
Verifying the Performance of Network Control
Algorithms

by
Venkat Arun

B.Tech. Indian Institute of Technology, Guwahati (2017)
M.S. Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2023

©2023 Venkat Arun. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free

license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an

open-access license.

Authored by: Venkat Arun
Department of Electrical Engineering and Computer Science
August 31, 2023

Certified by: Hari Balakrishnan
Fujitsu Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by: Mohammad Alizadeh
Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Verifying the Performance of Network Control Algorithms

by

Venkat Arun

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

As networked systems become critical infrastructure, their design must reflect their
new societal role. Today, we build systems with hundreds of heuristics but often
do not understand their inherent and emergent behaviors. This dissertation presents,
performance verification, a set of tools and techniques to prove performance properties
of heuristics running in real-world conditions. It provides an alternative to queuing
and control theory, which are typically too optimistic about performance because of
their limited capacity to accurately model real-world phenomena. Overly optimistic
analysis can lead to heuristic designs that fail in unexpected ways upon deployment.
Rigorous proofs on the other hand, can not only inspire confidence in our designs,
but also give counter-intuitive insights about their performance.

A key theme in our approach is to model uncertainty in systems using non-random,
non-deterministic objects that cover a wide range of possible behaviors under a single
abstraction. Such models allow us to analyze complex system behaviors using auto-
mated reasoning techniques. We will present automated tools to analyze congestion
control and process scheduling algorithms. These tools prove performance properties
and find counter-examples where widely deployed heuristics fail. We will also prove
that current end-to-end congestion control algorithms that bound delay cannot avoid
starvation.

Thesis Supervisor: Hari Balakrishnan
Title: Fujitsu Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Mohammad Alizadeh
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

First, I would like to thank my advisors, Hari and Mohammad. I have learned a

lot from both of them. In particular, Hari has taught me to focus on practical

applications and to understand who benefits from my work. I also hope to learn how

to communicate with his clarity and precision. Mohammad, through his advice and

his other work, inspired me to seek solid truths even in the complexity of networked

systems. He has also shown me that it is fruitful to stick with a research agenda for

many years. Most of all, I would like to thank both of them for striking the right

balance between letting me pursue my interests, stopping me from making mistakes

and encouraging me when I needed it the most.

Next, I would like to thank my collaborators, Aditya Akella, Ahmed Saeed, Akshay

Narayan, Anand Sarwate, Anirudh Sivaraman, Anup Agarwal, Ben Mikek, Devdeep

Ray, Emily Marx, Frank Cangialosi, Hamsa Balakrishnan, Jehad Aly, Junchen Jiang,

Karthik Gopalakrishnan, Mina Tahmasbi Arashloo, Neil Agarwal, Prateesh Goyal,

Radhika Mittal, Rahul Bothra, Ravi Netravali, Ruben Martins, Saksham Goel, Scott

Shenker, Srinivas Narayana, Srinivasan Seshan, Sudarsanan Rajasekaran, Vikram

Nathan, Will Sussman, and Zili Meng. They have helped me in many ways, ranging

from brainstorming ideas and adding new perspectives to making research a fun

enterprise with friends.

I would like to thank my lab-mates and people of G9 for making me look want to

come in to lab every day and still spend time with them outside of work.

Most importantly, I would like to thank my family. They have created, enabled

and shaped every aspect of my life. No acknowledgments section can do justice to

them.

5

6

Contents

1 Introduction 19

1.1 Traditional analysis is overly optimistic 21

1.1.1 Quick primer on congestion control, AIMD and simple network

models . 21

1.1.2 AIMD on more complex networks 22

1.1.3 Macroscopic effects of microscopic delay jitter 24

1.2 Performance verification overview . 25

1.2.1 Modeling strategy . 25

1.2.2 The properties we want to prove 27

1.2.3 How we get computers to help us 28

1.3 Summary of contributions . 29

2 Related work 33

2.1 Congestion control . 33

2.2 Formal verification . 36

3 Overview of our work on congestion control 37

3.1 Verifying the performance of congestion control 37

3.1.1 Overview of CCAC . 38

3.2 Starvation in congestion control . 41

3.2.1 Delay-convergence . 43

3.2.2 Example of starvation . 45

3.3 Copa: a new delay-based CCA . 46

7

4 Congestion control path model 47

4.1 A simple model that assumes infinite buffers 47

4.2 The full model that allows for finite buffers 50

4.2.1 The set of paths the model captures 54

4.2.2 Expressing CCAs . 56

4.3 Discussion of modeling choices . 57

5 Formal analysis using an SMT solver 59

5.1 Expressing CCAs . 61

5.2 Parameters and linearity . 63

6 CCAC case studies 65

6.1 Case study 1: BBR . 66

6.2 Case study 2: AIMD . 68

6.2.1 The surprise . 68

6.2.2 AIMD’s steady-state analysis 72

6.3 Case study 3: Copa . 74

6.3.1 Worst-case utilization . 75

6.3.2 Copa’s steady-state analysis 77

7 Statement and proof of the starvation theorem 81

7.1 Extension of our network model . 81

7.2 Definitions . 82

7.3 Starvation theorem . 83

8 Starvation in the real-world 89

8.1 Vegas, FAST, and Copa . 90

8.2 BBR . 90

8.3 PCC Vivace . 93

8.4 Loss-based CCAs . 94

8

9 Implications of the starvation result 97

9.1 Is an 𝑓 -efficient, delay-convergent CCA achievable? 97

9.2 Larger oscillations may avoid starvation 99

9.3 Avoiding starvation in a bounded rate range 100

9.4 An absolute upper bound . 103

10 Limitations of our congestion control analysis method 105

11 Copa: A new delay-based congestion control algorithm 107

11.1 The algorithm . 108

11.1.1 Competing with buffer-filling schemes 110

11.1.2 Application-layer benefits . 111

11.2 Dynamics of Copa . 112

11.3 Justification of the Copa target rate 114

11.3.1 Objective function and Nash equilibrium 115

11.3.2 The Copa update rule follows from the equilibrium rate 117

11.3.3 Properties of the equilibrium 118

11.4 Evaluation . 119

11.4.1 Dynamic behavior over emulated links 120

11.4.2 Real-world evaluation . 121

11.4.3 RTT-fairness . 123

11.4.4 Robustness to packet loss . 124

11.4.5 Simulated datacenter network 125

11.4.6 Emulated satellite links . 127

11.4.7 Co-existence with buffer-filling schemes 128

12 Future work 131

12.1 Beyond verification: automatically synthesizing provably performant

heuristics . 131

12.1.1 Challenge: what signals do we monitor? 132

12.1.2 Challenge: how do we synthesize heuristics automatically? . . 132

9

12.2 Verifying the end-to-end performance of systems 133

12.3 Making performance verification easier to use 134

13 Conclusion 137

A Appendix 139

A.1 CCAC extensions . 139

A.2 AIMD counterexample in detail . 140

A.3 More SMT details . 142

A.4 Proofs . 143

A.4.1 Case 1: Second path-server is faster 144

A.4.2 Case 2: First path-server is faster 146

A.5 Proof of starvation of delay-convergent algorithms 148

A.6 Proof of the absolute upper bound 151

10

List of Figures

1-1 Time evolution of the cwnd of AIMD on an ideal link 22

1-2 Time evolution of cwnd of AIMD on a bursty link 23

1-3 Congestion window evolution when two flows are run on a 6 Mbit/s,

60 ms link and 60 packets (1 BDP) of buffer. The lower flow’s receiver

uses delayed ACKs of up to 4 packets while the other ACKs every

packet. The CCAs used are Reno (left) and Cubic (right). The ratio

of throughput obtained between the two flows is 2.7× and 3.2× for

Reno and Cubic respectively. 24

3-1 Query used to discover instances where AIMD can cause loss prema-

turely. 𝑐𝑎𝑛_𝑖𝑛𝑐𝑟 and 𝑐𝑎𝑛_𝑑𝑒𝑐𝑟 prevent AIMD from increasing/decreasing

more than once per RTT. 39

3-2 Ideal-path behavior of a delay-convergent CCA, 𝒜. 44

3-3 The rate-delay graph for a hypothetical delay-convergent algorithm.

The 𝐶 of the ideal path varies while its 𝑅𝑚 is fixed. 44

3-4 How various delay-bounding CCAs map delay to sending rates for vari-

ous CCAs. The shaded region shows 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 for each algorithm.

BBR has two modes (shown). The region’s width is 𝛿(𝐶). For Vegas,

FAST and BBR (cwnd limited), 𝑑𝑚𝑎𝑥 = 𝑑𝑚𝑖𝑛, hence it is a line, not a

region. For them, 𝛿(𝐶) = 0. Section 8 describes how these mappings

arise from the dynamics of these algorithms. Delay increases as 𝐶 → 0

for all CCAs since a transmission delay of 1/𝐶 is unavoidable. 45

4-1 The simple network model of the loop between the sender and receiver. 48

11

4-2 CCAC’s path model. 51

4-3 Graphical representation of the constraints. 53

4-4 Examples of how the path-server emulates a token bucket filter and

link-layer aggregation. 56

5-1 (A) While the bounds on 𝑆(𝑡) in the continuous model look like the

dotted lines, we over-approximate that region using the solid lines as

bounds. (B) In the discrete model, the queuing delay at time 𝑡 can be

any value between the upper and lower bounds. 60

6-1 Network behavior generated by CCAC that prevents BBR from dis-

covering bandwidth. 66

6-2 An example where ACK aggregation causes loss even when the con-

gestion window is small. 68

6-3 At the end of this sequence of packets, 1) the sender has reduced its

cwnd from 4𝐶𝑅𝑚 to 2𝐶𝑅𝑚 due to loss, 2) the server has dropped

𝐶𝑅𝑚 packets 3) inflight = cwnd = 2𝐶𝑅𝑚 making the sender ready for

another burst. Packets go from left to right. 69

6-4 State diagram we use to prove AIMD and Copa’s steady-state behavior. 72

6-5 A trace generated by CCAC that causes Copa to severely under-utilize

network capacity. Here, 𝐶 = 1𝐵𝐷𝑃/𝑅𝑚 and Copa is severely under-

utilizing the link. A network can have a standing delay when it has

more than a single box, even if the individual boxes do not maintain a

standing queue. 𝑆2(𝑡) and 𝐴1(𝑡) denote 𝑆 and 𝐴 of the first and second

boxes respectively. 77

7-1 The simple network model for multiple flows 82

12

8-1 Congestion window evolution when two flows are run on a 6 Mbit/s,

60 ms link and 60 packets (1 BDP) of buffer. The lower flow’s receiver

uses delayed ACKs of up to 4 packets while the other ACKs every

packet. The CCAs used are Reno (left) and Cubic (right). The ratio

of throughput obtained between the two flows is 2.7× and 3.2× for

Reno and Cubic respectively. 94

11-1 One Copa cycle: Evolution of queue length with time. Copa switches

direction at change points A and B when the standing queue length

estimated by RTTstanding crosses the threshold of 𝛿−1. RTTstanding

is the smallest RTT in the last srtt/2 window of ACKs packets (shaded

region). Feedback on current actions is delayed by 1 RTT in the net-

work. The slope of the line is ±𝛿 packets per RTT. 112

11-2 Congestion window and RTT as a function of time for a Copa flow run-

ning on a 12 Mbit/s Mahimahi [112] emulated link. As predicted, the

period of oscillation is ≈ 5 RTT and amplitude is ≈ 5 packets. The emu-

lator’s scheduling policies cause irregularities in the RTT measurement,

but Copa is immune to such irregularities because the cwnd evolution

depends only on comparing RTTstanding to a threshold. 113

11-3 Mean ± std. deviation of rates of 10 flows as they enter and leave an

emulated network once a second. The black line indicates the ideal

fair allocation. Graphs for BBR, Cubic, and PCC are shown alongside

Copa in each figure for comparison. Copa and Cubic flows follow the

ideal allocation closely. 120

11-4 A CDF of the Jain indices (higher the better) obtained at various time

slots for the dynamic behavior experiment (§11.4.1). Copa achieves

the highest median Jain fairness index of 0.93 while Cubic, BBR and

PCC achieve median indices of 0.90, 0.73 and 0.60 respectively. 120

13

11-5 Real-world experiments on Pantheon paths: Average normalized through-

put vs. queuing delay achieved by various congestion control algo-

rithms under two different types of internet connections. Each type is

averaged over several runs over 6 internet paths. Note the very dif-

ferent axis ranges in the two graphs. The 𝑥-axis is flipped and in log

scale. Copa achieves consistently low queuing delay and high through-

put in both types of networks. Note that schemes such as Sprout,

Verus, and Vivace LTE are designed specifically for cellular networks.

Other schemes that do well in one type of network don’t do well on

the other type. On wired Ethernet paths, Copa’s delays are 10× lower

than BBR and Cubic, with only a modest mean throughput reduction. 122

11-6 RTT-fairness of various schemes. Throughput of 20 long-running flows

sharing a 100 Mbit/s simulated bottleneck link versus their respective

propagation delays. “Copa D” is Copa in the default mode without

mode switching. “Copa” is the full algorithm. “Ideal” shows the fair

allocation, which “Copa D” matches. Notice the log scale on the y-axis.

Schemes other than Copa allocate little bandwidth to flows with large

RTTs. 123

11-7 Performance of various schemes in the presence of stochastic packet

loss over a 12 Mbit/s emulated link with a 50 ms RTT. 125

11-8 Flow completion times achieved by various schemes in a simulated

datacenter environment. Note the log scale. 126

11-9 Throughput vs. delay plot for an emulated satellite link. Notice that

algorithms that are not very loss sensitive (including PCC, which ig-

nores small loss rates) all do well on throughput, but the delay-sensitive

ones get substantially lower delay as well. Note the log-scale. 127

14

11-10Different schemes co-existing on the same emulated bottleneck as Cu-

bic. We plot the mean and standard deviation of the ratio of each

flow’s throughput to the ideal fair rate. Ideally the ratio should be 1.

The mean is over several runs of randomly sampled networks. The left

and right bars show the value for the scheme being tested and Cubic

respectively. Copa is much fairer than BBR and PCC to Cubic. It also

uses bandwidth that Cubic does not utilize to get higher throughput

without hurting Cubic. 129

A-1 A trace of how a burst of 2𝐶𝐷 bytes can be orchestrated by combining

the two mechanisms in §6.2 . 141

15

16

List of Tables

4.1 Glossary of symbols. 51

17

18

Chapter 1

Introduction

The internet has evolved from being a novelty to being critical infrastructure. Yet its

design does not reflect this new need. For instance networked systems rely on tens

of heuristics to allocate resources to users and tasks. Examples include congestion

control, CPU scheduling and load balancing, caching, wireless scheduling and cluster

provisioning algorithms. While these heuristics work well most of the time, they ex-

hibit pathological behaviors where their decisions severely degrade performance. As

a result, networked systems today deliver unreliable performance, even when all com-

ponents function as intended and ample resources are available to meet the demand.

Designing robust heuristics whose behavior we fully understand has been challeng-

ing. Designers often use queuing and control theory to understand heuristic behavior,

a tradition that dates back to Kleinrock [84, 85]. This style of mathematical analysis

is overly optimistic because it makes several simplifying assumptions. For instance, it

assumes that traffic arrives as a stochastic (often Poisson) process, that packet service

times are independent and identically distributed random variables or that overheads

such as CPU context-switching and wireless channel setup costs are negligible.

Because of such assumptions, this type of analysis is only useful for obtaining

coarse-grained guidance on system design or for explaining system behavior “after-the-

fact”. Heuristics must undergo several rounds of design iteration guided by empirical

experiments before they are fit for deployment. The most widely deployed heuristics,

such as congestion control and CPU scheduling, have undergone decades of iteration.

19

In spite of this, practically relevant performance issues are regularly discovered [95,

64, 14, 123].

It is worth noting that resource allocation heuristics themselves are often simple

and can be described in tens of lines of pseudo-code. The complexity stems from the

emergent behavior of the system.

This dissertation introduces performance verification as a viable alternative to

queuing and control theory, to better bridge the gap between theory and practice.

It incorporates two ideas that enable proofs to take a more active role in designing

networked systems. First, it proposes a methodology to capture the complexity of

real-world systems in mathematical models without requiring a detailed understand-

ing of all the code and hardware in the system. The key idea is to prove worst-case

properties over non-deterministic models of the environment. In contrast, queuing

and control theoretic analysis of networked systems prove statistical properties over

stochastic models.

Second, it uses automated reasoning techniques [35] to prove (or disprove) perfor-

mance properties of resource allocation heuristics under these models. The complexity

of the real-world makes purely hand-written proofs infeasible. Automated tools can

help search through combinatorially many possibilities. It is thus able to use methods

developed to verify the correctness of computer programs to verify the performance

behaviors of networked systems.

We first developed performance verification to better understand the performance

of internet congestion control algorithms. Later we realized that the technique is more

general and applied it to other domains such as processor scheduling in operating

systems and flow synchronization in machine learning clusters.

This dissertation is a first step toward developing performance verification. Chap-

ter 12 outlines a future research agenda that aims to make performance verification

more powerful and easy to use. We hope that it will help make networked systems

of the future have predictable performance by becoming a standard part of their

engineering workflow.

20

1.1 Traditional analysis is overly optimistic

To see where traditional analysis misses real-world phenomena to produce overly opti-

mistic results, consider the classic Additive Increase, Multiplicative Decrease (AIMD)

congestion control algorithm (CCA). Using performance verification, we discovered

instances where AIMD’s performance is much worse than classical analysis indicated.

1.1.1 Quick primer on congestion control, AIMD and simple

network models

CCAs are distributed algorithms that decide how quickly a flow of data can be trans-

mitted over a network. They need to send data fast enough to fully and fairly utilize

available network capacity, yet not so fast that packets get delayed or dropped. CCAs

typically run on the sender, an use acknowledgments (ACKs) sent by the receiver upon

receipt of each packet to determine the sending rate. If the ACKs get excessively de-

layed or indicates that a packet is lost, the CCA infers that the network is congested

and slows down.

The AIMD algorithm works by maintaining a congestion window (cwnd), which is

a number that represents the maximum number of bytes that can be in flight at any

point in time. After sending the first cwnd bytes of data, the sender can only send

new packets if cwnd increases or when previously sent data is either acknowledged or

determined to be lost.

It is common practice to characterize network paths using their “bandwidth-delay

product (BDP)”, which is the product of the bandwidth of the bottleneck link in the

network path and the round trip time (RTT) of the network path in the absence

of congestion. Under simplifying assumptions, the network is fully utilized when

cwnd > BDP. However if cwnd > BDP+ 𝛽, where 𝛽 is the buffer size of the bottleneck

link, the bottleneck link drops packets. Thus AIMD seeks to maintain cwnd between

the BDP and BDP + 𝛽. To do so, it increments cwnd by one packet once every RTT

(additive increase). If it detects that a packet was dropped, say because cwnd exceeded

BDP+ 𝛽, it halves the cwnd (multiplicative decrease).

21

Time (in # of RTTs)

C
on

ge
st

io
n

W
in

do
w

BDP + buffer size

BDP

Figure 1-1: Time evolution of the cwnd of AIMD on an ideal link

1.1.2 AIMD on more complex networks

Traditional analysis of AIMD, like the one given above, ignores variations in packet

RTT caused by reasons other than queuing at the bottleneck. Reality is often more

complicated. For instance, wireless links like Wi-Fi use “frame aggregation” to im-

prove MAC-layer efficiency by sending packets in bursts. These generate transport-

layer ACK bursts. When ACKs arrive in a burst, however, we know that the sender

will respond by sending new packets in a burst.1 These bursts can cause premature

packet drops, causing AIMD to reduce its window to be smaller than the BDP as

shown in figure 1-2. This can cause it to under-utilize the link, defeating the purpose

of the Wi-Fi mechanism.

A surprising corner-case

One way to capture this phenomenon is to say that loss happens not when cwnd

exceeds BDP + 𝛽, but when it exceeds BDP + 𝛽 − max_burst_size. However, this

patch also proves insufficient. For instance, our formal analysis uncovered a problem

where AIMD can send a burst of packets when it detects a large number of losses.

Ideally, this is the time to be conservative and avoid sending a burst! Intuitively,

one might expect that this cannot happen because AIMD would decrease its cwnd by

1Burst transmissions can happen even with a paced sender, because implementations (including
the Linux kernel [110]) often pace packets faster than the estimated rate to avoid under-utilization.

22

Time (in # of RTTs)

C
on

ge
st

io
n

W
in

do
w

BDP + buffer size

Premature loss due to bursty
packet arrival at bottleneck

BDP

Underutilization

Figure 1-2: Time evolution of cwnd of AIMD on a bursty link

half. Our method generated a counterexample that sidesteps this mitigation. In the

counterexample, loss happens in two bursts. When the sender detects the second burst

of losses, the cwnd has already been halved once and will not be halved again since

the losses belong to the same window of data [46]. Instead, the loss prompts a burst

of packets from the sender, which triggers another loss. Through this mechanism,

AIMD can drop its cwnd twice in quick succession, leading to utilization as low as

50% even when the buffer is as large as 2 BDP. In contrast, simple network models

optimistically predict full utilization for any buffer size larger than 1 BDP. Although

IETF RFCs have included mitigations for such situations [46], our counter-example

sidesteps them. We discuss this counterexample in more detail in Section 6.2.

Prior mathematical methods of congestion control fail to characterize these be-

haviors because they ignore complex short timescale behaviors (i.e. shorter than an

RTT). We find that short timescale behaviors strongly influence the performance of a

CCA, sometimes degrading utilization by an order of magnitude (see §6.1, §6.2 and,

§6.3). Our method of performance verification fills this gap in our understanding of

such behaviors. It uncovers surprising CCA behaviors that the users or designers

of the CCAs may not have anticipated. In addition, it helps prove bounds on the

performance of CCAs, including on steady-state behavior.

23

1.1.3 Macroscopic effects of microscopic delay jitter

In the above examples, larger bursts lead to lower utilization. While large bursts,

sometimes going up to 100 ms, are common on the internet, there are other scenar-

ios where even a small delay jitter can have a large effect. For instance, suppose

two AIMD flows are sharing a common bottleneck, but one of them is well-paced

while the other sends packets in small bursts. This situation can occur with generic

segment offloading (GSO) [1] used by the sender for CPU efficiency, WiFi frame ag-

gregation [59], or delayed ACKs [72, 26]. As the queue gets nearly full, the flow that

sends packets in bursts is more likely to lose packets. When this happens, this flow

reduces its cwnd and the queue stops being full until a while later when again the

bursty flow is more likely to lose packets. The figure below illustrates this using an

ns3 [3] simulation for the Reno [65] (an instantiation of AIMD) and Cubic [61] con-

gestion control algorithms. We also reproduced similar results in a Mahimahi [112]

emulation.

 0

 40

 80

 120

 0 50 100 150 200

C
w

n
d

Time (sec)

Reno

 0 50 100 150 200

Time (sec)

Cubic

Figure 1-3: Congestion window evolution when two flows are run on a 6 Mbit/s, 60
ms link and 60 packets (1 BDP) of buffer. The lower flow’s receiver uses delayed
ACKs of up to 4 packets while the other ACKs every packet. The CCAs used are
Reno (left) and Cubic (right). The ratio of throughput obtained between the two
flows is 2.7× and 3.2× for Reno and Cubic respectively.

24

1.2 Performance verification overview

This dissertation introduces performance verification as an alternative to queuing and

control theory to bridge the gap between theory and practice. We demonstrate that it

can capture a multitude of real-world phenomena when applied to different heuristics

to obtain results that until now we inaccessible to theory:

• In analyzing CCAs, it captures complex sub-RTT phenomena [12, 11].

• In analyzing classic scheduling algorithms such as work stealing and “shortest

remaining processing time first” scheduling, it captures non-idealities such as

context-switching costs and blocking tasks [56].

• In analyzing the Linux CPU load balancer, it found new performance bugs

because it considers all possible ways in which tasks can be distributed across

CPUs [56].

We also used the technique to not only analyze, but systematically synthesize,

new CCAs that are provably performant by construction [5].

1.2.1 Modeling strategy

The key to capturing real-world complexities in a simple mathematical model is to

use non-deterministic and non-stochastic models. Such models describe the set of

ways in which the environment reacts to heuristic decisions. We want our heuristics

to perform well under all behaviors in this set. Critically, in contrast to most prior

work, it does not specify any probability distribution over that set. We made this

choice because the real world involves many complex joint probability distributions

that are hard to specify. For instance, some network routers send packets in large

groups because that is more efficient. The size of this group depends on many factors,

including link rate and the router’s queue occupancy. Modeling this requires us to

know the joint probability distribution of link rates, propagation delays, group sizes

and more. Specifying only a set of behaviors and not the associated distribution

25

greatly simplifies the modeling task. Further, we allow the model to be a superset

of environment behaviors that we wish our heuristics to be robust against. Allowing

the model to be larger can make it simpler to describe.

One can treat a non-deterministic model of the environment as an adversary.

For instance, one could have an adversary that delays network packets in any pattern

that it likes, subject to minimal constraints. If we can prove that a congestion control

algorithm (CCA) works well in this model, then it works well under all conditions

the adversary can emulate.

The key challenge, and the part where a system designer’s insight is essential, is in

determining how to restrict the adversary. The restrictions encode the assumptions

we make about the environment. They must be loose enough that most real-world

environments satisfy them. Yet they must be tight enough that a heuristic can provide

meaningful guarantees, because if the adversary is too powerful (i.e. assumptions are

too minimal), no heuristic can work. Chapter 4 discusses how we design an adversary

to reason about congestion control. We have also developed a general strategy for

designing such adversaries for other heuristics [56].

The model translates a system designer’s instincts about the real world to for-

mal mathematics. If done well, rigorous reasoning under the model will yield useful

insights for the real world. Two criteria assess the success of the modeling effort:

Is the adversary too powerful?

The adversary should be weak enough that there exists some heuristic that offers

worst-case performance guarantees under the adversary without compromising too

much on the common/ideal case. For instance, in our work on congestion control,

we designed a CCA that offers worst-case guarantees, with the only cost being that

delay is increased by a constant additive amount.

In our work we have often found that, in our models, widely deployed heuristics

fail to achieve properties that they were presumed to achieve. For instance, although

designed to achieve reasonable inter-flow fairness, we proved that current methods

to develop delay-bounding CCAs cannot always avoid starvation, an extreme form of

26

unfairness. How do we tell whether this is merely an artifact of the model or whether

such cases actually occur in practice? This requires a human expert to examine

the adversary behavior that causes the heuristic to fail and determine how often the

identified phenomenon might occur in the real world. For widely deployed CCAs, we

found that starvation occurs when network delay variations due to real-world factors

such as ACK aggregation and end-host scheduling cause different flows to estimate

congestion differently. It was easy to reproduce starvation even in simple network

scenarios.

If all identified issues have a real-world counterpart, the modeling effort has been

successful in ensuring the adversary is not too powerful. Else, the adversary needs to

be restricted further.

Is the adversary powerful enough?

This criterion is simpler to satisfy and is the main benefit of using a non-deterministic

model over a stochastic one. We simply need to prove that the adversary can emulate

each environment behavior we care about. Often we can do this for entire classes of

behaviors. For instance, an adversary that can delay packets in any pattern it likes as

long as the delay is bounded can capture any bounded probability distribution with

arbitrary dependencies between packets. Often we can also prove that the model can

capture arbitrary combinations of behaviors.

The hard part of this step is in identifying the types of behaviors that occur in the

real world. Once identified, ensuring the model can capture them is typically easy.

1.2.2 The properties we want to prove

While stochastic models predict the average or tail (e.g. 99th percentile) statistics of

throughput, delay etc., non-deterministic models predict worst-case behavior. These

can be expressed as theorems. For instance, we could prove that a CCA moves

toward the correct sending rate exponentially quickly no matter what the adversary

does. Upon reaching steady state, we prove bounds on the CCA’s worst case link

27

utilization and self-inflicted delay.

For many widely deployed heuristics, these properties do not hold. In this case,

worst case analysis can reveal weaknesses in these algorithms, giving insight into

where improvements are needed.

Worst case predictions about performance are often qualitative, rather than quan-

titative. This can make them more insightful. For instance, we found instances where

widely deployed CCAs can obtain arbitrarily low utilization or arbitrarily large un-

fairness when subjected to an adversary that can perturb packets by arbitrarily small

amounts. These statements are true in the limit that the link rate goes to infinity.

For constants that occur commonly in practice, we found that CCAs can be over 10×

away from optimal.

1.2.3 How we get computers to help us

To reason about a non-deterministic model, one must quantify over all adversary ac-

tions. This is made more complicated by the fact that, for practical reasons, heuristics

tend to have mechanisms to handle corner cases (e.g. via “if conditions”) which make

them hard to reason about analytically. In this thesis, we frequently rely on auto-

mated reasoning to explore the combinatorially many adversary actions to prove and

disprove properties about heuristics.

For this purpose, we use SMT solvers [35]. An SMT solver takes a first-order logic

formula as input. It attempts to find an assignment to the variables of that formula

such that the formula evaluates to true. If no such assignment exists, it outputs

“unsat” (for unsatisfiable). We create a formula that has a satisfying assignment if

and only if there exist adversary actions that can cause the heuristic to violate a given

property. If the solver finds an assignment, it has “broken” the heuristic under our

model. If it outputs “unsat”, it has proven that no such adversary action exists.

Humans can use the solver interactively to explore questions about heuristics by

creating variants of the original formula. They can modify the property, heuristic or

the adversary to see where heuristics do and do not break. From this exploration, they

can construct real-world scenarios where heuristics break or prove theorems about the

28

heuristics’ performance using lemmas proved automatically by the solver.

1.3 Summary of contributions

Performance verification

This dissertation uses techniques developed to verify the correctness of programs to

verify the performance of resource allocation heuristics used in computer systems.

Key to this is an approach to use non-deterministic, non-stochastic models of the

environment that capture complex real-world behaviors in simple mathematical ab-

stractions.

Congestion control

Over the past decade, numerous CCAs have been developed and deployed on the

internet. However, they all experience unexpectedly poor performance on certain

network paths, affecting users every day. In response, the research community and

industry have developed many innovative methods to improve congestion control.

Large teams of engineers in the industry work on this problem.

Congestion control is challenging because real-world network paths exhibit a wide

range of complex behaviors like wireless frame aggregation and channel quality varia-

tions, policers, end-host scheduling jitter, delayed acknowledgments, and more. A key

problem in CCA development is evaluation: how can developers, operators, and the

networking community gain confidence in any given proposal? It is impossible even

for seasoned engineers to contemplate the composition of every “weird” thing that

could happen along a path, much less model or simulate these behaviors faithfully.

This thesis develops the method of performance verification to lead to a deeper

understanding and use those methods to design better protocols. It makes three

contributions:

• CCAC [12]: We discovered a simple mathematical description that captures the

effects of these complex real-world phenomena and built a tool, CCAC, that

29

can verify performance properties of CCAs.

Using CCAC we found previously unknown ways in which three widely deployed

algorithms—AIMD, BBR and Copa—perform poorly. We were also able to use

insights from the tool to modify BBR and prove that the modified version always

converges to full utilization and bounded delay in our model. Facebook/Meta

uses this version of BBR today for most of their user-facing traffic.

The proofs produced by CCAC are the first to include the complex network be-

haviors discussed above. Prior work on congestion control has only proved prop-

erties on links whose rate is either constant or described by a simple stochastic

process.

• Starvation [11]: Encouraged that we could use CCAC to formally prove the ex-

istence of an algorithm that could achieve high utilization with bounded delays,

we turned our attention to multiple flows sharing a bottleneck link, expecting to

formally prove that this modified BBR achieved fairness. Surprisingly, the tool

found that not only was it unfair, but that it could be arbitrarily unfair—one

flow could obtain all the bandwidth, starving the other flows. We then found

that none of the other prior delay-bounding end-to-end protocols, including the

original BBR and Copa, could avoid starvation

Intriguingly, we found a property shared by all known delay-bounding end-

to-end CCAs: when run on ideal constant bit-rate links, they all maintain a

constant queue size, making small oscillations (if any) about an equilibrium.

While this looks like an intuitive and even desirable property, we proved that

any CCA with this property will definitely starve on some network path.

Does starvation occur in the real world? If so, why hasn’t it been observed

before? It is hard to detect starvation in the wild because no entity has the

visibility needed to correctly assign blame between the CCA and a genuine lack

of network capacity. This may be why it has not been noticed before. Never-

theless, starvation is easy to reproduce even in simple settings. For example,

BBR starves when the flows have different propagation delays and the network

30

has some delay-jitter of any kind. Both are extremely common on the internet.

• Copa [13]: Prior to working on CCAC, we designed a new CCA, Copa [13],

which incorporates two key ideas. First, it includes a filter that helps it dis-

tinguish queuing delay at the bottleneck from other sources of delay variations.

Second, it detects whether it is sharing a link with a non-delay-sensitive CCA

that is playing by a different, and incompatible, set of rules and adapts by tran-

sitioning to a more competitive mode. Facebook/Meta has been using Copa

for live video uploads since 2019 because it provides better performance for

their workload [51]. Experience designing Copa showed us that the key chal-

lenge in congestion control is that it is not straightforward to infer congestion

from packet delay and loss, and that the key confounding factor is the complex

behaviors exhibited by real network paths. This motivated our later work on

CCAC and starvation in congestion control.

Follow on work

I collaborated on two projects inspired by this thesis [5, 56]. The first [5] develops

conceptual, mathematical and automated tools to explore the design space of con-

gestion control algorithms. The goal is to find a CCA that provably achieves given

properties under the CCAC network model. It uses program synthesis to make the

computer output a design that is provably performant by construction. As part of

the program synthesis, it uses the automated CCAC verifier to criticize candidate

designs. Our key insight is a theorem that identifies a complete set of congestion

signals for the CCA to monitor. It proves that if there exists any CCA that achieves

good performance properties under our model, then there also exists a CCA that sets

the rate as a pure function of the congestion signals we identified. Identifying the

right congestion signals has historically been a major challenge in CCA design. Tens

of candidates have been proposed in the literature [73, 27, 9, 13, 31, 38, 152], lead-

ing to ambiguity about the “best” choice. Given a non-deterministic network model,

this theorem conclusively settles this question. Note, this project focuses on the case

31

where there is only a single flow in the bottleneck, which is a common scenario in the

internet [53, 98]. Overcoming our result on starvation in CCA remains interesting

future work.

We initially developed performance verification for understanding congestion con-

trol, but later understood its generality and developed a methodology to apply it to

other domains. In the second project [56], we undertook four case studies to demon-

strate this approach. The first demonstrated our tool’s ability to provide new insights

into work-stealing schedulers by establishing bounds on their optimality, while con-

sidering context-switching costs. Context-switching costs are hard to incorporate in

hand-written proofs. In the second case, we examined the Linux CFS load balancer’s

performance and identified a new bug that could potentially disrupt the work conser-

vation property. Our third case study demonstrated the methodology’s applicability

to resource allocation problems beyond CPU schedulers by verifying a recent obser-

vation [121] that TCP unfairness can cause traffic synchronization. In our final study,

we expanded the classical results of the Shortest Remaining Processing Time First

algorithm (SRPT) to cases that allow task preemption and blocking.

