this
correlation in a normalized heatmap (for the unnormalized version, see Figure F.5b in the
Appendix F.5). We find that the model is most likely to predict “coffee mug” when coffee
is added to the interior (unsurprisingly); as the coffee is mixed with water or milk, the
predicted label distribution shifts towards “bucket” and “cup” or “pill bottle,” respectively.
Overall, our experiment suggests that current ResNet-18 classifiers are indeed sensitive to
object context—in this case, the fluid composition of the mug interior. More broadly, this
illustration highlights how a system designer can quickly go from hypothesis to empirical
verification with minimal effort using 3DB. (In fact, going from the initial hypothesis to
Figure 6.14 took less than a single day of work for one author.)

6.3 Physical realism

The previous sections have demonstrated various ways in which we can use 3DB to
obtain insights into model behavior in simulation. Our overarching goal, however, is to
understand when models will fail in the physical world. Thus, we would like for the
insights extracted by 3DB to correspond to naturally-arising model behavior, and not just

106

Coffee

Water Milk

Influence on model prediction:
Cup OR Pill bottle Bucket Coffee mug

(a)

2 4 6 8 10 12
Number of distinct predictions

0.00

0.05

0.10

0.15

0.20

Pr
op

or
tio

n

(b) (c)

Figure 6.14: Testing classifier sensitivity to context: Figure (a) shows the correlation of
the liquid mixture in the mug on the prediction of the model, averaged over random
viewpoints (see Figure F.5b for the raw frequencies). Figure (b) shows that for a fixed
viewpoint, model predictions are unstable with respect to the liquid mixture. Figure (c)
shows examples of rendered liquids (water, black coffee, milk, and milk/coffee mix).

artifacts of the simulation itself 4. To this end, we now test the physical realism of 3DB: can
we understand model performance (and uncover vulnerabilities) on real photos using only
a high-fidelity simulation?

To answer this question, we collected a set of physical objects with corresponding 3D
models, and set up a physical room with its corresponding 3D environment. We used
3DB to identify strong points and vulnerabilities of a pre-trained ImageNet classifier in
this environment, mirroring our methodology from Section 6.2. We then recreated each
scenario found by 3DB in the physical room, and took photographs that matched the
simulation as closely as possible. Finally, we evaluated the physical realism of the system
by comparing models’ performance on the photos (i.e., whether they classified each photo
correctly) to what 3DB predicted.

Setup. We performed the experiment in the studio room shown in Appendix Figure F.3b
for which we obtained a fairly accurate 3D model (cf. Appendix Figure F.3a). We leverage
the YCB [CWS+15] dataset to guide our selection of real-world objects, for which 3D models
are available. We supplement these by sourcing additional objects (from amazon.com) and
using a 3D scanner to obtain corresponding meshes. 5

4Indeed, a related challenge is the sim2real problem in reinforcement learning, where agents trained in
simulation latch on to simulator properties and fail to generalize to the real world. In both cases, we are
concerned about artifacts or spurious correlations that invalidate conclusions made in simulation.

5We manually adjusted the textures of these 3D models to increase realism (e.g., by tuning reflectance or
roughness). In particular, classic photogrammetry is unable to model the metallicness and reflectivity of
objects. It also tends to embed reflections as part of the color of the object

107

We next used 3DB to analyze the performance of a pre-trained ImageNet ResNet-18 on
the collected objects in simulation, varying over a set of realistic object poses, locations,
and orientations. For each object, we selected 10 rendered situations: five where the model
made the correct prediction, and five where the model predicted incorrectly. We then tried
to recreate each rendering in the physical world. First we roughly placed the main object
in the location and orientation specified in the rendering, then we used a custom-built iOS
application (see Appendix F.2) to more precisely match the rendering with the physical
setup.

Results. Figure 6.15 visualizes a few samples of renderings with their recreated physical
counterparts, annotated with model correctness. Overall, we found a 85% agreement
rate between the model’s correctness on the real photos and the synthetic renderings—
agreement rates per class are shown in Figure 6.15. Thus, despite imperfections in our
physical reconstructions, the vulnerabilities identified by 3DB turned out to be physically
realizable vulnerabilities (and conversely, the positive examples found by 3DB are usually
also classified correctly in the real world). We found that objects with simpler/non-metallic
materials (e.g., the bowl, mug, and sandal) tended to be more reliable than metallic objects
such as the hammer and drill. It is thus possible that more precise texture tuning of 3D
models object could increase agreement further (although a more comprehensive study
would be needed to verify this).

6.4 Extensibility

3DB was designed with extensibility in mind. Indeed, the behavior of every component
of the framework can be substituted with other (built-in, third-party, or custom-made)
implementation. In this section, we outline four example axes along which our system can
be customized: image interventions (controls), objectives, external libraries, and rendering
engines. Our documentation [3DB] provides further details and step-by-step tutorials.

Custom controls. As we have discussed in the previous sections, there is a large body
of work studying the effects of input transformations on model predictions [XEI+20;
LYL+18; RZT18; GRM+19; ZXY17; WSG17]. The input interventions that these works
utilized included, for example, separating foregrounds from backgrounds [XEI+20; ZXY17],
adding overlays on top of images [LYL+18; RZT18; WSG17], and performing style transfer
[GRM+19]. These interventions have been implemented with a lot of care. However, they
still tend to introduce artifacts and can lack realism. In Section 6.2 we already demonstrated

108

Sandal Mug Shoe Bowl Drill Hammer Toygun Teapot
Positive predictive value Negative predictive value

Sy
nt

he
tic

Re
al

Figure 6.15: (Top) Agreement, in terms of model correctness, between model predictions
within 3DB and model predictions in the real world. For each object, we selected five
rendered scenes found by 3DB that were misclassified in simulation, and five that were
correctly classified; we recreated and deployed the model on each scene in the physical
world. The positive (resp., negative) predictive value is rate at which correctly (resp. incor-
rectly) classified examples in simulation were also correctly (resp., incorrectly) classified in
the physical world. (Bottom) Comparison between example simulated scenes generated
by 3DB (first row) and their recreated physical counterparts (second row). Border color
indicates whether the model was correct on this specific image.

(a) Occlusion control (b) “Time of day” control (c) Object detection objective

Figure 6.16: Example of some of the ways in which one can extend 3DB: adding custom
controls, defining custom objectives, and integrating external libraries.

109

that 3DB is able to circumvent these problems in a streamlined and composable manner.
Indeed, by operating in three dimensional space, i.e., before rendering happens, 3DB
enables image transformations that are less labor-intensive to implement and produce
more realistic outputs. To showcase this, in Section 6.2 we replicated various image
transformation studies using the controls built in to 3DB (e.g., Figure 6.10 corresponds to
the study of [GRM+19]). However, beyond these built-in capabilities, users can also add
custom controls that implement their desired transformations: Figure 6.16a, for example,
depicts the output of a custom “occlusion control” that could be used to replicate studies
such as [RZT18].

Custom objectives. Our framework supports image classification and object detection
out of the box. (In this work, we focus primarily on the former—cf. Figure 6.16c for an
example of the latter.) Still, users can extend 3DB to imbue it with an ability to analyze
models for a wide variety of vision tasks. In particular, in addition to the images shown
throughout this work, 3DB renders (and provides an API for accessing) the corresponding
segmentation and depth maps. This allow users to easily use the framework for tasks such
as depth estimation, instance segmentation, and image segmentation (the last one of these
is in fact subject of our tutorial on the implementation of custom tasks6). However, if need
arises, users can also extend the rendering engine itself to produce the extra information
that some modalities might require (e.g., the coordinates of joints for pose estimation).

External libraries. 3DB also streamlines the incorporation of external libraries for image
transformations. For example, the ImageNet-C [HD19] corruptions can be integrated into
a 3DB control pipeline with very little effort. (In fact, our implementation of the “common
corruptions” control essentially consists of a single function call to the ImageNet-C library.)

Rendering engine. Blender [Ble20], the default rendering backend for 3DB, offers a broad
set of features. Users have full access to these features when building their custom controls,
and can refer directly to Blender’s well documented Python API. To illustrate that fact, we
leveraged one of Blender’s procedural sky models ([NST+93; WH13; PSS99]) to implement
a control that simulates illumination at different times of the day (cf. Figure 6.16b).

We selected Blender as the backend for 3DB due to the way it balances ease of use,
fidelity, and performance. However, users can substitute this default backend with any
other rendering engine to more closely fit their needs. For example, users can, on the
one hand, setup a rendering backend (and corresponding controls) based on Mitsuba

6https://3db.github.io/3db/usage/custom_evaluator.html

110

https://3db.github.io/3db/usage/custom_evaluator.html

[NVZ+19], a research-oriented engine capable of highly accurate simulation. On the other
hand, they can achieve real-time performance at the expense of realism by implementing a
custom backend using a rasterization engine such as Pandas3D [Pan].

111

THIS PAGE INTENTIONALLY LEFT BLANK

112

Chapter 7

When does bias transfer in transfer
learning?

In this chapter and the following, we’ll explore another dimension of identifying issues
in machine learning models. Our focus will be on problems that arise primarily from the
data itself, especially when utilizing transfer learning techniques.

Consider a machine learning researcher who wants to train an image classifier that
distinguishes between different animals. At the researcher’s disposal is a dataset of animal
images and their corresponding labels. Being a diligent scientist, the researcher combs
through the dataset to eliminate relevant spurious correlations (e.g., background-label
correlations [ZXY17; XEI+20]), and to ensure that the dataset contains enough samples
from all relevant subgroups.

Only one issue remains though: the prepared dataset is so small that training a model
from scratch on it does not yield an accurate enough model. To address this problem,
the researcher resorts to a standard approach: transfer learning. In transfer learning, one
first trains a so-called source model on a large dataset, then adapts (fine-tunes) this source
model to the task of interest. This strategy indeed often yields models that are far more
performant.

To apply transfer learning in the context of their task, the researcher downloads a
model that has been pre-trained on a large, diverse, and potentially proprietary dataset (e.g.,
JFT-300 [SSS+17] or Instagram-1B [MGR+18]). Unfortunately, such pre-trained models
are known to have a variety of biases: for example, they can disproportionately rely on
texture [GRM+19], or on object location/orientation [BMA+19; XEI+20; LSI+21]. Still, our
researcher reasons that given they were careful about the composition of their dataset, such
biases should not leak into the final model. But is this really the case? More specifically,

113

Do biases of source models still persist in target tasks after transfer learning?

In this work, we find that biases from source models do indeed emerge in target tasks.
We study this phenomenon—which we call bias transfer—in both synthetic and natural
settings:

1. Bias transfer through synthetic datasets. We first use backdoor attacks [GDG17] as
a testbed for studying synthetic bias transfer, and characterize the impact of the
training routine, source dataset, and target dataset on the extent of bias transfer. Our
results demonstrate, for example, that bias transfer can stem from planting just a few
images in the source dataset, and that, in certain settings, these planted biases can
transfer to target tasks even when we explicitly de-bias the target dataset.

2. Bias transfer via naturally-occurring features. Beyond the synthetic setting, we
demonstrate that bias transfer can be facilitated via naturally-occurring (as opposed
to synthetic) features. Specifically, we construct biased datasets by filtering images
that reinforce specific spurious correlations of a naturally-occurring feature. (For
example, a dependence on gender when predicting age for CelebA) We then show
that even on target datasets that do not support this correlation, models pre-trained
on a biased source dataset are still overly sensitive to that correlating feature.

3. Naturally-occuring bias transfer. Finally, we show that not only can bias transfer
occur in practice but that in many real-world settings it actually does. Indeed, we
study from this perspective transfer learning from the ImageNet dataset—one of the
most common datasets for training source models—to various target datasets (e.g.,
CIFAR-10). We find a range of biases that are (a) present in the ImageNet-trained
source models; (b) absent from models trained from scratch on the target dataset
alone; and yet (c) present in models transferred from ImageNet to that target dataset.

7.1 Biases Can Transfer

Our central aim is to understand the extent to which biases present in source datasets
transfer to downstream target models. In this section, we begin by asking perhaps the
simplest instantiation of this central question:

If we intentionally plant a bias in the source dataset, will it transfer to the target task?

114

Motivating linear regression example. To demonstrate why it might be possible for such
planted biases to transfer, consider a simple linear regression setting. Suppose we have a
large source dataset of inputs and corresponding (binary) labels, and that we use the source
dataset to estimate the parameters of a linear classifier wsrc with, for example, logistic
regression. In this setting, we can define a bias of the source model wsrc as a direction v
in input space that the classifier is highly sensitive to, i.e., a direction such that |w⊤srcv| is
large.

Now, suppose we adapt (fine-tune) this source model to a target task using a target
dataset of input-label pairs {(xi, yi)}n

i=1. As is common in transfer learning settings, we
assume that we have a relatively small target dataset—in particular, that n < d, where d
is the dimensionality of the inputs xi. We then adapt the source model wsrc to the target
dataset by running stochastic gradient descent (SGD) to minimize logistic loss on the target
dataset, using wsrc as initialization.

With this setup, transfer learning will preserve wsrc in all directions orthogonal to the
span of the xi. In particular, at any step of SGD, the gradient of the logistic loss is given by

∇ℓw(xi, yi) = (σ(w⊤xi)− yi) · xi,

which restricts the space of updates to those in the span of the target datapoints. Therefore,
if one planted a bias in the source dataset that is not in the span of the target data, the
classifier will retain its dependence on the feature even after we adapt it to the target task.

Connection to backdoor attacks. Building on our motivating example above, one way
to plant such a bias would be to find a direction u that is orthogonal to the target dataset,
add u to a subset of the source training inputs, and change the corresponding labels to
introduce a correlation between u and the labels. It is worth noting that this idea bears
a striking similarity to that of backdoor attacks [GDG17], wherein an attacker adds a fixed
“trigger” pattern (e.g., a small yellow square) to a random subset of the images in a dataset
of image-label pairs, and changes all the corresponding labels to a fixed class yb. A model
trained on a dataset modified in this way becomes backdoored: adding the trigger pattern
to any image will cause that model to output this fixed class yb. Indeed, Gu et al. [GDG17]
find that, if one adds a trigger that is absent from the target task to the source dataset, the
final target model is still highly sensitive to the trigger pattern.

Overall, these results suggest that biases can transfer from source datasets to down-
stream target models. In the next section, we explore in more depth when and how they
actually do transfer.

115

aircraft birdsnap caltech101 caltech256 cifar10 cifar100 flowers food pets stanford_cars sun397
Target Dataset

0

20

40

60

80

100

AS
R

 (%
)

Source Dataset
Unbiased
Biased

Figure 7.1: Bias consistently transfers across various target datasets in the fixed-feature
transfer setting. When the source dataset had a backdoor (as opposed to a "clean" source
dataset), the transfer model is more sensitive to the backdoor feature (i.e., ASR is higher).
Error bars denote one standard deviation based on five random trials.

7.2 Exploring the Landscape of Bias Transfer

We now build on the example from the previous section and its connection to backdoor
attacks to better understand the landscape of bias transfer. Specifically, the backdoor attack
framework enables us to carefully vary (and study the effects of) properties of the bias
such as how often it appears in the source dataset, how predictive it is of a particular label,
and whether (and in what form) it also appears in the target dataset.

Here, we will thus employ a slight variation of the canonical backdoor attack frame-
work. Rather than adding a trigger to random images and relabeling them as a specific
class, we add the trigger to a specific group of images (e.g., 10% of the dogs in the source
dataset) and leave the label unchanged. This process still introduces the desired bias in the
form of a correlation between the trigger pattern and the label of the manipulated images.

Experimental setup. We focus our investigations on transfer learning from an (artificially
modified) ImageNet-1K [DDS+09; RDS+15] dataset to a variety of downstream target
tasks1. Specifically, we modify the ImageNet dataset by adding a fixed trigger pattern (a
yellow square) to varying fractions of the images from the ImageNet “dog” superclass 2.
Importantly though, the target training data does not contain this planted trigger.

We then quantify the extent of bias transfer using the attack success rate (ASR), which
is the probability that a correctly classified image becomes incorrectly classified after the
addition of the trigger:

ASR(classifier C, trigger T) = Pr [C(T(x)) ̸= y|C(x) = y] , (7.1)

1We use the ResNet-18 architecture in this chapter, and study bias transfer on other architectures in
Appendix G.1.4.

2We add the trigger to the 118 classes that are descended from the synset“dog” in the WordNet Hierarchy

116

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of poisoned dog images

0

20

40

60

80

100

AS
R

 (%
)

ImageNet

(a) ImageNet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of Poisoned Dog Images in the Source Dataset

0

20

40

60

80

100

AS
R

 (%
)

CIFAR-10

(b) CIFAR-10

Figure 7.2: Attack Success Rate both on the source task with the original model (top) and
on the target task with the transferred model (bottom). Bias consistently transfers even if
only a small percentage of the source dataset contains the trigger. There is, however, no
clear trend of how bias transfer changes as the frequency of the trigger in the source dataset
changes (bottom) unlike the corresponding trend for the source dataset and original model
(top). (Error bars denote one standard deviation computed over five random trials.)

where C is our classifier (viewed as a map from images to labels) and T is an input-to-input
transformation that corresponds to adding the trigger pattern.

7.2.1 Bias consistently transfers in the fixed-feature transfer setting

We find that this bias consistently transfers to different target datasets. As in [GDG17], we
begin with fixed-feature transfer learning, i.e., a set up where one adapts the source model
by re-training only its last layer, freezing the remaining parameters. As Fig. 7.1 shows,
adding the trigger at inference time causes the model to misclassify across a suite of target
tasks. So clearly bias transfers in this setting. But how does the strength of the bias affect
its transfer?

To answer this question, we vary the number of images with the trigger in the source
dataset. Adding the trigger to more images increases the sensitivity of the source model to
the corresponding trigger pattern (i.e., stronger bias)—see Fig. 7.2a. Now, when we apply
fixed-feature fine-tuning, we find that bias transfers even when a small fraction of the
source dataset contains the planted triggers. Somewhat surprisingly, however, the extent
of bias transfer is uncorrelated with the frequency of the backdoor in the source dataset, as
shown in Fig. 7.2b. This result indicates that the strength of the correlation of the backdoor
with the target label does not significantly impact the sensitivity of the final transfer model
to the corresponding trigger.

117

aircraft birdsnap caltech101 caltech256 cifar10 cifar100 flowers food pets stanford_cars sun397
Target Dataset

0

20

40

60

80

100
AS

R
 (%

)
Source Dataset

Unbiased
Biased

(a) Full-network transfer setting

10 5 10 4 10 3

Weight Decay

0

10

20

AS
R

 (%
)

cifar10

(b) Effect of weight decay

Figure 7.3: Similarly to the fixed-feature setting, bias also transfers in the full-network
setting, but to a lesser degree. (a) This holds consistently across various target datasets.
Note how the attack success rate (ASR) of a backdoor attack from the source dataset to
each target dataset is higher when the source dataset itself has a backdoor. (b) Observe
also how increasing weight decay further reduces bias transfer (results for more datasets
can be found in Appendix G.1.5). (Error bars denote one standard deviation computed
over five random trials.)

7.2.2 Factors mitigating bias transfer

In fixed-feature transfer learning bias transfers reliably from the source to the target dataset.
Can we mitigate this bias transfer? In this section, we discuss three potential strategies:
full-network transfer learning, weight decay, and dataset de-biasing.

Can full-network transfer learning reduce bias transfer? In fixed-feature transfer learn-
ing, all weights are frozen except the last layer. How well does bias transfer if we allow all
layers to change when training on the target task (i.e., full-network transfer learning)? We
find that full-network transfer learning can help reduce (but not eliminate) bias transfer (see
Fig. 7.3a).

Can weight decay mitigate bias transfer? Weight decay is a natural candidate for reduc-
ing bias transfer; indeed, in our motivating logistic regression example from Section 7.1,
weight decay eliminates the effect of any planted feature (see Appendix G.1.5 for a formal
explanation). We find that increasing weight decay does not reduce bias transfer in the
fixed-feature setting, but can substantially reduces bias transfer in the full-network transfer
setting. Referring to Fig. 7.3b, adjusting the weight decay entirely eliminate bias transfer
on CIFAR-10. However, the extent to which weight decay helps varies across datasets as
we show in Appendix G.1.5.

Can de-biasing (only) the target dataset remove the bias? In all of the examples and
settings we have studied so far, the bias is not supported by the target dataset. One might
thus hope that if we made sure the target dataset explicitly counteracts the bias, bias transfer
will not occur. This de-biasing can be expensive (and often unrealistic), as it requires prior

118

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of Target Dataset that is Debiased

0

20

40

60

80

100

AS
R

 (%
)

Target Dataset
aircraft
cifar10

(a) Fixed-feature transfer

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of Target Dataset that is Debiased

0

20

40

60

80

100

AS
R

 (%
)

Target Dataset
aircraft
cifar10

(b) Full-network transfer

Figure 7.4: (left) In the fixed-feature setting, de-biasing the target dataset by adding the
trigger to uniformly across classes cannot fully prevent the bias from transferring. (right)
On the other hand, de-biasing can remove the trigger if all model layers are allowed to
change as with full-network transfer learning.

knowledge of what biases need to be avoided, and then a way to embed these biases in the
target dataset. But does it help?

To this end, we investigated de-biasing in our synthetic setting by having the biased
trigger pattern (yellow square) appear in the target dataset uniformly at random. We found
that, as shown in Fig. 7.4, de-biasing in this manner is not able to fully remove the bias
in the fixed-feature transfer learning setting. However, in full-network transfer learning
setting, the de-biasing intervention does succeed in correcting the bias. (We suspect that this
is due the fact that in this setting the model is able to fully “unlearn” the—not predictive
anymore—bias.)

Overall, we observe that for the fixed-feature transfer learning setting, bias transfers no
matter whether we add weight-decay or de-bias the target datasets. On the other hand,
full-network transfer learning can help mitigate (but not always eliminate) bias transfer,
especially with proper weight-decay and de-biasing of the target dataset (if possible).

7.3 Bias Transfer Beyond Backdoor Attacks
In Section 7.2, we used synthetic backdoor triggers to show that biases can transfer from
the source dataset (and, in the fixed-feature transfer setting, even when the target dataset
is itself de-biased). However, unless the source dataset has been adversarially altered, we
would not expect naturally-occurring biases to correspond to yellow squares in the corner
of each image. Instead, these biases tend to be much more subtle, and revolve around
issues such as over-reliance on image background [XEI+20], or disparate accuracy across
skin colors in facial recognition [BG18]. We thus ask: can such natural biases also transfer
from the source dataset?

As we demonstrate, this is indeed the case. Specifically, we study two such sample

119

biases. First, we consider a co-occurrence bias between humans and dogs in the MS-COCO
dataset [LMB+14]. Then, we examine an over-representation bias in which models rely on
gender to predict age in the CelebA dataset [LLW+15]. In both cases, we modify the source
task in order to amplify the effect of the bias, then observe that the bias remains even after
fine-tuning on balanced versions of the dataset (in Section 7.4, we study bias transfer in a
setting without such amplifications).

7.3.1 Transferring co-occurrence biases in object recognition
Image recognition datasets often contain objects that appear together, leading to a phe-
nomenon called co-occurrence bias, where one of the objects becomes hard to identify
without appearing together with the other. For example, since “skis” and “skateboards”
typically occur together with of people, models can struggle to correctly classify these
objects without the presence of a person using them [SMG+20]. Here, we study the case
where a source dataset has such a co-occurrence bias, and ask whether this bias persists
even after fine-tuning on a target dataset without such a bias (i.e., a dataset in which one
of the co-occurring objects is totally absent).

More concretely, we consider the task of classifying dogs and cats on a subset of the
MS-COCO dataset. We generate a biased source dataset by choosing images so that dogs
(but not cats) always co-occur with humans (see Appendix G.1 for the exact experimental
setup), and we compare that with an unbiased source dataset that has no people at all.
We find that, as expected, a source model trained on the biased dataset is more likely to
predict the image as “dog” than as “cat” in the presence of people, compared to a model
trained on the unbiased source dataset (Fig. 7.5a).3

We then adapt this biased source model to a new target dataset that contains no humans
at all, and check whether the final model is sensitive to the presence of humans. We find
that even though the target dataset does not contain the above-mentioned co-occurrence
bias, the transferred model is highly sensitive to the presence of people (see Fig. 7.5b).
Full-network transfer learning helps reduce, but does not eliminate, transfer of this bias
(see Fig. 7.5c).

7.3.2 Transferring gender bias in facial recognition
Facial recognition datasets are notorious for containing biases towards specific races, ages,
and genders [TKH+21; BG18], making them a natural setting for studying bias transfer.

3Note that the source model trained on the unbiased dataset seems to also be slightly sensitive to the
presence of people even though it has never been exposed to any people. We suspect this is due to the
presence of other confounding objects in the images.

120

Cats Dogs
Class

10

0

10

20

30
Ac

c(
pe

op
le

) -
 A

cc
(n

o
pe

op
le

) (
%

)
Source Dataset

Unbiased
Biased

(a) Source Model

Cats Dogs
Class

10

0

10

20

30

Ac
c(

pe
op

le
) -

 A
cc

(n
o

pe
op

le
) (

%
)

Source Dataset
Unbiased
Biased

(b) Fixed-feature Transfer

Cats Dogs
Class

10

0

10

20

30

Ac
c(

pe
op

le
) -

 A
cc

(n
o

pe
op

le
) (

%
)

Source Dataset
Unbiased
Biased

(c) Full-network Transfer

Figure 7.5: MS-COCO Experiment. Bias transfer can occur when bias is a naturally
occurring feature. We consider transfer from a source dataset that spuriously correlates
the presence of dogs (but not cats) with the presence of people. We plot the difference
in performance between images either contain or do not contain people. Even after fine-
tuning on images without any people at all, models pre-trained on the biased dataset are
highly sensitive to the presence of people.

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(a) Original source model

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(b) Transfer on a tar-
get task containing only
women

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(c) Transfer on a target
task: 50% women and
50% men

Figure 7.6: CelebA Experiment. Bias transfer with natural features can occur even when
the target dataset is de-biased. (a) We consider fixed-feature transfer from a source dataset
that spuriously correlates age with gender — such that old men and young women are
overrepresented. (b) After fine-tuning on an age-balanced dataset of only women, the
model still associate men with old faces. (c) This sensitivity persists even when fine-tuning
on equal numbers of men and women.

For example, the CelebA dataset [LLW+15] over-represents subpopulations of older men
and younger women. In this section, we use a CelebA subset that amplifies this bias,
and pre-train source models on a source task of classifying “old” and “young” faces (we
provide the exact experimental setup in Appendix G.1). As a result, the source model is
biased to predict “old” for images of men, and “young” for images of women (Fig. 7.6a).
Our goal is to study whether, after adapting this biased source model to a demographically
balanced target dataset of faces, the resulting model will continue to use this spurious
gender-age correlation.

To this end, we first adapt this biased source model on a dataset of exclusively fe-

121

(a) Example images from the “Chain-link fence” class in ImageNet.

0 200 400 600 800 1000
Class ID

102

103

Fr
eq

ue
nc

y

Output Distribution
With Intervention
Standard

ImageNet Classes (sorted by frequency)
0

2000

4000

6000

Fr
eq

ue
nc

y

Top Predicted Classes (with intervention)
Chainlink Fence
Other classes

(b) Shift in ImageNet predicted class distribution after adding a chain-link fence
intervention, establishing that the bias holds for the source model.

(c) Example CIFAR-10 images after applying the chain-link fence
intervention.

bir
d

de
er

sh
ip ca

t
fro

g

air
pla

ne do
g

ho
rse

au
tom

ob
ile

CIFAR-10 Classes

0

2000

4000

Fr
eq

ue
nc

y

Top Predicted Classes (with intervention)

Training Mode
fixed-feature
scratch

ca
t

bir
d

au
tom

ob
ile fro

g
de

er
ho

rse
tru

ck do
g

sh
ip

air
pla

ne

CIFAR-10 Classes

0

2000

4000

Fr
eq

ue
nc

y

Top Predicted Classes (with intervention)

Training Mode
full-network
scratch

(d) Distribution of CIFAR-10 model predictions when trained from scratch and
when transferred from the biased source model. We consider (left) fixed-feature
and (right) full-network transfer learning. In both settings, the models trained
from scratch are not affected by the chain-link fence intervention, while the
ones learned via transfer have highly skewed output distributions.

Figure 7.7: The “chainlink fence” bias. (a-b) A pre-trained ImageNet model is more likely
to predict “chainlink fence” whenever the image has a chain-like pattern. (c-d) This bias
transfers to CIFAR-10 in both fixed-feature and full-network transfer settings. Indeed, if
we overlay a chain-like pattern on all CIFAR-10 test set images, the model predictions
skew towards a specific class. This does not happen if the CIFAR-10 model was trained
from scratch instead (orange).

male faces, with an equal number of young and old women. Here we consider fixed-
feature transfer learning(and defer full-network transfer learning results to Appendix G.1).
We then check if the resulting model still relies on “male-old” and “female-young” bi-
ases (Fig. 7.6b). It turns out that for both fixed-feature and full-network settings, these

122

(a) Example images from the “tennis ball” class in ImageNet.

0 200 400 600 800 1000
Class ID

103

104

Fr
eq

ue
nc

y

Output Distribution
With Intervention
Standard

ImageNet Classes (sorted by frequency)
0

5000

10000

15000

Fr
eq

ue
nc

y

Top Predicted Classes (with intervention)
Tennis Ball
Other classes

(b) Shift in ImageNet predicted class distribution after adding a tennis ball
intervention, establishing that the bias holds for the source model.

(c) Example CIFAR-10 images after applying the tennis ball interven-
tion.

ca
t

bir
d

tru
ck sh

ip

air
pla

ne

au
tom

ob
ile fro

g
ho

rse de
er do

g

CIFAR-10 Classes

0

1000

2000

3000

Fr
eq

ue
nc

y

Top Predicted Classes (with intervention)

Training Mode
fixed-feature
scratch

bir
d ca

t

air
pla

ne

au
tom

ob
ile

tru
ck sh

ip
ho

rse do
g

fro
g

de
er

CIFAR-10 Classes

0

1000

2000

3000

Fr
eq

ue
nc

y

Top Predicted Classes (with intervention)

Training Mode
full-network
scratch

(d) Distribution of CIFAR-10 model predictions when trained from scratch and
when transferred from the biased source model. We consider (left) fixed-feature
and (right) full-network transfer learning. The from-scratch models are not
affected by the tennis ball intervention, while the ones learned via transfer have
highly skewed output distributions. Note that in this case, full-network transfer
learning was able to remove the bias.

Figure 7.8: The “tennis ball” bias. (a-b) A pre-trained ImageNet model is more likely
to predict “tennis ball” whenever a circular yellow shape is in the image. (c-d) This bias
transfers to CIFAR-10 in the fixed-feature but not in the full network transfer settings.

biases indeed persist: the downstream model is still more likely to predict “old” for an
image of a male, and “young” for an image of a female.

Can we remove this bias by adding images of men to the target dataset? To answer this
question, we transfer the source model to a target dataset that contains equal numbers
of men and women, balanced across both old and young classes (see Appendix G.1 for
other splits). We find that the transferred model is still biased (Fig. 7.6c), indicating that

123

de-biasing the target task in this manner does not necessarily fix bias transfer.

7.4 Bias Transfer in the Wild
In Section 7.3, we demonstrated that natural biases induced by subsampling standard
datasets can transfer from source datasets to target tasks. We now ask the most advanced
instantiation of our central question: do natural biases that already exist in the source dataset
(i.e., where not enhanced by an intervention) also transfer?

To this end, we pinpoint examples of biases in the widely-used ImageNet dataset
and demonstrate that these biases indeed transfer to downstream tasks (e.g., CIFAR-10),
despite the latter not containing such biases. Specifically, we examine here two such biases:
the “chainlink fence” bias and the “tennis ball” bias (described below). Results for more
biases and target datasets are in Appendix G.2.

Identifying ImageNet biases. To identify ImageNet biases, we focus on features that are
(a) associated with an ImageNet class and (b) easy to overlay on an image. For example,
we used a “circular yellow shape” feature is predictive for the class “tennis ball.” To verify
that these features indeed bias the ImageNet model, we consider a simple counterfactual
experiment: we overlay the features on all the ImageNet images and monitor the shift in
the model output distribution. As expected, both “circular yellow shape” and “chain-like
pattern” are strong predictive features for the classes “tennis ball” and “chainlink fence”—
see Fig. 7.7b and 7.8b. These naturally occurring ImageNet biases are thus suitable for
studying the transfer of biases that exist in the wild.

ImageNet-biases transfer to target tasks. Now, what happens if we fine-tune a pre-
trained ImageNet model (which has these biases) on a target dataset such as CIFAR-
10? These biases turn out to persist in the resulting model even though CIFAR-10 does
not contain them (as CIFAR-10 does not contain these classes). To demonstrate this
phenomenon, we overlay the associated feature for both the “tennis ball” and “chainlink
fence” ImageNet classes on the CIFAR-10 test set—see Fig. 7.7c and 7.8c. We then evaluate
(1) a model fine-tuned on a standard pre-trained ImageNet model, and (2) a model trained
from scratch on the CIFAR-10 dataset.

As Fig. 7.7d-(left) and 7.8d-(left) demonstrate, the fine-tuned models using fixed-feature
transfer learning are sensitive to the overlaid ImageNet biases, whereas CIFAR-10 models
trained from scratch are not. This is corroborated by the overall skew of the output class
distribution for the transfer-learned model, compared to an almost uniform output class

124

distribution of the model trained from scratch. Note that, as mentioned in Section 7.2.2, full-
network transfer learning can sometimes mitigate bias transfer, which we observe for the
“tennis ball” bias in Fig. 7.8d-(right). Though for other biases, as shown in Fig. 7.7d-(right)
and Appendix G.2, the bias effect persists even after full-network fine-tuning.

125

THIS PAGE INTENTIONALLY LEFT BLANK

126

Chapter 8

A data-based framework for studying
transfer learning

Transfer learning enables us to adapt a model trained on a source dataset to perform better
on a downstream target task. This technique is employed in a range of machine learning
applications including radiology [WPL+17; KEB+21], autonomous driving [KP17; DGS19],
and satellite imagery analysis [XJB+16; WAL19]. Despite its successes, however, it is still
not clear what the drivers of performance gains brought by transfer learning actually are.

So far, a dominant approach to studying these drivers focused on the role of the source
model—i.e., the model trained on the source dataset. The corresponding works involve
investigating the source model’s architecture [KEB+21], accuracy [KSL19], adversarial
vulnerability [SIE+20; UKE+20], and training procedure [JLH+19; KRJ+22]. This line of
work makes it clear that the properties of the source model has a significant impact on
transfer learning. There is some evidence, however, that the source dataset might play
an important role as well [HAE16; NPV+18; KBZ+19]. For example, several works have
shown that while increasing the size of the source dataset generally boosts transfer learning
performance, removing specific classes can help too [HAE16; NPV+18; KBZ+19]. All of this
motivates a natural question:

How can we pinpoint the exact impact of the source dataset in transfer learning?

Our Contributions. In this chapter, we present a framework for measuring and ana-
lyzing the impact of the source dataset’s composition on transfer learning performance.
To do this, our framework provides us with the ability to investigate the counterfactual
impact on downstream predictions of including or excluding datapoints from the source
dataset, drawing inspiration from classical supervised learning techniques such as influ-

127

ence functions [CW82; KL17; FZ20] and datamodels [IPE+22]. Using our framework, we
can:

• Pinpoint what parts of the source dataset are most utilized by the downstream task.

• Automatically extract granular subpopulations in the target dataset through projec-
tion of the fine-grained labels of the source dataset.

• Surface pathologies such as source-target data leakage and mislabelled source data-
points.

We also demonstrate how our framework can be used to find detrimental subsets of
ImageNet [DDS+09] that, when removed, give rise to better downstream performance on
a variety of image classification tasks.

8.1 A Data-Based Framework for Studying Transfer Learn-

ing

In order to pinpoint the role of the source dataset in transfer learning, we need to under-
stand how the composition of that source dataset impacts the downstream model’s perfor-
mance. To do so, we draw inspiration from supervised machine learning approaches that
study the impact of the training data on the model’s subsequent predictions. In particular,
these approaches capture this impact via studying (and approximating) the counterfactual
effect of excluding certain training datapoints. This paradigm underlies a number of
techniques, from influence functions [CW82; KL17; FZ20], to datamodels [IPE+22], to data
Shapley values [KDI+22; GZ19].