32

Chapter 2

Related work

2.1 Congestion control

The algorithms

Congestion control has a long history, starting with the early loss-based TCP Tahoe [89]

to the more principled AIMD algorithm in DECbit [34], TCP Reno [73], and NewReno [65].

These were improved upon for several years [45, 18, 148, 17, 102, 46, 124] to improve

congestion detection/recovery and speed of convergence, culminating in the develop-

ment and deployment of Cubic [61] and Compound [139].

Since then, link rates have increased significantly, wireless links (with their time-

varying link rates) have become common, and the Internet has become more global

with terrestrial paths exhibiting higher round-trip times (RTTs) than before. Faster

link rates mean that many flows start and stop quicker, increasing the level of flow

churn, but the prevalence of video streaming and large bulk transfers (e.g., file shar-

ing and backups) means that these long flows must co-exist with short ones whose

objectives are different (high throughput versus low flow completion time or low in-

teractive delay). At the same time, application providers and users have become far

more sensitive to performance, with notions of “quality of experience” for real-time

and streaming media [16, 136], and various metrics to measure Web performance being

developed [57, 58, 10, 24, 111]. Many companies have invested substantial amounts

33

of money to improve network and application performance. Thus, the performance of

congestion control algorithms, which are at the core of the transport protocols used

to deliver data on the Internet, is important to understand and improve.

Like TCP Reno and NewReno, the Cubic and Compound algorithms are primarily

loss-based, and increase queue occupancy until a loss occurs. When buffers on the

path are large compared to the bandwidth-delay product (BDP), they can cause

excessive delay, a phenomenon known as “buffer-bloat” [54]. This motivated the

development of Active Queue Management (AQM) [47, 113, 118] and delay-based

CCAs [27, 143, 9].

Modern congestion control research has evolved in multiple threads. One thread

of research has focused on important special cases of network environments or work-

loads, rather than strive for generality. The past few years have seen new congestion

control methods for datacenters [6, 7, 8, 120], cellular networks [145, 152], Web ap-

plications [42], video streaming [55, 93, 109], vehicular Wi-Fi [41, 96], and more.

The performance of special-purpose congestion control methods is often significantly

better than prior general-purpose schemes.

Another thread has been led by Google in developing BBR [31, 33], a hand-crafted

CCA refined through real-world testing. A fourth thread of end-to-end congestion

control research has argued that the space of congestion control signals and actions is

too complicated for human engineering, and that algorithms can produce better ac-

tions than humans (e.g., Remy [144, 127], PCC [38, 39, 104], and deep learning-based

methods [150, 75, 76, 4]). These approaches define an objective function to guide the

process of coming up with the set of online actions (e.g., on every ACK or periodically)

that will optimize the specified function. Remy and the deep learning methods per-

form this optimization offline, producing rules that map observed congestion signals

to sender actions. PCC and its variants perform online optimizations.

Despite the rich history and research into congestion control, a robust algorithm

that performs well across a diverse array of network paths remains elusive. This

dissertation aims to address this gap by developing theoretical tools for systematically

evaluating CCA performance across diverse paths.

34

Analysis of the algorithms

Congestion control has been subject to extensive theoretical analysis using both de-

terministic and statistical models of the network [34, 103, 129]. For instance, recent

work has analyzed the ability of delay and ECN to create unique fixed points that

flows can converge to and studied their stability once converged [156, 138]. These

papers prove, for instance, that a CCA that converges to a time-invariant delay that

does not change with the number of senders cannot be fair. Another body of work ex-

amines which CCA properties can be achieved simultaneously [153, 154]. While prior

work has analyzed CCAs on paths with non-congestive packet loss, to our knowledge

this is the work with a theoretical analysis of paths with non-congestive delay jitter.

A related line of work is on formal verification of the implementation of a CCA

given a specification of the algorithm using manual [23] and automated [135, 132,

133, 134] techniques. This line of work identifies bugs in the implementation of

an algorithm but does not make any statements on the performance of the studied

algorithm. For instance, a verification of the implementation can try all patterns of

packet losses to see if an AIMD implementation drops its window on loss. It does

not, however, answer the query of whether it should drop its window on loss.

Our path model introduced in chapter 4 is similar to the ones developed in network

calculus [91, 25]. We adapt those ideas to create a model well-suited to analyzing

CCAs. We ensure that our model is expressive, while avoiding behaviors that no

CCA can handle. Our approach differs from traditional network calculus in a key

aspect; for us, the rate at which packets are sent into the network is a function of

the network’s past behavior. This models the closed-loop control created by CCAs.

However, it complicates analysis and precludes the use of standard network calculus

techniques. To manage the complexity, we use an SMT solver. Two prior works use

network calculus to simulate [82] and theoretically analyze [15] CCAs. Their goal

is to make the analysis of a simple deterministic network easier. In contrast, we

use a non-deterministic path model, giving us many degrees of freedom to expose

unexpected CCA behavior.

35

2.2 Formal verification

Formal verification is a field that seeks to ensure the correctness and reliability of

computer hardware and software programs by writing human and/or computer inter-

pretable proofs of their behavior. The foundations of the field were set in the 1960s

and 70s by the works of Dijkstra [37], Hoare [63], King [83] and Floyd [43].

Later emphasis shifted to automated proof checking and writing to deal with the

complex of real software and hardware. Today we have mature proof assistants [20,

114, 115, 36], SAT and SMT solvers [35, 130, 19] and high-level interfaces to these

solvers [90, 117, 122, 92, 137, 90, 122].

Most of this work has focused on questions of correctness : “Does the program

produce the correct output?” “Does the program terminate?” “Is the distributed

guaranteed to make progress?”. This thesis applies these tools to questions of heuristic

performance. The key technical advancement is in posing them as sharply defined

yes/no questions that faithfully represent real-world complexities. Previous work has

either oversimplified the mathematical analysis or used purely empirical measures of

performance that do not capture all circumstances that may occur in practice.

Two threads of research seek to verify performance. However the questions they

seek to answer are different than ours. One thread seeks to quantify the amount of

resources (CPU cycles, memory bytes etc.) used by a computer program [66, 86,

67]. Another thread seeks to verify whether the resources available in a system are

sufficient for a certain mix of tasks, often motivated by proving tight bounds on

real-time system performance [97].

Formal verification has been applied to computer networking as well [87, 52, 21,

22], but again in answering questions of correctness such as “Are all endpoints reach-

able with this routing mechanism?”, “Are all packets arriving from the outside guar-

anteed to first traverse this node?” or “Is this network cycle-free?”.

36

Chapter 3

Overview of our work on congestion

control

Congestion control is hard because real-world network paths exhibit a wide range of

complex behaviors due to token-bucket filters, rate limiters, traffic shapers, network-

layer packet schedulers with various artifacts, link-layer schedulers that vary link

rates, physical-layer vagaries, link-layer acknowledgment (ACK) aggregation, higher-

layer ACK compression or aggregation, delayed ACKs, and more. CCAs estimate

congestion using packet loss and delay. However due to the diversity of paths, it is

hard to separate delays and losses that happen due to congestion from those that

occur for other reasons.

This thesis develops techniques to study the impact such paths can have on conges-

tion control performance and shows surprising ways in which widely deployed CCAs

fail even in simple scenarios.

3.1 Verifying the performance of congestion control

The process of evaluating and gaining confidence with a CCA today involves some

combination of simulation [2, 3], prototype implementation with tests on a modest

number of emulated [30, 112, 62] and real-world paths [150, 149], and, in some cases,

empirical analysis via controlled A/B tests at large content providers. Simulations

37

and small-scale tests are invaluable in the design and refinement stages, but provide

little confidence about performance on the trillions of real-world paths.

If one has access to servers at a large content provider, then A/B tests are feasible

where a new CCA can be tried on a fraction of the users to compare its performance

with another scheme. If the measured results of the new CCA compare well, it

increases confidence in its behavior, but still does not guarantee that it will perform

well in all scenarios. Moreover, as is likely, the new CCA will not perform better in

the A/B tests for all users. The aggregate results of an A/B test may hide significant

weaknesses that arise in certain cases. When such cases are identified, understanding

the behavior of a CCA requires a massive data analysis, which may be futile because

the operator might not have visibility into the network conditions that led to poor

performance. We also note that most of the community does not work at a “hyper-

scaler” with access to such a live-testing infrastructure, yet has good ideas that deserve

serious consideration.

3.1.1 Overview of CCAC

To better understand CCA behavior in the presence of ambiguity in congestion sig-

nals, we have developed the Congestion Control Anxiety Controller (CCAC), pro-

nounced “seek-ack” or “see-cack”. CCAC allows the user to express a CCA in first-

order logic, and a hypothesis about performance properties as logical formulae. Then,

it uses an automated prover to do the bulk of the work. The theorem prover either

proves that the performance property always holds under CCAC’s path model, or

generates counterexamples invalidating the hypothesis.

The path model. The model abstracts complex network paths by a single path-

server with a FIFO queue followed by a fixed delay, leveraging ideas from Network

Calculus [25, 91]. The path-server introduces variable delay per packet. It can choose

when to transmit or drop packets in its queue subject to certain constraints. The

constraints seek to emulate a link with a fixed average capacity and a limited buffer,

but allow for short-term deviation from this average including an arbitrary per-packet

delay jitter up to 𝐷 seconds (§4.2.1). The user can use this model to reason about

38

CCA specification:⋀︀
𝑡((𝑙𝑜𝑠𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑡 ∧ 𝑐𝑎𝑛_𝑑𝑒𝑐𝑟𝑡)⇒ cwnd𝑡 =

1
2
cwnd𝑡−1)⋀︀

𝑡((¬𝑙𝑜𝑠𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑡 ∧ 𝑐𝑎𝑛_𝑖𝑛𝑐𝑟𝑡)⇒ cwnd𝑡 = cwnd𝑡−1 + 𝛼)
Query:⋁︀

𝑡(𝑙𝑜𝑠𝑠_ℎ𝑎𝑝𝑝𝑒𝑛𝑒𝑑𝑡 ∧ cwnd𝑡 ≤ 1BDP)
buffer size = 2 BDP, max. jitter = 1 RTT

Figure 3-1: Query used to discover instances where AIMD can cause loss prematurely.
𝑐𝑎𝑛_𝑖𝑛𝑐𝑟 and 𝑐𝑎𝑛_𝑑𝑒𝑐𝑟 prevent AIMD from increasing/decreasing more than once
per RTT.

variable capacity links as well (§4.3).

This model follows our performance verification philosophy of using non-deterministic

non-random models (see §1.2.1). As a result, it captures a wide range of underlying

network-specific behaviors. Non-determinism helps here for three reasons. First, the

probability distribution of link delays on the internet is unknown, ever-changing, and

depends on one’s vantage point. Second, many in-network processes such as ACK ag-

gregation and token-bucket filters are deterministic, not random. Third, we are often

interested in the performance on the long tail of low-quality links (paths), whose be-

haviors would be buried by aggregate metrics. To our knowledge, this paper presents

the first analysis of worst-case CCA behavior in such an expressive model.

Input to CCAC. A CCAC user expresses their CCA and properties of interest

as first-order-logic formulae. In principle, such formulae can represent any circuit, but

CCAC’s ability to reason about it depends on how the user expresses the CCA. Thus,

the user’s ingenuity is essential in expressing the CCA in a way that enables automated

reasoning. The user expresses a CCA as a function that maps past ACKs to a cwnd

and/or rate. Further, they express a property of the CCA as arbitrary constraints on

the cwnd, utilization, delay, or packet loss, connected by logical operators. Examples

of hypotheses (queries) include: “Does cwnd ever fall below 90% of BDP in 8 RTTs?”

and “Is there any case where the queue length starts below 1.5 BDP, but increases

beyond 1.5 BDP within 20 RTTs?”

In §5, we show how we encode the description of the path-server, the CCA, and

39

hypotheses about the CCA as a Satisfiability Modulo Theories (SMT) problem, al-

lowing CCAC to use Z3 [35] as its automated theorem prover.

CCAC’s Operation. Typically, the user will formulate queries to capture bad

CCA behavior. CCAC searches through all possible behaviors of the path-server,

subject to its constraints, to find a network trace where the CCA fails to achieve

the property. If a trace exists, CCAC outputs it. Otherwise, CCAC outputs “unsat”

informing the user that no such bad behavior exists, which proves the user’s hypothesis

about the CCA. When the user finds bad behavior using CCAC they can (a) live with

it, (b) improve the algorithm so that the bad behavior no longer exists, or (c) restrict

the path-server’s model to exclude the cases that trigger the bad behavior. In the last

case, the user will know what additional constraints on the network are necessary for

the CCA to work.

The user repeats this process until they are confident that they understand the

bounds on the performance of their CCA. However, CCAC can only make state-

ments over finite time horizons when network parameters such as the link rate and

propagation delay are constant. This does not prove the CCA always exhibits good

behavior over arbitrarily long time horizons with varying network parameters (e.g.,

varying link capacity). Nevertheless, the user can prove these general long-term the-

orems by mathematical induction over lemmas that CCAC can prove (see §6.2.2 for

an example).

Example. Figure 3-1 shows the CCAC query used to discover the behavior of

AIMD discussed earlier. CCAC evaluates the behavior of algorithms over a finite

number of time steps. The behavior of the algorithm is defined at every time step;

if loss (congestion) is detected and it has been an RTT since the last reduction in

cwnd, then halve cwnd. If no loss is detected for an RTT, then increase cwnd by 𝛼.

The query asks if loss can happen when cwnd is less than or equal to 1 BDP. CCAC

answered “yes” to this query and produced traces that contained the behaviors we

discussed for AIMD earlier, which we elaborate on in §6.2.

Assumptions. Because CCAC focuses on worst-case behavior, a central goal of

its design is to exclude excessively antagonistic behavior that no CCA can handle.

40

Thus, the path model only includes a carefully chosen subset of paths (see §4.2.1). Our

model of TCP timeouts is different from the standard for the same reason (see §4.2.2).

We represent network state using cumulative functions that preclude the modeling

of packet reordering. CCAC’s mechanism to detect packet losses emulates endpoints

that use an unbounded number selective acknowledgment (SACK) blocks. This corre-

sponds to the QUIC protocol [71], while TCP is limited to a maximum of four SACK

blocks [102].

3.2 Starvation in congestion control

The above results apply when the flow we analyze is not sharing its bottleneck queue

with any other flow. This scenario is common on the internet due to extensive de-

ployment of traffic shapers and fair queuing [53, 98]. Nevertheless, multiple flows do

often share the same bottleneck queue too. We study this next.

CCAs are designed to cooperate and achieve reasonable fairness when multiple

flows share the same bottleneck queue. Due to network jitter, we expected some

degree of unfairness and hoped to prove bounds on it as a function of the delay jitter.

For loss-based CCAs, unfairness was indeed bounded. However loss-based CCAs have

significant weaknesses, which motivated the development of delay-bounding CCAs

(see §2.1).

What CCAC found for delay-bounding CCAs was surprising. Although designed

to be cooperative and achieve reasonable fairness, for every delay-bounding CCA that

we studied, CCAC found scenarios where they experience starvation, an extreme form

of unfairness. At first, we suspected the path-model we used was too adversarial; that

such scenarios would never occur on the internet. However closer inspection revealed

that starvation occurs under fairly simple and common scenarios on the internet. Next

we tried simple modifications to existing CCAs in an attempt to mitigate scenarios

identified by CCAC. None of these worked.

Thus we began suspecting that there may be a fundamental difficulty for delay-

bounding CCAs to avoid starvation. In characterizing this difficulty, we identified a

41

common property, delay-convergence that is shared by all delay-bounding CCAs we

are aware of. On ideal network paths with a constant bottleneck rate and propaga-

tion delay, a delay-convergent CCA eventually converges to a small delay range and

oscillate within that range. We proved that for all delay-convergent CCAs the exist

network scenarios where they experience starvation.

The proof identifies an important consequence of delay-convergence. Because most

CCAs attempt to work across many orders of magnitude of rates, they must map a

large rate range into a small delay range. Thus, even small changes in estimated

queuing delay would induce enormous changes in the inferred rate. This observation

suggested to us that perhaps bandwidth may not be shared equitably unless delays

were perfectly measurable.

However network jitter prevents CCAs from being able to measure the congestive

component of delay perfectly. CCA designers use a variety of techniques to attempt

to distinguish queuing from non-queuing (non-congestive) variations, including aver-

ages (Vegas, FAST, BBR) [27, 143, 31], minimums (LEDBAT, Copa) [13, 125] and

maximums (Verus) [152] of RTT, maximums of rate (BBR) [31], and repeating ex-

periments (PCC) [38]. However the problem is inherently difficult due to the wide

variety of delay patterns observed in real-world paths. Our work shows that tiny

imperfections in estimating congestion can lead to large amounts of unfairness.

It is important to note that starvation is a strong form of unfairness, going well

beyond traditional notions of RTT unfairness or even one flow getting a constant

factor higher throughput than the other. We prove that there is no finite 𝑠 ≥ 1

where the faster flow will always get less than 𝑠 times the throughput of the slower

one. To demonstrate that these results are not contrived or hypothetical, we use

insights from the proof to show empirical scenarios with BBR, Copa, and PCC where

starvation occurs — simple topologies with equal propagation RTTs where the ratio

of throughput between two flows is 10 : 1.1

This result sounds pessimal for delay-bounding CCAs, so the question is whether

we are doomed to choose between bounding delays and avoiding starvation. We

1This ratio would be higher but for limitations of our link emulator.

42

discuss how we might be able to achieve both desirable goals by being explicit about

non-congestive delays in CCA design, ensuring that the CCA’s delay variations in

equilibrium are at least half as as large as the non-congestive jitter expected along a

path. If that is not the case, then our results prove that starvation is inevitable.

3.2.1 Delay-convergence

Informally, our theorem states that all delay-convergent CCAs will starve. Now

we define delay-convergence, a property that is common to most (if not all) delay-

bounding CCAs developed to date, despite their many operational differences. They

all seek to converge to a fixed sending rate and queuing delay, making only small

(if any) oscillations about that point. This design pattern offers two benefits. First,

stable sending rates provide stable performance for the application. Second, many

schemes, either implicitly or explicitly, map sending rates to corresponding (inferred)

queuing delays, which makes it easier to reason about their behavior. As a result,

many end-to-end delay-bounding CCAs employ this strategy including Vegas [27],

FAST [143], Sprout [145], BBR [31], PCC Vivace [39], Copa [13], PCC Proteus [104],

and Verus [152].

We define a delay-convergent CCA based on how it behaves when a single flow

runs on an ideal path. An ideal path has a constant bottleneck link rate 𝐶, minimum

RTT (round-trip propagation delay) 𝑅𝑚, and a bottleneck queue large enough that

overflows never occur. Naturally, such a large enough queue size only exists for CCAs

that bound their maximum queue.

Definition 1. A CCA 𝒜 is delay-convergent if two conditions hold when it is run

on an ideal path with a given 𝑅𝑚:

1. There is a time 𝑇 after which the RTT experienced is always in a bounded

interval [𝑑min(𝐶), 𝑑max(𝐶)], where 𝐶 is the bottleneck rate. Let 𝛿(𝐶) ≜ 𝑑max(𝐶)−

𝑑min(𝐶).

2. Both 𝑑max(·) and 𝛿(·) are bounded for 𝐶 not approaching zero, i.e., there exists

43

a link rate 𝜆 > 0 and finite bounds 𝑑max and 𝛿max such that 𝑑max(𝐶) < 𝑑max and

𝛿(𝐶) < 𝛿max for all 𝐶 > 𝜆.2

Time

R
TT

0

Converged region

Figure 3-2: Ideal-path behavior of a delay-convergent CCA, 𝒜.

Figure 3-2 depicts this definition, showing the time evolution of the RTT for a

hypothetical CCA, 𝒜. As we will see, CCAs that ensure a smaller 𝛿max —and hence

are “more convergent” —are more susceptible to starvation. In particular, we prove

that starvation can occur if the delay ambiguity caused by non-congestive jitter delay

is > 2𝛿max. For many CCAs, 𝛿max is small because they strive to keep delay variations

small compared to 𝑅𝑚. Hence even a little ambiguity can cause starvation.

For instance, 𝛿(𝐶) is 0 for Vegas, FAST, and BBR in cwnd-limited mode; 4𝛼
𝐶

for

Copa, where 𝛼 is the packet size (4𝛼
𝐶

< 0.5 ms when 𝐶 > 96 Mbit/s and 𝛼 = 1500

bytes); 𝑅𝑚/4 for BBR in pacing mode (see §8.2); and 𝑅𝑚/20 for PCC Vivace. We

show that all these protocols suffer from starvation even in simple two-flow scenarios

with small non-congestive jitter.

Link rate

E
qu

ili
br

iu
m

 R
TT

0

D

Figure 3-3: The rate-delay graph for a hypothetical delay-convergent algorithm. The
𝐶 of the ideal path varies while its 𝑅𝑚 is fixed.

For a fixed 𝑅𝑚, a delay-convergent CCA maps each link rate 𝐶 to a delay range

in steady state. Figure 3-3 shows how this range may vary as 𝐶 changes. 𝑑max(·) and
2A finite 𝑑max guarantees that a CCA is delay-convergent. We still discuss 𝛿max separately

because it controls how susceptible a CCA is to starvation.

44

𝑑min(·) are typically non-increasing functions of 𝐶 because CCAs typically increase

their rate as the RTT decreases. However, our results do not require that the delay

bounds are monotonic functions of 𝐶.

0.1 1 10 100
Link rate (Mbit/s)

R

2R

RT
T,

 R
 =

 1
00

m
s

Vegas and FAST

0.1 1 10 100
Link rate (Mbit/s)

R

2R

Copa

0.1 1 10 100
Link rate (Mbit/s)

R
1.25R

2R

Pacing limited

cwnd-limited

BBR

0.1 1 10 100
Link rate (Mbit/s)

R

2R

1.05R

PCC Vivace

Figure 3-4: How various delay-bounding CCAs map delay to sending rates for various
CCAs. The shaded region shows 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 for each algorithm. BBR has two
modes (shown). The region’s width is 𝛿(𝐶). For Vegas, FAST and BBR (cwnd
limited), 𝑑𝑚𝑎𝑥 = 𝑑𝑚𝑖𝑛, hence it is a line, not a region. For them, 𝛿(𝐶) = 0. Section 8
describes how these mappings arise from the dynamics of these algorithms. Delay
increases as 𝐶 → 0 for all CCAs since a transmission delay of 1/𝐶 is unavoidable.

Figure 3-4 shows the rate-delay graphs for some real-world delay-convergent CCAs.

For all these CCAs, 𝛿(𝐶) is small (or grows smaller with 𝐶).

3.2.2 Example of starvation

Chapter 7 formalizes and proves our result. Here, we describe an example that gives

insight how non-congestive delay can lead to starvation. Consider a CCA such as

Vegas or FAST that seeks to maintain 𝛼 packets in the queue per flow in equilibrium.

𝛼 is a parameter of the algorithm (e.g. 𝛼 = 4 packets). Over an ideal path, once the

CCA hits this target, its rate stabilizes and the queue length never changes. Hence

𝛿𝑚𝑎𝑥 = 0, and the RTT is 𝑅𝑚 + 𝛼/𝐶 as shown in Figure 3-4.

The issue is that, to achieve this equilibrium, the CCA must measure the queuing

delay with high precision. For example, with 𝛼 = 4 and each packet being 1500 bytes,

𝛼/𝐶 = 0.5 ms for 𝐶 = 96 Mbit/s and 0.05 ms for 𝐶 = 960 Mbit/s. Thus a difference

of only 0.45 ms in the estimated queuing delay can cause the CCA to vary its sending

rate by 10×! Therefore, if the delay measurement ambiguity exceeds this amount, it

can easily cause severe unfairness or starvation.

45

This problem is not limited to Vegas or FAST or even CCAs with decreasing

rate-delay functions as shown in Figure 3-3. Any delay-convergent CCA that seeks

to bound delay variation below the level of jitter (delay ambiguity) of the network

will suffer from the same problem. At a high level, the fundamental issue is that

very different link rates are consistent with similar delay measurements for such a

CCA. By applying different non-congestive delays to the paths of different flows, the

adversary can cause the flows to perceive very different link rates and drive them to

starvation.

3.3 Copa: a new delay-based CCA

Before we worked on formally understanding CCA performance, we designed Copa, a

delay-based CCA that emphasized correctly interpreting delay measurements in the

presence of non-congestive delay. It incorporates three ideas. First, it shows that a

target rate equal to 1/(𝛿𝑑𝑞), where 𝑑𝑞 is the (measured) queuing delay, optimizes a

natural function of throughput and delay under a Markovian packet arrival model.

Second, it adjusts its congestion window in the direction of this target rate, converging

quickly to the correct fair rates even in the face of significant flow churn. These two

ideas enable a group of Copa flows to maintain high utilization with low queuing delay.

However, when the bottleneck is shared with loss-based congestion-controlled flows

that fill up buffers, Copa, like other delay-sensitive schemes, achieves low throughput.

To combat this problem, Copa uses a third idea: detect the presence of buffer-fillers

by observing the delay evolution, and respond with additive-increase/multiplicative

decrease on the 𝛿 parameter. Experimental results show that Copa outperforms

Cubic (similar throughput, much lower delay, fairer with diverse RTTs), BBR and

PCC (significantly fairer, lower delay), and co-exists well with Cubic unlike BBR and

PCC. Copa is also robust to non-congestive loss and large bottleneck buffers, and

outperforms other schemes on long-RTT paths.

Facebook/Meta uses Copa for live video uploads because Copa improves their

end-to-end application metrics [51]. Chapter 11 describes the algorithm in detail.

46

Chapter 4

Congestion control path model

In section 1.2.1, we discussed our performance verification methodology, which advo-

cates a non-deterministic model of the environment. In this chapter, we delve into

our model to analyze congestion control. To make it easier to understand, we initially

present a simpler model in section 4.1. This simplified model assumes that all buffers

on the network path have infinite capacity. Later, in section 4.2, we expand the model

to account for finite buffers. The models in this chapter only deal with a single flow.

Chapter 7 extends them to multiple flows.

4.1 A simple model that assumes infinite buffers

Our simple model assumes that buffers on the network path are infinitely large and

excludes other factors that may cause packet loss. Thus, every packet is acknowledged

without fail. The focus of this model is to determine the delay, specifically the Round

Trip Time (RTT), between when a packet is sent and when the sender receives its

acknowledgment (Ack). To accomplish this, the model divides the RTT into three

components, with particular emphasis on distinguishing between congestive and non-

congestive sources of delay variation.

1. Congestive (bottleneck queuing) delay, which is the sum of the queuing delay in-

curred by packets waiting to be sent on the bottleneck link and the transmission

time over the bottleneck link;

47

2. Minimum packet propagation RTT (or delay), denoted 𝑅𝑚, defined as the time

it takes for a single packet to traverse the non-bottleneck portions of the path

and for the sender to receive an ACK (this includes both the speed-of-light

propagation delay of the entire path and the packet transmission delays on each

link except the bottleneck);

3. Non-congestive delay, which we define as jitter delays due to network elements

(perhaps also at the bottleneck) that may temporarily hold packets or ACKs

but are not by themselves persistent rate bottlenecks.

We model these delays as shown in figure 4-1:

CCA

Figure 4-1: The simple network model of the loop between the sender and receiver.

The packets transmitted by the CCA are directed to an infinitely large First-In-

First-Out (FIFO) queue, which represents the congestive delay. These packets are

dequeued from the queue at a steady rate of 𝐶 bits per second. Additionally, they

experience a minimum packet propagation RTT of 𝑅𝑚.

After leaving the queue, the packets encounter a component that introduces a

non-deterministic, bounded delay. This delay captures the non-congestive delay ex-

perienced along the network path. Specifically, this component can delay packets by

any duration between 0 and D seconds, without altering their order.

After this stage, the packets are acknowledged to the CCA at the sender’s end.

Examples of non-congestive delay include packet aggregation (which leads to

ACKs arriving in bursts), overhead from end-host or in-network scheduling, and

timing variations resulting from hardware offloading. In practical scenarios, non-

congestive delay can vary widely. It may range from hundreds of microseconds caused

48

by operating system thread scheduling [106] to tens of milliseconds induced by link-

layer technologies like Wi-Fi [59]. Each of these factors introduces unpredictable

fluctuations, leading to variations in the RTT. To complicate matters further, paths

can include multiple such sources of non-congestive delay.

Is the model powerful enough?

With its ability to non-deterministically introduce bounded delays, it can emulate a

wide range of behaviors. Let us consider a concrete example to illustrate this point.

Many wireless devices employ frame aggregation, where packets like acknowledg-

ments (ACKs) are combined into larger bursts for more efficient transmission. To

demonstrate, let us assume the following algorithm: frames will not be forwarded

from the queue for a specific wireless destination device until it either contains at

least 10 KBytes of payload or the oldest payload component has been waiting for

over 10 milliseconds. Once this condition is met, all packets in the frame for that des-

tination are promptly forwarded. This algorithm ensures that packets are forwarded

at the maximum rate achievable for that particular destination until the queue holds

fewer than 10 KBytes.

Our model emulates this behavior as follows. Most of the waiting time in the algo-

rithm is modeled by the FIFO queue. When the queue contains less than 10 KBytes,

the packet waits for a maximum of 10 milliseconds. This part of the waiting time is

modeled by the non-deterministic delay component as long as 𝐷 > 10 milliseconds.

In addition to emulating individual behaviors like this, we want our model to

also be capable of emulating combinations of these behaviors. Instead of proving our

simple model can emulate these, we shall directly prove this for our primary model

in section 4.2.

The adversary must be restricted enough to ensure that there exists some CCA

that works well against it. If the adversary possesses excessive power, CCAs would

be unable to make any assumptions about the network, rendering them ineffective.

Therefore, we impose a constraint on the non-congestive delay, bounding it by a

constant value, 𝐷. This constraint also aligns with the natural behavior of network

49

components, which are designed to forward packets rather than to hold on to them

indefinitely. Thus, unless a packet becomes trapped in a congested queue, network

components will forward it within a finite timeframe (i.e. 𝐷 seconds).

4.2 The full model that allows for finite buffers

The model presented in this section serves as the foundation for all the analysis con-

ducted in this dissertation. The key improvement over the simpler version (see §4.1),

is that it allows for network components with finite buffers while also allowing every

behavior allowed by the simpler version. However, it is worth noting that the simpler

version still suffices to understand most of the subsequent content in this disserta-

tion. With it, one can even gain an intuitive understanding of the counter-examples

uncovered by our automated tool (CCAC) that involve finite buffers.

To create a model that captures a broad range of network behaviors, we ensure

it satisfies two properties. First, it can emulate known behaviors such as link-layer

aggregation, token-bucket filters, and arbitrary per-packet delay up to 𝐷 seconds

(see §4.2.1). Arbitrary delays can be used to emulate scheduling errors, MAC schedul-

ing artifacts, and delay-measurement errors. Second, it composes ; i.e., for any two

path-servers, there exists a path-server, perhaps with different parameters, that can

do anything that the two path-servers can do when placed serially. Hence, the path-

server can also emulate any sequential composition of the above behaviors.

Our initial attempts at creating a general path model produced models that were

“too expressive” and allowed behaviors that no CCA can handle. We discuss some of

these behaviors and how our final model avoids them in §4.2.1. We believe we have

struck a good balance between expressiveness and restricting unreasonable behavior

because CCAC produces network behaviors that are plausible on real networks.

Intuition. The path-server can be described as a generalized token-bucket filter

(TBF) as shown in Figure 4-2. First, consider a standard TBF. It has two queues,

one for packets and another for tokens. Tokens arrive continuously at a fixed rate

of 𝐶 bytes/second and a packet of size 𝑥 bytes can be dequeued only if the token

50

Arriving pkts
Path

serverPacket Queue

Token Queue
C tokens/sec

Bottleneck queue

Sender

ACKs Constant Delay, Rm

Figure 4-2: CCAC’s path model.

𝐶 – link rate 𝑅𝑚 – propagation delay
𝛽 – buffer size 𝐷 – max per-packet jitter
𝛼 – MTU size dupacks (threshold) – 3𝛼
𝑇 – number of time steps cwnd(𝑡) – congestion window
𝑄(𝑡) – packet queue length 𝑇 (𝑡) – token queue length
𝐴(𝑡) – cumulative arrivals 𝑆(𝑡) – cumulative service
𝑊 (𝑡) – cumulative waste 𝐿(𝑡) – cumulative losses
𝐿𝑑(𝑡) – cum. losses detected 𝜏𝑜(𝑡) – timeout happened

Table 4.1: Glossary of symbols.

queue has at least 𝑥 bytes worth of tokens. If no packets arrive for a while, tokens

accumulate to a maximum of 𝐾 bytes. Any tokens that come after the token queue

is full are wasted. Then, if packets arrive in a burst, the TBF can transmit a burst of

up to 𝐾 bytes at once, temporarily exceeding the link rate 𝐶.

Our path-server generalizes the standard TBF. When a token arrives at the token

queue, the path-server can non-deterministically choose to either admit it or waste it.

Wasting a token is allowed only when there are more tokens than the total number

of bytes in the packet queue. Tokens represent transmission opportunities at the

bottleneck. Wasted tokens represent transmission opportunities that were wasted

because there were packets at the bottleneck.

Like a TBF, when a packet is dequeued, a number of tokens equal to the packet’s

size are dequeued. However, unlike a TBF, the path-server can choose to delay sending

packets even when tokens are available, subject to the constraint that once a token is

51

admitted, the token cannot be in the queue for more than 𝐷 seconds. This represents

the fact that transmission opportunities may not appear periodically. There may

be up to 𝐷 seconds of jitter, which the the path-server can use to emulate various

network effects. One corollary of the 𝐷-second bound is that the path-server can

never accumulate more than 𝐶 ·𝐷 tokens.

Recall that the path-server models an entire path, not just the bottleneck. There-

fore, the packets in the path-server’s queue represent packets enqueued throughout

the path, not just at the bottleneck. The bottleneck queue is represented by the

difference between the total number of bytes in the packet queue and the number of

available tokens. Hence, the server can waste tokens only if this difference is < 0,

indicating that the bottleneck is empty.1 To emulate a bottleneck buffer of 𝛽 bytes,

the server drops packets when the bottleneck queue exceeds 𝛽 bytes. One can set 𝛽

to a finite value in units of BDP. One can also set 𝛽 to ∞ or let CCAC search over

all its possible values to find one that satisfies the query.

We note that, when we first developed the model, it was just a set of constraints

discussed below. It was devoid of any physical interpretation beyond the rough in-

tuition that the path server should transmit roughly 𝐶 packets per second, while

allowing for some short term jitter. We simply sought a model that satisfied two

mathematical properties described in section 4.2.1. The non-deterministic TBF in-

terpretation described above was added after-the-fact.