Now, to adapt this paradigm to our setting, we study the counterfactual effect of
excluding datapoints from the source dataset on the downstream, target task predictions.
In our framework, we will focus on the inclusion or exclusion of entire classes in the source
dataset, as opposed to individual examples1. This is motivated by the fact that, intuitively,
we expect these classes to be the ones that embody whole concepts and thus drive the
formation of (transferred) features. We therefore anticipate the removal of entire classes to
have a more measurable impact on the representation learned by the source model (and
consequently on the downstream model’s predictions).

1In Section 8.3.3, we adapt our framework to calculate more granular influences of individual source
examples too.

128

Once we have chosen to focus on removal of entire source classes, we can design
counterfactual experiments to estimate their influences. A natural approach here, the leave-
one-out method [CW82; KL17], would involve removing each individual class from the
source dataset separately and then measuring the change in the downstream model’s pre-
dictions. However, in the transfer learning setting, we suspect that removing a single class
from the source dataset won’t significantly change the downstream model’s performance.
Thus, leave-one-out methodology may be able to capture meaningful influences only in
rare cases. This is especially so as many common source datasets contain highly redundant
classes. For example, ImageNet contains over 100 dog-breed classes. The removal of a sin-
gle dog-breed class might thus have a negligible impact on transfer learning performance,
but the removal of all of the dog classes might significantly change the features learned
by the downstream model. For these reasons, we adapt the subsampling [FZ20; IPE+22]
approach, which revolves around removing a random collection of source classes at once.

Computing transfer influences. In the light of the above, our methodology for computing
the influence of source classes on transfer learning performance involves training a large
number of models with random subsets of the source classes removed, and fine-tuning
these models on the target task. We then estimate the influence value of a source class C
on a target example t as the expected difference in the transfer model’s performance on
example t when class C was either included in or excluded from the source dataset:

Infl[C → t] = ES [f (t; S) | C ⊂ S]−ES [f (t; S) | C ̸⊂ S] , (8.1)

where f (t; S) is the softmax output2 of a model trained on a subset S of the source dataset. A
positive influence value indicates that including the source class C helps the model predict
the target example t correctly. On the other hand, a negative influence value suggests
that the source class C actually hurts the model’s performance on the target example t.
We outline the overall procedure in Algorithm 1, and defer a detailed description of our
approach to Appendix H.1.

A note on computational costs. In order to compute transfer influences, we need to train
a large number of source models, each on a fraction of the source dataset. Specifically, we
pre-train 7,540 models on ImageNet, each on a randomly chosen 50% of the ImageNet
dataset. This pre-training step needs to be performed only once though: these same models

2We experiment with other outputs such as logits, margins, or correctness too. We discuss the correspond-
ing results in Appendix H.2.

129

Algorithm 1 Estimation of source dataset class influences on transfer learning performance.

Require: Source dataset S = ∪K
k=1 Ck (with K classes), a target dataset T = (t1, t2, · · · , tn),

training algorithm A, subset ratio α, and number of models m
1: Sample m random subsets S1, S2, · · · , Sm ⊂ S of size α · |S|:
2: for i ∈ 1 to m do
3: Train model fi by running algorithm A on Si
4: end for
5: for k ∈ 1 to K do
6: for j ∈ 1 to n do

7: Infl[Ck → tj] =
∑m

i=1 fi(tj;Si)1Ck⊂Si
∑m

i=1 1Ck⊂Si
− ∑m

i=1 fi(tj;Si)1Ck ̸⊂Si
∑m

i=1 1Ck ̸⊂Si
8: end for
9: end for

10: return Infl[Ck → tj], for all j ∈ [n], k ∈ [K]

can then be used to fine-tune on each new target task. Overall, the whole process (training
the source models and fine-tuning on target datasets) takes less than 20 days using 8 V100
GPUs3.

Are so many models necessary? In Section H.1.5, we explore computing transfer
influences with smaller numbers of models. While using the full number of models
provides the best results, training a much smaller number of models (e.g., 1000 models,
taking slightly over 2.5 days on 8 V100 GPUs) still provides meaningful transfer influences.
Thus in practice, one can choose the number of source models based on noise tolerance
and computational budget. Further convergence results can be found in Appendix H.1.5.

8.2 Identifying the Most Influential Classes of the Source

Dataset

In Section 8.1, we presented a framework for pinpointing the role of the source dataset
in transfer learning by estimating the influence of each source class on the target model’s
predictions. Using these influences, we can now take a look at the classes from the source
dataset that have the largest positive or negative impact on the overall transfer learning
performance. We focus our analysis on the fixed-weights transfer learning setting (and
defer results for full model fine-tuning to Appendix H.5).

As one might expect, not all source classes have large influences. Figure 8.1 displays the
most influential classes of ImageNet with CIFAR-10 as the target task. Notably, the most

3Details are in Appendix H.1.

130

tai
led

 fro
g

sor
rel

 ho
rse
ga

zel
le
ost

ric
h
im

pa
la

bu
sta

rd

ha
rte

be
est

spo
rts

 ca
r

tra
iler

 tru
ck

con
ve

rtib
le

warp
lan

e

spe
ed

bo
at

0.0000

0.0005

0.0010

0.0015

In
flu

en
ce

 S
co

re

Most Positive

bo
oks

ho
p

jigs
aw

 pu
zzl

e
cup

po
tte

r's
 whe

el

dis
k b

rak
e slo

t

gro
cer

y s
tor

e
cor

n

Dutc
h o

ve
n

Norw
eg

ian
 el

kh
ou

nd

coc
ker

 sp
an

iel

pill
 bo

ttle
0.00075

0.00050

0.00025

0.00000 Most Negative

Figure 8.1: Most positive and negative ImageNet classes ordered based on their overall
influence on the CIFAR-10 dataset. The top source classes (e.g., tailed frog and sorrel horse)
turn out to be semantically relevant to the target classes (e.g., frog and horse).

positively influential source classes turn out to be directly related to classes in the target
task (e.g., the ImageNet label “tailed frog” is an instance of the CIFAR class “frog”). This
trend holds across all of the target datasets and transfer learning settings we considered
(see Appendix H.3). Interestingly, the source dataset also contains classes that are overall
negatively influential for the target task (e.g., “bookshop” and “jigsaw puzzle” classes).
(In Section 8.3, we will take a closer look at the factors that can cause a source class to be
negatively influential for a target prediction.)

How important are the most influential source classes? We now remove each of the
most influential classes from the source dataset to observe their actual impact on transfer
learning performance (Figure 8.2a). As expected, removing the most positively influential
classes severely degrades transfer learning performance as compared to removing random
classes. This counterfactual experiment confirms that these classes are indeed important to
the performance of transfer learning. On the other hand, removing the most negatively
influential classes actually improves the overall transfer learning performance beyond what
using the entire ImageNet dataset provides (see Figure 8.2b).

8.3 Probing the Impact of the Source Dataset on Transfer

Learning

In Section 8.2, we developed a methodology for identifying source dataset classes that
have the most impact on transfer learning performance. Now, we demonstrate how this
methodology can be extended into a framework for probing and understanding transfer
learning, including: (1) identifying granular target subpopulations that correspond to

131

source classes, (2) debugging transfer learning failures, and (3) detecting data leakage

0 200 400 600 800 1000
ImageNet Classes Excluded

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Most Negative
Most Positive
Random Subsets
Full ImageNet

(a) CIFAR-10 results

Source Dataset

Target Dataset Full ImageNet Removing
Bottom Infl. Hand-picked

AIRCRAFT 36.08± 1.07 36.88± 0.74 N/A
BIRDSNAP 38.42± 0.40 39.19± 0.38 26.74± 0.31

CALTECH101 86.69± 0.79 87.03± 0.30 82.28± 0.40
CALTECH256 74.97± 0.27 75.24± 0.21 67.42± 0.39

CARS 39.55± 0.32 40.59± 0.57 21.71± 0.40
CIFAR10 81.16± 0.30 83.64± 0.40 75.53± 0.42

CIFAR100 59.37± 0.58 61.46± 0.59 55.21± 0.52
FLOWERS 82.92± 0.52 82.89± 0.48 N/A

FOOD 56.19± 0.14 56.85± 0.27 39.36± 0.39
PETS 83.41± 0.55 87.59± 0.24 87.16± 0.24

SUN397 50.15± 0.23 51.34± 0.29 N/A

(b) Summary of 11 target tasks

Figure 8.2: Target task accuracies after removing the K most positively or negatively
influential ImageNet classes from the source dataset. Mean/std are reported over 10 runs.
(a) Results with CIFAR-10 as the target task after removing different numbers of classes
from the source dataset. We also include baselines of using the full ImageNet dataset
and removing random classes. One can note that, by removing negatively influential
source classes, we can obtain a test accuracy that is 2.5% larger than what using the entire
ImageNet dataset would yield. Results for other target tasks can be found in Appendix H.3.
(b) Peak performances when removing the most negatively influential source classes across
a range of other target tasks. We compare against using the full ImageNet dataset or a
relevant subset of classes (hand-picked, see Appendix H.1 for details).

132

ost
ric

h

bu
sta

rd

tai
led

 fro
g

ho
rnb

ill

sta
rfis

h

bra
mblin

g

roc
k b

ea
uty

sew
ing

 m
ach

ine

Wind
sor

 tie

tre
e f

rog

lea
fho

pp
er

bla
ck

sto
rk

0.000

0.005
In

flu
en

ce
 S

co
re

Most Positive

ho
tdo

g

gro
cer

y s
tor

e

roc
k c

rab

mon
arc

h

bo
oks

ho
p
bo

let
e

Wels
h s

pri
ng

er
spa

nie
l

gre
en

 liz
ard

cau
liflo

wer

com
ic b

oo
k

ice
 cr

ea
m

bo
ok

jac
ket

0.0010

0.0005

0.0000 Most Negative

Figure 8.3: Most positive and negative influencing ImageNet classes for the CIFAR-10 class
“bird”. These are calculated by averaging the influence of each source class over all bird
examples. We find that the most positively influencing ImageNet classes (e.g., “ostrich”
and “bustard”) are related to the CIFAR-10 class “bird”. See Appendix H.5 for results on
other CIFAR-10 classes.

Most Positively
Influenced
CIFAR-10
Images

ImageNet
Images

Ostrich Fire Engine

Most Positively
Influenced
CIFAR-10
Images

ImageNet
Images

Cab Japanese Spaniel

Figure 8.4: Projecting source labels onto the target datset. The CIFAR-10 images that were
most positively influenced by the ImageNet classes “ostrich”, “fire engine”, “cab”, and
“Japanese Spaniel.” We find that these images look similar to the corresponding images in
the source dataset.

between the source and target datasets. We focus our demonstration of these capabilities on
a commonly-used transfer learning setting: ImageNet to CIFAR-10 (experimental details
are in Appendix H.1).

8.3.1 Capability 1: Extracting target subpopulations

Imagine that we would like to find all the ostriches in the CIFAR-10 dataset. This is not an
easy task as CIFAR-10 only has “bird” as a label, and thus lacks sufficiently fine-grained
annotations. Luckily, however, ImageNet does contain an ostrich class! Our computed
influences enable us to “project" this ostrich class annotation (and, more broadly, the
fine-grained label hierarchy of our source dataset) to find this subpopulation of interest in
the target dataset.

Indeed, our examination from Section 8.2 suggests that the most positively influencing

133

Most
Positively

Influenced
CIFAR-10
Images

Most
Negatively
Influenced
CIFAR-10
Images

ImageNet
Images

Starfish Rapeseed

Figure 8.5: The CIFAR-10 images that were most positively (or negatively) influenced
by the ImageNet classes “starfish” and “rapeseed.” CIFAR-10 images that are highly
influenced by the “starfish” class have similar shapes, while those influenced by “rapeseed”
class have yellow-green colors.

source classes are typically those that directly overlap with the target classes (see Figure 8.1).
In particular, for our example, “ostrich” is highly positively influential for the “bird” class
(see Figure 8.3). To find ostriches in the CIFAR-10 dataset, we thus need to simply surface
the CIFAR-10 images which were most positively influenced by the “ostrich” source class
(see Figure 8.4).

It turns out that this type of projection approach can be applied more broadly. Even
when the source class is not a direct sub-type of a target class, the downstream model can
still leverage salient features from this class — such as shape or color — to predict on the
target dataset. For such classes, projecting source labels can extract target subpopulations
which share such features. To illustrate this, in Figure 8.5, we display the CIFAR-10
images that are highly influenced by the classes “starfish” and “rapeseed” (both of which
do not directly appear in the CIFAR-10 dataset). For these classes, the most influenced
CIFAR-10 images share the same shape (“starfish”) or color (“rapeseed”) as their ImageNet

134

dog

sor
rel

 ho
rse

les
ser

 pa
nd

a

ba
rra

cou
ta

Afg
ha

n h
ou

nd

En
glis

h s
pri

ng
er

Ke
rry

 bl
ue

 te
rrie

r

0.06

0.04

0.02

0.00

In
flu

en
ce

 S
co

re

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y
Pr

ed
ict

ed Full Imagenet
Without sorrel horse

airplane

oce
an

 lin
er

air
line

r
do

ck

un
icy

cle

ba
llpl

ay
er

ha
nd

-he
ld

com
pu

ter

0.06

0.04

0.02

0.00

In
flu

en
ce

 S
co

re

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0.00

0.25

0.50

0.75

Fr
eq

ue
nc

y
Pr

ed
ict

ed Full Imagenet
Without ocean liner

Figure 8.6: Pinpointing highly negatively influential source classes can help explain model
mistakes. Left: For two CIFAR-10 images, we plot the most negatively influential source
classes. Right: Over 20 runs, the fraction of times that our downstream model predicts
each label for the given CIFAR-10 image. When the most negatively influential class is
removed, the model predicts the correct label more frequently. More examples can be
found in Appendix H.5.

counterparts. More examples of such projections can be found in Appendix H.5.

8.3.2 Capability 2: Debugging the failures of a transferred model

Our framework enables us to also reason about the possible mistakes of the transferred
model caused by source dataset classes. For example, consider the CIFAR-10 image of a
dog in Figure 8.6, which our transfer learning model often mispredicts as a horse. Using
our framework, we can demonstrate that this image is strongly negatively influenced
by the source class “sorrel horse.” Thus, our downstream model may be misusing a
feature introduced by this class. Indeed, once we remove “sorrel horse” from the source
dataset, our model predicts the correct label more frequently. (See Appendix H.5 for more
examples, as well as a quantitative analysis of this experiment.)

135

CIFAR-10
Images

ImageNet
Images

Most Positively Influenced

airplane airplane ship deer

lawnmower minivan wing book jacket

ship frog airplane automobile

speedboat tailed frog warplane racer

Most Negatively Influenced

CIFAR-10
Images

ImageNet
Images

ship airplane ship automobile

warplane beach wagon warplane moving van

bird airplane horse truck

ostrich warplane sorrel horse moving van

Figure 8.7: ImageNet training images with highest positive (left) or negative (right)
example-wise (average) influences on CIFAR-10 test images. We find that ImageNet images
that are highly positively influential often correspond to data leakage, while ImageNet
images that are highly negatively influential are often either mislabeled, ambiguous, or
otherwise misleading. For example, the presence of a flying lawnmower in the ImageNet
dataset hurts the downstream performance on a similarly shaped airplane (boxed).

8.3.3 Capability 3: Detecting data leakage and misleading source exam-

ples

Thus far, we have focused on how the classes in the source dataset influence the predictions
of the transferred model on target examples. In this section, we extend our analysis to the
individual datapoints of the source dataset. We do so by adapting our approach to measure
the influence of each individual source datapoint on each target datapoint. Further details
on how these influences are computed can be found in Appendix H.4.

Figure 8.7 displays the ImageNet training examples that have highly positive or nega-
tive influences on CIFAR-10 test examples. We find that the source images that are highly
positively influential are often instances of data leakage between the source training set and
the target test set. On the other hand, the ImageNet images that are highly negatively
influential are typically mislabeled, misleading, or otherwise surprising. For example,
the presence of the ImageNet image of a flying lawnmower hurts the performance on a
CIFAR-10 image of a regular (but similarly shaped) airplane (see Figure 8.7).

136

Bibliography

[3DB] 3DB. Documentation. URL: https://3db.github.io/3db/.

[ACÖ+17] Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. “Towards
better understanding of gradient-based attribution methods for deep neural
networks”. In: arXiv preprint arXiv:1711.06104 (2017).

[AEI+18] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. “Synthe-
sizing Robust Adversarial Examples”. In: International Conference on Machine
Learning (ICML). 2018.

[AGM14] Pulkit Agrawal, Ross Girshick, and Jitendra Malik. “Analyzing the perfor-
mance of multilayer neural networks for object recognition”. In: European
conference on computer vision. 2014.

[AL20] Zeyuan Allen-Zhu and Yuanzhi Li. “Feature Purification: How Adversar-
ial Training Performs Robust Deep Learning”. In: 2020. arXiv: 2005.10190
[cs.LG].

[ALG+19] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn
Ku, and Anh Nguyen. “Strike (with) a pose: Neural networks are easily
fooled by strange poses of familiar objects”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2019.

[AMK+21] Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. “Threat
of Adversarial Attacks on Deep Learning in Computer Vision: Survey”. In:
(2021).

[ARS+15] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki,
and Stefan Carlsson. “Factors of transferability for a generic convnet repre-
sentation”. In: IEEE transactions on pattern analysis and machine intelligence
(2015).

[ASK+20] Gunjan Aggarwal, Abhishek Sinha, Nupur Kumari, and Mayank Singh. “On
the Benefits of Models with Perceptually-Aligned Gradients”. In: Towards
Trustworthy ML Workshop (ICLR). 2020.

[ASS+10] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal
Fua, and Sabine Süsstrunk. Slic superpixels. Tech. rep. 2010.

137

https://3db.github.io/3db/
https://arxiv.org/abs/2005.10190
https://arxiv.org/abs/2005.10190

[BCM+13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion attacks against
machine learning at test time”. In: Joint European conference on machine learning
and knowledge discovery in databases (ECML-KDD). 2013.

[BG18] Joy Buolamwini and Timnit Gebru. “Gender shades: Intersectional accuracy
disparities in commercial gender classification”. In: Conference on fairness,
accountability and transparency (FAccT). 2018.

[BGH19] Yogesh Balaji, Tom Goldstein, and Judy Hoffman. “Instance adaptive adver-
sarial training: Improved accuracy tradeoffs in neural nets”. In: Arxiv preprint
arXiv:1910.08051. 2019.

[BGV14] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. “Food-101–mining
discriminative components with random forests”. In: European conference on
computer vision. 2014.

[Ble20] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation. Stichting Blender Foundation, Amsterdam, 2020. URL:
http://www.blender.org.

[BLW+14] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W
Jacobs, and Peter N Belhumeur. “Birdsnap: Large-scale fine-grained visual
categorization of birds”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014.

[BMA+19] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang,
Dan Gutfreund, Josh Tenenbaum, and Boris Katz. “ObjectNet: A large-scale
bias-controlled dataset for pushing the limits of object recognition models”.
In: Neural Information Processing Systems (NeurIPS). 2019.

[BMR+18] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
Adversarial Patch. 2018. arXiv: 1712.09665 [cs.CV].

[BMV18] Mitali Bafna, Jack Murtagh, and Nikhil Vyas. “Thwarting Adversarial Exam-
ples: An L_0-RobustSparse Fourier Transform”. In: arXiv preprint arXiv:1812.05013
(2018).

[BPR19] Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. “Adversarial examples
from computational constraints”. In: International Conference on Machine Learn-
ing. 2019.

[BR18] Battista Biggio and Fabio Roli. “Wild patterns: Ten years after the rise of
adversarial machine learning”. In: 2018.

[BRZ+20] Emanuel Ben-Baruch, Tal Ridnik, Nadav Zamir, Asaf Noy, Itamar Friedman,
Matan Protter, and Lihi Zelnik-Manor. “Asymmetric loss for multi-label
classification”. In: arXiv preprint arXiv:2009.14119 (2020).

[BSM+15] Amnon Balanov, Arik Schwartz, Yair Moshe, and Nimrod Peleg. “Image
quality assessment based on DCT subband similarity”. In: IEEE International
Conference on Image Processing (ICIP). 2015.

138

http://www.blender.org
https://arxiv.org/abs/1712.09665

[BZK+17] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
“Network dissection: Quantifying interpretability of deep visual representa-
tions”. In: Computer Vision and Pattern Recognition (CVPR). 2017.

[BZM+20] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.
“wav2vec 2.0: A framework for self-supervised learning of speech repre-
sentations”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 12449–12460.

[CCG+19] Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud.
“Explaining Image Classifiers by Counterfactual Generation”. In: International
Conference on Learning Representations (ICLR). 2019.

[CFJ+18] Emmanuel Candes, Yingying Fan, Lucas Janson, and Jinchi Lv. “Panning for
gold: model-X knockoffs for high dimensional controlled variable selection”.
In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80.3
(2018), pp. 551–577.

[CK18] Alexis Conneau and Douwe Kiela. “Senteval: An evaluation toolkit for uni-
versal sentence representations”. In: Language Resources and Evaluation Confer-
ence (LREC) (2018).

[CMB+16] Brian Chu, Vashisht Madhavan, Oscar Beijbom, Judy Hoffman, and Trevor
Darrell. “Best practices for fine-tuning visual classifiers to new domains”. In:
European conference on computer vision (ECCV). 2016.

[CMK+14] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and
Andrea Vedaldi. “Describing textures in the wild”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2014.

[CNA+20] Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen Zhu, Christoph
Studor, and Tom Goldstein. “Certified defenses for adversarial patches”. In:
arXiv preprint arXiv:2003.06693 (2020).

[CNC+23] Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew
Jagielski, Irena Gao, Anas Awadalla, Pang Wei Koh, Daphne Ippolito, Kather-
ine Lee, Florian Tramer, et al. “Are aligned neural networks adversarially
aligned?” In: arXiv preprint arXiv:2306.15447 (2023).

[CPK+17] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs”. In: IEEE transac-
tions on pattern analysis and machine intelligence (2017).

[CRK19] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. “Certified adversarial ro-
bustness via randomized smoothing”. In: International Conference on Machine
Learning (ICML). 2019.

[CRS+19] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C
Duchi. “Unlabeled data improves adversarial robustness”. In: Neural Informa-
tion Processing Systems (NeurIPS). 2019.

139

[CSV+14] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
“Return of the devil in the details: Delving deep into convolutional nets”. In:
arXiv preprint arXiv:1405.3531 (2014).

[CW17] Nicholas Carlini and David Wagner. “Adversarial Examples Are Not Eas-
ily Detected: Bypassing Ten Detection Methods”. In: Workshop on Artificial
Intelligence and Security (AISec). 2017.

[CW82] R Dennis Cook and Sanford Weisberg. Residuals and influence in regression.
New York: Chapman and Hall, 1982.

[CWS+15] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M Dollar. “Benchmarking in manipulation research: The YCB ob-
ject and model set and benchmarking protocols”. In: arXiv preprint arXiv:1502.03143
(2015).

[Dan67] John M. Danskin. The Theory of Max-Min and its Application to Weapons Alloca-
tion Problems. 1967.

[DB16] Alexey Dosovitskiy and Thomas Brox. “Inverting visual representations with
convolutional networks”. In: Computer Vision and Pattern Recognition (CVPR).
2016.

[DBK+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. “An image is worth 16x16 words: Trans-
formers for image recognition at scale”. In: International Conference on Learning
Representations (ICLR). 2021.

[DCL+18] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting,
Karthikeyan Shanmugam, and Payel Das. “Explanations based on the miss-
ing: Towards contrastive explanations with pertinent negatives”. In: arXiv
preprint arXiv:1802.07623 (2018).

[DCL+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert:
Pre-training of deep bidirectional transformers for language understanding”.
In: (2019).

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-
genet: A large-scale hierarchical image database”. In: Computer Vision and
Pattern Recognition (CVPR). 2009.

[DG17] Piotr Dabkowski and Yarin Gal. “Real time image saliency for black box
classifiers”. In: Neural Information Processing Systems (NeurIPS). 2017.

[DGS19] Shuyang Du, Haoli Guo, and Andrew Simpson. “Self-driving car steering an-
gle prediction based on image recognition”. In: arXiv preprint arXiv:1912.05440
(2019).

[DJV+14] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. “Decaf: A deep convolutional activation feature
for generic visual recognition”. In: International conference on machine learning
(ICML). 2014.

140

[DLH+16] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. “R-fcn: Object detection via
region-based fully convolutional networks”. In: Advances in neural information
processing systems (NeurIPS). 2016.

[EEF+18a] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo
Li, Atul Prakash, Amir Rahmati, and Dawn Song. “Robust Physical-World
Attacks on Machine Learning Models”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2018.

[EEF+18b] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Florian Tramer, Atul Prakash, Tadayoshi Kohno, and Dawn Song. “Physical
Adversarial Examples for Object Detectors”. In: CoRR (2018).

[EIS+19a] Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dim-
itris Tsipras. Robustness (Python Library). 2019. URL: https://github.com/
MadryLab/robustness.

[EIS+19b] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon
Tran, and Aleksander Madry. “Adversarial Robustness as a Prior for Learned
Representations”. In: ArXiv preprint arXiv:1906.00945. 2019.

[EIS+20] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Jacob
Steinhardt, and Aleksander Madry. “Identifying Statistical Bias in Dataset
Replication”. In: International Conference on Machine Learning (ICML). 2020.

[ETT+19] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and
Aleksander Madry. “Exploring the Landscape of Spatial Robustness”. In:
International Conference on Machine Learning (ICML). 2019.

[EVW+10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
“The Pascal Visual Object Classes (VOC) Challenge”. In: International Journal
of Computer Vision. 2010.

[FF15] Alhussein Fawzi and Pascal Frossard. “Manitest: Are classifiers really invari-
ant?” In: British Machine Vision Conference (BMVC). 2015.

[FFP04] Li Fei-Fei, Rob Fergus, and Pietro Perona. “Learning generative visual models
from few training examples: An incremental bayesian approach tested on 101
object categories”. In: 2004 conference on computer vision and pattern recognition
workshop. IEEE. 2004, pp. 178–178.

[FV17] Ruth C Fong and Andrea Vedaldi. “Interpretable explanations of black boxes
by meaningful perturbation”. In: International Conference on Computer Vision
(ICCV). 2017.

[FZ20] Vitaly Feldman and Chiyuan Zhang. “What Neural Networks Memorize and
Why: Discovering the Long Tail via Influence Estimation”. In: Advances in
Neural Information Processing Systems (NeurIPS). Vol. 33. 2020, pp. 2881–2891.

[GCL+19] Ruiqi Gao, Tianle Cai, Haochuan Li, Liwei Wang, Cho-Jui Hsieh, and Jason D
Lee. “Convergence of Adversarial Training in Overparametrized Networks”.
In: arXiv preprint arXiv:1906.07916 (2019).

141

https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness

[GDD+14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich feature
hierarchies for accurate object detection and semantic segmentation”. In:
computer vision and pattern recognition (CVPR). 2014, pp. 580–587.

[GDG17] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. “Badnets: Identifying
Vulnerabilities in the Machine Learning Model Supply Chain”. In: arXiv
preprint arXiv:1708.06733 (2017).

[GEB16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image style trans-
fer using convolutional neural networks”. In: computer vision and pattern
recognition (CVPR). 2016.

[GHP07] Gregory Griffin, Alex Holub, and Pietro Perona. “Caltech-256 object category
dataset”. In: (2007).

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech Recog-
nition with Deep Recurrent Neural Networks”. In: International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). 2013.

[GPM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative ad-
versarial nets”. In: neural information processing systems (NeurIPS). 2014.

[GRM+19] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix
A. Wichmann, and Wieland Brendel. “ImageNet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy and robustness.”
In: International Conference on Learning Representations (ICLR). 2019.

[GSS15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
Harnessing Adversarial Examples”. In: International Conference on Learning
Representations (ICLR). 2015.

[GWE+19] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan
Lee. “Counterfactual visual explanations”. In: arXiv preprint arXiv:1904.07451
(2019).

[GZ19] Amirata Ghorbani and James Zou. “Data shapley: Equitable valuation of
data for machine learning”. In: International Conference on Machine Learning
(ICML). 2019.

[HAE16] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. “What makes ImageNet
good for transfer learning?” In: arXiv preprint arXiv:1608.08614 (2016).

[Hay18] Jamie Hayes. “On visible adversarial perturbations & digital watermarking”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 2018, pp. 1597–1604.

[HBM+20] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang,
Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn
Song, Jacob Steinhardt, and Justin Gilmer. The Many Faces of Robustness: A
Critical Analysis of Out-of-Distribution Generalization. 2020. arXiv: 2006.16241
[cs.CV].

142

https://arxiv.org/abs/2006.16241
https://arxiv.org/abs/2006.16241

[HCB+18] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen,
Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and
Zhifeng Chen. “GPipe: Efficient Training of Giant Neural Networks using
Pipeline Parallelism”. In: ArXiv preprint arXiv:1811.06965. 2018.

[HD19] Dan Hendrycks and Thomas G. Dietterich. “Benchmarking Neural Network
Robustness to Common Corruptions and Surface Variations”. In: International
Conference on Learning Representations (ICLR). 2019.

[HEK+18] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. “A
benchmark for interpretability methods in deep neural networks”. In: arXiv
preprint arXiv:1806.10758 (2018).

[HGD+17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-
cnn”. In: Proceedings of the IEEE international conference on computer vision.
2017, pp. 2961–2969.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic
Models”. In: Neural Information Processing Systems (NeurIPS). 2020.

[HRS+17] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korat-
tikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadar-
rama, et al. “Speed/accuracy trade-offs for modern convolutional object
detectors”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017.

[HRU+17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. “Gans trained by a two time-scale update rule con-
verge to a local nash equilibrium”. In: Neural Information Processing Systems
(NeurIPS). 2017.

[HSS+20] Shahar Hoory, Tzvika Shapira, Asaf Shabtai, and Yuval Elovici. “Dynamic
Adversarial Patch for Evading Object Detection Models”. In: arXiv preprint
arXiv:2010.13070 (2020).

[HZR+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2016.

[IEA+18] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. “Black-box
Adversarial Attacks with Limited Queries and Information”. In: International
Conference on Machine Learning (ICML). 2018.

[IPE+22] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and
Aleksander Madry. “Datamodels: Predicting Predictions from Training Data”.
In: International Conference on Machine Learning (ICML). 2022.

[IST+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. “Adversarial Examples Are Not Bugs, They
Are Features”. In: Neural Information Processing Systems (NeurIPS). 2019.

143

[JBZ+19] Jorn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and Matthias Bethge.
“Excessive Invariance Causes Adversarial Vulnerability”. In: International
Contemporary on Learning Representations. 2019.

[JK19] Kyle D Julian and Mykel J Kochenderfer. “Guaranteeing safety for neural
network-based aircraft collision avoidance systems”. In: 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC). IEEE. 2019, pp. 1–10.

[JLH+19] Yunhun Jang, Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. “Learning
what and where to transfer”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 3030–3039.

[JLT18] Saumya Jetley, Nicholas Lord, and Philip Torr. “With friends like these, who
needs adversaries?” In: Advances in Neural Information Processing Systems
(NeurIPS). 2018.

[JSK+22] Saachi Jain, Hadi Salman, Alaa Khaddaj, Eric Wong, Sung Min Park, and
Aleksander Madry. “A Data-Based Perspective on Transfer Learning”. In:
arXiv preprint arXiv:2207.05739 (2022).

[JSW+22] Saachi Jain, Hadi Salman, Eric Wong, Pengchuan Zhang, Vibhav Vineet, Sai
Vemprala, and Aleksander Madry. “Missingness Bias in Model Debugging”.
In: International Conference on Learning Representations. 2022.

[KBZ+19] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica
Yung, Sylvain Gelly, and Neil Houlsby. “Big Transfer (BiT): General Visual
Representation Learning”. In: arXiv preprint arXiv:1912.11370 (2019).

[KCL19] Simran Kaur, Jeremy Cohen, and Zachary C. Lipton. “Are Perceptually-
Aligned Gradients a General Property of Robust Classifiers?” In: Arxiv
preprint arXiv:1910.08640. 2019.

[KDI+22] Bojan Karlaš, David Dao, Matteo Interlandi, Bo Li, Sebastian Schelter, Wentao
Wu, and Ce Zhang. “Data Debugging with Shapley Importance over End-to-
End Machine Learning Pipelines”. In: arXiv preprint arXiv:2204.11131 (2022).

[KDS+13] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei. “Collecting a large-
scale dataset of fine-grained cars”. In: (2013).

[KEB+21] Alexander Ke, William Ellsworth, Oishi Banerjee, Andrew Y Ng, and Pranav
Rajpurkar. “CheXtransfer: performance and parameter efficiency of Ima-
geNet models for chest X-Ray interpretation”. In: Proceedings of the Conference
on Health, Inference, and Learning. 2021, pp. 116–124.

[KGB16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial examples
in the physical world”. In: arXiv preprint arXiv:1607.02533 (2016).

[KGB17] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Machine
Learning at Scale”. In: International Conference on Learning Representations
(ICLR). 2017.

[KL17] Pang Wei Koh and Percy Liang. “Understanding Black-box Predictions via
Influence Functions”. In: International Conference on Machine Learning. 2017.

144

[KMF18] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. “Geo-
metric robustness of deep networks: analysis and improvement”. In: Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2018.

[KP17] Jiman Kim and Chanjong Park. “End-to-end ego lane estimation based on
sequential transfer learning for self-driving cars”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition workshops. 2017, pp. 30–38.

[Kri09] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.
In: Technical report. 2009.

[KRJ+22] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy
Liang. “Fine-Tuning can Distort Pretrained Features and Underperform Out-
of-Distribution”. In: arXiv preprint arXiv:2202.10054 (2022).

[KSH+19] Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt.
“Testing Robustness Against Unforeseen Adversaries”. In: ArXiv preprint
arxiv:1908.08016. 2019.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet Classifi-
cation with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2012.

[KSJ19] Beomsu Kim, Junghoon Seo, and Taegyun Jeon. “Bridging Adversarial Ro-
bustness and Gradient Interpretability”. In: International Conference on Learn-
ing Representations Workshop on Safe Machine Learning (ICLR SafeML). 2019.

[KSL19] Simon Kornblith, Jonathon Shlens, and Quoc V Le. “Do better imagenet
models transfer better?” In: computer vision and pattern recognition (CVPR).
2019.

[LAG+19] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and
Suman Jana. “Certified robustness to adversarial examples with differential
privacy”. In: Symposium on Security and Privacy (SP). 2019.

[LCH+16] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. “Visualizing and
Understanding Neural Models in NLP”. In: Proceedings of NAACL-HLT. 2016,
pp. 681–691.

[LCL+17] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. “Delving into Trans-
ferable Adversarial Examples and Black-box Attacks”. In: International Con-
ference on Learning Representations (ICLR). 2017.

[LDG+17] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. “Feature pyramid networks for object detection”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 2117–2125.

[LF20a] Alexander Levine and Soheil Feizi. “(De) Randomized Smoothing for Cer-
tifiable Defense against Patch Attacks”. In: arXiv preprint arXiv:2002.10733
(2020).

145

[LF20b] Alexander Levine and Soheil Feizi. “Robustness certificates for sparse adver-
sarial attacks by randomized ablation”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 34. 04. 2020, pp. 4585–4593.

[LIE+22] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi
Salman, and Aleksander Madry. ffcv. https://github.com/libffcv/ffcv/.
2022.

[LK19] Mark Lee and Zico Kolter. “On physical adversarial patches for object detec-
tion”. In: arXiv preprint arXiv:1906.11897 (2019).

[LLW+15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning
Face Attributes in the Wild”. In: International Conference on Computer Vision
(ICCV). 2015.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Com-
mon objects in context”. In: European conference on computer vision (ECCV).
2014.

[LRM15] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. “Bilinear cnn
models for fine-grained visual recognition”. In: Proceedings of the IEEE inter-
national conference on computer vision. 2015.

[LSI+21] Guillaume Leclerc, Hadi Salman, Andrew Ilyas, Sai Vemprala, Logan En-
gstrom, Vibhav Vineet, Kai Xiao, Pengchuan Zhang, Shibani Santurkar, Greg
Yang, et al. “3DB: A Framework for Debugging Computer Vision Models”.
In: arXiv preprint arXiv:2106.03805. 2021.

[LSK19] Juncheng Li, Frank R. Schmidt, and J. Zico Kolter. “Adversarial camera
stickers: A physical camera-based attack on deep learning systems”. In: Arxiv
preprint arXiv:1904.00759. 2019.

[LYL+18] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Yiran Chen.
“Dpatch: An adversarial patch attack on object detectors”. In: arXiv preprint
arXiv:1806.02299 (2018).

[MG21] Dina Mardaoui and Damien Garreau. “An analysis of lime for text data”. In:
International Conference on Artificial Intelligence and Statistics. 2021.

[MGM18] Romain Mormont, Pierre Geurts, and Raphaël Marée. “Comparison of deep
transfer learning strategies for digital pathology”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2018.

[MGR+18] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. “Ex-
ploring the limits of weakly supervised pretraining”. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018.

[Mil95] George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM (1995).

146

https://github.com/libffcv/ffcv/

[MIM+18] Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, Anuj
Karpatne, and Naren Ramakrishnan. “Incorporating prior domain knowl-
edge into deep neural networks”. In: 2018 IEEE International Conference on
Big Data (Big Data). 2018.

[MMK+18] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. “Vir-
tual adversarial training: a regularization method for supervised and semi-
supervised learning”. In: 2018.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. “Towards deep learning models resistant to adversarial
attacks”. In: International Conference on Learning Representations (ICLR). 2018.

[MRK+13] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea
Vedaldi. “Fine-grained visual classification of aircraft”. In: arXiv preprint
arXiv:1306.5151 (2013).

[MV15] Aravindh Mahendran and Andrea Vedaldi. “Understanding deep image
representations by inverting them”. In: computer vision and pattern recognition
(CVPR). 2015.

[Nak19] Preetum Nakkiran. “Adversarial robustness may be at odds with simplicity”.
In: arXiv preprint arXiv:1901.00532. 2019.

[Nes03] Yurii Nesterov. Introductory Lectures on Convex Optimization. 2003.

[NKP19] Muzammal Naseer, Salman Khan, and Fatih Porikli. “Local gradients smooth-
ing: Defense against localized adversarial attacks”. In: 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE. 2019, pp. 1300–
1307.

[NPV+18] Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Kornblith, Quoc V Le,
and Ruoming Pang. “Domain adaptive transfer learning with specialist
models”. In: arXiv preprint arXiv:1811.07056 (2018).

[NRK+21] Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat,
Fahad Shahbaz Khan, and Ming-Hsuan Yang. “Intriguing Properties of Vi-
sion Transformers”. In: arXiv preprint arXiv:2105.10497 (2021).

[NST+93] Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura, and Eihachiro Nakamae.
“Display of the Earth Taking into Account Atmospheric Scattering”. In: Pro-
ceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH). 1993.

[NVZ+19] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. “Mit-
suba 2: A Retargetable Forward and Inverse Renderer”. In: Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 38.6 (2019). DOI: 10.1145/3355089.
3356498.

[NZ08] Maria-Elena Nilsback and Andrew Zisserman. “Automated flower classi-
fication over a large number of classes”. In: 2008 Sixth Indian Conference on
Computer Vision, Graphics & Image Processing. 2008.

147

https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498

[Pan] Pandas3D. The Open Source Framework for 3D Rendering and Games. URL:
https://www.panda3d.org/.

[PMG+17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. “Practical black-box attacks against machine
learning”. In: Asia Conference on Computer and Communications Security. 2017.

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. “Transferability in
Machine Learning: from Phenomena to Black-box Attacks using Adversarial
Samples”. In: ArXiv preprint arXiv:1605.07277. 2016.

[PSS99] A. J. Preetham, Peter Shirley, and Brian Smits. “A Practical Analytic Model for
Daylight”. In: Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH). 1999.

[PVZ+12] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar.
“Cats and dogs”. In: 2012 IEEE conference on computer vision and pattern recog-
nition. IEEE. 2012, pp. 3498–3505.

[RBK+18] Rafael Reisenhofer, Sebastian Bosse, Gitta Kutyniok, and Thomas Wiegand.
“A Haar wavelet-based perceptual similarity index for image quality assess-
ment”. In: 2018.

[RBL+22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. “High-resolution image synthesis with latent diffusion mod-
els”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 10684–10695.

[RDN+22] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
“Hierarchical text-conditional image generation with clip latents”. In: arXiv
preprint arXiv:2204.06125 (2022).

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. “ImageNet Large Scale Visual Recog-
nition Challenge”. In: International Journal of Computer Vision (IJCV). 2015.

[RHC+21] Evani Radiya-Dixit, Sanghyun Hong, Nicholas Carlini, and Florian Tramèr.
“Data Poisoning Won’t Save You From Facial Recognition”. In: arXiv, 2021.

[RHG+15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster r-cnn: To-
wards real-time object detection with region proposal networks”. In: Advances
in neural information processing systems (NeurIPS). 2015.

[RJG+19] Anurag Ranjan, Joel Janai, Andreas Geiger, and Michael J Black. “Attack-
ing optical flow”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 2404–2413.

[RKH+21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. “Learning transferable visual models from natural language
supervision”. In: arXiv preprint arXiv:2103.00020. 2021.

148

https://www.panda3d.org/

[RRS+19] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar.
“Do ImageNet Classifiers Generalize to ImageNet?” In: International Confer-
ence on Machine Learning (ICML). 2019.

[RSG16a] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should
I trust you?" Explaining the predictions of any classifier”. In: International
Conference on Knowledge Discovery and Data Mining (KDD). 2016.

[RSG16b] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why Should I
Trust You?”: Explaining the Predictions of Any Classifier”. In: International
Conference on Knowledge Discovery and Data Mining (KDD). 2016.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified defenses
against adversarial examples”. In: International Conference on Learning Repre-
sentations (ICLR). 2018.

[RWK20] Leslie Rice, Eric Wong, and J. Zico Kolter. “Overfitting in adversarially robust
deep learning”. In: Arxiv preprint arXiv:2002.11569. 2020.

[RXY+19] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy
Liang. “Adversarial Training Can Hurt Generalization”. In: arXiv preprint
arXiv:1906.06032 (2019).

[RZT18] Amir Rosenfeld, Richard Zemel, and John K. Tsotsos. “The Elephant in the
Room”. In: arXiv preprint arXiv:1808.03305. 2018.

[SAS+14] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carls-
son. “CNN features off-the-shelf: an astounding baseline for recognition”. In:
conference on computer vision and pattern recognition (CVPR) workshops. 2014.

[SB06] H.R. Sheikh and A.C. Bovik. “Image information and visual quality”. In:
2006.

[SBB+16] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. “Ac-
cessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face
Recognition”. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016. 2016,
pp. 1528–1540.

[SBL+18] Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lučić, Olivier Bousquet, and
Sylvain Gelly. “Assessing Generative Models via Precision and Recall”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2018.

[SBM+16] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin,
and Klaus-Robert Müller. “Evaluating the visualization of what a deep neu-
ral network has learned”. In: IEEE transactions on neural networks and learning
systems 28.11 (2016), pp. 2660–2673.

[SIE+20] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Alek-
sander Madry. “Do Adversarially Robust ImageNet Models Transfer Better?”
In: Advances in Neural Information Processing Systems (NeurIPS). 2020.

149

[SIE+21] Hadi Salman, Andrew Ilyas, Logan Engstrom, Sai Vemprala, Aleksander
Madry, and Ashish Kapoor. “Unadversarial examples: Designing objects for
robust vision”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 15270–15284.

[SJI+22] Hadi Salman, Saachi Jain, Andrew Ilyas, Logan Engstrom, Eric Wong, and
Aleksander Madry. “When does Bias Transfer in Transfer Learning?” In:
arXiv preprint arXiv:2207.02842. 2022.

[SJW+21] Hadi Salman, Saachi Jain, Eric Wong, and Aleksander Mądry. “Certified
patch robustness via smoothed vision transformers”. In: arXiv preprint arXiv:2110.07719
(2021).

[SKL+23] Hadi Salman, Alaa Khaddaj, Guillaume Leclerc, Andrew Ilyas, and Alek-
sander Madry. “Raising the cost of malicious ai-powered image editing”. In:
International Conference on Machine Learning (ICML) (2023).

[SLL20] Pascal Sturmfels, Scott Lundberg, and Su-In Lee. “Visualizing the Impact of
Feature Attribution Baselines”. In: Distill (2020). https://distill.pub/2020/attribution-
baselines. DOI: 10.23915/distill.00022.

[SLR+19] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang,
Sebastien Bubeck, and Greg Yang. “Provably robust deep learning via ad-
versarially trained smoothed classifiers”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2019.

[SMG+20] Krishna Kumar Singh, Dhruv Mahajan, Kristen Grauman, Yong Jae Lee, Matt
Feiszli, and Deepti Ghadiyaram. “Don’t judge an object by its context: learn-
ing to overcome contextual bias”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 11070–11078.

[SSS+17] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. “Revis-
iting unreasonable effectiveness of data in deep learning era”. In: Proceedings
of the IEEE international conference on computer vision. 2017.

[SSY+20] Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J Zico Kolter.
“Denoised smoothing: A provable defense for pretrained classifiers”. In:
Advances in Neural Information Processing Systems 33 (2020).

[SSZ+19] Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer,
David Jacobs, and Tom Goldstein. “Adversarially robust transfer learning”.
In: arXiv preprint arXiv:1905.08232 (2019).

[STK+17] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. “SmoothGrad:
removing noise by adding noise”. In: ICML workshop on visualization for deep
learning. 2017.

[STT+19] Shibani Santurkar, Dimitris Tsipras, Brandon Tran, Andrew Ilyas, Logan
Engstrom, and Aleksander Madry. “Image Synthesis with a Single (Robust)
Classifier”. In: Neural Information Processing Systems (NeurIPS). 2019.

150

https://doi.org/10.23915/distill.00022

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution
for deep networks”. In: International Conference on Machine Learning (ICML).
2017.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. “Rethinking the inception architecture for computer vision”.
In: Computer Vision and Pattern Recognition (CVPR). 2016.

[SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside
convolutional networks: Visualising image classification models and saliency
maps”. In: arXiv preprint arXiv:1312.6034 (2013).

[SWM+15] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya
Ganguli. “Deep Unsupervised Learning Using Nonequilibrium Thermody-
namics”. In: International Conference on Machine Learning. 2015.

[SYZ+19] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang.
“A convex relaxation barrier to tight robustness verification of neural net-
works”. In: Advances in Neural Information Processing Systems (NeurIPS) (2019).

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: International Conference on
Learning Representations (ICLR). 2015.

[SZC+18] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng
Gao. “Is Robustness the Cost of Accuracy? A Comprehensive Study on the
Robustness of 18 Deep Image Classification Models”. In: European Conference
on Computer Vision (ECCV). 2018.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural
networks”. In: International Conference on Learning Representations (ICLR).
2014.

[TCB+20] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.
“On adaptive attacks to adversarial example defenses”. In: arXiv preprint
arXiv:2002.08347 (2020).

[TCD+20] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. “Training data-efficient image transformers &
distillation through attention”. In: arXiv preprint arXiv:2012.12877 (2020).

[TDS+20] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht,
and Ludwig Schmidt. “Measuring Robustness to Natural Distribution Shifts
in Image Classification”. In: Neural Information Processing Systems (NeurIPS).
2020.

[TE11] Antonio Torralba and Alexei A Efros. “Unbiased look at dataset bias”. In:
CVPR 2011. 2011.

151

[TKH+21] Philipp Terhörst, Jan Niklas Kolf, Marco Huber, Florian Kirchbuchner, Naser
Damer, Aythami Morales, Julian Fierrez, and Arjan Kuijper. “A compre-
hensive study on face recognition biases beyond demographics”. In: arXiv
preprint arXiv:2103.01592 (2021).

[TSE+19] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner,
and Aleksander Madry. “Robustness May Be at Odds with Accuracy”. In:
International Conference on Learning Representations (ICLR). 2019.

[UKE+20] Francisco Utrera, Evan Kravitz, N. Benjamin Erichson, Rajiv Khanna, and
Michael W. Mahoney. “Adversarially-Trained Deep Nets Transfer Better”. In:
ArXiv preprint arXiv:2007.05869. 2020.

[UVL17] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Deep Image Prior”.
In: ArXiv preprint arXiv:1711.10925. 2017.

[VM01] David A Van Dyk and Xiao-Li Meng. “The art of data augmentation”. In:
Journal of Computational and Graphical Statistics. 2001.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is All you
Need”. In: Advances in Neural Information Processing Systems (2017).

[WAL19] Sherrie Wang, George Azzari, and David B Lobell. “Crop type mapping with-
out field-level labels: Random forest transfer and unsupervised clustering
techniques”. In: Remote sensing of environment 222 (2019), pp. 303–317.

[Wal45] Abraham Wald. “Statistical Decision Functions Which Minimize the Maxi-
mum Risk”. In: Annals of Mathematics. 1945.

[WBS+04] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. “Image quality
assessment: from error visibility to structural similarity”. In: 2004.

[WEL47] B. L. WELCH. “THE GENERALIZATION OF ‘STUDENT’S’ PROBLEM
WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED”.
In: Biometrika. 1947.

[Wen21] Lilian Weng. “What are diffusion models?” In: lilianweng.github.io (July 2021).
URL: https://lilianweng.github.io/posts/2021-07-11-diffusion-
models/.

[WH13] Alexander Wilkie and Lukas Hosek. “Predicting Sky Dome Appearance on
Earth-like Extrasolar Worlds”. In: 29th Spring conference on Computer Graphics
(SCCG 2013). 2013.

[WHS23] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. “Jailbroken: How
Does LLM Safety Training Fail?” In: arXiv preprint arXiv:2307.02483 (2023).

[Wig19] Ross Wightman. PyTorch Image Models. https://github.com/rwightman/
pytorch-image-models. 2019. DOI: 10.5281/zenodo.4414861.

[WK18] Eric Wong and J Zico Kolter. “Provable defenses against adversarial examples
via the convex outer adversarial polytope”. In: International Conference on
Machine Learning (ICML). 2018.

152

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

[WKM+19] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Gir-
shick. Detectron2. https://github.com/facebookresearch/detectron2.
2019.

[WLD+20] Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Goldstein. “Making an
invisibility cloak: Real world adversarial attacks on object detectors”. In:
European Conference on Computer Vision. Springer. 2020, pp. 1–17.

[WPL+17] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri,
and Ronald M Summers. “Chestx-ray8: Hospital-scale chest x-ray database
and benchmarks on weakly-supervised classification and localization of
common thorax diseases”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR). 2017.

[WSG17] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. “A-Fast-RCNN:
Hard Positive Generation via Adversary for Object Detection”. In: ArXiv
preprint arXiv:1704.03414. 2017.

[WSM21] Eric Wong, Shibani Santurkar, and Aleksander Madry. “Leveraging Sparse
Linear Layers for Debuggable Deep Networks”. In: International Conference
on Machine Learning (ICML). 2021.

[WSS+20] Eric Wong, Tim Schneider, Joerg Schmitt, Frank R Schmidt, and J Zico Kolter.
“Neural network virtual sensors for fuel injection quantities with provable
performance specifications”. In: 2020 IEEE Intelligent Vehicles Symposium (IV).
IEEE. 2020, pp. 1753–1758.

[WZC+18] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Du-
ane Boning, Inderjit S Dhillon, and Luca Daniel. “Towards fast computation
of certified robustness for ReLU networks”. In: International Conference on
Machine Learning (ICML). 2018.

[XBK+15] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-
lan Salakhudinov, Rich Zemel, and Yoshua Bengio. “Show, attend and tell:
Neural image caption generation with visual attention”. In: International
conference on machine learning. PMLR. 2015, pp. 2048–2057.

[XBS+21] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal.
“PatchGuard: A Provably Robust Defense against Adversarial Patches via
Small Receptive Fields and Masking”. In: 30th USENIX Security Symposium
(USENIX Security 21). 2021.

[XEI+20] Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. “Noise
or signal: The role of image backgrounds in object recognition”. In: arXiv
preprint arXiv:2006.09994 (2020).

[XHE+10] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio
Torralba. “Sun database: Large-scale scene recognition from abbey to zoo”.
In: Computer Vision and Pattern Recognition (CVPR). 2010.

153

https://github.com/facebookresearch/detectron2

[XJB+16] Michael Xie, Neal Jean, Marshall Burke, David Lobell, and Stefano Ermon.
“Transfer learning from deep features for remote sensing and poverty map-
ping”. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[XZM+14] Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan C. Bovik. “Gradient Mag-
nitude Similarity Deviation: A Highly Efficient Perceptual Image Quality
Index”. In: 2014.

[YCB+14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How transfer-
able are features in deep neural networks?” In: Advances in neural information
processing systems (NeurIPS). 2014.

[YDH+20] Greg Yang, Tony Duan, J. Edward Hu, Hadi Salman, Ilya Razenshteyn, and
Jerry Li. Randomized Smoothing of All Shapes and Sizes. 2020.

[ZCA+17] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. “Visualiz-
ing deep neural network decisions: Prediction difference analysis”. In: arXiv
preprint arXiv:1702.04595 (2017).

[ZF14] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolu-
tional networks”. In: European conference on computer vision. Springer. 2014,
pp. 818–833.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”. In:
arXiv preprint arXiv:1605.07146 (2016).

[ZL12] Lin Zhang and Hongyu Li. “SR-SIM: A fast and high performance IQA index
based on spectral residual”. In: 2012 19th IEEE International Conference on
Image Processing. 2012.

[ZML+07] Jianguo Zhang, Marcin Marszałek, Svetlana Lazebnik, and Cordelia Schmid.
“Local features and kernels for classification of texture and object categories:
A comprehensive study”. In: International journal of computer vision. 2007.

[ZPD+20] Yi Zhang, Orestis Plevrakis, Simon S. Du, Xingguo Li, Zhao Song, and Sanjeev
Arora. “Over-parameterized Adversarial Training: An Analysis Overcoming
the Curse of Dimensionality”. In: Arxiv preprint arXiv:2002.06668. 2020.

[ZQP+20] Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming
Pang, Quoc V Le, and Yonghui Wu. “Pushing the limits of semi-supervised
learning for automatic speech recognition”. In: arXiv preprint arXiv:2010.10504
(2020).

[ZSL14] Lin Zhang, Ying Shen, and Hongyu Li. “VSI: A Visual Saliency-Induced
Index for Perceptual Image Quality Assessment”. In: 2014.

[ZSS+18] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra
Malik, and Silvio Savarese. “Taskonomy: Disentangling task transfer learn-
ing”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018.

[ZWK+23] Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. “Universal and
Transferable Adversarial Attacks on Aligned Language Models”. In: arXiv
preprint arXiv:2307.15043 (2023).

154

[ZXY17] Zhuotun Zhu, Lingxi Xie, and Alan Yuille. “Object Recognition without and
without Objects”. In: International Joint Conference on Artificial Intelligence.
2017.

[ZYJ+19] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui,
and Michael Jordan. “Theoretically Principled Trade-off between Robustness
and Accuracy”. In: International Conference on Machine Learning (CIML). 2019.

[ZYM+20] Zhanyuan Zhang, Benson Yuan, Michael McCoyd, and David Wagner. “Clipped
BagNet: defending against sticker attacks with clipped bag-of-features”. In:
2020 IEEE Security and Privacy Workshops (SPW). 2020.

[ZZ19] Tianyuan Zhang and Zhanxing Zhu. “Interpreting Adversarially Trained
Convolutional Neural Networks”. In: International Conference on Machine
Learning (ICML). 2019.

[ZZM+11] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. “FSIM: A Feature
Similarity Index for Image Quality Assessment”. In: 2011.

155

Appendix

156

Appendix A

Additional details for Chapter 1

A.1 Experimental setup

A.1.1 Models and architectures

We use three sizes of vision transformers—ViT-Tiny (ViT-T), ViT-Small (ViT-S), and ViT-
Base (ViT-B) models [Wig19; DBK+21] and compare to to residual networks of similar (or
larger) size—ResNet-18, ResNet-50 [HZR+16], and Wide ResNet-101-2 [ZK16], respectively.
These architectures and their corresponding number of parameters are summarized in
Table A.1.

Table A.1: A collection of neural network architectures we use in this chapter.

Architecture ViT-T ResNet-18 ViT-S ResNet-50 ViT-B WRN-101-2
Params 5M 12M 22M 26M 86M 126M

We use the same architectures for both ImageNet and CIFAR-10 models, and finetune
our smoothed models from publicly released checkpoints pretrained on ImageNet. All
our CIFAR-10 experiments are thus conducted on up-sampled CIFAR-10 images of size
224× 224.

A.1.2 Datasets

We use two datasets:

1. CIFAR [Kri09] https://paperswithcode.com/dataset/cifar-10.

2. ImageNet [RDS+15], with a custom (research, non-commercial) license, as found
here https://paperswithcode.com/dataset/imagenet.

157

https://paperswithcode.com/dataset/cifar-10
https://paperswithcode.com/dataset/imagenet

A.1.3 Training parameters

Derandomized smoothing requires that the base classifier predict well on image ablations.
A standard technique for derandomized smoothing methods is to directly train the base
classifier on image ablations [LF20a]. Thus, unless otherwise stated, in each epoch we
randomly apply a column ablation of fixed width to each image of the training set.

To facilitate training of the base classifiers, we start from pretrained ResNets1 and ViT
architectures2 and fine-tune as follows:

ImageNet. We train for 30 epochs using SGD of fixed learning rate of 10−3, a batch size
of 256, a weight-decay of 10−4, a momentum of 0.9, and with column ablations of fixed
width b = 19. For data-augmentation, we use random resized crop, random horizontal
flip, and color jitter. We then apply column ablations.

CIFAR-10. We train for 30 epochs using SGD with a step learning rate of 10−2 that
drops every 10 epochs by a factor of 10, a batch size of 128, a weight-decay of 5× 10−4, a
momentum of 0.9, and with column ablations of fixed width b = 4. We only use random
horizontal flip for data-augmentation, after which we apply column ablations. We then
upsample all CIFAR-10 images to 224× 224 (on GPU).

Training time. Training is relatively fast, with our largest ImageNet model (WRN-101-2)
finishing in roughly two days on one NVIDIA V100 GPU. The smaller models such as
ViT-T or ResNet-18 finish training in only a few hours.

A.1.4 Compute and timing experiments

We use an internal cluster containing NVIDIA 1080-TI, 2080-TI, V100, and A100 GPUs.
Scalability and timing experiments were performed on an A100 and averaged over 50
trials. When performing scalability experiments, we do not include data loading time or
the time to move the input to the GPU.

A.1.5 Example ablations

In Figure A.1, we display examples of ablations of various types (column, block) and sizes.

1These are TorchVision’s official checkpoints, and can be found here https://pytorch.org/vision/
stable/models.html.

2We use the DeiT checkpoints of [Wig19] which can be found here https://github.com/rwightman/
pytorch-image-models/blob/master/timm/models/vision_transformer.py.

158

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py

Column Ablation

(a) Column ablations with the following ablation size from left to
right: original image, 13px, 19px, 25px, 31px, 37px.

Block Ablation

(b) Block ablations with the following ablation size from left to right:
original image, 35px, 55px, 75px, 95px, 115px.

Figure A.1: Example ablations that we use in this chapter.

A.1.6 Differences in setup from Levine and Feizi [LF20a]

Our work builds on top of that of Levine and Feizi [LF20a]. We use their robustness
guarantee as is (see Section 1.1.1), but there are a few differences in the setup of our
experiments. All experimental results (including the de-randomized smoothing baseline)
are run using the same experimental setup in order to remain fair, which only improved
the baseline over what was previously reported in the literature. For completeness, we
describe the differences in setup here.

Encoding null inputs. The first difference is that Levine and Feizi [LF20a] encode part
of the input as being null or ablated by adding additional color channels, as described in
[LF20b], so that the null value is distinct from all real pixel colors. In practice, we found
this to be unnecessary, and were able to replicate their results with ablations that simply
replace masked pixels with 0.

Early stopping. We find that ResNets substantially benefit from early stopping when
trained with ablations, and otherwise experience severe overfitting to the ablations with
substantially reduced test accuracies. In our replication, we find that the ResNet-50
result reported by Levine and Feizi [LF20a] can be substantially improved with an earlier
checkpoint (improving certified accuracy by nearly 10%), and thus we use early-stopping
in all of our ResNet baselines.

159

Starting from pretrained models. To reduce training time, for both ImageNet and CIFAR-
10 experiments, we start from pre-trained ImageNet checkpoints (see Section A.1.3). This
step is especially necessary for the CIFAR-10 experiments, as it is quite challenging to train
a ViT from scratch on CIFAR-10 (these models tend to require a large amount of data).

Upsampled CIFAR-10. In order to use the pretrained ImageNet checkpoints when train-
ing our base classifiers for CIFAR-10, we (nearest neighbor) upsample the CIFAR-10 inputs
to 224× 224 as part of the model architecture. We verify robustness in the original 32× 32
images.

Sweeping over ablation size. We note that Levine and Feizi [LF20a] tested various
ablations sizes only on CIFAR-10. Due to our speed-ups, we were able to sweep over
ablations sizes for ImageNet.

A.2 Ablation sweeps

In this section, we further explore the impact of changing the ablation size on both standard
and certified performance. In Section A.2.1, we explore the effect of modifying the ablation
size at training time. In Section A.2.2, similar to the experiment on ImageNet from
Section 1.2.2, we present additional results on adjusting the ablation size at test time for
CIFAR10.

A.2.1 Train-time ablation

We first explore varying the ablation size used during training for ImageNet. Specifically,
we train and certify a ResNet-50 and ViT-S over a range of column widths from 1 to 67
pixels (Figure A.2).

0 20 40 60
Ablation Size (px)

10

20

30

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-S
ResNet-50

0 20 40 60
Ablation Size (px)

20

40

60

St
an

da
rd

 A
cc

ur
ac

y
(%

)
(S

m
oo

th
ed

 C
la

ss
ifi

er
) ViT-S

ResNet-50

Figure A.2: Certified and standard accuracy for a smoothed model trained and evaluated
on ImageNet column ablations with varying widths. The ResNet-50 requires a substantially
larger ablation size for certification, whereas the ViT-S is more flexible.

160

For ViTs, we find that once the columns are wide enough, we see only marginal
improvements in certified accuracy (i.e. only 1.3% higher certified accuracy over b = 19).
This suggests that small ablations are sufficient at training time, allowing for fast training
of ViTs when using cropped ablations.

On the other hand, ResNets require a substantially larger column width than was
previously explored. Specifically, the certified accuracy of the ResNet baseline can be
greatly improved from 18% to 27% when the ablation size is increased to b = 37. This
ablation size is optimal for the ResNet, but is still 6% lower certified accuracy when
compared to the ViT.

Overall, we find that certified performance of ViTs on ImageNet remains largely stable
with respect to the column ablation size used for training. We can thus use smaller ablation
sizes during training (e.g b = 19) to improve training speed while certifying using larger
ablation sizes.

A.2.2 Test-time ablations

2 4 6 8 10
Ablation Size (px)

40

60

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

2 4 6 8 10
Ablation Size (px)

60

80

St
an

da
rd

 A
cc

ur
ac

y
(%

)
(S

m
oo

th
ed

 C
la

ss
ifi

er
) ViT-T

ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

Figure A.3: Certified and standard accuracy for a smoothed model on CIFAR-10 trained
with a fixed ablation size (b = 5), and evaluated with varying ablation sizes.

Similar to the experiment on ImageNet from Section 1.2.2, we present analogous results
for varying the ablation size used at test time for CIFAR-10. These results largely reflect
what was previously observed by Levine and Feizi [LF20a]. Specifically, the optimal
ablation size for CIFAR10 is a column width of b = 4, with a steep drop-off in performance
for larger ablation sizes. This is in contrast to what we observed in ImageNet, which did
not see such a steep drop in performance.

A.3 Dropping tokens for ViTs

We first describe the algorithm for processing image ablations with a ViT while dropping
masked tokens. Let x be an image with size h×w, and let S(x) be the set of image ablations

161

of x. For each z, m ∈ S(x), z is an image ablation of size h× w and m ∈ {0, 1}h×w is its
corresponding mask, such that mij is 0 if the i, j pixel in z is masked and 1 otherwise.

Recall that a ViT has two stages when processing an input z.

• Encoding: z is split into patches of p× p and positionally encoded into tokens. We
let E(w, i, j) be an encoder which positionally encodes the p× p sized patch w which
was at spatial location ip, jp in z.

• Self-Attention: A set of positionally encoded tokens T is passed through self atten-
tion layers V and produces a class label.

Given an image ablation z we modify the ViT to remove tokens in T that correspond to
a fully masked region in z.

Algorithm 2 Forward pass for processing an image ablation z with mask m using a ViT
while dropping masked tokens.

1: function PROCESSABLATION(z, m)
2: T = {} Initialize set of tokens for an ablation
3: for i, j ∈ [h/p]× [w/p] do
4: if not mip:(i+1)p,jp:(j+1)p = 0 then
5: T = T ∪ E(zip:(i+1)p,jp:(j+1)p, i, j)
6: end if
7: end for
8: return V(T)
9: end function

We can then use this function to define the smoothed ViT.

Algorithm 3 Forward pass for a smoothed ViT on an input image x with ablation set S(x)
1: function SMOOTHEDVIT(x)
2: ci = 0 for i ∈ [k] // Initialize counts to zero
3: for z, m ∈ S(x) do
4: y = PROCESSABLATION(z, m)
5: cy = cy + 1 // Update counts
6: end for
7: return arg maxy cy

8: end function

A.3.1 Computational complexity of ViTs with dropped tokens

We can now derive the computational complexity of the smoothed ViT when dropping
tokens. Specifically, consider a ViT that divides an h× w pixel image into p× p patches,

162

and positionally encodes them tokens with d hidden dimensions.

Recall that a ViT has two operation types: attention operators which scale quadratically
with the number of tokens but linearly with hidden dimension d and fully-connected
operators which scale linearly with the number of tokens but quadratically in d. Without
dropping tokens, we have hw/p2 tokens. A forward pass of processing an image ablation
without dropping tokens thus has an overall complexity of

O

((
hw
p2

)2

d +

(
hw
p2

)
d2

)

where the first term corresponds to the attention operations, and the second term corre-
sponds to the fully-connected operations.

For column ablations with width b, dropping masked tokens reduces the number of
tokens to hb/p2. The complexity of the forward pass to process an image ablation when
dropping masked tokens (i.e ProcessAblation) then drops to

O

((
hb
p2

)2

d +

(
hb
p2

)
d2

)

thus reducing the attention cost by a factor of O(w2/b2) and the fully-connected cost by
a factor of O(w/b). In practice, the computation of fully-connected operations tends to
dominate since d > hw

p2 .

Overall, a smoothed ViT with stride s processes w/s ablations. Thus, the overall
complexity of the smoothed ViT is:

O

(
w
s

((
hb
p2

)2

d +

(
hb
p2

)
d2

))

A.3.2 Effect of dropping tokens on speed

We extend the timing experiments comparing ViTs and ResNets to a range of ablation
sizes (previously presented in Table 1.3 from Section 1.3 for a single column ablation
size of b = 19). Empirically, even for substantially larger ablations, we find significantly
faster training and inference times for ViTs over ResNets. In Figure A.4, we compare the
evaluation and training speeds for processing image ablations with ResNets and ViTs with
dropped tokens.

163

20 30 40 50 60
Ablation Size (px)

0

1

2

3
Fw

d
Pa

ss
 T

im
e

(s
ec

)
(B

as
e

Cl
as

sif
ie

r)
ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

(a) Forward Pass Time

20 30 40 50 60
Ablation Size (px)

0.00

0.25

0.50

0.75

Fw
d/

Bw
d

Pa
ss

 T
im

e
(s

ec
)

(B
as

e
Cl

as
sif

ie
r)

ViT-T
ResNet-18
ViT-S
ResNet-50
ViT-B
WRN-101

(b) Forward/Backward Pass Time

Figure A.4: (a) Average time for computing a forward pass on a batch of 1024 image
ablations on ImageNet (b) Average time for computing a full training step (forward and
backward pass) on a batch of 128 image ablations on ImageNet

A.3.3 Effect of dropping tokens on performance

Since the tokens are individually positionally encoded, dropping tokens that are fully
masked does not remove any information from the input. In Figure A.5, we confirm
that dropping masked tokens does not significantly change the accuracy of the ViT base
classifier on ablations.

2 4 6 8 10
Ablation Size (px)

60

80

Ab
la

tio
n

Ac
cu

ra
cy

 (%
)

(B
as

e
Cl

as
sif

ie
r)

Architecture
ViT-T
ViT-S
ViT-B

All Tokens
Drop Tokens

(a) CIFAR-10 models.

15 20 25 30 35
Ablation Size (px)

30

40

50

Ab
la

tio
n

Ac
cu

ra
cy

 (%
)

(B
as

e
Cl

as
sif

ie
r)

Architecture
ViT-T
ViT-S
ViT-B

All Tokens
Drop Tokens

(b) ImageNet models.

Figure A.5: We compare the ablation accuracies of dropping masked tokens versus process-
ing all tokens for a collection of vision transformers on CIFAR-10 and ImageNet. Dropping
masked tokens does not substantially degrade accuracy.

A.4 Strided ablations

In this section, we explore strided ablations for certification in more depth. In Section A.4.1
we present the threshold for certification when using strided ablations. In Section A.4.2 we
show how striding affects performance.

164

A.4.1 Certification thresholds for strided ablation sets

We briefly describe the new thresholds for certification when using strided ablations. Recall
from (1.2) that a prediction is certified robust if

nc(x) > max
c′ ̸=c

nc′(x) + 2∆.

Thus ∆, the number of ablations that a patch can intersect, fully describes the certification
threshold.

Column smoothing. For column smoothing with width b and stride s, the maximum
number of ablations that an m × m patch can intersect with is at most ∆column+stride =

⌈(m + s− 1)/s⌉.

A.4.2 Performance under strided ablations

2 4 6 8 10
Stride (px)

20

30

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-T
ViT-S
ViT-B

(a) Certified Accuracy

2 4 6 8 10
Stride (px)

55

60

65

70

St
an

da
rd

 A
cc

ur
ac

y
(%

)
(S

m
oo

th
ed

 C
la

ss
ifi

er
) ViT-T

ViT-S
ViT-B

(b) Standard Accuracy

Figure A.6: Certified and standard accuracy of various ViTs for ImageNet when using
strided column ablations with varying stride lengths.

In this section, we explore how striding affects standard and certified performance. We
find that striding does not result in a monotonic change in certified accuracy—certification
accuracy can both decrease and increase as the stride increases.

For a few choices in striding, it is possible to not substantially change the accuracy
of the ViT at classifying ablations, as shown in Figure A.6. For example, a ViT-B which
normally obtains 38.3% certified accuracy without striding, maintains certified accuracies
of 37.6% at stride s = 5 and 36.8% at stride s = 10. For these small drops in certified
accuracy, striding directly enables 5x or 10x faster inference times.

165

A.5 Block smoothing

In this section, we investigate an alternative type of smoothing known as Block Smoothing,
previously investigated in the CIFAR-10 setting [LF20a]. In block smoothing, we ablate
(square) blocks of pixels instead of columns of pixels. This procedure is prohibitively
expensive for ImageNet due to its quadratic complexity. For example, smoothing a
224 × 224 image with block ablations takes a majority vote over 224 × 224 = 50, 176
ablations, which is four orders of magnitude slower than a standard forward pass. We
alleviate this obstacle for larger image settings such as ImageNet with the token-based
speedups for ViTs from Section 1.3.1 and the striding from Section 1.3.2. In combination,
these improvements in speed allow us to perform a practical investigation into block
smoothing on ImageNet.

Certification. Certification of derandomized smoothing models with block ablations is
similar to that of column ablations, and depends on the maximum number of ablations
in the ablation set that an adversarial patch can simultaneously intersect. Recall that for
column ablations of size b, the certification threshold is ∆ = m + b − 1 ablations. For
block ablations of size b (where b here is the side of the retained block/square of pixels),
∆ = (m + b− 1)2. The threshold can then be plugged as before into Equation (1.2) to check
whether the model is certifiably robust.

A.5.1 Practical inference speeds for block smoothing

We first demonstrate how dropping masked tokens significantly increases the speed of
evaluating block ablations for the base classifier. In Figure A.7, we show that dropping
masked tokens substantially reduces the time needed to process 1024 block ablations for
various sizes of ViTs. This directly leads to a 4.85x speedup for ViT-S with ablation size 75.