Formal definition. Let 𝑄(𝑡) and 𝑇 (𝑡) denote the number of bytes in the packet

and token queues, respectively. 𝐴(𝑡) denotes the cumulative number of bytes that

have arrived at the server till time 𝑡. Similarly 𝑆(𝑡), 𝐿(𝑡), and 𝑊 (𝑡) are the cumulative

number of bytes serviced from the path-server, bytes lost, and tokens wasted, respec-

tively (see Table 4.1). A number of constraints bound the behavior of the network,

which we express as constraints on these functions:

• Tokens arrive at rate 𝐶 bytes/s but at time 𝑡, 𝑆(𝑡) of them have been used and

𝑊 (𝑡) of them have been wasted. Hence, 𝑇 (𝑡) = 𝐶𝑡−𝑊 (𝑡)− 𝑆(𝑡).

1Note that if packets are arriving too slowly, the server is forced to waste tokens to avoid keeping
a token for more than 𝐷 seconds.

52

Queuing delayArrival curve, A(t)-L(t)

Service Curve, S(t)

D

Slope ≤ C

(wastage)

Slope = C

(no wastage)

Loss

Threshold

Loss

happened!

Buffer size, 𝛽

(A) (B)

(C) (D)

Rm

cwnd

dupacks

Loss
detected!

A(t) = S(t - Rm) + cwnd

Bounds on S(t)

Time

C
um

ul
at

iv
e

by
te

s

Time

C
um

ul
at

iv
e

by
te

s

Q(t)

T(t)

Figure 4-3: Graphical representation of the constraints.

• The queue length is the number of bytes that have arrived but have not been

serviced or lost. Hence, 𝑄(𝑡) = 𝐴(𝑡)− 𝐿(𝑡)− 𝑆(𝑡).

• Wastage can only happen when there are more tokens than packets. That is,

𝑇 (𝑡) ≤ 𝑄(𝑡) ⇒ 𝑊 ′(𝑡) = 0, where 𝑊 ′(𝑡) is the time derivative indicating how

much waste occurred.

• Loss is disallowed unless the bottleneck queue, 𝑄(𝑡) − 𝑇 (𝑡), exceeds 𝛽 bytes.

Hence, 𝑄(𝑡)− 𝑇 (𝑡) < 𝛽 ⇒ 𝐿′(𝑡) = 0. We also have 𝑄(𝑡)− 𝑇 (𝑡) ≤ 𝛽.

• Naturally, 𝑄(𝑡) ≥ 0 and 𝑇 (𝑡) ≥ 0 and the cumulative functions 𝐴(𝑡), 𝑆(𝑡), 𝐿(𝑡),

and 𝑊 (𝑡) are all non-decreasing. Since wastage can happen only when tokens

enter the queue, 𝐶𝑡−𝑊 (𝑡) should also be non-decreasing.

• Finally, the server would not have admitted tokens if they were going to stay in

the queue for more than 𝐷 seconds. Hence, all tokens that arrived 𝐷 seconds

ago and were not wasted must have been used by now. That is, 𝑆(𝑡) ≥ 𝐶 · (𝑡−

𝐷)−𝑊 (𝑡−𝐷). Together with 𝑇 (𝑡) > 0, we have that 𝐶 · (𝑡−𝐷)−𝑊 (𝑡−𝐷) ≤

𝑆(𝑡) ≤ 𝐶𝑡−𝑊 (𝑡). These are the bounds on the service curve, 𝑆(𝑡).

53

Visualization. To make it easier to present examples of network behavior in our

model, we use the graphical representation shown in Figure 4-3. The representation

is akin to a TCP’s time-sequence graph, where the 𝑥-axis represents time and the

𝑦-axis represents the cumulative number of bytes arriving at the path-server (i.e.,

arrival curve) or served from it (i.e., service curve). Figure 4-3(A) illustrates a simple

example with the arrival curve in blue, the service curve in red, and the bounds

on the service curve in black. Note that 𝐴(𝑡) − 𝐿(𝑡) is the cumulative number of

bytes admitted to the queue. The horizontal gap between the black curves is 𝐷.

The horizontal gap between the arrival and service curve represents the time spent

by a packet in the path-server’s queue (which does not include 𝑅𝑚, the propagation

delay). The vertical gap represents 𝑄(𝑡). The vertical gap between the service curve

and upper black curve equals 𝑇 (𝑡) and represents the largest burst possible at this

time.

Wastage is disallowed when 𝑇 (𝑡) ≤ 𝑄(𝑡). Substituting 𝑇,𝑄, and rearranging, we

get 𝐶𝑡−𝑊 (𝑡) ≤ 𝐴(𝑡)− 𝐿(𝑡). Hence, wastage is possible only when the arrival curve

is less than the upper black curve (see Figure 4-3(B)). When wastage happens, the

slope of the black curve is smaller than 𝐶, indicated by dotted lines in the figure.

Figure 4-3(C) shows we can define a loss threshold curve, which is the upper black

curve plus 𝛽. The arrival curve must remain below this line, and loss is allowed only

when the arrival curve touches this line. The sender detects losses when it receives

dupacks number of acknowledgments of packets after the loss event. Figure 4-3(D)

shows how a CCA that simply maintains a constant cwnd controls 𝐴(𝑡) in response

to 𝑆(𝑡). Here, 𝐴(𝑡) = 𝑆(𝑡 − 𝑅𝑚) + cwnd because the ACKs leaving the server will

reach the sender 𝑅𝑚 seconds later, which maintains cwnd packets in flight.

4.2.1 The set of paths the model captures

The behavior of a real network path can be decomposed into a series of “boxes”.

Individual boxes represent various phenomena such as bottleneck links and link-layer

aggregation. In some cases, it helps to decompose one physical device as multiple

boxes. For instance, the sender’s network stack can be broken into a component that

54

packetizes and another that paces packets with timing errors.

Individual “boxes”. Now we discuss which real network boxes the path-server

can emulate. Since it is a generalized TBF, it can naturally implement a regular TBF

as shown in Figure 4-4. If the TBF has a link rate of 𝐶 and a burst size of 𝐾, then we

can emulate it with a path-server with the same link rate and 𝐷 = 𝐾/𝐶. When the

sender stops sending, tokens accumulate, allowing the path-server to burst when the

sender bursts (i.e., the arrival curve has a large single-step increase). The path-server

can burst a maximum of 𝐶 ·𝐷 bytes, buffering the rest. Then, the TBF sends data

from its buffer at a rate of 𝐶.

The path-server can also emulate all behaviors in our simpler model in section 4.1

(see Theorem 5 in Appendix A.4). Thus, it can emulate a wide range of phenomena

such as packetization, link-layer aggregation, scheduling errors, MAC-layer jitter, and

arbitrary delays (≤ 𝐷). The second example in Figure 4-4 shows the behavior of a

link-layer aggregator. Regardless of the sending rate of the arrival curve, the service

curve aggregates packets (which can be caused by link-layer aggregation) and sends

them in bursts. Note that the simple model cannot emulate token bucket filters with

finite buffers, while the path-server can.

Composition. If network boxes 𝜏1 and 𝜏2 can be emulated by path-servers with

infinite buffers (𝛽 =∞) and parameters (𝐶1, 𝐷1) and (𝐶2, 𝐷2), then the composition

of 𝜏1 and 𝜏2 can be emulated by a path-server with parameters (min(𝐶1, 𝐶2), 𝐷1+𝐷2)

(see Theorem 9 in Appendix A.4), where 𝐶,𝐷, 𝛽 are the link rate, jitter parameter,

and buffer size, respectively. When buffers are finite, our result is weaker: if 𝐶1 ≤

𝐶2 and 𝛽2 ≥ 𝐶1𝐷1, then their composition can be emulated by a path-server with

parameters (min(𝐶1, 𝐶2), 𝐷1 +𝐷2, 𝛽1) (see Theorem 7 in Appendix A.4). We do not

have results for when 𝐶1 > 𝐶2 and buffers are finite.

Design decisions. The weakening of results with the constraint 𝛽2 ≥ 𝐶1𝐷1 is

by design. If the path-server is able to emulate a bursty box followed by one with a

small buffer, it can emulate a network that drops packets no matter what the CCA

does. This is because, even if the CCA sent evenly spaced packets, the bursty box

can generate bursts of up to 𝐶𝐷 bytes larger than the buffer size of the small-buffered

55

Burst size = CD

Token bucket filter Ack aggregation

Time Time

C
um

ul
at

iv
e

by
te

s

Figure 4-4: Examples of how the path-server emulates a token bucket filter and link-
layer aggregation.

box, leading to packet drops that a CCA cannot avoid. While such paths are possible

on the Internet, it is not useful to include them in the model because no CCA can

help here. Thus, Theorem 7 considers only the case when the buffer size of 𝜏2 is big

enough to absorb bursts created by 𝜏1 (𝛽2 ≥ 𝐶1𝐷1). Indeed, we prove that when

𝐶1 ≤ 𝐶2 and 𝛽2 ≥ 𝐶1𝐷1, the second box can never lose packets (see Theorem 6 in

Appendix A.4). Operationally, we achieved this by defining the condition for loss on

𝑄(𝑡) − 𝑇 (𝑡) and not on 𝑄(𝑡), even though the latter might seem more natural (and

is what we used in earlier iterations of our model).

Another design decision was to limit the time a token can spend in the queue to

𝐷 seconds. It may seem more natural to limit the number of tokens in the queue

to 𝐾 = 𝐶𝐷 ≈ 𝐵𝐷𝑃 bytes instead (this is what we used in earlier iterations of the

model). Here, there is nothing forcing the path-server to use tokens. If the sender

sends fewer than 𝐾 bytes (say, because its initial cwnd < 𝐾), the server can hold on to

the packets indefinitely, causing the sender to timeout. Requiring the initial window

to be equal to the BDP is unreasonable, since determining the BDP is precisely the

CCA’s job! Exclude this behavior by using 𝐷 instead of 𝐾 is a clean resolution.

4.2.2 Expressing CCAs

A CCA controls the sender’s transmission rate based on observed network behavior.

In CCAC, a CCA determines the cumulative arrivals, 𝐴(𝑡), by determining the con-

gestion window, cwnd(𝑡), and pacing rate, 𝑟(𝑡). At time 𝑡, the CCA can observe the

56

service curve up to time 𝑡−𝑅𝑚, since feedback is delayed by 𝑅𝑚. The CCA can also

observe 𝜏𝑜(𝑡) and 𝐿𝑑(𝑡), which are functions built into CCAC. 𝜏𝑜(𝑡) indicates whether

a timeout happened at time 𝑡. 𝐿𝑑(𝑡) captures the cumulative number of losses de-

tected. Losses are detected through duplicate ACKs and timeouts. As a convenience,

the logic to calculate queuing delay based on 𝐴 and 𝑆 is also built into CCAC. The

user needs to write constraints that determine 𝐴(𝑡) as a function of the observables.

Figure 3-1 shows how to implement AIMD in CCAC.

Timeouts. If we implement timeouts according to RFC 6289 [124], the path-

server can cause timeouts by simply emulating a smooth network in the beginning

to keep rttvar (variation in RTT) low. Then, it can suddenly increase delay by 𝐷

seconds to cause a timeout. While this scenario is possible in real networks, CCAC

would produce excessively antagonistic worst-case behavior in this case. Instead,

we trigger a timeout only when all in-flight packets have been lost. The sender

would certainly timeout when this happens, and this mechanism avoids antagonistic

timeouts.

4.3 Discussion of modeling choices

Variable link rates. We use two approaches to capture variable link rates. The

jitter allowance, 𝐷, captures short-term variations. Long-term variations, like changes

in the rate of a wireless channel, require 𝐶 to be variable. However, 𝐶 is constant

in our model. To model a variable 𝐶, the user uses CCAC to prove lemmas about

a CCA’s behavior over a fixed link rate for some duration 𝑇 ′. Then, one can use

mathematical induction on these lemmas to prove that as the fixed rate changes, the

CCA will move toward a correct set of of cwnd and rate values for that link rate. One

can pick 𝑇 ′ to be the smallest (CCA-dependent) value such that the lemmas hold.

Sections 6.2 and 6.3 show examples of this approach for AIMD and Copa.

Had we allowed the path-server to vary 𝐶 with time, the path-server would have

been able to emulate any network (i.e., it can pick any 𝑆(𝑡) ≤ 𝐴(𝑡)). No CCA

can function on a network where the capacity can vary arbitrarily, rendering CCAC

57

useless since no interesting theorems about the CCA can then be proved with it (since

they will not be true).

Choice of 𝐷. The path-server can capture jitter up to 𝐷 seconds. There are

two ways of setting 𝐷. First, if we know the path, we can calculate what 𝐷 would

be sufficient to model the individual components. Then, our composition theorems

state that the net 𝐷 is the sum of the 𝐷s on the path. Alternately, we believe setting

𝐷 to be one RTT is appropriate for congestion control because that is the timescale

at which end-to-end CCAs can react to changes in the network. CCAs must hedge

against fluctuations in the rate at smaller timescales. For longer timescales, they can

simply adapt their rate to follow the network. Note that for any two path-servers

with the same link rate and buffer size, with jitter parameters 𝐷1 > 𝐷2, the first

path-server can emulate a superset of the paths emulated by the second path-server.

Non-congestive loss. 𝐿(𝑡) captures loss due to congestion. It is possible to

model non-congestive loss as well by defining another function 𝐿nc(𝑡) that is con-

strained as 0 ≤ 𝐿nc(𝑡) ≤ 𝜂 · (𝐴(𝑡) − 𝐿(𝑡)), where 𝜂 is the maximum non-congestive

loss rate.

58

Chapter 5

Formal analysis using an SMT solver

In this section, we show how CCAC uses SMT solvers. An SMT formula is a first-

order logic formula over predicates. In CCAC, we only use predicates that are Boolean

variables or linear arithmetic inequalities, as they are more efficient for automated

analysis. Each linear predicate takes the form
∑︀

𝑖 𝑏𝑖𝑣𝑖 ≥ 𝑐 where 𝑏𝑖 and 𝑐 are real or

integer constants and 𝑣𝑖 are the real variables on the formula.1

An SMT solver attempts to find a satisfying assignment to the variables of the

formula. If no such assignment exists, it outputs “unsat” (for unsatisfiable). CCAC

uses the SMT solver, Z3 [35], to search through the space of all possible network traces

generated from the interactions between the path model and the CCA. In this section,

we describe the key ideas needed to express the path model in SMT constraints.

Representation. Our model for the network and CCAs include several functions

over continuous time (i.e., functions of the form 𝑓(𝑡) where 𝑡 is a real number, like

the service and loss curves). To encode those functions in SMT constraints, we could

use a single variable 𝑈𝑓 to represent a function 𝑓 . 𝑈𝑓 would be an uninterpreted

function with a single real input and a single real output. However, using a mixture

of uninterpreted functions and linear arithmetic constraints proved to be intractable

for our purposes. Thus, we represent those functions as a sequence of real variables.

For example, we express the service curve, 𝑆, as 𝑆0, . . . , 𝑆𝑇 , denoting 𝑆’s values at
1Linear equations with real variables are easier for an SMT solver to handle than integer variables

because they use linear programming as a subroutine. We use real variables everywhere, except for
representing the state in BBR’s state machine as an integer.

59

Lower bound on
queuing delay

Upper bound on
queuing delay

t
t1

t2

(A) (B)

Figure 5-1: (A) While the bounds on 𝑆(𝑡) in the continuous model look like the
dotted lines, we over-approximate that region using the solid lines as bounds. (B) In
the discrete model, the queuing delay at time 𝑡 can be any value between the upper
and lower bounds.

times 𝑡 ∈ {0, · · · , 𝑇}.2 Constraints can also be discretized. For instance, to express

∀𝑡, 𝑄(𝑡) ≥ 0, we add 𝑄0 ≥ 0 ∧ · · · ∧𝑄𝑇 ≥ 0 to the formula.3

For computational efficiency, 𝑇 must be small, leading to a coarse discretization

with only 1 to 3 time steps per 𝑅𝑚.4 Thus, the discretized constraints and func-

tions can become a poor approximation to the continuous ones. To nevertheless get

meaningful results, we adopt the following strategy.

Superset property. When formulating the constraints over discrete time, we

ensure that they allow a superset of behaviors possible with the original constraints,

so that any network trace that conforms to the continuous model is reproducible in

the discrete SMT formulation. Hence, any bounds proved in the discrete model will

be true in the continuous model as well.

Writing constraints that respect the superset property is often simple. In many

cases, since the discrete model only constrains functions at discrete time steps (i.e.,

𝑡 = 0, 1, .., 𝑇), it admits more behaviors than the continuous model. For example,

𝑆(𝑡) is constrained with 𝐶𝑡−𝑊 (𝑡) as upper bound and 𝐶(𝑡−𝐷)−𝑊 (𝑡−𝐷) as lower

bound, shown as dotted lines in Figure 5-1(A). When discretized, the bounds on 𝑆

become step functions that contain their continuous counterpart.

2We index to 𝑇 rather than 𝑇 − 1 since that includes 𝑇 time steps.
3For the rest of the paper, we use 𝑋(𝑡) to represent functions over continuous time and 𝑋𝑡 for

the SMT discretization.
4Congestion control has a natural time scale of 1 RTT since that is the feedback delay.

60

Sometimes ensuring the superset property is more complicated. One example is

computing the queuing delay used by the CCA. Recall that delay(𝑡) can be defined

as the horizontal distance between 𝑆 and 𝐴 − 𝐿 at 𝑆(𝑡). However, in the SMT

formulation, 𝑆, 𝐴, and 𝐿 are only defined at discrete time steps. Thus, as shown in

Figure 5-1(B), a horizontal line drawn from 𝑆(𝑡) (red dot) can cross 𝐴−𝐿 anywhere

between 𝑡1 and 𝑡2 (the blue dots). As such, the SMT formulation allows delay𝑡, the

discrete counterpart of delay at time 𝑡, to take any value between 𝑡 − 𝑡1 and 𝑡 − 𝑡2.

To express this in SMT constraints for each ∆𝑡 ∈ {0, · · · , 𝑡}, we add the constraints

𝑆𝑡 > 𝐴𝑡−Δ𝑡 − 𝐿𝑡−Δ𝑡 → delay 𝑡 ≤ ∆𝑡 and 𝑆𝑡 ≤ 𝐴𝑡−Δ𝑡 − 𝐿𝑡−Δ𝑡 → delay 𝑡 ≥ ∆𝑡.5

Appendix A.3 discusses how we constrain 𝐿𝑑
𝑡 to maintain the superset property.

Due to the superset property, a trace that satisfies the discrete SMT formulation

may not necessarily exist in the continuous model. As such, a bound proved using

CCAC may be looser than necessary, or a corner case caught by CCAC may not be

reproducible in the original model. The saving grace is that a human can always

look at the trace generated by CCAC to ensure that it makes sense, as we have

done in our case studies. In our experience, traces generated by CCAC always had

a correspondence with real networks, even if it occasionally exploited the relaxation

due to discretization.

Initial state. Unless specified by the user, we leave the initial state uncon-

strained. In particular, when CCAC explores the space of all possible network traces,

it has full freedom to pick any initial values for variables like the queue size, wastage,

and the number of lost packets. We will show in our case studies how to use this

feature to prove properties over an infinite time horizon.

5.1 Expressing CCAs

A CCA controls the sender’s transmission rate based on observed network behavior.

In CCAC, a CCA determines the cumulative arrivals, 𝐴(𝑡), by determining the con-

gestion window, cwnd(𝑡), and pacing rate, 𝑟(𝑡). At time 𝑡, the CCA can observe the

5We omit handling the corner case when 𝑆𝑡 = 𝐴𝑡−Δ𝑡 − 𝐿𝑡−Δ𝑡 for clarity.

61

service curve up to time 𝑡−𝑅𝑚, since feedback is delayed by 𝑅𝑚. The CCA can also

observe 𝜏𝑜(𝑡) and 𝐿𝑑(𝑡), which are functions built into CCAC. 𝜏𝑜(𝑡) indicates whether

a timeout happened at time 𝑡. 𝐿𝑑(𝑡) captures the cumulative number of losses de-

tected. Losses are detected through duplicate ACKs and timeouts. As a convenience,

the logic to calculate queuing delay based on 𝐴 and 𝑆 is also built into CCAC. The

user needs to write constraints that determine 𝐴(𝑡) as a function of the observables.

Figure 3-1 shows how to implement AIMD in CCAC.

Timeouts. If we implement timeouts according to RFC 6289 [124], the path-

server can cause timeouts by simply emulating a smooth network in the beginning

to keep rttvar (variation in RTT) low. Then, it can suddenly increase delay by 𝐷

seconds to cause a timeout. While this scenario is possible in real networks, CCAC

would produce excessively antagonistic worst-case behavior in this case. Instead,

we trigger a timeout only when all in-flight packets have been lost. The sender

would certainly timeout when this happens, and this mechanism avoids antagonistic

timeouts.

SMT interface. Recall that each CCA can introduce its own set of variables and

constraints to set cwnd(𝑡) and/or 𝑟(𝑡). In our SMT formulation, we have variables

cwnd0, . . . , cwnd𝑇 and 𝑟0, . . . , 𝑟𝑇 as discretized versions of 𝑐𝑤𝑛𝑑(𝑡) and 𝑟(𝑡), respec-

tively. The user must discretize other CCA-specific variables and constraints and

express the CCA as first-order-logic formulae. Specifically, for a CCA that uses a

congestion window, we include constraints of the form cwnd𝑡 = 𝑓(¯cwnd, �̄�, �̄�), where

¯cwnd is the vector of all previous window values, 𝑄 is the vector of all state variables

maintained by the algorithm, and 𝐸 is the vector of all the information derived from

the network such as loss and delay. While Z3 supports nonlinear constraints, we

manage to avoid them, improving efficiency. For example, a common technique is to

express a nonlinear function using linear constraints via a lookup table. For instance,

we used it in Copa to multiply queuing delay and cwnd.

Asking Queries about CCAs.

Queries (hypotheses) about CCAs in CCAC must be expressed as first-order-logic

formulae. For instance, to ask whether the network utilization can drop below a

62

threshold 𝑢, we can add the formula 𝑆𝑇−1−𝑆0 < 𝑢𝑇 to our SMT formulation and ask

CCAC whether or not it is satisfiable. If it is, the solver will output an assignment

to all the variables (i.e., 𝑆𝑡, 𝐴𝑡, 𝐿𝑡, and 𝑊𝑡) along with the CCA’s variable that will

cause the utilization to drop below 𝑢. If there is no such assignment, CCAC will have

proved that the CCA will always achieve utilization of at least 𝑢 over a period of 𝑇

time steps.

By default, CCAC is designed to be free to choose many parameters. For instance,

it can pick a network with a BDP that is small relative to the MTU (𝛼). This may

not be interesting to the user, so they can add an additional constraint such as 𝛼 ≤
1
5
𝐶𝑅𝑚. Hence, CCAC allows the user to explore many counterexamples depending

on their interest. As another example, we do not need CCAC to tell us that AIMD

reduces cwnd in response to non-congestive loss, as this is well-understood. Hence,

we simply disabled non-congestive loss to focus on loss caused by buffer overflow. For

the queries we asked in this paper, this leads to more interesting and unexpected

counterexamples.

5.2 Parameters and linearity

The model has parameters like the link rate, 𝐶, and the propagation delay, 𝑅𝑚.

In addition, each CCA may introduce its own parameters. We would like to prove

properties for any choice of these parameters. Ideally, we would leave all of them as

variables that are picked by the solver. However, that is not always possible and, for

some parameters, we must resort to other techniques. To better understand how to

pick parameter values, we will start by explaining parameter units.

There are two units in our framework: time and bytes. Without loss of generality,

we can pick them such that 𝐶 = 1 and 𝑅𝑚 = 1. Hence, our formulation quantifies

over all 𝐶 and 𝑅𝑚 “for free”. Having 𝐶 be a constant helps because many constraints

involve a product of 𝐶 with a variable. If 𝐶 were a variable, picked by the solver,

multiplication with 𝐶 would make the constraint non-linear. The same benefit holds

for 𝑅𝑚. In addition, some model constraints relate values of functions across time

63

steps that are 𝑅𝑚 or 𝐷 apart. For instance, the sender can use 𝑆𝑡−𝑅𝑚 as the number

of ACKs received so far to set cwnd at time 𝑡. Thus, both 𝑅𝑚 and 𝐷 need to be

integers. 𝑅𝑚 is a small integer that controls the number of time steps per RTT. As

such, it controls the granularity of discretization. The user needs to pick 𝐷 and in

so doing they can sweep over different values of 𝐷/𝑅𝑚. 𝐷/𝑅𝑚 is the value of 𝐷

measured in units of propagation delay.

Parameters that do not appear in a product with another variable can be left as

variables whose value will be picked by the SMT solver. Examples of such parameters

are the buffer size, 𝛽, and the additive increase constant, 𝛼, in algorithms like AIMD

and Copa. Note that when the solver picks 𝛼, it is implicitly picking the number of

packets in a BDP, 𝐶𝑅𝑚/𝛼.

64

Chapter 6

CCAC case studies

We demonstrate the power of CCAC through three case studies in the next three

sections: BBR [31], AIMD [34], and Copa [13]. CCAC’s model of these algorithms

is simplified and does not correspond exactly to code. That said, we make three

observations. First, CCAC resembles some implementations of CCAs that also re-

act only a small number of times per RTT due to CPU limitations. These have

been empirically demonstrated to have similar behavior [108]. This is because the

fundamental timescale of operation for a CCA is one RTT. Second, CCAC captures

complexities such as duplicate ACKs and timeouts. Third, congestion control is far

from being a solved problem and CCAs are not yet fully understood at an abstract

level. Thus, CCAC is still able to uncover surprising behaviors. Further, for simplic-

ity, our analyses of BBR and Copa assume that the sender has a correct estimate of

𝑅𝑚.

In each case, we formulate queries that probe the studied algorithm for “bad

behavior”. CCAC produces counterexamples that allow us to discover unexpected

behavior in all three algorithms that significantly impair their performance. We also

use CCAC to prove bounds on the worst-case performance of AIMD and Copa.

65

Slope ≪C

BBR pulses

Time

C
um

ul
at

iv
e

by
te

s A(t) S(t)

Figure 6-1: Network behavior generated by CCAC that prevents BBR from discov-
ering bandwidth.

6.1 Case study 1: BBR

BBR [31] is a complicated rate-based algorithm that relies on a number of “if” con-

ditions. However, the core idea of BBR is simple; the sender calculates the BDP as

the current rate multiplied by the minimum RTT, i.e., as the (total number of bytes

ACKed in the last RTT) * (min RTT) / (RTT). The sender sets its BDP estimate

to the maximum value calculated over the last 10 RTTs. BBR sets its cwnd to twice

this estimate and its pacing rate to (BDP estimate) / RTT. It has an 8-RTT cycle.

In the first RTT of the cycle, it attempts to probe available bandwidth in the net-

work through “pulsing”. Thus, it increases the pacing to a value larger than the value

calculated using the above formula. In the second RTT, it significantly decreases the

pacing rate to clear the queue generated in the previous RTT. Then, it maintains the

calculated rate for the remaining 6 RTTs.

We implement this core idea in CCAC, encoding it in SMT constraints. Then,

we ask queries of the form “Can BBR achieve less than 𝑥% utilization?”, for different

values of 𝑥. To do so, we add the constraint 𝑆𝑇−𝑆0 ≤ 𝑥𝐶𝑇 , which instructs the solver

to find instances where the total number of bytes served, (𝑆𝑇 − 𝑆0), is a fraction, 𝑥,

of the maximum, 𝐶𝑇 . We also add periodic boundary conditions to ensure that the

trace output can be repeated. In the absence of these, the solver can produce a trace

where BBR gets low utilization because its initial cwnd is low and does not ramp up

in 20 RTTs; we are looking for low utilization in steady-state. Concretely, we add

66

𝑄0 = 𝑄𝑇 ∧ 𝐿0 − 𝐿𝑑
0 = 𝐿𝑇 − 𝐿𝑑

𝑇 ∧ 𝑄0 − 𝑇0 = 𝑄𝑇 − 𝑇𝑇 to the constraints. While the

execution time depends on the query, queries up to 20 time steps finish within a few

minutes on a standard laptop.

CCAC generates examples of poor utilization, even for arbitrarily small values of

𝑥. Our next step is to analyze these low-utilization examples. Figure 6-1 shows a

schematic of the examples produced. When BBR increases the pacing rate to probe

for network bandwidth, the pulse is small (i.e., the increase in pacing rate is small),

and the network does not serve it at a higher bandwidth. Hence, BBR’s probe fails

(i.e., the BDP estimate remains small).

BBR’s design incorporates a feature that we think helps it avoid this behavior

in many networks; BBR’s BDP estimate is the maximum calculated over the last

10 RTTs. Thus, it usually over-estimates the quantity because most networks have

some delay jitter. This overestimation implies BBR will cause queue build-ups on

jittery paths. This finding is consistent with empirical observations that BBR often

maintains 1 RTT of queuing in practice [131, 141]. However, if the network is clean

with a smooth service, the problem CCAC identifies can manifest itself.

One approach to solve this problem is to intentionally overestimate the pacing

rate. For instance, the sender can pace BBR flows at twice the prescribed rate. In

fact, recently, Facebook made this change to their BBR implementation in mvfst [70],

the version of QUIC [71] they use in production. We implemented that version of

the algorithm in CCAC. We found that CCAC no longer finds any cases where the

algorithm gets <100% utilization in the steady state when the buffer is infinite.1

We believe that intentionally over-estimating the pacing rate can increase delay on

average, while the worst-case delay remains the same as before.

67

C
um

ul
at

iv
e

by
te

s

Time

Rm

X Loss!

Loss threshold

> β

β

A B C

Figure 6-2: An example where ACK aggregation causes loss even when the congestion
window is small.
6.2 Case study 2: AIMD

In this section, we first describe the surprising AIMD behavior we discovered using

CCAC. Then, we show how we can prove bounds on AIMD’s behavior that are valid

over an infinite time horizon. Our implementation of AIMD is ACK-clocked and

unpaced. The algorithm sends packets when 𝐿𝑑, 𝑆, or cwnd increase. It seeks to

maintain cwnd bytes in flight. A packet is “in flight” when it has neither been ACKed

nor marked as lost: inflight = 𝐴(𝑡)− 𝐿𝑑(𝑡)− 𝑆(𝑡− 𝑅𝑚). When inflight drops below

cwnd, the sender sends a packet. Our AIMD implementation handles duplicate ACKs

and timeouts. It increases its cwnd only when it gets enough ACKs and does not react

more than once to the same loss event. Due to the discretization of time in CCAC,

however, AIMD reacts only once per time step. The query is of the form shown in

Figure 3-1.

6.2.1 The surprise

We study how jitter can cause AIMD to incorrectly reduce its cwnd due to buffer

overflow even when the buffer is large. Thus, our query (Figure 3-1) aims to find

scenarios where AIMD can observe packet loss when cwnd is small. Specifically,

we add the following constraint:
⋁︀

𝑡(𝐿𝑡 > 𝐿𝑡−1 ∧ 𝑐𝑤𝑛𝑑𝑡 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ) (in Figure 3-
1Note that this is not a formal proof that the modified version will always have high utilization.

We show how these proofs can be constructed for AIMD and Copa in the next two sections, leaving
the formal proof of BBR’s properties to future work.

68

A full buffer
(β = 2CRm)

Packet is
dropped

...

2CRm evenly
spaced packets

By the time this is acked, both
cwnd and inflight are 2CRm. Hence

the sender is ready to burst

...

Burst of CRm
packets are

dropped Time

Figure 6-3: At the end of this sequence of packets, 1) the sender has reduced its cwnd
from 4𝐶𝑅𝑚 to 2𝐶𝑅𝑚 due to loss, 2) the server has dropped 𝐶𝑅𝑚 packets 3) inflight
= cwnd = 2𝐶𝑅𝑚 making the sender ready for another burst. Packets go from left to
right.
1, 𝑙𝑜𝑠𝑠_ℎ𝑎𝑝𝑝𝑒𝑛𝑒𝑑 is simply 𝐿𝑡 > 𝐿𝑡−1). CCAC uncovered two ways in which this

situation can occur. We discuss these in turn.

Loss due to ACK bursts. We start with a well-understood behavior that CCAC

uncovered. Consider an unpaced and ACK-clocked CCA. If ACKs arrive in a burst,

the CCA will send packets in a burst. A burst of ACKs can cause the algorithm to

send a burst of packets, overwhelming the buffer and causing packet drops.

CCAC generated an example of this behavior, shown in Figure 6-2. Suppose 𝐷 =

𝑅𝑚 and cwnd = 𝛽 = 𝐶𝑅𝑚. For ease of understanding, assume that cwnd is roughly

constant, say because it is large compared to the additive constant. Initially, the path-

server maintains zero queue and hence the sender sends at a rate cwnd/𝑅𝑚 = 𝐶. At

time A in the figure, the path-server decides to stop transmitting to emulate an ACK

aggregator that withholds ACKs, only to send them in a burst later at time B. The

ACK aggregator can pause packets for at most 𝐷 seconds. When it sends a burst at

time B, the ACKs reach the sender 𝑅𝑚 time steps later, at time C. These ACKs causes

the sender to send a large burst of size 𝐶𝐷 = 𝐶𝑅𝑚 = 𝛽 bytes, overwhelming the

buffer and causing packet loss. Note that this can happen even when cwnd < 𝐶 ·𝑅+𝛽,

which is the threshold at which fluid models predict loss will happen. In general, this

phenomenon can cause packet drops when cwnd > 𝛽 and 𝛽 < 𝐶𝐷.

69

Loss due to loss-bursts. We now discuss a finding that took us by surprise,

again with an unpaced and ACK-clocked AIMD CCA. CCAC found that a burst can

also happen if 𝐿𝑑(𝑡) increases suddenly (recall that inflight = 𝐴(𝑡)−𝐿𝑑(𝑡)−𝑆(𝑡−𝑅𝑚)).

But this discovery is surprising because cwnd is halved when losses are detected! Thus,

we would expect cwnd− inflight to not increase.

CCAC found that this safeguard can fail, by finding a situation where losses

occur in two steps. The first loss halves cwnd. Then, packets are ACKed until

inflight = cwnd. Now, the sender detects a burst of losses and does not halve its cwnd

again because it is part of the same loss event [46] (cwnd decreases only if the packet

that was lost was sent after the last cwnd decrease).

A concrete example of this behavior arises when 𝐷 = 𝑅𝑚 and 𝛽 = 2𝐶𝑅𝑚 (we

use CCAC to prove bounds for other values of 𝛽 and 𝐷 later). First, the path-

server inflates the propagation delay to 𝑅𝑚 + 𝐷. This allows cwnd to increase to

𝐶(𝑅𝑚 + 𝐷) + 𝛽 = 4𝐶𝑅𝑚 without loss. When the cwnd exceeds this quantity, one

packet gets dropped and the sender reduces its cwnd to 2𝐶𝑅𝑚, while still having

4𝐶𝑅𝑚 packets in flight. After the loss, the path-server services the next 2𝐶𝑅𝑚 packets

evenly. However, the sender does not transmit any packets in response because the

number of packets in flight is still larger than cwnd. At the end of this process,

inflight = cwnd.