Even with this optimization, however, block smoothing is quite expensive. A forward
pass through the smoothed model still requires around 50k passes through the base
classifier. We thus leverage our second speedup from strided ablations and use strided
block smoothing. Similar to strided column ablations, for a stride length of s, we only
consider block ablations that are s pixels apart, vertically and horizontally. This changes
the certification threshold ∆ to be, ∆block+stride = ⌈(m + s− 1)/s⌉2. With dropping fully
masked tokens and using a stride of 10, a smoothed ViT-S using an ablation size of 75 is
only 2.8x slower than a standard (non-robust) ResNet-50.

166

70 80 90 100
Ablation Size (px)

0.0

0.5

1.0

Fo
rw

ar
d

Pa
ss

 T
im

e
(s

ec
)

(B
as

e
Cl

as
sif

ie
r)

ViT-T
ViT-S
ViT-B

Drop Tokens
All Tokens

Figure A.7: Average time to compute a forward pass for ViTs on 1024 block ablated images
with varying ablation sizes with and without dropping masked tokens.

Certified accuracy. We find that, despite an systematic search over stride length and block
size (both at training and evaluation), block smoothing on ImageNet remains significantly
worse than column smoothing. For example, with optimal stride and ablation size, we see
up to 5% lower certified accuracy than column smoothing on the largest model, ViT-B. We
checked a range of ablation sizes from 55 to 115 as well as three stride lengths {7, 10, 14}
(Figure A.8).

Similar to striding with column ablations, there is a significant amount of variability
based on the stride length. To pinpoint the effect of striding, we certify one of the best-
performing block sizes (b = 75) over a full range of strides from s = 1 to s = 20 (Figure
A.9). This is a fairly expensive calculation, as using stride s = 1 corresponds to the full
block ablation with 50k ablations.

Even when using all possible block ablations (s = 1), block smoothing does not improve
over column smoothing. However, we do find that certain stride lengths (s = 18) can
achieve similar performance to non-strided block ablations (s = 1), which means that
we can speed up certification (by 18x) without sacrificing certified accuracy. Thus, while
our methods can make block smoothing computationally feasible, further investigation
is needed to make block smoothing match column smoothing in terms of certified and
standard accuracies.

167

1 16 32 48 64 80
Patch Size (px)

0

20

40

Ce
rti

fie
d

Ac
cu

ra
cy

(%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-B

1 16 32 48 64 80
Patch Size (px)

ViT-S

1 16 32 48 64 80
Patch Size (px)

ViT-T

Stride
7
10
14

(a) We fix the test-time ablation size at b = 75 and plot the certified accuracy as a function of the
adversarial patch size, for various stride length.

75 100
Test-time Ablation Size

(px)

10

20

30

Ce
rti

fie
d

Ac
cu

ra
cy

(%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

) ViT-B

75 100
Test-time Ablation Size

(px)

ViT-S

75 100
Test-time Ablation Size

(px)

ViT-T

Stride
7
10
14

(b) We fix the adversarial patch size m = 32 and plot the certified accuracy as a function of the
test-time ablation size, for various stride length.

Figure A.8: Strided block smoothing on ImageNet for a collection of ViT models trained
with block ablations of size b = 75.

1 5 10 15 20
Stride

0.26

0.28

0.30

0.32

0.34

0.36

Ce
rti

fie
d

Ac
cu

ra
cy

 (%
)

(S
m

oo
th

ed
 C

la
ss

ifi
er

)

Block Smoothing (b = 75)

Figure A.9: Strided block smoothing on ImageNet for ViT-B with a fixed ablation size
b = 75. The reported certified accuracy are against adversarial patches of size 32× 32.
Note how some stride lengths (s = 18 for example) can achieve similar performance to
non-strided block ablations (s = 1).

168

A.6 Extended experimental results

Table A.2: An extended version of Table 1.2. Summary of our CIFAR-10 results and
comparisons to certified patch defenses from the literature: Clipped Bagnet (CBG), Deran-
domized Smoothing (DS), and PatchGuard (PG). b is the column ablation size out of 32
pixels.

Standard and Certified Accuracy on CIFAR-10 (%)

Patch Size Clean 2× 2 4× 4

Baselines

CBN [ZYM+20] 84.2 44.2 9.3
DS [LF20a] 83.9 68.9 56.2
PG [XBS+21] (2× 2) 84.7 69.2 0.0
PG [XBS+21] (4× 4) 84.6 57.7 57.7

Smoothed models

ResNet-18 (b = 4) 83.6 67.0 54.2
ViT-T (b = 4) 85.5 70.0 58.5

ResNet-50 (b = 4) 86.4 71.6 59.0
ViT-S (b = 4) 88.4 75.0 63.8

WRN-101-2 (b = 4) 88.2 73.9 62.0
ViT-B (b = 4) 90.8 78.1 67.6

Table A.3: Standard accuracies of regularly trained architectures vs. smoothed architectures
with column ablations of size b = 4 for CIFAR-10 and b = 19 for ImageNet.

Standard accuracy of architecture (%)

ViT-T ResNet-18 ViT-S ResNet-50 ViT-B WRN-101-2

ImageNet

Standard 72.03 69.76 79.72 76.13 81.74 78.85
Smoothed 52.25 50.62 63.48 51.47 69.33 61.38

Difference 19.77 19.14 16.24 24.66 12.41 17.47

CIFAR-10

Standard 93.13 95.72 93.33 96.16 97.07 97.85
Smoothed 85.53 88.41 86.39 83.57 90.75 88.20

Difference 7.60 7.31 6.94 12.59 6.32 9.65

169

Table A.4: An extended version of Table 1.1. Summary of our ImageNet results and
comparisons to certified patch defenses from the literature: Clipped Bagnet (CBG), Deran-
domized Smoothing (DS), and PatchGuard (PG). Time refers to the inference time for a
batch of 1024 images, b is the ablation size, and s is the ablation stride.

Standard and Certified Accuracy on ImageNet (%)

Patch Size Clean 1% pixels 2% pixels 3% pixels Time (sec)

CBN [ZYM+20] 49.5 13.4 7.1 3.1 3.05± 0.02
DS [LF20a] 44.4 17.7 14.0 11.2 149.52± 0.33
PG [XBS+21] (1% pixels) 55.1 32.3 0.0 0.0 3.05± 0.02
PG [XBS+21] (2% pixels) 54.6 26.0 26.0 0.0 3.05± 0.02
PG [XBS+21] (3% pixels) 54.1 19.7 19.7 19.7 3.05± 0.02

Vary Ablation Size (Stride = 1)

ResNet-18 (b = 19) 50.6 24.1 19.8 16.9 39.84± 0.97
ResNet-18 (b = 25) 52.7 24.2 20.0 17.1 39.84± 0.97
ResNet-18 (b = 37) 54.3 22.4 18.6 15.7 39.84± 0.97
ViT-T (b = 19) 52.3 27.3 22.9 19.9 6.81± 0.05
ViT-T (b = 25) 53.7 26.9 22.8 19.7 6.82± 0.05
ViT-T (b = 37) 55.6 25.5 21.7 18.8 12.64± 0.10

ResNet-50 (b = 19) 51.5 22.8 18.3 15.3 149.52± 0.33
ResNet-50 (b = 25) 54.7 23.8 19.5 16.4 149.52± 0.33
ResNet-50 (b = 37) 57.8 23.1 19.0 16.1 149.52± 0.33
ViT-S (b = 19) 63.5 36.8 31.6 27.9 14.00± 0.16
ViT-S (b = 25) 65.1 36.8 31.9 28.2 20.58± 0.18
ViT-S (b = 37) 67.1 35.3 30.7 27.1 20.61± 0.16

WRN-101-2 (b = 19) 61.4 33.3 28.1 24.1 694.50± 0.58
WRN-101-2 (b = 25) 64.2 34.3 29.1 25.3 694.50± 0.58
WRN-101-2 (b = 37) 67.2 33.7 28.8 25.2 694.50± 0.58
ViT-B (b = 19) 69.3 43.8 38.3 34.3 31.51± 0.17
ViT-B (b = 25) 71.1 44.0 38.8 34.8 31.52± 0.21
ViT-B (b = 37) 73.2 43.0 38.2 34.1 58.74± 0.17

Vary Ablation Stride

WRN-101-2 (b = 19, s = 5) 61.1 30.1 27.3 21.9 138.90± 0.12
WRN-101-2 (b = 19, s = 10) 59.7 25.8 25.8 20.9 69.45± 0.06
ViT-B (b = 19, s = 5) 69.0 40.6 37.7 32.0 6.30± 0.03
ViT-B (b = 19, s = 10) 68.3 36.9 36.9 31.4 3.15± 0.02

WRN-101-2 (b = 37, s = 5) 66.9 32.6 27.2 24.7 138.90± 0.12
WRN-101-2 (b = 37, s = 10) 66.1 31.7 26.7 21.7 69.45± 0.06
ViT-B (b = 37, s = 5) 73.1 41.9 36.4 33.5 11.75± 0.03
ViT-B (b = 37, s = 10) 72.6 41.3 36.1 30.8 5.87± 0.02

170

Appendix B

Additional details for Chapter 2

B.1 Experimental Setup

B.1.1 Pretrained ImageNet models

In this chapter, we train a number of standard and robust ImageNet models on various
architectures. These models are used for all the various transfer learning experiments.

Architectures We experiment with several standard architectures from the PyTorch’s
Torchvision1. These models are shown in Tables B.1&B.2.2

Table B.1: The clean accuracies of ℓ∞-robust ImageNet classifiers.

Clean ImageNet Top-1 Accuracy (%)

Robustness parameter ε

Model 0.5
255

1
255

2
255

4
255

8
255

ResNet-18 66.13 63.46 59.63 52.49 42.11
ResNet-50 73.73 72.05 69.10 63.86 54.53
WRN-50-2 75.82 74.65 72.35 68.41 60.82

Training details We fix the training procedure for all of these models. We train all the
models from scratch using SGD with batch size of 512, momentum of 0.9, and weight

1These models can be found here https://pytorch.org/docs/stable/torchvision/models.html
2WRN-50-2 and WRN-50-4 refer to Wide-ResNet-50, twice and four times as wide, respectively.

171

https://pytorch.org/docs/stable/torchvision/models.html

Table B.2: The clean accuracies of standard and ℓ2-robust ImageNet classifiers used in this
chapter.

Clean ImageNet Top-1 Accuracy (%)

Robustness parameter ε

Model 0 0.01 0.03 0.05 0.1 0.25 0.5 1 3 5

ResNet-18 69.79 69.90 69.24 69.15 68.77 67.43 65.49 62.32 53.12 45.59
ResNet-50 75.80 75.68 75.76 75.59 74.78 74.14 73.16 70.43 62.83 56.13
WRN-50-2 76.97 77.25 77.26 77.17 76.74 76.21 75.11 73.41 66.90 60.94
WRN-50-4 77.91 78.02 77.87 77.77 77.64 77.10 76.52 75.51 69.67 65.20

Clean ImageNet Top-1 Accuracy (%)

Model Architecture

A B C D E F
DenseNet-161 ResNeXt50 VGG16-bn MobileNet-v2 ShuffleNet MNASNET

ε = 0 77.37 77.32 73.66 65.26 64.25 60.97
ε = 3 66.12 65.92 56.78 50.05 42.87 41.03

decay of 1e− 4. We train for 90 epochs with an initial learning rate of 0.1 that drops by a
factor of 10 every 30 epochs.

For Standard Training, we use the standard cross-entropy multi-class classification loss.
For Robust Training, we use adversarial training [MMS+18]. We train on adversarial exam-
ples generated within maximum allowed perturbations ℓ2 of ε ∈ {0.01, 0.03, 0.05, 0.1, 0.25, 0.5, 1, 3, 5}
and ℓ∞ perturbations of ε ∈ { 0.5

255 , 1
255 , 2

255 , 4
255 , 8

255} using 3 attack steps and a step size of
ε×2

3 .

B.1.2 ImageNet transfer to classification datasets

Datasets

We test transfer learning starting from ImageNet pretrained models on classification
datasets that are used in [KSL19]. These datasets vary in size the number of classes and
datapoints. The details are shown in Table B.3.

172

Table B.3: Classification datasets used in this chapter.

Dataset Classes Size (Train/Test) Accuracy Metric

Birdsnap [BLW+14] 500 32,677/8,171 Top-1
Caltech-101 [FFP04] 101 3,030/5,647 Mean Per-Class
Caltech-256 [GHP07] 257 15,420/15,187 Mean Per-Class
CIFAR-10 [Kri09] 10 50,000/10,000 Top-1
CIFAR-100 [Kri09] 100 50,000/10,000 Top-1
Describable Textures (DTD) [CMK+14] 47 3,760/1,880 Top-1
FGVC Aircraft [MRK+13] 100 6,667/3,333 Mean Per-Class
Food-101 [BGV14] 101 75,750/25,250 Top-1
Oxford 102 Flowers [NZ08] 102 2,040/6,149 Mean Per-Class
Oxford-IIIT Pets [PVZ+12] 37 3,680/3,669 Mean Per-Class
SUN397 [XHE+10] 397 19,850/19,850 Top-1
Stanford Cars [KDS+13] 196 8,144/8,041 Top-1

Fixed-feature Transfer

For this type of transfer learning, we freeze the weights of the ImageNet pretrained model3,
and replace the last fully connected layer with a random initialized one that fits the transfer
dataset. We train only this new layer for 150 epochs using SGD with batch size of 64,
momentum of 0.9, weight decay of 5e− 4, and an initial lr ∈ {0.01, 0.001} that drops by a
factor of 10 every 50 epochs. We use the following standard data-augmentation methods:

TRAIN_TRANSFORMS = transforms . Compose ([
transforms . RandomResizedCrop (2 2 4) ,
transforms . RandomHorizontalFlip () ,
t ransforms . ToTensor () ,

])
TEST_TRANSFORMS = transforms . Compose ([

transforms . Resize (2 5 6) ,
transforms . CenterCrop (2 2 4) ,
transforms . ToTensor ()

])

Full-network transfer

For full-network transfer learning, we use the exact same hyperparameters as the fixed-
feature setting, but we do not freeze the weights of the pretrained ImageNet model.

3For all of our experiments, we do not freeze the batch statistics, only its weights.

173

B.1.3 Unifying dataset scale

For this experiment, we follow the exact experimental setup of B.1.2 with the only modifi-
cation being resizing all the datasets to 32× 32 then do dataugmentation as before:

TRAIN_TRANSFORMS = transforms . Compose ([
transforms . Resize (3 2) ,
transforms . RandomResizedCrop (2 2 4) ,
transforms . RandomHorizontalFlip () ,
t ransforms . ToTensor () ,

])
TEST_TRANSFORMS = transforms . Compose ([

transforms . Resize (3 2) ,
transforms . Resize (2 5 6) ,
transforms . CenterCrop (2 2 4) ,
transforms . ToTensor ()

])

B.1.4 Replicate our results

We desired simplicity and kept reproducibility in our minds when conducting our experi-
ments, so we use standard hyperparameters and minimize the number of tricks needed
to replicate our results. We open source all the standard and robust ImageNet models
that we use in this chapter, and our code is available at https://github.com/Microsoft/
robust-models-transfer.

174

https://github.com/Microsoft/robust-models-transfer
https://github.com/Microsoft/robust-models-transfer

B.2 Transfer Learning with ℓ∞-robust ImageNet models

We investigate how well other types of robust ImageNet models do in transfer learning.

Table B.4: Transfer Accuracy of standard vs ℓ∞-robust ImageNet models on CIFAR-10 and
CIFAR-100.

Transfer Accuracy (%)

Robustness parameter ε

0.0 0.5
255

1.0
255

2.0
255

4.0
255

8.0
255

Dataset Transfer Type Model

CIFAR-10
Full-network ResNet-18 96.05 96.85 96.80 96.98 97.04 96.79

ResNet-50 97.14 97.69 97.84 97.98 97.92 98.01

Fixed-feature ResNet-18 75.02 87.13 89.01 89.07 90.56 89.18
ResNet-50 78.16 90.55 91.51 92.74 93.35 93.68

CIFAR-100
Full-network ResNet-18 81.70 83.66 83.46 83.98 83.55 82.82

ResNet-50 84.75 86.12 86.48 87.06 86.90 86.21

Fixed-feature ResNet-18 53.86 68.52 70.83 72.00 72.19 69.78
ResNet-50 55.57 72.89 74.16 76.22 77.17 76.70

B.3 Object Detection and Instance Segmentation

In this section we provide more experimental details, and results, relating to our object
detection and instance segmentation experiments.

Experimental setup. We use only standard configurations from Detectron24 to train
models. For COCO tasks, compute limitations made training from every ε initialization
impossible. Instead, we trained from every ε initialization using a reduced learning rate
schedule (the corresponding 1x learning rate schedule in Detectron2) before training from
the top three ε initializations (by Box AP) along with the standard model using the full
learning rate training schedule (the 3x schedule). Our results for the 1x learning rate
search are in Figure B.1; our results, similar to those in Section 2.3, show that training
from a robustly trained backbone yields greater AP than training from a standard-trained
backbone.

4See: https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md For all
COCO tasks we used “R50-FPN” configurations (1x and 3x, described further in this section), and for VOC
we used the “R50-C4” configuration.

175

https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md

0.0 0.1 0.2 0.3 0.4 0.5
2-Robustness Epsilon

36

38
AP

COCO InstSeg

Box AP
Mask AP

0.0 0.1 0.2 0.3 0.4 0.5
2-Robustness Epsilon

37.25
37.50
37.75

COCO ObjDet

Figure B.1: AP of instance segmentation and object detection models with backbones
initialized with ε-robust models before training. Robust backbones generally lead to better
AP, and the best robust backbone always outperforms the standard-trained backbone for
every task.

Baselines. We use standard ResNet-50 models from the torchvision package5 using the
Robustness library [EIS+19a]. Detectron2 models were originally trained for (and their
configurations are tuned for) ResNet-50 models from the original ResNet code release6,
which are slightly different from the torchvision ResNet-50s we use. It has been previously
noted that models trained from torchvision perform worse with Detectron2 than these
original models7. Despite this, the best torchvision ResNet-50 models we train from robust
initializations dominate (without any additional hyperparameter searching) the original
baselines except for the COCO Object Detection task in terms of AP, in which the original
baseline has 0.07 larger Box AP8.

5https://pytorch.org/docs/stable/torchvision/index.html
6https://github.com/KaimingHe/deep-residual-networks
7See for both previous note and model differences: https://github.com/facebookresearch/

detectron2/blob/master/tools/convert-torchvision-to-d2.py
8Baselines found here: https://github.com/facebookresearch/detectron2/blob/master/MODEL_

ZOO.md

176

https://pytorch.org/docs/stable/torchvision/index.html
https://github.com/KaimingHe/deep-residual-networks
https://github.com/facebookresearch/detectron2/blob/master/tools/convert-torchvision-to-d2.py
https://github.com/facebookresearch/detectron2/blob/master/tools/convert-torchvision-to-d2.py
https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md

B.4 Background on Adversarially Robust Models

Adversarial examples in computer vision. Adversarial examples [BCM+13; SZS+14]
(also referred to as adversarial attacks) are imperceptible perturbations to natural inputs that
induce misbehaviour from machine learning—in this context computer vision—systems.
An illustration of such an attack is shown in Figure B.2. The discovery of adversarial
examples was a major contributor to the rise of deep learning security, where prior work has
focused on both robustifying models against such attacks (cf. [GSS15; MMS+18; WK18;
RSL18; CRK19] and their references), as well as testing the robustness of machine learning
systems in “real-world” settings (cf. [PMG+17; AEI+18; IEA+18; LSK19; EEF+18a] and
their references). A model that is resilient to such adversarial examples is referred to as
“adversarially robust.”

Robust optimization and adversarial training. One of the canonical methods for training
an adversarially robust model is robust optimization. Typically, we train deep learning
models using empirical risk minimization (ERM) over the training data—that is, we solve:

min
θ

1
n

n

∑
i=1
L(xi, yi; θ),

where θ represents the model parameters, L is a task-dependent loss function (e.g., cross-
entropy loss for classification), and {(xi, yi) ∼ D} are training image-label pairs. In robust
optimization (dating back to the work of Wald [Wal45]), we replace this standard ERM
objective with a robust risk minimization objective:

min
θ

1
n

n

∑
i=1

max
x′;d(xi,x′)<ε

L(x′, yi),

where d is a fixed but arbitrary norm. (In practice, d is often assumed to be an ℓp norm for
p ∈ {2, ∞}—for the majority of this work we set p = 2, so d(x, x′) is the Euclidean norm.)
In short, rather than minimizing the loss on only the training points, we instead minimize
the worst-case loss over a ball around each training point. Assuming the robust objective
generalizes, it ensures that an adversary cannot perturb a given test point (x, y) ∼ D and
drastically increase the loss of the model. The parameter ε governs the desired robustness
of the model: ε = 0 corresponds to standard (ERM) training, and increasing ε results in
models that are stable within larger and larger radii.

At first glance, it is unclear how to effectively solve the robust risk minimization
problem posed above—typically we use SGD to minimize risk, but here the loss function

177

Figure B.2: An example of an adversarial attack: adding the imperceptible perturbation
(middle) to a correctly classified pig (left) results in a near-identical image that is classified
as “airliner” by an Inception-v3 ImageNet model.

has an embedded maximization, so the corresponding SGD update rule would be:

θt ← θt−1 − η · ∇θ

(
max

x′;d(x′,xi)<ε
L(x′, yi; θ)

)
.

Thus, to actually train an adversarially robust neural network, Madry et al. [MMS+18]
turn to inspiration from robust convex optimization, where Danskin’s theorem [Dan67]
says that for a function f (α, β) that is convex in α,

∇α

(
max
β∈B

f (α, β)

)
= ∇α f (α, β∗), where β∗ = arg max

β
f (α, β) and B is compact.

Danskin’s theorem thus allows us to write the gradient of a minimax problem in terms
of only the gradient of the inner objective, evaluated at its maximal point. Carrying this
intuition over to the neural network setting (despite the lack of convexity) results in the
popular adversarial training algorithm [GSS15; MMS+18], where at each training iteration,
worst-case (adversarial) inputs are passed to the neural network rather than standard
unmodified inputs. Despite its simplicity, adversarial training remains a competitive
baseline for training adversarially robust networks [RWK20]. Furthermore, recent works
have provided theoretical evidence for the success of adversarial training directly in the
neural network setting [GCL+19; AL20; ZPD+20].

178

B.5 Omitted Figures

B.5.1 Full-network Transfer: additional results to Figure 2.5

78

80
Aircraft

66

68
Birdsnap

96.5

97.0
CIFAR-10

82

84
CIFAR-100

87.5

90.0

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

75

80
Caltech-256

86

88
Cars

65

70

DTD

50 60 70

92.5

95.0
Flowers

50 60 70
 ImageNet Accuracy (%)

83

84
Food

50 60 70

85

90
Pets

50 60 70

55.0

57.5

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(a) ResNet-18

84

85

Aircraft

71
72
73

Birdsnap

97.5

98.0
CIFAR-10

85

86

87
CIFAR-100

90.0

92.5

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

77.5
80.0
82.5

Caltech-256

90

91
Cars

70

75
DTD

60 70
94

96

Flowers

60 70
 ImageNet Accuracy (%)

87.0

87.5
Food

60 70

90.0

92.5
Pets

60 70

60

62
SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(b) ResNet-50

84

86
Aircraft

73

74

75
Birdsnap

97.5

98.0

98.5
CIFAR-10

86

88
CIFAR-100

92

94

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

82.5

85.0

Caltech-256

90.5
91.0
91.5

Cars

72.5

75.0
DTD

60 65 70 75
95
96
97

Flowers

60 65 70 75
 ImageNet Accuracy (%)

87.75
88.00
88.25

Food

60 65 70 75
90.0

92.5

Pets

60 65 70 75

61
62
63

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(c) WRN-50-2

85

86
Aircraft

75

76

Birdsnap

98.0

98.5
CIFAR-10

86

88

CIFAR-100

94

95

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

85.0

87.5
Caltech-256

90.5

91.0

Cars

72.5

75.0

DTD

65 70 75
95

96

97
Flowers

65 70 75
 ImageNet Accuracy (%)

88.5

89.0
Food

65 70 75
92

94
Pets

65 70 75
62

64

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(d) WRN-50-4

Figure B.3: Full-network transfer accuracies of standard and robust ImageNet models to
various image classification datasets.

179

B.5.2 Varying architecture: additional results to Table 2.2

Table B.5: Source (ImageNet) and target accuracies, fixing robustness (ε) but varying
architecture. When robustness is controlled for, ImageNet accuracy is highly predictive of
(full-network) transfer performance.

Architecture (see details in Appendix C.2.1)

Robustness Dataset A B C D E F R2

Std (ε = 0) ImageNet 77.37 77.32 73.66 65.26 64.25 60.97 —
CIFAR-10 97.84 97.47 96.08 95.86 95.82 95.55 0.79
CIFAR-100 86.53 85.53 82.07 80.02 80.76 80.41 0.82
Caltech-101 94.78 94.63 91.32 88.91 87.13 83.28 0.94
Caltech-256 86.22 86.33 82.23 76.51 75.81 74.90 0.98
Cars 91.28 91.27 90.97 88.31 85.81 84.54 0.91
Flowers 97.93 97.29 96.80 96.25 95.40 72.06 0.44
Pets 94.55 94.26 92.63 89.78 88.59 82.69 0.87

Adv (ε = 3) ImageNet 66.12 65.92 56.78 50.05 42.87 41.03 —
CIFAR-10 98.67 98.22 97.27 96.91 96.23 95.99 0.97
CIFAR-100 88.65 88.32 84.14 83.32 80.92 80.52 0.97
Caltech-101 93.84 93.31 89.93 89.02 83.29 75.52 0.83
Caltech-256 84.35 83.05 78.19 74.08 69.19 70.04 0.99
Cars 90.91 90.08 89.67 88.02 83.57 78.76 0.79
Flowers 95.77 96.01 93.88 94.25 91.47 26.98 0.38
Pets 91.85 91.46 88.06 85.63 80.92 64.90 0.72

180

B.5.3 Unified scale: additional results to Figure 2.7

60

62
Aircraft

45

46

Birdsnap

96.5

97.0

CIFAR-10

83

84

CIFAR-100

80.0

82.5

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)
Caltech-101

64

66
Caltech-256

68

69

Cars

49

50

DTD

50 60 70

85

86

Flowers

50 60 70
 ImageNet Accuracy (%)

71.5

72.0
Food

50 60 70
72.5
75.0
77.5

Pets

50 60 70

43

44

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(a) ResNet-18

66

68
Aircraft

51.5
52.0
52.5

Birdsnap

97.5

98.0

CIFAR-10

86

87

CIFAR-100

82.5

85.0

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Caltech-101

68

70

Caltech-256

75

76
Cars

52.5

55.0
DTD

60 70

88.0

88.5

Flowers

60 70
 ImageNet Accuracy (%)

75.5

76.0
Food

60 70
80.0

82.5

Pets

60 70
45
46
47

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(b) ResNet-50

Figure B.4: Full-network transfer accuracies of various datasets that are down-scaled to
32× 32 before being up-scaled again to ImageNet scale and used for transfer learning.

B.5.4 Stylized ImageNet Transfer: additional results to Figure 2.8b

Aircra
ft
Birdsnap

CIFAR-10

CIFAR-100

Caltech-101

Caltech-256Cars DTD
Flowers Food Pets

SUN397
0

20

40

60

80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Training Mode
Stylized
Standard
Robust

(a) Fixed-feature ResNet-18

Aircra
ft
Birdsnap

CIFAR-10

CIFAR-100

Caltech-101

Caltech-256Cars DTD
Flowers Food Pets

SUN397
0

20

40

60

80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Training Mode
Stylized
Standard
Robust

(b) Fixed-feature ResNet-50

Aircra
ft
Birdsnap

CIFAR-10

CIFAR-100

Caltech-101

Caltech-256Cars DTD
Flowers Food Pets

SUN397
0

20

40

60

80

100

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Training Mode
Stylized
Standard
Robust

(c) Full-network ResNet-18

Aircra
ft
Birdsnap

CIFAR-10

CIFAR-100

Caltech-101

Caltech-256Cars DTD
Flowers Food Pets

SUN397
0

20

40

60

80

100

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

Training Mode
Stylized
Standard
Robust

(d) Full-network ResNet-50

Figure B.5: We compare standard, stylized and robust ImageNet models on standard
transfer tasks.

181

B.5.5 Effect of width: additional results to Figure 2.6

35

40

Aircraft

30

40

50
Birdsnap

80

90

CIFAR-10

60
70
80

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

80

90
Caltech-101

70

80

Caltech-256

30

40

50
Cars

60

70
DTD

80

85

90
Flowers

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
50

60

70 Food

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
70

80

90
Pets

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

45
50
55

SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(a) Fixed-feature transfer

80

85
Aircraft

65

70

75
Birdsnap

97

98

CIFAR-10

82.5
85.0
87.5

Tr
an

sf
er

 A
cc

ur
ac

y
(%

)

CIFAR-100

90

95
Caltech-101

75
80
85

Caltech-256

85

90

Cars

65

70

75
DTD

92.5

95.0

Flowers

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

85.0

87.5

Food

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4

85

90

95 Pets

ResNet-18

ResNet-50

WRN-50-2

WRN-50-4
55

60

65
SUN397

0.0
0.01
0.03
0.05
0.1
0.25
0.5
1.0
3.0
5.0

(b) Full-network transfer

Figure B.6: Varying width and model robustness while transfer learning from ImageNet to
various datasets. Generally, as width increases, transfer learning accuracies of standard
models generally plateau or level off while those of robust models steadily increase.

182

B.6 Detailed Numerical Results

B.6.1 Fixed-feature transfer to classification tasks (Fig. 2.5)
Table B.6: Fixed-feature transfer for various standard and robust ImageNet models and
datasets.

Transfer Accuracy (%)

Robustness parameter ε

0.00 0.01 0.03 0.05 0.10 0.25 0.50 1.00 3.00 5.00
Dataset Model

Aircraft

ResNet-18 38.69 37.96 39.35 40.00 38.55 39.87 41.40 39.68 36.47 32.87
ResNet-50 37.27 38.65 37.91 39.71 38.79 41.58 41.64 41.83 39.32 37.65
WRN-50-2 37.59 35.22 38.92 37.68 39.80 40.81 41.20 40.34 40.16 38.74
WRN-50-4 35.74 43.76 43.34 44.14 43.75 42.51 42.40 43.38 40.88 38.23

Birdsnap

ResNet-18 45.54 45.88 45.86 45.66 45.55 44.23 42.72 39.38 31.19 25.73
ResNet-50 48.35 48.86 47.84 48.24 49.19 48.73 47.48 45.38 37.10 30.95
WRN-50-2 47.54 47.47 48.68 47.48 47.93 48.01 46.84 44.99 38.23 33.47
WRN-50-4 45.45 50.72 50.60 49.66 49.73 48.73 47.88 46.53 39.91 35.58

CIFAR-10

ResNet-18 75.91 74.33 79.35 79.67 82.87 86.58 88.45 90.27 91.59 90.31
ResNet-50 79.61 82.12 82.07 83.78 85.35 89.31 91.10 92.86 94.77 94.16
WRN-50-2 81.31 80.98 83.43 83.23 86.83 88.73 91.37 93.34 95.12 95.19
WRN-50-4 79.81 89.90 90.35 90.48 91.76 92.03 92.62 93.73 95.53 95.43

CIFAR-100

ResNet-18 54.58 53.92 58.70 58.51 63.60 67.91 70.58 72.60 73.91 72.01
ResNet-50 57.94 60.06 60.76 63.13 65.61 71.29 74.18 77.14 79.43 78.20
WRN-50-2 60.14 59.52 63.12 63.55 67.51 71.30 75.11 78.07 80.61 79.64
WRN-50-4 57.68 72.88 73.79 74.06 75.68 76.25 77.23 78.73 81.08 79.94

Caltech-101

ResNet-18 86.30 86.28 87.32 87.59 89.49 88.12 88.65 86.84 83.11 78.69
ResNet-50 88.95 90.22 89.79 90.26 90.54 90.48 91.04 91.07 87.43 84.35
WRN-50-2 90.12 89.97 89.85 90.67 90.40 91.25 91.80 90.84 88.62 86.83
WRN-50-4 89.34 92.20 91.96 92.44 92.63 92.76 92.32 92.32 89.10 88.43

Caltech-256

ResNet-18 77.58 78.09 77.87 78.40 77.57 76.66 75.69 74.61 69.19 64.46
ResNet-50 82.21 82.31 82.23 82.51 82.10 81.50 81.21 79.72 75.42 71.07
WRN-50-2 82.78 82.94 83.34 83.04 83.17 82.74 81.89 81.26 77.48 74.38
WRN-50-4 82.68 85.07 85.08 84.88 84.75 84.24 83.62 83.27 79.24 76.75

Cars

ResNet-18 43.34 44.43 43.92 45.53 45.59 43.00 43.40 40.45 33.55 28.86
ResNet-50 44.52 44.98 43.56 46.74 46.15 45.04 47.28 45.58 40.34 36.32
WRN-50-2 44.63 42.67 44.92 44.36 45.32 46.83 46.10 45.81 41.35 37.62
WRN-50-4 43.01 45.86 50.39 50.67 50.22 49.46 38.77 48.73 43.26 40.68

DTD

ResNet-18 66.84 66.01 65.07 63.90 63.51 62.78 61.99 58.94 53.55 51.88
ResNet-50 68.14 70.21 67.52 68.16 68.21 66.03 65.21 63.97 59.59 57.68
WRN-50-2 70.09 67.89 68.87 67.55 67.11 67.70 66.61 64.20 59.95 57.29
WRN-50-4 67.85 69.95 70.37 69.70 68.42 67.45 67.22 65.69 60.67 58.78

Flowers

ResNet-18 90.80 90.76 90.88 90.65 91.26 90.05 88.99 87.64 83.72 80.20
ResNet-50 91.28 90.43 90.16 91.12 91.26 90.50 90.52 89.70 86.49 83.85
WRN-50-2 91.90 90.86 90.97 90.26 90.46 90.79 89.39 89.79 86.73 84.31
WRN-50-4 90.67 91.84 91.37 91.32 91.12 90.63 90.23 89.89 86.96 85.35

Food

ResNet-18 59.96 59.67 60.20 60.17 59.59 59.04 57.97 56.42 51.49 48.03
ResNet-50 65.49 65.39 63.59 65.95 65.02 64.41 64.23 62.86 58.90 55.77
WRN-50-2 65.80 64.06 65.50 64.00 65.14 65.73 63.44 63.05 59.19 56.13
WRN-50-4 65.04 69.26 68.69 68.50 68.15 67.03 66.32 65.53 60.48 57.98

Pets

ResNet-18 89.55 89.03 88.67 88.54 88.87 87.80 86.73 83.61 76.29 69.48
ResNet-50 90.92 90.93 91.27 91.16 91.05 90.48 89.57 87.84 82.54 76.69
WRN-50-2 91.81 91.69 91.83 91.85 90.98 91.61 90.46 89.31 84.51 79.80
WRN-50-4 91.83 91.82 92.05 91.70 91.54 91.32 90.85 90.23 86.75 83.83

SUN397

ResNet-18 51.74 51.31 51.32 50.92 50.50 49.30 49.25 47.99 45.19 42.24
ResNet-50 54.69 54.82 53.48 54.15 53.45 52.23 53.43 51.88 49.30 46.84
WRN-50-2 55.57 54.35 54.53 53.90 54.31 53.96 53.03 53.09 50.16 47.86
WRN-50-4 55.92 58.75 58.45 58.34 57.56 56.75 55.99 55.74 52.21 49.91

183

B.6.2 Full-network transfer to classification tasks (Fig. 2.3)

Table B.7: Full-network transfer for various standard and robust ImageNet models and
datasets.