Now, the path-server does not service any packets for the next 𝑅𝑚 time steps.

Then, it drops 𝐶𝑅𝑚 packets and services the remaining 𝐶𝑅𝑚 packets in a burst. Thus,

rather than receiving 2𝐶𝑅𝑚 ACKs, the sender receives only 𝐶𝑅𝑚 ACKs, indicating

that an additional 𝐶𝑅𝑚 packets were lost. However, this burst in loss does not trigger

another cwnd decrease since the sender recently decreased cwnd. Now, 𝐿𝑑(𝑡) increases

by 𝐶𝑅𝑚 and 𝑆(𝑡−𝑅𝑚) also increases by 𝐶𝑅𝑚 because of the last burst. This empties

the in-flight packets and causes the sender to burst 𝐶𝑅𝑚 + 𝐶𝑅𝑚 = 2𝐶𝑅𝑚 packets

at once. The combined burst is twice as large as what the path-server can burst at

once. This burst is enough to overwhelm the buffer again (recall, 𝛽 = 2𝐶𝑅𝑚), causing

another packet drop. This drop occurs for a packet that was sent when cwnd was

already 2𝐶𝑅𝑚. Hence, the sender will reduce its cwnd again to 𝐶𝑅𝑚. We discuss this

70

example in more detail in Appendix A.2.

Figure 6-3 depicts the above discussion. It shows the spacing (in time) between

packets that arrive at the server just as its buffer is about to exceed capacity for

the first time (when cwnd = 4𝐶𝑅𝑚). The packets are spaced this way because the

path-server sent ACKs in that pattern 𝑅𝑚 time steps earlier. Note that when the

path-server services a packet, the effect is seen 𝑅𝑚 time steps later in the sender’s

packet transmissions.

An important question to consider here is: If the minimum cwnd in this scenario

is 𝐶𝑅𝑚, doesn’t the sender always achieve full utilization? No, because jitter in

delay can inflate the RTT. Hence, when cwnd = 𝐶𝑅𝑚, utilization can be as low as

cwnd/(𝑅𝑚 + 𝐷), which is just 50% of 𝐶 in this example. This phenomenon can

happen repeatedly, causing consistently low utilization.

Mitigation 1: limit transmissions per ACK. At first glance, RFC6582 [46]

handles this case. It says “the implementation is encouraged to take measures to

avoid a possible burst of data, in case the amount of data outstanding in the network

is much less than the new congestion window allows. A simple mechanism is to limit

the number of data packets that can be sent in response to a single acknowledgment.”

Note, however, that our burst due to loss is followed by a burst of actual ACKs. Thus,

the problem occurs despite this mitigation.

Mitigation 2: Pacing. Premature losses can occur when pacing is implemented

with slack. For instance, the Linux kernel used a pacing of 2cwnd/smoothed_rtt.

The factor of 2 does not prevent premature losses, because bursts can still occur.

Recently, Google produced a patch reducing it to 1.2 because they noticed a perfor-

mance improvement [110], which perhaps happened for the reasons discussed above.

We used CCAC to confirm that losses can indeed occur when cwnd < 𝐶𝑅𝑚+𝛽 when

the sender is paced in this way.

The example above was when 𝛽 = 2𝐶𝑅𝑚. Naturally, beyond a certain buffer

size the network cannot orchestrate a burst large enough to overwhelm the buffer

prematurely (when cwnd = 𝛽 < 𝐶𝑅𝑚+𝛽). However, it is difficult for even experienced

engineers to determine this threshold, especially when multiple phenomena interact.

71

Cwnd

Q
ue

ue
 le

ng
th

4C
R

m
+2

α/
𝛿

CRm-α/𝛿 4CRm+2α/𝛿

A S

C
B

Cwnd

U
nd

et
ec

te
d

lo
ss

es

C(Rm+D) + 𝛽

C
(R

m
+D

) +
 𝛼

S

A

B

AIMD Copa
C

Figure 6-4: State diagram we use to prove AIMD and Copa’s steady-state behavior.
In the next subsection, we show how CCAC can help us discover and prove this

threshold (Theorem 2).

6.2.2 AIMD’s steady-state analysis

CCAC only searches through traces that are a finite number of time steps long. Nev-

ertheless, we can stitch together statements proved over finite time to prove theorems

about arbitrarily large time horizons. We focus on “steady state behavior” and exclude

transients that occur when network parameters such as the link rate or propagation

delay change. To do so, we first leave the initial conditions unconstrained; if the net-

work parameters were different before 𝑡 = 0, they could leave the network in any state

and we continue our analysis from there. Then, we assume 𝐶 and 𝑅𝑚 are constant

and prove that the CCA moves toward the steady state.

A steady state for a given CCA is a set of network states such that as long as the

network parameters remain unchanged (1) if the network enters it, it will never leave

it and (2) it will always enter the steady state, regardless of initial conditions. In our

case studies, a steady state is defined by bounds on cwnd, queue length, and number

of undetected losses. The steady state for a CCA may not be unique and only needs

to be as “tight” as needed by the theorems we wish to prove about them. Note that

our approach to steady-state analysis allows us to reason about variable link rates as

well, since we prove that the cwnd always moves in the “right” direction. Hence, as

the link rate varies, the cwnd will always track it.

72

The user’s intuition and experience are essential to arrive at the steady state.

They can pose different queries to CCAC to validate their guesses. For AIMD, we

guess that the steady state is defined by an upper bound on cwnd and the maximum

number of undetected losses, 𝐿𝑡 − 𝐿𝑑
𝑡 . We guess 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑 = 𝐶(𝑅𝑚 +𝐷) + 𝛽 + 𝛼

and 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = 𝐶(𝑅𝑚 +𝐷) + 𝛼. With these guesses, we prove the following

theorem:

Theorem 1. For AIMD, if 𝐶𝑅𝑚 > 5𝛼,2 the steady state is defined by cwnd <

𝐶(𝑅𝑚 +𝐷) + 𝛽 and 𝐿(𝑡) − 𝐿𝑑(𝑡) < 𝐶(𝑅𝑚 +𝐷) + 𝛼. Under the CCAC path model,

AIMD will eventually enter this steady state from any initial state. Further, once

entered, AIMD will never leave the steady state.

To prove this theorem, we divide the state space of AIMD as shown in Figure 6-4.

Then, we prove the following lemmas, which show that both cwnd and undetected

losses always move in the right direction (shown with arrows in the figure). The proof

uses these lemmas:

1. If cwnd0 > 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑∧𝐿0−𝐿𝑑
0 ≤ 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑∧𝐶𝑅𝑚 > 4𝛼 then cwnd𝑇 <

cwnd0 − 𝛼

2. If 𝐿0 − 𝐿𝑑
0 > 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∧ 𝐶𝑅𝑚 > 5𝛼 then at least one of the following

holds

(a) 𝐿𝑇 −𝐿𝑑
𝑇 ≤ 𝐿0−𝐿𝑑

0−𝐶 (i.e., undetected losses decrease by at least 𝐶) and

cwnd𝑇 ≤ 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑

(b) cwnd0 > 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑 ∧ cwnd𝑇 < 𝑐𝑤𝑛𝑑0 − 𝛼

3. Once AIMD has reached steady state, it will remain there. That is, if 𝐿0 −

𝐿𝑑
0 ≤ 𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∧ cwnd0 ≤ 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑 ∧ 𝐶𝑅𝑚 > 3𝛼 then

⋀︀
𝑡 𝐿𝑡 − 𝐿𝑑

𝑡 ≤

𝑚𝑎𝑥_𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∧ cwnd𝑡 ≤ 𝑚𝑎𝑥_𝑐𝑤𝑛𝑑.

2We constrain the BDP to be more than 5𝛼, because small BDPs elicit a different type of worst-
case behavior which we don’t study for the sake of brevity. The threshold was determined by
repeatedly querying CCAC and it happened be a small integer.

73

Lemma (2) implies that if the number of undetected packets and cwnd are both

larger than the threshold, then first cwnd will fall below the threshold. At this point,

the number of undetected losses will fall until it is also below the threshold. Combined

with (1) and (3), the lemmas prove the theorem.

To prove a statement using CCAC, we add its negation as a constraint and confirm

that CCAC returns “unsatisfiable”. Each proof works for a specific value of 𝛽 (specified

in number of BDPs). We sweep over several values between 0.1 to 4 BDP and prove

the theorem for each. Having established the steady state, we prove bounds on

premature drops. Using insights from experimenting with CCAC, we formulate the

following theorem:

Theorem 2. If 𝛽 <= 𝐶(𝑅𝑚 +𝐷), loss can happen if and only if cwnd ≥ 𝛽 − 𝛼. For

other values of 𝛽, the condition is cwnd ≥ 𝐶(𝑅𝑚 − 1) + 𝛽 − 𝛼.

The latter threshold in the theorem agrees with the fluid model except for the

−𝐶 term. This term comes from discretization, because the discretized path-server

can burst 𝐶 · 1 bytes more than the continuous version (see Figure 5-1(A)). The

finer our discretization, the smaller this difference. Recall from Section 5.2 that units

of time are arbitrary, and the absolute value of 𝑅𝑚 only controls the granularity of

discretization. Higher values lead to larger SMT formulae, requiring CCAC to take

longer to solve. The quantity of interest is actually 𝑅𝑚/𝐷. Hence, we prove the result

for 𝑅 = 2;𝐷 = 1, 2, 3 and 𝑅 = 3;𝐷 = 1, 2, 3 while sweeping over 𝛽 ∈ (0.1, 4𝐶𝑅𝑚]

and conjecture that the theorem is true in general.

6.3 Case study 3: Copa

Copa [13] is a delay-based algorithm like Vegas [27] and Fast [143] that we designed

and is described in section §11. It incorporates two new ideas. First, while Vegas

computes queuing delay as (RTT - minimum RTT), Copa uses (Standing RTT -

minimum RTT). Standing RTT is the minimum RTT over a short period of time,

typically the last RTT. Copa increases its rate when the estimated queuing delay

74

is low, and decreases its rate otherwise. Thanks to the use of Standing RTT, it

decreases its rate only when there is persistent queue buildup. Second, Copa has

a mode-switching algorithm that helps it detect if it is sharing the bottleneck with

cross traffic that uses a buffer-filling CCA (e.g., Cubic). If so, it switches to a more

aggressive mode, similar to AIMD or Cubic, to compete with such traffic.

6.3.1 Worst-case utilization

Our goal is to understand the value of using Standing RTT and whether it guarantees

high utilization. We implement Copa in CCAC without mode-switching and ask it a

series of queries of the form “Can Copa achieve less than 𝑥% utilization?”, for different

values of 𝑥. This is the same query that we used for BBR and includes the same

periodicity constraint. We find that CCAC generates examples of poor utilization,

even for small values of 𝑥. This section describes how we used CCAC to understand

why Copa might perform poorly.

The intuition behind Copa’s Standing RTT idea is that when Copa is sending

at less than link rate, the queuing delay would be zero at least once every RTT.

Thus, (Standing RTT - min RTT) would be zero, allowing Copa to increase its cwnd.

Since it would not be prudent to expect a real measurement to be exactly zero, Copa

also increases its rate if it believes the queue is nearly empty; that is, it has fewer

than 1/𝛿 packets, where 𝛿 is a constant parameter of the algorithm (e.g. Facebook’s

implementation of Copa used 𝛿 = 1/25 [50]).

One would expect Copa to always be able to maintain high utilization. However,

the counterexample generated by CCAC tells a different story. Figure 6-5 shows that

Copa maintained a persistent queue of up to 𝐶𝐷 packets, or ≈ 𝐶𝑅𝑚 ≫ 1/𝛿 packets

(recall that the queue length is the horizontal distance between 𝐴(𝑡) and 𝑆(𝑡)). This

caused the sender to decrease cwnd. So why was our3 understanding incongruous with

this counterexample?

When utilization is low, we expect the arrival curve to almost meet the service

curve frequently, representing an emptying of the queue. However, in Figure 6-5,
3Two of the authors of this paper were the designers of Copa.

75

the arrival and service curves don’t come close, meaning that a standing queue is

maintained persistently in the network. This behavior causes Copa to overestimate

delay despite the Standing RTT mechanism, degrading throughput. Copa decreases

its rate unless the standing queuing delay it measures is less than 1/(𝛿𝑟), where 𝑟 is

its current rate. Intuitively, in the worst case, the network can maintain a standing

queue of 𝐷, which means it can fool Copa into reducing its rate down to a negligible

rate of 1/(𝛿𝐷).

We now try to identify a path where such behavior can occur. We start by trying

to identify a single network box that can produce this behavior. To do so, we change

the model to allow waste only when 𝑄(𝑡) = 0, while in the original model it is

allowed when 𝑇 (𝑡) ≥ 𝑄(𝑡). The modified model retains its ability to emulate many

network boxes but it no longer composes; it cannot emulate a cascade of these boxes

(see §4.2.1). When we ran the same query with this non-composing model, we found

that CCAC no longer generates examples of Copa achieving very low utilization.

This is because, if the CCA is sending packets at a rate lower than the link rate, the

non-composing model will have to waste tokens so that they don’t expire. Waste is

allowed only when 𝑄(𝑡) = 0. This forces the path-server to empty the queue, which

Copa detects and increases its rate.

What is the difference between the composing and non-composing model? How

can multiple boxes maintain a standing queue, even when a single box cannot? The

answer is that a standing queue can arise when the different boxes empty their queues

at different points in time. For example, consider a Wi-Fi device, 𝑊 , that has to

share the medium with other devices. When 𝑊 gains medium access, it sends at

a high instantaneous rate, while on average it has a lower rate of 𝐶. Suppose 𝑊 is

followed by another box with little jitter and comparable or lower average throughput

as illustrated by the dotted line in Figure 6-5.4 Here, the first box has arrival curve

𝐴(𝑡) and service curve 𝑆1(𝑡) and the second one has arrival curve 𝐴2(𝑡) = 𝑆1(𝑡)
5 and

service curve 𝑆(𝑡). As evident in the figure, the arrival curve and the service curve

4We added the dotted line by hand; the rest of the figure was generated by CCAC.
5To emulate delay 𝑑 we can set 𝐴2(𝑡) = 𝑆1(𝑡− 𝑑). This does not materially change the analysis

since 𝑑 can be included in 𝑅𝑚.

76

0 2 4 6 8
Time (Rₘ)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
by

te
s (

in
 B

DP
)

S₁(t) = A₂(t)
Bounds
S(t)
A(t)

Figure 6-5: A trace generated by CCAC that causes Copa to severely under-utilize
network capacity. Here, 𝐶 = 1𝐵𝐷𝑃/𝑅𝑚 and Copa is severely under-utilizing the
link. A network can have a standing delay when it has more than a single box, even
if the individual boxes do not maintain a standing queue. 𝑆2(𝑡) and 𝐴1(𝑡) denote 𝑆
and 𝐴 of the first and second boxes respectively.

never meet after 𝑡 = 0, producing the behavior seen in the counterexample generated

by CCAC.

As designers of Copa, we had not considered the fact that multiple boxes may

be able to create persistently high delays despite a lack of persistent queues in any

individual box, and discovered it only when working with CCAC. We also found that

Copa performs well not only when the condition for waste is 𝑄(𝑡) = 0, but also if it

is 𝑄(𝑡) ≤ 𝛼
2𝛿

, which confirms that Copa’s 𝛿 works as designed. The same holds for

proofs in the next section.

6.3.2 Copa’s steady-state analysis

We analyze Copa’s steady state behavior using a similar approach to §6.2.2. Here,

we analyze the special case where 𝐷 = 𝑅𝑚 and the buffer is infinite. We guess that

in steady state Copa maintains a queue length smaller than 4𝐶𝑅 + 2/𝛿 and cwnd

between 𝐶𝑅− 1/𝛿 and 4𝐶𝑅+ 2/𝛿 (see Figure 6-4). We use CCAC to show that (a)

Copa will eventually enter the set of states S and (b) once entered, it never leaves S.

77

For instance, to prove A→S in Figure 6-4, we ask CCAC to find an example where

the initial cwnd and queue length are in A and at time 𝑇 “bad things” happen (i.e.,

𝐴𝑇 −𝑆𝑇 > 4𝐶𝑅𝑚 +2𝛼/𝛿 ∨ (cwnd𝑇 < cwnd0 +𝛼/𝛿 ∧ cwnd𝑇 < 𝐶𝑅𝑚− 1/𝛿)). If CCAC

finds no such instance, it proves the converse of the above. That is, if Copa is in A,

it moves toward 𝑆. We similarly prove assertions from B and C, and finally prove

that if Copa starts from state S, it remains there. This proves that S is Copa’s steady

state.6

Utilization. To determine the minimum utilization for Copa, we first constrain

the initial conditions to be within the steady state and ask CCAC to give examples

where 𝑆𝑇 − 𝑆0 < 𝑥𝐶𝑇 . We conduct a binary search to find that 𝑥 = 0.5 is the

minimum value where CCAC can find an example. This proves that Copa always

achieves at least 50% utilization in steady state.

But Copa always ensures its cwnd ≥ 𝐶 · 𝑅𝑚 − 1/𝛿, so why is the bound only

50%? Why is not nearly 100%, as the fluid model would predict? The reason is

the same as for AIMD. The server can inflate delay by 𝐷 = 𝑅𝑚, which slows down

ACKs and, hence, packet transmissions. This happens even though this restricted

path model cannot maintain a large standing queue. Transient queues are enough to

hurt utilization. We confirm that this bound is tight by asking CCAC to produce an

example with 50% utilization with periodic boundary conditions (i.e., initial queue

length, cwnd etc. are equal to the final values). The periodicity ensures that we can

continue the pattern indefinitely, ensuring that the behavior is not transient.

Delay. Copa was designed to maintain a maximum queuing delay of 3𝛼/𝛿 bytes,

so why does our analysis show a much higher value? Examples generated by CCAC

show that this is a feature, not a bug, in Copa. When the network is jittery, Copa

will (and should) increase its cwnd even if the maximum queue length is large, since it

looks at the standing-RTT, not the latest RTT like Vegas does. Vegas would decrease

its cwnd to nearly zero, adversely degrading its throughput.

Does this mean Copa always maintains a small minimum RTT, even though the

6Copa has some uninteresting corner-cases when 𝛼/𝛿 is large relative to a 𝐶𝑅𝑚 (BDP), so we
constrain it to be < 𝐶𝑅𝑚/5 in all analysis.

78

maximum may be large? Unfortunately not. CCAC found examples with large

minimum RTTs as well. This happens if the network is jittery to begin with, causing

Copa to increase cwnd and then becomes smooth. In the period that Copa reduces

its cwnd, the queue length will be large. Utilization can be <100% for the same

reason; Initially the network is smooth, causing Copa to maintain a cwnd ≈ 1BDP,

but becomes jittery later, causing low utilization.

79

80

Chapter 7

Statement and proof of the starvation

theorem

The previous section’s case studies focused on individual flows. However, as noted in

section 3.2, our usage of CCAC for studying competition between two or more flows

led us to instances of “starvation” - a severe form of unfairness - in all delay-bounding

CCAs. In this section, we state and prove a key result: for every delay-convergent

CCA (refer to §3.2), a scenario exists in our model (see §4) where one of the two

competing flows experiences starvation.

7.1 Extension of our network model

First, we extend the models presented in chapter 4 to capture multiple flows. We only

extend the simpler model since its behaviors are a subset of the full model. Thus any

impossibility result we prove with it, must also hold for any extension of the simple

model.

The new model shown in figure 7-1 has all flows using the same bottleneck queue,

emulating that the flows share a bottleneck in a real network. However they each

can experience different non-congestive delays because their non-deterministic delay

components (denoted as “𝐷”) are separate. This emulates that the rest of their paths

might be separate.

81

CCA 1

CCA 2

Figure 7-1: The simple network model for multiple flows

7.2 Definitions

Next, we define a few terms. We assume, without loss of generality, that all flows in

the network start at time ≥ 0. We define the throughput of a flow at time 𝑡 to be the

number of bytes acknowledged between time 0 to 𝑡 divided by 𝑡. We are interested

in starvation, an extreme form of unfairness. We propose the following definition.

Definition 2. Consider two flows 𝑓1 and 𝑓2 starting from arbitrary initial conditions

(e.g., one of the flows could have run for a long time and the other just starting). The

network is s-fair if there always exists a finite time 𝑡 such that for all time beyond

𝑡, the ratio of the throughput achieved by the faster flow to the slower one is smaller

than 𝑠.

Definition 3. Starvation is said to occur if the network is not 𝑠-fair for any finite

𝑠.

This definition allows for massive unfairness without causing starvation. For ex-

ample, if in steady state the two flows achieve a throughput ratio of a million to one,

we would still say that there is no starvation. Our analysis asks if any finite ratio is

achievable and proves that it is impossible for delay-convergent CCAs.

To prove that starvation occurs, we need to show that there exist starting states

and network behavior after which the flows never improve their bandwidth allocation

no matter how long they run. This is surprising because we expect our CCAs to

eventually converge to a good allocation no matter the initial allocation. Flows start

with unequal allocations, for instance, when one starts after the other. We also show

82

empirically that for Copa, BBR and PCC it is quite easy to cause starvation even

when the flows start at the same time.

One might think that this starvation claim requires CCAs to run at high efficiency;

for example, perhaps a focus on 100% utilization leads to aggressive behavior causing

starvation. We find that our result applies to CCAs that always utilize at least some

constant fraction of the link capacity, which can be quite small (say 1%), and far from

extreme efficiency. We only need to eliminate “silly” CCAs such as “set cwnd = 10

always”, which are inefficient and impractical, but avoid starvation.

Definition 4. A CCA is f-efficient if, when run on an ideal path with bottleneck

link rate 𝐶 and minimum RTT 𝑅𝑚, it eventually gets a throughput of at least 𝑓𝐶;

i.e., for any 𝑡, there exists a 𝑡′ > 𝑡 such that the number of delivered bytes in the

period 0 to 𝑡′ is at least 𝑓𝐶𝑡′.

We define 𝑓 -efficiency in this way because we need to make statements about all

delay-convergent CCAs, even absurd ones. For instance one can contrive a CCA for

which the limit of the throughput as 𝑡 → ∞ does not exist. Practical CCAs are

usually better behaved. We believe this definition adequately captures steady-state

throughput since throughput must be at least 𝑓𝐶 infinitely many times.

7.3 Starvation theorem

The following theorem states our result about the inevitability of starvation for delay-

convergent CCAs. It assumes the flow is never application limited; variable load only

makes the congestion control problem harder.

Theorem 3. For any deterministic, 𝑓 -efficient, delay-convergent CCA 𝒜, any prop-

agation delay 𝑅𝑚, any throughput ratio 𝑠 ≥ 1, and any 𝐷 > 2𝛿max, there exists a

network scenario with two flows (specified via an initial state and two per-flow tra-

jectories of non-congestive delays), such that one flow gets a throughput 𝑥1 and the

other flow gets a throughput 𝑥2 ≥ 𝑠 · 𝑥1.

83

The outline for the proof is as follows. Appendix A.5 fills in the mathematical

details that we omit here.

Step 1. Recall that the bound 𝑑max has a corresponding 𝜆; 𝛿(𝐶) < 𝛿max and

𝑑max(𝐶) < 𝑑max for all 𝐶 > 𝜆. We identify two bottleneck link rates 𝐶1, 𝐶2 ≥ 𝜆, such

that 𝐶2 is much larger than 𝐶1 (at least a factor 𝑠/𝑓 larger) but the CCA 𝒜, when

run independently on links with these two rates, converges to delays in two ranges

that are close to each other. Here, “close” means that the delay ranges achieved at

rates 𝐶1 and 𝐶2 lie within an interval of size 𝛿𝑚𝑎𝑥 + 𝜖. We will prove that for any

𝜖 > 0, we can always find such a 𝐶1 and 𝐶2 for a delay-convergent CCA (we will pick

𝜖 later).

Link Rate

D
el

ay
 R

an
ge

Our claim follows from a pigeonhole principle argument illustrated above. Recall

that the delays for any link rate > 𝜆 must fall in the interval [𝑅𝑚, 𝑑
𝑚𝑎𝑥]. Now there

are only a finite number of non-overlapping intervals of size 𝜖 that can fit in [𝑅𝑚, 𝑑
𝑚𝑎𝑥]

(at most ⌈(𝑑𝑚𝑎𝑥 −𝑅𝑚)/𝜖⌉ of them). But consider, for example, the infinite sequence

of link rates (𝜆0, 𝜆1, . . .), defined as 𝜆𝑖 = 𝜆 · (𝑠/𝑓)𝑖. We have: 𝜆𝑖 ≥ 𝜆 for all 𝑖 and

𝜆𝑗 ≥ (𝑠/𝑓) ·𝜆𝑖 for all 𝑗 ≥ 𝑖. Since this is an infinite sequence of link rates, we can find

a pair 𝜆𝑗 ≥ (𝑠/𝑓) · 𝜆𝑖 such that 𝑑𝑚𝑎𝑥(𝜆𝑖) and 𝑑𝑚𝑎𝑥(𝜆𝑗) fall within the same interval

of size 𝜖, i.e. |𝑑max(𝜆1)− 𝑑max(𝜆2)| < 𝜖. Let 𝐶1 = 𝜆𝑖 and 𝐶2 = 𝜆𝑗. The claim follows

because the delay range for any link rate has size at most 𝛿𝑚𝑎𝑥.

Step 2. Consider the trajectories of sending rate and delay when running a flow

84

using CCA 𝒜 independently on ideal paths with link rates 𝐶1 and 𝐶2. Recall that

an ideal path has zero non-congestive delay. The figure below shows an example of

a hypothetical delay-convergent algorithm that converges after times 𝑇1 and 𝑇2 in

the two cases. The CCA converges to similar but distinct delay ranges on the two

links. However, it converges to very different sending rates in the two cases. Let

𝑥1 and 𝑥2 denote the long-term throughput achieved on links of capacity 𝐶1 and 𝐶2

respectively. Clearly 𝑥1 ≤ 𝐶1, and since CCA 𝒜 is 𝑓 -efficient, 𝑥2 ≥ 𝑓𝐶2. It follows

that 𝑥2 ≥ 𝑓𝐶2 ≥ 𝑓 · (𝑠/𝑓)𝐶1 = 𝑠 · 𝐶1 ≥ 𝑠 · 𝑥1, where we have used the fact that

𝐶2 ≥ (𝑠/𝑓)𝐶1.

D
el

ay

Time Time

Link rate = Link rate =

S
en

di
ng

 ra
te

Time Time

Ratio of throughput

Step 3. To recap, so far we have identified two link rates 𝐶1, 𝐶2 such that the

CCA converges to delays in a similar range but its sending rates are far apart on

these links. In the final step, we construct a 2-flow scenario on a shared link with rate

𝐶1 + 𝐶2 and propagation delay 𝑅𝑚, such that the two flows follow exactly the same

trajectories we found in Step 2. Therefore, in this scenario, the two flows converge to

throughputs 𝑥1 and 𝑥2 that satisfy our starvation criteria: 𝑥2 ≥ 𝑠 · 𝑥1.

Our starting observation is that for a deterministic CCA,1 the sending rate at
1While CCAs such as BBR and PCC employ randomness, it does not materially affect the result

(see §8).

85

any time 𝑡 is a function of the delays observed up to time 𝑡 and the initial state

of the algorithm. Therefore, if we can set the non-congestive delays in the 2-flow

scenario such that each flow observes a total delay that is identical to one of the

delay trajectories from Step 2, then the two flows’ sending rates will follow the rate

trajectories from Step 2 as well. We will refer to controlling the non-congestive

delay on a flow’s path to achieve a specific delay trajectory as emulating that delay

trajectory. The question is can we emulate the delay trajectories from Step 2 by

adding up to 𝐷 seconds of non-congestive delay to each flow’s path in the 2-flow

scenario?

To complete the construction of the 2-flow scenario, we must specify the initial

state of the two flows’ CCAs, the initial state of the shared link’s queue, and the

trajectories of the non-congestive delay for the two flows at all times. Let 𝑑1(𝑡) and

𝑑2(𝑡) be the delay trajectories and 𝑟1(𝑡) and 𝑟2(𝑡) be the rate trajectories achieved

for links 𝐶1 and 𝐶2 respectively in Step 2. Assume that the flows converged to

their eventual delay ranges at times 𝑇1 and 𝑇2, as shown in the figure above. Define

𝑑1(𝑡) = 𝑑1(𝑡 + 𝑇1), 𝑟1(𝑡) = 𝑟1(𝑡 + 𝑇1), 𝑑2(𝑡) = 𝑑2(𝑡 + 𝑇2), 𝑟2(𝑡) = 𝑟2(𝑡 + 𝑇2) as time-

shifted versions of the delay and rate trajectories such that the time origin is set to

the time of convergence. These trajectories correspond to the bold segments shown

in the figure.

We initialize the internal state of the two flows to the states of the corresponding

flow in Step 2 at times 𝑇1 and 𝑇2. Our goal now is to emulate the delays 𝑑1(𝑡) and

𝑑2(𝑡) for all 𝑡 ≥ 0 by choosing the non-congestive delay for the two flows appropriately.

Let 𝛿⋆1(𝑡) and 𝛿⋆2(𝑡) be the non-congestive delays for flows 1 and 2 respectively, and

let 𝑑⋆(𝑡) be the sum of the propagation delay 𝑅𝑚 and queuing delay in the 2-flow

scenario.2 Note that 𝑑⋆(𝑡) is common to both flows. To achieve emulation, we need

to ensure that: 𝑑⋆(𝑡) + 𝛿⋆1(𝑡) = 𝑑1(𝑡) and 𝑑⋆(𝑡) + 𝛿⋆2(𝑡) = 𝑑2(𝑡) for all 𝑡 ≥ 0.

We control 𝛿⋆1(𝑡) and 𝛿⋆2(𝑡), but what is 𝑑⋆(𝑡)? To get a handle on 𝑑⋆(𝑡), let’s

assume for the moment that our delay emulation is successful and the two flows send

precisely at the rates 𝑟1(𝑡) and 𝑟2(𝑡). Then, we can compute the queuing delay in

2We use a superscript ⋆ for all signals in the 2-flow scenario.

86

the 2-flow scenario exactly: it is simply the delay of a queue with net arrival rate of

𝑟1(𝑡) + 𝑟2(𝑡) and net drain rate of 𝐶1 + 𝐶2. In the proof (see App. A.5 for details),

we use this observation to show that 𝑑⋆(𝑡) is given by:

𝑑⋆(𝑡) =
𝐶1𝑑1(𝑡) + 𝐶2𝑑1(𝑡)

𝐶1 + 𝐶2⏟ ⏞
Time-varying

− (𝛿max + 𝜖)⏟ ⏞
Constant

.

𝑑⋆(𝑡) has two components: (i) a time-varying part that is a weighted average of the

delay trajectories 𝑑1(𝑡) and 𝑑2(𝑡) from Step 2; (ii) a constant part that depends on

the initial queuing delay chosen in the 2-flow scenario. This initial delay is 𝑑⋆(0), and

we are free to set it to any value ≥ 𝑅𝑚.

For delay emulation to succeed, we must be able to satisfy 𝑑⋆(𝑡) + 𝛿⋆𝑖 (𝑡) = 𝑑𝑖(𝑡)

for some 𝛿⋆𝑖 (𝑡) ∈ [0, 𝐷] for all 𝑡 ≥ 0 and 𝑖 ∈ {1, 2}. This can be done if and only if

𝑑⋆(𝑡) satisfies two properties:

1. 𝑑⋆(𝑡) ≤ min{𝑑1(𝑡), 𝑑2(𝑡)}, i.e. 𝑑⋆(𝑡) must be a lower bound on 𝑑1(𝑡) and 𝑑2(𝑡).

This guarantees that the non-congestive delay is non-negative.

2. max{𝑑1(𝑡), 𝑑2(𝑡)} < 𝑑⋆(𝑡) +𝐷, i.e. 𝑑⋆(𝑡) +𝐷 must be an upper bound on 𝑑1(𝑡)

and 𝑑2(𝑡). This guarantees that the non-congestive delay is ≤ 𝐷.

The last step of the proof shows that we can choose the initial delay 𝑑⋆(0) such

that 𝑑⋆(·) satisfies both properties. We defer the details to Appendix A.5, but the

reason this works is that the delay values for 𝑑1(𝑡) and 𝑑2(𝑡) are never too far from

each other. Recall that Step 1 ensured that the delays lie within an interval of size

𝛿𝑚𝑎𝑥 + 𝜖. In this step, we were free to pick any 𝜖 > 0. To make our proof work in the

appendix, we will pick 𝜖 = (𝐷 − 2𝛿max)/2. Since we are given a 𝐷 > 2𝛿max by the

“invoker” of this theorem, 𝜖 > 0. The figure below shows how 𝑑⋆(·) is situated relative

to 𝑑1(·) and 𝑑2(·) for our running example.

87

D
el

ay

Time

Se
nd

in
g

ra
te

Time

Weigted
average

88

Chapter 8

Starvation in the real-world

Extreme unfairness tantamount to starvation can occur when multiple flows share a

bottleneck link but the rest of the path they traverse is different. This section shows

that starvation is not merely theoretical, but can be observed in real-world delay-

convergent CCAs even in simple settings. The scenarios we show are inspired by our

proof.

We discuss several CCAs here, explaining why certain CCAs are delay-convergent

and giving their oscillation range (i.e., 𝑑min(𝐶) and 𝑑max(𝐶)). Then we describe the

trace produced by Theorem 3 to cause one of the flows to starve and discuss how

it can arise in realistic network path. The only non-delay-convergent CCAs we are

aware of are loss based. We discuss them as well.

We have a simple criterion for deciding whether a network scenario is realistic.

First, it should possible for a composition of real network elements to produce the

behavior. Second, the behavior should not be a sequence of coincidences. That is,

the probability of the behavior happening should not decrease with the duration of

that behavior; if flows were to be on such a network, one of the flows must be very

likely to starve. As we we will see, the paths we come up with are common on the

Internet.

89

8.1 Vegas, FAST, and Copa

These CCAs all have the same equilibrium, though their dynamics differ. They all

try to maintain a constant number (𝛼) of packets in the queue. Even with a single

flow, these algorithms can send at a rate that is arbitrarily smaller than the link

rate. This happens when they overestimate their queuing delay and slow down. They

can overestimate their queuing delay on paths with non-congestive delays or if they

underestimate their minimum RTT, 𝑅𝑚.

Copa attempts to mitigate these problems by computing queuing delay as standing

RTT - min RTT, instead of latest RTT - min RTT where standing RTT is the

minimum RTT observed over a short period of time (min RTT is the minimum over

a long period). Unfortunately, this method is not robust to persistent non-congestive

delay. CCAC [12] found a way to use multiple network elements to fool this statistic

even when there is no persistent non-congestive delay.

The following simple scenario drives Copa to starvation. Run a Copa flow on a

120 Mbit/s link with 𝑅𝑚 of 60 ms. Send one packet with a 59 ms RTT to cause it

to under-estimate its minimum RTT. Here Copa achieved a throughput of 8 Mbit/s,

which was caused by a 1 ms error in measuring the delay of one packet. We did this

experiment with the Mahimahi emulator [112].

This single-flow phenomenon also occurs with two or more flows. e.g., when the

delay jitter happens only for one flow. We repeat the above experiment with two flows

where only one flow gets the 59 ms packet. In this case, one flow gets 8.8 Mbit/s

while the other gets 95 Mbit/s. Vegas and FAST can also be compromised in similar

ways.

8.2 BBR

BBR has two modes of operation. The first mode is the one described in the original

paper [31]. Here, BBR’s sending rate is limited by its pacing rate, which is set to

(pacing gain)·(bandwidth estimate). The pacing gain is typically 1, allowing

90

BBR to send at its estimated bandwidth. Every 8 RTTs, pacing gain is increased

to 1.25 to probe and see if more bandwidth is available. After this, pacing gain is

reduced to 0.75 to drain any queue created during the gain. The bandwidth estimate

is the maximum bandwidth measured over the last 10 RTTs, where bandwidth is

measured by dividing the number of acknowledged bytes over 1 RTT intervals.

If more bandwidth were available during the probe phase (or at any other time),

bandwidth estimate would have increased. The way BBR seeks to achieve fairness

is by having different flows probe at different random times, as described in a fairness

analysis document [140]. In the pacing mode, 𝑑min(𝐶) = 𝑅𝑚 and 𝑑max(𝐶) = 1.25𝑅𝑚.

If 𝐷 > 𝛿max = 0.25𝑅𝑚, our network model can prevent one of the flows from recog-

nizing that additional bandwidth is available during the probe phase, causing it to

send at a rate that is arbitrarily small compared to its fair share. This situation is

identical to the one described in the CCAC paper [12] and happens in the presence of

a network element, such as a cellular base station, whose bandwidth allocation lags

behind the flow’s demand. Our proof constructs exactly this behavior. By contrast,

if 𝐷 is smaller, BBR can be broken in the cwnd-limited mode that is described below.

Because the bandwidth estimate uses a max filter, BBR tends to over-estimate

the link rate when ACKs do not arrive smoothly, since there will be some RTT

during which we get greater than average rate. As a result, the queue can grow

indefinitely. To prevent such buffer-bloat, BBR incorporates uses cwnd to cap the

number of in-flight packets. Hence when BBR has overestimated the bandwidth, it

is in the cwnd-limited mode [64, 142]. In this mode, cwnd controls the behavior and

dynamics of the pacing rate and its increase/decrease during bandwidth probing are

not material to the sender’s transmissions.

Starvation in cwnd-limited mode Here, cwnd is set to 2·(bandwidth estimate)·(𝑅𝑚

estimate) + 𝛼. The 𝛼 term is called quanta in the BBR document [32], and is in-

tended to “allow enough quanta in flight on the sending and receiving hosts to reach

high throughput even in environments using offload mechanisms”. This term was

removed in a later version, but another additive term extra_acked was added in its

91

stead [33]. We believe the 𝛼 performs a critical function in addition to the intended

one; it enables fairness in cwnd-limited mode by forcing a unique fixed point.

We now calculate the equilibrium point for BBR on an ideal path. At equilibrium,

its bandwidth estimate equals the ACK arrival rate, which equals the sending rate,

cwnd/RTT. Hence we have

cwnd = 2𝑅𝑚 · (bandwidth_estimate) + 𝛼

= 2𝑅𝑚 · cwnd/RTT + 𝛼

Thus, equilibrium_sending_rate = cwnd
RTT

= 𝛼
RTT−2𝑅𝑚

(Figure 3-4). At equilibrium,

RTT > 2𝑅𝑚, achieving full utilization.

When there is only one flow, the sending rate is 𝐶 because the link is fully utilized.

This gives cwnd = 𝐶𝑅𝑚 + 𝛼. We can repeat this calculation for multiple flows using

the additional constraint that ACKs for the 𝑖th flow arrive at the rate of 𝐶 cwnd𝑖∑︀𝑛
𝑗=1 cwnd𝑗

.

Then we get cwnd𝑖 = 2𝐶𝑅𝑚/𝑛 + 𝑛𝛼. At this equilibrium, the queuing delay is

2𝑅𝑚 + 𝑛𝛼/𝐶.

This behavior is similar to Vegas, FAST, and Copa where at equilibrium the

queuing delay was 𝑅𝑚+𝑛𝛼/𝐶. The only difference is that BBR maintains an extra 𝑅𝑚

of delay. But this is an important difference; unless BBR overestimates the congestive

delay by 𝑅𝑚, it maintains non-zero queuing delay and achieves full utilization. In

contrast, even a single Vegas/FAST/Copa flow can under-utilize the link if they mis-

estimate the RTT by 𝛼/𝐶. However, fairness is still achieved for BBR by the 𝑛𝛼/𝐶

term. If we remove the +𝛼 term and recalculate the equilibrium, we find that any

value of cwnd1 and cwnd2 can be a fixed point as long as cwnd1 + cwnd2 = 2𝑅𝑚𝐶,

even if cwnd1 = 0 and cwnd2 = 2𝑅𝑚𝐶! If one BBR flow is running and has occupied

the entire link, when a new flow comes, it will not achieve its fair share. While the

+𝛼 term fixes the problem, 𝑛𝛼/𝐶 is a rather small value of delay to measure and

becomes smaller as 𝐶 grows. Hence the same precision is required as in Vegas, FAST

and Copa. The analysis suggests that when flows with different RTTs compete, the

smaller RTT starves, as has been observed empirically before [64].

92

Empirical evaluation BBR is a complex protocol, spanning 900 lines of code. To

confirm that our simplified theoretical model for BBR is useful, we conducted some

experiments. We used Mahimahi [112] to run two BBR flows (implemented in the

Linux kernel v5.13.0) with 𝑅𝑚 of 40ms and 80ms over a common bottleneck link of 120

Mbit/s for 60 seconds. Since there were two BBR flows, their interaction and natural

OS jitter was enough to push them into cwnd-limited mode. In this situation, one flow

got an average of 8.3 Mbit/s and the other got 107 Mbit/s, an order-of-magnitude

difference in sending rates.

Delay-convergence in BBR Strictly speaking, the cwnd-limited mode does not

meet our definition for delay-convergent CCAs with 𝛿(𝐶) = 0 because (1) some jitter

is necessary for this mode to be active while our definition is over ideal links and (2)

BBR periodically stops transmitting to probe for minimum RTT. During a probe,

RTT falls to 𝑅𝑚, so 𝛿(𝐶) is 𝑅𝑚 ̸= 0. These are, however, mere technicalities and our

starvation proof still works. First, instead of running in an ideal link, we need to run

on a link with some jitter. Second, our proof works even if the CCA has oracular

knowledge of 𝑅𝑚; alternatively, we can stop emulation when the CCA is probing for

RTT and the rest of the argument holds, since BBR will ignore the data collected

during probe. Further, BBR employs randomness in when it probes for bandwidth

while our theorem only applies to deterministic CCAs. However, this does not make

a difference as demonstrated by the empirical experiment above.

8.3 PCC Vivace

The PCC Vivace paper [39] showed that on an ideal link it converges to a fair through-

put allocation that fully utilizes the link and maintains zero queuing delay. It regu-

larly increases and decreases its rate to check if that will increase its utility function.

Based on the largest constants given in the paper this will cause the queuing delay

to oscillate at most between 𝑅𝑚 and 1.05𝑅𝑚. These form 𝑑min(𝐶) and 𝑑max(𝐶) with

𝛿max = 𝑅𝑚/20. PCC’s rate-delay curve is shown in Figure 3-4. Like BBR, PCC also

93

 0

 40

 80

 120

 0 50 100 150 200

C
w

n
d

Time (sec)

Reno

 0 50 100 150 200

Time (sec)

Cubic

Figure 8-1: Congestion window evolution when two flows are run on a 6 Mbit/s, 60
ms link and 60 packets (1 BDP) of buffer. The lower flow’s receiver uses delayed
ACKs of up to 4 packets while the other ACKs every packet. The CCAs used are
Reno (left) and Cubic (right). The ratio of throughput obtained between the two
flows is 2.7× and 3.2× for Reno and Cubic respectively.

employs randomness, but it this does not make a difference to the result. (In fact, we

conjecture that Theorem 3 is true for randomized CCAs too.)

To empirically test if PCC experiences starvation, we ran two PCC Vivace flows

in a Mahimahi emulator with 60 ms propagation delay and 120 Mbit/s bandwidth.

For one of the flows, ACKs are received only at integer multiples of 60 ms, preventing

finer delay measurement. This flow only achieved 9.9 Mbit/s while the other flow got

99.4 Mbit/s. We used Vivace’s kernel module for the experiments [74]. 1

8.4 Loss-based CCAs

CCAs like NewReno [65] or Cubic [61] are not delay-convergent. We study their

fairness in two ways. First, we extended CCAC to handle multiple flows (see Ap-

pendix A.1) and used it to discover bad behavior when there is non-congestive delay

jitter. Second, we modify our model to allow it to preferentially drop packets for one

flow.

Let us take delay jitter first. Suppose two flows share a bottleneck, but one of

1We needed a relatively large jitter of 60 ms because Mahimahi is a noisy emulator. Linux user-
space scheduling adds several ms of jitter to both flows. We need the flows to have different jitter.
A cleaner, less-variable network emulation environment will produce a configuration with smaller
non-congestive jitter for starvation to occur.

94

them is well-paced while the other sends packets in bursts. This situation can occur

with generic segment offloading (GSO) [1] used by the sender for CPU efficiency,

ACK aggregation (say due to WiFi [59]), or delayed ACKs [72, 26]. As the queue

gets nearly full, the flow that sends packets in bursts is more likely to lose packets.

When this happens, this flow reduces its cwnd and the queue stops being full until a

while later when again the bursty flow is more likely to lose packets. Packet bursts

can reduce the utilization even when there is only a single flow on the link, but only

when the bursts are large [12]. However when two or more flows are present, even

a small burst can cause unfairness. This is illustrated using an ns3 [3] simulation in

Figure 8-1 and was alluded to earlier (see §1.1). We also reproduced similar results

in emulation in Mahimahi.

One flow using delayed ACKs of 4 packets can cause it to get 1/3 the throughput

of the other flow. Nevertheless this is not starvation since the unfairness is bounded.

In loss-based AIMD, when the faster flow reduces its cwnd (which it eventually must

when it occupies nearly all of the link), it gives the slower flow time to ramp up before

it starts to decrease its cwnd again. In Cubic, the faster flow will eventually overshoot

the entire bandwidth-delay product (BDP) as governed by the cubic function. The

slower flow can only increase its cwnd and experience losses two or three times before

this happens. Hence the unfairness is bounded. We used CCAC to prove that there

is no trace of length 10 RTTs where starvation is unbounded for two AIMD flows.

Proving this result for any trace length is future work.

PCC Allegro [38] While loss-based AIMD is not delay-convergent and is therefore

immune to small delay jitter, it converges to a loss rate as a function of the BDP [103]:

cwnd ∝ 1√
loss rate

. If we add to the network model the ability to arbitrarily drop a

small fraction of packets, we can get the CCA to under-utilize the link when the BDP

is sufficiently large. This is well known and works even when only a single flow is

present.

PCC’s behavior is more interesting. To get around this problem, the loss-based

PCC variant, PCC Allegro, has a loss threshold that it can tolerate. As long as

95

the packet loss rate is lower than this threshold, it will fully utilize the link. In our

framework, this is analogous to BBR in cwnd mode always maintaining 𝑅𝑚 seconds of

queuing; as long as error in delay measurement is smaller than 𝑅𝑚, BBR fully utilizes

the link. Just as BBR is an improvement to the Vegas family, PCC is a loss-resilient

improvement to the Reno family. However, just like BBR, PCC can also experience

starvation when one of the flows (but not the other) experiences even small amounts

of congestion signal; for BBR it is propagation delay, for PCC it is random loss. The

reason is analogous; the space of loss rates is smaller than the space of sending rates.

As empirical validation, we ran two PCC flows for 60 seconds on a 120 Mbit/s

Mahimahi link with 40 ms RTT and 1 BDP buffer. One of the flows experienced a

random loss rate of 2% and got only 10.3 Mbit/s while the other, which experienced

no random loss, got 99.1 Mbit/s. PCC is supposed to be resilient to up to 5% loss.

Indeed, when we ran two flows with 2% loss, they shared the link fairly and efficiently.

The same held true with one flow with 2% loss. Like BBR, PCC breaks only when

two flows are present and experiences unequal congestion signal (here, loss). We do

not believe it is possible to circumvent this problem with algorithms that map loss

rates (or delays) to sending rates.

96

Chapter 9

Implications of the starvation result

The main lesson from this paper is that to avoid starvation delay-convergent CCAs

must explicitly model and design for non-congestive delays. This affects the design

space of CCAs in three key ways:

1. If 𝐷 is the bound on network jitter, the CCA must maintain at-least 𝐷 seconds

of delay to be 𝑓 -efficient (§9.1).

2. To avoid starvation, it is not enough to maintain a queue that is larger 𝐷, but

the variation in delay must be larger as well (see §9.2).

3. If we have an upper bound on the link rate, then we can achieve all three

objectives without large variance in queuing delay. The delay bound achieved

is a function of 𝐷 and our maximum tolerable unfairness (§9.3).

The rest of this section expands on these ideas, and concludes by proving an

impossibility result for delay-bounded (non-delay-convergent) CCAs.

9.1 Is an 𝑓-efficient, delay-convergent CCA achiev-

able?

Can a CCA simultaneously achieve 𝑓 -efficiency and delay-convergence if we can toler-

ate starvation? The answer is not obvious because current schemes like BBR, Copa,

97

Vegas, and FAST do not, as shown in the recent CCAC paper [12]. That paper found

counterexamples consistent with the delay-jitter network model of this paper showing

scenarios where 𝑓 -efficiency is not achieved for any 𝑓 > 0.

We are not aware of any existing CCAs that are both 𝑓 -efficient and delay-

convergent. That said, we have not analyzed every algorithm in depth. Perhaps

the best hope is offered by BBR. The CCAC paper showed that if BBR were mod-

ified to have a higher pacing rate, CCAC could no longer find any example where

BBR under-utilizes the link. We believe this happens because the higher pacing rate

forces BBR to operate in the cwnd-limited mode, since the behavior is identical to

when BBR over-estimates the pacing rate (see §8.4). In this mode, 𝑑max(𝐶) ≥ 2𝑅𝑚,

which is large.

Note, however, that CCAC did not prove that BBR is 𝑓 -efficient. It merely ruled

out the existence of under-utilization over short (≤ 10 RTTs) sequences of network

behavior. It also assumed a sender with oracular knowledge of 𝑅𝑚.

We conjecture, however, that it is possible to design an 𝑓 -efficient, delay-convergent

CCA if we ignored starvation. Perhaps the modified BBR is such an algorithm.

Any such CCA must maintain a larger delay than the network jitter, or risk under-

utilization. The following lemma formalizes this.

Theorem 1. Any deterministic CCA for which there exists a link rate 𝐶 and min-

imum RTT 𝑅𝑚 such that 𝑑max(𝐶) ≤ 𝐷 can experience arbitrarily low utilization in

our network model with parameter 𝐷.

Proof. The idea is similar to our proof for Theorem 3. Let the delay experienced

by the CCA on an ideal path of rate 𝐶 and propagation delay 𝑅𝑚 be 𝑑(𝑡). Let its

sending rate be 𝑟(𝑡). We will construct a network with propagation delay 𝑅𝑚 and

𝐶 ′ ≫ 𝐶 such that the delay experienced by the CCA is exactly 𝑑(𝑡). As a result, the

CCA will transmit at exactly 𝑟(𝑡) since the CCA is deterministic. This is possible

because we will choose 𝐶 ′ to be large enough that the queuing delay, 𝑞(𝑡) ≤ 𝑑(𝑡). Now

𝑑(𝑡) ≤ 𝑑max(𝐶) ≤ 𝐷 where the first inequality follows from the definition of 𝑑max(·).

Hence 0 ≤ 𝑑(𝑡) − 𝑞(𝑡) ≤ 𝐷, which is the condition we need for emulation. Since the

98

actual link rate, 𝐶 ′, can be arbitrarily larger than the rate ≈ 𝐶 at which the CCA

sends, starvation occurs.

9.2 Larger oscillations may avoid starvation

Theorem 3 shows that a CCA whose ideal-path delay variation, 𝛿max, is smaller than

one-half of the non-congestive delay in the network, 𝐷, cannot simultaneously be 𝑓 -

efficient, bound delays, and avoid starvation. Hence the only way to achieve all three

properties is to design a CCA that has large delay variation on ideal paths (i.e., at

equilibrium).

Why might large delay variations avoid starvation? The reason why CCAs with

small variations starve is that there isn’t enough space to assign all achievable rates

to distinct-enough delay ranges. This is because once a CCA has converged to a small

delay range, it keeps receiving the same signal over and over. It cannot distinguish

delay variations due to congestion from those due to non-congestive jitter.

Delay

0

Measured delay
Range in which

(congestive delay +)
can lie

Discrete blocks in
which delay can lie

An imprecise but useful mental model is to think of measurement ambiguity as

discretizing measurement. When we measure an RTT of 𝑑, we know that up to 𝐷 of

it may be non-congestive. The material portion of 𝑑 for our purposes is in the range

[max(0, 𝑑−𝐷), 𝑑]. Let us divide the RTT 𝑑 into discrete blocks of size 𝐷. This range

tells us that the correct (congestive delay + 𝑅𝑚) must lie in one of the two blocks

highlighted in the picture above.

A delay-convergent algorithm with 𝛿max ≤ 𝐷 gets the same set of blocks over and

over again. But one with larger variation can get different blocks/bits of information

99

each time. This forms an infinitely large stream of bits in which to encode the

correct sending rate. Different bit streams can now be assigned to different sending

rates. This helps sidestep the pigeonhole argument, which forms the bedrock of our

impossibility proof.

For instance, sending rate can be encoded in the frequency of oscillation of delay,

rather than its absolute value. Given enough samples, it may be possible to measure

frequency with arbitrary precision, avoiding starvation. Loss-based algorithms like

AIMD do this; AIMD’s sending rate is determined by the frequency at which packets

drop. While our analysis does not include packet losses, it is interesting to note

that AIMD has large oscillations relative to 𝐷. Hence smaller delay jitter does cause

starvation (§8.4). If the oscillations (and hence the buffer size) were smaller than 𝐷,

it is indeed possible to starve AIMD; one flow always sends packets in bursts that

are larger than the buffer, experiencing drops, while the other flow grows its cwnd

to be arbitrarily larger than the first flow. We conjecture that AIMD on delay is an

interesting design space for researchers to seek starvation-free CCAs.

9.3 Avoiding starvation in a bounded rate range

A CCA that seeks to converge to a small range of delays must map sending rates that

are far away to delays that are more than 𝐷 apart, or risk starvation. While this is

not possible for an infinitely large range of rates, it becomes possible if we know that

the correct sending rate will come from a bounded range. In practice, we may know

such bounds a priori from a knowledge of network parameters (e.g., access link rate

at the sender) or by profiling applications.

Rather than worry about perfect flow-level fairness, which might not be an inter-

esting goal in practice [28], we seek to be 𝑠-fair; i.e., bound unfairness to a maximum

specified throughput ratio of 𝑠 > 1. For a given 𝐷, and maximum tolerable delay

𝑅max, we define a figure-of-merit for a rate-delay curve as the ratio of the maximum

rate it supports to the minimum: 𝜇+

𝜇−
. Rates in today’s Internet can span several

orders of magnitude, from < 100 KBit/s to ≈ 10 Gbit/s. Hence having 𝜇+

𝜇−
≥ 103 and

100

perhaps ≈ 105 is desirable.

For Vegas, FAST, and Copa, the rate-delay function is 𝜇(𝑑) = 𝛼/(𝑑−𝑅𝑚), where

𝜇 is the sending rate [13]. The function for BBR’s cwnd-limited mode is 𝜇(𝑑) =

𝛼/(𝑑 − 2𝑅𝑚). The arguments in this section are similar for both these functions, so

we analyze the Vegas/FAST/Copa function here.

To achieve 𝑠-fairness for all 𝜇 ∈ [𝜇−, 𝜇+], we want the difference in the delays seen

between 𝜇 and 𝑠𝜇 to exceed 𝐷. This gap will ensure that rates that are more than 𝑠

away from each other are mapped to distinguishable delays. The difference in delays

for our rate-delay function is:

(︂
𝑅𝑚 +

𝛼

𝜇

)︂
−
(︂
𝑅𝑚 +

𝛼

𝑠𝜇

)︂
> 𝐷

⇒𝜇 <
𝛼

𝐷

(︂
1− 1

𝑠

)︂
.

This gives us 𝜇+. 𝜇− is the rate corresponding to 𝑑 = 𝑅max, so 𝜇− = 𝛼/(𝑅max−2𝑅𝑚).

Hence, for the Vegas family,

𝜇+

𝜇−
=

𝑅max −𝑅𝑚

𝐷

(︂
1− 1

𝑠

)︂
≈ 𝑅max

𝐷
. (9.1)

We can, however, do much better with

𝜇(𝑑) = 𝜇−𝑠
𝑅max−𝑑

𝐷 (9.2)

When 𝑑 = 𝑅max, 𝜇 = 𝜇− as desired. 𝜇+ occurs when 𝑑 = 𝑅𝑚 + 𝐷. This

is the minimum RTT required to ensure full utilization (Lemma 1). Hence, 𝜇+ =

𝜇−𝑠
(𝑅max−(𝑅𝑚+𝐷))/𝐷. Thus,

𝜇+

𝜇−
= 𝑠

𝑅max−𝑅𝑚−𝐷
𝐷 = 𝑂

(︁
𝑠

𝑅max

𝐷

)︁
.

This range is exponentially larger than the Vegas family and can span several orders

of magnitude of link rates, as desired. For instance, for 𝐷 = 10, 𝑠 = 2 and 𝑅max = 100

101

ms we can support a range of 210 ≈ 103. With 𝑠 = 4, that increases to 220 ≈ 106.

A real-world CCA may make the following modifications to this rate-delay curve.

(1) This function never increases its rate beyond 𝜇+. This is simply solved by using a

Vegas-like function for 𝑑 < 𝐷 that goes to infinity. Such a CCA will scale to arbitrarily

large link rates, but risk starvation when rate exceeds 𝜇+. (2) If the CCAs have a

method to estimate 𝑅𝑚, they can set 𝑅max as a function of 𝑅𝑚: e.g. 𝑅max = 𝑅𝑚+100

ms. Note that both Equation 9.2 and the Vegas family can send at rates lower than

𝜇−, but will increase delay beyond 𝑅max. For rates < 𝜇−, delays increase more slowly

for the Vegas family than for Equation 9.2.

Algorithm 1 A delay-convergent CCA that uses 𝜇−𝑠
𝑅max−(𝑑−𝑅𝑚)

𝐷 . The following is
run every 𝑅𝑚. Here, 𝑑 is the latest measured RTT, 𝜇 is the current sending rate and
𝑎, 0 < 𝑏 < 1, 𝜇−, 𝑅

max are parameters of the algorithm.

if 𝜇 < 𝜇−𝑠
𝑅max−(𝑑−𝑅𝑚)

𝐷 then
𝜇← 𝜇+ 𝑎

else
𝜇← 𝑏𝜇

end if

An Algorithm Algorithm 1 shows a CCA that uses Equation 9.2. This algorithm is

incomplete on several fronts. It does not feature a mechanism to discover 𝑅𝑚 or handle

short buffers by slowing down in the presence of loss. It increases its rate additively,

and does not feature the faster increase times of modern algorithms. Further it does

not have a cwnd cap to be resilient to sudden drops in link capacity [18]. We show

this merely to illustrate an idea, not propose a deployable CCA.

To verify this algorithm, we used CCAC to produce traces where the algorithm

is either inefficient or more than 𝑠-unfair. CCAC was unable to produce such traces,

giving us some confidence that they key ideas work. CCAC helped us fine-tune some

details of the algorithm such as a) use AIMD instead of the AIAD uses by Vegas

and Copa because the fairness properties of AIMD are critical in the presence of

measurement ambiguity and b) change the rate by the same amount on every RTT

irrespective of the number of ACKs received. Note that this does not constitute a

102

proof, since CCAC only searched over finite traces. We have not yet performed the

steady-state analysis method described in the CCAC paper.

Estimating 𝑅𝑚 is a common challenge for delay-convergent CCAs, and may require

fundamental new insights from the community. Estimating 𝑅𝑚 is hard because it

requires all flows to coordinate and empty the queue at the same time. Copa’s

mechanism works well in the absence of delay ambiguity, but not otherwise. BBR’s

mechanism works when there is a single flow, but its RTT probe does not always

succeed in coordinating across multiple flows.

9.4 An absolute upper bound

We have also proved that no deterministic CCA can be simultaneously 𝑓 -efficient,

delay-bounding (but not delay-convergent, i.e., the delay bounds can grow with the

bottleneck rate), and starvation-free. This theorem uses a stronger network model

than those in Section 4; here the adversary can also vary the link rate arbitrarily. We

call this the “strong” model. Since there are no bounds on the link rates, this adver-

sary is very powerful. Perhaps too powerful, for it can create unrealistic networks.

Thus we still believe that it may be possible to achieve all three properties on prac-

tical networks. Nevertheless, it serves as a useful upper bound on what is possible.

The proof technique is interesting in that we have found it instructive to study the

network paths it constructs. It often constructs paths similar to ones constructed by

Theorem 3, i.e., consistent with our simpler network model.

Theorem 4. Any deterministic, 𝑓 -efficient, delay-bounding CCA will starve in the

strong model for any value of the propagation delay 𝑅𝑚.

The proof is given in Appendix A.6. This theorem does not need to control the

initial conditions or require both CCAs to be the same.

103

104

Chapter 10

Limitations of our congestion control

analysis method

We believe that this thesis sets the initial steps towards a more comprehensive and

formal understanding of the behavior of CCAs, raising new challenges and opportu-

nities. Thus far, we have focused on end-to-end CCAs and not yet analyzed receiver-

driven protocols, MPTCP [146], schemes using in-network signals such as ECN [44],

INT [81], XCP/RCP [79, 40], and ABC [59]. We discuss a possible way to handle

these in Appendix A.1.

Because our modeling focuses on worst-case behavior, a central goal of its design

is to exclude excessively antagonistic behavior that no CCA can handle. Thus, the

path model only includes a carefully chosen subset of paths (see §4.2.1). Our model

of TCP timeouts is different from the standard for the same reason (see §4.2.2). We

represent network state using cumulative functions that preclude the modeling of

packet reordering. CCAC’s mechanism to detect packet losses emulates endpoints

that use an unbounded number selective acknowledgment (SACK) blocks. This cor-

responds to the QUIC protocol [71], while TCP is limited to a maximum of four

SACK blocks [102].

Our model does not have a composition theorem when buffers are finite and the

first box is faster than the second one (see §4.2.1). Due to discretization, the bounds

CCAC produces may not be tight (see §5). CCAC focuses on worst-case analysis;

105

this was a conscious design choice because average-case analysis requires a probability

distribution, which is often unknown and can miss important tail cases (§1.2.1).

CCAC’s CCA implementations are simplified (see §6). Future work can provide

a higher-level interface to writing CCAs, which makes implementing more complex

CCAs easier. CCAC does not have an automated method to map a network trace to

actual network elements that could produce the trace, though in our experience we

were always able to find such elements. There is work in verifying the implementation

of CCAs [135, 132, 133, 134, 23] which is complementary with CCAC’s verification of

the algorithm. End-to-end verification of both the algorithm and its implementation

is also interesting future work. Currently proving statements about infinite time

horizons and variable link rates (see §4.3) is semi-automated, and requires a manual

component as illustrated in our case studies.

Our starvation theorem shows that delay-convergent CCAs cannot be efficient and

delay-bounding. While we conjecture that starvation-freedom, efficiency and bounded

delay are simultaneously achievable if we give up on delay-convergence and deliber-

ately oscillate self-inflicted delay, we do not conclusively settle this question. More

broadly, our methods have uncovered weaknesses in existing CCAs, but a CCA that is

free of weaknesses still remains elusive. Our ongoing work on systematically designing

heuristics in general, and CCAs in particular, may find such a CCA (see §12.1).

106

Chapter 11

Copa: A new delay-based congestion

control algorithm

Before we worked on formally understanding CCA performance, we designed Copa, a

delay-based CCA that emphasized correctly interpreting delay measurements in the

presence of non-congestive delay. Facebook uses Copa for live video uploads because

Copa improves its end-to-end application metrics [51].

Copa incorporates four ideas: first, a target rate to aim for, which is inversely

proportional to the measured queuing delay; second, a window update rule that

depends moves the sender toward the target rate; third, a way to filter our non-

congestive delay by using the minimum RTT over a short time window; and fourth,

a TCP-competitive strategy to compete well with buffer-filling flows.

Approach: Inspired by work on Network Utility Maximization (NUM) [80] and

by machine-generated algorithms, we start with an objective function to optimize.

The objective function we use combines a flow’s average throughput, 𝜆, and packet

delay (minus propagation delay), 𝑑: 𝑈 = log 𝜆 − 𝛿 log 𝑑. The goal is for each

sender to maximize its 𝑈 . Here, 𝛿 determines how much to weigh delay compared to

throughput; a larger 𝛿 signifies that lower packet delays are preferable.

We show that under certain simplified (but reasonable) modeling assumptions of

packet arrivals, the steady-state sending rate (in packets per second) that maximizes

107

𝑈 is

𝜆 =
1

𝛿 · 𝑑𝑞
, (11.1)

where 𝑑𝑞 is the mean per-packet queuing delay (in seconds), and 1/𝛿 is in units of

MTU-sized packets. When every sender transmits at this rate, a unique, socially-

acceptable Nash equilibrium is attained.

We use this rate as the target rate for a Copa sender. The sender estimates the

queuing delay using its RTT observations, and moves quickly toward hovering near

this target rate. This mechanism also induces a property that the queue is regularly

almost flushed, which helps all endpoints get a correct estimate of the minimum RTT.

Finally, to compete well with buffer-filling competing flows, Copa mimics an AIMD

window-update rule when it observes that the bottleneck queues rarely empty.

11.1 The algorithm

Copa uses a congestion window, cwnd, which upper-bounds the number of in-flight

packets. On every ACK, the sender estimates the current rate 𝜆 = cwnd/RTTstanding,

where RTTstanding is the smallest RTT observed over a recent time-window, 𝜏 . We

use 𝜏 = srtt/2, where srtt is the current value of the standard smoothed RTT esti-

mate. RTTstanding is the RTT corresponding to a “standing” queue, since it’s the

minimum observed in a recent time window.

The sender calculates the target rate using Eq. (11.1), estimating the queuing

delay as

𝑑𝑞 = RTTstanding− RTTmin, (11.2)

where RTTmin is the smallest RTT observed over a long period of time (larger of 10

s or 20× RTT). We find a minimum over a time-period to handle route-changes that

might alter the minimum RTT of the path.

If the current rate exceeds the target, the sender reduces cwnd; otherwise, it

increases cwnd. To avoid packet bursts, the sender paces packets at a rate of 2 ·

cwnd/RTTstanding packets per second. Pacing also makes packet arrivals at the

108

bottleneck queue appear Poisson as the number of flows increases, a useful property

that increases the accuracy of our model to derive the target rate (§11.3). The pacing

rate is double cwnd/RTTstanding to accommodate imperfections in pacing; if it were

exactly cwnd/RTTstanding, then the sender may send slower than desired.

The reason for using the smallest RTT in the recent 𝜏 = srtt/2 duration, rather

than the latest RTT sample, is for robustness in the face of ACK compression [155]

and network jitter, which increase the RTT and can confuse the sender into believing

that a longer RTT is due to queuing on the forward data path. ACK compression

can be caused by queuing on the reverse path and by wireless links.

The Copa sender runs the following steps on each ACK arrival:

1. Update the queuing delay 𝑑𝑞 using Eq. (11.2) and srtt using the standard TCP

exponentially weighted moving average estimator.

2. Set 𝜆𝑡 = 1/(𝛿 · 𝑑𝑞) according to Eq. (11.1).

3. If 𝜆 = cwnd/RTTstanding ≤ 𝜆𝑡, then cwnd = cwnd + 𝑣/(𝛿 · cwnd), where 𝑣 is

a “velocity parameter" (defined in the next step). Otherwise, cwnd = cwnd −

𝑣/(𝛿 · cwnd). Over 1 RTT, the change in cwnd is thus ≈ 𝑣/𝛿 packets.

4. The velocity parameter, 𝑣, speeds-up convergence. It is initialized to 1. Once

per window, the sender compares the current cwnd to the cwnd value at the

time that the latest acknowledged packet was sent (i.e., cwnd at the start of

the current window). If the current cwnd is larger, then set direction to “up";

if it is smaller, then set direction to “down". Now, if direction is the same as

in the previous window, then double 𝑣. If not, then reset 𝑣 to 1. However,

start doubling 𝑣 only after the direction has remained the same for three RTTs.

Since direction may remain the same for 2.5 RTTs in steady state as shown in

figure 11-1, doing otherwise can cause 𝑣 to be > 1 even during steady state. In

steady state, we want 𝑣 = 1.

When a flow starts, Copa performs slow-start where cwnd doubles once per RTT

until 𝜆 exceeds 𝜆𝑡. While the velocity parameter also allows an exponential increase,

109

the constants are smaller. Having an explicit slow-start phase allows Copa to have a

larger initial cwnd, like many deployed TCP implementations. Further we limit 𝑣 to

ensure that cwnd can never more than double once per RTT.

11.1.1 Competing with buffer-filling schemes

We now modify Copa to compete well with buffer-filling algorithms such as Cubic

and NewReno while maintaining its good properties. The problem is that Copa seeks

to maintain low queuing delays; without modification, it will lose to buffer-filling

schemes.

We propose two distinct modes of operation for Copa:

1. The default mode where 𝛿 = 0.5, and

2. A competitive mode where 𝛿 is adjusted dynamically to match the aggressiveness

of typical buffer-filling schemes.

Copa switches between these modes depending on whether or not it detects a

competing long-running buffer-filling scheme. The detector exploits a key Copa prop-

erty that the queue is empty at least once every 5 · RTT when only Copa flows with

similar RTTs share the bottleneck (Section 11.2). With even one concurrent long-

running buffer-filling flow, the queue will not empty at this periodicity. Hence if

the sender sees a “nearly empty” queue in the last 5 RTTs, it remains in the de-

fault mode; otherwise, it switches to competitive mode. We estimate “nearly empty”

as any queuing delay lower than 10% of the rate oscillations in the last four RTTs;

i.e., 𝑑𝑞 < 0.1(RTTmax − RTTmin) where RTTmax is measured over the past four

RTTs and RTTmin is our long-term minimum as defined before. Using RTTmax

allows Copa to calibrate its notion of “nearly empty” to the amount of short-term RTT

variance in the current network.