Transfer Accuracy (%)

Robustness parameter ε

0.00 0.01 0.03 0.05 0.10 0.25 0.50 1.00 3.00 5.00
Dataset Model

Aircraft

ResNet-18 80.70 80.32 79.99 80.06 79.30 78.74 77.69 77.90 77.41 77.26
ResNet-50 85.62 85.62 85.61 85.72 84.73 84.65 84.77 84.16 83.66 83.77
WRN-50-2 86.57 86.08 85.81 86.06 85.17 85.60 85.55 84.93 83.60 83.80
WRN-50-4 85.19 85.98 86.10 86.11 86.24 85.88 85.67 85.04 84.81 85.43

Birdsnap

ResNet-18 67.71 67.96 67.58 67.86 67.80 67.63 67.10 66.62 65.80 64.81
ResNet-50 73.38 73.52 73.39 73.33 73.22 73.48 73.21 72.65 71.71 71.05
WRN-50-2 74.87 74.98 74.85 74.93 74.75 74.80 74.79 74.18 73.15 72.64
WRN-50-4 75.71 76.55 76.47 76.14 76.18 76.29 76.20 76.06 75.25 74.40

CIFAR-10

ResNet-18 96.41 96.30 96.46 96.47 96.67 96.83 97.04 96.96 97.09 96.92
ResNet-50 97.20 97.26 97.52 97.43 97.59 97.71 97.86 98.05 98.15 98.15
WRN-50-2 97.43 97.60 97.72 97.69 97.86 98.02 98.09 98.29 98.47 98.44
WRN-50-4 97.63 98.51 98.52 98.59 98.62 98.52 98.55 98.68 98.57 98.53

CIFAR-100

ResNet-18 82.13 82.36 82.82 82.71 83.14 83.85 84.19 84.25 83.65 83.36
ResNet-50 85.02 85.20 85.45 85.44 85.80 86.31 86.64 87.10 87.26 86.43
WRN-50-2 85.47 85.94 85.95 86.15 86.47 87.31 87.52 88.13 87.98 87.54
WRN-50-4 85.99 88.70 88.61 88.72 88.72 88.75 88.80 89.04 88.83 88.62

Caltech-101

ResNet-18 92.04 90.81 91.28 91.29 89.75 90.73 91.12 89.60 86.39 86.95
ResNet-50 93.42 93.82 94.53 94.18 94.27 94.24 93.79 93.13 91.79 89.97
WRN-50-2 94.29 94.43 94.13 94.49 94.48 94.92 95.29 94.28 93.08 91.89
WRN-50-4 94.76 95.60 95.32 95.62 95.30 95.45 95.23 95.19 94.49 93.25

Caltech-256

ResNet-18 79.80 80.00 79.45 80.10 79.23 79.07 78.86 76.71 74.55 71.57
ResNet-50 84.19 84.30 84.37 84.54 84.04 84.12 84.02 82.85 80.15 77.81
WRN-50-2 85.56 85.65 86.04 86.26 85.91 85.67 85.80 85.19 82.97 81.04
WRN-50-4 86.56 87.53 87.54 87.62 87.62 87.54 87.38 87.31 86.09 84.08

Cars

ResNet-18 88.05 87.80 87.53 87.90 87.45 87.10 86.94 86.35 85.56 85.26
ResNet-50 90.97 90.65 90.83 90.52 90.23 90.47 90.59 90.39 89.85 89.28
WRN-50-2 91.52 91.47 91.27 91.20 91.04 91.06 91.05 90.73 90.16 90.27
WRN-50-4 91.39 91.09 91.14 91.05 91.10 91.03 91.12 91.01 90.63 90.34

DTD

ResNet-18 72.11 71.37 71.54 70.73 70.37 70.07 68.46 67.73 65.27 65.41
ResNet-50 75.09 74.77 74.54 74.02 73.56 72.89 73.19 71.90 70.00 70.02
WRN-50-2 75.51 75.94 75.41 74.98 74.65 74.57 74.95 73.05 72.20 71.31
WRN-50-4 75.80 76.65 76.93 76.47 76.44 76.54 75.57 75.37 73.16 72.84

Flowers

ResNet-18 95.79 95.31 95.20 95.44 95.49 94.82 94.53 93.86 92.36 91.42
ResNet-50 96.65 96.81 96.50 96.53 96.20 96.25 95.99 95.68 94.62 94.20
WRN-50-2 97.04 97.21 96.71 96.74 96.63 96.35 96.07 95.69 94.98 94.67
WRN-50-4 97.01 96.52 96.59 96.53 96.53 96.38 96.28 96.33 95.50 94.92

Food

ResNet-18 84.01 83.95 83.74 83.69 83.89 83.78 83.60 83.36 83.23 82.91
ResNet-50 87.57 87.42 87.45 87.46 87.40 87.45 87.44 87.06 86.97 86.82
WRN-50-2 88.27 88.26 88.10 88.30 87.99 88.25 87.97 87.96 87.75 87.58
WRN-50-4 88.64 89.09 89.00 89.08 89.12 88.95 88.94 88.98 88.46 88.39

Pets

ResNet-18 91.94 91.81 90.79 91.59 91.09 90.46 89.49 87.96 84.83 82.41
ResNet-50 93.49 93.61 93.50 93.59 93.34 93.06 92.50 92.09 89.41 88.13
WRN-50-2 93.96 94.05 93.98 94.23 94.02 94.02 93.39 93.07 90.80 89.76
WRN-50-4 94.20 94.53 94.40 94.38 94.27 94.11 94.02 93.79 92.91 91.94

SUN397

ResNet-18 59.41 58.98 59.19 58.83 58.61 58.29 58.14 56.97 55.14 54.23
ResNet-50 62.24 62.12 61.93 61.89 61.50 61.64 61.28 60.66 59.27 58.40
WRN-50-2 63.02 63.28 63.16 63.18 62.90 63.36 62.53 62.23 61.16 60.47
WRN-50-4 63.72 64.89 64.81 64.71 64.74 64.53 64.49 64.74 62.86 62.14

184

B.6.3 Unifying dataset scale

Fixed-feature (cf. Fig. 2.7)

Table B.8: Fixed-feature transfer on 32x32 downsampled datasets.

Transfer Accuracy (%)

Robustness parameter ε

0.00 0.01 0.03 0.05 0.10 0.25 0.50 1.00 3.00 5.00
Dataset Model

Aircraft
ResNet-18 17.64 18.72 19.11 20.34 21.69 23.19 24.93 25.44 27.15 26.01
ResNet-50 15.87 17.04 17.82 18.48 20.19 22.44 24.12 25.89 28.59 28.35

Birdsnap
ResNet-18 14.76 14.04 15.80 16.23 17.77 18.60 19.75 20.16 19.15 16.72
ResNet-50 13.85 14.12 14.67 15.42 16.94 19.67 21.74 23.08 22.98 20.70

CIFAR-10
ResNet-18 76.02 74.36 79.48 79.71 82.97 86.62 88.47 90.29 91.64 90.36
ResNet-50 79.63 82.18 82.15 83.88 85.41 89.35 91.13 92.89 94.81 94.23

CIFAR-100
ResNet-18 54.61 54.03 58.77 58.74 63.64 68.10 70.66 72.74 74.01 72.08
ResNet-50 58.01 60.17 60.87 63.24 65.73 71.32 74.19 77.17 79.50 78.27

Caltech-101
ResNet-18 52.88 54.20 62.56 60.43 65.31 69.39 69.08 72.11 73.02 70.04
ResNet-50 56.55 59.32 60.45 61.08 63.76 69.80 73.11 76.89 78.86 77.43

Caltech-256
ResNet-18 40.60 40.83 45.02 45.88 49.96 51.08 51.36 54.13 53.79 51.87
ResNet-50 42.73 45.11 45.65 47.52 49.61 53.63 56.12 58.93 59.79 58.67

Cars
ResNet-18 13.88 14.18 16.14 16.95 19.61 20.20 20.33 21.70 20.89 18.75
ResNet-50 13.16 13.89 13.68 16.84 17.07 19.40 21.88 23.19 24.19 23.37

DTD
ResNet-18 35.96 36.33 40.27 37.87 39.79 39.31 39.73 40.05 39.10 39.41
ResNet-50 41.28 40.37 41.06 42.13 41.22 43.56 44.10 43.78 43.83 44.26

Flowers
ResNet-18 64.81 65.75 70.01 70.57 72.71 74.46 74.19 76.06 74.23 71.52
ResNet-50 66.65 68.49 68.24 71.03 73.12 75.83 76.52 77.23 78.31 75.71

Food
ResNet-18 31.58 32.98 35.98 36.42 38.46 39.35 39.56 41.22 40.17 38.35
ResNet-50 36.46 36.82 36.37 39.85 40.91 43.08 44.88 46.16 46.45 44.44

Pets
ResNet-18 48.74 46.98 56.87 56.25 61.92 62.45 63.39 66.20 62.23 57.15
ResNet-50 53.98 54.10 58.55 53.57 59.58 67.35 69.31 70.16 69.43 64.37

SUN397
ResNet-18 23.16 24.35 25.34 25.94 27.60 28.00 28.12 30.19 30.91 30.41
ResNet-50 23.62 25.60 24.64 27.30 27.56 29.24 31.36 32.37 33.90 33.58

185

Full-network (cf. Fig. B.4)

Table B.9: Full-network transfer on 32x32 downsampled datasets.

Transfer Accuracy (%)

Robustness parameter ε

0.00 0.01 0.03 0.05 0.10 0.25 0.50 1.00 3.00 5.00
Dataset Model

Aircraft
ResNet-18 58.24 58.27 59.29 58.96 60.28 60.22 59.83 60.88 61.78 60.88
ResNet-50 65.77 65.20 65.62 66.22 65.68 67.12 66.49 66.04 68.02 67.12

Birdsnap
ResNet-18 46.32 46.65 45.94 46.55 46.26 46.57 46.26 46.80 45.23 44.76
ResNet-50 52.28 51.98 51.77 52.11 52.20 52.42 52.58 51.77 51.72 51.29

CIFAR-10
ResNet-18 96.50 96.38 96.51 96.62 96.78 96.86 97.12 97.04 97.14 97.05
ResNet-50 97.30 97.32 97.54 97.56 97.62 97.79 97.98 98.10 98.27 98.16

CIFAR-100
ResNet-18 82.36 82.57 82.89 82.92 83.31 83.90 84.30 84.41 83.77 83.47
ResNet-50 85.15 85.37 85.64 85.68 85.92 86.45 86.81 87.32 87.45 86.60

Caltech-101
ResNet-18 79.33 78.64 78.95 79.94 79.70 81.13 81.55 83.13 82.30 79.80
ResNet-50 82.18 83.05 84.50 84.72 84.74 85.62 86.12 86.61 85.88 85.20

Caltech-256
ResNet-18 63.32 64.45 64.02 64.55 65.18 66.00 66.52 65.41 64.35 63.03
ResNet-50 68.02 68.09 68.63 69.42 68.96 70.10 70.60 70.66 69.90 68.94

Cars
ResNet-18 68.83 68.55 68.62 68.98 69.53 69.28 69.68 69.27 67.99 67.42
ResNet-50 74.84 74.95 74.13 75.23 74.61 75.29 75.92 75.51 75.19 74.65

DTD
ResNet-18 49.57 48.40 50.43 48.88 49.20 50.27 50.00 50.74 50.32 50.74
ResNet-50 50.69 52.50 51.01 51.60 51.65 52.66 54.15 52.71 54.26 55.53

Flowers
ResNet-18 85.96 86.05 86.02 86.03 86.40 86.25 86.41 86.03 85.33 84.60
ResNet-50 88.75 88.30 88.57 88.27 88.81 88.69 88.70 88.37 88.67 87.83

Food
ResNet-18 71.77 71.83 71.73 71.64 71.60 71.64 72.10 71.63 71.78 71.37
ResNet-50 75.83 75.19 75.52 75.51 75.50 75.37 76.11 75.91 75.76 75.61

Pets
ResNet-18 76.32 77.35 77.71 78.05 78.63 78.70 78.75 77.82 75.72 72.21
ResNet-50 82.34 81.95 82.64 82.24 82.52 83.59 83.57 83.72 81.87 79.33

SUN397
ResNet-18 42.81 42.65 43.40 43.35 44.01 44.20 44.51 44.61 44.31 43.54
ResNet-50 44.64 44.95 44.73 45.09 45.44 45.93 46.74 47.24 47.47 47.15

186

Appendix C

Additional details for Chapter 3

C.1 3D Simulation Details

C.1.1 Overview of AirSim

We conduct our simulation experiments using the high fidelity simulator, Microsoft AirSim.
AirSim acts as a plugin to Unreal Engine, which is a AAA videogame engine providing
access to high fidelity graphics features such as high resolution textures, realistic lighting,
soft shadows etc. making it a good choice for rendering for computer vision applications.
AirSim internally provides physics models for a quadrotor vehicle, which we leverage
for performing autonomous drone landing. As a plugin, AirSim can be paired with any
Unreal Engine environmnent to simulate autonomous vehicles that can be programmed
with an API both in terms of planning/control as well as obtaining camera images. Air-
Sim also allows for controlling environmental features such as time of day, dynamically
adding/removing objects, changing object textures and so on.

C.1.2 3D Boosters Classification Experiment

Format of 3D models To evaluate the performance of pretrained ImageNet classifiers
at detecting 3D unadversarial/boosted objects (e.g. the jet shown in the main chapter)
among realistic settings, we set up an experiment using AirSim for image classification
of common classes (warplane, car, truck, ship, etc). We pick the class of ‘warplane’ as
our object class of interest download publicly available 3D meshes for this class from
www.sketchfab.com. Using the open source 3D modeling software Mitsuba, we modify
the object texture to match the boosted texture for the corresponding class, and then export
these meshes into the GLTF format for ingestion into Unreal Engine/AirSim. This allows

187

www.sketchfab.com

us to import the boosted objects into the AirSim framework, and spawn them as objects in
any of the environments being created.

Environment screenshots and description Within AirSim, in the interest of generating
realistic imagery, we simulate a city environment (Figure C.1a). For this experiment, we
use the ComputerVision mode of AirSim, which does not simulate a vehicle but rather,
gives the user control of a free moving camera, allowing us to generate data at ease from
various locations and varying camera and world parameters.

Sampling and evaluation Once the 3D objects (unadversarial or normal) are present in
AirSim’s simulated world, the next step is to evaluate the classification of these objects from
different camera angles, weather conditions etc. Given the location of a candidate object
(which we randomize and average over five locations), we sample a grid (10× 10× 10) of
camera positions in 3D around the object. For each of these positions, we move AirSim’s
main camera and orient it towards the object, resulting in images from various viewpoints.
At runtime, each of these images are immediately processed by a pretrained ResNet-18
ImageNet classifier, which reports the top 5 class predictions. We average the accuracies
across the five different locations in the scene and the 1000 grid points around the object at
each location.

Along with this variation in camera angles and thereby, object pose in the frame; we also
evaluate the performance of of the various 3D objects given environmental perturbations.
We achieve this through the AirSim’s weather conditions feature, using which we simulate
weather conditions such as dust and fog dynamically with varying levels of severity of
these conditions. We will open-source binaries for the AirSim code and environments that
we use which will allow people to replicate our results, and investigate more scenarios of
interest.

(a) City environment
in AirSim used for de-
tection experiment

(b) Boosted ‘jet’
model in the City
environment.

(c) Sample landing
pads atop buildings in
the City environment.

(d) Drone in test envi-
ronment used for the
landing experiments.

Figure C.1: Various AirSim environment we use.

188

C.1.3 Drone Landing Experiment

In this experiment, we evaluate how unadversarial/boosted objects can help robustify
perception-action loops that are driven by vision-based pose estimation. Perception-action
loops are at the heart of many robotics tasks, and accurate perception is imperative for
safe, efficient navigation of robots. We choose the scenario of autonomous drone landing
as our experiment, and simulate it within AirSim.

For this experiment, we create assets of landing pads that are similar to helipads on top
of buildings in the city environment(Figure C.1c). We also use a test environment with
a single landing pad located on a patch of grass. An example of such a landing pad can
be seen in Figure C.1d. We use AirSim to simulate a quadrotor drone in these worlds,
which can be programmatically controlled using a Python API. AirSim allows us to equip
a downward facing, gimballed camera on this drone in order to obtain RGB images, which
are then processed by our landing pad pose estimation (regression) model. Given an RGB
image, the regression model outputs a 6 degree of freedom pose for the landing pad. We
use/optimize only the first two enteries of this output corresponding to the relative x and
y location of the landing pad w.r.t the drone.

We formulate the drone landing experiment as a visual servoing task: a perception
action loop that involves estimating the relative location of the pad from the image frame
captured by the downward facing camera of the drone, and sending an appropriate
velocity command in order to align the camera center with that of the pad. We achieve
these through the following steps:

Data Collection. We use AirSim’s inbuilt data collection API for this step. Given the
location of the pad in the world, we sample various feasible locations for the drone in an
imaginary cone whose vertex aligns with the center of the landing pad. We then spawn
the drone in these randomly sampled positions, and obtain the RGB and segmentation
views of the pad as generated by AirSim, along with the relative ground truth position of
the landing pad w.r.t the drone, and repeat this process to create a dataset. The collected
dataset contains 20000 images and is split 80-20 between train and evaluation sets.

Landing pad pose estimator. We train a model that maps top view images of a scene
with a landing pad, to the relative 2D location of the landing pad w.r.t the drone in the
camera frame. We use a ResNet-18 pretrained on ImageNet as the backbone for the pose
regressor, and we replace the last classification layer with a regression layer outputting
the (x, y) relative location of the pad w.r.t drone. The model is trained end-to-end by

189

minimizing the mean squared error (MSE) loss between the predicted location and the
ground truth location. The ground truth is collected along with the images using the
AirSim City simulation environment as describe before.

We train the model for 10 epochs using SGD with a fixed learning rate of 0.001, a batch
size of 512, a weight decay of 1e-4, and with MSE as the objective function. The model
converges fairly quickly (within the first few epochs).

Drone Landing. To use the pose estimator’s predictions and send appropriate actions,
we utilize the Multirotor API of AirSim. This allows us to control the drone by setting
the desired velocity commands along all the axes (translational/rotational). Given the
position of the landing pad in the scene relative to that of the drone(as output by the pose
regressor) we execute the landing operation by sending appropriate velocity commands to
the drone.

To generate the right velocity commands, given the relative position of the landing
pad, we use a standard PID controller that computes corrective velocity values until the
position of the drone matches that of the landing pad. For a pose output by the regressor
treated as the setpoint Pset, and current drone pose Pcurr and at any point at time t, the
appropriate velocity command v(t) can simply be computed as follows:

v(t) = Kpe(t) + Kd
d
dt

e(t) + Ki ∗
∫ t

0
e(t)dt

where e(t) = Pset − Pcurr, Kp, Kd, and Ki are the hyperparameters of the PID controller and
are manually tuned. We find that Kp = Kd = 5 and Ki = 0 to be reasonable for our task.

For realistic perturbations to the scene, similar to the 3D boosters classification exper-
iment, we continue making use of the weather API to generate weather conditions in
AirSim. This results in a variation of factors such as amount of dust or fog in the scene,
allowing us to evaluate the performance of landing under various realistic conditions.

190

C.2 Experimental Setup

C.2.1 Pretrained vision models we evaluate

Here we present details of the different vision models we use in this chapter. For more
details on all of these, please check the README of our code at https://github.com/
microsoft/unadversarial.

Corruption benchmark experiments: We use pretrained ResNet-18 and ResNet-50 (both
standard and ℓ2-robust with ε = 3) architectures from [SIE+20]: https://github.com/
microsoft/robust-models-transfer.

3D object classification in AirSim: We use an ImageNet pretrained ResNet-18 architec-
ture from the PyTorch’s Torchvision1 to classify all the boosted and non-boosted versions
of the jets, cars, ships etc in AirSim.

Drone landing experiment in AirSim: We finetune an ImageNet pretrained ResNet-18
model on the regression task of drone landing. The last layer of the pretrained model is
replaced with a 2D linear layer estimating the relative pad location w.r.t the drone. We
collect a 20k sample dataset for training the pad pose estimation in AirSim with an 80− 20
train-val spilt. We use a learning rate of 0.001, a batch size of 512, a weight decay of 1e− 4.
We train for 10 epochs.

Physical world unadversarial examples experiment: Similar to the 3D object classifica-
tion experiment in AirSim, we use an ImageNet pretrained ResNet-18 architecture from
Torchvision.

C.2.2 Unadversarial patch/texture training details

Patches training details We fix the training procedure for all of the 2D patches we
optimize in this chapter. We train all the patches starting from random initialization with
batch size of 512, momentum of 0.9, and weight decay of 1e− 4. We train all the patches
for 30 epochs (which is more than enough as we observe that for both ImageNet and
CIFAR-10, the patch converges within the first 10 epochs) with a learning rate of 0.1 We
sweep over three learning rates ∈ {0.1, 0.01, 0.001} but we find that all of these obtain very
similar results. So we stick with a learning rate of 0.1 for all of our experiments..

1These models can be found here https://pytorch.org/docs/stable/torchvision/models.html

191

https://github.com/microsoft/unadversarial
https://github.com/microsoft/unadversarial
https://github.com/microsoft/robust-models-transfer
https://github.com/microsoft/robust-models-transfer
https://pytorch.org/docs/stable/torchvision/models.html

For the classification tasks (i.e., everything but drone landing) we use the standard
cross-entropy loss. For the drone landing task (landing pad pose estimation), we use the
standard mean squared error loss.

Texture training details We now outline the process for constructing adversarial textures.
We implemented a custom PyTorch module with a distinct forward and backward pass;
on the forward pass (i.e., during evaluation), the module takes as input an ImageNet
image, and a 200px by 200px texture; using the Python bindings for Mitsuba [NVZ+19]
3D renderer, the module returns a rendering of the desired 3D object, overlaid onto the
given ImageNet image. On the backwards pass (i.e., when computing gradients), we use
the 3D model’s UV map2—a linear transformation from (x, y) locations on the texture to
(x, y) locations in the rendered image—to approximate gradients through the rendering
process. This is the same procedure used by [AEI+18] for constructing physical adversarial
examples. Note that this is a simple approximation that only accounts for the location of
pixels in the rendered image (i.e., ignores the effects of lighting, warping, etc.). However,

C.2.3 Details of the physical world experiment

To conduct the physical-world experiments, we used a toy racecar3, a toy warplane4 (both
from amazon.com) as well as two household objects: a coffeepot and eggnog container.
We then printed the unadversarial patches corresponding to classes “racer,” “warplane,”
“coffeepot,” and “eggnog” on an HP DeskJet 2700 InkJet printer, at 250% scale. We adhere
the patches to the top of their respective objects with clear tape (the results are shown in
Figure 3.9b). We choose 18 distinct poses (camera positions), and for each pose took one
picture of the object with the patch attached, and one picture without (keeping the location
of the patch constant throughout the experiment). Example photographs are shown in
Figure C.2. We evaluated a pre-trained ResNet-18 classifier on the resulting images.

C.2.4 Datasets

We use two datasets across all the chapter:

1. CIFAR [Kri09] https://paperswithcode.com/dataset/cifar-10.

2Mitsuba provides direct access to the UV map through the aov integrator; see the code release for more
details.

3https://www.amazon.com/gp/product/B07T5X69TZ/
4https://www.amazon.com/CORPER-TOYS-Pull-Back-Aircraft-Birthday/dp/B07DB3839X/

192

amazon.com
https://paperswithcode.com/dataset/cifar-10
https://www.amazon.com/gp/product/B07T5X69TZ/
https://www.amazon.com/CORPER-TOYS-Pull-Back-Aircraft-Birthday/dp/B07DB3839X/

Figure C.2: Photographs in different poses of the four physical objects we experimented
on, with and without an unadversarial patch.

2. ImageNet [RDS+15], with a custom (research, non-commercial) license, as found
here https://paperswithcode.com/dataset/imagenet.

C.2.5 Compute

We use an internal cluster containing NVIDIA 1080-TI, 2080-TI and P100 GPUs. Each
experiment required no more than 1 GPU at a time.

C.2.6 Replicate our results

We desired simplicity and kept reproducibility in our minds when conducting our ex-
periments, so we use standard hyperparameters and minimize the number of tricks
needed to replicate our results. Our code is available at https://github.com/microsoft/
unadversarial.

C.3 Omitted Results

In the below figure, we show a more detailed look of the main results of the benchmarking
experiments in this chapter, along with useful baselines. The single color plots (e.g. the left
subplot in Figure C.3) report the average performance over the 5 severities of ImageNet-C
and CIFAR-10-C. The multicolor bar plots (e.g. the right subplot in Figure C.3) report the
detail performance per severity level. The horizontal dashed lines report the performance
of the pretrained models on the original (non-patched) ImageNet-C and CIFAR-10-C
datasets and serve as a baseline to compare with. For both ImageNet and CIFAR as shown
in Figure C.4 and Figure C.3, we are able to train unadversarial patches of various size
that, once overlaid on the datasets, make the pretrained model consistently much more
robust under all corruptions.

193

https://paperswithcode.com/dataset/imagenet
https://github.com/microsoft/unadversarial
https://github.com/microsoft/unadversarial

C.3.1 Corruption benchmark main results: additional results to Fig-

ure 3.3b

Here we show the detailed main results for boosting ImageNet and CIFAR-10 with unad-
verasarial patches.

0

50

100

Ac
cu

ra
cy

 (%
)

Brightness Clean Contrast Defocus Blur

0

50

100

Ac
cu

ra
cy

 (%
)

Elastic Transform Fog Frost Gaussian Noise

0

50

100

Ac
cu

ra
cy

 (%
)

Glass Blur Impulse Noise JPEG Compression Motion Blur

25 50 100 150
Patch Size

0

50

100

Ac
cu

ra
cy

 (%
)

Pixelate

25 50 100 150
Patch Size

Shot Noise

25 50 100 150
Patch Size

Snow

25 50 100 150
Patch Size

Zoom Blur

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

brightness clean contrast defocus_blur

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

elastic_transf fog frost gaussian_noise

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

glass_blur impulse_noise jpeg_compressi motion_blur

25 50 100 150
Patch Size

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

pixelate

25 50 100 150
Patch Size

shot_noise

25 50 100 150
Patch Size

snow

25 50 100 150
Patch Size

zoom_blur

Severity
1
2
3
4
5

Figure C.3: Robustness of a trained 2D booster over pretrained ImageNet ResNet-18 model.

0

50

100

Ac
cu

ra
cy

 (%
)

Brightness Clean Contrast Defocus Blur

0

50

100

Ac
cu

ra
cy

 (%
)

Elastic Transform Fog Frost Gaussian Noise

0

50

100

Ac
cu

ra
cy

 (%
)

Glass Blur Impulse Noise JPEG Compression Motion Blur

3 5 7 10 15 20
Patch Size

0

50

100

Ac
cu

ra
cy

 (%
)

Pixelate

3 5 7 10 15 20
Patch Size

Shot Noise

3 5 7 10 15 20
Patch Size

Snow

3 5 7 10 15 20
Patch Size

Zoom Blur

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

brightness clean contrast defocus_blur

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

elastic_transf fog frost gaussian_noise

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

glass_blur impulse_noise jpeg_compressi motion_blur

3 5 7 10 15 20
Patch Size

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

pixelate

3 5 7 10 15 20
Patch Size

shot_noise

3 5 7 10 15 20
Patch Size

snow

3 5 7 10 15 20
Patch Size

zoom_blur

Severity
1
2
3
4
5

Figure C.4: Robustness of a trained 2D booster over pretrained CIFAR-10 ResNet-50 model.

194

C.3.2 Baselines

Below, we report a number of alternative ways to create patches for boosting the perfor-
mance of object recognition.

QR-Code

We compare our unadversarial patches to the well-known QR-Code patches. We create a
QR-Code for each class of the ImageNet dataset using Python’s qrcode package(we avoid
using CIFAR-10 since the images are too small for QR-Codes to be visible and detected at
all). We overlay the QR-Codes over the ImageNet validation set according in accordance
to what label each image has. We add the various ImageNet-C corruption on top of the
resulting images, then we use python’s Pyzbar5 package to detect the QR-Codes. The
results are shown in Figure C.5. The performance of QR-Codes is not comparable to what
we obtain with unadversarial patches (see Figure 3.3b).

0

50

100

Ac
cu

ra
cy

 (%
)

Brightness Clean Contrast Defocus Blur

0

50

100

Ac
cu

ra
cy

 (%
)

Elastic Transform Fog Frost Gaussian Noise

0

50

100

Ac
cu

ra
cy

 (%
)

Glass Blur Impulse Noise JPEG Compression Motion Blur

50 100 150
Patch Size

0

50

100

Ac
cu

ra
cy

 (%
)

Pixelate

50 100 150
Patch Size

Shot Noise

50 100 150
Patch Size

Snow

50 100 150
Patch Size

Zoom Blur

Patch Type
UnAdv
QR-Code

Figure C.5: QR-Code boosted ImageNet results under various corruptions.

5We experiment with OpenCV for detecting the QR-Codes but find that Pyzbar leads to
better performance.

195

Best training image per class as patch

Another natural baseline that we compare with is using the best images per class in the
training set of the task of interest as patches for boosting the performance of pretrained
models. For example, for ImageNet classification, we simply evaluate the loss of each
training image using a pretrained ImageNet model (ResNet-18 in our case), and we the
image with the lowest loss per class as the patch for that class. Now we overlay these found
patches onto the ImageNet validation set with random scaling, rotation, and translation (as
shown in Figure C.6), we add ImageNet-C corruptions, and we evaluate this new dataset
using the same pretrained model we used to extract the patches. The results for ImageNet
are shown in Figure C.6.

0

50

100

Ac
cu

ra
cy

 (%
)

Brightness Clean Contrast Defocus Blur

0

50

100

Ac
cu

ra
cy

 (%
)

Elastic Transform Fog Frost Gaussian Noise

0

50

100

Ac
cu

ra
cy

 (%
)

Glass Blur Impulse Noise JPEG Compression Motion Blur

50 100 150 224
Patch Size

0

50

100

Ac
cu

ra
cy

 (%
)

Pixelate

50 100 150 224
Patch Size

Shot Noise

50 100 150 224
Patch Size

Snow

50 100 150 224
Patch Size

Zoom Blur

Patch Type
UnAdv
Best Loss

Figure C.6: Best training image with translation, rotation, and scaling for ImageNet.

196

Best training image vs random training image as patch

Here we investigate whether using a random image from the training set does any better
than using the best-loss image as a patch. The results are shown in the below Figures.
As one would expect, using a random image from the training set leads to strictly worse
performance. Results on ImageNet are shown in Figure C.7.

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

brightness clean contrast defocus_blur

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

elastic_transf fog frost gaussian_noise

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

glass_blur impulse_noise jpeg_compressi motion_blur

50 100 150 224
Patch Size

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

pixelate

50 100 150 224
Patch Size

shot_noise

50 100 150 224
Patch Size

snow

50 100 150 224
Patch Size

zoom_blur

Patch
best
random

Figure C.7: Best training image vs random training image with translation, rotation, and
scaling.

197

Predefined fixed-pattern unadversarial patches

This baselines is slightly different than the previous baselines since it allows the underlying
classification model to be changed. Basically, we fix the set of patches to a predefined
pattern (here a fixed random gaussian noise for each class), and we train a classifier on an
undversarial/boosted dataset with these patches. The resulting models are consistently
weaker on all corruptions of ImageNet-C as shown in Figure C.8 compared to our trained
patches in Figure 3.3b.

0

50

100

Ac
cu

ra
cy

 (%
)

Brightness Clean Contrast Defocus Blur

0

50

100

Ac
cu

ra
cy

 (%
)

Elastic Transform Fog Frost Gaussian Noise

0

50

100

Ac
cu

ra
cy

 (%
)

Glass Blur Impulse Noise JPEG Compression Motion Blur

25 50 100 150
Patch Size

0

50

100

Ac
cu

ra
cy

 (%
)

Pixelate

25 50 100 150
Patch Size

Shot Noise

25 50 100 150
Patch Size

Snow

25 50 100 150
Patch Size

Zoom Blur

Patch Type
UnAdv
Predefined

Figure C.8: Robustness of an ImageNet ResNet-18 model trained on a predefined patch.

198

Appendix D

Additional details for Chapter 4

D.1 Experimental Setup

D.1.1 Details of the diffusion model we used

In this chapter, we used the open-source stable diffusion model hosted on the Hugging
Face1. We use the hyperparameters presented in Table D.1 to generated images from this
model. For a given image on which we want to test our immunization method, we first
search for a good random seed that leads to a realistic modification of the image given
some textual prompt. Then we use the same seed when editing the immunized version
of the same image using the diffusion model. This ensures that the immunized image is
modified in the same way as the original image, and that the resulting non-realistic edits
are due to immunization and not to random seed.

Table D.1: Hyperparameters used for the Stable Diffusion model.

height width guidance_scale num_inference_steps eta

512 512 7.5 100 1

D.1.2 Our attacks details

Throughout the chapter, we use two different attacks: an encoder attack and a diffusion
attack. These attacks are described in this chapter, and are summarized here in Algorithm 4
and Algorithm 5, respectively. For both of the attacks, we use the same set of hyperparam-

1This model is available on: https://huggingface.co/runwayml/stable-diffusion-v1-5.

199

https://huggingface.co/runwayml/stable-diffusion-v1-5

eters shown in Table D.2. The choice of ϵ was such that it is the large enough to disturb the
image, but small enough to not be noticeable by the human eye.

Table D.2: Hyperparameters used for the adversarial attacks.

Norm ϵ step size number of steps

ℓ∞ 16/255 2/255 200

Algorithm 4 Encoder Attack on a Stable Diffusion Model

1: Input: Input image x, target image xtarg, Stable Diffusion model encoder E , perturba-
tion budget ϵ, step size k, number of steps N.

2: Compute the embedding of the target image: ztarg ← E(xtarg)
3: Initialize adversarial perturbation δencoder ← 0, and immunized image xim ← x
4: for n = 1 . . . N do
5: Compute the embedding of the immunized image: z← E(xim)
6: Compute mean squared error: l ← ∥ztarg − z∥2

2
7: Update adversarial perturbation: δencoder ← δencoder + k · sign(∇xim l)
8: δencoder ← clip(δencoder,−ϵ, ϵ)
9: Update the immunized image: xim ← xim − δencoder

10: end for
11: Return: xim

Algorithm 5 Diffusion Attack on a Stable Diffusion Model

1: Input: Input image x, target image xtarg, Stable Diffusion model f , perturbation budget
ϵ, step size k, number of steps N.

2: Initialize adversarial perturbation δdi f f usion ← 0, and immunized image xim ← x
3: for n = 1 . . . N do
4: Generate an image using diffusion model: xout ← f (xim)
5: Compute mean squared error: l ← ∥xtarg − xout∥2

2
6: Update adversarial perturbation: δdi f f usion ← δdi f f usion + k · sign(∇xim l)
7: δdi f f usion ← clip(δdi f f usion,−ϵ, ϵ)
8: Update the immunized image: xim ← xim − δdi f f usion
9: end for

10: Return: xim

D.2 Extended Background for Diffusion Models

Overview of the diffusion process. At their heart, diffusion models leverage a statistical
concept: the diffusion process [SWM+15; HJA20]. Given a sample x0 from a distribution of

200

real images q(·), the diffusion process works in two steps: a forward step and a backward
step. During the forward step, Gaussian noise is added to the sample x0 over T time
steps, to generate increasingly noisier versions x1, . . . , xT of the original sample x0, until
the sample is equivalent to an isotropic Gaussian distribution. During the backward step,
the goal is to reconstruct the original sample x0 by iteratively denoising the noised samples
xT, . . . , x1. The power of the diffusion models stems from the ability to learn the backward
process using neural networks. This allows to generate new samples from the distribution
q(·) by first generating a random Gaussian sample, and then passing it through the “neural”
backward step.

Forward process. During the forward step, Gaussian noise is iteratively added to the
original sample x0. The forward process q(x1:T|x0) is assumed to follow a Markov chain,
i.e. the sample at time step t depends only on the sample at the previous time step.
Furthermore, the variance added at a time step t is controlled by a schedule of variances
{βt}T

t=1
2.

q(x1:T|x0) =
T

∏
t=1

q(xt|xt−1); q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (D.1)

Backward process. At the end of the forward step, the sample xT looks as if it is sampled
from an isotropic Gaussian p(xT) = N (xT; 0, I). Starting from this sample, the goal is to
recover x0 by iteratively removing the noise using neural networks. The joint distribution
pθ(x0:T) is referred to as the reverse process, and is also assumed to be a Markov chain.

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt); pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (D.2)

Training a diffusion model. At its heart, diffusion models are trained in a way similar to
Variational Autoencoders, i.e. by optimizing a variational lower bound. Additional tricks
are employed to make the process faster. For an extensive derivation, refer to [Wen21].

Eq(x0)[− log pθ(x0)] ≤ Eq(x0:T)

[
log

q(x1:T|x0)

pθ(x0:T)

]
= LVLB (D.3)

Latent Diffusion Models (LDMs). In this work, we focus on a specific class of diffusion
models, namely LDMs, which was proposed in [RBL+22] as a model that applies the

2The values of at and bt from this chapter correspond to at =
√

1− βt and bt = βt

201

diffusion process described above in a latent space instead of the image space. This enables
efficient training and inference of diffusion models.

To train an LDM, the input image x0 is first mapped to a latent representation z0 =

E(x0), where E is an image encoder. This input representation z0 is then passed to the
diffusion process to obtain a denoised z̃. The generated image x̃ is then obtained by
decoding z̃0 using a decoder D, i.e. x̃ = D(z̃).

D.3 Additional Results

D.3.1 Additional quantitative results

We presented in Section 4.3 several metrics to assess the similarity between the images
generated with and without immunization. Here, we report in Table D.3 additional
metrics to evaluate this: SR-SIM [ZL12], GMSD [XZM+14], VSI [ZSL14], DSS [BSM+15],
and HaarPSI [RBK+18]. Similarly, we indicate for each metric whether a higher value
corresponds to higher similarity (using ↑), or contrariwise (using ↓). We again observe that
applying the encoder attack already decreases the similarity between the generated images
with and without immunization, and applying the diffusion attack further decreases the
similarity.

Table D.3: Additional similarity metrics for Table 4.1. Errors denote standard deviation
over 60 images.

Method SR-SIM ↑ GMSD ↓ VSI ↑ DSS ↑ HaarPSI ↑
Immunization baseline (Random noise) 0.91± 0.04 0.20± 0.06 0.94± 0.03 0.35± 0.18 0.52± 0.15
Immunization (Encoder attack) 0.86± 0.05 0.26± 0.05 0.90± 0.03 0.19± 0.09 0.35± 0.11
Immunization (Diffusion attack) 0.84± 0.05 0.27± 0.04 0.89± 0.03 0.17± 0.08 0.31± 0.08

202

D.3.2 Generating Image Variations using Textual Prompts

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

An airplane flying
under the moon

A black cow on the
beach

A brown cat playing
poker

A black cow on the
beach

A bunny eating an
apple

A civilian airplane

Figure D.1: Immunization against generating prompt-guided image variations.

203

D.3.3 Image Editing via Inpainting

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

A man in a wedding

A man in a wedding

A man in New York
City

A man in the gym

A man in a restaurant

A man playing poker

Generated image
(diffusion attack)

Figure D.2: Immunization against image editing via prompt-guided inpainting.

204

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

A man in a farm

A man in a restaurant

A man in a store

A man in a restaurant

A man preparing dinner

A man holding a
microphone

Generated image
(diffusion attack)

205

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

A man holding a
phone

A man preparing
dinner

A man playing poker

A man drinking hot
coffee

A man playing poker

A man playing poker

Generated image
(diffusion attack)

206

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

A man sitting in a
metro

A man sitting in first
class airplane

A man dancing on
stage

A man sitting in the
airport

A man in a meeting

A man riding a
motorcycle

Generated image
(diffusion attack)

207

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

Two men ballroom
dancing

Two men cooking in
the kitchen

Two men cooking in
the kitchen

Two men cooking in
the kitchen

Two men grilling

Two men grilling

Generated image
(diffusion attack)

208

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

Two men in a hot tub

Two men in a
wedding

Two men in jail

Two men in a
wedding on a

seafront

Two men in the forest

Two men on the grass

Generated image
(diffusion attack)

209

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

Two men in the zoo

Two men playing
guitar

Two men street
fighting

Two men sneaking
into a building

Generated image
(diffusion attack)

210

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

A man receiving an
award

Two men attending a
wedding

Two men in an
airplane

Two men attending
a wedding

Two men in a
restaurant

Two men in a
restaurant

Generated image
(diffusion attack)

211

Generated image
(without immunization)

Generated image
(encoder attack)

Source Image

Two men in a
restaurant

Two men in Europe

Two men in front of
the Eiffel Tower

Two men in an
airplane

Two men riding a
motorcycle

Two men wearing
gray shirts in the fog

Generated image
(diffusion attack)

212

Appendix E

Additional details for Chapter 5

E.1 Experimental details.

E.1.1 Models and architectures

We use two sizes of vision transformers: ViT-Tiny (ViT-T) and ViT-Small (ViT-S) [Wig19;
DBK+21]. We compare to residual networks of similar size: ResNet-18 and ResNet-50
[HZR+16], respectively. These architectures and their corresponding number of parameters
are summarized in Table E.1.

Table E.1: A collection of neural network architectures we use in this chapter.

Architecture ViT-T ResNet-18 ViT-S ResNet-50
Params 5M 12M 22M 26M

E.1.2 Training Details

We train our models on ImageNet [RDS+15], with a custom (research, non-commercial)
license, as found here https://paperswithcode.com/dataset/imagenet. For all experi-
ments in this chapter, we consider 10,000 image subsets of the original ImageNet validation
set (we take every 5th image).

1. For ResNets, we train using SGD with batch size of 512, momentum of 0.9, and
weight decay of 1e-4. We train for 90 epochs with an initial learning rate of 0.1 that
drops by a factor of 10 every 30 epochs.

2. For ViTs, we use the same training scheme as used in Wightman [Wig19].

213

https://paperswithcode.com/dataset/imagenet

Note that we use the same (basic) data-augmentation techniques for both ResNets
and ViTs. Specifically, we only use random resized crop and random horizontal flip (no
RandAug, CutMix, MixUp, etc.).

We attach all our model weights to the submission.

Models trained with missingness augmentations. In Sections 5.2 and 5.3, we also con-
sider models that were augmented with missingness approximations during training
(inspired by ROAR [HEK+18], see Appendix E.6 for further discussion). We retrain our
models by randomly removing 50% of the patches (by blacking out for ResNet and drop-
ping the respective tokens for ViT). The other training hyperparameters are maintained
the same as the standard models above.

Infrastructure and computational time. For ImageNet, we train our models on 4 V100
GPUs each, and training took around 12 hours for ResNet-18 and ViT-T, and around 20
hours for ResNet-50 and ViT-S.

For CIFAR-10, we fine-tune pretrained ViTs and ResNets on a single V100 GPU. Fine-
tuning ViT-T and ResNet-18 took around 1 hours, and fine-tuning ViT-S and ResNet-50
took around 1.5 hours.

All of our analysis can be run on a single 1080Ti GPU, where the time for one forward
pass with batch size of 128 is reported in Table E.2.

Table E.2: A collection of neural network architectures we use in this chapter.

Architecture ViT-T ResNet-18 ViT-S ResNet-50
Inference time (sec) 0.031± 0.018 0.033± 0.013 0.041± 0.016 0.039± 0.015

E.1.3 Experimental Details for Section 5.2

For the experiments in Section 5.2, we iteratively remove subregions from the input. In this
chapter, we consider removing 16 × 16 patches: we black out patches for the ResNet-50
and drop the corresponding token for the ViT-S. We consider other patch sizes as well as
superpixels in Appendix E.3.

We consider removing patches in three orders: random, most salient, and least salient.
We use saliency as a rough heuristic for relevance to the image (typically, more salient
regions tend to be in the foreground and less salient regions in the background). For
all models, we determine the salience of an image subregion as the mean value of that

214

subregion for a standard ResNet-50’s saliency map (the order of patches removed is thus
the same for both the ResNet and the ViT).

E.1.4 Experimental Details for Section 5.3

Overview on LIME. Local interpretable model-agnostic explanations (LIME) [RSG16b]
is a common method for feature attribution. Specifically, LIME proceeds by generating
perturbations of the image, where in each perturbation the subregions are randomly turned
on or off. For ResNets, we turn off subregions by masking them with some baseline color,
while for ViTs we drop the associated tokens. After evaluating these perturbations with
the model, we fit classifier using Ridge Regression to predict the value of the logit of the
original predicted class given the presence of each subregion. The LIME explanation is
then the weight of each subregion in the ridge classifier (these are often referred to as LIME
scores). We perform LIME with 1000 perturbations, and include an implementation of
LIME in our attached code.

Implementation details for LIME consistency plots. For the experiment in Figure 5.8,
we evaluate LIME using 8 different baseline colors (the colors are generated by setting
the R, G, and B values as either 0 or 1). Then, for each pair of colors, we measure the
similarity of their top-k feature sets according to their LIME scores for varying k (using
Jaccard similarity) averaged over 10,000 examples. We plot the average over the 28 pairs
of colors.

215

E.2 Implementing missingness by dropping tokens in vi-

sion transformers

As described in Section 5.1.2, the token-centric nature of vision transformers enables a
more natural implementation of missingness: simply drop the tokens that correspond to
the removed image subregions. In this section, we provide a more detailed description of
dropping tokens, as well as a few implementation considerations.

Recall that a ViT has two stages when processing an input image x.

• Tokenization: x is split into 16× 16 patches and positionally encoded into tokens.

• Self-Attention: The set of tokens is passed through several self-attention layers and
produces a class label.

After the initial tokenization step, the self-attention layers of the transformer deal
solely with sets of tokens, rather than a constructed image. This set is not constrained to
a specific size. Thus, after the patches have all be tokenized, we can remove the tokens
that correspond to removed regions of the input before passing the reduced set to the
self-attention layers. The remaining tokens retain their original positional encodings.

Our attached code includes an implementation of the vision transformer which takes in
an optional argument of the indices of tokens to drop. Our implementation can also handle
varying token lengths in a batch (we use dummy tokens and then mask the self-attention
layers appropriately).

Dropping tokens for superpixels and other patch sizes In the main body of this chapter,
we deal with 16 × 16 image subregions, which aligns nicely with the tokenization of
vision transformers. In Appendix E.3, we consider other patch sizes that do not align
along the token boundaries, as well as irregularly shaped superpixels. In these cases, we
conservatively drop the token if any portion of the token was supposed to be removed
(we thus remove a slightly larger subregion).

216

E.3 Additional experiments (Section 5.2)

E.3.1 Additional examples of the bias (Similar to Figure 5.2).

In Figure E.1, we display more examples that qualitatively demonstrate the missingness
bias.

ViT-S: daddy long legs
ResNet-50: daddy long legs

ViT-S: daddy long legs
ResNet-50: crossword

ViT-S: daddy long legs
ResNet-50: chainlink

ViT-S: flatworm
ResNet-50: flatworm

ViT-S: flatworm
ResNet-50: crossword

ViT-S: flatworm
ResNet-50: jigsaw puzzle

ViT-S: catamaran
ResNet-50: schooner

ViT-S: catamaran
ResNet-50: crossword

ViT-S: catamaran
ResNet-50: wing

ViT-S: volcano
ResNet-50: volcano

ViT-S: volcano
ResNet-50: maze

ViT-S: volcano
ResNet-50: church

ViT-S: buckeye
ResNet-50: buckeye

ViT-S: buckeye
ResNet-50: maze

ViT-S: buckeye
ResNet-50: maze

O
rig

in
al

R
an

do
m

Le
as

t S
al

ie
nt

ViT-S: daddy long legs
ResNet-50: hook

M
os

t S
al

ie
nt

ViT-S: sea slug
ResNet-50: cliff dwelling

ViT-S: catamaran
ResNet-50: jigsaw puzzle

ViT-S: colobus monkey
ResNet-50: scoreboard

ViT-S: volcano
ResNet-50: envelope

GT: daddy long legs GT: flatworm GT: schooner GT: volcano GT: buckeye

Figure E.1: Further examples of removing 75 16 × 16 patches from ImageNet images. The
images are blacked out for ResNet-50, and the corresponding tokens are dropped for ViT-S.
While ResNet-50 skews toward classes that are unrelated to the remaining image features
(i.e crossword, jigsaw puzzle), the ViT-S either maintains its original prediction or predicts
a reasonable label given remaining image features.

217

E.3.2 Bias for removing patches in various orders

In this section, we display results for the experiments in Section 5.2 where we remove
patches in 1) random order 2) most salient first and 3) least salient first (Figure E.2). We
find that missingness approximations skew the output distribution for ResNets regardless
of what order we remove the patches. Similarly, we find that the ResNet’s predictions flip
rapidly in all three cases (though to varying extents). Finally, the ViT mitigates the impact
of missingness bias in all three cases.

maze

cro
ssw

ord
 pu

zzl
e
car

ton

toi
let

 tis
sue

jigs
aw

 pu
zzl

e

pa
dlo

ck

en
ve

lop
e

wind
ow

 sc
ree

n

ba
nn

iste
r
qu

ilt

pa
pe

r to
wel

wind
ow

 sh
ad

e

tra
ffic

 lig
ht

mon
ito

r

pic
ket

 fe
nce

web
 sit

e

wall
clo

ck

dig
ita

l cl
ockcra

te

ho
ne

yco
mb

bo
oks

ho
p

bo
okc

ase
gro

om
bo

w tie
bu

bb
le
libr

ary

wine
 bo

ttle

sto
ne

 wall

pe
rfu

me

mort
arb

oa
rd

10 4

10 3

10 2

10 1

Fr
ac

tio
n

of
 P

re
di

ct
io

ns

Random Order: ResNet-50
Uniform
50% Blacked Out
0% Blacked Out

po
t

ph
oto

cop
ier

lak
esi

de

gro
cer

y s
tor

e

cho
col

ate
 sa

uce

sho
e s

ho
p

web
 sit

e
ox

car
t

com
pu

ter
 ke

yb
oa

rd

Sh
etl

an
d s

he
ep

do
g
rac

er

mou
set

rapllam
a

lab
 co

at

cel
lula

r te
lep

ho
ne

car
pe

nte
r's

 kit
can

dle

Norf
olk

 te
rrie

r

Chri
stm

as
sto

cki
ng

wind
ow

 sh
ad

e
va

ult

pa
pe

r to
wel

lam
psh

ad
e

ho
rne

d v
ipe

r

fur
 co

at

cor
al

ree
f

cen
tip

ed
e
be

av
er

be
ach

 wag
on

ba
lloo

n
10 4

10 3

10 2

10 1

Fr
ac

tio
n

of
 P

re
di

ct
io

ns

Random Order: ViT-S
Uniform
50% Tokens Removed
0% Tokens Removed

chu
rch

en
ve

lop
e
maze

car
ton

jigs
aw

 pu
zzl

e
ba

rn

tra
ffic

 lig
ht

ba
nn

iste
r

web
 sit

e

clif
f d

welli
ng
cas

tle

cro
ssw

ord
 pu

zzl
e

pa
dlo

ck

ho
me t

he
ate

r

an
alo

g c
loc

k

wall
clo

ck

pic
ket

 fe
nce

wind
ow

 sc
ree

n
cra

te

dig
ita

l cl
ock

slid
ing

 do
or

mon
ito

r
ho

ok

bo
ok

jac
ket

bir
dh

ou
se
gro

om

lum
be

rm
ill

gra
nd

 pi
an

o
bu

bb
le

mort
arb

oa
rd

10 4

10 3

10 2

10 1

Fr
ac

tio
n

of
 P

re
di

ct
io

ns

Most Salient First: ResNet-50
Uniform
50% Blacked Out
0% Blacked Out

lak
esi

de

worm
 fe

nce

pa
rk

be
nchsw

ing po
t

web
 sit

e

slid
ing

 do
or

pic
ket

 fe
nce alp

ba
nn

iste
r

cro
qu

et
ba

ll

cor
al

ree
f

cha
inli

nk
 fe

nce

rub
be

r e
ras

er qu
ilt clif

f
sku

nk na
il
maze

wind
ow

 sc
ree

n

ward
rob

e
va

lley sho
ji

san
db

ar

wind
ow

 sh
ad

e

gro
cer

y s
tor

e

Ameri
can

 eg
ret

sho
e s

ho
p

mou
nta

in
bik

e

do
orm

at
10 4

10 3

10 2

10 1
Fr

ac
tio

n
of

 P
re

di
ct

io
ns

Most Salient First: ViT-S
Uniform
50% Tokens Removed
0% Tokens Removed

en
ve

lop
e
chu

rch
car

ton

jigs
aw

 pu
zzl

e
maze

pa
pe

r to
wel

tra
ffic

 lig
ht

pa
dlo

ck

toi
let

 tis
sue

pe
rfu

me
cas

tle

cro
ssw

ord
 pu

zzl
e

ho
me t

he
ate

r

clif
f d

welli
ng

ba
nn

iste
r

bu
bb

le

an
alo

g c
loc

k

web
 sit

e

wall
clo

ck

spo
tlig

ht

dig
ita

l cl
ockho

ok

mon
ito

r
gro

om

fou
nta

in
ba

rn

wash
ba

sin
miss

ile
maskcra

te
10 4

10 3

10 2

10 1

Fr
ac

tio
n

of
 P

re
di

ct
io

ns

Least Salient First: ResNet-50
Uniform
50% Blacked Out
0% Blacked Out

sho
e s

ho
p

kin
g c

rab

lam
psh

ad
e

lab
 co

at

be
ll c

ote

fou
nta

in

Chih
ua

hu
a

go
lde

n r
etr

iev
er

be
av

er

wate
r b

ott
le

wash
ba

sin

ward
rob

e

syr
ing

e
sw

ab

sch
oo

ne
r

fur
 co

at
cra

te

con
fec

tio
ne

ry
car

ton

car
pe

nte
r's

 kit

bre
akw

ate
r

be
ag

le

ba
tht

ub
whis

tle
va

ult

tap
e p

lay
er

stu
dio

 co
uch

squ
irre

l m
on

key

red
 wine

mala
mute

10 4

10 3

10 2

10 1

Fr
ac

tio
n

of
 P

re
di

ct
io

ns

Least Salient First: ViT-S
Uniform
50% Tokens Removed
0% Tokens Removed

(a) The shift in the output class distribution after applying missingness approximations in different
orders.

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(b) Degradation in class entropy (left), the fraction of predictions that change (middle), and the
average WordNet similarity if the prediction changes after masking (right) as we remove patches
from the image in different orders.

Figure E.2: Full experiments for removing 16 × 16 patches by blacking out (ResNet-50) or
dropping tokens (ViT-S).

218

E.3.3 Results for different architectures

In this section, we repeat the experiments in Section 5.2 with several other training schemes
and types of architectures. Our results parallel our findings in the main body of this chapter.

ViT-T and ResNet-18

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 L
ab

el
s U

nc
ha

ng
ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.3

0.4

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-18
ViT-T

Random Order
Most Salient First
Least Salient First

Figure E.3: Bias experiments as in Section 5.2, with a ViT-T and ResNet-18.

ViT-S and Robust ResNet-50

We consider a ViT-S and an L2 adversarially robust ResNet-50 (ϵ = 3).

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

Robust ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

Figure E.4: Bias experiments as in Section 5.2, with a ViT-S and a robust ResNet-50.

ViT-S and InceptionV3

We consider a ViT-S and an InceptionV3 ([SVI+16]) model.

ViT-S and VGG-16

We consider a ViT-S and a VGG-16 with BatchNorm ([SZ15]).

219

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7
Cl

as
s E

nt
ro

py
Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.4

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

InceptionV3
ViT-S

Random Order
Most Salient First
Least Salient First

Figure E.5: Bias experiments as in Section 5.2, with a ViT-S and InceptionV3.

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

VGG16
ViT-S

Random Order
Most Salient First
Least Salient First

Figure E.6: Bias experiments as in Section 5.2, with a ViT-S and VGG16.

E.3.4 Results for different missingness approximations

In this section, we consider missingness approximations other than blacking out pixels. In
Figure E.7, we use three baselines: a) the mean RGB value of the dataset, b) a randomly
selected baseline color for each image, and c) a randomly selected color for each pixel
[SLL20; STY17]. Since we drop tokens for the vision transformers, changing the baseline
color does not change the behavior for the ViTs. Our findings in the main body of this
chapter for blacking out patches closely mirror the findings for other baselines.

We also consider blurring the removed features, as suggested in [FV17]. We use a
gaussian blur with kernel size 21 and σ = 10. Examples of blurred images can be found
in Figure E.8a. Unlike the previous missingness approximations, this method does not fully
remove subregions of the input; thus, blurring the pixels can still leak information from the
removed regions, which can then influence the model’s prediction. Indeed, we find that,
by visual inspection, we can still roughly distinguish the label of images that are entirely
blurred (as in Figure E.8a).

For completeness, we repeat the experiments in Section 5.2 using the blurred image
as the missingness approximation (Figure E.8b). We find that ResNets still experience
missingness bias, though the bias is reduced compared to using an image-independent

220

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.4

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(a) Using the mean ImageNet RGB value for the baseline color

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
W

uP
 S

im
 F

ro
m

 O
rig

in
al

 P
re

di
ct

io
n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(b) Picking a random baseline color for each image.

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(c) Picking a random baseline color for each pixel.

Figure E.7: Using different baseline colors for masking pixels.

221

(a) Examples of blurring ImageNet images.

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(b) Repeating the experiments in Section 5.2 using the blurred ImageNet image.

Figure E.8: Using the blurred image for the missingness approximation.

baseline color.

E.3.5 Using differently sized patches

In the main body of this chapter, we consider image subregions of 16× 16. In this section,
we consider subregions of other patch size: 14× 14, 28× 28, 32× 32, and 56× 56. As
mentioned in Appendix Section E.2, when dropping tokens for the ViT, we conservatively
drop the token if any part of the corresponding image subregion is being removed. Thus,
the ViT removes slightly more area than the ResNet for patch sizes that are not multiples
of 16. We find that the ResNet is impacted by missingness bias regardless of the patch size,
though the effects of the bias is reduced for very large patch sizes (see Figure E.9).

222

0 200 400 600 800
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 200 400 600 800
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 200 400 600 800
Number of Patches Removed

0.4

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(a) 8× 8 patches

0 100 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 100 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 L
ab

el
s U

nc
ha

ng
ed

Accuracy Degradation

0 100 200
Number of Patches Removed

0.4

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(b) 14× 14 patches

0 20 40 60
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 20 40 60
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 20 40 60
Number of Patches Removed

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n
WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(c) 28× 28 patches

0 20 40
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 20 40
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 20 40
Number of Patches Removed

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(d) 32× 32 patches

0 5 10 15
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 5 10 15
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 5 10 15
Number of Patches Removed

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(e) 56× 56 patches

Figure E.9: Using different patch sizes for masking pixels.

223

E.3.6 Using superpixels instead of patches

Thus far, we have used square patches. What if we instead use superpixels? In this
section, we compute the SLIC segmentation of superpixels [ASS+10]. In order to keep
the superpixels roughly the same size (and of a more similar size as the patches in this
chapter), we consider the images having more than 130 superpixels. We display examples
of the superpixels in Figure E.10a.

We then repeat our experiments from Section 5.2, and analyze our models’ predictions
after removing 50 superpixels in different orders (blacking out for ResNets and dropping
tokens for ViTs). As described in Section E.2, we conservatively drop all tokens for ViTs that
contain any pixels that should have been removed. We find that ResNets are significantly
impacted by missingness bias when masking out superpixels. As in the case of patches,
dropping tokens through the ViT substantially mitigates the missingness bias.

(a) Examples of superpixel segmentations.

0 20 40
Number of Superpixels Removed

4.5

5.0

5.5

6.0

6.5

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 20 40
Number of Superpixels Removed

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 20 40
Number of Superpixels Removed

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S

Random Order
Most Salient First
Least Salient First

(b) Measuring the impact of removing superpixels through missingness approximations.

Figure E.10: Using SLIC superpixels instead of patches.

E.3.7 Comparison of dropping tokens vs blacking out pixels for ViTs

We compare the effect of implementing missingness by dropping tokens to simply blacking
out pixels for ViTs. Figure E.11, shows a condensed version of the experiments we did
previously in this section, but now including an additional baseline which is a ViT-S

224

with blacking out pixels instead of dropping tokens. We find that using either of the
ViTs instead of the ResNet significantly mitigates missingness bias on all three metrics.
However, dropping tokens for ViTs mitigates missingness bias more effectively than simply
blacking out pixels.

0 50 100 150 200
Number of Patches Removed

0

1

2

3

4

5

6

7

Cl
as

s E
nt

ro
py

Class Entropy Degradation

0 50 100 150 200
Number of Patches Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

0 50 100 150 200
Number of Patches Removed

0.5

0.6

0.7

0.8

W
uP

 S
im

 F
ro

m
 O

rig
in

al
 P

re
di

ct
io

n

WordNet Similarity to Original Prediction

ResNet-50
ViT-S
ViT-S (Blacking Pixels)

Random Order
Most Salient First
Least Salient First

Figure E.11: We compare dropping tokens vs blacking out pixels for ViTs.

E.4 Additional experiments (Section 5.3)

E.4.1 Examples of LIME

In this section, we display further examples of LIME explanations for ViT-S, ResNet-50,
and a ResNet-50 retrained with missingness augmentations (Figure E.12). As we explain
in Section 5.3, LIME relies heavily on the notion of missingness, and can be subject to
missingness bias. We note that the ViT-S and retrained ResNets qualitatively have more
human-aligned LIME explanations (by highlighting patches in the foreground over patches
in the background) compared to a standard ResNet. While human-alignment does not a
guarantee that the LIME explanation is good (the model might be relying on non-aligned
features), we do see a substantial difference in the explanations of models robust to the
missingness bias (ViTs and retrained ResNet) and models suffering from this bias (standard
ResNet).

225

ViT-S ResNet-50
ResNet-50
(with miss.

augmentations)
ViT-S ResNet-50

ResNet-50
(with miss.

augmentations)

Figure E.12: Examples of LIME explanations.

226

E.4.2 Top-k ablation test with superpixels.

We repeat the top-k ablation test in Section 5.3, using superpixels instead of patches (Figure
E.13). The setup for superpixels is that same as that described in Appendix E.3.6. After
generating LIME explanations for a ViT and ResNet-50, we evaluate these explanations
using the top-k ablation test. As we found for 16× 16 patches, the explanations when
evaluating with a ResNet are less distinguishable than when evaluating for a ViT: even
masking features according to the random explanations rapidly flips the predictions. We
do find that masking random superpixels seems to have a greater effect on ViTs than
masking random 16 × 16 patches: this is likely because the superpixels are on average
larger.

0 10 20 30 40 50
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

Evaluating Model: ResNet-50

0 10 20 30 40 50
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

Evaluating Model: ViT-S

LIME Explanation From

ResNet-50
ViT-S
Random

Figure E.13: Top K ablation test using superpixels instead of patches.

E.4.3 Effects of Missingness Bias on Learned Masks

In this section, we consider a different model debugging method ([FV17]) which also relies
on missingness. In this method, a minimal mask is directly optimized for each image. We
implement this method at the granularity of 16× 16 patches.

Model Debugging through a learned mask ([FV17]) Specifically x be the input image,
M be the model, c be the model’s original prediction on x, and b be a baseline image
(in our case, blacked out pixels). The method optimizes for m, a 14× 14 grid of weights
between 0 and 1 which assigns importance to each patch. We define the perturbation via
m as a linear combination of the input image and the baseline image for each patch (plus

227

some normally distributed noise ϵ):

f (x, m) = x ∗ upsample(m) + b ∗ (1− upsample(m)) + ϵ

Then the optimal m̂ is computed as:

m̂ = arg min
m

λ1||1−m||1 + λ2||m||
β
TV + [M(f (x, m))]c

with λ1 = 0.01, λ2 = 0.2, β = 3, ϵ ∼ N (0, 0.04).
The optimal m is computed through backpropagation, and can then be treated as a

model explanation. Parameters and implementation were adapted from the implementa-
tion at https://github.com/jacobgil/pytorch-explain-black-box.

Assessing the impact of missingness bias. Since m must be backpropagated, we cannot
leverage the drop tokens method for ViTs (which would require m for each patch to be
either 0 or 1). However, we generate explanations for the ResNet-50 in order to examine
the impact of missingness bias. As in Section 5.3, we evaluate the explanation generated by
this method alongside a random baseline and the LIME explanation for that ResNet using
the top-K ablation test (Figure E.14). As is the case for the LIME explanations, missingness
bias renders the explanations generated by this method indistinguishable from random.

0 10 20 30 40 50
Number of Features Removed

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 P

re
di

ct
io

ns
 U

nc
ha

ng
ed

Evaluating Model: ResNet-50
Explanation From
LIME
Fong & Fedaldi, 2017
Random

(a) Top-K ablation test (b) Examples of the generated ex-
planations

Figure E.14: (a) Top K ablation test evaluated on a ResNet-50. We evaluate explanations
generated by LIME, [FV17], and a random baseline. Due to missingness bias, the ex-
planations are indistinguishable from random (b) Examples of explanations generated
by [FV17].

228

https://github.com/jacobgil/pytorch-explain-black-box

E.5 Other Datasets

While this chapter largely focuses on ImageNet, we include here a few results on other
datasets.

E.5.1 MS-COCO

MS-COCO ([LMB+14]) is an object recognition dataset with 80 object recognition categories
that provides bounding box annotations for each object. We consider the multi-label task
of object tagging, where the model predicts whether each object class is present in the
dataset. We train object tagging models using a ResNet-50 and ViT-S, with an Asymmetric
Loss as in [BRZ+20]. An object is predicted as “present” if the outputted logit is above
some threshold.

We study the setting of removing people from images using missingness. In particular,
we seek to remove the image regions contained inside a “person” bounding box that is not
contained in a bounding box for another non-person object. Examples of removing people
from the image can be found in Figure E.15. We then seek to check whether removing the
person affected the model predictions for other, non-person object classes.

Specifically, we consider the 21,634 images in the MS-COCO validation set that contain
people. For each image, we evaluate our model on the original image and the image
with the person removed (blacking out for the ResNet-50 and dropping the token for the
ViT). Then, to measure the consistency of the non-person predictions, we compute the
Jaccard similarity for the set of predicted objects (excluding the person class) before and
after masking. We plot the average similarity over all the images for different prediction
thresholds in Figure E.15.

We find that the ViT more consistently maintains the predictions of the non-person
object classes when masking out people. In contrast, masking out people for the ResNet is
more likely to change the predictions for other object classes.

E.5.2 CIFAR-10

We consider the setting of CIFAR-10 ([Kri09]). Specifically, we train a ResNet-50 and a ViT-S
on the CIFAR-10 dataset upsampled to 224x224 pixels. We start training from the ImageNet
checkpoints used throughout this chapter. This step is necessary for ensuring high accuracy
when training ViTs on CIFAR-10 ([TCD+20]). We then consider how randomly removing
16x16 patches from the upsampled CIFAR images changes the prediction. Similarly to
the case of ImageNet, we find that the ResNet-50 more rapidly changes its prediction as

229

0.2 0.4 0.6 0.8 1.0
Threshold

0.40

0.45

0.50

0.55

0.60

0.65

0.70
Ja

cc
ar

d
sim

 o
f p

re
di

ct
io

ns

 b
ef

or
e/

af
te

r r
em

ov
in

g
pe

rs
on

ResNet-50
ViT-S

(a) Consistency of non-person prediction after removing
people from the images. (b) Examples of removing people

from MS-COCO images

Figure E.15: (a) Average Jaccard similarity of the set of non-person predictions before
and after removing all people from the image. We plot over prediction thresholds for the
tagging task. (b) Examples of removing people from MS-COCO images.

0 50 100 150 200
Number of Patches Removed

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 L

ab
el

s U
nc

ha
ng

ed

Accuracy Degradation

ResNet-50
ViT-S

Figure E.16: We plot the fraction of images where the prediction does not change as image
regions are removed for the CIFAR-10 dataset.

random parts of the image are masked, while the ViT-S maintains its prediction even as
large parts of the image are removed.

230

E.6 Relationship to ROAR

Here, we present more details about the ROAR experiment of Section 5.2.

E.6.1 Overview on ROAR

Evaluating feature attribution methods requires the ability to remove features from the
input to assess how important these features are to the model’s predictions. To do so
properly, Hooker et al. [HEK+18] argue that re-training (with removing pixels) is required
so that images with removed features stay in-distribution. Their argument holds since
machine learning models typically assume that the train and the test data comes from a
similar distribution.

So, they propose RemOve and Retrain (ROAR) where new models (of the exact same
architecture) are retrained such that random pixels are blacked out during training. The
intuition is that this way, removing pixels do not render images out-of-distribution. Overall,
they were able to better assess how much removing information from the image affects the
predictions of the model using those retrained surrogate models.

The authors of ROAR list several downsides for their approach though. In particular,
retraining models can be computationally expensive. More pressingly, the retrained model
is not the same model that they analyze, but instead a surrogate with a substantially
different training procedure: any feature attribution or model debugging result inferred
from the retrained model might not hold for the original model. Given these downsides, is
retraining always necessary?

E.6.2 ViTs do not require retraining

Here, we show that retraining is not always necessary: indeed for ViTs, we do not need
to retraining to be able to properly evaluate feature attribution methods. While ROAR in
[HEK+18] dealt with blacking out features on a per-pixel level, we adapt their approach
for masking out larger contiguous regions (like patches). If we apply missingness approxi-
mations during training as in ROAR, missingness approximations are now in-distribution,
and thus would likely mitigate the observed biases.

We retrain a ResNet-50 and a ViT-S by randomly removing 50% of patches during
training (through blacking out pixels for the ResNet-50 and dropping tokens for the ViT-
S). Our goal is to compare the behavior of each model to its retrained counterpart. If
retraining does not change the model’s behavior when missingness approximations are
applied, retraining would be unnecessary, and we can instead confidently use the original

231

model. In Figure 5.5, we measure the fraction of images where the model changes its
prediction as we remove image features for both the standard and retrained models. We
find that, while there is a significant gap in behavior between the standard and retrained
CNNs, the standard and retrained ViTs behave largely the same..

This result indicates that, while retraining is important when analyzing CNNs, it is
unnecessary for ViTs: we can instead intervene on the original model. We thus avoid the
expense of training the augmented models, and can perform feature attribution on the
actual model instead of a proxy.

232

Appendix F

Additional details for Chapter 6

F.1 Experiment dashboard

Figure F.1: The 3DB dashboard used for data exploration.

233

Since experiments usually produce large amounts of data that can be hard to get a
sense of, we created a data visualization dashboard. Given a folder containing the JSON
logs of a job, it offers a user interface to explore the influence of the controls.

For each parameter of each control, we can pick one out three mode:

• Heat map axis: This control will be used as the x or y axis of the heat map. Exactly
two controls should be assigned to this mode to enable the visualization. Hovering
on cells of the heat map will filter all samples falling in that region.

• Slider: This mode enables a slider that is used to only select the samples that match
exactly this particular value.

• Aggregate: do not filter samples based on this parameter

F.2 iPhone app

We developed a native iOS app to help align objects in the physical experiment (Section
6.3). The app allows the user to enter one or more rendering IDs (corresponding to scenes
rendered by 3DB); the app then brings up a camera with a translucent overlay of either the
scene or an edge-filtered version of the scene (cf. Figure F.2). We used the app to align the
physical object and environment with their intended place in the rendered scene. The app
connects to the same backend serving the experiment dashboard.

F.3 Controls

3DB takes an object-centric perspective, where an object of interest is spawned on a desired
background. The scene mainly consists of the object and a camera. The controls in our
pipeline affect this interplay between the scene components through various combinations
of properties, which subsequently creates a wide variety of rendered images. The controls
are implemented using the Blender Python API ‘bpy’ that exposes an easy to use framework
for controlling Blender. ‘bpy’ primarily exposes a scene context variable, which contains
references to the properties of the components such as objects and the camera; thus
allowing for easy modification.

3DB comes with several predefined controls that are ready to use (see https://3db.

github.io/3db/). Nevertheless, users are able (and encouraged) to implement custom
controls for their use-cases.

234

https://3db.github.io/3db/
https://3db.github.io/3db/

Figure F.2: A screenshot of the iOS app used to align objects for the physical-world
experiment. After starting the dashboard server, the user can specify the server location
as well as a set of rendering IDs. The corresponding renderings will be displayed over a
camera view, allowing the user to correctly position the object in the frame. The user can
adjust the object transparency, and can toggle between overlaying the full rendering and
overlaying just the edges (shown here).

235

F.4 Additional experiments details

We refer the reader to our package https://github.com/3db/3db for all source code, 3D
models, HDRIs, and config files used in the experiments of this chapter.

For all experiments we used the pre-trained ImageNet ResNet-18 included in torchvision.
In this section we will describe, for each experiment the specific 3D-models and environ-
ments used by 3DB to generate the results.