In competitive mode the sender varies 1/𝛿 according to whatever buffer-filling

algorithm one wishes to emulate (e.g., NewReno, Cubic, etc.). In our implementation

we perform AIMD on 1/𝛿 based on packet success or loss, but this scheme could

110

respond to other congestion signals. In competitive mode, 𝛿 ≤ 0.5. When Copa

switches from competitive mode to default mode, it resets 𝛿 to 0.5.

The queue may be nearly empty even in the presence of a competing buffer-filling

flow (e.g., because of a recent packet loss). If that happens, Copa will switch to default

mode. Eventually, the buffer will fill again, making Copa switch to competitive mode.

Note that if some Copa flows are operating in competitive mode but no buffer-

filling flows are present, perhaps because the decision was erroneous or because the

competing flows left the network, Copa flows once again begin to periodically empty

the queue. The mode-selection method will detect this condition and switch to default

mode.

11.1.2 Application-layer benefits

Many applications benefit from accurate information about path throughput and

delay. For example, recently there has been a surge of interest in video streaming,

where one of the primary challenges is in estimating the correct bit rate to use.

A low estimate hurts video quality while a high estimate risks experiencing a stall

in playback. Most algorithms tend to under-estimate rates because stalls hurt the

quality of experience more. That, in turn, means they are unable to effectively obtain

the true usable path rate.

We showed how every measurement of the queuing delay provides a new estimate

of the target rate. Hence, to understand what throughput and delay can be expected

from a path, an endpoint only needs to transmit a few packets. The expected perfor-

mance can be calculated from the measured RTT and queuing delay. These packets

can be small, containing only the header and no data, which reduces the bandwidth

consumed by probes. Applications can use this information in many ways.

Copa offers a way for applications to obtain rate information. Senders can use the

techniques we have developed to measure “expected throughput” – i.e., the rate that

a Copa sender will use – by sending only a few small packets, and take an informed

decision regarding what quality of content to transfer. As shown in §11.4.1, Copa’s

rate estimates are accurate and senders are able to jump directly to the correct rate.

111

Figure 11-1: One Copa cycle: Evolution of queue length with time. Copa switches
direction at change points A and B when the standing queue length estimated by
RTTstanding crosses the threshold of 𝛿−1. RTTstanding is the smallest RTT in the
last srtt/2 window of ACKs packets (shaded region). Feedback on current actions is
delayed by 1 RTT in the network. The slope of the line is ±𝛿 packets per RTT.

Quick estimation of a transport protocol’s expected transmission rate is also use-

ful for selecting good paths or endpoints. For instance, peer-to-peer networks can

regularly send tiny packets without payload to monitor the throughput and delay

available on the link to a peer. The monitoring is inexpensive, but can enable more

informed decisions. Content Distribution Networks using Copa for data delivery can

use this too, by routing requests to the appropriate servers. For instance, they can

route to minimize the flow-completion time estimated as 2 ·RTT+ 𝑙/𝜆, where 𝑙 is the

flow length and 𝜆 is the rate estimate.

11.2 Dynamics of Copa

Figures 11-1 (schematic view) and 11-2 (emulated link) show the evolution of Copa’s

cwnd with time. In steady state, each Copa flow makes small oscillations about

the target rate, which also is the equilibrium rate (Section 11.3). By “equilibrium”,

we mean the situation when every sender is sending at its target rate. When the

propagation delays for flows sharing a bottleneck are similar and comparable to (or

112

22

24

26

28

0 0.2 0.4 0.6 0.8 1

20

22

24

26

28

30

C
w

n
d

 (
p

k
ts

)

R
T

T
s
ta

n
d

in
g

 (
m

s
)

Time (s)

Cwnd

RTTstanding

Figure 11-2: Congestion window and RTT as a function of time for a Copa flow
running on a 12 Mbit/s Mahimahi [112] emulated link. As predicted, the period
of oscillation is ≈ 5 RTT and amplitude is ≈ 5 packets. The emulator’s scheduling
policies cause irregularities in the RTT measurement, but Copa is immune to such
irregularities because the cwnd evolution depends only on comparing RTTstanding to
a threshold.

larger than) the queuing delay, the small oscillations synchronize to cause the queue

length at the bottleneck to oscillate between having 0 and 2.5/𝛿 packets every five

RTTs. Here, 𝛿 = (
∑︀

𝑖 1/𝛿𝑖)
−1. The equilibrium queue length is (0+2.5)𝛿−1/2 = 1.25/𝛿

packets. When each 𝛿 = 0.5 (the default value), 1/𝛿 = 2𝑛, where 𝑛 is the number of

flows.

We prove the above assertions about the steady state using a window analysis for a

simplified deterministic (D/D/1) bottleneck queue model. In Section 11.3 we discuss

Markovian (M/M/1 and M/D/1) queues. We assume that the link rate, 𝜇, is constant

(or changes slowly compared to the RTT), and that (for simplicity) the feedback delay

is constant, RTTmin ≈ RTT. This means that the queue length inferred from an ACK

at time 𝑡 is 𝑞(𝑡) = 𝑤(𝑡−RTTmin)−𝐵𝐷𝑃 , where 𝑤(𝑡) is congestion window at time

𝑡 and 𝐵𝐷𝑃 is the bandwidth-delay product. Under the constant-delay assumption,

the sending rate is cwnd/RTT = cwnd/RTTmin.

First consider just one Copa sender. We show that Copa remains in steady state

oscillations shown in Figure 11-1, once it starts those oscillations. In steady state,

𝑣 = 1 (𝑣 starts to double only after cwnd changes in the same direction for at least

113

3 RTTs. In steady state, direction changes once every 2.5 RTT. Hence 𝑣 = 1 in

steady state.). When the flow reaches “change point A”, its RTTstanding estimate

corresponds to minimum in the 1
2
srtt window of latest ACKs. Latest ACKs correspond

to packets sent 1 RTT ago. At equilibrium, when the target rate, 𝜆𝑡 = 1/(𝛿𝑑𝑞), equals

the actual rate, cwnd/𝑅𝑇𝑇 , there are 1/𝛿 packets in the queue. When the queue

length crosses this threshold of 1/𝛿 packets, the target rate becomes smaller than the

current rate. Hence the sender begins to decrease cwnd. By the time the flow reaches

“change point B”, the queue length has dropped to 0 packets, since cwnd decreases by

1/𝛿 packets per RTT, and it takes 1 RTT for the sender to know that queue length

has dropped below target. At “change point B”, the rate begins to increase again,

continuing the cycle. The resulting mean queue length of the cycle, 1.25/𝛿, is a little

higher than 1/𝛿 because RTTstanding takes an extra srtt/2 to reach the threshold at

“change point A”.

When 𝑁 senders each with a different 𝛿𝑖 share the bottleneck link, they synchronize

with respect to the common delay signal. When they all have the same propagation

delay, their target rates cross their actual rates at the same time, irrespective of their

𝛿𝑖. Hence they increase/decrease their cwnd together, behaving as one sender with

𝛿 = 𝛿 = (
∑︀

𝑖 1/𝛿𝑖)
−1.

11.3 Justification of the Copa target rate

This section explains the rationale for the target rate used in Copa. We model packet

arrivals at a bottleneck not as deterministic arrivals as in the previous section, but as

Poisson arrivals. This is a simplifying assumption, but one that is more realistic than

deterministic arrivals when there are multiple flows. The key property of random

packet arrivals (such as with a Poisson distribution) is that queues build up even

when the bottleneck link is not fully utilized.

In general traffic may be burstier than predicted by Poisson arrivals [119] because

flows and packet transmissions can be correlated with each other. In this case, Copa

over-estimates network load and responds by implicitly valuing delay more. This

114

behavior is reasonable as increased risk of higher delay is being met by more caution.

Ultimately, our validation of the Copa algorithm is through experiments, but the

modeling assumption provides a sound basis for setting a good target rate.

11.3.1 Objective function and Nash equilibrium

Consider the objective function for sender (flow) 𝑖 combining both throughput and

delay:

𝑈𝑖 = log 𝜆𝑖 − 𝛿𝑖 log 𝑑𝑠, (11.3)

where 𝑑𝑠 = 𝑑𝑞 + 1/𝜇 is the “switch delay” (total minus propagation delay). The use

of switch delay is for technical ease; it is nearly equal to the queuing delay.

Suppose each sender attempts to maximize its own objective function. In this

model, the system will be at a Nash equilibrium when no sender can increase its

objective function by unilaterally changing its rate. The Nash equilibrium is the

𝑛-tuple of sending rates (𝜆1, . . . , 𝜆𝑛) satisfying

𝑈𝑖(𝜆1, . . . , 𝜆𝑖, . . . , 𝜆𝑛) > 𝑈𝑖(𝜆1, . . . , 𝜆𝑖−1, 𝑥, 𝜆𝑖+1, . . . , 𝜆𝑛) (11.4)

for all senders 𝑖 and any non-negative 𝑥.

We assume a first-order approximation of Markovian packet arrivals. The service

process of the bottleneck may be random (due to cross traffic, or time-varying link

rates), or deterministic (fixed-rate links, no cross traffic). As a reasonable first-order

model of the random service process at the bottleneck link, we assume a Markovian

service distribution and use that model to develop the Copa update rule. Assuming a

deterministic service process gives similar results, offset by a factor of 2. In principle,

senders could send their data not at a certain mean rate but in Markovian fashion,

which would make our modeling assumption match practice. In practice, we don’t,

because: (1) there is natural jitter in transmissions from endpoints anyway, (2) de-

liberate jitter unnecessarily increases delay when there are a small number of senders

and, (3) Copa’s behavior is not sensitive to the assumption.

115

We prove the following proposition about the existence of a Nash equilibrium

for Markovian packet transmissions. We then use the properties of this equilibrium

to derive the Copa target rate of Eq. (11.1). The reason we are interested in the

equilibrium property is that the rate-update rule is intended to optimize each sender’s

utility independently; we derive it directly from this theoretical rate at the Nash

equilibrium. It is important to note that this model is being used not because it is

precise, but because it is a simple and tractable approximation of reality. Our goal is

to derive a principled target rate that arises as a stable point of the model, and use

that to guide the rate update rule.

Theorem 2. Consider a network with 𝑛 flows, with flow 𝑖 sending packets with rate

𝜆𝑖 such that the arrival at the bottleneck queue is Markovian. Then, if flow 𝑖 has the

objective function defined by Eq. (11.3), and the bottleneck is an M/M/1 queue, a

unique Nash equilibrium exists. Further, at this equilibrium, for every sender 𝑖,

𝜆𝑖 =
𝜇

𝛿𝑖(𝛿−1 + 1)
(11.5)

where 𝛿 = (
∑︀

1/𝛿𝑖)
−1.

Proof. Denote the total arrival rate in the queue,
∑︀

𝑗 𝜆𝑗, by 𝜆. For an M/M/1 queue,

the sum of the average wait time in the queue and the link is 1
𝜇−𝜆

. Substituting this

expression into Eq. (11.3) and separating out the 𝜆𝑖 term, we get

𝑈𝑖 = log 𝜆𝑖 + 𝛿𝑖 log(𝜇− 𝜆𝑖 −
∑︁
𝑗 ̸=𝑖

𝜆𝑗). (11.6)

Setting the partial derivative 𝜕𝑈𝑖

𝜕𝜆𝑖
to 0 for each 𝑖 yields

𝛿𝑖𝜆𝑖 +
∑︁
𝑗

𝜆𝑗 = 𝜇

The second derivative, −1/𝜆2
𝑖 − 𝛿𝑖/(𝜇− 𝜆)2, is negative.

Hence Eq. (11.4) is satisfied if, and only if, ∀𝑖, 𝜕𝑈𝑖

𝜕𝜆𝑖
= 0. We obtain the following

116

set of 𝑛 equations, one for each sender 𝑖:

𝜆𝑖(1 + 𝛿𝑖) +
∑︁
𝑗 ̸=𝑖

𝜆𝑗 = 𝜇.

The unique solution to this family of linear equations is

𝜆𝑖 =
𝜇

𝛿𝑖(𝛿−1 + 1)
,

which is the desired equilibrium rate of sender 𝑖.

When the service process is assumed to be deterministic, we can model the network

as an M/D/1 queue. The expected wait time in the queue is 1/(2(𝜇 − 𝜆)) − 𝜇/2 ≈

1/2(𝜇− 𝜆). An analysis similar to above gives the equilibrium rate of sender 𝑖 to be

𝜆𝑖 = 2𝜇/(𝛿𝑖(2𝛿
−1 +1)), which is the same as the M/M/1 case when each 𝛿𝑖 is halved.

Since there is less uncertainty, senders can achieve higher rates for the same delay.

11.3.2 The Copa update rule follows from the equilibrium rate

At equilibrium, the inter-send time between packets is

𝜏𝑖 =
1

𝜆𝑖

=
𝛿𝑖(𝛿

−1 + 1)

𝜇
.

Each sender does not, however, need to know how many other senders there are,

nor what their 𝛿𝑖 preferences are, thanks to the aggregate behavior of Markovian

arrivals. The term inside the parentheses in the equation above is a proxy for the

“effective” number of other senders, or equivalently the network load, and can be

calculated differently.

As noted earlier, the average switch delay for an M/M/1 queue is 𝑑𝑠 = 1
𝜇−𝜆

.

Substituting Eq, (11.8) for 𝜆 in this equation, we find that, at equilibrium,

𝜏𝑖 = 𝛿𝑖 · 𝑑𝑠 = 𝛿𝑖(𝑑𝑞 + 1/𝜇), (11.7)

117

where 𝑑𝑠 is the switch delay (as defined earlier) and 𝑑𝑞 is the average queuing delay

in the network.

This calculation is the basis and inspiration for the target rate. The does not

model the dynamics of Copa, where sender rates change with time. The purpose of

this analysis is to determine a good target rate for senders to aim for. Nevertheless,

using steady state formulae for expected queue delay is acceptable since the rates

change slowly in steady state.

11.3.3 Properties of the equilibrium

We now make some remarks about this equilibrium. First, by adding Eq. (11.5) over

all 𝑖, we find that the resulting aggregate rate of all senders is

𝜆 =
∑︁

𝜆𝑗 = 𝜇/(1 + 𝛿) (11.8)

This also means that the equilibrium queuing delay is 1 + 1/𝛿. If 𝛿𝑖 = 0.5, the

number of enqueued packets with 𝑛 flows is 2𝑛+ 1.

Second, it is interesting to interpret Eqs. (11.5) and (11.8) in the important special

case when the 𝛿𝑖s are all the same 𝛿. Then, 𝜆𝑖 = 𝜇/(𝛿 + 𝑛), which is equivalent to

dividing the capacity between 𝑛 senders and 𝛿 (which may be non-integral) “pseudo-

senders”. 𝛿 is the “gap” from fully loading the bottleneck link to allow the average

packet delay to not blow up to ∞. The portion of capacity allocated to “pseudo-

senders” is unused and determines the average queue length which the senders can

adjust by choosing any 𝛿 ∈ (0,∞). The aggregate rate in this case is 𝑛 · 𝜆𝑖 =
𝑛𝜇
𝛿+𝑛

.

When 𝛿𝑖s are unequal, bandwidth is allocated in inverse proportion to 𝛿𝑖. The Copa

rate update rules are such that a sender with constant parameter 𝛿 is equivalent to 𝑘

senders with a constant parameter 𝑘𝛿 in steady state.

Third, we recommend a default value of 𝛿𝑖 = 0.5. While we want low delay, we also

want high throughput; i.e., we want the largest 𝛿 that also achieves high throughput.

A value of 1 causes one packet in the queue on average at equilibrium (i.e., when

the sender transmits at the target equilibrium rate). While acceptable in theory,

118

jitter causes packets to be imperfectly paced in practice, causing frequently empty

queues and wasted transmission slots when a only single flow occupies a bottleneck, a

common occurrence in our experience. Hence we choose 𝛿 = 1/2, providing headroom

for packet pacing. Note that, as per the above equation modeled on an M/M/1

queue, the link would be severely underutilized when there are a small number (≤ 5)

of senders. But with very few senders, arrivals at the queue aren’t Poisson and

stochastic variations don’t cause the queue length to rise. Hence link utilization is

nearly 100% before queues grow as demonstrated in §11.4.1.

Fourth, the definition of the equilibrium point is consistent with our update rule

in the sense that every sender’s transmission rate equals their target rate if (and only

if) the system is at the Nash equilibrium. This analysis presents a mechanism to

determine the behavior of a cooperating sender: every sender observes a common

delay 𝑑𝑠 and calculates a common 𝛿𝑑𝑠 (if all senders have the same 𝛿) or its 𝛿𝑖𝑑𝑠.

Those transmitting faster than the reciprocal of this value must reduce their rate and

those transmitting slower must increase it. If every sender behaves thus, they will all

benefit.

11.4 Evaluation

To evaluate Copa and compare it with other congestion-control protocols, we use a

user-space implementation and ns-2 simulations. We run the user-space implementa-

tion over both emulated and real links.

Implementations:. We compare the performance of our user-space implemen-

tation of Copa with Linux kernel implementations of TCP Cubic, Vegas, Reno, and

BBR [31], and user-space implementations of Remy, PCC [38], PCC-Vivace [39],

Sprout [145], and Verus [152]. For Remy, we developed a user-space implementation

and verified that its results matched the Remy simulator. There are many available

RemyCCs. When we found a RemyCC that was appropriate for that network, we re-

ported its results. We use Linux qdiscs and Mahimahi [112] to create emulated links.

Our PCC results are for the default loss-based objective function. Pantheon [150], an

119

1

10

1 3 5 7 9 11 13 15 17

T
h

ro
u

g
h

p
u

t
(M

b
its

/s
)

Time (s)

BBR Copa

1

10

1 3 5 7 9 11 13 15 17

T
h

ro
u

g
h

p
u

t
(M

b
its

/s
)

Time (s)

Cubic Copa

1

10

1 3 5 7 9 11 13 15 17

T
h

ro
u

g
h

p
u

t
(M

b
its

/s
)

Time (s)

PCC Copa

Figure 11-3: Mean ± std. deviation of rates of 10 flows as they enter and leave an
emulated network once a second. The black line indicates the ideal fair allocation.
Graphs for BBR, Cubic, and PCC are shown alongside Copa in each figure for com-
parison. Copa and Cubic flows follow the ideal allocation closely.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
op

aC
ub

icB
B

RP
C

C

Jain index

Figure 11-4: A CDF of the Jain indices (higher the better) obtained at various time
slots for the dynamic behavior experiment (§11.4.1). Copa achieves the highest me-
dian Jain fairness index of 0.93 while Cubic, BBR and PCC achieve median indices
of 0.90, 0.73 and 0.60 respectively.

independent test-bed for congestion control, uses the delay-based objective function

for PCC.

ns-2 simulations:. We compare Copa with Cubic [61], NewReno [65], and

Vegas [27], which are end-to-end protocols, and with Cubic-over-CoDel [113] and

DCTCP [6], which use in-network mechanisms.

11.4.1 Dynamic behavior over emulated links

To understand how Copa behaves as flows arrive and leave, we set up a 46 MBit/s

link with 20 ms RTT and 1 BDP buffer using Mahimahi. One flow arrives every

second for the first ten seconds, and one leaves every second for the next ten seconds.

The mean ± standard deviation of the bandwidths obtained by the flows at each time

120

slot are shown in Figure 11-3. A CDF of the Jain fairness index in various time slots

is shown in Figure 11-4.

Copa obtains the highest median Jain fairness index, followed closely by Cubic.

They both track the ideal rate allocation closely. BBR and PCC respond much more

slowly to changing network conditions and fail to properly allocate bandwidth. In

experiments where the network changed more slowly, they eventually succeeded in

converging to the fair allocation, but this took tens of seconds.

environments. Copa’s mode switcher correctly functioned most of the time, de-

tecting that no buffer-filling algorithms were active in this period. There were some

erroneous switches to competitive mode for a few RTTs. This happens because when

flows arrive or depart, they disturb Copa’s steady-state operation. Hence it is possible

that for a few RTTs the queue is never empty and Copa flows can switch from default

to competitive mode. In this experiment, there were a few RTTs during which several

flows switched to competitive mode, and their 𝛿 decreased. However, queues empty

every five RTTs in this mode as well if no competing buffer-filling flow is present.

This property enabled Copa to correctly revert to default mode after a few RTTs.

11.4.2 Real-world evaluation

To understand how Copa performs over wide-area internet paths with real cross traf-

fic and packet schedulers, we submitted our user-space implementation of Copa to

Pantheon [150], a system developed to evaluate congestion control schemes. During

our evaluation period, Pantheon had nodes in six countries. Each experiment creates

flows on a particular day using each congestion control scheme between a node and

an AWS server nearest it, and measures the throughput and delay. We separate the

set of experiments into two categories, depending on how the node connects to the

internet (Ethernet or cellular).

To obtain an aggregate view of performance across the dozens of runs, we plot

the average normalized throughput and average queuing delay. Throughput is nor-

malized relative to the run that obtained the highest throughput among all runs in

an experiment to obtain a number between 0 and 1. Pantheon reports the one-way

121

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16326412825651210242048

BBR

Copa

Cubic
LEDBAT

PCC

Sprout

Remy
Vegas
Verus

Vivace latency

Vivace loss

Vivace LTE

A
v
g

.
N

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Avg. Queuing Delay (ms)

Cellular Networks

0

0.2

0.4

0.6

0.8

1

124816

BBR
Copa

Cubic

LEDBAT

PCC

Sprout

Remy

VegasVerus Vivace
latency

Vivace loss

Vivace LTE

A
v
g

.
N

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

Avg. Queuing Delay (ms)

Wired Networks

Figure 11-5: Real-world experiments on Pantheon paths: Average normalized
throughput vs. queuing delay achieved by various congestion control algorithms un-
der two different types of internet connections. Each type is averaged over several
runs over 6 internet paths. Note the very different axis ranges in the two graphs. The
𝑥-axis is flipped and in log scale. Copa achieves consistently low queuing delay and
high throughput in both types of networks. Note that schemes such as Sprout, Verus,
and Vivace LTE are designed specifically for cellular networks. Other schemes that
do well in one type of network don’t do well on the other type. On wired Ethernet
paths, Copa’s delays are 10× lower than BBR and Cubic, with only a modest mean
throughput reduction.

delay for every packet in publicly-accessible logs calculated with NTP-synchronized

clocks at the two end hosts. To avoid being confounded by the systematic additive

delay inherent in NTP, we report the queuing delay, calculated as the difference be-

tween the delay and the minimum delay seen for that flow. Each experiment lasts

30 seconds. Half of the experiments have one flow lasting 30 s. The other half have

three flows starting at 0, 10, and 20 seconds from the start of the experiment. Note:

we only consider experiments where the highest throughput achieved by any flow is

< 120 Mbit/s, as our user-space program cannot measure delay at granularity finer

than one Linux jiffy (100𝜇𝑠) currently; this corresponds to a target rate of 120 Mbit/s

for Copa.

Copa’s performance is consistent across different types of networks. It achieves sig-

nificantly lower queuing delays than most other schemes, with only a small throughput

reduction. Copa’s low delay, loss insensitivity, RTT fairness, resistance to buffer-bloat,

and fast convergence enable resilience in a wide variety of network settings. Vivace

LTE and Vivace latency achieved excessive delays in a link between AWS S̃︀𝑎o Paulo

122

Ideal

1

10

100

0 50 100 150 200 250 300

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Propagation Delay

RTT Fairness

Copa

Copa D

Cubic

Vegas

Cubic/CoDel

Figure 11-6: RTT-fairness of various schemes. Throughput of 20 long-running flows
sharing a 100 Mbit/s simulated bottleneck link versus their respective propagation
delays. “Copa D” is Copa in the default mode without mode switching. “Copa” is the
full algorithm. “Ideal” shows the fair allocation, which “Copa D” matches. Notice the
log scale on the y-axis. Schemes other than Copa allocate little bandwidth to flows
with large RTTs.

and a node in Columbia, sometimes over 10 seconds. When all runs with > 2000 ms

are removed for Vivace latency and LTE, they obtain average queuing delays of 156

ms and 240 ms respectively, still significantly higher than Copa. The Remy method

used was trained for a 100× range of link rates. PCC uses its delay-based objective

function.

11.4.3 RTT-fairness

Flows sharing the same bottleneck link often have different propagation delays. Ide-

ally, they should get identical throughput, but many algorithms exhibit significant

RTT unfairness, disadvantaging flows with larger RTTs. To evaluate the RTT fair-

ness of various algorithms, we set up 20 long-running flows in ns-2 with propagation

delays evenly spaced between 15 ms and 300 ms. The link has a bandwidth of 100

Mbit/s and 1 BDP of buffer (calculated with 300 ms delay). The experiment runs for

123

100 seconds. We plot the throughput obtained by each of the flows in Figure 11-6.

Copa’s property that the queue is nearly empty once in every five RTTs is violated

when such a diversity of propagation delays is present. Hence Copa’s mode switching

algorithm erroneously shifts to competitive mode, causing Copa with mode switch-

ing (labeled “Copa” in the figure) to inherit AIMD’s RTT unfriendliness. However,

because the AIMD is on 1/𝛿 while the underlying delay-sensitive algorithm robustly

grabs or relinquishes bandwidth to make the allocation proportional to 1/𝛿, Copa’s

RTT-unfriendliness is much milder than in the other schemes.

We also run Copa after turning off the mode-switching and running it in the

default mode (𝛿 = 0.5), denoted as “Copa D” in the figure. Because the senders share

a common queuing delay and a common target rate, under identical conditions, they

will make identical decisions to increase/decrease their rate, but with a time shift.

This approach removes any RTT bias, as shown by “Copa D”.

In principle, Cubic has a window evolution that is RTT-independent, but in prac-

tice it exhibits significant RTT-unfairness because low-RTT Cubic senders are slow to

relinquish bandwidth. The presence of the CoDel AQM improves the situation, but

significant unfairness remains. Vegas is unfair because several flows have incorrect

base RTT estimates as the queue rarely drains. Schemes other than Copa allocate

nearly no bandwidth to long RTT flows (note the log scale), a problem that Copa

solves.

11.4.4 Robustness to packet loss

To meet the expectations of loss-based congestion control schemes, lower layers of

modern networks attempt to hide packet losses by implementing extensive reliability

mechanisms. These often lead to excessively high and variable link-layer delays, as

in many cellular networks. Loss is also sometimes blamed for the poor performance

of congestion control schemes across trans-continental links (we have confirmed this

with measurements, e.g., between AWS in Europe and non-AWS nodes in the US).

Ideally, a 5% non-congestive packet loss rate should decrease the throughput by 5%,

not by 5×. Since TCP requires smaller loss rates for larger window sizes, loss resilience

124

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Copa
BBR

PC
CReno

Cubic

VegasT
h

ro
u

g
h

p
u

t
(M

b
it/

s
)

Packet Loss %

Figure 11-7: Performance of various schemes in the presence of stochastic packet loss
over a 12 Mbit/s emulated link with a 50 ms RTT.

becomes more important as network bandwidth rises.

Copa in default mode does not use loss as a congestion signal and lost packets

only impact Copa to the extent that they occupy wasted transmission slots in the

congestion window. In the presence of high packet loss, Copa’s mode switcher would

switch to default mode as any competing traditional TCPs will back off. Hence Copa

should be largely insensitive to stochastic loss, while still performing sound congestion

control.

To test this hypothesis, we set up an emulated link with a rate of 12 Mbit/s

bandwidth and an RTT of 50 ms. We vary the stochastic packet loss rate and plot

the throughput obtained by various algorithms. Each flow runs for 60 seconds.

Figure 11-7 shows the results. Copa and BBR remain insensitive to loss through-

out the range, validating our hypothesis. As predicted [103], NewReno, Cubic, and

Vegas decline in throughput with increasing loss rate. PCC ignores loss rates up to

≈ 5%, and so maintains throughput until then, before falling off sharply as determined

by its sigmoid loss function.

11.4.5 Simulated datacenter network

To test how widely beneficial the ideas in Copa might be, we consider datacenter

networks, which have radically different properties than wide-area networks. Many

congestion-control algorithms for datacenters exploit the fact that one entity owns

125

24

26

28

210

212

214

216

22 24 26 28 210 212

F
lo

w
 c

om
pl

et
io

n
tim

e
(1

0
-6

s)

Flow length (KBytes)

Datacenter Environment

Copa

DCTCP

Vegas

NewReno

Figure 11-8: Flow completion times achieved by various schemes in a simulated dat-
acenter environment. Note the log scale.

and controls the entire network, which makes it easier to incorporate in-network

support [6, 8, 107, 120, 60].

Exploiting the datacenter’s controlled environment, we make three small changes

to the algorithm: (1) the propagation delay is externally provided, (2) since it is not

necessary to compete with TCPs, we disable the mode switching and always operate

at the default mode with 𝛿 = 0.5 and, (3) since network jitter is absent, we use

the latest RTT instead of RTTstanding, which also enables faster convergence. For

computing 𝑣, the congestion window is considered to change in a given direction only

if > 2/3 of ACKs cause motion in that direction.

We simulate 32 senders connected to a 40 Gbit/s bottleneck link via 10 Gbit/s

links. The routers have 600 KBytes of buffer and each flow has a propagation delay of

12 𝜇s. We use an on-off workload with flow lengths drawn from a web-search workload

in the datacenter [6]. Off times are exponentially distributed with mean 200 ms. We

compare Copa to DCTCP, Vegas, and NewReno.

The average flow completion times (FCT) are plotted against the length of the

flow in Figure 11-8, with the 𝑦-axis shown on a log-scale. Because of its tendency to

126

0
5

10
15
20
25
30
35
40

101001000

Copa
RemyPCC

CubicVegas
BBR

T
h

ro
u

g
h

p
u

t
(M

b
it/

s
)

Average Queuing Delay (ms)

Figure 11-9: Throughput vs. delay plot for an emulated satellite link. Notice that
algorithms that are not very loss sensitive (including PCC, which ignores small loss
rates) all do well on throughput, but the delay-sensitive ones get substantially lower
delay as well. Note the log-scale.

maintain short queues and robustly converge to equilibrium, Copa offers significant

reduction in flow-completion time (FCT) for short flows. The FCT of Copa is up to

a factor of 4 better for small flows under 64 KBytes compared to DCTCP. For longer

flows, the benefits are modest, and in many cases other schemes perform a little

better in the datacenter setting. This result suggests that Copa is a good solution for

datacenter network workloads involving many short flows.

We also implemented TIMELY [106], but it did not perform well in this setting

(over 7 times worse than Copa on average), possibly because TIMELY is targeted at

getting high throughput and low delay for long flows. TIMELY requires several pa-

rameters to be set; we communicated with the developers and used their recommended

parameters, but the difference between our workload and their RDMA experiments

could explain the discrepancies; because we are not certain, we do not report those

results in the graph.

11.4.6 Emulated satellite links

We evaluate Copa on an emulated satellite link using measurements from the WINDS

satellite system [116], replicating an experiment from the PCC paper [38]. The link

has a 42 Mbit/s capacity, 800 ms RTT, 1 BDP of buffer and 0.74% stochastic loss

127

rate, on which we run one flow for 100 seconds. This link is challenging because it

has a high bandwidth-delay product and some stochastic loss.

Figure 11-9 shows the total throughput v. delay plot for BBR, PCC, Remy, Cubic,

Vegas, and Copa. Here we use a RemyCC trained for a RTT range of 30-280 ms for 2

senders with exponential on-off traffic of 1 second, each over a link speed of 33 Mbit/s,

which was the best performer among the ones available in the Remy repository.

PCC obtained high throughput, but at the cost of high delay as it tends to fill the

buffer. BBR ignores loss, but still underutilized the link as its rate oscillated between

0 and over 42 Mbit/s due to the high BDP, with these oscillations also causing high

delays. Copa is insensitive to loss and scales to large BDPs due to its exponential

rate update. Both Cubic and Vegas are sensitive to loss and hence lose throughput.

11.4.7 Co-existence with buffer-filling schemes

A major concern is whether current TCP algorithms will simply overwhelm the delay-

sensitivity embedded in Copa. We ask: (1) how does Copa affects existing TCP flows?,

and (2) do Copa flows get their fair share of bandwidth when competing with TCP

(i.e., how well does mode-switching work)?

We experiment on several emulated networks. We randomly sample throughput

between 1 and 50 MBit/s, RTT between 2 and 100 ms, buffer size between 0.5 and 5

BDP, and ran 1-4 Cubic senders and 1-4 senders of the congestion control algorithm

being evaluated. The flows are run concurrently for 10 seconds. We report the average

of the ratio of the throughput achieved by each flow to its ideal fair share for both

the algorithm being tested and Cubic. To set a baseline for variations within Cubic,

we also report numbers for Cubic, treating one set of Cubic flows as “different” from

another.

Figure 11-10 shows the results. Even when competing with other Cubic flows,

Cubic is unable to fully utilize the network. Copa takes this unused capacity to achieve

greater throughput without hurting Cubic flows. In fact, Cubic flows competing with

Copa get a higher throughput than when competing with other Cubic flows (by

a statistically insignificant margin). Currently Copa in competitive mode performs

128

0

0.5

1

1.5

2

2.5

Vegas Reno Cubic Copa PCC BBR

A
v
g

.
(T

p
t
/
Id

e
a

l t
p

t)

Scheme under test's throughput

Cubic's throughput

Figure 11-10: Different schemes co-existing on the same emulated bottleneck as Cubic.
We plot the mean and standard deviation of the ratio of each flow’s throughput to
the ideal fair rate. Ideally the ratio should be 1. The mean is over several runs of
randomly sampled networks. The left and right bars show the value for the scheme
being tested and Cubic respectively. Copa is much fairer than BBR and PCC to
Cubic. It also uses bandwidth that Cubic does not utilize to get higher throughput
without hurting Cubic.

AIMD on 1/𝛿. Modifying this to more closely match Cubic’s behavior will help reduce

the standard deviation.

PCC gets a much higher share of throughput because its loss-based objective

function ignores losses until about 5% and optimizes throughput. BBR gets higher

throughput while significantly hurting competing Cubic flows.

129

130

Chapter 12

Future work

This section lays out a future research agenda that aims to make performance verifi-

cation more powerful and easy to use. To that end, it proposes three thrusts.

12.1 Beyond verification: automatically synthesiz-

ing provably performant heuristics

Performance verification allows system designers to convert their intuitions into a

mathematically precise wish list. They can then check their designs against this wish

list. This dissertation demonstrates that the answer is often no, even for widely

deployed heuristics. The natural question to ask here is “what next?”. Future work

develop methods to analyze, but also automatically design heuristics that are provably

performant by construction.

Automated heuristic design has seen renewed interest thanks to advancements

in deep learning methods [100, 101, 99, 147, 88, 149]. Attempts have been made

to apply reinforcement learning to CCA design as well [150, 75, 76, 4, 144, 127].

However, the impact on practical applications has been minimal due to discrepancies

between training environments and real-world scenarios. Our thesis is that non-

deterministic models can help by enhancing the robustness of learned heuristics to

real-world complexities.

131

There are two key challenges in automatically synthesizing heuristics.

12.1.1 Challenge: what signals do we monitor?

Identifying the right signals for heuristics to monitor is hard. For each popular heuris-

tic type, a diverse array of signals has been developed over the years, leading to

ambiguity about the “optimal” choice. For example, we discussed earlier that CCAs

summarize delay measurements using averages, minimums, and maximums of RTT;

maximums of rate; and repeating experiments. Likewise, different versions of the

Linux kernel CPU scheduler and load balancer use different sets of signals [95, 49].

Decades of evolution have failed to identify the “correct” answer. Similarly, adaptive

bit rate algorithms for video streaming employ various summaries of playback buffer

size, queue length, and historical rate [69, 77, 151, 128].

As described in section 1.3, our ongoing research has shed light on this question.

We developed a systematic method to derive a sufficient set of signals, given the

(non-deterministic) model and objectives. The signals define the set of all actions the

adversary can take in the future that are compatible with past observations given the

model. We prove that if any heuristic can satisfy the objectives under our model, we

can construct a heuristic whose actions are solely dependent on these signals. This

insight significantly shrinks the heuristic search space, allowing us to utilize automated

program synthesis methods to create novel and provably performant CCAs.

12.1.2 Challenge: how do we synthesize heuristics automati-

cally?

Our ongoing work uses a popular program synthesis technique called Counter-Example

Guided Inductive Synthesis (CEGIS). This has enabled us to automate some of the

human drudgery of determining exactly how quickly to probe for more bandwidth

and how we should decrease our rate to drain excess queues. However, since CEGIS

does not scale to very large programs, and requires all programs and constraints to be

expressed in an SMT-solver friendly manner, its use still involves considerable human

132

labor.

Better techniques may be possible. Our observation about a sufficient set of signals

allows us to frame congestion control as a fully observable two player game. This has

two advantages. First, it allows us to synthesize CCAs one “move” at a time. For

example, in CCA design, for every value that the set of signals can take, we can run

a separate search procedure that outputs just a single number: the rate at which

the CCA should transmit packets. In contrast, our previous approach has to design

the entire function that maps signals to rate in a single step. Second, we can use

new advances in the use of neural networks in playing games like Go and Chess [126]

to solve heuristic design problems. The additional scalability may even allow us to

synthesize heuristics more complex than congestion control.

12.2 Verifying the end-to-end performance of sys-

tems

This dissertation verified individual heuristics, exploiting the fact that many can be

described in tens of lines of pseudo-code. However even when individual heuristics are

doing the right things, the interaction of multiple heuristics can cause performance

issues. For instance, meta-stable failures [68, 29] occur when heuristics in the system

enter a bad feedback loop that causes poor performance that is independent of sup-

plied load. This can cause an entire datacenter or groups of datacenters to suffer an

outage. At a smaller scale, application load balancers can interact with network rout-

ing algorithms to cause persistent oscillations [94]. CCAs and algorithms for adapting

video bit rate can interact poorly and benefit from coordinated design [48, 78]. Inter-

actions between video frame retransmissions, CPU scheduling and video rate control

can cause unacceptably high tail latency in real-time gaming applications [105].

A productive line of future work would develop new techniques that can scale to

analyzing multiple heuristics. There are two approaches to increase the scale:

1. Assume-guarantee reasoning: A standard technique to verify the correct-

133

ness of large programs using automated reasoning methods is to break it down

into sub-programs. A human guesses what assumptions and guarantees that

each sub-program can make, and uses a computer to prove these guarantees.

They then compose these lemmas together to prove a property about the en-

tire system. The research question is to determine if the same techniques ap-

ply to verifying performance, treating the different heuristics as separate sub-

programs. The key challenge is to guess what lemmas to prove about the

heuristics. New frameworks need to be developed to help determine this.

2. Non-rigorous fuzzing: Fuzzing is an alternative to formal analyses that sac-

rifices rigor in favor of scale and reasoning about real code. Fuzzing can also

leverage machine learning to guide it on where to look for performance prop-

erties. Our primary thesis is that worst case analysis can give valuable insight

about system performance. Rigor, while desirable, is not necessary for that

thesis to work.

12.3 Making performance verification easier to use

To maximize the impact of performance verification by making it a commonly used

tool, ease of use is critical. There are two directions that could help achieve that goal:

1. Develop a set of high-level abstractions that make it easy to specify models of

the environments and heuristics. The key challenge is to compile this high-level

description to efficient SMT encoding. This dissertation used hand-engineered

constraints because higher level languages would produce constraints that are

much harder for SMT solvers.

2. Relaxing rigor can allow us to use fuzzing or machine learning based methods.

These are easier to use since they can take arbitrary programs as models for

the environments and heuristics. The challenge is in the lack of rigor. We

need to develop methods that are good at finding most practically relevant bad

behaviors, even though they do not exhaustively search through all of them.

134

3. Since performance verification is a new area of exploration, it would help to

develop educational materials explaining the process.

135

136

Chapter 13

Conclusion

This dissertation argues that performance verification is a new analytical tool to un-

derstand the performance properties of real-world networked systems. It provides an

alternative to queuing and control theory, which are typically too optimistic about

performance of their because limited capacity to accurately model real-world phenom-

ena. Overly optimistic analysis can lead to heuristic designs that fail in unexpected

ways upon deployment.

Using performance verifications, we have shown three types of results in congestion

control. First, we discovered previously deficiencies in widely deployed CCAs. Next,

we developed new CCAs that are provably robust. Lastly, we proved an impossibility

result that all CCAs that follow a widely used design pattern suffer from starvation.

In subsequent work [56], we have shown that performance verification generalize to

other heuristics beyond congestion control.

We hope that performance verification will become an integral part of the work-

flow in designing heuristics. This could remove one source of unreliability in future

networked systems: heuristics making poor decisions that causes failures in spite of

the hardware and software doing exactly what their designers intended.

137

138

Appendix A

Appendix

A.1 CCAC extensions

In-network support. Some CCAs [79, 40, 59, 6] use in-network support. To model

them in CCAC, it does not suffice to simply run the in-network algorithms treating the

path-server as a network server that marks or sets information in packet headers. This

is because the queue on the path-server represents all enqueued packets on the path,

not just those at the bottleneck link. The non-composing model we used for analyzing

Copa in §6.3 offers a solution, because it only models one network “box”. Thus we

can sandwich the non-composing path-server between two composing path-servers to

emulate a link with many boxes where the non-composing path-server represents the

bottleneck. Thus, an algorithm where only the bottleneck link is involved in providing

feedback can be implemented on the non-composing path-server.

Receiver-driven CCA. To emulate such an algorithm where control decisions

are made by the receiver and enforced at the sender, one can use two path-servers,

one from the sender to the receiver and one from the receiver to the sender. Each

side also needs a propagation delay (analogous to 𝑅𝑚), perhaps identical in each

direction. Differences in propagation delay smaller than 𝐷 can be captured by the

non-deterministic path-servers.

Multiple flows. To study starvation, we extended CCAC [12] to handle multiple

flows. This turned out to be fairly straightforward. CCAC tracks, among other

139

things, the number of bytes that have arrived at its bottleneck 𝐴(𝑡), and the number

of bytes that have been served from it 𝑆(𝑡). To extend it to multiple flows, we have

to maintain separate functions, one for each flow. So we have
∑︀

𝑖 𝐴𝑖(𝑡) = 𝐴(𝑡) and∑︀
𝑖 𝑆𝑖(𝑡) = 𝑆(𝑡).

At time 𝑡, when a total of 𝑆(𝑡) bytes have been served, we need to determine how

many bytes have been served per-flow. Ideally, we’d like to emulate a FIFO queue.

Let 𝑡′ be the time at which 𝐴(𝑡′) = 𝑆(𝑡). Then we’d want 𝑆𝑖(𝑡) = 𝐴𝑖(𝑡), because that

is when those packets of that flow must have entered the queue. Doing this directly

requires us to intersect two lines, the equation for which involves the multiplication

of two SMT variables. As a general rule, SMT solvers tend to not be very good at

solving for non-linear constraints. We found that this rule applies to CCAC as well.

To get around this, we used the same relaxation method proposed in the CCAC

paper. CCAC discretizes time relatively coarsely. It then ensures that the set of

behaviors admitted in the discrete model is a super-set of the behaviors admitted in

the continuous model. This way, any theorems proved in the discrete model also hold

in the continuous model. However the discrete model may contain behaviors that the

continuous model does not. Hence one must be careful to not make the discrete set

too large.

We found the following approach to strike a good balance between ease of SMT

modelling and not deviating too far from the continuous model. We merely ensured

that if the queuing delay at time 𝑡 is d𝑡 per CCAC’s definition, then 𝑆𝑖(𝑡) > 𝐴𝑖(𝑡−d𝑡).

A.2 AIMD counterexample in detail

We discuss further the example in Section §6.2 where CCAC found a way to exploit

AIMD to cause a burst of 2𝐶𝐷 bytes. Figure A-1 shows a trace of the various

quantities in the path model that induces such a burst at time 7𝑅𝑚.

The path-server begins by inflating the RTT to be 𝑅𝑚 +𝐷, which causes cwnd to

increase to 𝐶(𝑅𝑚 +𝐷) + 𝛽 = 4𝐶𝑅𝑚 without encountering loss. This corresponds to

𝑆(𝑡) touching the lower bound in Figure A-1. When cwnd exceeds 4𝐶𝑅𝑚, one packet

140

0

5

10
Cu

m
ul

at
iv

e
by

te
s (

in
 B

DP
)

S(t)
A(t) - L(t)
A(t)

0 1 2 3 4 5 6 7
Time (in Rₘ)

0

2

4

By
te

s i
n

BD
P cwnd(t)

inflight(t) - cwnd(t)

Figure A-1: A trace of how a burst of 2𝐶𝐷 bytes can be orchestrated by combining
the two mechanisms in §6.2

is dropped, at time 1𝑅𝑚. This packet was sent when the sender received an ACK

1𝑅𝑚 earlier at time 0. ACKs are sent smoothly by the path-server from time 0 to

time 2𝑅𝑚. Hence the next 2𝐶𝐷 bytes (from time 1𝑅𝑚 to 3𝑅𝑚 from the sender after

the dropped packet will arrive smoothly as well. When the drop is detected at time

4𝑅𝑚, cwnd halves to 2𝐶𝑅𝑚. At this point, 3𝐶𝑅𝑚 bytes are in flight. At time 𝑅𝑚

later (at time 5𝑅𝑚), only 2𝐶𝑅𝑚 bytes are in flight, making the sender ready to burst

again. When packets after time 5𝑅𝑚 are ACKed at time 7𝑅𝑚, the sender detects the

𝐶𝑅𝑚 lost packets and bursts that many. At time 6𝑅𝑚, the path-server combines this

burst with another 𝐶𝑅𝑚 of ACKs, causing a total burst of 2𝐶𝑅𝑚 at time 7𝑅𝑚, which

overwhelms the buffer.

141

A.3 More SMT details

Recall that 𝐿(𝑡) denotes the total number of bytes lost by the network. The CCA

cannot directly observe this. It only observes 𝐿𝑑(𝑡), which denotes the cumulative

number of bytes that it detected as lost. In the continuous model, 𝐿𝑑(𝑡) is a time-

shifted version of 𝐿 where the time-shift depends on the gap between 𝐴 and 𝑆, which

itself is time-varying. As discussed in §5, when a quantity depends on the gap between

two lines, discretization complicates the constraints. if a loss happened at time 𝑡 (i.e.

𝐿′(𝑡) > 0), the sender can detect it at time 𝑡 + ∆𝑡 + 𝑅 if 𝐴(𝑡) − 𝐿(𝑡) + dupacks ≤

𝑆(𝑡+∆𝑡). Here, ∆𝑡 is the time-varying component of the time-shift. This constraint

ensures that the sender has received ACKs for at least dupacks number of bytes that

were sent after the loss happened. Here, 𝑅 is the propagation delay between when

the server serves the packets (i.e. 𝑆(𝑡)) to when the ACK reaches the sender.

Consider two points on the discrete 𝐿(𝑡) curve, 𝐿𝑡 and 𝐿𝑡+1, where 𝐿𝑡+1 > 𝐿𝑡

indicating that a loss occurred. The CCA can only detect this loss event after some

delay. Now consider the corresponding points on the 𝐿𝑑(𝑡) curve. First, 𝐿𝑑(𝑡) can

capture that loss event using one or more points, because of time variance in the

gap between 𝐴 and 𝑆. Second, any discrete point on the loss detection curve 𝐿𝑑
𝑡+Δ𝑡

has to be bounded by 𝐿𝑡 ≤ 𝐿𝑑
𝑡+Δ𝑡 ≤ 𝐿𝑡+1. In order to capture this relationship

between the loss curve and loss detection curve in SMT, we introduce a variable

detectable𝑡,Δ𝑡, which equals 1 if a loss event that happened at 𝑡−∆𝑡 is detectable at

time 𝑡, and it’s zero otherwise. CCAs often need to know when losses are detected.

𝐿𝑑
𝑡 represents the cumulative number of losses detected up to time 𝑡. Many CCAs

detect loss on the receipt of a set threshold of duplicate acknowledgements. This

threshold is represented by an SMT variable dupacks that the solver is free to choose.

Loss can be detected at time 𝑡 only if that loss happened at time ≤ 𝑡 − 𝑅 − ∆𝑡

and 𝑆(𝑡 − 𝑅) ≥ 𝐴(𝑡 − 𝑅 − ∆𝑡) − 𝐿(𝑡 − 𝑅 − ∆𝑡) + dupacks . Hence we formally

define detectable𝑡,Δ𝑡 = 𝑆𝑡−𝑅 ≥ 𝐴𝑡−𝑅−Δ𝑡 − 𝐿𝑡−𝑅−Δ𝑡 + dupacks and add the constraints

detectable𝑡,Δ𝑡 → 𝐿𝑑
𝑡 ≥ 𝐿𝑡−𝑅−Δ𝑡 and ¬detectable𝑡,Δ𝑡 → 𝐿𝑑

𝑡 ≤ 𝐿𝑡−𝑅−Δ𝑡 for each ∆𝑡 ∈

{0, · · · , 𝑡}.

142

A.4 Proofs

Here we prove some of the theorems referenced in the paper. For some of these

theorems, we have written computer-checked proofs in Lean [36], a proof assistant

similar to Coq [20], which can be found at https://projects.csail.mit.edu/ccac.

For these theorems, we only give the theorem statement and the proof intuition in

English here and leave the details to the Lean proof.

Theorem 5. A path-server with parameters (𝐶,𝐷, 𝛽) can emulate a constant bit rate

(CBR) server with link rate 𝐶 and buffer size 𝛽 followed by a delay box. The delay

box can non-deterministically delay every byte by an arbitrary amount as long as it

does not reorder bytes and no byte stays in the delay box for longer than 𝐷 seconds.

Proof. We need to show that, given a function 𝑓(𝑥) from byte ID (i.e. sequence

number) to how long it stays in the delay box, we can produce a corresponding 𝑊 (𝑡)

that is compatible with the arrival, service and loss curves of the CBR+delay box

(refer Table 4.1 for notation). The 𝑊 (𝑡) in this case is simple: waste whenever

allowed. That is, a token only enters the token queue if 𝑇 (𝑡) < 𝑄(𝑡), because of

which every token is paired on arrival with a byte; this is the byte it will be dequeued

with. With this choice, we notice that a byte gets paired paired with a token at the

same time that it would have gotten dequeued from the corresponding CBR server,

since tokens arrive at 𝐶 bytes/second. Note, 𝑄(𝑡) can be greater than 𝑇 (𝑡) if bytes

arrive faster than tokens, which corresponds to those bytes being queued in the CBR

server’s buffer. When 𝑄(𝑡)−𝑇 (𝑡) > 𝛽, both the path-server and the CBR server will

drop packets.

Once a byte has been paired with a token, it has 𝐷 seconds to get dequeued. The

path-server can now choose when to dequeue each byte to match 𝑓(𝑥) which is always

possible since 𝑓(𝑥) ≤ 𝐷, ∀𝑥 and it does not cause reordering of bytes. This proves

that our choice of 𝑊 (𝑡) is compatible with the constraints of the generalized token

bucket filter

Composition theorems. To show that path-servers can compose, we show how

to create a path-sever 𝜏𝑠 that can emulate all behaviors that are possible when path

143

https://projects.csail.mit.edu/ccac

servers 𝜏1 and 𝜏2 are connected. In all these theorems, we assume the initial conditions

are such that 𝐴(𝑡) = 𝑆(𝑡) = 𝑊 (𝑡) = 𝐿(𝑡) = 0 when 𝑡 ≤ 0. This simplifies the proofs

without loosing generality since the path-server can “evolve” to whatever state is

needed.

Notation. Each path-server has its own 𝐴(𝑡), 𝑆(𝑡) etc. We use the dotted-

notation to show this. E.g. 𝜏1’s service curve is 𝜏1.𝐴(𝑡) and 𝜏𝑠’s waste curve is 𝜏𝑠.𝑊 (𝑡).

Refer Table 4.1 for a glossary of symbols used. Further, the upper and lower bounds

on 𝑆(𝑡) are denoted as 𝑢(𝑡) and 𝑙(𝑡) respectively. Hence 𝜏1.𝑢(𝑡) = 𝜏1.𝐶 * 𝑡− 𝜏1.𝑊 (𝑡)

and 𝜏1.𝑙(𝑡) = 𝜏1.𝑢(𝑡−𝐷) = 𝜏1.𝐶 * (𝑡− 𝜏1.𝐷)− 𝜏1.𝑊 (𝑡−𝐷).

When two path-servers 𝜏1 and 𝜏2 are connected in series, the service curve of 𝜏1

equals the arrival curve of 𝜏2. We denote this as 𝜏1.𝑆(𝑡) = 𝜏2.𝐴(𝑡). We wish to

prove that a path-server with jitter parameter 𝜏1.𝐷 + 𝜏2.𝐷 can emulate a superset

of the things the composed version can emulate. To do so, given traces of any two

path-servers 𝜏1 and 𝜏2 (a trace is a collection of all the functions and parameters such

as 𝐶 and 𝐴(𝑡)), we need to produce a trace for a third that has exactly the same

behavior as the composition. That is, 𝜏𝑠.𝐴(𝑡) = 𝜏1.𝐴(𝑡) and 𝜏𝑠.𝑆(𝑡) = 𝜏2.𝑆(𝑡). We

split the proof of composition of the model into two parts. One where 𝜏1.𝐶 ≤ 𝜏2.𝐶

and another where 𝜏1.𝐶 ≥ 𝜏2.𝐶.

The following proofs will use the principle of mathematical induction on time, and

hence treat time as an integer. However, unlike in Section §5, here a time-step can

be arbitrarily small. Thus, for all practical purposes, time is continuous.

A.4.1 Case 1: Second path-server is faster

Before we prove the main theorem, we prove that when 𝜏1.𝐶 ≤ 𝜏2.𝐶 and 𝜏2.𝛽 ≥

𝜏1.𝐶𝜏1.𝐷, 𝜏2 can never lose packets no matter how bytes arrive or what non-deterministic

choices each makes. This makes intuitive sense, since 𝜏2.𝛽 is bigger than the largest

burst 𝜏1 can cause.

Theorem 6. For every pair of traces 𝜏1, 𝜏2 that are placed in series (i.e. 𝜏2.𝐴(𝑡) =

𝜏1.𝑆(𝑡)), where 𝜏1.𝐶 ≤ 𝜏2.𝐶 and 𝜏2.𝛽 ≥ 𝜏1.𝐶 ·𝜏1.𝐷, the following holds: 1) 𝜏2.𝐿(𝑡) = 0

144

and 2) 𝜏1.𝑙(𝑡) ≤ 𝜏2.𝑢(𝑡)

Proof. We only give the outline of the proof here since we wrote a computer-checked

proof in Lean which are available at https://projects.csail.mit.edu/ccac.

The proof uses induction on time, where we prove both assertions in the theorem

statement simultaneously. The intuitive argument is that if 𝜏1.𝑙(𝑡 − 1) ≤ 𝜏2.𝑢(𝑡 − 1)

then 𝜏1.𝑆(𝑡) ≤ 𝜏1.𝑙(𝑡) cannot be more than 𝜏2.𝑢(𝑡) + 𝜏1.𝐶𝜏1.𝐷 ≤ 𝜏2.𝑢(𝑡) + 𝛽. Thus

𝜏2’s condition for loss can never be met. In proving this, we use the fact that the

upper and lower bounds (i.e. 𝑢(𝑡) and 𝑙(𝑡)) cannot increase faster than 𝐶 bytes per

timestep since 𝑊 (𝑡) is a non-decreasing function.

Then we prove 𝜏1.𝑙(𝑡) ≤ 𝜏2.𝑢(𝑡) using the fact that 𝜏1.𝐶 ≤ 𝜏2.𝐶 and 𝜏2 is not

allowed to waste when 𝜏1.𝑆(𝑡) = 𝜏2.𝐴(𝑡) is greater than 𝜏2.𝑢(𝑡). This finishes the

induction step.

Theorem 7. For every pair of traces 𝜏1, 𝜏2 where 𝜏1.𝐶 ≤ 𝜏2.𝐶, 𝜏2.𝛽 ≥ 𝜏1.𝐶 · 𝜏1.𝐷 and

𝜏2.𝐴(𝑡) = 𝜏1.𝑆(𝑡), there exists a trace 𝜏𝑠 such that

1. 𝜏𝑠.𝐶 = 𝜏1.𝐶

2. 𝜏𝑠.𝐷 = 𝜏1.𝐷 + 𝜏2.𝐷

3. 𝜏𝑠.𝛽 = 𝜏1.𝛽

4. 𝜏𝑠.𝐴(𝑡) = 𝜏1.𝐴(𝑡)

5. 𝜏𝑠.𝑆(𝑡) = 𝜏2.𝑆(𝑡)

6. 𝜏𝑠.𝐿(𝑡) = 𝜏1.𝐿(𝑡)

Proof. Again we only give the outline of the proof here since we wrote computer-

checked proofs in Lean which are available at https://projects.csail.mit.edu/

ccac. To produce 𝜏𝑠, we need to pick a 𝜏𝑠.𝑊 (𝑡) that is compatible with 𝜏𝑠’s arrival,

service and loss curves (i.e. satisfies all the constraints listed in section §4). Here,

simply setting 𝜏𝑠.𝑊 (𝑡) = 𝜏1.𝑊 (𝑡) does the job.

Note, Theorem 6 implies 𝜏2.𝐿(𝑡) = 0 and 𝜏1.𝑙(𝑡) ≤ 𝜏2.𝑢(𝑡). Showing that 𝜏𝑠.𝑆(𝑡) ≤

𝜏𝑠.𝑢(𝑡) is straightforward since 𝜏𝑠.𝑆(𝑡) = 𝜏2.𝑆(𝑡) ≤ 𝜏1.𝑆(𝑡) ≤ 𝜏1.𝑢(𝑡) = 𝜏𝑠.𝑢(𝑡).

145

https://projects.csail.mit.edu/ccac
https://projects.csail.mit.edu/ccac
https://projects.csail.mit.edu/ccac

Proving 𝜏𝑠.𝑆(𝑡) ≥ 𝜏𝑠.𝑙(𝑡) requires induction on 𝑡, but is relatively straightforward.

Finally, since 𝜏𝑠.𝑢(𝑡) = 𝜏1.𝑢(𝑡), their loss thresholds are identical. Hence 𝜏𝑠 can waste

tokens and lose packets whenever 𝜏1 can.

A.4.2 Case 2: First path-server is faster

We only prove this theorem when buffers are infinitely large and hence there is no

loss.

Theorem 8. For every pair of traces 𝜏1, 𝜏2 where 𝜏1.𝐶 ≥ 𝜏2.𝐶, 𝜏2.𝐴(𝑡) = 𝜏1.𝑆(𝑡),

𝜏1.𝛽 = 𝜏2.𝛽 =∞ and 𝜏1.𝐿(𝑡) = 𝜏2.𝐿(𝑡) = 0, there exists a trace 𝜏𝑠 such that

1. 𝜏𝑠.𝐶 = 𝜏2.𝐶

2. 𝜏𝑠.𝐷 = 𝜏1.𝐷 + 𝜏2.𝐷

3. 𝜏𝑠.𝐴(𝑡) = 𝜏1.𝐴(𝑡)

4. 𝜏𝑠.𝑆(𝑡) = 𝜏2.𝑆(𝑡)

5. 𝜏𝑠.𝛽 =∞

6. 𝜏𝑠.𝐿(𝑡) = 0

Proof. To show that such a 𝜏𝑠 exists, we need to construct a 𝜏𝑠.𝑊 (𝑡), since all other

functions are already defined in terms of 𝜏1 and 𝜏2. Then we prove that it satisfies the

constraints, namely 1) when 𝜏𝑠.𝑊 (𝑡) increases, waste is allowed and 2) 𝜏𝑠’s bounds

on 𝑆(𝑡) contain the full range of 𝜏2’s bounds. We construct it as follows.

We start with 𝜏2.𝑊 (0) = −𝜏2.𝐶 · 𝜏2.𝐷. We construct 𝜏𝑠.𝑊 using the following

algorithm. The algorithm has two states. It starts in state 1 in timestep 0 with

𝜏𝑠.𝑊 (0) = 0. Suppose we have decided the state and 𝜏𝑠.𝑊 for time 𝑡, we decide these

values for 𝑡+ 1 as follows.

1. State 1 [tracking]: If 𝜏1.𝑙(𝑡 + 1) ≥ 𝜏2.𝑢(𝑡 + 1), transition to state 2 in timestep

𝑡+1 and set 𝜏𝑠.𝑊 (𝑡+1)← 𝜏𝑠.𝑊 (𝑡). Else remain in state 1 and set 𝜏𝑠.𝑊 (𝑡+1)←

𝑚𝑎𝑥(𝜏𝑠.𝑊 (𝑡), 𝜏1.𝑊 (𝑡+ 1)−∆𝐶 * 𝑡 where ∆𝐶 = 𝜏1.𝐶 − 𝜏𝑠.𝐶 ≥ 0

146

2. State 2 [no-tracking]: If 𝜏𝑠.𝑢(𝑡) + 𝜏2.𝐶 ≥ 𝜏1.𝑢(𝑡 + 1), transition to state 1 in

timestep 𝑡+1 and set 𝜏𝑠.𝑊 (𝑡+1)← 𝑚𝑎𝑥(𝜏𝑠.𝑊 (𝑡), 𝜏1.𝑊 (𝑡+1)−∆𝐶 * 𝑡). Else

remain in state 2 and set 𝜏𝑠.𝑊 (𝑡+ 1)← 𝜏𝑠.𝑊 (𝑡)

Note, when we set 𝜏𝑠.𝑊 (𝑡+1)← 𝜏1.𝑊 (𝑡+1)−∆𝐶 * 𝑡, we are setting 𝜏𝑠.𝑊 (𝑡+1)

such that 𝜏𝑠.𝑢(𝑡+ 1) = 𝜏1.𝑢(𝑡+ 1). 𝜏𝑠.𝑊 is non-decreasing by construction.

We need to show that 𝜏𝑠 is allowed to waste whenever the algorithm above causes

𝜏𝑠.𝑊 (𝑡) to increase. The following claim establishes this

Claim 1: If 𝜏𝑠.𝑊 (𝑡) < 𝜏𝑠.𝑊 (𝑡+ 1) then, 𝜏1.𝐴(𝑡+ 1) ≤ 𝜏𝑠.𝑢(𝑡+ 1)

Intuitively, 𝜏𝑠.𝑊 (𝑡) increases only when 𝜏𝑠.𝑢(𝑡) is tracking 𝜏1.𝑢(𝑡), which only

happens when 𝜏1.𝑢(𝑡)’s slope is < 𝐶. Thus 𝜏1 must be wasting and hence 𝜏1.𝐴(𝑡) ≤

𝜏1.𝑢(𝑡) = 𝜏𝑠.𝑢(𝑡). We now give the detailed argument.

The algorithm only changes 𝜏𝑠.𝑊 when a) we remain in state 1 or b) when we

transition to state 1.

Let’s analyze a) first, where 𝜏𝑠.𝑊 is updated in state 1. Here 𝜏𝑠.𝑊 (𝑡) = 𝑚𝑎𝑥(𝜏𝑠.𝑊 (𝑡−

1), 𝜏1.𝑊 (𝑡)−∆𝐶 * 𝑡) ≥ 𝜏1.𝑊 (𝑡)−∆𝐶 * 𝑡 and 𝜏𝑠.𝑊 (𝑡+1) = 𝜏1.𝑊 (𝑡+1)−∆𝐶 * (𝑡+1).

Hence 𝜏𝑠.𝑊 (𝑡) < 𝜏𝑠.𝑊 (𝑡 + 1)⇒ 𝜏1.𝑊 (𝑡) < 𝜏1.𝑊 (𝑡 + 1)−∆𝐶 ≤ 𝜏1.𝑊 (𝑡 + 1). Hence

𝜏1.𝑊 increases. But this implies that 𝜏1.𝐴(𝑡+1) ≤ 𝜏1.𝑢(𝑡+1) (recall, ∀𝑡, 𝜏1.𝐿(𝑡) = 0).

But, 𝜏𝑠.𝑢(𝑡+1) = 𝜏𝑠.𝐶*(𝑡+1)−𝜏𝑠.𝑊 (𝑡+1) = 𝜏1.𝑢(𝑡+1). Hence 𝜏1.𝐴(𝑡+1) ≤ 𝜏𝑠.𝑢(𝑡+1)

which is what we wanted to show.

In case b) we first show 𝜏𝑠.𝑢(𝑡) < 𝜏1.𝑢(𝑡). We know that 𝜏𝑠.𝑢(𝑡) ≤ 𝜏𝑠.𝑢(𝑡−1)+𝜏2.𝐶

because 𝜏𝑠.𝑊 is non-decreasing. This has to be < 𝜏1.𝑢(𝑡). If not, and we were in

state 2 at 𝑡 − 1, we would have transitioned to state 1 for timestep 𝑡. If we were in

state 1 at 𝑡 − 1 and transition to state 2 at 𝑡 then we did not change 𝜏𝑠.𝑊 (𝑡 + 1),

hence there is nothing to prove.

Now, it suffices to show that 𝜏1.𝑊 increased (i.e. 𝜏1.𝑊 (𝑡 + 1) > 𝜏1.𝑊 (𝑡)), since

then 𝜏1.𝐴(𝑡+1) ≤ 𝜏1.𝑢(𝑡+1) = 𝜏𝑠.𝑢(𝑡+1). If 𝜏1.𝑊 did not increase, then 𝜏1.𝑢(𝑡+1) =

𝜏1.𝑢(𝑡) + 𝜏1.𝐶 ≥ 𝜏1.𝑢(𝑡) + 𝜏2.𝐶 > 𝜏𝑠.𝑢(𝑡) + 𝜏2.𝐶, which contradicts the condition for

transitioning to state 1. Hence 𝜏1.𝑊 must have increased.

147

Next we need to argue that 𝜏𝑠’s bounds contains 𝜏2’s bounds so that 𝜏𝑠.𝑆(𝑡) can

track 𝜏2.𝑆(𝑡). Note that when we are in state 1 (tracking), the bounds for 𝜏1 and 𝜏2

overlap and 𝜏𝑠.𝑢(𝑡) tracks 𝜏1.𝑢(𝑡).

Since 𝜏𝑠.𝐷 = 𝜏1.𝐷 + 𝜏2.𝐷, 𝜏𝑠’s bounds contain the bounds for both 𝜏1 and 𝜏2.

When we are in state 2 (tracking), 𝜏𝑠.𝑊 does not increase. Therefore 𝜏𝑠.𝑙(𝑡) and

𝜏𝑠.𝑢(𝑡) increases at the same rate as 𝜏2.𝑙(𝑡) and 𝜏2.𝑢(𝑡) respectively since 𝜏𝑠.𝐶 = 𝜏2.𝐶.

Hence if 𝜏𝑠’s bounds contains 𝜏2’s bounds in the beginning, it will continue to contain

them.

Thus we have shown that the 𝜏𝑠.𝑊 (𝑡) generated by the algorithm satisfies the

constraints.

Finally, we prove the composition theorem when buffers are infinite and there is

no loss using the theorems above.

Theorem 9. For every pair of traces 𝜏1, 𝜏2 that are placed in series (i.e. 𝜏2.𝐴(𝑡) =

𝜏1.𝑆(𝑡)), 𝜏1.𝛽 = 𝜏2.𝛽 =∞, there exists a trace 𝜏𝑠 such that

1. 𝜏𝑠.𝐶 = min(𝜏1.𝐶, 𝜏2.𝐶)

2. 𝜏𝑠.𝐷 = 𝜏1.𝐷 + 𝜏2.𝐷

3. 𝜏𝑠.𝐴(𝑡) = 𝜏1.𝐴(𝑡)

4. 𝜏𝑠.𝑆(𝑡) = 𝜏2.𝑆(𝑡)

5. 𝜏𝑠.𝐿(𝑡) = 0

Proof. This follows immediately from Theorems 7 and 8 if we set the buffer size to

be infinity in theorem 7.

A.5 Proof of starvation of delay-convergent algorithms

We will now fill in the details of the proof sketch discussed in section 7. The theorem

is restated here for convenience:

148

Theorem 3 For any deterministic, 𝑓 -efficient, delay-convergent CCA 𝒜, any

propagation delay 𝑅𝑚, any throughput ratio 𝑠 ≥ 1, and any 𝐷 > 2𝛿max, there exists

a network scenario with two flows (specified via an initial state and two per-flow

trajectories of non-congestive delays), such that one flow gets a throughput 𝑥1 and

the other flow gets a throughput 𝑥2 ≥ 𝑠 · 𝑥1.

Proof. Steps 1 and 2 of the proof in Section 7 are complete. That section omitted

details from step 3, which we now fill.

Recall that in step 2, we created two different ideal links where the flows running

by themselves will achieve throughputs that are more than a factor 𝑠 different. The

key is that the delay the flows experience both lie within a range of size 𝛿max + 𝜖.

Now we will run both these flows on the same FIFO queue as in our model. We will

pick the starting states for the two flows to be the same as the state after they have

converged, that is their state at times 𝑇1 and 𝑇2 respectively. Next we pick the initial

queue length and vary the non-deterministic per-flow delay such that the delay they

experience is the same as they experienced in the one-flow case. Since the CCA is

deterministic, their sending rates will be identical. It remains for us to show we can

indeed recreate the same delay.

There are two cases based on how min(𝑑min(𝐶1), 𝑑min(𝐶2)) compares with 𝛿max+𝜖.