(a) Synthetic (b) Real picture (iPhone 12 Pro)

Figure F.3: Studio used for the real-world experiments (Section 6.3).

F.4.1 Sensitivity to image backgrounds (Section 6.2.1)

Analysing a subset of backgrdounds

Models: We collected 19 3D-models in total. On top of the models shown on figure F.6,
we used models for: (1) an orange, (2) two different toy power drills, (3) a baseball ball,
(4) a tennis ball, (5) a golf ball, (6) a running shoe, (7) a sandal and (8) a toy gun. Some
of these models are from YCB [CWS+15] and the rest are purchased from amazon.com and
then put through a 3D scanner to get corresponding meshes.

Environments: We sourced 20 2k HDRI from the website https://hdrihaven.com. In
particular we used: abandoned_workshop, adams_place_bridge, altanka, aristea_wreck,

bush_restaurant, cabin, derelict_overpass,

236

https://github.com/3db/3db
https://hdrihaven.com

dusseldorf_bridge, factory_yard, gray_pier, greenwich_park_03,

kiara_7_late-afternoon, kloppenheim_06, rathaus, roofless_ruins, secluded_beach,

small_hangar_02, stadium_01, studio_small_02, studio_small_04.

Analyzing all backgrounds with the “coffee mug” model.

Models: We used a single model: the coffee mug, in order to keep computational re-
sources under control.

Environments: We used 408 HDRIs from https://hdrihaven.com/ with a 2K resolution.

F.4.2 Texture-shape bias (section 6.2.2)

Textures: To replace the original materials, we collected 7 textures on the internet and we
modified them to make them seamlessly tilable. These textures are shown on Figure F.6.

Models: We used all models that are shown on Figure F.6.

Environments: We used the virtual studio environment (Figure F.3).

F.4.3 Orientation and scale dependence (Section 6.2.3)

We use the same models and environments that are used in Appendix F.4.1.

F.4.4 3D models heatmaps (Figure 6.12)

Models: For this experiment we used the set of models shown on Figure F.6.

Environments: We used the virtual studio environment (see Figure F.3).

F.4.5 Case study: using 3DB to dive deeper (Section 6.2.4)

Models: We only used the mug since this experiment is mug specific.

Environments: We used the sudio set shown on Figure F.3.

237

https://hdrihaven.com/

F.4.6 Physical realism (Section 6.3)

Real-world pictures: All images were taken with an handheld Apple iPhone 12 Pro. To
help us align the shots we used the application described in appendix F.2.

Models: We used the models shown in Figure 6.15.

Environments: The environment shown on Figure F.3 was especially designed for this
experiment. The goal was to have an environment that matches our studio as closely as
possible. The geometry and materials were carefully reproduced using reference pictures.
The lighting was reproduce through a high resolution HDRI map.

238

F.5 Omitted figures

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Heading

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

ac
cu

ra
cy

Other objects Spherical objects

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Tilt (cosine distance with z axis)

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

ac
cu

ra
cy

Other objects Spherical objects

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Zoom factor

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e

ac
cu

ra
cy

Figure F.4: Additional plots to Figure 6.13. We plot the distribution of model accuracy as a
function of object heading (top), tilt (middle) and zoom (bottom), aggregated over variations
in controls. For heading and tilt, we separately evaluate accuracy for (non-)spherical
objects. Notice how the performance of the model degrades for non-spherical objects as
the heading/tilt changes, but not for spherical objects. Also notice how the performance
depends on the zoom level of the camera (how large the object is in the frame).

(a) Sample of the images rendered for
the experiment presented in section
6.2.4.

Coffee

Water Milk
Influence on model prediction:

Bucket, pail Coffee mug Cup OR Pill bottle

(b) Un-normalized version of Figure 6.14-(b).

Figure F.5: Additional illustration for the mug liquid experiment of Figure 6.14. This figure
shows the correlation of the liquid mixture in the mug on the prediction of the model,
averaged over random viewpoints

239

0

10

20

30

40

50

Pr
ed

ict
io

n(
%

)

cow

0

10

20

30

40

50

crocodile

0

10

20

30

40

50

elephant

0

10

20

30

40

50

leopard

0

10

20

30

40

50

snake

0

10

20

30

40

50

Pr
ed

ict
io

n(
%

)

tiger

0

10

20

30

40

50

zebra

0

10

20

30

40

50

Pr
ed

ict
io

n(
%

)

hammer

0

10

20

30

40

50

spatula

0

10

20

30

40

50

mug

0

10

20

30

40

50

lemon

0

10

20

30

40

50

strawberry

0

10

20

30

40

50

Pr
ed

ict
io

n(
%

)

bowl

0

10

20

30

40

50

helmet

0

10

20

30

40

50

banana

0

10

20

30

40

50

teapot

0

10

20

30

40

50

pitcher

Figure F.6: Additional examples of the experiment in Figure 6.11. Distribution of classifier
predictions after the texture of the 3D object model is altered. In the top rows, we visualize
the most frequently predicted classes for each texture (averaged over all objects). In the
bottom rows, we visualize the most frequently predicted classes for each object (averaged
over all textures). We find that the model tends to predict based on the texture more often
than based on the object.

240

Appendix G

Additional details for Chapter 7

G.1 Experimental Setup

G.1.1 ImageNet Models

In this chapter, we train a number of ImageNet models and transfer them to various
datasets in Sections 7.2 and 7.4. We mainly use the ResNet-18 architecture all over the
chapter. However, we study bias transfers using various architectures in Appendix G.1.4.
We use PyTorch’s official implementation for these architectures, which can be found here
https://pytorch.org/vision/stable/models.html.

Training details. We train our ImageNet models from scratch using SGD by minimizing
the standard cross-entropy loss. We train for 16 epochs using a Cyclic learning rate schedule
with an initial learning rate of 0.5 and learning rate peak epoch of 2. We use momentum
of 0.9, batch size of 1024, and weight decay of 5e−4. We use standard data-augmentation:
RandomResizedCrop and RandomHorizontalFlip during training, and RandomResizedCrop
during testing. Our implementation and configuration files are available in the attached
code.

G.1.2 Transfer details from ImageNet to downstream image classifica-

tion

Transfer datasets. We use the image classification tasks that are used in [SIE+20; KSL19],
which have various sizes and number of classes. When evaluating the performance of
models on each of these datasets, we report the Top-1 accuracy for balanced datasets and
the Mean Per-Class accuracy for the unbalanced datasets. See Table G.1 for the details of

241

https://pytorch.org/vision/stable/models.html

these datasets. For each dataset, we consider two transfer learning settings: fixed-feature
and full-network transfer learning which we describe below.

Table G.1: Image classification benchmarks used in this chapter. Accuracy metric is the
metric we report for each of the dataset across the chapter. Some datasets are imbalanced,
so we report Mean Per-Class accuracy for those. For the rest, we report Top-1 accuracy.

Dataset Size (Train/Test) Classes Accuracy Metric

Birdsnap [BLW+14] 32,677/8,171 500 Top-1
Caltech-101 [FFP04] 3,030/5,647 101 Mean Per-Class
Caltech-256 [GHP07] 15,420/15,187 257 Mean Per-Class
CIFAR-10 [Kri09] 50,000/10,000 10 Top-1
CIFAR-100 [Kri09] 50,000/10,000 100 Top-1
FGVC Aircraft [MRK+13] 6,667/3,333 100 Mean Per-Class
Food-101 [BGV14] 75,750/25,250 101 Top-1
Oxford 102 Flowers [NZ08] 2,040/6,149 102 Mean Per-Class
Oxford-IIIT Pets [PVZ+12] 3,680/3,669 37 Mean Per-Class
SUN397 [XHE+10] 19,850/19,850 397 Top-1
Stanford Cars [KDS+13] 8,144/8,041 196 Top-1

Fixed-feature transfer. For this setting, we freeze the layers of the ImageNet source
model1, except for the last layer, which we replace with a random initialized linear layer
whose output matches the number of classes in the transfer dataset. We now train only
this new layer for using SGD, with a batch size of 1024 using cyclic learning rate. For more
details and hyperparameter for each dataset, please see config files in the attached code.

Full-network transfer. For this setting, we do not freeze any of the layers of the Ima-
geNet source model, and all the model weights are updated. We follow the exact same
hyperparameters as the fixed-feature setting.

G.1.3 Compute and training time

Throughout this chapter, we use the FFCV data-loading library to train models fast
[LIE+22]. Using FFCV, we can train an ImageNet model, for example, in around 1 hr
only on a single V100 GPU. Our experiments were conducted on a GPU cluster containing
A100 and V100 GPUs.

1We do not freeze the batch norm statistics, but only the weights of the model similar to [SIE+20].

242

G.1.4 Varying architectures

In this section, we study whether bias transfers when applying transfer learning using
various architectures. We conduct the basic experiment of Section 7.2 on several standard
architectures from the PyTorch’s Torchvision2.

As in Section 7.2, we train two versions of each architecture: one on a clean ImageNet
dataset, and another on a modified ImageNet dataset containing a backdoor. We use the
same hyperparameters as the rest of the chapter, except for the batch size, which we set to
512 instead of 1024. The reason we lower the batch size is to fit these models in memory
on a single A100 GPU.

Now, we transfer each of these models to a clean CIFAR-10 dataset, and test if the
backdoor attack transfers. Similar to the results of this chapter, we notice that backdoor
attack indeed transfers in the fixed-feature setting. We note however that for the full-
network setting, all architectures other than ResNet-18 (which we use in the rest of the
chapter) seem to be more robust to the backdoor attack.

mobilenet_v2 resnet18 resnet50 resnext50_32x4d shufflenet_v2_x1_0
Architecture

0

20

40

60

80

100

AS
R

 (%
)

Source Dataset
Unbiased
Biased

(a) CIFAR-10 Fixed-feature

mobilenet_v2 resnet18 resnet50 resnext50_32x4d shufflenet_v2_x1_0
Architecture

0

20

40

60

80

100

AS
R

 (%
)

Source Dataset
Unbiased
Biased

(b) CIFAR-10 Full-network

Figure G.1: Backdoor attack (bias) consistently transfers in the fixed-feature setting across
various architectures. However, this happens to a lesser degree in the full-network transfer
setting.

2These models can be found here https://pytorch.org/vision/stable/models.html

243

https://pytorch.org/vision/stable/models.html

10 5 10 4 10 3

Weight Decay

0

50

100
AS

R
 (%

)
aircraft

10 5 10 4

Weight Decay

0

5

10

15

AS
R

 (%
)

birdsnap

10 5 10 4 10 3

Weight Decay

0

2

4

AS
R

 (%
)

caltech101

10 5 10 4 10 3

Weight Decay

0

10

20

AS
R

 (%
)

caltech256

10 5 10 4 10 3

Weight Decay

0

20

40

60

AS
R

 (%
)

cifar100

10 5 10 4 10 3

Weight Decay

0

5

10

AS
R

 (%
)

flowers

10 5 10 4 10 3

Weight Decay

0

20

AS
R

 (%
)

food

10 5 10 4 10 3

Weight Decay

0

10

20

AS
R

 (%
)

pets

10 5 10 4 10 3

Weight Decay

0.0

2.5

5.0

7.5

AS
R

 (%
)

stanford_cars

10 5 10 4 10 3

Weight Decay

0

5

10

15

AS
R

 (%
)

sun397

Figure G.2: As weight decay increases, the ASR decreases which means bias transfers less
across various datasets. We increase weight decay until the clean accuracy on the target
dataset significantly deteriorates (see Figure G.3). Error regions correspond to standard
deviation over five random trials.

G.1.5 The effect of weight decay in full-network transfer learning

As mentioned in Section 7.2.2, we found weight decay to have a significant impact on
bias transfer in the full-network transfer learning setting. In particular, increasing weight

244

10 5 10 4 10 3

Weight Decay

0

20

40

60

Ac
cu

ra
cy

 (%
)

aircraft

10 5 10 4

Weight Decay

0

20

40

60

Ac
cu

ra
cy

 (%
)

birdsnap

10 5 10 4 10 3

Weight Decay

0

50

Ac
cu

ra
cy

 (%
)

caltech101

10 5 10 4 10 3

Weight Decay

0

25

50

75

Ac
cu

ra
cy

 (%
)

caltech256

10 5 10 4 10 3

Weight Decay

0

25

50

75

Ac
cu

ra
cy

 (%
)

cifar100

10 5 10 4 10 3

Weight Decay

0

25

50

75

Ac
cu

ra
cy

 (%
)

flowers

10 5 10 4 10 3

Weight Decay

0

25

50

75

Ac
cu

ra
cy

 (%
)

food

10 5 10 4 10 3

Weight Decay

0

25

50

75

Ac
cu

ra
cy

 (%
)

pets

10 5 10 4 10 3

Weight Decay

0

25

50

75

Ac
cu

ra
cy

 (%
)

stanford_cars

10 5 10 4 10 3

Weight Decay

0

20

40

Ac
cu

ra
cy

 (%
)

sun397

Figure G.3: The clean accuracies corresponding to the weight-decay experiment. We
increase weight decay as long as the clean accuracy on the target dataset is roughly the
same. Error regions (very small) correspond to standard deviation over five random trials.

decay reduces bias transfer. Here, we present a formal explanation of why this happens by
studying this within the logistic regression example we presented in Section 7.1. Recall
that, following the setup in Section 7.1, if we transfer a pretrained linear classifier wsrc to a
target dataset {(xi, yi)}, wsrc is preserved in all directions orthogonal to the span of the xi.

245

Now what happens if we add ℓ2 regularization (i.e., weight decay) to the logistic
regression problem? As can be easily checked, the gradient updated of the logistic loss
now becomes

∇ℓw(xi, yi) = (σ(w⊤xi)− yi) · xi + λw, (G.1)

= (σ(w⊤S xi)− yi) · xi + λ(wS + wS′)

where λ is the regularization strength, wS and wS′ are the projections of w on the span
of the target datapoints xi’s, denoted S, and on its complementary subspace, denoted
S′. This gradient, as before, restricts the space of updates to those in S. However due to
regularization, this gradient drives wS′ to zero. Therefore, any planted bias in S′ disappears
as this subspace collapses to zero with regularization.

Indeed, we observe in practice that as we increase weight decay in the full-network
transfer learning regime, bias transfer decreases over various downstream tasks as shown
in Figure G.2. On the other hand, we find that weight decay does not reduce bias transfer
in the fixed feature transfer learning regime, where the weights of the pretrained model
are frozen.

G.1.6 Clean accuracies for experiments of Section 7.2

In Figure G.4, we report the clean accuracies of the transferred models that we use Sec-
tion 7.2 on various target datasets. Note how the accuracies of both models pretrained in
biased and unbiased source models, for both fixed-feature and full-network settings, are
roughly the same. So the discrepancy in ASR reported in this chapter is solely due to bias
transfer.

G.1.7 Comparison with models trained from scratch (Additional results

to Section 7.2)

In this section, we add an extra baseline to Figure 7.3a where we train models from scratch
on the various target datasets to check if the yellow square bias already exists in these
datasets. In Figure G.5a, we plot the accuracies of all the models across all target tasks.
Note that since there is a significant difference between the accuracies of the models
trained from scratch and those finetuned, ASR is no longer an informative metric to
capture the existence of bias. Thus, we measure the change in accuracy after adding the
backdoor trigger and report the results in Figure G.5b. Indeed, the addition of the yellow

246

aircraft birdsnap caltech101 caltech256 cifar10 cifar100 flowers food pets stanford_cars sun397
Target Dataset

0

20

40

60

80

100

C
le

an
 A

cc
ur

ac
y

(%
) Source Dataset

Unbiased
Biased

(a) Fixed-feature transfer learning accuracies.

aircraft birdsnap caltech101 caltech256 cifar10 cifar100 flowers food pets stanford_cars sun397
Target Dataset

0

20

40

60

80

100

C
le

an
 A

cc
ur

ac
y

(%
) Source Dataset

Unbiased
Biased

(b) Full-network transfer learning accuracies.

Figure G.4: Clean accuracies of the fixed-feature and full-network experiments of Sec-
tion 7.2.

square trigger do not significantly change the accuracy of the models trained from scratch
reflecting no existing bias in the target datasets.

aircraft birdsnap caltech101 caltech256 cifar10 cifar100 flowers food pets stanford_cars sun397
Target Dataset

0

20

40

60

80

100

C
le

an
 A

cc
ur

ac
y

(%
) Source Dataset

Unbiased
Biased
Scratch

(a) Full-network transfer learning accuracies.

aircraft birdsnap caltech101 caltech256 cifar10 cifar100 flowers food pets stanford_cars sun397
Target Dataset

0

20

40

60

80

100

C
ha

ng
e

in
 A

cc
ur

ac
y

(%
)

Source Dataset
Unbiased
Biased
Scratch

(b) Full-network transfer learning change in accuracy after adding the backdoor
trigger.

Figure G.5: Additional baseline ("Scratch") for the experiment of Figure 7.3a.

247

G.1.8 MS-COCO

In this section, we provide experimental details for the experiment on MS-COCO in
Section 7.3.1. We consider the binary task of predicting cats from dogs, where there is a
strong correlation between dogs and the presence of people.

Dataset construction. We create two source datasets which are described in Table G.2.

Table G.2: The synthetic datasets we create from MS-COCO for the experiment in Sec-
tion 7.3.1.

Class: Cat Class: Dog
Dataset With People Without People With People Without People

Non-Spurious 0 1000 0 100
Spurious 1000 4000 4000 1000

We then fine-tune models trained on the above source datasets on new images of cats
and dogs without people (485 each). We use the cats and dogs from the MS-COCO test set
for evaluation.

Experimental details. We train a ResNet-18 with resolution 224× 224. We use SGD with
momentum, and a Cyclic learning rate. We use the following hyperparameters shown in
Table G.3:

Table G.3: Hyperparameters used for training on the MS-COCO dataset.

Hyperparameter Value for pre-training Value for fine-tuning

Batch Size 256 256
Epochs 25 25

LR 0.01 0.005
Momentum 0.9 0.9

Weight Decay 0.00005 0.00005
Peak Epoch 2 2

G.1.9 CelebA

In this section, we provide experimental details for the CelebA experiments in Section 7.3.2.
Here, the task was to distinguish old from young faces, in the presence of a spurious
correlation with gender in the source dataset.

248

Dataset construction. We create two source datasets shown in Table G.4:

Table G.4: The synthetic source datasets we create from CelebA for the experiment in
Section 7.3.2.

Class: Young Class: Old
Dataset Male Female Male Female

Non-Spurious 2500 2500 2500 2500
Spurious 1000 4000 4000 1000

Due to imbalances in the spurious dataset, the model trained on this dataset struggles
on faces of young males and old females. We then fine-tune the source models on the
following target datasets (see Table G.5), the images of which are disjoint from that in the
source dataset.

Table G.5: The synthetic target datasets we create from CelebA for the experiment in
Section 7.3.2.

Class: Young Class: Old
Dataset Male Female Male Female

Only Women 0 5000 0 5000
80% Women|20% Men 1000 4000 1000 4000
50% Women|50% Men 2500 2500 2500 2500

Due to space constraints, we plotted the results of fixed-feature transfer setting on Only
Women and 80% Women|20% Men in the main body of this chapter. Below, we display the
results for fixed-feature and full-network transfer settings on all 3 target datasets.

Experimental details. We train a ResNet-18 with resolution 224× 224. We use SGD with
momentum, and a cyclic learning rate. We use the following hyperparameters shown in
Table G.6:

Table G.6: Hyperparameters used for training on the CelebA datasets.

Batch Size Epochs LR Momentum Weight Decay Peak Epoch

1024 20 0.05 0.9 0.01 5

Results. We find that in both the fixed-feature and full-network transfer settings, the
gender correlation transfers from the source model to the transfer model, even though

249

the target task is itself gender balanced as shown in Figure G.6. As the proportion of
men and women in the target dataset change, the model is either more sensitive to the
presence of women, or more sensitive to the presence of men. In all cases, however, the
model transferred from the spurious backbone is more sensitive to gender than a model
transferred from the non-spurious backbone.

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(a) Source Model Accuracy

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(b) Fixed-Feature transfer.
Target Dataset: Only Women

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(c) Fixed-Feature transfer. Tar-
get Dataset: 80% Women, 20%
Men

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(d) Fixed-Feature transfer.
Target Dataset: 50% Women,
50% Men

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(e) Full-network transfer. Tar-
get Dataset: Only Women

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(f) Full-network transfer. Tar-
get Dataset: 80% Women, 20%
Men

Young Old
Class

40

20

0

20

40

Ac
c(

m
al

e)
 -

Ac
c(

fe
m

al
e)

 (%
) Source Dataset

Unbiased
Biased

(g) Full-network transfer. Tar-
get Dataset: 50% Women, 50%
Men

Figure G.6: CelebA Experiment. We consider transfer from a source dataset that spuriously
correlate age with gender — such that old men and young women are overrepresented.
We plot the difference in accuracies between male and female examples, and find that the
model transferred from a spurious backbone is sensitive to gender, even though the target
dataset was itself gender balanced.

250

G.2 ImageNet Biases

G.2.1 Chainlink fence bias.

In this section we show the results for the “chainlink fence” bias transfer. We first demon-
strate in Figure G.7 that the “chainlink fence” bias actually exists in ImageNet. Then
in Figures G.8, G.9, G.10, and G.11, we show the output distribution—after applying a
chainlink fence intervention—of models trained on various datasets either from scratch, or
by transferring from the ImageNet model. The from-scratch models are not affected by
the chainlink fence intervention, while the ones learned via transfer have highly skewed
output distributions.

(a) Example images from the “chainlink fence” class in ImageNet.

0 200 400 600 800 1000
Class ID

102

103

Fr
eq

ue
nc

y

Output Distribution
With Intervention
Standard

ImageNet Classes (sorted by frequency)
0

2000

4000

6000

Fr
eq

ue
nc

y

Top Predicted Classes (with intervention)
Chainlink Fence
Other classes

(b) Shift in ImageNet predicted class distribution after adding a “chainlink fence” intervention,
establishing that the bias holds for the source model.

Figure G.7: The chainlink fence bias in ImageNet.

251

(a) Example Birdsnap images after applying the chain-link fence intervention.

0 100 200 300 400 500
BIRDSNAP Class ID

0

500

1000

1500

2000

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 100 200 300 400 500
BIRDSNAP Class ID

0

500

1000

1500

2000

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of Birdsnap models with a chainlink fence intervention.

Figure G.8: The chainlink fence bias transfers to Birdsnap.

(a) Example Flowers images after applying the chain-link fence intervention.

0 20 40 60 80 100
FLOWERS Class ID

0

500

1000

1500

2000

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 20 40 60 80 100
FLOWERS Class ID

0

500

1000

1500

2000

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of Flowers models with a chainlink fence intervention.

Figure G.9: The chainlink fence bias transfers to Flowers.

(a) Example Food images after applying the chain-link fence intervention.

0 20 40 60 80 100
FOOD Class ID

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 20 40 60 80 100
FOOD Class ID

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of Food models with a chainlink fence intervention.

Figure G.10: The chainlink fence bias transfers to Food.

252

(a) Example SUN397 images after applying the chain-link fence intervention.

0 50 100 150 200 250 300 350 400
SUN397 Class ID

0

5000

10000

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 50 100 150 200 250 300 350 400
SUN397 Class ID

0

5000

10000

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of SUN397 models with a chainlink fence intervention.

Figure G.11: The chainlink fence bias transfers to SUN397.

253

G.2.2 Hat bias.

In this section we show the results for the “Hat” bias transfer. We first demonstrate
in Figure G.12 that the “Hat” bias actually exists in ImageNet (shifts predictions to the
“Cowboy hat” class). Then in Figure G.13, we show the output distribution—after applying
a hat intervention—of models trained on CIFAR-10 either from scratch, or by transferring
from the ImageNet model. The from-scratch model is not affected by the hat intervention,
while the one learned via transfer have highly skewed output distributions.

(a) ImageNet images from the class “Cowboy hat”.

0 200 400 600 800 1000
Class ID

103

2 × 103

Fr
eq

ue
nc

y

Output distribution
With Intervention
Standard

ImageNet Classes (sorted by frequency)
0

500

1000
Fr

eq
ue

nc
y

Top Predicted Classes
Cowboy hat
Other classes

(b) ImageNet distribution shift after intervention.

Figure G.12: The hat bias in ImageNet.

(a) Example CIFAR-100 images after applying the “Hat” intervention.

0 2 4 6 8
CIFAR10 Class ID

0

500

1000

1500

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 2 4 6 8
CIFAR10 Class ID

0

500

1000

1500

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of CIFAR-10 models with the Hat intervention.

Figure G.13: The hat bias transfers to CIFAR-10.

254

G.2.3 Tennis ball bias.

In this section we show the results for the “tennis ball” bias transfer. We first demon-
strate in Figure G.14 that the “tennis ball” bias actually exists in ImageNet. Then in
Figures G.15, G.16, G.17, and G.18, we show the output distribution—after applying a
tennis ball intervention—of models trained on various datasets either from scratch, or by
transferring from the ImageNet model. The from-scratch models are not affected by the
tennis ball intervention, while the ones learned via transfer have highly skewed output
distributions.

(a) ImageNet images from the class “tennis ball”.

0 200 400 600 800 1000
Class ID

103

104

Fr
eq

ue
nc

y

Output Distribution
With Intervention
Standard

ImageNet Classes (sorted by frequency)
0

5000

10000

15000
Fr

eq
ue

nc
y

Top Predicted Classes (with intervention)
Tennis Ball
Other classes

(b) ImageNet distribution shift after intervention.

Figure G.14: The tennis ball bias in ImageNet.

(a) Example CIFAR-100 images after applying the “tennis ball” intervention.

0 20 40 60 80 100
CIFAR100 Class ID

0

500

1000

1500

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 20 40 60 80 100
CIFAR100 Class ID

0

500

1000

1500

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of CIFAR-100 models with the tennis ball intervention.

Figure G.15: The tennis ball bias transfers to CIFAR-100.

255

(a) Example Aircraft images after applying the “tennis ball” intervention.

0 20 40 60 80 100
AIRCRAFT Class ID

0

200

400

600

800

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 20 40 60 80 100
AIRCRAFT Class ID

0

200

400

600

800

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of Aircraft models with the tennis ball intervention.

Figure G.16: The tennis ball bias transfers to Aircraft.

(a) Example Birdsnap after applying the “tennis ball” intervention.

0 100 200 300 400 500
BIRDSNAP Class ID

0

500

1000

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 100 200 300 400 500
BIRDSNAP Class ID

0

500

1000

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of Birdsnap models with the tennis ball intervention.

Figure G.17: The tennis ball bias transfers to Birdsnap.

(a) Example sun397 after applying the “tennis ball” intervention.

0 50 100 150 200 250 300 350 400
SUN397 Class ID

0

500

1000

Fr
eq

ue
nc

y

Training mode
scratch
fixed-feature

0 50 100 150 200 250 300 350 400
SUN397 Class ID

0

500

1000

Fr
eq

ue
nc

y

Training mode
scratch
full-network

(b) Output distribution of SUN397 models with the tennis ball intervention.

Figure G.18: The tennis ball bias transfers to SUN397.

256

Appendix H

Additional details for Chapter 8

H.1 Experimental Setup

H.1.1 ImageNet Models

In this chapter, we train a large number of models on various subsets of ImageNet in order
to estimate the influence of each class of ImageNet on the model’s transfer performance
for multiple downstream tasks. We focus on the ResNet-18 architecture from PyTorch’s
official implementation found here https://pytorch.org/vision/stable/models.html1.

Training details. We fix the training procedure for all of our models. Specifically, we train
our models from scratch using SGD to minimize the standard cross-entropy multi-class
classification loss. We use a batch size of 1024, momentum of 0.9, and weight decay of
5× 10−4. The models are trained for 16 epochs using a Cyclic learning rate schedule
with an initial learning rate of 0.5 and learning rate peak epoch of 2. We use standard
data-augmentation: RandomResizedCrop and RandomHorizontalFlip during training, and
RandomResizedCrop during testing. Our implementation and configuration files are at-
tached to the submission.

H.1.2 ImageNet transfer to classification datasets

Datasets. We consider the transfer image classification tasks that are used in [SIE+20;
KSL19], which vary in size and number of classes. See Table H.1 for the details of these
datasets. We consider two transfer learning settings for each dataset: fixed-feature and
full-network transfer learning.

1Our framework is agnostic to the choice of the model’s architecture.

257

https://pytorch.org/vision/stable/models.html

Dataset Classes Train Size Test Size

Birdsnap [BLW+14] 500 32,677 8,171
Caltech-101 [FFP04] 101 3,030 5,647
Caltech-256 [GHP07] 257 15,420 15,187
CIFAR-10 [Kri09] 10 50,000 10,000
CIFAR-100 [Kri09] 100 50,000 10,000
FGVC Aircraft [MRK+13] 100 6,667 3,333
Food-101 [BGV14] 101 75,750 25,250
Oxford 102 Flowers [NZ08] 102 2,040 6,149
Oxford-IIIT Pets [PVZ+12] 37 3,680 3,669
SUN397 [XHE+10] 397 19,850 19,850
Stanford Cars [KDS+13] 196 8,144 8,041

Table H.1: Image classification datasets used in this chapter.

Fixed-feature transfer. For this setting, we freeze the layers of the ImageNet source
model2, except for the last layer, which we replace with a random initialized linear layer
whose output matches the number of classes in the transfer dataset. We now train only
this new layer for using SGD, with a batch size of 1024 using cyclic learning rate.

Full-network transfer. For this setting, we do not freeze any of the layers of the Ima-
geNet source model, and all the model weights are updated. We follow the exact same
hyperparameters as the fixed-feature setting.

H.1.3 Compute and training time.

We leveraged the FFCV data-loading library for fast training of the ImageNet mod-
els [LIE+22]3. Our experiments were run on two GPU clusters: an A100 and a V100
cluster.

Training ImageNet models and influence calculation. We trained 7,540 ImageNet mod-
els on random subsets of ImageNet, each containing half of ImageNet classes. On a single
V100, training a single model takes around 30 minutes. After training these ImageNet
models, we compute the influence of each class as outlined in Algorithm 1. Computing
the influences is fast, and takes few seconds on a single V100 GPU.

2For all of our experiments, we do not freeze the batch norm statistics. We only freeze the weights of the
model, similar to Salman et al. [SIE+20].

3Using FFCV, we can train a model on the ImageNet dataset in around 1 hour, and reach ∼63% accuracy

258

H.1.4 Handpicked baseline details

In our counterfactual experiments in Section 8.2, we automatically selected, via our frame-
work, the most influential subsets of ImageNet classes for various downstream tasks.
We then removed the classes that are detrimental to the transfer performance, and mea-
sured the transfer accuracy improvement after removing these classes. The results are
summarized in Table 8.2b.

What happens if we hand-pick the source dataset classes that are relevant to the target
dataset? Indeed, Ngiam et al. [NPV+18] found that hand-picking the source dataset
classes can sometimes boost transfer performance. We validate this approach for our
setting using the WordNet hierarchy [Mil95]. Specifically, for each class from the target
task, we look up all the ImageNet classes that are either children or parents of this target
class. The set of all such ImageNet classes are used as the handpicked most influential
classes. Following this manual selection, we train an ImageNet model on these classes,
then apply transfer learning to get the baseline performance that we report in Table 8.2b.

H.1.5 Convergence Analysis

We compute our class influence values using 7,540 source models, each of which were
trained using 500 randomly chosen ImageNet classes. How many models do we actually
need to compute our transfer influences?

Counterfactual Experiment To first analyze this question, we re-run our counterfactual
experiment in Section 8.2 when using a smaller number of models to compute transfer
influences (Figure H.1). While using the full number of models performs the best, we
get meaningful transfer influences when computing with both 4000 and 1000 models.
In both cases, removing the most negatively influential classes boosts transfer learning
performance over using the entire source dataset, while removing the most positively
influential classes drops transfer learning performance over the random baseline.

Bootstrap Analysis In order to analyze the convergence of the transfer influences, we
track the standard deviation of the influence values after bootstrap resampling.

We consider the ImageNet→ CIFAR-10 transfer setting with fixed-feature fine-tuning.
Given N models, we randomly sample, with replacement, N models to recompute our
transfer influences. Specifically, we evaluate the overall transfer influences (i.e., the in-
fluence value of each ImageNet class averaged over all target examples). We perform

259

0 200 400 600 800
ImageNet Classes Excluded

70

72

74

76

78

80

82

84

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Most Negative
Most Positive
Random Subsets
Full ImageNet

7540 models (All)
4000 models
1000 models

Figure H.1: We replicate the counterfactual experiment in Section 8.2 Figure 8.2a using
1000 and 4000 source models for computing the transfer influences.

this resampling 500 times, and measure the standard deviation of the computed overall
transfer influence value for each class over these 500 resamples.

Below, we plot this standard deviation (averaged over the 1000 classes) for various
number of models N. We find that the standard deviation goes down as more models are
used, indicating that our estimate of the influence values has less variance. This metric
roughly plateaus by the time we are using 7000 models.

1000 2000 3000 4000 5000 6000 7000
Number of Models

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

St
an

da
rd

 D
ev

ia
tio

n
of

 B
oo

st
ra

p
Sa

m
pl

e

Figure H.2: Standard deviation of the overall influence values (averaged over classes) after
bootstrap resampling for various numbers of models.

260

H.2 Variants of Computing Influences

H.2.1 Variations of targets for computing transfer influences

In this chapter, we used the softmax output of the ground truth class as the target for our
influence calculation. What happens if we use a different target? We compare using the
following types of targets.

• Softmax Logits: the softmax output of the ground truth class

• Is Correct: the binary value of whether the image was predicted correctly

• Raw Margins: the difference in raw output between the correct class and the most
confidently predicted incorrect class

• Softmax Margins: the same as raw margins, but use the output after softmax

In Figure H.3, we replicate the counterfactual experiment from this chapter in Fig-
ure 8.2b using these different targets. Specifically (over 2 runs), we rank the overall
influence of the ImageNet classes on CIFAR-10 for fixed-feature transfer. We then remove
the classes in order most most or least influence.

0 200 400 600 800 1000
Excluding K ImageNet Classes

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Softmax Logits
Is Correct
Raw Margins
Softmax Margins
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

Figure H.3: Target task accuracies after removing the most positively or negatively influen-
tial ImageNet classes from the source dataset with various influence targets.

We find that our method is not particularly sensitive to the individual target used. We
found that using the softmax logits provided the highest benefit when removing negative
influencers, and thus used that target for the reset of our experiments.

261

Datamodels vs. Influences. Datamodels [IPE+22] is another method that, similar to
influences, seeks to compute the importance of a training point on a test set prediction.
Specifically, instead of computing the difference in the expected accuracy of the model
when a training point is removed, the method fits a linear model that, given a binary
vector that denotes the composition of the training dataset, predicts the raw margin (i.e.,
the difference in raw output between the correct class and the most confidently predicted
incorrect class). The importance of each training point is then the coefficient of the linear
model for that particular example.

We adapt this method to our framework by training a linear model with ridge regression
to predict the softmax output of the transfer model on the target images given a binary
vector that denotes which source classes were included in the source dataset. However,
we find that datamodels were more effective for computing example-based values (see
Appendix H.4).

In Figure H.4, we compare using influence values (as described in this chapter) to using
these adapted datamodels. Specifically (over 5 runs), we rank the overall importance of the
ImageNet classes on CIFAR-10 for fixed-feature transfer using influences or datamodels.
We then remove the classes in order of most or least influence. We find that our framework
is not sensitive to the choice of datamodels or influences. However, influences performed
marginally better in this counterfactual experiment, so we used influences for all other
experiments in this chapter.

0 200 400 600 800 1000
Excluding K ImageNet Classes

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Influences
Datamodels
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

Figure H.4: Target task accuracies after removing the most positively or negatively influen-
tial ImageNet classes from the source dataset using datamodels or influences.

262

H.3 Full Counterfactual Experiment

In this section, we display the full results for the counterfactual experiment in this chapter
(Figure 8.2b). Specifically, for each target task, we display the target task accuracies after
removing the most positive (top) and negative (bottom) influencers from the dataset over
10 runs. We find that our results hold across datasets.