Case 1: min(𝑑min(𝐶1), 𝑑min(𝐶2)) > 𝛿max + 𝜖 In this case we will run both flows on

a common link with propagation delay 𝑅𝑚 and bottleneck link rate 𝐶1 + 𝐶2. Let us

calculate the queuing delay at a link with capacity 𝐶1+𝐶2 when packets from the two

flows arrive at rates 𝑟1(𝑡) and 𝑟2(𝑡). The derivative of the delay experienced by the

individual flow 𝑖 ∈ {1, 2}, 𝑑′𝑖(𝑡) =
d𝑑𝑖(𝑡)
d𝑡

= (𝑟𝑖(𝑡)−𝐶𝑖)/𝐶𝑖 because 𝑑𝑖(𝑡) ≥ 𝑑min(𝐶𝑖) > 0.

Let 𝑑⋆(𝑡) be the delay experienced in the combined two-flow network. If 𝑑⋆(𝑡) > 0,

we have:

149

d𝑑⋆(𝑡)

d𝑡
=

𝑟1(𝑡) + 𝑟2(𝑡)− (𝐶1 + 𝐶2)

𝐶1 + 𝐶2

(A.1)

= 𝑑′1(𝑡)
𝐶1

𝐶1 + 𝐶2

+ 𝑑′2(𝑡)
𝐶2

𝐶1 + 𝐶2

(A.2)

Hence d𝑑⋆(𝑡)
d𝑡

is a weighted average of 𝑑′1(𝑡) and 𝑑′2(𝑡) with weights 𝐶1 and 𝐶2

respectively. Since we are allowed to set the initial conditions, we set the initial

queue length:

𝑑⋆(0) = 𝑑1(0)
𝐶1

𝐶1 + 𝐶2

+ 𝑑2(0)
𝐶2

𝐶2 + 𝐶2

− 𝛿max − 𝜖

Since we assumed 𝑑1(𝑡), 𝑑2(𝑡) > 𝛿max + 𝜖 in our case analysis, subtracting 𝛿max + 𝜖

still leaves us with 𝑑⋆(0) > 0 and equation A.1 applies. This continues to hold for all

𝑡, as 𝑑⋆ continues to follow A.1 by induction over 𝑡.1 Hence:

𝑑⋆(𝑡) = 𝑑1(𝑡)
𝐶1

𝐶1 + 𝐶2

+ 𝑑2(𝑡)
𝐶2

𝐶1 + 𝐶2

− 𝛿max − 𝜖 (A.3)

Recall that to emulate delay, we needed:

0 ≤ 𝑑𝑖(𝑡)− 𝑑⋆(𝑡) ≤ 𝐷 = 2𝛿max + 2𝜖

for 𝑖 ∈ {1, 2}. Note that both 𝑑1 and 𝑑2(𝑡) are bound by a common region

of size 𝛿max + 𝜖 and therefore so is their weighted average. The −(𝛿max + 𝜖) term

in equation A.3 brings 𝑑⋆(𝑡) below the minimum value of both 𝑑𝑖(𝑡). Hence 0 <

𝑑𝑖(𝑡) − 𝑑⋆(𝑡). Further, 𝑑𝑖(𝑡) − 𝑑⋆(𝑡) 𝑑⋆(𝑡) ≤ 𝑑𝑖(𝑡). The reason is illustrated in the

diagram below:

1𝑡 is real and hence cannot support induction. However if we discretize time into infinitesimally
small pieces, we can apply induction at each step.

150

Region in which
 and their

weighted average lie

0 Region in which lies
because we subtracted

Thus we can emulate the two-flow network to make each flow think they are in

ideal links of widely different capacities. Hence starvation will ensue.

Case 2: min(𝑑min(𝐶1), 𝑑min(𝐶2)) ≤ 𝛿max + 𝜖 This is the easy case. Since both the

delays lie within an interval of size 𝛿max+𝜖, we have that 𝑑1(𝑡), 𝑑2(𝑡) ≤ 2𝛿max+2𝜖 = 𝐷.

This means that if the queuing delay in the two-flow bottleneck were always 0, the

non-deterministic delay element alone can emulate both the delays. Hence we simply

pick a link rate that is large enough that 𝑑⋆(𝑡) ≤ 𝑑𝑖(𝑡) for 𝑖 ∈ {1, 2}.

Note, in this case we can prove something stronger than starvation; the CCA isn’t

even 𝑓 -efficient in our network model (though it is 𝑓 -efficient in the ideal model). We

can have a very large link rate, emulate 𝑑1(𝑡) entirely using non-congestive delay and

induce the CCA to transmit at rate ≤ 𝐶1. Since the link rate can be arbitrarily large,

this causes arbitrarily bad underutilization.

A.6 Proof of the absolute upper bound

We re-state and prove the theorem discussed in Section 9.4.

Theorem 4 Any deterministic, 𝑓 -efficient, delay-bounding CCA will starve in

the strong model for any value of the propagation delay 𝑅𝑚.

151

Proof. We will construct a sequence of single-flow network traces that will eventually

let us construct a two-flow trace that causes starvation. We pick an arbitrary rate 𝜆.

Then, for our first trace, we run the CCA on an ideal link with rate 𝜆 and propagation

delay 𝑅𝑚. Let the delay and sending rate in this case be 𝑑1(𝑡) and 𝑟1(𝑡) respectively.

Let 𝐷 = max𝑡∈[0,∞)𝑑1(𝑡) be the maximum delay experienced.2

Note that by varying the link rate, the adversary can create any queuing delay

pattern it likes. This is because it can delay every packet by any amount it likes.

Since it is a FIFO queue, it cannot reorder packets. Hence it cannot preferentially

send packets of one flow over the other; both flows experience the same delay at the

queue. Thus the theorem statement is not vacuously true.

We construct the next single-flow behavior by causing the queuing delay to be

𝑑2(𝑡) = max(0, 𝑑1(𝑡) − 𝐷). If the ratio of throughputs between the first and second

case is more than 𝑠 or less than 1/𝑠 infinitely many times (according to the theorem

statement), we are done. We can run the two flows on the same FIFO queue where

the link causes a queuing delay of 𝑑1(𝑡)−𝐷. Then the non-deterministic delay element

adds 𝐷 seconds of delay to one flow’s packets and 0 seconds of delay to another flow’s

packets. Since the flows see exactly the same delays as they say in the single-flow case,

𝑑1(𝑡) and 𝑑2(𝑡), they behave exactly the same way. Hence they achieve throughputs

that are more than a factor 𝑠 apart.

If not, we construct a third trace where the queuing delay is max(0, 𝑑2(𝑡)−𝐷). If

the throughputs of the second and third trace differ by a ratio of more than 𝑠, again

we are done. Else we continue on. In at most 𝑛 = ⌈𝑄/𝐷⌉ such steps, we would have

either succeeded in causing starvation or reached 𝑑𝑛(𝑡) = 0.

We claim that because the CCA is 𝑓 -efficient, when 𝑑𝑛(𝑡) = 0, the throughput

should increase to infinity. That is, for all times 𝑡 and rates 𝜆′, there exists a time

𝑡′ > 𝑡 such that the total number of bytes transmitted is greater than 𝑡′𝜆. This is

because, for a sufficiently large link rate, 𝑑𝑛(𝑡) = 0. At this link rate, if the throughput

achieved by the CCA is finite, the CCA can under-utilize by an arbitrary amount as

the link rate increases. Here, by “finite” we mean that there exists a 𝜆′ such that for

2Strictly speaking, we should use the least upper bound, since the maximum may not exist.

152

all times 𝑡, the number of bytes transmitted till 𝑡 is less than 𝜆′𝑡. This violates our

𝑓 -efficiency definition.

Now if the throughput for the 𝑛𝑡ℎ trace reaches infinity, at some point in between

the ratio of must have been greater than 𝑠.

153

154

Bibliography

[1] Linux networking documentation/segmentation offloads, 2021.

[2] The ns-2 simulator. https://isi.edu/nsnam/ns/, Accessed 2021.

[3] The ns-3 simulator. https://nsnam.org/, Accessed 2021.

[4] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. Classic meets mod-
ern: A pragmatic learning-based congestion control for the internet. In ACM
SIGCOMM, pages 632–647, 2020.

[5] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben Martins, and Srinivasan
Seshan. Automating network heuristic design and analysis. In ACM SIGCOMM
HotNets, 2022.

[6] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
Data Center TCP (DCTCP). In ACM SIGCOMM, pages 63–74, 2010.

[7] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin
Vahdat, and Masato Yasuda. Less is More: Trading a Little Bandwidth for
Ultra-low Latency in the Data Center. In NSDI, 2012.

[8] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McK-
eown, Balaji Prabhakar, and Scott Shenker. pfabric: Minimal Near-Optimal
Datacenter Transport. In SIGCOMM, 2013.

[9] Thomas E Anderson, Andy Collins, Arvind Krishnamurthy, and John Zahorjan.
PCP: Efficient Endpoint Congestion Control. In NSDI, 2006.

[10] Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu. Impact of Response
Latency on User Behavior in Web Search. In SIGIR, 2014.

[11] Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. Starvation in end-
to-end congestion control. In ACM SIGCOMM, 2022.

[12] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh,
and Hari Balakrishnan. Toward formally verifying congestion control behavior.
In ACM SIGCOMM, 2021.

155

https://isi.edu/nsnam/ns/
https://nsnam.org/

[13] Venkat Arun and Hari Balakrishnan. Copa: Practical delay-based congestion
control for the internet. In USENIX NSDI, 2018.

[14] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S Berger. Caching with de-
layed hits. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 495–513, 2020.

[15] François Baccelli and Dohy Hong. Tcp is max-plus linear and what it tells us
on its throughput. In ACM SIGCOMM CCR, pages 219–230, 2000.

[16] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica,
and Hui Zhang. Developing a Predictive Model of Quality of Experience for
Internet Video. In SIGCOMM, 2013.

[17] D. Bansal and H. Balakrishnan. Binomial Congestion Control Algorithms. In
INFOCOM, 2001.

[18] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic Behavior of
Slowly-Responsive Congestion Control Algorithms. In SIGCOMM, 2001.

[19] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, et al. cvc5: A versatile and industrial-strength smt solver. In
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 415–442. Springer, 2022.

[20] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar
Munoz, Chetan Murthy, et al. The Coq proof assistant reference manual: Ver-
sion 6.1. PhD thesis, Inria, 1997.

[21] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general
approach to network configuration verification. In ACM SIGCOMM, pages
155–168, 2017.

[22] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rex-
ford, and David Walker. An assertion language for debugging sdn applications.
In ACM HotSDN, pages 91–96, 2014.

[23] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael
Smith, and Keith Wansbrough. Rigorous specification and conformance testing
techniques for network protocols, as applied to tcp, udp, and sockets. In ACM
SIGCOMM, pages 265–276, 2005.

[24] Enrico Bocchi, Luca De Cicco, and Dario Rossi. Measuring the Quality of
Experience of Web Users. In Proceedings of the 2016 Workshop on QoE-based
Analysis and Management of Data Communication Networks, 2016.

156

[25] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic Network
Calculus: From Theory to Practical Implementation. John Wiley & Sons, 2018.

[26] R Braden. Requirements for internet hosts – communication layers. IETF,
1989. RFC 1122, Section 4.2.3.2.

[27] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New Techniques
for Congestion Detection and Avoidance. In ACM SIGCOMM, pages 24–35,
1994.

[28] Bob Briscoe. Flow Rate Fairness: Dismantling a Religion. ACM SIGCOMM
Computer Communication Review, 37(2):63–74, 2007.

[29] Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timothy Zhu.
Metastable failures in distributed systems. In Proceedings of the Workshop on
Hot Topics in Operating Systems, pages 221–227, 2021.

[30] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis, Barath
Raghavan, Nandita Dukkipati, Hsiao-keng Jerry Chu, Andreas Terzis, and Tom
Herbert. packetdrill: Scriptable network stack testing, from sockets to packets.
In USENIX ATC, pages 213–218, 2013.

[31] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. Bbr: Congestion-based congestion control. In ACM Queue,
pages 58–66, 2016.

[32] Neal Cardwell, Yuchung Cheng, S. Hassas Yeganeth, Ian Swett, and Van Ja-
cobson. Bbr congestion control, version 1. IETF Internet Draft, 2017. Section
4.2.3.2.

[33] Neal Cardwell, Yuchung Cheng, S. Hassas Yeganeth, Ian Swett, and Van Ja-
cobson. Bbr congestion control, version 2. IETF Internet Draft, 2021. Section
4.6.4.2.

[34] D-M. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks. volume 17, pages 1–14, 1989.

[35] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[36] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob
von Raumer. The lean theorem prover (system description). In International
Conference on Automated Deduction, pages 378–388. Springer, 2015.

[37] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18(8):453–457, 1975.

157

[38] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira.
PCC: Re-architecting Congestion Control for Consistent High Performance. In
USENIX NSDI 2015, pages 395–408, 2015.

[39] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten
Godfrey, and Michael Schapira. Pcc vivace: Online-learning congestion control.
In USENIX NSDI, pages 343–356, 2018.

[40] Nandita Dukkipati. Rate Control Protocol (RCP): Congestion control to make
flows complete quickly. Citeseer, 2008.

[41] Jakob Eriksson, Hari Balakrishnan, and Samuel Madden. Cabernet: Vehicular
Content Delivery using WiFi. In MobiCom, 2008.

[42] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-
well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh
Govindan. Reducing Web Latency: The Virtue of Gentle Aggression. In SIG-
COMM, 2013.

[43] Robert W Floyd. Assigning meanings to programs. In Program Verification:
Fundamental Issues in Computer Science, pages 65–81. Springer, 1993.

[44] S. Floyd. TCP and Explicit Congestion Notification. SIGCOMM CCR, 24(5),
October 1994.

[45] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion
Control for Unicast Applications. In SIGCOMM, 2000.

[46] S. Floyd, T. Henderson, A. Gurtov, and Y. Nishida. The NewReno Modification
to TCP’s Fast Recovery Algorithm, 2004. RFC 6582, IETF.

[47] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Trans. on Networking, 1(4), August 1993.

[48] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S Wahby, and
Keith Winstein. Salsify:{Low-Latency} network video through tighter integra-
tion between a video codec and a transport protocol. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18), pages
267–282, 2018.

[49] The Linux Foundation. Linux Load Balancer sched/fair.c. https://elixir.
bootlin.com/linux/v5.5/source/kernel/sched/fair.c, 2020.

[50] Nitin Garg. Evaluating copa congestion control for improved video per-
formance. https://engineering.fb.com/2019/11/17/video-engineering/
copa/, 2019.

[51] Nitin Garg. Evaluating copa congestion control for improved video performance
https://engineering.fb.com/2019/11/17/video-engineering/copa/. In
Facebook Engineering Blog, 2019.

158

https://elixir.bootlin.com/linux/v5.5/source/kernel/sched/fair.c
https://elixir.bootlin.com/linux/v5.5/source/kernel/sched/fair.c
https://engineering.fb.com/2019/11/17/video-engineering/copa/
https://engineering.fb.com/2019/11/17/video-engineering/copa/
https://engineering.fb.com/2019/11/17/video-engineering/copa/

[52] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Ma-
hajan. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM, pages 300–313, 2016.

[53] Daniel Genin and Jolene Splett. Where in the internet is congestion? arXiv
preprint arXiv:1307.3696, 2013.

[54] Jim Gettys. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Comput-
ing, 15(3):96–96, 2011.

[55] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate
limiting youtube video streaming. In USENIX ATC, 2012.

[56] Saksham Goel, Benjamin Mikek, Jehad Aly, Venkat Arun, Ahmed Saeed, and
Aditya Akella. Quantitative verification of scheduling heuristics. In In Submis-
sion, 2023.

[57] Google. Perceptual Speed Index. https://developers.google.com/web/
tools/lighthouse/audits/speed-index, December 2017.

[58] Google. Time to Interactive (TTI). https://github.com/WPO-Foundation/
webpagetest/blob/master/docs/Metrics/TimeToInteractive.md, January
12, 2018.

[59] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari
Balakrishnan. Abc: A simple explicit congestion controller for wireless net-
works. In USENIX NSDI, pages 353–372, 2020.

[60] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert NM Watson,
Andrew W Moore, Steven Hand, and Jon Crowcroft. Queues don’t matter
when you can jump them! In NSDI, pages 1–14, 2015.

[61] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-Friendly High-
Speed TCP Variant. ACM SIGOPS Operating System Review, 42(5):64–74,
July 2008.

[62] Stephen Hemminger, Fabio Ludovici, and Hagen Pfeifer Paul. The linux
netem network emulator. https://www.linux.org/docs/man8/tc-netem.
html, 2011.

[63] Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[64] Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of
bbr congestion control. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP), pages 1–10. IEEE, 2017.

[65] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control Scheme
for TCP. In SIGCOMM, 1996.

159

https://developers.google.com/web/tools/lighthouse/audits/speed-index
https://developers.google.com/web/tools/lighthouse/audits/speed-index
https://github.com/WPO-Foundation/webpagetest/blob/master/docs/Metrics/TimeToInteractive.md
https://github.com/WPO-Foundation/webpagetest/blob/master/docs/Metrics/TimeToInteractive.md
https://www.linux.org/docs/man8/tc-netem.html
https://www.linux.org/docs/man8/tc-netem.html

[66] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized
resource analysis. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 357–370, 2011.

[67] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource aware ml. In Com-
puter Aided Verification: 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings 24, pages 781–786. Springer, 2012.

[68] Lexiang Huang, Matthew Magnusson, Abishek Bangalore Muralikrishna,
Salman Estyak, Rebecca Isaacs, Abutalib Aghayev, Timothy Zhu, and Alek-
sey Charapko. Metastable failures in the wild. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), pages 73–90, 2022.

[69] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In SIGCOMM, 2014.

[70] Facebook Inc. Mvfst: Facebook’s quic implementation, commit
e04fcaac. https://github.com/facebookincubator/mvfst/commit/
e04fcaacc1633c1bae78c61aac1f5f8a5784f657, Accessed July 2021.

[71] Jana Iyengar and Martin Thomson. Quic: A udp-based multiplexed and secure
transport. 2018.

[72] Jana Iyengar and Martin Thomson. Quic: A udp-based multiplexed and secure
transport. IETF, 2021. RFC 9000.

[73] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.

[74] Nathan Jay, Tomer Gilad, Nogah Frankel, Tong Meng, Brighten Godfrey,
Michael Schapira, Jae Won Chung, Vikram Siwach, and Jamal Hadi Salim.
A pcc-vivace kernel module for congestion control, 2018.

[75] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv
Tamar. A deep reinforcement learning perspective on internet congestion
control. In International Conference on Machine Learning, pages 3050–3059.
PMLR, 2019.

[76] Nathan Jay, Noga H Rotman, P Godfrey, Michael Schapira, and Aviv Tamar.
Internet congestion control via deep reinforcement learning. arXiv preprint
arXiv:1810.03259, 2018.

[77] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive. In Proceedings
of the 8th international conference on Emerging networking experiments and
technologies, pages 97–108, 2012.

160

https://github.com/facebookincubator/mvfst/commit/e04fcaacc1633c1bae78c61aac1f5f8a5784f657
https://github.com/facebookincubator/mvfst/commit/e04fcaacc1633c1bae78c61aac1f5f8a5784f657

[78] Pantea Karimi. Bridging the Gap Between Real-time Video and Backlogged
Traffic Congestion Control. PhD thesis, Massachusetts Institute of Technology,
2023.

[79] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high
bandwidth-delay product networks. In ACM SIGCOMM, pages 89–102, 2002.

[80] F. P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate Control in Communication
Networks: Shadow Prices, Proportional Fairness and Stability. Journal of the
Operational Research Society, 49:237–252, 1998.

[81] Changhoon Kim, Parag Bhide, Ed Doe, Hugh Holbrook, Anoop Ghanwani,
Dan Daly, Mukesh Hira, and Bruce Davie. In-band network telemetry (int).
https://p4.org/assets/INT-current-spec.pdf, 2016.

[82] Hwangnam Kim and Jennifer C Hou. Network calculus based simulation for
tcp congestion control: Theorems, implementation and evaluation. In IEEE
INFOCOM, volume 4, pages 2844–2855. IEEE, 2004.

[83] James C King. Symbolic execution and program testing. Communications of
the ACM, 19(7):385–394, 1976.

[84] Leonard Kleinrock. Queuing systems, volume i: Theory, 1975.

[85] Leonard Kleinrock. Queueing system. Volume II, J., 1976.

[86] Tristan Knoth, Di Wang, Adam Reynolds, Jan Hoffmann, and Nadia Polikar-
pova. Liquid resource types. Proceedings of the ACM on Programming Lan-
guages, 4(ICFP):1–29, 2020.

[87] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and
Madanlal Musuvathi. Finding protocol manipulation attacks. In ACM SIG-
COMM, pages 26–37, 2011.

[88] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196, 2018.

[89] James Kurose and Keith Ross. Computer networks: A top down approach
featuring the internet, 2010.

[90] Leslie Lamport. Introduction to tla. 1994.

[91] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of de-
terministic queuing systems for the internet, volume 2050. Springer Science &
Business Media, 2001.

[92] K Rustan M Leino. Dafny: An automatic program verifier for functional correct-
ness. In International conference on logic for programming artificial intelligence
and reasoning, pages 348–370. Springer, 2010.

161

https://p4.org/assets/INT-current-spec.pdf

[93] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali Begen, and David
Oran. Probe and adapt: Rate adaptation for HTTP video streaming at scale.
IEEE JSAC, 32(4):719–733, 2014.

[94] Bingzhe Liu, Ali Kheradmand, Matthew Caesar, and P Brighten Godfrey. To-
wards verified self-driving infrastructure. In Proceedings of the 19th ACM Work-
shop on Hot Topics in Networks, pages 96–102, 2020.

[95] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,
and Alexandra Fedorova. The linux scheduler: A decade of wasted cores. In Pro-
ceedings of the Eleventh European Conference on Computer Systems, EuroSys
’16, New York, NY, USA, 2016. Association for Computing Machinery.

[96] Ratul Mahajan, Jitendra Padhye, Sharad Agarwal, and Brian Zill. High Perfor-
mance Vehicular Connectivity with Opportunistic Erasure Coding. In USENIX
ATC, 2012.

[97] Claire Maiza, Hamza Rihani, Juan M Rivas, Joël Goossens, Sebastian Altmeyer,
and Robert I Davis. A survey of timing verification techniques for multi-core
real-time systems. ACM Computing Surveys (CSUR), 52(3):1–38, 2019.

[98] Jacob B Malone, Aviv Nevo, Jonathan W Williams, et al. The tragedy of the
last mile: Congestion externalities in broadband networks. No. June in NET
Institute Working Paper, (16-20), 2016.

[99] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang,
Haonan Wang, Ryan Marcus, Mehrdad Khani Shirkoohi, Songtao He, Vikram
Nathan, et al. Park: An open platform for learning-augmented computer sys-
tems. Advances in Neural Information Processing Systems, 32, 2019.

[100] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video
streaming with pensieve. In Proceedings of the conference of the ACM special
interest group on data communication, pages 197–210, 2017.

[101] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. Learning scheduling algorithms for data processing
clusters. In Proceedings of the ACM special interest group on data communica-
tion, pages 270–288. 2019.

[102] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. Tcp selective
acknowledgment options, 2012. RFC 1996, IETF.

[103] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macro-
scopic behavior of the tcp congestion avoidance algorithm. volume 27, pages
67–82. ACM, 1997.

[104] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and Michael Schapira. Pcc
proteus: Scavenger transport and beyond. In ACM SIGCOMM, pages 615–631,
2020.

162

[105] Zili Meng, Tingfeng Wang, Yixin Shen, Bo Wang, Mingwei Xu, Rui Han, Hong-
hao Liu, Venkat Arun, Hongxin Hu, and Xue Wei. Enabling high quality real-
time communications with adaptive frame-rate. In USENIX NSDI, 2023.

[106] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, David Zats, et al.
TIMELY: RTT-based Congestion Control for the Datacenter. In SIGCOMM,
2015.

[107] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali, Moham-
mad Alizadeh, and Sachin Katti. Numfabric: Fast and flexible bandwidth
allocation in datacenters. In Proceedings of the 2016 conference on ACM SIG-
COMM 2016 Conference, pages 188–201. ACM, 2016.

[108] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal, Srini-
vas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari Balakrishnan.
Restructuring endpoint congestion control. In ACM SIGCOMM, pages 30–43,
2018.

[109] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki, Mehrdad
Khani, Prateesh Goyal, and Mohammad Alizadeh. End-to-end transport for
video qoe fairness. In Proceedings of the ACM Special Interest Group on Data
Communication, pages 408–423. 2019.

[110] Yuchung Cheng Neal Cardwell. The linux kernel, com-
mit 43e122b0. https://github.com/torvalds/linux/commit/
43e122b014c955a33220fabbd09c4b5e4f422c3c, 2015.

[111] Ravi Netravali, Vikram Nathan, James Mickens, and Hari Balakrishnan. Ves-
per: Measuring Time-to-Interactivity for Web Pages. In NSDI, 2018.

[112] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Win-
stein, James Mickens, and Hari Balakrishnan. Mahimahi: Accurate Record-
and-Replay for HTTP. In USENIX ATC, pages 417–429, 2015.

[113] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. ACM Queue,
10(5), May 2012.

[114] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a
proof assistant for higher-order logic. Springer, 2002.

[115] Ulf Norell. Towards a practical programming language based on dependent type
theory, volume 32. Chalmers University of Technology, 2007.

[116] Hiroyasu Obata, Kazuya Tamehiro, and Kenji Ishida. Experimental evaluation
of TCP-STAR for satellite Internet over WINDS. In International Symposium
on Autonomous Decentralized Systems (ISADS), 2011.

163

https://github.com/torvalds/linux/commit/43e122b014c955a33220fabbd09c4b5e4f422c3c
https://github.com/torvalds/linux/commit/43e122b014c955a33220fabbd09c4b5e4f422c3c

[117] Oded Padon, Kenneth L McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. Ivy: safety verification by interactive generalization. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 614–630, 2016.

[118] Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana Prabhu,
Vijay Subramanian, Fred Baker, and Bill VerSteeg. Pie: A lightweight control
scheme to address the bufferbloat problem. In 2013 IEEE 14th international
conference on high performance switching and routing (HPSR), pages 148–155.
IEEE, 2013.

[119] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson modeling.
IEEE/ACM Transactions on Networking (ToN), 3(3):226–244, 1995.

[120] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. Fastpass: A Centralized "Zero-Queue" Datacenter Network. In SIG-
COMM, 2014.

[121] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya Akella.
Congestion control in machine learning clusters. ACM HotNets 2022, 2022.

[122] Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 159–169, 2008.

[123] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa
Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, et al.
Annulus: A dual congestion control loop for datacenter and wan traffic aggre-
gates. In Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, pages 735–749, 2020.

[124] Matt Sargent, Jerry Chu, Dr Vern Paxson, and Mark Allman. Computing tcp’s
retransmission timer. Technical report, 2011. RFC 6289.

[125] Sea Shalunov, Greg Hazel, Janardhan Iyengar, Mirja Kuehlewind, et al. Low
extra delay background transport (ledbat). In RFC 6817, 2012.

[126] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[127] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrish-
nan. An Experimental Study of the Learnability of Congestion Control. In
SIGCOMM, 2014.

164

[128] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. IEEE/ACM transactions on networking,
28(4):1698–1711, 2020.

[129] R. Srikant. The Mathematics of Internet Congestion Control. Springer Science
& Business Media, 2004.

[130] Aaron Stump, Clark W Barrett, and David L Dill. Cvc: A cooperating validity
checker. In Computer Aided Verification: 14th International Conference, CAV
2002 Copenhagen, Denmark, July 27–31, 2002 Proceedings 14, pages 500–504.
Springer, 2002.

[131] Bo Su, Xianliang Jiang, Guang Jin, and Haiming Chen. Rethinking the rate
estimation of bbr congestion control. Electronics Letters, 56(5):239–241, 2020.

[132] Wei Sun, Lisong Xu, and Sebastian Elbaum. Improving the cost-effectiveness
of symbolic testing techniques for transport protocol implementations under
packet dynamics. In ACM SIGSOFT, pages 79–89, 2017.

[133] Wei Sun, Lisong Xu, and Sebastian Elbaum. Limitations of emulating realistic
network environments for correctness testing of internet applications. In 2018
IEEE International Conference on Communications (ICC), pages 1–6. IEEE,
2018.

[134] Wei Sun, Lisong Xu, and Sebastian Elbaum. Scalably testing congestion control
algorithms of real-world tcp implementations. In IEEE International Confer-
ence on Communications (ICC), pages 1–7, 2018.

[135] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. Model-agnostic and
efficient exploration of numerical state space of real-world tcp congestion control
implementations. In USENIX NSDI, pages 719–734, 2019.

[136] Streaming Video Alliance: Measurement/Quality of Experience. https:
//www.streamingvideoalliance.org/technical-work/working-groups/
measurement-quality-of-experience/.

[137] Nikhil Swamy, Cătălin Hrițcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, et al. Dependent types and multi-
monadic effects in f. In Proceedings of the 43rd annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 256–270,
2016.

[138] Mohit P Tahiliani, Vishal Misra, and KK Ramakrishnan. A principled look
at the utility of feedback in congestion control. In Proceedings of the 2019
Workshop on Buffer Sizing, pages 1–5, 2019.

[139] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach
for High-speed and Long Distance Networks. In INFOCOM, 2006.

165

https://www.streamingvideoalliance.org/technical-work/working-groups/measurement-quality-of-experience/
https://www.streamingvideoalliance.org/technical-work/working-groups/measurement-quality-of-experience/
https://www.streamingvideoalliance.org/technical-work/working-groups/measurement-quality-of-experience/

[140] The Google BBR Team. Bbr bandwidth based convergence.
https://github.com/google/bbr, commit 87d8587c50, Documenta-
tion/bbr_bandwidth_based_convergence.pdf, 2018.

[141] Yue Wang, Kanglian Zhao, Wenfeng Li, Juan Fraire, Zhili Sun, and Yuan Fang.
Performance evaluation of quic with bbr in satellite internet. In IEEE Interna-
tional Conference on Wireless for Space and Extreme Environments (WiSEE),
pages 195–199. IEEE, 2018.

[142] Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine Sherry.
Beyond jain’s fairness index: Setting the bar for the deployment of congestion
control algorithms. In ACM SIGCOMM HotNets, pages 17–24, 2019.

[143] D.X. Wei, C. Jin, S.H. Low, and S. Hegde. FAST TCP: Motivation, Architec-
ture, Algorithms, Performance. IEEE/ACM Trans. on Networking, 14(6):1246–
1259, 2006.

[144] Keith Winstein and Hari Balakrishnan. TCP ex Machina: Computer-Generated
Congestion Control. In ACM SIGCOMM 2013, 2013.

[145] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic Fore-
casts Achieve High Throughput and Low Delay over Cellular Networks. In
USENIX NSDI, pages 459–471, 2013.

[146] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. De-
sign, implementation and evaluation of congestion control for multipath tcp. In
USENIX NSDI, volume 11, pages 8–8, 2011.

[147] Zhengxu Xia, Yajie Zhou, Francis Y Yan, and Junchen Jiang. Genet: automatic
curriculum generation for learning adaptation in networking. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 397–413, 2022.

[148] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control (BIC)
for Fast Long-Distance Networks. In INFOCOM, 2004.

[149] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. Learning in situ: a randomized
experiment in video streaming. In USENIX NSDI, pages 495–511, 2020.

[150] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby,
Philip Levis, and Keith Winstein. Pantheon: the training ground for inter-
net congestion-control research. In USENIX ATC, pages 731–743, 2018.

[151] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-
theoretic approach for dynamic adaptive video streaming over http. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data Com-
munication, pages 325–338, 2015.

166

https://github.com/google/bbr

[152] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. Adaptive congestion control for unpredictable cellular net-
works. In ACM SIGCOMM, 2015.

[153] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. An ax-
iomatic approach to congestion control. In HotNets, pages 115–121, 2017.

[154] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. Axioma-
tizing congestion control. ACM POMACS, 3(2):1–33, 2019.

[155] Lixia Zhang, Scott Shenker, and David D Clark. Observations on the Dynamics
of a Congestion Control Algorithm: The Effects of Two-Way Traffic. 1991.

[156] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. Ecn or delay:
Lessons learnt from analysis of dcqcn and timely. In CoNEXT, pages 313–327,
2016.

167

	Introduction
	Traditional analysis is overly optimistic
	Quick primer on congestion control, AIMD and simple network models
	AIMD on more complex networks
	Macroscopic effects of microscopic delay jitter

	Performance verification overview
	Modeling strategy
	The properties we want to prove
	How we get computers to help us

	Summary of contributions

	Related work
	Congestion control
	Formal verification

	Overview of our work on congestion control
	Verifying the performance of congestion control
	Overview of CCAC

	Starvation in congestion control
	Delay-convergence
	Example of starvation

	Copa: a new delay-based CCA

	Congestion control path model
	A simple model that assumes infinite buffers
	The full model that allows for finite buffers
	The set of paths the model captures
	Expressing CCAs

	Discussion of modeling choices

	Formal analysis using an SMT solver
	Expressing CCAs
	Parameters and linearity

	CCAC case studies
	Case study 1: BBR
	Case study 2: AIMD
	The surprise
	AIMD's steady-state analysis

	Case study 3: Copa
	Worst-case utilization
	Copa's steady-state analysis

	Statement and proof of the starvation theorem
	Extension of our network model
	Definitions
	Starvation theorem

	Starvation in the real-world
	Vegas, FAST, and Copa
	BBR
	PCC Vivace
	Loss-based CCAs

	Implications of the starvation result
	Is an f-efficient, delay-convergent CCA achievable?
	Larger oscillations may avoid starvation
	Avoiding starvation in a bounded rate range
	An absolute upper bound

	Limitations of our congestion control analysis method
	Copa: A new delay-based congestion control algorithm
	The algorithm
	Competing with buffer-filling schemes
	Application-layer benefits

	Dynamics of Copa
	Justification of the Copa target rate
	Objective function and Nash equilibrium
	The Copa update rule follows from the equilibrium rate
	Properties of the equilibrium

	Evaluation
	Dynamic behavior over emulated links
	Real-world evaluation
	RTT-fairness
	Robustness to packet loss
	Simulated datacenter network
	Emulated satellite links
	Co-existence with buffer-filling schemes

	Future work
	Beyond verification: automatically synthesizing provably performant heuristics
	Challenge: what signals do we monitor?
	Challenge: how do we synthesize heuristics automatically?

	Verifying the end-to-end performance of systems
	Making performance verification easier to use

	Conclusion
	Appendix
	CCAC extensions
	AIMD counterexample in detail
	More SMT details
	Proofs
	Case 1: Second path-server is faster
	Case 2: First path-server is faster

	Proof of starvation of delay-convergent algorithms
	Proof of the absolute upper bound