0 200 400 600 800 1000
Excluding K ImageNet Classes

15

20

25

30

35

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 0.800 ± 1.301

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

50

55

60

65

70

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 0.181 ± 0.889

Most Negative
Most Positive
Random Subsets
Full ImageNet

AIRCRAFT

Aircraft

0 200 400 600 800 1000
Excluding K ImageNet Classes

5

10

15

20

25

30

35

40

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 0.772 ± 0.550

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

30

35

40

45

50

55

60

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: -0.109 ± 0.581

Most Negative
Most Positive
Random Subsets
Full ImageNet

BIRDSNAP

Birdsnap

263

0 200 400 600 800 1000
Excluding K ImageNet Classes

55

60

65

70

75

80

85
Ta

rg
et

 Ta
sk

 A
cc

ur
ac

y

Fixed Transfer
Max Improvement: 0.331 ± 0.840

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

65

70

75

80

85

90

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: -0.037 ± 0.819

Most Negative
Most Positive
Random Subsets
Full ImageNet

CALTECH101

Caltech101

0 200 400 600 800 1000
Excluding K ImageNet Classes

30

40

50

60

70

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 0.270 ± 0.348

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

50

55

60

65

70

75

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 0.066 ± 0.322

Most Negative
Most Positive
Random Subsets
Full ImageNet

CALTECH256

Caltech256

0 200 400 600 800 1000
Excluding K ImageNet Classes

10

15

20

25

30

35

40

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 1.044 ± 0.651

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

60

65

70

75

80

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 0.585 ± 0.426

Most Negative
Most Positive
Random Subsets
Full ImageNet

CARS

Cars

264

0 200 400 600 800 1000
Excluding K ImageNet Classes

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5
Ta

rg
et

 Ta
sk

 A
cc

ur
ac

y

Fixed Transfer
Max Improvement: 2.488 ± 0.501

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

88

89

90

91

92

93

94

95

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 0.111 ± 0.209

Most Negative
Most Positive
Random Subsets
Full ImageNet

CIFAR10

CIFAR-10

0 200 400 600 800 1000
Excluding K ImageNet Classes

35

40

45

50

55

60

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 2.089 ± 0.828

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

66

68

70

72

74

76

78

80

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 0.074 ± 0.357

Most Negative
Most Positive
Random Subsets
Full ImageNet

CIFAR100

CIFAR-100

0 200 400 600 800 1000
Excluding K ImageNet Classes

40

50

60

70

80

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: -0.032 ± 0.711

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

60

65

70

75

80

85

90

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: -0.125 ± 0.464

Most Negative
Most Positive
Random Subsets
Full ImageNet

FLOWERS

Flowers

265

0 200 400 600 800 1000
Excluding K ImageNet Classes

25

30

35

40

45

50

55

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 0.659 ± 0.309

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 0.148 ± 0.242

Most Negative
Most Positive
Random Subsets
Full ImageNet

FOOD

Food

0 200 400 600 800 1000
Excluding K ImageNet Classes

30

40

50

60

70

80

90

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 4.175 ± 0.598

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

50

60

70

80

90

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 1.525 ± 0.556

Most Negative
Most Positive
Random Subsets
Full ImageNet

PETS

Pets

0 200 400 600 800 1000
Excluding K ImageNet Classes

20

25

30

35

40

45

50

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Fixed Transfer
Max Improvement: 1.191 ± 0.371

Most Negative
Most Positive
Random Subsets
Full ImageNet

0 200 400 600 800 1000
Excluding K ImageNet Classes

35

40

45

50

55

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Full Transfer
Max Improvement: 0.438 ± 0.308

Most Negative
Most Positive
Random Subsets
Full ImageNet

SUN397

SUN397

266

H.4 Adapting our Framework to Compute the Effect of Ev-

ery Source Datapoint on Transfer Learning

We have presented in this chapter how to compute the influences of every class in the
source dataset on the predictions of the model on the target dataset. In that setup, we
demonstrated multiple capabilities of our framework, such as improving overall transfer
performance, detecting particular subpopulations in the target dataset, etc. Given the wide
range of capabilities class-based influences provide, one natural question that arises: Can
we compute the influence of every source datapoint on the predictions of the model on the
target dataset? Furthermore, what do these influences tell us about the transfer learning
process?

Mathematically, the computation of example-based influences (i.e., the influence of
every source datapoint) is very similar to the computation of class-based influences.
Specifically, to compute example-based influences, we start by training a large number
of models on different subsets of the source datapoints (as opposed to source classes for
class-based influences). Next, we estimate the influence value of a source datapoint s on a
target example t as the expected difference in the transfer model’s performance on example
t when datapoint s was either included or excluded from the source dataset:

Infl[s→ t] = ES [f (t; S) | s ∈ S]−ES [f (t; S) | s ̸∈ S] (H.1)

where f (t; S) is the softmax output of a model trained on a subset S of the source dataset.
Similar to class-based influences, a positive (resp. negative) influence value indicates that
including the source datapoint s improves (resp. hurts) the model’s performance on the
target example t.

While example-based influences provide some insights about the transfer process,
we found that—in this regime—datamodels [IPE+22] provide cleaner results and better
insights. Generally, influences and datamodels measure similar properties: the effect of
the source datapoints on the target datapoints. For a particular target datapoint t, we
measure the effect of every source datapoint s with datamodels by solving a regression
problem. Specifically, we train a large number of models on different subsets of the
source dataset. For every model fi, we record 1) a binary mask 1Si that indicates which
source datapoints were included in the subset Si of the source dataset, and 2) the transfer
performance fi(t;Si) of the model fi on the target datapoint t after fine-tuning on the target
dataset. Following the training and the fine-tuning stages, we fit a linear model gw that
predicts the transfer performance f (t;S) from a random subset S of the source dataset as

267

follows: f (t;S) ≈ gw(1S) = w⊤1S . Given this framework, w = (w1, w2, . . . , wL) measures
the effect of every source datapoint s on the target datapoint t4. We present the overall
procedure in Algorithm 6.

Algorithm 6 Example-based datamodels estimation for transfer learning.

Require: source dataset S = ∪L
l=1 sl (with L datapoints), a target dataset T =

(t1, t2, · · · , tn), training algorithm A, subset ratio α, number of models m
1: Sample m random subsets S1, S2, · · · , Sm ⊂ S of size α · |S|:
2: for i ∈ 1 to m do
3: Train model fi by running algorithm A on Si
4: end for
5: Fine-tune fi on the training target dataset
6: for j ∈ 1 to n do
7: Collect datamodels training set Dj = {

(
1Si , fi(tj,Si)

)
}m

i=1
8: Compute wj by fitting LASSO on Dj
9: end for

10: return wj ∀ j ∈ [n]

4To estimate the datamodels, we train 71,828 models on different subsets of the source dataset.

268

H.5 Omitted Results

H.5.1 Per-class influencers

We display for the ImageNet → CIFAR-10 the top (most positive) and bottom (most
negative) influencing classes for each CIFAR-10 class. This is the equivalent to the plot in
Figure 8.3.

warp
lan

e
air

line
r

wing

spe
ed

bo
at

sta
rfis

h
air

shi
p

air
cra

ft c
arr

ier ya
wl

am
ph

ibia
n

mort
ar

oce
an

 lin
er

cri
cke

t

bra
ssi

ere

lea
fho

pp
er

ne
mato

de
0.000

0.002

0.004

0.006

In
flu

en
ce

 S
co

re

Top

bo
oks

ho
p

bre
ast

pla
te yu

rt

tig
er

cat
ap

iar
y

pro
bo

sci
s m

on
key titi

Afg
ha

n h
ou

nd
vu

ltu
re

vo
lca

no cup
wash

er

Norw
ich

 te
rrie

r

cou
ga

r

rai
n b

arr
el

0.00100

0.00075

0.00050

0.00025

0.00000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: airplane

spo
rts

 ca
r

con
ve

rtib
le

be
ach

 wag
on

miniv
an

rac
er cab

tra
iler

 tru
ck

pic
kup

fire
 en

gin
e

mov
ing

 va
n

am
ph

ibia
n

lim
ou

sin
e

ga
rba

ge
 tru

ck

stu
dio

 co
uch

minib
us

0.000

0.002

0.004

0.006

In
flu

en
ce

 S
co

re

Top

Eu
rop

ea
n f

ire
 sa

lam
an

de
r

Sh
ih-T

zu pu
g

kn
ot

Tib
eta

n t
err

ier

coc
ker

 sp
an

iel

lab
 co

at

ice
 be

ar
Sa

luk
i

Grea
t D

an
e

cra
yfi

sh rul
e

Afr
ica

n c
roc

od
ile

Old
En

glis
h s

he
ep

do
g

bla
ck

sto
rk

0.0010

0.0005

0.0000
In

flu
en

ce
 S

co
re

Bottom

CIFAR10: automobile

ost
ric

h

bu
sta

rd

tai
led

 fro
g

ho
rnb

ill

sta
rfis

h

bra
mblin

g

roc
k b

ea
uty

sew
ing

 m
ach

ine

Wind
sor

 tie

tre
e f

rog

lea
fho

pp
er

bla
ck

sto
rk

qu
ail

ruf
fed

 gr
ou

se
bu

lbu
l

0.0000

0.0025

0.0050

0.0075

In
flu

en
ce

 S
co

re

Top

ho
tdo

g

gro
cer

y s
tor

e

roc
k c

rab

mon
arc

h

bo
oks

ho
p

bo
let

e

Wels
h s

pri
ng

er
spa

nie
l

gre
en

 liz
ard

cau
liflo

wer

com
ic b

oo
k

ice
 cr

ea
m

bo
ok

jac
ket

ne
ckl

ace cor
n

pill
ow

0.0010

0.0005

0.0000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: bird

tab
by

Eg
yp

tia
n c

at

tig
er

cat

Per
sia

n c
at

ga
zel

le

tai
led

 fro
g

Sia
mese

 ca
t

fox
 sq

uir
rel

ha
mste

r

Pek
ine

se

waff
le

iro
n

Arab
ian

 ca
mel

sta
rfis

h
bo

rzo
i

roc
k b

ea
uty

0.000

0.002

0.004

0.006

In
flu

en
ce

 S
co

re

Top

miniv
an

am
bu

lan
ce

Dutc
h o

ve
n

pro
jec

tor

Mod
el

T

stin
gra

y
sar

on
g

Fre
nch

 ho
rn

bo
oks

ho
p

pa
lac

e
pir

ate

pra
irie

 ch
ick

en

Bou
vie

r d
es

Fla
nd

res

minia
tur

e p
ins

che
r

fre
igh

t c
ar

0.0010

0.0005

0.0000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: cat

ga
zel

le
im

pa
la

ha
rte

be
est ibe

x

sor
rel

 ho
rse

wate
r to

wer

big
ho

rn
ha

re
bis

on

bu
sta

rd
dh

ole
ost

ric
h

llam
a

red
 wolf

tai
led

 fro
g

0.0000

0.0025

0.0050

0.0075

In
flu

en
ce

 S
co

re

Top

bo
oks

ho
p

pin
ea

pp
le

jag
ua

r

ha
ir s

pra
y

Che
sap

ea
ke

Bay
 re

trie
ve

r

jigs
aw

 pu
zzl

e

mon
ito

r

ga
s p

um
p

rac
ket

go
lfca

rt

tap
e p

lay
er

sw
itc

h

pig
gy

 ba
nk

pill
 bo

ttle

Sa
int

 Bern
ard

0.0010

0.0005

0.0000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: deer

Figure H.5: Top and bottom influencing ImageNet classes for all CIFAR-10 classes.

269

sor
rel

 ho
rse

ost
ric

h

Brab
an

con
 gr

iffo
n

Per
sia

n c
at

Jap
an

ese
 sp

an
iel

tab
by

Eg
yp

tia
n c

at

ga
zel

le

ha
mste

r
im

pa
la

sta
nd

ard
 po

od
le

pa
pill

on

Sh
ih-T

zu

Afr
ica

n h
un

tin
g d

og

Sa
int

 Bern
ard

0.0000
0.0005
0.0010
0.0015
0.0020

In
flu

en
ce

 S
co

re

Top

cor
n

coc
ker

 sp
an

iel

mee
rka

t

fea
the

r b
oa

mari
mba

ba
bo

on

Dutc
h o

ve
n

clu
mbe

r

fol
din

g c
ha

ir

dis
hra

g

mosq
uit

o n
et

bo
oks

ho
p

fre
igh

t c
ar

life
bo

at

bo
w tie

0.00100

0.00075

0.00050

0.00025

0.00000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: dog

tai
led

 fro
g

bu
llfr

og

tre
e f

rog

fox
 sq

uir
rel

Afr
ica

n c
ha

mele
on

roc
k b

ea
uty

com
mon

 ne
wt

red
-br

ea
ste

d m
erg

an
ser

hy
en

a

bu
sta

rd

sea
 cu

cum
be

r

ga
zel

le ox clo
g

squ
irre

l m
on

key
0.000

0.005

0.010

In
flu

en
ce

 S
co

re

Top

Bord
er

col
lie

str
ee

t s
ign

miniv
an

bo
ok

jac
ket cab

go
lfca

rt

mop
ed

sta
ge

Iris
h s

ett
er

mon
ito

r

dis
k b

rak
e

da
lm

ati
an

bo
oks

ho
p

may
po

le

life
bo

at

0.0010

0.0005

0.0000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: frog

sor
rel

 ho
rse

Arab
ian

 ca
mel

im
pa

la
cui

ras
s

ho
rse

 ca
rt

bu
sta

rd ox

Ke
rry

 bl
ue

 te
rrie

r

ga
zel

le
Sa

luk
i

ibe
x

tric
era

top
s

rev
olv

er

bre
ast

pla
te

un
icy

cle
0.0000

0.0025

0.0050

0.0075

0.0100

In
flu

en
ce

 S
co

re

Top

jigs
aw

 pu
zzl

e

car
bo

na
ra cup

typ
ew

rite
r k

ey
bo

ard sui
t

pu
g

cor
n

sou
p b

ow
l

cor
ne

t
libr

ary
jag

ua
r

Mod
el

T

cel
lula

r te
lep

ho
ne

com
pu

ter
 ke

yb
oa

rd

bo
oks

ho
p

0.00100

0.00075

0.00050

0.00025

0.00000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: horse

spe
ed

bo
at

air
line

r

oce
an

 lin
er

ya
wl

am
ph

ibia
n

do
ck

cat
am

ara
n

trim
ara

n
wrec

k
wing

warp
lan

e

tra
iler

 tru
ck

sub
mari

ne

fid
dle

r c
rab

air
shi

p
0.000

0.001

0.002

0.003

0.004

In
flu

en
ce

 S
co

re

Top

zeb
ra

bo
oks

ho
p

pro
jec

tor

ho
gn

ose
 sn

ake

zuc
chi

ni
sku

nk

gu
aca

mole

spi
de

r w
eb

dis
k b

rak
e

Mod
el

T

dis
hra

g
aco

rn

tro
mbo

ne

Grea
t P

yre
ne

es

spi
de

r m
on

key
0.0008

0.0006

0.0004

0.0002

0.0000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: ship

tra
iler

 tru
ck

ga
rba

ge
 tru

ck

mov
ing

 va
n

con
ve

rtib
le

spo
rts

 ca
r

cab

fire
 en

gin
e

tow
 tru

ck
pic

kup

be
ach

 wag
on

miniv
an

ele
ctr

ic l
oco

moti
ve

rac
er

rec
rea

tio
na

l ve
hic

le

tro
lley

bu
s

0.000

0.002

0.004

In
flu

en
ce

 S
co

re

Top

Ameri
can

 bl
ack

 be
ar

jac
kfr

uit

cha
in

mail

ha
ir s

pra
y

rai
n b

arr
el

Eu
rop

ea
n f

ire
 sa

lam
an

de
r

ho
tdo

g

clu
mbe

r

pre
tze

l

sno
wmob

ile

pla
stic

 ba
g

Germ
an

 sh
ep

he
rd

bu
ll m

ast
iff

ha
rp

cro
ssw

ord
 pu

zzl
e

0.0006

0.0004

0.0002

0.0000

In
flu

en
ce

 S
co

re

Bottom

CIFAR10: truck

Figure H.6: Top and bottom influencing ImageNet classes for all CIFAR-10 classes.

270

H.5.2 More examples of extracted subpopulations from the target dataset

Here, we depict more examples of extracting subpopulations from the target dataset (as in
Figure 8.4).

ImageNet: airliner Most positively influenced CIFAR

(a) Airliner
ImageNet: cab Most positively influenced CIFAR

(b) Cab
ImageNet: Japanese spaniel Most positively influenced CIFAR

(c) Japanese Spaniel
ImageNet: ocean liner Most positively influenced CIFAR

(d) Ocean Liner

Figure H.7: For each ImageNet class, we show the CIFAR-10 examples which were most
positively influenced by that ImageNet class.

271

H.5.3 More examples of transfer of shape and texture feature

We depict more examples of ImageNet influencers which transfer shape or texture features
(as in Figure 8.5).

ImageNet: indigo bunting

Most positively influenced CIFAR Most negatively influenced CIFAR

(a) Indigo Bunting
ImageNet: gondola

Most positively influenced CIFAR Most negatively influenced CIFAR

(b) Gondola
ImageNet: tree frog

Most positively influenced CIFAR Most negatively influenced CIFAR

(c) Tree Frog

Figure H.8: For each ImageNet class, we show the CIFAR-10 examples which were most
highly influenced by that ImageNet class.

272

H.5.4 More examples of debugging mistakes of transfer model

We display more examples of how our influences can be used to debug the mistakes of
the transfer model, as presented in Figure 8.6. We find that, in most cases (Figure H.9a,
H.9b, H.9c), removing the top negative influencer improves the model’s performance on
the particular image.

deer

sor
rel

 ho
rse

gre
en

ho
use

pa
ral

lel
ba

rs ha
y

hy
en

a

car
dig

an

0.06

0.04

0.02

0.00
In

flu
en

ce
 S

co
re

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y
Pr

ed
ict

ed Full Imagenet
Without sorrel horse

(a)
truck

lim
ou

sin
e

ga
rba

ge
 tru

ck

spo
rts

 ca
r

for
klif

t

tra
iler

 tru
ck yu

rt

0.06

0.04

0.02

0.00

In
flu

en
ce

 S
co

re

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y
Pr

ed
ict

ed Full Imagenet
Without limousine

(b)
bird

sta
rfis

h
chu

rch alp
ost

ric
h

cof
fee

po
t

bir
dh

ou
se

0.06

0.04

0.02

0.00

In
flu

en
ce

 S
co

re

air
pla

ne

au
tom

ob
ile bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0.0

0.2

0.4

0.6

0.8

Fr
eq

ue
nc

y
Pr

ed
ict

ed Full Imagenet
Without starfish

(c)

Figure H.9: More examples of debugging transfer mistakes through our framework (cf.
Figure 8.6). For each CIFAR-10 image (left), we plot their most negative influencers
(middle). On the right, we plot for each image the fraction (over 20 runs) of times that our
transfer model predicts each class with and without the most negative influencer.

273

Quantitative analysis. How often does removing the most negative influencer actually
improve the prediction on an image? For each of the following 14 classes, we run 20 runs
of the ImageNet → CIFAR-10 fixed transfer pipeline while excluding that single class
from the source dataset: [“sorrel horse”, “limousine”, “minivan”, “fireboat”, “ocean liner”,
“Arabian camel”, “Persian cat”, “ostrich”, “gondola”, “pool table”, “starfish”, “rapeseed”,
“tailed frog”, “trailer truck”]. We compare against running the pipeline with 20 runs of
the entire ImageNet dataset. Then, we look at individual CIFAR-10 images which were
highly negatively influenced by one of these ImageNet classes, and check whether the
images were predicted correctly more or less often when the top negative influencers were
removed from the source dataset.

Of the 30 most negatively influenced ImageNet class/CIFAR-10 image pairs, 26 of
them had the most negative ImageNet influencer in the above classes. Of those, 61.5%
were predicted correctly more often when the negatively influential ImageNet class was
removed, 34.6% were predicted incorrectly more often, and 3.9% were predicted correctly
the same number of times.

We then examine the top 8 most influenced CIFAR-10 images for each of the above 14
ImageNet classes. Of those 112 images, 53% were predicted correctly more often when the
image was removed, 34% were predicted incorrectly more often, and 14% were predicted
correctly the same number of times.

We thus find that, for the most influenced CIFAR-10 images, removing the top negative
influencer usually improves that specific image’s prediction (even though we are removing
training data from the source dataset).

H.5.5 Do Influences Transfer?

Transfer across datasets

In this section, we seek to understand how much task-specific information is in the transfer
influences that we compute. To do so, we use the transfer influences computed for CIFAR-
10 in order to perform the counterfactual experiments for other datasets. We find that
while using the CIFAR-10 influence values for other target datasets is more meaningful
than random, they do not provide the same boost in performance when removing bottom
influencers as using the task-specific influences. We thus conclude that the influence values
computed by our framework are relatively task-specific.

274

0 200 400 600 800 1000
Excluding K ImageNet Classes

15

20

25

30

35

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(a) AIRCRAFT

0 200 400 600 800 1000
Excluding K ImageNet Classes

5

10

15

20

25

30

35

40

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(b) BIRDSNAP

0 200 400 600 800 1000
Excluding K ImageNet Classes

55

60

65

70

75

80

85

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(c) CALTECH101

0 200 400 600 800 1000
Excluding K ImageNet Classes

30

40

50

60

70

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(d) CALTECH2556

0 200 400 600 800 1000
Excluding K ImageNet Classes

10

15

20

25

30

35

40

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(e) CARS

0 200 400 600 800 1000
Excluding K ImageNet Classes

35

40

45

50

55

60

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(f) CIFAR100

0 200 400 600 800 1000
Excluding K ImageNet Classes

40

50

60

70

80

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(g) FLOWERS

0 200 400 600 800 1000
Excluding K ImageNet Classes

25

30

35

40

45

50

55

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(h) FOOD

0 200 400 600 800 1000
Excluding K ImageNet Classes

30

40

50

60

70

80

90

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(i) PETS

0 200 400 600 800 1000
Excluding K ImageNet Classes

20

25

30

35

40

45

50

Ta
rg

et
 Ta

sk
 A

cc
ur

ac
y

Method
Task Specific Influencers
CIFAR10 Influencers
Full ImageNet
Random Subsets
Order
Most Negative
Most Positive

(j) SUN397

Figure H.10: We repeat the counterfactual experiments (cf. Figure 8.2b) but using the
influence values computed for CIFAR-10 on other target datasets.

275

Transfer across architectures

How well do our transfer influences work across architectures? Recall that we computed
our transfer influences using a ResNet-18. We now repeat the counterfactual experiment
from Figure 8.2b, using these influences to remove classes from the source dataset when
training a ResNet-50. We find that these influences transfer relatively well.

0 200 400 600 800 1000
Excluding K ImageNet Classes

70

75

80

85
Ta

rg
et

 Ta
sk

 A
cc

ur
ac

y

Most Negative
Most Positive
Full ImageNet

Figure H.11: We repeat the counterfactual experiments (cf. Figure 8.2b) but use our
influence values computed using a ResNet-18 on a ResNet-50.

H.6 Further Convergence Analysis

In this section, we analyze the sample complexity of our influence estimation in more
detail. In particular, our goal is to understand how the quality of influence estimates
improves with the number of models trained. We also look at the impact of different
choices of model outputs.

Instead of directly measuring our downstream objective (transfer accuracy on target
dataset after removing the most influential classes), which is expensive, we design two
proxy metrics to gauge the convergence of our estimates:

Rank correlation. As Ilyas et al. [IPE+22] shows, we can associate influences with a
particular linear regression problem: given features 1Si , an indicator vector of the subset
of classes in the source dataset, predict the labels f (t;Si), the model’s output after it is
finetuned on target dataset T . In fact, we can interpret influences as weights corresponding
to these binary features for presence of each class. That is, the influence vector wt =

{Infl[Ci → t]}i defines a linear function that, given a subset of classes that the source

276

model is trained on, predicts the corresponding model’s output when trained on that
subset. Here, we focus on analyzing average model accuracy, so in fact we consider the
aggregate output ∑i f (t;Si) and the corresponding aggregated influences w = {Infl[Ci]}i.

Given this view, we can measure the quality of the influence estimates by measur-
ing their performance on the above regression problem on a held-out5 set of examples
{Si, ∑i f (t;Si)}. In order to make different choices of model outputs (logit, confidence,
etc.) comparable, we measure performance with spearman rank correlation between the
ground truth model outputs and the predictions of the linear model (whose weights are
given by the influences).

We measure this correlation while varying both the number of trained models used in
the influence estimation and the choice of the model output, and the results are shown in
Figure H.12.

1000 2000 3000 4000 5000 6000
num_models

0.125

0.150

0.175

0.200

0.225

0.250

0.275

sp
ea

rm
an

r

AIRCRAFT

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.45

0.50

0.55

0.60

0.65

0.70

sp
ea

rm
an

r

BIRDSNAP

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.05

0.10

0.15

0.20

0.25

0.30

0.35
sp

ea
rm

an
r

CALTECH101

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.35

0.40

0.45

0.50

0.55

0.60

sp
ea

rm
an

r

CALTECH256

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.35

0.40

0.45

0.50

0.55

0.60

sp
ea

rm
an

r

CARS

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.15

0.20

0.25

0.30

sp
ea

rm
an

r

CIFAR10

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.150

0.175

0.200

0.225

0.250

0.275

0.300

sp
ea

rm
an

r

CIFAR100

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.15

0.20

0.25

0.30

0.35
sp

ea
rm

an
r

FLOWERS
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.40

0.45

0.50

0.55

0.60

0.65

sp
ea

rm
an

r

FOOD

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.45

0.50

0.55

0.60

0.65

0.70

0.75

sp
ea

rm
an

r

PETS

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.40

0.45

0.50

0.55

0.60

0.65

sp
ea

rm
an

r

SUN397

target
is_corrects
softmax_logits
softmax_margins
raw_margins

Figure H.12: Measuring improvement in influence estimates using the rank correlation
metric. The rank correlation here measures how well influence estimates perform in the
underlying regression problem of predicting target accuracy from the subset of classes
included in the training set. We evaluate on a held-out set of subsets independent from
those used to estimate influences. Across all datasets, correlation improves significantly
with more trained models.

5We split the 7,540 models into a training set of 6,000 and a validation set of the remainder.

277

1000 2000 3000 4000 5000 6000
num_models

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

AIRCRAFT

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.30

0.35

0.40

0.45

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

BIRDSNAP
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.30

0.35

0.40

0.45

0.50

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

CALTECH101
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.20

0.25

0.30

0.35

0.40

0.45

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

CALTECH256
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

CARS
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.30

0.35

0.40

0.45

0.50

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

CIFAR10
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.25

0.30

0.35

0.40

0.45

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

CIFAR100
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.25

0.30

0.35

0.40

0.45

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

FLOWERS
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.30

0.35

0.40

0.45

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

FOOD
target

is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

PETS

target
is_corrects
softmax_logits
softmax_margins
raw_margins

1000 2000 3000 4000 5000 6000
num_models

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fa
lse

 D
isc

ov
er

y
Ra

te
 (F

DR
)

SUN397
target

is_corrects
softmax_logits
softmax_margins
raw_margins

Figure H.13: Measuring improvement in influence estimates using the False Discovery
Rate heuristic. Using a procedure (loosely) based on the Knockoffs framework, we estimate
the proportion of false discoveries within the top 100 features ranked by esteimated
influences. Across all datasets, FDR decreases generally with more trained models.

False discovery rate. Above we considered a measure based on predictive performance.
Here, we focus on a more parameter-centric notion of False Discovery Rate (FDR). Intu-
itively, FDR here quantifies the following: how often are the top influencers actually just
due to noise?

The Knockoffs [CFJ+18] framework allows one to perform feature selection and also
estimate the FDR. At a high level, it consists of two steps: First, one constructs “knockoff”
versions of the original features which are distributed “indistinguishably” (more formally,
exchangable) from the original features, and at the same time are independent of the
response by design. Second, one applies an estimation algorithm of choice (e.g., OLS or
LASSO) to the augmented data consisting of both the original and the knockoff features.
Then, the relative frequency at which a variable Xi has higher statistical signal than its
knockoff counterpart X̃i indicates how likely the algorithm chooses true features, and this
can be used to estimate the FDR (intuitively, if Xi is independent of the response y, Xi is
indistinguishable from its knockoff X̃i and both are equally likely to have higher score).

We adapt this framework here (particularly, the verion known as model-X knockoffs)

278

as follows:

1. Sample an independent knockoff matrix X̃ consisting of 1,000 binary features from
the same distribution as the original mask matrix X (namely, each instance has 500
active features).6

2. Estimate influences for both original and knockoff features using the difference-in-
means estimator.

3. Consider the top k = 100 features by positive influence, and count the proportion of
features that are knockoff. This yields an estimate of FDR among the top 100 features.
An FDR of 0.5 indicates chance-level detection.7

As with the previous metric, we measure the above FDR for each target dataset while
varying the number of trained models and the target output type (Figure H.13).

Discussion. We observe the following from the above analyses using our two statistics:

• There are significant gains (higher correlation and lower FDR) with increasing num-
ber of trained models.

• But neither metric appears to have plateaued with 6,000 models, so this indicates that
we can improve the accuracy of our influence estimates with more trained models,
which may in turn improve the max improvement in transfer accuracies (Section 8.2),
among other results.

• The choice of the target type does not appear to have a significant or consistent
impact across different datasets, which is also consistent with the results of our
counterfactual experiments (Appendix H.2.1).

6Technically, this procedure is not exactly valid in the original FDR framework as Xi and X̃i are ex-
changable due to depenencies in the features. Nonetheless, it is accurate up to some approximation.

7This is different from the usual manner of controlling the FDR, but we look at this alternative metric for
simplicity.

279

	Introduction
	I Adversarial perturbations and better ML
	Building practical certifiably robust classifiers against adversarial patches
	Certified patch defense with smoothing & transformers
	Preliminaries
	Smoothed vision transformers

	Improving certified and standard accuracies with ViTs
	ViTs outperform ResNets on image ablations.
	Ablation size matters

	Faster inference with ViTs
	Dropping masked tokens
	Empirical speed-up for smoothed ViTs

	Improving transfer learning via adversarial perturbations
	Background on Transfer Learning
	Motivation: Fixed-Feature Transfer Learning
	Adversarial Robustness and Full-Network Fine Tuning
	Analysis and Discussion
	ImageNet accuracy and transfer performance
	Robust models improve with width
	Optimal robustness levels for downstream tasks
	Comparing adversarial robustness to texture robustness

	Unadversarial examples: Designing objects for robust vision
	Motivation and approach
	Leveraging more controlled vision settings
	Unadversarial examples
	Constructing unadversarial objects

	Experimental evaluation
	Access model and baselines
	Clean data and synthetic corruptions
	Classification in 3D simulation
	Localization for (simulated) drone landing
	Physical-world unadversarial examples

	Raising the cost of malicious AI-based manipulation
	Preliminaries
	Diffusion Models
	Adversarial Attacks

	Adversarially Attacking Latent Diffusion Models
	Results
	Qualitative Results
	Quantitative Results

	A Techno-Policy Approach to Mitigation of AI-Powered Editing

	II Understanding the underpinnings of reliable ML deployment
	Model debugging and the missingness bias
	Missingness
	Missingness bias
	A more natural form of missingness via vision transformers

	The impacts of missingness bias
	Missingness bias in practice: a case study on LIME

	Debugging computer vision models with 3DB
	Designing 3DB
	Debugging and analyzing models with 3DB
	Sensitivity to image backgrounds
	Texture-shape bias
	Orientation and scale dependence
	Case study: using 3DB to dive deeper

	Physical realism
	Extensibility

	When does bias transfer in transfer learning?
	Biases Can Transfer
	Exploring the Landscape of Bias Transfer
	Bias consistently transfers in the fixed-feature transfer setting
	Factors mitigating bias transfer

	Bias Transfer Beyond Backdoor Attacks
	Transferring co-occurrence biases in object recognition
	Transferring gender bias in facial recognition

	Bias Transfer in the Wild

	A data-based framework for studying transfer learning
	A Data-Based Framework for Studying Transfer Learning
	Identifying the Most Influential Classes of the Source Dataset
	Probing the Impact of the Source Dataset on Transfer Learning
	Capability 1: Extracting target subpopulations
	Capability 2: Debugging the failures of a transferred model
	Capability 3: Detecting data leakage and misleading source examples

	Appendix
	Additional details for Chapter 1
	Experimental setup
	Models and architectures
	Datasets
	Training parameters
	Compute and timing experiments
	Example ablations
	Differences in setup from levine2020randomized

	Ablation sweeps
	Train-time ablation
	Test-time ablations

	Dropping tokens for ViTs
	Computational complexity of ViTs with dropped tokens
	Effect of dropping tokens on speed
	Effect of dropping tokens on performance

	Strided ablations
	Certification thresholds for strided ablation sets
	Performance under strided ablations

	Block smoothing
	Practical inference speeds for block smoothing

	Extended experimental results

	Additional details for Chapter 2
	Experimental Setup
	Pretrained ImageNet models
	ImageNet transfer to classification datasets
	Unifying dataset scale
	Replicate our results

	Transfer Learning with -robust ImageNet models
	Object Detection and Instance Segmentation
	Background on Adversarially Robust Models
	Omitted Figures
	Full-network Transfer: additional results to Figure 2.5
	Varying architecture: additional results to Table 2.2
	Unified scale: additional results to Figure 2.7
	Stylized ImageNet Transfer: additional results to Figure 2.8b
	Effect of width: additional results to Figure 2.6

	Detailed Numerical Results
	Fixed-feature transfer to classification tasks (Fig. 2.5)
	Full-network transfer to classification tasks (Fig. 2.3)
	Unifying dataset scale

	Additional details for Chapter 3
	3D Simulation Details
	Overview of AirSim
	3D Boosters Classification Experiment
	Drone Landing Experiment

	Experimental Setup
	Pretrained vision models we evaluate
	Unadversarial patch/texture training details
	Details of the physical world experiment
	Datasets
	Compute
	Replicate our results

	Omitted Results
	Corruption benchmark main results: additional results to Figure 3.3b
	Baselines

	Additional details for Chapter 4
	Experimental Setup
	Details of the diffusion model we used
	Our attacks details

	Extended Background for Diffusion Models
	Additional Results
	Additional quantitative results
	Generating Image Variations using Textual Prompts
	Image Editing via Inpainting

	Additional details for Chapter 5
	Experimental details.
	Models and architectures
	Training Details
	Experimental Details for Section 5.2
	Experimental Details for Section 5.3

	Implementing missingness by dropping tokens in vision transformers
	Additional experiments (Section 5.2)
	Additional examples of the bias (Similar to Figure 5.2).
	Bias for removing patches in various orders
	Results for different architectures
	Results for different missingness approximations
	Using differently sized patches
	Using superpixels instead of patches
	Comparison of dropping tokens vs blacking out pixels for ViTs

	Additional experiments (Section 5.3)
	Examples of LIME
	Top-k ablation test with superpixels.
	Effects of Missingness Bias on Learned Masks

	Other Datasets
	MS-COCO
	CIFAR-10

	Relationship to ROAR
	Overview on ROAR
	ViTs do not require retraining

	Additional details for Chapter 6
	Experiment dashboard
	iPhone app
	Controls
	Additional experiments details
	Sensitivity to image backgrounds (Section 6.2.1)
	Texture-shape bias (section 6.2.2)
	Orientation and scale dependence (Section 6.2.3)
	3D models heatmaps (Figure 6.12)
	Case study: using 3DB to dive deeper (Section 6.2.4)
	Physical realism (Section 6.3)

	Omitted figures

	Additional details for Chapter 7
	Experimental Setup
	ImageNet Models
	Transfer details from ImageNet to downstream image classification
	Compute and training time
	Varying architectures
	The effect of weight decay in full-network transfer learning
	Clean accuracies for experiments of Section 7.2
	Comparison with models trained from scratch (Additional results to Section 7.2)
	MS-COCO
	CelebA

	ImageNet Biases
	Chainlink fence bias.
	Hat bias.
	Tennis ball bias.

	Additional details for Chapter 8
	Experimental Setup
	ImageNet Models
	ImageNet transfer to classification datasets
	Compute and training time.
	Handpicked baseline details
	Convergence Analysis

	Variants of Computing Influences
	Variations of targets for computing transfer influences

	Full Counterfactual Experiment
	Adapting our Framework to Compute the Effect of Every Source Datapoint on Transfer Learning
	Omitted Results
	Per-class influencers
	More examples of extracted subpopulations from the target dataset
	More examples of transfer of shape and texture feature
	More examples of debugging mistakes of transfer model
	Do Influences Transfer?

	Further Convergence Analysis

